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Abstract

The complex system that comprises the intracellular trafficking pathway of the 

insulin-responsive glucose transporter isoform, GLUT4, remains to be fully 

characterised. Many questions remain as to how the trafficking and targeting 

of this recycling protein occurs in the basal state and how this process is 

affected by treatment with the peptide hormone insulin. In this thesis I have 

attempted to address some of these issues.

Much of the trafficking of GLUT4 is thought to be governed by targeting 

motifs that are present in the cytoplasmic amino- and carboxy-termini of the 

protein. These sequences have previously been shown to be involved in the 

internalisation of the protein from the cell surface in both the basal and post­

insulin-stimulated states. In this thesis I have undertaken to determine 

whether these signal motifs can also function in the trafficking of GLUT4 to 

specific intracellular locations. My results suggest that indeed these motifs 

may function at more than one intracellular loci and that they may have more 

than one role in the complex pattern of GLUT4 trafficking. These results have 

led to the proposal of an alternative intracellular trafficking pathway for 

GLUT4 within 3T3-L1 adipocytes.

I have also examined the role of the major phosphorylation site on the 

sequence of GLUT4, a serine residue at position 488, in the regulation of 

GLUT4 trafficking. Results suggest that the phosphorylation state of is 

likely to play a role in the intracellular sorting of GLUT4, but is not involved 

in the insuhn-stimulated recruitment of GLUT4 to the plasma membrane.
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Further studies examined the role of residues distal to the carboxy-terminal di­

leucine motif in the cytoplasmic tail of GLUT4 in the targeting of this isoform 

in 3T3-L1 adipocytes. Such residues have previously been thought to be 

involved in the targeting of GL1JT4 to specific intracellular compartments. 

Results suggest that the cytoplasmic carboxy-terminus of GLUT4 contains an 

additional targeting signal distal to the L489p,490 motif that regulates sorting of 

GLIJT4 from endosomes into a post-endocytic storage compartment.

To complement the above targeting studies, I undertook the construction and 

characterisation of a series of GLUT2/GLUT4 recombinant chimeric glucose 

transporters in a further attempt to define the roles of the cytoplasmic signal 

sequences on the trafficking of GLUT4. Results here were in concert with 

much of the published literature but also concurred strongly with the 

proposed alternative trafficking pathway of GLUT4.

My final study was undertaken during my period working at SmithKline 

Beecham as part of my CASE studentship. Analysis was performed into the 

expression levels of proteins known to be involved in the trafficking of GLUT4 

in animal models of diabetes mellitus. This study identified selective changes 

in hindlimb skeletal muscle tissues from the Zucker diabetic jajfa. model of 

non-insulin-dependent diabetes mellitus and also demonstrated further 

alterations in levels of expression after treatment with a thiazolidinedione 

compound. It was concluded that these selective changes were a result of the 

state of hyperinsuHnaemia that is prevalent in such animals.
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Chapter 1 

Introduction



1.1 Introduction

Glucose is one of the most important molecules known to be involved in the 

cellu lar m etabolism  and hom eostasis of a vast array of organism s  

encompassing all forms of life from microbes to mammals. In mammalian 

cells the metabolism of glucose provides ATP as an energy source under both 

aerobic and anaerobic conditions, and is especially crucial in tissues such as the 

brain, which rely almost solely on glucose as an energy source. As a result of 

the importance of glucose metabolism, it is not surprising that virtually all 

cells have naturally evolved a variety of mechanisms that allow  selective 

catalysis of the m ovem ent of glucose across their plasm a membranes 

[reviewed in Carruthers (1991)].

The transport of glucose across plasma membranes can occur by three discrete 

methods [reviewed in Carruthers (1990)]. The first of these functions through 

a simple, bi-directional diffusion system, which, because of the polar nature of 

the glucose m olecule, is predicted to be too slow  to satisfy the energy 

requirements of cells. The second method of transport is mediated by rapid, 

bi-directional, protein-mediated facilitated diffusion, which is not coupled to 

an energy requiring component such as ATP hydrolysis or an H+ gradient. 

This form of transport is driven only by a concentration gradient, and 

although  b i-d irectional, transport a lw ays occurs d ow n  the sugar's 

concentration gradient i.e. from high to low  concentration. The third 

transport system operates through rapid, active, protein-mediated uptake and 

is found in cells that require to take up glucose against its concentration 

gradient, for example the transepithelial cells of the kidney and the small 

intestine. In these locations transport is m ediated by a Na"^/glucose



cotransporter that utilises a Na+ gradient to couple the transport of glucose 

against its concentration gradient.

The transport of glucose in mammalian cells is achieved predominantly by 

the process of facilitated diffusion and this phenomenon is mediated by a 

family of proteins known as the facilitative glucose transporters, or GLUTs 

[Baldwin et ah (1982)].

The functional purification of the first member of this family was achieved 

independently in the early 1980s by two groups. Leinhard and colleagues used 

the specific binding of the transport inhibitor cytochalasin B as a basis for the 

purification procedure [Baldwin et al. (1979), Baldwin et al. (1981)], whilst the 

second group based their purification on the ability of reconstituted 

fractionated membrane proteins to transport glucose [Kasahara & Hinkle 

(1977)]. The result of these studies was the identification of a heterologously 

glycosylated integral membrane protein in human erythrocyte membranes 

which migrates on SDS-PAGE gels as a broad band with an approximate 

molecular mass of 55 kDa, which was reduced to a mass of 46 kDa after 

treatment w ith  Endoglycosidase H. This protein was designated glucose 

transporter 1 (GLUTl) [Fukumoto et al. (1989)] and the subsequent members of 

the glucose transporter family have been named GLUTs 2-6, in chronological 

order of the isolation of their cDNAs.



1.2 Tissue-specific Distribution of the Facilitative Glucose 

Transporter Family

1.2.1 Overview

The discovery of a family of glucose transporters which were responsible for 

the transport of glucose in mammals was not surprising given the unique 

requirements of m ammalian tissues for glucose. This is reinforced by 

previous findings which demonstrated that different tissues display unique 

kinetics for D-glucose uptake. This family comprises six members to date 

(GLUTs 1-6, of w hich GLUT6 is a pseudo-gene sequence) which are 

structurally very similar but are distinct from the mammalian active sodium- 

linked transporters of the intestinal and absorptive epithelia (the SGLT 

family) [Hediger et al. (1987), Bell et al. (1990)].

1.2.2 GLUTl

As the only member of the family to be purified to date in a functional form 

[Kasahara & Hinkle (1977)] this isoform has been the most extensively studied. 

GLUTl was purified from erythrocytes which provide a rich source of this 

transporter, w ith  it com prising about 3-5% of the membrane protein. 

Purification of the protein led to the generation of antibody probes, which in  

concert w ith partial sequence information from the protein, resulted in the 

isolation of a cDNA clone for the transporter in 1985 [Meuckler et al. (1985)]. 

Subsequently the gene encoding GLUTl was also isolated [Fukumoto et al. 

(1988)].



Further studies utilising both cDNA and antibody probes have examined the 

expression levels of this transporter in the various tissue types. GLUTl was 

found to be most abundantly expressed in erythrocytes [Allard & Leinhard 

(1985)] and is also enriched in the cells of the blood-tissue barriers such as the 

blood-brain/nerve barrier, the retina, the placenta etc. [Froehner et a l  (1988)]. 

This isoform is also expressed in tissues which exhibit insulin-stim ulated  

glucose transport, such as muscle and adipose tissue, but is only expressed at 

very low  levels in the liver, the other major tissue involved in whole body 

glucose homeostasis [Flier et al. (1987)]. It has also been demonstrated that 

cultured cell lines possess elevated levels of GLUTl protein and RNA levels 

[reviewed in Gould & Holman (1993)].

GLUTl is located primarily on the plasma membrane and since it is expressed 

at some level in nearly all tissues it is regarded as the "house-keeping" glucose 

transporter, responsible for glucose uptake in the basal state [Flier et al. (1987)]. 

The Km for zero-trans entry of D-glucose into cells at 37°C by GLUTl is 7mM 

[Lowe & Walmsley (1986)]. This allows GLUTl to efficiently transport glucose 

within its physiological concentration range.

The cloning and sequencing of GLUTl cDNA clones from a range of species 

resulted in the rapid identification of hom ologous transporters from other 

mammalian tissues through the low  stringency screening of appropriate 

cDNA libraries. A ll of the isoforms currently identified are between 40 and 

80% identical in amino acid sequence, and hydropathy plots of their sequences 

are essentially superimposable. They must therefore all be very similar in 

secondary and tertiary structure to GLUTl.



1.2.3 GLUT2

The observation that GLUTl was expressed at low  levels in liver tissue, 

coupled to the fact that the kinetics of glucose transport in hepatocytes were 

radically different from those in erythrocytes [Elliot & Craik (1982)], led 

researchers to propose the existence of a related transporter in this tissue. The 

above low stringency screening approach led directly to the isolation of GLUT2 

clones from human [Fukumoto et al. (1988)], rat [Thorens et al. (1988)], and 

mouse [Suzue et al. (1989)] cDNA libraries. Human GLUT2 has 55% sequence 

identity w ith GLUTl, with both proteins having essentially superimposable 

hydropathy plots. The major areas of diversity between GLUTl and GLUT2 

occur in the large extracellular loop and at the extreme C-terminus (Figure 

1.1).

The tissue distribution of GLUT2 was determined by immuno-cytochemical 

screening, which displayed high GLUT2 protein levels in the p-cells of the 

Islets of Langerhans in the pancreas [Thorens et al. (1988), Orci et al. (1989)], in 

the transepithelial cells of the intestine and the kidney [Thorens et al. (1990)], 

as well as the hepatocytes of the liver itself. GLUT2 protein has also been 

discovered expressed at very low levels in many regions [Brant et al. (1993)].

Experimental analysis of this transporter revealed that it is a high-capacity, 

high Km transporter, properties essential to allow the liver to function as one 

of the key elements in glucose homeostasis. In this tissue, GLUT2 is required 

for the influx of postprandial glucose, and under fasting conditions, for the 

release of glucose produced from glycogenolysis and gluconeogenesis into the 

bloodstream. The high concentration of GLUT2 in the plasma membrane of 

hepatocytes, in concert w ith the transporter's high Km values for D-glucose



entry and exit [reviewed in Elliot & Craik (1982)], allows for the rapid, non­

saturable translocation of D-glucose in either direction in times of stress.

1.2.4 GLUTS

The next isoform  to be identified, GLUTS, was found to be the primary 

isoform present in brain and neural tissue. GLUTS clones were isolated and 

cloned from human foetal skeletal muscle [Kayano et al. (1988)] and mouse 

[Nagamatsu et al. (1992)] cDNA libraries. These share 83% identity and the 

human isoform of GLUTS has 64% identity with human GLUTl. GLUTS is 

expressed at high levels in human foetal tissue, but Northern blot analysis of 

adult skeletal muscle revealed no trace of this isoform. In contrast, high 

expression of GLUTS mRNA has been observed in a range of other tissues 

such as the placenta, liver, heart and kidney. However, these results are in 

discordance with the lower levels of GLUTS protein expression displayed by 

such tissues, indicating that post-transcriptional regulation of this species of 

transporter may occur in non-neural tissues [Gould & Holman (1993)].

Thus it appears that high GLUTS protein expression levels are confined 

generally to tissues which exhibit a high glucose demand, such as the brain 

and CNS, and therefore this isoform may be specialised to act in tandem with 

GLUTl to meet the high energy demands of these tissues. This isoform  

displays the low est Km for hexoses of the facilitative glucose transporters 

characterised to date [Colville et al. (1993)], a kinetic ability that allows the 

brain to maintain function under conditions of either high glucose demand or 

hypoglycaemia by ensuring the efficient uptake of glucose even at low  

extracellular concentrations of blood glucose.



1.2.5 GLUT4

In 1989 five separate groups reported success in cloning and sequencing a 

fourth glucose transporter isoform. It was cloned from human [Fukumoto et 

al. (1989), James et al. (1989a)], rat [Birnbaum (1989), Charron et al. (1989)] and 

m ouse [Kaestner et al. (1989)] cDNA libraries. This isoform  occurs 

predominantly in muscle and adipose tissue and subsequent studies identified 

this isoform as being responsible for insulin-stim ulated glucose transport. 

The properties of GLUT4 are examined in greater detail in section 1.4 of this 

thesis.

1.2.6 GLUTS

A further putative glucose transporter isoform was isolated from human 

small intestine by library screening with the GLUTl cDNA probe [Kayano et al. 

(1988)]. Studies utilising specific anti-peptide antibodies demonstrated that 

this protein appears to be localised exclusively to the apical brush border on 

the luminal side of absorptive epithelial cells [Davidson et al. (1992)]. It has

been shown that GLUTS has a high-affinity for fructose and a low-affinity for

glucose. Therefore, it has been rationalised that the primary role of GLUTS 

involves the absorption of dietary fructose from the lum en [Burant et al. 

(1992)]. This transporter is expressed in a range of tissues, including muscle, 

brain and adipose tissue, where it may function in the provision of fructose. 

However, it remains to be discovered if other fructose transporters also exist 

[Shepherd et al. (1992)].



1.2.7 GLUT6

The hom ology screening approach led to the identification of a further 

transporter-like transcript which sequence analysis show ed to have a high  

degree of homology (79.6%) with GLUT3 [Kayano et al. (1990)]. However, the 

GLUT6 cDNA sequence was also found to contain multiple stop codons and 

frame shifts, making it unlikely to encode a functional glucose transporter. It 

has been proposed that the glucose transporter-like region of GLUT6 may 

have arisen from the insertion of a reverse-transcribed copy of GLUT3 into the 

non-coding region of a ubiquitously expressed gene [Kayano et al. (1990)].

For a summary of the tissue distribution of the facilitative glucose transporters 

see Table 1.1.

1.3 Structure and Membrane Topology of the Mammalian  

Facilitative Glucose Transporter Family

After the success in purification and cloning of the GLUT family much effort 

was focused on analysis of the predicted amino acid sequences and modelling 

of the membrane topology of these transporters. This work demonstrated that 

the m ammalian glucose transporters were highly hom ologous w ith one 

another. They possess a high level of sequence identity with transporters 

found in other species such as Escherichia coli, cyanobacteria, yeast, algae and 

protozoa [reviewed in Gould & Holman (1993)]. This high degree of sequence 

similarity is probably related to a common mechanism of transport catalysis, 

the transport of a common substrate, and also is indicative of evolution from 

a single ancestral gene.



Sequence alignment analysis of the GLUTs has revealed common features 

which include 12 predicted amphipathic helices arrayed so that both the N- 

and C- termini are at the cytoplasmic surface (Figure 1.1). There are large 

loops betw een helices 1 and 2 and between helices 6 and 7. The large 

intracellular loop between helices 6 and 7 divides the structure into two 

halves, com m only known as the N-terminal dom ain and the C-terminal 

domain. The loops between the remainder of the helices at the cytoplasmic 

surface are very short and the length of these loops (approximately 8 residues) 

is a conserved feature of the entire family. These short loops limit possible 

tertiary structures and suggest very close packing of the helices at the inner 

surface of the membrane in each half of the protein. The length and sequence 

identity of the loops at the extracellular surface of these proteins are varied but 

are generally longer than those at the cytoplasmic surface. Potentially this 

may result in a less helical packing at the external surface. The two- 

dim ensional topography w ith the N- and C- termini on the cytoplasmic 

surface (Figure 1.1) was confirmed using anti-peptide antibodies which react 

only w hen the inner surface of the transporter is exposed, as in inverted 

vesicles containing human erythrocyte GLUTl [Davies et al. (1987)]. Infra-red 

spectroscopy studies have suggested a high helical content for the GLUTl 

protein [Chin et al. (1986), Alvarez et al. (1987)]. The above work supports the 

overall nature of the 12 membrane-spanning model and has been confirmed 

by further experimental analysis [reviewed in Gould & Holman (1993)].

1 0



Figure 1.1

M odel for the Orientation of Mammalian Glucose 

Transporters in  the Membrane

Tliis model is based mainly on studies performed with human GLUTl, and so 

this m odel corresponds to that isoform. However, it is predicted from  

hydropathy analysis of the primary sequence of other m am m alian  

transporters [Meuckler et al. (1985)] and numerous other studies that they will 

adopt an identical conformation. The 12 transmembrane helices are shown as 

boxes, numbered 1-12. The site marked 'CHO' between tr ans membrane 

helices 1 and 2 represents the potential site of N-linked glycosylation in the 

large exofacial loop. The amino- and carboxy-termini (NH2 and GOGH, 

respectively) are cytoplasmically disposed. Invariant residues are shown by 

single letter abbreviations. This diagram was taken from Bell et al. (1993).

1 1
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Table 1.1

Major Sites of Expression of the D ifferent Glucose 

Transporter Isoforms in Human and Rodent Tissues

Isoform Tissue

GLUTl Placenta, brain, blood-tissue barrier, 
adipose and m uscle tissue (low  
le v e ls ) ,  t is su e  cu ltu re  cells, 
transformed cells

GLUT2 Liver, pancreatic p-cell, kidney 
proximal tubules, sm all intestine 
(basolateral membranes)

GLUTS Brain and nerve cells in  rodents; 
brain, nerve, placenta (low levels), 
kidney, liver, heart in humans

GLUT4 Muscle, heart, adipose tissue, brain 
(low levels)

GLUTS S m a l l  i n t e s t i n e  ( a p i c a l  
membranes), brain, m uscle (low  
levels), adipose tissue in humans; 
small intestine (apical membranes), 
kidney in rodents
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1.4 GLUT4 - The Insulin-Responsive Glucose Transporter 

Isoform

In the context of insulin-stim ulated glucose transport, and whole-body  

glucose homeostasis, the most important member of the GLUT family is 

the insulin-responsive glucose transporter (GLUT 4). This isoform is 

expressed only in tissues which exhibit acute, insulin-stimulated glucose 

transport, i.e. skeletal muscle and adipose tissue, and is physiologically the 

most dominant transporter in these tissues [James et al. (1989a)]. GLUT 4 is 

further characterised by its unique intracellular location in the absence of 

insulin [Slot et al. (1991b), Slot et al. (1997)]. It is this propensity to remain 

localised in the cytoplasmic tubulo-vesicular system  that allow s tissues 

possessing GLUT 4 to rapidly augment their glucose transport rate in 

response to insulin and other extrinsic factors, such as exercise, by as much 

as 10-20 fold. This occurs as a result of the rapid m ovem ent of GLUT4 

from such intracellular membranes to the cell surface. The first evidence 

for this process of GLUT4 translocation was provided by Cushman and 

Wardzala in 1980 who analysed cytochalasin B binding to adipocyte 

subcellular fractions and independently by Suzuki and Kono [Cushman & 

Wardzala (1980), Suzuki & Kono (1980)]. Figure 1.2 is a diagrammatic 

representation of the process of GLUT4 translocation.

In the basal state GLUT4 is found almost exclusively w ithin the cell in 

tubulo-vesicular elements that are clustered either in the trans- Golgi 

reticulum (TGN) or in the cytoplasm, often very close to the cell surface 

[Slot et al. (1991a), Slot et al. (1991b), Slot et al. (1997)]. Cell surface levels of 

GLUT4 are increased by as much as 30-fold in response to insulin (Figure

1.3). The studies of Tanner & Leinhard (1989), Slot et al. (1991a), and

14



R obinson et al. (1992) demonstrated co-localisation of GLUT4 w ith  

endocytic markers and with clathrin-coated lattices and pits in the plasma 

membrane, indicating that GLUT4 undergoes a process of constitutive 

recycling in the presence and absence of insulin.

1.5 Regulation of GLUT4 Translocation

The phenomenon of GLUT4 translocation has been discussed by a number 

of researchers who have suggested that the sequestration of GLUT4 could 

be caused either by the very rapid removal of this protein from the plasma 

membrane or by a very slow rate of exocytosis in the basal state [Slot et al. 

(1991a), Robinson et al. (1992), Piper et al. (1992)]. If this process is 

controlled at the level of endocytosis, then unique processing may occur at 

the plasma membrane, whereas if exocytosis is the control point, the 

targeting recognition events may occur intracellularly. In this context, it is 

probable that the GLUT4 protein sequence may contain information that 

allows unique cellular processing by vesicle trafficking and sequestration 

machinery.

15



Figure 1.2

Diagrammatic Representation of GLUT4 Translocation in  

Skeletal M uscle and A dipose Tissue

This figure illustrates the translocation of the insulin-stimulated glucose 

transporter isoform, GLUT4. Insulin binding to its cell surface receptor 

triggers the movement of a pool of intracellular vesicles to the cell surface. 

These vesicles contain abundant GLUT4 molecules such that the cell surface 

levels of GLUT4 increase by up to 20-fold in adipocytes and 7-fold in muscle.

1 6
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Figure 1.3

GLUT4 Translocation in  A dipose Tissue

This representative im m unoblot illustrates the changes in subcellular 

distribution of GLUT4 associated with the process of translocation. Insulin 

treatment results in increased levels of GLUT4 within the plasma membrane 

fraction, concomitant with a decrease in the level of GLUT4 in the intracellular 

low density microsomal fraction (LDM). Each lane contains 20 pg of protein.
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1.6 Regions Dictating GLUT4 Intracellular Sequestration

It has been well documented that GLUT4 is sequestered intracellularly in a 

range of cell types; such as 3T3-L1 adipocytes, rat adipocytes, HepG2 cells 

and oocytes, suggesting that the primary sequence of the protein contains 

targeting information which dictates this unique phenomenon [Haney et 

al. (1991), Slot et al. (1991b), Thomas et al. (1993)]. Such studies are 

reinforced by the observation that, when expressed in adipocytes, GLUTl 

and GLUT2 are sequestered at the plasma membrane, providing further 

evidence that the intracellular sequestration of GLUT4 is unique amongst 

the GLUT family [Gould et al. (1989), Brant et al. (1994)].

In recent years a concerted attempt has been made by many researchers to 

define the relevant targeting dom ains that direct the intracellular 

sequestration of GLUT4. They have made use of the fact that the structural 

similarity of the different GLUT isoforms makes it possible to construct 

chimeric proteins which can be used to identify targeting domains while 

m aintaining the overall structure of the protein. These studies have 

involved the exchange of reciprocal domains between GLUT4 and GLUTl 

or GLUT2, and analysis of the subsequent subcellular distributions of these 

chimeras in a variety of cellular systems. The manipulations utilised here 

include swapping entire regions of GLUT4 and G L U T l/2; such as the C- 

terminal 30 amino acids or the entire amino-terminal cytoplasmic region, 

and also the introduction of specific amino acid mutations. These sorts of 

approaches have been successful in facilitating the identification of 

important domains, located in both the amino and carboxy termini (Figure

1.4), and also in transmembrane regions 7 and 8 [Asano et al. (1992)], that

2 0



are involved in the intracellular localisation of GLUT4. These regions will 

be discussed in detail below.
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1,6.1 The Amino Terminus as a Targeting Dom ain

The initial work carried out using chimeric GLUT4/GLUTl transporters 

produced com pelling evidence to suggest an important role for the 

extreme amino-terminal domain in the targeting of GLUT4. Piper et al. 

(1992) demonstrated that substitution of the am ino-terminal region of 

GLUT4 w ith that of GLUTl abolished the intracellular sequestration of 

GLUT4, and perhaps more importantly, that the reciprocal domain swap; 

introduction of the amino-terminus of GLUT4 into GLUTl, resulted in the 

intracellular sequestration of this chimera. These observations led to the 

conclusion that the amino-terminus of GLUT4 is both necessary and 

sufficient for the intracellular sequestration of this isoform  [Piper et al. 

(1992)].

Further dissection of the GLUT4 amino-terminus has revealed that it 

shares homology with endocytic signals in cell surface receptors such as the 

low density lipoprotein receptor (LDLR) and the transferrin receptor (TfR) 

[Davis et al. (1986), Collawn et al. (1990)] (Table 1.2). Deletion analysis 

indicates that the targeting information is located within the first 8 amino 

acids and alanine scanning mutagenesis has elucidated P ,̂ F ,̂ and 1̂  as

important amino acids within this domain. F̂  has been show n to be a 

critical com ponent of an amino-terminal targeting m otif encoded by 

residues 2-8 (PSGFQQl) as mutation of this residue to alanine resulted in a 

large accumulation of GLUT4 at the plasma membrane [Piper et al. (1993b)]. 

The m utagenesis carried out on the other amino acids of this motif has 

shown that these residues, in particular p2, S ,̂ and 1̂ , contribute to GLUT4 

targeting but to a much lesser extent than the phenylalanine at position 5.

24



The essential features of the amino-terminal internalisation motifs in 

other proteins are the presence of an aromatic amino acid, usually tyrosine, 

at position 1 and a bulky hydrophobic amino acid at position 4 (YXX0, 

where Y is an aromatic amino acid, X is any amino acid and 0  is an amino 

acid with a bulky hydrophobic group) [Trowbridge et al. (1993), Sandoval & 

Bakke (1994)]. Thus, the sequence FQQI within the GLUT4 am ino-term inal 

tail broadly fits the consensus for an internalisation sequence [Trowbridge 

et al. (1993)]. These tyrosine-based motifs are known to be responsible for 

the efficient endocytosis of cell surface receptors and have been proposed to 

promote the association of these proteins with clathrin coated pits via 

interaction with plasma membrane adaptors [Mellman et al. (1998)]. This 

correlates with the findings of Piper et al. (1993b) who demonstrated that 

the colocalisation of GLUT4 with cell surface clathrin lattices was abolished 

w hen either the first thirteen amino acids of the amino-terminus were 

deleted or when the phenylalanine at position 5 was mutated to alanine.

In an attempt to ascertain whether the targeting information within the 

GLUT 4 amino-terminal targeting domain could function independently 

of the glucose transporter structure Piper et al. (1993b) inserted this domain 

into the cytoplasm ic tail of the FIl subunit of the asialoglycoprotein  

receptor. Comparison of the subcellular distribution of the native receptor 

(which contains an efficient tyrosine-containing motif; YQDL) with the H l-  

GLUT4 mutant revealed important differences betw een the two motifs 

which w ill be discussed below. The resulting chimera was predominantly 

localised to an intracellular location similar to GLUT4 and was sequestered 

from the cell surface to a greater extent than the w ild-type HI protein. 

These results led to the conclusion that the amino-terminus of GLUT4 is 

capable of functioning as an autonomous motif m ediating intracellular

25



sequestration at least in part by facilitating the interaction of the transporter 

with endocytic machinery at the cell surface.

Further analysis of the observations of Piper et al. (1993b) indicate that the 

GLUT4 amino-terminal motif identified does not behave in an identical 

fashion to the homologous motifs in recycling receptors. Indeed, it appears 

that the GLUT4 amino-terminus contains additional sorting information 

that is not present in tyrosine-containing internalisation motifs. As 

previously stated, the chimeric asialoglycoprotein receptor containing the 

GLUT4 amino-terminus was much more effectively excluded from the cell 

surface than the native receptor. In addition, the intracellular distribution 

of the heterologous protein containing the GLUT4 amino-terminus closely 

resembled that of GLUT4 in that it was very focused around the nucleus, 

while this was not the case for wild-type HI [Piper et al. (1993b)]. The 

marked intracellular distribution of both chimeric glucose transporters and 

heterologous proteins containing the GLUT4 am ino-term inus clearly 

indicates that this targeting is not due solely to the presence of a weak 

internalisation signal. Such a weak internalisation signal w ould be 

expected in GLUT4 because phenylalanine constitutes an inferior  

internalisation signal compared with the tyrosine present in a number of 

cytosolic receptor tails. Further evidence is provided by the observation 

that mutation of F  ̂ to in the chimeric asialoglycoprotein receptor did 

not alter its GLUT4-like characteristics, suggesting that any additional 

targeting inform ation present in the GLUT4 am ino-term inus is not 

encoded merely by the presence of phenylalanine at position 5 instead of 

tyrosine [Garripa et al. (1994)].
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James and colleagues have drawn the conclusion that the GLUT4 amino- 

term inus contains a w eak internalisation signal, d ictated by the 

phenylalanine at position 5. However, the observed difference in the 

localisation of the chimeric GLUT4-asialoglycoprotein receptor compared 

to the native receptor suggests the presence of additional targeting 

information; i.e. a discrete targeting signal within the sequence of GLUT4 

which may be involved in directing the protein to a distinct compartment.

This hypothesis is supported by data published by Garripa et al. (1994). In 

an attempt to directly measure the effect of the GLUT4 amino-terminus on 

internalisation and subsequent recycling back to the plasma membrane, 

they constructed chimeric transporters in which the amino-terminal 19 

am ino acids of GLUT4 were substituted for the am ino-term inal 

cytoplasmic dom ain of the human transferrin receptor. The endocytic 

behaviour of these chimeras was characterised by stable transfection into 

Chinese Hamster Ovary (CHO) cells. The GLUT4-transferrin receptor 

chimera was recycled back to the cell surface with a rate similar to the 

transferrin receptor, indicating that the GLUT4 amino-terminal sequence 

was not promoting intracellular retention of the chimera. The observed 

internalisation rate for the chimera was half the rate of the native 

transferrin receptor. Substitution of by slow ed internalisation to a 

level characteristic of bulk membrane internalisation, whereas substitution 

of a tyrosine increased the rate of internalisation to the level of the 

transferrin receptor. However, it was noticeable that neither of these 

mutations significantly altered the rate of recycling of this chimera back to 

the plasma membrane. These results were interpreted as demonstrating 

that the major function of the GLUT4 am ino-terminal dom ain is to 

promote the effective internalisation of the protein from the cell surface.
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via a functional phenylalanine-based internalisation motif, rather than the 

retention of the transporter within intracellular structures.
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Table 1.2

Comparison of the Amino Acid Sequences of Recycling 

Membrane Proteins which Contain an Aromatic Amino  

Acid-Based Internalisation Motif

Shown are the amino acid sequences which constitute aromatic amino 

acid-based internalisation motifs in other recycling membrane proteins. 

These proteins are lgp l20: lysosom al protein; LAP: lysosom al acid 

phosphatase; M6PR: mannose 6-phosphate receptor; LDLR: low  density 

lipoprotein receptor; TfR: transferrin receptor; ASGPR: asialoglycoprotein  

receptor; and GLUT4. Note that the key aromatic residue is in bold text, 

with the sequences written from the amino- to carboxy-terminus, left to 

right. In lgp l20  and LAP these are the targeting dom ains w ithin type 1 

membrane proteins which are localised to lysosomes, in the cases of M6PR 

and LDLR these are type 1 membrane proteins which undergo efficient 

endocytosis, and the TfR and ASGPR are type 11 membrane proteins which 

are also efficiently endocytosed.

Protein Sequence

GLUT4
Igp 120
LAP
M6PR
LDLR
TfR
ASGPR

MPSGFQQIGSED 
.SHAGYQTI. . . 
.QPPGYRHVAD. 
•VSYKYSKV... 
.DNPVYQKT...
..PLSYTRFSLA 
. .TKEYQDLQH.
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1.6.2 The Carboxy Terminus as a Targeting Domain

The initial findings of James and colleagues im plicating the amino- 

terminus of GLUT4 as being an important targeting domain have recently 

been contradicted by studies published by several other laboratories 

[Marshall et al. (1993), Czech et al. (1993), Verhey et al. (1993)] These studies 

have all provided evidence that suggests an important role for the carboxy- 

terminus in the intracellular sequestration of GLUT4. Furthermore, these 

researchers have questioned the importance of the role of the amino- 

terminus in this process.

In order to determ ine the primary sequence(s) responsible for the 

characteristic distribution of GLUT4, Verhey et al. (1993) constructed a 

series of chimeric glucose transporters in which reciprocal domains were 

exchanged between GLUTl and GLUT4. In addition, a non-disruptive, 

species-specific epitope-tag was introduced into a neutral region of the 

transporter to allow  analysis of the reciprocal chimeras using a single 

antibody. The recombinant transporters were stably expressed in NIH 3T3 

and PCI2 cells by retrovirus-mediated gene transfer, and were localised by 

indirect immunofluorescence and laser-scanning confocal microscopy, as 

w ell as by staining of plasma membrane sheets prepared from these cells. 

Chimeras which contained the carboxy-terminal 30 amino acids of GLUT4 

were predominantly expressed in a perinuclear compartment similar to 

native GLUT4. The results also showed that expression of a chimera based 

upon GLUTl but containing both residues 1 to 183 and the carboxy- 

term inal am ino acids of g lU T 4  was expressed in an intracellular 

compartment and exhibited a pattern of localisation very similar to that of 

native GLUT4. Chimeras in which amino acids 1 to 183 were contributed
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by GLUT4 and the carboxy-term inal 30 amino acids from GLUTl 

consistently showed a phenotype intermediate between native GLUTl and 

native GLUT4 with localisation to both the plasma membrane and the 

perinuclear compartment. These data were interpreted to imply that the 

carboxy-term inal 30 am ino acids contain the dom inant signal for 

intracellular localisation of GLUT4, but indicate that regions in the amino- 

terminus also play a role in this regard.

A similar study was undertaken by Czech et al. (1993) who engineered 

GLUTl /  GLUT4 chimeric glucose transporter constructs that contained the 

hemagglutanin (HA) epitope YPYDVPDYA in their major exofacial loops. 

Analysis of monoclonal anti-HA antibody binding to non-permeabilised  

COS-7 cells expressing HA-tagged transporter chimeras revealed that 

expression of transporters on the cell surface was strongly influenced by 

their cytoplasmic carboxy-terminal domain. More specifically, Czech and 

colleagues found that a chimera composed of GLUTl w ith a GLUT4 

carboxy-term inal 30 residue substitution exhibited a predom inantly  

intracellular localisation.

Concurring results were produced by a study which used oocytes as an 

expression system  to elucidate the targeting of GLUTl /  GLUT4 chimeras 

[Marshall et al. (1993)]. These show ed that two domains, the C-terminus 

and a region corresponding to amino acids 24-132 of GLUT4 appear to 

confer intracellular sequestration. However, the authors postulate that any 

effect caused by the amino-terminal region may arise as a consequence of 

the incom plete maturation of the protein during transit through the 

endoplasmic reticulum in this cell type.
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Both of the above studies provide contrasting results to the data of James 

and colleagues in that they were unable to demonstrate an important role 

for the amino-terminus in GLUT4 intracellular sequestration. H owever 

they have clearly dem onstrated a role for the carboxy-term inus in  

mediating the intracellular localisation of this protein.

In 1994 Verhey & Birnbaum (1994) undertook to discover the exact nature 

of the signal sequence found in the carboxy-terminus of GLUT4. Visual 

inspection of the amino acid sequence of the protein identified a di-leucine 

pair (L^89 and L̂ Ô) that is not present in the corresponding position in 

GLUTl. This m otif was of special interest as d i-leucine pairs had 

previously been identified as key internalisation and sorting signals in  

several recycling membrane proteins such as the T cell surface antigen CD4 

and the cation-dependent and cation-independent mannose-6-phosphate 

receptors [Letourneur & Klausner (1992), Johnson & Kornfeld (1992a), 

Denzer et al. (1997)] (Table 1.3). To investigate the role of this potential di­

leucine motif in the targeting of GLUT4, L 8̂9 and L490 were mutated to 

alanine-serine in the carboxy-terminus of GLUT4, and the subcellular 

location of the chimeras containing these mutations was compared with 

wild-type proteins. The results of this study demonstrated that alteration 

of the di-leucine amino acid pair to A^%490 jg sufficient to alter the 

subcellular sorting of the transporter from its norm ally perinuclear 

localisation to the plasma membrane in fibroblasts [Verhey & Birnbaum

(1994)].
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The above results were reinforced by the data of Corvera et al. (1994), who 

observed that mutation of the unique double leucines 489 and 490 caused a 

decrease in the rate of endocytosis and an increase the steady-state cell surface 

display of chimeric GLUTl/GLUT4 glucose transporters containing the 

carboxy-terminal 30 amino acids of GLUT4. Both of the above results support 

a hypothesis that the di-leucine motif in the carboxy-terminus operates as a 

rapid endocytosis and retention signal in the GLUT4 transporter, causing its 

localisation to intracellular compartments in the absence of insulin [Verhey & 

Birnbaum (1994), Corvera et al. (1994)].
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Table 1.3

Comparison of the Amino Acid Sequences of Recycling 

M embrane Proteins which Contain a D i-leucine M otif

Show n are the amino acid sequences surrounding di-leucine-based  

internalisation signals in other recycling membrane proteins. The proteins 

are M6PR: m annose 6-phosphate receptor; LIMP: lysosom al integral 

membrane protein; IFN-G-R: interferon gamma receptor; LipSl is a type II 

membrane protein which associates w ith MHC class II m olecules. The 

sequences are written from the amino- to carboxy-terminus, left to right.

Protein Sequence

GLUT4 
M6PR 
CDS Y chain 
CDS Ô chain 
GD4 
LIMPII 
IFN-G-R 
LipSl

....... ISATFRRTPSLLEQEVKPST. .

....... GEESEERDDHL LPM.......

. . . .QDGVRQSRASKDQTLLQNEQLYQPLK 

. . . .HERGRPSGAAEVQALLKNEQLYQPLR

....... QAERMSQIKRLLSEKKTCQCPH

. . RGQGSTDEGTADERAPL LRT.......

........... SIILPKLISV.......

........... MDDQRDLIS........
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1.6.3 Analysis of Putative GLUT4 Targeting Signals in Insulin-

Responsive Cell Lines

Despite the apparent success of the above studies in elucidating the 

targeting sequences responsib le for the unique insulin-regulated  

translocation of GLUT4 a potential problem required to be addressed. This 

was that these studies had been carried out in cells that do not exhibit 

insulin-stimulated glucose transport, and are therefore unlikely to contain 

the cell-specific factors that facilitate the insulin-regulated translocation of 

GLUT4 to the plasma membrane or mediate the correct intracellular 

targeting of this isoform. In addition, it is possible that the insulin- 

responsive intracellular pool may not exist in cells other than adipocytes or 

muscle cells. In respect of these problems two recent publications have 

analysed the expression of epitope-tagged mutant and chimeric GLUT4 

species to further define aspects of the targeting and translocation of 

GLUT4.

Marsh and co-workers investigated the role of the N-terminal FQQI motif 

and the LL m otif in the carboxy-terminus using GLUT4 mutants which  

they stably expressed in 3T3-L1 adipocytes, a cell type that exhibits insulin- 

regulatable glucose transport. [Marsh et al, (1995)]. Because these cells 

already express GLUT4, an epitope-tag was introduced into the m utant 

species in order to distinguish recombinant GLUT4 from the endogenous 

protein. These workers initially demonstrated that the epitope-tagged  

GLUT4 construct behaved indistinguishably from endogenous GLUT4 and 

then proceeded to examine the effects of mutating either of the identified  

targeting motifs. Their results showed that mutation of either F̂  in the 

amino-terminal or in the carboxy-terminal resulted in impaired
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targeting of GLUT4 in 3T3-L1 adipocytes. Mutation of either of these 

motifs to alanine resulted in a pronounced accumulation of epitope-tagged 

GLUT4 at the cell surface in an insulin-independent manner. Interestingly 

these researchers observed that the disruption in targeting of the LL 

mutant in adipocytes was governed by the level at which it was expressed, 

whereas this phenomenon did not occur in the case of mutants. When 

expressed at low  to moderate levels the di-leucine mutant displayed a 

subcellular distribution sim ilar to endogenous GLUT4. In marked 

contrast, significant accumulation of the mutant protein at the plasma 

membrane was observed when expressed at higher levels. It is thought 

that this apparent dependence of targeting on expression level may account 

for the inability of previous studies to demonstrate a role for the carboxy- 

terminus of GLUT4 in the process of intracellular sequestration [Marsh et 

a l  (1995)].

A similar approach was utilised by Birnbaum and colleagues to assess the 

relative importance of the amino- and carboxy-terminal domains [Verhey 

et al. (1995)]. This involved introducing a species-specific epitope-tag into 

the intracellular loop betw een transmembrane helices 6 and 7 of the 

chimeric transporters. These chimeras were stably expressed in the 

in su lin -sen sitive  3T3-L1 adipocyte cell line and their subcellular  

locahsation in basal and insulin-stimulated states and the influence of the 

carboxy-terminal LL motif was determined. The results of this study 

demonstrated that information contained within the amino-terminal 183 

am ino acids of GLUT4 was sufficient to confer a predom inantly  

intracellular distribution when expressed in 3T3-L1 adipocytes. This result 

is in direct contrast to previous data obtained using cell expression systems 

such as CHO cells, oocytes, and fibroblasts [Robinson et a l  (1992). Marshall
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et al. (1993)]. Their data also shows that expression of chimeras containing 

the carboxy-terminal amino acids of GLUT4 either alone or in conjunction 

w ith the amino-terminal 183 amino acids of GLUT4 also displayed a 

predominantly intracellular pattern of expression. From such results these 

workers postulated that either or both of the amino-terminus an d /or the 

carboxy-terminus are capable of sequestering chimeric GLUTl/GLUT4 

transporters to an intracellular location.

In this study Birnbaum went on to address the effect of insulin on the 

steady state distribution of the mutant transporters in an attempt to 

identify the sequences responsible for the subcellular sorting of GLUT4 in 

its physiologically relevant cell type. It was observed that although a 

chimera containing the amino-terminal 183 amino acids of GLUT4 was 

intracellularly localised, no significant translocation from the intracellular 

site to the plasma membrane occurred in response to insulin. This was 

thought to im ply that the amino-terminal domain of GLUT4 possesses 

sequences responsible for internalisation, but not for targeting to an 

insulin-responsive compartment. In contrast, expression of chimeras 

containing the carboxy-terminal 30 amino acids of GLUT4, either alone or 

in tandem  w ith  the am ino-term inal 183 amino acids exhibited an 

intracellular pattern of expression and moreover translocated to the 

plasma membrane in response to insulin. This data led to the hypothesis 

that the carboxy-terminus of GLUT4 contains inform ation sufficient to 

target the transporter to an intracellular storage site from which it is 

recruited to the plasma membrane in response to insulin  [Verhey & 

Birnbaum (1994)].
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In order to further investigate the importance of the di-leucine motif 

Birnbaum and co-workers constructed chimeras w hich possessed the 

carboxy-terminal region of GLUT4 but were mutated such that the LL m otif 

was altered to alanine-serine. In adipocytes, these mutant transporters 

displayed an intracellular distribution in the basal state and exhibited 

translocation to the cell surface in response to stimulation of the cells by 

insulin. After removal of insulin the cells were re-internalised at a rate 

slow er than the comparable chimera with an intact di-leucine motif. 

These results are interpreted to imply that sequences within the carboxy- 

terminus of GLUT4 distinct from the di-leucine m otif are involved in 

targeting to an insulin-responsive compartment, but that the LL motif does 

play som e role in the re-internalisation of GLUT4 from the plasma 

membrane into the recycling endosomal system

These results are in accord with those of James and colleagues who 

dem onstrated efficient intracellular targeting of chim eric glucose  

transporters mutated at l489]_,490 when expressed at low  to medium levels 

[Marsh et al. (1995)]. This result is taken to infer that the di-leucine motif is 

not the dominant internalisation signal within GLUT4. This hypothesis is 

supported by data showing that mutation of the FQQI m otif (F  ̂ to A^) 

caused GLUT4 to constitutively accumulate at the cell surface and that 

regardless of expression level the functional di-leucine motif retained by 

these chimeras w as insufficient to restore a pattern of intracellular 

sequestration. Furthermore, James similarly reported that both of their 

chimeric transporters retained their insulin-dependent m ovem ent out of 

the intracellular LDM vesicle fraction suggesting that neither of these 

motifs directly regulate the insulin-dependent translocation of GLUT4 per  

se [Marsh et al. (1995)]. Hence, they proposed that the information that
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encodes the insulin-regulatibility of GLUT4 must be located elsewhere in 

the protein [Marsh et al. (1995), Rea & James (1997)].

All of the above data has been assessed collectively by Birnbaum who favours 

a m odel in which the cellular localisation of GLUT4 is distributed among 

three compartments in adipocytes: the plasma membrane, a non-specialised 

endosom al compartment, and insulin-responsive vesicles [Verhey et al.

(1995)1 (Figure 1.5). In the basal state, the distribution of glucose transporters 

between endosom es and the other two compartments is isoform-specific: 

GLUT4 has a greater tendency than GLUTl to remain in endosom es as 

opposed to the cell surface. Based upon all of the above data it is postulated 

that this propensity is conferred by the information in both the amino- and 

carboxy-termini of the GLUT4 protein. In addition, GLUTl is excluded from 

the intracellular insulin-responsive vesicles whereas GLUT4 is rapidly and 

efficiently sorted to this storage pool. The signal dictating targeting to the 

insulin-responsive vesicles appears to be encoded by a di-leucine independent 

signal located within the carboxy-terminal 30 amino acids.

Figure 1.6 illustrates some examples of chimeric and mutant GLUT4 species 

that have been expressed in 3T3-L1 adipocytes and employed to investigate the 

putative targeting motifs on the sequence of GLUT4.
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Figure 1.5

M odified Three-Pool M odel of GLUT4 Trafficking

This model of GLUT4 trafficking proposes two major intracellular compartments, 

the endosomal pool (Xee) and the "insuUn-responsive" compartment (Xirv)- In this 

model, GLUT4 can move from the "insulin-responsive" compartment to the cell 

surface (defined by the rate constant K2). GLUT4 is viewed as being sequestered 

from the recychng pathway via a sequestration step (Kseq) in the basal state into 

the "insulin-responsive" compartment. This model is taken from Yeh et al. (1995).
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Figure 1.6

Chimeric and Mutant GLUT4 Species

This figure illustrates some examples of chimeric and mutant GLUT4 species 

which have been employed to investigate putative GLUT4 targeting motifs when 

expressed in 3T3~L1 adipocytes. Their subcellular localisation and insulin- 

responsiveness are shown. Collated from Marsh et al. (1995) and Yeh etal. (1995).
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1.7 Constitutive Recycling of GLUT4

The exact nature of the intracellular tubulo-vesicular compartment to which  

GLUT4 is trafficked is currently undefined and is the focus of intensive 

investigation. Two m odels have been formulated to describe the trafficking 

and biogenesis of GLUT4 and its storage compartment [reviewed in James et 

al. (1994), Rea & James (1997)]. Both of these models predict different modes of 

GLUT4 trafficking, as well as distinct loci of insulin action.

The first m odel proposes that under basal conditions, GLUT4 is sequestered 

within a topologically continuous subdomain of the endosomal system. This 

m odel assumes that the trafficking of GLUT4 through the general recycling 

pathway is regulated by its interaction with other proteins that constitute 

retention factors. Insulin an d /or contraction are predicted to disrupt the 

interaction between GLUT4 and such retention factors, enabling GLUT4 to re­

enter the constitutive recycling pathway and gain access to the cell surface. No 

specialised vesicular fusion machinery is required to accompany GLUT4 in 

this particular model, since, presumably, this function w ould be fulfilled by 

the constitutive machinery utilised by the endosomal system.

The second model suggests that GLUT4 is sorted and packaged into discrete 

storage vesicles at some stage during transit through the endosomal recycling 

system. An important feature of this model is that once formed, these vesicles 

have the potential to dock and fuse directly w ith  the cells surface, 

independently of the endocytic recycling system. Hence, one predicted locus of 

insulin action in this model is the machinery that mediates the docking and 

fusion of GLUT4 containing vesicles with the plasma membrane. Recently, 

elem ents of such insulin-regulated docking machinery were found to be
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identical to those used for small synaptic vesicle (SSV) endocytosis in 

neurones. These findings have provided strong support for the vesicle model 

of GLUT4 trafficking and also raised the possibility that GLUT4 is stored in  

intracellular vesicles that resemble SSVs. The discovery of vpl65 [Ross et al. 

(1996)], an aminopeptidase that co-localises and traffics identically to GLUT4 in 

response to insulin, provides additional support for the storage vesicle model.

1.8 The Intracellular GLUT4 Compartment

The insulin-responsive glucose transporter isoform  is one of many 

integral membrane proteins which recycle between the plasma membrane 

and specific intracelluluar loci by way of the endosomal system, which is 

composed of a series of discontinuous tubular and vesicular structures. 

Immuno-electron microscopy studies have shown that GLUT4 is localised 

to several elements of the endosomal recycling pathway; including the 

fraus-Golgi network (TGN), clathrin-coated vesicles, and endosomes. 

However, the vast majority of GLUT4 (60%) is found in tubulo-vesicular 

elements clustered in the cytoplasm, often just beneath the cell surface 

[Slot et al. (1991a), Slot et al. (1991b), Slot et a l  (1997)].

Researchers have found it difficult to distinguish the GLUT4 compartment 

from the other elements of the constitutive recycling pathway, but several 

observations have suggested that it is a separate compartment. Double­

labelled immunoflourescence microscopy in 3T3-L1 adipocytes revealed 

differential targeting of GLUTl and GLUT4 [Piper et al. (1991)]. Secondly, 

ablation experim ents using transferrin conjugated to horse-radish  

peroxidase have demonstrated that endosomal recycling proteins such as
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the transferrin receptor and cellubrevin can be extensively ablated, whereas 

a large portion of GLUT4 cannot [Livingstone et al. (1996), Martin et al.

(1996)] (Figure 1.7). Thirdly, vesicle im m unoadsorption studies have 

revealed sub-populations of vesicles in adipocytes, som e of which are 

enriched for GLUT4, others are enriched for endosomal markers and some 

are enriched for both species [Zorzano et al. (1989), Robinson et al. (1992), 

Livingstone et al. (1996)]. Finally, glycerol gradient centrifugation revealed 

a population of small GLUT4-positive vesicles in adipocytes that are 

segregated from endosomes [Herman et al. (1994)].
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Figure 1.7

Time Course of Ablation of the Transferrin Receptor 

and GLUT4

Shown is a comparison of the time courses of Tf-HRP conjugate incubation on 

both the transferrin receptor (TfR) and GLUT4 ablation from low  density 

microsomal membranes (LDM) of 3T3-L1 adipocytes. The amount of protein 

lost on ablation, determined by immunoblot analysis, is expressed as a 

percentage of that measured in cells not exposed to peroxide at each time 

point. Even after complete ablation' of the recycling system containing the 

TfR, a significant pool of GLUT4 remains unablated, indicative of the presence 

of a GLUT4-containing compartment distinct from the recycling endosomal 

system. See also sections 2.5.1-2 and 3.2 for details.
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1.9 GLUT4 Vesicle Trafficking

The present school of thought proposes that the unique GLUT4 storage 

compartment is mobile. Its motility could be regulated by factors such as 

insulin, and such a mobile compartment could be made to fuse directly 

w ith the cell surface. A paradigm for this type of regulated storage 

compartment is provided by the controlled release of small synaptic 

vesicles in neurones [Rothman & Warren (1994), Sudhof (1995)]. Several 

of the molecules that specifically mediate the targeting, docking and fusion 

of SSVs w ith  the neuronal plasm a membrane have been identified. 

Furthermore, hom ologues of many of these molecules have recently been 

identified in both adipocytes and myocytes; strongly indicating that the 

trafficking of the GLUT4 storage compartment in response to insulin is 

highly analogous to SSV exocytosis.

1.9,1 The SNARE Hypothesis

In 1993 Rothman provided a coherent conceptual framework within  

w hich to explain the molecular basis of vesicular transport betw een  

membrane-bound compartments [Sollner et al. (1993)]. This arose from the 

discovery of the SNARE proteins, membrane receptors for the cytosolic 

proteins a-SNAP and NSF, which were known to play a joint and generic 

role in numerous membrane trafficking events [Sollner et al. (1993)].

This work by Rothman and colleagues resulted in the proposal that 

different sets of proteins found in different membrane compartments were 

capable of interacting in a highly specific way, much like receptors and 

ligands. They suggested  that each membrane in volved  in an NSF-
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dependent fusion process w ould possess hom ologues of the synaptic 

proteins VAMP, syntaxin and SNAP-25, which were show n to mediate 

docking and fusion together with SNAPs and NSF. The generic NSF and 

SNAP proteins are not responsible for the specificity of this system, 

therefore specific pairing must occur between SNAREs in the vesicle and 

target membrane [Sollner et al. (1993)].

The SNARE hypothesis was subsequently formulated. It proposed that for 

all membrane trafficking events, a high-affinity match between a ligand in 

a transport vesicle (v-SNARE), generally VAMP hom ologues, and a 

receptor in the target membrane (t-SNARE), generally hom ologues of 

syntaxin, w ould be required to facilitate a specific docking and fusion  

reaction (Figure 1.8A).

1.9.2 SNARE Complex-mediated Vesicle Docking and Fusion

The original SNARE hypothesis proposed that the formation of a complex 

of an N EM -sensitive fusion protein (NSF), soluble NSF attachment 

proteins (SNAPs) and membrane-bound SNAP receptor proteins ensured 

docking specificity and led to membrane fusion driven by the ATPase 

activity of NSF (Figure 1.8B). However, recent results have challenged 

some aspects of this hypothesis and led to a reassessment of the models of 

SNARE interactions and the events leading to vesicle docking and fusion. 

Recent evidence from several in vitro systems suggests that NSF acts not 

directly in the membrane fusion step but in fact acts at a step before the 

fusion event [Banerjee etal.  (1996), Ungermann et al. (1998)]. Such results 

led Wickner and co-workers to propose a different order of events in 

vacuole docking and fusion, in vacuolar trafficking. In this model, the v-
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SNARE and t-SNARE form a complex follow ed by a-SN A P and NSF 

binding to the v-SNAREt-SNARE complex on the membrane. Upon ATP 

hydrolysis by NSF, a-SNAP is released from the SNAREs, and the SNARE 

complex is disassembled. At this stage LMAl, a complex of thioredoxin 

and the protease B inhibitor IB2, is required to stabilise the SNAREs. The 

next step, which involves docking of the vacuoles and v-SNAREt-SNARE 

pairing, requires the sm all GTPase Rab7. This step is fo llow ed by 

membrane fusion [Banerjee et al. (1996), Nichols et al. (1997), Ungermann 

et al. (1998)].

The data produced by the above studies has also demonstrated that NSF 

and a-SNAP dissociate a v-SNAREt-SNARE complex on one membrane, 

leading to the activation of the t-SNARE, but that NSF and a-SNAP are 

not directly involved in fusion. The dissociation of SNARE complexes by 

NSF and a-SNAP might be required for the recycling of v-SNAREs which 

may need to be returned to their original location for a new  round of 

transport vesicle budding.

1.9.3 SNARE Complex Structure

Recent studies have provided evidence for structural changes during 

SNARE complex formation [Fasshauer et al. (1997)]. Monomeric SNAP-25 

is largely unstructured, but it converts to a highly a-helical structure upon 

formation of a complex with syntaxin. In this binary t-SNARE complex, 

syntaxin and SNAP-25 are present in a 2:1 ratio. SNAP-25 is attached to the 

membrane by a palmitate in the middle of the molecule and may form a 

hairpin structure in which both the N- and C-terminal predicted coiled 

coils interact with syntaxin molecules. Monomeric synaptobrevin is also
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largely unstructured. Upon formation of a ternary complex with syntaxin 

and SNAP-25, the a-helicity of synaptobrevin increases dramatically and 

the ternary com plex exhibits a h igh  degree of therm al stability. 

Synaptobrevin, syntaxin and SNAP-25 are present in a 1:1:1 stoichiometry, 

suggesting that synaptobrevin replaces one of the syntaxin molecules. The 

shape of the complex is consistent with a four-a-helix bundle [Hanson et 

a l  (1997)].

It has been proposed that the thermodynamically favoured conformation 

of the highly stable SNARE complex is the driving force for the membrane 

fusion event, and evidence suggests that SNAREs alone may drive 

liposom e fusion in vitro, albeit very inefficiently [Hanson et a l  (1997), 

Weber et a l  (1998)]. The stability of the SNARE com plex w ould also 

explain the need for the ATPase NSF as an energy-converting enzyme to 

dissociate the complex and to prepare the SNAREs for subsequent fusion 

events.

1.9.4 v-SNAREs involved in GLUT4 Trafficking

Recent studies have demonstrated that several SNARE and SNARE- 

binding proteins play critical roles in the stim ulated translocation of 

GLUT4 to the plasma membrane in response to insulin . The VAMP 

hom ologues, VAMP2 and cellubrevin were shown to be components of 

GLUT4 containing vesicles in adipocytes [Cain et a l  (1992), Volchuk et a l

(1995)]. A model postulating the specific roles of these proteins in GLUT4 

trafficking has been proposed on the basis of studies using the transferrin- 

conjugated horse-radish peroxidase ablation technique [Martin et a l  (1996)]. 

This model suggests that cellubrevin mediates the constitutive endosomal
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trafficking of GLUT4, while VAMP2 specifically regulates the docking of 

GLUT4 vesicles in response to insulin stimulation.

1.9.5 t-SNAREs involved in GLUT4 Trafficking

Syntaxin4 is expressed at high levels in fat and m uscle cells and is 

predominantly targeted to the plasma membrane. A functional role for 

this protein in GLUT4 trafficking has been established by studies showing 

that in troduction  of a recom binant fu sion  protein  encod ing the 

cytoplasm ic tail of syntaxin4 or antibodies directed against syntaxin4 

sp ec ifica lly  b locked  in su lin -stim u la ted  GLUT4 translocation  in  

permeabilised 3T3-L1 adipoctyes [Tellam et al. (1997), Volchuk et al. (1996)],

1.9.6 SNARE-binding Proteins involved in GLUT4 Exocytosis

In neuronal cells, several syntaxin-binding proteins have been identified 

includ ing M unc-13, Munc-18 and SNAP-25 [Sudhof et al. (1995)]. 

Homologues of the latter two proteins have been identified in adipocytes. 

It appears that Munc-18 and SNAP-25 modulate vesicle docking efficiency 

by directly regulating the availability of syntaxin [Pevsner et al. (1994)]. 

SNAP-25 is thought to be a positive modulator for the interaction between 

VAMP2 and syntaxin. Munc-18a is a peripheral membrane protein that 

binds to syntaxinlA in neurones; an interaction that has been reconstituted 

in vitro and show n to reduce the affinity of syntaxin lA  for VAMP2 

[Sudhof et al. (1995)]. Protein kinase C phosphorylates Munc-18a in vitro 

preventing its interaction with syntaxinlA  [Fujita et al. (1996)]. Thus, in 

contrast to SNAP-25, Munc-18 may be a negative regulator of vesicle 

docking.
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Researchers have been unable to detect significant levels of SNAP-25 

expression in adipocytes, but recently discovered a SNAP-25 homologue, 

known as Syndet [Wang et al. (1997)]. This protein is ubiquitously  

expressed and interacts with syntaxin4 in vitro. Peptides based on the C- 

terminus of Syndet inhibit GLUT4 translocation [Rea & James (1997)]. It is 

thought that there may be a Syndet-like isoform in muscle tissue which is 

also distinct from SNAP-25.

It has been demonstrated that there are at least three different Munc-18 

isoforms participating in the endosomal recycling system  of adipocytes 

(M uncl8 a-c) [Tellam et al. (1997)]. Of these, Munc-18c appears to be 

involved in GLUT4 exocytosis. This isoform is expressed at high levels in 

adipocytes and is primarily targeted to the cell surface, demonstrating a 

subcellular distribution indistinguishable from that of syntaxin4. Munc- 

18c reduces the interaction between syntaxin4 and VAMP2 in vitro similar 

to the effect observed for Munc-18a on the interaction between syntaxinlA  

and VAMP2 [Pevsner et al. (1994)]. These data suggest that Munc-18c may 

play a pivotal role in the insulin-regulated m ovem ent of GLUT4 and 

provides further support for the similarity between the regulation of 

GLUT4 exocytosis in fat cells and synaptic vesicles in neurones.
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Figure 1.8

SNARE H ypothesis

A. Each transport vesicle is endowed with one or more unique v-SNAREs 

(generally related to VAMP) which pair with cognate t-SNAREs (generally 

related to syntaxin and /  or SNAP-25), thereby docking the vesicle to the 

correct target membrane.

B. Fusion of vesicles is mediated by NSF and the SNAPs (no relation to 

SNAP-25). SNAP proteins bind to the SNARE (SNAP receptor) complex at the 

attachment site of the vesicle and its target. Hydrolysis of ATP by NSF 

disrupts the SNARE complex and initiates membrane fusion.
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1.10 Insulin Resistance and Type II (Non-Insulin-Dependent) 

D iabetes M ellitus

Patients suffering from Type II or N on-Insulin-D ependent Diabetes 

Mellitus (NIDDM) display at least two major pathological defects. One is a 

decreased ability of insulin to act on peripheral tissues to stimulate glucose 

m etabolism  or inhibit hepatic glucose output. This phenom enon is 

known as insulin resistance. The other is the inability of the endocrine 

pancreas to fully compensate for this insulin resistance, termed relative 

insulin deficiency. In the context of this thesis 1 w ill concentrate on the 

phenomenon of insulin resistance and its role in NIDDM.

Insulin resistance is characterised by the patient displaying hyperglycaemia 

in the face of normal or even elevated circulating concentrations of 

insulin. One of the primary effects of insulin resistance is a marked 

decrease in insulin-stim ulated glucose uptake into skeletal muscle and 

adipose tissue. Insulin resistance is a primary feature of NIDDM and is 

also associated with several other conditions that include obesity. Impaired 

Glucose Tolerance (IGT), hypertension, dyslipidaem ia, coronary artery 

disease and the polycystic ovarian syndrome [reviewed in Reaven (1988)].

L ongitudinal stu d ies indicate that insu lin  resistance precedes the 

developm ent of NIDDM [reviewed in Kahn (1994)]. In the pre-diabetic 

state this insulin resistance may occur with normal glucose tolerance and 

be asymptomatic, or it can be associated with the conditions listed above; a 

constellation sometimes referred to as Syndrome X [reviewed in Kahn 

(1995)]. NIDDM is characterised by the patient displaying hyperglycaemia 

in the face of normal or even elevated circulating concentrations of
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insulin. Increased hepatic glucose production, impaired insulin secretion 

and insulin resistance all combine to generate the hyperglycaemic state. 

This disorder is also associated with vascular complications, neuropathy 

and increased infection rates, leading to m orbidity and premature 

mortality [reviewed in Kahn (1995)].

The precise m olecular causes of insulin resistance in NIDDM  remain 

incompletely understood. It has been established that the abnormality 

impairing insulin's ability to stimulate glucose disposal into peripheral 

tissues in vivo generally lies distal to the binding of insulin to its plasma 

membrane receptor [Reaven et al. (1989)]. The series of cellular signalling 

events involved in insulin-stimulated glucose uptake have not yet been 

fully elucidated, thus the abnormality could lie anyw here from the 

generation of the signal to the process of glucose uptake itself. In both 

animal models of the disease and tissues taken from human patients there 

is a decrease in insulin receptor number (caused by a downregulation of 

receptors), a decrease in tyrosine kinase activity of the receptor, defects in a 

variety of intracellular enzym es involved in insulin  action; including  

glycogen synthase, hexokinase and S6 kinases, and defects in the insulin 

stim ulation of glucose transport [reviewed in Kahn (1994)]. For the 

purposes of this discussion 1 wish to focus on the latter defect of NIDDM.

1 .10.1  The Role of the Insulin-Responsive Glucose Transporter

Isoform, GLUT4, in Insulin Resistance of NIDDM

Insulin resistance is characterised above as a state in w hich ordinary 

circulating levels of insulin fail to result in efficient glucose disposal, and 

in  particular as the failure of insulin to stimulate an increased rate of
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glucose uptake in the major target sites of skeletal muscle and adipose 

tissue. The majority of studies on insulin resistance in NIDDM have been 

carried out in adipose tissue. This tissue accounts for only 5-20% of whole 

body glucose disposal but has been used as a classic insulin target tissue as it 

expresses GLUT4 and is readily isolated or grown in culture. Skeletal 

muscle is the main site of insulin-stimulated glucose disposal but is a 

much less convenient tissue to work with. In particular this tissue is 

difficult to isolate, grow in culture and separate in subcellular membrane 

fractions.

As stated previously (section 1.4), GLUT4 is the most important facilitative 

glucose transporter in whole body glucose homeostasis [Gould & H olm an  

(1993)]. In the state of postprandial hyperglycaemia, circulating insulin  

signals GLUT4 to translocate from its unique intracellular location to the 

plasma membrane, where it facilitates a rapid and m assive increase in 

glucose uptake. Following the cloning and purification of the transporter a 

considerable amount of effort has gone into understanding the process of 

GLUT4 translocation and its role in NIDDM.

1 .10.2  GLUT4 Defects in Insulin Resistance of NIDDM

Several attempts have been made to identify specific mutations of the 

GLUT4 gene in NIDDM patients which might account for its dysfunction. 

Various point mutations have been observed but these occur in too small a 

percentage of cases for them to be considered an important aetiological 

factor in insulin  resistance [reviewed in Gould (1997)]. Furthermore, 

specific genetic defects would be expected to underlie an irreversible form  

of insulin resistance, when in fact the phenomenon of insulin  resistance
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appears to be influenced by a number of other factors, and is not always 

irreversible, as in the case of gestational diabetes mellitus (GDM).

As a result of recent studies it has become apparent that a functional 

impairment of insulin-stimulated glucose transport in NIDDM patients is 

more fundam ental than any genetic defects, and the nature of this 

fundamental impairment is becoming clearer.

1.10.3 Effects of Insulin Resistance on GLUT4 Expression and

Activity in Adipose Tissue

It has been documented that in adipose tissue from obese and NIDDM  

patients there is a clear reduction in the expression of GLUT4 compared to 

that of lean control subjects [Garvey et al. (1988)]. Such tissues also display 

decreased rates of [l^C]-D-glucose transport greater than can be explained by 

the reduced numbers of transporters present in both NIDDM and obesity. 

This phenom enon indicates impaired functional activity of GLUT4 and 

suggests that impaired glucose transport is caused by both a numerical and 

functional defect in transporters [Garvey et al. (1988)]. This study also 

dem onstrated that NIDDM  patients d isplay more profound insulin  

resistance than their obese counterparts, and this is associated with a 

greater depletion in the number of glucose transporters as w ell as a further 

decrease in transporter functional activity.

Further studies by the same group showed that NIDDM sufferers displayed 

profoundly reduced levels of adipocyte GLUT4 mRNA compared with lean  

controls. Suppression of GLUT4 mRNA is thought to be caused by a pre- 

translational event and results in depleted numbers of GLUT4 glucose
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transporters as the cellular content of these carriers is w ell correlated with 

the level of GLUT4 mRNA. Suppression of GLUT4 mRNA is also 

observed in adipocytes from subjects with IGT and could constitute an 

early lesion in the progressive pathogenesis of NIDDM [Garvey et al. 

(1991)].

Furthermore, insulin-stimulation of GLUT4 translocation has been shown  

to be impaired in adipocytes from NIDDM patients. This failure of the 

protein to translocate effectively to the plasma membrane may be caused by 

a defect in the signal pathway following binding of insulin to its receptor 

[reviewed in Gould (1997)], or defective targeting [Garvey et al. (1998)].

1.10.4 Insulin Resistance in Skeletal Muscle

The nature of insulin resistance in skeletal muscle tissue differs from  

adipose tissue, implying that there may be tissue-specific differences in the 

pathology of insulin resistance [Pedersen et al. (1990)]. Some published 

data suggests that plasma membrane levels of GLUT4 are reduced in obese 

Zucker rats, a phenom enon caused by an impairment in the insulin- 

stimulated translocation of GLUT4 [Brozinick et al. (1994)]. However, the 

majority of studies have shown little or no change in skeletal muscle 

cellular expression of GLUT4 mRNA or protein in insu lin  resistant 

patients [Pedersen et al. (1990)]. Thus, it is presently thought that altered 

GLUT4 expression  does not contribute to skeleta l m uscle insu lin  

resistance. It is generally accepted that muscle GLUT4 levels are broadly 

similar in individuals with NIDDM compared to age- and weight-matched 

control subjects [Pedersen et al. (1991)].
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The above data suggests that the defect in insulin resistance in skeletal 

muscle may occur either on the insulin-signalling pathw ay or in the 

process of insulin-stim ulated GLUT4 translocation. Potential sites of 

insulin resistance in relation to the translocation of GLUT4 are illustrated 

in Figure 1.9.

In consequence, a greater understanding of the precise defects in insulin- 

stimulated glucose transport underlying insulin resistance remains a key 

goal for future research.
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Figure 1.9

Potential Sites of Insulin  Resistance in  A dipose Tissue

Under basal conditions, approxim ately 95% of GLUT4 is located  
intracellularly in a pool of vesicles, the nature of which is incompletely  
understood. GLUT4 undergoes a slow rate of constitutive recycling between 
the plasma membrane and this intracellular site; a process thought to occur 
via coated pits and entry into the endosomal system. On insulin stimulation, 
40-50% of the intracellular pool translocates rapidly (within minutes), giving 
rise to 20-30 fold increases in ceU surface GLUT4 levels, and so accounting for 
the large increase in glucose transport observed under such conditions. As 
circulating glucose and insulin levels fall, there is a reversal of this situation, 
with GLUT4 becoming sequestered in the intracellular pool. This m odel is 
based on studies in adipocytes.

Potential sites of insulin resistance marked are as follows: (1) Reduced binding 
of insulin to its plasma membrane receptor or impaired activation of the 
receptor-associated tyrosine kinase. (2) Impaired intracellular insulin  
signalling. Both of these defects would render cells insulin-resistant for 
glucose transport independent of any defects in GLUT4 expression or 
function. (3) Defective translocation of GLUT4 to the cell surface. In this case, 
normal levels of GLUT4 are present in the intracellular pool, but some defect 
in the mechanism responsible for translocation results in attenuated insulin- 
stimulated transport. (4) Reduction in the intracellular pool of GLUT4. 
Translocation of GLUT4 occurs normally, but insuHn-stimulated transport is 
decreased because of a profound reduction in the GLUT4 available for 
translocation. (5) Mistargeting of GLUT4 to a non-translocatable pool. 
Defective targeting of GLUT4 to a site from which it cannot be translocated 
would have the effect of diminishing insuhn-stimulated glucose transport.
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1.11 Animal M odels of Diabetes Mellitus

There exists a variety of animal species which develop spontaneous or 

induced NIDDM (Non-Insulin-Dependent-Diabetes Mellitus). These are 

valuable tools in the investigation into the aetiology and pathology of this 

disease. The m ultitude of animal species with NIDDM  can provide a 

genetic and endocrine-metabolic basis for the subclassification of the 

variants of the NIDDM syndrome.

1 .11.1 oblob  mouse

Several strains of mice are known w ith mutations, either induced or 

spontaneous, which manifest both diabetes and obesity through most of 

their lifespan. The most extensively investigated representatives of this 

group are the oh job  mice. These animals display an autosomal recessive 

mutation. Obesity is prevalent and they exhibit hyperinsulinaemia 10 to 50 

times that of their non-obese litter-mates. Severe insulin resistance is 

associated with the hyperinsulinaemia and is accompanied by increased 

g lu c o n e o g e n e s is , a lth o u g h  the an im als are on ly  m od erate ly  

hyperglycaemic [Coleman (1982)]. The activity of the enzymes of both the 

glycolytic and gluconeogenic hepatic pathways are increased [Seidman et ah 

(1967), Lombardo & Menahan (1979)].
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1 .11.2  Obese Zucker Rat

This diabetic rat model was initially employed as a m odel for non-insulin- 

dependent diabetes mellitus [Peterson et al. (1990)] and has subsequently 

been used as a model of insulin resistance associated with obesity [Kahn e t 

at. (1993)] The obese Zucker f a f f  a rat model has been extensively studied  

with respect to insulin signalling and glucose uptake into the insulin- 

sensitive tissues. Such studies demonstrated that this m odel was indeed  

in su lin  resistant as the animal d isp layed m ild  hyperglycaem ia in  

conjunction w ith elevated circulating levels of insulin and diminished  

insulin-stim ulated glucose uptake in adipocytes and all major muscle 

groups [reviewed in Shafrir (1992)] . Further investigation revealed that 

this animal was hypertensive when compared to control strains and is 

therefore also a useful model for this condition.

1.11.3 Streptozotocin-induced Diabetic Rat

A dm inistration of the glucose analogue, streptozotocin, to normal 

Sprague-Dawley rats results in the destruction of the p-cells of the pancreas. 

This m im ics the autoim m une destruction of the pancreatic p-cells 

observed in patients suffering from Type-1 or Insulin-Dependent Diabetes 

Mellitus (IDDM). These animals display severe hyperglycaemia allied to 

glycosuria, water and electrolyte loss, and ketoacidosis.
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1.12 Aim s of this study

This thesis has two primary objectives. The first of these is to characterise 

the roles played in the complex process of intracellular trafficking of the 

insulin-responsive glucose transporter by targeting sequences present at 

the amino- and carboxy- termini of this protein. These targeting sequences 

are thought to control (a) the intracellular targeting of GLUT4 to an 

intracellular insulin-responsive pool, (b) internalisation of this transporter 

from the cell surface and (c) biogenesis of the GLUT4 storage compartment. 

Previous studies have identified two discrete motifs in GLUT4, both of 

which are thought to regulate internalisation from the cell surface. This 

study attempts to determine whether these sequences also influence the 

intracellular targeting of GLUT4 within the endosomal system.

As an extension to this work I have also carried out analysis of the role of 

the carboxy-terminal phosphorylation site in GLUT4 trafficking in an 

attempt to determine its possible involvement in the sorting of the glucose 

transporter in the Golgi network.

Further investigation was also made into the role of residues distal to the 

di-leucine motif in the carboxy-terminal cytoplasmic tail of GLUT4 in the 

targeting of this isoform in adipocytes.

The above studies were carried out in conjunction w ith the laboratory of 

Prof. D. E. James at the University of Queensland and where included  

results generated by James et al. are noted. These are included for the 

purposes of comparison only.
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The other major aim of this thesis was to examine the expression levels of 

SNARE proteins involved in GLUT4 trafficking in a variety of animal 

m odels of insulin  resistance, NIDDM and IDDM. These proteins are 

proposed to play an important role in regulating the transport of GLUT4 to 

the cell surface. Therefore knowledge of their expression levels in diabetic 

states may provide important information as to the defects present in 

glucose transport in such conditions.
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Chapter 2 

Materials and M ethods
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2.1 M aterials

All reagants used in the course of this study were of good quality and were 

obtained from the following sources:

2 .1.1  General Reagants

Amersham International Pic, Aylesbury, Buckinghamshire, UK

ECL Western Blotting Detection Kit 

ECL+Plus Western Blotting Detection Kit

Bio-Rad Laboratories Ltd, Hemel Hempstead, Hertfordshire, UK

Extra-thick Filter paper

N, N, AT', N'  -tetramethylenediamine (Temed)

PVDF membrane

Boehringer M annheim GmbH, Germany

Bovine Serum Albumin, Fraction V (Low Hormone)

Complete'^'^ Protease Inhibitor Cocktail Tablets

D iversified Biotech, Boston, MA, USA

Quantigold Protein Assay Reagant

Fisons, Loughborough, Leicestershire, UK

Acrylamide

Am m onium  persulphate

Diaminoethanetetra-acetic acid, disodium salt (EDTA)

Glucose
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Glycerol

Glycine

HEPES

Hydrochloric acid 

M ethanol

N, N'  methylene-bis-acrylamide

Potassium chloride

Sodium dodecyl sulphate (SDS)

Sodium chloride

Sodium dihydrogen orthophosphate dihydrate 

Sodium diaminoethanetetra-acetic acid (EDTA) 

Sodium hydrogen carbonate 

Trichloroacetic acid

Gelman Sciences Ltd, Northampton, UK

Sterile Acrodisc® 0.2fim filters

Gibco BRL, Paisley, UK 

Agarose (electrophoresis grade)

Tris base

Kodak Ltd, Hemel Hempstead, Hertfordshire, UK 

RP X-Omat liquid fixer/replenisher 

RP X-Omat liquid developer/ replenisher 

X-Omat AR film  

X-Omat S film
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M edicell International Ltd, London, UK

Dialysis tubing (Visking size 1-8/32")

Merck Ltd (BDH). Lutterworth, Leicestershire, UK 

Calcium chloride hexahydrate 

Chloroform (analytical reagant)

Dimethyl sulphoxide 

Magnesium chloride hexahydrate 

Magnesium sulphide hexahydrate

M illipore Corporation, Bedford, MA 01730, USA  

Immobilon^’̂ -P Transfer Membranes (PVDF) 0.2pm

N ew  England Biolabs, Hitchin, Hertfordshire, UK

Broad range pre-stained protein standards (6-175kDa) 

Lambda ladder (BsfE 11 digested)

Ribonuclease A  

Veni®  D N A  polymerase

Pierce, P.O. Box 117, Rockford, Illinois, USA

Albumin Standard

Coomassie Plus Protein Assay Reagant

Premier Brands UK, Knighton Adbaston, Staffordshire, UK 

Marvel powdered milk
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Promega, Southampton, UK

All restriction enzymes and corresponding lOX buffers

Calf intestinal phosphatase and lOX buffer

dNTPs

Nuclease-free H2O 

QIAGEN,UK

Plasmid Mini Preparation Kit 

Plasmid Turbo Mini Preparation Kit 

Plasmid Maxi Preparation Kit

Schleicher & Scheull, Dassel, Germany 

Elutip-D D NA purification columns 

Nitrocellulose membrane (0.45pm)

Sigma Chemical Company Ltd, Poole, Dorset, UK

Aprotinin  

BSA (A-7030)

Bromophenol blue 

Diisopropyl fluorophosphate 

DL-dithiothreitol 

E64

Insulin (porcine mono component)

Pepstatin A 

Sodium deoxycholate 

Staphylococcus aureus cells 

Trichloroacetic acid 

Triton X-100
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Whatman International Ltd, Maidstone, UK

Whatman 3mm filter paper

2 .1.2  Antibodies

Amersham International Pic, Aylesbury, Buckinghamshire, UK

Horse-radish peroxidase (HRP)-conjugated donkey anti-rabbit IgG antibody

2.1.3 Cells

American Type Culture Collection, Rockville, USA

3T3-L1 fibroblasts

Prof D. E. James, University of Queensland, Australia 

Stably transfected mutant 3T3-L1 fibroblast cell lines

2.1.4 Cell Culture Media and Reagants

Gibco BRL, Paisley, UK

Dulbecco's m odified Eagle's m edium  (without sodium  pyruvate, with  

4500mg/L glucose) (DMEM)

Foetal calf serum (FCS)

lOOOOU/ml penicillin, lOOOOU/ml streptomycin 

Trypsin

Sigma Chemical Company Ltd, Poole, Dorset, UK

N ew  born calf serum (NCS)
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2 .1.5 Cell Culture Plastics

AS Nunc, DK Roskilde, Denmark

50ml centrifuge tubes 

6cm cell culture plates 

75 cm2 cell culture flasks 

6-well cell culture plates

Bibby Sterilin Ltd, Stone, Staffordshire, UK

13.5ml centrifuge tubes 

Sterile pipettes

Fred Baker Scientific, UK 

10cm cell culture plates

2.1.6 Radioactive Materials

NEN Dupont (UK) Ltd, Stevenage, Hertfordshire, UK

2-deoxy-D-[2, 6-3H] glucose 

125l-conjugated transferrin
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2.2 Buffers and M edia

All buffer recipes listed provide constituents required to produce 1 litre of 

the stated buffer.

2 .2.1  Cell Culture Media

Serum-free DMEM

lOOU/ml penicillin, lOOU/ml streptomycin in DMEM 

10% NCS/DMEM

lOOU/ml penicillin, lOOU/ml streptomycin, 10% (v /v ) NCS in DMEM 

10% FCS/DMEM

lOOU/ml penicillin, lOOU/ml streptomycin, 10% (v /v ) FCS in DMEM 

Sterile trypsin solution for cell passage

25%(w / v) trypsin in PBS (see General Buffers) was syringe filtered through 

a sterile 2pm membrane and stored in 10ml aliquots in 50ml sterile 

centrifuge tubes at -20°C.

2 .2.2  General Buffers

Citrate buffer

150mM NaCl, 20mM Tri-sodium citrate; pH 5.0

5X DN A  gel-loading buffer

0.25% bromophenol blue, 30% glycerol in water
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Glucose buffer

50mM glucose, 25mM Tris.HCl; pH 8.0, lOmM EDTA; pH 8.0 

HBS buffer

50mM HEPES; pH 7.1, 280mM NaCl, l.SmM Na2HP0 4  

HE buffer

20mM HEPES, ImM EDTA; pH 7.4 

HES buffer

20mM HEPES, ImM EDTA, 225mM sucrose; pH 7.4 

High Salt solution

IM NaCl, 20mM Tris; pH 7.4, ImM EDTA 

KRH buffer

O.IM NaCl, 5mM NaHCOg, 5mM KCl, ImM KH2PO4, O.lmM MgS0 4 .7H 2 0 , 

25mM HEPES, 50mM glucose, ImM CaCl2; pH 7.4

KRP buffer

64mM NaCl, 2.5mM KCl, 2.5mM NaH 2P0 4 .2H2 0 , 0.6mM MgS0 4 .7H2 0 , 

0.6mM CaCl2; pH7.4

Low Salt Solution

0.2M NaCl, 20mM Tris; pH 7.4, ImM EDTA

Phosphate buffered saline (PBS)

150mM NaCl, lOmM NaH 2P0 4 .2H2 0 ; pH 7.4
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3M Potassium/5M Acetate buffer

60ml 5M KOAc, 11.5ml glacial acetic acid, 28.5ml water

SDS Buffer

0.2M NaOH, 1% SDS

50X Tris-acetate (TAE) buffer

242g Tris base, 57.1ml glacial acetic acid, 100ml 0.5M EDTA; pH 8.0 

lOX Tris-borate (TBE) buffer

108g Tris base, 55.0g Boric acid, 40ml 0.5M EDTA; pH 8.0 

TE buffer

lOmM Tris.HCl; pH 8.0, ImM EDTA; pH 8.0

2.2.3 SDS-PAGE Buffers

Electrode buffer

25mM Tris base, 192mM glycine, 0.1% (w /v) SDS 

Sample buffer

93mM Tris.HCl; pH 6 .8 , 20mM dithiothreitol, ImM sodium  EDTA, 10% 

(w /v ) glycerol, 2% (w /v )  SDS, 0.002% (w /v )  brom ophenol blue. The 

dithiothreitol was added immediately before use.
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2.2.4 Protease Inhibitor Stocks

Pepstatin A

Im g/ ml in DMSO

E64

lOmM in 2mM sodium  EDTA 

DFP

200mM in isopropanol

All protease inhibitor stocks were stored at -20“C.

2.2.5 Western Blot Buffers 

Blotting buffer

25mM N aH 2F0 4 .2H2 0 ; pH 6.5 

TBST-1

2.42g Tris.HCl, 8.77g NaCl, 0.2ml Tween-20; pH 7.4 

Towbin buffer

25mM Tris base, 192mM glycine, 20% (w /v ) methanol; pH 8.3

2 .2.6  M uscle Buffer

lOmM NaHCOg, 0.25M sucrose, 5mM NaNg
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2.2.7 Bacterial Media and Agar 

Luria-Bertani M edium (LB)

lOg Tryptone (Bactotryptone), 5g Yeast extract, lOg NaCl 

LB Plates

lOg Tryptone (Bactotryptone), 5g Yeast extract, lOg NaCl, 15g Agar 

SOC Medium

20g Tryptone (Bactotryptone), 5g Yeast extract, 10ml IM NaCl, 2.5ml IM  

KCl, 1ml 2M Mg2+ stock, 1ml 2M glucose

2.2.8 Vesicle Immunoadsorption Buffer

20mM HEPES-KOH, 150mM KCl, 2mM MgCl2; pH 7.2

2.3 3T3-L1 Fibroblast Cell Culture

2.3.1 Growth of 3T3-L1 Fibroblasts

3T3-L1 fibroblasts were grown on cell culture flasks and plates containing 

10% (v /v ) NCS/DMEM (see section 2.1). The medium was replaced every 

2 days with the cells being stored in an incubator at 37°C in a humidified  

atmosphere containing 10% CO2.

80



2.3.2 Trypsinisation of 3T3-L1 Fibroblasts

When the cells were 70-80% confluent they were removed from the flasks 

using trypsin. The m edium  was aspirated from each flask and 5ml of 

0.25% (w /v ) trypsin was added. The flask was placed in the incubator for 5 

min, allowing the cells to float, before trypsinisation was terminated by 

addition of the cells to a volume of 10% NCS/DMEM. The diluted cells 

were subsequently seeded onto new cell culture dishes. On average the 

cells from one 10cm plate were seeded onto ten 10cm plates.

2.3.3 Preparation of 3T3-L1 Fibroblast Differentiation Medium

D iffe r e n tia tio n  m ed iu m  co n ta in in g  10% FCS ( v / v ) ,  0.5mM

m ethylisobutylxanthine (IBMX), 0.25mM dexam ethasone, and insulin  

(Ipg/m l) was prepared as follows:

A 500X stock solution of dexamethasone was prepared by a 1:20 dilution of 

2.5mM dexamethasone in ethanol with 10% FCS/DMEM prior to use. A 

500X sterile stock of IBMX was prepared by dissolving 55.6mg IBMX in 

1.0ml of 0.35M KOH and passing the solution through a 0.22 micron filter. 

Insulin (Im g/m l) was prepared in lOmM HCl and again filtered by passing 

through a 0 .22  micron filter.

3T3-L1 fibroblast differentiation medium was prepared by diluting both the 

dexamethasone and IBMX solutions to a IX concentration in 10% (v/v)  

FCS/DMEM and finally adding insulin to a concentration of Ipg/m l.
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2.3.4 Differentiation Protocol for 3T3-L1 Fibroblasts

Cells seeded in 10cm plates were grown and maintained in 10% (v/v)  

FCS/DMEM until 48hr post confluence (96 hr for GLUT4 mutants). At this 

time the m edium  was aspirated and replaced w ith 10ml per plate of 

differentiation medium which is described above in section 2.3.3. After a 

further 48hr this m edium  was aspirated and replaced w ith 10% (v/v)  

FCS/DMEM containing Ip g /m l insulin. The cells were incubated in this 

m edium  for a further 48hr, then the medium was aspirated and replaced 

with 10% (v/v)  FCS/DMEM. Cells were fed every 48hr thereafter in this 

medium. Cells were used between 8-14 days post differentiation, at which 

time expression of GLUT4 is maximal.

2.3.5 Storage of 3T3-L1 Fibroblasts in Liquid N 2

Confluent cells were removed from a 75cm2 flask by trypsinisation (section 

2.3.2) and resuspended in 5ml of 10% (v/v)  NCS/DMEM. The suspension 

was centrifuged at 1000 x g at room temperature for 5 m in and the 

supernatant was removed by aspiration. 10% NCS/DMEM containing 10% 

(v/v)  glycerol was equilibrated in 10% CO2 for Ihr, and the cell pellet was 

resuspended in 1ml of this medium. Aliquots of the suspension were put 

into cryotubes, packed in cotton wool and frozen overnight at 80“C. The 

tubes were then transferred to liquid N 2 for long term storage.
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2.3.6 Resurrection of Frozen Cells from Liquid N 2

The cryotube containing the stored cells was removed from liquid nitrogen 

and placed in the 37°C water bath. The tube was then transferred to the 

cell culture sterile flow hood where the cells were triturated gently with a 

sterile Pasteur pipette to disperse any large aggregates of cells. The 3T3-L1 

fibroblasts were seeded onto 10cm cell culture plates containing 10% (v /v )  

NCS/DMEM medium. The cells were then maintained in an incubator at 

37°C in an atmosphere containing 10%CO2-

2.3.7 Transfection of 3T3-L1 Fibroblasts Using the Calcium 

Phosphate Method

2.3.7a Preparation of Cells for Transfection

3T3-L1 fibroblasts were seeded at a density such that on the day of 

transfection they were no more than 50% confluent. Generally, this 

required the cells to be seeded a day prior to transfection at a density of 1-2 x 

10^/ 10cm plate. The cells were cultured overn ight in  10% (v /v )  

NCS/DM EM  m edium  at 37°C in an atmosphere containing 10% CO2. 3- 

4hr prior to transfection, fresh media was added to the plates.

2.3.7b Transfection and Selection Protocol

10-20pg of D N A  was added to a sterile 13.5ml Falcon tube. To this 36pl of 

CaCl2 was added and the final volume was made up to 300pl w ith sterile 

H 2O. This solution was added dropwise using a Pasteur pipette to another 

13.5ml Falcon tube containing 300pi 2X Hepes Buffered Saline (HBS) whilst
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bubbling air through the solution with a second Pasteur pipette. This 

process was performed over a period of 1-2 min. After incubation at room  

temperature for 30 min, a fine precipitate forms w hich is then added  

dropwise to the prepared cells in 10cm plates. The cells were maintained at 

37®C in a 10% CO2 incubator for 48hr. At this point, the selection reagant, 

G418 at 500pg/ ml was added to the m edium  w hich w as subsequently 

changed every 48hr to remove cell debris and to allow the resistant cells to 

grow. This process was carried out for 7-14 days post-transfection until 

colonies became visible under a microscope. Individual colonies were 

isolated and cultured for further analysis.

2.3,7c Isolation and Propagation of Individual Clones

The selection m edium  was aspirated from the cells. A  sterile cloning ring 

was then placed over an individual colony and secured to the plate using  

sterile Beckman Silicon grease. 200pl of trypsin-EDTA solution was 

pipetted into the cloning ring and after 2-3 min incubation the cells began 

to lift from the plate aided by gentle titration using a P200 Gilson pipette. 

The cells were then transferred by pipetting to a 6 cm plate containing 4ml 

10% (v /v )  NCS/DM EM  supplemented with G418 (200pg/m l). Cells were 

propagated under these conditions, with medium changes every 48hr until 

they reached 70-80% confluency. At this stage the cells could be split and 

grown for further analysis by cell preparation or frozen dow n in liquid N 2 

for long term storage (see section 2.3.5).
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2.4 Preparation of HRP-conjugated Transferrin

This procedure was performed by the carbodiimide method of Kishida et 

al. (1975). Horse-radish peroxidase (HRP) was dissolved in 1ml of O.IM 

NaCl/lOm M  sodium  phosphate; pH 7.2, at 4°C and dialysed overnight 

against 1 litre of the same buffer. Disodium succinate (200mg) and succinic 

anhydride (70mg) were added to the protein solution and this was stirred 

for 30 min at 0°C, then at room temperature for 30 min, and passed over 

an 8ml G-50 Sephadex column. The solution was concentrated to 0.5ml 

using an Amicon Centriprep concentrator. N-hydroxysuccinimide (25mg) 

a n d  N -ethyl-N -(3-dim ethylam inopropyl)carbodiim ide hydrochloride 

(40mg) were added and the solution stirred for 3 hr at 0°C. This was again 

passed over an 8ml G-50 Sephadex column in O.IM N aC l/Im M  sodium  

phosphate; pH  7.2, and the eluate collected. A ctivated HRP was 

im m ed iately  ad d ed  to 1ml of lO m g/m l transferrin  contain ing  

approximately 1 x 10  ̂ cpm of 1251-transferrin and stirred for 2 days at 2°C. 

The conjugation reaction was quenched by addition of glycine and a 

sample of the reaction was run on a 10% polyacrylamide gel to check, by 

autoradiography, for an increase in molecular mass of a proportion of the 

transferrin counts. Samples from three reactions were pooled and 

chromatographed on a 75cm x 2 cm Sephacryl S-300 colum n in order to 

separate unconjugated transferrin from the Tf-HRP conjugate. Fractions 

were counted using an LKB 1275 Minigamma gamma counter and the 

appropriate fractions were pooled, concentrated and gel filtration was 

repeated as described above. Fractions were again pooled and concentrated 

and a sample again resolved on a polyacrylamide gel to ensure removal of 

unconjugated transferrin. A sample was assayed for protein concentration 

and the rest of the conjugate was iron-loaded by the addition of 375^1
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FeS0 4  (0 .278g/20ml) and 112.5[xl KHCO3 (0.5g/20m l). The iron-loaded 

conjugate w as filtered through Whatman 3mm paper, d iv id ed  into 

aliquots and stored at 80°C until required for use.

2.5 3T3-L1 Adipocyte Cell Preparations

2.5.1 Ablation Studies

After a 2hr incubation with serum-free DMEM, adipocytes (grown on 10cm 

plates) were incubated at either 37°C or 4”C (to prevent vesicle trafficking) 

with 20jig /m l Tf-HRP for periods of Ihr or 3hr. Cells were thereafter 

chilled by washing in ice-cold isotonic citrate buffer (section 2 .2 .2 ) and kept 

on ice in order to prevent any further vesicle trafficking during the DAB 

cytochemistry reactions (see below). Cell surface attached Tf-HRP was 

removed by acid washing for 10 min in ice-cold isotonic citrate buffer with 

three changes of buffer, then the monolayer was washed once in ice-cold 

PBS (section 2.2.2).

2.5.2 DAB Cytochemistry

DAB (freshly prepared as a 2m g/m l stock and filtered through a 0.22|xm- 

pore-size filter) was added at lOO îg/ ml to all cells and H 2O2 added to a final 

concentration of 0.02%, v /v , to one of each pair of 10cm plates. The cells 

were then incubated at 4°C in the dark for 60 min and the reaction was 

stopped by w ashing in PBS containing 5m g/ ml BSA. This was then 

aspirated and sam ples were prepared for im m unoblotting. In all 

experiments, duplicate plates were used, one of which was exposed to DAB
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and H 2O2, the other only to DAB as a negative control [Livingstone et al. 

(1996), Martin et al. (1996), Martin et al. (1997)]. All steps subsequent to the 

treatment of the cells with Tf-HRP and DAB were performed at 0-4°C.

2.5.3 Subcellular Fractionation of Adipocytes

Cells grown on 10cm cell culture dishes were rinsed three times with 10ml 

of ice-cold HES buffer (section 2.2.2). The cells were then scraped into HES 

buffer (5ml per 10cm plate) containing protease inhibitors (l^ g /m i 

pepstatin A, 0.2M di-isopropyl fluorophosphate, 20pM E-64 and 50fiM 

aprotinin) and homogenised by 10 strokes of a T eflon/glass homogeniser. 

The homogenate was centrifuged at 19000 x g for 20 min at 4°C. The pellet 

from this spin was resuspended in 2ml of HES buffer, layered onto 1ml of 

1.12M sucrose in HES buffer and centrifuged at 100000 x g for 60 min at 4°C 

in a swing-out rotor. Plasma membranes were collected from the interface 

by careful aspiration, resuspended in HES buffer and collected by 

sedimentation at 41000 x g for 20 min at 4°C. The supernatant from the 

19000 X g spin was recentrifuged at 41000 x g to y ield  a high density 

m icrosom al (HDM) pellet and the supernatant from this spin was 

centrifuged at 180000 x g for 75 min to collect a low  density microsomal 

(LDM) pellet. A ll fractions were resuspended in equal volum es of HES 

buffer (cell equivalents), snap frozen in liquid nitrogen and stored at 8 O'"C 

prior to use.
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2.5.4 Sucrose Density Gradient Centrifugation

Adipocytes grown on 10cm cell culture plates were placed in serum-free 

media for 2hr to quiesce. Each plate of cells was then washed twice with  

10ml ice-cold HES buffer (section 2.2.2). The cells were then scraped into 

HES buffer (5ml per 10cm plate) containing protease inhibitors (Ijxg/ml 

pepstatin A, 0.2M di-isopropyl fluorophosphate, 20pM E-64 and 50pM 

aprotinin) and homogenised by 10 strokes of a T eflon /glass homogeniser. 

The homogenate was centrifuged at 19000 x g for 20 m in at 4°C. The 

supernatant from this spin was then centrifuged at 180000 x g for 60 min at 

4“C to collect low  density microsomes. The LDM fraction was resuspended 

in a small volume of HES buffer and aliquots of this fraction were loaded 

onto a discontinuous step gradient comprised of ice-cold 1.5-0.5M sucrose 

solutions prepared in 20mM HEPES, ImM EDTA; pH 7.4. These gradients 

were then centrifuged at 75000 x g for 24 hours at 4°C. Samples were 

collected by tube puncture and the protein in each fraction precipitated by 

the addition of 0.15% Deoxycholate (w / v), and Trichloroacetic acid. These 

samples were resuspended in SDS/PAGE buffer, snap frozen in liquid 

nitrogen and stored at 80°C prior to immunological analysis.

2.5.5 Vesicle Immunoadsorption from 3T3-L1 adipocytes.

Recombinant GLUT4-containing vesicles were immunoadsorbed from the 

LDM fraction of 3T3-L1 adipocytes exactly as previously described, using a 

polyclonal anti-hum an GLUT3 antibody w hich has been previously 

characterised [Martin et al. (1994), Livingstone et al. (1996)]. This antibody 

recognises an epitope-tag at the extreme carboxy-terminus of each of the 

mutant species studied. Cells were washed three times with 8ml of ice-cold
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Buffer A (section 2,2.8) then scraped and homogenised in the same buffer, 

containing protease inhibitors (section 2.2.4). The LDM fraction was 

isolated as outlined in section 2.5.3.

Formaldehyde-fixed Staph, a. cells were extracted and washed exactly as 

described prior to use [Shepherd et al. (1992)]. The cells were then washed 

twice in Buffer A containing 1% bovine serum albumin, and loaded with  

either affinity purified anti-GLUT3 antibodies or irrelevant IgG as a control 

by incubation on the bench for 2hr at room temperature with occasional 

agitation/mixing. The cells were washed three times in PBS/BSA.

Prior to immunoadsorption of the recombinant GLUT4 vesicle population, 

the low  density microsomal fractions were 'pre-cleared* by incubation for 

30 min at 4°C with irrelevant IgG-coated Staph, a. cells, as this has been 

shown to reduce non-specific binding [Shepherd et al. (1992)]. The Staph, a. 

cells w ere rem oved by centrifugation and im m unoadsorption  of 

recombinant GLUT4-containing vesicles was achieved by slow  rotation of 

an aliquot of the LDMs with antibody-coated Staph, a. cells for 2hr at 4°C. 

After washing, recombinant GLUT4 containing vesicles were solubilised  

directly in SDS-PAGE sample buffer (section 2.2.3) and snap-frozen prior to 

use. The supernatants from the immunoadsorptions were centrifuged at 

180000 X g for Ihr at 4°C to pellet all membranes which were directly 

resuspended in SDS-PAGE sample buffer and snap-frozen prior to use. 

lOOfig of LDM membranes and 10//g of anti-GLUT3 antibody were 

em ployed per immunoadsorption. An identical procedure was employed  

to immunoisolate vp 165-containing vesicles, except 2fxg of affinity purified 

anti-vpl65 was used per 100 jug of LDM membrane protein.
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2.6 Preparation of Animal Tissues

2.6.1 Dissection and Subcellular Fractionation of A dipose Tissue

The epididym al fat pads were removed from male rats which had been 

sacrificed by cervical dislocation. The tissue was placed in pre-weighed  

universal containing KRH buffer, pH 7.4 (section 2.2.2), containing 1% 

(w / v) BSA and the weight of the tissue was determined. The tissue was 

then added to the relevant volume of KRH/ BSA/ collagenase such that 

4ml KRH/BSA was added per gram of adipose tissue and 2mg of 

collagenase was added to each 1ml adipose tissue/  KRH/ BSA.

The adipose tissue was then minced through a plastic tea strainer into a 

100ml siliconised flask and incubated at 37°C with gentle agitation in an 

H2O bath for Ihr. The contents of the flask were filtered twice through a 

tea strainer and left to stand for 15 min to allow the adipocytes to float to 

the surface of the cell suspension. The supernatant was removed using an 

aspirator and the cells were washed in KRH buffer; pH 7.4, containing 1 % 

(w / v) BSA. This procedure was repeated twice more to obtain a pure cell 

suspension. The cells were resuspended in an equal volum e of KRH 

buffer; pH 7.4, containing 3% (w /v ) BSA.

The cell suspension was then split into two equal volumes. One of these 

samples was stimulated with a dose of lO'^M insulin and incubated at 37°C 

in a shaking H 2O bath for 15 min. After insulin stimulation a cocktail of 

protease inhibitors was added to both ± insulin samples and these were 

homogenised by 20 up and down strokes of a hand-held homogeniser.
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The homogenate was centrifuged in a JA-21 rotor for 15 min at 16000 x g at 

4°C and the pellets were resuspended in 1ml KRH buffer; pH 7.4. This 

pellet represents a crude plasm a m em brane fraction w hich  was 

hom ogenised using a 5ml syringe and needle, snap-frozen in liquid  

nitrogen and stored at -80“C until use.

The supernatant from the first spin was further centrifuged at 41000 x g at 

4 “C for 15 min. The pellet from this spin contained the 'heavy 

m icrosom es' w hich were resuspended in 1ml KRH buffer; pH 7.4, 

homogenised, snap-frozen in liquid nitrogen and stored at -80°C until use. 

The supernatant from the previous spin was transferred to a clean tube 

and centrifuged in a TLA 100.4 rotor at 100000 x g for 75 min at 4°C. After 

this, the pellets were resuspended in 2mi KRH buffer; pH 7.4, hom ogenised  

and re-centrifuged at 100000 x g for another 75 min at 4°C. The pellet from 

this step contained the light microsomes' which were resuspended in 1ml 

KRH buffer; pH 7.4, hom ogenised, snap-frozen in liquid nitrogen and 

stored at -80°C until use.

2.6.2 Hindlim b Skeletal Muscle Dissection and Subcellular

Fractionation

The m ethod of Klip et al. (1987) was used in the preparation and 

subcellular fractionation of hindlimb skeletal muscle membranes. The 

animals were sacrificed by cervical dislocation and the hindlim b muscle 

was dissected. All subsequent procedures were carried out on ice or at 4“C. 

The skeletal muscle was minced and diluted Ig / 10ml in muscle buffer (see 

section 2.2.6) before being homogenised using an UltraTurrex for 1 minute. 

The homogenate was then centrifuged using a JA-20 rotor at 1200 x g for 10
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min at 4°C. The pellet was discarded and the supernatant was centrifuged 

at 190000 X g for 60 min. The pellet from this latest step contained the 

crude membranes' which were subsequently hand-hom ogenised for 20 

strokes in 1ml of muscle buffer.

The crude membrane fraction was then applied to a discontinuous sucrose 

gradient of 25%, 30%, and 35% (w /v ) sucrose and centrifuged at 150000 x g 

for 16hr at 4°C. The 25% (w /v ) sucrose fraction contained the purified 

plasma membranes and the 35% (w / v) fraction contained the intracellular 

membranes. These fractions were collected, diluted 5-fold in muscle 

buffer, then further centrifuged at 190000 x g for 60 m in to wash out the 

sucrose. The pellets from the plasma membrane and intracellular 

membrane fractions were then resuspended and hom ogenised in 100 pi 

muscle buffer before being snap-frozen in liquid nitrogen and stored at 

-80°C until use.

2.6.3 Insulin Stimulation of Sprague-Dawley Rats

Normal Sprague-Dawley rats of an optimum weight of approximately 180- 

200g were selected for this procedure. These animals were anaesthetised by 

injection of H ypnorm / H ypnovel (see below) directly into the abdomen. 

An adequate period of time was allowed for the anaesthetic to take full 

effect (~5 min) and the animal's state of consciousness was assessed by the 

blink reflex and motor reflex tests. If the animal w as sufficiently  

anaesthetised then the abdomen was dissected open using an incision  

approximately five centimetres in length. At this point rem oval of the 

epididymal fat pads could be carried out if desired. The abdomen was then 

dissected further to a point just distal of the diaphragm. The hepatic portal
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vein was then cannulated using a needle and syringe, and injected with a 

bolus of insulin at a maximal dose of lO'^M. An equivalent volume of

0.9% NaCl saline was administered to the control ( insulin) rats in an 

attempt to m in im ise/m im ic any stress-induced effects caused by this 

procedure. A period of 90 sec was allowed to achieve adequate insulin

stimulation, then the cannula was removed from the hepatic portal vein.

The hind legs of the animal were then removed and the desired muscle 

tissue was removed by dissection. The tissue was then freeze-clamped in 

liquid N 2 and stored at -80°C.

2.6.4 Protocol for Preparation and Use of Anaesthetic

Hypnorm /  Hypnovel

Hypnorm: Fentanyl citrate 0.315mg/m l

Flaum isone lO m g/m l

H ypnovel Midazolam HCl 5m g/m l

Preparation required dilution of each component 1:1 in an equal volume 

of H2O. It was necessary to add the Hypnorm component to the H2O first 

and then add the Hypnovel component.

1.e. 4ml of H 2O + 2ml Hypnorm then 2ml Hypnovel

The anaesthetic was administered at a dose of 0.3ml/lOOg
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2.6.5 Preparation of Insulin

The insulin used in the above procedure was of the Human Actrapid®  

type. It was supplied as a O.ZmM stock solution. To obtain a 10"^M 

solution it was necessary to perform a 1:70 dilution,

i.e. 75pl of 0.7mM stock solution + 5.18ml saline

2.7 Protein Concentration Assays

2.7.1 Quantigold Protein Concentration Determination

This method was used to determine the protein concentrations of sub­

fractionated adipose and muscle preparations from individual animals or 

small groups of animals, where concentrations were very low  and samples 

at a premium.

Using BSA as a standard, lOpl of sample was added to 800pl of Quantigold 

solution in a 1.5ml microfuge tube, vortexed and incubated at 37“C for 40- 

60 min. The samples were then transferred to a plastic cuvette and their 

absorbance was read in a spectrophotometer set at 595nm. The protein 

concentration w as determ ined after plotting the standard curve of 

concentration of BSA against absorbance. This m ethod of protein 

determination is extremely sensitive and is accurate to 5ng of protein and 

linear up to 200ng of protein.
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2.7.2 Bradford's Method of Protein Concentration Determination

This method was used to determine the protein concentrations of sub­

fractionated 3T3-L1 adipocyte cell preparations.

A lOpl aliquot of each sample was added to 2ml of Pierce-Lauryl Coomassie 

Blue solution  and vortexed. The sam ples were incubated at room  

tem perature for 5-10 m in and the absorbance w as read in a 

spectrophotom eter at 595nm. The concentration of the sample was 

determined from a standard curve (0-150pig) constructed from 2m g/m l 

BSA and treated in the same manner as protein sam ples of unknown  

concentration.

2.8 SDS/Polyacrylamide Gel Electrophoresis

2 .8.1  Hoefer Large Gel Apparatus

The H oefer gels  had a stacking ge l of 4cm  com posed  of 5% 

acrylam ide/0.136% bisacrylamide in 125mM Tris.HCl, pH 6 .8 ; 0.1% SDS, 

polymerised with 0.1% ammonium persulphate and 0.05% N, N, N', N'  

-tetramethylenediamine (TEMED).

The separating gel consisted of 10% acrylam ide/0.28% bisacrylamide in 

0.383mM Tris.HCl, pH 8 .8 ; 0.1% SDS, polymerised w ith 0.1% ammonium  

persulphate and 0.019% N, N, N \  N' -tetramethylenediamine (TEMED).
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The protein samples were solubilised in Ix sample buffer (see section 2.2.3) 

and loaded onto the wells in the stacking gel. The gel was then immersed 

in electrode buffer (see section 2.2.3) and the gel electrophoresed until the 

tracking dye had migrated to the bottom of the gel. For the Hoefer large gel 

a constant current of 150mA for 3hr ensured adequate separation of the 

pre-stained SDS-FAGE markers. A lternatively the gels could be 

electrophoresed overnight at 15-20mA.

2 .8 .2  NuPAGE™ Electrophoresis System

Protein samples were prepared by addition of 4X NuPAGE™ sample buffer 

and 10% p-mercaptoethanol.

The N ovex NuPAGE^’'̂  Electrophoresis system was used with pre-cast 4- 

12% Bis-Tris gel. The gel was placed in the gel tank (XCell IF'  ̂ Mini-Cell) 

and the outer chamber was filled  with MOPS SDS running buffer. 

Immediately prior to loading the gel the inner chamber was filled with  

MOPS SDS running buffer containing 0.25% antioxidant. The samples 

were then loaded and electrophoresed at 200V constant for approximately 

50 min.
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2.9 Western Blotting of Proteins

2.9.1 Transfer of Proteins Using a BIO-Rad Trans-Blot Tank

After separation of the proteins using the Hoefer apparatus as described 

above, the gels were removed from the plates and equilibrated in blotting 

buffer (see section 2.2.5) at room temperature for 30 minutes. Each gel was 

then placed on top of a piece of nitrocellulose paper (0.45//m pore size) 

which had been cut to the size of the gel and pre-soaked in blotting buffer. 

This was then "sandwiched" between 2 layers of 3mm filter paper which 

had also been pre-soaked with blotting buffer. The "sandwich" was then 

placed in a cassette and transfer of the proteins onto the nitrocellulose was 

performed using a BIO-Rad trans-blot tank.

Transfer was achieved at a constant current of 255mA for 3hr at room  

temperature. The nitrocellulose membranes were then removed ready for 

im m unodetection and the quality and efficiency of transfer could be 

qualitatively determined by the presence and intensity of the pre-stained 

molecular weight markers.

2 .9 .2  Transfer of Proteins Using a BIO-Rad Semi Dry Transfer 

Block

A fter separation  of the proteins usin g  the N o v ex  NuPAGE'^’̂  

Electrophoresis system as described above, the gels were carefully removed 

from their cassette using a gel knife. The stacking gel and the bottom lip of 

the gel were removed. The gel was then washed in To whins buffer (see 

section 2.2.5) at room temperature for 15 minutes. PVDF membrane was
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prepared by w ashing successively in 100% methanol, distilled H2O and 

Towbins buffer. Extra-thick filter paper was soaked in To whins buffer and 

placed horizontally on the BIO-Rad Semi-Dry Transfer Block. On top of 

the was placed the prepared PVDF membrane and on this the equilibrated 

gels were placed. To complete the transfer "sandwich" another sheet of 

extra-thick filter paper was placed on top. The lid of the Transfer Block was 

assembled and the proteins were transferred onto the PVDF membrane at 

18V for approximately 20 min.

2.9.3 Blocking of Transfer Membranes and Probing w ith Primary 

Antibodies

To block non-specific binding sites on the transfer m embranes, the 

membrane was shaken in 5% (w /v ) non-fat milk/TBST-1 (see section 2.2.5) 

at 4°C overnight on an orbital shaking platform. The membrane was then 

placed into 1% (w /v )  non-fat milk/TBST-1 containing the relevant 

primary antibody at the required dilution and shaken at 37"C for Ihr. 

Following this, the membrane was washed five times at 10 min intervals 

with TBST-1.

2.9.4 Immunodetection Using HRP-linked Goat Anti-rabbit IgG

The membrane was incubated in 1% non-fat milk/TBST-1 containing 

FIRP-linked goat anti-rabbit IgG (1:1000) for Ihr at room temperature.
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2.9.5 Detection of Immunoblotted Proteins Using the Enhanced 

Chemiluminescence (ECU Kit

After incubation with HRP-linked goat anti-rabbit IgG, the nitrocellulose 

membrane was washed as before, and then submerged in a solution  

containing equal volum es of Am ersham  "detection reagent 1" and 

"detection reagent 2" from the ECL Western Blotting Detection Kit for 1 

minute. The nitrocellulose was then removed from the solution, rinsed 

in distilled water, wrapped in cling film and placed protein side up in an X- 

ray film cassette. The blots were then exposed to Kodak X-Omat S film and 

developed in an X-Omat film processor.

2.9.6 Detection of Immunoblotted Proteins Using the Enhanced 

Chemiluminescence Plus (ECL+Plus) Kit

After incubation with HRP-linked goat anti-rabbit IgG, the membrane was 

washed as before. Excess wash buffer was drained from the membranes 

and they w ere placed protein side up on a sheet of SaranWrap™. 

Amersham detection reagants A and B were mixed at a ratio of 40:1 and 

pipetted onto the membrane, ensuring that the entire surface area of the 

membrane was covered. The membranes were incubated at room  

temperature for 5 min. The excess detection reagant was drained off the 

membrane and the blot was placed face dow n onto a fresh piece of 

SaranWrap™. The blot was then wrapped up and any air bubbles were 

smoothed out. The wrapped blots were placed protein side up in an X-ray 

film cassette. The blots were then exposed to Kodak X-Omat S film and 

developed in an X-Omat film processor.
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2.10 Recombinant Polymerase Chain Reaction

2 .10.1 Synthesis of Oligonucleotides

O ligonucleotides (37-90'mers) w ith sequence identical to the relevant 

amino- or carboxy-terminal cytoplasmic region of GLUT2 and/or GLUT4 

were synthesised (Dr. V. Math, D ivision of Biochemistry and Molecular 

Biology, University of Glasgow). All of the oligonucleotides used in this 

study w ill subsequently be referred to as either 5' or 3' external primers.

2.10.1a 3’ External Primers

Two 37'mer oligonucleotides were synthesised: (a) a sense oligonucleotide

w ith  sequence com plementary to the 3' untranslated end of GLUT2 

incorporating a Sal I restriction site, which will be referred to as G2-End, 

and (b) a sense oligonucleotide with sequence complementary to the 3' 

untranslated end of GLUT4 incorporating a N o t  I restriction site, which 

will be referred to as G4-End.

2.10.1b 5* External Primers

Two 90'mer oligonucleotides were synthesised: (a) a sense oligonucleotide

with sequence complementary to the first 30 bases of GLUT4 married to 

sequence complementary to bases 16-48 of GLUT2 incorporating a Sal I 

restriction site, w hich w ill be referred to as G 4/G 2, and (b) a sense 

oligonucleotide w ith sequence complementary to the first 30 bases of 

GLUT2 married to sequence complementary to bases 16-48 of GLUT4 

incorporating a Bam HI restriction site, which will be referred to as G2/G4.
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For full sequences of oligonucleotides see Table 6.1.

2.10.2 Precipitation of Oligonucleotides

Oligonucleotides (stored in 0.88d aqueous N H 4OH) were prepared for use in 

PCR reactions by ethanol precipitation. 360 ,̂1 of the oligonucleotide was added 

to an Eppendorf tube containing 40^1 3M sodium acetate; pH5.5, and 1.2ml ice- 

cold ethanol. The solutions were mixed thoroughly before incubation at 20°C 

for at least 1 hour. The DNA was pelleted by centrifugation at 16000 x g in a 

microfuge for 30 min. The pellet was washed in 70% ethanol, dried in air for 5 

min and resuspended in 100-250^1 sterile H2O, depending on yield.

2.10.3 Quantitation of Oligonucleotides

The OD26orim was determined for each oligonucleotide. From this value the 

concentration of the solution can be calculated, since an OD26onm of 1 is equal 

to 33.3mg/ ml. Measurement of the 00260^»^ value allow s an estimation of 

the purity of the solution from the OD260/OD28onm ratio (the closer the ratio 

is to a value of 2 , the higher the purity of the solution).
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2.10.4 Reaction Conditions for Primary Polymerase Chain Reactions

Using D N A  Polymerase

1 .2 fxg sense primer

1.2 Jig antisense primer

lOng template dsDNA (GLUT2/GLUT4)

2jil nucleotide mix (20mM dATF, 20mM dCTF, 20mM dGTP,

20mM dTTP)

4jil M gS04

lOjil Vent  DNA polymerase reaction buffer

Ijil Vent  DNA polymerase

Nuclease-free sterile water was added to give a final volume of lOOjil.

Reactions were carried out in 0.5ml microfuge tubes. The reaction 

constituents were added sequentially, with Vent  DNA polymerase added 

last. On completion of the thermal cycling programme (see below), 20jil of 

5X DNA gel-loading buffer was added to each reaction and mixed, before 

loading the entire reaction volume onto a 1.3% agarose gel. Following 

electrophoresis (section 2.12.4), cDNA bands were identified and excised 

from the gel, electroeluted (section 2.12.5), purified (section 2.12.7) and 

ethanol precipitated (section 2.12.2). . The contents of 3-6 reactions were 

combined and passed through the same Elutip-D column (section 2.12.7) 

and the final D N A  pellet was resuspended in a volum e of 50jxl of sterile 

water. 3-5ml of the D NA sample was analysed by electrophoresis on a 1.3% 

agarose gel to determine the recovery of the purified primary PCR product.
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Alternatively the primary PCR products were taken and directly subjected 

to the protocols for cloning of PCR products using the Invitrogen  

Eukaryotic TA cloning® kit (section 2.11).

2.10.5 Thermal Cycling

PCR reaction tubes were placed in a Techne PHC-3 Thermal Cycler with a 

heated lid. The following thermal cycling protocol was programmed into  

the machine:

Initial extension 95“C 10 min

Cycling

Separation

Reannealing

Extension

27 cycles total, l°Csec"i ramp rate 

95°C 1 min

X“C 1 min

72°C 1.5 min

Final extension 72°C 10 min

Soak 4°C Hold

X = 5°C below  the melting temperature of the oligonucleotide having the 

lower melting temperature.
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2.11 Cloning PCR Products Using the Invitrogen Eukaryotic TA 

Cloning® Kit

The Eukaryotic TA Cloning® Kit provides a quick, one-step system  to 

directly ligate a PCR product into a mammalian expression vector. This 

means that once cloned, analysed, and transfected, the PCR product w ill 

express directly in mammalian cell lines i.e. 3T3-L1 fibroblasts without the 

requirement for additional subcloning.

This system takes advantage of the fact that Taq D N A  polymerase has a 

non-template dependent activity which adds a single deoxyadenosine (A) 

to the 3' ends of duplex molecules. The linearised vector supplied with 

this kit has single 3' deoxythymidine (T) residues. This allows PCR inserts 

to ligate efficiently with the vector.

2 .11.1  Addition of 3* A-overhangs on to V ent  D N A  Polymerase

PCR Products

Thermostable D NA polymerases containing extensive 3* to 5’ exonuclease 

activity, such as Vent  and Pfu, do not leave 3' A-overhangs. Thus, to 

enable successful cloning of PCR products produced by these enzymes, it is 

necessary to add 3' A-overhangs by incubation with Taq D NA polymerase.

After amplification with polymerase, vials containing primary PCR 

products were placed on ice and 0.7-1 unit of Taq polymerase was added per 

tube. The tubes were then mixed well and incubated at 72°C for 10 min. 

The PCR products were then extracted immediately w ith an equal volume 

of phenol-chloroform . Precipitation of the D N A  was carried out by
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addition of O.IX volumes of 3M sodium acetate and 2X volum es of 100% 

ethanol. This was then spun in a microfuge at maximum speed for 5 min 

at room temperature to fully precipitate the DN A . The ethanol was 

discarded, and the pellet was rinsed with 80% ethanol and left to air dry. 

The pellets were resuspended in sterile H2O to the starting volume of the 

DNA amplification reaction (usually lOOjil) in preparation for ligation into 

the TA cloning vector pCR®3.1.

2 .11.2  Ligation of PCR Products into Eukaryotic Bidirectional TA

Cloning Vector pCR®3.1

The A-tailed primary PCR products were ligated into the plasmid pCR®3.1 

by the following procedure. For each ligation reaction one vial of vector 

pCR®3.1 was centrifuged briefly to collect all of the sample at the bottom of 

the tube. In order to optimise the efficiency of the ligation reaction the 

formula below was used to estimate the amount of PCR product required 

to ligate with 60ng (20 fmoles) of pCR®3.1 vector:

X ng PCR product = (Y bp PCR product) (60 ng pCR®3.1 vector)
(size in bp of pCR®3.1: 5044 bp)

Where "X" ng is the amount of PCR product of "Y" base pairs to be ligated 

for a 1:1 (vector:insert) molar ratio. The protocol for this system  

recommends that a 1:2 (vector;insert) ratio be used. For the purposes of 

this study not only a 1:2 (vector:insert) molar ratio was used. 1:3 and 1:10 

(vector:insert) molar ratios were also used in an attempt to optimise the 

ligation reaction.
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A typical ligation reaction would consist of:

Xpl Fresh PCR product 

Ipl lOX Ligation Buffer 

2pl pCR®3.1 vector (30ng/ml)

Ifil T4 DNA Ligase

Sterile H2O to IOjaI total volume

The ligation reaction was incubated at 14°C for a minimum of 4 hours, 

usually overnight,

2.11.3 Transformation of One Shot™ TOP lOF* Competent Cells

Vials containing the ligation reactions were centrifuged briefly and placed 

on ice. For each ligation/transformation one 50jxl vial of One Shot̂ "  ̂ TOP 

lOF' competent cells were thawed on ice. 2pi of p-mercaptoethanol was 

added to each vial of the competent cells and mixed by stirring gently with 

the pipette tip. Then, 2pl of each ligation reaction was added directly into 

the com petent cells and m ixed gently. The reaction vials were then 

incubated on ice for 30 min. At this point, any rem aining ligation  

mixtures were stored at -20°C. The reaction vials were then heat shocked 

for exactly 30 seconds in a 42“C water bath, taking care not to mix or shake 

the reactions at this point. The vials were removed from the 42°C water 

bath and immediately placed on ice for 2 min. Then 250pi of SOC medium  

(section 2.2.7) was added to each reaction (at room temperature). The 

reaction vials were then shaken at 37°C for 1 hour at 225rpm in a rotary 

shaking incubator. The vials containing the transformed cells were then 

placed on ice. Both 50pl and 200pl samples were taken from each
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transformation vial and spread on separate LB agar plates containing 

50pg/m l ampicillin. After all of the liquid had been absorbed, the plates 

were inverted and placed in a 37°C incubator overnight.

2.12 General Techniques Used for the M anipulation of cDNA

2 .12.1 Agarose Gel Electrophoresis of cDNA

Various agarose concentrations, gel volumes and combs were used for the 

separation of DNA fragments. The number of samples and the degree of 

separation required between DNA fragments determined the gel volume. 

The choice of comb was governed by the sample volume. Differing degrees 

of band separation were achieved by varying the agarose concentration. 

H igh m olecular w eight species are separated better at low  agarose 

concentrations whereas lower molecular weight bands are resolved better 

at higher concentrations. 1.0% and 1.3% ( w / v )  were typical agarose 

concentrations used.

Example: For a 100ml 1.0% agarose gel, Ig of agarose was dissolved in 

100ml distilled water by heating in a microwave until boiling point was 

reached. On cooling, 2ml 50x TAB buffer (section 2.2.2) was added and the 

solution was mixed before pouring onto an appropriate gel-former sealed 

with tape. A comb was inserted and the gel was left to set at room  

temperature for approximately 15 min. The tape was removed from the 

gel-former before transferring the gel and gel-former to the electrophoresis 

tank containing 1 litre of Ix TAB buffer, sufficient to completely cover the 

gel and fill the sample wells on removal of the comb. The samples to be
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loaded were prepared by addition of approximately 1 /4  volume 5x DNA  

loading buffer (section 2.2.2). This serves to ensure that the samples sink to 

the bottom of the w ells as the loading buffer is more dense than the 

electrophoresis buffer because of the presence of glycerol. Samples were 

mixed and loaded directly into the w ells by pipetting. lOfd of loading 

buffer containing 25jiig/ ml BstE Il-cut lambda DNA ladder was loaded into 

a w ell adjacent to the samples. SOjil of lOmg/ ml ethidium  bromide was 

added to the electrophoresis buffer and the electrodes were connected such 

that the negative electrode was connected to the w ell-end of the gel. 

Samples were electrophoresed at 50-100mA using an LKB 2197 power 

supply until the dye front had migrated to the appropriate distance; usually 

approximately two thirds the length of the gel. D NA was visualised under 

ultra-violet light using an ultra-violet transilluminator. Correctly sized  

DNA species were identified by their migration relative to the lambda 

ladder markers. A gel photograph was taken using a Mitsubishi video copy 

processor.

2 .12.2  Alcohol Precipitation of cDNA

0.2 volumes of ethanol, stored at 4°C, was added to the D N A  sample in a 

1.5ml Eppendorf tube. After vortexing, the solution was incubated at -20°C 

for at least 1 hour, or at -80°C for 30 min. D N A  w as pelleted by 

centrifuging at 16000 x g for 30 min. The supernatant was removed and the 

pellet washed with 300-500jtl of 70% ethanol, centrifuging at 16000 x g for 15 

min to re-pellet the DNA. The supernatant was removed and the pellet 

allowed to dry in air for 10 min before resuspending in an appropriate 

volume of sterile water.
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2.12.3 Restriction Digestion of cDNA

Restriction digestion of cDNA and plasmid DNA was performed by the 

addition of restriction enzyme(s) to the D N A  in an appropriate buffer 

containing the optim um  salt concentration and pH for the individual 

enzyme. When D N A  was to be cleaved with two enzym es, the digests 

were carried out sim ultaneously if both enzymes had the same buffer 

requirements. Alternatively, the DNA was first digested with the enzyme 

requiring the buffer of lowest ionic strength and/or temperature, and then 

the appropriate amount of sodium chloride and second enzyme was added. 

A typical reaction contained 0.5-1.0/ig of DNA in a reaction volume of 10^1 

per 1/ig of DNA. 1 volume of the appropriate lOx buffer was added to 9 

volumes of the reaction volume before addition of the restriction enzyme. 

This was mixed and incubated for 3 hours at 37°C (unless otherwise stated, 

depending on the specific enzyme). Reactions were terminated by addition 

of 1 /4  volume of 5x D NA loading buffer and the reaction volum e loaded 

onto an agarose gel for analysis by electrophoresis.

2.12.4 Separation of PCR Fragments by Agarose Gel Electrophoresis

20jil of 5x D N A  gel loading buffer was added to the PCR reaction mixture 

on completion of the cycling procedure. The entire reaction volum e was 

loaded onto a 1.3% agarose gel alongside a lambda ladder marker (section 

2.1.1). A current of 100mA was applied until the dye front had migrated a 

suitable distance to obtain sufficient resolution of PCR fragments to enable 

excision  from  the gel w ith  m inim al contam ination of non-specific 

products.
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2.12.5 Elution of DNA Fragments from Agarose Gel Slices by

Electrophoresis

DN A  fragments to be isolated were identified by size on an agarose gel 

under ultra-violet illumination. A gel slice containing the D NA band was 

excised from the gel and transferred to a piece of dialysis tubing, prepared 

as described in section 2.12.6, sealed at one end using a clip. 1ml of Ix TAB 

was added to the tubing which was then sealed at the other end. The 

tubing was transferred to an electrophoresis tank containing 1 litre of Ix 

TAB buffer. A weight (e.g. a gel comb) was applied to ensure that the gel 

slices were completely submerged in the buffer. A voltage of 150V was 

then applied for 2 hours. The direction of the current flow  was reversed 

for approximately 30 sec before transferring the DNA solution to a sterile 

Bppendorf tube. At this point, the DNA solution was either stored frozen 

at -20°C or was passed through an Blutip-d column to further purify the 

D NA (see section 2.12.7)

2.12.6 Preparation of Dialysis Tubing for Electroelution

Approximately lOg of dialysis tubing (Visking, size 2 Inf Dia 18/ 32") was cut 

into pieces of 3-4cm in length and transferred to a 500ml glass beaker. 

500ml of 2% NaHCOg lOmM BDTA was added and the tubing was 

incubated in the boiling solution for 10 min. After washing with distilled  

water, the tubing was stored in 50% ethanol, 50% water containing ImM  

BDTA at 4°C. Prior to use the tubing was boiled in distilled water for 10 

m in.
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2.12.7 Purification of DNA Using Elutip-d Affinity Columns

The D N A  to be purified was extracted from the gel into Ix TAB buffer as 

described in section 2.12.5. An Blutip-d affinity column was firstly prepared 

by gently forcing l- 2ml of high salt solution (section 2 .2 .2 ) into the column. 

This serves to pre-wash the column matrix. A second syringe (5, 10 or 

20ml depending on sample size) was loaded with 5ml of low  salt solution 

(section 2 .2 .2) and this was passed through the column to ensure that all 

the h igh  salt so lu tion  had been rem oved from the matrix before 

application of the DN A  sample. The same syringe was loaded with the 

DNA sample and this, together with a OApim cellulose acetate Blutip pre­

filter was attached to the column. Use of the filter ensures the removal of 

any particulates from the sample. All of the sample was forced through 

the filter and column at a flow  rate of l - 2 m l/ min to ensure complete 

absorption of the D N A  to the column matrix. The same syringe was 

loaded w ith 2-3ml of low  salt solution which was passed through the 

column, washing any remaining DNA sample from the filter and syringe 

into the column. 0.4ml of high salt solution was then passed through the 

column without the filter attached to elute the DNA from the matrix. The 

eluate was collected in a 1.5ml Bppendorf tube, and the D N A  further 

concentrated by alcohol precipitation, as described in section 2 .12.2
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2.12.8 Déphosphorylation of Double Stranded D NA using Calf 

Intestinal Phosphatase (GIF)

GIF catalyses the removal of 5'-phosphate groups from DN A  fragments to 

prevent re-ligation. Plasmid DNA was cleaved w ith the appropriate 

restriction enzyme(s) for 3 hours and then treated with RNase A for 15 

min at 37°C. The reaction volume was made up to lOOjul by addition of the 

dephosphorylation buffer (provided with the enzyme), 10 units of GIF and 

the appropriate volume of sterile water. Reactions were carried out at 37°G 

for 2 hours. Plasmid cDNA was isolated from the enzym e reagants by 

passing through an Elutip-d column and alcohol precipitation as described 

above.

2.12.9 Ligation of Double-Stranded cDNA

cDNA fragm ents were ligated to plasm id cD N A by the fo llow ing  

procedure. In order to increase the efficiency of ligation, the reaction was 

performed w ith various chimeric GLUT cDNA; plasm id cDNA molar 

ratios; i.e. 2:1, 5:1 and 10:1. lOOng of plasmid which had been GIF-treated 

was added to chimeric GLUT cDNA at a relevant molar ratio and the mix 

incubated overnight at 14°G in the presence of 3 units of T4 DNA ligase in 

lOx ligation buffer. Ligation reactions were stored at -20°G. Gompetent 

bacteria were then transformed with 5-10ml of the ligation reaction as 

described in section 2 .12 .11 .
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2 .12.10  Preparation of Competent E. coli (JM109) Cells

lOjxl of a frozen stock of JM109 cells were used to streak an LB plate. After 

incubation at 37°C for 12-16 hours, a single colony was used to inoculate 

3ml of sterile LB m edium  which was incubated for 12-16 hours at 37°C 

whilst shaking. 500pi of this starter culture was transferred to a 1 litre flask 

containing 50ml of sterile LB. The cells were grown at 37°C whilst shaking 

for 2 hr before being harvested by centrifugation at 6000 x g at 4°C for 5 

min. The supernatant was discarded and the cell pellet resuspended in 

20ml of ice-cold lOOmM CaCb solution. The suspension was incubated on 

ice for 20 min before harvesting the cells as previously described. The cell 

pellet was resuspended in 4ml of ice-cold lOOmM CaCl2 solution and 

incubated at 4“C for at least Ihr (NB. Cells remain competent at 4°C for up 

to 24 hours).

2.12.11  Transformation of Competent E. coli (JM109) Cells

200pl of competent cells (section 2 .12 .10) were transferred to a pre-chilled 

13.5ml Falcon tube to which 5-lOpl of the ligation mix is added. The tubes 

were incubated on ice for 40 min to allow uptake of the D N A  by the 

competent cells. Transformation is terminated by heat-shocking the cells 

at 42°C for 45 sec, followed by incubation on ice for 5 min. 0.8ml of sterile 

LB is then added and the cells incubated at 37°C whilst shaking for 1 hour. 

After centrifugation at 6000 x g for 5 min at 4°C, 0.9ml of the supernatant 

was discarded and the cells were resuspended in the remaining lOOpl 

which was plated out immediately onto LB agar plates containing 50pg/m l 

ampicillin. The liquid was allowed to dry, the plates were inverted and 

incubated at 37°C for 12-16 hours.
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2 .12.12  Transformation of Ultracompetent E.coli (JM109) Cells

Ultracompetent cells were purchased from Promega and stored at -70°C. 

Cells were thawed by incubation in an ice-bath for 5 min and mixed by 

flicking the tube. A lOOpl aliquot (per transformation) was transferred to a 

pre-chilled 1.5ml Eppendorf tube. 5-lOpl of the ligation mixture was added 

to the cells which were mixed gently and immediately incubated on ice for 

10 min. The transformation was terminated by heat-shocking the cells at 

42°C for 45 sec, and incubating on ice for 2 min. 900/il of SOC medium  

(section 2.2.7) was added and the cells were grown for 1 hour at 37°C in a 

shaking incubator at 225rpm. lOOpl of the transformation mixture was 

plated onto LB plates containing 500pg/m l ampicillin. The remaining 

900pl was centrifuged at 6000 x g for 10 min to pellet the cells. 800pl of the 

medium was removed and the cells resuspended in the remaining 100pi 

which was also plated as described. The plates were incubated at room 

temperature for 15 min to dry, then inverted and incubated at 37°C for 12- 

lb hours.

2.12.13 Preparation of Small Amounts of Plasmid D NA Using the 

QIAGEN QIAPrep 8 Turbo Miniprep Kit

Colonies of interest were picked w ith sterile tips and dropped into 

universals, each containing 3ml of LB m edium  containing 50p g/m l 

ampicillin. These were grown overnight at 37°C in a shaking incubator. 

1.5ml of culture was removed, placed in a microfuge tube and centrifuged 

for 15 min in a microfuge at full power to pellet the cells. Pelleted bacterial 

cells were resuspended in 250pl of Buffer PI until no cell clumps were 

visible. 250pi of Buffer P2 was added to each sample, the tubes were gently
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inverted and the samples were incubated at room temperature for 5 min. 

During this incubation the QIAVac 6S vacuum manifold was prepared for 

use. 350pi of Buffer N3 was added to each sample and the tubes were 

inverted immediately 4-6 times. The resulting lysates were pipetted into 

the w ells of the Turbofilter strips (850pi per well), and the vacuum  was 

applied until all of the samples had passed through the Turbofilter. The 

QIAPrep strips containing the cleared lysates were then transferred to the 

top plate of the QIAVac 6 S and the vacuum w as re-applied until all 

samples were drawn through the QIAPrep strips. The QIAPrep strips were 

then washed by adding Iml of Buffer PB to each w ell and applying the 

vacuum. A further wash of the QIAPrep strips was achieved by washing 

through with Iml of Buffer PE and applying the vacuum. This step was 

then repeated. After Buffer PE in all w ells had been drawn through, 

maximum vacuum was applied to the wells for 5 min in order to dry the 

membrane. The QIAPrep strips were then blotted with absorbent paper to 

rem ove any residual Buffer PE. To elute the D NA  from the QIAPrep 

strips, 100ml of lOmM Tris-HCl; pH 8.5, or H2O, was added to the centre of 

each well of the QIAPrep strips. The QIAPrep strips were allowed to stand 

for 1 min and then maximum vacuum was applied for 5 min. The DNA  

produced was stored at -20°C.

This technique was used to produce rapid, moderate yields of plasmid 

DNA that could be used in restriction digestion analysis to check that the 

correct plasmid construct was being expressed by the bacterial cells.
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2.12.14 Preparation of Small Amounts of Plasmid cDNA

Colonies of interest were picked with sterile tips and dropped into 

universals, each containing 3ml of LB m edium  containing 50 //g /m l 

ampicillin. These were grown overnight at 37°C in a shaking incubator. 

1.5ml of culture was removed, placed in a microfuge tube and centrifuged 

for 15 min in a microfuge at full power to pellet the cells. The supernatant 

was then discarded and the pellet resuspended in 100 /xl of glucose buffer 

(section 2.2.2) with extensive vortexing. This was incubated on ice for 15 

min, then 200//1 of 1% SDS in 0.2M NaOH was added and the tube gently 

inverted 5 times. The tube was incubated on ice for 10-20 min, or until 

viscous. 300/^1 of 3M K+/5M Ac was added, the tube inverted gently 5 

times, and incubated on ice for a further 5 min before centrifuging in a 

microfuge for 5 min. The supernatant was removed to a fresh tube, 5j/l of 

Im g /m l RNase A was added and incubated at 37°C for 15 min. One 

phenol extraction, two phenol/chloroform  (1:1 v / v )  extractions, and two 

chloroform /isoam ylalcohoi (24:1 v / v )  washes of the supernatants were 

performed, retaining each time the upper aqueous phase. After the final 

wash, 0.3 volumes of 3M sodium acetate and 2.5 volumes of 100% ethanol 

were added to precipitate the cDNA. This was incubated at -20°C for at 

least one hour before pelleting the cDNA by centrifugation for 30 min in a 

m icrofuge. The ethanol was rem oved, the pellet w ashed w ith 70% 

ethanol, and centrifuged for another 30 min before drying under vacuum. 

The pellet was resuspended in 20/il of sterile water, l/il of this was added 

to 1ml of sterile water and the absorbance measured at 260nm. The 

concentration was determined from the calculation described in section 

2.12.7.
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This technique was used to produce greater yields of high quality plasmid 

DNA that could be used in transfection and sequencing.

2.12.15 Large Scale Preparation of Plasmid D NA Using QIAGEN 

QIAPrep Plasmid Maxi Preparation Kits

This method of plasmid preparation is based on the m odified alkaline lysis 

procedure and on the adsorption of DNA onto an anion-exchange resin in the 

presence of low-salt. The kits contain various buffer solutions and columns 

and the protocols are designed for the purification of up to 500pg plasmid 

D NA from an appropriate volume of an overnight culture of E. coli cells in  

LB medium.

Components supplied with kits:

Buffer PI (Resuspension Buffer)

Buffer P2 (Lysis Buffer):

Buffer P3 (Neutralisation Buffer) 

Buffer QBT (Equilibration Buffer)

Buffer QC (Wash Buffer)

Buffer QF (Elution Buffer)

TE

50mM Tris.HCl; pHS.O, 

lOmM EDTA,

100|Ag/ml RNase A; stored at 4°C 

200mM NaOH, 1% SDS 

3M KOAc; pH5.5; stored at 4°C 

750mM NaCh 50mM MOPS; pH7.0, 

15% ethanol, 0.15% Triton-X-100 

IM NaCl, 50mM MOPS; pH7.0,

15% ethanol

1.25M NaCl, 50mM Tris.HCl; pH8.5, 

15% ethanol

lOmM Tris.HCl; pH8.0, ImM EDTA
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STE lOOmM NaCl, lOmM Tris.HCl; pH8.0,

ImM EDTA

Plasmid Maxi Preparation Protocol

A colony of cells containing the plasmid to be purified was used to inoculate 

3ml of sterile LB containing the appropriate antibiotic(s). This was incubated 

whilst shaking at 37°C for 12-16 hours. From this starter culture 0.5ml was 

transferred to 300ml of sterile LB plus antibiotic(s) which was then incubated 

whilst shaking at 37°C for a further 12-16 hours. Cells were then harvested by 

centrifugation at 4000 x g for 10 m in at 4°C, and the bacterial pellet 

resuspended in 10ml of Buffer PI. The pellet was resuspended completely 

such that no cell aggregations remained. 10ml of Buffer P2 was added and the 

solution m ixed gently by inverting the tube 4-6 times. After incubation at 

room temperature for 5 min, 10ml of chilled Buffer P3 was added, the tubes 

mixed gently and incubated on ice for 20 min. After centrifugation at 20000 x g 

for 30 min at 4°C in a Beckman JA-20 rotor, the supernatant was promptly 

transferred to clean tubes and recentrifuged for a further 15 min. The 

supernatant was removed promptly and transferred to a QIAGEN-tip 500 

equilibrated with 10ml of Buffer QBT. The QIAGEN-tip was then washed  

with 2x 30ml of Buffer QC. Plasmid DNA was eluted by application of 15ml of 

Buffer QF to the tip, which was allowed to empty by gravity. D N A  was 

precipitated with 0.7 volumes of room-temperature isopropanol, followed by 

immediate centrifugation at 15000 x g for 30 min at 4°C. The supernatant was 

carefully removed and the D N A  pellet washed w ith 5ml of 70% ethanol, 

recentrifuged, air-dried for 5 min at room temperature and redissolved in a 

suitable volum e of sterile H2O. A sample of the plasm id solution was 

analysed by agarose gel electrophoresis.
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2.12.16 Large Scale Preparation of Plasmid cDNA

Solutions: 

Buffer 1 50mM glucose, lOmM EDTA, 25mM Tris; pH 8.0

Buffer2 1% SDS, 0.2M NaOH 5M KOAc 

(Prepared fresh on day of use)

Buffers 60ml 5M KOAc, 11.5ml acetic acid, 28.5ml st. H%0

PEG 20% PEG (Mol. wt. 6000), 2.5M NaCl

Other solutions TE Buffer

5M Lithium Chloride 

3M NaOAc

All procedures following initial cell harvesting were carried out on ice.

A colony of cells containing the plasm id to be purified w as used to 

inoculate 3ml of sterile LB containing the appropriate antibiotic(s). This 

was incubated shaking at 37°C for 12-16 hours. From this starter culture

0.5ml was transferred to 500ml of sterile LB plus antibiotic(s) which was 

then incubated shaking at 37°C for a further 12-16 hours. Cells were then 

harvested by centrifugation at 4°C for 10 min at 4000 x g. The resulting 

supernatant was carefully decanted from the pellet which was resuspended 

completely in 25ml of Buffer 1. 25ml of Buffer 2 was slow ly added whilst 

swirling the solution on ice. To this, 25ml of Buffer 3 was added followed 

by thorough mixing. Centrifugation at 4°C for 10 min at 4000 x g, resulted
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in a clear supernatant which was transferred to clean 250ml Beckman 

centrifuge tubes by filtering through a double thickness of fine muslin. 

1 0 0 m l of isopropanol (room  temperature) w as added  and m ixed  

thoroughly before incubating at -20°C for 15 min. The D N A  was 

precipitated by centrifugation at 4°C for 10 min at 4000 x g, and the 

resulting supernatant discarded. The pellet obtained from the entire 500ml 

culture w as resuspended in 7.5ml TE buffer and transferred to 50ml 

Beckman centrifuge tubes to which 10ml of 5M LiCl solution was added. 

After incubating on ice for 2-5 min, the solution was centrifuged at 4°C for 

10 min at 4000 x g in a Beckman JA-20 rotor. The resulting supernatant 

was retained and transferred to a clean centrifuge tube. Two volumes of 

ice-cold 100% ethanol was added, the DNA solution was incubated at -20°C 

for 20 min, and precipitated by centrifugation as described for 20 min. The 

resulting pellet was rinsed w ith 70% ethanol and air-dried before 

resuspension in 0.5ml TE buffer. RNase A was added to 40pg/m l and the 

tubes incubated at 37°C for 15 min. 0.5 volumes of PEG solution was 

added, fo llow ed by an incubation period of 15 m in on ice. After 

centrifugation the resulting pellet was resuspended in 0.6ml TE buffer and 

the D N A  extracted once with phenohchloroform and twice more with  

chloroform. 0.1 volumes of 3M NaOAc and 2 volumes of ice-cold 100% 

ethanol was added to the final extract, the solutions mixed thoroughly and 

incubated at -20°C overnight. After centrifugation at 16000 x g in a 

microfuge for 30 min, followed by a 70% ethanol rinse, the D NA pellet was 

air dried and resuspended in a volum e of 100-200ml of sterile H 20, 

depending on the size of the pellet. The purity and yield  of the plasmid 

was determined as described in section 2.12.7.
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2.12.17 Calculation to Determine the Plasmid cDNA Concentration 

and Purity

absorbance value of 1.0 at 260nm = 50//g/ ml of dsDNA  

absorbance value of "y” at 260nm = "y" x 50/ig/m l of dsDNA

absorbance at 260nm 
absorbance at 280nm = "Z"

cDNA has a lower protein concentration and has a higher purity when the 

value of "Z" is nearer to 2.0.
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Chapter 3

Analysis of Amino and Carboxy Terminal 
GLUT4 Targeting Motifs in 3T3-L1 

Adipocytes Using an Endosomal Ablation
Technique
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3.1 Aims

The aims of this chapter are :

1. To determine the gross intracellular targeting of the recombinant

GLUT4 species TAG, LAG and FAG by employing the technique of 

sucrose density gradient centrifugation.

2. To examine the role of the N-terminal FQQI motif in GLUT4

trafficking by applying the compartment ablation technique to a 

GLUT4 species containing the mutation to A .̂

3. To examine the role of the C-terminal LL motif in GLUT4

trafficking by applying the compartment ablation technique to a

GLUT4 species containing the mutation to A489A490

4. To investigate the co-localisation of recombinant GLUT4 mutants

with wild-type GLUT4 in 3T3-L1 adipocytes.

5. To interpret the roles of the FQQI and LL motifs in GLUT4

trafficking within the context of a revised multi-compartment 

model for GLUT4 trafficking in adipocytes.
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3.2 Introduction

The targeting of the insulin-responsive glucose transporter, GLUT4, to an 

intracellular compartment in adipocytes and muscle is one of the key 

features responsible for the unique insulin sensitivity of this transporter. 

The translocation of GLUT4 from an intracellular site to the plasma 

membrane in insulin-exposed cells is largely responsible for the 20-30-fold 

increase in glucose transport observed in these tissues [reviewed in Gould 

& Holman (1993)]. Ectopic expression of GLUT4 in a variety of cells has 

show n that the primary sequence of this protein contains sufficient 

information to direct it to a predominantly intracellular location in many 

cell types [Haney et a l  (1991), Hudson et al, (1992), Thorens & Roth (1996)]. 

This is in contrast to other members of the glucose transporter family 

which are expressed primarily at the cell surface [Hudson et al. (1992), Brant 

et al. (1994), Haney et al. (1995), Hughes et al. (1992), Thomas et al. (1993)].

Several laboratories have attempted to define the molecular features of 

GLUT4 which dictate its intracellular sequestration and unique targeting 

properties in adipocytes. These studies have identified two motifs, both of 

which are found within the cytoplasmic domains of GLUT4, and which  

appear to be involved in regulating the unique intracellular distribution of 

this protein [Piper et al. (1992), Piper et al. (1993b), Corvera et al. (1994), 

Verhey & Birnbaum (1994), Verhey et al. (1995), Haney et al. (1995), Marsh 

et al. (1995)] (reviewed in section 1.6).

The first of these motifs is found within the amino-terminal cytoplasmic 

domain of the protein (sequence F^QQI^) [Piper et al. (1992), Piper et al. 

(1993b), Marsh et al. (1995)]. Interestingly, this m otif is similar to the
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tyrosine-based internalisation m otifs identified  in plasm a membrane 

proteins which undergo endocytosis, such as the m annose-6 -phosphate 

receptor and transferrin receptor [Collawn et al. (1990), Johnson & Kornfeld 

(1992a), Johnson & Kornfeld (1992b)]. Such motifs are typically represented 

by an aromatic amino acid, usually tyrosine, at position 1 and a bulky 

hydrophobic amino acid at position 4 (YXX0, where Y is an aromatic 

amino acid, X is any amino acid and 0  is an amino acid w ith a bulky 

hydrophobic group). Present knowledge suggests that there may be further 

subclasses of tyrosine-based endocytosis signals and it is possible that the 

phenylalanine-based motif identified within GLUT4 may be a further 

example of such a signal [Naim & Roth (1994)].

The second region identified within GLUT4 as being important in the 

control of subcellular distribution is contained within the carboxy-terminal 

cytoplasmic domain of the protein, and contains a di-leucine motif [Verhey 

et al. (1993), Corvera et al. (1994), Verhey & Birnbaum (1994)]. When 

expressed at relatively high levels in adipocytes GLUT4 containing the 

mutation L^89l490 to accumulated at the plasma membrane. In

contrast, at more moderate levels of expression, the di-leucine mutant was 

targeted ind istinguishably from endogenous GLUT4 in adipocytes. 

However, w hen expressed in CHO cells, this mutation causes a 10-fold 

reduction in the internalisation of GLUT4 from the cell surface [Garippa et 

al. (1996)]. Such observations are consistent with numerous other studies 

where di-leucine (or isoleucine-leucine) motifs have been show n to be 

important endocytosis signals in other proteins, such as m annose-6- 

phosphate receptors and the interferon y-receptor [Letourneur & Klausner 

(1992), Hunziker & Fumey (1994), Marks et al. (1996)].
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Both tyrosine-based endocytosis signals and di-leudne m otifs have been 

suggested to interact w ith adaptor proteins which regulate entry into 

clathrin coated pits, either at the cell surface or at the TGN; the major site 

of protein sorting [Pearse & Robinson (1990), Heilker et al. (1996), Seaman 

et al. (1996)]. In the context of GLUT4 it has been suggested that both of 

these motifs can regulate internalisation of the protein from the plasma 

membrane [Verhey & Birnbaum (1994), Marsh et al. (1995), Yeh et al.

(1995)]. As detailed above, previous studies in adipocytes have shown that 

GLUT4 mutants containing either to A^ or l489l490 to a489a490 are 

targeted to the cell surface aberrantly [Marsh et al. (1995)]. This could either 

be due to decreased internalisation or reduced intracellular sequestration. 

It is not know n if the above-m entioned m otifs can perform other 

functions in GLUT4 trafficking. Such a scenario is possible as both 

aromatic and di-leucine based m otifs have also been im plicated in 

intracellular sorting; in particular in the assembly of proteins into TGN- 

derived clathrin an d /or AP-3 coated vesicles [Letourneur & Klausner

(1992), Pond et al. (1995), Ohno et al. (1996), Sim pson et al. (1997), 

Dell'Angelica et al. (1997)]. These findings may be relevant to GLUT4, as it 

appears to traffic via the TGN as part of its normal recycling in 3T3-L1 

adipocytes, rat adipocytes and cardiomyocytes [Slot et al. (1991a), Slot et al. 

(1991b), Slot et al. (1997)].

This study employed a technique known as compartment ablation (section 

2.5.1-3) which enables greater resolution of the intracellular compartments 

containing GLUT4 in adipocytes [Martin et al. (1996), Livingstone et al.

(1996)]. This technique relies on Tf-HRP internalisation via TfRs, and the 

delivery of the Tf-HRP ligand to the recycling endosom al system. 

Subsequent exposure of the cells to diam inobenzidine and hydrogen
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peroxide generates a highly-reactive cross-linking species w ithin the 

lumen of compartments which have taken up the Tf-HRP, and results in 

their subsequent ablation. This procedure selectively ablates markers for 

the recycling endosomal system (TfR, Rab5, cellubrevin) with little or no 

effect on markers for the TGN or lysosom es [Martin et ah (1996), 

Livingstone et al. (1996)]. Previous studies utilising this technique have 

shown that in resting 3T3-L1 adipocytes, GLUT4 is segregated into at least 

two discrete intracellular pools, one of which corresponds to recycling 

endosomes, contains -40% of the intracellular GLUT4, and is enriched in 

markers for the recycling endosomal system (transferrin receptor, Rab5, 

cellubrevin). The second compartment is devoid of transferrin receptors, 

enriched in the synaptobrevin homologue VAMP2, contains -60% of the 

intracellular GLUT4 and is not ablated after Tf-HRP loading. It is proposed 

that this represents a unique GLUT4 compartment which may function to 

regulate the plasma membrane GLUT4 content in response to insulin  

[Martin et al. (1996), Livingstone et al. (1996)].

In an effort to obtain a clearer picture of the role of the FQQI and di­

leucine-containing motifs in the control of GLUT4 targeting, this study has 

applied the compartment ablation technique to the above m entioned  

GLUT4 mutants expressed in 3T3-L1 adipocytes. The study attempts to 

determine if disruption of either the FQQI motif in the GLUT4 amino- 

terminus or the di-Ieucine motif in the GLUT4 carboxy-terminus alters the 

distribution of GLUT4 betw een the recycling and the non-ablated  

compartments. The results show that mutation of l489l490 to a 489a 490 

does not prevent GLUT4 from reaching the non-ablated compartment, but 

greatly reduces the amount of GLUT4 present in the recycling endosomal 

compartment. In the F̂  to A^ mutant, the low levels of GLUT4 present
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intracellularly are mainly accounted for by the presence of this species in 

the recycling endosomal system. These data are interpreted in light of new  

models for GLUT4 trafficking in adipocytes. In the context of these models 

I w ill argue that the FQQI and LL motifs play important role(s) in sub- 

endosomal trafficking of GLUT4 in adipocytes.
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3.3 Materials and Methods

3 .3 .1  Human GLUT3 Epitope-tagged GLUT4 Transporters

The m ethodology detailing the construction of human GLUT3 epitope- 

tagged transporter cDNAs, and their stable transfection into 3T3-L1 

fibroblasts is documented in Marsh et al. (1995).

3.3.2 Expression Levels of Recombinant GLUT4 Constructs in 

Adipocyte Cell Lines

The constructs em ployed in this study have been characterised in 3T3-L1 

fibroblasts and adipocytes previously by subcellular fractionation and 

indirect immunoflourescence microscopy [Marsh et al. (1995)]. Multiple 

clonal cell lines expressing recombinant GLUT4 constructs at a range of 

expression levels were classified in two broad categories: low  expressors, in 

which total GLUT4 expression was at a level comparable to that of 

endogenous GLUT4 in untransfected adipocytes, and high expressors, 

where total expression was >4-fold higher than endogenous GLUT4 

expressed by non-transfected adipocytes. Hence, specific cell lines were 

selected for more detailed analysis based on the following:

(1) The distribution of epitope-tagged wild-type GLUT4 (hereafter referred 

to as TAG) is indistinguishable from endogenous GLUT4 in different cell 

lines with markedly different expression levels [Marsh et al. (1995)]. I have  

examined the clone expressing the highest levels of TAG (TAG3B1), as the 

intracellular sequestration of TAG in this cell line is maintained despite a 

level of total GLUT4 expression approximately 6 -fold greater than that
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observed in wild-type cells. Thus, the aim was to determine whether any 

evidence for the saturation of intracellular trafficking pathways could be 

found at this level of over-expression using endosom al ablation and 

immuno-electron microscopy. The immuno-electron microscopy studies 

detailed in this chapter were carried out by Sally Martin in the laboratory of 

Prof. D. E .James and are included for the purposes of comparison only.

(2) The aberrant targeting of GLUT4 containing the Ê  to m utation  

(FAG) is independent of expression level [Marsh et al. (1995)]. Thus, two 

clones expressing FAG at low  levels, i.e. comparable to endogenous GLUT4 

in non-transfected adipocytes (FAG3C2 and FAG2C5), were chosen to 

examine the effects of this mutation on the intracellular distribution of 

GLUT4.

(3) The targeting of GLUT4 containing the L489p490 to a489a490 mutation 

(LAG) in adipocytes is dependent on the level at which it is expressed 

[Marsh et al. (1995)]. Thus, two clones with markedly different expression 

levels (LAG1D5 and LAG1D3, high and low expressors, respectively) were 

selected for further analysis by endosomal ablation and immuno-EM.

Figure 3.1 presents a schematic illustration of these mutants, and relative 

expression levels are listed in Table 3.1.
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Figure 3.1

Schematic Representation of Human GLUT3 Epitope- 

Tagged M utant GLUT4 Transporters

Summary of the recombinant GLUT constructs used in these studies. To 

discriminate betw een recombinant and endogenous GLUT4 in stably 

transfected 3T3-L1 adipocytes a foreign epitope encompassing the carboxy- 

terminal 12 amino-acid residues from human GLUT3 (red) was introduced at 

the extreme carboxyl-terminus of the full length GLUT4 cDNA. Wild-type 

GLUT4 epitope-tagged in this fashion is referred to as TAG. Epitope-tagged 

GLUT4 containing point mutations at either or L489l490̂  are referred to as 

FAG and LAG respectively. The positions at which point mutations to alanine 

are present are shown in blue.
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3.3.3 Immuno-electron Microscopy

Intracellular vesicles were prepared from 3T3-L1 adipocyte homogenates as 

described in section 2.5.5, and membrane vesicles fixed and stored at 4°C 

[Martin et al. (1996), Martin et al. (1997)]. Immunolabelling of vesicles was 

performed as described previously [Martin et al. (1997)]. Protein-A gold was 

provided by the Department of Cell Biology, University of Utrecht, The 

Netherlands. Anti-GLUT3 was diluted at 1:20, and anti-y-adaptin diluted 

1:100 for these studies.

3.3.4 Antibodies

The anti-GLUT4 antibodies used were a rabbit polyclonal antibody raised 

against a peptide comprising the carboxy-terminal 14 amino acid residues 

of the human isoform of GLUT4 [Brant et al. (1993)], or the corresponding 

region of the human isoform of GLUT3 [Shepherd et al. (1992)]. The 

affinity-purified polyclonal rabbit anti-serum  generated against the 

cytoplasmic domain of the insulin-regulated aminopeptidase vpl65 used  

in this study was provided by Prof. G. E. Leinhard (Dartmouth Medical 

School). Anti-y-adaptin was supplied by Dr. M. S. Robinson (University of 

Cambridge) and anti-transferrin receptor antibody was from Upstate 

Biotechnology Inc. (Lake Placid, NY.).

3.3.5 Computer M odelling of GLUT4 Trafficking

This study m odelled  the distribution of GLUT4 betw een  m ultiple  

intracellular compartments. Simulations were performed using m odels 

described previously [Holman et al. (1994), Verhey et al. (1995), Yeh et al.
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(1995)]. The distribution of GLUT4 between three compartments at steady- 

state was modelled using the following equations [Yeh et al. (1995)]:

(h en d O '^ p m )" (k l.X ee)-(k geq .X ee)+ (k 4  -^ irv )—0  

(hseq*^ee)“( ^  •^irv)"(^2 .X irv)=0  

(k l .X e e )" (k e n d o * ^ p n )4 '(k 2  .X jj'v)='0

Xpnri = the fraction of GLUT-4 at the plasma membrane

Xee = the fraction in the endosomal compartment

Xirv = the fraction in the insulin-responsive compartment

The rate constants employed in this analysis were kendo/ kgeq/ k2 and k  ̂

and are shown in the schematic model of Figure 3.10. Values for these rate 

constants were derived from studies of GLUT4 trafficking in adipocytes 

described elsewhere [Yang et al. (1992a), Yang et al. (1992b), Yang & Holman

(1993), H olm an et al. (1994), Araki et al. (1996)]. The steady-state 

distribution of GLUT4 among these three compartments was determined 

from equations described in detail previously [Yeh et al. (1995), Araki et al.

(1996)]. Estimated values of some of these rate constants for mutant 

GLUT4 species were based upon the results presented in [Garippa et al.

(1994), Araki et al. (1996), Garippa et al. (1996)]. Sim ulations were 

performed on a PC using the kinetic simulation software package K-SIM 

(N. Miller, University of California, Los Angeles, CA) with the assistance of 

Dr. A. R. Warmsley, D ivision of Infection and Immunity, University of 

Glasgow.

134



3.4 Results

3.4.1 Buoyant Density Analysis of TAG, LAG and FAG Mutants

In an attempt to determine the effects of the to A  ̂(FAG) and l489l490 

A 489^490 (LAG) m utations on the trafficking of GLUT4, I initially  

em ployed the technique of sucrose density gradient centrifugation to 

investigate the buoyant density of these mutants in adipocyte subcellular 

membranes. This analysis provides information regarding the gross 

targeting of TAG, LAG and FAG rather than yielding detailed information 

on the specific intracellular compartments to w hich these exogenous 

GLUT4 mutants are trafficked. LDM membranes from these mutants were 

separated by centrifugation on sucrose gradients and the distribution of 

m utant GLUT4 determ ined  by im m unoblotting wi th  anti-GLUTS 

antibodies. This m em brane fraction contains the majority of the 

intracellular endogenous GLUT4. The results of this analysis are presented 

in Figure 3.2.

Im m unoblotting of the subcellular membrane fractions revealed that 

endogenous GLUT4 was observed to sediment primarily in fractions 3 to 8. 

Previous studies have shown that such fractions are also enriched for Rab5 

(fractions 2 to 6), TGN38 and the transferrin receptor (fractions 3 to 9) 

[Livingstone et al. (1996)].

TAG was observed to sediment in a very similar fashion to endogenous 

GLUT4, confirming previous studies which have show n an identical 

subcellular distribution for this species [Marsh et al. (1995)] (Figure 3.2). 

The di-leucine mutant, LAG, was also found to sedim ent at similar
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densities, suggesting that the gross targeting of this mutant was not 

significantly disrupted (Figure 3.2).

In contrast, analysis of the distribution of the small pool of intracellular 

FAG indicated that this protein was confined to a more restricted fraction 

of intracellular vesicles (fractions 3 and 4) (Figure 3.2). These fractions have 

been previously shown to be highly enriched for early endosomal markers 

such as Rab5 [Livingstone et al. (1996)]. Over 85% of the intracellular FAG 

was present in these two fractions, indicating that the intracellular 

distribution of FAG may be distinct from either endogenous GLUT4, TAG 

or LAG. It should be noted that the expression levels of the clones 

expressing FAG (FAG3C2 and FAG2C5) examined in this study resemble 

endogenous GLUT4 in non-transfected adipocytes, suggesting that the 

mistargeting of FAG within intracellular membranes is a consequence of 

mutation of the amino-terminal motif rather than of overexpression of 

this mutant species.

A graphical representation of the comparative buoyant density profiles of 

the above mutants is provided by Figure 3.3.

3.4.2 Compartment Ablation Analysis of TAG, LAG, FAG Mutants

In this study the technique of compartment ablation (sections 2.5.1-1, 3.2) 

was employed to examine the intracellular distribution of the recombinant 

GLUT4 constructs TAG, LAG and FAG, with the aim of determining 

whether such mutations alter the distribution of GLUT4 betw een the 

ablated (endosomal) and non-ablated pools.
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In these experiments, duplicate plates of 3T3-L1 adipocyte clones were 

loaded with Tf-HRP for Ihr or 3hr at 37°C, or alternatively for Ihr at 4°C (as 

a control as no Tf-HRP is internalised under these conditions). The 

ablation reaction was performed on half of the plates ( ablated ), the other 

half were treated identically but peroxide was not added ( control ). The 

LDM fraction was then prepared from control and ablated cells, and the 

level of the heterologously expressed GLUT4 mutants determined by 

quantitative immunoblotting with GLUT3 antibodies. The results of this 

type of analysis for all of the clones are summarised in Table 3.1. TAG3B1 

exhibits a pattern of ablation essentially identical to that of endogenous 

GLUT4 (Figure 3.4). Importantly, this demonstrates that despite a level of 

total GLUT4 expression approximately 6-fold greater than that observed in 

non-transfected adipocytes, over-expression of wild-type GLUT4, at least to 

the level achieved here, does not result in an increased proportion of 

GLUT4 residing in the endosomal system.

In contrast, intracellular LAG was found to be almost completely resistant 

to ablation after loading with Tf-HRP, implying that the majority of this 

protein is not present in the recycling endosomal system (Figure 3.4). FAG 

has previously been shown to exhibit a predominantly plasma membrane 

localisation [Marsh et al. (1995)]. The small intracellular fraction of this 

mutant however was readily ablated after Tf-HRP loading (Figure 3.4). 

Two clonal cell lines expressing FAG at low levels, or LAG at low  and high 

levels, were independently examined and gave identical results for each 

mutant (Table 3.1). This strongly argues that the results do not reflect 

overexpression or clonal variation for either of the constructs. For each 

clone, the efficiency of ablation was monitored by parallel examination of 

the extent of ablation of the TfR (Figure 3.5).
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3.4.3 Co-localisation of Recombinant GLUT4 Mutants w ith Wild-

type GLUT4 in 3T3-L1 Adipocytes.

In an attempt to determine the extent of co-localisation of the mutant 

species with endogenous GLUT4 and the aminopeptidase vpl65/IR A P (a 

protein know n to co-localise w ith GLUT4 in adipocytes [Martin et al.

(1997)]), intracellular vesicles containing the epitope-tagged constructs were 

immunoadsorbed using GLUTS antibodies. The use of monoclonal IF8 (or 

other anti-GLUT4 antibodies) in this regard is disadvantaged by the fact 

that this epitope recognises both the endogenous GLUT4, and the expressed 

recombinant species; however, the use of anti-GLUT3 should result in only 

vesicles containing the mutant species being isolated.

Im m unoisolations using anti-GLUT4 m onoclonal antibody IF8 were 

perform ed for the recom binant GLUT4 m utants, TAG and LAG. 

Unfortunately the intracellular levels of FAG were too low  to obtain 

reliable data using this approach. In all cases, it was observed that such 

immunoadsorptions quantitatively depleted the LDM fraction of both the 

expressed mutant species and the insulin-responsive am inopeptidase 

vpl65/IR A P (data not shown). From such studies, it is not possible to 

definitively conclude that the expressed mutant species co-localise with 

GLUT4, nevertheless, the data are suggestive of such co-localisation. 

Further evidence in favour of such co-localisation was provided by the 

previous dem onstration that both TAG and LAG exhibit insulin- 

stimulated translocation to the plasma membrane to an extent comparable 

to that exhibited by the endogenous GLUT4 [Marsh et al. (1995)]. If TAG or 

LAG were significantly m is-targeted, insulin-stim ulated translocation 

w ould not be expected. A lthough neither of these observations are
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definitive, both argue strongly that TAG and LAG populate the same 

intracellular compartments as the endogenous GLUT4.

More definitive conclusions can be drawn from experiments in which  

anti-GLUT3 antibodies were used to specifically imm unoisolate vesicles 

containing the epitope-tagged mutant species from the intracellular 

membrane fractions. The results of these experiments are presented in 

Figure 3.6 for TAG and LAG. I w as unable to quantitatively 

im m unodeplete LDM membranes of immuno reactive GLUT3 using this 

approach, perhaps as a consequence of the low affinity of this antibody for 

its epitope. However, in several experiments of this type, I examined the 

depletion of intracellular membranes of GLUT3 and compared this to the 

depletion of vpl65/IR A F in the same samples (Figure 3.7). For each of the 

clones examined, the depletion of GLUT3 from the LDMs (between 50 and 

70% for both TAG and LAG; Figure 3.6) is mirrored by a depletion of vpl65  

from the same LDM fractions (Figure 3.7). It has recently been shown that 

in adipocytes, GLUT4 and vpl65 exhibit essentially complete co-localisation 

using immuno-EM [Martin et al. (1997)]. Hence, the data of Figure 3.7 

further argues that the recombinant expressed GLUT4 mutants exhibit a 

high degree of co-localisation w ith endogenous GLUT4. Recombinant 

GLUT4-containing vesicles isolated using anti-GLUT3 antibodies were also 

immunoblotted with antibodies specific for vpl65 (Figure 3.7). Both TAG- 

and LAG- containing vesicles were observed to contain significant levels of 

vpl65. These results, together with previous studies demonstrating that 

both TAG and LAG exhibit insulin-stim ulated translocation, argue 

strongly that the recombinant species exhibit substantial co-localisation 

with endogenous GLUT4 and vpl65/IRAP.
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A parallel series of experim ents were performed using anti-vpl65  

antibodies to im m unoadsorb vesicles. Im m unoadsorption w ith anti- 

vpl65 antibodies was found to result in a significant depletion of the LDM 

membrane fraction of recombinant GLUT4 species. As was the case using 

anti-GLUT3 antiserum, I was unable to quantitatively deplete LDMs of 

either vpl65 or recombinant GLUT4 using this approach. However, these 

results show  that for both TAG and LAG, intracellular vesicles isolated 

using anti-vpl65 antibodies contain recombinant GLUT4 (Figure 3.8). 

Taken together, these data argue that both TAG and LAG co-localise 

significantly with vpl65/IR A P in these cells, and thus, by analogy, with 

endogenous GLUT4.

3.4.4 Co-localisation of GLUT4 with y-adaptin

To complement my attempts to define the intracellular trafficking of the 

recombinant GLUT4 species LAG, immunogold-EM was em ployed (by 

Sally Martin in the laboratory of Prof. D. E. James, University of 

Queensland) to co-localise TAG and LAG with y-adaptin, a component of 

the AP-1 complex (Figure 3.9 and Table 3.2). Unfortunately, the low level 

of intracellu lar FAG precluded sim ilar analysis of this mutant. 

Comparison of TAG with the low-level expressing LAG clone (LAG1D3), 

demonstrates that in this case, LAG exhibits increased colocalisation with y- 

adaptin (24.4% cf. 37.8%, respectively). However, inspection of the data 

obtained for the high-expressing clone LAG1D5 show ed that it does not 

exhibit sim ilar increased colocalisation (Table 3.2). This may be a 

consequence of the expression level-dependent mis-sorting of LAG [Marsh 

et al. (1995)]. The inability to detect differences in the level of y-adaptin 

associated with TAG or LAG containing vesicles may be complicated by the
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presence of endogenous GLUT4 within these vesicles which w ould be 

expected to interact w ith  the y-adaptin regardless of the presence of 

recombinant species within the same vesicle. Therefore, interpretation of 

the role of the l489l490 motif in interaction with AP-1 is not possible from 

these data. However, these results provide further evidence to show that a 

significant overlap exists between GLUT4 and y-adaptin in intracellular 

membranes isolated from 3T3-L1 adipocytes, and provides a compelling 

argument in favour of the involvement of the TGN in the trafficking of 

GLUT4.
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Figure 3.2

Buoyant D ensity A nalysis of TAG, LAG and FAG Mutants

Low density microsomal membranes were prepared from the indicated 3T3- 

L1 adipocyte cell clone and analysed by sucrose gradient centrifugation as 

outlined in section 2.5,5. Fractions from a 1.5-0.5M sucrose gradient were 

loaded on a 10% SDS gel from left to right. 20 ̂ g protein from each fraction 

was loaded onto the gel. The position of the GLUTS epitope-tagged mutant 

GLUT4 species was then determined by immunoblotting (section 2.9.3) with  

anti-GLUT3 antibodies. Data from a representative experiment is shown  

using TAG3B1 (TAG), FAG3C2 (FAG) and LAG1A5 (LAG). Similar data were 

obtained using FAG2C5 and LAG1D3 (data not show n). By w ay of 

comparison, the distribution of endogenous GLUT4 in non-transfected  

adipocytes is shown (GLUT4).
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Figure 3.3

Buoyant D ensity Profiles of TAG, LAG and FAG Mutants

This is a graphical illustration of the buoyant density profiles of the TAG, LAG 

and FAG mutants. The immunoreactivity of the fractions is represented by 

arbitrary units, with the fraction containing the highest level set = 1 unit.
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Figure 3,4

Compartment A blation Analysis of TAG, LAG and FAG 

Mutants

LDM membranes were prepared from 3T3-L1 adipocytes loaded with Tf-HRP 

for Ihr at 4°C, Ihr at 37°C or 3hr at 37°C, before and after ablation (- and + 

hydrogen peroxide) as indicated. Figure 3.4 shows experiments for each of 

the mutant GLUT4 species exam ined (TAG=TAG3B1; FAG=FAG3G2; 

LAG=LAG1A5 experiments are shown). In these experiments, cells were 

loaded with Tf-FIRP as indicated and the cells exposed to DAB in the presence 

and absence of peroxide as indicated. LDM membranes were prepared, 20^g 

of each fraction were electrophoresed and immunoblotted using anti-GLUT3 

antibodies to study the effect of ablation on the intracellular content of each of 

the clones. Several blots of this type from at least three independent 

experiments were quantitated and the results are presented in Table 3.1.
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Table 3.1

Effect of Compartment Ablation on Intracellular GLUT4 

Levels

The relative levels of total GLUT4 expression (arbitrary units) in the cell lines 

examined in this study have been determined previously [Marsh etaL (1995)]. 

Clones were classified into two broad categories based on the total level of 

GLUT4 expressed by wüd-type 3T3-L1 adipocytes. TAG3B1 and LAG 1A5 are 

high expressor clones, whereas FAG3C2, FAG2C5 and LAG 1D3 were 

classified as low expressors. Duplicate sets of 10cm plates were loaded with 

Tf-HRP for Ihr or 3hr at 37“C. After this time, the DAB cytochemistry was 

performed as described in section 2.5.2, with hydrogen peroxide added to one 

plate but not to the other. LDM membranes were prepared, and the GLUT3 

immunoreactive signal quantified. The difference in signal between the plates 

incubated ± peroxide represents the extent of protein ablation (Figure 3.4). 

Detailed opposite is the signal remaining in the LDM fraction after ablation 

expressed as a percentage of the signal in the LDM before ablation (mean ± 

S.D. determined from three independent experiments). In aU experiments, an 

additional control experiment was performed in which the cells were 

incubated with Tf-HRP at 4"C then ablated. Under these conditions, no 

internalisation of Tf-HRP is expected, and consistent with this no ablation of 

either the recombinant GLUT4 constructs or endogenous GLUT4 was 

observed (Figure 3.4). Values for endogenous GLUT4 were from plates of 

non-transfected adipocytes, measured using the same batches of Tf-HRP 

conjugate employed for analysis of the mutants.
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Table 3.1

Effect of Compartment Ablation on Intracellular GLUT4 

Levels

Species Expression Level %  Signal Remaining after Ablation
Ihr at 37°C 3hr at 37°C

wt GLUT4 1.96 64 ±3% 59 + 8%

TAG3B1 11.48 62 ±8% 60 ± 9%

FAG3C2 3.88 56 ±7% 25 ± 10%*

FAG2C5 2.64 53 ±5% 18 ± 9%*

LAG1A5 8.25 96 ± 7% 98 ± 3%

LAG1D3 2.54 92 ±8% 89 ± 7%

* Statistically significant difference from signal at Ihr (p<0.01)
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Figure 3.5

Comparative Compartment Ablation Analysis of TAG

LDM membranes (20^g protein) from TAG3B1 were immunoblotted with  

either anti-transferrin receptor (upper panel) or anti-GLUT3 antibodies (lower 

panel). Note that incubation of cells at 4°C with Tf-HRP did not result in any 

ablation of the transferrin receptor from the LDM membranes; in contrast, 

incubation of cells with Tf-HRP for 3hr at 37°C resulted in a peroxide- 

dependent loss of TfR from LDM membranes; under the same conditions, 

TAG3B1 ablation was much less pronounced.
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Figure 3.6

Immunoadsorption of V esicles containing Mutant GLUT4 

Species

LDM membranes were incubated with anti-GLUT3 antiserum linked to Staph, 

a. cells to selectively immunoadsorb vesicles containing the expressed mutant 

GLUT4 species (section 2.5.5). 100pg of LDM membranes and lÔ Ag of anti- 

GLUT3 antiserum were employed per immunoadsorption. Resultant vesicles 

and LDM fractions (20 pg protein per fraction) were immunoblotted using  

anti-GLUT3 antiserum to determine the intracellular location of epitope- 

tagged mutant species.
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Figure 3.7

Co-localisation of vpl65 and Mutant GLUT4 Species in  

3T3-L1 A dipocytes

LDM membranes were incubated with anti-GLUT3 antiserum linked to Staph, 

a. cells to selectively immunoadsorb vesicles containing the expressed mutant 

GLUT4 species (section 2.5.5). 100 pg of LDM membranes and lOpg of anti- 

GLLFT3 antiserum were employed per immunoadsorption. Resultant vesicles 

and LDM fractions (20 pg protein per fraction) were immunoblotted using 

affinity purified anti-vpl65 antibody to determine the extent of co-localisation 

of vpl65 and epitope-tagged mutant GLUT4 species.
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Figure 3.8

Isolation of vpl65 V esicles and Co-localisation w ith  

Mutant GLUT4 Species

LDM membranes were incubated with affinity purified anti~vpl65 antibody 

linked to Staph, a. cells to selectively immunoadsorb vesicles containing the 

aminopeptidase vpl65 (section 2.5.5). 100 pg of LDM membranes and 2pg of 

affinity purified anti-vpl65 antibody were employed per immunoadsorption. 

Resultant vesicles and LDM fractions (20 pg protein per fraction) were 

immunoblotted using anti-GLUT3 antiserum to determine the extent of co­

localisation of vpl65 and epitope-tagged mutant GLUT4 species.
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Figure 3.9

Immuno-electron M icroscopy of y-adaptin and 

Recombinant GLUT4 in Isolated V esicles

Intracellular vesicles were prepared from 3T3-L1 adipocytes expressing either 

LAG (Panels A-D) or TAG (Panels E-F). V esicles adsorbed to 

formvar/ carbon-coated copper grids were double-labelled using antibodies 

specific for y-adaptin (15nm gold) and the human GLUT3 epitope (lOnm 

gold). Bar = lOOnm. Several experiments of this type were quantified and the 

results are presented in Table 3.1.
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Table 3.2

Co-localisation of y-adaptin and GLUT4 Mutants by 

Immuno-electron Microscopy

Intracellular vesicles from the indicated mutant cell lines were used for 

immunogold EM as outlined in section 3.3.3. These results show the extent of 

colocalisation of epitope-tagged recombinant transporters with y-adaptin, and 

are the results of four independent experiments. The number of vesicles 

labelled with the indicated antibodies is shown. Colocalisation was 

determined using two sizes of gold particles to detect either y-adaptin or 

recombinant GLUT4 molecules. The percentage of TAG/LAG containing 

vesicles containing y-adaptin is shown for TAG3B1 and the two LAG clones 

examined (LAG1A5 and LAG1D3). Also shown is the percentage of TAG or 

LAG gold particles present within y-adaptin positive vesicles.
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3.5 Discussion

As a first step towards understanding the subcellular trafficking of the 

above mutants, I em ployed sucrose gradient centrifugation analysis to 

examine the gross targeting of the TAG, FAG and LAG mutants in the 

intracellular membranes of 3T3-L1 adipocytes (Figure 3.2). TAG and LAG 

exhibited broadly similar patterns of buoyant density on sucrose gradients 

to that observed for endogenous GLUT4, suggesting that these species were 

targeted to similar membrane compartments (Figure 3.2). In contrast FAG 

exhibited a much more restricted pattern of buoyant density and thus may 

be m is-targeted in the intracellular membranes of 3T3-L1 adipocytes 

(Figure 3.2).

It has been show n that the F̂  to A^ substitution (FAG) results in the 

accumulation of the majority of FAG at the plasma membrane [Marsh et 

aL (1995)]. Despite this mis-targeting, the low level of the FAG mutant that 

rem ains in  the intracellu lar LDM fractions retains its insulin- 

responsiveness in 3T3-L1 adipocytes. This indicates that the presence of 

FAG in the LDM fraction represents its targeting to an intracellular 

compartment, rather than a plasma membrane contamination of the LDM 

fraction. Furthermore, the insulin regulatibility of FAG implies that it has 

not been grossly mis-targeted but rather is localised to a compartment 

similar to endogenous GLUT4. Using the Tf-HRP ablation procedure, I 

have observed that the intracellular fraction of this protein can be 

extensively ablated by Tf-HRP loading, to an extent far greater than either 

TAG or the native endogenous GLUT4 (Figure 3.4 and Table 3.1). This 

result argues that the portion of FAG present intracellularly is localised to a 

TfR containing compartment, most probably the recycling endosomal
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system. Furthermore, this observation argues that FAG is unable to gain 

access to, or does not accumulate in, the non-ablated compartment.

The ablation efficiency of LAG expressed at either low  or high levels was 

markedly reduced compared to either TAG or wild-type GLUT4,, implying 

that the majority of this mutant, in contrast to FAG, is not localised to the 

recycling endosomal system (Figure 3.4 and Table 3.1). The observation  

that LAG is expressed in an intracellular location and capable of insulin- 

stimulated translocation to the plasma membrane suggests that the gross 

targeting of this species to an insulin-sensitive location(s) is not impaired 

[Marsh et al. (1995)]. However, compared to either w ild-type GLUT4 or 

TAG, this species exhibits little or no ablation after Tf-HRP load, implying 

that in the basal state, LAG is effectively sequestered into the non-ablated 

compartment and does not extensively populate the recycling endosomal 

system. One possibility is that LAG is shuttled into a separate intracellular 

compartment distinct from both the recycling endosome and that housing 

GLUT4. This is unlikely because (1) the buoyant density of LAG-containing 

membranes is similar to that of endogenous GLUT4, (2) insulin stimulates 

LAG translocation to an extent comparable to endogenous GLUT4 [Marsh 

et al. (1995)], and (3) vesicle immunoadsorption data has shown that LAG 

co-fractionates w ith  another marker for the in tracellu lar g lu T 4  

compartment, the aminopeptidase vpl65 (see below).

The analysis of the epitope-tagged mutant species in this fashion does not, 

how ever, defin itively address the issue of co-localisation  w ith  the 

endogenous GLUT4 protein. I therefore undertook a series of vesicle 

im m unoadsorption experim ents to study the overlap of the m utant 

GLUT4 species w ith the endogenous GLUT4 and the insulin-regulated
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aminopeptidase vpl65 to specifically address this point (Figures 3.6-8). This 

analysis em ployed anti-GLUT3 antiserum to selectively immunoadsorb 

membranes containing the expressed mutant species. Using this approach 

I was unable to quantitatively deplete intracellular membranes of GLUT3. 

For each clone of TAG and LAG examined, we have observed between 50 

and 70% depletion of immunoreactive GLUT3 from the LDM fraction 

(Figure 3.6). Depletion of vpl65 was consistently observed in the same 

membrane fractions (Figure 3.7) arguing in favour of co-localisation of 

these proteins. Furthermore, vp l65 was also observed in intracellular 

vesicles isolated from both TAG and LAG clones using anti-GLUT3 

antibodies (Figure 3.7). Such data provide compelling evidence that both 

TAG and LAG exhibit considerable co-localisation with endogenous vpl65, 

and thus by analogy, endogenous GLUT4. Immunoadsorption of LDM 

membranes using anti-vp 165 was also attempted as a means to study the 

co-localisation of these proteins. Recombinant GLUT4 was consistently 

observed in vpl65-containing vesicles isolated from TAG and LAG, 

consistent with at least partial overlap of these proteins (Figure 3.8). The 

inability to quantitatively immunodeplete LDMs of either GLUT3 or vpl65  

using these two antibodies has precluded a more detailed analysis of their 

colocalisation in these cells. However, the fact that both TAG and LAG 

exhibit insulin-stim ulated translocation to the plasma membrane to an 

extent similar to that of native GLUT4 strongly argues that these two 

recombinant proteins are appropriately localised in 3T3-L1 adipocytes.
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3.5.1 Interpretation of Mutant GLUT4 Trafficking Between

M ultiple Intracellular Compartments

I have attempted to interpret this data in the light of the previous kinetic 

m odels describing the intracellular distribution of GLUT4 in adipocytes 

[Yeh et al. (1995), Araki et al. (1996)]. These studies im ply that mutating 

either to A^ or L189L490 to A^^9a490 disrupts the intracellular 

distribution of GLUT4 within the endosom al/TGN system. This supports 

the contention that GLUT4 is partitioned between at least two intracellular 

compartments in adipocytes, and that this distribution is signal mediated 

[Slot et al. (1991a), Slot et al. (1991b), Holman et al. (1994), Slot et al. (1997)]. 

Mathematical models of GLUT4 trafficking in adipocytes have suggested  

the presence of at least two intracellular GLUT4 pools [Holman et al. (1994), 

Yeh et al. (1995)]. The first corresponds to a recycling endosom al 

compartment (Xee in Figure 3.10), which represents the compartment to 

which GLUT4 is internalised from the plasma membrane. The second 

pool is segregated from the recycling endosom al pool, and has been 

referred to as the tubulo-vesicular compartment (Xtv in Figure 3.10). It has 

been suggested that this pool may serve to regulate the cell surface levels of 

GLUT 4 in response to insulin [Holman et al. (1994), Yeh et al. (1995)]. 

Using this model, 1 argue that Xee is analogous to the ablated compartment 

and Xtv lo the non-ablated compartment; Xp is the plasma membrane pool.

This analysis of both endogenous GLUT4 and TAG3B1 using the ablation 

technique suggests that the distribution of these proteins between Xee and 

Xtv is roughly 40% and 60% respectively. Using the model of Figure 3.10, 

sim ulations were performed to m odel this distribution (Table 3.3). By 

mathematical modelling of the steady-state distribution of GLUT4 between
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the two intracellular compartments (Xee and Xtv in Figure 3.10), it can be 

shown that at steady-state the ratio of the distribution of GLUT4 between 

these two compartments is given by:

X ee /  ^ tv  -  (k%  +  k 4 ) / k g e q

and that this ratio is independent of the endocytosis rate ( k e n d o )  [Holman e t 

ah (1994), Araki et ah (1996)]. To model a distribution akin to that proposed 

from ablation analysis dictates refinement of the estimate for the values of 

either kgeq or k ,̂ which have been used in other studies [Holman et al. 

(1994)].. As show n in Table 3.3, it is possible to m odel a reasonable 

approximation of the subcellular distribution by decreasing kgeq, with no 

effect on k .̂ This m odel gives both a reasonable fit to the measured 

subcellu lar distribution, and also adequately m od els changes in 

GLUT4/TAG distribution in response to insulin. H owever, this model 

may be inadequate to explain all aspects of the phenotypes of the mutant 

species examined here. These are discussed further below.

3.5.2 LAG and FAG Mutant Distribution

Intracellular FAG exhibited increased ablation compared to either TAG or 

wild-type GLUT4, suggesting that this protein was not efficiently sorted 

into the non-ablated GLUT4 pool (Xtv iu Figure 3.10). Furthermore, >90% 

of the LAG is in a non-ablated compartment. Invoking the m odel of 

Figure 3.10, this im plies that one of the consequences of the di-leucine 

substitution is to decrease the ratio Xee / Xtv, and in the case of FAG, this 

ratio is considerably increased. Thus, the phenotype of these mutants m ust 

be explained by alterations to one or more of three rate constants: k2, k ,̂ or
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kseq- defines the m ovement of GLUT4 from the insulin-responsive 

intracellular compartment to the plasma membrane. k2 is unlikely  

modulated by these mutations because (i) this rate is slow in the absence of 

insulin, and (ii) it is argued that the exocytosis of membrane / membrane 

proteins is defined by proteins which regulate movement of the vesicle 

rather than by the protein cargo itself (it should be noted that it has not 

been definitively established that the step defined by k2 can actually occur 

in vivo). Hence, an explicit assumption of the model of Figure 3.10 argues 

that k2 is regulated independently of the protein cargo.

Therefore, alterations in the ratio of Xge / Xtv defined by ablation may 

reflect changes in k4 and/or kgeq- Birnbaum and Holman have argued that 

k4 is independent of transporter isoform (when comparing trafficking of 

GLUT4 and GLUTl in adipocytes) [Yeh et al. (1995), Araki et al. (1996)]. 

Hence, one interpretation is that the di-leucine mutant may exhibit an 

increased rate of sequestration (kgeq)- However, the assumption that k  ̂ is 

independent of transporter isoform  has not been  experim entally  

demonstrated. The possibility that sorting signals w ithin  GLUT4 may 

regulate such a step is plausible. I therefore set out to m odel the 

distribution of LAG within the model of Figure 3.10. Table 3.3 indicates 

that a reasonable fit to the observed data can be achieved by increasing kggq 

by a factor of 2, coupled with a change in kendo has been proposed by 

others [Verhey et al. (1995), Yeh et al. (1995), Araki et al. (1996), Garippa et 

al. (1996)]. Because the ablation technique precludes kinetic analysis of 

trafficking, I have not attempted to further elaborate upon the kinetics 

outlined in Table 3.3. These sim ulations do how ever indicate that 

significant changes in transporter distributions can be m odelled with only 

small changes in the rate constants for individual steps.
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Within the context of the model of Figure 3.10, explaining the patterns of 

ablation of LAG requires that this mutation modulates sorting into the 

insulin-responsive (non-ablated) compartment, Xtv Several studies have  

strongly argued that the di-leucine motif is not involved in the sorting of 

GLUT4 to an insulin-responsive compartment [Marsh et ah (1995), Verhey 

et ah (1995)]. As such, it is difficult to reconcile the behaviour of LAG 

within the model of Figure 3.10. 1 have therefore considered an alternative 

m od el of GLUT4 trafficking (Figure 3.11) w hich, although only  

hypothetical, can reasonably predict the behaviour of all the GLUT4 

mutants studied to date.

3.5.3 An Alternative Model of GLUT4 Trafficking

1 propose a modification of the m odel of Figure 3.10 to account for the 

behaviour of FAG and LAG in the ablation experiments. The revised  

m odel is show n in Figure 3.11. In this m odel, GLUT4 is initially  

in tern a lised  in to  an en d osom al com partm ent (Xge)- From this  

compartment, GLUT4 is proposed to traffic into the TGN (Xtgn), and thence 

into the tubulo-vesicular storage compartment (Xtv) (this compartment 

may also derive in part directly from the endosomal compartment). The 

addition of the TGN in the trafficking scheme of GLUT4 was important for 

several reasons. F irstly, several stu d ies u sin g  im m uno-electron  

microscopy have provided com pelling evidence in favour of GLUT4 

recycling involving the TGN in both adipocytes and cardiomyocytes [Slot et 

ah (1991a), Slot et ah (1991b), Slot et ah (1997)]. Here it is shown that there is 

a significant overlap between GLUT4 and y-adaptin. a component of the 

heterotetrameric adaptor complex associated with the TGN. Secondly, the 

addition of this extra compartment to the m odel of GLUT-4 trafficking
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provides an attractive explanation for the observed phenotypes of LAG and 

FAG described above, and also for the sorting of further chimeric 

transporters observed by others without the need to invoke changes in kgeq 

and k4. Finally, it was felt important to consider that both Xee and Xtv are 

capable of responding to in su lin  by m oving cargo to the plasm a  

membrane. Xee is clearly insulin-responsive, as indicated by the insulin- 

stimulated movement of endosomal proteins (such as the TfR and GLUTl) 

to the plasma membrane [Tanner & Leinhard (1987), Calderhead et al. 

(1990), Robinson et al. (1992)]. Hence, in considering the behaviour of any 

mutant or chimeric GLUT4 species, this important point should be kept in 

mind. In the m odel of Figure 3.10 as considered by Yeh et al. (1995), Xee 

was proposed to be m inim ally insulin-responsive. This important 

distinction w ill be returned to below.

This study proposes that the internalisation of GLUT4 into the early 

endosomes (Xee) is dependent upon the well-characterised internalisation 

motifs, FQQI in the amino-terminus, and LL in the carboxy-terminus 

[Garripa et al. (1994), Garripa et al. (1996)]. The next step in this proposed 

trafficking pathway involves the sorting of GLUT4 into the TGN (Xee to 

Xtgn in Figure 3.11). I suggest that this step is dependent upon the FQQI 

motif in the amino-terminus. If this were the case, FAG would be unable 

to sort further into the endosomal system, and thus be unable to reach the 

non-ablated compartments (Xtgn and Xtv in Figure 3.11). In contrast, both 

TAG and LAG would be predicted to gain access to Xtgn in this model, and 

thus be able to sort into Xtv The possibility that the trafficking of GLUT4 

from Xee to Xtgn is dependent upon the interaction of coat-proteins with 

the FQQI motif in the amino-terminus is an attractive proposition. Recent 

studies have suggested that variants of the YXX0-type sorting sequences
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may exist w hich dictate subtly different sorting events for membrane 

proteins [Ohno et al. (1996)]. It is possible that FQQI may be a further 

example of this variation. If this motif were disrupted, then GLUT4 would  

be expected to become localised to the recycling endosomal system. Our 

ablation data (Table 3.1 and Figure 3.4) are consistent with this phenotype 

for the FAG mutant.

In the case of native GLUT4, recycling back to the cell surface would  

depend upon m ovem ent of GLUT4 from Xtgn lo ^ee* On the basis of 

ablation results (Table 3.1 and Figure 3.4), I suggest that this step might be 

dependent upon the interaction of adaptor proteins w ith the LL motif 

within the carboxy-terminus. The sorting of some proteins at the TGN 

requires the formation of clathrin-coated vesicles, and is dependent upon 

the function of the AP I complex [Pearse & Robinson (1990), Page & 

Robinson (1995), Seaman et al. (1996)], although it should be noted that 

other proteins exit the TGN in non-clathrin coated vesicles. It has been 

show n that y adaptin (a component of the AP I complex) and GLUT-4 

exhibit substantial co-localisation within 3T3-L1 adipocytes [Millar, C. A., 

Martin, S. M., James, D. E. and Gould, G. W. (unpublished data)]. Thus, the 

sorting of GLUT4 from Xtgn to Xee might reasonably be proposed to be via a 

di-leucine motif-dependent interaction with AP I. Such interactions of LL 

containing peptides with AP I have been clearly demonstrated for other 

recycling membrane proteins, such as the mannose-6-phosphate receptor 

[Sosa et al. (1993), Heilker et al. (1996)]. Thus, in the case of the LAG 

mutant, disruption of this m otif w ould be predicted to result in LAG 

accumulation in either Xtgn or Xtv as a consequence of a reduced rate of 

movement from Xtgn to Xee-
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Based on evidence from several laboratories, it can be shown that Tf-HRP 

does not gain access to the TGN. This has been demonstrated by previous 

studies which show ed no ablation of the TGN-marker protein TGN38 in 

adipocytes after Tf-HRP loading [Livingstone et ah (1996)], and also in other 

cell types using electron microscopy [Klumperman et ah (1993)]. Hence, the 

observed decrease in ablation of LAG compared to either native GLUT4 or 

TAG could be a consequence of this protein being preferentially localised to 

Xjgn and/ or X ŷ.

Although hypothetical, the model of Figure 3.11 offers an attractive frame­

work within which to explain the expression level-dependent sorting of 

LAG, and also the behaviour of other mutant transporters. In a previous 

study, it was shown that when expressed at high levels, LAG exhibits mis- 

sorting to the cell surface [Marsh et al. (1995)]. This phenotype could be 

explained on the basis of a mis-sorting of LAG from Xtgn to ^ee when  

expressed at high levels. In this situation, the over-expression of the 

protein may effectively overcome the fidelity of sorting and result in the 

accumulation of LAG at the cell surface. Such a phenomenon has been 

reported for other recycling membrane proteins, notably the transferrin 

receptor [Warren et al. (1997)].

I have argued that FAG is confined to the ablated compartment (Xee)- 

However, some comment on the overall phenotype of FAG is appropriate. 

Previous studies have show n that although the majority of FAG is 

localised to the cell surface of adipocytes, insulin is capable of eliciting an 

increase in the cell surface FAG levels [Marsh et al. (1995)]. Thus, it could 

be proposed that the major function of firstly the FQQI motif and secondly 

the non-ablated compartment may be to remove GLUT4 from the recycling
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pool and thus m aintain low  cell surface expression of GLUT4 in the 

absence of insulin. Although intracellular FAG is predominantly localised 

to the recycling pool, it still exhibits ready movement to the cell surface in 

response to insulin [Marsh et al. (1995)]. This suggests that the recycling 

endosom al pool (Xee) is insulin-responsive', a suggestion  which is 

consistent w ith  the insulin-stim ulated translocation of other proteins 

resident within endosomes, such as TfR and GLUTl [Tanner & Leinhard 

(1987), Calderhead et al. (1990), Kandror et al. (1995), Kandror et al. (1996)]. 

For this reason, this study does not refer to the non-ablated compartment 

( X t v )  as the 'insulin-responsive' compartment. A lthough this pool is 

probably m obilised to the plasma membrane in response to insulin, we 

emphasise that the recycling pool should equally be considered insulin  

responsive.

This model can also provide a frame work for interpreting other studies of 

GLUT4 targeting. For example, a chimera comprised of the GLUT4 amino- 

terminus and the GLUT4 carboxy-terminus; 4HB1 in [Verhey et al. (1995)] 

(Figure 1.6), would be predicted to sort into Xtgn, but not gain access to Xtv 

Thus, this protein w ould be efficiently sequestered away from the cell 

surface as a consequence of the presence of the FQQI motif; this would  

further allow  m ovem ent of the chimeric species into Xtgn- H owever, 

subsequent sorting into Xtv would not be expected, as this sorting event is 

proposed to be mediated by signals in the carboxy-terminus of GLUT4 

[Verhey et al. (1995), Marsh et al. (1995)]. Yeh and colleagues argue that 

4HB1 is efficiently  sequestered intracellularly, but is not insulin- 

responsive. In their kinetic analysis of the species, they explain this by 

suggesting that 4HB1 is localised to Xqq, which is m inim ally insulin- 

responsive [Yeh et al. (1995)]. As discussed previously, I propose that Xee is
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capable of insulin-stimulated movement to the plasma membrane, hence 

the addition of Xtgn provides a compelling explanation for the observed 

behaviour of this mutant [Verhey et a l  (1995)].

The lack of kinetic data on the individual sorting events which define the 

model of Figure 3.11 preclude any kind of hypothetical kinetic analysis of 

the trafficking of GLUT4 through such a complex pathway. However, it 

can be argued that each component of this sorting pathway has a precedent 

in the published literature, and moreover the model offers an attractive 

scheme w ithin  w hich to interpret the behaviour of GLUT4 mutants 

defective in subcellular sorting. The application of the ablation technique 

to the study of GLUT4 mutants has clearly illustrated that individual 

targeting motifs within GLUT4 may function at more than one stage in the 

trafficking pathway of this protein. Both the amino-terminal FQQI motif 

and the carboxy-terminal LL motif could be reasonably argued to act at 

m ultiple points in the trafficking itinerary. D efining the mechanism  

behind these sorting events represents an important goal.
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Figure 3.10

M odified Three-Pool M odel of GLUT4 Trafficking

This m odel of GLUT4 trafficking proposes tw o major intracellular 

compartments, the endosom al pool ( X e e )  and the "insulin-responsive" 

compartment (Xirv). In this m odel, GLUT4 can m ove from the "insulin- 

responsive" compartment to the cell surface (defined by the rate constant K 2 ) .  

GLUT4 is view ed as being sequestered from the recycling pathway via a 

sequestration step ( K s e q )  in the basal state into the "insulin-responsive" 

compartment. This model is taken from Yeh et ah (1995).
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Figure 3.11

Alternative Model of GLUT4 Trafficking

This model represents a refinement of the 3-pool model of GLUT4 trafficking 

in Figure 3.10, in which an extra compartment, the trans-Gol^i network ( X t g n ) ,  

is considered as an integral compartment in GLUT4 recycling. Note that the 

sequestration of GLUT4 into X t v  may arise from either the endosomal ( X e e )  or 

TGN ( X t g n )  compartments in this model.
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Table 3.3

Computer M odelling of GLUT4 and LAG Subcellular 

Distributions

Computer modelling of the steady-state distribution of GLUT4 between the 

three intracellular compartments show n in Figure 3.10 was performed. 

Shown are values of the individual rate constants em ployed in the 

sim ulations, and estim ates of the % of GLUT4 betw een the three 

compartments is shown. In the case of the data indicated by *, the rate 

constants were those used by Yeh etal. (1995) to model GLUT4 distribution. 

In an effort to model a distribution between the Xee and Xirv compartments 

more akin to the values obtained from the ablation experiments, some of the 

rate constants were modified and the resulting changes in GLUT4 distribution 

considered. The modified rate constants shown were those which gave the 

best fit to the data obtained from the ablation experiments. In the case of the 

LAG mutants, alterations to Kendo were in line with those reported by Yeh gf 

al. (1996) and Garippa et al. (1996).
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3.6 Summary

In this study I have been able to resolve distinct effects of mutating either 

(FAG) or l489l490 (LAG) to alanine residues, on the intracellular sorting 

of GLUT4 in adipocytes. FAG was predominantly expressed at the cell 

surface, but the small intracellular pool exhibited a more restricted pattern 

of buoyant density than the endogenous GLUT4. Furthermore, ablation 

analysis suggests that the intracellular population of FAG was extensively 

ablated in a fashion similar to other markers for the early endosom al 

compartment. I therefore propose that mutation of F̂  to A^ results in the 

accumulation of GLUT4 in an early endosomal compartment, im plying  

that this motif may be involved in the trafficking of GLUT4 out of early 

endosom es. LAG exhibited a normal distribution by buoyant density 

analysis, but in marked contrast to FAG, ablation analysis indicated that 

LAG was expressed predominantly in a non-ablated compartment. I 

suggest that the di-leucine motif may be involved in the m ovem ent of 

GLUT4 from the TGN to the recycling endosomal compartment. Based on 

these findings, I propose a new model for GLUT4 trafficking in adipocytes, 

which although only speculative at present, provides a rational m odel 

within which to interpret GLUT4 trafficking.
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Chapter 4

Analysis of the Carboxy-terminal 
Phosphorylation Site in GLUT4 Trafficking
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4.1 Aims

The aims of this chapter are:

1. To determine the gross intracellular targeting of the recombinant

GLUT4 species TAG, SAG and DAG by employing the technique of 

sucrose density gradient centrifugation.

2. To examine the role of the major phosphorylation site on the

sequence of GLUT4 in the trafficking of this glucose transporter 

isoform by applying the compartment ablation technique to a 

GLUT4 species containing the mutation S 8̂8 to Â ^®.

3. To examine the role of the major phosphorylation site on the

sequence of GLUT4 in the trafficking of this glucose transporter 

isoform by applying the compartment ablation technique to a 

GLUT4 species containing the mutation to

4. To determine the subcellular distribution of the recombinant

GLUT4 species TAG, SAG and DAG in basal and insulin-stimulated 

adipocytes.
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4.2 Introduction

It is w idely acknowledged that the unique pattern of trafficking of the 

insulin-regulatable glucose transporter isoform, GLUT4, is responsible for 

its ability to facilitate the rapid and massive uptake of glucose observed in 

muscle and adipose tissue in response to insulin. Two models have been 

proposed to explain the regulated trafficking of GLUT4 in adipocytes [James 

et al. (1994)]. In the Tegulated exocytosis' model, GLUT4 is targeted to an 

insulin-responsive, intracellular storage compartment along w ith other 

proteins such as the aminopeptidase, vpl65 [Ross et al. (1996), Malide et al. 

(1997)]. Insulin or other agonists might recruit GLUT4 to the cell surface by 

enhancing the exocytosis of this compartment. Thus, the distinguishing 

feature of this m odel is that insulin does not directly alter the intrinsic 

sorting of individual proteins but rather the compartment to which they 

are sorted into.

The second model, that of 'regulated recycling', suggests that proteins are 

differentially sequestered w ithin endosom es as a function of the rate 

constants that direct their recycling through this system . These rate 

constants are determined by the efficiency of the targeting motifs within  

the cytoplasmic tails of different recycling proteins. The distinguishing  

feature of this m odel is that insulin may directly alter the rate constants 

that determ ine the recycling rates of each ind ividual protein. This 

modification could involve an effect of insulin on the sorting machinery 

per se, or on the proteins themselves.
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It has previously been shown that GLUT4 is directly phosphorylated by 

agents that regulate GLUT4 trafficking in adipocytes [James et al. (1989b), 

Lawrence et al. (1990a)]. This raises the possibility that this type of covalent 

modification may play an important role in the regulated recycling of 

GLUT4 in  in su lin -sen sitive  cells. p-adrenergic agonists such as 

isoproterenol, cAMP derivatives such as dibutyryl-cAMP and 8-bromo- 

cAMP, and the serine / threonine phosphatase inhibitor, okadaic acid, all 

cause a marked increase in GLUT4 phosphorylation in vivo  [James et al. 

(1989b), Lawrence et al. (1990a), Lawrence et al. (1990b), Nishimura et al. 

(1991), Piper et al. (1993a)]. These agents have also been reported to induce 

GLUT4 translocation to the cell surface when added alone, or to inhibit 

GLUT4 movement when added in combination with insulin [Lawrence et 

al. (1990b), Corvera et al. (1991), Rampai et al. (1995). Livingstone et al. 

(1996), Rondinone & Smith (1996)].

The site of phosphorylation in GLUT4 has been mapped to a serine residue 

at position 488 within its cytoplasmic carboxy-terminal tail [Lawrence et al. 

(1990a)]. This site is unique to GLUT4, as no site corresponding to S488 is 

present in other glucose transporter isoforms [Lawrence et al. (1990a)]. 

Moreover, this residue is im m ediately adjacent to a d i-leucine m otif 

(L489l490) in the carboxy-terminus which plays an important role in the 

intracellular targeting of GLUT4 in adipocytes [Marsh et al. (1995), Verhey 

et al. (1995)]. Mutation of this di-leucine motif results in increased cell 

surface levels of GLUT4 in adipocytes as a consequence of impaired  

internalisation [Verhey et al. (1995)]. Di-leucine motifs have been shown  

to regulate both internalisation and intracellular sorting events in 

numerous recycling membrane proteins such as the T cell surface antigen 

CD4 [Shin et al. (1990), Shin et al. (1991)], the signal transducing component
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(gpl30) of the interleukin-6 receptor complex [Dittrich et al. (1996)], the 

CD3y subunit of the T cell receptor [Letourneur & Klausner (1992)], IGF 

II/MPR [Lobel et al. (1989), Johnson & Kornfeld (1992b)], and the CD-MPR 

[Johnson et al. (1990), Johnson & Kornfeld (1992a)]. Interestingly, changes 

in the phosphorylation state of serine residues juxtaposed to, and amino- 

terminal of, di-leucine motifs in all of these proteins have been proposed 

to modulate their sorting.

Phosphorylation of GLUT4 at S488 does not appear to be involved in the 

inhibitory effect of dibutyryl-cAM P on insulin-stim ulated transporter 

function [Piper et al. (1993a)]. It has not been ascertained, however, if 

phosphorylation at this site is involved in triggering the m ovement of 

GLUT4 to the cell surface or in regulating its sorting intracellularly. The 

following results show that the regulatable movement of the S488 mutant 

to the cell surface is indistinguishable from wild-type GLUT4 in adipocytes, 

demonstrating that phosphorylation does not play a major role in the 

regulated exocytosis of GLUT4. However, the extent of co-localisation 

between GLUT4 and the y-adaptin subunit of the Golgi adaptor complex, 

AP-1, was increased when S488 was mutated to alanine, suggesting that 

phosphorylation might modulate the sorting of GLUT4 at the TGN.
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4.3 Materials and Methods

4.3.1 Human GLUT3 Epitope-tagged GLUT4 Transporters

The m ethodology detailing the construction of human GLUTS epitope- 

tagged transporter cD N As, and their stable transfection into 3T3-L1 

fibroblasts is documented in Marsh et al. (1995).

4.3.2 Expression Levels of Recombinant GLUT4 Constructs in 

Adipocyte Cell Lines

The constructs em ployed in this study have been characterised in 3T3-L1 

fibroblasts and adipocytes previously by subcellular fractionation and 

indirect immunoflourescence microscopy [Marsh et al. (1995)]. Multiple 

clonal cell lines expressing recombinant GLUT4 constructs at a range of 

expression levels were classified in two broad categories: low  expressors, in 

w hich total GLUT4 expression was at a level comparable to that of 

endogenous GLUT4 in untransfected adipocytes, and high expressors, 

where total expression was >4-fold higher than endogenous GLUT4 

expressed by non-transfected adipocytes. Hence, specific cell lines were 

selected for more detailed analysis based on the following:

(1) Two independent clones, containing the to A^88 m utation  

(SAG), w ith differing expression levels (SAG2B3 and SAG1B6, high and 

low  expressors, respectively) were selected for further analysis by 

endosomal ablation and buoyant density analysis.
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(2) Two independent clones, containing the S488 to 0^88  niutation  

(DAG), with differing expression levels (DAG4B1 and DAG3B5, high and 

low  expressors, respectively) were selected for further analysis by 

endosomal ablation and buoyant density analysis.

(3) As a com parison w ith  w ild-type GLUT4 targeting, the clone 

expressing the highest levels of TAG (TAG3B1) was selected for analysis 

(section 3.3.2.(1))

Figure 4.1 presents a schematic illustration of these mutants.

4.3.3 Immuno-electron Microscopy

This technique was carried out as detailed in section 3.3.3.

4.3.4 Antibodies

The antibodies used in this study were as detailed in section 3.3.4.
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Figure 4.1

Schematic Representation of Human GLUT3 Epitope- 

Tagged Mutant GLUT4 Transporters

Summary of the recombinant GLUT constructs used in these studies. A  

foreign epitope encompassing the carboxy-terminal 12 amino-acid residues 

from human GLUTS (red) is included as an additional tag at the 3' end of the 

full length GLUT4 cDNA. Wild-type GLUT4 epitope-tagged in this fashion is 

referred to as TAG. Epitope-tagged GLUT4 containing point mutations of 5^88 

to either A ^88 qj- p)488̂  are referred to as SAG and DAG respectively. The 

positions at which point mutations to alanine are present are shown in blue.
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4.4 Results

4.4.1 Buoyant Density Analysis of TAG, SAG and DAG Mutants

In an attempt to determine the effects of the Ŝ 88 to A^88 (SAG) and S488 to 

D488 (DAG) m utations on the trafficking of GLUT4, I em ployed the 

technique of sucrose density gradient centrifugation to investigate the 

buoyant density of these mutants in adipocyte subcellular membranes. As 

stated previously, this analysis provides information regarding the gross 

targeting of SAG and DAG rather than yielding detailed information on 

the specific intracellular compartments to which these exogenous GLUT4 

mutants are trafficked. LDM membranes from these mutants were 

separated by centrifugation on sucrose gradients and the distribution of 

m utant GLUT4 determ ined by im m unoblotting w ith  anti-GLUT3 

antibodies. The results of this analysis are presented in Figure 4.2.

Im m unoblotting of the subcellular membrane fractions revealed that 

endogenous GLUT4 was observed to sediment primarily in fractions 3 to 8 

(Figure 4.2). TAG was observed to sediment in a very similar fashion to 

endogenous GLUT4, confirming previous studies which have shown an 

identical subcellular distribution for this species [Marsh et al. (1995)] (Figure

4.2). The S 8̂8 to A^88 mutant, SAG, was also found to sediment at similar 

densities, suggesting that the gross targeting of this mutant w ithin  

intracellular membranes of adipocytes is not significantly disrupted (Figure

4.2).

In contrast, analysis of the distribution of the intracellular pool of DAG 

revealed a different pattern of buoyant density (Figure 4.2). This
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recombinant GLUT4 mutant was confined to a more restricted fraction of 

intracellular vesicles (fractions 1 to 4). This observed shift in the buoyant 

density of the S488 to 0^88  mutant provides evidence to suggest that the 

intracellular distribution of DAG may be distinct from either endogenous 

GLUT4, TAG or SAG.

A graphical representation of the comparative buoyant density profiles of 

the above mutants is provided by Figure 4.3.

4.4.2 Compartment Ablation Analysis of TAG, SAG and DAG

Mutants

The technique of compartment ablation analysis was em ployed to examine 

the intracellular distributions of the SAG and DAG mutants. As stated in 

section 3.4.2, TfR-positive intracellular compartments loaded with a Tf- 

HRP conjugate for either Ihr or 3hr at 37°C are cross-linked and rendered 

insoluble ( ablated ) by the addition of D A B /H 2O2. Thus, this technique 

selectively ablates the endosomal recycling pathway but not intracellular 

compartments withdrawn from the endosomal system [Livingstone et al. 

(1996)].

The results of ablation experim ents fo llow ing either a Ihr of 3hr 

incubation with Tf-HRP are summarised in Table 4.1, and representative 

immunoblots are shown in Figure 4.4. Control experiments in which the 

cells were incubated for Ihr with Tf-HRP at 4“C and then ablated were 

performed. Under these conditions, no internalisation of Tf-HRP is 

expected, and consistent with this no ablation of the TfR, w ild-type or 

recombinant GLUT4 was observed from LDM membranes.
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In contrast, cells incubated with Tf-HRP for 3hr at 37°C exhibited a 

significant peroxide-dependent loss of TfR from the LDM membranes 

consistent with previous findings [Livingstone et al, (1996)] (Figure 4.4). 

The patterns of ablation exhibited by epitope-tagged w ild-type GLUT4 

(TAG) in transfected adipocytes were not significantly different from 

endogenous GLUT4 in native adipocytes and were consistent w ith  

previous findings [Livingstone et al. (1996)] (Figure 4.4).

Ablation experiments with adipocytes expressing SAG and DAG showed  

that these mutants appear to be distributed between ablated (-40%) and 

non-ablated (-60% ) intracellular membranes sim ilarly to TAG and 

endogenous GLUT4 in the basal state under the experimental conditions 

exam ined in this study (Figure 4.4). Thus, the patterns of ablation 

exhibited for SAG and DAG were not significantly different from  

endogenous GLUT4 in non-transfected adipocytes.

A further control experiment was performed in order to determine that 

the ablation procedure was functioning efficiently. Samples from the 

mutants cell lines were immunoblotted using an anti-TfR antibody, and as 

expected, after incubation at 4°C for Ihr no ablation was observed for each 

mutant (Figure 4.5). In contrast, cells incubated with Tf-HRP for Ihr at 

37°C exhibited an almost complete peroxide-dependent loss of TfR from 

the LDM membranes consistent with previous findings [Livingstone et al, 

(1996)] (Figure 4.5).

NB. The results produced by the above analysis of the S488 to D488 (DAG) 

mutant are conflicting in nature. The buoyant density analysis suggests 

that the intracellular distribution of DAG may be distinct from either
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endogenous GLUT4, TAG or SAG. However, using the compartment 

ablation technique I have shown that DAG displays a pattern of ablation 

not significantly different from endogenous GLUT4, indicative of a normal 

intracellular distribution in adipocytes. At present I am unable to resolve 

the conflicting nature of these results and as such the remaining studies in 

this chapter concentrate solely on the characterisation of the S488 to A488 

(SAG) mutant. Further investigation is required to characterise the DAG 

mutant.

4.4.3 Subcellular Distribution of TAG and SAG in Basal and

Insulin-stimulated Adipocytes

It has been previously show n that the recombinant GLUT4 mutant TAG 

exhibits a predom inantly intracellular distribution in the absence of 

insulin, as assessed by immunoblotting membrane factions prepared by 

differential centrifugation [Marsh et aL (1995)]. TAG, like wild-type GLUT4, 

was recovered in the LDM fraction, and was almost entirely excluded from 

the plasma membrane fraction. The basal distribution of TAG and wild- 

type GLUT4 are almost identical in adipocytes as indicated by the PM/LDM  

ratios calculated from subcellular fractionation data: (0.12 and 0.16, 

respectively). Thus, the intracellular sequestration of TAG was m aintained  

despite a level of GLUT4 expression approximately 6-fold greater than that 

observed in non-transfected adipocytes (Figure 4.6). TAG exhibited a 5-fold 

increase in the PM fraction with insulin similar to that observed for wild- 

type GLUT4 (4-fold), with a corresponding decrease from intracellular 

membranes (Figure 4.6).
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Two clonal cell lines expressing SAG were selected for study based on their 

relative expression levels. W estern blots of subcellular membrane 

fractions prepared from adipocytes incubated in the absence of insulin  

treatment showed that SAG was found to be mostly absent from the PM 

fraction, and was retrieved predominantly within the intracellular (LDM) 

membrane fraction in a manner similar to TAG (Figure 4.6). Despite 

marginally higher PM /LDM  ratios for SAG1B6 (0.28) and SAG2B3 (0.25) 

(calculated from the fractionation of non-insulin-stim ulated adipocytes), 

these were not significantly different from the PM /LDM ratio of wild-type 

GLUT4. Furthermore, the PM/LDM ratios for SAG at both high and low  

levels of expression are in marked contrast w ith the PM /LDM  ratios 

determ ined p rev iou sly  for GLUT4 mutants in w h ich  either the 

phenylalanine-based or di-leucine-based motifs were mutated (2.46 and 

1,34, respectively), and which exhibited high cell surface distributions in 

the absence of insulin [Marsh et aL (1995)]. Following the addition of 

insulin, SAG exhibited a 5-fold and 4-fold increase in the PM fraction for 

cell lines w ith low  (SAG1B6) and high (SAG2B3) levels of expression, 

respectively, w ith corresponding decreases in the lev e l of SAG in 

intracellular membranes (Figure 4.6). The fold-increases in the PM fraction 

exhibited by adipocytes stably expressing SAG following insulin treatment 

were not significantly different from those described above for wild-type 

GLUT4 and for TAG.

As a control for the integrity of the differential centrifugation technique, 

the in tra ce llu la r  d is tr ib u tio n  of the en d o g en o u sly  expressed  

aminopeptidase, vpl65, a protein co-localised with GLUT4 in adipocytes, 

was exam ined (Figure 4.7). In both transfected and non-transfected  

adipocytes, vpl65 was recovered predominantly in the LDM fraction in the
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absence of insulin (Figure 4.7). The determination of the overall PM/LDM  

ratio for vpl65 (0.04) confirmed that it was largely absent from the PM 

fraction in basal adipocytes (Figure 4.7). With insulin treatment, the levels 

of vpl65 in the PM fraction increased 10-fold in parallel with the increased 

levels of GLUT4, with a concomitant decrease in the levels of vp l65 in the 

LDM fraction (Figure 4.7).

4.4.4 Co-localisation of TAG and SAG with y-adaptin

A second technique employed to assess the distribution of GLUT4 among 

different intracellular compartments involved  w hole m ount EM of 

intracellular vesicles prepared from 3T3-L1 adipocytes. Labelling of 

vesicles on an EM grid with two different primary antibodies followed by 

Protein-A tagged with different sized gold particles, enables a comparison 

of the distribution of two different proteins w ithin individual vesicles. 

These studies compared the extent of overlap between recombinant GLUT4 

proteins and the y-adaptin subunit of the AP-1 adaptor complex. 

Phosphorylation has previously been implicated in the recruitment of 

proteins into G olgi-derived coated vesicles [Le Borgne et al. (1993), 

Mauxion et al. (1996)]. In the present study, the proportion of total vesicles 

that were y-adaptin positive was not significantly different between the 

different adipocyte cell lines under investigation (Table 4.2 and Figure 4.8). 

The percentage of total vesicles labelled positively for TAG and SAG 

additionally reflects the differences in recombinant GLUT4 expression  

betw een different cell lines (Table 4.2). Recom binant GLUT4 was 

specifically labelled using an antibody to the human GLUT3 epitope-tag. 

Double-labelling revealed that both TAG and SAG were significantly co­

localised with y-adaptin in intracellular vesicles. Interestingly, there was a
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small but statistically significant (P<0.05) increase in the amount of SAG 

present in y-adaptin positive vesicles (determined for two different cell 

lines expressing SAG at high and low levels) compared to TAG (Table 4.2).

4.4.5 The Effects of Okadaic Acid on the Intracellular Distribution

of W ild-type and Recombinant GLUT4, vpl65 and GLUTl in 

3T3-L1 Adipocytes

To complement the above studies, the following analysis was carried out 

in the laboratory of Prof. D. E. James.

In this set of experiments the effects of okadaic acid treatment and okadaic 

acid in combination with insulin on the subcellular distribution of TAG 

and SAG in comparison to wild-type GLUT4 have been examined. The site 

of okadaic acid-stimulated phosphorylation of GLUT4 in vivo  has been 

shown to be restricted to the same cyanogen bromide cleavage fragment as 

the isoproterenol-stimulated phosphorylation site [Lawrence et al. (1990b)]. 

It has also been demonstrated that phosphorylation of the S488 to A488 

mutant is abrogated in response to isoproterenol treatment in CHO cells 

and L6 myoblasts [Piper et al. (1993a)]. This study examines the effects of 

these treatments in parallel on the redistribution of endogenous GLUTl 

and vpl65, as these proteins co-localise with GLUT4 to different extents in 

3T3-L1 adipocytes [Calderhead et ah (1990), Piper et ah (1991), Robinson et 

ah (1992), Ross et ah (1996)]. It is worth noting that the levels of vpl65  

expression were similar between the cell lines examined.
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Treatment of non-transfected adipocytes with okadaic acid, in the absence 

or presence of insulin, stimulated wild-type GLUT4 translocation by 2.2- 

and 2.3-fold, respectively (Figure 4.9A). These increases in the level of 

GLUT4 in the PM fraction were less than for the insulin-elicited response 

(65% and 67%, respectively) (Figure 4.9A). The okadaic acid and okadaic 

acid plus insulin-mediated redistribution of endogenous GLUTl and vpl65  

to the PM essentially mirrored the movement of GLUT4, and similarly, the 

increases at the PM were lower than for treatment with insulin alone (67% 

and 77% for GLUTl, and 64% and 56% for v p l65) (Figures 4.9B and 4.9C).

The levels of TAG at the PM increased 5.2- and 8.6-fold, respectively, 

follow ing treatment w ith okadaic acid alone or in com bination w ith  

insulin (data not shown). These increases were comparable to and greater 

than those observed w ith insulin  treatment alone (110% and 181%, 

respectively). The increased cell surface distributions of endogenous 

GLUTl and vp l65  again essentially mimicked that of GLUT4 (TAG) in 

TAG-expressing adipocytes. While the okadaic acid-induced increases in 

the PM fraction for GLUTl and vpl65 were comparable to, or less than, the 

increases achieved w ith  insulin  stim ulation alone (100% and 60%, 

respectively), an additive effect was demonstrated for treatment w ith  

okadaic acid in combination with insulin (127% for GLUTl and 153% for 

v p l65). These data further support the notion that phosphorylation of S488 

is not involved  in the translocation of q l UT-4 to the cell surface. 

Additionally, these results suggest that the stable expression of TAG in 

transfected adipocytes does not appreciably im pair the fundam ental 

properties of these two endogenous proteins to respond to a variety of 

agonists.
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In concert with the previous findings that the distribution of SAG in basal 

adipocytes and in adipocytes incubated with insulin was not significantly 

different from TAG, the redistribution of SAG in response to treatment 

with either okadaic acid or okadaic acid with insulin closely resembled the 

results observed for TAG (Figure 4.9A). Okadaic acid alone elicited a 3.2- 

fold increase in the level of SAG in the PM fraction (78% of the insulin- 

mediated increase), while okadaic acid plus insulin resulted in a 4.8-fold 

increase in SAG at the cell surface (116% of the insulin-mediated increase) 

(Figure 4.9A). In parallel, okadaic acid alone stimulated increased cell 

surface levels of GLUTl and vpl65 which were 91% and 84% of insulin  

treatment alone (Figures 4.9B and 4.9C). Treatment with okadaic acid and 

insulin resulted in an additive effect over that of insulin (137% for GLUTl 

and 151% for vpl65) (Figures 4.9B and 4.9C).
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Figure 4.2

Buoyant Density Analysis of TAG, SAG and DAG Mutants

Low density microsomal membranes were prepared from the indicated 3T3- 

L1 adipocyte cell clone and analysed by sucrose gradient centrifugation as 

outlined in section 2.5.5. Fractions from a 1.5-0.5M sucrose gradient were 

loaded on a 10% SDS gel from left to right. 20 ̂ Ag protein from each fraction 

was loaded onto the gel. The position of the GLUT3 epitope-tagged mutant 

GLUT4 species was then determined by immunoblotting (section 2.9.3) with  

anti-GLUT3 antibodies. Data from a representative experiment is show n  

using TAG3B1 (TAG), SAG2B3 (SAG) and DAG3B5 (DAG). Similar data were 

obtained using SAG1B6 and DAG1D3 (data not show n). By w ay of 

comparison, the distribution of endogenous GLUT4 in non-transfected  

adipocytes and LAG in transfected adipocytes is shown (GLUT4).
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Figure 4.3

Buoyant D ensity Profiles of TAG, SAG and DAG Mutants

This is a graphical illustration of the buoyant density profiles of the TAG, SAG 

and DAG mutants. The immunoreactivity of the fractions is represented by 

arbitrary units, with the fraction containing the highest level set = 1 unit.

201



Buoyant D ensity Profiles of TAG, SAG and DAG Mutants

fl 
if

1.25 n

GLUT4

TAG

 O  SAG0.75-

DAG

0.5-

0.25-

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Fraction Number



Figure 4.4

Compartment Ablation A nalysis of TAG, SAG and DAG  

Mutants

LDM membranes were prepared from 3T3-L1 adipocytes loaded with Tf-HRP 

for ihr at 4°C, Ihr at 37°C or 3hr at 37°C, before and after ablation (- and + 

hydrogen peroxide) as indicated. Figure 4.4 shows experiments for each of 

the mutant GLUT4 species exam ined (TAG=TAG3B1; SAG=SAG2B3; 

DAG=DAG3B5 experiments are shown). In these experiments, cells were 

loaded with Tf-HRP as indicated and the cells exposed to DAB in the presence 

and absence of peroxide as indicated. LDM membranes were prepared, 20 pg 

of each fraction were electrophoresed and immunoblotted using anti-GLUT3 

antibodies to study the effect of ablation on the intracellular content of each of 

the clones. Several blots of this type from at least three independent 

experiments were quantitated and the results are presented in Table 4.1.
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Table 4.1

Effect of Compartment Ablation on Intracellular GLUT4 

Levels

Duplicate sets of 10cm plates of adipocytes were loaded with Tf-HRP for Ihr 

or 3hr at 37°C. The DAB cytochemistry was then performed as described in 

section 2.5.2, with hydrogen peroxide added to one but not both plates. LDM 

membranes were prepared, 20pg protein was electrophoresed, and the GLUT4 

or GLUT3 immunoreactive signal quantitated. The difference in signals 

between the plates incubated ± peroxide is a reflection of the extent of protein 

ablation (Figure 4.4). Shown above is the signal remaining in the LDM after 

ablation expressed as a percentage of the signal in the LDM before ablation. 

The results are expressed as the means ± SEM of three experiments of this type 

on three separate platings of cells. Note that in aU these experiments, an 

additional control experiment was performed in which cells were incubated 

with Tf-HRP at 4°C and then ablated. Under these conditions, no 

internalisation of Tf-HRP is expected, and consistent with this no ablation of 

either recombinant or wild-type GLUT4 was observed (Figure 4.4). Values for 

wild-type GLUT4 were from plates of non-transfected adipocytes, measured 

using the same batch of conjugate employed for the mutants.
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Table 4.1

Effect of Compartment Ablation on Intracellular GLUT4 

Levels

Species % Signal Remaining after Ablation

Ihr at 37°C 3hr at 37°C

wt GLUT4 64 ± 3% 59 ± 8 %

TAG3B1 62 ± 8 % 60 ± 9%

SAG2B3 72 ± 3% 59 ± 6%

SAG1B6 70 ±5% 62 ± 11%

DAG3B5 64 ±5% 58 ± 8%

DAG4B1 56 ± 8 % 55 ± 10%

206



Figure 4.5

Comparative Compartment Ablation of TAG, SAG and 

DAG Mutants

LDM membranes were prepared from 3T3-L1 adipocytes loaded with Tf-HRP 

for Ihr at 4°C and Ihr at 37°C , before and after ablation (- and + hydrogen 

peroxide) as indicated. Figure 4.5 shows experiments for each of the mutant 

GLUT4 species examined (TAG=TAG3B1; SAG=SAG2B3; DAG=DAG3B5 

experiments are shown). In these experiments, cells were loaded with TfHRP 

as indicated and the cells exposed to DAB in the presence and absence of 

peroxide as indicated. LDM membranes were prepared, 20pg of each fraction 

were electrophoresed and immunoblotted using anti-TfR antibody as a control 

to ensure that the ablation procedure was functioning efficiently.
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Figure 4.6

Subcellular Distribution of Wild-Type and Recombinant

GLUT4 in 3T3-L1 Adipocytes

The subcellular distribution of GLUT4 and recombinant GLUT4 mutants are 

presented as the combined results of multiple independent differential 

centrifugation experiments. The amount of protein at the plasma membrane 

with insulin alone was normally assigned a value of 1 to normalise between 

separate experiments and between different cell hnes. Values are expressed as 

means ± SEM (arbitrary units / pig protein) determined from at least three 

independent experiments.
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Figure 4.7

Subcellular Distribution of vpl65 in Transfected and Non-
Transfected 3T3-L1 Adipocytes

The subcellular distribution of vpl65 is presented as the combined results of 

multiple independent differential centrifugation experiments. The amount of 

protein at the plasma membrane with insulin alone was normally assigned a 

value of 1 to normahse between separate experiments and between different 

cell lines. Values are expressed as means ± SEM (arbitrary units/pig protein) 

determined from at least three independent experiments
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Figure 4.8

Immuno-electron Microscopy A nalysis of y-adaptin and 

Epitope-tagged GLUT4 in 3T3-L1 Adipocytes

Intracellular vesicles were prepared from basal 3T3-L1 adipocytes stably 

expressing either epitope-tagged wild-type (TAG) or mutant GLUT4 (SAG). 

Vesicles adsorbed to form var/ carbon-coated copper grids were double 

labelled using antibodies specific for y-adaptin followed by protein-A gold  

(15nm), and GLUT3 followed by protein-A gold (lOnm). The results of four 

independent labelling experiments were quantified and the values are 

presented as means ± SEM.
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Table 4.2

Percentage of Total Intracellular V esicles Labelled for 

Either y-adaptin or Recombinant GLUT4

Intracellular vesicles were prepared from basal 3T3-L1 adipocytes stably 

expressing either epitope-tagged wild-type (TAG) or mutant GLUT4 (SAG). 

Results of 4 independent labelling experiments were quantified; values are 

means, y-adaptin vesicles were immuno-labelled with an antibody specific 

for y-adaptin follow ed by protein A-gold (15nm). GLUTS vesicles were 

immuno-labelled with an antibody specific for the human GLUTS epitope- 

tag followed by protein A-gold (lOnm).

M utant % total vesicles labelled % total vesicles labelled

with y-adaptin with GLUTS

TAG3B1 5.4 ± 0.4 7.4 ± 0.7

SAG1B6 6.8  ± 0.8 1.9 ± O.S

SAG2B3 7.9 ± 1.6 4.1 ± 0.7
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Figures 4.9A-C

The Effects of Insulin  and Okadaic Acid on the Cell 

Surface D istribution of GLUT4, GLUTl and vp l65 in 3T3- 

L1 Adipocytes

3T3-L1 adipocytes were incubated in serum-free medium for 2hr and then 

further incubated for 15 min at 37°C in the absence or presence of insulin  

(4ng/m l) with or without the addition of okadaic acid (lOpM). Subcellular 

membrane fractions (10 pg) from basal (Ins), insuhn-stimulated (+Ins), okadaic 

acid-stim ulated (OA) and okadaic acid plus insulin-stim ulated (OA+) 

adipocytes prepared by differential centrifugation and subjected to SDS-FAGE 

were electrophoretically transferred to PVDF membranes and immunoblotted 

with antibodies specific for the carboxy-terminus of GLUT4, GLUTl or human 

GLUT3, and the cytoplasmic domain of vpl65. Immunoreactive signals were 

detected by ECL followed by densitometry of autoradiograms.

The plasma membrane distribution of (A) GLUT4, (B) GLUTl and (C) vpl65  

are presented as the combined results of multiple independent differential 

centrifugation experiments. The amount of protein at the plasma membrane 

with insulin alone was normally assigned a value of 1 to normalise between 

separate experiments and between different cell lines. Values are expressed as 

means ± SEM (arbitrary units /  pg protein) determined from three independent 

experiments for wild-type adipocytes and four separate experiments for SAG- 

expressing adipocytes.
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B. The Effects of Insulin and Okadaic Acid on the Cell Surface
Distribution of GLUTl in 3T3-L1 Adipocytes
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C. The Effects of Insulin and Okadaic Acid on the Cell Surface

Distribution of vpl65 in 3T3-L1 Adipocytes
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4.5 Discussion

With respect to the data reported above, I have been unable to demonstrate 

a major role for GLUT4 phosphorylation at in promoting its insulin- 

dependent m ovement to the cell surface from intracellular membranes. 

The gross distribution of GLUT4 in w hich was mutated to alanine 

(SAG) was not significantly different from either w ild-type GLUT4 or 

epitope-tagged GLUT4 (TAG) in basal adipocytes. H owever, immuno-EM  

analysis of intracellular vesicles has revealed that the extent of co­

localisation of SAG with the y-adaptin subunit of AP-1 was significantly 

higher (P<0.05) than for TAG, suggesting  that changes in  the 

phosphorylation state of this site might regulate the intracellular sorting of 

GLUT4 to some extent. In adipocytes incubated in the presence of insulin, 

SAG translocated from intracellular membranes to the cell surface 

similarly to w ild-type GLUT4 and TAG. Furthermore, James and co­

workers found that the redistribution of SAG to the plasma membrane 

following okadaic acid treatment closely resembled that of GLUT4. These 

data demonstrate that the insulin- or okadaic acid-stimulated recruitment 

of GLUT4 to the plasma membrane is independent of the phosphorylation 

state of S488 in GLUT-4.

Phosphorylation of GLUT4 at S^88 does not appear to play a role in the 

inhibitory effects of counter-regulatory hormones on glucose transport 

[Nishim ura et al. (1991), Schurmann et al. (1992), Piper et al. (1993a)]. 

H ence, in  this study, a primary objective w as to determ ine if 

phosphorylation plays a role in the regulated trafficking of GLUT4 in 

adipocytes. Variations in subcellular distribution betw een glucose 

transporter isoform s have been attributed to heterologous amino acid
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sequences residing in the cytoplasm ic dom ains of these transporter 

proteins [Bell et al. (1990), Bell et al. (1993), James et al. (1993)]. As no site 

corresponding to S488 jg found in other GLUT isoform s, it has been 

proposed that the targeting of GLUT4 may be uniquely regulated by 

phosphorylation ([Lawrence et al. (1990a)]. Recently, it has been show n  

that a carboxy-terminal di-leucine motif (L489l490) the cytoplasm ic 

domain of GLUT4 plays an important role in its trafficking in 3T3-L1 

adipocytes [Marsh et al. (1995), Verhey et al. (1995)] (Chapter 3 of this thesis). 

This motif has the capacity to facilitate efficient and rapid internalisation 

from the cell surface, presumably via clathrin-coated pits [Corvera et al. 

(1994), Verhey et al. (1995), Garippa et al. (1996)]. Hence, it seemed possible 

that S488 might be involved in regulating GLUT4 trafficking in some way 

given its proximity to this di-leucine motif.

Changes in the phosphorylation state of serine residues flanking di-leucine 

motifs within the cytoplasmic tails of the T cell surface antigen, CD4 [Shin 

et al. (1990), SJdn et al. (1991)], the IGF II/MPR [Le Borgne et al. (1993)], the 

CD-MPR [Mauxion et al. (1996), Breuer et al. (1997)], and gpl30 [Dittrich et 

al. (1996)], are proposed to promote either internalisation or intracellular 

sorting events by inducing conformational changes in  the relevant 

targeting motifs. For example, the phosphorylation of a serine residue 

within the cytoplasmic tail of the CD3y subunit of the T-cell receptor (TCR) 

facilitates the interaction of an adjacent di-leucine-based internalisation  

signal with the plasma membrane adaptor protein subunit, AP-2, resulting 

in increased internalisation of the TCR via clathrin-coated pits [Dietrich et 

al. (1997)]. Jn view  of the fact that no significant differences could be 

observed in the steady-state distribution of SAG under basal, insulin- or 

okadaic acid-stimulated conditions compared to w ild-type GLUT4, it is
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unlikely that phosphorylation of S488 in the GLUT4 carboxyl terminus 

plays a major role in regulating the trafficking of this protein. It is 

noteworthy that previous studies have examined the effects of mutating 

the d i-leucine m otif (L489]_,490) in GLUT4 to in adipocytes. At low  

expression levels the steady state distribution of this mutant was 

indistinguishable from w ild-type GLUT4, most likely because targeting 

motifs elsewhere in the protein were able to compensate for this defect. 

However, at high expression levels this mutant accumulated at the plasma 

membrane in the absence of insulin [Marsh et al. (1995)], presumably due 

to reduced internalisation efficiency [Verhey et al. (1995)].

This study has examined the distribution of two clonal cell lines expressing 

SAG at either low  or high expression levels, and in neither case could I 

detect any disruption in gross targeting. While the possibility cannot be 

dismissed that at even higher expression levels a disruption in the insulin- 

dependent redistribution of GLUT4 would have been evident or that 

follow ing insulin  stimulation an internalisation defect may have been  

ascertained, it seems clear from these findings that phosphorylation at this 

site does not play a major role in the trafficking of GLUT4 at these steps 

either under basal or insulin-stim ulated conditions in adipocytes. 

Consistent w ith these observations, a rigorous assessm ent of carboxy- 

terminal GLUT4 targeting motifs in CHO cells revealed that although S488 

may play a m odulatory role in regulating GLUT-4 endocytosis, it is 

relatively minor compared to that played by the di-leucine motif per se 

[Garippa gf al. (1996)]. To characterise the trafficking motifs contained in 

the carboxyl terminus of GLUT4, these researchers constructed a chimera 

(GTCTR) in which the carboxy-terminal 30 amino acids of GLUT4 were 

substituted for the amino-terminal cytoplasmic domain of the transferrin
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receptor (TfR). Mutations of GTCTR were constructed in which either the 

di-leucine m otif at position 489-490 was mutated to di-alanine (GTCTR- 

AA), or the serine residue at position 488 was mutated to either alanine or 

aspartate. Each of these substitutions resulted in a shift in distribution of 

the mutated GTCTR constructs towards the cell surface. The shift in 

distribution  of GTCTR-A A resulted  from a 10-fold  decrease in 

internalisation, whereas m utation of S488 resulted in only a 3-fold  

reduction in internalisation.

It has previously been reported, particularly with respect to the CD-MPR 

and IGF II/MPR, that phosphorylation of serine residues adjacent to di­

leucine motifs in the cytoplasmic tails of recycling membrane proteins 

regulates their entry into clathrin-coated vesicles exiting the Golgi 

apparatus at the trans-Golgi network [Le Borgne et al. (1993), Mauxion et al.

(1996)]. In an attempt to explore the possibility that a similar mode of 

regulation facilitates GLUT4 exit from the TGN, this study investigated the 

co-localisation of either TAG or SAG with the y-adaptin subunit of the 

Golgi adaptor complex, AP-1. There was significant overlap between TAG 

and SAG with y-adaptin, suggesting that GLUT4 must follow  a similar 

trafficking pathway to the mannose 6-phosphate receptors. Interestingly, 

the localisation of SAG w ith y-adaptin was significantly higher (P<0.05) 

than TAG, suggesting that changes in the phosphorylation state of S488 

might play a role in GLUT4 sorting at the TGN.

It has recently been shown using a chemical ablation technique following  

uptake of Tf-HRP, that GLUT4 is distributed between endosom es and a 

post-endocytic compartment in 3T3-L1 adipocytes [Livingstone et al. (1996), 

Martin et al. (1996)]. To determine if phosphorylation of GLUT4 might be

223



in v o lv e d  in reg u la tin g  its d istribution  b etw een  these d istinct  

com partm ents, Tf-HRP ablation analysis was perform ed on 3T3-L1 

adipocytes expressing either w ild-type GLUT4 or the S488 mutant. 

However, no significant differences could be determined between wild- 

type GLUT4 and SAG in terms of their susceptibility to ablation following  

uptake of Tf-HRP for 1-3 hours at 37°C. H ow ever, reversible 

phosphorylation events might act only to fine tune’ the intracellular 

sorting of GLUT4. Recently, it has been postulated that reversible protein 

phosphorylation may act to modulate the relative affinities of aromatic- 

and di-leucine-based m otifs for either internalisation or intracellular 

sorting events [Trowbridge et al. (1993)]. The possibility remains that 

m utation of S488 m ight only result in minor shifts rather than gross 

changes in the intracellular distribution of GLUT4 w ithin TfR-negative 

pools. If these changes were confined to the recycling of GLUT4 between 

the TGN and insulin-responsive membranes, they would not be detectable 

using the ablation technique. For example, in the context of the model of 

GLUT4 trafficking that I have proposed in section 3.5.3, this means that 

mutation of S488 may result in shifts in intracellular distribution between 

the TGN compartment (Xtgn) and the tubulo-vesicular compartment (Xtv)- 

These two compartments are both elements of the non-ablatable pool and 

as such, movement of proteins between them would not be detected by the 

compartment ablation approach.

It is conceivable that SAG may have formed hetero-oligom ers w ith  

endogenous GLUT4, thus over-riding any potential disruptive effects the 

S488 mutation may have had on targeting. This seems unlikely however, 

because estimations demonstrate that the expression of SAG in the high 

expressing clone was 3-fold higher than endogenous GLUT4 expression in
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wild-type cells. Furthermore, immunofluorescence microscopy of SAG in 

3T3-L1 fibroblasts, in which endogenous GLUT4 is absent, revealed no 

discernible abnormalities in targeting compared to wild-type GLUT4 (TAG) 

stably-expressed in 3T3-L1 fibroblasts. Even so, based upon the "regulated 

exocytosis" model proposed for the trafficking of GLUT4 [James et al. (1994)], 

the possibility cannot be excluded that endogenous GLUT4 m olecules 

containing functional phosphorylation sites w ithin insulin-responsive  

vesicles, facilitate the efficient exocytosis of these vesicles in which SAG 

additionally resides, to the cell surface in response to insulin or okadaic 

acid.

Previous studies have shown that the phosphatase inhibitor, okadaic acid, 

causes a significant shift in the distribution of GLUT4 to the cell surface 

[Lawrence et al. (1990b), Corvera et al. (1991), Rampai et al. (1995), 

Livingstone et al. (1996), Rondinone & Smith (1995)]. This is of potential 

interest because okadaic acid additionally results in a marked increase in 

GLUT4 phosphorylation [Lawrence et al. (1990b)]. Flowever, okadaic acid 

stimulated the movement of SAG to the plasma membrane to a similar 

extent as wild-type GLUT4. Furthermore, okadaic acid additionally caused 

a shift in both GLUTl and vpl65 to the cell surface in adipocytes. Hence, 

these data are more consistent with an effect of okadaic acid on elements of 

the signal transduction pathway that regulate the m ovem ent of these 

proteins to the cell surface. Along these lines, in addition to increasing the 

cell surface levels of GLUT4, okadaic acid also inhibits the insulin- 

dependent movement of GLUT4 to the plasma membrane.
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Treatment of wild-type cells with okadaic acid in combination with insulin  

inhibited the insulin-stim ulated translocation of GLUT4 to the plasma 

membrane (67% of the insulin response) to levels observed with okadaic 

acid alone (65% of the insulin response), consistent w ith the findings of 

others [Lawrence et al. (1990b), Corvera et al. (1991), Rampai et al. (1995), 

Livingstone et al. (1996)]. Similarly, the extent of the m ovement of SAG to 

the cell surface following treatment with okadaic acid and insulin together 

was less than for insulin alone. This inhibitory effect of okadaic acid on 

the insulin-signalling pathway in 3T3-L1 and rat adipocytes is presumed to 

result from  increased serine/threon ine phosphorylation of insulin  

receptor substrate-1, which prevents its tyrosine phosphorylation and thus 

reduces its ability to dock phosphatidylinositol 3-kinase [Jullien et al. (1993), 

Tanti et al. (1993), Tanti et al. (1994)]. These results further reinforce the 

conclusion that phosphorylation of S488 GLUT4 is not directly involved 

in its redistribution to the cell surface.

While the possibility exists that changes in the phosphorylation state of 

S488 in GLUT4 act to "fine tune" either its internalisation from or insulin- 

dependent m ovem ent to the plasma membrane, based upon the above 

data it seems reasonable to conclude that phosphorylation of this residue 

does not play a major role in these aspects of GLUT4 trafficking. If changes 

in  the phosphorylation state of S488 intricately regulate either the di­

leucine-m ediated internalisation from the plasma membrane, or the 

intracellular sorting of GLUT4 at the TGN, it is perhaps not surprising that 

I have been unable to demonstrate any gross targeting defects for this 

mutation given both the levels of expression examined and the techniques 

employed in this study. Previous studies have failed to demonstrate a role 

for S488 phosphorylation in the isoproterenol- and dibutyryl-cAMP-
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m ediated  in h ib ition  of in su lin -stim ulated  g lu cose transport also 

[N ishim ura et al. (1991), Piper et al. (1993a)]. Therefore, other yet 

unidentified motifs with more dominant roles in these steps of GLUT4 

trafficking must exist. It w ill be of interest to identify such motifs and the 

roles that they might play in regulating the intracellular trafficking of 

G L U T  4.  T h i s  d a t a  d o e s  s u p p o r t  a r o l e  for

phosphorylation/dephosphorylation events in regulating the entry of 

GLUT-4 into y-adaptin positive vesicles. However, as is the case for other 

proteins such as the CD-MPR, disruption of this site is without significant 

effect on the regulated trafficking of GLUT-4 in adipocytes [Breuer et al.

(1997)].
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4.6 Summary

The carboxy-terminus of GLUT4 contains a functional internalisation  

motif (L489l490) that helps maintain its intracellular distribution in basal 

adipocytes. This motif is flanked by the major phosphorylation site in this 

protein (S488)̂  which may play a role in regulating GLUT4 trafficking in 

adipocytes. In the present study, the targeting of GLUT4 in which 5^88 has 

been mutated to alanine (SAG) has been examined in stably-transfected 

3T3-L1 adipocytes. The trafficking of SAG was not significantly different 

from GLUT4 in several respects. Firstly, in the absence of insulin, the 

distribution of SAG was similar to GLUT4, in that it was largely excluded 

from the cell surface and was enriched in small intracellular vesicles. 

Secondly, SAG exhibited insulin-dependent m ovem ent to the plasma 

membrane (4-5-fold) comparable to GLUT4 (4-5-fold). Furthermore, SAG 

exhibits patterns of buoyant density and compartment ablation similar to 

endogenous GLUT4. Finally, okadaic acid, which has previously been 

shown to stimulate both GLUT4 translocation and its phosphorylation at 

S488̂  also stimulated the movement of SAG to the cell surface similarly to 

GLUT4. U sing imm uno-electron microscopy, it has been show n that 

GLUT4 is localised to intracellular vesicles containing the Golgi-derived y- 

adaptin subunit of AP-1, and that this localisation is enhanced when S488 is 

mutated to alanine. The above results suggest that the carboxy-terminal 

phosphorylation site in GLUT4 (S^88) may play a role in intracellular 

sorting at the TGN, but does not play a major role in the regulated  

movement of GLUT4 to the plasma membrane in 3T3-L1 adipocytes.
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Chapter 5

Analysis of Two Endosomal Targeting Motifs 
in the GLUT4 Carboxy-terminus
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5.1 Aims

The aim of this chapter is:

1. To investigate the role of residues distal to the di-leucine motif in 

the carboxy-terminal tail of GLUT4 in the targeting of this isoform 

in 3T3-L1 adipocytes.
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5.2 Introduction

The presence of discrete sorting signals in the cytoplasm ic tails of 

membrane proteins regulates their differential distribution w ithin the 

endo-lysosom al system . In many cases, these signals bind to coat 

components w hich are thought to selectively transport m olecules from 

one compartment to another [Bremnes et al. (1998), Rapoport et al. (1998), 

Robinson (1994), Rodionov & Bakke (1998)]. Two major types of signals 

have been described which are identified either by the sequence YXX0 

(where Y is an aromatic amino acid, X is any amino acid and 0  is an 

amino acid with a bulky hydrophobic group) or LL (where L is leucine or 

isoleucine) [Marks et al. (1997), Mellman (1996), Pond et al. (1995)]. Both of 

these motifs have been found to bind AP-1 or AP-2 adaptor complexes that 

regulate clathrin assembly at either the trans-Gol^ network (TGN) or the 

cell surface [Bremnes et al. (1998), Heilker et al. (1996), Rapoport et al. 

(1998), Robinson (1994), Rodionov & Bakke (1998)]. Hence, these motifs 

facilitate the efficient delivery of both newly synthesised and internalised 

proteins to the endosomal system, from where they may either be recycled 

or transported to the lysosome [Marks et al. (1996), Mellman (1996)]. The 

presence of multiple sorting signals within the cytoplasmic tails of proteins 

with complex trafficking itineraries is thus likely required to facilitate their 

interaction w ith  different adaptor protein subunits at m ultiple sites 

throughout the cell. Certain motifs, such as those found in CD3y, CD4 and 

the in su lin -lik e  grow th factor II/m an n ose 6 -phosphate receptor 

(IGFII/MPR), have been shown to bind more avidly to AP-1 than to AP-2, 

w hich correlates w ith their roles in sorting at the TGN [Johnson & 

Kornfeld (1992b), Le Borgne et al. (1993), Rapoport et al. (1998)]. In contrast, 

other signais appear to preferentially bind AP-2, suggesting that these
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m otifs predom inantly regulate internalisation from the cell surface 

[Glickman et al. (1989), Heilker et al. (1996), Jing et al. (1990), Marks et al.

(1996), Ohno et al. (1995), Zhang & Allison (1997)]. In some cases, the 

differential affinity of targeting signals for discrete adaptor subunits appears 

further influenced by amino acids either proximal or distal to the primary 

signal [Heilker et al. (1996), Marks ef al. (1997), Matter et al. (1994), Motta et 

al. (1995), Ohno et al. (1995), Pond et al. (1995)].

More specialised compartments related to the endosomal system  that give 

rise to cell-specific functions such as synaptic vesicle exocytosis and antigen 

presentation, have been described in a variety of cell types [Simonsen et al.

(1997), West et al. (1994)]. The insulin-regulated movement of the glucose 

transporter GLUT4 to the cell surface in m uscle and adipocytes may 

provide another example of this type of regulated recycling. In the resting 

state GLUT4 is localised to tubulo-vesicular elements that are clustered 

either in the TGN, endosomes or in the cytoplasm [Slot et al. (1991a), Slot 

et al. (1991b)]. The extremely low levels of GLUT4 at the plasma membrane 

under these conditions appears to be an essential feature of this protein 

that distinguishes it from many other recycling proteins. Thus, it has been 

proposed that GLUT4 is targeted to a unique intracellular compartment in 

muscle and fat cells that facilitates both its storage as w ell as its exocytosis, 

enabling GLUT4 to move transiently to the cell surface in response to 

stim uli such as insulin [Verhey et al. (1995), Livingstone et al. (1996), 

Martin et al. (1996)].

Several studies have attempted to identify targeting motifs in GLUT4 in 

the hope of d efin ing the m olecular m achinery that regulates the 

intracellular sequestration of this protein [Marshall et al. (1993), Piper et al.
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(1992), Verhey et al. (1993)]. Two distinct motifs, a phenylalanine-based 

motif (FQQI) in the amino-terminus and a di-leucine motif in the carboxy- 

terminus have been identified [Corvera et al. (1994), Piper et al. (1993), 

Verhey & Birnbaum (1994)]. Both of these motifs function autonomously 

as internalisation motifs and so presumably interact with AP-2 at the cell 

surface [Garippa et al. (1994), Garippa et al. (1996), Piper et al. (1993b), 

Verhey et al. (1995)]. These are discussed more extensively in Chapters 1 

and 3 of this thesis.

It has been suggested that the cytoplasmic carboxy-terminus of GLUT4 

contains additional targeting information, based on analyses of chimeric 

transporter proteins expressed in insulin-responsive cells [Haney et al. 

(1995), Verhey et al. (1995)]. In a previous study which examined the roles 

of both the ^FQQI® and l489l490 motifs in GLUT4 trafficking in 3T3-L1 

adipocytes, an epitope-tag was introduced at the carboxy-terminus of 

GLUT4 to distinguish between recombinant and endogenous proteins 

[Marsh et al. (1995)]. These researchers also generated a chimeric GLUT4 

transporter by replacing the last 12 amino acids of GLUT4 w ith the 

corresponding sequence from GLUTS and found that this protein was 

aberrantly targeted to the cell surface (Figure 5.1).

Thus, this study has proceeded to map the residues within this region of 

GLUT4 by alanine-scanning mutagenesis, in an effort to more specifically 

determine residues that might constitute an additional targeting motif 

in vo lved  in the sorting of this protein to its intracellular storage 

compartment. The studies reveal an important role for the residues 

498xeLEYLGP^^ w ithin  the extreme carboxyl term inus of GLUT4 in 

determining the steady state distribution of this protein in adipocytes.
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5.3 Materials and Methods

5.3.1 Human GLUT3 Epitope-tagged GLUT4 Transporters

The m ethodology detailing the construction of human GLUTS epitope- 

tagged transporter cDNAs, and their stable transfection into 3T3-L1 

fibroblasts is documented in Marsh et al, (1995).

The mutants used in this study are as follows:

TAIL: a recom binant GLUT4 transporter in w hich  the GLUT4

sequence coding for the carboxy-terminal 12 amino acid residues is replaced 

with the corresponding sequence from human GLUTS.

498: a recombinant GLUT4 transporter in w hich the residues

498xpLp501 are mutated to alanines.

502: a recombinant GLUT4 transporter in w hich the residues

502y lGP^05 are mutated to alanines.

506: a recombinant GLUT4 transporter in w hich the residues

506p)p]vjp)509 are mutated to alanines.

For a diagrammatic representation of the above recombinant mutants see 

Figure 5.1.
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Figure 5.1

Schematic Representation of Carboxy-terminal GLUT4 

Mutants

Summary of the carboxy-terminal GLUT4 mutants used in these studies. To 

discriminate betw een recombinant and endogenous GLUT4 in stably  

transfected 3T3-L1 adipocytes a foreign epitope encompassing the carboxy- 

terminal 12 amino-acid residues from human GLUT3 (red) was introduced at 

the extreme carboxyl-terminus of the full length GLUT4 cDNA. The mutant 

referred to as TAIL is a recombinant GLUT4 transporter in which the GLUT4 

sequence coding for the carboxy-terminal 12 amino acid residues is replaced 

with the corresponding sequence from human GLUT3. 498 is a recombinant 

GLUT4 transporter in which the residues 498'ppLp501 ^re mutated to alanines. 

502 is a recombinant GLUT4 transporter in which the residues 502y lGP^^ are 

mutated to alanines. 506 is a recombinant GLUT4 transporter in which the 

residues 0̂6p>p]sjp)509 are mutated to alanines. The positions at which point 

mutations to alanine are present are shown in black.
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5.3.2 Expression Levels of Recombinant GLUT4 Constructs in  

Adipocyte Cell Lines

A variety of clones for each construct that expressed the mutants at 

variable levels betw een 2-6-fold higher than endogenous GLUT4 were 

selected. It has previously been shown that the targeting of epitope-tagged 

D N A  is indistinguishable from endogenous GLUT4 over this expression 

range, both under basal and insulin-stimulated conditions [Marsh et al.

(1995)]. The cell lines were broadly classified as either low  expressors, in 

which expression of the mutants was 1-3-fold that of the endogenous 

transporter, or h igh expressors, where total expression was >3-fold  

endogenous GLUT4.

5.3.3 Antibodies

The anti-GLUT4 antibodies used were a rabbit polyclonal antibody raised 

against a peptide comprising the 15 amino-terminal amino acid residues of 

the human isoform of GLUT4 [James et al. (1989a)], the carboxy-terminal 14 

amino acid residues of the human isoform of GLUT4 [Brant et al. (1993)], or 

the corresponding region of the human isoform of GLUT3 [Shepherd et al. 

(1992)].
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5,4 Results

5.4.1 Characterisation of the Carboxy-terminus of GLUT4

The follow ing is a summary of the results of our collaborators in the 

laboratory of Prof. D. E. James which precede my work in this study.

N o major differences were observed in targeting betw een the mutants 

TAG (representing wild-type GLUT4) and TAIL in 3T3-L1 fibroblasts by 

im m unofluorescence m icroscopy. H owever, in differentiated cells a 

significant difference in the steady state distribution of these two proteins is 

apparent. The distribution of TAG was similar to endogenous GLUT4, and 

not significantly different at expression levels of TAG that were  

approxim ately 6-fold higher than endogenous levels of GLUT4. In 

contrast, a large proportion of TAIL was found at the cell surface even 

under basal conditions. Despite the accumulation of this construct at the 

PM under steady state basal conditions, an insulin-dependent movement 

of TAIL from the LDM fraction to the PM was still observed.

It is unlikely that the GLUT3 carboxy-terminal amino acids caused the 

aberrant targeting of TAIL in 3T3-L1 adipocytes, as inclusion of this 

sequence in TAG had no effect on GLUT4 targeting. This suggests that the 

last 12 amino acids in the carboxy-terminus of GLUT4 may contain 

intracellular targeting information. To more accurately define the amino 

acid constituents of this putative motif, alanine-scanning mutagenesis was 

performed on this dom ain in the context of TAG. Three constructs, 

designated 498, 502 and 506 were generated by replacing amino acids at
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positions 498-501 (TELE), 502-505 (YLGP) or 506-509 (DEND) with alanines, 

respectively (Figure 5.1).

In general, the targeting of the 498 mutant was disrupted compared to 

TAG, w ith the cell surface expression of this mutant increased in the 

absence of insulin . It m ust be noted that the relative steady state 

accum ulation of 498 at the PM appeared to be proportional to the 

expression level of the mutant. The level of PM expression of 498 is lower 

than that observed for TAIL, but similar to that observed for GLUTl. 

Parallel analysis of TAIL and 498 at almost identical expression levels 

revealed that PM levels of both TAIL and 498 were significantly higher 

than endogenous GLUT4, but the cell surface expression of 498 was 

intermediate between that of TAIL and GLUT4. This data suggests that 

residues distal to the TELE sequence may also contribute to the targeting 

information contained within the carboxy-terminus. Despite the impaired 

steady state distribution of 498 in basal adipocytes, insulin still elicited a 

redistribution of this mutant from LDMs to the cell surface.

The distribution of the 502 mutant in basal and insulin-treated adipocytes 

was not significantly different from endogenous GLUT4. Consistent with  

TAIL and 498 mutants, there was no demonstrable abnormality in the 

response to insulin for this mutant.
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No significant change was observed in the subcellular distribution of the 

506 mutant compared to endogenous GLUT4 or the TAG mutant. The 

redistribution of 506 from intracellular membranes to the cell surface 

following insulin stimulation (4.5-fold) closely resembled that of TAG (4- 

fold). Thus, the terminal 4 residues (DEND) appear to have no major 

contribution in targeting GLUT4 in 3T3-L1 adipocytes.

5.4.2 Compartment Ablation Analysis of GLUT4 Carboxy-terminal

Tail Mutants

To determine whether the putative carboxy-terminal GLUT4 targeting 

m otif is located  w ith in  the sequences 498'pELp501  ̂ 502y lGP^05 or 

506]3E]v̂ 509, the technique of compartment ablation (sections 2.5.1-1, 3.2) 

was employed to examine the intracellular distribution of the recombinant 

GLUT4 constructs TAG, 498, 502 and 506, with the aim of determining 

whether such mutation of the above sequences alters the distribution of 

GLUT4 between the ablated (endosomal) and non-ablated pools.

Consistent with previous studies (section 3.4.2) the sensitivity of epitope- 

tagged GLUT4 (TAG) to ablation analysis was indistinguishable from wild- 

type GLUT4 (-40% reduction in the %GLUT4 signal in the LDM fraction 

after ablation), suggesting that this protein is partitioned normally between  

the ablated (endosomal) and non-ablated pools.

Ablation experiments with adipocytes expressing 502 and 506 showed that 

these mutants appear to be distributed between ablated (-40%) and non- 

ablated (-60%) intracellular membranes similarly to TAG and endogenous 

GLUT4 in the basal state under the experimental conditions examined in
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this study (Figure 5.2 and Table 5.1). Thus, the patterns of ablation 

exhibited for 502 and 506 were not significantly different from endogenous 

GLUT4 in non-transfected adipocytes. Two independent clonal cell lines 

expressing 502 at low  levels (5022A3) and intermediate levels (5027B2) were 

independently examined, yield ing identical results for each mutant (no 

high expressing 502 clones that reproducibly expressed this mutant 

follow ing differentiation into adipocytes were available for analysis). 

Similarly, two independent clones of 506 were examined, the low expressor 

(5063B2) and the high expressor (5067C1), producing identical results. This 

argues strongly that the results do not reflect overexpression or clonal 

variation for either of the constructs.

In contrast, the intracellular pool of the 498 mutant was readily ablated. 

This mutant was ablated to a much more significant degree (-80%) than 

either TAG or wild-type GLUT4 (-40%) (Figure 5.2 and Table 5.1). This 

result implies that the majority of this protein is present in the recycling 

endosom al system  and not the non-ablatable GLUT4 pool. Three clonal 

cell lines expressing 498 at low  levels (4981D3), intermediate levels (4987B1) 

and high levels (4981D4) were independently examined and gave identical 

results for each mutant (Table 5.1). As stated above, this argues strongly 

that the results do not reflect overexpression or clonal variation for this 

construct. I performed these experiments by preparing duplicate plates of 

3T3-L1 adipocyte clones loaded with Tf-HRP for Ihr or 3hr at 37®C, or 

alternatively for Ihr at 4"̂ C (as a control as no Tf-HRP is internalised under 

these conditions). Also, for each clone, the efficiency of ablation was 

monitored by parallel examination of the extent of ablation of the TfR.
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Figure 5.2

Compartment A blation A nalysis of Carboxy-terminal 

GLUT4 Mutants

LDM membranes were prepared from 3T3-L1 adipocytes loaded with Tf-HRP 

for Ihr at 4°C, Ihr at 37°C or 3hr at 37°C, before and after ablation (~ and + 

hydrogen peroxide) as indicated. Figure 5.2 shows experiments for each of 

the mutant GLUT4 species examined (498=4987B1; 502=5027B2; 506=5067C1 

experiments are shown). In these experiments, cells were loaded with Tf-HRP 

as indicated and the cells exposed to DAB in the presence and absence of 

peroxide as indicated. LDM membranes were prepared, 20pg of each fraction 

were electrophoresed and immunoblotted using anti-GLUT3 antibodies to 

study the effect of ablation on the intracellular content of each of the clones. 

Several blots of this type from at least three independent experiments were 

quantitated and the results are presented in Table 5.1.
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Table 5.1

Compartment Ablation Analysis of Carboxy-terminal 

GLUT4 Mutants

Duplicate sets of 10cm plates of adipocytes were loaded with Tf-HRP for Ihr 

or 3hr at 37°C. The DAB cytochemistry was then performed as described in 

section 2.5.2, with hydrogen peroxide added to one but not both plates. LDM 

membranes were prepared, 20^g protein was electrophoresed, and the GLUT4 

or GLUT3 immunoreactive signal quantitated. The difference in signals 

between the plates incubated ± peroxide is a reflection of the extent of protein 

ablation (Figure 5.2). Shown above is the signal remaining in the LDM after 

ablation expressed as a percentage of the signal in the LDM before ablation. 

The results are expressed as the means ± SEM of three experiments of this type 

on at least three separate platings of cells. Membranes blotted in parallel with 

an antibody specific for the TfR showed >85% ablation of this protein in all 

cell lines studied (data not shown). Note that in all these experiments, an 

additional control experiment was performed in which cells were incubated 

with Tf-HRP at 4°C and then ablated. Under these conditions, no 

internalisation of Tf-HRP is expected, and consistent with this no ablation of 

either recombinant or wild-type GLUT4 was observed. Values for wild-type 

GLUT4 were from plates of non-transfected adipocytes, measured using the 

same batch of conjugate employed for the mutants.
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Table 5.1

Compartment Ablation Analysis of Carboxy-terminal 

GLUT4 Mutants

Species %  Signal Remaining after Ablation
Ihr at 37°C 3hr at 37°C

TAGIAB 55 ± 9% 59 ± 3%

4981D4 43 ± 5% 17 ± 2%
4981D3 45 ± 7% 18 ± 4%
4987B1 42 ±2% 16 ± 3%

5023A3 74 ±8% 65 ± 3%
5027B2 67 ±6% 55 ± 7%

5063B2 64 ±3% 58 ± 4%
5067C1 66 ± 4% 61 ± 6%
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5.5 Discussion

This study utilised  alanine-scanning m utagenesis and compartment 

ablation analysis in an attempt to identify additional targeting information 

in the carboxy-terminus of GLUT4 that appears to direct the endosomal 

sorting of the protein. The findings, summarised here, indicate that the 

residues 498xelEYLGP^^, but not ^^DEND^^^, are involved in targeting 

GLUT4 correctly in 3T3-L1 adipocytes. Replacing the last 12 amino acids in 

GLUT4 w ith the corresponding sequence from GLUT3 (TAIL) had a 

considerably greater effect on the targeting of GLLTT4 than mutation of 

either 498YELp501 qj- 502ylGP^^ alone, suggesting that both of these regions 

contribute to the targeting information. As the ^^^TELEYLGP^^ sequence 

is located 10 amino acids membrane-distal to the di-leucine motif in  

GLUT4 (L^^^L^^), it is tempting to conclude that the targeting signal in this 

study may simply interact with or contribute information to the upstream  

di-leucine signal. However, significant available evidence tends to rule 

out this possibility. Firstly, by expressing chimeric glucose transporter 

proteins in either L6 myoblasts or 3T3-L1 adipocytes, it has been shown that 

the carboxy-terminal 30 amino acids of GLUT4 can direct the protein to a 

highly insulin-responsive intracellular location independent of the di­

leucine motif [Haney et al. (1995), Verhey et al. (1995)]. Secondly, there are 

phenotypic differences between di-leucine mutants and carboxy-terminal 

tail mutants. Using an endosomal ablation technique, I find that the 498 

mutant becomes much more susceptible to ablation than wild-type GLUT4 

(Figure 5.2), consistent with it accumulating in endosomes. Conversely, I 

have found that the extent of ablation of di-leucine mutants becomes 

much less than for the w ild-type protein (section 3.4.2), suggesting that 

these sequences regulate distinct trafficking steps.
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The structural similarity between different types of endosom al sorting 

motifs [Marks et al. (1996) Mellman (1996), Marks et al. (1997)], combined 

with the realisation that both tyrosine- and di-leucine-based signals bind to 

adaptor com plexes that mediate clathrin assembly [Ohno et al. (1995), 

Heilker et al. (1996), Rodionov & Blake (1998), Bremnes et al. (1998)] 

strongly suggests that both motifs can fulfil sim ilar functions in the 

endocytic pathway. Acidic residues or phosphorylation sites juxtaposed to, 

and amino-terminal of di-leucine motifs in the T cell surface antigen CD4 

{Shin et al. (1990), Shin et al. (1991)], the signal transducing component 

(gpl30) of the interleukin-6 receptor complex [Dittrich et al. (1996)], the 

CD3y subunit of the T cell receptor (TCR) [Letourneur & Klausner (1992)], 

the IGFII/MPR [Lobel et al, (1989), Johnson & Kornfeld (1992b)] and the 

cation-dependent mannose 6-phosphate receptor [Johnson et al. (1990), 

Johnson & Kornfeld (1992a)], have been proposed to modulate the sorting 

of these proteins at different loci in the cell. M oreover, mutation of 

residues am ino-terminal but not carboxy-terminal of these di-leucine 

motifs abrogates their function, consistent with a structural contribution 

from these adjacent residues [Motta et al. (1995), Pond et al. (1995)]. While 

no acidic residues are found at similar positions amino-terminal of the di­

leucine motif in GLUT4, the major phosphorylation site in GLUT4 (Ŝ ^̂ ) is 

immediately adjacent to and amino-terminal of this site [Lawrence et al. 

(1990)]. H owever, w e have recently mutated this site and could find no 

major disruption to GLUT4 targeting in adipocytes [Chapter 4 and Marsh e t 

al. (1998)]. The possibility remains, however, that other residues amino- 

terminal of this site in GLUT4 could contribute to the structure and 

function of the di-leucine motif, or vice versa, and this remains to be 

explored.
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Defining the precise functions for each of the trafficking motifs thus far 

defined in the cytoplasmic domains of GLUT4 w ill require more detailed 

analysis. The ^FQQI  ̂ and L^89l490 signals both appear to regulate 

internalisation [Piper et al. (1993b), Verhey et al. (1995)]. However, because 

similar motifs in other proteins have been shown to function at multiple 

intracellular loci we cannot exclude the possibility that these motifs also 

contribute to GLUT4 sorting elsewhere in the cell. Indeed, my data 

(Chapter 3) suggests that this is the case. Most of the studies performed so 

far in adipocytes have simply measured the steady state distribution of the 

protein and mutations in each of the motifs so far described have resulted 

in an accumulation of GLUT4 at the cell surface in an insulin-independent 

manner [Marsh et al. (1995), Verhey et al. (1995)]. H ow ever, such a 

phenotype could result from impaired sorting at the TGN, endosom es or 

the plasma membrane. In an effort to further define the role of the distal 

carboxy-terminal signal in the present study, w e have quantified the 

distribution of mutants betw een intracellular com partm ents that are 

readily accessible to recycling Tf-HRP, versus those that are not. While the 

nature of the latter compartment(s) remains ill-defined [Martin et al.

(1996), Martin et al. (1997)], mutation of the 498xpLp501 sequence clearly 

resulted in an accumulation of GLUT4 in endosom es. This increased 

endosomal localisation of the 498 mutant supports our view  that GLUT4 is 

normally actively sorted out of endosomes in insulin-sensitive cells, and 

that this step is at least in part regulated by the carboxy-terminal distal 

motif. Importantly, it remains to be determined whether this sequence can 

function autonomously in the context of a heterologous protein. The lack 

of a shift of the 502 mutant into endosomes was som ewhat surprising in 

view  of the data obtained for the 498 mutant. The possibility that this 

domain (498xpleyLGP^0^) comprises two separate motifs serving different

248



functions cannot be ruled out. However, it is noteworthy that I was only 

able to ablate cell lines expressing 502 at low  levels, and in which the 

mutant did not exhibit an altered distribution compared to either TAIL or 

498 as assessed by subcellular fractionation analysis. As noted previously 

[Marsh et al. (1995)], the expression level of GLUT4 mutants in adipocytes is 

an important variable to be considered in targeting studies such as these, 

presumably due to compensatory effects by motifs located elsewhere in the 

protein. The fact that this sequence does not at least superficially resemble 

targeting motifs found in most other proteins is consistent with this being 

a relatively specific sorting step. It might be noteworthy that a similar 

sequence (PDEVEYEP) is found adjacent to and membrane-distal from a di­

leucine motif in the cytoplasmic tail of vpl65, a protein targeted similarly 

to GLUT4 in both adipocytes and cardiomyocytes [Ross et al. (1996), Malide 

et al. (1997), Martin et al. (1997)] (Table 5.2). In addition, an acidic sequence 

(CPSDSEEDEG) w ithin the cytoplasm ic tail of furin that functions 

independently of either the Y- or LL-based signals in this protein, and is 

located membrane-distal to them, has been shown to direct its localisation 

to the TGN [Schafer et al. (1995), Voorhees et al. (1995)].

Mutation of each of the targeting domains in GLUT4 has so far failed to 

abrogate the insu lin -regu lated  m ovem ent of this protein  from an 

intracellular compartment to the cell surface. These data are consistent 

with the notion that the primary and cumulative function of the targeting 

signals identified in GLUT4 is to sequester the protein in a post-endocytic 

storage locale, from where the protein can readily gain access to the plasma 

membrane follow ing stimulation with agonists such as insulin. Defining 

the nature of this post-endocytic storage compartment, and how it relates 

to the endo-lysosom al system, should facilitate a better understanding of
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how multiple targeting signals within the cytoplasmic tails of GLUT4 direct 

its intracellular trafficking in insulin-sensitive cells.

5.6 Summary

This study has investigated the role of residues distal to the di-leucine 

motif in the carboxy-terminal cytoplasmic tail of GLUT4 in targeting this 

isoform in adipocytes. Mutation of residues 498-505 (TELEYLGP), but not 

506-509 (DEND), resulted in a redistribution of the protein to the cell 

surface in an insulin-independent manner. Mutation of TELE appeared to 

have a more dominant effect on targeting, resulting in an accumulation of 

GLUT4 in endosomes. None of these mutations abrogated the ability of 

insulin to translocate GLUT4 to the cell surface. These data suggest that the 

cytoplasmic carboxy-terminus of GLUT4 contains an additional targeting 

signal distal to the di-leucine motif that regulates sorting of GLUT4 from 

endosomes into a post-endocytic storage compartment.
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Table 5.2

Comparison of the GLUT4 Carboxy-terminal and vpl65  

Amino-terminal Sequences

This alignment demonstrates putative targeting motif located adjacent to 

and membrane distal from a di-leucine motif in the cytoplasmic tail of the 

aminopeptidase vp l65  which is similar to the extreme carboxy-terminal 

sequence of GLUT4 thought to be involved in the trafficking of this 

protein.

GLUT4 Carboxy-terminus
 FTFLRVPETRGRTFDQISATFRRTPSLLEQEVKPSTELEYLGPDEND. . .

I I  I  I I I I. . .METFTNDRLQLPRHMI.. .ENSMFEEEPDWDLAKEPC. .LHPLEPDEVE. .. 
vp l65 Am ino-term inus
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Chapter 6

Construction and Analysis of 
GLUT2/GLUT4 Chimeric Glucose 

Transporters
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6.1 Aims

The aims of this chapter are:

1. To construct chimeric GLUT2/GLUT4 glucose transporters using 

recombinant PGR technology. These recombinant transporters will 

be constructed by swapping the cytoplasmic amino- and carboxy- 

terminal domains of these transporter isoforms.

2. To introduce the above chimeric transporters into 3T3-L1 adipocytes 

for use as a tool enabling investigation of the contribution of the N- 

and C-terminal targeting motifs in GLUT4 trafficking.
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6.2 Introduction

Various studies carried out over the last decade have clearly established 

that the signal sequences present in the amino- and carboxy-terminal 

cytoplasm ic sequences of GLUT4 are fundam entally im portant in the 

regulation of the unique pattern of recycling and subcellular distribution 

displayed by this facilitative glucose transporter isoform  [reviewed in 

Chapter 1 and Gould (1997)].

More than any other, the use of one technique has been responsible for the 

discoveries made into the roles of the above domains in GLUT4 trafficking: 

the construction of chimeric glucose transporters in w hich reciprocal 

domains were exchanged between GLUT4 and the ubiquitous glucose 

transporter isoform, GLUTl, and the subsequent analysis of the subcellular 

distributions of these chimeras in a variety of cellular systems. This 

technique w as em ployed in studies carried out by various groups, 

including those of Birnbaum, James and Meuckler [Piper et al. (1992), Piper 

et al. (1993b), Czech et al. (1993), Marshall et al. (1993), Verhey et al. (1993), 

Verhey et al. (1995), Verhey & Birnbaum (1994)].

In all of the above studies the recombinant chimeric transporters were 

constructed by fusing portions of the GLUTl and GLUT4 cDNAs at 

common restriction sites either present in the w ild-type sequence or 

engineered by polymerase chain reaction (PCR)-based mutagenesis. Som e 

examples of the chimeric species employed in the above studies are listed 

in Figure 1.6. These chimeras were introduced into various cellular 

systems including CHO cells, PC12 cells, COS cells and oocytes.
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The key inform ation that em erged from these studies w as the initial 

identification of the ^FQQI® and L 8̂9l490 sequences as being important 

motifs in the process of GLUT4 trafficking. It was demonstrated that both 

of these motifs were responsible for the internalisation of GLUT4 from the 

cell surface and that other motifs present in the carboxy-terminus of the 

protein may be responsible for its targeting to an insulin-responsive  

intracellular compartment. 1 have previously d iscussed in detail the 

results of these studies in section 1.6 of this thesis.

It is noteworthy that the majority of the previous studies involving  

GLUT4 chimeras made use of the ubiquitous glucose transporter isoform  

GLUTl as the chim eric partner. This m ethod has an inherent 

fundamental drawback in that it is recognised that GLUTl exhibits a 

pattern of constitutive recycling in insulin-responsive cells in the basal 

state, and is also translocated to the plasma membrane, albeit to a lesser 

extent than GLUT4, in response to insulin [Zorzano et al. (1989). Holman 

et al. (1990)]. As a consequence, it could be argued that any alteration in 

GLUT4 trafficking observed after swapping GLUTl and GLUT4 sequences 

could be attributed to the influence of dominant GLUTl signals and not 

sim ply as a result of the removal or introduction of specific GLUT4 

targeting sequences.

In an attempt to over come this problem, 1 chose to construct a series of 

chimeric transporters using the liver-type glucose transporter isoform, 

GLUT2, as the chimeric partner. GLUT2 was chosen because previous 

studies have show n that this isoform is predominantly localised at the 

basolateral membrane of intestinal and kidney absorptive epithelial cells 

and the sinusoidal membrane of hepatocytes, and displays little or no
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recycling characteristics [Thorens et al. (1990), Brant et al. (1994)]. Brant et 

al. also established that GLUT2 is predominantly localised at the PM of 

3T3-L1 adipocytes when stably expressed in this cell type. This suggested  

that GLUT2 may be a more informative chimeric partner than GLUTl for 

the identification of targeting motifs.

A further point to note is that the majority of the previous studies 

utilising chimeras were carried out in non-insulin-responsive cell lines. 

This presents another problem as such cells (e.g. CHO cells, COS cells and 

oocytes) may not possess cell-specific factors which mediate the insulin- 

regulated trafficking of GLUT4 and furthermore, the insulin-responsive 

intracellular pool may not exist in cells other than adipose or muscle 

tissue. As a consequence I have carried out all of these studies in 3T3-L1 

adipocytes, a classic model for insulin-stimulated glucose transport.

Finally, it is apparent that the use of GLUTl /  GLUT4 chimeras offers no 

simple method of undertaking functional transport assays because as both 

chimeric partners only have the capacity to transport glucose they cannot 

be distinguished from endogenous glucose transporters. The employment 

of GLUT2, a fructose transporter, overcomes this problem as it makes it 

possible to assay fructose transport in order measure such parameters as 

the translocation of the chimeric transporters to the PM after insulin  

stimulation, thus allow ing kinetic analysis of the contributions of the 

amino- and carboxy-terminal signal motifs in GLUT4 trafficking.
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6.3 M ethodology U sed to Generate GLUT2/GLUT4 Chimeric 

G lucose Transporters

6.3.1 Plasmid Constructs

Human glucose transporter cDNAs encoding GLUT2 and GLUT4 have 

been cloned into pSP64T as described previously [Gould et al. (1991)] to 

form pHTL.217 and pSPGT4, respectively (Figure 6.1). These constructs 

contain the protein coding region of the cDNAs and various amounts of 

the 5'- and 3 -untranslated regions. The cDNA sequences are flanked by 

89bp of 5'- and 141bp of 3 -untranslated regions of the p-globin gene of 

Xenopus laevis [Kayano et al. (1990)]. The plasm ids contain an SP6 

polym erase promoter located 5' to the transporter sequence, a gene 

conferring ampicillin resistance, and encode functional transporters [Gould 

et al. (1991)].

6.3.2 Recombinant PCR Reactions

The GLUT2 cDNA-containing construct pHTL.217 and the GLUT4 cDNA- 

containing construct pSPGT4 were used as templates in the recombinant 

PCR reactions described below.

Two sets of oligonucleotide primers were designed for use in the following  

PCR reactions. These are referred to as the 5' or 3' external primers. The 3' 

external primers are 37'mers that correspond to the extreme 3' antisense 

strands of GLUT2 and GLUT4, which bind to the 3' untranslated region of 

the sense strand of the respective GLUT isoform, and are called G2-End and 

G4-End, respectively. These primers encode Sal I and N o t  I restriction sites,
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respectively, to enable subcloning into the poly linker site of a suitable 

vector. The 5' external primers are 90 bases and 57 bases in length and are 

called G 2/G 4 and G4/G2, respectively. G2/G4 is designed such that it 

encodes the first 15 bases of GLUT2 together with bases 58-87 of GLUT4 and 

encodes a Bam  HI restriction site. G4/G2 encodes the first 30 bases of 

GLUT4 together with bases 16-48 of GLUT2 and encodes a Sal I restriction 

site. Both of the 5' external primers bind to the 5’ untranslated region of 

the antisense strand of the respective GLUT isoform. The sequences of 

these primers are displayed in Table 6.1.

Both of the recombinant chimeric transporters that I am going to discuss at 

this stage were produced by a primary PCR reaction involving the GLUT2 

and GLUT4 templates and a combination of a 5' external primer and a 3' 

external primer (Figure 6.2).

6.3.2a GLUT4N/2

This chimeric transporter is a primary PCR product produced by the 

recombination of the amino-terminal cytoplasm ic region of GLUT4 to 

helices 1-12 of GLUT2. It was designed to reveal the influence of the 

putative amino-terminal targeting signals by their introduction into this 

predominantly GLUT2-based chimera. In this case, the GLUT2 template 

was used in conjunction with the 5' external primer, G 4/G 2, and the 3 ’ 

external primer, G2-End, to produce and amplify the desired recombinant 

product (Figure 6.3).
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6.3.2b GLUT2N/4

This mutant is a primary PCR product produced by the recombination of the 

amino-terminal cytoplasmic region of GLUT2 to helices 1-12 of GLUT4. This 

chimera should reveal the effect caused by deleting the amino-terminal 

targeting signals, thus providing further information as to the extent to which 

they are involved in the trafficking of GLUT4. This reaction utilised the 

GLUT4 cDNA template along with the 5' external primer, G2/G4, and the 3' 

external primer, G4-End, to produce and amplify the desired recombinant 

product (Figure 6.3).

PCR reactions were carried out using Vent  DNA polymerase under reaction 

conditions which were altered according to the manufacturers instructions. 

Details of the reaction conditions and thermal cycling programmes used are 

listed in sections 2.10.4 and 2.10.5. The size of the primary PCR products were 

approximately 1500 bp in each case (Figure 6.4).

6.3.3 Cloning Strategies

Two different cloning strategies were employed in the production of the above 

recombinant chimeric transporters.

6.3.3a p N otN ot and pOP13CAT.aP2 Approach

Primary PCR products were purified by agarose-gel electrophoresis followed by 

electroelution of the DNA and passage through an Elutip-d colunrn (sections 

2.12.4-5 and 2.12.7). The purified PCR product G LU T4N /2 encoded Sal I 

restriction sites at the 5’ and 3' ends allowing subcloning into the polylinker
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site of the shuttle vector pN ot.N ot (a pG EM llz and pBluescript poly linker 

fusion kindly provided by Prof. K. Sid die. University of Cambridge) (Figure

6.5). pNot.Not was digested with Sal 1 and the linearised vector was purified 

by electrophoretic extraction from agarose gel slices, follow ed by passage 

through an Elutip-d column and ethanol precipitation (section 2.12.2). The 

primary PCR fragment was also digested with Sal I and purified using the 

same procedure before ligation to the linearised vector and transformation 

into competent E. coli cells (sections 2.12.9-11). Plasmid D NA was prepared 

from several clones to identify potential positive clones by restriction 

digestion analysis (sections 2.12.14 and 2.12.3). On identification of positive  

clones, large scale plasmid preparations (section 2.12.15) were performed to 

obtain sufficient quantities of D N A  in order to facilitate further subcloning 

into the adipocyte-specific promoter-containing vector pOP13CAT.aP2 (Figure

6.5).

The D N A  produced from positive clones was digested w ith N o t  I to release 

the primary PCR fragment from the shuttle vector pNot.Not. This desired 

fragment was purified as above. pOP13CAT.aP2 was also digested with N o t I 

to excise the CAT reporter gene and produce a linearised vector backbone. The 

linearised vector was then purified using the same procedure before ligation 

with the GLUT4N/2 fragment and transformation into competent E. coli cells. 

As before plasm id mini-preps were carried out, follow ed by screening by 

restriction digestion analysis. Positive clones were then prepared on a large 

scale.

A similar strategy was adopted for the subcloning of the PCR fragment 

GLUT2N/4, except that it involved digestion of the fragment w ith Bam HI 

and N o t l ,  followed by subcloning into pNot.Not and then pOP13CAT.aP2.
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6.3.3b Cloning PCR Products Using the Invitrogen Eukaryotic TA

Cloning® Kit

The protocols for this technique are discussed in detail in section 2.11.

Briefly, the primary PCR products were incubated w ith  Taq D N A  

polymerase to produce the 3' A-overhangs that are essential in order for 

PCR fragments to be subcloned using this technique. The fragments, 

com plete w ith 3' A -overhangs, were then directly ligated into the 

eukaryotic bidirectional TA cloning vector pCR®3.1 and transformed into 

One Shot̂ "  ̂ TOP lOF' competent cells (Figure 6.6). Small scale plasmid  

preparations were carried out using the QIAGEN QIAPrep 8 Turbo 

Miniprep Kit to provide sufficient DNA for restriction digestion analysis 

(section 2.12.13) (Figures 6.7 and 6.8). Positive clones were then prepared 

on a large scale (section 2.12.16).

6.3.4 Expression of GLUT2/GLUT4 Chimeras in 3T3-L1 Adipocytes

The GLUT2/GLUT4 recombinant transporters were introduced into the 

cell line chosen for analysis, 3T3-L1 adipocytes, using the Calcium  

Phosphate method of transfection. This procedure is detailed in section 

2.3.7.
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6.3.5 Complementary GLUT2/GLUT4 Chimeras

Large scale p lasm id  preparations were perform ed on a series of 

com plem entary GLUT2/GLUT4 chimeras, the D N A  for w hich was 

supplied by Dr. Bernard Thorens, University of Lausanne, Switzerland  

(Figure 6.9). These recombinant transporters were expressed in 3T3-L1 

adipocytes using the Calcium Phosphate method.

6.3.5a GLUT2/4

This chimera is a product of the recombination of the cytoplasm ic amino- 

terminus and first extracellular loop of GLUT2 w ith helices 2-12 and the 

carboxy-terminal cytoplasmic region of GLUT4, It is sim ilar in nature to 

mutant G LU T 2N /4 but should also allow more detailed analysis of the 

am ino-term inal sequence, especia lly  putative sign a ls present in the 

extracellular loop between helices 1+2.

6.3.5b GLUT4/2C

This chimera is composed of the native sequence of GLUT4 from the amino- 

terminus to the carboxy-terminal residue of transmembrane helix 12 attached 

to the carboxy-terminal cytoplasmic region of GLUT2. This mutant w ill allow  

analysis of the contribution of the carboxy-terminal cytoplasmic sequences of 

GLUT4 to its unique intracellular distribution.
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6.3.5c GLUT2N/4/2C

This chimera is constructed by recombination of the cytoplasm ic amino- 

terminus and first extracellular loop of GLUT2, helices 2-12 of GLUT4, and the 

carboxy-terminal cytoplasmic region of GLUT4. Such a com position w ill 

allow observation of the effects of removing both of the salient signalling 

domains of GLUT4.
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Figure 6.1

Diagram of a GLUT cD N A  Cloned into the pSP64T Vector

GLUT2 cDNA was ligated to Bgl II D N A  linkers and cloned into the 

untranslated regions of the Xenopus p-globin gene, which had previously been 

cloned into the multiple cloning site of pSP64 [Kreig & Milton (1984)]. The 

GLUT4 cDNA was ligated to Sal I D NA  linkers and cloned into the 

untranslated regions of the Xenopus p-globin gene. The 5' untranslated region 

(UTR) is 89bp long and the 3' untranslated region is 141bp long. The GLUT 

cDNA and its flanking sequences are located 3' of the SP6 polymerase 

promoter.
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Figure 6.2

Generation of GLUT2/GLUT4 Chimeras U sing  

Recombinant PCR Technology

This diagram describes the PCR method used to construct GLUT4N / 2 and 

GLUT2N/4, which comprise the amino-terminal cytoplasmic region of 

GLUT4 or GLUT2 respectively, followed by the sequence of GLUT2 or GLUT4 

from transmembrane heUx 1 to the carboxy-terminus, respectively. These PCR 

products were generated by primary PCR reactions in which GLUT2 or 

GLUT4 template DNA were incubated with the appropriate primers. The 3' 

external primers anneal to the sense strands of GLUT2 and GLUT4 cDNA and 

have tails encoding Sal I and Not I restriction sequences for use in subsequent 

cloning procedures. The 5' external primers anneal to the antisense strand of 

GLUT2 and GLUT4 cDNA and have tails encoding Sal I and Bam HI 

restriction sequences, respectively. Thus, in a single primary PCR reaction, 

GLUT2 or GLUT cDNA act as templates, which under the reaction conditions, 

undergo strand dissociation allowing the extension of new strands from the 

primers in a 5' to 3' direction by Vent DNA polymerase. Melting, re-armeahng 

and extension occur 27 times producing primary PCR products of ~1500bp.
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Figure 6.3

Schematic Representation of Recombinant GLUT4N/2 and

GLUT2N/4 Chimeras

This is a schematic representation of the GLUT2/GLUT4 transporters 

generated by recombinant PCR technology. GLUT2 sequence is represented 

in red and GLUT4 sequence is represented in blue.
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Figure 6.4

1% Agarose Gel of Primary PCR Products U sed in  the 

C loning of Recombinant GLUT2/GLUT4 Chimeras

This figure shows a photograph of primary PCR products which had been 

subjected to 1% agarose gel electrophoresis and stained w ith ethidium  

bromide. Lane 1 contains 0.625mg of BstE Il-digested lambda DNA, Lanes 2-7 

contain 5^1 (from a total of 100^1) of GLUT4N/2 primary PCR product 

generated using Vent DNA polymerase.
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Figure 6.5

Cloning of Recombinant Chimeras U sing pNot.N ot and 

pOP13CAT.aP2

This diagram illustrates a cloning strategy utilising the shuttle vector 

pNot.Not and the vector pOP13CAT.aP2 which includes an adipocyte-specific 

promoter. The recombinant GLUT2/GLUT4 cDNAs were digested using  

either Sal I (GLUT4N/2) or Bam HI and Not 1 (GLUT2N/4) and ligated into 

the poly linker site of pNot.Not which had been digested with the appropriate 

enzymes. Positive clones were then digested with Not 1 to release the primary 

PCR fragment from the poly linker site of pNot.Not which was then inserted 

into pOP13CAT.aP2 which had been linearised using Not I. This produced an 

intact pOP13CAT.aP2 vector incorporating the chimeric GLUT2/ GLUT4 

cDNA under the control of the adipocyte-specific promoter aP2.
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Figure 6.6

Cloning of Primary PCR Products U sing the Invitrogen  

Eukaryotic TA Cloning® Kit

This diagram illustrates a cloning strategy em ploying the Invitrogen  

Eukaryotic TA Vector. Recombinant GLUT2/ GLUT4 primary PCR products 

were incubated with Taq DNA polymerase to produce the 3' A-overhangs that 

are essential when using this cloning strategy. The fragments, complete with 

3' A-overhangs, were then directly ligated into the linear eukaryotic 

bidirectional TA cloning vector pCR®3.1.

274



5'

Primary PCR product

3’

3' 5 ’

□C> Polylinker Polylinker

PCMV

ColEI ori

FI ori
pCR 3.1

Kan/Neo
resistance

Amp ^  
resistance

PSV40/orl



Figure 6.7

Restriction Digestion Analysis of Chimera GLUT4N/2

This diagram show s the position of the cleavage sites of the restriction 

enzymes used to determine the orientation of the GLUT2/GLUT4 chimera 

GLUT4N/2 in the vector pCR®3.1. GLUT2 sequence is shown in blue and 

GLUT4 sequence is shown in red. The extreme carboxy-terminal portion of 

GLUT2 contains a Pst I site that is not present on the sequence of GLUT4. The 

vector pCR®3.1 contains only one Pst I site that is located 3' to the chimeric 

insert sequence in the vector. Thus, restriction digestion with Pst I yields  

different sized fragments depending on the orientation of the ligated insert. 

Chimeric sequence inserted in the correct orientation i.e. for transcription 

driven by the T7 promoter, yields two fragments of approximately 6350bp and 

150bp. Insert ligated in the incorrect orientation results in the production of 

two fragments of 5150bp and 1350bp in length. The fragments produced by 

electrophoresis were separated by agarose gel electrophoresis (section 2.12.1) 

and the sizes of the fragments were determined by comparison against a BstE 

Il-digested lambda DNA molecular weight marker loaded on the same gel.
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Figure 6.8

Restriction Digestion Analysis of Chimera GLUT2N/4

This diagram show s the position of the cleavage sites of the restriction 

enzymes used to determine the orientation of the GLUT2/ GLUT4 chimera 

GLUT2N/4 in the vector pCR®3.1. GLUT2 sequence is shown in blue and 

GLUT4 sequence is shown in red. The vector pCR®3.1 contains only one Bam 

HI site that is located 5' to the chimeric insert sequence in the vector. Thus, 

restriction digestion with Bam HI yields different sized fragments depending 

on the orientation of the ligated insert. Chimeric sequence inserted in the 

correct orientation i.e. for transcription driven by the T7 promoter, yields two 

fragments of approximately 6400bp and lOObp. Insert ligated in the incorrect 

orientation results in the production of two fragments of 4900bp and 1600bp 

in length. The fragments produced by electrophoresis were separated by 

agarose gel electrophoresis (section 2.12.1) and the sizes of the fragments were 

determined by comparison against a BstE Il-digested lambda DNA molecular 

weight marker loaded on the same gel.
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Figure 6.9

Schematic Representation of Complementary 

GLUT2/GLUT4 Chimeras

This is a schematic representation of the complementary GLUT2/ GLUT4 

transporters transfected into 3T3-L1 adipocytes using cDNAs supplied by Dr. 

Bernard Thorens, University of Lausanne, Switzerland. GLUT2 sequence is 

represented in red and GLUT4 sequence is represented in blue.
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Table 6.1

Sequences of O ligonucleotide Primers U sed to Generate 

GLUT2/GLUT4 Chimeras

Sequences corresponding to GLUT4 are underlined. Sequences which encode 

a restriction site used in the subcloning of PCR fragments are written in lower 

case italics. All oligonucleotides are written in the 5' to 3' direction.
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6.4 Results

Using the TA cloning strategy and the Calcium Phosphate method of 

transfection I have managed to successfully stably express both CLUT4N/2 

and CLUT2N/4 in 3T3-L1 adipocytes. In addition to this I have also stably 

expressed the series of complementary CLUT2/ CLUT4 chimeras. A range 

of clones expressing these species have been isolated and stored.

6.4.1 Subcellular Fractionation of GLUT2/GLUT4 Chimeras

The subcellular distribution of the CLUT2/CLUT4 chimeras between the 

plasma membrane and the low  and high density microsomal membranes 

was investigated by em ploying the technique of subcellular fractionation 

(section 2.5.3). This technique generated the fo llow in g  subcellular 

membrane fractions: plasma membranes (PM) ± insulin , low  density  

m icrosom al membranes (LDM) ± insulin , h igh  density microsomal 

membranes (HDM) ± insulin, and soluble proteins (SP) ± insulin. Figures 

6.10A-C are representative immunoblots of the results to date in this study.

Figures 6.10A and 6.10B show the subcellular distribution of the chimeras 

CLUT4N/2 and CLUT4/2C. These display a pattern of distribution similar 

to wild-type CLUT4, with a predominantly intracellular distribution in the 

basal state which is shifted significantly to the cell surface in response to 

insulin. A concomitant decrease is observed in the level of intracellular 

G L U T 4N /2 and G LU T4/2C  after in su lin -stim u la tio n . Thus the 

introduction of GLUT4 cytoplasmic amino-terminal trafficking signals to a 

predominantly GLUT2-based chimera or a chimera specifically lacking the 

GLUT4 carboxy-terminal region appears sufficient to shift their distribution
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from a primarily cell surface localisation to an intracellular locale which is 

insulin-responsive.

Figure 6.IOC displays the subcellular distribution of the chimeric glucose 

transporter GLUT2/4. This chimera demonstrates a distribution pattern 

that is also similar to wild-type in nature. It is localised in a predominantly 

intracellular location in the absence of insulin and is translocated to the 

cell surface in a manner similar to wild-type GLUT4 in response to insulin. 

This result suggests that the presence of the trafficking signals in the 

carboxy-terminus of GLUT4 are sufficient to overcom e the loss of the 

am ino-term inal signal sequences and can m aintain the GLUT4-like 

subcellular distribution of this chimera.

6.4.2 Compartment Ablation Analysis of GLUT2/GLUT4 Chimeras

The intracellular targeting of the GLUT2/GLUT4 chimeras between the 

ablatable and non-ablatable GLUT4 pools was exam ined using the 

com partm ent ablation technique (sections 2.5.1-3). Figure 6.11 is a 

representative imm unoblot of the results using this technique with the 

aforem entioned chimeric transporters. Lack of time has precluded a 

detailed analysis using this method, therefore the data is inconclusive. 

Flence, at this time it is not possible to draw conclusions as to the effects of 

replacing signal sequences on the distribution of these chimeras between  

the two intracellular GLUT4 pools discussed in Chapter 3.
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Figure 6.10

Subcellular Fractionation of GLUT2/GLUT4 Chimeras

3T3-L1 adipocytes stably expressing the recombinant GLUT2/GLUT4 

chimeras were subjected to subcellular fractionation as described in section 

2.5.3. Cells were incubated in the absence () or presence (+) of insulin and the 

following subcellular fractions; plasma membranes (PM) ± insulin, low  

density microsomal membranes (LDM) ± insulin, high density microsomal 

membranes (HDM) ± insulin, were produced. These subcellular fractions 

(20fig protein) were immunoblotted with antibodies specific for either the 

amino- or carboxy-terminus of GLUT2. Representative immunoblots are 

shown for (A) one clone of chimera GLUT4N/2 , (B) one clone of chimera 

GLUT4/2C and (C) one clone of chimera GLUT2/ 4.
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Figure 6.11

Compartment Ablation Analysis of GLUT2/GLUT4

Chimeras

LDM membranes were prepared from 3T3-L1 adipocytes loaded with Tf-HRP 

for Ihr at 4®C, Ihr at 37°C or 3hr at 37°C, before and after ablation (- and + 

hydrogen peroxide) as indicated. In these ablation experiments, cells were 

loaded with Tf-HRP exposed to DAB in the presence and absence of peroxide 

as indicated. LDM membranes were prepared, 20pg of each fraction were 

electrophoresed and immunoblotted using anti-GLUT2 antibodies to study 

the effect of ablation on the intracellular content of the chimeras.
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6.5 Discussion

As stated above (section 6.4.1), the chimera GLUT4N/2 displays a primarily 

wild-type subcellular distribution in 3T3-L1 adipocytes. This indicates that 

the presence of signal motifs in the cytoplasmic amino-terminal domain of 

GLUT4 are sufficient to confer an intracellular distribution on this 

predominantly GLUT2-based chimera. This result is in  agreement with  

published data which has stated that the amino-terminus of GLUT4 is both 

necessary and sufficient for intracellular sequestration of GLUT1/GLUT4 

chimeric glucose transporters [Piper et al. (1992), Piper et al. (1993b)]. These 

studies also concluded that the ^FQQI  ̂ m otif m ediates intracellular 

sequestration, at least in part by facilitating the interaction of the 

transporter with endocytic machinery (clathrin lattices) located at the cell 

surface. Further studies using GLUT4-transferrin receptor chimeras 

demonstrated that mutation of the phenylalanine at position 5 did not 

significantly alter the rate at which the chimeras were recycled back to the 

cell surface, suggesting that the major function of the amino-terminal 

domain is to promote the effective internalisation of GLUT4 from the cell 

surface, via a functional phenylalanine-based internalisation motif, rather 

than to promote retention of the transporter within intracellular structures 

[Garripa gf al. (1994)].

It can be clearly seen from Figure 6.10A that the chimera GLUT4N/2  

undergoes translocation to the cell surface in response to insulin. This 

result is in contrast to the published literature which reports that a chimera 

containing the amino-terminal 183 amino acids of GLUT4 married to a 

predom inantly GLUTl sequence, although intracellularly expressed, 

exhibited no significant translocation from the intracellular site to the
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plasma membrane [Verhey et al. (1995)]. These workers interpreted this to 

mean that the amino-terminal domain of GLUT4 contains information 

involved in internalisation, but not in targeting to an insulin-responsive 

compartment. In contrast, the data presented in Chapter 3 of this thesis 

proposes a trafficking scheme for GLUT4 w ith in  w hich  the amino- 

terminal spQQiS motif is responsible for both internalisation and targeting 

of GLUT4 to an insulin-responsive compartment (section 3.5.3). It must be 

clarified however, that the insulin-responsive compartments to which  

GLUT4 is trafficked by the ^FQQl® motif are represented by the early- 

endosom al ( X e e )  and trans-Gol^i ( X t g n )  compartments, and not by the 

tubulo-vesicular storage compartment ( X t v )  (previously  term ed the 

insulin-responsive compartment in the published literature). Therefore, 

the aforementioned scheme would explain the trafficking behaviour of the 

GLUT4N/2 chimera.

Figures 6.1 OB and 6.10C demonstrate that the chimera GLUT2/4 also has a 

intracellular distribution in the basal state in 3T3-L1 adipocytes. This can 

be explained by the presence of the di-leucine motif at positions 489 and 

490, w hich  has been show n to be capable of directing chimeric 

GLUTl/GLUT4 species to an intracellular location by two studies in 3T3-L1 

adipocytes [Marsh et al. (1995), Verhey et al. (1995)]. H owever, the di­

leucine m otif is thought to be neither the major nor the dom inant 

internalisation signal within GLUT4. The dem onstration that the FAG 

mutant is expressed mainly at the plasma membrane even at very low  

levels of expression argues that the ^FQQl® motif at the amino-terminus is 

the dom inant internalisation m otif [Marsh et al. (1995)]. This is in 

agreement with previous studies in which the amino-terminus has been
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show n to function autonom ously in heterologous cells to m ediate  

intracellular sequestration [Piper et al. (1992), Garippa et al. (1994)].

After insulin treatment the chimera GLUT2/4 m oves to the cell surface. 

This result is as expected as a previous study has show n that signal(s) 

contained within the carboxy-terminus of GLUT4 are essential for sorting 

to the tubulo-vesicular compartment, but interestingly, that the L' 8̂9l490 

motif is not involved in this sorting [Verhey et al. (1995)]. The possibility 

that further trafficking signals are present in the carboxy-terminus of 

GLUT4 is discussed in further detail in Chapter 5 of this thesis.

It must be noted that the above study is at present incomplete. In order to 

gain a clearer and more complete picture of the roles of the amino- and 

carboxy-terminal domains of GLUT4 in the intracellular trafficking of this 

isoform, further analysis of all of the stated chimeric transporters (sections 

6.3.2a-b, 6.3.5a-c) requires to be performed.

With respect to the above data, it would be expected that a difference in the 

extent of translocation of the GLUT4N/2 and GLUT2/4 chimeras would be 

observed. GLUT4N/ 2 should display approximately a 3-fold increase at the 

cell surface after insulin treatment as it is predominantly located in the Xee 

and Xtgn com partm ents. Previous studies have dem onstrated this 

magnitude of insulin-stimulated movement for endosom al proteins such 

as the TfR and GLUTl [Tanner & Leinhard (1987), Calderhead et al. (1990), 

Robinson et al. (1992)]. In contrast, it would be expected that the chimera 

GLUT2/4 would translocate to a much greater extent (e.g. 10-30-fold) as it is 

trafficked to the tubulo-vesicular compartment, which is proposed to be 

the GLUT4 storage compartment that is involved in the massive increase
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in  GLUT4 at the plasm a membrane in response to insulin. Further 

experiments are needed to address this point.

Furthermore, I would expect that the chimera GLUT2/4 would be ablated 

to a much more significant degree than GLUT4N/2. This assumption is 

based on my findings in Chapter 3 which show that mutation of the F̂  

motif results in a massive increase in the extent of ablation, indicating that 

removal of this motif causes accumulation of transporters in the ablatable 

endosom al pool. In contrast, G LUT4N/2, com plete w ith  the ^FQQI  ̂

sequence, w ould be expected to be trafficked to the non-ablatable GLUT4 

pool.
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6.6 Summary

In this study I have shown that the recombinant chimeric GLUT2/GLUT4 

transporters exam ined adhere to the trafficking schem e proposed in 

Chapter 3 of this thesis. The am ino-terminus of GLUT4 functions to 

promote internalisation of the chimera GLUT4N/2, and also traffics it to 

the insulin-responsive pools: the early endosom es and the trans-Gol^i. 

The carboxy-term inus of GLUT4 also functions as a less dom inant 

in tern a lisa tion  m otif, but is su ffic ien t to prom ote intracellu lar  

sequestration of the chimera GLUT2/4. Signal(s) in the carboxy-terminal 

m otif appear to target G LU T2/4 to a m axim ally insulin-responsive  

intracellular location, most likely the tubulo-vesicular compartment.

It must be noted that the preliminary results gained from analysis of the 

two docum ented chimeras are very sim ilar in nature and are not 

particularly illum inating in assisting in the further understanding of 

GLUT4 trafficking. This is perhaps testament to the lim itations of the 

recombinant chimeric approach, which has perhaps been exhausted as a 

tool for examining the recycling of these proteins. As such, in this thesis, 

greater emphasis has been placed on other methods of investigation, such 

as the introduction of point mutations or the m utation of short motifs 

within the sequence of GLUT4. It is clear that these m ethods have been 

more productive in yield ing more novel and interesting results, and in 

helping to produce a clearer picture of the pattern of GLUT4 trafficking.
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Chapter 7

Analysis of the Expression Levels 
of SNARE Proteins Associated with  

GLUT4 Trafficking in Animal Models of 
Diabetes M ellitus
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7.1 Aims

The aims of this chapter are:

1. To determine the levels of expression of proteins associated with 

GLUT4 trafficking (SNARE proteins) in a range of animal models of 

Diabetes Mellitus.

2. To assess whether a correlation exists between the expression levels 

of GLUT4 trafficking proteins and the disease state of such animal 

models.

3. To characterise the subcellular localisation of ARE-5 in adipose and 

hindlimb skeletal muscle tissue from Sprague-Dawley normal rats 

under basal and insulin-stimulated conditions.
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7.2 Introduction

7.2.1 Possible Defects in GLUT4 Trafficking Responsible for Non-

Insulin-Dependent Diabetes M ellitus

A recent study has proposed that a defect in GLUT4 trafficking and 

targeting causes human insulin resistance and is common to both skeletal 

muscle and adipose tissue [Garvey et al. (1998)]. This defect leads to GLUT4 

accumulation in dense membrane compartments from which transporters 

are unable to be recruited to the cell surface membranes in response to 

insulin. This mechanism of insulin resistance is operative in adipocytes 

but appears to be relegated to secondary importance by the profound  

reduction in GLUT4 expression in non-insulin-dependent diabetes [Garvey 

et al. (1998)]. H ow ever, this mechanism is proposed to dominate in  

skeletal muscle where normal expression of GLUT4 is maintained [Garvey 

et al. (1998)].

The biochem ical basis of defects in GLUT4 trafficking remains to be 

defined. A translocation effect per se could be caused by either impaired 

insulin  signal transduction or lie intrinsic to the glucose transporter 

effector system [Goodyear et al. (1995), Garvey et al. (1998)]. However, the 

translocation defect proposed by Garvey et al. is independent of insulin, 

occurring under basal conditions. The clear implication here is that the 

abnormality in basal GLUT4 targeting or trafficking is a distinct defect 

intrinsic to the glucose transport system, which is mechanistically linked to 

im paired translocation. GLUT4 trafficking is constitutive, highly  

regulated, m ulti-compartmental [Czech (1995)], and involves m ultiple 

proteins that also direct the trafficking of neurosecretory vesicles [Sollner &
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Rothman (1996)]. It is therefore feasible that defects at any of several steps 

could alter trafficking and targeting of GLUT4 to produce the novel pattern 

of abnormalities observed in human skeletal muscle.

As stated above, hom ologues of the SNARE proteins involved in sm all 

synaptic vesicle (SSV) trafficking are important factors in the unique 

trafficking of the insulin-regulatable glucose transporter isoform, GLUT4. 

The role of these proteins has been discussed in greater detail in section 1.9 

of this thesis.

These proteins represent a possible site of dysfunction in the disease states 

of insulin resistance and non-insulin-dependent diabetes mellitus. In this 

study I applied the technique of subcellular membrane fractionation to 

hindlimb skeletal muscle and adipose tissue from a number of animal 

m od els of n o n -in su lin -d ep en d en t and in su lin -d ep en d en t diabetes 

mellitus, to examine the expression and subcellular distribution of these 

proteins in an attempt to determine if any correlation exists between  

altered levels  of protein expression or altered distribution, and the 

manifestation of a particular disease state. The follow ing results suggest 

that expression levels of specific SNARE proteins are altered in certain 

anim al m odels of non-insulin-dependent diabetes m ellitus, and are 

affected by treatment with BRL49653, a thiazolidinedione (TZD) compound 

(section 7.2.3), also called Rosiglitazone.

300



7.2.2 Thiazolidinediones in the Treatment of NIDDM

Thiazolidinediones are a class of orally active pharmacological agents that 

enhance the actions of insulin. These agents increase insulin-dependent 

glucose disposal and reduce the hepatic glucose output that is commonly 

elevated in non-insulin-dependent diabetes m ellitus. The m etabolic 

changes produced by these drugs result primarily from the increased 

sensitivity of insulin-sensitive tissues and are observed in  num erous 

animal models of insulin resistance, such as oh job  mice, db/db  mice and 

the Zncher f alfa rai [Fujita et al. (1983), Fujiwara et al. (1988), Stevenson et 

al. (1990), Bowen et al. (1991)].

Recent studies have unveiled  PPAR-y as the major receptor for the 

thiazolidinedione class of insulin-sensitising drugs [Harris & Kletzien 

(1994), Lehmann et al. (1995), Forman et al. (1995)]. PPAR-y is a member of 

the peroxisome proliferator activated receptor (PPAR) subfamily of nuclear 

hormone receptors. PPAR-y is expressed in an adipose-selective fashion in 

both rodents and humans, being 10-30-fold higher in fat than most other 

tissues [Tontonez et al. (1994)]. The TZDs have been identified as direct 

ligands of PPAR-y with positive activity on gene transcription [Lehmann e t 

al. (1995), Forman et al. (1995)].

These studies also revealed that TZDs were potent and effective at 

stimulating adipogenesis in cells containing endogenous or ectopically 

expressed PPAR-y [Lehmann et al. (1995), Forman et al. (1995)], confirming 

that PPAR-y, expressed at or below levels seen in fat tissue, can convert 

nearly every fibroblastic cell in a given culture into a fully differentiated 

adipocyte.
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It has been shown that TZD drugs bind to and activate PPAR-y in the same 

concentration range that has antidiabetic activity, and that the rank order 

of their antidiabetic activities closely matches the rank order of their 

affinities [W illson et al. (1996)]. Furthermore, no other receptor for TZD 

drugs has currently been identified. Taken together, the above data make a 

com pelling case that PPAR-y is the major functioning receptor for the 

common TZD actions in diabetes.

Presently it is thought that TZDs function to increase insulin-sensitivity in 

a number of ways. Firstly, the action of TZDs to promote adipose cell 

differentiation w ould be expected to produce more fat cells of a smaller 

average size. Because smaller adipose cells are usually more sensitive to 

insulin, such a differentiative response w ould be expected to produce 

greater insulin-dependent glucose uptake [Hallakou et al. (1997)]. In 

addition, because insulin is a powerful anti-lipolytic agent, smaller fat cells 

with increased insulin sensitivity would be expected to have lower relative 

rates of lipolysis. Because high levels of free fatty acids may be causally 

involved in the induction of insulin resistance, this could affect insulin- 

sensitivity at sites such as muscle and liver [Rebrin et al. (1995), Rebrin et 

al. (1996)].

The possibility also exists that PPAR-y activation may control one or more 

genes that regulate systemic insulin-sensitivity. Two interesting candidate 

genes in this regard are TNF-a and leptin. An increasing body of data 

suggests that TNF-a is overexpressed in obesity and insulin resistance and 

may interfere w ith proximal events in insulin signalling [Spiegelman & 

Flier (1996), Peraldi et al. (1997)]. TZDs appear to decrease TNF-a m R N A  

expression in adipose tissue and block the ability of TNF-a to interfere w ith
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insulin signalling [Hofman et al. (1994), Peraldi et al. (1997)]. Some reports 

indicate that leptin also might interfere with insulin signalling in certain 

cell types [Muller et al. (1997)], and TZDs have been implicated in the 

regulation of leptin expression [Kallen & Lazar (1996)].

Which potential target genes for PPAR-y are m ost relevant for the 

antidiabetic action of the TZDs remain to be defined. In differentiated cells 

and tissues TNF-a and leptin expression are reduced by PPAR-y activation. 

Another potentially important target gene for PPAR-y is GLUT4. The 

expression of this gene is increased in cultured adipocytes and fat tissue 

through PPAR-y activation by TZDs [Young et al. (1995), Wu et al. (1998)], 

and this could contribute to reduced hyperglycaemia. One major point that 

has to be addressed is that, because muscle is the major sink for insulin- 

dependent glucose disposal, it will be fundamental to determine whether 

GLUT4 is induced by TZD treatment in muscle.

7.2.3 ARF Proteins

The ADP-ribosylation factor (ARF) GTP-binding proteins are believed to 

play an important role in membrane trafficking and secretory processes in 

eukaryotic cells [Boman & Kahn (1995)]. The ARF family consists of 15 

structurally related gene products that include 6 ARF proteins and 11 ARF- 

like (ART) proteins. The ARF proteins are divided into 3 classes on the 

basis of size and amino acid identity. ARFs 1 to 3 form class I, ARF-4 and 5 

form class II and ARF-6 forms class III . All the ARFs contain a glycine at 

position 2 that is a site for N-term inal m yristoylation [reviewed in  

Donaldson & Klausner (1994), Moss & Vaughan (1995)].
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ARF proteins are known to be involved in various intracellular trafficking 

events, including endocytosis [D'Souza-Schorey et al. (1995)] and endosom e  

fusion [Lenhard & Kahn (1992)]. H ow ever, they are m ost notably 

associated with the secretory pathway, a process in w hich ARF-1 plays an 

important role [Chen & Shields (1996), Ktistakis et al. (1996)]. As a member 

of the Ras superfam ily, ARF-1 interconverts between an inactive GDP- 

bound form and an active GTP-bound form as it cycles between the cytosol 

and the Golgi membranes. On binding to the Golgi, ARF-1 promotes 

binding of the adaptor protein 1 (AP-1), a component of the clathrin-coat 

[Traub et al. (1993), Seaman et al. (1996)], and coatomer, the promoter of the 

COPl coat [Donaldson et al. (1992)] to the membrane allow ing the budding 

of secretory vesicles [Chen & Shields (1996), Ktistakis et al. (1996)].

As stated above, ARF proteins have been implicated in the regulation of 

vesicular transport through the secretory pathway [reviewed in Moss & 

Vaughan (1995)]. Recent studies have shown that ARFs may play a role in 

both the formation of secretory vesicles [Chen & Shields (1996)], and the 

initiation or facilitation of vesicle fusion at the plasm a membrane in 

endocrine cells [Galas et al. (1997)]. As insulin-stim ulated  GLUT4 

translocation to the cell surface in adipocytes exhibits many similarities to 

regulated secretion in neuroendocrine and endocrine cells, it is of interest 

to investigate whether ARF proteins may also be an important component 

of the GLUT4 trafficking machinery.
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In this study I examined the subcellular distribution of another member of 

the ARF family, ARF-5, in the membranes of SD normal rat adipose and 

hindlimb skeletal muscle tissue. My results show that, as occurs in 3T3-L1 

adipocytes [C. A. Millar and G. W. Gould (unpublished data)], ARF-5 is 

translocated from an intracellular location to the cell surface in response to 

insulin, in a similar fashion to GLUT4.
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7.3 M aterials and M ethods

7.3.1 Anim al M odels

The animal models used in this study were as follows:

1. Sprague-Dawley (SD) Normal Rats

2. Zucker/fl//fl Rats (ZDF)

3. Streptozotocin-treated (STZ) Sprague-Dawley Rats

4. oh I oh Mice

All of the above animal m odels were supplied by SmithKline Beecham  

Pharmaceuticals, N ew  Frontiers Science Park, Harlow, Essex, England. For 

details of the phenotype of these animal models see section 1.11.

7.3.1a Sprague-Dawley Normal Rats

SD normal rats were purchased from Charles River Breeding Laboratories, 

UK. Animals were fed standard chow, specifically RMl diet from Special 

Diet Services. Rats were processed as near as possible to the optimum body 

weight of 180-200g.

7.3.1b Zucker/fl//fl Rats (ZDF)

ZDF rats were purchased from Genetic M odels Inc., USA, and were fed 

standard chow, RMl diet from Special Diet Services.
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Rats were divided into four groups by drug treatment regime:

Group A Lean rats Vehicle control diet

Group B ZDF rats Vehicle control diet

Group C ZDF rats BRL 49653 30pm ol/kg body weight

Group E ZDF rats BRL 49653 3|im ol/kg body weight

7.3.1c Streptozotocin-treated (STZ) Sprague-Dawley Rats

SD normal rats (section 7.3.1a) were injected with streptozotocin when at a 

body weight of 200g. Streptozotocin was made up in lOmM Citrate buffer; 

pH 4.5 (section 2.2.2), at 80m g/m l (0.3M). Rats were injected intravenously 

(tail vein, 1m l/k g  body weight, i.e. 0.2ml/rat), using a fresh syringe each 

time, as streptozotocin is degraded on contact with blood. Animals were 

processed a week later, following confirmation of hyperglycaemia by blood 

glucose measurement.

Animals were fed standard chow, specifically RMl diet from Special Diet 

Services.

7.3.1d oh I oh Mice

oh I oh mice were purchased from Jackson Labs, USA, and were fed standard 

chow, RMl diet from Special Diet Services.

Mice were divided into three groups by drug treatment regime:

Group A Obese mice Diet control

Group B Obese mice Troglitazone 3000pmol/kg of diet

G rou p e Obese mice BRL 49653 3pm ol/kg of diet
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7.3.2 BRL 49653 (Avandia)

BRL 49653 (Avandia) is a member of the thiazolidinedione class of insulin- 

sensitising drugs, currently in the final stages of product development w ith  

SmithKline Beecham Pharmaceuticals.

308



7.4 Results

In all of the experim ents discussed below, the amount of protein in 

samples loaded onto SDS-PAGE gels for Western blotting was equally 

loaded. The protein recovery from all tissue samples was determined by 

Bradford's and Quantigold assay (section 2.7). Total protein recovery in all 

tissue fractions did not vary significantly between animal groups (data not 

shown).

7.4.1 Analysis of SNARE Proteins in Adipose Tissue from

Sprague-Dawley (SD) Normal Control Rats

A dipocytes produced from fresh normal SD rat adipose tissue were 

subjected to the subcellular fractionation procedure outlined in section

2.6.1 of this thesis. This technique yielded  the fo llow ing subcellular 

fractions: plasma membranes (PM) ± insulin, low  density microsomal 

membranes (LDM) ± insulin, high density microsomal membranes (HDM) 

+ insulin, and soluble proteins (SP) ± insulin.

Western blotting (sections 2.8-9) of these subcellular fractions was carried 

out for the follow ing proteins: (1) GLUT4, (2) Cellubrevin, (3) Syntaxin4, 

and (4) VAMP2 (Figure 7.1).

The subcellular distribution of GLUT4 was as expected, w ith the majority 

of the protein located in the LDM fraction in the basal state, and displaying 

significant translocation to the PM in response to insu lin  stim ulation  

(Figure 7.1). Similarly, cellubrevin and syntaxin4 demonstrated a wild-type 

distribution, w ith the majority of cellubrevin expressed intracellularly in
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the LDM fraction and translocating to the PM in response to insulin  

[Martin et al. (1996)], and syntaxin4 showing significant localisation at the 

PM [Volchuk et ah (1996)] (Figure 7.1). The immunoblot of VAMP2 was 

less clear, but indicated that it was expressed predom inantly in an 

intracellular location in the absence of insulin  and m oves to the cell 

surface in response to insulin (data not shown). These results demonstrate 

that the adipose tissue fractionation technique and antibodies employed in 

this analysis are functioning efficiently.

7.4.2 Analysis of SNARE Proteins in Hindlimb Skeletal Muscle

Tissue from Sprague-Dawley Normal Control Rats

Freeze-clam ped hindlim b skeletal muscle tissue was subjected to the 

subcellular fractionation technique detailed in section 2.6.2, producing the 

fo llow ing subcellular membrane fractions: plasma membranes (PM) ± 

insulin, intracellular membranes (IM) ± insulin, and soluble proteins (SP) 

± insulin.

These subcellu lar fractions were im m unoblotted for the fo llow in g  

proteins: (1) GLUT4, (2) Cellubrevin, (3) Syntaxin4, and (4) VAMP2.

The results of these im m unoblots demonstrated that all of the above 

proteins are expressed in SD rat hindlimb skeletal muscle tissue (data not 

shown).
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7.4.3 Analysis of SNARE Proteins in Hindlimb Skeletal Muscle

Tissue from ZDF Rats Treated with BRL 49653

Freeze-clamped hindlimb skeletal muscle tissue from ZDF rats was taken 

and prepared by the technique of subcellular fractionation. Samples were 

processed from the four treatment groups listed in section 7.3.1b, allowing 

a comparative analysis of expression levels of GLUT4 and the SNARE 

proteins between lean controls and untreated ZDF rats and also analysis of 

the effects of BRL 49653 treatment at two doses on diabetic rats.

The expression level of GLUT4 appeared to be similar in lean controls -v- 

untreated ZDF rats, a result consistent with the data available in published 

literature [Pedersen et al, (1990), Garvey et al. (1992)] (Figure 7.2). In 

contrast, treatment w ith the TZD compound BRL 49653 appeared to 

upregulate the expression of this protein at both dosages (3pm ol/kg and 

30pm ol/kg) (Figure 7.2).

Cellubrevin expression levels were increased in untreated diabetic rats in 

com parison to lean controls (Figure 7.2). Interestingly, the levels of 

expression of this protein were normalised by BRL 49653 treatment at 

30|xmol/kg but remained elevated at when treated with the lower dosage of 

the TZD compound (Figure 7.2).

Expression levels of syntaxin4 were also increased in untreated ZDF rats 

with respect to lean controls (Figure 7.2). Again, similar to cellubrevin, the 

expression level of syntaxin4 are normalised by treatment with the higher 

dose of BRL 49653, but not by the lower dosage (Figure 7.2).
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The expression of VAMP2 was also subject to the same phenomenon as 

cellubrevin and syntaxin4, i.e. it was increased in diabetics relative to lean 

controls, and was normalised by the higher dose of BRL 49653 (Figure 7.2).

Muscle tissue from the four treatment groups was also analysed for the 

expression levels of GLUTl and y-adaptin. Interestingly, the levels of 

GLUTl appeared to be increased in untreated diabetic animals w hen  

compared to lean controls (Figure 7.3). Furthermore, levels of GLUTl were 

normalised by treatment with BRL 49653. Analysis of y-adaptin revealed 

that expression remained unaltered between lean controls and untreated 

diabetics (Figure 7.3).

Similar analysis was performed on adipose tissue from the above animals. 

Results from this analysis were inconclusive, but suggested that there were 

little, if any, significant changes in the expression levels of the SNARE 

proteins. GLUT4 levels were reduced in diabetics compared to lean 

controls, as was expected, and appeared to be upregulated by treatment with  

BRL 49653 (data not shown).

Table 7.1 provides in vivo details regarding the effect of BRL 49653 on ZDF 

fa/fa  rats. The physiological parameters listed are: (1) body weight, (2) 

blood glucose concentration, and (3) plasma insulin concentration. The 

insulin-sensitising effects resulting from repeated treatment with BRL 

49653 can be clearly observed through the normalisation of blood glucose 

and plasma insulin levels after 24 weeks.
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7.4.4 Expression Levels of SNARE Proteins in Hindlimb Skeletal

Muscle Tissue from Streptozotocin-treated (STZ) Rats

Two different analyses were performed to examine the expression levels of 

GLUT4 and the SNARE proteins in the hindlimb skeletal muscle tissue of 

STZ rats. These tissues were subjected to an identical subcellular 

fractionation procedure as 2DF muscle tissue in section 7.4.2. N o analysis 

was attempted on adipose tissue from these animals as the tissue yield  

from dissection was extremely low.

7.4.4a Comparison of SNARE Protein Expression Levels in STZ -v-

Normal SD Rats

A direct comparative analysis was carried out of the expression levels of 

GLUT4 and the SNARE proteins in STZ rats against expression levels in 

SD normal controls.

Western blotting indicates that GLUT4 expression is reduced in the LDM 

fraction of the STZ diabetic rats with respect to the levels of GLUT4 

expression observed in the same subcellular fraction of SD normal controls 

(Figure 7.4). H ow ever, there was no significant change in the level of 

cellubrevin expression between these two groups, and a similar result was 

observed for VAMP2 (Figure 7.4). An increase in syntaxin4 expression in 

the PM of the STZ diabetic rats was observed, compared to w ild-type  

expression levels of this protein (Figure 7.4).
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7.4.4b Effect of Hyperglycaemia on SNARE Protein Expression in

STZ Rats

I undertook to examine possible effects of high levels of circulating blood 

glucose on the expression of GLUT4 and the SNARE proteins. In order to 

achieve this, the STZ rats were divided into two subgroups according to the 

extent of their hyperglycaemia. Animals with blood glucose levels of 20- 

30mM (hyperglycaemia) were classified as high blood [glucose], whereas 

animals with blood glucose levels of 10-15mM (mild hyperglycaemia) were 

classified as low  blood [glucose].

Subcellular membrane fractions of these tissues were imm unoblotted for 

the proteins GLUT4, cellubrevin, syntaxin4 and VAMP2 (Figure 7.5). The 

results indicate that there is no significant m odulation of the expression 

levels of any of these proteins by differing levels of blood [glucose]. Thus, 

the extent of hyperglycaemia displayed by a streptozotocin-induced diabetic 

m odel is not influential on the expression of GLUT4 or the SNARE 

proteins.

7.4.5 Expression Levels of SNARE Proteins in H indlim b Skeletal

M uscle Tissue from ohjoh Mice

H indlim b skeletal m uscle tissue from oh job  m ice w as subcellularly  

fractionated and Western blotted for the following proteins: (1) GLUT4, (2) 

GLUTl, (3) Cellubrevin, and (4) Syntaxin4.
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I had no access to lean control tissues, so the following experiments analyse 

the effects of treatment with the TZD compounds Troglitazone and BRL 

49653 (dosages detailed in section 7.4.1d) on the expression levels of the 

above proteins compared to obese control animals.

The quality of the immunoblots from these experiments was poor, possibly 

as a consequence of low  protein yields (Figure 7.6). Therefore, definitive 

conclusions cannot be drawn. H ow ever, these data indicated that 

expression of the SNARE proteins remained consistent in all three 

treatment groups. There was no significant change in the level of 

expression of GLUT4 between the three treatment groups.

7.4.6 Characterisation of ARF-5 in Adipose and M uscle Tissues

It has recently been shown that the small molecular w eight GTP-binding 

protein ARF-5 translocates from low  density m icrosom al membranes to 

the cell surface in response to insulin in 3T3-L1 adipocytes [Millar, C. A. 

and Gould, G. W. (unpublished data)]. This mimics the translocation of 

GLUT4 to the PM in response to insulin stimulation and thus implies that 

this protein may play a role in the unique trafficking of GLUT4. Further 

studies demonstrated that translocation of GLUT4 to the cell surface in 

3T3-L1 adipocytes could be inhibited by up to 50% by the introduction of 

synthetic peptides corresponding to the N-terminus of ARF-5 by ct-toxin 

treatment [Millar, C. A. and Gould, G. W. (unpublished data)]. The above 

data provides a convincing argument that this protein does indeed play an 

important role in GLUT4 trafficking. In order to complement these studies 

1 investigated the subcellular localisation of this protein under both basal
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and insulin-stim ulated conditions in the adipose and hindlim b skeletal 

muscle tissue of SD normal rats.

Adipose and hindlimb skeletal muscle tissue were prepared by subcellular 

fractionation (as detailed in sections 2.6.1-2). Insulin stim ulation of 

hindlimb skeletal muscle tissue was achieved by injection of a bolus of 

insulin into the hepatic portal vein of the animals.

My results show that, as in 3T3-L1 adipocytes, the small molecular weight 

GTP-binding protein ARF-5 demonstrates a predominantly intracellular 

location in the low  density microsomal membranes in the absence of 

insulin, and shifts significantly to the cell surface in response to insulin 

treatment (data not shown). This phenomenon occurs in both adipose and 

hindlimb skeletal muscle tissue, suggesting that the translocation of ARF-5 

previously observed in 3T3-L1 adipocytes is not an artefact associated solely 

w ith this cultured cell line, but is a genuine physiological cellular 

trafficking event.
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Figure 7.1

SNARE Protein Expression Levels in Sprague-Dawley
Normal Adipose Tissue

This figure shows the comparative expression levels of GLUT4 and the 

SNARE proteins (1) Cellubrevin and (2) Syntaxin4 in the sub cellular 

membrane fractions of adipose tissue from a normal Sprague-Dawley rat. 

20pg of membrane protein from each fraction were electrophoresed on 4-12% 

gels and immunoblotted using the relevant antibodies.
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Figure 7.2

SNARE Protein Expression Levels in Zucker fa!fa Rat

Hindlimb Skeletal Muscle Tissue

This figure is a representative immunoblot of expression levels of GLUT4 and 

the SNARE proteins (1) Cellubrevin, (2) VAMP2 and (3) Syntaxin4 in the 

subcellular membrane fractions of hindlimb skeletal muscle tissue from a 

Zucker fajfa rat. The rats examined in this experiment were divided into four 

groups by drug treatment regime: (a) Group A; Lean rats on a vehicle control 

diet, (b) Group B; ZDF rats on a vehicle control diet, (c) Group C; ZDF rats 

treated with BRL 49653 at a dose of 30frmol/kg body weight, and (d) Group E; 

ZDF rats treated with BRL 49653 at a dose of 3pm ol/kg body weight. Shown 

here are comparative total intracellular membrane fractions for GLUT4, 

Cellubrevin and VAMP2, and plasma membrane fractions for Syntaxin4. 20 ̂ g 

of membrane protein from each fraction were electrophoresed on 4-12% gels 

and immunoblotted using the relevant antibodies.
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Figure 7.3

Expression Levels of GLUTl and y-adaptin in Zucker/«//«

Rat Hindlimb Skeletal Muscle Tissue

Tliis is a representative immunoblot of the expression levels of GLUTl and y- 

adaptin in the subcellular membrane fractions of hindlimb skeletal muscle 

tissue from a Zucker Ja/fii rat. The rats examined in this experiment were 

divided into four groups by drug treatment regime: (a) Group A; Lean rats on 

a vehicle control diet, (b) Group B; ZDF rats on a vehicle control diet, (c) 

Group C; ZDF rats treated with BRL 49653 at a dose of 30|nmol/kg body 

weight, and (d) Group E; ZDF rats treated with BRL 49653 at a dose of 

3|Limol/kg body weight. Shown here are comparative total intracellular 

membrane fractions for GLUTl and a comparison of treatment groups A and 

B for y-adaptin. 20pg of membrane protein from each fraction were 

electrophoresed on 4-12% gels and im m unoblotted using the relevant 

antibodies.
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Table 7.1

Effects of BRL 49653 on ZDF fa!fa Rats in vivo

Tliis table details physiological parameters of the ZDF faija rats which received 

repeated treatment with BRL 49653. The rats examined were classified by 

drug treatment regime: (a) Group A; Lean rats on a vehicle control diet, (b) 

Group B; ZDF rats on a vehicle control diet, (c) Group C; ZDF rats treated with 

BRL 49653 at a dose of 30|uimol/kg body weight.
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Table 7.1

Effects of BRL 49653 on Z D T f a l f a  Rats i n  v i v o  

Parameter Group A Group B Group C

Body weight (g)
w t @ llw k s  269 ±26 331 ±11 341 ± 18

w t@ 2 4 w k s 423 ±35 409±58 732 ± 38’

Blood Glucose (mM)
@ 11 wks 4.42 ± 0.36 13.56 ± 4.59 19.92 ± 7.25

@ 24 wks 5.33 ± 0.41 27.43 ± 2.37 6.35 ± 0.9

Plasma Insulin (ng/ml)
@ 11 wks 1.9025 ± 0.55 20.27 ± 6.14 14.22 ± 5.18

@ 24 wks 1.29 ± 0.28 5.66 ± 6.27** 2.37 ± 0.62

Represents drug-driven adipogenesis, more marked in this sort of 

m odel than in man

Represents considerable islet damage i.e. animals at transition 

from late-phase NIDDM to IDDM
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Figure 7.4

Comparison of Expression Levels of GLUT4 and SNARE

Proteins Between Sprague-Dawley Normal Rats and

Streptozotocin-Treated Diabetic Rats

This figure shows the comparative expression levels of GLUT4 and the 

SNARE proteins (1) Cellubrevin, (2) VAMP2 and (3) Syntaxin4 in the 

subcellular membrane fractions of hindlimb skeletal muscle tissue. Shown 

here are comparative total intracellular membrane fractions for GLUT4, 

Cellubrevin and VAMP2, and plasma membrane fraction for Syntaxin4. 20 pig 

of membrane protein from each fraction were electrophoresed on 4-12% gels 

and immunoblotted using the relevant antibodies.
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Figure 7.5

Effect of Hyperglycaemia on SNARE Protein Expression in

Streptozotocin-Treated Diabetic Rats

In this figure the expression levels of GLUT4 and the SNARE proteins (1) 

Cellubrevin, (2) VAMP2 and (3) Syntaxin4 are compared between two animal 

groups displaying different levels of hyperglycaemia. The group classified as 

low  blood [glucose] display blood glucose levels of 10-15mM (mild 

hyperglycaemia), whereas the group classified as high blood [glucose] 

display blood glucose levels of 20~30mM (hyperglycaemia). Shown here are 

comparative membrane fractions for GLUT4, Syntaxin4, Cellubrevin and 

VAMF2. 20p,g of membrane protein from each fraction were electrophoresed 

on 4-12% gels and immunoblotted using the relevant antibodies.
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Figure 7.6

SNARE Protein Expression Levels in ohioh Mouse
Hindlimb Skeletal Muscle Tissue

This figure is a representative immunoblot of expression levels of GLUT4 and 

the SNARE proteins (1) Cellubrevin, (2) VAMP2 and (3) Syntaxin4 in the 

subcellular membrane fractions of hmdlimb skeletal muscle tissue from ob/ob 

mice. The mice examined in this experiment were divided into three groups 

by drug treatment regime: (a) Group A; Obese mice on a vehicle control diet, 

(b) Group B; Obese mice treated with Troglitazone at a dose of 3000pm ol/kg 

of diet, (c) Group C; Obese mice treated with BRL 49653 at a dose of 3pm ol/kg  

of diet. Shown here are comparative 25%. 30% and 35% membrane fractions. 

20frg of membrane protein from each fraction were electrophoresed on 4-12% 

gels and immunoblotted using the relevant antibodies.
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7.5 Discussion

7.5.1 Expression of SNARE Proteins in Animal Models of Diabetes

M ellitus

The above results suggest that in the hindlimb skeletal muscle tissue of the 

Zucker diabetic fajfa  animal m odel of non-insulin-dependent diabetes 

mellitus there are selective changes in the expression of proteins involved  

in the trafficking of the insulin-regulatable glucose transporter isoform, 

GLUT4. A longside examination of the expression levels of GLUT4 itself, 

the SNARE proteins that I have primarily concentrated on in this study are 

as follows. (1) the t-SNARE syntaxin4, which is localised primarily at the 

cell surface in 3T3-L1 adipocytes and is thought to act as a PM docking 

protein for GLUT4-containing vesicles [Volchuk et al. (1996), Tellam et al.

(1997)]. (2) the v-SNARE cellubrevin, which is expressed in 3T3-L1 

adipocytes, co-localising with GLUT4 in endosomes [Volchuk et al. (1995)], 

where it is thought to mediate the constitutive endosom al trafficking of 

this protein [Rea & James (1997)]. (3) the v-SNARE VAMP2, which also 

colocalises with GLUT4 in 3T3-L1 adipocytes, mainly in the GLUT4 storage 

compartment [Martin et al. (1996)], and is proposed to specifically regulate 

the docking of GLUT4 vesicles in response to insulin stim ulation [Rea & 

James (1997)].

My results indicate that in the subcellular fractions of obese Zucker rat 

hindlim b skeletal m uscle tissue, the expression level of GLUT4 is not 

significantly different between lean and diabetic controls (Figure 7.2), in 

agreement with published data [King et al. (1992)]. However, it appears that 

treatment w ith the TZD com pound, BRL 49653, at a dosage of either
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3 p m o l/k g  body w eigh t or 30^ m ol/kg body w eigh t, results in an 

upregulation in the level of GLUT4 expression (Figure 7.2). This result is 

perhaps not unexpected as a similar phenomenon is observed in adipose 

tissue from obese mice [Young et al. (1995)] and cultured adipocytes [Wu et  

al. (1998)], where GLUT4 expression is increased through PPAR-y activation  

by TZDs, im plying that GLUT4 is an important target gene for PPAR-y in  

this tissue. The above results provide some of the first evidence to suggest 

that BRL 49653 can upregulate GLUT4 levels in the muscle tissue of obese 

Zucker rats and may help explain the mode of action of this compound in 

im proving insu lin -sensitiv ity  in diabetic sufferers. Presum ably any 

increase in GLUT4 levels resulting from treatment w ith  TZDs could  

contribute to reduced hyperglycaemia, a major com ponent of insulin  

resistance and non-insulin-dependent diabetes mellitus. It seems that, as 

in adipose tissue, GLUT4 may be an important target gene for PPAR-y. It is 

obviously of major importance to determine the effects of BRL 49653 and 

other TZD compounds in muscle as this tissue represents the major sink 

in vivo for insulin-dependent glucose disposal.

Further analysis of obese Zucker hindlimb skeletal muscle tissue revealed 

that, for some of the SNARE proteins involved in GLUT4 translocation 

(cellubrevin, syntaxin4 and VAMP2), selective changes occurred in the 

level of their expression. The expression of each of these SNARE proteins 

was upregulated in diabetic controls compared to lean controls (Figure 7.2). 

This is perhaps suggestive of a physiological mechanism that is attempting 

to com pensate for the d im inished insulin-stim ulated glucose uptake 

observed in all major m uscle groups [Zarjevski et al. (1992), Kahn & 

Pedersen (1993)], w hich  is thought to be resultant from im paired  

translocation of GLUT4 to the plasma membrane [King et al. (1992), Garvey
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et al. (1998)]. Furthermore, it was noted that treatment with the TZD 

compound, BRL 49653, appeared to downregulate the elevated levels of 

expression of the above SNARE proteins to a level more consistent with  

that observed in the non-diabetic controls (Figure 7.2). This is the first tim e 

that such a phenom enon has been reported, and suggests that the genes 

controlling the expression of these proteins may be potential targets for 

PPAR-y.

Im m unoblotting of the above tissues w as also perform ed for the 

ubiquitous g lu cose  transporter isoform , G LUTl, and y-adaptin, a 

com ponent of the AP I complex. The results indicated that GLUTl 

expression was increased in untreated diabetic animals w hen compared to 

lean controls (Figure 7.3). This suggests that perhaps levels of GLUTl are 

upregulated in diabetic animals in an attempt to com pensate for the 

reduction in insulin-stimulated glucose uptake caused by possible defects 

in  the translocation of the dom inant transporter isoform , GLUT4. 

Furthermore, levels of GLUTl appeared to be normalised by BRL 49653 

treatment, indicating that the TZD may act to control expression of this 

protein. A n alysis  of y-adaptin revealed that expression  remained 

unaltered between lean controls and untreated diabetics (Figure 7.3). I was 

unable to determine whether BRL 49653 treatment had any effect on the 

expression of this protein.

The above data provides evidence to support the theory that human 

insulin resistance involves a defect in GLUT4 trafficking and targeting 

which leads to an accumulation of this key protein in a dense membrane 

compartment from which insulin is unable to recruit GLUT4 to the cell 

surface [Garvey et al. (1998)]. It is possible that such a defect may be

333



m anifest at the level of the regulated recycling of GLUT4 w hich is 

controlled by insulin and facilitated by the SNARE proteins. As such 

alterations in their expression levels in the diabetic state could result in  

aberrant trafficking and / or targeting of GLUT4, resulting in a state of 

insulin resistance.

As stated previously (section 7.4.3), similar analysis was performed on 

subcellular fractions of adipose tissue from the same animal m odel. The 

results in this case were inconclusive, but suggested that there were no 

significant changes in the levels of expression of the SNARE proteins 

between lean and diabetic controls, and that no major regulation of 

expression levels was apparent after repeated treatment with BRL 49653. 

These experim ents need to be repeated if it is to be conclusively  

determined whether SNARE protein expression changes in the adipose 

tissue of diabetic sufferers and if so, whether TZD treatment has a 

normalising effect as observed in muscle tissue. It was apparent, however, 

that as expected, GLUT4 expression was downregulated in diabetic controls 

compared to lean controls, similar to results from the adipose tissue of 

obese mice [Young et al. (1995)] and human diabetes sufferers [Garvey et al. 

(1991)]. After repeated treatment with BRL 49653, GLUT4 expression  

appeared to be upregulated towards a level consistent w ith normal lean 

controls, again in concert with previous experiments in obese mice [Young 

et al. (1995)] w hich point to GLUT4 being an important target gene for 

PPAR-y.

I also investigated the levels of expression of GLUT4 and the SNARE 

proteins in adipose and hindlimb skeletal muscle tissue of another animal 

model of non-insulin-dependent diabetes mellitus, the oh job  mouse. The
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results from this analysis w ere am biguous, and thus no specific  

conclusions can be drawn from them concerning the expression of the 

SNARE proteins after treatment w ith the TZD com pounds troglitazone 

and BRL 49653 other than that they did not appear to be significantly 

altered by either treatment.

A further investigation was carried out comparing the expression levels of 

GLUT4 and the SNARE proteins in an animal model of insulin-dependent 

diabetes mellitus, streptozotocin-treated (STZ) rats. In this case, the levels 

of expression of the aforementioned proteins were directly compared to 

expression levels in normal SD rats. It appeared that GLUT4 levels were 

reduced only in the LDM fraction of STZ rats, suggesting that reduced 

intracellular levels of this protein could be significant in this condition. 

There was no discernible differences in the levels of v-SNARE expression 

(cellubrevin and VAMP2) but the t-SNARE syntaxin4 was expressed at a 

higher level in the PM of STZ animals. It is not clear why this should be 

the case, as the primary defect in these animals is their lack of p-cell 

function. However, studies have shown that GLUT4 levels are reduced in 

muscle from STZ rats.

The effect of hyperglycaemia on GLUT4 and SNARE protein expression  

was investigated by comparison of expression levels of these proteins 

between two groups of STZ rats displaying different (high or low) blood 

glucose levels (section 7.4.4b). The results indicate that the levels of 

expression of all of the proteins examined are probably not modulated by 

the extent of hyperglycaem ia exhibited by anim als suffering from  

streptozotocin-induced diabetes.
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By considering all of the above results, 1 propose that the selective changes 

in expression of the SNARE proteins observed in the muscle tissues of the 

ZDF m odel of non-insulin-dependent diabetes mellitus are a consequence 

of the state of hyperinsulinaemia that is prevalent in these animals. This 

hypothesis is supported by the fact that sensitiser (TZD) treatment is 

known to norm alise, or at least m assively reduce, hyperinsulinaem ia, 

which w ould explain the normalisation of SNARE protein expression that 

is observed in this tissue after repeated treatment with BRL 49653. I have 

also show n, in streptozotocin-treated diabetic rats, that hyperglycaemia 

appears to have no effect on SNARE protein expression, and this further 

end orses the p rop osa l that th is p h en om en on  is govern ed  by 

hyperinsulinaemia, as this state is not manifest in STZ rats and thus no 

change in expression levels would be expected.

7.5.2 Role of ARF-5 in GLUT4 Trafficking

1 undertook to investigate the subcellular distribution of the ARE protein, 

ARF-5, under basal and insulin-stim ulated conditions in adipose and 

hindlimb skeletal muscle tissue from normal SD rats. The results showed 

that, in agreem ent w ith  previous investigations in 3T3-L1 adipocytes 

[Millar, C. A. and Gould, G. W. (unpublished data)], ARF-5 undergoes 

translocation from an intracellular location to the cell surface in response 

to insulin-stimulation (data not shown). This phenomenon is observed in 

both adipose and hindlimb skeletal muscle tissue indicating that it is an 

important cellular trafficking event. Parallel examination of GLUT4 in the 

same tissues show ed that GLUT4 levels increased w ith in  the plasma 

membrane fraction in response to insulin, concomitant w ith a decrease in 

the intracellular (LDM) fraction, as expected.
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Further studies by Millar and Gould have dem onstrated that insulin  

regulates the redistribution of both GLUT4 and ARF-5 to the plasma 

membrane in 3T3-L1 adipocytes in a FI 3-kinase dependent manner. On 

the basis of this and the above data it seems reasonable to propose that 

ARF-5 plays a crucial role in insulin-stimulated GLUT4 translocation.

7.6 Summary

In this study I have demonstrated selective upregulation of the levels of 

expression of the SNARE proteins, cellubrevin, VAMF2 and syntaxin4 in 

the diabetic state compared to lean controls in hindlimb skeletal m uscle 

tissue from ZDF rats. I have also shown that in the same tissue the 

expression levels of these proteins are normalised by repeated treatment 

with the TZD insulin-sensitising compound, BRL 49653. Furthermore, I 

have demonstrated that GLUT4 levels are not significantly altered between 

normal and diabetic ZDF muscle tissue, but are upregulated by repeated 

treatment with BRL 49653. This is in contrast to the expression levels of 

the above proteins in streptozotocin-treated rats, where no pattern of 

selective regulation of expression levels was observed, leading to the 

proposal that these selective changes are a consequence of the state of 

hyperinsulinaemia that is prevalent in the ZDF animals but does not occur 

in the STZ rats.

1 have also demonstrated that a member of the ARF family of proteins, 

ARF-5, displays a pattern of insulin-stim ulated translocation from an 

intracellular location to the cell surface in adipose and hindlimb skeletal 

muscle tissue in SD normal rats. This data adds to a growing body of
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evidence w hich proposes that this protein plays a key role in the 

translocation of GLUT4 in response to insulin.
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Chapter 8 

D iscussion
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Elucidation of the mechanism by which GLUT4 is trafficked and targeted 

within insulin-responsive cells remains a key goal in the search to define 

cellular dysfunctions which may be causally related to the prevalent 

m etabolic d iseases of insu lin  resistance and non-insu lin -dependent  

diabetes mellitus. Of prime interest in this respect is the manner in which 

the insulin-responsive glucose transporter isoform, GLUT4, is targeted to 

an 'insulin-responsive' intracellular location, trafficked to the cell surface 

in response to insulin, and re-internalised post-insulin-stimulation.

Previous studies have demonstrated that the trafficking of GLUT4, and 

other recycling proteins, such as the transferrin receptor and the cation- 

independent mannose 6-phosphate receptor, is governed, at least in part, 

by specific amino acid targeting motifs that are found on the sequence of 

such proteins. The nature of certain of these targeting motifs has been 

identified, and those considered in this thesis can be classified into two 

categories; (1) YXX0-type motifs, where Y is an aromatic amino acid, X is 

any amino acid and 0  is an amino acid with a bulky hydrophobic group, 

and (2) di-leucine (or isoleucine-leucine) motifs.

To date, two specific targeting motifs have been identified on the sequence 

of GLUT4, one from each of the above categories. Several groups 

discovered that a sequence in the cytoplasmic amino-terminal domain of 

GLUT4, ^FQQI ,̂ functions as a dominant internalisation signal in the 

trafficking of this protein [Piper et al. (1992). Piper et al. (1993b), Garippa et  

al. (1994)]. Further research has revealed that the 30 carboxy-terminal 

amino acids contain a di-leucine motif analogous to that found in the 

mannose 6-phosphate receptor, which is involved in the re-internalisation 

of GLUT4 from the cell surface after insulin-stim ulation [Verhey et al.
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(1993), Corvera et al. (1994), Verhey & Birnbaum (1994)]. The present 

school of thought also indicates that this carboxy-terminal cytoplasmic 

dom ain of GLUT4 also contains signal(s) which are responsible for the 

targeting of this protein to specific intracellular com partm ents. This 

hypothesis is based on analyses of chimeric transporter proteins expressed 

in insulin-responsive cells [Haney et al. (1995), Verhey et al. (1995)].

This th esis  a ttem pted  to further characterise the roles of the 

aforem entioned m otifs in GLUT4 trafficking. Specifically, this study 

wished to determine whether these motifs were capable of governing m ore 

than one aspect of GLUT4 trafficking w ith in  the com plex m ulti- 

compartmental assembly that constitutes the intracellular environment, 

and also to discover if further targeting motifs were present w ithin the 

carboxy-terminal domain.

To this end, I exam ined the subcellular distribution of mutant glucose 

transporters in which the residue was swapped for A^, and the T489p490 

motif was altered to Â ^̂ Â ^O. Results indicated that both of these m otifs 

do indeed play an important role in the internalisation of GLUT4, but also 

function to target this protein between distinct intracellular compartments 

known to be involved in the GLUT4 trafficking pathway. It appears that 

the ^FQQI® sequence regulates the sorting of GLUT4 into the TGN, and that 

the l489l490 governs the trafficking of this protein from the TGN back into 

early endosom es. These results were gained primarily through applying 

the techniques of buoyant density and compartment ablation analysis to 

the aforementioned GLUT4 mutants stably expressed in 3T3-L1 adipocytes. 

These results led to the proposal of an alternative trafficking pathway for 

GLUT4, which involves the addition of a further intracellular GLUT4 pool.
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namely the TGN, to the original 3-pool model advocated by the groups of 

Holman and Birnbaum {Holman et al. (1994), Yehet  al. (1995)]. This m odel 

provides an attractive scheme within which it is possible to reconcile not 

only the results of this study, but all previous studies addressing the 

question of GLUT4 trafficking. It is noteworthy that this is the first model 

to achieve this objective.

A further study was performed to examine the role of the residues distal to 

the di-leucine motif in the carboxy-terminal cytoplasmic tail of GLUT4 in 

targeting this isoform to a post-endocytic compartment in adipocytes, from 

where it can be translocated to the cell surface in response to insulin. 

Mutation of the residues ^^^TELEYLGP^^S, but not resulted in

a redistribution of the protein to the cell surface in an insulin-dependent 

manner. A  m ore dom inant effect on targeting w as observed after 

mutation of 498xELE^01, which resulted in an accumulation of GLUT4 in 

endosomes. It was noted that none of these mutations abrogated the ability 

of insulin to translocate to the cell surface.

This thesis also tackles the question of whether the trafficking of GLUT4 is 

regulated by a process of phosphorylation. The role of the major site of 

phosphorylation in GLUT4, a serine residue at position  488, has been 

investigated. This site is unique to GLUT4 and is immediately adjacent to 

the l489l490 m otif in the cytoplasm ic carboxy-terminal domain. It was 

fou n d  that m u ta tion  of S488 to a lan in e, w h ich  p reven ts the 

phosphorylation of GLUT4, does not appreciably disrupt the regulated 

trafficking of GLUT4 in 3T3-L1 adipocytes. The data from this study  

indicates that the phosphorylation state of 8^88 is not involved in the
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insulin- or okadaic acid-elicited recruitment of GLUT4 to the plasma 

membrane, but may play a role in the sorting of this protein at the TGN.

As a complement to the above studies, I undertook the construction and 

analysis of a series of recombinant GLUT2/GLUT4 chimeric glucose 

transporters. These recombinant species were constructed by the reciprocal 

exchange of dom ains betw een  GLUT4 and the liver-typ e glucose  

transporter isoform, GLUT2, and subsequent analysis of the subcellular 

distributions of these chimeras in 3T3-L1 adipocytes was performed by 

application of the techniques of subcellular fractionation and compartment 

ablation. This study is at present incom plete, and as such, only  

preliminary data is included in this thesis for discussion only. The results 

are broadly in agreement w ith previous studies that have em ployed  

recombinant GLUT1/GLUT4 chimeras [Piper et al. (1992), Piper et al. 

(1993b), Czech et al. (1993), Marshall et al. (1993), Verhey et al. (1993), 

Verhey et al. (1995), Verhey & Birnbaum (1994)], and also concur strongly 

with the alternative model of GLUT4 trafficking that has been proposed in 

this thesis. The one difference from published data is that the results 

detailed here indicate a role for the cytoplasmic amino-terminus of GLUT4 

in trafficking this isoform to an insulin-responsive' intracellular location, 

most likely early endosomes or the TGN.

In order to look at the process of GLUT4 trafficking from a different 

perspective, I perform ed a study (in conjunction w ith  Sm ithKline 

Beecham Pharmaceuticals) w hich exam ined the expression  levels  of 

proteins known to be involved in the regulated recycling of GLUT4 in 

animal m odels of diabetes mellitus. These were proteins associated with 

Rothman's SNARE hypothesis of regulated exocytosis in synaptic vesicles
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[Rothman (1993)], hom ologues of which have been identified in insulin- 

responsive cells e.g. cellubrevin, syntaxin4 and VAMP2 [Volchuk et al.

(1995), Volchuk et al. (1996), Martin et al. (1996)]. The results from this 

study indicated that selective changes take place in expression levels of 

these proteins in the skeletal muscle of untreated diabetic samples, and 

also that these selective changes in expression can be norm alised by 

repeated  treatm ent w ith  a th ia zo lid in ed io n e  in su lin -se n s it is in g  

compound. It is proposed that these selective changes are a consequence of 

the hyperinsulinaem ic state of these animals and are not affected by 

increased blood glucose levels.

Clearly the m ovem ent of GLUT4 in insulin-responsive cells is a highly 

regulated and complex process. It requires the trafficking of this glucose 

transporter isoform  through multiple intracellular compartments and is 

governed by specific motifs within the sequence of the protein that most 

likely interact w ith  adaptor m olecules' w hich expedite sorting and 

targeting. The m olecules involved encompass general factors utilised by 

the recycling endosomal pathway to the specific machinery that facilitates 

the unique sorting, targeting, trafficking and fusion of the GLUT4 storage 

compartment and GLUT4 vesicles. The, perhaps m ultiple, roles of these 

molecules and signal motifs in the process of GLUT4 trafficking remain to 

be defined completely and this will constitute a primary goal of research in 

this field. Ultimately, such knowledge should be of central importance in 

the rational d esign  of drugs intended for the treatm ent of insulin  

resistance and non-insulin-dependent diabetes mellitus.
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