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ABSTRACT

“In Vitro Biosynthesis of 1,4-B-Galactan Attached to a Pectin-Xyloglucan
Complex in Pea"

Cell-wall matrix polysaccharides are synthesised in the Golgi apparatus and
then transported to the cell wall. We have investigated the properties of nascent pectin
formed by the biosynthetic system in vitro. Particulate enzyme preparations were
prepared from etiolated pea epicotyls (Baydoun ef al., 2001) and used to assay for 1,4-f3-
galactan synthase using UDP-[U-'*C]galactose. Optimum conditions for 1,4-B-galactan
synthesis were determined. The enzyme products were characterised by selective
enzymatic degradation and anion-exchange chromatography. Evidence was obtained for
the formation of 1,4-f-galactan chains attached to a pectic backbone containing both
polygalacturonic acid and rhamnogalacturonan I. The results also indicated that part or
all of this nascent pectin was present as a complex with xyloglucan. This complex may
be similar to pectin-xyloglucan complexes found in the cell wall in rose suspension cells

(Thompson and Fry, 2000) and cauliflower stem (Femenia et al., 1999).
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INTRODUCTION




A. The Plant Cell Wall

The plant extracellular matrix, commonly referred to as the cell wall, is a
heterogeneous macromolecular assembly consisting of cellulose microfibrils embedded
in a matrix of complex polysaccharides and glycoproteins (Fry, 1988; McNeil et al.,
1984). Knowledge of the architecture and assembly of the cell wall is of importance to
be able to manipulate plant growth and morphogenesis. The cell wall is a dynamic
structure whose composition and properties constantly respond to the growth, the stage
of differentiation, and the environment of the cell (Northcote, 1972). In the first stage of
development, the developing cell plate, or phragmoplast, is derived from vesicles of the
Golgi apparatus and grows outward until it fuses with the existing primary wall
(Gibeaut and Carpita, 1994). The phragmoplast is formed of callose, a (1—3)-8-D-
linked homopolymer of glucose, and other polysaccharides. After cytokinesis is
complete, formation of independent walls is observed as cellulose microfibrils are
woven around the newly formed daughter cells (Mineyuki and Gunning, 1990). The
second stage of development of the plant cell wall involves expansion and
differentiation of the primary cell wall. During cell wall expansion, many co-ordinated
processes are involved such as: the hydrolysis of non-cellulosic polymers, the disruption
of the hemicellulose-cellulose network by proteins (example expansins), the separation
of fibrillar components by osmotic pressure, and the deposition of new microfibrils or
associated polymers in the innermost surface of the cell wall forming a highly stratified
and cross-linked surface (Carpita and Gibeaut, 1993). Cell expansion or elongation
proceeds till maturation occurs resulting in toughening of tissues. Toughening has been
shown to be related to the synthesis of pectic-xylan-phenolic complexes (Waldron and

Selvendran, 1992) or to embedding of other structural proteins or lignin in the cell wall
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matrix, depending on the type of plant and tissue. The last stage, which is not found in
all plant cells, involves the formation of secondary wall thickenings. The secondary
wall is composed mostly of cellulose, lignin, and other polysaccharides such as xylans
and glucomannans (Northcote, 1985).

In addition to providing a static structure to plant cells, cell walls play a role in
signalling and communication between cells during adaptation and defence responses
(Jarvis, 1984; Fry et al., 1993). Alteration in cell wall structure can allow stem cell
elongation in peas and textural changes during fruit ripening (Tucker and Grierson,
1987). The changes in fruit ripening are often most apparent in the pectic components of
the wall.

Many attempts have been made to produce models of the whole cell wall and its
intermolecular linkages, but due to its extreme complexity it is perhaps better to
visualise the cell wall as containing a number of polymer networks, which when
superimposed, interact to give rise to the whole complex structure (Brett and Waldron,
1996). The networks include: the cellulose-hemicellulose network, the pectin network,
the extensin or protein network, and the lignin network. Before entering into some
details of these networks, it would be easier to understand the composition of its
components. The main focus will be on the first two networks and their components due

to their more relevant importance in our work.




B. Cell Wall Components
1. Polysaccharides
The polysaccharides of plant cell walls are complex molecules that serve different

functions. They consist of a microfibril phase and a matrix phase (Brett and Waldron,

1996).

a. Cellulose

Cellulose is the microfibrillar component of the cell wall of almost all green
plants. Some exceptions exist in certain algae, where the microfibrils are composed of
xylans [ (1—3) linked xylose residues] or mannans [B (1—4) linked mannose
residues]. Cellulose is made of long chains of unbranched p (1—4) linked glucose
residues with a degree of polymerisation between 2,000 to 6,000 residues per chain in
primary cell walls, and more than 10,000 in secondary walls (Delmer, 1983). The exact
arrangement and biosynthesis of cellulose is still not clear. The use of the Acetobacter
xylinum model and the discovery of the activator of cellulose synthase (cyclic
diguanylic acid) are helping in elucidating this matter (Delmer, 1999). It is known that
UDP-glucose is its precursor. The appearance of terminal complexes by freeze-fracture
electron microscopy suggests that cellulose is formed at or outside the plasma
membrane (Delmer, 1987). It has been suggested that cellulose microfibrils may be
formed by a large multienzyme complex which elongates the entire microfibril, and thus
is easily disrupted causing callose or  (1—3)-glucan synthesis (Brett and Waldron,
1996). Direct evidence has recently been obtained that the terminal complexes seen by

electron microscopy are involved in cellulose synthesis (Arioli ef al., 1998).
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Complex polysaccharides constitute the bulk of the matrix molecules of cell
walls and are the principle products of growing plant cells. The two major classes of

complex polysaccharides are the hemicelluloses and the acidic pectic polysaccharides

(Bolwell, 1988).

b. Hemicelluloses

The hemicelluloses include: xylans, glucomannans, mannans, galactomannans,
glucuronomannans, xyloglucan, callose (81,3 glucan), arabinogalactan 11, and mixed

(81,3-41,4) glucans. Of these hemicelluloses, xyloglucan is of major interest to this

work.

i- Xyloglucan

Xyloglucan (XG) [Fig 1] is the predominant hemicellulosic polysaccharide of the
primary cell walls of dicotyledonous plants (Fry, 1989), typically forming about 20% of
the cell wall (McNeil et al., 1984). This large polysaccharide (degree of polymerisation
up to 2,200) is composed of a B(1-—>4)-linked glucosyl backbone that is decorated at
regular intervals with a(1—6)-linked xylose. Some of the xylose residues are
substituted with galactose or fucosylgalactose units (Hayashi and Maclachlan, 1984).
Digestion of most dicotyledonous xyloglucans with cellulase yields primarily the
heptasaccharide and nonasaccharide repeating units and these appear to form alternating
sequences (Hayashi, 1989). In some species, arabinose can be linked to a xylosyl
residue of pentameric units (Mori ef al., 1980). Xyloglucans from monocotyledons
differ from those in dicotyledons, in that the former have less xylose, less galactose, and

some lack the terminal fucose (Kato and Matsuda, 1985). However, some evidence has
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been provided by McDougall and Fry (1994) to show the presence of fucose in some
grass cell walls.

Progress towards understanding the compartmentalisation of xyloglucan
synthesis within Golgi stacks has come from an immunocytochemical study of high
pressure freeze-substituted cultured sycamore cells with antibodies specific to the
xyloglucan backbone and to the terminal fucose of the side-chain (Zhang and Staehelin,
1992). The synthesis of the backbone of xyloglucan was found to occur exclusively in
the trans Golgi cisternae, as previously suggested by Hayashi and Matsuda (1981 a) and
Moore et al. (1991). The labelling with the anti-terminal-fucose antibodies was
consistent with the hypothesis that fucosylation of side-chains takes place in the trans
Golgi cisternae and the trans-golgi-network (TGN) (Hayashi and Matsuda, 1981 b). The
stimulation of xylosyltransferases by UDP-glucose to form xyloglucan in the high-
density Golgi membranes, but not in other subfractions, shows that the synthesis of
xyloglucan is in the denser part of the Golgi (Baydoun and Brett, 1997). On the other
hand, Brummell and colleagues claimed, that synthesis was throughout the whole Golgi
apparatus (Brummell ef al., 1990). Baydoun et al. (2001), claimed that xyloglucan
fucosyltransferase was present in the low density Golgi membranes. These contrasting
results may indicate that significant amounts of xyloglucan are synthesised the low and
medium density Golgi membranes, even though the high density Golgi membranes
contain many of the enzymes involved in xyloglucan synthesis. The observation that
antibodies to xyloglucan bind preferentially to the trans Golgi cisternae in some tissues
(Staehelin and Moore 1995) may then indicate that mature xyloglucan, much of which
is synthesised in the cis- and medial-Golgi, accumulates in the trans-Golgi prior to

secretion to the wall.,
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Xyloglucan is synthesised by the co-operative action of several
glycosyltransferases and it has been shown that concurrent assembly of both glucose
and xylose are obligatory (Hayashi and Matsuda, 1981 a and b). Thus xyloglucan-
glucosyltransferase and xyloglucan-xylosyltransferase act in concert. But neither
galactose nor fucose seems to be required for the elongation of the xyloglucan backbone
(Gordon and Maclachlan, 1989). Although galactosylation precedes fucosylation, there
is no co-operative linkage between the two enzymatic reactions (Camirand and
Maclachlan, 1986; Farkas and Maclachlan, 1988).

Xyloglucans are thus composed of repeating heptasaccharide units (GlcsXyls),
designated -XXXG-, where X is xylosylglucose and G is glucose at the reducing end
(Fry et al., 1993). The galactose is added to one or both of xylose units near the
reducing end. It seems that xyloglucan galactosyltransferase preferentially
galactosylates the nascent xyloglucan backbone at every second heptasaccharide,
forming a (-XXXG.XXLG-) backbone (where L represents the galactosylated
xylosylglucose) which is later fucosylated (Guillen ef al., 1995). The acceptor structure
for xyloglucan fucosyltransferase has been shown to contain two important domains, a
domain to be fucosylated, and the recognition-binding sequence that binds the enzyme
(Maclachlan ef al., 1992). Thus, the fucosyltransferase would be expected to bind to one
octasaccharide and to fucosylate the next octasaccharide two subunits away, and thus it
must recognise at least three subunits of xyloglucan (Faik et al., 1997).

McCann et al. (1992) have shown that xyloglucan molecules isolated from
onion cell walls appear to be assembled from 30-nm building blocks. The xyloglucan
molecule is a major structural component of cell walls. It can form hydrogen bonds to

cellulose, thus forming a network [discussed later] (Talbott and Ray, 1992). In addition
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to its structural role, chemically defined fragments of these polysaccharides have been
shown to possess regulatory activities (Ryan, 1987). Hayashi and Delmer showed that
the addition of purified pea xyloglucan to A. xylinum culture could prevent the
fasciation of microfibrils into large ribbons. This shows that xyloglucan may play a role
in limiting the size of microfibrils during cell expansion (Delmer, 1987). Also the loss

of some residues from side-chains of xyloglucan may induce cell wall loosening (Reiter

et al., 1993).

ii- Other hemicelluloses
Other hemicelluloses such as: xylans, glucomannans, mannans, galactomannans,
glucuronomannans, callose (81,3 glucan), arabinogalactan I, and mixed (81,3-81,4)

glucans are also included in the hemicellulosic fraction of the plant cell wall and play a

role in maintaining the integrity of the plant cell wall.

Xylans form the bulk of the hemicellulose fraction of angiosperms. The general
structure of xylans in higher plants is that of a main chain of D-xylopyranose residues
joined by f(1—4) links. The degree of polymerisation is about 150-200 residues and
short terminal side-chains are attached. For instance in angiosperms, one 4-O-methyl-D-
glucuronic acid exists for every ten xylose residues (Timell, 1964) and it is joined by
o(1-»2) bonds. Most of the acetylation of the xylose groups is at C-2 and C-3. In
grasses, the xylans have the D-xylopyranose joined by §(1—4) links but the major side-
chains are L-arabinofuranosyl groups attached by an a(1—3) bond to the backbone, as
well as 4-O-methyl-D-glucuronic acid side-chains which are a(1—2) linked (Northcote,
1972). Xylans are synthesised by the co-operative action of several glycosyltransferases

where UDP-xylose acts as a donor for xylose residues. From cell fractionation studies, it
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appears that UDP-xylose: xylan xylosyltransferase is located in the Golgi apparatus
(Waldron and Brett, 1987) mostly in the low and medium-density Golgi subfractions
and to a lesser extent in the high-density Golgi membranes (Baydoun and Brett, 1997).
As for their arrangement, xylan molecules seem to be oriented parallel to the cellulose
chains in the plant cell wall and seem to adsorb to them (Northcote, 1972)‘

The mannans and galactomannans are found in some seed endosperms and seed
cotyledons and function as food reserve (Brett and Waldron, 1996). The mannans

consist of a linear chain of mannose residues joined by #(1—4) bonds and where

galactose is present, it is linked as a side-chain by an a(1—6) bond. UDP-galactose is
transferred to the most recently transferred mannose residue (that is to the non-reducing
terminal) (Edwards et al., 1992). The mannans are able to form hard crystalline
structures, and act as microfibrils in some algae (Brett and Waldron, 1996).

The glucomannans form the bulk of the hemicellulose fraction of secondary
walls of gymnosperms. They consist of chains of randomly arranged D-glucose and D-
mannose joined by 8(1—4) linkage, the main chain may be branched once or twice.
Glucomannans have a similar conformation to that of cellulose and the chains are
arranged in a paracrystalline array between the cellulose microfibrils and strongly
adsorb to it. The ratio galactose: glucose: mannose in the galactoglucomannans is 1:1:3,
usually with a degree of polymerisation of about 100 residues, and most acetylation is at
C-2 or C-3 (Timell, 1964).

The glucuronomannans are present in a wide range of plant cell walls. They
have o(1—4) linked mannose residues and f(1—2) linked glucuronic acid residues in
the main chain. Side-chains include galactose o(1->6) or arabinose o(1—3) linked to

mannose (Brett and Waldron, 1996).
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Arabinogalactan II occurs as a general hemicellulose constituent of conifers such
as larches. These molecules possess a highly branched galactan core, with 8(1—3) and
B(1—6) linked galactose units. Arabinose residues joined by 8(1—3) bonds are present

on outer chains. Small amounts of glucuronic acid may also be present (Brett and

Waldron, 1996).

Callose is made by most plant cells in response to wounding and at specific
stages of wall development such as in phragmoplasts of dividing cells and in growing
pollen tubes (Delmer, 1991). It is known to be made at the plasma membrane (Delmer,
1987). The substrate for callose synthase is UDP-glucose. It is a 8(1—3)-linked glucan.

The [8(153), B(1—4) ]-glucans, also called mixed-link glucans, are uniquely
found in grasses. These molecules are unbranched homopolymers of glucose containing
a mixture of (1->4)-8-D-glucose linear oligomers and (1->3)-8-D-glucose “kinks”
(Woodward et al., 1985). UDP-glucose is a substrate for its synthesis (Becker ef al.,
1995). The ratio of (1—3) to (1—4) links is between 1:2 and 1:3 and usually a single

(1—3) linked residue separates sequences of two, three, or four (1—-4) linked residues

(Brett and Waldron, 1996).

c. Pectic Polysaccharides

Pectins are a class of complex polysaccharides found in the cell walls of higher
plants. They contribute to the firmness and structure of plant tissue both as part of the
primary cell wall and as the main component in the middle lamella, which is responsible
for cell-to-cell adhesion (Carpita and Gibeaut, 1993). They act both as a hydrating agent
and cementing material for the cellulosic network. In addition to that, pectins have a

role in plant defence by releasing oligosaccharins (short sequences of (1->4)a-D-
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galactosyluronic acid units, ten to fifteen residues) from the wall upon attack by various
pathogens (Perez ef al., 2000). Oligosaccharins trigger defence responses by different
mechanisms such as acting as a proteinase inhibitor-inducing factors or as elicitors of
phytoalexins (McNeil et al., 1984).

Pectic polysaccharides are composed of distinct structural domains linked
together in characteristic patterns. They compromise acidic polysaccharides including
homogalacturonan (PGA), rhamnogalacturonan I (RG I), rhamnogalacturonan II (RG II)
and neutral oligosaccharide chains such as galactans, arabinans, and arabinogalactans
(which may be attached covalently to the acidic polysaccharide) (Knox ef al., 1990).
The most abundant pectic polysaccharide is PGA/RG I, which is composed of
covalently linked blocks of PGA and RG I (Fry, 1988; Zhang and Staehelin, 1992). The
backbone consists of two types of domains, the PGA or homogalacturonan domains
which are blocks of 15 to 70 a-1,4-linked-D-galacturonosy! residues interspersed
periodically with single a-1,2-linked-L-rhamnosyl residues, and RG I domains [Fig 2]
containing up to 300 repeats of alternating a-1,4 galacturonosyl-a-1,2 rhamnosyl
residues (Lau ef al., 1985). PGA biosynthesis occurs by addition of galacturonic acid to
the non-reducing end of the polymer chain (Scheller et al., 1999). They have varying
degrees of methyl esterification of their carboxyl groups (Tieman and Hanada, 1994).
Pectins are thought to be secreted in the form of highly methylesterified polymers to the
cell wall, where pectin methylesterase cleaves some of the methyl esters (Lau ef al.,
1985). Plant pectinesterases help in the conversion of the protopectin to soluble pectin
and pectate, thus are involved in the plant maturation and ripening processes
(Camardella ef al., 2000) as well as in mechanisms that protect the plant from infection

( Mangos and Haas, 1997). Several PGA chains with blocks of deesterified
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galactosyluronic acid residues have been suggested to form an “egg-box” structure by
forming calcium cross-bridges between chains leading to the stabilisation of the middle
lamella (Demarty et al., 1984; Fry, 1986). The homogalacturonan parts of the polymer
(PGA) are referred to as “smooth” regions while the thamnose-rich zones are called the
“hairy” regions (Perez et al., 2000). RG I is known to contain a number of different
side-chains (Ishii ef al., 1989), mainly (1—5)-o-linked arabinose and (1-—>4)-B-linked
galactose attached to the 4-position of rhamnose [Fig 3] (McNeil et al., 1984; Brett and
Waldron, 1996). These side-chains include pectic galactan, a polymer of (1->4)-p-
linked galactose (discussed below).

The structural complexity of pectins suggests that there exists at least 41 unique
transferases required for the direct synthesis of pectins (Doong and Mohnen, 1998).
Information on the compartmental organisation of the biosynthetic pathways for
PGA/RGTI has come from immunocytochemical experiments with cryofixed sycamore
cells (Zhang and Stachelin, 1992) and root hairs of Vicia faba L. (Sherrier and
VandenBosh, 1994) using antibodies that recognise these polysaccharides. The
biosynthesis of PGA/RG I appears to encompass all the Golgi stacks in plants. The
backbone assembly seems to start in the cis cisternae and to continue in the medial
Golgi cisternae). Baydoun et al. (2001) showed that galactan galactosyltransferase
(galactan synthase) was present in the low density Golgi membranes though previous
reports suggest that side-chains of the RGI-domains are added in the trans cisternae
(Driouich et al., 1993). Esterification of the PGA seems to be in the trans cisternae
(Moore ef al., 1991; Lynch and Staehelin, 1992). Following their synthesis in the Golgi
apparatus, the complex polysaccharides seem to be packaged into uncoated vesicles in

the TGN for their transport to the cell wall (Driouich et al., 1993).
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Recent work has indicated that the formation of the galactose- and arabinose-
rich side-chains of pectin is developmentally regulated (Willats ef al., 1999; Orfila and
Knox 2000). There are many indications that the galactan complex in Iupin cell walls is
a side-chain of a pectic rhamnogalacturonan core polysaccharide (Reid, 1985;
Buckeridge and Reid, 1994) and that enzymes such as galactanases/galactosidases help
in galactan mobilisation. These enzymes may be involved in turnover of primary cell

walls during elongation, growth, or ripening [see section on pectin during development

and fruit ripening].

Little information is available about enzymes that bring about the biosynthesis
of galactans in higher plants. Panayotatos and Villemez (1973) showed that UDP-a-D-
galactose is the preferred D-galactosyl donor in the formation of D-galactan chain in
Phaseolus aureus. The presence of different galactans like 8(1—4), 8(1—3) and
B(1—>6)-galactans has been reported. (1—>4)-8-linked galactose attached to the OH-4 of
the rhamnose of a RG I has also been shown by nuclear magnetic resonance (N.M.R.)
(Davis et al., 1990). Panayotatos and Villemez (1973) demonstrated the synthesis of an
alkali-insoluble 8(1-—>4) galactan in Phaseolus aureus hypocotyls. McNab ef al. (1968)
and Goubet and Morvan (1993) demonstrated the synthesis of a water-soluble galactan
in Phaseolus aureus and flax (Linum usitassium L.) cells respectively. Goubet and
Morvan (1993) demonstrated the presence of an alkali-soluble 8(1—3) and §(1—6)
galactans in flax and this enzyme has been further characterised by Allison and Reid
(1998). Geshi et al. (2000) showed that the 1,4-3-galactan synthesised by membrane
fractions from potato suspension cells is attached to an endogenous RG-1. Goubet ef al.
(1995) found that 1,4-B-galactans can exist either as long neutral chains or attached to

RG 1. Goubet and Morvan (1993 & 1994) gave evidence for the presence of two
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galactosyltransferases in flax cells; at pHS the product was found to be a f(1->3),

B(1—6) galactan, while at pH8 the product was a 1,4-8-galactan. Thus there seem to be
at least nine different galactosyltransferases involved in synthesising different linkages
in pectin (Geshi ef al., 2000)

Other pectic polysaccharides are the arabinans, the arabinogalactans, and the
rhamnogalacturonan II (RG IT). Arabinans consist of a a(1->5)-linked arabinose
backbone to which an a(1—52) or a(1—3) single arabinose side-chains are attached.
Arabinogalactans consist of a backbone of 8(1—4)-linked galactan with o(1—5)
linked-arabinose side-chains. RG II is a complex polysaccharide of approximately 30
glycosyl residues that has a backbone of 1,4-linked-a-D-galacturonic acid (Doong et
al., 1995). It has complex side-chains that contain galacturonic acid, rhamnose,

galactose, and some rare sugars (aceric acid, apiose, and 3-deoxy-manno-octulosonic

acid (KDO).

C. The Cell Wall Networks
The cell wall is made of different networks that are superimposed. The
major networks are the cellulose-hemicellulose network, the pectin network, the
extensin or protein network, and the lignin network. Only the cellulose-hemicellulose

and the pectin network are of main relevance to this work; thus they will be explored in

more details than the rest of the networks.

1- The Protein or Extensin Network

The hydroxyproline-rich glycoprotein, extensin, forms a network within the cell

wall. It is synthesised and secreted through the plasma membrane as a water-soluble
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precursor protein that becomes insoluble once it is linked to the extensin network in the
cell wall (Brett and Waldron, 1996). The nature of the cross-link is not certain; it may
involve isodityrosine bonds between tyrosine residues of extensin molecules, tyrosine-
lysine bonds between two extensin molecules, ionic bonds with pectins, or covalent or
non-covalent bonds with other networks. Extensins help in maintaining the rigidity of

cell wall and in stopping cell growth or elongation.

2- The Lignin Network

Lignin is an insoluble constituent of the cell wall that is aromatic, of high
molecular weight, and derived by the enzymatic dehydrogenation and subsequent
polymerisation of alcohols. Lignin is a hydrophobic filler material that replaces the
water that was in the cell wall at early stages (Northcote, 1972). Covalent bonds can
form between lignin and components of other networks to form an organised structure.
The end result of lignification is the transformation of the wall from a dynamic

extensible structure of the wall into a rigid structure (Brett and Waldron, 1996).

3- The Cellulose-Hemicellulose Network

Molecular architecture within the primary cell wall has been observed by
microscopy (McCann ef al., 1990) and inferred from different enzymatic and extraction
methods that emphasise the presence of cellulose-hemicellulose and pectin networks.
These polymer networks were synthesised without the limitations of a cellular
framework by adding xyloglucan to the fermentation media of Acetobacter xylinus

(bacteria that synthesise cellulose extracellularly). Xyloglucan was found to form
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composites with cellulose (Whitney et al., 1995). Mechanical measurements (Whitney
et al., 1999) showed that xyloglucan-cellulose networks provide a balance of strength
and extensibility that the primary cell wall needs which otherwise could not be achieved
by cellulose alone.

The hemicellulosic polysaccharide xyloglucan (XG) binds with a strong affinity
to cellulosic cell wall microfibrils (Levy et al., 1991). Pea xyloglucan molecules, with
an average molecular weight of 330,000, contain a backbone of 1,100 contiguous 1,4-
linked glucose units, which represents a maximum chain length of 550nm (Hayashi and
Maclachlan, 1984a). This is many times the diameter of cellulose microfibrils and quite
sufficient to cross-link adjacent fibrils by H-bonding (Albersheim, 1976) even if some
free sectors assumed a nonlinear configuration. An a-L-arabinosyl residue (Kiefer ef
al., 1990), a B-xylosyl residue, and an a-L-arabinofuranosyl-(1—3)-8-xylosy! residue
(Hisamatsu ef al., 1992) have all been found to attach at low frequency to the glycosyl
residue of the glucan backbone to which is also attached the a-xylosyl residue. The
extra glycosyl residues may interfere with the binding of xyloglucan (1—-4) glucan
backbone to cellulose (Hayashi e al., 1994). Therefore, parts of the chain regions
containing these residues appear to be disconnected around cellulose microfibrils and
may be located in cross-linking regions (Baba ef al., 1994). Thus, although most models
suggest covalent bonds between xyloglucan and other polymers, the chains can also
entangle noncovalently (Carpita and Gibeaut, 1993). Computer modelling suggests that
the fucose-galactose-xylose-side-chain of xyloglucan alters the conformation of the
glucan backbone to facilitate binding to the cellulosic microfibrils (Levy et al., 1991).
Pea cell wall xyloglucan was found to have a greater ability to bind to cellulose

microfibrils than nasturtium xyloglucan (lacking the trisaccharide side-chain). This is
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consistent with the structural role of pea xyloglucan during epicotyl growth as
compared with the more enzyme accessible xyloglucan during germination (Levy et al.,
1997). Modification of the side-chains is therefore a potential control on the properties
of cellulose-xyloglucan network.

Thus xyloglucan forms a ribbon-like molecule that cross-links cellulose fibrils.
The dynamic nature of this cross-linking controls the regulation of plant cell expansion
and growth (Hayashi, 1989). Xyloglucan is shown to be highly susceptible to hydrolysis
by endoglucanase (Hayashi and Maclachlan, 1984) and such enzymes are known to be
regulated by growth hormones in many plants. Auxin leads to solubilisation and
decrease of molecular weight of the polysaccharide (Hayashi ef al., 1984). An o~
fucosidase enzyme seems to be also involved in the modification of xyloglucan due to
auxin stimulation (Farkas ef al., 1991). Thus, other than auxin-induced turnover of
xyloglucan (Labavitch and Ray, 1974 a & b), xyloglucan is also degraded due to acid
growth (Jacobs and Ray, 1975; Terry ef al., 1981). However, feedback inhibitors of
auxin stimulated growth and xyloglucan degradation exist to maintain the cell wall
integrity, These inhibitors are fragments of the xyloglucan itself after degradation by
endoglucanase as the xyloglucan nonasaccharide fragment (York et al., 1984).

In grasses, a similar network exists which is also a hemicellulosic-cellulose
network. But the hemicellulose in this case is glucuronoarabinoxylan (GAX) (Brett and
Waldron, 1996). Thus, the cellulose microfibrils provide the mechanical strength for the
cell or tissue and are usually coated with tightly bound hemicelluloses (XG or GAX).
Other XG or GAX probably with altered fine structures and physical properties form a

continuum with pectins in the plant cell wall (Carpita and Gibeaut, 1993).
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4- The Pectin Network

Some pectins can be extracted with hot water (Goldberg et al., 1989; Goubet and
Morvan, 1993), with cold water after hot ethanol pre-treatment (Carrington et al., 1993),
or by the addition of a chelating agent such as EDTA (Davis et al., 1990) or CDTA
(cyclohexanediamine tetra-acetic acid) [Carrington et al., 1993; Rihouey et al., 1995],
without altering the appearance of the cellulose-hemicellulose network. Pectins may be
connected to other cell wall components or other pectins via ionic or covalent cross-
links (Stolle-Smits et al., 1999). Pectins interact in the wall in many ways. First, the
helical chains of PGAs can condense by cross-linking with Ca*? (in ionic bonds) to form
junction zones, linking several chains together and forming a gel (McCann and Roberts,
1994). Pectins may be cross-linked further via ester linkages with dihydroxy cinnamic
acids, such as diferulic acid, to form covalent attachments with other polymers. A large
part of the covalent glycosidic binding in pectins is via the neutral side-chains
(arabinosyl or galactosyl) since their loss increases the ability of pectins to slide across
other molecules or to be more accessible to enzymes such as pectin methylesterase
(PME) or polygalacturonase (PG) (Thakur et al., 1997). The size of the junction zones
and the size and frequency of polymer substitution on RG, and the high level of neutral
sugar side-chains (Foster et al., 1996) can constitute a fine control of wall porosity,
matrix charge, ion balance, and modulation of pH (Carpita and Gibeaut, 1993). Energy
calculations show that the galactan side-chain has intermediate stiffness (Duda ef al.,
1991), hence it can allow the strength of polymers such as cellulose to be used
efficiently (Girault ez al., 1997). These side-chains can ensure that cracks or stress
propagate along the matrix instead of across the fibres. Also galactans can decrease the

ability of pectin molecules to cross-link and form a coherent gel network. Thus
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extensive cross-linking exists in epidermal cells of tomato fruit and collenchyma cell
wall thickenings where acidic pectic epitopes are abundant and neutral side-chains are
absent (Ha et al., 1996).

Another common modification of the pectin polymers is esterification of the
carboxylic acid functional groups. Elongation is correlated with increased esterification
and the cessation of elongation with de-esterification (McCann and Roberts, 1994).
Pectins can also serve more subtle roles as recognition molecules that signal appropriate

developmental responses to symbiotic organisms, pathogens, and herbivores (Carpita

and Gibeaut, 1993).

S-Interactions between XG-cellulose and Pectin Networks:

Pectin and cellulose are major components of most primary cell walls, yet very
little is known about how they interact either during assembly or other processes of the
cell wall (Chanliaud and Gidley, 1999),

Recent models for primary plant cell wall structure emphasise co-extensive
networks of pectin and cellulose-hemicellulose (Carpita and Gibeaut, 1993; Talbott and
Ray, 1992). These models suggest that there exists two “entangled but distinct polymer
networks” a xyloglucan-cellulose network, held together by hydrogen bonds, and a
pectin network part of which is held together by calcium bridges (McCann and Roberts,
1991) or other bonds (see section on Pectins). These models stress that no bonds exist
between the pectin and cellulose networks, but rather that they act independently
[Fig 4]. This view is supported by experiments that show release of pectins from cell
walls via sequential extraction with chelating agents and alkali before the release of

hemicelluloses. But there is evidence that some pectin resists such extraction and
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remains attached to the cell wall (Chanliaud and Gidley, 1999). Additional evidence
for independent networks was provided by experiments where pectin polymers where
added at the point of synthesis of cellulose of the bacterium Acetobacter xylinus (in the
fermentation medium) to mimic the cell wall deposition phenomena (Chanliaud and
Gidley, 1999). This work gave no evidence for the incorporation of pectin within the
cellulose fibrils (both by NMR and CDTA extractions). However the pectin used in this
work is rich in homogalacturonans which are characteristic of the middle lamella where
PGA molecules bind to each other via calcium bridges and cellulose is deficient.
Interestingly this work also showed that the presence of pectin at the time of cellulose
deposition had an effect on the extensibility without compromising the strength. Also,
Shedletzky et al.(1990) showed the ability of plants to grow on 2,6~
dichlorobenzonitrile, a herbicide that inhibits cellulose biosynthesis. In such a system
the XG-cellulose network is absent and wall have a higher proportion of
homogalacturonan and rhamnogalacturonan polymers. The flexibility of plant cells
shown here gives evidence that one network can be present without the other. Wells et
al. (1994) gave evidence by high-resolution images that the cell wall of tomatoes is
constructed from at least two independent networks (pectin and hemicellulose-cellulose
networks) in the primary cell walls. Neither the spacing of the pectin molecules nor the
thickness of the cell wall was affected with the reduction in the hemicellulose-cellulose
network.

Opposing models (Keegstra et al., 1973) propose that XG, pectic
polysaccharides, and glycoproteins are all linked together via covalent bonds. The
nature of the covalent bonds between xyloglucan and acidic pectins is not yet

elucidated. Since it is stable (after alkali treatment) then it does not seem to be through
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ester nor O-glycosidic through serine or threonine. It could be a glycosidic linkage
between the reducing end of xyloglucan and the non-reducing sugar end of pectin
(Keegstra et al., 1973). The converse is not possible if the linkage is to involve a
galactan or arabinogalactan side-chain (Thompson and Fry, 2000) of acidic pectin
[Fig 5]. Coimbra et al. (1995) gave further evidence for the covalent linkages between
networks by showing the presence of pectic-xylan complexes. This was also postulated
by Waldron and Selvendran (1992) from work on asparagus stems during maturation.
Hence interpolymeric cross-linking occurs between xylan-xyloglucan and xylan-pectic
complexes. Femennia ef al. (1999) gave good evidence by ion-exchange
chromatography and other techniques of the occurrence of associated acidic xylans,
xyloglucans, and pectic polysaccharides. The bonds are mostly covalent. There seems to
be a maturation-related increase in cell wall cross-linking in the cauliflower stems.

Binding of nascent glucuronoarabinoxylan (Brett ef al., 1997) or glucuronoxylan

to hemicelluloses was found to be pH-dependent and this dependency was abolished by
pre-treatment with protease enzyme (Crosthwaite ef al., 1994). A 36-45 KDa protein
was found to be strongly bound to glucuronoxylan, probably covalently. Rizk ef al.
(2000), showed that pectin was also synthesised attached to a protein that is also
involved in the pH-dependent non-covalent binding of pectin to xyloglucan. The
binding at low pH suggests that binding to xyloglucan does not occur in the vesicles
(where the pH is neutral) but near the growing cell wall (where the pH is acidic). These
proteins were named “assemblins” due to their suggested role in cell-wall assembly,

helping the newly formed polysaccharides to interact with each other and with cellulose

to form the innermost cell wall layer.
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Thompson and Fry (2000) gave evidence (by anion-exchange and enzyme
treatment techniques) that around 30% of the xyloglucan in the cell walls of suspension-
cultured rose cells is covalently linked to acidic pectins, whereas the rest of xyloglucan
is neutral and not bound to pectins. This made them suggest an intermediate model from
those suggested before where about two thirds of xyloglucan is bound to cellulose
microfibrils via hydrogen bonds (Fry 1989a) but free from pectin network whereas the
rest of xyloglucan are covalently linked to acidic pectins (rhamnogalacturonans) mostly
probably via arabinan/galactan domains [Fig 6]. Some covalent bonds may also exist
between the XG-cellulose and calcium-bridged pectins (homogalacturonans) to

interlock the whole complex. But more work should be done on that.

D. Pectins during Development and Fruit Ripening

In plant cell wall, the pectin network is known to be modified in response to
different developmental and environmental cues such as during cell elongation, fruit
ripening, or even in response to pathogens. Immunoprofiling and immunolocalization
techniques can be used to provide us with some biochemical information on the
Jocalisation of specific pectin components. Willats and Knox (1999) found that all
organs of pea seedlings were labelled with JIM 5 antibody, indicating the presence of
poorly methylated homogalacturonan (both highly branched and unbranched)
throughout germination. Whereas in tomato, there seems to be a shift from highly
branched pectin to unbranched homogalacturonan in pericarp tissue of green and red
fruit. This reflects the idea that major cell wall modifications occur during ripening.

During fruit ripening, cell wall pectins are subjected to numerous modifications.
First, pectins are secreted in a methylesterified form to the cell wall. Pectin

methylesterase (PME) can then deesterify the pectins and they thus become available
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for calcium-mediated intermolecular cross-linkages (Carpita and Gibeaut, 1993). The
degree of pectic esterification drops from 90% in immature green tomato fruit to 30%
during red-ripening stage (Steele e al., 1997). As ripening progresses, unesterified
polyuronides are depolymerised (Smith e al., 1990; Huber and O’Donoghue, 1993) and
more polyuronides become susceptible to solubilisation by chelators (Seymour ef al.,
1987a; Giovannoni ef al., 1989). In addition, there is a decrease in the content of neutral
sugar residues, particularly galactose, associated with polyuronides as side-chains (Gross,
1984). Solubilisation of galactan has been demonstrated to be a general feature of fruit
ripening such as tomato, mango, apple, and kiwi (Seymour et al., 1990). In nectarines, a
decreased degradation of galactan side-chains was associated with the development of
mealy fruits (Dawson et al., 1992). In tomato ripening, at least part of the polyuronide
depolymerisation and solubilisation is due to the activity of endo-acting-
polygalacturonase (Brady, 1987; Fischer and Bennett, 1991). Tomato fruit ripening and
softening are accompanied by massive increases in endo-polygalacturonase mRNA
abundance, immunologically detectable protein and enzyme activity (Grierson and
Tucker, 1983; DellaPenna ef al., 1986). This is concomitant with the increase in cell wall
pectin solubilisation and a decrease in polyuronide degree of polymerisation. The precise
contribution of cell wall disassembly to tomato fruit softening remains unclear. It was
found by Brummell and Labavitch (1997) that tomato fruits where
endopolygalacturonase activity had been suppressed to less than 1% of wild-type levels
were slightly firmer than in nontransgenic controls later in ripening. But this enhanced
fruit firmness may be due to reduced pectin depolymerisation rather than altered

extractability. Carrington et al. (1993), found that the loss of galactose which is evident
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in both antisense fruit (containing an antisense gene for polygalacturonase) and wild type
fruit is too large to be explained simply by polygalacturonase solubilisation of a
rhamnose-arabinose-galactose containing polymer. Other mechanisms are clearly
involved. It seems that a S-galactosidase capable of hydrolysing a B-1-4-galactan is
present in tomatoes and its activity increases during ripening.

More correlation of galactan with firmness has been observed by studies done by
Jones et al. (1997) on tomato fruit. These studies show that (1—4)-B-galactan is abundant
in the pericarp of green tomato whereas it is absent from the locular gel (thus the different
texture). Loss of galactose from kiwi or tomato fruit plays a role in cell wall changes that
lead to fruit softening (Jones et al., 1997; Redgwell et al., 1997). Studies done on
transgenic walls of potato plants (expressing an endo-1,4-B-D-galactanase) indicate that
the reduced content of galactan in RG I results in a more porous wall architecture. Pectic
material seems to be more accessible to PME and PG enzymes compared with wild-type
walls. This may indicate a particular role of galactans in wall structure (Sorensen et al.,
2000). A strict molecular control of pectin (RG I, HG, galactan side-chains, etc.)
synthesis and degradation is suggested by biochemical and immunocytochemical work on
aspen. It seems that high pectic content characterises actively dividing or elongating cells.
Galactan synthesis seems to occur throughout cambial zone and in enlarging xylem
whereas galactan disappears progressively during differentiation of phloem (Ermel et al.,
2000).

McCartney et al. (2000), showed that there is an appearance of (1—4)-B-galactan
as side-chains for RG 1 in pea cotyledon cell walls late in development but before seed

maturation and dehydration. They found that spatial differences exist within cell walls in
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the location of (1—4)-8-galactan and (1—5)-a-L-arabinan components, emphasising the
complexity of RG I and the role its side-chains play. Galactans seem to have a role in
increasing firmness as well as a storage role in pea cotyledons. Recent studies on lupin
cotyledons, where there is a drop in galactose during germination, show that galactans
have a dual role both as a reserve polysaccharide and as a molecular restraint to
expansion of cotyledons during expansion [by retarding the action of pectinases on RG I,
for example] (Buckeridge et al., 2000). Galactan rapidly accumulated in cell walls
following induction and before visible elongation (Willats and Steele-King, 1999)
whereas they occurred at very low level in proliferating cell walls of carrot cells. Pectic
galactans are degraded not only in ripening fruit but also in senescent flower petals and
during hypocoty! extension growth (Jones er al., 1997). The study done by Stolle-Smits
(1999) suggests that there is a constant synthesis and degradation of cell wall material
during pod elongation with a shift from neutral, sugar-rich, branched pectin (RG) to the
synthesis of non-branched homogalacturonans. It seems that the pectic side-chains are
more flexible than the pectic backbone hence involved in contributing to porosity of the
cell wall. These side-chains may influence access of modifying proteins such as enzymes
like PG or PME (Willats and King, 1999) or proteins such as expansins and xyloglucan
endotransglycosylase that can alter the cellulose-hemicellulose network, thus facilitating

cell enlargement (Cosgrove, 1997).
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E. Aim of the Study

Little information is available about the biosynthesis of galactans in higher plants.
It is known that UDP-gal may serve a precursor (Goubet and Morvan, 1993) for galactan
among other products with the help of galactosyltransferase enzyme. Thus it is necessary
to differentiate galactan from other products by endo —1, 4-p-galactanase digestion or
other methods and to find the optimal condition of the galactan synthase enzyme in
particular, instead of galactosyltransferases in general. Also the structural features of the

synthesised galactan and how they are attached to the cell wall have not been investigated

in detail.

Thus the objectives of this study are:
1- To optimise the conditions for galactan synthase (GS) activity in peas and to study
the nature of exogenous and endogenous acceptors for galactan biosynthesis.
2- To study the nature of the product formed in vitro.
3-  To study the attachment to different polysaccharides and the type of bonds

involved.

4- To study the binding of the synthesised product to the cell wall or to the xyloglucan

extracted from the third internodes of pea stems.




Chapter II

Materials and Methods
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CHAPTER II

MATERIALS AND METHODS

A. Chemicals

Uridinc—diphospho-D-[U-MC]-galactose, uridine—diphospho-D-[U-'4C]-xylose,
guanosine-diphospho-D-[U-'4C]—fucose, and uridine—diphospho-D-[U—MC]-glucuronic
acid were purchased from The Radiochemical Centre, Amsherham, U.K. Non-radioactive
sugar nucleotides (uridine diphospho-D-xylose, uridine diphospho-D-glucose, and
uridine diphospho-D-galactose), bacterial protease (P-5130), fungal proteinase K (P-
8044), pectin methyl esterase (P-5400), pectin lyase (P-2804), and p-nitrophenyl--O-
galactopyranoside (N1252) were purchased from Sigma, USA.
Bio-Gel P10 and EconoPac Q cartridges were obtained from Bio-Rad Laboratories, USA.
Sepharose CL-6B was purchased from Pharmacia, Sweden. Endo-1 ,4-B-galactanase
(EGALN), endo-1,4-B-glucanase or cellulase (E-CELTR), endo-1 ,4-polygalacturonase
(E-PGALS), xylanase (E-XYTR1) and pectic galactan were purchased from Megazyme,
Ireland. Ultima-Flo AF, a biodegradable scintillation fluid, was purchased from Packard
Instrument company, Meriden, CT 06450. Rhamnogalacturonase A and B were kindly
given by Dr Kirk Schnorr, Novozymes A/S, Bagsvaerd, Denmark.
All other chemicals used in this work were of analytical grade. All aqueous solutions

were made in glass distilled water.
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B. Plant Material

Peas (Pisum Sativum L. cv Meteor) were obtained from Sharpes International,
Sleaford, U.K. or from Thomas Dagg & Sons Ltd, 16 Bath St, Glasgow, UK. Seedlings
were soaked overnight in water at room temperature and then grown on damp vermiculite
for 6 days (for particulate membrane preparation) or 9 days (for xyloglucan preparation)

at 25°C in continuous darkness.

C. Particulate Membrane Preparation

Membranes were prepared according to the methods described by Hobbs er al.
(1991) and Baydoun ef al. (2001) with minor modifications, Etiolated seedlings were
used to obtain the epicotyls. The hooks were excised and discarded, while the remaining
part of the epicotyls was cooled on ice. All subsequent operations were carried out at 0-
4°C. The epicotyls (100 grams) were chopped with a razor blade and then homogenised
using a pestle and mortar in 35 ml of a homogenisation buffer that contained 10mmol.I"
Tris-HCI (pH 7.4), 10mmol.I" KC, 1.5mmol.I" MgCl, and 10mmol.I" dithiothreitol.
The homogenate was strained through four crossed layers of muslin. The residue was re-
homogenised in 50 ml of homogenisation buffer and strained. The two filtrates were
combined and centrifuged at 27,000g (or as indicated as initial centrifugation) for 10
minutes in a Sorvall RC-5B centrifuge. The pellet was discarded, whereas the supernatant
was centrifuged at 100,000g for 1 hour in a Sorvall OTD-65B ultracentrifuge using an
AH629 swing-out rotor. The resulting pellets were then resuspended in resuspension

buffer (50mmol.l"l Mes, pH5.5 or as indicated) and subjected to ten strokes ina glass-
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teflon, 1ml tissue homogenizer to make the particulate enzyme preparation. This was kept

on ice and used within 20 minutes.

D. Galactan synthase assay and particulate enzyme preparation
Standard incubations, (unless otherwise specified), for galactan synthesis

contained UDP-[U-""C]galactose (1.4 KBg, 1.4umol.1"), MnCl, (10mmolL.I'") and the

particulate membrane preparation (50ul) in a total volume of 100pl. Non-radioactive
uridine-diphospho-galactose (UDP-galactose) 0.2mmol.I" was added to the standard
incubations in later sections (after optimisation). The assays were carried out at 25°C for
1 hour, and terminated by the addition of 90% (v/v) ethanol (1ml). The pellet was then
washed three times with 70% ethanol (1ml) and once with water. The pellet was either
resuspended in 0.4ml of water and its radioactivity determined by liquid scintillation
counting (particulate product) or treated with a specific enzyme. To determine the
Incorporation into galactan, the pellets were treated with 10 units of galactanase enzyme
(50ul enzyme + 150ul of 50mmol.l" sodium acetate buffer pH 4.5) or with 200ul of the
same buffer (control) at 40°C for 18 hours or as indicated. The radioactivity in the

solubilised material was determined.

E. Preparation of solubilised radioactive polysaccharides for analysis

For preparation of ['*C]-galactan, the above procedure was scaled up where
appropriate. After the pellets had been washed with 70% ethanol and water, pectins were
extracted by boiling for 10 minutes with 50mmol.I"" EDTA-phosphate buffer (pH 6.8)

and the extracts were passed through a (1 x 15cm) Bio-Gel P10 column. Where indicated,
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4% KOH/0.1% NaBH, extractions were catried out at 25°C for 1 hr after the EDTA-

phosphate extractions. The alkali-soluble fraction was neutralised with acetic acid, then

passed through the same column.

For preparation of [“C]-xylose- and [14C]—fucose-1abelled polymers,
modifications of the conditions of Camirand et al. (1987) and Baydoun et al. (2001) were
used respectively. The particulate membrane preparation was incubated with either UDP-
[U-"Clxylose (1.8 kBq, 1.8umoll") or GDP-[U-"C]fucose (1.4 kBq,1.2umol.l),
together with non-radioactive UDP-xylose (0.02mmol.I""), UDP-galactose
(0.02mmol.1""), UDP-glucose (2mmol.I"") and MnCl, (10mmol.1"), and the pellets then

washed and extracted as those of [*C]-galactan.

For preparation of ["*CJ-pectin using UDP-[U-*C]-glucuronic acid, referred to as
“radioactive pectin”, conditions of Rizk et al. (2000) were applied. Thus the particulate
membrane preparation (191ul) was incubated with UDP-[U-'*C]-glucuronic acid (3.53
kBq, 1.7 umol.I""), UDP-xylose (1mmol.I""} and MnCl, (10mmol.I") in a total volume of
200pl at 25° C, for 4 hours. The pellets were then washed and extracted as above, but the

EDTA-phosphate extracts were passed through Sephadex G-100 column.

F. Enzyme Treatments
Particulate enzyme preparations, EDTA extractions, KOH extractions, or others
were incubated with the 10 units (per total 200ul incubation) of each of the following

enzymes at the pH and temperature specified by the Sigma or Megazyme catalogue.
Rhamnogalacturonase incubations were carried out using conditions similar to those

described by Geshi et al. (2000). Reactions were stopped by boiling for 15 minutes at
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100°C. Where required, the solubilised supernatant was neutralised and rotoevaporated
before running on gel filtration columns or using in binding experiments. Control
incubations were processed as above with the appropriate buffer in the absence of the
enzyme. The thamnogalacturonase and the endo-1,4-3-D-galactanase were highly
purified enzymes and had no significant contamination with other activities (Geshi et

al.,2000.

-Endo-1,4-f-D-galactanase (EGALN): from Aspergillus niger (Megazyme), 10 units in

50mmol.I"" sodium acetate buffer, pH 4.5 at 40°C for 18 hours or as indicated.

-Endo-1,4-f-glucanase or cellulase (E-CELTR): from Trichoderma longibrachiatum

(Megazyme), 10 units in 50mmol.I"" sodium acetate buffer, pH 4.5 at 40°C for 18 hours

or as indicated.

-Pectin Lyase (P-2804) : from Aspergillus japonicas (Sigma), 10 units in 50mmol.I"*

sodium acetate buffer, pH 5 at 40°C for 18 hours or as indicated.

~Endo-1,4-polygalacturonase (E-PGALS): from Megazyme, 10 units in 50mmol.1"!
sodium acetate buffer, pH 4 at 40°C for 18 hours or as indicated.

- Rhamnogalacturonase: kindly provided by Dr Kirk Schnorr, Novozymes A/S,

Bagsvaerd, Denmark. 10 units in 50mmol.I"! sodium acetate (pH 3.5) buffer, at 30°C for
2 hours or as indicated.

- Proteinase K [fungal] (P-8044): from Tritirachium album (Sigma), 10 units in

50mmol.1" Tris-HCI (pH 7.4) buffer, at 37°C for 18 hours or as indicated.

- Protease [bacterial] (P-5130): from Streptococcus griseus (Sigma), 10 units in

50mmol.1I" Tris-HCl (pH 7.4) buffer, at 37°C for 18 hours or as indicated.
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~Pectin methyl esterase (P-5400): from Sigma, 10 units in 50mmol.I"! Tris-HCI (pH 7.4)
buffer, at 30°C for 18 hours or as indicated.

~Xylanase (E-XYTRI): from Trichoderma viride (Megazyme), 10 units in 50mmol.1"!

sodium acetate buffer, pH 4.5 at 40°C for 18 hours or as indicated.

G. Gel Permeation Chromatography (Gel Filtration)

Supernatants obtained from EDTA extractions or from enzyme treatments were
applied to (1 x 15cm) columns packed with Bio-Gel P10, Sepharose CL-6B, or Sephadex
G-100 and were eluted with water (or as indicated). Blue Dextran and CoCl, were used as
the high and low molecular weight markers respectively. Samples (0.5-1ml) were
collected using a fraction collector and assayed for their radioactivity. Where indicated,
the material eluted in the void volume (with the high molecular weight marker) referred
to as the “high molecular weight extract” was collected for further treatment.

In some sections the galactanase enzyme was referred to as desalted. This indicates that
the enzyme was run on a small Bio-Gel P4 column (1x8cm) and the high molecular
weight material was concentrated and used as desalted enzyme. This procedure was
carried out to remove the 3.2 mol.I" ammonium sulphate in which the enzyme is

supplied. But it should be noted that much of its activity is lost due to such treatments.

H. Anion-exchange chromatography
An EconoPac High Q cartridge [Sml] (from Bio-Rad) was used for anion
exchange (Willats ef al., 1999; McCartney et al., 2000). The cartridge was eluted

successively with 0, 0.3, 0.5, and 1moLI"! NaCl in 0.2mol.l"" Tris (pH7.8) buffer. The
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material eluted in the Omoll’ NaCl / 0.2mol.l" Tris buffer represents the neutral
fractions. The remaining fractions constitute the acidic fractions. 50 mmol.I'' EDTA or
8mol.1" urea were added to the eluent where indicated. Sodium azide (0.02 %) was added

to the buffers to avoid bacterial contamination.

1. Total Acid Hydrolysis

Galactosylated products were hydrolysed with 2mol.I" trifluoroacetic acid (TFA)
for 1 hour in a sealed tube at 120°C as described by Baydoun et al. (1989). Insoluble
material was removed by centrifugation at 14,000g for 10 minutes in an MSE
microcentaur microfuge. Samples were rotoevaporated to dryness to get rid of all TFA,
dissolved in about 50pl water and applied to a Whatman Nol paper chromatogram (or
added to particulate enzyme preparations). Descending paper chromatography was
catried out for 18 hours (or as indicated) in ethyl acetate/ pyridine/ water (EPW) 8:2:1
(v/v) or in EPW 10:4:3 (v/v). Radioactivity on the chromatogram was analysed by
clectronic autoradiography using a Packard Instant Imager or by cutting the paper into
1x4cm strips of the paper chromatogram and placing them in scintillation vials containing
Iml of scintillation fluid (Harris and Northcote, 1970). Marker sugars (glucose, galactose,
arabinose or others) that were run parallel to the hydrolysed radioactive material, were
detected by dipping the paper for 1-2 minutes in a solution that contained AgNO; (0.2g)
dissolved in water (0.4ml), and 26ml of acetone. After drying for 3-5 minutes, it was
dipped in a solution that consisted of NaOH (10molL1’, 1.25ml) and absolute ethanol

(100ml). Brown spots appeared, indicating the presence of the marker sugars (Fry, 1988).
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J. Partial Acid Hydrolysis

Galactosylated products were hydrolysed with 0.1moll" trifluoroacetic acid
(TFA) at 100°C for 3 hours, followed by descending paper chromatography in ethyl
acetate/pyridine/water 10:4:3 (Panayotatos and Villemez, 1973). Galactobiose and
galacto-oligosaccharide standards were generated by partial acid hydrolysis of 1,4-B-

galactan.

K. Cell Wall Preparation

Cell wall preparations were based on the method described by Brett et al. (1997).
Epicotyls from 6 days old peas were chopped using a razor blade as described in
“Particulate Membrane Preparation” section and were homogenised in pestle and mortar
with an equal weight of 10mmol.I" oxalic acid/10mmol.I"" sodium phosphate buffer
(pH 5). The homogenate was strained through two layers of muslin and then divided into
1.5ml fractions. These fractions were next centrifuged in an MSE microcentaur

microfuge at 3000g or 6500 rpm for 5 minutes. The pellets were next washed with 0.5ml

of the same buffer before they were used in binding assays.

L. Xyloglucan Preparation

Xyloglucan preparation from peas was based on modifications of the methods of
Hayashi and Maclachlan (1984) and of Ogawa et al. (1990). Second and third internodes
(50g) were harvested from 8-9 days old peas and extracted 3 times with 70% (v/v)
ethanol (150ml) for 30 minutes at 70°C to remove the lipid. The tissue was then chopped

with a razor blade, homogenised using a pestle and mortar in Tris-HC1 buffer (0.1mol.1",
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pH 7.0, 75ml), and centrifuged (8000g, 10 minutes). The pellets were extracted 3 times
with EDTA buffer (0.1mol.1", pH 7.0, 75ml) for 30 minutes at 85°C to remove the pectic
fraction. The pellets were next extracted 3 times with 4% KOH/0.1% NaBH, (75mi) for 1
hour at 25°C in a shaking incubator; the 4% alkali removes some of the hemicelluloses
present, especially xylans. Centrifugation at 8000g for 10 minutes resulted in an insoluble
material referred to as “cell wall ghosts” consisting mainly of cellulose and xyloglucan.
The pellets were next extracted twice with 24 % KOH/0.1% NaBH, (25ml) for 4 hours at
25°C in the same incubator. The 24% KOH-soluble fractions were combined and
neutralised with acetic acid. The neutralised fractions were treated consecutively with
salivary a-amylase (Rizk et al., 2000), galactanase, xylanase, followed by protease for 24
hours at 37° C (Rizk ef al., 2000). To prevent bacterial contamination during the long
enzyme treatments, a thin layer of toluene was added. The samples were next dialysed
before ethanol was added to 70% (v/v) final concentration. The xyloglucan was allowed
to precipitate overnight and stored in deep-freeze. The xyloglucan was washed with
buffer or water before use. Xyloglucan content was determined by the iodine-sodium
sulphate method (Kooiman, 1960; Hayashi et al, 1980) where 1ml of prepared
xyloglucan was added to 0.5ml of 0.5% iodine solution (in 1% KI) and 5ml of 20%
sodium sulphate solution. Absorbance was read at 640nm after leaving the samples 1hour

in the dark at 25°C.

M. Binding assays
The prepared cell wall pellets or the prepared pea xyloglucan (1mg/incubation)

were resuspended in 0.3ml incubation buffer (10mmol.I" oxalic acid/10mmol.l" sodium




42

phosphate buffer, adjusted to the correct pH with HCI or NaOH) and incubated with
0.3ml of the ["*C]-labelled material at 25°C for 5 minutes. ['*C]-galactan or UDP-["*C]-
glucuronic acid labelled pectin (20-30 Bq) or the products of these polysaccharides after
treatment with enzymes constituted the ['*C]-labelled material. The incubation was
terminated by centrifuging for 5 minutes at 10000g. The pellets were washed once with
buffer of the appropriate pH (0.5 ml), centrifuged for 5 minutes, resuspended in 0.4 ml

water and mixed with 4ml of scintillation fluid to assay for radioactivity.

N. Exogenous pea pectin or pea polysaccharide preparation

Exogenous pea pectin was prepared by extracting cell wall pellets (see section K,
for preparation) with 50mmol.1"! EDTA-phosphate buffer (pH 6.8) for 10 minutes at
100°C. The extract was next desalted by passing it through a Bio-Gel P10 column. The
high molecular weight material was collected and concentrated to form the exogenous
pea pectin.

The pea polysaccharide was prepared through the same procedure but by
extracting the cell wall pellets with 4% KOH (in the presence of 0.1% NaBH,) after the

EDTA/phosphate extraction. The alkali extraction is next neutralised and dialysed before

being used.

O. Test for 3-galactosidase activity
The activity of B-galactosidase was assayed according to the method of Fry

(1988). 0.5ml of 5mmol.I"} para-nitrophenyl-B-D-galactoside (pNP-galactoside) in buffer

(50mmol.I"" acetic acid, pH 4.7) was incubated with tested enzyme (0.5ml) for certain
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time intervals. The incubations were terminated with 1mol.I" sodium carbonate. The
solution was then assayed spectrophotometrically at wavelength 400nm to check for the
pNP that results from the hydrolysis of pNP-galactoside and that has a yellow colour in

alkaline medium.

P. Viscometric analysis

Viscometric analysis was performed in a Cannon-Fenske Routine Viscometer
(Industrial Research Glassware, Ltd., Roselle, New Jersey 07203) to study the rate of
flow of 1% and 0.5% pectin or xyloglucan with our without enzymes. The analysis was

carried out at 40°C or according to the assay conditions.

Q. Radioactivity Determination

Radioactivity was determined using an LKB 1217 liquid scintillation counter. Samples
were assayed for radioactivity for 5 minutes in a biodegradable scintillation fluid known
as Ecosint.

Where indicated results are expressed as the mean +/- the standard deviation between the
experimental values (2 replicates). The results were repeated at least twice from different

particulate enzyme preparations and representative data is shown.




Results

Chapter I1I

Optimisation of Galactan Synthase Assay
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Chapter I1I

Introduction

Particulate membrane preparations prepared from etiolated pea epicotyls were
assayed for galactosyltransferase activity using UDP-[U-"*C)-galactose. The total
incorporation into ethanol-insoluble material cannot be taken solely as a measure of
galactan synthesis, since the galactosyltransferases present in these incubations may
transfer the radioactive label into any of at least three products: galactan, xyloglucan, and
glycoprotein (Dani, 1996; Baydoun et. al, 2001). The aim of the work presented in this
chapter was to optimise the conditions of the enzyme galactan synthase involved in the
production of p-(1,4)-galactan. Thus optimal conditions were chosen according to
digestibility of product by endo-1,4-B-galactanasc. Another approach was to study

different extraction or solubilisation methods to help in the analysis of the galactan

product.

A. Determination of optimum conditions for galactan synthase assay

1-Cation Effect

The effect of adding different divalent cations or EDTA (a chelating agent) to the
particulate enzyme preparation was investigated. Compared to the control (with no
addition of cations), MnCl, {Fig 7] was found to give the best incorporation of
radioactivity from UDP-[U-'*C]-galactose into the galactan product (radioactive material

solubilised by endo-1,4-B-galactanase). CoClz, CaCly, MgCly, NiCl; had a less
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stimulatory effect. CuCl, and EDTA had an inhibitory effect. When the effect of different
concentrations of MnCl, was investigated, it was found that 10mmol.I"! MnCl, resulted in

the best incorporation [Fig 8].

2-Time-course of incorporation of radioactivity

Incorporation of radioactive galactose into galactan was found to be time-
dependent [Fig 9]. The non-linearity of the time-course prevented the accurate
determination of kinetic characteristics. This non-linearity may be partly due to an
endogenous galactanase present in the membrane preparations as shown in later

experiments. Based on this result, all further incubations were carried out for 60 minutes.

3-Effect of adding non-radioactive sugar nucleotides

The effect of adding uridine-diphospho-D-xylose (UDP-xylose) and uridine-
diphospho-D-glucose (UDP-glucose) both separately and together to the standard
incubation was studied to be able to compare with galactosyltransferase enzyme
investigated in peas by Dani (1996). These non-radioactive sugar nucleotides were
expected to stimulate incorporation of UDP-[U-'*C]-galactose into xyloglucan since both
xylose and glucose are part of the main xyloglucan heptasaccharide unit. But as in the
work of Dani (1996), the presence of these sugar nucleotides inhibited the incorporation
of UDP-[U-"*C)-galactose into the particulate enzyme preparation in an additive manner,
producing together almost a 60% inhibition [Table 1]. The inhibiting effect was much

less evident for galactan synthesis [Table 1].
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4-pH effect

The optimum pH for the incorporation of radioactivity into the particulate enzyme
preparation was studied over a range of pH 4.0-8.0 with a 50mmol.I"! Mes/Tris HCI
buffer. As shown in Fig 10, there exists a broad peak for pH optimum between pH 5 to 7

for the galactan product. Another peak also exists around pH 8. The next chapter shows

more detailed work done to optimise the effect of pH.

5-Effect of adding external acceptors

An extensive study was performed to compare the effect of adding galactan,
peetin, and RG 1 on the incorporation of radioactivity [Table 2]. Galactan stimulated the
incorporation of UDP-[U-"C]- galactose into particulate enzyme preparation as well as
into the galactan product at most concentrations studied. Pectin had little effect while
RGI was inhibitory. Triton X-100, when used alone or in the presence of the above

external acceptors resulted mainly in a stimulatory effect [Table 3].

6-Effect of varying concentrations of UDP-[ U—”C/— galactose

The amount of UDP-[U-'*C]- galactose needed to obtain optimal incorporation
was about 1.5 KBq (0.0375uCi) resulting in about 6% incorporation into particulate
enzyme preparation and 4% incorporation into galactan product [Table 4]. Since this
concentration gave the best incorporation, the same concentration was retained when the

assay was scaled up to obtain more radioactive product.
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B. Analysing the product

1-Total acid hydrolysis

Total acid hydrolysis (2mol.1" TFA at 120°C for 1 hour) of the particulate
enzyme preparation, followed by paper chromatography in ethyl acetate/pyridine/water

(EPW) 8:2:1 (v/v) revealed that at least 90% of the radioactivity ran as a peak parallel to

the marker sugar galactose [Fig 11].

2-Enzyme treatments

To study the solubilisation of the radioactive product due to different enzyme
treatments, the washed pellets were treated with different enzymes as described under
“Materials and Methods” and the radioactivity was analysed in the supernatant and the
pellet [Table 5]. The control included only buffer, as boiling did not always result in
complete deactivation of the enzyme. There was around 55% solubilisation of galactan
product due to galactanase, 65% due to pectin lyase, 52% due to protease of bacterial
origin, and 72% solubilisation due to protease of fungal origin

(Proteinase K).

3-Solubilisation of galactan product

In an attempt to solubilise the galactan product that was being synthesised before
treating it with enzymes, two approaches were used. The first approach was to use the
standard method of terminating the incubation reaction with 90% ethanol, then washing

the insoluble material with 70% ethanol (3x) followed by a water wash. The galactan
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product was then extracted with either 1ml of 50mmol.I"" EDTA-phosphate buffer
(pH6.8) or 1ml of water at 100°C for 10 min and the extracts were run on Bio-Gel P10
[Fig 12]. The EDTA-phosphate extract was found to be richer in the high molecular
weight material than the water extract.

In the second approach, the incubation reaction was terminated by boiling for 10
minutes instead of adding 90% ethanol and no washes were performed to avoid loosing
any galactan product. Thus all the low molecular weight incubation products remained in
the subsequent analysis. The pellets were extracted with EDTA-phosphate buffer or water
as in the first method. As expected, when run on Bio-Gel P10 the low molecular weight
region had very high counts as the pellets contained the unspecifically bound or excess
UDP-[U-"*C]- galactose [Fig 13]. No problem was expected as the product of interest in
this study lies in the high molecular weight region. But after running UDP-[U-"*C]-
galactose on Bio-Gel P10, it was found that the radioactivity in the high molecular weight
region was enough to obscure the radioactivity of the product that is being synthesised

[Fig 14]. Therefore, this method had to be abandoned and all future extractions followed

only the first approach.

4-Analysis of the water wash

Some investigators reported that galactan was water-soluble [McNab ef al. (1968)
and Goubet and Morvan (1993)]. Thus, to make sure that the product is not being washed
out, the water wash was run on Bio-Gel P10 to check if much material is lost in the high

molecular weight region [Fig 15]. Only 4.4% of the water wash was of high molecular
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weight material, thus the standard procedure of washing with water after the ethanol

washes was continued for the rest of the experiments.

S-Extractions and enzyme treatments

To be able to further characterise the product, different extractions were
performed. The particulate enzyme preparation was treated with EDTA-phosphate buffer
(50mmol.I", pH6.8), water, 4%KOH (containing 0.1%NaBHy) at different temperatures
[Table 6]. It was found that hot EDTA-phosphate buffer and KOH gave the best
solubilisation, thus pellets were extracted with them consecutively. These extractions
were then concentrated and the KOH extract was neutralised and both were run on Bio-
Gel P10 column [Fig 16]. Much of the high molecular weight material was solubilised by
the first EDTA-phosphate buffer while some remained insoluble with EDTA-phosphate
buffer but soluble with KOH.
Since the product of interest in this study lies in the high molecular weight region, the
high molecular weight fractions from the extracts were treated with galactanase or other
enzymes, then run on a Bio-Gel P10 column to compare the changes in molecular weight.
It was shown that the hot EDTA-phosphate buffer extract included a galactan [Fig 17].
Galactanase enzyme resulted in approximately 23%, pectin lyase 31%, cellulase 25%,
and proteinase K 30% breakdown of the high molecular weight material into intermediate

or low molecular weight products. The KOH extract contained a galactan as well as other

products as evident in Fig 18.




65

%€ (HYTD.STTU) YHAENY%T°0 ‘THOM %V

%1 (D ST W) 4ogynq eydsoqd-vLAT
(UrQT*D.00 I THT)

%bE 1ayynq deydsoqd-v.1.ad 190H

%21 (AYT*DSTTWY) FANBA

%ST (MWD 00TTW]) 19384 JOH

NS % SjuduWI}edL],

*pasn 219 sHONEqNOUI PIEPUE]S (NS)

juejenIadns at) 0} [BLI3JRU JANIEOIPEL JO UOLESIIGR]OS 3Y) UO SUOIBHXD JUAIAJIP JO 193 *9 2IqBL




66

"€7-81 SuonoRl U2IMIaq
URI IaIRW ¢[H0)) A} UM ‘6-/ SUOLIIRI] UAMIA( URI IONIRW UBNXI(] on[g oYL "HO %P Aq P21oBNXo [BLId)eut
a1y} JuesaxdaI sa[oII0 A 0eNXd ey dsoyd-y (g puoo9as oy Juasoidar soj3uern Qoenxs sreydsoyd-y 1, 1SIT

ot} Juesaxdar sarenbg ‘FHAEN %I'0/HO % Aq paso[io} (39143) eqdsoqd-y LA 10 YA £[PANNIISUOI
uoneredoad swiAzus djemdnaed 3q) SundILIXI I9}JE UWN[0) ([ J [99-0Ig U0 uonenny [0 ‘91 S

UOI10BI,]

3T 9T ¥C (44 0¢ 81 91 1A 4! 01 8 9 14 [4 0

- 01

- <1

14!

(bg) uvonerodioouy




67

€081

SUOT)ORI] U99MIOq URI ISNIBUI T[)0)) ) [TYM ‘6-/, SUOLIORI U] URI JONIRW UBIIXS(] anjg ], (S95S0I0) aseL]
unoad yyim 10 ‘(sar3uern) I aseurajord ‘(sarenbs uado) asen[eo (sarenbs pasold) aseuridr[es Yim pajear) 1M
$10BIIX9 ST, *ATUO JOBI)Xd POJBANUN JO SISISUOD (SI[OIID) [ONUOD O], "SIWAZUD JUIIIJIP Y1 Jonpord emonaed
Y} JO $)9BNX3 VLA 1SR I8[NII[OW YSIY 3Y) SUNEIL) J9)J€ UUR[0D ([ [PD-0Ig U0 UORELI[Y 99 L] SI

uoroej
9¢ 174 (44 0¢ 31 91 1! 4! 01 3 9 4 4 0

uonoeI,]

T

T
O v N NN O

(bg) uornesodioouy

(bg) vonerodioouy




68

"€7-1] SUOTIORI U22MIAq UBI

JoxIew T[H0)) 9y} [IYM ‘G-/, SUOIORI] U2aMIaq URI IS el URNX(] anfg U], ‘(seduelny uado) aseuomoreedLjod
g JO ‘(sojSueLn pasold) ased] unodad ‘(sarenbs uado) asenyeo {(sesenbs pasoro) aseuror[ed Yim pojeaI orom
S]I0BIXD O], "ATUO 10BIIXd PAJBANUN JO SISISUOD (SI[OIID) [ONUOD O, *SOWAZUD MRIIIJIP YuM Jonpoad ajemonaed
31} JO S1OLIXd HOM 1YSIOM Je[ndd[our Y31y ) Suned.) J)Je uwunjod (IJ [99-olg Uo UoneIyIy [9) ‘81 S

uoI1oRI ]

8¢ 9¢ Ve (44 0¢ 81 91 14! cl 01 8 9 14 [4 0

¢l

4

e

(bg) vonerodioouy




69

Conclusion

The conditions for galactan synthase in peas (Pisum Sativum L. cv Meteor) were
partially optimised. 10mmol.I"* MnCl, resulted in the best incorporation of UDP-[U-"C)-
galactose into particulate enzyme preparation. The optimal concentration of radioactive
UDP-[U-'*C]- galactose and the termination method of the incubation reaction have been
established. The results stated in this chapter showed that a galactan was being formed,
but further work was still needed to identify the products further and the nature of any

polymer to which the galactan was attached. This will be discussed in the next chapters in

addition to further optimisation conditions,




Chapter IV

Optimising Conditions Using a Different

Preparation Method
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Chapter IV

Introduction

In this chapter, further steps were taken towards optimisation since clear-cut optimal
conditions with regards to pH and time-course were not yet obtained. The centrifugation
protocols and the effect of adding external acceptors were investigated further in order
to obtain an increase in the amount of material solubilised by galactanase enzyme and a

decrease in the amount of material solubilised in the control.

A. Optimum conditions for galactan synthase assay using different preparation

method

1-Optimisation of the centrifugation speed

Experiments were performed in which the initial 13,000 g centrifugation speed
was varied over a time period of 0, 15, 30, 60, and 120 minutes. This was performed to
favour action of galactan synthase enzyme over other active galactosyltransferases and
also because it was suspected that the galactan product being formed was degraded with
time due to the action of an endogenous enzyme, The aim was to find conditions where
maximum amount of galactan was produced (material solubilised by galactanase
enzyme) with minimum amount of solubilisation of radioactivity in the control.
Centrifugation speeds of 3000, 13,000, and 27,000 g were studied [Table 7, 8, 9]. In
each case the supernatant from this initial centrifugation was re-centrifuged at 100,000g,
and the resulting pellet used for the particulate enzyme preparation. The highest
percentage of galactan in the product was after centrifugation at 27,000 g [Table 10].

This was the case whether the % incorporation into galactan was calculated just by
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accounting for the amount solubilised by galactanase or by accounting for the amount
solubilised by galactanase minus the amount solubilised in the controls. Incorporation
of radioactive galactose was found to be time-dependent [Fig 19]. Based on this result,
all further incubations were carried out for 60 minutes. This was chosen in preference to

120 minutes so that some substrate would still be present to transfer UDP-[U-"C]-

galactose to exogenous acceptors.

2- Effect of Cation
The effect of adding different divalent cations or EDTA to the particulate

enzyme preparation was investigated. The results were similar to those presented in the

previous chapter.

3-Effect of adding non-radioactive UDP-galactose

Adding non-radioactive UDP-galactose to the standard incubation had a stimulatory
effect [Table 11]. The best incorporation was at 0.2mmol.I"" UDP-galactose final
concentration. This concentration was used in the forthcoming experiments for the
assays of galactan synthase activity and preparation of ['*C]- galactan for analysis. A

time-course repeated with this concentration gave similar results to those reported

earlier.

4-Effect of pH
The optimum pH for the incorporation of radioactivity into the particulate

enzyme prepatation was studied over a range of pH 3.0-10.0 with a buffer of 50mmol.1”

Mes/Tris HCI/NaHCO;, As shown in Fig 20, the optimum pH for the particulate
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enzyme preparation was between pH 7 and 8. However, MES buffer (50mmol.I"") pH
5.5 was found to give the highest percentage of galactan in the product (if accounted for
by subtracting the amount solubilised in the controls) as shown by galactanase
treatment [Table 12]. EDTA extracts of the incubation products at pH 5.5, 8, and 10
were run on Bio-Gel P10 column [Fig 21]. Both high and low molecular weight
products were present at each pH, but the greatest amounts of high molecular weight
products were formed at pHs 5.5 and 10. Therefore, the rest of the experiments were
carried out at pH 5.5 since pH 10 is not within the normal physiological range. Perhaps,

other investigations should consider the nature of the product formed at pH 8.

5-Effect of pH and UDP-galactose concentration
So far, the previous experiments reported in this chapter showed that the optimal
UDP-galactose concentration is 0.2mmol.I"! and the optimal pH is 5.5. More
experiments were designed to test if a higher concentration of UDP-galactose at pH 5.5
or pH 7.5 may result in:
a) a higher proportion of galactan in the EDTA extract
b) alonger galactan chain that would help in differentiating between action of
enzymes.
Incubations of 0.2mmol.I"" or 20mmol.1" UDP-galactose (x100 or x10,000 of
concentration used earlier) at pH 5.5 (MES buffer) and pH 7.5 (MES/Tris/NaHCO»)
were assayed. The particulate enzyme preparation was washed as usual and the EDTA
extracts were run on Bio-Gel P10 to collect the high molecular weight material. This
was divided into three aliquots, and treated with galactanase enzyme, polygalacturonase

enzyme, or buffer (control). These treated aliquots were run on Bio-Gel P10 and the
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collected fractions were assayed for radioactivity [Fig 22]. All the above conditions
gave high breakdown with galactanase, but there appeared to be some variation in the
degree of breakdown with polygalacturonase enzyme. It may be that different types of
pectin (for example: different degrees of methylation or branching) were labelled under
different conditions. The more methylated pectin would be more resistant to
polygalacturonase breakdown. In any case, pH 5.5 and 0.2mmol.I"" UDP-galactose
conditions gave the best representation of high molecular weight EDTA extract broken
down by galactanase into low molecular weight product and broken down by

polygalacturonase into intermediate and low molecular weight product [Fig 22].

6-Galactanase time-course

The particulate enzyme preparation was subjected to different time intervals of
galactanase treatment. After termination, the solubilised supernatant was run on paper
chromatography in ethyl acetate/pyridine/water (EPW) 10:4:3 (v/v) for 18 hours [Fig
23]. Pellets were assayed for radioactivity and the % breakdown was calculated [Table
13]. Table 13, shows a large breakdown due to galactanase treatment starting from 15-
30 minutes. This breakdown increased gradually with time, but so did the solubilisation
due to buffer alone. Hence, it was concluded that it was best not to treat with enzymes
overnight (18hours) as done previously. Fig 23, revealed that a large amount of
radioactive galactose monosaccharide was present in the pellets as a low molecular
weight contaminant. When galactanase is present, the enzyme or the ammonium
sulphate in which it is resuspended or both caused this galactose to smear out along the
carlier part of the chromatogram, masking any oligosaccharide that might be present as

a result of hydrolysis. The peaks in fractions 21-22 and 15-16 suggest the possibility of
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the presence of a dimer and a trimer respectively. The peaks in fractions 4-6 might
represent a tetramer. To try to avoid smearing, the galactanase buffer was desalted by
running on Bio-Gel P4 column and collecting only the high molecular weight material.
The concentrated, desalted enzyme was used to repeat the same experiment and two
methods were applied to terminate the galactanase treatment either by boiling or by
adding ethanol to a final concentration of 70%. As it is evident in Fig 24, desalting the
enzyme did not result in the disappearance of smearing. This suggests that the enzyme

itself was interfering with the chromatographic system.

7-Extracting with hot water

From galactanase time-course experiments, it was suspected that a low molecular
weight contaminant existed that was most probably galactose. To test this further,
washed particulate product (washed with 70% ethanol and with cold water) was
extracted with water at 100°C for 10 minutes. The extract was then run on paper
chromatogram in two systems, 8:2:1 and 10:4:3 (v/v) EPW, for 18 hours. In the former
system [Fig 25] the galactose marker ran in fractions 11-13 and the glucose marker in
fractions 13-15, while in the latter system [Fig 26] galactose ran in fractions 37-39 and
glucose in fractions 39-41. These figures revealed that the main low molecular weight
material was clearly galactose. There was an unidentified product that ran faster than
galactose in both systems. Some of the material at the origin of the 8:2:1 (v/v) EPW
system may have been UDP-galactose. Peaks also existed in the disaccharide region,
suggesting the presence of galactobiose or other oligosaccharides. Hence such a wash
could not be performed routinely, but it confirmed our suggestion that some galactose

was present in the low molecular weight product.




88

"BUIUIR]S JOA[IS AQ POUIULIDIAP

a1om (9]D)) 9s0on[S pue (Ten)) asojoe[ed s1e3ns JoxIew J0] suonisod oY ], ‘WS)SAS JUSATOS MJH £:4:0] © UL
Aydei3ojewromyo 1aded Uo SIYY JOJ UNI SBAM [BLISJRUI PISI[IqNIOS S, “(Sarenbs £q pauasaidsai) HonBnUasUOD [RUL
%0L © 198 01 Toueylas Suippe £q 10 ($979110 Aq pussoider) Sulioq Aq IOUIIe POJEUIULIY] OIOM SJUSIIRII} ISBURIOR[ES
9, "SULIBSUIS PIOAE 0} A1} O] UWIN[OD 4 J [9D)-0Ig B U0 SWAZUD Iseur)oe[es oy} SUNenuaouos pue Surjessp

1o17e pareadar sem ¢z 314 JO usunNBan QT YL, OWAZID pajfesop Yym uoneredaad samAdzud ajemonaed

911 Jo (AYQT) JWOUI)BAI) ISBUEIIL[BS Jd)J8 [BIIdJLWI PISIIqNos 37} Jo Aqdeidoyewoayd saded “$7 Siq

oD 18D uISiIo woly wo

0s 8% 9% ¥¥ TP OV 8¢ 9¢ ¥E€ TE 0¢ 8T 9T ¥T TT 0T 81 91 %I T©L 01 8 9 % T O

! | ! ! 1 ! ! | ! ! ' ' '

(bg) uvonerodioouy



89

"Sururels I0AJIS Aq pAUIULIIAP 19M (9]D)
950on[3 pue ([eD) 25010€[e3 S1e3ns I3Iew 10y suonisod ay Y, siy g1 10f Aydeiforewroyo roded Jurpuadsap uo uni
QI9M SIORIIXD AU, “UIME(T 0¥ D,00T 18 J3JeM M PIexd suoneredaad dwiszud demonaed ag) Jo s)oenxa

Y} JO “uIdISAS (A/A) J9jeM PUIPLIAd :918)09% AY)9 [:7:8 ul ‘Aydeiasoyewoayd roded Surpuadsa( ‘Sz 1

UIS1I0 WIoIJ wWo

(bg) uoneiodioouy




920

11 @ao*ﬁ@,%ass%e
v—{ _ S aolN

¥ 177 = —

Lz

— =
r— —
lmﬂ c .

o w—

™

~

97 %

MCC »nS L n@Lﬁz gI

=

< o
no WMQ@

{"E ey on

Qe oo <

% un_.VI

= @ =360

Anpaﬁwa@oSOKﬁu —feT v _ =z

o =

91
El
1

(bg) uojiBJodjoou]



91

8-Effect of different additional washes

This study was performed in an attempt to find a combination of washes that
decrease the low molecular weight contaminant from EDTA extract or galactanase
solubilised material. It was already known that some of this low molecular weight
contaminant was galactose. Thus after the standard ethanol and water washes, additional
water washes were performed at 30°, 40°, or 50° C for 5 minutes or with 0.8 mol.1"!
ammonium sulphate at 40°C (similar to that present in galactanase enzyme buffer) for 5
minutes. These washes were run on Bio-Gel P10 column [Fig 27]. Later the pellets
washed with these additional washes or pellets as control (with a water wash at room
temperature or no extra wash at all) were extracted with hot EDTA-phosphate buffer
(50mmol.I", pH6.8) and run on Bio-Gel P10 [Fig 28). This investigation showed that al]
the additional washes seem to extract significant amounts of low molecular weight
material, but ammonium sulphate extracted additional high molecular weight material
whereas water at 40°C and 50°C extracted additional intermediate molecular weight
material [Fig 27]. Thus it was better either to perform a water wash at room temperature
or at temperatures not higher than 30°C or to perform no additional wash. Since the best
EDTA extracts were obtained from the pellets with only standard washes [Fig 28], the

rest of the experiments were carried out with only standard washes.

9-Effect of external acceptors

The effect of adding external acceptors such as galactan or pectin at different
concentrations was further investigated to investigate whether their stimulatory effect
(Chapter III, Table 2) was on the high molecular weight EDTA extract. From the

previous chapter, it was clear that galactan resulted in the most stimulation while pectin
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had less effect. Different concentrations of galactan (0, 0.5, and 1% galactan) or pectin
were added to the standard incubation. The incubations were terminated as usual with
90% ethanol and then washed (3x) with 70% ethanol only, then the EDTA extracts were
run on Bio-Gel P10. No water wash was performed in order to avoid possible
solubilisation of galactan in that wash. In such experiments there was no need to worry
about the presence of low molecular weight material, as the main interest was in the
high molecular weight product. Fig 29, shows that galactan did not cause much
stimulation of the high molecular weight EDTA extract. On the contrary, high
concentrations of galactan (1%) resulted in some inhibition (at least with the new
particulate enzyme preparation conditions). Similarly, with exogenous pea pectin [Fig
30] or commercial pectin no real stimulation was observed. The pea pectin was prepared
from EDTA extractions of cell wall preparations. Another trial was performed by
preparing pea polysaccharide from the 4% KOH extract (after EDTA extractions) of cell
wall preparations (see “Materials and Methods™). The effect of 1% (v/v) Triton X-100
was also tested in the presence or absence of the pea pectin or pea polysaccharide
prepared by EDTA or KOH extraction of the cell wall respectively [Fig 31]. Triton X-
100 is expected to allow the enzymes to be more accessible to acceptors. The results
showed that the solubilisation of high molecular weight material was most with EDTA-
pea pectin in the presence of Triton X-100, followed by KOH polysaccharide-pectin in
the presence of Triton X-100, and then with Triton X-100 on its own. The rest of the

acceptors behaved as the control (no external acceptor) or decreased solubilisation such

as KOH-polysaccharide pectin. Thus it was found that most of the stimulation needed
Triton X-100. To test the possibility if hydrolysed parts of galactan or pectin could act

as acceptors, rather than the whole molecules, 1% galactan or 1% commercial pectin
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were treated with galactanase, polygalacturonase, or pectin lyase enzyme then added as
acceptors [Fig 32, Fig 33]. Controls were formed by addition of the untreated substance
or no external addition. There seemed to be no stimulation in the high molecular weight
regions, though shifts are observed in the intermediate and low molecular weight
regions.
Since the stimulation of galactan synthesis was not evident in the high molecular weight
region, samples of galactan were hydrolysed with 0.1mol.I" TFA for 5 hours,
concenirated, and added as external acceptors to the standard incubation. The particulate
enzyme preparation was terminated with 90% ethanol and then analysed by paper
chromatography using a 10:4:3 (v/v) EPW solvent system [Fig 34]. Compared to the
results of Panayotatos and Villemez (1973), it appears that the TFA hydrolysed galactan
was causing synthesis of galactobiose (Rgal=0.6), in which case galactose would have
to be acting as an acceptor. This would be rather unusual for a polysaccharide synthase,
but not impossible.
Thus the next logical step was to add galactose of different concentrations to the
standard incubation, terminate with 90% ethanol and run this on a paper chromatogram
using a 10:4:3 (v/v) EPW system. There was no stimulation due to galactose as

compared to control [Fig 35].

B. Analysing the product under the new preparation conditions.

1-Total acid hydrolysis
The particulate enzyme preparation prepared under conditions specified in this

chapter was hydrolysed by TFA (2mol.I"" TFA at 120°C for 1 hour) and analysed by
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paper chromatography in 8:2:1 (v/v) EPW. This revealed a major peak that ran parallel
to the marker sugar galactose confirming that the radioactive label was in galactose

[Fig 36]. A second peak also existed that corresponded to arabinose, which ran twice as

fast as the galactose marker.

2-Partial acid hydrolysis

The particulate enzyme material prepared under conditions specified in this
chapter was subjected to partial acid hydrolysis by TFA (0.1mol.I"! TFA at 100°C for 3
hours) and analysed by paper chromatography in 10:4:3 (v/v) EPW [Fig 37] for 18
hours. Galactose and glucose markers ran in fractions 29-32 and 32-35 respectively as
shown by silver nitrate staining. The Rgal values obtained [Fig 37] revealed peaks that
corresponded to the products obtained by Panayotatos and Villemez (1973) of hexamer,
pentamer, trimer, dimer (galactobiose), galactose, and glucose [Table 14] confirming

the presence of a 3-1,4-galactan product.

3-Extractions and enzyme treatments

a-EDTA and KOH extractions:

The particulate enzyme preparation prepared under conditions specified in this
chapter was extracted with hot EDTA-phosphate buffer (50mmol.1", pH6.8) or with 4%
KOH (in the presence of 0.1% NaBH,) to verify that a high molecular weight product
similar to that in the previous chapter was produced. The extractions were neutralised
and concentrated by roto-evaporation then run on Bio-Gel P10 column [Fig 38]. This

system solubilised more EDTA extract in the high molecular weight region than with
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the conditions used before and therefore was more appropriate for enzyme treatments

and for studying the resulting shifts on Bio-Gel P10 columns.

b-Galactanase Treatment

Galactanase treatment of the high molecular weight EDTA extract [Fig 39]
gave a large shift into a low molecular weight product. However, the control (which was
incubated with sodium acetate buffer, pH 4.5, 40°C, 18 hours) gave a product of
intermediate molecular weight that was not observed before. Hence an endogenous
enzyme might have been breaking down our product in the 18 hours incubations, a
possibility which was further investigated as will be shown later.

The high molecular weight EDTA extracts were treated with desalted galactanase
enzyme or control (no enzyme added) and the low molecular weight product was
collected, concentrated, and run on 10:4:3 (v/v) EPW system. As Fig 40 indicates, the

low molecular weight galactanase-treated material had a large peak in the galactobiose

‘ region (fractions19-23) that was lacking in the control.

c-Enzyme Treatments

Total EDTA extracts were treated with galactanase or other enzymes, then run
on a Bio-Gel P10 column [Fig 41] or on a Sepharose CL-6B column [Fig 42] to
compare the changes in the molecular weight. The high molecular weight EDTA
soluble material was excluded from Sepharose CL-6B. The EDTA extracts on Bio-Gel
P10 show a large breakdown of our product by galactanase. Pectin lyase and endo-1,4-
B-glucanase break the high molecular weight product into intermediate molecular

weight on Bio-Gel P10, Thus the EDTA extract includes a galactan or a galactan

.
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attached to a pectin backbone. Degradation by endo-1,4-B-glucanase or proteinase K
initially suggested that some radioactive xyloglucan or glycoprotein may also be
formed.
The high molecular weight EDTA extract treated with proteinase K produced an almost
complete breakdown of the product with most of the radioactive material running
slower than the low molecular weight marker (both on Bio-Gel P10 and Sepharose CL-
6B). This could indicate that the proteinase K used in this work gave anomalous results
that caused the radioactive material to run slower, possibly due to some interactions
with the gel matrix. Alternatively, the proteinase K could be contaminated with 3—
galactosidase. Thus, this low molecular weight product was collected, concentrated, and
run on paper chromatogram in a 10:4:3 (v/v) EPW solvent system [Fig 43]. As
compared with silver stained markers the product ran parallel to the marker sugar
galactose. Hence the most plausible explanation is that the proteinase K enzyme is
contaminated with B—galactosidase activity which was subjected to further

investigations.

Conclusion

The conditions for galactan synthase in peas (Pisum Sativum L. cv Meteor) were
optimised. The best incorporation of UDP-[U-"C]- galactose into the galactan product
was at pH5.5 (Mes buffer) with a final concentration of 0.2mmol.I"! UDP-galactose
added to the standard incubation and with a pre-centrifugation at 27,000 g. Optimal
incubation time was 60 minutes. When the different washes of the pellets were
analysed, it was found that additional washes could decrease the low molecular weight

components containing galactose. However, this was not implemented since these
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washes solubilised some of the needed high molecular weight EDTA extracts. Partial
TFA hydrolysis and galactanase time-course experiments produced galactan
hydrolysates similar to those obtained by Panayotatos and Villemez (1973). Triton X-
100 was found to stimulate incorporation of label into the galactan product. The
findings in this chapter show that the product being synthesised was galactan and the
conditions for its production were optimised. The galactan product seemed to be
attached either to pectin or xyloglucan or both. A protein may also have been involved.

More work was next carried out on the attachment of this galactan.




Chapter V

Identification of the Galactan Chain and The Polymers

to Which It Is Attached
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Chapter V

Introduction

Previous results (such as enzyme breakdown analysis, galactanase time course,
and partial TFA hydrolysis) indicated that a galactan was being formed. It was now
important to determine whether an endogenous galactanase was still active in the
membranes since that would explain why some breakdown occurred in the high
molecular weight EDTA extracts incubated in buffer alone. The work described in this
chapter was aimed at further identifying the galactan chain and the polymers that might
be linked to it. This chapter also addresses the binding properties of the analysed

product to the cell wall as well as to the xyloglucan component.

A-Identification of the galactan chain and the polymers to which it is attached

I-Evidence for oligosaccharide series of galactan

The previous chapter has already provided some evidence for the presence of
oligosaccharide series resuiting from the partial TFA hydrolysis or enzymatic treatment
of galactan. But some doubt had arisen from the breakdown of some high molecular
weight EDTA extract in the control treatments at a specific pH and temperature to
produce intermediate and low molecular weight products. An endogenous galactanase
seemed to still be active in the EDTA extracts. This endogenous galactanase enzyme
appeared to withstand all the harsh conditions used in the preparation of the particulate
enzyme material and the EDTA extract. The particulate enzyme preparation was

incubated with UDP-[MC]— galactose for 0 min, 30 min, 60 min, 2 hrs, 18hrs, and 24hrs
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and terminated with 90% ethanol. After centrifugation the supernatant was run on paper
chromatography in a 10:4:3 (v/v) EPW solvent system [Fig 44 ). The galactose marker
ran between fractions 26-29. Comparing the results of the chromatography with the
work of Panayotatos and Villemez (1973) it was found that that the hexamers,
pentamers (Rgal<0.2), and tetramers (Rgal=0.25) were present in all the supernatants
obtained from this time-course study. However, they became less abundant with time.
The trimer that was present in fractions 9-11 seemed also to decrease with time but at a
lower rate. On the other hand, the dimer (galactobiose) in fractions 16-19 and the
galactose monomer seemed to increase with time. Thus the galactan product was being
degraded with time into its oligosaccharide components. To study if the control of
galactanase-treated EDTA extract behaved in a similar fashion, some EDTA extracts
were adjusted to the same conditions to test galactanasc activity (pH 4.5 with sodium
acetate buffer at 40°C) and kept for different time intervals (0, 4, 24, and 31 hours).
They were then run on paper chromatography in a 10:4:3 (v/v) EPW system. Compared
{o the work of Panayotatos and Villemez (1973) it was found that EDTA extracts kept
for 0 or 4 hour (at these conditions) have peaks at 1cm (hexamer or pentamer), 6-8cm
(tetramer ), 10-12cm (trimer), 21-24cm (an unidentified oligomer and probably UDP-
galactose), and at 26-29 cm (galactose) [Fig 45]. Extracts kept for 24 or 31 hours had
similar peaks but more radioactive material was present in the galactobiose (16-18cm)
position. This suggests that the endogenous galactanase could still be active in the

EDTA extract and therefore treatments with incubation time 4 hours or less are

recommended.




0 min 30 min 60 min 2 hrs I8 hrs 24 hrs

M  Pw

Hexamers,
Pentamers,
I'etramers

Trimers

Dimers

I
JEvATS

Galactose

Fig 44. Descending paper chromatography of the 90% ethanol used in terminating the
incubations of the particulate enzyme preparations at different time intervals. The
particulate enzyme preparation was incubated with UDP-[lU-"C]-galactose for 0 min,
30 min, 1 hr, 2 hrs, 18 hrs, and 24 hrs. After centrifugation, thé supernatant was run on
descending paper chromatography in a 10:4:3 EPW (v/v) system for 18hrs. The

position tor marker sugars galactose (Gal) was determined by silver staining. The
positions of the different olj gomers of galactose were determined by comparison

with the work of Panayotatos and Villemez (1973). Radioactivity was detected
with the help of an IMAGER.
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2-Enzyme treatments

a- Comparison of proteinase K and bacterial protease activities

Proteinase K was suspected (from results obtained earlier) to be contaminated
with galactosidase activity. The high molecular weight EDTA extracts from particulate
enzyme preparations were treated with the bacterial protease and proteinase K (fungal)
and the supernatants were run on Bio-Gel P10 [Fig 46]. A shift occurred from high to
low molecular weight material in the presence of the bacterial protease. As shown
previously the proteinase K gave a product (galactose) that ran slower than the low
molecular weight marker (CoCl,). To test if proteinase K is contaminated with
galactosidase activity, the latter activity was assayed according to the method of Fry
(1988). 0.5ml of Smmol.I"" para-nitrophenyl-B-D-galactoside (pNP-galactoside) in
buffer (50mmol.I" acetic acid, pH 4.7) was incubated with tested enzyme (0.5ml) for
certain time intervals. The incubations were terminated with 1mol.l"' sodium carbonate.
The solution was then assayed spectrophotometrically at wavelength 400nm to check
for the pNP that results from the hydrolysis of pNP-galactoside and that has a yellow
colour in alkaline medium {Fig 47]. This indicates that proteinase K is contaminated
with B-galactosidase activity.

The high molecular weight EDTA extract, treated with bacterial protease was
studied further by running it on Sepharose CL-6B to test for the existence of
intermediate peaks as those reported by Crosthwaite et al. (1994). This was not the case
as evident in Fig 48. However, the possibility that the product formed may be linked to
a protein cannot be ruled out. The degraded product might still be of high molecular

weight material and hence eluting in the void volume with the high molecular weight

marker (Blue Dextran).
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b- Chromatography using Bio-Gel P10 columns

The high molecular weight EDTA extract was further analysed by incubating it
for half an hour with different combinations of enzymes [Fig 49 and Fig 50]. Upon
treatment with polygalacturonase (PG) or pectin lyase (PL) a shift in the peak occurred
suggesting the attachment of the galactan product to pectin. The endo-1,4-B-glucanase
degraded the product as evident from the presence of an intermediate molecular weight
peak. This indicates that the radioactive product most probably consisted of XG
attached to ["*C]-galactan rather than of ["*C]-galactose attached to XG; otherwise
endo-1,4-B-glucanase would have resulted in the degradation of [**C-galactose]-XG to
low molecular weight material (for example: ['*C]-nonasaccharide). Some ("*c}-
galactan might be attached to XG, others to pectin, and a complex of all three together
might also be a possibility. The fact that the action of PG and endo-1,4-B-glucanase
enzymes was not additive may indicate that they are acting on the same complex.
Treatment with rhamnogalacturonase B also produced a shift from high molecular
weight into intermediate molecular region suggesting the attachment of the 1,4-f-
galactan to an RGI-PGA backbone [Fig 51]. A difference in the intermediate peaks
produced by rhamnogalacturonase B or by polygalacturonase enzyme exists [Fig 49,
Fig 51]. The intermediate peak produced by polygalacturonase enzyme was broad and
flat indicating the production of oligomers of different sizes attached to the ["*C]-
galactan [Fig 49]. The intermediate peak produced by rhamnogalacturonase B
degradation gave a single intermediate peak of a greater Kav than peaks obtained by
polygalacturonase degradation. No change in elution behaviour was detected when the

radioactive polymer was run through Bio-Gel P10 in the presence of 8mol.1" urea,
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indicating that the components of the polymer were held together by covalent bonds
[Fig 52].
All this supported the possibility that we are dealing with complex of galactan,

PGA, RGI, and xyloglucan. Yet, more work was necessary to understand how these

complexes are attached.

¢~ Anion-exchange chromatography

The high molecular weight EDTA extract was run on EconoPac—High Q
cartidge from Bio-Rad. Some of this material (15-30%) was eluted in the neutral region
whereas the majority (70-80%) remained attached to the anion column and was eluted
with 0.3 mol.I"' NaCl/ 0.2M Tris pH 7.8 buffer which indicated that it was partly acidic
[Fig 53]. Galactan is neutral, thus the material eluted in the acidic medium was galactan
attached to pectin or to another polymer. The radioactive material that did not bind to
the column (that is the material eluted in the buffer with Omol.I"' NaCl) was
concentrated and passed through a Bio-Gel P10 column [Fig 54]. This material was
eluted in the void volume confirming that it was polymeric. Hence it was probably not
free galactan, but attached to either XG or to highly methylated pectin or to a
rhamnogalacturonan I with a low charge density.

In the presence of 8mol.l"! urea, an even greater portion (90%) of the polymer
was found to bind to the ion exchange and most of it required buffer containing
0.5mol.1"! NaCl for elution [Fig 55]. This increased binding in the presence of urea may
either be due to decrease in water content or due to the removal of a neutral non-
covalently bound protein. No significant change in binding in the presence of urea

occurred after treatment of the radioactive polymer with bacterial protease, indicating
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that the binding was not due to an acidic protein [Fig 56}. No change was also observed
in binding after incubation with pectin methyl esterase even in the presence of
50mmol.I"! EDTA. EDTA was added to remove the possibility of a cation binding to the
negative portions of the product and thus allowing it to elute with the neutral portion
[Fig 57].

Treatment of the high molecular EDTA extract with polygalacturonase or endo-
1,4-B-glucanase [Fig 58] under 8mol.I"' urea conditions revealed a shift from the acidic
to the neutral fraction. Treatment of the high molecular weight EDTA with endo-1,4-3-
glucanase (without 8mol.I" urea conditions) and then running it on anion-exchange
column [Fig 59] resulted in a similar shift from acidic to neutral fractions. Further
investigations were done by incubating the particulate membrane with UDP-[U-"C]-
xylose or GDP-[ U-'*C]-fucose and applying their high molecular weight EDTA
extracts to the anion exchange column. Significant amounts of radioactivity from both
preparations were found to bind to the anion exchange column. For both ['*C]-xylose
[Fig 60] and ["*C]-fucose [Fig 61], the proportion of bound radioactivity decreased upon
pre-treatment with endo-1,4-p-glucanase, by 44% and 33% respectively providing more

evidence for the attachment of xyloglucan to an anionic polymer, probably pectin.

3-Purity of endo-1,4--glucanase

Selective enzyme degradation and anion exchange chromatography gave enough
evidence that the pectic galactan polymer was also attached to xyloglucan provided that
the endo-1,4-B-glucanase enzyme utilised was not contaminated with some pectin
degrading enzyme such as polygalacturonase or pectin lyase. Viscometric experiments

were performed to clarify this matter. Xyloglucan (1%) was found to be too viscous to
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run in the viscometer and therefore 0.5% xyloglucan and pectin where compared. In
some experiments 1% pectin was used to allow more time for the flow from the
viscometer [Table 15, Table 16]. It is evident from these Tables that the endo-1,4-B-

glucanase activity was free from any polygalacturonase or pectin lyase activity.

B-Binding to the cell wall and to xyloglucan

Binding of the high molecular weight EDTA extract from the particulate enzyme
preparation to xyloglucan and to cell wall preparations (see Materials and Method) was
found to be pH-dependent. Binding to the cell wall was found to be highest at pH 3
(about 35%) and decreased gradually rcaching to about 5% at pH 5 [Fig 62]. Binding of
the high molecular weight EDTA to xyloglucan dropped from 83% at pH 3 to 49% at
pH 6 [Fig 63]. Thus it appcarcd that the product was binding mainly to xyloglucan in
the cell wall in a pH dependent manner. To further understand which part of our
complex polymer is responsible for this binding, the high molecular weight EDTA
extract was treated with galactanasc and other enzymes prior to binding to xyloglucan
{Table 17]. Galactanase and polygalacturonase enzymes caused the highest decrease in
binding. Endo-1,4-B-glucanase and pectin lyase also caused a large decrease in binding.
Only the bacterial protease did not show any decrease in binding. Therefore, it could be
postulated that all the components of the galactan-pectin-xyloglucan complex are
important in helping in the binding to the cell wall, at low pH. To test the importance of
the galactan component of this complex, radioactive pectin was prepared with UDP-
[**C}-glucuronic acid and binding to xyloglucan was performed after treatment with
galactanase. This resulted in a 60% drop in the binding [Fig 64], suggesting that the

galactan chain could play a major role in the binding.
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The high molecular weight EDTA extract ([**C]-galactose labelied) was run on an
anion-exchange column. The eluted neutral and acidic fractions were dialysed and

concentrated before binding to xyloglucan at pH 3 and pH 7 [Table 18]. Both fractions

were bound in a pH dependent manner.

Conclusion

This chapter shows that the enzyme 1,4-B-galactan synthase, optimised in this
investigation, transferred galactose residues to a large macromolecular complex
containing galactan, RG], PGA and xyloglucan. The bonds between these polymers
were most probably covalent since they remain attached even after elution with 8mol.I"
urea. The binding of this complex to the cell wall or in particular to xyloglucan

appeared to require the galactan chain, and it acted in a pH-dependent manner.
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Chapter VI

Discussion:

Our results demonstrate that pea microsomal membranes contain galactan
synthase activity that is capable of transferring label from UDP-['*C]-galactose to 1,4--
galactan chains. The pH and divalent cation requirements for optimal activity were
similar to those reported for mung beans (Vigna radiata; Allison and Reid, 1998) and
potato suspension cultured cells (Geshi et al., 2000). In contrast, Goubet and Morvan
(1993, 1994) gave evidence for the presence of two galactosyltransferases in flax cells;
at pH 5.0 the product was found to be a B(1—3), B(1—6) galactan, while at pH 8.0 the
product was a 1,4-fB-galactan. The optimal synthesis for the galactan product in this
study was in the presence of Mn "* The requirement for divalent cations has also been

observed with other polysaccharide-synthesising enzyme activities (Doong ef al., 1995;

Geshi et al., 2000; Baydoun et al. , 2001).

Previous work showed that galactose may be incorporated into several products,
including xyloglucan and glycoprotein as well as galactans. In this work, conditions
were chosen that gave maximum incorporation of radioactive galactose into products
digestible with 1,4-p-galactanase. The presence of an endogenous galactanase enzyme
caused the degradation of the products over time, in controls to which no exogenous
enzyme had been added. This effect was decreased by reducing the incubation time of
the enzymes. This endogenous galactanase enzyme may be located within the
membrane preparations where synthesis and degradation of galactan may be occurring.

Partial acid hydrolysis and analysis of the products of 1,4-B-galactanase activity
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confirmed the formation of 1,4-B-galactan. The particulate enzyme preparation was
extracted with EDTA-phosphate buffer (50mmol.l”, pH6.8) resulting in the
solubilisation of 30%-50% of the radioactivity in the particulate product. Running the
extracts on a Bio-Gel P10 column revealed that the extracts contained radioactivity in
both polymeric material, excluded from the column, and low-molecular-weight
material. Galactanase treatment prior to gel filtration decreased the radioactivity in the
high-molecular-weight material by up to 70%-95% in different experiments [Fig 41 and
Fig 49], indicating that most of the radioactivity in the high-molecular-weight material
was in the form of a 1,4-B-galactan chain.

Rhamnogalacturonase B [Fig 51] degraded the high molecular-weight-product
to products of Kav 0.78, rather larger than the products of 1,4-f-galactanase digestion
(Kav 0.92). This indicates that the galactan chains were attached to RGI, as previously
reported by Geshi ez al. (2000) for potato suspension cultured cells. Degradation of the
same high-molecular-weight material by pectin lyase and polygalacturonase to larger
products with a broad range of sizes indicated that this polymeric material also included
polygalacturonan. The acidic nature of the majority of the polymer was confirmed by
anion-exchange chromatography. The binding characteristics were the same as those
reported for pea cotyledon and carrot root pectin by Willat et al. (1999) and McCartney
et al. (2000). Hence it can be concluded that the majority of the 1,4-B-galactan chains
formed in our system were synthesised attached to the complex PGA-RGI polymer
known to exist in most primary cell walls. The smaller amount of 1,4-B-galactan
product that does not bind to the anion-exchange column may result from cleavage from
the initial complex product, since the membrane preparation was shown to contain some

endogenous 1,4-B-galactanase activity.
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Partial breakdown of the polymeric product by endo-1,4-B-glucanase was also
observed. One explanation for this could have been that the membrane preparations
may have contained a UDP-galactose : xyloglucan galactosyltransferase, forming the
galactose-(1—>2)p-xylose bond characteristic of xyloglucans. This enzyme has been
identified in peas (Faik et al., 1997). However, a number of lines of evidence point to
an alternative explanation, that the radioactive polymer formed contained 1,4-B-galactan

attached to a complex polymer containing xyloglucan as well as the PGA-RGI

backbone of pectin:
1. Since at least 70% of the radioactivity in the polymeric product was in the
form of 1,4-B-galactan, and more than half of it was degraded by endo-1,4-B-
glucanase, some of the 1,4-B-galactan must have been part of a polymer
containing also xyloglucan.
2. In the same way, since up to 90% of the radioactivity in the polymer bound to
the anion-exchange column, some of the radioactivity degraded by endo-1,4-p3-
glucanase must have been part of a negatively-charged molecule.
3. The radioactive fragments formed by endo-1,4-B-glucanase digestion were
considerably larger than the hepta- and nona-saccharides released from
xyloglucan by this enzyme. The size of the fragments was not decreased by
prolonged digestion with endo-1,4-B-glucanase for up to 18 hours.
4. The effects of polygalacturonase and endo-1,4-B-glucanase were not
additive.
5. The material that bound to the ion-exchange column could also be labelled

from UDP-[U—MC]xylose or GDP-[U-"*C]fucose. Both xylose and fucose are
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component sugars of xyloglucan, and some of these charged products were
susceptible to endoglucanase digestion. Hence it is likely that these precursors
were incorporating radioactive sugars into xyloglucan attached to an acidic

component such as pectin.

The remaining 5-20% of the polymeric product was apparently not digested by
any of the enzymes used. It may have been glycoprotein (Baydoun et al., 2001).
Incorporation of radioactivity into the galactose-xylose linkage of xyloglucans may not
have occurred under the conditions used in this work, or alternatively any such
radioactive xyloglucan products may have been insoluble in EDTA-phosphate buffer.
The bonds linking xyloglucan to pectin in the complex product are not known.
However, Thompson and Fry (2000) have presented strong evidence that xyloglucan
does not form close non-covalent associations with pectin, and hence that the pectin-
xyloglucan complexes found in rose cell walls were covalently linked. Rizk et al.
(2000) have shown that nascent pectin binds non-covalently to xyloglucan by a
mechanism which depends on the presence of an “assemblin” protein. However, this
binding only occurs at pH 3-4, and no change in the elution behaviour of the radioactive
polymeric product was observed when the polymer was passed through Bio-Gel P-10 at
pH 6 or in the presence of 8 mol.I"’ urea. Hence the links between xyloglucan and pectin

in the radioactive product were probably covalent.

Thus 1t seems likely that the 1,4-B-galactan synthase, known to be located in the Golgi
apparatus (Baydoun et al., 2001), transfers galactose residues to a large macromolecular

complex containing galactan, RGI, PGA and xyloglucan. Possible models for the
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attachment of this complex are shown in Fig 65. This implies that such large complexes,
recently shown to be present in the cell wall (Thompson and Fry, 2000; Femenia et al.,
1999), are formed in the Golgi and exported as such to the wall, rather than being built
up from smaller precursors by enzymes such as transglycosylases in the cell wall. If
this is a general feature of primary cell wall synthesis, it would imply that the matrix of
the wall may be built up by association of large, covalently-linked “cassettes”
containing pectin and xyloglucan and perhaps also glucuronoarabinoxylan (Femenia et
al., 1999) and protein (Rizk et al., 2000), i.e. all the main matrix components of the
Type 1 primary cell wall. The structural “independence” of the pectin and
cellulose/hemicellulose networks would then arise secondarily, by selective covalent
bond cleavage. It should be noted that the hot EDTA-phosphate extract used in this
study may extract more material than ionically bound pectin, since the extraction was
carried out at 100°C. Thus degradation of some bonds may have occurred. Other
techniques such as extraction with imidizole or CDTA (Carrington et al., 1993; Rihouey
et al., 1995) could have been used. The 4% KOH/0.1NaBH* extraction released a
polymer that is more tightly bound to the membrane preparations. This extracted
fraction is not hemicellulose since we are not dealing with the whole cell wall, hence it
may be a complex similar to the one in the EDTA extract, but held more firmly to the
membranes by aggregation to a protein.

The galactan complex was found to bind to the cell-wall and to its major
hemicellulose, xyloglucan, in a pH-dependent manner with the highest binding at pH 3,
which corresponds to the pH of a growing cell wall (McQueen-Mason, 1995). This pH-
dependent binding was reported previously between glucuronoarabinoxylan GAX (Brett

et al., 1997) or pectin (Rizk et al., 2000) and hemicelluloses from pea epicotyls.
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RGI ) Model B

Fig 65- Models for possible attachment of xyloglucan (XG),
polygalacturonan (PG), rhamnogalacturonan I (RGI),and
galactan in our system. Different acidic side-chains may replace

the some PG side-chains in model B.
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Pre-treatment of the galactan complex with endogalactanase or polygalacturonase
showed a decrease in binding. Whereas, pre-treatment with bacterial protease did not
reveal a decrease in binding contrary to the results obtained by Rizk et al., 2000. Thus
the cell wall appears to adopt different mechanisms in binding pectin non-covalently to
the cell wall: either with the help of an “assemblin” protein or through a galactan chain
covalently attached to a pectic backbone. The latter possibility may be of major interest
especially in the study of elongation or ripening where solubilisation of galactan is quite
characteristic (Seymour et al., 1990). During low pH, as that during elongation, the
pectic galactan chain may bind tightly to xyloglucan thus competing with the cellulose-
xyloglucan binding making the cell wall more flexible. More work should be done to

study the involvement of this binding to ripening.
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Appendix

Chapter II1: conditions after 13,000 g initial centrifugation.

a) Optimisation conditions (Objective 1)

- Cation effect: Mn"?, 10mmol.

-UDP-xylose, UDP-glucose:  inhibitory

-Time-course: 60 min

-pH Effect: broad peak
-UDP-["*-C]-Galactose: 1.5KBq

-Termination method: Needs ethanol and standard washes

b) Analysis of the product
-TFA analysis: Galactose product (objective 2)
-Enzyme treatments: Complex structure

Chapter IV: conditions after 27.000 g initial centrifugation.

a) Optimisation conditions (objective 1)

-Centrifugation speed: 27,000 g optimal

-Non-radioactive UDP-Gal: ~ 0.2mmol.”

-pH effect: pH 6,7 for particulate product; pH 5.5 for
galactan product

-No additional washes needed after standard washes

-No exogenous acceptors increased incorporation into high molecular
weight EDTA

b) Analysis of the product
-Partial TFA: Galactan oligomers (objective 2)

-EDTA/KOH extract: EDTA solubilises more high molecular
weight material




-Galactanase treatment: (objective 2)
* Presence of endogenous galactanase (caused breakdown of
control)
*Low molecular weight after galactanase treatment of high
molecular weight EDTA has galactobiose

Chapter V:
ldentification of Galactan chain:

-Evidence for oligosaccharide series of galactan:(objective 2)
* Time-course incubation
* EDTA extract
-Protease treatment: gave no intermediate peaks on CL-6B
-Different enzyme treatments: gave complex made of pectin (HG/RGI)-
galactan-XG [Fig 49,50,51] (objective 3)

-Anion-exchange: attachment to acidic polymer, strong
attachment withstands Urea (objective 3)

-Binding to the cell wall: pH-dependent binding (objective 4)

-Viscometric studies: endo-glucanase not contaminated with

pectin-degrading enzyme

[ ——s
GLASGOW |

i UNIN FRSITY
LIBRARY
e et ot e




