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1967.

Due to a lack of contact between the disciplines of soil mechanics and 
structural engineering there is a tendency for flexible structures to 
be analysed under grossly simplified assumptions regarding the interaction 
between the structure and its soil foundation. For example, it is often 
assumed that the contact pressure on the base of a structure is uniform, 
or linearly varying. In the thesis it is proposed that the use of a 
digital computer enables a structure and its foundation to be analysed 
as a complete entity. The computer is essential because of the complexity 
of the mathematical formulation of the problem and because of the scale 
of the analysis Involved,

Most of the theoretical work concerns the finite element method for the 
analysis of structure and foundation, although some work on the finite 
difference method is also presented. The former method allows a more 
realistic approximation to foe made to the inhomogeneity of soil deposits.

An evaluation of current methods and some advances in the theory of the 
finite element method as applied to plate or slab structures are presented, 
culminating in an analysis incorporating the effect of transverse shear 
deformations on the bending of elastic plates.



The theories are then applied to the evaluation of a set of 
experimental results obtained for circular plates bearing on a sand 
foundation and loaded with concentrated central loads. The classical 
Idealisations of foundations are found to be inadequate and more 
realistic models are proposed for the particular plate structure and 
loading case examined.
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CHAPTER 1.

REVIEW OP THE ANALYSIS OP FtiEXIBLE STRUCTURES 
BEARING ON DEPORMABIE FOUNDATIONS

1.1 Introduction
In the Author’s experience there tends to be a rather 

rigid division between engineers concerned with the analysis and 
design of structures, and those concerned with the soil mechanics 
and foundation aspects. This leads to sweeping assumptions on 
the part of designers about the nature of the interaction between 
a structure and its foundation; for example it is often assumed 
that the contact pressure on the base of a structure is uniform, 
or at best linearly varying across the structure.

In the case of flexible foundations, a further difficulty 
is introduced by the complexity of the mathematical formulation, 
which generally involves fourth order ordinary or partial 
differential equations. This leads to a further division, since 
the solutions to these governing equations have generally been 
obtained by mathematicians who may have no idea of how the 
solutions are to be used in engineering practice.

The intention of this thesis is to reconcile the three 
way division by means of computer-oriented analysis techniques.
The Author believes that the development of digital computers on 
a large scale renders obsolete Terzaghi’s statement (l), that 
"the solution of fourth order equations is beyond the capacity of 
the average practising engineer", and further that the ease with 
which computers can handle very large problems should encourage 
the integrated analysis of structures and their foundations as 
complete entities.

Chapter 1 of the thesis consists of a review of previous 
work on the analysis of flexible structures bearing on deformable 
foundations, with emphasis on the "three-dimensional" (plate or 
slab) rather than the "two-dimensional" (beam) problem.
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In Chapters 2, 3 and k the theoretical basis is developed for 
the analysis of three-dimensional structures bearing on 
deformable foundations by computer oriented techniques, while in 
Chapter 5 these techniques are applied to the evaluation of the 
results of a series of tests carried out on plates bearing on a 
uniform sand foundation artificially created in the laboratory.
1.2 The Winkler Foundation

The Winkler model (sometimes called Winkler-Zimmerman, 
especially in the U.S.S.R., or even Hertzian, since Hertz was the 
first to consider plates on this type of foundation as distinct 
from beams) is the simplest elastic foundation model it is 
possible to use. It was first suggested by Winkler in 1867.
One assumes that the foundation can be represented by a bed of 
infinitely closely spaced, but discrete springs which have a 
stiffness, k, transverse to the plane of the plate (or beam) 
resting on them but zero stiffness against any other displacement 
or rotation, k is called the "foundation modulus" or "modulus 
of subgrade reaction" and typically has dimensions lb/in , A 
large proportion of the literature dealing with structures 
bearing on this model concerns beams, and often the methods 
described cannot be extrapolated to the more complex plate 
problem,

Hetenyi (2) presents a number of exact solutions to 
the governing differential equation of a beam on a Winkler 
foundation;

El = q - ky eq(l.l)dx^
and in a recent contribution (3) has traced the history of 
developments in the study of the Winkler foundation, and of other 
foundation types, up to the present day. It might be pointed out 
that the study of eq(l.l) has been given added impetus because 
of its applicability to other problems, for example thin shells, 
Barden (4) has catalogued the various approximate procedures 
available for the solution of eq(l,l) and concludes that the
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approach due to Hendry (5) Is the most effective.
For a summary of contributions to the study of plates 

bearing on various types of foundation, reference should be made to 
the standard work of Timoshenko and Woinowsky-Krieger (6), Chapter 8. 
The extension to the consideration of the simplest plate problem, 
that of the radially symmetric plate on a Winkler foundation was 
first discussed by Hertz in l884. The governing equation becomes

A  A  +dr dr
and was solved by Hertz for the special case of a plate with a 
concentrated central load. By using Bessel functions, Schleicher (7) 
was able to obtain solutions to a wider variety of axisymmetric 
plate problems.

The general case of a finite rectangular plate bearing on 
a Winkler foundation, governed by the equation:

D (-— r + 2 — + -T-ir) « q - kw eq(l.3)

seems first to have been analysed, about 1920, by H, Happel, using 
the approximate Rayleigh-Ritz procedure. Further applications of 
the same method are due to Vint and Elgood (8) who also conducted 
experiments on a steel plate bearing on springs and to Murphy (9) 
who compared the theoretical results from the Ritz procedure with 
the experimental values for a steel plate bearing on a hard rubber 
subgrade, Pickett, Ravel, Janes and McCormick (1Ç>) used Fourier 
series for the solution of the same problem, but considered their 
solution inferior to Murphy's. In a series of papers (ll),
Allen and Severn used the method of finite difference approximations 
to eq(l,3) to obtain solutions for the more complicated boundary 
conditions pertaining at exterior walls, re-entrant corners etc. 
of flexible foundation rafts. This work will be discussed more 
fully in a later section (4.2) together with the Author’s own 
contributions to the finite difference method.



A solid plate can be approximated, by a grid framework^ by 
a suitable choice of the stiffnesses of the members of the grid, 
and this approach has been used by Sawko (l2) for the solution of 
some problems involving Winkler foundations (including Allen and 
Severn's problem). Sawko was able to modify a computer program, 
originally written for the analysis of plane frameworks, to 
incorporate the effect of the foundation stiffness, Gridwork 
analogies are the forerunners of the more sophisticated finite 
element analyses presented later in this thesis (Chapters 2 and 3)« 
Their merits will be discussed more fully there.
1,3 Coupled Spring Foundations

Winkler's hypothesis of an "uncoupled" medium is untenable 
for a beam or plate structure bearing on a continuous, highly 
interconnected medium. The degree of error will be shown to be 
dependent on such variables as the flexibility of the structure 
and the distribution of loading. Due to the difficulty of 
analysing flexible structures bearing on semi-infinite media 
(see Section 1,4), foundation models of intermediate complexity 
have been sought. Those are called "coupled" or "generalised" 
spring foundations. Work in this field is reviewed by 
Hetenyi (3) and in a comprehensive paper by Kerr (13). If time 
dependent properties in the foundation can be ignored, three 
"coupled spring" models have been proposed :
(i) Governed by a fourth order equation. The mathematical model 

for this type is either,
(a) a spring bed, where the tops of the springs are 

connected to a thin stretched elastic membrane,
(b) a spring bed where there is shear interaction 

between the springs,
(c) a spring bed where the springs resist moments 

applied to them as well as transverse forces.
The same differential equation governs (a), (b) and (c),

(ii) Governed by a sixth order equation, obtained by making 
simplifying assumptions about the behaviour of an elastic 
solid.
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(ill) Governed by an eighth order equation. The mathematical 
model for this type Is a two-layer spring bed, the layers 
separated by a flexible beam or plate.

Since it will be shown that elastic solid foundations can 
be conveniently analysed using digital computers, the usefulness of 
these "intermediate’' models is open to question.

While this thesis was being prepared, Severn (l̂p) 
published an analysis of rectangular plates, bearing both on Winkler 
and on coupled spring foundations, using the finite element method. 
This work parallels the main contributions of this thesis and will 
be discussed later in conjunction with the Author's own work. In 
the same category is a paper by Cheung and Zienltiewicz (15) dealing 
with plates on Winkler and on semi-infinite, isotropic, homogeneous 
elastic solid foundations by the finite element method,
1,4 Elastic Solid Foundations

‘Tl'eating a foundation as an elastic solid involves, with 
the exception of the special case of axisymmetry, the solution of a 
problem in three dimensional elasticity. Due to the complexity of 
the theory of elasticity in three dimensions, nearly all of the 
problems in this class which have been solved have concerned the 
semi-infinite, homogeneous isotropic, elastic medium although in 
principle the class contains media of finite dimensions and more 
arbritrary elastic properties, for example anisotropy or variability 
of the elastic properties with location in the medium, Holl (16) 
solved the problem of an infinitely large plate in a state of 
axisymmetry (using Bessel functions), For finite plates, two 
approximate methods have been used, BorOwicka (17) solved the 
problem of the finite circular plate by matching the plate and 
foundation deflections when each was expressed as an infinite series. 
The solution involves solving a set of linear equations, the number 
depending on how many terms of the infinite series are retained, 
Gorbunov-Posadov and Serebrjanyi (18) used the same method for 
rectangular slabs. As an alternative, finite difference 
approximations have been used, circular plates being tackled by
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Habel (19) and rectangular plates by Pickett, Ravel, Janes and 
McCormick (lO) and by Pickett and McCormick (2Q). In all of the 
above analyses, an isotropic elastic half-space was assumed, but 
an approximate method published by Barden (21) considers a circular 
plate on an anisotropic elastic half space, Barden matched the 
displacements of plate and foundation at a finite number of points, 
n, and had to solve n simultaneous equations after the fashion of 
Borowicka. An interesting feature of Barden's work is his 
discovery that the surface deflections of a special type of 
anisotropic medium can be obtained from those of an isotropic medium 
simply by multiplying by a dimenslonless factor which can be 
tabulated for varying degrees of anisotropy (22), Sommer (2̂ ) has 
recently described a computer-dependent method for analysing a 
complete structure bearing on an elastic solid medium, thereby 
enabling the influence of the flexural rigidity of the superstructure 
on the settlements and contact pressures to be assessed. Only the 
two dimensional problem was considered by Sommer.

1.5 Comparison of Foundation Models
Engineering practice in the design of flexible structures 

is often to assume that the distribution of contact pressure between 
structure and soil is uniform, or linearly varying whatever the 
flexibility of the structure or distribution of loading. Where a 
foundation model is used, it is most common in the U.K. and U.S.A. 
to use the Winkler model, whereas, according to Tsytovich (24), 
U.S.S.R, practice is to use the elastic half-space model. As far 
as the Author is aware, the use of coupled spring foundations is not 
common practice for the design of flexible structures bearing on 
soil. Pig,1,1 shows the implications of the two main assumptions.
On the Winkler foundation, a uniformly loaded structure will 
experience a uniform uplift pressure (and uniform settlement) 
whatever the flexibility of the structure. On the other hand, on 
the elastic half space, a rigid structure will be subjected to an 
"inverse parabolic" contact pressure distribution while settling 
uniformly, whereas a flexible structure, uniformly loaded, will be 
subjected to a uniform contact pressure distribution while undergoing
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a "parabolic" displacement form. Therefore the assumption of 
uniform contact pressure for any foundation condition is unlikely to 
be acceptable. Similarly, the Winkler model and the elastic half- 
space cannot both represent the behaviour of a foundation under all 
circumstances of structure flexibility and loading. Vesic (25) and 
Barden (4) have tried to show that the two foundation models 
correspond, but have chosen the ideal case of flexible beams 
subjected to concentrated loads. In reference (24) Tsytovich 
called for a discussion of the limits of applicability of the 
theories of the linear elastic half-space and the Winkler model.
Such a discussion is one of the aims of this thesis.
1,6 The Stress-Strain Characteristics of Soils

Having considered the foundation models which can be 
conveniently analysed by existing mathematical methods, it is 
pertinent to question to what extent these models duplicate the 
known stress-deformation properties of naturally occurring foundation 
materials, (This leaves aside completely for the moment questions 
regarding the correctness of the idealisations of the structures 
being analysed. For example is It reasonable to assume that a 
massive, heavily reinforced concrete raft can be represented by a 
perfectly isotropic, elastic Kirchhoff plate?)

Detailed study of the stress-deformation relationships of 
soils is a fairly recent development in soil mechanics, a subject 
which has been primarily concerned with the failure of soil masses, 
with the exception of the special case of consolidation of cohesive 
soils. At first sight a comparison of the assumed and observed 
properties is discouraging. The assumptions in the previous 
sections have typically involved;
(i) time independent stress-strain behaviour 
('ii) linear, recoverable stress-strain behaviour 
(ill) homogeneity
(iv) (quite often) isotropy 
(v) "stability" in the sense that for an increment of stress 

applied to a soil element, no work is done by the soil
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against the imposed stress system. These assumptions are 
examined in turn, for a particular soil in a particular 
condition before stressing, (i.e. no extrapolation to 
the behaviour of the soil under different initial 
conditions or to the behaviour of any other soil is 
assumed,)

(i) A large proportion of naturally occurring soils exhibit
time-dependent stress-strain behaviour. Assumption (i) can 
therefore only apply to soils which are predominantly cohesionless, 
although the time dependence exhibited by heavily overconsolidated 
cohesive materials at stress levels below the preconsolidation 
pressure may be insignificant.
(ii) The stress-strain relationships of cohesionless soils are

markedly non-linear and deformations are usually irrecoverable at 
least to some extent. The latter property means that the behaviour 
of a structure on a cohesionless sub-soil on first loading may differ 
considerably from the behaviour on subsequent loadings. Although 
the non-linearity of the stress-strain relation is not catered for 
directly by the theories so far advanced, these theories, allied 
with the use of iterative methods employing a computer, can account 
for non-linearity* For a variety of stress states, cohesionless 
soils have been found to follow a strain-stress law of the form;

€ = a

where a and K are pure numbers. A selection of observations is 
given below:

Jakobsen (26) eu = O.608 x
Chaplin (27) ev = a
Schultze and Moussa (28) eu = O.OIO6 ^. .,. ^^ Q̂̂ ) limiting values

eu . 0.00570'̂ *̂ ®̂ )
Brinch F ans en (29) ev = 0.58e *̂ ĉ^ *̂

eu = 2.6e^*^^o'^*^^
In the above, u = uniaxial, v = volumetric, e - initial void ratio. 
The coefficient a varies widely, while the exponent K seems to be 
of the order of 0.5 for most soils, (The value of 0,2 reported by 
Schultze and Moussa refers to a relative density of zero.)
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(ill) Cohesionless soils can be inhomogeneous to varying degrees
and this is not catered for in any of the analyses considered so 
far. Finite element methods given later in this thesis will be 
■'ound to be capable of dealing with arbitrary inhomogeneity.
(iv) If anisotropy exists in a cohesionless soil the
difficulties presented are not too great. Barden (22) has already 
dealt with one special case of anisotropy and, in principle, 
arbitrary anisotropy can be accounted for by the methods described 
later.
(v) The property which makes the analysis of the stress-strain

behaviour of particulate materials throughout the stress range up to 
failure so difficult is the property of dilatency which makes such 
materials "unstable" in the terms of the theory of plasticity.
That is, under a small increment of stress, work may be done by the 
material against the applied stress increment. Rowe (30) has 
begun to tackle this problem which the Author considers to be the 
key to the advancement of soil mechanics in the field of stress- 
strain relationships. However, the deformations beneath flexible 
structures at working loads are usually small, and the soil is 
certainly nowhere near failure. The majority of sands will not 
dilate at such low strains, but for very dense sands, which dilate 
throughout the strain range, the elasticity theories are inadequate. 
Nor is there any attempt in this thesis to create mathematical 
models of that type of behaviour.

Considerable restrictions have therefore been placed on the 
types of foundation, and sequences of load application which can be 
described in terms of the classical elastic models (even although 
these are generalised for non-linearity, inhomogeneity and 
anisotropy). Nevertheless of all problems in soil mechanics, the 
analysis of the flexible structure resting on a cohesionless (but 
not exceptionally dense) medium holds out the best hope for a 
solution in terms of elasticity. This is because :

(a) Deformations are predominantly time independent.
(b) The loading is applied once only. The problems of 

flexible road or airfield pavements are correspondingly 
more j ffi
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(c) The deformations are so small that they tend to 
produce a compression of the soil without 
mobilising high shear stresses which result in a 
tendency towards dilatent behaviour.

1,7 Some Other Procedures for the Design of Flexible
Structures Bearing on Deformable Foundations
(i) Beam-Strip Methods

These are the earliest, and simplest, methods of analysis 
available for foundation rafts although they involve, correspondingly 
the greatest number of assumptions. The raft is divided into a 
series of continuous beams crossing one another at right angles.
The reactions of these main beams on each other at the 
intersection points are assumed as are the reactions on the main 
beams of the slabs filling the spaces in the beam gridwork. In the 
context of these sweeping assumptions regarding the structural 
behaviour, it has been usual to assume a uniformly distributed 
pressure between soil and raft. Recent recommendations for the 
design of foundation rafts (31) permit the use of this method for 
"flexible rafts where the variation in adjacent column loads and 
spans is not greater than 20̂ ", but advocate approaches based on 
plate theories for general raft design,

(ii) Baker's Soil Line Method (32)
This method is a generalisation of the beam-strip method 

which allows for the variation in soil pressure across the raft and 
for its relation to deflection (Winkler Hypothesis), The 
simplification is introduced that the soil pressure is assumed to 
vary linearly along any of the main beams. In order to cover the 
worst possible case, limits between which the coefficient of subgrade 
reaction, k, must lie are based on the results of tests at the site. 
Baker concedes that the method, despite its approximate nature, is 
lengthy, a feature which does not commend it to practising engineers. 
Baker has demonstrated (32) that, for a beam, his method gives 
results in close agreement with the Hetenyi analysis of the elastic 
line. At the very outset of this thesis, access to high speed
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computing capability was assumed and in this light. Baker's method 
introduces superfluous assumptions. In the absence of a computer 
it might take equivalent times for skilled operators to employ the 
soil line method or the Allen and Severn relaxation method for a 
"one off" solution, but the former can deal more quickly with the 
effects of the factors mentioned by Baker in his discussion of Allen 
and Severn's work (33)’"

(i) Variation of k values over the site,
(ii) Errors in assessing k values,
(iii) Restraint of the building frame to bending of the raft.
(iv) Reduction of flexural rigidity of the raft due to

cracking and creep with time.
(v) Variation in the distribution of live load in the 

building.
The methods proposed in the next three chapters can cope 

with all of the five points listed above.
(iii) Yield Line Method

Thus far, only elastic methods of analysis have been 
considered. In recent years increasing attention has been paid to 
ultimate load methods of analysis ;̂ U.L.M.) involving, in the case of 
reinforced concrete slabs, the yield line theory first developed by 
Johansen (34). Some protagonists of the U.L.M. imply that it should 
supersede the elastic methods altogether, but the Author prefers to 
think of the two approaches as complementary. A major advantage 
claimed for the U.L.M, is its simplicity compared with elastic 
methods but approximate procedures such as finite differences and 
finite elements, allied with the use of computers, are rendering 
tractable an ever increasing number of problems by elasticity 
techniques. Further, Wood (35) has shown that elastic solutions 
give exceedingly good results, in terms of economic designs, for 
reinforced concrete slabs as long as the distribution of the 
reinforcement is varied. Despite the simplicity of the U.L.M, once 
a lower bound yield pattern has been found, the discovery of this 
pattern does not seem to be trivial for complex structures.
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Davies (36) has solved the problem of a circular tank foundation slab 
subjected to parabolic and Inverse parabolic contact pressure 
distributions, but this is the only solution of a foundation problem 
by the yield line method known to the Author. Further consideration 
of the method is outwith the scope of this thesis, although its 
merits as an alternative to the elastic analyses presented in the 
succeeding chapters are conceded,
1.8 Conclusions

A study of available methods of analysing flexible structures 
bearing on deformable soil foundations indicates that these methods 
are limited in their scope. Many are restricted to two-dimensional 
problems, and most are only capable of dealing with uniform 
structures bearing on uniform foundations such as the pure Winkler 
and the semi-infinite, homogeneous, elastic models. In this thesis, 
methods are developed whereby beams, circular, rectangular or 
irregular plates with arbitrarily variable elastic or sectional 
properties and bearing on non-uniform Winkler, or Coupled, or semi­
infinite elastic foundations with arbitrary anisotropy and 
inhomogeneity can be analysed with equal facility. Non-linear 
elastic properties in any of the foundation types can be tackled by 
the same principles using iterative procedures. The methods are 
entirely dependent on the use of electronic digital computers, and 
have been used in turn for the evaluation of a limited series of 
experimental results for plates on a sand foundation. A fuller 
experimental study, together with an examination of case histories 
could lead to the compilation of a set of charts which would 
adequately describe the majority of foundation types. Further, the 
methods proposed, and particularly the finite element method, might 
be extended to include truer models of soil behaviour than the 
classical elastic models, by the inclusion of such features as 
dilatency and time dependence.



CHAPTER 2,
FINITE EIEMENT METHODS FOR THE ANALYSIS 

• QF EIASTtC TLATSS IT BIDING

2.1 Introduction
It has already been pointed out in Section 1.1 that computers 

can be of considerable use in the solution of problems involving 
flexible structures bearing on elastic foundations for two reasons. 
Firstly for the solution of the differential equations by numerical 
methods, and secondly because of the scale of the problems involved, 
thus taking advantage both of the speed of computation and of the 
large storage capacity of modern machines. At the beginning of this 
research, the potentialities both of the finite difference and of the 
finite element method were investigated, and it was felt that the 
latter offered the best prospects for solutions to the originally 
envisaged problem of rectangular plates bearing on elastic foundations 
and subjected to restraint from a superstructure. The finite element 
analyses for plates in bending reported in the literature as of 1964 
were studied, and some apparent discrepancies which were found led to 
the development of new analyses, using rectangular plate elements, 
which are described in this Chapter. A little work was also done 
using the finite difference method, and this is described in Chapter 4.
2.2 Antecedents of Modern Finite Element Methods

The thin elastic plate subjected to bending actions is such 
a common structural element that considerable effort has been expended 
in the past on its analysis. The governing differential equation of 
flexure is

or Dv\ = q eq(2.l)
Analytical solutions exist for certain rather restricted examples 
of plate geometry, loading and boundary conditions, a good selection 
being given in the standard work of Timoshenko and Woinowsky-Krieger (6), 
However if there is any complexity in the geometry, loading distribution



- l4 •*'

or support oonditlona, recourse has to be made to an approximate 
analysis. Of these, the most widely used are the finite difference 
and finite element methods. The method of finite difference 
approximations to the biharmonic equation, eq(2,l), is considered in 
some detail in Chapter 4,

Alternatively there is the method if finite elements which 
is referred to here in its broadest sense as any idealisation of a 
continuum by a finite number of discrete elements connected at points 
called "nodes". The salient feature of the use of either the finite 
difference or the finite element method is the necessity of solving 
large numbers of linear algebraic equations and while some solutions 
by the former method were obtained some years %o using the relaxation 
techniques of Southwell (37) the introduction of the high speed 
electronic digital computer has vastly increased the scope of 
approximate analysis procedures.

The first steps in finite element analysis of structures were 
taken by Hrennikoff (38) and by McHenry (39) in the early 1940's, when 
plates subected to in-plane or bending actions were idealised as 
frameworks of bars whose elastic properties were varied so that the 
behaviour of the framework under load approximated closely to the 
behaviour of the solid plate. Analyses of plates using such "one­
dimensional" elements are still being reported (40) but the Author 
agrees with Hrennikoff (4l) that the more sophisticated "two- 
dimensional" elements which have been developed are more likely to 
come into general use, TWo-dimensional elements can represent a more 
general state of stress than one dimensional elements, and with 
certain configurations of the latter. Poisson's ratio cannot assume an 
arbitrary value. The only point in favour of one-dimensional 
elements is that a standard plane framework computer program can be 
used to analyse plates subjected to in-plane stress or flexure,* the 
analysis is not less complicated or less time consuming.

Ten years after the early work using one-dimensional 
elements the availability of electronic digital computers gave a great 
boost to structural analysis by matrix methods in general and by the
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finite element method in particular. The complexity of aircraft 
fuselages and wings was a powerful Incentive for the adoption of 
automated analysis procedures in the aviation industrŷ  and the 
outstanding contributions of Argyris (42) and of Turner, Clough,
Martin and Topp {kj>) describe the early work in this field.
Comprehensive bibliographies are given in references (43) and (44).
2,3 Force Method and Displacement Method

Twb different (although complementary and highly
interrelated) methods are most commonly employed in the analysis of
structures employing finite element techniques. These methods are the
force (or flexibility or compatibility) method where the unknowns are
taken to be forces in the structure and the displacement (or stiffness
or equilibrium) method where the unknowns are displacements at the
nodes of the structure. A third method, which is part force method
and part displacement method is sometimes used. The term "displacements’’
includes quantities which may not be readily recognised as such. For

\  ^  2example in what follows, ° ^y is treated as an unknown in the
displacement method although its physical significance is obscure.
For this reason these displacements are called "generalised" displace­
ments, and the forces which correspond to them "generalised" forces.
It must be emphasised that the difference in methods arises in the 
analysis of the total structure after the foroe-deformation relation­
ships of the individual elements have been obtained.

At the primary level of the isolated element, flexibility 
and stiffness are directly related and means of deriving the element 
flexibility matrix corresponding to an element stiffness matrix and 
vice versa are given by Gallagher (45).

At the secondary level of the interconnection of elements 
it is necessary to introduce the concepts of a pure compatible 
approach and a pure equilibrium approach, a terminology proposed by 
Fraeijs de Veubeke (46). By "pure" one implies that either 
compatibility or equilibrium must be satisfied throughout the group 
of interconnected elements, that is in the interior of the elements 
and along the boundaries between the elements. These pure approaches
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are of considerable importance firstly if raonotimic convergence to 
a correct solution is sought as the number of finite elements 
comprising a structure is increased, and secondly if an upper or 
lower bound to the energy of the structure is desired, Melosh (4?) 
provides the proof that a pure approach is a necessary (though not 
sufficient) condition for monotonie convergence of a solution as the 
number of elements per structure is increased, while Praeijs de 
Veubeke (46) shows that a purely compatible approach provides ajf\owev" bound, and a purely equilibrium approach ante^ bound to the 
influence coefficients for a structure where, if a single force F 
produces a displacement d in its line of action, the influence 
coefficient c is defined by

d = cP.

This implies that a pure compatible analysis of a structure should 
result in a displacement under a single load which is less than the 
true value. Unfortunately bounds on the displacements of a structure 
with a monzgeneral loading, i.e. distributed loads etc. cannot be 
inferred, nor can bounds be placed upon the stresses calculated by 
a pure approach. All that is known is that the potential energy 
of the finite element idealisation of the structure is less than the 
potential energy of the true structure. Nevertheless, stronger 
bound theorems may eventually be formulated and perhaps experience 
will show that the pure compatible and pure equilibrium approaches 
always produce results which bracket the true ones, although the 
bounds are in some cases reversed. For these reasons, the pure 
approaches are considered to be highly Important and the new work in 
this chapter is completely devoted to pure compatible methods. The 
results obtained are compared with those obtained using methods 
which violate both compatibility and equilibrium.

At the tertiary level of actual analysis of a given 
structure subject to certain boundary conditions, the topology of the 
structure is the governing factor in the selection between force and 
displacement methods of analysis. Structures with predominant chain 
topologies are more amenable to analysis by the force method, the
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number of tmknvWns frequently being oonslderably less than if the 
displacement methcxi were used. On the other hand structures with 
more complicated topologies are more easily handled by the 
displacement technique. Structures with interconnected two-dimensioijal 
elements fall into the second class. The selection of redondants or 
groups of redondants for the analysis of this second class by the 
force method presents some difficulty although mention should be made 
of an automated method devised by Denke (48) for this selection 
process. Practice in the aviation industry is to use the force method 
for the analysis of fuselages, and the displacement method for the 
analysis of wings (49). Analogies in civil engineering practice would 
be the use of the fôrco' method for analysis of building frameworks and 
the displacement method for shear walls and floor slabs. The plate 
structures considered in this thesis fall into this second class and 
the displacement method has been used throughout fbr the analysis of 
these structures.

2.4 Derivation of Discrete Element Stiffness (Flexibility) Properties
In the previous section. Section 2.3, it was pointed out that, 

apart from possible computational inaccuracies, the results obtained 
from the analysis of a structure by the force method and by the 
displacement method will be identical once the stiffnesses (and hence 
the flexibilities) of the elements constituting the structure have 
been derived. Therefore the prime interest in the comparison of 
the various finite element analyses described in the literature and 
of the new analyses given in this chapter lies in a comparison of 
the (generalised) foroe-dlsplacement relationships of similar 
elements. Several means of deriving these relationships are used in 
the literature, for example the use of the principle of virtual work, 
or the use of a strain energy formulation together with Castigliano’s 
theorem. Gallagher (45) has catalogued various matrix methods of 
analysis with particular reference to plane stress problems. This 
chapter attempts to fulfil one of Gallagher’s suggestions for future 
work, namely an evaluation of matrix methods of analysis for 
plates in bending (with special reference to rectangular finite 
elements).
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Interelement Incoiapatibility

Fig.2,lb Mesh Refinement using Triangles or Quadrilaterals

Fig. 2.2
Node Numbering System For 
Rectangular Elements
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2.5 Rectangular Element Stiffness Matrices for Plates in 
Bending 1939-19^^

Whereas the early work on two-dimensional finite elements 
by Argyris and others, described in Section 2.2, had been restricted
to plates subjected to in-plane stresses, in 1959 the finite element
method was first applied to the analysis of thin plates in bending by 
Adini (50) and by Papenfuss (51). Neither of these analyses was 
published, and it has only been possible to consult the former,
The main interest in Adini's work centres on his assumption of the 
displacement function for a rectangular element in terms of twelve 
undetermined coefficients as follows;

w = a^x + a^x^ t a^x^

+ a^y + a^y +
+ a ^ y  + agx^y + a^x^y + a^^xy^ + a^^xy? + a^^ e q (2 .2 )

This assumption has been extensively used by subsequent workers and 
it is important to examine its implications as far as interelement 
compatibility is concerned. Differentiating eq(2,2) one obtains;

 ̂ ^x = + 2a^x + 5a^x^
■ 2 2 3+ a^y + 2agxy + 3a^x y + a^^y +

and V  à y = + 2a^y + 3a^y^
2 3 2+ aye + agX + â x' + 2a^^xy + 3a^^xy

Hence along any line « constant the displacement w and the slope 
along that line are uniquely defined by a cubic equation with four 
undetermined coefficients. These coefficients are defined by the 
displacements and slopes at the ends of the line, i*e, the edges of 
the element. However ôx is characterised by an equation of the 
form

6x = A^x^ 4- AgX + A^ 
so that the two values of àx at the ends of the line do not
fully define the cross slope ^'Vbx. Therefore in general a 
discontinuity in the cross-slope between elements will arise when
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this displacement assumption is used, as shown in Pig.2.la. Adini 
assumed a distribution of stress resultants along the edges of the 
element and computed the stiffness matrix by the principle of 
virtual work. The matrix operations leading to the formation of a 
stiffness matrix are given in Section 2.6 in conjunction with the 
description of other element analyses.

Dill and Ortega (52) derived another early plate stiffness 
matrix, but since their approach does not maintain inter-element 
compatibility and is not readily available in the literature it has 
not been consulted.

Another matrix which does not maintain interelement 
compatibility was derived by Melosh (53)* Melosh set up the 
expression for the bending strain energy of the plate element in 
terms of the nodal degrees of freedom and applied Castigliano’s 
theorem to obtain the element force-displacement relationships.
This approach has been programmed by the Author in order that the 
results obtained by it may be compared with subsequent methods, and 
it is referred to hereafter as "Melosh I961",

The first published attempt to maintain complete inter­
element compatibility was made by Melosh in a subsequent paper (4?) 
but the attempt was unsuccessful because Melosh used Lagrangian 
interpolation in order to obtain his displacement function.
Pearson (̂î.) shows that the equation of the bivariate Lagrangian 
interpolation surface over a rectangular region is given by 
eq(2.2), which has already been shown to violate interelement 
compatibility. The stiffness matrix obtained by this second 
approach of Melosh (termed hereafter "Pitted Lagrange") is not 
identical with Adini's because Melosh used a "consistent" 
displacement formulation (see Section 2.7) whereas, by assuming stress 
distributions as well as displacement distributions, Adini was using 
what will be termed a "mixed" approach. That is, a consistent 
approach involves the assumption of displacements or stresses, but 
not both, Melosh’s approach is however identical to an approach 
proposed by Zienkiewicz and Cheung (55). The identity between
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these two methods was masked for a time by misprints in Melosh’s 
paper subsequently pointed out by Tocher and Kapur (56) and the 
Author's first task on commencing work in this field was to 
establish this identity.

As far as the Author is aware the first successful 
derivation of an element displacement function satisfying 
complete Interelement compatibility is due to Papenfuss (51) in an 
unpublished thesis (quoted by Clough and Tocher (57)). This 
derivation involves the use of Hermit!an cubic polynomials: 

Boundary Conditions Polynomial
X = 0 X « a

= 0 n_ ('x') = •”3(â “3ax^+ 2x̂ )

ig(a^x - 2ax^ + x̂ )
-  2x̂ )

■i (x̂  - ax̂ ) 
or

which had by 1964 been derived independently by other workers 
including Schmit (58) and the Author, By using combinations of 
these polynomials a displacement function completely satisfying 
interelement compatibility can be written in terms of the 
conventional twelve generalised displacementsfor a rectangular 
element (transverse displacement and two rotations at each node) 
as follows :

1 tv}
If, with reference to Pig.2.2 the generalised displacements are 
written in the order:

the E J vector is:

w ~ 1 à w 
 ̂ bx = 0 w — b w 

bx - 0 Pl(x)
w = 0-1^ b X = 1 w « b w 

bx “ 0 Pg(x)
w = h w 0 w = bx = 0 p̂ (x)
W =S b w

bx “ 0 W “ = 1 Pl̂ (x)
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f Pj (̂x) Pi(y)
PgCx) Pi(y)
Pl(x) P2(y)
P^Cx) p-j(y)
Pg(x) p^(y)
Pl(x) P[ (̂y)
Pj(x) Pj(y)
Pl (̂ )̂ Pj(y)
Pj(x) p^(y)
p,(x ) Pi(y)
Pl (̂x) Pi(y)
P-j(x) Pg(y) y

This method is referred to from now on as "Lagrange Hermite" and the 
method of deriving the appropriate stiffness matrix is described 
in the next section.
Note. The following matrix notation is used throughout this thesis:

{v^ - column vector v.
row vector r - 
rectangular matrix M 
transpose of M 
inverse of M

UJ

&
2.6 Matrix Formulation of Consistent Displacement Approaches 

Although the procedures used by Melosh (47) and by 
Zienkiewicz and Cheung (55) lead to identical stiffness matrices, 
the methods of derivation are different, and the Author's view is 
that Melosh’s approach is superior. The steps in the two methods 
are now examined,

(a) Direct method - due to Melosh (47)
(i) The displacement function is written in terms of the 

generalised displacements

(The symbols are written in full in Table 2.1)
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(il) The strt-Sf* resultants (or stresses) are written in terms of 
the generalised displacements

{ m } = [ a ] ( b } { w }
(ill) The strain energy is written in terms of the stress resultants

where[s}= [q.P{b}{w } 
i.e.[sj= I w J L b ] [ q 1

I l_wjHence dU

or U = I r  [vj

IB
n

[«]L.B
dA

(iv) Let [ k]= Lb J [ q ][a ] [ b }[d„ j dA

the element stiffness matrix

(v) The potential energy in the absence of body forces can be 
written

' dSSt
where is the area of the element surface over which surface 
tractions T are prescribed,
Henoe % = i " Jst L
Minimising the potential with respect to the generalised 
displacements yields for the equilibrium condition

I f  = [ k ] H  - ist
= 0

Hence [^1 ^^t “
where the left hand side represents the generalised forces,
related to the generalised displacements £v^ through the
stiffness matrix The only examples of surface tractions
considered in this chapter are, a uniform load q = constant
over the whole element, and concentrated loads applied at the
nodal points. In the first case the generalised forces are
given by qf^ | ̂  dxdy, and the result .of this

J o J o



L %J 
L^-1

[-1

LM
[Q]

Melosh displaoement assumption.

L'̂i
with reference to Fig. 2.2.

(àWN /àï) 
M x l  ày 1 -4 Q ,

= I & ^xy J
-D ••vD 0
-vD -D 0
0 0 -(1-v)l).

= L § 7 bxby
-1 0 0
0 -1 0
0 0 -2 *

J

See (47), (56).

<S>,J

Table 2.1.

[ c ]  .

X y xy X- p 2x"̂ y xy^ y- x^y xy^

1 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0 0 0
1 0 b 0 0 b2 0 0 0 b5 0 0
0 1 0 0 b 0 0 0 b2 0 0 b̂
0 0 1 0 0 2b 0 0 0 5b̂ 0 0
1 a b â ab b2 a5 â b ab̂ b5 a^b ab̂
0 1 0 2a b 0 3â 2ab b2 0 5a^b b5
0 0 1 0 a 2b 0 a2 2ab 5b̂ a5 3ab2
1 a 0 â 0 0 a3 0 0 0 0 0
0 1 0 2a 0 0 0 0 0 0 0
0 0 1 0 a 0 0 a2 0 0 0

Table 2.2.
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operation, as usual with reference to Pig.2,2 is the generalised 
force vector

i 2 ? 2 2 2 21 ab a b ab ab a b ab ab a b ab ab
■ ï L - T î - â ç - a Ç T l î  - - “sî - " âïT:

a^b ab^ ]
"âçj

The case of concentrated loads presents no difficulty. Some 
authors have approximated the generalised forces produced by 
a uniformly distributed loading by four "lumped" forces at the 
nodal points only. i.e. q 0 0 - ^ 0  0 - ^ 0  0 - ^ 0  o j.
In the Author's experience this approximation leads to serious 
errors. For example an approximate displacement or stress 
resultant can be calculated as being above the true value 
whereas using the correct generalised force vector the same 
quantity becomes less than the true value,

(b) Method of Undetermined Coefficients - Zlenlciewicz and Cheung (55)
(i) A displacement function of the form -^w^ - is

assumed, where -ĵ â is a vector of undetermined coefficients.
The number of coefficients is fixed by the number of generalised 
displacements assumed for the element. (The symbols are 
written out in full in Table 2.2ÿ maintaining the nomenclature 
of the Melosh method),

(ii) By differentiation and substitution of the nodal coordinates in
f v b  [.](.}

or ( a V  [ o '  J [ v }
(ill) As in the first method the stress resultants are written in 

terms of the generalised displacements
= [a] { bU w }

{a}
(iv) Applying the principle of virtual work and constraining the 

displacements such that they are unity in the direction of a 
selected generalised force and zero in the directions of all 
other forces, then
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External work W = 5
where '̂ B̂ are the generalised forces.
Hence ^
Internal work &W. = S| 'Wîl*̂  f 
or W, . 1  (,\ «

: f; l î î S ' f  I  « “
Equating external and internal work,

where again [k ] = [C^] J ^ U  J [a J ( b ] [d ^J dA Lc"ll
is the stiffness matrix relating generalised forces -|̂ p|to 
generalised displacements f v.̂
Thus the L D J assumptions of Melosh and of Zienkiewicz and 
Cheung can be related:

= I %  j
It is also of interest to compare these L D J assumptions with 
the Lagrange-Hermite approach. Whereas the first term in the 
latter vector is

D = -, (2x  ̂- 5ax^ + â ) \  (2p - 3by^ + b̂ ), 
a-̂

in the former case the corresponding term is

dA
dA

2x^ . 2y^ 3% 3y 2x^y 2 x pD - _ + _ „  --------- ------------------------------

 ̂ a-̂ a b^ a^b ab"̂

The functions of x and of y are not separable, and it can be seen 
that a simple function in the first twelve obvious undetermined 
coefficients leads to a very unwieldy L  D i vector. It will be 
seen later that in general it is impossible to guess the 
function in terms of undetermined coefficients which corresponds 
to a natural choice of a ^ vector by the Melosh technique.
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2.6 Three New Element Stiffness Matrices
Having obtained the cubic Hermitian polynomials which 

guarantee complete interelement compatibility for 12 generalised 
displacements per element, Papenfuss (51) evidently extended the 
method no further, Schmit (58) did not proceed to set up an element 
stiffness matrix in the conventional manner, as described in the 
previous section, but employed linear programming techniques to solve 
the problem:

"Given the potential energy of a system as a 
function of the generalised displacements 

7t = n (v̂ ) 
find v̂  such that n:(v̂ ) is a minimum"

The Author however, used the Lagrange-Hermite polynomials to set up a 
stiffness matrix as usual, A defect in the Lagrange-Hermite method 
then becomes apparent, perhaps more readily than in the use of Schmit's 
approach, in that the deformations associated with the so-called 
twisting action, namely ^ ^/’̂ xày vanish at every node resulting in 
an excessively stiff representation of all structures, and producing 
divergence from the correct solution in certain problems where 
twisting is significant, as the element mesh is refined (Section 2.8).

This led the Author to an important step, namely the 
inclusion of ^ ^/îixày as an additional degree of freedom for the 
element. Thus the generalised "displacements" need not be recognisable 
as displacements in a physical sense, and the restricted view of a 
recent publication by Severn and Taylor (59) is not justified. The 
work in this section shows the finite element technique to be a basic 
method of mathematical analysis rather than a restricted means of 
solving structural analysis problems, a point also very well demonstrated 
in work by Zienkiewicz and his colleagues (60). The problem of 
inclusion of ^ 3x^y may be stated:

"look for a function f(x,y) such that say,
when X = y = 0, ̂  ^/^x^ y = 1, f = x
- y - 0."

Three other conditions apply at the other corners of the rectangle.
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Reasoning from the Lagrange-Hermite method that the functions of x 
and of y are separable, one arrives at further combinations of the 
cubic8 already derived for the 12 degree of freedom case, namely; 

At node 1 Pg(x) Pg(y)
At node 2 Pg(x) Pĵ (y)

Pij(x) Pî (y)
Pî (x) Pg(y)

Thus if the generalised displacements are taken in the order:

At node 3 
At node 4

then the

L V j  = L  «1
D J vector is

i = 1,2,3,4

{»}

P l(x ) . Pj^e);
PgCx). Pi(y)
P l(x ) . P2(y)
P2(x). PgCy)
P l(x ) . PjCy)
P2(x). p-;(y)

(x ). Pij(y)
P2(x). p^(y)
P j(x ) . p^(y)
Pi^(x). P j(y)
P j(x ) . Pi^(y)
P^(x). P^(y)
P j(x ) . p^fy)
Pi^(x). Pj^(y)
p , ( x ) . Pg(y)
Pi^(x). P2(y)

The stiffness matrix resulting from this assumption is of order 
[16 X 16]. It is referred to as "modified Lagrange Hermite".

The next step is to observe that any derivative of w can
the use of other 

x^ and ̂  ^/by^ can be made 
continuous, the moments Mx and My are continuous.

be made continuous across element boundaries b] 
polynomials. In particular if ^/b x^ and
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For example the cubic
1 3  2” = ~Za>^ - ax) . g

Satisfies the conditions: x = 0, w = 7 ^ x  = 0
O w 2 X - a, w = 0, / Ox = 1,

and a stiffness matrix could be set up corresponding to the generalised
displacements

L v J  = (^^7àxèy), ]
1 => 1,2.3,4

Slope compatibility is not maintained in that case,tajt oanbe ensured also 
by raising the order of the polynomial to 5y i.e. in general

w = Ax^ + Bx^ + Cx^ + Dx^ + Ex + F 
There are six forms of this polynomial as follows :

Boundary Conditions Polynomial
X = 0 X = a

' - ,5'
. T à w 0 b w 'h% 0W 5=

“>x2
W «Sï =

b w = 1 w 0 b w _ b w 0b X w «*ôx “ àx^ “
b^w b w 0 b w
bx"

— 1 1 w = 53E =àx2"
0

bw 0 -, b ww «bx "
-

w = =3 1

b w 0 b Ww —bx "V " b X » 1 w
“àx2

=s 1

0 w àw 0 b w = 0w « S3E =àx2" 53?“= 1 w := 3 7  =

‘2̂  ' 2a3

2 a'

a

^(a^x^- 2ax̂ -

Pirst of all the generalised displacements were chosen asL v J  = ( ^ 7̂x^), ( ^7V ) ,  ( ^ 7̂x^y), J
i = l,2,3,4.
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and secondly as
= L "i (

b w 
bx' 1) .  (-

w) )1 i ^ 1,2,3f 4.
In the first case the stiffness matrix resulted in unaoceptably over­
stiff solutions; in the second case the solutions were better but 
still far less accurate than for the modified Lagrange Hermite method. 
For example the second set of generalised displacements led to a 
value of the central deflection of a square, simply supported plate 
carrying a uniformly distributed load which was 20^ too low. For 
the first set, the value was over 100^ too low. Thus it was 
concluded that for any polynomial assumption there is a unique best 
solution, which derives from the inclusion of all the derivatives of 
w in the generalised displacement vector. Hence for the fifth order 
polynomials, the generalised displacements were taken as:

= L"i

and thejpjvector is:

^W\ bw\ (■ w

f q (x

q,(x
q:r(x
q^(x

\ q̂g(x

y)

^1 y)) q y)
y)

) qg y)

n3 y)

\ 4 y)

% y)

% y)

% y)
y)

% y)

\ y)
\ y)
% y)
\ y)
^5 y)
% y)

y)
^1 y)

y)
y)

^2 y)
y)

X
w

ay"
1 = 1,2,3j4.

bxà y

J
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This approach is called "Fifth Order" ^Details of the resulting 
stiffness matrix are given in Appendix 1. It will be seen that the 
hand calculations are already laborious, and for the next step, 
seventh order polynomials, a computer program developed by Duncan (6l), 
for application of the polynomials developed by the Author to skew 
plate problems was modified to enable the stiffness matrix to be built 
up automatically from simple input data concerning the polynomials. 
Details of the program are given in Appendix 4.

There are eight seventh order polynomials as follows: 
Boundary Conditions Polynomial

r̂ (x) = —^(â - 84a^x^- 7Cax^+ 20x̂ )

b w . - 1 / 6 -  20a^x^+ 45a^x^- 36ax^+ lOx̂ )^  = 1 = -^(a X
aN 2

'TT— ~ = 1 “ r_(x) = ~p.(a^x^- lOa^xV 20a^x^- 15ax^+ 4x^)
Ox ^ 2a^

ly-ë = 1 - r, (x) = — . (â x̂ - 4a^xV 6a^x^- 4ax^+ yJ)
Ox^ ^ 6a^

w - 1 r^(x) = 84a^x^+ 70ax^- 20x̂ )
a

= 1 r^(x) = - -î (l5â x̂ - 39a^x^+ 34ax^- lOx̂ )

% = 1 r„(x) = -^^(5a^x^“ l4a^x^+ 13ax̂ - 4x̂ )
Ô X ' 2a^

\ ^   ̂ ro(x) = - ^^(a^x^- 3a^x^+ 3ax^- x'̂)
O x"̂  6a

For generalised displacements ^L ' l  - L " .  ‘è f A # .
*Note: The Author later observed that this set of generalised

displacements is not yet complete. :'̂ee discussion of the 
work of Bogner, Fox and Schmit (62), Section 2.7.
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the (4 vector becomes ;
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The explicit, algebraic form of the stiffness matrix in this case is 
not known (although it could be output by the computer). Appendix 2 
gives a specialised numerical stiffness matrix for a square element of 
side 1.0, flexural rigidity D = 1,0 and Pcisson’s ratio = 0.3.

In some ways, these sophistications of the finite element 
method are self-defeating; for example it becomes difficult to
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specify exactly thg boundary conditions at free edges of plates because 
quantities like and can only be specified individually and
not as the combination -r— S + % . The quantitative effect of(3 X ^ yd
this is discussed in Section 2.8. However, Section 2.9 considers 
the application of the techniques described in this section to the 
solution of probelms involving moderately thick plates, where the 
use of polynomials of at least order 5 is essential.

2,7 Parallel Work 1964-1967
The development of finite element methods of analysis for 

plate bending problems is of such importance that considerable 
effort is being expended by research teams in this field principally 
in the U.S.A. The work presented in this chapter has been confined
to rectangular elements because it was envisaged that only rectangular 
plates would be used in the experimental work. More general element 
shapes are the quadrilateral and the triangle, which are much more 
difficult to deal with than the rectangle. Either of these shapes 
can be used for plates with irregular boundaries, or for the 
refinement of the element mesh in regions of particular interest as 
shown in Pig.2.lb. The triangle can also be used for the analysis of 
doubly curved shells of any shape. In this section a discussion of 
recent developments in the use of triangular elements is included 
with the discussion of work on rectangular elements which parallels 
the Authoi‘s.

As far as rectangular elements are concerned, Bogner, Pox 
and Schmit (62), Hansteen (63) and But1in and Leckie (64) have all 
independently used the approach in this thesis called "modified 
Lagrange Hermite". In addition, Bogner, Fox and Schmit’s paper, which 
only became available to the Author during the writing of this thesis 
contains the development of the fifth order polynomials as well.
The Author’s ideas centred on ensuring continuity of certain 
derivatives across element boundaries and he missed what should have 
been an obvious point after the development of the modified Lagrange 
Hermite method, namely that every possible combination of first and 
second order derivatives should iieally be included in the Fifth
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Order approach, Bogner, Pox and Schmit observed this, and took the 
generalised displacements as:

L4-1-1 '4k).
\ / \ / \ 

h x ^ h y i hxhy^ i 1

i = 1,2,3,4.
However it is debatable whether this approach (9 generalised displace­
ments per node) is preferable to the Author's Seventh Order method 
(lO generalised displacements per node) in practice because at this 
level of refinement all methods are very accurate, and the Seventh 
Order method has the advantage of providing shear forces directly. 
Oallaxher (65) has also attempted to obtain moment continuity between 
elements by using combinations of the Hermitian cubics (6 generalised 
displacements per node), but the use of the fifth order polynomials 
seems to the Author to be more logical.

Argyris (66) has extended his method of "natural" or 
"invariant" stiffness from its initial application in plane stress 
problems to the plate bending problem, using both parallelogram and 
triangular elements with three degrees of freedom per node. This 
method requires the specification of rigid body modes and of straining 
or natural modes, the number being determined by the number of 
generalised displacements assumed for the element. The paper (66b) 
is ambiguous in that in the first instance it is claimed that 
compatibility is fully satisfied for the parallelogram elements 
(pl03) but the displacement functions shown on pll4 do not in fact 
satisfy interelement compatibility. The Author contends that the 
introduction either of mid-side nodes, or of additional degrees of 
freedom at the nodes will be necessary to obtain complete compatibility. 
The results obtained by Argyris's approach will be shown to be much 
poorer than those obtained using a compatible field method, both for 
rectangular and for skew parallelogram plates (Section 2.8),

Bazeley, Cheung, Irons and Zienkiewicz (67) have also 
concerned themselves with the more difficult problem of deriving
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acceptable solutions to plate bending problems using triangular 
elements. Following Jones (68) they propose a convergence criterion 
of "constant strain" which is less rigorous than the usual convergence 
criteria in that complete interelement compatibility need not be 
maintained. The violation of interelement compatibility does however 
mean a violation of the Melosh condition for monotonie convergence 
and for a particular element mesh the solutions for a problem may be 
either overestimates or underestimates of the true ones and may 
oscillate about these true solutions as the mesh is further subdivided. 
The Author disputes the assertion in paper (6?) that the results are 
"of comparable accuracy to those attainable by the use of rectangular 
elements". Comparisons are given in Section 2.8. When complete 
interelement compatibility is maintained the results for the analysis 
of a plate using triangular elements are very "stiff" indeed. The 
Author suggests that the addition of a degree of freedom ^ ^/à^ày 
at the three nodes of the triangle would probably result in much 
better solutions, on the basis of the foregoing work on rectangular 
elements.

Further analyses using triangular elements are reported by 
Clough and Tocher (57) who have also evaluated the Melosh I96I, Pitted 
Lagrange and Lagrange Hermite methods for rectangular elements, 
although less extensively than in the succeeding pages of this thesis.

Plan’s method of assumed stress distributions (69) has been 
used by Pian himself (70)and by Severn and Taylor (59) to develop 
stiffness matrices for rectangular elements with three degrees of 
freedom per node. In this method, a stress distribution in terms of 
undetermined coefficients p is assumed throughout the element (i.e. 
within the element and on its boundaries) together with displacement 
distributions on the boundary only. This is therefore a "mixed" 
approach in contrast to the pure field approaches developed in this 
thesis. The question arises, as Gallagher pointed out in connection 
with plane stress elements (71), of whether the prescribed stresses, 
integrated along the boundary, give the prescribed displacements.
That the prescribed edge displacements predominate over the prescribed
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edge stresses can be seen from Severn and Taylor's paper where 
discontinuities in the stress resultants across element boundaries 
were observed.

Thus Severn and Taylor's method is completely mixed - 
compatibility only being assured at element boundaries together with 
equilibrium only in the element interiors. Although Plan (70) gives 
no information about stress resultants, the fact that he does not 
obtain monotonie convergence of the displaoement under a single load 
as the element mesh is subdivided implies that his stress distribution 
assumptions also lead to a completely mixed solution. However, Plan's 
ideas could be used within the framework of a pure compatible method 
to obtain a better satisfaction of equilibrium within element 
boundaries. The Author has pointed out elsewhere (72) misconceptions 
in Severn and Taylor's paper.
2.8 Evaluation of Rectangular Finite Elements for the Analysis 

of Thin Elastic Plates in Bending
Before the finite element methods described in this chapter 

can be applied with confidence in the solution of problems for which no 
analytical solutions exist, the methods must first be evaluated in the 
solution of problems for which exact, or at least good approximate 
solutions are known. Such an evaluation of the Melosh I96I,
Fitted Lagrange, Lagrange Hermite, modified Lagrange Hermite, Fifth 
Order and Seventh Order methods is given in this section. In addition 
the results obtained by these six methods are compared with other 
recent methods which were described in the previous section.

Tables 2.3-2,10 indicate the convergence trends for the 
displaoement of a point on a plate for four different plate structures 
each subjected to two different loadings, as the finite element mesh 
is refined. The structures chosen were;
(i) A square plate clamped at all four edges,
(ii) A square plate simply supported at all four edges,
(ill) A square plate supported at the four corners only,
(iv) A square cantilever plate,

and the loadings were;
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METHOD FINITE ELEMENTS
FINITE
DIFFER­
ENCES

TYPE
MELOSH
1961

PITTED
LACHANCE

LACHANCE
HERMITE

MODIFIED
LACHANCE
HERMITE

FIFTH
ORDER

FOURTH 
ORDER 
APPROXs.

SEVENTH
ORDER

MESH 2 x 2 1060 1490 1520 1524.8 1255.7 1569.1
4 x 4 1335.8 1405.5 1211.5 1264.9 1255.3 - 1265.9
6 x 6 1$04.6 1332.3 1220.1 1265.1 1261,5 — 1265.0
8 x 8 1289.1 1505.8 1226,6 1265.2 1265.5 1410 -

10 xlO 1281,1 1290.5 1250,1 1265.5 1264.1 -

12 xl2 1276.5 1282,8 1252.5 1265.5 - - *•

14 X 14 1273.6 1278,2 1233.5 1265.5 - 1510

Exact value (6) = 1265*
Table 2.$. Clamped Square Plates 

Uniformly Distributed Loads 
Central Deflection;
Multiplier q̂  /lÔ D.

METHOD FINITE ELEMENTS
FINITE
DIFFER-
El'TCES

TYPE
MELOSH
1961

FITTED
LACRANCE

LACRANCE
HERMITE

MODIFIED
LACRAÎTCE
HERMCTE

FIFTH
ORDER

FOURTH
ORDER
APPROXs,

SEVEtTTH
ORDER

MESH 2 x 2 3055 5065 3651 4125 3995 - 4052.2
4 x 4 3846,2 ^ 4328,2 5805.2 4065.5 4049.9 4028 4061.5
6 x 6 5968,9 4181,2 3841.8 4062.9 4057.2 4040 4062.1
8 x 8 4010,2 4129.5 3854.7 4062,5 4059.6 4050 -

10 X 10 4029.1 4105.2 5860,7 4062,4 4060,6 4060 -
12 X 12 4059.3 4092,1 3865.9 4062,4 — — -
14 X 14 4045.5 4084.2 3865.9 4062,4 - - -

Exact value (6) 
Table 2,4#

= 4060,
Simply Supported Square Plates 
Uniformly Distributed Loads 
Central Deflections
Multiplier q^ /lO^D*
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METHOD FINITE ELEMENTS FINITE
DIFFERENCES

TYPE
MBLOSH
1961

FITTED
LACHANCE

LACHANCE
HEEMITE

MODIFIED
LACHANCE
HERMCTE

FIFTH
ORDEH

FOURTH 
ORDER 
APPROXs,

MESH 2 x 2 1811 2179 2470 2542,9 2534.3 mm

4 x 4 2335.3 2429.6 25I8.7 2550.1 2548.1 2650,0
6 x 6 2451.3 2493.6 2519.4 2550.5 2549.5 2555.8
8 x 8 2493.9 2517.8 25I8.I 2550.6 2550.0 2574.7
10 X 10 2514*0 2529.3 2516.8 2550.6 - 2566,0
12 X 12 2525.1 2535.7 2515.8 2550.6 “ —

Analytical solution (84) 
Table 2.5*

2650,
Square Plate Supported at the Comers s 
Uniformly Distributed Loads 
Central Deflection:
Multiplier /lO^D.

METHOD FINITE ELEMENTS

TYPE
MBLOSH
1961

FITTED
LACHANCE

LACHANCE
HEHMITE

MODIFIED
LACHANCE
HEHMITE

FIFTH
ORDER

MESH 2 x 2 8I9 726 1260 1263.5 1262.6
4 x 4 1267.9 1270.3 1268.9 1269.5 1268.6
6 x 6 1269.9 1271.3 1270.4 1271.0 1270.5
8 x 8 1270,7 1271.7 1271.0 1271.5 —

10 X 10 1271.2 1271.9 1271,2 1271.5

Table 2,6 . Square Cantilever Plates 
Uniformly Distributed Loadi 
Corner Deflections
Multiplier q*
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METHOD PIHITE ELEMENTS

TYPE
MELOSH
1961

PITTED
LAGRANGE

LAGRANGE
HERMITE

MODIFIED
LAGRANGE
HERMITE

FIFTH
ORDER

SEVENTH
ORDER

MESH 2 x 2 4240 5920 5500 5300 5407 5330.7
4 x 4 5758.9 6154,5 5246,6 5484.3 5533.4 5557.5
6 x 6 5719.8 5910,4 5345.4 5554.6 5577.2 5579.2
8 x 6 5689.7 5802,6 5396.4 5579.7 5592,2

10 X 10 5669.5 5744*6 5423.5 5591.4 5599.1 -
l2 X 12 5656.1 5709.9 5438.9 55,97.7 - -
14 X 14 5646,9 5687,5 5448.7 5601i5 - —
Exact solution (6) = 56OO.

Table 2.7. Clamped Square Plate: 
Concentrated Central Load: 
Central Deflection:
Multiplier PL^/lO^D.

METHOD FINITE ELEMENTS FINITE
DIFFERENCES

TYPE
MELOSH
1961

FITTED
LAGRANGE

LAGRANGE
HERMITE

MODIFIED
LAGRANGE
HERMITE

FIFTH
ORDER

FOURTH
ORDER
APPROXs.

SEVENTH
ORDER

MESH 2 x 2 1210 1580 1010 1107.8 1157.7 - 1129.4
4 x 4 1189.1 1232.7 1078,7 1147.1 1155.2 1367.2 1152.7
6 x 6 1176,5 1197.1 1094.8 1154.4 1156,7 1276,9 1156,8
8 x 8 1170.6 1182,9 1100.9 1156.9 1158,1 1255,1 —
10 X 10 1167,5 1175.6 1103,8 1158,0 1158,8 1212.7 —

12 X 12 1165.6 1171.4 1105.5 1158.7 - - -
14 X 14 1164.4j 1168,7 1106.6 1159.0 — — -

Exact solution (6) 
Table 2,8.

= 1160.
Simply Supported Square Plate 
Concentrated Central Loads 
Central Deflections
Multiplier PL^/lO D̂,
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METHOD FINITE ELEMENTS FINITE
DIFFERENCES

TYPE
MELOSH
1961

FITTED
LACHANCE

LACHANCE
HERMITE

MODIFIED
LACHANCE
HERMITE

FIFTH
ORDER

FOURTH 
ORDER 
APPROXs,

MESH 2 x 2 3490 3470 3800 3864.7 3885.1 —
4 x 4 3772.1 3781.6 3872,1 3901.5 3907.2 4403.1
6 x 6 3849.7 5856.3 3878.1 3908.5 3910.9 4148.7
8 x 8 3878.1 3882,6 3879.5 3911.0 3912.2 4054.0

10 X 10 3891.4 3894.6 3879.6 3912.1 - 4007.8
12 X 12 3898.6 5901.0 3879.4 3912.8 - —

Gridwork solution (40) 
Table 2.9.

3900.
Square Plate Supported at the Corners; 
Concentrated Central Loads 
Central Deflections
Multiplier Pp/lO^D.

METHOD FINITE ELEMENTS

TYPE
MELOSH
1961

FITTED
LAGRANGE

LACHANCE
HERMITE

MODIFIED
LACHANCE
HERMITE

FIFTH
ORDER

MESH 2 x 2 4759.9 4807.7 4734.3 4882.7 4877.7
4 x 4 4837,4 4859.8 4757.7 4897.9 4893.5
6 x 6 4867.7 4881.0 4763.6 4903.5 4900,2
8 x 8 4882.5 4891.4 4765.3 4906,2 -

10 X 10 4890,8 4897.3 4765.3 4907.7 -

Table 2,10. Square Cantilever Plates 
Concentrated Load at One Free Corner: 
Deflection Under Loads
Multiplier Pp/iot).
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(a) A uniformly distributed loading covering the whole plate.
(b) In oases (i) (ii) and (ili) a concentrated load at the centre 

of the plate and in case (iv) a concentrated load at one free 
corner of the cantilsFver* For structures (i), (ii) and (ill) 
the displacement of the centre of the plate has been tabulated, 
while in structure (iv) the displacement of a free corner has 
been tabulated (in case (iv)(b) the loaded corner). These 
tables are shown graphically in Pigs.2.3“2.10, although to avoid 
crowding the diagrams, the results for the Seventh Order method 
have not been plotted. However the results for the finite 
difference method described in Chapter 4 have been shown on 
these figures for convenience.

From an examination of the results the following points 
should be made:
I, For plate subdivisions of four elements per side and finer

all of the six methods, with the exception of the Lagrange Hermite 
method, give results for displacements which are of acceptable 
accuracy for many engineering purposes. Fig.2.10 shows the Lagrange 
Hermite method providing a poor answer even with a fine mesh 
subdivision, and another example, originally given by But1in and 
Leckie (64) of the free corner deflection of a plate simply supported 
along three sides and loaded at the free corner shows the solution by 
the Lagrange Hermite method diverging from the true one (Fig.2.11), 
Therefore the use of the Lagrange Hermite method should be discontinued. 
However, the lack of monotonie convergence for pure compatible methods 
reported by But1in and Leckie has not been confirmed; e.g. compare 
their Fig,5 with Fig,2.8.
II. The pure compatible methods - Lagrange Hermite, modified
Lagrange Hermite, Fifth Order and Seventh Order have been shown to 
provide lower bound solutions for all of the cases examined i.e. the 
displacement curves in Figs.2.7-2.10 converge to the true answer 
from below as the element mesh is refined. In contrast if complete 
compatibility is not maintained, for example in the Fitted Lagrange 
method, the displacement under a single load is sometimes overestimated.
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Pigs.2.7^2.8,and sometimes underestimated Pigs.2.9,2,10. In only
one of the oases considered, Fig.2.3j, does a pure compatible method 
overestimate any displacement, when the modified Lagrange Hermite 
method slightly overestimates the central deflection of a simply 
supported square plate carrying a uniformly distributed load.

When the fifth and seventh order functions are used,
difficulties arise in prescribing the correct boundary conditions at
free edges. Along a free edge OY for example,  ̂+ V  -T-g should
be set equal to zero, but one can only^control and -r— ^ independently.
In the examples of Tables 2.3-2.10, -r— ^ and "r—p have been left to takeÔ x'̂ y
up their own values at free edges. The moment normal to a free edge 
tends to zero quite rapidly as the mesh is refined. As a typical 
example consider structure (ili) with loading (b). The moment normal 
to an edge at the mid-point of that edge, for a load P, takes the 
values

Mesh Normal Moment Central Moment
2 x 2  0.0154? 0.34324P
4 x 4  0.00467? 0.41781?
6 x 6  0.00287? 0,46058?
8 x 8  0.00194? 0.49060?

The central bending moment has also been tabulated for comparison.
To this extent the Fifth Order results of Tables 2.5^2.6,2.9^2.10 
are approximate.

To allow fiarther comparison between the pure compatible 
approaches, a series of values of stress resultants are tabulated in 
Tables 2.11-2.14. Structures (i) and (ii) are considered, subjected 
to loadings (a) and (b). The results show that the modified 
Lagrange Hermite method gives stress resultants of comparable accuracy 
to the Fifth Order method for uniform loadings, but of inferior 
accuracy for concentrated loadings. The effect of using only six 
generalised displacements per node in the Fifth Order method rather 
than the complete nine is demonstrated in Table 2.11 for example, in 
that the moments do not converge to the exact values as the element 
mesh is refined. The discrepancies are however quite small.



ACTION CENTRAL MOMENT MID EDGE MOMENT

METHOD Mod L.H. 5th Ord. 7th Ord. Mod L.H. 5th Ord. 7th Ord,

MESH 2 x 2 0,041555 0.021375 0.036128 0.031795 0.054233 0.061210
4 x 4 0,025102 0.021957 0.022668 0,043469 0,052771 0,045506
6 x 6 0,025756 0,022467 0.022714 0.047512 0,051847 0.047589
8 x 8 0.023344 0,022646 - 0.043914 0.051590 "
10 X 10 0.025178 0.022757 - 0.049723 0,051482 -
12 X 12 0.023091 - O.O5OI86 - ~
14 X 14 0.025041 - - 0.050475 - -

Exact solutions (6) 
Table 2.11.

0.0251 0.0515
Clamped Square Plates 
Uniformly Distributed Load q;
Multiplier qL̂ ,

Actions s

ACTION CENTRAL MOMENT

METHOD Mod L.H. 5th Ord. 7th Ord,

MESH 2 x 2 0.057205 0.045665 0.045393
4 x 4 0,049217 0,047036 0.047238
6 x 6 0.048402 0.047480 0,047590
8 x 8 O.O48I62 0.047652 —
10 X 10 O.O48O58 0,047755 -

12 X 12 0,048004 -
Exact solution (6) 

Table 2.12.
0.0479

Simply Supported Square Plate; 
Uniformly Distributed Load qs 
Actions s 2
Multiplier qL .



ACTION CENTRAL MOMENT MED EDGE MOMENT

METHOD Mod L.H. 5th Ord. 7th Ord. Mod L.H, 5th Ord. 7th Ord,

MESH 2 x 2 0.16555 0,21096 0.17170 O.I27I8 0 . 1 2 0 2 0 0.10575
4 x 4 0 . 2 2 0 6 5 0.28585 0.25961 0.11502 0.12626 0,11458
6 x 6 0.26265 0.32543 0.28140 0.11868 0.12613 0.11834
8 x 8 0.29262 0.55511 " 0.12109 0,12591 -

1 0  X  1 0 0.31585 0.37817 - 0.12250 0.12584 —
1 2  X  1 2 0.33477 - 0.12336 - -
14 X 14 0.55077 — — 0.12393 — —
Exact solution (6) 

Table 2.15,
0.1257

Clamped Square Plate : 
Concentrated Central Load P: 
Actions:
Multiplier P,

ACTION CENTRAL MOMENT

METHOD Mod L.H. 5th Ord. 7th Ord.

MESH 2 x 2 0.19814 0.26811 0.22031
4 x 4 0.27261 0.53760 0,29265
6 x 6 0.31584 0,37922 0.33528
8 x 8 0.54609 0.40889
10 X 10 0.36941 0,43193 —
12 X 12 0.58840 - -

Table 2.14. Simply Supported Square Plate 
Concentrated Central Load P: 
Actions:
Multiplier P,
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This feature is even more marked in the Seventh Order method 
where only ten of a possible sixteen generalised displacements per 
node have been used. Table 2.11 also demonstrates an interesting 
feature in that the central displacement and central bending moment 
are underestimated by the Fifth Order method while the edge bending 
moment is overestimated. Exactly the reverse trend is exhibited by 
the modified Lagrange Hermite method. The direction of convergence 
of any one action in a plate is therefore no guide to the behaviour 
of any other action. In the case of plates subjected to a single 
concentrated load howeverj, the pure compatible approaches invariably 
underestimated all the displacements and stress resultants.

Due to the inclusion of only ten out of sixteen possible 
generalised displacements per node in the Author's Seventh Order 
method, the stress resultants obtained by this method are of 
inferior accuracy to those obtained by the Author's Fifth Order 
method. However the inclusion of the third order derivatives as 
degrees of freedom enables shear forces to be calculated directly 
from the Seventh Order solutions. These forces cannot be obtained 
by any of the lower order methods (unless by differencing the lower 
order derivatives). Table 2.15 shows that the shear forces computed 
by the Seventh Order method are very accurate but unless these 
accurate values of shear force are desired, the Seventh Order method 
cannot be recommended over the Fifth Order and modified Lagrange 
Hermite methods. In fact in the Author's opinion the latter method 
is the optimum method for analysis of thin plates which can be 
subdivided into rectangular elements. It should be noted that 

should not be constrained to be continuous between 
elements of different thickness, or in any other case where it is not 
physically continuous. Fuller justification for the development of 
the higher order polynomials comes in the next section, where, due 
to the necessity of carrying up to fourth order derivatives in the 
calculations, the cubic functions of the modified Lagrange Hermite 
method are inadequate.
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As confirmation of the accuracy of Tables 2.3-2.10 the 
results given by Hansteen (63) will be found to be identical with the 
results of Tables 2.4 and 2.8, while the results given by Bogner, Pox 
and Schmit (62) agree exactly with Table 2.3. The accuracy of 
displacements reported by the same authors for their complete fifth 
order method, i.e. nine generalised displacements per node, is very 
good as shown by Table 2.16. They give no information about stress 
resultants.

Comparison between pure compatible methods and mixed methods 
can be made by considering Table 2,17 computed from Severn and Taylor's 
results (59) and Table 2.18 computed from Plan's results (70). These 
two sets of results should be compared with Tables 2.3 and with 
Tables 2.7 and 2.8 respectively. The displacements computed from the 
mixed methods are of comparable accuracy to those computed by the pure 
methods, but the stress resultants are of inferior accuracy. Table 
2.18 demonstrates the lack of monotonie convergence prevalent in mixed 
methods.

Argyris (66) gives one result for his method of "natural
stiffnesses" for rectangular elements. With a 20 x 20 mesh he
computes the central deflection of a square, simply supported plate
carrying a uniformly distributed load as 0.004052 qL^/D and the central

2bending moment as 0.04754 qL . These figures are of comparable 
accuracy to those obtained with a 6 x 6 mesh in the Fifth Order method 
or with an 8 X 8 mesh in the modified Lagrange Hermite method.
(Tables 2.4,2.12). Since Argyris's method also Involved the 
insertion of special narrow elements at the supports of the plate the 
results obtained would seem to be considerably poorer than the results 
obtained by the Author’s methods. In addition Duncan (61) has 
obtained results for skew plates, using the Author's displacement 
functions, which are more accurate than those quoted by Argyris (66).

The,validity of the claim by Bazeley et al (67) that the 
results obtained by using triangular elements are of "comparable 
accuracy" to those obtained by using rectangular elements (67) can be 
examined by comparing Tables 2.19 and 2.20 with Tables 2.8 and 2.7 
respectively.



MESH SHEAR
2 x 2 0.035811
4 x 4 0.033732
6 x 6 0.033796

Exact value (6) 
Table 2.15.

0.0338.
Maximum Shear in Simply Supported 
Square Plate;
Uniformly Distributed Load qs 
Multiplier qL:
Seventh Order Method.

MESH DEFLECTION
2 x 2 1265+3
8 x 8 1265.3

Exact value (6) 1265
Table 2.16. Central Deflection of Clamped 

Square Plates 
Uniformly Distributed Load q; 
Multiplier
After Bogner, Fox and Schmit (62).

MESH CENTRAL
DEFLECTION

CENTRAL
MOMENT

MED EDGE 
MOMENT

2 x 2 1330 0.0440 0.0461
4 X 4 1240 0.0473 0.0256
6 x 6 1250 0.0491 0.0244
8 x 8 1260 0.0500 0.0237

Table 2.1?. Deflection and Actions for a 
Clamped Square Plates 

Uniformly Distributed Load q:
Multipliers qL^/lO^D and qL̂  
After Severn and Taylor (59)*
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MESH INCOMPATIBLE
SOLUTION

COMPATIBLE
SOLUTIONS

2 x 2 1302 855 854 798
4 x 4 1176 1057 1056 1039
6 x 6 1211 1117 1116 1108
8 x 8 1165 *" - -

Table 2.19. Simply Supported Square Plates 
Concentrated Central Load:
Central Deflections 
Multiplier PL^/lO^D.
After Bazeley, Cheung, Irons and Ziehkiewica (6?).

MESH INCOMPATIBLE
SOLUTION

COMPATIBLE
SOLUTIONS

2 x 2 521 193 186 169
4 x 4 589 474 472 461
6 x 6 583 511 510 503
8 x 8 572 - - -

Table 2.20. Clamped Square Plates 
Concentrated Central Loads 
Central Deflections 
Multiplier PL^/lO^D.
After Bazeley et. al. (67).
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Completely unbiassed comparisons are hard to draw among all 
of the finite element methods available for the analysis of thin 
plates in bending. However in the first place the superiority of 
rectangular elements over triangular elements seems now to be well 
established, for the solution of problems where rectangular elements 
fit the plate geometry. In the second place, among rectangular 
finite element methods, one has a choice among pure approaches (e,g, 
modified Lagrange Hermite, Fifth Order and Seventh Order), mixed 
approaches (e.g. Plan (70) or Severn and Taylor (59)) and incompatible 
displacement approaches (e.g. Melosh I96I, Fitted Lagrange or 
Argyris (66)), The only advantage of the mixed and incompatible 
displacement methods is that only three degrees of freedom per node 
are specified, so that the demands on computer storage are less, 
although in the future this is liable to become a less and less 
important point. But a basic dilemma in finite element analysis is 
whether to use many "crude" elements or fewer "sophisticated" elements 
for the solution of a given problem. For thin plates, the Author's 
inclination would be to use a fairly sophisticated pure method, for 
example the modified Lagrange Hermite method, where at least monotonie 
convergence of results as the mesh is refined can be guaranteed.
Plan's method could be used tocptimise the results without increasing 
the number of degrees of freedom. The simple plate examples chosen 
here for the element evaluation may not have brought out the full 
advantages of pure methods, Duncan's experience for skew plates (61) 
is that the discrepancies between pure and incompatible methods 
become much more marked,

2.9 Analysis of "Moderately Thick Plates" by Means of Rectangular 
Finite Elements

Mention has already been made of the assumptions involved in 
treating real foundation materials as being, for example, perfectly 
elastic media. An assumption more often glossed over is that 
involved in treating a thick, heavily reinforced concrete raft as a 
Kirchhoff plate. Being concerned with the effects of this 
approximation in the analysis of foundation rafts, the Author first
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considered the possibility of applying Reissner's theory, including the 
effect of transverse shear deformations in the bending of elastic 
plates (73)• The use of the complete theory allied with the finite 
element approach seemed to pose large problems, principally because it 
is impossible to write the stress resultants as distinct functions of 
the derivatives of the transverse displacement. However the theory 
of "moderately thick plates" proposed by Love (74) yielded stress 
resultants in an acceptable form and was used in this study. The 
seventh order displacement functions were used, since up to the 
fourth derivatives of displacement were involved; displacement 
functions of order less than fj would be unacceptable. The extension 
of the finite element method to higher order problems such as this 
is a justification for the development of the higher order polynomials 
which may be too sophisticated for thin plate work.

The stress resultants are taken in the form:

w

and the substitution q = D V^w is made. The first three equationsI (LSt r- "1above are found by substituting the secmnd two in equations \_II J , 
[ill] , [ry], reference (73).

The equations can then be written using the notation of the 
discussion of thin plates as

{ " I  = [ a ] { b 1 [ « 1
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where the new meanings of the symbols are given in Table 2.21. The 
assumed stress resultants again lead to a strain energy expression

d U  = i L
where -[sj = [ [wj

and [ is defined in Table 2.22. The matrix formulation is thus 
identical to the thin plate case;

and [ k J = J A i D) LB j [s j [a j |jO j dA,
but in this case the kernel [q ] [A J is of order 12 instead of order
3. The amount of computing involved in the development of the
40 X 40 stiffness matrix for a moderately thick plate is heavy, the 
generation of a dimensionless 1 x l44 vector from which any element 
stiffness matrix could quickly be computed taking about 100 minutes 
on a KDP9 computer. The relevant (ALGOL) computer program is given 
in Appendix 4.

Some results fcr moderately thick plates are shown in 
Table 2.23. No theoretical results are available to enable direct 
comparisons to be made but the problem of the simply supported square 
plate carrying a uniformly distributed load has been solved by Salerno 
and Goldberg (75) using the complete Reissner theory. For a thickness/ 
length ratio of 0,1, Salerno and Goldberg found an increase in central 
deflection over the thin plate value of about 4̂ . The moderately 
thick plate theory using finite elements and the Seventh Order 
displacement assumptions gives about 3̂ . For other problems, the 
increases are larger, It can be concluded that this computer aided 
method provides reasonable estimates of the effect of transverse shear 
deformations on the bending of elastic plates and the capability of 
solving a far larger range of problems than has previously been 
possible. It is perhaps worth pointing out the relative ease with 
which the finite element method can cope with this more complex theory 
within an already established framework of matrix manipulations. It 
would appear to the Author that this is one example where the use of 
finite elements is considerably super!odrto the use of finite 
differences.
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CASE 1 2 5 4
Thin Plate
V l  = 0.005 

0.01 
0.05 
0.1

4062.1
4062.5
4063.6
4098.7
4205.1

1156.8
1157.1
1157.9
1174.1 
1200.0

5579.1
5582.0
5590.6
5759.4
5974.6

1265.0
1265.4
1266.7
1301.5
1571.7

Table 2.23. Central deflection of sq_uare plates j 
transverse shear included.

Case Is Simply Supporteds Uniformly
Distributed Load.

Case 2s Simply Supported; Concentrated
Central Load.

Case 3 : Clamped: Concentrated Central
Load.

Case 4s Clamped: Uniformly Distributed
Load,

Mesh 6 X 6 throughout.
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Only one other finite element analysis incorporating the 
effect of transverse shear deformations is known to the Authorj,
Herrmann (j6) having used triangular elements for the solution of a 
circular plate problem. Herrmann also used a theory of moderately 
thick plates, and despite the fact that w, Mx, My and Mxy vary only 
linearly within each triangle, the finite element results are in 
excellent agreement with theory.

2.10 Finite Element Method For Axisymmetric Plates in Bending
One of the reasons for developing finite element methods for 

the analysis of plates in bending was in order to couple the plate with 
a semi-infinite elastic medium, also analysed by finite elements 
(Chapter , in which the elastic properties could be varied at 
will, horizontally and vertically. However it was found that for a 
rectangular plate bearing on a semi-infinite medium, very large sets 
of equations with large band widths would be involved, which would 
tax the capacity of the computer readily available (i6K immediate 
access storage at that time). Although the rectangular plate problem 
could no doubt have been solved by subdividing the medium and 
analysing it in successive "blocks’* or by matrix partitioning schemes, 
it was decided that a study of the problem of the axisymmetric plate 
bearing on a semi-infinite medium would fulfil the aims of the 
research just as well. Due to the radial symmetry this problem is 
virtually two-dimensional. The Author was not aware of a published 
finite element method for axisymmetric plates in bending (although it 
was later found that such a plate can be treated as a special case 
in Grafton and Strome's method (77) for axisymmetric shells.)
However, by taking the elements in the form of annular rings of 
uniform thickness, and using a method analogous to the "slope 
deflection" method for beams it proved very simple to set up an 
explicit stiffness matrix. The details are given in Appendix 3- 
The same stiffness matrix can be obtained by the pure finite element 
approach of Section 2,6.

The results obtained by the finite element method were 
checked against some known analytical solutions (6).
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(a) Annular plate, with outside radius/inside radius = 5, simply 
supported at the outer edge and carrying a uniformly distributed

Finite Elements Analytical
Deflection at inner edge O.813 /Eh^ O.813 /EtP

(b) Annular plate, with outside radius/inside radius ~ 8, simply 
supported at the outer edge and carrying a uniform line load 
along the inner edge

Finite Elements Analytical
Deflection at inner edge 0.704 ^^^/Eh^ 0.704

(c) Circular plate simply supported at the outer edge, carrying a 
uniformly distributed load pinite Element Analytical

(5 elementsr~ ^
Central deflection 0.684 ^^V^h^ O.696 /Eh^

(d) Circular plate clamped at the outer edge, carrying a central
point load Finite Element Analytical

(10 elements^
Central deflection 0.0197 ^^^/D 0.0199 ^^^/D

In cases (a) and (b) the finite element solutions agree
exactly with the analytical solutions, as they should as no
approximations have been made for the moments and forces distributed
along the edges of the elements (in the same way as the finite elenent
method gives the exact answer for the analysis of a line structure).
In cases (0) and (d) a slight error is incurred because at the centre
of a solid plate the log^^/b term becomes infinite. This is overcome
by leaving a small hole in the innermost element. The effect on the
resits is seen to be negligible.

The coupling of a circular plate to a Winkler-type
foundation is a simple process by finite element procedures. All
that is involved is the addition of the foundation stiffness to the
stiffness of the annular plate elements, where the contribution to
the strain energy of the foundation can be writtens

f a r 271 -j
Up = I i k(r) L w I I w \ r dr . dG

^ b o
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As uiîSLial the displacement assumption is

{ A  = L  D  i
and when & v is formed, there is an additional contribution to
an element stiffness matrix of

1 k(r) f d } [ d J r . dr . d©
J b - t o  L J l j

A computer program was written permitting a linear variation
across any element and using a cubic

displacement form (Hermitian cubics). For the special case
ka = kb = k (constant), the results from the program could be
checked against reference (6) p264 as shown below _

Deflection (in x 10“*̂)
Radlus (inches) Finite Elements Reference T§)

0 kj.2 43.0
1 k2.9 —
2 42.0 —
5 4l.l -
4 40.2 —
5 39.4 39.1

The agreement is seen to be satisfactory.

2.11 Computation
Many ALGOL computer programs were written to perform the 

numerical work described in this thesis. These programs were of two 
basic types, firstly the generation and solution of typical symmetrical 
banded structural analysis equations, and secondly the generation of 
element stiffness matrices for complex displacement function 
assumptions. For the first type of program the Author is indebted 
to Macleod (78) for a procedure capable of solving symmetrical, banded 
equations by the Choieski square root method, and for the second type 
to Duncan (6l) whose program written originally for skew plate 
problems was adapted by the Author. Details of these two types
of program are given in Appendix 4.



CHAPTER 3.

ELASTIC SOLID FOUNDATIONS ANALYSED 
BY FINITE ELEMENT METHODS>

3.1 Introduction.
As the work on the finite element method for the analysis of 

plates in bending progressed it became apparent that the same method 
might also provide a means of analysing a solid foundation whose 
properties were variable throughout the mass, thereby going at least 
part of the way towards a truer representation of actual foundation 
materials. Linear elastic behaviour was assumed for the solid, 
nonlinear elasticity presenting only computational problems beyond 
that assumptions The elastic solid finite elements could only be 
evaluated in the solution of problems involving homogeneous solids 
since these are the only problems for which analytical solutions exist.
3.2 Previous WôrkA

Some preliminary studies by Melosh (79) were available, 
dealing with tetrahedral and rectangular right prismatic elements.
Later work by Argyrls (80), (81) examined the tetrahedral element more 
fully, the former reference dealing with the assumption of constant 
strain in the element, the latter with the assanction of linearly 
varying strain. However, as has already been mentioned in conjunction 
with the development of the circular plate analysis, it was decided 
that the study of the full three-dimensional problem of a rectangular 
plate bearing on an elastic solid foundation would place very heavy 
demands on the capacity of the computing equipment available. It was 
therefore decided to deal with the axisymmetric problem first.

A study of axisymmetric elastic solid problems by the finite 
element method, due to Clough and Rashid (82) was available and the 
stiffness properties of a solid ring element of triangular cross-section, 
shown in Fig. 3.1, were derived following the assumptions of that 
reference; that is, two degrees of freedom per node, and linear edge 
displacements (implying constant strain within an individual element).
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Argyris (83) has also more recently described two elements suitable 
for the analysis of axisymmetric elastic solids.

Referring to Fig* 3.1 the stiffness matrix relating the nodal
forces F^ Pg F^ Pq F̂  to the nodal displacements A a ^A^B^ B^C^C
is rather complex and will not be given explicitly here. It is in fact 
formed automatically, from basic input, by the computer.
3.3 Evaluation of the Element.

The correctness of the derived stiffness matrix was checked by 
applying it to two problems (the same problems as were chosen by Clough 
and Rashid). The first problem was a thick-walled pressure vessel, 
idealised as shown in Fig. 3.2, subjected to external pressure. The 
results for radial displacements are shown in Table 3.1. As might be 
expected for a compatible finite element method the displacements are 
underestimated - by about 5% in all cases.

Secondly, Boussinesq*s problem of a concentrated load applied 
to a semi-infinite homogeneous elastic medium was analysed. Several 
ways of subdividing the medium were attempted, as shown in Figs. 3.3, 3.4 
but the subdivision shown in Fig. 3.3 was eventually adopted. This 
led to the surface displacements shown in Fig. 3.5, together with the 
corresponding Boussinesq predictions. It can be seen that the 
absolute displacements differ from the true ones by about 10%, but 
that the relative displacement pattern is accurate. The 10% discrepancy 
(which as far as one can tell agrees with the result shown in Clough 
and Rashid’s Fig. 11) may be due in part to the limited number of elements 
used but is also probably due to the assumed boundary conditions of 
roller supports at the edges of the finite zone, and to the necessity of 
introducing a small hole at the centre of the medium just as was done 
for the circular plate. Since the main point of interest in this 
research was the variation in foundation stiffness throughout a 
foundation, rather than the absolute value of that stiffness, the 
results were considered satisfactory for the analysis of the tests on 
sand foundations described in Chapter 5.
3.4 Circular Plate Bearing on a Semi-Infinite Elastic Medium.

Finally a problem of a circular plate coupled to a
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semi-infinite elastic medium was analysed. The example is given by 
Pickett and McCormick (20), The following data were used for the 
finite element solution

Subgrade : E “ 30, V = 0.3
Plate : E = 1, t ~ l ,  V  = 0,3
Loading : P - 100 (concentrated central load).

This leads to a value of ^  (jPickett and McCormick's notation) ofp^21.98 implying a theoretical displacement under the load of 0,198 /D.
The finite element value is 0.178 /D, 11% lower than the theoretical
value, a discrepancy again attributable to the factors quoted above.

The method of solving the coupled plate on elastic medium 
problem was first to develop a flexibility matrix for the foundation, 
invert this matrix, and add the resultant foundation stiffness matrix 
terms to the appropriate terms of the plate stiffness matrix. Since 
no rotational degrees of freedom were incorporated in the solid analysis, 
the stiffness of the foundation against a radially symmetric line moment 
could not be added to the rotational stiffness of the plate elements, 
and complete compatibility was not guaranteed between plate and foundation, 
It may be mentioned that this method of first finding the flexibility 
matrix for part of a structure or medium could be used to obtain a much 
finer mesh subdivision for the foundation. This could be divided into 
sections cut by horizontal planes and, working from the bottom of the 
medium, the flexibility of each section could be found in turn, and the 
stiffness of that section added to the next section, so that one would 
only carry forward a matrix of the order of the number of degrees of 
freedom on the cut plane.
3.5 Conclusions.

The conclusions drawn from this section of the work were that 
the method described for the analysis of axisymmetric plates bearing 
on elastic solid media with variable properties could be expected to 
give an adequate representation of the distribution of stiffness in the 
foundation, but that the absolute values of that stiffness would be 
overestimated by about 10%,



CHAPTER 4,

FINITE DIFFERENCE METHOD FOR THE 
SOLUTION OF PLATE FLEXURE PROBLEMS,

4.1 Introduction
Although the theoretical work in this thesis has been 

primarily concerned with the finite element method, the Author does 
not consider that that method is necessarily superior to the older 
established finite difference method for the solution of all problems.
In fact, in the Author's opinion, too little effort has been concentrated 
on the use of the latter method with specific reference to ligital 
computers. The finite element method has naturally lent itself to 
computer - oriented development, whereas the earlier method has suffered 
through older, manual calculation methods being programmed directly for 
computers rather than new, superficially more complex methods being 
sought. At the beginning of this research study the Author had an 
open mind regarding the use of either method and the finite difference 
method has been used for the solution of a few problems, some of which 
protagonists of the finite element method have described as "very 
difficult to deal with by finite differences" (55). The method of 
solving these problems is now presented,

4.2 Solutions by Fourth Order Finite Differences,
To obtain solutions for a thin elastic plate bearing on a 

Winkler foundation, one looks for solutions to the familiar differential 
equation,

d V^w = q - kw  ....       ,Eq. (4.1)
in terms of the values of w (and sometimes its derivatives) at a number 
of discrete points within the area of the plate, these points being 
most conveniently arranged in some form of regular mesh pattern.
For the purposes of hand calculation, usually involving Southwell's
relaxation method (37) the biharmonic equation has often been split
into two second order equations, as follows

D V^w = - M
V  M " - (q - l<w) (11)



b

Fig, 4.la
Subdivision of a Rectangular Plate

Fig, 4.1b
Standard Mesh Numbering System
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Whatever the merits of this approach for hand calculations, 
the Author does not consider it advisable for computer applications 
since it leads to twice the necessary number of unknowns and hinders 
the symmetrical and logical construction of the equilibrium equations, 
causing ill-conditioned, unsymmetric matrices which are prone to 
numerical difficulties when solved by standard matrix handling routines. 

By far the more effective method for computer purposes 
is to use fourth order finite difference approximations. Consider 
a rectangular plate covered by a square mesh as shown in Fig. 4,1a.
The conventional mesh numbering system is shown in Fig. 4,1b.
With respect to this mesh numbering system, the fourth order finite 
difference approximation to eq. (4,1) is ;

(20 4" h^k) Wq - 8w]_ — 8w2 •" 8wg - 8w/̂.
4" 2ŵ  + 2wg 4- 2wy 4“ 2wg 
4- Wg 4- w^2 “ h^ qo

where h is the distance between the mesh lines and qo is the intensity
of loading at point o. This equation may be applied directly at plate
nodes such as (a) Where W]̂ to lie within the area of the plate*
If for the moment the discussion is restricted to rectangular plates 
with free edges, the required boundary conditions are that zero shear
and zero moment exist along all of the plate edges. In that case, five
other independent posltionings of the standard mesh are possible, as 
follows :-
(b) At an edge, not adjacent to a corner
( 16 - - 6't̂  + h^k) Wq 4- ( -12 4- 4v) wĵ 4- (-8 4-4u 4- 4>?) W2
4-(-8 4" 41)4- 4^) w^ 4- (4 - 2}:)wg 4- (4-2i»)wg 4- 2wg 
4-(l w^Q 4- (1 V^) w^2 ” h q^,
(c) At a corner
(12 - 8If — 4^ 4- h^k) Wq 4- ( -12 4- 8 V4- 4V^)w^ 4* (8 — 8v) Wg
4-(2 - 2dĴ ) Wg 4- (2 - 2V̂ )wj 2̂ “ ĥ  ̂qQ
(d) At an edge, adjacent to a corner
(15 — 81)— 4* h^k)w^ 4- (-12 4- 4if)w2̂  4- (—6 4- 4 1) 4- 2^^) W2
4-(-8 4- 4V4* 4 ^ )  w^ 4- (4 - 2^) w^ 4- (4 - 2i)} Wg

4- 2wg 4-(l -y^) W]̂ 2 ” ^o
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(e) At an interior point, adjacent to a corner
(18 + 4* (-6 4*2>))w 2 4- (—6 4* 2y)wg - 8w^
+ (2 - 1) 4- (2 - '■ y)wg 4- (2 - 2i))wy 4- 2wg
4wg 4- W|̂ 2 ” 9o
(f) At an interior point adjacent to an edge 
(19 4- h^k)wo - 8w^ - Swg + (-6 4- 2iJ)wg - 8w^

4- 2w _5 4- (2 "V)wg 4- (2 - )wy 4* 2wg 
4- wg 4- wio + w^2 = 9o

Then for rectangular plates having m x n node points located 
on a square mesh, a set of m x n simultaneous equations can be formed 
by applying the equations given above as appropriate* Simple 
instructions enable digital computers to build up the m x n equation 
coefficients automatically. These coefficients are in band form, and 
by multiplying the equations for corner points by four and the equations 
for edge points by two, this band becomes symmetrical and the same 
solution technique (Choleski method) as was used for the finite 
element equations can be applied,

A further important point is that only terras on the leading 
diagonal of the symmetric band matrix are affected by arbitrary
assumptions for the value of k at any node so that for any such
assumption, the matrix retains its symmetry. Rigid support conditions
can then be approximated at any node by allowing that particular k to
assume a value large enough to ensure that the deflection at the node 
is negligible* At a free, unsupported node, k merely takes the value 
zero.

Thus, in addition to plates on Winkler foundations, plates 
on point, or line supports can be analysed by the method described in 
this section, and rectangular plates simply supported around all four 
edges, or simply supported at the four corners only have been 
successfully analysed. A "rigid" support, for which k was assumed to 
be 1 X 10̂ *̂  deflected only by 1 x 10**̂  of the maximum deflection in 
a typical example.

The results of applying the finite difference method for the 
above problems are plotted on Figs, 2 , 2.5, 2.^, 2.9, in conjunction
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with the finite element solutions to the same problems. It should 
be remembered that a comparison of methods on the basis of "number 
of subdivisions per side" is unfair to the finite difference method 
which only involves one degree of freedom per node. A better 
comparison would be on the basis of the number of unknowns involved, 
or the number of computer stores taken up by the respective equation 
coefficients•

It is interesting to note that the finite difference method 
leads, with one exception, to overestimates of the deflections of the 
structures analysed, and may therefore be an important "dual" method 
to a compatible finite element method, enabling bounds on the 
displacements and stresses in a structure to be determined. Such 
bounds appear to have been determined for the problem of the square 
plate simply supported at the four corners and subjected to a uniformly 
distributed load, Lee and Ballerteros (84) obtaineg a theoretical 
central displacement for this problem of 0.0265 /D, whereas the
bounded solution obtained by approximate methods is about 0.0255  ̂ /D.
This difference is about 4% and illustrates a case where "approximate" 
methods can achieve greater accuracy than "analytical" methods.

The above work indicates how solutions to other problems 
might be obtained conveniently by finite difference methods allied 
with the use of a computer. Clamped plates could be analysed by 
considering torsion springs along the free boundaries, and then 
making these springs very stiff, thus preventing edge rotations.

There is no reason to suppose, therefore, that the finite 
difference method is necessarily inferior to the finite element method.
In the Author’s opinion, however, the latter is better equipped to handle 
higher order problems, for example the analysis of moderately thick 
plates described in Section 2.9, The use of finite differences in 
such a problem would be very cumbersome.



CHAPTER 5
WofeK ■

§, ’X Introduction ; Previous Work
The majority of observations of the interaction between 

structures and soil foundations has been concerned with rigid 
footings, for example the widely quoted work by Faber (85) who 
measured a parabolic contact pressure distribution between a rigid 
circular footing and a sand compared with an inverse parabolic 
distribution between the same footing and a stiff clay. Early work 
concerning flexible rectangular plates bearing on idealised 
foundations has already been mentioned in Chapter 1, Vint and Elgood (8) 
having used a spring bed foundation while Murphy (9) used a hard 
rubber subgrade 3 Inches thick. Murphy found the coefficient of 
subgrade reaction by pressing rigid punches into the subgrade and his 
experimental results are in reasonable agreement with the Winkler 
predictions as are those of Vint and Elgood, It should be pointed 
out that the subgrade used by Murphy is far too thin to represent a 
semi-infinite medium,

Wright (86) investigated the variation in subgrade modulus 
with the breadth of flexible beams, assuming the modulus to be constant 
for any individual beam. The accuracy of his results may be 
questioned due to the small container used, because the side walls 
almost certainly influenced the results (See Section 5«̂ )* However 
the trend of Wright’s results is confirmed by Lenczner (87) in that 
the subgrade modulus was found to decrease with increasing width of 
footing, eventually reaching a limiting value. Lenczner went a step 
further than Wright in investigating the variation of subgrade modulus 
along the beam, rather than assuming it to be constant. He found 
that the variation was related to the curvature of the beam, that the 
conventional Winkler assumption overestimated the maximum bending 
moments by about 15̂ , and that analyses based on an assumption of 
uniform contact pressure yielded results which were very conservative. 
These observations are compared with the Author’s in Section 5.10.

Barden (4) found good agreement between experimental 
results for beams bearing on sand and the Winkler predictions for 
all but rigid beams, and this conclusion is confirmed by Vesic (25)
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who also obtained good agreement between theory and experiment assuming 
the foundation to be a semi-infinite homogeneous elastic medium, 
analysed by an approximate method.

The only laboratory tests on plates bearing on sand known 
to the Author were carried out by Brand (88) on flexible circular 
plates loaded with concentrated central loads. Brand states that his 
experimental results "could not be compared with theory". He gives 
no results for deflections, but gives some contact pressures which are 
compared with the Author's results in Section 5.10.

A larger scale observation is reported by I'Herminier,
Bachelier and Soeiro (89) who, using vibrating wire guages, measured 
the contact pressures beneath a 36 x 29 x 3*6 metre raft bearing on a 
gravel. The stress distribution proved to be intermediate between a 
uniform distribution and the distribution determined by elastic theory,
5.2 Determination of Contact Pressures—--'—— '——— ' —    - "—I—"

The contact pressure distribution between a flexible slab 
and the subsoil can be determined either directly or indirectly.
The direct method involves the presence of some kind of pressure sensing 
device at the soil-structure interface while the most commonly used 
indirect method, for the case of a beam, has been the double differen­
tiation of the curvature of the beam. Of the investigations described 
in the previous section, Wright, Lenczner and Vesic used the latter 
method and Barden and Brand the former.

The Author preferred the direct method, because numerical 
differentiation is an inaccurate process, the inaccuracy being compounded 
with the number of differentiations. In addition, for circular plates 
axisymmetrically loaded, the contact pressure is a function of 
^^^/dr^, ^^^/dr^, *̂ ^̂ /dr̂  and ̂ ^/dr, so that it would be far more 
complex and inaccurate to use an indirect method for that case.

There is a voluminous literature on the subject of "earth" 
pressure cells, and several theses known to the Author contain 
exhaustive reviews, e.g. Brand (88) and Neale (90), so that another 
such review would be superfluous. Much of the work is of secondary 
interest, referring as it does to "embedded" pressure cells rather
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than contact pressure cells. As far as the latter are concerned, when 
used on sand foundations the requirements are simply that the pressure 
cell should be initially flush with the base of the structure, and 
that the deflection of the cell under load should be the minimum 
consistent with reasonable sensitivity, in order to avoid excessive 
arching action. Thirdly the cell should not radically affect the 
flexural rigidity of the structure. Two basic types of contact 
pressure cell have been used in the past, the diaphragm type and the 
piston type. In the former case the cell face (usually circular) 
displaces by bending from clamped edges whereas in the latter case 
the whole face of the cell slides inwards under pressure. The 
diaphragm type was chosen for this investigation because piston cells 
are subject to high stress concentrations at their edges and, more 
importantly, when set in a flexible structure, their freedom of sliding 
is affected by the deformation of the structure, the piston slot 
becoming a truncated cone as deformation proceeds, c Of course the 
deformation of the structure also affects the performance of a 
diaphragm cell since the diaphragm is subjected to in-plane tensile 
or compressive stresses which alter its sensitivity to applied pressure. 
This factor, not considered by Bardon or Brand is dealt with in later 
sections.

Many measuring systems have bean used to record the responses 
of the various types of cell to applied pressure. The three basic 
methods involve;

(i) Measurement of the displacement of the diaphragm or piston 
by the displacement of a fluid contained behind it.

(ii) A closed system of type (i) where the pressure in a confined 
fluid due to the displacement is measured.

(iii) Measurement of the strain in the cell diaphragm by some sort 
of strain gauge.

Option (i) was adopted because it was comparable to but 
simpler than option (ii), and because it was felt that it would be 
difficult to separate the diaphragm strains into those caused by 
bending of the diaphragm under pressure and those caused by in-plane 
stresses due to the bending of the structure.
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The design finally adopted is shown in Pig,5*1. It is
based on previous designs by Rowe and Briggs (91) and by Peaker (92) 
and conforms to the W.E.S, requirements for diaphragm displacement (95) 
although not to the more stringent criteria of Trollope and Lee (9̂ ). 
However, all cells were identical and were used on the sirae soil, so 
that the cell action factor could be assumed to be constant. A slot 
was first sunk from the top of the perspex plate, leaving the desired 
thickness of diaphragm still in position. The shaped disc was then 
inserted and glued in position with Tensol No.7 perspex cement.
Finally the cell was filled with paraffin and the filling hole blocked. 
Readings of the fluid level in the very thin bore (0,5 mm,) nylon 
tubing were obtained by fixing the tubing to a graduated scale. 
Originally a temperature compensation chamber was included in the disc 
but this was found to be unnecessary due to the short duration of 
any individual experiment and the good temperature control available 
in the laboratory. The cell had the following advantages:
(i) it was very simple and required no complex ancillary electronic 

equipment,
(ii) the face of the plate presented to the soil was completely smooth,
(iii) the minimum effect on the flexibility of the structure had been 

achieved since the cell was predominantly of the same material 
as the structure. The calibration of the cells is described 
in the next section,

A seemingly promising new departure in the field of pressure 
cell design was also investigated. Very small cells, the smallest 
about ^/8 inch diameter and ^/52 inch thick are manufactured by 
Clark Electronic Ijaboratories in the U.S.A., and consist of two very 
thin plates, to which terminals are attached, separated by a layer of 
pressure sensitive paint. When calibrated however, these cells had 
a very unstable response to pressure because of their extreme 
sensitivity to eccentricity of loading. A typical calibration curve 
is shown in Fig. 5*2, and even if this were reproduceable it would 
not inspire confidence in the use of the cell for absolute measurement 
of pressures. In the Author^s opinion, these devices are pressure 
sensers in a qualitative way rather than quantitative pressure 
gauges.
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5*5 Calibration of Pressure Cells and Determination of the
Flexural Rigidities of the Test Plates

The pressure chamber used for the calibration of the pressure
cells is shown in Pig.5*3# and this same chamber was also used to
find the flexural rigidities of the perspex test plates. The chamber
is 3^/^ inches Internal diame+er and the various cover plates are
secured to the chamber by l6 Allen screws. With cover plate "A" in
position, a pressure cell could be calibrated without allowing the
plate in which it was inserted to bend. With cover plate "B" for
example, the flexure of the plate came into play and the effect of
this on the cell calibration is shown in Pig.5*4. It was shown
therefore that the cells had a linear response to applied pressure,
but that the curvature of the plate in which they were inserted might
introduce serious non-linearity. The magnitude of the non-linearity
in the actual experiments is discussed in Section 5*9*

The flexural rigidities of some aluminium plates were first
measured using the apparatus because these plates were of a more
uniform thickness than the perspex plates and because the E value of
the aluminium was known from previous work by Macleod (78) to be less
subject to variations from plate to plate than might be expected
for the perspex plates. The results of a typical test are shown
in Pig.5.5 where the central deflection of the clamped circular
plate (̂ /l6 inch thick) is recorded against applied pressure. The
average deflection of several aluminium plates was found to beo0.00088 inches per lb/in compared with a theoretical value usingoMacleod's results of O.OOO87 inches per lb/in . Since the limit of 
measuring accuracy was 0.0001 inch, this agreement was thought to be 
satisfactory, indicating an E value for Aluminium of 10.1 x lO^lb/in^ 
at a Poisson's Ratio of 0.3*

The flexural rigidities of some perspex plates were then 
measured and some typical results for three ^/k inch thick (nominally) 
plates cut from the same 8 ft, by 4 ft. sheet are shown in Pig.5*6. 
Plate 1 deflected by 0.00038 inches per Ib/in̂ , plate 2 by 0.0003^ 
and plate 3 by 0.00042. At first sight this implied large 
fluctuations in E from plate to plate, but on measurement of the
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plate thicknesses, plate 1 was found to be on average 0.255 inch 
thick, plate 2 0,263 and plate 3 0.2̂ 3, giving E values of 
3.09 X 10^ Ib/ln̂ , 3-15 Ib/in^ and 3-23 x 10^ Ih/lr? respectively, 
reflecting a variation of only - 2^ in the E value for that particular 
sheet. It should be pointed out that, using this apparatus, the E 
values of all the perspex plates tested were of the order of ■
3 X 10^ Ih/lx? compared with the usually quoted value of nearer

5 24 X 10 lb/in . If the low value were due to defects in the 
apparatus one would expect that the results for the aluminium plates 
would also be low and that the results for the perspex plates would 
be less consistent. Since neither of these expectations is 
fulfilled the apparatus must be assumed to be reliable. In any case, 
only the relative values of E for the various plates was of interest 
in this work and the apparatus provided this information. Prom 
Macleod's work (78) Poisson's Ratio for perspex was taken to be
0.4 in every case.

5.4 Determination of the Required Size of Sand Container
It became obvious early in the experimental phase of the 

work that the labour in handling large quantities of sand was going 
to restrict the number of tests which could reasonably be conducted.
On the one hand it was desirable to use as large plates as possible 
so that the effects of non-uniformity in the foundation would be 
minimised and deflection measurements readily made at a large number 
of points on the plate; on the other hand, the minimum volume of 
sand consistent with these requirements was sought.

Pilot tests were therefore conducted using a bin 30 Inches
in diameter and 12 inches deep, with auxiliary ring walls 13, 22§
and 25 inches in diameter and 12 inches deep. A rigid test plate
5 inches square and ^/8 inch thick was used, giving ratios of container 
width: plate width of 3, 4g, 5 and 6, Leighton Buzzard sand was
poured into the container from a tin with a perforated lid held 3
inches from the sand surface. Five layers, each of 2 inches
compacted depth, filled the bin to a depth equal to twice the 
breadth of the plate, compaction being effected by a 10 inch diameter.
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20 pound flat weight. (The necessary depth of 2 times the plate 
breadth seemed to be universally accepted in the literature, e.g. 
Allwood (95) whereas the necessary container width was not clearly 
agreed upon.) A check was also carried out on the uniformity of 
placement of the sand by a method first used by Allwood (95) Q^d 
subsequently by Neale (90). In this method, miniature vane shear 
tests were carried out at various positions in the bin, the vane 
being driven half way into the uppermost layer each time. (The 
vane is inch diameter and ̂  inch deep.) Calibration tests on the 
same sand. Fig.5.7, show that the failure torque is highly sensitive 
to changes in the density of the sand. Fig.5*7 also shows that the 
method of compaction, in one case vibration while in another tamping, 
also affects the failure torque. This is attributable to the 
different grain arrangements due to the two methods, and would be 
expected to be more pronounced with angular grained sands. That 
this is true will be seen later. However, for a constant mode of 
compaction, the vane test is seen to be a good guide to density 
variations. Vane tests on the compacted sand in the bin indicated 
density variations of the order of - O.5 Ib/ft̂ , which, being 
comparable with the results for vibrated sands (90), were considered 
reasonable.

When the bin had been filled, the test plate was levelled
and loaded with a uniform pressure, a small ’’seating” pressure

2 2having been first applied, in steps of 1 lb/in up to 6 lb/in and
the deflection of the plate after each step was noted. Five minutes
were allowed to elapse between each increment because this would
subsequently be necessary to permit time for creep of the perspex.
The results for 5 tests in each of the 4 bin sizes are plotted
together in Pig.5*8. This shows that the 15 inch bin is definitely
too small, but that there is little to choose between the other
three, especially at the subsequently adopted maximum working

opressure of about 4 lb/in . To minimise the sand volume 
therefore, a minimum container width of 4^ times the plate width 
was adopted.
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5.5 Classification of the Sand Used for the Full Scale Tests
It was decided that the criteria described in the previous 

section i.e. reasonable plate size together with a reasonable quantity 
of sand could be met by using plates in the range 8inch diameter to 
12 inch diameter. This implied container sizes of 58 inches to 
54 inches and a maximum quantity of about 2 tons of sand. Leighton 
Buzzard sand had been used for the pilot tests, but the purchase of 
2 tons of this sand would have been very expensive and in any case it 
was felt that a finer sand would minimise the effects of variations 
in the density of the foundation, especially as far as the pressure 
cells were concerned since there would be more grains in contact with 
the cell.

4fter several trials, a fine lby river sand was adopted.
The grain size distribution of this sand is shown in Fig.5*9 and it 
can be seen that the sand is very uniform, 700 of its particles 
passing the 38 sieve but being retained on the 52 sieve. The 
specific gravity of the sand particles was found to be 2.77, the 
maximum porosity by the tilting test to be 0.47 and the minimum 
porosity, after vibration under water, to be O.38. The sphericity 
and roundness of the sand were found to be O.8O and 0.45 respectively, 
by a method developed by Neale (90). This indicated a rather angular 
sand and confirmed visual inspections which revealed a proportion of 
flaky mica particles. Finally the moisture content of the sand 
as delivered (washed, sieved, dried and bagged) was found to be 
0,050 and it was assumed that this small amount of moisture would not 
affect the behaviour of the sand by causing significant capillary 
forces.

5.6 Placement of the Sand in the Full Scale Tests
A considerable amount of work was involved in the 

investigation of the behaviour of plates of varying thickness and 
diameter bearing on just one sand foundation (i.e. a single sand 
placed at a single density), and this limited objective formed the 
scope of the experimental work. This considerably simplified the 
requirements of apparatus for depositing the sand in the containers.
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and all that was required was the ability to deposit reasonably uniform 
layers of sand over areas from 36 Inches square to 54 inches square, 
ready for compaction. A simple hopper arrangement was adopted, 
consisting of two -g inch thick blockboard panels, one fixed to supports 
and the other free to slide, perforated by ^/4 inch diame'̂ er holes at 
1 inch centres. The hopper was 5 feet square overall, so that a 
complete layer could be deposited in one pour. Since the sand always 
dropped through a distance of at least I8 inches, no facility for 
adjusting the dropping distance was provided. The sand was poured 
into the containers in layers which, after compaction, were nominally 
4 inches thick, the tamper being 10 inches square and weighing 28 lb. 
The uniformity of the layers was tested in the same way as in the 
pilot tests, the vane having been calibrated as shown in Pig.5.10.
This time the method of compaction had more influence on the ultimate 
torque/density relationship because of the more angular sand grains.
The variation in density of the compacted sand in the containers 
was again of the order of - 0.5 Ib/ft̂ , which was considered 
acceptable,
5.7 Plates Bearing on Sand and Subjected to Uniformly Distributed 

Loads
The original aim in the research project was the examination 

of the behaviour of flexible plates, bearing on sands and subjected 
to uniformly distributed loads on their upper faces. To this end, 
at the time of the pilot tests to determine the size of container 
required, a small apparatus was constructed, capable of applying a 
uniform pressure to plates up to about 6 inches square. This 
apparatus was in fact used in the pilot tests, and the experience 
thus gained utilised for the construction of a larger apparatus 
capable of applying uniform pressures to plates up to 12 inches square. 
Drawings of this larger apparatus are shown in Fig.5.H. The rubber 
air bag was formed by slitting open a 6 inch diameter triaxial test 
membrane, and the range of plate displacements over which the full 
pressure was transmitted to a given plate was checked by gradually 
moving the plate away from the pressurised air bag and recording
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the position at which the load began to decrease. Unfortunately, 
no plate of practicable flexibility could be induced to bend on the 
medium-dense sand foundation under the pressures which could be 
applied. The most flexible plate tried was 12 inches in diameter 
and ^/l6 inch thick. More flexible plates would have been closer 
to membranes than to plates. At this scale therefore, and given 
the stiffness of the foundation, the tests using uniform loadings 
had to be abandoned.
5.8 Circular Plates Bearing on Sand and Subjected to Concentrated 

Central Loadings
It was then decided to attempt to use the next simplest

loading, namely, a concentrated central load. Concentrated loads
present the problem that theoretically they have no area of application
whereas in practice a certain undefined area of application exists.
The first task was therefore to ascertain whether the proposed
loading system gave nearly the correct results when applied to a
situation in which a theoretical answer was known. The circular
calibration chamber described in Section 5.5 was used for this purpose
the test plate (^/k inch thick perspex) having a small dimple, formed
by a drill tip, made at its centre. The load was applied through a
^/k inch diameter stainless steel ball-bearing. The measured
deflection was 25.5 % 10 ^inches per 10 proving ring divisions? —li(16.38 lb) while the theoretical deflection. Pa /l6nl> was 22.55 x 10 
inches per I6.38 lb, the difference being It seemed reasonable
to assume, therefore, that the concentrated load, applied in the 
above manner, was close to the theoretical conception of a concentrated 
load.

A second complication when using circular plates bearing on 
sand and centrally loaded is that there is a relatively small range 
of plate flexibilities within the thin plate range, for which bending 
of the plate occurs without the edges of the plate losing contact 
with the sand. As this loss of contact does not usually occur in 
practice and as it presents complications in the theoretical analysis, 
only plates with flexibilities such that their edges did not rise 
were tested.
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After preliminary trials, the following 9 plates were 
selected, all of perspex;

Diameter (inches) Nominal Thickness (inches)
8 ^/k (+ 13) ^/l6 (+ 2) ^/8 (+ 2)
9 Vl6(+ 1) ^/8 (- 15) 0.42(+ 1)
10 ^/8 (+ 27) 0.42 (+ 1) I (- 7)

The figures in brackets indicate the average variation from the nominal 
size in ten-thousandths of an inch. The 0.42 inch thick plates were 
not available as standard sizes and had to be machined down from the 
§ inch size.

Calibration pieces were cut from the perspex sheets, 
immediately adjacent to the test plates, and the following E values 
determined as described in Section 5-3»

Nominal Plate Thickness (inches) E (ib/in^)
3.09 X  10^

^/l6 3.01 X 10^
^ / 8 3.19 X  10^
0.42 3.07 X  10^
i 3.25 X 10^

5.9 Apparatus and Testing Procedure
The experimental set-up is shown in Plate 1. After the 

container had been filled to the required depth, the circular test 
plate was placed on the sand surface and levelled. The load was 
applied by a hydraulic jack and measured by a proving ring. In order 
to measure the deflections of the plate at radii -g inch apart, 
conventional dial gauge supports could not be used, being too bulky.
To obtain the necessary cluster of gauges a holder was used embodying 
the principle shown in the sketch of the pressure chamber (Pig.5.11). 
The lugged back plates of the dial gauges were replaced by plain back 
plates, allowing 7 gauges to be positioned on the holder at radii 
^ inch apart. Other dial gauges with conventional supports were 
positioned round the circumference of the plate to check that no 
tilting occurred under load. All of the dial gauges were graduated 
to Vl0,000 inch.
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In the first series of tests, only the deflected forms of the 
9 plates were measured for loads of 32.76, 65*52, 98.28, 131.04,
163.80 lb (corresponding to convenient proving ring readings). The 
determination of these deflected forms usually required about 5 
independent tests on each plate, such was the scatter of che 
experimental results. The container was refilled before every test, 
so that all results refer to first loading of the sand only. The 
effects of repeated loading were not investigated. The tests on 
any plate were continued until three sets of results differing by less 
than 10^ were obtained. The averages of these sets are plotted in 
Figs.5.12-5*14 for a load of I63.8 lb.

In the second series of tests, involving three @ inch diameter 
plates only, pressure cells were incorporated in the plates at the 
positions shown in Pig.5*15. In this test series, it was only 
necessary to check the deflections at a few points to ensure that 
they agreed with the measurements from the first series. The 
measured contact pressures for a load of I63.8 lb. are plotted in 
Pig.5.16.

To determine the magnitudes of the curvatures of the three 
plates at the positions of the pressure cells, a third series of 
tests was conducted using the original 8 inch diameter plates. Poll 
electrical resistance strain gauges, gauge length ^/4 inch and 
resistance 50 ohms, were cemented to the upper surfaces of the plates 
using Eastman 9IO cement. The radial strains recorded by these 
gauges at full load were nowhere in excess of 400 micro-inches per 
inch. A similar order of curvature is produced in a ^/4 inch thick 
perspex plate, clamped in the test chamber described in Section 5*3', 
at radii of ^^/32 inch and ^^/32 inch under a pressure of about 
7 lb/in'. By clamping a plate containing a pressure cell in the 
calibration chamber it was therefore possible to assess the effect 
of curvatures of the order of those developed in the main tests on 
the performance of the pressure cells. This was found to be 
negligible, and no corrections to the pressure cell readings to 
allow for curvature of the plates were necessary.
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5.10 Analysis and Discussion of the Experimental Results
In the chapters of this thesis devoted to theoretical analysis 

of circular plates bearing on elastic foundations, two types of 
analysis were developed. In Section 2.9 the method of analysing a 
circular plate bearing on a Winkler-type foundation whose stiffness 
varied with radius was described. The type of variation allowed 
across an ^nnulus with inner and outer radii b and a was k(r) = k^ 

that is a linear variation.
The results shown in Figs.5.12-5.14 were analysed using a 

computer program embodying the above assumption. By trial and error, 
the distribution of k was varied across each of the nine plates until 
the deflections obtained from the computer program were within yfo 
of the measured deflections. This did however prove impossible in 
the case of the 10 inch diameter, ^ inch thick plate where the 
deflections at the centre of the plate, and at a radius of \ inch 
could not be fitted closer than 8^ below the measured deflections.
This was attributed to the presence of significant shear deformations 
in this the thickest of the plates tested, which were not included in 
the theoretical analysis. The calculated distributions of k values 
are shown in Figs.5.18-5.20.

Then on the basis of the Winkler hypothesis that the contact 
pressure p = k x the deflection of every point on the plate, the 
theoretical Winkler contact pressures could be calculated and are 
shown in Figs.5.21-5.23. These contact pressures are most interesting 
in that, apart from the thinnest (8 inch diameter, ^/4 inch thick) 
plate, they show the "inverse parabolic" pressure distribution 
characteristic of plates bearing on semi-infinite elastic media. The 
infinite edge stresses predicted by the theory of the elastic medium 
are physically inadmissible in sands and it can be seen that all of'-* 
the pressure distributions reduce to zero at the edges of the plates.

Other trends exhibited by the results are that the maximum 
contact pressure on any plate was found to decrease with increasing 
plate stiffness and with increasing plate size, and that the 
location of this maximum pressure was about 1-g in. from the centre 
of the plate for all of the plates involved. It can be inferred
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therefore that the pressure on a rigid punch would be a maximum at about 
the same position on the punch.

The measured contact pressures of Pig,5*16 have been super­
imposed on Pig,5.21 and can be seen to be in fairly good agreement with 
the predictions of the Winkler hypothesis. They are consistently 
below the predicted values, which could be due to the arching of the 
sand over the cells.

Since good agreement between experimental results and the 
predictions of theory using uniform Winkler media has been reported 
for beams (4), (25), this method was also examined. It was decided 
to fit the theoretical and experimental values of deflection at the 
centres of the plates, although other fits could be tried, for example 
a fit of average deflection. The deflected forms are shown in 
Pigs.5.24-5.26 and should be compared with Figs,5.^2-5.1^*
Superficially the results are quite good, especially near the centres 
of the plates, but towards the edges of the plates errors of 500^ do 
occur.

The contact pressure distributions for the uniform Winkler 
assumptions are plotted in Pigs,5.27-5*29 again with the measured 
values superimposed on Fig,5.27- In the range of radii containing 
the pressure cells there is not a great deal of difference between the 
uniform and non-uniform Winkler predictions, but the uniform theory 
predicts pressures which are too high at the edges and too low at the 
1 inch and 1-g inch positions. Unfortunately, due to the type of 
pressure cell used, no measurements could be taken near the centres of 
the plates, to check whether the reduced pressures predicted by the 
non-uniform Winkler theory actually occurred. However the high edge 
pressures predicted by the uniform Winkler theory are most unlikley 
in practice due to the very low strength of the unconfined sand.
In addition, the measured contact pressures are in some oases greater 
than those predicted by the uniform Winkler theory. This implies cell 
action factors in excess of 1 which is unlikely.

Only preliminary results were obtained using the method of 
analysis described in Section 3.4, where the plate was coupled with 
a semi-infinite elastic medium in which inhomogeneity could be 
accounted for. Again by trial and error, the theoretical central 
deflection, treating the sand as a homogeneous semi-infinite elastic
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medium with Poisson’s Ratio of 0,5 was fitted to the measured centralpdeflection. This gave an E value of 60^000 lb/ft and the deflected 
form shown in Pig,5.30 together with the measured deflections, The 
theoretical deflections are too large at the edge of the plate and 
suggest a stiffening of the medium as the radius increases. However, 
due to the cumbersome nature of the computer program for this analysis, 
vhich was written at a time when only 1^,500 words of store were 
available, and the slow turn-round time for programs due to the 
enlargement of the Glasgow computing installation, it was not feasible 
to pursue this analysis further. In any event, the contact pressure 
distributions would have the same form as those shown in Pigs,5.21-5*23*

The only results directly comparable with those quoted 
above were obtained by Brand (88). In a limited series of tests on 
quite flexible plates, he obtained a set of parabolic pressure 
distributions similar to that obtained by the Author for the 8 inch 
diameter inch thick plate. The tests on beams quoted in Section 5,1 
can not readily be compared with tests on plates because a beam has 
negligible ability to spread load, and, when loaded by knife-edge loads 
across its full breadth merely attracts high pressures to the load 
points, as observed by Lenczner (B?) and others.

Further experimental work on the behaviour of plates bearing 
on sand foundations should therefore be aimed at ascertaining whether 
the reduced contact pressures at the centres of all but the most 
flexible plates, predicted by the non-uniform Winkler theory, actually 
exist, and whether this is a feature of the density of the sand or 
the type of loading. Secondly, the method of analysis developed by 
the Author in Section 3*^ should be applied, using a more sophisticated 
computer program, to the analysis of experimental results, to determine 
the distribution of stiffness in a sand foundation assumed to be an 
inhomogeneous, elastic medium. As a reasonable starting point, the 
modulus of the sand could be increased with depth in proportion to the 
increase in standard penetration test values.
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5.11 Conclusions
1. The rectangular finite element analyses for thin plates in
bending, available in 1$64, have been studied and some analyses which 
were thought to be different have been shown to be the same.
2. Three new rectangular finite element analyses for thin plates
have been derived which have advantages over present methods. In 
particular, shear forces have been determined by the finite element 
method for the first time.
3. The finite element method, using rectangular elements, has
been applied to problems of moderately thick plates for the first time.
4. An explicit stiffness matrix suitable for the analysis of
circular plates in bending has been derived.
5. The possibility of applying the finite element method to
problems of plates on elastic foundations where realistic account is 
taken of the inhomogeneity of soil deposits has been appreciated,
6. The finite difference method has been used for the solution 
of some plate problems which were previously thought to be difficult 
to solve by such methods.
7. The results of a series of tests involving flexible plates
bearing on sand foundations have been analysed by theoretical methods, 
and the theoretical predictions have been partially confirmed, within 
the limitations of the apparatus used. The principal deduction, for 
a particular loading system and sand condition, is that the contact 
pressure distribution is of the form predicted by assuming the sand 
to be a semi-infinite elastic medium, rather than a pure Winkler 
medium.
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APPENDIX 1

Fifth Order Stiffness Matrix

[A,l
lB,l

fe]
Symmetrical

p S  [ a s I  _

C z ]  I b J i a 4

Suhmatrices denoted by the same letter contain identical terms 

but the signs of the terras are subject to change;

Ai

K,, Symmetrical

k%,i
K%,i Kï,z. kî.î

K4,2 K4,î. i<A,4
Ks,i l<S,l K s,5 1<S,A
Kt.t K(,,%

A i  =

K i , , Symmetrical

1 1^2,1

~  *̂ 3,1 *̂ 3,3
k.4,t ^4,1 -KA,3 K a,a

■ Ks,, Ks,4

-  !<t, 1 Kb,3 -K k ,4 "Kb,ç
L

Kt,t



Al *

6, =

Symmetrical

Kz,z

Ks,% Ks,3
^A,( “ lA.z -- K i,3 Ki,i
14, i " l4,z '^5,3 kç,4 Ks,s

K m - K ljZ kb,4 Kfc,t>

Kl,, Symmetrical

“ ̂ 2,1 Kz,z

Kî,i K%,3
k.4,1 ^4,2 Kl, S K a ,4
Ks,i « K ç,2 K î,3 ks,4

- K „ K(?,2 *'Ké,,î ”  kfc,4 - Kt,f

Kï.i K?,2 K,5 IA,4 Kl,? -  ki2,1

Kg,i 4,2 “ K|Z,I klo,2 Ki,,z -  Kiz,z

K<î, 1 4,% K^,s k(o,3 ~kii,î K|2,3
kio,i K»0̂ 2 Kw,s kio,4 kiû,f k/0,3»
K(i,t 4l,Z kii,3 kii,4 kii,? kiif 4 J

h*
(A, 2 kl 2,3 ki2,4 k,2,ç ki2, G

' k ,„ 4,z ki,4 ^7,3 14, fc

14,2 kg, 3 -Kg,! - K,ç ~kv,(,
" lA, 1 4 , 2 ki?,î “ M -14,3 - k(),{,
Kio, 1 ^ ko, 2 “ k|o,3 k/o,4- ko, 3 ko, 1
Kn, f - k«,2- -Kl,,3 kii/v ki,,3 k',fr
K%,( **• - Kî.î k(2,i Kz,? . kii,4



c,

D. =

K ^,! Kî,s Kg,i

K l, 1 k\A,z -K g ,! "Kt>,i ~Ki|Z •"Kg, 2
kl?,, "■ k\5,( k\S,3 -  Kib, 3 -  K?,& -Kg,)
kib, l Mt),Z Kb,3 K,b,i Kib,î Klb,bi
Ki,i Kl,:' Kl, 3 K i ,4 Kn,ç Kn,(p

K«,i kl», 2 Kl), 3 Kie,i Kg,f Kiî,t.

k»3,1 kts,z ~ K|3,5 K î,i Kî,ç -  Ks,b
kt4,i K i,z - K l , 3 k|4,4- Kl,g " K l,  t.

~ ki3,i K c,3 'K î ,4- -Ks,? Kif,b
kit,i k(b,Z -Kb*3 Klt,! Kb,f — Kibjb
Kl,! Kz,Z -K l ,  3 Kii,4 K'i,s -  Kn,t

“ kis.i “ Kîjz K î -,3 "K?,4 -  K f,f kig,(.

kw,, kw,i Ki4,3 NK,4- Kw,ç -kz4,i

kzo,, (4 ,z kz4,1 -K z2,2 -Ks,z Kz4)2
kzi,i '  K l , , Kl, 3 kz2,3 4  s, 3 -  Kz4,3
kzz, t kz2,Z K-2Z,3 Kzẑ l Kz2,s" 4z,b

kz5,i K î ,2. 43,3 4 ) ,+ Kîî,ff 4 î,b

kzi, 1 44,2 141,3 K l,4 K ii,f kzl,b

k . v Ki,z “ K|4, %  ' ki4,i Ki4,3 "ki4,t,

4 ,1 4 ,2 "4>, 3 Kza,i 4>,ç

“ 4 ,1 '  K), 2 4 , 3 -K l,4 " 4 ,4 kzi, (?

kz2,1 4z,2 -K z, 3 4 z , i 4z,4 - K îz ,4>

4 ; , ! Kz3,2 -  4 ; ,  3 4 î,4 4 î , f " •4 î,b

-  Kz4,2 4 i , î -  4 i ,4 -144,4 4 i ,b



Algebraically for example;

|gl
K i , = 3feoo [  2ro.4b2 0̂   ̂ 42.42 «'t>[

+ f t  A 22 4210.462 o 65o. ̂ >5o
j L

where All etc, are the coefficients in the generalised raoment- 

curvature relationship:

r All A n o1

A l l A l l o

s . Û o A %

In practice it is easier to obtain the terms of K  from the 
computer program given in Appendix 4,

The numerical values of the terms of for a square element 
of side one unit and flexural rigidity D= one unit 0,3)

are given on the next page.



r-

Numerical values of the first 6 columns of K :

+ 1 #751 Ko +1 + 5 . 5 5 2 9 »  +0 + 5 . 5 5 2 9 »  +0 + 2 . 8 8 8 1 » -1 + 2 . 8 8 8 1 » -1 + 1 . 3 7 4 4 » +0

+ 5 .55 29 «  +0 + 3 . 0 5 9 5 » +0 + 1 . 67 4 4 »  +0 +1 • 9 2 0 8» -1 + 8 . 0 9 6 8 » - 2 + 6 . 6 4 4  4» — 1

+ 5 • 552 9o +Ü + 1 . 6 7 4 4 » +0 + 3 . 0  595» +0 + 8 . 0 9 6 8 » - 2 + 1 . 9 2 0 8 » -1 + 6 . 6 4 4 4 » — 1

+2 . 8 8 8 U  -1 +1 . 9 2  0 8 » -1 + 8 . 0 9 6 8 » - 2 + 4 . 0 0 5 5 » - 2 + 4 . 6 2 7 9 » - 3 + 4 . 3 9 6 7 » - 2

+ 2 . 8 8 8 1 o -1 + 8 . 0  9 6 8 » - 2 + 1 . 9 2 0 8 » -1 + 4 . 6 2 7 9 » - 3 + 4 . 0 0 5 5 » - 2 + 4 . 3 9 6 7 » - 2

+ 1 # 3 7 4 K o +0 + 6 . 6 4 4 4 » - 1 , + 6 . 6 4 4 4 » -1 + 4 . 3 9 6 7 » - 2 + 4 . 3 9 6 7 » - 2 +2 . 6 9 1 4 » -1

- 8  .9K25o -**0 - 1 . 2 6 7 2 » +0 - 3 . 4 1 0 0 » +0 - 7 . 4521» - 2 -1 . 4 5 9 5 » -1 - 4 . 5 2 9 7 » -1

"1 . 2 6 7 2 o  +Û “ 3 . 1 6 6 4 » -1 - 4 . 5 2 9 7 » -1 - 3 . 4 9 4 1 » - 2 " 9 . 5 3 9 3 » - 3 - 4 . 7 2 9 7 » - 2

+3.KIOO0+O + 4 . 5 2 9 7 » “ 1 + 1 . 0 0 3 6 » +0 .+ 3 . 4539» - 2 + 1 . 5 0 9 0 » - 2 + 1 . 1 5 0  6 0 -1

“ 7 . 4 5 2 1 o - 2 - 3 . 4 9 4 1 » - 2 - 3 . 4 5 3 9 » - 2 - 2 . 8 0 2 1 » - 3 -1 .0 5 6 5 » - 3 - 7 . 5 3 8 7 »  r3

- I  . 4 5 9  5 » "1 “ 9 . 5 3 9 3 » “ 3 - 1 . 5 0 9 0 » - 2 - 1 . 0 5 6 5» -3 + 9 . 4 1 0 4 » - 3 + 3 . 8 1 5 7 » - 3

+ 4 . 5 2 9 7 » “ 1 + 4 . 7 2 9 7 » “ 2 + 1 . 1 5 0 6 » -1 + 7 . 5 3 8 7 » - 3 - 3 . 8 1 5 7 » - 3 — 1 . 2 8 6 3 » —2

+ 3 . 7 1 0 6 » -1 “ 8 . 7 5 7 0 » “ 1 - 8 . 7 5 7 0 » -1 — 6 .83 36 »  —2 ' —6 . 8 3 3 6 » —2 - 4 . 6 8 4 6 » -1

+ 8 . 7 5 7 0 » -1 + 5 . 3 9 2 7 » -1 + 4 . 6 8 4 6 » — 1 + 4 . 2 0  5 3 » - 2 + 3 . 6 8 8 9 » - 2 ’ +1 . 8 9 2 3 . - 1

+ 8 . 7 5 7 0 » -1 + 4 . 6 8 4 6 » “ 1 + 5 . 3 9 2 7 » “ 1 + 3 . 6 8 8 9 » - 2 + 4 . 2 0 5 3 » - 2 + 1 . 8 9 2 3 » -1

” 6 . 8 3 3 6 » - 2 “ 4 . 2 0  5 3 » “ 2 - 3 . 6 8 8 9 » - 2 - 2 . 2 6 7 6 » - 3 - 2 . 5 1 4 9 » - 3 - 1 . 3 8 1 6 » - 2

*“6 . 8 3 36 »  “ 2 “ 3 . 6 8 8 9 » - 2 - 4 . 2 0 5 3 » - 2 - 2  . 5 1 4 9 » - 3 - 2  . 2 6 7 6 » - 3 -1 . 3 8 1 60 - 2

" 4  . 6 8 4 6 » “ 1 “ 1 . 8 9 2 3 » -1 - 1 . 8 9 2 3 » -1 - 1 . 3 8 1 6 » - 2 - 1 . 3 8 1 6 » - 2 - 5 . 8 8 1 3 » - 2

- 8 . 9 4 2 5 » +0 - 3 . 4 1 0  0» +0 - 1 . 2 6 7 2 » +0 -1 .459 5 » -1 - 7 . 4 5 2 1 » - 2 - 4 . 5 2 9 7 » -1

+3 .41 0 0 » +0 + 1 .0 0 3 6 » +0 + 4 . 5 2 9 7 » -1 + 1 . 5 0 9 0 » - 2 + 3 . 4 5 3 9 » - 2 + 1 .1 5 0 6 » - !

- 1 . 2 6 7 2 » +0 - 4 . 5 2 9 7 » -1 — 3 . 1 6 6 4» — 1 - 9 . 5 3 9 3 » - 3 - 3 . 4 9 4 U - 2 - 4 . 7 2 9 7 » - 2

-1 . 4 5 9 5 » -1 - 1 . 5 0 9 0 » - 2 - 9 . 5 3 9 3 » - 3 +9.4104»-3 - 1 . 0 5 6 5» -3 + 3 .81 57» - 3

- 7 . 4 5 2 1 » - 2 - 3 . 4 5 3 9 » - 2 - 3 . 4 9 4 1 » - 2 - 1 .0 5 6 5 » - 3 + 2 . 8 0 2 1 » - 3 - 7 . 5 3 8 7 » - 3

+ 4 . 5 2 9 7 » -1 + 1 . 1 5 0 6 » -1 + 4 . 7 2 9 7 » - 2 - 3 . 8 1 5 7 » - 3 + 7 . 5 3 8 7 . - 3 - 1 . 2 8 6 3 » - 2
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APPENDIX 3

A Stiffness Matrix for Axisymmetrically Loaded Circular 
Plates

Fa 6 Ma/,

&■

*e>
y

a

Annular Plate Element

KP,.

KPa. l'vPsî. 1<P5^

K A , k %

KP|, =ks/(̂k,Ks
kP̂, =l~5 ̂ 0~\ks — k % lr-4̂ ■

= 1  C ^  \ kg — k;j
kP̂, =C kgk{) " k̂ kĝ /C k\kg — kg
kPsT, -dkjkt - kikA)/( kvks ~k

=ŝ / L ' ^ z ' ^ s  " VĝVÂ
kp4i :- - L kg /o. C k\ ks - ka Ka ̂
kPâa.« - t>ki/o" Ck» ks ~k̂ 1<Â
K Pa'S- '~'^z 1  0 ^ % ' ^ s
kP44~  - ' ^ Z  I (V)Vs - VzVÂ _
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A P P E N D I X  4

-^ESTABLISH DBGü ü 3SüüKP4|
ÏÏEVENTH ORDER SOLUTION|
0/P 8 3 -»
begin library AO,a6 ,A7 ,A6 ^

comment A program for a finite element solution to the 
problem of transverse flexure of a thin plate 
#n an elastic foundation : 7 th order displacement 

function3
real E,E11,E22,E21,G,VjlsOjhjnxe,nye,a,b,

A11,A2bA22,A33,c^ loads,X,Y,Z|
Integer 1, J,r,s,t,lc,Nn,R,N,w,k,l,ak,al,am,an,I| 
array KM[1:4o,1:4ü]^

open(2ü)jopen(70); flnd(l1Ü,[DG1üüüü6])|
I;“read(2 0 ); 
skip(1 1 0 ,1 );
veaé binary (no, KM, ̂KMOOOOOO]_); 
write text(70, UAN*M*SMITH*CIVIL*ENGINEERINGX.2c2I) I
Ic:=read(2 0 );
for Y:«1 step 1 until Ic do 

>ë^in nye : «read (20) !=rea3(20) ;N:=^ead(20) ; R:=read(20) ;
nxe ;=read(2 0 ) I loads :=read(2 0 ) ; w:==read(2 0 ) ;
Iso;=read(2 0 )I h:=read(2 0 ); a:=read(2 0 ); b;-read(2 0 ) 

begin array KB[1;N,1:w+1],NP[1:Nn,1î10],g[1:40j; 
for 1:=1 step 1 until N do 
for 1 : = 1 step 1 until w+T“do
m:i,j] :=TTnir -----  ~If lso= 0  then
Be'gln El 1 :=read(2 0 ) g E22:=read(20) ; E21 ;«read(20) ;

G:=read(2 0 ); 
end else
be gifT Ë :=read(2 0 )g vreread(2 0 );

El 1 :=E22:=E/(nvT2);
E21;-vxE11| G:=E/(2x(l+v));

end;
nT:=E11Xht3/l2|
A22:=E22XhT3/l2;
A21;=E21xhT3/l2;
A33:«Gxht3/l2|



P!for 1:=1 step 1 until Nn de 
for j :=1 step 1 until 10 do
NFri,l]:-TJ—  ---------  —
fer s:=1 step 1 until R de 
begin r:=read(20y]

for J :«1 step 1 until 10 do
begin if read(2 0 )= 0 then geto LI ;

NFTr,j]:=0 ;
LI : end;

end;
r :-11
fer 1 :=1 step 1 until Nn do 
^fov j:= 1 step 1 until TÜ do 
begin if NF["i7j]~0 then goto US';

NF[i,j]:=r; 
r :=r-i-1 ;

L2 : end; 
for s :=1 step 1 until nye do 
fer t :~1 step 1 until nxe de 

begin ak:=(F- T)x(nye+1 )+s; 
al:=ak+1; 
am:=tx(nye4-1 )+s j 
an:-am+1; 
for i :=1 step 1 until 10 do 
begin g[i] ;g='NF[ak, 1] ; g[i+10] :=NF[al, i] ;

g[H"2 0 ]:=NF[an,l]; g[i+30]:-NF[am,i];
end;

for i ; - 1  step 1 until 4o do 
begin if" 'g[i]=0 then geto S2;

for j :=1 step 1 until 40 de 
begin if g I j ] ” 0 then gote' Ŝ'l ; 

c:=g[j]-g[i]+w+T; 
if G>w+1 then goto SI;
KH[g[i] ,gTT^BT|TT] ,cj+KM[i, j ] ;

SI : end;
S2:end;

end;

SOLVE: begin array p [1:N],d[0:N]; d[o]:=0;
for i := 1 step 1 until N do 
begin X:= 0;

fer j:=1 step 1 until w do X:= X+KB[l,.1]t2; 
EFTi.w+l ]"1%~sqrf(mri,wTT] - X); 
for k :=1 step 1 until w de 
~ hegin X ;== 0;

if i+k>Nthen geto R2 else 
IF k “ w then goto HI else 
for 1 ;= w-k step ' - 1  until 1 de 

X+KB[ 1+k,T]>^[ i,TTEJT ~
R1 :a :=l4k; b := w-k+1|

KB[a,b] (KB[a,b] —X )/KB[ 1,w4-1 ] ;R2: end;
end;



for 1:= 1 step 1 until N de p[l] :*=ü.ü|
for 1;= 1 step 1 until loEEs do p[read(20) ] :»read(20) ;

p[l]:= p[1]/KB[1,w+1]; 
for 1 2 step 1 until N do
begin X :==ü)

for j := If 1< w+1 then w-14-2 
else 1 ŝ Eep T until w do 

X"1^X4- KF[T, J ] x p T î + I 
p[l] (p[l]"X) /KB[l,w+1J;

end;
d[N];= p[N]/KB[N,w+l];
for 1:“ N-1 step -1 until 1 de
begin X:= Oj 1:= if i>" N-'w then N else i+w
fer J:= i+1 step T “until 1 H5
"TT-x+kbL 11xdTJT;
d[i] : = (p[i]-X)/KB[l,w+l J; 

end;
write text(70,[L0AD*CA8E[2s]]);
write(70,format([nd]) write text(70,[[c]])5 

write text(70,[NOl%[ % ] DEFLECTION[8s]MMT 
* ABOUT* 0Y[5s]MMT*ABOUT*"DX[5s]MOMT^ABOUT*
XY[ 5s ] SHEm?*X-****QX[ 5s ] SHEARS* ****QY[2c ]]);
Z ;=f*rmat (_[_+d, dddds3’dd3'io+nd]_) |
begin fer i:=1 step 1 until Nn do 
begin wrTte (7 0 ,format ( [ndd] )', l) ; 

write text(7 0 ,[L^s]]T; 
write (70,Z,d[NFri,TTj ) | 
write text(7 0 ,[[2s]]);
write(70,Z,A11xd[NFri,4]]+A21xd[NF[l,5]]); write text(7 0 ,[[2s]]);
write (7ü,Z, A22>^[NFTi, 5] ]+A21xd[NF[ i,4] ] ) ; 
write text(7 0 ,[[2s]]); 
write (70,Z,A33xd[ÏÏF[i,6]]); 
write text(7 0 ,[[2s]])J 

write(7Ü,Z,A11x(dTNF[I77J]+d[NF[l,10]]));
write text(7 0 ,[[2s]]); 

write (70,Z, A22xtt[NFri,8] ]+d[NF[l,9] 1 ) ) write text(7 0 ,[[2c]]);
end, 
end;

end; end; end;'
close(20); close(70) 
close(110); 

end->



^ESTABLISH DBG003T00KP4|
10 DEGREES OP FREEDOM TRANSVERSE SHEAR INCLUDED; 
0/P 8
begin oemment Generation of dlmenslonless vector A

from oofflclents of polynomials; 
library AO,A6 ,A7#A8 ,A9; 
integer FLN,NP,F,u,v,n,I; 
open(2 0 );Qpen(7U); I;=read(2 0 );
find(110,[DGIOOOOd ]); skip(110,1); Interchange(110); 

wr ite textT70, [ IAN*M* SMITH*CIVIL*ENGINEEKING^2c J ] ) ; 
FLN;=read(20);nVF;=^ead(20); v:=read(20); u :=reaË(20);
nreread(20);
F:=FLNxNP|
begin real C,D,nu,h;

integer c,d,e,1 ,J,k,l,p,q,r,s,p1,p2 ,q1,q2 ; 
array w[1;F,1;2],E[1 :12,1:2J,DERF[1:v,0:4,1 :u], 

ARR1[1;2,1:4],ARR2[1;2j,
ARR3[1:144],All : 144,1:n],KM[1;F,1:F],
MK[1:F,1:F,1:n]; 

for 1 := 1 step 1 until 144 do
for e ;= 1 step 1 until n ^  A[l,e];=0 .0;
for e := 1 step 1 until h do
begin D:= read (20')";''hu:- read (2 0 ); h := read (2 0 )
A[1,e]Î—A[l4,e]:=D;
A[2,e]:= A[l3,e]:« nuxD;
A[27,e]:= 2x(l-nu)xD;
A[8 ,e] :=A[21,e] :==A[85,e] :=A[98,e] := DxhT2x(2-nu)
/ 10/ ( 1 -nu) ;
A[9fe]:=A[20,e]:-A[8 6 ,e]:=A[97;e]:=DXhT2xnu/10/ ( 1 -nu ) ;
A[10,e]:=A[22,e]:=A[l09,e]:=A[110,e]:= 
2xDxhT2/lO/(l-nu);
A[35^e]:= A [ 3 6 , e ] A [ 1 2 3 , e ] := A[l35,e]:« 
2xDxhT2/5;

A[4o,e]:= A [ 4 3 , e ] A [ 5 3 j s ] := A[54,e]:« A[65^e];= 
A[6 6 ,e];= A[76,e]:= A[79,e]:= DxhT2/5/(1-nu); 
A[92,e]:= A[109,e]:=
DxhT4x(4-2xnuT2)/lOO/( 1-nuT2 )/(1-nu);
A[93^e]:= A[l04,e]:= Dxht4xnuT2/50/(1-nut2)/(1-nu) 
A[94,e]:= A[l06,e]:= A[ll6 ,e]:= A[1if^e]:= 
DxhT4/25/( 1-nuT2 )/( 1-nu) ;
A[118,e]:= 2xA[94,e];
A[131,e]:= A[132,e]:= A[l43,e]î” A[l44,e]:= 2xnxhT4/25/( 1 -nu) ;end 9



for 1:== 1 step 1 until F do
for j:= 1 step 1 until 2 do w[l,j]:= read (20);

= E[7,2]:= E[10,1]; 
= E[5,1]:= E[8,2];= 
=E[7,1]:= E[11,2]:=

E[1,1];= E[2,2]:= E[6,1]
E[10,2]s= 2 |
E[1,2];= E[2,l]:= E[4,2]
E[9,1]î= Oj 
E[3,1];= E[3,2];= E[6,2]E[12,1];= 1j 
E[8,1];= E[9,2]:= 4|
E[4,l]:= E[5,2]:= E[11,1]:= E[12,2]:=> 3|
for 1 := 1 step 1 until v do
for 1 1 step 1 until u do
DËRF[i,0 , jn=read'(20 ) ';
for p := 1 step 1 until v do
for q:= 1 step 1 until 4 do
for r:= 1 step* 1 until u dd
begin DERF [p ,q,r ] :==ü.'0 1

if DËRFIp,q-1,r]= 0 then g$to LI else
If r+q< u then DERF[p,q,r]:=DERF[p,q-1,r] 
X(u+1~q-r) else
^  r+q >u tKëïï~RERF[p.a.r1:=o.Oj LI ; enaf

for c:= 1 step 1 until F do
for *:= 1 1 üriTi'l c do

for 1:= 1 step 1 uÊEll 12 do
for J:= 1 âEëp 1 until' 12 do

begin l:=(l-l1X12+Jj —
If A[l,1]=0 then goto L2s
SRR1 [ 1,1 ] :=wTïï7T:-----  “
ARR1[1,2];=E[1,1 
ARR1[1,3]:=w[d,1 
ARR1[1,4]:=E[J,1 
for k;= 1,2 do

M R 1  [2,1] :=w[c,2]| 
ARR1[2,2]:=E[1,2]| 
ARR1[2,3]:=w[d,2]| 
ARR1[2,4]:=E[J,2]j

begin p1=ARR1[k,I]| q1!=ARR1[k,2]| 
 p2:=ARR1[k,3JI q2;=ARR1[k,4]



L2 ;end

C;=ü,ü| 
q:=2xu-q1-q2;
for r := 1 step 1 until u do 
for s :« 1 step 1 until u do 
begin C:=C+('lf' DERF [p 1,q 1 ,r ]-Ü 

or DERF[p27q2,s]=0 then Ü.Ü 
else DERF[pi,q1,r]x 
DERF[p2,q2,s J/(q-r-s+1))

end;
IHÏÏ2[k];=C;

end;
MÏÏ3[1] :=ARR2[1]XARR2[2];

for e := 1 step 1 until n do 
begin C ;=ü7Ü;

for 1 := 1 step 1 until 144 do 
ARR3 [TTxÂ[ 1, ell 

MK[ G, d,e ] :=C;
end;

end;
write binary ( 110, ARR3, URR3a0002) ; 
for e:« 1 step 1 until n do 
for i:=* 1 step 1 until F do
for j:= 1+T step 1 until F do
MKfl, J.e] :-Miq:i7i,eTl
for e ;= 1 step 1 until n do 
begin for 1 := 1 step T u n ^ l  F ^

for j := 1 step 1 until F do
EMTi, J] :=METirj,eT; ~
write binary ( 110 ,KM,j[KMOOOOOO%) ;

end;
begin Integer f 1,f2;

f 1 informât ( [-d. dddio+nd; ; 
f2 ;=format(i-d.dddio+nd;cccj_) ; 
for e 1 step 1 until n do
for 1;~ 1 step 1 until F do
begin for JT^I step 1 until F-1  

do write (7 0 7fT7lVIK[i, J,e] ) ; 
write(70,f2,MK[l,F,eJ);

end
end;

end; ■J

close(2 0 ); close(7 0 ); close(1 1 0)
end->


