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Abstract 

Owing to its unique mechanical and electrical properties, diamond is an attractive 

candidate for use in micro-electro-mechanical systems (MEMS) devices. This thesis 

pertains to the development, fabrication and characterisation of polycrystalline 

diamond (PCD) micro-electromechanical systems (MEMS) devices for passive 

micro-rheology and sensor applications. Intrinsic PCD and boron doped PCD (BDD) 

materials are investigated.  

Micro-rheology is the study of soft matter rheological properties, often performed 

by observing interactions with mechanical devices, such as micro-cantilevers, at 

the micro scale. In order to overcome significant fluid dampening, these devices 

are actuated at or around their resonant frequency, and several measurements 

are taken at different frequencies to build a data set. We present an intrinsic 

diamond-based micro-cantilever micro-rheometer device, the passively actuated 

thermal fluctuations of which can be characterised in a fluid at least up to the 

viscosity of water (8.90 × 10−4 Pa.s ). A possible data analysis method to extract a 

fluid’s viscoelastic properties from the power spectrum of the thermal 

fluctuations of a device submerged in the fluid is also presented. This method 

negates the requirement for measurements at multiple actuation frequencies and 

provides useable data up to the sample rate of the data acquisition system.  

Intrinsic PCD cantilevers for passive micro-rheology were fabricated from polished 

(~3 nm Ra) 500 nm thick PCD on Silicon <100> substrate films. Cantilever 

dimensions range from 5 µm to 150 µm in length and 1 µm to 4 µm in width, the 

highest height/width/length ratio cantilevers yet reported. PCD samples were 

patterned using electron beam lithography and highly anisotropic diamond etching 

was achieved using an RIE Ar/O2 plasma etching method. A new fabrication 

process to minimize cantilever undercut is presented. The thermal fluctuations of 

the free-standing cantilever structures in air and water at room temperature were 

successfully captured by a laser Doppler vibrometer system. Resonant frequencies 

of devices are presented, ranging from 38 – 554 kHz in air and 42 – 148 kHz in 

water, comparable to that of similar single crystal diamond devices.  
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PCD micro-cantilevers have been investigated extensively in different sensor 

applications. Recently, boron-doped diamond micro cantilevers exhibiting 

piezoresistive behavior have been fabricated from multi-layer PCD material. We 

present a boron-doped PCD micro-cantilever piezoresistive sensor fabricated from 

a single layer of BDD thin film on silicon. BDD material was electrically 

characterised and found to be electrically stable for up to at least 60 seconds 

within the I/V ranges investigated. BDD micro-cantilevers were fabricated from 

polished (~3 nm Ra) 480 nm thick BDD on Silicon <100> substrate films. The U-

shaped cantilever’s dimensions ranged from 60 µm to 110 µm in length with legs 

4 µm in width. The deflection sensitivity of the fabricated cantilever devices is 

reported, ranging from 0.029 mΩ/Ω-µm to 0.063 mΩ/Ω-µm. An analysis of the 

nature of the piezoresistive mechanism in the BDD devices is presented.  
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Chapter 1: Introduction 

 

 

Microelectromechanical systems (MEMS) were first introduced commercially in the 

1980s as a way of interacting with the world on the microscopic level [1.1]. MEMS 

devices consist of a free moving mechanical structure interacting with external 

forces through means of actuation or static deflection, and integrated electronic 

detection. MEMS devices have been successfully incorporated into many areas of 

science and technology, including but not limited to: RF filters and optical 

switching used in telecommunications, accelerometers used in consumer 

electronics such as mobile telephones and electronic game controllers, 

accelerometers as airbag actuators in the automotive industry, micro-scale energy 

harvesting, bio-medical technologies such as lab on chip, bio-mass detection and 

molecular sorting [1.2][1.3][1.4]. MEMS is an area of engineering that is being 

researched, developed and applied continuously. MEMS devices have the 

advantage of being low cost, low power, ultra-sensitive, and have the ability to 

interact with the world on a sub-microscopic level. There exists no single standard 

MEMS fabrication procedure or high-level functional design tools and design 

methodology is steered by fabrication limitations and process constraints, with 

many techniques derived from the extensively-researched integrated circuit (IC) 

fabrication field.  
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Advancements in MEMS technology has allowed for device deployment in areas of 

biotechnology [1.5]. MEMS offer the functionality of larger sophisticated biological 

sensing and detection methods in a smaller package that is low power, has higher 

sensitivity and greater resolution whilst using minimal material resources. These 

advantages make MEMS devices ideal candidates for point of care (POC) 

diagnostics applications. POC devices have the advantage of being time efficient: 

samples need not be transported to testing areas and results are returned 

immediately to the operator for diagnosis. The devices can be used in situ: this is 

ideal for applications in areas where there is no access to advanced medical 

infrastructure, or in situations where a sample may degrade over time if 

transported to a laboratory [1.6].  

An area of biotechnological research that could be advantaged by the 

incorporation of MEMS is the field of micro-rheology [1.7]. Rheology is the study 

of the flow of matter, and micro rheology focuses on the properties of soft matter 

at microscopic scale lengths. In traditional bulk rheology, rotating parallel plates 

apply a stress or strain on soft matter placed between them and the resulting 

feedback on the rotating motor is measured. The data captured of the movement 

of the motor can be mathematically related to the fluid properties of the matter. 

This method is limited to only bulk material samples ranging upwards of tens of 

millilitres, and is a time consuming process, sometimes taking days to complete a 

single measurement [1.8]. The more recently developed area of micro-rheology 

involves observing the migration of micron-sized tracer particles, commonly silica 

beads, through a soft matter sample, typically on the microliter scale.  

There are two main branches of the micro-rheology discipline - passive and active. 

Passive methods use the inherent thermal energy present in the soft matter to 

drive the motion of optically or magnetically trapped tracer particles, and the 

particle trajectory is captured by high speed video tracking. In active systems, the 

tracer particle’s trajectory is caused by an external force applied by the optical 

or magnetic trap. Micro-rheology improves on bulk rheology by allowing for small, 

microliter sample sizes, less time consuming measurements and the ability to 

measure microscopic scale length phenomena [1.9]. MEMS devices have been 

investigated as an alternative to these micro-rheology methods. Free end 

cantilever devices have been used to characterise fluid properties, however these 

devices are limited to data at only the frequency at which the measurement is 



Chapter 1: Introduction 3 

taken. Results are inconsistent with other established micro-rheology methods, 

often showing orders of magnitude in variation between the reported results and 

known values [1.5][1.10]–[1.12].  

MEMS have also been applied as biological sensors using several different methods. 

The frequency shift method requires monitoring the resulting shift in resonant 

frequency of a vibrating cantilever due to mass loading by a foreign body. The 

higher the resonant frequency, the greater the mass resolution that can be 

achieved. Sub-femtogram resolution has been realised by this method [1.5]. 

Another common method of biological detection is by cantilever static deflection. 

This involves the observation of displacement as the cantilever becomes 

increasingly stressed during mass loading of the cantilever’s surface [1.13].  

The most common materials used for MEMS devices are silicon based. This can be 

attributed to the extent of established fabrication methods for this material and 

relative low cost [1.14]. However, increasingly demanding applications require a 

material that is more robust and can operate at higher frequencies [1.15]. Owing 

to its unique mechanical properties and its bio-inertness, polycrystalline diamond 

(PCD) is an attractive alternative candidate material for use in MEMS devices. 

Despite being significantly cheaper than single crystal diamond to produce, PCD 

retains the inherent mechanical properties such as high acoustic velocity, 

chemical and biological inertness and thermal stability [1.15]. These attributes 

have been exploited in devices such as ultra-sensitive mass detectors, surface 

acoustic wave devices and bio-sensors [1.16]–[1.18]. One of the advancements in 

PCD production is the ability to dope the material during growth with foreign 

atoms to tune the conductivity. Doping of diamond with boron makes the material 

conductive dependant on the doping concentration. Boron-doped diamond also 

exhibits piezoresistive behaviour which is makes it a suitable candidate for sensor 

development e.g. the resistivity of a PCD film will vary depending upon strain. 

The gauge factor of boron doped PCD (BPCD) (the change in resistance versus 

strain applied) is similar to that of piezoresistive silicon and is more thermally 

stable [1.19], [1.20].   
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 Silicon Silicon 

Carbide 

Natural 

Diamond 

Polycrystalline 

Diamond 

Young’s 

Modulus 

(GPa) 

131 440 1220 1050 

Thermal 

Conductivity 

(W/cm.K) 

1.5 5 22 20 

 

Table 1.1 Textbook values for Young’s modulus and thermal conductivity in 

common MEMS materials and natural diamond. High young’s modulus coupled with 

relative low mass density gives diamond a high acoustic velocity. High thermal 

conductivity reduces intrinsic energy loss in vibrating structures [1.21], [1.22]. 

 

A primary aim of this work was to demonstrate the potential for micro-rheology 

principles and data analysis techniques to be applied to a nano-scale PCD MEMS 

device. The design, fabrication and thermally driven motion of free-end cantilever 

beam structures submerged in soft matter was investigated and is reported on. 

The use of such a MEMS device would negate the need for powerful optical traps 

that can potentially heat the sample locally, and also have the potential for higher 

frequency operation. The methods investigated here show the potential to extract 

data across a large frequency range from a single measurement with greater 

accuracy than other cantilever type devices. 

Static deflection forms the basis of operation for devices further investigated in 

this thesis, specifically the design, fabrication and characterisation of a BDD 

cantilever type MEMS POC device for biological organism detection. Cantilever 

deflection sensitivity in BDD devices and geometrical considerations are explored.  

The main focus of this thesis is the development of PCD and BDD MEMS devices for 

both POC micro-rheology and micro-organism detection applications. Chapter 2 

will provide an in-depth discussion on the theoretical background of the material 

and the physics underpinning device operation. In Chapter 3 a review of relevant 

literature is provided to inform the reader of the current state-of-the art. Chapter 

4 details the fabrication processes investigated and developed in order to 
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manufacture diamond MEMS devices. Chapter 5 explains the tools and methods 

used to characterise the diamond material and devices. Chapter 6 presents 

fabrication results and process development achieved by the author, including dry 

and wet etching methods, metallisation, free standing device release and some 

material characterisation. Chapter 7 and Chapter 8 present characterisation 

results for the devices detailed in Chapter 6, including the characterisation of 

thermal fluctuations in air and water of PCD microcantilevers, and the 

piezoresistive effect in BDD micro-cantilevers. Chapter 9 concludes this thesis 

with some discussion regarding the results and suggestions of future work. 
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Chapter 2: Cantilever Beam Theory & Diamond 

Material Properties 

 

 

MEMS devices consist of a moving mechanical structure and integrated electronic 

readout. There are two modes of operation for a MEMS device: static mode and 

dynamic mode. In static mode, the displacement of the mechanical part of the 

device driven by some unknown external force is electronically monitored. The 

resulting displacement can be related to the magnitude of the force exerted on 

the device. In dynamic mode, the mechanical part of the device is excited in a 

vibrational manner and the vibrations monitored. Changes in the frequency and 

magnitude of the vibrations contain information about the nature of the device’s 

environment. The following chapter contains background information on the 

nature of static and dynamic motion of cantilever beam-based MEMS, including 

the physics pertaining to cantilever deflection and numerical analyses used to 

evaluate environmental information from the devices. Synthetic diamond, in its 

intrinsic and doped forms, is also interrogated as a material for MEMS devices.  
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2.1 Statics 

 

The cantilever bridge, in classic form, is a rigid structure, typically a beam or 

pole, anchored at one end. 

 

 

 

 

 

 

 

Figure 2.1.1 Cantilever Beam schematic (a) and scanning electron microscope 

(SEM) image of polycrystalline diamond micro cantilever (b) showing anchored and 

free ends. 

By applying a force, or load, the cantilever structure starts to deform. If the 

cantilever construction is homogenous, it will experience equal amounts of tensile 

and compressive stress as shown in Figure 2.1.2. The nature of the deformation 

depends on the physical dimensions of the cantilever, the mechanical properties 

of the material that the cantilever is made from, and the area on the cantilever 

where the load is applied. In the simplest case, we can observe a point load placed 

at the free end of the cantilever: 

 

Figure 2.1.2 Cantilever Beam under Point Load 

  

W (m) 

Free end 

Anchored end 

Point load 𝐹(𝑁) 

Cross section 

H (m) 

L (m) 

δ (m) 
Tensile  

Compressive 
stress 

Free end 

Anchored end 

a. b. 
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Figure 2.1.2 shows a simple cantilever beam with dimensions length L, width W, 

and height H, being deflected by a point load. Typically, for a MEMS device, these 

dimensions would be somewhere in the order of tens of micrometres. The 

relationship between these dimensions and deflection δ in meters is [2.1]: 

      

δ =
F
k
=
FL*

3EI
	 

           (2.1.1) 

 

Where F is the force applied to the end of the cantilever, I is the area moment of 

inertia, and E is the modulus of elasticity. k is defined as the stiffness constant of 

the cantilever beam. The area moment of inertia for a rectangular cross section 

is expressed as [2.2]: 

      

I =
WH*

12
 

           (2.1.2) 

 

The modulus of elasticity is the material’s the Young’s modulus and concerns the 

material’s tendency to deform when acted upon by an exterior force. It is defined 

as the ratio of tensile stress to tensile strain. The higher the Young’s modulus the 

less the structure will deflect for a given load. To find the deflection at any point, 

x, along the length of the cantilever under a point load we can modify Equation 

2.1.1 to  [2.1]: 

      

δ =
Fx4

6EI
(3L-x) 

           (2.1.3) 
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Figure 2.1.3 Cantilever Beam under Uniform Load 

In the case of a uniformly distributed load, q, as in Figure 2.1.3, the equation 

governing the deflection δ at the free end is: 

      

δ =
qL8

8EI
 

           (2.1.4) 

And the deflection at any point, x, along the uniformly loaded cantilever is 

described by: 

     

δ =
qx4

24EI
(6L4-4Lx-x4) 

           (2.1.5) 

 

Load distribution is not limited to uniform and point. In the case of MEMS devices, 

loads can be distributed in a multitude of other forms including triangular, 

trapezoidal, parabolic, or most likely a combination of all these instances. 

However, distributed loads can be represented by a resultant point load 

somewhere along the length of the cantilever. The exact distribution of loading 

on a MEMS device can be difficult to determine, but from a detected displacement 

it is possible to evaluate the total load on a device and force exerted. These 

methods are particularly relevant to device calibration and characterisation.  

 

  

δ (m) 

Uniform load q(Nm-1) 

L (m) 
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2.2 Vibration and Dynamics 

 

Many MEMS devices are concerned with the oscillatory behavior of their 

mechanical parts. We now turn to look at the cantilever beam in the context of a 

vibratory system: oscillatory motion and the forces associated. 

There are two classes of vibration to be considered: free and forced. Free 

vibration occurs due to the inherent forces present in a system owing to 

mechanical and geometrical properties, in absence of any external subtractive 

forces. Free vibration systems will oscillate at one or more of the natural (or 

resonant) frequencies of the system, which is again determined by certain 

inherent mechanical and geometrical factors.  

Forced vibrations are due to some external force acting upon the system. If the 

force is periodic then the forced vibrations will occur at the frequency of the 

applied force. If the applied force happens to correspond with the natural 

frequency of the system, the phenomenon known as resonance occurs. The 

excitation of the system increases exponentially at resonance and massive relative 

magnitude oscillations occur. Later in this chapter we will also be discussing 

oscillations that do not occur at the natural frequency of the system, known as 

harmonics.  

For some of the devices reported in this body of work (see Chapter 6), we will be 

discussing the vibration of their mechanical parts owing to thermal fluctuations. 

These vibrations are classed as forced, the force coming from colliding particles 

surrounding the device owing to the inherent thermal energy present in the 

particles.   

We can consider classical mass spring damper system with one degree of freedom 

(DOF) as a model from which to approach the free vibrations of a harmonic system:  
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Figure 2.2.1. Mass Spring Damper System 

 

With m being the mass of the system, k the spring stiffness constant, c the 

dampening of the system, assumed in the free vibration scenario to be 0 

(undamped), and x(t) the displacement of mass, m at time, t. The zero of the x 

coordinate system is located where the spring is at equilibrium. If the mass is 

moved from the equilibrium position and released, the mass will begin to oscillate 

around the equilibrium point at the natural frequency of the system. If we take 

the system at an arbitrary position x and apply Newton’s second law, we obtain 

[2.3]: 

     ∑F = ma =	 -kx	   (2.2.1) 

 

The force acting on the mass is the spring constant force trying to regain 

equilibrium. Equation 2.2.1 can be expressed as: 

      

-
kx
m
=
d4x
dt4

 

           (2.2.2) 
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And defining constant  

 

ω4 =
k
m

 

           (2.2.3) 

Equation 2.2.2 can be written as  

 

d4x
dt4

+ ω4x = 0 

           (2.2.4) 

This is a homogenous second-order linear differential equation with the general 

solution [2.3]: 

     x(t) = A	cos(ωt + θ)    

(2.2.5) 

 Where A is the amplitude of the oscillation, ω	the angular frequency and θ the 

phase angle. With no damping coefficient present in the free vibration system, 

the oscillations will continue until acted upon by an external force. 

 

 

 

 

 

 

 

 

 

Figure 2.2.2. Graphical Representation of x(t) = A	sin(ωt + θ). A represents the 
amplitude of the oscillations (normalised to 1 here), θ represents a phase shift, 
and τ is the period of oscillations.  

q 

t 

A 
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The period of the oscillations for Equation 2.2.5 is: 

 

τ =
2π
ω

 

           (2.2.6) 

 

And once again substituting Equation 2.2.3 we find an expression for the period: 

 

τ = 2πL
m
k

 

           (2.2.7) 

 

Given that frequency is 1/period we can write the natural frequency of the 

oscillations as such [2.3]:  

f =
1
2π

Nk
m

 

           (2.2.8) 

In the case of the free vibrations of a cantilever beam, the mathematical model 

is more complex as we must consider the higher modes of vibration. Higher modes 

of vibration are vibrations that take place at a higher frequency than the 

fundamental frequency. The free vibrations of the cantilever beam can be 

explained by the Euler-Bernouli beam theory, a simplification of the linear theory 

of elasticity presented in the late 18th century [2.5]. 

We can start the analysis from the equation of motion for a cantilever beam as 

described by Meirovitch [2.4]: 

   

d4

dx4
OEI(x)

d4Y(x)
dx4

Q = ω4m(x)Y(x) + q(x) 

           (2.2.9) 
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Where E is the modulus of elasticity of the beam, I the second moment of inertia 

of the beam cross section, Y(x) is the displacement of the beam in the Y direction 

at distance x from the fixed end, ω is the circular natural frequency, q(x) is a 

transverse load on the beam and m is the mass of the cantilever per unit length 

where: 

     m = ρA      

(2.2.10) 

ρ is the density of the material and A, the area. We can make two assumptions 

that simplify Equation 2.2.9: in a homogenous beam EI is independent of x, and 

in the case of free vibration the transverse load q is 0. If we introduce the constant 

β defined as: 

 

β = 	T
ω4m
EI

U

V
8
 

           (2.2.11) 

Then we can write the equation for the free vibrations of a uniform cantilever 

beam as: 

    

d8Y(x)
dx8

-β8Y(x) = 0 

           (2.2.12) 

 

Given the following boundary condition for a fixed end cantilever beam [2.5]: 

 

at	the	fixed	end	of	the	beam; 	x = 0, Y(x) = 0,
dY(x)
dx

= 0 

at	the	free	end	of	the	beam; 	x = L,
d4Y(x)
dx4

= 0,
d*Y(x)
dx*

= 0 

           (2.2.13) 
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The general solution for Equation 2.2.8 becomes: 

 

Y(x) = AV cosh(β]x) + A4 sinh(β]x) + A* cos(β]x) + A8sin	(β]x) 

(2.2.14) 

Where   

β] = 	T
ω]4m
EI

U

V
8
 

           (2.2.15) 

AV, A4, A*, A8 are constants and ω] are the natural frequencies of the beam. The 

solutions are only non-trivial when: 

 

1 + cosh(β]L) cos(β]L) = 0   

(2.2.16) 

The first three non-trivial solutions, or Eigenvalues are: 

 

βVL = 1.88, 	β4L = 4.69, 	β*L = 7.85	       

           (2.2.17) 

And the corresponding natural frequencies can be written as: 

 

ωV = βV
4N EI
mL8

		 , ω4 = β4
4N EI
mL8

	 , ω* = β*
4N EI
mL8

 

(2.2.18) 
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The shape of the displacement of the beam at each natural frequency is called 

the mode shape, and can be shown by the formula [2.6]: 

 

Y(x) = A]{(sin	(β]L)-sinh	(β]L))(sin	(β]x)-sinh	(β]x))

+ (cos	(β]L)-cosh	(β]L))(cos	(β]x)-cosh	(β]x))} 

         (2.2.19) 

The first three natural frequency mode shapes of a cantilever beam with arbitrary 

dimensions and mechanical properties are displayed in Figure 2.2.3 below. 

Theoretically, in a continuous system, there will be an infinite number of natural 

frequencies and associated eigenvalues. In real terms, a cantilever's modes of 

vibration will be limited by energy losses internally from friction and also external 

loading by environmental factors. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.2.3. MATLAB generated plot of cantilever mode shapes for the first three 

modes for a cantilever beam of arbitrary dimensions. 1st mode (blue), 2nd mode 

(red) and 3rd mode (green).  

 

 

Length 
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Energized particles & trajectories 

2.3 Dampening 

 

So far, we have investigated the cantilever beam in terms of static deflection and 

free vibratory conditions. These models are useful as a starting point in predicting 

the behavior of devices. However, MEMS applications are typically concerned with 

characterizing the external forces acting upon the device. In this section we will 

be describing the theoretical model of a suspended structure with a single degree 

of freedom with external dampening forces and how we can extract the 

dampening contributions to the system. Strictly speaking, we will be looking at 

damped motion in the context of a device submerged in viscous solutions and also 

solutions having viscous and elastic components (viscoelastic). 

 

 

 

 

 

 

Figure 2.3.1 Schematic of cantilever submerged in a thermal bath showing 

energised particles with random trajectories.   

Consider the condition of a cantilever submerged in a thermal bath as shown in 

Figure 2.3.1. The particles surrounding the cantilever are driven to random 

fluctuations owing to the thermal energy present in the system. The randomly 

fluctuating particles bombard the cantilever beam exerting a stochastic force on 

the structure causing it to also fluctuate. The maximum amplitude of the beam 

fluctuations is governed by the stiffness of the cantilever beam k. The stiffness, 

the thermal energy and the cantilever’s fluctuations are related by the 

Equipartition theorem [2.7]: 

 

1
2
kdT = 	

1
2
k〈x4〉 

           (2.3.1) 
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where kb is Boltzmann’s constant, T is the absolute temperature, k the cantilever 

stiffness and 〈x4〉 the variance of the cantilever tip. By appealing to this principle, 

we can determine k without the need of any prior knowledge of the system’s 

geometries, once the variance is measured. 

In the case of the submerged MEMS cantilever, energy is dissipated by liquid 

motion induced by the cantilever oscillations. Consequently, contributions of 

higher modes of vibration are negligible and we can assume the presence of only 

the fundamental mode. If the deflections of the cantilever tip are small with 

respect to the cantilever dimensions, with minimal fluid interaction, it has been 

shown that the cantilever's dynamic behavior can be approximated by the simple 

harmonic oscillator model [2.8]. 

The motion of a thermally driven damped cantilever beam with mass, m stiffness, 

k stochastic thermal forces, ξi and constant viscous drag coefficient, γ can then 

be described by the following Langevin equation [2.3]: 

 

mẌ + γẊ + kX = ξi	     

(2.3.2) 

where X is the deflection measured at the tip of the cantilever beam. In the case 

of a highly damped MEMS cantilever, the inertia force is negligible when compared 

to the dampening force [2.9]. X will be a random variable dependent on ξi and 

the friction coefficient γ is related to both the cantilevers physical dimensions 

and the viscosity of the surrounding fluid via the Stokes drag law, where η is the 

Newtonian (constant) viscosity: 

 

γ = 	βη      

(2.3.3) 

  



Chapter 2: Cantilever Beam Theory & Diamond Material Properties 21 

The drag force coefficient parameter β can be calibrated from measurements 

taken for a fluid of known viscosity for specific device dimensions. In the case of 

a trapped sphere in a viscous solution the drag force coefficient is [2.9]: 

 

γ = 	6πrη      

(2.3.4) 

Extensive prior research has been published by various authors on the 

determination of the drag force coefficient for a submerged cantilever with 

varying degrees of accuracy, and factors such as frequency, the viscosity of the 

fluid to be characterised, and interaction between the surfaces of the device and 

the fluid’s molecular structure under vibratory conditions play a large part in the 

various definitions. A more thorough interrogation of these methods will be 

discussed in the forthcoming Literature Review chapter.  

This method for determining viscosity hold true for Newtonian fluids, however no 

fluid is exclusively Newtonian in nature, so further steps must be considered when 

determining the properties of non-Newtonian or complex fluids.  

When deformed, a purely Newtonian fluid will not return to its original state, as 

it is purely viscous. In contrast, non-Newtonian material has both a viscous and 

elastic component. There exists a restoring force due the inherent elasticity. 

Therefore, we must define a mathematical model that includes this restoring 

force. Tassieri et al approach this problem by providing a solution to a generalized 

Langevin equation describing the trajectory of a trapped particle suspended into 

a non-Newtonian fluid in terms of either its mean squared displacement (MSD) or 

its position autocorrelation function (PAF) [2.9]. In their case, the generalized 

Langevin equation has the following form: 

 

mao⃗ (t) = fqoo⃗ (t)- ∫ ξ(t-τ)vo⃗t
u (τ)dτ-kr⃗(t)    

         (2.3.5) 

 

Where m is the mass of the particle, ao⃗ (t) is its acceleration, vo⃗ (τ) its velocity, k 

the stiffness of the trap and fqoo⃗ (t) is the term representing the stochastic thermal 

forces driving the motion of the particle. The integral term is the viscous force 
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acting on the particles and contains ξ that is a generalized time dependent 

memory function, which accounts for the viscoelastic nature of the complex fluid. 

Given that both the submerged cantilever and trapped sphere system share the 

dynamics of a simple harmonic oscillator, it should be possible to apply the above 

solution to the cantilever system [2.10][2.11]. Therefore, in Equation 2.3.5, the 

velocity term becomes the velocity of the cantilever tip and the trap stiffness 

term becomes the stiffness of the cantilever beam.  The solution presented by 

Tassieri et al relates the materials complex shear modulus G*(ω) to the Fourier 

transformed normalized MSD (П(τ)) and/or normalized PAF (A(τ)) [2.12]: 

 

G*(ω)
β
k
= 	T

1
iωПy(ω)

-1U = T
1

iωAy(ω)
-1U

-V

= 	
Ay(ω)
Пy(ω)

 

            

           (2.3.6) 

 

Β is the same friction coefficient from Equation 2.3.4. The complex modulus is a 

complex number made up of the terms G’(ω) + iG”(ω) which are the storage and 

loss moduli respectively. They relate to the elastic energy stored in the material 

and the viscous dissipation of energy. The complex modulus can be defined as the 

ratio of the Fourier transform of the stress to the Fourier transform of the strain 

of the system [2.9].  

 

G*(ω) = 	
σ{(ω)
ε}(ω)

 

           (2.3.7) 

For a constrained system, the normalised MSD and normalised PAF obey to the 

following relationship [2.12]: 

 

П(τ) + 	A(τ) 	= 	1     

       (2.3.8) 
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It is important to note at this point that the autocorrelation function of the 

thermal fluctuations of a trapped particle has the form: 

 

     A(τ) = e-~�     

(2.3.9) 

Which is a single decaying exponential where λ = k/βη. This relates to the 

relaxation time of the surrounding fluid. Again, we can make the assumption that 

the motion of the tip of a heavily damped cantilever can be approximated as a 

trapped particle and therefore will also have a similar single exponential decay 

term dependent on the cantilever geometry and stiffness. The measurement 

procedure and the analysis of both the MSD and the PAF will be discussed in the 

forthcoming Vibration Analysis section of this chapter. 

The stress-strain relationship in a non-Newtonian fluid can be mechanically 

modeled as a network of springs and dampers, with the springs exclusively 

representing the elastic component of the material and the dampers exclusively 

representing the viscous component. A common configuration is the Kelvin-Voigt 

and model shown in Figure 2.3.1, where the elastic and viscous components act 

in parallel on the system [2.9]. 

 

 

 

 

 

 

 

 

 

Figure 2.3.2 Kelvin-Voigt model describing the elastic and viscous components of 

a non-Newtonian fluid. The spring on the left represents the elastic component 

and the dapshot on the right represents the viscous component. The two 

components act in parallel with each other.  
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In the Kelvin-Voigt model the spring and damper experience the same deformation 

for an applied stress. This model can be analyzed to show the relationship between 

stress and strain in a system with viscous and elastic components. This is the case 

which Tassieri et al use to model a trapped particle in a viscous fluid: the stiffness 

of the spring represents the stiffness of the trap and the damper represents the 

dampening of the surrounding fluid. In the case of a MEMS cantilever, the spring 

stiffness represents the stiffness of the cantilever beam. 

 

In the case of the Kelvin-Voigt model we can write two expressions to describe 

the total strain ε and the total stress σ [2.9]. 

 

     ε = 	 ε� = ε� 

     σ = 	σ� + σ�     

(2.3.10) 

Where subscripts E and v donate the spring and dampening components. As the 

spring is purely elastic we can write its stress component as: 

 

σ� = 	Gε      

(2.3.11) 

Where G is the elastic constant proportional to the material’s Young’s Modulus. 

Similarly, for the dampening component which is exclusively viscous, we know 

that stress is directly proportional to strain rate, so we can express the viscous 

component as:  

      

σ� = η
∂ε
∂t

 

           (2.3.12) 

Where η is the Newtonian viscosity of the viscous contribution. We can then write 
the total stress as: 
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σ(t) = Gε� + 		η
∂ε
∂t

 

           (2.3.13) 

If we then take the Fourier transform of Equation 2.3.13 we find the expression: 

 

σ{(ω) = Gε}(ω) + 	ηiωε}(ω)	   

(2.3.14) 

 

Rearranging we can write: 

 

σ{(ω)
ε}(ω)

= G + ηiω	 

           (2.3.15) 

which is the Fourier transform of the stress divided by the Fourier transform of 

the strain. This the definition of the complex modulus as written in Equation 

2.3.7. Thus, the Kelvin-Voigt mechanical model represents a viscoelastic material 

that has a frequency independent elastic modulus G and a frequency dependent 

viscous modulus ηω. The homogeneous solution of Equation 2.3.13 in the time 

domain is: 

 

ε(t) = 	 εue-~�       

(2.3.16) 

Where λ is the characteristic relaxation time of the mechanical system. This is the 

same as the single decaying exponential term found in Equation 2.3.9. This again 

shows that the Kelvin-Voigt model is a suitable model for the motion of a trapped 

particle or damped cantilever in a viscous solution. 
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2.4 Vibration Analysis 

 

When characterising vibrating MEMS we must consider the displacement of the 

mechanical contribution of the system. From measurements of mechanical 

displacement, we can use a set of analytical tools to extract the behaviour of the 

system. The methods used to take actual displacement measurements of MEMS 

devices will be covered in Chapter 5 of this thesis. For the purpose of reviewing 

analysis techniques, we will be looking at sinusoidal functions to approximate the 

motion of a harmonic mechanical system. 

Consider a sinusoidal function of the form y(t) = sin(ωt+Φ) where ω = 2π x 

frequency and Φ is the phase angle of the signal. If we take the Fourier transform 

of y(t) this reveals the frequency spectrum of the signal: 

 

 

 

 

 

 

 

Figures 2.4.1a & b. Sinusoidal function (a),  y(t) = Asin(ωt+Φ)   and its Fourier 

transform Y(ω), (b). 

 

The Fourier transform has the mathematical form:  

 

Y(ω) = 	 � y(t)e��tdt
�

-�

 

           (2.4.1) 

 

 

y(t) = Asin(ωt+Φ)   Y(ω)   
a. b. 

ω   
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The Fourier transform of a periodic signal is complex in nature and contains the 

frequency magnitude of the signal and the phase angle. This reveals the 

fundamental frequency ω0 of the system. In the case of harmonic mechanical 

systems there exists not only a fundamental frequency, but also higher modes of 

vibration known as harmonics. The signal is a sum of the different sine and cosine 

terms representing the different harmonics. The Fourier transform of a harmonic 

oscillator reveals the higher frequency modes. The higher frequency modes are 

related to the fundamental mode by integer values. The first mode ω1 will be 

twice the frequency value of ω0, the second mode ω2 will be twice the value of 

ω0 and so on as shown in Figure 2.4.2.  

 

 

 

 

 

 

 

Figures 2.4.2 a & b. Sinusoidal function (a), y(t)= A0sin(ω0t+Φ) + A1cos(ω1t+Φ) + 

A2sin(ω2t+Φ) containing multiple frequencies ω0 , ω1 and ω2, and (b), the Fourier 

transform of y(t), Y(ω). The Fourier transform allows identification of the multiple 

frequency components.  

 

In the case of a MEMS resonator we have to build up a time series of data as a set 

of measurements of the displacement of the device across a finite time period. 

These individual measurements are called samples. The sample rate of the time 

series is the rate at which the samples are acquired. This acquisition rate limits 

the range of frequencies that can be shown in the Fourier transform of the signal. 

The upper bounds of the frequency range in the Fourier transform is half the 

acquisition rate of the time series. This is known as the Nyquist frequency and 

exists owing to an effect known as aliasing. If the signal is not adequately sampled 

as in Figure 2.4.3 then the signal could be misinterpreted as in Figure 2.4.4, 

y(t) = A0sin(ω0t+Φ) + A1cos(ω1t+Φ) + A2sin(ω2t+Φ) Y(ω) 

ω0             ω1           ω2 

a. b. 
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which introduces errors or artefacts in the frequency domain. Hence, the samples 

must be acquired at least at twice the frequency of interest. This is known as the 

Nyquist rate.  

 

 

 

 

 

 

Figure 2.4.3. Signal sampled (red dots) at an adequate sample rate i.e. greater 

than twice the frequency of interest. 

 

 

 

 

 

Figure 2.4.4. Signal sampled at an inadequate sample rate (red dots) i.e. less 

than twice the frequency of interest, and the corresponding misinterpreted signal 

due to aliasing errors shown in orange. 

We can use the Fourier transform of a signal to estimate how the energy in the 

system is distributed. If we take the square of the magnitude of the frequency 

spectrum we lose the phase information and are left with the power spectral 

density (PSD). The unit of the PSD is power per frequency.  

 

PSD = |Y(ω)|2     

(2.4.2) 

 



Chapter 2: Cantilever Beam Theory & Diamond Material Properties 29 

The total power in the signal is given by the area under the PSD curve which, in 

accordance with Parseval’s theorem, is equal to the variance of the time series 

[2.13]. By dividing by the total power or variance we can normalise the data 

[2.12].  

We can accurately estimate the total power present in a MEMS cantilever’s 

displacement signal by taking an average of many measurements of the power 

spectrum and integrating the area under the PSD curve, or we can take a 

sufficiently long-time measurement of the cantilevers displacement and calculate 

the variance by squaring the displacement and taking the average.  

An important analysis technique when relating the motion of a MEMS cantilever to 

its surroundings is the position autocorrelation function (PAF). The PAF of a 

cantilever tip is the cross correlation of its displacement time series signal with 

itself and describes the cantilever’s movement at high and low frequency and can 

be normalised by the variance of the signal (NPAF). The NPAF takes the 

mathematical form [2.12]: 

 

	A(t) = 	
〈x(tu)x(tu + τ)〉

〈x4〉
 

           (2.4.3) 

Where x(t) is the cantilever tip position, x(t+τ) is the tip position after time lag τ 

and <x2> is the variance of the cantilever tip position. This can be related to the 

relaxation time of the fluid surrounding the cantilever as explained by Tassieri et 

al and covered in the previous section of this chapter. As described previously, 

the compound system of an overdamped cantilever tip in a Newtonian fluid can 

be approximately modelled as an ideal Kelvin-Voight mechanical system which has 

the characteristic relaxation time of a single decaying exponential. The 

normalised mean squared displacement (NMSD) π(t) of the cantilever tip is related 

to the NPAF of the tip by: 

 

     П(t) + A(t) = 1     

(2.4.4) 
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The NPAF of a single decaying exponential function of the form A(t) = e-λt is shown 

in Figure 2.4.5. 

 

 

 

 

 

 

 

 

 

 

Figure 2.4.5. Normalised position autocorrelation function of the form A(t) = e-λt 

 

 

One property of the PAF is that it is the Fourier transform of the PSD. As stated 

previously, when taking the PSD of the frequency spectrum, we take the 

magnitude squared of the signal and lose the phase information in the process. 

Similarly, we lose the phase information of the original signal when plotting the 

PAF. So, we may cross freely between the original time signal and the frequency 

spectrum, and between the PSD and the PAF. We cannot however reconstruct the 

original signal or frequency phase information from the PSD or NPAF alone.  

  

A(
t) 

   t  /s 
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Frequency DomainTime Domain

PAF PSD

   

 

 

 

 

 

 

 

 

 

 

Figure 2.4.6. Plots showing the relationships between the time domain, 

frequency domain, PSD and PAF. One may move freely between the time and 

frequency domains, or the PSD the PAF. The original time series cannot be 

reconstructed from the PSD or the PAF without the original phase information.  

 

Vibrating MEMS devices can be sorted into two classifications: passive and active. 

Active devices will have an actuator integrated into the design to drive the 

mechanical part that can take many different forms. Some common forms of 

device actuation include piezoelectric, magneto-motive, capacitive, or thermal 

bimorph [2.14],[2.15],[2.16],[2.17]. An analysis of some of these methods will be 

presented in Chapter 3 of this thesis. Passive devices rely on the thermal 

excitation of the particles in the fluid or gas surrounding the device to drive the 

motion of the mechanical component. The trajectory of the thermally excited 

particles is Brownian in nature. The stochastic forces exerted on the device drive 

it to resonate, but also cause it to fluctuate randomly. This results in a noisy 

signal. If we take the Fourier transform of the noisy time series, we can still 

observe the harmonic components.  
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a. 

 

 

 

 

 

b. 

 

 

 

 

 

 

Figure 2.4.7 a & b MATLAB plot of the time series (a) and power spectrum (b) of 

a 1 x 40 x 0.5 µm MEMS PCD cantilever beam experiencing thermal fluctuations in 

air captured by the author. The signal-to-noise ratio is commonly expressed in 

decibels and can be obtained by subtracting the signal power from the average 

noise power: SNR�d = P���]��(��)-P]����(��).  

 

Figures 2.4.7 a & b show the time series and corresponding resonant peak of the 

displacement of a free end cantilever beam with the dimensions length 40 µm, 

width 1 µm, and thickness 0.5 µm experiencing thermal fluctuations suspended in 

air at room temperature. The ratio of the magnitude of the signal  to the average 

magnitude of the noise floor of the measurement is defined as the signal to noise 

ratio (SNR) of the signal. It is commonly expressed in decibels and can be obtained 

by subtracting the signal power from the average noise power: SNR�� =

P���]��(��)-P]����(��). A higher SNR within a signal provides more useable information 

within the data. Typically, smaller devices will have a displacement closer to the 

noise floor of the measurement system and hence will suffer from a low SNR.  
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Another important aspect of MEMS resonant behaviour to note is the quality factor 

(Q) of the system. 

 

 

 

 

 

  

 

 

Figure 2.4.8. resonant peak showing -3dB bandwidth points. ω1 & ω2 are the lower 

and upper values respectively of the peak at -3dB down from the maximum peak 

value which occurs at ω0.  

 

The Q of a resonant system can be described mathematically as: 

 

Q = 	
ωu
∆ω

 

           (2.4.5) 

Were ω0 is the resonant frequency and ∆ω is the bandwidth of the signal at the 

half power, or -3dB point, as shown if Figure 2.4.6. The Q factor describes how 

damped a system is in terms of energy lost and energy stored. The higher the Q 

factor, the more energy is stored within the system. The lower the Q factor, the 

more energy is being lost, either from external dampening forces or from internal 

losses within the vibrating structure. MEMS devices with a higher Q factor and SNR 

will have a strongly defined resonant peak and thus are easier to detect.  

 

 

ω1    ω0    ω2 

∆ω = ω2 - ω1 
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In the case of MEMS resonant systems that are underdamped we will observe not 

only vertical displacement (known as flexural, or out-of-plane) but other different 

mechanical modes of vibration. The modes most commonly observed in MEMS 

cantilevers are lateral, or out-of-plane, which occurs laterally to the cantilever 

beam position and torsional, which occurs as a twisting motion along the length 

of the beam.  

 

 

 

 

 

 

 

Figures 2.4.9 a, b & c. The flexural (a), lateral (b) and torsional (c) vibration 

modes of a free end cantilever beam. 

Figure 2.4.9 a, b & c show the out-of-plane, in-plane and torsion modes of a free 

end cantilever beam. In a MEMS vibration system that is underdamped all the 

vibrational modes will have an impact on the data gathered, and evidence of their 

harmonic motion will be present in the frequency analysis of the device. If, 

however, there is a significant amount of dampening owing to external factors or 

the devices mechanical properties then the contributions from higher vibrational 

modes become insignificant.  

 

2.5 Diamond as a prospective material for MEMS 

 

Owing to its attractive mechanical and electrical properties, diamond is an 

attractive candidate for MEMS devices. Diamond’s Young’s modulus of up to 1220 

GPa makes it the hardest material which is useful in applications where devices 

must withstand excessive shear forces [2.18]. The high Young’s modulus coupled 

with its relatively low mass density of 3.5 g/cm3 gives diamond a longitudinal 

a. b. c. 
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acoustic velocity of 19 039 m s−1 making it an ideal material for devices such as 

resonators and surface acoustic wave (SAW) filters [2.19]. Diamond is also 

chemically and biologically inert; not only can it be applied in harsh environments 

with little device degradation, it will not interfere with any rare or fragile 

biological samples [2.20]. Another quality displayed by diamond is a high thermal 

conductivity of up to 21 W/cm.k, which is advantageous in terms of thermal 

management as a buildup of heat can potentially damage or destroy a device.  

Diamond exists as an allotrope of carbon where the atoms are arranged in a form 

known as face-centered cubic (FCC). Although diamond is not the only crystal 

structure of this form, the structure is known as the diamond lattice. The covalent 

bonds between carbon atoms in a diamond lattice are called sp3. It is the 3-

dimensional sp3 bonding structure that gives diamond it unique hardness and 

thermal properties.   

 

 

 

 

 

 

 

 

 

 

Figure 2.5.1 Diamond crystal lattice structure showing sp3 bond length of 154 Å. 

Although Diamond is found naturally in the earth’s mantle, there exist synthetic 

manufacturing techniques including high pressure high temperature (HPHT) and 

chemical vapor deposition (CVD). Typically, HPHT involves diamond seeds pressed 

together with a high purity carbon source under high pressure and high 

temperature in order to recreate the conditions that produce diamonds naturally. 

This process is known to produce large diamonds and is popular with the gemstone 

industry and industrial applications where larger stones are beneficial. However, 

Sp3 bond 154Å 
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owing to the large amounts of energy needed HPHT can be an expensive process. 

The development of the more cost-effective CVD process in recent years has made 

diamond a viable alternative material in the semiconductor and MEMS industries. 

In the CVD process, diamond seeds are prepared, typically on a silicon substrate, 

in a vacuum chamber and a hydrocarbon gas source is energized within the 

chamber. The hydrocarbon source can be energized by different methods 

including hot filament (HFCVD) and more recently microwave plasma (MPCVD). 

The carbon source, most commonly methane, decomposes and the carbon atoms 

are deposited onto the diamond seeds. The hydrogen source is important as the 

atomic hydrogen will selectively etch away the non-diamond carbon bonds, 

preparing the diamond to receive the carbon atoms in the diamond lattice 

configuration. The major advantages of CVD other than cost is the amount of 

control over the growth process available. Depending on the growth conditions 

parameters such as grain size, growth rate, thickness and area can be tailored for 

a specific purpose. In terms of mechanical properties, CVD diamond exhibits the 

same unique qualities as natural diamond such as high Young’s modulus and high 

thermal conductivity. Diamond can be single crystal i.e. have a completely 

homogenous crystalline structure, or be poly-crystalline where regions of single 

crystal diamond known as grains are bound together by diamond-like carbon 

boundaries. The grain size can be controlled during the CVD growth by adjusting 

the flow rate of the carbon source during the process [2.21].  

Intrinsic diamond is an excellent insulator owing to its large band gap. However, 

if during the CVD growth process a boron source is introduced into the growth 

chamber, a trace amount of boron atoms become present within the diamond 

lattice and the resulting boron doped diamond (BDD) will exhibit semiconductor 

to metallic conduction dependent on the doping concentration. The band 

structure describes the different energies that the electrons in a material can 

have. If the charge carriers are electrons the material is known as n-type and 

conduction occurs in the conduction band. If the carriers are holes, then the 

material is known as p-type and conduction occurs in the valence band. The band 

gap is the difference in energy levels between the valence band and the 

conduction band. Boron doped diamond has p-type conductivity. When a boron 

atom is introduced into the diamond lattice it acquires one of the carbon atom’s 

electrons from the valance band. As a result, an extra hole becomes available. 

This increases the concentration of carriers in the valence band which can 
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contribute to current flow. For B-doped diamond, the activation energy of the 

doping decreases with doping concentration, resulting in semi-metallic conduction 

behavior at high boron doping concentrations [2.21]. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5.2. Resistivity as a function of boron content in BDD [2.22] 

 

The resistivity of BDD is a function of the boron content as shown in Figure 2.5.2. 

Not only is BDD highly electrically conductive but it also exhibits piezoresistive 

qualities. That is, when subject to a mechanical stress or strain the resistivity will 

change. The combination of this and excellent mechanical properties makes BDD 

an ideal candidate for sensor applications, with the potential for devices to be 

fabricated of entirely of the same material. In BDD compressive stress increases 

conduction and tensile stress will decrease conduction. The figure of merit for a 

material’s piezoresistivity is known as the gauge factor (GF) which is defined as 

the change in resistance ∆R for an applied strain ε [2.23]:    

 

GF = 	
∆R
R
.
1
ε
 

           (2.5.1) 
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With strain being defined as ∆L/L: the total change in length of the structure 

divided by its original length. One of the piezoresistive mechanisms in BDD is 

known to be a result of the physical deformation in the crystal atomic structure 

causing a change in the material’s band gap [2.21]. BDD exhibits a GF comparable 

with current silicon-based technologies. In a polycrystalline material, grain size 

has an effect on piezoresistance. It has been reported that the piezoresistive 

effect is larger in bulk grains than at the grain boundaries, hence, single crystal 

material will exhibit a more pronounced piezoresistive effect [2.24]. However, 

owing to the ease of fabricating with thin films (in comparison to bulk single 

crystal material), PCD remains the more attractive material for MEMS device 

fabrication.  

 

2.6 Diamond Material Comparison Table 

 

 

Table 2.6.1 Table showing different diamond and silicon types, comparing some 

common material figures of merit [2.21][2.23][2.25].   

Material  Thermal Conductivity 

(W/cm.k) 

Young’s Modulus 

(GPa) 

Gauge Factor 

Range 

Single Crystal 

Diamond 

24 1220 N/A 

Poly-diamond 18-20 900-1220 N/A 

B-doped Diamond 18-20 900-1220 30 - 1800 

Single Crystal 

Silicon  

1.57 190 30 - 1500 

Silicon Nitride 0.19 385 N/A 
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2.7 Chapter Summary 

 

In this chapter we have looked at the fundamental mechanics regarding cantilever 

beams and how they respond to different loading. We have determined the natural 

frequencies of free vibrational systems and applied the theory to cantilever type 

structures. The ability to determine the viscoelastic nature of a device’s 

surroundings from measuring its displacement has been discussed. We have 

considered different aspects of vibration data analysis and how to apply these 

techniques to real displacement data. Diamond as a candidate for MEMS devices 

has been discussed, including its material and electrical properties in its intrinsic 

and boron doped forms along with material growth methods. 
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Chapter 3: Literature Review 

 

 

In recent history there have been advancements in the technological fields 

pertaining to cantilever based micro-rheology and polycrystalline diamond as 

material for MEMS devices. The following sub-chapters provide a brief history of 

the subject areas and an interrogation of recent published work relevant to the 

studies in this thesis. 
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3.1 Cantilever Hydrodynamics 

 

The vibrations and frequency response of a cantilever beam in vacuum have been 

investigated extensively in literature and accurate models for their behaviour 

have been reported [3.1], [3.2]. However, when a cantilever is submerged in a 

fluid its behaviour becomes more complex than the vacuum model owing to the 

complex forces exerted on the cantilever structure by fluid-cantilever interaction. 

This interaction is known as the hydrodynamic force. It is the characterisation of 

the hydrodynamic force that becomes the main challenge for characterising the 

behaviour of submerged cantilever beams.  

Some of the first innovators in characterising the cantilever beam hydrodynamic 

forces were Butt et al in their investigation of an atomic force microscopy scan 

speed limit [3.3]. Butt et al showed that a submerged cantilever could be 

approximately modelled as an equivalent mass-spring-damper system. They 

compared the piezo-electrically driven motion of triangular shaped silicon nitride 

cantilevers with varying dimensions (100-200 µm long) in a moderate vacuum, air, 

water, hexane and hexadecane. As expected, they observed dampening of the 

cantilever vibrations when submerged. They speculated that as the cantilever 

moves through the liquid, some of the liquid is dragged along with it. They 

modelled the fluid loading on the cantilever as an increased effective cantilever 

mass. Using their term for increased effective mass they calculated damping 

constants for their experimental cantilevers. Comparing these damping constants 

to the damping of a sphere moving in a liquid as per Stokes law [3.4] they were 

able to find the ‘effective radii’ of the cantilevers and found them to be in rough 

agreement with the dimensions of the cantilevers. This showed the potential for 

a submerged cantilever to be modelled as a sphere suspended in fluid, the 

mechanical model for which is a simple mass-spring-damper system as shown in 

Figure 3.1.1. 
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Figure 3.1.1 Submerged atomic force microscope (AFM) cantilever tip (left) and 

suspended sphere modelled as a spring with end mass (right) [3.3]. 

 

This method was verified and expanded on by Chen et al who also used the 

suspended sphere model to predict the resonance response of submerged atomic 

force microscope cantilevers [3.5]. They confirmed that the cantilever 

geometrical factor present in the hydrodynamic loading was constant in different 

mediums for any given cantilever. They also reported corrections that take into 

account that the hydrodynamic force loading is significantly greater in fluid than 

it is in gases.  

The sphere suspended in fluid model was elaborated on by Hirai et al in their 

report on the resonance characteristics of micro cantilevers in liquid [3.6]. Hirai 

et al modelled their cantilever as not just one sphere but as a string of spheres, 

as demonstrated in Figure 3.1.2.   
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Figure 3.1.2 Schematic representation of the cantilever modelled as a string of 

spheres, as presented by Hirai et al [3.6]. 

This was based on an approach that models a vibrating plate as a string of spheres, 

with the diameter of the spheres relating to the width of the plate. This method 

allowed the hydrodynamic drag force to be calculated with greater accuracy. They 

observed the frequency spectrum of thermally excited silicon nitride cantilevers 

~200-400 µm long in air, water and acetone. Their experimental results compared 

well to their numerically calculated results but observed that this method 

overestimates the hydrodynamic drag force when applied to microstructures at 

high frequencies. 

Currently, the most widely accepted and applied model for characterising the 

hydrodynamic force on submerged cantilevers is that presented by Sader [3.7]. 

Sader introduced the hydrodynamic function, Γ(ω), as a general theory for the 

frequency response of cantilever beams of arbitrary dimension submerged in an 

arbitrary fluid. In contrast to the previously mentioned spherical methods, this 

method rigorously accounted for cantilever geometry. Sader stipulated some 

assumptions that must be true for this method to work: the cross section of the 

beam must be uniform over the beams length, the length of the beam greatly 

exceeds its nominal width, the beam is an isotropic linearly elastic solid and 

internal frictional effects are negligible, and the amplitude of vibration of the 

beam is far smaller than any length scale in the beam geometry. Given these 

assumptions, it would seem that Sader’s method is ideal for characterising the 

hydrodynamic force on micro-cantilevers, however it is important to note that 

this, and the previous methods, apply only to Newtonian fluids.  
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3.2 Cantilever Micro-rheology 

 

We now look at reported methods of extracting an arbitrary fluid’s mechanical 

properties from submerged micro-cantilevers. Some of the main points of focus 

for researching micro-cantilevers for micro-rheology are the potential for 

revealing higher frequency data than conventional methods and the capacity to 

explore the properties of relatively small and potentially rare or precious samples. 

Micro-rheology also allows for rheological analysis of soft matter to be performed 

in situ. To date, reported methods almost exclusively rely on the work of Sader 

and utilise his hydrodynamic function in some form. Micro-cantilevers have been 

employed as in-situ rheometers for characterising complex fluids such as oils, and 

viscometers to varying degrees of success [3.8]. Atomic force microscopy (AFM) 

tools have also been used to observe cantilever-fluid (or soft-matter) interaction 

as well as to characterise the mechanical properties of cells [3.9]. 

Papi et al show in their study of fluid viscosity determination by atomic force 

microscopy that they were able to describe a method of relating fluid viscosity 

and cantilever resonant frequency using an approximation of Sader’s 

hydrodynamic function [3.10]. Their calculations were dependent on two variable 

coefficients: α, dominated by the cantilever thickness and β, dominated by the 

cantilever width/thickness ratio. Their investigation revealed that a cantilever’s 

resonant frequency is strictly characterised by its thickness, and that the 

cantilevers width/thickness ratio is a less sensitive parameter and can be 

approximated to a constant. Thus, by simulating a spread of β values and observing 

no significant change in a reference fluid’s viscosity measurement, the parameter 

α could be measured by setting β at a constant value. Hence, by using a reference 

measurement in a fluid of known viscosity, further measurements required no 

knowledge of cantilever geometry. Their results compared favourably to 

previously published data [3.11], however, this method revealed fluid viscosity at 

only the resonant frequency of the cantilever and many measurements had to be 

taken to build a dataset across the frequency spectrum.  

Maali et al expanded on Sader’s work [3.12]. They showed experimentally that 

the theoretical hydrodynamic function was not able to account for energy 

dissipated by the liquid motion induced by the cantilever oscillation. As a result, 

they observed that at higher modes of vibration the measured fluid viscosity was 
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reduced when compared to the theoretical model. It was explained that this 

discrepancy could be due to the hydrodynamic function assuming that the 

cantilever oscillations are transverse only. This two-dimensional fluid interaction 

was interrogated, however no clear analytical solution for the problem was 

presented. In an attempt to understand a three-dimensional model, a numerical 

analysis using the three-dimensional Navier-Stokes equation was presented, and 

the solutions showed favourable qualitative comparison with experimental results. 

Belmiloud et al explored rheological behaviour with micro-cantilevers using 

Maali’s parameters [3.13]. In their work, an analogy was made between cantilever 

beam dynamics in viscous fluid and a second order low pass filter. That is, the 

contribution of higher modes of vibration were considered negligible and the 

fundamental mode was considered dominant. This significantly simplified the 

transfer function of the system. The simplified transfer function was then used to 

extract the hydrodynamic drag force coefficients of the cantilever at different 

frequencies, from which the fluid viscosity and density were analytically 

extracted. Results for the rheological properties of silicone oils tested were in 

good agreement with known values within the explored frequency range, although 

the explored frequency range was only up to 600Hz - well within the range of 

conventional micro-rheology [3.14]. It is interesting to note that for these 

measurements it was possible to extract fluid properties without the need for a 

well-defined resonant peak in the cantilever frequency spectrum. This method 

can then be used for analysing fluids with a relatively high viscosity when 

compared to other methods that require a higher quality factor (Q>1) in the 

cantilever response [3.15]. Youssry et al reported that they were able to take the 

methods employed by Belmiloud and by applying further modifications to the Maali 

parameters explored fluid properties up to 8kHz [3.8]. However, reported a 

relatively high error between their measurements and known values, and 

postulate issues regarding cantilever geometry non-uniformity as a result of their 

manufacturing process and possible irregularities with their experimental setup.  

There is a clear trend in published data in the field of cantilever micro-rheology 

of trying to fit cantilever frequency response data to proposed models with varying 

results. It is apparent that as experiments extend into the high frequency range 

these models become inadequate at representing cantilever dynamics and 

continuous modifications to model parameters must be taken into account.  
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3.3 Diamond MEMS 

 

Owing to its excellent mechanical and electrical properties, synthetic diamond 

has become a main contender for MEMS devices over the last few decades, 

including RF systems, sensors, resonators and switches. Advancements in CVD 

technology has driven down the cost of manufacturing, fuelling extensive research 

into next-generation diamond based devices as possible alternatives to silicon-

based technologies [3.16], [3.17].  

Sepulveda et al reported on high-performance polycrystalline diamond micro-

resonators [3.18]. With comparable silicon-based resonators unsuitable for high-

end RF MEMS applications, the study focused on the resonant frequency and 

quality factor of devices which are two of the defining factors in characterising 

resonator performance. The reported devices were polycrystalline diamond micro-

cantilevers of width, thickness and length 10 µm, 0.6 µm and 100-500 µm. Their 

diamond films were grown by microwave plasma CVD and highly polished. The 

diamond was grown on a sacrificial SiO2 layer which was wet etched to release the 

cantilevers. This helped minimise undercut. The diamond was etched in an oxygen 

based plasma with etch rates between 20 - 40 nm/min reported, yielding 90° 

anisotropic structures. The cantilevers were actuated by a piezoelectric 

transducer clamped to the substrate, and the devices were excited whilst subject 

to a vacuum at 1x10-5 torr to minimise air dampening. The devices were detected 

by a laser interferometer system. Q factors of up to 116000 were reported and 

resonant frequency up to 50 kHz. In comparison, the highest reported Q for similar 

silicon based devices was 5846 [3.19]. Tao et al improved on this high Q figure 

with similar devices fabricated from single-crystal diamond samples, also grown 

by CVD [3.20]. They reported Q factors exceeding one million for a device with 

dimensions width, thickness and length 12 µm, 0.66 µm and 240 µm. They 

presented a unique fabrication method: first the diamond sample was bonded 

front-side to a handle substrate. The diamond sample was then backside etched 

with an oxygen-chlorine based plasma to thin it down as low as 100nm retaining a 

surface roughness less than 1 nm Ra. The cantilevers were then patterned in the 

diamond membrane. The study compared the diamond devices to silicon devices 

with the same geometry and found a consistent Q factor increase of one or two 



Chapter 3: Literature Review 49 

orders of magnitude. Gaidarzhy et al also reported high Q factors in their devices, 

but were able to achieve this at frequencies up to 1.441 GHz by employing a device 

with unique geometry as demonstrated in Figure 3.3.1 [3.21].  

 

 

 

 

 

 

 

Figure 3.3.1 SEM image showing unique double clamped cantilever geometry 

employed by Gaidarzhy et al [3.21]. The smaller cantilevers were tuned to 

constructively interfere with the perpendicular main beam.  

 

These devices, made from CVD polycrystalline diamond, exhibited an fQ product 

(resonant frequency x Q factor) of 1.46×1013, similar to the highest ever reported 

in literature for a micro-resonator made from any material [3.28]. This 

exemplified the mechanical properties of polycrystalline diamond and showed 

that there was no significant distinction between polycrystalline and single-crystal 

diamond mechanical properties for MEMS applications. Kara et al explored the 

nano-fluidics of single crystal diamond mechanical resonators [3.15]. Their devices 

were simple cantilever beam structures fabricated from single-crystal diamond, 

as shown in Figure 3.3.2. They hypothesised that the smooth and inert surface of 

single-crystal diamond would allow for reduced drag and therefore increase 

resonator performance under heavy fluid loading. Owing to fabrication issues 

around forming single-crystal suspended cantilever structures, their cantilevers 

were fabricated using focussed ion beam (FIB) technology. This resulted in a 

triangular beam cross section, also displayed in Figure 3.3.2.  
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Figure 3.3.2 SEM images showing single crystal diamond simple cantilever design 
fabricated by FIB by Kara et al. Also shown is triangular beam cross section (insert) 
[3.15].  

 

Their experimental procedure involved observing the cantilevers’ thermal 

fluctuations in air and water and comparing the measured frequency and Q factor 

to their theoretical model (based on the Sader model). Their data was somewhat 

in good agreement with the theoretical model for frequency but underestimated 

Q factor. Discrepancies were attributed to cantilever geometry; their model was 

based on an oscillating cylinder and did not consider the triangular cantilever cross 

section (Figure 3.3.2 inset).  

 

One of the more unique ways synthetic diamond has been implemented in MEMS 

devices is as a piezo-resistor. Diamond can be doped during the growth process 

with boron, and the resulting material may be both semi-conducting and piezo-

resistive. This makes it an ideal candidate for MEMS sensor applications: 

displacement of mechanical parts made from doped diamond can be detected by 

monitoring its varying electrical resistance. The work of Darrel et al showcased a 

boron doped polycrystalline diamond pressure sensor [3.22]. Their device 

consisted of a 5 µm thick un-doped PCD membrane with boron doped PCD resistors 

deposited on the surface. Diamond growth was achieved by CVD. The change in 

current through the resistors was measured when the membrane was subject to 

an applied stress, and they found the gauge factor (the fractional change in the 
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resistance to fractional change in the length of a strain gauge) of their device to 

be approximately 7. Darrel et al also included data from single boron doped CVD 

piezo-resistors stressed on a silicon substrate, and from these resistors they found 

a correlation between a larger PCD grain size and larger gauge factor. They also 

reported an increase in CVD resistivity with temperature. Janssens et al more 

recently made a similar membrane pressure sensor device [3.23]. Theirs was 

significantly thinner, only 150 nm thick, and was made entirely of boron doped 

PCD. They concluded that the piezoresistive response of their membrane as a 

function of differential pressure was highly linear and sensitive, up to 0.6 %/bar, 

nearly a 50 % increase on previous reported values [3.24]. Kulha et al fabricated 

PCD piezo-resistors onto the base of silicon based cantilevers to form pressure 

sensors [3.25]. They made an extensive study into the sensor’s parameters such 

as deformation sensitivity, contact resistance, and gauge factor and resistance 

temperature dependency. They found that the gauge factor increased as the boron 

doping level decreased, and that the gauge factor decreased with increasing 

temperature (Figure 3.3.3). 

 

 

 

 

 

 

 

  

 

 

Figure 3.3.3 Plot showing gauge factor as a function of temperature in boron 

doped polycrystalline diamond piezoresistive cantilevers fabricated by Kulha et al 

[3.25]. 
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They used finite element analysis (FEA) to model the stress distribution in the 

piezo-resistors and the gauge factor. The FEA results compared well to 

experimental results, however the simulations did not take into account the effect 

the added piezo-resistors had on the strain of the entire structure. The highest 

gauge factor recorded in this study was 12.6 which falls short when compared to 

similar silicon based devices which have gauge factor of + 20 [3.26]. Privorotskaya 

et al fabricated piezo-resistive cantilevers entirely from PCD, utilizing a sample 

comprising of an intrinsic PCD layer with a boron doped layer grown on top [3.27]. 

A device made exclusively from PCD retains all the favourable mechanical and 

electrical properties of diamond for use in applications, such as chemical inertness 

and thermal stability. Silicon devices may suffer from biocompatibility issues 

[3.28]. Their devices were U shaped suspended cantilever structures ranging from 

around 300-400 µm in length and 1 µm thick, as shown in Figure 3.3.4. 

 

 

 

 

 

 

 

 

Figure 3.3.4 SEM image of U shaped boron doped ultrananocrystalline diamond 

cantilever fabricated by Privorotskaya et al [3.27] 

The diamond material was patterned with SiO2 and etched in an oxygen based 

plasma, with no specific etch rate reported. Ohmic contacts were formed using 

an Au/Cr stack, the Cr serving as an adhesion layer. A back-side through-wafer 

etching process was used to release the cantilever. They used a nano-positioner 

to deflect the cantilever beam and observe the change in resistance through the 

structure using a Wheatstone bridge circuit. They reported that their cantilever 

gauge factor was not significantly temperature dependent and that the piezo-

resistive temperature coefficient for the devices was close to zero. This 
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contradicted previous reports including Kulha et al, and they stated that the 

reason for this was the significantly smaller grain size of the PCD used in the study. 

A deflection sensitivity of 0.19 mΩ/Ω per micrometre of deflection was reported 

for these devices.   

 

3.4 Thesis Aims 

 

A robust, low-cost micro-rheometer for in-situ characterisation of complex fluids 

across a range of frequencies is of significant interest to the field. It has been 

shown that polycrystalline diamond, in intrinsic and boron-doped form, retains 

many of the attractive mechanical and electrical properties of single crystal 

diamond, yet is cheaper to manufacture and can be produced as a thin film, 

making it easier for micro-processing.  

Here we report on the investigation of polycrystalline diamond as a material for 

MEMS devices, specifically for passive micro-rheology and sensor applications. This 

includes the development of the fabrication and characterisation of two related 

devices: an intrinsic PCD micro-cantilever for passive micro-rheology, and a boron-

doped PCD piezo-resistive micro-cantilever for sensor applications.  

Device fabrication methods and process development pertaining to PCD-on-silicon 

samples, and subsequent device characterisation will be presented including: 

• development of a top-side cantilever release process with minimal 

undercut  

• analysis of the thermal fluctuations of intrinsic PCD micro-cantilevers in air 

and water 

• a data analysis method for extracting a fluid’s viscoelastic properties from 

the power spectrum of the thermal fluctuations of a submerged micro-

cantilever 

• electrical characterisation of boron-doped diamond samples 

• characterisation and analysis of the piezoresistive effect in boron-doped 

PCD piezo-resistive micro-cantilevers 
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Chapter 4: Fabrication Methods 

 

The micro and nano-scale fabrication industry hinges on the ability to create 

features with metals, semiconductors and other materials with precision down to 

micro and nano-scale lengths. In order to achieve this, engineers must utilize state 

of the art fabrication techniques. There exists no standard fabrication method for 

MEMS devices, and many of the techniques applied in industry and research 

originate in the semiconductor industry. The fabrication methods and equipment 

described in this chapter pertain to the devices explored in this body of work. 

However, it is by no means an exhaustive list of methods and the field of 

fabrication continues to expand. 
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4.1 Lithography 

 

In the device fabrication field, lithography is the method by which substrates can 

be patterned and serves as the basis for structuring materials on the micro and 

nano-scale. One of the most commonly used methods of lithography is 

photolithography. In photolithography, an ultra violet (UV) sensitive material 

called photoresist, or resist, is applied to a substrate. For application purposes, 

the resist is prepared as a solution with a solvent. An amount of resist is applied 

to the substrate via a pipette, and the substrate is spun at a pre-determined RPM 

to achieve a uniformly level application. Post-spinning, the sample and resist are 

baked on a hotplate or in an oven to evaporate the remaining solvent and solidify 

the resist. The final thickness of the resist depends on the viscosity of the resist 

and the spin speed. Areas of the resist are then selectively exposed to UV light by 

means of a hard mask placed between a light source and the resist coated 

substrate as shown in Figure 4.1.1. The substrate is then submerged in a solution 

known as developer which is used to affect the patterning. There exists two 

iterations of resist; positive and negative. When positive resist is exposed to UV 

light it becomes soluble in developer. Conversely, negative resist is soluble in 

developer and becomes insoluble upon UV light exposure. Once the unwanted 

resist has been removed by the developer the desired pattern remains on the 

substrate which can be used for further processing. 
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Figure 4.1.1 Diagram of photolithography process. The hard mask guides UV light 

onto a UV sensitive resist coated substrate.  

 

The resolution of photolithography can be affected by several factors including: 

variation in overall resist thickness, non-uniformity in resist thickness, bake 

temperatures and exposure energies. However, in an ideal situation where the 

afore mentioned factors are optimized, the theoretical limit of photolithography 

is determined by the wavelength of the exposing light [4.1]. 

An alternative process, developed in the mid-20th century as the successor to 

photolithography, is electron beam lithography (EBL). EBL employs radiation 

sensitive resist which is exposed by a beam of electrons. One of the main benefits 

of EBL (in addition to the high-resolution factor) is that no mask is required to 

write patterns on the resist. Instead, the electron accelerator is controlled by 

computer software, and the pattern is built up as the electron beam scans across 

the substrate. This method lends itself well to designs that are frequently 

changing, wherein creating a new photo-mask each time would be impractical. 

Patterns can be created on computer aided design (CAD) software by the user and 
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Scan	direction

Beam	spot	width Beam	step	size

passed to the EBL tool for processing. The user defines operating parameters such 

as the electron beam spot size, step size and exposure energy, or dose. The EBL 

tool directs the electron beam in a raster scan across the substrate, exposing each 

spot then moving by the predefined step and exposing again as demonstrated in 

Figure 4.1.2. One issue that can occur during the EBL process is charge trapping.  

This is where negative charge build-up can occur in an insulating substrate. This 

leads to beam deflection. To alleviate this, a conductive layer can be deposited 

over the resist. This helps dissipate the charge away from a concentrated area by 

providing the electrons with a path to ground [4.2]. Theoretically, nm resolution 

can be achieved by EBL, however the technique is still subject to the same 

previously mentioned processing limitations as photolithography. Owing to the 

high costs associated with EBL, photolithography is still a widely used 

manufacturing process for MEMS and semiconductor devices.    

 

 

 

 

 

 

 

 

 

Figure 4.1.2 Diagram showing scan direction, step size and spot width during EBL 

execution.  

 

With the exception of some preliminary photolithography experimentation, the 

devices in this study were fabricated exclusively using a Vistec VB6 EBL tool. Early 

process development revealed overexposure of patterns owing to substrate 

charging, as shown in Figure 4.1.3a. A 10 nm layer of Al was found to be a 
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sufficient charge dissipation layer to alleviate this issue. The result of this can be 

seen in Figure 4.1.3b. 

 

                                                             

 

 

 

 

 

Figure 4.1.3 a & b Patterns written by EBL showing overexposure due to charge 

accumulation (a) and correct exposure achieved with 10 nm Al charge dissipation 

layer deposited on the surface of the sample post-resist deposition. 

  

4.2 Thin Film Deposition & Lift Off 

 

Routinely, the lithography step will be followed by a uniform thin film deposition 

onto the substrate which covers the exposed areas of the substrate and the 

remaining resist. Subsequently, the substrate can then be submerged in a solvent 

such as acetone to remove the remaining resist which also removes any of the thin 

film deposited onto it, leaving only the desired pattern overlaid by the thin film. 

This is a method known as lift off. To ensure a good resist profile for lift off, it is 

recommended that a bi-layer of resist is used so that the bottom layer undercuts 

the top layer. This can be achieved by using different compositions of resist. By 

doing this, it is also ensured that the resist removing solvent will be able to access 

the resist beneath the metal thin film. Typically, the lithography/lift off process 

will be repeated several times throughout the device fabrication process, with 

different overlapping layers of conducting and insulating materials deposited 

between each lithography step. Thus, devices of elaborate design in terms of layer 

count and electrical connections can be created horizontally, vertically, or a 

combination of both across the surface of a substrate.  

Resist 

Developed area 

Over exposure 

100μm 

a. b. 
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Figure 4.2.1 Diagram showing different stages of the lift off process. Metal is 

deposited over a bi-layer of resist. The bi-layer promotes a clean metal profile 

and solvent access during the final lift off stage.  

 

There are several methods of thin film deposition commonly used including 

thermal evaporation, electron beam evaporation and atomic layer deposition. The 

main deposition technique used throughout this study is electron beam 

evaporation.  

The evaporation tool typically has two chambers – a load lock and a main chamber, 

separated by a series of shutters. The substrate is loaded into the load lock where 

it is inverted and held above the main chamber. Inside the main chamber there 

are several crucibles each holding a target of metal to be potentially evaporated. 

Much like the EBL tool, an electron beam evaporator tool utilises a beam of 

electrons.  The electron beam is magnetically focused onto the target metal to be 

evaporated. The main chamber of the system contains a quartz crystal oscillator 

which is used to monitor the evaporation rate of the metal. Once the evaporation 

rate reaches a desired threshold, the shutters open and the evaporated metal 

travels up through the main chamber onto the substrate. Evaporation typically 

occurs at a pressure of around 10-7 Torr which allows the evaporated metal to 

travel uninhibited through the chamber onto the surface of the sample.   

Substrate 

Resist bi-layer Metal deposited across sample Post resist removal 

(lift off) 
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Figure 4.2.2 Diagram of electron beam evaporation tool showing critical 

components. The sample is held in an inverted position over the evaporated 

metal. A crystal oscillator (not shown) is used to measure the flow rate of the 

evaporated metal.   

The evaporation tools used in this study were Plassys MEB 400S & 500S Electron 

Beam Evaporators. In addition to forming etch masks, the Plassys tools were also 

used to deposit electrical contacts on active devices and for transmission line 

measurements (TLM) (see Chapter 5).   

 

 

 

 

 

 

 

 

Figure 4.2.3 Optical image of an aluminum etch mask deposited by electron beam 

evaporation onto a diamond substrate.   
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mask 
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4.3 Etching Processes 

 

Perhaps one of the most challenging aspects to MEMS device fabrication is material 

etching. Many devices rely on the formation of nanoscale freestanding features 

that must be formed with absolute accuracy. In addition to operational issues, a 

device’s mechanical behavior is much easier to predict and model if mechanical 

features can be accurately formed. The following sub-chapters provide details of 

the etching processes developed and employed by the author in order to fabricate 

the diamond MEMS devices presented in this work. 

 

4.3.1 Diamond Plasma Etching  

 

In order to create diamond MEMS devices, it is important the we have the ability 

to perform highly anisotropic 90° etches in the material. The most commonly 

known method for achieving this is by plasma etching. The plasma etching process 

involves placing the substrate to be etched in an appropriate gas plasma generated 

in an electric field. The plasma contains different types of gas species interacting 

with one another, experiencing different processes known as excitation, 

dissociation and ionization. The species interact with each other but also react 

with the substrate, becoming absorbed onto the surface and chemically reacting 

with it. The etch products are desorbed from the surface and removed from the 

chamber via the gas flow exhaust as demonstrated in Figure 4.3.1. The type of 

plasma etching that takes place depends on the excitation techniques used [4.4]. 
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Figure 4.3.1. Non-specific radio frequency (RF) plasma etching process overview 

diagram showing absorption, reaction and desorption. 

 

As diamond is chemically inert, there are not many processes that can be used to 

etch the material. One of the few known plasmas that will etch diamond is oxygen. 

Oxygen plasma species react with the diamond surface to produce the volatile 

etch products CO and CO2. To achieve 90° anisotropy, a method known as reactive 

ion etching (RIE) is employed, which is an ion assisted plasma etching process. The 

addition of ion bombardment increases anisotropy by promoting the desorption of 

the volatile etch products. The plasma is formed in a vacuum chamber under high 

pressure between two electrodes. One electrode is coupled to an RF frequency 

(anode) and one electrode (cathode) is grounded. During the plasma forming 

process, the cathode generates a negative DC bias. As a result, positively charged 

ions are accelerated towards the cathode bombarding the substrate [4.4].  
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Figure 4.3.2 a & b Diagram showing isotropic chemical plasma etching (a) and 

anisotropic ion assisted plasma etching (b). 

 

Figure 4.3.3 below shows an example of the anisotropy that can be achieved with 

RIE etching. The image shows a diamond cantilever tip (still attached to the silicon 

substrate), etched in an Argon/Oxygen plasma.  

 

 

 

 

 

 

 

 

 

 

Figure 4.3.3 SEM image of a diamond cantilever tip on silicon substrate as an 

example of RIE etch anisotropy.    

Silicon substrate 

Diamond cantilever tip 

b. a. 
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4.3.2 Silicon Plasma Etching 

 

The most ubiquitous material in semiconductor and MEMS device manufacturing is 

silicon. A major advantage with this is that there is an abundance of processing 

techniques already developed that can be utilized by engineers. In thin film MEMS 

processing, it is common to have silicon as a base substrate, onto which the thin 

film is deposited or grown. The MEMS mechanical features are etched into the thin 

film then subsequent silicon etching is performed to release the free-standing 

mechanical parts from the substrate. The diamond thin films used for this study 

are all grown on silicon <100>, and as such some common silicon etching methods 

can be used to form the basis for the release part of the device fabrication 

process.  

 

SF6 is a common gas used in silicon plasma processing. One of the etching 

mechanisms for silicon in an SF6 plasma is known to be [4.5]: 

 

Si + 4F          SiF4 

 

An exclusively SF6 plasma etching process was used to release devices early in this 

project, and whilst devices were successfully released from the silicon substrate, 

the etch was found to be extremely isotropic, leaving a large device undercut. In 

order to increase anisotropy, and reduce undercut, a passivating polymer can be 

added to the process. This has a similar effect as the RIE process but involves an 

entirely different mechanism. When a polymer is added to the plasma it is 

deposited on the sidewalls of the etched silicon pit which helps control the lateral 

etch rate, thus reducing the undercut, as shown in Figure 4.3.4. In this instance 

C4F8 plasma polymer was used to good effect [4.6]. This is known as a mixed 

process, and can be used to achieve vertical side walls at etch depths less than 40 

µm. Other etch processes such as the Bosch process exist for deeper etches [4.7], 

however the mixed process method provided sufficient result for the devices 

described herein.  
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Figure 4.3.4 Diagram showing isotropic etch (a) and anisotropic etch aided by 

polymer sidewall passivation (b). 

 

 

a.                                                           b. 

 

 

 

 

 

Figure 4.3.5 a & b SEM images showing the contrast between an isotropic SF6 

plasma silicon etch result (a) and SF6 C4F8 mixed process etch result (b).  
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4.3.3 Silicon Wet Etching 

 

In addition to plasma etching, silicon can also be etched using wet etching 

methods. Wet etching methods are typically less anisotropic than plasma 

processes, however they are less expensive and easier to implement.  

 

A commonly used etchant in silicon MEMS processing is potassium hydroxide (KOH). 

The major benefit of using KOH is that it selectively etches silicon depending on 

its crystal orientation [4.8]. By controlling the size of the window in the etch mask, 

specific depths can be reached, and the etch will self-terminate when the crystal 

planes converge at the bottom of the etch pit. Figure 4.3.6 shows a diagram 

describing the shape of a KOH etch pit in silicon <100>. The <100> plane etches at 

a faster rate than the <111> plane resulting in an inverted pyramid shaped pit.  

 

 

 

 

 

 

Figure 4.3.6 Diagram showing selective crystal plane etching of silicon by KOH.  

 

KOH comes in pellet form and therefore a water solution must be created to 

perform an etch. The etch rate of KOH depends on the concentration and 

temperature of the solution. To maintain a constant concentration and 

temperature, an acid reflux etching kit as shown in Figure 4.3.7 can be used. 
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Figure 4.3.7 Typical processing equipment setup for acid reflux etching. 

 

A heating element, thermocouple and temperature feedback control unit are used 

to maintain a constant temperature, and a water condenser attachment is used 

to maintain a constant solution concentration.  

 

 

 

 

 

 

 

 

Figure 4.3.8 SEM image of diamond cantilever array released from silicon 

substrate by KOH wet etch showing silicon crystal planes.  

  

Silicon <100> 
plane  
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plane  
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One of the drawbacks of wet etching is that free standing structures are prone to 

becoming stuck onto the substrate if the etch depth is not sufficient. This happens 

at the drying stage of the process, were the surface tension of the fluid (either 

the etching solution, or water at a later rinsing stage) captures the free-standing 

element of the device, as demonstrated in Figure 4.3.9.   

 

 

 

 

 

 

 

 

Figure 4.3.9 SEM image of diamond cantilever array partially released from silicon 

substrate by KOH wet etch. Note that the longer cantilevers have become stuck 

to the substrate surface.  

 

4.4 Wire Bonding  

 

The final stage of device fabrication is packaging. On a testing level, it is possible 

to probe different electrical elements of a device to achieve characterization. 

However, bond pads supplied on a device are generally fragile, and will not 

withstand repeated probing before becoming mechanically compromised. To 

overcome this, a suitably sized carrier package can be used to host the device 

substrate. The carrier will comprise of larger, more robust electrical contacts that 

the device’s bond pads can be electrically attached to via microscopic wires. This 

process is known as wire bonding.  

 

Diamond cantilevers 

Silicon substrate 
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Two types of bond exist, wedge bonds and ball bonds. A bonding device will use a 

combination of vertical force, ultrasonic energy and heat to perform a bond 

between the wire and the contact pads. A wedge bond is performed by simply 

pressing the wire into the contact pad and ultrasonic energy is transferred to 

create a weld. The ball bonding process is different in that the tip of the bonding 

wire is formed into a ball before the weld is performed [4.9]. The advantage of 

ball bonding is that the wire protrudes vertically from the weld, so it does not 

matter in which direction the next bond is to be performed.  

                                                  

a.                                                                                                                                                                                                     

                                                                                                     

 

 

 

 

Figure 4.4.1 a & b SEM images showing ball bond (a) and wedge bond (b). 

 

4.5 Chapter Summary 

 

This chapter provides an overview of fabrication processes and equipment used to 

fabricate diamond MEMS devices. As stated previously, most of these processes 

originate from the semiconductor industry, however, all the processes 

investigated required adjusting by the author to achieve specific end results. In 

particular, plasma processing is notorious for inconsistent results, and required 

extensive process development to ensure a stable and reproduceable device 

release process. The particular details of tools and process parameters used for 

fabricating specific devices is supplied in the relevant results chapters.  
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The micro and nano-fabrication industry relies on sophisticated and verified 

methods for measuring different aspects of devices and materials in order to 

characterise them. As devices become smaller and more sensitive there is a 

requirement for characterisation tools with very high resolution in order to 

capture sub-femtometre displacements and sub-femtonewton forces. This chapter 

details the equipment used and methods employed throughout this body of work 

to characterise the diamond materials and MEMS devices fabricated.  
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5.1 Laser Doppler Vibrometry  

 

Perhaps one of the most important tools for characterising MEMS devices is a 

displacement sensor. By measuring the displacement of fabricated devices, we 

can find a wealth of information pertaining to its operation in terms of resonance 

and stiffness. The tool made available for characterising the displacement of the 

devices in this work is the laser Doppler vibrometer (LDV). The LDV is an 

interferometer system that deploys a laser onto a moving surface and uses a 

network of beam splitters and mirrors in order to modulate a reference beam to 

calculate the displacement at the point of reflection.  

 

 

 

 

 

 

Figure 5.1.1 Schematic diagram of LDV system showing laser signal path and 

manipulation.  

The sequence begins with a laser beam f0 accelerated towards an initial beam 

splitter. The beam splitter splits the beam into a reference beam and a test beam. 

The test beam is focussed onto a moving surface and the wavelength of the 

reflected wave is modulated by the velocity of the moving surface (f0±fd). The 

scattered modulated test beam is captured by the LDV and guided back towards a 

photodetector. Meanwhile, the reference beam is shifted up in frequency by 

means of a Bragg cell and guided towards the same photodetector. The 

backscattered light from the vibrating surface and the reference beam are 

superimposed onto the photodetector generating a phase modulated carrier signal 

at the photodetector output. The information pertaining to the displacement of 

the vibrating surface is contained in the resulting phase shift of the carrier [5.1]. 
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The LDV system then down-converts the phase modulated carrier into the 

baseband. 

 

To demodulate the signal, the carrier is converted into two quadrature signals, I 

(in-phase) and Q (quadrature). The two quadrature signals carry the same 

information as the carrier signal but are easier to manipulate computationally as 

they lie in the base band. In theoretical terms, the quadrature signals are 

sinusoidal, 90˚ out of phase with each other and have equivalent amplitudes [5.2].  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.2 Diagram of quadrature signals Q & I. The phase difference between 

the signals is used to calculate displacement.  

 

Figure 5.1.2 shows a graphical diagram of quadrature signals Q & I. The angle of 

rotation of the pointer is equal to the interferometric phase difference between 

the signals. The direction of rotation of the pointer corresponds to the direction 

of movement of the vibrating surface. The phase difference ∆ϕ is calculated by 

the following relationships [5.2]:  

  

∆ϕ  

∆ϕ  

Q 

I 
∆ϕ  



Chapter 5: Characterisation Equipment & Methods 77 

𝐼(∆𝜑) = 𝐴𝑠𝑖𝑛∆𝜑       

        (5.5.1) 

𝑄(∆𝜑) = 𝐴𝑐𝑜𝑠∆𝜑       

        (5.5.2) 

By dividing Equation 5.5.2 by Equation 5.5.1 we find the following relationship: 

 

𝐼(∆𝜑)
𝑄(∆𝜑) =

𝑠𝑖𝑛∆𝜑
𝑐𝑜𝑠∆𝜑 = 𝑡𝑎𝑛∆𝜑	 

           (5.5.3) 

And applying the inverse tan function we arrive at: 

 

∆𝜑 = 	 𝑡𝑎𝑛£V
𝑄(∆𝜑)
𝐼(∆𝜑)  

           (5.5.4) 

The phase difference ∆𝜑 is proportional to the displacement of the vibrating 

surface ∆x by the relationship: 

 

∆𝜑 = 	
4𝜋
𝜆 ∆𝑥 

           (5.5.6)  

The LDV system used to capture vibration data in this body of work is the Polytec 

UHF-210. With software oversampling methods the UHF-120 can be calibrated to 

measure vibrations up to 2.4 GHz. The UHF-120 is incredibly sensitive and able to 

capture sub-picometer displacements. This, however, makes the measurements 

highly susceptible to mechanical noise coupling, and unwanted interference is 

commonplace. Possible interference sources can be air conditioning systems, PC 

fans located near the scan head and human traffic within the lab during 

measurements. Therefore, extensive measures must be taken to ensure the scan 

head is securely clamped, and measurements be captured when the probability of 

lab interference is lowest. The majority of MEMS-specific manufacturers utilise 

specially designed low-noise laboratories for sensitive calibration and 

characterisation purposes.   
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 5.2 Surface Profiling   

 

An important aspect of device and material characterisation is surface profiling. 

Mechanical surface profiling generally makes use of a cantilever with an extremely 

hard (typically diamond) sharp tip or stylus a few nm wide which probes the 

surface of the sample. By using electronic feedback and detection methods, the 

displacement of the tip or needle as it moves across the sample surface can be 

used to build an image of the sample’s topography.  One of the most common 

forms and a technique used widely in this work is atomic force microscopy (AFM).  

 

 

 

 

 

 

 

 

 

 

 

Figure 5.2.1 Graphical representation of AFM system. The photodetector captures 

the laser reflected from the cantilever tip as it probes the sample surface.  
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The AFM method uses a silicon cantilever with an elongated pointed tip to profile 

the surface of samples. An AFM system uses the laser bounce method to determine 

cantilever displacement. A laser is focussed onto the free end of the cantilever 

beam where it is reflected onto a photodetector. As the cantilever moves, the 

laser beam is scattered onto the photodetector quadrants. The AFM system then 

takes the photodetector voltage change and determines the cantilever’s 

displacement. There are two common modes of operation for an AFM tool, static 

mode and dynamic, or tapping mode. In static mode, the cantilever tip is 

accelerated towards the sample surface and the deflection of the cantilever in 

combination with its stiffness constant (usually supplied by the manufacturer) can 

be used to determine mechanical properties of the sample. In tapping mode, the 

cantilever is driven into a vibrating motion by a piezoelectric transducer. As the 

tip moves across the sample, the amplitude and frequency of the resonant motion 

modulates depending on sample surface conditions. The AFM uses the change in 

motion of the tip to build the image of the sample surface. This method can be 

very useful in determining sample surface roughness and is used in this work to 

characterise sample roughness after etching. However, the resolution of the AFM 

scan is limited by the geometry of the cantilever tip. The cantilever tip is conical, 

so if the sample, or feature, to be characterised has smaller attributes than the 

width or angle of the tip then an inaccurate image will be resolved [5.3].  

In instances where surface roughness is not of concern and only the height 

difference between two adjacent parts of a sample is required, a less 

sophisticated form or surface profiling is satisfactory. In these instances, a 2D 

contact profilometer can be used. Similar to the AFM, the profilometer uses a 

stylus to make contact with the sample surface, and then moves a pre-specified 

distance in one direction. The stylus provides feedback on its position, typically 

through a piezoresistive mechanism, which the system then translates into Z 

deflection distance. This method is less accurate than AFM, however it has been 

used in this work to provide a fast and less complex method of characterising etch 

rate and sample height (see Chapter 6) [5.3].   
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5.3 Transmission Line Measurements 

 

Transmission line measurement or transfer length measurement (TLM) is a method 

used in semiconductor device characterisation to determine information 

pertaining to metal contact and semiconductor material properties [5.4]. By 

performing TLM analysis it is possible to find the contact resistance between any 

given contact and semiconductor interface, the sheet resistance of the 

semiconductor and the theoretical transfer length of the contact. The method 

utilises a series of geometrically identical contacts on a semiconductor surface 

(commonly defined using metallisation and lithography techniques) spaced 

increasingly further apart from one another. Typically, the contacts are linearly 

spaced as can be seen in the example below in Figure 5.3.1, where the gap 

increase by the primary gap width every instance.  

 

 

Figure 5.3.1 Graphical representation of TLM structures showing gap size and 

width.  

 

 

 

 

 

 

Figure 5.3.2 Schematic model of TLM equivalent circuit showing sheet and 

contact resistance. 
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As can be seen from Figure 5.3.2 above, each pair of TLM contacts can be 

modelled as a network of three resistances in series: the resistances between each 

contact and the substrate, and the sheet resistance of the semiconductor. By 

applying a voltage across each pair of contacts in turn and measuring the 

resistance between each pair, we can build up a plot of resistance vs gap size that 

can be used to determine the contact and sheet resistance of the network.  

 

 

 

 

 

 

 

 

 

 

Figure 5.3.3 Idealised TLM plot showing linear fit to TLM gap resistances.   

 

Figure 5.3.3 shows an idealised plot of TLM resistance vs gap data for five 

different gap distances ranging from 1-5 µm. Realistically the measured 

resistances would not all lie exactly on a straight linear fit, and average values 

over a range of measured TLM structures would be used. From the gradient of the 

slope we find the sheet resistance of the semiconductor material divided by the 

width of the TLM. To normalise this figure into useable data we multiply by the 

TLM width shown in Figure 5.3.1 which reveals the sheet resistance of the 

material in Ω/o. We can then multiply this figure by the thickness of the sample 

material to find its resistivity. The Y intercept of the linearly extrapolated fit to 

the resistance data gives the combined contact resistance for both contacts, 2Rc. 

If we extrapolate further to find the X intercept this give us the theoretical 

combined transfer length of the contacts, 2Lt. The transfer length refers to the 

Gradient = Rs x W 

X intercept = -2Lt 

Y intercept = 2Rc 
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area of the contact where the charge transfer from the contact to the 

semiconductor takes place. That is, the charge transfer is not distributed evenly 

across the contact owing to current crowding at the edges in the direction of flow. 

This method of determining transfer length remains valid only if the sheet 

resistance of the semiconductor material is assumed to remain constant beneath 

the contact. In some instances, where contact annealing has taken place, the 

sheet resistance cannot be assumed to be the same under the contacts as it is 

between the contacts. If the transfer length is to be used, the contribution of the 

contacts can be expressed as contact resistivity ρc Ω/cm2 using the effective area 

of the contact. If the transfer length is deemed inconclusive by an unknown sheet 

resistance below the contact then the contact resistance can be normalised by 

the contact width and expressed in terms of Ω/mm. 

TLM structures designed and used in the work are 150 µm2 and the gaps between 

contacts designed as 1, 2, 3, 4 and 5µm. However, owing to the nature of the 

lithography and lift off methods used to fabricate the contacts, optical or SEM 

inspection must be used to determine that actual width of the gaps as shown in 

Figure 5.3.4., as this value can vary.   

 

 

 

 

 

 

 

 

 

Figure 5.3.4 Optical & SEM inspection of TLM structure to determine gap width. 

Actual measured distance of 2 µm gap is 1.7 µm.  

  

150µm 
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5.4 Scanning Electron Microscopy 

 

 

 

 

 

 

 

 

 

 

Figure 5.4.1 Graphical representation of SEM system.  

Owing to the limits of optical detection, conventional optical microscope systems 

provide insufficient magnification to visualise most MEMS and NEMS devices at a 

useful level. In this body of work, to achieve visualisation of micro and nano-scale 

devices, a scanning electron microscope (SEM) system is deployed [5.5]. The SEM 

system is a type of electron microscope that scans a sample with a focused beam 

of electrons to generate images of it. Optical imaging resolution is limited by the 

wavelength of the illuminating light, whereas SEM imaging can theoretically 

resolve sub nm features depending on the system. The system (Figure 5.4.1) 

consists of an electron source from which an electron beam is accelerated through 

a series of condenser lenses used to focus the electron beam. Once the beam has 

been focused, magnetic deflector coils are used to manipulate the direction of 

the beam through a final objective lens via PC control. The electron beam is 

incident on the sample, causing the electrons to be scattered into the chamber. 

A portion of the beam will penetrate the sample, dependent on the sample 

material properties, topography and beam energy. These interactions create 

different signals, which are then captured by one or more detectors in the 

chamber and amplified en route to a PC control unit where the image is formed. 
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The different signals can include backscattered electrons, secondary electrons 

and X-Ray. 

 

a.                                                      b. 

 

 

 

 

 

Figures 5.4.2 a & b SEM images of etched PCD cantilever tip on silicon substrate 

showing the irregular contrasting effects of sample charging (a) and typical image 

contrasting (b).  

 

An issue that can arise when capturing SEM images is the phenomena of charging. 

Insulating samples are subject to a build-up of electrons and their subsequent 

uncontrolled discharge. This can produce artefacts in the captured image such as 

warping and irregular contrasting which can be seen in Figure 5.4.2 a, where the 

grain detail on the surface of the diamond film has become undetectable over 

time. Two methods employed that can help alleviate the symptoms of charging 

are: reducing the energy of the electron beam by decreasing the beam current or 

beam voltage, or a common practice used is to coat the sample in a conductive 

layer which provides the electrons with a path such that they do not become 

embedded in the insulating sample.  

The SEM images displayed in this body of work were captured using a Hitachi 

SEM4700. Optimal settings for capturing intrinsic diamond sample images are: 

backscatter signal from a 10 kV, 5 µA beam, and optimal settings for capturing 

boron doped PCD sample images are: backscatter signal from a 5 kV, 5 µA beam.   

 

 

Diamond 

Silicon Substrate 

b. a. 
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5.5 Chapter Summary  

 

Within this chapter is a description of state-of-the-art tools used in this work to 

characterise fabrication processes and diamond MEMS devices reported. This list, 

although not exhaustive, is a good representation of systems and techniques 

currently employed in the MEMS industry at time of writing. The drive to make 

devices smaller, faster, more sensitive inevitably leads to increasing demands 

from characterisation equipment and consequently these tools will be adapted 

and replaced as necessary.  
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Chapter 6: Fabrication Results 

 

 

The next chapter focuses on the author’s efforts to fabricate diamond MEMS 

utilising the processes and methods described in the previous two chapters. As 

will be explained further, the fabrication and characterisation of two distinct 

devices is discussed: a passive micro-cantilever micro-rheometer made from 

intrinsic PCD (6.1), and a micro-cantilever based piezoresistive sensor made from 

boron-doped PCD (6.2 – 6.3). Material characterisation, fabrication methods & 

process development are discussed and contextualised.  
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6.1 Fabrication Results: Intrinsic PCD Micro-cantilever  

 

As has been expressed throughout this work, passive micro-rheology is an 

attractive method for evaluating the mechanical properties of fluids in a fast, 

effective and low cost way using a minimal sample size. Owing to their simplicity 

and availability, active MEMS micro-cantilevers have been applied in this field to 

some success using established models, but reported methods lack in terms of high 

frequency analysis and are limited to measurements at the device’s excitation 

frequency. Therefore, an investigation into a MEMS micro-cantilever device for 

passive micro-rheology by applying optical tweezers modelling methods whilst 

exploiting the material properties of diamond is explored.  

The first step to realising such devices was to investigate fabrication methods with 

the aim of fabricating arrays of free standing micro-cantilevers from 

polycrystalline diamond (PCD). 

 

 

 

 

 

 

 

 

 

Figure 6.1.1 Graphical representation of initial micro-cantilever array design. Not 

drawn to scale.  Each cantilever varies in length and width to the next, ranging 

from 1 µm to 4 µm in width, and 10 µm to 100 µm in length. The height of the 

cantilever is constant and corresponds to the thickness of the diamond layer.  

Two-inch PCD-on-silicon samples grown by microwave plasma chemical vapour 

deposition (MPCVD) and chemically-mechanically polished (CMP) were supplied by 

collaborator Dr Oliver Williams at Cardiff University. Further details of deposition 
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and CMP conditions can be found in previous work: [6.1] [6.2]. The two-inch 

wafers are cleaved into 10 mm x 10 mm samples for ease of handling. The initial 

step to realising PCD devices was to investigate PCD plasma etching. SEM imaging 

of the cleaved edges showed the thickness of the sample to be around 500 nm, as 

shown in Figure 6.1.2. An oxygen/argon gas mixture in a reactive ion etching 

system is commonly used to achieve vertical sidewall etching in diamond and thus 

forms the basis for the investigated process [6.3], [6.4]. The PCD samples were 

patterned with micro-cantilever arrays using electron beam lithography. 

Aluminium was then metallised onto the PCD as an etch mask for the diamond 

etching process. Aluminium was chosen as it is reported to have a high selectivity 

versus diamond in the etching process [6.4]. The cantilever features were etched 

into the diamond using an oxygen/argon plasma in an O.I. System 100 reactive ion 

etching (RIE) tool. Starting parameters were taken from processes developed 

previously within the research group. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.2 SEM image of the cleaved edge of diamond sample.  
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Table 6.1.1 Process parameters for diamond etching in RIE tool. The etch rate 

error corresponds to the surface roughness of the material. 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.3 SEM image of diamond-on-silicon cantilever structure post RIE 

diamond etching. Close up of cantilever tip showing diamond granular columns 

(inset) (rotated 90° counter-clockwise from main image). 

The results of the PCD RIE process can be seen in Figure 6.1.3. The process 

parameters shown in Table 6.1.1 yields highly anisotropic diamond structures. By 

measuring the height of the structures before and after etch mask removal we 

found the selectivity of diamond to aluminium to be ~100/1. O2/Ar is a common 

gas combination for etching diamond, and work reported elsewhere study various 

etch rates for these gasses between 10 – 60 nm/min [6.5]. The relatively low etch 

rate reported herein could be attributed to the plasma power or gas flow rate, 

with increased power or flow increasing the etch rate [6.6]. Oxygen may be used 

alone and is more commonly used for surface etching as it leaves a smoother 

Gases Flow rate & 

ratio  

(sccm) 

Temp. 

(˚C) 

Power 

(Watts) 

Pressure 

(mTorr) 

Etch Rate 

(nm/min) 

O2/Ar 40/10 22 200 20 22±2 

Silicon 

Diamond 

Granular columns 
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surface, however, this reduces the etch rate. Additional mechanical bombardment 

from the larger argon ions simultaneously increases the etch rate but leaves the 

etched areas rougher [6.7].  

 

 

 

 

 

 

 

 

 

 

 

Figure 6.1.4 SEM image from directly above cantilever post RIE etching in 

oxygen/argon plasma showing sidewall roughness (pre mask removal).  

 

 

Figure 6.1.4 shows the sidewall roughness of the etched diamond features. 

Roughness is estimated from SEM imaging to be around +/- 20 nm. Sidewall wall 

roughness could be attributed to two things: either the aluminium etch mask 

becomes rougher during the etch process and this roughness translates onto the 

diamond features, or the grain boundaries in the diamond are being selectively 

etched. The granular columns are visible in the SEM of the etched diamond 

features and can be seen in Figure 6.1.3. 
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By far the most challenging aspect of producing free standing cantilever type 

structures is the release step of the process where the cantilever structure is 

released from its host substrate. One of the benefits of fabricating diamond 

devices is that diamond is highly chemically inert: one of the few and most 

common ways to etch diamond is by oxygen plasma, therefore it can be subjected 

to many silicon etching processes without the need for any other etch mask than 

the diamond itself. For ease of use, a top-side dry etching method was employed 

to release the diamond cantilevers from the silicon substrate. The first method 

described uses a sulphur hexafluoride (SF6) plasma exclusively to isotropically etch 

any silicon not masked by the diamond cantilever structures. This yields a ratio of 

around 3:1 vertical to horizontal etch rate. This severely limits the etch depth 

that can be achieved without creating a significant undercut at the base of the 

cantilevers. A large undercut increases the effective length of the cantilever, 

lowering the resonant frequency and Q factor of the device such that their 

operation deviates significantly from classical cantilever beam theory. The 

process parameters shown in Table 6.1.2 below yield an etch rate of 9 µm/min. 

This is  higher than similar processes reported elsewhere that yield around 5 

µm/min [6.8]. It has been reported that a chamber pressure of 1-6 mTorr can lead 

to anisotropic silicon etching, however, this reduces the etch rate to around 0.1-

0.5 µm/min which is only suitable for shallow etching [6.9].    

 

Gases Flow 

rate 

(sccm) 

Temp. 

(˚C) 

Power 

(W) 

Substrate 

power 

(W) 

Pressure 

(mTorr) 

Vertical 

Etch Rate 

(µm/min) 

SF6 300 20 1800 20 46 9±2 

 

Table 6.1.2 Process parameters for silicon etching in ICP tool. 
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Figure 6.1.5 SEM image of cantilever array released from silicon substrate by 

isotropic top-side ICP etching.  

In an attempt to minimise the undercut of the devices and maximise the etch 

depth, the release process was moved to a mixed-process whereby a passivating 

polymer, octafluorocyclobutane (C4F8), is introduced during the etching process to 

control the isotropy of the process and hence the undercut rate.  

 

Gases Flow 

rate 

(sccm) 

Temp. 

(˚C) 

Power 

(W) 

Substrate 

power 

(W) 

Pressure 

(mTorr) 

Vertical 

Etch Rate 

(µm/min) 

SF6/C4F8 40/50 20 600 12 10 1±0.2 

 

Table 6.1.3 Process parameters for silicon mixed process etch in ICP tool. 
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Figure 6.1.6 SEM image of a 1 µm x 40 µm x 0.48 µm cantilever beam post mixed 

process silicon etch. 

Figure 6.1.6 shows an SEM image of a 1 µm x 40 µm x 0.48 µm cantilever beam 

post mixed process silicon etch. Table 6.1.3 displays the process parameters used 

to achieve the results shown in Figure 6.1.6. The etch rate of 1 µm/min is in 

accordance with similar processes reported elsewhere and the etch has achieved 

90° anisotropy [6.10]. Although the undercut at the base of the cantilever is 

minimal, the etch process has failed to completely remove the silicon from 

beneath the cantilever. Further attempts to remove the remaining silicon involved 

a further dry etch stage again using SF6 exclusively. This removed some of the 

silicon but further increased the undercut at the base of the cantilever as can be 

seen in Figure 6.1.7 below. Increasing the SF6 flow or decreasing the C4F8 flow 

during the etch process only served to further increase the undercut.  

  

Diamond Silicon 
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Figure 6.1.7 SEM image of a 1 µm x 40 µm x 0.48 µm cantilever beam post mixed 

process silicon etch and further SF6 etch to remove silicon from under the 

cantilever. 

 

In an attempt to remove the excess silicon from under the cantilever post mixed 

process silicon etch, wet etching alternatives were investigated. Potassium 

hydroxide (KOH) is a silicon wet etchant used for MEMS processing that selectively 

etches silicon depending on its crystal orientation, and has been used for AFM 

cantilever fabrication [6.11]. During a purely KOH release process, an acid reflux 

etching kit would be used to maintain a constant temperature and KOH 

concentration. A full KOH release process would be unsuitable for releasing 

structures with such relatively small feature sizes as it is an aggressive etchant 

and can leave a large undercut. However, by using a small batch of etchant in a 

beaker at a relatively low temperature and short etch duration, KOH was expected 

to be suitable for removing the excess silicon from under the partially released 

cantilevers.  
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Figure 6.1.8 SEM image of a 1 µm x 40 µm x 0.48 µm cantilever beam post mixed 

process silicon etch and further KOH wet etch to remove silicon from under the 

cantilever. 

 

Figure 6.1.8 shows an SEM image of a 1 µm x 40 µm x 0.48 µm cantilever beam 

post mixed process silicon etch and further KOH wet etch to remove silicon from 

under the cantilever. KOH needs a raised temperature to etch silicon at a 

sufficient rate, however, KOH reacts exothermically when mixed into water to 

form a solution. The heat generated at room temperature from creating a 30 % 

KOH solution was sufficient enough to remove all the excess silicon form the 

partially released cantilevers with no significant undercut within 5 minutes. 

Diamond 

Silicon 
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6.2 Fabrication Results: Piezoresistive Micro-Cantilevers from Boron Doped 

PCD – Material Characterisation 

 

Piezo-resistive micro-cantilevers are common devices that have been applied in 

many areas of technology including but not limited to AFM, chemical and 

biological detection [6.12]. Owing to the large piezoresistive effect in doped 

silicon and well-established manufacturing processes, the majority of 

piezoresistive devices are silicon based. Over the past decade or so, advancements 

in chemical vapour deposition technology have promoted polycrystalline diamond 

as an attractive alternative to silicon-based devices. With regards to its excellent 

mechanical properties, polycrystalline diamond exceeds silicon in many aspects in 

terms of biocompatibility and robustness [6.13]. The electrical properties of 

boron-doped polycrystalline diamond have been shown to be less temperature 

dependant than other semiconductors in addition to its relatively high 

piezoresistive effect [6.14]. Recently, there has been an increase in demand for 

low cost, low power medical diagnostic devices for use at point of care (POC) 

[6.15]. MEMS devices have the potential to provide a solution to this demand, and 

polycrystalline diamond exhibits excellent mechanical properties and 

biocompatibility for such devices. In the following sub-chapters the fabrication of 

boron-doped polycrystalline diamond piezoresistive cantilever sensors is 

described. 

 

 

 

 

 

 

Figure 6.2.1 Basic schematic of proposed piezoresistive cantilever device. When 

the cantilever is deflected in the Z direction it’s resistance will change. If the 

voltage across the cantilever is kept constant the change in resistance can be 

determined my measuring the change in current through the ammeter and 

applying Ohm’s law.   
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The initial step towards realising piezoresistive polycrystalline diamond cantilever 

sensors (e.g. Figure 6.2.1) is to investigate the electrical properties of diamond 

samples supplied by collaborator Dr Oliver Williams at Cardiff University [6.1]. The 

boron-doped diamond samples were supplied as thin films grown by microwave 

plasma chemical vapour deposition on two-inch silicon substrates. After the 

growth process, the diamond films are polished using a proprietary chemical 

mechanical process, resulting in a typical roughness of 3 nm Ra. After polishing 

the thin diamond films are around 400 nm thick (verified by surface profiling), 

however this is not uniform across the entirety of the wafer. Boron doping is 

achieved by introducing trimethylboron gas into the CVD chamber during the 

growth process. Further information on the growth process can be found here 

[6.16].  

To establish the sheet resistance of the diamond films and find a suitable ohmic 

contact, transmission line measurement (TLM) analysis was conducted. In order to 

achieve this, metal contacts, defined using electron beam lithography, were 

evaporated onto the surface of the diamond films by electron beam evaporation. 

A metal stack comprising of a layer of titanium under a layer of gold was chosen 

for the contacts: the titanium layer promotes adhesion to the diamond surface as 

well as having low resistivity, and gold also has low resistivity and is resistant to 

oxidisation [6.17]. From the TLM analysis we can find the resistance contribution 

of the contacts in addition to the sheet resistance and hence resistivity of the 

diamond film.   
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Figure 6.2.1 Plot of resistance vs gap distance for Ti/Au contact TLM 

measurements. The y-intercept of the linear fit corresponds to twice the contact 

resistance (2Rc). Error bars show data range. 

Figure 6.2.1 shows the results from TLM measurements of Ti/Au contacts on boron 

doped PCD. The surface area of the contacts is 150 µm2 and comprises of a 40 nm 

titanium layer at the diamond interface capped with a 300 nm gold layer. A 0.5 V 

- -0.5 V sweep was applied between contacts for each gap size. Five separate TLM 

structures were measured and the resistance for each gap size averaged to plot 

this data. The gap distances were 0.88 µm, 1.85 µm, 2.7 µm, 3.6 µm and 4.7 µm, 

verified by SEM imaging. From the y-intercept we find the combined contact 

resistance, 2Rc is 1.63 Ω. The contacts exhibit linear ohmic behaviour and as a 

result the decision was made not to anneal the contacts. As there has been no 

annealing process, the sheet resistance of the material under the contacts is 

assumed to be consistent with the sheet resistance between them. Following this 

assumption, we can use the transfer length derived from the TLM measurement 

to find the effective contact resistivity, which from this data we find to be 

3.75x10-6 Ω.cm2. The gradient of the linear fit to the TLM measurements is equal 

to the sheet resistance of the sample multiplied by the width of the TLM. Dividing 

by the TLM width we find the sheet resistance of the material to be 39 Ω/o. For 

a sample thickness of 400 nm this corresponds to a bulk resistivity of 1.44x10-3 

Ω.cm which, according to the plot shown in Figure 6.2.2 [6.18], finds the 

resistivity of the diamond sample in the metallic range. 

Gap Distance (µm) 
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Figure 6.2.2 Resistivity vs Boron doping concentration in polycrystalline diamond  

(see also Figure 2.5.2) [6.18].  

 

If we are to fabricate cantilevers from the material and observe the piezoresistive 

effect when deflecting the cantilevers, we must first ensure that the material 

maintains a constant resistance for a given constant voltage. If the resistivity of 

the material changes over time for an applied voltage, then it would not be 

possible to separate resistance changes due to the piezoresistive effect from these 

fluctuations. Consequently, the next step is to investigate the time dependent 

stability of the electrical properties of the diamond film. One of the causes for 

fluctuations in resistivity for a constant voltage could be self-heating of the device 

as heat is generated from current flow in the material.  
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To investigate the time dependent resistivity of the material, wires were formed 

from the diamond films and the resistance of the wires monitored over set time 

intervals for an applied voltage. To create wires from the doped diamond films, 

electron beam lithography was used to create wire-shaped etch masks on the 

surface of the film. Aluminium was used as an etch mask as it is known to have 

good selectivity versus diamond during the selected RIE etch process [6.19]. The 

patterned diamond is etched in an RIE plasma etching tool with an Ar/O2 plasma. 

This is the same etching process detailed in the previous chapter, however, it is 

noted that for the same parameters (and same RIE tool) the boron doped diamond 

etch rate is half that of the intrinsic samples. The decreased etch rate in boron 

doped samples has also been reported elsewhere, and could be attributed to an 

increased etching resistance to O2 plasma on the diamond lattice’s <111> plane 

owing to boron concentration there [6.20].  

 

 

 

 

 

 

 

 

 

Figure 6.2.3 Diamond film thickness as measured by surface profiling. To the left 

of the graph is the silicon substrate surface and the plateau on the right is the 

diamond film showing a height of 400 nm.  
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After etching is complete, the aluminium mask is removed by soaking the sample 

in MF-CD26 developer and optically inspected for residue. At this stage in the 

process, surface profiling can be used to determine the thickness of the diamond 

film. A Dektak XT stylus profiler was used and the thickness of the diamond film 

was found to be approximately 400 nm, as shown in Figure 6.2.3. A further 

electron beam lithography step is used to define the metal contacts for preforming 

electrical measurements on the wires. The same Ti/Au contacts used for the TLM 

measurements are used in this instance and are metallised onto the surface of the 

diamond using electron beam evaporation.  

 

 

 

 

 

 

 

 

 

 

Figure 6.2.4 Optical image of complete microwire structure including Ti/Au 

contacts. The wire shown is 1 µm wide, 40 µm long and 0.4 µm thick.  

 

An Agilent B1500 semiconductor parameter analyser is used to perform electrical 

measurements on the diamond wires. A voltage is applied between two wires in 

turn, and the current sampled at 20 ms intervals for 60 seconds. The current 

remains constant across the 60 second interval within the investigated voltage 

range. Similar results were consistent across all wire dimensions ranging from 40 

µm.    
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6.3 Boron-doped PCD Cantilever Fabrication 

 

We now turn to look at potential designs for current carrying cantilever beams. 

Essentially, these cantilevers are suspended piezoresistors. It was noted at this 

point that, owing to the inclusion of metal contacts in these devices, fabrication 

processes established earlier in this work for releasing free standing cantilever 

type structures would be incompatible with these devices. Silicon processing is 

highly sensitive to metal contamination, so with the addition of metal contacts on 

these devices and shared laboratory equipment plasma silicon processing is ruled 

out. As an alternative to plasma processing to release cantilever type structures, 

wet etch release techniques are investigated. Previously reported cantilever 

release process development in this work utilise a potassium hydroxide (KOH) ‘dip’ 

to remove minimal amounts of excess silicon from beneath partially released 

cantilever structures. KOH selectively etches silicon dependent on the crystal 

orientation of the material. The PCD samples received from our collaborator are 

grown on silicon <100>. Therefore, it should be possible to achieve a full cantilever 

release by exclusively wet etching the samples in a KOH solution. This release 

method, however, introduces a new problem. The metal contacts used to 

investigate the electrical properties of the samples detailed earlier in this chapter 

utilised a Ti/Au stack. KOH not only etches silicon but also etches Ti (and Au to a 

lesser extent), so an alternative ohmic metallisation must be investigated that 

will withstand the KOH release process. Nichrome (NiCr) is a popular alloy used 

for contact adhesion layers owing to its high bonding strength [6.21]. NiCr has a 

much higher resistivity than Ti, so further TLM analysis was performed to 

investigate the contact resistance and suitability for this material to be used for 

contacts on the boron doped PCD.  
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Figure 6.3.1 Plot of resistance vs gap distance for NiCr/Au contact TLM 

measurements. The y-intercept of the linear fit corresponds to twice the contact 

resistance (2Rc). Error bars show data range.  

 

The contacts for these measurements are deposited by electron beam evaporation 

and consist of a 10 nm layer of NiCr at the diamond interface capped by 300 nm 

of Au. In comparison to the Ti/Au TLM data shown earlier, the NiCr/Au contacts 

showed a higher variation in resistance data. This could be attributed to poor 

contact adhesion between the NiCr layer and diamond surface in comparison to 

the Ti/Au stack. However, the TLM data was consistent enough to verify the 

NiCr/Au contacts as a suitable alternative to the Ti/Au stack. From the NiCr/Au 

TLM data we find the contact resistivity to be 1.2x10-3 Ω.cm2, more than 2 orders 

of magnitude higher than the Ti/Au contacts.  

Having established that NiCr/Au is a suitable contact metal stack, a design for an 

array of suspended micro-cantilevers was composed. The design consists of several 

U-shaped cantilevers of varying length and thickness as demonstrated in Figure 

6.3.2.   
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Figure 6.3.2 Graphical design plan for piezoresistive cantilever array with beam 

length ranging from 60 µm to 110 µm. Dimensions not drawn to scale.  

 

By following the same process as described previously for fabricating wires from 

the diamond, the cantilever patterns are etched into the diamond thin film. 

Following the diamond etch process, a further electron beam lithography step is 

used to define the contacts onto the diamond film surface. NiCr/Au contacts are 

metallised onto the diamond surface using electron beam evaporation with 

respective thickness of 10 nm/400 nm. Once the contacts are metallised the 

sample is ready for the cantilever release process. The samples were submerged 

in a 30% KOH solution in an acid reflux etching kit for 10 minutes at 100 degrees. 

The expected etch rate as taken from literature for this process is around 10 

µm/minute [6.11]. After the 10 minute KOH etch the samples are inspected with 

an SEM tool.  
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Figure 6.3.3 SEM image of BDD cantilever beams post KOH release etch. 

 

As can be seen from the SEM images in Figures 6.3.3, the cantilevers are 

successfully released from the silicon substrate, however the KOH process has left 

the devices with a large undercut that extends below the area where the contacts 

are positioned. An investigation into the impact of this undercut on device 

performance is provided later in this chapter. At this stage it becomes apparent 

that the diamond films are experiencing significant residual stress. Due to this 

mechanical stress, the cantilevers with smaller more fragile features shear apart 

at stress points as displayed in Figure 6.3.5. This significantly reduces the device 

yield from this sample. However, the cantilevers with wider legs survive the 

release process. This residual stress is a well-documented phenomenon and has 

been attributed to different factors including varying thermal expansion 

coefficients of the diamond material and the silicon substrate during cool-down 

after the growth process, as well as non-diamond carbon content within the 

diamond crystal [6.22]. 
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Figure 6.3.4 SEM image of BDD cantilever showing bending as a result of residual 

stress in the diamond film. 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.3.5 SEM image of BDD cantilever destroyed by residual stress in the 

diamond film. 
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10mm 

 

The final step towards completing the cantilever devices is to consider packaging 

for characterisation. The thin metal contacts on the devices are fragile and will 

not withstand repeated probing without becoming mechanically compromised. 

The solution to this is to secure the sample to a suitable carrier featuring more 

substantial contacts and wire bonding the contacts on the devices to the contacts 

on the carrier. The ADAfruit SMT breakout printed circuit board (PCB) was found 

to be a suitable carrier for the sample. The breakout board features a 10x10 mm 

footprint surrounded by 32 Au solder pads 1mm in pitch and 500 µm thick. This 

coincides with 10x10 mm footprint of the sample and the Au contacts on the 

devices. Common metals used in wire bonding are Cu, Au and Al. The combination 

of Au solder pads and contacts allows increased bond adhesion with Au wire.  

 

 

 

 

 

 

 

 

 

Figure 6.3.6 TQFP-44 IC breakout board (ADAFruit). 

The sample is glued to the centre of the breakout board on the 10x10 mm IC 

footprint. To wire bond the contacts to the solder pads on the breakout board, a 

K&S IBond5000 ball bonder was utilised. The ball bonder uses 20 µm diameter Au 

wire and performs two types of bond: the initial bond is a ball bond and the 

secondary bond is a wedge (or ‘tail’) bond. The ball bond has increased adhesion 

in comparison to the wedge bond, so this was performed on the thin contact and 

the wedge bond performed on the thicker solder pad. Starting from a factory pre-

set for Au bonding, the following parameters were found to make sufficient bonds 

to the contacts and solder pads: 
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Si Substrate 
Cantilevers Contact 

Solder pads 

Failed bonds 

Ball bond 

Wedge bond 

Si Substrate 

Contact 

Ball bond 

Cantilevers 

Failed bond 

 Ultrasonic Power Time Force 

Ball Bond 4 4 4 

Wedge Bond 4 4 4 

Table 6.3.1 Table of normalised bonder parameters. Actual parameter ranges 

from the manufacturer are: Power = 1.3-2.5 Watts, Time = 10 – 1000 ms and Force 

= 10 – 250 g.  

a. 

 

 

 

 

 

 

 

 

 

b. 

 

 

 

 

 

 

 

 

 

Figures 6.3.7 a & b SEM images of BDD cantilever beams after wire bonding.  
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The SEM images in Figures 6.3.7 a & b show the devices after successful bonding. 

The described process yields three useable devices, cantilever A, B and C, shown 

in Figures 6.3.8 a b & c 

a. 

 

 

 

 

         Cantilever A                                                                                         

 

b. 

 

 

 

 

         Cantilever B 

 

c. 

 

 

 

 

Cantilever C  

 

Figure 6.3.8 a, b & c SEM image showing cantilevers A, B & C pre-release etch 

and their dimensions.   
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6.4 Chapter Summary 

 

The fabrication of MEMS devices from intrinsic and boron-doped PCD has been 

presented. Wet and dry etch processes have been developed in order to overcome 

the difficulties presented with fabricating free standing micro-structures, such as 

etch anisotropy, structure release and process compatibility. Two fully realised 

sets of devices are presented: an intrinsic PCD microcantilever array for passive 

measurements, and a boron-doped piezoresistive micro-cantilever array for force 

sensing, wire bonded into a test package. The following chapters detail the 

characterisation of these devices.   
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Chapter 7: Device Characterisation Results I  

 

The forthcoming chapter details the characterisation of intrinsic PCD micro-

cantilevers, the fabrication of which is presented in Sub-Chapter 6.1. The thermal 

fluctuations of the devices are characterised in air and water. Methods to 

maximise cantilever displacement and hence increase signal to noise ratio are 

discussed. A data analysis method is presented to extract a fluid’s viscoelastic 

properties from the power spectrum of the thermal fluctuations of submerged 

cantilevers.   
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7.1 Cantilever Thermal Response 

 

Having succeeded in fabricating free standing PCD micro-cantilevers, the next 

step was to attempt to characterise the thermal response of the devices at room 

temperature. As per the method described by Tassieri et al for optical tweezers, 

the intention was to plot the mean squared displacement (MSD) (or position 

autocorrelation function (PAF)) of the thermal fluctuations at the free end of the 

cantilever beams [7.1]. From the variance of the time-displacement series the 

stiffness of the cantilever can be calibrated using the equipartition theorem 

described in Chapter 2, and the MSD (or PAF) can be normalised by the variance 

and used for further data analysis. As described in Chapter 2, the cantilever and 

its surroundings are to be considered as a homogenous mechanical system having 

both elastic and viscous properties, with the cantilever being the dominant elastic 

contribution and the surrounding fluid the dominant viscous contribution working 

in parallel. By calibrating cantilevers of varying size in a fluid of known viscosity 

we can extract the cantilever drag coefficient (for specific cantilever dimensions) 

and hence calibrate the system for further measurements. 

A Polytec UHF laser doppler vibrometer (LDV) system was used to measure the 

thermal fluctuations of the fabricated cantilevers as described in Chapter 5. The 

sample was placed under the focusing lens of the LDV and the laser spot focussed 

on to the tip of each cantilever. The LDV software records data as a time series 

of displacements or as the frequency spectrum of the cantilever’s motion. 
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Figure 7.1.1 The thermal fluctuation of a 4 µm x 80 µm x 0.48 µm cantilever beam 

sampled at 2.5 GHz. 

 

Figure 7.1.1 shows the time vs displacement plot of the thermal fluctuations of 

the free end of a 4 µm x 80 µm x 0.48 µm cantilever beam in air at room 

temperature and sampled at 2.5 GHz. Humidity in the lab, which could affect the 

cantilever dynamics, was not evaluated but assumed to be constant for all 

measurements. To acquire enough data to form the MSD plot the data must be 

sampled for a sufficiently long period of time such that the plot reaches a plateau 

as demonstrated by synthetic test data (generated in Excel) in Figure 7.1.2 a 

below. The data in Figure 7.1.1 is raw, as taken directly from the LDV system. 

The stiffness of the cantilevers can be estimated from the device’s geometry and 

material properties, and from the estimated stiffness we can use the equipartition 

theorem described in Chapter 2 to find an estimated displacement. The expected 

displacement for the cantilevers shown is in the pico-meter range, however the 

plot shown in Figure 7.1.1 shows an overall trend extending into the nanometre 

range, which could be attributed to low frequency drift or interference. Typically, 

the data is not centred around zero on the x-axis, so initially we must first 

calculate the mean of the data values and subtract it from the original data so 
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Plateau (2<x>) 

that the mean of the signal is zero. This ensures a correct interpretation of the 

variance value. The data can appear distorted at low frequency if the device has 

physically drifted during the measurement. This can be alleviated by de-trending 

using a least-squares fit, however, care must be taken as too much filtering can 

distort the data further.   

 

a. 
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Figures 7.1.2 a & b MATLAB plots of the MSD (a) and PAF (b) of synthesised test 

data for a single decaying exponential function y = e-αt. The normalised MSD 

(NMSD) and PAF (NPAF) have the relationship NMSD + NPAF = 1 
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The time series data captured by the LDV is analysed by means of a MATLAB code. 

The auto-correlation of the time series data returns the PAF of the cantilever tip. 

As it can be seen from Figure 7.1.3 the NPAF plotted from the time series data 

captured bears only a slight resemblance to the generated ideal data in Figures 

7.1.2 a & b above. This data has been normalised by the variance of the time 

series in Figure 7.1.1.  

 

 

Figure 7.1.3 NPAF plot time series data captured from the thermal fluctuations 

of a 3 µm x 80 µm x 0.48 µm cantilever beam. Data normalised by the variance of 

the original time series data.  

 

Three things can be noted from Figure 7.1.3: Firstly, there is a clear oscillation 

with a time period of approximately 4.1 µs. This corresponds to the resonant 

frequency (~250 kHz) of the cantilever as can be seen in Figure 7.1.4. This 

resonant frequency can be verified analytically by using Equation 2.2.18 from 

Chapter 2:  

ωV = βV
4N EI
mL8

 

 

t  /s 
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Where b1 = 1.88 for the first natural frequency, mass, m = density, r x cross 

sectional area, A, and I is Equation 2.1.2 for the moment of inertia. Therefore, 

for a cantilever of width, length and thickness 3 µm x 70 µm x 0.48 µm, we have: 

 

ωV = 1.884N
E(WH*/12)
r(WH)L8

= 1.884N
EH4

12rL8

= 3.5344N
900x10¨ ∗ (0.48x10£ª)4

12 ∗ 3510 ∗ (70x10£ª)8
= 1.6x10ªrad/s

≈ 250kHz 

 

Secondly, the plot does not accurately scale from 1 to 0 when normalised, and 

lastly, the plot does not settle around a single value (or plateau) at long time 

scales as expected.  

It is believed that oscillations at the resonant frequency of the cantilever are 

present in the PAF because the system is underdamped. The elastic energy of the 

cantilever owing to the high acoustic velocity of the material is dominating the 

mechanics of the system.  

The nature of the poor normalisation and absence of a plateau at long lag times 

can be attributed to more than one source of error. If the measurement is too 

short the measured variance could be inaccurate as the signal does not statistically 

contain enough data to represent how the cantilever behaves. The longer the 

signal, the more accurate the variance will be, with the value eventually reaching 

a plateau. The final value is related to the stiffness of the cantilever and does not 

change in different fluids. However, the length of time that the system takes to 

reach the final value is dependent on the fluid. The more viscous the fluid, the 

longer the cantilever fluctuations take to reach maximum variance. Owing to 

software limitations the LDV system has a maximum measurement length of 3.2ms 

which may not be sufficiently long enough. Another source of error could be 

fluctuations of the entire mechanical system owing to environmental influences 

within the lab such as technical noise mechanically coupling from equipment 
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F0=250 kHz 

Low frequency 
interference 

Vibrometer artefacts 

elsewhere in the building such as air conditioning systems and movement from 

human traffic within the lab itself. These environmental factors translate as low 

frequency fluctuations imposed onto the cantilever’s thermal fluctuations. This 

kind of low frequency low amplitude technical noise has been reported elsewhere 

[7.2]. Low frequency interference could also be related to the phenomena of 1/f 

noise, the nature of which has been debated for numerous systems and is reported 

elsewhere as a limiting factor in low frequency and magnitude measurement 

systems [7.3]. The term low frequency can be misleading: low frequency is 

relative to the sample rate and device resonant frequency, and so for the purpose 

of these analyses can be defined as interference occurring at less than around 20 

kHz. We can look at the Fourier transform of the signal to acquire more 

information about it. 

  

 

 

 

 

 

 

 

 

Figure 7.1.4 Frequency response plot (dual log) of a 4 µm x 70 µm x 0.48 µm 

cantilever beam’s thermal fluctuations in air plotted in MATLAB. 

Figure 7.1.4 shows the power spectrum of the thermal fluctuations in air of a 4 

µm x 70 µm x 0.48 µm cantilever beam. MATLAB is used to take the Fourier 

transform of the original time series data. The relationship between the frequency 

resolution and the time series is fs/N, where fs is the sampling frequency and N is 

the number of samples. The fundamental resonant peak can be seen at 250 kHz, 

which is verified by arithmetic calculations based on cantilever geometry and 

mechanical properties. The resonant peak is set firmly within the noise floor of 

the measurement systems capabilities. The resulting low signal to noise ratio 

Vibrometer measurement limit 
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(SNR) destroys any useable data outside the limits of the resonant peak where the 

displacement characteristics of the cantilever are more influenced by the 

compound system’s viscous dampening component. Also present in the power 

spectrum are artefacts introduced by the measurement system. These artefacts 

could be attributed to laser speckle, a phenomena resulting from scattered laser 

light reflections interfering constructively and destructively with one another 

[7.4][7.5]. These artefacts are present in all of the measurements taken on this 

system above 4 MHz which severely limits the ability to perform high frequency 

measurements. Attempts were made to work around the artefacts by manually 

removing the affected data bins and either interpolating or zero-padding between 

data points. However, it was found that subsequent data analysis steps described 

later were sensitive to these methods and an adequate work around could not be 

found by the author. Lower sample rates also affect the displayed average noise 

level (DANL) of the measurement. The maximum achievable frequency resolution 

of the measurement increases with sample rate. At lower frequency resolution we 

see higher DANL, decreasing the SNR ratio of the measurement. The magnitude of 

the low frequency interference also extends above the maximum displacement of 

the cantilever beam at resonance. This again destroys any useable portion of data 

from cantilever displacement at these frequencies.   

The simple free end cantilever beam structure was kept constant throughout the 

devices, however, it was decided that only one geometrical factor should vary per 

iteration of device. In the original designs both width and length increased with 

each device. Calibration of the devices in a known fluid would have been 

complicated by the variation of more than one geometrical factor (width and 

length). By changing only the length of devices, calibration would become 

dependent on only one geometrical factor. Henceforth, only cantilever structures 

varying only in length were characterised.  

In order to try to minimise noise in the LDV measurements, data averaging was 

investigated. As the driving mechanism is derived from the thermal motion of the 

fluid’s particles surrounding the cantilever, the fluctuations of the cantilever are 

stochastic in nature. The thermal fluctuations drive the cantilever to resonance 

but there are also random movements owing to the stochastic nature of the 

excitation which results in a noisy signal. Averaging the signal in the time domain 

would remove the random fluctuations and leave only the resonant features of 
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the signal, thus giving a false representation. This is because at long time scales 

a random signal will average to zero. In order to retain the information pertaining 

to the random motion of the cantilever but reduce unwanted noise, the decision 

was made to capture data from the devices in the frequency domain and average 

the magnitudes of the fluctuations. Then, from the averaged magnitude spectrum 

the power spectral density (PSD) can be calculated. In accordance with the 

Wiener-Khinchen theorem, the autocorrelation of the signal can be found by 

taking the inverse Fourier transform of the PSD [7.6].  

 

Figure 7.1.5 Plot of the frequency response of the thermal fluctuations of a 1 µm 

x 65 µm x 0.48 µm cantilever beam averaged 500 times. 

 

From the averaged frequency spectrum plot in Figure 7.1.5 we can see that 

although we have an improved signal to noise ratio as expected, low frequency 

interference still has the dominant magnitude in the signal. We can also see higher 

modes of vibration present in the frequency spectrum. This implies that although 

we have a greater signal to noise ratio, the system has become more 

underdamped. 

Due to the time scales involved when capturing many frequency spectrum 

snapshots for averaging, the issue of drift also became apparrent. The LDV laser 

spot is 1 µm in diameter, as is the width of the cantilever beams. In many cases, 

after 50 measurements or so, the cantilever had drifted away from the laser spot 

Low frequency interference 

F0=290 kHz 

F1=1.7 MHz 
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destroying the measurement. When clamped more securely to the LDV stage, an 

increase in low frequency interference was apparent. In some cases, if the 

cantilever did not drift entirely away from the laser focal point by the end of the 

measurements, an increase in the noise floor of the measurement was observed.  

 

7.2 Cantilever Thermal Response in Water 

 

It is evident from the well-defined resonant peaks observed from the data 

captured from the devices that the cantilever’s dynamic behaviour is 

underdamped. In order to induce dampening on the cantilevers such that they 

behave in an over-damped manner, the decision was made to attempt 

characterisation in water, and observe the dampening effects in an environment 

with a higher viscosity than air. This was done in order to have the thermal 

fluctuations of the free end of the cantilever resemble the over-damped response 

of a trapped particle system, such as the case in optical tweezers. The ideal 

frequency response of an optical trap is shown in Figure 7.2.1 below [7.7].  

 

 

  

 

 

 

 

 

 

 

 

Figure 7.2.1 Ideal power spectrum of an optical trap showing overdamped 
frequency response. fc is the characteristic frequency of the system [7.7].  
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A small holder was laser cut from plastic to hold the sample featuring the devices. 

The sample is placed in the centre of the holder and secured with superglue. The 

holder is then filled with de-ionised water and a cover slip placed over the surface 

to trap in the water around the sample, creating a chamber. 

a.                                                            b. 

 

 

 

 

 

 

 

 

Figure 7.2.2 a & b Photograph of sample housed inside laser cut water chamber 

(a) and diagram showing cross section view of chamber set-up (b) (not to scale). 

The sample holder is then placed on the LDV stage as described previously with 

the laser spot focussed through the glass cover slip onto the tip of the free end of 

the cantilever. Owing to increased scattering of the laser light in water and 

through the glass slide the magnitude of the reflected signal to the LDV detector 

is reduced. However, it was still possible to measure the thermal fluctuations of 

the cantilever beams submerged in water.   

  

Substrate 

Water filled chamber 
Glass cover slip 

Cantilever 10mm 
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Figure 7.2.3 Plot of the frequency response of the thermal fluctuations of a 1 µm 

x 40 µm x 0.48 µm cantilever submerged in water averaged 100 times. 

 

 

Figure 7.2.3 shows the frequency response of the thermal fluctuations of a 1 µm 

x 40 µm x 0.48 µm submerged in water averaged 100 times. The widening of the 

resonant peak (and hence reduced Q factor) shows significant dampening when 

compared to the cantilever response in air. Figure 7.2.3 reveals that noise or 

interference at the low frequency still dominates the measurement. Normalising 

the NPAF in Figure 7.2.4 was attempted using the RMS value acquired by the LDV 

software from the PSD of the cantilever submerged in water, but because the 

resonant peak lies within the low frequency interference range of the 

measurement it is not possible to attain an accurate measurement. 
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Figure 7.2.4 Normalised autocorrelation plot of the thermal fluctuations of a 1 

µm x 40 µm x 0.48 µm cantilever submerged in water.  

 

The plot shown in Figure 7.2.4 is the normalised autocorrelation plot of the 

thermal fluctuations of a 1 µm x 40 µm x 0.48 µm cantilever submerged in water 

sampled at 300 kHz. This was chosen because it is the frequency at which the 

noise floor of the measurement starts to dominate the high frequency information. 

As a result of sampling at such a low frequency we find that the density of data 

points at short lag times in the NPAF is greatly reduced. It can also be seen at long 

lag times how the low frequency interference distorts the data and normalisation 

factor. 
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Figure 7.2.5 Plot of the thermal fluctuations in air & water of four cantilever 

beams. Width and thickness are uniformly 1 µm & 0.48 µm, and lengths are 35 µm 

(green), 40 µm (black), 45 µm (red) and 50 µm (blue). 

 

Figure 7.2.5 shows a summary of the frequency response of cantilevers from the 

initial fabricated device array measured both in air and water. This shows a 

reduction in oscillation amplitude for each cantilever when submerged in water, 

ranging from a 7 pm ±0.3 reduction for the 35 µm cantilever to an 8 pm±0.3 

reduction for the 50 µm cantilever. This reduced amplitude could be the result of 

the fluid being compressed by the high frequency oscillations and subsequently 

loading the surface of the cantilever, as described by Butt et al [7.8].  

 

7.3 Reducing Cantilever Stiffness  

 

It became clear at this point that the low signal to noise ratio of the measurements 

was considerably distorting the captured data. In order to further maximise the 

cantilever displacement to increase the SNR we would have to reduce the stiffness 

constant of the devices.    

 

Water Air 
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k = 	
3EI
L*

 

           (2.1.1)

   

Equation 2.1.1 is the equation for the stiffness of a cantilever beam where E is 

the material’s Young’s modulus, L, the cantilever length and I the second moment 

of inertia for a rectangular cross section defined as  

 

I = 	
WH*

12
 

                                                (2.1.2) 

Where W is the width of the cantilever and H is the height, or thickness. We can 

see from the above equations that the cantilever stiffness is dominated by 3 

controllable factors: the stiffness is proportional to the width and thickness cubed 

and is inversely proportionally to length cubed. As the devices are at the lower 

limit of width in terms of the LDV laser spot diameter of 1 µm, the devices can be 

reduced in stiffness by having reduced height or increased length.  

In order to minimise cantilever stiffness and therefore maximise displacement and 

SNR, two further strategies were employed. The first strategy was to try thinning 

the cantilevers further in order to reduce their stiffness. The initial cantilever 

arrays fabricated were around 480 nm thick, limited by the initial thickness of the 

diamond-on-silicon samples provided by our collaborator. The intent was to etch 

the entire surface of the diamond sample to reduce it in thickness before 

fabricating devices. The diamond etch process described earlier and used to 

define the cantilever structures was used for this purpose. Initial etching tests 

revealed that the surface of the diamond did not become significantly rougher 

over the first 100 nm or so. Figure 7.3.1 shows an AFM scan of the surface of the 

sample at the etch wall after a two minute etch. The lower plateau is the etched 

region. Average values showed the roughness of the un-etched area to be 3 nm Ra 

and the roughness of the etched area 3.6 nm Ra.  
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Figure 7.3.1 AFM scan of the diamond surface at etch wall. The lower plateau is 

the etched area.   

 

However, the more diamond that was etched the rougher the surface became. 

After etching 150 nm the surface had become so rough that the AFM scan head 

would not engage. This roughness was possibly due to the etch rate varying with 

regards to grain boundaries and other structural defects in the diamond. Despite 

the roughening of the surface, it was still possible to pattern and etch the thinned 

diamond into cantilevers ready for release. Figure 7.3.2 shows an optical image 

of the thinned substrate after patterning.   

  

Etched area 

Original surface plateau  
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Figure 7.3.2 Optical inspection of cantilever patterning on thinned diamond 

substrate at 60 x magnification. Cantilever width 1 µm. 

Upon inspecting the sample after the ICP silicon etching stage of the release 

process, it was found that the diamond had been completely removed from the 

silicon substrate during the process. It is thought that during the diamond thinning 

process the material had become mechanically compromised and the bonding 

between the diamond and silicon substrate unsecure. This could be attributed to 

the diamond and silicon substrate experiencing different thermal expansion during 

the thinning process.  

Owing to the complex and time-consuming nature of dry etch process, 

development of a second approach for reducing cantilever stiffness was 

investigated. The second strategy employed was to fabricate cantilevers with 

increasing length in order to reduce stiffness. The limiting factors in producing 

long, high width/length aspect ratio cantilevers are twofold: with increasing 

length and reduced stiffness the cantilevers become increasingly fragile and may 

not survive the fabrication or characterisation process, and with increasing length 

there is a risk that the cantilevers will not fully release from the silicon substrate 

and become stuck to the silicon surface during the wet etch stage of the release 

process. 
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Figure 7.3.3 L-edit screen capture of cantilever arrays of varying length from 60 

µm to 150 µm, showing increased number of devices in this design iteration.  

 

 

Figure 7.3.3 shows the CAD design for the etch mask that forms cantilever arrays 

ranging in length from 60 µm to 150 µm. Significantly more cantilevers appear 

here in comparison to previous designs as low device yield was anticipated for 

longer devices. The fabrication process as described for previous devices was used 

with the exception of a longer final wet etch step to increase the clearance 

between the silicon substrate surface and the cantilevers.  

 

  

1 mm 
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Figure 7.3.4 SEM image of a 1 µm x 110 µm x 0.4 µm cantilever beam. Also visible 

are cantilevers stuck to the silicon substrate during the release process.  

 

Despite a low yield (< 10 % at longer cantilever lengths), cantilever devices up to 

150 µm in length were fabricated successfully. The majority of yield issues were 

due to cantilevers becoming stuck to the silicon surface during the wet etch 

release stage. Further silicon etching to increase the clearance of the cantilevers 

from the silicon surface would significantly increase the undercut at the base of 

the cantilevers. It is understood that these are the highest width/length aspect-

ratio polycrystalline diamond cantilevers yet reported. Linzon et al reported a 

silicon device with dimensions L = 500 µm, W = 16 µm and H = 5 µm [7.9]. Their 

designs were used to obtain large amplitude flexural vibrations using electrostatic 

forces to be used as mass sensors. Therefore, these devices could be of importance 

in applications relating to large amplitude vibrations. It was discovered after the 

initial diamond etch stage of the process for these devices that the PCD thin films 

are not uniformly thick across the entire wafer area. The diamond is thinner 

towards the wafer edges as a result of the CMP process. The thickness of the 

sample used to fabricate the longer cantilevers is 400 nm, 80 nm thinner than the 

initial devices.   

Stuck cantilever 

Silicon substrate 

Diamond 
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Figure 7.3.5 The frequency response of the thermal fluctuations of a 1 µm x 150 

µm x 0.4 µm cantilever in air averaged 250 times. Arrows indicate the 8 modes of 

vibration. 

Figure 7.3.5 shows the frequency response of the thermal fluctuations of a 1 µm 

x 150 µm x 0.4 µm cantilever in air averaged 250 times. The plot shows a slightly 

underdamped peak at around 40 kHz, and 7 higher modes of vibration, indicated 

by the black arrows. The first resonant peak, or knee, has displacement roughly 

equal to the magnitude of low frequency interference and the majority of the 

signal up to around 1 MHz is above the DANL of the measurement. The 

displacement is around 900 pm, more than an order of magnitude greater than 

the previously fabricated shorter cantilevers. 

  



Chapter 7: Device Characterisation Results I 133 

  

 

 

 

 

 

 

 

 

Figure 7.3.6 Plot of cantilever length v stiffness comparing measurements and 

theoretical values. Error bars show 90 % confidence interval corresponding to 

possible variation in the diamond material’s Young’ modulus and/or density. The 

fabricated cantilevers show a substantially uniform reduction in stiffness for each 

length measured.  

Figure 7.3.6 compares the theoretical values in vacuum and measured values for 

cantilever stiffness in air as a function of cantilever length. The stiffness of 

fabricated cantilevers was calculated from the measured resonant frequency, 

geometry and mechanical properties of the devices. Slight variations in the trend 

of measured data can be attributed to undercut at the base of the cantilever 

changing its effective length. The measured values reveal a substantially uniform 

reduced stiffness owing to their reduced resonant frequency as a result of 

dampening in air.  
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Figure 7.3.7 The frequency response of the thermal fluctuations of two 1 µm x 

130 µm x 0.4 µm cantilever in air averaged 250 times sampled at 10 MHz (red) and 

7 MHz (blue). Difference in noise floor levels at high frequency are attributed to 

the different sample rates.  

Figure 7.3.7 shows the frequency response of the thermal fluctuations of two 1 

µm x 130 µm x 0.4 µm cantilever in air averaged 250 times. This plot is an example 

of how the DANL changes with sampling frequency. The red plot has been sampled 

at 10 MHz and the blue plot sampled at 7 MHz. We can also see from this plot that 

even with a 1:130 aspect ratio cantilever the maximum cantilever displacement 

still does not exceed the magnitude of low frequency noise. Slight variations in 

frequency and magnitude at the resonant peaks can be attributed to measurement 

drift or variation in etching undercut at the cantilever base which increases the 

effective length of the cantilever.   
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Figure 7.3.8 The frequency response of the thermal fluctuations of a 1 µm x 60 

µm x 0.4 µm cantilever in water averaged 250 times. 

Figure 7.3.8 shows the measured frequency response of a 1 µm x 60 µm x 0.4 µm 

cantilever submerged in water up to 100 kHz. As can be seen from the plot, the 

longer cantilever has increased displacement in water and the response of the 

cantilever is overdamped. Low frequency noise still dominates the measurement. 

Owing to limitations in the LDV software a maximum of 640 data points were 

available for this plot. This gives a frequency resolution of 156.25 Hz. This 

translates into a low density of high frequency data points in the corresponding 

NPAF of the data as can be seen in Figure 7.3.10 below. Here we see an 

improvement in the amount of data points at high frequency when compared to 

the NPAF plot in Figure 7.2.3 however there is still insufficient data resolution at 

short time lengths. Interference still dominates at low frequency and warps 

normalisation factors.   
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Figure 7.3.9 Normalised autocorrelation plot of the thermal fluctuations of a 1 

µm x 60 µm x 0.48 µm cantilever submerged in water. 

 

 

 

 

 

 

 

 

 

 

Figure 7.3.10 The frequency spectrum of thermal fluctuations in water for 

cantilever 60-100 µm in length. Blue: 60 µm, orange: 70 µm, yellow: 80 µm, 

purple: 90 µm and green: 100 µm.  
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Figure 7.3.10 shows the frequency response of five cantilevers ranging from 60 

µm to 100 µm in length. The blue and red plots show the 60 µm and 70 µm long 

cantilevers respectively. It can be seen that the magnitude of displacement 

increases from the shorter to the longer beam as expected. The yellow, purple 

and green plots show the frequency response of the 80 µm, 90 µm and 100 µm 

beams respectively. We can see a reduction in magnitude in the cantilevers 

upwards in length from the 70 µm cantilever.  This could be due to severe 

dampening by the surrounding fluid on the cantilevers, or alternatively this could 

be caused by destructive interference from low frequency noise, consuming the 

cantilever response. The noise floor at higher frequencies for all the longer 

cantilevers was visible from ~100-200 kHz and sample rates were set accordingly 

as not to capture this high frequency noise floor. As a result we have a low 

frequency resolution in these measurements and low data-point density for high 

frequency information in the corresponding NPAF plots for all the longer devices. 

 

  



Chapter 7: Device Characterisation Results I 138 

7.4 Device Summary  

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 7.4.1 Summary of all PCD cantilever devices reported in this chapter that 

have had thermal response characteristics measured in air and water. Data 

pertaining to Q factor in water is absent as the figures were unobtainable from 

the captured data. The low frequency portion of the resonant peak was distorted 

by low frequency interference to the extent that the -3dB point was unresolvable. 

In water, above a length of 50 um, the cantilever response becomes damped to 

the point that no resonant peak was resolvable and is marked on the table by *. 

Owing to the absence of a resonant peak, the Q factor in water for the devices 

marked * is assumed to be <1.  

 

 

 

 

 

Length 

(µm) 

Width 

(µm) 

Height 

(µm) 

K 

(Nm-1) 

F air 

(Hz) 

Q air F water 

(Hz) 

35 1 0.48 0.570 554700 30.6 148100 

40 1 0.48 0.380 424500 24.1 88750 

45 1 0.48 0.260 382300 19.7 60780 

50 1 0.48 0.220 261300 19.9 42030 

60 1 0.40 0.030 102800 4.40 * 

70 1 0.40 0.020 78280 3.72 * 

80 1 0.40 0.016 60940 3.57 * 

90 1 0.40 0.010 47660 3.31 * 

100 1 0.40 0.008 38750 2.20 * 
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7.5 Data Analysis Verification 

 

In preparation for having captured raw data, an investigation into data analysis 

methods was undertaken. Based on the work of Tassieri et al [7.1], a MATLAB 

routine to evaluate the complex viscosity of a fluid surrounding a submerged 

cantilever was written. By using test data [7.10] provided by Dr Manlio Tassieri 

from the University of Glasgow captured from an optically trapped particle in 

water it was possible to verify the MATLAB routine. In addition to verifying the 

methods described by Tassieri et al, whereby the autocorrelation (or mean 

squared displacement) of a trapped particle is attained and normalised from the 

time series of the displacement signal, it was also possible to verify an alternative 

method by analysing the signal in the frequency domain. This is a method that 

better suits experimental constraints in terms of measurement length, as 

magnitude averaging in the frequency domain can be used as an alternative to 

long time measurements. To date, there has been no universal method presented 

to extract a fluid’s viscoelastic properties from the power spectrum of the signal 

for either passive micro-cantilever or passive optical tweezer systems. Ongoing 

research elsewhere either utilises active devices, relies on building up a range of 

frequency data from several different measurements or frequency sweeps, or 

provides system specific solutions that may not yet be applied universally [7.11].  
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Figure 7.5.1 The log-linear plot (inset linear-log) of the normalised position 

autocorrelation function of an optically trapped particle in water, evaluated from 

the time series of the particle displacement. 770 Hz sample rate. Data provided 

by Dr Manlio Tassieri from the University of Glasgow. 

Figure 7.5.1 shows the position autocorrelation function of a trapped particle in 

water sampled at 770 Hz, evaluated from a displacement/time data series. The 

plot has been normalised by the variance of the time signal. By plotting the same 

data on a linear-log axis as in Figure 7.5.2 (inset) we see it is a straight line at 

short time scales, verifying that the NPAF has the form of a single decaying 

exponential. 

Following the methods described by Tassieri et al, the complex modulus, 𝐺∗(𝜔), 

of the fluid surrounding the trapped particle can be evaluated by taking the 

Fourier transform of the autocorrelation function and applying the following 

relationship: 

 

𝐺∗(𝜔) = 	
𝑘
6𝜋𝑎

.
𝑖𝜔𝐴°

1 − 𝑖𝜔𝐴°
 

            (7.5.1) 
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Where 	𝐴° is the Fourier transform of the autocorrelation, i is the imaginary unit 

and ω is angular frequency, k is the stiffness of the optical trap and a is the radius 

of the trapped particle.  

From the complex modulus we can extract the complex viscosity η* from their 

relationship in a Newtonian fluid:  

 

𝜂∗ = 	
𝐺∗(𝜔)
𝑖𝜔

 
             (7.5.2) 

As plotted in Figure 7.5.3. This yields a displayed average value for the viscosity 

of water as 9.04 x 10-4 Pa.s compared to the textbook value of 8.9 x 10-4 Pa.s, less 

than 1.7 % error. This error can be attributed to variation in the diameter of the 

trapped particle, with the manufacturer quoting a variation up to 10 %.  

 

 

 

 

 

 

Figure 7.5.3 The complex viscosity of water evaluated from the time series of the 

position of an optically trapped particle. Data provided by Dr Manlio Tassieri from 

the University of Glasgow. 

The above data analysis was achieved by calculating the autocorrelation of the 

position of a trapped particle in water from a time series of the particle’s position. 

There now follows a method of evaluating and normalising the autocorrelation 

function from the frequency spectrum of the trapped particle’s trajectories.  
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Figure 7.5.3 The frequency spectrum of an optically trapped particle in water. 

Data provided by Dr Manlio Tassieri from the University of Glasgow.  

Figure 7.5.3 shows the frequency spectrum of an optically trapped particle in 

water. This plot was evaluated from the same time series data used to generate 

the plot in Figure 7.5.1. From the Wiener–Khinchin theorem it is known that the 

power spectral density (PSD) and the autocorrelation of a signal form a Fourier 

transform pair. By multiplying the Fourier transform of the time signal of the 

optically trapped particle in water by its complex conjugate we find its PSD, and 

the inverse Fourier transform (IFT) of the PSD reveals the autocorrelation of the 

signal. The RMS value of the signal is the square root of the total power in the 

PSD. In accordance with Parseval’s theorem, the total power in the signal in the 

PSD is equal to the variance of the signal in the time domain. In the time series 

analysis performed previously, the autocorrelation function is normalised by the 

variance of the original time signal. Therefore, it should be possible to normalise 

the autocorrelation function by the total power in the PSD of the signal. Indeed, 

this is a method commonly used in correlation force spectroscopy and AFM 

calibration techniques [7.12], [7.13].  

Figure 7.5.4 shows the normalised autocorrelation plot of a trapped particle in 

water evaluated from the frequency spectrum of the thermal fluctuation. To plot 

this data, the PSD of the signal in Figure 7.5.3 is calculated by multiplying the 

signal by its complex conjugate, then the IFT of the PSD is then calculated and 
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normalised by the total power calculated from the area under the PSD plot. Figure 

7.5.5 shows the complex viscosity of water evaluated from Equations 7.5.1 & 

7.5.2, using the normalised autocorrelation plot acquired from the power 

spectrum of the signal. The displayed average value in Figure 7.5.5 is 9.04 x 10-4 

Pa.s. This is the same value as shown in Figure 7.5.3, which is the data acquired 

from the original time series of the signal. This example shows that in the case of 

a Newtonian fluid it was possible to extract the fluid’s complex viscosity from the 

frequency spectrum of a trapped particle’s position. In principle this should also 

be a viable method for extracting the complex modulus and complex viscosity of 

non-Newtonian fluids.  

 

 

Figure 7.5.4 The log-linear plot (inset linear-log) of the normalised position 

autocorrelation function of an optically trapped particle in water, evaluated from 

the power spectrum of the particle displacement. 770 Hz sample rate. Data 

provided by Dr Manlio Tassieri from the University of Glasgow. 
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Figure 7.5.5 The complex viscosity of water evaluated from the power spectrum 

of an optically trapped particle. Data provided by Dr Manlio Tassieri from the 

University of Glasgow. 

 

7.6  Chapter Summary  

 

An extensive investigation into the viability of a PCD based device for micro-

rheology has been presented. Using a variety of established manufacturing 

techniques and subsequent process development, micro-cantilevers were 

fabricated from PCD thin films on silicon with feature sizes ranging from 0.4µm to 

150µm. The thermal fluctuations of these devices were measured using an LDV 

system. Owing to the underdamped dynamic response of the cantilevers in air, 

further measurements of the thermal fluctuation in water were taken to induce a 

damped system?. Attempts were made to plot the autocorrelation of the thermal 

fluctuations of these devices from the time series and frequency spectrum of their 

displacement. The limiting factors in these measurements were the noise floor of 

the LDV system and the SNR of the thermal fluctuations.  
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Devices with a lower stiffness constant and hence greater thermal fluctuation 

magnitudes were fabricated, however, the noise present in the LDV system was 

still the limiting factor in calibrating the devices in addition to low frequency 

resolution available at low sample rates. Some silicon etching process 

development has been reported in relation to fabricating free standing cantilevers 

with minimal undercut. In the absence of useable raw data, some test data from 

an optically trapped particle in water was used to verify and expand on pre-

existing data analysis methods. The limitations of the methods presented are 

apparent based on the results reported, however, this body of work covers 

necessary research that will be valuable for future investigations. The latter 

devices fabricated exhibit over-damped harmonic behaviour when submerged in 

water: the limiting factor was noise coupled related with the measurement 

system. Therefore, it is entirely feasible that these devices (or similar) will yield 

positive results with an improved measurement system and as such would be 

research worth continuing.  
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Chapter 8: Device Characterisation Results II 

 

The forthcoming chapter details characterisation of boron-doped PCD micro-

cantilevers, the fabrication of which is presented in Sub-Chapters 6.2-6.4. The 

deflection sensitivity of the devices is reported, followed by a discussion of the 

nature of the piezoresistive effect within the structure of the devices. Possible 

sources of error are identified and investigated.  
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8.1 Characterising Piezoresistive Cantilevers 

 

 

 

 

 

 

 

 

Figure 8.1.1 Schematic diagram showing components for characterising the 

piezoresistive effect in boron doped diamond cantilevers. Current is monitored 

through the V+ and GND probes as the disconnected probe is used to deflect the 

beam. 

 

Figure 8.1.1 shows the experimental setup for observing the piezoresistive effect 

of the fabricated micro-cantilevers. An Agilent B1500 semiconductor parameter 

analyser is used to monitor the current through the cantilever beams. By applying 

two probes across the cantilevers via the solder pads on the breakout board, a 

voltage can be applied across the cantilever. The probe station then monitors the 

current through the network. A third probe is used to deflect the cantilever as the 

current is logged by the probe station. The position of the probes is controlled by 

a micro-manipulator. The maximum travel in the X, Y and Z directions are 250 µm 

and the controls are divided into 10µm increments. By calibrating the 

manipulators against a device feature of known dimensions it is estimated that Z 

control can be manipulated with some accuracy by 5 +/-1 µm increments. 

Monitoring the current over time as the cantilevers are displaced and applying 

ohm’s law we can calculate the resistance change of the cantilever for each 

increment of Z deflection.   
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Figure 8.1.2 Plot of current vs time for cantilever C at four deflection increments. 

 

Figure 8.1.2 shows the plot of current vs time for cantilever C as it is deflected 

by four increments. At short time scales when the cantilever is initially loaded by 

the deflecting probe there is an uncertainty relating to when the probe first makes 

actual contact with the cantilever tip. As this is monitored visually from above the 

cantilever it is impossible to determine the exact moment deflection begins in 

relation to the micro-positioner controls. Henceforth, the data used for further 

analysis is taken from the second deflection increment onwards, where the error 

in deflection can be minimised. From reviewing data published elsewhere we can 

expect the change in resistance for a given deflection distance to be linear, so it 

should be possible to extract the deflection sensitivity starting from any deflection 

increment [8.1]. The deflection sensitivity of the cantilever is given by: 

 

S =
∆R
R
1
δ

 

            (8.1.1) 
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Where: ∆R and R are the change in resistance and initial resistance respectively, 

and δ is the cantilever deflection distance.  

 

 

 

 

 

 

 

 

 

 

Figure 8.1.3 ∆R/R vs cantilever displacement for Cantilever A (blue) l = 112 µm, 

Cantilever B (red) l = 96 µm, and Cantilever C (yellow) l = 62 µm. X-data error bars 

correspond to a 75 % confidence interval  (±1 µm per measurement, 

accumulative). Y-data error bars correspond to 90 % confidence interval.   

Figure 8.1.3 shows ∆R/R vs cantilever displacement for cantilevers A, B and C. 

To calculate ∆R/R, the average current value at each deflection interval is taken 

and divided by the applied voltage, which was kept constant at 1V across all 

measurements. From the linear fit to the data we find the deflection sensitivity 

for the cantilevers to be SA = 0.029 mΩ/Ω-µm, SB = 0.035 mΩ/Ω-µm and SC = 0.063 

mΩ/Ω-µm. This is notably lower than other comparable devices in literature, with 

Privorotskaya et al reporting up to 0.186 mΩ/Ω-µm for an l = 309 µm device, and 

only as low as 0.062 mΩ/Ω-µm for an l = 411 µm device [8.2]. As the accumulative 

deflection error becomes larger it is not possible to definitively extrapolate 

whether the deflection sensitivity is linear or not for these devices.  As expected, 

however, we note a general trend of higher deflection sensitivity as the 

cantilevers decrease in length. 
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8.2 Nature of Piezoresistivity in Cantilevers 

 

Consider a rectangular cross section cantilever beam made from a homogenous 

material subject to deflection from a point load in the Z direction, as shown in 

Figure 8.2.1 below. The cantilever will experience tensile stress on the top 

surface of the beam and compressive stress on the bottom surface of the beam. 

For a homogenous material the tensile and compressive stress will be equal with 

the cantilever experiencing zero stress at the neutral axis positioned at the centre 

of the beam.  

 

 

 

 

 

 

 

 

Figure 8.2.1 Stress distribution in rectangular cross section cantilever beam made 

from homogenous material.   

 

Now consider the same cantilever beam but made from a piezoresistive material. 

We can model the resistivity of the cantilever as two parallel resistors R1 and R2 

as shown in Figure 8.2.2. We find that for the same point load there is an increase 

in resistivity from the neutral axis to the top surface of the cantilever and a 

decrease in resistivity form the neutral axis to the bottom surface of the 

cantilever. In a purely homogenous material, ∆R1 and ∆R2 would be equal in 

magnitude and the net resistance change, ∆Rtotal would be equal to 0.  
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Figure 8.2.2 equivalent resistor network of homogenous piezoresistive cantilever 

beam. 

We find, however, in cantilevers A, B and C that this is not the case. From 

deflecting the cantilevers, we find a net increase in resistance. In an attempt to 

explain this observation, we must look at the polycrystalline nature of the 

diamond material. 

  

 

 

 

 

 

 

 

Figure 8.2.3 Cross sectional diagram of diamond thin film showing grain structure.  

Figure 8.2.3 shows a cross sectional diagram of a polycrystalline diamond thin 

film. Throughout the thickness of the film the diamond grain growth is isotropic. 

The seeding layer of the diamond has a much higher content of non-diamond 

carbon which is also seen at the grain boundaries.  
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This uneven distribution of grain boundaries, crystal orientation and non-diamond 

carbon content leads to non-linear mechanical and electrical properties through 

the thickness of the film.  

The nonlinearity of the mechanical and electrical properties of polycrystalline 

materials has been investigated extensively elsewhere and is subject to continued 

research across academia with many contradictory reports. Several possible 

contributing factors to the non-linearity of the piezoelectric effect in the devices 

in this study are brought to light by reviewing relevant literature; concerning the 

electrical properties of the polycrystalline film, it has been reported that the 

resistivity of a polycrystalline material changes with film thickness owing to 

several mechanisms [8.3]. One possible mechanism is charge scattering at grain 

boundaries. The seeding layer of the polycrystalline film has more grain 

boundaries which make it subject to higher resistivity when compared to the bulk-

grain dominated thicker layers. In addition to this, it has also been reported that 

the piezoresistive effect is higher in single grains, and is reduced with the 

presence of grain boundaries [8.4]. With regards to mechanical properties, 

polycrystalline thin films have been shown to have a non-linear distribution of 

Young’s modulus throughout the thickness of the film. Polycrystalline material 

experiences complicated microstructure effects caused by non-linear crystal 

alignment. In general, with increasing grain size throughout the film an increase 

in Young’s modulus is observed [8.5], [8.6].  

In strain gauges we find that the resistance change is a function of not only the 

change in resistivity but also includes a geometric factor derived from the 

material’s Poison’s ratio, v. For a strain gauge made from a homogenous material 

we find the relationship; 

 

∆R
R
= (1 + 2v)ε +

∆ρ
ρ

 

           (8.2.1) 

Where ε is the strain applied and ρ is the material resistivity. In practice, a strain 

gauge would be located in an area of the deflecting structure that experiences 

maximum tensile or compressive stress. As such, the strain gauge only experiences 

the compression or tension coupled to it from the surface of the structure.  
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The polycrystalline cantilevers experience compressive and tensile stress 

simultaneously and thus cannot be considered strain gauges in the conventional 

sense. Without knowing the stress distribution through the cantilevers, it is not 

possible to determine the geometric contribution to the observed resistance 

change, however, it must be considered as contributing to the net result observed.  

Consequently, the piezoresistive effect observed in cantilevers A, B & C is 

reasoned to be attributed to the net result of one or more of the above 

phenomena, with the possibility that one or more of the mechanisms described 

could be destructively interfering with one-another.  

 

8.3 Contact Deformation in Undercut Area 

 

 

 

 

 

 

 

 

Figure 8.3.1 Cross sectional diagram of cantilever device showing undercut 

extending below the metal contacts.  

Figure 8.3.1 shows a cross section schematic of the cantilever devices. It became 

apparent after fabrication that the undercut from the release etch extends under 

the metal contacts on the surface of the diamond film. NiCr (and Au to a lesser 

extent) is known to exhibit piezoresistive behaviour. Owing to the large undercut 

a portion of the metal contact is likely to be subject to mechanical deformation 

as the cantilevers are deflected. In an attempt to quantify any possible 

contribution to the net resistance change of the devices by contact deformation 

a simplified numerical analysis assuming worst case scenario conditions is 

investigated.   
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Consider cantilever A. If we assume cantilever A to be firmly base clamped, we 

can use the cantilever deflection formula as defined in Chapter 2 to find that it 

takes a point load of 9.7 mN to deflect the beam tip by 20 um. Now consider the 

undercut area under the contacts. This area can be modelled as triangular 

cantilever beam, the free end of which is the area where the cantilever is 

originally clamped (Figure 8.3.2). By extending the original length of the 

cantilever by adding the maximum undercut length and finding the deflection at 

the original base position when applying the same point load, an overestimated 

maximum value for deflection at the base of the undercut cantilever can be 

calculated. By using beam deflection formula described in Chapter 2 the 

estimated maximum deflection at the theoretical free end of the triangular 

cantilever is 10 µm. In reality the value of deflection at this point would be much 

less as a result of the ommited material surrounding the cantilever legs resisting 

deformation. 

  

 

 

 

 

 

Figure 8.3.2 Undercut area modelled as triangular cantilever beam. 

 

By taking the calculated value for maximum deflection we can calculate the 

maximum stress, and hence strain, on the contact. The strain is at maximum at 

the base of the triangular cantilever beam. The force, P required to displace a 

triangular cantilever beam by δ is given by: 
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P =
2EIδ
L*

 

           (8.3.1) 

Where l is the cantilever length, E is the material Young’s modulus and I the 

second moment of inertia for a rectangular cross section. The corresponding 

bending stress is given by: 

 

σ =
6	P	L
BH*

 

           (8.3.2) 

The relationship between stress and strain as provided by Hooke’s law is: 

 

ε = E	σ 

(8.3.3) 

We can now relate the theoretical strain ε exerted on the NiCr contact to the 

potential change in its resistance ∆R and its gauge factor G by the relationship: 

 

∆R = R	G	ε 

 (8.3.4)  

Where R is the initial resistance of the NiCr.  From the textbook value for the 

resistivity of NiCr and the dimensions of the contact area we find the theoretical 

resistance of the undercut portion of the NiCr layer to be 12 µΩ. From Equations 

8.3.2 & 8.3.3 we find the strain on the NiCr film at maximum end deflection to 

be 0.0048. From Equation 8.3.4 and using a gauge factor of 2 for NiCr [8.7], this 

corresponds to a ∆R in the NiCr layer of 0.12 µΩ. As the contact resistance is 

dominated by the resistance between the NiCr layer and the diamond film and not 

the resistance of the contact metal, it can be reasoned that such a small 

percentage change in the resistance of the contact metal will have a relatively 
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small effect on the resistance of the entire network. The net change in resistance 

change in the network observed by deflecting cantilever beam A is 1.487 Ω, which 

is many orders of magnitude larger than the worst-case scenario resistance change 

in the contacts. Therefore, it is reasonable to deduce that the piezoresistive 

effect observed can be attributed to deformation within the diamond cantilever.  

 

8.4 Chapter Summary  

 

An investigation into the piezoresistive properties of boron doped polycrystalline 

diamond was undertaken. Boron-doped samples supplied by an external 

collaborator were electrically characterised by TLM analysis. Titanium and 

Nichrome metals were investigated as potential adhesion layers for metal 

contacts. Time stability measurements on fabricated boron doped diamond micro-

wires were performed and showed the material to be electrically stable for up to 

60 seconds for various I/V measurements. After some process development, a 

process was established for fabricating suspended micro-cantilevers featuring 

metal contacts. Micro-cantilevers were fabricated form boron doped diamond thin 

films and the deflection sensitivity of these cantilevers is reported. The deflection 

sensitivity of the devices is likely to be significantly impaired by various described 

mechanical and electronic mechanisms in the polycrystalline material working 

against one-another reducing the net piezoresistive effect. The nature of the 

piezoresistive effect in the fabricated devices has been questioned and 

investigated, and possible sources of error in measurements and devices have 

been scrutinized. The possible error contribution of contact deformation resulting 

from etching undercut extending beneath the contacts has been explored.  
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Chapter 9: Conclusions & Future Work 

This body of work aimed to present the design, fabrication and characterization 

of polycrystalline diamond micro-electromechanical systems for passive micro-

rheology and sensor applications.  

One of the main achievements of this work is the fabrication process development 

presented. A common issue that limits the operation of micro-cantilevers 

fabricated from thin films is excessive undercut at the cantilever base [9.1]. By 

using a combination of top-side dry and wet etch processes, undercut has been 

minimized to less than 0.33 % of cantilever length in some devices. We present a 

cantilever with dimensions L = 35 µm, W = 1 µm and H = 0.48 µm which resonates 

in air at 555 kHz, comparable to a single crystal diamond cantilever reported by 

Kara et al of dimensions L = 38 µm, W = 0.820 µm and H = 0.530 µm which 

resonated in vacuum at 686 kHz [9.2].  
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The fabrication processes presented relating to boron-doped PCD devices provide 

a method for fabricating devices with integrated metal components that is 

compatible with silicon etching methods.  The reported processes could prove to 

be a valuable resource for future PCD-based  MEMS development [9.3].  

The boron doped PCD cantilevers showed a relatively low deflection sensitivity of 

0.029 mΩ/Ω-µm to 0.063 mΩ/Ω-µm. However, they are believed to be the first 

boron-doped PCD piezoresistive cantilevers fabricated from a single boron-doped 

layer of PCD [9.4]. This reduces the complexity of the material growth process.  

This thesis also presents what is believed to be the highest width/length/height 

ratio micro-cantilevers reported of any material, having dimensions of W = 1 µm, 

H = 0.4 µm and L = 150 µm. Linzon et al reported a silicon based micro-cantilever 

of dimensions W = 16 µm, H = 5 µm and L = 500 µm [9.5]. These devices could be 

relevant in studies where large amplitude deflection (relative to cantilever 

dimensions) devices are required.   

It has been shown that the thermal fluctuations of intrinsic PCD micro-cantilevers 

can be characterized in a viscous medium at least up to the viscosity of water 

(8.90 × 10−4 Pa.s ). Other state-of-the-art micro-cantilever micro-rheometer 

devices rely on active electronics to drive the cantilever to resonance in order to 

overcome fluid dampening [9.6].  

A verified data analysis method of extracting a fluids viscoelastic properties from 

the power spectrum of the damped thermal fluctuations of a submerged device is 

presented. This method reveals the fluid’s viscoelastic properties across the entire 

frequency range of the measurement, up to the sample rate of the measurement 

system. Previously presented methods using micro-cantilevers merely use data at 

or around the resonant peak of actuated devices, and rely on multiple 

measurements in order to build up data spanning a frequency range [9.7]. In the 

absence of reliable raw data from the fabricated cantilevers owing to 

measurement system limitations, this method was verified using test data. 

However, this method could be universally applied and could be used as a resource 

for future researchers. The reliability of raw data could be increased by using a 

device with a higher signal-to-noise ratio, i.e. larger deflection amplitude from 

thermal fluctuations, or using a measurement system with a lower noise floor, 

preferably in a low noise environment. 
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Future Work 

 

One of the main factors that was beyond the control of the author  was diamond 

growth parameters. With the advent of CVD technology, thin diamond films can 

be tailored to specific purposes. A main focus for diamond growers is to achieve a 

high Young’s modulus in order to maintain the favorable hardness of single crystal 

diamond [9.8]. However, there could be potential for a diamond thin film with a 

reduced Young’s modulus. In boron-doped form, a reduced Young’s modulus 

diamond thin film could be used to fabricate piezoresistive sensor devices that 

would deform more readily in response to microscopic forces. Such a device could 

still retain the same favorable thermal characteristics and chemical robustness as 

its stiffer counterparts. Similarly, a reduced Young’s modulus PCD micro-

cantilever micro-rheometer could exhibit greater out-of-plane displacement 

during thermal fluctuations. This would make the device more susceptible to fluid 

interaction, and the inherent restoring forces of the cantilever would be less likely 

to dominate the compound system. Increased displacement would also increase 

the signal-to-noise ratio in measurements.   

The hydrophobicity of the diamond surface can be modified depending on the 

surface termination of the material [9.9]. The diamond used for this research is 

oxygen terminated and therefore exhibits hydrophilic behavior. In order to make 

the surface of the diamond hydrophobic the surface can be hydrogen terminated. 

Micro-cantilevers with hydrophobic and hydrophilic surfaces have been the subject 

of several studies and have been applied to evaluate the evaporation dynamics of 

water [9.10]. A device with the attractive material properties of diamond and 

tailored surface hydrophobicity could be the subject of further studies.  

Ideally, a micro-rheometer device will have self-actuation and detection built in. 

This work has presented two separate devices that could potentially be combined 

in future research. A boron-doped PCD diamond micro-cantilever passive micro-

rheometer with a piezo resistive detection mechanism could be realised following 

on from the disclosure presented herein. The potential for such a device, coupled 

with the ability to modify diamond material growth parameters leaves many 

potential future research paths wide open. 
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Appendix A 

Appendix A 

MATLAB Code for Data Analysis 

%This script plots the complex viscosity of a fluid from the 
%power spectrum of the thermal fluctuations of a particle trapped in the 
%fluid. To demonstrate, a test data set of an optically trapped 10um 
%silica bead in water (trap stiffness 2.5 uN/m) is used and can be 
%accessed here: http://dx.doi.org/10.5525/gla.researchdata.827  
%This demonstration starts with performing an FFT on a time series. If 
%data is already in FFT or PSD form then the FFT step can be skipped.  
%Discussion of the theory used in this code can be found in Chapters 2 & 
%7 of the thesis which this file accompanies. 
%a.mcglone.1@research.gla.ac.uk.  
  
oversampling=1;%oversampling factor: increase for more density in      
autocorrelation 
dpoints=250;                   %No. of points in autocorrelation function 
K = 2.5;                        %trap stiffness micronewtons/m 
rad = 10;                       %bead radius micrometers  
scale = K/(6*pi*rad);           %complex viscosity scaling factor 
B = dlmread('k25rad10.txt', '\t'); %time series of trapped bead in water 
gt = [B(:,1) B(:,2)]; 
D = B(:,2)-mean(B(:,2));        %subtract mean 
Fx = (abs(fft(D)));             %Fourier transform 
PSRFx = Fx/length(Fx); 
RFx = PSRFx(1:(length(PSRFx)/2)).^2; % create one sided PSD 
torigx = gt(:,1)-gt(1,1) ; 
dt = torigx(2); 
maxfreq = 1/dt; 
minfreq = 1/max(torigx); 
freqfft = linspace(minfreq,maxfreq/2,length(RFx)); 
k = 1; 
N = 2*length(RFx); 
df= freqfft(2)-freqfft(1); 
Fs = length(RFx)*df; 
for k = 1:1:(N-1)/2 
RFx(N+1-k)= conj(RFx(k+1)) ; % 1 <= k <= (N - 1)/2 create symmetrical PSD 
end 
tat = dt*(0:N-1); 
A = N*ifft((RFx)); %Inverse fourier transform of symmetrical PSD 
(autocorrelation) 
NA =(A(2:end)./trapz(RFx));  %Normalise autocorrelation with PSD area 
a=NA(1:dpoints);             %Choose autocorrelation length  
torig = linspace(dt,dt*dpoints,dpoints).'; 
t = linspace(dt,dt*dpoints,(dpoints*oversampling)-1).'; 
g = spline(torig, a, t); 
GData = zeros(dpoints*oversampling,3); 
frange = linspace(1/(torig(dpoints)),maxfreq,dpoints*oversampling); 
g0 = 1;     
eta = 0;   
for ww = 1:dpoints*oversampling      %this function performs fourier 
transform on the autocorrelation function and multiplies by i*omega 
    w = frange(ww); 
    fta = ((1i*w*g0 + (1-exp(-1i*w*t(1)))*(g(1)-g0)/t(1) + 
sum(diff(g)./diff(t).*(exp(-1i*w*(t(1:(size(t)-1))))-exp(-
1i*w*(t(2:size(t))))))))./(-w.^2); 
    GStar = fta .* 1i*w ; 
    GData(ww,:) = [w real(GStar) imag(GStar)]; 
end 
 
 
 
 



Appendix A 

 
GTOT = complex(GData(:,2),(GData(:,3))); 
GF = complex(GTOT./(1-GTOT)).*scale;                       
nF = (sqrt((real(GF).^2)+(imag(GF).^2))./frange.'); %Complex viscosity  
  
figure('units','normalized','outerposition',[0 0 1 1]) 
subplot(2,1,2) 
loglog(frange,nF,'-b') 
ylim([0.0001 0.01]) 
xlabel('\omega(Rad.s)'); 
ylabel('\eta*(Pa.s)'); 
subplot(2,1,1) 
semilogx(torig,a,'o') 
hold on 
semilogx(t,g,'x') 
xlabel('t /s'); 
ylabel('A(t)'); 
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