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FREFACE

A1}
e

The Qivst chapter of this dlssertation loys the
foundntions of algebrele goometiy, with cnmphasin on the
Hilbort Wullotellensatsz. IlMoling uvse of o obaln condition
aslablishked in Choptey 1T, wo then give now proofs of some
consoquences for algebrale varioties.

In the second chapter we discuss the dimension theoxy of
1donls and finite integral domains, & sdmplified proof of
Propevdy 2 of B3 is given,

By following O. Zaviokid in "The concept of o simplo polnt
on an abstract algebroie varlety® ( [4] soe roferences), v alose
the third chapter with the clessdeal cyitorion for almplicliy in
the vepsrable cana.

My thonks ave due 4o Drs A. Goddes of the depaviment, who
superviged the work,

To Po Mo TAVLOR, 9965,
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CHAFPTER X

ALGEBRAIC VARIETIES

14, Notation.

[ ianntin iy B S

We worl with a fixed ficld k, called the ground field

and a given integer me I we deno te Ty .‘:‘5‘!{ the algebrale closure
of’ 1@,' then the set of ordeved n-tuples of elements in E‘Bk forn
a vector space over k (with ususl eomponentvise addition and
sonlar mu].‘%;iplicati@n)e A veotor = (O(‘i ’ ;..3 o m)s X ie gt
ip oolled o polnt of the space &iﬁi (E:Xn for short).

The polynomial ring in n vardables }{1 9 oseyp }{n over ‘the field
Ik will be written ?;s[}i g% o0es pid n] o 1:[&]3 "polynonials' will belong
o this ring uwnleas otherwise stated. By the Hilbert Dasis Theorenm,
any Ldeal in l&[;}g ] has a finite basis.



B2. The Algebraic Variety.
v e ] i

Let { f)\g Ae A} be o set of polynomials in 1-:,[;;{‘], The
polints in E:'sﬁ which are geros of L A for all /\EA constitute the
variety defined by { £ ,\} .

The polynomicls £, generate on idsal 4 in k[X ] ond it ds
clear thoat the variety defined by { £ PE A} is the same as that
defined by { €0} . Now the ideal A has o finmite basis (£, 00005 £,)
and go the vericty T(A) is Just the sot of poiants which ave
simul tanoous zeros of fq 9 asoy fx,.. We have chown thot o given
vardely is the wiicty of an idesl, and as m@l{i s defineble by a
£inite number of polynomlols. ‘

Suppose M iz o vardety, then we write I(M) for the set of
all polynomisls vandshing at every point of Bﬁ° |

(1) = 51&3 pex(x] ¢ o(u) = 0}

It is easy 4o check that I(M) is an ideal containing A,
wheva M = V{A). If we now consmider the vardety V(I(M)) defined

by this ideal then we get
THROREM 209 o V(x(m))} =M = v{a)

Broof. Let x € Loll.B, then x is a zevo of all polynomials whrich
vanish on all meros of A du parbicular x is a szero of Ao  Thus
% € RoHo8,

Let x € RJ1.8. then x i a gero of A so x is a zero of all

polynomials vahich vanish on oll zeros (e.g. =) of A.  Thus z€LLH.S,

However the parallel wesult I(V(A)) = A is not always valids



in the next section we shall sse when this holds., Before doing this
we introducs the ldea of ivredusibility. '

DEFINITION, A vardety V is irrveducible if it is not the proper

wlon of two smaller wrieties V angd VE’

THEOREM 2.2, A varioty V is lrreducible i€ and only i i the ideal

Lotk s et e | aanh TRITS m\ EEIRTUN NS TNInTD
(V) is pvime.

Proofe Lot V bo reducible 16 V = Vy u Vyp U, # ¥, V) & Ve
Then V, C V implies that V) ;a:(v,ay Por *h (V) = T(v ) then
V(I(v)) - V{:&:(V,a)} iece V = ¥V by Theoren 2.1, mmwad;me...@ne
Ghoose £, € :a‘(v ) but ¢ I(V); sinilovly theve exlsts £,€ (v, )~ (V).
Now £, £, € 1("@) showiag thet I(V) is not prime.

(J@mve.mcaly let E(V) be not pmzraeg we show ¥ = V(A) is reducible,
There ove £, and £, such thot £ € iv), ¢ e,t v), £ ¢ ).
Put V, = V(A (“a” and V, = v(.zs. " (fz)) ﬁhen wa )}mve V, C ¥ and
V, C V5 for suppose, for example, thot V, =V, then "L(V ) = E(V)
bub £, € (v q Js ovonbrodiction.

=€ V% U VB lewe @ € V’% 80y, then x € Vo On ihe other hand
¥ €.7 implics fi(x)fg(x) = O so thot either f,i(m;) = 0 or fz(x) =

henoe x & V‘a U Vz. Therefore ¥ = ¥ g Y VZ and is not lrreducible.

THEOREM 2.5, Dvexny verdety V com ‘i:»c-a exprossed ap a findse unlon 01’?"

D eTwh o)

dcredueible varietlog.
ISR NNIIO TR SR

Proof. We suppose the conbvary, et at least one ve riody eyxists
which- doas not adeit the sbove representation. The set T of all
these vorieties ls non-cmpiy, end the corvespondlng sotb Z of dideols
glven by 7, = {1(\?‘)2 V€ T} hoe e mayimal ddeal I(V”) by the
nostherden property of K[X], see[5]Lpl¥®. By Theorem 2. the
waviety ¥ must be mindmal in T,



Now V¥ is reducible (V €EP) s m; v o V;a v ¥, where

v, C v ond v, C v, As neither V 4 hor V, s dn T, it follows

that V 4 and V both ave finite unions of ivredupible vevietiess

henge ¥ = V,& u ¥, iz o0 - a contradiction,

COROLLARY , | The rveprosendtation io unlque (provided mo npumbs o of

HTTA T LY AR ATRTY L

the waion conbaine another) .

. LG 7 :
froofe, LotV = V,! U oo U V&ﬁ = "JQ U ocos U V.&s he two representations,
po thad V and ¥ mm irvedugibla,
Ve kmv& v, = U (V -V,‘}p s ¥, ..TIJ n ¥, for some.d,
. g _

dote vﬂ c Vga Similarly “i?J < V for sone & € {1, coey BJe
But then v, c VE SV, ond s dn 'xm:a'i, v, e ch = V,o Honoe the

reprosenta biemfs ave mzngqu@ o within ordening of the conponenis.



f3. The Hilbery Nullstellonsnta.

Sateevey ) YRR L YT

The gquestion ariges when dose an ideal heve an algebraic zevo?
We glve the answewr in the foll mmng theoran éalled the weak form of
the Hilberts NMullstellensatse ‘

THEDREM 3614 'thr' mmr‘aw ¥{A) .w ROR-OMD uJ &8 and only "f’ ths Addeal A

_-..I Taenirey ey TR v s v s ]

is not the whole wing Igﬁi]
Proof.de Suppose V{A) iz nonecupty, then K € V(A) 4 sero of
every polynomiel dn b, 0 14 A,

2. Lot A be an ideal dlflerent {rom le;[g;g,] then A € P, a maximal
ideole  The vesidne clase ring k[x] /P = k[% 49

E'& . & g " P, is therefore a field, which we donote by W,

seey éﬂ"] g Wherg

Ve wequire to show S 49 vosp E o Bve algs brale over k, For
n =1 the vosult is obvious, How ¥ =k [%1 g s00g % J= (s, )[E?go“g J
and 1f wo malke the ilndustion assgumption for n = 9, M’l@ﬂl ?:-,: p?® °oes %S_n
ave algebrale over 1&::(%‘ Yo It vemaims o prove = 4 algeb -:&ic, over k.

Now thore oxdste a polyncnial p(J{ ) with p§§ ) §: O such thatb
P(§ YE. ds integral ovey 2"[2 1, for 2 € 4 < no L xo,ll@ws Aot
Lov any el emont &(5%9 Mog§ ) of B, [p("s' )] f(%,ig onggm) is
integral ovor 1&[%’ q] ( e e ;m)m tive ;»,meg,c:r) In pardiculer, any
clenent of k(T q) has this property. If we had S 4 transcendental
over lz, then k [§ ] weuld be iniegrally clesed in k ( E ), which
gives ug that any element of 1e( E ) can be expressed ar:s o quotient

gl%,)

e s & contrediction, The proof ls now complete.

[p(%ﬂ)je

By using o device due to Rebinowdtzch (ace [5] Vol T , pages 164=105),
or alierantively soe[2] P33)’ we can dedice



THEOREM 362,  The Hilbery Nullstollessats.
Lot £€ L[}L] yandsh at all conmon Beros of fﬂs 0ssy £ o Then

ey CEEOEMETRATY Rl Cliomdn ey €T )

thove exists an intoger v puch whot € ‘e (:&1 pocece fss) °

COROLIARY 4. I{V(A)) = xud A.
Prgof. Dot £ € xod A, thea £ F€ A dee. £° ond hense £ vonish
or ¥{A), as-k[X] is an intogrel domaing l.e. PEX(V(A)).

On the other hand, £ € I{v(a)) 1.@@ f vondshes on all zevom
of A lmplies, by thy thevwren, that :n? € A, or £ € zad A,

COROLEARY 2, T(V(A)) = A if and m@ly If & = vad A,

CORQLIARY, 3o V(&) = V{rad A).
COROTLARY 4o V(A) = V(B) if an§ only if vad A = wad Be

COROLLARY S5  The corrvespondemse V& V) du @ one-ons EAPRIRG hatweon

[omhs R L e R i IR =

proper lrreducible warietics and proper prime ideals,

T et




i,  Dimenvion of on Trroduaibl © Varioty.

Lot R s s e A I S L U RIAURA ey

Let ¥ be an ivveducible vavieby, then P mIK(V} is o prime ideal
and dhe dntegral domain k ["] /P we vall the coowdinste ¥aLng R[V ] of ¥,
Ag we saw this is equal o k [E 9 woogp S ] whore § 5 ig the P-vesidue
of ¥, o The degree of transcedsnce of R[‘V] (strictly speaking of the
CRIO w,c,xm Field of R[V]) over 1 ia ‘i:hamwsm an integer v: 0 € » < n
witbeh we define W be the dinmsusion of Vi we pub dim V =

The n-tuple { § soop € } mey be considered as a point of KT,
whore K is he univers aii v.:i,@mqmn Pield of ke £ = (é 5 eoe P € n)

i then called o genprle point of V, and hop the pwspw s
£ € V)& #{E) = 0.

The followving theorams can be proved divectly from the defindtion
of dimengion, but we sball moke use of a regult to be proved ia the
next chapier,

A

FROPOFITEON, ¥V hos dimension v LT and only i there oxlets a maxlmal

ATy WORLT  emipeihets il Rl R Seus Do B wWU) ETRERANNSS0TD

chadn

M“m*"m’%

V. Coos CV =¥

Qf’ irreducible vardebids, and no such chailn ia longer,
) Py i ey

Proofe This follows from Covollary 5 to the Hilbert Nullstellensats,
and, Chapter IL Theoven 3.2.

THEOREM le2s Lot V, ond V, be (ixvoducible) varictios such that

aBmIeD ‘i
V, SV, thon V, =V, if ond only 12 din V, = dim V.,
% P e o] 1 do  4TIThy WEERATD  GHPTEDRITRLY oSt axInIHu ’ﬂ L=t e ] ?,,

Prgof, Obvious from tho proposition.

THEOREM 4obo A vawdety bas dimension n :%.f and only 4f 1% iz the

STRT  erhrmionsl  cmTl)  eOLERT SRRt SEemsD

whole space &“’un.

Eropf. 8 = v({0)) and l(f%n) = vad{0) = (0) as (0) iz pwine,

Lot e =



The domedin k[X]/(0) tap degree of transcendence ny  this
is dim f;;»m by definidion.

Coaversely no propsr subvariewy of F%n eon knve dinension n,
by the proposition.

THEOREW Zedre  An irreduciblo varielby lms dimension n - 4 A0 and

T AN PN AT LI ESYEYY  CELNDTS
only A€ 4% s the wrioly of a prineipal idenl gensrated by an
CONTERETD e eNAh  snmuhd [ = ke I 335 SRSy anmhcy G

3 0 aw'*'s bila ?Jolymmwn Le

A"!‘(’“@f“ dim V =0 = 9

EXGL e
& Vi o panimal proper vardedy (Theovoms 4.2 and he3)
& K(V) iz a minlmal propexr prime 3denl (Corollaxy 5)
& (V) is genevoted by o slngle drredusible polynomial.
{since & [X] is a unique facborisation domain, and ses [ ) ] Vol 1
rage 149, e.sz;@.mlcale 2)e

> e

THEOREY heHe A wvariety of dimension O has only a findte aurbory

iy CTUTTECALR S

of polnts.

T e’m':td;'—'m#ﬂ

Froof. DLet V have dimension 0, Choose a fixed polond K dn VY,

Thona theore are only a2 findlts nuwbsr of points @ 5 J b vee 2D B "
suoh Mt 2(x) = 0 &(B) = 0 for any £ € k[x]. [This can be

shown by induction: in iheo case n = 1, the points of B s coo
are just s:srmgmgat-ﬁs] o Now these points belong to V, for leb g € A
whewa ¥V = V(A)s - Then gf E) = 0 since g{x) = 03 te00 3 € Vo Also

these poinbs form the vardedy V ,  defined by V { fe £ €L fié] 2 P{X) =

o} .

Vx 48 & finlte lvreducible subvarieby of ¥, and so must equal ¥V by the

proposition, since dln ¥ = 0,



CHAPTER IX

DIMENSTION

84, The Length of a Primary Ideal,

Let Q be a P-primary ideal (in o ring R) end Q, a sequence of
primary ddeels satisfying

Q "-"-Q.lc Qgc icac Qn""i CQnmPtb (1&.)

Such a sequense ie called o (primery) ghain from @ to P, A chain

Q"i s seep Q) is sald to be a refinement of the glven ohain Q qaveesd,
if every Q. appeers among the Q:,‘, Moreover, the refinement is
proper if m > n, Vhen a chain from @ to P has no proper refinements
wo call 1t o gomposition series for Q.

Our aim in thls section is to show that any chain from Q to P
may be refined to a composition series, the length 1 of this series
depending only on Q. Having entablished this result we can then
moke the f'ollowing definition:

The length of o primary ideal @ dis the number of teraus in any
composition series for Q.

As we make use only of the case R an integral domain, we
assaune below that R&l is the usual local ring sssociated with a
prime ideals if R is not an integral domain then the generalised
ring of quotionts can be used instead,

There i o one~one correspondence between Pw-primary ideals
Q, such that @ € Q P and P'~primary ideals Q:"a. in the loeal ring
R, where » = R ~ P, such that Q' Q) < P's Thus to any

primary chain Q; 2 se0y Q‘*;; corresponds a primary chain Qq g seeg Qn



and a composition sories for Q' likewlse corvesponds to a
composition sexies for @, Now in the »ing R, the idoal o)

is maximal, so our problem is veduced to the oase in which the
chain torminates in a maximal prime Adeal,

Assuming then that P is maximal in R, any ddeal A betwesn
Q and P vill be P-primary, for Cals Q@ €AS?P, Thus a composition
serics for Q is now a maximal chain of ddeals from @ to P,

A further simplifiéotion can be made by passing over to the
rapidue ring 7/Q, where a chain of ideals from (0) to B/Q
corresponds to a ¢hain from @ to P in R, Since P is maximal and
& mininal prime ideal of Q, B/Q is the only proper prime ideal in
®/Q. A noetberlan ring having unique proper prine ideal is
onlled a primary ring.

THEOWEM 4.  There exists o maximsl chain {of length 1, say) fronm

(0) to P in » primary ring R, No chain from (0) to P has length
greater than 1.

Proof. (i) Suppose E,m!l 2 A1 Cess C© i-‘;r = P? 4o 2 ohain from
P 4o P%,  We £ind a bound for the length of this chain by
noticing that the vesidue ring PVE™ may be regarded as a

vector space over R/P if we put
v 4+P v +l?n"“"1 = IV 4 Pm«'i* (x-e}it, VEP“)

This vector space has finlte dimension (4, say) since P 1
finitely generated. Wow the ideal residues A,/P™™ form a
sequence of subspaces of inoressing dimensions hence » < d + 4.

To construot a maximel chain of ddeals from P 3?“,
take vector subspaces of all dimensions Qp 1, seey & and the
corresponding ideals will do.

Phere being no other proper primo ideal than P (in R),



the ideal (0) ie Peprimary and so Pk . (0) for sowe integer K .

The Join of the maximal chains from Pk to l"k”‘l

, from TN
ka.:?.

» seep and from B to P eleaxdy gives o maxiwmal chain frow
(0} o P,

(ij.) Let (O) e AQ C ses C A, =P bo 2 maximal chain, if
(0) = B, C ess € B =P thon we prove r < 1,

Por some integer t (1 € ¢ < » » 1), A, € By, but 4 ¢ B,

ond we deduce
A’% + B@ c Ai‘ 3 l'a.% C ape C A1 + Btg

[An clenent xeﬁi.ﬁa x ¢ ]%i=> x ¢ A“i ) E?aio For x = &, + bﬁ.
= 8y = X b:‘a. < A1 A Bi-m = O gince A.1 mininal ]
The sequence (0), A1 + By A.1 - B,' ETTY .5\.1 4 B:r‘ nust therefore
convain a ohain of length » + 1, equality only being poassible al
A1 “+ :Bt’ ﬂ&‘i o+ B'ﬁ-ﬂ’

(onsider now the sequence (0), AZ/A1 s eesy Ay/A, which is
o maximal chain in R/A,‘ o« Applying the above argument to ihis
privery wing, we sae that there exists a chain of length ah
least ¥ from (0) to Al/Aq beginning (0), AQ/A,‘,., ire o It Pollows
that there is a chain (0), Bys Bys weey P in R of length at least
¥ +1s By considering the rings B/Ag, R/J‘L3 eta, we got o chain
(0), Ay ases By seey P in R of length at least v 13 this can

only be the maximal chain (Q) C Ay € ees C Ay and thus v < L

COROLEARY 1.  Any two maximal chaine have the same length,
TPor neither can be longer then the other.




COROLLAKY 24  Any chain from (0) to P may be refined to a maximal
vhaln, which has fixed bounded length,

In terms of primery chains in a neetherian ring R these
corollaries show

THEOREM 1'.  There is a composdtion series for Q, and ell

TN ciennh i

composition serdes heve tho same length. Any chain frem @ to P

nay P_g :efin&d 33 2 acmj?osi.’oion series for Q.




82, Helght and Depth of a Prino Ideal,

| it i

Definitions & proper prime Jdeal P in an integral domain R is said
to have hodght h 4f there exists a chein

(0) ¢ PyC ons C B =P

of prime ideals, but no such longer chain, Himdlapily P has
depth d if
ROP 2 wen?Py=l

and no prins chain from R to P is longer.

THEOREM 241 Let P* be a minimal prime ideal of a principal
ideal (2), & ¥ 0y in a nootherdan domain R.  Then P” has helght
unity.

W) b

Exeofe Use will be made of the n-th symbolic powers P‘a) of &
prime ideal P3;  those are defined l?(ﬂ’ = { xsx<Re rxe PP for
some v ¢ }?} and are Peprimary ldeals, If for some integer i,
p(3) | pl3) 4o 44 ds easy to check that BC7) o plE2)_ pl33)
ot ( 1) o Mlso, given a Pwprimery ideal Q, then some symbolic
power P %) is contained in Q. For R noctherian= P' < @ (some
integer v), then x¢ P(v)=> rxc P’ (ré¢P)= rxcQ=xeQe

The problem can be rednned by acnelderation of the local
ring Rye , in which (a) and PY correspond to an M-prdmery ideal snd
a uniquo maximal ideal M. To sinplify notetion suppose these
properties hold for (a) and P* 4n B, 'Then any ideal between {a)
and P” is P"'«-p::*imazy; in particulax (a) P(i) for any proper
prime idesl P C P,

in view of Theorom 4' the chain

() « 22 (@) .53 2 (@) LB > ..




is bounded by the length of (a), Therefore (a) + P(s‘a) = {a) =+ }?(ﬂ )
for some lnbeger 8 > 44 If nowx e P 8 s thent X = za 4 ¥
{(zc R, y€ }?(mﬂ) 80 that Za = x « y € 1?(“) ond hence z € }?(52
as o ¢ P since PY is o minimel prime idesl of (a) and P ¢ B¥,
Consequontly P < e.l?( 5) + P('?""” and the reverse inclusion is
obyious, In other words, 1?(8) = (a)l?(s) (mod }?(mq) }s By the
Llemms, which usuelly precedes Krull's Intersection Thecwen [5] Vol 1. pals
there exists r € R such that (1 - ra) P("s) = O (mod ZE’(”"'“ ); but
ra € P, 1 » vo hos an inverse and 80 IE’(_a = P s) 2) .

On the other hana P < 22 B®) ¢ p*(®) | yoy for o maximer
- prime ideal, the sym?goalic prime powers are Just the powers of the
ideal, and we know () ptd 0, Hence () I?(i) = Qg which

39 =}

T2
together with (1) and ( ) shows that Iﬁ’("ﬁ = {0)s But pl®) is P~
primary and so P = (0), a contradiction, Thus there iz no
proper prime idesl P strictly between (0) and ¥,

Before generslising the resulit we require the

LEMMAs  Let M, , seey [ be a family of prime ideals none of
S i ¥ IR i ia cuoiomteion i o - pumat vy vy
which gontains P, If (0) C B, C 4ue C B, =P is 2 chain of
prime ideals from (0) to P, then therve is a similar chain

(0) ¢ P} C aus € B} = P with no }?5 contained dn any M..

Proofs Firstly consider I?r«z C ?r““ C Pr = Py We can choose
ecPt adl, (1<4<n). Taking Pl , to be a ninimal prime
ideal of B, + (2) so that P;:'-'-‘l S P, we can veplace P, by

' e e ; Wl - tep Y
Py 4 if Bl £ P, Suppose then ©leq = Fe By Theoren 2.1 this

implics that 19/93,,._? (2 minimal prime ideal of Pop * (a.)/sz)

i v



has helght one, contradloting the chain (0) C P r~1/}?x-z C .'E’x/)’:’rmgo
To produce the required chain each of the P, in replaced
step by atep, from right to left,

THROREM 2.2, Let P ba 8 minimal prime mcal o:f.‘ the 1&5&1
A= (aﬂ vesp 3?) in a nagtl_wrm domain R, Then the he%_
of P gamnot exccod v,
Eroof, WNoting that the case r = 1 is the previcus theorem,
we make the induction hypothesis that the result holds for
ldeals genorated by i+ olements: in paviicular the nindmal
prime ideals P!, seey P} of (ag ) sany B r) have height not
greater than r<i. If P < B} for some i € (15 susy k) then
trivielly P has heipht loos then ry 8o assume P & P} (1 <4< k).
Phen by the lemma an,y chain (0) ¢ ByC s CP =P may be supposed
tohave}?il?i('% < k). Let LER A 1)4‘:?' (4 < 1<k),
then we choose P~ from the minimal prime d.acals at‘ (b, az, evep @)
to be contained in P, For some 1 € (1, ssu, k), Py € P
((ays oee;s 8,) € P7), but by ohoice of b, P} # P and thus P}  ¥",
1# we hed B > P> P} then B/(2,, sevp &,) would have height at least
two in R/(az,, “isy B s aantraﬂwting; the minimaliiy of 1‘;‘/(& sesesR, )
as a prime ideal belonglng to the principal idesl (a‘1 souesl,, )/ (a?,"..a ).

Necosparily then P = P~ s which means P must be a m.mimal prime
ideal of (b, By xesp 0,), ond therefore B/(b) is o minimal prime
idesl of (by 8,y seey & )/(b) = (855 sess 9,)/(b), on ddenl
genwa.ted by r«» 1 elementa.

By induction hypothesis the residue chain

0 <P /(b) < vus CB/(D)

cannot have more than r terms, whence the height of P is ob most r.

The converse of this theorem is also {rues



THEOREN 2456 - Glven P a E:ﬂime ddeal of height by then h elements
anxl }29_ :E'mmd: fﬁ. generata an ddeal witig P ag 2 mindinal, primne.,
Proofe P = (0) is trivisl,

Agsume P # (0) and teke oy € ¥y 8, £ 0s  Then (Theoven 241)
every minjinal prime ideal of (a 1) hes helght one, Assumes, for
induotion purposos, that clenents a,, veey 8y of P (s < h) have
boan found such Mot every minimel prime idesl P of (a1 s eney )
has helght o

Now clearly no P, can contein P, and so there is an olement
o € Pt 8y ¢ P, for all minimal primes of (a,., voos B )
Then any minimal prime ideal P:j of ._‘(a,l s vony a&m) contains
strictly one of the 1?:1 and 80 has helght not less than s + 1,
That this height is exactly & + 1 follows from the last thenrem,

By induction, there exist elenents Bip seey 3y of P such
that every minimal prime ideal P of (o s sees 2, ) has height h,
Anong these minimal primes Pi ocours P, for P contains some P:L
but having same height h must in fact equal this PJ,

a

For later use we state the

COROLIARY, From a given basis (u,‘ s sesy Uy) Of the unique

maximel ideal 0 in a local ring Q we may seleut Upy waey Wy

to generate an W eprimary ideal, whers h 3;2 the height of M

Ereofs 1t is easily seen in the above proof that the a, can

be token from a given basis of P,  In accord with the theorem

let (u RICTY TR ) have 1 as a minimal prine ideals N is maximal

and 8o (u,‘. veny uh) is M -primary.
Az s special case of Theorem el We mte tl’m every ;primea

idenl in a noetherian ring R has finlte height. On the other

hand a prime ideal may well have infinite depth, ani there is no




relation between the two in the genersl case, Our sim in the next

section is to show that for finite integral domains height and depth
are determined one by the other, and thet rank and dimension are the
equivalents of height and depth respectively.



83. Ronk and Dimension in o Pinite Iategral Domain,

et R = k [2 ORI En] s & finite integral domaln, have
degree of transcendence 1 over k, and let % 1% 4o kS -
constitute a transcendencs base for k:(cé,a ? sres %n) over K.

If ¥ is a prime ideal strictly contained in B then B/P
iz an integral domain with k as a subflold, We define the
dimonsion of ¥ ~ dim P « to be the transcendence degree of'
this domain over k3 the complement (.c - dim P) we call the
rank of P,

Congseqguences of the deflniition arey-

i, :f;s; Br:i.me ideal 2§ dimension © _35‘; maximal,

For B/P is o field in this case,
2, LfPCP then dim P' < Qdin P,
@y whign AODE AN A

Proof. Congider the k~homomorphism ¢ of R/P onto R/P' given
by <f) ( +P) =r +P's If we let ’)71 + Py senp ()744 + P be a
transcendence base for R/P over k; tihen any nonezero elemend

of B/P, in particular y + P, vhere y € P*, y ¢ P, satisfies o
relation 55(071 s oees Nys y) € P (g has coefficients in k ond

g #0)e - Lt may happen that every term in g contains some power

of y; if =0 write g = g' ym

(m is the minimum of these powers),
then g' has at least one term not involving y (1), Also y ¢ P,
P prime implies that g' € P,
We have g'( %,y eavy Y y» ¥) € Py deoe g' + P =0,
hence ® (g' + P) = 0, i.e. g* € P' where g“(’)?ﬁ. veey 471;)255'(% "“,”)71;”) ;
and g® is nonwzero by ().
Glearly 4, + P, eees ¥y + P is a transcendence set for R/P?
and we have shown that it is not an algebraically independent set.

QaED.



3.  Bvery proper prime idu&ll has dimension less than » = ciim(ﬂ).

P TEIE TR SR YIS AT SO (S Rl = o )

Jo A prime ideal of dimension » - 1 i minimal (that is, there
in no prime ideal striotly smaller except (0) )
These last two follow from Z.

The converse of Property 4 is given in

THROREM 3.1, If P is a minimel prine ideal in R = k [Ei,a.,,%‘n]

by aualk

then Aim P = v - 4, (x Y:: transe R)

A AR

Proof. The generel proof depends upon the normelisation theorem [5] I.p. 26
and we treat only the case 2 = n, l.e. k [Q%“ s soey %s_n] = k {X,], sosy Xn]
Thus R is a unique factorisation demain, in which a minimel prime
ideal P ie easily seen t0 be genexated by a single irreducible element
i”(}i,l § sody }':n) HEY »
Let X, oceur in § (£ £ 0) then every polynomisl in F coniains .
Therefore }{a p waey }{n are algebraically independent mod P (over k),
vhioh showa that dim P 2 n ~ 1 and the result follows by Property 3.

At this jJunoture we recell that P CP' 5 dim P > din P
n{P) < n{#*'); A&(®) > &P').,  Frow Theorem 3.4 we can now prove the
main theorem of dimension theory in finlie intepral. domsins,

PREOREM 3.2, J'at‘ ran :}ea a2 prime jdeel oi' dinension 8 in a finito

tany el Sk iRty

integral domain R of tmnuwndmce r , ‘then the height h(®) and the

depth a(P) of P satisefy:
ey, oy .

(i) 0n(F) =zapk of P = v ~ 8,
(12) a(P) = 8im P = s,
Proof. (i), In the case s = v (P = (0) ) the result is triviel,



We sssume the theorem for idsals of dimension 5 + 1 and deduce its
validity for dimension s.

Let (0) = PyC Py C ess CP =P boa chain of length h(¥) = h,
By our remarks above s = din P < dinm Ph-w“l < 4o < dim PO = ¥ and
hence h € v - g (*).

Since h has an uppexr bound (R being noetherien), there exists
o prime ideal P' such that P' C P and no priue ideals lie strictly
between P! and P, Thus E/P' is minlmal prime in W/P' and has
(theoren 3,1) dimension = transc R/P' - 4, But dim B'P' =
transe RB/PV/B/PY = transe R/P = dim Py and transe R/P' = dim P by
definitiony therefore dim P' = 5 + 1, TProm our induction hypothesis
n{P') =r « (8 +1)=> bP) > r = s, which togather with (1) is
the regquired result.

(ii) VWe use induction on s, Heve s = 0, which by Froperty 1 implies
that P is maximal and so d4(P) = 0, is the trivial case,

IERD Py aes 2Py =¥ then O £ dim Py < dda P‘i Coee < dim Pg =8,
whieh shows a(P) € s (%).

Let ¥ > P such that P'/P is minima) prime in R/P3;  then by
Theorem 5,4 dim P'/P = 5 « 4., Now din P'/P - dim P' and meking the
induction hypothesin for 8 « 4, Ain P' =5 - 1 = 4(P'}), Thea
clearly a(P) > s which along with (®) completes the proof.

COROLLARY 4, Let P P' and s, s' be their respective dimensions.

Then there is a chain

FCOR C annCPB_ g, CF

and no such chain is loager.
Proof. In R/P, P'/P has dimension s' ond therefors height s - o',




COROLLARY 2, A finite integral domain R of transcenflence degres r

has prime ideals of all dimensions O, 1, eeey ¥ « 1,

Proof.e P = (0) in the theorenm implies @(P) = r, and a chain of
length » + 1 descending o P will contain ideals of the above
dirensions,

COROLLARY 3, ‘Theorem 3.4, of Chapter I,

Proof. Tet P £ (1) then R = k [§, 4000, 5 | = ¥[X] /P contains
the field k, By Corollary 2, R has a prime ideal of dimension O,
80y P'/}-”. Vherefore k[}__(_] [P = k["?,ll’n-o ,“?n] has transcendence
dogree O) ives Y, seen, U, ave algebraic over ke  Also () ep
> £(E) € P'2 £(N, 5000y 7,) = 050 % lies in V(P).  Q.E.D.

Thae theorems oun helpht in 1;he previons section can be expressed
in terms of dimension in view of the identities proved in Theorem 3.2,

THEOREM 3,3., In a finlte integral domain R of transcendence degree r
evory minimel prime ideal of a proper principal ideal (a) han
dimenmion v ~ 1.  (cf Theorem 2.4). |

THEOREM 344e DBvery minimal prime ideal of 4 = (a,‘ s eevy 0 ) in

the finite intogral domain R of transcendence degree v hag

dimension at lesst v = 8. (cf Theorem 2.2).

Bl vesepmin




CHAPIER IXT

UHE SIVPLS POINT OGN A VARIEIY

4 . Not \‘bmn.

Throughout this chapter W will be a f =dimensional, irreducible
sabveriocty of the r-dimensionsal jrreducible variety V, these having
N = (’72,1, vass 7 ,) and € . (Qei, seog i—?n) as generic points
regpocstively,

In the cowordinate ving B[V] we have I(V) C I(W) ana I(W)/I(V)
in a prime ideal which we wrdte p(W/V), .

The quotient ving R[V] p(W/V) ::.§ &g} s a(y) A O}

(£ and g will alveys Le polynomials with cosfficients in the
ground Pield k) is a looal ring [1] » Which we shall denote by

QW) , with unique maximal ideal MM (WYV) = { 4 fé y ! (M) =
fﬁ(”?} A Oi s




B2, 4The Local Vector Bpace.

241e Let us write W for the WM - residne of u € i, and 4 for
the IM{ -residue of A ¢ Q = Q(W/V), Then d is an clement of the
field O/  vwhich may be identified with the field F(W)

204 : a(m) £ 0, Lo, the field

consisting of all quotients pr

k(”].]p eeoy ﬁn)a
If we now define the prodach Efi %0 be the {* ~residue of d.u,
then 1Y( /mz becones a vector space over }(W). Thot Efu is welle
defined Pollows from nobing that 3f d = @' (wod MM ) and u = u'{mod M)
then ‘
du = @' = (d=a")n = a'(u' -u) € %,

g0 that de n = @' .u',
We denote this vector space by M(W/V) and call it the local
veotor space of V 53 Wa

The elements u,, seay g form a basis for I if and only
if their M* ~residues E,‘, seep EP span the space, HFor suppose
o form & basis and let w € M /M* 3 then if u has

W ~residne s we have

that u.q, evey QA

P
u::Z)\iui (Aie Q)
4=

whlch implies

PN
w = Z)\i !
1=1
On the other hand, suppose that 51 » voep EP span M(W/V),
and consider the ideal P gererated in Q(W/V) by Uys soep uP.
3
Now M /0% = W/M? dee. W = Us+n® 3 hence > = U 03 < U+ i
and 8o M = M?a.m?fh In fact we find that M = M 4 i for

190 »
any positive integer 4. But () (U +mM ™) = U (see[3] P65)
=4



so that M = M p Which shows that Uyp ssep Uy form o basis of M.
Let us call a bagis (u1 y svep u) of M minimal 1f no
proper subset of these elements congtitutes a basis., It follows
from the above that (u,a v sevy uﬁ) will be a minimal basis if and
only if 1, vess ﬁs form o basis of the veotor space M(W/V).
ALL minimal bases of M have therefore the same nunber of
eloments, nanely the dlmension of hl(%/V), this number is finite by- the
Hilbert Basis Thooremn.
When (u,‘ » 2swy B ) i a basis of M  we can assume that

87 P
u, € R [V] s for if vy o :—3—%—% then, fl(E) also form o bedo,.

Clearly P{W/V) is o minimel prime ideal of R [V] .
(z:t,1 > esep U ) and so by Theoven 3¢ of Chapter II the dimension
of P(W/V) is at least ¥ - 8o Dub P(W/V) han dimension @
and we deduce
dim M(W/V) > din V ~ @im W {2a)
or in the case inm which W = .= {( g2 soss X n:” 2 polat of V,

dadm Ml /V)> @am V, (za')

The following two lemmas are vsed later in the chapter.

2ale Reéiuct:i.cn ‘t:':) dimans:i.ozi ZEXOs

REMARK. X ¢he l seRromonioxphlsn
k [£1, awogzv]—a’k["?1, “'"’,}7)3] 2 éi_)q?i

is an iscmorphism then we may wiwdte § . = Uy (3 = 140eap» Jo



LEMMA 44 Lot V and W l:ﬁ vardeties such that thelr generio
points g and v have Ei = ,)7;‘&, (i

i

1'9 oesy V )u Fﬂhﬁ;’.g
k(§1’¢oog :g)) ) with g;@ﬂﬂx‘iﬂ
points (év—;-'-l’ evey S n.) and (’)77)44, couy ’Vn), we have

B ot ot R A

H

V" and W’ ore the varieties over k*

G CEHXP TS SNy oS

(W /YY) = (W),

Proof, lLet ﬁ’(%,*,..o,‘gv )€ }:[%1....,?,] n P WYV) i.e,
BNy peees My ) =03H(E 5 000y ¥, ) =0 a8 T, = (=t pea,»)e
This shows that kS Q(W/V)e Also R[V"] =x™n [v] ana

P(Wm/\!m) = K p(Wv); =so if £ (?vﬁ,..., S n) lles in R [ V"]
vut not in p (W/V7) (i.e, (% pugt *ees S ) #0) then
4 gwd o weey S n) hes an inverae in Q{W/V), Thus

) W
A7) < sl € (),
R [v*] = p(W/v) - ‘)
i‘ﬁ.‘- PN ' }
Conversaly x € Q(W/V)2 x = g{é% - T R € o(w/v?)
” g‘°(§y4.19°"9§n)

if g"“(’?,"vﬁ geosy Wn) # 0 wihich is the case otherwise g(7)=0
contradiction.

APPLICATION, As W hos dinension P we may assume that ’)7,‘ gose ,Oyf
are algebraically independent over k, o also are < groeer .,
for W C V means £(E) = O inplies £(97) = 0, The mapping

f(%—q’ooo, Ef )"} f( W,%pocnp /)7-? ) is a k:-i.samm.’phissm of
k [Eﬁigcaapgf] onto k l:,}?'i pose p ’V‘P] and by our reémark wo may

write Zi =Ny (i =1, vosy P )s  Then applying the lenma to
v which has dimension v = f s and to w* vhich is now a point

~



(beaouse n P seeeg Y p v algebrale over kW = ls(%,u”’?/f) ),
we see that

QW) = Qe /N7,

2e5a ’Enw?"b:: on t:»f‘ a third variehy

Let VY be an irveduwsible variety between W and V.  Then
u(W/T) and M{¥/V) bhave the same £ield of scalavs vize J(W)s
ince V' C V, there is a kehomomorphdsn @ of R [V] ouio
g [v]  taxing € 0E L (shere T Y u (81 4eeny B i8 iho
genowic point of V'), Nouing that £(%) ¢ P(L‘J/V) Lmplies
o £(5)¢ P (W/V*) we can extend ¢ 0 o homomoyphdsn Y of
G(W/7) onko Q(W/V') by defining

ECIE- Ly

Under this mepping M - M * and M is the full inverse imapge of (',
I? now we denote by U the mapping

U - u (uemM § B=ua+it?®)
and similardily
S — 2
'C'a u’__, uq (u'é m '; u' - u' 'im ] )

thon the compositdlon T '~ T isa mapping from MOWYV) 4o

W(H/V)e o check taab it io single-valued, leb W, = a?(uq -u, € M*);
2 . =

then (u, -, ,) € ' vwnich dmplien that ”C'#/(mq - 132) = 0f

whence reesul l'..

LEMMA 2,  ‘The mapping T'V T’ "1 is & Linear braaai’ornmuon of

CAMEE T s Sl eIy af% ) LY )

u(v/v) ento M(wW/vt ). The nullspace :ls the subspace of uw(w/v)
spanmd by the vectors belonging to T (Q(W/V) P (V'/V) Do

AT o rsd




Eroof, Ve prove only the second part of the lemma, the proof
of the first part being cimilar,
Ink [V] the ideal p(v'/v) = §oo(E)s (%) = 0} io
the kernel of the homomorphicn ¢ s Iis extension Q(W/V). p(V'/V)
to Q{W/V) is clearly the kernel of V ,
Suppose now that v € Nullspacs ('C'“P'C“"), ieCe that
T+ 'C’*?(u) = Qs Then T *V(u) = 0, that is V¥ (u) € M'z s which
shows that n€KerV +M %, PFinally b€ T(KerV) = ”C(Glg(‘f-r/v),P(V'/V) )e
G o o}



B3, Simple peints and subvaricties.

In view of (2n) and (2a') we meke the following deofinitions:-
A point X is simple (for V) if

dim M(x /V) = aim v,
A subvariety W is simple (for V) if

dim H(W/V) = dim V « Qim V.

With the holp of the lemmss we can derive some conseguences
of these definitions,

PROPOSITION 4, Any point '!.% simple for & e

Cimaem | ey AT

Proof, In Lemma 2 telke W = , V' = the variety having

QO(,” }iag wedy K ) as gazwrm point 4 and V = ’“"n' Hers

(VO /V) = {fm: (X5 Xy5 aees %) = 0f = (h(X,) ), h hoing

the drreducihle polynmmal in k( Xop soes X ) [X ] such that
(o ) = 0o The M = vesidue of lh&w pcal_vromz,r,.} cleaxly

gemmu@m the nullepace of T 'Y T © , which ecannot tharefore have
dimension greater then ons. Hence dim z&(o( /Ef» < 9 4 dim MX /YY),
How by Lemna 1, ain M(X /.‘.'ﬁn) = ddm Mo /.. ),, = (o(,}, voogy X )

and k7 = ko A Jo I we make the im’*‘aac:uc:-n acssm.mp'b:i.on that the
proposition is true Por n o« 1, 1t follows that dim M(x/2 ) <14 +(n= 1) =n;
but certninly ddm M{x /F’ ) 2 dim § = dm = n, so In feob

dim M %n} ~n. The case n = 1 15 trivielly true and the proposition
in proved.

CORDLIARY. W ja simple for :Sn‘

AR B LETHATTYIND e

;4 a
Proof. We know M(w/ss ) = h(tx”’i“ ﬁ) where k= 1;(071 panes Y o )

and X¥ s a point of & "‘k e . The a.bQ"U'G propositioa shows that




tia

M(ox® /:5‘)‘?1_‘? ) hap dimension n - [ thue 20 also has PA(VJ/Sﬂ),

PR )

PROFPOBITION 2.4 X is pimple for V if and tm;!:ya iﬁ -?'-133 idea}’

p(V/% ) contains n = v olemants W, ey U such that
3 i A

L T g e AR ) 1
Ty o enapy Tuy . aro Linsarly indepondent in W /8 n)'

Progfe K CVCSH ond din M( /gn) = ne Considoring the
transformation of Lemma 2,
= &im T( p(v/sn) )+ dim M(X /),

Wow K is simple for V if and only if dim M(X /V) = v, i.c., if ond
only if dim T ( P(V/ )) = n - ra



Bi. Regular Rings.

P W PR G

A logel ring Q is said to be regular i, for (u1 » vesp uﬂ)
a minimal besis of M , a homogeneous relalion

(ﬁ)’(uﬂp ey uﬁ) = 0 (ha)

with goefficlents in Q iz possible only Af the coefficients arve in M
This type of local ring was dnbtrodwed and stildied by

xeud2 [1]
An equivelent condition for regularity is: Led d)v be n

form of degree ¥V , with coefficlents in Q; then

B, (0,5 veuy u) € W (4b)

implies that all coefficienta of ¢p ara in 1 ,
_?Ei:;;g’g)’g‘ That (4b) implies {4a) is trivial,

Agsune that (4a) holds. Tet dlv(u1 pesbs uﬁ) € mv"’qg then
ig o homogeneous polynomiasl of degwse V 4 1, say Lake the
typical term of (I)), »

(X.l 02) X,

£3

3‘4"13,] 1&2 “ep m& b 0(1 +0(2 + osww '?-O(Sm))Q rEQ

ya’

ang in 944 choose the term

su, B, T ese BT 8 €Q

. Ky ,
then the term in uﬁ “ne v.ﬁ‘ of ¢v - v haa eoelficient v - su,,

1
which by (4a) belongs tod .,  Puk mu, € M3 hente x ¢ and
ws have (4h).

The goneepts of slmple point and regular local xing ave
related in



TEEN?I’M hels The polnt K is simple for V if and omly if

CRRIR S iy PV QY R L T ] IREIGE M. TR W

Q((X/V) J,a L5 rogular,
Froof. Roeall that  is simple if and only if
= dim Vo= dim B /V) =
Lot o > vy we show that @ is not regular, therveby
egtablicshing the '4f' pard of the theoren.
Prom the corollary to Wheorem 2,3, and Theoren 3.2 of
Ohapter i, we can choose w,, seey W, fron a miniuel basis of N
a0 that they generate dn @ en M ~primary ideal O » say, of
dimengion Q.
Gongider the element u ¢ Of « Nowsines Of is V( =primary
ug € Of for some power he
Al em theve emi.&tca a positive integer V such i;hab
lz e%m hm, u ¢ o mv'ag othm‘m% u.h e O iv”
“e..ea. e J?m** all V 4 daee (m] M = Oy decs w, =0
caonbm:lw cm,ng v, ¢ of »
Tha gen@ml olement of Of e
Zcb'(t::.,4 roony W) '\UV(L,],M” u&}p where (,61 is Linear In W seee, U,
a;“:d ~,bv is homogencows of degrea V in Uygeecs w5 in pariiculaer
u, cen be representod in thls way. We have

L

“2 - z (b.g(“ peony “'.)'\l’ (u.a:”os ‘3&) = 0 (1)

Game 1« R < P41 neana m € 0f, m’c m Ve im W ndoh by
(4b) shows that Q is not ragular.

Gase 2o W= Y14 then (i) is a fornm of degree h in W peve st
Now clearly the products @ oV, @ not contain o tern in u alone
(¢ g 10 linear in W, gxees u )g acc rdingly the coeaf‘f‘.i.oi@nt of u
in (i) is unity, Henee @ canmt be ?eg,mlai for 1 ¢ Y.

Gase 3¢ B2V 44 Fron v. ¢ OZ M v #l s the amelfficients of (I),



and "f/v cannot all belong to M . However ) 0] Y = uﬁemh <M Y2
and )¢ iV A6 homogencous of degree V4 1. Thus condition (4b)
is not satisfied,
Wo now prove the Yonly if' pavt of the theorem,
CASE 14 Tet ¥ () = k() be infinite.

Corresponding o a given .wi:e:mm R y(a 10 eaes x,) of degree V
with coeffieients in Q, weite p (x,é soenp 35:3) whan these
ecofiicients are vepleced by their (W -residuss. To establish the
regularity of O wo show thst P, (vt,,g seney Lzﬁ;) = Q iuplies
rﬁ(x‘agéuog &Eﬁ) e Qe

Suppose oow ,p, (}i'.q pnewy .‘.t&) A 03 then in 3‘(0() we may
select a nou~slngular hompgensous btrensformation

@

x) = By X, (E:ﬂ.j € %(o() )

. v o, . ~
o make the coefficient of "'r; in the resultiong foxa Jr (:x,; gevoyp x’;)
NON-LAY0,
If wo putb

£

| - y . " A
I ';Zi 24 5%y | (Qi;} € Q)

then agsuming P(uq peoss 0. ) = O we got T (u;,”” w!) =0
and the coefCiclent of 1.1;}) is not in M .  The nonsingularity of
the tronsform muiarantees that (u,'" secey U 2 is a new minimeld basls

3

for Y + By a suiteble division ugve Qo (u,; . u;w?) and.

thevefora M € Q(u,; avesy izgw,t ) giving that the ideel Q,(u; peeett!
bag dinengion O, This contradichs the fact that all minimal prime

Sied )

ideals of Q,(u; puebp u;w‘) bave dimension 1 « {(g=i) = vw (rw1) = 1
(see Chaptor IX, Theorem Jeb).
GASE 2. If k(X) is fioite take a new grownd field & = k{z)

where % is an indotorminate. Lot ¥V be the variety over k™ having

g ]



the same generic point as V and let X" have the same coordinstes
as X o
Viearly dim V. = ddm V = 1y Also

M =q i (a)
M o= @ (b)

vhere 7 Q(o(’zi/V'*) ané M7 M(o(*/‘;fzﬁ)u

The hasis (u,g soeey uﬁ) of W ishy (o) also o vasis of M
and nocosserily ninimel ap

aim V¥ = r = 84

Newy }’(o(bﬂ) s infinite and by CASE 4 wo have Q” regular, Thus
d)v( W se0es u.) = O vith coofficients in Q < 0" implies the
coeffioionts belong to M and so to M by (b)

The proof is now complete.

COROLLARY, W i mimple for V if ond only if a(w/v) is regulax,

wrish [ TR e

Proof, By reduction to dimension zero {q.v.) this follows from
the theoren,



B5. The Space of Local Differentiels,

Let u € W (w/s ), then u = g(X) : (M) = 0, g(oz) A0 and
the partial derivatives a;: belong to Q(W/&; ) since g; (')7) £ O

The Y ~residues 53{'11. d:; lie in the fleld F(W) = k().

The ordered n-tuple of these residues

(au ou )
Tt peeny XU ;
BX1 ’ aXn }‘-:’)?

we call the local W~differential of u, and write du, or dufor short.

It is easily verified that du + dv=a{u + v), u and v€ M .
Moreover if A € F(w) then A (an) = a(Au) as u € W impliesUd A = O,
Consequently these ordered n-tuples form a vector space (over F(%) )
which we denote by D(W),

Givenn € m (W/.‘E*nn) we can associate with T u, its v 2 eresidue
in M(W/Sn) the local Wedifferential of u viz.

Tu- du (5a)
This mapping ls wellwdefined, for if Tu = Tu' i.es u =~ u'c mz
then du= du' = d{u - u') = & Y pg) = 2 Apq)= 2 pedq + 2 dpeq =0
(ps g € M )e Also this mapping is a linear transformtion of
m(w/sn) onto D(W) and so

LEMMA 3,  The dimension of (1) is at most n - f , and equals n ~ f
only if (5a) is nonw-gingular,
Proof, In the corollary to Proposition 1 we saw that dimM(W/ Sn)r: n - jJ .




86, The Jacobian oriterion for simple points in the separable
aa%eg

Ag a preliminary we establish

LEMMA 4, The zero menifold I(x) of the point  can be generated
by n polynomdals £,, eeey £ such that £, contains only X|,eee; X0
Eroof, For n =1 the result is trivial,

Let £,(X,) be the irveduoible polynomial in k [x1] such that

(o( ) e 0. ‘l‘he residue class ring k [7{1,..” X ]/i‘ (X ) i

.ju::.t the polynomial ring k™ [ XZ seney X ] where k:"' = k(o( ), and
_ (cx)/fq(}tq) is the zero manifold of (o<2,...,c<n) over k¥,

Assuming the vemult true for n « 4, I(o<2,.., o<n) can be
generated by :E‘g peos ,t‘:; such that £j involves only Xogwees Xyo
Therefore I{x) is gensrated by f,i(X,‘), -fg(::c1 N x;a),.-..., £ (%) ir

T . B
f:t‘ has £, - residue fi'

1

Using this particular basis we can now prove

LHEOREM 6.1.  The space D(x) of local o ~differentinls has
dimension i H and only if

ITLY X ,, are all ﬁegerable over k.

Eroof. The polynomials f qreces £, of Lenma 4 form a minimal bagis
of i (x/8 ) (any basis must have at least n elements) and so
TEyanees Tf‘ are independent vectors in M(x /8 } Thus by
Lemna 3 dim D(o() = n if and only if éi:E’ peesy dfn are independent,
which is the case if and only if the Jacabian determinont

hf'l geouy fﬂ)/ a(}{1 sesey }Ln)l i8 non=zero. n [of
Now by the choice of fi th:ts determinant is T 3% %=
of, it i =

. - E) i ey - )
Since £'1 (o<1) = O the first factor 53-5‘ :xq = o 4 is nonegero if and



only if i is seperable over ko Similarly the second factor

is non~zero if and only if o( , is seperable over 1«:‘.(:><.l )o Both
factors are thus non-zero if and only if 1 and , are seperable
over k. Continuing in this way we £find the necessary and
sufficient condition as stated.

We now come to the classical criterion for simple polnts
(in the seperable case)

THROREM 642, Lot I(V) have a basis of polynomials g,, Ths

T

point .z.s sinple for V if and only lf[ gi] has rank n ~ v,

R A ORNPNE ALY T D R ax ARSI Az IC T 3

(1*::(11111\1’) o 4
Proof. By Proposition 2,  is simple for V if and only if

n - v of the veetors g 4 ave independent,

Theorem 644 and Lemma 3 show this holds if and only if
n =~ ¥ of the local K =differsentials dg 4 2re linearily independent
in D(X), which is the condition on rank given zbove, .

COROLLARY.  When k has characteristic 0, or is a perfect field,

M Aised el

the classical criterion and the condition dim M(X/V) = r coincide,

For any field k, and whethsr or noto( 1 pese X are seperable,

we have that rank [ g%-]*] = N -~ r implies that o( is a simple

Xr::o(
point of V, To see this we need only remark that if n - r of the

dgi are independent then the gorresponding n « v veotors T g, ore
independent,

Theso results may be extended to simple subvarieties e.g. the
Jooobian eriterion becomes: Provided k(% sesey 7,) is seperably

generated over k, W is simple for V if and only if the matiix
og

ol
é}ij hatsrankn-rat’)?.
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