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The Behavioux of Flexible Slabs on Idealised and Actual
Foundations.

SUMMARY
Ph.D. Thesis. Tan M, Smith. Univexrsity of Glasgow,
Department of Civil Engineeri
1967,

Due to a lack of contact hetween the disciplines of soill mechanics and
structural engineering there is a tendency for flexible structures to

be analysed under grossly simplified assumptions regarding the interaction
between the structure and its soil foundation. Tor example, it is often
assumed that. the contact pressure on the base of a structure 1s uniform,

or linearly varying. In the thesis it is proposed that the use of a
digltal compuier enables a structure and 1ts foundation to be analysed

as a complete entity, The computer is essential because of the complexity
of the mathematical formulation of the problem and because of the scale

of the analysis involved,

Most of the theoretical work concexns the finite element method for the
analysis of structure and foundation, although some work on the finite
difference method is also presented. The former method allows a more

realistic approximation to be made to the inhomogeneity of soil deposits.

An evaluation of current methods and some advances in the theory of the
finite element method as applied to plate or slab structures are presented,
culminating in an analysis incorporating the effect of transverse shear

deformations on the bending of elastic plates.



The theories are then applled to the evaluation of a set of
experimental results obtained fox circular plates bearing on a sand
foundation and loaded with concentrated central loads. The classical
idealisations of foundations are found to be inadequate and more
realistic models are proposed for the particular plate structure and

loading case examined.
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CHAPTER 1.

REVIEW OF THE ANALYSIS OF FLEXIBLE STRUCTURES
BEARING ON DEFORMABLE FOUNDATIONS

1.1 Introduction

In the Author's experilence there tends to be a rather

rigid division between enginesrs concerned with the analysis and
design of structures, and those concerned with the soll mechanics
and foundation aspects. This leads to sweeping assumptions on
the part of designers about the nature of the interaction between
a structure and 1ts foundatlon; for example 1t is often assumed
that the contact pressure on the base of a structure is uniform,
or at best linearly varying across the structure.

In the case of flexible foundations, a further difficulty
is introduced by the complexity of the mathematical formulation,
which generally involves fourth order ordinary or partial
differential equations. This leads to a further division, since
the solutions to these governing equations have generally been
obtalned by mathematicians who may have no idea of how the
solutions are to be used in engineering practice,

The intention of this thesis is to reconcile the three
way division by means of computer-oriented analysis techniques.
The Author believes that the development of digital computers on
a large scale renders obsolete Terzaghi's statement (1), that
"the solution of fourth order equations is beyond the capacity of
the average practising engineer", and further that the ease with
which computers can handle very large problems should encourage
the integrated analysis of structures and their foundations as
complete entitiles.

Chapter 1 of the thesis consists of a review of previous
work on the analysis of flexible structures bearing on deformable
foundations, with emphasis on the "three-dimensional®” (plate or

slab) rather than the "two-dimensional® (beam) problem,
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In Chapters 2, 3 and U4 the theoretical basis is developed for
the analysis of three-dimensional structures bearing on
deformable foundations by computer oriented techniques, while in
Chapter 5 these techniques are applied to the evaluation of the
results of a series of tests carried out on plates bearing on a

uniform sand foundation artificially created in the laboratory.

1.2 The Winkler Foundation
The Winkler model (sometimes called Winkler-Zimmerman,

especially in the U.S.8.R., or even Hertzlan, since Hertz was the
first to consider plates on this type of foundation as distinet
from beams) is the simplest elastic foundation model it is
possible to use. It was first suggested by Winkler in 1867.
One assumes that the foundation can be represented by a bed of
infinitely closely spaced, but discrete springs which have a
stiffness, k, transverse to the plane of the plate {or beam)
resting on them but zero stiffness against any other displacement
or rotation. k 1s called the "foundation modulus” or "modulus
of suburade reaction"” and typically has dimensions lb/1n3. A
large proportion of the literature dealing with structures
bearing on this model concerns beams, and often the methods
described cannot be extrapolated to the more complex plate
problem.

Hetenyi (2) presents a number of exact solutions to
the governing differential equation of a beam on a Winklenr

foundation: L
d
EI *—EX = q - ky eq(l.1)
dx

and 1n a recent contribution (3) has traced the history of
developments in the study of the Winkler foundation, and of other
foundation types, up to the present day. It might be pointed out
that the study of eq(l.l) has been given added impetus because

of its applicability to other problems, for example thin shells.
Barden (4) has catalogued the various approximate procedures
available for the solution of eq(l.l) and concludes that the



approach due to Hendry (5) 1is the most effective.

For a summary of contributions to the study of plates
bearing on various types of foundation, reference should be made to
the standard work of Timoshenko and Woinowsky-Krieger (6), Chapter 8.
The extension to the consideration of the simplest plate problem,
that of the radially symmetric plate on a Winkler foundation was
first discussed by Hertz in 1884k. The governing equation becomes

2 2
d 14 dw  1ldwy 4aq-kw
( 5 *1 dr) ( 5+ 7 dr) - D eq(1.2)
dr dr

and was solved by Hertz for the special case of a plate with a
concentrated central load. By using Bessel functions, Schleicher (7)
was able to obtain solutions to a wider variety of axisymmetric
plate problems.
The general case of a finite rectangular plate bearing on
a Winkler foundation, governed by the equation:
b b 4
D (—g—j{ + 2 axgg’ye + gyﬁ) = q - kw eq(1.3)

seems first to have been analysed, about 1920, by H. Happel, using
the approximate Raylelgh-Ritz procedure, Further applications of
the same method are due to Vint and Elgood (8) who also conducted
experiments on a steel plate bearing on springs and to Murphy (9)
who compared the theoretical results from the Ritz procedure with
the experimental values for a steel plate bearing on a hard rubber
subgrade. Pickett, Ravel, Janes and McCormick (1Q) used Fourier
series for the solution of the same problem, but considered their
solution inferior to Murphy's. In a series of papers (11),

Allen and Severn used the method of finite difference approximations
to eq(l.3) to obtaln solutions for the more complicated boundésy
conditions pertaining at exterior walls, re-entrant corners etc.
of flexible foundation rafts. This work will be discussed more
fully in a later section (4.2) together with the Author's own
contributions to the finite difference method.



A solid plate can be approximated by a grid framework, by
a sultable choice of the stiffnesses of the members of the grid,
and this approach has been used by Sawke (12) for the solution of
some problems involving Winkler feundations (including Allen and
Severn's problem), Sawko was able to modify a computer program,
origlnally wrltten for the analysis of plane frameworks, to
Incorporate the effect of the foundation stiffness. Gridwork
analogiles are the forerunners of the more sophisticated finite
element analyses presented later in this thesis (Chapters 2 and 3).
Thelr merits will be discussed more fully there.

1.3 Coupled Spring Foundatilons

Winkler's hypothesis of an "uncoupled" medium is untenable
for a beam or plate structure bearing on a continuous, highly
interconnected medium, The degree of error will be shown to be
dependent on such variables as the flexibility of the structure
and the distribution of loading. Due to the difficulty of
analysing flexlble structures bearing on semi-infinite media
(see Seetion 1,4), foundatlon models of intermediate complexity
have been sought. Those are called "coupled" or "generalised"
spring foundations. Work in this field 1s reviewed by
Hetenyi (3) and in a comprehensive paper by Kerr (13)., If time
dependent properties in the foundation can be ignored, three
"coupled spring" models have been proposed:

(i) Governed by a fourth order equation. The mathematical model
for this type is either,
(a) a spring bed, where the tops of the springs are
connected to a thin stretched elastlc membrane,
(b) a spring bed where thereis shear interaction
between the springs,
(¢) a spring bed where the springs resist moments
applied to them as well as transverse forces.
The same differential equation governs (a), (b) and (ec).
(ii) Governed by a sixth order equation, obtained by making
simplifying assumptions about tho behaviour of an elastic
solid.
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(i11) Governed by an eighth order equation. The mathematical
model for this type 1s a two-layer spring bed, the layers
separated by a flexible beam or plate,

Since it will be shown that elastic solid foundations can
be conveniently analysed using digital computers, the usefulness of
these "intermediate" models is open to question,

While thils thesis was being prepared, Severn (14)
published an analysls of rectangular plates, bearing both on Winkler
and on coupled spring foundations, using the finite element method.
This work parallels the main contributions of this thesis and will
be discussed later in conjunction with the Author's own work. In
the same category is a paper by Cheung and Zienkiewicz (15) dealing
with plates on Winkler and on semi-infinite, isotropic, homogeneous

elastlec solid foundations by the finite element method.

1.4 Elastic Solld Foundations

Treating a foundation as an elastic solid involves, with

the exception of the special case of axisymmetry, the solution of a
problem in three dimensional elasticity. Due to the complexity of
the theory of elasticity in three dimensions, nearly all of the
problems 1in this class which have been solved have concerned the
semi-infinite, homogeneous isotropile, elastlc medium although in
principle the class contains media of finite dimensions and more
arbritrary elastic properties, for example anisotropy or variabllity
of the elastic properties with location in the medium, Holl (16)
solved the problem of an infinitely large plate in a state of
axisymmetry (using Bessel functions). For finite plates, two
approximate methods have been used. Borowicka (17) solved the
problem of the finite circular plate by matching the plate and
foundation deflections when each was expressed as an infinite series.
The solution involves solving a set of linear equations, the number
depending on how many terms of the infinite series are retained.
Gorbunov-Posadov and Serebrjanyi (18) used the same method for
rectangular slabs. As an alternative, finite difference

approximations have been used, circular plates being tackled by



Habel (19) and rectangular plates by Pickett, Ravel, James and
McCormick (10) and by Pickett and McCormick (20). In all of the
above analyses, an lsotropic elastic half-~space was assumed, but

an approximate method published by Barden (21) considers a cirecular
plate on an anisotropic elastic half space. Barden matched the
displacements of plate and foundation at a finite number of points,
n, and had to solve n simultaneous equations after the fashion of
Borowicka. An interesting feature of Barden's work is his
discovery that the surface deflections of a special type of
anisotropic medium can be obtained from those of an isotropic medium
simply by multiplying by a dimensionless factor which can be
tabulated for varying degrees of anisotropy (22). Sommer (23) has
recently described a computer-dependent method for analysing a
complete structure bearing on an elastic solld medium, thereby
enabling the influence of the flexural rigidity of the superstructure
on the settlements and contact pressures to be assessed. Only the

two dimensional problem was considered by Sommer.

1.5 Comparison of Foundation Models

Engineering practice in the design of flexible structures
is often to assume that the distribution of contact pressure between
structure and seil is uniform, or linearly varying whatever the
flexibility of the structure or distribution of loading, Where a
foundation model is used, it is most common in the U.K. and U,S.A.
to use the Winkler model, whereas, according to Tsytovich (24),
U.S.8.R. practice is to use the elastic half-space model. As far
as the Author is aware, the use of coupled spring foundations is not
common practice for the design of flexible structures bearing on
soil. Fig.1l.1l shows the implications of the two main assumptions.
On the Winkler foundation, a uniformly loaded structure will
experience a uniform uplift pressure (and uniform settlement)
whatever the flexibility of the structure, On the other hand, on
the elastic half space, a rigid structure will be subjected to an
"inverse parabolic" contact pressure distribution while settling
uniformly, whereas a flexible structure, uniformly loaded, will be

subjected to a uniform contact pressure distribution while undergoing



a "parabolic" displacement form. Therefore the assumption of
uniform contact pressure for any foundation condition is unlikely to
be acceptable. Similarly, the Winkler model and the elastic helf-
space cannot both represent the behaviour of a foundation under all
circumstances of structure flexibility and loading. Vesic (25) and
Barden (4) have tried to show that the two foundation models
correspond, but have chosen the ideal case of flexible beams
subjected to concentrated loads. In reference (24) Tsytovich
called for a discussion of the limits of applicability of the
theories of the linear elastic half-space and the Winkler model:

Such a discussion is one of the aims of this thesis.

1.6 The Stress-Strain Characteristics of Soils

Having considered the foundation models which can be
conveniently analysed by existing mathematical metheods, it 1s
pertinent to question to what extent these models duplicate the
known stress-deformation properties of naturally occurring foundation
materials, (This leaves aside completely for the moment gJuestions
regarding the correctness of the idealisations of the structures
being analysed. For example is it reasonable to assume that a
massive, heavily reinforced concrete raft can be represented by a
perfectly isotropic, elastic Kirchhoff plate?)

Detalled study of the stress-deformation relationships of
soils 1s a fairly recent development in soill mechanics, a subject
which has been primarily concerned with the failure of soil masses,
with the exception of the special case of consolidation of cohesive
soils. At first sight a comparison of the assumed and observed
properties is discouraging. The assumptions in the previous
sections have typically involved:

(i) time independent stress-strain behaviour
(i1) linear, recoverable stress-strain behaviour
(iii) homogeneity
(iv) (quite often) isotropy
(v) "stability" in the sense that for an increment of stress

applied to a soll element, no work 1is done by the soil



against the imposed stress system. These agsumptions are
examined i1in turn, for a particular soil in a particular
condltion before stressing. (i.e. no extrapolation to

the behaviour of the soil under different initial
conditions or to the behaviour of any other soll is
assumed.)

(i) A large proportion of naturally occurring soils exhibit
time~dependent stress-strain behaviour, Assumption (1) can
therefore only apply to solls which are predominantly cohesionless,
although the time dependence exhibited by heavily overconsolidated
cohesive materials at stress levels below the preconsolidation
pressure may be insignificant,

(ii) The stress-strain relationships of cohesionless soils are
markedly non-linear and deformations are usually ilrrecoverable at
least to some extent. The latter property means that the behaviour
of a structure on a cohesionless sub-soll on first loading may differ
considerably from the behaviour on subsequent loadings. Although
the non-linearity of the stress-strain relation is not catered for
directly by the theories so far advanced, these theories, alllied
with the use of iterative methods employing a computer, can account
for non-linearity. For a variety of stress states, coheslonless
soils have been found to follow a strain-stress law of the form:

€=ao’K

where a and K are pure numbers. A selection of observations is

given below:

Jé¢ xnbsen (26) €U = 0.608 x lo"jo,- 01612

Chaplin (27) ev = ao’?

5 0.206)

chultze and Moussa (28) eu = 0.0106 & { Limiting values
cu = 0.00570,0.680)

Brinch Fensen (29) ev = 0.58e1'8cyo'53

In the above, u = uniaxial, v = volumetric, e = 1nitial void ratio.
The coefficient a varies widely, while the exponent X seems to be
of the order of 0.5 for most solls. (The value of 0,2 reported by

Schultze and Moussa refers to a relative density of zero.)



(i1i) Cohesionless soils can be inhomogeneous to varying degrees
and this is not catered for in any of the analyses considered so
far, Finite element methods given later 1n this thesis will be
“ound to be capable of dealing with arbitrary inhomogeneity.

(iv) If anisotropy exists in a cohesionless soill the
difficulties presented are not too great. Barden (22) has already
dealt with one special case of aniscotropy and, in principle,
arbifrary anisotropy can be accounted for by the methods described
later,

(v) The property which makes the analysis of the stress-strain
behaviour of particulate materials throughout the stress range up to
failure so difficult is the property of dilatency which makes such
materials "unstable” in the terms of the theory of plasticity,

That is, under a small increment of stress, work may be done by the
material against the applied stress increment. Rowe (30) has
begun to tackle this problem which the Author considers to be the
key to the advancement of soil mechanics in the field of stress-
strain relationships. However, the deformations beneath flexible
structures at working lcads are usually small, and the soil is
certainly nowhere near failure. The majority of sands will not
dilate at such low strains, but for very dense sands, which dilate
throughout the strain range, the elasticity theories are inadequate.
Nor 1s there any attempt in this thesis to create mathematical
models of that type of behaviour.

Considerable restrictions have therefore been placed on the
types of foundation, and sequences of load application which can be
deseribed in terms of the classical elastic models (even although
these are generalised for non-linearity, inhomogeneity and
anisotropy). Nevertheless of all problems in soil mechanics, the
analysis of the flexible structure resting on a cohesionless (but
not exceptionally dense) medium holds out the best hope for a
solution in terms of elasticlty. This is because:

(a) Deformations are predominantly time independent.
(b) The loading is applied once only. The problems of
flexible road or airfield pavements are correspondingly

mnre diffiontt,
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(¢) The deformations are so small that they tend to
produce a compression of the soil without
mobilising high shear stresses which result in a

tendency towards dilatent behaviour.

1.7 Some Other Procedures for the Design of Flexible

Structures Bearing on Deformable Foundations
(i) Beam-Strip Methods

These are the earliest, and simplest, methods of analysis

available for foundation rafts although they involve, correspondingly
the greatest number of assumptions. The raft is divided into a
series of continuous beams crossing one another at right angles.
The reactions of these main beams on each other at the
Intersection polnts are assumed ss are the reactions on the main
beams of the slabs filling the spaces in the beam gridwork. In the
context of these sweeping assumptions regarding the struectural
behaviour, it has been usual to assume a uniformly distributed
pressure between soill and raft. Recent recommendations for the
design of foundation rafts (31) permit the use of this method for
"flexible rafts where the variation in adjacent column loads and
spans is not greater than 20%", but advocate approaches based on
plate theories for general raft design.

(ii) Baker's Soil Line Method (32)

This method 1s a generalisation of the beam-strip method

which allows for the variation in soll pressure across the raft and
for its relation to deflection (Winkler Hypothesis). The
simplification 1s introduced that the soil pressure is assumed to
vary linearly along any of the main beams. In order to cover the
worst possible case, limits between which the coefficient of subgrade
reaction, k, must lie are based on the results of tests at the site.
Baker concedes that the method, despite its approximate nature, is
lengthy, a feature which does not commend it to practising engineers.
Baker has demonstrated (%2) that, for a beam, his method glves
results In close agreement with the Hetenyl analysils of the elastic
line. At the very outset of this thesils, access to high speed
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computing capability was assumed and in this light, Baker's method
introduces superfluous assumptions. In the absence of a computer
it might take equivalent times for skilled operators to employ the
soll line method or the Allen and Severn relaxation method for a
"one off" solution, but the former can deal more quickly with the
effects of the factors mentioned by Baker in his discussion of Allen
and Severn's work (33):
(i) Variation of k values over the site,
(ii) Brrors in assessing k values,
(iii) Restraint of the building frame to bending of the raft.
(iv) Reduction of flexural rigidity of the raft due to
eracking and creep with time.
(v) Variation in the distribution of live load in the
bullding.
The methods proposed in the next three chapters can cope
with all of the five points listed above.
(iii) Yield Line Method

Thus far, only elastic methods of analysis have been

considered. In recent years increasing attention has been paid to
ultimate load methods of analysis {U.L.M.) involving, in the case of
reinforced concrete slabs, the yield line theory first developed by
Johansen (34). Some protagonists of the U,L.M. imply that it should
supersede the elastic methods altogether, but the Author prefers to
think of the two approaches as complementary. A major advantage
claimed for the U,L.M. 1s its simplicity compared with elastic
methods but approximate procedures such as finite differences and
finite elements, allied with the use of computers, are rendering
tractable an ever increasing number of problems by elasticity
techniques. Further, Wood (35) has shown that elastic solutions
give exceedingly good results, in terms of economic designs, for
reinforced concrete slabs as long as the distribution of the
reinforcement is varied. Desplte the simpliclty of the U.L.M. once
a lower bound yleld pattern has been found, the discovery of this

pattern does not seem to be trivial for complex structures.
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Davies (3%6) has solved the problem of a circular tank foundation slab
subjected to parabolic and Ilnverse parabolic contact pressure
distributions, but this 1s the only solution of a foundation problem
by the yield line method known to the Author. Further consideration
of the method 1s outwith the scope of this thesis, although its
merits as an alternative to the elastic analyses presented in the

succeeding chapters are conceded.

1.8 Conelusions

A study of available methods of analysing flexible structures
bearing on deformable soil foundations indicates that these methods
are limited in their scope. Many are restricted to two-dimensional
problems, and most are only capable of dealing with uniform
structures bearing on uniform foundations such as the pure Winkler
and the semi-infinite, homogeneous, elastic models. In this thesis,
methods are developed whereby beams, circular, rectangular or
irregular plates with arbiltrarily variable elastic or sectional
properties and bearing on non-uniform Winkler, or Coupled, or semi-
Infinite elastic foundations with arbiltrary anisotropy and
inhomogeneity can be analysed with equal facility. Non-linear
elastic properties in any of the foundation types can be tackled by
the same principles using iterative procedures. The methods are
entirely dependent on the use of electronic digital computers, and
have been used in turn for the evaluatlon of a limited series of
experimental results for plates on a sand foundation. A fuller
experimental study, together with an examination of case histories
could lead to the compilation of a set of charts which would
adequately describe the majority of foundation types. Further, the
methods proposed, and particularly the finite element method, might
be extended to include truer models of soll behaviour than the
classical elastic models, by the inclusion of such features as

dilatency and time dependence.



CHAPTER 2.

FINITE ELEMENT METHODS FOR THE ANALYSIS
OF. ELASTIC PLATES 1IN BIMDING

2.1 Introduction
It has already been pointed out in Section 1.1 that computers

can be of conslderable use in the solution of problems involving
flexible structures bearing on elastic foundations for two reasons.
Flrstly for the solution of the differential equations by numerical
methods, and secondly because of the scale of the problems involved,
thus taking advantage both of the speed of computation and of the
large storage capacity of modern machines. At the beginning of this
research, the potentialities both of the finlte difference and of the
finite element method were investigated, and 1t was felt that the
latter offered the best prospects for solutions to the originally
envlsaged problem of rectangular plates bearing on elastie foundations
and subjected to restraint from a superstructure, The finite element
analyses for plates in bending reported in the literature as of 1964
were studled, and some apparent discrepancies which were found led to
the development of new analyses, using rectangular plate elements,
which are described in this Chapter. A little work was also done
using the finite difference method, and this is described in Chapter k.

2.2 Antecedents of Modern Finite Element Methods
The thin elastic plate subjected to bending actions 1s such

a gommon structural element that considerable effort has been expended

in the past on its analysis. The governing differential equation of

flexure 1s
4 4 L
D(a}’:*ghew 2+BK)=Q
Bx bx by ay
N eq(2.1)

or DV'w = q
Analytical solutions exist for certain rather restricted examples
of plate geometry, loading and boundary conditions, a good selection
being given in the standard work of Timoshenko and Woinowsky-Krieger (6).
However if there is any complexity in the geometry, loading distribution
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or support conditions, recourse has to be made to an approximate
analysis. Of these, the most widely used are the finite difference
and finite element methods, The method of finite difference
approximations to the biharmonic equation, eq(2.l), is considered in
some detail in Chapter k4.

Alternatively there is the method if finite elements which
is referred to here in its broadest sense as any ldealisation of a
continuum by a finite number of discrete elements eommected at polnts
called "nodes". The sallent feature of the use of either the finite
difference or the finilte element method is the necessity of solving
large numbers of linear algebraic equations and while some solutions
by the former method were obtained some yearsesgo using the relaxation
techniques of Southwell (37) the introduction of the high speed
electronic digltal computer has vastly increased the scope of
approximate analysis procedures.

The first steps in finite element analysis of structures were
taken by Hrennikoff (38) and by McHenry (39) in the early 1940's, when
plates subected to in-plane or bending actions were ideallsed as
frameworks of bars whose elastic properties were varied so that the
behaviour of the framework under load approximated closely to the
behaviour of the sclid plate. Analyses of plates using such "one-
dimensional" elements are still being reported (40) but the Author
agrees with Hrennikoff (41) that the more sophisticated "two-
dimensional"” elements which have been developed are more likely to
come into general use. Two-dimensional elements can represent a more
general state of stress than one dimensional elements, and with
certain configurations of the latter, Poisson's ratio cannot assume an
arbitrary value. The only point in favour of onhe-dimensional
elements is that a standard plane framework computer program can be
used to analyse plates subjected to in-plane stress or flexure; the
analysis 1s not less complicated or less time consuming.

Ten years after the early work using one-dimensional
elements the availability of electronic digital computers gave a great
boost to structural analysis by matrix methods in general and by the
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finite element method in particular. The complexity of aircraft
fuselages and wings was a powerful incentilve for the adoption of
automated analysls procedures in the aviation industry, and the
outstanding contributions of Argyris (42) and of Turner, Clough,
Martin and Topp (43) desceribe the early work in this field.

Comprehensive bibliographies are given in references (43) and (L4k4).

2.3 Force Method and Displacement Method
Pwo different (although complementary and highly

interrelated) methods are most commonly employed in the analysis of
structures employing finite element techniques. These methods are the
force (or flexibility or compatibility) method where the unknowns are
taken to be forces in the structure and the displacement (or stiffness
or equilibrium) method where the unknowns are displacements at the
nodes of the structure. A third method, which is part force method
and part displacement method is sometimes used. The term "displacements"
includes quantities which may not be readlly recognised as such, For
example in what follows, 63W/ > x° Oy is treated as an unknown in the
displacement method although its physilcal significance is obscure.

For this reason these displacements are called "generalised" displace-
ments, and the forces which correspond to them "generalised" forces.

It must be emphasised that the difference in methods arises in the
analysis of the total structure after the force-deformation relation-
ships of the individual elements have been obtained.

At the primary level of the isolated element, flexibility
and stiffness are directly related and means of deriving the element
flexibility matrix corresponding to an element stiffness matrix and
vice versa are given by Gallagher (45).

At the secondary level of the interconnection of elements
1t is necessary to introduce the concepts of a pure compatible
approach and a pure equilibrium approach, a terminology proposed by
Fraeljs de Veubeke (46). By "pure" one implies that either
compatibility or equilibrium must be satisfied throughout the group
of interconnected elements, that is in the interior of the elements

and along the boundaries between the elements. These pure approaches
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are of considerable importance firstly if monotanic convergence to
a correct solution is sought as the number of finite elements
comprising a structure is increased, and secondly if an upper or
lower bound to the energy of the structure is desired. Melosh (47)
provides the proof that a pure approach is a necessary (though not
sufficient) condition for monotonic convergence of a solution as the
number of elements per structure is increased, while Fraeijs de
nggike (46) shows that a purely compatible approifgegrovides afl
wpper bound, and a purely equilibrium approach an¥wsy» bound to the
influence coeffilcients for a structure where, if a single force F
produces a displacement d in its line of action, the influence

coefficient ¢ is defined by
d=CF-

This implies thata pure compatible analysis of a structure should
result in a displacement under a single load which is less than the
true value. Unfertunately bounds on the displacements of a structure
with a movegeneral lcading, i.e, distriluted loads etec., cannot be
inferred, nor can bounds be placed upon the stresses calculated by
a pure approach. All that is known is that the potential energy

of the finite element idealisation of the structure is less than the
potential energy of the true structure. Nevertheless, stronger
bound theorems may eventually be formulated and perhaps experience
will show that the pure compatible and pure equilibrium approaches
always produce results which bracket the true ones, although the
bounds are in some cases reversed, For these reasons, the pure
approaches are considered to be highly important and the new work in
this chapter is completely devoted to pure compatible methods. The
results obtained are compared with those obtained using methods
which violate both compatibility and equilibrium.

At the tertiary level of actual analysis of a given
structure subject to certaln boundary conditions, the topology of the
structure 1s the governing factor in the selection between force and
displacement methods of analysis. Struetures with predominant chain

topologies are more amenable to analysis by the force method, the
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number of 'mkneens Trequently being conslderably less than if the
displacement method were used. On the other hand structures with
more complicated topologies are more easily handled by the

displacement technigque. Structures with interconnected two-dimensioual
elements fall into the second class. The selection of redundants or
groups of redundants for the analysis of thls second class by the

force method presents some difficulty although mentlon should be made
of an automated method devised by Denke (48) for this selection
process. Practice in the aviation industry is to use the force method
for the analysls of fuselages, and the displacement method for the
analysis of wings (49). Analogies in civil engineering practice would
be the use of the force method for analysis of bullding frameworks and
the displacement method for shear walls and floor slabs. The plate
structures considered in this thesis fall into this second class and
the dilsplacement method has been used throughout fr the analysis of
these structures.

2.4 Derivation of Discrete Element Stiffness (Flexibility) Properties
In the previous section, Section 2.3, it was polnted out that,
apart from possible computational inaccuracies, the results obtained

from the analysis of a structure by the force method and by the
displacement method will be 1dentical once the stiffnesses (and hence
the flexibilities) of the elements constituting the structure have
been derived. Therefore the prime interest in the comparison of

the various finite element analyses described in the literature and
of the new analyses given In this chapter lles in a comparison of

the (generalised) force-displacement relationships of similar
elements, Several means of deriving these relationships are used in
the literature, for example the use of the principle of virtual work,
or the use of a strain energy formulation together with Castiglianc's
theorem. Gallagher (45) has catalogued various matrix methods of
analysis with particular reference to plane stress problems. This
chapter attempts to fulfil one of Gallagher's suggestions for future
work, namely an evaluation of matrix methods of analysis for

plates in bending (with special reference to rectangular finite

elements),
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2.5 Rectangular Element Stiffness Matrices for Plates in
Bending 1959-1964

Whereas the early work on two-dimensional finite elements

by Argyris and others, described in Section 2.2, had been restricted
t0o plates subjected to in-plane stresses, in 1959 the finite element
method was filrst applled to the analysis of thin plates in bending by
Adini (50) and by Papenfuss (51). Neither of these analyses was
published, and 1t has only been possible to consult the former.

The main interest in Adini's work centres on his assumption of the
displacement function for a rectangular element in terms of twelve

undetermined coefficients as follows:

2
W = a.lx + a2x + ajxj

2
+ auy + asy + a6y3
2 3 2
+ a7xy + a8x y -+ a9x y + a1 v + allxy3 + a12 eq(2.2)
This assumption has been extensively used by subseguent workers and

it is important to examine its lmplications as far as interelement

compatibility 1s concerned. Pifferentiating eq(2.2) one obtains:

dw 2
/ Ox = a, + 2a,% + 3a3x
- 2 2
+ a7y + 2a8xy + 3a9x y o+ aloy + ally3

and b“&'hy‘= a), + 2a5y + 3a6Y2

+ a7x + a8x2 + a9x3 + Qaloxy + 3allxy2

Hence along any line ¥ = constant the displacement w and the slope
along that line are uniquely defined by a cubic equation with four
undetermined coefficients. These coefficients are defined by the
dlsplacements and slopes at the ends of the line, i.e. the edges of
the elemint. However bw/ Ox 1s characterised by an equation of the
form

2‘W/Z!x = Alx2 + AX + A3
so that the two values of awy'bx at the ends of the line do not
fully define the cross slope b‘i/zlx. Therefore in general a

discontinuity in the cross-slope between elements will arise when
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this displacement assumption is used, as shown in Fig.2.la. Adini
assumed a distribution of stress resultants along the edges of the
element and computed the stiffness matrix by the principle of
virtual work. The matrix operations leading to the formation of a
stiffness matrix are given in Section 2.6 in conjunction with the
description of other element analyses.

Dill and Ortega (52) derived another early plate stiffness
matrix, but since thelr approach does not maintain inter-element
compatibility and is not readily available in the literature it has
not been consulted.

Another matrix which does not maintain interelement
compatibility was derived by Melosh (53). Melosh set up the
expression for the bending strain energy of the plate element in
terms of the nodal degrees of freedom and applied Castigliano's
theorem tc obtain the element force-displacement relatlonships.
This approach has been programmed by the Author in order that the
results obtained by it may be compared with subsequent methods, and
it is referred to hereafter as "Melosh 1961".

The first published attempt to maintain complete inter-
element compatibility was made by Melosh in a subsequent paper (47)
but the attempt was unsuccessful because Melosh used Lagranglan
interpolation in order tQ obtain his displacement function.

Pearson (5u) shows that the equation of the bivariate Lagrangian
interpolation surface over a rectangular region is given by

eq(2.2), which has already been shown to violate interelement
compatibility. The stiffness matrix obtained by this second
approach of Melosh (termed hereafter "Fitted Lagrange") is not
identical with Adini's because Melosh used a "consistent"
displacement formulation (see Section 2.7) whereas, by assuming stress
distributions as well as displacement distributions, Adini was using
what will be termed a "mixed" approach. That 1s, a consistent
approach involves the assumption of displacements or stresses, but
not both. Melosh's approach is however identical to an approach
proposed by Zienkiewicz and Cheung (55). The identity between
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these two methods was masked for a time by misprints in Melosh's
paper subsequently pointed out by Tocher and Kapur (56) and the
Author's first task on commencing work in this field was to
establish this ldentity.

As far as the Author 1is aware the first successful
derivation of an element dilsplacement function satisfying
complete interelement compatibility is due to Papenfuss (51) in an
unpublished thesis (quoted by Clough and Tocher (57)).  This

derivation involves the use of Hermitian cubic polynomials:

Boundary Conditions Polynomial
X =0 X = a
w=12¥_0 Lw.2¥_, (x) = 3(a”-3ax+ 2x°)
- §x B T oax by T oa
w::(;ﬁ:l wz—%—‘;—i=0 pz(x)=-;2(a2x-—2ax2+x3)
W dw 2
w-.:gx:O Wwe=1 bx:o pj(x)=-;3(3ax —23(3)
W:—ﬁ:o W = %"J"WC= 1 p)_l_(x) r“""ia(xj - axe)

which had by 1964 been derived independently by other workers
including Schmit (58) and the Author. By using combinations of
these polynomials a displacement function completely satisfying
interelement compatibillty can be written in terms of the
conventional twelve generalised displacementsfor a rectangular

element (transverse displacement and two rotations at each node)

£t Lo (W}

If, with reference to Fig.2.2 the generalised displacements are

as follows:

written in the order:

LVJ = Lwi %—g)i (“g%)i J 1=1,2,34
the ["D,} vector is:
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{rpl(X) p, (¥}
ps(x) p,(¥)
p, (x) py(¥)
py (x) p5(¥)
py(x) p5(y)

p, (x) p),(¥) }

o
\..-*r-)
il

pB(X) pj(y)
p), (x) pj(y)
pB(X) P, (¥)
’ p5(x) py(¥)
| (%) py(¥)
( py(x) py(¥) )

This method is referred to from now on as "Lagrange Hermite" and the

method of deriving the appropriate stiffness matrix is described
in the next section.

Note. The following matrix notation 1s used throughout thils thesis:

o
So
}

column vector v,

row vector r T {f}T

—
3

| S
t

rectangular matrix M

e
E; =
PR
)
3] L]

=

amd
3
]

transpose of M

inverse of M

2.6 Matrix Formulation of Consistent Displacement Approaches
Although the procedures used by Melosh (47) and by
Zienkiewicz and Cheung (55) lead to identical stiffness matrices,

the methods of derivation are different, and the Author's view is

that Melosh's approach is superior. The steps in the two methods

are now examined,

(a) Direct method - due to Melosh (47)
(1) The displacement function is written in terms of the
generalised displacements

o} o= Lo ) o)

(The symbols are written in full in Table 2.1)




- 20 -

(ii) The strese resultants (or stresses) are written in terms of

the generalised displacements

RIIERE)

(iii) The strain energy is written in terms of the stress resultants

av=3|s|{n}
where{s} - [Q]T {e} {u}
tefsl= Lwll B o]
Lw)is|[ Q][A]{B}{
LVjDM LB { [A] B L
-3f Lil Dy LB?][QI [E] {8} Ml
(iv) Let [K] f {‘ 73[5 [Q]LA]{B Hoy |

the element stiffness matrix

Thus U = % | “_1(]{}

(v) The potential energy in the absence of body forces can be

written e U . J’St Lw_l [T] dst

where St is the area of the element surface over which surface

Hence dU =

o o

} a

tractions T are prescribed.

tence 1= 3 Lol [ v} - g, Lol{n[n] as,

Minimising the potential with respect to the generalised
displacements ylelds for the equilibrium condition

bn_ K]{} fst{ ) ]dS
cence § g, {0} (7] as, - [x]{e)

where the left hand side represents the generalised forces,
related to the generalised displacements {:v}' through the
stiffness matrix {'Ki}. The only examples of surface tractions

j

considered in this chapter are, a uniform load q = constant
over the whole element, and concentrated loads applied at the
nodal points. Ig the filrst case the generalised forces are
given by %fa j b {iDﬁ}'dxdy, and the result.of this

ov o



[e]

I}

i

il

Melosh displacement assumption,

see (47), (56).

(—‘13&,’-)4 J

oW
L_ Wy (Bx)l (éy)l eeeesees Wy (

with reference to Fig. 2.2,

\.Mk My Mgy j
-D ~vwD 0
-vD ~D 0
0 0 -(1=v)D

L ;}2 32 5:2 j

3y§ Sxdy
-1 0 0
0 -1 0
O O "2 .
Table 2.1,

\~l X ¥y x2 Xy y2 x3 x2y xy2 y3 x3y xyéj
1tofol olo| o ol o 0 o | o
ol1{o] olol ol o] o o lolo [o
olofil olof ol ol o o fojo |o
1{olv] oJo | v o o | o {vfo {0
oli1tol olv | ol ol o vlolo | v
oioj1l ololawt o} o 0 (3% 0 | O
1lalb] &2labl ¥°| &2| a2bl ab®] B3| adb| ab?
ol1]0l2a |b | 0| 32| 2ap [ b2 | 0 (3a2p| b3
ofol1l ola {26 ] 01 a2 | 2ab |32]| a3 |3ap?
11alo] a2lo | o} &2] o o folo | o
ol1]ol2a o} o] 32l 0 o jo]o |o
ololi|l o |a 0 0 a2 0 o a2t o

Table 2.2,
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operation, as usual wlth reference to Fig.2.2 i1s the generalised

force vector

ab a“b ab> ab a®b _ ab2 ab agb _ ab® ab
T B Toh EI oL Tk 2L 2l %
_ aeb ab2
2L "ok
The case of concentrated loads presents no difficulty. Some

authors have approximated the generalised forces produced by

a uniformly distributed loading by four "lumped" forces at the

nodal points only. 1l.e. q};iﬁ 0 0 3% o 0 E% C O Eﬁ 0 QJ.

In the Author's experience this approximation leads to serious
errors, For example an approximate displacement or stress
resultant can be calculated as being above the true value
whereas using the correct generalised force vector the same

gquantity becomes less than the true value,

(b) Method of Undetermined Coefficients - Zienkiewicz and Cheung (55)

(1)

(11)

(1i1)

(iv)

A displacement function of the form Lw}- \_D -{ }‘ is
assumed, where -La}is a vector of undetermined coefficients.

The number of coefficients 1s fixed by the number of generalised
displacements assumed for the element. (The symbols are
written out in full in Table 2.2, maintaining the nomenclature
of the Melosh method).

By differentiation and substitution of the nodal coordinates in

N A

As in the first method the stress resultants are written in
terms of the generalised displacements
{n} = [a]{s}ted
EAJ?’»E Lo, }
[a]{eY o, ) (o2} (v}

Applying the principle of virtual work and constraining the

i

H

]

displacements such that they are unity in the direction of a
selected generalised force and zero in the directions of all

other forces, then
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External work We = 5\_ _\{F}

where {F}are the generalised forces.

Hence w = 4F 7.
Internal wor'k d,w SL{B w?S]T {M}
or W g = S[

i
ﬁ*w
b=

1 ON
r'—"'|
oy ]
¢..-4-J
‘__.._
o

N
L.——n
r_....
O

{8} D, j[c {]%]ST} {M} dA
5;"{ 1a} [o, ()" {x
Equa n%feifjfna L%Ed[iifzfgij Wo{i]'{aﬁ_tD l 1] } »

- 5 D31] {PZELBJ[A]{B} D-Jf g { } dA )
where agatn |K] = [c1] ITRER LBj[A] {B} (o, ar Lo 1:(

1s the stiffness matrix relating generalised forces ~{F}to

i

generalised dlisplacements f V.
Thus the l,D.i assumptlions of Melosh and of Zienkiewicz and
Cheung can be related:
BRI e
M
It is also of interest to compare these L_D,J assumptions with
the Lagrange-Hermite approach. Whereas the first term in the

latter vector is

D, = -l} (25 - Bax® + ad) —:‘43 (25" - 3by° + 1),
a

b
in the former case the corresponding term is
2
D. = 2 2.'v},'}n<_33r”2:*c3y_2xy3
1 a3 b3 a2 b2 aﬁb ab3

+ 2-X + 2~X¥ - X 4,
a b abe ab

The functions of x and of y are not separable, and 1t can be seen
that a simple functlon in the first twelve obviocus undetermined
coefficients leads to a very unwieldy L,D 1 vector. It will be
seen later that in general it is impossible to guess the
function in terms of undetermined coefficients which corresponds
to a natural choice of a l_DJvector by the Melosh technique,
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2.6 Three New Element Stiffness Matrices
Having obtained the cubic Hermitlan polynomials which

guarantee complete interelement compatibillty for 12 generalised
displacements per element, Papenfuss (51) evidently extended the
method no further. Schmit (58) did not proceed to set up an element
stiffness matrix in the conventional manner, as described in the
previous sectlon, but employed linear programming techniques to solve
the problem:

"Given the potential energy of a system as a

function of the generalised displacements

T =T (vi)

find v, such that n(vi) is a minimum)
The Author however, used the Lagrange-Hermite polynomials to set up a
stiffness matrix as usual. A defect In the Lagrange-Hermlte method
then becomes apparent, perhaps more readily than in the use of Schmit's
approach, in that the deformations associated with the so-called
twisting actlon, namely B2W/Bxay vanish at every node resulting in
an excessively stiff representation of all structures, and producing
divergence from the correct solution in certailn problems where
twisting is significant, as the element mesh is refined (Section 2.8).

This led the Author to an important step, namely the

inclusion of o W/3xdy as an additional degree of freedom for the
element. Thus the generalised "displacements' need not be recognisable
as displacements in a physical sense, and the restricted view of a
recent publication by Severn and Taylor (59) is not justified. The
work in this sectlon shows the finite element technique to be a basic
method of mathematlcal analysis rather than a restricted means of
solving structural analysis problems;, a point also very well demonstrated
in work by Zien%iewicz and his colleagues (60). The problem of
inclusion of d W/3x Dy may be stated:

"look for a functign f(x,y) such that say,

when x = y = 0, f/Bxﬁy:l, f = af/Bx
= bf/by = Q."

Three other conditions apply at the other corners of the rectangle.



- 26 -

Reasoning from the Lagrange-Hermite method that the functions of x
and of y are separable, one arrives at further combinations of the

cubics already derived for the 12 degree of freedom case, namely:

At node 1 pe(x) pa(y)
At node 2 pe(x) pu(y)
At node 3 py, (x) p, (¥)
At node 4 py, (x) D, (¥)

Thus 1f the generalised displacements are taken in the order:

2
ij m\_wi (aw/Bx)i (aw/by)i(hw/axhy)i_‘

i=1,2,3,k
then the '( D} vector is
(o). () )
py(x). py (¥)
p,(x). p,(¥
py(x). py(y
p, (x). P (¥

{5

i

py (x). py(y
py(x). b (¥
pj(X)- p5(y
py, (x). P (¥
pj(X)- oy, (¥)
p,(x). p,(y)
pj(X)- p, (¥)
Py, (x). p;(¥)
pj(X)_ p,(¥)
s vty /
The stiffness matrix resulting from this assumption is of order
[ 16 x 16] . It is referred to as "modified Lagrange Hermite'.

The next step is to observe that any derivative of w can

)
)
)
p,(x). pB(y;
)
)
)

be made continuous across elementgboundaries bg the use of other
polynomials. In particular ifb W/ x° a.nd.b W/By2 can be made

continuous, the moments Mx and My are continuous.
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For example the cubic

1 2
=—6-a(x3-ax 32
Satisfies the conditions: x =0, w = ‘%’bx? = 0
2
x=a,w=0,6w/\6x2:

and a stiffness matrix could be set up corresponding to the generalised

displacements

'62 2
2
= 112:3.')"‘
Slope compatibility is not maintained in that case,bubganls ensured also
by raising the order of the polynomlial to 5, i.e. in general

w=Ax5+Bxu+Cx3+Dx2+Ex+F

There are six forms of this polynomial as follows:

Boundary Conditions Polynomial

X =0 X =a
W = %— ?ch =0 w =g¥ =§z—g =0 ql(x) = i—B(a5~ lOa2x3+ 15axu~ 6x5)
5—-}—‘Z=1w=§’f{%‘=o w:-%—¥=§§%=0 qe(x)=23(323a2x3+3ax~x5)
g—zg_lw=a—‘§=o w=3¥=§%=o a5(x) =§l+(a“x~6a2 3y Bax"- 30)
W mg—z =§’—i~g =0 W= 1%-2 =§}2-;-g = 0 q) (x) =25(10a7%- 15ax*+ 6x9)
w=%‘§ =§3§g=o %—-’;"En 1w=§—§g=0q5(>c) =~§;3(a2x3- 2ax"+ %°)
W naﬁ =ig -0 3;%= 1w %—”I 0 g, (x) =“‘l}-(ha2x3~ Taxts 555)

Pirst of all the generalised displacements were chosen as
2 2 5
2
Lv)= Lo (223, (Fa2), (Faxdy, |

i=1,2,3,k,
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and secondly as

Lvl = L ("3,— (aw) (%,—(— )1J. 1=1,2,3,kh

oY

In the first case the stiffness matrix rusulted in unacceptably over-
stiff solutions; in the second case the solutions were better but
still far less accurate than for the modified Lagrange Hermite method.
For example the éecond set of generalised displacements led to a
value of the central deflection of a square, simply supported plate
carrying a uniformly distributed load which was 20% too low. For
the first set, the value was over 100% too low. Thus it was
concluded that for any polynomial assumption there is a unique best
solution, which derives from the inclusion of all the derivatives of
w In the generalised displacement vector. Hence for the fifth order

polynomlals, the generalised displacements were taken as:

\W B }!ew 25 W b w J
Lv =L 57, (bxe)i = NE ) S
i=1,2,3,4.

and the{b}vector is:
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This approach is called "Fifth Order" *Details of the resulting
stiffness matrix are given in Appendix 1. It will be seen that the
hand calculations are already laborious, and for the next step,

seventh order polynomials, a computer program developed by Duncan (61),
for application of the polynomials developed by the Author to skew
plate problems was modified to enable the stiffness matrix to be built
up automatically from simple input data concerning the polynomials.
Details of the program are given in Appendix k4.

There are eight seventh order polynomials as follows:

Boundary Conditions Polynomial
X =0 X = &
w=1 - rl(x) = 37(a7w 35a5xu+ 8haxo- 70&x6+ 20x7)
a
A w - 1,6 - 20a3xh+ h5a2x5- 36ax6+ 1Ox7)
—b—x =1 I‘E(X> = ';6(a RS
jéfﬁ =1 - ro(x) = £ (asxg- lOajxu+ 20a%%°- 15ax6+ hx7)
Bxg > 2&5
25:‘)w 1 y 3 L 2 6
—_— =1 - r (x) = — (a x’~ hax + 6a°x7- haxC+ x7)
D b 68,l¥
- w=1 r.(x) = i~(35a3xh- 8ha2x5+ 7Oax6~ 20x7)
5 al
. %—% =1 rgx) = - i-g(lBajxh- 300°%0+ Bhax- 10x7)
- D2y 1 .34 ., 25 6 .7
—— =1 7r,(x)="—(ba"x - hax"+ 13ax - Ux')
5:{2 7 2a5
3
- Ez—ﬂ =1 v8(x) = - ;—E(aﬁxﬁ- 5a2x5+ 3ax6— x7)
b.x3 6a

For generalised displacements
Lo mlw @ @y Oy Dy (D) (D
i ox’4 3y’ Ty, 5y21 dx ov’i Qo1
3 33 33
a W). g ) ( Y 2) j 1= 1:2533)"’-
Byjl dx Byq_ Bxby i
*¥Note: The Author later observed that this set of generalised

displacements is not yet complete, #ee discussion of the
work of Bogner, Fox and Schmit (62), Section 2.7.

(
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'{I;k vector becomes:

r. (x) r (y)
f ri(x) r7(y)
rl x) r (y
rs x) r (y)
r7(x) TE(Y)
rg(x) r2(y)
rh(X) r: (y)
ri(x) r u(y)
r (X) rg(y)
r (x r3(y)
r (X) rs(y)
r (X) 2 (y) ‘
v Hx) r5(Y)
r (X) P7(Y)
r (X) re(y)
Ty 2(x) P5(Y)
rl(X) ra(y)
1"3(3() 6(3")
ro(x) r 7(y)
{D‘% = r x) r5(y)
r2 (x) P5(y)
r5(X) re(y)
r7(X) P5(y)
PS(X) PT(Y)
6(X 6(Y)
rg(x) r 5(.v)
PS(X) a(¥)
PT(X) 6(y)
rp(x (y)
r X 7(y
r (x) r (y)
r5(X) r, L)
r7(X) r (Y)
r5( x) r y
re(x) r (y)
r (x r] 2(y)
PB(X) T, Ly
r7(X) r ¥)
\r6(x) r2 (y)

The explicit, algebraic form of the stiffness matrix in this case is
not known (although it could be output by the computer). Appendix 2
gives a specilalised numerical stiffness matrix for a square element of
side 1.0, flexural rigidity D = 1.0 and Pcisson's ratio = 0.3,

In some ways, these sophistications of the finite element

method are self-defeating; for example it becomes difficult to
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specify exactly thg boundarg conditions at free edges of plates because
quantities like gl;g and ~§—g can Bnly be specified individually and

not as the combination g o +‘)>.€ 5 . The quantitative effect of
QY
this is discussed in Section 2.8. However, Section 2.9 considers

the application of the techniques described in this section to the
solution of probelms involving moderately thick plates, where the

use of polynomials of at least order 5 is essential.

2.7 Parallel Work 1964-1067
The development of finite element methods of analysils for

plate bending problems is of such importance that considerable

effort is being expended by research teams in this field principally
in the U.S.A. The work presented in this chapter has been confined
to rectangular elements because it was envisaged that only rectangular
plates would be used in the experimental work. More general element
shapes are the quadrilateral and the triangle, which are much more
difficult to deal with than the rectangle. Either of these shapes
can be used for plates with irregular boundaries, or for the
refinement of the element mesh in regions of particular interest as
shown in PFig.2.1b. The triangle can also be used for the analysis of
doubly curved shells of any shape. In this section a discussion of
recent developments in the use of triangular elements is included
with the discussion of work on rectangular elements which parallels
the Author's.

As far as rectangular elements are concerned, Bogner, Fox
and Schmit (62), Hamsteen (63) and Butlin and Leckie (64) have all
independently used the approach in this thesis called "modified
Lagrange Hermite". In addition, Bogner, Fox and Schmit's paper, which
only became available to the Author during the writing of this thesils
contains the development of the fifth order polynomials as well.

The Author's ideas centred on ensuring continuity of certain

derivatives across element boundaries and he missed what should have
been an obvious point after the development of the modified Lagrange
Hermite method, namely that every possible combination of first and

second order derivatives should j1ieally be included in the Fifth
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Order approach. Bogner, Fox and Schmit observed this, and took the
generalised displacements as:

Sw A w baw ng 5%4
axeayi- bxbyei bxgbyai

(

i= 1,2,3,k4.
However it is debatable whether this approach (9 generalised displace-
ments per node) is preferable to the Author's Seventh Order method
(10 generalised displacements per node) in practice because at this
level of refinement all methods are very accurate, and the Seventh
Order method has the advantage of providing shear forces directly.
Galla:her (65) has also attempted to obtain moment continuity between
elements by using combinations of the Hermitian cubics (6 generalised
displacements per node), but the use of the fifth order polynomials
seems to the Author to be more logical.

Argyris (66) has extended his method of "natural® or
"invariant" stiffness from its initial application in plane stress
problems to the plate bending problem, using both parallelogram and
triangular elements with three degrees of freedom per node. This
method requires the specification of rigid body modes and of straining
or natural modes, the number being determined by the number of
generalised displacements assumed for the element. The paper (66b)
is ambiguous in that in the first instance it is claimed that
compatibility 1s fully satisfied for the parallelogram elements
(pl03) but the displacement functions shown on plll do not in fact
satisfy interelement compatibility. The Author contends that the
introduction either of mid-side nodes, or of additional degrees of
freedom at the nodes will be necessary to obtain complete compatibility.
The results obtained by Argyris's approach will be shown to be much
poorer than those obtained using a compatible field method, both for
rectangular and for skew parallelogram plates (Section 2.8).

Bazeley, Cheung, Irons and Zienkiewicz (67) have also

concerned themselves with the more difficult problem of deriving
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acceptable solutions to plate bending problems using triangular
elements. Following Jones (68) they propose a convergence criterion
of "constant strain" which is less rigorous than the usual convergence
criteria in that complete interelement compatibility need not be
maintained. The violation of interelement compatibility does however
mean a violation of the Melosh condition for monotonic convergence
and for a particular element mesh the solutions for a problem may be
either overestimates or underestimates of the true cnes and may
oscillate about these true solutions as the mesh is further subdivided.
The Author disputes the assertion in paper (67) that the results are
"of comparable accuracy to those attainable by the use of rectangular
elements", Comparisons are given in Section 2.8. When complete
interelement compatibility is maintained the results for the analysis
of a plate using triangular elements are very "stiff" indee%. The
Author suggests that the addition of a degree of freedom < w/bzcby'
at the three nodes of the triangle would probably result in much
better solutions, on the basis of the foregoing work on rectangular
elements.

Further analyses using triangular elements are reparted by
Clough and Tocher (57) who have also evaluated the Melosh 1961, Fitted
Lagrange and lLagrange Hermite methods for rectangular elements;
although less extensively than in the succeeding pages of this thesis.

Pian's method of assumed stress distributions (69) has been
used by Pian himself (70)and by Severn and Taylor (59) to develop
stiffness matrices for rectangular elements with three degrees of
freedom per node. In this method, a stress distribution in terms of
undetermined coefficients B 1s assumed throughout the element (i.e.
within the element and on its boundaries) together with displacement
distributions on the boundary only. This is therefore a "mixed"
approach in contrast to the pure field approaches developed in this
thesis. The question arises, as Gallagher pointed out in connection
with plane stress elements (71), of whether the prescribed stresses,
integrated along the boundary, give the prescribed displacements.

That the prescribed edge displacements predominate over the prescribed
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edge stresses can be seen from Severn and Taylor's paper where
discontinuities in the stress resultants across element boundaries
were observed.

Thus Severn and Taylor's method is completely mixed -
compatibility only being assured at element boundaries together with
equilibrium only in the element interiors. Although Pian (70) gives
no information about stress resultants, the fact that he does not
obtain momotonic convergence of the displacement under a single load
as the element mesh is subdivided implies that his stress distributiop
assumptions also lead to a completely mixed solution. However, Pian's
ideas could be used within the framework of a pure compatible method
to obtain a better satisfaction of equilibrium within element
boundaries. The Author has pointed out elsewhere (72) misconceptions

in Severn and Taylor's paper.

2.8 Evaluation of Rectangular Finite Elements for the Analysis
of Thin Elastic Plates in Bending

Before the finite element methods described in this chapter
can be applied with confidence in the solution of problems for which no
analytical solutions exist, the methods must first be evaluated in the
solution of problems for which exact, or at least good approximate
solutions are known. Such an evaluation of the Melosh 1961,

Fitted Lagrange, Lagrange Hermite, modified lLagrange Hermite, Fifth
Order and Seventh Order methods is given in this section. In addition
the results obtained by these six methods are compared with other
recent methods which were described in the previous section.

Tables 2.%-2,10 indicate the convergence trends for the
displacement of a point on a plate for four different plate structures
gach subjected to two different loadings, as the finite element mesh
is refined. The structures chosen were:

(i) A square plate clamped at all four edges,

(ii) A square plate simply supported at all four edges,
(1ii) A square plate supported at the four corners only,
(iv) A square cantilever plate,

and the loadings were:
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FINITE
METHOD PINITE ELEMENTS DIFFER-
ENCES
MODIFIED FOURTH
MELOSH| FITTED |LAGRANGE!LAGRANGE|FIFTH {ORDER SEVENTH
TYPE 1961 { LAGRANGE(HERMITE {HERMITE |ORDER |APPROXs.| ORDER
MESH 2 x 2|1060 1490 1320 1324.8 [1253,7| =~ 1569.1
4 x 4|13%3.,8] 1403,% | 1211.% 1254.9 1255.3] =~ 1263,9
6 x 6{1304.6} 133%2,% { 1220,1 | 1265,1 {1261,3| -~ 1265,0
8 x 8)1289,1] 1303.,8 | 1226.6 | 1265,2 [126%.3| 1410 -
10 x10(1281,1 1290,3 | 1230,1 | 1265,3 [1264.1 =~ -~
12 x12]|1276.5 1282,8 | 1232.5 1265,3 - - -
14 x 14)11273%.6] 1278.2 | 1233%,5 | 1265.% - 1310 -
Exact value (6) = 1265,
Pable 2,3, Clamped Sguare Plate:
Uniformly Distributed Loads
Central Deflections
Multiplier g% /106D,
FINITE
METHOD FINITE ELEMENTS DIFFER~
ENCES
MODIFIED FOURTH
MELOSH| FITTED |LAGRANGE|LAGRANGE|FIFTH |ORDER SEVENTH
TYPE 1961 |LAGRANGE{HERMITE |HERMITE |ORDER |APPROXs.| ORDER
MESH 2 x 2 {3033 5063 %651 4123 3993 - 4052.,2
4 x 4 |3846,2{ 4328,2 | 3805.,2 | 4065.3 {4049,91 4028 4061.5
6 x 6 [%3968,9] 4181.2 | 3841.8 | 4062.9 |4057.2{ 4040 4062,1
8 x 8 {4010.,2{ 4129,3 | 3854.7 | 4062,5 [4059.,6} 4050 -
10 x 10[4029.1{ 4105.2 | 3860.7 | 4062.4 |4060.6] 4060 -
12 x 12}4039.3| 4092,1 | 3863,9 | 4062.4 - - -
14 x 1414045.5| 4084.,2 | 3865.,9 | 4062.4 - - -
Exact value (6) = 4060,

Table 2.4

Simply Supported Sguare Plates
Uniformly Distributed Loads
Central Deflections

Multiplier qL /106D,
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N
METHOD FINITE ELEMENTS DI?%E%E%CES
MODIFIED FOURTH
MELOSH | FITTED | LAGRANGE | LAGRANGE { FIFTH ORDER
TYPE 1961 {LAGRANGE | HERMITE | HERMITE | ORDER APPROXs ,
MESH 2 x 2 | 1811 2179 2470 2542,9 [ 2534.3 -
4 x 4 | 2335.,3 | 2429.6 2518.7 2550.1 | 2548,1 2650.0
6 x 6 | 2451.3 | 2493.6 2519,4 255045 | 254945 2593.8
8 x 8 | 2493.9 | 2517.8 2518,1 2550.6 | 2550.0 257447
10 x 10} 251440 | 2529.3 2516,8 2550,6 - 2566,0
12 x 12| 2525,1 | 2535.7 2515,8 2550,6 - -
Analytical solution (84) 2650,
Table 2,5. Square Plate Supported at the Corners:
Uniformly Distributed Load:
Central Defleczion:
Multiplier qL /105D.
METHOD FINITE ELEMENTS
MODIFIED
MELOSH FITTED LAGRANGE LAGRANGE FIFTH
TYPE 1961 LAGRANGE HERMITE HERMITE ORDER
MESH 2 x 2 819 726 1260 1263,5 1262,6
4x 4 | 1267.9 | 1270.3 1268,9 1269.5 | 1268.6
6 x6 1269.9 1271.3 1270.4 1271.,0 1270,5
10 x 10 1271.2 1271.9 1271,2 1271.5 -
Table 2.6, Square Cantilever Plates

Uniformly Distributed Load:

Corner Deflections:

Multiplier

o% 710%y.
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METHOD FINITE ELEMENTS
MODIFIED
MELOSH | FITTED | LAGRANGE | LAGRANGE | FIFTH SEVENTH
TYPE 1961 LAGRANGE | HERMITE | HERMITE ORDER ORDER
MESH 2 x 2 | 4240 5920 5300 5300 5407 5330.7
B 4 x 4 |5738.9 | 6134.5 5246 .6 5484.3 | 5533.4 1 553T.5
6 x 6 | 5719.8 | 5910.4 5345.4 555446 | 5577.2 | 5579.2
8x 8 5689,7 5802 .6 5%96.4 55797 5592.2 -
10 x 10| 5669.5 | 574446 542343 559144 | 5599.1 -
12 x 12 5656.1 | 5709.9 5438.9 55.97.7 - -
14 x 14| 5646,9 | 5687.5 5448,7 56015 - -
Exact solution (6) = 5600,
Table 2.7. Clamped Square Plate:
Concentrated Central Load:
Central Deflection:
Multiplier PL?/10°D.
FINITE
METHQOD FINITE ELEMENTS DIFFERENCES
MODIFIED FOURTH
MELOSH| FITTED |LAGRANGE;LAGRANGE|FIFTH ORDER SEVENTH
TYPE 1961 |LAGRANGE | HURMITE |HERMITE }ORDER APPROXs. ORDER
MESH 2 x 2 [1210 | 1380 1010 1107.8 |1137.7 ~ 1129.4
4 x 4 |1189,1] 1232.7 | 1078,7 | 1147.1 |1153.2] 1367.2 1152.7
6 x 6 |1176.5| 1197.1 | 1094.8 | 1154.4 {1156,7| 1276.9 1156.8
8 x 8 |1170.6] 1182.9 1100.9 1156,9 [1158.1 1235,1 -
10 x 10{1167.5| 1175.6 | 1103.,8 | 1158,0 {1158.8{ 1212.7 -
12 x 1211165.6{ 1171.4 | 1105.5 | 1158.7 - - -
14 x 14[1164.4( 1168.7 | 1106.6 | 1159.0 - - -
Exact solution (6) = 1160,

Table 2.8,

Simply Supported Square Plate:

Concentrated Central Load:

Central Deflection:
Multiplier PL?/10°D.
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METIOD FINITE ELEMENTS FINITE

DIFFERENCES
MODIFIED FOURTH
MELOSH | FITTED ( LAGRANGE | LAGRANGE ( FIFTH ORDER
TYPE 1961 |LAGRANGE | HERMITE | HERMITE { ORDER APPROXs.

MESH 2 x 2 | 3490 3470 3800 3864.7 | 3885.1 -

4 x 4 | 3772.1 | 378L.6 3872.1 3901.5 | 3907.2 4403%,1

6 x 6 | 3849.7 | 3856.3 3878.1 390845  3910.9 4148.7

8 x 8 | 3878.1 | 3882,6 3879.5 3911.0 | 3912.2 4054.0

10 x 10| 3891.4 | 3894.6 3879.6 3912.1 - 4007.8
12 x 12| 3898.6 | 3901.0 3879.4 3912.8 - -

Gridwork solution (sq) 3900,

Table 2.9, Square Plate Supported at the Corners:
Concentrated Central Load:
Central Deflection:

Multiplier PL?/10°D,

METHOD FINITE ELEMENTS
MODIFIED
MELOSH FITTED LAGRANGE LAGRANGE FIFTH
TYPE 1961 LAGRANGE HERMITE HERMITE ORDER
MESH 2 x 2 47599 4807 .7 473443 4882.7 48777
4 x4 483744 4859.8 47577 4897.9 4893.5
6 x6 4867.7 4881,0 4763.6 4903.5 4900,2
8 x 8 4882.5 4891.4 A765.3 4906.2 -
10 x 10 4890,8 4897.3 4765.3 4907.7 -
Table 2,10, Square Cantilever Plates

Concentrated Load at One YFree Corner:
Deflection Under Load:

Multiplier PLZ/10%D,
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{a) A uniformly distributed loading covering the whole plate.

(b) In cases (1) (i1) and (iii) a concentrated load at the centre
of the plate and in case (iv) a concentrated load at one free
corner of the cantilsver, For structures (i), (ii) and (iii)
the displacement of the centre of the plate has been tabulated,
while in structure (iv) the displacement of a free corner has
been tabulated (in case (iv)(b) the loaded corner). These
tables are shown graphically in Fligs.2.3-2.10, although to avoid
crowding the dlagrams, the results for the Seventh Order method
have not been plotted. However the results for the finite
difference method described in Chapter 4 have been shown on
these figures for convenience.

From an examination of the results the following points

should be made:

I. For plate subdivisions of four elements per side and finer
all of the six methods, with the exception of the Lagrange Hermite
method;, give results for displacements which are of acceptable
accuracy for many engineering purposes. Fig.2.10 shows the Lagrange
Hermite method providing a poor answer even with a fine mesh
subdivision, and another example, originally given by Butlin and
Leckie (64) of the free corner deflection of a plate simply supported
along three sides and loaded at the free corner shows the solution by
the Lagrange Hermite method diverging from the true one (Fig.2.11).
Therefore the use of the Lagrange Hermite method should be discontinued.
However, the lack of monotonic convergence for pure compatible methods
reported by Butlin and Leckie has not been confirmed; e.g. compare
their Fig.5 with Fig.2.8.

II. The pure compatible methods - Lagrange Hermite, modified
Lagrange Hermite, Fifth Order and Seventh Order have been shown to
provide lower bound solutions for all of the cases examined i.e. the
displacement curves in Figs.2.7-2.10 converge to the true answer
from below as the element mesh is refined. In contrast if complete
compatibility is not maintained, for example In the Fitted Lagrange

method, the displacement under a single load is sometimes overestimated,
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Figs.2.7,2.8,and sometimes underestimated Figs.2.9,2.10. In only
one of the cases considered, Fig.2.3, does a pure compatible method
overestimate any displacement, when the modified ILagrange Hermite
method slightly overestimates the central deflection of a simply
supported square plate carrying a uniformly distributed load.

When the fifth and seventh order functions are used,
difficulties arise in prescribing the correct boundary conditions at
free edges. Along a free edge OY for example, é%—g-+)i§k§% should

A

be set equal to zero, but one can onlygcontrolézggxand. 32 independently.

In the examples of Tables 2.3-2.10, b.xg and 572 have been left to take

up their own values at free edges. The moment normal to a free edge
tends to zero quite rapidly as the mesh is refined. As a typical
example consider structure (iii) with loading (b). The moment normal

to an edge at the mid-point of that edge, for a load P, takes the

values
Mesh Normal Moment Central Moment
2x2 0.0154P 0.34324P
L x & 0.00467P 0.41781P
6 x 6 0.00287P 0.46058P
8x8 0.00194P 0.49060P

The central bending moment has also been tabulated for comparison.
To this extent the Fifth Order results of Tables 2.5,2.6,2.9,2.10
are approximate.

To allow further comparison between the pure compatible
approaches, a series of values of stress resultants are tabulated in
Tables 2.11-2.14, Structures (i) and (ii) are considered, subjected
to loadings (a) and (k). The results show that the modified
Lagrange Hermite method gives stress resultants of comparable accuracy
to the Fifth Order method for uniform loadings, but of inferior
accuracy for concentrated loadings. The effect of using only six
generalised displacements per node in the Fifth Order method rather
than the complete nine is demonstrated in Table 2.11 for example, in
that the moments do not converge to the exact values as the element

mesh is refined. The discrepancles are however quite small.



ACTION CENTRAL MOMENT MID EDGE MOMENT
METHOD Mod L.H.|5th Ord.|7th Ord.|Mod L.H,|5th Ord.|7th Ord.
MESH 2 x 2 {0,04133%3]0,021375[0,036128(0.031795{0,054233|0.,061210
4 x 4 [0.,025102{0.021957 [0.022668{0,043469|0,05277L|0,045506
6 x 6 |]0.,02373%36{0,02246710,0227140.04731210,051847|0.047589
8 x 8 [0.023344{0.,022646 - 0.0489140.051590 -
10 x 10{0.,023178|0.022737 - 0.049723|0,051482 -
12 x 12[0.023091 - - 0,050186 - -
14 x 14]|0.023041 - - 0,050475 - -
Exact solutions (6) 0.0231 0.0513

Table 2.11,

Clamped Square Plate:

Uniformly Distributed Load q:

Multiplier qu.

ACTION CENTRAL MOMENT
METHOD Mod L.H. | 5th Ord. | 7th Ord.
MESH 2 x 2 0.05720% | 0,04566% | 0,0453%93
4% 4 0.,049217 | 0.047036 | 0.047238
6 x6 0.048402 | 0.,047480 | 0,047590
8 x 8 0,048162 | 0,047652 -
10 x 10 | 0,048058 | 0.047735 -
12 x 12 | 0,048004 - =
Exact solution (6) 0,0479

Table 2,12,

Simply Supported Square Plates
Uniformly Distributed Load q:
Actions: o
Multiplier gL .

Actions:




ACTION CENTRAL MOMENT MID EDGE MOMENT

METHOD Mod L.H.|[5th Ord.|7th Ord,|Mod L,H,|5th Ord.|7th Oxd.
MESH 2 x 2 |0.16533 |0.21096 |0.17170 l0.12718 {0.12020 {0.10575
4 x 4 |10,22063 10,28383 |0.,23%961 |0.11502 |0.12626 {0,11458
6 x 6 [0.26265 [0.32543 [0.28140 {0,11868 |0.12613 ]0,11834

8 x 8 [0.,29262 |0.35511 - 0.12109 [0,12591 -

10 x 10{0.31583 |0,37817 - 0,12250 |0.12584 -

12 x 12|0.33477 - - 0.123%6 - -

14 x 14({0.35077 - - 0.12395 - -

Exact solution (6) 0.1257

Table 2.13, Clamped Square Plate:
Concentrated Central Load P:
Actionss
Multiplier P,
ACTION CENTRAL MOMENT
MBETHOD Meod L.H. 5th Ord. Tth Ord.
MEBSH 2 x 2 0.19814 0.26811 0,.,22031
4 x 4 0.27261 0.33760 0,29263
6 x 6 0.31584 0«37922 0.%3528
8 x 8 0.34609 0.40889 -
10 x 10 036941 0.43193 -
12 x 12 0.38840 - -

Table 2,.,14.

Simply Supported Square Plates
Concentrated Central Load P:

Actionss

Multiplier P,
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This feature is even more marked in the Seventh Order method
where only ten of a possible sixteen generalised displacements per
node have been used. Table 2,11 also demonstrates an interesting
feature in that the central displacement and central bending moment
are underestimated by the Fifth Order method while the edge bending
moment is overestimated. Exactly the reverse trend is exhibited by
the modified Lagrange Hermite method. The direction of convergence
of any one action in a plate is therefore no guide to the behaviour
of any other action. In the case of plates subjected to a single
concentrated load however, the pure compatible approaches invariably
underestimated all the displacements and stress resultants.

Due to the inclusion of only ten out of sixteen possible
generalised displacements per node in the Author's Seventh Order
method, the stress resultants obtained by this method are of
inferior accuracy to those obtained by the Author's Fifth Order
method. However the inclusion of the third order derivatives as
degrees of freedom enables shear forces to be calculated directly
from the Seventh Order solutions. These forces cannot be obtained
by any of the lower order methods (unless by differencing the lower
order derivatives). Table 2.15 shows that the shear forces computed
by the Seventh Order method are very accurate but unless these
accurate values of shear force are desired, the Seventh Order method
cannot be recommended over the Fifth Order and modified Lagrange
Hermite methods. In fact in the Author's opinion the latter method
is the optimum method for analysis of thin plates which can be
subdivided into rectangular elements. It should be noted that
:’)QW/ B xby should not be constrained to be continuous between
elements of different thickness, or in any other case where it is not
physically continuous. Fuller Jjustification for the development of
the higher order polynomials comes in the next sectlon, where, due
to the necessity of carrying up to fourth order derivatives in the
calculations, the cubic functions of the modified Lagrange Hermite

method are inadequate.
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As confirmation of the accuracy of Tables 2.3%-2.10 the
results given by Hansteen (63) will be found to be identical with the
results of Tables 2.4 and 2.8, while the results given by Bogner, Fox
and Schmit (62) agree exactly with Table 2.3, The accuracy of
displacements reported by the same authors for their complete fifth
order method, i.e. nine generalised displacements per node, is very
good as shown by Table 2.16. They give no information about stress
resultants.

Comparison between pure compatible methods and mixed methods
can be made by considering Table 2,17 computed from Severn and Taylor's
results (59) and Table 2.18 computed from Pian's results (70). These
two sets of results should be compared with Tables 2.3 and with
Tables 2.7 and 2.8 respectively. The displacements computed from the
mixed methods are of comparable accuracy to those computed by the pure
methods, but the stress resultants are of inferior accuracy. Table
2.18 demonstrates the lack of monotonic convergence prevalent in mixed
methods.

Argyris (66) gives one result for his method of "natural
stiffnesses" for rectangular elements. With a 20 x 20 mesh he
computes the central deflection of a square, simply supported plate
carrying a uniformly distributed load as 0.004052 qL%/D and the central
bending moment as 0.0L75k qI?. These figures are of comparable
accuracy to those obtained with a 6 x 6 mesh in the Fifth Order method
or with an 8 x 8 mesh in the modified ILagrange Hermite method.

(Tables 2.4,2.12), Since Argyris's method also involved the
insertion of special narrow elements at the supports of the plate the
results obtained would seem to be considerably poorer tham the results
obtained by the Author's methods. In addition Duncan (61) has
obtained results for skew plates, using the Author's displacement
functions, which are more accurate than those quoted by Argyris (66).

The.validity of the claim by Bazeley et al (67) that the
results obthined by using triangular elements are of "comparable
accuracy" to those obtained by using rectangular elements (67) can be
examined by comparing Tables 2.19 and 2.20 with Tables 2.8 and 2.7

respectively.



MESH SHEAR
2 x 2 0.0%5811
4 x 4 0.033732
6 x 6 0.033796

Exact value (6) 0.0338,

Table 2.15,

Maximum Shear in Simply Supported
Sgquare Plate:

Uniformly Distributed Load q:

Multiplier qLs:

Seventh Order Method.

MESH DEFLECTION

2 x 2 126543

8x8 1265¢3
Exact value (6) 1265

Table 2,16,

Central Deflection of Clamped
Square Plates

Uniformly Distributed Load q:

Multiplier qL#/10°D.

After Bogner, Fox and Schmit (62).

MESH CENTRAL CENTRAL MID EDGE
DEFLECTION MOMENT MOMENT
2x 2 1330 0.0440 0.0461
4 x 4 1240 0.0473 0.0256
6 x6 1250 0.0491 0.0244
8 x 8 1260 0.0500 0.0237

Table 2.17.

Deflection and Actions for a
Clamped Square Plate:
Uniformly Distributgd Load q:
Multipliers oL%/10°D and q12.
After Severn and Taylor (59).
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MESH INCOMPATIBLE COMPATIBLE
SOLUTION SOLUTIONS

2x 2 1302 855 854 798

4 x 4 1176 1057 1056 1039

6x 6 1211 1117 1116 1108

8 x 8 1165 - - -

Table 2 . 19 .

Simply Supported Square Plates
Concentrated Central load:
Central Deflection:

Multiplier PL2/107D.

After Bazeley, Cheung, Irons and Zienkiewicz

MESH INCOMPATIBLE COMPATIBLE
SOLUTION SOLUTIONS

2x 2 521 193 186 169

4 x 4 589 474 472 461

6 x6 58% 511 510 503

8 x 8 572 - - -

Table 2.20,

Clamped Square Plate:
Concentrated Central Load:
Central Deflection:

Multiplier PL?/10°D.

After Bazeley et. al. (67).
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Completely unblassed comparisons are hard to draw among all
off the finite element methods avallable for the analysis of thin
plates in bending. However in the first place the superiority of
rectangular elements over triangular elements seems now to be well
established, for the solution of problems where rectangular elements
fit the plate geometry. In the second place, among rectangular
finite element methods, one has a choice among pure approaches (e.g.
modified Lagrange Hermite, Fifth Order and Seventh Order), mixed
approaches (e.g. Pian (70) or Severn and Taylor (59))and incompatible
displacement approaches (e.g. Melosh 1961, Fitted Lagrange or
Argyris (66)). 'The only advantage of the mixed and incompatible
displacement methods is that only three degrees of freedom per node
are specified, so thalt the demands on computer storage are less,
although in the fufure this is liable to become a less and less
important point. But a basic dilemma in finite element analysis is
whether to use many "crude” elements or fewer "sophisticated" elements
for the solution of a given problem, For thin plates, the Author's
ineclination would be to use a fairly sophisticated pure method, for
example the modified Lagrange Hermite method, where at least monotonic
convergence of results as the mesh is refined can be guaranteed.
Pian's method could be used tocptimise the results without increasing
the number of degrees of freedom. The simple plate examples chosen
here for the element evaluation may not have brought out the full
advantages of pure methods. Duncan's experience for skew plates (61)
1s that the discrepancies between pure and incompatible methods

become much more marked.

2.9 Analysis of "Moderately Thick Plates" by Means of Rectangular

Finite Elements

Mentlion has already been made of the assumptions involved in
treating real foundation materials as being, for example, perfectly
elastlc media. An assumption more often glossed over 1s that
involved in treating a thick, heavily reinforced concrete raft as a
Kirchhoff plate, Being coneerngd with the effects of this

approximation in the analysis of foundation rafts, the Author first
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considered the possibility of applying Reissner's theory, including the
effect of transverse shear deformations in the bending of elastic
plates (73). The use of the complete theory allied with the finite
element approach seemed to pose large problems, principally because it
is impossible to write the stress resultants as distinet functions of
the derivatives of the transverse displacement. However the theory
of "moderately thick plates” proposed by Love (74) yielded stress
resultants in an acceptable form and was used in this study. The
seventh order displacement functions were used, since up to the

fourth derivatives of displacement were involved; displacement
functions of order less than % would be unacceptable. The extension
of the finite element method to higher order problems such as this

is a Jjustification for the development of the higher order polynomials
which may be too sophisticated for thin plate work.

The stress resultants are taken in the form:

3% 2% . k2 32V8, 5y R
M““D‘ax Vg;é“"ﬁbaye -IT5 10
2_2
Mv = - D 252 D ?) Ny 2 -3 &13 a
" YRRV
2 })Egze

My = - (1-32) D gy - Daxay

) R, %
> IR

53 3%

2y  3:2dy

and the substitution q = D‘7Mw is made.‘t The first three equations
los

above are found by substituting the sees=rsd two in equations [IIil,

[III] s [IV{], reference (73).

The egquations can then be written using the notation of the

VX =

Vy = - D (

discussion of thin plates as

{u} - [al{s}{s}
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where the new meanings of the symbols are given in Table 2.21. The

assumed stress resultants again lead to a strain energy expression

b | si{ug
Where {s [QT}[B% {5

and [Cll is defined in Table 2.22. The matrix formulation is thus
identical to the thln plate ca

T Bm NATNIS
and | X = jAt}Lé []B |p 1 aa,
but in this case the kernel QilLA is of order 12 instead of order
3. The amount of computing involved in the development of the
4O x 40 stiffness matrix for a moderately thick plate is heavy, the

i

i

generation of a dimensionless 1 x 14k vector from which any element
stiffness matrix could quickly be computed taking about 100 minutes
on a KDF9 computer, The relevant (AIGOL) computer program is given
in Appendix k.

Some results fir moderately thick plates are shown in
Table 2.23. No theoretical results are availlable to enable direct
comparisons to be made but the problem of the simply supported square
plate carrying a uniformly distributed load has been solved by Salerno
and Goldberg (75) using the complete Reissner theory. For a thickness/
length ratio of 0,1, Salerno and Goldberg found an increase in central
deflection over the thin plate value of about 4%. The moderately
thick plate theory using finite elements and the Seventh Order
displacement assumptions gives about 3%. For other problems, the
increases are larger. It can be concluded that this computer aided
method provides reasonable estimates of the effect of transverse shear
deformations on the bending of elastic plates and the capability of
solving a far larger range of problems than has previously been
possible. It is perhaps worth pointing out the relative ease with
which the finite element method can cope with this more complex theory
within an already established framework of matrix manipulations., It
would appear to the Author that this is one example where the use of
finite elements is considerably superiokr to the use of finite

differences.



*Tc*c °19BL

0 0 0 o 0 O |a~ia~ 10 Q 0} O

0 o 0 0 0 @&-{0 jo |a 0 0] 0

¢ ¢

g 0 0 0 0 JO0 jo jo ja(~-1)-i 0} o0

Ol a-T | OT A~T | O1 a-T

0 0 s {Ctgsm{t==—/0 {0 |0 {0 0 q-{qa-
e 0 o | g &=
OT A=T | OT A-T  _OT A=T

0 0 mmm.m.nl mmmﬂl m.mm.mﬂa 0 10 {o o 0 lga- @-L

A%

7@

7Q ¥ R

¢R

|

mhmxm hm munN th%nm ﬁhm w.ﬁm N..\wmxm hm%nm mhn mNN hmxm mhm N.xmnw
¢ R ¢R

XA

2@ £ 2@
£y £y @j

—

"
-—&w"’

m
—t

[



IRAARARCIR LN

0 0 0 0 0 0 ?.Ngcm - ?:N% Sl o ol olo
0 0 0 0 0 ?Nm 5 0 0 h,.wwm.u ol ol o
?Mwm - ?Mmm -l o 0 0 0 0 0 0 ==l o] o
0 0 mm NW..M wmm Nm. ..mm. L 0 0 0 0 o | 1-| ¢
0 0 mm Nmmw .mm NM% mm. wam. 0 0 0 0 ol o] 1

= el

Fa



CASE 1 2 3 4
Thin Plate 4062.1 1156.8 5579.1 1265,0
B/L = 0.005 | 4062.5 1157.1 5582.0 1265.4

0.01 4063 ,6 1157.9 5590.6 1266.7
0.05 4098.,7 1174.1 5759.4 1301.5
0.1 4205,1 1200.0 5974.6 1371.7

Table 2.23.

Central deflection of square plates,
transverse shear included.

Case 13 Simply SBupported: Uniformly

Distributed Load.

Case 2: Simply Supported: Concentrated

Central Load.
Concentrated Central

Cage 3: Clamped:

Load.
Case 4s Clamped:
Load.

Uniformly Distributed

Mesh 6 x 6 throughout.
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Only one other finite element analysis incorporating the
effect of transverse shear deformations is known to the Author,
Herrmann (76) having used triangular elements for the solution of a
circular plate problem. Herrmann also used a theory of moderately
thick plates, and despite the fact that w, Mx, My and Mxy vary only
linearly within each triangle, the finite element results are in

excellent agreement with theory.

2.10 Finite Element Method For Axisymmetric Plates in Bending

One of the reasons for developing finite element methods for

the analysis of plates in bending was in order to couple the plate with
a semi-infinite elastic medium, also analysed by finite elements
(Chapter 3), in which the elastic properties could be varied at
will, horizontally and vertically. However it was found that for a
rectangular plate bearing on a seml-infinite medium, very large sets
of equations with large band widths would be involved, which would
tax the capacity of the computer readily available (16K immediate
access storage at that time), Although the rectangular plate problem
could no doubt have been solved by subdividing the medium and
analysing it in successive "blocks"” or by matrix partitioning schemes,
it was decided that a study of the problem of the axisymmetric plate
bearing on a seml-infinite medium would fulfil the aims of the
research just as well. Due to the radial symmetry this problem is
virtually two-dimensional. The Author was not aware of a published
finite element method for axisymmetric plates in bending (although it
was later found that such a plate can be treated as a specilal case
in Grafton and Strome's method (77) for axisymmetric shells.)
However, by taking the elements in the form of annular rings of
uniform thickness, and using a method analogous to the "slope
deflection" method for beams it proved very simple to set up an
explicit stiffness matrix. The detalls are given in Appendix 3.
The same stiffness matrix can be obtained by the pure finite element
approach of Section 2.6.

The results obtained by the finite element method were

checked against some known analytical solutions (6).



(2) Annular plate, with outside radius/inside radius = 5, simply
supported at the outer edge and carrying a uniformly distributed

Load Finite Elements Analytical

Deflection at inner edge 0.813 qab)‘L/_x’“"‘.,hj 0.813 qau/Eh3

(b) Apnular plate, with outside radius/inside radius = 5, simply
 supported at the outer edge and carrylng a uniform line load

along the inner edge
Finite Elements Analytical

2l
Deflection at inner edge 0. 704 PaE/Eh3 0.70k Fa /Eh3

(c) Circular plate simply supported at the outer edge, carrying a
- uniformly distributed load

Finite Element Analytical
(5 elements)
qatt o % qal . 3
Central deflection 0.684 /Eh 0.696 /Eh

(d) Circular plate clamped at the outer edge, carrying a central

point load Finite Element Analytical
(10 elements)
Central deflection 0.0197 Pa?/p 0.0199 Pa?/p

In cases (a) and (b) the finite element solutions agree
exactly with the analytical solutions, as they should as no
approximations have been made for the moments and forces distributed
along the edges of the elements (in the same way as the finite element
method gives the exact answer for the analysis of a line structure).
In cases (e¢) and (d) a slight error is incurred because at the centre
of a solid plate the logea/b term becomes infinite. This 1s overcome
by leaving a small hole in the innermost element. The effect on the
realts is seen to be negligible.

The coupling of a circular plate to a Winkler-type
foundation is a simple process by finlte element procedures. All
that is involved is the addition of the foundation stiffness to the
stiffness of the annular plate elements, where the contribution to
the strain energy of the foundation can be written:

a 2n -
U, = ( J % k(r) LW] }w} r. de. de

< b 0



T

As uvmnal the displacement assumption is

{n§ = Lol
O v is formed, there is an additional contribution to

an element stiffness matrix of

?aJEﬂ k(r) {D}VLDJ.I'. dr . do

w b O

Em/

and when

A computer ?rogram_y?shgritten permitting a linear variation
ka ~ kh)r- 3

k(r) = kb +-—~iizz:§?9bﬁcross any element and using a cubic

displacement form (Hermitian cubics). For the specilal case

ka = kb = k (constant), the results from the program could be

checked against reference (6) p26l4 as shown below 3
Deflection (in x 107™~)
Radius (inches) Finite Elements Reference (6)

0 43,2 43.0
42.9 -

2 42,0 -

3 h1.1 -

L Lo.2 -

5 29.4 39.1

The agreement 1s seen to be satisfactory.

2.11 Computation

Many ALGOL computer programs were written to perform the
numerical work described in this thesis. These programs were of two
basic types, flrstly the gensration and solution of typical symmetrical
banded structural analysis equations, and secondly the generation of
element stiffness matrices for complex displacement function
assumptions. For the first type of program the Author is indebted
to Macleod (78) for a procedure capable of solving symmetrical, banded
equations by the Choleskl square root method, and for the second type
to Duncan (61) whose program written originally for skew plate
problems was adapted by the Author, Details of these two types
of program are given in Appendix k.



CHAPTER 3.

ELASTIC SOLID FOUNDATIONS ANALYSED
BY FINITE ELEMENT METHODS.

3.1 Introducqion.

As the work on the finite element method for the analysis of
plates in bending progressed it became apparent that the same method
might also provide a means of analysing a solid foundation whose
properties were variable throughout the mass, thereby going at least
part of the way towards a truer representation of actual foundation
materials, Linear elastic behaviour was assumed for the solid,
nonlinear elasticity presenting only computational problems beyond
that assumptioni The elastic solid finite elements could only be
evaluated in the solution of problems involving homogeneous solids
since these are the only problems for which analytical solutions exist.
3.2 Previous Work,

Some preliminary studies by Melosh (79) were available,

dealing with tetrahedral and rectangular right prismatic elements,
Later work by Argyris (80), (8l) examined the tetrahedral element more
fully, the former reference dealing with the assumption of comstant
strain in the element, the latter with the assumption of linearly
varying strain. However, as has already been mentioned in conjunction
with the development of the circular plate analysis, it was decided
that the study of the full three-dimensional problem of a rectangular
plate bearing on an elastic solid foundation would place very heavy
demands on the capacity of the computing equipment available. It was
therefore decided to deal with the axisymmetric problem first.

A study of axisymmetric elastic solid problems by the finite
element method, due to Clough and Rashid (82) was available and the
stiffness properties of a solid ring element of triangular crosse-section,
shown in Fig. 3.1, were derived following the assumptions of that
referencey that is, two degrees of freedom per node, and linear edge

displacements (implying comstant strain within an individual element).



Argyris (83) has also more recently described two elements suitable
for the analysis of axisymmetric elastic solids,

Referring to Fig. 3.1 the stiffness matrix relating the nodal
forces Py Fp Py Fp Po Fp to the nodal displacements A& algdghcde
is rather complex and will not be given explicitly here. It is in fact
formed automatically, from basic input, by the computer.

3.3 Evaluation of the Element.

The correctness of the derived stiffness matrix was checked by
applying it to two problems (the same problems as were chosen by Clough
and Rashid), The first problem was a thick-walled pressure vessel,
idealised as shown in Fig. 3.2, subjected to external pressure. The
results for radial displacements are shown in Table 3.1. As might be
expected for a compatible finite element method the displacements are
underestimated -~ by about 5% in all cases.

Secondly, Boussinesq's problem of a concentrated load applied
to a semi-infinite homogeneous elastic medium was analysed, Several
ways of subdividing the medium were attempted, as shown in Figs. 3.3, 3.4
but the subdivision shown in Fig. 3.3 was eventually adopted. This
led to the surface displacements shown in TFig. 3.5, together with the
corresponding Boussinesq predictions, It can be seen that the
absolute displacements differ from the true ones by about 10%, but
that the relative displacement pattern is accurate,. The 10% discrepancy
(which as far as one can tell agrees with the result shown in Clough
and Rashid's Fig. 1l1) may be due in part to the limited number of elements
used but is also probably due to the assumed boundary conditions of
roller supports at the edges of the finite zone, and to the necessity of
introducing a small hole at the centre of the medium just as was done
for the circular plate. Since the main point of interest in this
research was the variation in foundation stiffness throughout a
foundation, rather than the absolute value of that stiffness, the
results were considered satisfactory for the analysis of the tests on
sand foundations described in Chapter 5.

3.4 Circulax Plate Bearing on a Semi~Infinite Elastic_ Medium,

Finally a problem of a circular plate coupled to a



Fig, 3.1 Axisymmetric Solid Element
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semi~infinite eclastic medium was analysed. The example is given by
Pickett and McCormick (20). The following data were used for the
finite element solution g-
30, Y = 0.3

Plate : E=1, t = 1, V=03

Loading : P = 100 (concentrated central load),
This leads to a value of a/jﬂ (Pickett and McCormick's notation) of
1.98 implying a theoretical dlsplacement under the load of 0,198 Pa/D.

il

Subgrade : b

The finite element value is 0,178 pe? /D, 11% lower than the theoretical
value, a discrepancy again attributable to the factors quoted above,

The method of solving the coupled plate on elastic medium
problem was first to develop a flexibility matrix for the foundation,
invert this matrix, and add the resultant foundation stiffness matrix
terms to the appropriate terms of the plate stiffness matrix, Since
no rotational degrees of freedom were incorporated in the solid analysis,
the stiffness of the foundation against a radially symmetric line moment
could not be added to the rotational stiffness of the plate elements,
and complete compatibility was not guaranteed between plate and foundation,
It may be mentioned that this method of first finding the flexibility
ﬁatrix for part of a structure or medium could be used to obtain a much
finer mesh subdivision for the foundation, This could be divided into
sections cut by horizontal planes and, working from the bottom of the
medium, the flexibility of each section could be found in turn, and the
stiffness of that section added to the next section, so that one would
only carry forward a matrix of the order of the number of degrees of
freedom on the cut plane.

3.5 Conclusions,

The conclusions drawn f£rom this section of the work were that
the method described for the analysis of axisymmetric plates bearing
on elastic solid media with variable properties could be expected to
give an adequate representation of the distribution of stiffness in the
foundation, but that the absolute values of that stiffness would be
overestimated by about 10%.



CHAPTER 4,

FINITE DIFFERENCE METHOD FOR THE
SOLUTION OF PLATE FLEXURE PROBLEMS,

4,1 Introduction

Although the theoretical work in this thesis has been
primarily concerned with the finite element method, the Author does
not consider that that method is necessarily superior to the older
established finite difference method for the solution of all problems.
In fact, in the Author's opinion, too little effort has been concentrated
on the use of the latter method with specific reference to iigital
computers. The finite element method has naturally lent itself to
computer = oriented development, whereas the earlier method has suffered
through older, manual calculation methods being programmed directly for
computers rather than new, superficially more complex methods being
sought., At the beginning of this research study the Author had an
open mind regarding the use of either method and the finite difference
method has been used for the solution of a few problems, some of which
protagonists of the finite element method have described as '"wvery
difficult to deal with by finite differences" (55)., The method of

solving these problems is now presented,

4,2 Solutions by Fourth Order Finite Differences.

To obtain solutions for a thin elastic plate bearing on a
Winkler foundation, ome looks for solutions to the familiar differential
equation,

DU = g = K0 eererennecessncancresnnacnnensonnsEds (4al)

in terms of the values of w (and sometimes its derivatives) at a number
of discrete points within the area of the plate, these points being
most conveniently arranged in some form of regular mesh pattern,
For the purposes of hand calculation, usually involving Southwell's
relaxation method (37) the biharmonic equation has often been split
into two second order equations, as follows ¢=

D V2% = M

Vi - (q - lw) (11)
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Whatever the merits of this approach for hand calculations,
the Author does not consider it advisable for computer applications
since it leads to twice the necessary number of unknowns and hinders
the symmetrical and logical construction of the equilibrium equations,
causing ill«conditioned, unsymmetric matrices which are prone to
numerical difficulties when solved by standard matrix handling routines,

By far the more effective method for computer purposes
is to use fourth order finite difference approximations. Consider
a rectangular plate covered by a square mesh as shown in Fig. 4.la.
The conventional mesh numbering system is shown in Fig. 4.1b.

With respect to this mesh numbering system, the fourth order finite
difference approximation to eq. (4,1l) is 3
(20 + h%K) wy - 8wy - 8wy - Bwg - 8wy
+ 2ws + 2ug -+ 2wy -+ 2wg
+ wg + wight Wyt Wiy = n® do
where h is the distance between the mesh lines and qy is the intensity
of loading at point o, This equation may be applied directly at plate
nodes such as (a) where Wy to wyoall lie within the area of the plate.
If for the moment the discussion is restricted to rectangular plates
with free edges, the required boundary conditions are that zero shear
and zero moment exist along all of the plate edges, In that case, five
other independent positionings of the standard mesh are possible, as
follows §=-
(b) At an edge, not adjacent to a corner
(16 - 8v= 612 + h4K) wy + ( =12 + 4v) wy + (=8 +4u+ &) wy
+(=8 + &+ 6Y2) wy + (4 = 209wy + (4=2V)wg + 2wg
+(1 -12) o + (L wV2) wy, = b g,
(c) At a coxner
(12 = 8v= 4% + B¥%K) wy + ( ~12 + 8P+ 4wy + (B - 8V) wy
+(2 = 29%) wg + (2 = 29P)wyp = h¥ q
(d) At an edge, adjacent to a corner
(15 - 8= 592 4+ hiwy + (=12 + 4D)wp + (=6 + 4V + 26%) w,
+(=8 + &M+ 5Y2) Wy, + (4 - 29) wg + (4 - 2V) wg
+ 2wg (1 -¥2) wyy = K4 g
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(e) At an interior point, adjacent to a corner
(18 + h¥ K)wy = 8wy + (-6 +20)wy + (=6 + 2V)wg - 8wy
+ (2 =V)ws + (2 = = Wwg + (2 = 2W)wy + 2wg
g + Wy, = n* d0
(£f) At an interior point adjacent to an edge
(19 + b, = 8wy = 8wy + (<6 + 2wy = Bwy
+ 2ws + (2 -V)wg + (2 -)))w7 + 2wg
+ w9 +wig +wyp = nt g,

Then for rectangular plates having m x n node points located
on a square mesh, a set of m x n simultanecous equations can be formed
by applying the equations given above as appropriate, Simple
instructions enable digital computersto build up the m x n equation
coefficients automatically. These coefficients are in band form, and
by multiplying the equations for corner points by four and the equations
for edge points by two, this band becomes symmetrical and the same
solution technique (Choleski method) as was used for the finite
element equations can be applied,

A further important point is that only terms on the leading
diagonal of the symmetric band matrix are affected by arbitrary
assumptions for the value of k at any node so that for any such
assumption, the matrix retains its symmetry., Rigid support comnditions
can then be approximatedat any node by allowing that particular k to
assume a value large enough to ensure that the deflection at the node
is negligible, At a free, unsupported node, k merely takes the value
zero.

Thus, in addition to plates on Winkler foundations, plates
on point, or line supports can be analysed by the method described in
this section, and rectangular plates simply supported around all four
edges, or simply supported at the four corners only have been
successfully analysed. A "rigid" support, for which k was assumed to
be 1 x 10°° deflected only by 1 x 10™°
a typical example.

of the maximum deflection in

The results of applying the ﬁ}nite difference method for the

above problems are plotted on Figs. 2.8, 2.5, 2.1, 2.9, in conjunction
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with the finite element solutions to the same problems. It should
be remembered that a comparison of methods on the basis of "number
of subdivisions per side" is unfair to the finite difference method
which only involves one degree of freedom per node. A better
comparison would be on the basis of the number of unknowns involved,
or the number of computer stures taken up by the respective equation
coefficients.

It is interesting to note that the finite difference method
leads, with one exception, to overestimates of the deflections of the
structures analysed, and may therefore be an important "dual! method
to a compatible finite element method, enabling bounds on the
displacements and stresses in a structure to be determined. Such
bounds appear to have been determined for the problem of the square
plate simply supported at the four corners and subjected to a uniformly
distributed load, Lee and Ballerteros (84) obtaineg a theoretical
central displacement for this problem of 0.0265 al. /D, whereas the
bounded solution obtained by approximate methods is about 0,0255 q /D.
This difference is about 4% and illustrates a case where "approximate"
methods can achieve greater accuracy than "analytical" methods,

The above work indicates how solutions to other problems
might be obtained conveniently by finite difference methods allied
with the use of a computer. Clamped plates could be analysed by.
considering torsion springs along the free boundaries, and then
making these gprings very stiff, thus preventing edge rotations,

There is no reason to suppose, therefore, that the finite
difference method is necessarily inferior to the finite element method.
In the Author's opinion, however, the latter is better equipped to handle
higher order problems, for example the analysis of moderately thick
plates described in Section 2.9. The use of finite differences in

such a problem would be very cumbersome.



CHAPTER 5
Expermental  Work .

5.1 Introduction: Previous Work

The maJjority of observations of the interaction between

structures and soil foundations has been concerned with rigid

footings, for example the widely quoted work by Faber (85) who
measured a parabolic contact pressure distribution between a rigid
circular footing and a sand compared with an inverse parabolic
distribution between the same footlng and a stiff clay. Early work
concerning flexible rectangular plates bearing on idealised
foundationghas already been mentioned in Chapter 1, Vint and Elgood (8)
having used a spring bed foundation while Murphy (9) used a hard '
rubber subgrade 3 inches thick, Murphy found the coeffilcient of
subgrade reactlon by pressing rigid punches into the subgrade and his
experimental results are in reasonable agreement with the Winkler
predictions as are those of Vint and Elgood. It should be pointed
out that the subgrade used by Murphy is far too thin to represent a
semi-infinite medium,

Wright (86) investigated the variation in subgrade modulus
with the breadth of flexible beams, assuming the modulus to be constant
for any individual beam. The accuracy of his results may be
questioned due to the small container used, because the side walls
almost certainly influenced the results (See Section 5.4), However
the trend of Wright's results is confirmed by Lenczner (87) in that
the subgrade modulus was found to decrease with increasing width of
footing, eventually reaching a limiting value. Lenczner went a step
further than Wright in investigating the variation of subgrade modulus
along the beam, rather than assuming i1t to be constant. He found
that the variation was related to the curvature of the beam, that the
conventional Winkler assumption overestimated the maximun bending
moments by about 15%, and that analyses based on an assumption of
uniform contact pressure yielded results which were very conservative.
These observations are compared with the Author's in Section 5.10.

Barden (4) found good agreement between experimental
results for beams bearing on sand and the Winkler predictions for
all but rigld beams, and this conclusion is confirmed by Vesic (25)
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who also obtained good agreement between theory and experiment assuming
the foundation to be a semi-infinlte homogeneous elastic medium,
analysed by an approximate method.

The only laboratory tests on plates bearing on sand known
to the Author were carried out by Brand (88) on flexible circular
plates loaded with concentrated central loads. Brand states that his
experimental results "could not be compared with theory". He gives
no results for deflections, but gives some contact pressures which are
compared with the Author's results in Section 5.10.

A larger scale observation is reported by 1'Herminier,
Bachelier and Soeiro (89) who, using vibrating wire guages, measured
the contact pressures beneath a 36 x 29 x 3.8 metre raft bearing on a
gravel, The stress distribution proved to be intermediate between a
uniform distribution and the distribution determined by elastic theory.

5.2 Determination of Contact Qressures

The contact pressure distribution between a flexible slab
and the subsoil can be determined either directly or indirectly.

The direct method involves ‘the presence of some kind of pressure sensing
device at the soil-structure interface while the most commonly used
Indirect method, for the case of a beam, has been the double differen-
tiation of the curvature of the beam. Of the investigations described
in the previous section, Wright, ILenczner and Vesic used the latter
method and Barden and Brand the former.

The Author preferred the direct method, because numerical
differentiation is an inaccurate process, the lnaccuracy being compounded
with the number of differentiations. In addition, for circular plates
axisymmetrically loaded, the contact pressure is a function of
dkw/dru, d3w/'drj, dgw/drg and dw/dr, so that it would be far more
complex and inaccurate to use an indireet method for that case,

There is a voluminous literature on the subject of "earth"
pressure cells, and several theses known to the Author contain
exhaustive reviews, e.g. Brand (88) and Neale (90), so that another
such review would be superfluous. Much of the work is of secondary

interest, referring as it does to "embedded" pressure cells rather



than contact pressure cells. As far as the latter are concerned, when
used on sand foundations the requirements are simply that the pressure
cell should be initially flush with the base of the structure, and
that the deflection of the cell under load should be the minimum
consistent with reasonable sensitivity, in order to aveid excessive
arching action. Thirdly the cell should not radically affect the
flexural rigidity of the structure. Two basic types of contact
pressure cell have been used in the past, the dlaphragm type and the
piston type. In the former case the cell face (usually circular)
displaces by bending from clamped edges whereas in the latter case

the whole face of the cell slides lnwards under pressure. The
diaphragm type was chosen for this investigation because piston cells
are subject to high stress concentrations at their edges and, more
importantly, when set in a flexlble structure, their freedom of siiding
is affected by the deformation of the structure, the piston slot
becoming a truncated cone as deformation proceeds., ¢ Of course the
deformation of the structure also affects the performance of a
diaphragm cell since the diaphragm is subjected to in-plane tensile

or compressive stresses which alter its sensitivityto applied pressure.
This factor, not consldered by Bardon or Erand is dealt with in later
sections,

Many measuring systems have besn used to record the responses
of the various types of cell to applied pressure. The three hasle
methods involve:

(1) Measurement of the displacement of the diaphragm or piston
"~ by the displacement of a fluld contained behind it.
(ii) A closed system of type (i) where the pressure in a confined
fluid due to the displacement is measured.
(1ii) Measurement of the strain in the cell diaphragm by some sort
of straln gauge.

Option (1) was adopted because it was comparable to but
simpler than option (ii), and because it was felt that it would be
difficult to separate the diaphragm strains into those caused by
bending of the diaphragm under préssure and those caused by in-plane
stresses due to the bending of the structure.
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The design finally adopted is shown in Fig.bH.l. It is
based on previous designs by Rowe and Briggs (91) and by Peaker (92)
and conforms to the W.E.S. requirements for diaphragm displacement (93)
although not to the more stringent oriteria of Trollope and Iee (94).
However, all cells were ldentical and were used on the sme soil, so
that the cell action factor coculd be assumed to be constant. A slot
was first sunk from the top of the perspex plate, leaving the desired
thickness of diaphragm still in position. The shaped disc was then
inserted and glued in position with Tensol No.7 perspex cement.
Finally the cell was filled with paraffin and the fi1lling hole blocked.
Readings of the fluid level in the very thin bore (0.5 mm, ) nylon
tubing were obtalned by fixing the tubing to a graduated scale.
Originally a temperature compensation chamber was included in the disc
but this was found to be unnecessary due to the short duration of
any individual experiment and the good temperature control available
in the laboratory. The cell had the following advantages:

(1) it was very simple and required no complex ancillary electronic
equipment,
(1i1) the face of the plate presented to the soil was completely smooth,
(iii) the minimum effect on the flexibility of the structure had been
achieved since the cell was predominantly of the same material
as the structure. The calibration of the cells is described
in the next section,

A seemingly promising newdeparture in the field of pressure
cell design was also investigated. Very small cells, the smallest
about 1/8 inch diameter and 1/32 inch thick are manufactured by
Clark Electronic Laboratories in the U,.S.A., and consist of two very
thin plates, to which terminals are attached, separated by a layer of
pressure sensitive paint. When calibrated however, these cells had
a very unstable response to pressure because of thelr extreme
sensitivity to eccentricity of loading. A typical calibration curve
1s shown in Pig.5.2, and even 1f this were reproduceable it would
not inspire confidence in the use of the cell for absolute measurement
of pressures. In the Author's opinion, these devices are pressure
sensers in a qualitative way rather than quantitative pressure

gauges.,
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5.3 Callbration of Pressure Cells and Determination of the
Plexural Rigidities of the Test Plates

The pressure chamber used for the calibration of the pressure

cells is shown in Fig.5.3, and thils same chamber was also used to
find the flexural rigidities of the perspex test plates. The chamber
is 33/h inches internal diameter and the various cover plates are
secured to the chamber by 16 Allen screws. With cover plate "A" in
position, a pressure cell could be calibrated without allowing the
plate in which it was inserted to bend. With cover plate "B" for
example, the flexure of the plate came Into play and the effect of
this on the cell calibration is shown in Fig.5.4. It was shown
therefore that the cells had a linear response to applied pressure,
but that the curvature of the plate in which they were inserted might
introduce serious non-linearity. The magnitude of the non-~linearity
in the actual experiments is disvussed in Section 5.9.

The flexural rigidities of some aluminium plates were first
measured using the apparatus because these plates were of a more
uniform thickness than the perspex plates and because the E value of
the aluminium was known from previous work by Macleod (78) to be less
subject to variations from plate to plate than might be expected
for the perspex plates. The results of a typical test are shown
in Fig.5.5 where the central deflection of the clamped circular
plate (%/16 inch thick) is recorded against applied pressure. 'The
average deflection of several aluminium plates was found to be
0.00088 inches per 1b/in2 compared with a theoretical value using
Macleod's results of 0.00087 inches per 1b/in2. Since the 1limit of
measuring accuracy was 0.0001 inch, this agreement was thought to be
satisfactory, indicating an E value for Aluminium of 10.1 x 1061b/in2
at a Poisson's Ratio of 0.3,

The flexural rigidities of some perspex plates were then
measured and some typical results for three 1/4 inch thick (nominally)
plates cut from the same 8 ft. by 4 ft. sheet are shown in Fig.5.6.
Plate 1 deflected by 0.00038 inches per lb/ine, plate 2 by 0.00034
and plate 3 by 0.00042. At first sight this implied large

fluctuations in E from plate to plate, but on measurement of the
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plate thicknesses, plate 1 was found to be on average 0.255 inch
thick, plate 2 0,263 and plate 3 0.243, giving E values of

3.09 x 10° lb/ing, 3.15 lb/in2 and 3.23 x 10° lb/in2 respectively,
reflecting a variation of only ¥ 2% in the E value for that particular
sheet. It should be pointed out that, using this apparatus, the E
values of all the perspex plaies tested were of the order of

3 x 105 lb/in2 compared with the usually quoted value of nearer

b x 10° lb/ing. If the low value were due to defects in the
apparatus one would expect that the results for the aluminium plates
would also be low and that the results for the perspex plates would
be less consistent, Since neither of these expectatlions is
fulfilled the apparatus must be assumed to be reliable. In any case,
only the relative values of E for the variocus plates was of interest
in this work and the apparatus provided this information. From
Macleod's work (78) Poisson's Ratio for perspex was taken to be

0.4 in every case.

5.4 Determination of the Required Size of Sand Container

It became obvious early in the experimental phase of the
work that the labour in handling large quantities of sand was going
to restrict the number of tests which could reasonably be conducted.
On the one hand it was desirable to use as large plates as possible
so that the effects of non-uniformity in the foundation would be
minimised and deflection measurements readily made at a large number
of points on the plate; on the other hand, the minimum volume of
sand consistent with these requirements was sought.

Pilot tests were therefore conducted using a bin 30 inches
in diameter and 12 inches deep, with auxiliary ring walls 15, 22%
and 25 inches in diameter and 12 Inches deep. A rigld test plate
5 inches square and 3/8 inch thick was used, giving ratios of container
width: plate width of 3, #%, 5 and 6. Leighton Buzzard sand was
poured into the contalner from a tin with a perforated 1id held 3
inches from the sand surface. Five layers, each of 2 inches
compacted depth, filled the bin to a depth equal to twice the
breadth of the plate, compaciion being effected by a 10 inch dilameter,
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20 pound flat weight. (The necessary depth of 2 times the plate
breadth seemed to be universally accepted in the literature, e.g.
Allwood (95) whereas the necessary container width was not clearly
agreed upon. ) A check was also carried out on the uniformity of
placement of the sand by a method first used by Allwood (95) and
subsequently by Neale (90). In this method, miniature vane shear
tests were carried out at various positions in the bin, the vane
being driven half way into the uppermost layer each time. (The
vane is 3 inch diameter and % inch deep.) Calibration tests on the
same sand, Fig.5.7, show that the failure torque is highly sensitilve
to changes in the density of the sand. Fig.5.7 also shows that the
method of compaction, in one case vibration while in another tamping,
also affects the failure torque. This is attributable to the
different grain arrangements due to the two methods, and would be
expected to be more proncunced with angular grained sands. That
this is true will be seen later. However, for a constant mode of
compaction, the vane test 1s seen to be a good guide to density
variations. Vane tests on the compacted sand in the bin indicated
density variations of the order of + 0.5 1b/ft3, which, being
comparable with the results for vibrated sands (90), were considered
reasonable.

When the bin had been filled, the test plate was levelled
and loaded with a uniform pressure, a small "seating" pressure
having been first applied, in steps of 1 lb/in2 up to 6 1b/in2 and
the deflection of the plate after each step was noted. Five minutes
were allowed to elapse between each increment because this would
subsequently be necessary to permit time for creep of the perspex.
The results for 3 tests in eaoh of the 4 bin sizes are plotted
together in Fig.5.8. This shows that the 15 inch bin is definitely
too small, but that there 1s little to choose between the other
three, especially at the subsequently adopted maximum working
pressure of about k lb/ing. To minimise the sand volume
therefore, a minimum container width of 4% times the plate width
was adopted.
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5.5 Classification of the Sand Used for the Full Scale Tests
It was decided that the criteria desecribed in the previous

section l.e. reasonable plate size together with a reasonable quantity

of sand could be met by using plates in the range 8inch diameter to
12 inch diameter. This implied ccatainer sizes of 36 inches to
54 inches and a maximum quantity of about 2 tons of sand. ILeighton
Buzzard sand had been used for the pilot tests, but the purchase of
2 tons of this sand would have been very expensive and in any case it
was felt that a finer sand would minimise the effects of variations
in the density of the foundation, especially as far as the pressure
cells were concerned since there would be more grains in contact with
the cell.

After several trials, a fine Toy river sand was adopted.
The grain size distribution of this sand is shown in Fig.5.9 and it
can be seen that the sand is very uniform, 70% of its particles
passing the 36 sieve but being retained on the 52 sieve, The
specific gravity of the sand particles was found to be 2,77, the
maximum porosity by the tilting test to be 0.47 and the minimum
porosity, after vibration under water, to be 0.38. The sphericity
and roundness of the sand were found to be 0.80 and 0.45 respectively,
by a method developed by Neale (90). 'This indisated a rather angular
sand and confirmed visual inspections which revealed a proportion of
flaky mica particles. Finally the molsture content of the sand
as delivered (washed, sieved, dried and bagged) was found to be
0.05% and it was assumed that this small amount of moisture would not
affect the behaviour of the sand by causing significant capillary

forces.

5.6 Placement of the Sand in the Full Scale Tests

A considerable amount of work was involved in the

investigation of the behaviour of plates of varying thickness and
dlameter bearing on just one sand foundation (l.e. a single sand

placed at a single density), and this limited obJjective formed the
scope of the experimental work. This considerably simplified the

requirements of apparatus for depositing the sand in the containers,
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and all that was required was the ability to deposit reasonably uniform
layers of sand over areas from %6 inches square to 54 inches square,
ready for compaction. A simple hopper arrangement was adopted,
consisting of two % ineh thick blockboard panels, one fixed to supports
and the other free to slide, perforated by l/h inch diame%er holes at

1 inch centres. The hopper was 5 feel square overall, so that a
complete layer could be deposited in one pour. Since the sand always
dropped through a distance of at least 18 inches, no facility for
adjusting the dropping dilstance was provided. The sand was poured
into the containers in layers which, after compaction, were nominally
4 inches thick, the tamper being 10 inches square and weighing 28 1b.
The uniformity of the layers was tested in the same way as in the

pilot tests, the vane having been calibrated as shown In Fig.5.10.

This time the method of compaction had more influence on the ultimate
torque/density relationship because of the more angular sand grains.
The variation in density of the compacted sand in the containers

was again of the order of ¥ 0.5 1b/ft3, which was considered

acceptable.

5.7 Plates Bearing on Sand and Subjected to Unlformly Distributed
Loads

The original aim in the research project was the examination
of the behaviour of flexible plates, bearing on sands and subjected
to uniformly distributed loads on thelr upper faces. To this end,
at the time of the pilot tests to determine the size of container
required, a small apparatus was constructed, capable of applying a
uniform pressure to plates up to about 6 inches square. This
apparatus was in fact used in the pilot tests, and the experience
thus gained utilised for the construction of a larger apparatus
capable of applying uniform pressures to plates up to 12 inches square.
Drawings of this larger apparatus are shown in Fig.5.11. The rubber
air bag was formed by slitting open a 6 inch diameter triaxial test
membrane, and the range of plate displacements over which the full
pressure was transmitted to a given plate was checked by gradually

moving the plate away from the pressurised ailr bag and recording
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the position at which the load began to decrease. Unfortunately,
no plate of practicable flexibility could be induced to bend on the
medium~-dense sand foundation under the pressures which could be
applied. The most flexible plate tried was 12 inches in diameter
and %/16 inch thick. More flexible plates would have been closer
to membranes than to plates. At this scale therefore, and given
the stiffness of the foundation, the tests using uniform loadings
had to be abandoned.

5.8 Circular Plates Bearing on Sand and Subjected to Concentrated
Central Loadings
It was then declded to attempt to use the next simplest

loading, namely, a concentrated central load. Concentrated loads
present the problem that theoretically they have no area of application
whereas in practice a certain undefined area of application exists.
The first task was therefore to ascertalin whether the proposed
loading system gave nearly the correct results when applied to a
situation in which a theoretical answer was known. The circular
calibration chamber described in Section 5.3 was used for thispirpose
the test plate (l/h inch thick perspex) having a small dimple, formed
by a drill tip, made at its centre. The load was applied through a
l/h inch diameter stainless steel ball-bearing. The measured
deflection was 23.5 x thuinohes per 10 proving ring divisions

(16.38 1b) while the theoretical deflection, Pa2/16nD was 22.55 x 10
inches per 16.38 1b, the difference being 4%. It seemed reasonable

to assume, therefore, that the concentrated load, applied in the

L

above manner, was close to the theoretical conception of a concentrated
load.

A second complication when using circular plates bearing on
sand and centrally loaded 1s that there is a relatively small range
of plate flexibilities within the thin plate range, for which bending
of the plate occurs without the edges of the plate losing contact
with the sand. As this loss of contact does not usually occur in
practice and as 1t presents complications in the theoretlcal analysils,
only plates with flexibilities such that theilr edges did not rise

were tested,
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After preliminary trials, the following O plates were
selected, all of perspex:

Diameter (inches) Nominal Thickness (inches)
8 o+ 13) P16 (+2) /8 (+2)
9 5/16(+ 1) /8 (- 15) o0.k2(+ 1)
10 2/8 (+27) o2 (+1) & (-7)

The figures in brackets indicate the average variation from the nominal
size in ten-thousandths of an inch. The 0.42 inch thick plates were
not available as standard sizes and had to be machined down from the
% inch size,

Calibration pleces were cut from “he perspex sheets,
immediately adjacent to the test plates, and the following E values
determined as described in Section 5.3.

Nominal Plate Thickness (inches) E (1b£in21
l/h 3.09 x 10°
>/16 3,01 x 10°
°/8 3.19 x 10°
0.42 3.07 x 10°
3 3.25 x 10°

5.9 Apparatus and Testing Procedure

The experimental set-up is shown in Plate 1. After the
container had been filled to the required depth, the circular test
plate was placed on the sand surface and levelled. The load was
applied by a hydraulic jack and measured by a proving ring. In order
to measure the deflections of the plate at radiil % inch apart,
conventional dial gauge supports could not be used, being too bulky.
To obtain the necessary cluster of gauges a holder was used embodying
the principle shown in the sketch of the pressure chamber (Fig.5.11).
The lugged back plates of the dial gauges were replaced by plain back
plates, allowing 7 gauges to be positioned on the holder at radii
% inch apart. Other dlal gauges with conventlonal supports were
positioned round the circumference of the plate to check that no
tilting occurred under load. All of the dial gauges were graduated
to l/10,000 inch.
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Location of pressure cells,
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In the first series of tests, only the deflected forms of the
9 plates were measured for loads of 32.76, 65.52, 98,28, 131,04,
163.80 1b (oorresponding to convenient proving ring readings). The
determination of these deflected forms usually reqguired about 5
independent tests on each plate, such was the scatter of che
experimental results. The container was refilled before every test,
so ‘that all results refer to first loading of the sand only. The
effects of repeated loading were not investigated. The tests on
any plate were contiaued until three sets of results differing by less
than 10% were obtained. The averages of these sets are plotted in
Figs.5.12-5.14 for a load of 163.8 1lb.

In the second series of tests, involving three § inch diameter
plates only, pressure cells were incorporated in the plates at the
positions shown in Fig.5.15, In this test series, it was only
necessary to check the deflections at a few points to ensure that
they agreed with the measvrements from the first series, The
measured contact pressures for a load of 163.8 lb. are plotted in
Fig.5.16.

To determine the magnitudes of the curvatures of the three
plates at the positions of the pressure cells, a third series of
tests was conducted using the original 8 inch diameter plates. Foil
electrical resistance strain gauges, gauge length l/h ineh and
resistance 50 ohms, were cemented to the upper surfaces of the plates
using Eastman 910 cement. The radial strains recorded by these
gauges at full load were nowhere in excess of 400 micro-inches per
inech. A similar order of curvature is produced in a l/h inch thick
perspex plate, clamped in the test chamber described in Seetion 5.3,
at radii of 15/'32 inch and h5/32 ingh under a pressure of about
7 lb/ing. By clamping a plate containing a pressure cell in the
calibration chamber it was therefore possible to assess the effect
of ecurvatures of the order of those developed in the malin tests on
the performance of the pressure cells. This was found to be
negligible, and no corrections to the pressure cell readings to

allow for curvature of the plates were necessary.
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5.10 Analysis and Discussion of the Experimental Results
In the chapters of this thesis devoted to theoretical analysis

of eircular plates bearing on elastic foundations, two types of

analysis were developed. In Seetion 2.9 the method of analysing a
circular plate bearing on a Winkler-type foundation whose stiffness
varied with radius was described. The type of variation allowed
across an ulus with inner and outer radii b and a was k(r) = k

(ka - kb)le-b) ]
+ _—EETB:IﬁrT that is a linear variation.

b

The results shown in Figs.5.12-5.14 were analysed using a
computer program embodylng the above assumption. By trial and error,
the distribution of k was varied across eacli of the nine plates until
the deflectlons obtained from the computer program were within 3%
of the measured deflections. This did however prove impossible in
the case of the 10 inch diameter, % inch thick plate where the
deflections at the centre of the nlate, and at a radius of % inch
could not be fitted closer than 8% below the measured deflections.
This was atbributed to the presence of significant shear deformations
in this the thickest of the plates tested, which were not inecluded in
the theoretical analysis. The calculated distributions of k values
are shown in Pigs.5.18-5,20.

Then on the basis of the Winkler hypothesis that the contact
pressure p = k x the deflection of every point on the plate, the
theoretical Winkler contact pressures could be calculated and are
shown in Figs.5.21-5.23. These contact pressures are most interesting
in that, apart from the thimmest (8 inch diameter, 1/4 inch thick)
plate, they show the "inverse parabolic" pressure distribution
characteristic of plates bearing on semi-infinite elastic media. The
infinite edge stresses predicted by the theory of the elastic medium
are physically inadmissible in sands and it can be seen that all of.
the pressure distributions reduce to zero at the edges of the plates.

Other trends exhibited by the results are that the maximum
contact pressure on any plate was found to decrease with increasing
plate stiffness and with increasing plate size, and that the
location of this maximum pressure was about l% in. from the centre

of the plate for all of the plates lnvolved, It can be inferred
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therefore that the pressure on a rigid punch would be a maximum at about
the same position on the punch,

The measured contact pressures of Fig.5.16 have been super-
imposed on Fig.5.21 and can be seen to be in fairly good agreement with
the predictions of the Winkler hypothesis. They are consistently
below the predicted values, which could be due to the arching of the
sand over the cells.

Since good agreement between experimental results and the
predictions of theory using Eﬂiﬁﬂzﬁ Winkler media has been reported
for beams (4), (25), this method was also examined. It was decided
to fit the theoretical and experimental values of deflection at the
centres of the plates, although other fits could be tried, for example
a fit of average deflection. The deflected forms are shown in
Figs.5.24-5,26 and should be compared with Figs.5.12-5.1h.
Superficially the results are quite good, especially near the centres
of the plates, but towards the edges of the plates errors of 300% do
ocecur,

The contact pressure distributions for the uniform Winkler
assumptions are plotted in Figs.5.27-5.29 again with the measured
values superimposed on Fig.5.27. In the range of radil containing
the pressure cells there is not a great deal of difference between the
uniform and non-uniform Winkler predictions, but the uniform theory
predicts pressures which are too high at the edges and too low at the
1 inch and l% inech positions. Unfortunately, due to the type of
pressure cell used, no measurements could be taken near the centres of
the plates, to check whether the reduced pressures predicted by the
non-uniform Winkler theory actually occurred, However the high edge
pressures predicted by the uniform Winkler theory are most unlikley
in practice due to the very low strength of the unconfined sand.

In addition, the measured contact pressures are in some cases greater
than those predicted by the uniform Winkler theory. This implies cell
action factors in excess of 1 which is unlikely.

Only preliminary results were obtained using the method of
analysis described in Section 3.4, where the plate was coupled with
a semi-infinite elastic medium in which inhomogeneity could be
accounted for, Again by trial and error, the theoretical central

deflection, treating the sand as a homogeneous semi-infinite elastie
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medium with Poisson's Ratio of 0.3 was fitted to the measured central
deflection., This gave an E value of 60,000 lb/ft2 and the deflected
form shown in Fig.5.30 together with the measured deflections. The
theoretical deflections are too large at the edge of the plate and
suggest a stiffening of the medium as the radius increases. However,
due to the cumbersome nature of the computer program for this analysis,
vhich was written at a time when only 14,300 words of store were
avallable, and the slow turn-round time for programs due to the
enlargement of the Glasgow computing installation, it was not feasible
to pursue this analysis further. In any event, the contact pressure
distributions would have the same form as those shown in Figs.5.21-5.23,

The only results directly comparable with those quoted
above were obtained by Brand (88). In a limited series of tests on
quite flexible plates, he obtained a set of parabolic pressure
distributions similar to that obtained by the Author for the 8 inch
diameter l/h inch thick plate. The tests on beams quoted In Section 5.1
can not readlly be compared with tests on plates because a beam has
negligible ability to spread load, and, when loaded by knife-edge loads
across 1ts full breadth merely attracts high pressures to the load
points, as observed by Lenczner (87) and others.

Further experimental work on the behaviour of plates bearing
on sand foundations should therefore be aimed at ascertaining whether
the reduced contact pressures at the centres of all but the most
flexible plates, predicted by the non-uniform Winkler theory, actually
exist; and whether this is a feature of the density of the sand or
the type of loading. Secondly, the method of analysis developed by
the Author in Section 3.4 should be applied, using a more sophisticated
computer program, to the analysls of experimental results, to determine
the distribution of stiffness in a sand foundation assumed to be an
inhomogeneous, elastic medium., As a reasonable starting point, the
modulus of the sand could be increased with depth in proportion to the

increase in standard penetration test values.
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5.11 Conclusions

1. The rectangular finite element analyses for thin plates in
bending, available in 1964, have been studied and some analyses which
were thought to be different have been shown toc be the same.

2. Three new rectangular finite element analyses for thin plates
have been derived which have advantages over present methods. In
particular, shear forces have been determined by the finite element
method for the first time.

3. The finite element method, using rectangular elements, has
been applied to problems of moderately thick plates for the first time.
4, An explicit stiffness matrix suitable for the analysis of
circular plates in bending has been derilved.

5e The possibility of applying the finite element method to
problems of plates on elastic foundations where realistic account is
taken of the inhomogeneity of soil deposits has been appreciated.

6. The finite difference method has been used for the solution
of some plate problems which were previously thought to be difficult
to solve by such methods.

T The results of a series of tests involving flexible plates
bearing on sand foundations have been analysed by theoretical methods,
and the theoretical predictions have been partially confirmed, within
the limitations of the apparatus used. The principal deduction, for
a particular loading system and sand condition, is that the contact
pressure distribution is of the form predicted by assuming the sand
to be a semi-infinite elastic medium, rather than a pure Winkler

medium,
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APPENDIX 1

TFifth Order Stiffness Matrix

ﬂ[A‘][ \Symmetrical |
ol - [B'\] An,

i La] [ [As)
In]lc.] & |4

-

Submatrices denoted by the same letter contain identical texms

but the signs of the terms are subject to change:

K'ﬂ Symmetrical

| K K |

A‘ = l{w k-':‘:.?. \43,%

 Kan Kaz Kas Kag |

‘ KS,\ Ks,2 Kes Ksa KQ,G

Kcﬂ K(,,'L KC,% Kc,,4- KG,‘; : KG'Q
—

K ‘1 Symmetrical

']:\.L . =K Kge Kga

CKao K ~as Kag

| - e lsa ~Uss3 Ksa Ksgs
Ko =Koz Koy =Kot -Kes Koo




As

i

it

- \(—'z,t

s,

Ks, i

Klo, {
K,

Ve

K2, 1

KA,,\

Symmetrical
Ko
s o |
- Koz -us  Kas
-k -3 Kg;d,
-Kz X Kb,&
Symmetrical
Ko,z
=32 Kas
~Waz Kas Kag
~Ksa sz Keq
Koo ~Kez —Ked
k'?,z : K?,% !47,4
k&z ""42,‘ K*O,Z
k‘i,z K‘Z,s klo, 3
k!o,z '<w,3 klo,‘@‘
Koz Koz K4
K22 Kiz,s Kiz,4
=k, <l Iq .8
L2 Koz —lga
Koo 1Kq3 =4
- k(o, r A !410,_3 l<lo,4-
- MH.?— ,4',3 | l‘n,a

14\2,4

Ks,s |
Kos Ko,
Ks:s
- K5 Ko,b
Ka,s =Kz
f’fu,z = L’:lz,z
~K "3 Kiz, 3
o, $ !‘lo, b
|<u,$‘ K, 6,
qu,g K‘z.e
-
s e
- ~lee
~ls =k
S
Mu,( ' kﬂ,b
k'2,5-‘ _ klz,l.




]

Kea s~ K
ot bye Yz
~ly4 -k L/"-‘I‘O
kzz, 4 Mzz, ¢ - 22,0
AT O Las,
s -laas K




Algebraically for example:
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where F%” etc, are the coefficients in the generalised moment-

curvature relationship:
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In practice it is easier to obtain the terms of K from the

coinputer program given in Appendix 4,

The numerical values of the terms of V( for a square element
of side one unit and flexural rigidity D= one unit (= 0,3)

are given on the next page.
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APPENDIX 3

A Stiffness Matrix for Axisymmetrically Loaded Circular
Plates
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APPENDIX 4
-ESTABLISH DBGOO3SOOKPA;
gEVENTH ORDER SOLUTIONS
0/P 83~

begin llbrary AO,A6,AT7,A8:

comment A program for a finite element selutlion te the
preblem of transverse flexure of a thin plate
en an elastlic foundation : Tth erder dilsplacement
functlon;
real E,E11,E22,E21,G,v,1s80,h,nxe,nye,a,b,
A11 A21 A22 A33,c loads,X Y,Z3
Integer i j,r,s,t le,Nn,R,N,w,k,1 ak,al,am,an,I;
array KM[1 +40,1 O];

open(20) sopen(70); £ind(110,[DG100006])
I: —read(eoi

skip(110 T

read binary(‘l'l() KM, [KMOOO00Q] ) 3

write text(70, [ TAN*M* SMITH*CIVIL*ENGINEERING[2¢]]);

lci=read(20);

for Y:=1 step 1 until le do

Begin nye:=read (20);Mn ¢=read(20);N:=read(20); R:=read(20);
nxe t=read (20 3 loads: ~read(20)9 Ww: —read(eo)
1s0 :i=read (20 h-=read(20); a: ~read(20% b —read(eo)

begin array KB[1:N, 1-w+1] NF[1:Nn,1:10],g[1:40];

for 1:=1 step 1 until N do

for J:=1 8%ep 1 tntTIL w+T do

KBlL, 31 :=0.0;

1f 1s0=0 then

begin E11t=réad(2 ())); E22:=read(20); E21:=read(20);

3

G:=read (20
end else
Pegin Ei=read(20); vi=read(20);
E11:=E22: E/(T-vTQ)
E21:=vXE113 --E/(2><(1+v)),

end;

TTT:=E1 Xht3/12;
A22:=FE22xXhT3/123 :
A21: E2‘I><h’l‘3/12°
A33:=0xhT3/12;



P:for 1:=1 step 1 until Nn de
for J:=1 step 1 until T0 do
NFTi, 3] :=T;
feor s-—1 step 1 until R de
BEgin r:=read (207
for Ji=1 step 1T until 10 do

begin if read(20)~0 then gete L1;
NFTI':J}
Li: endg
end;

=1 step 1 untll Nn do
¢= T step T until TO do
begin 1f NF[I,J]=0"then goto IZ;
NF[1,J]) :=r;
—r+1°
L2: end;
for s:=1 step 1 until nye do
“Ter t:=1"step 1 until nxe de
begin ak:=(T=T)X(nye+T)+s;
ale:=ak+1;
am°=tx(nye+1)+59
=am-+1 3
for i: 1 step 1 untll 10 do
“Pegin g[TT:=NF[ak,I]; g[IF10]:=NF[al,1];
g[i+20] =NF an, % g[1+30]-wNF[am,

end;
for 1:=1 step 1 until 40 do
begin 1 g[T]=0"then geto S23
T for J:=1 stép 1| until 50 de
begin if E[J]=0 Then gote S1;
cr=g[J]-g[TT+w+T;

1f ed>w+1 then ot
KBlg[1] ,cTTZKB%‘TI],c +KM[1 31

S1: ends
S2: end°
ends;
SOLVE: begin array 7pl1:N},d[0:N]; a[0]:=03

for 1 := 1 step 1 until N do
begin Xi=

T~ Ter J: *1 step 1T until w do X:= X+KB[1, 3]12;3
RBUL,w+1]17:= 8qrE(KBl1,wFT] - X);
for k:=1 step 1 until w de
_B"gin X =03
if i+k>Nthen gete RZ2 else
If x = w then gote R1 €lise
for 1 := W-K steép -1 until 1 de
Xi= X+KB[ 14k, TIXRB[1,TF&T;
Rl:a :=1+k; b &= ~k+1

KBla,b] i= (KB[a,b]-xi/KB[i,w+1];

R2: end;
end;



for 1:= 1 step 1 until N de p[1]:=0.0
for 1:= 1 step 1 Until loads do p[read(eo)]-—read(eo)9

pl1l:= p{1]1/KB[1,w+1];

for 1 := 2 gtep 1 untll N do
begin X :=0; _"
for J:= 1f 1< w+1 then w-142
else 1 sTep T until w do
X = x+ KB[I, J]iﬁriif-w“T]
pl1] := (p[1]1-X) / xBl1,w+1];
end;

d[N] := p[N]/KB[N,w+1];
for l:= N-1 step -1 until 1 de
begin X:= 03 1:= 1f T> N-w then N else 14w;
for J:= 1+1 step T until 1 do
X+KB[E SWHFLSJH1 1A
af1]:=(o 11-X)7kBl1,wi1];
ends

write text (70, [LOAD*CASE[2s]]);

write (70, format([nd]),YT“ write text (70,[[e]l);
write text(7o [NODE[ T ] DEFLECTTON| 85 ]MMT —
*ABDUT*DY[BS]MMT*ABEUT*DX[SS]MDMTWABDUT*

XY[5s ] SHEAR*¥*** QX [ 53 ] SHEAR¥* **%%QY[2¢]]) 3
Z:=foermat ([+d.ddddsddddp+nd]) ;

begin fer 1:=1 step 1 until Nn do
begin write (70, formatf[nddj) s1) s
write text(70,[[3z]]
write (70,Z,d[ NFTi,TT’ﬁ
wrlte text(?O [[28]]):
write (70,2, A1IXAINFTL, 4] 1+A21xd [NF[1,511) 3
write text(?O [{28]]);
write (70,7 ,A22%Xd [NFT1, 5] 1+A21xd NF[1,41]);
write text(7o [[28]]);
write (70,2, A33“d[ﬁﬁ 611);
write text(?o,[[Es :
write (70,2, A11x§d (157 i]+d[NF[1,1o]]));
wrilte text(TO [28]])
write (70,2, A22xTd(NF[1,8] ]+d[NF[1,9]1));
write text(7o,[ [l2e]]);
end;
end;
end; end; e"H“
closeé : close(?O);
close 33
end-»
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>ESTABLISH DBGOO3ITOOKPU;
13 DEGREES OF FREEDOM TRANSVERSE SHEAR INCLUDED;
o/P 83—

segin cemment Generatien ef dimensionless vecter A
from cefflclents of polynomlals;
library AO,A6,AT,A8,A9;
Integer FLN NF F u,v,n,I
openEEO) epen(?O) .—readgzo)
find (110, [DG100006])9 skip(110,I); interchange§ 0)s
wrlte textT70 [IAN*WHSMITH*CIVIL*ENGINEERING[QC 3
FLN:=read (20) ;" NF:=read(20); vi:=read(20); u:=read(20);
n:=read(20);
I :=FINXNF';
begin real C,D,nu,h;

1nteger cydye,i,3,k,1,p,q,r,8,p1,02,91,023

array wl1:F,1: 21,E[1. 2,1-2j DERF{1:v,0 4 1:u],
ARR1[1:2,1:4] ARH1£§
ARR3[1: 1&4],af1 140, 1:n] ,KM[1:F, 1:F],
MK[1:F,1:F,1:n];

fer 1:= 1 step 1T until 144 do

for e:= 1 8%ép 1 Until n do Al1,e]:=0.0;3

for e:= 1 gtep 1T untll n deo
Begin Di:= read (2073 nu:=read (20); h:= read (20);
IT,e] —A[lﬂ,e] 1=D3
Al2 ,e]-— [13,e]°= nuxD;
A[27,e]-— 2x (1-nu)xD;
/58/?]'~A[21,e]-=A[85,e]-=A[98 se] = Dxhtex(2-nu)
O/{1-nu
Al9,e]: ~A320,e]'=A[86 el:=A[97,e]:=
thTQXnu/10/( 1-nu);
Al10,e] :=A[22,e] ~A[109,e]~=A[110 e]:=
2XDXhT2/10/E ~nu) g

Al35,e]:= A[36,e]:= A[123,e]:= A[135,e]:=
2xDxhT2/55
Al40,e]:= A=43,e] := A[53,e]:= A[54,e]:= A[65,e]:=
A[66 eli= A[76,el:= A[79,e]:= DxnT2/5/(1-nu);
Al92 e]:m Al 105,e
Dxi T ix (H-2xn uT25/1oo/(1~nu¢2)/(1-nu)
A[93,e]:= A[104,e] 1= Dxhtlixnut2/50/(1-nut2)/ (1~
A[Qh el m A[106°0] im L6, mu2/207 (1 -nur2) /(1-nu) s

th?4/25/(1—nuTez/(1-nu
A[118,e] := 2xA[9

Al131,e]:= A[132 e] = A[143,e]:= A[144,e]:=
zxgxmu/e 5/(1-nu) 3

ena;
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for l:= 1 gtep 1 untill F do

for J:= 1 step 1 untiI 2 deo wl1,j]:= read (20);
E[1,1]:= E[2,2]):= E[6,1]:= E[7,2]):= E[10,1]:=
E[IO,E]:= 23

E[1,2]:= E[2,1]):= E[4,2]):= E[5,1):= E[8,2]:=
E[9,1]:= O3

E[3,1]:= E[3,2]:= E[6,2]:=E[7,1):= E[11,2] :=
E[12,1]:= 1;

E[8,1]:= E[9,2] :=

E[4,1]:= E[5,2] 1= f11,1]:= E[12,2] := 3

for 1:= 1 step 1 until v de

TB?'%‘= 1 step 1 until u do

DERF[1,0, JT =read(207);

for p:= 1 step 1 until
for g:= 1 8tep 1 until
for r:= 1 Stép 1 Gntil
begin DERF[D,q,r] ~O O
i1f DERF(p,q-1 ,r]~0 then gato L1 else

1f r+q< w then DERF[p,q,r] :=DERF([p,q-1,r]
X{u+1-g-r) else

if r+q >u then DERF[p,q,r]:=0,0;

"o e
I8‘i%i8‘

L1: en

for ci= 1 gtep 1 until F do

for d:= 1 stéep 1 Gntil ¢ do

®egin  for 1:= 1 step 1 until 12 do
for J:= 1 gtep 1 UnEiT 12 do

begin 1:=(17T)X12+7;
T 1f A[1,1]=0 then geto L2:

ARR1[1,1] —WTE:T]__ﬂﬁRT[é,1]‘“W[G,Q]s
ARR1[1,2]:=E[1,1]; ARR1[2,2]:=E[1,2];
ARR1[1,3] t=w [d 1]; ARR1[2,3]-~w[d,2],
ARR1[1,4] :=E J,1] ARR1[2,4]:=E[ 3,2];
for k:= 1,2 4

Begin p1=ARR TT

k,1]s t=ARR1[k,2];
P2 :=ARR1 [ic, 3] s

5 q2 =ARR1 [k, 4] ;



C:=0,03

q :=2xXu-q1-q2;

for r:= 1 step 1 untll u do

Tor g:= 1 step 1 until u de

Pegin C:=C+(If DERFIpT,q157])=0
or DERF[pZ,92,8]=0 then 0.0
T else DERF[p1,q1,r]X

DERFIp2,q2, 81/ (q-r-s+1)) 3
end;

ARRZ2[k] :=C;

end;
ARR3[1]:=ARR2[1]xARR2[2];
L2:end;
for e:= 1 step 1 until n do
Begin C:=0.0;
T for 1l:= 1 step 1 until 144 do

CT=C+ARR3[TIXA[ 1,873
MK[C’d,e] :=C§

end;

end;

write binary(110,ARR3, [ARR30000]);
for e:t= 1 gtep 1 until n do

for 1:= 1 step 1 Until F do

for Je:= 147 g8tep T until F do

VKT1,J,e] :=MR[J, 1,013 T

for e:= 1 step 1 untll n do

begin for T:=1 step T un®Til F do
for J:= 1 stép 1 until F dm
KMT1, 3] :=MK[L,J,eT3
write binary(110,KM, [KMOOD0O0DO))

end;
begin Integer £1,f2;
f1:aformatg[-d.dddm+nd;]);
£2:=format ([~d.dddp+nd;cec]);
for e:= 1 sfep 1 until n 43
for 1:= 1 step 1 until F do
®egin for J:= 1 step 1 until F-1
do write (7O0,FT,MK[T,3,e]);
“Write(70,f2,MK[1,F,e])s

end;
end;
end;
close(20); close(70); clese(110);

end->



