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Abstract

The closely related transposable elements, Tn3 and y6 , share 

significant DNA sequence homology and functional organization. These 

elements have been shown to encode interchangeable resolvase proteins 

to mediate resolution of obligatory transpositional cointegrates.

There is no apparent complementation between these elements for the 

tnpA gene function.

To analyze the mechanism of resolvase-mediated recombination, 

the TnJ-encoded tnpR gene was cloned into a high expression plasmid 

vector. This allowed large amounts of resolvase to be synthesized, 

thus aiding purification of the protein. The purified protein was 

subsequently used for biochemical analysis of the resolution 

reaction and for DNase I footprinting experiments.

A number of small plasmid substrates were constructed containing 

two Tes sites in direct or inverted orientation. In vi-tTO resolution 

reactions were assayed by gel electrophoresis to detect the formation 

of interlocked circles (catenates) which appeared to be the major 

reaction product. The resolution reaction requires only resolvase 

and a supercoiled substrate containing two directly repeated 

sites,under the appropriate ionic conditions; the reaction is ind­

ependent of host factors or an external energy supply. Catenates 

are always formed during resolution suggesting that this may be a 

direct consequence of the reaction mechanism.

Substrates containing varying lengths of DNA separating tbs 

sites have differing efficiencies of resolution -in vi-tTO, the reaction 

proceeds with greatest efficiency when the length of DNA between



(vii)

res sites is least . This data, in conjunction with the observed

preference for two directly repeated res sites in cï-s, has led to

the proposal of a "tracking" model for resolvase-mediated recombination,

Resolvase has been shown to bind specifically and nonspecifically 

to DNA. Specific binding, resulting from tight association of resolvase 

with the target site, was investigated by sequence protection from 

DNase I. This revealed three binding sites for resolvase within the 

res region. The sequences of the protected sites conform to the 

concensus sequence proposed for other regulatory DNA binding 

proteins.
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1. For phenotype

Ap^ resistant to ampicillin

Cm^ resistant to chloramphenicol
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Su^ resistant to sulphonamide

Tc^ resistant to tetracycline
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+Rec recombination proficient

Rec recombination deficient 
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Tra^ self-transmissible
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CHAPTER 1

GENERAL INTRODUCTION



Introduction

The experiments described in this thesis were designed to 

study the recombination events mediated by transposable elements, 

Transposable elements are DNA sequences which integrate at many loci 

in genomes ; their insertion, and other rearrangements which they 

generate, has led to speculation over their possible significance 

in genome evolution and development. The molecular mechanisms involved 

in propagation of these elements have become one of the focal points 

of study in molecular biology over recent years and form the basis 

of the work reported here.

Historically, single base changes, which often occur as mistakes 

during replication (Radman et aZ..̂  1979) , were assumed to be the 

major cause of mutations; the substrate for Darwinian natural 

..selection., However,. genetic rearrangements such as inversion, 

duplication and deletion of DNA'sequences also contribute to' the 

generation of diversity wi,thin genomes. Recently, there has been 

speculation that trànâposàble elements- play a role in generating 

such rearrangements. In addition, their ability to fuse together 

unrelated DNA sequences,suggests that they may enable the formation 

of new genes from segments of pre-existing ones. Such rearrangements, 

together with other mutational processes, would be instrumental in
^  ; r .generating the genetip variation for evolution to occur.

Any mechanism which places DNA in new positions, thus ensuring 

continuous movement of genetic material, lends greatly to genome 

plasticity and the generation of diversity. The major force involved 

in generating all rearrangements is genetic recombination. Histor-
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FIGURE 1.1 Diagram to illustrate the major recombination systems in 

E. col't



ically, the processes of recombination have been divided into two 

classes :

(a) Homologous recombination*

These events occur over extended regions of homology, at least 

several hundred base pairs, and are mediated by the general genetic 

recombination system; in E,coVi this has been named the vecA- 

dependent pathway of recombination. This results in reassortment 

of genetic markers between homologous chromosomes, but does not 

normally result in genetic rearrangements*

(b) Non-homologous recombination.

These events occur between sequences of little of no homology and 

are usually independent of the general genetic recombination system.

The proteins which mediate these events are of ten encoded by genes ad jacent 

to the site at which they act. This class has been subdivided into 

replicative and non-replicative events* The non-replicative events 

are typified by bacteriophage lambda integration which occurs by a 

reciprocal break/join mechanism with no concomitant DNA synthesis* 

Duplicative events are represented by transposition; the movement 

of transposable elements to new sites results in no loss of the element 

from it s original site, thus DNA synthesis accompanies transposition 

(see figure 1*1)

These processes of recombination have been arbitrarily divided 

into classes but should not be considered as independent events.

Most genetic rearrangements are a consequence of a combination of 

these processes, eg, transposition results in duplication of the 

element, thus providing portable regions of homology on which the 

general genetic recombination system can act to generate deletions, 

inversions and duplications of DNA (figure 1*2), ,
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figure 1.2 Homologous recombination between duplicated sequences

A. If homologous chromosomes contain repeated sequences separating 

genes, or parts of genes, then misalignment of the DNA helices 

may result in duplication or deletion of genes, or parts of geneso

B. Intramolecular homologous recombination can also occur when 

a chromosome contains repeated sequenceSo If the sequences are 

directly repeated then a deletion will result. If the deleted 

sequence has no vegetative origin of replication it will be lost 

unless it integrates back into the chromosome by a second recom­

bination event. This could be at the original position or at an­

other site where there is a copy of the element.

C. If the repeated sequences are present in inverted orientation 

within the chromosome, homologous recombination between the 

sequences will generate an inversion of the intervening DNA,



Classical genetic crosses in which markers reassort in 

Mendelian fashion exemplify homologous recombination; much of this 

data has been obtained from simple crosses in fungi or E. col't*

In fungi all products of meiosis are recovered in tetrads, analysis 

of which shows which homologous chromosomes paired in the zygote 

and exchanged genetic material. These studies have implicated form­

ation of heteroduplex regions as intermediates in recombination 

(Radding,1978)o This led Holliday (1964) to propose a model ' 

for symmetrical genetic recombination which involves breakage and 

reunion of strands to form a heteroduplex joint (figure 1.3).

However, this model does not explain the observed nonreciprocality 

of many recombination eventso To overcome this problem Meselson 

and Radding (1975) proposed a modification of the initial model 

so that nonreciprocal progeny would result (figure 1.4). All the 

models proposed for the mechanism of recombination demand a number 

of proteins which can nick and/or ligate DNA molecules to initiate 

the recombination event and resolve intermediates.

The erzymology of recombination has been mainly confined to 

E.coVi* Clark has isolated a number of mutants with varying degrees 

of recombinational proficiency; of these the veck mutation has the 

most severe effects (Clark,1973;1974)„ The veok mutation confers 

extreme UV sensitivity on the host, reduces cell viability, and shows 

deficiency in recombination of incoming linear DNA by conjugation 

or transductiona The veck gene product has been directly implicated 

in heteroduplex formation 'In viDo (Holloman and Radding, 1976) and 

also has a specific protease activity intimately involved in the 

SOS pathway of inducible repair (see Little and Mount,1982 for a 

review).
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FIGURE lo3 Holliday recombination model

1. Homologous DNA helices are aligned.

2. In each, a single-stranded nick is made in both positive 

(or negative)strandso

3. The free ends created dissociate from their complementary 

strands and instead associate with the complementary strands in 

the homologous double helices. The reciprocal strand invasion 

may be stabilized by ligation of ends.

4. The crossover point is not static and may move in either 

direction by rotary diffusion of the double helices, this results 

in heteroduplex formation.

5,6, Isomerization of the "Holliday intermediate" into another 

planar form makes visualization of the outcome easier (Sigal and 

Alberts,1972).

7. Cutting on different axes releases recombinant molecules in 

which, on either side of the potentially heterozygous region, 

the parental alleles are either conserved in their original 

linkage or are reciprocally exchanged.
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FIGURE 1.4 Meselson-Radding recombination model

a. Homologous DNA helices are aligned.

b. A single-stranded break in one molecule becomes the site of strand 
displacement by DNA polymerase.

c. The displaced strand invades the homologous double helix, form- ; 
ing a D-loop.

d.The unpaired DNA in the D-loop is removed by nucleases.

e. Branch migration is achieved by the action of DNA polymerase 
displacing the strand thereby forming a long heteroduplex tract in 
only one of the participating duplexes.

f. The strand displaced by the invading strand may itself base pair 
onto the complementary strand of the homologous helix thus forming 
a symmetrical heteroduplex joint.

g. Ends of strands are ligated to form a stable Holliday inter­
mediate which may then be subject to the same processes of branch 
migration and isomerization as previously described.



The fundamental role of the vecA gene product in many cell­

ular processes has prompted several independent groups to clone the 

Teak gene and purify it s product with the intent of studying it s 

action 'Cn V'ttTO (Weinstock et aZ. ̂ 1979; Shibata et aZ. , 1979b). The 

protein has a molecular weight of 37,800;dal, cleaves the lambda 

cl and Zexk repressor proteins 'in V'itvo (Roberts et aZ., 1979; Little 

et aZ.jl980), has ATPase activity and also, more importantly, part­

icipates in a number of events associated with recombination.

Key features of recombination models are recognition and 

alignment of homologous DNA molecules followed by heteroduplex 

formation. There is substantial evidence that purified RecA protein promotes 

homologous pairing and heteroduplex formation 'in V'itvo. The 

protein binds most avidly to single-stranded DNA, in the presence 

of ATP, to form stable complexes. In the presence of double-stranded 

DNA unwinding of the duplex occurs whether the bound single strand is 

heterologous or homologous (Shibata et aZ.,1979a;b). It has been 

proposed that the initial unwinding promoted by the single-stranded 

DNA/RecA protein complex may be in search of homology (Shibata &t aZ.,

1979a). When a region of the unwound duplex homologous to the single 

strand is found then pairing takes place to form a heteroduplex 

joint containing the new strand rather than rewinding of the original 

helix. The displaced strand from the duplex can be visualized as 

a D-loop by electron microscopy or assayed by retention on a nitro­

cellulose filter (McEntee et aZ. ,1979; Shibata et aZ.,1979a;b;Das- 

Gupta et aZojl980). The single-stranded DNA molecule which stimulates 

homologous pairing may be circular or linear, suggesting that a free 

end is not always required, but a free end is required for stable 

heteroduplex formation. Stable heteroduplexes can be formed from



intact duplex molecules and single-stranded circular molecules in

the presence of RecA protein and topoisomerase I (Cunningham et at, ̂

1981). The heteroduplex joint formation promoted by RecA protein

can extend for setreral thousand base pairs due to branch migration

of the crossover point; this reaction appears to be driven by ATP

and is polar (Cox and Lehman,1981; Kahn et aZ-,jl981; West et at,^

1981b). The heteroduplex always extends from 3' -^5' direction,

displacing a strand from the duplex with a 5' terminus. Branch

migration is halted by extensive mismatching of base pairs (more

than 25%), but may pass through some mismatches; this observation

may be important when considering gene conversion (DasGupta and

Raiding,1982). The heteroduplex can also pass through regions

containing pyrimidine dimers, though this reaction proceeds at 
til1/50 the normal speed (Livneh and Lehman̂ , 1982) . Insertion of short 

DNA sequences -(about 700bp) also halts branch migration (DasGupta and 

Raiding,1982). These experiments highlight the importance of the 

RecA protein in the initial events of homologous pairing and heter­

oduplex formation leading to genetic recombination.

The major recombination pathway in EcCott involves the products 

of both the RecA gene and the RecBC gene (Clark,1974). The protein 

encoded by the RecBC gene has been purified; it is an ATP-dependent 

exonuclease, named exoV, In vitro, exoV binds to single-stranded DNA, 

can unwind and rewind duplex DNA, has endonuclease activity and de­

grades free ends to oligonucleotides (Telander-Muskavitch and Linn, 

1980)o One of the more interesting observations made with exoV is 

it s ability, under certain conditions, to bind at the ends of a 

linear duplex, track along the DNA in the presence of ATP, unwinding 

and rewinding the helix. As the rate of unwinding exceeds that of 

rewinding, movement of exoV along the duplex results in the formation



of single-stranded loops? these are visualized as double loops or 

loops and tails in the electron microscope (Taylor and Smith,1980a? 

b; Telander-Muskavitch and Linn,1980). The single-stranded loops thus 

formed could be instrumental in the initial synapsis event. This 

data does, however, conflict with genetic evidence of a role for 

exoY late in recombination (Birge and Low,1974). One cannot preclude 

the possibility that exoY may have roles both late and early in 

recombination depending on the substrate,,

Another protein which has been directly implicated during 

recombination is the T/pgene 49-encoded endonuclease , endoVII,

This has been shown to symmetrically cleave artificially constructed 

Holliday intermediates in vitro in a manner which would resolve 

recombinational intermediates into progeny molecules (Mizuuchi g/f-a,6 

1982) . The in vitro data confirms genetic evidence for a role for 

this gene product late in recombination (Kemper and Janz,1976).

In contrast to general genetic recombination, site-specific 

recombination is independent of reoA function. The proteins which 

mediate these events are often encoded by genes adjacent to one 

of the recombination sites. The reaction is usually by a reciprocal 

mechanism of breakage and reunion of strands without concomitant 

DNA synthesis.or extensive heteroduplex joint formation. The proto­

type model for site-specific recombination is integration/excision 

of bacteriophage lambda with the chromosome (see figure 1.1;

Campbell,1962). Extensive studies in vivo and in vitro have ident­

ified a 240bp phage attachment site, attF and a 25bp host site, 

attB (Landy and Ross,1977; Hsu et a2.jl980; Mi zuuchi et aZ.jl981). 

These sites contain a common core sequence of 15bp within which the 

crossover occurs; the crossover point is unique to each strand and



is staggered by 7bp (Nash,pers .corain, )

Nash has developed an in vitro system to study the molecular 

mechanism of this recombination event and as a means of identifying 

and purifying the proteins required, (Nash,1975). The integration ' 

reaction requires the presence of the phage-encoded Int protein, plus 

the products of the himA and hip host genes which together form the 

integration host factor,IHF (Nash and Robertson,1981)« These proteins 

have been purified to near homogeneity and shown to bind specifically 

to att sites (Kikuchi and Nash,1978; Ross et #Z.jl979; Hsu et alo j 

1980; Mi zuuchi et aZ.jl981; Nash and Robertson,1981; Craig and Nash, 

pers.comm.) The Int protein has also been shown to have the property 

of breaking and resealing DNA under certain conditions, which has 

led to it s classification as a type I topoisomerase (Kikuchi and 

Nash,1979b; Wang et at,j 1980).

Enzymes which catalyze the conversion of a particular DNA topo- 

isomer into another,by removal or addition of superhelical turns , 

have been named topoisomerases. The number of supertwists in a 

covalently closed circular DNA molecule is always an integer, this 

value has been called the linking number. Topoisomerases change the 

linking number by cutting and rejoining DNA strands in a concerted 

manner. Type II topoisomerases, such as DNA gyrase, change the linking 

number in steps of two by mediating a double-stranded cleavage in the 

helix, passing an intact segment of DNA through the cleaved strands, 

g)Ugfed by ligation of the strands. Type I enzymes have a similar 

reaction mechanism, but induce single-stranded cleavage thus chan­

ging the linking number in steps of one (see Cozzarelli,1980 and 

Gellert,1981 for reviews).
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The apparent lack of specificity for att sites shown by Int 

topoisomerase is difficult to reconcile with results from DNA bind­

ing experiments. This may be attributable to the high Int concen­

trations required for topoisomerase activity, which may result in 

nonspecific binding, or could be due to recognition of a short 

sequence which could conceivably be widely distributed.

The preferred substrate for in vitro recombination is s/c DNA, 

though under appropriate ionic conditions o/c substrates are converted 

to products; this reaction is very inefficient (Pollock and Abremski, 

1979; Pollock and Nash,1980). For the intermolecular reaction only 

attF is required within a s/c molecule, attB can be located within 

a relaxed circular molecule or linear DNA molecule (Mizuuchi and 

Mizuuchi,1979)o The superhelicity of participating DNA molecules 

appears to be highly conserved during the reaction^suggesting that 

att sites are paired and held in place by recombination proteins 

during strand exchange. Nash has proposed a four-stranded inter­

mediate structure for recombination, similar to the model proposed 

by McGavin (.1971) , in which one strand from each parent is simul­

taneously cleaved, followed by limited rotation around uncut strands 

which brings cleaved strands adjacent to new partners for the ligation 

step. This process would have to be repeated on the remaining two 

parental strands for full recombination; as yet no intermediate 

structure has been detected in which the reaction has only occurred 

on two strands. As Int exhibits type I topoisomerase activity this 

protein is proposed to mediate the cleavage/ligation reactions 

during recombination, whereas IHF may play an important role in 

alignment of strands prior to recombination.

In addition to Int and IHF the excision reaction'requires the
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presence of the Xis protein, the product of the phage-encoded xis 

gene. The substrates for this reaction are the hybrid sites, attE 

and att L, formed by recombination between attP and attB. The differ­

ing requirements for the integration and excision reactions ensures 

that after infection the phage is either stably integrated, until 

induced, or enters the lytic cycle.

Lambda integrative recombination represents the best characterized 

model for site-specific recombination, due largely to the use of 

an in vitro system. Although many of the other site-specific recom­

bination systems recognized in prokaryotes and eukaryotes have yet 

to be subjected to extensive biochemical analysis, the limited genetic 

data suggests differences in substrate preference, efficiency of 

recombination and dependence on host-encoded proteins. These diff­

erences may be significant when thinking in terms of the biological 

roles of the systems and the reaction mechanisms involved.

The two closely related systems, SatmoneVla phase variation 

and G-loop flipping in the bacteriophages Mu and PI, involve site- 

specific inversion of a DNA segment which regulates expression of ad­

jacent genes. In Satmonetta two genes, HI and H2, encode the major 

flagellar structural proteins. These two genes map apart on the Sat— 

manetia genome; cells express either one of these two genes depending 

on the orientation of a segment of DNA adjacent to the H2 structural 

gene. In one orientation the H2 gene is expressed as well as a repr­

essor protein which prevents transcription of the Hi structural gene 

(Simon et aZ.jl980). A tîtzns-acting function, hin, maps within the 

invertible region; this acts on 14bp inverted repeat sequences 

bounding the 970bp inversion segment to mediate recombinational gene 

switchingp The hin protein has no apparent activity on,directly
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repeated sites„ An analagous system is encoded by bacteriophage Mu; 

in this case the expression of cell surface proteins, which determine 

the host range of the phage, are controlled by inversion of a DNA 

segment, designated the G loop (Bukhari and Ambrosio,1978; Kamp et 

czZô  1978) p Inversion of this DNA sequence is dependent on the gin 

gene product, which acts at 14bp inverted repeats flanking the G 

loop (Kamp et aZ.j1979). The Hin and Gin proteins have been shown 
to have interchangeable functions (Kamp and Kahmann,1981)„ These 

two systems are active only on inverted repeats, recombine at low 

frequency, and appear to require only the hin or gin gene products„

Site-specific recombination has only recently been recognized 

in eukaryotes; limited analysis has shown the presence of both 

inversion and deletion systems dependent on short sequence homo­

logies. The 2U circle plasmid in Sacckaromyoes oerevisiae encodes 
a site-specific recombination system; the protein which mediates 

this event, FLP, and the sites of inversion, are both located on the 

plasmid. Host-encoded factors may also be involved. The function 

of DNA sequence flipping in this case is unknown (Broach et al, ̂

1982). The production of antibody genes is known to occur through 

several recombination steps from germline to somatic cells. These 

events involve short sequence homologies as substrates for as yet 

unidentified proteins leading to maturation of antibody genes 

(Tonegawa et.al^y 1981; Leder,1982).

The systems described in this section involve recombination 

between short, specific,homologous DNA sequences. A number of other 

recombination events involving short DNA sequences are recognized 

±n EoOoli ; an example of this is in the laol structural gene where 

several mutation hotspots have been identified* The formation of
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spontaneous mutations in the laol gene is mainly attributable to 
short deletions. These occur at short DNA sequence homologies (5- 

15bp long) in reoA^ or veoA cells (Farabaugh et aZ,jl978; Albertini 
et aZ.j1982)* Also included in this category is precise excision 
of transposable elements which occurs at low frequency by recombination 

between short sequence duplications (3-12bp long) flanking the 

integrated element (Foster et dZ.j1981; Kleckner,1981). This process 
is independent of the veoA gene and may require the presence of 
the host-encoded hftmA gene. These events involve short sequence 

duplications, but do not require specific DNA sequences.

Movement of genetic elements represents another kind of recombination 

event; they insert at new loci with no apparent homology to the 

element. Such events have gross phenotypic consequences leading to 

insertional mutations, deletions, inversions and duplications. If 

these elements contain regulatory signals then the possibility exists 

for switching on or off the expression of adjacent genes. It was 

precisely this observation which identified "controlling elements" 

in maize (McClintock,1952;1957). McClintock’s results suggested 

that "controlling elements" could move from loci to loci affecting 

the expression of many diferent genes, thus exerting clear pheno­

typic effects*

It was not until the late I960's that many polar mutations in 

the gal and lao opérons in E,ooli were realized to be due to insertions 

of DNA (Malamy,1966; Adhya and Shapiro,1969)* On further analysis, 

by physical means, it was realized that many of these insertions 

were of distinct size classes, ranging from 700 to 1500 bp (Star- 

linger and Saedler,1972). It became apparent that "insertion sequences" 

(IS elements) were of non-permuted length and moved as discrete



14

units into many sites. In the early 1970’s many of the antibiotic 

resistance genes, known to be spread at high frequency, were identified 

as transposable elements (Hedges and Jacob,1974). This led the way 

to studying these elements in more detail as their easily selected 

phenotypic markers were more readily followed through populations 

than the simple insertion elements.

All transposon mediated rearrangements occur in the absence 

of recA function, suggesting that the elements themselves encode 

determinants for their own transposition. Deletion analysis has 

indicated the presence of at least one element-encoded protein 

required for transposition. Host functions are almost certainly 

required also* The advent of rapid DNA sequencing techniques has 

revealed the complete nucleotide sequence of many of the small 

elements and their integration sites. The most striking feature 

revealed by sequence data is the ubiquity of inverted repeat sequences 

at the ends of elements. The ends of elements are essential for 

transposition. All transposable elements mediate a small duplication 

of the target sequence during integration; these small direct 

repeats flank the integrated element. The repeated sequence ranges 

from 3-12bp and is characteristic for each element; 5bp and 9bp 

duplications are the most common (Grindley,1978; Johnsrud et 

1978; Kleckner,1979; Ohtsubo et aZ.jl979). The duplication of 

target site DNA is not required for subsequenttransposition 

(Kleckner,1979).

There is sttong evidence that when a transposable element 

inserts at a new site, an intact copy of the element remains in the 

original position* However, this observation cannot be used as 

conclusive evidence for replication during transposition as there
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is always more than one chromosome present during the cell cycle, 

therefore one cannot rule out simple excision/reintegration. All 

elements appear to mediate replicon fusion, or cointegration. The 

donor replicon interacts with a second genome, lacking the element, 

to generate a structure containing both replicons joined by directly 

repeated copies of the element (Toussaint and Faelen,197 3; Gill et 

aZ.jl978; Arthur and Sherratt,1979). This observation directly 

implicates replication in the transposition process. Replication 

is specific to the element and the small target sequence which is 

presumably duplicated as part of the transposition event.

Comparison of sequence homologies, structural and functional 

organization, and proposed mechanisms has divided the prokaryotic 

transposable elements into three distinct groups (table 1.1; see 

Kleckner,1981 for further details).

The class I elements consist of the simple insertion sequences, 

which code for only one or two structural genes involved in their 

transposition and regulation, and composite elements which consist 

of accessory determinants flanked by IS elements. IsZ-5 and 13102 

are independent elements, but 1320^ 1350, and 13903 are found only 

in composite elements, where they flank antibiotic resistance genes. 

The IS modules of composite elements mediate the transposition events 

and subsequent rearrangements caused by these elements. Mutations 

within IS elements lead to a transposition deficient phenotype, the 

mutant element can be complemented to transpose, but the frequency 

with which this occurs is greatly reduced* This is thought to be due 

to a high preference for ois action by the transposase proteins 

(Joyce and Grindley,1981; Kleckner,1982), which have often been 

compared, mechanistically, to the ^X174 aisA protein (Arthur and



CLASS lAo IS-like elements: individual modules

Element Length
(bp)

Target
repeat

Terminal IR Possible coding region- 
no. amino acids

Source

IS 7 768 9 18/23 70,90 F,R100 *

IS2 1327 5 32/41 315 E.eoH K12

IS 3 1300 3 or 4 32/38 not* E,ooli k12,F

is4 1426 11 or 12 16/18 422,131 E.ooli k12

IS 5 1195 4 15/16 338,326, E^ooli k12

118,108

IS70-R 1329 9 17/22 402,62,54 TnZO in RlOO

IS5(9-r 1531 9 8/9 480,476 Tn5 in JR67

1S90 3 r ,-L 1050 9 18/18 370,114 Undo3 in R6

1S202 =1000 9 18/18 n, to pSClOl^®

* present on the chromosome of E„ooH K12 and many other enterobacteria

CLASS iBo IS-like elements: composite elements

Element Length
(bp)

Module at ends Orientation of 
flanking module

Associated det*

Tn687 2*1 IS2 inverted heat-stable toxin

Tn2572 23 IS7 direct Cm^,fus^,Sm^,Su^,Hg^

Tn9 2.5 IS 7 direct Cm^

T n 2350 10*5 IS7 direct Km^

Tn20 9*3 XS20 inverted Tc^

Tn5 5.7 TS50 inverted Km^

Tn903 3*1 Ï S 9 0 3 inverted Km^

TABLE 1,1 Classification of transposable elements (from Kleckner,

1981)
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Sherratt,1979ï Kleckner,1981). The transposition frequencies of 

composite elements are generally low and show length dependence 

(Chandler et (zZ.̂ 1982; Kleckner,1982) . This may be due to the length 

of DNA which has to be replicated, thus increasing the chances of 

nuclease attack on exposed single-stranded regions, or due to in­

stability of the transposase complex. Class I elements may generate 

cointegrates or proceed directly to transposition end-products 

obviating the replicon fusion step; the frequency for each type of 

event is characteristic for each element, Cointegrates, when formed, 

are stable in Rec hosts,suggesting that these elements do not 

encode a system to reduce cointegrates to the normal transposition 

end-products* The host-encoded homologous recombination system can 

resolve transpositional cointegrates, albeit inefficiently, thus 

causing deletions between directly repeated elements. The deleted 

region carries a single copy of the element and may integrate by 

re combination into a region of the genome containing a homologous 

copy of the element. Intramolecular transposition results in deletion 

or inversion of intervening DNA (see figures 1.6 and 1.7 later).

Inverted repeated copies of an IS element surrounding a unique 

sequence allow the entire region to transpose, thus forming a com­

posite element. Homologous recombination across the inverted repeated 

modules of composite elements merely results in inversion of the 

accessory determinant in relation to outside markers. Composite 

elements flanked by directly repeated modules are always in danger 

of excision by recombination across the IS elements, though of course 

these elements also have the potential to amplify accessory det­

erminants by unequal exchange (see figure 1.2).

Analysis of integration sites indicates some insertion specificity,
i

particularly for the TnZO element. TnZ(7 has "hot sites" for insertion.
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a concensus sequence, GTCNAGC, has been identified by analysis of 

preferred integration sites (Hailing and Kleckner,1982) . Precise 

excision is rare and presumably occurs by recombination across short 

direct duplications of target site DNA flanking the integrated 

element (Foster et at,,19Q1), Precise excision may be affected by 

some host mutations, eg. himA, which has already been identifed as 

one of the components of IHF required for lambda integrative recom­

bination. The himA gene has also been shown to regulate the expression 

of several lambda genes involved in establishment of lysogeny 

(Miller, 1981). The HimA protein could play a direct role in precise 

excision, or indirectly by affecting the expression of other genes 

(Kleckner,1982). The fevA gene, present on the F factor, appears to 

elevate the frequency of precise excision and also increases the 

rate of general genetic recombination between plasmids (Doherty 

et aZ.jl982) * This may be due to a stimulation of recombination

proteins when single-stranded DNA is present in cells, ie. during 

transfer (Hopkins, unpubl. results).

There are no apparent sequence homologies between class I 

elements, or interaction between transposition déterminants.^- Several 

duplicate 9bp on insertion, but there are many variations. There 

are no strong homologies between inverted repeat sequences of 

elements within this group. These elements may have evolved inde­

pendently or have diverged considerably from a common ancestor.

The class II elements have been classified according to their 

strong similarities in mechanistic and functional properties, as 

well as sequence homologies, which together suggest a common evol­

utionary origin. All elements generate 5bp duplications at the target 

site on integration, have 35-40bp inverted repeats, which share some



homology between elements, encode transposition functions and, 

usually, accessory determinants,(see table 1.1). Of these the amp- 

icillin resistant element,Tn3, is the best characterized. The str­

ucture and functions of this element have been revealed by DNA 

sequencing and analysis of a series of deletion and insertion 

mutants (Heffron et aZ.j1977 ;1978;1979; Arthur and Sherratt,1979 ; 

Sherratt et aZ.,1981a). As for class I elements, both ends of the 

element are required in eis for transposition as well as the product 

of the tnpK gene, transposase, which is thought to act specifically 

at the ends of the element. Cointegrates appear to be obligatory 

during the transposition process, but, unlike class I elements, 

these are unstable in veoA hosts (Arthur and Sherratt,1979; Kitts 

et aZ.j1982a;b). Resolution of cointegrates is dependent on the 

product of the tnpR gene, resolvase, and occurs by recombination 

at a specific site, res, located within the element. These elements 

appear to have evolved a site-specific recombination system to 

efficiently resolve transpositional cointegrates*

The precise excision of these elements has not been extensively 

studied, though it appears to occur very infrequently. There is no 

apparent specificity for insertion sites; integration generally occurs 

into AT-rich regions (Tu and Cohen,1980).

Of the class III elements, bacteriophage Mu has been studied 

in most detail. Mu undergoes transposition at high frequency in the 

host, causing all the genetic rearrangements characteristic of a 

transposable element. Replicative transposition is the normal mech­

anism for vegetative propagation during the lytic cycle. The sequences 

required for transposition, demonstrated by deleting the central 

region of the phage to form "mini-Mus", are located, within 1Kb of
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the lefthand end and O*15Kb of the righthand end CCoehlo et at,,

1981). Only the ends of the element and two phage-encoded products 

are required for transposition* The A gene is required for all 

transposition processes; A mutants are defective for Mu integration, 

replication, deletion and cointegrate formation* B mutants retain 

1-10% of wild type activity. The A gene product is intimately in­

volved in replication of the phage, and is required in stoichiometric 

amounts. There is also evidence that the A gene product is unstable 

(Pato and Reich,1982),

The apparent replicative nature of transposition has prompted 

a number of models to explain these observations (Grindley and Sherratt, 

1979; Arthur and Sherratt,1979 ; Shapiro,1979). All the models 

demard that the transposase protein recognizes the ends of the 

element. Single-stranded nicks are made at either the 5' or 3' 

ends of the element,followed by covalent attachment of the cleaved 

element strands to transposase, in analogy with the (j)X174 cisA 

protein and conjugal mobilization (Eisenberg et aZ.,1977; Warren 

et aZ.,1978) * A staggered cut is made at the target site ; the length 

of this stagger determines the size of the duplication made and 

is characteristic for each element. The ends of the element are then 

ligated to the staggered break at the target site (see figure 1.5; 

Arthur and Sherratt,1979; Shapiro,1979). If the 5' termini are used 

for the initial cleavage event, then the esgjosed 3' hydroxyl ends 

provide primers for DNA replication. This series of events results 

in replicon fusion? the cointegrate can then be resolved by recom­

bination across the directly repeated copies of the element to 

generate the normal transposition end-products. If intramolecular 

transposition occurs by this pathway, inversions or deletions result 

depending on which strands at the target site are cleaved and ligated
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FIGURE 1*5 Symmetrical model for DNA transposition

a. Single stranded cuts are made at both ends of the transposable 

element (5' or 3') followed by covalent attachment of the trans­

posase protein to the exposed termini. A staggered cut is made at 

the target site*

b. The ends of the element are ligated to the ends of the staggered 

cut at the target site, presumably using the energy conserved in 

the phosphodiester bond between the protein and DNA. Replication 

can proceed from the exposed 3' hydroxyl groups to duplicate the 

entire element and the small stagger at the target site,

c. Semiconservative replication has generated a new transposable 

element, plus a direct duplication at the target site, resulting 

in cointegrate formation*

d* Site-specific recombination between the two transposable ele­

ments generates the normal transposition end-products, ie. the 

donor replicon intact and the recipient replicon carrying a ccpy 

of the element flanked by short,direct repeats,

#—  represent 5' termini 

>—  represent 3' hydroxyl groups
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to the element (see figure 1,6).

Although cointegrates appear to be obligatory intermediates 

during transposition of class II elements, many elements appear to 

transpose directly to end~productSj, alleviating the necessity for 

a cointegrated intermediate. To explain how direct transposition may 

occur, asymmetric models have been proposed in which only one strand 

of the element is initially cleaved/ligated to the target site 

followed by element specific replication in a rolling circle mode 

(Galas and Chandler,1981; Harshey and Bukhari,1981), The outcome of 

these events is direct transposition or cointegration depending 

on which strand is used for the second cleavage/ligation step (see 

figure 1.7). For direct transposition the transposase protein must 

be able to recognize and cleave both 3' and 5’ ends of the element, 

a step which I find difficult to reconcile. The introduction of i-n 

V'itTO systems should shed some light on the molecular mechanisms 

involved in transposition.

In eukaryotes transposable elements were first studied in 

maize by McClintock (1952;1957); they have since been identified 

and characterized in a number of organisms including Saocharomyces 

oerevt-siae and Drosopht-Za meZanogastev, The cop-ia-like family of 
Drosophi-Za elements, including cop-iâ  412, 297 and mdg t and 

the Ty elements of yeast have many similarities„ They are generally 

5-7Kb in length, have terminal direct repeats of several hundred bp 
with small (about lObp) inverted repeats at the extremities, are 

present at about 30 copies per genome and have the ability to trans­

pose randomly throughout genomes (Cameron et aZ.._,1979; Finnegan,

1981) . The oopZa and Tyl elements generate 5bp duplications on ins­

ertion (Farabaugh and Fink,1980; Rubin et dZ. 3 1981) cTïie 338bp terminal
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FIGURE le 7 Asymmetric model for DNA transposition

Bo The transposase protein recognizes and brings together the 

ends of the element and the small target sequence. The target 

site undergoes a staggered cut.

b. One strand of the transposable element, shown as the 5' end, 

is cleaved and ligated to the target site. Replication of the 

element is initiated at one of it s ends from the exposed 3' 

hydroxyl group; complementary strand synthesis proceeds from the 

replication fork. The free target strand is held in place by the 

transposase/replication complex.

c. Rolling circle DNA replication proceeds through the entire 

element and small stagger at the target site*

d. Replication terminates when the other end of the element passes 

through the replication complex. If the 3' end of the element, 

opposite to the end ligated to the target site, is cleaved/ligated 

to the free 5' end at the target site direct transposition results,

e. If the transposase/replication complex cleaves the 5' end of 

the other element strand and ligates it to the exposed 3' end at 

the target site then cointegration results,,



direct repeats of Tyl, designated 6, are found alone in yeast gen­

omes; this is probably due to homologous recombination excising the 

internal region of the element rather than independent transposition 

of the (5 sequence (.Fink et aZ,jl981). Surprisingly the direct repeat 

sequences of cop'ia are rarely, if ever, found independent of the 

main body of the element (Rubin et aZ. ̂ 1981) , There is no direct 
evidence that eukaryotic elements replicate during transposition, 

though presumably they do, due to their wide dispersal throughout 

genomes. In some cell lines they may represent 10% of the genomic 

DNA. The copta element has recently been compared, structurally, 
with retroviruses (Finnegan,1981).

Retroviruses are a family of RNA animal viruses which replicate

through a DNA intermediate. On infection the linear RNA molecule
V Vis reverse transcribed; the DNA intermediate circularizes^ then int­

egrates into the host genome, generating 4bp duplications on insertion 

(Shimotohno and Temin,1981). The proviral DNA contains long terminal 

repeat sequences (LTR) that flank the main body of the element. Each 

LTR contains small inverted repeats at its termini; the LTR sequences 

have oeen shown to share some sequence homology with the oopta ele­
ment. It has been suggested that retroviruses have evolved from 

transposable elements, although integrated retroviruses have not 

been observed to transpose (Shoemaker et aZ-. ̂ 1981; Shimotohno and 

Temin,1981).

The structural similarities between the oopta and Tyl elements, 

and retroviruses has led to speculation that a mechanism similar to 

the retroviral replicative pathway may be used by eukaryotic elements 

as a means of transposition. Extrachromosoma1 circular copies of 

oopta have been found in cultured Drosophtïa cells; these could of



course arise by homologous recombination across the directly re­

peated flanking sequences of the copta  element rather than as 

replicative transposition intermediates (Flavell and Ish-Horowicz, 

1981) .

Transposable elements obviously play an important role in 

linking nonhomologous DNA. They may also mediate rearrangements 

by creating portable regions of homology on which the general gen­

etic recombination system can act, resulting in deletions, inversions 

and duplications (see figure 1.2). Studies on the rearrangements 

mediated by transposable elements have revealed the fluidity of 

genome structure, but little is known of the mechanisms by which 

they occuro The introduction of "in V'itTO systems to study the 

transposition process, in conjunction with genetic analysis, should 

reveal the precise molecular mechanisms involved and the proteins 

required for transposition and integration of viruses.

Our group at Glasgow University is currently analyzing trans­

position of the class II elements , TnS and Tn50Z. These two elements 

both encode site-specific recombination systems to resolve trans­

positional cointegrates. The work in this thesis describes a 

detailed investigation into the TnS encoded site-specific recom­

bination system by genetic and biochemical techniques.



CHAPTER 2

MATERIALS AND METHODS



Name Relevant markers Source

AB1157 arg^ thr^ lao^ 

gat y aray .rpsL (=Sm )̂

D.J.Sherratt

AB2463 orgy h is o  teuy proy thvy taoy A.J,Clark

gat y aroy rpsL (=Sm^), recA-13
JC9239 a rg y  h iS y  t e u j  p rO y  th v y  taOy AoJ.Clark

gaty aray rpsL (=Sm^)^ reoF-143

JC5466 h i s y t r p y  ree^-56 F.CoCannon (Arthur 

and Sherratt,1979)

DS825 m inA y rrrCnBy rpsL (==Sm̂ ) Do JoSherratt

CSH52 a v a y ù . ( t a G y  pro)y strAy tht CSH strain collection

recA (Miller,1972)

DS916 JC5466 rif^ isolate D.J.Sherratt

AA411 JC5466, R388 A,Arthur

N4830 857ACI containing strain R.Reed (Reed,1981b)

LS226 JC5466, R388::pRR12 LoSymington, (chapter

LS415 N4830, pLS2l3 - tnpR over­

producing strain

Lo Symington, (chapter -̂

TABLE 2.1 Bacterial strains
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1. Organisms

All bacterial strains, listed in table 2,1, are derivatives of 

EsoheTiohia ooti- K-12. The plasmids .used are shown in table 2.2.

2. Chemicals and Enzymes

All were obtained from BDH, Oxoid, Difco, Sigma or BRL except the 

following:

Chemical _ Source

Sephadex G-75, G-150 Pharmacia Fine Chemicals

CM-Sepharose Pharmacia Fine Chemicals

Pd/Pt wire Agar acids

Piperidine > Fieska

Radiochemicals Amersham (courtesy of Virology

department)

3. Basic Media

L-broth: lOg tryptone, 5g yeast extract, 5g NaCl, Ig glucose; made 

up to 1 litre with distilled water, adjust to pH 7,0 with NaOH,

Nutrient agar: 25g Oxoid No,2 NB, 12,5g agar; made up to 1 litre in 

distilled water.

Iso-sensitest agar: 23,4g IS medium, 12.5g agar; made up to 1 litre 

in distilled water,

Davis-Mingioli Salts (X4): 28g KgHPO^, 8g KH^PO^, 4g (NH^j^SO^, Ig 

Na^citrate, 0,4g MgSO^,7H20; made up to 1 litre with distilled water.

For minimal agar 100ml were added to 30Oml molten 2% agar, plus the 

appropriate supplements as necessary.

Phage buffer: 7g Na^HPO^, 3g KH^PO^, 5g NaCl, 0.25g MgSO^.THgO, 0.05g 

CaCl2; made up to 1 litre with distilled water.

Supplements : Where required growth supplements were added at the following 

concentrations- amino acids at 40pg/ml^ thymine at 20yg/ml, thiamine(Bl)
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at 2tg/mlo

Antibiotics : Ampicillin, streptomycin, trimethoprim, kanamycin and 

rifampicin were used at 50yg/ml; chloramphenicol at 25yg/ml and 

tetracycline at lOyg/ml, All antibiotics except trimethoprim were 

used in nutrient agar. Trimethoprim was used in minimal agar or, more 

usually, in iso-sensitest agar (similar couposition to nutrient, but 

lacks thymine), Streptomycin selection for the plasmid RSFlOlO was 

at 20yg/ml in minimal agar.

4. Buffers

0.04M Tris, 0o02M NalAc, O.OOIM EDTA, pH8.2 with acetic acid; 

usually kept as lOX concentrate,

THE (XIO) : lOBg Tris, 55g Boric acid, 9.3g EDTA; made up to 1 litre 

with distilled watero The pH should be about 8o3.

SRB: 15,5g Tris, 72o05g glycine, 0,1% SDS; made up to 5 litres in 

distilled water

SDS-PAGE lower buffer (X4) : 1,5M Tris-HCl, 0,4% SDS, pH 8.8.

SDS-PAGE upper buffer(X4): 0-5M Tris-HCl, 0.4% SDS, pH 6.8.

TE; lOmM Tris-HCl, ImM EDTA, pH7,5

TEN: lOmM Tris-HCl, ImM EDTA, SOmM NaCl, pH 7.5

FSB: 10% Ficoll(w/v) 0.5% SDS(Serva^(w/v), 0.06% bromophenol blue 

(w/v) , 0.06% orange G (w/v) made up with buffer Eo

SCCIiB: 2 .5% Ficoll(w/v) , 1 , 25%SDS (w/v) , 0.015%  bromophenol blue (w/v) , 

0,015%  orange G (w/v); made up with buffer E.

PFSB: 10% glycerol(v/v) , 0,01% bromophenol blue (w/v), 5% mercapto- 

ethanol(v/v) , 3% SDS (w/v) , 0.625M Tris, pH 8,0.

Elution buffer: 500mM NH^c, ImM EDTA, 0.1% SDS (w/v)

Lytic Mix: 2% Triton X-lOO, 0.05M Tris, pH 8.0, 0.06M EDTA, pH 8.0; 

made up with distilled water.

STET: 8% sucrose (w/v), 5% Triton X-100(w/v) , 50mM EDTA, 5QmM Tris-
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HCl, pH 8.0.

Low salt restriction buffer-LSRB(XIO); lOQmM Tris-HCl, lOOmM MgCl^, 

lOmM DTT, pH 7.4. Used for restriction with Uhqx„

Medium salt restriction buffer-MSRB(XIO): lOOmM Tris-HCl, lOOmM MgClgf 

lOmM DTT, 500mM NaCl, pH-7.4. Used for restriction with BgZVL^

ClaLy HinoTJ.̂  Sau3AZ^ and Pstl.

High salt restriction buffer-HSRB(XIO): SOOmM Tris-HCl, lOOmM MgCl^,

IM NaCl, pH7.4, Used for restriction with PeoRIjand Sali,

NTE(XlO) ; SOOmM Tris-HCl, SOmM MgCl^, lOOmM mercaptoethanol, pH7.9. 

Kinase buffer(XIO): SOOmM Tris-HCl, lOOmM MgCl^, SOmM DTT, pH 7.6.

5. Growth conditions

Liquid cultures were grown in L-broth at 37°C with aeration 

unless otherwise stated. "Stationary phase cultures" were small liquid 

cultures, usually 2ml, grown without shaking at 37°C overnight.

Plates contained 25ml agar with the appropriate supplements 

and were incubated at 37°C for 16-18 hr unless otherwise stated,All 

dilutions prior to plating were made in phage buffer.

6. Purification of plasmid DNA

(a) Cleared lysates

Cleared lysates were usually prepared from 100ml cultures; for 

cultures of 10ml or one litre the volumes of reagents were scaled up 

or down accordingly. Cells were harvested by centrifugation at 12,000g, 

4°C for lOmin. The cell pellet was resuspended in 3.3ml cold 25% sucrose/ 

0.25M Tris-HCl, pH 8.0, 0.67ml of fresh lysozyme solution, made up at 

IQmg/ml in 0.25M Tris-HCl, pH 8.0, were added and the cell suspension 

swirled frequently, on ice, for lOmin. 1.3ml of 0.25M EDTA, pH 8.0 

were added and swirled again, while on ice, for 5min. 5.3ml of lytic
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mix were added gently to the cell suspension; the lysate was swirled 

gently to ensure thorough mixing. The cells were judged to have lysed 

when the mixture was clear and viscous/ this usually took about five 

min. The lysate was centrifuged at 43,OCX3g, 4°c for 20min to pellet 

the chromosomal DNA and membranous material. The supernatant, containing 

mainly plasmid DNA, was carefully decanted - this is referred to as 

the cleared lysate. The cleared lysate was purified further by phenol/ 

isopropanol extraction or by CsCl/EtBr equilibrium centrifugation.

(b) Phenol/isopropanol extraction

The cleared lysate was mixed with an equal volume of freshly 

distilled phenol, saturated with IM Tris-HCl, pH 8.0. The phases 

were resolved by centrifugation at 5,OOOg for 5min. The upper aqueous 

phase was phenol extracted twice more. Residual phenol was removed 

by ether extraction. An equal volume of diethyl ether was added, mixed 

well, the upper phase(ether) was discarded and the process repeated 

until the lower(aqueous) phase was clear. Residual ether was removed 

by blowing compressed air over the surface of the solution, 0;1 volume 

of 3M NdAc was added, then 0,54 volume of isopropanol. This was mixed 

well and left at room temperature for 45min to precipitate nucleic acids, 

The solution was centrifuged at 12,OOOg, 15°C for 25min; the pellet 

obtained was washed with 70% ethanol/TE then dried. The dried pellet 

was resuspended in 500yl TE and stored in airtight plastic tubes at 

4°C.

(c) CsCl/EtBr equilibrium centrifugation

For DNA of greater purity, cleared lysates were run through 

CsCl/EtBr gradients. For each tube 5.0g CsCl, 4.83ml cleared lysate, 

0.33ml EtBr(3mg/ml) , 0,1ml 0.2M Na^HPO^ were mixed and placed in 

Beckman quick-seal tubes. The density of the mixture was checked(it
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should be about l,5Qg/cc), the tubes were filled with liquid parafin 

and heat sealed. They were centrifuged in a Ti50 or Ti70 rotor in 

a Beckman L-2 ultra centrifuge at 48Krpm for 16hr at 15^C. Two bands 

were formed within the gradient; the lower, denser one contains 

covalently closed DNA, This band was removed by inserting a syringe 

needle through the side of the tube and slowly drawing off the band 

laterally. EtBr was removed by repeated .extraction with butan-l-ol.

The solution was diluted with three volumes of water, then precipitated 

by addition of two volumes of ethanol at -20°C for one hr. The DNA 

was collected by centrifugation at 32,OOOg, 4^C for 25min. The pellet 

was washed with 70% ethanol/TE, dried, then resuspended in 500yl TE.

(d) STET DNA Purification

For small scale DNA isolation a quick method was used to 

provide DNA suitable for transformation or restriction.A clump of 

cells, which had been "patched"onto selective plates; were resuspended 

in lOOyl of STET buffer in plastic eppendorf tubes and briefly 

vortexed. lOyl of freshly made lysozyme(lOmg/ml) were added and the 

lysate mixed well. The tubes were placed in a boiling water bath for 

two min, then spun in an Eppendorf microfuge for lOmin. The super­

natant was removed and nucleic acids precipitated from it by adding 

an equal volume of isopropanol and leaving at -20°C for 15min. DNA 

(and RNA) were collected by centrifugation in the Eppendorf microfuge 

for five min. The pellet was resupended in *20yl of TE buffer; 5yl 

were sufficient for each restriction.

(e) Birnboim/Doly DNA Purification

The basic principle of this method is alkaline dénaturation 

of linear DNA molecules. Cells are lysed with NaOH/SDS; chromosomal 

DNA is denatured, but not covalently closed pNA. On neutralization
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the mass of chromosomal DNA renatures and aggregates, proteins complex 

with SDS; when centrifuged the supernatant contains only covalently 

closed DNA and low molecular weight RNA (Bimboim and Doly, 1979) .

Small overnight cultures, usually l-3ml, were harvested by centrifugation 

in the Eppendorf microfuge for one min; the supernatant was removed 

with a drawn out pasteur pipette. The cell pellet was resuspended 

in lOOyl SOmM glucose, 25mM Tris-HCl, pH 8.0, lOmM EDTA, then incubated 

at 22°C for five min. 200yl 0.2M NaOH/l% SDS were added, gently mixed, 

and left on ice for five rain. To neutralize, ISOyl precooled SMKQAc, 

pH 4.8(3m KAc pH'd with acetic acid) were added, mixed gently and 

left on ice for five min. The crude lysate was spun in the Eppendorf 

for one min, the supernatant was removed and to it added two volumes 

of ethanol.This was mixed well and left to precipitate on dry ice/

IMS for lOmin. The precipitate was collected by centrifugation in the 

Eppendorf microfuge for seven min,* the supernatant was discarded.

The pellet was washed with BOOyl 70% ethanol/TE, mixed well,then 

precipitated as before. The last step was repeated before finally 

drying the pellet and resuspending in 20yl TE. 5yl were used for 

each restriction.

(f) Single colony cleared lysates(referred to as SCCL)

This technique provides a quick method for analyzing the total 

DNA content of a particular clone. The single colonies (isolated from 

transformation or conjugation) were "patched" onto selective plates. 

Clumps of cells, picked up using sterile toothpicks, were resuspended 

in 150yl of SCCLB. The lysates were spun in an Eppendorf or Sarsted 

microfuge for 15min; the supernatant, about SOyl, was loaded directly 

onto agarose gels for visualization of the DNA content.
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7. DNA Electrophoresis through gels

Vertical gel kits held two glass plates measuring 16X16cm and 

separated by perspex spacers of 3mm(1mm for acrylamide gels). The 

gel liquid was poured between the two plates; 3mm thick teflon combs 

(1mm thick perspex for acrylamide gels) with 10 or 15 teeth were 

pushed into the top displacing the gel material to produce sample 

pockets, when removed from the set gel. Electrophoresis was from top 

to bottom with the cathode at the top.

(a) Agarose gels

Sigma agarose (typell, medium EEO) and buffer E were used for 

electrophoresis unless otherwise stated. Agarose gels for SCCL and 

detection of i-n V'ttro resolution were made up at 0.8% (w/v); for 

restriction gels 1% agarose was usually used. The agarose/buffer E 

mixture was heated to 100°C until completely molten, then cooled to 

46°C for gel pouring, DNA samples .were mixed with 0.25 volume FSB;

20yl were usually loaded per pocket. The gel was run with buffer at 

anode and cathode at between 20 and 120V until the blue dye marker 

reached the bottom, unless otherwise stated. The relative separation 

between bands increases when gels are run at low voltage for longer 

times, but bands tend to be more diffuse. Restriction gels were usually 

run at lOOV for 4hr, whereas gels analyzing large plasmids, such 

as R388 derivatives, were run overnight at 20V. The gels were stained 

in gel running buffer containing 0.5yg/ml EtBr for 30min. Gels were 

viewed on a 260nm transilluminator and photographed using a 35mm 

camera (Ilford HP5 film) with a red filter.
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(b) Polyacrylamide gels

Optimal resolution of small DNA fragments was achieved by 

analyzing restriction digests of plasmid DNA on polyacrylamide gels.

10% (w/v) acrylamide, made up in TBE, was used to analyze small 

fragments of 10-300bp; 5% (w/v) acrylamide was used to assay for 

larger fragments, lOO-lOOObp. Acrylamide solutions (kept as 20% 

acrylamide, 1% bis-acrylamide stock) were polymerized by the addition 

of O.36ml 10% (v/v) TEMED and 0.7ml 10% (w/v) APS in 60ml total 

volume. Gels were run with TBE buffer at anode and cathode at 30mA 

until the yellow dye reached the bottom of the gel. The gel was 

removed frcan the running apparatus, separated from the glass plates, 

then stained and photographed as previously described.

(c) Sequencing polyacrylamide gels

High resolution sequencing gels resolve DNA strands of n 

and n+1 nucleotides over a range of one to several hundred base 

pairs.The common gel sequencing techniques are versions of methods 

described by Peacock and Dingman (1967) and Maniatis et al. (1975) .

For the experiments described in this thesis only 8% sequencing

gels were employed, 8% gels contained 7.6% (w/v) acrylamide, 0.4% (w/v)

bis-acrylamide, 50% (w/v) urea (8.3M), lOOmM Tris-borate, pH 8.3,

2mM EDTA, 0.07% (w/v) APS, and 0.7%(w/v) TEMED as catalyst. This solution 

was injected between two clean, siliconized glass plates, measuring 

200X400mm separated by 0.3mm plasticard spacers. The gel material 

was displaced from the top of the gel by a 0.3mm thick plasticard 

comb to form the sample pockets. The gel was installed in the vertical 

running apparatus; buffer reservoirs were filled with TBE. The comb 

was gently eased from the top of the gel and sample pockets were 

immediately flushed out with buffer to remove unpolymerised acrylamide, 

which slides into the pockets from the top of the gel. Gels were
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pre-run at 40W (1600V) for 30min, then disconnected prior to loading 

samples. Samples, usually 3pl, were loaded with a glass capillary 

tube evenly across the pocket. The power supply was reconnected 

and the gel run at 40W until the bromophenol dye marker had nearly 

reached the bottom. The gel was disconnected. One glass plate was 

lifted from the gel, a sheet of "clingfilm" was spread over the 

gel, smoothed down and secured with tape on the underlying glass 

plate. This was placed over a sheet of X-ray film inside a light­

tight aluminium box. Exposing the gel to preflashed film, juxtaposed 

with an intensifying screen at -70°c produced an image much faster 

and was generally employed.

8. Interpretation of gel data

The distance migrated is related to the size of a molecule 

of a given conformation; small molecules run the furthest. The 

distance migrated by a given DNA molecule is dependent on it s 

conformation; supercoils generally run fastest and open circles . 

slowest, with linear molecules between the two. Above a certain 

size all linears run at the same rate, therefore large plasmid linears 

run faster than corresponding supercoils. Large linear fragments 

of chromosomal DNA appear as a single band.

For restricted DNA molecules, the relationship: 

distance migrated=K.log(size)+c holds

If a DNA species is restricted to give fragments of known 

size,e.g. X or pBR322, then the sizes of fragments from other DNA 

molecules may be determined from a graph of distance against log(size)
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9. Elution of DNA fragments from gels

(a) Electroelution

Fragments of DNA or DNA of unique conformation were separated 

by electrophoresis through acrylamide or agarose gels. The stained 

gel was placed on the long-wave transilluminator, the relevant 

bands were excised with a scalpel and placed in a dialysis sac with 

lOOjil of TBE or E buffer. The dialysis sac was subjected to electro­

phoresis at 50V for 2hr, The current was reversed,to remove any DNA 

from the sides of the dialysis sac,for 5mini The contents of sac were 

removed, agarose discarded and DNA precipitated by the addition 

of 0.1 vol. 3M NaAc plus two vol. ethanol. This was placed at -20°C 

for 30min, then centrifuged in the Eppendorf microfuge for 7min.

The DNA pellet was washed, dried and resuspended in TE, ready for 

use to restrict, ligate etc.

(b) Crush-soak-precipitate method

This method was used exclusively for extracting labelled 

DNA fragments from acrylamide gel slices. The DNA-containing band 

was mashed with a siliconized glass rod in 200)il of elution buffer 

in a 1ml eppendorf tube. The mixture was then incubated at 45°c 

for 16hr. Acrylamide was filtered from the solution by pouring 

through a glass wool plug in a punctured D.Sml eppendorf tube. 

Acrylamide pieces were retained on the surface of the glass wool; 

this was washed through with an additional 200^1 of elution buffer. 

DNA from'the filtered solution was precipitated by the addition of 

2 vol. ethanol, then left at -20°C for 3Qnin. The precipitate was 

collected by centrifugation for 7min in the Eppendorf microfuge, 

washed, dried and resuspended in TE.



38

10. DNA Manipulations î n vitTO

(a) Restriction of plasmid DNA

Restriction of plasmid DNA was performed in 0,5ml polypropylene 

eppendorf tubes. The final reaction volume was 20yl, containing:

O.Svtg plasmid DNA

2 ]il lOX appropriate restriction buffer 

1 unit enzyme

gelatin/water(at Q.lmg/ml) to 20pl total volume 

Complete digestion was usually achieved in two hr at 37°C.

For DNA isolated by the mini-prep, or phenol/ isopropanol extraction 

methods, Ipl of Img/ml ribonuclease was usually added as RNA species 

tend to obscure the small DNA fragments. Digests were analyzed 

by electrophoresis through agarose or polyacrylamide gels.

(b) Alkaline phosphatase treatment

Bacterial alkaline phosphatase catalyzes the removal of 

phosphate groups from the 5' terminus of DNA and RNA fragments.

The resulting 5' hydroxyl terminus may be used as a substrate for

polynucleotide kinase, or as a means of preventing vector recircularization
'

during ligation. When no direct selection is available for cloning 

DNA fragments, phosphatasing the vector provides a means of enriching 

for clones containing inserts. Restricted vector DNA was precipitated 

with NaAc/ethanol; the resulting pellet was dried and resuspended 

in 50yl of lOmM Tris-HCl, pH 8. .20 units of bacterial alkaline 

phosphatase were added and the reaction mixture incubated at 65°C 

for one hr. To remove the enzyme,* the solution was phenol extracted 

twice, ether extracted twice, then precipitated using NaAc/ethanol.

The DNA pellet was washed, dried and re suspended in the appropriate 

buffer for ligation or kinase treatment.
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(c) Ligation of restriction fragments

Endonucleases used to digest plasmid DNA were destroyed 

either by heating to 65°C for 5 min or by phenol/ether extraction 

of the reaction mixture. DNA was precipitated with NaAc/ethanol 

then resuspended in the following buffer:

66mM Tris-HCl, pH-7,5 ' 

lOmM MgClg

lOmM mercaptoethanol 

ImM EDTA 

Oo4mM ATP

0,1 unit ligase/yg DNA
oLigation mixtures were incubated at 14 C for 16-18hr, These were 

then diluted in TE for use in transformation. Prior to some ligations, 

individual DNA fragments were isolated from digests by separating 

on 1% (w/v) low melting point agarose horizontal gels. The relevant 

bands were excised from the gel, melted at 65°C, then 2yl were added 

to the ligation reaction mixture. When thoroughly mixed and cooled 

the concentration of agarose was reduced to below that required to 

set and did not appear to inhibit the reaction significantly.

(d) DNA polymerase end-labelling

For DNA sequencing and footprinting reactions, a DNA 

fragment with one labelled terminus is required. Enzymes which 

produce a staggered cleavage with a 3* recessed hydroxyl group 

provide a substrate for DNA polymerase I. Only one labelled [a-^^p] 

triphosphate is required to be polymerized adjacent to the recessed 

3' hydroxyl group for sequencing and footprinting reactions. The 

labelled triphosphate is chosen in reference to the sequence cleaved 

by the particular restriction enzyme. Restricted plasmid DNA was 

precipitated and dried, the following were added:
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5yl XTP (lOmCi/ml)

5yl NTE(XIO)

0.5yl EoOoVi DNA polymerase I large fragment (1 unit) 

39.5yl distilled water

The reaction was incubated at 14°C for one hr.

(e) T4 polynucleotide kinase end-labelling

T4 polynucleotide kinase catalyzes the transfer of the 

Y-phosphate from ATP to the 5' hydroxyl terminus of DNA, RNA and 

mononucleotides. As a 5' hydroxyl end is required, the fragment 

must be dephosphorylated with alkaline phosphatase prior to labelling. 

Following phosphatase treatment the purified fragment was precipitated 

and dried, the following were added;

lOyl [y“^^p] ATP (lOmCi/ml)

5yl kinase buffer (XIO)

0.5yl T4 polynucleotide kinase (1 unit)

34.5yl distilled water

The reaction was incubated at 14*̂ c for one hr.

(e) Chemical sequencing reactions ,

Chemical sequencing involves three consecutive steps: 

modification of the base, removal of the modified base from if s 

sugar, and strand scission at that sugar. The end-labelled fragment 

is treated such that each strand should be cleaved only once; each 

fragment has one common end,the other is variable in length. An 

array of fragments is produced, representative of cleavage at each 

position held by a particular base. By performing four separate 

reactions each using a chemical which cleaves only one of the four 

bases, separating the bands on a sequencing gel, then analyzing 

the ladder of bands produced, it is possible to read the sequence
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from an autoradiogram of the gel. For the experiments described

in this thesis only the purine-specific cleavage reaction was

performed; the following protocol was employed:
322yl of P labelled DNA (about 50 cps on the mini-monitor) were 

dried down under vacuum. 15yl DPu mix (O.lg diphenylamine; 5ml 66% 

HCOOH+lmM EDTA) were added and incubated at 22^C for 8min. The 

reaction was stopped with 45yl water and 500yl diethyl ether and 

mixed well. When the phases had resolved the ether was removed; 

the ether extraction was repeated twice more. The solution was frozen 

by placing in a dry ice/IMS bath, then lyophilized, lOOyl of l.OM 

piperidine were added, then incubated at 90*̂ C to induce strand 

scission. The solution was frozen then lyophilized. To the dried 

pellet lOyl of distilled water were added, mixed well, then frozen 

and lyophilized. This step was repeated once more. The dried DNA 

pellet was resuspended in 6pl of formamide-containing marker dyes 

(0.05% orange G (w/v); 0.05% bromophenol blue (w/v); 0,05% xylene 

cyanol (w/v) in 98% formamide). The sample was heated to 90°C 

for one min,to separate DNA strands then quickly chilled. 3yl of 

the sample were loaded per gel pocket.

11. Transformation

A fresh overnight culture of the recipient strain in L- 

broth was diluted 1:40 in 20ml of L-broth. The culture was grown at
Q37 C, with shaking, for about 90min, or until there were about 2X10

cells/ml. The time required to reach this stage is strain dependent;
"i* —RecA strains grow much faster than RecA derivatives. Cells were

pelleted at 12,OOOg for five min, resuspended in lOml cold 50mM

CaClg and left in an ice/water bath for 15-20min. The cells were

pelleted again, resuspended in 1ml of cold 50mM CaCl^ and left in

an ice/water bath for at least 15min, The competence for DNA uptake
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"4*by RecA cells increases for up to 24hr on ice at this stage 

(Dagart and Ehrlich, 1979) . Mix 0.2ml of the cell suspension with 

up to 0.1ml of DNA solution (DNA was usually diluted in TE buffer -

O.lyg of DNA is ample for each transformation) . The DNA/cell mixture 

was mixed well,then incubated in an ice/water bath for 20min; at 

37°C for 7min,then ice/water again for 30min. 0,8ml of fresh,pre­

warmed L-broth were added to each tube and incubated at 37^C, 

shaking, for 30-120min to allow expression of antibiotic resistance. 

All antibiotic selections required expression times of at least 

90min, except ampicillin, which needs less than 30min for expression. 

lOOyl aliquots were plated onto selective agar and incubated over­

night at 37°C.

12. Bacterial conjugation

(a) Liquid matings (for F factor crosses)

Fresh overnight cultures of recipient and donor strains 

were diluted 1:20 into 5m 1 L-broth. The cultures were grown at 37*̂ C, 

with shaking, until the donors were in early log. phase (2Xl0^cells/ 

ml) and the recipients had reached late log. phase (2X10^cells/ml) . 

The two cultures were mixed together and left for Ihr at 37°C, 

without shaking, then diluted in phage buffer before plating onto 

seièctive media.

(b) Plate matings (routinely used for R388)

R388 produces short sex pili, thus high cell to cell contact 

is required for conjugation to take place. This was achieved by 

growing cultures of donors and recipients to the same densities as 

used for liquid matings, mixing the cultures, then concentrating by 

centrifugation. The cell pellet was re suspended in 1ml L-broth and 

poured over the surface of a well-dried nutrient agar plate. After
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one hr the mating mixture was removed from the plate by resuspending 

in phage buffer, then diluted and plated accordingly.

13. SDS-Polyacrylamide gel electrophoresis (for proteins)

SDS-polyacrylamide slab gels were routinely used to assay 

whole cell lysates for resolvase and also to assay column fractions 

during purification of resolvase. All the gels used were "stacking" 

gels containing 12.5%(w/v) acrylamide in the lower separating gel 

and 4,5% (w/v) acrylamide in the upper stacking gel. Gels were prepared 

from a stock solution containing 30% (w/v) acrylamide and 0.8% (w/v) 

N,N'-bis-methylene acrylamide. 0.03% (w/v) APS and 0.025% (v/v)

TEMED were added prior to pouring gels. The gel apparatus consisted 

of two glass plates of the same dimensions as used for DNA gels, 

separated by 1.5mm perspex spacers. Buffer and stock acrylamide 

were mixed, then freshly made APS and TEMED were added prior to 

pouring. 0.1% SDS solution was sprayed over the top of the lower 

gel to ensure an even surface. When the lower gel had set the SDS 

solution was poured off. The components of the top gel were mixed 

and poured over the lower gel. A 12 space perspex comb was inserted 

into the top of the gel and left for a further 30min to set. Top and 

bottom reservoirs of the vertical gel apparatus were filled with 

SRB. The comb was removed and sample pockets were flushed out with 

buffer to remove any unpolymerized acrylamide. Electrophoresis was 

carried out at 30-40mA until the blue dye marker reached the bottom 

of the separating gel. Gels were stained for one hr, with slight 

agitation, in 0.2% coomassie blue in fix (50% methanol; 40% water 

and 10% acetic acid). The stain was poured off, then washed several 

times in fix until de stained. The gel was placed in 10% acetic acid 

for the final wash to enlarge the gel to it s original size, then 

photographed. For photography Panatomic-X film was used in a 35mm



44

camera with an orange or yellow lens filter.

The molecular weight marker proteins used to calibrate 

gels were purchased from Bio-Rad, and contained the following proteins 

at O.lyg/yl:

Phosphorylase B 93,000 Mdal

BSA 68,000

Ovalbumin 43,000

Carbonic anhydrase 30,000

Soybean lectin inhibitor 21,000

Lysozyme 14,300

14. Electron Microscopy

DNA molecules from 'Cn V'Ctro resolution reaction mixtures 

were visualized by electron microscopy. The copper support grids 

used were coated with a film of 3.5% (w/v) parlodion in amylacé ta te. 

These were left to dry at room temperature, overnight, in a 

dessicator. The hypophase for DNA spreading consisted of 16ml of 

formamide, 0.8ml Tris-HCl/EDTA (IM/O.IM , pH 7,5) made up to 

80ml with distilled water. This solution was poured into a petri 

dish, A clean microscope slide, which had been soaked in chromic acid, 

washed with water and ethanol flamed before use, was used as a ramp 

by placing half in the petri dish of hypophase solution and resting 

against it s side. The hyperphase consisted of lOyl Tris/EDTA (as 

above), 20yl DNA solution, 50yl formamide, lOyl cytochrome c 

(Img/ml in O.IM Tris/O.OIM EDTA, pH 8.5) and 20yl distilled water. 

25yl of the hyperphase were run down the ramp onto the hypophase 

using a Hamilton syringe and microcapillary tube. Areas of the hyper­

phase were picked up on coated grids by touching gently on the 

surface of the solution around the ramp. Grids were stained with
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uranyl acetate (0.05inM uranyl acetate, 0.05inM HCl in 90% ethanol) 

for 30sec, then washed in isopentane for 30sec. The grids were left 

at room temperature, overnight, to dry, then shadowed with Pd/Pt 

in a rotary shadower. The grids were viewed in a Jeol JEM-IOOS 

electron microscope and photographed at 20,OOOX magnification.



CHAPTER 3

INTERACTIONS BETWEEN Y<5 AND TnS
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I n tr CX3.UC ti on ,

Many of the genes encoding antibiotic resistance in multiply 

drug resistant bacteria can reside on transposable elements. For 

the purpose of studying the transposition process, these elements 

are easier to work with than the simple insertion elements as their 

transposition can be monitored by the phenotypic markers, which 

they carry. Of these, the ampicillin resistant transposons, TnI/3, 

have been the subject of intense investigation to gain some insight 

into the mechanism of transposition.

The problem has been approached by constructing a number of 

deletion and insertion mutations using 'in vi-tvo techniques (Heffron 
et aZ.,1977; 1978) ; these could then be assayed for transposition.
Mutants with an apparent transposition phenotype were also tested 

in the presence of a complementing element to identify sites and 

proteins involved in transposition. These procedures identified the 

inverted repeats of TnJ as essential sites for transposition. Internal 

mutations^fell into two complementation groups affecting transposition, 

Mutations in one group map within the first 3, OOObp of Tn3, extending 

from the left inverted repeat through more than half of the element. 

These mutants express a transposition deficient phenotype, but may 

be complemented vn trans to transpose (Heffron et â .̂ 1977; 1978) .

Fine structure complementation analysis,sequencing and SDS-PAGE have 

indicated the presence of a single polypeptide of 120,000 dal. from 

this region. This protein appears to be the only element-encoded 

product required for transposition and has been named tnpA, or 

transposa se (Chou et #2^^979b; Gill et aZ.,,1979; Heffron et al.jl919) ; 

host-encoded factors are almost certainly required also.
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The second complementation group extends over a short region, 

about 450bp, between tnpA and the structural gene for Ap^, bla. 

Mutations within this region lead to an increased frequency of trans­

position and thus identified this gene, tnpR, as a repressor of 
transposition (Gill et aZ-, j 1978; 1979; Chou et aZ. ,1979b). Analysis 
of some of these mutants by SDS-PAGE indicated that tnpR is auto­
regulated. (Chou et ,1979a; Dougan et aZ.,,1979).

A third site required in oi-s was identified by a subset of 
deletions which on transposition formed aberrant products. These 

consisted of the entire donor plasmid inserted into the recipient 

genome; the inserted replicon was shown to be flanked by directly 

repeated copies of the element (Gill et aZ-,,1978). This provided 
direct evidence for the replicative nature of transposition and 

formed the basis for many transposition models. The fused replicons, 

or cointegrates, were considered to be intermediates in the trans-, 

position process. The site deleted was presumed to be required for 

resolution of this structure by recombination between the direct 

repeats of Tn3 to generate the normal transposition end products.

This site will be referred to as Tes (Reed,1981a).

Most of the assay systems used to measure transposition rely 

on insertion of the element into a conjugative plasmid; the frequency 

of transfer of Ap^, encoded by the element, may be directly conpared 

with the transfer frequency of the conjugative plasmid. When the
—  -j-F factor was used in this assay system tnpR , Tes rarely formed 

cointegrateso However, when the conjugative plasmid R388 was used 

as a recipient for transposition, tnpR^Tes elements resulted exclusively 
in replieon fusion in RecA cells (Sherratt et aZ.,1981a;Kitts &t 
aZ. ,1982a). This suggested that the tnpR gene product, or resolvase.
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plays a direct role in the resolution of transpositional cointegrates 

by recombination at res sites. The conflicting data obtained by using 

the F factor or R388 in the assay system suggested to us that the F 

factor may itself code for a recombination protein capable of acting 

at res to resolve transpositional cointegrates.

The F factor plasmid has been associated with a number of 

recombination events , many of which are RecA-independent. Three. 

different sequences have been identified on F, which serve as attach­

ment sites between F and the chromosome in the formation of Hfr 

strains. Hfr strains formed by recombination between the yS sequence 

on F and the chromosome are known to be unstable and revert at high 

frequency by a RecA-independent event between directly repeated 

copies of the yÔ element (Davidson et aZ.jl974). Davidson has proposed 

that F encodes a recombination protein, which mediates this event. 

Electron micrographs of F plasmid DNA have shown the presence of 

hairpin loop structures in the y6 region. The stem structure is 

short, between 20 and 50bp, and suggests that the yô element has 

inverted repeats at it s ends. (Broker et at, 1911) ,

More recently y6 has been shown to mediate another kind of 

recombination event, transposition. This was originally detected 

by the ability of the F factor to transfer the small Mob plasmid, 

pBR322, during conjugation, albeit at low frequency. Analysis of the 

Tc Ap transe on jugants revealed the presence of a plasmid, in 

addition to F, of 10Kb - equivalent to the size of pBR322 plus one 

copy of the y6 element (5.7Kb), Restriction analysis and electron 

microscopy confirmed that the new plasmid species was indeed pBR322 

carrying a copy of yô (Guyer,1978),
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These insertions of yô into pBR322 have subsequently 

been analysed in more detail by DNA sequencing to determine the 

precise insertion points and the sequence of the ends of the yô 

element (Reed et aZ.jl979). Analysis of several independent insertions 

indicated that a 5bp duplication of pBR322 DNA had occurred at the 

integration point, adjacent to the yô element. The sequencing data 

obtained from these experiments also revealed that the yô element 

has 35bp perfect inverted repeats at it s ends, with significant 

homology to the ends of TnS. These observations have led to the 

classification of yô within the”Tn3 family" of transposable elements 

(Calos and Miller,1980; Kleckner,1981). The strong similarities 

between these elonents prompted an investigation into the possible 

interaction of transposition functions.

Results

1. Resolution of Tnl/3 transpositional cointegrates by yô

The small, broad host range plasmid RSFlOiO confers resistance 

to Su and Sm (Heffron et at,^ 1975). This plasmid has been used as 

a recipient for transposition of the Ap^ transposon, Tnl, from ’Rldrd^ 

One particular insertion of Tnl into the Su^ structural gene was polar 

on Sm^, resulting in a Su^Sm^ phenotype. Selection for Sm^ to relieve 

polarity led to a spontaneous deletion removing parts of the tnpR 

and bla genes of Tnl (Hef fron et at. j, 1977), The plasmid carrying 

this deletion, named RSF103, was used for complementation of tnpA 

with various pMB8::TnS mutants (Heffron et aZ.j1977;1978). The Tnl03 

element transposes at high frequency due to relief of tnpA repression 

by tnpR (Sherratt et aZ.jl98M}, Insertion of RSF103 into the Tc^ 

structural gene of pACYC184 results in replicon fusion between the 

two plasmids to generate a 20Kb cointegrate plasmid containing directly



/np A InpR bla

IE

A A
H

B

FIGURE 3.1 A general scheme of the transposition process for 

Tng-like elements

The tnpA gene product mediates the formation of an obligatory 

transpositional cointegrate, which is then resolved by the tnpR 

gene product to generate the normal transposition end products. 

The tnpR gene product also controls the expression of the tnpA 

and tnpR genes at the transcriptional level.
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repeated copies of Tnl03} this was designated pAA131. pAA131 was

stably maintained in Rec hosts,' in RecA^ hosts the cointegrate was

slowly recombined to form the normal transposition end products.

It was also noted that this plasmid could be stably maintained in 
““a RecA , RecF strain. This suggested to us that the RecF pathway 

for recombination may be required for plasmid intramolecular 

recombination, though it does not appear to be required for integration 

of linear DNA by conjugation or transduction (Clark,1973; Gillen 

et aZ.jl981; James et aZ,^1982). pAA131 is efficiently recombined in 
the presence of a complementing tnpR^ transposon to generate the 

normal transposition end products, i.e. RSF103 and pACYC184::Tnl#3 

( figure 3.1) (Arthur and Sherratt,1979). It was observed that in 

the presence of tnpB. the Sm^ of RSF103 was repressed, conferring 
sensitivity to this antibiotdc on strains containing these plasmids. 

This is presumably due to transcriptional readthrough from the tnpA 
gene promoter into the Sm structural gene, regulated by resolvase.

The presence of a functional tnpR gene product can therefore be 
monitored by resolution of pAA131 and by repression of Sm^ (for 

details see A.Arthur,1981). A similar, but more effective system 

has been devised for studying transcription from tnpA and tnpR by 
cloning the 3-galactosidase structural gene into the tnpA and tnpR 
genes, then monitoring the levels of this enzyme under various 

conditions (Chou et aZ.jl979a;b; Cohen et aZojl97'9).

To test for the presence of a function analagous to resolvase 

on the F factor, strain CSH52 containing the F prime, F'Zac pro, was 

mated into strain JC9239 containing pAA131. Selection was made on 

minimal/lactose/Cra plates plus the appropriate supplements for the 

recipient strain. Exconjugants were patched onto selective plates 

to test for Sm^ and for analysis by SCCL. Most colonies had retained



pAAl31 pAA131, F'lac^pro

F*ZaOjpro
(lOOKb)

pAA131
(20.3Kb)

RSF103
(12.3Kb)

PACYC184:: 
Tnl03(8.0Kb)

FIGURE 3.2 Resolution of pAA131 by F' lac^pro

Exconjugants from the cross between CSH52,F'ZoCjpro and JC9239, 

pAAlBl were analyzed by SCCL to screen for resolution of pAA131 

Although all the exconjugants contain the normal resolution 

products, pAA131 is still visible suggesting that resolution is 

not complete.
0.8% agarose gel run at 25V,



51

partial resistance to Sm, but growth was very poor; this indicated 

that repression was not complete.

The DNA content of exconjugants indicated four plasmid species; 

the F' factor, pAA131, plus the products of pAA131 resolution (figure 

3.2). As pAA131 was still visible in all the colonies examined this 

suggested that resolution is not complete in the presence of the F' 

factor. This may be due to the fact that the copy number of F is 

stringently controlled (only 2-3 copies /cell); if the apparent 

resolvase activity present on F is autoregulated, as found for TnZ/3, 

then there may be very little free resolvase available in the cell.

As pAA131 is a multicopy-number plasmid there may not be enough 

resolvase present to bind to all of the available res sites; or, 

alternatively, the recombination activity found on F may be inefficient 

at resolving Tnl/3 cointegrates.

The pAA131 resolution products were identified by comparison 

with DNA size markers and by the ability of purified DNA from
22 32exconjugants to transform the markers for Cm and Sm independently. 

Analysis of single colonies from the recipient strain in the cross, 

which had not received the F factor showed no resolution,as detected 

by these methods.

The F factor is known to carry several different insertion 

elements, any of which could possibly be implicated in the observed 

recombination event (Davidson et aZ.,1974). To further test the role 

of the yô element as a source of complementing recombination functions, 

an insertion of y6 into pBR322, termed pOX14, was used (Guyer,1978). 

Insertion mutants of pOX14, containing EeoKL linkers inserted into 

the tnpR and tnpA genes, have been constructed by Reed; these plasmids



tnp A tnp R bla
 >  >

Tnï03
Tn341 

Tn365

Tn365T

TnJ03f

tnp A tnp R ?
 >  >

RR1 

RR 12 

RR 17

FIGURE 3.3 Maps of Tn3 and yô indicating some deletion and 

insertion mutants

Lines represent deletion of a DNA segment, triangles denote 

insertion of a DNA segment.
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FIGURE 3,4 Resolution of pAA131 by derivatives of pOX14 - 

Ap^,Tc^,Cm*‘ transformants were analyzed by SCCL to screen for 

resolution. Those derivatives coding for a functional tnpR gene 

product, pOXl4 and pRR17 are able to resolve pAA131,

0,8% agarose gel run at 25V,
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have been named RR12 and RR17, respectively (figure 3.3). A tnpA 

tnpRT res mutant has also been constructed by deletion of 3.2Kb of 

DNA between the two XhoX sites of yÔ to form RRl (Kitts et aZ.,1982b) .

These mutants were tested for resolvase complementation by 

transforming into a pAA131-containing strain. Transformant colonies 

resistant to Ap,Tc and Cm were replica plated onto Sm. RRl and RR12 

{tnpR elements) transformants maintained resistance to Sm, whereas 

pOX14 and vRR17 transformants were completely sensitive to Sm. Trans­

formants were also analysed by SCCL; pAA131 was efficiently resolved 

by plasmids pOX14 and RR17, but not by RRl or RR12 (figure 3.4) .

These results suggested that yô provides a function analagous to 

resolvase for resolution of TnZ/S cointegrates and repression of 

the tnpA promoter. It is assumed that the incomplete resolution 

observed, when F' Zac pro was used to complement,was due to a copy 

number effect.

2. Resolution of yô cointegrates by TnZ/3

A transpositional cointegrate containing directly repeated 

copies of yô was constructed by transposition of RR12 {tnpR 

derivative of yô) into R388, followed by conjugation. Tp^Ap^Tc^ 

exconjugants were analysed by SCCL and shown to contain one large 

plasmid, larger than R388, and with an increased copy number, typical 

of a pMBl replicon. This plasmid was stably maintained in RecA 

hosts and subsequently transferred Tp^Ap^Tc^ at lOO% compared with 

Tp^ transfer. The cointegrate containing strain, designated LS226 

was independently'transformed with each of the following DNAs : 

pACYC184, pACYC184: :TnS, pDS4153 (ZnpA~tnpR*^ derivative of TnZ in 

CoIK) and pACYC184::yô.
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Analysis of the DNA content of individual transformants 

indicated resolution of the cointegrate into R388::yô and RR12 by 

twpR^ derivatives of Tnl/2/^(figure 3.5). This data confirms the 

prediction that yô and Tnl/2 have complementing resolvase functions.

3. Interaction between TnZ/3 and yô transposase functions

The data presented above, and since by McCormick et ai.

(1981) and Casabadan et ato (1982), has shown complementation for 

resolution functions between yô and Tnl/3. There has, however, 

been no evidence to suggest that the transposase proteins of the two 

elements interact. It has been reported that yô, but not Tn3, can 

promote replicon fusion between the XSlOl element present on pSClOl 

(Ravetch et aZ.,1979) and plasmid ColEl, suggesting that yô complements 

transposition of ISlQl (Miller and Cohen,1980). The ends of XSlOlj 

Tn3 and yô share great sequence homology (figure 3.6). Between 

TnS and yô there 28/35 identical bp; the two ends of XSlOl are not 

perfect inverted repeats, they show 22 or 29/35bp matches with Tn3.

The comparison between yÔ and XSlOl reveals 29 or 34/35 identical bp. 

The transposase proteins of Tn3 and yô share less than 30% homology, 

but as the sequences which they are thought to recognize, i.e. 

the inverted repeats of the elements,are highly homologous, it would 

be interesting to see if any interaction could be detected.

A transposition assay was devised to measure low frequencies 

of transposition of tnpA ftnpR ,res derivatives of Tn3 or yô into 

R388 in the presence of complementing elements. The tnpA complementing 

plasmids used were pACYC184: :Tnl03 or pACYC184;:yÔ {tnpR derivative). 

The plasmids to be tested for transposition are both Mob , therefore 

the only way that these can be transferred during conjugation is 

by formation of a cointegrate with R388. Transpositional cointegrates
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Tn3 - both ends GGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAG

^ end GGGGTTTGAGGGCCAATGGAACGAAAACGTACGTT2M T

6 end GGGGTTTGAGGGCCAATGGAACGAAAACGT ACGTT4 A G

pSClOl end 1 GGGGTTTGAGGTCCAACCGTACGAAAACGTACGGTAAG

end 2 GGGGTCTGAGGGCCAATGGAACGAAAACGTACGTTAGT

FIGURE 3.6 A comparison of the inverted repeat sequences of 

Tn3, and pSClOl.

The solid lines beneath sequences indicate homology to Tn3.
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thus formed transfer the antibiotic resistance carried by the small 
r rplasmid, Ap , with Tp carried by R388. The frequency of Tp,Ap 

transfer can be directly compared with the frequency of Tp transfer ' 

to give a measure of transposition.

The following strains were constructed by transforming 

the appropriate DNAs (maps of elements are shown in figure 3.3) 

into strain AA411, which contains R388:

(a) R388/RSF1341 (Tn3- tnpA~j

(b) R388/RSFl341/pACYCl84: :Tnl03 /

(c) R388/RSFl341/pACYC184:iy&{tnpvT )

(d) R388/pRRi tnp A-j tnp

(e) R388/pRRl/pACYCl84: :Tnl(93

(f ) R388/pRRl/pACYC184 : .-yô (tnpR")

Transformants were analysed by SCCL to check for the presence 

of plasmids, already indicated by the antibiotic resistance of the 

strains (figure 3,7), Representative clones for each strain were 

grown at 30°C, the optimal temperature for transposition (Kretschmer 

and Cohen,1979), and used as donors for plate matings with DS916 

(rif̂ ) as the recipient strain. Serial dilutions from each cross 

were plated onto isosensitest media containing rif,Tp to measure 

the frequency of R388 transfer, and rif,Tp,Ap to measure the frequency 

of RSF1341/pRRl transfer. The apparent transposition frequencies 

obtained have been tabulated (table 3,1). Exconjugants from crosses

(a) and (d), on analysis by SCCL, were shown to be donor mutations 

to rif^, this effectively reduces their frequency of transfer to 

less than indicated. Colonies from crosses (b),(c),(e) and (f) 

all contained stable cointegrate plasmids (figure 3.8). The co­

integrates from cross (c) had probably arisen by complex trans­

position events in the donor strain involving all three plasmids



PACYC184:zTnJOa, 
RSF1341

PACYC184:; 
RSF1341

pACYC184: :TnZ(?3, pACYCl84::#6
pRRl pRRl

R388

PACYC184;; ̂ 6 

pACYC184:zTnlOS

RSF1341

R388

pACYC184:: #6 
pACYC184:zTnlOS 
pRRl

FIGURE 3=7 Analysis of plasmid raJA content of strains used for

transposition assay 
r r rTp ,Ap ,Cm transformants were analyzed by SCCL to ensure the 

presence of the plasmids for the conplementation assay.
0.8% agarose gel run at 25V.
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Exconjugants from crosses:

(b) (c) (e) (f)

cointegrates

chromosome

FIGURE 3.8 Analysis of exconjugants from matings 

The DNA content of exconjugants from the transposition assay 

was analysed by SCCL, Cointegrate plasmids, identified by their 

size and copy number, are present in exconjugants from crosses

(b) , (c) , (e) and (f ) .

0.8% agarose gel run at 25V
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as these carried antibiotic resistance markers for Tp,Cm and Ap,

It is likely that pACYC184: :*yô had transposed into RSF1341, which 

had then inserted into R388, Exconjugants which were Cm^ from 

this cross proved to be donor mutations. As no transpositions 

involving just RSF1341 had occizred, it was concluded that y6 does 

not complement transposition of Tn3.

Cointegrate plasmids from crosses (b),(e) and (f) were all
s •+Cm and stable in the presence of tnpR elements (data not shown) ,

indicating that RSF1341/pRRl (both res ” derivatives) had transposed 

into R388. The cointegrates from the control crosses, (b) and (f), 

were as expected and provide a comparison of the transposition 

frequencies between the two elements. This indicates that trans­

position of Tnl/3 ■ is 40-fold higher than that observed for yô.

The low transposition frequency of yô could result from less 

efficient transcription/translation signals, less efficient trans­

posase protein or instability of the transposase protein.

The most surprising result was obtained from cross (e), 

where it appeared that Tnl could complement transposition of yô, 

only five-fold down on the frequency observed using yô C to 

complement transposition of yô). This anomalous result could, how­

ever be due to an aberrant transposition event involving one end 

of yô and the inverted repeat of Tn3 present on pBR322, at the end 

of the bZa gene (Bolivar et aZ.,1977). A scheme showing how this 

aberrant event could take place between pRRl and R388 is indicated 

(figure 3.9). This would involve transposition of the entire region 

between the right inverted repeat of Tn3 and the left inverted repeat 

of yô , Such an event would result in duplication of the Ap^ and 

Tc^ genes I? therefore the Clal restriction site, present at the
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FIGURE 3o9 A scheme to show the formation of normal and̂  

aberrant transpositional cointegrates from pRRl 

Transposon sequences are represented by double lines and 

antibiotic resistance genes by dotted lines. The positions 

of Ctal. restriction sites are indicated, R and L denote 

the righthand and lefthand inverted repeats of the-named 

elaments, respectively =



B pRRl

I ,41.3Kb
•38.2Kb

6.8Kb

FIGURE 3.10 Restriction analysis of exconjugants

A - exconjugants from cross (f) restricted with Clal 
B - exconjugants from cross (e) restricted with Clal 

Of the exconjugants from cross (e) analyzed, all contained two 

Clal restriction sites. This indicated that an aberrant trans­

position event had occurred involving one end of ^  and the TnJ 
inverted repeat present in pBR322 as shown in figure 3.9.

0.8% agarose gel run at 25V.



60

beginning of the Tc^ gene, would also be duplicated in the cointegrate, 

The normal transposition event results in duplication of just the 

yô element and therefore cointegrates contain only one Clal site 
(figure 3.9),

To test this possibility, several independent clones from 

crosses (e) and (f) were chosen (for comparison) and their DNA 

isolated. Restriction of purified DNA from cross (e) clones revealed 

the presence of two Clal fragments of the sizes predicted; clones 
from cross (f) had only one Clal site (figure 3,10). These results 
confirm the hypothesis that Tnl/3 transposase can complement trans­

position of the hybrid element using one end of Tn3 plus one end 

of yô, in preference to both ends of As only a few clones

were checked the possibility cannot be ruled out that a single 

element can transpose using Tnl/5 transposase or that the Y& 

transposase can complement transposition of the hybrid element.

These experiments should really be repeated using the pRRl element 

on a different replicon, such as pMB8 - to directly compare with 

RSF1341, before concluding definitively whether Tnl/S transposase 

can complement transposition of Yô,

Discussion

Genetic and biochemical evidence accumulated over recent 

years has suggested strong similarities between the Tn5/^elements 

and Y<S, Sequence data has shown highly conserved regions between 

these two elements, in particular the inverted repeats, inter- 

cistronic region between the tnpA and tnpR genes, and the primary 

structure of the resolvase proteins. The inverted repeats have 

28/35bp sequence homology in which there is a run of 12 identical
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bp (figure 3,6). They also share the property of duplicating 5bp 

of target DNA during integration (Ohtsubo etaZ,jl979; Reed et at, ̂ 

1979).

Genetic analysis has indicated that both elements appear 

to go through an obligatory cointegrate intermediate stage during 

transposition. Formation of the transpositional cointegrate is 

absolutely dependent on the tnpA gene product, or transposase 

(Kostriken et aZ-.jl981; Reed,1983a; Kitts et aZ*, 1982a). Resolution 

of the cointegrated replicon occurs by a very efficient site- 

specific recombination event, mediated by the tnpR gene product, 
resolvase, at a defined site, res (Reed,1981a).

It was observed by two independent groups in America that 

cointegrates formed by transposition of tnplR res^ elements were 
rarely detected in the presence of F factor plasmids. These results 

conflicted with those obtained using R388 in the assay system, 

where cointegrates were exclusively formed by tnpR elements (Gill 

et aZ.,1978; Sherratt et aZ-,, 1983a) . This suggested to us that the 
F factor carried a function analagous to resolvase, which could 

reduce Tnl/2 cointegrates to the normal transposition end products. 

The data presented in this chapter substantiate this hypothesis.

Artificial cointegrates have been constructed by cloning 

the res region from Tn3 into a yg containing plasmid,and vice versa, 

Resolution of such plasmids yields products with hybrid crossover 

sites. By comparing the DNA sequences of the hybrid sites with 

those of the wild-type sequences it has been possible to identify 

the recombination point within a 19bp sequence, which is homologous 

between the two elements,(Kostriken et ,1981; Reed,1981a) , This
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sequence is very AT rich, containing 16/19 AT residues. The 19bp 

sequence contains presumptive overlapping Pribnow boxes for both 

the tnpA and tnpR genes. This suggests that the dual roles of 

resolvase in resolution and repression may be mediated in a single 

step by specific binding within this region.

The high degree of sequence and function conservation 

between these two elements suggests a common evolutionary origin.

Of the two gene products encoded by these elements, which are in­

volved in their transposition, the resolvase proteins exhibit 

complementation, but apparently not the transposase proteins.

This is not really surprising as- the transposase proteins share 

less than 30% sequence homology, whereas the resolvase proteins 

are 80% homologous. Most of the models which have been formulated 

to 62̂ lain the mechanism of transposition invoke a specific inter­

action between the transposase protein and the ends of the element 

(Arthur and Sherratt,1979 ; Shapiro,1979;Hershey and Bukhari,1981).

The transposase proteins must be highly discriminating to distinguish 

between the inverted repeats of these two elements.

The results presented in section 3 suggest that Tnl 

transposase can recognize one inverted repeat from Tn3 and one 

from to mediate an aberrant transposition event, albeit at 

reduced frequency when compared with TnS transposition (about 200- 

fold down). The entire region between the right inverted repeat 

of Tn3, present at the end of the Ap^ gene, and the left inverted 

repeat of yg has been shown to transpose, including the Ap^and 

Tc genes. It is possible that one inverted repeat may be more 

important than .the other in recognition or during the transposition 

process. This possibility is at present being investigated by
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another member of our group at Glasgow. The hybrid elements 

have, been constructed and their transposition properties will be 

studied using either 'Vnl/Z or Y6 transposase proteins. These kinds 

of experiments should show if there is any functional asymmetry between 

ends. It may also be of interest to induce single site mutations 

within the ends of the elements by directed site-specific muta­

genesis 'in V'itro,t.o determine which bases are the most important 

for transposition.

The presence of a transposon-encoded site-specific 

recombination system appears to be unique to the TnS-like family

of elements. The IS elements, which appear to transpose either
V'by direct transposition or cointegration,rely on the host-encoded 

general genetic recombination system to resolve cointegrates, 

when formed. Why have an element-encoded recombination system?

The reason for this may be found by studying the biology of the 

two groups of elements. The IS elements are located mainly on the 

chromosome; most of the recombination events they are involved in 

are intramolecular. Current models for transposition suggest that 

intramolecular transposition results in deletion or inversion of 

intervening DNA according to which strands at the target site are 

cleaved/ligated during the initial stage of transposition (figure 

1. ) (Arthur and Sherratt,1979; Shapiro,1979).The only recombination 

event required for such rearrangements to occur is the initial 

break/join reaction mediated by the transposase protein; a resolution 

step is not necessary. It has been shown for Tn3 that deletion 

formation, by intramolecular transposition, is independent of the 

tnpR gene function (. Bishop, pers.comm. ) . One could argue that 

elements, which transpose preferentially by direct transposition, 

or intramolecularly, would not require their own recombination
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system. The Tn3-like elements occur most frequently on plasmids, 

often encoding accessory determinants such as antibiotic resistance. 

Their efficient spread through populations is underlined by the 

rapid increase of multiple drug resistance in bacteria. It has 

been shown that the host-encoded Rec system resolves transpositional 

cointegrates very poorly (Arthur and Sherratt,1979). Elements 

which always use the cointegrate pathway would require a RecA- 

independent, transposon-encoded system for resolution to ensure 

their efficient spread through populations.

Transposons usually encode accessory determinants, which 

provide their hosts with a selective advantage under appropriate 

conditions; one could argue that there is strong natural selection 

to maintain these elements in populations. But what of IS elements? 

These provide no direct selective advantage to their host, but their 

ubiquitous occurrence in a diverse range of organisms pinpoints 

their success. One may argue that these elements confer some 

selective advantage on their hosts by mediating genetic rearrangements, 

which could increase the adaptivity of the host and hasten- the 

evolution process. They also provide portable regions of homology 

at which the host-encoded general genetic recombination proteins 

may act to generate deletions, duplications and inversions. Trans- 

position of these elements is usually tightly regulated/ if not/ 

the gross rearrangements which could occur may be suicidal to 

the host and thus to the element contained within it. Elements 

which have the property of replicating by horizontal transmission, 

as well as vertically to daughter progeny during vegetative 

propagation have often been called "selfish DNA elements" on the 

basis that they have no phenotypic advantage, they just replicate.

For further discussion of these issues see Doolittle and Sapienza
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(.1980; 1981) and, Orgel and Crick (1980) o

The simple IS elements and the Tn3-like family of trans- 

posable elements appear to have fairly distinct properties, suggesting 

that the two classes of elements may have evolved independently, 

or, if they are derived from a common ancestor, have diverged 

considerably. Their transposase proteins generally duplicate 9bp 

or 5bp of target DNA during integration, respectively; this may 

be indicative of different mechanisms' and/or different specificities 

during the initial break/rejoin event» The greatest difference is, 

however, the presence of a site-specific recombination protein 

encoded by the TnS-like elements» Both classes of elements have 

evolved efficient systems for their propagation; the IS elements 

by undergoing direct transposition^thereby alleviating the necessity 

for a cointegrated intermediate, and the TnS elements by using 

site-specific recombination to resolve obligatory cointegrates.

Site-specific recombination has been recognized in a 

variety of systems as an efficient means of generating rearrange-
I
ments,in some cases to control gene expression, e.g. inversion of 

the G-loop in phage Mu to control production of host-range proteins 

(Bukhari and Ambrosio,1977). Of these the lambda integration 

system has been well characterized using genetic and biochemical 

techniques. The Tn3 resolvase system has been investigated in 

detail, genetically, by several members of our group at Glasgow.

To discover the exact requirements, and shed some light on 

the mechanism of the resolvase-mediated recombination event, I 

decided to tackle the problem using a biochemical approach. The 

aim of the experiments in the following chapters was to purify 

the resolvase protein and study it s action in an i-n vitro system.



CHAPTER 4

CLONING AND PURIFICATION OF RESOLVASE
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Introduction

One of the most successful approaches used to study a particular 

system in detail has been to reconstruct it in complementing the

genetic analysis» This has proved most fruitful in the study of DNA 

replication and, more recently, for various recombination systems. 

Temperature sensitive mutations had identified many gene products in­

volved in DNA replication, but these could only be classified as initi­

ation or elongation factors; their precise function and mechanism were 

more difficult to determine. Using plasmid or phage substrates, a de­

tailed biochemical analysis has been made of the replication apparatus » 

Principally, replication defective mutants were used to provide crude 

cell extracts for use in complementation assays in vitro} this allowed 

purification of various replication proteins, which were then reconsti­

tuted to partial or complete systems (Alberts and Sternglanz.1977; 

Kornberg,1980)c These techniques have uncovered many proteins involved 

in DNA replication, most of which interact to form large complexes.

The use of in vitro systems to study recombination is a fairly 
recent innovation due mainly to the lack of a suitable assay. Work 

has, however, progressed rapidly in the understanding of phage lambda 

integrative recombination. This is mediated by the phage-encoded protein, 

Int, and acts specifically at a site located on the phage, attV, and 

on the host, attB (see Nash, 1981 for a review). The use of a cell-free 

system has aided the purification of the proteins involved and has 

prompted a model for the recombination mechanism. The host-encoded 

general genetic recombination system has also been probed in vitro.

The work of C.Radding and P.Howard-Flanders at Yale University has 

revealed many of the recombinational properties of reoA protein 
(Radding,1981; West et a%.jl98b& . Studies using purified reoBC protein.
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or exoVy in vitro have also led to a proposed mechanism of action of 
this protein during recombination (Muskavitch and Linn,1980; Taylor 

and Smith,I980a,b). The role of host- encoded recombination proteins in 

plasmid recombination is at present being investigated in vivo and 
in vitro (Kolodner,1980 and pers. comm.)»

All of these systems rely on an assay system, which clearly 

distinguishes between substrate and product molecules. Once a suitable 

assay has been devised it may be possible to isolate the particular 

proteins involved from crude cellular extracts. This may be achieved 

by using a strain which produces the protein in fairly large quantitieŝ  

or by cloning the gene into a high expression vector, thus allowing 

large amounts of the protein to be synthesized»

The experiments described in this chapter were initiated with the

intention of studying resolvase-mediated site-specific recombination

in vitro a Production of the itnpR protein, or resolvase, is known to be

autoregulated (Chou et aZ.1979a) ; thus even on a high copy number plasmid
very little free resolvase is present in the cell. To produce sufficient

quantities for purification it has proved necessary to separate the

tnpR gene from it s natural promoter and place it under the control

of a different promoter, thereby releasing it from repression» One of

the problems' encountered in cloning genes under high expression promoters

is the possibility that the protein may be lethal to the cell in high

concentrations. This may be overcome by using a promoter, which is

regulated under certain conditûons» Many of the commonly used expression

vectors are derived from pBR322 (Bolivar et aZ»,I977) , and contain an
insertion from phage lambda carrying the leftward promoter,P^^. This

promoter is usually controlled by the lambda repressor protein,Cl. A
857temperature sensitive Cl repressor has been isolated. Cl , which allows
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uncontrolled transcription from at 42°c (Franklin,I97I; Bernard and 

Helinski, 1979) . The plasmid vector, pX8, has an IlOObp BcanKL/BgZU. 

fragment from lambda, containing the P_ promoter and the N gene, inserted 

into the BamBl site of pBR322 (Reed,l98lb) , This plasmid has been used 

as a vector for cloning the Tn3 tnpR gene to produce sufficient quantities 
for purification.

The strategy for cloning has been to first isolate the gene frcan 

it s natural promoter by cloning a partial TaqX digest into pACYCl84^ 
then to insert the isolated ZMpR-containing fragment into pA8 so that 

transcription reads through from P_.

Results

I. Isolation of the tnpR gene

The nucleotide sequence of Tn3 reveals that Taql is the only enzyme, 
which cleaves between the putative Pribnow box and the beginning of the 

tnpR structural gene. As Hhql recognizes a 4bp sequence it does have 
several sites within TnS, two of which are in the structural gene for 

tnpR and two in the intercistronic region between tnpR and tnpA (see figure 
4oI). A partial digest of Tn3 should produce some fragments carrying 

bta and extending leftwards through tnpR into the regulatory region.

The initial stage of the cloning strategy involved partially digesting

a Tn3-containing plasmid with TaqX to generate a htaj,tnpR fragment, using 
rAp as a selective marker for cloning. These fragments were cloned into 

the single CtaX site of pACYCI84; reaction mixtures containing ligated 
DNA were transformed into DS825. Transformant clones resistant to Cm 

and Ap were analyzed by SCCL to screen for plasmids of about 6kb; i»e. 

pACYCl84 containing a 2Kb insert.(fig»4»2). Plasmids of about this size
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7.8Kb

4.0Kb

FIGURE 4.2 SCCL of Cm^,Ap^ transformants from cloning stage 1

Plasmids which were within the 6-8Kb size range were purified 

for further analysis by HxqX restriction.

0.8% agarose gel run at 25V.
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RSF1050 A B D E F G K

150bp
132bp

96 bp

66 bp

FIGURE 4.3 Restriction analysis of prospective tnpR-containing 

clones

The prospective clones were restricted with làql; the first track 

represents the fragments produced from a wild-type Tn3 element. 

Plasmids represented in tracks B and K contain the 66bp and 

150bp fragments required for the tnpR structural gene, but lack 

the 96bp promoter-containing fragment.

10% polyacrylamide gel run at 30mA.
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were purified and analyzed further by TaqX restriction) this indicated 

which fragments had been cloned. To allow detection of small DNA fragments 

(less than lOObp) , digests were run on IO% acrylamide gels (figure 4.3) . 

The gel indicated that two of the clones analyzed contained the IBObp 

and 66bp fragments of tnpR, but lacked the 96bp fragment containing the 
putative promoter sequence. It was assumed that the order of these 

fragments was the same as in wild-type Tn3 and one of these clones, 

named pLS204, was used for the subsequent cloning stage.

Plasmid pLS204 has no apparent repressor or resolvase activity, 

when analyzed in vivoj this was expected as the gene had been isolated 
from it s promoter and transcriptional studies of the region around the 

CtaX site suggest that there are no other promoters present, which could 
read through the insert (Sthber and Bujard,l98l). Quite fortuitously 

the junction sequences generated by insertion of the TaqX fragment 

were CtaX recognition sites. This provided a means of lifting the tnpR 
and hta genes from pLS204 on a single CtaX fragment,

2. Insertion of the tnpR gene into pA8

The pX8 plasmid is unstable in non-lysogenic E»coti strains? this effect
is presumably due to uncontrolled transcription interfering with plasmid

functions, probably replication (Bernard and Helinski,1979). To overcome

this problem all manipulations were performed in either a wild-type À
857lysogen or in the strain N4830, which contains the Cl repressor 

gene, but has most other À genes deleted (Reed,l98lb) . For cloning 

purposes there is a CtaX site downstream from the P^ promoter,_ five 
triplets before the end of the N gene. There are two other CtaX sites in 
pXB, one other within the IlOObp cloned X fragment and the other at the 

beginning of the Tc^ gene of pBR322» There is also a single F.stX site 

located within the Ap^ structural gene; this is also present in the Ap ̂
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FIGURE 4.4 Strategy for cloning the tnpR gene from Tn3 

into pAS

A Taql partial digest of RSF1050 was mixed and annealed to 
Ctal digested pACYC184 DNA. Of the Cm,̂ /Ap̂  clones obtained, 

some contained the complete structural gene for tnpR, but 

lacked the promoter region« One of these, named pLS204, 

was then digested with Ctal and Pstl and ligated to Clal/ 
Pstl restricted pAS DNA, Two major size classes were formed, 
the larger of these contained the pAB replicator fragment 

plus the tnpR-containing fragment from pLS204.
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gene of pLS204 as the hta gene of pBR322 was originally derived from 

Tn5 (Bolivar et #7.,1977). Cleavage of pA8 with Ctal and Pstl yields 

four fragments, the largest of which carries ov^Yt most of the N 

gene and the terminal end of the hta gene. Cleavage of pLS204 with 

Cta'̂  and Pstl yields a 1,3Kb fragment containing tnpR and the proximal 

end of the hta gene. When these two digests are mixed and annealed, the 
simplest way of regenerating the hta gene is by ligation of the major 
pX8 fragment to it’s original adjacent fragment, or by ligating to the 

tnp'R,hta fragment from pLS204 (figure 4.4) „ Such an experiment was 
performed and ligation mixtures were transformed into strain N4830; 

selection was made for Ap^ colonies at 30°C, the permissive temperature, 

Transformants were analyzed by SCCL to screen for plasmids of the 

predicted size, about 5Kb. The two major size classes obtained were 

of 4.5 and S.OKb, of these the larger size class were assumed to 

have inserts containing tnpR(figure 4.5). Clone pLS213(track L) was 

analyzed further by restriction of purified DNA with Ctal and Pstl 
and compared with similar digests of pX8 and pLS204 (figure 4.6). The

digests clearly show that pLS213 has the structure predicted,

3. Detection of a functional tnpR gene product

The physical structure of pLS213, as determined by restriction 

analysis, suggests that the 7npR gene had been cloned, indlMIWgiS^^'' 

ribosome binding site 8bp upstream from the ATG start codon (Shine 

and Dalgarno, 1974) , For the gene to be expressed it is required that 

the N* gene is terminated before the beginning of the tnpR message. If

there is no stop codon in frame with the N* gene, then a fusion

polypeptide would probably result. However, analysis of the sequences 

involved reveals the presence of a stop codon, UAA, just after the 

Ctal site,* therefore a functional protein should be produced.
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pLS204(6.3Kb)
pA8(5.3Kb)

pBR322(4.3Kb)

FIGURE 4.5 SCCL of Ap transformants from cloning stage 2 
Tracks F,G,H,J and L represent plasmids of the size predicted 

for pLS213(S.OKb). The other major plasmid size class, represented 

in tracks A,B,D and K were probably due to ligation of the 3.7+ 
0.77Kb Clal/Pstl fragments of pTÆ.

0.8% agarose gel run at lOOV.
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pA8 replicator 
fragment

pLS204 tnpR-
containing
fragment

FIGURE 4.6 Restriction digests of pA8, pLS204 and pLS213 

Purified DNA was digested with Clal or Clal/Pstl „ The 3.7Kb 

pA8 replicator fragment and the 1.3Kb tnpR-containing fragment 

are both present in pLS213.

0.8% agarose gel run at lOOV.



Induced bands 30°C 43°C MP (Mol.wt.XlO^)

^ - lactamasep^l

resolvase

N* protein

93 - Phosphorylase B
68 - BSA

43 - Ovalbumin

30 - Carbonic anhydrase

21 - Soybean lectin inhibitor 

14.3 - Lysozyme

FIGURE 4.7 SDS-PAGE of total cell lysates frcan uninduced 
and induced LS415 cells

Five bands increase in intensity on heat induction as shown. 
12.5%,4.5% stacking gel run at 35mA
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To check that resolvase was in fact being produced in large amounts

from pX8 it was necessary to assay the total cellular proteins present^

by SDS-PAGE. The strain containing pLS2l3, named LS4I5, was grown in

4ml L-broth at 30°C to 5XIO^cells/ml with constant shaking. 2ml of

this culture were transferred to 43°C for one hour to induce transcription

from P^. The samples of induced and non-induced cultures were centrifuged

at I2,OOOg for 2inin. to pellet the cells. The cells were resuspended in

lOOpl of PFSB and boiled for 2min. The total protein content was analyzed

by SDS-PAGE.(fig.4.7). There appear to be five protein bands which

increase in intensity when the cells are induced. By comparison with

size markers one of these has a molecular weight of 2IK, corresponding

to the size of resolvase. The smallest of the induced proteins, about
*I2K, is presumably the. N protein. The remaining three induced bands are 

due to 3“lactamase and it s precursors; this suggests that the Ap^ gene 

is also under some control by P^ (Dougan et at, ,1.919) . A rough estimate 

of the amount of resolvase produced can be made by measuring the density 

of stained bands on a gel showing induced and non-induced cell samples.

The peaks on the densitometer trace representing the protein profile 

were cut out and weighed. The protein peak corresponding to resolvase 

was compared with the total cellular protein of induced cells to give 

a value of 3.8%. It was concluded from this data that the tnpR gene had 

been successfully cloned under P^ control; induction of transcription 

elevates the level of resolvase to approximately 4% of the total 

cellular proteins.

As the tnpR gene had undergone several manipulations during cloning 
it was considered necessary to check that the protein produced was still 

functional tn vi-vo before proceeding with the purification. Two assays 

were used to test for the presence of a functional protein: repression 

of transcription from tnpA,and screen for resolution.
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Sa/1Tc

HindlH Sa/nHI 
Sa/1

Cm

pACYC184

Cm

pLS IIO tnpA

V

FIGURE 4.8 Strategy for construction of pLSllO

pMB9::Tni£?S DNA was digested with H'CnâX'̂ 'L/SaVl to produce a 

fragment carrying the entire TnJ0J element and part of the Tc 

gene. This was ligated to EindTLl/Ban0^/Sal'^ restricted pACYC184 

DNA, The major size class of Cm ,Tc transformants was of the 

size predicted for pLSllO. In vivo analysis indicated that the 

Tc^ structural gene of this plasmid was under tnp'̂  control 

as expected.
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(i) The repression assay makes use of a fortuitous insertion of the 

treinsposon TnJOS {tnpA^tnpR ) into the promoter region of the Tc^ gene 

of pMB9. It was observed that in the presence of resolvase this plasmid
S 3Twas completely Tc , indicating that expression of Tc gene is directed 

from the tnpA promoter„ The plasmid pMB9 is in the same compatibility 

group as pBR322 and therefore cannot be maintained within the same cell 

as pLS2l3, As pACYCl84 is in a different compatibility group, the TnlOS 

insertion was transferred,by cloning, from pMB9 to pACYCI84 as these 

have analogous Tc genes (figure 4.8). These two plasmids have been used to 

select resolvase amber mutations (Kitts et 1982b) and could potentially 

be used to isolate Tes site mutants.

It is assumed that even at 30°C there is a small amount of resolvase

present in strain LS4I5 due to low level of readthrough from in the 
857presence of Cl . Strain LS4I5 was transformed with pLSIIO, containing 

the repressible Tc gene; transformant clones resistant to Cm and Ap
X Xwere subsequently checked for Tc by replica plating. All Cm colonies 

were Tc^ indicating that the cloned gene produces functional resolvase 

to repress transcription from the tnpA promoter,

(ii) To check for resolution activity a transpositional cointegrate 

derived from TnlOSf pAAI3I, was transformed into strain LS4I5. Transformants 

resistant to Ap and Cm were analyzed by SCCL and shown to contain 

only the resolution products of pAAI3I and pLS2l3 (data not shown).

Together these data indicated that a functional tnpR gene had been cloned 

and that resolvase could be produced in large amounts by heat induction.

4, Purification of resolvase ( , 1981

Fresh overnight cultures of LS4I5 in L-broth were diluted 1:20 into two 

litres of L-broth, with the addition of 50pg/ml ampicillin to maintain 

selection for the plasmid,Cultures were grown to about 5X10^ cells/ml
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at 30°C. Flasks were transferred to 43°c to induce transcription from 

P^. Culture flasks containing at least 500ml of liquid would normally 

take 20-30 min. to heat to 43°C; an hour after this point the cells were 

harvested.

Cells were harvested by spinning at 9,820g for 5min. Pellets 

were resuspended in 20ml of lOOmM NaCl, 20mM Tris, pH7.5. The cells 

were again pelleted, then resuspended in lOm] of IO% sucrose/TEM buffer 

(TEM: 20mM Tris, pH7.5; ImM EDTA; ImM mercaptoethanol) . The cell suspension 

was sonicated in four 30 sec. bursts using a Dawe Soniprobe type 7532B.

The crude lysate was centrifuged at I2,OOOg for lOmin. to remove unlysed 

cells and cell debris. The supernatant was carefully decanted and to 

it added polymin P (IO% w/v in TEM)̂  dropwise,to a final concentration 

of 0.5%o This was left on ice for lOmin. to allow polymin P to aggregate 

with DNA/protein complexes; these were then precipitated by centrifugation 

at l2,OOOg for IQmin. The supernatant was discarded; the pellet was 

resuspended in 0.3M NaCl/TEM and left on ice for lOmin. At this concentration 

of NaCl most proteins dissociate from DNA, but most of the resolvase 

remains bound. The DNA pellet was collected by centrifugation as before, 

then resuspended in lOml of IFL NaCl/TEM and left on ice for lOmin, to ,

remove resolvase from the DNA/polymin P complex. The DNA/polymin P 

pellet was removed by centrifugation.

The resulting supernatant was loaded directly onto a 100X2.5cm.

Sephadex G-75 (medium grade) gel filtration column, equilibrated with 

IM NaCl/TEM. Fractions were collected using an LKB 7000 Ultrorac 

fraction collector and scanned using an LKB 8300 Uvicord II, set at 

280nm during collection. The uvicord trace, though not an accurate measure­

ment for optical density, clearly shows where the void volume is eluted
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(greater than 80,CXD0 dal. for Sephadex G-75) , and fractions containing 

major protein peaks. Fractions were analyzed further by SDS-PAGE to 

determine those containing resolvase. The gels indicate resolvase- 

containing fractions and it's elution point in relation to other proteins 

(figure 4,9). Resolvase appears to be eluted from the column at several 

different positions suggesting that it is present in multimeric forms 

under the conditions used, i.e, IM NaCl/TEM, Some resolvase is eluted 

during the major large protein peak, representative of proteins of about 

80,000 dal.; it appears again in fractions, which elute at a similar 

size to proteins of 40,000 < dal. Finally, a small amount is eluted at 

the end of the protein elution profile with other small proteins of 

about 20,000 dal. This data suggests that under the conditions used 

for the column, the protein exists in equilibrium between monomers, 

dimers and higher forms, with dimers predominating.

monomers DIMERS ̂  ^betramers?

It would be interesting to know which way the equilibrium between 

forms may move, if at all, under physiological conditions^ estimated 

at l50-250mM sodium equivalents (Pollock and Abremski, 1979).

Fractions containing resolvase were pooled and dialyzed three times 

against 7M urea/TEM. The pooled, dialyzed protein was then applied to 

alOml CM-Sepharose cation exchange column, equilibrated with 7M urea/ 

TEM. After loading,one bed volume of running buffer (7M urea/TEM) was 

passed through the column. A salt gradient of 0->200mM NaCl was applied 

to the column and collected as above. Fractions were assayed by optical 

density and gel electrophoresis. Resolvase gives very low O.D.readings 

at 280nm due to the lack of tryptophan residues in the protein, but 

this assay does give some indication of which fractions to analyze by
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SDS-PAGE. All fractions from the column were measured for conductivity; 

by comparison with standards this gives the molarity of each fraction, 

which can then be represented graphically along with O.D. measurements 

(figure 4.10). Two main peaks were indicated by O.D. readings; these 

fractions were assayed by SDS-PAGE to determine which contained resolvase 

(figure 4.II).

Resolvase-containing fractions were pooled and dialyzed against 

7M urea/IM NaCl/TEM, then twice against IM kaCl/TEM. At this stage half 

of the sample was removed from the dialysis sac and stored at 4°C; the 

remainder was dialyzed further against IM NaCl/TEM/50% glycerol(v/v) 

and stored at -20°C. After several months the sanples were compared 

by SDS-PAGE; the sample stored at 4°c contained far less resolvase than 

the -20°C sample (even after"taking into account the glycerol concentration 

effect) , and had lost all activity in vitvOo Henceforth all resolvase 

samples were stored in 50% glycerol at -20°C/ samples stored in this

way retained activity 8-9 months after preparation.

To determine the predominant multimeric forms of resolvase, samples 

of purified protein were applied to a ISOml Sephadex G-I50 gel filtration 

column calibrated with markers of known molecular weight. By comparing 

the resolvase elution point with that of transferrin (8.6,GOO), BSA(68,000) , 

ovalbumin(43,000) , and lysozyme (14,300) , one should be able to determine 

it's molecular weight in IM NaCl (used for storage and column running 

buffer). The results from these experiments indicated that resolvase 

is eluted over the same fraction range as ovalbumin, and is therefore

present in dimeric form (43,600 dal.) ,
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FIGURE 4.10 Graph showing the optical density and molarity 

of fractions from the CM-Sepharose ion-exchange column

Q------o  represents molarity

#_----- e represents optical density
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Discussion

, The aim of the esqperiments in this chapter was to clone the Tn3

tnpR gene into a high expression vector, and subsequently purify it s

product, resolvase. The basic strategy used was similar to that enployed

by RoReed for isolation of the resolvase protein; the vector, pX8,
857and strain containing Cl , N4830, used for cloning were kindly provided 

by R.Reed (Reed, I98Ib)«

Although previous data had shown that there are many similarities 

between the two resolvase proteins from TnS and y6, it was not known 

how their properties would coup are during purification and -in vi-tTO,

I decided to study the TnS resolvase protein in order to compare it s 

activity i-n V'itTo with other site-specific recombination proteins and, 

more importantly, to attempt to deduce it s recombination mechanism.

One of the interesting features uncovered during purification of 

resolvase is the apparent molecular weight of the protein when eluted 

from gel filtration columns„ Under the conditions used, i.e. IM NaCl/

TEM, the protein appears to be eluted predominantly as dimers, some in 

higher forms and very little as monomers. It has not been possible to 

deduce the form of the protein under physiological conditions due to 

insolubility problems in low salt solutions (at lOOmM NaCl the purified 

protein precipitates from solution). In cells containing wild-type TnS 

elements the levels of resolvase are very low, barely distinguishable 

even in minicells when analyzed by SDS-PAGE (Dougan et ato^T919). At 

this concentration the protein appears to be soluble and is presumably 

bound to DNA most of the time. Consequently there would be very little 

free resolvase present in the cell. It would be interesting to know
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if resolvase binds to DNA as a monomer, dimer or in higher forms.

It is assumed that during purification of resolvase the 

protein is not irreversibly affected by the high urea concentration 

used to solubilize the protein for running on the ion exchange 

column. During this stage of the purification the dialysis steps, 

column running, and subsequent gel assays were performed as quickly 

as possible to ensure that the protein was not exposed to urea for 

any longer than necessary. Analar grade urea was always used and 

solutions freshly made at each stage of the purification; the cond­

uctivity of urea solutions was routinely checked. It may be of 

significance that the final resolvase preparation was kept in urea 

solutions for a much shorter time than had other preparations^ and 

appears to exert higher activity in 'in vitro resolution experiments

The results presented in the following chapters suggest 

that resolvase, prepared by these methods, has retained specific 

binding and recombination activities.



CHAPTER 5

CONSTRUCTION OF THE IHI VITRO RESOLUTION SYSTEM



82

Introduction

Genetic analysis has indicated that for resolvase mediated 

site-specific recombination to occur, resolvase and a replicon 

containing two directly repeated copies of ves are required.(Kitts 

et aZ-.j 1982a) o As yet, no host factors have been directly implicated 

in this event, Resolvase and a suitable substrate are essential 

components for construction of an in vitTO system to study resolution 

in detailo Using this basis it should be possible to determine any 

other factors, which may be required. Purification of resolvase 

has been described; the second requirement is a suitable substrate.

The substrate is required to have two res sites in direct orientation 

and on resolution must be easily assayed to distinguish between 

substrate and product molecules. The most commonly used and convenient 

assay for recombination is restriction cleavage of reacted DNA.

This assay relies on the substrate and product molecules producing 

fragments of different sizes, thus enabling clear distinction 

between substrate and products on gel electrophoresis (Mizuuchi 

and Nash,1976; Reed,1981b),

A series of small plasmid substrates has been constructed, 

using in vitro techniques, which may be assayed for resolution by 

gel electrophoresis, transformation or electron microscopy. The 

plasmid substrates thus constructed have been used with purified 

resolvase to answer some of the following questions relating to 

the mechanism of the reaction:

(a) Does the system require any host-encoded products?

(b) What are the basic ionic conditions for optimal reaction?

(c) Is an external energy source required?
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FIGURE 5.1 Strategy for construction of pLS134 and pLS137

(for details of manipulations see text)



83

t.d) Is the reaction reciprocal?

(e) Is the substrate required to be supercoiled?

(f) Can resolvase join molecules by intermolecular recombination 

at l’es sites on two separate molecules?

(g) Does resolvase have any activity on inverted res sites?

(h) Does resolvase conserve superhelicity during the reaction?

(i) Does resolvase exhibit any topoisomerase activity?

(j) Does resolvase catenate products - if so, is this an intrinsic

part of the reaction?

(k) Is resolvase catalytic?

(1) Does resolvase induce double-stranded or single-stranded 

cleavage at res sites?

Results

1. Construction of pLS134 and pLS137

Substrates were constructed using the techniques of restriction, 

ligation, transformation and SCCL as described in Materials and 

Methods. These substrates were both derived from pLS129, an insertion 

of TnlOS into pACYC184. On Ctal restriction two 4Kb fragments are
produced; one carrying the Cm^ gene, oriV and res^ the other, the

Tc^ gene and most of the tnpA gene. The source of the second res 

site was pMB9::Tn703j (Kitts et aZ.,1982a), in which res is carried 

on a 2Kb CtaJ. fragment (see figure 5,1) o pLS129 was partially

digested with ClaJ. to produce a mixture of unit length and 4Kb

fragments. This digest was treated with bacterial alkaline phosphatase 

(to help prevent vector recircularization) then electrophoresed 

through a 1% low melting point agarose gel to separate fragments.

Gel bands corresponding to 8Kb and 4Kb fragments were excised and 

used in ligation with CtaT digested pMB9: z'TnlOdl DNA, The ligation
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pLS129
(8.0Kb)

pMB9
(5.3Kb)

F I G U R E  5.2 Analysis of clones by SCCL

Clones A and C were of the size expected for pLS134 and pLS137; 

these were chosen for further analysis.

0.8% agarose gel run at lOOV.
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FIGURE So 3 Resolution of pLS134 and pLS137 in V'tvo

Clones of the size expected for substrates (A and C from previous

gel) Were transformed into a strain containing pDS4153 (ColK::

Tn] tnpA f tnp'R̂  derivative) . Analysis of Cm^,Ap^ transformants 

by SCCL revealed the presence of the expected resolution product, 

pLS135(4Kb). The reciprocal resolution product lacks oriV and 

is therefore not seen in vivo^

0.8% agarose gel run at lOOV.
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reaction mixture was diluted and transformed into AB2463. Trans­

formants resistant to Cm or Cm,Tc were analyzed by. SCCL to detect 

insertions by size (figure 5.2). Plasmids of predicted sizes were

purified by the STET method and checked for resolution by trans-
+forming into a tnpR plasmid strain (figure 5„3). The plasmids 

designated pLS134 and pLS137 were shown to resolve in vivo to 
produce a smaller plasmid of 4Kb, which carries oriV and Cm^. The 

reciprocal product of resolution for both substrates carries no 

oriV and is therefore lost in vivo. The product of in vivo resolution 
was purified for use as a size marker for in vitro experiments.

pLS137 has been used mainly for transformation experiments; 

as the Tc^ gene is flanked by res sites, resolution yields a Cm^,Tc^ 
plasmid. The resolution product carrying the Tc^ gene has no oriV 

and is thus not detected in vivo, On transformation of in vitro
1Creaction mixtures the proportion of Cm transformants, which retain 

resistance to Tc provides a measure of resolution.The plasmid pLS134 

has been used for most of the experiments to characterize the in 

vitro system, using electrophoresis as the assay.

2. Construction of pLS138

Analysis of the DNA sequence surrounding the res region of 

Tn3 reveals the presence of two EqoRT* cleavage sites, one within 

the beginning of the tnpA- structural gene and the other in the tnpR 

gene (see figure 4*1). The EooRT* sites are located 282bp apart. 

This fragment has been cloned into the EqoRX site of pACYC184, 

rendering the plasmid Cm^ (Kitts,1982). Both junction sequences of 

this plasmid are now EaoRT cleavage sites enabling the 282bp res- 

containing region to be lifted from the .plasmid, named pPAK317, on 

a single EcoRï fragment* This fragment was subsequently purified
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FIGURE 5.4 Strategy for construction of pLS138

( see text for details)
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and cloned into the single EoolBJ. site of pBR322 to produce pPAK329 

(Kitts,1982) o

The plasmid pLS138, was constructed by cloning a second copy 

of the 282bp res-containing fragment into pPAK329 (figure 5.4).

The 282bp fragment was purified by cleaving pPAK317 with EcoKL 

followed by electrophoresis through a 5% polyacrylamide gel; the 

band corresponding in size to 282bp was excised and the DNA eluted 

by the electrophoresis method. pPAK329 was partially cleaved with 

EqoKL to produce linear fragments; the digest was treated with 

bacterial alkaline phophatase^ then annealed to the purified 282bp 

fragment. Ligated DNA was transformed into AB2463; transformants 

resistant to Ap,Tc were selected and analyzed by SCCL (figure 5.5). 

Clones E-H represent plasmids slightly larger than pPAK329; clone 

B is of the size expected for dimers of pPAK329, It was assumed that 

all clones containing inserts would have directly repeated copies 

of Tes due to the observed instability of palindromic DNA (Collins, 

1981; Warren,pers.comm.). The orientation of res sites was confirmed 

by restriction analysis with PywII, which cuts a^nrrmetrically with­

in the 282bp fragment (figure 5,6). The structures of pBR322, pLS138 

and pPAK329 have been compared by restriction with R'inoTI and Pvull; 

the increase in size of the smallest Hi-noTl fragment of pBR322 
indicates insertion of 564bp or 282bp, respectively. Double digests 

with HiriGTl and PvuXl orientate the 282bp fragment(s) in pPAK329 
and pLS138 as indicated (figure 5.4).

Of major importance was the ability of pLS138 to resolve? this 

was initially tested by transforming pACYC184::Tn3 into the pLSl38- 

containing strain. Transformant colonies resistant to Cm were 

analyzed by ScCL (data not shown). This indicated the presence of
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pLS138
-PPAK329

F I G U R E  5.5 Analysis of clones by S C C L

The plasmids represented by tracks E-H are slightly larger 
than pPAK329, presumably due to insertion of the 282bp res- 

containing fragment. One of these was chosen for further 

analysis.

0.8% agarose gel run at 25V.
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FIGURE 506 Comparative restriction digests of pBR322, pLS138 

and pPAk329

The smaller H'tnoXX fragment of pBR322 contains the Pc^RI site

into which the 282bp reg-containing fragment(s) have been

cloned; this is indicated by the increase in size of this

fragment in pLS138 and pPAK329„ The digests confirm

the orientation of the inserts in pLS138 and pPAK329.
1% agarose gel run at lOOV
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(for details refer to text)
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only two plasmids, corresponding in size to pPAK329 and pACYC184::

TnŜ  suggesting that the 282bp fragment contains sufficient sequence 

for resolution and that the short distance between sites does not 

interfere with the reaction»

3. Construction of pLS139 and pLS140

These plasmids were also constructed using pPAK329 as a vector.

The PSs site of Trg is contained within a 357bp «Saw 3AI fragment 

(figure 4.1) ; this fragment contains sufficient sequence for resolution 

'in vi-VO (Reed, 1981a) , and also contains the regulatory region for 

transposition functions (Chou et at.,1979b)» This fragment was 

purified from RSF1365, a deletion derivative of Tn g (a map of TnZ65 

is shown in figure 3.3), Saû AJ. digested RSF1365 DNA was electrophoresed 

through a 5% polyacrylamide gel to separate fragments. Fragments 

were identified by comparison with pBR322 Saû Al. digested DNA, for 

which sizes are known (Sutcliffe,1978). The band corresponding to 

the 357bp Pes-containing fragment was excised from the gel and DNA 

eluted by the electrophoresis method. There is a single SomHI site 

located within the Tc structural gene of pPAK329; inserts into this 

site render the plasmid Tc^. The purified 357bp fragment was annealed 

to BcariEJ. digested pPAK329 DNA (figure 5,7) . Analysis of the sequences 
at either end of the fragment and at the BamBl. site indicates that 
the junction sequences will not be recognized by SomHI, therefore 

all inserts into this site will be resistant to BamUJ. cleavage. 
Recircularized vectors will be sensitive to SamHI cleavage. As the 

transformation frequency of linear DNA is several fold lower than 

circular DNA, digestion with BamBJ. prior to transforming should 
enrich for clones containing inserts. Ligated DNA was precipitated 

with 66% ethanol/0,3M NaAC, resuspended in MSRB and restricted with 

SowHI before transformation into AB246 3. Transformants resistant
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FIGURE 5.8 Restriction of Ap^,Tc^ clones with Py^II 

The size of the two smallest fragments produced by Pu%II digestion 

indicates the orientation of the inserted fragment. Clones A and 

B are representative of insertions in both orientations, inverted 

and directly repeated res sites. Clones C and J have lost the 
PvuII site from the inserted fragment. Clone J, as suspected, 

carries two copies of the 357bp fragment,
1% agarose gel run at 120V.
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to Ap were checked for Tc^; 5% of the Ap^ clones had retained 

resistance to Tc, presumably due to unrestricted vectors or trans­

formants from linearized vectors. SCCL of Ap, Tc transformants 

indicated 18/20 plasmids larger than pPAK329; of these one was 

slightly larger than the rest, probably due to insertion of two 

copies of the 357bp fragment» The remaining two clones were smaller 

than pPAK329> these could have arisen by transformation of linear 

molecules, which were then subject to exonucleases i-n V'tvo to 

generate deletions of varying length»

Clones containing inserts should have three PPWII sites, the 

distance between sites indicating the orientation of inserted 

fragments. DNA was purified from ten clones by the Birnboim/Doly 

method and restricted with PvuTl (figure 5,8) » Clones A and B are 

representative of inserts in both orientations and were subsequently 

purified for i-n vitno experiments. Clone J, which was presumed 
to have two copies of the 357bp fragment, has lost one Pvull site, 
but the fragment sizes are consistent with an additional 357bp.

Clone C also appears to have lost a Pvull site; for both of these 
clones the Pvull site which has been lost is from inserted DNA, 
not from the vector. This may be due to the method used to purify 

the 357bp fragment which involves excising a band from an ethidium 

bromide stained gel on a long wavelength transilluminator.

4. Construction of the in vitro resolution system - basic 

requirements

The reaction conditions used for the initial experiments were 

based on those devised by Reed for the ̂ 6 resolvase in vitro system 
(Reed,1981b):
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20mM Tris-HCl, pH 7.5

lOmM MgClg

50mM NaCl

ImM DTT

0„5pg DNA

0»2|ig resolvase, in 20]jl total volume 

When pLS134 was used in a resolution reaction, under the conditions 

described above, it was observed that a new band was present in 

reacted samples, migrating slightly faster than s/c pLS134, on 

gel electrophoresis. In analogy with the yô and Int systems, this 

could be due to the formation of s/c catenated product molecules 

(Nash et at, jl977‘, Reed,1981b). To test this hypothesis reacted 

DNA was restricted with EcoRI or Hindui-j these two enzymes each 

have a single site on pLSl34 (figure 5.9A). Unreacted material 

migrates as unit length molecules of 6Kb, whereas catenated molecules 

would be separated to produce one linear molecule of 4Kb or 2Kb 

and one circle of 2Kb or 4Kb, depending on which enzyme was used 

for cleavage. The results obtained by restricting resolution reactions 

indicated that the DNA species migrating slightly ahead of s/c 

substrate was due to product molecules. The catenated product band 

is not always clearly distinguishable on gels, especially those 

run quickly; for most experiments reaction mixtures were divided 

so that half of each sample could be assayed by restriction also.

To determine the optimal buffer pH for resolution, a range 

of Tris-HCl buffers were substituted into the standard reaction 

conditions. The optimal pH was found to be between 7.6 and 8.2; 

however very little difference was noticeable across this range 

(figure 5,10)» The addition of KCl up to 50mM does not appear to 

affect the reaction, nor does 5mM spermidine, but spermidine
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FIGURE 5o9A Restriction assay for pLS134 resolution

If the products of resolvase mediated recombination are catenates 

then it should be possible to unlink the circles by restriction 

enzyme cleavage. Using an enzyme which has a single site on the 

substrate, unreacted material will migrate as 6Kb unit length 

molecules, whereas catenates will be separated into 4Kb or 2Kb 

unit length molecules plus 2Kb or 4Kb circles^ depending on the 

enzyme used. The product circle which remains intact retains the 

superhelicity that was present in the catenate, thus giving 

some indication of the conservative nature of the reaction.
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FIGURE 5.9B Restriction assay for pLS139 resolution

Cleavage of pLS139 resolution reactions with EgoRT produces frag­

ments which may be clearly distinguished as unreacted substrate or 

product molecules on gel electrophoresis. In fact any enzyme which 

has a single site on pLS139 may be used for the restriction assay 

as it will separate catenated products.

In a similar manner inversion of DNA between Tes sites on 

pLS140 may be assayed by Eoo'RT digestion as the two orientations 

will produce fragments of the same size as pLS139 reacted and 

unreacted molecules.
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Sam HI
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4924 bp

SamH1 restriction

4642 bp

282 bp

FIGURE 5.9c Restriction assay for pLS138 resolution

Any restriction enzyme which has a single site located on pLS138

will separate catenates thus clearly distinguishing between substrate 

and product molecules on gel electrophoresis.
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A. Unrestricted samples, incubated for Ihr with 0.5 g of resolvase 

prep.l. S/c catenated products are not distinguishable from s/c 

substrate, but several other new bands are visible migrating 
between s/c and o/c.
B. Samples as above, restricted with H'indlll.

0.8% agarose run at 25V
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concentrations in excess of 5mM inhibit the reaction. Addition of 

0.4mM ATP has no apparent affect on resolution activity. Increasing 

the NaCl concentration up to 250mM does not appear to diminish 

the reaction significantly, and it has not been possible to reduce the 

concentration of NaCl to less than 30mM due to the high salt storage 

buffer used for resolvase. Three independent samples of resolvase 

have been purified, each with varying degrees of resolution activity. 

Preparation 3, purified during the latter part of experimental 

work, appears to be the most concentrated and has by far the greatest 

activity 'in vitvo. In the following experiments, for each gel 

shown, the resolvase preparation used is indicated in the figure 

legend. Tris-HCl buffers of pH8.0 have subsequently been used for 

'in vitro resolution reactions; the other conditions in the standard 

reaction mix have been unchanged.

5. Determination of the minimal amount of resolvase required for 

resolution in vitro

The use of predetermined concentrations of substrate and protein 

allows calculation of the ratio of these two components in the 

cell-free system. This ratio has been determined for'Int-mediated 

recombination and for yg resolvase; as the minimal amount of protein 

required is high it has been suggested that these proteins may not be 

catalytic (Nash and Robertson,1981; Reed,1981b). The ratio of Int 

monomers per recombinant is 20-40 and for yfi resolvase about 50. 

However, it has not been possible to determine how much of the 

protein used in these reactions is in fact in an active state.

To determine the minimum amount of protein required in the 

Tn3 resolution system, standard reaction conditions were used with 

the addition of increasing amounts of resolvase. Resolvase
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FIGURE 5.11 Determination of optimal resolvase concentration 
for resolution

Optimal resolution, judged by formation of s/c catenated 
product band, is c±>served with 0.036-0.072^ of resolvase 
(prep. 3) after 30min tncubation.
0.8% agarose gel run at 25V.
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concentrations were estimated by comparing known volumes of the 

protein preparation with purchased molecular weight markers by 

SDS-PAGE. The stained gel was scanned with a microdensitometer, 

the resulting protein peaks were cut out from the scan trace, 

weighed and compared. It should be stressed that values obtained 

provide a very rough estimate due to inaccuracies of th^ micro­

densitometer trace, possible differential staining with coomassie 

blue and the assumption that bought molecular weight markers really 

are at the concentration stated.

Protein preparation 3 was used for this experiment as it 

appears to be more active than the other samples. The protein 

concentration,as determined using the microdensitometer, is 0,72 

mg/ml. Dilutions of this resolvase preparation in Q.VM NaCl/TMD 

were used in a series of reactions with pLS138 as substrate DNA, 

Incubations were for 30min at 37°C, reactions were analyzed by gel 

electrophoresis to indicate presence of catenated products 

(figure 5,11), The gel indicates that at the lowest concentration 

tested, about G.Q36]ig resolvase, almost complete conversion of s/c 

substrate to s/c catenated products has occurred. Based on the 

assumption that the reaction contains O.Syg DNA and 0.036yg resolvase, 

the following calculation can be made:
2321,300g resolvase = 6X10 molecules

2,13yg resolvase = 6X10^^ molecules
120.036yg resolvase = IXIO molecules

3.2Xl0^g pLS138 = 6X10^^ molecules

3.2^g pLS138 = 6X10^^ molecules

0.5pg pLS138 = IXIO^^ molecules
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Therefore under standard reaction conditions the ratio of 

protein monomers to DNA molecules is 10:1, Due to error range of 

the method used to determine the protein concentration this ratio 

could be 2-5 fold out. If this ratio is correct, it would suggest 

that the resolvase preparation is fairly active. It is of significance 

that this preparation was kept in urea for only a short time 

compared with other samples suggesting that, as expected, urea 

probably has a detrimental effect on the protein's activity.

Comparison of reactions containing varying amounts of resolvase 

indicates that'as the resolvase concentration is increased there 

is a reduction in- the conversion of s/c substrate to catenated 

products. This inhibitory effect has also been observed with 

resolvase (Reed,pers.comm.). The reasons for this are unclear; 

it could be due to excess resolvase binding non-specifically to 

DNA and interfering with the reaction in some way, for example , 

by changing the superhelicity of the molecule. Concentration below 

those used in these experiments result in very little,if any, 

resolution.

6.Stoichiometry of the resolvase-mediated reaction

The experiments described above suggest that five monomers 

of resolvase are required per res site. This figure is quite high 

for a catalytic protein, which has been the basis for suggesting 

that Int and yô resolvase are non-catalytic. I do not believe that 

the high concentrations required for these proteins to act in 

site-specific recombination necessarily reflect- their stoichiometric 

nature. There is evidence to suggest that Int is a type I topo- 

isomerase (Kikuchi and Nash,1979 aqWang et 0:Zojl98O) ; topoisomerases 

are known to be catalytic, yô resolvase has been shown to create
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double-stranded cleavage at the Tes site on substrates containing 

two copies of res in direct repeat (Reed and Grindley, 1981) ; the 

protein then becomes covalently attached to the recessed 5' terminus 

produced. This mechanism is reminiscent of DNA-gyrase. The brea)cage 

and subsequent formation of phosp bodies ter bonds would not be 

expected to change the active site of the protein, thus it should 

be catalytic,

Time course experiments using standard reaction conditions 

suggest that the reaction occurs fairly quickly. The majority of 

products are formed within the initial 20min of the reaction and 

then little conversion occurs over several hours (figure 5.12),

The tail off of the reaction could be due to use of all the 

available substrate, use of all of the available resolvase, or 

instability of resolvase. These possibilities can be easily tested. 

Incubation of a.reaction mix containing resolvase, but lacking DNA, 

for one hour followed by addition of substrate results in normal 

conversion of substrate to products. This suggests that resolvase 

is stable under the conditions used. If extra substrate DNA is added 

after the "plateau point" , this is hot converted to products; 

this suggests that resolvase is the limiting factor in the reaction. 

The simple kinetics of the reaction may be studied by adding 

competitor DNA to time course experiments, A series of experiments 

was constructed based on the substrate pLS139 and using the 

minimal amount of resolvase required for resolution. It was observed 

that if an equal amount of pACYC184: :Tn5 (one res site) -was added 

at the same time as pLS139, the amount of pLS139 converted to 

products was approximately half of that converted in the absence 

of competitor (figure5.13) , This is expected if both species of 

DNA titrate out all of the available resolvase equally, A similar
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F I G U R E  5.13 Effect of adding competitor DNA to pLSl39 
resolution reactions •

The samples have been restricted with Hindlll to clearly 

distinguish products from substrate. Hindlll has one site on 

pLS139 and one site on pACYC184::Tn3 . The resolution products 
frcan pLS139 consist of 4.32 and 0.65Kb circles; the smaller of 
these carries the Hzndlll restriction site. Thus restriction of 
reacted pLS139 with Hindlll yields a 4.32Kb circle and 657bp 
linear fragment.

0.8% agarose gel run at 25V (resolvase prep. 3)„
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FIGURE 5.14 Effect of competitor DNA on pLS139 resolution 

When pACYC184 (no Tes sites) is incubated with resolvase prior to 

addition of pLS139, very little conversion of pLS139 to products 

is observed. If the competitor contains a single Tes site (pACYC 

184 ::Tn3), then no resolution of pLS139 is detectable.

0.8% agarose gel run at 25V (resolvase prep.3).
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e>qperiment was performed, but this time pLS139 was not added to 

the reaction mix until 15min after pACYC184::Tn3 had been added.

Over the same time course, starting after addition of pLS139, 

there was no apparent conversion of substrate to products (figure

5.14). This indicated that pACYC184::Tn3 had titrated out all of

the resolvase leaving none available for pLS139 resolution, suggesting 

that once bound to a DNA molecule resolvase remains firmly attached 

and is unavailable to additional DNA added after this point. To 

test the specificity of resolvase binding the above experiment 

was repeated using pACYC184 as the competitor DNA. The reaction 

mixture was incubated for 15min before the addition of pLS139, 

then the kinetics followed as previously. It can be seen that 

only a small proportion of pLS139 is converted to products (figure

5.14).This may be due to non-specific binding of resolvase to pACYC184, 

but as this plasmid contains no res sites the binding may not be

as tight and therefore some resolvase will dissociate from pACYC184 

to bind specifically to pLS139.

One of the problems in trying to determine whether resolvase 

is catalytic is the fact that once resolution has occurred, the 

protein probably remains tightly bound to the res sites present 

on the product molecules. When tightly bound at res the protein 

does not readily dissociate, thus it is difficult to tell whether 

it can then mediate a second resolution event. The protein may 

be considered to be catalytic in that the active site is probably 

not irreversibly altered during the reaction, but may also be 

considered to be stoichiometric in that once resolution is completed 

resolvase remains firmly bound at res and is therefore not 

available for further resolution. In a natural situation if the 

transposon should transpose again, then resolvase is already sitting
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on one res site ready to resolve the new cointegrate.

It was noticed that throughout prolonged time course reactions 

several new bands appeared on gels; this was more noticable with 

resolvase preparation 1. The band corresponding to linear substrate 

molecules increases in intensity, indicative of nicking throughout 

the reaction. This nicking does not appear to be specific as 

subsequent restriction would otherwise yield products of 

characteristic size. Non-specific nicking would presumably cause 

a reduction in the amount of s/c substrate available for resolution. 

Reaction products, which may originally be s/c catenates, on 

nicking would produce a variety of products, eg. one s/c linked 

to one o/c, two linked o/c and free reaction products, s/c and o/c. 

These forms are probably represented by the bands of new mobility 

which are formed and increase in intensity, during the reaction 

(see figure 5.12) . These molecules have not been examined further 

though it would be possible to extract the DNA from individual 

bands to examine by electron microscopy. The nicking activity 

observed with resolvase preparation 1 could be due to a minor 

protein contaminant or due to resolvase itself acting with altered 

specificity.

A commonly used assay for detecting recombination inter­

mediates is electron microscopy. This provides a direct visualization 

of participating DNA molecules (Nash et aZ.^1977; Potter and 

Dressier, 1979; Shibata et gZ-. 1979; Cunningham et aZ. j 1980;

Kolodner,1980; Fishel et aZ.^1981; Mizuuchi et aZ,jl982). The 

band migrating slightly ahead of s/c pLS134 was eluted from a 

gel, by the electrophoresis method, and used for electron micro­

scopy. Although this DNA had t̂ een exposed to ethidium bromide
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FIGURE 5,15 Electron micrographs of reacted pLS134 DNA

(a) Relaxed substrate molecule

(b)-(e) Apparent catenated molecules, with graphic interpretation 
(photographed at 20,000 X magnification)
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staining and u.Vo light most of the molecules on grids were still 

s/c and therefore difficult to distinguish. Some molecules were, 

however, relaxed and appeared to be catenated; examples of 

electron micrographs are shown (figure 5.15).

7. Topological considerations

It has been reported that a s/c substrate is an absolute 

requirement for yô resolvase activity 'in vitro (Reed, 1981b) .

The lambda Int system also works with greatest efficiency on 

a s/c substrate, though under conditions of low ionic strength, 

some reaction is observed using a relaxed substrate (Mizuuchi and 

Nash ^1976; Kikuchi and Nash,1979a;Pollock and Abremski,1979).

The data presented in this chapter is consistent with these 

findings. When catenated products are formed there is a 

corresponding decrease in the s/c substrate band; there appears 

to be no decrease in the o/c band (figure 5,16), It seems unlikely 

that s/c are converted to o/c/then to s/c catenated products, 

therefore a s/c substrate would appear to be a requirement for 

resolution. A preparation of purified o/c molecules was used 

•for 'in V'itro resolution reactions. There was no detectable 

conversion to products, which would presumably be visible on 

gels as free reaction products or simple catenates. The addition 

of ATP could not compensate for the lack of superhelicity (data 

not shown). As the reaction is dependent on superhelicity and 

requires no external energy source, it is tempting to speculate 

that the energy contained within supercoiling is used in some 

way to "drive" the reaction.

When catenated reaction products are cleaved with an enzyme 

which cuts only one of -the two circles, the other remains in a
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FIGURE 5.16 Time course of pLS138 resolution

The s/c substrate band decreases throughout the reaction with 
a corresponding increase in the band migrating ahead of the s/c 
substrate, presumably this is due to formation of s/c catenated 
products. There is no appaernt change in the o/c substrate band. 
0.8% agarose gel run at 25V, resolvase prep.3.
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highly supercoiled form. Some o/c are present and increase through­

out the reaction, presumably due to nicking activity, but when 

initially formed the products maintain about 70% s/c. (see figures 

5.12 and 5.13), This suggests that the recombination reaction 

is very conservative with little loss of superhelicity. During 

the cleavage and ligation of strands to new partners the strands 

must be held in some way, presumably by proteins, so that free 

rotation of strands can not occur. Experiments by Reed and 

Grindley(1981) suggest that yô resolvase makes a double stranded 

cleavage at res sites and attaches covalently to the recessed 

5' terminus, 'Resolvase may act in a manner analagous to type II 

topoisomerases: simultaneous cleavage of both strands at ves 

sites, conservation of the phosphodiester bond energy by covalently 

bonding to the protein followed by ligation of the strands to 

new partners. This would result in no significant loss of super­

helicity, though the strand rotation required to align strands 

for ligation to new partners may result in a slight decrease in 

superhelicity, maybe changing the linking number by one.

During the ligation step one might expect that the original 

DNA strands could be rejoined(maybe following strand passage as 

for topoisomerases) or ligated to new partners (resolution) depending 

on alignment of the strands and specificity of the protein. If 

resolvase could mediate the strand passage event, like gyrase, 

then one would expect that it could change the linking number 

of a particular substrate (see Gellert,1981 for a review of DNA 

topoisomerases). Reed and Grindley have been unable to detect 

any topoisomerase activity associated with y6 resolvase (pers. 

comm.). However the three independent TnS resolvase preparations 

exhibit topoisomerase activity to varying degrees.This activity
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is visualized on agarose gels by the formation of a ladder of 

topoisomers between the s/c and o/c substrate DNA bands (figure 

5.17). This property of resolvase has not been characterized as 

it appears to be very inconsistent and may depend on critical 

-ionic conditions in the reaction. Of course, the possibility 

cannot be ruled out that it could be due to minor protein 

contaminants present in resolvase preparations rather than 

intrinsic to resolvase itself. The harsh conditions to which the 

protein is exposed during it s purification may affect the specificity 

of the protein in some way. The reaction conditions required 

for resolvase topoisomerase activity appear to mirror the 

conditions for resolution over the same pH range and ionic strength.

On cleavage with EcoBX or U'lnd'LTl the circular products of pLS134 

resolution were also present as a mixture of topoisomers. This 

suggested that resolution works on molecules which contain 

varying degrees of superhelicity, ie.they do not have to be 

highly supercoiled, or that the topoisomerase activity works on 

the products which have only one res site (figure 5.17B).

One would expect resolvase topoisomerase activity to change 

the linking number of a particular topoisomer by two steps. As 

a naturally derived s/c DNA preparation contains a mixture of 

topoisomers , the resolvase topoisomerase always appears to 

change the linking number of substrates in steps of one (see 

figure 5.17). To determine the lirking number change induced by 

resolvase one would have to prepare DNA of a unique linking 

number. Another feature expected of resolvase topoisomerase is 

specificity to molecules containing res sites. Reed and Grindley 

(1981) have shown that resolvase cleavage only occurs on molecules 

with directly repeated copies of res . One would therefore expect
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FIGURE 5.17A Comparison between resolvase preparation 1 and 2 

shewing topoisomerase activity
This gel compares the resolution and topoisomerase activities of 
preps. 1 and 2. It can be clearly seen that prep.l exhibits pre­
dominantly resolution activity, indicated by the formation of 
catenates. Resolvase prep,2 shows greatest topoisomerase activity; 
some of the topoisomers produced may be catenated products, but as 

these sanples have not been restricted these are indistinguishable 

frcxn substrate molecules.

0.8% agarose gel run at 25V.
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FIGURE 5.17B Topoisomerase activity exhibited by resolvase 

A time course reaction of pLS134 with resolvase prep.2. It can 

be seen that a range of topoisomers are formed very quickly; 

these do not change significantly throughout the time course.

The restricted samples indicate that reaction products are present 

in various topoisomeric forms also.

0.8% agarose gel run at 25V.
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the topoisomerase activity to be exerted only on such substrates. 

However, the topoisomerase activity,which was detected with Tn3 

resolvase/ appeared to sometimes occur on molecules with no res 

sites.

The lambda Int protein has been shown to exhibit topo­

isomerase activity (Kikuchi and Nash, 1979b). This activity has been 

characterized and shown to change the linking number of a purified 

topoisomer in steps of one. The surprising feature of the reaction 

is that it is not specific to att sites, even though purified 

Int has been shown to bind specifically to att sites in DNA 
protection experiments (Mizuuchi et aZ.jl981). Int has been 
classified as a type I topoisomerase as it appears to cause 

single stranded cleavage/ligation during topoisomerization 

(Wang et aZ.,1980). The observed single stranded cleavage/ 

ligation activity of Int has been a major force in formulating 

a model for the recombination mechanism (Nash et aZ.,1981).

8, Catenation - an intrinsic property of resolvase?

It appears that catenated plasmids are the major reaction 

products. The appearance of free reaction products, only observed 

after prolonged incubation with resolvase preparation 1, is 

presumably due to non-specific nicking activity. Is catenation 

a consequence of the reaction mechanism? If the formation of 

catenated products is due to tangling of different parts of the 

s/c substrate circle prior to strand exchange, then one would 

expect that relaxed circles could be converted to either free 

products or catenates (Abreraski and Nash,1980) , As resolvase does 

not appear to resolve relaxed DNA this approach to the 

problem has been fruitless. However, one might expect that reducing
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FIGURE 5,18 Catenate formation by pLS134, pLS139 and pLS138 

It can be clearly seen that the band migrating slightly ahead 
of s/c substrate is distinguishable from free product molecules 

for all three substrates,
0,8% agarose gel run at 25V, Samples incubated with resolvase prep, 
3 for 30min,
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the length of DNA between res sites would decrease the possibility 
of supercoils between res sites and therefore the proportion 
of catenated products. This hypothesis has been tested by com­

paring the formation of catenates from substrates pLS134, pLS139 

and pLS138, which have 2Kb, 657bp and 282bp separating res sites 
respectively (figure 5.18). The results clearly show that all 

three substrates are converted to catenated products; no free 

reaction products are detectable.

9o Requirement for magnesium ions 
++■If Mg is omitted from the reaction mixture then no 

resolution is detected. It has been shown that yg resolvase 

cleaves at res sites in the absence of Mg , but only when two 

res sites are directly repeated within a molecule (Reed and 

Grindley,1981). This has allowed alignment of the precise cleavage 

point within the 19bp crossover region. As hybrid sites have been 

generated in vivo between TnS and yô it is expected that the 

cleavage points by both proteins are the same (Kostriken et al, y 

1981; Reed,1981a).

Incubation of plasmids pLS134 and pLS139 with resolvase,

in the absence of Mg , for 16hr yielded new bands which had not
++been previously observed in the presence of Mg . These bands 

were only detected using resolvase preparation 3 ; the other 

samples did not show this activity (figure 5.19). Substrate 

molecules containing only one site or with two inverted res

sites were not susceptible to cleavage. This suggests that site- 

specific cleavage at res is intermediate in the reaction. 
Sequencing of the fragments produced should reveal the exact 

cleavage point. Reed and Grindley have evidence that the protein
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FIGURE 5.19 Incubation of substrates in the absence of 

With resolvase prep,3 new bands are formed when substrates pLS134 

and pLS139 are incubated for 16hr in the absence of Mg , The 
substrate with inverted res sites, pLS140, is unaffected under 
the se condi ti ons.
0.8% agarose gel run at lOOV,
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attaches covalently to the exposed 5' terminus of the staggered 

cut (1981) . It would be interesting to determine which amino 

acid forms the covalent bond to the DNA backbone. DNA gyrase 

forms a phosphodiester bond between a tyrosine residue on subunit 

gyrA and the cleaved DNA 5' terminus (Sugino et aZ. 1980; Tse 

et aZ,jl980). There are two tyrosine residues present in the 

resolvase molecule, located within each end of the coding region. 

The most highly conserved region between the yô and Tn3 resolvase 

proteins is at the amino terminus; due to the observed similarities 

between the proteins one might expect that the active site would 

be within the most highly conserved region. It is tempting to 

speculate that the tyrosine residue at the amino terminus may 

be part of the active site and participate in formation of a 

pha^hodiester bond with DNA at the res site.

10. Requirement for res sites in ois for resolvase activity 

The substrates used throughout this chapter contain two 

res sites directly repeated within the same molecule; resolvase 
works very efficiently on this arrangement. The plasmids pLS135 

and pPAK329 contain only one res site; one would expect that 
if resolvase could join these molecules by recombination across 

res sites then the products of the reaction would be dimers, 

or catenates if these were then immediately resolved. Using 

various reaction conditions no recombination activity could 

be detected (data not shown) . It has been shown that addition 

of up to 5mM spermidine may assist catenation by topoisomerases 

due to aggregation of DNA molecules (Krasnow and Cozzarelli,

1982). The addition of spermidine to reactions containing 

pLS135 or pPAK329 led to no detectable formation of dimers 

or catenates. The apparent lack of joining activity by resolvase
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is in direct contrast to the lambda system in which the major 

activity of Int is to mediate integration by joining replicons.

(see figure 5.20). This probably reflects different mechanisms 

involved in these systems. One of these differences may be in 

the way the two recognition sites are aligned for the recombination 

event. The two sites may be brought into close proximity by random 

movement of the supercoiled substrate molecule. If protein molecules 

are attached to both of the recombination sites then one may 

imagine that protein to protein interaction may stabilize 

the two sites in a position close enough together for recombination 

to occur (Sherratt et aZ._, 1981b). Such a model would satis­

factorily explain the data obtained from the Int system, but is 

incompatible with the observations made with resolvase. Due to 

the constraints imposed by DNA structure one would expect that 

reducing the length of DNA between res sites would decrease the 

chances of random alignment of sites, thus reducing the efficiency 

of the reaction. The plasmids, which had been constructed to 

study catenation, pLS134, pLS139 and pLS138 have 2Kb, 657bp 

and 282bp separating ves sites respectively. While studying 

resolution of these plasmids over a short time course, it was 

observed that pLS138 was converted to catenated products most 

rapidly (figure 5.21). These results suggest that resolvase 

has an active mechanism for seeking ves sites within a molecule 

rather than relying on random alignment. This hypothesis is 

discussed in detail in the following chapter.
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FIGURE 5o21 A comparison of the efficiency of catenate formation 

between pLS134 and pLS138

A. Time course of pLS134 resolution

Within the first 15min of the reaction less than 10% of pLS134 

substrate is converted into catenated products. Over the following 

15min conversion to catenates is almost complete,

B. Time course of pLS138 resolution

For pLS138 more than 50% of s/c substrate has been converted to 

catenates within 15min; by 30min conversion is almost complete. 

Both substrates reach coup lete conversion at about 30min, but for 

pLS138 the products appear much faster initially, within Imin,

This suggests that an active mechanism is operating to bring res 

sites together for recombination, favouring sites close together.
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Discussion

The data presented in this chapter suggests that the only 

requirements for resolution in V'Ctro are a s/c substrate, resol vase, 

buffer, Mg^^ and NaCl. No host factors appear to be required for 

the reactiono The absence of high energy cofactors and triphqphates 

indicates that there is no concomitant DNA synthesis during the 

recombination event or requirement for an external energy supply.

Evidence provided by the formation of catenated products suggests 

that the reaction is reciprocal, i.e, all strands broken during 

the recombination event are rejoined to produce continuous DNA 

helices.

The formation of catenates is an interesting feature of the 

reaction; it has also been shown for other "in vitro si te-specific 

recombination systems (Nash et at.jl971} Reed,1981b), Nash has 
proposed that recombination between specific sites on a s/c 

molecule always results in catenation (see figure 5.22). This 

is due merely to continual DNA writhing such that the DNA between 

sites is always s/c. If, however, the substrate is relaxed, then 

the reaction products should be a mixture of catenates and unlinked 

circles in roughly equal proportions, Int works at a low, but 

detectable,frequency on relaxed substrates thus allowing a comparison 

between s/c and o/c substrates on formation of catenates to' be made (Pollock 

and Abremski,1979; Pollock and Nash,1980), Even using the relaxed 

substrate 85% of reaction products are catenated, Nash suggests 

that this is due to the low degree of writhing'in a relaxed molecule 

and concludes that catenation is not an intrinsic property of Int.

Although I have been unable to detect recombination using a



A relaxed substrate

or

B supercoiled substrate

or



Ill

FIGURE 5.22 Comparison of catenate formation from relaxed 

and supercoiled substrates

If the two Tes sites are brought into alignment by a random 

process, then the superhelicity of the substrate should determine 

whether the products are catenated or unlinked circles.

A. When the substrate is relaxed one twist is enforced between 

the Tes sites for alignment of directly repeated Tes sites. 

Depending on how the strands are rotated to join to their new 

partners this results in either simple catenates or unlinked 

circles.

B. When the substrate is s/c there are several twists between 

Tes sites; this substrate always results in catenated products. 

Again, depending on strand rotation, these may gain or lose a 

twist. In practise the system probably results in a loss of 

energy, ie. to a less s/c state.
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relaxed substrate, the approach used to this problem has been to 

construct substrates with varying lengths of ESNA between res sites* 

If formation of catenates is due merely to superhelicity between 

res sites then,by shortening the length of DNA between sites the 
chances of this region being supercoiled are reduced, therefore 

the ratio of catenates to unlinked products should decrease 

correspondingly. The substrate pLS138 has only 282bp between res 

sites. Working on the assumption that pBR322 has about 16 super­

helical turns, then there should be one twist every 270bp. As 

DNA is constantly writhing one would expect that the region 

separating res sites on pLS138 would lack supertwists some of 

the time. One would therefore predict that free reaction products 

would be formed at a detectable frequency. It has been clearly 

demonstrated that unlinked product circles are not detected using 

pLS138 as the substrate in a resolution reaction (see figures 

5.16 and 5.18). This suggests that catenation is an intrinsic 

property of resolvase and may be a direct consequence of the 

mechanism used to seek res sites. Free reaction products have 
been detected using resolvase prep.l after long (more than 3hr) 

incubation times; this is presumably due to the high degree of 

non-specific nicking activity associated with this preparation.

During the resolution reaction there appears to be no 

significant loss of superhelicity; the products retain 70-80% 

superhelicity. This suggests that the reaction is very conservative 

There may be a slight daxease in superhelicity during the reaction 

-as some strand rotation is required to bring new partner strands 

into alignment for the ligation step (see figure 5.22). This may 

result in the loss of one superhelical twist, effectively reducing 

the linking number by one. This is difficult to measure as the
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substrate to product conversion involves resolution of one plasmid 

into two linked plasmids. One approach to this problem, currently 

being investigated by Nash using Int (pers.comm.), is to look at 

recombination between inverted repeats. For this reaction the substrate 

and product are both plasmids of the same size. Theoretically it 

should be possible to observe a change in linking number by reacting 

a purified topoisomer with the recombination protein and analyzing 

the products by gel electrophoresis. In practise this has proved 

more difficult as Int appears always to knot the intervening DNA when 

using a s/c substrate. As the reaction on o/c inverted substrates 

is barely detectable, Nash has tried reducing the length of DNA 

between att sites to decrease the possibility of random "flopping" 
of DNA over itself which may be the cause of knotting. However 

even when the length of DNA is reduced to 200bp, simple trefoil 

knots are always formed. This suggests that knotting may be a 

consequence of the reaction mechanism. By comparing the linking 

number of purified,artificially constructed,knotted substrates 

with the reaction products from Int-mediated recombination between 

inverted repeats on specific substrates, Nash has shown that there 

is a change of + 2 in the linking humber following recombination 

ie,a decrease in negative superhelicity (pers.comm,). We have 

been unable to reproduce similar experiments with resolvase as 

there is no detectable recombination between inverted res sites 
■in V'Ctro and is very low tn V'ivo (Chaing and Clowes, 1979; Dyson, 
pers.comm.)

There is some evidence that resolvase exhibits topoisomerase 

activity, reflected in the ability of most preparations to produce 

a ladder of topoisomeric forms. This property could conceivably 

be due to minor protein contaminants or, if due to resolvase
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itself, a modification of the protein's specificity. It may be of 

significance that the protein preparation showing highest topo­

isomerase activity was left in 7M urea for several days during it s 

purification; this may have affected the specificity of the protein 

in some way. When analysed by SDS-PAGE this preparation appears to 

be about 95% pure. One of the puzzling features of the topoisomerase 

activity is tlie observation that it is not specific to molecules 

containing res sites; again this could be due to altered specificity 

of the protein.

It has recently been shown that both type I and type II 

topoisomerases can catenate and decatenate DNA circles (Liu et alo, 

1980; Kreuzer and Cozzarelli,1980; Brown and Cozzarelli,1981;

Krasnow and Cozzarelli,1982). Type I enzymes require a nick in 

one of the participating duplex molecules, whereas type II enzymes 

can catenate s/c molecules. This reflects their proposed reaction 

mechanisms which involve strand passage through a single-stranded 

or double-stranded break in the DNA backbone respectively. One 

might expect that resolvase could decatenate reaction products 

if it is indeed a topoisomerase. However as the reaction products 

are s/c this would require type II topoisomerase activity for 

decatenation. Although double stranded cleavage/ligation is thought 

to occur during resolution this does not necessarily mean that 

the topoisomerase activity is also of this nature (Reed and Grindley, 

1981). It has been demonstrated that catenation/decatenation 

reactions rely on crucial ionic conditions, and the polyamine, 

spermidine, is usually required '(Krasnow and Cozzarelli, 1982) 

Cozzarelli has recently shown that resolvase exhibits type I topo­

isomerase activity (pers.comm.);if this observation is correct 

it would adequately explain why s/c catenated products are not
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decatenated. The proposed reaction mechanism for topoisomerases 

involves single or double-stranded DNA cleavage, conservation of 

the phasphodiester bond energy by covalent attachment of the exposed 

5’ terminus to a tyrosine residue on the protein, then ligation 

of the DNA strands following passage of an unbroken strand (s) 

through the DNA "gate" (Morrison et aZ-ojl980; Tse et aZ.,1980). 

Enzymes which mediate a double strand breakage/reunion event have 

the potential to act as topoi some rases; likewise, topoi somera ses 

have the potential to act as recombination enzymes. In fact there 

is evidence that DNA gyrase may be implicated in illegitimate 

recombination events (Ikeda et #%.,1981)

It has been difficult to determine whether resolvase is a - 

catalytic or stoichiometric protein. Nash and Reed have concluded 

that Int and resolvase are stoichiometric based on the assumption 

that a high protein:DNA ratio is indicative of a non-catalytic 

protein (Nash and Robertson,1981; Reed,1981b), The results presented 

in section 6, suggest that addition of competitor DNA lacking res 

sites effectively titrates out resolvase; a competitive molecule 

with one res site is even more efficient and can titrate out all 

of the available resolvase (see figures 5.13 and 5.14). This suggests 

that resolvase binds specifically and non-specifically to any DNA 

which is added to a reaction mix. Once bound to a DNA molecule 

it remains associated with it either tightly at res (normal repression 
conditions), or more loosely when bound non-specifically (while 

searching for a res site?), It seems fairly unlikely that the active 

-site of resolvase would be irreversibly altered by resolution, and 

one would therefore expect the protein to be catalytic. If, however, 

following resolution the protein remains tightly bound at ■ res 

and does not readily dissociate, then it would not be available
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to further substrate molecules. This is reflected in the high 

protein:DNA ratio observed. Although resolvase has been shown to 

associate with any DNA molecule, whether it contrains res sites 

or not, one would expect the protein to bind specifically to res 

sites to mediate resolution and repression. To investigate the 

specific binding properties of resolvase in detail I decided to 

use the purified protein with small rgs-containing DNA fragments 

in a series of DNA footprinting experiments.



CHAPTER 6

IDENTIFICATION OF THE DNA BINDING SITES FOR RESOLVASE
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Introduction

The specific binding of proteins to regions of DNA may be 

analyzed by random cleavage with non-specific nucleases. This 

technique has been used extensively to probe nucleosome structure, 

the Zao repressor binding site and DNA-DNA gyrase interactions. 

Digestion of chromatin with micrococcal nuclease yields fragments 

of a regular size, which appear to be multiples of about 200bp. 

Continued digestion results in fragments of 146bp; these are known 

as core particles and are resistant to further digestion by micro­

coccal nuclease (Felsenfeld,1978). Close examination of the core 

particles using other nucleases, such as DNase I, has revealed 

that the DNA within the core is not completely protected from 

nuclease attack. For each nuclease used,a characteristic ladder 

pattern of fragments is produced, with each band spaced at roughly 

lObp intervals, equivalent to the distance between each turn of 

the helix (Noll,1974). Fine structure analysis using DNase I on 

DNA fragments of defined length has shown that the sensitive sites 

are staggered by 2bp between complementary strands (Lutter,1977; 

1979) . With DNase II and StaphytoQOOoaZ nuclease the staggers 

produced are 4bp and 2bp respectively (Sollner-Webb and Felsenfeld, 

1977; Sollner-Webb et #%.jl978). Liu and Wang (1978) have shown 

that a similar cleavage pattern is produced when DNA is bound to 

a solid surface, such as calcium phosphate (see figure 6.1).

These results suggested that the nucleosomal DNA is bound 

to the histone proteins such that only the outermost part of the 

helix is accessible to nuclease attack (Lutter,1977). This has led 

to the formulation of a model in which 146bp of DNA are wrapped 

around the outside of a central histone core (figure 6.2),
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FIGURE 6.1 A model to demonstrate the nuclease cleavage sites 

on B form double helix bound to a solid surface 

It has been proposed that nucleases have a limited angle of 

approach to the DNA helix, when bound on one side to a solid 

surface such as protein or calcium phosphate (Lutter,1977; Liu 

and Wang,1978)o The cleavage sites for DNase I and DNase II are 

staggered by 2bp and 4bp, respectively, on complementary strands. 

The distance of lObp between each turn of the helix (as shown in 

the diagram)is based on measurements of fragments produced 

when core particles are cleaved With nucleases; this value is 

less than observed when DNA is bound to a solid plane, lO.6bp 

(Liu and Wang,1978; Rhodes and Klug,1980)
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FIGURE 6.2 Structure of the nucleosome core particle

A. This diagram illustrates the dimensions of the DNA helix 

coil in the core particle. The overall measurements (in angstrom 

units) are based on electron microscopy. X-ray crystallogr^hy 

and nuclease sensitivity data.

B. Model of how the DNA coil is wrapped around the histone core.
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The histone core is comprised of four dimeric subunits: E2A^, 

and ^1 is thought to be involved in separating

individual nucleosome particles (Kornberg and Klug,1981). On the 

assumption that H2-H4 form compact globular proteins, then the core 

particles should have a diameter of about 80 angstroms. With DNA 

wrapped around the outside of the histones the diameter of each 

core particle should be about llO angstroms (see figure 6.2) o 

These predictions comply with observed data from electron micro­

graphs of chromatin and X-ray crystallography.

The technique of DNA "footprinting" to define specific sequences 

which interact with known regulatory or DNA binding proteins was 

first published by Gains and Schmidt in 1978. The idea behind the 

experiments is very simple; a protein which binds tightly to DNA 

then protects that region of DNA from subsequent attack by nucleases. 

As well as identifying the specific sequences to which proteins 

bind, this technique may also indicate some of the topological 

features of the interaction; this has been clearly shown for 

nucleosome structure and, more recently, for the DNA-DNA gyrase 

interaction. When present in limiting amounts DNA gyrase binds at 

two specific regions on plasmid ColEl, named sites a and b. Foot­

printing of fragments containing these sites reveals a region of 

145-155bp of DNA protected from DNase I cleavage. This protected 

region has been divided into a central core region at which the 

breakage/reunion reaction mediated by DNA gyrase takes place, and 

two flanking arms. The core sequence is completely protected from 

DNase I, but the flanking arms show a periodicity in nuclease 

sensitive sites, similar to that observed for nucleosomes (Liu 

and Wang,1978; Kirkegaard and Wang,1981; Morrison and Cozzarelli, 

1981) . This data suggests that the flanking sequences may be
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wrapped around the outside of the DNA gyrase holoenzyme. It has 

been proposed that the DNA is always wrapped in the same direction, 

inducing polarity into the interaction (Liu and Wang,1978; Morrison 

and Cozzarelli,1981).

The precise extent of the DNA sequences required for resolvase 

mediated site-specific recombination has not been determined, A 

357bp Sau^AZ fragment spanning the tnpA-tnpR intercistronic region 
is known to contain sufficient sequence for resolution (Reed,1981a, 

Chapter 5) , During the purification of resolvase the protein binds 

non-specifically to all DNA, suggesting that at high concentrations, 

represented in the overproducer strain, it binds to any DNA,

However, under normal ï-n V'Cvo conditions, and in the t-n V'Ctro system, 
the amounts of resolvase present are far less. Does resolvase bind 

specifically within the res region?

To analyze the specific sequences, if any, that resolvase 

binds to, the purified protein has been used in a series of DNA 

footprinting experiments. The experiments described in this chapter 

e^glain the strategies used to isolate and footprint labelled res- 

containing fragments. This data, in combination with results 

obtained from 'In V'Ctro and 'in V'ivo resolution , has prompted the 
formulation of a model for resolvase mediated site-specific 

recombination.
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FIGURE 6.3 Strategy for footprinting the rgs-containing Sau3hl

restriction fragment,
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Results

1. Strategy for isolation of res containing fragments

. The basic substrate for both DNA footprinting and sequencing

techniques is a DNA fragment of defined length, usually less than
32500bp, with the terminus of one strand labelled with P„ This 

may be achieved by labelling both 3' or 5' ends of a unique 

fragment,then separating the strands by denaturation/electrophoresis, 

or by cutting with a second restriction enzyme which cleaves the 

fragment to produce two fragments each with one labelled terminus. 

Provided that the second enzyme cuts asymmetrically within the 

fragment, these can be separated by electrophoresis followed by 

purification of the terminally labelled fragment from the gel 

material (Maxam and Gilbert,1977;1980). If the unique, terminally 

labelled strand is cleaved randomly along it s length, either in­

duced by base-specific chemicals or by a non-specific nuclease, 

then a series of fragments of varying length should be produced.

Under conditions which cut each strand once the series of fragments 

produced should have one common (labelled) end and the other ;Of 

varying length. As long as the cleavage is random along it's length 

the nest of fragments produced should differ by one bp.and when 

resolved on a sequencing gel should produce a ladder of bands, 

each rung differing from it s neighbours by one nucleotide. When 

a protein binds to a specific DNA sequence that region is protected 

from subsequent nuclease attack. If the protein bound fragment is 

subjected to nuclease cleavage prior to electrophoresis a gap is 

observed in the ladder of fragments where the nuclease has been 

unable to cleave. This gap identifies the region of DNA bound by 

the protein (figure 6.3).
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FIGURE 6.4 Restriction analysis of RSF1365

Plasmid RSF1365 was digested with 5aw3AI or Sa%3AI/P#wII. The 

sizes of fragments produced were determined by comparison with 

Saw3AI digested pBR322 DNA, for which the fragment sizes are 

known (Sutcliffe,1978%.
5% polyacrylamide gel run at 30mA.
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The conplete nucleotide sequence of Tn3 has been determined 

(Heffron et czZ.ojl979) , and from this a detailed restriction map 

predicted. The site at which recombination takes place has been 

defined within a 357bp Sau3KL fragment (see figure 4.1; Reed,1981a)

This fragment contains sufficient sequence for resolution tn X>tx>o 

and tn vttTO, and also contains the promoters for tnpA and tnpR 
(Chou et aZ-, 1979b) . There is a single PuwH site within this 

fragment located 62bp from the lefthand end (on the Tn3 map) . As 

Sau3Al is a 4bp recognition enzyme it has many sites within Tn3.
To isolate the 357bp fragment a small deletion derivative of TnSj

RSF1365, was used (map shown in figure 3.3) ; this provides a series

of fragments on 5aw3AI digestion which may be clearly distinguished

by electrophoresis. When doubly digested with Saw3AI and Pvull, the 357bp
pes-containing fragment is cleaved to produce two fragments of 295

and 62bp; there are also bands of 430 and 160bp produced by PvuTl

as there is a second Pvull site located in the tnpA gene (figure

6.4) . The fragments produced from RSF1365 were sized in reference

to a Saw3AI digest of pBR322, for which the sizes are known (Sutcliffe,

1978) . ;

2. Determination of resolvase binding sites on the 3' labelled 

strand

The restriction enzyme Saw3AI produces .a 4bp staggered cut 

with a S' extension; the resulting recessed 3' hydroxyl provides 

a suitable substrate for DNA replication by DNA polymerase I :

G A T C -    3

_ _ _ - . ( 2 T A G l  — — — — 5 '

Labelling the termini of the 357bp Saw3AI fragment was achieved 
32

by addition of [a Pj-GTP and DNA polymerase I (Klenow fragment) to
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a total RSF1365 digest. The labelled DNA was digested with PvuTL 

followed by electrophoresis through a 5% acrylamide gel to isolate 

the 292bp end-labelled fragment. The DNA band was excised from the 

gel and the fragment eluted by the crush-soak-precipitate method.

The purified fragment was subsequently used for footprinting and 

sequencing reactions. For each reaction sufficient labelled fragment 

was added to produce about 50 cps on the minimonitor; this amount 

of radioactivity was sufficient for an exposure time of only 15hr 

(under optimal conditions) to visualize bands on an autoradiograph.

The enzyme DNase I works under most conditions, whereas 

resolvase has specified reaction conditions. For this reason all 

DNase I digestions, plus or minus resolvase, were performed using 

conditions optimal for 'in vttTO resolution. To determine the enzyme 

concentration required to give a ladder of bands representing the 

entire 295bp fragment, DNase I solutions of varying concentration 

were used to digest the labelled fragment. To the standard reaction 

conditions (20mM Tris-HCl,pH 8.0, lOmM MgCl^, ImM DTT, 50mM NaCl) 

were added 0.4]ig of X DNA, as competitor for DNase I, and about 

30ng of labelled DNA fragment in a total volume of 50]Jl. Reactions 

were incubated for 20min at 30°C before addition of varying amounts 

of DNase I (lO-lOOng). The DNase I digests were performed for one' 

min, then stopped by the addition of 12.5yl of 3M NH^c/0.25M EDTA. 

DNA was precipitated from the solution by addition of two volumes 

of ethanol, left at -20^C for 20min then spun in the Eppendorf 

microfuge to pellet the DNA, The pellet was washed twice, dried, 

then resuspended in 6yl of formamide containing marker dyes. This 

solution was heated to 90^C to separate the DNA strands, then quick 

chilled on ice prior to gel loading. 3yl of each sample were loaded 

onto an 8% polyacrylamide/8.3M urea sequencing gel to analyze the
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ladder of DNA fragments produced? the gel was run until the bromo-* 

phenol blue dye marker was just above the bottom of the gel. The gel 

was exposed to preflashed X-OMAT X-ray film, in the presence of an 

intensifying screen, at -70°C, for 18hr. This experiment indicated 

the optimal DNase I concentration required to produce a ladder of 

bands representative of the entire 295bp fragment; for subsequent 

experiments 80ng of DNase I were used.

Using the conditions described above, varying amounts of resolvase 

were added to reactions prior to DNase I digestion. Reactions were 

analyzed by electrophoresis through 8% polyacrylamide sequencing 

gels, then autoradiographed for 19hr (figure 6.5), Clearly resolvase 

binds to specific sequences, indicated by the gaps in the ladder 

of fragments produced by DNase I. The entire protected region extends 

over approximately 120bp? within this region there is a short, 

unprotected sequence. The two separate regions have been arbitrarily 

designated site I and site II. It is noticeable that within the 

long protected site that there are sites of enhanced sensitivity 

to DNase I, some of which are not recognized in the absence of 

resolvase. As the concentration of resolvase in reactions is in­

creased there appears to be an intermediate point which shows only 

partial protection (figure 6.5, track C). With 0.2yg of resolvase 

only the central part of the region, at the beginning of site II, 

appears to be protected; the flanking sequences are protected when 

the resolvase concentration is increased to O.3yg. This suggests 

that the central sequence may be the most important during the 

initial recognition by the protein and is the first site to be 

protein bound.

To assign nucleotide positions to the sequences protected
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FIGURE 6.5 Determination of resolvase binding to the 3' end- 

labelled Sau3Kl fragment

A no resolvase 

B + O.lyg resolvase 

C + 0,2lig resolvase 

D + 0.3yg resolvase 

E + Oo4]jg resolvase 

F + 0.5yg resolvase

Resolvase binds at two distinct sites within this fragment, 

these are separated by about 20bp of unprotected DNA. For all 

DNA protection experiments 80ng of DNase I were added after 

incubation of DNA with the specified resolvase concentration 

C resolvase preparation 1 was used throughout).

8% polyacrylamide/8.3M urea gel run at 40W.
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by resolvase it was necessary to repeat these experiments and run them 

alongside chemical cleavage reactions of the labelled fragment, A 

purine specific cleavage reaction was performed on the labelled 

strand by the Maxam and Gilbert sequencing technique (1977;1980),

As the complete sequence of Tn3 is known, it was considered un­

necessary to use all of the base specific cleavage reactions; the 

purine specific cleavage track provides sufficient information 

to assign sequence positions. The addition of a sequencing track 

has allowed determination of the DNA sequences of the sites 

protected by resolvase (figures 6.6 and 6.8). The region at which the 

crossover occurs,and for yô resolvase site-specific cleavage,lies 

within site I (Kostriken et aZ,jl981; Reed,1981a; Reed and Grindley, 

1981); this extends from coordinates 3089-3118 on the Tn2 map.

This site also contains putative Pribnow boxes for both tnpA and 

tnpR, and RNA initiation sequences. A 20bp unprotected region 

separates site I from the major protected region, site II. Most of 

the sequence from 3139-3208 is protected, but does contain DNase I 

sensitive sites, some of which are greatly enhanced. There is also 

a resolvase-dependent DNase I cleavage point 4bp into the tnpR 

gene, this region is outside- site II; the significance of this 

is unclear. It is difficult to define exact site boundaries, 

particularly of site I, as resolution is poor at the top of the gel. 

Also it can be seen that DNase I does not cleave completely randomly, 

therefore there are some sites in the sequence which are resistant 

to DNase I in the presence or absence of resolvase. Partial prot­

ection from DNase I when using 0.2yg of resolvase was not observed 

ih this experiment,

A summary of gel data, which shows the complete nucleotide 

sequence of the intercistronic region, indicating resolvase binding
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FIGURE 6.6 Determination of resolvase binding sites on the 3' 

labelled Sau^Kl fragment - assignment of nucleotide positions

A no resolvase 

B + 0 . 2pg resolvase 

C + 0.4yg resolvase 

D AG sequence track

Site I extends over 29bp, from position 3089 to 3117 on the TnJ 

map. Site II is 67bp long, extending from position 3138 to 3205. 

The exact endpoints of these sites cannot be precisely defined 

as resolution at the top of the gel is poor and some sites are 

insensitive to DNase I cleavage in the presence or absence of 

resolvase.

8% polyacrylamide/8,3M urea gel run at 40W.
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and DNase I enhanced cleavage sites is presented [figure 6„8) «

There is no clear periodicity of DNase I cleavage sites within the 

protected regions as observed for nucleosome structure, but these 

may still have some significance in terms of the topology of the 

resolvase—DNA interactiono As site II contains DNase I cleavage 

sites it suggests that there may be a looser association of 

resolvase with the DNA sequence compared with site I, which appears 

to be completely protected. The observed patterns of sensitive sites 

in the presence and absence of resolvase are different and thus 

may not be due simply to lack of protection on some strands. This 

change in specificity suggests a conformational change to the DNA 

on binding resolvaseo If the enzyme can only make a limited angle 

of approach then some potential cutting sites may not be orientated 

correctly, when bound to resolvase, and hence not cleaved^ It is 

possible that parts of site II are wrapped around the outside of 

resolvase exposing them to DNase I cleavage on the parts of the 

helix furthest from the protein. If the DNase I sensitive sites 

are a result of DNA wrapping around the outside of the protein then it 

would be expected that the complementary strand should have sensitve 

sites staggered by 2-3bp (Lutter,1977;Sollner-Webb et aZ.jl978>o 

To confirm these results resolvase binding to the 5' labelled strand 

was investigatedo

3. Determination of resolvase binding sites on the 5' end-labelled 

strand

Footprinting experiments, similar to those described above, 

were repeated using the 357bp 5'ow3AI res-containing fragment labelled 

at the 5' terminus. The fragment was initially purified from an 

RSF1365 iSaii3AI digest by electrophoresis through 5% acrylamide 

followed by elution of DNA from the excised gel slice by the
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electrophoresis method. The purified fragment was treated with 

bacterial alkaline phqphatase, phenol/ether extracted, then precip­

itated with 65% ethanol without the addition of carrier tKNA, which 

competitively inhibits the kinase reaction. The phosphatased 

fragment was labelled with ATP by T4 polynucleotide kinase,

then treated as previously described to obtain a 295bp fragment 

with one labelled end. This fragment was used,under similar conditions 

to those employed for footprinting the 3' labelled strand, to 

determine the sequences protected by resolvase (figure 6.7), The 

representative sequencing track run alongside the footprints is 

again from a purine-specific chemical cleavage reaction. As expected 

the sites protected on the 5' labelled strand complement the data 

obtained from the opposite strand. The crossover point is located 

within site I and is completely protected from DNase I. Within 

the long protected region, site II, there are again sites of DNase 

I cleavage; most of these are not enhanced. If these were due to 

a background of unbound strands then one would expect that all 

bands present in the minus resolvase reaction to be present at 

reduced intensity; as this is not observed one may deduce that 

they are a consequence of resolvase binding. Some of the sites are 

enhanced ! and staggered by 3-4bp compared with those on the 3'

end-labelled strand as indicated (see figure 6.8). There appears
/

to be no sequence protection beyond site I into the tnpA gene, 

though a small protected site may be undetected due to low resolution 

at the top of the gel. This contrasts with the in vtvo analysis of 

Kostriken et aZ, (1981) which suggests that there is a site within 

the tnpA gene required for resolution.

The results from these experiments indicated that resolvase 

binds specifically within the intercistronic region^ protecting
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FIGURE 6.7 Determination of resolvase binding sites on the 

5' labelled Sau3KL fragment

A AG sequence track 

B no resolvase 

C + o.2yg resolvase 

D no resolvase 

E + 0.4yg resolvase

Site I extends over 30bp from nucleotide position 3090 to 3119 

on the Tn3 map; site II extends over 63bp from 3141 to 3204.

8% polyacrylamide/8,3 urea gel run at 40W.
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the putative Pribnow box/resolvase cleavage site from DNasel attack; 

also sequences to the right of this site up to the beginning of 

the tnpR gene. The significance of resolvase binding within site II 

is unclear; it could be necessary for correct alignment of strands 

during recombination or may be important for repression of trans­

cription. It is of some significance that a tnpA derepressed 

mutation has been isolated, which is caused by a single GC to AT 

base change at position 3140, the beginning of site II (Chou et al,^ 

1979b), This mutation, designated cZslO, has unfortunately not 

been tested for resolution,

4, Does DNA conformation affect the resolvase binding pattern?

Although the footprinting experiments provide data on the 

specific interaction between resolvase and a linear DNA fragment 

there are always doubts that this may be an artifactual situation. 

Previous data has shown that resolution is absolutely dependent • 

on a supercoiled substrate carrying two copies of Tes in direct 

orientation; repression requires only one ves site. One can imagine 

that several of the steps involved in resolvase-mediated recombination 

could require an energy source, provided by the negative super- 

helicity of the substrate;

(i) Association of resolvase with DNA,

(ii) Specific binding to the target site; the high AT content of 

thePes region may lead to "melting” in a s/c molecule, which in 

turn may facilitate resolvase binding within this site.

(iii) Alignment of Tee sites; if this is an active process it may 

require energy input,

(iv) Cleavage/ligation of strands to new partners.

The possibility remains that the resolvase/DNA interaction
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FIGURE 609 Addition of increasing concentrations of EtBr to the 

5' end-labelled SauSAÏ fragment - affect on resolvase binding

A no EtBr, no resolvase 

B no EtBr, + resolvase 

C + O.OSvig EtBr, no resolvase 

D + 0,05 ]ig EtBr, + resolvase 

E + O.lpg EtBr, no resolvase 

F + O.lyg EtBr, + resolvase 

G + 0.2yg EtBr, no resolvase 

H + 0,2yg EtBr, + resolvase 

I + 0.5yg EtBr, no resolvase 

J 4 0.5yg EtBr, + resolvase 

K + l.Oyg EtBr, no resolvase 

L + l.Oyg EtBr, 4- resolvase 

M AG sequence track

The addition of EtBr from O.lyjtg/ml to 2C)ug/ml does not appear 

to affect the specific binding pattern of resolvase to this 

fragment,

8% polyacrylamide/8.3M urea gel run at 40W,
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may be different on a s/c molecule and the topology may also change 

during resolution, when the two Tes sites are brought into close 

contact. There is no easy way of footprinting a s/c molecule. It 

may, however, be possible to mimic the conformational change in DNA 

structure induced by superhelicity by the addition of an intercalating 

agent such as ethidium bromide, Ethidium bromide has been extensive­

ly used as an unwinding agent in determining the number of super­

helical turns in covalently closed molecules [Keller,1975; Deleys 

and Jackson,1976; Espejo and Lebowitz,1976) , When ethidium bromide 

intercalates the unwinding angle of the helix is changed by 26°

(Wang,1974), If the ethidium bromide concentration is gradually 

increased fran OjOiyg^ml to about 0.15yg/ml a s/c plasmid, such as 

ColEl, is unwound until it ■ s mobility on electrophoretic gels is 

similar to that observed for relaxed molecules. Increasing the 

concentration of ethidium bromide further leads to greater unwinding; 

this results in the introduction of positive superhelical turns.

Based on the concentration of ethidium bromide used in these 

experiments,and on recommendations from D.Lilley (pers.comm,), I 

have tried to mimic the degree of unwinding induced by super­

helicity by addition of ethidium bromide to footprinting reactions.

The concentrations of ethidium bromide employed ranged from 0.05yg/ml 

to lyg/ml> this was added to reaction mixtures prior to the addition 

of resolvase. As can be seen from the DNA footprint there appears 

to be no difference in the pattern of resolvase binding to the Tes 

region in the presence of ethidium bromide (figure 6.9), Assuming 

that ethidium bromide binds to linear and closed circular DNA mole­

cules in a similar manner, one may conclude that the change in DNA 

conformation induced by superhelicity does not change the resolvase 

binding pattern.
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5. Analysis of resolvase binding to the righthand end of Tng

Examination of the DNA sequence within the tnpA-tnpR inter­

cistronic region reveals a very high AT content, particularly with­

in site I, The 19bp crossover region, defined by 'Cn vi-VO analysis, 
contains 16/19 AT pairs [Kostriken et aZ,jl981; Reed,1981a) . Does 

resolvase bind to other AT rich sequences?

To test this possibility a different fragment was isolated 

from Tn2 , encompassing the righthand end of the element. This 

fragment has a high AT content and, more significantly, contains a 

sequence highly homologous to the Tes site,(see figure 6,10), The 

plasmid pLSl34, constructed for t-n vttTo resolution experiments, 

was used as a source of this fragment. The Pes-iike sequence may 

be isolated on a CZai/Bgtl fragment (figure 6,11); this was predicted 

by analysis of the Tn^ nucleotide sequence, A Ctai digestion of 

pLS134 was labelled with [a^^pJ-GTP using DNA polymerase I^then 

cut with BgZx to produce a 360bp end-labelled fragment. This was 

purified by electrophoresis through 5% polyacrylamide followed by 

elution of the DNA from the gel slice by the crush-soak-precipitate 

method. Footprinting of the fragment indicated no protection by 

resolvase over the entire region, as detected by these methods 

(figure 6.12); as no protection was apparent a DNA sequence track was 

not included. These results confirm that resolvase binds specifically 

to the Tes region under the conditions employed.

Discussion

The technique of DNA footprinting has proved a useful tool to 

probe the interactions between DNA and specific DNA binding proteins, 

It has aided the identification of sequences involved in regulation



TnS res
A T A T T A T A A A T T A T

Tn3 nuc.4902-4889
T T A T C A A A A A G G A T

Hin inverted repeat
T T A T C A A A A A C C T T

Gin inverted repeat
T T A T C C A A A A C C T C

X att core sequence
T T A T A A A A A A G C T G

FIGURE 6,10 A comparison between the DNA sequences of 

res, the sequence at the righthand end of Tn5, Hin inverted 
repeat, G loop inverted repeat and the X att sequence

The bases which share homology with the res site have been 
underlined.
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FIGURE 6,11 Restriction analysis of pLS134

Plasmid pLS134 was restricted with Ctal, BglJ. or Ctal/BgtT as 

indicated. The 500bp ggZl fragment is cleaved by Ctai to produce 

360 and 135bp fragments. The 360bp fragment contains the terminus 

of the Ap^ gene, the sequence bearing homology to res^and the 

righthand inverted repeat.

1% agarose gel run at lOOV.
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FIGURE 6.12 Analysis of resolvase binding to the righthand 

inverted repeat region of TnS

A no resolvase 

B + 0.2Pg resolvase 

C + Oo4yg resolvase 

D + O.Syg resolvase

There appears to be no specific binding of resolvase to this 

region, though at the highest concentration of resolvase used 

all the bands are slightly faded; this could be due to non­

specific binding by the protein. As no specific binding pattern 

was observed a sequence track was not included in this experiment,

8% polyacrylamide/8.3M urea gel run at 40W.
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of gene expression, eg, tuG operator/repressor, uvrB operator/Zem4 

repressor (Galos and Schmidt,1978; Sancar et aZ.jl982), and has lent 

insight into the topography of DNA-protein interactions. The best 

documented example of this is fine structure analysis of chromatin 

core particles, which has been revealed by use of non-specific 

nucleases (Noll,1974; Lutter,1977; Sollner-Webb et aZ. 1978), More 

recently the interaction between DNA and DNA gyrase has been examined 

using DNase I (Liu and Wang,1978; Kirkegaard and Wang,1981; Morrison 

and Cozzarelli,1981). Sequence protection by DNA gyrase indicates 

that the site at which cleavage takes place is within a 40bp region 

tightly protected from nuclease attack, whereas the flanking arms, 

each of about 50bp and also protected, have bases highly susceptible 

to DNase I cleavage. There is a regular periodicity between DNase I 

sensitive sites, reminiscent of that observed for nucleosome structure, 

This has led to the proposal that DNA sequences in the flanking 

arms of the protected region are wrapped around the outside of the 

protein holoenzyme. This would introduce "handedness" into the 

interaction if the DNA always coils around the protein in a particular 

direction. Negative superhelicity by the sign inversion model requires 

that DNA gyrase fixes the polarity of the passed DNA relative to 

the cleaved DNA, If there were no directionality in the interaction 

then introduction and removal of negative supertwists would occur 

equally (Brown and Cozzarelli,1979). The footprinting data suggests 

that DNA is wrapped around the DNA gyrase holoenzyme in a right- 

handed coil; the polarity of this interaction is supportive evidence 

for the sign inversion model (Liu and Wang,1978; Morrison and 

Cozzarelli,1981),

The results in this chapter indicate that resolvase interacts 

specifically with the res region of -Tn3, Resolvase protects about
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FIGURE 6.13 Models for resolvase binding to the resregion

A. The simplest model involves attachment of resolvase monomer 

or dimer units to each of the sites, A model of this kind does 

not e2«p>lain the disparity in DNase I enhanced cleavage sites 

observed over site II <,

B. In this model the DNA Tes region is folded around a reolvase 

protein core structure, in analogy with the proposed nucleosome 

core particle model, and DNA-gyrase interaction^ This model 

agrees with data obtained from DNase I cleavage, which demands 

that site I is completely protected from nuclease attack(except 

the extreme lefthand end) , but site II is susceptible to limited 

cleavage. Sites of enhanced cleavage by DNase I occur throughout 

site II, but with no regular periodicity.
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120bp from DNase I digestion, though within this region there is 

an unprotected region of 20bp arbitrarily dividing the entire region 

into two protected sites. Site I contains the proposed recombination 

crossover site (Kostriken aZ.^1981; Reed,1981a) and extends over 

at least 29bp; the sequences to the right of site I constitute the 

major protected region and extend over at least 64bp. Site II may 

be important for repression by resolvase as the c^slO derepressed 

transposition mutant is located at the beginning of this site; it 

would be interesting to analyze resolvase protection to this mutant 

element. Preliminary data suggests that the sequences contained 

within the terminal 15bp of site II are required for resolution 

( Kitts, pers.comm,). The pattern of DNase I cleavage suggests that 

site I is tightly protected from nuclease attack, whereas site II 

may be more loosely associated with resolvase. Although the period­

icity of DNase I enhanced sensitivity sites is not as clear as that 

found in nucleosomes, the pattern of cleavage is suggestive of a 

conformational change induced by resolvase which could involve 

wrapping of the DNA helix around a resolvase protein complex.

It is difficult to assess details of the DNA-resolvase inter­

action without knowing how many protein monomer units bind at each 

res site. Gel filtration of the protein suggests an equilibrium 

in IM NaCl solution between monomers, dimers and tetramers, with 

dimers as the predominant form. However, as the NaCl concentration 

is decreased 20 fold for %-n V'itTO reactions the equilibrium may 

well be shifted, perhaps towards higher forms? If each resolvase 

molecule assumes a globular tertiary structure then the diameter 

of each monomer unit would be about 4nm. Resolvase binding to DNA 

in the simplest form may be envisaged as monomers/dimers attached to 

the linearres region (figure 6.13A). Such a model would require



6-7 protein monomers/res site, but does not account for the apparent 

disparity in DNase I cleavage patterns observed between sites I and 

II. An alternative model based on comparisons with nucleosome structure 

and the model for DNA-DNA gyrase may be envisaged; this involves 

folding of the DNA around a protein core structure, represented as 

a tetramer in the diagram (figure 6.13B), For comparison, the di­

mensions of the histone core are slightly larger than the predicted 

size of a resolvase tetramer. The length of DNA wrapped around the 

hi stone core is 146bp; the DNA associated with resolvase is about 

120bp in length. The second model would agree with data obtained 

from DNase I cleavage of site II. Wrapping of site II partially 

on the outside of the protein core would account for the sites of 

enhanced sensitivity to DNase I within this region. Although these 

sites are not spaced at regular intervals of 10.6bp as expected 

for DNA bound to a solid surface (Liu and Wang,1978; Rhodes and 

Klug,1980), this could be due to conformational changes in the 

helix induced by attachment to resolvase. If DNase I can only make 

a limited angle of approach then some potential cutting sites may 

not be orientated correctly if there are "kinks" in the DNA helix, 

hence these sites may not be cleaved. The regular site periodicity 

assumes that DNA is in the B configuration; if this region of DNA 

is equilibrium between the B conformation and other structures 

such as 2 DNA, then this may also affect the availability of DNase 

I cleavage sites.

The data presented shows that resolvase binds specifically 

to the Tes site; results from the previous chapter suggested that 

resolvase also binds non-specifically to any DNA molecule. How does 

resolvase find it's specific binding site? One can consider two 

possible mechanisms by which a DNA binding protein can find it's



target site. The first is a simple diffusion model; the protein 

diffuses freely throughout the cell and binds tightly when it finds 

it s specific site. 3D diffusion would be very slow as the concentration 

of target sites is very low compared with non-specific sites. The 

evidence provided in the last two chapters suggests that resolvase 

finds Tes sites much faster than the diffusion model would allow.

During the random 3D search the protein would have to test a large 

fraction of non-specific sites before the target was located.

A protein which has some affinity for DNA, already shown for 

resolvase, in addition to i t s  specific binding properties, will 

almost certainly bind non-specifically at first due to the vast 

excess of non-specific sites over specific ones. It may be useful 

to consider the specific association as a two stage process with 

a non-specific complex as an intermediate step (Berg et aZ._,1981).

Once bound non-specifically the protein then has to find it s 

specific site, though if it remains in the vicinity of DNA then the 

chances of finding it s target are much greater than by random 
diffusion . Two models have been proposed for the mechanism of 

seeking the target site:

(a) Dissociation-reassociation ("hopping")

Non-specific binding brings the protein into close contact with 

the DNA molecule. If the initial binding is non-specific the protein 

dissociates, but remains in the vicinity of DNA and immediately 

reassociates; this could be at the same or a nearby site. The protein 

continually dissociates and reassociates with DNA until it reaches 

the target where it binds tightly. This process has been likened 

to hopping along the DNA molecule in search of the target site, and 

would presumably require no external energy source (Berg et at, ̂

1981; Winter and von Hippel,1981).
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(b) Sliding

The basic assunption for this model is that the protein can slide 

along the DNA in a ID random walk while bound. The sliding model 

relies on the electrostatic binding between protein and DNA. Binding 

affinity is assumed to be due entirely to the entropy of dilution 

of the counterions displaced from DNA by binding of the protein.

As the protein moves along the DNA molecule it displaces counterions 

from DNA "ahead" of it and the same number of counterions are 

replaced when it has vacated that DNA region. If the counterions 

are not totally"site bound" to phosphates and the positive charges 

on the protein are not all precisely in register with DNA phosphates 

at non-specific sites, then very little resistance to sliding would 

be expected (Winter et #2.,1981). Presumably once the target site 

has been located, the electrostatic charges on the protein register 

with the specific binding site, neutralizing the DNA phosphates, 

such that a tight association occurs.

Kinetic data obtained from detailed analysis of the tao 

operator/Zac repressor interaction is supportive of the two stage 

process. The observed interaction at the target site occurs lO^- 

fold faster than expected for random 3D diffusion. Sliding is 

proposed as the major site-seeking mechanism (Winter et aZ.,1981).

In vi-tvo resolution reaction experiments with resolvase 

preparation 3 indicate that the reaction occurs very quickly; the 

majority of reaction products are formed within lOmin. The first 

stage of the reaction nod.y. involve location of DNA by resolvase, 

followed by a tracking mechanism (sliding, hopping, or both) to 

find the target site. Tes, Once firmly bound at res, repression 

of transcription from tnpA and tnpR promoters results,/ but for



the resolution reaction two ves sites are required. One can envisage 

at least two ways in which. V&S sites may be aligned for'this to 

occur :

(i) Random interaction

For this model it is assumed that two resolvase "units" ( a unit 

could be equivalent to monomers, dimers or higher forms) have located 

Tes sites. As the DNA is continually writhing the sites would 

become randomly aligned at some point; this complex may be stabilized 

by protein-protein interactions (see figure 6.14A). Once in this 

position the resolvase mediated recombination event can take place. 

However, random interaction is inconsistent with several observations 

made 'in V'CtTO. Resolvase appears to be very inefficient at 

recombining Tes sites located on separate molecules; this would 

occur at a reasonable frequency if the random interaction model 

was used to align sites,(This method may well be used by the A 

Int protein which works with equal efficiency in joining and 

separating molecules by recombination across att sites ).As for 

location of target sites this would also limit the time taken for 

resolution as it would take longer to randomly align sites than if 

some active mechanism were operating. The substrate pLS138 has 

Tes sites only 282 bp apart; due to the constraints of DNA structure 

one would predict that random alignment of Tes sites would occur 

very infrequently; this is not compatible with the results obtained 

'in V'itTOjy which suggest that pLS138 is an efficient substrate.

(ii) Tracking

The results from 'in V'itTO experiments suggest that there 
is an active mechanism not only to locate Tes sites, but also to 

bring two Tes sites into close enough contact for recombination.

The tracking model proposes that initially a resolvasç "unit" binds
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FIGURE 6014 Models for alignment of 2Pes sites prior to resolution

A. Random alignment: Resolvase molecules hind to both res sites, 

these will come into close contact by random writhing of the 

DNA moleculeo When this occurs the interaction may be stabilized 

by bonding between the resolvase units prior to strand exchange*

B. Tracking model: This model invokes an active mechanism for 

bringing the two res sites into close proximity. It is proposed 

that only one resolvase "unit"(dimer or tetramer?) is required 

bound at one res site for resolution. The protein remains 

bound to the first res site whilst seeking the second by one­

dimensional tracking along the DNA separating the two sites.

The tracking mechanism may be envisaged as a loop of DNA being 

fed through the protein molecule; as the protein progresses along 

the DNA the displaced loop increases in size* When the second site 

is reached the sites are in correct alignment for recombination

to occur. Such a model would explain the inefficiencies of inter- 

molecular recombination and of recombination between inverted 

res sites*

Bes sites are represented by arrowheads.
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binds tightly to one res site, then by some jnechanism, sliding, 

hopping or both, moves in one dimension along the DNA molecule until 

it reaches the second res site. During this process the resolvase 

unit remains bound at the first site so that DNA would be fed through 

the unit, forming a loop. This loop would increase in size as the 

protein progresses along the intervening DNA to the second res site 

(figure 6.14B). The interaction of two res sites may induce a con­

formational change in the protein resulting in concerted cleavage

at res sites followed by ligation to new partner strands. The
■H-ligation step may be dependent on the presence of (Reed and

Grindley,1981).

The proposed tracking model adequately explains the data 

obtained from zn vi-tro experiments. Tracking accounts for the 

observed preference for two res sites in and may also provide

an explanation for the lack of recombination between inverted res 

sites. One can imagine that if resolvase binds to one site then tracks 

to the second, and if the second pgs site is inverted,the alignment 

of sequences would be wrong, thus recombination could not take 

place. If instead resolvase used the random interaction mechanism, 

then one would predict the frequency of recombination between in­

verted res sites to be equivalent to that observed between directly 

repeated res sites. In comparison, Int works as efficiently on 

inverted att sites as it does on directly repeated sites. This 

probably reflects a major difference in the reaction mechanisms 

used by these two site-specific recombination proteins.

The tracking model suggests polarity in the mechanism used 

to search for the second res site. The tracking model also predicts 

that only one resolvase unit is required, bound at one res site *
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Preliminary genetic evidence suggests that a shortened res site 
containing only the 96bp TaqJ. fragment, but not the neighbouring 

65 and 192bp fragments (see figures 4*1 and 6,8), can recombine 

with a wild-type res site, but two directly repeated shortened 
sites do not recombine at detectable frequency. The 96bp fragment 

contains the crossover point, but may lack sufficient sequence for 

resolvase binding. This mutant res site will be footprinted to 

analyze any differences in the resolvase binding pattern. It is 

possible that the shortened site cannot bind resolvase,or that the 

change in binding does not allow tracking to occur. The observed 

asymmetry is consistent with the tracking model. By lengthening 

or shortening the arms between the functional and mutant sites 

(on the plasmid which resolves), it may be possible to determine 

the directionality of tracking by determining the efficiency of these 

substrates to resolve tn V'itro»

By using chemical agents which crosslink DNA to protein it 

may be possible to catch some DNA molecules in the process of 

tracking. If, as hypothesized, the protein feeds through a loop 

of DNA between i’es sites until the two sites are brought into close 

proximity then one would expect the loop to increase in size as 

resolvase progresses along the intervening DNA. If these intermediates 

could be "frozen" by crosslinking agents then spread onto grids for 

electron microscopy, without disrupting the intermediates, it may 

be possible to visualize loops.

It has been observed that superhelicity is an absolute 

requirement for resolution i-n vitro. There are several stages in 
the reaction which may require an energy source, provided by neg­

ative superhelicity of the substrate: location and binding to res 

sites, tracking,and the break/rejoin reaction* The data obtained



from footprinting ejgïerlments suggests that resolvase binds spec­

ifically to linear DNA fragments; thus superhelicity is not required 

for location and binding to res. The cleavage/ligation reaction is 

predicted to be a conservative event. This occurs by cleavage of 

the DNA backbone at res followed by conservation of the energy 

contained within the phosphodiester bond by covalent attachment 

to the protein. The cleaved strands are then ligated to new partners 

using energy retained in the DNA-protein bond. This reaction may 

require an external energy source (provided by superhelicity) for 

the initial .event to reach a certain activation level. During the 

recombination event limited strand rotation is required to align 

cleaved strands with their new partners; this step may be dependent 

on negative superhelicity. However, if the proposed binding model 

is correct (see figure 6.13B), then the actual cleavage site would 

be tightly associated with resolvase, maybe "inside" the resolvase 

"unit". In this position the affect of superhelicity may be neg­

ligible, The possibility remains that superhelicity may be required 

for the tracking mechanism. It has been proposed that the sliding 

model is dependent on ionic interactions between protein and DNA; 

presumably this would not be affected by superhelicity* The one 

dimensional tracking mechanism used to search for the initial target 

site may be different to that required to locate the second 

site. The tracking model for resolution demands that resolvase re­

mains bound to one res site whilst feeding through DNA searching 

for a second res site. The process of feeding DNA through the protein 

would be different to that involved in sliding along a DNA molecule* 

Present data suggests that this is likely to be a stage at which 

superhelicity is required.



Results presented In the previous chapter suggested that 

resolvase may inhibit resolution when present at high concentration 

(>0.3lig/0o 5pg DNA)* This may be due to non-specific binding between 

the res sites inhibiting the tracking mechanism, or from resolvase 

"units" binding to both res sites on a molecule, when only one is 

required for resolution (by the tracking model). An alternative 

explanation is that if resolvase has DNA wrapped around the outside 

of each "unit" in a righthanded coil, then superhelical turns may 

be removed from the molecule on binding. When only one or two 

"units" are bound this would have little effect on the gross super­

helicity of the molecule, but at ten times this concentration the 

reduction in superhelicity may be instrumental in inhibiting the 

reaction*

Reed and Grindley have determined the y6 resolvase binding 

sites on both yô and Tn3 res regions (Grindley et aZ.jl982)* The 

source of TnS res for these experiments was the 295bp Sau3hl/PvulJ. 

fragment, labelled at the 5’ terminus using T4 polynucleotide kinase; 

as described in this chapter. The footprints obtained, using either 

yô or TnJ resolvase,have been compared. There appears to be only 
one noticeable difference, at positions 3178-3180 there are strongly 

enhanced DNase I cleavage sites (within site II), Based on this 

data Reed and Grindley have divided site II into two asymmetric 

regions. They have compared the DNA sequences of the three sites 

on TnS and yô to formulate a concensus sequence for binding by yô 
resolvase (figure 6,15). The three sites share strong homology 

with the concensus sequence for the highly conserved bases, eg.

TGI at the beginning of each site. Each site is of different length 

and therefore the axis of symmetry within each site differs. If 

there is a concensus sequence for resolvase recognition, why does
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ĝ >
n CD

1 CD CD
> ig
ig >
Q CD
ig >
> tg

O
li
n
>
n
>
(D
CD
1-3

>
>
H3
H3
1-3

>
CD
CD
>
CD

ï>
>
CD
(D
CD
ng
>
H3
1-3
>
h3
CD
H3

Q
1-3
CD
1 ^

>
CD

COH

HH

CD
>
CD
ĝ
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cleavage only occur at site I? It has been suggested that the high 

AT rich region in the centre of site 1, in particular the Pribnow 

box sequence, identifies the cleavage site * There are , however,

AT rich regions in the centre of each site. Resolvase would have 

to be very discriminating to distinguish between these sites, yet 

all the available evidence suggests that it must do so as there 

is no detectable cleavage at site II (and III),(Grindley et at.,

1982; Reed, pers.comm.). In fact the subtle differences which dis­

tinguish these sites may be a crucial factor in aligning the DNA 

into a topological state for recombination across directly repeated 

res sites*

It is of interest that the concensus sequence identified 

for resolvase binding within the res region is comparable with the 

binding sites for several other prokaryotic regulatory proteins, 

Gicquel-Sanzey and Cossart (1982) have compared the amino acid 

sequences of 13 regulatory proteins, including resolvase, and 

found several conserved regions. They have also compared the sites 

of action of these proteins to formulate a concensus sequence for 

recognition sites:

TGTGT N^ ACACA D—iO

The three resolvase binding sites conform to this concensus sequence 

though N is usually greater than lObp; in the case of site II it 

is 27bp. Most regulatory proteins are multimeric, usually dimers 

or tetramers; one would therefore expect to find symmetries in their 

binding sites. Evidence from gel fitration of resolvase suggests 

that the protein exists as a dimer in IM salt solution . These 

observations suggest that resolvase has evolved from a common an­

cestral regulatory protein, but must have diverged considerably



to be able to mediate site-specific recombination.

The topology of resolvase/rgg binding is still a mystery* 

Footprinting data suggests that there are three DNA sites which 

could bind resolvase dimers, but the DNase I protection patterns 

within these sites differ. The appearance of DNase 1 enhanced 

sensitivity sites within sites II and III has led me to speculate 

that these sites may be wrapped around the outside of a multimeric 

resolvase "unit"* It is possible that dimers bind to the three 

sites, as shown in figure 6*13A; these could then fold cm each 

other such that site I is completely protected from nuclease 

cleavage. At present two independent groups are trying to analyze 

the structure of the resolvase/DNA interaction by X-ray crystall­

ography; hopefully their results will shed some light on the 

mystery of this DNA/protein complex*



CHAPTER 7

CONCLUDING REMARKS



The results presented in this thesis describe a detailed 

investigation into the TnJ-encoded site-specific recombination 

system. This recombination event is an integral part of the trans­

position process for Tn3, and closely related elements, ensuring 

efficient propagation through populations* TnS and the related 

element y6 have been shown to encode interchangeable resolvase 

proteins, which mediate the site-specific recombination event; 

however, their transposase proteins do not appear to complement 

each other.

The mechanism of resolvase-mediated site-specific recombination 

has been investigated by constructing an in vitro system to study 

the resolution reaction. Only purified resolvase and a supercoiled 

substrate containing directly repeated copies of res are required 

for efficient resolution. The reaction proceeds by a reciprocal 

break/join event with no concomitant DNA synthesis or requirement 

for high energy cofactors. The reaction products are always catenated 

circles, suggesting that catenation is an intrinsic property of 

resolvase and is probably a direct consequence of the reaction 

mechanism,

Resolvase binds avidly to any DNA which is present in an 

in vitro resolution reaction. DNA with or without res sites eff­

iciently binds resolvase, though preliminary results suggest that 

binding is tighter if the competitor DNA contains res sites.

Binding to nonspecific sites may be dependent on the salt concen­

tration in the reaction mixture (Berg &t ato,1981). The specific 

binding sites for resolvase within the Tn3 res region were ident­

ified by DNase I footprinting. Three specific binding sites were 

revealed using this technique; the sequences contained within these
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sites conform to the concensus sequence proposed by Grindley et 

al. C1982) for yô resolvase binding sites. This concensus sequence 

also shares homology to a common recognition sequence formulated 

for prokaryotic regulatory proteins. There is suggestive evidence 

that the DNA within the res region may be wrapped around resolvase, 

analagous to the model proposed for the DNA-DNA gyrase interaction 

(Liu and Wang,1978; Kirkegaard and Wang,1981; Morrison and Cozza- 

relli,1981), A model invoking wrapping would introduce asymmetry 

into the interaction which may be significant in terms of the 

mechanism used for the recombination reaction.

Preliminary results suggest that recombination proceeds with 

greatest efficiency when the distance between res sites is reduced. 

This data, in conjunction with the observation that directly 

repeated res sites in the ais configuration are the preferred sub­

strate for resolution, has led to the proposal of a tracking model 

for the recombination mechanism. This model predicts that as the 

distance between res sites is lengthened, the efficiency of recom­

bination exponentially decreases (see Berg et al,,1981; Winter et 

al,,1981; Winter and von Hippel,1981). Experiments to test this 

hypothesis are currently being performed by other memcbers of our 

group at Glasgow, .

Throughout the results chapters I have tried to indicate the 

similarities and differences between resolvase and other site-specific 

recombination proteins. The lambda Int system has been subjected 

to detailed genetic and biochemical analysis and has, historically, 

provided the basic model for site-specific recombination. Although 

the Int and resolvase systems share the property of requiring only 

short sequence homologies fôr reciprocal break/rejoip recombination
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events, many differences have become apparent through the course 

of these esqjeriments. The Int system requires the presence of two 

host polypeptides encoded by the himA and hiy genes, which together 

form IHF, or host integration factor (Nash and Robertson,1981)*

This plays a direct role in the recombination event, indicated by 

it s requirement in vitro and ability to bind specifically to att 
sites.(Craig and Nash, pers* comm.). The himA gene also plays an 

indirect role in vivo by controlling expression of several lambda 
genes required for establishment of lysogeny (Miller,1981). In 

contrast, resolvase-mediated recombination is independent of host 

factors.

Purified Int alone induces single-stranded concerted cleavage 

under certain conditions, classifying the protein as a type I topo- 

isomerase (Kikuchi and Nash,1979b). This raises the possibility 

that IHF may be primarily involved in optimizing alignment of att 

sites while Int is specifically involved single-stranded breakage- 

reunion of strands for the recombination event. As the observed 

topoisomerase activity for Int is nonspecific IHF may be required 

to ensure that cleavage only occurs within att sites for recombination, 
Resolvase has been shown to. mediate a specific double-stranded 

cleavage at res, but only when two res sites are directly repeated 
within a molecule (Reed and Grindley,1981). The break/join event 

appears to be mechanistically related to DNA gyrase-mediated 

cleavage (Sherratt et al,,1981b). Preliminary data suggests that 

resolvase has topoisomerase activity, but this has not been 

studied in detail.

Int and resolvase have different preferred substrates for 

recombination directly related to their functions in vivo, Int
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recombines with equal efficiency intermolecularly and intramol- 

ecularly. The substrates for intermolecular recombination, the 

reaction required for integration of the circularized phage into 

the host chromosome to establish lysogeny, are attP and attB ,
The hybrid sites thus formed, attB and att L, are the substrates 
for intramolecular recombination to excise the prophage. For the 

excision reaction the product of the phage-encoded arts gene, Xis, 

is required in addition to Int. The slightly different requirements 

for these reactions in vivo ensures that the phage is not contin­

ually excised and. integrated* Although lambda has no requirement 

during it s life cycle for recombination between inverted att 

sites, this reaction proceeds efficiently in vitro , There is no 
reason why this should not occur if the sites are aligned by a 

"random" mechanism.

The role of resolvase in propagation of transposable elements 

is to mediate the efficient reduction of transpositional cointe- 

grates. Elements which proceed through an obligatory cointegrate 

stage during transposition have acquired site-specific recombination 

systems to resolve cointegrates, thus enabling efficient spread 

of the element through populations. This system is only required 

to work on directly repeated res sites in cis, which are generated 
during transposition, resulting in reduction of cointegrates.

There is no advantage in joining molecules at res sites or 

recombination between inverted res sites as these processes do 
not aid propagation of the element, A tracking mechanism for res­

olution, as described in chapter 6, would ensure that only resolution 

occurs* As resolvase binds very tightly to res sites it is auto­

matically in position to resolve transpositional cointegrates 

Cor plasmid dimers) if the element should transpose again, as well



as controlling expression of both tnpA and tnpR genes, A similar 

mechanism to resolvase-mediated recombination may operate in bact­

eriophage PI.

The bacteriophage PI exists as a plasmid during the lysogenic 

stage of it s life cycle. The copy number of the PI plasmid is Iv

stringently controlled so that only one copy is normally present 

per cell. PI encodes a site-specific recombination protein, ore 

which acts at a site, present on the plasmid. Following rep­

lication many molecules dimerise due to homologous recombination 

mediated by the host-encoded general genetic recombination system. 

Cre-mediated recombination efficiently resolves dimers to monomers 

thus ensuring segregation of plasmids into daughter cells (Austin 

et al.,1981)* Without this system plasmids are rapidly lost from 

populations due to inefficient partitioning of daughter plasmids*

Like resolvase-mediated recombination, the ere system acts pref­

erentially on molecules containing directly repeated sites; this 

suggests that these two systems may have similar reaction mecha­

nisms* Transposable elements, such as TnJ, could have a stabilizing 

effect on unstable or stringently controlled plasmids on which 

they reside by ensuring reduction of dimers to monomers. It is 

tenpting to speculate that these two systems may have evolved from 

a common ancestor.

The systems described above operate preferentially on directly 

repeated sites; there are also systems in prokaryotes which act 

only on inverted sites. The Hin protein encoded by SatmoneZta 

typhimurium mediates inversion of a 970bp segment of DNA resulting 

in alternate expression of the two flagellin proteins, HI and H2 

(Silverman et al*,1981), This system is currently being investigated



to reveal the molecular mechanism underlying the inversion 

event (Simon, pers. comm,). Inversion of the "H" segment, and the 

analagous G loop in phage Mu, occurs at low frequency, only requires 

the Hin, or Gin, protein, and genetic evidence suggests works only 

on inverted repeats. The only apparent function of this system is 

to mediate inversion thus controlling expression of adjacent genes; 

in the case of Mu these genes are contained within the invertible 

segment* There would be no advantage in constant "flipping" allowing 

expression of both flagellin/host range proteins during each gen­

eration. The inefficiency of this recombination event could be 

due to low concentrations and/or activity of the protein or an in­

efficient mechanism used to align the inverted repeats* The Hin 

protein shares significant homology with resolvase, particularly 

over the amino terminal half of the protein; however, these proteins 

do not have interchangeable functions,(Dyson, pers. comm.). These 

proteins have probably evolved from a common ancestor, but appear 

to have diverged to accomodate different substrate preferences 

and recombination efficiencies required for each particular system.

The Hin and Gin systems provide examples of recombinational 

gene switching in prokaryotes; similar systems are likely to be 

encoded by eukaryotes. The 2p circle plasmid present in some yeast 

strains encodes a site-specific inversion system, though the funct­

ional significance of this is unclear (Broach et al,,1982). In recent 

years the importance of site-specific recombination in generating 

diversity has been highlighted by the discovery of antibody gene 

splicing. During maturation from germline to somatic cells, the 

antibody genes are subject to a number of recombination events 

which bring together dispersed sequences in a variety of combi­

nations (Leder 1982), Recombination occurs across short homologous



sequences flanking the component genes,or parts of genes. The 

proteins which mediate such events have yet to be identified. As 

observed in prokaryotic systems, the proteins involved are likely 

to have preferred substrate configurations and specific molecular 

mechanisms which optimize the efficiency of gene splicing.

Site-specific recombination can therefore be seen as an im­

portant mechanism,in a number of different systems, for generating 

rearrangements* Each system has a preferred substrate and a part­

icular mechanism for optimizing the required recombination event.

The Int and resolvase systems, which have been well characterized 

in vi'tTO, demonstrate that these events do not always occur by 

like mechanisms, suggesting that they have diverged considerably 

from a common ancestor or have evolved independently. The ubiquitous 

occurrence of site-specific recombination systems in both prokar­

yotes and eukaryotes highlights their importance as a mechanism 

for generating diversity and controlling gene expression.
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