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SUMMARY

Increase of the incubation temperature of HeLa cells to 40°C

for 5 mins followed by recovery of the cells at the normal growth 

temperature, results in the induction of three particular protein bands 

(heat-shock protein bands) of molecular weights 100,000, 72,000 -

74,000 and 37,000 daltons. These protein bands are resolved inMoore 

than one polypeptides each. Maximum synthesis of these heat-shock 

polypeptides takes place 2 hrs after the recovery from the heat-shock 

treatment and declines thereafter. The induction of the heat-shock 

polypeptides is blocked by actinomycin D, suggesting that their pro

duction may be regulated at the transcriptional level.

Heat-shock treatment of HeLa cells results in degradation 

of pre-existing polysomes. Normal polysomal profile is obtained 

1-2 hrs after the heat-shock treatment. mRNA synthesis is slightly

affected during the 2 hrs after the heat shock as judged by the
3 +incorporation of [ H]-uridine into poly(A) mRNA molecules.

In vitro translation, using a rabbit reticulocyte lysate

cell-free protein synthesising system, of polysomal nRNA from HeLa

and Friend cells has shown that a number of polypeptides are encoded
~~by both poly (A) and poly (A) mRNAs. Using the same method, it was 

shown that the prominent 72,000 - 74,000 heat-shock protein band is 

encoded by seven mRNA species, all of which exist in both poly (A) 

and poly(A) forms. The heat-shock polypeptides encoded by these 

seven mRNA species are designated as a, , g, y, 6, e and Ç,

The poly(A) mRNAs coding for the 72,000 - 74,000 poly-
- j-peptides have been shown to lack the poly (A) tails detected in poly (A) 

mRNAs by the following criteria:



1) Inability of these specific poly (A) mRNAs to be retained 

by poly-(U)-Sepharose after successive chromatography cycles carried 

out at 20°C or 4°C.

2) Limited retention of partially purified poly(A) mRNAs coding 

for the 72,000 - 74,000 dalton polypeptides by poly-(U)'^Sepharose and 

distinct elution profile of the retained material from that of poly (A) 

mRNA molecules.

Even though increased synthesis of heat-shock proteins
“1“ —declines 4 hrs after the heat-shock treatment, both poly (A) and poly (A) 

mRNAs coding for most of the 72,000 - 74,000 heat-shock polypeptides 

can be detected by the method of in vitro translation in the cytoplasm 

of heat-shocked HeLa cells 6 hrs after the heat-shock treatment. In 

vitro translation of polysomal and post-polysomal RNA fractions detected 

some of the heat-shock mRNAs in both polysomal and post-polysomal 

fractions 6 hrs after the heat-shock with a slight enrichment in the 

post-polysomal fraction.

Double stranded cDNA was synthesised from cytoplasmic poly(A) 

RNA isolated from heat-shocked HeLa cells and cloned into the pst site 

of the plasmid pBR322, The method of differential in situ colony 

hybridisation and the technique of two-dimensional gel electrophoresis 

of polypeptides synthesised in vitro by mRNAs that hybridise specific

ally to recombinant plasmids bound to filter discs, have been used to 

characterise 3 cDNA heat-shock clones. pHS2 contains a cDNA segment 

that hybridises to mRNA coding for the hspy, pHS3 contains a cDKA 

segment that hybridises to mRNAs coding for hspg, while pHS6 has an 

inserted cDNA segment that hybridises to mRNA coding for hsp's g, Ô 

and e.

Immobilisation of the recombinant plasmid DNA from these clones



32on filter discs and hybridisation with [ p]~ labelled "partially" 

purified poly (A) iriEdSfA which was shown to code for the seven 72,000 -

74,000 hsp's, showed that the poly (A) iiiRNAs coding for hsp y share 

common sequences with their polyadenylated counterparts* On the other 

hand, poly(A) iriRNAs coding for hsp's g , 6 and e did not hybridise to 

cDNA sequences derived from the corresponding poly(A)^ mRMAs,



INTRODUCTION



1. Eukaryotic messenger RNA.

In living cells the genetic information encoded in the sequence 

of bases in the double helix of DNA. is transcribed into a complementary 

sequence of RNA bases to form the molecule known as messenger RNA (mRNA) , 

which is subsequently translated into protein. The initial discovery of 

mRNA was made in bacterial cells, Hersh .ey, Dixon and Chase (1953) 

observed that when E_. coli cells were infected with T-even bacteriophages, 

bacterial DNA transcription stopped and new DNA molecules were formed.

Hall and Spiegelman (1961) concluded from hybridisation reactions, that the 

RNA synthesised after infection was a T-even specific RNA, The concept 

that this newly synthesised RNA constituted a messenger between the DNA and 

the sites of protein synthesis was postulated by Jacob and Monod (1961),

These investigators showed that the viral-induced RNA became attached to 

pre-existing ribosomes but was metabolically much less stable than 16S and • 

23S rRNA. Early attempts to identify mRNA in eukaryotes centred mainly 

on the nucleus. Progress came when investigators shifted from looking 

for mRNAs in the nucleus to the polysomes (Warner et al,, 1963) and employed 

the following criteria: rapidity of labelling and relative instability

compared to other types of RNA (Penman et al., 1963), heterogeneous sediment

ation pattern (Henshaw et al,, 1965), possession of a "DNA-like" base 

composition (Davidson, 1969) and their release from polysomes by EDTA or 

puromycin in the form of slowly sedimenting ribonucleoproteins (Darnell,

1968; Penman et al., 1968; Perry and Kelley, 1968; Mathews, 1973), The 

existence of mRNAs which are not associated with polysomes, however, has 

also been reported (Preobrazensky and Spirin, 1978; Vincent al,, 1981) 

and there is evidence suggesting that certain mRNAs extractable from total 

cytoplasm are absent or undetectable in polysomal mRNA (Levy and Rizzino, 

1977).

1.1. Eukaryotic mRNA structure

A number of structural features have been described in mRNA,



although not every feature is necessarily present in any particular mRNA.

They can be listed as follows;

(a) A poly (A) segment at the 3* end

Evidence for the occurence of poly(A) sequences in cytoplasmic 

mRNA was first obtained from the work of Edmonds and Caramela (1969).

Later on, Edmonds and colleagues (1971) showed that poly(A) is absent 

for nucleolar RNA (rRNA), but is present in the RNAs of both nucleoplasm 

and cytoplasm. The location of the poly(A) segment in mRNA is known to 

be the 3' end. This conclusion has been reached by using a variety of 

techniques such as: (i) end group analysis (Kates, 1970); (ii) digestion

with exonuclease (Molloy et al ., 1972); (iii) periodate oxidation (Yogo 

and Wiramer, 1972), It is now known that polyadenylation occurs in the 

nucleus of the nuclear mRNA-precursor molecules (see Introduction, Section

9.1,), Labelled adenosine first incorporated into the poly (A) segment 

of hnRNA molecules can be "chased" into polysomal mRNA (Darnell et al.,

1971; Mendecki et al., 1972). The poly (A) segment of mammalian mRNAs has 

been shown to undergo a process of gradual size decrease after its appear

ance in the cytoplasm (Sheiness and Darnell, 1973; Gorski et al., 1974;

Merkel, et al., 1975; Nokin et al,, 1976; Palatnik et al,, 1979), A small 

amount of poly (A), about 8 bases, has been shown to be added in mammalian 

cytoplasmic mRNAs, These newly added terminal bases are subsequently 

removed in the shortening reaction (Diez and Brawerman, 1974). Upon 

fertilisation of sea urchin eggs, in particular, almost complete turnover 

of the poly (A) tail has been reported which is then followed by extensive 

polyadenylation in the cytoplasm (Wilt, 1977),

The detection of poly (A) segment in mRNAs has allowed the isolation 

of mRNAs by affinity chromatography on poly (U)-Sepharose or oligo(dT)-

cellulose. Even though a large proportion of cellular mRNAs contain poly (A) 
+tails (poly(A) mRNAs), there is a class of mRNAs which seem to lack poly (A) 

tail (poly (A) itRNAs) , Poly (A) segments have also been found in mRNAs from



mitochondria (Perlmah et al., 1973) and viruses (Kates, 1970) and yeast 

(Fahrner et al., 1980),

(b) A 5' "cap"

"Capping" occurs on the nuclear mRNA precursors early after 

transcription (see Section 9.1.). Pulse chase experiments have shown 

that label in the "caps" can be followed from hnRNA to mRNA (Perry and
7Kelley, 1976), Two types of caps are detected in mRNAs: type I (m G

7(5')ppXmY) and type II (m G (5')ppp(5')XmYmZ), Type I "caps" are also 

found in hnRNA molecules, while type II "caps" are only found in cellular 

mRNAs (Friederici et al., 1976). It has recently been reported that 

cap II methyltransferase activity is found exclusively in the cytoplasm 

of HeLa cells, while cap I methyltransferase activity is also detected in 

the nucleus (Langberg and Moss, 1981).

The function of the 5' "cap" is not completely clear. Two types 

of experiments have suggested that "caps" are important for efficient trans

lation. The first has shown that "decapped" or uncapped mRNAs are trans

lated in vitro in a variety of systems less efficiently than "capped" mRNAs

(Shatkin, 1976), The second has shown that 7 methyIguanasine 5* raono- 
7phosphate (m G5'p) inhibits the translation of "capped" mRNAs. However, 

mRNAs which are "uncapped" vivo can be translated vitro without
7suffering inhibition by m G5'p (Shafritz et al., 1976; Weber et al., 1976; 

Hickey et al., 1976). So, even though the 5' terminal "cap" has been 

shown to promote mRNA translation in vitro (Shatkin, 1976) the existence 

of uncapped eukaryotic mRNAs which are efficiently translated both vivo 

and in vitro argues against the absolute necessity of the 5* "cap" for 

ribosome binding and efficient translation (Kozak, 1978),

(c) Internal méthylation

Internal méthylation produces N^ methyladenosine (m^A) and
5 5smaller amounts of N methyl cytosine (m C) in the mRNA molecules (Shatkin,

6 +1976). The location of m A in the poly (A) mRNA was suggested to be in
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both 3' and 5' portions of mouse cells (Perry ^  al., 1975) but only in the 

5' portion of HeLa cells poly(A)^ mRNA (Salditt-Georgieff et al.,

1976). Both poly(A)^ and poly(A)" non-histone mRNAs of sea urchin 

embryos have been shown to contain internal m^A (Surrey and Nemer,

1976). However, internal m^A has not been detected in mouse and rabbit 

a- and g-globin mRNA (Cheng and Kazazian, 1977; Heckle et a^., 1977; Lockard 

and Rajbhandary, 1976), histone mRNAs from sea urchin embryos (Surrey and 

Nemer, 1976), and HeLa cells (Stein et al., 1977) and Bombyx mori silk 

fibroin mRNA (Yang et , 1976).

(d) Careful size measurements have indicated that eukaryotic mRNA is

longer than required for coding of polypeptides, but not long enough to 

code for more than one protein (Davidson and Britten, 1973; Lewin, 1975), 

Sequence analysis has revealed the existence of non-translated regions at 

the 5' and 3' ends of various eukaryotic messages (Lewin, 1980). For 

example, rabbit g-globin mRNA contains 53 untranslated nucleotides at the 

5' end and 95 untranslated nucleotides at the 3' end (Baralle, 1977; 

Proudfoot, 1977). Similar results have been obtained for oi-globin mRNA 

(Lockhard and RajBhandary, 1976), chick ovalbumin mRNA (McReynolds et al.,

1978) and mouse dihydrofolate reductase mRNA (Nunberg, 1980).

The length of the 3' noncoding region varies (Proudfoot and 

Brownlee, 1976) and it's role is still unclear. Recent data of Kronenberg, 

Robert and Efstratiadis (1979) have shown that the 3' noncoding region of 

rabbit g-globin mRNA is not required for in vitro translation. This comes 

in agreement with the results of Nunberg (1980) who detected a dihydrofolate 

reductase mRNA lacking the 850 nucleotides long 3' noncoding sequence and 

which codes for dihydrofolate reductase in translation assays. In globin, 

ovalbumin and in an immunoglobulin mRNA, the hexanucleotide AAUAAA occurs 

about 20 bases before the 3' terminus (Proudfoot and Brownlee, 1976).

This hexanucleotide within the 3 '-noncoding region has been suggested to 

serve as a signal for polyadenylation (Proudfoot and Brownlee, 1976) or



termination (Nunberg, 1980).

Sequence analysis of the non-coding sequences of rabbit and 

human g-globin mRNAs has revealed that the 3' noncoding sequences are 

quite well conserved throughout evolution (Kafatos et al., 1977; Proudfoot,

1977). The 3' noncoding regions of mouse dihydrofolate mRNA, hen oval

bumin mRNA, mouse and human g-globin mRNA are represented as a continuous 

region in the genome uninterrupted by intervening sequences (Nunberg, 1980).

The 5'-noncoding sequences are also variable in size (Baralle 

and Brownlee, 1978). Part of the 5 '-noncoding region may be involved in 

ribosome binding (Lewin, 1980).

1.2. Isolation and characterisation of individual messengers

The isolation of individual mRNA species until recently was 

possible only for proteins synthesised in large quantity by some particular 

cell type. Relying upon the presence of large amounts of a single 

messenger in the polysomes, it was possible to obtain somewhat purified 

preparations from which the mRNA could be characterised. The paradigm 

for this approach is globin mRNA, which comprises a 9-118 fraction repre

senting some 2% of the total RNA of the avian or mammalian reticulocyte 

(Chantrenne et al ., 1967). Another approach, which can be applied to 

messenger RNAs present in reasonably large but not such overwhelming 

amounts, is to precipitate polysomes engaged in synthesis of some protein 

by reaction with antibody against the protein. This approach was first 

used successfully with immunoglobulin mRNA in myeloma cells and albumin 

in rat liver (Schechter, 1974; Taylor and Schimke, 1974), The more recent 

development of cloning technology since has made it possible to isolate 

any mRNA by virtue of its reaction with a cloned sequence. It is also 

possible to use immunoprécipitation of polysomes to obtain a preparation 

of mRNA sufficiently purified to allow cloning techniques then to be 

applied to obtain complete purity (Strair et al,, 1977).



Isolated mRNA may be characterised by translation in two types 

of system. Reconstituted cell-free systems, comprising ribosomes, protein 

synthetic factors, and tRNAs, can be obtained from various sources. The 

most common are wheat germ, rabbit reticulocyte, and mouse ascites tumour 

cells but many others have been used (Roberts and Paterson, 1973; Pelham and 

Jackson, 1976; MathewS et al., 1972; McDowell et al., 1972), Usually 

the cell-free systems work relatively inefficiently. Each messenger is 

translated only a few times before activity ceases, generally within 

90-20 minutes. The Xenopus oocyte provides an alternative in which the 

in vivo condition of the protein synthetic apparatus is assured. The 

system is more efficient and translation continues for 24-48 hrs. First 

characterised for globin mRNA, the oocyte system has since been used with 

many other mRNAs and it has been possible to follow coupled transcription 

and translation of injected DNA (Lane et al., 1971; Berns et al., 1972; 

M’arbaix and Lane, 1972; De Robertis and Mertz, 1977).

1.3. Polysomal mRNA-protein complexes

Most of the messenger RNA in living cells is found associated 

with ribosomes in the polyribosomes or polysomes. Treatment of poly

somal fractions with EDTA or puromycin results in dissociation of ribo

somes and release of the mRNA as an mRNA-protein complex (mRNPs). The
-3released mRNP bands on Cscl at 1.40-1,45 g-cm (Perry and Kelley, 1968). 

Isolation of polysomal mRNP was initially performed by sucrose gradient 

sedimentation. Later on, electrophoresis of mRNP and affinity chroma

tography on oligo(dT) cellulose was adopted.

The polypeptide composition of the polysome released. mRNPs has 

been studied in various cells: KB cells (Venrooij et al., 1981), HeLa

cells (Kumar and Pederson, 1975), Ehrlich ascites (Barrieux et al., 1975),

L cells (Greenberg, 1977; Setyono and Greenberg, 1981), mouse kidneys 

(Irwin et al., 1975). Usually two major proteins of 49,000-52,000 and 

73,000-78,000 daltons were found associated with most of the mRNA species



investigated. However, the presence and number of additional proteins 

was variable and these variations may arise from the different methods 

employed for the isolation of mRNP (Preobrazhensky and Spirin, 1978).

Better information has been obtained with individual mRNPs. For example, 

the 15S globin mRNP released from polysomes with EDTA has been shown to 

contain a major 73,000 dalton polypeptide, 7 minor basic polypeptides with 

molecular weights ranging from 45,000 to 68,000 dalton and 5 acidic com

ponents in the 80,000 to 130,000 molecular weight (Vincent et al., 1981), 

The 73,000-78,000 dalton protein has been shown to be associated 

with the poly(A) tail of the mRNA molecules of reticulocyte and L-cell 

polysomes (Blobel, 1973) and in HeLa cells (Kish and Pederson, 1976;

Schwartzand Darnell, 1976). The poly(A) tail of polysome dissociated 

globin mRNP has been shown to be associated with two proteins of molecular' 

weights of 73,000 and 47,000 (Vincent et al., 1981). These poly(A) 

associated proteins of globin mRNP have been shown to be associated with 

sequences adjacent and nonadjacent to the poly (A) tail (Goldenberg et al., 

1980), It has also been suggested that these interactions may result 

in the folding back of the mRNA on itself (Goldenberg et al., 1980), Such 

secondary structures at the 3' end of the mRNA molecule could play an 

important role in the termination of mRNA translation (Pelham, 1978), 

diminishing the possibility of read-through as described for globin mRNA 

(Geller and Rich, 1980). It has also been proposed that more than one of 

the 73,000 M. ; proteins may be aligned along the poly(A) tail (Venrooij 

et al., 1981). Such a possibility is supported by the recent finding 

that the 3 '-poly(A)-ribonucleoprotein of mRNA has a characteristic repeat

ing structure with a periodicity of about 27 residues (Baer and Kornberg, 

1980). In the case of L-cell and duck mRNPs, it has been proposed that 

the poly(A)-associated proteins are in dynamic equilibrium with free 

proteins (Setyono and Greenberg, 1981; Vincent et al,, 1981),
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Little is still known about the role of the other proteins

associated with mRNA molecules. It had been initially proposed that the

52,000 dalton protein associated with mRNA in Ehrlich ascites cells could

be identical to the 52,000 dalton subunit of elF-2 (Barrieux and Rosenfeld,

1977), but this conclusion is not supported by further investigation

(Barrieux and Rosenfeld, 1978).

2. Relation of iïîRNA to the genome

The extraordinarily large amount of potential genetic information

in animal DNA raises the question of the extent to which the DNA functions

as template for synthesis of mRNA,

Two approaches have been used to measure the complexity of mRNA

molecules. The first approach is based on saturation hybridisation in

which trace amounts of highly radioactive single-copy DNA are annealed to

saturation with an excess unlabelled RNA, In this case the complexity

of mRNA is calculated from the percentage of unique DNA driven into DNA-

RNA hybrids (Galau et al., 1974; Bantle and Hahn, 1976),

The second approach is based on kinetic measurements of the
+rate of annealing between DNA complementary to poly (A) mRNA (cDNA) , pre-

«I*pared using reverse transcriptase, and the poly (A) mRNA itself (Birnie 

et al., 1974; Bishop et al,, 1974),

Even though in some cases both approaches have been reported 

to yield qualitatively similar results (Bishop et al,, 1974; Axel et al,, 

1976; Hahn et al., 1980), in others widely different estimations of 

complexity have been obtained (Ryffel and McCarthy, 1975; Bantle and Hahn, 

1976; Kleinman et al., 1977).

In general, cDNA measurements tend to underestimate complexity 

because of the difficulty in estimating the high complexity low abundance 

class of mRNAs. An additional problem is the validity of the assumption 

that cDNA accurately reflects the number and distribution of mRNA sequences,
■f*Another initial drawback of this method was its restriction to poly(A)



mRNAs. However, this drawback has been overcome since cDNA can be trans

cribed from poly (A) mRNA using oligonucleotides as primers (Van Ness et al.,

1979).

On the other hand, the method of saturation hybridisation has 

two major disadvantages. Firstly, it overlooks mRNA species of low com

plexity, and secondly, the obtained values for the proportion of the genome 

transcribed into mRNA is quite small (< 4%) making any small variation 

quite significant.

Using the experimental approaches mentioned above, it has been 

shown that about 1-4% of single copy DNA is transcribed into poly(A)^ mRNA 

(Bishop et al., 1974: Galau et al., 1974; Birnie et al., 1974; Bantle and 

Hahn, 1976; Kleinman et al., 1977; Ryffel and McCarthy, 1975). A much 

larger value, 5-8%, was obtained for polysomal mouse fibroblast mRNA 

(Grady and Campbell, 1975), Also, in mouse brain cells the percentage of 

single copy DNA hybridising with polysomal mRNA was about 8% (Van Ness 

et al., 1979), almost half of which was hybridising only with polysomal 

poly (A) mRNA.

In general, these data suggest that about 10^-10^ genes are 

expressed during the life span of a higher eukaryote (Galau et al ., 1974; 

Grady et al., 1978; Bishop et al ., 1974; Bantle and Hahn, 1976). Some 

of the gene transcripts are present in only a few copies per cell, while 

others occur in relatively large numbers per cell (Galau et al., 1974;

Bishop et al., 1974; Birnie et al., 1974). The transcript numbers of the 

expressed genes are dependent upon the developmental state of the cell 

(Birnie et al., 1974; Galau et al., 1974; Hereford and Rosbash, 1977; 

Paterson and Bishop, 1977).

The same techniques of saturation and kinetic hybridisation had 

been employed to find out whether abundant mRNAs are transcribed from 

genes present as multiple copies in the genome. Thus, histone genes in 

sea urchin embryos and HeLa cells exist as multiple copies of between



4œ-1000 and 30-40 repeats, respectively (Weinberg et al., 1972; Wilson 

and Melli, 1976). At the same time ovalbumin gene in chick oviduct 

(Harris et al., 1973) and the ô-crystallin gene in chick embryonic lens 

(Zelenka and Piatigorsky, 1976) have been shown to exist.in 'a single copy 

while fibroin gene is found in less than 2-3 copies in the genome of 

Bombyxmori (Suzuki et al., 1972; Gage and Manning, 1976), Similarly, there 

are two copies for a-globin in the human genome and a single copy for human 

g-globin gene (Toltoshev et a l ., 1977; Old et al., 1976; Ottolenghi et al.,

1975). Most of these results have been lately confirmed by the use of 

restriction enzyme analysis of the genome.

3. Nature of eukaryotic DMA

Before going into the description of the organisation of some 

protein coding genes and the biosynthesis of the precursor mRNA molecules 

in the nucleus, it is important to describe the nature of eukaryotic DNA 

from which these molecules originate by the process of transcription.

It was in 1968 that Britten and Kohne demonstrated that eukary

otic DNA sequences fall into three frequency classes: a highly repetitive,

an intermediate repetitive and a unique fraction. Molecular hybridisation 

studies have allowed the examination and characterisation of the various 

frequency DNA sequences. Thus it was shown that unique DNA consists of 

the sequences which code for most enzymes, while rRNA, tRNA and histone 

mRNA are thought to be transcribed from middle-repetitive DNA.

A large proportion of the DNA from eukaryotic organisms is 

organised with alternating regions of unique and repeated sequences. In 

Drosophila, middle-repetitive sequences of average length 5,600 bases 

long are interspersed with non-repetitive sequences longer than 13,000 

base pairs long (Manning et al., 1975). A different interspersion ratio 

has been detected in other genomes. Unique sequences of about 1,000 

base pairs are interspersed with repetitive sequences of about 300 base 

pairs for about 50% of the genome and unique sequences of several thousand
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base pairs are interspersed with repetitive sequences for a further

30-40% in Xenopus, slime mould, protostorae and human genome (Davidson

et al., 1973; Pirtel and Kindle, 1975; Angerer et al., 1975; Schmid and

Deininger, 1975). The 300 nucleotide interspersed sequences are closely

related to one another and in particular contain a highly conserved 30

nucleotide segment present in both human and hamster DNA (Jelinek e^ al.,

1980). These sequences have been shown to be transcribed as part of the

hnRNA (Robertson et al., 1977) and to serve in vitro as templates for RNA

polymerase III (Duncan et al., 1979). Small RNAs associated with cyto- 
+plasmic poly (A) RNA have been shown to be complementary to these sequences

in Chinese hamster cells (Jelinek and Leinwand, 1978). It has also
+recently been reported that poly(A) RNA from HeLa cells contains sequences 

complementary to this repeated family (Calabretta ^  al., 1981). Similar 

repeated sequences have been shown to exist amongst human globin genes 

(Fritsch et al., 1980), Longer repeated sequences (about 5,000 base 

pairs long) have also been reported in mammalian genome (Singer, 1982).

One of these sequences has been shown to exist downstream from the end of 

the human g-globin gene (Adams et al., 1980).

4. Eukaryote gene structure

A unique characteristic of eukaryotic structural genes is that 

they have intervening sequences known as "introns" within the gene itself.

The length of these intervening sequences varies and so does the number of
V/intervening sequences within genes. For example: Xenopus laevis vitello

genin genes contain at least 33 introns, while chicken and human pre

proinsulin gene contains only two introns (Breathnach and Chambon, 1981) 

and chicken ovalbumin gene seven introns (Royal et al., 1979). Current 

evidence suggests that these intervening regions are transcribed into RNA 

(see Section 12) and then removed by internal processing events in the 

cell nucleus until the RNA transcript is the size of the final mRNA 

product (see Section 13). Intervening sequences appear to have a wider



evolutionary freedom for mutation than the coding sequences of the DNA 

(Lpmedico et al., 1979; Abelson, 1979),

Intervening sequences have also been discovered in DNA sequences 

giving rise to 28S rRNA in Drosophila and 21S rRNA in yeast (Abelson, 1979). 

Some, but not all, yeast tRNA genes have been shown to contain intervening 

sequences (Abelson, 1979). Intervening sequences have not been detected 

in genes coding for histones '(Kedes, 1979) or human interferon 

(Nagata et al., 1980; Houghton et al., 1981),

5.0. Organisation of specific protein-coding nuclear genes

5.1. Globin genes

Detailed analysis of the physical map both in rabbit and mouse

has shown that the g-globin gene does not exist as a contiguous stretch

of DNA, but is present in three coding blocks (exons) separated by both 

a large and a small intervening sequence (or intrort)(Van den Berg et al.,

1978), Hybridisation of cion ed g-globin fragments with globin mRNA 

allowed the formation of "R loops" and thus the visualisation of the larger 

intervening sequence (Tilgham et al., 1978) while the detection of the 

small intervening sequence was more difficult. A detailed sequence exam

ination of the large and small intervening sequences from mouse and rabbit 

g-globin genes showed them to be about equal length (large, 646 and about 

580 base pairs, small 115 and 126 base pairs for mouse and rabbit respect

ively (Abelson, 1979), and moreover they occur in precisely the same 

positions relative to the coding sequence. On the other hand the homo

logous intervening sequences show very little sequence similarity which 

is mostly evident at the junctions with coding sequences (Abelson, 1979). 

Intervening sequences have also been detected in chicken g-globin genes 

(Richards et al., 1979) and human g, 6 and y genes (Little et al., 1979).

Similarly, the mouse a-globin genes have two inserts at positions 

analogous to the g genes, although of smaller size (Nishioka and Leder, 1979)



5.2. Ovalbumin genes

The presence of at least six intervening sequences in the oval

bumin gene has been inferred from a number of studies comparing cloned 

ovalbumin cDNA and genomic DNA fragments (Garapin et al., 1978; Mandel 

et al., 1978; Breathnach et al., 1978; Dugaiczik et al., 1978). Recent 

work on a cloned chick genomic DNA fragment containing the complete oval

bumin gene has confirmed the existence of 7 intervening sequences and 

shown the minimal size of the ovalbumin transcription unit to be 7.7 

kilobases, about four times the size of the mature mRNA {Gannon et al.,

1979).

5.3. Vitellogenin genes

Studies of Xenopus laevis cDNAs have shown that vitellogenin 

is encoded by a small family of at least four genes (Wahli et al., 1979). 

These genes fall into two pairs. Members of a pair are about 95% homo

logous in sequence and 80% homologous to members of the other pair (Wahli 

et al., 1980), The genes coding for both members of o ne.of these pairs 

have been cloned and have shown marked similarities. In both genes the 

mRNA-coding sequence of 6,000 base pairs is interrupted 33 times (Wahli 

et al., 1980). The introns interrupt the structural sequences at homo

logous positions in both genes (Wahli et al., 1980),

5.4. Insulin genes

Chicken and human have a single preproinsulin gene (Perler 

et a l ., 1980; Bell et al., 1980). Cloning and sequencing of these genes 

has revealed that each one contains two introns similarly located. One 

within the sequences coding for the iriRNA's 5* untranslated region and the 

other interrupting the C-peptide coding region (Perler et al., 1980; Bell 

et al., 1980). Rat, however, has two genes one of which contains two 

introns similar in structure to human and chicken genes while the second 

one lacks the intron interrupting the C-peptide coding region (Lomedico

et 1979; Cordell et al ., 1979)



6. Eukaryotic RNA polymerases.

The apparatus responsible for the production of RNA is the 

enzyme RNA polymerase. Unlike the situation in prokaryotic cells, 

eukaryotes have several DNA dependent RNA polymerases. It was Roeder 

and Rutter in 1969 who separated the different RNA polymerases and 

classified them as RNA polymerase I, II and III according to their order 

of elution from DEAE-Sephadex column by increasing ionic strength of 

ammonium sulphate.RNA polymerase I has been shown to be of nucleolar 

origin while RNA polymerae II and III exist in the nucleoplasm. It is 

known that the eukaryotic RNA polymerases are macromolecular multi

subunit enzymes with a molecular weight around 500,000 (Paule, 1981).

In all the examined cases they have been shown to consist of two high 

molecular weight subunits larger than 100)000 daltons and a number of 

smaller subunits (Jendrisak and Burgess, 1977; Teissere et al., 1977; 

Guilfoyle et al., 1976). It seems that the large subunits of the three 

enzyme classes are of different sizes (Chambon, 1975; Jendrisak and Burgess,

1977). The different classes of RNA polymerase have been shown to oper

ate optimally under different conditions. For example, RNA polymerase I
2+requires low ionic strength and Mg for maximum activity, while RNA

2+polymerases II and III operate optimally at high ionic strength and Mn 

(Roeder, 1976). The different classes are also differentially affected 

by a-amanitin. In animal, plant and insect cells RNA polymerase II is 

inhibited by low levels of a-amanitin whereas RNA polymerase I is not 

affected even at very high levels (Jacob, 1973). RNA polymerase III is 

affected by a-amanitin but at higher concentrations.

Data from experiments with a-amanitin had initially suggested 

that RNA polymerase II is responsible for the transcription of hetero

geneous nuclear RNA (hnRNA), while RNA polymerase I for rRNA synthesis 

(Bitter and Roeder, 1978) . It has recently been proposed that RNA 

polymerase II is also responsible for the transcription of some small
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nuclear RNAs (snRNAs) (zieve, 1981) while RNA polymerase III is responsible

for the transcription of tRNA genes and genes coding for small RNA species
{ .

(Weil et alby 1979; Wu, 1980). Experiments with soluble cell-free systems 

from cultured human cells has revealed that accurate initiation of genes 

encoding mRNA species requires not only RNA polymerase II but additional 

soluble factors (possibly proteins) (Weil et a l ., 1979b; Lu se and Roeder, 

1980; Wu, 1978; Wasyslyk et al., 1980),

Since differential alterations in the rate of synthesis of the 

major classes of RNA (rRNA, mRNA, tRNA) has been observed during a number 

of physiological changes and given that they are transcribed by different 

enzymes a question arising is whether changes in gene activity are modulated 

by changes in the amounts of the RNA polymerases. Supporting evidence 

for this possibility has been reported for regenerating liver (Roeder, 1977), 

Also, it has recently been suggested that the increased concentration of 

RNA polymerase I is responsible for the high rate of nucleolar transcription 

in rat liver (Yu, 1980). On the other hand, data showing that during the 

development of Xenopus laevis when qualitative and quantitative changes in 

gene expression occur, the absolute and relative amounts of RNA polymerases 

remain the same (Roeder et al., 1974), argue against it.

7. ■ Structure of chromatin

In eukaryotic cells DNA is not found naked but in chromosomes or 

chromatin during interphase. Chromatin consists of DNA complexed with 

histone and non-histone proteins and RNA. Biochemical and biophysical 

studies have shown that the structure of chromatin is considerably ordered. 

It consists of an array of repeating units (nucleosomes). The core of 

each nucleosome consists of 145 base pairs DNA fragment arranged around 

the outside of an octamer of histones. The octamer contains two copies 

of H2A, H2B, H3 and H4 histones. Each nucleosome is separated from the 

next one by a segment of DNA, which is termed "linker" DNA. The length 

of the linker varies from about 15 base-pairs to about 100 base-pairs
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depending upon the organism and tissue from which the nucleosomes are 

isolated (Felsenfeld, 1978; Mathis et al ., 1980), It has been proposed 

that shorter repeat lengths are correlated with higher levels of gene 

activity (Morris,1976; Thomas and Thomson, 1977), although this proposal 

does not seem to hold for lower eukaryotes (Lohr . ,,and Ide 1979). Early 

experiments had suggested that histone is associated with the linker 

DMA between core particles (Varshavsky et al., 1976; Whitlock and Simpson, 

1976), but recent data have suggested that histone is localised at the 

point where DNA enters and exits from the core particle CThoma efc al.,

1979) .

Two levels of higher organisation of chromatin structure have 

been reported. The first appears as a thin filament lOO R in diameter 

and the second as a thicker fibre with a diameter of 200-300 £. The thin 

fibre is almost certainly a linear array of nucleosome cores in contact 

with one another, while the thick fibre seems to be generated by coiling of 

the thin filament (Felsenfeld, 1978; McGhee and Felsenfeld, 1980), At 

low ionic strength, the 100 £ fibril appears upon electron microscopy in 

a zigzag configuration with a two-nucleosome repeat (Thoma et al., 1979).

When the ionic strength is raised a new form of structures begin to form.

The most compact structures are consistent with a superhelical model of

6-7 nucleosomes per turn organised in a 300 £  filament (McGhee and Felsenfeld,

1980). A number of hydrodynamic and electron microscopic studies have 

suggested that histone may play a role in the formation of the highly 

ordered form of chromatin. For example, readdition of histone to 

depleted chromatin leads to chromatin contraction (Thoma and Roller, 1977),

Two approaches have been used to find out whether transcription

ally active chromatin is organised in nucleosomes: that of electron micro

scopy and digestion with nucleases. The use of electron microscopy has 

revealed nucleosome-like beads interspersed between the transcribing RNA 

polymerase molecules in the Balbiani rings of Chironomus tentans, which
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is an example of nonmaximally transcribed gene (Lamb and Daneholt, 1979),

On the other hand, studies on the morphology of very actively transcribed 

genes in Drosophila melanogaster embryo chromatin (McKnight and Miller,

1976) and in the putative transcriptional unit of silk fibroin gene 

(McKnight et al., 1976) have revealed no nucleosome-like particles between 

the molecules of RNA polymerase. Similarly, nucleosomes appear to be 

absent from very actively transcribed ribosoraal genes in Xenopus oocytes 

(Scheer, 1978) and in Oncopeltus fasciatus (Foe et al., 1976). Electron 

microscopy data on the structure of spacers amongst the rRNA genes are 

conflicting. In Drosophila melanogaster the spacers amongst the rRNA 

genes exhibit "beaded" structure characteristic of nucleosomes (Laird 

et al., 1976), while in Xenopus oocytes they do not (Scheer, 1978).

Nuclease digestion has revealed that "active" chromatin is more 

susceptible to DNase I digestion. This was initially shown in the case 

of globin genes in chick erythrocytes (Weintraub and Groudine, 1976). 

Hypersensitivity to DNase I has since been detected for several "active" 

genes: the ovalbumin gene in hen oviduct (Garel and Axel, 1976), the

ribosomal genes in various organisms (Staider et al., 1978; Mathis et al.,

1980) and the induced heat-shock loci in Drosophila tissue culture cells 

(Wu et al., 1979). Even though DNase I hypersensitivity is localised 

to messenger-coding sequences along a DNA segment (Mathis et al., 1980), 

this does not seem to be due to the transcriptional machinery since non

transcribed genes have also been shown to be hypersensitive to DNase I 

digestion. For example, the sequences coding for the preshock mRNA 

population in Drosophila are as sensitive to DNase I before and after the 

heat shock treatment (Biessroann et al., 1977). Similarly, a complex 

subset of genes rarely represented in the mRNA population of hen oviduct 

cells is as sensitive to DNase I as the ovalbumin gene (Garel et al., 1977) 

This hypersensitivity to DNase I may reflect changes in the nucleosome 

particle (e.g. formation of half nucleosomes). There is evidence that
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the "high mobility group" (HMG proteins)may promote DNase I sensitivity.

For example, the sensitivity of globin genes to DNase I is reversed when 

the HMG proteins are eluted with 0.35M salt and restored when the eluate is 

added back to the washed chromatin (Weisbrod and Weintraub, 1979),

Several data had initially proposed that "active" chromatin is 

not preferentially degraded by micrococcal nuclease. For exanple, in 

avian reticulocytes the globin genes which are actively transcribed exhibit 

the same pattern of digestion by micrococcal nuclease as all other chromatin 

DNA (Weintraub and Groudine, 1976), However, it has been recently shown 

that micrococcal nuclease can recognise some features of "active" chromatin.

For example, expressed ovalbumin gene sequences have been shown to be prefer

entially excised in hen oviduct (Bloom and Anderson, 1978). Similarly, the 

excision of "active" sequences by micrococcal nuclease has been demonstrated 

for the Drosophila heat-shock loci (Wu et al ., 1979) and for "active" rRNA 

genes in Xenopus (Reeves, 1978). There is also suggestive evidence that

"active" chromatin is specifically recognised by DNase II (Mathis et al., 1980)

8. sequences involved in the control of transcription

Prokaryotic promoters are those sequences of the DNA indispensable 

for initiation of transcription to which RNA polymerase binds. They contain 

a sequence of homology related to the 5' TATAATG 3 * (Pribnow box) located

about 10 base pairs upstream from the mRNA start site (Rosenberg and Court,

1979; Siebenlist et al., 1980). A second region of homology referred to as 

"recognition region" has been found in a region 35 base pairs upstream from 

the mRNA start site (Rosenberg and Court, 1979; Siebenlist et al., 1980).

From the information obtained so far from eukaryotic genes it seems 

that more than one elements could be important for transcription of eukaryotic 

genes. One element, which corresponds to the "ATAA" box region has been 

detected 25-30 base pairs upstream from the mRNA start site of all as yet 

sequences eukaryotic mRNA coding genes transcribed by RNA polymerase II with 

the exception of adenovirus 2 early gene (Baker et al., 1979) and papovavirus 

late genes (Breathnach and Chambon, 1981). A region that includes the "ATAA"



box has been shown to be required for faithful vitro transcription of 

rabbit globin genes (Grosveld et al., 1981) and for the major adenovirus 

late genes (Hu and Manley, 1981), Also, a single base change (ATAA to 

AGAA) reduces the level of in vitro transcription from the conalbumin gene 

by a factor of 10 (Wasylyk et al., 1980). In contrast, deletion of 

sequences including the TATAA box from the 5' end of the SV40 early genes 

has little or no effect on the amount of early transcripts made in vitro 

(Mathis and Chambon, 1981) or in vivo (Benoist and Chambon, 1981). The 

TATAA box is believed to be necessary for accurate initiation (Paul, 1982), 

because both in those instances in which it is naturally missing (Benoist 

and Chambon, 1981) and in those in which it has been deleted multiple 

initiation points are observed (Benoist and Chambon, 1981; Grosveld e^

•al., 1982).

A second element, the CAAT or Chambon box located 70-80 bases 

upstream the 5' end of mammalian globin genes (Efstratiadis et al., 1980) 

and many other sequenced genes (Benoist et al., 1980). This sequence 

seems to be required for 'i n 'vivo transcription of a-globin genes (Mellon 

et al., 1981) and g-globin genes (Grosveld et al., 1981). Its deletion 

from a-globin (Mellon et al., 1981) and g- globin genes (Grosveld et al.,

1981) has been shown to result in decrease of transcription. On the 

other hand, deletion of the same region in sea urchin H2A histone genes 

stimulates RNA synthesis (Grosschedl and Birnstiel, 1980a).

Sequences farther upstream from the 5' end of sea urchin histone 

gene are required for transcription of sea urchin histone H2A genes in 

Xenopus oocytes (Grosschedl and Birnstiel, 1980) and the SV40 early genes 

(Benoist and Chambon, 1981) in cells in culture. Although these sequences 

have no homology to each other, they have similar effects on transcription. 

The SV40 sequences can enhance the transcription of a cloned rabbit g- 

globin gene transfected into HeLa cells (Banerji et al., 1981),

Little is as yet known about the sequences specifying termination



of transcription. Some sequence homologies have been reported around the 

polyadenylation site (Benoist et a l ., 1980) apart from the AATAAA region 

found about 20 nucleotides before the 3 ' terminus of various mRNAs and 

suggested to serve as site for termination of transcription of polyadenyl

ation (Proudfoot and Brownlee, 1976; Nunberg, 1980). However, no site- 

directed mutagenesis experiments have as yet confirmed the role of these 

sequences in termination of transcription.

9. Heterogeneous nuclear RNA

The question of the origin of mRNA has been under investigation 

for some time. An initial puzzle was the relationship of mRNA to a family 

of nuclear RNAs designated as heterogeneous nuclear RNA. Heterogeneous 

nuclear RNA (hnRNA) is the "DNA-like" fraction of nucleoplasmatic RNA which 

is being rapidly labelled in the nucleus and exhibits heterogeneous size 

distribution. This class of nuclear RNA is distinct from the,precursors 

of rRNA which are of nucleolar origin, have discreet homogeneous sizes and 

are being labelled later on (Weinberg, 1973).

9.1. Structural features of hnRNA

A number of structural features have been shown in hnRNA, although 

not every feature is necessarily present in any particular hnRNA molecule. 

They can be listed as below;

(a) A long (180-230 nucleotides) poly(A) segment at the 3' end of some

hnRNA molecules. The absence of long (dT) regions in eukaryotic genomes 

(Shenkin and Burdon, 1974) and data showing that poly(A) addition and hnRNA 

biosynthesis are differentially affected by actinomycin D and cordycepin 

(3' deoxyadenosine) (Darnell et al., 1971? Darnell et al., 1973), led to the 

conclusion that the poly (A) tail is added post-transcriptionaily. Poly

adenylation takes place by adding one base at a time to nascent large hnRNA 

molecules or to smaller older hnRNA molecules (Derman and Darnell, 1974).

A poly (A) polymerase activity has been identified in both vaccinia virions 

and infected cells (Moss et al., 1973; Brakel and Kates, 1974) and enzyme
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activities able to synthesise poly(A) have been already reported (Edmonds 

and Abrams, 1960; Winters and Edmonds, 1973).

(b) A short (20-40 nucleotides) internally located oligo(A) segment 

which is transcribed from the DNA template (Nakazato et al., 1974), These 

oligo(A) regions are not found in poly(A) hnRNA and appear to be absent 

from mammalian mRNA (Venkatesan et al,, 1979), It should be noted however, 

that Dyctiostelium mRNA does contain internally located oligo (A) segments 

20-30 nucleotides long (Lodish et al., 1974).

(c) Short oligo uridylate-rich (oligo (U)) stretches have been found

in the hnRNA (Molloy et al., 1974) and mRNA (Korwek et al., 1976) from

HeLa cells. In hnRNA these regions occur at the 5' terminus of at least

some hnRNA molecules (Molloy et al., 1974) and appear to be transcribed

from repetitive regions of the genome (Molloy et al., 1972). Additionally,

oligo (U) stretches have also been reported in non-polyadenylated (poly(A)

hnRNA molecules in HeLa cells (Korwek et al., 1976), BHK/21 cells (Burdon

et al ., 1976). The possibility of formation of double or treble-stranded

regions between oligo (U) and oligo (A) or poly (A.) regions has been discussed

either as a means for compaction or of "looping-out" of processing sites

(Dubroff, 1977; Kish and Pederson, 1977).
7 5' 5' .(d) A "cap" structure of type I:m G ppp N'mpN' 'p at the 5' terminus 

of the hnRNA molecule. Recent data of Salditt-Georgieff and colleagues 

(1980) have shown that capping occurs very rapidly on the primary trans

cripts. Even though it was initially believed that caps can be added 

either to the 5' terminus of the primary transcript or to internal sites 

after processing of the primary transcript (Schibler and Perry, 1976), 

recent data from analysis of the composition of the cap I structures of 

both large and small hnRNA favour the model by which hnRNAs can initiate 

with any of the four nucleotides and that capping occurs very close to

or at the start of hnRNA (Salditt-Georgieff et al., 1980). In support 

of this hypothesis are data from analysis of precursor molecules for



chicken ovalbumin {Roop et al., 1980), silk fibroin (Tsuda et al., 1979) 

and mouse g-globin genes (Weaver et al., 1979). Internal N^-methyl 

adenines (m^A) are also found in hnRNA molecules (Salditt-Georgieff et al.,

1976).

(e) Mammalian hnRNA also contains double-stranded regions which are

resistant to the action of ribonucleases (Jelinek and Darnell, 1972),

4% of the mass of HeLa cell hnRNA is involved in these double-stranded 

structures (Robertson et al., 1977) and it has been shown that the sequences 

involved in them are derived from repetitive elements of the genome (Jelinek 

et a l ., 1974; Jelinek, 1977). Such double-stranded regions of hnRNA 

have also been shown to be less tightly bound to proteins than the single

stranded regions (Calvet and Pederson, 1978). The function of these 

double-stranded regions is not yet clear. Since globin mRNAs have been 

shown to contain sequences complementary to the double-stranded regions of 

hnRNA (Ryscov et al., 1976), it is possible that double-stranded regions 

might serve as cleavage sites for endonucleolytic processing involved in 

the biogenesis of mRNA. It has also been postulated that the attachment 

of hnRNA to the so-called "nuclear skeleton" is mediated via the double

stranded regions of hnRNA (Herman et al., 1976).

10. Relationship of hnRNA to mRNA

That some of the hnRNA molecules may serve as precursors of 

mRNA molecules has been accepted for many years now, even though direct 

evidence has been obtained only recently. A number of experiments had 

given indirect evidence for such a relationship.

Labelling kinetic experiments have shown that some of the 

nucleotides present in the hnRNA enters the cytoplasm (Herman and Penman,

1977). It has also been reported that the poly(A) tail which exists at 

the 3' end of some hnRNA molecules is conserved and transported to the 

cytoplasm (Nevins and Darnell, 1978; Puckett et al., 1975, 1976),

Kinetic analysis has shown that, in mouse L-cells, the cap I structures



of mRNA are derived from the cap I structures of hiiRNA (Perry and Kelley,

1976). Also, comparison of cap-containing sequences in mRNA and hnRNA

of the same cells showed a similar sequence composition of hnRNA and

mRNA caps (Schibler and Perry, 1976), At the same time, a number of

experiments demonstrated homology between mRNA and hnRNA sequences. For

example, hybridisation of genomic DNA complementary to mRNA ("mDNA") to

various pulse-labelled hnRNA fractions in L-cells suggested that a

substantial proportion of the large rapidly labelled hnRNA molecules are
+potential precursors of mRNA, whilst the small poly(A) hnRNA may consist 

of partly processed derivatives of these molecules, enriched in mRNA 

sequences (Hames and Perry, 1977),

That mRNA is generally derived from a larger primary transcript 

constituting a part of the hnRNA population was also suggested frcsn results 

obtained by the use of the U.V, transcription mapping technique. For 

example, in HeLa cells it was shown that the length of long nascent hnRNA 

molecules coincides with the length of the genomic sequence transcribed, 

vÆiile the transcription unit of HeLa cell mRNA was estimated to be at 

least 3 times larger than the actual size of the mRNA itself and coincided 

with the transcription unit length of hnRNA (Goldberg et al., 1977).

11. The primary transcript

With the development of the molecular cloning technique it has 

become possible to identify the primary transcripts of some protein coding 

genes and to investigate whether the primary transcript contains any 

sequences transcribed from flanking regions of the corresponding genes.

It seems that initiation of transcription may occur at the 

nucleotide corresponding to the first capped nucleotide of the mature mRNA 

as it is suggested from the analysis of precursor molecules for chicken 

ovalbumin (Roop et al., 1980), silk fibroin (Tsuda et al., 1979), mouse 

g-globin genes (Weaver et al., 1979) and adenovirus 2 major late trans

cription unit (Ziff and Evans, 1978). However, initiation of transcription 

upstream from the cap site followed by rapid processing of the primary



transcript can not be ruled out {Breathnach and Chambon, 19811 .

Termination of transcription may occur at (or very close to) 

the poly (A) addition site as in the case of ovalbumin gene (Roop et al.,

1980) or beyond, the poly(A) addition site, in which case the 3' ends of 

the mature mRNAs are generated by endonucleolytic cleavage site. The 

latter has been shown to occur in the case of adenovirus-2 major late 

transcription unit (Ziff, 1980), the units for early regions 2 and 4 

(Nevins et al., 1980) and the SV40 late region (Ford and Hsu, 1978). 

Read-through across polyadenylation site can occur as evidenced by the two 

size mRNAs for geneX(Heilig et al., 1980) and probably for the dihydrofolate 

reductase gene (Nunberg et al., 1980). An interesting example of read- 

through is that of the production of the membrane bound form of immuno

globulin M when transcription stops downstream the first polyadenylation 

site, so that the primary transcript contains two more exons coding for 

the hydrophobic C-terminus of the protein (Rogers et al., 1980), For 

the production of the secreted form of the protein transcription stops at 

the first polyadenylation site and since the two immunoglobulins are pro

duced at different stages of development, it has been suggested that there 

may be developmental stage-specific recognition of different polyadenyl

ation site (Early al., 1980).

12. Precursors of specific mRNAs

12.1. Globin mRNA precursor

A 158 globin mRNA precursor has been detected in mouse foetal 

liver cells (Ross, 1976), Friend cells (Curtis and Weissmann, 1976) and 

mouse spleen (Kwan et al., 1977). In erythroid cells 158 hnRNA is 

processed to mature mRNA within 20 minutes (Ross and Knecht, 1978). 

Examination of this 158 transcript showed it to be capped (Curtis et al.,

1977) and to have a 150 nucleotides long poly (A) terminus added post

transcript ionally (Curtis and Weissmann, 1976? Ross and Knecht, 1978?

Curtis et al., 1977). Electron microscopy has revealed that no R loops
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are formed between 15S RNA and cloned g-globin genes (Tilgham et al., 1978), 

while more recent data have demonstrated the existence of the B-globin 

gene intervening sequences in 15S hnRNA (Smith and Lingrel, 1978; Kinniburgh 

et al., 1978). It has also been shown that both the 5' and 3* terminal 

sequences of 15S transcript and the mature globin mRNA map at the same site 

on the genomic DNA (Weaver et al., 1979), suggesting that no sequences are 

excised from the 5' end during maturation. However, one can not exclude 

the existence of a larger primary transcript which is rapidly converted to 

15s RNA especially since the existence of a 27S globin-precursor has been 

reported by others (Bastos and Aviv, 1977; Strair et al., 1978).

12.2. Ovalbumin mRNA precursors

Ovalbumin mRNA precursors of variable length have been detected 

in oviduct nuclei as judged by their ability to hybridise to both structural 

and intervening sequences of ovalbumin gene (Roop et al., 1978). The 

largest of them is 7,800 nucleotides long and is believed to be the primary 

transcript of the ovalbumin gene (Tsai et al., 1980a). This 7,800 nucleo

tides long nuclear RNA is 200 nucleotides longer than the ovalbumin gene. 

Since no transcripts of the flanking regions from the 5 ̂ or 3' end of the 

gene have been detected in any of the nuclear precursors (Tsai elt al.,

1980b) and given that most of the 7,800 nucleoties long nuclear RNAs has 

been shown to contain a poly (A) tail (Tsai et al., 1980a) the difference 

in the length between the ovalbumin gene and the 7,800 nucleotides long 

RNA may be accounted for by the length of the poly(A) tail. The smaller 

nuclear RNA precursors of ovalbumin RNA are believed to be processing 

products of the 7,800 nucleotides long nuclear RNA (Roop et al., 1978).

12.3. immunoglobulin precursor mRNAs

Nuclear precursors of immunoglobulin light chain mRNA have been 

detected in myeloma cells by hybridising cloned cDNA to nuclear RNA 

sedimenting through sucrose gradients (Gilmore-Herbert and Wall, 1978).

Three size classes of nuclear RNA were shown to be complementary to



immunoglobulin light chain mRNA : 40S, 24S and 13S nuclear and a sequential 

precursor-product relationship was demonstrated between these RNAs. The 

size of the largest, 40S, nuclear RNA is in good agreement with the U.V. 

mapped transcription unit size (10,000 nucleotides) of myeloma light chain 

immunoglobulin mRNA (Gilmore-Herbert et al., 1978). However, according 

to more recent data of Schibler and colleagues (1980), the largest detected 

nuclear RNA precursor of light chain immunoglobulin mRNA is about 5,300 

nucleotides long. The discrepancy between the results of this group and 

those of Gilmore-Herbert and Wall (1978) might be due to the fact that the 

size estimate of the largest nuclear precursor of the latter group was 

based on sedimentation velocity in acqeous sucrose gradients. It is also 

possible that this size discrepancy is related to transcription unit size 

of different k light chain genes.

The largest detected precursor of heavy chain immunoglobulin 

mRNA was shown to be about 11,000 nucleotides long (Schibler et al., 1980) 

and most of these precursor nuclear RNAs have been shown to be polyadenyl

ate d.

13. Processing of pre-mRNA molecules

13.1. Pre-mRNA processing intermediates

Excision of the "introns" from the nuclear precursors of mRNA 

may take place in several steps. For example, many intermediates have 

been identified in the splicing pathway of adenovirus-2 late mRNAs (Ziff,

1980) . Similarly, the mouse g-globin mRNA precursor has been reported to 

require at least 2 splicing events to excise the large intron transcript 

(see Figure 1), while three distinct stepwise pathways have been identified 

for the removal of an intron transcript in the chick a-2 collagen mRNA 

precursor (Avvedimento et a l ., 1980).

Studies on vitellogenin (Ryffel et al., 1980) and ovomucoid 

(Tsai et al., 1980; Nordstrom et al., 1979) putative mRNA precursors 

suggest that there is not a rigid order of removal of intron transcripts
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from these molecules, even though preferred orders of excision may exist 

as reported for the ovomucoid precursor (Tsai et a l ., 1980). The 5' 

terminal splice has been reported to occur before others for the maturation 

of adenovirus-2 major late leader (Berget and Sharp, 1979) and some adeno

virus early messengers (Weber et al, 1980),

13.2. Splicing signals

Sequence studies of the junctions between coding and intervening 

sequences have led to the proposal that the intron begins with the dinucleo

tide GT at its 5' end and ends with the dinucleotide AG at its 3' end 

(Abelson, 1979; Breathnach and Chambon, 1981). Even though this rule 

seems to apply for most of the sequenced protein-coding genes (Breathnach 

and Chambon, 1981), it does not seem to apply for tRNA genes (Abelson, 1979) 

and ribosomal genes (Wild and Sommer, 1980). The GT-AG rule may also not 

apply strictly to the intermediate splicing events that may be involved in 

the stepwise removal of sequences within a given intron transcript 

(Avvedimento et al., 1980).

Since the consensus sequences are very simple, it had been suggest

ed that other factors such as secondary structure, sequences within other 

introns or even within distant exons might be important for correct splicing, 

However, extensive secondary structures involving intron transcripts do 

not seem to be necessary for correct splicing, since correct splicing occurs 

in SV40 mutants which lack a large segment of the large T intron 

(Thimmapaya and Schenk, 1979; Volckaert et al., 1979). Extensive sequences 

of the exons may also be removed vitro without stopping the splicing 

process in vivo (Hamer and Leder, 1979).

Unlike the eukaryotic tRNA situation (Peebles et al., 1979) no 

enzymatic splicing activity has yet been isolated for mRNA, although the 

reactions have been detected in isolated nuclei to which various soluble 

cytoplasmic and nuclear fractions have been added (Blanchard et al., 1978; 

Hamoda et al., 1980). It remains still unknown whether the enzyme(s)
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involved in splicing require molecules other than the substrate, A class 

of small nuclear RNAs (snRNAs) has been suggested to play a role in splicing 

(berner et al., 1980; Rogers and Wall, 1980) by hybridising near the splice 

points thus "guiding" the splicing enzymes (Murray and Holliday, 1979). 

Indeed, the nucleotide sequence at the 5* end of one of them, RNA, 

exhibits complementarity to splice junctions (Lerner et al., 1980; Rogers 

and Wall, 1980). A similar role has been postulated for the small RNAs 

(VA RNAs) specifically coded by adenovirus DNA (Mathews, 1980), The ob

servation that polyadenylation may precede splicing and that all spliced 

molecules are polyadenylated has led to the suggestion that poly(A) could 

align splicing sites by formation of triple-stranded structures with 

sequences around both donor and acceptor sites (Bina e^ al ., 1980).

13.3. Splicing and RNA transcript stability

Several experiments have suggested that splicing is required for 

the accumulation of stable RNA. For example, precise deletion of SV40 

late gene splice junction results in rapid degradation of the transcripts 

(Lai and Khoury, 1979), while introduction of a pair of splice sites from 

mouse 3-globin gene into the intronless SV40 16S RNA gene results in the 

formation of stable, spliced RNA (Gruss and Khoury, 1980). Similarly, 

mutants of SV40 early genes where the acceptor splice junction has been 

removed also failed to produce stable RNAs or proteins (Volckaert et al., 

1979; Gruss and Khoury, 1980). It has also been suggested that splicing 

may be linked to transport of the RNA from the nucleus to the cytoplasm 

(Volckaert et al., 1979; Murray and Holliday, 1979b; Hamer and Leder, 1979). 

However, the existence of unspliced mRNAs such as histone mRNAs (Kedes,

1979), poly (A)^ mRNAs for adenovirus polypeptide IX (Alestrom et al., 1980) 

and interferon a-1 (Nagata et al ., 1980) has suggested that other transport 

mechanisms may also exist. Indeed, very recently the synthesis of an un

spliced cytoplasmic message by an adenovirus 5 deletion mutant has been 

reported (Carlock and Jones, 1981).
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13.4. Splicing and control of gone ex;pression

There have been speculations that splicing with its apparent

link to the production of stable iriRNA, may be used as a control mechanism.

These speculations have been based on indirect experimental data. For

example, infection of undifferentiated F-g murine tera to carcinoma cells by

SV40 does not lead to the production of early mRNA possibly due to a block

at the splicing level (Segal et al., 1979) while the block is lifted in in

vitro differentiated cells (Segal and Khoury, 1979). Similarly, late in
+adenovirus infection of HeLa cells poly (A) hnRNA is transcribed from the 

cellular genome but no mature mRNA reaches the cytoplasm, possibly because 

the splicing machinery is taken over by their viral counterparts (Beltz 

and Flint, 1979),

It was only very recently that splicing was shown to be directly 

involved in the control of gene expression during infection with adenovirus. 

Analysis of pulse-labelled cytoplasmic and nuclear RNA both early and late 

in infection has revealed that it is through differential splicing that 

precursor RNA early in infection is processed to give one mRNA molecule, 

while later in infection it gives three distinct inRNA molecules (Nevins and 

Wilson, 1981) .

14. Association of hnRNA molecules with proteins

In the nucleus of eukaryotic cells, hnRNA is found associated 

with proteins to form hn-RNP particles. In animal cells, in particular,
3the buoyant density of hnRNPs is about 1.4g-cm which corresponds to a 

proteiniRNA ratio of about 4:1 by mass. The use of nucleases specific for 

single or double-stranded regions of hnRNP has shown that, in HeLa cells 

intramolecular double-stranded regions of hnRNA are essentially free of 

associated protein (Calvet and Pederson, 1978). Nuclease protection ex

periments have also revealed that mRNA-homologous sequences in hnRNP are 

extensively complexed with protein (Munroe and Pederson, 1981).
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Several investigators have examined the number and size of pro

teins associated with hnRNA in various cell types, but their results 

differ depending on the method applied. In any case, polypeptide chains 

of about 40,000 dalton have always been reported to be the main, or one of

the main protein components of hnRNP (Preobrazhensky and Spirin, 1978) ,

Ultraviolet light-induced crosslinking of proteins to hnRNA has recently 

revealed that, in HeLa cells, a complex set of polypeptides is associated 

with hnRNA (Mayrand al., 1981), It has also been shown that the poly-

peptides associated with poly (A) hnRNA have the same mobilities with

those associated with poly(A) hnRNA (Mayrand et al., 1981), However, 

Setyono and Greenberg (1981) using the same method in L-cells have recently 

reported that one protein of molecular weight 60,000 is found associated 

with poly (A) hnRNA at higher degree than with poly (A) hnRNA. This poly

peptide was shown to be associated with the poly(A) tail of hnRNA (Setyono 

and Greenberg, 1981), It also seems that in both HeLa and L-cells the 

proteins associated with hnRNA are different than those associated with 

cytoplasmic mRNA (Mayrand et al., 1981; Setyono and Greenberg, 1981).

15. Free-mRNA-protein complexes

Messenger RNA molecules are not only found associated with poly

somes in the cytoplasm of eukaryotic cells, but also in a "free" form 

associated with proteins to form the free mRNPs. It has been proposed 

that there are two populations of free mRNPs: one containing mRNA species

with a polyribosomal translated counterpart - possibly in equilibrium with 

each other - and another containing the mRNA fully repressed in a given 

cell at a given time (Vincent et al., 1981). In cells growing exponentially 

in culture such as Chinese Hamster cells, in which complete sequestering 

of mRNA sequences is unlikeiy^ the same mRNA sequences have been found in 

both polysomal and free mRNPs (Walters et al., 1979). However, the 

balance between polysomal and free mRNA appears to be dependent upon the 

growth conditions. For example, increase of the temperature of incubation
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of L-cells results in polysome disaggregation and increase in the free 

mRNP molecules (Schochetman and Perry, 1972). Also, changes in the gene 

expression during maturation of avian erythrocytes may also be explained 

by the selective gradual sequestration of some mRNA species into an in

active form (Stewart et al ., 1976),

The fact that free mRNPs contain mRNAs which are in an inactive 

form, raised the question whether the protein content of the free mRNPs 

is responsible for this inactivation. Reports from various laboratories 

have offered rather conflicting data. Even though it has been reported 

that free mRNPs from avian erythroblasts (Gander et al., 1973), chick 

embryonic muscle cells (Jain and Sarkar, 1979) and HeLa cells (Liautard 

et al., 1976) are more protein rich than polysomal mRNPs, recent data 

from Setyono and Greenberg (1981) have shown that this is not the case in 

L-cells. Comparison of the proteins associated with globin mRNA in poly

somal and free mRNPs has recently shown that, indeed, one of the two free 

globin mRNPs in duck erythroblasts is more protein rich (Vincent et al., 

1981) .

There are also conflicting results concerning the poly(A)-protein

complex in polysomal or free mRNPs. Some investigators have concluded
proVein

that the 73,000-78,000\A_s also found associated with poly(A) in free 

mRNPs (Liautard et al., 1976; Jain and Sarkar, 1979; Setyono and Greenberg, 

1981) while others claim it is not (Gander et al., 1973; Vincent et al., 

1981) .

The possibility that the association of certain protein (s) with 

specific mRNAs may serve as a recognition sign for repression of these 

mRNAs has been raised by the finding that non-globin mRNAs from duck 

erythroblasts which are long-term repressed are associated with a 19,000 

molecular protein which is not found in free globin mRNPs (Vincent et al., 

1977). It is also of interest that two types of globin free mRNPs have 

been detected in duck erythroblasts: one 168 and another 138. The 138
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globin mRNP contains 5 polypeptides which are not detected in the I6S 

globin mRNP.

16. Protein synthesis in eukaryotes

The final stage in gene expression is the translation of the 

genetic information from mRNA to proteins. In eukaryotic cells translation 

occurs on the ribosomes in the cytoplasm and involves a large number of 

ribosomal proteins, initiation factors and other components.

16.1. Mechanism of translation

The mechanism of protein synthesis involves three different 

processes: initiation, elongation and termination.

16.1.1. Initiation

The initiation process in eukaryotic protein synthesis has been 

recently reviewed by Hunt (1980),

In eukaryotes, initiation of protein synthesis involves many 

individual steps which are presented in Figure 2. The first step is the 

binding of initiator tRNA (Met-tRNA^) to 40S ribosomal subunit. 40S sub

unit is bound to an anti-association factor elF-3 which prevents it from 

binding to 60S ribosomal subunit. The binding of Met-tRNA^ to this 408/ 

elF-3 complex requires initiation factor elF-2 and GTP and results in the 

formation of a ternary complex of Met-RNA^ with GTP and ElF-3 and elF-2 

(see Figure 2) .

The second step involves the binding of mRNA to this ternary 

complex which requires initiation factor elF-4 and ATP. It is still not 

clear by which mechanism the 5' end of mRNA is recognised by the ribosome.

In prokaryotes, binding has been proposed to be facilitated by observed 

complementarity of the 5' end of mRNA with sequences in 168 rRNA. A 

similar situation does not seem to hold for eukaryotes. A  "scanning" 

model has been proposed by Kozak (1978) by which ribosomes bind somewhere 

at the 5' end of the mRNA and work their way to the first AUG codon. In 

support of this model are data showing that tobacco mosaic virus RNA can
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bind a second ribosome on the left side of the first AUG codon (Fillipowicz

and H a e n l 1979). Recognition of the "cap" may be achieved through a

protein. A 24,000 dalton protein has been isolated from ribosomes by
7affinity chromatography on ra GDP Sepharose and shown to be crosslinked to 

mRNA when it is bound in initiation complexes (Sonenberg et al., 1979).

The third stage of initiation involves binding of the large 

ribosomal subunit (60S), The joining reaction probably occurs when the 

Met-tRNA^ anticodon has engaged the initiator AUG codon and requires an 

addition initiation factor called elF-5. The set of reactions taking 

place in this stage are the following: (1) Met-tRNA^ becomes bound in the 

P site of 60S subunit; (2) The GTP is hydrolysed and; (3) all the 

initiation factors leave the ribosome (Peterson et al., 1979).

16.1.2. Elongation

Elongation is defined as the addition of amino acids one at a 

time to a growing polypeptide in a sequence dictated by mRNA. The process 

of polypeptide chain elongation involves two ribosomal sites and occurs in 

three steps.

In step I, a ternary complex of aminoacyl-tRNA, GTP and elongation 

factor eFla (Molecular weight - 53,000) binds to the A site of the ribosome. 

The charging or loading of tRNA with an amino acid precedes the formation 

of the ternary complex and is catalysed by aminoacyl-tRNA synthetases.

Binding of ternary complex to the A site results in hydrolysis of GTP and 

release of the Efla-GDP complex. Another elongation factor, EFlB (molecular 

weight ~ 30,000 is involved in the recycling of EFla (Clark, 1980).

Peptide bond formation constitutes Step II of elongation and is 

catalysed by the enzyme peptidyl transferase. This step is followed by 

the translocation step III which involves movement of peptidyl t-RNA from 

A site to P site and requires elongation factor EF-2 and GTP hydrolysis 

(Clark, 1980).



16.1.3. Termination

Termination involves the release of the completed polypeptide 

chain from the mRNA-ribosome complex. A single eukaryotic release factor, 

RF, has been isolated from rabbit reticulocytes, mammalian liver and 

insect cells (Goldstein et al., 1970; Ilan, 1973), This release factor 

has been shown to recognise all three termination codons UAA, UAG or UGA 

(Konecki et al., 1977). GTP dependent binding of RF to the A site seems 

to invoke esterase activity at the peptidyl transferase centre, resulting 

in the hydrolysis of peptidyl-tRNA. After GTP hydrolysis RF is released, 

the ribosome dissociates into subunits and initiation can occur again 

(Caskey, 1980).

17. Translational control

In prokaryotic cells, with short lived mRNAs, regulation of gene 

expression occurs mainly at the transcriptional level. In eukaryotic 

cells, on the other hand, in which mRNAs have a longer life span, gene 

expression is controlled not only at the transcriptional but also at the 

translational level. Regulation of translation in eukaryotic cells takes , 

place, in part, during the initiation of polypeptide chains and this may 

explain why eukaryotic initiation factors are more numerous and structur

ally more complex than their prokaryotic counterparts (Weissbach and Ochoa, 

19 76) .

Two major mechanisms of translational control are known to 

operate in eukaryotic cells. The first one is called quantitative and 

the second qualitative control.

17.1. Quantitative control of translation

Quantitative control of protein synthesis occurs in circumstances 

when the rate of protein synthesis in eukaryotic cells alters in a way 

that affects the translation of all mRNAs to a similar extent. The only 

cell where there is an understanding of the mechanism involved is the 

reticulocyte, the protein synthesis of which is inhibited by 1) the absence



of haem; 2) double-stranded RNA and 3) oxidised glutathione. It seems 

that in all three cases of inhibition the same component of translation 

is affected.

The absence of haem from rabbit reticulocytes affects drastic

ally protein synthesis (Mathews et al., 1973). It seems that this is 

due to the activation of an inhibitor hemin-controlled inhibitor (EtCl) , 

which has been shown to be a cyclic-AMP independent phosphokinase that 

phosphorylates the 38,000 dalton subunit of elF-2 (Farrell et al., 1977). 

Phosphorylation of the 38,000 dalton subunit of elF-2 affects its binding 

to a stimulating protein (ESP) which enhances the ability of elF-2 to form 

the ternary initiation complex (De Haro et al., 1978a; De Haro and Ochoa, 

1978b). Similarly, low concentrations of double-stranded RNA activate 

an elF-2 kinase and a translational inhibitor (Farrell et al., 1977) while 

addition of oxidised glutathione in reticulocytes also results in phospho

rylation of the 38,000 subunit of elF-2 and subsequently inhibition of 

protein synthesis (Clemens et al., 1975). Translation inhibitors with 

elF-2 protein kinase activity, have also been isolated from rat liver 

(Delaunay et al., 1977), undifferentiated Friend leukemia cells (Pinphanicb- 

akarn et al., 1977), HeLa cells (Weber et al., 1975) and mature erythro

cytes (Freedman et al., 1974).

17.2. Qualitative control

In addition to the co-ordinate regulation of the translation of 

the mRNAs for all proteins in a cell, discrimination between different 

cellular mRNA has been reported in eukaryotic cells. Stimulation or 

inhibition of the translation of mRNAs for specific proteins can also 

be found where the metabolism of a cell is dramatically altered by virus 

infection or by interferon action.

17.2.1. Differential translation of cellular mRNAs

In several systems the amount of protein synthesised is not 

directly related to the amount of mRNA present. For example, in rabbit
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reticulocytes the a and g globin chains are known to be present in the 

ratio of 1:1 while a-globin mRNA is present in excess of g-mRNA (Lodish,

1971), Since identical rates of elongation and termination have been 

reported for a and 3 globins, the a :3 ratio is possibly regulated at the 

initiation step (Lodish and Jacobsen, 1972). Several investigators have 

tried to find out whether the two globin mRNAs differ in their requirement 

for some initiation factor. Addition of initiation factors elF-4A and 

elF-4B in reticulocytes has been reported to relieve the inbalance in 

vitro (Kabat and Chappel, 1977). It has also been proposed that an RNA 

molecule may be involved, since the ratio a :3 globin synthesis is increased 

in nuclease-treated reticulocytes (Stewart et al., 1977), Indeed, the 

presence of such an RNA (translational control RNA) has been reported in 

embryonic muscle mRNAs (Bester et al., 1975; Heywood et al., 1975). A

similar RNA molecule has also been reported to stimulate a-globin syn

thesis (Bogdanovsky et al., 1973).

17.2.2, Viral inhibition of host protein synthesis

Many, but not all, eukaryotic viruses specifically inhibit host 

protein synthesis. A number of different mechanisms may be involved.

For example, in cells infected with vaccinia virus the takeover of protein 

synthesis may be related to the high concentration of viral mRNA relative 

to host mRNA (Cooper and Moss, 1979). During poliovirus infection, 

however, this is achieved by the loss of "cap" binding activity in infected 

cells (Trohsel et al., 1980) which results in preferential translation of 

poliovirus mRNA. Similarly, reovirus induces a gradual modification in 

the cap dependence of the host translational apparatus (Skup et al ., 1981).

In other cases, like that of encephalomyocarditis viral infection, higher 

affinities of viral mRNAs for initiation factors have been suggested to be 

responsible for translational control in infected cells (Golini at al., 1976)

17.2.3. Interferon

The production of interferon by cells infected by viruses probably
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results in translational control of viral mRNAs. Synthesis of inter

feron may also be induced with double-stranded RNA. Addition of double

stranded RNA to interferon-treated cells results in the activation of a 

protein kinase that phosphorylates elP-2 and another protein of unknown 

function (Kimchi et al., 1979). A second consequence is the activation 

of an enzyme that catalyses the synthesis of the trinucleotide pppA2'p5" 

A2'p5*A (Kerr and Brown, 1978) which activates a ribonuclease that degrades 

mRNA (Slattery et al ., 1979) and a phosphodiesterase that degrades the 

CCA end of tRNAs (Schmidt et al (1979)

Even though all these translational inhibitors are not specific 

for viral mRNAs, they may affect the translation of those mRNAs having 

higher affinities for ribosomes (i.e. viral mRNAs) (Metz, 1975).

18. mRNA stability

The level of mRNA in cytoplasm depends upon both the rate of 

production and transport from the nucleus and the rate of degradation.

Messenger RNA stability may be assessed by two types of 

criterion: physical and functional. Early experiments on the stability

of mRNA made use of the transcriptional inhibitor actinomycin D, as well 

as continuous labelling and pulse-chase experiments. In this way it was 

shown that mRNA species of a widely varying stability exist in eukaryotes.

In early experiments, Brandhorst and Humphrey (1972), Perry and 

Kelley (1973) using a continuous labelling approach reported that mRNA in 

sea urchin and L-cells decay as a single component with a half life of 

about 60-90 rain and 10-15 hrs respectively. Singer and Penman (1973), using 

both pulse-chase and actinomycin D techniques, have obtained data concerning 

the poly(A) mRNA turnover in HeLa cells, which they interpreted in terms of 

two components with half-lives of 6-7 and 21-24 hours, respectively. Two 

classes of poly(A) mRNA of different half-lives have also been found in 

Friend cells (Aviv et al., 1976), spleen cells (Bastos et al., 1977), 

mouse kidney (Quellette et al., 1976), resting lymphocytes (Berger and

Cooper, 1975) and insect cells (Spradling et , 1975). In addition.
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Perry et al (1976), in a more accurate study, obtained data from poly (A) ̂  

mRNA turnover in L cells which can be detected in terms of two mRNA classes 

with half lives of 3.5 and 18 hrs.
+Although analysis of poly(A) nRNA stability in eukaryotic cells 

has revealed stable, or relatively stable classes of mRNA with half lives 

ranging from 3-24 hrs, short lived mRNAs have been detected in a variety 

of cells such as Aedes cells (Spradling et al., 1975), kidney cells 

(Quellette et al., 1976), HeLa cells (Puckett et al., 1975) and Drosophila 

cells (Lengyel and Penman, 1977). Extremely short half-life has also been 

reported for interferon mRNA (Cavalieri et al., 1977). These estimates 

of mRNA half-lives apply only to poly(A)^ mRNAs. Two mRNA species with 

very short half-lives (13 min) have been detected early in the development 

of Dictyostelium discoideum (Margolskee and Lodish, 1980b).

Poly (A) tail has been suggested to play a role in stabilising 

the mRNAs from data which showed that deadenylated globin poly (A) ̂  mRNAs 

which were microinjected into Xenopus oocytes were less stable than the 

native ones (Huez et al., 1975) and from the work of Sheiness and Darnell 

(1975) which'correlated the size of poly (A) tail to the mRNA's half-life. 

However, later results of Desphande and colleagues (1978) showed that the decay 

of a2u-globulin mRNA was not related to the length of the poly (A) tail found 

in these molecules. On the other hand, recent data of Palatnik and colleagues 

(1980) have even suggested that in Dictyostelium discoideum mRNA molecules 

with shorter poly(A) tails are more stable than those with longer poly(A) 

tails. Also, both native and deadenylated human fibroblast interferon inRNAs 

when microinjected in Xenopus oocytes exhibit similar half-lives (Pravinkumar 

et al., 1978). In agreement with this come results which have shown that 

non-histone mRNAs in HeLa, Aedes and sea urchin embryos (Milcarek al .,

1974). Spradling et al., 1975; Nemer et al., 1975; have similar decay rates 

with those of poly(A) mRNAs from the same cells.
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The stability of mRNA may be dependent upon the differentiation 

state of a particular cell. For example, the stability of myo&'in mRNA 

was shown to increase throughout differentiation (Buckingham e^ al., 1974). 

However, despite initial reports which had suggested that late in differ

entiation of murine erythroleukemia cells the half-life of globin mRNA 

decreases from 50 hrs to 17 hrs (Lowenhaupt and Lingrel, 1978; Lowenhaupt 

and Lingrel, 1979), it has recently been shown that the half-life of

globin mRNAs in terminally differentiated cells is also 50 hrs (Volloch

and Hausman, 1981). Also in Dictyostelium discoideum the half-lives of

mRNAs during growth and differentiation have been shown to remain the

same (Margolskee and Lodish, 1980a). On the other hand, recent data 

have shown that adenovirus mRNAs from transcription units lA and IB 

are more stable late in infection of HeLa cells than they are early in 

infection (Wilson and Darnell, 1981), Stability of mRNA has also been 

shown to be subject to hormone control. For example, in chicken ovi

duct upon induction with estrogen ovalbumin mRNA has a half-life of 

about 24 hrs. Withdrawal of the hormone is followed by a rapid decline 

in the survival of ovalbumin mRNA, which does not follow first-order 

kinetics, but accelerates in rate with time, reaching a value correspond

ing to a half-life of about 3 hrs (Palmiter and Carey, 1974).



AIMS

From this introduction it is clear that our knowledge of 

factors regulating eukaryotic gene expression is still far from 

complete. A particular area of uncertainty is the role of mRNAs that 

are either polyadenylated or non-polyadenylated. The general aim of 

this work at the outset was to compare the structure, origin and the 

possible role of polyadenylated and non-polyadenylated mRNAs coding 

for a specific cellular protein. However, this led to more detailed 

consideration of the heat-shock response in HeLa cells as well as the 

mRNAs for specific heat-shock proteins.
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MATERIALS

1. ' Biologic;al

Rabbit reticulocyte lysate was a product of New England 

Nuclear, Mari^eim,

2. Radiochemicals

[5,6- h ] uridine 
32

[ y -  p ]  A T P  

3
[5- h ] deoxy cytidine 

35L-[ s]-methionine

■ Chemicals

40 Ci/mmol

5,000 Ci/mmol 

21 Ci/mmol 

V 1,000 Ci/mmol

Radiochemical Centre, 

Amersham

New England Nuclear, 

Manheim.

Most of the reagents used were Analar reagents supplied by 

B.D.H. Chemicals Ltd., Poole, Dorset, except for the following;

4-(2-hydroxyethyl)-1 piperazine-ethanesulphonic acid (Hepes)

2-Amino-2-hydroxymethy1 propane-1,3 diol (Tris)

Dithiothreitol (DTT) 

Chloramphenicol 

Ampleillin 

Tetracycline 

Triton X-100

Trichloroacetic acid 

2-mercapto ethanol 

Str eptomyc in 

Penicillin 

Calf serum

Minimal Essential Medium 

amino acids

Sigma (U.K.), London, England.

Koch-Light Laboratories Ltd., 

Colnbrook, England.

Glaxo Pharmaceuticals, London.

Biocult Laboratories Ltd., 

Paisley, Scotland.



Minimal Essential Medium 

vitamins.

Horse serum

Actinomycin D

poly(U)-Sepharose

poly(A)-Sepharo se

Sephadex GlOO

dATP

dGTP

dCTP

dTTP

oligo (dT)

Formamid e (Fluka)

Selectron filters

Nitrobenzyloxymethyl paper 

Whatman 3MM paper discs

Ampholines 

Endonuclease AluI 

T4 polynucleotide kinase 

Fuji-X-ray film 

Hyamine hydroxide

Biocult Laboratories Ltd,,

Paisley, Scotland,
«1

Calbiochem Ltd., Hereford, England, 

Pharmacia, Uppsala, Sweden.

P-L Biochemicals Inc

Fluoreschem Ltd., Derbyshire,

England.

Scheicher and Schiell GmbH, D-3354, 

W. Germany,
II

H. Reeve-Engel and Co., Ltd.,

London, England.

LKB

Uniscience Ltd., Cambridge, England. 

Boehringer Co., London, Ltd.

Fuji Photo Film Co. Ltd., Tokyo, 

Fisons Scientific Apparatus, 

Loughborough, Leics., England.



METHODS

1. Cell culture

1.1. Routine maintenance of cells

1.1.1. Growth of HeLa cells

HeLa cells (Gey et al., 1962) were maintained as monolayers 

in either rotating 80 oz clear glass Winchester bottles (House and 

Wildy, 1965), or at the bottom of small glass scintillation vials.

The growth medium was the Glasgow modification of Eagle's minimal 

essential medium (see Table 1) supplemented with 10% (v/v) calf serum, 

penicillin (100 units/ml) and streptomycin (100 ygs/ml). Bottles
7were seeded with 2 x 10 cells in 180ml growth medium and grown in 

an atmosphere containing 5% (v/v) CO^ at 37°C. When small 

scintillation vials were used, 0.5 x 10^ cells were grown for 48 hrs 

at the bottom of the glass scintillation vials in 5ml of the already 

described medium.

1.1.2. Growth of Friend murine leukaemia cells

Friend murine leukaemia cells, clone M^, were used in some

experiments. This is a line derived from the 707 clone, as described 

by Gilmour et , (1974) . The culture medium used was made up from

the Glasgow modification of Eagle's Minimal Essential medium (Table 1) 

supplemented with 2X glutamine (584 mg/1), non-essential amino acids 

(Table 2), 15% (v/v) horse serum, penicillin (100 units/ml) and 

streptomycin (100 ygs/ml). Growth was initiated by inoculating 

cells, as a suspension, into stirrer culture vessels containing 1-1.51 

of medium. The inoculum was chosen to give an initial cell density
5of 0.5 - 0.6 X 10 cells per ml. Cultures were maintained at a

temperature of 37°C and in an atmosphere of 5% (v/v) CO^ fQj- 3



TABLE 1

Constituents of Eagle's Minimal Essential Medium (MEM), as used in the 

Department of Biochemistry, University of Glasgow

Amino acids

L-arginine 

L-cystine 

L-glutamine 

L-histidine Hcl 

L-isoleucine 

1-leucine 

L-lysine 

L-methionine 

L-phenylalanine 

L-threonine 

L-tyrosine 

L-valine

Inorganic salts and other components

Cacl^ GHgO

mg/litre 

12 6.4

24.0 

292.0

41.9

52.5

52.5

73.1

14.9 

33.0

47.6

36.2

46.9

Kcl

MgSO^. 7H2O 
N a d

NaH^PO^ 2H2O 
D-glucose

NaHCOg

Phenol red

Vitamins mg/litre

D-calcium pantothenate 2.0

Choline chloride 2.0

Folic acid 2.0

i-inositol 4,0

nicotinamide 2.0

pyridoxal Hcl 2.0

riboflavin 0.2

thiamin Hcl 2.0

mg/litre

393.0 

400 .0 

200 .0

6,800 .0

140.0 

4,500 .0

2,240.0

15.3



TABLE 2

Non-Essential Antino Acid Mixture for Minimum Essential Medium Eagle

Amino acids mg/litre

L-alanine 8.90

L-asparagine H^O 15.00

L-aspartic acid 13.30

Glycine 7.50

L-glutamic acid 14.70

L-proline 11.50

L-serine 10.50



days before harvesting, at which time the cultures were found to be in 

mid-log phase having a density of 0.6 - 0.8 x 10  ̂ cells per ml 

(Birnie et al., 1974).

1.2. Subculture of HeLa cells

Cells were subcultured by removal from the glass with a 

solution of trypsin and ethylenediaminetetracetic acid (EDTA). The 

cell monolayer was washed with 10ml of a solution made up of four 

volumes "Versene" solution (0.6mM EDTA, 0.17M N a d ,  3.4raM Kcl, 10mM 

Na^HPO^, 2.4mM KH^PO^) and one volume trypsin (0.25% (w/v) 

trypsin, lO.SmM N a d ,  l.OmM sodium citrate, 0 .002% (w/v) phenol red, 

pH 7.8) at 37^C. The monolayer was then treated with a further 

10ml of trypsin/versene solution until opaque, at which point the 

solution was poured off, leaving approximately 1ml of solution on the 

monolayer. As soon as the cell layer began to peel off the glass 

surface, 10ml of growth medium was added, and the cells were shaken 

into suspension. The cell density of the suspension was measured and 

used to subculture further bottles,

1.3. Contamination checks

All sterile media and passaged cells were checked regularly 

for bacterial, fungal or mycoplasma infection as follows:

(a) Bacterial contamination.

Aliquots were grown on blood agar plates and brain-heart 

infusion broth at 37°C. Results were considered negative if no 

growth was seen in seven days.

(b) Fungal contamination.

Aliquots were added to Sabouraud's medium and grown at 

32^C. Again no growth after seven days was assumed to indicate the 

absence of fungal contamination.



(c) Mycoplasma (PPLO pleuropneumonia-like organism) infection.

PPLO agar plates were seeded with passaged cells by piercing 

the agar surface with a charged Pasteur pipette. The plates were 

grown in an atmosphere of 5% (v/v) CO^ in at 37°C for seven days, 

and examined microscopically for the characteristic "fried egg" 

appearance of PPLO colonies.

1.4. Heat-Shock treatment of HeLa cells

Heat-shock treatment was carried out by immersion of the 80 oz 

bottles or small scintillation vials in a 45°C water bath for 5 mins.

1.5. Radioactive labelling procedures
351.5.1. Labelling of HeLa cell proteins with.' [ S] - methionine

HeLa cells {grown at the bottom of small scintillation vials)

were washed with 5 ml minimal essential medium minus methionine

containing 10% (v/v) dialysed calf serum, Dialysed calf serum was

prepared by putting calf serum into sterile dialysis tubing and

dialysing at 4°C against sterile Balanced Salts Solution-CBSS)

[0.116M N a d ,  5.4mM Kcl, ImM MgSO^, ImM NaH^PO^, l.BmM Cacl^f

0.002% phenol red] whose pH was adjusted to 7.0 with 5.6% (w/v)

NaHCO^, The medium was then removed and the cells were labelled 
3 5with loyci L-[ s] - methionine ['̂ 1̂,000 Ci/mmol] in 1ml of the above 

medium,
31.5.2. Labelling of HeLa cell RNA with•[ h J^ Uridine

The 180 ml of culture medium was removed from the 80 oz 

bottles and replaced by 50 ml of fresh, prewarmed medium containing
3

50iiCi of [ H] - Uridine ('\'40Ci/mmol) .

2. Harvesting of cells

2.1. Harvesting of HeLa cells

The culture or radioactive medium was decanted from the 80 oz 

bottles and the cell monolayer was washed twice with approximately.



50ml of ice cold BSS (see above). The cells were then scraped into 

10ml of cold BSS with a rubber wiper and collected by centrifugation 

at 800g for 10 mins at 4^C and washed twice by resuspending 10 

pellet volumes of BSS followed by centrifugation as described above.

In cases when the cells would be used for the preparation of polysomes 

BSS contained cycloheximide at a concentration of 10)i g/ml.

2.2. Harvesting of Friend cells

Friend cells were centrifuged at 800g for 5 min at 4^C

directly from the medium and washed twice with BSS.

3. Cell fractionation

3.1.1. Nuclei and cytoplasm from HeLa cells

HeLa cells were disrupted as described by Penman (1969).

The washed cell pellet was resuspended in hypotonic RSB buffer (lOmM 

N a d ,  1.5mM Mgcl^, lOmM Tris-Hcl pH 7.4) at a density of 5 x 10^ 

cells/ml. After leaving for 10 mins at 4°C cells were broken in a 

stainless steel Bounce homogeniser (clearance 0 .992" diameter). 10

strokes were usually sufficient to obtain almost complete cell 

breakage, as monitored by phase contrast microscopy. The nuclei were 

removed as a pellet by centrifugation at 800g for 10 mins at 4°C.

The supernatant remaining after the 800g spin will henceforth be 

referred to as cytoplasm in this study. All operations were carried 

out at 0 .4°C.

3.1.2. Nuclei and cytoplasm from Friend cells

This step was carried out as described by Katinakis and 

Burdon (1981).

All operations were carried out at 0-4°C. The washed cell 

pellet was resuspended in lysing buffer (0.14M N a d ,  1.5mM MgSO^, 

lOmM Tris-Hcl, pH 7.4) and NP-40 (BDH) was added to a final 

concentration of 0.5% (v/v) (Borun et al., 1967). The cells were
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allowed to lyse for about 3-6 mins (lysis being monitored by phase 

contrast microscopy), then the lysed cells were centrifuged at 800g 

for 5 mins in order to remove nuclei.

3.2.1. Polysomes, sub-polysomes and cytosol from HeLa cells 

This step was carried out as described by Penman et al.,

(1969).

The cytoplasm (see Section 3.1.1.) was made up to 0.5% with 

respect to deoxycholate, 0.5% with respect to Brij-58 and layered onto 

15-30% (w/v) sucrose gradients in RSB. Gradients were centrifuged at

27,000 r.p.m. for 110 mins at 4°C in the Beckman SW27 rotor and then 

harvested by pumping through a Gilford 2,000 recording 

spectrophotometer set at 260nm. Polysomal and post-polysomal 

fractions (as indicated in Figure 30A), were separated, made up to 

0.2M N a d  and alcohol precipitated overnight at -20°C by the 

addition of 2 volumes of absolute alcohol.

3.2.2. Polysomes from Friend cells

Polysomes were prepared from Friend cells as described by

Katinakis and Burdon (1981). Polysomes were pelleted from the

cytoplasm (see Section 3.1.2.) by centrifugation through 2M sucrose in

lysing buffer (see Section 3.1.2.) at 230,000 x g for 3 hrs atav
4°C in the 8 x 25 Ti MSE fixed-angle rotor.

3 53.3. Preparation of [ S]-labelled proteins from HeLa cells for

subsequent SDS gel electrophoretic analysis 

After the removal of the radioactive medium from the small 

glass scintillation vials and the washing of the cell monolayer with 

BSS, the cells were lysed by addition of 0.250 ml of SDS sample buffer 

(2% SDS, 10% glycerol, 3% 2-mercaptoethanol, 50mM Tris/Hcl pH 6 .8,

0.ImM phenylmethylsulphonyl fluoride). The lysate was sonicated 

using a Dawes soniprobe at 7A for 10 seconds then heated to lOO^C 

for 2-3 mins prior to the addition of bromophenol blue (0.01%) as a



marker for subsequent SDS/polyacrylamide gel electrophoresis. The 

cell lysates were stored at -20°C.

4 RNA isolation

4.1. Precautions against ribonuclease contamination

Stringent precautions were taken to prevent ribonuclease

contamination of samples containing RNA,

All glassware were sterilised by heating at 180°C 

overnight. Solutions were autoclaved at 15 p.s.i. for 30 mins, 

except for solutions containing sucrose which were autoclaved at 5 

p.s.i. for 50 mins to avoid caramélisation. Buffers were stored in 

small aliquots at 4°C and used once only. Non-autoclavable 

solutions were prepared by dissolving the substance in sterile water 

or buffer solution.

Non-sterilisable equipment was washed with hot 2% (w/v) SDS 

containing, where applicable, 0 .1% (v/v) diethylpyrocarbonate 

(Mendelson and Young, 1978). Unless otherwise stated, all procedures 

were carried out at 4°C, and gloves were worn throughout to prevent 

contamination of samples with nucleases from human skin (Holley et 

al., 1961).

4.2. Preparation of cytoplasmic RNA

The cytoplasm (see Section 3.1.) was made up to 0.5% (w/v) 

with respect to SDS and lOmM with respect to EDTA and RNA was isolated 

by exhaustive extraction with equal volumes of phenol-chloroform- 

isoamyl alcohol, followed by chloroform-isoamyl alcohol alone (Penman 

(1966). RNA was precipitated from the acqeuous phase by the addition 

of 0.1 volumes 2M N a d  plus 2 volumes absolute alcohol. After 20 hrs 

at -20°C RNAs were collected by centrifugation at 12,000g for 20 

mins at -10°C.



4.3. Preparation of polysomal, post-polysomal and cytosol RNA

(a) polysomal RNA

The polysomal fraction (see Section 3.2.) was collected by 

centrifugation at 12,000g for 20 mins at -10°C and the pellet was 

dissolved in NETS buffer (0.1m N a d ,  lOmM EDTA, 10mM Tris-Hcl, 0.5% 

(w/v) SDS, pH 7.4). The RNA was extracted as described for 

cytoplasmic RNA (see Section 4.2.).

(b) Post-polysomal and cytosol RNA

Ethanol precipitates of post-polysome and cytosol were 

resuspended in NETS buffer and RNAs were extracted as described for 

cytoplasmic RNA (see Section 4.2.).

5. RNA fractionation

5.1. Affinity chromatography

5.1.1. Preparation of poly-(U) Sepharose 4B

0.3g of poly-(U) Sepharose (Pharmacia) was swollen in 3ml of 

IM N a d  (pH 7.5) at 4°C and then poured into a small column (2.0 x 

0.6 cm) made by blocking a 5ml pipette with a small glass bead. All 

glassware was siliconised (Repelcote, Hopkins and williams), to 

prevent binding of RNA to the glass. Before the fractionation, the 

columns were washed with 10 column volumes of [O.lM Nad ,  lOmM EDTA,

0.2% SDS, lOmM Tris pH 7.4] followed by 10 volumes of 90% (v/v)

formamide in [0.5% SDS, lOmM Tris, lOmM EDTA pH 7.4] and equilibrated 

by washing with 10 column volumes of binding buffer [0.2% N-lauroyl 

sarcosine, 0.4M N a d ,  lOmM Tris, lOmM EDTA pH 7.4].

From this step and further on SDS is substituted by N-lauroyl 

sarcosine because the latter is soluble at high salt concentrations.

5.1.2. Preparation of poly-A()-Sepharose 4B

Poly-(A)-Sepharose was obtained from Pharmacia (Great Britain 

Ltd.) and 1ml columns were prepared according to the manufacturer's



instructions by resuspending 0.3 gr of dry gel in 3 ml of IM N a d  (pH 

7.5) and packaging into small columns made by blocking a 5 ml pipette 

with a small glass bead. Washing and equilibration of the columns 

was carried out as already described for poly-(U)-Sepharose columns.

5.1.3. Separation of poly (A) ~*'and poly (A)" RNA

The method described by Katinakis and Burdon (1981) for the

separation of poly(A)^ and poly (A)"" RNA was used.

A pellet of ethanol precipitated RNA (not exceeding 1,500 

Ugs) was resuspended in a small volume (0.2 or 0.5 ml) of binding

buffer (see Section 5.1.1.) heated at 7 0 for 5 mins, cooled

rapidly on ice and immediately applied to the top of a poly-(U) 

Sepharose column. The sample was eluted with binding buffer at a 

slow flow rate, at room temperature (unless otherwise stated), such 

that the sample took approximately 10 mins to pass through the 

column. The small eluted fraction was reapplied to the column and 

eluted at the same rate. Then, the unbound material (poly(A)” RNA) 

was eluted with 10 column volumes of binding buffer, whilst the bound 

material (poly(A)^ RNA) was eluted with 10 column volumes of 90%

(v/v) formamide in (0,5% N-lauroyl sarcosine, lOmM EDTA, lOmM Tris, pH 

7.4). Poly(A)^ and poly(A)” RNA fractions were pooled and 

precipitated overnight with 2 volumes of ethanol at -20°C.

For better separation of poly (A) RNA from poly (A)" RNA, 

poly(A) RNA fractionated after one cycle of affinity chromatography 

was, in some cases, subjected to another two cycles of affinity 

chromatography as follows: The unbound material eluted from the first

poly-(U) Sepharose column was subjected to a second cycle of affinity 

chromatography on a second poly-(U) Sepharose column. The unbound 

material eluted from the second poly-(U) Sepharose column was then 

subjected to another cycle of affinity chromatography on a third 

poly(U) Sepharose column.



5.1.4. isolation of poly(A)~RNA species with high affinity for 

poly-(A) Sepharose

Poly(A) RNA with high affinity for poly-(A) Sepharose was 

isolated as described by Katinakis and Burdon (1981).

Poly(A)" RNA dissolved into binding buffer (see Section

5.1.1.) was applied to a poly-(A) Sepharose column. The small eluted 

fraction was re-applied to the column. Finally the unbound material 

was eluted with 10 volumes of binding buffer, while the bound material 

was eluted with 10 column volumes of 90% (v/v) formamide in (0.5% 

N-lauroyl sarcosine, lOmM EDTA, lOmM Tris pH 7.4). Bound 

(poly (A) u’*') and unbound poly (A) "u” ) material was pooled and 

precipitated overnight with 2 volumes of ethanol at -20°C.

5.2. Sucrose gradient analysis of RNA

Sucrose density gradient centrifugation of cytoplasmic RNA 

was carried out according to the procedure of Kelley e^ , (1980). 

Approximately 0.7 mg of cytoplasmic poly(A) RNA or 0.3 mg of 

poly(A)^ RNA from heat-shocked HeLa cells were dissolved in ImM 

EDTA, lOmM Hepes pH 7.5, heated at 65°C for 10 mins, cooled rapidly 

on ice and immediately layered on a 5-20% (w/v) linear sucrose 

gradient in the same buffer. The gradients were centrifuged in a 

Beckman SW40 rotor at 35,000 rpm for 16 hrs at 4°C. About 27 

fractions were collected and the RNA from each fraction was alcohol 

precipitated, collected by centrifugation (see Section 4.2.) dissolved 

in sterile distilled water and its optical density was measured in 

U.V. at 260nm. Before any further analysis the RNA from each 

fraction was again ethanol precipitated.
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6 . In vitro translation of RNA

Poly(A)^ and poly(A)~ RNA was translated vitro in an 

mRNA dependent rabbit reticulocyte cell-free protein synthesising 

system (obtained from New England Nuclear MaSheim). The rabbit 

reticulocyte lysate had been prepared by the manufacturers as described 

by Pelham and Jackson (1976). The assay mix, of final volume 25yl, 

was prepared by mixing in order: 5hl of L-[^^S]-methionine ( 1,000

Ci/mmol) , Sl̂ l̂ of translational cocktail (which according to the 

manufacturers contained spermidine, creatine phosphate, dithiothreitol 

and guanosine triphosphate in Hepes buffer), 2yl of IM potassium 

acetate, 0.5yl of 32.5mM magnesium acetate, lOyl rabbit reticulocyte 

lysate and 2yl RNA sample in distilled water.

According to the manufacturers all components (except of the 

RNA sample) had been optimised with respect to all of the reagents for 

maximum incorporation into protein. Assays were incubated at 37°C 

for 60 mins.

7. Analysis of the cell-free products of translation

7.1. Preparation of translation mixtures for one-dimensional gel

electrophoresis

Appropriate amounts of translation mixtures containing the 

labelled products of i^ vitro translation were mixed with equal volume 

of [2% (w/v) SDS, 3% (v/v) 2-mercaptoethanol, 50mM Tris-Hcl pH 6.8] 

and heated at 100°C for 2 mins prior to the addition of bromophenol 

blue (0 .01%) .

7.2. Preparation of translation mixtures for two-dimensional gel

electrophoresis

The assay mixtures containing the labelled products of 

translation were mixed with equal volume of lysis buffer, containing 

9.5M Urea, 2% (w/v) NP-40, 1% ampholines (pH 5-7), 1% ampholines (pH 

3.5-10), (LKB-Ltd.), 5% (v/v) 2-mercaptoethanol.
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7.3. SDS-polyacrylamide gel electrophoresis

120 mm of 8.75% slab gels (29.2 : 0.8, acrylamide: 

bisacrylamide) overlaid with 10-20 mm of 3% stacking gel were prepared 

by the method of Le Stourgeon and Beyer (1977). After application of 

the sample a current of 20mA was applied until the bromophenol blue 

dye front passed into the resolving gel, then the current was 

increased to 40mA. The run was terminated when the bromophenol blue 

tracker dye had migrated to a position close to the end of the gel. 

Molecular weight (20,000-200,000) calibration proteins (Combithek, 

Boehringer, Mannheim) comprising Escherichia coli RNA polymerase 

(a 39,000, b 155,000, b ' 165,000), bovine serum albumin (68,000, and 

soya bean trypsin inhibitor (21,500)) were also run. After the end 

of the electrophoresis the gels were fixed in 7.5% acetic acid, 5% 

methanol and prepared for fluorography. In some cases the gels were 

stained with 0.25% (w/v) Coomassie brilliant blue in 9% acetic acid,

45% methanol.

7.4. Two-dimensional gel electrophoresis

Two-dimensional gel electrophoresis was carried out according 

to the procedure of O'Farrell (1975) with the modification that the 

ampholytes used for the first dimension isoelectric focusing consisted 

of 1% ampholytes (LKB) pH 5-7 and 1% ampholytes pH 3.5-10 respectively.

Briefly, the first dimension involved electrofocusing in a 

160mm X 3mm tube gel at 7,200 volts x hours at room temperature.

Then the isoelectric focusing gel was extruded and stored in 5ml of 

SDS sample buffer [10% (w/v) glycerol, 5% (v/v) 2-mercaptoethanol,

2.3% (w/v) SDS, 0.0625M Tris-Hcl pH 6.8] at -70°C. Before the 

second dimension polyacrylamide electrophoresis the isoelectric 

focusing gel was thawed and fused with 1% agarose in SDS sample buffer 

at the top of a polyacrylamide slab gel. The pH gradient of the



FIGURE 3

pH gradient in isoelectric focusing gels
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After isoelectrophocusing at 7,200 volts x hours, the 

isoelectric focusing gel was extruded and cut in 5mm sections which were 

placed in vials containing ,2ml of degassed H^O. These vials were 

capped and shaken for 5 to 10 mins before the pH reading was taken.



isoelectric focusing gels was determined by cutting the gel in 5mm 

sections which were placed in vials containing 2ml of degassed 

H^O. Each vial was capped and shaken before the pH reading was 

taken, using a microelectrode. Electrophoresis in the second 

dimension was performed as described in Section 7.3. The 

equilibration step proceeding the second dimension electrophoresis 

[O'Farrell (1975)] was omitted since a substantial number of proteins 

was found to diffuse off the gel during this step.

In cases when the second dimension was run immediately after the 

electrofocusing, the tube gel was allowed to stand for 1 min in 5ml of 

SDS sample buffer and then loaded on the slab gel as already described,

8. Fluorography

Gels were processed for fluorography according to the method 

of Bonner and Laskey (1974). The gels were immersed in two 

successive baths of diraethylsulphoxide (DMSO) (Sigma), for a total 

period of 1 hr and then impregnated with 2 ,5-diphenyloxazole (PPO) by 

immersion in 4 volumes of 20% (w/v) PPO in DMSO for 3 hrs. The gels 

were then soaked in water for 1 hr and dried under vacuum onto Whatman 

3MM chromatography paper.

A fluorograph was obtained by placing a sheet of Fuji-RX 

X-ray film in contact with the gel, held in position between two glass 

plates. This was kept at -70°C for the necessary time of

exposure. The films were developed for 6 mins using DX-80

developer. After a quick wash in water the developed film was fixed

using FX-40 X-ray liquid fixer for twice the length of time required

to clear the film.

The two dimensional gels were loaded with -̂ -̂ 8-methionine 
labelled samples which contained a total of 100,000 cpm. 
The flüorographs of these gels were usually exposed for 

' two weeks.
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9. Molecular cloning of complementary DNA (cDNA) reverse

transcribed from p o l y ( A ) R N A  isolated from heat-shocked 

HeLa cells

It was carried out in collaboration with Dr. Cato as 

described in a publication of Cato and colleagues (1981 ). The 

various steps (see Figure 4) are described briefly below:

1) Synthesis of complementary DNA (cDNA) and addition of

poly(dC) tail

cDNA was synthesised as described by Ohno et , (1980) in

1ml of reaction mixture containing 50yg of poly(A)^ mRNA from

heat-shocked HeLa cells, ImM each of dATP, dGTP, dTTP and [^H]-dCTP 

(21 Ci/mmol), 50mM Tris-Hcl (pH 7.9 at 42°C), lOmM Mgcl^, lOmM 

dithiothreitol, 5yg oligo (dT) and 225 units of AMV reverse 

transcriptase (supplied by Dr. J Beard), one unit was defined as the 

incorporation of one nmol of dKTP into acid insoluble product in 10 

mins at 37^C). After incubation for 1 hr at 42°C the reaction 

was stopped by the addition of 1/20 volume of 0.5M EDTA (pH 7.4) at 

0*^C. The reaction mixture was extracted with phenol and passed 

through a Sephadex G-lOO column. The fractions containing cDNA were 

collected and treated with O.lM NaOH for 20 mins at 60*^0. cDNA was 

then ethanol precipitated.

Double stranded cDNA was synthesised in 0.2ml reaction 

containing 0.6yg of cDNA, 67mM potassium phosphate buffer (pH 7.4), 

6.7mM Mgclg, 5mM dithiothreitol, ImM of each dATP, dCTP, dGTP, dTTP 

and 90 units/ml of E.coli DNA polymerase I (Klenow fragment), Before 

the addition of the enzyme, the reaction mixture containing cDNA was 

heated at 70°C for 5 mins, then cooled slowly at 20^C to allow the

formation of hairpin loop structure at the 3' end of the cDNA.

Incubation was at 20^C for 2 hrs, then more enzyme was added and



FIGURE 4

procedure used for the insertion of double-stranded c d n a derived from 

heat-shocked HeLa cell poly(A)^ RNA into the Pst 1 site of the plasmid 

PBR322

Ap^, ampicillin resistance gene

Tc^, tetracycline resistance gene

ECO Rl, Pst 1, restriction enzyme cleavage sites

ds cDNA, double-stranded cDNA
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incubation was carried on for another 2 hrs. The reaction was 

stopped as described above and chromatographed on Sephadex G-lOO 

column. The fractions containing double stranded cDNA were pooled. 

Double stranded cDNA was extended at the 3' end with the addition of 

homopolymer dC tails as described by Roychoudhury et ^  (1976) by 

incubating double stranded DNA with dCTP and the enzyme terminal 

transferase.

2) Purification of plasmid DNA and addition of poly(dG) tails

Plasmid DNA was prepared according to the method of Clarke 

and Carbon (1976).

500ml culture of bacteria were amplified with chloramphenicol 

(200yg/ml) for 16-20 hrs and the bacteria were collected by 

centrifugation. The pellet was resuspended in 200ml of cold TE 

buffer (lOmM Tris, ImM EDTA pH 8) and the bacteria were again 

collected by centrifugation. The pellet was then suspended in 12.5ml 

cold 12.5% sucrose in 50mM Tris (pH 8). At this point 2.5ml of fresh 

lysosome solution (10 mg/ml in 250mM Tris pH 8) was added and the 

whole was left on ice for 5 mins. Then 20ml of ice-cold detergent 

solution (1ml 10% Triton X-100, 12.5ml 0.5M EDTA pR 8.5, 5ml IM Tris 

pH 8, 81.5ml was added to promote lysis. The whole was

swirled gently on ice for 10 mins until the solution was somewhat 

cleared and highly viscous and was then centrifuged at 25,000 rpm for 

30 mins at 4°C in an SW27 rotor. The supernatant was removed and 

0 ,9g GsGl plus 0 .1ml of EtBr (10 mg/ml) were added per ml of cleared 

lysis supernatant, which was then centrifuged at 45,000 rpm for 72 hrs 

at 4°C in a 60 Ti rotor. The DNA band was visualised under L.W.

U.V. illumination in a darkened room and the lower band was collected 

in a syringe by side puncture using a 16-18 gauge needle. Ethidium 

bromide was removed from DNA by three extractions with isoamyl



alcohol. GsGl. was removed by dialysis and the DNA was ethanol

precipitated. Plasmid DNA was digested with Pst 1 and tailed with

polu(dG) as described by Cozens et al., (1980).

3) Annealing of poly(dC) extended cDNA with poly(dG) extended

plasmid DNA

This step was carried out according to the method of Wensink 

et ^ . , (1974) by annealing poly(dG) terminated plasmid DNA to

poly(dC) terminated plasmid DNA in O.lM NaGl'in TE buffer (see above)

for 10 mins at 65°C and then for 2 hrs at 45^0.

4) Transformatin of Escherichia coli HBlOl cells

Transformation of E. coli HBlOl cells was carried out

according to the method of Dagert and Ehrlich (1979).

A single bacterial colony from an overnight L-agar plate was 

inoculated into 50ml of L-broth and incubated, with shaking, at 37°C 

until A650 reached 0.2 The culture was chilled for 10 mins one ice, 

the cells harvested and resuspended in 20ml of cold O.lMGaGl.^ and 
incubated at 0°C for 20 mins. They were again harvested and 

resuspended in O.lM Cacl^.
Transformation was carried out by adding 0.01ml of 

recombinant plasmid DNA (4ng) to 0.1ml of cell suspension. The 

mixture was incubated on ice for 10 mins and then at 37°C for 5 

mins. It was then diluted with 2ml of L-broth and incubated for 1 hr 

at 37°C with shaking. lOyl of the culture was spread on L-agar 

plate supplemented with tetracycline. Transformants were selected on 

ampicillin and tetracycline plates.

5) In situ hybridisation of transformants.

319 tetracycline resistant, ampicillin sensitive (tet^ 

amp^) were prepared for hybridisation as described by Grunstein and 

Hogness (1975) with the modifications of Humphries et al., (1978).
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Millipore nitrocellulose sheet was cut into circles {85mm 

diameter), autoclaved and placed on agar in 90mm petri-dishes. 

Bacterial colonies containing cDNA were transferred to the filter 

surface by streaking with sterile toothpicks. The plates were 

incubated overnight at 37°C. The filters bearing bacterial 

colonies produced by incubation overnight were placed upon Whatman 3MM 

paper and wetted with 0.5M NaOH for 10 mins. They were then treated 

with IM Tris-Hcl pH 7.4 and finally with 1.5M N a d ,  0.5M Tris-Hcl (pH

7.4) followed by incubation with proteinase K in (0.015M sodium 

citrate, 0.15M sodium chloride pH7.0). The filters were then rinsed 

with 0.03M sodium citrate, 0.3M sodium chloride pH 7.0, dried and 

baked at 80°C for 2 hrs. The baked filters were pretreated at 

68^C for 5-20 hrs in 0.045M sodium citrate, 0.45M sodium chloride 

(pH 7.0) .

Cytoplasmic poly(A)^ RNAs from control and heat-shocked 

HeLa cells labelled with ATP (5,000 Ci/mmol) at a specific

activity 10^ cpm/yg was hybridised with replica filters in a sealed 

polythene sac containing 10ml of 0.045M sodium citrate, 0.45M sodium 

chloride (pH 7.0) plus 0.5% SDS for 16-24 hrs at 68°C. The filters 

were then removed, washed with 0.03M sodium citrate, 0.3M sodium 

chloride pH 7.0 plus 0.5% SDS, dried in the air and exposed at -70^b 

to X-ray film (Fuji Photo Film Co. Ltd., Tokyo). By comparing the 

amount of hybridisation of p o l y ( A ) R N A  from heat-shocked cells to 

that of poly(A)* RNA from normal HeLa cells, it was possible to 

identify clones containing cDNA sequences complementary to specific 

RNAs whose synthesis is increased after heat-shock.



10. Identification of the clones

10.1. Preparation of diazobenzyloxymethy1-paper

Synthesis of diazobenzyloxymethy1 paper was carried out 

according to the method of Alwine et al., (1977) starting from 

nitrobenzyloxymethyl paper (Schleicher and Schuell, Anderman Co.,

Ltd., Surrey). The nitrobengyloxymetyl paper (NBM-paper), was 

reduced to aminobenzyloxymethyl paper (ABM-paper) by treating it with
o2.5ml of 20% (w/v) dithionite per cm of NBM paper for 30 mins at 

60^C with shaking. The ABM paper was washed for 20 mins with 

several washes of water, followed by a 20 mins wash with 30% (v/v) 

acetic acid. Then it was washed again with water for an extra 20 

mins. Just before the reaction with single stranded nucleic acids, 

ABM paper was converted to diazobenzyloxymethyl form (DBM) by 

treatment with a solution containing 1.3ml of freshly prepared 

solution of NaNo^ (lOmg/ml) per 50ml of 1.2M Hcl for 30 mins at 

4°C. The volume of solution used was about 1.7ml per cm^ of 

ABM-paper. At the beginning and the end of this period the solution 

was checked for free HTSIÔ  with starch-iodide paper. Then the paper

was washed five times for 5 mins each with ice-cold sterile water
2(lOml/cm followed by two washes (10 mins each) with 2.5ml (per 

2cm of DBM paper) of ice-cold 25mM phosphate buffer (pe 6.5) . Upon 

washing the paper turned bright yellow. It was kept cold until 

transfer began, no more than 15 mins later.

10.2. Plasmid DNA binding to diazobenzyloxymethyl-paper (DBM-paper) 

The binding of recombinant plasmid DNA to the DBM-paper was

carried out as described by Smith et , (1979) .

lOyg of recombinant plasmid DNA were digested with 

endonuclease Alul (uniscience Ltd., Cambridge), ethanol precipitated 

and redissolved in 25mM potassium phosphate buffer (pH 6.2). Then,
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following the addition of 4 volumes of dimethylsulphoxide, the DNA was 

heated for 10 mins at 80°C and cooled on ice. Discs of DBM-paper 

(1cm diameter) were incubated with 10 ygs of denatured plasmid DNA in 

small glass vials at 4*̂ C in the dark, overnight. Then the filters 

were washed twice with sterile distilled water and treated with NaCB 

(0.4M) for 30 mins at 37*̂ C followed by three washes in sterile 

distilled water and storage in 10mM Tris-Hcl (pH 8.0), 50% (v/v) 

formamide at 4*^C.

10.3. Hybridisation and elution of unlabelled RNA from DNA filters

The whole procedure was carried out as described by Smith et 

al., (1979) with the modifications of Cato ^  , (1981 ) .

The DBM filters to which recombinant DNA was covalently bound 

were hybridised in 0.5ml of buffer (0.75M N a d ,  O.lM Tris Hcl (pH

7.5), ImM EDTA, 0.5% SDS, 50% (v/v) formamide) containing 125yg of 

total unfractionated cytoplasmic RNA from heat-?'shocked cells in 

24-well microtitre plates (Linbro, Flow Laboratories, Connecticut 

U.S.A.). Hybridisation was carried out with gentle shaking at 40°C 

for 16 hrs. Thereafter the filters were washed twice in 5 ml of 

(0.015M sodium citrate, 0.15M sodium chloried (pH 7.0), 0.5% SDS, 2mM 

EDTA) at room temperature for a total of 10 mins. This was followed 

by three washes in 5 ml of the same buffer at 60°C for 15 mins.

Three more washes in 5ml of 0.0015M sodium citrate, 0.015M sodium 

chloride (pO 7.0), 0.1% SDS, 2mM EDTA at 60^C for 15 mins were 

carried out. The filters were then rinsed twice for 2 mins in lOmM 

Tris-Hcl, pH 7.5, 2mM EDTA. The mRNAs that hybridised to the filters 

were finally eluted twice in 150U1 of lOmM Tris Hcl (pH 7.5), 2mM 

EDTA, 90% (v/v) formamide at 43° for a total of 30 mins with 

agitation by placing the 24-well micro titre plates on a rotary 

incubator. The eluted RNA was made 0.3M sodium acetate (pH 5.3), and



2yg yeast tRNA was added and precipitated overnight in 5 volumes 

ethanol at -70°C. The RNA was collected by centrifugation and 

reprecipitated in 70% %v/vj ethanol, 0.3M sodium acetate overnight at 

-70°C. The RNA was again collected by centrifugation and dried 

under vacuum.

11. End labelling of RNA

End labelling of RNA was carried out according to the method 

of Maziels (197 6).

About lUg of RNA was subjected to mild alkaline hydrolysis by 

heating it at 90°C for 5 or 10 mins in 50mM Tris Hcl (pH 9.5). 

Hydrolysis was carried out in a sealed cappilary in a total volume of 

4yl. Kinase labelling was in liyi reactions containing 50mM Tris Hcl 

(pH 9.5), lOmM Mgcl^, 5mM dithiothreitol, 5% glycerol, 50 Ci 

[Y_32p]_^Tp (5,000 Ci/mmol), lyg of RNA and 3 yi of T4 polynucleotide 

kinase (Boehringer Co., London Ltd.). The reaction continued for 

45 mins at 37'^C and generated RNA with a specific activity of about 

10 cpm/yg. The llyl assay buffer was mixed with 2 yl of 2M 

ammonium acetate, 5 ygs tRNA and 90yl ethanol, chilled in ethanol/dry 

ice for 5 mins and spun in Microfuge. The pellet was dissolved in 

25yl of 0.3M sodium acetate (pH 5.0) and 75W1 of ethanol was added.

The whole was mixed, chilled and centrifuged. The pellet was washed 

with 1ml ethanol, spun again and dried under vacuum.

12. Spot hybridisation

Spot hybridisation was carried out as described by Cozens ejb 

^ . , (1980).

Recombinant plasmid DNA from different clones was covalently 

bound at different spots of an 150mm x 20mm DBM-paper strip following 

the procedure described in Section 10.1. The filter was hybridised 

overnight with [^^P]-labelled RNA at 42°C in 10ml of 50% (v/v)



formamide in 0.075M sodium citrate, 0.75M sodium chloride (pH 7.0).

It was then washed with 200 ml of the above buffer at 42°C for 30 

mins followed by two washes with 1 litre of 0.015M sodium citrate, 

0.15M sodium chloride (pH 7,0), at 65° for a total of 2 hrs.

Finally the filter was washed with 1 litre of 0.0015M sodium citrate, 

0.015M sodium chloride (pH 7.0), at 65°C for 1 hr. The solution 

was then drained and the strip was placed in Saron wrap and exposed on 

Fuji-X-ray film.

13. Determination of radioactivity

1) Radioactivity in RNA molecules was determined by

precipitation of RNA with ice-cold trichloroacetic acid (5% (w/v)), 

and collection of the precipitates on a millipore filter (0.45Vim pore 

size). Following drying (60 mins at 60°C), radioactivity was

determined by adding 5ml of toluene scintillator fluid composed of 

0.5% PPO (w/v) in Toluene.

2) Detection of radioactivity incorporated into proteins

From each cell-free assay duplicate lyl aliquots were spotted 

on Whatman 3MM 2.5cm paper discs which were then dropped into a beaker 

containing 10% (w/v) trichloroactic acid (TCA), The TCA was brought 

to a lOO^c tor 10 mins at the end of which ice was added and the TCA 

was poured off as radioactive waste. The filters were then washed 

with a mixture of 10% (w/v) TCA, hydrogen peroxide, formic acid 

(2:1:1), followed by two washes with water, alcohol and acetone. 

Finally the discs were dried and placed into scintillation vials 

containing 0 .5ml of l.OM hyamine hydroxide solution in methanol. The 

vials were placed in a 60°C oven for 30 mins and the radioactivity 

was determined by adding 5ml of toluene scintillator fluid composed of 

0.5% (w/v) PPO in Toluene.



RESULTS



1. ■ Non-poiyadéiiyla.tèd 'mRNAs as compared with aderiylated niRisiAs

Non-polyadenylated (poly(A) ) iriRNAs have been shown to be very 

similar to adenylated (poly(A) ) mRNAs in a number of respects, size and 

base composition (Nemer et al., 1974), capping (Surrey and Nemer, 1976), 

association with protein (Greenberg, 1977), transcription from unique 

sequences of DNA (Nemer et al., 1975), rate of synthesis, entry to the 

cytoplasm and turnover (Milcarek et al., 1974? Nemer et al., 1974; Spradling 

et al., 1975) and translational efficiency (Fromson and Verma, 1976). 

However, experiments employing the method of saturation hybridisation by 

which the low abundance high complexity sequences can be detected (Hereford 

et al., 1977), have shown that, in mouse liver and mouse brain cells,
- j -

poly (A) mRNAs share little or no sequence homology with poly (A) RNAs 

(Grady et al., 1978; Van Ness et al., 1979; Chikaraishi, 1979), This

raises the question whether the translation products of poly(A) and poly (A) 

mRNA populations are distinct or not. To examine this question we used' 

the method of in vitro translation in a rabbit reticulocyte cell-free 

protein synthesising system (Pelham and Jackson, 1976).

1.1. Coding potential of polysome associated poly (A) and poly (A) ■

abundant mRNAs from HeLa cells

1.1.1. One dimensional analysis of the translation products of 

polysomal poly (A) and poly(A) mRNA

In HeLa cells, about 30% of polysome associated mRNA has been

shown to lack poly(A) (Milcarek et al., 1974), In order to compare the

coding potential of the polysome associated poly(A) mRNAs to that of

poly(A)^ mRNAs, the following was done:

Polysomes were isolated as described in Methods (Section 3.2,)

and polysomal RNA was extracted using the phenol-chloroform method of
+Penman et al (1966). The RNA was then fractionated into poly (A) and 

poly(A) by passing it twice through a poly-(U) Sepharose column (see
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Methods, Section 5.1.3,). Poly (A) and poly (A) RNAs were then trans

lated in vitro using an mRNA dependent rabbit reticulocyte cell-free 

protein synthesising system (Pelham and Jackson, 1976), As it is shown

in Figure 5 the optimum ionic requirements were 83.Q ' mM with respect to
+ ++K and 0.78 mM with respect to Mg , The optimum concentration of RNA

- J -  d W -per 25^1 of translation assay was lyg of poly(A) or 5yg of poly(A) RNA 

(see Figure 6). When the products of poly (A)^ and poly(A) RNA were 

analysed on one dimensional acrylamide/SDS gels (see Figure 7), the 

following was observed:
—»1) Most of the translation products of both poly (A) and poly (A)

RNAs have electrophoretic mobilities on SDS/polyacrylamide gels that are 

similar to the proteins that become labelled when HeLa cells are incubated
35 owith r S ]- methionine at 37 C for 1 hr.

+• —2) Proteins encoded by poly (A) or poly (A) RNAs are qualitatively

very similar as judged by their mobilities on one dimensional polyacrylamide/ 

SDS gels.

3) However, quantitative differences do exist. For example, protein

bands 1 and 2 seem to be enriched among poly(A) RNA products, while protein 

band 4 is enriched among poly (A) RNA products,

1.1.2. Two dimensional analysis of the in vitro translation products
«ÉMof polysomal poly (A) and poly (A) mRNA

A more detailed comparison of the two sets of in vitro products 

was afforded by the higher resolution of the two-dimensional gel electro

phoresis of O'Farrell (1975), Figure 8 shows a two-dimensional analysis 

of polypeptides encoded in vitro by poly (A) RNA (Figure 8A) or poly (A)

RNA (Figure 8B) .

Comparison of the two fluorograms shows the following:

1) Most of the polypeptides encoded by poly(A) RNA are also
+encoded by poly (A) RNA, Only 4 polypeptides (indicated by arrows in 

Figure 8B) are unique products of poly (A) mRNA,



FIGURE 5

Ionic requirements for polypeptide synthesis directed by HeLa cell 

polysomal poly(A)^ RMA in a rabbit reticulocyte cell free protein 

synthesising system

Assay mixtures utilising [ S] methionine and containing a) 

different concentrations of magnesium and 83.04 mM Kcl or b) different 

concentrations of Kcl and o.784mM magnesium acetate were incubated for 60 

rain at 37°C with 0.75 g of poly(A)^ RNA and hot trichloroacetic 

acid-precipitable radioactivity (- -) was determined (see Methods,

Section 13.2.).

a) Effect of magnesium acetate concentration on polypeptide 

synthesis at 83.04mM Kcl.

b) Effect of Kcl concentration on polypeptide synthesis at 0.784mM 

magnesium acetate.
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FIGURE 6
3 5Stimulation of incorporation of L- [ S]-methionine into polypeptides by 

different amounts of added HeLa cell polysomal poly(A)^ or poly(A)"RNA 

in rabbit reticulocyte cell-free protein synthesising system

Assay mixtures containing various amounts of a) polysomal 

poly (A)’*'# or b) poly (A)” and [^^8] methionine were incubated for 60 

rain at 37^C under standard conditions. Hot trichloroacetic acid- 

precipitable radioactivity was determined {see Methods, Section 13,2.). 

incorporation due to endogenous protein synthesis (13,000-15,000 cpm) was 

subtracted in each case. Data are expressed as cpm of [^^S] methionine 

incorporated into proteins per yl of the translation assay.
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FIGURE 7

Fluorogram of [^^S]-methionine labelled polypeptides resulting from the 

translation of polysomal p o l y ( A ) a n d  poly(A)" RNA from HeLa cells

Polysomal poly ( A ) o r  poly (A)" RNA was vitro translated in 

a rabbit reticulocyte cell;free protein synthesising system. Aliquots 

(not exceeting 10yl) of translation assays containing poly(A)^ or 

poly (A)"* RNA’s translation products were loaded on a 12.5% 

polyacrylamide/SDS gel.

Lane 1 analysis of lOyl translation assays containing no exogenous RNA.

Lane 2 Translation products of p o l y ( A ) R N A  added at a concentration

of lyg/25yl assay.

Lane 3 Translation products of poly(A) added at a concentration of 

5yg/25yl assay.
35Lane 4 Proteins labelled vivo by incubating HeLa cells with [ S] 

methionine for 1 hr at 37°C (see Methods, Section 3.3.). 

Calibration proteins (Cornbithek, Boehringer, Mannheim) 

comprising of 6 subunit of E. coli RNA polymerase (155,000 daltons) bovine 

serum albumin (58,000 daltons), a subunit of E. coli polymerase (39,000 

daltons), soya bean trypsin inhibitor (21,500 daltons) were also run.

The position to which the markers migrated was determined by staining the 

gel with 0.25% (w/v) Coomassie brilliant blue in 9% acetic acid and 45% 

methanol before fluorography.

Bands 1 and 2 are those enriched among the products of poly(A)^ 

RNA (Lane 2), while bands 3 and 4 are enriched among poly(A) mRNA 

products (Lane 3) ,





FIGURE 8

Fluorograms of two-dimensional polyacrylamide gels of [^^S]-methionine 

polypeptides resulting from the translation products of polysomal 

poly(A)^ or poly(A)~ RNA from HeLa cells

Polysomal poly (A)’*' or poly (A)" RNA was translated vitro in 

a rabbit reticulocyte cell-free protein synthesising system and the 

products were analysed on two dimensional gels according to the method of 

O ’Farrell (1975). The second dimension was 12.5% polyacrylamide/SDS gel,

(a) Polypeptides encoded by polysomal poly (A)"*" RNA added at a 

concentration of lyg/25yl assay.

(b) polypeptides encoded by polysomal poly(A) RNA added at a 

concentration of 5yg/25yl assay.

The arrows in Figure 8A indicate polypeptide spots which are. 

unique translation products of polysomal poly(A)^ RNA.

The arrows in Figure 8B indicate polypeptide spots which are 

unique translation products of polysomal poly(A)" RNA.
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2) 16 of the polypeptides encoded by poly(A)^ RNA are only encoded

by this RNA fraction, suggesting that a substantial portion of abundant 

mRNA sequences are only found in a polyadenylated form.

It should be mentioned that when total cytoplasmic rather than 

polysomal poly(A) and poly(A) RNA from HeLa cells was translated in 

vitro in wheat germ cell-free protein synthesising system and the products 

were analysed in two dimensions, a very similar result was obtained by 

Kaufmann and colleagues (1977). They had also found that 1) most of the 

poly(A) mRNA products also appeared among the poly(A) mRNA products.

Only 6 minor proteins had been found to be unique products of poly (A) 

mRNA and 2) many proteins, including 8 major ones, had exclusively appeared 

in the poly (A ) mRNA products.

1.2. Coding potential of polysomal poly (A) and poly (A) mRNA

molecules from Friend cells

Since in HeLa cells only some of the abundant coding sequences 

exist in both poly(A) and poly (A) forms, the question arose whether 

the situation is the same in other mammalian cell lines. So, we tested
l-j.. Mthe coding potential of polysomal poly(A) and poly(A) mRNA from Friend

cells.

Polysomal poly (A) and poly (A) RNA from Friend cells (isolated

as described in legend of Figure 9) was translated vitro in a rabbit 

reticulocyte cell-free protein synthesising system and the products were 

analysed in two dimensions according to the method of O'Farrell (1975), 

Comparison of the products encoded by poly (A) RNAs (Figure 9A) with those 

encoded by poly(A) RNAs (Figure 9B) shows that, in Friend cells, most of 

the abundant raRNAs exist in both adenylated and non-adenylated form.

Only one polypeptide spot (indicated by an arrow in Figure 9A) was found 

to be a unique product of poly(A) RNA, while two others (indicated by 

arrows in Figure 9B) are only encoded by poly(A) RNA.



FIGURE 9

Fluorograms of two-dimensional polyacrylamide gels of [ S] -methionine

polypeptides resulting from the translation products of polysomal
'I* “poly(A) or poly(A) RNA from Friend cells

Polysomes were isolated from Friend cells as described in Methods

(Section 3.2.2.) and polysomal RNA was extracted according to the method

of Penman (1966).

Polysomal RNA was then fractionated in poly(A)^ and poly(A)"

according to the procedure described in Methods (Section 5.1.3,).

Poly(A)^ and poly(A)” RNA was translated jn vitro under the conditions

employed for jn vitro translation of RNAs from HeLa cells. The products

were analysed on two-dimensional gels according to the method of O'Farrell

(1975), The second dimension was 12.5% polyacrylamide/SDS gel.

(a) Polypeptides encoded by polysomal poly(A)^ RNA

(b) Polypeptides encoded by polysomal poly(A)” RNA.

The arrow in (a) indicates the protein which is only encoded by

poly(A)^ RNA, while those in (b) the proteins which are only encoded by

poly(A)” RNA.
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1.3. Conclusion

Despite the reported lack of sequence homology between the high 

complexity sequences of poly(A)^ and poly(A)” mRNA molecules, the 

translation products of polysomal poly(A) mRNA are not wholly distinct from 

those of poly (A)'*' RNA in two studied cases. In HeLa cells whilst several 

proteins do result from the translation of either poly(A)" mRNAs or poly(A)^ 

mRNAs a considerable number of mRNAs appear to exist in poly(A)’*' and 

poly(A)”* forms. In fact, in Friend cells it is the latter situation which is 

predominant,

2. Coding potential of a subset of poly(A)~ mRNA molecules from HeLa

cells with high affinity for poly(A) - Sepharose

Although a considerable number of specific mRNAs appear to exist in 

both adenylated and non-polyadenylated forms the reason for this bimorphism is 

obscure. Some of the proteins like histones, hen oviduct ovalbumin and the 3 

form of actin in HeLa, Friend and other mammalian cells have been reported to be 

encoded by both poly(A)^ and poly(A)" mRNA molecules (Ruderman and Pardue,

1977; Shapiro et , 1975; Hodgson et aJ.. , 1979; Hunter and Garrels (1977); 

Kaufmann ^  , 1977; Minty and Gros, 1980). Since three ovalbumin like genes

have been reported in chick (Royal e^ ad.., 1979) and the existence of multiple 

actin and histone genes in several cell types is well documented (McKeown e^ 

al., 1978; Kindel and Firtel, 1978; Tobin e_t , 1980; Fyrberg e^ a^., 1980; 

Vandekerchove and Weber, 1978; Engel £t al., 1981; Jacob ejt al., 1976; Kedes, 

1979) , a question that arises is whether poly(A)^ and poly(A)~ mRNAs coding 

for the above mentioned proteins are actually transcribed from different genomic 

sequences. This might explain the lack of sequence homology.

Alternatively poly(A)^ and poly(A) mRNAs coding for the same 

functional protein may have different stabilities. Whilst poly(A) and 

poly(A)^ mRNAs have similar rates of entry in the cytoplasm and decay in HeLa 

and sea urchin embryo cells(Milcarek et al., 1974; Nemer et al., 1974), globin



deadenylated rriRNAs microinjected in Xenopus oocytes were found to be less 

stable than the corresponding polyadenylated mRNAs (Hues et al., 1974; 

Marbaix et al ., 1975). To examine these questions an approach might be

to separate poly (A) sequences coding for a particular protein from the
” + bulk of poly (A) RNAs and use this in comparisons with poly (A) raRNAs

coding for the same protein,

A problem with poly (A) RNA is that it mainly contains rRNA and

tRNA molecules. To examine poly (A) mRNA sequences in more detail an

initial approach was to isolate a subclass of poly(A) mRNAs which exhibit

high affinity for poly(A) Sepharose (Katinakis and Burdon, 1981). These

molecules were shown to be rich in uridylate sequences and were thus called 
““poly (A) u and they coded for a small number of proteins all of which were 

encoded by poly (A) RNA (see below).

Since it has been reported that in HeLa cells half of the cyto

plasmic poly-(U ) sequences are detected in poly (A) RNA molecules (Korwek 

et al., 1977), we employed the technique of Katinakis and Burdon (1981) 

to isolate poly(A) u RNAs from HeLa cells and we tested their coding 

potential in a rabbit reticulocyte cell-free protein synthesising system,

2.1. Relative amounts of polysomal poly (A) , poly (A) u , poly (A) u

RNAs from HeLa cells

Polysomes were isolated from HeLa cells as described in Methods 

(Section 3.2,1.). RNA was extracted by using the phenol-chloroform 

extraction of Penman e^ a^ (1966). Total cytoplasmic RNA was isolated 

as described in Methods (Section 4.2,). Polysomal or cytoplasmic RNA 

was fractionated into poly (A) poly (A) u"̂  and poly (A) u according to 

the method of Katinakis and Burdon (1981). RNA was dissolved into 

binding buffer (see Methods, Section 5.1.3.), denatured at 70°C for 5 rains 

and then applied twice to a poly-(U) Sepharose column. The material 

retained by poly-(U) Sepharose is poly(A) RNA, RNA which failed to get
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bound is referred to as poly (A) RNA, Poly (A) RNA was then applied

twice to a poly- (A) Sepharose column. RNAs bound to the column under
mmmthese conditions are called poly(A) u , while those washed off the column 

are referred to as poly(A) u RNAs and include rRNA, tRNA as well as 

non-adenylated mRNA molecules.

The data presented in Tables 3 and 4 show that in both poly-
mm.somal and total cytoplasmic RNA population, poly(A) u RNAs represent

only a small proportion of the total mRNA population in HeLa cells. The 
—  +fact that poly (A) u RNAs relative concentration in polysomes is half of 

it's concentration in total cytoplasmic RNA (see Table 4) suggests that 

poly(A) u RNA molecules are enriched in the post-polysomal fraction.

2.2. Coding potential of polysomal poly(A) u RNA as compared with

that of polysomal poly (A)^ RNA

2.2.1. One-dimensional analysis of the translation products of
"I” "i*polysomal poly (A) u and poly (A) RNA from HeLa cells

- + +The coding potential of poly (A) u andpoly(A) RNAs was tested

by translating in vitro in a rabbit reticulocyte cell-free protein
35synthesising system. As judged from the incorporation of [ S]-methionine 

into proteins, poly (A) u RNA does not seem to have much stimulating 

effect on ^  vitro protein synthesis (see Table 5). When the products of
'I* ““ “I*poly (A) and poly (A) u RNA were analysed on one-dimensional aerylamide/SDS

gel very few protein bands were shown to be encoded by poly (A) u RNA

(see Figure 10, Lane 2). Most of the bands seen are the products of the
+lysate’s endogenous mRNA, while the rest are also encoded by poly(A) RNA 

(see Figure 10, bands 1, 2, 3, 4, 5, 6).

2.2.2. Two-dimensional analysis of the translation products of 

polysomal poly (A) u and poly (A) • RNA from HeLa cells

A more detailed comparison of the vitro products was afforded 

by the higher resolution of the two-dimensional analysis of O'Farrell 

(1975) .



Y  £»

TABLE 3

Quantitation of poly(A)+, poly(A)~ and poly(A)~u~ in polysomal and 

cytoplasmic RNAs from HeLa cells

FRACTION POLYSOMAL CYTOPLASMIC
OF in ugs in ygs

RNA Expt.l Expt. 2 Expt.l Expt.2

poly(A)+ 43.2 30.0 100.0 80.0
poly(A)"u+ 4.6 4.0 14.5 10.0
poly(A)“u" 1,600 1,020 2,700 .0 2,280.0

TABLE 4

Expression of the poly(A)“u+ RNA amounts as % of A+ or total RNA

(A)-u+ (A)-u+
% of (A)+ % of total RNA

POLYSOMAL 10.6 - 13.3 0.24 - 0.28

CYTOPLASMIC 12.5 - 14.5 0.51 - 0.61

Polysomes were isolated as described in Methods (Section 3.2,1.) 

RNA was isolated from polysomes (see Methods, Section 4.3.) or total 

cytoplasm (see Methods, Section 4,2.) and fractionated into poly(A) 

poly (A) u'*' or poly(A)~u as described in Methods (Sections 5.1.3. 

and 5.1.4.). The optical density of all RNA fractions was measured at 

260nm in U.V. light and the amounts of RNAs were calculated from the 

optical density values taking in account that 1 OD unit corresponds to 

40yg RNA, The results in Table 4 express the amount of poly(A) u^

RNA as % of the poly(A)^ RNA or as % of the total RNA from the same 

fraction.
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TABLE 5

In vitro incorporation of L-[35g_methionine into polypeptides directed

by polysomal poly (A) , poly ( A ) " o r  poly(A)~u~RNA from HeLa

cells

Polysomal RNA Amounts [35g]-methionine
assayed yg/25 yl incorporation

cpm/ 1 assay

poly(A)"u+ 1.0 200
poly(A)+ 1.0 43,258
poly(A)"u- 5.0 21,000

Assay mixtures (25yl) containing various amounts of polysomal

poly (A) ̂  or poly (A) "u'*’ or poly (A) “u* RNA and [^^S]-methionine

were incubated for 60 min at 37°C under standard conditions.
35[ S]-methionine radioactivity incorporated into proteins was estimated 

as described in Methods (Section 13.2.). Incorporation due to 

endogenous messenger activity was subtracted in each case.



FIGURE 10
35Fluorogram of [ S]-methionine labelled polypeptides resulting from the 

in vitro translation of polysomal poly(A) _û  and poly(A)^ RNA from 

HeLa cells

Polysomes were isolated from HeLa cells (see Methods, Section

3,2.1.) and the RNA was extracted by phenol-chloroform extraction (Penman 

et al., 1966). The RNA was then fractionated in poly(A)^, 

poly(A)”u^ and poly (A)’’u’” as described in Methods (Sections 5.1.3. 

and 5.1.4.), Poly(A)^ or poly(A) u^ RNA was In vitro translated in 

a rabbit reticulocyte cell-free system. Equal volumes of translation 

mixtures were loaded on Lanes 1 and 2. The gel was run as described in 

Methods (Section 7.3). The gel was then processed for fluorography as in 

Methods (Section 8.).

Lane 1 Translation products of lysate's endogenous mRNA.

Lane 2 Translation products of lyg polysomal poly(A) u RNA.

Lane 3 Translation products of lyg polysomal poly(A)’*' RNA.

Protein bands 2, 3, 4, 5, 6 are detected among the products of 
—  +polysomal poly(A) u RNA, but not among the products of the lysate's 

endogenous mRNA.

Band 1 is detected among the products of the lysate's endogenous
—  +mRNA, but it is much enriched among the products of poly(A) u RNA.
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Comparison of the two-dimensional analysis of polypeptide 

spots encoded by lysate's endogenous mRNA (Figure llA) with those 

encoded by polysomal poly (A) "u"*" RNA (Figure llB) shows that very 

few polypeptide spots are encoded by poly(A)"u^ RNA. This is 

in agreement with the conclusions drawn from one-dimensional 

analysis (see Figure 10). When the two-dimensional pattern of 

proteins encoded by poly (A)’"u'*' RNA was compared with that of 

proteins encoded by poly(A)^ RNA, it was shown that all the 

polypeptide spots encoded by poly (A) "u*** RNA were found among the 

products of poly(A)^ RNA (numbered polypeptide spots in Figure 

12B) .

2.3. Coding potential of cytoplasmic poly (A)"u~*~ and 

poly(A)~u~ RNA from HeLa cells

Polysomal preparations include only a portion of the total 

cytoplasmic poly (A)'"u'*' RNA sequences, the majority of which have 

been shown to exist in the post-polysomal fraction of the cytoplasm 

(see Results, Section 2.1.). Since it is possible that the 

polysomal poly (A) "u"*" RNAs are not representative of the total 

cytoplasmic poly(A)~u^ RNA sequences, we isolated poly(A)“u^

RNA from total cytoplasm (see Legend, Table 3) and tested its coding 

potential in a rabbit reticulocyte cell-free protein synthesising 

system.
35The incorporation of [ S]-methionine into polypeptides 

as a result of cytoplasmic poly (A) “u'*' RNA's translation was 

again at the level of the incorporation due to the lysate's 

endogenous mRNA ^  vitro translation (Table 6). One-dimensional



FIGURE 11
3 5Fluorogram of two-dimensional polyacrylamide gels of [ S]-methionine 

polypeptides resulting from the translation of polysomal poly (A)"u*** 

RNA from HeLa cells .

Polysomal poly(A) RNA was translated jji vitro in a rabbit

reticulocyte cell-free translation system and the products were analysed 

on two-dimensional gels according to the method of 0 'Farrell (1975) . The 

second dimension was 12.5% polyacrylamide/SDS gel.

(a) polypeptides produced when no mRNA is added to the translation

system.

(b) polypeptides produced when lyg of poly (A) "u”*" RNA was added in

25Pl of translation assay.

The arrows in (A) indicate the proteins encoded by the lysate's 

endogenous mRNA. The arrows in (B) indicate the translation products of 

poly(A) u RNA and include those shown in (A).

Fluorogram llB was exposed to X-ray film for a period three times 

longer than the period of exposure of the fluorogram shown in llA, even 

though both gels contained the same amount of cpm. This was done in 

order to detect all the polypeptide spots encoded by poly(A) u^ RNA.

It is quite possible that this is the reason why some of the spots 

detected among the lysate's endogenous mRNA products are so much enriched 

among the poly(A)"u^ RNA's products.
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TABLE 6

In vitro incorporation of [35s]-methionine into polypeptides directed 

by cytoplasmic poly (A)'*', poly(A)~u+ or poly(A)~u~ RNA from HeLa 

cells

Cytoplasmic RNA Amounts [35g]-methionine
assayed yg/25 yl incorporation

cpm/ yl assay

poly(A)”u+ 1.0 750
poly(A) + 1.0 62,500
poly(A)"u“ 5.0 28,500

Assay mixtures (25|il) containing various amounts of cytoplasmic 

poly (A) ̂  or poly(A)"u^ or poly(A)""u“ RNA and [^^S]-methionine 

were incubated for 60 min at 37°C under standard conditions.

Incorporated radioactivity was estimated as described in Methods (Section

13.2.). Incorporation due to endogenous messenger activity was 

subtracted in each case.



FIGURE 12
35Fluorograms of two-dimensional polyacrylamide gels of [ S]-methionine 

polypeptides resulting from the translation of polysomal poly (A)'*' or 

poly(A)~u~^ RNA from HeLa cells

polysomal poly(A)^ or poly(A)"u^ RNA was translated in 

vitro in a rabbit reticulocyte cell-free translation system and the 

products were analysed on two-dimensional gels according to the method of 

0 'Farrell (1975). The second dimension was 12.5% polyacrylamide/SDS gel.

(a) polypeptides encoded by polysomal poly (A) RNA.

(b) Polypeptides encoded by polysomal poly(A)^ RNA.

All the polypeptide spots detected among the translation products 

of polysomal poly (A) "u'*’ RNA (Figure 12A) are indicated by arrows and 

numbers. Some of the spots in Figure 12A are detected among the products 

of the lysate's endogenous mRNA (see Figure llA).

Numbered and arrowed spots in Figure 12A indicate the location of 

corresponding poly (A) u"̂  RNA's products among the products of 

poly(A)^ RNA.
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analysis of the products showed that very few protein bands are 

encoded by poly(A)"u^ RNA and again all are found among the 

translation products of cytoplasmic poly(A)^ RNA (see Figure 13, 

bands 1, 2, 3, 4, and 5).

At the same time, comparison of the translation products of 

polysomal poly (A)'*’ or poly(A)”u“ RNA with those of cytoplasmic 

poly(A)* or poly(A)”u” RNA (see Figure 14) showed that most of 

the abundant poly (A)"** or poly (A) “’u” sequences from total 

cytoplasm are also represented among the polysomal abundant mRNA 

population in HeLa cells. There is only one exception: band A is

encoded by cytoplasmic poly (A)"** RNA, but not by polysomal 

poly(A)‘*’ RNA.

2.4. The effect of prior heating on the translational efficiency

of cytoplasmic poly(A)^ or poly (A) u"*" RNA from HeLa

cells

Milcarek (1979) has recently reported the existence of 

internally located oligo(A) sequences in non-polyadenylated mRNAs 

from HeLa cells. Since oligo(u) sequences could form 

intramolecular duplex with such oligo(A) sequences, the question 

arose whether poly(A)"u^ RNA's secondary structure was 

responsible for its poor translational activity. In order 

to answer this question, total cytoplasmic poly(A) 

poly (A) u*** or poly (A) u*" RNA was heated up at 70°C for 5 

mins, cooled rapidly on ice and then added to the rabbit 

reticulocyte cell-free translation mixture and incubated at 

37°C for 60 mins. In vitro translation of RNAs which were not



FIGURE 13
35Fluorogram of [ S]-methionine labelled polypeptides resulting from the 

in vitro translation of cytoplasmic poly (A) ~ and poly (A)'*' RNA from 

HeLa cells

Cytoplasmic poly(A)"u^ or poly(A)^ RNA was translated in 

vitro in a rabbit reticulocyte cell-free system under the conditions 

described for translation of polysomal RNA. The products were analysed 

on 8.75% polyacrylamide/SDS gel.

Lane 1 Translation products of the lysate's endogenous mRNA,

Lane 2 Translation products of lyg cytoplasmic poly(A)"u^ RNA.

Lane 3 Translation products of lyg cytoplasmic poly(A)^ RNA.

Bands 1, 2, 3, 4 and 5 are those encoded by poly (A) "u*̂  and

not by the lysate's endogenous mRNA.
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Figure 14
3 5Fluorogram of [ S]-methionine labelled polypeptides resulting from the 

translation of polysomal and total cytoplasmic poly(A)^ and 

poly(A) u RNA from HeLa cells

Lane 1 cytoplasmic poly(A)^ RNA added to the translation system at a 

concentration of lyg/25yl.

Lane 2 Polysomal poly(A)^ RNA added to the translation system at a 

concentration of lyg/25yl.

Lane 3 Cytoplasmic poly (A) ""u” RNA added at a concentration of 

5|lig/25yl.

Lane 4 Polysomal poly (A) u RNA added at a concentration of 5>i'g/25'yl.
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preheated was also carried out at the same time. The results shown in 

Table 7 show that preheating at 70^C for 5 mins eliminated the translational 

activity of poly(A) u RNA, while the translational activity of both 

poly(A)^ and poly(A) u RNA was not much affected,

2,5. Conclusion

The results presented in this section have shown, that in HeLa
PP»cells poly(A) u RNA molecules show little translation activity. However,

more than one polypeptides was“ detected among its translation products and
“i"all of which were also encoded by poly (A) mRNA, So, to some extent our

initial objective of isolating poly(A) mRNA sequences coding for a limited
+number of polypeptides which are also encoded by poly(A) mRNAs was achieved. 

The next step would be to prepare cDNA from these RNA molecules, clone it 

into the appropriate plasmid and use the cDNA clones for comparisons with
-j-poly (A) RNA molecules coding for the same proteins. However, when this

part of the work was underway, results published by Molloy (1980) showed

that some intramolecular duplex structures of oligo(u) sequences with 3'

poly (A) can only be disrupted completely with formaldehyde (ECHO) treatment,

(which unfortunately renders the mRNA molecules untranslatable (Lodish

(1970)), This raised the possibility that the poly (A) u RNA molecules

we had isolated were actually polyadenylated RNA molecules which had

failed to bind to poly-(U) Sepharose because of the duplex structures

formed between the poly(A) tail and internal oligo (u) sequences but which

were nonspecifically retained by poly (A) Sepharose,

Thus, the HeLa cell poly(A) RNA exhibiting affinity for

poly (A) Sepharose seemed a doubtful candidate for extensive comparisons 
+with poly (A), mRNA,

3. Protein synthesis in normal and heat-shocked HeLa cells

As an alternative means of exploring the relationship between
-j- *

specific poly(A) and poly (A) mRNAs in HeLa cells, the mRNAs encoding the 

specific polypeptides induced after heat shock were examined. When



TABLE 7

In vitro incorporation of [̂ ^S]-methionine into polypeptides directed 

by preheated or unheated poly(A)+, or poly(A)"u+ or poly(A)~u~

RNA fractions from HeLa cells.

A B

Cytoplasmic 
RNA assayed

Amounts
•^g/25Ul

[35g]-methionine 
incorporation 
cpm/yl assay

-methionine 
incorporation 
cpm/yl assay

poly(A)+ 1.0 37,000 39 ,000
poly(A)-u+ 1.0 0 0
poly(A)"u- 5.0 27,000 25,000

Cytoplasmic poly(A)^, poly(A)"u^ or poly(A) “u“ RNA

preheated or unheated were translated in a rabbit reticulocyte cell-free 

protein synthesising system.

(A) -methionine incorporation resulting from translation of

unheated RNAs.
35(B) [ S]-methionine incorporation resulting from translation of

RNAs which had been preheated at for 5 min and cooled

rapidly on ice before being added to the translation mixture.



Drosophila larvae, or their excised tissues, are incubated at an elevated 

temperature (for example, 40 mins at 37^C, the normal culture temperature 

being 25°C) puffs are induced at several specific polytene chromosome 

bands (Ritossa, 1964; Ashburner and Bonner, 1979). The induction of the 

puffs occurs within 1 min of the increase in temperature and the puffs 

continue to increase in size for 30-40 mins at 37°C before regressing.

The maximum size of the puffs are a function of the severity of the 

temperature shock (Ashburner, 1970),

The heat shock also results in the production of a set of RNAs 

transcribed from the specific chromosome puffs. Some of these RNAs are 

preferentially translated into a set of polypeptides known as heat shock 

polypeptides (Tissieres et al., 1974). Unlike the puffing,the synthesis 

of the heat shock polypeptides is detected 10 mins after the start of the 

heat shock and continues for several hours afterwards (Lewis et al., 1975), 

In general there appears to be at least in Drosophila, no tissue specificity 

in the number and sizes of the induced proteins even though some charge 

heterogeneity and size polymorphism has been reported. This may be due 

to post-translational protein modification and/or aberrant transcription 

at the elevated temperature (Sondermeijei and Lubsen, 1978; Mirault et al., 

1978).

In order to find out whether HeLa cells respond to heat shock 

treatment in the same way, we studied protein synthesis in normal and 

heat shocked HeLa cells.

3.1. Electrophoretic analysis of proteins from normal and heat

shocked HeLa cells

HeLa cells were heat shocked at 45°C for 5 mins, returned to

37°C for 2 hrs and then labelled for 1 hr with [^^S]-methionine. Normal
35cells were also labelled with [ S ]-methionine for 1 hr. Lysates of 

both control and heat shocked cells were then analysed on one-dimensional 

acrylamide/SDS gels. Comparison of the protein pattern obtained from



heat shocked cells to that of normal cells (see Figure 15) shows the 

following:

1) All the protein bands obtained from normal HeLa cells are

also obtained from heat shocked cells,

2) There is, however, a noticeable increase in the synthesis of 

three particular bands in the heat shocked cell lysate. These protein 

bands have molecular weights in the region of 100,(X)0, 72-74,000 and

37,000 daltons (Figure 15, see arrows a, b- and c respectively).

Since each of the heat induced protein bands could well result 

from a mixture of different polypeptides of the same or similar molecular 

weights, two-dimensional gel analysis was carried out according to the 

method of O'Farrell (1975). Figure 16 presents fluorograms of two- 

dimensional analyses of proteins from control (A) and heat shocked cells 

(B). Comparison of figure 16A with Figure 16B firstly confirms the 

observations made in the one-dimensional gel analysis. Secondly, the 

72,000-74,000 molecular weight band was resolved into two groups. The 

more basic one comprised two polypeptide spots (Figure 16, two arrows near 

group b) and was found to have a pi value around 7.3, The more acidic 

one probably comprised at least seven polypeptides (Figure 16, group b ) , 

whose pi values ranged from 7.1 - 6.5. Thirdly, the 100,000 and 37,000 

molecular weight bands were resolved into at least two polypeptide spots 

each (Figure 16, polypeptides a and ĉ  ). Comparison of Figure 16A with 

Figure 16B also reveals some polypeptides (not seen on one-dimensional 

gels which appear more strongly labelled after heat shock (Figure 16B, 

spots 1, 2).

3.2. Time course of heat shock protein synthesis

In order to find out how soon and for how long HeLa cells 

produce increased amounts of heat shocked proteins, cells were incubated 

in normal medium at 45°C for 5 mins and at various times thereafter



FIGURE 15
3 SFluorogram o£ an SDS/polyacrylamide slab gel of [ S]-methionine 

labelled proteins from normal and heat-shocked HeLa cells

(A) Proteins from cells cultured at 37°C and labelled for 1 hr 

with [^^S]-methionine.

(B) Proteins from cells heat-shocked at 45^C for 5 mins and 

transferred to 37°C for 2 hrs prior to labelling for 1 hr with 

[^^S]-methionine.

The arrows a, b and c refer to heat-shock protein bands in the 

molecular weight regions of 100,000,72,000 - 74,000 and 37,000 daltons.
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FIGURE 16

Fluorogram of two-dimensional polyacrylamide gels of [̂ ^S]-methionine 

labelled proteins from control and heat-shocked HeLa cells

(A) Proteins from cell culture at 37^C and labelled with 

[^^S]-methionine for 1 hr at 37°C.

(B) Proteins from cells heat-shocked at 45°C for 5 mins, 

transferred to 37°C for 2 hrs and then labelled for 1 hr with 

[^^S]-methionine.

The arrows a, b and c refer to the low level of synthesis of the 

100,000, 72,000 - 74,000 and 37,000 molecular weight proteins at 37°C, 

whilst a"' , b''and c'' refer to the increased synthesis of these proteins 

after heat-shock.

Spots 1 and 2 refer to other polypeptide spots which appear 

stronger after heat-shock.
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samples were labelled for 1 hr and the pattern of protein synthesised

examined by one-dimensional gel analysis. In order to quantify changes

in protein synthesis following the heat treatment, densitcmetric analysis
35was applied to the fluorographic pattern of [ S]-labelled proteins 

separated in these gels. The relative fraction of the heat shock protein 

bands was calculated as a measure of the area under the individual peak

divided by the total area under the scan that included all the protein

bands in a particular gel track (Kelley and Schlesinger, 1978). In this 

way it was found that in the case of proteins with molecular weight of

100.000 and 72,000 - 74,000, synthesis reaches a maximum by 2 hrs after
oreturn to normal growth temperature (37 C) but thereafter the level of 

synthesis declines (Figure 17).

3.3, IS RNA. synthesis necessary for the increased synthesis of the

heat shock proteins in heat shocked HeLa cells?

In order to find out whether the increased synthesis of heat 

shocked proteins in heat shocked HeLa cells was due to some control 

exercised at the transcriptional rather than the translational level HeLa 

cells were treated with actinomycin D (lyg/ml), heat shocked at 45°C for 

5 mins, allowed to recover for 2 hrs at 37°C and then labelled with P^s]- 

methionine at 37^0 for 1 hr. Normal cells were also treated with 

actinomycin D (lyg/ml) and labelled with ]-methionine at 37^C for 1 hr.

As it is shown in Figure 18 most of the protein bands labelled vivo 

in normal HeLa cells (Figure 18, Lane 3) are also labelled in vivo in 

normal HeLa cells treated with actinomycin D (Figure 18, Lane 1). However, 

when actinomycin D is added to HeLa cells prior to heat shock treatment 

and during the recovery and labelling period, the absence of increased 

synthesis of proteins in the 72,000 - 74,000 daltons region was particularly 

noticeable (Figure 18, compare Lane 2 and Lane 4). The effect on the

100.000 and 37,000 daltons regions was the same but less easy to see.



FIGURE 17

Relative levels of the heat-shock proteins synthesised in 1 hr at 37°C 

at various times after 5 mins heat-shock at 45°C
35Each point shows the relative amount of [ S]-methionine 

incorporated into proteins in 1 hr at 37^C after heat-shock. The 

values were determined after scanning with the Joyce-Loebl densitometer 

and the relative percentage calculated as a measure of the area under an 

individual peak divided by the total area under the scan that included 

all the protein in a particular track (Kelley and Schlesinger, 1978).
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FIGURE 18
o cFluorogram o£ an SDS/polyacrylamide slab gel of [ S] -methionine- 

labelled proteins from normal and heat-shocked HeLa cells treated with 

actinomycin D

All lanes show vivo labelled polypeptides from HeLa cells treated in 

the following way:

Lane 1 HeLa cells grown at 37°C were treated with actinomycin D

(lyg/ml) for 2.5 hrs and then labelled with -

methionine for 1 hr at 37°C in the presence of actinomycin D. 

Lane 2 HeLa cells were incubated with actinomycin D (lyg/ml) for 0,5

hrs and then heat-shocked at 45°C for 5 mins. After a 

recovery period of 2 hrs at 37°C they were labelled with 

[^^S]-methionine at 37°C for 1 hr in the presence of 

actinomycin D,

Lane 3 HeLa cells grown at 37^C were labelled with [^^S]-methionine

for 1 hr at 37*^C.

Lane 4 HeLa cells were heat-shocked at 45^C for 5 mins, allowed to

recover at 37^C for 2 hrs and then labelled with

t - m e t h i o n i n e  for 1 hr at 37°C.

Arrow a indicates the position of 100,000 dalton heat-shock 

protein, arrow b the position of the 72,000 - 74,000 dalton heat-shock 

protein and arrow c the position of the 37,000 dalton heat-shock protein.
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These results suggest that the increased levels of heat shocked proteins 

in heat shocked HeLa cells may be due to the increased synthesis of heat 

shock specific mRNAs.

3,4, Conclusion

The results presented in this section have shown that HeLa cells, 

like Drosophila cells, respond to heat shock treatment by synthesising 

increased amounts of a small set of polypeptides (hsp's) which are possibly 

encoded by newly transcribed mRNA molecules. However, the response of 

HeLa cells differs from that of Drosophila in many aspects.

Firstly, unlike the situation in Drosophila, where maximum 

synthesis of hsp's takes place about 1 hr after the start of the heat 

shock treatment (Ashburner and Bonner, 1979), in HeLa cells maximum 

synthesis occurs 2 hrs after the heat shock treatment and while the cells 

are recovering at 37°C. Secondly, in HeLa cells there is no evident 

decrease in the synthesis of pre-heat shock proteins, while in Drosophila 

heat shock results in preferential translation of heat shock proteins and 

"shut off" of the synthesis of almost all pre-heat shock polypeptides 

(Ashburner and Bonner, 1979), Thirdly, the number of heat shock specific 

polypeptides of HeLa cells is much smaller than that of Drosophila. For 

example, while in HeLa cells there are three heat shock induced protein 

bands, in Drosophila melanogaster there are eight major ones. Two of 

the HeLa hsp's; the one of 72,000 - 74,000 dalton and the other of

37,000 dalton seem to have counterparts among the hsp's of Drosophila 

melanogaster. Indeed, the major hsp band in Drosophila is 70,000 - 72,000 

dalton and it has also been shown to consist of several individual poly

peptides (Mirault et al., 1978), while a 36,000 dalton hsp has been 

detected among the eight hsp's (Ashburner and Bonner, 1979),

4. Are HeLa heat shock proteins encoded by poly (A) mRNA molecules?

Poly (A) mRNA may be of significance in cells which have to 

respond rapidly to both external and internal changes.



There is an abundance of poly (A) mRNA molecules in early 

embryonic stages (Ruderman and Pardue, 1977; James and Tata, 1980), A 

very rapid response of cells to a certain stimulus may well involve poly(A) 

mRNA, since the very act of polyadenylation in animal cells takes about 

5-120 mins (Herman and Penman, 1977; Bachellerie et a l ,, 1978; Bastos and 

Aviv, 1977; Gilmore and Wall, 1979). Furthermore, poly (A) mRNAs might 

be more rapidly removed from the cytoplasm once they are of no further use 

to the cells. Indeed, histone mRNAs which are being translated only during 

S-phase of the cell cycle and which disappear rapidly at the end of S-phase 

are primarily in a poly (A) form (Borun et al,, 1975; Gallwitz, 1975;

Borun et al., 1977). Thus, a reasonable question is: are the mRNA

molecules produced as a result of the heat shock treatment mainly non- 

polyadenylated or not?

To examine this question we tested the coding potential of both 

poly (A) and poly (A) mRNA from heat shocked cells in a rabbit reticulocyte 

cell-free protein synthesising system,

4,1. The adénylation status of mRNAs in HeLa cells following heat

shock treatment

To decide whether the mRNAs transcribed during and after the

heat shock treatment are non-polyadenylated or not, HeLa cells were treated

with low doses of actinomycin D {0,04pg/ml) for 30 mins in order to suppress

synthesis of rRNA (Milcarek et al., 1974) prior to labelling with [ ĥ 1-

Uridine. Then half were heat shocked at 45^C for 5 mins while the rest

were allowed to remain at 37°C. Two hours after the heat shock treatment

all the cells (control and heat shocked) were harvested.

The results of specific activity determination presented in

Table 8 show a decrease in the total amount of RNA transcribed during the

2 hrs recovery from the heat shock treatment. However, the ratio of 
c p m i n ( A )  molecules . , ., _— — ;-- rrrrz :----:---remains the same for both control and heat shockedcpm in (A) molecules
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TABLE 8

in the presence of low doses of actinomycin D in normal and heat shocked

HeLa cells

Type of HeLa Fraction cpm in (A)^ Specific
cells of RNA cpm in (A) “ Activity 

cpm/yg

CONTROL poly (A) 1,096,460 0.47 342.64
poly (A ) 523,240 7,267.2

HEAT SHOCKED poly (A)” 537,160 0.42 206.6
poly (A) + 232,300 5,234.09

Six 80 oz Winchester bottles of HeLa cells, each containing about 

10^ cells were treated with actinomycin D (0.04 ug/ml) for 30 mins prior to 

labelling. Then t^H^- Uridine was added and 10 mins later half the burlers 

were heat shocked at 45°C for 5 mins and then allowed to recover at 37^0 

for 2 hrs (heat shocked cells). The other half remained at 37°C through

out the labelling period (control cells). Total cytoplasmic RNA was 

extracted from both cell populations as already described in Methods 

(Section 4.2.). The RNAs were fractionated into poly (A) and poly(A) 

by passing it twice through a poly-(U) Sepharose column. The quantity 

of the RNA was estimated from the optical density readings at 260 nm. 

Radioactivity was determined as described in Methods (Section 13.1.).
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■J*HeLa cells. This suggests that the production of poly (A). mRNA molecules 

is not favoured as a result of the heat shock,

4.2. The 72,000 - 74,000 dalton heat shock protein is encoded by

both poly (A) ~*̂ and poly (A) " r n a

In order to find out whether the mRNAs coding for the heat shock 

proteins exist in both adenylated or non-polyadenylated forms total cyto

plasmic RNA was isolated from HeLa cells which had been heat shocked at 

45^0 for 5 rains and then allowed to recover at 37°C for 2 hrs. The 2 hrs 

recovery period was chosen because this is the time when maximum synthesis 

of heat shock proteins occurs (see Results, Section 3,2.). Total 

cytoplasmic RNA was also isolated from control cells grown at 37°C.
•J- mmPoly (A) and poly (A) RNA from both control and heat shocked HeLa cells, 

was translated vitro in a rabbit reticulocyte cell-free protein synthesis

ing system. The products were analysed on one-dimensional acrylamide/

SDS gels. The conclusions drawn from the examination of the gel are the 

following:

1) Comparison of the electrophoretic mobilities of the translation

products of cytoplasmic poly (A) RNA from control and heat shocked cells
+showed that most of the protein bands made from cytoplasmic poly (A) RNA 

from heat shocked cells appear to be present in the products translated 

from the cytoplasmic poly (A) RNA from control cells. However, two 

protein bands were prominent amongst the translation products of cyto- 

plasraic poly (A) RNA from heat shocked cells (Figure 19, Lanes 2 and 3). 

These particular bands have electrophoretic mobilities on SDS/polyacryl

amide gel that are similar to the 100,000 and 72,000 - 74,000 daltons 

heat shock proteins (Figure 19, Lane 7), These heat shock proteins are 

not made in large amounts in control cells cultured at 37°C (Figure 19,

Lane 6), nor were they translated in large amounts vitro from the
+ opoly (A) mRNAs from normal HeLa cells cultured at 37 C (Figure 19, Lane 2),



FIGURE 19
35Fluorogram of [ S-methionine labelled polypeptides resulting from the

translation of total cytoplasmic poly(A)^ and poly(A)~ RNA from

control and heat-shocked cells

Total cytoplasmic poly(A)^ and poly(A)” RNAs were extracted

from HeLa cells cultured at 37°C and cells heat-shocked at 45°C for

10 mins, followed by 2 hr at 37°C. l̂ ig of poly(A)^ amd SPg

poly(A)” RNA from control and heat-shocked cells were translated in

25yl of a rabbit reticulocyte cell-free system using [^^S]-methionine

as radioactive label. Aliquots (not exceeding lOyl of translation

assay) corresponding to equal amounts of hot TCA precipitable

radioactivity were treated as described in Methods (Section 7.1.) and

loaded on Lanes 2-7. 10yl of translation assay were treated as in

Methods (Section 7.1.) and loaded on Lane 1.

Lane 1 Translation products of lysate's endogenous mRNA.

Lane 2 Translation products of poly(A)^ RNA from control HeLa cells.

Lane 3 Translation products of poly(A)^ RNA from heat-shocked cells.

Lane 4 Translation products of poly(A)" RNA from control cells.

Lane 5 Translation products of poly(A)" RNA from heat-shocked cells.

Lane 6 Proteins labelled vivo by incubating intact HeLa cells with

[^^S]-methionine for 1 hr at 37^C.

Lane 7 Proteins labelled vivo by incubating heat-shocked cells with 
35[ S]-methionine for 1 hr after 2 hrs recovery.

Arrows indicate the migration of proteins in the 100,000 and

72,000 - 74,000 dalton size classes respectively.

Bands A and B always appear amongst the products when the 

lysates are used without added mRNAs. They may be the result of 

translation of endogenous mRNA or tlie outcome of covalent attachment of 

methionine to endogenous proteins (Morch and Benicourt, 1980).



ICO K

7:i-7ivV<.



2) Comparison of the electrophoretic mobilities of translation

products of cytoplasmic poly (A) mRNA from control and heat shocked cells
+showed that similar to the situation with cytoplasmic poly(A) RNA most 

of the proteins products made from total cytoplasmic poly(A) RNA from 

heat shocked cells appear to be present in the products translated from 

the cytoplasmic poly (A) RNA from control cells except for an enrichment 

only in the 72,CXDO - 74,(X)0 dalton region (Figure 19, Lanes 4 and 5).

Comparison of the translation products of heat shocked cell 

poly (A)'*"mRNA (see Figure 19, Lane 3) with those of heat shocked cell 

poly (A) mRNA (see Figure 19, Lane 5) shows that the 72,000 - 74,000 

dalton heat shock protein is much more enriched among the products of heat 

shocked cell poly(A) mRNA. Since the amount of poly(A) mRNA molecules 

is only about 1% of the total poly(A) RNA (Kaufmann et al., 1977; Milcarek 

et al., 1974) it is likely that in 5 ygs of poly(A) RNA there is only 

0.05 yg of poly (A) mRNA. Thus, the difference in the intensity of the

72,000 “ 74,000 among the products of poly (A) and poly (A) mRNA might be
“J-due to the fact that the concentration of poly (A) mRNA used is almost 20 

times greater than that of poly (A) mRNA.

In order to investigate this possibility heat shocked cell
+poly (A) RNA was translated in vitro at various subsaturating concentrations 

and the products of each translation assay were analysed on one-dimensional 

polyacrylamide/SDS gels. As it is shown in Figure 20 (Lane 5) when the 

concentration of heat shocked cell poly (A) RNA is close to the actual 

concentration of poly (A) mRNA the intensity of the 72,000 - 74,000 dalton 

heat shock protein is diminished. This suggests that the difference in 

the intensity of the 72,000 - 74,000 dalton. heat shock protein among the
mm

translation products of poly (A) and poly (A) RNA (Figure 19) may be due 

to the difference in the amounts of mRNA translated in each case. It is 

of interest that while the production of most proteins is decreasing with



FIGURE 20
3 5Fluorogram of [ S-methionine labelled polypeptides resulting from the 

translation of various amounts of heat-shocked cell poly(A)^ RNA 

Various amounts of heat-shocked cell poly(A)^ RNA were 

translated in a rabbit reticulocyte cell-free protein synthesising system 

under standard conditions and the products were analysed on an 8.75% 

polycrylamide/SDS gel by loading aliquots corresponding to equal amounts 

hot TCA precipitable radioactivity

Lane 1 Translation products of lyg poly(A)’*' heat-shocked cell RNA.

Lane 2 Translation products of 0.5yg poly (A)**" heat-shocked cell RNA,

Lane 3 Translation products of 0.25yg poly (A)"** heat-shocked cell RNA,

Lane 4 Translation products of 0,12yg poly (A)"** heat-shocked cell RNA.

Lane 5 Translation products of O.OGyg poly(A)^ heat-shocked cell RNA.

Lane 6 Translation products of 0,03yg poly(A)^ heat-shocked cell RNA,

The position of 100,000 and 72,000 -74,000 heat-shock proteins 

is indicated. Bands a, b, c, and d are those which are increasing with 

lower concentrations of poly(A)^ RNA.
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decreasing concentrations of poly(A) RNA, the production of some proteins 

are increased (see Figure 20, bands A, B, C and D).

4.3. ' separation of poly (A) ~ mRisiAs coding for the 72,000 - 74,000

dalton heat shock protein from the bulk of poly (A) Rigvs 

As an initial step in comparing the poly(A) and poly(A) mRNAs 

which code for the 72,000 - 74,000 dalton heat shock protein, a partial 

purification of the 72,000 - 74,000 hsp coding poly(A) mRNAs from the 

bulk of poly (A) RNA was carried out. Poly (A) RNA from heat shocked 

cells (which has been shown to yield translation products enriched in

72,000 - 74,000 dalton heat shok protein) was dissolved in ImM EDTA, 

lOmM Hepes, pH 7.5, heated at 65°C for 10 mins, cooled rapidly on ice and 

analysed on 5-20% sucrose linear gradients under the conditions described 

in Methods (Section 5.2.) 27 fractions were collected. RNA from

fractions corresponding to sizes >4S was alcohol precipitated and trans

lated vitr^ in a rabbit reticulocyte cell-free protein synthesising 

system. One-dimensional analysis of the products revealed that 4 

fractions contained mRNAs coding for the 72,000 - 74,000 dalton heat shock 

protein (Figure 21, fractions 6-9). The sedimentation values of these 

poly(A) mRNA molecules was calculated to range between 21S and 246.

When total cytoplasmic poly(A)^ RNA from heat shocked HeLa cells 

was analysed on 5-20% sucrose gradients under identical conditions with 

those described for poly(A) RNA and the RNA from each fraction of the 

gradient was translated in vitro in a rabbit reticulocyte cell-free protein 

synthesising system, one-dimensional analysis of the translation products 

revealed a broader size range for the 72,000 - 74,000 dalton hsp coding
■j*poly (A) mRNAs. As it is shown in Figure 22 poly (A) mRNAs coding for 

the 72,000 - 74,000 dalton group sedimented in fractions 1-10 (approximately 

between 286 and 188), whilst the mRNA coding for the 100,000 dalton heat 

shock polypeptide sedimented between fractions 8 to 10 (approximately 216



FIGURE 21
3 5Fluorogram of [ S]-methionine labelled polypeptides resulting from the 

translation of poly(A)" RNA from heat-shocked cells which was fraction

ated on 5-20% sucrose gradients

Cytoplasmic poly(A)~RNA from heat-shocked cells was fraction

ated on 5-20% sucrose linear gradients as described in Methods (Section

5.2.). RNA from the first (from the bottom of the gradient) 19 

fractions was alcohol precipitated, quantitated, alcohol precipitated 

again and the in vitro translated by adding equal amounts of RNA (lyg) 

from each fraction to 25^1 of translation mixture. The products were 

analysed on 8.75% acrylamide/SDS gel.

Lanes 1-19 Present in ^  vitro translation products of RNA from

fractions 1-19 of the gradient (counting from the bottom). 

Proteins labelled in vivo in normal HeLa cells (see Figure 

15) .

Proteins labelled _in vivo in heat-shocked cells (see Figure 

15) .

The arrow indicates the position of 72,000 - 74,000 dalton 

heat-shock protein.

Lane 20

Lane 21
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FIGURE 22

Fluorogram of [̂ ^S]-methionine labelled polypeptides resulting from the 

translation of poly(A)^ RNA from heat-shocked cells which was 

fractionated on 5-20% sucrose gradients

Cytoplasmic poly(A)* RNA from heat-shocked cells was fraction

ated on 5-20% sucrose linear gradients as described in Methods (Section

5.2.). RNA from the first (from the bottom of the gradient) 18 

fractions was alcohol precipitated and in vitro translated by adding 

equal amounts of RNA (lug) from each fraction to 25hl of translation 

mixture. The products were analysed on 8.75% polyacrylamide/SDS gel. 

Lanes 1-18 Present jn vitro translation products of RNA from fractions 

1-18 of the gradient.

Lane designated as B shows one-dimensional analysis of 

proteins encoded by lysate's endogenous mRNA.

Lane 19 Proteins labelled ^  vivo in normal HeLa cells (see Figure

15) .

Lane 20 Proteins labelled vivo in heat-shocked cells (see Figure

15) .

Arrows indicate the positions of 100,000 and 72,000 - 74,000 

dalton heat-shock proteins.
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to 18s). The existence of poly(A) tails in the poly(A) mRNAs coding 

for the 72,OCX) -74,000 dalton proteins can not be the only possible 

reason for their broad size range compared to that of poly(A) mRNAs 

coding for the same proteins. It is possible, though, that the surpris- 

ingly broad sedimentation profile of these poly (A) mRNAs may be a 

consequence of secondary structures adopted by these RNAs during 

centrifugation in what were non-denaturing gradients,

4.4, Are the poly (A) mRNAs which code for the 12,000 - 74,CX)0 hsp

actually poly(A)^ mRNAs?

In order to show that poly(A) mRNAs coding for the 72,000 -

74.000 dalton heat shock protein are not just poly (A) mRNA molecules 

which for some reason failed to be retained by poly-(U) Sepharose, lyg 

of partially purified poly (A) mRNA (from fraction 7 of the sucrose 

gradient presented in Figure 21), which has been shown to code for the

72.000 - 74,<X)0 dalton heat shock protein was partially cleaved with OH
32end-labelled with [ p]-labelled y-ATP as described in Methods (Section 11).

“1*Ipg poly(A) RNA from heat shocked HeLa cells was also labelled in vitro

under the same conditions after the same treatment. Both samples,

dissolved in binding buffer (0.4M l^aCl, lOraM EDTA, 0.2% N-lauroyl sarcosine,

lOmM Tris, pH 7.4), were denatured at 70°C for 5 mins, cooled rapidly on

ice and applied twice to separate poly-(U) Sepharose columns. The columns

were then washed with 6 mis of (lOirM EDTA, 0.2% N-lauroyl sarcosine, lOmM

Tris, ph 7.4) buffer. The bound material was eluted with 12 ml of 90%

formamide in (0.5% N-lauroyl sarcosine, lOmM EDTA, lOmM Tris, pH 7.4).

The data presented in Table 9 show that while only 0.786% of the

total radioactivity incorporated into poly(A) RNA molecules is retained
+by poly-(U) Sepharose, 14,58% of the total radioactivity of poly(A) mRNAs 

is bound to the column under these conditions. This suggests that even 

though some poly(A) sequences exist in our poly (A) mRNA population, these 

sequences may be few or short compared to those found in poly(A) mRNAs.
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TABLE 9
■ 32,

72,000 - 74,000 dalton heat-shock protein) and poly(A)^ RNAs to

poly-(U) Sepharose

Total amount Retained by % of applied
RNA examined applied poly-(U) Sepharose radioactive RNA

cpm cpm bound to poly-(U)
Sepharose

(i) [32P]-
poly(A)- RNA 4,118,725 32,363 0.786

(ii) [32p]_
poly(A)+ RNA 4,008,861 584,779 14.58

lyg of partially purified poly (A)" RNA from fraction 7 of the 

sucrose gradient presented in Figure 21, or IjJg of poly(A)^ RNA from 

heat-shocked cells was subjected to mild alkaline hydrolysis by heating 

at 90°C for 5 mins and then labelled vitro with [^^P]-labelled 

^-ATP at a specific activity of 16 x 10^ cpm/jig following the method 

described in Methods (Section 11). Both samples dissolved in 0.5 ml of 

[0.4 M N a d ,  10 mM EDTA, 0.2% N-lauroyl sarcosine, 10 mM Tris, pH 7.4), 

denatured at 70^C for 5 mins, cooled rapidly on ice and applied twice 

to separate poly-(U) Sepharose columns. The columns were washed with 

6 mis of [10 mM EDTA, 0.2% N-lauroyl sarcosine, 10 mM Tris, pH 7.4] 

buffer and the bound material was eluted with 12 ml of 90% formamide in 

[0.5% N-lauroyl sarcosine, 20 mM EDTA, 10 mM Tris, pH 7.4],

Trichloroacetic acid-precipitable radioactivity was determined 

as described in Methods (Section 13.1.).



X u Ü

Indeed, comparison of the elution profile of poly (A) RNA retained by
+the column with that of poly(A) RNA (see Figure 23), shows that the low 

level of purified end-labelled poly (A) RNA initially retained by the 

column however, elutes very readily with formamide. The large level of 

label bound in the case of poly(A) RNA, however, elutes less quickly 

suggesting that in the latter case the poly(A) segments are more tightly 

bound and thus probably longer.

Whilst this experiment is not definitive it does suggest that 

some of the poly(A) mRNAs do contain at least low levels of possibly 

short oligo (A) tracts. To examine the situation further, with particular 

emphasis on the mRNA for the 72,000 - 74,000 heat shock protein, the 

effect of multiple cycles of affinity chromatography at various temperatures 

was carried out.

4.5, Poly(A) mRNAs coding for the 72,000 - 74,000 heat shock protein

are not retained by poly- (U) sepharose after three cycles of 

chroma tography

Since some of the poly (A) mRNAs coding for the 72,000 —  74,000 

heat shock protein might contain short poly(A) regions three successive 

cycles of chromatography on poly- (U) Sepharose were carried out and the 

ability of the unbound RNA fraction to code for the 72,000 - 74,000 dalton 

heat shock protein was tested in each case.

Total cytoplasmic heat shocked cell RNA was subjected to 

chromatography on poly-(U) Sepharose as described in Methods (Section 5,1.3.)
- j -  —Poly(A) and poly (A) RNA was subjected to a second chromatography cycle 

under the conditions described before.

The material which was not retained by poly- (U) Sepharose during 

the second cycle was subjected to a third chromatography cycle on a 

separate column. As it is shown in Table 10 the RNAs which failed to be 

retained by poly-(U) Sepharose after the first chromatography cycle but 

were retained after a second or third cycle did not stimulate the in vitro



FIGURE 23
32Elution profiles of in vitro [ P]-labelled "purified” heat-shock 

specific poly(A)" RNA or heat-shocked cell poly(A)^ RNA bound to 

poly-(U) Sepharose column

In vitro [^^P]-labelled "purified" poly(A)~ or total 

cytoplasmic poly(A)^ RNA from heat-shocked HeLa cells was 

chromatographed on poly-(U) Sepharose (see Table 9).

Fractions 1-6 contain the material washed off the column during 

the washing step.

Fractions 7-18 contain the bound material which was eluted with 

90% formamide in [0.5% N-Lauroyl sarcosine, 10 mM EDTA, 10 mM Tris, pH 

7.4] .
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TABLE 10

In vitro incorporation of [̂ ^S]-methionine into polypeptides directed 

by various fractions of cytoplasmic RNA from heat-shocked cells after 

three chromatography cycles on poly-(U) Sepharose

RNA assayed
Amounts 

yg/25yl assay
[35g]-methionine 

incorporation 
cpm/yl assay

poly(A)^ RNA 5.0 21,400

poly(A)2 RNA 5.0 19,600

poly(A)“ RNA 5.0 17,600

poly(A)2 RNA 1,0 0

poly(A)* RNA 1.0 0

Assay mixtures (25yl) containing various amounts of RNA 

fractionated by successive cycles of chromatography of poly-(U) Sepharose 

were incubated at 60 mins at 37°C under standard conditions.

Incorporated radioactivity was estimated as described in Methods 

(Section 13.2.), Incorporation due to endogenous messenger activity was 

subtracted in each case.

poly(A) 1 RNA:

poly (A) 2
RNA:

poly(A) 3 RNA:

poly(A)^ RNA:

poly(A)^ RNA:

one chromatography cycle.

chromatoghraphy cycles.

chromatography cycles.

retained during the second cycle.

retained during the third cycle.
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35incorporation of [ S ]-raethionine into polypeptides. Since these RNAs 

show no messenger activity, they could possibly be rRNA molecules retained 

by poly-(U) Sepharose because of their secondary structure. Mien the 

in vitro translation products of the various RNA fractions were analysed 

on one-dimensional acrylamide/SDS gels (see Figure 24) it was shown that 

the mRNAs which failed to get retained by poly-(U) Sepharose after three 

chromatography cycles code, for the 72,000 - 74,000 dalton heat shock 

proteins (see Figure 24, Lane 4), while the ability of this RNA fraction 

to code for some other protein bands (Figure 24, Lane 4, bands A and B) 

is substantially reduced. Thus, even though some of the mRNAs fraction

ated as poly(A) mRNAs after one chromatography cycle are retained by 

poly-(U) Sepharose after three successive cycles, the majority of the 

mRNAs coding for the 72,000 - 74,000 heat shock protein is not.

This result suggests that most of the particular mRNAs for the

72,000 - 74,000 hsp have either no poly(A) tails, o^ oligo(A) tails 

shorter than the minimum length required in order to be retained by 

poly-(U) Sepharose (see next section).

4.6. Poly (A) mRNAs coding for the 72,000 - 74,000 dalton heat-

shock protein are not retained by poly-(U) Sepharose after

a second chromatography cycle carried out a t .4°C
*4*Poly - (U) Sepharose retains poly(A) mRNAs with a poly(A) 

sequence larger than about 10-15 nucleotides long (Dubroff and Nemer,

1975; Humphries et al., 1976), while oligo (dT)-cellulose larger than 

20 nucleotides long (Gorski et al., 1974; Groner et al., 1974). How

ever, when oligo (dT) cellulose chromatography is carried out at 4°C 

poly (A) sequences as short as 6-10 nucleotides long are retained 

(Morrison et al., 1979; Levonson and Marcu, 1976),

In order to improve the ability of poly-(U) Sepharose to 

retain shorter poly (A) tails than usual, the following was done.



FIGURE 24
3 5Fluorogram of [ SI-methionine labelled polypeptides resulting from the 

translation of unbound or bound to poly-(U) Sepharose cytoplasmic RNAs 

from heat-shocked HeLa cells after successive cycles of poly-(U)

Sepharose chromatography

Assay mixtures (25pl) containing various amounts of RNA 

fractionated by successive cycles of chromatography on poly-(U) Sepharose 

were incubated at 37^C for 60 mins under standard conditions, 

aliquots containing equal amounts of radioactivity from each assay were 

analysed on 8.75% polyacrylamide/SDS gel.

Lane 1 No RNA added to the translation system.

Lane 2 5yg of RNA which remained in the unbound fraction after one

chromatography cycle.

Lane 3 5yg of RNA which remained in the unbound fraction after two 

chromatography cycles.

Lane 4 5wg of RNA which remained unbound after three chromatography 

cycles.

Lane 5 lyg of RNA which was not retained by poly-(U) Sepharose after 

one chromatography cycle but was retained during the second 

cycle. ' ■

Lane 6 iWg of RNA not retained by poly-(U) Sepharose after two

chromatography cycles but was retained during the third cycle.

Lane 7 In vivo labelled proteins from normal cells.

Lane 8 In vivo labelled proteins from heat-shocked HeLa cells.

The arrows indicate the position of the 100,000 and 72,000 -

74,000 dalton heat-shock proteins.

Protein bands A and B are those encoded by mRNAs which failed to 

get bound to poly-(U) Sepharose during the first and second 

chromatography cycle, but were retained during the third cycle.
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Heat-shoeked cell cytosplasmic RNA was subjected to one cycle of poly- 

(U) Sepharose chromatography at room temperature 20°C) . The RNA 

fraction which was not retained by the column (poly(A) RNA) was pooled, 

ethanol precipitated and subjected to a second chromatography cycle at 

4°C.

As it is shown in Table 11, 1.8 % of the total RNA is retained 

by poly-(U) Sepharose during the first chromatography cycle at 20°C, while 

an increased amount (4.6% of the total RNA) is retained after a second 

chromatography cycle at 4°C, When appropriate amounts of all RNA 

fractions were translated vitro in a rabbit reticulocyte cell-free 

translation system the RNAs retained by poly-(U) Sepharose after the 

second chromatography cycle at 4°C stimulated protein synthesis (Table 12),

Thus, unlike the situation after a second chromatography cycle 

at 20°C, when no translational activity was detected in the RNA fraction 

retained by poly-(U) Sepharose during the second cycle (see Table lO and 

Figure 24, Lane 5), a decrease of the temperature during the second 

cycle seems to favour the retention of some more mRNA molecules. Since 

the percentage of total RNA retained by poly-(U) Sepharose at 4°C is 

4.6% compared to 1.8% at 20°C (see Table 10^ it is quite possible that 

some of these RNAs are also rRNA molecules. The decrease in the trans

lational activity of the mRNA retained at 4°C (compared with that of the 

RNA retained at 20^C) might be due to the presence of this increased 

amount of rRNA.

Analysis of the translation products on one-dimensional poly

acrylamide/ SDS gels showed that some of the poly(A) mRNAs coding for 

the 72,000 - 74,000 dalton heat-shock protein band are retained by 

poly-(U) Sepharose at 4°C (Figure 25, Lane 3) even though the bulk of 

this poly (A) mRNA population remains unbound (see Figure 25, Lane 5).
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•TABLE -11

Quantitation of RNA•fractionated after one chromatography cycle at 

2o°c followed by a seoond ono at 4°c

RNA Assayed
Amount

ygs
% of th.e total 

RNA

RNA unbound after one chroma
tography cycle at 2QOC and a 
second one at 4°C 816 93.5

RNA retained by poly-(U) 
Sepharose after one 
chromatography cycle at 20 C 16 1.8

RNA not retained after the 
first cycle at 20°C, but 
retained after the second one 
at 4^0 40 4.6

Cytoplasmic RNA from heat-shocked HeLa cells was fractionated by 

poly-(U) Sepharose chromatography at 20°C as described in Methods 

(Section 5.1.3.). An aliquot of the unbound material was kept while 

the rest was ethanol precipitated, dissolved in binding buffer (see 

Methods, Section 5.1.3,), denatured at 70^C for 5 mins and applied twice 

to poly-(U) Sepharose at 4°c. The washing step was also carried out at 

4°C, while the bound material was eluted at 20°C. RNA from all fractions 

was ethanol precipitated, collected by centrifugation, dissolved in H^O 

and the optical density was measured at 260 nm in UV light. The amount 

of RNA was calculated taking in account that 1 o.D. unit corresponds to 

40pg of RNA.
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■TABLE 12
r35 1In Vitro incorporation of L- L ‘ s k  ifiéthioniiié into 'polypeptides directed 

by various fractions of cytoplasmic r n a from hoat-^shocked HeLa cells 

after one chromatography cycle at 20^C followed by a second cycle at 4°c

RNA Assayed Amounts
pg/25pl

[ - methionine
Incorporation 
cpm/yl assay

RNA bound to poly-(U) 
Sepharose at 20^C 1.0 37,600

RNA unbound to poly-(U) 
Sepharose at 20*̂ 0 5.0 17,450

RNA which fails to get 
bound at 20^0, but does 
get bound at 4^C 1.0 21,862

RNA which remains unbound
at 20°C and 4 % 5.0 13,071

Assay mixtures (25yl) containing various amounts of RNA fraction

ated by one chromatography cycle on poly-(U) Sepharose at 20^c followed 

by a second cycle at 4°C, were incubated for 60 mins at 37°C under 

standard conditions. Incorporated radioactivity was estimated as 

described in Methods (Section 13.2.). Incorporation due to endogenous 

mRNA activity was subtracted in each case.



FIGURE 25
3 5Fluorogram of [ S]-methionine labelled polypeptides resulting from the 

translation of various RNA fractions resulting from one chromatography 

cycle at 2 0 followed by a second cycle at 4°C

Translation products of the various RNA products were analysed 

on one-dimensional 8.75% polyacrylamide/SDS gel.

The polypeptide pattern shown was obtained from the translation 

of the following RNA samples.

Lane 1 Without added mRNA.

Lane 2 lug of heat-shocked cell RNA retained by poly-(U) Sepharose

after one chromatography cycle at 2 0 .

Lane 3 lug of heat-shocked cell mRNA which was not retained during the

first cycle but during the second one at 4°C.

Lane 4 5Ugs of heat-shocked cell mRNA unretained after the first 

chromatography cycle at 20°C.

Lane 5 5ugs of heat-shocked cell RNA unretained by poly-(U) Sepharose

after one chromatography cycle at 20^C followed by a second

one at 4°C.

The arrow indicates the position of the 72,000 - 74,000 dalton 

heat-shock protein.

The RNA which was not retained by poly-(U) Sepharose after a

second chromatography cycle at 4^C has a decreased ability to code for

protein bands A, B and C (Lane 5),
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Comparison of the pattern of proteins encoded by poly(A) mRNAs after 

the first chromatography cycle at 20°C (Figure 25, Lane 4) with those 

encoded by RNAs which did not get bound to poly-(U) Sepharose after a 

second chromatography cycle at 4°C (Figure 25, Lane 5), shows that some 

of the protein bands are decreased among the products of the latter. 

(Figure 25, Lane 5, Bands A, B and C ) .

All these results show that even when more efficient separation
-j"of poly (A) and poly(A) mRNAs is achieved after a second chromatography 

cycle at 4°c, the 72,000 - 74,000 dalton heat-shock protein is still 
one of the two major in vitro translation products of the RNA fraction 

which is not retained by poly-(U) Sepharose (poly (A) mRNA).

4.7. Two-dimensional analysis of the in vitro translation products

of the "partially purified" poly(A) mRNA coding for the

72,000 - 74,000 dalton heat-shock protein

Two-dimensional electrophoretic analysis has shown that the

100,000 dalton heat-shock protein is made up of at least two polypeptide

species, whilst the 72,000 - 74,000 dalton class may comprise several.

In order to investigate whether all these heat-shock polypeptides result
+  —directly from mRNA translation and whether poly(A) and poly(A) code for

the same or different polypeptide spots, a comparison of the ^  vitro
•**translation products of cytoplasmic poly (A) and poly(A) RNA was carried 

out using the two-dimensional electrophoretic separation system of 

O'Farrell (1975). An initial requirement was to identify the heat- 

shock polypeptides amongst the polypeptide pattern resulting from the
tmmtranslation of either poly (A) or poly (A) mRNA. To this end a two- 

dimensional analysis of the products resulting from the translation of 

"partially purified" poly(A) mRNA for the 72,000 - 74,000 groups (from 

fraction 8 of Figure 21) was carried out. As it is shown in Figure 26
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seven polypeptide products appeared in the region expected for the

72,000 - 74,000 heat-shock proteins and these are designated (a, ,

g, Y, 6, e,ç). The position of these polypeptides in the following

fluorograms of the two-dimensional analysis of the polypeptides from
+  —in vitro translation of either poly (A) or poly (A) mRNA was then 

determined by comparison of each fluorogram with the fluorogram pre

sented in Figure 26, Also, to facilitate comparison of gels it should 

be pointed out that all two-dimensional gels of in vitro translation 

products include 7 polypeptides and a group of polypeptides (Figure 27, 

spots 1-7 and a group of spots in brackets) which are always detected 

when the lysate is incubated in the absence of exogenous mRNA and can 

be used as additional reference markers.

4.8. Two-dimensional analysis of the in vitro translation products

of poly(A) RNA from control and heat-shocked HeLa cells

As it has already been shown the 72,000 - 74,000 heat-shock

protein is encoded by poly (A) RNA from control cells, but at minimal

amounts (Figure 19, Lane 2).

Since the 72,000 - 74,000 heat-shock protein encoded by

poly(A) RNA from heat-shocked cells comprises seven polypeptides

(Figure 25, a, g, y  ̂ ô,e, Ç) , two questions arose. Firstly, do

poly(A) mRNAs from control cells code for all the seven polypeptides

and secondly, do poly(A) mRNAs from heat-shocked cells code for an

identical set of polypeptides.

In order to answer these questions the iu vitro translation

products of total poly(A)^ mRNA from both control and heat-shocked

cells were next analysed on two-dimensional gels following the pro-
+cedure of 0 'Farrell (1975). Comparing the products of poly(A) mRNA

+from control cells with those of poly(A) mRNA from heat-shocked cells



FIGURE 26
3 5Fluorogram of two-dimensional analysis of [ S]-methionine labelled in 

vitro translation products of the partially purified poly(A)~ 

cytoplasmic RNA from heat-shocked cells that yields proteins of the

72,000 - 74,000 dalton size class

lyg poly(A) RNA from fraction 8 of the 5-20% sucrose density 

gradient (see Figure 21) was translated iui vitro in a rabbit reticulocyte 

cell-free translation system and the products analysed by the two- 

dimensional gel system of O'Farrell (1975). The separated proteins of 

the 72,000 -74,000 dalton size class are designated a, a', 8, y, 6, s 

and Ç •
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FIGURE 27
r35 "IFluorogram of two-dimensional analysis of I sJ- methionine labelled 

polypeptides detected when rabbit reticulocytes lysate is incubated 

in the absence of exogenous mRNA

25yl of rabbit reticulocyte cell-free protein synthesising 

system to which no exogenous RNA was added was incubated at 37°C for 

60 mins. The labelled polypeptides were analysed using the two- 

dimensional system of O'Farrell (1975).

Seven polypeptides (1-7) and a group of polypeptides (A) 

were detected in this fluorogram.
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the following are concluded:

1) Some polypeptide spots in the fluorogram of the translation

products of poly (A) RISIA from control cells were not observed in the
“I"pattern of translation products of poly (A) RNA from heat-shocked cells 

(such polypeptides are indicated by arrows in Figure 28A),

2) Whereas in the area of the 72,000 - 74,000 dalton class of 

heat-shock proteins seven polypeptide spots (a, ot'̂, g, y, 6, e, Ç) are 

encoded by the poly(A) RNA from heat-shocked cells only three {y, e, 

and Ç) seem to be coded by poly (A) ̂  RJSA from control cells.

3) Only one strong polypeptide spot was found in the position 

expected of the 100,000 dalton heat-shock proteins after translation

of cytoplasmic poly(A) RNA from heat-shocked cells (Figure 28B). This

polypeptide is also formed but with slightly reduced intensity in the
+translation products of the poly (A) RNA from control cells (Figure 28A).

4) Although it is not always easy to see the polypeptide migrating 

in the 37,000 dalton region two-dimensional analysis of products from 

heat-shocked cell poly (A) RNA translation showed a single spot in this 

region which is not present in the translation products from control 

cell poly(A)^ RNA (Figure 28B) . This polypeptide may be a 37,000 

dalton heat-shock protein.

4.9. Two-dimensional analysis of the in vitro translation products

of poly (A) mRNA from control and heat-shocked HeLa cells 

When the translation products of poly(A) mRNA from control 

and heat-shocked HeLa cells were analysed in two-dimensional gels 

(O'Farrell, 1975) the following was observed:

1) A number of polypeptide spots are made by poly(A) RNA from

control cells but which are not encoded in by the poly(A) RNA from 

heat-shocked cells. Some of these "missing" polypeptides are



FIGURE 28

Fluorogram of the two-dimensional electrophoretic separation of 

methionine labelled in vitro translation products of cytoplasmic 

poly (A) RNA from control and heat-shocked HeLa cells

Total cytoplasmic poly(A)^ RNA was translated vitro using 

a rabbit reticulocyte cell-free translation system and the translation 

products were analysed by two-dimensional electrophoresis,

(A) Translation products of Ipg poly (A)"*" RNA from control HeLa

cells,
+(B) Translation products of lyg poly (A) RNA from HeLa cells

heat-shocked at 45^C for 5 mins and then allowed to recover 

at 37^c for 2 hrs.

The brackets indicate the spots possibly corresponding to 

the multiple forms of actin.

a, a , 3/ Y/ , £ and Ç refer to the proteins of the 72,000-

74,000 molecular weight.

lOOK indicates the 100,000 daltons HeLa heat-shock protein. 

Similarly 37K is likely to be the 37,000 daltons HeLa heat-shock 

protein.

The arrows in A point to the proteins which do not appear 

among the translation products of the poly (A) RNA from heat-shocked 

cells (B).
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indicated by arrows in Figure 29A and those that are exclusively poly (A) 

translation products are both arrowed and numbered (see Figure 29A),

2) Similar to the situation with poly (A) RNA, only three

proteins of the 72,000 - 74,000 dalton class (y, e ,ç ) are translated 

from cytoplasmic poly (A) RNA from control cells (see Figure 29A), whilst 

all seven (a, 3, y, 6, e, Ç) were encoded by cytoplasmic poly (A) RNA

from heat-shocked cells (Figure 29B).

3) A 100,000 dalton protein spot was also detected among the 

translation products of poly(A) RNA from both control and heat-shocked 

HeLa cells, but it did not seem to be particularly enriched among the 

translation products of poly (A) mRNA for heat-shocked cells (compare 

Figures 29A and 29B). A polypeptide migrating in a position expected 

of the 37,000 dalton heat-shock protein was also detected among the 

translation products of poly(A) mRNA from heat-shocked cells (see Figure 

29B). So, it appears that despite possible differences in relative
autoabundances both cytoplasmic poly(A) and poly (A) mRNAs from heat-shocked 

cells code for the same overall variety of heat-shock proteins in the

72.000 - 74,000 dalton size classes (and possibly in the 37,000 dalton 

and 100,000 size classes as well).

4.10. Conclusion

The results presented in this section have shown that both
to|- mm

poly(A) and poly (A) mRNAs from heat-shocked HeLa cells code for the

72.000 - 74,000 heat-shock protein. The poly(A) mRNAs which code

for this particular protein band do not seem to contain poly(A) tails
+of the length found in poly(A) mRNAs. However, one can not exclude 

the possibility of small oligo (A) tracts, either internally or externally 

located. The 72,000 - 74,000 dalton hsp in vitro encoded by both heat- 

shocked cell poly(A) and poly(A) mRNAs consists of seven polypeptides



FIGURE 29
35Fluorogram of the two-dimensional electrophoretic separation of [ s] -  

methionine labelled in vitro trahslation products of cytoplasmic ptly (A) 

RNA from control and heat-shocked HeLa cells

Total cytoplasmic poly (A) RNA was translated in vitro using 

a rabbit reticulocyte cell-free translation system and the translation 

products were analysed by two-dimensional electrophoresis,

(A) Translation products of 5yg poly (A) RNA from control HeLa

cells.

(B) Translation products of 5yg poly (A) RNA from HeLa cells

heat-shocked at 45°C for 5 mins and then allowed to recover 

at 37^C for 2 hrs.

The brackets indicate the spots possibly corresponding to 

the multiple forms of actin,

a, f 3# Y/ Ô, e and ç refer to the proteins of the 72,000-

74,000 molecular weight.

lOOK indicates the 100,000 daltons HeLa heat-shock protein. 

Similarly 37K is likely to be the 37,000 daltons HeLa heat-shock 

protein.

The arrows in (A) point to the proteins which do not appear

among the translation products of the poly (A) RNA from heat—shocked cells

(B) .
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Ca, a^, B ,  Yf <S, e, ç) . However, poly (A)’*' and poly (A) mRNAs from 

normal HeLa cells code for only three of these polypeptides (y, e and Ç).

5. Effect of heat-shock treatment on the polysomal profile

A very rapid response of Drosophila cultured cells to heat- 

shock treatment is the breakdown of pre-existing polysomes (McKenzie 

et al., 1975; Biessman et al., 1978). Polysomes reappear some 30 mins 

after the start of the heat-shock treatment and have been shown to be 

loaded with heat-shock specific mRNAs (Lindquist-McKenzie et al., 1975; 

McKenzie and Meselson, 1977; Spradling et al., 1977; Mirault et al.,

1978; Moran et al., 1978). However, when actinomycin D is added before 

heat-shock treatment polysomes disaggregate but fail to reappear 30 mins 

later (Lindquist-McKenzie et aX ., 1975). On the other hand, later 

experiments have shown that when heat-shocked Drosophila cells are 

transferred to normal temperature normal polysomal profile is restored 

even if the synthesis of heat-shocked RNA has been blocked with actino

mycin D (Storti st al., 1980),

Since the conditions of heat-shock treatment in HeLa cells are 

quite different from those in Drosophila cells, the effect of heat-shock 

upon the polysomal profile of HeLa cells was investigated.

5.1. Polysomal profile of HeLa cells after the heat-shock treatment
HeLa cells were heat-shocked at 45°c for 5 mins and harvested

immediately after the heat-shock treatment or allowed to recover at 37°C

for 0.5, 1 or 2 hrs before harvesting. Cytoplasmic extracts from all

the samples (see Methods, Section 3.1.1.) were analysed on 15-30% sucrose

gradients (see Methods, Section 3.2.1.) and harvested by pumping through

a Gilford 2,000 recording spectrophotometer set at 260 nm.

As it is shown in Figure 30B polysomes disappear after heat-

shock treatment at 45°C for 5 mins and are being converted to monosomes.



FIGURE 30

Polysomal profile of normal HeLà cells or heat-ahocked HeLa cells 

harvested O, 0.5, 1 or 2 hrs after thé heat-shock

Cytoplasmic extract was prepared from normal cells or HeLa 

cells which had been heat-shocked at 45°C for 5 mins and then allowed 

to recover at 37°c for O, 0.5, 1 or 2 hrs, as described in Methods 

(Section 3.1.1.). The cytoplasmic extract was then made up to 0,5% 

with respect to Brij-58 and 0.5% with respect to deoxycholate and 

layered onto 15-30% (w/v) sucrose gradients in RSB (see Methods, Section

3.2.1.), After centrifuging at 27,000 rpm for 110 mins at 4°C the 

gradients were harvested by pumping through a Gilford 2,000 recording 

spectophotometer set at 260 nm.

(A) Polysomal profile of normal HeLa cells,

(B) Polysomal profile of HeLa cells harvested immediately after 

heat-shock.

(C) Polysomal profile of HeLa cells harvested 0.5 hrs after 

heat-shock.

(D) Polysomal profile of HeLa cells harvested 1 hr after heat- 

shock.

(E) Polysomal profile of HeLa cells harvested 2 hrs after heat- 

shock .



0 .

e
a

o
vo
CM

-p
nS

0
ü
S
ci

rQ

O

0
rû
C

1

(a)

1

(b)

1

TopBottom

(c)

FT’action number



J. #4 .3 a

e

o
VO
c\]

1

(1)

(D
o

d
rO
U
o
to
rQ

1

• 5

Bottom Top

Fraction number



12 4

When the cells are allowed to recover at 37°C for 0,5 hrs after heat- 

shock treatment, there is a small decrease of the monosomal peak while 

disomes and trisomes are building up (see Figure 30C), 1 hr after the

heat-shock treatment normal polysomal profile has not yet been restored. 

Even though there is a substantial decrease of the monosomal peak, most 

of the mRNAs seem to be engaged in light polysomes (see Figure 30D).

It takes 1.5 - 2 hrs recovery at 37^C to obtain a normal polysomal pro

file (see Figure 30E and compare it with Figure 30A).

5.2. Is the production of heat-shock RNA required for the appearance

of normal polysomal profile two hours after the heat-shock?

Since normal polysomal profile is obtained in HeLa cells 2 hrs 

after the heat-shock treatment when accumulation of heat-shock mRNAs 

sequences occurs in the nucleus (gurdon, 1982) a'question arises 

whether the production of heat-shock mRNAs is required in order to have 

normal polysomal profile restored.

To answer this, we incubated HeLa cells with actinomycin D at 

a concentration 1 yg/ml of medium for 30 mins. Then half the cells 

were heat-shocked at 45°C for 5 mins and afterwards transferred at 37°C 

for 2 hrs (heat-shocked cells), while the other half were kept at 37^C 

all the time (normal cells). Cytoplasmic extracts were prepared from 

both normal and heat-shocked cells (see Methods, Section 3.1.1.), 

analysed on 15-30% sucrose gradients (see Methods, Section 3.2.1.) and 

harvested by pumping through a Gilford 2,000 recording spectophotometer 

set at 260 nm.

As it is shown in Figure 31, the polysomal profile of heat- 

shocked cells incubated with actinomycin D (Itg/ml) for 2.5 hrs (see 

Figure 31B) is identical to the polysomal profile of normal cells 

treated in the same way (see Figure 31A), However, comparison of



FIGURE 31

Polysomal profile of normal HéLà cells or héat-shûcked HeLa cells 

incubated with actinomycin D (lyg/ml) for 2.5 hrs.

HeLa cells were incubated with actinomycin D (lyg/ml) for 

30 mins. Then half of the cells were heat-shocked at 45*^C for 5 mins 

and transferred at 37^c for 2 hrs, while the rest were at 37^C through

out the whole period (normal cells), Cytoplasmic extracts were pre

pared from both normal and heat-shocked cells and analysed on 15-30% 

(w/v) sucrose gradients (see Legend of Figure 30).

(A) Polysomal profile of normal HeLa cells incubated with

actinomycin D for 2.5 hrs.

(B) Polysomal profile of heat-shocked HeLa cells incubated

with actinomycin D for a total of 2.5 hrs.
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Figures 30A and 31A shows that incubation of HeLa cells with actinomycin 

D has affected the polysomal profile of control HeLa cells. Since 

actinomycin D is known to affect itself the polysomal profile of polysomes 

(Singer and Penman, 1972), it is not possible to draw any conclusions from 

this experiment.

5.3. Conclusion

The results presented in this section have shown that heat-shock 

treatment of HeLa cells results in breakdown of polysomes. Even though 

the cells are then transferred to 37^0, normal polysomal profile is only 

obtained 1-2 hrs after the heat-shock treatment. It has not been 

possible to determine whether production of heat-shock specific mRNAs is 

required for the polysomal profile to be restored, because of the side 

effects of actinomycin D.

6. Stability of the mRNAs coding for the 72,000 - 74,000 dalton

heat-shock protein

6,1. Are the mRNAs coding for the 72,000 - 74,000 heat-shock proteins

degraded once the rate of synthesis of these proteins declines? 

As it has already been shown synthesis of the heat-shock proteins 

in HeLa cells is increasing during the 2 hrs following the heat-shock 

treatment. Afterwards, synthesis of these particular proteins decreases 

and 4 hrs after the heat-shock treatment reaches the level at which they

are found in normal HeLa cells (see Figure 17), The decrease in the

synthesis of the heat-shock proteins 4 hrs after the heat-shock treatment 

might be coupled to degradation of the mRNAs coding for the heat-shock 

proteins, as it happens in the case of histone mRNAs, in HeLa cells, once 

histone synthesis is not required any more (Gallwitz, 1975), Since the

72,000 - 74,000 dalton heat-shock proteins are encoded by both poly(A) 

and poly (A) mRNAs (see Figure 19) and given that specific nonpolyadenyl- 

ated mRNAs have been reported to be more easily susceptible to degradation
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(Hues et al., 1974; Marbaix et al., 1975; Gallwitz, 1975), a question

arising is whether the poly (A) mRNAs coding for the 72,000 - 74,000

dalton heat-shock proteins are the first to be degraded once the synthesis

of hsp's is substantially decreased.

In order to explore these possibilities we isolated total

cytoplasmic poly (A) and poly (A) RNA immediately, 2hrs, 4 hrs and 6 hrs

after the heat-shock treatment and tested the ability of each RNA fraction

to code for the heat-shock proteins. One-dimensional analysis of the

translation products (see Figure 32) revealed that the 72,000 - 74,000

heat-shock protein is one of the major products of the poly (A) and

poly(A) mRNA not only 2 hrs after the heat-shock treatment (see Figure 32,

Lanes 3 and 4) but also 4 hrs and 6 hrs after the heat-shock treatment

(see Figure 32, Lanes 5, 6, 7 and 8). Comparison of the relative intensity

of the 72,000 - 74,000 dalton hsp amongst the translation products of the
+ _

various RNA fractions reveals that the ability of both poly(A) and poly(A)

mRNA to code for the 72,000 - 74,000 dalton heat-shock protein remains

almost the same during the first 6 hrs after the heat-shock treatment,
+So, it seems that neither poly (A) nor poly (A) mRNA coding 

for the 72,000 - 74,000 hsp are degraded once they stop being translated 

in vivo.

6.2, Two-dimensional analysis of the in vitro translation products

of poly (A) '*' and poly (A) mRNA isolated 6 hrs after the heat- 

shock treatment

As it has already been shown, the 72,000 - 74,000 dalton heat-

shock protein is encoded by seven different mRNA populations (see Figures
“t"28B and 29B), A question arising was whether all seven poly(A) and 

poly (A) mRNA species are present in the cytoplasm 6 hrs after the heat- 

shock treatment. To answer this question two-dimensional analysis of



FIGURE 32
r 3 5 TFluorogram o£ L S-1-methionine labelled polypeptides resulting from

the translation Of poly(A}* and pôlÿ(A) ' mRNAs isolated o, 2, ~4 and 6 hrs

after the heat-shock

HeLa cells were heat-shocked at 45°C for 5 mins and cytoplasmic

RNA was isolated immediately or after 2 , 4  and 6 hrs recovery at 37°C.
+ —The RNAs were fractionated into poly (A) and poly (A) by passing twice 

through a poly-(U) Sepharose column. All fractions were in vitro trans- 

lated in a rabbit reticulocyte cell-free protein synthesising system for 

60 mins at 37°C. The products were analysed on an 8.75% polyacrylamide/

SDS gel.

Lane 1 Translation products of lyg poly(A)^ RNA isolated immediately
after the heat-shock.

Lane 2 Translation products of 5pg poly(A) RNA isolated immediately
after the heat-shock.

Lane 3 Translation products of lyg poly (A) RNA isolated after 2 hrs
recovery at 37°C.

Lane 4 Translation products of 5yg poly(A) RNA isolated after 2 hrs
recovery at 37°C.

Lane 5 Translation products of lyg poly (A) RNA isolated after 4 hrs
recovery at 37°C.

Lane 6 Translation products of 5yg poly(A) RNA isolated after 4 hrs
recovery at 37°C.

Lane 7 Translation products of lyg poly(A)^ RNA isolated after 6 hrs
recovery at 37°C,

Lane 8 Translation products of 5yg poly(A) RNA isolated after 6 hrs
recovery at 37^C.

Lane 9 Proteins labelled in vivo by incubating intact HeLa cells with
[^^sl- methionine for 1 hr at 37°C 

Lane 10 Proteins labelled in vivo by incubating heat-shocked cells with 
methionine for 1 hr after 2 hrs recovery at 37^C, The 

arrow indicates the position of the 72,000 - 74,000 dalton heat- 
shock protein.
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the in vitro translation products of the poly(A) and poly(A) mRNAs 

isolated 6 hrs after the heat-shock treatment was carried out*

Figure 33 shows that all seven polypeptides (a, a’̂ , 3, y, 6, 

e, and Ç) are found amongst the translation products of cytoplasmic
fpoly (A) mRNA isolated 6 hrs after the heat-shock, even though the a, a

polypeptide spots are substantially diminished. It should be noted that

the polypeptide spot believed to be the 37,000 dalton hsp {see Figure 28B)

is missing from the pattern of Figure 33. This raises the possibility 
"i*that poly (A) mRNAs coding for this particular polypeptide are less 

stable than those coding for the 72,000 - 74,000 dalton hsps. However, 

one can not exclude the possibility that these mRNAs were degraded during 

the RNA isolation procedure.

Two-dimensional analysis of the in vitro translation products 

of poly (A) mRNA isolated 6 hrs after the heat-shock treatment revealed 

that five out of the seven poly(A) mRNA species coding for the 72,000 -

74,000 hsps are still in the cytoplasm 6 hrs after the heat-shock treat

ment (see Figure 34, spots 3, Y , 6, e and Ç).

These results suggest that most of the steady state poly (A) 

mRNAs coding for the major hsp's in HeLa cells are as stable as their 

polyadenylated counterparts.

6,3. Polysomal profile of HeLa cells isolated 6 hrs after the

heat-shock treatment

The fact that the heat-shock specific mRNAs (both poly(A) 

and poly (A) ) are still in the cytoplasm 6 hrs after the heat-shock 

treatment when in vivo synthesis of hsp's has substantially decreased 

(see Figure 17), raises the possibility that for some reason the majority 

of these mRNAs may not be engaged in polysomes. In order to find out 

whether there is any change in the polysomal profile of HeLa cells 6 hrs



FIGURE 33

Fluorogram of two-dimensional analysis of methlonine labelled

In vitro translation products of heat-shocked cell polyCA)^ mEtNA

isolated 6 hrs after the heat-shock

HeLa cells were heat-shocked at 45^C for 5 mins and allowed 

to recover for 6 hrs at 37°C before harvesting. Cytoplasmic RNA was 

isolated and fractionated by affinity chromatography on poly-(U) 

Sepharose, lyg of poly(A)^ RNA was translated in a rabbit reticulocyte 

cell-free protein synthesising system and the products were analysed 

on two-dimensions following the procedure described by O'Farrell (1975).

Polypeptides a , 3, Y/ , e and Ç are six of the seven 72,COO-

74,000 heat-shock proteins. The position of the 100,000 hsp is also 

indicated,
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FIGURE 34

Fluorogram of two-dimensional analysis of E^^sj-methionine labelled 

in vitro translation products of heatrshocked cell poly(A) RNA 

isolated 6 hrs after the heat-shock

HeLa cells were heat-shocked at 45°C for 5 mins and allowed 

to recover for 6 hrs at 37°C. Cytoplasmic RNA was isolated and 

fractionated by affinity chromatography on poly-(U) Sepharose, 5ygs 

of poly(A) RNA was translated in 25yl of a rabbit reticulocyte cell- 

free protein synthesising system and the products were analysed on 

two-dimensions following the procedure of O'Farrell (1975).

Spots 3, Y , 6, e and ç are five of the seven 72,000 - 74,000 

dalton heat-shock proteins. The spots in brackets are possibly the 

multiple forms of actin. The position of the 100,000 dalton heat- 

shock polypeptide is also shown.
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after the heat-shock, total cytoplasmic extracts from HeLa ceils isolated

6 hrs after the heat-shock treatment were fractionated into polysomal

and post-polysomal fractions (see Methods, Section 3.2.1.) and the RNA

extracted from each fraction was quantitated. For comparisons, RNA

was also extracted and quantitated from polysomal and post-polysomal

fractions of normal cells and cells harvested 2 hrs after the heat-shock

treatment. As it is shown in Figure 35 the polysomal profile of cells

isolated 6 hrs after the heat-shock is similar to that of normal cells

and cells isolated 2 hrs after heat-shock (for comparisons see Figures 30A

and 30E) . Also, the ratio ■. . - . calculated from the amountpost-polysomal RNA
of total RNA found in polysomal or post-polysomal fractions of HeLa cells 

isolated 6 hrs after the heat-shock was very similar to the calculated 

ratio from normal HeLa cells (see Table 13).

6.4. Are the heat-shock specific mRNAs enriched in the post-polysomal

fraction 6 hrs after the heat-shock?

To find out whether the mRNAs coding for the 72,000 - 74,000 

dalton heat-shock proteins are enriched in the post-polysomal fraction 

6 hrs after the heat-shock treatment, RNA from both polysomal and post- 

polysomal fractions from HeLa cells harvested 6 hrs after the heat-shock 

was translated ta vitro and the products were analysed in two-dimensional 

gels according to the method of O'Farrell (1975). To provide a means of 

comparison the same was done with polysomal and post-polysomal RNA from 

HeLa cells isolated 2 hrs after the heat-shock treatment.

Examination of Figures 36A and 36B shows that while most of the

72,000 - 74,000 polypeptides are amongst the most abundant polypeptides 

encoded ^  vitro by mRNA in polysomes 2 hrs after the heat-shock, only 

polypeptides y, e and C are detectable amongst the translation products 

of iqRNA in polysomes 5 hrs after the heat-shock treatment. These results



FIGURE 35

Polysomal profile of HeLa cells harvested 6 hrs after heat-shock 

treatment

HeLa cells were heat-shocked at 45°C for 5 mins and then 

allowed to recover at 37°C for 6 hrs before harvesting. Cytoplasmic 

extract prepared as described in Methods (Section 3.1,1.) was made 

up to 0,5% with respect to Brij-58 and 0,5% with respect to deoxycholate 

and layered onto 15-30% (w/v) sucrose gradients in RSB, After 

centrifuging at 27,000 rpm for llO mins at 4°C the gradients were 

harvested by pumping through a Gilford 2,000 recording spectophotometer 

set at 260 nm, Polysomal and post-polysomal fractions are as indicated 

in the diagram.
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TABLE 13

Quantitation df RISIA df pdlÿgôiùal dr ';g>ü5t~|)ûlÿao3Ml fractiOAë from normal HéLa 

cells or cells isolated 2 hrs or 6 hrs after the heat-shock treatment

Type of cells Fraction R3SCV
Assayed

ygs

ygs of total polysomal RMA 
ygs of total post-polysomal RNA

polysomal 502
Normal HeLa cells

post-polysomal 529
0.95

HeLa cells heat- 
shocked at 45*^0 
for 5 mins and 
allowed to re
cover at 37°C 
for 2 hrs.

polysomal 774

post-polysomal 901
0,86

HeLa cells heat- 
shocked at 45°C 
for 5 mins and 
allowed to re
cover at 37^0 
for 6 hrs.

polysomal 782

post-polysomal 800
0.98

Polysomal and post-polysomal fractions (see Figure 35) from normal or 

cells which had been heat-shocked at 45°C for 5 mins and then allowed to re

cover at 37^0 for 2 hrs or 6 hrs were pooled separately and the RNA from each 

fraction was ethanol precipitated, collected by centrifugation, phenol-chloroform 

extracted and re-precipitated by the addition of 2 volumes of ethanol at -20^C. 

The quantity of the RNA was estimated from the optical density readings at 

260 nm.



FIGURE 36
r 3 5 1Fluorogram of two-dimensional analysis of L s-*-methionine labelled 

in vitro translation products of HeLa cell polysomal RNA isolated 

2 hrs or 6 hrs after the heat-shock

Polysomal fractions were prepared from HeLa cells which had 

been heat-shocked at 45°C for 5 mins and then allowed to recover at 

37°C for 2 or 6 hrs as described in Methods (Section 3.2.1.). RNA 

was extracted from polysomal fractions essentially as described in 

Methods (Section 4.2.) . 5yg of polysomal RNA was translated in a 

rabbit reticulocyte cell-free protein synthesising system and the 

products were analysed on two dimensions following the procedure 

described by O'Farrell (1975).

(A) Translation products of 5yg polysomal RNA isolated 2 hrs

after the heat-shock.

(B) Translation products of 5yg polysomal RNA isolated 6 hrs

after the heat-shock.

Numbered polypeptides are those enriched amongst the 

translation products of the polysomal RNA fractions as compared 

with the translation products of the corresponding post-polysomal 

RNAs (shown in Figure 37).
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may suggest a decrease in the number and type of the 72,000 - 74,000 

coding mRNAs in polysomes 6 hrs after the heat-shock. Figure 37B shows 

that y, e and Ç were also detected amongst the translation products of 

post-polysomal RNA. isolated 6 hrs after the heat-shock. Comparison of 

Figures 36B and 37B also shows that polypeptides y, e and Ç are more 

enriched amongst the translation products of post-polysomal rather than 

polysomal RNA isolated 6 hrs after the heat-shock. However, this 

enrichment is not sufficient enough to suggest that the mRNAs coding for 

polypeptides y , e and Ç are preferentially found in the post-polysomal 

fraction 6 hrs after the heat-shock. It was also unexpected that none

of the polypeptides a, a'̂ , 3,and Ç were detected in the fluorograms 

presented in Figures 36B and 37B, especially since all the 72,000 - 74,000 

hsp's were detected amongst the translation products of cytoplasmic RNA 

isolated 6 hrs after the heat-shock (see Figure 33), It is possible 

that the mRNAs coding for polypeptides a , , 3 and Ç were degraded

during the isolation of polysomal and post-polysomal RNA especially since 

the procedure followed in this case is more lengthy than that followed 

for the isolation of cytoplasmic RNA (see Methods). It seems that limited 

degradation of mRNA has indeed taken place during the isolation of poly

somal and post-polysanal fractions, since the 100,000 dalton hsp was not 

defected amongst the in vitro translation products of either fractions 

(see Figures 36A, B, and 37 A, B).

Furthermore, comparison of Figures 36A and 37A shows that 2 hrs 

after the heat-shock a substantial amount of the mRNAs coding for the

72,000 - 74,000 and 37,000 polypeptides are also found in a free form 

in the cytoplasm. These free-mRNAs may be in equilibrium with those 

engaged in polysomes (see Introduction).



FIGURE 37
r3 5 HFluorogram of two-dimensional analysis of i ' S-l -iftëthLiQriine labelled 

in vitro translation products of HeLa cells post-polysomal RNA 

isolated 2 or 6 hrs after the heat-shock

Sub-polysomal and cytosolic fractions were isolated from 

HeLa cells harvested 2 or 6 hrs after the heat-shock as described 

in Methods (Section 3.2,1.), RNA was extracted from these fractions 

as described in Methods (Section 4.2.), 5ygs of post-polysomal RNA 

was translated in a rabbit reticulocyte cell-free protein synthesising 

system and the products were analysed on two dimensions following the 

procedure described by 0 'Farrell (1975),

(A) Translation products of 5yg post-polysomal RNA isolated

2 hrs after the heat-shock.

(B) Translation products of Syg post-polysomal RNA isolated

6 hrs after the heat-shock.

Numbered polypeptides are those enriched amongst the 

translation products of post-polysomal RNA as compared with the 

translation products of the corresponding polysomal RNA (shown in 

Figure 36) .



i J  f

Si

CA')

S 0 5



J. J

Comparison of the Iji vitro translation products of polysomal

and post-polysomal RNA isolated 2 hrs or 6 hrs after the heat-shock

(compare Figures 36A and 37A, 36B and 37B respectively) , shows that the

same mRNAs species are detected in both polysomal and post-polysomal

fractions. There are, however, quantitative differences. For example,

polypeptides 1-8 are more enriched in the translation products of post-

polysomal RNA isolated 2 hrs after the heat-shock, while polypeptides

9-14 are enriched among the translation products of polysomal RNA isolated

2 hrs after the heat-shock (see Figures 37A and 36A). These enrichments

may represent enrichment of the corresponding mRNAs in one of the two 
fractions. On the whole, the pattern obtained from in vitro translation

of polysomal and post-polysomal RNA isolated 6 hrs after the heat-shock is 

very similar to the pattern obtained from vitro translation of the same 

fractions isolated 2 hrs after the heat shock. There is, however, one 

difference: polypeptide number 4, which is enriched in the translation

products of post-polysomal RNA isolated 2 hrs after the heat-shock, is found 

enriched amongst the translation products of polysomal RNA isolated 6 hrs 

after the heat-shock (compare Figures 36B and 37A). Whether this represents 

a migration of the corresponding mRNA from the post-polysomal fraction, where 

it was primarily found 2 hrs after the heat-shock, to the polysomal fraction 

6 hrs after the heat-shock it is not known. To answer this question to

gether with any others concerning possible enrichment of particular mRNAs in 

polysomes or in free-cytoplasm, the development of an in vitro translation 

of cell-free system from extracts of HeLa cells would be required.

6.5. Conclusion

The results presented in this section have shown that while in 

vivo synthesis of the 72,000 - 74,000 hsp's declines 2 hrs after the 

heat-shock treatment, the corresponding mRNAs, both poly(A) and 

poly(A) , can still be detected in the cytoplasm of heat-shocked HeLa



cells 6 hrs after the heat-shock. In vitro translation of both poly

somal and post-polysomal RNA fractions from cells harvested 6 hrs after 

the heat-shock, failed however, to detect any dramatic increase of these 

mRNAs in the post-polysomal fractions.

7.1, Molecular cloning of cONA sequences derived from cDNA sequences

derived from heat-shocked cell poly(A)^ RNA

In order to find out whether poly(A) and poly(A) mRNAs coding

for the 72,000 - 74,000 dalton heat-shock proteins have similar sequences,

a specific probe derived from one of the two mRNA populations Is required.

In order to isolate such a probe molecular cloning of cDNA sequences was

carried out as described by Cato et al., (1981 .) . Figure 4 presents a
*1“diagram of the various steps. Briefly, cytoplasmic poly(A) RNA was 

isolated from HeLa cells two hours after the heat-shock treatment and 

reverse transcribed using oligo(dT) as a primer. The resulting cDNA was 

made double-stranded by Incubation with the Klenow fragment of E ,coll 

polymerase I. The covalent links between the two strands was destroyed

by nuclease treatment and the double stranded cDNA molecules were 

tailed with poly (dC) without prior determination of the sizes of these 

molecules. Poly(dG) was added to the Pstl cleaved pBR-322 and the 

linearised plasmid and cDNA were annealed slowly in dilute solution to 

form circular molecules. The annealed plasmids were used in the trans

formation of Escherichia coli HBlOl cells. The plasmid pBR-322 normally 

confers ampiclllin and tetracycline resistance to its host cell. However, 

insertion of DNA into the Pst 1 site destroys the ampiclllin resistance 

and the recombinant clones may be recognised at tet^ amp^ (Bolivar

et al., 1977). 319 tet^ amp^ colonies were screened by in situ colony

hybridisation technique on replica filters. One set of filters was 

hybridised with [^^p]- labelled cytoplasmic poly(A)^ RNA from control HeLa
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r 3 2 1cells and the other set of filters with L pJ-labelled cytoplasmic 
H"poly (A) RNA isolated 2 hrs after HeLa cells had been heat-shocked for 

5 mins at 45^C. Figure 38 shows an autoradiogram of two replica filters 

with 41 out of 319 clones after such separate hybridisation with the two 

probes. This autoradiogram shows that most of the 41 clones hybridise 

with similar intensity to both probes, but some (those in circles around 

them) show stronger hybridisation to the labelled RNA from heat-shocked 

cells than to the labelled RNA from control cells, 13 such clones were 

isolated from the initial 319 recombinants but only six of these clones 

were studied further and these are designated pHSl, pHS2, pHS3, pHS4, 

pHS5 and pHS6 (see Figure 38).

7.2. Characterisation of the clones

7.2.1. One-dimensional analysis of the translation products of the

heat-shocked cell cytoplasmic RNA which hybridised to clones 

pHSl - pH56

In order to establish that the pHS recombinant plasmids are 

indeed cDNA clones derived from mRNAs coding for HeLa heat-shock proteins, 

a procedure which is extension of a technique described by Stark and 

Williams (1979) was used. The pHS plasmids were each covalently bound 

to separate DBM-paper discs and hybridised with total unfractionated 

cytoplasmic RNA isolated 2 hrs after a 5 min heat-shock of HeLa cells 

at 45°C (see Methods, Section 10.3,). Unbound RNA was washed away and 

the bound RNA was eluted, ethanol precipitated twice and then translated 

in a rabbit reticulocyte cell-free system. The products of translation 

were analysed on one-dimensional gel (Figure 39). Both pHS2 and pHS6 

gave a single translation product that was similar in electrophoretic 

mobility to the in vivo labelled 72,000 - 74,000 daltons HeLa cell heat- 

shock protein band (Figure 39, band A), Plasmid pHS3 hybridised to mRNA

that upon in vitro translation gave a protein band that migrated on



FIGURE 38
r32 1Autoradiogram showing the hybridisation of 41 cdma clones to L pJ- 

labelled poly (A) RNA from (a) heat-shocked a n d '(b) control HeLa cells 

This autoradiogram shows only 41 out of 319 clones screened 

by the differential colony hybridisation procedure. 319 bacterial 

colonies were isolated from master plates and transferred to replica 

filters using sterile toothpicks. After overnight growth, the 

colonies were lysed and hybridised with 10^ cpm per filter of [^^p] 

labelled mRNAs from (left hand panel (a)) heat-shocked cell and 

(right hand panel (b)) control cells. After 16 hrs hybridisation 

at 65^C, the filters were washed and autoradiographed for 48 hrs.

The circled colonies in panel (a) show hybridisation with greater 

intensity than their counterpars in panel (b). These therfore 

represent clones containing cDNA sequences complementary to mRNAs 

whose synthesis is increased after heat-shock. The 6 clones studied 

in detail are the ones circled and numbered.
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FIGURE 39
r 35 -,Fluorogram of SUS polyacrylamide gel analysis of L sJ- methionine 

labelled in vitro translation products of mRNAs hybridising to re

combinant DNA bound to DBM filters

lO^g of plasmid DNA from clones pHSl (Lane 1), pHS2 (Lane 2), 

pHS3 (Lane 3), pHS4 (Lane 4), pHS5 (Lane 5), pHS6 (Lane 6) were bound 

separately to DBM-fliter discs (see Methods, Section 10.2.) and hybrid

ised to total unfractionated cytoplasmic RNA from heat-shocked HeLa 

cells. The mRNA that hybridises to each filter was eluted and trans

lated in a rabbit reticulocyte cell-free system (see Methods, Section

10.3.). This is a fluorogram of the translation products electro- 

phoresed on SDS/polyacrylamide gel. The arrows A and B point to the 

position of the major HeLa cell heat-shock protein in the 72,000 -

74,000 molecular weight class and the position of the protein band 

made in vitro by the endogenous RNA in the translation system.
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SDs/polyacrylamide gel to a position just below the protein band made by 

the endogenous RNA in the translation system (Figure 39, Lane 3).

7,2.2, Two-dimensional analysis of the translation products of the heat- 

shocked cell cytoplasmic RNA which hybridises to clones pHS2,

pHS3 and pHS6

It has already been shown that the 72,000 - 74,000 daltons HeLa 

heat-shock protein band consists of seven polypeptides designated a, a"", 3, 

y , Ô, e, and C and these are most probably encoded by mRNAs with different 

sequences. In order to investigate whether the inserted fragments correspond 

to different sequences in different nRNA species or whether they correspond 

to different regions of the same mRNA, two-dimensional analysis of the 

translation products shown in Figure 39 is needed. The whole procedure 

described in Results (Section 7.2.1.) was repeated, but this time the trans

lation products were analysed by the two-dimensional gel systan of O'Farrell 

(1975) , The mRNAs which hybridised to plasmid pHSl, pHS4, pHSS gave no 

more polypeptide spots than those detected when rabbit reticulocyte lysate 

is incubated in the absence of exogenous mRNA (Figure 27), The mRNAs which 

hybridised to plasmid pHS2 code for a single polypeptide spot (y) in the

72.000 -74,000 molecular weight region (Figure 40A), while pHS6 hybridises 

with mRNAs that code for three heat-shock polypeptides (3, 5, and e) in the

72.000 - 74,000 molecular weight class (see Figure 40B). Two-dimensional 

analysis of the mRNAs arrested by pHS3 plasmid did not show any polypeptide 

spots below the major endogenous mRNA product, but a single polypeptide spot 

at the 72,000 - 74,000 dalton region, which is quite possibly the polypeptide 

3 (Figure 41), The fact that in Figure 39 the pHS3 arrested mRNA did not 

show any translation product in the 72,000 - 74,0000 dalton region might be 

due to degradation of the mRNA during the procedures.

The fact that recombinant plasmid pHS6 hybridises to mRNAs that



FIGURE 40

Fluorogram of two-dimensional electrophoretic analysis o f ' 

methionine labelled in vitro translation products of mRNAs hybridising 

to recombinant plasmid DNA bound to DBM-filter discs

lOpg of plasmid DNA from clones pHS2 (A) and pHS6 (B) were 

bound to DBM filters as described in Methods (Section 10.2.) and 

hybridised to total unfractionated cytoplasmic RNA from heat-shocked 

HeLa cells (see Methods, Section 10,3,), The mRNA which hybridised 

to the filters was eluted and translated in a rabbit reticulocyte cell- 

free system. These are fluorograms of the translation products 

analysed by two-dimensional gel system of O'Farrell (1975). The 

arrows point to the position of the 3, y, 6 and e polypeptides of the

72,000 - 74,000 dalton class.
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FIGURE 41

Fluorogram of two-dimensional electrophoretic analysis o f ' 

methionine labelled in vitro translation products of mRNA hybridising 

to pHS3 recombinant plasmid DNA bound to DBM-discs

lOug of plasmid DNA from clone pHS3 was bound to DBM-'filter 

and hybridised to total unfractionated cytoplasmic RNA from heat- 

shocked HeLa cells {as described in Methods, Section 10.3,). The 

mRNA which hybridised to the filter was eluted, ethanol precipitated 

and translated in a rabbit reticulocyte cell-free translation system. 

The products were subjected to two-dimensional electrophoretic analysis 

(O'Farrell, 1975). The second dimension was an 8,75% polyacrylamide/ 

SDS gel. The spot designated as 3 is the 3 polypeptide of the 72,000-

74,000 dalton group and was identified by superimposing this fluoro

gram with that shown in Figure 26).
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code for three different proteins 3, 6,and £ (Figure 4OB) indicates that

a portion or possibly the whole cDNA insert may be homologous with certain
+conserved regions of the different poly (A) heat-shock mRNAs. However, 

plasmid pHS3 seems to contain sequences which are not conserved among the
«-J-poly (A) mRNAs and are specific for poly (A) mRNAs coding for 3 polypeptide.

r 3 2 n7.3, Hybridisation of L pJ- labelled control and heat^shocked cell
4-poly (A) RNA with recombinant plasmid DNA hnmobilised on d b m - 

fliters

Since only three of the isolated clones (i.e. pHS2, pHS3 and pHS6)

were fully characterised, we used the method of spot hybridisation to further

establish that all the six recombinants contained sequences enriched among

heat-shocked cell poly(A) RNA.

10 ygs of plasmid DNA from non transformed as well as from

transformants pHSl, 2, 3, 4, 5 and pHS6 was bound at various points of DBM

paper strip (see Methods, Section 10.2.). Heat-shock cell poly(A)^ RNA,

end-labelled at a specific activity 10^ cpm/yg was hybridised to the DBM

paper strip as described in Methods, (Section 12). Figure 42A shows that
+heat-shock cell poly(A) RNA hybridises with all but one transformant; pHS4. 

So, it seems that PHS4 was a false "positive". Indeed, as shown in Figure
+38, pHS4 had not shown very strong hybridisation to heat-shocked cell poly(A)

RNA, When control cell poly (A) RNA, end labelled at a specific activity 
7of 10 cpm/yg was hybridised to the same strip, the following was shown 

(Figure 42B) .

1) There is quite strong hybridisation with pHS6 plasmid DNA.
4Since pHS6 insert has been shown to be derived from poly (A) RNAs coding

for 3, and e polypeptides, this is an expected result. Polypeptide e
+is indeed encoded by control cell poly (A) RNA (see Figure 28A),



FIGURE 42

Hybridisation of labelled control and heat-shocked cell pOly(A)^

RNA to recombinant plasmid D3S1A immobilised on DBM-f liters

lOygs of plasmid DNA from nontransformed pB322 (1), as well 

as from transformants pHSl (2), pHS2 (3), pHS3 (4), pHS4 (5), pHS5 (6), 

pHS6 (7) was bound at various points of DBM paper strip as described 

in Methods (Section 10.2,). The DBM paper strip was hybridised to:

(A) labelled heat shocked cell poly(A)-*TîNA ((specific activity 

10® cpm/yg),

(B) [ ̂ ^p]- labelled control cell poly(A)^ RNA (specific activity
710 cpm/yg),

labelled heat-shocked cell poly(A)^ RNA does not show

very strong hybridisation to pHS2 or pHS3 and pHS6 as it might be

expected, because the specific activity of the probe is very low com-
+pared to that of control poly(A) RNA (B).
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2) There is weak hybridisation with pHS2 plasmid DNA, This is 

also expected since polypeptide y is encoded by control cell poly(A)

RNA (Figure 28A).

3) Even though pHSB's insert has not been shown to be derived 

from RNA molecules with messenger activity, control cell poly(A)^ RNA 

hybridises very strongly with pHS5.

These data further establish that pHSl, pHS2, pHS3, pHS5 and 

pHS6 contain sequences which are enriched among heat-shocked cell poly (A) 

RNA but which are also found in poly (A) RNAs from control HeLa cells.

Since the RNAs which hybridised to pHSl and pHS5 have not been shown to 

code for any particular protein (see Figure 39), it is possible that these 

sequences are derived from RNAs which play some other role (possibly 

regulatory).

7,4, Hybridisation of labelled control and heat-shocked cell

poly(A) RNA to recombinant plasmid DNA immobilised on DBM 

filters

In order to find out whether the poly(A) iriRNAs coding for the

72,000 - 74,000 dalton heat-shock proteins share similar sequences with

the poly (A) RNAs coding for the same proteins, the following was done:

Partially purified heat-shocked cell poly(A) RNA from fraction

8 of the sucrose gradient presented in Figure 21 was end labelled (see
7Methods, Section 11) at a specific activity of 10 cpm/yg and then 

hybridised to the DBM-paper strip shown in Figure 42.

The autoradiogram shown in Figure 43A shows the following:

1) Strong hybridisation of the purified hea t-shocked cell poly (A)

RNA to pHS2 plasmid DNA. Since the insert in pHS2 is shown to be derived
•f*from poly (A) mRNAs coding for the y polypeptide spot, this result suggests 

that poly (A) and poly (A) mRNAs coding for this particular polypeptide



FIGURE 43

Hybridisation of [ p] - labelled control and partially purified heat- 

shocked cell poly(A) ' RNA to teoombinant plasmid d n a 'immobilised on 

DBM-fliters

lOygs of plasmid DNA from nontransformed pBR322 (I), as well

as from transformants pHSl (2), pHS2 (3), pHS3 (4), pHS4 (5), pHS5 (6)

and pHS6 (7) was bound at various points of DBM paper strip as described

in Methods (Section 10,2,), The DBM strip was hybridised to;

(a) f^P ]" labelled partially purified heat-shocked cell poly (A)

RNA from fraction 8 of the sucrose gradient shown in Figure 21
7(specific activity 10 cpm/yg),

(B) [^^p]- labelled control cell poly(A) RNA (specific activity
710 cpm/yg).

The hybridisation which is shown at point (4) in (A) is an 

artefact due to radioactive grain.
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share some sequence homology. Since it is not known whether the pHS2
+insert is derived from the 5' or 3* end of the poly (A) mRlsiA molecules 

(Cato al., 1981 ) one can not say which part of the aaillSIA molecule is

involved in the sequence homology observed,

2) "Purified" heat-shocked cell poly(A) RI^ hybridises strongly

to pHS5 plasmid DNA (see Figure 43A) , As it is shown in Figure 43B 

poly (A) RNA from control cells also hybridises to pHS5, So it seems 

that the sequences inserted in pHS5 are derived from RIslAs which are 

fractionated both as poly (A) and poly (A) and which exist in both normal 

and heat-shocked cells.

Spradling et al., (1977) has reported that, in Drosophila cells, 

poly (A) mRNAs coding for the major heat-shock protein are fractionated 

on sucrose gradients together with another class of poly (A) RNAs which 

have been shown to hybridise to 870 heat-shock puff but no protein seemed 

to be encoded by this class of RNAs (Livak et al,, 1978; Lis et al., 1978),

So, it is quite possible that the insert of pHS5 is derived from

a similar class of RNAs in HeLa cells. The results suggest that, in HeLa

cells, these RNAs exist in both poly (A) and poly (A) RNAs, One though, 

can not exclude the possiblity that some of these RNAs bind to poly- (U) 

Sepharose non specifically or due to their affinity for other RNA molecules.

3) Poly(A) RNA from control cells hybridised to pHS2, Indeed, 

poly (A) mRNA from control cells has been shown to code for y polypeptide 

(see Figure 29A),

4) Even though poly (A) iriRNAs coding for the y polypeptide seem 

to share at least some sequences with the corresponding poly (A) mRNAs, 

purified poly (A) RNA from heat-shocked cells did not hybridise to pHS3 

and pHS6, This raises the possibility that poly (A) mElNAs coding for 

3, 6 and e polypeptides do not have extensively similar sequences with 

those of poly (A)'*' mRNAs,
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7.5, Conclusion
+The results in this section have shown that the poly (A) mRNAs 

coding for the y heat-shock polypeptide share at least some sequences 

with the poly(A) mRNAs coding for the same protein. It seems, however, 

that the poly(A) mRNAs coding for the 3, 6 and e polypeptides do not 
share any sequences with their non-polyadenylated counterparts.



DISCUSSION



X o

1. Poly (A) and poly (A) nïRNAs coding for the same protein

A number of polypeptides in various eukaryotic cells have been
"j" Vshown to be encoded by both poly (A) and poly (A) mRNA, poly (A) mRNA 

being by definition that fraction of mRNA which fails to be retained by 

either oligo-(dT) cellulose or poly-(U) Sepharose. For example, the 

structural protein actin is synthesised by both poly(A) and poly(A) 

mRNA in Friend cells (Minty and Gros, 1980), HeLa cells (Kaufraann et al., 

1977), mouse sarcoma 180 ascites cells (Geoghegan et al., 1978) calf 

muscle cells (Whalen and Gros, 1978), and Dictyostelium discoideum 

(Palatnik et al., 1979). Histones have also been shown to be encoded
-j- —•by both poly (A) and poly (A) mRNA in amphibian oocytes (Levenson and

Marcu, 1976; Ruderman and Pardue, 1978), sea urchins (Ruderraan and

Pardue, 1978) and clams (Gabrielli and Baglioni, 1975). In HeLa cells,

the mRNAs coding for some of the histones are believed to contain small

poly (A) tracts (Borun et al., 1977). On the other hand, histone mRNA

in yeast is mainly polyadenylated while a fraction of the H2A and H2B

mRNA also exist in the poly (A) mRNA fraction (Fahrner et al., 1980).

Similarly, the majority of myosin heavy chain mRNAs in L6E9 rat myotubes

fails to bind to oligo (dT)-cellulose (Benoff and Nadal-Ginard, 1979),

while albumin and a-Fetoprotein ihRNAs in rat liver have been shown to

exist in both poly(A) and poly (A) fractions (Sala-Trepat et al., 1979).
"t"In the increasing list of polypeptides encoded by both poly (A) and 

poly(A) mRNA is the 70,000 dalton hsp in Drosophila (Lengyel et al., 

1980; Storti et al., 1980.

Apart from individual polypeptides shown to be encoded by both 

poly (A) and poly(A) mRNAs, in vitro translation experiments have re

vealed that a substantial number of polypeptides are encoded by both 

poly (A) and poly(A) mRNA in mouse kidney cells (Quellette and Ordahl,

1981), rat brain (Chikaraishi, 1979) and neuroblastoma cells (Croall
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and Morrison, 1980). One-dimensional analysis of the vitro trans-

lation products of poly (A) and poly (A) polysomal mRNA from HeLa cells 

(see Figure 7) showed that both mRNA fractions had qualitatively the 

same translation products, even though some quantitative differences 

were detected. Two-dimensional analysis of the translation products 

showed that whilst several polypeptides result from the translation of
mmeither poly (A) or poly (A) mElNA a considerable number of mRNAs appear

***to exist in both poly (A) and poly (A) forms (see Figure 8), It seems, 

however, that the situation is not the same in all mammalian cells.

For example, in Friend cells the majority of the polypeptides result
-J- mmfrom the translation of both poly (A) and poly (A) mRNA (see Figure 9), 

Despite the fact that some abundant mRNA sequences seem to
-j-exist in both poly (A) and poly (A) RNA, experiments employing the method

of saturation hybridisation have shown that in mouse liver, mouse brain

and rat brain there is not much homology between poly (A) and poly (A)

mRNAs (Grady et al., 1978; Van Ness et al., 1979; Chikaraishi, 1979).

By the use of kinetic measurements, however, it has been shown that in
+Friend cells cDNA transcribed from poly (A) mRNA hybridises to the same 

extent to both poly (A) and poly (A) mRNAs (Minty and Gros, 1980).

Similar results have been obtained in mouse kidney cells [Quellette and

Ordahl, 1981). Due to the limitations of the two methods employed

(see Introduction, Section 2), a question arising is whether both poly (A) 

and poly (A) forms of an mRNA species are transcribed from the same gene. 

To answer this, an initial approach was to isolate from the bulk of

poly (A) RNA (which mainly contains rRNA and tRNA) poly (A) mRNA sequences

coding for proteins also encoded by poly (A) ̂  mRNA. Thus a subclass of 

poly (A) RNA sequences was isolated due to its affinity for poly-(A) 

Sepharose (poly (A) u”*" RNA). Poly (A) RNA containing oligo-^ (u) sequences 

and exhibiting properties of iriRNA species had been earlier reported in 

HeLa cells (Korwek et al ., 1976). Poly (A) u mRNA has also been reported



mmm "ÿ"in Friend cells (Katinakis and Burden, 1981). By selecting poly(A) u 

IriRNAs on poly (A)-Sepharose columns, we found that this RNA fraction 

represents a minor fraction of the total mRNA population in HeLa cells
mm(see Tables 3 and 4). When the coding potential of these poly (A) u 

RNA molecules was tested by in vitro translation in rabbit reticulocyte 

lysates, these RNAs, at least from HeLa cells, did not seem to have 

much stimulating effect on in vitro protein synthesis [see Table 5),
mm ^

In Friend cells, however, poly (A) u RNAs have been reported to stimulate 

in vitro protein synthesis. As it was shown by one-^dimensional and two- 

dimensional analysis of the translation products, all the polypeptides
mm ^encoded by poly(A) u RNA from HeLa cells were also encoded by poly (A)

RNA (see Figures 10 and 11). Even though our initial objective of

isolating poly(A) mRNA coding for a limited number of polypeptides which

are also encoded by poly (A) mRNA was achieved, results published by

Molloy (1980) while this work was underway showed that intramolecular

duplex structures of oligo-(u) sequences with 3' poly(A) can only be

disrupted completely with formaldehyde (HCHO) treatment. Employing

this method Molloy (1980) showed that most of the oligo-(u) sequences

are found in poly(A) mRNAs in HeLa cells. These results have been

lately confirmed by Wood and Edmonds (1981) who showed that poly (A) u

RNAs can be selected on poly (A)-Sepharose only after removal of the

poly (A) tails. These poly (A) u RNAs were also shown to be larger than

the poly (A) mRNAs in HeLa cells (Wood and Edmonds, 1981). This combined
+ +with the fact that these poly (A) u RNAs had a higher ratio of cap I: 

cap II structures as compared with poly (A) RNAs from the same cells 

(Wallace et al., 1981) raises the possibility of nuclear contamination 

in their preparations. At the same time, no information about the 

translational activity of these poly (A) u RNAs from HeLa cells was given.



mm.
In any case, these data raised the possibility that the poly (A) u RNA 

molecules we had isolated could actually be polyadenylated RNA molecules 

which had failed to bind to poly-(U)-Sepharose because of the duplex 

structures formed between the poly(A) tail and internal oligo-Cu) 

sequences but which were nonspecifically retained by poly(A)-Sepharose.

The prevalence of poly(A) mRNAs in cells which are not highly 

differentiated (Ruderman and Pardue, 1977; James and Tata, 1980) has 

also raised the question whether poly(A) mRNAs are vital to cells which 

have to respond rapidly to external or internal changes (Katinakis and 

Burden, 1980). Since heat-shock treatment of cells provides a system 

in which the cells respond rapidly to an external stimulus, we raised 

the incubation temperature of HeLa cells for a limited period and studied 

the mRNAs which code for the heat-shock induced proteins in these cells.

Our results show that the 72,000 -74,000 heat-shock protein and possibly 

the 37,000 and 100,000 heat-shock proteins are encoded by both poly(A) 

and poly (A) mRNAs (Kioussis et al., 1981). It is of interest that the

70.000 dalton heat-shock protein in Drosophila cells is also encoded by 

both poly(A)^ and poly (A) mRNAs (Lengyel et al., 1980). The poly (A) 

mRNAs coding for the 72,000 -74,000 dalton hsp do not seem to contain 

long poly (A) tails as judged by their inability to be retained by poly-(U)- 

Sepharose after three successive cycles of affinity chromatography (see 

Figure 24), or after affinity chromatography cycle carried out at 4°C

(see Figure 25), A  small proportion of poly(A) mRNA coding for the

72.000 - 74,000 dalton hsp does bind to poly-(U)-Sepharose (see Table 9), 

but its elution profile is distinct from that of poly (A) mRNAs (see 

Figure 23), suggesting that some poly(A) mRNAs coding for the 72,000 -

74.000 dalton hsp may contain small oligo(A) sequences. Indeed,

Milcarek (1979) has reported the existence of small internally located 

oligo(A) sequences in poly (A) mRNA molecules from HeLa cells. It was
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not possible to determine what proportion of the 72,CX)0 - 74,000 coding

mRNAs existed in the poly(A) form by making use of the in vitro trans-
"I*lation technique, especially since the amounts of poly(A) and poly (A)

IriRNAs translated differed markedly (see Figure 20) , It would be 

interesting, however, to determine that by making use of the clone pHS2 

which is derived from mRNA coding for polypeptide y of the 72,000 -

74,000 heat-shock proteins and which hybridises to both poly(A)^ and 

poly (A) IriRNAs (see Figures 42 and 43).

Even though it has been proposed that cells which have to 

respond rapidly to an external stimulus might preferentially synthesise 

poly (A) mRNAs (see above), we did not detect any decrease in the pro

duction of poly(A)^ mRNAs in heat-shocked HeLa cells (see Table 8).

Minty and Gros (1980) have shown that during differentiation of Friend

cells by induction with dimethyIsulphoxide the percentage of globin mRNA
"t*sequences in the poly(A) form does not change.

It has been proposed that poly (A) iriRNAs may be degraded more

rapidly especially since polyadenylation is known to increase the stability

of some IriRNAs (Huez et al., 1978). However, our in vitro translation

experiments have shown that even though synthesis of heat-shock proteins
—declines 4 hrs after the heat-shock, both poly(A) and poly(A) iriRNAs 

coding for the 72,000 - 74,000 heat-shock polypeptides can be detected 

in the cytoplasm of HeLa cells 5 hrs after the heat-shock (see Figures 

32, 33 and 34). It would be interesting, however, by making use of the 

clone pHS2 to determine the ratio of the steady state poly (A) :poly(A)

IriRNAs coding for the polypeptide y 2 and 6 hrs after the heat-shock,

Croall and Morrison (1980) have detected no difference in the average 

poly (A) size between polysomal and non-polysomal mRNA populations in 

neuroblastoma cells.
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Storti and colleagues (1980) by translating poly(A) and 

poly (A) IriRNA from Drosophila cells kept at elevated tenperatures for 

1 hr showed that most of the translation activity is found in the poly(A) 

mRNA fraction, suggesting loss of the poly(A) tail as a result of 

the heat-shock. Brandt and Milcarek (1980) have recently proposed that 

possibly half of the pre-existing mRNA molecules lose their poly (A) tails 

as a result of the heat-shock. The loss of poly(A) tail from pre

existing molecules may be of significance especially since these mRNAs 

are not translated in vivo during the heat-shock, (Ashburner and Bonner, 

1979; Storti et al., 1980), However, the fact that 83,000 hsp mRNAs

induced after the heat-shock are mainly non-polyadenylated argues against
+a translational discrimination in favour of poly (A) mRNAs (Storti ê t al., 

1980). The change in the polyadenylation status of the 83,000 hsp 

coding mRNAs is most probably due to a change in polyadenylation of the 

same transcript, especially since only one hsp 83,000 gene is as yet 

known in Drosophila (O'Connor and Lis, 1981).

In HeLa cells, however, a similar pattern of polypeptides is
+ —obtained by in vitro translation of both poly(A) and poly (A) mRNAs 

from normal and heat-shocked HeLa cells (Kioussis et al., 1981, also see 

Figures 28 and 29). A few mRNA species seemed to have disappeared or 

to be reduced in heat-shocked cells, but this was observed in both poly(A) 

and poly (A) mRNAs. One can not exclude the possibility that limited 

degradation of poly (A) tails takes place in HeLa cells as a result of the 

heat-shock and it would be interesting to determine the distribution of 

poly (A) tails before and after heat-shock.

The poly (A) mRNAs coding for the 72,000 - 74,000 dalton 

protein were shown to sediment between 18—218 on sucrose gradients (see 

Figure 21), exhibiting a narrower sedimentation range from that of the 

corresponding poly(A) mRNAs (188-288), (see Figure 22). However, when



± D O

the size of these poly(A) mRNAs was determined by making use of the

Northern blotting technique., it was shown that the poly (A) mRNAs

coding for the heat-shock polypeptide y had the same size with the
+corresponding poly (A) mRNAs (i.e. 6,300 bases long). Similarly, the 

poly (A) and poly(A) mRNAs coding for heat-shock polypeptides 3, 6 and

e were shown to be of the same size (Cato, personal communication).

Indeed, in HeLa cells the mean size of poly(A) mRNAs has been known to

be similar to that of poly (A) iriRNAs (Milcarek e^ al., 1974).
-J- —

Poly (A) and poly (A) iriRNAs coding for y polypeptide seem to

share at least some sequence homology as shown by spot hybridisation

experiments (see Figure 43). It is possible that both forms of y

coding iriRNAs are derived from the same gene. This, however, would be

determined by the isolation of genomic clones. On the other hand,

poly (A) IriRNAs coding for 3, 6 and .e polypeptides do not seem to share

any sequences with the corresponding polyadenylated mRNAs (see Figure 43),

This result may suggest that the two forms of an mRNA species in some

cases may be derived from different genes. It remains to be established,

by making use of genomic clones, that there are more than one gene

coding for each of the polypeptides 3, 6 and e and that poly (A) and 
"t"poly (A) mRNAs originate from different genes.

Most of the protein coding primary transcripts detected so far 

have been shown to be polyadenylated (see Introduction) and it has even 

been proposed that poly(A) tail may play a role in splicing (Bina et al., 

1980). Even though there is at present no known case of a spliced mRNA 

lacking poly (A) when it is newly made, it has recently been shown by 

2eevi and colleagues (1981) that the primary transcripts from adenovirus 

early regions 2 and lb can be properly spliced even if polyadenylation 

is blocked by 3 '-deoxyadenosine. Since there is evidence that the 

poly (A) mRNAs coding for y , 3, 6 and e polypeptides may be derived from
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longer transcripts by splicing (see below), it would be interesting to 

determine whether the same is true for the corresponding poly (A) mRNAs.

2. The heat-shock phenoitienon

It is known for some time now that incubation of Drosophila 

cells at 37°C (25°C being the normal growth temperature), results in 

almost complete shut-off of normal protein synthesis and preferential 

production of a small number of heat-shock polypeptides (hsp s) (Tissieres 

at al.f 1974; Lewis et al., 1975; Lindquist-McKenzie et al., 1975;

Koninkx, 1976; Ashburner and Bonner, 1979), In Drosophila melanogaster 

there are eight heat-shock induced protein bands of molecular weights 

82,000, 70,000, 68,000, 36,000, 27,000, 26,000, 23,000 and 22,000, the

70,000 protein band being the major heat—shock protein (Ashburner and 

Bonner, 1979). In Drosophila, heat-shock proteins are not tissue 

specific (Tissieres et al,, 1974; Lewis et al., 1975). However, some 

charge heterogeneity and size polymorphism in some of the proteins has 

been reported. This may be due to post-translational protein modifications 

and/or aberrant transcription at elevated temperatures (Sonder me ij ei and 

Lubsen, 1978; Mirault et al., 1978).

Synthesis of all eight hsp's starts within 10 mins following 

an increase in the temperature of Drosophila melanogaster and maximum 

synthesis is reached about 1 hr later by which time hsp's account for 

about 50% of total precursor incorporation. The rates of hsp synthesis 

then declines so that by 3 hr (at elevated temperature) they are half 

maximal. If the cells are transferred back to 25°C, the rate of hsp 

synthesis declines much faster (Ashburner and Bonner, 1979). With 

continuous high temperature treatment the hsp's accumulate since they 

have long half-lives, so that by 6-8 hrs they comprise some 10% of the 

cell's total proteins (Moran et al., 19 78).



HeLa cells, unlike Drosophila, can only be subjected to 45^C 

for a very short period (5-10 mins) without suffering serious damage, 

even though they can be subjected to 41°C-42^C for long periods (Slater 

et al., 1981). While HeLa cells kept at normal growth medium at 45°C 

for 1 hr do not show any gross morphological changes under light micro

scope, it has been shown that their viability is seriously affected 

(Slater et al., 1981). Even treatment at 45°C for 20 mins results in 

a 9% loss in viability of the cells (Slater et al., 1981).

Unlike the situation in Drosophila, heat-shock treatment of 

HeLa cells does not appear to affect normal protein synthesis (see 

Figure 15). All the proteins synthesised in normal cells are also 

synthesised in heat-shocked cells, while the production of some proteins 

(heat-shock specific proteins) is substantially increased. Similar 

results have been reported for chicken fibroblasts, baby hamster kidney 

cells (BHK cells) and mouse L-cells (Kelley and Schlesinger, 1978), while 

normal protein synthesis has been shown to be affected to some extent 

in Chinese hamster ovary cells (Bouche et al., 1979) and yeast Saccharomyces 

cerevisiae (Miller et al., 1979).

There are three heat-shock induced protein bands in HeLa cells 

which have molecular weights of 100,000, 72,000 - 74,000 and 37,000 daltons 

(see Figure 15). The 72,000 - 74,000 daltons protein is the major hsp 

in HeLa cells (see Figure 15). Despite the contradicting results con

cerning the molecular weights of hsp's in various cell lines it seems 

that the major hsp in chicken embryo fibroblasts, mouse L-cells and baby 

hamster kidney cells (Kelley and Schlesinger, 1978) are also protein 

bands of molecular weights around 70,000.

Two-dimensional analysis of the proteins revealed that the

100,000 and 37,000 dalton protein bands comprise of two polypeptides 

each (Figure 16B). Since only one of them in each case is detected amongst



the in vitro translation products of mRNA from heat—shocked cells 

(Figures 28B and 2QB), it is possible that one of the two results from 

post-translational modification. It is of interest that the in vivo 

labelled 37,000 polypeptides (Figure 16B) are much more basic than the 

polypeptide believed to result from 'in vitro translation of the 37,000 

coding mRNA (Figures 28B and 29B). This could be due to post trans

lational elimination of negative charges as it happens upon méthylation 

of carboxyl groups. That some of the heat-shock proteins in avian cells 

are methylated has, indeed, been reported (Wang et al., 1981), Similar 

results have been reported for the 89,000 and 27,000 proteins which are 

induced in chicken fibroblasts by sodium arsenite. These proteins are 

believed to be identical to the hsp's in the same cells (Johnston et al., 

1980) and it has been shown that each of them is resolved into two 

polypeptides. In the case of the 89,000 protein only one of the two 

polypeptides is detected amongst the in vitro translation products of 

mRNA (Johnston et al., 1980).

The 72,000 - 74,000 daltons hsp in HeLa cells comprises of 

two polypeptide groups of different molecular weights and different 

isoelectric points (Figure 16B). The more basic one, of molecular 

weight 74,000 comprises of two polypeptides and has isoelectric point 

around 7.3 (Figure 16B, polypeptides indicated by arrows near the 

brackets). These two polypeptides are also detected amongst the in 

vitro translation products of mRNA from heat-shocked HeLa cells (Figure 

28B, polypeptides a, a ), The second group, of molecular weight 72,000 

comprises of several polypeptides whose isoelectric points range from 

7.1 - 6.4 (Figure 16B, polypeptides in brackets). Since five of them 

are detected amongst the in vitro translation products of mRNA from 

heat-shocked cells (Figures 28B and 29B, polypeptides 3, y, Ô, e and Ç), 

it is possible that the rest of them result from post-translational



modifications. The 70,000 dalton protein induced in BHK cells by 

arsenite (which is believed to be identical to the 70,000 hsp in the 

same cells) has also been resolved into two polypeptide groups of 

different isoelectric points and different molecular weights (Wang 

et al., 1981). The isoelectric points of the two protein groups are, 

however, quite different (5.95 and 5.7) from those we have estimated 

for the two corresponding groups in HeLa cells, Sinilarly, the 70,000 

daltons heat-shock protein in Drosophila cells has also been resolved 

into two components (Storti et al., 1980). In chicken fibroblasts the 

arsenite induced 73,000 dalton protein has been resolved by two- 

dimensional electrophoretic analysis into two groups of different 

isoelectric points but identical molecular weights (Johnston al.,

1980). Data from partial peptide mapping of the acidic group of the 

"70,000" proteins from avian and mammalian cells have suggested that 

group is conserved in different species (Wang et al., 1981). Com

parative analysis of the two forms of the "70,000" protein in chicken 

fibroblasts and BHK cells by one-dimensional peptide "mapping" revealed 

homologies and differences, suggesting that these two groups may be 

evolutionally related (Wang et al., 1981). That the two 72,000 - 74,000 

groups are not products of the same genes in HeLa cells, is proposed by 

the fact that both groups arise from ^  vitro translation of mRNA 

(Figures 28B and 29B).

The heat-shock proteins are also found in normal HeLa cells 

but at much lower amounts (Figure 16). Even though the 37,000 daltons 

hsp band was not detected in one-dimensional analysis of proteins from 

normal HeLa cells (Figure 15), two-dimensional analysis showed that the 

two 37,000 polypeptides existed in normal cells but at very low amounts 

(Figure 16A). Maximum synthesis of hsp's occurs 2 hrs after the heat- 

shock treatment in HeLa cells and while the cells are recovering at 37°C



(Figure 17). After that hsp synthesis declines, reaching the normal 

levels after 4 hrs (Figure 17). However, even though HeLa cells have 

lost their ability for elevated synthesis of heat-shock proteins by 

4 hrs, the proteins synthesised in response to heat-shock are metabolic

ally stable (Slater et al., 1981). It is known for some time now, that

a variety of reagents such as uncouplers of oxidative phosphorylation, 

inhibitors of electron transport, hydrogen acceptors and inhibitors of 

various enzymes and various other functions induce, in Drosophila, a 

set of puffs identical to that induced by heat-shock (Ashburner and 

Bonner, 1979), It has recently been reported that several transition 

series metals (copper, cadmium, zinc and mercury), the sulphydryl reagent 

sodium arsenite and diamide enhance the synthesis of , 

specific proteins in chick embryo cells and human foreskin cells in 

culture (Levinson et al., 1980). Partial peptide mapping has shown 

that these proteins are similar, if not identical, to the proteins

induced by heat-shock in the same cells (Levinson e^ al., 1980),

Proteins of molecular weights similar to those of the heat—shock proteins 

are also induced in chicken embryo cells when treated with amino acid 

analogues (Kelley and Schlesinger, 1978; Levinson et al., 1980).

A question arising is by which mechanism such a variety of agents 

induces the synthesis of the same set of proteins since it is known that 

in most cases transcription of the corresponding genes is involved (see 

below), Since many of the inducing agents appear to have as targets 

mitochondrial electron transport and oxidative phosphorylation, it is 

not evident how the effects of these inducers can be transmitted to the 

genome . Data showing that supernatant from isolated heat-shocked 

mitochondria can induce heat-shock puffs when injected into the cyto

plasm of salivary gland cells (Sin, 1975), have proposed that inducers 

may bring about a change in the conformation of'the subcellular



compartmentalisation of specific pre-existing molecules (possibly proteins) , 

which then induce transcription of heat-shock genes (Ashburner and Bonner, 

1979). It should be mentioned, however, that a number of inhibitors of 

electron transport and oxidative phosphorylation do not induce heat-shock 

proteins in HeLa cells (Burden et al., 1982).

Since the transition metals and arsenite are known to bind to 

sulfhydryl groups, it has also been proposed that the repressor for 

the sequences coding for the induced proteins is a sulfhydryl containing 

molecule which is inactivated by the binding of the transition metals and 

arsenite (Levinson et al., 1980).

Since diamide, a reagent known to cause oxidation of glutathione 

(Kosower e^ , 1969), has been reported to induce hsp's and given that 

addition of oxidised, glutathione in rabbit reticulocytes results in 

phosphorylation of eIF-2, it is possible that oxidised glutathione may 

phosphorylate the represser of the heat-shock genes, thus inactivating it. 

Heat shock treatment of rabbit reticulocytes has been shown to result in 

phosphorylation of eIF-2(Bonanou-Tzedaki et al., 1981), thus raising the 

possibility that heat shock may induce transcription of the heat-shock 

genesin the same way.

3, Intracellular localisation and-possible function of the heat-

shock proteins

To determine what is the role of the heat-shock proteins, 

it is important to know where these proteins migrate once they are syn

thesised. Cytological studies have shown that in Drosophila melanogaster 

a major part (about 80%) of the small molecular weight hsp's and about 

30% of the 68,000 and 70,000 proteins migrate to the nucleus where they 

are found associated in chromatin and nucleoli preparations, while the 

rest of the 68,000 and 70,000 hsp's wi-th most of the 83,000 dalton protein 

are found in the cytoplasm (Arrigo et al,, 1980). These results have



been confirmed by cell fractionation data (Velazquez et al., 1980) and 

it has been recently reported that nuclear hsp's of Drosophila melano

gaster are not found significantly associated with DMA or histones 

(Sinibaldi and Morris, 1981). It has even been proposed that Drosophila 

melanogaster nuclear hsp's become components of the nuclear scaffold and 

that their function may be stoichiometric rather than catalytic (Sinibaldi 

and iïtorris, 1981), This suggestion is further supported by a recent data 

suggesting that the major hsp of chicken fibroblasts may be component of 

chicken skeletal myofibrils (Wang et al., 1981).

Results from our laboratory have shown that 30% of the 72,000 -

74.000 dalton protein are found in the nucleus of heat-shocked HeLa cells 

(Surdon et al.f 1982). Data from protein "blotting" experiments have 

suggested that these nuclear hsp's are not DNA binding proteins CBurdon 

et al., 1982). Even though one can not exclude a possible role of these 

proteins in transcriptional regulation, it may be that HeLa cell 72,000 -

74.000 heat-shock protein is part of the cytoskeleton. This hypothesis 

is supported by a recent report which claims that the 66,000 - 68,000 

dalton hsp of HeLa cells copurifies with HeLa microtubules (Wang e^ al.,

1981). This 66,000 - 68,000 dalton hsp seems to correspond to our

72.000 - 74,000 dalton hsp.

None of the hsp's found in the cytoplasm of heat-shocked 

Drosophila melanogaster seem to be associated with mitochondria (Arrigo 

et al., 1980; Sinibaldi and Morris, 1981). A similar conclusion has 

also been drawn for HeLa hsp's located in the cytoplasm (Surdon et al.,

1982). So, even though it had been postulated that heat-shock proteins 

may function in cellular respiration (Ashburner and Bonner, 1979) , this 

seems rather unlikely on the basis of intracellular distribution of heat- 

shock proteins and on data which show that several inhibitors of electron 

transport and oxidative phosphorylation (e.g. sodium azide, KCN, 

atractyloside, dinit. rophenol and sodium arsenate) fail to induce heat-



shock proteins in HeLa cells {Burdon et al., 1982).

It has also been suggested (Kelley and Schlesinger, 1978) 

that hsp's may be proteins of the cell membrane and possibly involved 

in hexose transport. Even though the 83,000 dalton hsp of Drosophila 

melanogaster may be of membranous origin (Sinibaldi and Morris, 1981) , 

analysis of plasma membrane fractions from heat-shocked HeLa cells did 

not reveal any enrichment with heat-shock proteins (Burdon et al.,

1982). Other lines of evidence also suggest that hsp's are unlikely 

to be associated with the membrane. Studies on the in vitro translation 

of heat-shock protein iriRNAs indicate that HeLa hsp's are not initially 

synthesised as larger molecular weight precursors (Figure 19). Also, 

treatment of HeLa cells with tunicauycin has revealed no effect on the 

electrophoretic mobility of hsp's, ; indicating r no extensive modification 

with carbohydrate side chains (Burdon et al., 1982). Even though a 

role of hsp's in hexose metabolism is possible, treatment of HeLa cells 

with 2-deoxyglucose or sodium fluoride does not induce heat-shock 

proteins (Burdon et al., 1982).

A number of other possible functions have been suggested for

the heat-shock proteins by various investigators. The synthesis of

heat-shock proteins has been correlated with the acquisition of heat

resistance in yeast (McAlister and Filkelstein, 1979) and the development

of thermotolerance in human cells (Burdon e^ al., 1982). Data showing

that prior heat treatment of Drosophila cells at 35^C eiffects the time

of recovery of both heat-shock protein synthesis and normal protein

synthesis after a second heat-shock treatment have also suggested that

hsp's may be involved in the regulation of protein synthesis following

heat-shock (Petersen and Mitchell, 1981). It has also been suggested

that the heat-shock proteins in HeLa cells may be involved in the in
+ +vivo modulation of Na K ATPase activity (Burdon and Cutmore, 1982).
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4, RNA synthesis In heat-shocked cells

4,1, ■ Transcriptional eontrcl in heat-^shockedx::el'ls

At the level of RNA synthesis, there are at least three distinct 

responses of Drosophila tissues to heat-shock: the induction of the

synthesis of a class of heat-shock RNAs some of which, although not all, 

are translated into hsp's; the suppression of the synthesis of most other 

messages, although not those coding for the histones or those coded by 

mitochondrial genome; and the disruption of the normal processing of the 

primary transcription products of the 5S and 18S + 28S ribosomal RNA 

cistrons (Ellgaard and Clever, 1971; Lengyel and Pardue, 1975; Rubin 

and Hogness, 1975; Jacq et al., 1977),

The changes in RNA synthesis resulting from heat-shock have 

been shown in several ways: Autoradiography of the polytene chromosomes
3after incorporation of [ h ]-uridine into RNAs shows that the heat-shock 

puffs are newly induced sites of RNA synthesis and that as a consequence 

of the heat-shock pre-existing puffs cease to incorporate precursors 

(Ritossa, 1964; Berendes, 1968; Tissieres et al., 1974; Belayeha and 

Zhimulev, 1976; Bonner and Pardue, 1976). The changing pattern of 

transcription resulting from heat-shock is also reflected in a change in 

the distribution of RNA polymerase II and other chromosomal proteins 

detected iramunochemically. A marked migration of these components into 

the heat-shock puff sites has been reported (Holt, 1970; Plagens e^ al., 

1976; Silver and Elgin, 1977; Jamrich et al., 1977a; Elgin et al., 1978; 

Spruill et al ., 1978). Heat-shock has also been shown to result in the 

depletion of RNA polymerase II from non-heat-shock puff chromosomal 

regions (Greenleaf et a l ., 1978) and an increase in the level of fluorescent 

staining for this enzyme in the nucleoplasm (Jamrich et al. , 1977b) .

The accumulation of specific heat-shock RNA sequences at the heat-shock
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puff sites in Drosophila has been demonstrated by cytological hybridisation 

of polysomal heat-shock poly (A) RNA complementary DNA sequences to the 

puff sites (Livak et al., 1978).

Labelling experiments have shown that in HeLa cells kept at 

43°C tRNA and 5S RNA synthesis remains unaffected, hnRNA and mRNA are 

still produced but at reduced rates, while rRNA synthesis is totally 

inhibited (Zieve et al ., 1977), Our labelling experiments have shown 

that during the first 2 hrs of recovery following a 5 mins at 45°C 

heat-shock treatment, HeLa cells synthesise slightly decreased amounts 

of poly(A)^ RNA as compared to HeLa cells not subjected to heat-shock.

There is also a slight decrease in the synthesis of poly (A) RNA which 

under our labelling conditions (in the presence of low amounts of 

actinomycin D) includes poly (A) mRNA species, and possibly tRNA and 5S 

RNA (see Table 8).

That the appearance of heat-shock proteins in HeLa cells 2 hrs 

after the heat-shock might be due, as in the case of Drosophila, to some 

type of transcriptional control was initially suggested by experiments 

with actinomycin D (see Figure 18). Further evidence was obtained from 

the in vitro translation experiments which revealed that the mRNAs coding 

for the heat-shock polypeptides a , </ , 3 and 6 can only be detected by 

in vitro translation of mRNA isolated 2 hrs after the heat-shock (Figures 

28B and 29B). Also, the increased amounts of hsp y synthesised by in 

vitro translation of mRNA isolated 2 hrs after the heat-shock treatment 

suggested that increase in the concentration of the corresponding icRNA 

may have taken place during the 2 hrs recovery period (Figures 28A, B 

and 29A, B) . More evidence has been obtained from "Northern" blotting 

experiments which showed that 1-2 hrs after the heat-shock treatament 

high molecular weight nuclear RNA hybridising to DNA from recombinants 

pHS2 and pHS6 (see Results, Section 7) accumulate in the nucleus (Burdon,

1982).
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In vitro translation experiments have also revealed that some 

polypeptides encoded by mRNA from normal HeLa cells are not detected 

amongst the translation products of mRNA from heat-shocked cells (see 

Figures 28 and 29). These mRNAs may have been degraded as a result of 

the heat-shock, but a question arising is whether their degradation is 

coupled by reduction or even "shut-off" of their synthesis. To answer 

this, however, specific probes would be required.

4,2, Heat-shock specific RNAs

Sucrose gradient analysis of poly (A) polysomal RNA from heat- 

shocked Drosophila cells has revealed that heat-shock induced RNA 

fractionates into two major size classes, one at 20S and the other at 

12S (McKenzie and Meselson, 1977; Spradling et al., 1977; Mirault et al., 

1978; Moran et al., 1978). Further fractionation of heat-shock poly- 

somal poly(A) RNA by electrophoresis under denaturing conditions revealed 

four species of 20S RNA (Spradling et al., 1977). The largest one, (A^) 

has been shown to hybridise in situ to puff 63BC, the second largest (A^) 

to both puffs 87a  and 87C and the smallest (A^) to puff -95D (Ashburner 

and Bonner, 1979). The minor species (A^) has been shown to hybridise 

preferentially to 87C (Livak et al., 1978). The development of cloned 

DNA sequences complementary to the various loci and the use of hybrid- 

arrested translation technique has allowed the correlation of particular 

puffs with particular hsp's. So, it is established now that 63BC puff 

codes for 83,000 hsp and it seems that there is only hsp 83,000 gene at 

this locus (Holmgren et al., 1979; O'Connor and Lis, 1981). Similarly, 

87A and 87C loci in Drosophila melanogaster code for hsp 70,000 (Schedl 

et al., 1978; Livak et al., 1978). The total number of hsp 70 genes in 

Drosophila varies from five to about eight according to the genotype, there 

being two copies at locus 87A7 and three to five copies at 87CÎ (Ish- 

Horowicz et al., 1979b; Mirault et al., 1979; Holmgren et al., 1979).

The gene for hsp 68,000 is at locus 95D (Ashburner and Bonner, 1979),
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while the genes for hsp's 27,000, 26,000, 23,000 and 22,000 are located

at 67B locus of Drosophila melanogaster (Wadsworth et al., 19.80; Craig

and McCarthy, 1980). (A^) RNA species, however, has not been shown to

code for any particular protein (Livak et al., 1978). It has also

been shown that Drosophila melanogaster heat-shock puff site 93D

hybridises strongly to cytoplasmic poly (A) RNA, whose function is not

established yet (Lengyel e^ al., 1980),

Our in vitro translation experiments suggest that there is

probably only one mRNA species coding for each of the 100,000 and 37,000

heat-shock protein in HeLa cells (Kioussis et al., 19.81; also see Figures

28 and 29). There is also evidence that the 100,000 hsp is primarily 
+encoded by poly (A) RNA (see Figure 19), whose sedimentation range 

estimated on non-denaturing sucrose gradient seems to be around 18S-21S 

(see Figure 22), The 72,000 - 74,000 dalton hsp is encoded by seven 

IriRNA species which have been shown to exist in both poly (A) and poly (A) 

forms (Kioussis et al., 1981). Sucrose gradient analysis revealed a 

wide sedimentation range (18S-28S) for the mRNAs coding for the 72,000 -

74.000 hsp’s (see Figure 22). Since this broad sedimentation profile 

could be a consequence of secondary structures adopted by these RNAs 

during centrifugation in non-denaturing gradients or of different sizes 

of the seven iriRNAs coding for the individual proteins of the 72,000 -

74.000 dalton group, Burdon and colleagues (1982) made use of the cDNA

clones (see Results, Section 7) to establish the size of four particular

IriRNAs. Using the "Northern" blotting technique they showed that the 
"t"poly (A) mRNA coding for the y polypeptide is about 6,300 bases long, 

while the mRNAs coding for polypeptides 3, 6 and e are around 1,900 

nucleotides long which is the range expected of an iriRNA coding for a 

protein 72,000 - 74,000 daltons.



The large size of the mRNA coding for the y polypeptide 

could be due to the presence of rather long 3'- and 5*— untranslated 

regions. Long 3 '-untranslated regions have indeed been detected in 

the SV40 small t antigen (Fiers et al., 1978) and chicken ovalbumin 

IriRNA (O'Hare et al., 1979). Whilst there is nothing unusual about 

the 3 '-untranslated regions of the Drosophila heat—shock mRNAs, the 

5'untranslated regions of small heat-shock RNAs encoded by the 67B 

Drosophila locus range from 111 to 253 bases (Ingolia and Craig, 1981), 

while the 5* non-coding region for the 70,000 gene is 244 bases long 

(Ingolia et al., 1980). So, it seems that in general, the 5''-non

coding regions of Drosophila heat-shock genes are much longer than 

other known genes (Ingolia and Craig, 1981). Since the 5 '-noncoding 

regions of mRNAs may be involved in the initiation of translation (see 

Introduction), it is possible that differences in the length of the 5'- 

untranslated regions may result in differential translation-initiation 

rates. Two different tissue-specific mouse a-amylase mRNAs differing 

in the 5 ’-noncoding regions have been shown to originate from the same 

gene and it has been proposed that differences in the length of the 5'- 

noncoding region may influence the mRNA stability in the two tissues they 

are expressed (Young et al., 1981).

In chick embryo fibroblasts, however, there is a small heat- 

shock protein (hsp 22,000) which is coded for by a large mRNA and it has 

been shown by immunoprécipitation studies that this protein is synthesised 

initially as a higher molecular weight precursor of about two times the 

size of the matured protein (Kelley et al., 1980). Although there is no 

similar hsp in HeLa cells, the possibility that the y polypeptide, unlike 

the other 72,000 - 74,000 dalton polypeptides arises from a larger pre

cursor can not be ruled out. However, the in vivo labelling (see Figure 

16) and in vitro mRNA translation data (see Figures 28 and 29) makes it 

seem unlikely.



As it has already been mentioned, the possible precursors of 

the 3, y, «S and e mRNAs accumulate in the nucleus 1—2 hrs after the 

heat-shock (Burdon, 1982). Northern blotting experiments showed that 

cDNA sequences from recombinant pHS2 (which contains insert from y- 

coding iriRNA, see Results, Section 7) hybridises to nuclear RNA 15,800 

and 6,300 bases long (Burdon, 1982, ). At the same time cDNA sequences 

from recombinants pHS3 and pHS6 (which contain inserts from 3/ 6 and e 

mRNAs) hybridised to nuclear RNA 15,800, 2,500 and 1,900 bases long 

(Burdon, 1982), A question arising is whether 3, y , 5 and e polypeptide 

coding iriRNAs arise from the same precursor. It is also not known 

whether the 2,500 bases long nuclear RNA is a processing intermediate.

To answer these questions, the isolation of the suitable genomic 

sequences would be helpful.

5. Translational control in heat-shocked cells

One rapid response of Drosophila cells to heat-shock treatment 

is the breakdown of pre-existing polysomes (Lindquist-McKenzie et al., 

1975). A different population of polysomes reappears later on with at 

least twice as many ribosomes attached per message (Lindquist-McKenzie 

et al., 1975; Ashburner and Bonner, 1979). Even though there is a 

"shut-off" of normal protein synthesis in Drosophila cells kept at 

elevated temperatures (Tissieres et al., 1974; Lewis et al., 1975;

Koninkx et al., 1976), pre-existing messages are not degraded and can 

be detected in the cytoplasm by vitro translation (Mirault e^ al., 

1978; Storti et al,, 1980). It has recently been shown by in vitro 

translation in rabbit reticulocytes that normal messages are found 

associated with polysomes in heat-shocked Drosophila cells {Kruger 

and Benecke, 1981). However, in vitro translation of polysomal mRNA 

in a cell-free system prepared from heat-shocked Drosophila cells showed 

that normal messages even though associated with polysomes, are poorly 

translated in this lysate (Kruger and Benecke, 1981).



In HeLa cells, heat-shock also results in breakdown of poly

somes (see Figure 30B) and even though the cells are then transferred 

at 37^C (normal culture temperature), it takes 1—2 hrs to have normal 

polysomal profile restored (see Figure 30), While in Drosophila cells 

kept at elevated temperatures normal polysomal profile is not obtained 

in the absence of heat-shock mRNA synthesis, transfer of the cells to 

normal temperature results in restoration of normal polysomal profile 

even at the absence of new transcription (Storti £t al., 1980). Heat- 

shock has also been shown to result in polysomes breakdown in L-cells 

(Schochetman and Perry, 1972) and soybean (Key et al., 1981), In 

higher plants, in particular, polysomal profile is restored 4 hrs after 

the start of heat-shock and while the cells are kept at elevated temperat

ure (Key et al., 1981). It is not known why during the first hour of 

HeLa cells recovery at 37°c the new polysomes appear with only a few 

ribosomes attached per message. It could be that the heat-shock has 

some reversible effect on the translation apparatus which is overcome 

1-2 hrs after the heat-shock. For example, heat— treatment of rabbit 

reticulocyte lysates has been shown to activate a kinase which appears 

to inactivate the small subunit of the initiation factor elF-2 by 

phosphorylation (Bonanou-Tzedaki et al., 1981).

Unlike the situation in Drosophila cells where there is 

discrimination in favour of heat-shock mRNAs (Storti et al.., 1980;

Kruger and Benecke, 1981; Lindquist, 1981), a similar phenomenon is not 

suggested by in vivo labelling of proteins in HeLa cells (see Figure 16), 

which has shown that all messages are translated together with the heat- 

shock mRNAs. Even though there is no indication of some type of trans

lational control during the 4 first hours of recovery, our results 

suggest that this may happen 6 hrs after the heat-shock. Even though 

there is not increased in vivo synthesis of hsp's 6 hrs after the heat-



shock, increased amounts of 72,000 - 74,000 hsp coding mRJNAs can be 

detected in the cytoplasm b y 'in vitro translation in rabbit reticulocytes 

(see Figure 32), Some of these mRNAs are found in botb polysomal and 

post-polysomal fractions with a slight enrichment in the post-^pclysomal 

fraction (see Figures 36B and 37B). In vitro translation in a cell-free 

system prepared from HeLa cells 2 hrs and 6 hrs after the heat-shock would 

be necessary to prove that there is translational control at this stage. 

Unfortunately, attempts to prepare cell-free translation system from 

HeLa cells have been unsuccessful. It would also be interesting to 

find out how these mRNA-s are prevented from being translated 6 hrs after 

the heat-shock. It could be that proteins feed back to polysomes, thus 

preventing translation of the corresponding mRUAs.

It should also be mentioned that full recovery from heat-shock 

does not seem to involve in general, any mobilisation of mRMls from the 

polysomal to the post-polysomal fraction (see Figures 36 and 37). Only 

one iriRNA species seems to be transferred from the post-polysomal fraction 

where it was 2 hrs after the heat-shock to the polysomal fraction 6 hrs 

after the heat-shock. Whether this is of any importance is not known.

It should, however, be confirmed by in vitro translation in cell-free 

extracts from HeLa cells.

Translational control has been also suggested to operate in 

heat-shocked plant cells (Key et al., 1981), In these cells, however, 

there is evidence that heat-shock mEUNAs are degraded once they stop 

being translated (Key et al., 1981).

Even though translational control seems to operate at some 

stage in some heat-shocked cells, it is not fully understood which 

factor (s) is responsible for this. Translational control in favour 

of heat-shock mRNAs may be due to the fact that heat-shock mRWAs 

exhibit high affinity for ribosomes. This could result from structural 

or even the primary sequence of the heat-shock mRNAs. For example,

it may be of importance that the 5' end of both the 70^000 hsp's
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and histones in Drosophila are so A-rich compared to other mRNA molecules 

(Ingolia and Craig, 1981). Messenger RWAs with high affinity for 

ribosomes would not be affected by a partial depletion of the translational 

machinery (such as inactivation of eIP-2 by phosphorylation), while 

other iriRNAs would be affected and this could explain the high initiation 

rates of Drosophila heat-shock mRNAs reported by Lindquist (1980).

Because the ability to discriminate against the normal nidSIA 

population in Drosophila is not transferable to 25°C cell-free lysates 

by particle-free cytoplasm from heat-shocked cells, it has been proposed 

that the responsible factor may be associated with ribosomes (Kruger and 

Benecke, 1981). Scott and Pardue (1981) have, indeed, succeeded in 

rescuing the translation of normal messages in 37°C lysates by the 

addition of a crude ribosome fraction from a 25°C lysate, and Glover 

(1982) has very recently reported a difference between the ribosomes 

of control and heat-shocked Drosophila cells. One ribosomal protein 

(possibly the ribosomal protein S6) is heavily phosphorylated in Drosophila 

cells grown at normal temperatures but it is completely dephosphorylated 

in heat-shocked cells (Glover, 1982).

It should be mentioned, however, that translational control is 

not the only way of promoting translation of heat-shock proteins. For 

example, in yeast this is achieved by degradation of pre-existing mRlüAs 

(Lindquist, 1981), Our in vitro experiments showed that some of the 

mRNAs found in normal HeLa cells are not detected in heat-shock HeLa 

cells (see Figures 28B and 29B), However, this is more likely to be due 

to degradation of the corresponding mRNAs during the isolation procedure, 

especially since no inhibition of specific protein synthesis has been 

shown in HeLa cells (see Figure 16),
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