

https://theses.gla.ac.uk/

Theses Digitisation:

https://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/

This is a digitised version of the original print thesis.

Copyright and moral rights for this work are retained by the author

A copy can be downloaded for personal non-commercial research or study,

without prior permission or charge

This work cannot be reproduced or quoted extensively from without first

obtaining permission in writing from the author

The content must not be changed in any way or sold commercially in any

format or medium without the formal permission of the author

When referring to this work, full bibliographic details including the author,

title, awarding institution and date of the thesis must be given

Enlighten: Theses

https://theses.gla.ac.uk/

research-enlighten@glasgow.ac.uk

http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
http://www.gla.ac.uk/myglasgow/research/enlighten/theses/digitisation/
https://theses.gla.ac.uk/
mailto:research-enlighten@glasgow.ac.uk

SECURE EXTENSIBLE LANGUAGES,
DESIGN OF

by

R. PETER McE. MORTON

A thesis presented to the
University of Glasgow,
in conformance with the

requirements for the degree.
Doctor of Philosophy

Computing Science Department,

October, 1975#

ProQuest Number: 10647447

All rights reserved

INFORMATION TO ALL USERS
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te manuscript
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uesL

ProQuest 10647447

Published by ProQuest LLO (2017). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLO.

ProQuest LLO.
789 East Eisenhower Parkway

P.Q. Box 1346
Ann Arbor, Ml 48106- 1346

?
M':

15

Copy a-

I

ACKNOWLEDGEMENTS

It is a pleasure to acknowledge ray debts to
Professor D.C. Gilles for his support, guidance and advice
throughout the course of this research, and to Mr, J,W,
Patterson for his constant fund of enthusiasm, insight
and encouragement without which this thesis would never
have reached fruition,

I, am grateful to Mr, W, Findlay and Dr, D,A, Watt
for their patient reading and invaluable criticism.

I acknowledge my gratitude to the Science Research
Council,and latterly, to the University of Glasgow for
financing this research.

Finally, 1 thank all members of the Computing
Science Department who were of assistance to me in so many
ways, both tangible and intangible.

TABLE OF CONTENTS

CHAPTER 0 INTRODUCTION AND HISTORICAL BACKGROUND
0.0 Introduction 0-1
0.1 Historical Background 0-3
0.2 Specific Problems and Goals of this

Thesis 0-9
0.3 Outline of this Thesis 0-10

CHAPTER 1 EXPOSITION ON EXTENSIBLE LANGUAGES
1.0 Introduction 1-1
1.1 Extensible Languages 1-1
1 . 2 Terminology 1 - 6

1.3 Classification Scheme and Diagrammatic
Representation 1 - 8

1.4 Brief Survey of Existing Extensible
Languages 1-14

CHAPTER 2 DESIGN CONSIDERATIONS FOR EXTENSIBLE
LANGUAGES

2.0 Introduction and Design Criteria 2 - 1

2.1 The Design of Secure Programming
Languages 2-1

2.1.0 Introduction and Overview 2-1
2.1.1 Notion of Security 2-3
2.1.2 Security, the State of the Art 2-4
2.1.3 Influence of the Features of a

Language on Security 2 - 6

2.1.3.1 Human-Oriented View 2-7
2.1.3.1.1 Undesirable Actions in

Programming Languages 2-10
2.1.3.1.2 Notion of Transparency and

Overtransparency 2-13
2.1.3.1.3 Ramifications of Overtransparency 2-18
2.1.3.1.4 Stability 2-24

2.1.3.2 Machine-Oriented View of
Overtransparency 2-27

2.1.3.3 Language Features for Security,
Summary and Conclusions 2-38

2.1.4 Influence of Syntax and Pragmatics on
Security 2-40

2.1.5 Summary and Conclusions 2-46
2.2 Security of Extensible Languages 2-47

2.2.0 Introduction 2-47
2.2.1 Security of the Base Language and

Extended Language 2-49
2 .2 . 2 Security of the Metalanguage 2-51

2.3 Security of Existing Extensible Languages 2-65
2.4 Proposals for a Secure Extensible Language

System 2-72
2.5 String Processing Languages 2-80
2 . 6 Conclusions 2-84

CHAPTER 3 DESIGN OF A SECURE STRING PROCESSING
LANGUAGE

3.0 Introduction 3-1
3.1 General Principles of Language Design 3-1

3.1.1 Design of Features 3-1
3.1.1.1 General Programming Languages 3-1
3.1.1.2 Base Languages 3-9

3.1.2 Design of Syntax and Pragmatics 3-15
3.2 Design of the Snip Base Language 3-17

3.2.1 Summary of Snip 3-17
3.2.2 Snip Features 3-21

3.2.2.1 Control Structures 3-22
3.2.2. 2 Data Structures and Operations 3-26
3.2.2.3 Patterns 3-33
3.2.2.4 Procedures, Functions and Parameters3-38
3.2.2.5 Program Structuring 3-40
3.2.2. 6 Language Extensions 3-42

3.2.3 Syntax and Pragmatics of Snip 3-46

3.2.3.1 Transiatability 3-46
3.2.3.2 Security 3-47

CHAPTER 4 IMPLEMENTATION
4.0 Introduction 4-1

4.1 Implementation Strategy 4_1

4.2 Abstract Machine Modelling 4-2
4.2.1 Design of Abstract Machines 4-3

4.3 Design of the Snip Abstract Machine (SAM) 4-5
4.3.1 The Snip Abstract Machine 4 - 5

4.3.1.1 Conceptual Structure 4 - 5

4 .3.1 . 2 Architecture 4-11
4.3.2 Design of SAM 4-19

4.3.2 . 1 Representation of Snip Data
Structures 4-20

4.3.2.2 SAM Registers and Operations 4-25
4.4 Implementation of SAM 4-29

4.4.1 Run-Time Store and Interpreter
Organisation 4-30

4.4.2 Representation of Snip Data
Structures and Statements 4-30

4.4.3 Instruction-Interpreting Routines 4-35
4.4.4 Conclusions from SAM Implementation 4-37

4.5 The Translator 4-37
4.5.1 Processing of Metalanguage Text 4-37
4.5.2 Processing of Augment Text 4-40

CHAPTER 5 CONCLUSIONS AND FURTHER RESEARCH
5.0 Introduction 5 - 1

5.1 Review and Critique 5 - 1

5.2 Future Research 5-11

APPENDIX A INFORÎ̂ IAL DESCRIPTION OF BASE SNIP
A.O Introduction A-1
A.l Summary A-1

A,2 Notation, Terminology and Vocabulary A - 1

A,3 Identifiers, Numbers and String Literals A - 2

A,4 Constant Definitions A - 3

A.5 Data Types A - 3

A.5.1 Scalar Types A-3
A.5. 2 Structured Types A - 4

A.5.2.1 Vector Types A-4
A.5#2.2 String Types A - 4

A.5.2.3 File Types A - 5

A . 6 Declarations and Denotations of Variables A - 6

A.6.1 Entire Variables A-7
A.6 .2 Component Variables A - 7

A.6 .2.1 Indexed Variables A - 7

A.6 .2 . 2 Substrings A - 8

A.6 .2. 3 String Cursors A - 8

A.6 .2.4 Current File Components A - 9

A.7 Expressions A - 9

A.7.1 Operators A - 1 0

A.7.1.1 Operators — i and SIZE A - 1 0

A.7.1 . 2 Multiplying Operators A-10
A.7.1.3 Adding Operators A - 1 1

A.7.1.4 Relational Operators A - 1 1

A.7.2 Function Designators A - 13

A , 8 Statements A-I4

A.8.1 Simple Statements A-I4

A.8 .1 . 1 Assignment Statements A-14

A.8 ,1.2 Append Statements A - 1 6

A,8 .1.3 Insertion Statements A - 17

A.8 .1.4 Escape Statements A - 1 7

A.8 .1.5 Procedure Statements A-I8

A,8 .1 . 6 Empty Statements A-I9

A.8 .2 Structured Statements A - 1 9

A.8 .2 . 1 Compound Statements A-20
-A.8 .2 , 2 Conditional Statements A-20

A,8.2,2.1 If-Statements A-20
A.8 ,2.2.2 Case-Statements A-21

A. 8 . 2. 3 Loop Statements A - 2 1

A.9 Procedure Declarations A - 2 2

A.9,1 Standard Procedures A-25
A.10 Function Declarations A-25

A.1 0 . 1 Standard Functions A-27
A.11 Pattern Declarations A-27
A.12 Incremental Sections A - 3 0

A,12.1 Define-Statements A-31
A.1 2 . 2 Take-Statements A - 32

A.13 Programs A-34
A.14 Examples A - 3 5

APPENDIX B SNIP ABSTRACT MACHINE (SAM)
B.1 SAM Order Codes B- 1

B.1.1 Monadic Load Group (ML) B-2
B.1.2 Subscripting Group (SC) B- 3

B.1,3 Load and Operate Group (LO) B-4
B.1.4 Store Group (ST) B- 9

B.1.5 String Operation Initialisation
Group (SOI) B-12

B.1 . 6 Load-and-Store String Group (LSS) B-13
B.1.7 Jump Group (J) B- 1 8

B.1.8 Block and Pattern Control Group (BPC) B-21
B.1.9 Procedure Control Group (PC) B-23
B.1.10 Parameter Passing Group (PP) B-2Ô
B.1.11 Library B-29

B.2 Summary of Instruction Mnemonics and
Parameters B-30

APPENDIX C LL(1) GRAMMARS C- 1

APPENDIX D SNIP TRANSITION DIAGRAMS D-1

APPENDIX E SIMPLE TRANSLATION EXAMPLE E - 1

APPENDIX F EXAMPLES OF SNIP SELF-EXTENSION F-1

APPENDIX G CHARACTERISTIC ERRORS IN
PROGRAMMING LANGUAGES G- 1

APPENDIX H CONFLICTS OF BASE LANGUAGE
DESIGN CRITERIA H-1

ABSTRACT

The basic premise of this thesis is that extensible
languages afford the user considerable power and
flexibility. We argue that this flexibility can, and
should, be provided in a secure and error-resistant
manner, but that this objective is not realised in
existing extensible languages.

This thesis first investigates the nature of security
in programming languages, building up a simple and informal
theory of the design of secure languages, and relating this
theory to the notions of structured programming and
transparency.

We use this theory to build a conceptual model for
a secure extensible language and its physical realisation.
We show that existing extensible languages fail to meet
the ideals of this model in total, and proceed to design
an alternative and secure system which builds upon, but
attempts to avoid the pitfalls of existing systems. We
base this system on a string processing language (Snip)
which is itself extensible. The remainder of this thesis
discusses the design and implementation (based on an
abstract machine, SAM) of this language.

CHAPTER 0

INTRODUCTION AND HISTORICAL BACKGROUND

0.0 Introduction

In the last two decades, there have emerged several
hundred so-called high-level programming languages. The
term "high-level" (as opposed to low-level or machine-
oriented) is intended to imply that the expressive powers
of the language make it a valuable communication medium
from the standpoint of a computer user rather than from
the standpoint of a computer itself. There is thus an
implicit assumption that there is a certain degree of
mismatch between user-oriented and machine-oriented
(specification of) algorithms (Els 73).

In contrast to the early days of programming, the
costs of building hardware have fallen relative to the
cost of programming effort; at the same time there has
emerged a greater appreciation of the complexity of the
task of programming. Correspondingly, therefore, there
has been a growing tendency to place the burden of man-
machine communication on the machine rather than on the
human programmer: hence the interest in high-level
languages.

High level programming languages are thus
constructed with the aim of protecting the user from
unnecessary detail in the realisation of algorithms on
a given machine, in the hope of allowing easier writing,
understanding and modification of programs. A further
aim (or more probably effect) which is less commonly
remarked upon is that of reducing programming error. We

u-z

might therefore say that high level languages are more
secure. Thus, with the development of truly user-
oriented languages such as Algol 6o, the user was
protected from the details of hardware realisation by
such innovations as block and control structure.

While most high level languages are formally
universal in the sense that they are capable of expressing
every function which may be "computed" by a Turing machine
(Che 6 9), each language is, in practice, useful only for
those functions which may be conveniently and efficiently
expressed in terms of that language cf. (Per 6 7) • It is
towards fulfilment of these aims of notational
convenience and efficiency that a proliferation of high-
level languages has been built up, each oriented towards
solution of different classes of problem. One of the
drawbacks of this development has been the considerable
task of implementing compilers for a multiplicity of
programming languages on a wide variety of real machines,
each with its own distinctive architecture. One possible
means of tackling this problem - and the one towards
which this research is directed - is through the design
of extensible languages: the expectation is that the
user can extend an existing language, thus protecting
himself further from the details of hardware realisation,
and that the number of distinct high level languages
required will thereby be considerably diminished, thus
reducing the size of the implementation problem. A
further problem arises, however, that while the extensions
defined to a language may provide more protection for the
user, the extension mechanism itself may fail to provide

V - J

sufficient protection from realisation details i.e. this
mechanism may be insecure. This idea which has received
scant attention from designers of extensible languages
forms the basis of this thesis.

In this initial chapter, we consider solutions to
the problem of implementing compilers for the ever
increasing number of high level programming languages;
as noted, we will be particularly concerned with the
solution offered by extensible languages. We point to
the considerable flexibility afforded to the user of
extensible languages, and discuss the advisability of
such unrestricted licence. This leads us to the main
issue of this thesis.

0.1 Historical Background

Having considered the origin of the high level
programming language and its proliferation, we proceed to
consider the various means devised for the economic
implementation of large numbers of diverse languages on
equally diverse real machines. Possible solutions are
as follows:
(a) The design of a single (or perhaps several) ideal

and universal (or shell) language(s), capable of
efficiently and conveniently expressing all
algorithms,

(b) The design of a compiler-compiler or translator
writing syst em capable of generating a compiler from
the language specification.

(c) The design of portable translators which may be
easily transported from one machine to another.

U - 4

(d) The design of extensible languages which may be
tailored to the users* requirements*

We discuss these solutions further

(a) Universal or Shell Language

The idea of a shell language (in the sense that it
contains constructs suitable for all users and all
application areas) has long been considered (cf. (Hal 64;
New 68)). It is generally accepted, however, that the
search for such a language cannot succeed (Hal 6 8 ; New
6 8 ; Sch 70; Sol 74) • A shell language must contain
constructs oriented towards such diverse application areas
as software writing, numerical analysis, artificial
intelligence, commerce etc. The translator for a shell
language is therefore almost inevitably large and slow,
and consequently hard to implement and maintain. We must
expect that programs will frequently incur overheads of
constructs they do not require and also of constructs
which are unnecessarily flexible for their particular
problem area. Perhaps the most serious difficulty, from
the point of view of the user, is, however, encountered
when a single notation is used to convey distinct meanings
in different application areas (Che 6 8 ; New 6 8 ; Sol 74).

PL/1 for example, as far as universality is
concerned, has no facilities for pattern matching or
defining co-routines. Several anomalies arise because
all users are bound to a single interpretation of the
meaning of constructs even if the interpretation contra
dicts well-established usage. We consider two examples:

0-5

Example 0-1

Both logical expressions "5 < 6 < 7" and
"7 6 <T 5” are true in PL/1. This situation arises as
conditional expressions have a bitstring value. Thus
"(7 < 6) < 5" evaluates as " 1 *B < 5’* and hence "1 < 5”.

Example 0-2

The interpretation of the matrix product "A x B"
in PL/1 is the matrix whose ij^^ element is the product
of the ij^^ elements of A and B. (Che 6 8)

That it is impossible to foresee all the
applications of a language and the demands upon it is
shown clearly by the development of major programming
languages; indeed, even were this possible, it is probably
unfeasible in practice to cater for all possible
applications.

(b) The Compiler-Compiler or Translator Writing System

The aim of translator writing systems is to automate
the generation of compilers, given the formal definition
of syntax and semantics of a language. A fairly
comprehensive survey of such systems is to be found in a
paper by Feldman and Gries (Fel 6 8) : development of
translator writing systems is traced from the classic
Brooker-Morris compiler-compiler (Broo 6 3). While formal
description of the syntax of programming languages has
been achieved with reasonable success, there has been
less agreement on how to describe semantics or to assoc
iate a meaning with constructs; the compiler writer is
forced to hand-code semantic functions by specifying the

u-o

generation of appropriate target code.

(c) Portable Translators

We say that a program is portable if it is
relatively easy and straight-forward to move it from one
machine to another (Poo 73); if the effort to move the
program is considerably less than the effort required to
write it initially, then we say that the program is highly
portable. We consider briefly two techniques of
transferring a compiler from one machine to another
(Poo 74).

Portability through High Level Language Coding

Suppose we have a compiler for language A written
in terms of high level language B which runs on machine X
and produces machine code for that machine. Suppose also
that we wish to transfer the compiler for A to machine Y.
If the compiler for B is available on machine Y, then the
transfer is quite straight forward, provided the
compilers are compatible; the compiler still produces
code for machine X and code generation routines therefore
have to be re-written.

The more usual situation is one in which there is
no compiler for language B on machine Y , and the
implementor is faced with the task of first bootstrapping
the compiler for B on to the new machine Y. In this
case, languages A and B may be identical (i.e. the
compiler for A may be written in terms of A itself) and
A may be bootstrapped as follows; The compiler for A
written in A is modified to produce assembly code for Y.
This modified compiler is then compiled by the original

u-/

compiler running on machine X. The resulting compiler
produces code for machine Y, but runs on machine X, The
process is therefore repeated to produce a compiler
which runs on Y. The process of bootstrapping is much
more readily understood using the T-diagram notation
(Ear 7 0). A translator written in language LI to
translate source language L2 to target language L3 is
represented as

L2 --> L3

LI

The bootstrapping process described is illustrated in
figure 0-1.

An alternative method of bootstrapping is to code
a compiler for a simple version of A, A^ (say). A more
advanced version of A, A^ (say) is then coded in A^ and
compiled by the first compiler. This process can be
repeated many times.

Portability through abstract machine modelling

An alternatiye means of achieving portability is
through the design of an abstract machine well-suited to
modelling the data structures and operations of the
language to be transported.

A translator is written to compile programs in
language A to equivalent programs for the abstract machine.
Portability is achieved by first implementing the abstract
machine on the receptor machine and subsequently

m/ c

language A

Y / assembly code for machine Y m/ c

/'m/ c assembly code for machine X

FIGURE 0-1

bootstrapping the translator using the abstract machine.
The classical approach to this problem was the

attempt to design a •’universal” abstract machine capable
of efficient realisation on all real machines, and a
suitable target language for all high level languages
(cf. UNCOL (Stee 6 l)), One of the main reasons that
this has not been put into practice is the difficulty in
specifying a suitable such machine (Poo 74)•

We note the similarity between the idea of abstract
machine modelling and the second form of bootstrapping
discussed above.

We extend these ideas of abstract machine modelling
in chapter 4 #

(d) Extensible Languages

An alternative approach is that of the extensible
language which may be extended and perhaps modified and
adapted to suit the needs of individual users or groups
of users. The expectation is not that a single extensible
language is a panacea for all these problems, but that a
group of extensible languages may reduce the number of
distinct special purpose languages required. We do not
therefore regard portability and extensibility as rival
solutions, but rather as complementary techniques, both
of which provide partial solutions to the problem of
programming language proliferation.

While languages such as Algol 68 and Snobol 4 are
not normally considered as extensible, they do however
include some of the features of extensible languages,
namely the introduction of new operators and data types.

We find it convenient to regard these languages as
restricted forms of extensible language rather than
introduce a new category to describe them.

0.2 Specific Problems and Goals of this Thesis

Having considered the historical background, we
proceed now to consider> in particular, the area of
investigation of this thesis, namely extensible languages.
Extensible languages, by definition, allow thè user
considerable flexibility and power to manipulate the
syntax and semantics of the language concerned. In some
cases, considerable knowledge of the language syntax,
translator architecture and machine code as well as great
ingenuity and skill is involved in introducing extensions.

We feel intuitively, that the greater the freedom
allowed in an extensible language systOm, the greater the
complexity and the greater the opportunity for, and
likelihood of creating meaningless programs (cf, Solntseff
Sol 74)• Feldman and Gries (Fel 6 8), for example,

point to the possible disastrous effects of misuse of
Cheatham*s macros; they suspect also that the sensitivity
of Galler and Perlis* scheme to programming error will
seriously restrict the applicability of that system.
Irons (Iro 70) and Cheatham (Che 6 6) point to the danger
of introducing ambiguity in extensible languages.

If such flexibility is indeed necessary, then
there is perhaps little we can do about this alleged
sensitivity to programming error; however, if, as we
suspect, this flexibility can be circumscribed without
compromising the flexibility genuinely required by the

V — I V

(’’average") user, then we can perhaps improve the
situation greatly.

It is principally towards some solution of this
problem, which has been largely neglected by designers of
extensible languages, that this research is directed.
Essentially, we are considering one aspect of software
reliability, a property which assumes increasing
importance with the ever-widening application of computers,
while the consequences (both social and economic) of
failure to provide it become more serious,

0,3 Outline of Thesis

In chapter 1 we review the current status of
research into extensible languages.

In chapter 2 we consider first the design of secure
programming languages i,e, languages which are resistant
to error. We widen this notion to include extensible
programming languages, and develop a (logical) model for
a secure extensible language. We consider how existing
systems measure up to this model and find that they fall
far short of it. We proceed therefore to design a
more secure system, building upon the more secure aspects
of existing systems. We argue that a string processing
language is a suitable means of realising this extensible
language system; the remaining chapters of the thesis
are concerned with this realisation.

In chapter 3 we design a string processing
language suited to our purposes and capable of implementing
a secure extensible language mechanism.

In chapter 4, we consider how implementation might

be achieved. We design an abstract machine for this
purpose, but touch only briefly on portability.

Finally, in chapter 5, we review and criticise
the first four chapters. We consider the viability of
the system proposed and discuss how far our objective of
designing a secure extensible language has been achieved.

We will frequently refer in the text to the progr
amming languages Algol 60 (Nau 62), Algol W (Bau 71) ,
Algol 68 (Wij 68) and Pascal (Wir 70), To avoid
excessive repetition, we will not normally repeat the
references to these languages.

CHAPTER 1

EXPOSITION ON EXTENSIBLE LANGUAGES

1.0 Introduction

Before proceeding to the body of this thesis, we
find it expedient to review the current conception of
extensible languages and associated terminology. We
introduce also a classification scheme and diagrammatic
representation used in later chapters of this thesis.
Included also is a brief survey of existing extensible -
languages,

1.1 Extensible Languages

Informally, we regard a language as extensible
when the user has the capability of extending and perhaps
altering the meaning of existing constructs in that
language. It has also been suggested (Sch 70; Sol 74)
that the definition ought also to include contraction
to allow exclusion of unnecessary constructs and thus
avoid needless overheads.

According to this definition, every language is
then extensible in the sense that the user can modify its
compiler. Indeed, Scowen (Sco 71) has proposed and
implemented a compiler for the language Babel with
precisely this aim in mind. We propose, however, to
exclude such systems from our definition and to insist
that extensions be introduced in a manner which affords
some degree of independence from the translator
architecture.

According to the original conception, an extensible

language is composed of two essential components (Sch 70):
(l) a base or core language comprising a set of

indispensable primitive constructs,
and (2) a set of extension mechanisms establishing a

framework for defining new linguistic
constructions in terms of already existing ones.

Typically, definitions are pyramided using a particular
version of the extended language as the new base language.

Two advantages accrue from this organisation:
firstly, the problems of portability and standardisation
are reduced, since once the core and extension mechanism
have been transported, it is a simple matter to implement
any extended version of the language. Secondly, the
difficulty of specifying the semantics of the language is
eased since extensions are defined in terms of base
constructs or existing extensions (Lea 6 6),

This idea of extensibility evolved, or, perhaps more
accurately, there was an alternative school of thought:
Extensible languages should permit new language abstractions
to be introduced not only to allow convenient programming
of a particular sequence of actions, but also to allow
efficient specification of particular sets of action which
could not previously be programmed efficiently, (This
is achieved by allowing generation of sequences of machine
code which were not possible before (Gal 74))* These two
schools of thought have led to the loosely defined
terminology of syntactic and semantic forms of extension.
We make the following informal definitions:

DEFINITION 1-1

We say that an extension mechanism allows syntactic

1-3
extensibility if the user has the ability to introduce
explicit modifications to the syntax of a language,

DEFINITION 1-2

We say that an extension mechanism allows semantic
extensibility if the user has the ability to associate
new meanings with the constructs of the language (with
the implication that the extended language is capable of
actions which were not efficiently expressible in terms
of the original base language)#

Galler (Gal 74) obseryes that both forms of
extension should be available.

The system as originally conceiyed is capable only
of syntactic extension, since extensions are defined in
terms of the "current" base language. The simplest means
of handling semantic extension is to introduce a mechanism
similar to that in the compiler-compiler or translator
writing system. Unfortunately, the user has to have a
considerable knowledge of the target language and of the
translator architecture in order to define extensions by
this means (Sol 74). This is clearly none too satis
factory, and as a result, the development of extensible
languages has taken on the character of an attempt to
isolate and generalise various components (cf, below) of
programming languages with the object of introducing
systematic variability in a less machine-dependent and
translator-dependent manner (Sch 70), A consequence of
this effort has been the gradual emergence of a more
abstract view of extensible languages in which the base
language is construed as a set of essential primitives.

minimally organised by the syntax into a coherent language.
Semantic extension is considered as a set of constructors
serving to generate new, but completely compatible
primitives; syntactic extension permits the definition
of specific structural combinations of these primitives.
Thus, extensible languages have progressively assumed the
aspect of a language definition framework which has the
unique property that an operational compiler exists at
each point in the definitional process (Iro 70; Sch 70).

We consider the programming language components
which have been, to some extent isolated:

synt ax
operators
data structures
control structures

We choose to include syntax in this group, since syntactic
extensions could be handled by compiler-compiler methods,
but do not consider this further here.

Data Structures

Data structure extensions cannot easily be defined
by simple syntactic extension or by compiler-compiler
methods because of the difficulty of handling context-
sensitive syntax (e.g. organising type checking through
identifier table processing) and context-sensitive semantics
(e.g. delay assignment until expression has been evaluated,
storage allocation, addressing functions).

Several methods of defining data structures in
terms of machine-independent and translator-independent
abstractions have been devised. Perhaps the best known
are those of Standish (Sta 6 9 } and Garwick (Gar 6 8). The

J.-J

type, addressing function and field designator are
implicitly defined for each data structure introduced.
Cheatham^s scheme (Che 6 6) allows the user to define his
own addressing function. Iron*s scheme (iro 70) provides
no type checking.

Jorrand (Jor 7l) has observed that this is
essentially a syntactic form of extension, since extensions
are defined in terms of a fixed set of primitives and
constructors. He proposes a system to allow semantic
extension.

More recently, Liskov (Lis 74) has introduced the
notion of clusters in which new operators are defined
together with the associated data structure extensions.

Operators

Operator extensions are easily handled by a simple
syntactic extension scheme, but for the difficulty of
specifying context-sensitive syntax (cf. type checking).
Most systems therefore introduce a special construct to
allow specification of type checking without the need to
know the translator architecture (cf. GPL Gar 68).

Control Structures

This is the most recent area in which extensions
have been proposed. Little has been done in this area
apart from the initial proposals by Bagley (Sol 74) and
the work of Fisher (Fisd 70), many of whose ideas have
been incorporated in PPL (Sta 6 9).

We may view isolation of these programming
language components as an attempt to provide an easier
method of extending these particular components. Inevit-

ably, however, in doing so, we circumscribe the range of
extensions which may be defined (compare the relation
between a high level programming language and an assembly
language).

In this thesis we will not be particularly
concerned with the question of whether or not a particular
mechanism supports syntactic or semantic extension; we
shall be more interested in the kinds or range of
extensions that can be defined or the means of defining
semantics of extensions. We therefore introduce an
alternative classification scheme in the following sections,
Before doing so, however, we introduce some terminology:

1.2 Terminologv

For the sake of uniformity, we make use of the
terminology defined by Solntseff and Yèzerski, where
appropriate.

DEFINITION 1-3

We refer to program text expressed entirely in terms of
base language constructs as base text.

DEFINITION 1-4

We refer to program text expressed entirely in terms of
extension constructs as augment text.

DEFINITION 1-^

We refer to program text expressed in terms of extension
or base language constructs (i.e. a combination of base
and augment texts) as extended text.

DEFINITION 1 - 6

We refer to the text produced.as the result of processing

1 — /

or ’’expansion*' of the augment text as the derived text.

We will refer to the metalanguage used to define
extensions simply as the metalanguage (except in those
cases where ambiguity might arise).

DEFINITION 1-7

We refer to the language in terms of which (the semantics
of) extensions are defined as the semantic base. (This
term is particularly useful when the semantic base is
the base language or extended language itself).

DEFINITION 1-8,9 Binding, Binding Time

Binding (cf. ‘ Ibr 74; Weg 6 8 ; Els 73) is a process
of association and specification as a result of this
association. For example, in declaration of an extension,
we include specification of the meaning of the extension
in terms of derived text. The association of the
declaration with the use of the extension in some extended
text specifies the action to be taken to produce
appropriate derived text. This form of binding occurs
during compile-time. The phenomenon of binding time
refers to actions rather than orders. An action is
defined as a process (transfer of information, operations
on operands yielding results) which occurs at run-time.
Orders (instructions) are requests for actions and are the
units in which translators work; they are produced at
translate time.

We distinguish two forms of binding, a static
binding and a dynamic binding. In static binding, we
are primarily concerned with the translator, in dvnamic

binding with run-time interpretation. In this
dissertation we shall be concerned only with static
binding (time) which we shall refer to in later text
simply as binding (time).

Static binding time is the time (or stage in the
translation process) at which the order to be obeyed at
run-time is specified or made more specific. In order to
make this notion of time as unambiguous as possible, the
term "time" is interpreted as widely as possible. Thus,
the translation process is conceptually viewed as taking
a large number of steps, viewed in turn as occurring at
different times,. In practice (for example in a one or
two pass translator) most of these times will be
chronologically the same time.

DEFINITION 1-10

We refer to user-defined statements (associated with an
extension) which are executed at binding time as extension-
time statements (cf. macro-time statements).

1*3 Classification Scheme and Diagrammatic Representation

The classification scheme reviewed in this section
was developed by Solntseff and Yezerski (Sol 74) while the
diagrammatic representation was devised by this author in
attempt to clarify the classification scheme to himself.

Solntseff and Yezerski have noted the growing
number bf extensible languages and the extremely varied
means of achieving extensibility in implementation. They
found it necessary to develop a classification scheme in
order to handle comparisons of different systems. This
classification is in fact a generalisation of the scheme

proposed by Cheatham (Che 6 6) for classifying macro
facilities. Extension mechanisms are grouped on the basis
of the stage.of the language-translation process during
which augment text is processed. From definition 1-9, we
see that this is equivalent to classification according
to our notion of binding time.

Six stages of the language translation process are
considered :
(1) lexical analysis,
(2) syntax analysis,
(3) production of parse.tree or of some other form of

intermediate-language text,
(4) analysis of the intermediate-language text prior

to code generation,
(5) generation of real-machine or abstract-machine code,
(6) . conversion of generated code to a form suitable for

direct interpretation by a real machine.
As noted in definition 1-9, we interpret the notion

of time as widely as possible to avoid ambiguity, although,
in practice, for a given translator, many of these times
will be chronologically the same time and the stages
therefore improperly distinguished.

We thus distinguish six classes of extension
mechanism, one corresponding to each language-translation
process;

(1) Type A or Text Macro Extension

In type A extension, the augment text is converted into
base text during the lexical analysis stage The derived
language is the base language

1-lU

(2) Type B or Syntax Macro Extension

Conversion of the augment text to base text occurs during
syntactic analysis of the source text, but before
generation of intermediate text or construction of a
parse-tree. As in the previous case, the derived text is
the base language.

(3) Type C or Intermediate-Language-Generation Extension

The augment and base texts are translated in parallel into
texts in the same intermediate language. The extension
mechanism operates during the generation of the intermediate
language text (or parse tree).

(4) Type D or Intermediate Language Extension

Both augment and base texts are fully analysed, the augment
text being converted to text in ajn " extended" intermediate
language. Thus, conversion into a homogeneous text in the
standard intermediate language involves manipulation of
intermediate language texts,

(5) Type E or Code-Generation Extension

The augment text is converted in parallel with the base
text into the same real or abstract machine code at code-
genefation time,

(6) Type F or Lead-Time Extension

The augment is converted into a machine code which either
requires further processing before it can be interpreted by
the real or abstract machine or requires that the set of
states of the real or abstract machine be extended by the
statements of the metalanguage.

1-i X

Diagrammatic Representation

We find it useful to indicate precisely how
extensions are processed, according to the classification
of the extensible language and we therefore introduce the
following directed graph representation. It bears some
resemblance to the computation graphs (used to represent
parallel processing):
Processes or stages of translation are represented by nodes
of the graph. Directed edges represent flow of control.
Edges may be labelled by data. Thus, for example, an -
algol compiler might be represented:

Algol 1
compiler

objectprogram
text code

If a node has more than one exit, then the particular
exit chosen is uniquely determined by the data.

We find it useful to provide a means of indicating
that the precise relationship between two or more nodes
is either variable or unspecified. We illustrate this
notation by an example;

Example 1-1

We consider a translator which we assume to consist of two
processes, a lexical analyser and a parsing and code
generating stage. We do not know whether source text is
completely scanned before parsing or whether the parser
calls the lexical analyser to obtain the next text item.
We represent this:

program
text

parser

4-exical
analyser

obj ect ^
code ^

We now consider representation of the various extensible
language schemes (according to the most common implement
ation)
Type A

extended lexically
text organised text

lexical analyser
extension mechanism

substituted
text

Type B

analysisextended
recordtext

S = syntax analyser

substituted
text

1-13

Type C

intermediateanalysis
record

text generator

Type D

extended
intermediate
text

intermedi at e
text

substitution
text

»

In this case, the
extension mechanism E
analyses intermediate-
language text prior to
code generation.

1-14

Type E

obj ectintermediat e,
text code

C = code generator

1.4 Brief Survey of Existing Extensible Languages

In this section, we survey briefly the principal
or representative languages in each class of extension
mechanism. Much of this material is included in the
paper by Solntseff and Yezerski (Sol 74) •

(1) Type A or Text Macro Extension

In text macro extension, the augment text is
converted into base text during the lexical analysis stage.
The derived language is the base language. This form of
extension is commonly known as text-macro extension.

Mcllroy (M c l 6o) realised that macro techniques
could be applied to the extension of high level languages
in the same way as they are used in assembly languages.
He observed also that a powerful language is required for
the specification of extension-time processes. Most of
his ideas have been embodied in subsequently designed
macro processors such as GPM (Str 6 5) and TRAC (Moo 6 6).
These systems define simple text macros which can be
recognised with little or no syntactic analysis of the
source text, '

Systems such as ML/1 (Bro 67) , Stage 2 (Wai 73) and
Cheatham*s (Che 6 6) MACRO facility allow more flexibility
in the form or template of the macro call. Cheatham's
MACRO facility does not allow conditional expansion (i.e.
allows only pure substitution macros).

Macro systems such as LIMP (Wai 6 7) and that
devised by Grant (Gra 71) allow greater flexibility in
the form of macro call by using Snobpl 4 patterns to
describe this form. McAlgol (Bow 71) allows a similar
capability, but leaves recognition entirely in the user's
hands. XPOP (Hal 6 4) includes similar features, but is
oriented towards, assembly languages.

Example 1-2

With the metalanguage definition
MACRO A MEANS »»+B̂ Ĉ+",

the extended text
X = Y #A Z

will give rise to the derived text
X = Y + B * C t Z

Type B or Syntax Macro Extension

Conversion of the augment text to base text occurs
during syntactic analysis of the source text, but before
generation of intermediate text or construction of a parse-
tree. As in the previous case, the derived text is the
base language. This type of extension is commonly known
as "syntactic macro extension". The syntax of the
entire source text is analysed so that in defining the
syntax of extensions, the programmer can make use of the
syntactic classes used to describe the base language.

Cheatham's SMACRO (Che 6 6) conforms to this scheme.
Leavenworth (Lea 66) provides a similar scheme which allows,
in addition, conditional expansion. However, it restricts
extensions to the syntactic classes statement and
expression. Snap (Fisr 73) and PPL (Sta 6 9) provide
similar schemes.

Example 1-3

We might define a for-statement :

STATEMENT MACRO FOR < V ; variable^ := <CE1; expression^
{1 WHILE <E2:expression>J j ^2 m

< $ 3 : expression^]
TO <Cfe4: expression^ j <$: st at emen^^

MEANS
BEGIN LOCAL LI, L2;

LI ; V ;= El ;
L2 ; IF {1 E2 THEN BEGIN S ; GOTO LI }

(3 V ^ E4 THEN BEGIN S ;
V := V + [2 E3 I [-n2 1] GOTO L2 1

END

END; ■

Where J" denotes that the enclosed element is optional
and " I *' denotes alternation. The pair brackets "<[
denote, formal or substitution parameters, while the
brackets "^n J", where n is an integer, in the macro body
indicate that this part of the macro body is to be scanned
if and only if there is a corresponding section in the
current extended text.

A — A/

Type C or Intermediate-Languaige-Generation Extension

In Type C extension, the augment and base texts are
translated in parallel into texts in the same intermediate
language. The extension mechanism operates during the
generation of the intermediate language text (or parse
tree).

Examples of type C extensible languages include
Proteus (Bel 6 9), Balm (Chr 69) > GPL (Gar 6 8) and EPS
(Chr 6 9). All allow some form of extension-time capability.

Example 1-4

We might define a new data type, complex: COMPLEX ^REAL RP,IP j.
If we declare A : COMPLEX, then we may refer to RP(A) and
IP(A).
We might then define complex addition:

OPERATOR A + B PRIORITY + ;
(m l COMPLEX A TAKE
{IFF COMPLEX B TAKE COMPLEX TO BE

COMPLEX (RP(A) + RP(B), IP(A) + IP(B))

IFF REAL B V IFF INTEGER B TAKE COMPLEX TO BE
COMPLEX (RP(A) + B, IP(A))}

IFF COMPLEX B A (IFF REAL A V IFF INTEGER A) TAKE
MACRO B + A]

The construction IFF COMPLEX tests the type of variable A
and returns a boolean value; IFF ... TAKE ... forms an
extension-time conditional in which the consequent is
compiled as a closed subroutine, unless the symbol following
TAKE is MACRO, in which case the call on the operator is

1-10

replaced with in-line coding.

Type D or Intermediate Language Extension

Both augment and base texts are fully analysed, the
augment text being converted into text in an "extended"
intermediate language. Thus, conversion into a homo
geneous text in the standard intermediate language involves
manipulation of intermediate-language texts.

In existing systems, extensions are defined in
terms of the base language and the user is therefore
shielded from details of target code or of target-code
generation. Cheatham's computational macros (Che 6 6) are
of type D. They have been extended and refined by
designers of other type D mechanisms. The scheme by
Galler and Perils (Gal 6 7) is specifically oriented towards
extension of data structures and operations. The form
of data structure extension is fairly limited, relative
to other systems, as only an array-constructor is provided.
However, the designers were particularly concerned with the
generation of efficient code for operations on large data
structures (matrix operations, for example). Standish
(sta 6 9) provides PPL with a much larger number of
constructors for data structure extensions.

The Imp system (Iro 70) allows even greater
flexibility: the user may define at which pass of
intermediate text a particular extension is to be bound.

The actual definition of extensions of this type
is frequently similar to the definition of syntax macro
extensions (cf. example 1-3)#

J. V

Type E or Code-Generation Extension

The augment text is converted in parallel with the
base text into the same real or abstract machine code, at
code generation time.

Systems in this category correspond quite closely
to the compiler-compiler notion. The MAD system (Ard 6 9)
was the first system of this kind; it is characterised by
a translator with fixed structures, but variable tables.
In the ECT system (Sol 74) the structure of the translator
itself is altered: it might be better regarded as a tool
for producing translators rather than an extensible
language as such. Snap (Fisr 73) and Lace (New 68) are
also Type E systems.

Example

We might introduce the statement "INC X [^I,J,kJ 1" to
replace "X [i ,J,k] : = X [^I,J,k | + 1" as follows:

NEW STATEMENT FORM ("INC <variabld> <^xpression> ",
"load address (XRl, <2>), ^ fetch
indirect (XRl, <4>),
* apply '(̂ ̂plus, type (<2 >),* type
(<4>)),
#store indirect (XRl)")..

The first string specifies the syntax of the new form and
the second the sequence of extension-time instructions
which will yield the required target code. An asterisk
indicates that the function which follows is a system
function. The construction <n> , n integer, denotes
the actual parameter corresponding to the n-th syntactic
element in the syntax string.

Type F or Load-Time Extension

The augment text is converted into a machine code
which either, requires further processing before it can be
interpreted by the real/ abstract machine or requires that
the set of states of the real or abstract machine be
extended by statements of the metalanguage. No systems
of this form have been implemented.

Figure 1-1 summarises the classification of the
principal or representative systems according to the
scheme described above. It will be noted that some
systems allow a choice of binding time.

Classification
Language

Text
macro
Type A

Syntax
Macro
Type B

Intermediate-
Language-
Generation

Type C

Intermediate
Language
Type D

Code-
Generation

Type E

GPM (Strachey) ' X
Macro (Mcllroy) X
PL/1 compile-time

facility X
Stage 2 (Waite) X
TRAC (Mooers) X
XPOP (Halpern)

Limp (Waite) X
McAlgol (Bowlden) X
m l / i (Brown) X
Syntax macro (Grant) X

Macros (Cheatham) X X X
Syntax macro (Leavenworth) , X

Balm (XLISP) (Harrison) X
CEL (Spitzen) X
EPS (McLaren) X
GPL (Garwick) X
Proteus (Bell) X

AEPL (Milgrom) X
Algol C (Galler) X
Imp (Irons) X
PPL (Standish) X X X

ECT (Solntseff) X
Lace (Newey) X
Had (Arden) X
Snap (Fisher) X X

FIGURE 1-1 Classification of Principal Extensible Languages*

2 - 1

CHAPTER 2

DESIGN CONSIDERATIONS FOR EXTENSIBLE LANGUAGES

2.0 Introduction and Design Criteria

In the previous chapter, we reviewed existing
extensible languages and pointed to some of their failings.
In particular, we noted that extensible languages are more
"error-prone" than they should be.

In this chapter, we attempt to form a better under
standing of this intuitive notion of error-proneness. We
show why we believe this to be an important design criterion,
illustrate some ways in which existing systems fail to meet
this criterion, and finally attempt to design a system which
is less prone to error or more secure.

The goals in designing an extensible language system
should be to provide a system that is
(a) fast and compact
(b) capable of producing good object code
(c) not excessively error-prone i.e. relatively secure.
Since these goals are not mutually independent, it is not
possible to achieve them all optimally. In this thesis,
we have chosen to give added weight to goal (c), the goal
of security. We justify this decision in the following
sections; we first pursue the notion of security in
programming languages in general, subsequently consider why
this is important for extensible languages, and finally
consider the implications for extensible language systems.
2.1 The Design of Secure Programming Languages
2.1.0 Introduction and Overview

In this section, we develop an informal theory

2 - 2

concerning one particular aspect of program reliability.
The reliability of a particular program is some function
of the number of failures and the consequences of those
failures. Study of reliability thus subsumes such topics
as:
(a) proof of correctness,
(b) robustness and recoverability,
(c) debugging,
(d) program structuring for reliability,
(f) language design for program reliability.
It is this last aspect with which are are concerned in this
thesis and which we have chosen to call language security.

Previous work in this area has consisted essentially
of identifying error-prone constructs and making intuitive
and intelligent guesses about how to improve individual
cases. More recently, however, Gannon (Gan 75) has drawn
up a list of language design decisions which he expects to
influence program reliability.

In order to apply ideas of security to the design of
extensible languages, we need a theory which is able to
predict, more precisely, the effect of design decisions on
program reliability. In this section, therefore, we
attempt to develop a theory of this kind. In so doing,
we make the assumption that a programmer is capable of
correctly selecting appropriate constructs from a
programming language (of "manageable" proportions cf.
Algol 6 0 , Pascal) in which the appropriate use of each
construct is well-defined. We argue also that we cannot
always protect the user from himself, and thus, there
comes a point when security must depend on the goodwill and

2-3
self-discipline of the programmer, himself,

2.1,1 Notion of Security

That the reliability of software is affected by
language design is adequately demonstrated by studies of
"characteristic errors" of programming languages cf,
(Ich 74; Gan 75).

DEFINITION 2-1

We define the security of a programming language to
be some function of the probability of prevention or (at
worst) detection of programming error. Some measure of
the consequence of error and the difficulty of debugging
might also be included.

We Would expect that any measure of the security of
a particular language will be influenced by the skill and
experience of the programmer(s), the complexity of the
problem environment and the suitability of the language
to this environment. It is perhaps more meaningful
therefore to consider how the security of a particular
language might be increased.

DEFINITION 2-2

We therefore define a secure language as' one in which
error is prevented as far as possible and in which failure
to detect error which does occur is "acceptably rare"; in
short, a language which is resistant to error.

Figure 2-1 illustrates the common situation in which
certain errors introduced into a program result in illegal
programs (mapping T^) and thus detection of error, while
others result in legal programs (mapping T.̂) and are not

<zf <£J
g<LU

ûT

— fe

trCf
&wI
&
I-

Ofa'ji

i
WCf
O-
•u
%

0

I
uty>
C
C

k

Cf

V

OfUi

u>erI
?Uf
aOf
o-luOS

29r
VUi

oOfctUJ

i
£Tf
grîdr

<6 — 4

detected* Ideally therefore, is a null mapping.
In this context, we use the term (programming) error

to indicate that the program in which error occurs does
not faithfully represent solution of the particular problem
involved* An error may thus be attributable to logic
error in the formulation of the algorithm, coding error
in the formulation of the program, language error, punching
or clerical error*

2*1*2 Security, The State of the Art

Programming languages have, in general, been designed
with aims such as machine independence, efficiency,
generality. There is, however, increasing interest in
the prevention and detection of programming oversight and
error and a realisation that successful abstraction can
contribute to both these aims cf* Hoare, Galler (Dah 72;
Gal 74).

In the absence of any real understanding of the
functioning of the human brain or of the causes of error
occurring in the programming activity in particular, there
are essentially two ways of approaching the design of
secure languages; an empirical approach, and a combined
intuitive and empirical approach:
(1) Empirical Approach

One approach is to consider the kinds of error which
arise in programming and to deduce ways of preventing (or
detecting) these errors* Various studies of this type
have been carried out (Ich 74; Sim 73; You 74). The work
of Xchbiah and Rissen in studying the characteristic
errors of languages is of particular interest (cf. appendix
6), This approach, however, tends to yield limited(though

2-5
important) results related to simple errors in a local
context e*gi the Algol 6o end-comment is prone to error,
(2) Combined Intuitive and Empirical Approach

A more promising alternative is to use intuition
and intelligent guessing (based on programming experience
and study of characteristic errors) to identify error-
prone constructs and devise (hopefully) more secure
alternatives. This approach is likely to yield more
spectacular advances as it essentially involves the
formulation of a theory concerning secure language design.
Examples of this approach include consideration of the
goto by Dijkstra (Dij 6 8), the pointer by Hoare (Hoa 73),
and scope rules by Wulf and Shaw (Wul 73)#

Weissman (Weis 74) has considered how well
programmers understand programs. By constructing sets of
programs which include features he believed might affect
the "psychological complexity" of a program, he obtained
statistically significant results about factors affecting
program readability: mnemonic identifiers, comments,
paragraphing, Hoare (Dah 72j and Wirth (Wir 74) discuss
the value of abstraction, while Gannon (Gan 75) discusses
various design decisions which influence security.

There appears, howeverJ to have been little general
discussion in the literature as to the precise manner in
which design decisions might be used to increase security.
We suspect that ideas of this kind are widely used, but
presented as "fait accompli" in new programming languages
e,g, Pascal, In the following sections, we therefore
attempt to draw up an informal theory embracing these
ideas.

2 - 6

While we find it possible to consider a more solid
and machine-oriented view of secure language features,
the design of a secure notation seems wholly human-oriented.
We therefore find it convenient to consider notation and
features independently,

2.1.3 Influence of the Features of a Language on Security

In this section, we show essentially that appropriate
"high level” abstractions, with tight restrictions, aid
security. We are forced to make certain assumptions about
programmer discipline and goodwill, but we argue that the
use of structured programming makes these assumptions
plausible.

We consider the choice of the features of a language
for security. We use the term features loosely to denote
the set of primitive semantic computations of which a
language is comprised. While most programming languages
are, at least theoretically, universal (i.e. they can
express any computable function), there is however, a
considerable difference in the sets of computations that
can be conveniently and efficiently specified in each
language, according to the choice of features of the
language cf. (Gal 74)*

The features of a high level programming language
are developed principally with the intention of permitting
the programmer to specify necessary detail, but divorcing
the programmer from the need to consider unnecessary
detail; or, equivalently, they are designed to form an
abstraction which is well-suited to easy and natural
solution of problems in a particular area. Thus, for
example, cf. Hoare (Dah 72), to the hardware of a computer.

2-7
and to a machine code programmer, every item of data is
regarded as a mere collection of bits. However, to the
programmer in Algol 60 or Fortran, an item of data is
regarded as an integer, a real number, a vector or a matrix .
the same abstractions as those that underlie the numerical
application areas for which these languages were primarily
designed.

A second major (and perhaps often coincidental)
advantage of use of a high-level language is that it may
significantly reduce the scope for programming error. As
we shall show, this is true particularly if the abstraction
is carefully chosen. For example, Hoare (Dah 72) observes
that in machine code programming it is all too easy to
make stupid mistakes such as using fixed point addition
on floating point numbers, performing arithmetic operations
on boolean markers, or allowing modified addresses to go
out of range. In high level languages, such errors may
be prevented by using the same operator for all forms of
addition, by disallowing arithmetic operations on boolean
variables, and by subscript checking.

In this section then, we investigate the design of
secure abstractions. In effect we justify the intuitive
notion that a high level and appropriate abstraction
reduces the scope for programming error. We consider
first an intuitive human-oriented view and subsequently a
machine-oriented view on a more solid foundation.

2.1.3.1 Human-Oriented View

We introduce the idea of "undesirable” actions
allowed by a programming language and relate this to Parnas*
idea of transparency. We define also the notion of

2 - 8

instability of language features.
Consider a programmer wolking in problem area PA

and using a high level language Lp^ which is implemented
on a real or abstract machine M,

It is probable that a large number of actions or
sequences of actions allowed in M are non-useful and in
some cases actually undesirable for problem area PA.
The figure below illustrates this situation. We will
assume that M allows only a finite number of alternative
actions and sequences of actions, A^, Ap^ represents the
set of actions and sequences of action required for problem
area PA.

PA

Ideally, therefore, we should regard the appearance
of the actions or sequences of actions represented by
Aj^-ApA as errors when they appear in programs for problem
area PA and hence also in language LpA#

These ideas are of course applicable to any forms
of abstraction, as we illustrate in the following examples.

Example 2-1

Consider a typical electrical plug and socket used
to connect circuits carrying an alternating current. Both
plug and socket have 3 connections: earth, live, neutral.
There are therefore 6 possible ways of connecting the plug
and socket, but only the combination earth-earth, live-
live, neutral-neutral is normally regarded as useful. If

2-9
the plug consists of 3 physically independent terminals,
then any of the 6 combinations may occur with possible
disastrous effects* The commonly used simple abstraction
in which the 3 terminals of the plug are physically bound
together in the form of an isosceles triangle permits the
plug-socket connection to be made (assuming the use of a
hammer is excluded] cf. programmer discipline, below)
in the correct manner only.

Example 2-2

Consider a simple programming language P used purely
to count the number of males and females entering a
building. The programming language allows statements of
the form;

<program> increment <yariable> <constant>
<ÿariable> ::= MALES|FEMALES
^onstant> ::= <^nteger^

The base machine M upon which this language is implemented
allows instructions of the form

<program> ; := <3*rariable> := <^ariable%> + -^onstant>
We list the possible sets of actions of P and B:

P
increment MALES <bonstant>
increment FEMALES <constant]>

B

MALES := MALES 4- <^onstant>
FEMALES ;= FEMALES + <constant>
MALES := FEMALES + <fconstant>
FEMALES ;= MALES + <Jïonstant>

2-10
The last two forms of action are legal on the base machine,
but not useful to our particular problem area. Program
ming language P therefore affords more protection for this
problem area.

Thus, in general, we say that a programming language
is insecure if it allows undesirable (sequences of) actions
to be specified. For a typical programming language,
however, it is neither possible to list all sequences of
actions nor is it such a simple matter to determine
undesirable actions. We must consider the meaning of
undesirable more carefully.

2.1.3.1.1 Undesirable Actions in Programming Languages

In a sense (leaving aside for the time being
arguments of efficiency and alternative algorithms), there
is only one desirable action for a particular problem, all
other specifiable actions being (currently) undesirable.
In other words, ideally we would have a separate single
statement programming language for each new problem into
which we merely substitute the current parameters of the
problem.

This ideal situation may in fact occur in the form
of dedicated machines (e.g. industrial process control).
In general, however, this solution is not economically
feasible: a programming language must therefore be
sufficiently low level to allow solution of an economically
acceptable range of problems. We recall, however, (cf.
section O.O) the trend towards higher-level programming
languages and thus towards less general solutions to
solving problems.

4-ii

The size of the problem area (to which a programming
language is oriented) is thus determined by economics and
the (un)desirability of particular sequences of action is
determined by their (un)desirability to a "significant"
number of problems in the problem area.

We consider some further examples in this new light;

Example 2-3 Variable Types and Coercion

Distinct categories of data objects, such as real
and integer in numerical analysis, apples and oranges
frequently occur in real-world problem areas. In some ‘
cases, these distinctions may be reflected in the
hardware realisation e.g. real, integer. In general,
the association of one type of object with an object of a
different type is not useful and hence undesirable. Thus,
the expression x apples ^ % oranges is. not normally
useful. The association of types and type rules with the
data objects of a program thus ensures that the abstract
machine defined by the programming language does not
violate real-world situations. Conversely, automatically
invoked coercion tends to undermine the benefits of type
checking. Under certain conditions, this may be useful,
as with integer to real conversion in numerical analysis
(cf. widening in Algol 68 (Wij 6 9)); but real to integer
coercion (cf. Algol 6 0) is frequently dangerous.

Pointers may cause additional problems by allowing
access to objects whose types are unknown. This
difficulty is avoided in Algol 68 and Pascal by requiring
that pointers be declared with the type of data they
reference (Hoa 73j Wir 74; Gan 75).

In conclusion, we would expect security to be

2 - 1 2

enhanced by a strongly typed language such as Pascal and
decreased by a typeless language such as Bliss (Wul 70).
The introduction of integer subranges, read-only variables
and user-defined scalars in Pascal may be viewed as a
stronger form of typing.

Example 2-4

We list several simple and obvious undesirable
actions;
(a) The use of the value of a non-initialised variable

is in general, not useful.
(b) A loop of the form " 1 : goto 1" is of little value

except, perhaps for instruction timing.
(c) Programs of the form "goto 1 ; X ;= Z" or "X ;= Z ;

X ;™ Y" are normally regarded as non-sensible (Tsi 73).
 /-----We feel intuitively that appropriate "higher level"

abstractions allow fewer undesirable actions. Thus, for
example, we feel intuitively that a for-statement provides
a more secure way of describing iteration with a known
number of repetitions than does a goto-statement. However,
in this case, the question of undesirability is by no
means so clear cut for several reasons:
(a) The meaning of an "appropriate and higher level"

abstraction is by no means well-defined.
(b) Replacing a goto-statement by a whole series of new

"higher level" control structures does not necessarily
reduce the kinds of undesirable actions permitted.

(c) The question of undesirability is easily coloured
by the effect of notation rather than that of
features alone.

We therefore support these intuitive ideas with a machine-

2-13
oriented approach. Before doing so, however, there are
several further ideas which we wish to consider from a
human-oriented viewpoint. We develop first a notation
to describe these ideas and subsequently discuss ramific
ations of these ideas,

2,1,3.1.2 Notion of Transparency and Overtransparency

We wish to develop a suitable notation to describe
these ideas about security; we find that they can be
conveniently linked to the notion of transparency developed
by Parnas (Par 72) as an aid to the design of hierarchically
structured systems. In this section, therefore, we
consider the terminology developed by Parnas, adapting and
extending it to suit our particular context.

Machine-Oriented Interpretation of High-Level Language
Programs

Since the concept of transparency is machine-oriented,
we must first digress to consider how high-level languages
may be interpreted in a machine-oriented fashion. This
has the dual advantage of allowing easier discussion of
examples and of removing irrelevant syntactic sugaring
which we might otherwise allow to colour our judgement.

We assume that each high-level language considered
is described by a suitable grammar. A program expressed
in terms of a high level language may therefore be
represented by the corresponding parse tree. We consider
the transformation of the parse tree to an abstract syntax
tree in which most of the superfluous (from a machine-
oriented viewpoint) structure is discarded, leaving a more
convenient computational model cf. (McK 74b). This process

2 - 1 4

is illustrated in figure 2-2. Each operator in the parse
tree is associated with the syntactic class from which it
is descended. Syntactic classes and their corresponding
edges are deleted from the structure.

By traversing the abstract syntax tree in pre-order
(root, left node, right node), we may further reduce this
structure to the usual mathematical form of a function or
mapping. In figure 2-2, this function is therefore:

if (<(X,1), := (X, + (53,X)))

where operators are treated as functions. The usual
machine-oriented interpretation is more closely related to
infix expressions than this prefix form:

X, 1, ^ , ifjump, 53, X, +, :=X

This interpretation may be extended to a complete set of
language constructs.

Transparency

We consider a typical stage in the design of a high
level language or a hierarchy of high level languages (or
indeed any hierarchically structured systems). We
assume that we have a well-defined lower level and are
considering the design of the next highest level. . The
lower level may be either hardware or an intermediate level
in our software design. We shall refer to either as the
base machine. We assume that we are considering a
proposal for a new abstraction to result in a new
programmable machine which we shall refer to as the abstract
(or virtual) machine.

We must determine the set of states which is possible
for the base machine under arbitrary programs in the

Il

;
I

I
I0
1sQCOfOU

Û-

octr

I.
aÛ-

COfiU-K

Îa.

£U
c3Ær

zdCt-V)Z'0u

C/Uf
f-zÜJ-
p

I
W
sCl

/Oui

Ui

flf•I-&
a

<ùÇ
«
5

erU)

w
A

a.

w
w

4:
Ï

a
<of
gCt'

1ÏVulOf
a

2-15
’’language” of the base machine. Also of Interest is the
set of state sequences which can be obtained by arbitrary
base machine-1 anguage programs.

For any given implementation of the abstract machine,
we can determine the set of base machine states and
sequences of base machine states which is obtainable by
running programs written for the abstract machine,

DEFINITION 2-5

If the abstract machine and its implementation are
completely transparent, then any base machine state and 'any
sequence of base machine states which we can obtain by
programming the base machine are also obtainable by
programming the abstract machine.

In the more common situation where some base machine
sequences cannot be obtained by programming the abstract
machine, we term the missing state sequences loss of
transparency,

Parnas is interested principally in efficiency; if
the missing state sequences are necessary to efficient
programming of the abstract machine, then this loss of
transparency is undesirable.

However, from the point of view of security, if the
missing state sequences are unnecessary or undesirable
(of, above) then security is increased, and so this loss
of transparency is desirable.

DEFINITION 2-4

If the abstract machine exhibits undesirable
transparency, for a given problem area, we say that it is
overtransparent for that problem area.

2-l6
Thus, if we reconsider examples 2-3 and 2-4, we may

say that programming language abstractions which allow
typeless variables or use of undefined values are over
transparent for general problem areas.

We find it useful to examine the notion of
overtransparency more closely and^to distinguish two
separate categories.

Given that a language is non-ideal, we should not be
surprised to find.that there are several different ways
of expressing a particular action in that language e.g. in
Algol W, a for-statement may be synthesised from while-
and assignment statements.

If the primitives used to synthesise more sophisticated
structures are themselves "desirable” in situations where
more sophisticated structures are inappropriate, then we
say that these primitives are nartiallv overtransparent.
If this is not the case, we say that the primitives are
universally overtransparent.

DEFINITION 2-5

If, for a given application area, a particular
language construct is overtransparent for all problems in
that area, we say that the construct is universally
overtransparent for that application area (since it allows
(sequences of) base machine states which are never required
in any situation),
Example:

In a high level language environment, we consider
untyped variables as universally overtransparent (cf,
example 2-3). Often what the programmer really needs is
not untyped variables, but an,abstraction allowing data

2-17
packing (Wir 74).

DEFINITION 2-6

If, for a given application area, a particular
language construct is overtransparent for the programming
of certain actions, but the transparency it offers is
necessary and useful for the programming of certain other
actions, we say that the construct is partially
overtransparent for that application area.
Example;

The transparency offered by the while-statement in
Algol W, for example, is required to specify iteration
where the number of repetitions is unknown; it is, however
overtransparent when the number of repetitions is known in
advance - a for-statement is more appropriate in this
situation.

We will often refer to universal overtransparency
simply as overtransparency.

How do we determine which features are (universally)
overtransparent? In a non-ideal language, there is a
sense in which every base language operation is (or may be)
necessary to program some action conveniently and
efficiently; and hence, a sense in which no operation is
universally overtransparent. We can neither predict nor
optimally (as regards security or efficiency) cater for all
constructs which might be required cf, (Lis 75). All we
can hope to achieve is a language in which a large number
of problems may be "near-optimally" solved.

In short, therefore, we regard a construct as
universally overtransparent if it is undesirable for (the
programming of) a "significantly” large number of actions.

2-18

where the meaning of "significant" is determined by
economics,

2.1.3,1.3 Ramifications of Qvertransparency

We discuss the relation between overtransparency and
(a) Structured Programming,
(b) Programmer Discipline and Goodwill,
(c) Error Diagnostics,
(d) Formal Specification and Implementation of Programming

Languages,

(a) Structured Programming

As we have observed, it is not usually possible to
present a programmer with the most secure abstraction for
each different problem he has to solve. In general, a
programming language must be low level enough (and hence
overtransparent enough) to be applicable to a whole problem
area. The technique of structured programming cf.
Dijkstra (Dah 72) encourages the programmer himself to
devise an abstraction ideal for his particular problem.
Using the method of structured programming by top-down
stepwise refinement, for example, the programmer refines
a program written using this ideal abstraction, to
successively lower level abstractions, until the program
is completely expressed in terms of the actual programming
language.

In this way, the programmer works with a secure
abstraction at each level of refinement of his program,
allowing only as much transparency as is necessary at each
particular level, Dijkstra (Gut 75), by considering the
amount of reasoning required to understand an arbitrary

2-19
program, has produced an argument supporting the intuitive
feeling that it is easier to produce correct programs by
successive refinement of an abstract program. We might
thus view structured programming as a technique for the
secure handling of overtransparency of a programming
language for a particular problem.

We have three further points to make:
The notion of procedures or subroutines common to

many programming languages can in fact be regarded as a
special case of structured programming in which only a
very restricted form of abstraction is permitted; and in
which refinement of levels is implicitly defined and
automatically carried out,

Henderson and Marneffe (Hen 72; Mane 73) have pointed
to the likelihood of introducing errors in the program
refinement process. It is possible that a secure
extensible language system might reduce the frequency of
this form of error by making the refinement process more
automatic, and debugging more convenient.

Since there is no explicit mechanism to enforce each
level of abstraction at the appropriate point in the
refinement process, successful exploitation of this
technique relies on programmer discipline in using only
features from the current (and not lower) level of
abstraction, and also in the choice of suitable abstractions,

(b) Programmer Discipline and Goodwill

Since programming languages are, in general, non
ideal, we might expect that (in any particular language)
there are many distinct, but semantically equivalent ways
of defining solution to a particular problem cf, partial

2-20

overtransparency. This is indeed the case in existing
programming languages. Leaving aside the question of
different algorithms, we find that this redundancy may arise
in two ways.

In the following examples, we refer to an Algol-like
language which includes for-, while-, if-, goto- and
a s s ignment-st at ement s.
(1) The design of similar language features, each oriented
towards slightly different situations. Thus, for example,
a for-statement might be simulated by a while-statement
together with suitable assignment-, if- and goto-statements.
We might regard the for- and while-statements as different
levels of the same abstraction,
(2) The result of natural redundancy in the language.
For example, an assignment of the form "A := B" (B >0)
might be expressed, rather pathologically as

"A := i ; WHILE A < B DO A ;= A + 1"

Equally pathologically, a goto-statement might be simulated
by a for-statement e.g.:-

GOTO 1 FOR I := 1 STEP 1 UNTIL jzJ DO
^statement 1)> ; vs BEGIN

1:
<^t at ement 2%>

<^t at ement
END ;

-<st at ement 2>

While the first example might be forgiven, most programmers
would regard the second two examples as blatant misuse of
the language constructs. It seems likely therefore that
in the encouragement of secure programs we will be forced
to rely to some extent on programmer goodwill and
discipline. We return to this problem in the subsequent

2-21
machine-oriented discussion and show that with programmer
goodwill, structured programming may relieve this problem.

(c) The Effect of Qvertransparency on Error Diagnosis

We reconsider Parnas* discussion of a hierarchy of
abstract machines (such as a hierarchy of programming
languages). We show that in addition to allowing the
programming in the abstract machine of undesirable sequences
of base machine states, overtransparency may in certain
circumstances cause poor diagnostics.

If an abstract machine allows the programming of
sequences of action which are illegal on the base machine,
or (in a hierarchically-defined system) on any lower level
abstract machine, poor diagnostics may result from an
inability to relate the base machine violation to the true
cause of error, at the appropriate level. This situation
is illustrated in figure 2-3, We find it useful at this
point to consider programs as mappings in a manner similar
to Manna (Mann 6 8), In fact, we have already shown how
a high level language program may be regarded as a function
by considering abstract syntax graphs (cf, transparency
above). We regard a program as a function or mapping from
a set of m (m ^ O) distinct variables x = (x^ x^ ,,, x^),
called input variables, to a set of n (n ^ 1) distinct
variables ÿ = (y^ y^ ••• y^) called output variables. We
will also refer to a set of r distinct program variables
z = (z^ Zg ,,, z^) used to hold intermediate results. We
will assume that it is possible for a variable to be both
an input and an output variable i,e, in general

O ^ i ^ m j n

UJ

t

LU

a
«c.

o'
w
a«V
ÎI
0

j.N
UJ

dJiT

2-22

Thus, if we regard the program section of figure 2-4 as
a complete program, x = (X) and y = (X).

In figure 2-3 then,
(1) represents the set of actions and sequences of

thaxîtions permitted by the i level abstraction,
0 < X < n.

(2) U represents the set of actions and sequences
of actions of the i level abstraction which are
specifiable,.but undesirable, 0 ^ i ^ n,

(3) E^* represents the set of undesirable actions and
thsequences of action of the i level abstraction which

are detected as errors, 0 ^ i ^ n.
Edges represent mappings from (sequences of) actions

at the j t level to the corresponding (sequences of)
actions at the level, 0 ^ j ^ n-1. The sets Ê * are
terminal (i.e. mappings from these sets to lower level
abstractions are null mappings) as they represent detected
errors. Any element of Ej^^ (i.e. any undesirable
sequence of actions at level jtl which is undetected) which
is mapped on to an element of Ej * will thus be detected at
level j. Since errors of this kind are detected at the
wrong level of abstraction, they are frequently badly
diagnosed. Outright failure to detect an error thus
emerges as the worst case of poor error diagnosis. The
above discussion is in fact an over-simplification, but
adequately illustrates the point we are trying to make.

Example 2-'ï
Consider the assignment "I 0.9” where I is integer.

If the programming language invokes automatic type
conversion from real to integer, the value of I after

2 - 2 3

assignment is 0. Division by I at any subsequent (and
perhaps remote) point in the program is likely to cause a
real machine violation which cannot easily be related to
the true cause of error.

Example 2-6
We consider a simple example from the IBM operating

system 0S/360, We can distinguish a user-oriented filing-
system abstraction in which files may be created or deleted,
catalogued or uncatalogued, and a lower level system
abstraction in which files may be attached or detached,-
If an error occurs at user level because a file specified
for attachment is uncatalogued or deleted, this error is
not detected until the system level: at this point "attach
failure" is the sole diagnostic message,

(e) The Relation of Formal Specification and Implementation
of a Language to Qvertransparency

We have assumed until this point that overtransparency
was a matter of concern for language design only. It is,
however easy to show that it is influenced also by the
formal specification and implementation of the language.

In general, neither the language formally defined nor
the language implemented will precisely model the intended
language: for example, it is likely that the formal
specification will not exclude all non-sensible programs
and may not define all intended context-sensitive restric
tions.
Examples;
(1) The two consecutive statements "Z Y ; Z ;=X ; "

are not normally regarded as useful.

2 - 2 4

(2) The bounds of indexed data structures (arrays for
example) may not be properly defined,

(3) Restrictions on the use of variables whose values are
undefined may not be properly specified.
This overtransparency caused by the formal specific

ation or the implementation (or both) reflects, in part,
the inadequacy of the current state of the art (although
vastly improved from the days of Fortran when many features
were insufficiently and hence ambiguously defined).

The current practice is to handle some of the above
noted restrictions by use of English-language qualifiers
in the formal definition and by semantic action in the
implementation. Many restrictions are ignored because
of the difficulty of implementation and hence the result
is overtransparency.

Ideally, a secure language would be defined such that
only sensible programs were also legal. Ideally, also,
legality should be a purely syntactic problem (Wat 74;
Kos 7 1), and it seems unlikely that language restrictions
will be properly implemented until this is the case. In
this respect, the development of formal syntactic definition
systems such as affix grammars (Kos 71) and canonical
substitution systems (Led 6 9) are undoubtedly of assistance.
Affix grammars, for example, are capable of describing
restrictions on variable types and use of variables whose
value is undefined,

2,1,3.1.4 Stability

In addition to the notion of overtransparency, we
feel it is also important to have some notion of the
stability of language features. We say that certain

2-25
language features are unstable if they are "particularly
prone" to undetectable error. We cannot at present define
"particularly prone" formally, but we hope to give an
intuitive understanding of the meaning. We justify the
introduction of the term in(stability) by observing that
this idea (although not described as such) appears to have
been used in the elimination of undisciplined pointers and
side-effects (in functions) in the language, Pascal (Wir
74; Hoa 73), the elimination of the unrestricted goto
(Dij 6 8) and in restriction of scope of variables (Wul 73)
and nested if-statements (Wein 75)* We consider 3
examples:
Example 2-7 The Pointer ;

The following discussion is taken from Wirth (Wir 74):
When programming in assembly code, probably the most

serious pitfall is the possibility of computing the address
of a storage cell that is to be changed. The effective
address may range over the entire store, A very
essential feature of high level languages is that they
permit a conceptual dissection of the store into disjoint
parts by declaring distinct variables. The programmer
may then rely on the assertion that every assignment affects
only that variable appearing to the left of the assignment
operator in his program. He may then focus his attention
on the change of that single variable, whereas in machine
coding he always has - in principle - to consider the
entire store as the state of the computation. The

This notion appears similar to that of "secondary effects"
considered by Beckman (Bee 75).

2-26
necessary prerequisite for being able to think in terms of
safely independent variables is the condition that no
part of the store may assume more than a single name.
Whereas this highly desirable property is sacrificed in
Fortran by the use of the "equivalence" statement, Algol
60 loses it through the generality of its parameter
mechanism and rules of scope. The use of undisciplined
pointers allows reference to variables under a limitless
number of alternative names. Security in pointer handling
can be improved drastically through the following measures:
(1) Each pointer variable is allowed to point to objects

of a single type only (or to none); it is said to be
bound to that type.

(2) Pointers may refer only to variables that have no
explicit name declared in the program.

(3) The programmer must explicitly specify whether he
refers to a pointer itself or to the object to which
the pointer refers (no automatic coercion). This
rule helps to avoid ambiguous constructs and
complicated default conventions liable to misunder
standing, Both Pascal and Algol W provide
disciplined pointers, while Algol 68 and PL/1 permit
relatively undisciplined pointers (Hoa 73b),

Example 2-8 Side-Effects in Functions

The use of side-effects in functions may similarly
destroy the above-noted desirable property of safely
independent variables as in the expression " F (3) X"
where F : INTEGER PROCEDURE F (INTEGER VALUE I);

BEGIN
X := 2i'-X;
I

END F

2-27
Example 2-9 Global Variables

Wulf and Shaw (Wul 73; Gut 75) extend Dijkstra*s
arguments against GOTO *s to global variables - variables
defined and modified over large portions of text. The
authors argue that (a) keeping track of global variables
is difficult and (b) global variables complicate the
process of understanding a program segment whose actions
depend on them. The authors point out that the problem
is not so simple as the GOTO problem since (a) there is
no "single offending construct" and (b) there are no
accepted alternatives which avoid it. Desirable attributes
of a more restrictive mechanism are enumerated;
(1) The scope of a name should not automatically be

extended to inner blocks,
(2) The right to access a name should be granted by mutual

agreement between creator and accessor,
(3) Access rights to a structure and to its sub-structures

should be decoupled,
(4) It should be possible to distinguish different types

of access,
(5) Data definition, name access and storage allocation

should be decoupled.
Instability need not necessarily imply bvertranspar-

ency or vice versa, although in the above examples
instability was corrected by reducing transparency; the
original structures were therefore regarded as both unstable
and overtransparent,

2,1,3.2 A Machine-Oriented View of Qvertransparency

Having shown that a human-oriented view of over
transparency is intuitively appealing, but prohibitively

2-28
difficult to develop beyond the idea of restrictions to
prevent undesirable actions, we attempt to make reparations
with a machine-oriented view.

We argue essentially that under controlled conditions
(such as those provided by top-down structured programming)
use of appropriate"higher level" features in a program
enhances security.

Given that we cannot, in general, design ideal
languages, we are thus also able to deduce the best means
of organising a small number of languages in such a way
that we may solve a wide range of problems in a relatively
secure manner.

Our approach is to show that we can improve the
security of a language for a given program or program
section by
(a) reducing (or minimising) uncheckable redundancy in the

specification of the algorithm, and
(b) increasing (or maximising) checkable redundancy (in the

form of restrictions or assertions).
We will avoid isolated discussion of the security of (the
features of) a language for 2 reasons:
(1) In general, there will be several equally valid and

possibly equally secure means of solving a given
problem,

(2) As we have shown, security depends greatly upon the
particular choice of constructs used to define the
chosen algorithm, and hence, on programmer discipline.

We will thus consider only the means of specifying a
given algorithm or subalgorithm and discuss how it might
be more securely specified.

2-29
Information Theory and Redundancy

From the machine-oriented viewpoint, the design of
secure programming languages has distinct similarities to
areas of information theory (Ash 6 $), Information theory
is concerned with the reliable communication of information,
given that the correct signal is transmitted but that
"noise" may distort and cause errors in the signal received.
In programming, the cause of "noise" is little understood
and its effect may lead to much more complex patterns of
error which may consequently be harder to detect or prevent.
Despite these differences, we nevertheless evaluate two
ideas for detection and prevention of error suggested by
analogy with information theory;
(a) Checkable Redundancy,
(b) Uncheckable Redudancy,

(a) Checkable Redundancv

In information theory, checkable redundancy aids the
detection of error. In the case of programming languages,
checkable redundancy must, at least trivially aid
detection of error (Wir 75)# We define checkable
redundancv to mean redundancy which (1) conveys no new
information about the specified algorithm if correct, but
(2) specifies restrictions or assertions which may be used
to determine the validity of the algorithm (in particular
directions) but which are not evident from the specification
of the algorithm itself.

Checkable redundancy might therefore take the form
of invariants and assertions cf. (Flo 6 7b), We will
assume that assertions hold "at a point" in a program while
invariants are a stronger form of assertion, valid through

2-30

out the entire program. We would expect therefore that
security will be greatest when the number of assertions
and invariants is maximised, (This is a necessary but not
sufficient condition.) Presumably some optimal (minimal)
form of defining all possible assertions and invariants
can be found, but this need not concern us.

Assertions and invariants may be language imposed or
programmer defined. If programmer defined, it might be
argued that with increasing checkable redundancy, the
incidence of error in specifying invariants and assertions
is likely to increase. We accept this as inevitable, but
argue that the situation is at least no worse. We
consider the 2 possible cases;
(1) Error in an invariant or assertion causes failure to

detect the real programming error. This situation is
no better, but no worse than before,

(2) Error in an invariant or assertion causes detection of
an error which does not in fact exist. We argue that
the severity of this error is small as, in contrast to
non-detection of a real error, it ought to be well
diagnosed. Further, assertions can usually be
sensibly defined only during program development; thus
if an assertion is incorrect, we would expect the
program will frequently be incorrect also. If nothing
else, specification of assertions ought at least to
encourage clear thinking and more careful programming.
The action of a program may often appear "stupid" to

the layman - witness the demand for £0,0, The layman has
a background experience of "what is sensible" in this
context or in the real world. Programs should have
sufficient information to allow a similar idea of sensible

2-31
actions in its environment.

Perhaps, strictly speaking, we should not regard
assertions concerning input data or the real world
environment as checkable redundancy since they do contri
bute information to the program. Such assertions should
be part of the program specification. Unhappily, however,
many programs fail to check data either exhaustively or
at all. We consider some examples of checkable redundancy.

Example 2-10 Variable Types

In the association of a type with each program
variable together with type rules defining the permissible
combinations in which variables of particular types may
appear in expressions and assignments, we are in effect
introducing invariant relations (over the scope of validity)
of the objects in a program. Automatically invoked
coercion undermines the strength of these invariants while
subranges, defined scalars and read-only variables impose
further restraints.

Example 2-11 For Statements

Algol 68 and Algol W permit only a disciplined form
of for-statement; in contrast to Algol 6o, expressions
in the for-statement are evaluated once only (at loop entry
time). Although primarily introduced for optimisation
purposes (Hoa 6 6), this does, however introduce assertions
about expression evaluation (Knut 74). This is, however,
at the expense of forcing explicit programming (with
fewer language-imposed assertions) of problems requiring a
less restricted form of iteration. However, as Knuth
(Knut 73), Wirth and Hoare (Hoa 6 6) observe such problems
do not occur frequently in practice.

2 - 3 2

Example 2-12 Local Variables

The declaration of a variable as local asserts that
the variable may be accessed only within a well-defined
scope.

Example 2-13 Programmer-Defined Assertions
Simple deductive assertions would not appear to be

helpful. For example, after executing the statement
"X ;= Y + 1" it appears somewhat banal to assert that
”X = Y + 1"* This form of assertion does not, however
meet our definition of checkable redundancy. Programmer-
defined assertions appear to be useful in two situations;
(1) Assertions about input data or the real world (cf,

above),
(2) When the programmer identifies a special meaning

(such as a procedure or the expansion of some "higher
level instruction" in top-down structured programming)
with a particular series of instructions it is worth
while defining assertions to ensure that meaning is
properly achieved,

e,g. Consider expansion of the abstract instruction mod
in "A mod B" to;

"A - ((A ddv B)*B)"
From the definition of mod, the programmer can make

the assertion 0 ^ A < B,

(b) Ndn-Checkable Redundancy

We would expect, in information theory that non-
checkable redundancy would increase the incidence of error
by entailing the transmission of a larger amount of
apparently unique and non-redundant information. Conversely

2 - 3 3

we would expect that reducing (or minimising) the length
of the signal by avoiding non-useful redundancy would
decrease the incidence of error*

The parallel situation for programming languages is
not so straight-forward. While we would expect that
redundancy in the form of mere repetition will detract
from security by increasing the opportunity for error and
programmer boredom, there are other less easily answered
problems.

In reducing non-useful redundancy in the specification
of the algorithm proper, we often in effect, increase the
number of distinct instructions by developing new special-
purpose (higher level or aggregate) instructions. This
effect may, however, be countered by deletion of lower
level instructions. We make the following assumption about
programmer discipline and programming error.

Assumption

Given a programming language of "manageable
proportions" (e,g, Pascal, Algol W) in which each instruction
has a well-defined and non-overlapping purpose, we assume
that a programmer can, in general, correctly select
instructions appropriate to his purpose. We show (cf,
below) that structured programming can aid this selection
process. If we do not accept this assumption, then we
must accept that no programming language can ever be secure,

it we do accept this assumption, we would expect
reduction (or minimisation) of non-checkable redundancy to
aid security. The minimally redundant form is achieved
when a program consists of a single instruction in which
each parameter is specified once only and there are no

2 - 3 4

intermediate variables. In terms of functions, this ideal
situation is achieved when the function f(x, ÿ, z)
representing the program consists of a single function in
which parameters X and ÿ are minimally specified and z = 0 ,.

We hasten to reassure the reader that we are consid
ering redundancy from a machine-oriented viewpoint. The
so-called syntactic sugaring (considered later) is useful
only from the human-oriented viewpoint and has no influence
upon the security of features.

We observe that the aims of maximisation of assertions
and minimisation of redundancy are not mutually independent.
In a minimally redundant program only environment assertions
can be specified. However, since this ideal is rarely
achieved, the combined approach is generally useful.

Example 2-14

Consider the set operator €, Suppose we wish to
determine whether € (v^ Vg j , where v^, v^; v^ are
variables. In an Algol-like language, this would be
written as "v̂ ̂= v^ V = Vg",

This has machine-oriented form V(— (v^, V 2)>— (v^, v^)).
We may minimise redundancy by using a single instruction
for \/(=()i = ()) and minimising parameter
specification; ^(v^, v^, Vg) or, with syntactic sugaring
v^ € [v2 > Vg j , This is similar to the use of powersets
in Pascal,

In the following examples, we will omit much of the
commentary for the sake of brevity.

Example 2-15

Consider an Algol-like program section which inter-

2-35

changes the values of two variables A and B:
W ;= A; A : — B; B := W;
= seq (;=(W,A), ;= (A,B) , ;= (B,W)) where seq denotes a

sequence of instructions.
We minimise redundancy by deleting the work variable,
minimising the specification of A and B and reducing the
number of instructions to 1 ;

(A,B)
^ A B

Example 2-16

Consider using some form of (real) machine code to
access the element of an array A;

get I
store I in R where R, S are registers
store base address of A in S
fetch indirect R,S

seq (get (I), store (I,R), store BA (A,S),
fetch indirect (R,S))
Redundancy is minimised by avoiding repetition of I, taking
R and S to be implicitly defined by the single instruction
replacing the above sequence: index (A, I)
^ A [l] .

Example 2-17 GOTO-statement

It is already fairly generally accepted (Dij 6 8 ,
Wul 72, Wir 74: Knut 74) that the. unrestricted GOTO as it
appears in Fortran and Algol-like languages is too permissive
for commonly used high level languages and their associated
problem areas. We consider a few examples of minimising
redundancy in sections of programs using the GOTO,

2-36

Example 2-18

Consider the section of program:
IF A = B THEN

BEGIN
P := Ô;
GOTO ON

END:
S := R ;
ON:
— seq (IF(-(A,B), seq(: = (?,&), GOTO (ON))),: = (S,R),label

(ON))
We might reduce (but not minimise) redundancy:
IF (=(A,B), (P,&), := (S,R))
= ^ A = B THEN P := Q ELSE S ;= R

In this case we avoid minimising redundancy since
we expect the two assignment statements to act as true
parameters and to change from problem to problem. For
particular specialised problem areas, however, minimum
redundancy might indeed be useful.

Example 2-19

Consider the program section:
I := 1;
WHILE I < N DO

BEGIN
A [I] := 0;
I := I + 1

END
=seq(:=(I,l), WHILE (<(I,N),:= (index(A,I),#),:-(!,+(!,!))))

We may reduce redundancy by minimising specification of I:

2-37

f (I, 1, 1, N, ;= (index(A, I), jj))
^ FOR I ;= 1 STEP 1 UNTIL N DO A j^lj ;=0

Once again we avoid minimising redundancy if we expect the
statement "A I J ;= jZÎ" to vary. If this is not the case,
then by minimising redundancy, we obtain:

:= (A": 0)
A := 0

Example 2-20

The principle of minimisation of redundancy is
capable of uniformly handling cases of inappropriate
abstraction e.g. for-while construct in Algol 6o where a
simple while-statement would be more appropriate. Consider
the pathological assignment construct (cf, section
2.1.3.1.3(b)):-

A ;= 0; WHILE A < B DO A := A + 1
= seq (:= (A, jS), WHILE (<(A, B), := (A, + (A, 1))))
Minimising, we obtain

f (A, B)
or A := B

Until now, we have accepted a rather intuitive
notion of "higher level" and "less transparent". From the
foregoing examples, it appears as though minimising
redundancy and maximising assertions satisfies these
intuitive notions. We therefore choose to define higher
level and less transparent from this machine-oriented
viewpoint.

The technique of structured programming by top-down
stepwise refinement is by definition a heuristic method
of producing the realisation of a given algorithm in such

2-38
■îfa way that near-minimal redundancy (within the limitations

of the particular language involved) is guaranteed. Thus,
given programmer goodwill, structured programming should
aid the selection of appropriate instructions (cf,
assumption above),

2,1,3.3 Language Features for Security - Summarv and
Conclusions

From an intuitive point of view, we made the
hypothesis that two factors cause insecure features;
(1) overtransparency,
(2) instability.
We observed problems in defining "higher level" and "less
transparent", but hopefully obtained a better understanding
of the basic aims of abstraction,

A machine-oriented view postulated minimising
redundancy in the specification proper and maximising
assertions concerning this specification. This approach
supported our intuitive ideas concerning "higher level"
and "less transparent". It also led us to believe that
structured programming (if properly used) guarantees
relatively secure specification of programs within the
limitations of the language used.

Improving the security of a language by minimising
(reducing) redundancy thus tends to take on the character
of
(a) identifying primitive (to the language) sequences of

instructions which might be replaced by a single

*Near-minimal, since in general there will be several
equally valid expansions.

2-39
aggregate instruction (cf. locally maximising
security), and

(b) identifying primitive (to the language)groups of data
objects which might be replaced by a single
(aggregate) data structure.

The designers of Algol 6o were perhaps the first to
recognise the value of aggregate instructions of this form
e,g, for-statement, while-statement, compound statement,
if-statement. These aggregates have gradually been
refined to produce: case-statements, repeat-statements,
restricted for-statements, while-until statements.

Comparable forms of data structure aggregates have
been realised only much more recently e,g, Garwick (Gar
6 8), Standish (Sta 6 9), Once the importance of data
structure aggregates had been recognised, however, research
rapidly gained impetus and might indeed be considered to
have surpassed interest in aggregate instructions, since
it is now common-place for programming languagesto allow
data structure extensions e,g, Pascal, Algol 6 8 . Current
research into recursive data structures (Hoa 7 3b; Hoa 75)
and clusters (Lis 74; Lis 75) appears to hold at least
as much promise.

To keep languages to manageable proportions, only
commonly occurring sequences of instructions (groups of
data objects) should be identified as suitable candidates
for aggregation. Suppose, in the absence of ideal
languages we were to design a small number of languages
in which we might with relative security handle a wide
range of problems. It follows from the above that the
most successful approach is to identify problems requiring

2-40

similar features with a single language.
Figure 2-4 summarises examples of security-improving

features.

2.1.4 Influence of Syntax and Pragmatics on Security

We consider two topics concerning the design of
secure syntax and pragmatics;
(a) Notation
(b) Instability

(a) Notation .

We consider four aspects of notation; natural
notation, syntactic sugaring, structure and syntax,

(1) Natural Notation

Experience in the use of both natural and program
ming languages suggests that a notation which is natural
(based on the user*s background experience) reduces the
difficulty of formulating correct programs (Wein 71; Gan 75).

For example, in an experiment by Gannon (Gan 75),
errors in arithmetic expressions were examined. Fewer
errors occurred under left-right evaluation with traditional
precedence than under right-left evaluation with equal
precedence (as in API).

If, however, the traditional notation is particularly
error-prone, there might well be a case for persevering
with an alternative notation,

(2) Syntactic Sugaring

We might expect that the choice of suitably mnemonic
syntactic sugaring would reduce error incidence. Weissman
(Weis 74) has in fact produced statistically significant

2-41

%3
0
q

CQ p
0 p

■ bo P p 0
q P TJ q 05

W) •H 03 03 0 q 1
fcO fi a •H 0 G 0 q CQ
G •H q CQ q q 0 p 0 q
•H % o E-t 0 q p p G 0
M 03

b|
bO > ? OS ü G p

•H 0 c3 +) q 05 P 4̂ p 05 c3 p
G H p p q 03 H m p CQ q q q q
•H Ü bo 0 o q 03 0 q 1 p 0 bo 0
X O CQ q p Ü Ü q CQ p 0 CQ
03 H U CQ p q O Ü 0 0 p q CQ

Ph < CO CO P < p q o Ph q

CO
-P
Ü
0 q
•n CQ p

T) q q
o 0 0 Tî

q CQ"P 05
03 p q 05 0 0
P> p 0 q > q
03 [Q «3 0 p p P q
O 05

!>=
T3
q (Q

bO
q 05

CQ
q 1

CQ
q

0 CQ
q

p
ü

0 03 0 "P p 0 0 q 0 # q q
-P q Ü CQ q P p 0 p bO ü q

% q 0 •H p P p CQ X « 0 p
Ü bo < P CO P o q 0 0 q 05

CQ ti 0
0 03 u
Sh T3 bo
Id Ü bo
4̂ d <
03 T)
0 0
k 0̂

05
0 q
W) bD o
03

a

fl
•H
Ü

•H
P
Ü 0 "ëfl d q q 0 p

03 T) q q G p qkd 0
C<

p
CQ

pÜ p
0
p g 0

Gcw q q q 0 p OS G 0 tj
0

bJO
H q 0 G q p 0 p 0

p G 0 0 CQ P q q CQX fl 0 CO 0 p G 03 P p q
-p •H p p OS 0 'S P 05 p o
•H CQ 03 p 03 P p q CQ 1 0 p
k •H bo o p CQ 03 q 1 p CQT3 CQ
b G 0 q «3 1 P o 0 q q 1 q
Ü •H u p 1 0 CQ A P 0 0 q 0
0 a q q CQ I G P A P 0 p
CO •H bO 0 0 03 P O 0 p CQ X

W)
< o IP IP H o P̂ o P 0

fi
•rl q
> 0 P
0 p 03 CQ
u q b P 0 I bO
a •H E4 0 P 05 0 n 05 q q
G 0 O P P P g 0 q 0 p
H Ph O bO 03 Ü c3 ü 0 p

p 0 q 0 p CQ CQ
(W T3 q P 1 q 0 q 0
0 0 03 P Ph g 0 q p CQq > 0 p 03 p 0 0
CQ •(H •H 1 1 p q p p q q
0 rH H 0 p q 03 ü 0 p q
H ’(H Ph = T3 p p A p q P
A XI •H P 03 0 q p 0 u
G 03 Ü 05 Ü ‘n 0 p p ü q
03 -P CQ 05 q CQ a q
X •H 0 0 p q 0 0 p p
W Q iz: % Q Pi Ti 0 CQ

(flQ

(DÎH .
0kO03

1—I
g•H
0 k1
I

:S
U
g
0
0]

Tt
IIN
wp<
§Hk

2-42

results showing that this is indeed the case for variable
identifiers. We would expect further, that the choice
of "meaningful" (in terms of the programmer*s environment)
symbols to delimit parameters in if- and for-statements,
for example, in Algol 6o is much more informative than
the corresponding choice of delimiters in Fortran, Too
much redundancy in this form, however becomes laborious,
unreadable and prone to clerical error (Gan 75).

We might include under this heading commentary,
formatting and paragraphing which Weissman has also shown
to have a significant effect on programming. It is also
interesting to note that similar advice is given to technical
writers (Rat 6 6),

Assertions and invariants may have a similarly
pedagogical effect (cf, section 2 .1,3 .2).

(3) Structure

Appropriate high level structures reflect the under
lying structure which they denote more obviously to the
reader. We suspect that this is because the reader
obtains more information concerning the structure from local
context, Knuth (Knut 74), for example says that GOTO*s
and machine-like programs are devoid of structure or, more
precisely, it is difficult for our eyes to perceive the
program structure.

Example 2-21
Consider the use of GOTO to implement a repeat

statement ;
1: REPEAT
S; vs S
IF —1 B THEN GOTO 1 * UNTIL B

2—43

where B is some boolean expression and S a statement. The
structure of the program section is immediately obvious
from the local context (REPEAT) in the second example,
but not in the first. This difference is trivial in
small programs, but becomes much more critical in larger
programs where the structure may be much more difficult
to discern.

The use of procedures (subroutines) or any other
form of modular decomposition will similarly supply
structuring information.

Besides aiding the understanding of structure, it is
at least equally important that language abstractions do
not obstruct the understanding. We consider two examples:

Example 2-2 2

The use of nested if-statements to denote alternative
courses of action which lie on an equal footing is poor,
as it suggests a nested structure which does not in fact
exist in the abstraction it represents. Figure 2-5 shows
a more appropriate structure. This idea is substantiated
by Weinberg»s research (Wein 75). Weinberg has in fact
suggested imposing restrictions on the depth of nesting.

Example 2-23

Knuth (Knut 74) considers the problem of a loop
which is performed "n + times. One common practice
for avoiding use of GOTO in such loops is to duplicate
the code for the section of the loop to be repeated the
extra ^ time:

The nested if-statement

"IF B1 THEN SI
ELSE IF B2 THEN 82

ELSE IF B3 THEN S3

IF BN THEN SN "

is a poor substitute for the equivalent statement

"ONE OF BEGIN
B1
B2
B3

51
52
53

BN : SN
END "

FIGURE 2-5 Appropriate structuring.

2-44

" S
WHILE —
BEGIN

T ;
S

END "

B DO

n

n +

where B is a boolean expression and S and T are statements.
This structure is better reflected by statements of the
form:
" DO : LOOP -

IF B THEN EXIT LOOP ;
T

OD "
or by the (higher level) structure proposed by Dahl
(Knut 74):

"LOOP:
S

WHILE B
T

REPEAT "
As we have observed cf, section 2,1,3.2., structured

programming provides one means of guaranteeing choice of
structures which reflect the underlying abstractions which
they represent, as well as possible within the limitations
of the language,

(4) Svntax

Wirth and Hoare (Hoa 6 6 ; Hoa 7 3) observe that while
it is of course possible to analyse complex syntactic
structures, that both human and computer have difficulty
in doing so. This results in greater occurrence of error

and misunderstanding on the part of the programmer, and
poor detection of error on the^ part of the machine. It
would seem wise, therefore, to restrict the syntax of a
language to the simplest form compatible with a natural
and suitably mnemonic notation.

In particular, it appears useful to avoid apparently
arbitrary context-sensitive restrictions, when possible
(Wein 7 1). For example, if the GOTO is deleted from
Algol 60 and replaced by suitable higher level control
structures, such restrictions as (a) entry to a block is
through block beginning only, or (b) entry to a for-
statement is through statement beginning only, become
unnecessary,

(b) Rotational Instabilitv

We say that a notation is unstable if it is not
possible to detect commonly-occurring trivial errors such
as mispunching or omission of a symbol.

Example 2-24 Transpositional Errors

Consider the statement "A I] := A I J +1", If the
closing bracket is transposed with the symbols "+ 1", the
error in the resulting text "A ̂ I | : = A I + 1 j " is
undetected (Gan 75). This error may be avoided by using
the equivalent statement "INC A^ I j ",

Example 2-25 Errors of Omission

Omission of the ";" symbol following an Algol 60

comment or end-symbol may cause instability e,g,
"END X X 4- Y", In Algol W, end-comment error is
avoided by restricting the comment at this point to a
single identifier e,g, "END OF_LOOP X := X + Y",

2-46

Example 2-26 Clerical Errors

In Fortran, mispelled identifiers are incorrectly
assumed to represent declarations of new variables.
Mandatory declarations prevent this form of error.

Example 2-27 Defaults

Defaults frequently cause instability by allowing
the programmer to be imprecise when precision is in fact
important (contrast abstraction),
e,g, (1) In Algol 60, parameters are by default,

call-by-name,
(2) In Snobol 4, an assignment expression is by

default the null string, as in "S = ",
Use of "fail-safe" defaults may in some cases be acceptable.

Unstable notation is readily detected by study of
characteristic errors and is usually easily avoided by
simple modifications to notation or features,

2,1,5 Conclusions and Summary

In the foregoing, we have developed an informal
theory of language design for security. As Gannon (Gan
7 5) has observed, we cannot at present hope to prove such
a theory, although we can present supporting evidence.
Previous studies of programming errors (Gan 75; Ich 74)
support rather than conflict with the ideas of this theory
as does the brief survey of characteristic errors of Algol
W and Algol 6o based on Pirie*s work (Pir 75), appendix G,
As we have indicated, this theory ties in with and is
therefore supported by the notion of structured programming.
In the final analysis, however, the value of this theory
will stand or fall according to study of the characteristic

2-47

errors of the extensible language designed in chapter 3 .

Cost
Gannon (Gan 75) has demonstrated that very smallI

changes in language design can have a considerable effect
on security, without involving major sacrifices in other
design criteria such as efficiency or generality.

Use of higher level abstractions will inevitably
reduce efficiency for actions,not specifically catered for,
but provided frequently occurring cases are well-
accommodated, this penalty is small (cf. section 3 ,1.1 . 1

common special cases). Further, Knuth and Dijkstra
(Knut 74) consider the application of "disciplined
optimalisation" to well-structured programs.

Run-time efficiency will however be affected by
checking of invariants and assertions, and compile-time
efficiency by strict enforcement of context-sensitive
restrictions. Against this, however, must be measured
the decrease in programming and debugging effort, machine
time used in development, and the increase of confidence
in software,

2 Security of Extensible Languages

2,2,0 Introduction

Why do we consider security to be such an important
feature in the design of extensible languages? If nothing
else, our reasons for considering security of programming
languages in general, apply equally to the base and
extended forms of extensible languages.

We believe that security is, in fact, of even
greater importance here, because errors can occur not only

2-48

in the usage of the base and extended languages, but also
in the definition of extensions to the base; the variab
ility open to the user is considerably increased (Fel 6 8 ;
Sol 74); the user has the power to define insecure
extensions (e.g. poor abstraction with unstable features).

Furthermore, since extensions are often hierarchically
defined, we might expect "sensitivity" of higher level
extensions to error in the lower level extensions in terms
of which they are defined; if the user is permitted to
modify lower level extensions or base language constructs,
then he has the power to subvert these hierarchically
defined structures.

In this section we shall be concerned principally
with the identification of those areas of the definition
structure which we consider are in general overtransparent
(We need not concern ourselves with choice of syntax and
pragmatics since this varies little from general
programming languages).

We must consider in this case not only the security
of the base language and the extensions defined (i.e. of
the extended language), but also the security of the
metalanguage used to define extensions. We find it
convenient to introduce the following abbreviated notation:

DEFINITION 2-7
We shall refer to that part of the metalanguage (of

an extensible language) used to define the semantics of
extensions as the semantic metalanguage.

DEFINITION 2-8
We shall refer to that part of the metalanguage (of

an extensible language) used ico define the syntax of

z -4 y

extensions as the syntactic metalanguage.
In the following sections, we consider first the

security of the base and extended language and subsequently
the security of the metalanguage.

2.2.1 Security of the Base Language and Extended Language

The concept of security of the base language is
identical to that of programming languages in general; it
therefore needs no further expansion. The same concepts
are also applicable to the extended language but some
expansion is however necessary.

Extended Language
We consider (a) Programmer Discipline and (b)

Overtransparency.

(a) Programmer Discipline

We consider the parallel to the question of
programmer discipline in simple programming languages cf,
section 2.1.3.1.3(b). In the context of extensible
languages, this implies that while we can aim at ensuring
that the metalanguage used to define extensions is secure,
we cannot, in general, ensure that the new language
constructs defined by the programmer are in fact themselves
well-designed and secure additions to the base language.

(b) Overtransparency of the Extended Language

We recall from section 2.1.3 that we consider a
programming language overtransparent for a particular
problem area if it allows non-useful sequences of actions.
In the context of an extensible language, a new dimension
is added to this notion. The aim of extensibility is to

2-50

adapt to new problem areas: to provide constructs more
appropriate for these problem areas. We observed in
section 2 .1.3 , that overtransparency depends on the problem
area. It is therefore possible, that constructs in the
base language which were not overtransparent for the base
language problem area, may in fact be overtransparent for
the problem area which the extended language is intended
to serve.

Since we refer to this result again, we find it
convenient to present it as a simple proposition:

Proposition 2-1

A construct may become overtransparent in the
extended language while being both useful and necessary
in the base language.

Reasoning

The justification for this proposition appears above. /-------
One method of dealing with this form of over

transparency would be to consider extension through a
hierarchy of abstract machines (cf, section 0 ,1); a
completely new extended language being defined in terms
of the original base language or in terms of another
extended version of the language. Overtransparency is
thus avoided in new problem areas as only constructs of
the current version of the language are accessible.
Figure 2-6 illustrates this system. In most conventional
forms of extension mechanism, it is (usually) possible,
at any point to access any construct from the base or
any extended version of the language.

f ,' y'-x \
E 2 V

\ i f \I I l BASE I
\ '

/

(a) Conventional form of extension mechanisms.
Dialects indicated in the diagram are BASE,
BASE jj El, BASE El \J E2, Broken rings
indicate that inner levels are also accessible.

E2
El

BASE

(b) Extension by bootstrapping. Dialects indicated
in the diagram are BASE, El, E2. Solid rings
indicate that inner levels are inaccessible.

FIGURE 2-6 Extended Language and overtransparency

2,2,2 Security of the Metalanguage

Since the metalanguage used to define extensions can
be regarded as a programming language, our existing notion
of security of programming languages is applicable. We
have little to add in the area of choice of syntax and
pragmatics for security. However, the implications of
overtransparency for the metalanguage has received little
attention and is therefore worthy of individual
consideration,

Overtransparencv of the Metalanguage

Typically, an extension is added to the base language
by defining its syntax in a syntactic metalanguage such
as BNF, for example; usually this structure is related to
the grammar of the existing language, in order to define
the context in which it is applicable.

The semantics of an extension is defined in a
semantic metalanguage such as real or abstract machine
code, or text of the base and/or extended language. This
definition is related to the corresponding part of the
syntactic definition. Semantic definitions are frequently
hierarchically structured.

Example 2-28

We consider the definition of a while-statement in
an Algol 6 0-like language. We introduce this construct
by modifying the existing syntactic class <statement> .
The production

<statement> <^if-statement> j <assignment statement^
<[d o-stat em ent>

2-52

becomes
<statement> : ;= <pLf-statement)> <assignment-statement>]

^o-sbabement]> | <^while-statementT>
<5^hile-statement> ;:= WHILE c^xpression^ DO <fetatement>

We might define the semantics of this construct by
specifying the semantically equivalent base language
constructs:
"DO : LOOP

IF <expression> THEN <;statement> ELSE LEAVE LOOP FI
lOD " -

We must investigate what we feel is overtransparent
in these forms of hierarchical structures. Before doing
SO) however, we digress to consider the general forms and
representation of these structures and the manner in which
they are modified. We consider (a) Syntax Graphs and
(b) Semantic Graphs,

(a) Syntax Graphs

We can represent syntactic metalanguages which
correspond to Chomsky Type 2 grammars (Hop 6 9) by a directed
graph. We call this graph the syntax graph;
(1) Each non-terminal or terminal of the grammar is

represented by a node of the graph,
(2) For each production of the grammar, a directed edge

is drawn from the non-terminal on the left-hand-side
to each terminal or non-terminal on the right-hand-
side of the production.

This representation does not distinguish different
alternatives in the definition, nor does it associate an
order with the edges: this is however irrelevant to our

2-53

purposes here* . In addition, this representation is
unsuitable for context-sensitive grammars (i.e. Chomsky-
Type 0 and 1), but since we use the syntax graph for the
purposes of illustration only, we can afford to ignore
this short-coming.
Example;

We consider the type 2 grammar;
S ; ; = a A S S ; ; = a
A : ; = S b A A ; ; = b a
A S ‘S

where S, A are non-terminal and a, b are terminal symbols,
The corresponding syntax graph is;

When extensions to a language are defined, the
syntax graph may, in general, be modified by deleting or
replacing existing nodes and edges or by inserting new

2—54

nodes and edges in the syntax graph. In some systems, new
nodes are always joined to existing nodes by one or more
edges i.e. the modified syntax graph is connected ; in
other systems, this is not the case i.e. the modified
syntax graph is disconnected.

(b) Semantic Graphs
Although rather artificial, we find it useful, at

least conceptually, to represent semantic features by
nodes of a graph. The semantic features of a language
or its extensions may, as we have seen, be defined
hierarchically or in terms of a real or abstract machine
code. As in the case of syntax, we can represent
semantic definition by a directed graph, which we call the
semantic graph;
(1) Each feature of the language is represented by a node

of the graph,
(2) A directed edge is drawn from each node to each of

the nodes (if any) in terms of which this feature is
defined.
In general, although nodes may be hierarchically

defined, they may not be mutually recursive; semantic
graphs, therefore, are usually of a much more restricted
form than syntax graphs.

Example 2-29

We consider the definition of typical high level
language control structures. The base language consists
of a conditional-statement, an escape-statement and a
do-statement, While- and repeat-statements are defined
in terms of these, and a for-statement in terms of the
while-statement. The corresponding semantic graph is as

follows:

Since the semantic graph is generally a fairly
simple graph, it is usually possible to distinguish distinct
hierarchical levels* As in the case of syntax graphs,
extensions may be introduced by replacing or deleting
existing nodes and edges or by defining new nodes and
edges* In this case, the modified graph is always
connected.

Model of a Secure Extensible Language System

Having considered simple models of definition
structures for syntax and semantics of base languages and
the manner in which these may be modified to introduce
■'extensions,'“we proceed now to consider overtransparency of
these models. We present the results of this investigation
as "Simple propos±-bions followed by stronger assertions
which can not, in general be proved, but merely
substantiated.

From these simple propositions and assertions, we
deduce properties of a model for a secure extensible
language system. We emphasise that at this point, we
are concerned principally with the theoretic aspect of this
model, paying less attention to efficiency or practicality
(contrast realisation, below). That is, we distinguish
two structures; the logical structure of the model and
its physical structure. The primary concern at this
stage is to build a good logical structure - one which is
secure, A good logical structure, however, does not
necessarily imply a good physical structure - one which
is efficient.

Proposition 2-2

Suppose the semantics of extensions are hierarchically
defined. Consider a metalanguage abstraction, X, which
allows subversion of the semantic base (e.g. the base
language together with existing extensions) in terms of
which some extension is already defined; and a metalanguage,
Y, which does not allow subversion, but is otherwise
identical to X, Then X is more transparent than Y.

Reasoning
DEFINITION 2-9

Consider a hierarchically defined structure in which
one of the (higher level) components L, say is defined in
terms of (among others) a (lower level) component M say.
We say that the structure is subverted if the meaning of
M is altered (while the definition structure of L remains
fixed)•

Proposition 2-2 is thus trivial, and true by

%-b/
definition. However, we regard it as important as we
consider the form of metalanguage described both unstable
and universally overtransparent, This, we cannot prove,
but justify as follows.

Consider a hierarchy of extensions (whose semantics
are) defined in terms of lower level extensions and base
language constructs e.g. as in example 2— 29* If the
metalanguage abstraction allows the subversion of some
node in the structure, then the meaning of each and every
extension defined (either directly or indirectly) in terms
of this node is altered at one and the same time. We
compare this situation to the use of side-effects or
undisciplined pointers in programs, or to the modification
of programs written in conventional programming languages.
Here, experience has shown it difficult to take into
account all the implied effects on perhaps remote program
parts (cf. secondary effects (Bee 75))* Hence, we
consider languages which allow subversion of the semantic
base, unstable.

We do not in any case, expect the ability to
subvert lower level structures to be particularly useful.
Hence, we consider the ability (universally) overtransparent
It would, however, be possible to allow re-definition of
features which do not form the definition base of any
other extension without incurring the hazards of subversion.

Conclusions from Proposition 2-2

We introduce a conceptual notion to handle this
problem of newly defined extensions interfering with the
semantic base. It is convenient to consider that
extensions are defined by a series of preprocessors. For

z-5»

example, suppose we have a base language B and processor
Pg and we subsequently define extensions E^, E^, E^ (with
associated preprocessors P^, P^^ P^) in that order. If
we have a program in the extended language 1^^^,
it can be translated by activating the preprocessors in
reverse order of definition. We illustrate this in
figure 2-7 ,

The preprocessors must be applied strictly in reverse
order of definition, in order to prevent subversion of the
semantic base.

This conceptual view is useful, as it apparently
frees the user from the need to know the architecture of
the existing processor(s). It protects the integrity of
processors (and not of the language) so that variability,
in the extended language,of base language constructs is
still possible.

Proposition 2-3

A metalanguage abstraction which allows the definition
of extensions without explicitly and fully defining the
context of applicability (i.e. defining the syntactic
relation relative to other constructs), is more transparent
than one which does not.

Reasoning;

This proposition is by definition true, but we are
once again more concerned with the stronger and less prov
able conditions of instability and overtransparency.

While the definition of extensions becomes (apparently)
easier if the context of applicability can be left undefined,
the extension may then be invoked (in certain cases) in a

CL

Ou

§
o
ÙC
a
u/Ùf
0.

vlfU
V"

e,
Az

fA
w"
_ \

<£j'‘

II

It or 0?

j
M
• >PgVl
WGr
.-iç,
-fcO

'O

<JU
a
6
3

Z
<
-J

S
c
fcf
<!r
0
C£Ou
wCfec

<0

o '
i l

’ A ï

' AO
f CÛ

Ûf0vî
wUJ
0
06ÛL
filÛT
G_

z
0
Mto
z
UJ
h-
XU1

îlUfjCe
3

MIL

2-59

context in which it was not intended to apply. Since it
is a non-trivial problem to take into account and examine
all contexts in which an extension may be applied and
since such contexts may in fact be altered by future
extensions (cf. side-effects, pointers, secondary effects),
we regard such systems as unstable and universally
overtransparent,

In effect, when the context is undefined, the syntax
graph is disconnected.

Conclusions from Proposition 2-3

Our model of a secure system is as yet inadequate
as we have made no provision for defining context. Each
preprocessor must therefore (a) define the context and
(b) scan the whole source text of programs to ensure that
the extension it implements is applied in the appropriate
context only, _̂_

Proposition 2-4 is particularly relevant to those
(practical) systems in which the derived text consists of
base (or extended) language text.

Proposition 2-4

. ' Consider a metalanguage abstraction X, say, which
does not specify the complete checking of the form of
(substitution) parameters used in the generation of the
semantically equivalent (substitution) string; and a
metalanguage abstraction Y, say, which does specify complete
checking. Then X is more transparent than Y,

Reasoning;

The proposition is true by definition, and indeed X
is also overtransparent, since illegal parameters may be

2-60

substituted.

Conclusions from Proposition 2-4

This idea is already essentially included in our
model. We include this separate proposition as it points
to a flaw found in several existing systems cf. section
2.3.

Proposition 2-5

Consider a metalanguage abstraction X, say, in which
derived text consists of low level constructs; and a
metalanguage abstraction Y, say, in which derived text
consists of higher level constructs. Suppose for a
particular extension el, say, it is possible to define
the meaning of el in Y , using less transparent constructs
than is possible in X, Then, for extension el, we may
say that X is more transparent than Y,

Reasoning;

This result follows directly from the correspondence
to (simple) programming language abstraction. Considering
this correspondence further, we would consider that X is
in fact overtransparent for extension el.

Conclusions from Proposition 2-5

In view of this proposition and the parallel
experience with programming languages (cf. section 2 ,1,3)j
we would expect to find that there is no single level of
abstraction capable of securely or conveniently defining
the semantics of every extension. Indeed, we have observed
cf. section 1 . 1 that existing extensible languages provide
different means of defining extensions to data structures.

2-61

operators, control structures and statements. We would
expect our model therefore to include different means for
defining different kinds of extensions (as above) and
different levels of abstraction to allow definition of
different levels of extension (cf, section 2 ,1 ,3) - each
means of defining extensions and each level of abstraction
oriented towards a particular class of extensions at a
particular level, (Compare classes of programming
language, each class oriented towards a particular problem
area, and each programming language in the same claSs
oriented towards solution of different levels of problems
within that problem area).

Example ;

Many languages provide a separate means for defining
data structure extensions, Pascal, for example, allows
data structures to be defined at a relatively high level,
while Jorrand (Jor 71) allows more flexible definitions,
at a much lower level (cf, section 1,1),

Figure 2-8 illustrates some possible levels of
abstraction for defining the semantics of syntax extensions,
E1-Ë4 are extended versions of the base language: El, E2
defined in terms of the base; E3 defined in terms of the
abstract machine; E4 defined in terms of the real machine.

Practical Realisation of the Model

The model as described so far is too inefficient and
too cumbersome to be of use in practice. We consider two
alternative practical realisations which we shall term
model Ml and model M2,

lu

U) IB

03tiracZfO
2a

Æ
tùUi«t-

O
ac

A
luAI
u
(-yUi

lu

-±

(Ow

la

uJ

EMVIrw
v9g
z
Æ
EOl
1/1

z
IL
U1
A

00

luOfadPt-i
u.

2-62

Model Ml

It is without doubt both inefficient and hard on
the programmer to insist on the definition of a complete
preprocessor (which scans the complete program text to
check context) for each extension defined. One method of
dealing with this situation is to define a whole group of
extensions or the whole extended language together in a
single preprocessor, thus reducing overheads on programmer
and machine. An advantage of this system is that it is
then a simple matter to exclude undesired/overtransparent
features of the base language from the extended language,
thus incorporating the result of proposition 2-1, We note
that this model is effectively equivalent to bootstrapping
an extended language (in terms of lower levels of the
language). Thus, we effectively build up a hierarchy of
discrete languages L^, L^, ••• We would expect
that, in general, will be defined largely in terms of

^i- 1

Model M2

An alternative method of realisation is to allow the
base language processor to be modified so that it can
translate extensions as well as base language features.
There is nothing intrinsically wrong with this approach
provided we can ensure that (a) the existing part of the
processor remains unaffected and hence (b) the model can
still be viewed conceptually as levels of preprocessors.
Provided the base language translator is syntax-directed
this is relatively easy: preprocessors are effectively
defined by modifying the existing grammar; the notion of
levels of preprocessor holds valid provided we insist on

2-63

strict order of priorities for invocation of extensions,
ensuring that no extension is ever re-applied to the
substitution string it produces (if any).

However, we consider that this simple realisation is
unstable. This model allows existing language constructs
to be altered in the extended language. In model Ml, this
seemed perfectly reasonable, since we were considering the
definition of a complete new language. However, in this
case, we are incrementally extending the base language:
we consider that this form of variability in an existing
language is prone to error; the grammar of the extended
language becomes hard to define because it may be ambiguously
specified, ambiguity being resolved by reference to
priorities, (This is important because we have to modify
the grammar in order to define extensions in this model).

We consider therefore an alternative means of
preventing subversion of the existing processor. If we
insist that the grammar describing the base language and
the extensions be unambiguous then, there is no possibility
of the semantic base being subverted. The priority of
extensions is now irrelevant, (since only one production
rule is applicable at any one time) and hence can be
ignored.

In model M2, we are effectively protecting the
language from subversion rather than merely protecting the
processor, as in Model Ml,

The principal difficulty with model M2, in practice
is that of dependence on the translator architecture: it
may be necessary to have a good knowledge of the grammar
of the existing language, in order to be able to define
extensions.

2 - 6 4

Conclusions on Realisation of the Model

We have developed in the foregoing, two possible
models for the realisation of secure extensible language
systems. In practice, most existing extensible languages
are related to model M2 (cf, below). Systems related to
model Ml have tended to be used only for the transportation
of languages rather than as a means of providing exten
sibility as such.

We would expect that in practice, a combination of
both models would provide the best system; using a
language (cf, abstract machine) hierarchy to define a
completely new level of language and to avoid overtrans
parency of the extended language (cf, proposition 2-1);
and using model M2 to allow incremental extension.

Since the implementation of a secure hierarchically
defined system of languages causes little controversy,
we propose to consider this no further. We observe,
however, that in order to satisfy proposition 2-5, the
semantics of language should, as far as possible be
defined in terms of language We would expect
considerable inefficiency to arise here unless implement
ation is handled with care (for example, passing identifier
tables and post-lexically analysed text from processor i to
processor i-1 cf, section 5.1),

In the following sections, we consider the security
of existing extensible language systems by relating them
to model M2; we show that there is considerable room for
improvement. Finally, in this section, we direct our
attention towards proposals for a more secure extensible
language system by considering model M2,

2-65

2,3 Security of Existing Extensible Language Systems

We attempt to highlight the insecure features of
existing extensible language systems, referring in particular
to principal or representative systems. We are concerned
chiefly with insecurity inherent in the design of the
system and therefore concentrate mainly on the overtrans
parency of the metalanguage used to define extensions.
All the systems considered are. related to model M2 of the
previous section.

We find it convenient to discuss systems under a
suitable classification scheme, Solntseff*s classification
scheme (cf, section 1,3), however, is not ideally suited to
our purposes, particularly with regard to groups B, C and
D, Within these groups, binding-time is irrelevant to
security; it is more appropriate (cf, foregoing discussion)
to consider the means of defining semantics. We propose
therefore to reclassify systems in these groups;
(a) Type BCD 1 ; those systems within groups B, C and D

which define the semantics of extensions
in terms of base or extended language
substitution text,

(b) Type BCD 2; those systems within groups B, C and D
which define the semantics of extensions
in terms of special purpose abstractions
e.g. abstractions oriented towards the
definition of data structures.

Figure 2-9 shows the classification of the principal systems
under the modified scheme.

Type A
There are many variations of the simple macro-

-"».il3̂ ^sif ication
System Type A Type BCDl Type BCD2 Type E

GPM (Strachey) X

Trac (Mooers) X

Stage 2 (Waite) X

Limp (Waite) X •
McÂlgol (Bowlden) X

- (Grant) X

lmp (Irons) X X

AEPL (Milgrom) X X

PPL (Standish) X X X

- (Cheatham) X X

- (Leavenworth) X

GPL (Garwick) X X

Proteus (Bell) X X

Algol C (Galler) X

- (Schuman) X

Mad (Arden) X

Lace (Newey) X

ECT (Solntseff) X

Snap (Fisher) X X

FIGURE 2-9 Classification of principal extensible
language systems.

2-66

processor, such as GPM (Str 6 5), Stage 2 (Wax 70), Trac
(Moo 6 6). These systems are preprocessor systems in which
(since extensions are bound before parsing, and possibly
before lexical analysis) extensions take priority over base
language constructs and a new extension (usually) takes
priority over existing extensions. Basically, the notion
of macroprocessors seems to conform quite closely to our
theoretic model of a secure system. However, as far as
security is concerned, there are some basic flaws in the
design.
(1) Extensions are defined without binding them to existing

structures;. as a result, an extension may be applied
in the wrong context (cf, proposition 2-3),

(2) Although new extensions take priority over existing
extensions and base language constructs, the stages
of pre-processing are not rigidly enforced. The
result is that subversion can in fact occur (cf,
proposition 2-2),

(3) Few macroprocessors check the legality of parameters
used in substitution strings (cf, proposition 2-4).
The result is that substitution of illegal parameters
frequently occurs; this may lead to chaos in further
expansions.
The syntax and pragmatics of the metalanguage in

macroprocessors is usually primitive and hence insecure:
(1) Notation used in macro calls is excessively primitive

e,g, poor mnemonic notation, excessive use of bracketing
(leading to instability cf, section 2 ,1,4).

(2) Notation for referring to substitution parameters
frequently lacks a mnemonic or natural form.

2-67

Some features of the metalanguage tend to be unnatural
\and more closely related to the formal model of macro
processors (i.e. Markov Algorithms (Weg 6 8)) e,g. macro-time
statements to allow iteration in GPM,

Distributed-name macroprocessors such as Limp (Wai
6 7), McAlgol (Bow 7 1), ML/1 (Bro 6 7) and Grant *s system
(Gra 7 1) allow an improved form of macro call (though still
fairly simple) and improve macro-time statements. However,
they do nothing to.remove the basic flaws inherent in
macroprocessors.

The discussion on realisation of our theoretic model
shows that we do.not consider macroprocessors a viable
means of achieving a secure extensible language system.

Type BCD 1

Typical in this group are the mechanisms designed by
Irons (Iro 70), Milgrom (Mil 71) and Standish (Sta 6 9).
Extensions are defined by modifying a context-free grammar
(Chomsky Type 0 in the case of Milgrom*s system, AEPL) and
by adding new rules to the grammar.

Since priority of extensions is not strictly enforced
and since, in general the non-ambiguity of a context-free
grammar is undecidable (Hop 6 9), it is in fact possible
for the semantic base to be subverted, either accidentally
or otherwise (cf, proposition 2-2), In AEPL, there is
even greater possibility of subverting the base, since
rules of the grammar (describing the semantic base) may be
explicitly deleted or replaced.

Furthermore, Irons and Milgrom exacerbate the problem
by permitting the association of user-defined priorities
(other than those proposed in .proposition 2-2) with the

u 0

various extensions, thus allowing further scope for
subversion.

In his paper. Irons points out that unintentional
ambiguities are easily introduced and that correction of
this occurrence may be very difficult. In some versions
of the Imp language, ambiguities have arisen which have
been so annoying to repair that they have simply been left
in, (There are, however, situations in which ambiguity
can be helpful cf, section 2 ,4),

Since the problem of ambiguity does exist in these
systems, the user*s task is made more difficult. It is
probably necessary for the user to have an intimate
knowledge of the grammar defining the semantic base, in
order to avoid the pitfalls of introducing ambiguity.

Irons attempts to reduce the need for grammar
knowledge by the use of defaults, with automatic infilling
of syntactic classes. However, as Irons himself observes,
this process is itself prone to error and can lead to
definitions which were not intended.

The notation used to specify grammar rules is usually
BNF; this notation tends to be longwinded since options
or alternatives, for example, have to be written out
longhand.

Neither Imp (Irons' system) nor PPL (Standish*s system)
has much extension-time capability. Imp has no data types
(Mcllroy (Sch 71a)).

Bell's system, Proteus (Bel 6 9), also belongs to this
group. However, it fails to define the context in which
extensions may be applied, and hence suffers from the
principal defect of type A systems (cf, proposition 2-3),

2-69

In effect, the user can to some extent influence the
context of applicability of an extension by associating a
priority with it; but, far from redeeming the situation,
this does in fact aggravate it, since subversion of the
semantic base also becomes possible (cf. proposition 2-2),

Other systems in this group tend to be fairly
restrictive. The systems proposed by Garwick (GPL (Gar
6 8)) and Leavenworth (Lea 6 6) do use a deterministic
grammar (cf. Model, M2), , but they permit extension of the
syntactic classes statement and expression only, and that
in a fairly restrictive form.

The notatipn for definitions is improved in
Leavenworth's system by the use of special symbols to
indicate options or alternatives (i,e, an extended BNF
notation), but is impaired by an awkward method of
referring to substitution parameters, reminiscent of that
used in simple macroprocessors,

Cheatham's system (Che 6 6) also avoids ambiguity by
using a precedence grammar. We would expect, however,
that it is not, in general easy to extend a precedence
grammar without having a good‘knowledge of the existing
grammar. No conditional expansion is possible.

Type BCD 2

Usually, this form of extension is used only for data
structure or operator extensions (cf. section 1,1), although
Standish (Sta 6 9) has used it to include extension of
control structures, (We do not have sufficient information
to discuss this latter aspect further).

Typical in this group are the systems by Galler and
Perils (Algol C (Gal 6 7)), Gapwick (Gar 68), Standish

2-70

(Sta 6 9) and Bell (Bel 6 9). The Standish system is used
in many languages which are not normally regarded as
extensible e.g. Algol 68 (Wij 6 9), Pascal (Wir 70).

In these systems, redefinition of items in the same
scope is usually outlawed and hence there is no question
of subversion (cf. proposition 2-2), If an item is
redefined in an inner scope, reverse order of priority (cf,
model M2) holds. The context of applicability is pre
defined and therefore constitutes no problem (cf,
proposition 2-3).

Algol C allows only simple data structure extensions,
as the sole means of defining new structures from primitive
structures is by use of an array constructor, Galler and
Perils pay considerable attention, however, to the
generation of optimum code from operations on defined data
structures.

The Imp system is insecure as it allows typeless
data structures (cf, section 2,1.3). The Bliss language
(Wul 7 0) provides no type checking at all,

Algol C and GPL permit too much flexibility in the
manipulation of pointers (cf, section 2 ,1,4).

It is interesting to note therefore that extensions
of data structures and operators in this category are, in
general, defined with relative security. This is perhaps
due to the fact that these are regarded more as an
integral part of the language rather than extensions to the
language: and all restrictions of the language itself
therefore apply also to the "extensions", This is perhaps
even more true of the more recent notion of clusters in
which data structures are defined together with the
associated operations (Lis 74; Lis 75).

2-71

Type E

Typical systems are those by Newey (Lace (New 6 8)),
Standish (PPL (Sta 6 9)), Arden (Mad (Ard 6 9)), Fisher
(Snap (Fisr 73)), Solntseff and Yezerski (ECT (Sol 74)),

Extension mechanisms in this group are purposely
presented on a very low level in order to allow maximum
flexibility and maximum efficiency. Considerable
knowledge of both language and translator architecture as
well as the target machine code is usually necessary to
the definition of extensions in this kind of system.

Since extensions are not hierarchically defined, the
problem of subversion is less critical, and, indeed, the
ability to subvert or to contract the language and
translator may be viewed by some as desirable cf, (Sol 74).

Snap and ECT are based on context-free grammars.
We might expect that flexibility would be little impaired
if a deterministic grammar were employed to reduce
difficulty, Newey and Arden, for example use precedence
grammars.

Most systems in this group attempt to define the
semantics of extensions in terms of an abstract machine
code, where possible, in order to reduce transparency.

Some systems e,g, ECT, allow individual rules of
the grammar (which describes the language) to be explicitly
deleted or replaced, as well as allowing explicit deletion
and replacement of compiler routines. The flexibility
allowed to the user is thus so great that we wonder whether
it can reasonably be regarded as anything other than an
experimental system in the hands of a competent few.

2-72
Conclusions

We conclude that while Type A extensions cannot be
made secure in practice, there is considerable scope for
improving extensions of type BCD 1; existing systems of
type BCD 2 seem relatively secure; systems of Type E are
very transparent, but for some extensions, this is regarded
as necessary, though we question the advisability.

Standish*s system, PPL, combines the three methods
of extension, types BCD 1, BCD 2 and E most successfully
(cf. proposition 2-5) although we have observed that there
is room for considerable improvement, particularly with
regard to type BCD 1.

No existing system takes any steps to avoid over
transparency of the extended language (cf, proposition 2-1),

2,4 Proposals for a Secure Extensible Language System

We recall from section 2,2 that we expect the most
successful system to combine model Ml (bootstrapping) with
model M2, We recall also that we do not intend to pursue
the idea of abstract machine hierarchies any further in
this dissertation.

The discussion in section 2,3 has shown that no
existing system matches the ideals of our secure model,
Standish's system, PPL comes closest to providing different
levels of defining semantics, but is overtransparent,
particularly with regard to extensions in group BCD 1,
We consider that the definition, in PPL, of extensions in
groups BCD2 and E is relatively secure and therefore we
need consider these no further. We direct our attention
instead towards definition of extensions in terms of a
substitution strings i,e, type BCD 1,

2-73

We consider:
(a) Syntactic Metalanguage
(b) Semantic Metalanguage
(c) Parameter Substitution
(d) Declaration of Extensions

(a) Syntactic Metalanguage

We consider the most suitable syntactic metalanguage
from the point of view of security. We recall, that since
we are considering model M2, that the grammar of the
language is already restricted to the deterministic (i.e.
unambiguous) subclass of grammars.

We find it interesting to note, at this point, that
while Irons acknowledges the problem of unintentional
ambiguity, he observes that it can in fact be useful in
building certain extensions. It has previously been noted
by Floyd (Flo 6 7) and others that, under certain circum
stances, non-deterministic algorithms are easier to specify
than the equivalent deterministic systems. We propose,
however, to resist the lure of using non-deterministic means
to specify deterministic systems until such time as the
difficulties involved in correctly constructing non-
deterministic algorithms (cf, security, complexity) are
better understood (cf, section 5.1), Griffiths (Grif 74)
observes, in any case, that with a deterministic method of
syntax analysis it becomes possible to execute semantic
routines during the syntax analysis process, thus saving
a pass of the source text.

We want to further restrict our grammar to a subclass
(if it exists) in which:
(1) There is a relatively efficient algorithm to determine

2-74

whether or not a given grammar belongs to that
subclass*

(2) It is in practice possible to determine merely by
inspection whether or not a given grammar belongs to

■ that subclass (so that extensions are relatively
easy to define),

(3) The subclass of grammars is sufficiently powerful to
allow a natural notation to be described without the
need for severe contortions of the notation.
The most obvious first move would seem to be to

restrict the grammars to the subclass deterministic type 1,
since there has been little work carried out in the area
of practical type 0 recognisers. It is still possible to
handle such context-sensitive restrictions as type checking
within this subclass (Kos 71). Some work on the
construction of practical recognisers for deterministic
type 1 languages has been carried out (Wat 74). However,
since this research is in its infancy, and since, it is not
clear how easy it will be in practice to construct and
specify such grammars, it would appear prudent to avoid
their usage in this research at this stage (cf, section 5 .1).

We consider instead, the subclass of grammars known
as deterministic context-free or LR(k) grammars (Hop 6 9),
Some of the difficulties of introducing extensions are
caused by the fact that analysis is effected partly by
semantics rather than solely by syntax (Ard 6 9) leading to
dependence on translator architecture. Thus, a
disadvantage of using context-free syntax is that type-
checking is carried out by semantics. As a result, in
order to define operator extensions, either the translator
architecture must be known and altered or a special purpose

2-75

means of defining operator extensions must be defined.
The former method is too low level and transparent; the
latter method is used in all existing systems. The same
problem arises in attempting to extend data structures
(or any other features which require context-sensitive
checking), although it is in any case necessary for other
reasons (cf, section 1 ,1) to introduce a special purpose
scheme to define new data structures,

LR(k) Grammars

De Remer (Rem 71) points out that the general LR(k')
recogniser is still fairly slow; while Anderson (And 71)
notes that it is hard to determine by inspection whether
or not a grammar is LR(k), although an algorithm does exist,
We consider precedence or extended precedence grammars hard
to extend or recognise by inspection, although recognisers
are relatively efficient.

We propose to adopt the subclass of grammars LL(l)
for the following reasons:
(1) The grammar is fairly simple (cf, section 2,1,4 (Hoa

7 3)) and it appears as though simple extensions can
be defined principally from knowledge of the language
and without the need to know the grammar of the
language (contrast Imp, for example),

(2) McKeeman (McK 74) suggests that it is in fact fairly
easy, with a little practice, to specify LL(1) rules.
Tentative investigations (cf. Appendix C) suggest that,
in practice, it is relatively easy to determine simply
by inspection, whether or not a given grammar is 1 1 (1),
There is an algorithm to determine whether or not a
given grammar is 11(1) (Grif 74),

2-76

(3) Efficient recognition is possible using the method of
recursive descent.
We must consider whether the subclass LL(1) is too

restrictive. The programming language Pascal has, in our
opinion, a good and natural notation. Its syntax can be
defined in terms of an LL(1) grammar without any obvious
compromise of language design or notation, Pascal was
in fact designed to have an LL(1) syntax; some small
amount of language manipulation was necessary to this end,
but this was neither excessive nor difficult. We support
these claims concerning LL(1) grammars in appendix C,

Notation

We noted in the previous section that Imp, AEPL and
PPL use a fairly primitive notation for specifying the
syntax of extensions, namely simple BNF, A more promising
and natural method of handling such specification might be
to use an extended form of BNF notation, to allow more
natural definition of optional and alternative syntactic
forms. This is a development of the notation used by
Garwick and Leavenworth, The pattern structure of string
processing languages (Bob 6 8) might be usefully employed
to denote extended BNF rules; indeed. Grant (Gra 71) has
employed Snobol 4 patterns for this purpose,

(b) Semantic Metalanguage

Since we are considering extensions of type BCD 1,
the semantic metalanguage is a substitution string
consisting of base or extended language text. For simple
extensions, pure substitution text is sufficient for
definition purposes. However, for more complex extensions,
it is necessary to provide extension-time statements (cf.

, 2-77
section 1.3). In some existing systems, there is no
provision for extension-time statements cf. Cheatham
(Che 6 6), in others, relatively fixed and restricted forms
are allowed cf. Leavenworth (Lea 6 6), We consider it
appropriate to allow a fair amount of flexibility in this
area and propose to allow a wide variety of extension-time
statements by allowing the use of constructs of a complete
programming language at this point. Since we are
handling strings at this level, a string processing
language would seem eminently suited to this purpose.

Thus far, then, we have proposed a string processing
language as the basis for our extensible language mechanism.
In order to prevent subversion of that section of the
string processing language program which defines the
semantic base of the language to be extended, we must
prevent extension-time statements altering the procedures
or the values of variables in the existing program. We
can however allow execution of procedures and read access
to variables,

(c) Parameter Substitution

We consider the kind of parameter substitution
required in the generation of a substitution string. We
consider first, the parallel situation in macroprocessing.
Brown (Bro 71) considers that three kinds of parameter
substitution are commonly useful:
(1) immediate-value substitution
(2) delayed-value substitution
(3) name substitution
However, because of the large overheads involved, most
macroprocessors allow only one type of parameter substitution.

2-78

The distinction between nested macro-calls and
parameters tends to blur when dealing with the more
flexible forms of "macro-call" at play in our extensible
language system. In the simple form of macro-call, there
is à strict one-to-one correspondence between formal and
actual parameters; the actual parameters may be macro
calls themselves. In the more flexible system at hand,
a macro call may be nested at any point within another
macro call (it need not correspond to an actual parameter
as such). We consider an example to illustrate this
point :

Example;

Suppose we have a "syntax macro" of the form:
"FOR <yariable]> := <expression—l> STEP <expression_2>’ UNTIL

^xpression_3^ ̂ <[statement> "

We introduce a new syntax macro:
"TO <^expression]> ^ <statement> "
with the meaning
"STEP 1 UNTIL <pxpression> DO ^tatement> "
An example of the nested call of these two macros is;
"FOR I := 1 TO N DO A [I] :=)2i".
In order to ensure the correct expansion of this statement
the inner macro call must be evaluated first. However,
from the definition of the first macro, there is no clear
indication as to whether the phrase:

"TO N DO A [I] := d"
is to be regarded as a parameter or a nested macro-call.
If it is regarded as a parameter, then it must be called
by value to ensure correct expansion.

To illustrate further difficulties, we consider

2-79

another example:

Example: *

We assume that the macro
"FOR <5/ariable> := <pxpression_l]> STEP <bxpression«.2>

UNTIL <pxpression„3!> W <^tatement%> "
is defined by the substitution string

"BEGIN
^ariable> : = Expression. 1}> ;
WHILE <yariable> ^ DO
BEGIN

E t at em ent]> ;
E^^i^tle> := E^^is^tle> + E^P^GSsion_2]>

END
END "

We consider the parameters:
If Eariable)> recognises a simple base language

variable, then value substitution is impossible (if not
meaningless) in this context, because of the difficulty of
specifying semantic action (since generation of code to
store an expression in an assignment statement must be
delayed until the expression has been evaluated). Only
name substitution is appropriate.

In the case of the parameter atement^ , either
name or value substitution is meaningful, although value
substitution may be inefficient if the statement is long.

Provision of an explicit mechanism for# handling
several kinds of parameter substitution seems*, therefore,
insecure and prohibitively difficult to organise.and

t/ ■

implement.

We attempt to simplify the usage problem:
(a) Name call is automatically invoked for base language

constructs.
(b) Value call is automatically invoked otherwise.
For less common usage, the user has the capability of
organising his own form of substitution using the features
of the string processing language. (We feel justified in
making more common usages easier cf. section 3 ,1.1.1 ,
even at the risk of making some less common usages harder.)

(d) Declaration of Extensions

We observe that while model M2 excludes the possibility
of re-declaration of extensions within the same scope, it
does not disallow re-declaration of extensions within inner
scopes i.e. it does not exclude the possibility of
associating extensions with block structure. However, we
consider that excessive variability of the meaning of
language constructs within a particular program is prone
to error, and we do not intend to consider the idea
further. We note in contrast, however, that most systems
of group BCD 2 do allow the definition of new data
structures to be associated with block structure.

2.5 String Processing Languages

We have indicated an interest (cf, section 2,4) in
the so-called pattern-directed string processing languages.
A survey of many of the existing string processing
languages is to be found in Bobrow (Bob 6 8) and Sammet
(Sam 6 9).

Pattern-directed string processing languages have a
common basic structure related to the Markov algorithm

2-81

(Weg 6 8), and hence, are theoretically equivalent to the
Turing Machine (Hop 6 9),

A pattern consists of a sequence of alternate and
optional elementary patterns. Elementary patterns may be
string literals, string variables with previously assigned
values or pre-defined variables which denote a particular
class of substrings.

During pattern matching operations, a specified string
is compared to a pattern. If the string matches one of the
set of strings defined by the pattern, then it is trans
formed according to a format associated with the pattern.

We proceed in this section to consider the suitability
of the various existing string processing languages to
forming the basis of our extensible language mechanism.
We recall that we have already determined that patterns
should recognise LL(1) structures (cf, section 2,4) and
that our extensible language mechanism should be compact,
efficient and secure (cf, section 2 ,0),

Patterns in Fanon IB (Car 6 6) are in the form of so-
called "Generalised Markov Algorithms", We consider that
patterns are presented on too low and overtransparent a level
to be useful in our extensible language system, (cf,
section 3,2,2,3). Patterns in Panon IB are capable of
representing Type 2 grammars.

The form of patterns present in Axle (Bob 6 8) and in
Floyd*s Production Language is very similar to that in
Panon IB and so we reject these representations for the
same reasons.

Since the capabilities of Snobol 4 (Gris 71) and
Comit (Yng 6 3) are in fact similar, and since, in most cases.

2-Ü2

the notation in Snobol 4 is by far the clearer, we consider
Snobol 4 only. Ambit (Chr 6 5) is similar in spirit to
Snobol 4 but borrows from Algol 60 for its overall program
structure. With even a brief survey of string processing
languages, it has become abundantly clear that Snobol 4 is
the only language capable so far, of offering us the basis
for the kind of extensible language system we desire,
Snobol 4 was in fact the basis of Grant’s extensible language
system (Gra 71).

Snobol 4

We consider the viability of a Snobol 4-like
language as the basis of a secure extensible language
system. We consider first security and then efficiency.

Security of Snobol 4
(cf, section 2 ,1)

Features;

As indicated in the previous section, we would like
to restrict the grammar of the language to LL(1), Snobol
4 patterns allow recognition of a class of grammars wider
than context-free (cf, Gimpel (Gim 73)).

Control structures in Snobol 4 are very primitive
(cf, (Gra 71; Knud 74)) and correspond closely to a form
of goto-statement, Griswold (Gris 74) has suggested some
embellishment, but this is in the direction of improving
iteration structures and does little to reduce (over)-
transparency in other directions.

We would expect that the ability to dynamically
change the type of a variable or to re-define functions,
procedures and operators at run-time is liable to lead to
confusion.

2-83
Syntax and Pragmatics;

We -feel that the notation used in Snobol 4 is in
many ways poor. In some cases, a single symbol denotes
different operations in the same construct, according to
local context. For example, the symbol may denote
assignment or part of a string-replacement operation; the
"space" symbol may denote concatenation or pattern matching
or part of a string-replacement operation, Griswold (Gris
7 4) agrees that this may lead to confusion in learning of
the language and also results in a non-uniform parsing _
strategy.

We consider that use of the symbols "= " to denote
the null-string assignment "=NULL" is inviting error (cf.
Appendix G), The use of default options is similarly
prone to error.

We would like explicit declaration of variable
identifiers and their corresponding types (cf, section 2 ,1)

We feel that, perhaps due in part to the power and
flexibility of the language, that Snobol 4 does not attain
the natural and elegant structure of, for example, Algol
60,

Efficiency of Snobol 4

The design philosophy of Snobol 4 emphasises
flexibility at run-time (Gris 72) and avoids features that
bind components of a program at compile-time. As a
consequence of this philosophy, functions, procedures and
operators may be re-defined and patterns constructed at
run-time. Efficiency was not then of paramount
consideration. In contrast to this philosophy we would
like in our system to fix, at"compile-time, as many
components of a program as possible.

2-84

Waite (Wai 73) points out that the overheads of
constructing patterns in particular, are heavy (because of
the need to copy and adjust addresses of the machine
representation) and that patterns tend to be heavily used.
We should aim therefore, to avoid unnecessary flexibility
of patterns at run-time (cf. section 3.2 ,2 ,3).

Since Snobol 4 patterns are not deterministic, back
up may therefore be necessary, thus further increasing
overheads. This is particularly true if some semantic action
taken as the result of a successful subpattern match has to
be undone - indeed, this is not in general possible, and
semantic action must therefore be delayed to avoid this
occurrence.

The facility in Snobol 4 allowing indirect referencing
involves large run-time overheads (Wai 73) in ensuring
that multiple copies of string values do not arise. We
would not expect this facility to be of particular value
to our application, but the penalty is incurred whether or
not the facility is actually used.

We conclude, therefore, that it should be possible
to build a language much better suited to our purposes.

In the following chapter, we attempt to design such
a language by drawing on the experience of Snobol 4j in
particular, and attempting to blend with it some of
elegance and structure of the Algol-like languages,

2.6 Conclusions

In this chapter, we considered the design of a secure
extensible language system. We first considered the
meaning of security with respect to simple programming
languages, introducing the notion of overtransparency, in

2-85

particular. Subsequently, we considered the importance
of security in extensible language systems, and developed
a model for a secure extensible language mechanism. We
demonstrated that no existing system meets the ideals of
this model, and finally proposed a new system based on a
string processing language.

3-1

CHAPTER 3

DESIGN OF A SECURE STRING PROCESSING
LANGUAGE

3.0 Introduction

In this chapter, we set out to design a string
processing language (Snip) through which we may realise
an extensible language system as envisaged in the previous
chapter. We propose to design a base language to
facilitate portability and to enable us to build upon and
adapt this language by self-extension.

While it is essential that the syntax, pragmatics
and semantics of a language be developed hand in hand, we
find it convenient, in presentation, to describe (as far
as possible) semantic aspects separate from both syntactic
and pragmatic aspects.

Section 3,1 considers general design principles, and
section 3,2 the design of Snip itself,

3.1 General Principles of Language Design

The first part of this section considers principles
of design for language features in general and subsequently
for base languages; it discusses the balancing of
conflicting design criteria with particular reference to
security. The second part of this section considers the
design of syntax and pragmatics,

3.1.1 Design of Features

3.1.1.1 General Programming Languages

Background

Whatever the proponents of language design may say,
this subject remains very much an art or serendipity rather

3-2

than a science proscribed by a thesis of predictions or
recommendations. Each language designer has his own
point of view and the consensus of opinion is debated,
much as by any competent artist or musician. What is
important is the extent to which designers have separated
out and labelled the distinct, often conflicting, properties
which a language may or should have. The "art" of
language design concerns the choice of particular emphasis
and combination of each of these issues.

Language Properties

The following language properties are widely consid
ered,
(1) Modesty (Simplicity) (6) Orthogonality
(2) Elegance (7) Involution
(3) Efficiency (8) Security
(4) Generality (9) Portability
(5) Constructs for

Common Special Cases

(1) Modesty

Dijkstra (Dij 72), McKeeman (McK 74) and Hoare (Hoa
7 3) consider that a programming language should be modest
(unambitious and simple). We define a programming
language to be modest if it is problem-oriented,

(2) Elegance (Dij 72)

We define a programming language to be elegant if it
is small and simple,

(3) Efficiency

A programming language is efficient if it allows

3-3

generation of fast and compact code by a fast and compact
compiler (Hoa 73; Wir 74). In this context, however, we
refer principally to run-time efficiency.

(4) Generality

Generality implies that the language is rich and
powerful (and equivalent to a recursive function subset)
e.g. union of all problem-oriented languages. Generality
may also apply to individual language constructs.

(5) Constructs for Statistically Common Special Cases (CSC)

Wirth and Hoare (Hoa 6 6 ; Hoa 73) propose that a
language should include purpose-defined constructs for
(statistically) common special cases.

(6) Orthogonality

A programming language is orthogonal if its feature
sets have independent, and independently understood
purposes cf, (Wij 6 9),

(7) Involution

A programming language is said to be involuted if
its features, once defined, may be used anywhere they
make sense cf, (McK 74).

(8) Security

A programming language is secure if it is resistant
to error (Hoa 7 3).

(9) Portability

A programming language is said to be portable if it
is easily transported in terms of itself cf, Poole and
Waite (Poo 73).

i - 4

Primary Aims Proposed by Various Designers

We consider areas of general agreement and contention
regarding the above-noted issues together with some
examples. Since many of the properties are not mutually
compatible, such discussion essentially consists of the
identification of primary and secondary aims, the
secondary aims being applied only when they support rather
than conflict with the primary aims.

We consider:-
(1) Generality vs Modesty and Elegance
(2) Generality vs CSC and Efficiency
(3) Orthogonality and Involution vs Modesty

(1) Generality vs Modesty and Elegance

Dijkstra (Dij 72) considers that it is not the
richness and power of a language which is important, but
its modesty and elegance, while McKeeman (McK 74) and
Hoare (Hoa 7 3) similarly suggest that utmost simplicity
must be the overriding criterion, McKeeman considers
over-ambition the most common error in language design,

(2) Generality vs Constructs for Special Cases and
Efficiency

CSC
Wirth and Hoare (Hoa 66) point out that the efficiency

of a language is particularly sensitive to the trade-off
between generality of individual constructs and the res
triction of constructs to allow optimisation of special
cases: it is frequently the case that (optimisable) special
cases of constructs are heavily used, while full generality
rarely is. The simplest means of achieving this

3-5
optimisation is by forcing the more general, but rarely
used constructions to be explicitly programmed in terms
of lower level constructs.

Example (a)

The for statement in Algol 6o is very general: consider
the statement

"FOR V := A STEP B UNTIL C"

where A, B and C are expressions. The expressions B and
C are not bound at block entry and their values are re
calculated at each iteration. This prevents register
optimisation of the more common special cases in which the
expression values remain unchanged. For-statements of
Algol W, 68 and Pascal are restricted to allow this
optimisation,

(b) In section 2,5, we noted that the generality of
Snobol 4 patterns prevents optimisation of several special
cases. ------

Similarly, Hoare (Hoa 73) notes that it is important
to consider the choice of operators for large data objects
carefully. Arithmetic expressions involving small data
objects can be evaluated very efficiently, because
intermediate results are small enough to be retained in
high speed registers, or recovered from main store in a
single operation. When the operands are too large for
such a course of action, it becomes much more efficient to
use updating operations, when possible. This may
considerably reduce the amount of work involved, but at
least reduces storage requirements by using the space
occupied by one of the operands to store the result and/

3 - 6

or intermediate results.

ExampleÎ

Consider a string assignment of the form;
"A A coneat B"

Provided append operations of this form are denoted by a
special case construct such as

"A append B"
the value of A may be updated merely by copying string B,

Efficient Object Code

Hoare (Hoa 73) considers the beliefs that efficiency
is no longer important (a) because of cheaper and faster
hardware or (b) because efficiency can be regained by use
of a sophisticated optimising compiler to be fallacies.
He suggests that it is far better for users themselves to
take advantage of any such freedom to write better
structured and clearer programs (cf, security), The only
solution is to design a language which is (a) sufficiently
expressive that most optimisations can be expressed in the
language itself (cf, CSC above) and (b) simple, clear,
regular and free from side-effects so that a general
language-independent optimiser can simply translate an
inefficient program into a more efficient one (with
guaranteed identical effects) written in the same source
language,

(3) Orthogonality and Involution vs Modesty (Simplicity)

Wijngaarden (Wij 6 9) has suggested that language
constructs should be chosen to have clearly independent
properties and uses, which may be independently understood.

3-7

Example:

Algol 60 has two kinds of for-statement essentially
of the form;
"FQREariable>;—<expressioib>STEP <5xpressioii>UNTIL<èxpression>

DO ... "
and
"FOR<yariable>; = <expressioii>WHILE<boolean expressior^W ••• "

These two forms have overlapping areas of applicability,
and hence, are not orthogonal.

If a language is involuted then a feature, once
introduced may be used anywhere it makes sense (McK 74).

Example;
In Algol-like languages, arithmetic expressions may

be used as array subscripts or actual parameters.
Hoare (Hoa 73), however, considers that aims of

orthogonality and involution insofar as they contribute to
overall simplicity are an excellent means to an end, but
that as a substitute for simplicity they are very
questionable indeed.

Example;
Constructions of the form

"X := IF N = 3 THEN 1 ELSE GOTO L FI"
in Algol 6 8 .

Wirth (Wir 74) and McKeeman (McK 74) also have
reservations concerning the property of involution. They
observe that careful attention should be paid to the use
of two or more language features in combination. It is
quite possible for certain features to be acceptable
individually, while posing intractible problems when
combined, McKeeman notes that the addition of features to

3-8
a language is thus by no means a linear process as far as
the translator is concerned; in extreme cases, the addition
of a single feature could double the size of the translator.
Example;

Individually, dynamic arrays or records cause no
severe problems. However, this is not so if records are
allowed to include fields which are dynamic arrays; the
offset of fields from the record base is then no longer
constant, but varies with the size of the dynamic array
fields.

The Author’s View

We have already indicated that we consider security
to be our primary objective and have considered the possible
effect on efficiency,and more particularly, on generality
(cf, section 2,1,3). With the passing euphoria over
"universal languages" (cf, section 0,1) and the increased
emphasis on small problem-oriented languages, it is in any
case probably widely accepted that complete generality is
neither desirable nor attainable.

Like Hoare, we consider the aims of orthogonality
and involution subsidiary to that of security.

Use of purpose-defined constructs for common special
cases would appear the most cost-effective method of
increasing security. Knuth’s studies of use-statistics
for Fortran programs (Knut 73) and similar studies by
Wichmann (Wic 73) and Ibrahim (Ibr 74) on Algol 6o and
Algol W programs (respectively) lead us to believe that in
all three languages, a small number of very simple constructs
are very heavily used, while most other constructs are
rarely used, Wirth (Wir 75), however, appears to

3-9
contradict the view of Wortman and Ibrahim that all
languages will exhibit similar patterns of use statistics,
suggesting that we might expect different results when
structured programming techniques are used. We would
still expect, however that a small number of constructs
will be heavily used although the pattern of use may
change considerably. It seems likely therefore that
special case constructs are likely to be of great value,
and that in optimising complex constructions, language
designers have, in the past, tended to optimise the wrong
features,

3.1,1.2 Base Languages

Having considered design principles for general
programming languages, we consider how these principles
relate to the design of base languages. We define a base
language in terms of aggregates and primitives as follows;
We define primitives to be the (minimal) base set of
operations out of which all language constructs may be
synthesised.
An aggregate is a combination of primitives,
A base language consists of the set of primitives together
with a small set of aggregates (excluding those for
constructing transparency-reducing higher levels).

General

Base languages are by no means unique to the study
of extensible languages. They have, for example, been
considered by Poole and Waite (Poo 73) in the design of
hierarchies of abstract machines for portability, by Mitchell
(Mit 70) in the bootstrapping of interactive progrcunming

3-10
systems, and by Iliffe (1 1 1 6 9) in the design of improved
real machines. While our aims in providing a base upon
which to build extensions and our criteria for evaluating
such a base will differ from those in the above systems,
there is an area of commonality upon which we can build
and adapt as necessary.

While some work has been carried out on the design
of bases for extensible languages, there has been
remarkably little discussion of this in the literature
(cf. (Sol 74)).

Design Criteria

The criteria for design of a base language which is
to be extensible include all those for general design
together with the additional aim of extensibility.

A base language is extensible if it can be extended
to include desired higher level constructs.

As we have observed, these design criteria are not
mutually compatible and indeed are in some cases highly
conflicting. In appendix H, we analyse these criteria to
determine which of these quantities are
(a) the same,
(b) similar,
(c) dissimilar,
(d) independent of each other.
The aim is to simplify the design problem.

A matrix indicating how these quantities correlate
with each other was constructed. This matrix was checked
by quantifying the degree of correlation and correcting the
matrix for inconsistencies. This process was carried out
iteratively. The quantities.involution and orthogonality

J- X X

are shown to be the same. We therefore consider
orthogonality alone in the remaining part of this discussion.

The results are summarised in figure 3-1. This
suggests that major areas of conflict are
(a) Generality vs Efficiency and Security
(b) CSC vs Generality
(c) CSC vs Elegance and Orthogonality,

We make the following observations by way of support
or explanation of these results,

(1) Extensibility vs Efficiency

Base language design concerns the criterion of
extensibility; overheads due to the extension mechanism
itself do not therefore enter the discussion,

(2) Security vs Efficiency

Since at this point we are considering language
features, security concerns only overtransparency and
instability. We observed (cf, section 2,1,3) that security
is greater when the language is problem-oriented. Owing
to overheads of the extension mechanism, efficiency will
be greatest under the same conditions,

(3) Portability vs Security

We assume that portability is achieved through a
hierarchy of abstract machines (discussed in chapter 4),

(4) Security vs Extensibility

Since we have already decided that an ideal language
is in general impossible to achieve, we do not expect
extensibility to detract from security provided there
exists a secure extension mechanism.

^rr
=y HlûHLy tONFLlCTÏNO-

MGURE 1!.̂|

J - I Z

General Characteristics of Base Languages

Having thus considered the major conflicts and
similarities of the design criteria, we consider in terms
of these the implications for general characteristics of
base languages. We consider 3 characteristics,
(a) transparency,
(b) pitch or level,
(c) size.
We must essentially answer the questions:
(a) How transparent should the base language be to the .

real machine?
(b) Should the base be pitched at a high or a low level?
(c) Should the base language be large or small or perhaps

minimal? (Minimal in the sense that the language
is universal and that in addition no construct in the
language is an aggregate of primitives i,e, a
recursive function subset), Which features should
appear in the base language and which as extensions?
We first consider the implications of the various

design criteria on a base language composed of a union of
a (set of) primitives B1 and special case aggregates B2,
(1) Modesty => B1 U B2 is problem oriented,
(2) Elegance => B1 u B2 is small,
(3) Efficiency B 1 u B2 is small (but not minimal),
(4) Generality => B 1 u B2 is union of all problem oriented

languages; B2 chosen general,
(5) CSC B2 emphasised, and chosen for common special

cases,
(6) Orthogonality => B2 small,
(7) Security B1 u B2 oriented to problem area.

3-13
(8) Portability ==> B1 y B2 small*
(9) Extensibility B1 u B2 transparent to problem

primitives.
Erom this summary, we construct a table showing the

relation between the design criteria and general
characteristics cf, figure 3-2. We distinguish only
three relations 0 X.

We construct 3 star diagrams cf, figures 3-3a, b, c
to illustrate these conflicts:
'J is represented by a long vector
0 '• " " a vector of intermediate length
X •' " " a short vector

Since we have already chosen our primary aims as those of
security, efficiency and extensibility, we can carry this
discussion of general characteristics further:

(a) Transnarencv cf. Figure 3-3(a)

The principal conflict is between security and
generality; the base should not therefore be chosen
transparent to the real machine, but transparent to the
problem area.

As we observed in proposition 2-1 certain constructs
which are not regarded as universally overtransparent in
the base language, may be so regarded in extended versions
of the language. However, since (in our extension
mechanism) extensions are not defined by levels of
processor, universal overtransparency cannot be removed
by defining extensions (contrast partial overtransparency,
case (c)). Thus, low level constructs are not disabled
in extended versions of the language. This situation
must instead be handled by a new hierarchical level of the

Characteristic

Criterion
1
uCC H 0o. cd a .m 0) -H q u ̂cd Ü 0 cd H -P S

«
iH
1

Hr4cd

CSC 0 X 0
Efficiency 0 X . y
Security X X 0
Extensibility 0 y 0
Portability 0 0 y
Modesty X X y
Elegance 0 0 y
Orthogonality 0 y y
Generality / y X

KEY

y

0
X

criterion well-satisfied by this region of
characteristic space
characteristic independent of criterion
criterion badly-satisfied by this region of
characteristic space

FIGURE 3-2

S'zUi
5
6lU

Im
sll

(L

ru>aOr
c>
Of
Ol

zUl
u.ILUl

#-«4
U
Ao
t

î

OKl
lU

I .
/),
Ula3!

I
%

ceÜTÆ
A

-IÆêTWzu

1̂1
I

I
IL
Ul

M

Ufe

a

oz
tuu
u.
u .!U

Awce.3
U-

ïr(C(%«îrtsz
Æ
Î3ea:,

M

c:lü
ZUic!r

f-l

r
kj

zs

%g
I
g

g:CE)

<c

aÙCHjJ

. j - 1 4

language cf. section 2.4, This notion is not unlike
Wirth*s discouragement of combining different levels of
abstraction in the same language (Wir 74),

(b) Level cf. figure 3-3(b)

In order to be extensible, the base language has to
be fairly low level, but; not necessarily transparent to
the real machine.

(c) Size cf. figure 3-3(c)

The base language should be chosen fairly small.
Security is not critical here since partial overtransparency
caused by minimality can be removed by extension (contrast
universal pvertransparency). We propose that a small base
be chosen to which should be added constructs in the
following categories;

(1) For efficiency, the base should include special case
constructs which we expect to be used frequently in most
extended versions of the language. We would expect
efficiency of individual constructs to decrease with
increased depth of nesting of definition and therefore
feedback from usage statistics may, in the long term, play
a large part in the evolution of the base language cf.
Woolley (Woo 71), Garwick (Gar 68).

(2) The base should include features which will be
required in most versions of the extended language, but
which we cannot easily define by extension. In practice,
we find it difficult to organise the definition of highly
context-sensitive features (e.g. procedure parameters) cf.
section 2.4. We propose therefore that such features be
included in the base or that an alternative method of

3-15

defining these extensions is introduced cf, sections 1,2,
2,4.

3,1.2 Design of Syntax and Pragmatics

In designing the syntax and pragmatics in which to
clothe the constructs of the base language, we are
concerned with the following design aims;
(a) Translatability
(b) Security

(a) Translatability

We desire a language in which syntax and pragmatics
are chosen so that constructs are easily recognised and
good code can be produced. Under these conditions, we
say that a language is translatable.

The choice of syntax is important, since recognition
of a context-free structure together with table processing
to handle context-sensitive features represent a
considerable proportion of compilation time (Hoa 73),
Theoretical consideration of analysers (Hop 6 9) leads us
to expect better results with simpler grammars.

Pragmatics should be chosen to inform the translator
of worthwhile optimisations (cf. CSC section 3,1,1,1),
For example, the for-statement in Algol W informs the
translator that register optimisation is possible,

(b) Security

We must attempt to design secure syntactic and
pragmatic forms for the base language features as
suggested in section 2.1.4. We reject a strict trial and
error method of designing such syntax and pragmatics as
useless; and propose the heuristic of building bn the

o - JL V)

experience of existing languages, conforming to the form
of these languages, where suitable; and using studies
of characteristic errors to highlight insecure areas.

In the long term, study of characteristic errors
found in programs written in the language itself should
be of great value.

In contrast to the previous section, we find little
conflict between these design criteria. The introduction
of secure syntax and pragmatics does introduce some
overhead, which, within reasonable bounds, we are readily
prepared to accept.

J-1/

3.2 Design of the Snip Base Language

Section 3*2.1 contains a brief summary of the Snip
base language. At this point, the reader unfamiliar with
Snip might find it profitable to consider the Snip Report,
appendix A.

Subsequently, section 3.2.2 discusses the design
of Snip features at length, while section 3.2,3 contains
a discussion of the design of the syntax and pragmatics
of Snip.

3.2.1 Summary of Snip

The description of Snip, both here and in appendix
A, is presented along the lines of the Pascal Report (Wir
70) which we regard as a valuable document from the
viewpoint of language presentation. We would expect,
however, that reference to some more formal document would
be necessary to resolve any remaining doubt over possible
interpretations, and to ensure correct implementation,

A Snip program consists of two essential parts;
a description of actions which are to be performed, and a
description of the data to be manipulated by these actions.
Actions are described in Snip by statements, and data by
declarations and definitions.

The data are represented by values of variables.
Every variable occurring in a statement must be introduced
by a variable declaration which associates an identifier and
a data type with that variable. A data type essentially
defines the set of values which may be assumed by that
variable.

The basic data types are the scalar types; integer,
boolean. Structured types are defined by describing the

3-18

types of their components, and by indicating a structuring
method. The structuring methods differ in the selection
mechanism serving to select the components of a variable
of the structured type. In Snip, the structuring methods
are; vector structure, file structure and string structure.

In a vector structure, all the components are of
the same type. A component is selected by a vector
selector or integer index.

A file structure is a sequence of components of the
same type. A natural ordering of the components is
defined through the sequence. At any instance, only one
component is directly accessible. The other components
are made accessible through execution of standard file
positioning procedures. A file is at any time in one of
the modes; READ, WRITE, READ/WRITE, According to the
mode, a file can be read sequentially and/or it can be
written by appending components to the existing sequence
of components. The file type definition does not
determine the number of components, and this number is
variable during execution of the program,

A string structure is'a sequence of components of
the same type. Unlike vector and file structures, the
components of a string are implicitly defined as the set
of basic symbols (which includes the Snip character set).
A component or consecutive sequence of components (called
a substring) is selected by a string selector which specifies
the initial basic symbol and the length of the substring.
Strings are implicitly defined to be of dynamically varying
length. It is, however possible to define an upper bound
to the string length.

j - i Y

The most fundamental statement is the assignment
statement. It specifies that a newly computed value be
assigned to a variable (or component of a variable). The
value is obtained by evaluating an expression. Snip
defines a set of operators, each of which can be regarded
as describing a mapping from the operand types into the
result type. The set of operators is subdivided into
groups as follows:
(1) The Arithmetic operator group contains addition,

subtraction, multiplication and division. The
operand and result types are integer,

(2) The Boolean operator group contains negation, union
(or) and conjunction (and), The operand and result
types are boolean,

(3) The String operator group contains a concatenation
operator and a match operator. In the former, the
operand and result types are string; while in the
latter, the operand types are string and pattern (cf,
below), and the result type is boolean.

(4) The Relation operator group contains equality,
inequality and ordering. The result of relational
operations is of type boolean. Ordering relations
apply only to integers. Special forms of assignment
statements, the insertion statement and the append
statement are provided for string variables,
• The assignment statement is a simple statement,

since it does not contain any other statement within itself,
Another kind of simple statement is the procedure statement
which causes the execution of the designated procedure (cf,
below). Simple statements are the components or building

3-20

blocks of structured statements which specify sequential,
selected or repeated execution of their components*
Sequential execution of statements is specified by the
compound statement, conditional or selective execution by
the if-statement and the case-statement, and repeated
execution by the loop-statement. The if-statement serves
to make the execution of a statement dependent on the value
of a boolean expression, and the case-statement allows for
the selection among many statements, according to the value
of a selector,

A statement can be given a name (identifier), and
be referenced through that identifier. The statement is
then called a procedure and its declaration a procedure
declaration. Such a declaration may additionally contain
a set of variable declarations. These variables can be
referenced only within the procedure itself, and are there
fore called local to the procedure. Their identifiers
have significance only within the program text which
constitutes the procedure declaration and which is called
the scope of these identifiers,

A procedure may have a fixed number of parameters
which are classified into constant- and variable-parameters.
If the actual variable-parameter contains a (computable)
selector, this selector is evaluated before the procedure
is activated, in order to designate the selected component
variable.

Functions are declared analogously to procedures.
In order to eliminate side-effects, assignments to non-local
(i,e, global) variables are not allowed to occur within the
function body.

3-21

A pattern is a special purpose procedure which, in
association with the match operation defines the recognition,
within a given sub.iect (sub)string, of a member of a
particular set of strings.Statements, called action statements,
may be associated with this recognition process. It is,
in addition, possible to declare new variables or to define
new procedures and functions incrementally, and to modify
existing patterns (to the extent of defining new alternates
only). These features, permit the definition extensions to
a language whose compiler is written in terms of Snip,

3,2,2 Snip Features

Within the framework of the characteristics of a
base language considered in the previous section, there are
a multiplicity of bases, each satisfying the design criteria
to differing degrees. We have chosen to place special
emphasis on security, but nevertheless, the design of a
particular base language must still reflect to some degree
the intuition, initial judgements and personal preferences
of the designer.

In this section, we consider the design of a base
for a string processing language. In view of the UNCOL
experience (Stee 6l) in which an attempt was made to design
an abstract machine capable of representing translations
from programs in any high level language (cf. section 0,1),
it is not hard to predict that we will not achieve a single
efficierit and universal base language: and we expect
therefore that we must allow the base language to be
influenced by existing string processing languages.

In addition, we make use of the following empirical
suggestions :

(1) Simplicity and efficiency are essential for a good base
language (Wir 74, Hoa 73).

(2) In order to keep the size of a language small, it is
important to keep the number of basic data types as
low as possible (McK 74).

We consider design decisions of particular interest
for the features as follows:

Control Structures
i Data Structures and operations
Patterns
Procedures and Parameters
Program Structure
Language Extensions

We resolve conflicting design aims using the techniques
described in section 3.1.1.2; we recall conclusions of the
principal conflicts, namely generality versus efficiency
and security cf, figure 3-1.

3,2.2,1 Control Structures

In section 2,1,3 we argued that the goto is, at best,
partially overtransparent in a user-oriented language. The
principal use of the goto is therefore to synthesise forms
of control flow for which no aggregate instruction is
provided. The dangers of including the goto are, however
twofold:
(a) the goto may be misused to synthesise aggregate control

structures which are provided in the language (cf,
programmer discipline), or

(b) the programmer may synthesise constructs in an obscure
fashion.

The arguments for and against the goto have been widely
debated (Wul 71; Lea 72; Knut 74).

3-23

The programming language. Bliss (Wul 70) has been
designed without the goto-statement, while in Pascal, the
scope of the goto is restricted and its appearance made
less attractive by the use of integer labels, thus
discouraging use (Bos 7 3).

In view of the history of abuse of the goto (Dij 68),
we choose not to provide it in Snip,

Since we have shown that security and efficiency
are fairly well correlated, cf, figure 3-1, we would not
expect the entailed loss of transparency to cause a
significant loss of efficiency. This conclusion is
substantiated by Petersen (Pet 73) who has proved theoret
ically that in most cases, programs can without loss of
efficiency be written using suitable structured control
statements in place of goto statements; an^ that in those
cases where efficiency is lost, there exists an equivalent
program which requires only a "little" more space or a
"little" more time.

We seek therefore base control structures which
are higher level and less transparent than typical real
machine structures but sufficiently low level to allow
extensibility cf, figure 3-3,

Initially, we considered the low level control
structure, Bounce-and-Skip, developed by Ntevergelt (Nie
70) as a result of the search for an alternative to the
GOTO (Gut 75). However we reject this form of control
structure on the following grounds,
(a) Loss of transparency: Multiple selections (such as case

statements) can be handled only by sequential and
exhaustive testing. The lack of an "escape-from-

block" construct results in (non-useful) redundant
evaluation of block entry and exit conditionals. We
consider these particular instances of loss of
transparency severe; the first since it appears a
useful string processing facility cf•(Wai 73), and the
second since it will be used in the definition of most
control structure extensions,

(b) Insecurity; The notation used allows the specification
inconsistent, and hence undesirable block entry/exit
conditions, Bounce-and-skip essentially allows
various forms of primitive conditional and iterative
statements. It is thus an aggregate or higher level
form of statement. However, since the transparency
of bounce-and-skip is no less than that of (combinations
of) the primitive statements, the program structure is
reflected better by the primitives themselves,
particularly when the structure is deeply nested (cf,
appropriate structuring,sections 2,1,3, 2,1,4),

As an alternative to bounce-and-skip, we consider the
structures :
(1) a simple loop-statement, in which exit is by way of

an escape statement (cf, below)
(2) a conditional statement,
(3) a simple block structure,
(4) an escape-from-structured statement.
These structures are essentially the primitives from which
bounce-and-skip is synthesised. Individually, each of
the structures (l)-(3) is less transparent (to the base
machine) than bounce-and-skip. In combination, however,
the 4 structures are more transparent since bounce-and-skip

3-25

restricts the escape-statement to occur at block end only.
These alternative control structures provide a

simpler and more suitable abstraction which avoids one
area of loss of transparency considered above. The
introduction of a case-statement removes the remaining loss
of transparency, A case-statement is introduced in
preference to the poorly structured switch statement of
Algol 60 (cf, section 2,1,4),

These control primitives are non-minimal. For
example, the conditional-statement can be implemented in
terms of the case-statement; in doing so, however, we lose
the capability for optimising the conditional-statement,
which is likely to be heavily used cf, CSC section 3,1,1,1,

Petersen (Pet 73) has proved theoretically that
all "well-formed" programs (in which loops and if-statements
are properly nested and can be entered only at their
beginning) can without significant loss of efficiency be
written in terms of:

(1) if-statements
(2) repeat-statements
(3) multi-level exits
Petersen*s structures are less transparent to the

real machine than our own: it is not possible to handle
multiple selections (e,g, case statements) efficiently.
His structures are also higher level: the repeat statement
is an aggregate form of the loop, conditional and escape
statement; multiple exits are an aggregate of case and
escape statements, Petersen*s structures can therefore
be defined in terms of the Snip control primitives
described above and we are thus encouraged in the belief
that these primitives are capable of representing a large

3 - 2 0
f

proportion of high level control structures. Furthermore,
Snip control structures are primitive to Petersen*s
structures while allowing (with the exception of the case
statement) no more transparency, thus improving extensibi
lity cf, figure 3-3,

3,2,2,2 Data Structures and Operations

We consider the design of a set of data structures
and operations capable of conveniently and securely
reflecting the abstractions and abstraction-manipulations
devised by the programmer,

Wirth (Wir 74) and Hoare (Hoa 73b; Hoa 75) propose
that the following should be primitive data and constructors
for a general core language:
(a) Cartesian Product - variables to of type t^ to t^,
(b) Type Union - e,g, records whose components are variables

of different types,
(c) Type Replication - e,g, arrays whose components are

variables of identical type,
(d) Type Recursion - a new type may be defined in terms of

itself and/or other types.

The basic data types and operations will vary for different
applications.

We recall (cf, section 2,4) that we will not at
present consider the method by which we propose to extend
data structures, and hence we do not consider Type
Recursion,

We gain some insight into the kinds of operations
and the basic data types which we expect to be useful by
considering existing string processing languages (Car 66,

3-27

Chr 6 5 , Coh 6 5 , Gris 71, Yng 6 3) and the discussion by
Katzan (Kat 70).

It seems reasonable to expect that the basic data
types integer and boolean will be required. To handle
replication, we choose the simplest array structure (the
vector), Pascal-type files for input and output, and strings
of characters.

On the basis of involution, it might seem reasonable
to introduce strings (as Standish proposes (Sch 71a)) as an
array containing an indefinite (or dynamic) number of
characters or as a more general replication type. However,
in the first case it is hard to introduce appropriate and
efficient substring accesses and operations; and in the
second case strings of integers and boolean components would
not appear to allow useful data structures or operations
(cf, arbitrary features, section 3#1,1,1)#

We choose therefore to define the type "character"
as a string of length 1, rather than define a string in
terms of characters.

Data Structures and Invariants

The data structures so far proposed are considerably
abstracted from, and hence much more secure than, the
corresponding structures at real machine level. However,
they still have fairly transparent properties, and there
are many ways in which we regard them as universally over
transparent, We therefore consider use of invariants to
improve security at the expense of loss of generality (cf,
figures 3-1, 3-3), We consider type checking, subranges
and mode of access.

3-28
(a) Type Checking

We have already argued (cf. section 2,1,3) that
weak typing (as found in the so-called typeless languages)
is universally overtransparent for a large number of
applications (cf, Wortman (Wor 74) and Stewart (Ste 74)).
Wirth (Wir 74) makes the hypothesis that the most common
reason for programmers desiring typless languages is to
allow the packing of different kinds of data into a single
word, which the available language regards as an indivisible
entity. This ability to pack data can be provided without
preventing valuable type checking (e,g, Pascal), We
consider therefore, that a "strongly typed" language (Wor
74) with suitable data structures and type-transfer functions
will allow sufficient transparency while maintaining
maximum capability for detection of error. The variation
of strong typing offered in Snobol 4 (Gris 71) in which
variables are typed but whose type may change dynamically
during program execution is less secure, since the type
rule invariant degenerates to a series of assertions at
points in the program (cf, section 2,1.3).

Since automatically invoked type-transfers have the
effect of overriding type rules, we provide no such facility
in Snip, and insist that all calls on type transfer
functions be explicitly programmed, Hoare (Hoa 73) points
out, in any case, that automatically invoked coercion in
the base, language has the effect of prejudicing extensions
since base language coercions will apply also to the
extended language,
(b) Subranges

The idea of subranges introduced iii Pascal, is really

3-29
a strengthening of the notion of strong typing. Thus, for
example, if it is possible to specify that a particular
integer variable may assume only those values which lie
within a particular subrange of the set of integers, the
type rule invariant is strengthened.

Since variables which may assume any integer value
will undoubtedly still be necessary, to omit this feature
from the base language causes only partial overtransparency.
However, because of the highly context-sensitive nature of
this construct, we find it exceedingly difficult to handle
implementation by extension. Since we do not expect
integers to be heavily used in Snip, we propose to defer
judgement on implementation of integer subranges until such
time as we can consider the characteristic errors of Snip,

(c) Mode of Access

We consider protection of variables by defining
invariants which restrict the mode of access. By
comparison, access to procedures and functions is restricted
to "execution only" in most high level programming languages,
We consider two forms of access for variables; "read and
write", "read only",. We adopt the Pascal convention of
defining such variables as CONSTANT or VARIABLE, In
Pascal, this form of access can be defined for local
variables and for procedure or function parameters. In
Snip, we extend the notion, allowing the user to define
similar invariants for non-local variables. As in the
case of subranges, omission of this feature causes only
partial overtransparency, but its context-sensitive nature
prevents convenient implementation by extension.

We consider now the design of individual data

structures and operations. We expect that Snip may prove
useful in other application areas such as the editing and
manipulation of text tiles on backing store or the proces
sing of job control language programs (cf, section 5 ,2),
and temper our design decisions accordingly.

We consider (a) files and (b) strings,

(a) Files
In the spirit of Pascal, we propose that input and

output be by way of files only. This abstraction improves
security by shielding the programmer from hardware details
concerning the handling of backing store and input/output
devices. Since we expect text files to contain perhaps
Snip or job control language programs, it is appropriate
that such files consist of short strings (of the order of
1 - 2 hundred characters) of a fixed maximum length.

Operations on Files

We considered designing file operations transparent
enough to allow flexible manipulation of file structures
(for example, insert or delete a file component). However,
since, to ensure recoverability, it is unusual to manipulate
the master copy of a file,these operations might be better
achieved while copying the master.

We therefore retain the set of standard procedures
used in Pascal for file manipulation, introducing one
further procedure to allow append operations. We do not
allow sequencing backwards through a file as we consider
this introduces confusion unnecessarily,
(b) Strings

We expect strings to grow frequently by appending

or concatenation of string expressions and to contract
frequently by substring deletion; an upper bound for the
length of the string will not, in general, be known.

String Operations

Many string operations in existing languages are
too high level and restrictive to be considered for a base
language. We feel that the transparency of these operators
can be increased without reducing them to unmanageable and
insecure levels;

The match operation in Snobol 4 is non-primitiye'in
the sense that it combines primitive operations of matching,
and substring-replacement: it is difficult therefore to
handle substring-replacement on its own, A substring-fetch
is equally difficult,

Algol W (Hoa 6 6) allows a simple means of access
to substrings, but insists that the length of the substring
be known at compile-time; while this allows a more
efficient implementation of simple string handling, it
severely prejudices the efficiency of more general substring
accesses of the kind we expect to be useful in Snip,

In Snobol 4̂ it is not possible to handle substring
insertion or append operations efficiently.

We discuss the more interesting operations;
Substrings

. We encounter difficulties in attempting to develop
a natural and consistent notation for specifying substrings.
On the basis on involution, it seems reasonable to allow
assignment to substrings in the same way as assignments to
string variables are handled. This appears also to provide

3 - 3 2

a useful means of handling substring-replacement, at the
same time.

In assignment, the length of the string (to which
the assignment is made) is determined by the length of
the assigned string expression. However, to allow a
substring (whose length is specified in its denotation)
to be replaced by a longer string expression, appears a
contradiction of terms. Further, this prejudices the
base against optimisation of the special case in which
the length of the string expression is less than or equal
to the length of the substring. It also disables the
assertion concerning string lengths for this special case.
From personal experience, we expect this special case to
be fairly common. In contrast, the non-optimisable case
can without prejudice to efficiency or security, be defined
by extension, if it proves to be heavily used. We there
fore demand that a substring be replaced only by an
expression of equal or lesser length (cf, CSC, section
3.1.1.1).

We allow the deletion of a string by assigning the
null constant to it. Since the null constant has zero
length, we may similarly delete the substring without
violating the above restriction.

Append and Insert Operations

We introduce an append operation to allow the
appending of string expressions. This operation (depend
ing on the implementation cf, section 4 .4) allows updating
of an existing string value (cf, CSC, section 3.1.1.1). We
introduce an insert operation for similar reasons. It
would be more elegant to include this in the substring

notation (cf, replacement and deletion) but we find it
difficult to adapt the notation in any reasonable manner,

3.2,2,3 Patterns

Security

By the arguments of section 2,4, we haye already
determined that Snip patterns should haye a structure
isomorphic to the class of grammars known as 1 1 (1), We
consider that patterns presented on the level of Markov
Algorithms (Weg 68) or Floyd*s Production language (Fel 6 4),
for example, are universally overtransparent for our
purposes. The control over the recognition process provided
in Floyd*s Production language (Pi) is analogous to the
goto-construct of more general programming languages. The
Markov Algorithm is a theoretical model of computable
functions and was never intended as a practical programming
language (indeed in practical terms, it specifies
exceedingly inefficient algorithms). Carraciolo (Car 6 6)
has however, designed a more practical "Generalised Markov
Algorithm" which is used in the programming language
Panon IB, This turns out to be very similar to Floyd*s
PI.

We therefore present Snip patterns on a higher
level: we find that control of recognition can be more
securely provided by constructs very similar in purpose to
those designed for more general control in section 3.2 ,2 .1,
Thus,the forms of control in Snip patterns are as follows:
(1) Repetition, indicated by the pair brackets " ̂" and

"} "»
(2) Conditionals or alternatives, indicated by " ! ",

(3) Compound structure, indicated by the pair brackets
"(" and ")",

(4) Recursion, indicated by the pattern identifier itself
(cf. procedure or function call),

(5) Escape-from-pattern, implicitly defined as a "match
fail".

We do not define a control structure analogous to the case
statement since, in general, there is no implicit (or
compile-time defined cf. Pascal) ordering of the labelling
string literals and since pattern variables may be inter
mingled with these string literals. The possibility of
simple optimisation of this structure is therefore lost.

The resulting structure is isomorphic to generalised
BNF (Grif 74) or, equivalently to Chomsky Context ^ree
Grammars (Hop 6 9). It is therefore necessary to check
explicitly that pattern structures are in fact further
restricted to LL(1), (cf. appendix C).

For the sake of involution it would seem reasonable
to allow string variables as well as string literals to
form components of pattern templates. To allow this,
however, would be to allow the possibility of far reaching
side-effects; the structure of several patterns could be
altered by the assignment of a new value to a single string
variable. Experience of the author, and others (Dah 72;
Bee 75) with the debugging of programs suggests that
programmers are liable to over-look similar side-effects
while making modifications cf, instability. We therefore
feel justified in explicitly disallowing string variables
as components of pattern templates.

In most string processing languages, the order in which

3-35
alternation string sequences of a pattern are compared to
the subject string is of considerable importance, since
this order may affect the result. However, since the
Snip pattern structure is deterministic (cf, section 2,4),
this order has no effect on the result of the match.

Since a pattern defines a subset of the set of
possible string values, it would seem reasonable to consider
patterns as the definition of a variable type, rather than
a variable itself (e,g, Snobol 4). In effect, this is a
generalisation of the Axle notion (Coh 65) of defining
patterns as tables of "assertions".

It would then be possible to treat simple strings
as degenerate pattern types. This has the advantages of
providing a more involuted structure, reducing the number
of basic types (cf, McKeeman above) and providing a
convenient means of referring to matched substrings.

However, this structure is in some ways unsatisfac
tory, In general, the manner in which we employ pattern
types and simple string types is not at all similar.
During pattern matching, we will frequently wish to fetch
and manipulate matched substrings. These operations may
be relatively securely defined if we introduce an aggregate
form of pattern which allows the inclusion of suitable
"action" statements (in the pattern template) to be executed
at the appropriate point during the recognition process.
Snip patterns have thus evolved in such a way that they
correspond more closely to a special purpose boolean function.

We propose therefore that pattern definition be
restricted to the declaration area at the head of a block,
as is the case for function declarations.

3-3G

We must allow some means of communication between
the groups of statements (or action primitives) defined in
pattern declarations. Communication through global
variables alone is unsatisfactory as a stack mechanism for
storage of current variable values must be explicitly
programmed for recursive pattern call. Since we expect
this facility to be of great value in Snip, security is
improved if we allow communication through variables which
are local to all the action primitives, or, equivalently,
local to the pattern containing the action primitives.

We further improve the design of patterns (for our
purposes) by associating a cursor with each string variable.
Matching on the subject string proceeds from the current
cursor position. The cursor position is updated on a
successful match (e.g. Axle), Without the cursor, this
form of matching can be effected only by deleting the
string head (e,g, Snobol 4)#

If no match is obtained, starting from the current
cursor position, the match fails. This operation is
primitive to the corresponding Snobol 4 operation in which
the match continues, restarting from the next string
position.

Snip patterns are thus presented at a very high
level. We might expect, for example, that match-string
assignments, recursion and action primitives could be
implemented by extension, since the existing base is non-
minimal. However, we justify inclusion of these features
in the base language as follows:
(1) We expect patterns in Snip to be heavily used cf,

section 4 . 3 in both the base and extended versions

3-37

of Snip, Hence, efficiency is of considerable
importance,

(2) In order to handle the implementation of patterns or
to extend simple forms of patterns, very transparent
base language features (for example code pointers and
operations to allow manipulation of the local variable
stack) are required.

Efficiency

We now consider the trade-off between generality
of pattern constructs and the optimisation of frequently
occurring special cases. As we have noted, we expect
heavy use to be made of patterns, and hence there is
opportunity for considerable gain in efficiency. In this
respect, the avoidance of backup (because of the LL(l)
structure of patterns) is already an important step,

Snobol 4 allows the construction of patterns at
run-time (latent patterns (Wai 7 3))# This causes a
considerable amount of effort, since it involves the copying
of the components from which the new pattern is constructed
and the adjustment of successor and alternate pointers
within the thus-constructed pattern, by traversing the
whole(run-time) representation of the pattern.

We consider that patterns used in Snip will, in
general, be known at compile-time (manifest patterns).
This is in any case, more in line with our view of patterns
as a special kind of function. We expect to achieve a
further considerable saving by holding a single copy of
each pattern defined (cf, procedures and functions) along
with a return address, rather than explicitly copying
subpatterns. This is not advisable with latent patterns.

because of possible side-effects (cf. above). This
implementation also circumvents the need to handle pattern
recursion by dynamic reconstruction (cf, Snobol 4)#

Snobol 4 is able in certain cases to speed up the
matching process by using a length check. If the subject
string is insufficiently long, failure can be signalled
immediately. We do not consider this feature useful in
Snip, because, in general we will require to scan the whole
of the subject string in order to produce diagnostic
messages,

3,2,2,4 Procedures, Functions and Parameters

We include functions and procedures in the base
language because we expect these to be required in all
versions of Snip, As we argued in section 2,1,3, we
consider that the use of side-effects in functions is
unstable and we therefore explicitly disallow assignments
(in function bodies) to non-local variables or parameters
cf. instability.

Parameters

It is theoretically a simple matter to define the
meaning of procedure or function parameters by explicit
copying (cf, Algol 60 copy rule (Nau 62)) and by declaration
of local variables. This means of definition is, however,
too inefficient to be used in practice.

Thus, in order to handle the definition of parameters
by extension, we would have to include in the Snip base, a
means of explicitly manipulating the stack used to implement
local variables (cf, section 3 .2 ,2 ,5), and a means of
referring to variable addresses. Such constructs are very

o~oy

low level and transparent for many Snip applications; we
regard them as universally overtransparent.

In addition, the handling of parameters involves
considerable context-sensitive action for checking and
addressing purposes. Since Snip patterns are context-
free, this context-sensitive action must take the form of
table processing. If parameters are defined by extension,
it is exceedingly difficult to organise the building and
processing of such tables and to relate these to existing
tables (for procedure identifiers and variables used as ̂
actual parameters),

Hoare (Hoa 73) points out that procedure interfaces
are particularly susceptible to error. It is perhaps,
therefore advisable that the base language itself should
impose secure forms of parameter passing, flexibility being,
at this point, undesirable.

We propose, therefore to include in the base lan
guage, a uniform and simple parameter passing mechanism.
We consider that call-by-name for an expression, or use of
Jensen*s device (Nau 62) is universally overtransparent for
most applications and propose to disallow this. The
CONST-parameter facility of Pascal seems preferable to the
Algol W VALUE-RESULT mechanism for its relative simplicity,
and hence security cf, section 2,1,4, Characteristic
errors of Algol W (cf, appendix G) suggest some difficulty
with VALUE-RESULT, We adopt, therefore, the simple form
of parameter passing found in Pascal; a variable as
parameter may be called by name or value; an expression
as parameter may be called by value only (cf, indirect
addressing and value call, Hoare (Eng 71)).

Hoare (Hoa 73) has suggested that perhaps the most
subtle defect of the Algol 60 parameter mechanism is that
the user is permitted to pass the same variable twice as
an actual parameter corresponding to two different formal
parameters (cf, pointers,section 2,1,3)* For example, if
a procedure
matrix_multiply (A, B, C)
is intended to have the effect
A ;= B X C,
it would seem reasonable to square A by
matrix_multiply (A, A, A),

We consider therefore two further restrictions on
parameters to improve security cf, Hoare (Eng 71)* We
cannot hope to implement these restrictions, however, and
must rely on programmer cooperation (cf, section 2 ,1,3)*
(1) All actual parameters whose values may be changed by

a procedure must be distinct from each other and from
non-local variables which are referenced in the
procedure,

(2) None of the actual parameters described in (1) may be
contained in any of the other parameters,

3*2,2,5 Program Structuring

Block Structure and Scopes

As we observed in section 2,1,3, block structuring
and local variables increase security by increasing check
able redundancy. Neither can be simply or efficiently
implemented in Snip by extension, and indeed, we regard a
base language without some such properties as universally
overtransparent. As Dijkstra (Dah 72) observes, while we

may have some misgivings about the specific scope rules as
embodied in Algol 60 (cf. below), we should appreciate them
as a very significant step in the right direction. We feel
that this structure, as realised in Pascal is likely to
provide a valuable simplification without compromising the
applicability of Snip to string processing problems.

Scope Rules

While the number of undetected errors caused by
confusion of scopes was relatively small in thn sample pro
grams studied in appendix G (cf, error type 3,4.2, figure
G-1), we feel that this kind of error is liable to occur
much more frequently in larger and more complex programs.
This kind of error arises principally from the combination
of two features in an Algol-like block structure:
(a) The scope of a name is by default extended to inner

blocks; and
(b) Identical identifiers may be used in different scopes

to denote different variables cf, (Wul 73) and
section 2 .1,3.

This results in three types of error; inadvertently inter
posing a redeclaration of a global name in an inner scope
causes reference to the name in the inner scope to be
bound to a new local variable, rather than to the global
variable. Failing to redeclare a global name that was to
be re-used to identify a local variable (either through
omitting an entire declaration or through mis-spelling the
name of the variable in the new declaration) causes names
in the inner scope to be bound to the global variable,
rather than to the new local variable. Confusion of the
meanings associated with identical identifiers which denote

different quantities causes similar errors cf. (Gan 75).
Many errors of this type could be avoided by insis

ting on use of unique identifiers. We reject this
solution, however as use of non-unique identifiers is both
convenient, and, if procedures are to be independently
coded, necessary.

We propose therefore a partial solution to the
problem. We insist that reference to non-local, variables
be explicitly defined, together with the type of access
(read or read-write) permitted. We do not expect this
mandatory declaration to be a burden on the programmer, but
rather, an aid to clarifying his thought (cf, declaration
of local variables), Gannon (Gan 75) imposes similar
restrictions on the programming language TOPPS II,

3.2.2,6 Language Extensions

To a large extent, we considered the secure
definition of extensions in section 2 , 4 (i.e. the capability
for defining the syntax of extensions and for defining the
semantics of extensions. In this section we consider
suitable Snip constructs to handle these definitions. We
recall from section 2 , 4 that we do not allow the syntax or
semantics of existing extensions to be altered; we allow
merely the addition of alternative constructs.

We introduce the statement;
<statement> :;= DEFINE ^pattern body> AS <context specifier>
to define an alternate for the pattern specified by the
<context specifier>. The <pattern body> defines the
syntax of the extension, and also the action required to
generate the appropriate substitution string. The context
specifier defines the context.in which the defined extension

may be used. We must ensure that the extended syntax
remains LL(l) (cf, appendix C),

Context Specifier
The most obvious means of specifying context is

merely to specify the syntactic class to which the extension
belongs (as in most existing systems). There are many
alternate methods of specifying context (e,g, use of
predicates (Milg 71)), but none appears simpler.

Substitution String -

In order to handle the generation of appropriate
substitution strings (in expanding extension constructs
appearing in a program), it is sometimes useful to have
extension-time statements (for example, in handling context-
sensitive semantics). For this reason, we allow the
incremental declaration of new global variables and the
definition of new procedures at extension-definition time.
In certain circumstances, it may be useful to allow read
access to global variables of the compiler, although we
would expect use of this facility by sophisticated users
only. To protect the base compiler and existing
extensions from subversion cf, section 2 ,2 , no assignments
may be made to global variables. Similarly, we may allow
compiler procedures to be executed, but not altered.

Extensions need not therefore be defined by pure
substitution strings. We say therefore that the definition
of extensions is procedural rather than declarative (Sch
7 1 a),

Pattern Subdivision

We expect that by far the majority of extensions

defined will be relatively simple, and that the system so
far defined will be well able to handle such extensions.
However, for a smaller number of extensions, the system is
too inflexible: this is because we have as yet no means
of defining an alternate (extension) to a part of a pattern.
We illustrate this problem by example;
Example: We assume the existence in the base language
of a pattern defining a for-statement;

PATTERN FOREST;
BEGIN

"FOR" ■ <VAR> ", <EXPR> ."STEP" , <EXPR>,
"UNTIL".

<EXPR> . "DO",<ST>
END

where <VARj> and <CEXPR> denote patterns defining variable
and expression, respectively. We have no means of defining
"TO <$XPR> " as shorthand notation for "STEP 1 UNTIL <EXPR>",
as we are able to define alternatives only to FOR__ST itself.
We propose to resolve this problem by allowing the pattern
FOR_^ST to be redefined in a restricted manner:

PATTERN FOREST:
BEGIN

"FOR" . <VAR> " :=" . <EXPR>.
("STEP" , <EXPR> . "UNTIL" , <EXPR>
I <TO_EXPR>) . "DO" .<^T>

END
where <TO_^EXPR> denotes the pattern defined as above.

We must ensure, however, that the original pattern
remains unchanged after this kind of modification. We
note, in passing that a non-deterministic system can side-

step this difficulty, but would, in doing so lead to a less
efficient and less compact definition. We proceed to
consider this modification of existing patterns more
carefully;
We propose the following construct to allow this kind of
extension definition:

TAKE ^modified pattern template> WHERE ^extension
declaration> <context specifier>

The <extension declaration> is the declaration of a pattern
defining the extension. The ^modified pattern template>
is the original pattern template modified to include the
newly defined extension as the alternate of some <simpie
pattern string> of the original pattern.

As with the define-statement, we must ensure that
the modified pattern is still LL(l), In addition, we must
ensure that the syntactic form of the original pattern
remains unchanged. Thus, if additional bracketing is
introduced in defining the new alternate, we must ensure
that it does not override the original syntactic or
precedence structure.

There is no need to specify action primitives of
the original template, as these must remain unchanged.

In defining optional extensions, we find it
convenient to assume the existence of redundant null
successors in the original pattern. Since null successors
have no effect on the structure recognised by a pattern,
this causes no problems, (cf, appendix C),

The take-statement is rather clumsy but is brought
about by the decision that the base should be protected
from subversion. We expect, however, that we can organise

the base language so that the def ine-statement can be used
for constructs which we expect will be frequently
extended cf. CSC, section 3.1.1.1.

3.2.3 Syntax and Pragmatics of Snip

Having considered the design of the features of
Snip, we proceed now to consider the design of syntax and
pragmatics.

We consider the effect of the aims of translatability
and security individually.

3.2.3.1 Translatability

Since we wish to be able to describe a Snip
compiler in terms of Snip itself, and since we have chosen
an LL(l) structure for Snip patterns, we restrict the
syntax of Snip to LL(1) also. Anderson (And 71) and
Griffiths (Grif 74) observe that reasonably efficient
recognition is possible.

In order to allow the translator to take advantage
of possible optimisation in an append string or insert
string operation, we introduce a unique special symbol to
denote these operations.

The labelling of the beginning of structured
statements rather than the end permits simple compilation
(at the expense of object code) in a single pass. While
this practice might appear unnatural and obtuse, we
consider that it may benefit security by encouraging the
user to define exits at the most appropriate point during
structured programming development,

Wirth (Wir 75) observes that for simplicity and
translatability, Pascal design aimed at a reasonably small

J-4/

number of operator precedence levels in contrast to Algol
60. Precedence is similarly chosen in Snip.

3.2.3.2 Security

Research into the study of characteristic errors
of programming languages has, as yet received little
attention and our conclusions in this area are necessarily
tentative. By examining the evolution of programming
languages, it is, however, possible to discern certain
forms of notation which have been accepted as insecure
and the measures taken to combat this insecurity.

In addition, we make use of error statistics for
Algol 6o and Algol W programs collected by Pirie (Pir 75)
to obtain a quantitative analysis of characteristic errors
for Algol 6o and Algol W. This analysis is useful because
of the similarities of many features of Snip (for example
block and control structure) to Algol-like languages.
From these figures also, we are able to predict errors
which are liable to occur in certain other Snip features;
thus suggesting ways in which the syntax and pragmatics
should be re-designed. The studies of characteristic
errors by Gannon (Gan 75), Ichbiah and Rissen (Ich 74) are
also of value.

It would have been useful to consider also,
characteristic errors for a string processing language
such as Snobol 4, hut neither programs nor statistics were
available. We have, in any case, indicated that Snobol 4
has many insecure features (cf. section 2 .5).

In appendix G, we consider the material available.
Figure G-1 summarises this material and is used in
considering the design of suitable syntax and pragmatics

for
(1) stability, and
(2) notation,

(1) Stability

Structured Statements and Bracketing

The characteristic errors of Algol W (error type
1,4.1, figure G-1) suggest that mismatch of bracketing is
a fairly common error. While most of these errors are
detected at compile-time, it is conceivable that some logic
errors are caused by confusion of highly nested structured
statements. We consider that error is both less likely
to occur, and more likely to be detected when it does
occur, if a unique non-terminal is used to terminate this
kind of structured statement, (cf. Algol 68 (Wij 6 9)),
rather than a semi-colon or end symbol. For example, we
use the following forms of if-statement:

IF <boolean expression> THEN <statement> ELSE
<st at ement> FT

IF <boolean expression^» THEN <statement> FT

This form of structured statement improves
readability by providing a more readily recognised
bracketing structure (cf. section 2 .1.4).

Declaration of Variables

A significant number of identifiers were mispelled
(error type 1.1.2, figure G-l) in the sample Algol W and
Algol 60 programs examined. This shows the value of
declaration of variables in assisting error detection and
in the avoidance of potentially severe errors. All Snip

j - 4 9

variables must be explicitly declared.

Commentary

Commentary is a valuable aid to secure programming.
The tables of characteristic errors (error types 3*2,3,
3.2.4, figure G-1), show that the form of commentary
provided in Algol 6o and Algol W causes a significant
number of serious errors by preventing detection of a
missing semi-colon (Hoa 73).

Example (1) COMMENT COMMENT WITH SEMI-COLON MISSING
X 3;

(2) m o X := 3

Algol W prevents the second, but not the first kind
of error; an end-comment consists of a single identifier
only.

The form of comment introduced in Pascal e.g.
^This is a comment j may cause undetected error, since the
effect of omitting a closing bracket may be cancelled by
a subsequent comment. Similarly, in Algol 68 where
opening- and closing-comment symbols are identical, two
similar errors may have a cancelling effect (Sco 73). In
the less serious situation, error is detected, but often
results in the annoying effect of treating the rest of
program text as comment.

We therefore adopt the proposals of Hoare (Hoa 73)
and Scowen (Sco 73) that comments be terminated by the end-
of-line symbol.

String Literals

The characteristic errors found for the sample
Algol W programs lead us to expect that quote-marks will

o —

frequently be omitted from string literals (error types
1.3.4, 3.2.5 figure G-1). This kind of error is likely
to occur much more frequently in a string processing
language. There is therefore some risk of à string
literal which is inadvertently left unquoted, being
confused with a variable identifier consisting of the same
sequence of letters.

We consider introducing the following restrictions;
(a) all string literals must be declared, and
(b) string literals and identifiers declared in the same

scope must be unique.
Thus, the literal "XI" and the variable identifier XI would
not both be permitted in the same scope. A similar
restriction is placed on defined scalars and variable
identifiers in Pascal, although for different reasons.

It is not clear whether the above solution will be
an excessive burden on the user; nor is it clear how
serious the problem with omission of string literal quotes
will be. We choose therefore not to implement this
restriction until we have some feed-back on the
characteristic errors of Snip.

(2) Notation

Language Structure

We have already chosen an LL(1) structure for the
language because of its simplicity and because of ease of
extension. It is however, also important that the
syntactic structure of the language be sufficiently flexible
to allow choice of a natural notation. For example, the
notation used for simple macro calls is too rigid and
inflexible. However, the description of the (syntax of

the) Pascal language in terms of an LL(l) grammar (Wir 71)
would seem to allay fears that an LL(l) syntax is too
restricted.

Choice of Identifiers

Confusion of identifiers (cf. figure G-1) seems to
be a common problem, (error type 3.3.3) at least with
student programs. We expect, that in some cases, this is
due to logic errors (for example, confusion of control
variables in nested for-statements), but that In many
cases, it is due to the use of poor (1-letter) mnemonics"
for identifiers. We would expect that the frequency of
occurrence of this error would be reduced by encouraging
the use of longer and better chosen identifiers cf, (Weis
74). This would also allow detection of mispunched 1-
letter identifiers (error type 3.6,1),

Ordering

A significant number of undetected errors in the
sample programs were caused by incorrect sequencing of
ordered lists (cf. Ichbiah (Ich 74)) of parameters (in
procedure calls), subscripts (in array designators) or case
statement components (error type 3.1, figure G-1). We
hope to reduce this problem by introducing a better
mnemonic notation.

We propose to label case statements, as in Pascal.
This also allows detection of omitted case components
(error type 3.2.1, figure G-l).

We might label parameters in procedure and function
calls (cf, Algol 6o), but this form of mnemonic seems
excessively clumsy for use with array subscripts: we have

been unable to devise any suitable alternative.

Procedures and Parameters

Hoare (Hoa 73) observes that a high proportion
of program errors occur at procedure interfaces. By
contrast, we observe comparatively few such errors in our
sample programs (error type 3#5, figure G-l), We make
the hypothesis that this is due to the relatively simple
nature of the sample programs, Hoare expects that the
rate of error can be reduced by choosing a notation so
that the effect of a procedure on its parameters is obvious
from its syntactic form. Most existing languages adopt
this rule to some extent for procedure declarations, but
not for procedure calls. Since adoption of a similar
rule for procedure calls adds to program verbosity, we
propose to defer decision to a Gannon-type experiment on
Snip in some future research cf, section 2,1,2,

Control Structures

(a) The control structures proposed to reduce over
transparency (cf, section 3,2,2,1), also have the effect of
improving the notation and readability of programs cf,
section 2,1,4#
(b) Escape Statement

We propose to use identifiers to label scopes to
which an escape is to be made rather than, as in Bliss,
(Wul 70) requiring the user to indicate the number of
scopes from which an escape is to be made. By eliciting
a parallel between Bliss escape-statements and Algol W-type
case-statements, and between Snip escape-statements and
Pascal-type labelled case-statements, we deduce that the

latter form of escape mechanism is more secure*

Ouerations

From the frequency of error of omission (error
type 1.3), we deduce that the use of a space to denote
string concatenation causes instability. For example
the omission of the alternate operator " j " in "A B" is
undetected. The use of a space to denote the null string
is similarly unstable.

In Snip, we introduce the symbols for
concatenation and "NULL" for the null string.

4-1

CHAPTER 4

IMPLEMENTATION

4.0 Introduction

In this chapter, we consider the implementation
of the Snip language. The method of implementation
proposed is to design an abstract machine which is well-
suited to modelling the data structures and operations
encountered in Snip; and to implement a translator to
translate programs written in Snip into equivalent programs
for this abstract machine.

In the following sections, we consider and justify
the proposed implementation scheme; we consider the
design of abstract machines in general, and, in particular,
an abstract machine well-suited to modelling the data
structures and operations of Snip; we describe briefly
the Snip Abstract Machine (SAM), and show how its design
has been influenced by, and how it has deviated from the
abstract machines AWAM and SIL designed for the
implementation of the Algol W and Snobol 4 languages,
respectively. We describe aspects of implementation of
SAM on the IBM 370/l58 computer.

The translator for Snip has not been fully
implemented, but we do not envisage any new problem areas
other than those mapped out for the incremental section
(cf, section 3#2,2,6), Some small sections of the
translator have been implemented (cf. Appendix E),

4.1 Implementation Strategy

We propose to implement the Snip language by
designing an abstract machine which is well-suited to

4 — 6

modelling the data structures and operations of Snip,
This abstract machine may be realised on a real machine by
such methods as microprogramming or macro-expansion or
interpretation. In conjunction with a translator (which
translates Snip programs to equivalent abstract machine
programs) it forms the basis of our implementation scheme.
To aid portability, we would expect the translator to be
written in Snip and (initially) hand-translated to an
equivalent abstract machine program. It would then be
possible to transport the language to a new receptor
machine, simply by implementing the abstract machine on the
receptor. Figure 4-1 illustrates this process using the
T-diagram notation, (Ear 70), A similar implementation
scheme is used in the implementation of Snobol 4 (Gris 72),

The principle advantages of this scheme are the
portability offered (assuming that the abstract machine
is readily realisable on a variety of real machines) and
the relative ease of translation of Snip programs to
equivalent programs for a problem-oriented abstract
machine,

4,2 Abstract Machine Modelling
4.2.0

In this section, we consider the principles of
abstract machine modelling: we draw heavily on the material
of Poole and Waite (Poo 73), in particular, in this brief
overview.

The basic aim of abstract machine modelling is the
design of the conceptual structure, memory organisation,
registers and operations for a machine which.is ideally
suited to modelling data structures and operations of a

SNIP

A Q S T R & c T A f i s r f t f t c T

S N I P -------------------------^ M A C H I N E
S N I P

■ C c » î > E

S N I P
ABaTRnCTMACHINÉ
Co£>£

MEFlTAL
MODEL

ABSTRACT
NftCHUNSCote
ftUSWfvtTMACHINEtot.]£
nftcniNE
MAcHing

KEY

L2

LI

represents a translator written
in language LI to translate source
language L2 to target language L3*

LI

represents an interpreter written
in language LI which interprets
programs written in language L2.

represents a program written in
language LI which computes function
f. (We treat translators and
interpreters as special case functions)

represents a machine which executes
language LI.

FIGURE i.1 SNIP Implementation Scheme

given programming language.
The design criteria are

(a) portability of the abstract machine, and
(b) efficient realisation of the abstract machine on a

variety of real machines.
We consider the implications of these design criteria;

4.2.1 Design of Abstract Machines

We show that the portability and efficiency of an
abstract machine are determined by
(a) the relationship between the abstract machine and thTe

language to be modelled, and
(b) the relationship between the abstract machine and the

real machine upon which it is implemented.
An extremely simple model results in high

portability, since the model is easily realised on both
simple and sophisticated real machines; however, if the
language being modelled requires complex operations, then
these have to be encoded in terms of the simple model.
It is frequently the case that certain real machines have
hardware capable of realising these complex operations
directly. For example, some real machines are capable of
manipulating strings and substrings directly through
character or field selection operations, while less
sophisticated machines have to simulate these operations
by splicing and masking of words, a task involving
considerable effort. In order to take advantage of
sophisticated hardware, when present, the abstract machine
itself must be designed with a higher degree of
sophistication or at a ’’higher level”; however, in this
case, portability suffers because of the difficulty of

realising the complex operations of a high level abstract
machine on simple hardware.

Poole and Waite (Poo 73) propose that this conflict
of design aims be resolved by introducing a hierarchy of
abstract machines; at the top of the hierarchy is a high
level abstract machine which closely models the language
to be implemented; this machine is realised in terms of
successively simpler abstract machines which model
successively simpler hardware structures cf. figure 4-2A,
The abstract machine at the top of the hierarchy is
realised when the abstract machine closest to the
particular real machine is realised on that real machine.
We can thus retain portability and still achieve efficient
implementation on sophisticated hardware.

It is important that each abstract machine in the
hierarchy be sufficiently transparent to allow efficient
implementation of the operations and data structures
required at the topmost level, i.e. in the programming
language itself (cf. section 3*2.2.2; (Par 72)). In order
to keep the size of the abstract machines small and thus
aid portability we may be prepared to compromise trans
parency (and hence efficiency) for operations which are
infrequently used (cf. section 3.1.1).

In this thesis, we concern ourselves only with the
design of a language-oriented (high level) abstract machine
for Snip. We regard the development of a hierarchy of
abstract machines for portability as beyond the scope of
this thesis (cf. section 0.3). We refer the reader to the
development of an abstract machine hierarchy for Algol W
and similar languages (Ibr 74). We would hope, neverthe-

A
JSL

/ - a \
---------1 A

R B S T R f t C T M A C W I N E H i E R k A c w y

C^nOM PooLE^ WftlTS

less, that the language-oriented abstract machine designed
in this thesis will provide a suitable top level in the
development of an abstract machine hierarchy for Snip.

4# 3 Design of the Snip Abstract Machine (SAM)

4.3.0
Before considering the decisions involved in .

designing Snip, we present an overview of the Snip Abstract
Machine (SAM), with particular reference to string- and
pattern-operations and data structures.

4.3.1 The Snip Abstract Machine

The Snip. Abstract Machine (SAM) is considered to
have a conceptual structure and a physical realisation of
this conceptual structure. This physical realisation is
called the architecture. Our approach to conceptual
structures and associated terminology closely follows that
used in the Abstract Pascal Machine (APM) (Pat 75).

4.3.1.1 Conceptual Structure

The SAM abstract data structures may be conveniently
and precisely described by a sub-classification of the
well-known "stack" data structure.

In data structure theory, a stack is described as
a linear list of records to which further records may be
added or deleted at one end only, namely the top of the
stack. Any record in the stack may be accessed for
reading or writing of information. In the sub-classification
described here, this form of stack is known as a Free Stack
(FS). The sub-classification is:
(1) Free Stack (FS)
(2) Read Only Stack (ROS) in which records may be accessed

for reading only, and in which only the top cell may
be written to.

(3) Push-Down-Store (PDS) in which only the top cell of
the stack may be used for reading or writing.

Two qualifiers may be associated with each of these
structures:
(a) A stack is said to be bounded if there is an upper

limit to the number of cells which may be occupied at
any time.

(b) An expanding stack is never popped.
The term stack of stacks is used to refer to a stack each
cell of which contains a stack.

Activation Records

In the SAM abstract data structures, attention is
centred on the activation records and their enclosing
structures. When a procedure or pattern is called, an
activation record is set up. This record contains all the
simple and structured variables local to the scope of the
procedure or pattern body, together with the record holding
the return address code. An activation record is normally
only accessible when the procedure or pattern body is being
evaluated.

When a local activation record is accessible, the
only other activation record which is simultaneously
accessible is the one associated with the main program.
Thus, i£̂ the local activation record contains a pointer to
the global activation record, we may regard the stack of
activation records as a PDS,

We describe the structure of an activation record
using component diagrams. We explain thé use of these

diagrams by example:

EXAMPLE 4-1
(a) The diagram

all -T
A. • • n

specifies the string A. A. where i. £ /l, •••, n}1 j J-n J
and if ij = i^ then j = k.

Thus, no ordering of the components is implied

(b)
one

specifies the string A^ where 1 ^ i ^ n

n
(c)

•••• is equivalent to x -

one

all *

where € denotes the empty symbol and x is an operator.

The structure of the SAM activation record is shown
in figure 4-2B. Those groups of components, for example
the temporary result records (TRS*s), which form structures
which are themselves stack subclasses are indicated by
labelling the adjoining arc with a bracketed ^ symbol, and
indicating the stack subclass immediately beneath the entry,

tfo i

œ

uj
a:

c;

C S

Aoi0dW&
z0
•>
5Æ

CÙN
1-4-
«U
ĉï
u-

£

if —o

The bounded PDS of <hnonymous operands> is the
temporary result stack (TRS). The bounded ROS of
C^nonymous string details^ is the string offset and

length stack (SOL),
Since the activation records are organised in a

stack, it follows that the components of an activation
record may be regarded as "separately" stack organised,
although these stacks keep in step with the activation
record stack, pushing when the activation record pushes
and popping when it pops. In fact, when the components
are considered to form separate stacks, we may find that
these stacks actually behave like one of the sub
classifications of the free stack. It is therefore useful
to consider the activation record stack in two different
ways;
(1) as a PDS of activation records which we call the

characteristic structure, and
(2) as nine qualified stacks of distinct activation record

components which we call orthogonal components.

The orthogonal components for the SAM orthogonal structure
are
(a) a PDS of return links,
(b) a PDS of global pointers,
(c) a PDS of parameter linkage record lists for scalars,
(d) a PDS of parameter linkage record lists for structures,
(e) an FS of local scalar lists,
(f) an FS of local structure lists,
(g) a PDS of bounded PDS*s of temporary results,
(h) a PDS of bounded ROS*s of string offsets and lengths,
(i) a PDS of expanding FS*s of heap variables.

4-V

We say that an orthogonal component is characterised
by its characteristic structure if it is pushed and popped
only when the structure pushes and pops. We say that the
component is weakly characterised by its structure if
(1) it pushes and pops whenever the structure pushes and

pops, but may push and pop in between pushes and pops
of the structure, or

(2) it may not push when the structure pushes, and will not
pop when the structure pops the record to which the
component did not react, or

(3) it pushes characteristically, but does not pop.
The heap., SOL and TRS are therefore weakly

characterised by the activation record structure, while all
other SAM components are characterised by the characteristic
structure.

SAM Conceptual Structure

The SAM machine consists of a controller, a special
register called the program counter (PC), an accumulator
(ACC), an activation record stack, a program space, a table
space, a pattern template space and a special register
called the pattern node counter (SSA). Each activation
record contains three (possibly null) stacks; the Temporary
Result PDS, the String Offset and Length ROS, the heap FS.
ACC forms the head cell of the Temporary Result PDS (TRS),

These components, together with the permitted data
pathways amongst them are shown in figure 4-3, We
elaborate the purpose of each SAM component:
(1) The SAM program is a linear list of SAM orders selected

from the SAM order codes (cf. below).

iîl

<c

■û!

<r

U.:

if — JL U

(2) The program counter PC is connected to the Return-
Link PDS and is itself, effectively the top cell of
this PDS. PC points to the next instruction to be
taken from SAM program space and obeyed. To effect
subroutine linkages PC is pushed on initiation and
popped on termination.

(3) The pattern template space is a linear list of pattern
nodes.

(4) The pattern node counter SSA is also connected to the
Return-Link PDS and is itself effectively the top cell
of this PDS during pattern matching. SSA points to
the next pattern node to be interpreted. To effect
pattern linkages, SSA is pushed on initiation of a
subpattern and popped on termination.

(5) ACC acts as the top cell of the Temporary Result PDS
(TRS) and is therefore connected to it.

(6) During evaluation of string expressions, ACC acts as
the top cell of the String Offset and Length ROS (SOL)
which contains substring offsets and lengths.

(7) The heap is a free stack of strings.
(8) Tables consist of a linear list of identifier-defining

and constant-specifying descriptors. All SAM orders
which need to determine variable addresses or constant
values contain pointers to table descriptors.

Addresses of variables in the activation record
stack consist of a pair (n, m) where n indicates whether
the variable lies in the topmost activation record (i.e.
variable is local) or in the lowest activation record (i.e.
variable is global), and m identifies the offset within the
record.

Arithmetic operators take their operands from ACC
and, optionally, the top cell of the temporary result PDS
(TRS); they return the result to ACC.

Any string initialised is pushed on to the heap
stack.

4#3#1,2 Architecture

This section comprises a physical realisation of
the structures of the conceptual machine cf. figure 4-4,
This physical realisation is peculiar to implementation on
the IBM 3 7 0 / 1 5 8 machine or, more precisely, the IBM 370/l58
as seen through Algol W and arises out of one possible
interpretation of the conceptual structure. A one-level
store and an unlimited number of special registers may
therefore be assumed,

4,3,1,2.1 Memory

The structures of the conceptual machine are mapped
on to a single contiguous store which is divided into three
segments:-
(1) the read/execute segment (RXS) containing the SAM

program,
(2) the read/write segment (RWS) on to which is mapped the

return address PDS, the data stack, the temporary result
stack and the heap, and

(3) the read segment (RS) on to which is mapped the tables
and the pattern templates.

All three segments are directly addressed from 1 and have
a maximum size M (say) of SAM locations. The term static
address, or simply address refers to the position of a
location in one of these segments.

H V
ÙC

UJC£ 3=

X<x

<c

u

Ml

IL

4-12

4.3.1.2.2 Addressing

Five addressing formats are used:
(1) Static addresses in the range 1 to M for code addresses,

identifier- and constant-descriptor base addresses in
the tables, data addresses compiled at run time and
heap string base addresses;

(2) an address of value zero which may refer either to ACC
or to the top cell of the TRS (depending on the context);

(3) SOL addresses s, where s is the displacement from the
base address of the SOL;

(4) local addresses 1, where 1 is the displacement from the
base address of the current activation record; and

(5) Heap addresses of strings which incorporate a static
word address together with a character offset within
the word.

4.3.1.2.3 Registers

Thirteen special registers are available to the
SAM controller, in addition to RXS, RWS, RS:
(1) The active (local) pointer AP points to the current

local activation record;
(2) the local pointer LP points to the activation record

for a procedure or pattern which is about to be, or
just has been current;

(3) the stack base pointer SB holds the static address of
th^ first location in the TRS, following the local
variable space of the current incarnation of the
current scope;

(4) the stack top pointer ST holds the static address of
the highest address (occupied by the TRS) in the RWS
segment;

4 — J. O

(5) The heap top HT holds the static address of the
highest address in the RWS not occupied by the heap
i.e. the location preceding the lowest location occupied
by the string allocated space at the top of the heap;

(6) The heap base HB holds the static address of the
highest RWS location occupied by the heap;

(7) The program counter PC holds the static address of the
next instruction in the RXS to be fetched and interpreted;

(8) The accumulator ACC holds the operand of monadic
operators, one of the operands of dyadic operators, and
the result of (integer) function calls;

(9) The source string address register SSA contains either
the address (byte or word and character offset) and
length of the substring which is to be copied (or
compared) or, the address of the node (of a pattern
template) next to be interpreted;

(10) The destination string address register DSA contains
the address and length of the destination string area
(or the descriptor of the first operand of a dyadic
(string) operator, and (optionally) the address of the
descriptor);

(11) The string length accumulator SLA holds the length of
a string expression during assignment;

(12) A pointer CSD to the current-string details in the SOL
stack; and

(13) The type field which holds the type number of the
operand in ACC.

4.3.1.2.4 Representation of Snip Data Structures within SAM

The simple data types in Snip, integer and boolean
are represented in SAM by core locations allocated within

the activation record stack.
The structured data types in Snip, string, vector

and file are represented in SAM by a descriptor, allocated
within the activation record stack, which points to and
describes the representation of the string, vector or file
on the heap or in another part of the record activation
stack.

The form of a descriptor depends on the variable
type :

String Descriptor: BH CU LS

String File Descriptor: B CU LS P

Integer File
Descriptor : B

The descriptor for a vector of string elements
consists of a series of string descriptors, one for each
string element, where
BH is a pointer to the string area on the heap,
CU is the string cursor (or file buffer cursor),
LS is the string length (or file buffer length),
B is a pointer to the file data area,
P indicates whether the file is in core or on backing

store,
UB is the (normalised) upper bound of the vector.

The run-time representation of procedure parameters
is distinguished by the call attribute and the parameter
type. Different kinds of parameters are stored in the
parameter space in different .ways:

var-paramebersJ and
const-parameters of
structured types (but
excluding string type)

Const-parameters of
simple data types i

where
P is a pointer to the parameter or its descriptor in the

activation record to which the parameter is local;
N is the amount of space required to store the value of the

formal parameter type or its descriptor.

4.3.1.2.5 Stack. Frame

Each active scope (procedure, main program or
pattern) has at least one activation record allocated to it*
The structure of this record is known as the stack frame.

Figure 4-5 shows the layout of an activation record
for
(a) a procedure or the main program block,
(b) a pattern.

In the link space,
(1) RA is the return address for a procedure or subpattern

call,
(2) DP is the dynamic pointer,
(3) SBS is the location in which the current SB is stored

if an activation record is laid on top of the current
record in the stack.

For pattern stack frames only,
(4) SSAS, DSAS are the locations in which DSA and SSA are

(respectively) stored when an action primitive of the
pattern is called, and

LO CAL VAÜI&&L&PA RAN6TER
SPACE

SPACE

Ft (r U RE L - SCol;̂ STAc K FR A M E (PRoCEDuRE OR MAW PRo Ct RAm])

' Local VARiA%LS
R D S .s M ^ ■■■• V

S PACE
A P B S s RA A

s S 3 A

L)W%
SPACE

F>CtUR£ L - S C43 s t a c k FRAME CPatt êRn)

Subscripting Group;

(5) MRA is the location in which the return address for an
action primitive call is stored.

The parameter space is that part of the activation
record occupied by the actual items stored for the
procedure parameters.

4,3.1#2#6 Instruction Groups

We find it convenient to classify SAM orders into
the instruction groups listed below. We describe briefly
the action taken by instructions in each group.

Monadic Load Group; load an integer or boolean value into
ACC.
(optionally) load a subscript into ACC;
check that the value in ACC lies within
the subscript bounds of the given vector
variable.
(a) load an integer or boolean value
into ACC and execute the specified
operation using ACC and the top cell of
the TRS as operands, or

(b) load a string descriptor into
register SSA and (optionally) execute
the specified operation using the strings
described by (descriptors in) DSA and
SSA as operands,
store a value or string descriptor held
in a specified register to the location
whose address is given as parameter.
In the case of string variables the
heap area occupied by an unrequired

Load and Operate
Group;

Store Group;

4 - 1 /

String Operation
Initialisation
Group:

Load and Store
String Group:

Jump Group:
Block and Pattern
Control Group:

Procedure Control
Group:

parameter Passing
Group:

string value may be garbaged,
(optionally) allocate area for a new
string value on the heap; set up a
string descriptor in register DSA to
describe the area to which a new string
value is to be copied,
load the descriptor of the string
given as parameter into register SSA
(in the case of a substring, this
descriptor is modified according to
the offset and length contained in
the SOL stack); copy the string so
described, to the area described by
register DSA.
effect control transfers,
effect the initialisation and
termination of use of an activation
record,
effect the initialisation and termin
ation of procedures and their
associated activation records,
implement parameter passing (for
those cases not covered by previous
order groups).

The individual instructions, their mnemonics, para
meters and associated meanings are described in detail in
appendix B, The discussion of register organisation and
usage contained in the following section is sufficient for
our purposes here.

4,3,1#2,7 Register Organisation and Usage for Snip
Operations

All arithmetic and boolean operations use register
ACC and the temporary result stack (TRS) to store
intermediate results.

String operations, however, record intermediate
results in main memory and use registers to hold only the
string descriptors of operands and intermediate results.
There may be up to two "current" string descriptors loaded,
one in each of registers DSA and SSA, The offsets and .
lengths of substrings are held in the SOL stack. During
string comparisons, DSA holds the string descriptor of the
first operand, and SSA the descriptor of the second.
During pattern matching operations, DSA holds the descriptor
of the second. During pattern matching operations, DSA
holds the descriptor of the subject string, and SSA the
descriptor of the pattern template.

During string assignment, it is usually necessary
to copy the components of the assigned (string) expression
to a new area on the heap. An instruction "INITV8"
allocates an appropriate amount of space on the heap for
the string expression (whose length is calculated in register
SLA) and sets up a descriptor in register DSA to describe
this area. Instruction "LSTSTR" loads register SSA with
the descriptor of the (next) component of the string
expression, and copies this component to the area indicated
by DSA, When the string expression has been evaluated (in
this manner) in the designated heap area, an instruction
"STDESCR" marks as garbage, the area on the heap previously
occupied by the assignment string variable, and replaces the

descriptor for this variable by a descriptor for this new
heap area. Under special circumstances in substring
replacement or insertion or deletion or append operations,
it is possible to alter the value of a string without
copying its value to a new position on the heap.

4,3,2 Design of SAM

4.3,2.0
In this section, we identify the principal decisions

taken in the design of SAM, paying particular attention to
string and pattern matching operations and data structures.
Poole and Waite (Poo 73) note that there is a common core
of data types and operators applicable to most abstract
machines; in designing SAM, we find that we can build on
the abstract machines SIL (Gris 72) and AWAM (Pat 74)
designed for the implementation of the Snobol 4 and Algol
W languages, respectively.

The representation of strings and patterns and the
design of SAM orders to effect string and pattern matching
operations have been influenced by SIL. However, since
the Snobol 4 philosophy is to allow as much flexibility
at run time as possible (cf. section 2.5), we find we can
considerably optimise the design of SAM for the less
flexible Snip constructs. The concept of registers, not
present in SIL, is also introduced in SAM.

With the introduction of registers, and given the
simple block structure and less flexible nature of Snip at
run time, we find that the AWAM arithmetic operations,
record activation stack and stack maintenance operations
are more akin to the modelling of the corresponding Snip
constructs. ' Here again, the structures can be considerably

4 — au

simplified in SAM.
We now consider

(a) how Snip data structures may be suitably represented
in SAM, and hence, the decisions involved in the
design of SAM data structures, and

(b) the design of orders and registers well suited to the
manipulation of these data structures in SAM.

4,3*2.1 Representation of Snip Data Structures

We consider strings, patterns, local variables
and parameters.
(a) Strings

We consider the expected usage of (combinations of)
operations on strings and thus determine an appropriate
machine representation,

(1) Expected Usage

We have indicated (cf, section 3.2), that we expect
strings to contract and expand frequently and that in
general no upper limit on string length will be known at
compile-time.

In application to amending or processing of text
files, the deletion, replacement and insertion of substrings
in file-component strings will be frequent. It is
probable that a combination of these operations may be
applied to a single file component. However, since we
expect file-component strings to be relatively short and of
known maximum length, the consequences of some loss of
transparency at this level are probably not severe.

In a string processing language we should expect
heavy usage of pattern matching, and large overheads (Wai
73), Since pattern matching essentially involves string

comparison and substring selection efficiency of these
operations will be of considerable importance,

(2) Machine Representation of Strings

We consider string organisation and storage
allocation on the basis of expected usage of operations
considered above.

String Organisation

The most common, forms of organisation are the linked
list and the packed string. A packed organisation is
more efficient for string concatenation and comparison if
the string is long, as it results in fewer memory accesses
(Wai 73)# This is particularly true on byte-oriented
machines allowing character selection (Poo 73). A list
organisation is more efficient for insertion and deletion
of substrings. In view of the expected usage (cf. above),
a packed string organisation is more appropriate in SAM,

Storage Allocation

Two forms of storage allocation are commonly used
for packed strings (Wai 73):
(i) A certain fixed area is allocated to each string at

compile-time. Strings thus have a fixed-maximum
length (FML): they can grow or contract subject to
this upper bound, or

(ii) At run-time, each string is allocated an area
sufficient for its current length. If a string grows,
it is copied to a (different) larger area. Strings
thus have a dynamic-maximum length (DML), with upper
bound related to the capacity of the real machine,

FML strings allow clear advantages for append and

ij.— XÛ Zr

substring-replaceraent operations as updating operations
may be used (of, section 3,1,1.1); the capacity to grow
is, however, severely limited. This form of string is
appropriate for file-component strings (cf, above).

DML strings allow much greater flexibility, but
lose the FML string advantages for. append and substring-
replacement operations. Overheads may be considerably
increased by the need for garbage collection and compaction
to deal with storage fragmentation. This form of string
is appropriate to general Snip strings.

Within either system, we still have the option of
sharing identical strings and substrings. From the point
of view of efficiency, this is worthwhile for multiple
assignments (we have none in Snip) and substring assignments
(Wai 73), Substring assignments will frequently occur
during or after pattern matching (cf, above). If shared
substrings are allowed then it is more difficult to allow
append or deletion operations or substring replacement
by updating the existing string value.

In conclusion, we have rather unsatisfactorily
proposed the inclusion of two forms of string representation,
namely fixed-maximum length or FML strings and dynamic-
maximum length or DML strings. We might consider
combining the two systems, attempting to retain the advantage
of each. Intermediate systems of this form do not, however,
appear to have any clear advantages (Wai 73),

FML strings can be allocated a fixed-length region
in the appropriate activation record. This is not,
however, the case for DML strings. We consider these
separately.

4-23

DML Strings

Since DML strings may expand or contract dynamically,
space cannot be conveniently allocated to them on a stack
structure (such as the activation record stack); a heap
structure in which an appropriate amount of space can be
dynamically allocated to a string and for which some form
of storage regeneration exists, would provide a suitable
means of representing DML strings, (McK 70; Grie 71).

Space on the heap is allocated according to string
size. If a new value is assigned to the string variable,
an appropriate amount of space is allocated in a new heap
area; and the old area is garbaged. If only part of the
string value is altered, by deletion or replacement of a
substring, it may not be necessary to copy new string value
to a new heap area (its bounds are merely altered).

This organisation is similar to the strategy used
in SIL to allocate storage space to strings and other
constructs in Snobol 4.

String Descriptors

Since DML strings may occupy different positions
on the heap at different points during the execution of a
program (as described above), it is necessary, to maintain,
in the appropriate activation record, a pointer to the heap
area currently occupied by a string, and an indication of
the lepgth of the string. We call this pointer-and-length
pair, the string descriptor. Each (incarnation of an)
activation record contains string descriptors, one for each
string variable which is local to that activation record.
We find it convenient to associate the string cursor with
the corresponding string descriptor.

4-44

(b) Patterns

Patterns may be altered only at extension definition
time, prior to execution of the translated SAM object
program (cf. section 3.2,2.3). Thus, pattern templates
are fixed at (abstract machine) run time, and can therefore
be allocated a fixed area in SAM memory.

We can represent a pattern template by a series of
nodes (one corresponding to each pattern primitive string
(cf, section A,11) of the template). These nodes are
chained by ” alternate-node'* and *'successor-node” pointer
corresponding to alternate and successor sequences of the
template they represent. Each node consists of the 4-tuple:

Node type
Successor
Pointer
Alternate
Pointer

address of, or value of pattern
primitive string

The number of alternate and successor pointers required is
reduced to a maximum of one each by the chaining of
alternates and successors (cf, SIL (Gris 72)),

(c) Local Variables and Parameters

The design of the record activation stack to
represent local variables and parameters is influenced by
AWAM, The linkage for activation of procedures, functions
and patterns is similarly influenced,

A similar construct does, in fact exist in SIL
(for procedures and functions only), but it is cumbersome
and, conceptually, less well organised: an activation

4-25
record is effectively created on the heap, and pushed on to
a stack only when the function or procedure is called
recursively.

The linkage space of an activation record (cf,
figure 4-5(n)) requires a dynamic pointer if the activation
records are of different lengths. However, since no non
local variables, other than global variables are accessible,
no static pointer is required.

The linkage space of an activation record for a
pattern (cf, figure 4-5(h)) must record, in addition, the
contents of registers DSA and SSA and the address of the
current (match) instruction during the call of an action
primitive of a pattern; DSA and SSA are recorded as they
may be required in string or pattern operations within the
action primitive; the match return address (MRA) is
recorded because action primitives use the activation record
corresponding to the pattern in which they are defined (they
do not initialise a new activation record).

By the introduction of an activation record
associated with each call of a pattern, we can implement
the (compile time) construction of new patterns defined in
terms of existing patterns, as well as recursive patterns
without the need for explicit copying (contrast SIL (Gris
72)).

Since backup is not permitted during pattern
matching in Snip (cf, section'3*2.2,3), we do not require
to create a stack of "untried" alternates as backup points
(contrast SIL),

4*3*2,2 SAM Registers and Operations

The SIL machine is a low level machine and has no

concept of registers; instructions refer directly to
memory locations for their operands. For this reason,
SIL is readily implemented on even simple machines cf,
section 4*2; by the same token, however, SIL introduces
inefficiency in terms of redundant code (unnecessary
transfers to/from memory from/to registers) on most real
machines. In this section, we consider the design of
suitable registers and operations for SAM, We consider
first the general form of SAM orders and then the orders
and registers associated with certain data types;

(a) SAM Orders

General

(1) Polymorphism SAM orders are polymorphous in the sense,
that, as far as possible, a single order is used to
take a particular action irrespective of the type(s)
of the operand(s). The abstract machine orders are
thus designed at a high level, and are divorced from
the idiosyncrasies of particular real machines,

(2) Postfix Code
Griswold (Gris 72) finds it expedient to express SIL
orders in prefix form, because of the flexibility of
Snobol 4# However, orders in prefix code define a
highly nested and complex evaluation structure which
is not particularly suited to realisation on most
existing real machines. We find it possible in SAM
to use the more natural postfix (or reverse polish)
notation.

Arithmetic Operations and Registers

Arithmetic operations include an (optional) "load"

4-27

operation, since we expect the sequence of operations
"load" followed by an arithmetic operation to be relatively
common (cf. AWAM (Pat 74)). On some real machines these
orders may be implemented by a single instruction. However,
since we do not expect arithmetic operations to be heavily
used in Snip, we do not provide "reverse" instructions (for
non-commutative operations) to minimise TRS usage nor do
we provide instructions to optimise special cases.

String Operations and Registers

It is not, in general, possible to load string
values into registers., (Indeed, for certain string
operations, concatenation for example, the use of registers
to hold intermediate results is quite inappropriate,) For
this reason, string orders refer to string descriptors to
access their operands* In SIL, descriptors for the
(current) string operands are stored in locations in the
data area; in SAM, they are held in registers SSA and DSA.
We consider the operations of string comparison and string
assignment individually:

(1) String Comparison For string comparison operations,
the descriptor of the first operand is held in register
DSA; the descriptor of the second in register SSA, We
keep these operations at a high level, by avoiding explicit
definition of precisely how strings are compared, (This
is possible because any register or workspace used in
comparison is local to these instructions and is not
required by subsequent instructions). We also avoid
specifying the form of a string address (byte or word)
held in register DSA or SSA,

4— 6 U

(2) string Assignment and Concatenation Before a string
assignment, register DSA is set up to describe the new/
destination heap area. During assignment or concatenation,
the descriptor for the (next) component of the assignment
expression is loaded into SSA since this register is free;
the component is then copied to the area indicated by DSA,
register DSA being updated to receive the next component
(if any). Since the loading of register SSA and the
copying of a component always occur in sequence, we use a
single "high level" instruction "LSTSTR" to carry out this
action. Register DSA is required if there is more than
one component (i,e. concatenation in the assignment expres
sion), to point to the (next) free section in new heap area,

. Considering the expected Snip usage, we felt it
likely that large unallocated areas or "holes" will
frequently develop in heap between the pointers HB and HT
(cf, figure 4-4)• We attempt to reduce this problem
(and thereby, hopefully, to reduce the frequency of storage
compaction) by attempting the infilling of holes on string
assignments. This infilling is most easily organised if
the length of the assignment expression is calculated
before the assignment takes place. Since the expression
may contain substrings, a stack of intermediate results
(substring offsets and lengths) may be built up on the TRS
during calculation of the expression length. The offset
and length pairs are accessed in reverse order (hence the
need for register CSD to point to the offset and length
for the "current" string) and so we rename the TRS, when
it is used in this manner, as the SOL,

4-ay

Pattern Matching and Registers

in order to handle pattern matching, we require to
maintain a pointer to the next node to be interpreted in
the pattern template, and a pointer to the current position
in the string being matched. At the start of a pattern
match, the descriptor of the subject string is loaded into
DSA, Register SSA is used to point to the next pattern ■
node. During the pattern match, the cursor in DSA and the
node address in SSA are appropriately updated.

Local Variable. Parameter and Activation Record Stack
Pointers

Pointer registers AP and LP are introduced to allow
convenient access to local variable, parameter and linkage
space in the current activation record and in the activation
record which is about to be (or just has been) current,
respectively (cf, figure 4-4).

Since no non-local variables (other than globals)
may be accessed, it is not necessary to maintain a display
register pointing to the base addresses of activation
records for textually enclosing scopes.

4,4 Implementation of SAM

4,4.0 Introduction

An interpretive version of the Snip Abstract Machine
was implemented on the IBM 370/l58 computer. The high
level language Algol W (Bau 71) was chosen as a suitable
implementation medium; its constructs for bit and string
handling were appealing, although it proved impossible to
make use of this latter facility because of restrictions
imposed by the language.

4-30

In this section, we describe and discuss the major
aspects of this implementation. We consider first the
run-time store and interpreter organisation, and
subsequently the representation and organisation of SAM
data structures and orders,

4.4.1 Run-Time Store and Interpreter Organisation

Store is laid out in a single Algol W array CORE,
and registers are defined as individual global variables
identified by the register name (cf, figure 4-6), Storage
allocation is controlled by an Algol W subroutine,
ALLOCATE, which controls the limits of the activation
record stack and the heap. In addition to space for SAM
data structures, the array CORE includes space for the
FREE LIST which is used in heap organisation (cf. section
4.4.3).

The basic interpretation process is handled by a
routine CONTROLLER which simulates the action of the SAM
controller, CONTROLLER fetches and decodes the next SAM
instruction from memory (pointed to by PC); this
instruction and its parameters are decoded and passed to
the appropriate "instruction-interpreting routine" which
simulates the action of the instruction; there is an
instruction-interpreting routine corresponding to each
SAM instruction. On completion, instruction routines
relinquish control to CONTROLLER, which continues the
processing of SAM orders, as above,

4.4.2 Representation of Snip Data Structures and Statements

SAM Orders

Each order occupies one or two (32 bit) Algol W

“*“é X S ™ — T-f-

SAM P R R A m] ACTIVAT* oN RE &

STACK I
<j— I HEAP

"d— f? -S —

PftTTERtJ

TKhpLfirns
Tft &L&S PRÎC

UST

M
PC

3 1 - i
•< n n 1

0
;o SLR

•0
m A P LP SB CSj) iT HT HB

%
k .,

tsft

F>CtUR£ U ~~ I* « îo f t î oftftRf^iSftVvorv

4-ji
words. The first word of a SAM order is always of the form;

8 bits 8 bits l6 bits
/

Instruction
mnemonic

/
parameter 1 parameter 2 (usually an

address in the range 0
to 2^^ - 1)

The second word of an instruction (if present) is always
of the form:

l6 bits
/-

parameter 3 (usually an address)

Instructions are decoded (unpacked) by using bit masks
and operations.

Strings

Because of the restrictions on the size of Algol
W strings, it is not possible to use byte addressing.
Strings are thus represented as a series of encoded
integers (four 8-bit characters to a word) in the heap
area of array CORE, String addresses, therefore, consist
of a word address followed by the character offset within
that word. The character offset lies in the range 0 ., 3
as shown in the figure:

 V/ORI» isi-l ------^

/

N

OFPS5T >
V/ORÎS Rl>-PRI=S5

N

Substrings are fetched/stored using appropriate
bit masks.and operations.

Registers DSA and SSA are therefore of the
form:

WORD ADDRESS OFFSET STRING LENGTH DESCRIPTOR !
ADDRESS 1

WORD ADDRESS OFFSET STRING LENGTH

DSA

SSA

Files

In this implementation, files are treated as in-
core files and allocated space in region RS (cf. figure
4-6). Backing store files can be handled by the inclusion
of externally-defined Fortran routines.

The standard files INPUT and OUTPUT are simulated
by the Algol W input and output streams, only the file
buffer being allocated space in SAM memory. Since strings
are stored as sequences of encoded integers (cf. foregoing)
conversion to/from Algol W strings from/to integers is
required during input and output. Although this type
change does not in fact alter the form of the data, it
does, in (the Algol W) implementation involve explicit
manipulation of data, since there is no simple means of
effecting this type change in Algol W. This obstacle can
be circumvented by rewriting input/output handling
routines as externally-defined Fortran procedures.

patterns

Pattern templates are laid out from high core
address to low core address, each node of the template

being represented by a block of 2 or more words. The size
of the block is dependent on the node type (cf, figure
4-7)# Action primitives and the null string have no
alternates since they are always successful, A null
successor or alternate pointer is represented by the
address "-1”. The set of chained nodes representing a
single template is mapped on to a contiguous area of core,

We illustrate this representation of pattern
templates by considering the Snip patterns declared as
follows:

Example 4-2
PATTERN E;

BEGIN
<-:T> . {"+»' . <-:!>]

END:

PATTERN T;
BEGIN

<-;F> . . <-:F>]
END;

PATTERN F;
BEGIN

"ID” I "(" . <L:E>
Em;

Figure 4-8 shows the representation of the patterns E, T,
F, (In practice, the nodes are mapped on to a contiguous
area of memory). This representation differs from the
corresponding representation of Snobol 4 patterns;
(a) A pointer is maintained to each pattern template to

allow shared and recursive use of patterns without

Node Type

String Constant

Node Representation

Node Type - 1
Successor Address
Alternate Address
String length
String value

Null string : Node Type = 2
Successor Address

........ —

Subpattern : Node Type = 3
Successor Address
Alternate Address
Table Pointer

Action Primitive ; Node Type = 4
Successor Address
Table Pointer

FIGURE 4-7 Node Representation

Z Df
W til

or

U-

ÛLCL c

4-j4

copying.
(b) Constructs enclosed in brackets (j include a "self

pointer" as final successor (to allow repetition) and
an initial NULL alternate.

Tables

Run time tables include an entry for each of the
following occurrences in the source program:

standard variables
constants
pattern declarations

declared variables
implicitly declared cursors
and buffers
procedure or function
declarations
labels (for structured
statements)

As well as providing the SAM controller with the type and
address (and other information) about variables, table
information is useful for debugging purposes.

The form and size of a table entry depends on the
type of the variable or construct which it describes. The
information contained in table entries is summarised in
figure 4-9• Each entry commences with an identification
tag, a type and an address. Table entries for formal
parameters are similar to those for local and global
variables, but with the following changes:

Variable-Parameters

Constant-Parameters

(a) The type field is increased by
100, and

(b) CORE (PTR-2) contains the address
of the address of the value or
descriptor.

(a) The type field is increased by
2*00, and

FIGURE 4-9 RUN-TIME TABLES (FOR VARIABLES AND OTHER CONSTRUCTS)
CORE
(PTR)

CORE
(PTR-l)

CORE
(PTR-2)

CORE
(PTR-3)

CORE
(PTR-4)

CORE
(PTR-S)

CORE
(PTR-6)

CORE
(PTR 7)

CORE
(PTR-8)

Boolean or
Integer

Tag Type Address
of
value

- - - - - -

Vector of
Integer

Tag Type = 3 Base
address
of
values’

normalised
maximum
bound

- - - -

(Integer)
File Buffer

Tag Type = 4 Address
of
descrip
tor

- - - - - -

(Vector)
Cursor

Tag Type = 5 Address
of
value

- - * - - - - -

(String/
Buffer)
Cursor

Tag Type = 6 address
of
value

- - - ' - - -

Integer
Constant

Tag Type = 7 actual
value - - - - - -

DML
String -

Tag Type = 8 address
of
descrip
tor

Vector of
String

Tag Type = 9 address
of desc
riptor

normalised
maximum
band

- - - - -

FML String Tag Type = 10 address
criptor

maximum
length - - - - -

String
Constant

Tag Type =11 address
of
value

actual
length - - - - -

(Integer)
File

Tag Type = 12 address
of des
criptor

mode first
component
address

last
component
address

last
used
component

- -

(String) File Tag Type =13 address
of des
criptor

mode first
component
address

last
component
address

last used
component

maximum
component
length

-

Pattern Tog Type = 14 address
of tem
plate

local
variable
Space

address of
first
string des
criptor

number of
string des
criptors

size of
template

Procedure Tag Type = 1 5 address
cedure
body

local
variable
and para- - - -

Function Tag Type = I6 address
of
function
body

" " - - -

Structured
Statement

Tag Type = 17 address
of end
of stat-

Main Program
Block

Tag Type = 18 first
word of
code

base of
activation
record
stack

" "
base
address
of heap

address
of free
list

address
of first
table

4-Jb

(b) CORE (PTR-2) contains the address
of the address of the descriptor
for structured variables, and the
address of the descriptor or value
for string variables and scalar
variables*

4,4.3 Instruction-Interpreting Routines

We do not intend to describe each instruction-
interpreting routine in detail, since, in general, there
is a one-to-one correspondence between these routines and
the SAM orders; in most cases, they are adequately defined
by the specification of the SAM order which they interpret.
We consider instead, the following problems associated with
string storage and string operations:

String Operations

(a) String Comparisons

In order to compare two strings SI and S2 (say),
we have to subdivide them into substrings of more manageable
lengths. Since we cannot use byte operations (cf, section
4,4*2), comparison with substrings of length one word
provides the most efficient implementation. However, this
is only reasonably possible when the offsets of the first
characters of SI and S2 are equal. If the offsets are
unequal, we compare the strings character by character.

For (in)equality, a comparison of the length of
the two strings may yield a quick result,

(b) String Copying

During string concatenation and assignment, strings
are frequently copied from one heap area to another. As

in the case of string comparisons, we find it necessary to
subdivide strings during copying. Here again, this process
is relatively easy to carry out at word level; but this
is again only possible when the offsets of the first
characters of the string source and destination areas are
equal. If these offsets are unequal, we find it
necessary to subdivide and re-merge partial words during
copying. This is clearly a very time-consuming process.

Heap Organisation

Heap organisation is summarised in figure 4-10.
HT and HB point to the highest-allocated heap address and
the heap base address, respectively. Strings are
allocated an appropriate amount of space on the heap by
routine ALLOCATE, Conceptually, at least, we find it
simpler to record strings, running from high heap (low
physical) address to low heap (high physical) address.
We recall (cf, section 4.3#2,2) that we attempt to infill
"holes" appearing on the heap. We organise this by
maintaining a FREE LIST to describe these holes; each cell
of the list contains a pointer to a hole and the length of
the hole. When routine ALLOCATE is called, the FREELIST
is scanned for a suitable hole. If there is no suitable
hole, space is allocated at the top of the heap. If
space available to the heap for expansion becomes short
and the available holes are small fragments of store, then
storage compaction may be worth while.

Compaction Process:

During compaction, strings above the LOW_^GARBAGE__
POINT (which marks the lowest garbage area on the heap)
are copied "downwards" in the heap to fill holes (cf.

Ul
Lu

tu

« V
I oJtüb f
Si ̂or

P«vj€cc5a0
0.<i
Ul
1:

I

Ul
Qi3

4-37

figure 4-11), Strings are copied strictly in order, from
the one wdth the lowest to the one with the highest heap
address, in order to prevent overwriting. An ordered list
must therefore be set up, each cell of which contains the
address of a string descriptor and the base address of the
heap area occupied by the string. String descriptors are
updated during the compaction process. Similar compaction
schemes are used in XPL (McK 70) and Snobol 4 (Gris 72).

4,4,4 Conclusions from SAM Implementation

The implementation highlighted some errors in the
conception of the abstract machine, causing a certain
amount of re-design; it demonstrated, however, that the
revised abstract machine is feasible. Some small sections
of the translator were hand coded in SAM and successfully
executed (cf, appendix E).

4,5 The Translator

4,5,0
We do not intend to present a manual for the

implementation of a Snip translator, but merely to
illustrate (in a simple-minded fashion) how the more
unusual features of Snip might be handled. In particular,
we refer to the processing of metalanguage and augment
texts.

Transition diagrams for Snip syntax may be useful
at this stage and are presented in appendix D,

4*5,1 Processing of Metalanguage Text

We consider first the processing of metalanguage
or definition text. By allowing the definition of
extensions to a language L, say, we are, in effect, allowing

GrftRÛfiQEjt Point

SI S2 S3 AIIE STRaJQ-S— X j

i
(N D 'cA iE i oADgh oe- M ovEMSnr

F i G - U R g SToRftCrE CLOi-iPnc.Hi

4-38
some form of "incremental" modification of the compiler
for Lj, albeit in a highly restricted and abstracted form.
We thus transform the compiler for L into a compiler for
an extended version of L, LI, say.

We envisage that this compiler modification will
be carried out by
(a) writing the compiler for L in Snip, and
(b) by allowing the Snip compiler to incrementally modify

programs it compiles.
The extension mechanism does not then have to be re
written for each new language which is to be extended.
Figure 4-12 illustrates this process of extension.
Language L may be Snip itself.

As noted in section 3#2,2,6, we allow incremental
definition of global variables and procedures, as well as
certain controlled modifications to existing structure
strings. We do not, in contrast to relatively powerful
incremental compiler systems (cf, Mitchell (Mit 70)) allow
incremental definition or modification of individual
statements of the program being compiled. The principal
distinction between an incremental compilation system and
the process described here, is, however, the restriction
that modification of the program (or compiler) being
compiled may be effected only after compilation is completed,
and not during the compilation process* Such modification
is, in addition, constrained to occur only in the global
context of the program being compiled (cf, section 3,2,2,3):
it may not be related to the block structure of the
program.

We consider the various incremental constructs

B

w
g3e
zg-i

fX
gr:
aI
|/'

r
<

J
ft»

0
z0I
AUJa
Z
Ul
%Ul
!E
Ulorut
A
t)(
C
V#

V;

ew0-
wCf

s
$
t/t
o0-
M
Ul\-coÂZ

/f.1I
t
i

/ / (r .U g E t I O N .. P f ,,

4-39

individually;

Global Variables

Incremental declaration of global variables is a
simple matter if organised before the data structures of
the corresponding abstract machine program are set up.
Nor should it be a complex matter to flag and prevent
corruption of (the values of) existing global variables, ‘

Procedures

Incremental compilation of procedures may also be
simply handled, provided we delay the binding of the
abstract machine data structures so that code for the
procedure may be placed above the code for the main program
segment (cf, figure 4-4),

Existing context-sensitive syntax prevents the
overwriting of any existing procedure.

Extension Definitions

The processing of extension definitions poses more
complex problems, because in this case, we must actually
modify existing patterns. In order to avoid the overheads
of modifying the abstract machine structures representing
patterns (cf, section 3,2.2,3), it is advisable to modify
patterns before they are bound to the abstract machine.
We might modify a compile-time representation of patterns,
or perhaps even the source text itself. Both the define-
and the take-statement are fairly readily implemented by
this means. In each case, we must determine that the
modified structure remains LL(l) in form (cf, appendix C),
In the latter case, we must additionally ensure that the
original precedence structure, is retained intact, after

4-40

modification of the pattern (cf# section 3*2,2.6),

4,5.2 Processing of Augment Text

In this section, we consider the processing of
augment text to produce semantically equivalent base or
extended text. We consider, in other words, the generation
of a semantically equivalent substitution string.

Example 4-3

Statements of the form;
"REPEAT <^tatemeni^ UNTIL <hoolean expression^ ”
might be defined by the Snip substitution string;

DO : BL
<^t atemeni^ ;
IF <boolean expressiod> THEN LEAVE BL FI

OD "

In normal circumstances, the substitution string
will belong to the same syntactic class as the extension
itself. Thus, in the example above, both extension and
substitution string belong to the syntactic class,
^ t at ement%> ,

When a section of augment text corresponding to an
extension is recognised during compilation, the appropriate
substitution string is (usually) generated. The
compilation process must be so organised that it continues
recognition, by scanning this newly substituted string;
the recogniser should continue as though it had failed
(so far) to recognise the current syntactic class goal.
Thus, in example 4-2, the recogniser should continue
searching for the goal, <^tatement^ , and scanning should

4-41

re-commence on the substitution string ”D0 ••••**#
For a recogniser which allows back-up (e.g. Imp

(Iro 70)), this re-scanning of the substitution string
might easily be absorbed into the existing mechanism,
merely by indicating a ’'match failure" to the recogniser.
However, the LL(l) recogniser used in Snip does not allow
back-up (cf. section 2,4) and would not tolerate a failure
signal of this form.

We illustrate one possible solution to this problem
by way of example:

Example 4-4

Suppose a particular rule of the LL(l) grammar
describing some base language is of the form

S : ; = a

where S is a non-terminal and ^ is a sequence of terminals
and non-terminals. Suppose also that we wish to define
extensions of the form X^, . X^ (where X^, 1 ^ i ^ n,
is any sequence of terminals and non-terminals) to the
syntactic class S. In order to ensure correct scanning
of substitution strings, we might modify the rule as
follows :

I 1 * 1 1 * 2 a I * 2 (* 1 1 * 2 '"'I * n

!••• *2 -"I *n 1

a a

It is perhaps more obvious from the corresponding
transition diagram that this rule does in fact specify
the correct recognition sequence.

4-44

Example 4-5

We consider the definition of a repeat-statement
as an extension to the syntactic class, <statement> cf.
example 4-3# The transition diagrams for <[statement>
before and after extension are shown in figures 4-13(a) and
(b), respectively.

We recall (cf. section 2,4) that we expect
parameters (other than base language constructs) of
extensions to be called by value. In order to handle
value substitutions, it will in certain cases, be necessary
to maintain a hierarchy of buffers, each containing (distinct)
generated or partially generated substitution strings. We
illustrate this once again by example.

Example 4-6

Consider the statement

7S 7k

I

I
U
t iZ
q
vl

4 - 4 j

»REPEAT
A INC B

UNTIL A > B "

where repeat-statement is defined as in example 4-3 and
inc-statement is defined to have the form

” <yariabl^> INC <pxpression> "

and the meaning

" <5rariable> := <^ariable> + <pxpression> "

During recognition of the above statement,
substitution strings for the repeat-statement and for
the inc-statement must be generated (at least conceptually)
in separate buffers.

We now consider a skeleton program to illustrate
a simple-minded translator organisation. We must first,
however, consider two associated problems:

(a) Scanning the substitution string

Example 4-7
We re-consider example 4-4.As noted above, different

substitution strings will be generated in different buffers.
There is however, no means of indicating in Snip that
pattern matching is to continue on some other buffer string;
indeed, such a facility is perhaps inappropriate to a
secure string processing language,

' . However, the rule

S : a I 1 1# f 1
*2 1 j a L ̂ 11 2 • • •

is equivalent to the rule

S : : — x^s

4-44

We find that we can thus circumvent the above-noted
difficulty by organising extended syntactic classes in the
form

a X Xn
provided we invoke the match operation recursively on
rule S after recognition of any extension.

This may be automatically handled by the define-
stateraent or take-statement, without the need of user
intervention,

(b) Generation of Abstract Machine Code

When constructs of the base language appear as
parameters to some extension, no code is generated for
these constructs. However, when base text is recognised
in its own right, appropriate (abstract) machine code
should be generated. This problem is fairly readily solved
by the setting of an "inhibit code" flag during the
recognition of an extension.

Example 4-8

We consider once again example 4-4. The extended
transition diagram is as follows:

4-4^

At point (2) on this diagram, the code_inhibit_flag
is set; at point (3), it is cleared.

At point (1) a recursive call on S is effected
(cf, example 4-7).

Once again, the flag can be automatically set and
cleared by the define-statement or take-statement, thus
freeing the user from unnecessary effort,

 /------
We are now in a position to proceed with the

illustration of a simple-minded translator organisation.

Example 4-9
This example defines recognition of a simple

compound statement which consists of combinations of if-
statements and assignment statements, A while-statement
is introduced by extension. The program is written in
Snip-like form (cf, figure 4— 14).

Code is generated for base language constructs
unless the code_^inhibit__flag is set. Routine "gencode"
is assumed to handle this code generation.

Routine SUBST is assumed to generate a substitution
string in appropriate buffers. We also assume the
existence of routines to generate unique identifiers e,g,
NEW_LABEL etc.

This example shows that many Snip constructs are
too simplistic. However, we recall that Snip was designed
as a base language; the difficulty may therefore be
overcome by defining suitable extensions to this base.

We illustrate the functioning of this mechanism by
considering evaluation of the augment text string:
"WHILE A < B DO

' WHILE P < Q DO D := C "

FIGURE 4-14-

GLOBAL CONST TYPE = 1; ADDR = 2; STATE = 3; /* attribute
record indices #/

LOADED = 1; NOT__LOADED = attribute states
VAR GATTR ; VECTOR ̂1..3 j OF INTEGER; global

attribute record */
PATTERN COMPOUND_STATEMENT;

BEGIN
"BEGIN" . STATEMENT>

• / . <-;STATEMENT>] .
" END"

END CST;

PATTERN STATEMENT;
EXTERNAL VAR GATTR;
LOCAL VAR LATTR : VECTOR [!•* 3 j OF INTEGER;
BEGIN

("IF" • <-: EXPR>
ACT IF — I inhibit^code THEN gencode

FI TCA .
"THEN" . <-: STATEMENT> .

("ELSE" ACT IF — i inhibit_code THEN
gencode FI TCA ,

<-: STATEMENT> . "FI"
I"FI"))

(<-: VARIABLE>. ACT LATTR := GATTR local
copy TCA *

n • =11
<-: EXPR> ACT

Check_types
IF — I inhibit code THEN

IF GATTR [s t a t e] = NOT__LOADED
THEN gencode FI

FI
TCA

END ST;

PATTERN EXPR;
e x t e r n a l VAR GATTR;
LOCAL VAR LATTR: VECTOR [l.,3] OF INTEGER;
BEGIN

IF — I inhibit code THEN
IF GATTR[s t a t e] = NOT_LOADED THEN gencode

FI /* code to load
kL;

LATTR := GATTR /* Local copy V
TCA .

TERM> ACT
Check_types;
IF “ 1 inhibit__code THEN gencode

FI code for addition
TCA }

END EXPR;

PATTERN TERM;
EXTERNAL VAR GATTR;
l o ca l VAR LATTR: VECTOR [l..3] OF INTEGER;
BEGIN

<-: FACTOR> .
{ ACT

IF — I inhibit_code THEN
IF GATTr [sTATe] = NOT_LOADED THEN

gencode JFI code to load #/
ÉI;
LATTR := GATTR local copy

%CA.

<-: EACTOR> ACT

END TERM;

Check^types;
IF ” 1 inhibit^code THEN gencode

FI code for multiplication#/
TCA]

PATTERN FACTOR;
BEGIN

<-: VARIABLE>
|"(" . <-: EXPR> , ")"

END FACTOR;

PATTERN VARIABLE;
EXTERNAL VAR GATTR;
BEGIN

"ID" ACT
Search_identifier_table8; set__up__attribute_

record;
TCA

END VARIABLE;

PRE
DEFINE

PATTERN WHILE__STATEMENT;
LOCAL VAR E, S, L ; STRING:
BEGIN

"WHILE" • < E : BOOLEAN_EXPRESSION> , .
< S : STATEMENT >

ACT
NEW_LABEL (L);
SUBST("^ . L .

"IF -n ",E."THEN LEAVE",L."FI:"
S

"W")
TCA

END WHILE STATEMENT
AS STATEMENT;

ERP

4-40

(cf. figure 4-15)
Numbered arcs indicate the order of evaluation.

The expression "A <[B" is first recognised and stored as
the first incarnation of (local variable) E, E/l, say;
"P <C is stored as the second incarnation of E, E/2, say,
while "D ;= C" is stored as the second incarnation S, S/2,
A substitution string is then generated to represent the
translation of the inner while-statement; E/2 and S/2 are
parameters in this substitution string. The substitution
string thus created is stored as the first incarnation of
S, S/l, Finally, a substitution string is created for the
complete statement, using E/l and S/1 as parameters.
Object code is generated from this final substitution string,
In this example, only one buffer is required. However,
had the while-statement been defined in a hierarchy of 2
or more levels, then 2 or more buffers would have been
required.

AA

V
II

1
Kj

I
I

I

I

O '

V
CL

o
V
CL

I

-s
N Bwl
. . ^000|/al

V
Aw
V <3»

§s

à

5-1

CHAPTER 5

' CONCLUSIONS AND FURTHER RESEARCH

5*0 Introduction

In this chapter, we review the principal develop
ments in this thesis and point out both weaknesses and
possible improvements to the system. The underlying
belief is that extensible languages ought to afford the user
(whether systems programmer/language designer or not) as
much protection from himself as possible and that this can
be achieved to a large degree by careful choice of language
abstractions. The success of this approach must ultimately
rely on the willingness of the programmer to accept a
'*straight-jacket” providing relative security in place of
a free language where the responsibility for security is
entirely his own.

5.1 Review and Critique

In chapter 1, we described the background problem
of language proliferation to which extensible languages
provide a partial solution. We considered the evolution
of extensible languages and introduced the Solntseff-
Yezerski classification scheme to enable orderly discussion
of existing extensible languages; we introduced also a
diagrammatic representation to illustrate the (likely)
translator organisation of each class of system. The
theme of this dissertation, namely the security of extensible
languages was then briefly discussed.

In chapter 2, we found it expedient to discuss first
the notion of security in relation to (simple) programming
languages before continuing tor discussion of extensible

5-Z
languages, since the base and extended versions of the base
language are in any case (simple) programming languages*
We introduced in particular the notions of unstable and
overtransparent language features from an intuitive, human-
oriehted viewpoint* Using a machine-oriented view, we
argued that relative security may be achieved (a) by
increasing the number of distinct, non-trivial assertions
concerning a program and (b) by minimising non-checkable
redundancy, essentially suppressing irrelevant detail and
defining higher level or aggregate data structures and
operations. This second approach reduces the transparency
of individual data structures and operations, although it
may or may not reduce the transparency of the language as
a whole. We argued therefore that improved security relies
on the programmers ability and willingness to use appropriate
language constructs and that this is more likely when
structured programming techniques are used.

We used these notions to design two alternative
models of secure extensible languages; the first was found
to relate to bootstrapping or to a hierarchy of abstract
machines designed for translator portability, and we
therefore considered it no further; the second model was
found to relate more closely to existing systems. Our
discussion of security led us to believe that classification
of extensible language systems according to the means of
defining the semantics of extensions was more appropriate
from the point of view of security. After re-classification
of the principal existing extensible languages, we were able
to show that none matched the ideals of the model. Perhaps
surprisingly, however, we found data structure and operator
extensions to have been much more securely developed in

5-3

contrast to more general syntax extensions. We therefore
proposed a scheme for secure realisation of the model based
on a string processing language with patterns which specify
structures isomorphic to those described by LL(1) grammars.

Chapter 2 forms the most important part of this
thesis; herein lies our claim to originality. The notion
of security is not new, and has been introduced into most
other contexts on an ad hoc basis. It is however, notably
absent in extensible systems. We believe the application
of security to extensible languages and to the design of a
secure model for extensible languages to be original.

Chapters 3 and 4 are concerned with a possible
realisation of the model in terms of a string processing
language. Snip. Chapter 3 considered the design of the
base language. We presented an informal discussion of the
general design principles used and the method used to
determine and resolve conflicting aims. This was followed
by a brief introduction to Snip itself, and its design.
Overtransparent and unstable features of this base language
were determined by relating it to the experience of
existing programming languages, and the notation was designed
by considering brief surveys of the characteristic errors
of Algol W, Algol 6o and other languages.

An implementation scheme for Snip was briefly
considered in chapter 4, We designed an abstract machine,
SAM, for this purpose, and although we did not specifically
orient this towards machine independence and portability,
we expect it to provide a useful starting point. A
physical realisation of SAM for the IBM 370/l58 machine as
seen through Algol W was discussed. Finally, we briefly

5-4

discussed a simple translator architecture for the
processing of constructs in the extended language (i.e.
the augment text).

The principal goal of this thesis was the design
of a secure extensible language; we discuss how far this
objective has been achieved; we observed in chapter 2 that
security of a programming language is to a large extent
unquantifiable, since it is very much influenced by the
user, the problem area, and indeed by the particular problem
being solved. In the absence of ideal languages, therefore,
while we can judge the relative security (overtransparenCy)
of two candidate constructs or groups of constructs, the
question of what is overtransparent and/or unstable must
remain to some extent subjective - or, more precisely a
matter of judgement of those base machine primitives and
aggregates which are expected to be heavily used versus
those which are not expected to be useful to a particular
group of users working in a particular problem area. Thus
Dijkstra, Hoare, Wulf, Wirth and Beckman (Dij 68> Hoa 73;
Wul 73; Wir 74; Bee 75) have identified various features in
many existing languages (goto, pointer, global variables,
non-typed data objects, secondary effects) as, in their
view, too undisciplined or too flexible. We do not
therefore consider it either useful or necessary to produce
any absolute measures of security,

. In considering the security of Snip as an extensible
language, we should start by considering our model. In
view of the arguments presented above we do not by any
means regard our model as uniquely secure; nor, indeed do
we claim that it is finalised for the problem area in which

5-5

we expect it to be useful. We claim rather that our model
is an initial estimate or starting point for iteration
which must be adapted both for each new problem area and
also in the light of practical experience which is yet to
come. We justify our design decisions partly in terms of
our own judgement as to the features likely to be useful
and heavily used and partly eliciting parallel situations
with (simple) programming languages. We would expect
that a better understanding of the causes of human error
will allow improved judgement at some later date.

We consider the realisation of the model; as far
as the base language is concerned, we recall that we
related overtransparency to the current ideas in language
technology (e.g. control structures, data structures, data
types, block structure etc.) and we justified the notation
using simple studies of characteristic errors. We would
expect improvements from further and more detailed studies
of characteristic errors, and feedback from usage of Snip
itself. It is important to remember that the version of
Snip described in chapter 3 was intended as a low level
base language; we would therefore expect suitable higher
level abstractions to be defined in Snip, according to the
particular application area. In the long term, then, we
expect that both the model and its realisation will evolve
considerably (compare for example the evolution of
programming languages). We feel, however, that we may
justly claim to have produced a useful starting point for
further iteration.

As far as the general design of Snip is concerned,
we have the following criticisms to make.

5"b
New evidence on the use of files has recently been

presented in a paper by Wirth (Wir 75), Inefficient
buffer handling may result essentially from the attempt to
hide from the programmer the fact that files must be
allocatable on secondary storage media. From the point
of view of security, this is advantageous, provided the
consequences on efficiency are fully understood and accepted.

For translatability and simplicity, Pascal was
designed with a reasonably small number of operator
precedence levels, in contrast to Algol 6 0 ; Snip operator
precedences were similarly chosen. In retrospect,
however, Wirth (Wir 75) considers that the decision to
break from the widely traditional precedence seems ill-
advised, particularly with the growing significance of
complicated boolean expressions in connection with the use
of structured programming and program verification. This
often leads to the need for additional bracketing of
boolean expressions e.g. X <[Y /\y <[Z vs (X < Y) /\(Y < Z),
This decision might well be left until the characteristic
errors of Snip can be studied.

We consider Snip patterns; the introduction of a
construct analogous to the case statement to allow lexically,
driven pattern matching for characters might well prove
useful for many applications, A means of determining
which path of a pattern is traversed during the matching
process would also be useful, although this could be
introduced as an extension. Several difficulties stem
from the fact that Snip was designed principally as an
extensible language system, although it was hoped that it
would be applicable also to more general string processing.

5-7
Some of these difficulties can be resolved as follows.

The restriction that string variables are dis
allowed as components of patterns is too severe for general
string processing since it is useful to allow patterns to
depend on input data. The restriction may be relaxed to
permit this without, re-introducing the side-effects which
it was intended to outlaw.

In general string processing applications, it is
often useful to be able to determine, within the action
statements of a pattern, which string is currently being
matched.

Built-in patterns e.g. Snobol 4 are appropriate to
general string processing, but not to a secure extensible
language system as they encourage violation of the LL(l)
structure.

In chapter 2, we noted the subsidiary aim of
efficiency for our extensible language. We have purposely
avoided paying particular attention to this aim in this
paper, but it is perhaps important to point out that
"reasonably" efficient implementation is, in our opinion
feasible,

Waite (Wai 7 3) has indicated that a high proportion
of run-time in string processing is spent in pattern matching.
In view therefore of the considerably reduced run-time
flexibility of Snip patterns compared to those of Snobol 4
(cf. arguments of chapter 3) Snip programs should run
faster than equivalent Snobol 4 programs.

However, since it is essential to share common
substrings to allow efficient handling of substrings
recognised during pattern matching, the operations for

5-0

updating string values look less attractive than was
originally expected.

While SAM was implemented in order to assist in
debugging of the abstract machine design, we have done
little to consider timings or usage or tuning. The
interpretive implementation of SAM will undoubtedly be
slow. We might consider, therefore, generation of (real)
machine code from the abstract machine code, Snobol 4>
for example, achieved a 3-4 fold increase in speed by this
method (Gris 72), Alternatively, an intermediate course
of part interpretation, part compilation along the lines
of Dawson or Mitchell (Daw 73; Mit 70), in an attempt to
realise the advantages while avoiding the disadvantages of
both systems might prove interesting. This becomes
feasible because complex or highly abstracted operations
such as pattern matching suffer less from the overheads
of interpretation than do simple or low level operations
(Gris 72).

With the recent advances in microprogramming, a
further alternative implementation is offered. Several
proposals have been made for the microprogrammed implement
ation of Snobol 4 (Gris 72). Recently, Rossman and Jones
(Ross 74) have contended that the use of functional
memory-based dynamic microprogramming is particularly well-
suited to the implementation of string processing
languages such as Snobol 4 because of the heavy use of
pattern and string data structures and operators, these
features being particularly foreign to the usual general
purpose hardware.

One might reproach the inefficiency of the
extension mechanism itself. Schuman (Sch 71b), for example.

5-9

observes that despite the advantages of cascaded (or
pyramided) definitions, such extension methods are not
without their accompanying drawbacks, which are all too
often cited as sufficient reason for abandoning this sort
of approach altogether. The most serious arguments are
based on the question of efficiency.

The implementation scheme proposed in chapter 4
is a simple-minded scheme, intended for the purposes of
illustration only. Several more realistic schemes have
been proposed to overcome the accusations of slow
compilation and poor object code.

As we observed in chapter Woolley (Woo 71) has
devised a system of measuring the effect of depth of
definition pyramids on efficiency. We would thus expect
to be able to tune any definition structure and place
critical or heavily used features low in the definition
hierarchy, or perhaps in the base language itself,

A similar but more far-reaching idea is that of the
extensible interpreter proposed by Schuman (Sch 71b). In
the traditional approach, every layer in the pyramid of
definitions is faithfully preserved during translation of
the augment text into the base language, Schuman proposes
a mixed scheme whereby extensions may be either "interpreted"
or compiled to machine code according to some strategy,
information for which can be obtained during translation.
The "strategy" is intended to identify and thus "flatten"
critical sections of the definition structure. Additionally,
the operations of the base language may be extended (i,e,
semantic extension) according to the expected pattern of
use of the language.

5-lU

We regard realisation of such a scheme for the
implementation of Snip as a research topic in its own
right.

It would be interesting also to consider the
feasibility of efficient implementation of Model Ml,

There are several lessons to be derived from the
extensible language herein designed.

We have been particularly concerned, as it turns
out, with syntactic extensions. We noted that Snip should
include also the well-established forms of data structure
and operator extension and the more recently discussed
control structure extension. Ideally we would like to
discard compiler-compiler techniques of introducing semantic
extensions because of the difficulties imposed by
dependence on translator and real machine architecture.
As we have indicated, there has, as yet, been little success
in this area.

We were troubled also by the difficulty of handling
context-sensitive syntax within a context-free system as
this also results in translator-architecture dependency.
As we indicated ad hoc solutions to this difficulty are
used in most existing systems, but a more satisfactory
solution would be to use some simplified form of affix
grammar.

We remarked, in chapter 2, that perhaps the
principal drawback of using LL(l) grammars is that it is,
under certain conditions, easier to specify particular
patterns non-deterministically. It would be interesting
to consider the feasibility of a system to allow non-
deterministic specification of a deterministic grammar rule

5-11
cf. non-deterministxc Fortran (SPRINT),

5,2 Future Research

As we have already remarked in the preceding
section, there are many possible refinements to the basic
Snip system; we have indicated several directions in which
future research might proceed. There is scope for further
isolation of programming language components with the aim
of allowing less machine- and translator-dependent semantic
extensions. The notion of security might benefit from
some attempt at formalisation, from research into human
behaviour (the kinds, influences, e,g, complexity and
causes of human error) or from more detailed study of
characteristic errors. This would provide a more solid
background on which to develop further ideas of security.

The notion of overtransparency*, in particular,
might usefully be applied to the design of any hierarchically
structured system.

While we regard informal reports as the most
suitable method of presenting and describing both Snip and
SAM, formal specification will be necessary at some stage
if we are to ensure correct implementation and interpretation.

We hâve already indicated how Snip may be applied
to the extension of several different high level languages,
starting from purpose-designed base languages.

There has recently been considerable activity in
the field of job control languages (JCL) (Bcs 74), Barron
and Jackson (Bar 72) have observed that modern JCL*s are
akin to programming languages and that we are likely to get
better job control languages if we develop them as such,
and use the same criteria of .judgement, Barron (Bar 74)

5-12

has also remarked that the facilities provided by job
control languages are often more general than is required.
This might then prove an interesting area in which to use
(secure) extensible languages: we might argue that security
is of particular importance to job control languages because
of the possible consequences in terms of machine resources,
integrity of files and program development time. Snip
might similarly be applied to the areas of query languages
or information retrieval and database management languages.

The string processor itself might prove useful in
other areas of operating systems which involve processing
of text, such as. context editing of files. It might also
be usefully applied in language-to-language translation
(perhaps even JCL-to-JCL translation cf, Dakin (Dak 72)),
We would expect that the (convenient) capability of textual
insertion offered by a string processor would be of value
when the target language is a high level language as
opposed to a low level abstract or real machine language.

We have presented in this dissertation a number of
ideas, some borrowed, some new, concerning the design of
secure extensible language systems. In our opinion, the
most significant was the line of thought leading to the
design of a secure model for extensible languages. We
consider that Snip shows promise of helping to provide
insight into the development of more secure such systems,

, Whatever the relative merits of our particular
system, it seems inevitable that with the ever-widening
application of, and dependence upon computers, and the
more devastating the consequences of failure, there will
be increasing pressure for greater software reliability and

5-13
thus also for the greater use of some criterion of security
in the design of programming and extensible programming
languages.

APPENDIX A AN INFORMAL DESCRIPTION OF THE SNIP
BASE LANGUAGE

A.O We view the Report on the Pascal Language (Wir 70)
as one of the most succinct and lucid informal descriptions
of a programming language. In this appendix we are aiming
at a descriptive documentation of the Snip language and
not a precise and formal document oriented towards correct
implementation. For this reason, we adhere closely to
the form of the Pascal report,

A,1 Summary of the Language

A summary of the language appears in section 3.2,1,

A , 2 Notation, Terminology and Vocabulary

We define the syntax of Snip using the Backus-Naur
form. We find it convenient to use the meta-brackets
 ̂ and J to indicate that the enclosed construct is to be

repeated zero or more times.
The basic vocabulary consists of basic symbols

classified into letters, digits and special symbols. In
those cases where the special symbols coincide with meta
linguistic symbols, we underline the special symbol, (e.g.
[Is a meta-linguistic symbol,, Wiile ^ is a special symbol

in Snip),
<Letter> ::= A|b |C[d [E|f |g |H|l j |k l [m [n [o |

f |q |r Is |t |u |v |w |x |y |z
<digit> : := o|l |2 |3 |4|s|6 I? |8 |9
special symbol> ::= ^restricted special symbol^ | "
-^restricted special - symbol^ : := + j - j* j*/jvjA j—

>|(iDlil !ih=!*M = !î|& l / * | ^ I ; [5̂^ 1 1 I ® I © I iI I I I 111 I I 1
NULL IF THEN ELSE!FI

A — 6

CASE OF ESAC DO OD LEAVE IvAR ! CONST !d IV1...1 ' ' ' ' 1 " ' '
FUNCTION PROCEDURE SIZE ACT TCA PATTERN
APPEND FALSE TRUE INTEGER BOOLEAN
STRING FILE VECTOR ̂ DEFINE AS TAKE
WHERE

) J j 1 1
EOLI e x t e r n a l!READ IWRITE!lOCAL

GLOBAL PRE ERP

The construct ^ n y sequence of basic symbols followed .
by EOL> may be inserted between any two identifiers,
numbers (cf. section A.3) or restricted special symbols.
This construct is called a comment and may be removed from
the program text without altering its meaning. Program
text which follows a comment of this form must appear on
a new line of text. A single identifier immediately
following one of the basic symbols END, OD, FI or ESAC is
also regarded as a comment,
^any sequence of basic symbols followed by EOL^

Restricted special symbol> | " | <J.etter>
<digit>

A , 3 Identifiers, Numbers and String Literals

Identifiers serve to denote constants, variables,
statement labels, functions and patterns. Their association
must be unique within their scope of validity.i.e. within
the procedure, function or pattern in which they are
declared (cf. sections A,9, 10,11),
<identifier> <letter> { <letter or digit or connector)> j
^letter or digit or connector^ ;= <[letter> | <digit> |
Numbers are constants of the data type integer,
Riumber> ; Rlnteger>
<integer> ::= <digit> ^ <digit> J
String literals are constants’ of the data type string, A

string literal is an ordered sequence of basic symbols
enclosed in quotes, or the symbol NULL.
Rtring literal> ; ; = <Jiuote> <fetring item>

^Rtring item%> | <quote^ NULL
Rliiot e> : ! = *'
Rtring item> R asic symbol other than")> | " "
Rasic symbol other than"> : := Restricted special symbol> |

<letter> | <digit>

A*4 Constant Definitions

A constant definition introduces an identifier as ‘a
synonym to a constant,
R>oolean constant^ :;= TRUE | FALSE
Rinsigned constant^» : ; = Riumber^ j <string literal^ [

R)oolean constant^
Ronstant> ; i~ Rinsigned constant> | Rign]> <jiumber>
Ronstant definition^ ; := Rdentifier> = Ronstant>
R i g n > : t | -

The standard integer constant identifier WORD__LENGTH can
be assumed to be predeclared. Its value is the number of
string characters which may be packed into one word of the
implementation machine,

A , 5 Data Tvnes

A data type determines the set of values which
variables of that type may assume, and associates an ident
ifier with the type. In the case of structured types it
also defines their structuring method,
R y p e > Î := <jscalar type> | Rtructured type>

A,5,1 Scalar Types
A scalar type defines an ordered set of values

n—4

<^scalar type]> : := INTEGER BOOLEAN

INTEGER . The values are the integers within a range
depending on the particular implementation.
The values are denoted by integers (cf. section
A . 3).

BOOLEAN The values are boolean values denoted by TRUE
and FALSE.

A , 5#2 Structured Types

Structured types are defined by describing the types
of their components and by indicating a structuring method,
^structured type]> ::= Rector type)> R i l e type> j

<string type>

A . 5,2.1 Vector Types

A vector type is a structure consisting of a fixed
number of components which are all of the same type,
called the component type. The elements of the vector are
selected by indices of type integer. The vector type
definition specifies the component type.
Rector type> : ;= VECTOR Rower bound> ,, Rpper bound>j

OF Romponent type>
R.ower bound> : := Rnteger constant^
R pper b o u n d ; ;= Rnteger constant^-
Rnteger const ant }> :;= Ronstant>
Romponent type> : := Rcalar type^ | <string type>

Example: VECTOR 0 .. 10 j OF INTEGER

A . 5,2.2 String Types

A string type is a structure consisting of a linear
list of components which are all of the same type. The

components are in fact implicitly defined to be basic
symbols (cf. section A.2), The values associated with the
string type are thus the set of possible sequences of basic
symbols. These values are denoted by string literals.

The number of components, called the length of the
string, associated with the string type is not normally
fixed by the type definition (i,e, each variable of that
type may have a value with a different, varying length).
It is possible, however, to specify an upper bound to this
length. The elements, or consecutive sequences of
elements of the string are designated by a pair of
selectors (of type integer) which specify the position of
the selected element sequence, and its length (cf, section
A.6). .

Associated with each variable of string type is a
string position or string cursor denoting a specific element.
The string cursor may be moved during a match operation
(cf, section A,7.1.4) or by explicit manipulation (cf,
section A,8,1,1),
Rtri n g type> ; ;= STRING <[maximum string length>
Raximum string length> : ;= Rmpty> |(<lnteger>)
Rmpt y > ; ; =

Examples: STRING
STRING (80)

A,5,2,3 File Types

A file type definition specifies a structure
consisting of a sequence of components, all of the same
type. The number of components, called the length of the
file, is not fixed by the file type definition (i.e. each
variable of that type may have a value with a different.

varying length).
Associated with each variable of file type is a

file position or file pointer denoting a specific element.
The file position or file pointer can be moved by certain
standard procedures (cf, section A,9,1),
R i l e type> : ;= FILE OF Romponent type]>

WRITE

<mode]>

<mode]> ; READ <mix mode]>
<mix mode]> . ;:= | WRITE <empty>
Romponent type]> : := Rcalar type> R i x e d maximum

length string type>
Rixed maximum length string type> : ;= Rtring type>

A,6 Declarations and Denotations of Variables

Variable declarations consist of a list of identifiers
denoting the new variables followed by declaration of their
types,
Rariable declaration]> : ;= Rdentifier]> ̂, Rdentifier)> J

: <type>
Two standard file variables can be assumed to be predeclared
as

INPUT : FILE
OUTPUT ; FILE

READ j OF STRING (8l)
WRITE j OF STRING (121)

The INPUT file is restricted to input mode (read only)
and the OUTPUT file to output mode (write only), A Snip
program should be regarded as a procedure with these two
variables as formal parameters; the corresponding actual
parameters are expected either to be the standard input and
output media of the computer installation or to be
specifiable in the system command activating the Snip
system.

Examples ;i,a
B

VI,V2
SI,82
F

INTEGER
BOOLEAN
VECTOR 1-10 ..’+10 I OF INTEGERJ OF
STRING

READ WRITE J OF STRING (81)FILE

Denotations of variables either denote an entire variable,
or a component of a variable.
<yariable> := <entire variable]> | Romponent variable^

A.6.1 Entire Variables

An entire variable is denoted by its identifier.
<entire variable)> : <yariable identifier^
^variable identif ier)> ; ;= Rdentifier]>

A.6.2 Component Variables

A component variable is denoted by the denotation
for the variable followed by a selector specifying the
component. The form of the selector depends on the
structuring type of the variable,
Riomponent variable^ ; := Rndexed variable^ | <substring>

Rîürrent file component^ [Rtring cursor^

A,6,2,1 Indexed Variables

A component of a vector variable is denoted by the
denotation for the variable followed by an index expression,
RLndexed variable]> ;:= Rector variable^ j^Rndex expression>J

R n d e x expression^- ; := Rnteger expression)>
•Rnteger expression^ ; := Rxpression>
Rector variable^ : := Rariable>
Examples;

* [“]
[i + j]

A , 6 , 2 , 2 S u b s t r i n g s

The selector for a string variable permits access
to a contiguous sequence of elements (called a substring)
of the string, A substring is denoted by the denotation
for the variable followed by a substring selector which
specifies the first element and the length of the substring.
The components of a string are numbered consecutively from
zero upwards. Thus, a string of length 1 has 1 components
addressed 0 to 1-1 (inclusive),

<substring> ;;= Rtring variable^ ̂ Rirst component
position^ I <substring length^ }1 *

^substring length^ ;;= <non negative integer expression>
” Rirst component position^ ;:= <non negative integer

expression^
<non negative integer expression)^ : ;= Rnteger expression)>
Rtring variable> ; ;= <yariable>

A ,6,2,3 String Cursors

Every string variable declared has a cursor variable
of type integer associated with it (cf, section A,5,2,2),
The cursor indicates a particular component of the string.
The value of a cursor lies in the integer range 0 to 1
(inclusive) where 1 is the (current) length of the string
with which the cursor is associated, A cursor variable
is denoted by the denotation of the string variable with

"-*which it is associated, followed by the symbol
Rtring cursor> Rtring variable)> ®
Cursor variables are initially undef ined",

Examples :
S (o I 2 }

s {io|si
s l S@|l+J]
s
s
[i !

A.6.2.4 Current File Components

At any one time, only the one component determined
by the current file position (or file pointer) is directly
accessible.

<current file component^ : ;= R i l e variable]>^
<Rile variably <yariable)>

Examples: F Î
F Î 0
F t {2 Is 1

A.7 Expressions

Expressions are coiistructs denoting rules of
computation for obtaining values of variables and generating
new values by the application of operators. Expressions
consist of operands i.e. variables and constants, operators,
patterns and functions.

The rules of composition specify operator precedences
according to four classes of operators. The operators 1

and SIZE have the highest precedence, followed by the
multiplying operators, then the adding operators, and
finally, with lowest precedence, the relational operators,
-Sequences of, operators of the same precedence are executed
from left to right. These rules of precedence are
reflected by the syntax;-
Ractor> ;;- <yariable> <unsigned constant]> |

Runction designator])» j ̂Rxpression)>)

— iRactor> I SIZE Ractor>

n - i u

<term]> ; <]factor)> ̂<inultop)> <factof> j
R impie expression)> ; := R e r m > ̂Rddop)> Rerm)> } [Rddop]>

Rerm)> ̂Rddop> <]terni> j
<fexpression> ; ;= Rimple expression)> j R impie expression^

<relop]> <]]simple expression^
Examples:

Factors: X 15 SIZE S
(X+Y+Z) — iB EOS (F)

Terms; X * Y P A Ô S.S1.S2
I DIV(I-l) B A(X< Y)

Simple Expressions;
X + Y P V 0
-X I * J + 1

Expressions;
X = 1.5 S € P
A < B

A,7.1 Operators

A.7.1.1 Operators » and SIZE

— I The operator i applied to a boolean operand
denotes negation.
SIZE The operator SIZE applied to a string operand
denotes the length of the operand.

A,7.1.2 Multiplying Operators

Riultop)> ; ;= DIV [A

J

Operator operation type of operands type of result

multiplic
ation

integer integer

DIV division
with
truncation

integer integer

A logical
" and"

boolean boolean

• concaten
ation

string string

Concatenation: The length of the string result is equal
to the sum of the lengths of the two
string operands.

A,7.1.3 Adding Operators
Rddop> : + j - j V

Operator operation type of operands type of result

+ addition integer integer
- subtraction integer integer
V logical "or" boolean boolean

A.7.1.4 Relational Operators
<relop> < \ €

Operator operation type of operands type of result

= 3̂
< <
> >

relation
relation
relation
- pattern
match

integer or string
integer
integer

String (first
operand)

pattern(second
operand)

boolean
boolean
boolean
boolean

Match Operation

A pattern describes a particular subset of the set
of possible string values by defining an ordered sequence
of successor substrings and substring alternatives from
which the subset of values may be composed (cf, section
A,11), A pattern thus essentially describes a tree-like
structure in which successor substrings are represented as
"sons" and substring alternatives as "brothers". The
match operation takes two operands, one of string type,
the other a pattern. The effect of this operation is to
determine whether or not the value of the string (or one
of its substrings) belongs to the subset of string values
defined by the pattern. The match operation effectively
interprets the pattern by systematically traversing the
tree structure (defined by the pattern) comparing string
and substring, until either the string is matched or there
are no further alternative branches to attempt. This
process may be compared to top-down syntactic analysis.

We consider the expression "B €* A", where B is a
string, called the subject string, and A is a pattern.
The match operation matches string B (commencing from the
character position indicated by B@ i,e, B*s current cursor
position) to the pattern A, to determine whether a substring
of B belongs to the set of string values described by A,
The matching process proceeds as follows;
(1^ The match pointer is“set to point to one of the

initial alternative substrings specified (in the
'ncnpdered "S'equence of substring—suGcessors) of A.

(2) B is matched (from its current cursor position) to the
substring pointed to by the match pointer, proceeding

from left to right,
(3) If the match in (2) succeeds, the match pointer is

updated to point to one of the subsequent successor
substrings (if any). The subject string cursor
points one symbol beyond the matched substring. The
process continues at (2),

(4) If the match in (2) fails, the match pointer is updated
to point to one of the remaining untried alternative
substrings (if any). The process continues at (2),

(5) The process (as above) continues until either
(a) there are no successors; in this case, the result

of the match operation is TRUE, and the subject
string cursor points to the end of the matched
substring, or

(b) there are no untried alternatives; in this case,
the result of the match operation is false, and
the subject string cursor position remains
unchanged.

Since the structure of a Snip pattern is isomorphic
to the LL(1) grammar structure (cf, section A.11), the
match/recognition process is unambiguous, and the result
is independent of the order in which substring alternates
are attempted.

If the subject string is a file buffer, matching
continues across successive file components, if necessary,

AV7•2 Function Designators

The precise interpretation of a function designator
is as in Algol 6o, Algol W or Pascal, A function
designator specifies the activation of a function. It
consists of the identifier designating the function and a

A- 14

list of actual parameters. The parameters are variables
or expressions (cf, sections A.9, 10),
Runet ion désignât or]> : Runction identifier)>

('<actual parameter^ {^^Rctual parameter)»/^
Runction identifier)> : := Rdentifier>
<actual parameter^ ; ;= <expressioif>
Examples; EOF(S)

SUM(A + B)

A,8 Statements

Statements denote algorithmic actions and are said
to be executable,
R t at ement)> : z~ Rimple st at ement)> Rtructured statement])»

A,8,1 Simple Statements

A simple statement is a statement, no part of which
constitutes another statement,
Rimple statement)> : Rssignment statement^

Rrocedure st at ement)>
Rnsertion statement^

Rscape statement)>
Rmpty statement)>

A,8,1,1 Assignment Statements

Rppend statement)>

The assignment statement serves to replace the
current value of a variable by a new value indicated by an
expression. The assignment operator symbol is " ,
pronounced "becomes",
Rssignment statement])» ; ;= Rssignment variable^» : =

Rxpression]>
Rssignment variable)> ; : = Rtring variable]> | Rnteger variable)

|R>oolean variable)» Runction identifier)»
The variable (or the function)and the expression must be of

A"

identical type.
Examples: X Y + 2

S := SI , S2 [2 4]
F != S {jïS [Sjij

Substring Assignments

When the assignment variable is an entire string
variable, the length of the variable after assignment is '
determined by the length of the assigned expression.

However, when the assignment variable is a substring,
the assignment corresponds to the "replacement" of the
substring. In this case, therefore, the length of the
substring after assignment must be unchanged i,e, the
length of the substring must be greater than or equal to
the length of the string expression (if greater, then the
string expression is first extended to the right with
blanks until the lengths are equal).
Examples:

S {2 I4 Î "ABCD"
S { l | l j := S2 [ajl]

The assignment S ^jd|4 j := S2 ^(^IS/ls illegal.
Avoidance of Ambiguity

-The possibility of semantic ambiguity arises in
substring assignments in which the same string variable S
(say) appears on both sides of an assignment statement.
Example:

Consider the sequence of statements:
S "ABCD" ;

S [2 I2 I := S [l|2]
If the assignment is implemented by copying substring

lU

S 1 2 ̂ character by character, the resulting value of S
is "ABBB" ; while if the complete substring S lj2 j is
copied as a whole, the resulting value of S is "ABBC"*
This second interpretation is the one intended.

We avoid the ambiguity by defining
"S [s j | l J := S { s j l j "

to be semantically equivalent to the text
"SW := S fsgjlg j ; S [sj|lj] := SW"

where
s^, s^ are character positions, 0 ^ s^, s^ SIZE S-1
1^, Ig are substring lengths, 0 ^ s^ + 1^, s^ + Ig ^ SIZE S
SW is a string variable,

A,8,1,2 Append Statements

The append statement is a special form of assignment
statement which is used to append the value of a string
expression to the existing value of a string variable.
The string variable is an entire variable (and not a sub
string) ,
Rppend statement)» ::= Rtring variable)» APPEND

Rtring expression)»
Rtring expression ::= Rxpression)»

Examples:
S APPEND SI
S APPEND SI . S2 l̂ jîîh]
Semantically, these statements are equivalent to the
statements
S := S . 51
S := S , SI , 32 I 0 [3 J , respectively.
The append statement permits optimisation.

A,8,1,3 Insertion Statements

The insertion statement is a special form of assign
ment statement which serves to insert the value of a string
expression at the current cursor position of the insertion
variable. The string insertion variable is an entire
string variable (and not a substring),
Rnsertion statement)» ; : = Rtring variable)» 0

Rtring expression)»
Examples! S ® . "ABC" S ® S I [0 I2]

Semantically, these statements are equivalent to
the statements
S ;= S [o|s@] , "ABC" , S {s@ | SIZE S - S@ j

S : = s { o | s @ J . S l(o| 2], s [s @ SIZE S - S@ j
respectively.

The length of the string insertion variable after
insertion of the expression is determined by its original
length, plus the length of the inserted expression. The
insertion statement permits optimisation.

A,8,1,4 Escape Statements

An escape statement permits control to leave its
current environment. Further processing continues after
the structured statement (cf, section A,8,2) whose label
is specified in the escape statement. The scope of a
label is the structured statement which it labels. It is
not therefore possible to escape to the end of a structured
statement which is not currently being executed,
Rscape statement) : := LEAVE Rtructured statement label)
<]structured statement label)> : := Rdentif 1er)
Examples; Execution of the statement "LEAVE Z2" in the
text :-

BEGIN
BEGIN ; Z2

BEGIN ; Z3
LEAVE Z2

END ;
END ;

A := B;
END

causes transfer of.control to the statement "A ;= B".

A# 8,1.5 Procedure Statements

A procedure statement serves to execute the procedure
denoted by the procedure identifier. The procedure
statement may contain a list of actual parameters which
replace their corresponding formal parameters defined in
the procedure declaration (cf, section A,9), The
correspondence is established by the positions of the
parameters in the lists of actual and formal parameters
respectively. There are two kinds of parameters:
variable-parameters whose values may be altered by the
procedure body, and constant-parameters whose values are
constant within the procedure body.

In the case of variable-parameters, the actual
parameter must be a variable. If it is a variable denoting
a component of a structured variable, the selector is
evaluated when the substitution takes place (i,e, before
the execution of the procedure). If the parameter is a
constant parameter, then the corresponding actual parameter
must be an expression.

Two further restraints are imposed:

jta— X y

(a) All actual parameters whose values may be altered by
the procedure (i,e, the actual parameters corresponding
to variable-parameters) must be distinct from each
other and from the non-local variables defined in the
’ external references declaration part of the called
procedure (cf. section A.9)*

(b) None of the above-noted (variable-) actual parameters
nor the specified non-local variables may be contained
in any of the expressions corresponding to the
(constant-) actual parameters.

Rjrocedure statement) : ;= -Rrocedure identifier) (
<(]procedure statement tail)

^procedure statement tail) ; Rctual parameter)
 ̂) Rctual parameter) j) [)

<procedure identifier) :: = Rdentifier)
Rctual parameter) : ;= Rxpression) j <yariable)
Examples: NEXT ()

PUT (FI)
TRANS (31.S2)

A,8,1.6 Empty Statements

The empty statement consists of no symbols and denotes
no actions.
Rmpty statement) ::= Rmpty)

A,8# 2 Structured Statements

Structured statements are constructs composed of
other statements which have to be executed in sequence
(compound statement) or conditionally (conditional
statements) or repeatedly (loop statement). Any loop- or
compound-statement may have associated with it a label
which may be referenced by an escape-statement (enclosed

A - Z Ü

by the loop- or compound-statement) cf. section A,8.1.4.
Rtructured statement) ; := Rompound statement)

^conditional statement) [R o o p statement)

A.8.2.1 Compound Statements

The compound statement specifies that its components
are to be executed in the same sequence as that in which
they are written.
Rompound statement) : := BEGIN <]label clause)

Rompound tail)
Rompound tail) ; := Rtatement) R t at ement) j END
Rabel clause) : : Rabel) [Rmpty)
R a b e l) : := Rdentifier)

Example: BEGIN Z := X; X ;= Y; Y := Z END

A.8.2.2 Conditional Statements

A conditional statement selects for execution, a
single one of its component statements.
Ronditional statement): := R f statement) | Rase statement)

A+8.2.2.1 If-Statements

The if-statement specifies that a statement is to be
executed only if a certain boolean expression is true.
If it is false, then either no statement is to be executed,
or the statement following the symbol ELSE is to be
executed.
^if_ statement) : := I^ <(boolean expression) THEN Rtatement)

R i s e clause)
 R i s e clause) ; : = ELSE Rtatement) FI FI
Rboolean expression) : : = Rxpression)
Examples:
IF I < 5 THEN V ;= V + 1 ELSE V := 0 FI

IF s e P THEN COUNT :

A,8.2.2,2 Case Statements

A case statement consists of an expression (the
selector) and a list of statements, each labelled by a
constant of type integer. Only the statement whose label
is equal to the current selector value is executed.
<case statement) ; CASE Rnteger expression) OF

<case body) ESAC
R a s e body): := R a s e list element) ̂j R a s e list element) j
Ra s e list element) : := Rase label) ^ | R a s e label) J l

R t at em ent)
Rase label) ; Rnteger)
Examples:

CASE I OF
1: X;= SIZE STR;
2: X:=Y;

3|4: X:=Z
ESAC

A . 8 . 2,3 L o o p Statements

The loop statement specifies that certain statements
are to be executed repeatedly. In order that loop
execution is of finite duration, at least one of the
component statements of a loop statement must be an escape
statement.
R o o p statement) : :~ Rabel clause) R o o p tail)
^loop tail) : := Rtatement) Rtatement) j OD
Example: DO : LPl

GET(F);
IF (F f = S)V EOF(F) THEN LEAVE LPl FI

lOD

A# 9 Procedure Declarations

Procedure declarations serve to define parts of
programs and to associate identifiers with them so that
they can be activated by procedure statements.
Rjrocedure declaration) : : = -Rrocedui^e heading)

Rxternal references declaration part)
Rocal declaration part)
Rtatement part)

The procedure heading specifies the identifier naming the
procedure and the formal parameters (if any). The
parameters are either constant- or variable-parameters (cf.
section A.8.1.5).
«^procedure heading) : PROCEDURE Rdentifie:)Rest heading)
Rrest heading) : ^Rormal parameter section)

 ̂f Rormal parameter section) J } i j j
Rformal parameter section) ::= CONSTRarameter group) |

VAR Rarameter group)] Rmpty)
^parameter group) Rdentif ier) ^ , Rdentif ier) J; R y p e)

The effect of CONST is that of call by value, and the
effect of VAR that of indirect addressing. The effect of
indirect addressing is explained by the following rule
which is applied to the procedure body before the procedure
is invoked;

If the formal parameter section contains the symbol VAR,
the selectors (if any) of actual parameters are first
evaluated, formal parameters are then replaced through
out the procedure body by the corresponding actual
parameter. Possible conflicts between the identifier
inserted through this process and another local identifier
already present within the procedure body will be avoided

b y s u i t a b l e s y s t e m a t i c c h a n g e s o f t h e l o c a l i d e n t i f i e r
« involved*

The external references declaration part must contain
declarations of all non-locals (i.e. main program or global
variables) referenced within the statement part. As
noted in section A.8.1.5, non-local variables accessed in
this way must be distinct from the actual parameters used
in the call of the procedure.
^external references declaration part)

EXTERNAL Rnon local constant definition
part)

R o n local variable declaration part)
Rmpty)

The non-local constant definition part contains all constant
synonym identifiers defined external to the procedure,
<]]non-local constant definition part) ; : =

CONST <global identifier)
' ^,<ÿlobal identifier)]; [Rmpty)

Rlobal identifier) :;= Rdentif ier)
The non-local variable declaration part contains all
variable identifiers declared external to the procedure.
Ron-local variable declaration part) ; : =

VAR <(global identifier)
9̂ <]global identifier) J ; | Rmpty)

Rocal declaration part) : := LOCAL Ronstant definition part)
Rariable declaration part) |

Rmpty)
The constant definition part contains all constant synonym
identifiers local to the procedure,
Ronstant definition part) ::= CONST Ronstant definition) *

^Ronstant definition); jjRmpty)
The variable declaration part* contains all variable

XI—AI1+
declarations local to the procedure,
Rariable declaration part) : := VAR Rariable declaration) ;

^Rariable declaration) ; j | Rmpty)
The statement part specifies the algorithmic actions to
be executed upon an activation of the procedure by a
procedure statement,
Rtatement part) ; ;= Rompound statement)

All identifiers introduced in the formal parameter
part, the constant definition part or in the variable
declaration part are.local to the procedure declaration
which is called the scope of these identifiers. They are
not known outside their scope. In the case of local
variables, their values are undefined at the beginning of
the statement part.

The use of a procedure identifier in a procedure
statement within its declaration implies recursive execution
of the procedure.
Examples of procedure declarations;

PROCEDURE FREQ (CONST I : INTEGER);
EXTERNAL VAR TOTAL, CHART;
BEGIN

TOTAL ;= TOTAL +1;
. CHART [̂ ij ;= CHART I j

END FREQ
+ 1

PROCEDURE STRSWOP (VAR SI, S2 ; STRING);
LOCAL VAR W ; STRING;
BEGIN

W ;= SI ; 31 := S2 ; S2 := W
END STRSWOP

A— il J
A*9*l Standard Procedures

Standard procedures are predeclared in Snip* The
standard procedures are listed and explained below:
PUT(F) advances the file pointer of file F to the next

file component. It is only applicable if the
file mode is WRITE or READ WRITE*

GET(F) advances the file pointer of file F to the next.
file component. It is only applicable if the
file mode is READ or READ WRITE* If there does
exist a "next file component", the end-of-file
condition arises, and the value of F becomes
undefined*
The effect of GET(F) is defined if EOF(F) (cf*
section A,10*1) is false prior to its execution,

RESET(F) the file pointer of file F is reset to its
beginning*

SETEND(F) the file pointer of file F is set to point to the
end of the file*

A,10 Function Declarations

Function declarations serve to define parts of the
program which compute a scalar value or a string value*
Functions are activated by a function designator (cf,
section A.7*2) which is a constituent of an expression*
A ̂ function declaration consists of the following parts:
^function declaration^» := <^function heading^»

^restricted external references declaration part]>
<5-pcal declaration partj> ^statement part%>

The function heading specifies the identifier naming the.
function, the formal parameters of the function and the
type of the (result of the) function*

<ÿunction heading^ FUNCTION <identifier^
(^<^function formal parameter section^
I ;<function formal parameter section)> j j ;
<Vesult type]>

<Jiinction formal parameter section^- ::= CONST
<^arameter groups ^ ;<ÿarameter group)> j

<result type> ; := <scalar type]> | <string type)>
<ÿestricted external references declaration part> :

EXTERNAL CONST <global identifier^
^5 <ÿlobal identifier)> J ; <empty]>

The type of the function must be a scalar or string type*
Within the function declaration, there must be at least
one assignment statement assigning a value to the function
identifier* This assignment determines the result of the
function. Occurrence of the function identifier in a
function designator within its declaration implies recursive
execution of the function. Within the statement part, no
assignment is allowed to any variable which is not local
to the function. This rule also excludes assignments to
parameters. All parameters are therefore constant
parameters, and all non-locals constant.
Examples:
FUNCTION MAX (CONST SV ; VECTOR j OF INTEGER) :
LOCAL VAR MS, I : INTEGER:

BEGIN
MS := SV ; I := 2;
DO ; LOOP

IF MS < SV ĵ I j THEN MS := SV [l J FI;
I : = ! -{- 1;
IF I > 1 0 THEN LEAVE LOOP FI

MAX := MS
END MAX

n— ̂/

FUNCTION T0P_TAIL (CONST S : STRING)
BEGIN

T0P_TAIL
END TOP TAIL

:= S ̂] . S [size S - 1 j 1]

A,10,1 Standard Functions

Standard functions are predeclared Snip functions.
The standard functions are listed and explained below:
EOF(X) If X is of type file, EOF indicates whether the

file is in end-of-file status.
If X is of type string, EOF indicates whether the
current cursor position is the end of string i.e.
X® = SIZE X.

INT(S) S must be of type STRING(1). The result, of type
integer, is the ordinal number of the character
S [jd j 1 j in the defined character set,

CHR(I) I must be of type integer. The result, of type
STRING(1)« is the character whose ordinal number
is I in the defined character set.

A,11 Pattern Declarations

A pattern declaration is a special purpose procedure
which serves to define a particular subset of the set of
possible string values, and to associate an identifier with
this subset. This set of string values is defined by a
pattern template: a pattern template is an ordered set of
-successor-and alternative string components from which the
defined set of string values may be composed.

— A-given,— subject string .(.so-called) may be matched
to a pattern to determine whether the subject string itself
(or one of its substrings) belongs to the set of string

values defined by the pattern template. We say that the
match operator (cf, section A,7,1) interprets the pattern
template.

Local variables, to which matched substrings may be
assigned, can be associated with a pattern declaration.
These local variables are also local to groups of statements
(called action primitives) which may be defined within the
pattern template.

The form of pattern template (excluding the action
.primitives) is restricted in such a way that it is iso
morphic to the structure of an LL(1) grammar. The problem
of ambiguity does not therefore arise (cf, appendix C),

A pattern declaration consists of the following
parts;
<jpattern declaration)» :: = cÿattern heading)> .^pattern body]>
-pattern body)> ; := <external references declaration part)>

<5local declaration part]>
BEGIN c^pattern tempi at e> END

<[^pattern heading)> ; ; = PATTERN <([pattern identifier^ ;
<^pattern identifier> : <identifier)>
The pattern template specifies the primitive strings and
primitive string combinations defining the pattern,
^pattern tempi at e)> : := <(]simpl e pattern string)>

|<alternate operator^ <simple pattern string)>
«^simple pattern string)> : ^primitive pattern string]>

(<poncatenation operator^-
<jprimitive pattern string])» j

^primitive pattern string)> ; : = <Tfree primitive pattern string)>
<action primitive^»

<^free primitive pattern string^ ::= <string constant^]
1 .(<]]pattern template])» j

I |^<J)attern template])» j
<^subpattern])> ; ; = '^<match assignment variable> :

<]pattern identifier]>)>
<inatch assignment variable^ : := <]string variable)> | -
An action primitive specifies statements to be executed
during pattern interpretation,
<C]action primitive)» : ;= ACT <statement)> ^ ; <statement)» ̂

TCA I <empty>
<]alternate operator)» ; := j
^concatenation operator)» : := ,
In the pattern template,
(1) the concatenation operator indicates that the two

adjacent strings are to be taken as successor strings
during the match operation,

(2) the alternate operator indicates that the two adjacent
strings are to be taken as alternative strings during
the match operation,

(3) the concatenation operator takes precedence over the
alternate operator; the pair brackets and are
used to override this precedence,

(4) the pair brackets " ^ " and " j " indicate that the
enclosed template is to be repeated zero or more times,

(5) the pair brackets ACT and TCA indicate that the enclosed
statement(s) are to .be executed during the match
operation on matching of the <Jree primitive pattern

■ stxjLn^ which they succeed,
(6) the pair brackets " and indicate that the enclosed

pattern identifier is a component pattern; the sub
string matched to this pattern component is assigned

A - J Ü

to the corresponding match assignment variable (if any).
The use of a pattern identifier in the pattern template
within its declaration implies the recursive execution
of the pattern (during a pattern match).

Examples;
PATTERN P;

LOCAL VAR I : INTEGER;
BEGIN

("MON" "TUES" "WED"I"THURS" "FRID")ACT I := 1 TCA
I ("SAT" "SUN") ACT I := 2 T ^

END P

PATTERN E;
LOCAL VAR Tl, T2 ; STRING:
BEGIN

<T1 ; T> ACT TEXT (Tl) TCA .
■{ "+" . <T2 ; T> ACT TEXT (T2) TCA

END E

A,12 Incremental Sections

The incremental section allows the incremental
declaration of variables, procedures, functions and patterns
associated with the definition of extensions to the
language. This section consists of two parts;
(a) the program declaration part consisting of the

definition of variables, functions, procedures and
patterns used in defining extensions, (The scope of
these declarations is the incremental section itself,)

and
(b) the extension sections which permit the connection of

newly defined patterns (or pattern bodies) as alternates
to existing patterns, thus extending existing patterns

J1

in a controlled manner.
The compiled incremental section is executed before the
execution of the main program,
^incremental section)» : PRE c^pre program declaration part]>

^<^xtension section)» ; J ERP <̂ empty)>
<pre program declaration part)» : ;= <]local declaration part)»

<J>rocedure or function or pattern
declaration part)»

<[]procedure or function or pattern declaration part)» =
^cjjrocedure or function or pattern declaration)»; J

<]procedure or function or pattern declaration)» =
<J>rocedure declaration)- [
<<function declaration)» | <J>attern declaration>

<extension section)» ; ; = <^efine statement)» | <J:ake statement)» '
Both the define- and the take-statement allow the definition
of extensions by (restricted) modification of existing
patterns. The define-statement allows the specification
of a new alternate to an existing pattern template, while
the take-statement allows the specification of a new
alternate to some component part of an existing pattern
template. The take-statement is thus the more flexible,

A,12,1 Define-Statements

The define-statement permits extensions by allowing
the construction of a (new) pattern declaration as alternate
to an existing pattern, called the context specifier,
^define statement)» ; DEFINE <jpattern -declaration)» AS

<ÿ ont ext specifier)»
— Context specifier)» ; ;==--<^a.ttem identifier)»
The pattern must conform to an LL(1) structure both before
and after execution of the define-statement.

fi— o JÜ

A , 1 2 , 2 T a k e S t a t e m e n t s

The take-statement provides for the definition of
extensions by allowing the construction of a (new) pattern
as the alternate of some component part of a pattern which
already exists,
<5bake statement) ;;= TAKE <modified pattern template)

WHERE <extension declaration) ^ .
<pontext specifier)

^extension declaration) : <]]pattern declaration)
<]modified pattern template) : ;= <(]pattern template)

The <extension declaratior) is the declaration of a pattern
defining the extension. The <modified pattern template)
denotes the original pattern template modified to include
the newly defined extension as the alternate of some
<simple pattern string) of the original pattern. The

ontext specifier) denotes the original pattern, and hence,
specifies the context of the extension.
Restrictions: \
(à) As with the define-statement, the modified pattern must

conform to an LL(1) structure,
(b) The precedence structure of the original part of the

-template must remain unchanged; so also must the
action part (indeed, the action part of the original
template may therefore be omitted from the take-
stat ement).

The language syntax is defined as a standard pattern set
(with empty replaced by the symbol NULL) so that extensions
may be readily transported from one installation to another.
Examples:

We assume that a compiler for Snip has been written

■£̂ -0 O
in terms of itself; and the compiler implemented by
bootstrapping or hand translation. We assume also that
the compiler defines a pattern named after and corresponding
to each syntactic class defined in the report i,e, the
langage is defined as a standard pattern set. We
introduce the following extensions:
(a) A repeat statement of the form

REPEAT <^tatement) UNTIL <Cboolean expression)

DEFINE PATTERN REPEAT_ST;
l o ca l VAR BEXPR, BL, S ; STRING;

BEGIN
"REPEAT" . <S : STATEMENT) ."UNTIL"..
<BEXPR ; BEXPRESSION)
ACT

NEW_LABEL (BL);
SUBST ("BEGIN" , ";" . BL ,

"DO" ,
S , .
"IF".BEXPR,"THEN"."LEAVE"3L."FI".

"OD" .
"END")

TCA
END AS STATEMENT;

In this example, we assume that procedures NEW__LABEL
and SUBST are defined in the compiler: NEW__LABEL generates
a new and unique identifier; SUBST generates the
substitution string constructed as the semantic equivalent
of some section of extended text,
(b) We introduce an initial value construct in which
variables may be assigned values prior to execution oF the
statement part of a main program. This construct will
take the form;

VALUE <yariable]> = cjïonstant) ^; <yariable)> - <constant]> J
We propose to allow this construct to appear

immediately before the statement part. , We define the
meaning of this construct by substituting appropriate
assignment statements at the beginning of the statement
part. In order to handle this extension, we must modify
the pattern template corresponding to the production;
<^program) ;;= <]incremental section) <;]program declaration part)

<st at ement part) .
±o the rule;
^program) ; ;= .^incremental section) <(]program declaration part)

<initial value part) <]statement part) ,
|<5Lncremental section) c^program declaration part)

<]st at ement part) •
We denote this as follows;
TAKE INCREMENTAL_SECTION. PROGRAM_DECLARATION__PART.

(INITIAL_VALUE_PART NULL).STATEMENT PART. "
WHERE

PATTERN INITIAL_VALUE__PART ;
LOCAL VAR V, C, VALUES ; STRING;
BEGIN

"VALUE" . <V;VARIABLE) . "=" . <C:CONSTANT)
ACT VALUES := V . ";=" . C . ";" TCA

• . <V:VARIABLE) . <C: CONSTANT)
ACT VALUES APPEND V. . C . ";" TCA]

. "BEGIN"
ACT SUBST ("BEGIN" . VALUES) TCA

END
j^TROGRAM;

A.13 Programs

A program has the form of a procedure declaration
without the heading. There are, however, no non—local
variables, and hence no declaration of external references,

JO

Procedures, functions and patterns may, however be declared.
<J)rogram]> ; := <incremental section) <]]program declaration part)
* C^t at ement part) •

<(]program declaration part) : ;= GLOBAL
<constant definition part)
<yariable declaration part)
<jprocedure or function or pattern

declaration part)
<empty)

A,14 Program Examples

(a) The following program recognises the simple arithmetic
expressions defined by the grammar
„<expression) <term) ̂4- <Cterm)]
<Cterm) ; ;= <factor) [̂ <]f actor) }
<ÿactor) ::= id | (^expression))
The recognised expression is printed in Reverse Polish
form.
GLOBAL

PATTERN EXPR;
BEGIN

<-: TERM)

END EXPR;
PATTERN TERM;

BEGIN

I . <-: TERM)
ACT OUTPUt| APPEND TCA j

<-: FACT)

END TERM;

[FACT)
ACT OUTPUT^ APPEND TCA j

PATTERN FACT;
BEGIN

"ID" ACT OUTPUTf APPEND "ID" TCA
|"(" EXPR) . !»)"

END FACT;

BEGIN
0UTPUT| ;= NULL;

IF — 1 (INPUT € EXPR) THEN
OUTPUTt ;= "INVALID EXPRESSION"

FI;
PUT(OUTPUT)

END MAIN.

(b) Example (b) is included in appendix F since it employs
many of the language extensions defined therein.

0“ I

APPENDIX B SNIP ABSTRACT MACHINE (SAM)

In this appendix, we describe in detail, the
various SAM order codes and some brief examples of usage.
We assume familiarity with the SAM architecture cf, section
4.3.

B,1 SAM Order Codes

SAM order codes are of the form

■" [pi] M h]
where m is the instruction mnemonic, p^, p2 and pg are
parameters and the brackets " j " indicate options.

All SAM orders include table pointers which "chase"
the pointers to determine the location from which a variable
is to be fetched, or to which it is to be stored. The
pointer may, for example, point to a vector entry rather
than a simple variable entry; in this case, the order
expects the offset from the element with zero subscript to
be loaded in ACC, This is an example of the pointer being
"overloaded". We elaborate this notion of pointer
overloading;

SAM is designed so that, as far as possible, a
single instruction can carry out a particular operation,
irrespective of the type of the operand(s). For
particular operand types, some special action or special
access information may be required. If the need for some
such action or information is determined by chasing the
table pointer, then we say that the pointer is overloaded.
The permitted forms of overloading are covered along with
the orders themselves.

Ü - Z

Many orders which include table pointers permit
a zero in place of this pointer; in this case, the operand
is obtained from ACC or the top cell of the TRS, rather
than being fetched as part of the elaboration of the order,

B.l.l The Monadic Load Group (ML)

The ML or "Monadic Load" group is associated with
monadic operators. Instructions in this group have the
format ;

m = p2

where m = instruction mnemonic
p2 = table pointer or 0

The instructions are;
ML MLP
ML-t MLS LA
MLEFS MLSZE

All SAM orders are written using the convention
that an underlined variable name or constant deriotion
indicates a pointer to the table entry for that variable
or constant;
ml

If X is a variable of type integer or boolean,
the effect of ML X is to load the contents of variable X
into ACC,

If X is of type boolean, —i X compiles as ML—i X
which effects ML X, followed by —r to the contents of ACC,

The pointer field may be overloaded;
(a) by an (integer) vector entry pointer, in which case

the offset from the address of the vector element with
zero subscript is in ACC,

(b) by a string or file buffer cursor; in this case, the
cursor is determined by accessing (in turn) the table
entry and the string descriptor, or

(c) by an entry pointer to the cursor of (an element of)
1a string vector; in this case the index is in ACC,

MLP
If X is a variable of type integer or boolean,

then MLP X fetches to ACC a parameter value from the
parameter space of an activation record which is no longer
current. This record is pointed to by LP cf, section-
B.1,9,

MLSLA

The effect of MLSLA, which takes no parameters,
is to load the contents of ACC into the string length
accumulator (SLA), The contents of ACC is not destroyed,

MLSZE

The effect of MLSZE X is to load the size of a
string (or file buffer) into ACC,

The pointer field may be overloaded by a vector of
string; in this case, the index is loaded in ACC,

MLEFS

The effect of MLEFS is to load ACC with the boolean
result of the operation END-OF-FILE (or -STRING) X,

The pointer field may be overloaded by a vector
entry pointer, in which case the index is loaded in ACC,

B,l,2 The Subscripting Group (SC)

The subscripting group is associated with subscript
calculations.^ A subscript instruction follows the placing

ü-4

of an integer subscript value in ACC, Instructions in
this group have the format:

m pg ^pgj where p^ = table pointer
p^ = table pointer or zero

The instructions are:
SUB
SUBZ

SUEZ

If X is a vector, then SUBZ X checks that the integer
Z (say) in ACC lies in the range of the subscript of X,
This range is determined by accessing the record pointed
to by X,

SUB

SUB X,Y ^ MLY , SUBZ X
Examples :

The following declarations are assumed to have been made
in this and later examples:
A, B, C, I, J, L, M, N : INTEGER
S, 31, S2, E, F, G ; STRING
VS; VECTOR [I..I0 J OF STRING;
V, VINT ; VECTOR ^0 .. 99^ OF INTEGER
FL; FILE [READ WRITE j OF STRING(80);

(A) The integer expression "VINT [ij " compiles as
n + 0 SUB VINT, I
n + 1 ML VINT

B,1.3 The Load and Operate Group (LO)

The Load and Operate group combine the application of

•U —o

a dyadic operator with a fetch-variable operation.
Instructions in this group have the format;

m p^ p2 where p^ = O/s /op 1, p^ - 0 or table pointer,
s = 0 or loaded
opi = s t r i n s e r t/s s t r e p l a c e/pattern

The instructions are;

LSLA+ L+ L< LMATCH
LDIV L- LAND
L̂ ̂. LDSA L= L > LOR

The sequence of operations applied in an LO X operation
is illustrated by the case when the table pointer X points
to a simple variable-defining record. The sequence is;
(1) Apply ML X,
(2) Apply operation taking top cell of TRS and ACC as

operands, (ACC is first operand, top cell of TRS
is the second).

All operations other than LDSA and LSLA + leave the result
in ACC,

Boolean and Arithmetic Operations

The instructions LDIV L+ LAND
L* L- LOR

effect the arithmetic and boolean operations indicated
by the mnemonic.

The pointer field may be overloaded by a vector
entry plointer; in this case, the offset from the vector
element with zero index is in ACC,
Examples ;

(B) The integer expression "I + V ^M J " compiles as
ri + 0 ML I

B-6

n + 1 SUB V, M
n + 2 L+ V

where n + i,. 0 ^ i ^ 2, is the code address,

(C) The integer expression "VINT [I ^ J J compiles as
n + 0 ML I
n + 1 LMULT J
n + 2 SUBZ VINT
n + 3 m l VINT

Relational Operators
The instructions L ̂ L= L) L <C L/ L)
effect integer comparisons.

Examples ;

(D) The expression
n + 0 ML A
n + 1 L< B
n + 2 ML B
n 4- 3 C
n 4- 4 LOR 0

(E) The expression
n + p ML A
n 4- 1 L < B
n 4- 2 ML B
n 4- 3 C
n 4- 4 LAND 0

"A ^ B OR B ^ C" compiles as

LSLA+

The effect of LSLA+ (which takes no operands) is to add
the contents of ACC to SLA, leaving the contents of ACC
unaltered.

XJ— /

LDSA opl, X

The effect of this operation is to load register
DSA with the address and length of the string X. This
instruction is used when string X appears on the left-hand
side of a (sub) string assignment or insertion.

The particular actions involved in loading DSA
depend on the operation type indicated by "opl".

The pointer field may be overloaded as follows:
(a) by a string entry pointer; in this case, the length

is in ACC; if the string offset is non-zero, it is
loaded in the top cell of the TRS, or

(b) by a (string) vector entry pointer; in this case,
the string offset and length are loaded, as in the
previous case, and the index is, additionally, loaded
in the top cell of the TRS,

Examples: cf, G, 0 below

LMATCH X

The effect of LMATCH on a pattern X is as follows:
(1) The address of the pattern template is fetched to

register SSA,
(2) The match instruction interprets the pattern template

(a) the first node of the template specifies
execution of the appropriate code section to lay
out an activation record and initialise local

' variable space,
(b) subsequent template nodes may specify:-

(i) the matching of a substring to the subject
string described by register DSA,

(ii) the call of a subpattern (to be interpreted
in the same manner), and laying out of a new
activation record, storing the contents of
SSA as the return address in the link space
(cf, figure 4-5 (b)),

(iii) the execution of a section of code corresponding
to an action primitive; in this case the
existing activation record remains current,

‘ but the contents of registers SSA, DSA and
PC are stored in areas SSAS, DSAS and MRA
(respectively) of the link space (cf, figure
4-5(b)).

(c) On completion of interpretation of a pattern
template, the topmost activation record is popped
and interpretation resumes at the node address
(if any) specified in the return address of the
link space,

(3) When there are no further return links the result of
the match operation is left in ACC, If successful,
the matched string is assigned to the match-assignment
variable (if any), and the current cursor position of
the subject string (described by register DSA) is
updated, appropriately.

If the subject string is a file buffer (indicated
by "opl"), a new file component is fetched, as required,
during the matching process, and both the file buffer
cursor and the current component pointer are updated on a
successful match.
Examples ;
(G) The match expression "S ^ PAT" where PAT is some

jj— y

pattern variable compiles as follows:
n + 0 LDSA PATTERN, 8
n + 1 LMATCH PAT

B.1.4 Store Group (ST)

The Store group is responsible for completing all
assignments. Instructions in this group have the format:

m p^ p2 where p^ = c or 0
; • P2 “ table pointer

c = d s a/v s n u l l/f s n u l l

The instructions are:
ST STDESCRP
STDESCR STP

The normal store operations are ST, STP and the string
store operations are STDESCR, STDESCRP.

ST X
The store operation determines the address to be

assigned to by chasing the pointer X, and storing the
contents of ACC in that address. After execution, ACC and
the TRS should be empty.

This instruction may be overloaded in the same way
as the ML operation. In the case of a cursor entry
pointer, ST additionally ensures that the cursor bounds
will not be violated by this operation. The operation is
invalid if X points to a table entry of a constant
variable or formal parameter, (cf, section A,9),

ST completes the address calculation before making
the assignment.
Examples:
(H) The assignment "I : =. M" compiles as

J3-1U

n -f 0 ML M
n + 1 ST I

j := N"I-M-j := N" compiles as(I) The assignment "VINT
n + 0 ML I
n + 1 L̂ ̂ J
n + 2 SUBZ VINT
n + 3 ML N
n + 4 ST VINT

(J) The assignment "VINT ̂J j @ := VINT K J @"
compiles as

n + 0 SUB VINT, J
n + 1 SUB VINT, K
n + 2 ML VINT®
n + 3 ST VINT®

STP X
This operation bears the same relation to ST as

MLP to ML, If X is a pointer to an integer or boolean
entry, then STP X stores the parameter value in ACC in
the parameter space X of an activation record which is
about to become current. This record is pointed to by
LP, (cf, section B,l,9),

STDESCR c,X

This instruction stores a string value for string
X, by updating the descriptor for X, The exact manner
in which this occurs is dependent on the value of c:

(a) c — DSA
In this case, the heap area which previously held

the (string) value of X is garbaged, and the descriptor of

the new string value (in register DSA) is copied to the
descriptor for X.

The pointer field may be overloaded by a vector
entry pointer; in this case, the index is found in the
SOL, relative to SB*

(b) c = VSNULL

String X is deleted. The heap area previously
occupied by the (string) value of X is garbaged, and the
descriptor set undefined. The pointer may be overloaded
as in case (a).

(c) c = FSNULL

The (string) file buffer X is deleted. The action
is the same as in case (b) except that the string area is
not garbaged, and overloading by a vector pointer cannot
occur.

The operation is invalid if X is a pointer to a
table entry for a constant variable or formal parameter
(cf, section A.9),
Example; The string assignment "S ;= NULL" compiles

as n + 0 STDESCR VSNULL, S

STDESCRP c*, X (where c* = DSA only)

This instruction bears the same relation to
STDESCR DSA, X as STP to ST,

The string descriptor of the parameter value is
copied from DSA to the parameter space X of the activation
record which is about to become current. This record is
pointed to by LP,

D- iZ

B.1,5 string Operation Initialisation Group (SOI)

This group carries out initialisation action before
certain string operations are performed. Instructions
in this group have the format:

m pj p2 where p^ = op2
P2 = table pointer
op2 = st r a s s i g n/s t r i n s e r t/s s t r a s s i g n/

s s t r d e l e t e/f s t r d e l e t e/st ra pp end
The instructions are; INITVS INITVSP

INITVS opl, X

The effect of this operation is to carry out
initial housekeeping action for assignment or insertion
operations on string X:
(1) ACC is stacked into SOL,
(2) The size of the new string value is calculated from

SLA, (The precise calculations vary, according to
opl),

(3) The SOL pointer register, CSD, is set to point to the
SOL base,

(4) The required amount of space is reserved on the heap;
register DSA is set to describe this area.

The pointer field may be overloaded as follows:
(a) by a (string) vector entry pointer; in this case the

index is loaded in the bottom cell of the SOL, or
(b) by a file buffer entry pointer; in this case step

(4), above, is omitted,

INITVSP opl', X (where opl* = STRASSIGN only)
INITVSP bears the same relation to INITVS STRASSIGN, X

as STDESCRP tg STDESCR.

Initialisation is effected for the parameter space
X in the activation record which is about to become
current. This record is point to by LP (cf. section
B.1.9).

B.1.6 Load-and-Store String Group (LSS)

This group is used to carry out the combined
operations of "loading and storing" a (sub)string i.e.
a copy action.

Instructions in this group have the format:

m pj p2 where p^ = s / op^
P2 = table pointer

op^ = s t r i n s e r t/s s t r r e p l a c e/s s tr de let e
s = o/loaded

The instructions are: LSTSTR LSTMTL
LSTHD LSTETL

LSTSTR s, X

The effect of this instruction is defined as
follows:
(1) Register SSA is loaded with the address and length of

(sub)string called the source (sub)string. If s =
LOADED, then the character offset is found in the SOL
(pointed to by CSD), otherwise the offset is zero.
The string length is found above the offset (if loaded),
in the SOL,

(2) If a substring is specified, the instruction checks that
its offset and length lie within the source string
bounds,

(3) The source (sub)string specified by SSA is copied to
the destination area on the heap described by register

DSA.
(4) Registers DSA, SSA and CSD are appropriately updated.

The pointer field may be overloaded by a (string)
vector entry pointer; in this case the index is also
found in the SOL below the offset and length (accessed
via CSD).

Examples ;

(K) The string concatenation "S := SI . S2 , E" compiles
as

n 4- 0 MLSZE SI
n + 1 MLSLA
n + 2 MLSZE 82
n + 3 LSLA4-
n + 4 MLSZE E
n + 5 LSLA4-
n + 6 INITVS STRASSIGN, S
n + 7 LSTSTR 0,
n 8 LSTSTR 0, S^
n 9 LSTSTR 0, E
n 10 STDESCR DSA, S

substring assignment "E ;= F
n + 0 ML F®
n + 1 ML 6
n + 2 MLSLA
n + 3 INITVS STRASSIGN, E
n + 4 LSTSTR LOADED, F
n 4- 5 STDESCR DSA, E

(M) The append statement "FL f APPEND S" compiles as
n +■0 MSLZE FL t '
n i l MLSLA
n + 2 MLSZE S
n + 3 LSLA+
n + 4 INITVS STRAPPEND, FX t

N + 5 LSTSTR 0, S

LSTHD op3, X

For the purposes of the next three instructions,
we consider that the selection of a substring divides the
original string into three parts; the head, the middle and
the tail.

Consider string S and the substring S [a|b }.
We define;
head (S) = S [0 | a }
middle (S) = S { a | b]
tail (S) = S (a + b|size (S) - (a 4- b) J

We consider that a string cursor similarly subdivides a
string S ;

head (S) = S f o|s@ 7
. middle (S) ' = S / S@ 11 j

tail (S) = S [S @ + l|size (S) - (S@ + l)j
The effect of LSTHD op 3, X is similar to that of LSTSTR.
It is used when only the head (X) is to be copied. The
parameter op3 indicates whether the string is subdivided
by the cursor or by a substring. In the substring case,
the offset and length are loaded in the SOL and accessed
via CSD.

The pointer field may be overloaded by a string

vector entry pointer; in this case the index is loaded in
ACC or the SOL.

LSTMTL op3, X
This instruction behaves in a manner similar to

LSTHD, but copies the middle and tail of string X. It is
used with op3 ~ STRINSERT only i.e. X is subdivided by the
cursor X@.

LSTETL op3, X
This instruction behaves in a manner similar to

LSTHD, but copies only the tail of string S. It is used
with op3 = STRREPLACE/STRDELETE only i.e. X is subdivided
by some substring.

Examples:
(N) The substring replacement "E ^E@|j } := F [F@ [6] .G”

compiles as
n + 0 ML E@
n + 1 ML J
n + 2 ML F@
n + 3 ML 6
n + 4 MLSLA
n + 5 MLSZE G
n *+■ 6 LSLA+
n + 7 INITVS SSTRASSIGN, E
n + 8 LSTHD SSTRREPLACE, E
n + 9 LSTSTR LOADED, F
n + 10 LSTSTR 0 , G
n + 11 LSTETL SSTRREPLACE, E
n + 12 STDESCR DSA, E

(0) The file buffer substring replacement
"FLf { 10 |l6 j := e| 0 I 7} . S"

compiles as

(P)

n i 0 ML 10
n + 1 ML 1 6

n i 2 ML 0
n + 3 ML 2
n + 4 MLSLA
n i 5 MLSZE S .
n + 6 LSLA+
n + 7 INITVS SSTRREPLACE, FL
n + 8 LDSA SSTRREPLACE, F L Î
n + 9 LSTSTR LOADED, E
n i 10 LSTSTR 0, S

The substring deletion "S /s@|l
as

n + 0 ML S@
n + 1 ML I
n 2 INITVS *FSTRDELETE, S
n + 3 LSTETL SSTRDELETE, S

*The dynamic-maximum-length (DML) string S is treated as
a fixed-maximum-length (FML) string, in this case, to avoid
unnecessary copying.

(Q) The insertion statement ’*S @ SI n|m J . S2 " compiles
ds

n + 0 ML N
n i l m l M
n + 2 MLSLA
n + 3 MLSZE S2

n + 4 LSLA+
n + 5 INITVS STRINSERT, S
n 4- 6 LSTHD STRINSERT, S
n 4- 7 LSTSTR LOADED, S_1
n 4- 8 LSTSTR 0, S2,
n 4- 9 LSTMTL STRINSERT, S
n 4- 10 STDESCR DSA, S

B.1,7 Jump Group (J)

The Jump group is responsible for all simple
control transfers.

Instructions in this group have the format:
m p^ p^ where p^ = 0 or k

p2 = ca or table pointer
k = number of case alternatives
ca = code address

The instructions are IFJ UJ
CASEJ GOTO

UJ ca
UJ transfers control unconditionally to the code

address ca.

IFJ ca
IFJ transfers control to the code address ca, if

the value of ACC is false.

Example:
(R) The loop statement

"DO
I := 1

OD" compiles as

n i 0 m l 1

n + 1 ST I
n + 2 UJ n + 0

CASEJ k, ca
This instruction

(a) checks that the value in ACC is less than or equal to
the number of case alternatives k, and

(b) transfers control to the location ca i (ACC) in RXS
(where "()" means "contents of").

Following the code for the case statement are compiled,"
in successive locations, the addresses of each case
alternative. The code address parameter c^ points to the
location preceding the first of these.

Example:
(S) The case statement

" CASE N OF
3: I
1: J
2; K

ESAC " compiles as

n + 0 ML N
n + 1 CASEJ 3,]
n i 2 ML 0
n + 3 ST I
n + 4 UJ n + 14
n + 5 ML 1
n i 6 ST J
n i 7 UJ n + 14
n i 8 ML 1

Ü-ZÜ

n + 9 ST K
n + 10 UJ n + 14
n + 11 UJ n 5
n + 12 UJ n + 8
n t 13 UJ n + 2
n + 14

GOTO X
This instruction is used to handle exits from

structured statements. X is a pointer to a table entry
for a structured statement. GOTO transfers control to-
the address (the end of the structured statement) obtained
from this table entry.

Example;
(T) The compound statement

" begin : BLl
i := J ;
IF I < 2 THEN LEAVE BLl FI ;

M N
END " compiles as

n + 0 ML J
n + 1 ST I
n 2 ML I
n + 3 L< 2
n + 4 IFJ n +
n + 5 GOTO BLl
n 6 ML N
n + 7 ST M
n + 8

where BLl is a pointer to the
table entry for the compound
statement labelled BLl,

B,1.8 The Block and Pattern Control Group (BPC)

The Block and Pattern Control group effects the
initialisation and termination of (use of) an activation
record (for a pattern procedure or the main program block).
Instructions in this group have the format;

m p2 where p^ — table pointer or 0

The instructions are; IB EXIT
IV RETURN

IB, IV are involved in laying out the activation record
for the new block; EXIT and RETURN collapse the
activation record,

IB X
. The action taken by this order depends on the

overloading of X ;-
(a) If X points to the table entry for the main program

block, then IB sets up the link and local variable
space for the block. Registers AP, SB, ST, HB, HT
are initialised,

(b) If X points to a table entry for a procedure, IB
sets up link, parameter and local variable space for
the activation record of the procedure about to be
entered, DP is extracted from AP, AP is not
updated, but LP is. SB is stored in SBS.

(c)• If X points to a table entry for a pattern, IB sets
up link and local variable space for the activation
record of the pattern template about to be interpreted,
DP is extracted from AP, SB is stored in SBS, AP
is updated.

IV X

IV initialises the descriptor of (a structured)
variable X in the local space of the activation record
about to become current,

EXIT
Exit terminates the main program.

Example;
(U) The program skeleton "I,J; INTEGER; SI, S2; STRING

BEGIN
I := 3

END " compiles as

n + 0 IB m where MP points to the table
n + 1 IV SjL entry for main program.
n + 2 IV S2,
n + 3 ML 2.
n + 4 ST I
n + 5 EXIT

RETURN X
The action taken by this order depends on the

overloading of the pointer X ;-
(a) If X points to a table entry for a procedure, RETURN

unstacks the activation record stack, resetting AP
from DP, Control is transferred to the address
stored in the RA field of the link data pointed to
by LP.

(b) If X points to a table entry for a pattern which
contains action primitives, then RETURN transfers
control to the address stored in the MRA field of the
link data pointed to by LP, In this case, AP is not
updated and the activation record stack is not popped.

Example;
(V) The pattern declaration

"PATTERN PAT;
LOCAL VAR I,J : INTEGER: S : STRING ;
BEGIN

compiles as

("K".("AR" I "EE")."P" ACT I ;= I+l TÇA)

I "CAT" ACT J ;= J + 1 TCA
END PAT;"

n + 0 IB PAT
n + 1 IV S
n "f 2 RETURN PAT
n + 3 ML I
n + 4 L+ 1
n + 5 ST I
n 4- 6 RETURN PAT
n 4- 7 ML J
n 4-.8 L4- 1
n 4- 9 ST J
n 4- 10 RETURN PAT

B.1.9 The Procedure Control Group (PC)

The Procedure Control group effects the initial
isation and termination of procedures. Instructions in
this group have the format;

m p^ where p^ = table pointer or 0
The instructions are; CP TP
The orders used to control the normal initialisation of the
activation records for the entry to and subsequent treat
ment of function results (if any) are IB, CP and TP, The

call sequence for a procedure is:-
IB X
<bode to set up var or const parameters^-

CP X
<l.ink to function result>

TP
The procedure body starts with codes for setting up the
local variable descriptions in the activation record.
The procedure body terminates with RETURN.

CP X

CP calls the procedure body X and stores its
return address in the RA field of the link data pointed to
by LP, AP is updated,

TP X
TP loads LP with the contents DP from the link

data pointed to by LP, and SB from the SBS of the record
subsequently pointed to by LP,

Examples ;
(W) The procedure declaration

" PROCEDURE ELEM (CONST X ; STRING) ;
EXTERNAL CONST K ;
LOCAL VAR Z : STRING ;
BEGIN

Z := X
V [k] := V [k]+ 1

END " compiles as

n + 0 IV Z
n i l MLSZE X
n + 2 MLSLA

n 4- 3 INITVS STRASSIGN, 2
n, 4- 4 LSTSTR 0, X
n 4- 5 STDESCR DSA, Z
ri 4- 6 SUB V, K
n 4" 7 SUB V, K
n 4- 8 ML V
n 4- 9 L4- 1
n 4- 10 ST V
n 4- 11 RETURN ELEM

;edure call "ELEM(S1 . S2)"
n 4- 0 IB ELEM
n 4- 1 MLSZE ^
n 4- 2 MLSLA
n 4* 3 MLSZE 82
n 4* 4 LSLA4-
n 4* 5 INITVSP STRASSIGN, ,
n 4- 6 LSTSTR 0, ^
n 4" 7 LSTSTR 0, S2̂
n 4- 8 STDESCRP SDA, X
n 4- 9 CP ELEM
n 4- 10 TP

(X) The (integer) function declaration
"FUNCTION F2 (VAR I : INTEGER) ;INTEGER:

BEGIN
I ;= 1^2

END " compiles as
n + 0 ML I
n 4- 1 L^ 2
n 4- 3 ST I
n 4- 4 RETURN F 2

The function call ”F2(J)" compiles as
n f 0 IB F2
n + 1 ML J
n + 2 STP I
n + 3 CP F2
n + 4 MLP F2
n 4* 5 TP

B,l,10 Parameter Passing Group (PP)

The Parameter Passing group implements all var
parameters and also const-parameter structure variables
and string function results. Other parameter passing
orders have already been covered. (cf. instructions MLP,
STP, STDESCRP, INIVSP: sections B.1.1.-1.5).

Instructions in this group have the format:
m pj p2 where p^, p2 are table pointers.

The instructions are: PPA TRD

PPA X, Y

X points to the table entry for an actual parameter
which is allocated space in the current activation record.
Y points to the table entry for a formal parameter which
is allocated space in the activation record which is about
to become current,

PPA stores the static address of X space in Y
space. The pointer field may be overloaded by a vector;
in this case, the index is loaded in ACC,

TRD F, W

F points to the table entry for a function identifier
which is allocated result space in the activation record

which Just has been current,
W points to the table entry for a work-space string

variable which is allocated space in the current activation
record,

TRD takes the descriptor describing the function
result from F space and copies it to W space.

Examples;

(Y) The procedure declaration
"PROCEDURE ÛT(VAR S ; STRING;SV;VECTOR [j OF STRING):

BEGIN
SV [I]:= S

lend "
compiles as

n + 0 SUB SV, I
n + 1 MLSZE S
n + 2 MLSLA
n + 3 INITVS STRASSIGN, SV
n + 4 LSTSTR 0, S
n + 5 STDESCR DSA, SV
n + 6 RETURN gr

The procedure call "QT (E, VS
n + 0 IB 21
n + 1 PPA E, S
n + 2 PPA YS, SV
n + 3 CP 21
n + 4 TP

(z) The skeleton procedure declaration
"PROCEDURE GHF (CONST ST:VECTOR ̂1..10 j OF STRING:

I : INTEGER):
BEGIN

<J>rocedure body>
END " compiles as

n + 0 encode for procedure body>
n + m RETURN GHF

The procedure call "GHF (VS, 1)" compiles as
n + 0 IB GHF
n + 1 PPA VS, ST
n + 2 ML 1
n 4- 3 STP I
n 4- 4 CP GHF
n 4- 5 TP

(AA) The function declaration
"FUNCTION FI (CONST S;STRING) : STRING:

BEGIN
FI := S . "TAG"

END " compiles as

n 4- 0 MLSZE S
n + 1 MLSLA
n + 2 MLSZE TAG
n 4~ 3 LSLA4-
n 4- 4 INITVS STRASSIGN, FI
n 4“ 5 LSTSTR 0, S
n 4“ 6 LSTSTR 0, TAG
n 4- 7 STDESCR DSA, FI

n 4- 8 RETURN FI

The function call "FI(Si) compiles as
n. + 0 IB FI
n + 1 MLSZE SX
n + 2 INITVSP STRASSIGN, S
n + 3 LSTSTR 0, SJ,
n + 4 STDESCRP S
n + 5 CP FI
n + 6 TRD FX, W where W is working space
n + 7 TP .

B. 1,11 Library

The accessing of library routines can be handled
within existing orders. Two examples illustrate this;

Examples

(AB)

(AC)

PUT (FL)" compil
n 4- 0 IB PUT
n 4- 1 PPA FL, X
n 4- 2 CP PUT
n 4* 3 TP

CHR(I) " compiles
n 4- 0 IB OIR
n 4- 1 ML I
n 4- 2 STP X
n 4" 3 CP CHR
n 4- 4 MLP CHR
n 4- 5 TP

B.2 Summary of Instruction Mnemonics and Parameters

m “ instruction mnemonic g = instruction group
p J p2> Pg — parameters 1, 2, 3 respectively.

m Pi P 2 P 3 g m Pi P 2 P 3 g

M L 0 z M L LDSA opl p LO
M L — * 0 z — M L L M A T C H 0 p _ LO
M L E F S 0 p — M L
M L P 0 p — M L ST 0 z _ ST
M L S L A — — — M L S T D E S C R c P _ ST
M L S Z E 0 P — ML STP 0 z » ST

S T D E S C R P c p — ST
S U B 0 p z SC
S UBZ 0 p — SC LSTE T L op 3 p — LSS

LSTHD op3 p — LSS
L + 0 z — LO L S T M T L op-3 p — LSS
L- 0 z — LO L S T S T R s p — LSS
L* 0 z — LO
L D I V 0 z — LO INIT V S op2 p — SOI
L A N D 0 z — LO I N I T V S P op2 p — SOI
L O R 0 z — LO
L S L A + — _ _ LO CASEJ k ca » J
L< 0 z _ LO GOTO 0 P » J
L < 0 z - LO IFJ 0 ca — J
L— s z _ LO UJ 0 ca _ J

s z — LO
L > 0 z LO EXIT — — BPC
L > 0 z — LO IB 0 P — BPC

IV 0 P — BPC
CP 0 p — PC R E T U R N 0 P — BPCTP - - - PC

PPA 0 P p PP
TRD 0 p p PP

Key to Summary Table

ca
P
Z
c

code address
table pointer
table pointer or 0
d s a/v s n u l l/f s nu ll

D-Ji

number of case alternatives
loaded/0

opl ; SSTRREPLACE/STRINSERT/pATTERN
op2 ; s s t r a s s i g n/s s t r d e l e t e/s t r i n s e r t/s t r a s s i g n/

s t r a p p e n d/fstrdelete
op3 : s s t r r e p l a c e/ss t r d e l e t e/strinsert

V — 1

A P P E N D I X C ; LL(l) G R A M M A R S

C .O

In this appendix, we Justify our beliefs that:
(1) it is, in practice, relatively easy to define

extensions to an LL(l) grammar and to ensure that
the grammar remains 11(1), and

(2) the notation of a programming language need not
necessarily be grossly contorted or manipulated
in order to allow its (syntactic) description in
terms.of an 11(1) grammar.

C.l
We define an LL(1) grammar informally as follows:

An 11(1) grammar is a context-free grammar whose sentences
can be parsed top-down from left to right with at most one-
terminal look-ahead. (Grif 74) •

We consider first strong 11(1) grammars i.e. 11(1)
grammars in which no non-terminals of the grammar can be
expanded to produce the empty string, C .

We can represent an 11(1) grammar by a finite set
of separable transition diagrams (Con 63; Wir 71):
Each nonterminal of the grammar is represented by a finite-
state graph with one entry and one exit point. Each edge
connecting two nodes corresponds to a state-transition
involving the acceptance either of a basic symbol (if the
edge is labelled with that symbol) or of a sentence
recognisable by one of the other finite-state graphs (if
the edge is labelled with the nonterminal represented by
that graph) cf. figure C-1. Transition diagrams appear to
provide a useful tool for designing syntax rules and ensuring
that they are of 11(1) form cf. (Wir 71)# Examples appear

R E P R E S E N TS N O H - 'T t^ N lN X v ^

F l G O a R Ê C L ™ I

in section C.2 and in appendix D.
A grammar is LL(l) under the following conditions:

(a) each transition diagram is deterministic, and
(b) selection of exit is deterministic (Knut 6 7).

Equivalently (Grif 74) a grammar is LL(1) if, for
each transition graph, and for each divergence of the
transition graph, the sets of initial terminal symbols which
may occur (one set from each of the alternative branches)
are mutually disjoint. We call these sets the starter
sets of the divergence point.
Example C-1

Consider the section of the transition graph X,
with divergence point marked D, as shown in figure C-1,
We denote the starter symbols which may occur at each
branch of the divergence point by 5(*), S(^), S([), S(A)
andS(B) according to the labelling of the branch.

From figure C-1, we see that
SC) = I '] s(f) = f Î]
s([) = f [J
S(A) and S(B) are determined from the finite-state graphs
corresponding to A and B respectively. For example.
suppose

Then
S(A) = S(@) u S(C) u S(B)

r0

where S(C) and S(E) must themselves be determined by
further elaboration.

The whole grammar is LL(1) if (a) the starters
sets at each divergence point are mutually disjoint and

J

(b) similar conditions exist for the other finite state
graphs.

The Empty Symbol

It is often convenient in practice to allow the
empty string, f . Unfortunately, it is often harder in
this case to determine, merely by inspection whether or not
a grammar is LL(1),

When a non-terminal A, say, may produce the empty
string, starter symbols include also the terminals which
may immediately follow A, We call these terminals the"
followers of A, denoted by F (A), Thus,

S(A) = first (A) u F(A) , if A =>£
first (A) , otherwise

where first (A) is the set of starter symbols obtained by
ignoring the occurrence of the empty symbol

Example C-2

We consider the definition of an if-statement cf.
figure C-2, at the divergence point marked D,

S(ELSE) = (ELSE }
S(E) = F (statement)

= ^ ELSE • } } by inspection of transition
<program>

These sets are not disjoint and hence the grammar is not
LL(1).

Thus, in general, the algorithm to determine
whether or not a grammar is LL(l) runs as follows:
(1) Examine transition diagrams to determine which

nonterminals can generate the empty string (either
directly or indirectly)..

/ V

m

CL
Z<£.

0eû
Z
2̂
t-a.£•LU

z: k"Æ zq: U1
Z

0 U1
ùCûu iï

3a3
Ky.

U-i

(2) Examine each transition diagram to ascertain whether
or not starter sets at each divergence point of the
diagram are disjoint; we consider two cases at the
(current) divergence point;
(a) Transition nodes which are either terminals, or

non-terminals which do not generate the empty
string: starter sets are determined by elaboration
of the non-terminals cf. example C-1.

(b) Transition nodes are non-terminals which may
generate the empty string, £: in this case,
starters consist of the union of first symbol
sets determined as in (a), with the corresponding
follower symbol sets which are similarly determined.

In general, and in particularly complex cases, it
may be necessary to be more systematic and to iteratively
build up matrices of starter and follower symbols as in
Griffithts algorithm (Grif 74)*.

We believe however that the above-noted simple-
minded approach will be sufficient for many practical cases.
This view is supported by Wirth (Wir 71); appendix D uses
Snip transition diagrams to ensure that Snip syntax is
tL(l) and thus supports this view. This will at least be
true of the case where a transition begins and ends with
unique (and disjoint) sets of starters and follower
terminals cf. below;
Example C-3

U - 5

Notation for LL(1) Grammars

Griffiths (Grif 74) observes that an extended form
of BNP such.as that used in the Vienna definition language
is a more suitable notation for LL(1) grammars. In
particular, the use of the repetition operator and
bracketing reduces the number of recursive rules required
in grammars and means that the empty string requires less
special treatment. We use asterisk as the repetition
operator together with curly brackets; indicates
that the enclosed items must occur one or more times;
while "{ I •’ indicates that the enclosed items occur
zero or more times.

This formalism is more akin to transition diagrams
and mirrors more exactly than BNP the way in which we
conceive syntax; we consider that it.is therefore easier
using, this formalism to determine by inspection, whether
or not a given grammar is LL(1).

We consider a few simple examples as an aid to
recognising rules specified in extended BNP which are not
LL(1).
(a) Left Recursion

It is not possible for the first symbol on the
right-hand side of a production to refer recursively to
the symbol on the left-hand side.
e.g.

0 .

C-ô

This follows, since S(T) and S(A) are not disjoint:
S(A) = S(T) =(t }

This example illustrates a simple case of left recursion,
which no top-down analyser can handle (Grif 74).

(b) It is perhaps not immediately obvious that the
construct [A } cannot be LL(l); but it is obvious from
the corresponding transition diagram section:

A

Examples of Moulding Grammar Rules to.LL(l) Form

Example C-4 Consider the BNF rule

A ; := T |tA

where A and T are non-terminals. This rule is LL(1) but
is more readily seen to be LL(1) when expressed as

A : A I ^ 1 , e,

Example C-^
Consider BNF rules to define a simple arithmetic

expression:
■ EXPR ;;= TERM | EXPR + TERM

TERM ::= FACTOR | TERM FACTOR
FACTOR ::= ID j (EXPR)

where ID represents identifiers as terminal symbols* The
rules are left recursive in this form. They can however

be quite simply expressed in LL(l) form:

EXPR :;= TERM [+ TERM
TERM : : = FACTOR [FACTOR] *
FACTOR ID | (EXPR)

It is perhaps easier to recognise the equivalence from the
corresponding transition diagrams (cf, figure C-3)*

Extensions

We consider the effect of introducing extensions
to LL(l) grammars. Since extensions to our model (cf,
section 2.4) may be introduced only by adding new rules to
the grammar (i.e. existing rules may not be deleted or
replaced), the effect of extensions is to add branches to
transition diagrams. Thus, if an existing rule is
represented by the transition diagram:

then the extended rule will be represented by:

EXTENSION

We must ensure that both the extension rule and the
modified grammar are LL(l). For simple cases this ought
in practice to be relatively easy since it should be
possible to work to a large extent from knowledge of the
language cf, examples C-2, C-3; examples of extensions

U-0

to Snip cf. appendix F support this view. Griffith's
algorithm can be used to ensure that the extended grammar
is indeed LL(l). This algorithm is fairly lengthy, but
provided intermediate tables are retained, it may be
possible to avoid repeating the whole process for each
extension.

If it turns out that the extended grammar is not
LL(l), it will often be possible to rewrite the grammar in
a new form which is LL(1). This process cannot be entirely
automated (Grif 74): while it is decidable whether or not
a given grammar is LL(1), it is, in general, undecidable
whether or not the grammar describes an 11(1) language.
Griffiths demonstrates, however, that there is an algorithm
which goes a long way towards automation.

C* 2 Pascal; A Test Case

In this section, we consider the programming
language Pascal (Wir 70) as a test case. We consider the
problems encountered by Wirth in designing the language
to fit 11(1) syntax. Some manipulation of the language
was necessary, but we show that this is not particularly
complex or prohibitive, nor does it detract from the
natural and elegant notation of the language.

(1) labels

Wirth disallows use of non-integer labels because
of the difficulty of description by an 11(1) grammar. The
relevant portion of the transition diagram is shown in
figure C-4* At point X, the possible sets of starter
symbol sets are S(label), S(variable) and S(identifier).
Thus, if non-integer labels were permitted, these could be

Io
UJ'a3:cir,

C-9

distinguished from identifiers only by looking more than
1 symbol ahead or by use of identifier tables to remove
ambiguity. However, we consider, in view of security,
that any feature which makes the goto-statement less
attractive to use is useful (cf. section 2.1.3).

(2) Multiple Assignments

We consider the transition diagram section:

variable . expression

variable

Since <yariable> and <pxpressioh> may both start with
the same terminal, i.e. identifier, it is impossible to
describe this statement in terms of an LL(l) rule.
Multiple assignments can however, be easily handled if
we introduce a new terminal symbol (cf. PL/1).

variable

variable expression

It might even be argued that this alternative notation
reflects the true structure more precisely.

(3) If-Statements

The Pascal report defines the if-statement in a
form which does not reflect an LL(1) structure:

C-10

<lf-statement)> : := IF <expression> THEN <fetatement> j

IF <fexpression> THEN <^tateinent]>
ELSE <fetatement>

To indicate the LL(1) structure, we would prefer to
rewrite this as :

<^f-statement]> ::= IF <ëxpression> THEN <[statement]>
<else clause>

<plse clause^ : : = ELSE <[statement>

We have already shown (cf. example C-2) that this form of
if-statement is in fact ambiguously specified and that
the rules are not LL(1).

We can avoid this problem by introducing a special
terminator symbol, FI, say (cf. Algol 68). We re-define
the else-clause:

<else clause]> ELSE <statement> Fi |fI

We consider that the introduction of this terminator
improves the notation from the point of view of the human
reader, rather than impairs it,

(4a) Procedures

We consider the portion of the transition diagram
shown in figure C-4. Since variable and identifier
both start with the same terminal symbol (effectively, an
identifier can be regarded as a terminal symbol, after
lexical analysis) the transition diagram is not determin
istic with one symbol look-ahead.

At least one Pascal compiler resolves this
difficulty by reference to identifier tables. If the
identifier denotes a procedure, then the second alternative
is chosen; if it denotes a variable, the first alternative

C-i 1

is chosen. This method of resolution is unsuitable for
a general LL(l) parsing strategy and we consider an
alternative solution.

Provided we insist that parameter brackets are
always present in a procedure statement, recognition by
an LL(1) parser is possible without resort to semantic
action. In fact, this restriction is not necessary
(although it does make the LL(1) structure more obvious)
and the structure is LL(1) provided*the transition diagram
is rearranged as in figure C-5.

(4h) Functions

A similar situation exists in the finite-state
graph for FACTOR. Table-processing is used in the compiler
to distinguish between variable identifiers and function
identifiers. In this case, however, parameter brackets
are already mandatory since functions must have at least .
one parameter.

(5) Case Statement

A problem similar to that of multiple assignments
arises with case statement labels in (unrevised) Pascal
cf. figure C-6(a): a constant in Pascal may be an
identifier. Since S(statement) also includes the terminal,
"identifier", the diagram is not deterministic with one-
symbol look-ahead. At least one Pascal compiler resolves
this problem by referring to identifier tables. In
revised Pascal, a new terminal is introduced at this point
cf. figure C-6(b). We do not consider that this solution
compromises the notation.

Ui J •(Q(£

w(L
PzUlA

III

CJ

jC
V'
tdOfUlX3

V iO'
Uiiû̂l&
iZ

Ir1Ü
ZH0

H
aJ

iZ
%

? 3
U
wfi£3
ÜT

u-iz

c# 3 Conclusions

.We have by considering simple examples attempted
to illustrate that simple extensions at least, may be
defined and verified to be LL(l), without the need of
intimate knowledge of the language syntax in total.
Appendix F which considers extensions to Snip also supports
this view.

The,example of Pascal shows that an LL(1) grammar
is capable of defining the syntax of at least one powerful
programming language with remarkably few, and easily
resolved difficulties. In considering Pascal we demanded
that transition diagrams be in the strict sense
deterministic, with one symbol look-ahead and without the
use of context-sensitive information from identifier
tables. The reason for this, in our case, is that without
strict determinism, extensions become harder to define and
more dependent on translator architecture.

APPENDIX D SNIP TRANSITION DIAGRAMS

We draw transition diagrams and develop sets of
follower and starter symbols where necessary, to verify
that the grammar used to describe the Snip syntax is
indeed LL(l), The sets of follower and starter symbols
are indicated at the appropriate branch points on the
transition diagrams.

CONSTANT

TbENTlfïBH

ÎNTtGiEK

n

a:

Or

UJu

lu UJ|
LL

(à

44-

ct
IL.

WV)

A A

A

V r~—̂
V/
A \

Ik
W
>

I

+ Ui? 2 Ul

V)

Ul
SI
'Si
vui

IIu_

H'

V
AV Si
A' A|
V/ 01
'if' w1/ nilr"\ d'AjI

Ij
U_

wNV)
k
5
o

ÙTÔa k£2
A Ul
A 0-
cC 0

A'
a 0kfC
A OtUlA a«C 0

20
w Ea
I— a.

üj

ik

uN:

§1
§ 1Uil
lilV)uUi
<

Cl

It
\u.

' 2O 0

E w-Ja
v1VIWcc

VIUJck:Ù: Z •—* (L (LUJ X X(- ' «4 UJ UJ

CL

lU

H

M CO.

ct

A

Li.
LL

bJ
z h
a

c.J
Lb a.
K r
&
CL

4tJ
1 ci

a. w 2
£ r« ÛC

Ol *}

Itl
i
i>
z
c£
Ui

(£ dLL 0- A.

a.

LL

CC

Uf OC

o -UI A

■ <
u .

«c

<£
ü.

U.

<c

L o c a l

X>ECLÎNRf\T\ONS

"MfrnF, imi

CrLOÛAL
i>ec.Li\%.Anot4$

T>T\TÎ\
DECl.1\R.RT»oi4S

a.

APPENDIX E SIMPLE TRANSLATION EXAMPLE

A translator section to handle simple expressions
was written in Snip and hand-translated to SAM, The
principal aim in doing so was to obtain some indication
of the ease or difficulty of writing a Snip translator
in itself, A high proportion of programming errors which
occurred arose during the hand-translation process. The
program is written using some of the Snip extensions
listed in appendix F, It was used to translate sections
of small Snip programs, consisting of a series of
(restricted) statements.

r»— ii

GLOBAL CONST TYPE = 1; ADDR = 2; STATE = 3;/*GATTR,LATTR_
indices*/

STR = 1; SUBSTR = 2; CSTR = 3; INT = 4;
CINT = 5;/* variable types */

LOADED = 1; NOT_LOADED = fÔ; /^states*/

VAR GATTR : VECTOR 1, , 3] OF INTEGERj /* attribute
record of current expression */

RHS, FIRSTR : BOOLEAN j /*flags concerning
semantic action */

CODE__STR : STRING; /* generated code */

PATTERN STATEMENT;
BEGIN

("ID" ACT SEARCH TÇA . <- ; ASSIGN_STATEMENT>
I NULL ACT FAULT(1) TÇA) .
{ " 5" • < - ; STATEMENT> }

END STATEMENT ;

PATTERN S_EXPRESSION;
LOCAL VAR LATTR : VECTOR \ 1..3 1 W INTEGER;/*local

attribute record*/BEGIN
<- ; TERM> .
[ACT INT_OP(LATTR)TCA . <-; TERM> ACT

ADD OP(LATTR)TCA]
END S__EXPR;

PATTERN TERM;
EXTERNAL CONST GATTR, TYPE;
LOCAL VAR LATTR ; VECTOR [1••3
BEGIN

OF INTEGER:

<- : FACTOR> .
{ { A ^ INT OP (LATTR)TCA

I " LATTR [TYPE J ; = GATTR [TYPE J T ^)
,<r : FACTOR> . ACT MULT_OP(LATTR) TÇA]

END TERM ;

PATTERN FACTOR;
BEGIN

"ID" ACT SEARCH TCA . <- ; VARIABLE>
"(" . <- : S_EXPRESSION> . (")"| NULL ACT

FAULT (4.) TCA)
<- ; CONST > SEARCH ; STR_ATTR TCA
NULL ACT FAULT(2) TCA

END FACTOR;

PATTERN VARIABLE;
EXTERNAL CONST GATTR, TYPE;
LOCAL VAR LATTR ; VECTOR 1..3] QF INTEGER:
BEGIN /^recognise component denotation of a variable*/

" (" SUB__STR_ATTR (LATTR) TCA .
<-: S_EXPRESSION> A£T SUB_STR_SPEC TÇA ,

(" " NULL ACT FAULT(5) TCA) .
<-s S_EXPRESSION> SUB_STR_SPEC TCA.

(")" ACT GATTR:=LATTR TCA NULL ACT FAULT(5) TCA)
NULL ACT STR ÂTTR TCA

END VARIABLE;

XJ —ij.

PATTERN ASSIGN_STATEMENT;
EXTERNAL VAR FIRSTR, RHS ;
l o c a l VAR LATTR : VECTOR ̂ 1..3 j OF INTEGER;
BEGIN

NULL ACT FIRSTR := FALSE ; RHS FALSE TCA
<-: VARIABLE> .
(":=" ACT RHS_ASSIGN(LATTR)

I NULL ACT FAULT(2) TCA) .
<-; S__EXPRES8I0N> AOT STORE (LATTR) TCA

END ASSIGN;

PROCEDURE SEARCH ;
EXTERNAL VAR GATTR ;
BEGIN

search __ for __ identifier ___ in __ tables ;
set __ up __ global attribute __ record

END ;

PROCEDURE FAULT (CONST I;INTEGER):
BEGIN

print error __ message
END ;

PROCEDURE ADD_pP (CONST LATTR ; VECTOR ^1..3 INTEGER) ;
EXTERNAL CONST ADDR,STATE,LOADED; VAR GATTR,

CODE_STR;
BEGIN /* load and add second operand */

ASSERT operand_types_integer;
CODE_STR APPEND "LPLUS . STR (GATTR ĵ ADDR.j).

"EOL".
GATTR I^ADDR j ;= GATTR STATE j := LOADED

/* new global attribute record*/
END ADD_OP;

PROCEDURE MULT_OP (CONST LATTR : VECTOR ^1..3joF INTEGER);
EXTERNAL CONST ADDR, STATE, LOADED; V ^ GATTR,

CODE_STR;
BEGIN /* Load and multiply second operand */

ASSERT operand_types^integer;
a d d r J)CODE_STR APPEND "LMULT #".STR(GATTR

"EOL" ;
GATTR Î ADDrJ := # ; GATTR STATE j ;= LOADED

/* new global attribute record */
END MULT_OP;

PROCEDURE INT_OP (V ^ LATTR : VECTOR [l**3] OF INTEGER);
EXTERNAL CONST ADDR, TYPE, NOT_LOADED;, V m GATTR,

CODE_STR;
BEGIN /* Load integer operand */

IF GATTR [state j = NOT__LOADED THEN
CODE_STR APPEND "ML 0".STR(GATTR [a dDrJ).

"EOL" FI
LATTR ;= GATTR; /* local copy of attribute

record */
END INT__OP;

ü — u

PROCEDURE RHS ASSIGN(VAR LATTR;VECTOR 1,,3 INTEGER);
EXTERNAL CONST GATTR, TYPE, STATE, ADDR;

VAR FIRSTR, RHS;
BEGIN /* set appropriate flags; take local copy

of attribute record */
ASSERT LHS_not__constant ;
FIRSTR := TRUE; RHS := TRUE;
LATTR ;= GATTR

END RHS ASSIGN;

PROCEDURE SUB_STR__ATTR (V ^ LATTR : VECTOR
BEGIN /* Build parse tree */

[■-] OF INTEGER);

ASSERT GATTR__type_string__or__substring;
LATTR := GATTR;
bull d_par s e_r ecor d_̂ f r om__gatt r

PROCEDURE SUB_STR__SPEC;
EXTERNAL CONST STATE, ADDR, LOADED, NOT_LOADED

VAR CODE_STR, GATTR;
BEGIN /* Load string offset or length */

ASSERT GATTR__type^integer ;
IF GATTR

CODE
STATE = NOT LOADED THEN

; STR APPEND "ML 0" . STR(GATTR[aDDrJ)
"EOL"

FI
GATTR STATE LOADED

END

PROCEDURE STR_ATTR;
EXTERNAL CONST GATTR, ADDR, RHS;
BEGIN /* load size; build parse record */

IF type_string AND RHS THEN
BEGIN

build_parse_record_from_gattr;
CODE__STR APPEND "MLSZE 0" . STR(GATTR IaDDrJ)

"EOL"
END

FI ;
SET_8 LA

END STR_ATTR;

PROCEDURE SET_SLA;
EXTERNAL CONST RHS; FIRSTR, CODE_STR;
BEGIN /* load__SLA */

IF type__string__or__8ubstring AND RHS THEN
IF FIRSTR THEN

BEGIN
FIRSTR .FALSE;
CODE_STR APPEND "MLSLA 0 0 "."EOL"

END
FI

ELSE CODE_STR APPEND "LSLA 0 0 "."EOL"
FI

END SET_SLA;

PROCEDURE STORE (CONST LATTR VECTOR OF INTEGER);
EXTERNAL CONST GATTR, TYPE, ADDR, STATE, LOADED, NOT.

LOADED, SUBSTR;
VAR CODE_STR;

BEGIN /* generate store operations */
ASSERT types__compatible;
IF LATTR j^TYPE^ = INT THEN

END
ELSE

BEGIN
IF GATTR INSTATE j = NOT_LOADED THEN

CODE__STR APPEND "ML 0".STR(GATTR ADDR
FI; "EOL"
CODE_STR APPEND "STORE 0".STR(LATTR [ADDR

" EOL"

).

).

BEGIN
ADDR.j .CODE_STR APPEND "INITVS 0" . LATTR

"EOL"
IF LATTR [tYPE^ = SUBSTR THEN

CODE_STR APPEND "LSTHD DEQUE".STR(LATTR
[a d DrJ). "EOL"

fel;
generat e__code_^from parse__record ;
IF LATTR [TYPsj = SUBSTR THEN

C0DE_STR APPEND "LSTETL DEQUE".STR(LATTR
jÂDDpj). "EOL"

O ;
CODE_STR APPEND "STDECSR DSA".STR(LATTR

[aDDrJ). "EOL"
END

FI
END STORE:

BEGIN /* Main Program */
initialise^yariables ;
IP STATEMENT ^ INPUT THEN call_Abstract_Machine FI

END MAIN;

APPENDIX F EXAMPLES OF SNIP SELF-EXTENSION

By way of indicating the capabilities of the Snip
extension mechanism, we consider some extensions to the Snip
base language. As indicated in section 2.4, we expect that
the features most conducive to elegant extension of a
BCD 1 extension mechanism will be those which have few non
local context sensitive syntactic or semantic features.
Example F-1

We introduce a statement to allow context editing pf
strings. This has the form
CB / <5>attern variable^- IN <^ubject string

—̂ <pepl a cement string
where <^ub j ect string]> : := <string variable^
and -^replacement string%> ^string variable]>

The leftmost substring of the subject string which
matches the pattern variable is replaced by the replacement
string. We might define this statement in terms of the
semantically equivalent base text;
DO ; Z

CURSOR ;= <àubject string]>
IF <subject string^ ^ <^pattern variable^ THEN

BEGIN
<^ubject string]> ̂ CURSOR [<^subj ect string @

- CURSOR J : = ^replacement string^ ;
LEAVE Z

END
l̂ LSE <subject string]> ® ;= -<^ubject string^»® +1 FI

QD

We express this in Snip as follows;

F-Z

DEFINE PATTERN CONTEXT_REPLACEMENT;
LOCAL VAR PAT, SSTR, RSTR, BL, CURSOR : STRING;
BEGIN

"CB / " . <PAT : PATTERN_VAR> . "IN" .
<SSTR : STRING„VAR> . . <RSTR ; STRING__VAR>

ACT
NEW_INT_VAR (CURSOR); NEW_LABEL (BL);
SUBST ("DO"."i".BL.

CURSOR. SSTR.
"IF" . SSTR. . PAT . "THEN". '
"BEGIN".

SSTR."f". CURSOR. "|".SSTR."®".
"-".CURSOR, "j" .

"; = ".RSTR. "; LEAVE". BL.
"END".
"ELSE" . SSTR. "@ ;=". SSTR. "@+1 FI".

"OP")
TCA

END
^ STATEMENT;

Many related constructs oriented towards context amendment
can be similarly defined.

Example F-2

We define an assert-statement similar to that of
^lAlgol W. We define ASSERT <j5oolean expression^ as
equivalent to
"XF~ —1 Qjoolean expnession^ THEN ERROR(NUMBER) FI"
where ERROR is assumed to be the translator routine which
handles run-time errors, and NUMBER represents an appropriate

r - J

error number,
DEFINE PATTERN ASSERT_STATEMENT;

LOCAL VAR B : STRING;
BEGIN

"ASSERT" . <B Î BOOL_EXPR>
ACT

SUBST ("IF— i" . B . "THEN ERROR(NUMBER) FI")
rcA

teND
^ STATEMENT; ' _

Example F-3

In generating long substitution strings, text is
frequently cleaner if we allow variables to be delimited
rather than string literals (cf, macroprocessors). In
this example we delimit this form of text by the pair
symbols ^ and j. and we delimit variables by the pair symbols
jandl , We find, in fact that this example cannot be

completely defined in terms of Snip patterns and we must
revert to explicit programming. This example is defined,
assuming that the compiler processes text from the input
file,
DEFINE PATTERN MEXPR;

LOCAL VAR S,ITEM ; STRING; CURSOR ; INTEGER;
BEGIN

"I"
ACT

ITEM ;= NEXT(INPUT);
DO : OUTER

IF ITEM — J = THEN

f — 4-

IF ITEM = "I" THEN
BEGIN

CURSOR := INPUT I
IF— 1 (INPUT'!' IDENTIFIER)THEN ASSERT

FALSE
END
ELSE

BEGIN ITEM := INPUT | |^CURS0r | INPUTf®
- cursor];

SUBST(ITEM); ITEM:=NEXT(INPUT);
ASSERT ITEM="j"; ITEM := NEXT(INPUT)

END
ELSE DO, : INNER

SUBST ("""", ITEM);
ITEM := NEXT(INPUT);
IF ITEM = "I" THEN

BEGIN SUBST (" » " ") ;
LEAVE OUTER

END
ELSE

n , II
IF ITEM = THEN

BEGIN
SUBST (" " " ");
LEAVE INNER

END
FI

FI
OD

o.

OD

F-5

TCA

END
AS EXPRESSION
The text IF I A [THEN I SIj ELSE jszj FI for example is
now a legal string expression, equivalent to
"IF" . A . "THEN" . SI , "ELSE" . S2 . "FI"

Example F-4

We define a simple means of increasing the value of
a given variable by 1 e.g. INC I.

DEFINE PATTERN INCEST;
LOCAL VAR LVAR ; STRING:
BEGIN

"INC" .< LVAR:INT_VAR>
ACT SUBST (| {lVAr }

END
:= I LVAR] 4- 1 |) TCA

^ STATEMENT;

Example F-5

We consider the definition of various control
structures in this example:

(a) Repeat-statement

DEFINE PATTERN REPEAT__ST;
l o ca l VAR B, S, BL ; STRING;
BEGIN

"REPEAT" , (":" .<BL ; LABEL>
I NULL ACT NEW__LABEL (BL) TCA).

<S:STATEMENT> .
"UNTIL" . <B;BOOL_EXPR>
ACT

SUBST (| DO ; I Bl | -
I’sf ;

rP j B j THEN LEAVE |BLj FI
m i)

TCA
END

AS STATEMENT;

(b) While-statement
DEFINE PATTERN TOILE^ST;

LOCAL VAR S,B ; STRING;
BEGIN

"WHILE" . <B : BOOL_EXPR> . "DO"_<S:STATEMENT>
ACT

SUBST (| IF 1 b [then REPEAT | S j UNTIL— i j B j FI],)
TCA

END
^ STATEMENT;

(c)- Friedman “(Fni 74) considers that a.-.while-until
statement would be useful. We might define this in Snip
as follows;

I — /

DEFINE PATTERN V/HILE_UNTIL_ST ;
LOCAL VAR B1.B2.S.BL;STRING:
BEGIN

"WHILE" • <B1 ; BOOL__EXPR> . "DO".
< S ; STATEMENT >.

"UNTIL" . <B2 : BOOL_EXPR>

ACT
NEW_LABEL(BL);
SUBST (j REPEAT : I Buj ‘ •

jsi',
IF — I I B1 1 THEN LEAVe Ib lI FI

I *

UNTIL ! B2 I J,)
rcA

END
\S STATEMENT;

(d) We define a for-statement of the form:

FOR <^integer variable^ FROM cjLnteger expression^
: :BY <^integer expression]>

(TO C^integer expression^ j DOWNTO <xnteger expression>)
[w h i l e <C]boolean expression]>J DO <̂ st at ement^ OD

where " [J" indicates options and the FROM- and BY-
expressions are assumed to be 1, if unspecified.

F - b

D E F I N E P A T T E R N FOREST;
iiQCAL V 4 R I, FROM _ E X P R , BY__EXPR, E X I T _ E X P R , W H I L E _ E X P R , S T ^

BL, LBY _ E X P R , L E X I T _ E X P R , E X I T : S T R I N G :
W H I L E _ M R K R : B O O L E A N :

B E G I N
"F O R " • < I : I N T _ V A R > .

("F R O M " . < F R O M _ E X P R : I N T _ E X P R > N U L L A C T F R O M E X P R

("BY". < B Y _ E X P R ; I N T _ E X P R >
:= "1" TCA).

N U L L A C T B Y _ E X P R := "1"
TCA).

T C A
END

^ STAT E M E N T ;

("TO" ACT EXIT := " > " TCA
"DOWNTO" ACT EXIT ;= " < " TCA). <EXIT_EXPR:INT_EXPR> .
("WHILE". <WHILE_EXPR : BOOL EXPR'^ ACT WHILE_MRKR

:= TRUE T C A j
NULL ACT WHILE_MRKR FALSE TCA).

"DO". <ST;STATEMENT> . "OD"
ACT

NEW_LABEL (BL) ; NEW__INT_VAR(TL) ; NEW_INT_VAR(TN);
SUBST (f BEGIN : I BL|

llj := jFROM_EXPr [; }l BY_EXPr [:=
I BY_EXPR| ;I LEXIT__EXPr | := |EXIT_EXPR j ;

DO IF (llj I EXIT i ILEXIT_EXPRj) ^);
IF WHILE MRKR THEN

SUBST (j OR (— i!w HILE_EXPr |) |) FI;
SUBST (I THEN LEAVE I BL| FI;

I s] ; I I I ;= jl(+ I BY_EXPR
OD
END I)

(e) Dijkstra has proposed two new forms of control
structure (Dij 74; McK 74):
DIF

guard 1
guard 2
guard n

action 1
action 2
action n

FID

r~v

where only those actions which are "unguarded" (i.e. whose
guards have the value false) are selected for execution.
We will assume normal sequential execution. The statement

DLOOP
guard 1 : action 1;
guard 2 : action 2;

guard n : action n
POOLD
has a similar interpretation, but is repeatedly executed
until all guards have the value false. The DIF form of
statement might be regarded as a generalised case-statement
in which the case expression is different for each action.
It is also close to the idea of decision tables. This
form of statement is useful when guards are not integer or
defined-scalar subranges (cf. Pascal) and hence are less
appropriate to case-statement evaluation.

We may introduce these structures in Snip as follows:

)EFINE PATTERN DIF_ST;
LOCAL VAR ST, BEXPR : STRING; I, COUNT : INTEGER;
BEGIN

"DIF" . <BEXPR : BOOL__EXPR> . ":" . < S T ;STATEMENT>
ACT

SUBST (j BEGIN IF|BEXPR | THEN | ST j FI i)

. <BEXPR:BQOL_EXPR>. ":" . <ST:STATEMENT>
ACT

SUBST (t 5 IF ! BEXPR | -THEN | ST \ FI j)
TCA] .

"FID"
ACT SUBST T]' end i) TCA

END
AS STATEMENT;

The DLOOP statement can be similarly implemented, or defined
simply in terms of the DIF statement.
(f) We consider the inclusion of case-statements similar
to those of Pascal, but labelled by string literals. We
observed however in section 3*2.2*2 that we are unable to
attain the run-time efficiency allowed by Pascal defined
scalars. We must therefore introduce some form of run-time
string hashing function in order to handle the case-
st at ement by the method used in Pascal. It is probably
^therefore equally efficient in many cases to define this
form of statement in terms of a Dijkstra if-statement.
For certain applications it would be appropriate also to
ensure that one and only one guard has the value true.
We thus define
SCASE <string variable)> OF

<^tring literal 1 > ; <statement l]> ;
*

<^tring literal n > ; <st at ement n >
teSACS

a s

DIF
<fetring variable^» = <string literal l]> ; <statement

<string variable^ = <string literal n> : <st at ement n>;
FID

t- 1 i

DEFINE PATTERN SCASE;
LOCAL VAR LIT,ST, CASEVAR : STRING:
BEGIN

"SCASE" . <CASEVAR ; STR_VARIABLE> . "OF" .
<LIT;STR_LITERAL> . . <ST;STATEMENT>
ACT

SUBST (| d IF ! CASEVAR j = { LIT | : I ST | i)
TCA

[";". <LIT:STR_LITERAL> . ":" . < S T : STATEMENT >

ACT
SUBST (Î ; ! CASEVAR I = | LIT | ; ! ST I J,)

TCA] .
"ESACS" ACT SUBST (" FID ") TCA

END
^ STATEMENT;

(g) Bochman (Boc 73) has considered the introduction of
"multiple-exit statements", an extension of the escape-
statement notion. These statements conform to the idea
of structured programming and allow, Bochman claims,
easier optimisation than simple goto-statements.
Essentially, multiple exits combine an escape-from-block
with execution of a case-statement after escape.
Example;

BEGIN : BL
JF A THEN MEXIT 3 FROM BL FI;

IF B THEN MEXIT 2 FROM BL FI;

ÆEXEND
X := Y;
Y := Z;
X := Z

ESAC

r - iz

We might define this as follows:

PRE
LOCAL VAR EXIT_NO ; STRING; FIRST : BOOLEAN:

TAKE
<-: STATEMENT> . { " : " . STATEMENT > j . ("END"

<-: MCASE >)
WHERE PATTERN MCASE;

EXTERNAL CONST EXIT_NO;
LOCAL VAR ST,BL: STRING:
BEGIN

"MEXEND"
ACT

TCA
END

AS COMPOUND TAIL;

DEFINE PATTERN MEXIT;
EXTERNAL CONST EXIT_NO;
LOCAL VAR INT, BL:STRING:
BEGIN

SUBST (t jEXITING I := 1 END ;
CASE I EXITING j OF |)

"MEXIT" . <INT:INTEGER> . "FROM", <BL : LABEL>
ACT

IF FIRST THEN BEGIN NEW_INT_VAR(EXITING) ;
FIRST:=FALSE END FI;

SUBST BEGIN I EXITING | ;= IlNlf ;
LEAVE I BLÎ E m |)

TCA
END

STATEMENT;
ERP

Similar constructs may be defined for control structures
such as repeat— and while-statements.

This example shows that there is a good case for
allowing the user of an extensible language facility of this
form to define synonymous lexical items (cf, Newey (New 68))

F-13
e.g. ESAC and ENDEX etc.

Example F-6

We might improve the notation for patterns for
particular applications;
(a) Optional notation ĵAj etc, may be defined by the
statement:
DEFINE PATTERN P_OPTION;

LOCAL VAR ENC: STRING:
BEGIN

»' [" . <ENC : PATTERN_TEMPLATE> . " j "
ACT

SUBST (I (jENcj I NULL) |)
TCA

END
&S FREE_PRIMITIVE_PATTERN_STR;

(b) The ARB notation of Snobol 4 might be simulated by
the following extension, provided matching occurs on the
input file only,

DEFINE PATTERN ARB;
BEGIN

"ARB" ACT
SUBST ("NULL"):
INPUT I @ := INPUT | ® + WORD^LENGTH

ffCA
END

^ FREE__PRIMITIVE_PATTERN_STR;

(c) The built-in pattern ANY, of Snobol 4 might be
defined as follows;

F-14

DEFINE PATTERN ANY;
LOCAL VAR LIT:STRING;
BEGIN

"ANY" . "(" . <LIT ; STR__LITERAL>
ACT

SUBST .(t (! LIT| I)
TCA .

(• <LIT : STR_LITERAL>
ACT

SUBST (I !lIt| |)
rcA j

• ac t SUBST (")") TCA
END

^ FREE_PRIMITIVE_PATT ERN__STR ;

Snip Program Example F-7

We introduce a program example which uses some of
the extensions considered in the foregoing text.

The program searches a "rectangular string" of
characters (of width 3) for an occurrence of the 2-
dimensional pattern.

+ (^ | “) (^ | “) +
+ (̂ I “) { ̂ I “) +
+ (#1 -) (#1 -) +

We would expect the input/output procedures INTEXT, OUTTEXT,
WRITE to be pre-defined, but we introduce them for
completeness.

r-13

PROCEDURE INTEXT (v m S : STRING) ;
EXTERNAL VAR INPUT;
LOCAL VAR CH : STRING(1) ; Current character V
BEGIN / Read text string '̂/

S := NULL ;
CH := NEXTCH (INPUT) ; ASSERT CH = """";
DO : READ_LOOP

CH := NEXTCH (INPUT);
IF CH = """" THEN LEAVE READ LOOP

ELSE S APPEND CH
FI

QD
END INTEXT;

FUNCTION NEXTCH (VAR F ; FILE ĵREAu j OF STRING .(81)): STRING(1) ;
BEGIN Fetch next character

IF EOF (f |) th en be gi n Fetch new component */
GET (F)
FI ® := jZi

END
fel;
NEXTCH := Ft f Pf © I 1 j ; INC F f @

END NEXTCH;

F-10

PROCEDURE OUTTEXT (VAR S ; STRING);
EXTERNAL VAR OUTPUT;
LOCAL VAR LCURSOR : INTEGER;
BEGIN /^ Print text string

LCURSOR := S@; S@ := Local copy V
REPEAT ; PRINT LOOP

CH ;= S ̂ S® I 1]; INC S@: Next character #/
PUTCH (CH , OUTPUT) .

UNTIL EOF(S);
S@ ;= LCURSOR Restore V

END OUTTEXT;

PROCEDURE PUTCH (CONST CH: STRING(1): VAR F : FILE ^WRITEj OF
STRING (121));

BEGIN Print character
F T { P Î @ I 1] := CH ; I ^ F t ® 1
IF (CH = EOL)V EOF(F t) THEN

BEGIN Remainder of component(if any)
is NULL. Print line

F I { F t @ I SIZE F 1 - F Î ©] : =
EOL;

PUT(F)
END

FI
END PUTCH;

r - 1 /

PROCEDURE WRITE (CONST NUM;INTEGER);
LOCAL CONST INT_SIZE = 10; /-«- 32-bit machine V

VAR S:STRING; DIGIT, I, LNUM : INTEGER:
BEGIN Write integer

S := NULL: LNUM := NUM; V Local copy V
REPEAT Convert to string ?&/

DIGIT := LNUM MOD 10; LNUM := LNUM DIV 10;
Next Digit */

S. := CHR (DIGIT + INT (»'0")).S
UNTIL LNUM = .
OUTTEXT (S)

^ND WRITE;

GLOBAL CONST LB= 1, UB = 3; Bounds for LINE, COORD V
VAR I;INTEGER; Index for LINE V

COORD; VECTOR ^ EB./UB^ Q Z INTEGER;
/^Coordinates of matched strings #/

LINE: VECTOR [LB..UBj OF STRING; 2D-string*/
PATTERN COMPONENT; 1-dimensional pattern component */

EXTERNAL CONST LINE, I; VAR COORD;
BEGIN

. ("-’' I . ("-»' j "0") . "+'»
ACT COORD j lj ;= LINE Tlj @ _ 4 /* match

coordinate */ TCA
END COMPONENT;

F-lb
FUNCTION MATCH__2D (RSTRING;VECTOR ĵ LB, ,UB J ^ STRING) ;

BOOLEAN;
EXTERNAL CONST COORD;
l o ca l VAR J; INTEGER; Index for RSTRING V
BEGIN 2-dimensional match

FOR J FROM LB TO UB DO
BEGIN : MATCH__LOOP 1-dimensional match V

€ COMPONENT THEN
ĵ J+1 j ® ;= COORD J J

IF LINE
IF J < UB THEN LINE

Set new cursor value #/
ELSE MEXIT 2 FROM MATCH LOOP FI

MEXEND
MATCH_2D := TRUE;
MATCH 2D ;= FALSE

ESAC
END MATCH 2D

BEGIN ; MAIN
FOR I FROM LB TO UB DO INTEXT (LINE I);
REPEAT : R Exhaustive string match

IF MATCH_2D (LINE) THEN MEXIT 2 FROM R
ELSE INC LINE |̂ LB j ® Next character V
FI

MEXUNTIL EOF (LINE [lb])
2 ; FOR I FROM LB ^ UB DO WRITE (COORD ^ij);
1 : OUTTEXT ("NO MATCH")

ESAC
END,

APPENDIX G CHARACTERISTIC ERRORS OF ALGOL W AND ALGOL 60

Some studies of errors in Algol W and Algol 6o have
been carried out by Pirie (Pir 75)* Pirie collected
error statistics for programs written by undergraduate
students with a view to devising a means of automatically
grading student programs. We use Pirie*s results to
consider 200 programs (10 programs written by each of 20
students) in each language. A total of approximately 6000
statements are studied for each language.

Characteristic errors are dependent to some extent
on the programmers and the application area. Thus, for
example, we would expect student programmers to make many
trivial errors due to lack of understanding and lack of
fluency. Since we expect that different kinds of errors
are liable to occur in longer, more complex programs, we
examine also some programs written by postgraduate students
in Algol W and Algol 6o. We examine approximately 3000
statements in each language. We attempt no comparison of
these groups because of the relatively small number of
errors.

We are interested only in a quantitative and not a
qualitative study of characteristic errors; we need to
know only those errors which are likely to occur frequently.

We compare the figures obtained for Algol W with
those obtained for Algol 6o only in a very broad sense.
We have several reasons to expect that they are not directly
comparable:
(a) The programs were written by different groups of

programmers.

(b) The undergraduates working in Algol W were taught to
use structured programming techniques, while those
writing in Algol 6o were not. The Algol W exercises
were carefully graded in terms of increasing
complexity, while those in Algol 6o were not. The
sets of programs were in any case different.

The error classification scheme used by Pirie is in
many cases insufficiently detailed for our purposes and we
subdivide many of his categories. Since we are particularly
interested in errors which are undetected or insufficiently
diagnosed, we re-classify errors as
(1) Compile-time detected,
(2) Run-time detected, and
(3) Undetected.
The results obtained are summarised in figure G-1. We
discuss and explain the classification scheme;-

Type 1 Compile-time detected errors

We are interested in particular in error patterns
which suggest that certain constructs in other languages
are prone to instability. (For example, if quotes are
frequently omitted from string literals e.g. "A", there is
some risk of confusion with an identifier of the same name).

1.1 Errors detected by context sensitive checking
1.1.1 Undeclared variable identifiers.
1.1.2 Mis-spelled identifiers (undetected in Fortran

or Snobol).
1.1.3 Type incompatibility (undetected in typeless

languages).
1.1.4 Incorrect number of subscripts.

VJ— O

1.2 Errors caused by scope difficulties
1.2.1 Reference to (currently) undefined label in

inner scope (does not occur in sample Algol W
programs as students used structured programming
techniques).

1.2.2 Identifier declared two or more times in same
scope.

1.3 Errors caused by omission of symbol(s)
1.3.1 Mandatory space omitted (occurs in Algol W

because of the use of reserved words as program
delimiters).

1.3.2 Comma omitted.
1.3.3 Semi-colon omitted,
1.3.4 String quote omitted.
1.3.5 Array identifier omitted from array designator

(undetected in Coral 66 where v j refers to v^^
location in core).

1.4 Simple Syntax Errors.
1.4.1 Mismatched brackets in arithmetic expression

or begin-end pairs in block structure.
1.4.2 Other syntax errors in which we find no patterns,

or at least no patterns of interest e.g.
punching error, semi colon before ELSE etc.

Type 2 Run-time detected errors.

Some run-time detected errors (for example time/page
limit, overflow failure) are insufficiently diagnosed.
Ideally, in this situation, we should ascertain the true
cause of these errors, and hence classify them as undetected
errors. However, it was not possible to do this using the

source of information available. Since the number of
badly diagnosed errors ought not to be large (compared to
the number of undetected errors) and since we are interested
only in a quantitative analysis, we do not expect our
results to be radically affected.

2.1 Type incompatibility detected at run time. Frequently
caused by input data error,

2.2 Over-reading input data file.
2.2.1 In Algol W programs this error was frequently

caused by mis-use of read and readon
procedures.

2.2.2 Others.

2.3 Array subscript out of range.
2.4 Case/switch expression out of range.
2.5 Overflow.
2.6 Time or page limit exceeded.
2.7 Assert failure. Assertion statements as such are

provided only in Algol W (but could be explicitly
programmed in Algol 6o - although students, at least,
rarely appear to have done this).

2.8 Error occurring in standard function (due to incorrect
data).

Type 3 Undetected Errors

Errors which are undetected at either compile or
run-time. It is not always possible to state categorically
that a particular error was caused by a punching error
rather than misuse of an identifier. We choose the most
likely explanation in these cases.

Vf— J
3.1 Ordering Errors. A large number of errors are caused

by incorrect sequencing of an ordering list of items.
3.1.1 Incorrect order of array subscripts or procedure

parameters.
3.1.2 Incorrect order of array subscripts in sliced

array. Algol W allows a slice of an array to
be passed as a parameter.

3.1.3 Incorrect ordering of case statement components.
i The case statement components in Algol W are

unlabelled.

3.2 Omission Errors. Most errors of omission are detected
at compile time, but a few are not.
3.2.1 Omission of case statement component. This is

undetected in Algol W because components are
unlabelled.

3.2.2 Failure to increment the value of a variable
in a loop.

3.2.3 Semi-colon omitted after a comment, causing the
subsequent statement to be ignored.

3.2.4 Semi-colon omitted after end-comment, causing
the subsequent statement to be ignored (in
Algol 60 only).

3.2.5 Omission of string quotes causing confusion
between string literal and identifier consisting
of the same characters.

3.3 Logic Errors.
3.3.1 Type error, undetected because of coercion (for

example assignment of real to integer variable
in Algol 6o).

3.3*2 Failure to initialise a variable
3.3.3 Use of wrong identifier (for example, in nested

for-statements, use of control variable I where
J should be used).

3.3.4 Incorrect statement order (for example misplaced
end of compound statement).

3.3.5 Misuse of goto-statement.
3.3.6 Other logic errors. With the source of

I
' information available, we were unable to break

down this group further. It includes errors
such as

incorrect data
failure to consider exception conditions
use of wrong operator (e.g. instead of)
errors for which we can find no particular

pattern
and others

3.4 Scope Errors
3.4.1 Reference to control variable whose value is

undefined. This error is prevented in Algol W.
3.4.2 Identifier redeclared in inner scope, preventing

non local access or access to parameter of the
same name.

3.5 Parameter passing errors.
3.5.1 Value call where name is required, resulting in

failure to update non local value.
3.5.2 Value-result call where name is required (Algol

W only). For example, we suppose that variable
V is passed by value-result to procedure X,
Procedure X updates the value of V and calls

w-/

procedure Y, If procedure Y accesses V non
locally, it receives the original and not the
updated value of V.

3.5,3 Misuse of side effects

3.6 Punching and formulation errors
3.6.1 Mispunching of 1-letter identifiers. The risk

of non-detection because of confusion with
another 1-letter identifier appears significant,

j
3.6.2 Failure to remove corrected cards.

Conclusions

In considering security, we are particularly concerned
with those errors which are either undetected or detected,
but poorly diagnosed,

Algol W prevents some of the errors which may go
undetected in Algol 6o (error types 3.2.4, 3.4.1), but some
others are introduced (error type 2.2.1, 3.1.2, 3.5.2).

A brief examination of the errors suggests that
approximately 50% of the undetected errors could be
prevented by language design (cf. section 3.2.3 and 3.3.2).
We would expect also that a considerable number of the
remaining errors would be detected by the use of assertions
and invariants.

FIGURE G-1

Characteristic Errors in Sample of Algol W
Programs(Stanford Compiler), Sample of Algol
60 Programs (Delft Compiler).

Error Category Frequency of Error
Algol W Algol 60

1. Compile-time detected errors (283) (2 9 4)
1,1 Context sensitive (9 0) (88)

1.1,1 Undeclared variable -
identifiers 51 64

1,1,2 Mis-spelled identifiers 15 9
1.1.3 Type incompatibility 19 7
1.1.4 Incorrect number of

subscripts 5 8
1.2 Scope errors (7) (15)

1.2,1 Reference to label in inne r
block - 6

1.2.2 Identifier redeclared in
same scope 7 9

1.3 Omission errors (75) (49)
1.3*1 Mandatory space omitted 13 0
1.3*2 Comma omitted 15 10
1.3.3 Semi-colon omitted 29 37
1.3.4 String quote omitted 19 -

1.3.5 Array identifier omitted
from array designator 0 2

1.4 Simple syntax errors (111) (142)
1.4.1 Mismatched brackets

(including begin-end
pairs) 37 29

1.4 . 2 Other syntax errors 74 113

2. Run-time detected errors (76) (6 9)
2.1 Type incompatibility 8 3
2.2 Over-reading input file (28) (14)

Error Category Frequency of Error
• Algol W Algol 6o

2,2.1 Read/readon errors 11
2.2.2 Others 17 14

2.3 Array subscript out of range l6 29
2.4 Case/switch expression out

of range 1 1
2,5 Overflow 3 5
2,6 Time or page limit exceeded 11 14
2,7 Assert failure 9 -
2,8 Standard function error 0 3

3. Undetected errors (102) (122)
3.1 Ordering errors (14) (5)

3.1.1 Incorrect order of array •
subscripts or procedure
parameters 8 5

3*1.2 Incorrect order of array
subscripts in sliced
array 4 -

3*1*3 Incorrect ordering of
case components 2 -

3.2 Omission errors (12) (9)
3.2.1 Omission of case component 2 -
3.2.2 Variable increment omitted 3 2
3.2.3 Semi-colon omitted after

comment 6 4
3.2.4 Semi-colon omitted after

end-comment - 3
3*2.5 Omission of string quotes 1 -

3.3 Logic Errors (66) (91)
3.3*1 Incorrect variable type 0 5
3.3*2 Failure to initialise a

variable 13 17
3*3*3 Use of wrong identifier 12 9

Error category Frequency of Error
Algol W Algol 60

3.3.4 Incorrect statement
order 8 13

3.3.5 Misuse of goto
statement 0 6

3.3.6 Other logic errors 33 41
3,4 Scope Errors (1) (7)

3.4.1 Reference to control
variable whose value
is undefined 4

3.4.2 Identifier redeclared
in inner scope 1 3

3.5 Parameter passing errors (3) (2)
3.5.1 Value call where name

is required 1 1

3.5.2 Value-result call where
name is required 2

3.5.3 Misuse of side-effects 0 1

3.6 Punching and formulation
errors (6) (8)

3.6,1 Mispunching of 1-letter
identifiers or 1 digit
numbers 2 4

3,6,2 Failure to remove
corrected cards 4 4

Total number of errors (461) (485)

APPENDIX H CONFLICTS OF BASE LANGUAGE DESIGN CRITERIA

In this appendix our intention is to determine which
design criteria are highly conflicting, and which are
relatively similar or independent of each other. We compare
each criterion with each other criterion, in turn, and
consider how they are related on the following scale;

v/ => the 2 criteria are well correlated or similar,
(s/) " are similar in some respects,

independent in others,
0 " are relatively independent,
(X) "=4> " " " are dissimilar in some respects,

independent in others,
X " are poorly correlated or dissimilar.

The results are presented in matrix form in figure H-1,
We conclude that the criteria of involution and orthogonality
are in fact the same, since their entries are identical.
We therefore delete one row and one column from the matrix.

We correct this matrix for inconsistencies by
comparing similarities between one row (column) and each
other row. We thus quantify correlation by considering
two such rows element by element, adding 2 to the
"correlation" if the elements are the same, and 1 if the
elements differ by one position only on the scale v/ (v/) 0
(X) X. Thus, for Security-Extensibility we consider the
rows:
Security (y) 0 0 X y 0 y 0 0
Extens
ibility 0 0 X y (y) y 0 (y) y
Value
Assigned 1 2 0 0 1 0 0 1 0 Total = 5

>>
s

ü -p (C § fc>x •H •H
!>. ü 0 r4 0

0 -e •H •H
CQW)0

ü î u 010 § u V 0 ü t
d w o o en Pk

Modesty y (/) 0 X X y y (y) y 0
Elegance (/) y 0 y X y y 0 0 0
Efficiency 0 0 y X y 0 0 0 (y) X .
Generality X y X y X y y X X y
CSC X X y X y X X y (y> (y
Orthogonality y y 0 y X / y 0 y y
Involution y y 0 y X y y 0 y y
Security (y) 0 0 X y 0 0 y 0 0
Portability y 0 (/) X (/) y y 0 y (vi
Extensibility 0 0 X y (/) y y 0 y

FIGURE H-1

n.— 6

The results of this process are shown in figure H-2,
We re-construct the original matrix (figure H-1) from

figure H-2, using a "best fit". The reconstructed matrix
cf. figure H-3 is not wildly different from the original.
Since the matrix is symmetrical about the diagonal, only
half is reconstructed. This process is in fact carried
out iteratively correcting the initial matrix for
inconsistencies. The illustrated matrices represent the
final iteration.

0
Ti0

0ÜactStU)0H■ W

XÜ
0•H■ Ü ■Htptp

-p•Hr-îCO
è
gO

ü
o

-p•HrHcO
tiOtîfl0
to

-p•HUPJÜ0CO

•HH•H
-PUOPh

%
.-aH■H
Xi•HtQ
0
:

Modesty 20 11 5 5 5 12 9 12 5
Elegance 11 20 4 8 2 13 8 7 8
Efficiency 5 4 20 0 8 3 10 9 9
Generality 5 8 0 20 3 10 0 3 8
CSC 5 2 8 3 20 2 8 7 4
Orthogonality 12 13 3 10 2 20 3 10 8
Security 9 8 10 0 8 3 20 8 5
Portability 12 7 9 3 7 10 8 20 10
Extensibility 5 8 9 8 4 8 5 10 20

FIGURE H-2

0'd0S

0ÜÜS) 0 ' H W

üg•H0•H(pcpM

î>̂s
«gso OCOu

%-P•HHCO
âo
to

!>.s
3ü0CO

-P•HrH•H
-pp0Ph

.pH•H
•H%g
M

Modesty
Elegance ■ y
Efficiency 0 (X) -

Generality 0 (v 6 X
CSC 0 (X) (/) X
Orthogonality y y X y X
Security (y (v 6 y X (/) X
Portability y 0 X 0 y
Extensibility 0 (v ^) (X) (y 0 y

FIGURE H-3

BIBLIOGRAPHY

(And 71) Anderson T,, Eve J., Horning J.Jo Efficient
LR(1) parsers TR24, Univ. of Newcastle, 1971.

(Ard 6 9) Arden B.W., Galler B.A., Graham R.M, The MAD
definition facility.Comm, ACM 10, 19&9.

(Ash 6 5) Ash R, Information theory Interscience Tracts
no. 1 9, Wiley I9 6 5 .

(Bar 7 2) Barron D.W. , Jackson I,R. Evolution of job
control languages Softw, P. and E, 2, 2 1972.

(Bar 74) Barron D.W, Job control languages and job
control programs Comp. J. 17, 3 1974.

(Bau 7 1) Bauer H.Ri et al, Algol W reference manual-
Stanford Univ., 1971.

(Bau 73) Bauer F.L., Beckmann M. (ed) Advanced course
on software engineering Springer-Verlag, 1973.

(Bcs 74) British Computer Soc, Job control languages -
past, present, future BCS Symp., London, 1974.

(Bee 75) Beckman A, Secondary Effects SIGPLAN Notices
10, 2 (Feb 1 9 7 5).

(Bel 6 9) Bell JoR. Transformations: the extension
facility of Proteus SIGPLAN notices 4 , 8 (Aug
1 9 6 9), Proc. Int. Symp, on Extensible Languages,

(Bob 68) Bobrow D.G. (ed) Symbol manipulation languages
and techniques Proc. IFIP Congress, 1 9 6 6.

(Boc 73) Bochman G.V, Multiple exits from a loop
without the goto Comm. ACM 1 6 , 7 1973.

(Bos 73) Bosch R, et al, ALEPH Proc, Int. Comp.
Symp, 1 9 7 3 (ed, Davos),

(Bow 7 1) Bowlden H.J. Macros in higher level languages
SIGPLAN Notices 6, 12 (Dec, I9 7 I), Proc, Int.
Symp, on Extensible Languages,

(Bro 6 7) Brown PoJ. ML/1 Text Manipulation language
Comm, ACM 10, 10 I9 6 7 .

(Bro 7 1) Brown P.Jo Survey of macro processors Annual
Rev, in autom. Prog, 6, 1971.

(Broo 6 3) Brooker R,A. et al. The compiler compiler
Annual Rev, in autom. Prog 3, I9 6 3 ,

(Car 66) Carraciolo F. et al. Panon 1-B: A programming
language for symbol manipulation SICSAM
Symposium, Washington, I9 6 6 ,

(Che 66) Cheatham T.E. Introduction of definitional
facilities into high level languages Proc.

. AFIPS 1 9 6 6 FJCC Vol. 2 9.
(Che 68) Cheatham T.E. et al. On the basis for ELF - an

extensible language facility Proc, AFIPS. I9 68
FJCC,

(Che 6 9) Cheatham T.E. Motivation for extensible
languages SIGPLAN Notices 4,8 (Aug. I9 6 9),
Proc. Int. Symp, on Extensible Languages,

(Chr 6 5) Christensen C, Ambit Proc, ACM 20th Nat,
Conf,, 1 9 6 5.

(Chr 6 9) Christensen C,, Shaw C.J, (ed) Proceedings of
the International Symposium on Extensible
Languages SIGPLAN Notices 4)8 (Aug) I9 6 9 .

(Coh 6 5) Cohen K,, Wegstein J.H, Axle: An axiomatic"
language for string transformations Comm. ACM
8 , 1 1 1 9 6 5.

(Con 6 3) Conway M.E. Design of a separable transition
diagram compiler Comm. ACM 6,7 1963.

(Dah 7 2) Dahl O.J., Dijkstra E.W., Hoare C.A.R,
Structured programming,Academic Press, 1972,

(Dak 7 2) Dakin R.J, Towards a general control language
Internal Report, Culham Lab., 1972,

(Daw 7 3) Dawson J,L. Combining interpretive code with
machine code Comp, J, 16,3 1973.

(Dij 68) Dijkstra E.W. Goto statement considered harm
ful Comm. ACM 11, I9 6 8 .

(Dij 7 2) Dijkstra E.W. Humble Programmer Comm, ACM
15,10 1972,

(Dij 74) Dijkstra E.W, Axiomatic definition of semantics
of deterministic programming languages
Advanced Course on Computer Systems Architecture,
Grenoble, 1974.

(Dub 7 1) Duby J.J, Extensible languages; The users'
point of view SIGPLAN Notices 4,8 (Aug. I9 6 9),
Proc, Int. Symp, on Extensible Languages,

(Ear 7 0) Earley J,, Sturgis H. Formalism for translator
interactions Comm, ACM 13,10 1970.

(Els 73) Elson M, Concepts of Programming Languages
SRA, 1 9 7 3.

(Eng 7 1) Engeler E. (ed) Symposium on Semantics of
Algorithmic languages Springer-Verlag, 1971.

(Fel 6 4) Feldman J.A. Formal semantics for computer
oriented languages Ph.D. thesis, Carnegie-

Mellon Inst., I9 6 4 ,
(Fel 68) . Feldman J., Gries D, Translator writing

systems Comm. ACM 11,2 I9 6 8 ,
(Fisd 7 0) Fisher D.A, Control Structures for programming

languages Ph.D. thesis, Carnegie-Mellon Inst.,
1970.

(Fisr 73) Fisher R.N. Snap - A user extensible high level
language Seminar, St. Andrews, 1973,

(Fism 74) Fisher M.J., Patterson M.S. String matching
and other products MAC Memorandum 41, 1974#

(Flo 6 7) Floyd R.W. Non-deterministic algorithms J.
ACM 14,1 1 9 6 7,

(Flo 6 7b) Floyd R.W, Assigning meanings to programs
Proc. Symp, in applied mathematics Vol. I9 ,
American Math. Soc, I9 6 7 .

(Flo 7 0) Floyd R.W., Knuth D.E. Notes on avoiding goto
statements TR Stanford, 1970,

(Fri 74) Friedman D.P., Shapiro S.C. A case for "while-
until" SIGPLAN Notices 9,7 1974.

(Gal 6 7) Galler B,A., Perils A.J, Proposals for
definitions in algol Comm ACM 10, 196 7 .

(Gal 74) Galler B.A. Extensible languages Proc, IFIP
Congress, Stockholm, 1974.

(Gan 75) Gannon J.D., Horning J.J. Impact of language
design on the production of reliable software
TR CSRG-45, Univ. of Toronto, Dec, 1974.

(Gar 68) Garwick J.V. GPL, a general purpose language
Comm, ACM 11,9 I9 6 8 ,

(Gim 7 3) Gimpel J.F. A theory of discrete patterns and
implementation in Snobol 4 Comm. ACM l6,2
1973.

(Gor 6 1) Gorn S, Some basic terminology connected with
mechanical languages and their processors
Comm, ACM 4,8 I9 6 I,

(Gra 7 1) Grant C.A. Syntax translation with context
macros SIGPLAN Notices 6,12 (Dec, 1971), Proc.
Int. Symp. on Extensible Languages.

(Grie 71) Gries D, Compiler construction for digital
computers Wiley, 1971.

(Grif 74) Griffiths M, LL(l) grammars and analysers
Advanced Course on Compiler Construction,
Munich, 1974.

(Gris 71) Griswold R.E,, Poage I.E., Polansky I.P. The
Snobol 4 programming language Prentice-Hall,

. 1971.
(Gris 72) Griswold R.E, The macro implementation of

Snobol 4 Freeman and Company, San Francisco,
1972,

(Gris 74) Griswold R.E. Suggested revisions to syntax
and control mechanisms of Snobol 4 SIGPLAN
Notices 9,2 1974.

(Gut 75) Guttag J, Annotated bibliography on computer
program engineering TR CSRG-54, University of
Toronto, April 1975.

(Hal 6 4) Halpern M.I. XPOP: A metalanguage without
metaphysics Proc, AFIPS 19&4 Vol, 26,

(Hal 6 8) Halpern M.I. Towards a general processor for
programming languages Comm, ACM 11,1 I9 6 8 ,

(Hen 7 2) Henderson P,, Snowdon R, An experiment in
structured programming BIT 12, 1972,

(Hoa 6 6) Hoare C,A.R. Wirth N, Contribution to the
development of Algol 60 Comm, ACM 9 , 6 I9 6 6 ,

(Hoa 73) Hoare C,A.R. Hints on programming language
design TR Stanford Univ,, Calif,, 1973.

(Hoa 73b) Hoare C,A,R. Recursive data structures A,I.
Lab., Stanford, Oct. 1973.

(Hoa 75) Hoare C.A.R. Data reliability SIGPLAN Notices
10,6 (Jun 1 9 7 5), Int. Conf. on Reliable
Software,

(Hop 6 9) Hopcraft J.E,, Ullman J.D, Formal languages
and their relation to automata Addison-
Wesley, I9 6 9 ,

(Ibr 74) Ibrahim S,Z.M, Abstract machines for programming
languages Ph.D, thesis, Univ, of Glasgow, 1974.

(Ich 74) Ichbiah J.D. LIS, a system implementation
language Advanced Course on Computer Systems
Architecture, Grenoble, 1974.

(Ill 6 9) Iliffe J.K. Elements of BLM Comp, J, 12,2
1 9 6 9.

(Iro 7 0) Irons E.T. Experience with an extensible
language Comm, ACM 13, 1 1970,

(Jor 7 1) Jorrand P. Data types and extensible languages
SIGPLAN Notices 6,12 (Dec, 1971), Proc, Int.
Symp. on Extensible Languages,

(Jen 74) Jensen K, , Wirth N, PASCAL User manual and
report Springer Verlag, 1974.

(Kat 70) Katzan A.N.H. Advanced programming Van
Nostrand, 1970.

(Knud 74) Knudsen M.J. PMSL - Interactive language for
system level description Ph.D. thesis,
Carnegie-Mellon Univ, Pitts,, 1974.

(Knut 6 7) Knuth D.E. Top down syntax analysis Acta
Inf, 1,2 1 9 7 1.

(Knut 73) Knuth D.E, Expirical study of Fortran programs
C.S. Dept, TR Stanford Univ., Calif,, 1973.

(Knut 74) Knuth D.E. Structured programming with GO TO
statements C.S. Dept, TR, May 1974.

(Kos 7 1) Koster C.H.A. Affix Grammars Algol 68
Implementation (ed. Peck J.E.L.), North-Holiand,
1971.

(Lea 6 6) Leavenworth B.M. Syntax macros and extended
translation Comm, ACM 9,11 I9 6 6 ,

(Lea 7 2) Leavenworth B.M. Programming with(out) the
GOTO Proc, ACM 1972 Annual Conference, 1972,

(Led 6 9) Ledgard H.F. A formal notion for defining the
syntax and semantics of computer languages Ph.D,
thesis, MIT, Mass., I9 6 9 ,

(Led 7 1) Ledgard H.F, Ten mini languages C, Survey 3,
1 9 7 1.

(Les 7 1) Lester B.P. Cost analysis of debugging systems
Ph.D, thesis, MIT, Mass., 1971.

(Lew 6 8) Lewis P.M., Stearns R.E. Syntax-Directed
transduction, J.ACM 15,3 I9 6 8 ,

(Lis 74) Liskov B.E., Zilles S, Programming with
abstract data types SIGPLAN Notices 9 , 4 (April
1 9 7 4).

(Lis 75) Liskov B,H., Zilles S, Specification techniques
for data abstractions SIGPLAN Notices 10,6
(April 1 9 7 5).

(McI 6 0) Mcllroy M.D. Macro instruction extension of
compiler languages Comm. ACM 3,4 I9 6 O,

(McK 7 0) McKeeman W.Mo, Horning J.J., Wortmann D.B.
A compiler generator Prentice-Hall, 1970,

(McK 74) McKeeman W.M. Programming language design
Advanced Course on Compiler Construction (ed.
Bauer F.L.), Munich, 1974.

(McK 74b) McKeeman W.M, Compiler construction Advanced
Course on Compiler Construction (ed, Bauer, F.L.),
Munich, 1974#

(Mane 73) Mameffe PoA,, Ribbens D, Holon Programming
Proc, Int. Comp, Symp, 197 3 (Davos ed),.

(Mann 68) Manna Z, Formalisation of properties of
programs TR A.I. Lab., Stanford, July I9 6 8,

(Milg 7 1) Milgram E, AEPL - an extensible programming
language SIGPLAN Notices 6,12 (Dec, 1971),
Proc, Int. Symp, on Extensible Languages,

(Mit 7 0) Mitchell J.G, Design and construction of
flexible and efficient interactive programming
systems Ph.D, thesis, Carnegie-Mellon Univ.,
Pitts,, 1 9 7 0,

(Moo 66) Mooers C.N, TRAC, a procedure describing
language for the reactive type-writer Comm,
ACM 9,3 1 9 6 6,

(Nap 6 7) Napper R.B.E. Some proposals for Snap, a high
level language with macro facilities Comp, J,
1 0, 1 9 6 7.

(Nau 6 2) Naur P, (ed) Revised report on the algorithmic
language Algol 6 0 ,

(New 68) Newey M.Co An efficient system for user
extensible languages Proc, AFIPS I9 6 8 FJCC 33,2,

(Nie 7 0) Nievergelt J,, Irland M.I. Bounce-and-skip
Comp, J. 13,3 1 9 7 0.

(Pal 74) Palme J, Simula as a tool for extensible
program products SIGPLAN Notices 9,2 1974#

(Par 7 2) Parnas D.L., Siewiorek D.P, Use of the concept
of transparency in the design of hierarchically
structured systems TR, Carnegie-Mellon Univ.,
Pitts,, 1 9 7 2,

(Pat 7 2) Patterson J.W. ALGOL W Abstract Machine, TR,,
Computing Science Dept,, University of Glasgow,
1 9 7 4.

(Pat 75) Patterson J.W. Abstract Pascal Machine, Working
Document, Univ, of Glasgow, 1975.

(Per 6 7) Perils A,J. The synthesis of algorithmic
systems J, ACM 14,1 I9 6 7 .

(Pet 73) Petersen W.W, et al. On the capabilities of
while, repeat and exit statements Comm, ACM
1 6 , 8 1 9 7 3.

(pir 75) Pirie I,G, Measurement of Programming Ability
Ph.D, thesis. University of Glasgow, 1975.

(Poo 73) Poole P.C., Waite W.M* Portability and
adaptability Advanced Course on Software
Engineering (ed Bauer F.L.), Springer-Verlag,
1973.

(Poo 74) Poole P.C. Portable and adaptable compilers
Advanced Course on Compiler Construction (ed.
Bauer F.L.), Munich, 1974.

(Rat 66) Rathbone R.R. Communicating Technical
Information Addison-Wesley, 196 6 ,

(Rem 71) De Remer F.L. Simple LR(k) grammars Comm.
ACM 14,7 1971.

(Ross 74) Rossman Functional Memory-based dynamic
microprocessors for high level languages
SIGPLAN Notices 9,8 1974.

(Sam 6 9) Sammet J.E, Programming Languages; History'
and Fundamentals, Prentice-Hall, N#J., 196 9 .

(Sch 7 0) Schuman S.A., Jorrand P. Definitional mechanisms
in extensible programming languages Proc.
AFIPS 1 9 7 0 Vol. 37.

(Sch 71a) Schuman S.A. (ed), Proc. International
Symposium on Extensible Languages SIGPLAN
Notices 6,12 Grenoble, 1971.

(Sch 7 1b) Schuman SoA. An extensible interpreter SIGPLAN
Notices 6,12 (Dec, 1971), Proc, Int. Symp, on
Extensible Languages,

(Sco 7 1) Scowen R.S. Babel and Soap: an application of
extensible compilers Softw, P, and E, 3,1
1 9 7 3.

(Sco 73) Scowen R.S. Wichmann B.A. Definition of
comments in programming languages NPL Report
NAC 34, May 197 3.

(Sha 7 1) Shaw M, Language structures for contractible
compilers Ph.D. thesis, Carnegde-Mellon Univ.,
Pitts,, 1 9 7 1.

(Sim 73) Sime M.E. et al. Psychological evaluation of
two conditional constructs used in computer
languages Int. Journal Man-Machine Studies
5,1 1 9 7 3.

(Sol 74) Solntseff N, Yezerski A. A survey of extensible
programming languages Annual Review in
Automatic Programming 7, Pergamon Press, London,
1 9 7 4.

(Sta 6 9) Standish T.A. Some features of PPL, a polymor
phic programming language SIGPLAN Notices 4,8
(Aug, 1 9 6 9), Proc, Int, Symp, on Extensible
Languages,

(Stee 6 1) Steel T.B^ UNCOL: the myth and the fact
Annual Review in Automatic Programming 7,
Pergamon Press, London, I9 6 I.

(Stew 74) Stewart G.F, An algebraic model for string
processors Ph.D. thesis, Univ. of Toronto,
1 9 7 4.

(Str 6 5) Strachey C. A general purpose macro generator
Comp. J. 8, 1 9 6 5.

(Tsi 73) Tsichritzis D. Software Reliability Infor.
11,2 1973.

(Wai 6 7) Waite W.M. A language independent macro
processor Comm. ACM 10,7 19^7

(Wai 7 0) Waite W.M. The mobile programming system;
Stage 2 Comm. ACM 13,7 1970.

(Wai 73) Waite W.M. Implementing software for non
numeric applications Prentice-Hall, 1973,

(Wat 74) Watt D.A. Analysis-oriented two level grammars
Ph.D. thesis, Univ. of Glasgow, 1974,

(Web 66) Weber H., Wirth N. Euler; a generalisation of
Algol and its formal definition Comm, ACM 9,
1 9 6 6.

(Weg 68) Wegner P. Programming Languages, Information
Structures and Machine Organisation McGraw-
Hill, 1 9 6 8.

(Wein 7 1) Weinberg G.M. Psychology of Computer Programming
Van Nostrand, 1971,

(Wein 75) Weinberg G.M. et al. IF-THEN-ELSE considered
harmful SIGPLAN Notices 10,8 (Aug. 1975).

(Weis 74) Weissman L.M. A methodology for studying the
psychological complexity of computer programs
CSRG 37, Univ. of Toronto, 1974.

(Wic 73) Wichmann B.A. Basic statement times for Algol
6 0 TR NPL, Teddington, 1973.

(Wij 6 9) Wijngaarden A. Report on the algorithmic
language Algol 68 Num. Maths 14, I9 6 9 .

(Wir 7 0) Wirth N. The programming language Pascal Acta
Inf. 1, 1 9 7 1.

(Wir 7 1) Wirth N. The design of a Pascal compiler
Softw. P. and E. 1, 1971.

(Wir 7 2) Wirth N., Programming language Pascal (Revised
Report) 1 9 7 2.

(Wir 74) Wirth N. Programming Language Design Proc.
IFIP Congress, Stockholm, 1974#

(Wir 75) Wirth N. Assessment of the programming language
Pascal SIGPLAN Notices 10,6 (Jun 1975).

(Woo 71) Woolley J.D. Menelaus; a system for measurement
of the extensible language system, Proteus
SIGPLAN Notices 6,12 (Dec. 1971), Proc. Int.
Symp. on Extensible Languages.

(Wor 74) Wortman D.B. Notes from a workshop on the
attainment of reliable software, TR CSRG 41,

' Univ. of Toronto, 1974.
(Wul 70) Wulf W,A, et al. Bliss reference manual TR,

Carnegie-Mellon Univ., Pitts., 1970.
(Wul 71) Wulf W.A. Programming without the GOTO Proc.

IFIP Congress Vol. 1, 1971.
(Wul 73) Wulf W.A., Shaw M. Global variables considered

harmful SIGPLAN Notices 8,2 (Feb. 1973).
(Yng 6 3) Yngve V.H. Comit as an IR language Comm. ACM

5, 1 9 6 3.
(You 74) Youngs E.A. Human errors in programming Int.

Journal Man-machine Studies 6,3 (May 1974).

