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SUMMARY OF THESIS

EQUILIBRIUM DELAY DISTRIBUTIONS FOR QUEUES

WITH RANDOM SERVICE

The problem which the thesis discusses is that of determining the
probability of delay of a demand (customer) in a queueing system in whi
service is random, i.e. on the completion of a service-time the server
obtains the next customer for service by choosing at random from among
those walting, The system is assumed to be in statistical equilibrium,
arrivals are assumed to follow the Poisson distribution; and two distin
assumptions regarding service-time are made, (1) that it follows the
negative exponential distribution, (1i) that it is constant,

For the case of negative exponential service-time, the work of a
number of authors is reviewed:

(1) Molina (1927), who derived the equilibrium state probabilit
of the system;

(11) Mellor (1942), who was the first to discuss the actual dela

distribution, but whose treatment of the problem is incor

(111) vaulot (19%6), who formulated the problem correctly and gav

fundamental differential-difference equation, which he us

to find the delay distribution as a Maclaurin series;
(iv) Palm {19%36), who, independently of Vaulot and almost simult

ously with him, derived the fundamental equation, and dis

methods (involving generating functions) by which it migh
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be solved, the determination of the general form of the
distribution by means of the first two moments, and the
question of numerical computation;

(v) Pollaczek (19%6), who used Laplace transforms and contour
integration to find an exact expression for the delay
distribution function, but in a form too complicated for
actual computation}

(vi) Riordan (1953), who, in an attempt to check numerical valu
obtalned by means of a differential analyzer, found a me
of evaluating exactly the moments of the distribution, a
used them to approximate to the distribution function by
sun of a few exponentlals, thus obtaining numerical valw
comparatively easily;
{vii) Le Roy (1957), who discussed the problem in matrix notatio
and used an approximating process similar to Riordan's.
The case in which the number of places in the queue is finite does
not appear to have been discussed, and in the next section, which is n
the modifications to the state probabilities and to the fundamental
equation for this case are given, The results of actual solution of tl
equation, by means of the Sirius digital computer, for 20, %0 and 60
places in the queue are given, and their relation to the results for a
unrestricted queue are discussed,
The case of constant service-time has received comparatively litt.
attention, and the section dealing with this first reviews the work of

Crommelin (1932), who derived equations satisfied by the equilibrium
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state probabilities and also obtained an expression for a generating
function of these probabilities, and of Burke (1959), who gave a very
clear analysis of the problem and obtained actual numerical values for
the delay distribution, but only for the case of one server.

Burke's work appears to be capable of extension, and in the next
section, which is new, it is shown that his methods can be used in the
case of two servers,

There seems to be no record of a Monte Carlo investigation of the
constant service-~time case, and in the following section, which is als
new, the method by which such an investigation was carried out, by mea
of the Sirius computer, for one and for two servers is described. It
shown that for one server good agreement with Burke's results was obta

Finally, it is pointed out that although Burke's methods can pro-
bably be extended to more than two servers, Monte Carlo methods offer
easier wvay of dealing with this problem, and there seems to be no seri
difficulty in using them to analyse not only larger systems but also
cases in which more realistic assumptions are made regarding the arriv

and service-time distributions,
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ABETRACT

EQUILIERIUM DELAY DIETRIBUTIORIS FOR QURUES
WITE RARDOR SERVICE

The problem which the thesis discusses is that of determining the
probebility of -delay of a demand (customer) in s queueing system in which
gervice is random, i.e. on the completion of a service~time the server
obtains the next customer for service by choosing at randoz frem emong
those waiting, The system is assumed to be in otatistical equilidbrium,
arrivals ere asoumed to follcy the Poiascn distridution, and tve distirct
assuzpticns regarding service-time are made, (3) that it follows the
segative expenentisl distribution, {11) that it is comstant,

For the case c¢f nogative exponential service-time, the work of a
mmber of authors is reviewed:

(1) solina {1927), vhe derived the equilidbrium state probabilities
of the system;

(11) Mellor {19%2), vho was the first to dimcuse the actuml delay

distributicn, but vhose treatment of the prodblem is incorrect;

(1i1) vVeulot (1986), who formulated the problem correctly and gave a

fundemental differential-difference equatiom, which he used
to find the delay distridution as & Maclaurin series;

{iv) Palm (19%6), who, independently of Vaulot axd almost aimultano-

cusly with bim, derived the fundamental equation, and discuse

methods (involving generating fumctions) by whieh it might
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be solved, the determination of the genersl form of the
distribution by means of the first tvo momonts, and the
question of numsrical computation;

(v) Pollaczek (19%6), vho used laplace transforms and comtour
integration to find an exact exprassion for the delay
distridution function, but in a form too complicated for
actual computation;

(vi) Riordan {(1953), who, in an attempt to check mmericel values
obtained dy means of a differentisl annlyzer, found a method
of evalusting exactly ths moments of the distridution, and
used thenm to approxzimate to the distribution function by o
sum of a few oxponentisls, thus obtaining nvmerical values
comparatively easily;

(vi1) Le Roy (1957), who aiscussed the mroblem in mstriz notation
and used en spproximating process similar to Riordon’s.

The case in vhich the nwder of places in tho queus is finite doeo

mtappcart\ohswmmmneQ,mdinmmeamm,maxsw,

the modifications to the state pradabilities and to the fundanental
equation for this case are given.  The results of actuel solution of the

squation, by means of the Sirius digital computor, for 20, 30 avd 60

places in tho quene are given, and their relation to the recults for an

unrestricted gucts are discussed,

The case of constand cervice-time has received cooparatively littls

attention, and the secticn dealing with this firet reviows the work of

Cromwelin (1952), who derived aquations satisfied by the eguilibrium



-3-

state probabilities and eslso obtalned an expression for a éenerating
funetion of these prodabilities, and of Burke {1539), who gave a vory
clear analysis of the probdlem and obtained actual munerical values for
the delay distribution, but only for the case of one server.

Burke's work eappears to be capsble of extension, end in the next
section, which is new, it is shown that his methods can be used in the
case of two servers.

There seems to be no record of a Monte Carlo investigetion of tke
constant service-time case, and in the following section, which is slso
new, the method by which such an investigation was carried out, by means
of the Sirius computer, for one and for two servers is descrided. It is
shovn that for one server good agreement with Burke's results was obtained.

Pinally, it ie pointed out that although Burke's methods can pro-
bably be extended to more than two servers, Monte Carlo msthods offer an
easier way of dealing with this problem, and there seems to be no serious
difficulty in using them to analyee not only larger systems but also
cages in vhich more realietic assumptions are made regarding tbe arrival

and service-time distributicns.
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MEARIRG OF SYMRCLS

¢ - nuzber of lines

v = nuzber of calls in the system

Pv - probadility that there are v calls in the system
h © average holding time

a w average pnumber of calls arriving in time h

n = ounber of calls

a « 8fc, the traffic intensity

Pn(t) - probability that a delayed call waits longer than t, and
that there are n others waiting with it at time ¢

p{t) «  probability that a delayed call waite longer than ©

Fn(t) «  probability that & call, vhich arrives when there are n
others wvaiting, is delayed more than time t

u . % nev unit of delay time

£(u) =  probebility that an arbitrary call is delayed more than ¢

3 = number of places in the queue

P{u) =  coniitional probebility that a delayed call is delayed
more than t

b, - probability that there are not more than ¢ calls in the
system

¢{t/n) =  conditional probability that a delayed call waits 5 t,
given that the delayed call is with n others at the
firet departure epoch after its arrival

o(t) “ cenditionel probadility that an arbitrary delayed call
vaits # ¢



EQUILIERTUM DELAY DISTRIBUTION FOGR QUBEUES WITH RANDON SERVICE

introduction

Probabilistic methods heve been fruitfully employed in recent years in
yroblems involving queues. A queve arices vhen demands are made for service,
not all the demando can receive service imsediately on arrival, and the
demands waiting for service are arranged in order of arrival, forming a
wvaiting line, In practicsl cases there 1s & random element in the service-
time or in the arrival times or in both. Bany actwal queuweing systems are so
complicated that precise mathematical treatuent ie impossible, but certain
simplifying esaumptions regarding service~time, arrival-time end ether cen-
ditiens of the ayotem can be made which lead to a mathematically tractable
problem which pevertheless gives & fairly gooed approximation te reality.
Guestions for which auswers may be sought are

(1) the rean and distribution of the length of time for which a
customer has to queue for servies, i.e. the delay distriduticn;
(11) the mean and distridbution of the muber of customsrs im the
systea atl any instant;

(111) the mean and distribution of the length of the server’s busy

periods, i.e. periods of mminterrupted activity.

In practical applications, we may require investigation of any one of
these,

This thesis discusses the determination of the delay distributien with
rapdon selection from the gueue, i.e, in the case vhere on the cempletion of
o service=-time, the server cobtains the pext customer for service by choosing




"L"

at random from emong those waiting and not mecessarily by taking them in the
order of their arrival, It is assumod that the system 45 in statistical
equilibrium, i.e. that the probabilities of the states of which it is capadle
are independent of time., The arrivals are assumed to follow the Poisson
distridution and the service~time i85 asgsumed either to have the negative
exponential distribution or to be constant.

The general outline of the problem and basic assumptions are given in
article 1. Article 2 is dQovoted to the case of Poisson arrivals and negative
exponential service-time, In § 2.1 general commants on this case are made.

In § 2.2 the equilibrium state prommties are derived. Then the first
attempt, that of Mellor in 1942, to get the delay distridution funetion with

random selection from the queue 18 given in f 2.3, showing how it 1s defective
in the formulation of the problem, This is followed by the correct formulation
of ths problem by Vaulot, in 1946, with the fundmmental difference-differential
equations, in § 2.4. In trhe next two sections, the methods by which Palm and
Pollaczek solved Vaulot'e fundamental equations theoretically are discussed.
The results given by them are shown to be inconvenient for numerical
computation.

In § 2.7 1s given Riordan's rather more statistical eppromch, that of
actual calculation of the momente of the delay distributicn function and the
use of these to fit the sum of a few exponential functions as an approximation.
A similar method of dealing with the problem, using matrix notation, was given
by Le Roy, and i5 described in the following section.

The problem involves the solution of an infinite mmbazr of differential

equations with constant coefficients. Before the advent of computers, the
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sclution of a finite mwmber of equations to get an approximation for the
infinite case could hardly be regarded as a practical method, becauvse the
maximun mmber of equations which could be dealt with was ro small. Eow

the use of computers makes this & feasible method, and in § 2.9 are described
the modifications to the equations for a queue of finite size \< and the

resulis of actually solving them by computer for <= 20, 40 and 60. In
article 3, the problem with Poisson arrivals and ccocnstant service-time is
discussed. Crommelin’s method of evaluating the equilibrium state proba-~
bilities is given in § 3.2. Then Burke's investigation of the delay distri-
bution function for a single line is given in detail in § 3.3. This suggested
the extensicn of the problea to two or more lines. The mathematical derivation
for two lines on the basis of Burke's argument is given in § 3.4.

Another way in which computers can make a contribution to the solution of
statistical problems is in Monte Carlo methods, since they make it possible
to study the experience of a large enough number of individuals to give an
indication of the gsneral form of the distribution. 8uch methods are obvicualy
appropriate for this problem, and in § 3.5 ie given a description of their use

and of results which were obtained for one and for two lines,



Deacription of the Problem

In order to analyse problems on queues we must be in possession of
three important data, viz. (1) the service mechanism, {i11) the arrival
patteyn of the customers and {111Y the rule by which customers are selected
from the queue for service,

(1) In the case of the service mechanism of the system, the number
of servers available to meet the demand and the service-time
probability distridbution are required. Information regarding
the availability of the servers must also be given.

(11) The arrival pattern of the customers is ususlly given by the
probablility distribution of the interval between successive
demands for service.

(114) The rule by which a server, when free, selects the next customer
for service from among those waiting is usually called the
quene diacipline.

The natural case of queue discipline in many applications is "first
come, first served". Contributions based on this discipline are numerous,
a5 may be seen in the literature now available. Other types which have been
considered are cases in vhich same demapds have priority over others, "last
came, first served”, and random selection from the gueue.

The last-mentioned case is interesting and is realised (at least
approximately) in certain practical applications, but it appears that very
few writers have devoted attention to it. As bas been asuggested by Palnm,
an eminent wvorker in this field, this may be dus to ite mathematical

intractability.
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The presant thesis is a review of work done on queueing problems with
selection at random from the quecue, the object being to determine the
probadbility distribution of delay vhen the syatem is in statistical equili-
brium, together with a description of attempts made at various points to
carry the discuseion of the problem a little further.

The statement that the system is in statistical equilibrium means that
the probabilities of the various states of which the aystem is capadble are
independent of time. The equilibrium state prodbabilities descridbe the pon-
transient behaviour of the syotea, i.e. the distridution to which it "settles
down" a long time after it is started. If in such systems the initial distri-
dbution is the equilidrium one, the state probadbilities remain constant, i.e.
independent of time, so that this is often called the "stationary” distri-
bution.

The number of demands present, either being served or waiting will be used
es a description of the state of the system. Mill availability of the servers
will also be assumed.

The problem obviously hes application to many different fields, but
telephony is the one vhich most writers seem to have had in mind. For the
greater part, therefore, the terminology of telephony will be used: the
servers will be described as 'linee’, the service~-time as 'holding-time’

and the demends or custoaexrs as ‘calls’.
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Poigson arrivals, pesntive exponmential holding-time
2.1 Introduction: The simplest assumption which can be made about arrivals
igs that the probability that a demard for service is made in the 1hfin1teaiml
time~interval (¢, t + dt) is proportionsl to 4t, the constant of proportion-
ality being independent of time, of other demands and of the number in the

a

systenm, It 18 convenient to write this probability in the form -!;.dt s where

h is the average holding-time and & is the average number of cang arriving

S -
(demands for service) in time h. This essumption implies that el 1f the

probability that the interval between successive demands exceeds t, and
that the number of demands made in any finite interval of length T is a
Poisson varisble with mean T T.

Similarly, for holding~time the simplest essumption is that the

probability that it exceeds t is e-gz this implies that when a line 1o
engaged the probability that it becomess free in the interval (t, ¢t + at)

is % . In most of the theoretical treatment of queweing problems, it has
been assumed, for simplicity, tkat either the arrival or the holding-time
distribution is negative exponential,

2.2 The equilibrium state probabilities .for this case were given by Molinsa
in 1924 [7], his ergument being as follows. Let ¢ be the nuber of lines
and Pv the probadility that there are v calls in the system, v = 0, 1, 2 ... ,
(either being served or waiting). Only if a < ¢ can there be equilibrium,
Let us consider thc beginning and end of an infinitesimal time-interval of
length dt, If at the end of the time-interval dt, there are v calls in the
systen (v « 1, 2, ...), then at the beginning of the time-interval there

could have been v - 1, v + 1, or v calls in the systen (three mutually
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exclusive cnses), folloved by an errival, a departure or nsither respectively,
during the time interval d4t. Ibe cases of morg than one arrival or departure
(release) in the interval 4t are neglected, their probadbilities being of highe:
order in ds,

The probadility of an arrival ia time dt is ( %) dt. When there are
{v + 1) calls in the system, the probability of a release is (%—‘-) atc
vhen ¥ < ¢ and (-E-) dt vhen v 3 c. When there are y calls in the system,
the probability that there will be neither an arrival nor a departure is
[ -(%)dt -(%)d‘b}vbenv'(cmd[l o(%)dt -(ﬁ-) dt] when
vaEe.
Thus "
—Pv = K., (%) & +7T,,, k%)M + B\ - —\‘_‘:]“.J .

Ve, t, =ik

7. P (D) T, (DRSS A ;

. 4 -
v:C’C*\’C 1,

By a similar srgument, the case vhen ¥ = O gives
A ’
o= T, ()M + —Po[‘ 2 (&)‘u] ,

which can be covered by the above equations, if we define Pv to be zero when
y< 0.

These egquations give v Pv -a.?v_' 3 vewl, 2, .,, cand ¢ 1"%H ue.Pﬂ{ 3

vwe, e+l ...0. p WYhooe solution is
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i‘x)’n Yo Yt Bl R <
J”
P o e (1)
- - \ &
—PV ko z‘;"‘?—c ) V'CIC* ’
(=}
But I Pv = 1, beiny the sum of the probadilities of all the poseible states,
vu0
and it follcws that . ! a
" Yy -
B e E Ao ()
8 & £= &l ey ™ €7
}/-: o g o

Thus the probability that all the lines are engnged, i.e. that an arriving
call will be delayed, is

Z7v, =T %\—(EE?.) = T (=),
Ve =

1

a formula given |y Erlang iu 1917 [ L4 and denoted C{c,a) by him.

The conditionsl) probability that e delayed cell will find n calls waiting is
1

tle,a) Pc-t-n o ’ C4+M
‘“P .. TP .
o gL " oL (loo() o ,

Po (5 ) (=)

n=0, 1, 2, .... , wvhere @ is written for % 3 «is scmetimes called the
occupney lwvel or traffig intensity.

2.3 The f£ii3t attempt to deal with the problem of the delay distribution
vhen deloy i calls are chosen at random from the gqueue appears to be that of
Meilor (192) [ b]. EHis argument 1a as follows:~

Let Pn(i:) be the probability that a delayed call is delsyed more than ¢ and
that the2 are n others waiting with it [(n + 1) waitimg in all] at time t.

The char(® that e.,ei‘ﬁe becomes free in the infinitesimal interval (t,t+dt)
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1
a4+l

Then P (¢t + @t) w chance that the call is deleyed more than ¢ + &t and has

: 'd
and that the call in question is chosen for szrvice is k '}“;‘3 at
/

n others wniting with it then = P n(1;) x [chance that the csll is not served
in intorval {¢t, t + dt)]

& AA-
-‘-"--Ph“:} { | - . (n)) ] é @wEe 3]

aF
n - ¢
This leads to tha differential eguation =5 * " e Pn, which gives

B ct
2 (8) =c e DE)

» S being the integretion constant,

Fow P{t}, the total probability that a delayed call is delayed mwore thon t,
is given by

Tikds Z ‘-PC-H\M—P““F)
=

o thus
-1
(> s e _e“s("‘"‘)
'—P(t) - é__ Ctn+)
M=o

o«
Putting t w 0, we get P(O) o Eo P, el cn ; but P(0) is the probedility that
n

the call suffers scm delw vhich ie !: P This can be written as

o
neQ e
( ) or n-! Pc +n’ vhich shows that g - for all n.
I‘hun ﬁnally cl-
N E- { 'K(%-N)
—P(L) = a.. é—o?c-ﬁ'rwl
el
._P 2 K&)‘h*' - W (nt))
b N>w el

e
T g (ne)

W’()( SESCH
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¥Mollor®s solubtion cannot be regayded as setisfectory, however, for the
equation (2) asoumes that if (2 + 1) calls ave wniting at time t + at,
thore must bave been the samo numder et time €, whareas in fect thera
could hove been By n + 2 or B8 + 1 then, followed by an arrival, a depar-
ture or neither, respectively, in the interval {t, t + dt). Kevertheless,
Mellor's solution, os will be seen, is a useful approximation for large n.
2.4 The correct diffaerential-difference equations for the problem were
firet given in 1936 by Vaulot {12} and Palm {¥' ], almoet simuliavesously.
They may be derived as followa. Let Fn(t) be the prodability that e call,
vhich arrives to £fird n other calls waiting, is delayed more than time €.
Consider the infinitesimel intervel &t immedistely succeeding the arrival
of the call, In this intervol there are only three possibilities: (1)
another cgll arrives [prchability ( %) dt), (i1) a liinc Decomes free
{protebility ( %)cx-a], and. (8411) meither of these two [provadility

(1 - L'%-A;—i)- d@:l}. In cega (1i} the conditiomal probadility thet the el
in guestion is not chesea for eervice, and is therefore still weiting at

the end of the interval, is ;== . Tus

B (bedb] 4 D S ke F Cledb) 4
Rkl = S db £ (- + 00 R n-

S
- m;:) ou,] \':k((.-au—)

which leads,; on letting dt =» 0O, u"

B a F ()
B e B ey = S R 2 Bt s
N+ o

A Fnll) _ \
e t
v Y . o 01,



Writing @ = L aad lp- s We can axpress ke above eguaticn more gimply 4
the new m:lableuoas

W) _ (3 g (o) = ()R + L 6 )

) \N«t/ N

{3}

o Oyl @R

The boundary conditions ere F (0) = 1, Fn(w) = 0 for all n; snd

nu__::': ?n(w) e 1, for allil, The provability £(L) that an arbitrary call

will be delayed more than € is given Dy

-—P r U*-) 'P ia( ‘.,\UN)

=)
;?(u):—.“é__ & i S

C (eya) (A—2t) Z.OL o

-0

and a:mca C{e,e) is the probobility ¢hat a call will be delayed, the cons
dltional probavility F{lud thet a delayed call will de delayed more than &
iz given by

C(w) = ((""9() 55_"(“ F.,\("‘)

N =0 - (n)

Fote vhat F{0} = 1,

Having Qerived equations (3), Vaulot used them to £ind the coefficleni:
in the Heclmurin series for Fn(ha) ard hence cbiained the series for £{J).
The first two tom given by Vaulot for £(11} are

(t-o{) e
:?'(u) :(c. t)i(° “')A [_‘ et j
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wvaere (}( - c ond (N = L\ ~+ 0 2 |° < \)‘ «- \“(c °)J

The differential-difference cquations (3) are the fundomental equations of
the gystem end their solution is the principal problem. The theoreticzl
solutioa of the equetions hss Been discussed dDy both Palm rnd Pollaczek.
Their mothods are given below.

2.5 Palm, who was a picncer in the prodlen appears to have drawn up as
early €5 1938 the theoretical solution of this problem but did nmot pubdlieh
his work until 1946, He deleyed the publication of his investigation in
the hope of Tinding easicr methods of numerical svalustion, a hope which
wvas only partly realised. He pointed out that the mathematical trestzment of
the wniting time problem with & rendomly served queue is appreciably more
conpliceted than with en ordered gueue.

He dorived the fundeumental equations (3) independestly of Veunlot aud
aiso indicated how these equatiors are modified for the case of en ordered
quene; the sclutlon 1a then easily obtalnedle by a direct integration
process.,

The mathemntical treatment of the problem by Palm starting from the
fundemsntal equations (3) is as follows. Toking the fundamental difference-

differentiel equations in the form

AB) (B e (0 SRR+ R R0
- +i] T '

Woom, @, 4, B &0

the following medifications are carried out for ¢he cose of an ordered queus.
(1) calle coming im later do mot affect the weiting time, f.e. & = O.
(11) the call in question cannot get service unlegs it 18 at the haad

of the queuz, 1i.e, the factor
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Thus with sn ordered queue, we pet the following relations forn > 1

Fe T~ W (EPESR. W 1 .
d~I& & ta\xnu) f»r“(() o -
and for n = 1

v IR

n b
Integrating squotion (t) ve get ¥,(t) = e‘c"‘ B and then by recurreatly

integrating {a) we get . :
w1 sk, Je 4} LTV
Frll) = [\-+-—31—('+;%‘ (24 -*amil2Y /2

Jn the case of au randonly scrved gueue, the solution is not eo simple, Here

PaJ.m uses e mnthod 1mo1vi.ng generating ﬁmcticna as shmm helaw.

W\-H
Let 4>(x W) = g_ F,,\(kx e e
=0
We have
- S et o
P(ow) =03 P(x,0)= 3 Fule)x - =
‘ M=o - X
M\M‘X\C‘

L=o Le o (6)
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\L ) gl
then [\ oAX) = D% ,0) = 2 F. (o) X

wkere the superseript (1) denotes the ith derivetive with respect o L.
From equetions (3), 7:1) (0) can be found by rapeated Aifferentisiion

with F (0) = 1. Hence for i = 1, ve find Fg’) {0) and 8o on.

Thus Ai(x) can ve found, where Aofx) @ 3 f 3 » ond this gives a solution

of the rxcblen in primeciple. Finslly

Fle) = Lo 4 (L,0)

To calculate the values of Ai(x), it is desirable to f£ind the differential
equation eatiefied by o(x,l). Mulziplying toth sides of (3) by (ne1) &%

and suming for n = 0; 1, 2, ...y W& find

7:2{) g (1=x%) (x-<4) 2%, 4 émc?(x'k) = 8~ =y
DKV x i x* |

Prom (6) and {7) ve get

; oo : )
o gt (%) _x) (x-d) £ w4 AN
w A A &+ x) 2 -
L=
¢

-?:\ w1l A X >

po
(T W -
- L=o “e

Ceefticients of each power of { muat be zero 1f (6) i & solution o? (7).

ALY, (RIERT aadl oL ateg,

A X % I5 v =
4;/‘— C = Y, 1,3

Therevore
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Thus

Ad(x) 2

% \‘()
B j (\-Y) (\/'J\—)okﬁg.(,\() - f
- ~

Here Ai(o) ic gero from equation (6), since the boundary cortition for
o(x.l) 18 ¢(0,/A) = 0. Hence the lower limit of integration above is taken
es gero. Them

X X
Y a-mo-) A-\V’] = (A nay
AC(’Q = X’ - C-t 2 So '

vhich finally sivveiu X)(X"‘L) (x) ool Lmiche Px,_ T SA‘V)AY

A X)) = " ey x>0

“tha‘:)“*ﬁ’ .

Esnce the A's con be fournd recursively, ¢.g.

AL (X) = —(\=R)(x-A) X o - [_x Fog £1- x)]

x (-x
= He(\“x)

This method of calewlating A,(x) 1s excesaively complicateds in the serios

forA.r, for cxample, there are mere thes 100 terms.
For aumerical cemputation eguaticms (8) and ($) given below can be used
for recursive caleulation, but even tm.s is very laborieus.

. ¢ n+\
Bolx) = é F (0 X .- (@

MN=O
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L- f""
F"(o) =X F (o)-—(H—vL)F (o)-é-o(.F‘ (0) - - --(9)
" "4\

Ap an illustration, for A,(x) we get

F‘:\-(o) = e, (\‘"""}“”"(- - ~ A

Hence oo ‘n-«-l
_ 1-%) F
A = £ -5 = Koy,

which is the seme as 18 given by the other method,

Paln gvaluated the first and second moments of P(u) end ¥, (u) and
vith the use of what he callsd the "Form Facter” investigsted $he nature of
these distridutions. Ko dnfined "form factor" ¢ of a distridbuticn as ths
second mement of the distridution about the axis ¢ » O, divided by the
sguare of the mean valve of tho distribution, Thus {€& = 1 +§:
wacre 8 i the mean enf ¢” ie the standard deviation], In the case of the

negetive exponentiel holding-time distribution g e

s Vhare 8 18 the mean
holding~time, the form factor ¢ is equal to 2, gince o = g,

Paln uzed the "form factor” to charscterise tho shape of ove way
linited distributions €i.c. framt o O to t = o, as in the case wmder
investigation. He regarded the exponentinl distridution as the boundary
betwaen "steep” and "flat” distributionn. For s steep antr:mmal the
form factor ¢ bas valwes 1 s ¢ < 2 (¢ mmmboleesthml)::;ora
flat distridbution it hes values 2 < g,

Tho pth momant for the generating function q’(x.w) i@ definod by
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-~ = T b D Px,M)
M = j W o A o
oo

= M f W (X w)dw (b
From this, the first mement 1o

M, = ) uxw de

Uning the differential cquation (7) end integrating the left-hend oide
ottzmeqzmionvithreepoctto W from O to o, we get

Y. S 34’(" o P Y (t—><)_(><--<)_? &c‘b(x,‘\)dw

o

00
—|-_;£S <P(x,u.)o(u. = O
o
From equation (5) we have the boundery condition CP(X, 0)= -E—;(

. j.m }iif,w) A ___[fp(x,u)]; e

-X
(o]

L 4

¥ith this value and the value of Mi,, the above equation can de written

)+ (‘“Xlﬁx"() i\i[n‘l&)}-t-;;%_ﬁ,(x)ao}

- (s

(t.e.) A N ix) A NG A -
3
X x(\~X)(X-%4)  (1-K)Z(X==)

x

iz

(A=) e, (=) St

il
MK = Tala -t (L-x)T=

By integration we get
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The integration constant ¢ must have the valu2a gero 4o make M,{x) finite

fora< 1.

Thus P, i) - - 3. (-x)= 7

from vhich
k) = G-

Therefore the mean value of F(u) [which is 1-5—9 o (@)} 1s

L .t L

Ry

- L ° 1-<L

By analogons methbods the second moment of F{u) cen be worked ocut, end its

1 4
~aya2-a °

g = o Lt ,(t'&)"_ L
i (\-.\)’- - ok . 3

value is 0 Then the form factor for P(u) 1»

For 0 <@ < 1, 1t ie clear that ¢ lies detween 2 and 8, Hence the waiting-
time distribubtion P(n) 1s flat, For small valuee of a, the form factor
appréaches the value 2.

Palm cbtained the form factor for l’n(n) alsc end remarked that for
n > 1, the ddstridution P (u) is steep at least for small values of .

Bumericnl comuvutation
The mawrieal computation of the coofficients A, (x) obtained from

the recurrence rclation given above s not convenient decauvse of alter-
nating signs in the peries expensions. To overcoms this, Palm discussed
other poseibilitics. e imtroduced coefficients Bi(z) instesd of A.i(x)

by defining
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0 [_“{ -
CP(X,\»)~_°£'__.Z:E‘ (%) = C - a
\-4A {=0 o
Be got B {x) _l;a 7= a2d @ relstion for B,(x):
B x
R - ALTNAA” ’|
bt pog = (%) B0 - pnd 2 i‘j il

[}

It is then possidle to determine all the B,(x). Tnls however is aloo
complicated for the higher 1 values, But a good feoture bhere is thut all
the B w ars positive end that they diminish numerically more replaly
than the corresponding Ai(a).

The treatment of the problem by Palm is ingeniouz. The recwrrence
relatiohs for numerical computation ars useful, twt the expressians for
the coefficiontsA,(x) are extremely eccaplicated and involve large mumbars
of teyms. Thus easier methods of runerical comrriaticn were sought¢ by other
writers, particularly Riordan in 1953,
2.6 Polleczek, in his papers of 1945 end 1959, gave & ¢omplete mathematicnl
solution of the fundsmental equatfions (3), using generating functioms,
loplace trensforms and contour integration., His treastwen: of the problenm
is as given below.

Let us start from Vaoulot's difference-differential equations for Pn(t)

in the form
/ c+ A g X S E (&) ()
F%U:) -+ (—_E:") F‘y\((’) = e\ .ﬁ_‘ r‘kﬂ
o= y Yy & "7 s
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with the initizl coadition ?n(o) 2 1;na0, 1, 2 «ov. . Recalling the

definition of traffic intensi‘iy o o afc end muitiplying both sides of the
b _nf2 ’°§Q)°

above equation by c e s Wo get

Jac
- -
v (Sx2) nol (%)
‘fﬁ-ﬂ A Gtt.e. T) F (L’)]::__..a(__zi_e --((-,
\m &k “n Nn-+\ -}
Nl (:4-‘\-){-
+L e TR
Then by substituting Cex ‘L) -
L
bo'-'- (: ..J%S'- asm :F,h(l’o) = L £ + E (&)
we get
(o) n - 4 70 e (A)
dj“l:' N _';1:? :Fh-(t )+-£"h+l ) ’

Y\ = O,\/L"'“

with the initial condition

“ & oo
-!{,(o) » o(/L . ow o in | WE O ),
"

using a complex parsmeter Z for the Iaplace transform cf tn(bo) in the

form
oo --J‘z-ko

q)“ () = 2 ., (o) Abs

o




e+ a £
which converges for R(z) > == = \+ A | inview of
L Jag ANV

the condition 0 5 Fn(t) % 13 we get by effocting this transforn on

equation (A)

e (2)
LEGIH —% = ’Y\-HCP +CRH(-17')

('Y‘L.-:O, l}L'.‘-“)

Multiplying both sides of this equation by (n+t) x° ond sumrng on n,
we get

o0 . i
21 2 e X~ @ (2) —
M=o

(1-

el éh X

i e Xh‘f’h( 7-)

ki< ]

Now defining & generating function &(x,2) as

1.2"

C@(xz) 2X P (2) = ix € (to)d,

wve deduce from the adove equation that ¢ satisfies the eqation

LB

iz%@‘%)—(l— S e
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waich can e wrivien

AL P B I N
(xt”—- L K z-—&-i) e : (x ‘Q-L)% - (‘—x&.)".

The problem now is to find a golution of this &ifferential egquation
valid for | x}< .[(l.' and R(2) sufficiently large.
Fovy putting the coefficient of g- in tkhe Zorm

xL— LKL = (,"X-X,)(x-x_.t)) .

X‘('L.) = Z'ﬁ‘tjl“:-i amd XL(7~)=Z“E‘E-T=‘-%—7;+§L{?--'"

for ‘zq >t

and defining the sign «f JzE « 1 here so that J? - 1=z at infinity
on the z plane, cut fr(i 3 = =] to 2 o 1, we find tho solution of the

differentinl equation tlich vaniches for x = Xp = 5‘; to be

™ -M-i Rat N m
D(%,2) = (X~X) (XyX) (%,~L) 4T
P : (% 2. JX Py
Pa ™ z |

e Y

vhere YYV T X, =% = 2y 2

By permuting the opereisrs I and g'dto in §(x,z). ve get
n=0

Co o
F(x2)= [ ST E KR ek
2

M=o

Using Fourier®s thesu:m and re-substituting for fn(”o) in terms of I’n(t),

va can vrite this



S 1+ A) 1 oo

O
2 =L 2 @R B
M=o : MNzo
e .
Z.Co
. :L'!ﬂ(: 2" %(x )2 4T,
—~ oot a
Thus we get
c/ (\4")&‘ 'Locu-“-
T L S /4 2
2 (KF) W= g f.%:’ F ) dz
- Cooga .

" --(B)
[ s 6>0]

The fumetion 0(x,2), considered as a function of g, is holomorphic in
the complex plere (closed at mﬁnit-;), cut along the segment -1 8 ¢ 3 1;
12 ve moke | x§ < 1 to emsure that(x, - x)ﬁ 0 in tkat plane

[eince ! #1| & 1]. %he function edwits, for z infinite, a Teylor series
of the fom -*-% 4 «ess 804 is bounded in that plane,

Thus, by Cauchy's Thoorem, the peth of integration of the intaegral

Loe 4-a.
—r (x,'z.) AL , where t > 0, cen be token to be a
—t bo4+a

traversed in the positive sense, which fellows the two edges of the cut
«s]&axzs81,

if &, end O be the values of ¢ on the lover arnd upper edges of the
cut, respectively, in passing from ocne edge of the cut to the other,
1 ond X and also m end(-m - 1)ere permuted; thus the ebove imtegral
is equal to



- » Aa, <y
e Lj,-..f...di]dz,
x >
b & %
Vi Z -\ g > - -t
Y.
= Qim0 [ €7 (e e - Joxet)
2 se *om o dl dz

The function {x1 - 8) T (xs ~ £)° 10 uniform in the g-~plane ask betveen

the points § o x; gnd £ = wpx, and it is multiplied by e-2lf1(|l0-l) v @r2nin
when we pass {rom one edge of the cut to the other, revolving about the

point &€ = %, in the positive scunse, Taking e contour C‘ surrounding this
this cut end traversed in the positive sense, ve have for the integral
A -~ M

- -¢ 4{-_,,_. AP N T ek
;[ (7‘1 ) (Xq )(;-U’U" . 'é,"“‘.”'" (x‘_{_)
0 2 x
{_;m Al
(% (-0v0)*

The integral on the right hevd side behoves st infinitayliko é:. and bae

cnly one pola, of the cecond order, g o Jé 3 evaluating the residua we
aet
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- W

‘)‘J‘-

% v~ |
j (%~T)  (x,-1) 4t ﬂL(t-"'TLhy

e (i~ ‘L\f-fi)“ ok

o ) s ;)

Fow if we use the substitution

g . P
z = Cos T ’ \JZ’-"—I = =t S'WT; Xg becomes £

)

% o 1
X.L'beecmsa £ »8nd M= .. . vecomea & Cof 1 -

X =X, p .

sc that eguation {B) mey be written
(- =t VL G2 T) S E

2 (xV@)" Fle) - QX .

N=o - -
(.é-b ..-X) X) . ‘
-M-1. e
T <t-a%"') L) s TAr,

vhere W:%M'T-.-;Li_ M\X\A‘.

This le the formula for the generating functicn, end from it we can get
the velue of s'(;'; by putting x =Ja and multiplying both sides by (1 - a).
Pollsezck used this formule o get an asymptotic expensicn for large values
of ¢ intended for murerical computation. It is howover highly complicated
end eppears to be inconvenicnt for practieal camputation.

_ In a2 lster paper (1954) [{3) Vaulot discussed transformaticns
leading to o more comvenient foryfor Pollaczek's integral arnd gave a
nuzerical method of computing tho delay distribution. REwven in this case,
however, the rroecess is very complicated. He exemplified the mathod by

evaltndine P{u) for u = 140



Pollaczeok's paper can be regarded es giving a complete solution
to the mathematical problem of determining the delay distridution,
The method by which he inverts the laplace transform is quite ingenious.
The fact that the result is so complicated appears to be due to the
Intractobility of the prrodlem rather then to any deficiencies in his
rethod,



2.7 Practical cozputasion of the dolay distribution., Riordan {(1953].

The solvtions of Tthe prcblem by Faim and Pollaczel are mathematically
complete but 414 not result in an easy methed of calculation of tha sctual
@elay distridution. This probadbly led Riorden to take up the practical
problen of computing the Qelay distribution curves,

In 1953 [ 1] he discussed this gquestion. For smell walues of n, he
solved ecquations (3) spproximately using & differential anslyser, and he
pointed out that 1f we write Fn.‘(u) = 1",,(“') P (W) in (3) 1t reduces %o
a7 (%) )

aw " {a+ i)
golution E‘n(h-) - e-u/(m-l) can be used as an approximation for large n.

Fn(“-), vhich is Mellor's equation, so thet Mellor's

He also obtained, by rcpeated differentiation of {3) ard eveluation et

W = 0, the ¥aclavrin series for Fn(“-) in the fornm

' - C
(W)~ oM L our A (X ) ow e
an ~ | N4t e C (“-‘_\)L 3l O\-H\"‘ S

vhioh haypens ¢0 be the gane as 1

— e oo

(l-i)u- | =l

As @ =-» 1, this appreaches Mellor's solution. This last form was used,
as a betver cpproxziration than Manor'é, for large n.

To checl: the accuracy 61' his approximation, Riordan discussed the
rouents of the delay distridution, EHe .eulculated the first seven of thesc
exaetly, by deducing from equations (3) a corresponding relation between
the poments, which be was able to salve. His method was eas follows.

If we write
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-7 be ¢ N o <-4
™M - s TR [—m F (w )J Aw. 2 K -& W, )
o

el - |

fOZ‘Rﬂ!,E,B, 4,-

emd N S - g:‘:kk L-—- F:\'(b\-)] dAw = Kk Soot_k—l F,h(k-)u(k

for k= 1; 25 35 svee »
o0 4"
then MK - ("“’C) 7\20(. 'hm,\,k. v
=0
S A E 8w 1 -(1-4)2-(“’5
Alss W"'}\)O:: J-—F“(\&) W = F“ )'=-' 3”0- e al_
o

Integrabing both sides of (3) with respees to W.fzom O to cowe get for
R e ” 2; 3, eow
.g..
) - M — (M) (1+<«) M,
~l(me) My, =M T k
N+ X Mok .
This relaticn was used t¢ find the moments Mk for K o 15 25 3p eee s

For M, the eg aticn is maltiplied byoc and sumaed on n, givirng the resuitl

""’L{o = O(.L““‘ (\"\"‘L)L“"f" Ln"' LOI: -LO|

vhere
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-t

R — “"c/\.)
Loy = 2L My, = St L W

L“ - i(’h-ﬂ") cLh Wﬂn,] 2 "
n ! Wy
Loy = B (n+)L = D gL = (t=et) J
A
s I
- e -4
Thus —-(l-'“(-) = '""(\““L) MI » which gives the valuve

{
™ ‘ - ( \--6(.) » Which is the meen delay of deleyed calls, This is
the same as the mesn deley in the case of service in order of arrival.

%
Riordan then introduced functioms L & defined by L o,k = 2 ol ?""*\,k.-’

|
L o h -
('3—-*-9'-) Mk omd L}k = 2(’7\-&\) (Mard o= (h+y) 4L m,"k (=0, B,
end the gquantity B’k’ defiped s the ratic of the moment Mk to the corres-

e f]

ponding monent for service in order of arrival, Thustk - Lo k U—- kc\‘

which is equal to < \ “‘o() L ﬂ&s_
=i
From tha above recurrance relstions between the momeny, Riordan was

&

able ©o deduce & corresronding relation between the L's whick could be solvaed
end which thus led €0 the determination ¢f the R°s. The first three velues

of Rk gre Yound to be

2. (L)
p I - ¥
R, =t 5 Ra® 2% wd Ra = @=a= -

In this way he vaes able to give the actusl values of the Tiret eight
nozents {including Mo).

Results suggested tioat P{u) might be approximated by the sum of a few

exponential terms, of the form - (1=cl)t
- _‘_‘;'Q_E’ Kz,

F(“)zAn.e >y ‘%‘F\q_—e de o me



S PSS i\l’ A‘L (3 o x., x'.,'a\:
moments,
As en exemple, with 2 exponentials we require
2 e

2
end A.‘X?"f“ PS‘:,,X‘L. :—R‘:ﬁ

Using koovn values of Ry and Ry we find from these equations

- ' . - |
Xl : — LA;': } o 9:“2: p) XL:’L'ALzl ‘+J_%. J

{i.e.) the approximation for P(u), dy taking two terms only is
- w(l=4)(! -!F‘Tz.) _.k(l--i)(\-\"}:;.‘-ﬂ

,\;{Q ~VE )¢ + () e

vhich is a goed £it for a < 0.7 roughly.

Ricrdan concluded that a small number cof exponentinls in the sum {5 5!
is enough to give a goocd fit.

in an eddepdunm to his paper Riordan steted that Pollaczek’s integral
for P{u), referred to in § 2.6, h2d been evalunted numerically by Rice for
values of u up to 140, cnd that the agresment with his cwn values vas clese
enough to suggest that approxication by the sum of a few exponentigls is
satisfactory.

Riordan’s parer appears to be & major contribution to the work on this
problem, firstly becauvse he was eble to evaluste the moments of the distri-
bution exactly and seccndly becsuse he was able to get satisfactory
nmunmerical results dy renlacing the distridbution function by such & cimple
expression as the sum of a few exponentials,

Wilkinson (1933) [/{) carried out simulation tests to check egreement
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with Riocrdan’s resultz. He examined the delays of 3000 calls with ¢ = 2,
@ = 0.9 and 1500 calls with ¢ « 10, ¢ = 0.8, and found sztisfactory agreo-
ment.
2.8 Le Roy, (1937) [6] , cave a discussion of the problem in matrix
notation. He first obltains a formal solution; in matrixz form, which is
effectively a Maclaurin sgeries, of m gysten of first order linear differen-
tial equations with conatant coefficients avd with starting walues for the
functions at the origin. He then discussef the question of fitting by
moments, i.e., he approtimated to a required distribution function by meens
of 2 function of chosen form, having the eare moments (up to a specified
order) as the required function. The form he cho%esv;t
e‘u/[do + dit + detg’:- + vee ¥ dp‘pé;] s Where dp ie o constant a2nd p &
positive integer, and to find the coefficients dp,. he used, Laguerre
polynomials.

He prefer@ithis form to the sum of exponentials chosen by Riordan,
because he consider@the caleculations eimpler, In fact therc seems to be
1ittle differcnce between the two methods in mathawatical couplexity.

He discussef also the following question: given the fumnciion

i % W"
Fiw) = 2 [Aordinrdatie a5 )

(i.e. do’ day s dp are knowa) and its first q moments ¥;, Mo, ... )Iq,

it is required to finde (ep+1,0p+2, ... p+ q) in terms of

_u' ‘bP‘?V' ?

do’ d1p ) dp’ H]' k’ eve Mq’ such that _e d_é' k'
. - Py ‘

has the sawe moments as F{u) defined in {1). r=o v

He now expresses Vaulot's fundemesntel equations (3} in mstrix form

and gives theilr formal solution; effectively a Maclawrin series. For



numerical calculation, however, he prefers the form

-
d_ =7
P P.
from the differential eguations. He also firds a recurrence relaticn

Pu) = e 2 fa, +d@m+ .00 ¢ ] ard he calculstes a {=1), @; ard 4,
between the d_ in a form sinllar to that of Palm's. He shows too that
there is a recurrence reletion betwesn the mements, which can be solved,
and calecuvlates My, M, ¥z and M,.

Using mabrix notation, he discusses Riordan's method of solving the
recurrence relation for the mements, end chows that it 1s effectively
the sexme as his owm.

As a pumericesl example, he takes the values of do’ Qyy doy My, Mo, Ky,
My already found, and ¢ = #, and firds dy, dg, dg apd dg in the expressicn
(1) for P{u). Thea he evaluates P{u) for u = 1.

Tkhe use cof matrix algebra adopted by Le Roy to solve the problem is
interesting. For practical caleulations, however, his method seems to be
complicated, as he was eble to get only 7 of the d-coefficients in hip
pemerical exsrple., Since Riordan seems %0 get & good £1¢ with a eum of
only 2 or 3 exponexstials, the disadvantages of his method arc not importaant
in practice.

2.9 TFipite queue
A situation which clesrly leads to similar equatiors and which is

perhaps more realistic, but which does not seem to bave been discussed
before, is tkat im which cails are chosen at random from & queue which

ia restricted to a finite size k. It is tYue that such a cose ic not
likely to be suitadle for theorctical treatment, but the fact thet
equations (3) now become finite in mwmber makes it possible to solve them
by computer for vaiues of k large enough to be practical and ¢¢ give an

approxination to the result for the infinite gueue.
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Both the equilibrium stace probabliities and the Gifferential
equationg for the deley distridutlon must be modified for this case, In
the transition equaticons of 8§ 2.2 above, v now takes values from O to

e + k; equations (1) becone

_ - G\}}. Ckv
P :-.FZ)..._-i fV=UL¢”'C5T;{EZK$1;

V= e, ey, - ‘@"'k‘))

At
whore vé‘Pvﬂ, Ao Rk
A s . <4
-1 ?é a¥ é’I-'—ea
! s 3 c =
——PO .3/.;0 )’, | ‘ /c-- L

We ave interested in what happens to a call which is delayed and ig
admitted to the gqupwe; the probability that an arriving call is deleyed

but is admitted io 2“‘? -, V*Q‘/c.) J
V=G v Y - fe

end the cobditional probadilily that such @ call, on its arrival, finds
n others waiting is

\=el TP s \=L M= o,1, - --Us-)
P 0= crm o )

Bqations (3) are nov & in ousber (n = 0, 1, ... k - 1), because we are
censidering only calls vhich are delayed but are admitted to the system.
Bince n is the mumber of e¢alls walting vhan the eall in guestion arrives,
the mavimm valus of B i3 kK - 1, %he first (k - 1) eguations are umechangad.
but the lest cne becoues
do B S0 Rl B ey — Bt
A w h Ik k- &




Tacrefore the Kk equaticns nov are

A Bl _ N Eo(w) = (k) B+ BN
__*Au- - N\ WA

(3*)
for M.= o,l,?..---‘-k--‘z.

A_Fk(‘v\) -1 (w)
A « < F‘("- o

Thus finally, the probability that a call which is delayed but is admitted
will be delayed more than ¢ is given by

K-\
Fon) = 2% £ <R
N=o

|-

vith F(0) = 1,
By mecans of the Birius compubter, the equatiecns (3') were solved for a = 0.9
and k « 20, %0 ard 60 and for values of u wp to 50. The resulte sre given
below.
Solution of finite set of differential equations

The absve process involved the numerical selution of 20, 40 and 60
linear differential equations. The right hand side terms arce relatively
simple in that they never have more than three nom-zero terms., A programme
wae written which censtructed the right hand sides and then the equations
were solved by & Runge-Kutta procese. With 20 equations, each cycle tock
less than ! minute, while 40 and 60 equations tock for each cyecle lées than
2 and 3 minutes respectively. The results obtained are shown in Table Fo. !
attached, Ricrdan‘s results for o= 0.9 for the infinite queue are also

glven for comparison,
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A gystem with a fipite nunber of places in the gueve 18 in a sense
not directly comperadle with one vith an infinite nurber, for in the farmesr
our atfention is restricted to calle which galn admission to tkhe gystenm,
valle in the latisr the question of edmicsion does not arise., HNevertheless
e conparisen between Riordan'’s results and ours may be of interest as
indicating hov good an approximation the infinite-number case gives for
practical systoms, which necegsarlly have a finite nuxder of places.

Thus from Table Fo, | we see that the valees of F(u) for k = « and
k = 60 @iffer by less than 10‘3 wvhen v « 15, vhereas at that values of u
the values for k = o and I = 40 differ by pearly 8 x 10™>; on the other
hand, when w i8 as low ae 5 the values of F(u) for k = = end k = 20 differ
by nearly 6 x 1072, Wo can interpret these results for praciical cases
by remeubering that u = %! ¢ the value u = 15 corresponds to 15 average
holfing-times when ¢ = 1, to 1.5 when ¢ «= 10 and to 0,3 vhen ¢ = 50. In
fact from the table it appeesrs that the infinite-quoue results give a
good approximation, even for values of u a3 high as 50, for practical
cases in which the queue ie limited to size 30 or more, whercas the
approxioantion is rather ieaccurate for u as low as 5 when the quaue is
limited to size 20.

Graph Ro. | gives the delay distridbution curve for the finite queve
when k = 60 in comparicon with that for the infinite queus given by
Riordan,



- 35 =

*onend 29TUTIUT I8 9ITNSX 8,CUPIOTE QLA peseduwsd syynsel enstd 93Ty

€680 "0 _mss 0

21622°0 | 249£0 *0 |405%0°0 9101 °0 {LLLE 1 "0 |66€61°0(9L532°0 [8929¢°0 |0000°L Sa.. |
‘d
634200 |6L1€0°0 [g6010 0 | 14600 | 19010 *0| 20960 °0 |160€ ¢ "0 | 96931 0| 8BBLE"0|€69< 'O 0000 L a 7Py
oe=x
91500°0{G6110°0 | SEL10 0 { 16520 0 |4C€RE0 °0| 96LE0 *0 | 19500 “0f 4€6E1 *0f €1622°0| 64114 "0 | 0000°L Sﬂhu
@3
snend
ﬁ JTULIuT
0s¢o°0| 00%0'0] 00%0°0| 0650°0| 00gO*0| COLL'0| OCHL®O| O%6L'0 0982°0| 0OLY°0 | GO0O°L JI03
TN
8 ,UepIOTY
03] $h | oH .__.mm 0 | ST ot | & | o 2 o z
| ‘o§ TV




!

- o " -+ A

oM & R Adhr €N Y )
, ..,t\..mwssl.. T

ey wn W

35-f

e

X
w
.-
! - = - 'O
< T AT T »w.
Q v hh “M. :?..,F_ ' R Nv
t S Htrttrlte ot ot trr
ﬁ ﬁ...T r:;.ﬁ;... ritd <0
+ - " * L 1 LR S b * 9 -4
— M.HH WM_W T.waﬁo.__._ ."MM ' 44 R EE
Z feiangES i Lttt o
u HITH RIS 22
T LR ; . ‘ PRI . b —
.— L8 N.N& __ H¢..> b ..w. M.FF
—- I M T __ -2
‘ 4 . -1 did el ' ' 5 —ll Q
] SR EE MIET RSB O
L) | "
o. Likdd Hidlied [ i i unﬁ-—s
LR il ) ' v 4 ' . E
i il it e gk WS o
—||- WRE ¥ i ] | i DR o
3 11 bl B i PR 8wy gt g 7.2
4 i tjQ® 9%
w T 11 VLIV : by M i 3..\17 S
Rv i} 901 P4 T3k e PLIAL EOO RO B B Ll a3 LIt ; N =
i “ Lot fasefsanipiaec oy ' ‘ ' . 4 ] A
i 111 w W
2 [ | Ll Silaang S -
ol 4 et e u
am . Hi=d ©
R + LS
S G T i1 2
- + o
p : bistia L34 14 . v
ﬂ 1 ' B : O
! i i T <
AN IR RRES it poeuiy =
S I SERRRRR thit ] z
1t e S R p w F—_vQ« v ) . d4 4 44 °
e d B3 thes ot P 4 Y EERR N Bl R N T ‘ ) . ] 4
it i 1 0 J

w4><4m,_a 40 A1\MIQye9dd = n...vu.




.-36..

5. Polssen gxrivals, congteny bholding-time
3.1 Introduction

An aseumptieon which is often mode about holding-time ia that it is
constant. Thic is abt the opposite extreze to expoveatial holding-time,

It has o practical application in telerhony, deing approximately realised
with long-distance calls,

3.2 The equilibrium ctate probabilities for this case were given by
Cromnelin in 1932 [9.], hie argumsnt being as follows. Take the constant
holding-time as wnity. The probadility that the systenm is in a given state
at tha beglmuing of a wmit timg interval is equal to the probability of ths
sam3 glato ot the end of the interval.,. THhe egquations anbiofied'bythei’v
mzy be obtained by the following argument,

Lot us consider the states of the systen at the beginning avd at the
end of a unit interval of time, If the number of calls in the system at
the Degimning is ¢ or less oaxd therz are no mrrivals during the unit time
interval, the nunber of calls at tke end of the interval will be gero (the
nolding-tine beimg unity in this case), ¥hus P @b, ¢ , where

~zsC

bc- zpvummmtydeowemmmmmauem
vul
Premster of the Poisson arrival input,

By sinilar arguments we get

- A
= frc_ab . +-Pc+|

iy a -z ™
Py = g"c'?.'i{' +Feay + T

C4. (8)

28

\;: - A ﬁ‘ - Qo o
- x , &_e4...4+4P € 5
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Using the generating function technigue, the values of Pv are obtained as
follews

COo v o0
Lok 2(2) = 5 2B, e £ =ER1
V=0

V=o

SBinee 05 P S 1, £(z) 18 regular and bounded for | z| < 1. Maoltiplying

equntions (8) by 2%, 8° ..... respectively and adding, we get

-A, al -a Az 2. = al.
£(z)=Ae & +2F,,° ¢ +2R2 2q.e

i4
by
§
=
&
+
M
N,
_d
e ~J

Ny R
oo
a(z-) & il }
O.o Zc.-;F('z') = £ {2- L’ id v-f:—c“l"i B

C
e ir Qc£7—) = 3 z_‘r—?v, '(no that Qc(\) & L&
=0

R PR el e R dG B R,
C
R l2) - & /efc_

PR B e

+%
5
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If this is to give a determinate selution for Po’ Py eeo rc then

o(a)a!-z°e“""mthwtheommﬂberofrwbotnaudoatho

e
unit eirele aan(z) -8 b
Cramzelin gives an analytical proof also of the fact that the equatioa
¢{z) = O has ¢ roots in ond on the unit cirele eand that the only root of

it modulus is wmity, Rote that £ = 1 45 a root ofcze(z) - g° bc - 0,
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pince Qe(I) «b,. Sove can write rov

Q) = 25 = ke (Zmg (2= x) - - = (2 Ren),

vhere A, (n = 1, 2, ... ¢=1) i3 a root of ¢(%) = O such that \)h\<1

Tms & (2) = =) Mt

end k must be such that £(1) = 1.

Hence (c-a)

s = |7 fr= Bl I=had - - oll= Bt}

The tequired Pv are the coefficients of the powers of 2 in the expansican
of (9) when { 2| < 1. Fer practical determination of the valuss of the
P's, bhowever 1% appears %o be more convenient to sclve the equaticns (8)
numerically,

Crommelin vorked out the delay distributicn for order-of-arriwval
service using generating functions and gave a mumerical ecxample for 10
{ives and for traffic inbtensity-d, Curves showing the probabilities of
delgys exceeding various specified times were also given and compared with
the corresponding results for exponential holding-times.

In & later paper, 1933 {3 ] he extended this work.

3.3 Burke, in 1959 { ] ], teok up the problem of the equilibrium delay
distribution for cns ehaunel with constant holding-tize, Poisson arriwals
ond rendem serviece, The preblem for order-ofearrival service bhad already
been widely investigated, in particulsr by Pollsezek in 1930 and 1959
and by Crommelin in 1932 and 1634; but Burke®s appaars to be the first
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attexpt to consider the case of rendom gervice with coustant bolding-time,
Ee discussed the problem for one line,

Be assumes statistical egxilibrium and points out that the delsy
consists of two parts, a fractional part at the beginning, followed by
an integral part. The first paxt is the time from the arrival instant of
the call in question to the first departure epoch after the arrival of
this call., The second part is the time from the first departure epoch
to the time the call in guestion gains service. Since at the first
departure epoch rundom salection frem the waiting calls is cdopted, the
second part of th: delay is statistically independent of the first part.
The probability distridution for the first part 1s e uniform distridution
over the interval O to 1 because of the assumption of random arrivals.

The state of the syotem at the first departure epoch after the
arrival of tho calf in guestion, which 4s deleyed, is the basis ca which
the prodlem is bBwilt, The servieco-time is taken as unity. Burke's
arguments are as givea balow,

let B, - e:1ilidrium probability that a delayed call bas n other
calls waiting vith it at first departure epoch after its errival,
ne 0, 1, ,.. ¢te. There can de n others waiting with it then only if

(1) at the last departure before ite arrival there were J calls
in the system and during the holding-time (n + 1 - J) other
calls arrived (J = 1, 2, .... 0+1) (at a departure epoch,
the call just. finishing service is not ineluded in the
counting)s

(14) a%t the lest departure before its arrivel there were zero calls

in pystem and Quring the holding-time n arrived; thus
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which is the same as P obtained from Crommelin's equations (8) for the
case ¢ = 1,
if, following Burke, wa write G(t/n) es the conmditionnl probability
of a,d.e_l_av___s te given that the delayed call is with n others at the first
depai'tm epoch after ite arrival, and G(t) for the dalay distributicn for
an arbditrary call, ther G(t) « ; f\, a(e/m) =~ - = =~ - ---(10)
Let %he actual delay be T (a ra:d-:m v:.riable), consisting of a fractional
pare 77 followed by aa integral part T'.
(1) ?° is independent of 7", because of the random choice at the
firat departure spoch after the arrival of the call in questicn
(i1) T" has o uniform distribution over (0 to 1) beeause of the rardo:s
. errivel of the aﬁa.
How let us ascume for a given time t, as in the case of T, that the
fractional part is t" and the integral part is t'.
Then Go(Efm) = Provaviraty (T < E\m)
= Pn (T.C E. "Y\.)-i-?r;.['r': ¢’ amdl
e k=]
B (Teb )+ e h(ri

= eé‘_ B (s ilm) + E B (e € Am)eeett
L= o



If we write Probebility (¥' = i/n) @ Q(n), then q (a) = E—i—; end

0 _a., ol (Mgt

Q™ ={1-8] 2 & TR
(, =),

It is possible to write an expression for PA{(T' = i/n) by direct proba-
bility ergunenid, but for camputetion the recurrence relsticn (12) 1s
more convenlent., Freuw (9) we get P, =1 - a and then from P the values
of the P, con be obteived by recurrence frem {8). Then G(t) 1e odtained
by substituting in (10) the velues of G{t/n) and P obtained by the
recurrence relations stated abvove,

Burke gives graphs for the distributicn of delay up-to 130 nolding-
times and compares the recults with those for random-selection gueuss for
exponential holding-times given by Wilkinson, for large occupmncy levels.

Burke®s peper is notable for its ciear statemeant of the assumptions
underlying the solution, for itec emphasis on the fact that the delay
distribution depends essentially on the state of the system at the next
deporture epoch following ¢he arrival of the eall in question, end for
its derivatien of the equilibrium state prodbebilities at that instant.

As will bde seen immediately, Burke's method can up-to 8 point de extended

to systems with more than one line.

3.4 Extenmsion_of Purke'’s formulae for two linss

(1} Eouilibrium state probabilities for c = 2 - comstent holding
time.

Let us consider the case of two lines L; end L» as shown in the figure

belouw, to get the equilibrium state probability )
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(Previcus departure (18t departure epoch
k' epoch on L,) XL after the arrival of A)
L,
o < ¥
t
{
1 b2
» Wb l@
|
farrival of call A

A call A arrives end finds both lines engaged. The first departure epoch
after A's arrival will be denoted by k, and the line on which it occurs
will be called L;. The probability that at k there will be (n + 1) calls
waiting, including A [i.e. (n + 2) altogether in the system - the depart-
ing call 18 not included in the counting] will be denoted by Pye

To find & relation involving the p_ in the equilibrium case ve fix
attention on k', the last departure epoch on L; before the arrival of A.
Then if at k° the number of ealle in the system oxceeds one, k' is exactly
one unit of tims earlier than k, but if at k' the numbder in the syastem io
one or none, k' is more than one unit carlier than k. In that cese, since
both lineg are engaged when A arrives, there is -certain ¢o have been an
errival (of @ call B, say) exactly one unit earlier then k: in arriving
at the relation invelving the Py ve must take into account arrivals
during the (unit) serviee-time of B. 8imilarly, if the nuxber in the
system at k' is two [{i.e.) a eall jJust starts service on L, at k’ and
a call is in process of being served on Ip], there is certain to have been
an arrival between k' and the arrival of A, otherwise I, would not be
engaged vhen A arrives,

It follows then that if there are n callse waiting with A at k,

there could have been § in the system at k' [J = 3, 4, ... (n + 3))



withkh {n + 3 - JJ avrivals (in edditicn to that of A) in the serviee-
time ending et k, or 2, 1, 0 at k', with n errivals in the service-time

ending et k. Thus, since in equilibrium the scate-probabilitieg are

irdependent of the time of k',

! e
,i\"h,:‘ ~‘—+_P*‘-\:P)"""e +? (mm*
e o Allisias +-E\+3 .

This 48 Crormelin’s formule for Pn for ¢ »« 3, Therefore the conditionsl
probability P, for ¢ = 2 is identical with the state-prcbability Pn
for ¢ « 3; end cen be o‘b.tain.ed by solving Creamelin’s equations (8).
(11) Delay distributgen
".-‘.’m’get the con:iitiofzal probability of a delay s ¢, given that the
delayed call is waiting with n others at the first deporture epoch after
its arrival, ve proceed es follovs,
A call A arvives and finds both tie lines L, and L. are engaged. ILet
the first release be at time ¢, afier its arrival, on line L,, apd let
thera te n other ealis ua.iting with it then. The cecond relesse is cn
1o, at tima tp after the nrat releace oo L.
Then 0 < 63 <1, (0<t2<1); 0Kt +t2<1 (1.e.),""o< to < 1 - %3,
I we write 6(t/n, t;, ta} for the conditional probability of a deley
S ¢ io these ciroumstances, aod G(t/ty,ts) as the delsy distributicn
for an arditrery delayed call, vhich arrives & time ¢, defore the first
releage on Ly, which is itself time ty before the first release on Ip,
then

G\(‘&\Ll»l ) i tv G"’Lk\“ ty l’;.) -

N=0 ’--(c)



The delay P consists of a lractiomsl part T' at the beginning (up to the
first releese) end o part 7' after tke first release, wvhich may be integrel,
{if it gains service on line Is,) or partly integral, partly fractional {(4if

it geins service on line Ip). These can de seen clearly frem the figure

ghovn dbelow.

18t departure epoch on L,

* A I\L‘ﬁﬂ
7q e __../; V— I o L In
: ) ta ) )
=ty | tal %
Ay | A
| A A
¥ VR e L2
1st release on Ig
call A errives {vhere Ez =1 - t5)
FIGUEE 1

Lat {T*] denote the integer part of T' and let us assume for a given time ¢
that the frocticnal part 1o t° and the integral part ¢°.
Then G{t/n, ty, ¢, ) = Provedbility ([T°] < t'/n)

+ Probability ([{T°] = t' and fracticrsl part of
T s t"/n)

Let us define Pn(iltg) as the probability that the call in question is
present with n others just before a departure epoch, the next release
beiné at tz (on the other lime) and is delayed i intervals of time.

By en intervel we meen the time between successive departuree on lines
Ly ard I, sterting from the first departure epoch on L;. That is the
time intervals are tz and '1":3 elternately, wntil the call gains service,
Fote that (tp + ta) = 1 &s shown in Plgure 1 sbova.
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"r'-?n\— = (Lk-&-l) and (H¥E)EE 1'“

(where 1 « nunber of intervals of time iy and '5'2 talien alternately firom
fivet relesse to actual departure)

5"%‘? CIAE S AGLPLACLY
o —\-—_Rm[‘ e,+b) & l:'j‘B“B 2.E51) \"]

wvhere 3 end ¢a2 bheve uniform distribution over 0 o 1 since the arrival
of the call 15 random,
The fivst release can be en either line and hence multiplying the

recult by 2, we get

=6 2y
Glelm) = 1] Jow' | 2 Btla)

g S i Ihh?m. (2 \%)de,

+J "db Xt" - (q,b.y-u)lt?;]d.t,ﬂ_}

o
%he value of Pn(i/ta) in the integrerd can he avelvated for cuitadble

values of n, i, ¢2 by meons of the recurrence foramls given below ard

then o nvmerical integration procees can be used to get the value of G{t/n).
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It appears, therefore, that Burke's argument can be extended to the case

of 2 lines;, giving a practical numerical procedure, It was felt, hovever,
that an attexpt to solve the problen by Momte Carlo matheds wonld be mot
only simpler but easier to apply to cacea with more than two 1lines,
3.5 HNonte Carlo ifathod

(1) It is clear that the problem lends itself to investigation by
Monte Carle methods, As a check, 1t was declded first €0 exanine the casc
¢ = 1 in this vay, & sce if good agreement with Burke's resnlts could be
oblained,

A progrome for the 85.:13:3 computer was written to find the state
probavilities in the case ¢ = 1. Using Crormalin's equations (8) when
¢ « 1, the values of P1, ¥Fp ... 2re obtained by & step-by-step process,
staxting with the valuzs of ? a1l o,
M-R'h“-P +P, + Z'P 3 ‘then

P = Rp- "R,\ g Ln)a) amd Po = Ro
The values of R° Bi1s B2 +.. were obtained up to the stage at vhich the
value was .9999 eorrect to & places of decimals,

A Homte Carlo prograame was written in which four digit random pusberc
{interpreied os probabilities to A desimal places) were uged to deteraive

(1) how meny calls are present with the given call at the first

departure epoch after its mrrival, using the values of
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Ry Ris Fo ... already obtained;

(31) whether the given call is chosen for service at & releace;

(2i1) 47 4t is not chosen, how many other calls arrive before the

next relesse,

Thus the history of ezch eall could be followed. The results odbtained
for the delay times of calls were arranged in a fregquency distribution
and the Gelay distridbutien was worked ocut for comporison with Burke's
recults,

For a = 0,9, three seto of independent data, centaining respectively
500, 500 and 428 calis were obtained, to examine the consistency in the
results, Thoy are given below in Table II along with Burke's for comperi-
son, It is evident that the results are fairly consistant and that they
agree satisfactorily with Burke's results, as rend from his graph. The
attached graph Ho. 2 shows the curves of Burke's result and the average
value of the three sets cbtairmed by the Monte Carlo methed., From the
curves it is seen that there is good agreement detween the two for wvalues
of u up to 30, ?orhigharvalmsof;:tholhntccarlommodmmy
few obeervations and this probeadly accounts for the difference between
the results.

The results are given in terms of a1 - 0(t)), as is usual in delay

problems,
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(14) In Crommelin’s equaticns, whenm ¢ > i, the eguatione can no longer
be solved by a stap-by-step process. P'v “>» 0 a8 v -» o , however, so that
21l the P's from a certain stage onward will be negligible to a given
degree of accuracy; if the higher P's are equated to zero, the equatious
can be solved for the lower P's as a finite set of linear algebreic
equations. It was convenient on the computer to put P}S and higher P's
as zero and solve the resulting 35 equations. In fact it was found that
I"5 and onwvards were negligible. The values of Ro’ Ry ... up to the one
vhich, correct to & places of decimals, was egqual to .9999 were obtained
from the P's., The NMonte Carlo programme for this case vas as follows:
Pour digit randem nuzmbers interpreted as decimal fractione were obtained
f::mn the computer and used to represent the probadilities of the wvarious
ra:hd.om occcurrencas in the problem. Of the first twvo random numbers, the
smaller cne wae taken @8 t; and the difference between the two &s tp, so
that ¢t + %2 < 1. Random nunbers in successicn were then yised to represcn
the probabilities of the problem at sach stage to see vhether the arbi-
trary call A cbieined service cn line Iy or Lp and to get the delay time,
Thus the programme finds, by means of random nunbers,

(1) how meny calls are waiting with the given call A ot the first
departure epoch on L, after its arrival, using the values
of Ro’ Ri» Ro ... already obtained;

(31) whether call A gains service on I, at the first departure
epochs
(114) 42 the call A is not chosen for service at the first departur
epoch on L;, how many other calls arrive in time tz defore

the next releasse on line ILoj



, (1v) whether call. A gains service on Lp at the firet departure
~ . epoch o Ipj. . -
- {v) sgain 1f the call A is not chosen for service on line L, at
its first departure epoch, how many other calls arrive in
+- time to> before the next release on line L.
The above processes (11) to (v) are repeated to trace the history
of each call and to find its delay time, The arrivals in (111) aod (v)

“
- : I
follow Foissen distributions with mean a tz and @ tp alternately, and

the programme had to be constructed to take account of this alternation. :
For two independent sets of 1000 calls each, the delay times were
obtained and the delay distributions were worked out. The two delay
distridutions are shown in Table IIXI. It 4is clear from the figures that
there is consistency in the results. OCGraph III shows the two curves.
In Graph IV the results of the two sets cozbined are given. There appesar
to be no results availadble, sven for service in order of arrival, against
vhieh these can be direetly compared. In his 1934 paper, Cromn;e}.f;.;a glves
regults for delays up to 6 holding-times, for constant holding-tims and
service in order of arrivel, for 2 lines dut for a = 0.8, His results are

shown in graph IV. T%The agreement with ocurs appearae to be esatisfactory

and, a2z is tu be expected, hia‘graph lies above ours for small values of ¢
and below for large values of t.

Tt seshs reasonable to conclude that systems inveiving random service
are best examined by Monte Carle methods, for there appears to be no
difficulty in applying the methods not enly to larger Lystems of the
types we have discussed dut also to others in which perhaps more general,
or more realistic, asssumptions are uade regarding the arrival and service-

time distributions.




.55 -

Fuallren wiMC o Wed e haeg World afepeca WA= Wle cAeds. - Y9a
aeddition, the extension, given in § 3.4, of 's vork cen prodably
be applied to more than two lines, and it seems poosible thet this might

lead to o practical mothod of numarieal evaluation of the distridution.,



900 0

Aw°o

£€0°0

160°0

¥6L°0

0ly*0

@ 18°0 =)0 103
® CTTSEEOL)
((3)o-t)

920 ‘0

6£0°0

€50°0

060°0

95%1°0

o4& "0

§523T 0003
¥ ((3)o-1)

9

4

s 4

1

3 aeqy
Jogysex® Aeteq

(TeAT2IE JO JOPI0 UL 897AXSS 203
vﬁamolaav-iggau«baisaiauui

Al FIEVE

2000

£00°0

00°0

€io'o

e ‘0

gc0°o

£50°0

1%

gec o

3 < Awyop

3o AjrrIqeRqeay

((3)o - 1)

€l

cl

i

4

t

3 ey
Jo3vead Lwreg

SES3T 0001 30 W° I

100°0

900°0

600°0

‘o

tt0'0

6w°o

0%0°0

0%0°0

190°0

égo0*0

661°0

%% "0

3 < feyap

30 £33TyqURoad

{(2)0 - ¢

oc

il

oi

6

i

9

4

L}

1

e

3 aeqy
Jo3uax8 feteg

POCE OYIV) o3UCH £q 2 # o X0F UOTINQIIZCTF ompy Lorg

III STV

€WR3¥ 0001 JO 396




an~ ® » - -

L
.
"
7
B
)
4
L
2
'
.

VALVES
\
8!
'.'1-

e
1 T i 11 {1 v
% _ , T T et ! ﬁ ¥4
v..\. 4 i 1 ) 1] . v
] I i
" i | 1t 1 -F—
i i )
L H i . e
1 x”_ M uh w W :
i Jﬁﬂ
i . |
s | o
ﬂ . _I _F,_ | ” F# i mlj.l A
el + { . | -
s [us ! 0 T wi w
. _, T S » e
i : |+ I [ 4 F— o
4 ‘"ﬁr H + _q__ -} 44 m. 2
i i 1 - 3 -
+ - + |
| i i ﬂh i . N
L w ; ind @
“w It I ” o8 ¥ r} t 1._’a - |——B 3
w H (1] il T HITHT g >
3 1 b § | il FEEREN
- 1 i 1 T d. T o - m
< |+ ,. ! q by »m» __ ) m.u ﬂ i o ——I— - 7
2| 1 it i i I _M &
('8 4 11 1 | i . | “ & m A
° n i *w it F > W ,M
.M_ ¢ . 1 1 H Hs .__ 5 4
" L i i) Y ] SERNS v |
B/ ] _f.. o |
- 18 il T i h £
L. ! 80t i T” o
- - 0 -*f..T. i 11 ; L R
- - I
i o u | =
O B o oo A : i T ] -
T .F I .!v,.wfwr.ﬂ?“ “_m % f# v....A:J_ _ A LT U o
[T il i A 5 R ¢ - | | i
44 | _.“_T._L_.__ ,:M P; j ._T _F WL O : I i I C
: e e e 514008 IWER' 0 A 8 L 0 01150 it ; 0 .

JA r¢¢wa 40 hriliavao n_w\.:eul_u

e = o W TR N T T TR



- ~ - -~ e - - - ~
e 7 ol N 4+ ._ 4_ + l.
R _ .. R
- -
_ y
q =
i )i i
_ L
HERILL :
{ 7
Y L)
111901 TS S

FrES

--==o MoNTE CARLD

e

s RESEESEE!

O

$11
1
.

i

———

32 St
RS

.
. & i

%—%_-—x CROMHMELIN'S C=2

|
i T O B A ekt !
it # 7 i -
' 3 sat a , o N - §
; ) . _ : ol | i b
- — ] w . - t—— o — “
| * ; 1l OO MUREY 1 i | R
. = e T - e o Possfia 4 ) I—
st T ILEE R . 3 N 1. N ' \ 1
N _ . 5 g - N W } .Vb
igs i 71 [ P PO I N " by T IERE R }
o resfeenrfie . ‘e . f hree e N i e A
a e o e 4 B frosd| TOpY S {
; i § , _ pivr N
X 1 i
) e L abe |4 bpbay oy 4 b B T E TV Y [AH PR P o
4 . o et febalopddd i 4 " * " + o Porsfrancfecesy |
-+ [IETT B R . levefa bt -t b . o B - jo _ f oo
» hisedssantsssd e -t ) S - PR (FURY PR >t bdi lode &b '
H - . - -
T ’ N LB ﬁ.i LN il
-+ A 1+ > bl e NI ts sl R -
i : 1 AT M v oy =
1 18 ‘ - B | | b o . ST A R e R 1
1«1 )
. ! | USRS FRRR PR RIS I B Kl = [Soa] B B ..m.&.. e
444 v - E7S PR FRt : it ot POY VL IO S IR IPEREY $4 B4
B B D T B O e O S B e Sy S S el REEAR S T
PRR C11111TVN ISPRVESION RS ISR 78 Y 1 «ob oy J_.....;..t‘.‘r%.x s
il .

3q d0 ALiTtavgodd =[(2)0-1]

& C“ RLo h“’
‘s

Mowl
CRoM MELINV

—
-

LAY CURVI

-

I

FiG.No-L

CcCoMPARISeN QF D




. BUEKE, ¥. 7. Equilibteriua Delay Distridution for one champel
with oonstant Holding Tins, Poizson Input and
Random Service - Bell System Technical Journal,
Yol. 38, pp. 1021-1051, 1939.

2. CROELIN, O. D. Delay Probability Formuloe whon the Holding Times
are constant, P.0,B.B.J. 25, 1952, pp. M-350.

5. CROEMELIN, C. D. Delay Probability Formulse, P.0.8.B.J. 26
: 193338, pp, 266278, f

&, BRLANO, A. X. Solution of soms problems in the theory of pro-
' babilities of significance in aubtomatic tele-
phono exchonges; Rlektrotekinkeren 13, 1917,
p. 55 The Life and Works of A. X. Irlang,
Copenhagen, Transactions of Danish Academy of
Toch. Beiences, 1948, pp. 138-195.

5. IB ROY Formulos Matricielles du Caloulanm d¢ lai 4'attente-
dans le oas des appels desseruis ou hasard,
Anralep teleocozmun., Vol, 12, 1957.

6. MBLIOR, J. V. Delayod call formulae vhen calls are served in a
m m. ’oOI'lnoan’ ”. '”. mt ,mo

7. KOLIHA, Blward C., Application of the Theory of Prodability to
Telephane Trunking Problems, Bell System
Techuical Journal, Vol. §, 1527, pp. 461-49h,

8. PAIN, O. Viiritetider Vud Slumpris Avverkad kS, Tekmiska
Naddelanden Frin Kunge, Telegrefatyrelsen
Special mummer fUr telstrafikteknik, Stockbolm,
1946, p. 70. [Tronslated in Tels, English
Bdition, No. 1, 1937, p. 68 - Waiting time with
randon sarved m;i .

9. POLIACZEX, 7, La 1oi d'attoute des appels teldflioniques, Gomptes
Bend. Acad, 8eci. Mﬂ' 282, ‘9.6’ 2P ”5'”5-

10. POLLACZEX, P. Application De la Theorie des Probabilités a des
Problémes PooSs par 1'choocbrement des Rdseaux

t3léphoniques, Ammales des Telecormamicstions,
Vol. 154, Nos. 7 and 8, 1959, pp. 180-182.

11, RICRDAN, Jobn Dalay curves for calls sarved at rendom, The Bell
fiysten Techmical Journal, Vol. 38, 1933,
pP. 100-119, and 1266.



12.

3.

14,

VAULOTY, E.

VAULOR, E.

WIIXINSON, R. I.

Delais d'attente des appels teélephoniques
traite’s an hazard. cmm Acnd, Sei.,
hrll. m, '9“, PP .

Waiting times of tolephone calls served at random,
Am:ho dea Tolecommmmiontions, Vol. 9, No. 1,
1934,

Vorking curves for delayed exponential calls
served in random order, Bell System Technical

Journal, Vol, 32, 1953, pp. 360-383.



