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Some Effects of Non-linear Stress/Strain. 
Relations in Rotationally Symmetric 

TRin Slie 11 s and other Engineering Components

by

A. C. Mackenzie

S U M M A R Y

This thesis is mainly concerned with rotatioie. 1iy 
symmetric thin shells made of materials obeying' non-l:.ncc 
stress/strain laws, in particular an n-power law 
.relating effective stress and effective strain. To 
formulate boundary value problems in such shells, it is 
convenient to have relations between edge forces and 
moments and mid-surface deformations. .With the usual 
assumptions of thin shell theory, these relations can be 
obtained as integral expressions in the thiclmess co­
ordinate, but the integrations cannot be performed 
analytically for all values of the index n. Simple, 
approximate relations are thus suggested for thin slii;̂  
which are rotationally symmetric both in geometry and 
loading; the approximate relations are compared with the 
exact relations computed numerically for the particular



condition in which one curvature change of the mid- 
surface is zero. This condition applies in the 
analysis of circular cylindrical shells.

The approximate relations are used to formulate 
boundary value problems in cylindrical shells, and a 
method of solution using an analogue computer is 
described. Solutions are given for a long, fixed end 
cylinder under uniform radial loading and under internal 
pres sure. A feature of these solutions, in the form 
presented, is the small variation in the maximum values 
of important variables with the index n . This suggests
that the linear elastic (n = 1) solution may be used to
make reasonable estimates of these maximum values for a
range of values of n.

As a preliminary to the work on shells, an 
examination was made of solutions obtained with an
n-power law for deformatipns in a number of other
engineering components. A simple method, based on the 
linear elastic solution, was devised for estimating 
deformations and is described in the present work. The
method makes direct use of the stress/strain curve 
without need for dotermining material coastants.
Although it was derived for an n-power law, physical 
explanations for the method suggest that it might give



reasonable estimates of deformations for non-linear 
laws other than the n-power law. Some available 
experimental results are given in support of this 
suggestion.
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CHAPTER 1

INTRODUCTION

Mucli is Imown about the behaviour of structures 
made of materials which have linear relations between 
stress and strain, and in recent years this lenowledge has 
been extended to behaviour under conditions of non-17ork- 
hardening plastic flow. Less attention has boon given to 
structures of materials which have intermediate, non-JAncar 
stress/strain relati ons.

Many light alloys and polymeric matcriEil s , wHicli
are being used increasingly as struetural components, show
little or no linear elasticity; design of these components
should take account of the non-linear behaviour. Also,
more and more structures arc being designed to operate
at temperatures and stress levels at which significant'T-
creep occurs, and in most materials the creep strain rate 
bears a non-linear relationship to stress.

In the past, the difficulties in studying srrucrurcs 
made of such materials have arisen mainly from the complex 
stress/strain relations necessary to describe the material 
behaviour accurately, and from inability to cope with such 
relations in analysis. As modern computing techniques 
have developed, it has become possible, with numerical



metliods of analysis, to deal with increasingly complex 
material characteristics. There is a tendency, however, 
for too much emphasis to be placed on the development of 
involved computer programmes, and too little attention 
given to obtaining solutions leading to a better under­
standing of the behaviour of structures. There is some
advantage in selecting a family of simple non-linear 
relations, which only approximate to material behaviour 
but by way of relatively simple analysis may be used to 
explore some features of the behaviour of structures.
They may also suggest approximate methods of analysis 
applicable with other non-linear laws.

A family of stress/strain relations which may be
used in problems involving a single stress variable is

£  =  E) C7' ( 1 • 1 )

wliere C  and O  are uniaxial strain and stress respectively,
and B and n are constants. With n - 1, equation 1.1 is
a statement of linear elasticity and for n co , written
in appropriate non-dimensional form, it represents a

( 1 )rigid-non-work-hardening material . It has been used
with other values of n to approximate to the behaviour of 
some metals in their plastic range. Written in the form 
expressing strain rate as a function of stress, i.e.

oir' El O' (1.2)



J

it is commonly used to describe the steady state creep 
behaviour of metals.

For problems involving multiaxial states of stress, 
further assumptions have to be made about material behaviour. 
One assumption which has found wide acceptance for simple 
loading paths is that the root mean square of the principal 
shear strains is a function of the root mean square of the 
principal shear stresses (usually termed the effective strain 
and stress and denoted £ and O' respectively). Experiments 
made by many investigators have shown this to be à reasonable 
assumption for the plastic flow of metals, whether under 
short-term loading or under longer term creep conditioils, 
when it is found that the effective strain rate is a 
function of the effective stress. Since it is well

•;A

established that plastic flow in metals is a shear
phenomenon, it is not surprising that approximate relations
should exist between simple statistical measures of shear
stress and shear strain "intensity". It has been found 

( 2 )recently^  ̂ that these concepts are useful also in 
describing the behaviour of some polymeric materials.

The functional relationship between £ and O  of 
which equation 1.1 is a special case is

ÿ = (1.3)
while equation 1.2 is a special case of

ë  =  B  (i.k)
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At this stage it is relevant to mention H off’s 
( 1 )analogy'  ̂ between solutions to structural problems 

obtained with equation 1,3 and those obtained with 
equation 1.4. For a given loading, the stresses 
throughout a structure are the same in the two cases, 
deformations obtained with equation 1.3 becoming 
deformation rates with equation 1.4, Solutions to non­
time-dependent problems wAth equation 1.3 can thus be 
used for steady state creep problems obeying equation
1.4 and vice versa.

It is as an equation of steady state creep that 
the n-power law has been most widely applied in 
structural analysis, and solutions to many problems with 
a single stress variable are easily obtained. A number 
of problems involving mulbiaxial states of stress have 
also been solved with equation 1.4, Among these are the 
thick-wall cylinder and sphere under internal pressure, 
the rotating disc, and the circular flat plate under
rotationally symmetric loading. The most important of

( 3 )the results have been gathered by Finnie and Heller' ,
(4)and also by Odqvist and Huit.

A bound method for analysis of structures in 
steady state creep obeying equation 1.4 has been suggested 
by Calladine and Drucker. It is based on surfaces
of constant energy dissipation rate, and the bounds are



obtained, from the linear elastic (n = l) and the rigid-
non-work-hardening plastic ( n -i" GO ) solutions. The
method is useful when the solution for n r-*-oo is readily
obtainable and the bounds are reasonably close. In many
structures, the solution for n oo is as difficult to
obtain as the solution for an intermediate value of n.
Calladine has applied bound methods to a number of
structures^^^’ and has also recently suggested a
method for estimating the greatest stress in a structure

( 9 )subject to creep,' '

As part of the present work, an examination was 
made of some of the existing solutions for deformations 
in simple structures obtained with the n-power law. It 
was found that when the solution for n = 1 was factored 
out, the rest of the solution could be made relatively 
insensitive to the value of n if a non-dimensional group, 
dependent on the dimensions of the structure and on the 
loading, was given a particular value. This suggested a 
method for predicting deformations which used the linear 
elastic solution and did not require evaluation of the 
material constants B and n in equations I .3 or 1.4, the 
stress/strain (or strain rate) curve being used directly. 
Furthermore, physical explanations for the method 
suggested that it might give reasonable estimates of 
deformations for non-linear laws other than the n-power



law. Some available experimental results supported this 
suggestion.

The method is reported here and results are given 
for a number of structures. No apology is made for the 
relatively simple examples which have been considered.
They are frequently met in the design of engineering 
components, and a ready, if only approximate, method of 
predicting deformations is all that is inquired, 
particularly in the early stages of developing a design. 
The use of the n-power solutions as normally presented 
requires determination of the material constants. As 
few materials obey an n-power law exactly, it is usually 
difficult to decide on values for the constants which 
best fit the test data.

In recent years a growing need has developed for 
an understanding of the behaviour of rotationally 
symmetric thin shells made of materials with non-linear 
stress/strain relations. . Such shells are widely used as 
pressure vessels and are now frequently made of light 
alloys and polymeric materials. Pressure vessels of 
more conventional materials are also being required to 
operate at temperatures at which significant creep occurs.

Several attempts have been made with the n-power 
law to obtain solutions to such thin shell problems.
Only limited progress has been made with even the simplest



7

of rotationally symmetric shells. One difficulty lies 
in obtaining relations between forces and moments on an 
element.of the shell and the associated mid-surface 
deformations, . This requires integration of the ? non-linear 
stress/strain relations' through the shell thickness and 
the integrations cannot be 'performed analytically. There 
is also coupling between in-pla,ne and bending actions which 
does not occur in the corresponding linear relations.

In an early attempt to obtain these relations, Onat 
and Yuksel( )  avoided the difficulty of integrating 
stresses through the shell thickness by considering a 
sandwich construction. Two identical thin layers of material 
were considered to be separated by a central core, the only 
other function of which was to withstand shear stresses 
associated with changing bending moments in the shell.
Further simplifying assumptions were introduced by the use 
of a steady state creep law based on a relationship between 
maximum shear stress and maximum shear strain rate 
(analogous to the Tresea condition in the theory of 
plasticity). The analysis could be applied if the outer 
layers of the shell were assumed to obey relations between 
effective stress and effective strain rate as in equation 
X.4, but it is difficult to see that it gives anything but 
a very crude approximation to the behaviour of shells having 
uniform properties through the thiclmess.
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( 11 )Bieniek and Freudentlial ' ' , in performing an
analysis of secondary creep in thin cylinders, made 
drastic simplifying assumptions which removed the 
coupling between in-plane and bending actions. They 
applied extremum principles to obtain solutions to the 
problem of the thin cylinder with fixed ends under 
internal pressure, but the moment distributions which 
they obtained show very unlikely trends.

The first attempt to use a reasonable set of
( 12 )approximate relations was made by Calladine . He

postulated semi-empirical relations based on an 
ellipsoidal interaction surface between the forces 
and moments on a shell element, and used the relations 
to establish a governing differential equation for 
secondary creep in a cylindrical shell. By casting the 
equation into finite difference form, he obtained a 
numerical solution to a boundary value problem in a shell 
with edge shear force and bending moment for a value of 
the index n = 3•

One object of the present work was to propose a 
rational basis for the suggestion of approximate relations 
between forces and moments and mid-surface deformations, 
and for comparison with ’’exact” relations computed 
numerically. It was noted that the exact relations 
can be derived from a function which, in steady state



creep, is the energy dissipation rate. An approximate 
form of the function, based on an n-power law, was 
obtained for an element of a shell rotationally symmetric 
both in geometry and loading, and led to approximate 
relations simple enough to be useful in further analysis. 
The relations were compared with the exact relations for 
a cylindrical shell and showed favourable agreement.

After these approximate relations had been
obtained, the writer became aware of relations suggested

( 13 )by Rozenbliutn The latter are based on an approximate
expression for the rate of energy dissipation in steady 
state creep of a shell element, and can be shown to be 
the same as those obtained here. Rozenblium based his 
approximate expression for the rate of energy dissipation 
on a yield surface suggested originally by Ilyushin,^ ^  

and developed it in load space. In the present work, the 
energy function and the approximate relations are developed 
in deformation space, the advantage of this being the ease 
with which comparison can be made with the exact relations.

R o z e n b H u m  has included in his relations the 
in-plane edge shear forces and the twisting moments which 
arise in a shell not rotationally symmetric in geometry 
and/or loading. In the writer’s opinion, it is premature 
to attempt to deal with this general case before the 
relations are tried and proved for.the simpler, but



important, practical examples of rotationally symmetric 
shells. Illustrating the use of the relations, Rozenb3.ium 
used variational principles to obtain approximate solutions 
to the problem of an infinite cylinder with a circumferential 
line loading.

In the present work, the approximate relations have 
been used to formulate the problem of a cylindrical shell 
under rotationally symmetric loading. It was found that 
the resulting fourth order system of two simultaneous, 
non-linear differential equations could conveniently be 
solved on an analogue computer. Solutions were obtained 
for a number of boundary value problems in semi-infinite 
cylinders and, in particular, for the long cylinder with 
fixed ends under internal pressure. The results indicate 
that it may be possible in many problems to make reasonable 
estimates of forces and moments at boundary restraints and 
of deformations in the shell, from the linear elastic 
solution.

To summarise, the objects of the present study are
(i) to examine solutions obtained with an n-power law 

for the deformations in some simple structures, and 
to suggest approximate methods for predicting 
deformations which may be applicable with other 
non-linear laws;

(ii) to suggest approximate relations between forces 
and moments and mid-surface deformations, based



-LX

on an n-power law and suitable for analysis of 
thin shells which are rotationally symmetric both 
in geometry and loading;

(iii) to demonstrate the use of these approximate 
relations in obtaining solutions to boundary 
value problems in cylindrical shells.
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CHAPTER 2

SOME DEFINITIONS AND ASSUMPTIONS

2.1 Tlie uniaxial stress/strain law
A typical stress/strain curve oT tHe family defined 

by equation 1.1 I.e.
on.

£  ~  B  cr

Is sbown In Fig. 2.1 for n >  1 (With n < l  equation 1.1
defines a material behaviour which Is not commonly met, 
and In what follows values of n <  1 are not considered.)

cr

£

FIG. 2.1

(3)As suggested by Calladlne and Drucker^ the constant 
B may be expressed In terms of the co-ordinates ( of
an arbitrary point on the stress/strain curve, I.e.

. B  = fsL
cry
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and equation 1.1 may be written in the non-dimensional 
f orm

\ ^ o j  ( 2 . 1) •

Equation 2.1 is plotted for different values of 
n in Fig. 2.2. Written in this form, it is seen to
represent a rigid^/ non-work-hardening material for n 00.

The material behaviour is assumed to be the same 
in tension and compression, and this can lead to difficulty 
in using equation 2.1 when n is even. The difficulty is
avoided, however, if the equation is used in the forms

( 2 . 2a)

or
^  (2.2b)

2.2 Stress/strain relations for complex states of stress 
In defining stress/strain relations for complex 

states of stress, the following assumptions are made:

(a) The material is homogeneous and isotropic.
(b) No change in volume occurs during deformation.
(c) The material is initially unstressed and the

stresses increase monotonically from zero in a

* Where not included in the text all figures are to be 
found at the ends of the relevant chapters.
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(d)

constant ratio. (Loads applied to a structure 
must therefore increase monotonically from zero 
in a constant ratio.)
Deformation is governed by the flow rule

where

1  E
2 <T

Va

'/a

Vz

"A

(2.3)

(2.4)

(e)

In these equations , Ô , are principal
stresses and £ ̂ ^ , 6 ̂  are principal strains.
(Assumption (c) allows the flow rule to be written 
in terms of total rather than incremental strains.)

The equivalent stress cuid strain G and C are 
related by the equation

£ =  B  a

or, in non-dimensional form,

^  = [9L.'
\(J,

(2.5)

( 2 . 6 )

With the assumptions (a) to (e), the following 
stress/strain relations are obtained in Appendix 2.1:
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n-i= E> CJ i CTi. - 4-C^ + ‘̂) ] 

63 =
(2 .7 )

In developing relations between forces and moments 
and mid-surface deformations, suitable for tbe analysis of 
thin shells, a state of plane stress ( = o) is assumed.
With this assumption, expressions for and  ̂ in
terms of £ ̂  and are obtained as follows:

From equation 2.3, with CT̂  ~ 0

a  =  f  f  ( e - e . )  

“  3 f
(2.8)

With

£^ + = 0 -(-for constant volume) ,'2

"â

equations 2.8 become finally
W-i Id = (t)

d =  -g-'/w ( v )  + .

(2.9)
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No difficulty arises in using these relations, 
whether n is odd or even. The term ( t )
can be written  ̂ ^ a.nd is always
po sitive.

2.3 Limitations on strains and displacements
Non-linearities arise in the analysis of structures

from changes in geometry as well as from the stres s/s train
relations. The equilibrium equations are normally
obtained for an element in the undeformed structure. If
substantial deformation and/or rotation of the element
occurs, the equilibrium equations must be established for
the deformed state and non-linear terms are thereby
introduced. The strain/displacement relations also
become non-linear when rotations are taken into account*

( 15 )As discussed, for example, by Novozhilov,' the
non-linearities associated with physical and geometric 
sources can occur independently. In the present study 
it is assumed that non-linearities arising from geometry 
changes can be disregarded. This implies a limitation 
on displacements and strains in the structure. It is not 
possible to define these limits. They will depend on the 
nature of the problem and the required accuracy of solution, 
and are perhaps best established from individual experiments
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CHAPTER 3

AN APPROXIMATE METHOD FOR PREDICTING 
DEFORMATIONS IN SOME SIMPLE STRUCTURES 
WITH NON-LINEAR STHESS/STRAIN RELATIONS

1 8

3.1 113.US t rati on of metliod with reference to
beams i n u.n if or ni b e n d. I n g; •

A method Ior predicting delormations in simple
structures obeying non-rlinear stress/strai.n relations is
illustrated for a beam of rectangular cross-section in
un if o r ni b e nding.
M

For a material obeying equation. 2.1, i.e.
_g_

1 %  j
the relationship between the applied moment M and the 
curvature K to which the central axis of the beam bends 
is, obtained in Appendix 3-1 (a ) as

€0_______ (3-1)
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With n = 1, this reduces to the familiar expression for 
a linear elastic beam

K. _  h  M
(fVêo) t

(3 .2 )

 ̂ Factoring from the right hand side of equation 3*1 lead;
to

K _ K./ H  \ 2 (Z-A+i
(3.3)

 ̂ Thus for Y1 ̂  1
K = K,

if

M 'A”l s
3

'V\

/y\.

or

M
(To

*7 'V%'l3
2

■va
,2'̂. 11

/VL 
yv.- I

U-) 5 A Y (3.4)

Table 3*1 shows that does not vary greatly
for I' I —  Y1 ̂  7  ,

NOTE : It is shown in Appendix 3*2 that

‘A 0.2526
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Equation 3*3 is not violated with
M

M 0-232G for
sine e

OoQyd"̂
is raised to the power n — ' 1

Similar remarks apply to all the examples of structures 
considered in this Chapter,

n I ( )
1 , 1 0 . 233
1.5 0 .237
2 . 0 0 . 240
3 0 0 . 243
k .0 0 . 244
5.0 0.245
7.0 0. 2̂ 17

Table 3-1

It is thus possible to select a value for the
Mnon-dimensional group ^ y  ̂ which will make K 

approximately equal to for a range of values of o
The error incurred can be assessed as follows;
From equation 3*3

ii
K,

W
■n. (3.5)

Selecting from Table 3*1 the value
M 0 - 2 4 5

gives
VV-1

m. (3 .6 )
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The ratio “ is given for different values of n 
in Table 3.2. It differs from unity by less than 4 5%
for 1 . 1 ™  n 7

n K
'̂ 1

1 . 1 1 .005
1.5 1. 016
2.0 1 .021
3.0 1 .020
4.0 1 . 00.5
5.0 1 .000
7 .0 0.959

Table 3.2

The result suggests the following method for 
predicting curvatures in beams in uniform bending, obeying 
an n-power 1 aw :

(a) For a given value of M and dimensions of beam 
obtain Go from

M

or
Oo

0* 2 4" 6

M
0'245&cl
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(b) Read tlixs value of into the stress/strain curve
to obtain £ .o

(c) Use these values of CT and £ to calculate K., ̂  ̂ o o 1
from the linear elastic solution, equation 3.2, i.e

K, =
The actual curvature K will not differ from by

more than - 5^ for 1.1 ™  n ™  7*
Fig 3*1 gives a physical explanation for the 

method. The bending stress is plotted in convenient 
non-dimensional form over half the depth of the beam for 
different values of n, the moment M being the same in 
each case. The curves for 1 . 1 —  n —  7 intersect the 
curve for n = 1 at approximately the same distance from the 
neutral axis of the beam. If the stress at the inter­
section "point” is taken to be (J , the strain at thiso
point, and hence the curvature of the beam, will be the 
same for members of the family of stress/strain curves in 
Fig. 2.2.

If the value of at the intersection "point"
M

is taken to be

(To £>d 
M

then

o; :

2
4 ' 1

M
0-244

This compares with the value for Oo obtained above.
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For other non-linear laws which are reasonably 
close to the n-power family, the stress distributions 
will not be very different from those in Fig. 3*1> and
intersection with the linear distribution will occur at 
approximately the same point. Thus it may be expected 
that the method will give reasonable estimates of 
curvature for other non-linear laws. Examination of 
some experimental results for beams in bending supports 
this claim.

/ ̂  ̂ \
Gill  ̂ conducted uniform bending tests on 

magnesium alloy beams of different cross-sections. The
stress/strain curve for the material (a mean of curves 
obtained in tension and compression) is reproduced in 
Fig. 3*2. Moment/curvature results for a beam of
rectangular cross-section are reproduced in Fig. 3*3i
and the curvatures predicted from the s tre s s/s train curve 
by the method described above are plotted for comparison. 
The maximum curvature represents a 6^ strain at the 
extreme fibres, and there is good agreement between the 
experimental an.d predicted curvatures over the whole 
range.

The stress/strain curve of Fig. 3*2 is plotted 
logarithmically in Fig. 3*4 for strains up to 6^. It
shows that the material does not obey an n-power law 
over this range, the slope of the curve increasing from
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1 (in the elastic range) to approximately 3.2. This is
an illustration of the difficulty, mentioned in Chapter 1, 
of using the n-power solutions in their usual form. It 
would he difficult to decide on values for the constants B 
and n from Fig. 3-4.

The method can be applied to other cross-sections 
and is applied to an I-beam in Appendix 3 -i (b ) . The 
results are compared in F i g . 3-5 with experimental results
for an I-beam tested by G i l l . Again there is good' 
agreement between the experimental and estimated curvatures

3.2 Other Applications
(a ) Beams in non-uniform bending

The example considered is a beam of rectangular 
cross-section, simply supported at its ends and centrally 
1oaded,

W

r ' .....

Lr ............. n

If the e f f e c t s of s h e a r  s t r e s s e s

cl

shear forces in the beam are disregarded, and only small 
deflections considered, the central deflection cf is 
shown in Appendix 3-3 to be

2 nil
£o.

/ 2'̂*' (fL+z)
(3.7)
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and
6,

W  L „ _J_
(Te 4

Equation 3*7 can then Idc written

J
¥\-i/ \ n

2 n U \  a
n.

and

if
i  -  <5,

W L
(Toûjct

Table 3-3 shows values of .

n X/ n )
1 .1 1.30

1.5 1. 29
2 . 0 1. 28
3.0 1. 26
1̂- . 0 1. 23
5.0 1 . 22
6 .0 1 . 20
7.0 1 . 19

=  ( r u z ) -  . 2

Table 3-3

Again there is not a strong dependence on n, and 
a suitable value may be chosen for the non-dimensional
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W L
group • For example, with

W L  _  ( . 2 0

or

the

Go

é

0-853 W L
t d '

values of given in Table 3-4 are obtained and
show that, f or 1 .1 u ^  y

é  ̂ Si “ approx. 10^.

Other values ■ can be chosen for fo give a better
Oo v*<d

approximation for a smaller range of n .

,n
1 . 1
1.5
2 .0
3.0

5.0
6.0
7.0

1 . 020
0 .964

0.937
0.914
0.923
0.937
1 .002
1.055

Table 3-4

Although the central deflection can be made the 
same for different values of n, the deflected shapes are 
not the same. This is illustrated in F i g . 3*6, in which
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the deflected shapes are plotted for the same central 
deflection and different values of n. In most 
applications, however, it is the deflection under the 
load, and not the exact deflected shape, that is 
important.

Results for three further examples of beams 
of rectangular cross-section in non-uniform bending 
are given below. The results are derived in
Appendix

(i)

3.h.

V
w

;
............  . ............

6

 ̂ a 1
1 L
i

Simply supported beam of rectangular cross-section with 
non-central point load.
Deflection under load cS  ̂<S, - 10^ for 1 . 1 —  n —  7
if

(ii)

or
a

0-300

3-33 Wg A _ g,̂ 
grd" ^ L  /

W

,

F a L /a----------'— — —— ---
/
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Beam of rectangular cross-section witli built- 
in ends and central point load.
Deflection under load d - (S» - 10^ for 1 . 1 ^  n ^  7
if

WL
CTo^d'

2-4
or

Cfo ~  0 - 4 1 7  W L

( iii )
y
bv) f u i T U T N G T H

3ZZZ3ZZZZ2;_y " 't- ■ 1 i I i  ~ \ I r
d

Cantilever of rectangular cross-section with uniformly 
distributed load.
End deflection 1  = cTj i 15^ for 1 .1 == n 7
if

or

0-635

1-575 -W  L
Or d

(b ) The thin wa.ll -eylinder witJi closed ends 
under internal pressure

INTERNAL ) 
pRLESvURE K  (

A 0Ô
Ox. —I I— ^  Ox.
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Away from the ends, the circumferential and 
longitudinal stresses, (7̂  and Ole. respectively, are 
approximately

(7q _ Pfl • PA
1ÏÏ > 4 H

It can be shown with equations 2-7 that the 
circumferential strain is

For n = 1

4 V H /  (Æ/e.)
and

=  €e, f-PR_\ / 3
ZHOo )

Thus, for all values of n,

€e  “  €ei
if

2H (%

or

â") 1-155

(T  =  0 - 4 - 3 . 3  T B .
H

( 3 - 9 )

The interpretation of this result is that the 
reference stress  ̂has been equated to the effective
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stress (T in the cylinder wall. The effective
strain C is thus C  and the same for all valueso
of n in the family of equation 2 .6 . C is directly 
proportional to the circumferential strain , and ■
thus €! e is the same for all values of n.

(c ) Thin wall sphere under internal pressure

by
The stress Cf in the wall is given approximately

<j =  pfl-
A~ H

Again, with equations 2.7, the circumferential strain 
&  0 i s

£ 0
( J d  U  H /  2

(3.10)
I

and

€ ei j_  P A  __ !____
4  2 H
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can thus be written

€ e
A-1

2 'W»"6

and £ 0 £ôi if

P A  ^  X
a n a  2

or
<z PA

H
This value for (T̂  is again the effective stress CT

(d) The thick-w^all cylinder whth closed 
ends under internal pressure

I N r C P N n L  PRCGSURC P

(17)A solution, originally obtained by Bailey 
for steady state creep, and based on equations 2.7, 
gives the circumferential strain £© at any radius 
r in the cylinder wall as

2- ^ A.
£ 0 if

-4 ) crd
P

-  I .
A. Il)



where

3 2

For n = 1

and

outer radius 
inner radius Ro

R l

€
A

_ L _  / & ) 2P

Ŷ  —I
et 3

YX- Ia o<''- I
YX

The condition for S© = €.©) is

%
<v\
w—i3 ̂

'V\ -1

o(

v\-1
SAY

Table 3-5 gives values of 6% (^) f = 4,2,I 4
3

and n values from 1.1 to 7*
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n
\ ^(n)

a  = 4 a  = 2 . 4 o< = “

1 . 1 1 . 218 0.739 0.328

1.3 1.323 0.749 0.329
2 1-385 0 . 771 0.330

3 1.425 0.782 0.331
4 1.485 0.786 0 . 332
3 1.506 0.790 0.333
6 1.525 0 . 792 0,334

7 1. 538 0.794 0.333

Table 3-5

Even for a very thiok wall cylinder ( = 4) ,
P(i1l) does not vary greatly with n. If J Uq

the value of _ ( n ) for n = 3 In each case, i.e.
as gaven

o< 4 2 V3
p 1.506do 0.790 0.333

the values for € q
C©(

shown in Table 3*6 are obtained
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n
€0

cx - 4 cX = 2 (X = ^^3
1 . 1 1 . 024 1 . 007 1.001

1.5 1 .067 1 . 020 1.006

2 1. 088 1.027 1 . 008

3 1. 072 1 . 020 1 .008
4 1.039 1 . 015 1 .006

5 1 . 000 1 . 000 1 . 000
6 0.936 0.990 0.995

7 0.880 0.970 0.988

Table 3•6

¥itla these values of •—  , the circumferential
Oo

strain at any radius, and hence the radial displacement 
of any point in the cylinder wall, can be estimated 
from the linear elastic solution. The accuracy of
the estimate is - 12^ for c< = 4 and values of n fro m
1.1 to 7, and it improves greatly for lower values of

_PIn Fig 3 ' 7 , 0"̂ is plotted for values of ot
from 1 to 4. Also shown is the curve obtained from 
the following thin cylinder approximation.
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From équation 3*9

ci o- 4-33 F A
i"l

or

But

_P
0,

2 H
A

_ R
c7o

15 5 2 H  
A

Ro - Rc _
RC

1-Î55 (-<- 0

(e) Circular flat plates under rotationally 
symmetric loading

( IB )Solutions Bave been obtained by Malinin^ ^ for
the central deflection in the following four examples 
of circular flat plates. A summary of the results is 
given in reference (s).

CO UN^T A REA

Co-)

wjuNlT ARCm
I-  ̂ i 4 &.._Â__ ____L

77777"

w
Ï.

Cc)
77777
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(a) and (b) - uniform load w/unit area distributed
over whole area .

(c) and (d) - central load W .
(a) and (c) - simply supported edges .
(b) and (d) - clamped edges.

The solutions were obtained with relations 
between moments and changes in mid-surface curvatures 
based on equations 2.7*

If W = iT Rj w  in cases (a) and (b), the central 
deflection 6 for all four plates may be written as

C €o A T w "  R o
'A±i ,  V vX

3 ^
-Y \ J(2H)

where
J is a function of n plotted for the four cases in 
Fig. 3.8,
C and D are constants having the following values

(3 .12)

Case (a) (b) (c) (d)

C 7 4 ^/12 ^/4
D /̂axf ^/241T 7/24 TT ^/8f[

From equation 3*12

cf c _!__  JD , 9
i  (2h )̂
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where is the value of J for n — 1.
PFlq expression for the central deflection, may thus 

be written

v\-t . \ Y\.-
/ W  \ { J,y /  «laü.-Mi.j i infcLum'i r ti wiwian

V 4 H V » v\.

4 H U
2_ h
0 ^ 3 .

g
I

'A '*  I

A4.J rv
3 2%^) \2rt+

VL

say.

Values of I'lave been calculated for each exampl
and are given in Table 3•7

e

n
(a) (b) (c) (d)

1.25 4.81 10.44 0.155 0.225

1.5 4 .91 10.53 0.165 0.245

2 . 0 4. 97 10.77 0 . 174 0. 266

3.0 5.03 T i . 10 0.185 0.284

4.0 5.09 11.25 0.189 0.290

5.0 5.15 11.32 0.191 0.295
Table 3-7
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Solutions are available only for values of 
n from 1,25 to 5 , but in this range does not
depend strongly on n.

AIn Table 3-8 are shown values of ^ calculated 
^  having the values of X , (n) for n = 5 *with 4h\̂ cr

n %
(a) (b) (c) (d)

1. 25 1.018 1.021 1.053 1.070

1*5 1.025 1.036 1.075 1.097
2.0 1.037 1.051 1.098 1.100

3.0 1.050 1.040 1.062 1.079
4.0 1.033 1.021 1.020 1 . 060

5.0 1.000 1. 000 1 . 000 1 . 000

Table 3.8

With these values for w

cf = <J| ~ 10^ approx for 1.25 ~  n 5

3.3 Summary of Method
For some structures obeying an n-power law, the 

displacement cT at a particular point can be expressed 
in the form
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where

X-̂  is a non-linear function of the loading P^, 

the dimensions of the structure and the co-ordinates

(7  ̂ of an arbitrary point on the stress/strain

curve ;

X  ̂  is a numerical function of n .2
Equation 3*13 can be written as 

3  -  L 3 j  A 4 A )  (3-l4)

where

is the displacement for n = 1 (the linear elastic

solution with the modulus of elasticity written as ^ ,_

and Poisson's ratio tal^en as -J-) ;

X^ is a non-dimensional grouping of

P . , L . and (T ;1 1  o

o

X ̂  is a new numerical function of n.

The condition for cf = when n >  1 is thus

A 3 =  ( 3 .1 5 )
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The parameter can be given a numerical
value for each n to satisfy equation 3-15 and hence
give cf = cf, . It is found, however, that X  ̂  is
often not strongly dependent on n and may be chosen
to give 6 (f, for a range of n.

. X^ chosen in this w a y .defines C7^in terms
of the loading and the dimensions of the structure,
and is obtained from the stress/strain curve.
The values of C7" and £ are used in the linearo o
elastic solution to evaluate  ̂.

3.4 Discussion
The method suggested for estimating displacements 

in some structures obeying an n-power law has the 
advantages that

(a) the linear elastic solution replaces the 
more complex non-linear one;

(b) the non-linear stress/strain curve can be 
used directly without evaluating the constants B and 
n in equations 1,3 and 1.4.

For the structures considered, the reference
stress CT can be chosen to give estimates of o
displacements which are within - 15^ of the exact 
values for 1 . 1 —  n — 7* ( l . 2 5 ™  n —  5 for the
circular flat plates). Other values of (Ĵ  will give
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better accuracy for a smaller range of n but greater, 
errors are introduced if the range is extended 
beyond n = 7.

The physical explanation of the method for the 
beam in uniform bending suggests that it might be useful 
for non-linear laws besides the n-power law. Similar 
physical explanations can be obtained for the other 
structures and also suggest that the method might be 
more widely applicable. For example, F i g . 3*9 shows 
the effective stress C7* through the wall of a 
cylinder having a diameter ratio of 2, for different 
values of n and the same internal pressure. In 
Fig. 3.10, the product of the moment and curvature 
is plotted along a beam of rectangular cross-section, 
simply supported at its ends and centrally loaded.
The central deflection (and thus the area under the
curve) is the same for each value of n.

In Figs 3.9 and 3*10, the curves for 1 —  n —  7 
intersect the curve for n = 1 at approximately the
same point. Use of the intersection "point" to 
obtain the results of paragraphs 3-2 (a) and (d) is 
demonstrated in Appendix 3*5* For other non-linear 
laws, which are reasonably close to the n-power family 
for 1 “  n —  7, intersection with the n = 1 curve may
be expected to occur in the same region.
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(19)It has been brought to the writer's attention
that characteristics of an n-power system similar to
those discussed above have been used by Preston^^^\
in the measurement of fluid flow in circular pipes.
The velocity distribution for turbulent flow can be
described by an n-power expression where the value of
n depends on Reynold’s Number, It was found that
there is a radius in the pipe at which, for a given
mass flow rate, the velocity does not depend strongly
on n . Measurement of the velocity at this radius
will thus give a measure of mass flow rate which,
within limits, is independent of Reynold's Number.

( 2 i)Experiments conducted by Campbell' on beams
in three point bending provide a more rigorous test 
of the method than the experiments in uniform bending. 
Beams of rectangular cross-section 1" depth x width 
were simply supported over an 18" span, and centrally 
loaded. Stress/strain curves for beams' of annealed 
copper and brass are given in Fig 3.11, and plotted 
logarithmically in Fig 3*12. for strains up to 5^.

The experimental load/central deflection curves 
for deflections up to 1" are reproduced in Figs 3*13 
and 3.14. The curves estimated by the method of 
paragraph 3.2(a) are shown for comparison and there is 
reasonable agreement with the experimental results.
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The maximum fibre strain at a 1 " central deflection 
is approximately yfo for the copper beam and 5^ for 
the brass beam.

One application of the method which may
prove to be important is for the prediction of creep
rates in simple structures. The method suggests
that a uniaxial creep test conducted at one stress
level would be sufficient to predict a second stage
deformation rate in a structure for one value of the
applied load. In studying the creep of uniformly
loaded beams of rectangular cross-section, Anderson,

( 21 )Gardner and Hodgkins'  ̂ noted the existence of what
they termed a "representative stress," and the 
possibility of conducting a single creep test at this 
level.

( 23 )Furthermore, Harriot and Leckie'  ̂ investigated 
the stress redistribution which occurs during first 
stage or primary creep in a number of structures, and 
observed that the stress at a particular point 
remained nearly unchanged during the redistribution. 
They termed this the "skeletal point" in the structure, 
and for the beam of rectangular cross-section in 
uniform bending and the thick-wall cylinder under 
internal pressure, the skeletal point is the same as 
the intersection point of Figs 3-1 and 3-9* This
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suggests that a single uniaxial test might he 
sufficient to predict the creep behaviour of such 
simple structures throughout both primary and 
secondary stages. As discussed by Harriot and 
Leckie, it also suggests methods of predicting creep 
deformations when the temperature and/or loads are 
changing with time. However, these suggestions must 
be treated with caution until sufficient experimental 
results are available to put them to test.

Results obtained by King( ) for creep of
thick wall cylinders under internal pressure provide 
an opportunity for checking the method when applied 
to creep conditions. The experiments were conducted 
on cylinders of 0.07^ Ti Aluminium alloy at 250^0, 
the diameter ratio of the cylinders being 3•125 « 
Uniaxial tests were performed at six values of tensile 
stress and the second stage creep rates are given 
belo w.

Tensile 
S tres s 738 _9-80 • 1134 1290 1^93 . 1750

Minimum 
Creep 
rat e 

/hr

5*3
X

2 , 6 
X 10~^

6.4
X 10

1 . 1 
X 10“^

2.9
X 10”^

7.2
X 10“"̂

Plotted 1ogarithmically these results are close to a 
straight line and thus obey approximately an n-power
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law. King determined the value of n to he 5*8.
A gra%)h of second stage creep rate against 

internal pres sure in the cylinders obtained from 
the uniaxial results by the approximate method 
of paragraph 3 .2 (d) is plotted in Fig 3.15* To 
cover the required pressure range, it was necessary 
to extrapolate the tensile data, assuming an n-power 
law and n = 5*8. This part of the curve has been 
drawn as a broken line. The minimum creep rates 
observed by King at four pressures are shown on the 
graph. While the approximate method gives a 
reasonable estimate of creep rates at the lower 
pressures, it is considerably in error at the highest 
experimental value. One reason for this may be that 
the cylinder became fully plastic when the highest 
pressure was applied, and relatively large strains 
occurred. King achieved an improved theoretical 
prediction by using the Bailey analysis modified for 
large strains.

There are very few experimental results 
available in which deformation rates in structures and 
the tensile creep data are adequately recorded. A 
great deal more experimental work will have to be done 
before a better understanding of the behaviour of 
structures in creep can be claimed.
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CI-IAPTER

RELATIONS BETWEEN FORCES AND MOMENTS ■
AND MID-SURFACE DEFORMATIONS FOR AN ELEMENT 

OF A ROTATIONALLY SYMMETRIC THIN SHELL

4.1 Preliminary
An element of a tliin sHell which is 

rotationally symmetric in geometry and loading is 
shown in Fig 4.1,. The directions 1 and 2 are 
orthogonal.

2

Fig 4.1
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Tp ’ '̂2 are, respectively, normal forces
and moments per unit length of mid-surface.
G are the corresponding mid-surface strains , andTi 12

the changes in mid-surface curvatures.
It is convenient to have relations between

T^, T^, M^, and ^ m 2 ^ 1  ’ ^2 formulating
problems of rotationally symmetric thin shells. If 
the usual assumptions of thin shell theory are made, 
these relations may be expressed in integral form for 
a non-linear material obeying equations 2,9• They 
are referred to in this form as the exact relations.

As the integrations cannot be performed for 
all values of n, the exact relations cannot be 
obtained as closed-form analytical expressions.
This difficulty leads in the present chapter to the 
suggestion of simpler approximate relations. These 
are compared with the exact relations computed 
numerically for particular values of n, and with 
approximate relations used by other investigators.

4.2 The exact relations
In common with the general theory of thin shells, 

it is assumed that normals to the undeformed middle 
surfacc arc deformed without change in length into 
normals to the deformed middle surface. This
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assumption leads to the strains , ê ̂  at
from the mid-surface being expressed in terms of
the mid-surface strains €  ̂ ^   ̂ and curvatureml m2
changes by

The stresses 67[ and 67̂  at ^  from the mid­
surface can then be obtained from equations 2.9» i.e.

I

(4.1)

a 46 A I 3 <£, 4- 6-, -h €(

^  (y) 4.e,e^i-eQ (<s, 4 4 e.)

by substituting for 6 ̂  and from equations 4.1.
This gives finally

(<.>w

(7, = L /A\by-U J
\ 2-'vv p ,  1<W H-i i)-5-J) (>5z + ̂

(4.2)

where

F 4- é-wx, Gwiî 6 /w%%)
%K,^ 4- K, K%,4- k /")
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If the ratios of shell thickness to radii of 
curvature of the mid-surface are small compared to 
unity, the forces and moments on the edges of the 
element in Fig 4.1 are

T, ]
■j-H

)

-W
4M,

-H

(4 .3 )

where 2 H is the shell thiclmess.
Substituting from equations 4.2 into equations

4.3 gives

± £ 
u.

T2iJ

" H -

'*T
JL £ 
5 }̂  by

2-K Z'A

M, = I (£
an

4M
if3-r'î'̂ (£v.vi-i iev„)+^(Ki+'4K,')] ̂

-w

(4.4)

This is a convenient stage at which to write 
the relations in non-dimensional form.
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0

t

•m,

£0
êo

w.

!2U

MK,
2 €0

17
2 H %

M,
H^a

r  = .31
H

e , = £w\z
'^0

R i £=r H K^
2 6e

=: Tz
2 h o ;

n: Mz 
H ' J ,

(4.5)

equations 4.4 become

t, ~ ± l £
2 (3

t!ii ’*’VÎVV

“ J
41

t.
2 13

MJ / hA-
F +zei) + 2 ^(^i+4Q‘.

m,

Yn.,

-I
4̂ 1 r 2n

'nM

3

M'
4*1

[(dz + R,)f 2 5(\+-2â,)]î dî

(4.6)

where
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Fz — 4- 2, f Q'Z ) -i- 4- f t z 4- 2%, 2 î,)

f 4 1 {-Ri i &i &1. f &% ^

Equations 4.6 are referred to as the exact relations.

4.3 Suggestion of approximate relations
In paragraph 4.2 the exact relations were 

obtained by integration of stresses through the shell 
thiclcness . They can also be obtained by applying 
extremum principles"to the shell element. In
Appendix 4.1, it is shown that

■ (4.7)

\ ~ ( =  fJl.\ i iWiy je, vn+ij ôcz

—  / a \  dy . wi, _  f w.\ dy
? V/W+lj

where

■^Application of the principles of minimum 
potential and complementary energy is not restricted 
to linear elastic stress/strain relations - see, 
for example, reference ( 2 5 )
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1 4-1 •n+l

- I

'tUl24a
f  4 1 ( & L - & , L  f  k D \  R

(4.8)

Equations 4.7 and 4.8 are a statement of the 
exact relations - equations 4.6.

is homogeneous of degree — in ê  ,

e^ and k^ and = constant defines a family of

surfaces in e.̂  , , k^ space. From equations
4,7 the components of the normal vector to a surface

in the e , e k , k directions are proportional to a 2 1 <c
^1 ’ ^2’ ^ 1 ’ ^2 ' Approximate expressions
for can be postulated; these, with equations 4.7,

will give relations between , e ^ , k ^ , k^ and t ^ , t ^ , 

m ^ , which approximate to the exact relations.

Under some conditions equation 4.8 can be 
integrated to give closed-form analytical expressions 
and the results give a guide to approximate forms for 
^  ;

(a) Linear elasticity; n = 1

V(a) = (e,t e,£z-f d) + £ &, L f
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(b) Plane stress; = k^ = 0

/I 1 /A f zT(8,) =  l£\ ( «-, + e . q - i - _) (4.10)

(c) Pure bending of plate element; ~ 2̂ ~ ^

aa4 { tMi
V c o =  (4.11)

(d ) Mid-surface strain and curvature change 
in one direction suppressed; = k^ = 0

y(j)= ~{è.-zk) ] (4.12)2̂ T\ 11 /

(e) Rigid - non - work - hardening plastic 
material; n — «i-̂CfO ,

AjV,%\ —  _L r /2 Ct-f t ̂ 4-C —  /“ 2Û4 "/cX- C
f W a  / L ~ ^ J

I / a c - &  )  2 a -f  &• -h 2 Æ T r /  CK->r ir - t  C

\ i-2a+£r 4-2</a/lR7+Cy

where
a = 4- Cfe.,’+ fei 4- kl')
b = 4 [ &., p, +1 2./ + fei C^i + "z fi-,")"]
c = ( £ , %e,ez^ez)

(4.13)
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Details of the integrations leading to equations 
4.12 and. 4.13 are given in Appendix 4.2.

Equations 4.12 and 4.13 show what complex 
expressions would he necessary to obtain a close 
approximation to 3^ for all values of n. Relations 
between , e ^ , and t ^ ,. t^ , m ^ , m^ which
would result from such expressions would be too 
complex to be useful in further analysis.

It is desirable that approximate forms forA//
should reduce to equations 4.9, 4.10, 4.11 under
conditions (a), (b), (c) respectively. The simplest
approximate form which reduces in this manner, and
which gives coupling between in-plane and bending
actions, is obtained from the combination of ^
and "V / \(c)

W-f I

i.e.
2Mlri

Y a p p  =

(4.14)
_{. (  ̂ 4 k  )

\ ty \  11 /

This expression is homogeneous of degree 

^ --A --— ̂  in e ̂  , e ̂  , k^ , k^ , and with equations 4.7 leads
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to tlie relatively s-imple relations :

t, =  (±y' F, Ce, - i O

w-fl U-a'Z'A  _A = (Y) F (ez . i ed
2ÜJ lia.

m  _
(4.15)

Vind-i/
h—

YYlz

where 2 -w
Ts = [(e.4e.e,>ej') + " ' ( &,h &,&z+

These are the approximate relations which are 
investigated in this work a.nd used in the solution of 
boundary value problems.. They are compared with the 
exact relations in paragraph 4.4. Other approximate 
relations are discussed in paragraph 4.3.

4.4. Comparison of exact and approximate 
rel at io.ns

A compariso.n of the exact and approximate 
relations may be made by comparing the surfaces

V  a

where cX is a constant.
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It is convenient to take = 1 ;  the curve
of intersection with the plane k^ = k^ = 0 defined 
by equation 4.10 is then the same for all values of 
n .

As the ajDproximate relations are intended in 
the firqt instance for the analysis of circular 
cylindrical shells, the comparison of ^-surfaces 
is made with

• kg = 0

(in the circular cylindrical shell the curvature 
change in the circumferential direction may be 
disregarded for small displacements).

With k^ = 0, the surfaces ^  = 1 and 
^l4pp = 1 are reduced to three-dimensional space. 

From equation 4.8, A/ = 1 becomes
Ta 4 [ A  (

i  ̂ -------

( 4 ,16 )

and, from equation 4. l 4 , = 1 becomes

I )  V ]  ■ = 1
The curve of intersection of these surfaces

with the plane k^ = 0 is shown in Fig 4.2.
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From equation 4.17 it follows that the 
surfaces "Vapp - 1 are symmetrical about the plane 

= 0. Equation 4.17 is also symmetrical in 
and and it can thus be deduced that the = 1
surfaces are the same in all four quadrants of
Fig 4.3.

That the = 1 surfaces are also symmetrical
about the plane k^ = 0 can be established from 
equations 4,2 which, written in non-dimensional 
form with k = 0, are:

A  - T
(fo b

Z-A Î-
i

X + zSàl

(-41.'ZvC

±
.3

i"îk

4-^ -0,3

i-yv2a I 1 (4.18)

<7, . %The values of yr and —^  (To
at A  A , for the

deformation state (e^, e^, + k ^ ) are the same as those
at? ^ for the state (e_, e_ Î 2 iq), The

a through the shelldistributions of Ü. and
To Oo

•thickness for the tiiro states are shown schematicall-y
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in Fig. 4.4. Clearly tlie values of ,

to produce the two states differ only in the 
sense of and . The ^  = 1 surfaces must thus
be symmetrical about the plane = 0.

An extension of this argument is used in 
Appendix 4.3 to show that the = 1 surfaces are the 
same in the diagonal quadrants 1, III and II, IV 
in Fig 4.3* These symmetry properties are also 
demonstrated mathematically for n —> CO in Appendix 4.3-

Because of this symmetry, the exact and 
approximate surfaces need be compared only in the
quadrants I and II. To make the comparison,the 
intersections of the surfaces with planes E2. ̂  = |2) 
where = 1, 0.4 etc (numbered (l) to in Fig 4.5)
have been computed for n = 3, 5 and n —^  cO ■ . This
computation is straightforward for the = 1
surfaces, but numei''ical integration has to be performed 
for the Aj/ = 1 surfaces. Details are given in 
Appendix 4.4.

The curves of intersection are plotted for 
n = 3 ill Figs 4.6 to 4.10, and for n in Figs 4.11
to 4 .1 5 . Curves for sections (^ and (§) , and
(§) , and (7) etc are plotted on the same figure to
emphasise the difference in form of the ̂ = 1 surfaces 
in quadrants I and II. Similar curves are obtained
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for n = 5•
The exact and approximate surfaces are in 

reasonably close agreement in quadrant II, i.e. between 
sections (3) and , for n = 3 and n — . The
surfaces are everywhere identical for n = 1, and it 
is thus reasonable to conclude, that in quadrant II 
agreement is good for all values of n. In quadrant 
I, however, agreement is poor, particularly for 
n — b. CO . Agreement is poorest in the region of section 

( e^ = 0 ) and Figs 4.16 aard 4.17 give further results 
for this section. Fig 4.16 shows the curves of 
intersection with the = 1 surfaces for n = 1, 1.5>3,
3 and n — p-ôO , and Fig 4.17 the corresponding curves 
for ~ 1. Comparison of these two figures shows
that agreement improves for smaller values of n.

A direct comparison of the exact and approximate 
relations at section can be made as follows:
from equations 4*6 with = e^ = 0

-I

m ,  _  /4-t7c4'T-

h'h 2

(4.19)



As shoivn in appendix 4,5, the integrals in 
equations 4.19 can be evaluated analytically,

75

and
g 'A

may be plotted against

The corresponding approximate relations are from
equations 4.15

44 41
h ± 2<v\. r

I 4- 4" " " m i
I- '14

"/V\
/v\

I *C,

%I) 044-147 vt \^  (4.20)

J_ AO\, 
2 /-n

Equations 4.19 and 4,20 are plotted in Figs
4.18 to 4.21 for n = 1*5, 3, 5 and n — oO .

and
To allow 

vy\.comparison for all values of , — rr
fthave been plotted against from 0 to 1 and against

kthe reciprocal of e, from 1 to 0, the two graphs being 
drawn adjacently. These results give a measure of the 
divergence of the approximate and exact relations and
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confirm that this divergence is reduced for the 
smaller* values of n.

Similar comparison may he made for other sections,
but the integrals in the exact relations have to he
evaluated numerically. The results for section (J)
(e^ - O) are shown in Pigs 4:22 and 4.23 for n = 3
and n —woo r’cspectively. Section (7) is typical of
the region in which there is close agreement between
the exact and approximate —  surfaces. Although
agreement is good for t^ and m^ it is poorer for t^
and m ^ . The latter are proportional to the
components of the gradient in the e_, and directions_L 2
which are not apparent from Figs 4.8 and 4.13* A 
similar result is shown in Fig 4.24 for section 
(e^ = - e^) with n = 3•

Figs 4.25 and 4.26 show the relations for
section (G) at which ê  = - A e^. It is shown in ^  1 2
Appendix 4.6 that the condition e^ = - y e^ gives 
tf = 0, and the relations in Figs 4,23 and 4.26 are 
those to be used in the.analysis of a circular cylindrical 
shell without axial load. There is reasonable 
agreement between the exact and approximate relations 
for n = 3 and n — , and similar agreement will exist 
for all values of n 1*
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-I . 3 Discuss i o n
While a detailed comparison has shown that there 

are some fundamental differences between the exact 
relations and the approximate ones suggested in this 
chapter, tlie re is enough agreement to warrant the 
use of the approximate relations in the analysis of 
circular cylindrical shells. The errors incurred 
wi11 depend on the particular problem and on the value 
of u . For example, results for a cylinder without 
axial load would be expected to agree closely for all 
values of n with the results which would be obtained 
if the exact relations were used. Other boundary 
value problems may involve a domain of the surfaces
where agreement with the exact relations is poor, 
particularly for large values of n.

A convenient approach is to solve particular 
problems with the approximate relations and then, from 
the displacements obtained, to determine the domain of 
the 1/-surfaces in which the solution lies. If 
necessary, refinements might then be made to the 
approximate relations to give better local agreement 
and the solution repeated. For example, the following 
approximate expression for might be considered:
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/TA.-V i

~  F j ■ (4.21)

F = [fl,C«,Se,e,te*) + a, i / ^ f '  ( k , \& A

In paragraph 4.3, and. A^ were taken as unity to give

agreement with wdien k^ = k^ = 0 and e^ ~  ̂2 "  ̂‘
If either or both ox those restrictions is relaxed, 
bettor general agrecment can be obtained at particular 
sections.

At section (3) there is a discontinuity in the
exact relations for n — oo as seen in Fig 4.21. It 

&
ocCUT’S at =0.3;  for values of ^  from 0 to 0.3,

= 0 and t^ = constant. This can also be seen from 
the surface in Fig 4.13, the gnradient to the -
surface for k^ —  0.3 being parallel to the e^ — • e^
plane. A.n explanation is offered i.n, Appendix 4.7*

In their analysis of a boundary value probiem 
in a thin cylinder, Bieniek and Freudenthal^^^ assumed 
that forces t^, t^ are independe.nt of mid-surface 
curvature changes k ^ , k^ and that moments m ^ , m^ are 
independeixt of mid-surface strains e^ , e^ . The
relations they used are derived from one of the
possible exprossions for which reduce to equations
4.9, 4.10 and 4.11, namely
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Y , APP.3

or

Y ,
1 1

e," 4  e, £z +  e j

"YV-i I “Yvt

'n-i-l

l-w.

04-vv.

(4 .22)

Although there is no coupling between bending 
and in-plane actions for n = 1, this assumption is a 
serious simplification for .n >- 1 .

The approxijnate relatio.ns used by Calladine 
can be reduced to

(12)

e, =  [ (f-t,q-i-tz)-i-_JL_ 'WX,"
i c y

■w- ("2“ /
(4.23)

iz f ( /  - t,tz + t M  4  _ L _  wx"

14, ~ I
“ 1 t

v/v.

where and were parameters , to which values had
to be given depending on the index n and the stress
St cl te t^ , t^ , m
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Calladine obtained one equation between 
and from the relation between bending moment and
curvature, for a shell element in bending with the 
anticlastic curvature suppressed (equations 4.13 
with eM = e ~ k = o). Comparison with the third 
of equations 4.23 for t = t = 0 gave a value for —
A second equation relating and was obtained fox*
a particular set of stress states t^ = 0, when the
second and third of equations 4.23 give

f- = ( A l \. tx

trThe ratio — - was comnuted numerically for differentm,
values of , and for n = 3, to give values for — ^

ft.
The latter did not vary widely over the range of 
considered, and Calladine selected a value to give, 
finally, for n = 3

=  0.308 

P  = 3.33
With these values for 0̂  ̂ and ,

0.638

= 0.676
IGCÿ,

Equations 4.23 can be compared with relations 
obtained by solving equations 4.13 for e^ , e ̂  a.nd k^
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with = 0, i.e
Z-n. ‘VV-I

6, =  [ ( f - t . W + t )  + / r zt.)

[ ( t f  t y .  1 1 % )  -ft ^ v Y i , ^  J  ( p - i t , )
(4.24)

I, = P  / P + i f ” f (tf t,t,4 tj) -ft 3. /p±lT" vvxd vw 
I G I  /  A  ^ 1 6 ' ^ ' n /  J

For n = 3 , tlxe coefficients corresponcling to

I p, and ,_ in equations 4.23 have a value 0.668.I € p  \$ĉ ,

Thus the relations used by Ca.lladi.ne to solve a
particular boundary value problem in a cylindrical shell
are \rory near to those proposed more generally here.

It is .noted finally that both the 4/ = 1 and
^Vapp. = 1 surfaces as plotted in Figs 4.2 and 4.6 to 4.17
are everywhere convex (or flat) but never concave. This

( Q r )has been shown^ to be a condition for a stable
material. The surfaces also show the nesting property, 
the existence of which has been proved by Calladine and

( G )Drucker ̂ . A surface for a given value of n lies
inside y or in the limit touches, the surface for any 
larger value of n.
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CHAPTER 3

FORMULATION OF BOUNDARY VALUE PROBLEMS 
IN C I R C U L A CYLINDRICAL SHELLS

3.1 Basic equations

Fir; ' 3 , ]

Fig 3*1 shows a length of thin cylindrical shell 
and defines the co-ordinate system. The shell has an 
inner radius A and wall thiclcness 2 H . Movement of a 
%)oint on the mid-surface from P in the undeformed shell

Ito P after deformation defines the positive axial and 
radia], displacements U and ¥, respectively.
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d© /

dX

Fiff 5.2

Fig 5.2 shows æi element of the shell at X and 
defines t'iie positive forces and moments acting on the 
clement ,

Forces T , , Q and moments M , are per
X Q X X

unit length of mid-surface.
Radial loading is per unit area of mid-surface
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E g u il ibrium E q u a t i o n. s
The conditions for cqnili'brinm of the element: 

of Fig 5•2 are ;

dT___X
dX

do

0 (5.1)

1 n  + = 0 (5.2)dX A ■ e 3;
dM ,

% “dx = 0  (5.3)

Strain/displacement relations
For small displacements, the mid-surface strains

f , 0 _ and curvature changes Iv , K _ , expressed inmx mO X 0
terms of displacements are approximately: 

mx dx

( 5 . 4 )
e = -ÜLm© A

^  = 4dX

K q - 0

Non-dime.nsional form of equili-brium and 
s train/di s pd.ac oment e quations

It has been found in the linear elastic analysis 
of thin shells that the decay of edge effects can be 
conveniently described in terms of a "characteristic
length" V S h . A similar behaviour is anticipated in
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sliells obeying’ non-lnLnear stress/strain relations, 
and a non-dimensional parameter.

X
= VÂH

‘is used to define distances along tiae shell.
The non-dimensional forces, moments, and strains 

defined in paragraph 4.2 are also used, i.e.

'x - 2H a ; - 2H a  ’ ""x - 2 ^o O H V o
€ m x  6 ma

=  ; . =  —
o  ̂o€o ' " £

_ l U  . ^ _ U ï  ,
. - 2 e „  ' « ' 2 e „

Those in equations 5*1 to lead to the
definition of the further non-dimensional parameters

p A f 'x /'"TT"*
„  ^  _z  . 0 = Jh m uX C7 H ’ "X (T 2

w u
" " ^ 6 Æ ÎO

Equations 5*1 to 5*4 become finally 

dt
^  = 0 (5.5) 

d T  - 2te + = 0 (5.6)
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X dx

- ̂X ” dx

0 (5 .7)

(5 .8 )

kX
cV
dx^

k^ =: 0 J

■Foreo/doforination and moment/curvature 
relati ons

In Chapter , approximate relations between edge 
forces and moments and mid-surface deformations were 
obtained for an element of a thin shell subject only to 
in-plane edge forces and edge bending moments. It is 
assumed that they can be applied without serious error 
in the presence of transverse edge shear forces 
associated with changing bending moments in the shell.

One effect of transverse shear forces is 
distortion of normals to the undeformod mid-surface. 
Solutions obtained for linear elastic thin shells have 
shown satisfactory agreement with experiment and suggest 
that the strain field - equations 4.1 —  obtained by
assuming that normals to the undeformed mid-surface 
remain normals to the deformed mid-surface, is 
sufficiently accurate for most pu.rposes . In the
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non-linear analysis, further errors will arise from 
the presence of transverse shear forces because of the 
coupling between normal and shear stresses and strains 
in the stress/strain relations. However, to introduce 
these effects would make the problem much more 
complicated and is not justified at this stage.

Written in terms of the co-ordinates OC, 0  the 
approximate relations are :

n -I- 1 1 - n
{4 \ 2n

h  = 3 ) h  dx + ^
n + 1 1 - n

/ \ 2n 2n
■fc© = ( 3 ] P 3 (eg + i e^)

n 4- 1 1 - n 2n (5.9)

m 4 2n 2n / \ n+l
F. (k + h m )X y 3 l2.n+l j  ̂ X  ̂ G

n + 1 1 - n 2n
/; \ 2n 2n / \ n+1

=,,^3 ) q  ( k g d A )

wh ere

5 • 2 Uoduction to fonnn suitable for
a 11 a 1. o g Lie c o rn pu D atio n

For solutions to boundary value problems in
cylindrical shells, equations 3-5 to 3*9 must be

2n
f _ \ n+1
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sail H f i.Of I slmiiltancously , together with t]ie hoemdary 
( ' o 11 d I Id OIOS. 'I'iioi'f' ' v'(U'a.l WO. y a i.n w.l oi e.l i lilie
equations may be reduced to a fourth order system 
of non-linear difforontial equations. The following 
formu1ation has proved suitable for analogue 
c o m putation.

Substitution of equations 5*8 into equations 
3.9 expresses the forces and moments in terms of 
displacements, i.e.

1 - n

- ,11 dut„ = f., F, 2n 2w + i ^  \ (5.11)

m = f f, F, ■ 2n"“ ^  (5-12)
dx

'"G - ^1^2 '̂4 i ^  (3.13)dx ^/

wiiere

"4 qs) ' • t * ^4 ( £ 1

n + 1 4 \ 2n

2n
'2 = " (&r) ■' * '



Integration of equation 5*5 gives

lit

t = constantX = T , s ay 

and, thus, from equation 5 •-tO

1
du
,dx + 2w +dx 4w + f cl w  \

d x d

1 ~n 
2n

X du
dx + w (5.14)

Prom equation 5■6

(2ta p^)dx

and from equation 5*7 
dm

q X
X dx

m X (2tp0 p )dx dxX (5 .15)
Finally, substituting for t ̂  and m_ from equations 5•ÜX
and 5.12 in e equation 5 * 1.3 gives

du
dx + cL W2. du

dx

1 -.n
4- + f

2n d^w
dx^

f.
2

1
du
dx

du
'djc .  i . w = .  f j A

^̂ \dx''

P ", 1-n 
2n / 4w+ d u

dx

PX dx dx (5 .1 6 )
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Tile problem is thus reduced to the solution 
of' the simultaneous equations 3 *14 and 3*16 in 
d u and w with the appropriate boundary conditions

3*3 Simplification for zero axial load 

With T = O, equation 3 *l4 gives

du
dx w

Substitution for in equation ^.l6 leads todx

9 \ 2 1 —--- —3 y  . I 2-
dx / J dx

d^w

jj
f1

2-, 1 -11 2n
3 w — p I dx dxX * (5.17)

In the problems to be considered, the radial 
loading p^ is assumed to be independent of x. 
Rearranging equation 3.17, and with 

^x " “ uniform radial loading

,2d w 
dx

d^w
2 I dx"

2 n - 1 
2n

X
f 3w + f,

dx^

2 -1
1 - n
2n

P Idx dx (3 .1 8 )



3.4 Reduction to équations of linear elasticity

With n =2 1

116

f .1
114-1
2n

ji \ n-f 1
211 + ly

and equations 3*l4 and 3.16 become

h.
3

du
dx + w T (5.19)

a.Lid

1 6 d
dx"

4
3 4w + du

dx - PX dx dx

or

kw + du
dx. (5 .20)

From 3.19

du
dx T w

and substitution for in equation 3*20 gives

,4d w
i d + 9

Î6 (Px t ) (5 .21)

Tliis is tlie governing equation for a cylindrical shell
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of linear elastic material with the modulus of
elasticity written as and Poisson's ration 4

Co
With = p = constant, the general solution to 
equation 5*21 is

w = e ^ ^ I ^ C ^ c o s d x  + C ^ s i n  o< x^

^ o( X / \
-h e ( cos o(x 4- sino<xJ+ q (p-T) (5*22)

4 _

wh ere oC = A / ^ _V 16.
and Cĵ  are constants.
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CHAPTER 6

USE OF AN ANALOGUE COMPUTER TO SOLVE 
PROBLEMS IN CYLINDRICAL SHELLS

6.1 Explanatlon of method

It is convenient to describe the method of 
using an analogue computer to solve boundary value 
problems in semi-infinite cylindrical shells by 
referring to the linear problem. For this, the 
governing differential equation is

Ç ^  - T) ( ̂  ' 1 )dx
and it must be solved with four boundary conditions.
In a semi-infinite cylinder two of these are prescribed 
at X = 0 and the other two are implied by the condition 
that w assumes a constant value at large values of x .

The simple analogue computer circuit shown in 
Fig 6.1 may be used to solve equation 6.1. The 
distance variable x is represented by time, and voltages 
represent the displacement w, its derivatives and the 
applied loading p. The values of w and its derivatives 
at X = 0 must be s-ert by applying initial voltages at 
the outputs of the int.egrators .



Consider the problem of a semi-infinite 
cylinder in which the following boundary conditions 
have to be satisfied:

At X = 0

¥ = ¥

dw 
dx

o
dw
dx o

119.

w -c*. ŵ jQ ̂ calculated for given applied
loading p and T.

(in what follows, subscripts 0 and oO will always refer
to values of variables at x = 0 and x — co , respectively)

^w
dx o

and w are set as initial conditions on the o

integrators I^ and I ^ . It is then necessary to Tind

the values of and
3d-^w

J o dx 3
which will make

o
.2 .3 „ . d w J d ww — w^ as X — ><0 . Since  g and  — are
dx dx-

proportional to the bending moment m^ and shear force 

respectively, this is equivalent to finding the correct
values of m and q . Estimated values of o o
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cl \ r
dx“

and d U
dx 3o

are applied as initial conditions
J o

to integrators 1^ and and the displacement w is 

monitored as the circuit operates. The procedure

is repeated with adjustments to
.2 d w

^  2 dx
and d U

d%5
until

w Wcû a.t large values of x .
Four typical runs are shown diagrammatically 

in Fig 6.2 for the boundary conditions

w dw
dx 0

o
w cO .5 (p = 2, T = 0)

The analytical solution is shown for comparison.
The two very different curves (a) and (b) are obtained

for values of
dx^

and
o

d^w
dx^

which differ by only

approximately - 0.5 ^ from the theoretical values and a 
difference of only i 0.1^ can give curves (c) and (d).

Although there are thus well-defined values of
.2d
1 2 dx

and
J o dx^

which make w — a-ŵ o for a short range
o

of X, the solutions become unstable at large values of 
X. The reason for the instability can be understood
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from tlie general solution of equation 6.1, i.e. 

[w = 1 cos U X + sino< x

+ é ^  ̂  coso^x + s in «=< x*| -i- i" ( P - T )

For tlie semi-infinite cylinder, the growth exponential 
terms are removed by putting the constants and C^
to zero. This is effectively what is done in an 
analogue computer solution by adjusting the initial 
values of w and its derivatives. If the growth 
exponential is not completely suppressed, the result 
is the behaviour shown in curves (c) and (d) of Fig 
6.2; the two curves are associated with small growth 
exponential terms of opposite sign.

The solutions represented by curves (c) and (d) 
compare very favourably with the analytical solution 
for values of 0 x 2.5 approximately. The most 
important features occur within this range and it is 
concluded that the solutions are acceptable despite 
the behaviour at large values of x . The same effects 
occur in solutions to the non-linear problems.

The early tests were performed on a 40 - 
amplifier computer designed and constructed in the 
Engineering Department, and difficulties in obtaining 
solutions were aggravated by drift in the circuit 
components and by coarse potentiometer adjustment.
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Later tests, leading to all the solutions given in 
Chapter 7, were conduc.ted on an Electronic Associates 
Ltd. Pace 231 R computer.

6 .2 Time and Magnitude scaling
Records were required of the distribution of 

m^ and q^ along the shell and rapid changes in these 
variables occurred near x = 0. The only available 
recorder which gave a record of reasonable size was 
a Bryant x - y plotter which has a slow response.
It was necessary thus to slow down the problem by 
scaling the relationship between time T" and x.
Running the problem for long times, however, leads to 
a build-up in errors from drift in circuit components
and the final time scaling was a compromise between
the conflicting requirements. , The chosen scaling 
between the time T* in seconds and x was

r = 4 X
and the relationships between derivatives are then

2 ^d _ . d d _  ̂X
dx = dT - ^^2 = ,^^2

= 64 : - 4  = 256
d x 3 " °  d t  ’ dx^ - ' d T ^  •

For the linear problem the differential equation 
becomes in terms of T*
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o
dî

(b ) Magnitude scaling
Direct use of tlie circuit in Fig 6.1 wi3 1 lead 

to very different values for the maximum outputs of 
the amplifiers and may lead to overloading in some 
of them. This is because of the differences in 
numerical values of w and its derivatives. The 
purpose of magnitude scaling is to ensure that the 
output of each computing element covers as nearly as 
possible the working range of i 100 volts. This gives 
greatest accuracy and avoids overloading.

The method adopted was to estimate the 
maximum values of all the variables and then to work 
with the normalised variables

w / dw
1 w 1 ' dTI max dw

dr _ max
etc .

,

The circuit is designed so that these normalised
variables appear as the outputs of all computing elements
If unity is represented by 100 volts in the computer, all

+outputs will fall in the range - 100 volts.
The estimates of maximum values depend on the 

particular boundary conditions, and a problem may have 
to be rescaled when boundary conditions are changed.



The procedure for magnitude s.caling is illustrated 
for the linear problem with the boundary conditions

1 2 4

X = 0 w o

W  OO

clw
dx o

= 0.5 (p = 2, T = 0) .

In this case an analytical solution, can be obtained, 
and gives the following maximum values:

wmax 0.521

dw
dx J max

d£w'

d V

max

dx 3 max
^4 d w
dx^ max

= 0.278 ; dw*
dT . ■'max

= 0.0695

0.750 ; d w'
d t . max

= 0 .o469

= 1.298 ; d^wl
dt. max

= 0.0203

1.122 ; d h '
dt- max

= 0.00439

Rounding out these maximum values leads to the 
use of the normalised variables :

dw
2 d w .4d w

w
0.6 dr ; d T

d ^ w  ___
d r 3 ; d T  ̂
©.030.08 0.05 ©.03 0.005

The differential equation 6.2 then becomes
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256 X 0.005

,4d w
/k" 4cLÎ___O. 005 l  ̂ (ïï76 H- ^  (2 - 0)

or
.4 \d w \

1.28 \ d T ^  ' 1.35 W

0.6 80.005
Dividing through by 1.35, the highest coefficient, gives 
finally

/ ,4I d- "W
40.948 IdT

0.005 0r 6  + «-833

The computer diagram for solving this equation 
with the given boundary conditions is shoivn. in Fig 6.3*

6.3 Problems without axial load
The governing equation obtained in paragraph 5-3 

for the non-linear problem without axial load may be 
written

dx^
where

n - 1 
2n

1 G
^1^2

1
r 1 - n 

2n
3 f y G i p dx dx (6.3)

G1 3w + f. d k
dx^.

n " 1 
2n

To solve this equation the function G.
must be generated and a number of multiplying and dividing
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operations must be performed. A block diagram of a
suitable circuit is shoivn in Fig 6.4.

n - 1 
2n

The function was generated as a series
of straight line segments on a 20-segment diode function 
generator. The following table gives the index 
n - 1

2n for a number of values of n.

n 1.5 3 5 7

n - 1 
2n ^/S V 3 ^/5 5/7

G^ is always positive, and, as a normalised
variable in the scaled problem,varies in the range 0

n — T—
to + 1, G^ is plotted for this range, and for
n = 3, in Fig 6.5* The function is also plotted on 
an extended scale for values of G^ from 0 to 0,1.
Use of the diode function generator (D.F.G.) to 
represent the function presents two main difficulties:
(a) The maximum number of segments is available, and 
hence the best fit to the curve is possible, when the 
input to the function generator varies from - 100 to
+ 100 volts ;
(b) There is a restriction on the maximum gradient 
obtainable for any segment and the infinite gradient
at G^ = 0 cannot be accommodated.
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The first of these difficulties was overcome 
by scaling the input to the D.F.G. in the following 
simple circuit

G', D.FG.

Clearly, as varies from 0 to + 100 volts, the input
to the D.F.G, varies from - 100 to + 100 volts. For
a given number and positioning of segments, scaling
the input in this way reduces the gradients by y and
thus partly relieves the second difficulty.

The segment break points finally selected for
n = 3 are shown on the curves of Fig 6.5* With these
segments, the D.F.G, output was within approximately 

i.2^ of G^^ for values of G^ from 0.003 to 0.100 and the 
difference was smaller for higher values of G ^ , being
less than 1% as G^ approached unity. For values of
G^ less that 0.003 it was not possible fo represent 
the function. Approximate calculations based on 
solutions to the linear problem showed, however, that 
G^ was not likely to have a value below 0.003 for the 
boundary value problems considered. This was verified 
when the problems were run, the lowest value of G^ 
recorded being about 0.01. The function was generated



with similar accuracy for xi - 3 and n = 7*
The problem was time scaled in the manner 

described for the linear problem in paragraph 6,1, 
i.e. with

1 2 8

X

d^w
dx^

Estimates of the maximum values of w , anddx

for magnitude scaling were based on the linear

solution. It was also necessary to make estimates of 
the maximum values of

n
2n G

1 —' n 
2n

1

3 w
1 - n
2n P d x ,

and
r

3 fl w Gi
1 - n
2n P dx dx

Here it is important to note that [ 3 dx and
3 dx dx are proportional to the shear force 

q and bending moment m , respectively. Details are 
given in Appendix 5*1 of the estimates of maximum 
values for the particular problem of the semi-infinite 
cylinder with zero edge slope and,displacement (termed



1 2 9

in what follows the— fixed end cylinder).
The computer circuit used for the scaled problem

of the fixed end cylinder without axial load is shown
in Pig 6.6 for n ~ 3 and p = 2. The corresponding
diagrams for n = 3 and n = 7 are given in Appendix 5-1*

The technique of obtaining solutions was that
described in paragraph 6.1 for the linear problem.
The displacement w away from the end was calculated
for the •particular loading p and value of n. The
initial conditions for w and were set and the valuesdx
of q and m estimated (initial estimates of q and m ^o o  ̂ o o
were obtained from the linear solution). The problem
was run and q and m systematically adjusted until wo o
attained the calculated value of w over a range of x.
As in the linear problem, the values of q and m too o
give this behaviour were sharply defined.

6,k Problems with axial load
For problems with axial load, the two equations 

3.l4 and 3*16 in the displacements u and w must be solved 
simultaneously. The aquations may be written

n - 1 ff r 1 - n  . ^
Pn / .  Hnt dx dx

r r ^ 1 - n
d2w 1 G

2 f fdx 1 2 L
(6.h)

n - 1
du T ^ 2n - w
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where

Fig 6.7 shows the block diagram of a circuit 
to solve these equations. The upper loop is basically 
the same as the circuit for zero axial load and the 
lower loop is concerned with the generation of .

The potentiometer marked with an asterisk in the lower 
loop is used to vary the axial load. Setting this 
potentiometer to zero gives

du
dx

and the solution can be compared with that obtained 
from the simpler circuit for zero axial load.

The sfime time scaling was used as previ ou sly, 
and t:.ho soliLlions l:o pi'obiems withonl axial .Load were 
used as a basis for magnibudc scaling. Details arc 
given in Appendix 5.2, and the time scaled computer 
diagram with normalised variables is shown in Fig 6.8.

Apart from the increased number of components 
in the circuit, this problem presented little more 
difficulty than that without axial load; the teclinique 
of solution was the same.
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6.3 Comments on accuracy and discussion
Tlie accuracy of solutions depends on the accuracy 

with which the individual operations are performed in 
the computer circuit. The makers of the Pace 231R 
claim an accuracy of better than - 0.1% of full scale 
(- 100 volts) on the outputs o.f operational amplifiers 
and multipliers; decade coefficient potentiometers can 
be set to - 0.0001 and voltages can be read to - 0.01
volt with the electronic digital voltmeter.

In the course of solving the problem of a
fixed end cylinder, the output of each summing amplifier
and non-linear element in the circuit of Fig 6.6 was 
recorded at x = 0 and x = 0.3 and 1.0 approximately.
(The problem can be stopped at any stage and voltages 
read throughout the circuit.) The input to each 
component was obtained from the outputs of preceding 
components, and the output which should have been 
obtained from this input was calculated. The results 
are given in Appendix 3*3- In many of the operations 
no difference between measured and calculated outputs 
could be detected and, with few exceptions, the 
differences were within the makers' specified limits.
A multiplier output as low as 0.13 volts differed by 
only approximately 3% from the calculated output. 
Although it was not possible to calculate the outputs
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of the integrators, separate checks on these with 
loiown inputs showed the errors to he generally within 
the specified limits.

It would be very difficult, if possible at all, 
to make a formal estimate of the combined effect of 
these errors on the solution to a boundary value 
problem. The effect is for a slightly different 
equation to be solved at each value of x. For example, 
if all the operations were performed without error 
except the integration of to give w, and a constant
error of + c< was incurred in this operation, the equation 
solved would be

d2w
1 2 dx

X

1
dx

n - 1 
2n

r

3f^(w+ ) 3(w +<k ) +f
.2 \2d w

1 - n
2n - P dx dx

and not equation 6.3
Two useful checks on the combined accuracy of 

a number of circuit components, and on errors in setting 
up the diode function generator can be made under the 
following conditions.
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(a) Check on WtZ) 
With

dw
dx 0

o
the problem is one of a cylinder under uniform radial 
loading without end r e s t r a i n t T h e  displacement w 
should remain at a constant value for all values of x 
This value for w can be obtained from equation 6.3 as 
foilows:
with w = constant, equation 6.3 becomes

0 = 1 XI - 1 Cl 1 - n
( 3 w ) 2n 3f^_w(3 ^ )2 \ 2n dx dx

n - 1
1 (3

1 - n  
3 f^w(3w^)  -  p

Jj
dx dx

This requires

3 f^ w (3 w )
1 - n

2 \ 2n

and wi th

f1
4

n + 1
2n

gives n
__ _n+1

(6 .5 )

(6.6)
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clw
dx

With the initial conditions set as

= m = q = 0  o oo
successive runs were made until a value for w was found 
which was constant over a range of x of at least 
0 to 3- The value for w was .compared with that 
calculated from equation 6.6 for the particular values 
of p and n .

This test checks the accuracy of a substantial 
part of the circuit. It also gives a sensitive 
indication of errors in the diode function generator, 
as can be deduced from equation 6.3. If a fractional 
error - j3 occurs in generating the function 

n - 1
PTIGg ' , then equation 6.3 gives

3  H--------------  - p = 0
n - 1 

2 \ 2n(3%v) (1 i )

or

w
np / + g N n

n+12

n
^  + Ï  (1 - . (<5-7)

This dependence of the error in w on n was observed.
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but with approaching unity, where the error in
n - 1

generating G 2n is less than 1^, the error in w i
was below 5^ even for n = 7* For n = 3, the error, 
was less than 2^ .

(b) Check on d^w
d.x̂ 0

With w^ = 0, equation 6.3 may be written at
X = 0

.2d "w
d X

1
o

f .
d w

J

n - 1 
2n

A .

Xwhere Ao is propoi'tional to the value of the edge 
bending moment m ^ , and thus

d^w
dx^

1 A.
n

n n + 1 (6.8)
f1 f

Values of
,2d w 
dx

were read f rom'the computer for
j o

a number of values of A© and checked with those 
calculated from equation 6.8. This test was a check 
on the combined accuracy of a.further combination of 
circuit elements, and was again sensitive to errors in 
the D.F.G. A similar argument to that used in
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establishing equation 6.7 gives
\

d‘~w
dx'~

.JL. 1 \ \ n.
1 2 2 o

(1 - ix(2> ) (6.9)

where jS is the fractioaaal error in generation of

n _1
2n

With values of Xo giving solutions to the fixed 
e.nd problem, differences between observed values of

and those calculated from equation 6.8 were as
,2d If
. 2 dx o
high as 10^ for n = 7* However, upsetting the D.F.G.

.2-1 j- 1 d wlocally to produce errors in ---
dx

in the range 0
o

to - 10^ showed that corresponding differences in the 
values of m^ and q^ to give solutions were less than 2^,

Both the checks (a) and (b) were carried out as 
part of the procedure of setting up the circuit for 
each boundary value problem.

Perhaps the best indication of likely errors in 
the maximum, and for practical purposes the most 
important, values of the variables was obtained from 
checks on reproducibility. It was found that for a 
number of runs performed over a period of a few hours 
with the same circuit and setting of the D.F.G., the
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values of m and q obtained for the fixed end problemG O
differed by less than When the solutions were
repeated after a period of months with different
circuit components, and after the D.F.G. had been
reset, the values of m and q were within - 2% ofo o '
the values obtained originally. This was true for
n values up to 7>, but reproducibility was generally
better for the lower n. values. Reproducibility, of

d^w
dx^

was more sensitive to n, and differences of the
o

order of - lÔ o were obtained with n = 7- This is 
consistent with the findings of circuit check (b) , 
discussed above, the main factor governing 
reproducibility being the D.F.G. setting.

From observations on the accuracy of individual 
components and checks on reproducibility, it is 
reasonable to conclude that errors in the values 
obtained, for and q^ are probably less than - 2^, 
and unlikely to be greater than i Errors, in

however, might be, as high as 2 n fo, but are
,2d w
dx J o
unlikely to be greater than - 5 .
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The analogue computer has proved to be a 
useful tool for solving boundary value problems in 
semi-infinite cylindrical shells, with an accuracy 
acceptable for most engineering purposes. A big 
advantage is the ease with which changes in boundary 
conditions can be studied. . '

Although maiT-ual adjustment of two initial 
conditions to achieve the required displacement away 
from the restrained end might appear to be a tedious 
%jrocedure, a trend of adjustment is soon established, 
and solutions can be obtained fairly quickly. It is 
likely that a method of automatic adjustment- of these 
initial conditions could be devised, although no 
attempt was made to do this.

It should also be possible to solve problems of 
cylinders of finite length. Consider, for example, 
a cylinder of length 1 under internal pressure, having 
the prescribed boundary conditions 

X = 0 ; w = wo
dw _ dw 
dx dx J o

X = 1 ; w = w^

dw _ dw 
dx ~ dx

The values of w ando dx

1
r

can be set at x = 0, and the
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values of in and q adjusted to give the required o o
. dwvalues W-, and — — 1 dx at X = 1. Both w and would

1
have to he monitored, and adjustment of m^ and

to satisfy the two conditions at x = 1 would he 
considerably more tedious than in the semi-infinito 
probiam.

A preliminary investigation has also sho^m that, 
in principle, the analogue computer may be used to solve 
problems in shells of revolution of other shapes. The 
governing equations are considerably more complex than 
those for the cylindrical shell, and a greater number 
of computing' elements are required. There are not 
enough elements in the computer at present available 
in the Department for such solutions to be attempted.
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CHAPTER 7

RESULTS FOR A SEMI-INFINITE CYLINDER 
WITH FIXED END

7.1 Cylindei" without a^cial load
Tlie boundary conditions' Tor tlie semi-inf ini to 

cylinder with fixed end are: 
at X = 0 w = 0

^  = 0dx
at X -^-00 w — W(^

If solutions are obtained for an arbitrary value 
of the loading parameter p, w<-o is different for each 
value of n. However, p can be chosen such that w ^  

is the same for all values of n, and this gives a better 
basis for comparison of solutions, 
p has been defined as

PAP =

If Og is taken as the circumferential stress in the 
cylinder at x — t’** 00 ̂ the circumferential strain, and 
hence the radial displacement w,^ , will be the same
for all values of n .

The circumferential stress at x — cO is

and if is given this value
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p =    = 2(i)
This result also follows from equation 6.6.

The corresponding value of w^^ is obtained
from

¥<x> eA o

and w ¥ oo

The distributions of w, --- m._, and t^ are
dx

plotted in Figs 7*1 to 7*5 for p = 2 and n - 3> 5 and 7 
The curves for n = 1 are shoivn for comparison. For 
X 3*0 the curves for n = 3, 5 and 7 are shown with
broken lines; the analogue computer solutions cannot 
be relied on for detailed trends in this region:,

7.2 The effect of axial load
The effect of changes in axial load T was 

investigated with p - 2 and n = 3 * Solutions were 
obtained for 0 —  T —  0.6. The value of w is
different for each value of T and can be deduced as 
foilows:

For p = 2, Oq = ^**co



From equations 4.24 with, m^ = 0,
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n-1
0 (t© (t0

» ]. . with t̂ \ = 1  and tCO X

0,©
n - 1

(l - T + T^) ^
Ù0

But e’J 00 CO f r o m  e q u a t i o n s  5.8

w CO = I' (l - T + T )
n — 1 

,2\ 2

and, for n = 3,

-w = i (1 - T + T^)(l - i)Too (7.1)

Vailles of w ̂  computed from equation 7.1 are 
plotted against T in Fig 7.6 together with values 
obtained from computer solutions for the curvature and

axial strain at the_„ fixed end, d^w
dx^

and du
dx

J o

respectively. The bending moment m^ and shear force 
at the fixed end are plotted against T in Fig 7.7*

The curves for n = 1 are shown in each case.
The value T = 0.5 is the axial load in a cylinder 

w^ith closed ends under uniform internal pressure p = 2.
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This follows from

'̂x' _ ÎTa ^ p
2HC?„ 2WAT~2Hœ

Awith P = p“

and for p = 2, T = y.

7-3 Cylinder under internal pressure
Bee au ̂ e of its practical importance, the long 

cylinder with fixed ends under internal pressure was 
investigated further for n = 3* With the result 
obtained in paragraph 3*2 (c), it is again possible to 
choose a value of p which will give the same w^o 
for all values of n. From equation 3*9> the condition 
for this is

= 0.433 ^

and j, = ^  ) - V  2.31

Xt can be shown, as in paragraph 7*2, that with 
this value of j)

“ 0.433
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duGraphs of w, -— ~ , —  and q , m plotted  ̂ , 2 dx X ' Xdx
against x are given in Figs 7.8 to 7*10 for n = 3 
and n = ]. .

It was considered to be of interest to compare 
the solution for the cylinder under internal pressure 
with that for a cylinder under uniform radial loading 
p = 2 and zero axial load, when w was the same in
the two cases. It is easily shown that this condition 
is achieved if p = 2.42 for internal pressure. The 
solutions for the two conditions are plotted together 
in Figs 7.11 to 7-13.

7.4 Di sous Sion
The rate at which the radial displacement w 

builds up from the fixed end in the cylinder without 
axial load, depends on the value of n, and is greatest

d^wwhe.n n = 1 . The curvature    reduces rapidly
dx

from a maximum value at the fixed end; the higher
the value of n , 'the greater is the rate of decay.

For n = 1 , the bending mome,nt m^ is directly
.2 ^2

proportional to ---   , and the curves of m and----
dx ^ dx

plotted against x have the same shape. With n 1,
d^wm^ is a .non-linear function of both ----  and w, and the
dx
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d^wcurves of ---  and ni have markedly different shapes;

although raising the value of n increases the rate at 
2

which -— ^ decays, it reduces the rate of decay of m .
dx2 ^

The curves of w and t^ for different values of n show
a similar effect, t^ being directly proportional to
w for n = 1,

The analogue computer results are not accurate
enough at large values of x to give precise
information on the—decay of end effects. The
indications are, however, that even for n = 7, a
cylinder having a length x ==: 8, approximately, may be
regarded els semi-infinite . For a thickness to radius

1ratio of ^ e x a m p l e ,  x = 8 is O.565X radius,

and for a ratio of it is 1.79% radius.

Two important factors in the design of 
cylindrical shells with fixed ends are the maximum 
values of bending moment and curvature change, m^ and
2 d_w
1 2 dx

, respectively; the former in calculations for
o

the maximum str'ess, the latter in calculations for the 
mciximum strain. The results for the cylinder without 
cixial load show small variations in these maximum values

with n. rn̂  decreases with n , being about Sfo lower for
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n = 3 than for n = 1 , EU'id about 12^ lower for n = 7 -
d^wThe values of
dx2

for n = 3 , 5 and 7 fall within
J o

10^ of the value for n = 1. Observations made on ■
,2 1 might bei2errors in paragraph 6.5 suggest that a w
dx2 o

in error by 1 2 n ^ . Even with allowance for such 
error, the value for n = 7 is unlikely to be more 
than 20 - 30^ greater than that for n = 1 .

These results suggest that the linear solution 
may be used to make reasonable estimates of imporraur 
quantities in shells behaving in the assumed non­
linear manner. For given radial loading P and 
dimensions of shell A, II, the loading parameter p = 2 
defines the reference stress i.e.

y  i

The reference strain is obtained from equation
1.1 , or directly from the stress/strain diagram, and

CTothe ratio is used for the modulus of elasticity
in the linear analysis, Poisson's ratio being taken as 
2'. The solution so obtained gives the correct value 
for the radial displacement away from the fixed end
and reasonable estimates of m and d^w

° dx^
for 1 n 7

o
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This method for estimati.ng important quantities 
in the fixed end cylinder is analogous to that applied 
to simple structures in Chapter 3* Tt may be 
expected to give reasonable estimates with non-linear 
laws besides the n-r%3ower law.

It is likely, furthermore, that the raechod may 
be useful for other boundary value problems. In a 
preliminary investigation, a series of solutions 
was obtained in whic3i the edge slope was zero,

but the edge displacement w^ was given different 
values. The displacement w oo was again made the 
same for all values of n by choosing p = 2. In Figs

.2 ^
7.14 to 7.16 m , — ^

° dx^
and q are plotted for w o o

o
varying from 0 to w f or n = 1, 3 and 7* For this
range of w ^ , the n = 1 solution will always lead to
overestimation of m and q . Except with small values0 ^ 0
of w ^ , it should also give conservative estimates for 

dx^ J o
For a given uniform radial loading, the effect

of increasing the axial load in a fixed end cylinder is
.2, , d wto reduce w^o ,
dx^

, m and q and to increase the o o
o
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maximum mid-surface axial strain dx — Figs 7.6 and 
o

.2
7 .7 . For n = 3j , — y

dx''
. du and 3—  dx

o
are non-

o

3. in car functions of the axial load T but q ando
m^ depend linearly on 'T , It may be shown^ 21 )̂( 2u)
that for tlie assumed homogeneous stress/strain relations,
the stresses in the shell vary linearly with the
applied load for all values of n. The results of
Fig 7'7 are thus a further indication of the accuracy
of solutions obtainable on the analogue computer.
Solutions were obtained at 0.1 intervals of T and
the maximum deviation of q ' and m from the straight0 0
lines drawn was less than 1^.

The solution for the fixed end cylinder under 
internal pressure with n = 3 - Figs 7 * 8 to 7*10 - 
again suggests that the linear solution may be used to 
make reasonable estimates of important quantities ±V 
p is chosen to make w^q the same for all n-values.

d^wThe values for -- -
dx"̂

, mo and q^ for the cylinder under

internal pressure are close to those for the cylinder 
under radial loading with .zero axial load when w^g 
is made the same, and there is little difference in the 
deflected shapes - Figs 7 • H  7 • 1^ • The
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cil s tribut! on of mid-surface axial strain , however,

is entirely different in the two cases - Fig 7-13*
In paragraph 4.5, it was suggested that when 

solutions to bouaidary value problems had been obtained 
with the approximate relations, a check should be 
made on the domain of the -surface in which the
solutions lie. This has been done for the fixed
end cylinder under internal pressure with n = 3* 
Table 7.1, the ratios  , and -—  are given for

X

X

1
6e ■ h.

0 0. 000 0. 6l4
0.1 0 . 012 0.709
0„2 0.089 0. 822
0 . 4 0.447 0. 987
0. 6 0.910 0.791
0 . 8 0.518 0,567
1 . 0 0.338 0.267
1.5 0.149 -0.594

i 2.0 0.073 -0.705
1 3.0 0 . 005 -0,125

Table 7*1
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Referring to Fig 4.5, and identifying eX
with, e^ and with e^ = 0) shows that the
solution lies between e^ = 0 and e_ = 0 and includes2 1
sections (3) , @  @  ’ (§) Q* It was in
the region of section (3) that agreement between the 
exact and approximate relations was poorest. Experiments 
on the fixed and cylinder under internal pressure might 
provide a critical test of analyses based on the, 
approximate relations.
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CHAPTER 8 

CONCLUSIONS.

1. Deformations in a number of structures obeying
an n-power stress/strain law can be predicted by a 
simple metbod based on the linear elastic solution;
it makes direct use of the stress/strain curve without 
need to determine material constants. The basis for 
the method suggests that it may give reasonable 
estimates of deformations with other non-linear laws.
The limited experimental evidence available supports 
this claim.

2. The relations between forces and moments and
mid-surface deformations for a thin shell obeying an 
n-power law can be derived from an energy function.
This function gives a basis for postulating approximate 
relations and for comparing them with exact relations 
computed numerically. , Approximate relations have been 
suggested for shells which are rotationally symmetric 
both in geometry and loading. In the form in which 
they are used for the analysis of circular cylindrical 
shells, they compare favourably with the exact relations

3. For the cylindrical shell, the approximate
relations lead to non-linear differential equations
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which can be solved, with particular boundary conditions
on an analogue computer.

4. Solutions obtained for a cylinder with fixed
ends under uniform radial loading, and under uniform 
internal pressure, suggest that the linear elastic 
solution may be used to give reasonable estimates of 
quantities important in the design of such shells.

3 . The solution for the fixed end cylinder under
internal pressure includes the region of the strain 
field in which the agreement between approximate and 
exact relations was poorest. Experiments On the fixed 
Ejnd cylinder may provide a critical test of analyses 
based on the approximate relations.

FurthcT Work 
Analytical

The comparis on of exact and approximate relations
between forces and moments and mid-surface deformations
has been made with one curvature change zero (k^ = O ) ,
the condition which applies in the analysis of circular

( 25 )cylindrical shells. Drucker and Shield^ have
suggested that, for n-t-oo , relations for the cylindrical 
shell may be used with sufficient accuracy for the 
analysis of more general shells of revolution, and have
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suggested a formulation of the more general problem 
in which and are assumed to be zero. The 
writer hopes to examine these suggestions for other 
values of n. An indication of whether or not they 
are likely to be generally useful may be had from 
examination of available linear solutions to particular 
shell problems. XT it is desirable to use the 
approximate relations with k^ ^  0, it may be worth­
while to compare them with the exact relations for a 
number of values of k^ in a manner similar to that 
described for k^ = 0 in Chapter 4.

As a check on the analogue computer solutions 
given in Chapter 7, and to include the effect of a 
change in wall thickness, a numerical method has 
recently, been developed^ for the analysis of
cylindrical shells with the approximate relations.
Where solutions have been obtained both with the 
analogue computer and by the numerical method, there 
is better than - 5^ agreement in all important values.

Experimental
A start has been 'made on an experimental 

programme in which thin fixed end cylinders of annealed 
copper and other soft metals are to be tested under 
short term loading conditions of both uniform radial
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load and Internal pressure. Measurements are to be 
made of radial displacements and surface strains, and 
the results compared with the findings' of Chapter 7*

In a further experimental programme,  ̂ the 
creep behaviour of long, fixed end thin cylinders 
with a change in wall thiclcn.es s is to be examined. 
Cylinders of polymeric materials and soft metals are 
to be tested at relatively low temperatures (ambient 
to 150^C), and with the collaboration of the Research 
Department of Babcock, and Wilcox Ltd, similar tests 
are being performed on st.eel cylinders at temperatures 
encountered in the operation of steam raising plant.

The writer also hopes to initiate further 
experimental work on the simple structures discussed 
in Chapter 3 and to test further the approximate method 
suggested for estimating deformations.
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2.1 Derivation of equations 2.?

From equation 2.3

184

- 1 Æa

^ a - S J f  ( - (5-3 )

Substracting,

-2(7^ + ( cr^ + (7 3 )

But = 0 for constant volume

n
With, equation 2.3, i.e. £ = B C% ,

£2 = B < 7
n - 1

^cr ( ^ 1  + <^3 )

^  ̂ and £  ̂  follow by symmetry.
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APPENDIX 3

3 .1 Beam in uniform bending
(a) Rectangular cross-section

(35) ,Arguments of symmetry can be used^ * to sbow
that plane sections remain plane and the strain at y 
from the neutral axis of the beam when bent to curvature
K is

€. = Ky

With equation 2.1 written in the form of equation 
2.2b, the bending stress is given by

1
CT = (si gn y ) I —

•/n

or K =

ly +d/2
. M = <7 \ %

= a

èo

K

-d/2

n+1 
n

1/n
o IV^o

b n
2114-1

(sign y) (|y 1 ) dy

, 2n4-1 —j+d/2
(sign y)(I y I) ^

-d/2

•/ 2n4-1 
n

 ̂ 2n-i-l J

!n+l
n

n n4-l _o______
n o n  12n4-1
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Note In tills special case of a cross —section
symmetrical about the neutral axis, the stress/strain 
law can be used in the form of equation 2.1 and 
integrated over half the cross-section, i.e.

M
d / 2 f

C & y .

o J
y, dy

(b) I - section

dr

o4,d



Integrating over half the cross-section
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M = 2 C7“ K •/n (f -
I

n-t-l 
n

o
d

4"

/̂.n
e.

( I -

(afer)

A.

n+1 ' 
ny

j

lI
2n+1 

n
+ d

2

2n+1 
n

2n+1 
n

2n+l
n

1 -(l-'x'g) (1-2 o<i)
2n+l
n

o Mn
n A n »2n+l(%r Gr" d 1 - ( 1 “^p )(l-2o(^ n

2n+l ■ n

(when = 1, or CX̂  = ' -J-, this reduces to the expression
for a rectangular cross-section)
For n = 1

^1 =
12 £a M
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and. the expression for K may he written

M
n-1 n-1 . r.

2 f  2n+l\
n

X 2n+l
|\ - ( 1-0^ ) (l-2o^^ ) J

n

For K = K.

2n+l 
n

M
O.Qrà

n-1 n-1
3 (__n2 i 2n+1

= (n)

The variation of Y  ̂  (n) with n is shown below for

nn-1

0.1

n

2 0.104-5
0.104?

5 . 0.1058

7 0.1060

For the beam tested by Gill - Fig 3*5
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o(

o(

0.25
1. 75
0.375
1.5

0 . 1 4 3

0.250

Taking  M __ as the value • of Y^(n) for n = 5 giv es

M = 0.153

or CT = 1.4.25 M.o

3.2 Lt ^ ̂  (n) as n —^  1*
1 n

Y n — 1
1

n
2n+1 

n

n-1

1b \2 n + lJ
n-1

Taking logarithms of both sides

log^ (k§i ) 1 - e  ( a ^ )

Lt log^ X 1 
n ■—>* 1

= . Lt 
n — 1

1 , ioge 5 + ^ log Z_3nJ
e \ 2x1 + 1

n - 1
Applying L 'hôpital's rule to the second term and 
diff erentiating,

* The writer is grateful to Professor MacLellan for 
suggesting this method of investigating Lt ^ ^(n)
as n 1.
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Lt
n — 1

n 1 og f_3n_Ye \ 2n+l/
n-1

Lt 
n “>1

W r )  + nvf2n+1\ ( 2n+l). 3-3r > 2
(2n.l)^

0 , + Lt 
n — 1

2x1+1

1
3

Lt log_ X
n -*"1

1 1 log^ -g + 3

or Lt y 7

This limit can also be obtained by writing n = 1 +
and inves tigating the behaviour of ^ ) a-s S —^ 0.

3.3 Simply supported beam with central 
point load - equation 3*7

A \r
w

t, ■ V a W2

&

w
2,



It is assumed that the.moment/curvature 
relation developed for the beam in uniform bending 
can be applied without serious error in the presence 
of shear stresses associated with the shear forces 
in the beam.
Thus, with

K dîr — ^ for small deflections 
dx

or
and M = ^ x ,

equation 3.1 gives

a:

d^v ■ a ( |

w
2

X

1 9 1

where
n

2n+1
n+1

n
£ o

.n A.n i2n+lo. F 1

This, with the boundary conditions, gives

V = 1
n+1 A(|) n n+2

n+ 2
L n+1

X

At X = 2, and substituting for

V
n

1/ n ^2n+l .̂  n'&■

n 1
n+2 .n+1
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3.4 other examples of non-uniform bending 

0) ( w
X

 ̂ a
L

cl

An alternative, and often simpler, method of 
determining the deflection under a single point load 
is to use the principle of virtual work. In this 
simple case, considering only the uniaxial bending 
stress, the principle may be written as

r
d  £ dV - W cT 0X X A3-1

V

where
(T , £ are stress and strain in the x-direct ion,X X

¥ is the applied point load 
is the deflection under ¥.

Also



r
C T  £  d V  = 1 C J  K y  d VX X \ X

V
r

K (J y d AX dx
A

But

CJ y d AX M
A

1 9 3

f
CJ t d YX X M K dx

V L

With K = A Mn ( 54 as tu Appendix 3-3) ,

equation A3 -1 gives finally

= 51 M  1 d x

Thus, in the above example,

o
a r

o
w (1 - g) %

j
n+1

dx

-f W a (  1 - g )  ]
n+1

dx
a

which gives finally



I  = o.
o

n+1 n ^ n+1
n+2

with, n = 1

J = _Z_L_2 
^  g:« g y p£o

1 -
2 / \ 2 a \ /a) \̂-

and

1
¥ L

oAd^ (1 - !)(#)
n —1 1

4

Thus ,

fzn^lY^ n j  n+2

6 = 6 1

1 n 1
= 4 n-1 I n \ .n-1

I2n+l J
(n + 2 ) :o.-l 

n+1 
2 ^ ”1

^ ̂  (n ) varies from 0.325 fO<̂ * n = 1.1 to 0.298 for

.n = 7 • A value of 0*300 for ¥a
(1 -  # )

gives Ô = cT i  1 0 ^  f o r  1 . 1  —  n  — 7.

1 9 4
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w
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*
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&

For this encastre beam, the edge fixing moment
¥LM for a linear elastic material (n = 1) i 8 ■ *

¥ith a rigid - non - work - hardening plastic material 
(n— OO ) , plastic hinges develop under equal moments 

at the ends and centre of the beam, and equilibrium
requires that Mo

¥L
8 A more general analysis shows

that M = o
¥L
8 for all values of n .

Again, using the principle of virtual work,
* , s n+1

¥ 6 = 2 SI ¥ x - M
o

n + 1
2 51 (¥L) l

which gives finallyf

o dx

o

r r-
1

 ̂ i h j ”  8
J \ ' -

n+1
X

* A change in the sign of M occurs in the range 0 - /2.
To avoid difficulty when n is even, the moment/curvature 
relation can be used in a form analogous to equation 2,2a, 
i.e.

K SL (si gii M ) ( 1 M I ) ̂
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£ O
2n+l

Uo V
L

n+ 2 2n+l\ 4
n 1

'0 <J d

Proceeding as before

n+2
1

2n+2

6 = j 1

if ¥ L

X .y(n)

n 1
n \ n-1

2n+l n + 2 ) ^ . 4 = Xy (n)

varies from 2.60 fro n = 1.1 to 2.37 for n = 7

and ¥ L
(Xtd‘

2.4 gives

S = S  ̂ - 10^ for 1.1 ^  n :£*1 7

lli
/
X
X
X
X

OJ / UNIT LENGTH

ÏLJ il i  ̂ 4 i.\1 i i i ^ & ^
. -1-..... tïv -X"

L

a

M = 

and

-  f  (L -  x )
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Ô  = - F ? ) " ( - F  ,

is integrated to give the end deflection

n n+1 n 2n+2
Ld  _ ^ o______ f 2n+l ] p /w \

0 - n j^n^2n+l ^ n y \̂ 2 y 2n+2

Also

■ +’ = (âXh) (i)"’" = Xg(zz)
, V X  ■ ' 1 1/ n \ n

4 1 T d ‘”

Q (n) varies from 0.7^2 for n = 1.1 to 0.621 for8 
2

n = 7 and ~ 0:635 gives
aUd^

6 ” = 6* ^ i 15/0 for 1 .1 n ^  -

3.5 The intersection "point" in Figs 3-9 and 3 -IQ
(i) Fig 3-9 " the thick wall cylinder, «X = 2

aThe value of at the intersection "point” for

1.1 —  n ^  7 is approximately

—  = 1.27
p

or C7 = 1.27 P.
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If 0  is taken to be 1.27 P , then theo
equivalent strain C at. the intersection "point" 
will be , and the same for all n in the range

1.1 to 7.
Bailey's solution was based on the assumption 

that the axial strain in' the cylinder wall is zero.
The strain ratios are thus constant and £ is directly 
proportional to . Thus if £  at the intersection
"point" is the same for a range of n , so is .
Furthermore, the distribution of through the
cylinder wall is independent of n (equation 3 .1 1 ) and 
if £.0 has a value at one point in the wall which is 
the same for a range of n, it has values at all points ■ 
in the wall which are independent of n in this range.

The assumption that = 1.27 P

Pgives “ = 0 .7 8 9 , This result compares with the valueOq

~ = 0.79 obtained for Ok = 2 in paragraph-3 .2 (d)

(ii) Fig 3>iQ Beam in 3-pofnt bending

If 4 - .at one point in the beam has the same
W O

value for a range of n ~  1, then, since the bending 
moment M is independent of n, the curvature K at the 
point would have to be the same for the range of n .
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(w, <5* and L are the same for all n) . From paragraph
3 .1 , the condition for K to be approximately the same
for 1.1 n ^ 7  is

G M
o 0.24-5 W  

From Fig. 3-10, for n = 3., 5, 7 is closest to
2 Xthat for n = 1 at -y- = 0.82 approximately. At

this point

Thus

o 2 1 2 / A 2
0.24-5 (9 d

= 0.837 ^  ̂
& d '  '

The value suggested in paragraph 3.2(a) was

O  = -0.833 ¥ L
grd^



APPENDIX 4

2 0 0

4.1 f IITo demonstrate that t_ - ■ - -1 \n+l )
d V
Ôe etc

1

Consider the shell element of Pig 4.1, having
sides of unit length and subject to edge forces T , TJL ^
and edge moments

The strain field described by equations 4.1 will
give rise to stress distributions in the element which,
for the correct values of £  _ , £  _, K_ , K _ will be in^  ml m2 1 2
equilibrium with T ^ , T ^ , and . The potential ^

defined for zero body forces by

V

r
U d V - T. u. dF 

2. 1

?
(a 4.1)

dV is an element of volume, 
dF is a surface element,
F^ is that part of the surface on which

forces T^ are prescribed.

u. are displacements associated with 1
prescribed forces, 

is thus to be regarded as a function of £ ,  £ m2 '
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, and , and will be a minimum when £  ,

and have their correct values.

For the shell element, since = 0,

dU = <T^ d £  ^ + C7^ d C ̂

Substituting for G.̂  and from equations 2.9

dU = 1 / 4

B

n+1

)7(
1-n 
2n

^  ^ 2  + ^ 2 ^ )  C '1 ^2

+ f +
1-n 
2n

n+1
2n

1 / 4 n

B
n+1 d

n+1
2n

1
ll
J ]

V ’ ̂ 2 r
U =

o
d U

n+1
2n

n+1
2n

1
1/

4
3

n

B n

Thus, with equations 4.1,
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U = 1 h

TU-12n . r
f n
ii n-fl il i ml  ̂̂

+ e
IT-l- 1 

2 / 2n
m2

n+1
2n

7B n
I -ii-\ ,n+l ni ml m2 m2

+

H- 2  ^  +  k /

n+1
i

n+1 
2n

or U = 1 r 2n
n-f 1 
2n

y
k
3

n 1 I F,n+1 I 1
B n

For unit area of element

U d V =
V

+H

-H
u d

k

/B n

n+1
2n

+H

-H

n+1
2n

F1 d



Also, f or unit length of side,

2 0 3

r

T. u. dF = . -m2X

+  ( l  X  K ^ )  . +  ( l  X  K ^ ) -

T h u s , from equation A4.1

i I = 1
1/

B n

n+1 
2n +H

•H J

n+1
2n

F1 Js

^  ml ^2 ^ni2 h  h  ^ 2  ^2
Introduction of the non-dimensional parameters defined 
by equations 4.3 gives

II

where
'YV+iZ'V\

21  3 •e.,4 e, e;̂  + el) 4 4'̂  I,(e.+i ê ) 4 K i

4 k
{
dt

A. 
2 V 3

Z'V'X.
r 'XkL2+x.
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I f  H i xs a mxnxmum

atr BT a? dTT
a Cl a (fe,

t = f— ^Vn+l/

f n

Ô V
ac,

a y

^2 =

m. - (n^)

0

 ^ A V
n+1/ Be,

a y

n

àk,

These relations can be verified dirêetly by obtaining

etc.

For example,

ay
8  c,

4 )
n+1.
2n .n+1

2n

+ 1

-1'

1-n
2n

F. (2Ci + e^)+4^ {k.|+2hp)1 2-

The right hand side of this equation is the expression 
obtained for t^ by direct integration of stresses through 
the thiclmess - the first of equations 4. 6.

4 . 2_______ Integration of to obtain ^ ( d )  and ( e )

(a) "V(d)

d?

W i t h  k . ®2 = 0
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(d)
n+1 +1
2n

-1

r
2

®1 "1 1

n+1
2n

n+1 +1 r
2n

-IJ

n+1
n

d?

n+1
n

2n+i; 2k. (e^ + 2? k^)
2n+l

n
+ 1

-1

or V(ol) = i

n + 1 
£n n \ 1

2n+lJ 2k.1

2n+l 
n -

2n+l
n

(e^ + 2k^) -(e^-2k^)

(b)
As n '— oO n  + 1

; 2n y + — — yn
and

% ) =  i ( j
+ 1

-1
( a ^ ^  + b5 + o) dS

where a = 4(k^^ + k^ k^ + k^^)

b = 4 k^(ei + i Gg) + k^(eg + & e^)
2 2 c - 6i + e^e^ + e^

(A4.2)

The integral in equation a 4 .2 can be evaluated,  ̂ i.e.
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+ 1

-1
+ c)dj 2a? + b

4a + c
-, +1

1

+ 4 ac - b' 
8a

i l/a J ̂  + bS + c
But for a 0

+ 1 r
d

log (2a $ + b + 2 Va^^+bS + c )
+ 1

-1
Hence «

V
1

(e)
f- V3 ( 2a+b 

4 a /h + b, + c 4a ya - b +

4ac - b*^\., / 2 a  + b + 2't^Va + b + c+ / ------jj- \ log
8a — 2 a+ b + 2VaVa — b +”

4. 3_______Symmetry of the = 1 surfaces .
Ad'jacent quadrants

For given e^ , e ^ , , the stress, distributions

through the thickness of the shell are given by equations 
4,18, i.e.



2 0 7

a I
(T.o

k
n+1
2II (e1 ®1®2 ^ ( )+4S^' 2'k.

1-n
2n

X (e, + ie) + 2 ̂  k.

4
3

n+1 
\ 2n

(ee„ +e^ e^ + e ^)+4f (e +|-e )+45^k^1 ■ ~1~2 ■ “2 ' ■ ' ' "1' 1 2' V' 1

1 -n 
2n

X ( Gp + 2 G. ) + ^ k.

These expressions are not symmetrical in and
e , i.e. the deformation states (e = e; e -c><e;2 ” X 2
k^ ) and (̂ ê  = o4e ; e^ = e; k^ ) will give different stress
distributions and are associated with different values
of t , t , m , m . The ^\l/-surf aces are thus not the 1 2 1 2  ■ '
same in the adjacent quadrants of Fig 4.3*
Diagonal quadrants

F ig. A 4.1
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Consider the deformation states (a) in the diagonal 
quadx*ants I and III of Fig. A. 4.1, i.e.

quadrant I 

quadrant XII

(e^ = e; e^ =o<e; )

(oi = “ e; = -c<e; k.̂ )1
The distributions of O  associated with these deformation1
states are ;

(J-,
n+1
2n

ao
4

1-n
2n

+ + 4Îk^e(l+ 2, 2 kl

X e(l+ + 2 S kl

Jo

n+1 
2n

4
III

1 1 -n 
2n

e^(l+c(+c< ̂ )_ hS kie(l+ f ) + ' A ^ k i ^  J

X

Clearly, for a given k1 ;

d \'1 at I f:) "'III
cTiThis leads to the distributions of shown schematically
^  o

Czin Fig A4 .2 and the distributions of — will be
cr,o

similar.
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O O

o

a.

Fig AM- . 2 .

Tlie only difference in tlie applied forces and

moments m ^ , m^ to produce the deformation states (a) 

in the diagonal quadrants -I and III is in the sense of
t^ and t^. Furthermore, replacing by - jS to giv e

the deformation states (b) in Fig A4.1 shows again that 
the only difference in t ^ , t ^ , m ^ , m^ to produce states

(b) in the diagonal quadrants I and III is in the sense 
of t^ and t ^ . The ^ 1 surface must thus be the same
in tlie two quadrants.

The argument can be repeated to show that the 
= 1 surfaces must also be the same in the diagonal 

quadrants II and IV.
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Mathematical demonstration of symmetry 
Properties of = 1 surface for n —o<^.

As shown in Appendix 4.2,

'\ĵ _  ̂ I — r M /  a + b + c “ I — r--~ ' 1 V  a - b + c

4ac-b 2a + b + 2 *i/a ŷ a + b +
— 2a+b 4- 2 i/a — b +

where, for = 0

a = i..

b = 4 (e^ + i e^)

Symmetry about h^ = 0

A change from = + k to k^ = - k affects b, and not a 
or c .
Let b = + b^ for k^ = + k

b ~ - b^ for = - k

In the expression for , the first two terms taken
together, i.e.

2a+b \ y V  ̂ / —2a+b
4 a / a  T  c - + c
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lias the same value for h = + and b = - b^ . Also^

— — — ^ ^  ̂is the same for b = - b ^ . Thus it is only
8 a 7,

necessary to prove that

log 2a + b + 2 7a Va + b + c 
-2a + b + 2 Va Va - b î c

has the same value for b = i b ^ .
For b = -f- b^ , the expression becomes

(2a + b^ ) + 2 7a  iVa + b^ 7
(—2a+ b ^ ) + 2 7a — b^ 7

If both the numerator and denominator are 
rationalised the expression may be written

(2a + b^) — 4 a (a + b^ + c) 
(—2a+ b ̂ ) — 4 a (a — b ̂ + c)

(—2a + bj ) — 2 7a 7^ — b^ +1
(2a + b ^ )  - 2 7 a  7a  + b^ + c"

1 X
2 a — b^ + 2 7 ^  *7a — blj ~+1
— 2a— + 2 1 tJZ I C

This is the original expression with b = - b

2 a 4 b 4- 2 V a  7 a + b + c 
-2a+ b 4 2 Va 7 a -r b 4 c

has the same value for

b = - b 1
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The = 1 surface for n oO is thus symmetrical about
the piaue = 0.

Symmetry in diagonal quadrants
The deformation states ( e^ = e; e^ = ^ e ;  k^ ) and

( = - e ; e^ = -o<e; k^ ) in diagonal quadrants give

the same magnitude and sign for a and c, and the same 
magnitude but opposite signs for b. So do the deformation 
states (e^ = e ; e^ = - ^ e ; k ^ ) and (e^ = - e; e^ = ^e; k ^ )

Thus, by the argument used above to prove symmetry for
+ k , the surfaces 'W = 1 for n o o  are the same in1 _ .

diagonal quadrants.

4.4 Computing the ~ 1 surfaces for k^ = 0

Although for given values of e^ , e^ , k^ , could

be obtained directly by numerical integration of equation 
4.8 with k^ = 0 ,  it was convenient to have values for

t ^ , t ^ , m ^ , m^ as well as values for "7̂  . The following

procedure was thus adopted.
(a) For a particular value of n, and values of e ^ , e^, 

k ^ , equations 4.18 were used to compute the non-dimensional

a-i (jzstresses   and ---- at the mid-surface and at ten
Oo CTo
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oequal intervals of } on both, sides of the mid-surface, 
A standard numerical integration techqique based on 
Simpson's rule was used to evaluate t^ , t̂ , m^ and m^

from

t,
+ 1 r

+1

\cr,
+ 1 r

d t
-1*"

r
m 1

+ 1
■Ij

(Jo
<Jro

r

m.
-1"̂ ■1"

(b) V was obtained by applying the equation of virtual
work to the unit shell element, i.e. (with k^ = O),

V -  kg = 0

Steps (a) and (b) were performed on an English Electric 
Deuce computer.

(c) To obtain a point on the = 1 surface for given 
3^, was calculated for a number of values of k., .e1 1

A graph of 3^ against k^ gave the value of k^ for which

"\y= 1.

4.5 Integration of equations 4.19

(a)
1

e n
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n
1

n+1 +1
2n

-1

r
+4̂ '

1-n
2îi '

1 + 2 d?

n+1 +1
2n

■1*'

■/n

n+1 
2n

n+1 n+1

n + 1 4r"i - ï ) ’ - ( ‘ - k Y

(b ) in1
yk n

1

n+1
m

k

1
1/n

1

4 P '  1

1 -n 
2 -, 2n

1
1 + 2

n+1 +1 1
2n

-1

/n
d!

+ 1n+1
2n n

2kn+1
-1

+1 r n+1
©  - +  2n

2kn+1
- 1

s ]
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which, gives finally

m1
1/k. n

f —\^n+l

n+1
2n

n+1i(1+2
n+1 n+1

n 1
2n+l

1

2n+1 2n+1

-4) “-(P) ”

4.6 To show that t^ = 0  when e^ = i  e.
Prom equations ̂ 1.6, with = 0,

1 -XI
t1

n+1 +1 f'
2n

l"

2x1
P. (si + ye^) + 2 k 1

1

where P^ = (e^^ + e^e^ + e^^) + 4 ?  k ^ (e^ + ^e^) + 4 Î

But
dP
à

= 4 k1 (e + 2®o) k.

1

111.1
2n 1 / 2n

• 4k^ I n+1 P.
n+1 +1
2n

-1

Thus, for t.̂  = O
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r n +1 “1 r n +1 n
2n

- 2  J for 1N   ̂ 1 p 2n 
2 for != 1

This requires

or e^ = e

The approximate relations - equations 4-. 15 —  also give 

1 - '1t., = 0 for e„ = - .

k . 7_______'Discontinuity at section (3) for n 0 0

For the particular conditions e^ = = 0 (and only for

these conditions), the strain C^ is zero for all ^ .

For = 0, the first of equation 2.9 gives with

B £ o
ao

n
n+1 1-n

cr (Tr
1 £

As n —^ CO , CT ) the sign depending on
/ T  ^

the sign of £  ̂ .

now £..= £ „1 ml

€ ml 1 + -y  ■^ml H
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Clearly, since 't varies from - H to + H, the sign of
for given values of £ _ and K., will depend on the1 ^ ml 1

ratio-
H

For
Kl H

1, will be positive ■
Cml €ii)l

throughout the thiclaaees, and the stress Cf will b e

+ throughout. Application of a curvature

£ly ^  will not change the stress distribution, and

hence will not require an applied moment . The

magnitude of the force T^ to maintain will remain

unchanged.

K] HFor — =-- ^  1, ^  will be negative over part
£ml

of the thiclcness and the stress will be - r-%- , r.e.
2

o
osthe stress distribution will be^shown below.

o

2 (j
V T

O



2 1 8

£mlApplication of a curvature —-™ will thus require

an. applied moment and the value of to maintain £. ^1 ml
is reduced.

In non-dimensional form, the ratio

e ml ®1 £o ®1

K H k
and  ------  1 gives   P

^ m l  ®1
This was the value of -- at which the discontinuity

^1
occurred at section ,



APPENDIX 5

2 1 9

3.1 Semi-infinite, fixed end cylinder without 
axial load - magnitude scaling for 
n = 3 and computer circuits for n = 3, 7»

(a) Magnitude scaling for n = 3
With time scaling i = 4 x , equation 6.3 is

n-1
r / 9 \ o 1116

.2d_w
d'T2

2n

2 + 23 6f.
.2 d w
ciT'

1-n 
2n 
- P 3

For n = 3 Î

n - 1 
2n

1
3

f1
4
3

n+1
2n

1 . 212

f.
2n

4 n n+1
2n+l 1.122

and equation A3.1 becomes with p = 2

236
.2d 0.735

o / .2 \ 2
3 w + 287

*1

dr2

X
ff

J J
3 . 636w|3w^ + 287 i

"  -i- 2 d T  d T  (A3 .2 )
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Based on the maximum values obtained in the 
linear solution - paragraph 6.2(b) - the following
normalised variables were selected for w and its 
derivatives :

'W
0 . 7

dw
d T

d^w
dlr^

0 . 2  0 . 0 5

with these, equatio,n A3 • 2 becomes finally

where

G-
3

0 . 1 4 6  G
1 r f
A

3 Jy
W

0 .7 / ^ 3 0. 894 d T  d T  ( A 3 . 3 )

w
0.7 + 0 . 4 8 8

/
,2d w
d T

^0.03

The linear solution shows that the decay of

it wasdT" I is more rapid than the growth of (—— — ) and 1
V 0T 03 / V
assumed that would not have a value, greater than 1.

Furthermore, in setting up the D.F.G.. it was assumed that
would not have a value less than 0.003. This gives a

jLmaximum value for G^^ of O.I7I, and a reasenable estimate

of the maximum value for G^  ̂ is 3.0. With G^ ̂ scaled

by 3, equation A3.3 becomes



2 2 1

.2 d w
d 1-2
0 . 0 3

0.730 G 3
G

£0.7 y \ 3
3 0.179 d T  d T  (A3 . 4 )

It was necessary then to make estimates of the 
maximum values of ! [*  ̂d T  and |C ] d t à r .

From equation 3*6
r

q_ = (2 t^ -p) dxX
J

duand substituting for t ^ from equation 3*11 with = - w

give s

f
=

1-n
2n

dx dx

With time scaling and normalised variables, this becomes 
for n = 3, P = 2

r
q = 2.8X

w G.
0.7 5 0.179 ( A 3 . 5 )

The maximum value for q in the linear solution isX

9.
3d-^w

dx 3

16
9 X 1.298

An estimate of the maximum value of I [ ] dT is thu:



2 2 2

0 . 8 2 4

It w a s  a s s u m e d  tliat ^ j L J dT" max =  1.0

niX

From equation 5•7 j

q dx ■̂x
and sei.bstltuting for q^ from equation A5 • 5

m , 8
X k

w 30.7/ V 5 -  0 . 1 7 9 d T  d T

Witil the maximum value of m from the linear solution, i.eX

m 16
o "  9

r
X 0 . 7 5

[ ] d T  cir = ^  ^ 0-75 % 2 3 1 . 9

It was assumed that
r

f i l r  ] d T  dT Imax = 2 . 5

These estimates of maximum values lead to the final 
equation

d^w
0 . 5 4 8  [ d T  ^ 

0 . 0 5
- G

3

w
d T  d T

3

and to the circuit diagram of Fig 6.6.
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Similar reasoning leads to the following time 
and magnitude scaled equations for n = 5 and n = 7. 
n = 5

0 . 653
d lv -  \

d T  ^
\ 0 .05j

2/3 rf
k

w
0.7A 10 - 0.935 d T  dr

where w
0.7 + 0.469

.2d w
d /•fw-
0.05

0. 642
d^w
d T  ̂  j 
0 .0 5 /

3/7
5

-3/
G_w M

7
0.7 10 - 0.0953 dT dT

where G w
0.7

.2d w
+ 0.459 d T

0.05

The circuit diagrams for n = 5 and n = 7 are given in 
Figs A 5 .1 and A 5 .2.

5. 2 Magnitude scaling for cylinder with axial load.
When time scaled with T' = 4%^ equations 6.4 become with

n = 3 and p - 2
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256 dfw
dT^

1
0.735 H  I 4.848 Gg 1/

(■w + -2 dT dT

du
df

T
1 . 212

1
O6 /3 "W

,.5.6

wli ere

« ( f ) .28 7  / a

Tlxe estimates of maximum values made for the cyli.uder
without axial load were assumed to apply here. The only

duadditional estimate that had to be made was dr J max.
In the linear problem, equation 5.19 gives

du
dx w 4- 34 T

It was intended to vary T in the range 0 t,o 0,6, and thus
the maximum value of for the linear case would bedx
wmax = 0 .521.. For the non-linear problem, .a value

du  ̂
dx = 1,0 or du

dT 0.25
max max

was assumed.
The final forms for equations A 5 .6 with normalised variables
are :



2 2 3

.2cl w
0 . 4 l O  d T

G7

du
4- 0.357 I d T 

0 . 2 5
-  0 . 1 4 8 f d T  d T

2 . 5

du
d T
0 . 2 5

where

G 7

1.033 T G 7

du

0.7

= 0.510 dl
0 . 2 5

+ 0 . 7 1 4

W
0.7

/du
0.7 4-

\0.25;

2
w

0.7 + 0.366 d1
,2d_w
t2

0.05'

5 .3 Check nu outputs of circuit CQmpo.nents of Fig G .G

Results are given in Tables A, B and C.
Table A - x = 0

X = 0.5 approx. 
X = 1.0 approx.

Table B 
Table C 
notes
(i) A ~ amplifier

M - multiplier
D - multiplier used as divider.

(ii) Sign inversion occurs in all amplifiers and multipliers
(iii) 1.0000 represents 100.00 volts.
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Circuit 
C omponent Input Recorded

Output
Calculated

Output
Differenc( 
Abs olute

3 in Output 
Perc entage

Al 0.0000 0 .0000 0.0000 0.0000 -

A2 4-0 . 0001]
-0 .5420F -f-0 . 5420 4-0.5419 4-0 . 0001 0 . 02

A3 -1 .0 000]
+ 1 .0840 F -0.0839 -0.0840 4-0 . 0001 0.01

A 4 +0.8169 -0.8169 -0,8169 0.0000 0.00

A5 -0.8169 +0.8169 4-0 . 8169 0,0000 0 . 00
a 6 -0.2000 4-0 . 2000 -0.2000 0.0000 0.00
A?

t+0.2450 j-0.2450 -0.2450 0.0000 0 . 00

A 8 -0 .0 0 0 1 ]. 
+0.1790 ] -0.1789 -0.1789 0.0000 0.00

AS) +0.5750 -0.5750 -O' 5750 0.0000 0.00
AlO -0.5750 4-0.5750 4-0.5750 0.0000 0.00
Ail -0.7350 4-0.7360 4-0.7350 4-0 . 0010 o.i4
A12 +0.7360 -0.7361 -0.7360

Î
-0.0001 j 0.01

Ml 0 .0000]
0 .0000]^ 4-0 . 0001 0.0000 4-0.0001 -

M2 +0 .2450] 
0.0000 -0.0001 0.0000 -0.0001

M3 +0.69751
+0 .8169] -0.5750 -0.5698 -0.0052

i
0.91

m 4 +0.73601 1 
+0 .7360] 1 -0.5420 -0.5417 -0.000 3 0.06

1 4-0.2000],
1 4-0.8169 J "6

4-0.2450 4-0 .2448 4-0 . 0002 0.08

D.F.G. j -0.0839 4-0. 8I69 4-0.8153 4-0,0016 0. 20



TABLE B
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Circuit 
C ompoucTit Input ,R e c 0 r d e d 

Out]3ut
Calculated j Difference 

Output j Absolute
î

) in output 
Percentage

Al +0.0752 -0.0751 -0.0752 . 1 +0.0001 0.01

A2 -0 .0056]
-0.0092 +0.0148 +0.Ol48 0.0000 0.00

A3 -1 .0000 ]̂  
+ 0.0296y +0,9705 • +0.9704 +0.0001 0.01

A 4 +0.2509 -0.2510 -0.2509 -0.0001 0 . 04

A3 -0.2510 +0.2510 +0.2510 0.0000 0.00
a 6 -0.2000 +0.2000 +0.2000 0.0000 0.00
A 7 +0.7999 -0.7999 -0.7999 0.0000 0.00

AS -0 .0 6 0 4 ]  ̂
+0.1790 -0.1186 -0.1186 0.0000 0.00

A9 +0.0745 -0.0746 -0.0745 -0.0001 0.13
AlO -0.0746 +0.0746 +0.0746

f " '
0.0000 j 0.00

Ail -0.0953 +0.0953 +0.0953 0.0000 0.00
A12 +0.0953 -0.0954 -0.0953 -0.0001 0.10

Ml + 0 .0752]
+ O.0752P -0.0056 -0.0057 +0.0001 1 1.80

M2 +0 .7999]^
+0.07525 - 0.o6o4 -0.0602 -0.0002 0.33

M3 -0 .2943] 
+0.2509 +0.0745 +0.0738 1+0.0007 1 0.94

m 4 -0 .0953]
-0 .0 9 5 3 ^^ -0.0092 -0.0091 -0.0001 I 1.10

Dl +0.2000] 
+0.2510j" +0.7999 +0.7969 +0.0030

!
0.38 1i

D.F.G. +0.9705 +0.2509 +0.2455 +0.0054 2.15



TA B LE C

2 2 8

Circuit
Component Input Rec orded 

Output
Calculated

Output
Difference 
Abs d u t  e

3 in Output 
Percentage

Al +0.1957 -0.1937 -0.1957 0.0000 0.00

A2 -0 .0382]
-0 .0016]'*' +0.0398 +0.0398 0.0000 0.00

A3 - 1.oooo] 
+0 .0 7 9 6]'*' +0.9206 +0.9204 0.0002 0.02

A/-I +0.3430 -0.3430 -0.3430 0.0000 0.00

A 5 • ;-0.3430 +0.3430 +0.3430 0.0000 0.00
a 6 -0.2000L.. . __ _

+0.2000 +0.2000 0.0000 0.00
A7 1 +0.5830 -0.5829 -0.5830 -0.0001 0.02

j +0.17905 -0.0648 -0.0649 -0.0001 0.17

A 9 +0.0304 -0.0305 -0.0304 -0.0001 0.33
AlO -0.0305 +0.0305 +0.0305 0.0000 0.00
Ail -0.0390 +0.0390 +0.0390 0.0000 0.00
A12 +0.0390 -0.0391 -0.0390 -0.0001 0.25

Ml +0 .1957]
+0 .1957L -0.0382 -0.0383 +0.0001 0 .26

M2 1 +0 .1937]
j +o.5829y ~0.1l4l -0.Ii4l 0.0000 0.00

M3 -0.0878] 
+0.3430]^ +0.0304 +0.0301 +0.0003 1.00

m 4 +0 .0390]
+ 0 .0390]^ -0.0016 -0.00152 -0.00008 5.25

Dl j +0 :3430] "RD-583.0 +0.5830 0.0000 0.00

D.F.G. +0.9206 1+0.3430,,L ______ ___J..... ........_ +0.3414 +0.0016 0.47
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