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IX
SUMMARY

The work described in this thesis is concerned with some of the 

factors which can influence the dynamic range of the Integrated Optic 

Spectrum Analyser.

Chapter 1 considers the various types of spectrum analyser device

based on the interaction of acoustic waves with optical waves. The

main features of the bulk acousto-optic spectrum analyser and the 

integrated optic spectrum analyser (lOSA) are considered. Two types 

of lOSA device are considered. The working of the lOSA device as well

as its dynamic range is considered.

In Chapter 2 the physical properties of Lithium Niobate are

considered. The choice of Y-cut LiNbO_ as a substrate material foro
the lOSA is considered. The fabrication.of titanium indiffused 

LiNbO^ optical waveguides are described.

Chapter 3 considers the importance of in-plane light scattering 

in integrated optical devices and especially in the lOSA device.

The study of in-plane light scattering in optical waveguides in 

relation to titanium thickness, diffusion time, diffusion temperature 

is considered. The evolution and disappearance of surface roughness 

during the diffusion process is considered and also the evolution 

of defects in the waveguides.

Chapter 4 deals with the importance of surface acoustic waves 

(s a w ) in signal processing devices. The interdigital transducer as a 

source for the excitation of SAW is considered. IDT delay line design 

parameters,fabrication and characterisation are described.

Chapter 5 considers the theory of acousto-optic interaction. The 

dependence of the diffraction efficiency on various material parameters



is considered. Experimental results obtained in the study of acousto- 

optic interaction are described. The discrepancy in the experimentally 

obtained results and the results alreadj'" published by various authors 

is considered.

Chapter 6 deals with the theory of multifrequency acousto-optic 

diffraction as given by D.L. Hecht. Experimental results (conforming 

to the phase matching conditions used for the theory) along with the 

difficulties involved in the observational of third order intermodulation 

signals are described. The experimentally obtained results for this 

thesis are compared with the theoretical results as well as with the 

limited results obtained by other authors. The dependence of the 

dynamic range of the lOSA on in-plane light scattering and third order 

intermodulation effects is considered.

During work described in Chapter 5 and 6, changes in the waveguide 

index due to r.f. power were observed. In Chapter 7, the dependence 

of the changes in the refractive index of the waveguide on the r.f. 

power to the IDT and optical power in the waveguide is considered.

From the study carried out in Chapter J it is concluded that changes 

in the index due to r.f. power at the IDT are due to the thermo-optic 

effect arising because of heat dissipation at the IDT. However the 

effect of the presence of optical power is probably not the photo- 

refractive effect.

The main conclusions of the work done for this thesis are described 

in Chapter 8 along with suggestions for future work arising out of this 

study.



CHAPTER 1 

INTRODUCTION

1.3. Integrated Optics

Integrated Optics is concerned with the guiding of light in thin 

films and devices which manipulate and control the guided light. The 

wavelengths of interest lie mostly between .1 ym and 10 ym. For wave­

lengths larger than 10 ym, other techniques have been used. In the 

millimeter and microwave regions metallic waveguides have been commonly 

used. However for wavelengths around .1 ym or smaller, the absence of 

suitable light sources and the presence of the large absorption and 

scattering 3.osses impose severe limitations on the practical use of the 

waveguiding effects. Because the dimensions of guided wave components 

are of the order of wavelengths, devices based on integrated upLics 

may well be much smaller than the corresponding microwave components 

for similar purposes. Moreover integrated optical devices will be 

relatively free from electromagnetic interference.

A primary motivation for work on integrated optics has come from 

the development of glass fibres for optical communication applications. 

Much early work in integrated optics was concerned with using glass 

films. However the need for switching and other operations requires the 

use of the piezolectric and electro-optic effects. Therefore a 

considerable effort has been expended on the use of piezoelectric and 

electro-optic materials such as ZnO, LiNbO^ and LiTaO^, for devices 

such as tunable filters, modulators and other signal processing devices 

e.g. spectrum analysers. The research into the sources and detectors 

for integrated optical devices is mainly in the field of III-V



semiconductors. Present work in the field of integrated optics 

(excluding sources and detectors) involves research into the following 

two main fields of application ;

(1) Fibre sensors are being I.ooked into for various applications 

such as temperature, pressure, current and rotation rate 

measurements. The sensor for the last application is commonly 

called the fibre gyroscope. These devices may also require 

active components,

(2) Signal Processing Devices: These devices are mainly concerned 

with the processing of microwave signals and make use of active 

components. One of the most important possible applications

of a signal processing device so far has been the r.f. spectrum 

analyser.

1.2 Acousto-Optic R.F. Spectrum Analyser

For Electronic Counter Measure (ECM) and similar purposes, R.F. 

receivers are needed to detect and identify radar signals. This can 

be achieved by measuring the parameters of a signal that collectively 

form its signature (e.g. frequency, pulse width and pulse repetition 

interval). However, in order to avoid detection, radar transmitters may 

use techniques such as frequency hopping and pulse jittering. Therefore 

slowly swept superheterodyne receivers can miss such a pulsed and 

frequency-hopping signal. But the acousto-optic r.f. spectrum analyser 

can substantially overcome these limitations of superheterodyne 

receivers because, in the acousto-optic spectrum analyser, the probability 

of intercepting the signal is 100^, provided the signal lies within the



bandwidth of the spectrum analyser. Therefore from an electronic 

counter measures point of view the acousto-optic r.f. spectrum 

analyser is a very useful signal analysis device.

The acousto-optic spectrum analyser is based on the interaction 

of acoustic waves with optical waves. Acoustic waves in a solid give 

rise to a refractive index grating which diffracts the optical waves 

at an angle depending upon the wavelength of the optical waves and that 

of the acoustic waves. If A is the wavelength of the light and d is 

the period of the grating, the light diffracted at an angle 6 (measured 

in air), because of Bragg diffraction follows the relationship

2d sin G = X .

For small deflection angles,

X_
2d (1 .1)

If f is the frequency of the electrical signal and V is the 

velocity of the sound in the solid, in a particular direction, the 

wavelength A of acoustic waves in the solid, when excited by a signal 

of frequency f is given by

V̂ Id(grating period) 

From Equations(1.1) and (1.2)

G = &  f

(1:2)

(1.3)

Therefore cc X
cx f

1

(1.4)



From Equation (1.3) it can be seen that in acousto-optic devices, 

the angle of deflection is to a good approximation linearly proportional 

to the frequency of the input electrical signal.

R.F. Spectrum Analysers based on the acousto-optic effect can be 

divided into the following two categories.

1.2.1 The Bulk .Acousto-Optic R.F. Spectrum Analyser

A schematic arrangement of this device is shown in Figure (l.l).

Bulk acoustic waves interact with the light passing through the acousto- 

optic Bragg cell ~ 6J . Tiie laser light is expanded using an external 

lens to fill the acousto-optic cell and diffracted light is focussed 

(using a second lens) on to a detector array. The input electrical 

signal is converted into an acoustic wave using a piezoelectric transducer. 

In a typical bulk acousto-optic r.f. spectrum analyser, the diffraction 

efficiency (for X - ,6328 ym) is of the order of 2% per watt of 

electrical power J]tJ ■ In a particular device, the acoustic beam size 

was .3 inm(h) x 13 imn(n). Because the optical and the acoustic energies

are distributed over large volumes the acousto-optic interaction is not

very strong. On the other hand if the optical and acoustic energies

can be confined to a small region, the power densities will be high and

therefore the acousto-optic interaction will be much stronger. This 

is the case in an Integrated-Optical R.F. Spectrum Analyser (lOSA). A 

typical lOSA needs r.f. power of 500 mw or less to achieve a 5% diffraction 

efficiency . However it must be pointed out that a dynamic range of

the order of 60 dB has been achieved in the case of the bulk acousto- 

optic r.f. spectrum analyser [jl whereas for integrated optic spectrum 

analyser a dynamic range of the order of 18-22 dB has been demonstrated
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and the side lohe (due to lenses) limited dynamic range of the lOSA 

is ahout 25“30 dB

1.2.2 The Integrated-Optic R.F. Spectrum Analyser

In the lOSAj optical energy is guided in an optical waveguide and 

is therefore very near to the surface. The acoustic wave energy is 

confined to a region within about an acoustic wavelength of the surface 

and therefore these acoustic waves are called Surface Acoustic Waves 

(s a w ). An lOSA is based on the interaction of guided optical waves 

with surface acoustic waves. An acoustic power density of the order of

5.5 X 10^ watts/cm^ can be achieved readily using interdigital transducer 

(of 8 dB insertion loss) and r.f. power of the order of 30 mW.

In a typical optical waveguide optical energy is generally confined 

to a region of about 3 ynn from the waveguide surface, Therefore use 

of guided optic waves and surface acoustic waves can lead to large 

diffraction efficiencies compared to bulk acousto-optic devices for 

similar levels of acoustic power. Moreover it is convenient to fabricate 

these devices (IOSA) using a planar technology.

A typical IOSA will consist of a semiconductor injection laser diode, 

thin film optical waveguide, waveguide lenses, interdigital transducer 

(IDT) to launch SAW, and a linear detector array. The IOSA is a hybrid 

device rather than a monolithically integrated device in the conventional 

terminology of integrated circuits. The basic layout of the IOSA device 

is shown in Figure (l.2a). An incoming, e.g. radar, signal is mixed 

with a local oscillator so that the intermediate signal frequency is 

within the passband of the IDT. After amplification the signa], is 

applied to the IDT. If a collimated, guided optical beam intersects the
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acoustic beam at the Bragg angle, a portion of the light beam will be

diffracted at an angle proportional to the acoustic frequency. The

intensity of diffracted light beam is proportional to the power level

of the input signal. Tlie diffracted light is then focussed on to an

array of detectors. The diffraction is predominantly in one order when

the conditions for Bragg diffraction are met. The phase matching

conditions for the wave vectors k. and k, of the incident and1 d
diffracted light beams respectively are shown in Figure (l.2c) for the 

case of isotropic Bragg diffraction. The relationship between the 

wave vectors is as follows

1  ■ b  - K (1.5)

where [K| = is the wave vector of the acoustic surface wave of

wavelength A . The energy conservation requirement yields the 

relationship

± ^ (1 .6)

where and are the angular frequencies of diffracted light,

incident light and surface acoustic waves respectively. According to 

Willard [l£| , for efficient diffraction in the Bragg regime, the 

interaction length L (i.e. the acoustic beamwidth) should be sufficient 

so that Q  ̂ Ltt i.e.

K^B > 7T

i.e. LA
— ; > 1 
A

where is the waveguide model index.



In the Bragg regime, the angular deflection <5 (the angle between 

the incident and diffracted beam) is given by (as shown in Figure (l.2c)

Ô = 0 . -I- 0, 1 d 2 sin ^
2N A o

(1.7)

and for small values of
2N A o

where V is the SAW velocity and f its frequency, 

of deflection is small then

(1.8)

When the angle

df
X (1.9)

In the above expression it is assumed that V is constant for the 

range of the frequencies being considered. Therefore the diffraction 

angle is linearly proportional to the acoustic frequency. If Î  is 

the intensity of the incident light beam, then I^ the intensity of the 

diffracted light beam for the acousto-optic device is given by [lb]

I.1

where M,

= sin'

WG p: o

X cos 0^ t c  ÏÏ (1.10)

is called the figure of merit and involves'2 p V3

the photoelastic constant p, acoustic wave velocity V, refractive

index W and density p of the material. P is the input acoustic o ac
power, L the interaction length, H the depth of the region in which the 

acoustic energy is confined (H v A for SAW). F is the overlap integral 

and has a value between 0 and 1 depending upon the field distribution of 

the optical and. the acoustic waves.



10

So far two different types of IOSA device have been looked ino, 

as described below.

(a) Monolithic Integration (on Won-Piezoelectric or Weak Piezoelectric
Substrates).

A schematic arrangement of the device proposed by Hamilton et al \l2j 

is shown in Figure (I.3 ).

In this device silicon or some, other semiconductor is used as the 

substrate. The optical waveguide could be for instance a sputtered 

glass or ZnO film. The latter is useful because, being piezoelectric, 

it can be used for launching of SAW using an IDT. The waveguide lenses 

can be sputtered films of Wb^O^ or Ta^O^ and are called thin film 

lenses [l^ . The main feature of the monolithic IOSA is the integration

of detector elements into the substrate. The principal disadvantages 

of the monolithic IOSA are related to the acoustic aspects of the circuit 

The smaller piezoelectric coupling coefficient of ZnO compared with 

LiWbO^ means more input power will be required for the same wide bandwidt: 

performance. The noncrystalline films can lead to higher values of 

optical and acoustic losses. Also the polycrystalline nature of 

sputtered ZnO film leads to higher acoustic losses a.nd introduces 

dispersion.

(b) The IOSA on a Piezoelectric Substrate

From the main disadvantages of sputtered optical waveguides and 

ZnO films for acoustic waves IDT described above, it can be concluded 

that an optical waveguide in a single crystal substrate will be more
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useful as it may well lead, to less attenuation of optical power because 

of less scattering. Light scattering also affects the dynamic range 

of the lOSA and other optical d.evices QlôJ , If the substrate is 

piezoelectric then the IDT can be fabricated on it and this avoids the 

need to have a sputtered film of piezoelectric material such as ZnO.

A single crystal substrate also leads to less SAW attenuation. The 

single crystals materials LiWbO^ and LiT'aO^ have been considerably used 

for integrated optic devices ]j_Y, 1 ^  . However the Curie temperature

of LiTaO^ is considerably lower than that of LiNbO^ (1120°C). Therefore 

the high temperature process involved in the fabrication of the wave­

guide means that LiTaO^ needs to be repoled later on. Moreover the 

value of the electromechanical coupling coefficient for YZ LiNbO^.is 

higher than that of YZ-LiTaO^ . Also SAW propagation losses in

LiNbO^ are lower to an important extent. Therefore LiWbO^ is the 

preferred substrate material.

1.3 The lOSA on Y-Z LiNbO_

A typical lOSA on Y-cut LiWbO^ is shown in Figure (l.4a). In this 

device, light is guided along the x-axis of the crystal while SAW 

travel along the Z-axis (polar-axis) of the crystal. As the overall 

performance of the lOSA will depend on the various components of which 

it will be made, these are considered below:

1,3.1 Lenses for the Integrated-Optic Spectrum Analyser:

Various types of focussing elements, such as mode index elements 

[2^  , grating lenses [S3,2Q and geodesic lenses %8,11,25)2^ have
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Ih

been devised for integrated optical devices. However geodesic type 

lenses have received considerable attention and have been looked at in 

detail by Doughty |38j , In geodesic lenses light is guided around

depressions in the otherwise planar substrate, as sho^vm in Figure (l.lb) 

following paths described as geodesic curves. The focussing ability 

of a geodesic lens depends only on its geometry, it is independent of 

the wavelength of light and the refractive index of the waveguide and 

substrate. The focal length F of a spherical geodesic lens is given

V  [37]

F  = —
2(1 - cos y)

where the parameters are as shown in Figure (I.5).

A spherical geodesic Ions as such cannot be used because there 

will be scattering and leakage of the guided light in the region where 

the curved lens surface meets the planar substrate. Edge rounding is 

therefore applied. But correction is also required for circular 

aberration and the aberration due to edge-rounding. Therefore a typical 

geodesic lens for an integrated optic device will be an aspheric lens.

The resolution of the lOSA will depend on the spot size of the focus 

as well as the detector array element spacing. Because detector arrays 

are generally planar and the lens focus lies on a circle, some elements 

of the detector array will be illuminated by a significantly defocussed 

light spot. The minimum spot size which can be achieved will be limited 

by diffraction. Because the finite lens aperture truncates the Gaussian 

light beam, there will be side lobes along with the main light beam and
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this will also affect the dynamic range of the lOSA [9] •

Aspheric geodesic lenses in LihbO^ have been fabricated by Doughty 

et al [22J and by other workers as well [8,25 »2^ . Doughty et al |_22j ,

(using the parameters = 5 mm, C ~ 10 mm, F - I8.7 Dim) have fabricated 

these lenses using single-point diamond-turning. These lenses were 

subsequently polished. Preliminary assessment of these lenses showed 

that the spot size of the focussed beam appears to be within the 

diffraction limit for an input beamwidth of -̂3 mm p27,38j .

1.3.2 Tlie Optical Waveguides

For a given wavelength of operation, the waveguide properties are 

chosen so that it allows propagation of the desired number of modes 

(usually only one) and cut-off. Therefore a typical waveguide thickness 

will be on Lhe order of Ihe opuieal wavelengLh. Even though single 

mode propagation might persist to much thinner guides before propagation 

is cut off, modes in very thin waveguides propagate with a considerable 

amount of energy in the evanescent regions in the substrate and 

superstrate. Therefore attempts to decrease the interaction thickness 

by decreasing the waveguide thickness will only work to a certain 

extent. Also, in the case of geodesic lenses, guided light can leak 

out of the waveguide all along the curved path of the lens. The 

basic limitation produced by the waveguide is the light scattered 

in the plane of the waveguide, by either surface roughness or by 

refractive index variations and inhomogeneity in the waveguides. Such 

in-plane scattered light will form the background optical noise in the 

device and therefore will affect the dynamic range of the device.

Because in-plane light scattering in the waveguide will be affected by the 

fabrication conditions of the waveguide, the dynamic range of the lOSA
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will also depend on the fabrication parameters of the waveguide.

1.3.3 The Interdigital Transducers

The interdigital transducer (IDT) is an array of conducting electrode; 

that produce spatially non-uniform time varying electric fields at the 

surface of a piezoelectric solid. The effect of such fields is to 

generate local stresses and hence launch surface acoustic waves. IDT’s 

of wide electrical bandwidth can be designed readily. However for 

acousto-optic devices, it is the acousto-optic bandwidth of the device 

which may well be more important. A large acousto-optic bandwidth 

can be achieved by designing a more complicated IDT structure, which 

satisfies the Bragg-angle requirement at all the frequencies in the 

pass band of the IDT. Ultimately the bandwidth of the acousto-optic 

device will be limited by the SAW attenuation because attenuation in 

most of the single crystal materials varies as the square of the 

frequency [ll] .

1.3.4 The Light Sources and the Detectors

It is possible to use neodymium doped LiRbO^ as a laser [_2Ĉ  .

Furthermore a pyroelectric detector array could possibly be integrated

into the substrate. However neodymium doped LllTbO^ lases at a wavelength

which gives rise to optical damage in the LiNbO^. Also.the response of a

pyroelectric detector is slow and weak. However 'butt-coupling' 

of an array of detectors and of a semiconductor injection laser to the 

carefully polished edges of the titanium doped LiNbO^ optical waveguides 

is possible. In the case of detectors, a preliminary investigation 

of the integration of amorphous silicon based photovoltaic detectors.
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on to a LiRbO^ substrate has been carried out by Yumoto et al [2l] .

The principal requirement of a light source is its wavelength stability 

and wavelength narrowness. Burns et al f2^ have studied the affect 

of laser diode spontaneous emission on the dynamic range of the lOSA.

1 .h The Dynamic Range of the lOSA

The dynamic range of the lOSA is defined as the difference, 

usually in dB, between minimum level detectable (with specified bandwidth) 

and a maximum level without any distortion etc.

The dynamic range of the lOSA is expected to be limited by the 

following:

(a) The Optical Detector (Photodiode) Dynamic Range.

(b) The Optical Scattering.

(c) The Third-Order Intermodulation Effects.

(a) The Optical Detector (Photodiode) Dynamic Range:

The djuiamic range of the lOSA may also be limited by the optical 

detector dynamic range. The optical detector dynamic range depends 

on the type of detector element used. A dynamic range of the order of 

36 dB has been achieved in the case of detectors made up of amorphous 

silicon photovoltaic devices |̂ 2l] . However these have not been

demonstrated as an array or as an addressed array. On the other hand, 

the dynamic range of the detectors made using Single Crystal Silicon 

is high. But when conventional silicon detector arrays are combined 

with charge coupled devices the dynamic range may well be considerably 

reduced. But such CCD-P arrays have advantages because of their 

addressability and clocking ability.
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(b) The Optical Scattering

In-plane scattering of light i.e. light scattered in the plane of 

the waveguide, will constitute the optical noise background against 

which the diffracted light signal produced by the acousto-optic interaction 

must be observed. This optical noise sets a limit on the minimum r.f. 

input power that the acousto-optic device will heed in order to observe 

the signal. Hence the dynamic range of the lOSA will also be limited 

by the scattering of the guided light [l6,29,8 ].

According to Boyd et al [l6[] the dynamic range as limited by

waveguide scattering is defined as the ratio of the power reaching a

single sensor element to the power scattered to the adjacent sensor

element for a single frequency electronic signal. It is assumed in 

this definition that the focal length, aperture and detector array

element spacing are so chosen that the width of the focussed optical

beam corresponding to a single frequency input equals the array element 

size. If it is assumed that light scattering arises only because of 

passage of diffracted light through the waveguide (i.e.scattering from 

the undeflected beam is not significant) and also it is assumed that 

side lobes associated with the truncation of the Gaussian beam by the 

lens aperture are minimal, the dynamic range, DR, as limited by wave­

guide scattering has been given by [iQ

DR = - 10 log^Q (RpgR^)

Total Scattered Power where = ----------------------------------------------
Signal Power reaching single sensor element

Rg is the fraction of the total scattered field that is
scattered into the same waveguide mode propagating in 
a different direction
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R is the fraction of the light scattered into the 
waveguide which reaches the sensor element 
adjacent to the one receiving the signal.

Using various numerical results, Boyd et al [_1^ having concluded 

that the dynamic range of the device is dependent on the attenuation 

of the light hut is nearly independent of the surface roughness 

correlation length for a constant attenuation. Boyd et al[l6j consider 

only light around a particular beam which is implicitly the acousto- 

optic diffracted beam. However in practice significant light levels 

will be present due to scattering from both zero and first order beams, 

in an acousto-optic device.

Boyd et al [l6] do not consider what the different possible sources 

of in-plane scattering might be in titanium indiffused LiRbO^ waveguides 

and how these sources would (as a function of their distribution and 

nature) determine the in-plane light scattering level.

(c) Third-Order Intermodulation Effects

Wlien multiple finite amplitude acoustic waves diffract a laser 

beam, multiple diffracted beams are generated, and a number of nonlinear 

effects occur j_3(̂| . These include cross-modulation in the amplitudes

of the diffracted beams and the generation of additional (spurious) 

intermodulation beams %30,3Ï} . These effects establish the intrinsic 

dynamic range [30,32,3!^ . All these non-linear optical responses 

are due to multiple acousto-optic diffraction processes rather than 

photoelastic or acoustic non-linearities [34 j .

The theory of multifrequency acousto-optic diffraction has been
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given by Ilect ] 3 ^  , According to this theory the third-order

intermodulation light beam intensity will increase as the cube of 

the input r.f. power, whereas the light intensity of the main 

diffracted beams will increase linearly with r.f. power. Therefore the 

third-order intermodulation effect will also determine the dynamic 

range of the lOSA.

1.5 Summary

In this chapter, the basic operation of the lOSA has been described.

A comparison of the lOSA with bulk acousto-optic spectrum analysers 

has been given. Likewise comparison has been made between the lOSA 

based on a non-piezoelectric substrate and the lOSA based on a 

piezoelectric substrate such as LiNbO^. The various components of the 

lOSA, and the efieci of the characteristics of these components on the 

characteristics of the lOSA have been considered. From the consideration 

of the dynamic range of the lOSA, discussed in Section (1.4.3) it appears 

that the dynamic range of the lOSA, is likely to be limited by third 

order intermodulation effects on the one end and by the optical noise 

on the other end. As the optical noise is due to in-plane light 

scattering, it is important to study the effect of the waveguide 

fabrication parameters on in-plane light scattering. It is also important 

to study the third order intermodulation effect in the lOSA, because so 

far the limitations on the dynamic range produced by the third-order 

intermodulation effects have been studied only in the case of bulk 

acousto-optic deflectors based on glass [35I and no systematic study 

has been reported on the lOSA [3^  . It may be pointed out that the

lOSA considered for this thesis did not use the geodesic lenses, there­

fore any additional effect of the geodesic lenses on in-plane light 

scattering has not been taken into account.
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CHAPTER 2 

OPTICAL WAVEGUIDES FOR lOSA

2.1 Introduction

As the Integrated Optic Spectrum Analyser is based on the interaction 

of guided optic waves with surface acoustic waves, it is very important 

that when considering any material (for acousto-optic devices), due 

consideration be given both to its optical properties and its acoustic 

properties.

For the purpose of fabrication of the lOSA it is preferable that 

optical waveguide should be formed of or into a substrate material which 

is of a piezoelectric nature (otherwise an overlay layer will be needed 

to excite surface acoustic waves) and is transparent at the wavelength 

which is to be used. Optical waveguides can be formed by sputtered 

thin films of ZnO [l,3l] , LiNbO^ [2[] and possibly of other materials.

But in these polycrystalline films, scattering of light will take place 

because of grain boundaries, electric domains [3j and the inhomogeneity 

in the crystallites [4,^ , with the consequence that the attenuation of 

the optical energy is likely to be high. More recently it has been 

observed that CO^ laser annealing of sputtered films of ZnO leads to 

films which show low optical losses as compared to as-grown films.

Dutta et al [j3^ has observed that if sputtered film of ZnO is annealed 

with a COg laser (using power density of the order of 2.0 x 10^ W/cm^), 

it reduces the waveguide attenuation from 4.5 dB/cm to 0.02 dB/cm.

However the attenuation of surface acoustic waves in these annealed films 

has not been studied. Surface acoustic wave transducers made on sputtered 

ZnO films show insertion losses of 17-25 dB per transducer in 1 to 2 GHz 

frequency range [3^ .
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Surface acoustic wave propagation loss [6,f] in any material is due 

to dissipative loss 1^ caused by internal friction and scattering loss 

. In single crystals a typical internal friction loss law gives L^af^. 

Where f is the frequency of SAW. Whereas in polycrystalline materials, 

usually Rayleigh scattering dominates at frequencies above a few MHz. In 

polycrystalline materials scattering loss a f^ where D is diameter 

of the grain ,'[j . Therefore scattering of surface acoustic waves by 

the crystallites would limit the highest frequency for which these poly­

crystalline materials could be used. Acoustic-optic devices made of 

sputtered ZnO films (acoustic-optic interaction occurred in ZnO film) 

have been studied up to about 200 MHz frequency [3^ .

Use of a piezoelectric single crystal Substrate, with an optical 

waveguide produced by indiffusion or outdiffusion, substantially over­

comes the problems of optical and acoustic scattering loss. The ferro­

electric materials,Lithium Niobate (LiFbO^) and Lithium Tantalate (LiTaO^) 

have similar properties but have different curie temperatures and electro­

mechanical coupling constants. The curie temperature and also electro­

mechanical coupling constant of LiNbO^ is higher than that of LiTaO^ [S] . 

Therefore fabrication of optical waveguides in LiTaO^ by high temperature 

process requires repoling of the crystal. On the other hand LiNbO^ is 

more suitable because indiffusion can be carried out at temperatures 

well below its Curie temperature (1120^C). The physical properties of 

LiNbO^ can be summarised as follows

(i) Single crystal LiNbO^ has the rhombohedral structure and the basic 

rhombohedral unit contains two LiNbO^ molecules , with the

dimensions

Rhombohedral cell size a^ = 5*94 S 

" angle size = 55^52'
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But the crystallography of a rhombohedral lattice is usually 

described in terms of an equivalent hexagonal lattice which in the 

case of LiNbO^ contains six molecules per unit cell and has equivalent 

hexagonal lattice parameters

=  5‘148 8
= 13-863 8 .

(ii) The Curie temperature of LiNbO^ is 1120°C.

(iii) Its transmission spectrum extends from .5pm to 4.5ynu Therefore 

LiNbO^ can be used over a wide range of wavelengths. However at 

lower wavelengths around . LiNbO^ suffers from photoretractive 

or optical damage effect, even at moderate optical power densities 

po, 36, 35].
(iv) LiNbO^ has the highest value of the electromechanical coupling 

constant Qnj. Values for are as follows:

k^ = .045 for Z-propagating waves on Y-cut LiNbO^.

k^  ̂ = .00T4 for Z-propagating waves on Y-cut LiTaO^*

(v) The surface acoustic wave attenuation for Y-Z LiWbO^ is very low 

and therefore LiNbO^ can be used up to frequencies above 1 GHz, [izQ , 

which is an important requirement for lOSA devices.

(vi) The fabrication of optical waveguides in LiNbO^ by the indiffusion 

of transition metal ions changes surface acoustic wave velocity by 

only 1.4%

(vii) In-diffusion of titanium into LiNbO^ leads to optical waveguides 

having very low loss of the order of IdB/cm or lower jj-8,2^ .
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Therefore from the above description it is clear that for the 

purpose of lOSA, it is desirable to use LiNbO^ substrates. Furthermore 

an obvious choice is to have the surface acoustic waves travelling along 

the z-axis and the opticwaves either along X-axis or Y -axis of the 

crystal.

2.2 The Fabrication of Optical Waveguides in LiCTbO^ .

Optical waveguides in LiWbO^ can be fabricated in a number of ways, 

e.g. Ion Implantation , Ion-Exchange [l4, 15, 6lJ , Out-diffusion

of LigO [19 5 24, 2 ^  , or by indiffusion of transition metals j[l8j ,

Ion implantation decreases the refractive index of LiWbO^ whereas the 

other processes increase the refractive index of LiNbO^. In the case 

of bigO outdiffused waveguides, there are two problems:

(i) Outdiffusion leads only to a change in the extraordinary index-

25] .

(ii) It is difficult to obtain small diffusion depths. The minimum 

outdiffusion depth which can be obtained is typically in the range 

10-40 pm [1^ ,  Therefore it is difficult to get a shallow single 

mode guide.

For a surface acoustic wave of IGHz frequency, most of the SAW 

energy is confined to a region of about 3 ym from the surface. Therefore 

for an efficient acousto-optic interaction it is necessary that the 

guided light be confined to a region of about 3 ym from the surface of 

the waveguide. Hence waveguides made by outdiffusion of li^O are less 

attractive. Recently it has been observed that exchange of lithium ions 

with protons (H*̂ ) leads to a substantial change in the index [l£| . This



work is still at a preliminary stage, however there may he a problem 

due to absorption of light because of the 0-H bond, On the other 

hand, addition of Hydrogen and removal of lithium , 2 ^  should

lead to lowering .of sensitivity of LiNbO^ to photorefractive effect.

In-diffusion of transition metal ions |~l(̂  leads to optical 

waveguides of 3~5 ym depth. Therefore optical energy is concentrated 

within approximately the same region in which surface acoustic wave 

energy at IGHz is concentrated. It has been observed that the change 

in the extraordinary refractive index per unit addition of transition 

element ion is greatest in the case of titanium jjL^ , as given below

d n
— - 1.6 X 10 cm^ for titaniumdc

- 0.8 X 10 crâ  for Vanadium

-- 0.6 X 10 cm^ for Nickel.

In the light of the above considerations it was decided to use

the indiffusion of titanium to fabricate planar optical waveguides

for the lOSA. Furthermore indiffusion of titanium leads to lowering 

of the sensitivity of LiNbO^ to the photorefractive effect [30, 3T] .

This is shown in Figure (2.1).

2.3 The Relationship Between the Number of Guided Modes and the 

Thickness of Initial Titanium Film.

Even though there is some evidence that the diffusion profile 

for titanium diffused into LiNbO^ may be 'double-Gaussian' [lY, 3 ^  , 

it is simpler to describe the relationship between the initial titanium film 

thickness and the number of guided modes obtained after diffusion, if 

a simple Gaussian profile is assumed. Then, according to Schmidt et al 

[l8j , the titanium concentration has the form
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LiWbO^ (Crystal) “1a cm as =
cm^/J

= al
cm^ / J.

Undoped Substrate 0.03 -6.37 X 10 1.2 X 10"^

.09 \ît% TiO 0.15 0.78 X 10“^ 0.52 X 10“^

.15 vt% TiOg 0.07 0.37 X 10“^ 0.53 X 10“^

Figure 2.1 (from ref.30)
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C(x,t) = ™  (^) exp (“^ )  (i)
/ïï

X ->• depth below the surface

t Diffusion time

T ->■ thickness of titanium film

p ”>■ Number of atoms per unit volume

of the deposited film.

b^ = 7 Dt (ii)

Diffusion constant is given by
_T

0 = D^ exp ('^) (iii)

T -> Diffusion temperature

Constant (Activation energy for diffusion)

D ->■ Diffusion Coefficient, o

Assuming that the refractive index change is proportional to C(x), 

then, for small changes in refractive index An, the relationship is [l^ 

a An(o) “ —  “  — - (iv)

Therefore 'a' can be controlled by adjusting e and from Equations

(ii) and (iii), ’b ’ can be controlled by varying t and T. The number

of guided modes is given by [l^ .

X X
X ->- wavelength of light used

n -> Refractive index of LiWbO^ .

Therefore clearly the number of modes which a waveguide can support 

can be adjusted by suitable choice of x and b.

Experimentally Schmidt et al [l^ have observed that 500 S titanium 

film diffused for 6 hours at 960^C lead to a waveguide which support 

4 TE-modes.
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2.U The Fabrication of Titanium Diffused LiNbO  ̂Optical Waveguides

2.4.1 The Preparation of a Sample

A slice of single crystal Y-cut LiNbO^ was cut into samples of 

3 cms length along x-axis direction and 1 cm along z-axis of the 

crystal. Each sample was washed in trichloroethylene (warmed to about 

40^C) for 5~10 minutes. These samples were then cleaned in Methanol 

for 5 minutes using an ultrasonic bath. Samples were then soaked in 

warm (40^C) 'Decon 90' (5~10^ concentration) for about 10 minutes. Each 

sample was then gently cleaned with a piece of sponge. Samples were 

then washed in filtered water with occasional ultrasonic agitation.

Each sample was then dried with filtered dry nitrogen.

2.4.2 Evaporation of Titanium

A titanium film of the required thickness was evaporated on to

the cleaned samples of LiNbO^, using an electron beam evaporation

source. The average pressure during evaporation was of the order of 
-61 X 10 torr. The thickness of the titanium film was monitored by a 

water cooled quartz crystal. A Talystep instrument was used to 

determine the exact thickness of the titanium film. A typical trace 

from the talystep instrument is shown in Figure (2.2).

2,4.3 In-Diffusion of Titanium

The titanium coated sample was diffused in the presence of flowing 

oxygen (l litre/minute) at 980^C for the time as required. The 

arrangement of the diffusion tube used, can be seen in Figure (2.3).

The sample was placed in an alumina tube of internal diameter of 13 mm.
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Talystep trace for film thickness measurement

Horizontal Scale 25 ym/Small Division 

Vertical Scale 20 8/Small Division

II ' I

i ! I i

I I

Step height = 165 8

Figure 2.2
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This tube was placed inside another alnniina tube which had an internal 

diameter of 23 mm. The end A of this tube had an internal diameter of 

6mm and wall thickness of 1mm, The Oxygen gas entered into the tube 

through the end A. The whole assembly was placed inside a quartz tube 

(internal diameter 28mm) held in the furnace. The temperature of the 

furnace was measured using a Pt-Pt(l3/Rh) thermocouple placed very near 

to the sample as shown in Figure (2.3).

Furnace reached 980^0 temperature in one hour starting from room 

temperature. It cooled to 600^C in about 20-25 minutes when power was 

switched off, but cooled to room temperature in 6-7 hours.

2.5 The Characterisation of Optical Waveguides

To characterise an optical waveguide it is necessary to know the 

waveguide thickness and the effective mode indices. Tiie method widely 

used is the measurement of the coupling angle to the various modes 

using prism as a coupler 139̂ ] • The principle of this technique has

been discussed by Tien and Ulrich [20, 2 ^  and Tamir [22j .

In this technique a prism of refractive index greater than that 

of the waveguide film index is clamped against the waveguide surface.

At the prism-waveguide interface a leaky travelling wave is set up.

By adjusting the angle of the incident laser beam, the component of the 

propagation constant of the wave in the prism along the waveguide 

direction and the propagation constant of the allowed waveguide mode 

can be equalised. Under these conditions, the optical power leaks into 

the waveguide over the coupling region. The process taking place is 

shown in Figure (2.4). Figure (2.4a) shows the field of a plane wave 

in the prism. Figure (2.4b) shows the field of a plane wave in the
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■wa'veguide. is the gap between' the prism face and the waveguide

surface. Figure {2.he) shows the case when air gap is reduced by 

clamping the prism against the waveguide surface and light leaks into 

the waveguide. Evanscent fields are also shown in Figures (2.4b) 

and (2.4a). During the work described in this thesis, rutile (TiO^) 

prisms were used for input and output coupling of light. By the use 

of a tapered coupling region it is theoretically, possible to couple 

all of the input power into the waveguide. In practice it is reasonably 

easy to couple about ^0% of the optical power |_2^ into slab waveguide.

2.6 Measurement of the Mode Indices

In order to measure the effective modal propagation constants, the 

sample was mounted on to a glass slide with a double sided sellotape. 

This slide was then mounted on to a table having facilities to move the 

slide in the x,y,z directions and to rotate the sample in the x-z plane. 

An input rutile prism with a vertex angle of a was clamped against the 

waveguide, Alignment of the beam to the coupling point was carried out 

with the help of x,y and z movements of the table. The relationship 

between the modal effective index and the angular position of the input 

beam is given by

"eff = "p a - Sin-1
^P ^

where ^eff ~ Effective index of waveguide mode.

n = Prism refractive indexP
a = Prism apex angle (60°)

0 = Angle from the prism normal to the input coupling

angle as shown in Figure (2.5)
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Therefore hy measuring the angle 9 for each guided mode, the mode

index can he calculated, A typical value for the TE^ guided mode was

of the order of 2.203. Therefore an index change of the order of 
"33 X 10 can he measured.

2.7 Reason for the Change in index due to indiffusion of Titanium

Pearsall et al ĵ 4oJ using X-ray photoelectron spectroscopy have 

observed that titanium ions are bonded chemically in the lattice, 

in the centre of the oxygen octahedra. Moreover titanium ions are 

tetravelent state i.e. d-orhital electrons are used for forming a bond.

According to Sugii et al Q^l] the refractive index change due to 

indiffusion of titanium could he due to the following reasons:

(i) Photoelastic effect due to diffusion induced strain.

(ii) Increase in the electronic polarisahility because of indiffusion 

of titanium.

(iii) Decrease of the spontaneous polarisation of the LiRbO^ because 

of indiffusion of titanium.

Sugii et al j%lQ measured the strain in the crystal because of

indiffusion of titanium and from this they calculated the increase in

the index because of photoelastic effect. The calculated change in

the index due to photoelastic effect was about half of the observed

change in the index. As titanium atoms replace Niobium atoms jjiO, ,
“3in order to produce a refractive index change of the order of 10 , the

electronic polarisahility of titanium ion should be larger than that of 

niobium. However this is unreasonable because electronic polarisahility 

of ions decreases as the ionic radius becomes small. Sugii et al (j;l} 

have concluded that refractive index increments are less likely to be
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caused because of a decrease of the spontaneous polarisation, as a 

decrease of spontaneous polarisation should lead to increase in strain 

(i.e. s g > 0 and s^ > O) however signs of strains observed are 

opposite to that needed.

Therefore the most likely mechanism for the refractive index 

changes in the diffused layer is due to the photoelastic effect caused 

by the contraction of lattice along a-axis. It need, be noted that 

contraction can take place because of the John-Teller effect due to 

participation of the d-orbital of titanium ion in the chemical bonding.

2.8 The Refractive Index Profile

Once the modal indices have been measured using the technique 

described in Section 2.6, then the profile of index change can be 

constructed following the numerical, technique described, by Stewart 

et al . Many authors have used these techniques to find the

diffusion or index profile. McLachlan [if] has concluded that the index

profile is a 'double Gaussian’. Sugii et al Qil] used the electron probe

microanalysis technique and found an approximate Gaussian distribution

of titanium atoms. Burns et al [sS} have used secondary ion mass 

spectroscopy (SIMS) and found that there was excess of titanium and 

lithium near the surface of the waveguide and postulated the formation 

of Littium-Titanate (Li-Ti-O) compound. However recently Armenise et 

al have studied the diffusion of titanium into LiHbO^, using the

Rutherford Back Scattering technique and found that initially titanium 

gets oxidised and then form a compound(Ti^ Nb^_^j0g. This compound 

acts as a source of titanium. Moreover they have also concluded from 

the study of X-ray diffraction of this compound that there was no Li-Ti-0 

compound as was initially proposed by Burns et al.£38]] .
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2.9 Conclusion

This chapter has described why LiNbO^ was chosen as a substrate 

for the lOSA, The techniques of fabrication of optical waveguides 

in LiNbO^ have been considered. Fabrication of titanium in diffused 

LiNbO^ optical waveguides has been described, together with the 

characterisation of the modal properties of waveguides. The mechanisms 

which lead to increase in the refractive index due to titanium indiffusion 

have been considered along with the evolution of the waveguide during the 

diffusion process.

REFERENCES

(1
(2

(3

(4

(5

(6
(7
(8

(9

(10

(11
(12
(13

(14

D.J. Channin et al. Appl, Optics/vol.l4 No.J-l/1975 p.923.

G.H. Hewig et al. Thin Solid Films 88 (1972) p.67.

C.E. Land.. Ferroelectrlcs 7: 4^ (1974)

G.C.Jain et al. Kristall Und Technik 15,8(1980) K.71-72.

L.O. Svaasand et al. J. Crystal Growth 22,230(1974).

E.P. Papada.kis . J . Acoust, Soc . Am . 37 , 703(1965)-

S.Jyomura et al. J. Appl. Physics 52(7). I981. p.^472.

J.T.Milek & Handbook of Electronic Materials Vol.8.
M,Neuberger.

Linear Electro-Optic Modular Materials. Plenum (1972) 

S.C, Abraham et al. J.Phys.Chem.Solids. 27, 997 (1966).

A.M. Glass et al. Appl. Phys. Lett. 25, 233 (1974).

A.J. Slobodnik. Proc. IEEE Vol.64 No.5 1976 p.581.

R.V. Sclimidt. Appl. Phys. Letts. Vol.27, No.l, 1975, p.8.

G.L. Destefanis et al. Radiation Effects I98O. Vol.48, p.63.

Yi Xin Chen et al. Appl. Phys. Letts. 4o(l) I982. pp.10-12.



40

(15) J.L. Jackel et al. Paper PDPl. Topical Meeting on Integrated

Guided Wave Optics Asilomar Cal,(Jan.1982). 

Appl. Phys. Letts. 26, 653 (1975). 

'Theoretical and Experimental Investigation

(16

(17

(18
(19
(20
(21
(22

(23

(24

(25

(26
(27

(28
(29

Shah 

D. McLachlan

of Titanium Diffused LiRhO^ Waveguides’ Ph.D. 

Thesis 1981, Glasgow University,

,V. Sclimidt et al. Appl. Phys. Letts. Vol.25, No.8, 1974, p.458. 

R. Caruthers et al. Appl. Optics 13(1974) No.10: p.2333.

K. Tien et al. J. Opt. Soc. Am. 60, 1325 (1970).

. Ulrich J. Opt. Soc. Am. 6o, 1337 (1970).
' Tamir ’Topics in Applied Physics' Vol.7° Integrated

Optics p.86. Springer Verlag 1975.

D. Hutcheson Appl. Optics 19, 2247 (198O).

R . Carruther et al. J. Appl. Phys. 42, l846 (1971/

L. Barns et al,

G. Smith et al.

L. Holman et al. 

Kh.Zeinally et al 

K. Barnoski et al

(30) A.M. Glass et al.

(31) P.K.Tien

(32) S.Dutta et al.

(33) N.F.Foster et al.

(34) N.Chuhachi et al.

(35) A.Ashkin et al.

J. Appl. Cryst. 3,395 (1970).

J. Appl. Phys. Vol.30, No.10, Sept.1968 p.4600 

Appl. Phys. Letts. 32(5) 1978, p.280.

, Sov. Phys. Solid State 2l(l0) Oct.1979, p.l805

, IEEE Trans. on Circuits & Systems Vol.CAS-26, 

No.12, Dec.1979, p.1113.

Appl. Optics/Vol.19. No.2/Jan. I98O. p.276.

Nov.1971/Vol.10.No.11/Appl. Optics, p.2395. 

Appl. Phys. Letts. 39(3) 1981, p.206.

Appl. Phys. Letts. Vol.8. No.9, 1966. p.221.

Wave Electronics 2(l97&) p.379.

Appl. Phys. Letts. 9, 72(1968).



4l

(36) À.M. Glass 470/Optical Engineering/Vol.17. No.5» Sept.1978-

(37) J.L. Jackel et al. J. Appl. Phys. 52(7) 1981, p.4855.

(38) W.K. Burns et al. J. Appl. Phys. 50(lO) Oct.1979 p.6175.

(39) P.K. Tien Appl. Optics Vol.10. 1971. p.2395-

(40) T.P. Pearsall et al. J. Appl. Phys. Vol.47, No.11, 1976. pp.4794-4797■

(41) K. Sugii et al. J. Material Science 13(1978) p.523.

(42) G. Stewart et al. IEEE J.Q. Electronics Vol.QE-13 No.4 1977

pp.192-200.

(43) M.N.Armenise et al. IEEE Trans. Vol.CHMT“5 No.2 I982, p.212.



42

CHAPTER 3

IN-PLANE LIGHT SCATTERING IN THE WAVEGUIDES

3.1 Introduction

In this Chapter the dependence of the in-plane light scattering 

(in the titanium diffused LiNhO^ waveguides) on the initial thickness 

of titanium film, diffusion time and diffusion temperature is considered, 

The systematic evolution of the waveguide surface roughness,during the 

diffusion process is studied. From the results presented in this 

Chapter it appears that in the initial stages (i.e. shorter diffusion 

times) of the diffusion process carried out at temperatures in the range 

950 - 1050^0, in-plane light scattering is because of the presence of 

the residual oxide layer on the surface of the waveguide. However, in 

the case of longer diffusion times (long enough to consume completely 

the oxide film), in-plane light scattering is because of the defects 

in the waveguide itself. The nature of these defects has not been 

established, however the average sise depends on the thickness of the 

titanium film and also on the diffusion temperature.

3.2 The Importance of Light Scattering in Integrated Optical Devices

The scattering of guided light in optical waveguides can affect 

the performance of devices to a considerable extent. For example, 

scattering of light from one guided mode into another guided mode (in 

the case of multimode waveguides) or into radiation modes can produce 

unwanted crosstalk between channel waveguides 2] . In particular,

in the case of the lOSA, scattering degrades the dynamic range of the 

device jjL, 3, 4, 5, ^  * At the present state of development an order
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of magnitude reduction in the waveguide scattering level will lead

directly to a 10 dB increase in the dynamic range [ij . In-plane light

scattering (light scattered in the plane of the waveguide) can also

affect the signal resolution capability of the lOSA because of effective

broadening of the deflected spot [l] • As light scattering is an

important source of losses in the waveguide, a reduction of these losses

should make possible the use of lower power light sources.

There are two basic types of scattering which can take place in the

waveguide. Firstly, out-of-plane scattering, where guided light is

scattered into air or into the substrate radiation modes. In the case

of titanium indiffused LiWbO^ waveguides the difference in the indices

of air and the guide is substantial (n -, - n . = 2.203-1.0 = 1.203).guide air
Whereas the difference in the indices of the waveguide and the substrate

“3is of the order of 3 x 10 . Therefore out-of-plane scattered light will

mainly go into substrate radiation modes. The second type of scattering 

is in-plane light scattering. In this case, guided light is scattered 

in the plane of the waveguide and therefore is also guided. As light 

diffracted by the acousto-optic effect in the lOSA lies in the plane of 

the waveguide, the study of in-plane light scattering is of more immediate 

interest and therefore has been investigated in work for this thesis.

In the case of titanium in-diffused LiNbO^ waveguides, in-plane 

light scattering can originate from the following sources,

(a) From the bulk of the waveguide :

Any slight change in the refractive index in the waveguiding region 

can give rise to scattering of guided light. This change in the 

refractive index can be due to the following reasons.
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(i) Inhomogeneity in the substrate crystal before waveguide fabrication [7]
(ii) Inhomogeneity in the waveguide arising either because of the presence 

of dust particles (e.g. due to not obtaining a clean surface before 

titanium evaporation) or precipitation of the LiNb^Og phase (having 

different refractive index) at higher temperatures (~8, 9], .

(iii) Inhomogeneity in the substrate crystal because of the sub-surface 

damage associated with polishing.

(iv) Inhomogeneity in the refractive index which arises because of 

photorefractive effect. This effect is due to the change in the 

index of the waveguide, and depends on the intensity and wavelength 

of the light used, and also on the presence of transition element 

impurities especially iron .

(v) Inhomogeneity in the refractive index of the waveguide arising 

because of microdomain reversal [lO, 11, 1 ^  .

(vi) The inhomogeneous surface layer which arises because of the nature 

of the diffusion process [2^  . There will also be inhomogeneity 

because of random structure modification produced by the diffusion 

itself.

(b) From the surface of the waveguide

Any irregularity in the surface can give rise to scattering of

guided light. This irregularity can arise because of the following

reasons.

(i) Any surface defect (such as pits, scratches etc) in the starting

crystal and also dust etc. on the surface of the waveguide.

(ii) Scratches and other defects occurring at the interface created 

when prism is pressed against the waveguide surface.



(iii) Surface roughness due to inadequate polishing of the substrate 

crystal.

(iv) Surface roughness which arises during the titanium indiffusion 

process.

3.3 Scattering Theories

For multilayer optical coatings Carniglia |36| , by adapting

Eeclunann's theory of scattering of light from rough surfaces, has shown 

that for near forward scattering, light scattering varies as l/A^, where 

X is the wavelength of the light. However for the case of Rayleigh 

scattering from refractive index discontinuities which are small with 

respect to the wavelength of the light, scattering varies as l/X^.

Mie's theory £3^  deals with scattering from spheres which can 

have diameters of the order of or larger than the wavelength. The 

wavelength dependence of scattering predicted by Mie’s theory for 

different particle diameters is as follows.

Scattering a l/A^ (if particle diameter < A/lO)

which is essentially Rayleigh scattering. As the particle diameter 

to wavelength ratio increases, the dependence moves towards lower 

inverse powers of wavelength. For particles which are greater than 

ten times the wavelength, Mie's theory predicts that scattering becomes 

independent of wavelength. Therefore according to Brandt [l^ variation 

in wavelength dependence given by Mie’s theory makes it impossible to 

use wavelength dependence to separate the effect of the surface and bulk 

scattering.

However using Beckmann’s theory Brandt et ad. £3TJ. have calculated
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that for a propagation loss of 2.3 dB/citi. in the waveguide, a surface 

with 0.005 dm r.m.s. roughness will produce a scattered signal in the 

plane of the waveguide which will he 66 dB down than forward scattered 

light level. Brandt et al £3%] have also calculated that near forward 

scattering should he 13 dB below the unscattered light level if Marcuse's 

theory for Rayleigh scattering from refractive index inhomogeneities, 

is used, assuming propagation loss of 2.3 dB/cm. This indicates that ■ 

refractive index variations in the waveguides are likely to be the major 

source of in-plane light scattering. With the assumption that the 

contribution of surface roughness to in-plane light scattering is 

negligible, the variation in the wavelength dependence of scattering 

could be used to estimate the size of the refractive index inhomogeneity, 

scattering centres of whatever type.

3.4 Waveguide Fabrication

All the optical waveguides described in this Chapter were fabricated

by evaporating titanium films of the required thickness by electron beam

evaporation and then diffusing at various temperatures and for various

lengths of time, in the presence of flowing oxygen. It has been found

that the presence of oxygen helps in reducing the number of centres

actively taking part in the optical damage . Also presence of

oxygen inhibits the precipitation of LiNb^Og £8| . However no attempt

was made to suppress the lithium outdiffusion, because to do this would

have involved the use of a Li^O vapour such as congruent LiNbO^ powder

[16, 17] • It has been observed that an excess of lithium increases
»

the sensitivity of LiHbO^ to optical damage [l4, 1 ^  , which can in turn 

lead to more scattering of guided light.
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The arrangement used, to fabricate the optical waveguides has been 

described fully in Chapter 2 of this thesis. When diffusion of titanium 

is carried out whether in an argon or an oxygen environment, the titanium 

film becomes oxidised. Therefore the titanium oxide film acts as a source 

of titanium |_3l][ • Armenise et al [26] have observed that in the initial 

stages of diffusion, the surface layer is inhomogeneous and made up of 

Ti^ ^ 1-x compound where x = .6, Pearsall et al [3^  determined the 

valence of state of titanium and also found that in a well-diffused 

sample, the ratio of niobium to titanium near the waveguide surface (20 S) 

was of the order of 300:1. According to Vahey [27] the initial film of 

oxide is granular in nature with the grain size being of the order of 

one micron. As described later in this chapter, during the work for 

thesis, it was observed that the initial oxide film was also rougher than 

the trtam’um film itself.

3.5 Measurement of In-Plane Light Scattering

A substrate with an optical waveguide on it was fixed on to a glass 

slide using double sided sellotape. This glass slide was mounted on to 

an x,y,z and rotation table. A schematic diagram of the measurement 

set up can be seen in Figure (3.I). Chopped (iKHz), .6328 ym wavelength, 

TE polarised light was coupled into the waveguide using a rutile prism,

P^, as an input coupler. A second rutile prism, P^, was used to couple 

light out. This output coupled light was detected with a reverse biased 

large area detector D (SD-444-11-11- 171 Silicon Detector Corporation) 

with a narrow (200 ym) slit. The detector was placed 50*0 cms from the 

output prism P^. To scan the mode line, the detector was mounted on the
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arrangement shown in Figure (3^2). The total length of the scan from 

one end to the other was 25*0 cms and therefore covered an angle of 28° 

at a distance of 50-0 cms from the output prism. The output of the 

detector was amplified using a phase-sensitive detector with logarithmic 

amplifier (9503~SC"Oi'tec -Brookdeal). The amplified signal was recorded 

on an x~t recorder. The linearity of the whole system was checked by 

using calibrated optical attenuators and the results are shown in 

Figure (3.3). A maximum light power of 5 mw was attenuated using a 

10 dB optical attenuator^ and then it was measured using a phase-sensitive- 

detector. This light beam was then further attenuated with various other 

optical attenuators a.nd the change in the output of amplifier was measured. 

The phase-sensitive-detectorwas used on the lowest sensitivity range.

The in-plane light scattering measurement system vms similar to 

systems used by other workers [9, l8, Ipj . Barnoski et ad [sj used a 

detector of area 100 ym to measure the in^plane light scattering. It is 

not clear whether these authors used a lens to focus the outcoupled light 

beam on to the detector. Brandt [l9J used a pinhole of ^0 ym size in 

front of the detector. But his optical set up should give a spot size 

of about 25 ym. Therefore it is unlikely that the detector aperture 

covers the entire width of the outcoupled mode line. Vahey's [l8, ex­

perimental arrangement was similar to that used for the work described 

in this thesis.

The results of a mode line scan for an optical waveguide (fabrication 

conditions l80 R titanium film diffused for 9 hours at 980°C) are shown 

in Figure (3.4). As the phase-sensitive-logarithmic amplifier covered 

only a 3.0 dB range, the scale factor had to be changed at intervals during
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In-Plane Light Scattering Measuring Circuit Linearity
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the scan. In this particular result the in-plane scattered light level 

at 1°5 (which corresponds to an r,f. signal of frequency 96 MHZ in 

acousto-optic Bragg diffraction) was about 30 dB below the main spot 

light level. The angle described is the angle in air and is given by

air = n d) .g (P

where n^ is the effective waveguide index and is the angle in the 

waveguide. It is reasonably obvious that the scattered light level, 

relative to the main beam, will increase with the total number of 

scatterers encountered and that eventually all of the light initially 

launched in the main beam will become spread out into in-plane scattered 

light. For example in sputtered glass waveguides, the characteristic 

mode line observed with planar waveguides, show no distinct central 

main spot at all. According to Vahey j sf] the scattered light intensity 

increases linearly with the ratio L/d, where L is the length of the 

scattering medium and d is the beam diameter. Unfortunately Vahey |2'Q 

does not present any theoretical justification for this assertion, which 

therefore may well be based on the simple physical arguments described 

above. Furthermore it is not completely clear whether the assertion 

of linear dependence relates to the intensity measured absolutely or 

logarithmically.

If it were supposed that the light level in the main beam decays, 

predominantly due to scattering according to an exponential decay law 

i.e. e then the total scattered light level (neglecting absorption) 

would build up as (l - e ^^), or, for small enough values of uL, as 

aL. This could justify, in part, Vahey's assertion.

In all the experimental work described in this thesis, the input 

laser beam was TE polarised, unfocussed and of the order of 1 mm diameter
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Therefore the variation of the scattered light intensity (at a 

particular angle) with distance L (spacing between input and output 

prisms 5 with coupling spots of nearly 2 to 3 mm diameter) should yield 

quantitatively the quality of the waveguide with regard to in-plane 

light scattering.

The results shoTO in Figure (3.5) were obtained (for the waveguide

described above) by keeping the prism, P^, (shotm in Figure 3.1) at a

fixed position on the waveguide and then scanning the mode-lines for 

various distances between the output and input prism. The results for

in-plane scattered light levels at a fixed angle were then plotted against

the prism spacing. The results plotted in Figure (3.5) are for relative 

levels of scattered light at 6^ and 9^ in air. The slope of the

line was 2.7 dB/cm. As described above, this slope yields a measure of 

the waveguide quality in terms of in-plane light scattering.

It is in particular, the variation of this slope (for an angle of 2^)

with the fabrication parameters of the waveguide, which has been studied 

in the work described subsequently. The level (for fixed prism spacing) 

of the in-plane scattered light relative to the main beam is more 

important from the point of view of an optical device. For lOSA, a

longer substrate is preferable because it leads to a higher signal

resolution capability. Tliis is because, in the case of a long substrate, 

diffracted light spots have greater spatial separation and also these 

spots are further away spatially from the maun undiffracted light beam.

But an increase in the length of the device (lOSA) will also lead to an 

increase in the in-plane light scattering and hence a reduction of 

dynamic,range. However, the change in the in-plane light scattering 

with the length of the waveguiding region between the input and output
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prisms vas found to be more systematic and less subject to variation 

from one sample to another (particularly variations of source material).

Though in-plane light scattering of the guided light will contribute 

to the total loss of the guided light in the waveguide, the slope 

expressed in dB/cm obtained in these results is not a direct measure 

of the loss. The total loss in the waveguide will involve out of plane 

scattered light as well as the inherent absorption of the guided light by 

the medium.

It must be pointed out, in relation to results shora in Figures 

(3.6) to (3.11), that major problems in obtaining such results were

(i) Relatively small number of data points.

(ii) Substantial fluctuations inherent in plots as shown in Figure

(3.^), from which data are extracted (ideally data should have 

been taken from smoothed plots), Error bars on individual data

points l^shown in Figures (3.6) to (3.11)] were calculated from

■ traces similar to one shown in Figure (3.4), and correspond to 

peak to pea fluctuations. -lEach data point is itself, an average 

value of the scattered light intensity at an angle of 2^ in air.

Over a range of data, error bars estimates were as large as 3*8 dB 

and as small as .35 dB. Typically the estimated error was about 

2.0 dB.

(iii) Obtaining a very clean substrate surface prior to titanium 

evaporation. As dust particles under the titanium film will get 

diffused and then act as scattering centres.

(iv) Substrates were not of good commercial quality,

(v) Some additional light scattering produced in the region of the
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output coupling prism to waveguide interface and this additional 

contribution will vary between the different locations of the 

prism used in making the measurements.

3.6 'Dependence of in-plane light scattering on diffusion time, 

diffusion temperature and thickness of titanium film.

The rate of change of in-plane light scattering with the length 

of the waveguiding medium is defined as follows

~  change in in-plane scattered light level (dB) 
Length of waveguiding medium (cm)

AI = dB/cm. = slope described in Section 3.5»

Values of the slope AI for the data shown in Figures (3.6) to

(3.11) were calculated using the method of least square fitting of a 

line as described below and given, by Clarke and Cooke .

Consider measurements of a quantity y^, measured at discrete point; 

x^j with the errors in measurement of y^, such that

(i) Each is independent of every other c^

(ii) Each c^ is from a distribution that

(a) has mean zero

(b) is normal.

Then the equation

y^ = a + 3

will give b the estimated value of 3 , as below,
_

E Cx. -  x ) ( y .  -  y)

b = -------
S (x^ - x)^
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N
Wh.ejce X = ^ X.

^ i=l ^

i=l

x^ being the point at which is measured. 

The variance of b is given by

Z (c. “ c)
nn ' i=l - var [b] =------- iT— -------r 2

N E (x. - x)
i=l

Assuming that 3 is normally distributed with mean b and has

variance var |b] , then 80^ confidence limits on 3 are given by

b ±1.28 /var [b]

Therefore the estimated error, with the given confidence limits, 

in the determination of the slope of the line is given by

2 X 1.28 /var [bj

The error in the estimated slope obtained here, taking account 

directly of the measurement errors, leads typically to somewhat larger 

values than are obtained by applying the method described by Dutta et al

b d  •
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3.6.1 Dependence of AI on Diffusion Time

Samples with initial titanium films of thickness 230 S and 600 Â 

were prepared hy diffusing at 950^0, 980^0, 1020^0, 1050^0.(in the 

presence of flowing oxygen) for periods of 4, 9» l6 and 25 hours. In-plane 

scattered light levels (at 2^ in air) for various lengths of waveguiding 

region were measured in the way described in Section 3.5. Results 

obtained can be seen in Figures (3.6) to (3.1l) with waveguide fabri­

cation pai’ameters also shown in these figures. Al was determined for 

each set of results. The diffusion times involved were cumulative 

i.e. a sample diffused for 4 hours, was taken out of the furnace and after 

measurement of AI on this sample, it was returned to the furnace for a 

period of further 5 hours to obtain results for a diffusion time of 

9 hours and so on.

Figures (3.12)* and (3.13)* show the variation of AI with diffusion 

time for waveguides fabricated with -initial-titanium -films - of 230 ■

and 600 S thickness respectively. From Figure (3.12)* it can be seen 

AI decreases with diffusion period if diffusion is carried out at 950°G. 

Figure (3.12)* also shows that as the diffusion time increases, AI decreases 

at first but then apparently increases for longer diffusion time periods 

if diffusion is carried out at 980°C, 1020^0 and 1050^C, i.e. at first 

the quality of the waveguides improved and then deteriorated. It can also 

be seen that the higher the diffusion temperature the greater is the 

deterioration in the quality of the waveguide. Figure (3.13)* shows that 

for a waveguide with an initial titanium film of thickness 600 S, AI 

decreases for increasing diffusion periods if the diffusion temperature is 

950^C and 980^C. However, if the diffusion temperature is 1020^0 and 1050°C 

;then the waveguide quality deteriorates if diffusion is carried out for a 

period longer than 9 hours.

*For clarification of Figures (3.12) and (3.13) see the Appendix B at theend of this Chapter.
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As described in Section (3*^) of this Chapter, at an intermediate 

stage of the diffusion phocess, the surface of the optical waveguide is 

rough, inhomogeneous and granular in nature. Therefore longer diffusion 

times will lead to a more and more homogeneous but less rough film 

accompanied by a decrease in AI. This is consistent with the results 

shown in Figures (3.12)* and (3.13)*. The higher the temperature, the 

smaller will be the diffusion period required to achieve a comparable 

level of AI. From Figures (3.12)* and (3.13)* it appears that the 

waveguide quality deteriorated for diffusion beyond 9 hours (in the case 

of smaller titanium thickness or higher temperature), which would be 

consistent with an increase in the number of light scattering defects.

The nature of the defects is described later in this Chapter.

3.6.2 Dependence of AI on Titanium Film Thickness 

' ' 'Five samples with initial titahium -fiTiris 'of'thicknesses 'o'f•'l8'0 23’0'-r''

260, 275 and 300 2 were prepared by diffusing at 980^0 (in the presence of 

flowing Oxygen), for 9 hours. In-plane light scattering measurements were 

carried out on each sample and AI was determined. The uncertainty in AI 

was determined as described in Appendix A, at the end of this Chapter. 

Figure (3.1^0 shows the variation in AI with the initial thickness of the 

titanium film. From this figure it appears that the initial titanium film 

of thickness 230 2 leads to minimum value of AI. Titanium films of thick­

ness less than 230 2 after a 9 hours of diffusion period at 980^C lead to 

waveguide with higher values of AI. Also a titanium film of thickness 

larger than 230 2 leads to waveguides with higher values of Al. As 

described in Section (3.^0 > the titanium film first gets oxidised and
t

*For clarification of Figures (3.12) and (3.13) see the Appendix B
at the end of this Chapter.
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and then becomes rough and inhomogeneous. TÛis inhomogeneity and 

roughness smoothed out as diffusion proceeded [si, 26j and this 
improved the quality of the waveguide and hence lowered the value of Al.

But the higher the thickness of the titanium film, the larger will be the 

diffusion period required to smooth out and make the film homogeneous.

It has been estimated by Burns et al [28] that a titanium film of 300 X 

thickness (if diffused at 980°C) will be consumed after a period of 6 hours. 
However their conclusion is based purely on visual observation of the 

diffused samples. In the course of work for this thesis, it was observed 

that a film of 230 2 if diffused for 9 hours at 980̂ 0, leaves a surface 
with roughness of 1^.8 2 r.m.s. This value was higher than the value 

of 6 2 obtained if the same film was diffused for 25 hours, which was
nearly the same as that of the virgin substrate. Therefore it is

reasonable to assume that the increase in AI with increases in the thickness 

of the titanium film was due to incomplete diffusion of the surface oxide 

film.

3.6.3 Dependence of Al on diffusion temperature

A number of samples with initial titanium films of thickness 230 2 

and 600 2 were prepared by diffusing (in the presence of flowing oxygen) 
at temperatures of 950, 980, 1020 and 1050°C, for periods of 9) 16
and 25 hours. The diffusion times involved were cumulative as described

in Section 3*6.1, The in-plane light scattering was measured for each 

sample and AI was determined. Figure (3.15)* and Figure (3.16)* show the 

variation of AI with diffusion temperature for waveguides with initial 

titanium films of thickness 230 and 6OO 2 respectively. ' *

*For clarification of Figures (3.15) and (3.I6) see the Appendix C at
the end of this Chapter,
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From Figure (3.15)* it can be seen that for a fixed, diffusion period, 

Al increased as the diffusion temperatuer increased beyond 9^0^C. Also 

if diffusion was carried out at temperatures between 980°C and 1050°C 

then Al increased at all diffusion temperatures for diffusion periods 

‘larger than 9 hours.

From Figure (3.16)* it can be seen that if diffusion was carried out 
at temperatures of 950°C, 980°C and 1050°C, for periods between U and 9 
hours then Al decreased with diffusion period. However the result for 

diffusion carried out at 1020^0 shows that h hour diffusion lead to a 

smaller value of Al as compared to the value of AI achieved after 9 hours 

diffusion at the same temperature. It is possible that because of the 

small value of AI for 4 hour diffusion at 1020°C, and also because 16 hours 
diffusion gave a similar value of AI, the point corresponding to 4 hours of 

diffusion may be erroneous.

e .. ( 3.1.6 ) ̂ . i t can also'be>, seen that'if diffus ion: was carried- 

out for periods larger than 16 hours then AI increased as the diffusion 
temperature increased beyond 980°C. This is clearly shown in the case of 

the curve corresponding to 25 hours diffusion.

A decrease in AI with increasing temperature and diffusion period, 

as shown in Figures (3.15)* and (3.16)* is consistent with the surface 
layer becoming less rough and more homogeneous as described in Section 

(3,4) of this Chapter. But an increase in AI when diffusion was carried 

out beyond a certain time (which depended on the titanium film thickness) 

indicated that the waveguide quality was deteriorating. Comparing Figure 

(3.15)* with Figure (3,l6)* it can be seen that the smaller was the 
thickness, the lower was the value of diffusion temperature and diffusion

*For clarification of Figures (3.15) and (3.I6) see the Appendix C
at the end of this Chapter.
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time beyond which diffusion led to an increase in AI. The deterioration 

in the quality of the waveguide with a 600 % titanium film was slower 
.than for the waveguides with 230 £ titanium initial film thickness.

This was consistent with the hypothesis that the diffusion period 

required to make the waveguide homoegeneous will decrease as the 

temperature increases. Once the waveguide has become homogeneous then 

further diffusion leads to a modification of the already homogeneous 

layer and a possible increase in the number and size of defects.

This transition will happen earlier in the case of waveguides fabricated 

with smaller initial titanium film thicknesses.

From this study it can be seen that if the initial titanium film 

thickness was 230 S, a diffusion time of between 9 to l6 hours, at a 

temperature of 980°C, was sufficient to fabricate good quality optical 

waveguides. An increase in temperature above 980°C did not lead to 

waveguides of lower AI even when the diffusion period was reduced to 

^ or 9 hours. But if the initial titanium film was 600 then a 

diffusion temperature of 1020°G and diffusion time of l6 to 25 hours 

was preferable. Higher diffusion temperature (greater than 1020°C) 

leads to higher Al.
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3-6,k Discussion

From the work carried out for Sections 3.6.1 to 3.6.3 it can he 

seen that Integrated Optical devices with low levels of in-plane light 

scattering can be fabricated by an optimum choice of diffusion time 

period and diffusion temperature. But longer diffusion times or higher 

diffusion temperatures lead to optical waveguides in which guided light 

is less tightly confined. In the case of the lOSA, to achieve efficient 

acousto-optic interaction it is generally desirable that light be 

confined to a region very near to the surface of the waveguide. This 

can be achieved by using a shorter diffusion time. However this leads 

to higher levels of in-plane light scattering which are .due to the 

existence of the inhomogeneous surface layer. Therefore it was decided 

to see what effect post diffusion polishing of the waveguide has on 

the in-plane light scattering, because according to Vahey [Ï8} post 

diffusion polishing should improve the waveguide quality.

3.7 Dost Diffusion Polishing of the Waveguides

A substrate with a waveguide on it was mounted on a glass slide 

using double sided sellotape. On the other side of the glass slide a 

small block of glass was mounted with double sided sellotape. The 

waveguide surface was allowed to define its own orientation with respect



to the polishing pad giving reasonably even removal of a small depth 

of material. A Logitech polishing machine vas used with Syton as the 

polishing agent. The rate of material removal depends on the polishing 

time, the speed of the machine and also on the pressure exerted on the 

sample against the polishing pad. Each sample was polished for about 

20 minutes at a constant machine speed. As the substrate was held by 

hand it was difficult to establish the rate of removal of material with 

any precision. However polishing was continued till the boundary between 

the residual oxide film (left after diffusion) and the substrate disappear 

as seen by naked eye. Various samples were polished and results on 

in-plane scattered light levels at an angle of 2° in air are given 

in Table I, with similar values of prism spacings in the 'Before 

Polishing' and 'After Polishing' columns.

From Table I, it can be seen that in-plane light scattering levels 

were decreased by post diffusion polishing of the waveguides. In the 

case of waveguides fabricated with an initial titanium film thickness 

of 260 a reduction in the in-plane light scattering of the order of 

tdB was achieved, especially for samples diffused for 6 hours (JL^^) 

and 16 hour? (JL^^). Whereas in the case of samples diffused for 

25 hours (JL^^) and 36 hours (JL^^) there was no significant reduction 

in the in-plane light scattering. On the other hand, for all samples 

fabricated with an initial titanium film thickness of ^00 S, post 

diffusion polishing decreased in-plane light scattering. It appears 

that in the case of samples JL^^ and JL^^ there was still a significant 

rough and inhomogeneous residual oxide layer left on the surface of 

the waveguide and this was contributing to the in-plane light scattering. 

Therefore physical removal (even if partial) of this layer decreased
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Ref. Initial
Titanium
film
thickness

Diffusion 
Temp.

Diffusion
Period

In-plane scattered 
light level at 2° 

in air

8 8 hours Before
polishing

-dB

After
polishing

-dB

JL7 too 980 9 33 36

JLg too I t 16 31 39.5
JLg too tt '25 29 31.5

too I t 36 31 35

260 tl 6 29 33 ■
11 11 16 33 37.5

^bi>
I t I I 25 30-5 30.0

^ b 5
11 II 36 25.5 25.0

7 0 0 1020 6 35.5
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in-plane light scattering, This is clearly the case for samples

JLg, JL^, '̂ 1̂0' the case of samples and ^, which

were diffused for 25 and 36 hours, post diffusion polishing did not 
reduce the in-plane light scattering as there was not much oxide layer 

left after the diffusion process. These results are in agreement with 

the results of Vahey [l8]̂  . In the case of sample prepared from a 

700 8 initial titanium film, diffused for 6 hours at 1020°C> in-plane 

light scattering at 2° was 35 dB down on the main beam spot after post 

diffusion polishing.

3.8 Scattering in the Bulk LihbO^

To establish some idea of the baseline (or minimum) for the in-plane 

light scattering in LiflbO^, the following experiment was carried out.

A Schematic arrangement of experimental set up is shown in Figure 

(3.17)• Chopped (1KH^), TE polarised He-Ne laser light of wavelength 

•6328 pm, was passed through a pinhole (imm diameter) and then through 

X-cut liiKbO^ slab (polished on both faces) of 1.5mm thickness. The 

scattered light level was measured relative to the main beam, using 

detector D and a phase-sensitive logarithmic amplifier. The output 

of the amplifier was recorded on X-t chart recorder. Figure (3.I8) 

shows that light scattering in bulk LiFbO^, X-cut crystal (light along 

x-direction) was about 52 dB down (at 2° in air) the main light beam.

An optical scatter noise in bulk LiNbO^ is about - 55 dB (nominal) in 

bulk acousto-optic spectrum analyser Ql-Ĉ  of centre frequency IGHZ.

3.9 The Importance of Waveguide Surface Quality.

As described in Section 3.2b of this Chapter, scattering of
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guided light can also take place because of the surface effects.

Surface scattering can arise |_2o] from

(ii) Irregularities such as scratches or particulates which are 

large relative to the wavelength of the light.

(ii) Isolated irregularities which are comparable in size with 

or smaller than the wavelength of the light.

(iii) Correlated irregularities which have heights, which are 

small relative to the wavelength but which covers the entire 

surface.

In-diffusion of titanium into LihbO^ leads (particularly at early 

stages) to optical waveguides with rough surfaces and this waveguide 

surface roughness can scatter guided light into radiation modes or 

into the other guided modes of the waveguide [24] . In this way 

surface roughness leads to waveguide propagation loss [25[[ . Surface 

roughness can also possibly lead to problems in the fabrication of high 

frequency (l-2GHz) interdigital transducers, and can also lead to a 

lower dielectric breakdown electric field value. Furthermore surface 

roughness can lead to scattering of high frequency surface acoustic 

waves |_4l[ .

It is important therefore to study the variation in the surface 

roughness of the waveguide with the fabrication parameters.

3*10 The Surface Roughness Measurement

A Talystep instrument was used to measure the surface roughness 

of all the samples. This instrument has a fine probe of pyramidal 

truncated shape and tip dimensions -1 pm x 2*5 pm. It can measure a 

20 R step, when used on the highest sensitive range. A typical trace
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from a surface scan is shown in Figure (3.19)* The r.m.s. roughne: 

value Q . from this trace was calculated as follows

Aa = '— —
2

Since the surface roughness was of a random nature, the r.m.s 

value a was obtained as an average over many values of A. The measure­

ment of the r.m.s. value of roughness with a Talystep instrument is 

practically more convenient compared with, the use of an integrated 

sphere because in the latter method, this needs to be polished on its 

back face as well as on the waveguide face [42, Ls] .

3*11 The Dependence of Surface Roughness on Diffusion Time,

Titanium Film Thickness and Diffusion Temperature.

3.11.1 The Dependence of Surface Roughness on Diffusion Time

Samples with titanium films of 230 X and 600 2 were prepared by 

diffusing (in the presence of flowing oxygen) at 980^0, 1020°C and 

1050°C for periods of H, 9> l6 25 hours. The diffusion times were 

cumulative as described in Section 3-6.1. R.M.S. value of surface 

roughness of each sample was measured using a Talystep Instrument.

The variation of surface roughness with diffusion time on a logarithmic 

scale can be seen in Figures (3.20)to (3.22), From these figures it 

can be seen that the dependence of d the value of surface roughness 

on diffusion time approximately follows the following relationship.

a, a (Diffusion time)
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Roughness of Waveguide Surface

Horizontal Scale 2-5 pm/Small Division

Vertical Scale 20 X/Small Division
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Surface Roughness (r.m.s.) ^ 18 X

Figure 3.19
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i.e. as the diffusion time increases^ the surface roughness decreases. 

The dependence of h on diffusion time follows the diffusion process as 

described by Burn et al ^281 .

C(o,t) = &  ^
A t

C(o,t) - Surface concentration of diffusant

p = density of film

T = film thickness which is in fact 1.5 times

initial titanium film thickness because 

oxidation increases the thickness of film,

D = Diffusion depth = 2/i?t

where ID = D exp (-T /T)o  ̂ o

D ~ Diffusion coefficiento
T^ = Constant Activation energy

T ~ Diffusion temperature

t = Diffusion time

C(o,t) = 2 P_l_ .
VÏ 2Æ  t*

From the above equation it is clear that for a diffusion process 

the concentration distribution of titanium atoms shows t  ̂ dependence 

which is very similar to the dependence of d on time. This clearly 

indicates that the rate at which roughness decreases with time is 

controlled by the diffusion process i.e. the rough inhomogeneous film 

being depleted of titanium by diffusion and at the same time becoming 

smoother.
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3.11.2 The Dependence of Surface Roughness on initial Titanium Film 

Thickness.

Samples with titanium films of initial thickness 230 260 S,

400 % and 600 2 were prepared by diffusing (in the presence of flowing 

oxygen) at 980^0 for l6 and 25 hours. R.M.S. values of roughness for 

each of these samples were measured. Results obtained on a logarithmic 

scale are shown in Figure (3.23) and (3.24). From these figures it 

can be seen that

da for l6 hours diffusion at 980^0

a for 25 hours diffusion at 980^0

The dependence is approximately the same for both lengths of 

diffusion periods. Figures (3.23) and (3.24) indicate clearly that 

at a particular temperature^ the smaller the thickness of initial 

titanium film, the smaller will be the roughness of the surface^ after 

similar lengths of diffusion period.

3.11.3 The Dependence of Surface Roughness on the Diffusion Temperature

Samples with titanium films of initial thicknesses 230 2 and 600 2

were prepared by diffusing (in the presence of flowing oxygen) at 950, 

980, 1020 and 1050°C for periods of 4, 9, I6 and 25 hours. The diffusion 

times were cumulative as described in Section 3.6.1 . The surface 

roughness d, of each sample was measured. The results obtained are

shown in Figures (3.25) and (3.26). From these figures it can be seen

that :
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(i) At any temperature of diffusion, the larger the thickness 

of the initial titanium film, the larger the surface 

roughness value, after comparable periods of diffusion.

(ii) The higher the diffusion temperature, the smaller is the 

diffusion time period needed to achieve comparable value 

of surface roughness.

(iii) At any temperature of diffusion, the longer the diffusion 

time period, the smaller the surface roughness irrespective 

of initial titanium film thickness.

3.11.4 Discussion.

Wlien a titanium film is heated it oxidises and becomes rough. 

Esdaile [31% has observed that the thickness of the initial oxide film 

is opproximately 1.5 times the thickness of the titanium film. This 

oxidised and inhomogeneous |_2̂ ] film acts a,s a source of titanium for 

the high temperature diffusion process. From the dependence of the 

surface roughness on the diffusion time it can be concluded, that as 

diffusion proceeds, surface roughness decreases. From the dependence 

of surface roughness on the initial titanium film thickness it can be 

seen that the smaller the thickness of the initial titanium film, the 

less rough is the surface for fixed diffusion time and temperature.

3.12 Defects in the Titanium In-Diffused LiFbQ .̂

According to Esdaile [3Î] the diffusion time and the diffusion 

temperature affect the crystallographic structure of the titanium in­

diffused LiFbO^, in the region near the surface. This will affect the 

quality of the optical waveguide especially the scattering of the guided
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light. From Figures (3,12)* and, (3.13)* it can he seen that M  eventually 

increased if diffusion was carried out for long enough. Also Figures 

(3.15)** and (3,16)** show that for a fixed time period of diffusion, Al 
increased as the diffusion temperature increased. All of the samples, 

results of which (for 25 hours diffusion time) are shown in the above- 
mentioned figures, appeared very smooth when observed under the phase 

contrast optical microscope. Therefore it was decided to etch the 

samples so that the defects below the waveguide surface could be observed,

3.12.1 The Etching of the Waveguides

Samples were etched for 7 minutes in a mixture (HFrMO^ = 1:2) of 

acids at 50^C. These samples were then observed at an angle of t5° in 

a scanning electron microscope. In each sample,, two regions were. . 

examined. Firstly the region into which titanium had been diffused 

hhd:secondly - the'region, without't itaniumy but which-had gonexthroughum , cut v 

the same conditions of temperature and time in the diffusion furnace 

as the first region.. The following samples were observed and photographs 

of the surfaces were taken.

(i) Virgin LiNbO^.

(ii) Samples partially covered with a 230 S titanium film diffused

in the presence of flowing oxygen for 25 hours at 950, 980, 1020 
and 1050°C.

(iii) Samples partially covered with a 600 S titanium film diffused in 
the presence of flowing oxygen for 25 hours at 950, 980, 1020 
and 1050^0.

* For clarification of Figures (3.12) and (3.13) see the Appendix B
at the end of this Chapter.

** For clarification of Figures (3.15) and (3*l6) see the Appendix C
at the end of this Chapter.
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Photographs of the surfaces of the various samples can he seen 

in Figures (3.27) to (3.35). From these figures, the average size 

of the defects and their density was determined. As shown in Figure 

(3.27)5 the average size of the defects in the virgin sample was of 

the order of .27hm and the density of the defects of the order of 

6.8 X 10^ cm Figure (3-36) shows the variation in the density of 

the defects and their average size, when Y-cut LiFbO^ samples were 

heated in the presence of flowing oxygen for 25 hours, at various 

temperatures. Results shown in Figure (3.36) were obtained from the 

measurements on Figures (3.28) to (3.35). From Figure (3.36) it can 

be seen that as the diffusion temperature increased, the average size 

of the defects increased but the density of the defects decreased.

Figure (3-37) shows the variation in the average size and the density 

of the defects in the region of the LiîIbO^, into which a Litanium film 

of 230 S thickness was diffused for 25 hours at various temperatures. 

Results shown in Figure (3.37) were obtained from the measurements on 

Figures (3.28) to (3.35). From Figure (3.37) it can be seen that as 

the diffusion temperature increased, both the density of the defects 

and the average size of the defects increased. However, comparing 

Figure (3.37) with Figure (3-36) it can be seen that at all values of 

diffusion temperature, the average size of the defects in the titanium- 

diffused region was smaller than the average size of the defect in the 

region without titanium. Figure (3.38) shows the variation in the 

average size and the density of the defects in a region of LilfbO^ into 

which a titanium film of 6OO K thickness was diffused for 25 hours, 

at various temperatures. The results shown in Figure (3.38) were 

obtained from the measurements on Figures (3.28) to (3.35). From Figure
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(3.38) it can be seen that increased diffusion temperature leads to 

an increase in the size of the defects and decrease in the density of 

the defects. As can be seen by comparing Figures (3.37) and (3.38) 

for a similar diffusion temperature, the average size of the defects 

was larger for smaller initial titanium thickness. The variation 

in the average size of the defect with the thickness of the initial 

titanium film can be seen in Figure (3.39). From this figure it can 

be seen that the average size of the defects depends on the thickness 

of the initial titanium film. This dependence is more pronounced 

(stronger) at higher diffusion temperatures. From Figure (3.3?) it 

can be seen that in the case of the sample with a 600 8 initial 

titanium film diffused for 25 hours at 1050^C, there were a large number 

of defects (of average size .9 pm) as well as the defects of the average 

size of the order of 3.3 pm.

Therefore from the above observations, the following points can be 

summarised.

(1) Virgin LiNbO^ had defects of average size of the order of .27 pm,
8 2and of density of the order of 6.8 x 10 cm .

(2) Heating the virgin LiFbO^ leads to an increase in the average

size of the defects.

(3) The average size of the defects depends on the temperature of

diffusion and also on the thickness of the initial titanium film.

3.12.2 The Nature of the Defects.

The following three types of defects can be introduced into LiHbO^ 

during the diffusion process at high temperatures:
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(a) Precipitation of Second Phase of LilibO^.

(b) Microdomain Reversal,

(c) Lattice defects.

(a) Precipitation of the Second Phase of'LiFbO^

It has been observed that LihbO^ becomes unstable at temperatures 

below about 800°C and tends to form islands of the monoclinic crystal 

LiNb^Og[9] 5 according to the following reactions ;

SLihbOg -y Li^O + LilTb Og.

These islands, being of different refractive indices 2.28, 2.36, 

and 2.ho, |_27] can act as light scattering centres.

Armenise et al [^hj have observed the growth of LiNb^Og during 

the initial stages of the in-diffusion of titanium into LihbO^. bat 

these authors have also observed that the Lihb^Og phase disappeared 

completely when the (Ti Kb layer was formed if the diffusion

temperature was above 900°C. Furthermore no LiKb^Og phase was detected 

if the diffusion was carried out for a time long enough to consume 

completely (Ti Kb layer. The maximum diffusion temperature

which these authors have used was of the order of 950^C. But work 

done for this thesis involved samples fabricated at temperatures in 

the range of 950 - lO^O^C.

(b ) Microdomain Reserval

It has been observed by Miyazawa [iC^ that titanium-diffused 

Z-cut LiNbO^ has a curie temperature lower than the curio temperature 

of LiNbO^. Therefore, as the diffusion temperature for carrying out
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in-difussion of titanium into Z-cut LiPbO^ is increased more and more

of the surface will become depolarised. Miyazawa [lOj estimated the

curie temperature of the titanium in-diffused LiîibO^ from the change ino
the index. It is known that the higher the thickness of the initial 

titanium film, the higher will be the change in the index of LiKbO^

J35] and hence,according to Miyazawa [iĈ  ,the lower will be the curie 

temperature of the in-diffused waveguide. Therefore for diffusion 

carried out at a fixed temperature, the higher the thickness of the 

initial titanium film, the larger will be the depoled area.

It has been observed by Nassau et al {^U| that decreasing the Li^O 

content in LiNbO^ leads to a decrease in the curie temperature.

Therefore outdiffusion of Li^O, especially at high temperatures, in 

particular from the regions of LiNbO^ where there was no titanium 

(presence of titanium impedes the evaporation of libhimii j 28[ ) will 

lead to a decrease in the curie temperature. This will lead to an 

increase in the depoled area if the diffusion temperature is increased.

Ohnishi et al j_3^ have studied the microdomains in single crystals 

of LiNbO^. Their study on the negative c-surface [[i.e. (-Z)cut face[] 

showed that etched samples of LillbO^ had hillocks, which had a shape 

not that of triangular pyramid but that of a rather complicated polyhedron, 

Moreover some hillocks had a flat area at the top and the core of the 

hillock had an etch resistive property. Ohnishi et al 133] had observed

needle domains on the surface of the Y-cut LiFbO^ and concluded that 

needle domains seen on the Y-cut face of LiNbO^ are another view of the 

hillock. A sample, the surface of which is shown in Figure (3.31)> when 

observed under higher magnification appeared as shown in Figure (3-^0). 

From this it can be seen that there are hillocks similar to those
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observed by Miyazawa |loj in titanium diffused Z-cut LiKbO^ (-Z or -c 

face) in which no domain reversal has taken place. According to 

Miyazawa Qi.o] these hillocks may be crystallographic defects associated 

with strain induced by the titanium diffusion. However, Miyazawa [j.Cj 

also observed a few microdomains on the Y-face just beneath the titanium 

diffused -Z(i.e.-c) face. From this observation he concluded that 

there is no microdomain reversal in the titanium diffused Y-cut LikhO^.

3.12.3 Discussion on Etching Experiments.

From this limited investigation it is difficult to conclude with 

certainty about the nature of the defects exposed by etching. However 

it is quite clear from Figure (3.39) that the average size of these 

defects depends on the thickness of the initial titanium film and also 

on the diffusion temperature. The study of ].:'gbt scattering defects 

in titanium in-diffused LiNbO^ waveguides by Vahey [I'fj shows that 

defects are anisotropic in nature and have different electro-optic 

properties from those of the crystal as a whole. However he has consider, 

the defects in the waveguide without etching them.

3.13 Conclusion:

VJhen in-diffusion of the titanium into LiNbO^ is carried out at 

high temperatures (950 “ 1050°C), the titanium film oxidises, becomes 

inhomogeneous (Ti Fb O^), and rough. This oxidised, inhomogeneous 

and rough film acts as a source of titanium. The inhomogeneity and 

surface roughness of this film becomes less and less as the diffusion 

process proceeds. The decrease in the surface roughness accompanies 

diffusion process.

The in-plane light scattering in the optical waveguide depends on
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the initial thickness of the titanium film, diffusion time and 

diffusion temperature. For relatively small diffusion times, at 

diffusion temperatures in the range 950 - 1050^0, in-plane light 

scattering in the waveguide is mainly because of the presence of 

the rough and inhomogeneous oxide film on the surface of the waveguide. 

This surface layer can be removed either, physically by post-diffusion 

polishing of the waveguide surface or by carrying out diffusion for a 

longer time or at higher temperature. However for diffusion carried out 

for longer diffusion time or at higher temperature, in-plane light 

scattering at first decreases (because of the reduction in the surface 

roughness and inhomogeneity of the surface oxide layer of the waveguide) 

and then appears to increase because of the increase in the defects 

(in the waveguide) which act as light scattering centres. The nature 

of these defects has not been established, however the Average size of 

these defects depends on the initial thickness of the titanium film, 

and also on the diffusion temperature for diffusion periods of up 

to 25 hours. Post diffusion polishing of the waveguide reduces the 

in-plane light scattering.

It is possible to use the optimum combination of the initial 

thickness of the titanium, film, diffusion temperature and diffusion 

time, to achieve lower levels of in-plane light scattering. However 

longer diffusion times or the use of higher diffusion temperature will 

lead to larger waveguide depth and hence less tight confinement of 

the guided optical energy. For the purpose of the lOSA, where it is 

desirable to have optical energy confined very near the surface, it 

may well be more appropriate to use higher initial titanium film 

thickness (which will lead to a larger change in index), smaller diffusiez 

time, followed by post-diffusion polishing of the waveguide surface to 

remove physically the residual surface layer.



APPENDIX B

Figure (3.12) described in the text has been broken up into three

Figures (3.12a), (3.12b) and (3.12c) for the purpose of clarity.

Figure (3.12a) shows clearly reasonable curves within the uncertainty 

estimation in AI. Curve shown in Figure (3.12b) clearly does not fit 

very well to the data points. It may well be that the point which is ■ 

well off the curve is erroneous. In any case, the data do indicate an 

eventual upward trend with increasing time.

Figure (3.12c) shows the results to which curve fits somewhat better 

but there is large possible error for the point corresponding to a l6 hours 

diffusion time.

Figure (3.13) described in the text has been split up into two 

Figures (3.13a) and (3.13b) for the purpose of clarity. The curves 

shown in Figure (3.13a) are clearly reasonably within the error bars.

The curve, corresponding to diffusion temperature of lO^O^C, shown in 

Figure (3.13b) is^reasonable presentation. However the curve, corres­

ponding to a diffusion temperature of 1020^0, shown in Figure (3.13b) can 

only be regarded as a plausible curve given the amount of scatter of the 

data points.

APPENDIX C

Figure (3.15) described in the text is made up of three Figures (3.15a), 

(3.15b) and (3.15c) shown separately. These three figures clearly confirm 

the upward trend described in the text.

Figure (3.I6) described in the text is made up of three Figures (3.16a), 

(3.16b) and (3.16c). The upward trend in the results for longer diffusion 

time periods at higher temperature appears to be confirmed for the results 

shown in Figure (3,l6c). However as shown in Figure (3.l6a),,the value of 

AI obtained for 1020^0 diffusion temperature is lower for Î+ hours diffusion 

period as compared to 9 hours diffusion at a similar temperature and the 

point corresponding to U hour'diffusion, as indicated in Section 3-6.3 

may be erroneous.



101
REFERENCES

T.
8 ,

9-

10.

11 ,

12.
13.
ih,

15.

1 6, 

IT. 
18,

19.
20, 

21

22

J.T. Boyd et al. IEEE J.Quantum Electronics QE T(6) HBT, 1978.

G.B. Brandt et al. Proc. SPIE 139, 159 (1978).

Anderson D.B. et al. IEEE J.Q. Electronics QE-13; 268 (ipT?)

Hamilton et al. Opt. Engineering l6, ^75 (1977)

Barnoski M.K, et al. IEEE Trans, on Circuits & Systems CAS-26

1113 (1979).

M.C. Hamilton et al. An integrated Optical R.F. Spectrum Analyser

Proceedings I.EEE 1976 Ultrasonic Symposium 

Annapolis M.D.

Kristall und Technik 15, 8, I98O. K71-KT2. 

Ferroelectrics 27, 77 (198O).

G.C. Jain et al. 

R.L, Holman et al.

L.O, Svaasand et al. J. Cryst. Groivth 22, 230 ( 197̂ 1-)«

S, Miyazawa 

M, Fulvuiia et al. 

G.E. Land 

E. Kratzie 

R.L. Holman et al.

J. Appl. Physics 50, ^599 (1979)- 

Applied Optics 19, 591 (1980). 

Ferroelectrics 1980, Vol.27 pp.l73~1^6.

ibid 21 (1978) pp 635-6,

Appl. Phys. Letts. 32 (5), 1978. p.280.

A.Kh.Zeinally et al, Sov.Phys.Solid State 2l(l0), Oct.1979. P.I805.

R.J. Esdaile Appl. Phys. Lett. 33, 733 (1978).

A.D, McLachlan Ph.D. Thesis (Glasgow University) I98I p.ll8.

D.W. Vahey et al. Ferroelectrics I98O, Vol.27, pp.81-84

150/Optical Engineering/Jan-Feb.1981 Vol.20 No.l 

480/Optical Engineering/Vol.17 No.5 Sept.1978 

Sept-Oct,1978/Vol.17 No.5 Optical Engineering 

p.489.

G.B. Brandt

H.E. Bennett 

W.Lee Smith

Richard A, House II, IEEE J. Quantum Electronics May 1977 P*B61 
Jerry R. Bettis &
Arthur H. Guenther



23.

24.

25.

26.

27.

28.

Bass M. & H.H. Barrett (1972) IEEE J.Q.Electron]es QE8: 338.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

D.G. Hall

T . Findakly
E.Garmire & 
H.T. Moon

Optics Letts. Dec.1981/Vol.6/ko.12 p,601. 

May 1979, Vol.4, No.5, Optics Letts. P.lkO

M.N. Armenise et al. IEEE Trans. Vol. CHMT-5; No.2, 1982 pp.212-2

D.W. Valley

W,K, Burns 
P.H.Klein,
E.J.West, 
L.E.Plew.

62/SPIE Vol. 176. Guided Wave Optical Systez; 

and Devices 11 (1979).

J. Appl. Phys. 50 (10) 1979 p.6175.

29. H.E. Bennett 480/0ptical Engineering, Vol.17 No.5, Sept-

Oct. 1978.

H.E, Bennett et al. J, Optical Society America Vol.51 Ho.2 I96I.

pp.123-129.
R.Esdaile, Ph.D. Thesis Glasgow University 1979.

T.P, Pearsall, S.Chiang. J. Appl. Physics, 47, 4794 (1976).
R.V. Schmidt.

W,Ohnishi and T.Lizuka J.Appl. Physics, Vol.̂ 6 No.3 March 1975-

p.1063.

K. Nassau, M.E.Lines J.Appl. Physics 4l, 533 (1970).

R.V. Schmidt & I.P. Kaminow Appl. Physics Letts. Vol.25, No.8,

1974 p.458.

104/0ptical Engineering V0I.I8, No.2, 1979- 

Paper TuN8. 1978. Annual Meeting Optical 

Society of America.

Ann, Physik, Vol.25, p.377, 1908 

470/Optical Engineering, Vol.17,No.5,1978.

O.K. Carniglia

G.B.Brandt, 
J.S.Schruhen & 
M. Gottiiehh

G,Mie

A.M. Glass



103

40. W.S. Oakley

4l. A.J. Slobodnik Jr.

42. H.E. Bennett

43. H.E. Bennett et al.

44. M.K. Armenise et al.

45. Subhadra Dutta et al.

46. Clarke G.M. & Cooke D,

(Acoust0-Optical Processing) Defense 

Electronics Oct. 19T9*

Electronics Letts. June 13» 1974. Vol.10, 

Wo.12, p.233. .

480/0ptical Engineering, Vol.17, No.5, 

Sept.-Oct. 1978'

J . Optical Society America Vol.51» No.2,

1961. p.123-129.

To be published J. Appl. Physics, Dec.

1982-Jan. 1983.
IEEE J. Quantum Electronics, V0I.QE-I8, 

No.4, 1982. pp.800-806.
A Basic Course in Statistics. Edward 

Arnold Publisher 1978. (Chapter 21).



104

CHAPTER U

SURFACE ACOUSTIC WAVES AND INTERDIGITAL TRANSDUCER

k .1 Introduction

In this Chapter the importance of SAW for signal processing devices 

is considered, The use of an interdigital transducer (IDT) as a source 

for the excitation of SAW is described. The design, fabrication as well 

as electrical measurements of a simple IDT delayline are considered.

4.2 The Importance of Elastic Waves in Signa.l Processing Technology.

Elastic waves of various kinds are of great importance because they

have much lower velocities than electromagnetic waves. Typical elastic
3 3wave velocities in solids range from 1.5 x 10 m/s to 12 x 10 m/s.

These velocities are on the order of 10^ times smaller than electromagnetic

wave velocities, which means that an elastic wave resonator operating at
5a given frequency is typically 10 times smaller in length than an 

electromagnetic wave resonator for the same frequency. Therefore small 

elastic wave transmission components such as resonators, filters and delay 

lines can be made.

Elastic waves which travel in the bulk of the solid are called bulk 

elastic waves. It has been known since I885 that elastic waves can also 

propagate along the boundary surface of a solid [l] . Such waves are

known as surface elastic waves. Therefore it is natural to consider 

surface elastic waves for electronic devices. In these devices, surface 

elastic waves or surface acoustic waves (SAV/'s) have one clear advantage 

over bulk elastic waves- SAW are always accessible as they travel along. 

This accessibility means that one can generate and detect surface waves
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with surface structures and that one can alter the wave velocity or 

direction of propagation with surface structures using deposited layers. 

Also the electric and magnetic fields associated with the surface elastic 

waves propagation in piezoelectric and magnetic media extend 'beyond the 

surface, making possible electromagnetic interaction of the waves with 

solids situated just outside the surface.

It is known that hulk elastic waves [g, can propagate in any

direction in the solid whether the solid is elastically isotropic or 

anisotropic. Three independent hulk waves can propagate in a given 

direction. One of these has a particle motion along the direction of 

propagation, this is the longitudinal wave. The other two hulk waves 

are transverse waves having particle displacement entirely transverse 

to the direction of propagation. The phase velocities of the hulk 

waves are independent of frequency (at least from low frequencies up 

through the microwave range) and for isotropic solids, are numerically 

equal to the square root of a linear combination of elastic stiffness 

constants divided by the mass density of the solid. In the case of 

surface elastic waves, as the wave propagates along the stress free 

surface of a solid, the particles at the surface move in elliptical 

paths. Their motion can be decomposed into at least two orthogonal 

components: one in the direction of propagation and one normal to the

free surface. There are both longitudinal and transverse stresses 

associated with the motion. The phase velocity has the same general 

form as that for a bulk wave, but since particles at the free surface 

are less restrained than particles deep in the interior (which are 

surrounded on all sides by the medium) the surface wave velocity is 

lower than the bulk wave velocities in the medium. Because of the lower 

velocity the wave energy cannot propagate into the interior and hence it
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remains at the surface [_4j , The surface wave velocity in a semi­

infinite mecliujii is like the bulk wave velocity, independent of 

frequency throughout the microwave range. The particle motion of a 

surface wave decreases from its surface value to small values at depths 

of about a wavelength. As an example for Y-cut LilfbO^ SAV/ propagating 

along Z-axis, the velocity is 3.48 x 10 m/s, so the wavelength at IGIIz 

is 3.48 ym,

4.3 Surface Acoustic Waves

If the solid is perfectly elastic and is non piezelectric, the 

stress (force per unit area) and the strain (dimensionless) are related 

by generalised Hooke's law

■̂ ij “ ^ijkt

T^j is the stress acting along the i co-ordinate direction on a surface 

whose normal is parallel to the xj-axis and represents the strain

components

I (2 )

where û  ̂denotes a particle displacement in the k-direction and x^

is the tth position co-ordinate. The quantities C.., are elasticijk£
stiffness constants for the medium. The summation convention for 

repeated indices is employed.

The set of linear equations describing acoustic-wave propagation 

in any medium is given by

9T. . 8 -̂u.
- - - - - - - - y  p  - - - - - - - - 1 (3)
^^i 9t
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where p is density of the medium,.

Following the notation of [6_[ , for the infinite medium, the bulk- 

wave solutions are uniform plane waves given by

h - A exp fi k ( 1. X. - V  t ) ] (4)1 1

where A = x. a*J J
where x is the unit vector along the x.-axis. 

y J
Phase velocity v is measured along the propagation vector k whose

direction cosines are 1..
1

The velocities of the bulk elastic waves are determined by substituting

equations (l), (2) and (4) into equation (3).

If the solid is piezoelectric, then the simple Hooke’s law equation 

is replaced by the piezoelectric equations of state

h j  “ ®k£ “ A m  (5)

h  = ̂nkj, h t  + h

^ijm the elements of piezoelectric tensor of the material.

E is the electric field,m
is the electric displacement.

E is the dielectric permittivity,nm

A wave of electric field now accompanies the elastic wave, and the 

wave velocity depends on the elastic, piezoelectric and dielectric 

properties. The medium behaves as if it were stiffer because of the 

additional potential energy resulting from the piezoelectric coupling, 

and velocities are higher than without coupling, as a result of this 

’piezoelectric stiffness'. The effective elastic stiffness is increased
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to the value

= stiffness = + (7)

where - ——ce

and where the components of e,c,e used depend on the propagation 

direction. K is called electromechanical coupling coefficient and is 

a convenient measure of the strength of piezoelectric coupling. The 

maximum possible value of is unity.

If the solid is not infinite in extent and is bounded by a plane 

x_ = 0, surface waves can propagate along that surface. The waves may 

propagate in any direction in the surface plane, and the particle 

displacements have the form:

u  ̂ " a^ exp(ikl^ x^) exp (ik(l^x^ -h l^x^ - vt) } (8)

The decay with depth of the particle displacement is governed by 

1 .̂ which must have a positive imaginary part so that the displacement 

components vanish at infinitely large distances below the surface plane. 

The terms kl^ and kl^ are the projections of the propagation vector k 

on the x^“ and x^- axes respectively. Each of the assumed solutions 

above satisfies the wave equation and a linear combination of them must 

satisfy the elastic boundary condition that the free surface indeed be 

free i.e. that the stress on the free surface in the x^ direction be zero

T^j - 0. at x^ - 0 for j = 1,2,3.

In general three solutions will be found for some velocity v which

satisfies the wave equation and the stress boundary condition. In
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piezoelectric soliflu, in addition to the stress boundary condition at 

the plane x_ = 0, electromagnetic boundary conditions must be met at 

the surface of the piezoelectric solid. Since elastic wave velocities 

are much smaller than electromagnetic wave velocities, in piezoelectric 

insulators one may use quasi-electrostatic equations in which magnetic 

quantities are zero,, and require only continuity of the tangential electric 

field and normal component of electric displacement at = 0. Therefore 

in the case of SAW on piezoelectric solids:

(i) Propagating SAW in piezoelectric solids are accompanied both 

inside and outside the solid by a travelling electric field.

(ii) Inclusion of piezoelectricity for a given solid results in higher 

wave velocity than for an elastically similar but non-piezoelectric

solid.

(iii) The wave velocity now depends on piezoelectric, dielectric and 

elastic properties. Therefore the temperature dependence of 

velocity is affected by the temperature dependences of these 

properties.

For device application it is important to evaluate the strength of 

piezoelectric coupling to surface waves, that is the electric fields 

associated with propagating surface waves of a given amplitude. 

Experimentally this information can be obtained by eliminating the 

storage of electric energy outside the solid. This is done by causing 

the electric field outside the solid to vanish by the application of a 

massless perfectly conducting metallic film at the plane x^ - 0. The 

effective coupling constant for SAW is given by [f]

kU  2 ,
o

where V is the velocity of SAW with an o
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electrode surface, and AV is the change in SAW velocity produced by 

removing the thin film completely. Such analysis has been used by

Campbell and Jones [OJ for LiNbO^ and other crystals, resulting in 

the discovery of crystallographic orientations providing strong 

piezoelectric coupling |_15

4.4 Excitation of Surface Acoustic Waves

Various methods which can be used to generate SAW have been 

described by White j^| . But in general electrode arrays on piezo­

electric substrates are the preferred way of generating SAW.

4.4.1 Piezoelectric Coupling with Electrode Arrays

The best surface wave source transducer for most electronic 

applications is an array of conducting electrodes that enable one to 

produce spatially non-uniform time varying electric fields at the surface 

of a piezoelectric solid. The effect of such fields is to generate 

local stresses and to launch elastic waves. The transducer is 

reversible, so it can act as a receiver as well as a transmitter.

Though a single pair of electrodes will serve, greater efficiency 

results from the use of many elementary sources spaced so that the waves 

they produce will add coherently. The increase in efficiency obtained 

with the array comes at the cost of reduced band width. But proper 

design now permits the realisation of array transducers having high 

efficiency and large band width and other desirable characteristics 

such as proper input impedance, frequency response and directionality.

The electrode transducers are attractive in part because they can be 

fabricated by planar photoprocessing and deposition techniques developed 

for making integrated circuits and because of their inherent filtering
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4.4.2 Interdigital Electrode Array lYansdncerq_jlDTl

An interdigital transducer is one of the ways of generating SAW 

using electrode arrays described above (the other method being single 

phase array). An IDT is shown schematically in Figure[4.la) The 

electric fields produced by it are shown in Figure(4.1b) The field 

direction is reversed between adjacent gapsin Figure (4.1b) The field,ce 

wave operation results when the array is driven at the frequency for 

which the wavelength under the array equals the periodic distance L.

Interdigital arrays are generally preferable to other structures 

such as the single phase array because of their greater efficiency and 

the necessity of preparing only one crystal surface for them. Inter­

digital arrays having variable pitch provide large band width devices. 

All these arrays radiate in both the forward and backward directions 

but unidirectional transduction can be achieved with special interdigit; 

arrays. One approach [loj is to use two identical interdigital 

transducers separated by a distance (n f -̂ ) A , where A. is the SAW 

wavelength and n is an integer. The transducers are driven from 

generators having 90^ phase difference between them or by a single 

generator with a quarter-wavelength electrical transmission line 

connecting the two arrays. Generated waves travelling to the right fro: 

each transducer add in phase, while those travelling to the left cancel 

In the second approach shown in Figure(4.2)pnly one of the two similarly 

located arrays is driven electrically, the second array is terminated 

with an inductor that resonates with the array capacitance at the 

operating frequency causing maximum wave reflection from that array

Q-l. 12] .
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Unidirectionality increases transducer conversion efficiency by 

3 dB since arrays radiate in only one instead of two directions. The 

bandwidth of device is reduced by this type of operationbut waves 

incident on the transducer from the right are not as strongly reflected 

as from the bidirectional array; hence a delay line employing these 

transducers exhibits good triple transit suppression (ratio in dB of 

the amplitude of direct delayed signal to the amplitude of the first 

multiply reflected echo received at the output transducer).

Array transducers have the general property that they may couple 

not only to surface waves, but also to bulk waves. Bulk-wave coupling 

can arise in two ways: firstly if there is a ground plane beneath the

crystal, bulk waves may be excited by the electric fields existing 

between that plane and interdigital array. The frequencies of maximum 

excitation for this coupling are determined by substrate crystal 

thickness rather than by the pitch of array. Secondly, bulk waves 

may be launched (and detected) at angles for which Bragg like reinforce­

ment of contributions from individual array elements occur. Figure 4,3 

shows measurements of bulk-wave launching by an interdigital transducer

on YZ-LihbO^ j_9j • The condition for the frequency F, of constructive 

interference is

V(9)F =
P. cos 9

9 is the angle defined in Figure 4̂.

V(0) is bulk wave phase velocity at an angle 0 in the anisotropic 

crystal, and P is the period of the array. Since the phase velocity of 

the surface waves is the lowest of the elastic wave velocities, as the 

frequency is raised from zero, one first observes surface wave coupling,
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then bulk transverse-wave coupling and finally bulk longitudinal-wave 

coupling. The crystal orientation and the piezoelectric matrix determine 

the directions in which bulk wave coupling can take place o.nd the array 

dimensions determine the frequencies of coupling.

A .5 Design of Interdigital Transducers (IDT)

Here consideration is given to the design of IDT's on YZ LillbO^. 

Analysis of the IDT by the use of equivalent circuits has been given 

by Smith et al ]jL3̂  . The theory for design of an optimum IDT has been 

given by Smith et al [l2j_ and by Slobodnik |j'] . An IDT of N sections 

is shown in Figure (k.La) and Figure (,L . Tb) describes the electric field 

pattern of one section of an IDT.

(a ) Radiation Impedance

As described by Smith et al [is] the electrical input impedance 

of an IDT can be represented by a radiation impedance in scries with 

the transducer capacitive reactance as shown in Figure (4.5)- In terms 

of a one dimensional model, the constants needed to define the radiation 

impedance are the synchronous frequency , capacitance per periodic 

section C^, the effective electromechanical constant k and the 

transducer length measured in interdigital periods N. If external 

fringing fields are excluded, then total capacitance of the transducer

is = NC^. The magnitude of the impedance at synchronism is
1 Lproportional to -— ^ which in turn is proportional to —  , which is
s o

defined in Figure(li. La), For a given synchronous frequency and surface 

wave velocity, the periodic length L is determined, but the width of 

the acoustic beam set by the electrode stripe length W can be adjusted 

to obtain a convenient impedance level. For most generators the
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termination impedance is required to be and therefore IDT's are

designed so that the acoustic medium impedance is .at the synchronous

frequency. Provided the transducer radiation Q is high

{ ie - |_(L/r), << 1 }

the analysis based on either crossed field or in line models leads to 

the same approximate form of radiation impedance.

«a'w) = \  (9)

%a(w) ^ \  ) (10)
w-m

X  =  Ntt (— ~ ~ )  (ll)
o

\  (12)
o s

These have been shoi-m in Figure(l;, Figure ^  from reference [ip]

shows a plot of B and X for the case when R = . It can be seena a a
that the fractional bandwidth of the main lobe between the values

R
where R^ = 0 is 2/N. ; between the values — - the fractional bandwidth

is approximately 1/N. Therefore the operating bandwidth necessarily

cannot exceed 2/N. Since poles in conversion loss occur at frequencies

when R - 0. a

(b) Conversion Bandwidth

Consider the relationship between the transducer length (N periods) 

and the effective coupling constant for optimum fractional bandwidth 

of electrical to acoustic conversion loss under the constraint that the

matching network of Figure L .5 consists of a simple series inductor

which resonates the transducer capacitance at acoustic synchronism.



117

IDT Driven By An Electrical Generator Through A 
Matching Network And Radiating Into A Load

Transducer

j Matching Network

R.F. Source

Figure 4.5
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It lias teen shown that the fractional bandwidth of is

proportional to l/N, Since R^(w) represents the flow of acoustic 

power away from the transducer, its frequency dependence may be regarded 

as the transducer acoustic bandshape. The electrically resonant 

transducer is a series RLC circuit with frequency dependent R and an 

additional reactance of acoustic origin. If the radiation impedance 

were a constant equal to R^, the radiation Q defined in |1!̂  as

%  w C R h C R ) (13)o T a o s a

would imply an electrical bandwidth proportional to N. As shown in

[l^Q for thickness mode transducers, the overall bandshape maybe

considered approximately as a product of an electric bandshape (in

the case considered here, with bandwidth proportional to h) and the
“1 “1acoustic bandshape,with bandwidth = N . The overall bandwidth 

is controlled by the smaller value. Therefore to maximise the bandwidth 

of near match to an electrical generator

i  ( R ) =o s a

m 2 =  ^  -10 C Eo s a

But from Equation (12)

■ tt 1 „ 1

k2 = f a  (U)
k^
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Design of Simple Delay'Line for YZ BiFbCq

All the substrates used (for the work of this thesis) were YZ 

LiWbO^ i.e. the surface acoustic waves propagated along the z-axis. 

For this orientation of LiNbO^

k^ “ .0^5 as given by Qfj

= Ï Tofe M = 4

According to Smith et al |l2j , for N = 4, the bandwidth of the

device is limited by electrical bandwidth and is approximately 2.0%

of the centre frequency at 3 dB points. Once N is known then the

value of C can be calculated from Equation (l2) for a fixed value of

radiation impedance. As r.f. generators used for the work of this

thesis were designed for 50D termination impedance, there = 0̂2 was

chosen, This gives C value of 0 , as determined from donation (12).B s
to be . )̂ 34 pF. Therefore length of the transducer aperture can be 

determined from the expression given by

27r V L N
Cm = NO = ---- — —  -----  (15)

o

Where is the total static capacitance, L is the acoustic 

aperture in wavelengths and is the capacitance per unit length of 

a single period (this is twice the value of a finger pair) and is given

u  [if

Cpp = 2(epj, + 1) {6.5 1.08(^) + 2.37 } x flS)
X X

>— T > .  —
■ n u l l I' '■■iKiiiJ

n  w  I» III» I III a  II III «rArfw —
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As shown D is the width of a finger and L is the centre to
X  X

T .centre spacing for two adjacent fingers, is the relative dielectric

constant given by |1^^

cT 0 A  T
P (^11 ^33 ” ^13) ^o ^PR (17)

s,nd are dielectric constants at constant stress

with the 1 direction being the direction of propagation of SAW.

For the case when D - «5 L , then for YZ LiWbO„ it has beenX X "  3
calculated IjQ that

=: ^.64 X 10"^° F/m.

Knowing can be calculated aid hence L is found out. It

has been found that for 502 radiation impedance, the transducer 

aperture length comes out to be 108 times wavelength of SAW, and for 

252 radiation impedance, aperture is 2 x 108 times wavelengthjwhereas 

for radiation impedance of 1002 , aperture is 54 times the SAW wavelengt-î

425 MHz Centre Frequency IDT

Consider an example of an IDT of centre frequency 425 MHz, which 

was designed, fabricated and used for the work of this thesis. Tliis 

IDT was designed for a 50^ radiation impedance device on a YZ - LiNbO^ 

substrate. As discussed above, N=4 was used to achieve a 20% of 

electrical bandwidth device.

Centre Frequency = 425 MHz
Radiation Impedance = 50 2

(at 425 MHz)
No, of periods = 4
IDT aperture - = IO8 A

Electrical Bandwidth of _ 20 x 425
device (3 dB points) 100

= 85 MHz

MHz.
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as

From Equation (15),total device, capacitance can be determined,

%

= 16.45 X ICT^^ M/m

Inductor needed to resonate the device at 425 MHz 
frequency is given by

Lm = - X _
°r

L 1 1
Cp 4.2 f2

1.645 X 10 4.2 (425)2 X 10^^

8.52 X 10 -

E = 85.2 nH

650 MHz Centre Frequency IDT

This device was also designed for a radiation impedance of 50^ and 

for an electrical bandwidth of 20%.

. ' . Electrical Bandwidth of device = MHz

= 130 MHz.

Total Capacitance = 2. C^p L N
DJq

Cp = l.OT pf

Inductance needed is L ~ 56 nH,

Using the above mentioned parameters, two delay lines of centre 

frequencies of 425 MHz and 65O MHz were designed. In each of these 

delay lines the source and detector transducers were separated by a 

distance of 8mm.
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4.6 Sources of delay lino Insertion Loss

The total insertion loss of a delay line (on a LiNliO^ substrate) 

due to the following three mechanisms has been studied by Slobodnik 

et al [15J .

(a) Propagation loss due to £3AW attenuation

(b) Transducer loss

(c) Loss due to transducer geometry.

(a) Propagation loss due to SAW attenuation:

The intrinsic attenuation of elastic waves is frequency dependent

|̂[9j . In particular SAW attenuation on YZ-LiîIbO^ has been studied by 

Slobodnik {j'} and results are shown in Figures 4.8 and 4.9 . From these 

results the following empirical expression for the propagation loss 

has been derived [7J .

Propagation loss (dB/ys) = (Vac) F^r (Air) F

where F is frequency in GHz. (Vac) term is loss in vacuum and 

(Air) term is loss due to air loading.

From the above expression it can be seen that the propagation loss 

determined in vacuum corresponds to intrinsic attenuation of SAW energy 

and is proportional to the square of the frequency. Whereas loss 

determined in air is made up of the intrinsic losses as well as the 

losses due to the transfer of SAW energy to air.

As SAW propagate over the surface of the substrate, any defect 

such as scratches or pits because of optical polishing processes will 

lead to scattering of surface acoustic waves and hence will contribute 

to the propagation SAW losses. Slobodnik [lôj has studied the variation 

of surface acoustic wave attenuation with the quality of the surface
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of LîNbO^. Results of his study are sliovn in Table (l). According to 

Slobodnik [l6[ surface roughness of the order of 0.25 vavelength will 

cause an approximately 50^ increase in the SAW attenuation.

(b) Transducer Loss

Loss at the transducer can arise because of the following reasons.

(i) Conduction Loss:- This is the loss due to the finite conductivity

of the metallisation of the IDT. If metal film used is very thin, 

then conduction losses will be quite high.

(ii) Impedance mismatch r- If the transducer after tuning has not 

achieved the radiation resistance for which it was designed for, 

then some of the electrical power fed into IDT will be reflected, 

back into the source.

(iii) There will also be a loss of power due to inductor resistance 

and stray capacitance because of bonding pads. There

will also be losses in the bonding wires.

(c ) Loss due to Transducer Geometry and Orientation

Consider a delay line as shown in Figure 4.10. In this device

one IDT acts as transmitter while the other as a receiver. Attenuation 

of SAW measured by this delay line will also have contribution to it 

because of transducer geometry and its relative orientation to the 

crystalline axis. The following two mechanisms can lead to increased 

attenuation.

(i) Diffraction

Diffraction of SAW is a physical consequence of their propagation
A . .and is proportional to —  where A is wavelength of SAW and L is



-p

•H •H
* H

rH

■H

•H(.0 O CO f~l -JJ Pi 
(U O) O  

, d  .H
■ H

• H •H

• H

CQ • H

•H

■ H •H

• H

p4 d • H
■H• P

« H H p  - r i  
d ‘‘d H

■ H -P

•H  A-1r 4
G ? O O O

CO
OO

COLT\ LC\ IPs
CO

COOO OOCO OO

VÛ
CO

enCO COoo LfO
00oCO CO COoo CO CO

•H

voOn00 ON
ON

CO
O n

O n
ONO -P

00
CO on00 00 ION CO

CvjOO ON
h
d

LTN
on
O n

NONO
CO

OJ
OO
ON

CO
O n
CO

o
LTN

CO
LTN

CO
LTN

CO
LfN

CO
ON
CO

NO O 'LTN
O

OJon oo
ION vo UN

o

1 2 6

-P
■H

Cr’
f1
w

• H
d

•HPm
I
oCJ
dCh

CO

o

T J
O

4:>
drH
O

K

on

C „ j

o
OJ

e
0  
p

01

r * ï

CO
Vj
oPI
Of H
tod
A
O
U

Ch

01
CJ
o
af-J

-pin
d
O
u

Otîil



127

o
ex

o

O)

Q
-l-J
ex

IcwjoN 9 1 ^ Ld

QJ >3cC <̂\~ CDO C
e: 03 oO C oO T3!S c: CJ•l-J 03 >
(/) OQJ QJCr> L- CO COC fdT3 X -cr

< CL03 (/)D1 QJ QJ E03 C cr oex C-O ^- <4-QJ
D- -O 03

4-) O
M—• CD COO QJ X.OJ QJ XCD QJC O 5<4- ce 4-> O
o CL
%~ 4->
Û- O  Q-QJ oQJ QJ CL
JZ +j CO c:
t— 03 QJ oE- X
M- 4-J 4-JO 1/1 _cr o3

-Q -w
CZ -J >
O U1 5 QJ

X3
+J QJ c
fd C o (O
•i-J QJ cc 4-J C oÛJ 03
CO 03 C0<4_ 4->
QJ 4-J 03 QJ CJ
S- CO cx-ü QJDl >D O X
QJ X X
oe CJ) CL -e--c3

OJS-X5CT)
U-



126

aperture of souirce transducer. However it can vary considerably 

depending upon the anisotropy of the substrate chosen |j] .

(ii) Beam Steering.

In anisotropic materials beam steering occurs whenever transducers 

are misaligned from a pure mode axis even though they may be perfectly 

aligned with each other. Beam steering is the pulling away of the 

acoustic beam from the transducer propagation axis by an additional 

angle.

Slobodnik et al. [l6j has considered the above two effects in 

YZ“LiHbO^. From their results it can be seen that attenuation of SAW 

due to above mechanisms in YZ-LiNbO^ over distances of the order of 

1 cm, is negligible.

U .7 Fabrication of Interdigital Transducer

The various steps involved in the process of fabrication of an IDT 

are shown in Figure .ll). After cleaning the substrate in acetone and 

then in running filtered water, it was dried using filtered dry nitrogen.

An aluminium film of about .25 ym thickness was deposited on to the 

substrate by thermal evaporation, using tungsten filament, in the vacuum 

unit. The thickness of the film was measured subsequently with a Talystep 

instrument. Proper cleaning of the substrate prior to aluminium evaporatio: 

was essential, otherwise there was poor adhesion of the aluminium film 

on to the LiNbO^ substrate as can be seen from Figure(^.1^, which shows 

aluminium fingers of an IDT which have come off of the surface of the 

substrate because of poor adhesion.

The aluminium coated substrate was then coated with AZ 1350
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photoresist (filtered through a ,2 ym filter) by spinning the substrate 

at AOOO r.p.m. for 20 secs. It was found that if the aluminium coated 

substrate, once taken out of the vacuum unit, was not immediately coated 

with the photoresist, poor resist adhesion occurred and hence etching 

of the aluminium under the photoresist i.e. undercutting of the 

aluminium.

The photoresist coated substrate was baked first on a, hot plate 

(to drive off solvent without solidifying the top surface of the resist) 

at 80°C for 5 minutes, and then in an oven at 80°C for 25 minutes.

This sample after baking was allowed to cool down to room temperature,

A chrome plate mask was washed in running water. After drying the 

chrome plate mask with dry nitrogen, it was checked under a microscope. 

■Using a cleaned chrome plate mask, the sample was exposed to U.V.light 

for 3l minutes on a contact printer. The exposed sample was developed 

for ho seconds in AZ 312 developer (diluted with 1.5 times filtered water) 

and then washed in running water. After inspecting the photoresist 

pattern (using an optical microscope) the sample was baked on a hot 

plate (llO^C) for about 2 minutes. Baking for a longer period or at 

higher temperatures lead to the following:

(i) The distortion of the resist pattern.

(ii) The difficulties in removing the resist by dissolution in acetone.

The baked sample was cooled to room temperature and then immersed 

in water to wet it completely, Tlie aluminium was etched using aluirdnium 

etchant (HUO^:H^PO^) at room temperature. The etching of the aluminium 

was generally completed in about 1-2 minutes, depending upon the thickness 

of the aluminium film and the temperature of the etchant. During the 

etching process it was observed that if the sample was not iiranersed in



water before starting etching, then air bubbles could form on the 

surface of the sample, which hindered, the etching process in that area. 

Figure(li , 13^ shows the effect of an air bubble on the etched aluminium 

pattern. After completing the etching, the sample was washed for 5 

minutes in running water,.Figure 4.l4 shows part of the aluminium pattern 

for an IDT of k25 MHz centre frequency, whereas Figure(l|,.15) shows part 

of the aluTiinium pattern for an IDT of 65O MHz centre frequency. The 

line widths and spacing of both patterns correspond very nearly to the 

mask design. The substrate with IDT patterns [five delay lines are 

shown in Figure (k-. l6_)[|on it, This was fixed to a printed circuit board 

using double sided sellotape. Using gold wire in a thermocompression 

bonding machine, each IDT was bonded to the main bonding pad on the 

printed circuit board.

h .8 Characterisation of an IDT

The IDT's fabricated (as mentioned above) were characterised.

For this purpose, IDT's radiation impedance, insertion loss, centre 

frequency, were measured as described below.

4.8.1 Measurement of Radiation Impedance of an IDT.

A schematic diagram of the set-up used to tune the IDT is shown 

in Figure {i}. I7a^ First of all Channel B of the 8-parameter test set 

was terminated with a short circuit. After selecting the 8^^ parameter 

for test, the test channel gain and phase of network analyser were 

adjusted so that the polar display displayed a radiation impedance of 

02 , for a sweep oscillator setting of 425 MHz. For a nominal open 

circuit a channel B, polar display unit displayed a maximum radiation
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impedance, Wnen channel B was terminated with an impedance of 50 2, 

then the polar display unit showed a radiation impedance of 1, meaning 

that the impedance scale was normalised to 50 2,

The individual IDT was then connected to the test channel B as 

shown in Figure(i .lia) and an inductor L (Camhion Electronics Products 

Ltd.) of a suitable value was connected in series so that IDT was 

tuned at 425 l-IHs. The display trace meeting the reference plane 

denotes the radiation impedance of an IDT under test. Each IDT was tuned 

in this way. Figure (̂4 .l8r̂ shows the variation of the impedance of an 

IDT (of 425 MHz centre frequency) when the frequency of the r.f. 

signal changes. From this figure it can be seen that for this IDT, 

the radiation impedance at 425 iHIz was about 25 2 (compared to 50 2 for 

which IDT was designed), and the value of the inductance used ‘was 68 nH.

In a similar way, using 65O MHz signal from the Swoop Oscillator, 

an IDT of 65O MHz (designed) centre frequency was tuned. The variation 

of the radiation impedance with frequency is shown in Figure (̂4 . l8b).

From this figure it can be seen that radiation impedance of this IDT 

at 650 MHz was only 15 2 (as compared to 50 2 for which it was designed) 

and the value of inductor used was 56 nH.

4.8.2 The Measurement of Insertion Loss of the IDT

A typical delay line obtained after tuning with inductors is shown 

in Figure . 16), To measure the insertion loss of each IDT, a circuit 

schematically shown in Figure 4.17b was used. In this circuit gain 

phase meter was used. 8-parameter test set was operated on F^gPanameter. 

The output from channel B was fed into the channel A, using a small 

length (about I5 cms) high frequency co-axial cable. Test channel gain 

was adjusted so that gain phase meter read zero, i.e. no attenuation of
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power from channel B to channel A, Then a delay line described above, 

was connected between channel A and channel B, as shown in Figure ( 4. IT'o ) . 

As some of the power wa.s now lost in the delay line, so test channel 

gain was increased to make gain phase meter read zero. The increase 

in the test channel gain was a measure of the loss of power in the delay 

line at that particular frequency. By varying the signal frequency,and 

measuring the deloy line loss,as described before, variation of delay 

line loss with frequency was studied first with a delay line involving 

IDT of 425 MHz centre frequency and then for a delay line of 65O MHz 

centre frequency.

Results obtained for a 425 MHz centre frequency delay line can be

seen in Figure(4.19)• From this figure it can be seen that total delay

line ].oss (minimum) was 15-5 dB at 420 MHz. As distance between input

and output transducer wa.s 8 iora, therefo.t-e attenuation of SAW over such

a length, at frequencies below 1 GHz is very small }l5'J • Therefore

it is reasonable to assume that 15*5 dB loss in that particular delay

line was due to loss taking place at the two IDT's. As both IDT's
] 5.5were similar in design, so insertion loss per transducer was dB =

7-7 dB. From Figure 4.>19 it can also be seen that 3 dB points show a 

bandwidth of the device to be 78 MHz. Results obtained for 65O MHz 

centre frequency delay line are shown in F i g u r e  (4 • 20;. From this figure 

it can be seen that total delay line loss (minimum) was 13 dB at 63O MHz. 

Again neglecting the attenuation of SAW over a length of 8 mm, at 63O MHz, 

it can be seen that insertion loss per transducer was 6,5 dB. From 

Figure ■ 20) it can be seen that 3 dB points give a bandwidth of the 

device to be I50 MHz. Insertion loss of IDT was also measured using 

r.f. pulse technique to overcome the r.f. breakthrough. However this



136
Frequency MHz

3 0 0

(/)(/)o_!

%OJ
QJQ

Variation of Delay-Line Loss With Frequency

Figure 4.19



10

13Ï

Frequency MHz

y
eu

Q

-%0 -

-3û

Variation of Delay-Line Loss With Frequency 

Figure 4.20



138

technique also yielded the similar value of insertion loss of an IDT.

Experimental results obtained with the delay lines described 

above, are shoun in Table II,

4.9 Conclusion

In this chapter design and fabrication of surface acoustic waves 

delay line has been considered. Measurements on the fabricated delay 

line showed a radiation impedance substantially less than for which 

the IDT was designed. This discrepancy can be explained if a stray 

capacitance of value 2 pF is assumed, in the ease of a delay line 

of 1|25 Miiz centre frequency.



Delay Line (650 MHz)

Table II
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Delay Line (^25 MHz)

Centre Frequency (MHz)
Bandwidth (3dB points)
Radiation Impedance (f2) 
(at Centre Frequency)
Capacitance (pF)
Inductance (nH)
Insertion Loss (dB)

Designed

425
85
50

1.64 
85

Measured

420
78
26

68
7.7

Centre Frequency (MHz)
Bandwidth (3dB points)
Radiation impedance {O,) 
(at Centre Frequency)
Capacitance (pF)
Inductance (nH)
Insertion Loss (dB)

650
130
50

1.07
56

630
150
15

56
6.5
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CHAPTER 5 

ACQUSTO-QFTIC INTERACTION

5*1 Introduction

In this chapter a theory of acousto-optic interaction is considered. 

The various mechanisms which lead to change in the index of refraction 

of a solid, in the presence of acoustic waves, are described. The 

dependence of the acousto-optic bandwidth and the diffraction efficiency 

of the guided wave acousto-optic device, on various parameters is 

considered. Acousto-optic diffraction efficiency in the titanium 

indiffused LiNbO^ optical waveguides have been studied experimentally 

and results have been compared with the results of work done by other 

workers.

5.2 Interaction Between Light and Sound

There are three ways in which the light-sound interaction may 

be understood.

(i) A sound wave can be considered as a moving phase grating that 

diffracts the light according to classical optics.

(ii) Adler [6] also states that light-sound interaction can be 

considered as a distributed parametric interaction process in 

a nonlinear reactive medium, making use of concepts such as 

up and down conversion and of equations governing parametric 

devices.

(iii) Light-sound interaction can also be considered as a collision 

process between photons and phonons, in which energy and 

momentum are conserved.
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The description given below follows the treatment of light-sound 

interaction given by Klein et al [ij . In this particular treatment, 

it is assumed that the sound wave modifies the refractive index of the 

medium, and the changes in the refractive index lead to scattering of 

light. Also it is assumed that sound wave leads to purely sinusoidal 

plane waves and that the incident light is also a plane wave.

Consider the situation of Figure (5*l) in which plane light 

waves of wavelength X (in the medium) are incident at an angle 0 upon 

a plane ultrasonic beam of width L. The optical wave equation which 

describes the propagation of the electric intensity in the medium, 

in the presence of the sound, can be written as

(5.1)
C2 9 t%

where the refractive index in the region of the sound field is

N(z,t) = + E Sin [(S2t - Kz) + 6̂ ]  (5-2)
m=l

where Î2 and K are the circular frequency and wave number of the sound,

is the amplitude of the mth Fourier component of the refractive index

distribution, and 6 is its relative phase. N is the refractive indexm ^ o
of the unperturbed medium.

Because the electric intensity is periodic in time and space, 

with sound, it can be expanded in a Fourier series given by

E = exp(imt) Z Y (x) exp [i(n^t - k .r)] (5*3)
n=-oo

where r = k (x cos 8+ z sin 0 ) + n K z  (5*7)
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where w.aad k are the circular frequency and wave number of the light, 

n represents the diffraction order.

By substituting Equations (5*2) to (5*^) into Equation (5.1)9 and 
neglecting second order terms, a set of coupled, difference-differential 

equations are obtained. These relate the amplitudes in the plane wave 

expansion

d Ÿ . ”

m=l
"  '^n+m exp(riS^J

(5.5)

where

Q -

k Nm
cos 9 

K^L
N k cos o

M ki
I K Jsine

(5-6)

(5.Y)

(5.8)

Equation (5.5) has the following initial condition at x=0

(5.9)
= 1 i.e. at x=0, the whole of light is in 

the main beam

= 0 (n^€) There is no diffracted light
beam.

For sinusoidal sound field. Equation (5*5) will become, for m=l, 

i.e. only one acoustic frequency:

(5.10)
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Equation (5*5) can be interpreted in terms of coupled mode theory, 

where normal modes are the plane waves in Equation (5.3), which give 

rise to diffraction orders. Modes whose order numbers differ by m 

are coupled by the coupling coefficient V^. Therefore, the coefficient 

couples adjacent modes, couples alternate modes etc. For purely 

sinusoidal sound field, only adjacent modes are coupled directly.

The amount of energy transfer between various modes depends not only 

on the coupling coefficient but also on the degree of synchronisation 

of modes. Because various diffraction orders have different propagation 

directions, two orders which are in phase at a given plane in space 

will not maintain this phase relationship except at special incidence 

angles. The variable a in Equation (5.8) is a measure of the angle 
of incidence of the light on the sound field normalised to the angle 

between the diffraction orders. The quantity Q is given by:

LQ —

N k cos 9 •o

for small values of 9, cos 9 -> 1.

Q = (5.11)
N k . l  o

—  (-)
- 1*0 A* (5.12)

(&)
Therefore Q is a measure of the angle between the diffraction 

orders normalised to the diffraction spread angle of the sound field. 

Q « 1  gives interaction in the Raman-Nath regime and Q>> 1  gives 

interaction in the Bragg regime.
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5'.2 (a) Raman Nath Regime (Q<<1)

According to Klein et al £l] the intensity of the nth diffracted 

order is given by

V.sln (f^)

2

(5.13)

At normal incidence a = 0

where is the Bessel function of the first kind. Light intensities 

of several diffracted orders for the Raman Nath regime are shown in 

Figure (5.2). Ultrasonic fields described by the condition Q << 1 

are equivalent to optical gratings which produce only a modulation of 

the phase of the light passing through them and not the amplitude of 

the light. This is similar to the description given by Raman and Nath 

[XI that a sound beam of narrow width and low frequencies could be 

considered as an optical phase grating.

5.2(b) Bragg Region ( Q » l )

When Q>>1, light appears in only the zeroth diffraction order 

and a single first order diffraction order. Equation (5.10) is

d Y

As all light appears in the undiffracted main light beam at x=0

Y = 1 o
= 0 (n f 0)



1U8

For light to appear in any order other than the zeroth, it is 

necessary for that order (mode) to he synchronous with the zeroth 

order. This means that the coefficients of the right hand side of 

Equation (5.10) should have the same value for the zeroth order and 

the order being considered. The value of this coefficient is zero 

for the first order if a =  g, zero for the negative first order if 

a = -g, zero for the second order if a = 1, etc.

Consider the case for a = i, then equation (5.10) becomes

d Y V

^ h  + Zi Y = (l-2a) T (5.15)ax 2L X

Phariseau £3] and Bhatia et al £U][ have obtained the solutions 

of Equations (5*lL) and (5.15) as below

L  = hoi' = 1 - Il (5.16)

where a = [{Q(l-2a)}2 + vf

( 5 . I T )

%
(5.18)2 1

As shown in Figure (5.3)» the sharpness of the Intensity 

distribution is seen to increase with increasing Q.

For a = ±g i.e. exact Bragg incidence Equations (5.16) and (5.IT) 
become

V
lo = “ cos% —  (5.19)

V
= h  = sinZ Y  (5.20)
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The variation in the intensity of the light in the main zero
order "beam and first order diffracted beam , for various values

of Q is shown in Figure (5.A). From this figure it can be seen that

for Q = T and = V = 2, about 93^ of the light lies in the first

order diffracted beajn.

In the theory of the acousto-optic interaction given by Klein

et al []lj and described above it has been assumed that the value

of is less than 6-, However if > 6 then according to Willard ,

the lower limit on Q for the case of Bragg diffraction is Q = U tt .
K^LTherefore it can be concluded that if Q = —— - is less than
o

one then the interaction is taking place in the Raman-Nath regime

and many diffracted orders will be observed. On the other hand if

Q = ^  is greater than Utt then interaction will take place in the
o

Bragg regime and only one or two diffracted orders will be observed.

As L is the width of the acoustic beam (which is similar to the 

aperture of the transducer if diffraction of the acoustic beam is 

ignored), one can, by suitable choice of L, have diffraction either 

in the Bragg regime or in the Raman-Nath regime.

The theory considered so far has dealt only with bulk acousto- 

optic interaction. The mechanism which leads to the change in the 

index of the solid has not been considered and moreover the dependence 

of diffraction efficiency on material parameters has not been considered.

5.3 Interaction of Guided Optic Waves with Surface Acoustic Waves

The basic acousto-optic mechanism in guided wave devices is the 

same as in bulk wave devices described in the previous section of this 

chapter. Consider a device shown in Figure (5-5)> in which a surface
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acoustic wave travels along the Z-axis and guided optical waves 

travel along the X-axis. The propagating surface acoustic wave induces 

a periodic variation in the index of refraction of the waveguide because 

of the following mechanisms.

(a) Surface Ripple

Ripple on the surface of the waveguide, created by a surface 

acoustic wave, causes periodic movement of the dielectric boundary.

This results in variation of the index of refraction, which in turn 

diffracts the guided light. A change in the index of refraction 

because of the waveguide thickness perturbation is given by

âH = I
-  llo

No

U(o) 2 (5.21)

where 6^ is the amplitude of the ripple at the surface y=0. is

the waveguide effective index. U(y) is the transverse distribution 

of the incident and diffracted waveguide modes,

(b) Photoelastic Effect

This is the change in the index of refraction due to an applied 

strain, A change in the index of refraction is given by [S, ^  

n3
AN = - /  (5-22)

Z,k = 1,2,...6.

where p^^ are the photoelastic constants (in reduced notation) for 

a particular crystal; are the acoustic strain components of the 

surface acoustic wave. AN is the induced change in the index of 

refraction. The index N^ is a mean value dependent upon the orientation 

of the optical field in the crystal.
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(c) Electro-Optic Effect
If a waveguide or substrate are piezoelectric in nature, then 

there are electric fields associated with the propagating acoustic 

waves. In consequence a change in the index of refraction of the 

waveguide will also take place because of the electro-optic effect.

The induced change in index of refraction AN from the electro-optic 

effect is given by [8,1<^

Ij3
“ = - 2̂  r&k Bk (5.23)

£ = 1,2..... 6
k = 1,2,3

where is the electro-optic tensor

is the relevant applied electric field component

But in the case of strongly piezoelectric materials such as 

LiNbO^, the electro-optic effect contribution may well be dominant

[ii. 121-
Considering the situation shown in Figure (5.5) the periodic 

variation in the index of refraction in the waveguide is given by [l^

AN(y,z) = AN v(y) exp[^i(ot - ) ~|

+ Complex Conjugate (5.24)

where AN is the peak amplitude

v(y) is the transverse dependence of the induced 

AN due to a SAW 

is the angular frequency and A the wavelength of d SAW. 

The intensity of the diffracted guided light beam I^ with respect 

to the undepleted incident beam intensity I^, in the case of Bragg
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where

ir- = Sin^

^di =

ANI T

A cos 0 L id ^di

/ u|(y) v(y) u^(y) dy 

/ u*(y) u^(y) dy

(5.25)

(5.26)

„ _ / u*(y) v(y) u.(y) dy
id " — — ----------- -------

/ u¥(y) u^(y) dy
(5.27)

0 is the Bragg angle for the phase matching condition between 

the incident and the diffracted modes. L is the interaction length. 

up(y) represents the transverse variation of the electric field of 

the incident guided optical wave and u^(y) is the transverse 

variation of the diffracted wave.

Equation (5.25) can be rewritten as [l4]

Ç = Sin.2 r  ît:,'
2tiL

( 5 .28)

where 6^ is the amplitude of the surface displacement in the y-direction, 

jp| is the effective photoelastic constant taking into account the 

overlap integral. This includes contributions due to the acousto-optic 

(Pa q )> electro-optic (p ^q ) and the surface ripple (p^^) effects as 

described in the beginning of this section (5.3).

(5.29)

Lean et al {iQ have calculated that for the TE-mode in Y-Z 

LiNbO^, with a single mode waveguide ('̂  ̂2 ym depth), the various 

contributions to the effective photoelastic constant are as follows
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^AO “ 0*00849 - i 0*00106
PgO = 0*169 “ i 0-03T0

P g p  =  -  0-015

Lean et al [l^Q found that the predicted value of |p| = 0*16t

was very close to the measured value of O'l?. But in the case of 

transverse magnetic waves the predicted value of effective photoelastic 

constant was 0*136 so that diffraction efficiencies are reasonably 
similar.

5.4 Phase Matching Condition

The variation in the refractive index N produced by an acousto-

optic or electro-optic effect is usually small i.e. of the order of

10 ^ or less [l4] . Therefore appreciable phase modulation can only be

achieved by increasing the interaction length [6j, For instance, with
AN as small as 10 A^ of a 0.25 radians can be achieved (at

-4X = .6328 ym) by using L = 2.5 cms. However AN = 10 required an 

aperture of .1 cm to achieve a phase change of ir/2 for light of 
wavelength X =  .6328 ym.

However under proper phase matching condition (between the 

incident light beam wave vector and acoustic beam wave vector), a 

small variation in the index over a small length can cause complete 

Bragg diffraction of the incident light beam [iQ . Figure (5.6a) 
shows an isotropic Bragg diffraction. In this particular case the 

diffracted mode effective index of refraction is the same as that 

for the incident mode. This is a situation similar to that for bulk 

deflectors where the acousto-optic material is isotropic [15]] . The
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maximum interaction length L , over which sound waves and opticalmax
waves can remain phase matched for a 4-dB deflection bandwidth is also 

the same as that for the bulk deflector. This is given by [l6j

L 2 N V2
 Xfi \ a  (5.30)O

where Afi is the acoustic bandwidth. ÏÏ is the refractive index of 

the acoustic medium, X is wavelength of the light and is the 

angular centre frequency of the device. is the acoustic wave 

velocity.

If the incident guided mode (say the TE^ mode) is diffracted 

into a different order guided mode of the same polarisation such as 

TE^ or to a guided mode of a different polarisation such as TM^, then 

the phase matching diagram is as shown in Figure (5.6b).

5*5 Bandwidth of an Acousto-Qptic Device

The bandwidth Af of thin film"acousto-optic devices can be 

limited either by the transducer bandwidth or the bandwidth imposed 

by the Bragg phase matching requirement and the diffraction limited 

spread of a finite width acoustic beam.

(a) Bandwidth due to acoustic beam width

For isotropic Bragg diffraction with phase matching condition 

as shown in Figure (5.6a), the bandwidth Af^, limited by acoustic beam 
width is given by |\4, i Q

Af = V (5.31)
1 X s L

where L is acoustic beam width, N, V^, X and A are index of refraction, 

acoustic velocity, light wavelength and acoustic wavelength respectively,
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(b) Transducer Bandwidth

The maximum intrinsic fractional bandwidth for an IDT on a 

piezoelectric material is given by [l^

f = (5.32
max

For YZ LiNbO^ = *044

Af
f = 0.236

maxo

i.e. Af is approximately 24^ of the centre frequency. However 

the overall bandwidth of an IDT can be increased by having IDT of 

varying electrode width and spacings or by having'a number of IDT’s 

of different centre frequency and then connecting them in parallel 

[20, 2jQ . But this will lead to a phase mismatch problem because 

the Bragg angle for acoustic waves of different wavelengths is 

different and therefore a straight line IDT's of various centre 

frequencies will lead to small diffraction efficiency. Therefore 

for an acousto-optic devices to cover a wide bandwidth (projected 

bandwidth of lOSA is 1 GHz), a new type of IDT structure need to be 

designed. Some of the structures which have been designed by various 

research workers are described below.

(i) Frequency Controlled Beam Steering:

De la Rue et al [2̂  have used a stepped array transducer structure 

to launch and steer the surface acoustic waves. In this particular 

case, they used five transducer sections, which were connected in such 

a way that adjacent transducers were excited in antiphase.
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(ii) Tilted. Finger Chirp Transducer:

These type of transducers have been studied by Lee et al [23j 

and are basically chirp transducers in which the fingers are tilted. 

Transducers of varying finger periodicity are known as chirp 

transducers [24, 2 ^  and these have wide bandwidth. To satisfy the 

Bragg angle phase matching condition individual finger pairs are 

tilted, this leads to a large acousto-optic bandwidth device. It 

should also be noted that a conventional chirp transducer with parallel 

fingers and small aperture can be employed to obtain large deflector 

bandwidth [2^ . However in this case the large bandwidth is 

achieved using a small acoustic aperture and therefore at a drastically 

reduced diffraction efficiency. Lee et al [2^ have achieved 3dB 

acousto-optic bandwidth of up to 580 MHz using tilted chirp transducers 

as shown in Figure (5.7).

(iii) Continuous Finger Staircase Array (COFSA)

This type of transducer has been demonstrated by Stewart et al [27^ 

and is shown in Figure (5-8). This transducer consists of two or more 

parts tilted with respect to each other, by the difference in the Bragg 

angles appropriate to the centre frequencies as defined by finger/width 

spacing. Each part consists of a number of stepped section, the step 

height being an integral number of acoustic wavelengths at the centre 

frequency. This type of device accomplishes acoustic beam steering 

since the stepped elements are driven in phase [27J. . The illustration 

may be thought of as an approximation to a continuously stepped and 

tilted array, whose finger width varies smoothly across the aperture. 

Stewart et al, have achieved an acousto-optic bandwidth of IGHz, using 

the structure shown in Figure (5.8).



160

■;.;.5'î «Ka=%niüFj.UÆ 3Kaa32SEÆ CZr!LL«Z^
■■ M S Î3 S $ iV ;;a 5 ;^ ÎE ® 3 i: ilE l^ ’S 3  i

-'ÿgœaBBEaussasBag i~j G?sr!'233zr'̂ .R?i%%m

Tilted Finger Chirp Transducer

Figure 5.7

I' I f I fî
asaammw ̂ ffaSsglSalJ I

ïSTÎTOTÎ
EL’üi^SiSZfirm ss^ffîJiî

Continuous Finger Staircase Array Transducer 
(COFSA)

Figure 5.8



l6l

5.6 Diffraction Efficiency
The diffraction efficiency of an acousto-optic. device, given 

by Equation (5.28) can be written in terms of the input acoustic

power [11] . as follows

Ç = sin" F. '̂ 2

\ COS 0
(5.33)

where M =
p

(5.3U)

=  T - 0  X  1 0  ^5 „2/y f o r  LiNbO
Mg is a figure of merit involving the material constants. N is 

the index of refraction, p the effective photoelastic constant, p 

is the density of the material, is the surface acoustic wave velocity. 

L/H is the aspect ratio of the acoustic beam of width L and beam height

H. F is the overlap integral given by [l4| ,

fv(y) |u(y)|2dy 
u(y)p dy .

F = 1'
F has a value between 0 and 1 depending upon v(y). v(y) is the

transverse dependence of the induced AN.

Therefore for efficient acousto-optic devices, with low input

acoustic power, it is desirable to use materials having high figures

of merit Mg, and the aspect ratio L/H of the acousto-optic device should

also be large. The meiximum value of L , which could be used ismax
limited by phase matching condition and is given by Equation (5*30).

The diffraction efficiency will increase substantially if the optical 

energy is confined to a region very close to the surface of the waveguide
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i.e. optical waveguide depth should he small. Ziling et al [̂ 28j have

studied the acousto-optic interaction involving Bragg diffraction in

titanium diffused YZ-LiNbO^ waveguides. The results of their work

is shown in Figure (5*9) • This figure shows that the acousto-optic

interaction efficiency for the process TE TE decreases withm m
increasing the waveguide depth. Waveguide depths and effective index 

for various guided modes is shown in Figure (5.9) as well.

5.T Experimental Work

Optical waveguides were fabricated by diffusing titanium into 

Y-cut LiWbO^. The details of the method have been described in 

Section 2.4 of Chapter 2 of this thesis. For the work described in 

this Chapter and in the next Chapter of this thesis, various waveguides 

were fabricated. On these waveguides, IDT delay lines were fabricated 

using the technique described in Section 4.7 of Chapter 4 of this 

thesis. The insertion loss of each IDT was measured as described in 

Section 4.8.2 of Chapter 4. However it is also possible to measure the 

insertion loss of an IDT, by the deflection of laser light from the 

surface of the substrate [29» 30] . Two acousto-optic devices were 

fabricated, with the fabrication conditions as shown in Table I.

5.7*1 Acousto-Optic Measurements

Each acousto-optic device was mounted individually on to the 

goniometer. IKHz chopped He-Ne laser light ( X = .6328 ym) was coupled 

into and out of the waveguide using rutile prisms as shown in Figure 

(5.10) printed left to right inverted. Figure (5.11) is a photograph 

of the backside of the device showing r.f. power input, conhex
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connectors and prism pressure points. Figure (5.12) shows the whole 

set up used.

The schematic arrangement for acousto-optic measurements is shown 

in Figure (5*13)s which was similar to that used for the measurement 

of in-plane light scattering. This has been described in Section 3*5 

of Chapter 3 of this thesis. R.F. power was applied to the acousto-optic 

device using the electrical circuit shown in Figure (5.1^). R.F. power 

from the generator (HP 3200B for signals around 420 MHz and HP612A for 

signals around 650 MHz) was amplified using EHI r.f. power amplifiers 

(model 503 L ‘ for signals around 420 MHz and Model 6OIL for signals 
around 65O MHz). R.F. power to the acousto-optic device was controlled 

using two attenuators and was measured using an H.P 432A power meter 

connected between the acousto-optic device and the second attenuator, 

through a co-axial switch. The intensity of the diffracted and un­

diffracted light beams was measured by scanning the m-line with a 

photodetector having a slit in front of it. The output of the detector 

after amplification through a phase-sensitive logarithmic amplifier 

was recorded on a x-t chart recorder. A typical scan of the light 

intensity of the m-line including acousto-optically diffracted light • 

beams is shown in Figure (5*15) for various levels of input r.f. power. 

Similar results on each acousto-optic device, were obtained for various 

levels of input r.f. power. From these, the diffraction efficiencies 

for various levels of input r.f. power were determined. The results of 

measurements on sample (with IDTS of centre frequency 420 MHz) are 

shown in Figures (5.I6), (5.IT) and (5*18) for input signal frequencies 
of 390', 420 and 455 MHz respectively. Figure (5.19) shows the results 

of measurement^ on sample with an IDT of 620 MHz centre frequency

on it.
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Experimental data is presented as dots and theoretical curves

have also heen fitted. Theoretical results are shown in dotted line.

From Figures (5.16) to (5.19) the following points can he noted.

(i) A linear relationship between r.f. power and the diffraction 

efficiency was observed (over main part of the range) in each of 

the results irrespective of the signal frequency.

(ii) For lower levels of the r.f. power, there was deviation from the 

linear relationship (between r.f. power and the diffraction 

efficiency) especially in the case of sample (having IDT of 

420 MHz centre frequency) as can be seen in Figures (5.I6) to 
(5.18). This deviation was because of the in-plane light 

scattering. This point becomes more clear when Figure (5.19)
is compared with the Figures (5.16), (5.17) and (5.I8). A 

linear relationship in the case of high frequency device (sample 

2̂9 ^^th IDT of 620 MHz centre frequency) was observed down to 
quite low r.f. power levels because the diffracted signal of 

frequency 620 MHz itself was further away from the main depleted 

b e ^  as compared to signals of 390» 420 and 455 MHz frequencies. 

This is also consistent with the results shown in Figure (3.4) 

of Chapter 3» which shows that in-plane light scattering decreased 

with increased angle from the main beam.

(iii) The minimum r.f. power required to observe the diffracted 

signal depends on the in-plane light scattering in the waveguide.

(iv) From each of the Figures (5.16) to (5.19) it can be seen that 
100% diffraction efficiency was never obtained. The maximum 

value of diffraction efficiency achieved, in the case of the
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sample was 40%, 80% and 56% for signals at frequencies 
of 39O9 420 and 455 MHz respectively. It should be noted that 

insertion loss of this device was 8.0, 6.0 and 7-5 dB for 

signals at frequencies of 390, 420 and 455 MHz respectively.

It appears that the maximum diffraction efficiency, which 

could be achieved depended on the insertion loss of the device. In 

the case of device the maximum diffraction efficiency

observed was of the order of 25% for a signal of 620 MHz frequency, 

even when the insertion loss was 6.5 dB. From this it can be 

seen that loss at the IDT affected the maximum diffraction 

efficiency which could be achieved.

(v) Table II shows the acoustic power required for achieving the

observed peak diffraction efficiency, and for 100% diffraction 
efficiency predicted theoretically by fitting the expression 

Ç = sin^(c ) to the experimental data. From this table '

it can be seen that to achieve 100% diffraction efficiency the 
acoustic power required was higher than the power used to observe 

the peak diffraction efficiency.

Table II

Signal
frequency

MHz

Experimental Theoretical
Peak Diffrac­

tion efficiency
Acoustic 
power (mW)

Acoustic Power (mW) for 
100% Diff. Efficiency

390 40% 37.73 119.0
420 80% 106.0 127.0
>*55 56% 56.0 127.0
6ao 25^ 44.0 223.5
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5.8 Conclusion
The main discrepancy in the results described above, was the 

peak diffraction efficiency observed experimentally, which was lower 

than the theoretically 100% diffraction efficiency which should have 

been achieved. In attempting to explain this, the work done for this 

thesis is compared with the work done by various other workers,

Schmidt et al {j3^ achieved a maximum diffraction efficiency 

of 97% (not 100%) in a titanium diffused guided wave device. These 

authors used an IDT of 175 MHz centre frequency, with Q = 40. Series 

and parallel circuit of four 50 0IDT's was used. Therefore maximum 

r.f. power required to achieve 97% diffraction efficiency was about 

600 mW, which corresponded approximately to 119.7 mW of acoustic 

power, for an IDT with an insertion loss of 7 dB [3l[ .

Lean et al [l4] used a device of 290 MHz centre frequency and 

achieved a maximum diffraction efficiency of 80%, using 125 mW of 

acoustic power. The results of Lean et al [l^ show a 100% depletion 

of the main light beam, but it had not been explained why 100% 

diffraction efficiency was not achieved.

However Table II shows that in the present work of this thesis, 

a 80% diffraction efficiency was achieved with an acoustic power of 

106 mW and to achieve 100% diffraction efficiency (as predicted by
fitting the expression ç = sin^( c / P ^  ) to experimental data) an 

acoustic power of 127.0 mW was required, for a signal frequency of 
420 MHz.

From the comparison of insertion loss and diffraction efficiency 

of the results of the work for this thesis, it appears that the loss 

at the transducer itself was a factor which limited the maximum
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diffraction efficiency. Comparing the work of this thesis, with the 

work of Schmidt et al [31] » it appears that the power dissipated at 

the transducer fingers was the main cause which limited the maximum 

diffraction efficiency achieved.

From this discussion it appears that the dissipation of power 

as heat at the IDT fingers limited the maximum diffraction efficiency 

achieved. This was confirmed later on, during the study of the 

change in the index of the waveguide with r.f. power as described 

in Chapter T*
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CHAPTER 6

THIRD ORDER INTERMODULATION EFFECT IN AW lOSA

6.1 Introduction

An Integrated Optic Spectrum Analyser is based on the interaction 

of the surface acoustic waves with the guided optic waves. Surface 

acoustic waves form gratings which diffract the guided light (as 

considered in the last chapter). When surface acoustic waves of 

different wavelengths are present, multiple diffracted beams are 

generated and a number of nonlinear effects occur [l] . These include 

cross modulation of the amplitudes of the diffracted beams and generation 

of additional (spurious) intermodulation beams Ql, ^  . These effects 

establish the intrinsic limits for the dynamic range [l, 3, Q  and 

maximum diffraction efficiencies in multi-frequency acousto-optic

applications.

In this chapter a theory of multi-frequency acousto-optic diffraction, 

given by Hecht [*6] is considered and the results obtained on the titanium 

indiffused LiWbO^ optical waveguides are discussed.

6.2 Acousto-optic Bragg Diffraction in the Presence of Two Frequencies 

In the multi-frequency acousto-optic diffraction theory formulated

by Hecht , it is assumed that the modulation of the index of

refraction due to a sinusoidal acoustic input is purely sinusoidal. 

Therefore all the nonlinear optical responses are due to multiple 

acousto-optic diffraction processes rather than to photoelastic or 

acoustic nonlinearities [j] .

Consider the acousto-optic interaction geometry shown in Figure 

(6.1). Surface acoustic waves of frequencies f^ and f^ with corresponding
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Multi Frequency Ikcousto-Qptic Diffraction

%  2%

.«Vi

Incident Light

2

Diffracted Light

Figure 6.1
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Wavelengths and Ag are propagating along the z~axis. The velocity 

of SAW is . The medium is supposed to be isotropic with as index 

of refraction. The thickness of the grating is L along the x-axis.

A collimated beam of light of free space wavelength X is incident on 

the sound field at an angle 0 from the x-axis in the x-z plane. Each 

surface acoustic wave interacting with the light beam will generate a 

principal diffracted beam separated from the incident beam by an angle 

(measured in the medium) of 26^

20^ = 2. sin ^ (6.1)

20. = —  f. (6.2)
N V o s

0^ < .1 radian.

This linear dependence of the angle of diffraction on the frequency 

is the basis for the acousto-optic spectrum analyser. Each generated 

beam depletes the source beam from which all the principal beams are 

generated. In addition light in each principal beam may be re-diffracted 

by another acousto-optic grating. This produces cross modulation and 

generates intermodulation beams corresponding to sum and difference 

frequencies f^ ± f^. In turn additional intermodulation beams may 

be generated as shown in Figure (6.2). As in single frequency diffraction,

the beams divide into diffraction orders G = 0, ±1, ±2,....  The

strongest intermodulation modes which interfere spatially with the 

principal modes in the first diffraction order corresponds to frequencies 

2f^ - fj, and are called third order intermodulation products, because 

they result from a third order interaction. This effect limits the 

spurious free dynamic range. A typical intensity spectrum is shown in 

Figure (6.3).
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THEORY

The optical wave equation for the electric intensity is
2

" M(z,tn 9^E 
V^E = C 3t2 (6.3)

where the refractive index in the region of the sound field (O < x < L) 

can he written as

N(z,t) = N + E N sin 
° m=l “

(n^t - z) + (6.It)

where are angular frequency, wave number and wavelength

respectively of the acoustic wave. and 6̂  are the amplitude and 

the phase of the refractive index modulation due to the mth signal.

is the unperturbed refractive index of the medium and is assumed 

to be constant for all modes. P is the number of signal frequencies.

Consider the case P - 2 with frequencies and then the . 

Fourier series for the electric intensity can be written as

E = exp(iwt) E E T/-\ exp i
n̂ =s-oo

E n (n t+6 )-iê/-v.r m=l m » m (n)

( 6 . 5 )

where
k/-\.r = N k(x cos 0 + z sinG ) + E n K z (6.6) (n) o m=l “ “

Equation (6.6) is the same as Equation (5.4) of Chapter 5 of this 

thesis. (jij and k are the circular frequency and wave number for the 

light, n^ may take positive or negative integer values

(n) represents (n^,ng,....)
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where = 0, ±1, ±2,

Dg = 0, ±1 , ±2,

and represents multiple shifts of 

frequency f^

and represents multiple shifts of

frequency f^ .

Each diffraction order contains an infinite multiplicity of

modes, corresponding to all combinations of values for the various

n , such that En = G,- \, the number of order, m ’ m (n)
If Equations (6.4) to (6.6) are substituted into Equation (6.3); 

assuming that there is small variation in the amplitude over

optical wavelength distances and the optical cycle time periods, and 

neglecting the quadratic terms in |n |̂ , an infinite set of coupled 

mode equations is obtained as follows:

dY
dx

n
2

^m=l ^m ^m^
2N k COS0 o

+ tan 0 E 
m=l

n K m m (n)

2
E

m=l

k Nm
2 COS0

(6-7)

where (n) represents (n n^,....)

For modes in the first diffraction order G - + 1 and n^ + n^ = 1

n^ = 1, Ug = 0

(n - a^) means the same thing except that the mth coefficient has

1 taken away, 

e.g. for P = 2, = 2 . «2 = - 1



(n) = (n^, Hg) = (2,-1)

(n-a^) = (2-1,-1) = (1,-1)

(n+a^) = (3,-1) .
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It is convenient to simplify Equation (6.7) by means of the
following normalised parameters [8,9̂

Vm
k N L m
cos 0 (6.8)

Q N k cos o
(6.9)

G (n)

m

N k o sin 0
K
2
E

m=l
K - K m____

K

nm

(6.10)

(6.11)

(6.12)

is the normalised refractive index modulation amplitude 

corresponding to N^. L was equal to transducer aperture, 108a 

in the experimental work described in this Chapter, a is a measure 

of the angle of incidence of the light on the sound field, normalised 

to the angle between the diffraction orders.

Q —

Q =

N k cos

( f )  .(i)o______

(Ê)

which can be written as

for cos 0
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which is the same as Equation (5.12) of the previous chapter of this 

thesis. Q is a measure of the angle between diffraction orders 

normalised to the diffraction spread angle of the sound field. K is 

the midband wave number. is the fractional deviation of the signal

wave number from K. Q > gives interaction in the Bragg regime, 

a = 0 for normal incidence and |ot| = ^/2 for Bragg incidence at midband. 

In the experimental situations used for the work described in this 

Chapter, Q varied from 21.20 to 2 5 . as the r.f. signal frequency varied 

from 380 to 6̂0 MHz, and therefore all experiments were in the Bragg 
regime.

m=l

D is called an interaction order index and is the minimum number of 

coupling interactions involved in the generation of a particular mode.

For example in the first diffraction order 

G = +1 

if P = 2

then, for either n^ = 1, n^ = 0 
or n^ = 0, n^ = 1 Pil + P 2I " 1

i.e. this gives first order infraction.

But also Ug = 2, n^ = -1

n^ = 2, Ug = -1

and this gives third order interaction.

Using normalised parameters, the coupled mode Equation (6.7) can 
be rewritten as
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H hh-EJ
= 0 (6.1%)

where AK^-j = J °(n) + %  Bm °(n)- 2“ + (6.15)

AK^-^ is the wave vector mismatch or phase, mismatch, per unit

interaction length of mode relative to the source mode for

which n = 0. m

6.2,1 Phase Matching Conditions

When the accumulated phase mismatch AML over the interaction

length is below tt/ 2  radians, unidirectional power flow between the

modes occurs. For larger mismatch the power flow is oscillatory over

the path length L and cumulative energy transfer is limited.

A large value of Q leads to large' values of AKL if there is also

large spread of frequencies. However, a large value of Q is otherwise

desirable, because it implies a more efficient interaction, achieved

through large values of the beam width (i.e. interaction length) L. 
p

—  Z n g is the mismatch between different frequency 2 . . m m  ^m=l
components and to minimise this needs to be minimised i.e. frequencies

of signals should be very close, for observing the intermodulation
P

signals. On the otherhand larger values of Q/2 E n g are produced
m=l m m

by more signals spread out over more bandwidth. The lOSA has to be 

capable of working with this. Therefore on the other hand one can argue 

that large phase mismatch is desirable for achieving small inter­

modulation in the lOSA.

In the experimental work described in this chapter the minimum
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separation between the r.f. signal frequencies was 30 MHz, which 

corresponded to signals of %10 and %%0 MHz frequencies. This gave 

3^ - 0.0375. Reducing the value of 3^ by bringing two signal frequencies 

closer made it difficult to observe, experimentally third order inter­

modulation signals which were submerged in the opticalnoise associated 

with the main diffracted light beams up to larger values of signal 

strength. A maximum value of 3^ = 0.95 (used in experimental work for 

this Chapter) corresponded to signals of 380 and %70 MHz frequencies.

For the case of a single frequency 3^ = 0, n ^ = l ,  0 = 1  and a = ,

this lead to perfect satisfaction of the Bragg condition, because

= 0. Therefore continuous power transfer from the main light 

beam to the first order diffracted beam takes place over any length 

of interaction which has been studied in the previous Chapter of this 

thesis.

6.2.2 Bragg Regime (Q>> % t t)

In this case, wave vector mismatch can only be minimised for one 

diffraction order besides a zero order as established by the value 

of ct . With Bragg incidence at midband in the positive first order, 

a = +2, the wave vector mismatch is given as follows:

(a) For modes in the zeroth Order: 0 = 0 .

In this case Equation (6.15) becomes

= I m=l
20 -2a + E n

2
Assuming E n 3 << 1 and a = +2

m=l

~ - 2L \  “m m=l
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(b) For modes in the first order; G = 1

Therefore Equation (6.15) becomes for ct = i

AK(1) = ^  2L 1 + E n 
m=l m m 1 - 1 + E n 

m-1 ra m

Q ^
a  : %  ^m=l

(6.17)

for E n g  «  1 
m=I “ “

(c) For modes in other orders
2

Equation (6.15) becomes, for E n g << 1
m=l

AK(-) = I  i  G(G-l) (6.18)

Condition E n g << 1 holds for moderate fractional
m=l ^ ^

bandwidth g^ «  1. As a result, wave.vector mismatch may be 

considered small for modes in the zeroth and first order ,

AK(_) .L 1 < - (6.19)

However, wave vector mismatch in other orders (say G=2) is

large

I AKL 1= I  G(G-l) > %TT» I

Consideration of the signal frequencies (used in the experiments 

described in this Chapter) %00 MHz and khO MHz give the following 

calculated values.

» i =
K

K
ic„ “ K

K

%0Q-%20
%20

%%0-%2Q
%20

= - 0.0%t6 

= + o.o%t6
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.*. For = 1, Dg = -1

2
 ̂ "V = 2 X .0%T6 = .0952 

m^l ^ ^

Q =2% for %20 MHz signal

•■• AK(_)L = I  I %
m=l

2%= ^  X .0952

= 1.1%2

which is less than ir/2. Therefore in the experimental situation, 

wave vector mismatch was indeed small and it satisfied the condition 

given by Equation (6.19).

However for higher diffracted orders,

|aKL| 0. I  G(G-l)

I 1 2%For G = 2, |AKL| 2x1 =2%.

Considering the situation in which modes outside the zero and 

the first diffracted order are dropped and wave vector mismatch within 

the zero and first order is neglected, the coupled mode Equations (6.1%) 

for the zeroth and first order are given by, as follows:

dY9-\ P V
' m l  -  ' " ( - J  (6..0)

^  = - J  (6.21)
m=l

Gwhere the superscripted Y indicates the order of the mode
(n)
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Equations (6.20) and (6.21) can be decoupled by differentiation 

and cross substitution, which results in second order differential 

equations :

d^Y?-x P V P V ,wO
\  ^  -â (6.22)m=l m-1

* 1 - 1
Initial boundary conditions for second order differential 

equations are given by

= 1, for (n) = (o) i.e. all of the light starts in

the zero order beam (6.2%)
'i'̂ (-) = 0, (n) f (Ô) i.e. there is no light initially

in the difference frequency modes (6.25)
^^(n) " ^ i.e. there is no light initially

in the first diffracted order

beams (6.26)

= 0 (6.2T)

(n) _ ^m , (D = 1) (6.28)
dx 2L

dY^ _i n i -
dx = 0 D f 1 (6.29)

When only two input r.f. signals are present i.e. P = 2, then 
Equation (6.22) becomes
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= - w K - ^ i  (6-30)

where ,T ° = '^°(H) " '^°(„,-n)

Because n = + n^ = 0 for G = 0

.*. = n .

When both r.f. signals are of equal strength, then " V

and Equation (6.30) becomes

= - ^ " ( C l ^ C l )  (6-31)

The above equation can be solved by assuming a series solution 

of the form

ï°n = ^ V  (6-32)r=0
Substituting Equation (6,32) into Equation (6.31) and after 

simplification, power series coefficient recursion relation can be 

obtained

klf(r+2)(r+l) + 2V^ + "-(n+Dr)

(6.33)
It can be established that solutions of Equation (6.31) are

of Bessel function form, by the following methods:

(i) By showing that the a ^  etc coefficients in Equation (6.33), 

one by one are the coefficients of Bessel function form solutions

(ii) By showing that Equation (6.33) is satisfied by the general 

expression for the Bessel function coefficients.
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(iii) By showing that Bessel function form solutions are compatible 

with Equation (6.31) directly from their known recurrence 

relations.

Using the last method, it has been proved (in Appendix D ), 

that solutions of Equation (6.31) are of Bessel function form. 

Considering the Bessel function at the end of acousto-optic interaction 

i.e. for X = L, the following results are arrived at:

J^(V) ->-1 at V = 0 i.e. main light beam is unchanged

for no change in index.

J^(V) —  ̂ gives the first order principal

mode, light intensity of which is 

proportional to V,

Jg(V) ---->■ gives the modes corresponding to

difference in frequencies. Light 

intensity of these modes varies as 

square of V. These are called second 

order intermodulation modes.

Jg(V)  )- gives the third order intermodulation

corresponding to frequencies (2f\-fj), 
These are called third order inter­

modulation modes. Light intensity of 

These modes varies as a cubic power 

of V.

6.2.3 Diffraction Efficiency

The diffraction efficiency of signal is the intensity of 

the corresponding principal (first-order) mode in the first diffraction 

order.
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4  = I Hâ,)i'

For small signals, the diffraction efficiencies are approximately 

equal to the normalised drive intensity (V/2)^ and are independent 

of the number of signals H
V. 2

q  = <2 ) < .1

Hecht £6] makes the important point that the Bragg diffraction 
efficiency for the special case of two equal signals is determined by 

the first-order Bessel function J^(V) and is equal to peak value of 

0,339 sit V = 1.8% as determined by Klein et al .

Intermo dulat i on

Intermodulation is the generation of responses corresponding to 

combination tones of input signals. The highest intensity inter­

modulation modes are the second order modes corresponding to the 

difference frequencies e.g. (f\-fj). The difference modes are in the 

zeroth diffraction order (G=0) as shown in Figure (6.2). Modes 

corresponding to the sum frequencies (f^ + f^) occur in the second 

diffraction order (G = 2). Modes corresponding to frequencies (2f\ - fj) 

are third order modes falling in the first diffraction order (G-l).

These interfere with the principal modes as spurious sideband responses. 

These are called ’two tone third order intermodulation products'.

As described in Section 6.2.2.of this Chapter, principal mode diffraction 
efficiency is linearly proportional to the r.f. power, whereas two tone 

third order intermodulation products mode, diffraction efficiency is 

proportional to cubic power of r.f. power.
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6.3 Experimental Study of Third Order Intermodulation Effect.

As strengths of the third order intermodulation signals were 

low their detection against the background noise (due to in-plane 

light scattering) required waveguides of very low in-plane light 

scattering. As described in Section 3.5 of Chapter 3 of this thesis, 

in-plane light scattering was small at large angles (52 dB down from 

the main light beam at about 9^ in air), so the higher the frequency 

of r.f. signal, the smaller will be the r.f. power required to bring 

the diffracted signal out of the optical noise. But IDT of centre 

frequency of 650 MHz corresponds to finger width (= gap) of 1.25 pm .
For higher frequencies, finger width (= gap) will be even smaller.

So the fabrication of IDT of centre frequency higher than 65O MHz was 
limited because of the photolithographic facilities available in the 

Glasgow University, It was relatively easy to fabricate an IDT of 

centre frequency of %20 MHz, corresponding to finger width (= gap) 

of 2.0 pm, but use of even lower frequencies would have given diffracted 

light beams spatially lying closer to the undiffracued main light 

beam, where the optical noise (in-plane light scattering) was high 

and this would have required higher levels of input r.f. power to 

bring these signals out of the optical noise.

6.3.1 Experimental Measurements

As intermodulation effects are most apparent at high r.f. power 

levels, an r.f. power amplifier was used. Firstly the arrangement in 

Figure (6.%) was used. In this arrangement, the two signals were 

firstly combined and then amplified using a power amplifier. The actual 

r.f. power input into the IDT was controlled by using two attenuators.
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At the higher drive levels required, it vas observed that the output 

from the amplifier (as checked on the Spectrum Analyser) contained 

many spurious signals including the frequencies (2f\ - f^), where f^ 

and fj were the two main signal frequencies. So the arrangement of 

Figure (6.it) was not used.

A modified version of the above arrangement is shown in Figure 

(6.5). In this arrangement, two r.f. signals were amplified separately 

and then these amplified signals were combined using a hybrid coupler. 

The combined signal was then checked on the Spectrum Analyser. The 

2f . - f . signal levels were always dB or more below the main1 J
signal levels of f. and f., up to an output power of about 1 .it W.^ J
Therefore this circuit was used for all the measurements made on 

devices having a centre frequency of U20 MHz. The light intensity of 

the various diffracted beams was measured using the optical set up 

described in Section 5*T*1 of the previous Chapter.

6.3*2 Experimental Results

(a) Acousto-Optic Device

The waveguide fabrication conditions for this device have been 

described in Table I of the previous Chapter. Figure (6.6a) is a 

scan of the undepleted (without any r.f. power) main light beam, which 

also shows the in-plane light scattering levels. Figure (6.6b) shows 

the main diffracted light beam (on expanded scale) corresponding to a 

r.f. signal of J+20 MHz frequency, at an input r*f. power of 379 mW. 

Comparing Figure (6.6a) with Figure (6.6b) it can be seen that the 

light intensity distribution of the diffracted beam was a close replica 

of the light intensity distribution of the main undepleted beam.
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Light Intensity Distribution Of The Main And The Diffracted Beams
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Figure 6.6
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Because of considerable in-plane light scattering in the device 

it was found that the third order intermodulation signals were 

submerged in the optical noise, for up to considerably high levels 

input r.f. power.

For the purpose of detecting very weak third order intermodulation 

signals against the background optical noise, the arrangement shown in 

Figure (6.7) was used. In this system r.f. power was modulated at 

IKHz rather., than to modulation of light. Therefore only those light 

beams which were being modulated (because of acousto-optic interaction) 

were detected. The results of this experiment (for a device J^^), 

for input signals of U50 MHz and 390 MHz are shown in Figure (6.8), 
which is a scan of the m-1ine for a 3l6 mW of input r.f. power. From 

this figure it can be seen that third order intermodulation signals were 

just observable even at an r.f. power of 316 mW.

From the experimental work on the device it was concluded

that a reduction of in-plane light scattering was essential for the 

observation of third order intermodulation signals. Therefore another 

sample described below was prepared.

(b) Acousto-Qptic Device

As discussed in Section 3.13 of Chapter 3 of this thesis, in-plane 

light scattering is partly contributed by the inhomogeneous and rough, 

residual oxide layer, left after the diffusion process. If this is 

removed physically by post-diffusion polishing of the waveguide then 

in-plane light scattering reduces. Therefore a waveguide was fabricated 

by diffusing a titanium film of 7OO ^ thickness for 6 hours at 1020 Ĉ. 

This waveguide was then-polished and an IDT of h20 MHz centre frequency 

was fabricated on it. The third order intermodulation effects were



203

o
(U

%.
CD

OCu
Ü_
ci
T3
OJ

fO
=3~ao
i-o
4->
3O5-
O
rtJu
si

4 - >OOJ
LU

S™
OJ+Jeu
S-
OJ3:O

D _

<
C\J
ro

eu

OJo
>
OJo
o

D
*a
%-fO
ufd
C u

, eu

U0Ldno3 piuqÀH

LU ÛC LU CC

LO
OJi-
C 7 >

Lu

doq.Bd0U09 LBUÔLS 809 *d*H

OJ10
3

Ou



20k

O t

-o

4 _ >

+->
CD

CD CO
• I -  - oU1

Modulated R.F. Power
Q

M  H %

Light Intensity Distribution Of Diffracted Beams-

Figure 6.8



205

investigated on this acousto-optic device, using the circuit shown in 

Figure (6.5).

The typical scans of in-line, showing the acousto-optic third 

order intermodulation effect, for various levels of r.f. power can he 

seen in Figure (6.9). Figure (6.10) is a photograph of the mode line 

showing various diffracted light beams, for two signal situation.

As described in Chapter Y of this thesis, at higher r.f. power levels 

( > lUO mW) the light intensity of the m-line (depleted main light 

beam as well as diffracted light beams) decreased because of the change 

in the waveguide index, due to the thermo-optic effect. Therefore 

in order to measure the light intensities of the diffracted beams without 

the degradation (described above), it was necessary to readjust the 

angle at which light was coupled into the waveguide. Figures (6.11) 

to (6.l4) shows the dependence of diffraction efficiencies (for 

principal mode signals and also third order intermodulation signals) 

on the r.f. power for various input signal frequencies. The results 

obtained from these figures are shown in Table I, which also includes 

insertion loss of the IDT at various frequencies.

From Figures (6.11) to (6.1U), the following points are evident:
(i) The detection of the third order intermodulation signal was

limited at the lower end by in-plane light scattering (i.e. optical 

noise). As discussed in Chapter 3 of this thesis, in-plane light 

scattering levels decrease for larger values of the diffraction 

angle. Therefore, if the signal (2 f^ - f^) shown in Figure (6.10),' 

lies further away from the main light spot of m-line, it can be 

observed at smaller values of diffraction efficiency, because the 

in-plane light scattering is then lower. The (2f^ - f^) third
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m-line with various diffracted light beams

470 MHz 
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Figure
number

Input Signal Third Order
Intermodulation
Signal

Slope for the 
third order 
Intermodulation 

EffectFrequency^
MHz

IDT 
Insertion 
Loss dB

Frequency
MHz

IDT 
Insertion 
Loss dB

6.11 380 ' 
hio ^

9.5 290 25 2.50

6.12 390 ' 
46o ^

9.0 320 22.5 2.46

6.13 400 ' 
450 ^

8,25 350 17.5 2.50

6.ih 410 ' 
440 ^

T.T5 380 9.5
1

2.40 1
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order intermodulation signal will lie further away from the main 

beam (and closer to the principal diffracted beams in order G = 1) 

if the separation between signal frequencies is small. This was 

in fact experimentally observed. It can be seen from Figures 

(6.11) to (6.lU) that as the separation between the two input 
signal frequencies decreased, the level of diffraction efficiency 

(for principal modes) at which the (2f^ - f^) signal could be 
observed also decreased. This is clearly because the detection 

of the third order intermodulation signal was limited by the 

in-plane light scattering. The typical levels at which the (2f^ - f^) 

signal could be observed for various input signal frequencies are 

shown in Table II.

(ii) As the separation between the two input frequencies f^ and f^ 

decreased, the r.f. power required to observe the (2f^ - f^) 
signal (against the background optical noise) decreased. The 

levels of r.f, and acoustic powers are shown in Table II.

There are two main reasons for the decrease in the power levels. 

Firstly the background noise (in-plane light scattering) decreases 

for increased value of diffraction angle. Secondly when a 

separation between signals of frequencies f^ and f^ is decreased, 

this leads to decrease in the phase mismatch and hence increase

in the diffraction efficiency. Phase mismatch varies from |aKL| = 

.U826 for 30 MHz signal frequency separation to |aKL( = 1.22 for 

90 MHz separation of signal frequencies. This was always in 

accord with Hecht’s theory [6] requiring |aKL| < Tr/2.

(iii) It was difficult to observe third order intermodulation signals 

when the separation between the two, input signal frequencies was



21k

• TABLE II

Input Signal 
Frequencies

Third Order 
Intermodulation 
(2f^-fg) signal 
frequency

Estimated level 
at which (Pf^-f^) 
observed

Power required to 
observe (21^-1^) 
signal against the 
background noise

fg(MHz) MHz dB R.F.(m¥) Estimated 
acoustic mW

380 llTO 290 -37.5 l40 15.7

390 U6o 320 100 11.8

Uoo 1̂ 50 350 -39.5 63 9.4

kio 440 380 -42.0
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less than 30 MHz. As shown in Figure (6.6) the intensity 

distribution of the diffracted light spot was in fact a 

replica of the intensity distribution of the main beam.

Therefore when two signal frequencies were very close, the 

third order intermodulation signal could not be resolved from 

the main diffracted beam, at lower levels of r.f. power.

Figure (6.8), which is for r.f. power modulation rather than 

optical modulation, shows the difficulties involved in the 

resolution of spatially, closely spaced light beams in the 

presence of large in-plane light scattering. It can be seen 

that in Figure (6.8), even for an r.f. drive power of 3l6 mW, the 

third order intermodulation signal was still only just emerging 

from the optical noise associated with the diffracted main signal.

(iv) The relationship between diffraction efficiency for signals at 

both frequencies f^ and f^ and input power is linear. But a 

cubic relationship between the diffraction efficiency and input 

r.f. power for third order intermodulation beam was clearly not 

observed from the limited data obtained. The maximum slope 

estimated was 2.5. It should however be noted that the estimated 

slope increased with improvements in the device i.e. reduction

in the in-plane light scattering levels. The estimated slope 

was also increased once the change in the effective index of the 

waveguide with r.f. power was observed and the decrease in the 

intensity (because of change in index) of the output m-line was 

overcome by readjusting the coupling angle.

(v) The spurious free dynamic range of the device for 1 % and 10^ total 

diffraction efficiencies, as determined from these Figures (6.11)
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to (6,l4) can be seen in Table III.
(vi) The acoustic and the r.f. power required for 1 % and 10% 

diffraction efficiencies for various r.f. signal frequencies 

as determined from Figures (6.11) to (6.l4) can be seen in 

Table IV.

(vii) For a total diffraction efficiency of 4-3% (21.5% for each 

signal), the difference between the level of main signal and 

third order intermodulation signal is of the order of 22 dB.

Hecht's theory predicts a difference of 27 dB for corresponding 

diffraction efficiency.

(viii) The experimental results shown in Figures (6.11) to (6.l4) 

have slopes somewhat less than 3 for the third order inter­

modulation components. It is therefore not clear how best to 

determine the third order intercept. In this work it was 

decided to extrapolate directly with the best slope estimate 

determined from the experimental data. For comparison with 

Hecht’s [6] work, use of the diffraction efficiency (even > 100% 

but corresponding to third order intercept) provides a more 

convenient basis of comparison than drive power levels, since

the latter is affected by the transduction efficiency and acoustic 

losses as well. Table V shows the value of diffraction efficiencies 

corresponding to the third order intercepts, as determined from 

Figures (6.11) to (6.l4).

6.4 Discussion

First of all experimental work (on third order intermodulation

effect in the presence of acousto-optic interaction) done by other
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Signal Frequency 
MHz

Spurious-free Dynamic Range (dB) 
for Diffraction Efficiency

^1 ^2 1% 10% 21.5%

380 470 17.5 25.0 22.0

400 450 19.5 27.0 25.0

4iO 44o 20.0 23.0 23.0

TABLE IV

Signal Frequency 
MHz

R.F. power (mW) required 
to achieve diffraction 

efficiency

Acoustic Power (m¥) 
required to achieve - 
diffraction efficiency

^1 2̂ 1% 10% 1% 10%

380 470 14.0 197.7 1.5 22.17

390 460 10.0 14i .2 1.19 16.78

400 450 5.6 63.0 .837 9.40

410 440 7.87 88.0 1.32 14.82
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TABLE V

Signal Frequency Diffraction Efficiency 
(%) Corresponding to

"l ^2 Third order intercept 
point

380 470 501

390 46o 398

Uoo 450

4lO 440 19^
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research workers is considered.

The theory developed hy D.L. Hecht , described in detail

earlier in this Chapter, predicts clearly a slope of three. Hecht’s 

limited experimental results appear to support his theoretical results. 

Results on bulk acousto-optic interaction in glass have been compared 

with his theory. The quoted background noise of the order of TO dB 

below the main beam light level was attributed to the diffraction side 

lobes of the zero order beam. To achieve this side lobe level limited 

condition a zero order stop and a frequency plane filter were used [sj .

A transducer with Q = 30 was used. This corresponded to interaction 

length L 'Xj 3.5 cm at 90 MHz signal frequency, assuming velocity of the 

longitudinal elastic waves to be 5 x 10^ m/sec. in glass [l^ . The 

experimental set up used involved use of a cylindrical beam expanding 

telescope to fill the aperture of the Bragg cell, and also a cylindrical 

beam reducing telescope. The acoustocioptic device used was of 45 MHz, 

bandwidth. The low spurious signal level permitted a multisignal 

spurious free dynamic range of a 50 dB to be obtained in the range from 

10 to 1% diffraction efficiency. While comparing the experimental 

results with the theory, Hecht does not state clearly the actual 

signal frequencies used [ĵ  . The driving electronics used to obtain 

his experimental results, is not described, nor is any description 

given of the precautions taken to reduce the intermodulation signals 

from the drive electronics.

O.S. Tsai and co workers [llj used the interaction of surface 

acoustic waves with the guided optic waves, to study the third order 

intermodulation effect. Optical waveguide used was fabricated ina'Y-cut 

LiNbO^ substrate by outdiffusing lithium. Background noise due to
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in-plane light scattering was of the order of 37 dB down on the main 

light beam. This limited the detection of the third order inter­

modulation signals at lower levels of r.f. power. Signals at frequencies 

of 250 MHz and 270 MHz were used. However the electronics used for 

driving the device and the levels of intermodulation signals from these 

were not described. The authors carried out only a limited study and, 

crucially, do not describe experimental work on the relationship 

between diffraction efficiency for intermodulation signals and the r.f. 

power level. However from a limited study, it was concluded by the 

authors that for a total diffraction efficiency of 4-3% (i.e. 21.5% for 

each signal) third order intermodulation signal level was 38 dB down 
the diffracted principal mode signal level, but Hecht's theory ,

for a similar value of diffraction efficiency, predicts a difference 

in levels of the order of 27 dB.

These authors concluded that in-plane light scattering will limit 

the dynamic range of the lOSA rather than the third order intermodulation 

effects. It is not clear whether these authors also observed the change 

in the refractive of the waveguide (as observed during the work for 

this thesis) due to thermo-optic effect at high r.f. power levels.

\

6.4,1 Explanation of Results Obtained for Third Order Intermodulation 

Effect in Titanium Indiffused LiFbO^ Waveguide.

The results obtained on acousto-optic devices fabricated by the 

titanium indiffusion into LiFbO^ are compared with the experimental 

results of other workers.

(i) Minimum R.F. Power

Comparing the results of work done for this thesis with the
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experimental results of Hecht [6, ^  and Tsai et al [il] , it can he 

concluded that the minimum r.f. power required to observe the diffracted 

(2f^ “ fg) signal against the background noise, depends on the in-plane 

light scattering (for guided-wave devices at performances so far 

achieved). Hecht’s work [3, ^ , was for bulk acousto-optic interaction 

in glass. In his particular system, in-plane light scattering was 

probably considerably lower and furthermore a zero order stop and a 

frequency plane filter were used. But in the work for this thesis and 

also work done by Tsai et al Q.Ï] guided wave devices were used. Tsai 

et al pL2^ , used outdiffused LiHbO^ waveguide, which should give low 

in-plane light scattering. Whereas the work of this thesis has involved 

exclusively the use of a titanium in-diffused LiNbO^ waveguides, which 

gave a higher level of in-plane light scattering than the outdiffused 

waveguides (presence of residual surface layer in titanium induffused 

waveguide is one of the sources of in-plane light scattering and there

is no such layer in the outdiffused waveguides).

From Table '.II, it is clear that the higher the frequency of 

signals f^, f^ and (2f^ - f^) the lower will be the r.f. power 

required to observe these signals against the background noise, becuase 

for higher signal frequency,diffracted beams will be further away from 

the main beam. Furthermore, in particular to observe the third order 

intermodulation signal, in-plane light scattering need to be low

otherwise signal (2f^ - f^) will be lost in the scattered light

associated with the diffracted beams corresponding to frequency f̂  ̂

(assuming f^ < f^) as shown in Figure (6.8).

Therefore in order to reduce the r.f. power required to observe 

a signal it is important that in-plane light scattering is reduced.
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ii) A'Relationship between the Diffraction Efficiency and the R.F. Power 

As predicted by Hecht’s theory [6j , the observed relationship 

[(shown in Figures (6.1l)to (6.14)3 between the diffraction efficiency 

for signals at both frequencies f^ and f^ and input r.f. power was 

linear. However the experimentally observed relationship between r.f. 

power and the diffraction efficiency for the signal (2f^ - f^) was 

not cubic (estimated maximum slope 2.5) whereas Hecht’s theory predicts 

a cubic relationship. This discrepancy could be due to the following 

reasons :

(a) Because of the fairly high in-plane light scattering (which screens

the (2f^ - fg) signal at low levels of r.f. power) slope of 2.5 

has been extracted from a limited data range as shown in Figures 

(6.1l)to (6.l4). The estimated slope of 2.5 is not greatly 

different from the predicted slope of 3.

(b) Data for low levels of r.f. power was limited because of in-plane

light scattering and therefore the estimated slope of 2.5 was 

extracted from data at relatively higher levels of r.f. power. 

However as mentioned previously, in Section 6.3.2(b) of this 

Chapter and explained in detail in the next Chapter, input r.f. 

power of level greater than l40 mW lead to change in the index 

of the waveguide due to thermo-optic effect and hence a decrease 

in the light intensity was overcome, to some extent, by readjusting 

the input prism coupling angle. This process could have lead to 

error if each readjustment did not give same amount of input 

coupling of light.

(c) The relationship between the r.f. power and diffraction efficiency

has been derived by Hect assuming light to be plane wave.
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Wiereas in practical conditions used, light intensity is 

either of gaussran or truncated gaussian profile. In the work 

for this thesis prism coupler was used, which can give a 

truncated gaussian profile. It has been shown theoretically 

by Fox [13] that diffraction efficiency observed will be smaller 
if the beam is not of infinite width. As the diffraction 

efficiency for the third order intermodulation effect depends 

on the cube for r.f. power, so the affect of a finite width of 

light beam could be more in the case of (2f^ - f^) signal than 

of f^ or fg.

(d) As previously mentioned in this Chapter, the decrease in the 

light intensity of the m-line due to the thermo-optic effect 

was overcome by readjusting the input prism coupling angle. 

According to Neurgaonkar et al [l4] the SAW velocity of Li?lbO^ 

changes with temperature. This can also affect the acousto- 

optic diffraction efficiency, however only to a very small 

extent for likely temperature changes.

(iii) Spurious-Free Dynamic Range of IQSA

The spurious-free dynamic range of the device for 1% diffraction 

efficiency was of the order of 20 dB (shown in Table III). This was 

limited by the background noise i.e. in-plane light scattering. A 

comparison with the bulk acousto-optic, for example with Hecht's [6j 

experimental results on glass is not justified, because of inherently 

very small in-plane light scattering in his acousto-optic cell.

However Hecht's theory [ôj predicts a spurious-free dynamic range, 

of the order of 27 dB for a 21.5% diffraction efficiency of each signal
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The acousto-optic device studied for this thesis had a spurious-free 

dynamic range of about 23.5 dB (average) for a 21.5% diffraction 

efficiency as shown in Table III of this Chapter. However Tsai et al 

[il] observed a spurious-free dynamic range of the order of 37 dB for 

a total diffraction efficiency of 43% (i.e. 21.5% diffraction efficiency 

of each signal), which is more than what is predicted by Hecht's theory. 

It is not clear whether Tsai et al [il] observed decrease in the 

intensity of the m-line at higher levels of input r.f. power, as was 

observed during the course of work for this thesis.

From the above comparison it can be concluded that the acousto- 

optic device studied for this thesis showed a spurious-free dynamic 

range (for a diffraction efficiency of 21.5%) of 23.5 dB compared to 

a value of 27 dB as predicted by Hecht’s theory.

(iv) The Third Order Intercept Point

As shown in Table V the diffraction efficiency corresponding to 

third order intercept point varies over a large range of values as the 

third order intermodulation signal frequency varies. Hecht’s theory 

predicts diffraction efficiency of the order of 533% corresponding 

to third order intercept. The discrepancy in the values of diffraction 

efficiencies (corresponding to the third order intermodulation intercept 

experimentally observed and theoretically predicted value, appears to 

be due to small data from which slope for third order intermodulation 

effect was estimated.

6.5 Conclusions

In this Chapter Hecht's theory about acouto-optic interaction, in
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the presence of more than one acoustic signal, has been considered.

The experimental study on the third order intermodulation effect in 

the titanium indiffused LiNbO^ waveguides has been carried cut. It 

was observed that detection of third order intermodulation signal, 

at lower levels of r.f. power was limited by the background noise due 

to in-plane light scattering in the waveguide. At higher levels of r.f 

power to the IDT, waveguide index change lead to decrease in the light 

intensity of the m-line, and this,was overcome by readjusting the coupl: 

angle of the input prism. Hecht's theory predicts a cubic dependence 

of diffraction efficiency, for third order intermodulation signal, 

on the r.f. power, however a dependence of the order of 2.5 (estimated 

from the limited data) was experimentally observed. The spurious-free 

dynamic range of the acousto-optic device studied, was of the order 

of 20 dB for 1% diffraction efficiency, and this was limited by in-plan; 

light scattering. However spurious free dynamic range of the device 

studied, for a total diffraction efficiency of 43%, was of the order 

of 23.5 dB compared to a value of 27 dB predicted by Hecht's theory. 

From the study carried out for this chapter of the thesis, it appears 

that the dynamic range of the acousto-optic device, for a diffraction 

efficiency of value between 1% to 10%, is limited by in-plane light 

scattering. Therefore the dynamic range of the device can be increased 

by fabricating waveguides having lower in-plane light scattering.
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APPENDIX D

Testing that second order differential Equation (6.31) is compatible 

with Bessel function solution.

Equation (6.31) is

+ 2V2f° dx'̂  n

A . - n  = <  = (-1)" h n

.*. Putting n = 0, 1, -1

n = 0 Y°= (-1)° J (V) D = 0  + 0 = 0 n

(n+l) with n=0 (-1)^ Jg(V) D = 1  + 1 = 2 n

(n~l) with n=0 Y°= (-1) ^■^(V) D = 1  + 1 = 2 n

Substituting in Equation (6.31)

From standard recurrence relation. (A)

&  O o ( ^  X ) }  =  I X )  }

dx I'L ]
= _ I

L dx [ j X ^ x )I'L

But J[(Z) = J^(Z) - J^(Z) .

ii
dx^ h ' î

V
L
y2
l 2

-V
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Also x) = X )
r Vx

L

. . L.H.S. of Equation (A) is

-4v2 V

(f)

• V2, 1° h t  x )

R.H.S. of Equation (A) is

;  : A :  h^L i

= 2 h €  - h ( i  ) \ A )  h ( i

rV̂ 'V rV
= V t - )  - 2 Î r J „  it-)

= L.H.S. of Equation (A)

Therefore it has been established that second order differential 

Equation (6.31) has Bessel function solutions for G=0 mode beam. 

Similarly it can be established that Equation (6.23) also has Bessel 

function solutions for G=1 mode beam.
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CHAPTER 7

ACOUSTO-OPTIC INTERACTION IN TITANIUM DIFFUSED LiNbO,-3
WAVEGUIDES AT HIGHER POWER LEVELS

7.1 Introduction

When operating an acousto-optic device with relatively high 

input r.f. power levels to the IDT structure, it was observed that the 

intensity of the m-line decreased substantially with time. It was 

eventually realised that this resulted in the failure to observe 100% 

diffraction efficiency (during the work described in Chapter 5 of this 

thesis) because measurements were made by comparison with the original 

zero order light level without r.f. power applied.

As described in Section 6.3.2(b) of the previous Chapter, this 

decrease in the intensity of the m-line with time was because of the 

change in the waveguide refractive index. For the purpose of measure­

ments on the third order intermodulation effects, this decrease in the 

light intensity of the m-line was overcome by readjusting the coupling 

angle of the input prism. However, in the lOSA, the injection laser 

and the detector array will be ’butt-coupled' after proper alignment 

of the detector array. Therefore any change in the r.f. power input 

to the IDT will shift the position of the main beam and this will upset 

the calibration of the lOSA device. According to Coquin et al Ql} , 

considering acousto-optic devices for applicationsthat require precise 

beam positioning it is reasonable to assume that the beam should not 

wander by more than 10% of the spacing between the adjacent resolvable 

positions. Therefore this effect of a change of index with r.f. power 

will also be one of the limitations on the maximum r.f. power that can
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be applied to an acousto-optic device such as a spectrum analyser.

Hence it was decided to carry out a preliminary investigation into 

the mechanisms which lead to the change in the index of the waveguide 

as discussed above. For this purpose, the dependence of the light 

intensity of the m-line on the r.f. power and the optical power (in 

the presence of the r.f. power) was experimentally studied as described 

below.

T.2 Experimental Study

The following experiments were carried out on waveguide a^, 

the same waveguide on which third order intermodulation effects 

(described in the previous Chapter) were studied.

7.2.1 The Decay in the Light Intensity of the m-line with Time
Chopped (1 KHz), He-Ne laser (5 mW, A = *6328 pm) light (TE - 

polarised) was coupled into and out of the waveguide using rutile 

prisms. The intensity of the input beam was reduced, before coupling 

into the waveguide, by using a 7 calibrated optical attenuator. 

Assuming a 65% input prism coupling efficiency and 1 mm width of the 
light beam in the waveguide (of depth 3 pm), the optical power density 
in the waveguide is estimated to be of the order of 2 x 10^ Watt/cm^.

The photodetector { using a system shown in Figure (3.2) of Chapter 3 } 

was adjusted so that only the central spot of the m-line was being 

observed. The output of the detector after amplification through the 

phase sensitive logarithmic amplifier was recorded on the chart recorder, 

The schematic arrangement of this is shown in Figure (3.1) of Chapter 3* 

The intensity of the undepleted main light beam (without any r.f.
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power) was taken as the 0 dB level. Then a signal of 420 MHz frequency 

and 557 mW r.f. power (this corresponded to 93*5 mW acoustic power, 

for an IDT with insertion loss of 7 «75 dB) was applied to the IDT.

This depleted the main light beam to an extent depending upon the 

acousto-optic diffraction efficiency of the device. This depletion 

happened instantaneously as shown in Figure (7.I). After this initial 

depletion, the light intensity of the depleted beam decreased with 

time as shown in Figure (7 .I). As can be seen from this figure, the 

light intensity of the depleted main beam was still decreasing (but 

much less rapidly than in the initial stages) even after a period of 

80 seconds,

7.2.2 The Effect of Optical Power on the Decrease in the Light 
Intensity of the m-line.

As described in Section 7*1 of this Chapter, the decrease in 

the light intensity of the m-line was due to a change in the refractive 

index of the waveguide. One of the mechanisms which can lead to a 

change in the index in a localised region is called the photorefractive 

effect or optical damage. The photorefractive effect is specifically 

the optically induced change in the index of electro-optic crystals 

[53 . According to Chen [6] , the index change in a ferroelectric 

material can be accounted for by a model in which photoexcited carriers 

are displaced along the polar axis (of the crystal) to the trapping 

sites under the influence of some ’internal field'. The resulting 

space charge field E. gives rise to an index change An. via the 

electro-optic effect, where:

|A"jl = ?  "j E.
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and r.. is the linear electro-optic coefficient and n. is theJ
refractive index of the electro-optic crystal.

It has been observed by Chen [6] that the photorefractive effect 

leads to a lowering of the index (i.e. An^ is -ve) in LiNbO^. The 

photorefractive sensitivity S of the crystal is given by 

A n .
S = oTw^

where a is the absorption coefficient including linear and non-linear 

absorption and W is the incident optical energy. Therefore through 

the absorption coefficient, S depends on the optical wavelength and 

also on the nature of the absorbing centre (initial and final states). 

According to Glass et al [ic[| titanium ions in LiNbO^ do not contribute 

to the absorption loss or to the photorefractive effect directly, 

rather these parameters are determined by impurities in the substrate 

crystal. However it is possible that the electric field wave accompanying 

SAW in a piezoelectric crystal (LiNbO^) can lead to field assisted 

excitation [4,f] of the carriers (by light of wavelength X = *6328 pm), 

which then drift under the influence of the 'internal field' and give 

rise to a photorefractive effect. Therefore it was decided to look 

into the effect of the optical power in the waveguide on the decrease 

in the light intensity of the depleted main beam, for a fixed level 

of r.f. power. For this the following experiment was carried out.

The experiment was similar to that described in Section 7*2.1, but 

in this experiment optical power in the waveguide was varied using neutral 

density optical attenuators. The r.f. power level used was 442 mW (which 

corresponded to acoustic power of 74.2 mW for 7*75 dB insertion loss 

of the IDT). The results of this experiment are shown in Figure (7*2).
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For the purpose of calculating the optical power density in the wave­

guide, the coupling efficiency of the input prism has been assumed 

to be 65̂ 5 the waveguide depth 3 ym and the light beam width in the 

waveguide to be 1 mm. From Figure (T*2) it can be seen that as the 

optical power density in the waveguide increased from 1.3 x 10  ̂ W/cm^ 

to 9*2 X 10  ̂ W/cm^ , drift in the light intensity of the depleted main 

beam increased. But increase in the optical power density to a level 

of 10.8 X 10^ W/cm^ led to a lesser decrease in the light intensity of 

the depleted main beam as compared to the case when optical power 

density in the waveguide was 9.2 x 10  ̂ W/cm^ .

Therefore from Figure (T.2) it can be concluded that at higher 

power levels, the optical power in the waveguide could affect the 

intensity of the light in the depleted main beam, even when a fixed 

amount of r.f. power is applied to the IDT.

As described in Section 7.2.3, r.f. power at the IDT led to an 

increase in the index of the waveguide. This increase in the index 

led to a decrease in the light intensity of the depleted main beam. 

However Chen [6] has observed that the photorefractive effect in LiKbO^ 

will lead to a decrease in the extraordinary index. Therefore if the 

photorefractive effect were taking place in the waveguides at optical 

power densities of the order of those used, then as the optical power 

was increased it should have led to a smaller decrease in the light 

intensity of the depleted main beam. This should have happened because, 

the r.f. power at the IDT, which led to an increase in the index, was 

fixed and the photorefractive effect would have led to a decrease in the 

index. However this was not observed except for an optical power 

density of the order of 10.8 x 10^ W/cm^ . From this it can be deduced
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that increased optical power in the waveguide led to an affect similar 

to that which was observed with r.f. power at the IDT..

7.2.3 The Increase in the Waveguide Index with R.F. Power at the IDT.

It was observed that, even though the light intensity of the m-line 

decreases with time and with the application of r.f. power, this light 

intensity decrease reaches saturation after a period of about 3 minutes. 

However if the input coupling angle was suitably adjusted (the angle 

at which light is coupled into the waveguide) then the light intensity 

of the m-line recovers completely to the initial level from which drift 

started previously. Therefore it was decided to use this measurement 

of the change in the coupling angle to determine the change in the 

waveguide effective index for vaious levels of r.f. power at the IDT.

This was achieved by conducting the following experiment.

The lowest order guided mode was excited, using rutile prisms and 

He-ïïe laser light jjTE-polarised, X = *6328 yi^. The optical power 

density in the waveguide was of the order of 1.3 x 10  ̂ W/cm^ (calculated 

using a waveguide depth of 3 ym and input prism coupling efficiency of 

65%, light beam width in the waveguide ^ 1 mm). The input prism 

coupling angle was adjusted so that the m-line corresponding to the 

lowest order mode was the brightest as observed visually. From this 

coupling angle, a waveguide effective index of 2.20225 was determined.

Then a signal of U20 MHz frequency was applied to the IDT and the coupling 

angle was readjusted, after 3 minutes, to obtain the optimum coupling.

This angle was measured and hence the waveguide effective index was 

determined. From these two measurements of the waveguide effective 

indices the change in the waveguide effective index (An^) was determined.
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It was found that the application of r.f. power to the IDT increased 

the waveguide effective index. This experiment was repeated for 

various levels of r.f. power at the IDT. The variation in the index 

change (An^) with r.f. power levels can he seen in Figure (T.B), 

which shows that the waveguide effective index changed measurably 

even for an acoustic power level of 35 mW (i.e. r.f. power level of 

l40 mW at the IDT). Figure (T*^) shows the variation of the index 

change with r.f. power on a logarithmic scale. From this figure 

the following dependence of the change in the extraordinary index,

An^ on the r.f. power P to the IDT was deduced

An ocp-S e
This shows somewhat sublinear dependence for reasons which are not 

clear, but may well relate to the detailed nature of the heat-flow 

and heat dissipation in the sample.

Jn2,k The Effect of the R.F. Power at the IDT on the Waveguide 

Properties.

To study the effect of r.f. power on the light intensity of the 

depleted mainbeam, the following set of experiments was carried out.

The experimental set-up used has been described in Section 7*2.1. 

But for this particular experiment, the optical power in the waveguide 

was varied using neutral density optical attenuators and the decrease 

in the light intensity of the depleted main beam was recorded for 

various levels of r.f. power to the IDT. Results can be seen in 

Figupes (7*5) to (7*8). From these figures it can be seen that, for 

a fixed r.f. power level, the higher the optical power density in the
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The Variation Of Waveguide Index
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waveguide the larger was the decrease in light intensity of the 

depleted main beam. This result was similar to that which was 

observed as shown in Figure (7*2). From Figures (7-5) to (7.8) 

it was difficult to see the relationship between the r.f. power and 

the decrease in the light intensity of the depleted main beam 

because, for higher levels of r.f, power, depletion of the main beam 

due to acousto-optic diffraction needs to be taken into account.

Depletion of the main-beam due to acousto-optic diffraction is 

essentially instantaneous. Therefore observation of any variation 

of the light intensity over a period from 20 to UO secs after switching 

on r.f. power indicates an alternative, additional, effect such as 

the thermo-optic effect. The variation of this decrease in light 

intensity Al' with r.f. power is shown in Figure (7.9) for various 

levels of optical power density in the waveguide.

Although Figure (7*5) to Figure (7.8) give an indication of an 

increase in refractive index such as would be produced by the thermo­

optic effect the dependence of the observed results on the optical 

power level cannot be explained in terms of a thermo-optic effect 

produced by optical absorption because the optical power levels used 

and the absorption rate are too small. Furthermore, the photo- 

refractive effect would be expected to decrease the refractive index 

with optical power [6j . It appears therefore that the results obtained 

indicate an interaction between the optically induced and the acoustically 

induced refractive index changes, but the mechanism for this has not yet 

been made clear.
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7.2.5 The Increase in the Temperature of the Waveguide Surface
with R.F. Power to the IDT.

It is known that the thermo-optic effect can lead to a change in 

the refractive index of LiFhO^. The thermo-optic effect is the change 

in the index of a solid due to change in the temperature £2,^ .

Therefore it was decided to measure the temperature of the waveguide 

surface for various levels of input r.f. power to the IDT.

The measurement arrangement was as shown schematically in

Figure (7.IO). A small thermocouple (type stick on surface Electro-Plan
(Koystan U

was allowed to touch the surface of the waveguide at a distance of 

I4 mm from the IDT. The temperature of the surface was measured with a 

digital thermometer Model 1758 K, Digitron Instrumentation Ltd., U.K.

R.F. power to the IDT was applied using the circuit sho w  in Figure 

(7.10). The temperature of the waveguide surface was measured after 

2 minutes of application of r.f. power, at a signal frequency of 420 

MHz. The variation in the temperature of the waveguide surface, with 

r.f. power can he seen in Figure (7.II) which shows that the temperature 
of the waveguide surface increased from room temperature (24^0) to 55^0 

as r.f. power was increased from 0 to 1000 mW. The results shown in 

Figure (7 .II) have been plotted on a logarithmic scale and are shown 
in Figure (7.12). From this figure it can be seen that the dependence 

of the temperature T of the waveguide surface, on the r.f. power P to 

the IDT, follows the relation 

T « P'75
This dependence of temperature of the waveguide surface on power is 

very similar to the dependence of the change in the refractive index 

of the waveguide on the r.f. power as shown in Figure (7.4). Figure (7.13)
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The Waveguide Surface Temperature
Measurement Set Up
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Increase Of Waveguide Surface Temperature
With R.F. Power To The IDT
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shows' the increase in the temperature with time, of the waveguide 

surface when 1 Watt of r.f. power was applied to the IDT. This figure 

also shows the decrease in the temperature with time of the waveguide 

surface when r.f. power was switched off.

7.3 Discussion

Among the mechanisms which could lead to a change in the waveguide 

refractive index are;

(i) The Acousto-Photorefractive Effect.

(ii) The Thermo-Optic Effect.

(iii) The Photorefractive Effect.

7.3.1 The Acousto-Photorefractive Effect

This effect has heen studied hy Berg et al and arises because 

of the interaction of high intensity short duration laser pulses with 

the propagating acoustic waves and leads to a change in the refractive 

index of LiWbO^. Berg et al used a laser light of wavelength 

A = ,53 pm and moreover, the laser pulses were in synchronisation with 

the launching of the surface acoustic waves.

It is unlikely that the acousto-photorefractive effect will have 

taken place during the work described in this chapter, because the 

laser light used was of wavelength A = *6328 pm and the highest value 

of optical power density in the waveguide was only of the order of 

10,8 X 10^ W/cm^ . Moreover the laser light used was not pulsed 

but C.W.
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7. 3'. 2 The Thermo-Optic Effect

This effect is the change in the refractive index of the solid 

because of the change in its temperature. The increase in the index 

at the surface may be sufficient to lead to a waveguiding effect 

and this has been used to demonstrate a light deflector and a switch 

in LiNbO^ [2] .

According to Coquin et al [Y],in the bulk acousto-optic device,

approximately 10^ of the electrical power delivered to the transducer

can be dissipated due to either resistive heating of the thin film

of the electrodes or acoustic losses at the interface. Therefore,

because of the power dissipated as heat at the IDT fingers (the IDT

insertion loss was 7*75 dB at ^20 MHz), it is possible that the

temperature of the waveguide surface may increase and this can lead

to an increase in the index through the thermo-optic effect. From

Figure (7.11)9 it can be seen that an increase in the r.f, power to

the IDT led to an increase in the temperature of the waveguide

surface. Figure (7.3) shows that an increase in the r.f. power to the

IDT led to an increase in the change in the refractive index. Therefore

it is appropriate to analyse the data of Figures (7.11) and (7.3) to

see whether r.f. power at the IDT can lead to a rise in the temperature

of the amount required to achieve the measured increase in the refractive

index. The data on the increase in index An and the increase ine
temperature AT, extracted from Figures (7.3) and (7.II) respectively 

for similar values of the input r.f. power at the IDT are shown in 

Table I. This also shows the predicted change in the refractive index, 

calculated using the experimentally measured increase in temperature and 

the expression given by [p]
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An^ = 2.2 1.7 X 10  ̂ at + 5.3 X 10 B (AT)2

Figure (7*1^) shows the variation of the change in the index, with 

the change in the waveguide surface temperature, on a logarithmic 

scale. Experimental data (measured change in temperature and measured 

increase in index) are shown as crosses. The theoretically predicted 

changes in index corresponding to the experimentally measured changes 

in the temperature are shown as dots. The experimental data and 

theoretically predicted data are generally in good agreement.

From these studies it can be concluded that the thermo-optic effect 

was definitely present when r.f. power was applied to the IDT structure.

7,3.3 The Photorefractive Effect

As discussed in Section 7*2.2 another mechanism which can lead to 

a change in the index of the waveguide is the photorefractive effect 

. However this effect in LiNbO^ leads to a decrease in the index 

[6] , which is opposite to the effect due to thermo-optic effect.

But as discussed in Sections 7*2.h and 7.2.2, the effect of the optical 

power was to produce an increase in the index, therefore it can be 

concluded that the photorefractive effect did not take place (up to the 

optical power densities of the order of 10.8 x 10^ W/cm^). The results 

of Figures (7.5) to (7.8) indicate an interaction between the optically 

induced and acoustically induced refractive index changes, but the 

mechanism is not yet clear.
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Conclusions

From the study carried out in this chapter of the thesis it 

can he concluded that the decrease in the light intensity of the 

depleted main heam was mainly because of the change in the index of 

the waveguide due to the thermo-optic effect. The thermo-optic 

effect occurred because of the power dissipated by the IDT structure 

as heat. From the study of the effect of optical power on the change 

in the index, in the presence of r.f, power at the IDT, it can be 

concluded that an interaction between the optically induced and the 

acoustically induced refractive index changes was taking place, but 

the mechanism is not yet clear.
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CHAPTER 8 

CONCLUSIONS

8.1 Introduction

The work described in the thesis has heen mainly concerned with 

two important parameters which will affect the dynamic range of the 

lOSA. These two parameters are in-plane light scattering in the 

waveguide and the third-order intermodulation effects taking place 

during the acousto-optic interaction. In-plane light scattering 

gives rise to the background optical noise in the lOSA device and 

therefore will determine the minimum r.f. power needed to observe the 

signal. The background optical noise which arises because of in-plane 

light scattering depends on the scattering centres in the waveguide. 

These scattering centres (e.g. surface roughness and inhomogeneity in 

the waveguide) depend on the fabrication of the waveguide. Therefore 

the dependence of in-plane light scattering in the waveguide on the 

waveguide fabrication pararnelers has been studied. The third-order 

intermodulation effects arise in the presence of two (or more) r.f. 

signals. Therefore these effects will limit the maximum r.f. power 

which can be applied to observe the signal without saturating the 

lOSA. This will limit the spurious free dynamic range. The results 

obtained for the dependence of the dynamic range of the lOSA on these 

two parameters, along with the effect of change in the waveguide index 

with higher levels of r.f. power (required to observe third-order 

intermodulation signals) are summarised in this chapter.

The areas requiring further investigation are indicated as well.
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8.2 In-Plane Light Scattering in the Waveguides

A study of in-plane light scattering in the titanium diffused 

LiNl]0^ waveguides has heen carried out in Chapter 3. In this study, 

the dependence of AI (the change in in-plane light scattering with 

the propagation distance) on the diffusion time, diffusion temperature 

and thickness of the initial titanium film has been investigated.

A limited study on the postdiffusion polishing of the waveguide has 

been carried out as well.

As described in Chapter 3, the in-plane light scattering in the 

waveguides depends on the initial thickness of the titanium film, 

diffusion time and fiffusion temperature. For relatively small 

diffusion times, at diffusion temperatures in the range 950 - lO^O^C, 

in-plane light scattering in the waveguide is mainly because of the 

presence of the rough and inhomogeneous oxide layer on the waveguide 

surface. This layer can be removed either physically by post diffusion 

polishing of the waveguide surface or by carrying out diffusion for a 

longer time or at higher temperature. However for diffusion carried 

out for longer times or at higher temperatures, in-plane light scattering 

at first decreases (because of the reduction in the surface roughness 

and inhomogeneity of the surface oxide layer) and then appears to 

increase because of an increase in defects in the waveguide. Such defects 

would be expected to act as scattering centres. These defects were 

observed by etching the waveguides in HF:HTîO^ solution, but their nature 

has not been established. The average size of these defects depends on 

the initial thickness of the titanium film and also on the diffusion 

temperature for diffusion periods of up to 25 hours.
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The waveguide surface roughness during the waveguide fabrication 

has heen studied in Chapter 3. From this study it can he concluded 

that after initial oxidation of the titanium film and subsequent 

formation of a layer with composition Ti ^^Nb (as observed by

Armenise et al | Sj ), the surface film roughness initially increases 

as titanium diffuses into the substrate and then eventually decreases 

as surface layer composition approaches that of Lithium Niobate.

From the study of light scattering in bulk undoped LiNbO^, carried 

out in Chapter 3, it can be concluded that titanium diffused LiNbO^ 

waveguides have substantially higher levels of in-plane light scattering. 

However it may be pointed out that light scattering in the waveguides 

have been studied using prisms as couplers and this could affect the 

results to some extent.

8.3 Acousto-Qptic Interaction.

During the study of acousto-optic interaction in the presence of 

one r.f. signal, it was found that the waveguide index changed when 

higher levels of r.f. power were applied to the IDT. This change in 

the index because of the thermo-optic effect (as confirmed later on) 

limited the diffraction efficiency which could be observed without 

adjustment of prism-coupler angles. The minimum level of r.f, power 

required to observe the acousto-optically diffracted signal depends 

on the level of in-plane scattering in the waveguide.

8.4 Third Order Intermodulation Effect

From the investigation of third order intermodulation effects 

carried out in accordance with Hecht’s theory in Chapter 6, it can be
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concluded that

(i) To observe the third-order intermodulation signals it is necessary

to use a waveguide with very low levels of in-plane scattering.

This, for the purpose of the work described in Chapter 6, was 

achieved to some extent by post diffusion polishing of the wave­

guide. Even though higher r.f. power levels to the IDT can be 

used to observe an acousto-optically diffracted signal against 

the background optical noise (due to in-plane light scattering), 

use of higher r.f. power levels leads to a change in the index 

of the waveguide due to thermo-optic effect.

(ii) Because the change in the index of the waveguide due to optical 

power (in the presence of r.f. power) in the waveguide is 

apparent.!y similar to that observed due to the thermo-optic 

effect, the optical power density in the waveguide should be 

kept to a minimum.

(iii) From the limited data obtained a slope of 2.5 for the diffraction 

efficiency of the third-order intermodulation signal has been 

estimated.This is reasonably close to predictions by Hecht [sj .

The observable third-order intermodulation effects in acousto-optic 

interaction take place at relatively high levels of r.f. power. But at 

these r.f. power levels the index of the waveguide changes due to the 

thermo-optic effect. This can be overcome (for the purpose of a study 

of third-order intermodulation effects) by readjusting the coupling 

angle of the input prism, in a device where prisms are used as light 

couplers. However with end fire output coupling the thermo-optic 

effect will lead to a shift in the output spot. This shift will be small,
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But use of lenses (e.g. geodesic) will give small spot size, and 

therefore a shift in the spot could possibly be a significant fraction 

of spot size. An array of detectors could be useful to detect this 

small shift,

8.5 The Dynamic Range of the IQSA Device Studied

From the study carried out in Chapter 5 and 6, it can be concluded 

that the minimum r.f. power required to observe the acousto-optically 

diffracted signal depends on the level of the in-plane light scattering. 

Therefore the lower the in-plane light scattering in the waveguide, the 

smaller will be the r.f. power required.

From the study of the third-order intermodulation effects, carried 

out in Chapter 6, it can be concluded that experimental results broadly 

follow predictions by Hecht for third order intermodulation effects.

From the limited experimental data obtained for this thesis a slope of

2.5 has been estimated for the diffraction efficiency of the third order 

intermodulation signal against a slope of 3 as predicted by Hecht ĵ3]] . 

From this experimental data the spurious free dynamic range of the 

acousto-optic device studied has been determined. For the lOSA device 

studied for this thesis, a dynamic range of about 20 dB for a 

diffraction efficiency has been obtained. This value of the dynamic 

range was limited by in-plane light scattering. However the spurious 

free dynamic range of the IQSA device (studied for this thesis) for a 

total diffraction efficiency of k3% was of the order of 23 dB compared 

to a figure of 27 dB predicted by Hecht [sT . But IQSA device studied 

by Tsai et al [U'J had a dynamic range of 37 dB for a total diffraction 

efficiency of 43%. However these authors have not described whether any
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thermo-optic effect was observed or not.

From the study carried out in Chapter 6, it can be concluded 

that the dynamic range of the acoiato-optic device, for diffraction 

efficiency values between 1% and 10% was limited by in-plane light 

scattering. Hence the dynamic range of the acousto-optic device 

studied can be increased by the use of optical waveguides having lower 

in-plane light scattering. Therefore there is a clear need for a 

considerable reduction in waveguide in-plane light scattering if 

useful dynamic ranges are to be achieved.

8.6 The Thermo-Optic Effect due to higher R.F. Power at the IDT.

During the course of work on acousto-optic interaction at higher 

levels of r.f. power at the IDT, it was observed that the waveguide 

index changes. This change in the index of the waveguide with r.f. 

power to IDT has been investigated in Chapter 7- As described in 

Chapter 7, it was observed that r.f. power (P) to the IDT leadsto an 

increase in the waveguide surface temperature T.and follows the 

relationship

T oc (8.1)

From the study carried out in Chapter 7, it was observed that 

r.f. power (P) to the IDT also leadsto an increase in the waveguide

index An^, and this increase follows the relationship

An^ P ‘® (8.2)

Equations (8.1) and (8.2) are clearly very similar and therefore 

it can be assumed that the index change is directly due to the temperature 

rise. Temperature of the waveguide surface can rise because of the
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power at the IDT dissipated as heat. This increase in waveguide 

temperature can lead to increase in the waveguide index through a 

thermo-optic effect. This has "been confirmed because the measured 

increase in the temperature of the waveguide (with r.f. power to the 

IDT) was very similar to that required to achieve an increase in the 

index due to the thermo-optic effect.

The dependence of the light intensity of the depleted main beam 

[] as shown in Figure (7.2) of Chapter 7 on the optical power level 

(in the presence of fixed level of r.f. power) cannot be explained 

in terms of the thermo-optic effect produced by optical absorption 

because the optical power levels used and the absorption are too small. 

Furthermore the photorefractive effect is expected to decrease the 

refractive index in LiKbO^. It appears therefore that the results 

obtained indicate an interaction between the optically induced and 

acoustically induced refractive index changes but the mechanism is 

not yet clear .

8.7 Future Work

The work described in this thesis has covered the main aspects 

of the lOSA which will affect its dynam.ic range such as in-plane 

light scattering in the waveguides and the third order intermodulation 

effects during acousto-optic interaction. However there are still 

many areas related to in-plane light scattering and the third-order 

intermodulation effects, which need to be looked into,

8.7.1 In-Plane Light Scattering

The study of in-plane light scattering for this thesis has been
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carried out using rutile prisms as input and output couplers. The 

prism-waveguide interface itself is a source of light scattering , 

therefore a study of in-plane light scattering in the waveguides need 

to he carried out using end-fire coupling techniques. For this 

cylindrical focussing system to produce elliptical spot at input or 

lens system will he required. It might he more useful to use a 

detector array at the output end of the waveguide.

It would be useful to look into in-plane light scattering using 

end fire oubput coupling system and using a zero-order beam stop.

This zero order beam stop can be made by implanting ions of hydrogen 

as this will form light absorbing layer • It has been estimated

by Burns [62 and Hall et al that half of the optical power of ’butt 

coupled' injection laser will be coupled into the substrate modes. 

Therefore light in the substrate modes can undergo total internal 

reflection in high index LiHbO^ substrate and this light will appear 

as an optical noise to the detectors at the output end of the waveguide 

To reduce the possibility of the substrate mode light reaching the 

detector it might be useful to use absorbing layer on the back side of 

the substrate. Preliminary work to suppress these substrate modes by 

the use of Ge and Si-0 layers have been carried out by Singer et al [81 

As described by Brandt et al [IJ a stud;y of the variation in 

in-plane light scattering with the light wavelength will not enable 

one to separate the effect of the bulk scattering from the surface 

scattering. However by varying the polarisation of the light used, 

it may be possible to find the nature of the defects observed in the 

waveguides by etching experiments, A systematic study of the evolution 

of these defects in terms of diffusion time (for this thesis defects



26̂

after a 25 hour diffusion period were looked into) is needed.

From the results of the post diffusion polishing it has been 

concluded that in-plane light scattering can be reduced by post diffusion 

polishing of waveguide. It will be more useful to study the fabrication 

of waveguides at temperatures lower than 9^0^C (this will lower the 

defect size and their density) followed by post diffusion polishing 

of the waveguides.

8.7.2 Third-Order Intermodulation and the Dynamic Range of the IQSA

Ttie results obtained for the third-order intermodulation • effects 

were affected at higher r.f. power levels by the thermo-optic effect.

It will be therefore more appropriate to study these effects on wave­

guides with lower levels of in-plane light scattering. As one of 

the sources of in-plane light scattering is the waveguide-prism interface, 

it would be useful to study third-order intermodulation effects with 

end-fire coupling into and out of guides. However this will require 

lenses,

For the work done in this thesis, the minimum input signal frequency 

separation used was about 30 MHz. However if the separation were 

further decreased there would be a decreased mismatch for the diffracted 

beams in the first-order and hence it ought to be easier to observe 

third order intermodulation effects. It would also be interesting to 

see what effect the IDT aperture has on the diffraction efficiency of 

the third-order intermodulation signal. This is because, as described 

by Equation (6.17) of Chapter 6, the total phase mismatch can be 

increased by increasing Q (i.e. by increasing L, the IDT aperture) and
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this should suppress the third-order intermodulation signal to an 

extent depending on the phase mismatch.

8.7.3 The Effect of higher levels of Optical Power on the Waveguide 

Index.

As described in Chapter 7, optical power density in the waveguide 

affects the index of the waveguide in a similar way to that due to the 

thermo-optic effect, induced by r.f. power input to the interdigital 

transducer. Tliis dependence of the waveguide index on the optical 

power (in the presence of r.f. power at the transducer) certainly merits 

further investigation. Tlie maximum optical power density used for the 

work described in this thesis was of the order of 1 x 102 W/cm2 and this 

affected the waveguide index. However in the case of a semiconductor 

injection laser 'butt-coupled' to a tiuanium diffused LilibO^ waveguide, 

higher levels of optical power densities would occur. Therefore it 

would also be appropriate to look into the coupling of an injection laser 

and the possible resultant waveguide index changes. In butt- 

coupled systems a change in the index will make the main beam drift. 

Therefore measurements of angular drift correlated with changes in 

the waveguide index would be desirable. Use of an array of detectors 

would be helpful in making such measurements.

According to Hammer et al [8j optical damage in titanium diffused 

LiHbO^ waveguides occurs at a CW power density of k x 10^ W/cm^ in the

0.83 ym wavelength region. This level of optical power density in the 

waveguide was achieved by these authors by butt-coupling of an injection 

laser to the waveguide. As the lOSA will require butt-coupling of 

injection laser, therefore it would be of interest to see whether the
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threshold optical power density for the onset of optical damage (at 

X = .83 ym) is reduced in the presence of r.f. power i.e. acoustic 

power in the waveguide.

It would also he interesting to look into the effect of IDT 

aperture on the change in the index induced by the thermo-optic 

effect. Also improvements in the mounting of the acousto-optic device 

directly onto a metallic heat sink need to be looked into.

Clearly there are many important areas which need further 

investigation and such investigations will lead to improvements 

of the acousto-optic device performance.
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