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ABSTRACT

The project described in this thesis was undertaken to identify human DNA sequences 

related to the MM TV 3’LTR gene (vSag) that encodes endogenous superantigens in 

mice. Using sequence specific PCR primers and murine probes specific for the first 

and second conserved region of murine vSag, six human clones have been isolated 

from a DNA library. These human clones have been characterised through a process 

of hybridisation analysis, subcloning and sequencing. These DNA sequences show 

limited regions of homology with murine vSag, although none of these clones have 

extended regions of homology over the entire vSag gene. These vSag-related 

sequences do not lie in close proximity to other MMTV genes, as indicated by the 

failure of these clones to hybridise strongly with MMTV gag, pol and env  probes. DNA  

database searches indicated that three of the six human DNA sequences with limited 

regions of homology to murine vSag were greater than 98% identical with sequences 

submitted as part of the Human Genome Project. None of these sequences 

represented known human genes. Potential open reading frames were identified in 

five out of the six human DNA sequences, with predicted translated proteins ranging in 

length from 43 to 156 amino acids.

In the second part of this thesis, evidence of expression of human vSag-related 

sequences was sought in the autoimmune condition Primary Sjogren’s Syndrome 

(1°SS). This series of experiments was carried out to test the hypothesis that retroviral 

superantigens are Involved in the aetiology of this condition. vSag-related sequences 

unique to 1°SS were not identified in DNA isolated from the peripheral blood of 

patients with this condition. Messenger RNA transcripts hybridising with one of the 

human vSag-related sequences were identified in the minor salivary gland tissue from 

three out of five patients with 1°SS, with a second vSag-related sequence hybridising 

to a similar sized mRNA transcript in one of these patients. In experiments to test an
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alternative hypothesis that the retroviral gene HTLV-1 tax has an aetioiogical role in 

1^SS, sequence specific PCR primers for this gene failed to amplify appropriate sized 

products from cDNA derived from the salivary glands of five 1°SS patients.

These experiments demonstrate that the human genome does not contain genes that 

are closely related to murine vSag, and that the DNA sequences sharing short regions 

of homology with this murine gene do not lie within a proviral configuration. The 

potential biological significance of these weakly related DNA sequences remains to be 

determined.
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I CHAPTER ONE 

Introduction

1.1 Superantigens

Over the past few years it has become apparent that diverse groups of microbial 

pathogens produce a novel class of antigens which interact with the immune system in 

a unique manner (1, 2). These superantigens differ from conventional antigens by 

their ability to react with a large percentage of the T lymphocyte repertoire, by 

interacting with the T cell antigen receptor (TCR) outside the conventional antigen- 

binding site (3, 4). As a result, up to 30% of the T cell repertoire Is capable of 

interacting with a single superantigen. This compares with a responding frequency of 

less than 1 in 1000 for conventional peptide antigens. Like conventional peptide 

antigens, superantigens are only recognised by T cells when presented by MHC class

II molecules, however they bind to these molecules outside the usual peptide binding 

groove (5). As a result, polymorphic differences in MHC that affect peptide binding do 

not usually affect superantigen binding, and responses to superantigens are not ‘MHC 

restricted’ to the same extent as responses to conventional antigens (6).

Superantigens are produced by a diverse range of bacteria, mycoplasma and viruses, 

and have markedly different structures (7). Despite this structural diversity, these 

different subclasses of superantigens appear to interact with the immune system in 

similar ways. They produce a variety of pathological effects after infection, which 

appear to result from over-stimulation of immune system (8). In addition to acute ‘toxic 

syndromes'. It has been suggested that superantigens may cause autoimmune 

diseases (9).
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This introductory chapter will focus on two of the main subgroups of superantigens: 

the bacterial enterotoxins and the superantigens produced by the murine retrovirus, 

mouse mammary tumour virus (MMTV). It will consider the structure of these 

superantigens and how they interact with MHC molecules and the T cells receptor. It 

will describe evidence that the human genome contains DNA sequences that are 

related to MMTV. Finally evidence suggesting the involvement of retroviruses and 

superantigens in the development of autoimmune diseases will be discussed. It will 

first consider in more detail how interactions with superantigens differ from those to 

conventional peptide antigens.

1.1.1 The T lymphocyte-MHC interaction with conventional antigens

The T lymphocyte antigen receptor (TCR) is a heterodimer with alpha and beta chains 

encoded by gene complexes on chromosomes 14 and 7 respectively (10). The 

diversity of the T cell repertoire is generated by recombination of the genes encoding 

the TCR. Each chain has a constant region, encoded by a C gene segment, and a 

variable region, encoded by J (junctional), D (diversity) and V (variable) gene 

segments for the beta chain, J and V gene segments for the alpha chain. There are at 

least 50 different V gene segments, 20 D gene segments and 6 J gene segments.

The vp genes are divided into approximately 20 families based on amino acid 

homology. The recombination of these genes, together with junctional diversity 

generated by imprecise V-J, V-D and D-J joining, allows a potential repertoire in the 

order of 10^  ̂different T cells (11).

The TCR recognises antigens, in a processed form of between 9-14 amino acids, in 

association with molecules encoded by the major histocompatibility gene complex 

(MHC) of antigen presenting cells (12). The part of the TCR involved in recognition of 

the antigen-MHC complex is that part encoded at the joining regions of the V and J 

gene segments of both alpha and beta chains, resulting in a hypervariable region with
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maximum diversity at the site of antigen recognition (13). There are two classes of 

MHC molecules involved in antigen presentation. Class I MHC molecules are found on 

all nucleated cells and present antigen to CD8^ T cells. Class II MHC molecules are 

found primarily on B lymphocytes and ‘professional’ antigen presenting cells such as 

macrophages and dendritic cells. MHC class II molecules present antigen to CD4"̂  T 

lymphocytes (14), often referred to as helper T cells because of their central role in the 

immune response. Soluble antigens may be internalised by antigen presenting cells by 

phagocytosis (e.g. macrophages and dendritic cells) or in the cases of B lymphocytes 

by endocytosis after binding to surface immunoglobulin (the B cell specific antigen 

receptor). Such exogenous antigens are partially digested in a series of endosomes 

where they encounter class II MHC molecules (15). Here appropriately sized antigenic 

peptides (typically 14 amino acids in length) bind to newly exposed 'peptide binding 

grooves’ on the MHC molecule, following cleavage of an invariant chain from the MHC 

class II assembly (16). The binding of antigenic peptide to the MHC binding groove 

may signal transport of the complex to the cell surface, thereby exposing the 

processed peptide to potentially reactive CD4+ T lymphocytes. By contrast, antigens 

produced internally by a cell, for example following a viral infection, are partially 

digested by a specialised proteosome complex within the cytoplasm of the cell (17). 

The processed ‘endogenous’ peptides are then transported to the cell golgi apparatus 

aided by the ‘transporter-associated proteins’ encoded by TAP 1 and TAP 2 genes 

(18, 19). Here they encounter MHC class I molecules, where appropriately sized 

antigenic peptides (usually 9 amino acids in length) may bind to the peptide binding 

groove, signalling the transport of the antigen-MHC complex to the cell surface.

1.1.2 The T tymphocyte-MHC interaction with superantigens

The response to superantigens differs from that to conventional antigens in a number 

of important ways (20). Superantigens are not processed by antigen presenting cells
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into short peptides and do not lie within the binding groove of MHC molecules. Instead 

they bind, in an unprocessed form, to the outside of the MHC (5, 13). During T cell 

recognition, the hypervariable region of the TCR is not involved, but instead the 

superantigen binds outside the conventional antigen recognition site, to a region 

encoded by the variable segment of the TCR beta chain (21-23). As there are a 

relatively limited number of V gene segments, a large percentage of the T cell 

repertoire, all sharing the same V beta region, may react to the same superantigen. 

This results in a rapid and excessive immune response, due to the large number of 

potentially reactive T cells, and also because processing of the superantigen is not 

necessary.

This novel mechanism of superantigen recognition appears to have other important 

functional consequences. Whereas the T cell response to a conventional antigen 

presented by MHC class II molecules results in proliferation of a limited number of 

clones of CD4+ cells, the excessive proliferative response to superantigens is typically 

followed by inactivation, or even deletion, of the reactive cells (24). This resultant 

anergy is manifested by unresponsiveness following subsequent exposure to the 

superantigen. Furthermore both CD4+ and CD8+ T cells are able to respond to 

superantigens presented by MHC class II molecules (25). As mentioned earlier, CD8+ 

T cell responses to conventional antigens are restricted by MHC class I molecules, 

while CD4+ T cell responses are restricted by MHC class II. This results from the 

ability of CD8 and CD4 molecules to stabilise TCR interactions with MHC class I and 

class II respectively. The observation that CD8+ T cells respond to superantigens 

presented by class II MHC (25) suggests that superantigens may also stabilise TCR- 

MHC interactions allowing Vp-specific T cells to respond to MHC class II bound 

superantigens irrespective of whether they are CD4 or CD8 positive.
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Toel

TCRTCR

MHOIMG

APCAPC

conventional antigen

Figure 1.1 Schematic representation of conventional antigen and superantigen 
recognition. The conventional peptide antigen is shown in red, sitting in the peptide- 
binding grove of the MHC molecule, and recognised by the hypervariable region of the 
TCR. The superantigen is shown in orange, binding to the MHC outside the peptide- 
binding groove, and recognised by the Vp region of the TCR.

Weak superantigen effects have been described where endogenous retroviral 

superantigens do not cause clear-cut Vp deletions (26). It has been suggested that 

superantigens with lower affinity for a TCR Vp region, may require "stabilising" 

interactions between MHC and TCR (27). These weak superantigens may require 

interactions with other regions of the TCR, such as Va or DJ regions (28, 29). It has 

been suggested that the affinity for an endogenous superantigen will determine 

whether individual T cell clones are clonally deleted, energized (switched off), or 

unaffected, when the superantigens are encountered in the thymus (6).
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1.1.3 MHC restriction with conventional antigens versus superantigens

A further important distinction to be made between conventional and superantigen 

responses concerns their interaction with the MHC molecule. As already mentioned, 

conventional antigens are presented to the T cell bound to the MHC, resulting in a 

phenomenon referred to as MHC restriction. MHC molecules are highly polymorphic, 

and this polymorphism is concentrated at the site of the peptide-binding groove (30). 

The different MHC genes in man are referred to as HLA (human leukocyte associated) 

types. An individual within a population will inherit his HLA type from his parents.

There are six well characterised HLA class I loci but HLA A, B and C genes encode 

the principle transplantation antigens in humans and are expressed on all nucleated 

cells. Each encodes a 3 domain molecule which complexes with an invariant single 

domain chain, p2-microglobulin to give the functional HLA class I antigen. Individual 

haplotypes contain up to 14 different class II loci, clustered in three major subregions, 

HLA DR, DQ and DP. Each subregion contains at least one functional p locus and one 

functional a locus. These encode the a and p chains of the functional class II HLA 

antigens. A second expressed DR molecule is encoded on most haplotypes (encoded 

by DRA and either DRB3, DRB4 or DRB5), resulting in four distinct expressed class II 

molecules per haplotype. Each MHC molecule has a different peptide-binding groove, 

capable of presenting a large variety of different processed peptides. However not all 

appropriately sized peptides can be accommodated by the same type of MHC 

molecule. Failure to present a processed peptide by any of the types of MHC molecule 

an individual possessed would result in an absent immune response, hence those 

HLA types would be associated with unresponsiveness to that antigen. Likewise an 

HLA type with a particularly high affinity for a processed peptide, might increase the 

chances of a specific T cell response developing to the antigen from which that 

peptide originated.
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Although superantigens are presented in the context of MHC molecules, they do not 

bind to the highly polymorphic peptide-binding groove of the MHC molecule (5, 31). 

Responses to superantigens are therefore not restricted by MHC type to the same 

extent as conventional antigens, although minor polymorphisms at the superantigen- 

binding site result in a hierarchy of MHC-dependent responses (32, 33). As many 

different MHC types can present superantigens, most members of the population will 

make responses to an individual superantigen. This could have catastrophic 

consequences if the response was deleterious to the individual. Evolutionary 

pressures may therefore have been in place to allow the deletion of superantigen 

responsive T cells, as will be discussed later.

1.1.4 Bacterial superantigens

The term ‘superantigen’ was first applied to the bacterial enterotoxins responsible for 

food poisoning and toxic shock (34, 35). Although it was known that these toxins were 

able to stimulate large numbers of T cells, both in humans and in mice, they differed 

from mitogens. They did not activate in vitro as large a proportion of T cells as 

mitogens such as concanavalin A or phaetohaemaglutinin and some T cell clones 

could not be stimulated by particular toxins. Furthermore stimulation was dependent 

on the presence of class II bearing cells.

These toxins comprise a large group of proteins produced by various bacteria 

including staphylococci and streptococci (1). The family of staphylococcal enterotoxins 

(SEA, B, C1, C2, C3, D and E) are produced by different strains of staphylococcal 

aureus and cause food poisoning in man (9). Related toxins also produced by staph 

aureus cause tampon-related toxic shock (toxic shock syndrome toxin, TSST1) and 

scalded skin syndrome (exfoliating toxins A and B). Toxins produced by streptococcus
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pyogenes (streptococcal pyrogenic enterotoxin; SPE A, B and C) cause a syndrome 

characterised by rash, fever and shock (36).

1,1.4.1 Structure of enterococcal superantigens

The staphylococcal and streptococcal enterotoxins are globular proteins ranging in 

size from 24 to 30 kDa. By comparing their amino acid sequences, similarities 

between the different enterotoxins have been identified. SEA and SEE share 90% 

amino acid sequence homology, and SEB is closely related the SEC toxin (1). The 

streptococcal enterotoxins SPE-A and SPE-C are structurally related, and are similar 

to the staphylococcal enterotoxins SEB and SEC (37). However other enterotoxins 

share no significant amino acid sequence homology. SPE-B is unrelated to any of the 

other enterotoxins, and appears to be related to a streptococcal proteinase precursor 

(38). It is also difficult to align sequences of TSST-1 and the exfoliative toxins with the 

other enterotoxins (1).

1.1.4.2 TCR Vp chain specificity for enterococcal superantigens

The specificity of enterotoxin binding with the TCR Vp chains has been extensively 

investigated. There is some correlation between the primary amino acid structure of 

the various enterotoxins and the pattern of Vp reactivity, although considerable 

overlap exists (35, 39-43). Table 1.1 shows the staphylococcal enterotoxins separated 

into three groups according to greatest amino acid sequence homology, giving the 

mouse TCR Vp specificity of each. A similar pattern is observed with human TCR Vp 

specificity.
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Enterotoxin TCR Vp specificity

Group 1 SEA 1 3  10 11 17

SED 3 11 17

SEE 11 15 17

Group 2 SEB 7 8 . 1  8 . 2  8 . 3

SEC1 3 8 . 2  8 . 3  11

SEC2 3 8 . 2  10 17

SEC3 7 8 . 2

Group 3 TSST-1 15 16

ExFT 10 11 15

Table 1.1 Vp specificity of bacteriai enterotoxins 

1.1.4.3 Enterotoxin-MHC interactions

The bacterial enterotoxins were found to have high binding affinities for MHC class II 

molecules (44, 45). SEA and SEB were shown to cross compete suggesting that they 

bound to the same site on class II (46). However SEB and TSST1 did not compete so 

may have different binding sites on class II molecules (47). X-ray crystallography of 

SEB associated with class II confirmed earlier evidence that the bacterial toxins bind 

outside the conventional MHC peptide binding groove (31). This had been suspected 

from experiments showing that the association of SEB with mouse class II molecules 

did not inhibit presentation of conventional antigenic peptides to T cells (5). Point 

mutations introduced into the MHC molecule also suggested that the site of binding 

lay outside the conventional peptide-binding groove (48). The different affinities of 

TSST-1 for human class II molecules DR and DP suggested that the a  domain of the 

MHC class II molecule HLA-DR1 was essential for high-affinity binding of this
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superantigen (49). X-ray crystallography data subsequently showed that SEB bound to 

the a1 domain of HLA-DR (31). This exclusive interaction with the DR1 a-chain 

explained the ability of SEB to bind many different DR allotypes, as this chain is 

conserved in all DR molecules.

The regions of the enterococcal superantigen proteins involved in binding the MHC 

and TCR Vp chains have also been identified by mutational analysis. For the SEB 

enterotoxin, both the binding of MHC and TCR Vp mapped to the amino-terminal 

region of the toxin (50). Mutation in a region mapped to residues 41-53 resulted in 

defective binding of SEB to MHC class It molecules. Residues 60-61 were important in 

binding TCR Vp, while a third region (residues 9-23) affected binding to both MHC and 

TCR Vp. The three-dimensional structure of a human class II MHC molecule 

complexed with SEB determined by X-ray crystallography (31 ) showed the critical 

residues of SEB involved in binding HLA-DRI derive from an N-terminal p-barrel 

domain, with potential hydrogen bonds formed between DR1 and the residues 43-46 

of SEB. Three residues from the C-terminal helix of SEB (residues 210-217) were also 

in contact with the DR1 molecule, together with a salt bridge between the DR1 a-chain 

residue lysine 39 and the SEB glutamic acid 67.

1.1.4.4 Enterotoxin-TCR Vp interactions

Some mutations in the SEB molecule affect T cell stimulation but not class II binding, 

suggesting different residues of SEB specifically interact with the TCR (50). Regions 

affecting Vp specificity have been determined by looking at the amino acid sequence 

differences between SEA and SEE which are 90% homologous but have different 

patterns to TCR Vp stimulation (51). Amino acid residues at positions 206 and 207, 

near the carboxy terminus of the enterotoxins, were found to be primarily responsible
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for the differences in Vp specificity using hybrid molecules with residues exchanged 

between the two toxins. The crystal structure supports a model In which the MHC 

interaction with the IC R  is distinct form the conventional peptide-mediated interaction. 

A stretch of residues located in a disuphide loop of SEB lies across a region of the a1 

domain of DR1, covering residues that have been implicated in TCR recognition of 

peptide-MHC complexes (31). This suggests that superantigens may not take 

advantage of any residual affinity of TCR for MHC derived from positive selection 

during thymic education. However, the location of the interacting residues on SEB and 

TCR suggests that the TCR is still positioned in close proximity to the class II peptide- 

binding site. This may explain how TCR a-chains and MHC polymorphisms can 

modulate superantigen stimulation.

Several studies have examined the binding site on the TCR Vp chain for the bacterial 

superantigens. In view of the conservation of critical amino acids between 

immunoglobulin and TCR V domains (52), it is generally assumed that the structure of 

the TCR V region is similar to immunoglobulin. The TCR V domains have therefore 

been envisaged as forming a series of anti-parallel p strands with the loops 

corresponding to the three immunoglobulin complementarity-determining regions 

(CDRs) brought to one face to form the binding site for peptide antigen-MHC (13). 

Amino acids important for peptide-MHC recognition have been shown to predominate 

in those regions that correspond to the CDR loops, especially CDR3, which is formed 

from the junctional Va-Ja and Vp-Dp-Jp gene segments. In contrast, residues 

involved In superantigen recognition appear to be in a different region of the TCR, 

away from the CDR loops.

Amino acid substitution experiments have been used to identify important residues on 

the TCR Vp chain, which are involved in binding bacterial enterotoxins. Residues of
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murine Vp3, which binds SEC3, were exchanged with Vp17, which does not bind with 

this superantigen (63). This suggested that residues at positions 66, 68, 72 and 74 of 

the vp chain, which mapped to hypervariable region 4 (HV4), were critical for binding 

of SEC3 to the TCR. These residues were not involved in recognition of a peptide- 

MHC complex. Similar residues in HV4 (67-77) were critical in the interaction between 

human Vpi3.2 and the bacterial enterotoxins SEC2 and SEC3 (21).

1.1.4.5 Functional consequence of TCR interaction with enterococcal 

superantigens

The in vivo responses to bacterial enterotoxins have been studied in detail. Injections 

of SEA in mice gave an initial sharp rise in Vp3+ and Vp11+ T cells followed by a 

dramatic decline in these cell populations (54). This response was observed in both 

CD4+ and CD8+ T cell subsets. Depletion of T cells was not permanent, and the 

recovery was in a time scale consistent with the generation of new cells in the thymus 

in the absence of toxin. This pattern of activation followed by deletion and/or 

inactivation (anergy) of superantigen responsive T cells appears to be characteristic of 

superantigen responses. The mechanisms underlying the deletion of the superantigen 

reactive T cells involves the ‘programmed cell death’ pathway, apoptosis (55). Mice 

carrying the Ipr/lpr defect have an abnormality of Fas, a molecule involved in signalling 

apoptosis. In these mice, apoptotic death of superantigen stimulated cells was 

dramatically reduced (56), although other apoptosis signal pathways in addition to Fas 

also appear to be involved (57).

This process of switching off the immune response after stimulation with a 

superantigen may play a role in limiting autoimmune reactions and in the maintenance 

of immune homeostasis. It may also explain how bacteria benefit from producing 

superantigens, as clearly they must derive some advantage from the production of
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toxins of this type. By initially producing local inflammation, the bacteria may benefit 

from the increased blood and nutrient supply. The subsequent suppression of the 

immune response induced by the toxin might reduce the hosts resistance to invasion 

by the bacteria.

As host-bacterial relationships have evolved concurrently, it might have been 

expected that the mammalian immune system would have mutated in such a way that 

the class II failed to bind these enterotoxins, or that the TCR Vp chain did not bind 

with the enterotoxin-class II complex. Such mutations might have resulted in loss of 

function of MHO class II molecules and the enterotoxins may be capitalising on some 

essential structural feature of the TCR Vp chain. However as discussed below, large 

gaps in the T cell receptor repertoire are seen in mice, as a result of deletion of 

specific vp bearing T cells. These deletions remove many of the T cells known to 

react with enterococcal superantigens. These large gaps in the murine T cell 

repertoire are associated with the presence of minor lymphocyte stimulating (Mis) 

genes. The products of these genes are now known to be superantigens, which are 

encoded by the endogenous retrovirus, mouse mammary tumour virus (MMTV).

It is possible that enterococcal superantigens have caused selection pressures to limit 

the murine TCR Vp repertoire and as a result endogenous retroviral superantigens 

have been retained in the genome. Although murine and human responses to these 

enterococcal superantigens appear to be similar, there are no equivalent large Vp 

specific gaps in the human T cell repertoire. It is not known whether endogenous 

retroviral superantigens are present in the human genome, and clarification of this 

was the primary aim of the work described in this thesis.
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1.2 Retroviruses

Retroviruses are small RNA viruses that have a unique mode of replication (58). Their 

RNA genome replicates through a DNA intermediary by a process called reverse 

transcription, mediated by an RNA-dependent DNA polymerase (reverse 

transcriptase). The retroviral genome consists of a 60-70S dimer complex of single 

stranded, positive-sense RNA. The dimer contains two identical subunits, which 

resemble messenger RNA (mRNA) molecules in having a methylated 5' cap structure 

and a polyadenylated tract at the 3’ end. The genome contains three essential 

functional genes: gag, pol and env. The gag gene encodes the structural core proteins 

of the virus, the pol gene encodes the reverse transcriptase and the env gene 

encodes the envelope proteins. The arrangement of these genes is the same for all 

known retroviruses: i.e. 5’ -  gag -  p o l-e n v -3 \

When a retrovirus infects a cell, the retroviral reverse transcriptase makes a double

stranded DNA copy of its genomic RNA. The DNA copy of the retrovirus can then 

integrate into the host cell’s DNA as a provirus. During this process, the terminal 

sequences present in the RNA genome are duplicated to form repetitive structures 

called long terminal repeats (LTRs). In the integrated provirus, LTRs consist of three 

elements, U3, R and U5, which contain transcription initiation and termination signals. 

Retroviruses with complex genomes also encode accessory proteins to modulate 

expression, including transactivators of transcription (e.g. fax in HTLV-1 (59) and tat in 

HIV (60)) and regulators of expression of virus proteins (e.g. rev in HIV (60)).

The integrated retroviral DNA will be duplicated along with normal cellular genes when 

the infected cell divides. The provirus may remain inactive in a cell, until its expression 

is induced by an event such as cell activation. If a retrovirus infects a germ cell or 

early embryo, the retroviral genome can integrate into the host germline DNA. In this
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event the retrovirus becomes integrated within the DNA of each cell, and is called an 

endogenous retrovirus (ERV). These proviruses will be inherited in a stable Mendelian 

fashion by subsequent generations (‘vertical transmission’). Unless mutations occur, 

the provirus will also retain the capacity to produce infective retroviral particles, 

potentially resulting in ‘horizontal transmission’.

1.2.1 Mouse Mammary Tumour Virus encoded superantigens

Certain viruses have been shown to exhibit superantigen activity, which resembles the 

activity of enterococcal superantigens (61). Of these, the most widely studied is 

encoded by the retrovirus, mouse mammary tumour virus (MMTV). The gene 

encoding the superantigen lies within the 3’ long terminal repeat (L TR), and has been 

termed vSag (62). Over 50 strains of MMTV have now been identified, and the vSag 

genes of these strains show significant polymorphism. It is now recognised that these 

genes are responsible for the "minor lymphocyte stimulating" (Mis) phenomenon, 

originally described over 25 years ago (63), where lymphocytes isolated from MHC 

identical mouse strains were found to proliferate in a mixed lymphocyte reaction, a 

response normally attributed to differences in the major histocompatibility genes. 

Unlike the highly polymorphic MHC antigens, which in mice are encoded within the H- 

2 gene complex on chromosome 17, the Mis antigens were from many unlinked loci, 

each with two alleles, one stimulatory and the other not. The T cell reactivity was 

determined by the Vp domain of the TCR (62, 64-66), and the gene products of 

different Mis loci were reactive with different Vp TCR domains. In mouse strains 

positive for an Mis antigen, the reactive Vp bearing T cells were found to be deleted in 

the thymus. The Ect-1 Mis antigen, which deleted Vp 5 and Vp 11 bearing T cells, 

could not be segregated from the MMTV provirus Mtv-9 by genetic crosses (67), 

suggesting that Mis genes were of retroviral origin. This was confirmed by 

demonstrating that mice transgenic for the MMTV(GR) deleted Vp 14+ T cells (6 8 ), 

and that transfecting the 3'L TR ORF of MMTV resulted in stimulation of T cells in a
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vp specific manner (62, 64-66).

Endogenous MMTV genes are integrated in a stable fashion within the murine 

genome, and are inherited in a Mendelian fashion. Endogenous superantigens are 

expressed in the thymus (69), and appear to play a critical role in shaping the murine 

T cell receptor repertoire. When immature T cells in the thymus encounter 

endogenous retroviral superantigens, those T cells bearing reactive Vp regions are 

deleted (70). In contrast, infective MMTV induces a stimulatory response (71). 

Exogenous MMTV initially infects B lymphocytes within gut associated lymphoid 

tissue. Although viral replication does not occur in these cells, expression of the 

retroviral vSag gene product results in activation of T cells with appropriate TCR Vp 

regions (72). Proliferating T cells subsequently cause expansion of B cells harbouring 

the viral genomes. This proliferation of lymphocytes infected by MMTV ensures 

replication of the proviral genome.

1.2.1.1 Structure of MMTV encoded superantigens

The MMTV open reading frame that encodes vSag activity produces a protein of 

about 320 amino acids (73), which is thought to be a type II transmembrane 

glycoprotein, where the carboxyl terminus is extracellular and the amino terminus is 

cytoplasmic (74). This is supported by experiments that demonstrate that vSag 

synthesised in vitro in the presence of microsomes adopts an inverted membrane 

orientation (75). The polymorphism in vSag genes between the different strains of 

MMTV is concentrated at the carboxyl terminus of the predicted amino acid sequence 

(6 6 , 76-79). Two conserved regions have been identified within vSag (80). The first 

contains predominantly hydrophobic residues, and is thought to encode the 

transmembrane domain. The function of the second conserved region is unknown. 

Five consensus sites for N-linked glycosylation are found carboxy-terminal to the
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hydrophobic region. The polymorphic carboxyl terminus appears to binds to the Vp 

region of the TCR during superantigen mediated responses, and as a result 

determines Vp specificity.

Evidence of cell surface expression of MMTV encoded superantigens is less clear-cut 

than for the bacterial enterotoxin, and it has not been possible to isolate the vSag 

protein in a form which would allow detailed structural analysis of the molecule. A 

monoclonal antibody raised to a 13 amino acid long peptide derived from the extreme 

carboxyl terminus of the vSag gene of Mtv-7 (vSag-7), identified cell membrane 

expressed protein on B cell hybridoma cell lines and was found to block superantigen 

induced T cell proliferation (81 ). This monoclonal antibody identified vSag-7 surface 

expression in LPS-activated B cells from GBA/J (Mtv-7+) mice, but not from any 

unstimulated cell population or on activated T cells. However, other studies using 

indirect means of identifying vSag induced responses, such as examining the T cell 

repertoire for the deletion of vSag reactive T cells, suggest that vSag is also 

expressed by T cells (82, 83), dendritic cells (84-87), and thymic epithelial cells (8 8 , 

89). vSag may therefore be expressed on cells other than B cells, but at levels below 

the sensitivity of flow cytometric analysis.

Western analysis of the expressed vSag-7 gene identified two products of 18.5 kDa 

and 45 kDa (81). Translation of the entire vSag-7 gene would give a 321 amino acid 

product with a predicted core molecular weight of 37.1 kDa. The 45 kDa product could 

therefore represent this protein in a glycosylated state. The 18.5 kDa protein may 

result from proteolytic cleavage of the 45 kDa product, or from translational initiation at 

an internal methionine in the vSag-7 open reading frame. Only the 18.5 kDa protein 

was identified when monoclonal antibodies were used to precipitate vSag-7 from 

lysates of ^̂ ®l surface-labelled hybridoma cells and LPS-stimulated GBA/J (Mtv-7+)
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splénocytes (81). The molecular size of the 18.5 kDa protein was unaffected by 

treatment with N-glycanase, which removes N-linked oligosaccharide, suggesting that 

the polypeptide is the result of cleavage of the intact vSag-7 protein at a position 

carboxy-terminal to the N-linded glycosylation sites (see figure 1.2). Mutations 

introduced at the putative processing site at position 171 abrogated detectable vSag-7 

surface expression in B cells, suggesting that proteolytic processing is required for 

vSag-7 function (90).
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Figure 1.2 Diagram of the vSag protein encoded by the 3’ long terminal repeat 
(LTR) of MMTV. The amino acids are numbered. TM denotes the transmembrane 
region. The polymorphic region lies at the carboxyl terminus of vSag and is 
predominantly involved in Vp specificity. RKRR denotes a potential proteolytic 
cleavage site.

1.2.1.2 TCR vp chain specificity for MMTV encoded superantigens

Evidence that the carboxyl terminus of vSag binds to the Vp region of the TCR during 

superantigen mediated responses comes from the observation that vSag genes with 

similar carboxy terminal regions stimulate T cells sharing the same Vp regions (62, 6 6 , 

68,71, 79, 91-94). Transfection experiments using mutant vSag genes also suggest 

that this region determines TCR Vp specificity (7). Table 1.2 shows the pattern of TCR 

vp specificity associated with different vSag genes with variable carboxy termini amino 

acid sequences.
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MMTV vSag carboxy termini amino acid sequence TCR vp
GR DYIYLGTGMHFWGKVFH TKEGTVAGLIEHYSAKTYGMSYTD 14
C3H ...............I .............................E 14,15

Mtv-1 ......... IH..... YNSR.EAKRHI...IK.LPLAF 3,17
Mtv-3 .........IH..... YNSR.EAKRHI...IK.LPLAF 3,5,7
Mtv-6 ......... IH..... YNSR.EAKRHI...IK.LPLAF 3
Mtv-13 ......... IH..... YNSR.EAKRHI...IK.LPLAF 3

Mtv-8 ^ 11,12,17
Mtv-9 ......... NV...I..Y ...A..R.L..1..D.F....NG 5,11,12,17
Mtv-11 ......... NV...I..Y....A..RQL..I..D.F....NG 1 1 , 1 2

Mtv-7 .........N ____I.DY.E..AI.KILYNMKYTHG.RVGF.PF 6,7,8.1,9
Mtv-43 ......... N ____I.DY.E..AV.KILYNMKYTHN.RIGF.PF 6 ,7,8.1,9
SW ......... N ____I.DY.E..AI.KI.YNIKYTHG.RIGF.PF 6,7,8.1,9

Table 1.2 Vp specificity of mouse mammary tumour virus superantigens

1.2.1.3 MMTV vSag-MHC interactions

Processed forms of vSag-7 have been shown to bind human MHC class II molecules 

(HLA-DR1 and HLA-DR4) but not the class I molecule HLA-A2 (95). Both the 28 kDa 

extracellular domain, and the 18 kDa carboxy-terminal fragment, which had been 

expressed in Escherichia coli and electrophoresed in an SDS-polyacrylamide gel, 

bound soluble forms of MHC class II with equal avidity. Although this suggested that 

the critical MHC binding site on vSag-7 was at a position carboxy-terminal to the 

putative processing site at position 171, a separate group described a peptide from 

position 76-119 of vSag-1 which bound to cells expressing the murine MHC class II 

molecules l-A^ and l-E^, and inhibited binding of the bacterial superantigen SEA (96). 

Taken together, these results suggest that there are two binding sites for MHC class II 

proteins on the extracellular domain of vSag, one binding to MHC class II in 

competition with enterotoxin SEA, and a second on the 18 kDa carboxy-terminal 

fragment binding to distinct site on the class II molecule.
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1.2.1.4 MWITV vSag-TCR Vp interactions

Studies examining the surface of the TCR Vp region binding to different superantigens 

showed that vSag engages Vp on the solvent-exposed face of the molecule (made up 

of four p strands from residues 1-7, 16-25, 63-68 and 69-76 and several loops).

Critical residues for binding vSag-7 were found to be at positions 17, 18, 22, 70 and 

71 (22), representing part of the Vp solvent-exposed face that is relatively distant from 

the region of Vp thought to engage MHC. The same solvent exposed face of Vp is 

involved in binding the bacterial enterotoxin SEC3 (53), although this involved different 

critical residues (6 6 , 6 8 , 72, 74) which are relatively close to those involved in binding 

conventional antigens in association with MHC.

1.2.1.5 Pathological consequences of MMTV

Exogenous MMTV is transmitted to babies through infected milk, infecting B 

lymphocytes within gut associated lymphoid tissue (97). In the early stages of 

infection, the retroviral vSag gene is expressed and results in activation of T cells with 

appropriate TCR Vp regions (72). The consequent proliferation of lymphocytes 

infected by MMTV ensures replication of the proviral genome. Continuation of the viral 

life cycle depends on viral gene expression in mammary tissue. Infection of mammary 

epithelial cells is dependent on T lymphocytes; nude mice, that lack functional T cells 

are not susceptible to MMTV-induced tumour development (98). Hormones such as 

progesterone and prolactin are important in the transcriptional activation of MMTV 

during pregnancy and lactation (99), and the production of high titres of infectious 

virus allows the continued transmission of virus to suckling young.

Although mammary tumours are associated with the retrovirus, this depends on where 

the virus integrates into the murine genome and is not an inevitable consequence of 

the retroviral infection (100, 101). Where the MMTV provirus is integrated within a
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germ line cell, it is inherited in a stable Mendelian fashion. Endogenous MMTV 

proviruses are present in the germ line of all inbred mice, and most strains contain 

approximately three to eight proviruses at various genomic locations (102). Most of 

the proviruses are defective and do not produce infectious virus but have retained a 

functional superantigen gene and express a vSag protein that results in T cell subset 

deletion. This is dependent on vSag expression in the developing thymus, which 

results in the negative selection of reactive Vp bearing T lymphocytes (103).

The ‘vertical transmission’ of endogenous MMTV has been shown to confer resistance 

to infectious MMTV. BALB/c mice congenic for the endogenous retrovirus, Mtv-3, 

were resistant to experimental MMTV infection, as assessed by measuring viral 

antigens released in the milk, and by recording the incidence of early mammary 

tumours (104). This resistance is dependent on the endogenous MMTV causing 

deletion of the Vp-bearing T cells specific for the exogenous MMTV (105).

The ability to confer resistance to potentially tumour inducing exogenous MMTV may 

explain why functional vSag genes have been retained in the murine genome. 

Although this results in large Vp-specific gaps in the T cell repertoire, there is no 

evidence that this causes significant immunodeficiency, even where half the potential 

T cell repertoire is deleted. Although no other pathological affects appear to result 

from the presence of these endogenous superantigens, they remain potential targets 

for the immune system. In vitro they are the basis of the Mis reaction described above 

and in vivo they appear to be able to stimulate graft-versus-host disease (GVHD). 

GVHD typically occurs after transplantation of lymphoid cells incompatible for major 

histocompatibility antigens (106). A combination of MHC (H-2d) compatible mice that 

were disparate for vSag was used to study the potential role of host endogenous 

mouse mammary tumor virus encoded superantigens in the development of lethal
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GVHD. The presence of Mtv-7 in the host genome highly increased the rate and 

severity of GVHD (107). Kinetic analyses of TCR Vp gene expression in recipient mice 

indicated a dramatic but transient infiltration of GVHD target organs by vSag-specific T 

cells. A similar result was observed in another MHC-matched, superantigen disparate, 

donor-recipient bone marrow transplant combinations, where in the first 2  weeks post

transplant of B10.D2->BALB/c, approximately 50% of all Thy1.2+ spleen and lymph 

node cells were found to express T cell receptors utilizing Vp3 (108).

Chronic GVHD can result in a number of clinical manifestations that resemble 

autoimmune disease. These include progressive sclerodermatous skin reactions, liver 

changes resembling primary biliary cirrhosis, feature of Sjogren’s syndrome and 

systemic lupus erythematosus, together with autoantibodies to a variety of tissue 

antigens (109, 110). MMTV in mice does not appear to be associated with 

autoimmune pathology. This is presumably because superantigen-reactive vp-specific 

T cells are deleted. However, the possibility remains that autoimmune consequences 

could result from failure to delete these potentially auto-reactive T cell.

1.3 DNA sequences reiated to MMTV in the human genome

1.3.1 Human endogenous retroviruses

Endogenous retroviruses (ERVs) and retrovirus-like element represent a substantial 

component of vertebrate genomes and approximately 5-8% of human DNA is 

retrovirus-related (111, 112). ERVs are thought to have originated from infectious 

retroviruses because they have a similar structure and share sequence homology. Full 

length ERVs have a LTR-gag-pol-env-LTR structure characteristic of infectious 

retroviruses. However, many of the ERVs described in the literature are not full length 

and do not have a complete retroviral structure. Most ERVs have termination codons 

interrupting open reading frames, and many show partial deletions of structural genes.
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In the recently published draft of the human genome, only three full length ERVs were 

identified where all open reading frames were intact (1 1 2 ).

Human endogenous retroviral sequences appear to belong to two families (113, 114), 

those related to the type C mammalian retroviruses and those which show a mosaic 

pattern of homology to mammalian type A, B and D retroviruses (where types A-D 

refer to the morphological classification of the oncovirinae family of retroviruses). 

Many of these ERVs were originally identified by screening human genomic libraries 

with proviral DNA probes under reduced stringency conditions. Such probes included 

murine leukaemia virus (MuLV), Moloney MuLV (MoMuLV), MMTV, baboon or 

chimpanzee viruses (115-123).

Human retroviral-like sequences related to C-type retroviruses include the full length 

provirus ERV3 (116) (chromosome 7) and ERV1 (124), which has a gag-pol-env-LTR 

genomic structure (chromosome 18 q22-23 (125)). Sequence analysis revealed that 

both clones contain termination codons within the pol and gag genes, although the 

env gene of ERV3 has a long open reading frame capable of encoding a polypeptide 

of approximately 650 amino acids (116). These sequences are present as single 

copies in the human genome, but other human C-type retroviral-related sequences 

have been identified that have up to 1000 copies per haploid genome. These families 

include HERV-E (126), HERV-H (127), ERV-9 (126) and HERV-W (128).

B- and D- type retroviruses and A-type particles are thought to originate from a 

common progenitor on the basis of homologous pol sequences that differ from those 

of mammalian C-type viruses (129, 130). The human genome contains a large 

number of retroviral-like sequences with homology to MMTV (a B-type retrovirus) 

(118-120, 131), as well as to the Syrian hamster intracisternal A-type particle (lAP) 

(132), and D-type retroviruses (133).
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1.3.2 Human endogenous retroviral sequences related to MMTV

Human DNA sequences related to MMTV have been isolated by low stringency 

hybridisation with DNA probes encompassing various regions of the MMTV (117-121). 

Franklin etaf (131) analysed 100 recombinant clones, which had been isolated from 

the DNA of a human breast cancer cell line, by screening with an MMTV gag-pol 

fragment. Cross-hybridisation experiments with subcloned fragments from some of 

these isolates identified nine distinct subgroups of MMTV-related sequences.

Although all subgroups hybridised with the MMTV gag-pol probe, they are not closely 

related to each other. The largest subgroup, comprising 64% of the isolated clones, 

was found to contain sequences most homologous to MMTV. This group consists of 

retroviral genomes of 6  to 10 kb and these sequences are members of the HERV-K 

superfamily of endogenous retroviruses.

HERV-K10 is a full length provirus, and the complete nucleotide sequence was 

determined almost 15 years ago. (132, 134). It is 9.2 kb in length with LTRs of 968 bp 

at both ends. The pol region of HERV-K10 is closely related to that of A- and D- type 

retroviruses and especially to the B-type pol gene. It contains an open reading frame 

large enough to allow synthesis of full-length polymerase proteins including reverse 

transcriptase. The env gene of HERV-K10 shows unusually high similarity with the 

MMTV env region, even on the level of secondary structure of the predicted amino 

acid sequences, including potential glycosylation sites (135). However, the LTRs do 

not show significant sequence homology to the MMTV vSag gene. Several full-length 

endogenous retroviruses related to HERV-K10 have now been described, including 

HERV-K(C4), HERV-K-T47D (isolated from a breast carcinoma cell line (136)) and 

HTDV/HERV-K (which codes for human teratocarcinoma-derived retrovirus (HTDV) 

particles (137-140)).
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Several human ERVs have been shown to be transcriptionally active in human tissues 

and cell lines (131, 141-144). Evidence of protein expression has largely been 

restricted to the presence of antibodies against retroviral gene products (145-148), 

although a recombinant HERV-K env expression vector has recently been described 

that yielded ENV proteins of the expected molecular mass (139). However, all human 

endogenous retroviral elements examined to date appear to be replication defective.

Despite the presence of MMTV-related sequences in the human genome, DNA 

sequences closely related to the MMTV 3'LTR superantigen-encoding gene have not 

yet been identified. Using sequence specific PCR primers, three human DNA 

sequences have been identified which hybridised to an MMTV probe (149). One of 

these human sequences had a short region of homology to murine vSag, although this 

was only over a region of twenty nucleotides after excluding the PCR primer binding 

sites. No significant homology to vSag was identified with the other two human 

sequences, although one sequence was 80% homologous to the pol region of an 

endogenous retroviral-like sequence (RTLV-1) (150).

Evidence that the human immune system can respond to MMTV-encoded 

superantigens suggests that the human genome may contain related vSag genes. 

Human T cells respond to murine retroviral superantigens in a Vp specific manner 

(151), and human HLA class II molecules can present vSag to both human and 

mouse T cells (151, 152). In mice, functional vSag genes have been identified that are 

no longer within a proviral configuration (153). If vSag genes in the human genome 

were not in close proximity to other retroviral genes, many of the experimental 

approaches described above would have failed to identify them. The huge number of 

LTR-related sequences in the human genome, together with the polymorphic nature of 

the vSag-encoding gene, further complicates the search. As the murine vSag genes
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are known to have two highly conserved regions (80), an alternative approach is to 

screen for human DNA sequences related to these conserved regions. This was the 

principle strategy of the project detailed in this thesis. Evidence was also sought for 

the expression of human vSag-related sequences in Sjogren’s syndrome, as it has 

been independently proposed that both endogenous retroviruses and superantigens 

have an aetiological role in this autoimmune condition (154,155). The background to 

these hypotheses will be discussed in the remaining sections of this introduction.

1.4 Sjogren's Syndrome

Primary Sjogren’s syndrome (1°SS) is a heterogeneous disease characterised by 

lymphocytic infiltration of salivary and lacrimal glands and extraglandular structures 

(156). It is associated with polyclonal B cell activation (157) and the production of 

organ and non-organ specific autoantibodies (158). The ophthalmologist Henrik 

Sjogren described the condition in 1933, in an account of 19 patients with dry eyes, of 

whom 13 had arthritis (159). He introduced the term keratoconjunctivitis sicca to 

describe the dryness of the eye leading to conjunctival and corneal ulceration. He also 

reported dryness of the mouth (xerostomia) in some of these patients, and described 

an inflammatory infiltrate in the salivary glands of one patient at post-mortem.

Sjogren’s syndrome is now thought to represent a group of diseases with a common 

histological feature of chronic lymphocytic infiltration of exocrine glands with 

subsequent decrease in function. Immunohistological studies of salivary tissue have 

indicated that the majority of the infiltrating lymphocytes around the salivary glands are 

CD4+ T cells, and that CD8 + T cells are present in the salivary duct epithelium (160, 

161). Although the lacrimal and salivary glands are referred to predominantly, other 

organs are frequently affected, including the lungs (162-164), kidneys (165,166), 

pancreas (167, 168) and skin (169,170). There is also an increased incidence of

38



lymphoma in these patients (171). The terms secondary Sjogren’s syndrome (2°SS) is 

used when describing patients who also have a definable connective tissue disorder. 

2°SS is observed in 30-50% of patients with rheumatoid arthritis (172), and in 20-30% 

of patients with systemic lupus erythematosus (SLE) (173). It is also described with 

other connective tissue disorders such as scleroderma (174), dermatomyositis (175) 

and is a feature of ‘mixed connective tissue disease’ (176).

“Primary” Sjogren’s syndrome is generally applied to patients without features of other 

connective tissue disorders, although other autoimmune conditions may co-exist, such 

as autoimmune thyroid disease (177,178), or primary biliary cirrhosis (179), where the 

distinction between ^°SS and 2°SS becomes confusing. There can also problems in 

classifying 1°SS patients with systemic features resembling those of other connective 

tissue disorder such as SLE.

Much of the confusion with respect to terminology in Sjogren’s syndrome has resulted 

from a lack of universally accepted diagnostic criteria. In an attempt to clarify this 

situation, new diagnostic criteria have been developed (180, 181). The European 

classification for the diagnosis of Sjogren’s syndrome is shown in Box 1. In this 

classification, symptomatic dry eyes and dry mouth are defined by positive responses 

to a questionnaire. Objective evidence of ocular and salivary involvement, as 

assessed by tear production and salivary flow rate, together with the histopathological 

and serological features, make up the six criteria, of which four need to be fulfilled in 

order to establish a diagnosis of primary Sjogren’s syndrome.
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European criteria for primary Sjogren’s syndrome

• Ocular symptoms (positive response to one of three question below)
• Oral symptoms (positive response to one of three questions below)
• Ocular signs (Schirmer’s test <5mm wetting in 5 minutes or positive Rose-Bengal 

staining of conjunctiva)
• Lymphocytic infiltrate on salivary gland biopsy
• Objective evidence of salivary gland involvement (unstimulated salivary flow <1.5mls 

in 15 minutes)
• Serology (anti-Ro or anti-La antibody positive)*

4 out of 6  criteria required for a diagnosis of 1°SS

*Although the autoantibodies ANA and RF were included as serological markers in both 
Fox’s criteria and the preliminary European criteria, this was subsequently restricted to 
positive Ro and/or La antibodies following an assessment of the European classification.

European symptom questionnaire
Ocular svmotoms
• Have you had daily, persistent, troublesome dry eyes for more than 3 months?
• Do you have a recurrent sensation of sand or gravel in the eyes?
• Do you use a tear substitute more than three times a day?
Oral svmotoms
• Have you had a daily feeling of dry mouth for more than 3 months?
• Have you had recurrent or persistently swollen salivary glands as an adult?
• Do you frequently drink liquids to aid swallowing dry foods?

Box 1

A number of characteristic laboratory features are found in 1°SS, which may reflect an 

over active immune system in these patients. These include autoantibodies to 

extractable nuclear antigens (158, 182) (anti-Ro and anti-La antibodies) and increased 

polyclonal immunoglobulin production (157,183), which results in often dramatic 

hypergammaglobulinaemia, with serum immunoglobulin levels significantly higher than 

the upper limit of the normal range. Severe hypergammaglobulinaemia occasionally 

results in hyperviscosltiy syndromes (184,185), with arterial or venous occlusive 

events. The immunochemical properties of the abnormal immunoglobulin sometimes 

results in the formation of cryoglobulins (186), which typically manifests as a palpable 

purpuric skin rash. The anti-Ro and anti-La autoantibodies are associated with
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systemic features of the condition, such as lung involvement and renal tubular 

acidosis (164,187). The increased incidence of lymphoma in these patients also 

appears to be restricted to those who are anti-Ro antibody positive (188). It is however 

unclear whether these autoantibodities are pathogenic, or are simply markers of the 

disease (189).

1.4.1 Retroviruses and Sjogren’s syndrome

Several strands of evidence implicate retroviruses as potential causal factors in 1°SS, 

although definitive proof of a viral aetiology has not been established. Clinical features 

resembling 1°SS develop in some patients infected with the human T cell leukaemia 

virus type 1 (HTLV-1) (190,191) and human immunodeficiency virus (HIV) (192), 

although these patients do not generally develop the Ro and La autoantibodies 

characteristic of 1°SS (193). In a study by Talal et al (194), antibodies to HIV-1 gag 

p24 protein were found in serum samples of 14 of 47 (30%) patients with 1°SS, with 

two samples also reacting with HIV-1 p i7 protein. The patients with positive serology 

for HIV-1 proteins were anti-Ro and anti-La antibody negative, a negative association 

that was also found by other investigators (195, 196).

The absence of reactivity against native HIV-1 proteins in these studies ruled out 

infection with either HIV-1 or a closely related retrovirus. However, a retroviral particle 

antigenically related to HIV was detected in T-lymphoblastoid cells co-cultured with 

salivary gland biopsy material from a patient with Sjogren’s syndrome (197). Primers 

to conserved regions of HIV-1 gag, pol and env genes did not amplify nucleic acid 

sequences from these cells by polymerase chain reaction, even under conditions of 

low stringency, indicating that they were not infected with a defective form of HIV. The 

retroviral particles were contained within intracytoplasmic vacuoles, and had a typical 

A-type morphology, and as a result were termed human intracisternal A-type particles
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(hlAP). lAPs in mice are non-infectious endogenous retroviral structures whose 

transcripts are packaged in A-particles in the cysternae of the endoplasmic reticulum 

(114). They were first described as inclusion bodies in mouse mammary 

adenocarcinomas (198). They contain a polyadenylated RNA molecule, a reverse 

transcriptase and a gag-like 73 kDa protein, and may result from inadequate 

maturation processing of viral precursor polypeptides or from disturbed virus budding 

(199).

Evidence of a serological response to HTLV-1 gag proteins has also been found in 

1°SS patients. Antibodies against synthetic peptides representing the major epitopes 

on HTLV-1 p i 9 gag and a homologous sequence on the endogenous retrovirus 

HRES-1 were found in 32% of 1°SS patients (200). Salivary gland biopsies from 31% 

of 39 patients with 1°SS contained an epithelial cytoplasmic protein reactive with a 

monoclonal antibody to HTLV-1 p i9 gag. This antibody also detected antigen in the 

labial biopsies from 24% of 17 patients with 2°SS, 21% of 14 patients with sicca 

symptoms and 12.5% of 16 patients with other connective tissue diseases (201).

There are also reports that the tax gene of HTLV-1 may be expressed in some 1°SS 

patients. HTLV-1 tax sequences, but not gag, pol or genes, were detected in the 

minor salivary glands of two out of nine patients with Sjogren’s syndrome using in situ 

hybridisation and PCR (202). In a second study from Japan (203), HTLV1 tax mRNA 

was detected by RT-PCR in the minor salivary glands of 4 out of 14 patients with 

1°SS, again in the absence of gag, po/and env retroviral gene expression.

These observations have led to the suggestion that endogenous retroviral gene 

products are expressed in the salivary glands of some patients with 1°SS. There also 

appear to be antibodies in the serum of some patients that can bind to these retroviral 

proteins. While it is tempting to speculate that the expression of ERV gene products in 

salivary gland tissue results In an immune response that subsequently destroys the
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gland, there are alternative explanations that need to be considered. Antibodies from 

patients with 1°SS may cross-react with retroviral gene products, and likewise 

monoclonal antibodies raised to retroviral gene products may cross-react with non- 

viral salivary epithelial proteins expressed in 1°SS patients. Activation of endogenous 

proviruses can be induced in vitro by a variety of stimuli. Including chemical and 

physical, or in response to hormones or exogenous viruses (114). Immune responses 

induced by mitogens or allogeneic cells may also stimulate expression of ERV 

proteins (154). Expression of retroviral genes in 1°SS salivary glands could therefore 

result from, rather than cause the lymphocytic infiltration characteristic of the 

condition. A subsequent immune response to the ERV proteins could perhaps result in 

a persistent immune response, leading to chronic glandular damage. However, it 

remains possible that the observed expression of endogenous retroviruses and 

antibodies to retroviral proteins in 1®SS are simply consequences of the increased 

immune reactivity seen in this condition, and do not have any pathological 

consequences.

1.4.2 Evidence of a causal relationship between retroviruses and 

autoimmunity

The observation that some patients infected with HTLV-1 (190,191) and HIV-1 (192) 

develop clinical features resembling 1°SS suggests that these exogenous retroviruses 

can stimulate immune mediated glandular destruction. It has been suggested that 

infection with an exogenous virus similar to an ERV could result in loss of tolerance to 

ERV gene products, resulting in a persistent autoimmune response (154). In a 

transgenic mouse model expressing the cell membrane associated glycoprotein (G) of 

vesicular stomatitis virus (VSV) as self-antigen, autoantibodies were produced to VSV- 

G after infection with wild-type VSV (204). In a similar way, HTLV-1 and HIV-1 

infection could potentially trigger a response to related ERVs resulting in autoimmune 

features in some patients.
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Retroviral genes could stimulate autoimmune responses through mechanisms other 

than expression of an autoantigen. An exocrinopathy resembling Sjogren’s syndrome 

develops in mice transgenic for the tax gene of HTLV-1 (205). The tax gene, situated 

in a 1.5 kb region flanked by the env gene and 3’ long terminal repeat (LTR) of HTLV- 

1, encodes a 40 kDa protein (206). It has been proposed that this protein 

transactivates the viral long terminal repeat (205) and, possibly a variety of cellular 

genes, including the interleukin-2 receptor (IL-2R) (207) and interleukin-2 (IL-2) (206), 

or other lymphokines involved in T helper cell proliferation such as lL-4 (209). Mice 

transgenic for the HTLV-1 tax gene display histopathological features in the salivary 

and lacrimal glands that resemble those of 1°SS (205). The extent of histopathological 

changes correlate directly with the concentration of the tax protein expressed in the 

nuclei of the glandular epithelial cells. It has been suggested that salivary gland 

destruction could be a consequence HTLV-1 tax transactivation of cytokine genes, 

which could provide an important 'second signal’ for lymphocyte activation.

Another approach to provide evidence of a causal link between retroviruses and 

autoimmune disease has been to look for ‘disease-specific’ retroviruses. Although a 

number of promising retroviruses have recently been described, subsequent studies 

have shown these retroviral genes to be more widely distributed in the population than 

first thought. An apparently exogenous retrovirus, HRV-5, was cloned by reverse 

transcriptase PCR from salivary gland tissue of a patient with Sjogren's syndrome 

(210). This retrovirus is related to simian D-type retroviruses, rodent intracisternal A- 

type particles and MMTV, and was not detectable in normal human DNA by Southern 

blotting or PCR. it was present in a sucrose density gradient fraction corresponding to 

that of an enveloped retrovirus particle, in subsequent experiments (2 1 1 ) using nested 

polymerase chain reaction (PCR), HRV-5 proviral DNA was found in salivary glands of 

only two out of ninety two patients (55 Sjogren's syndrome patients, 37 non-Sjogren's

44



syndrome patients). One was from a patient who had sicca symptoms but who did not 

satisfy the criteria for a diagnosis of Sjogren's syndrome. The other was from a patient 

with secondary Sjogren's syndrome. Using the same method, HRV-5 proviral DNA 

was detected in synovial tissue from a proportion of patients with a number of 

rheumatologicai conditions, including rheumatoid arthritis (12/25 patients), reactive 

arthritis (3/5), psoriatic arthritis (2/2) and osteoarthritis (3/5) (212).

A novel retrovirus has recently been isolated from patients with multiple sclerosis 

(MS), and has been termed MS-associated retrovirus (MSRV) (213). Retroviral pol 

fragments were Isolated from RNA-purified extracellular viral particles from 

leptomeningea! and choroid plexus tissue of MS patients using RT-PCR. These now 

appear to be transcribed from a novel family of endogenous elements, HERV-W (128) 

which are expressed in normal placental tissue (214). An endogenous retrovirus 

related to HERV-K has also recently been implicated in the pathogenesis of insulin- 

dependent diabetes mellitus (IDDM), and has been termed IDDMK1,2-22 (215) 

although this work has since been discredited. It had been suggested that this ERV 

encoded a superantigen, based on the observation of Vp-specific expansion of T cells 

in the pancreatic glands of two patient with early onset IDDM. Similar Vp-specific 

responses are seen in 1°SS as will be discussed below.

1.4.3 TCR Vp-specific T cells in Sjogren’s syndrome

Analysis of the TCR variable gene repertoire of T cells in inflammatory sites of 

autoimmune diseases has provided insights into the nature of pathogenic auto

reactive T cells and the antigens stimulating them. As superantigens stimulate T cells 

through binding with the TCR Vp chain, it would be expected that T cells at sites of 

superantigen-mediated inflammation would share one, or a few TCR Vp gene 

products. Furthermore, as the hypervariable region of the TCR (encoded by junctional
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(J) and diversity (D) region as well V region genes) are not significantly involved in 

superantigen-T cell interactions, it would be anticipated that within the expanded Vp 

populations, J and D region genes would be randomly represented. Responses to 

conventional antigens would give a different pattern on examination of T cells at sites 

of inflammation. A single conventional antigen normally only expands a few clones of 

T cells, because the frequency of T cells specific for a given antigen is low. As 

conventional antigens are recognised primarily by the hypervariable region of the 

TCR, this oligoclonality would be expected in V, J and D region genes.

TCR populations have been studied by quantitative assays of mRNA Vp, D and J 

region gene transcripts, or by using monoclonal antibodies specific for expressed 

variable region gene products. Studies carried out on TCR usage of Infiltrating T cells 

in Sjogren’s syndrome minor salivary and lacrimal glands have given conflicting 

results. Using a semi-quantitative RT-PCR method, Sumida et al (216) reported that 

Vp2 and Vp 13 transcripts were predominantly expressed in T cells from minor salivary 

glands of 1°SS patients. In six of seven patients studied, 8.6-16.8% of T cells 

expressed Vp2 and in four of seven patients, 13-29.2% T cells expressed Vpi3. The 

predominance of Vp2 and Vp13 genes was apparently specific for salivary glands, 

because lesser percentages of these two genes were expressed in peripheral blood 

lymphocytes. The junctional sequences utilised by Vp2 and Vpi3 bearing T cells from 

the salivary glands of three of these patients were subsequently analysed (217). RNA 

was amplified by RT-PCR using Vp2 or Vpi3 specific primers together with a Cp 

primer, and the products cloned. Of 41 Vp2 transcripts isolated, 34 clones contained 

different junctional sequences, suggesting that the infiltrating Vp2-bearing T cells were 

polyclonal. Of 45 cDNA clones encoding the Vp13 gene, 35 represented different 

junctional sequences. However, the junctional sequence gene Jp2.3 was present on
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44% and 46% of Vp2 positive clones isolated from two of the three patients, whereas 

Jp2.1 was found in 23% and 45% of Vp13 positive clones from the same two patients.

Although the high prevalence of Vp2 and Vpi3 positive T cells in some 1°SS salivary 

glands could be explained by a superantigen response, the preferential usage of 

junctional region genes in some Vp2 and Vp13 clones is more in keeping with the 

response to a conventional antigen. A subsequent study of TCR Vp usage in the 

lacrimal glands of five Sjogren's patients (four 1‘’SS, one 2°SS) did not find a 

predominance of Vp2 or Vpi3 positive T cells amongst the infiltrating T cells (218). 

Although other Vp families (including Vp3, Vp9, VpiO, V p il,  Vp15 and Vp17) were 

over-expressed in lacrimal glands compared with peripheral blood lymphocytes, these 

varied depending on the patient studied, and overall the Infiltrating T cells appeared to 

be polyclonal. In a study using monoclonal antibodies directed against the TCR Vp 

region (219), an increase in lymphocytes bearing Vp2 family gene products was found 

in peripheral blood, and an increase in both Vp2 and Vp8  in the salivary gland 

infiltrates of eight patients with 1°SS. The TCR Vp2 gene was also expressed 

predominantly in non-malignant parotid lymphoproliferative lesions from seven 1°SS 

patients (220) and in the kidneys of six of seven 1°SS patients with interstitial nephritis

(221). Junctional sequences of cDNAs encoding the Vp2 gene on infiltrating T cells in 

the kidneys of five 1°SS patients showed that some of the cells expanded clonally, 

suggesting conventional antigen-driven stimulation rather than superantigen-induced 

proliferation. However, the Vp2 clones isolated from the kidney were different from 

clones isolated from salivary glands of the same patients. Identical clones have 

however been isolated from both lacrimal and salivary glands in some 1°SS patients

(222).
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Mechanisms other than the response to superantigens have been suggested to 

account for the preferential use of TCR Vp genes in the T cells infiltrating salivary 

glands in 1°SS patients. Genetic studies have identified polymorphisms in several 

TCR Vp gene coding regions that could account for differences in levels of expression 

(223-225). Allelic differences in the promoter region of Vp13 have also been identified 

(226). The prevalence of TCRBV13S2*2 homozygotes is significantly increased in 

1°SS patients with hypergammaglobulinaemia (227), suggesting that allelic differences 

between TCR Vp genes could account for the high prevalence of Vp13 positive T cells 

in some patients. Other studies have shown preferential usage of certain Vp genes in 

the T cell repertoire of normal individuals (35, 228, 229). Vp2 and Vpi3.1 T cells 

appear to be more prevalent than other Vp bearing T cells, with approximately 10% of 

peripheral blood T cells expressing Vp2 and 4-13% expressing Vp13.1 The 

preferential use of Vp genes in 1°SS could therefore be reflecting more generalised 

mechanisms, resulting in ‘skewing’ of the T cell receptor repertoire.

It is clear from analysis of the human T cell receptor repertoire, that large deletions of 

specific Vp-bearing T cells do not occur in the way described in mice, where complete 

Vp-specific deletions result from T cells interacting with vSag in the thymus. There is, 

however, evidence that the variations in Vp expression seen in humans results from a 

process of selection in the thymus, rather than simply from Vp gene allelic differences. 

In a study of the human TCR Vp gene repertoire in thymus glands of children 

undergoing cardiovascular surgery (225), significant variations in Vp gene transcript 

levels were observed in mature (CD4+ or CD8 + single positive) but not immature 

(CD4+ CD8 + double positive) thymocytes. As these differences in Vp expression 

occurred during the transition from immature to mature T cells, they presumably 

occurred through a process of selection, possibly by interacting with an endogenous
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superantigen. Marked differences in the percentage of peripheral blood T cell bearing 

Vp2 have been observed in a normal population (228), where the percentage of Vp2+ 

CD4+ T cells was distributed in a bimodal fashion. Individuals were either Vp2 high’ or 

Vp2 low’, and family studies indicated that this phenotype was inherited independently 

from HLA genes or Vp gene allelic differences. These authors suggested that the Vp2 

low’ phenotype could result from the expression of an inherited endogenous 

superantigen, causing Incomplete deletion of Vp2 bearing T cells in the thymus.

The observations described above raise the intriguing possibility that endogenous 

superantigens are present in humans. The identification and characterisation of 

human DNA sequences related to vSag will now be described in detail.
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2 CHAPTER TWO

Isolation of human DNA sequences related to vSag

2,1 Introduction

Although DNA sequences related to the murine retrovirus MMTV are present in the 

human genome, human DNA sequences related to the 3’LTR encoded superantigen 

(vSag) have not been identified. The aim of the work described in this chapter was to 

identify and isolate human DNA sequences homologous to the two regions of vSag 

which are most highly conserved between different strain of MMTV. The first 

conserved region (vSagCI) is 95 bp in length. The predicted amino acid sequence is 

hydrophobic, and is a putative trans-membrane region. The function of the second 

conserved region (vSagC2) is unknown, but the 198 bp sequence is predicted to 

encode a region of the protein lying within an extracellular domain of the superantigen 

which maybe involved in binding with MHC molecules.

Two strategies were employed to identify human DNA sequences related to vSagCI 

and vSagC2. The first used the polymerase chain reaction (PCR) with oligonucleotide 

primers specific for conserved regions of vSag. PCR primers were selected to amplify 

91 and 182 bp products from these two conserved region and also to span the 0 1  and 

02 domains, to give a predicted product of 501 bp (Fig. 2.1). POR products amplified 

from normal human placental DNA were subsequently cloned and those with greatest 

sequence homology to vSag were used to probe a human placental genomic library, 

thereby isolating the genomic loci from which these POR products were amplified.
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1®' conserved region 2"" conserved region
MMT - • ......... .

Primer pair 1 Primer pair 2
' 100 bp'

PCR oroducts _________________________

Primer pair 3

Figure 2.1 Regions of vSag amplified by PCR primers. PCR primers to conserved 
regions of MMTV (vSagCI and vSagC2) and to the region spanning these conserved 
regions are indicated.

The second strategy for identifying human sequences related to vSag involved direct 

screening of the human genomic library with murine DNA from the conserved regions 

of vSag. These probes were generated from an MMTV-containing plasmid with the 

PCR primers to vSagCI and vSagC2. By hybridising under conditions of reduced 

stringency, any significantly related sequences would be identified, without depending 

on accurate matching at the regions of the PCR primers.

2.2 Materials and Methods

The methods detailed here are limited to those which were unique, or particularly 

important to this section of work. Some methods of more widespread use in other 

sections of this thesis are detailed in the chapter to which they are most relevant. All 

reagents were of “Analar” quality, and obtained from major commercial UK suppliers 

unless otherwise stated. All were stored and used according to manufacturers’ 

recommendations.
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2.2.1 Amplification by Polymerases Chain Reaction with vSag specific primers.

Specific Oligonucleotide primers for PCR were synthesised using a Beckman 1 DOOM 

DNA synthesiser and their concentration adjusted to 1 mg/ml in TE (10mM Tris pH8 , 1 

mM EDTA). The primer sequences were derived from the published mouse mammary 

tumour virus (GR) proviral 3’ long terminal repeat (230). Primer pairs specific for 

vSagCI, vSagC2 and the intervening region were combined as shown below (each 

primer at 1 0 0  pg/ml).

Primer pair 1: MMTV 3’LTR sense 210 TCTGCTGCAAACTTGGCATAGC
(vSagCI ) antisense 279 GGGCTCTCACCCTTGACTCTTT

Primer pair 2; MMTV 3’LTR sense 661 CAAAATAGGAGACAGGTGGTGG
(vSagC2) antisense 821 CGTGAAAGACTCGCCAGAGCTA

Primer pair 3: MMTV 3’LTR sense 210 TCTGCTGCAAACTTGGCATAGC
(vSagC 1 -C2) antisense 689 GGGACTTATAGGGGACCTTACA

A 1.5 kb Pst 1 fragment of MMTV 3’LTR DNA in the plasmid pBR322 was linearised 

prior to amplification by digestion with Pst\ and the concentration adjusted to 1 ng/ml. 

DNA extracted from murine (exogenous MMTV GR"̂  or C3H" )̂ and normal human 

placenta were diluted to 100 îg/ml. Plasmid DNA (1 ng) and murine or human 

placental DNA (100 ng) were amplified in a thermal cycler in 25 î l volumes under 

mineral oil with 100 ng of each primer, 0.2 mM dNTPs, 2.5 ng BSA, PCR buffer (10 

mM KC), 20 mM Tris-HCI (pH 8 . 8  at 25°C), 10 mM (NH4 )2 S0 4 , 2 mM MgS0 4 , 0.1% 

Triton X-100) and Taq polymerase (0.625 units/reaction). Cycles were as follows:

94°C dénaturation for 90 seconds, 50°C annealing for 30 seconds and 72°C extension 

for 30 seconds, followed by 25 cycles of 94°C, 50°C and 72°C each for 30 seconds, 

with a final extension at 72°C for 120 seconds. PCR products were electrophoresed 

on 3% agarose minigels (1 g agarose type I (Sigma), 2 g Nusieve (FMC Bioproducts))

52



in 100 mis TBE (0.9 M Tris-HCI, 0.9 M H3 BO3 , 25 mM Na2 EDTA)) containing 0.5 ng/ml 

ethidium bromide.

2.2.2 Cloning of PCR products into the pCR vector.

Ligation and transformation.

Fresh PCR products were ligated into the pCR vector (Invitrogen) at a 1:1 molar ratio 

by incubating overnight at 12°C with 50 ng of the vector in 10 nl volumes containing 

ligation buffer (50 mM Tris-HCI pH 7.6, 10 mM MgCb, lOmM DTT, 50 ng/mt BSA) and 

0.3 units T4 DNA ligase. For each ligation an aliquot of transformation competent cells 

(OneShot™-lnvitrogen) was thawed on ice and gently mixed with 2 jul p 

mercaptoethanol prior to adding 1 pi of the ligation reaction. After incubating on ice for 

30 min, the cells were placed in a 42°C waterbath for 30 seconds and then returned to 

ice for a further 2 min before adding 450 pi SOC medium (2% w/v bacto-tryptone,

0.5% w/v yeast extract, 10 mM NaCI, 2.5mM KCI, 10 mM MgCb, 10 mM MgS0 4 7 H2 0 , 

20 mM glucose) and placed in a shaker incubator (37°C, 225 rpm) for 1 hour. The 

transformed cells were incubated overnight at 37°C on 1.5% agar L-agar plates (0.5% 

w/v yeast extract, 1% w/v bacto-tryptone, 300 mM NaCI, 1.5% w/v L-agar, pH 7.3) 

containing ampicillin (50 pg/ml) on which 25 pi of X-Gal (40 mg/ml in 

dimethylformamide) had been spread. The indicator X-Gal results in a blue colour 

change of transformed cells due to the lacZ gene in the vector. The ligation of a PCR 

product into the vector Insertion site disrupts the lacZ reading frame, preventing the 

colour change in these colonies. White colonies were therefore selected for DNA 

minipreparation.
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Plasmid DNA minipreparations.

The selected colonies were inoculated into 5ml of 2xTY medium (1.6 % w/v bacto- 

tryptone, 1% w/v yeast extract, 300 mM NaCI, pH 7.3) containing 50 pg/ml ampicillin 

and the cultures grown up overnight, with vigorous shaking at 37°C. Approximately 1.5 

ml of the overnight culture was poured into an Eppendorf tube and the cells collected 

by centrifugation at 5000 rpm for 5 min. The supernatant was then poured off and the 

bacterial pellet resuspended in 100 pi of a solution containing 50 mM glucose, 10 mM 

EDTA and 25 mM Tris-HCI (pH 8 ) and 4 mg/ml lysozyme. The cells were incubated in 

the lysozyme mixture for 5 min at room temperature, cooled on ice and lysed under 

alkaline conditions by adding two volumes of a solution of 0.2 M NaOH / 0.1% SDS 

and incubating on ice for 5 min. A half volume of ice cold 5 M potassium acetate was 

the added and the tube incubated on ice for 1 0  minutes before centrifuging at 1 0 0 0 0  

rpm for 10 min. The supernatant was transferred to a fresh tube and the plasmid DNA 

extracted once with phenol/chloroform, before precipitating with ethanol at room 

temperature for 2 min. The DNA pellet was washed with 70% ethanol, dried under 

vacuum and redissolved in 50 pi TE containing RNase (20 pg/ml). An aliquot of the 

DNA was then digested with EcoRI to cut out the inserted PCR product. The digest 

was analysed on an agarose gel with Hinf\ digested pUC 19 as a molecular weight 

marker.

2.2.3 Sequencing of PCR products

Plasmids containing recombinants were sequenced using dye terminator cycle 

sequencing (Perkin Elmer) with AmpliTaq® DNA Polymerase, FS, which was carried 

out by the staff of the Molecular Biology Facility at Newcastle University. This was 

undertaken using an ABI 377 DNA Sequencer (Perkin Elmer), which detects 

fluorescence from four different dyes, used to identify the A, G, C and T extension 

reactions. Each dye emits light at a different wavelength when excited by a laser,
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allowing all four reactions to be detected in a single gel lane. This strategy improves 

sequencing accuracy because it eliminated problems caused by variations in 

electrophoretic mobility from lane to lane.

Polymerase chain reactions were carried out in 20 pi volumes in a reaction mix 

containing 0.2 pg plasmid DNA, 3.2 pmole universal forward or reverse primers and 8  

pi Terminator Premix (comprising A-Dye Terminator, C-Dye Terminator, G-Dye 

Terminator, T-Dye Terminator, dITP, dATP, dCTP, dTTP, Tris-HCI (pH 9.0), MgCb, 

thermal stable pyrophosphatase and AmpliTaq DNA Polymerase, in concentrations 

determined by the manufacturers). The thermal cycler settings were; 96°C for 30 

seconds, 50°C of 15 seconds, 60°C for 4 minutes, repeated for 25 cycles, then held at 

4°C prior to purification of the extension products.

Excess dye terminators were remove by ethanol precipitation. The 20 pi contents of 

each PCR tube was added to 2 pi 3 M sodium acetate (pH 4.6) and 50 pi 95% ethanol 

in a 1.5 ml microcentrifuge tube, vortexed and incubated on ice for 10 minutes. After 

centrifuging in a microcentifuge at maximum speed for 15 minutes, the ethanol 

solution was aspirated with a micropipetter and discarded. The DNA pellet was 

washed by adding 250 pi 70% ethanol. The ethanol solution was discarded, and the 

pellet dried in a vacuum centrifuge.

The DNA pellet was re-suspended in 6  pi loading buffer (deionized formamide and 25 

mM EDTA (pH8 ) containing 50 mg/ml Blue dextran in a ratio of 5:1 formamide to 

EDTA/Blue dextran), denatured by incubating at 90°C for two minute and 1.5 pi of 

each sample run on a 36 cm well-to-read polyacrylamide gel.
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2.2.4 Screening a human placental DNA library with vSag-related probes.

A library of human placental DNA, partially digested with Mbo I, was constructed using 

standard techniques in the X Dash replacement vector (provided by Dr F E May).

Large petri-dishes (140mm diameter) were prepared by adding agar (1%) to Phage- 

broth (0.5% w/v yeast extract, 1% w/v bacto-tryptone, 300 mM NaCI, 0.2% maltose,

10 mM MgS0 4 ) which was autoclaved and cooled to 60°C prior to pouring. Surface 

moisture was dried off the plates by placing inverted in a 37°C incubator. Top agarose 

was prepared in a similar manner (but containing only 0.65% agarose) and cooled to 

48°C in a waterbath. When the plates were sufficiently dry and the top agarose was at 

the correct temperature, 0.5 pi of the X phage placental library was added to 250 pi of 

P2 PLK cells (which had been cultured overnight in L-broth containing 0.2% maltose, 

centrifuged and resuspended in 10 mM MgS0 4  to give an OD®°° of 0.8) in a sterile 13 

ml tube (one per plate). The phage were allowed to adsorb by incubating at 37°C for 

15 minutes, after which 7.5 mis of the top agarose was added to the tube and the 

contents poured onto the agar plates. The bacteria were spread out over the surface 

of the agar by carefully swirling the petri-dish. The plates were incubated at 37°C 

overnight to produce lysis. The number of plaques per plate was determined which 

resulted in the plaques filling the surface of the plate and just touching each other, but 

without producing confluent lysis.

Transfer of phage DNA to nitrocellulose

Recombinant phage were transferred to circular nitrocellulose filters of sufficient size 

to cover the surface of the plate. The filters were placed onto the agarose surface and 

left for 10 minutes. The orientation of the filter with respect to the plate was marked 

during this period, by making a non-symmetrica! pattern of four holes in the outer 

region of the filter using a sterile needle. This pattern was also marked on the base of 

the plate with a permanent marker pen. The filters were removed from the plate after 

10 minutes and placed plaque-side up on Whatman paper to dry, for at least 1 hour.
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The dry filters were then laid sequentially onto the surface of three transfer solutions, 

for 10 seconds each. The transfer solutions (in the order of the treatment sequence) 

were made up of ; 0.2 M NaOH /1.5 M NaCI (denaturing solution); 0.4 M Tris-HCI (pH 

7.5) / 2 X SSC (neutralising solution) and 2 x SSC alone (wash solution). The treated 

nitrocellulose was blotted nominally dry and then dried under vacuum for 2  hours at 

80°C.

Preparation of probes for screening the placental DNA library

The placental DNA library was screened with ^^P-labelled DNA probes synthesised 

from the human vSag related sequences. PCR products of HRCIand HRC2 were 

purified prior to use as hybridisation probes. 1 0 0  pi of chloroform was added to each 

PCR product (100 pi + mineral oil). The mixture was vortexed, then centrifuged for 3 

minutes at 5000 rpm and the aqueous phase transferred onto 150 pi 

phenol:chloroform. 50 pi of TE pH 8  was added back to the chloroform, revortexed, 

recentrifuged and the aqueous phase transferred onto the phenohchloroform. This 

was vortexed thoroughly and centrifuged for 5 minutes at 10000 rpm. The supernatant 

was transferred onto 150 pi chloroform and reextracted. Meanwhile the 

phenoI:chloroform was back extracted with 100 pi TE pH 8 , reextracted on the 

chloroform and the combined aqueous phases collected in a fresh Eppendorf tube.

0.2 pi glycogen, 5 pi 5M NaCI and 600 pi ethanol was added and the DNA precipitated 

overnight at -20°C. After centrifuging for 10 minutes at 15000 rpm, the DNA pellet was 

washed in 500 pi 70% ethanol, recentrifuged and dried under vacuum. The DNA was 

redissolved in 25 pi 1/10 TE and passed over a sephadex G50 minicolumn 

equilibrated with 1/10 TE. Each sample was eluted with 300 pi 1/10 TE, and 6  x 50 pi 

fractions collected. 2.5 pi of each fraction was analysed on a 0.8% agarose minigel 

alongside DNA markers. The fractions containing >10ng DNA were combined and the 

final concentration estimated.
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High specific activity DNA probes were produced by incorporating ^^P-dCTP into the 

purified PCR products. This method employs DNase I to introduce single strand 

breaks (or “nicks”) into the template, which the allows the enzyme DNA polymerase I 

to start removing nucleotides at these breaks, replacing them with radiolabelled 

nucleotides which are introduced into the reaction mixture. The synthesis of all probes 

was carried out using a commercial nick translation kit (Pharmacia) with 10 ng DNA in 

a volume of 10 pi (scaled up as necessary). The DNA was first denatured by heating 

at 98°C for 3 minutes, then a reaction set up containing the DNA, 20 pM (dATP, dGTP 

and dTTP), 0.5 MBq ^^P-dCTP, 0.5 units DNA polymerase I and 10 pg DNase I. (This 

mixture, made up from the kit components, also contained Tris-HCI, MgCb, glycerol, 

bovine serum albumin and 2 -mercaptoethanol; at concentrations not specified by the 

manufacturers). Following incubation for at least 1 hour at 37°C, the reaction was 

terminated by the addition of Nick stop buffer. DNA was separated from 

unincorporated nucleotides by passage over a sephadex G50 minicolumn, eluting with 

300 pi TE pH 8 . Incorporation of the ^̂ P label was determined by absorption of a 1 pi 

aliquot of the probe onto filter paper and measuring counts per minute (cpm) in a 

scintillation counter.

Hybridisation

Hybridisations of the filter bound DNA were carried out in double heat-sealed plastic 

bags, submerged in a waterbath at 37°C. A 88.5% volume hybridisation mix was used, 

the volume being made up with salmon sperm DNA (4 mg/ml stock) for the 

prehybridisations and with salmon sperm plus probe in the case of the hybridisations. 

The stringency of the hybridisation was determined by the percentage of formamide in 

the hybridisation solution. For high stringency reactions both prehybridisation and 

hybridisation solutions contained 50% recrystallised formamide. In addition the 

prehybridisation and hybridisation solutions contained 4 x SET (100 mM Tris, 0.6 M
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NaCI, 10 mM EDTA), 0.1% sodium pyrophosphate, 0.25 mg/ml yeast RNA, 0.2% 

filtered SDS and 5 x Denhardt’s solution (0.1% ficoll, 0.1% polyvinylpyrolidone and 

2 0 0  pg/ml bovine serum albumin).

The prehybridisation solutions were made up allowing 5 ml per filter and approximately 

% of this total volume put into a 140 mm petri-dish. Filters were then soaked in the 

dish, one at a time to form a stack, taking care not to trap air between them and the 

remaining prehybridisation solution added. Prehybridisations were carried out 

overnight at room temperature with the petri-dishes placed on a rotary shaker.

Filters were hybridised with a mixture of the probes HRC1 and HRC2 in 50% 

formamide. Screening was carried with each probe at 10 kBq/ml. The appropriate 

volume of probe was added to salmon sperm DNA (to give 10% of the hybridisation 

volume) and denatured by adding 10 M NaOH to a final concentration of 0.7 M. After 

1 0  minutes at room temperature, the probe solution was neutralised by adding ION 

HOI. The resulting solution then had a volume of 11.5% that of the final hybridisation 

volume. The denatured probe/salmon sperm DNA was then mixed with the required 

volume of the 88.5% hybridisation solution, such that the final solution had a 

composition of 0.6 M NaCI, 20 mM EDTA, 200 mM Tris-HCI (pH 8 ), 0.1% sodium 

pyrophosphate, 5 x Denhardt’s, 250 pg/ml yeast RNA, 0.2% SDS and either 25% or 

50% recrystallised formamide. The filters were stacked in the petri-dish as before, but 

then transferred to a sealing bag (as a stack) and the remaining solution added. The 

bags were sealed, taking care to exclude air bubbles, and hybridised for 48 hours at 

37°C.

The filters were washed in 2 x SSC / 0.1% SDS at room temperature for 30 minutes (2 

X 15 minutes), followed by 2 hours (2x1 hour) at 65°C. After drying on filter paper, the 

nitrocellulose filters were exposed against preflashed X-ray film at -70°C.
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Second round screening

Agarose plugs corresponding to positive hybridisation signals on the autoradiographs 

were removed from the relevant plate with a sterile loop, after cutting the surface with 

the “wrong” end of a pasteur pipette. The positive recombinant phage were allowed to 

diffuse out of the agarose into 2 ml of TMG/NaCI overnight. The positions of the 

positive plaques were identified by marking the positions of the four holes in the filter 

onto the film and aligning the plates on top of the film. The phage obtained from the 

agarose plugs were not pure at this stage (due to the high plaque density) and further 

rounds of screening were required to isolate the phage containing the hybridising 

DNA. For the second round of screening, the phage obtained from positive first round 

plaques were diluted (10 pi phage in 1 ml TMG/NaCI) and plated out on P2 PLK cells, 

as described above (except using 90mm plates). lOOpI diluted phage was added to 

100 pi P2 PLK cells and preadsorbed for 15 minutes prior to adding 2.5 ml top agarose, 

which was immediately poured onto the prepared 1% agar plates. After overnight 

incubation at 37°C, the phage DNA was transferred to nitrocellulose filters and 

hybridised with ^^P-labelled DNA probes, as for the first round.

Third and forth round screening

Positive plaques were removed from the second round plates using the tip of a 

pasteur pipette to cut the top agarose while gently applying suction to lift the gel plug. 

The plaques were put into 1 ml TMG/NaCI and left to diffuse into the buffer overnight. 

The phage were diluted (4 pi phage in 50 pi TMG/NaCI) and preadsorbed with 150 pi 

P2 PLK cells, then poured onto prepared agar plates in 2.5 ml top agarose as 

described above. Filters taken from these plates were hybridised as before. A fourth 

round of purification, following the third round protocol, gave pure recombinants for 

isolation.
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2.2.5 Preparation of DNA from recombinants isolated from the DNA library 

Preparation of high titre lysates

Pure phage plaques containing hybridising DNA were placed into 500 pi TMG/NaCI in 

14 ml bacteriology tubes. After eluting overnight at 4°C, 50 pi P2 PLK cells (0.8 0D®°°) 

were added, preadsorbed for 20 minutes at 37°C and then cultured overnight in 10ml 

L-broth containing 10 mM MgS0 4  (shaking vigorously in 100 ml flasks at 37“C). 

Following centrifugation at 2500 rpm (Beckman JS 13 rotor), the supernatants were 

transferred to Wheaton vials and two drops of chloroform added to ensure complete 

lysis. The titre of the lysates was determined by plating out a series of P2 PLK cells 

which had been preadsorbed with 10 fold dilutions of the phage lysates. By counting 

the number of plaques per plate, the plaques per ml of each lysate was calculated.

The high titre lysates were sealed with parafilm and stored at 4°C.

Large scale preparation of phage DNA

PLK cells were cultured in 100 ml L-broth containing 0.2% maltose (shaking vigorously 

in a 1 litre flask at 37°C) to an 0D®°° of 0.4. Following centrifugation at 2500 rpm 

(Beckman J 10 rotor), the cells were resuspended in 20 ml 10 mM MgS0 4  and 

aerated for 1 hour at 37°C. 2 ml PLK cells were preadsorbed with phage high titre 

lysates (2x10® phage plaque forming units), then added to 500 ml prewarmed L-broth 

containing 0.01 M MgS0 4  and incubated overnight in 2 litre flasks at 37°C with 

vigorous shaking. 5 ml chloroform was then added to each flask to help lyse the cells 

and incubated for a further 1 hour at 37°C. After adding 50 pi RNase (10 mg/ml) and 

500 pi DNase (1 mg/ml), the flasks were Incubated at room temperature for 30 

minutes. Then 29.2 g NaCI was dissolved in each solution and incubated on ice for 1 

hour. The solutions were transferred to 500 ml centrifuge tubes and spun for 10 

minutes at 10000 rpm (Beckman J 10 rotor). The supernatants were poured back into
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the flasks (which had been washed) and mixed with 50 g PEG 6000. After incubating 

on ice overnight, they were centrifuged for 20 minutes at 10000 rpm (Beckman J 10 

rotor) and the supernatant discarded. The pellets were resuspended in 10 ml 

TMG/NaCI and added to 8  ml chloroform in 30 ml Corex tubes. The tubes were sealed 

with parafilm, vortexed thoroughly and centrifuged for 1 0  minutes at 8000 rpm 

(Beckman JS 13 rotor). The supernatants were then transferred to sterile tubes 

containing 9 g CsCl and mixed by inversion to dissolve the CsCI. Each solutions was 

transferred to “quick seal” Beckman centrifuge tubes, balanced and sealed excluding 

all bubbles. They were then centrifuged in a vacuum at 38000 rpm (Beckman 70TC 

rotor) at 16°C for 36 hours. Following centrifugation, the phage band visible on the 

CsCI gradient was aspirated by piercing the tube with the needle of a syringe. The 

contents of each syringe was emptied into dialysing tubing (which was knotted leaving 

air under pressure in the tubing) and placed in a 1 litre cylinder of dialysing fluid 

containing 10 mM MgCL, 10 mM NaCI and 50 mM TRIS-HCI (pH 8 ). After 150 

minutes with 5 changes of dialysing fluid, the contents of the tubing was transferred to 

Eppendorf tubes, adding 0.5 M EDTA (1:25), Proteinase K (1:40) and 20% SDS (1:40) 

to the estimated volume in each tube. After incubating for 1 hour at 6 8 °C, the phage 

DNA was extracted by adding to 2 ml phenol:chloroform in a series of Corex tubes. 

These were vortexed thoroughly and centrifuged for 5 minutes at 10000 rpm 

(Beckman JS 13 rotor). The aqueous phase of each tube was transferred to 2 ml 

phenol:chloroform in a second series of Corex tubes, then vortexed and centrifuged 

as before. The aqueous phase was then transferred to 2ml 4% isoamylalcohol in 

chloroform, vortexed, centrifuged and the aqueous phase transferred to a forth series 

of Corex tubes. The extraction was repeated adding 1 ml TE pH 8  to the first series of 

Corex tubes giving an estimated final volume of 2 ml in the forth series, to which 40 pi 

5 M NaCI and 5 ml ethanol was added to precipitate the DNA. After centrifugation the 

DNA pellet was washed in 75% ethanol (leaving at room temperature for 30 minutes).
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recentrifuged and the pellet dried under vacuum. The DNA was redissolved in 100- 

300 pi TE pH 8  (depending on the size of the pellet) and the yield estimated by 

running 1 pi EcoRI digested DNA on a minigel alongside a X Hind\\\ marker.

2.2.6 Preparation of murine probes to the conserved regions of vSag.

The oligonucleotide primers specific for vSagCland vSagC2 were combined as shown 

below (each primer at 100 pg/ml). The 1.5 kb Pst 1 fragment of MMTV 3’LTR DNA in 

the plasmid pBR322 was linearised prior to PCR amplification by digestion with Psti 

and the concentration adjusted to 1 pg/ml. Two 50 pL PCR reactions were carried out 

for each primer pair with an MMTV plasmid concentration of 50 ng/ml and each PCR 

primer at 4 pg/ml. The thermal cycler settings were 94^C dénaturation for 90 seconds, 

50°C annealing for 30 seconds and 72°C extension for 30 seconds, followed by 30 

cycles of 94°C, 50“C and 72°C each for 30 seconds, with a final extension at 72°C for 

1 2 0  seconds.

Primer pair 1: MMTV 3’LTR sense 210 TCTGCTGCAAACTTGGCATAGC
(vSagCI ) antisense 279 GGGCTCTCACCCTTGACTCTTT

Primer pair 2: MMTV 3’LTR sense 661 CAAAATAGGAGACAGGTGGTGG
(vSagC2) antisense 821 CGTGAAAGACTCGCCAGAGCTA

The PCR products were run on 3% agarose minigels (1 g agarose type 1, 2 g Nusieve 

in 100 mis TBE) containing 0.5 pg/ml ethidium bromide. The products of primer pair 1 

and 2 were of the predicted sizes for vSagCI (92 bp) and vSagC2 (182 bp). The PCR 

products were purified prior to use as hybridisation probes as described in 2.2.4.
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2.2.7 Screening a human placental DNA library with murine probes under 

reduced stringency conditions.

Screening of a non-ampiified human genomic library was undertaken as described 

2.2.4, using freshly prepared plates with the same X phage placental library stock, and 

the recombinant phage transferred onto nitro-celiulose filters. The placental DNA 

library was screened with high specific activity DNA probes produced by incorporating 

®^P-dCTP into the purified PCR products vSagCI and vSagC2 as described in chapter 

two.

Hybridisation of the filter bound DNA was carried out in double heat-sealed plastic 

bags, submerged in a waterbath at 37°C. A 88.5% volume hybridisation mix was used, 

the volume being made up with salmon sperm DNA (4 mg/m! stock) for the 

prehybridisations and with salmon sperm plus probe in the case of the hybridisations. 

In order to reduce the stringency of the hybridisation reaction, the percentage of 

formamide in the hybridisation solution was reduced to 25%, and each round of 

screening was carried out under these conditions. Filters were hybridised for 72 hours 

at 37°C with a mixture of the probes vSagCI and vSagC2. To take account of the size 

difference between the probes, hybridisation was undertaken with vSagCi at 10 

kBq/ml and vSagC2 at 15 kBq/ml.

For filters hybridised under reduced stringency conditions, two wash solutions were 

prepared. Solution one: 3 x SSC, 0.2% SDS, salmon sperm DNA (0.01 mg/ml) and 

0.1% sodium pyrophosphate. Solution two: 25% formamide, 5 x SSC, 0.2% SDS, 

salmon sperm DNA (0.01 mg/ml) and 0.1% sodium pyrophosphate. The filters were 

initially rinsed 4 times in solution one, including a 15 minute wash at room 

temperature. They were subsequently washed at 37^C for 2 hours (2x1 hour) in
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solution two, followed by 90 minutes (3 x 30 minutes) in solution one. After drying on 

filter paper, the nitrocellulose filters were exposed against preflashed X-ray film at 

minus 70°C. Agarose plugs corresponding to positive hybridisation signals on the 

autoradiographs were removed from the relevant plate and further rounds of 

screening undertaken to isolate the X clones containing the hybridising DNA. 

Recombinant X phage DNA was prepared as described in 2.2.5.

2.3 Results

2.3.1 PCR amplification of vSag and human vSag reiated products

Specific PCR primers for the two conserved regions of vSag (vSagCI and vSagC2) 

and for the intervening region (vSagC1-C2) were synthesised to allow investigation of 

potentially related vSag sequences in human genomic DNA. The PCR assay 

conditions were optimised using a 3'LTR MMTV containing plasmid and murine DNA 

(MMTV C3hT̂  or GR"̂ ). PCR products of the predicted size were generated for each 

primer pair when the plasmid containing the 1.5 kb Pst\ fragment of the MMTV 3’ LTR 

was used as the template and identical sized band were obtained with the C3H and 

GR murine DNA (figure 2.2). The predicted size of the PCR products amplified by 

each primer pair is shown in Table 2.1.
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Primer pair Sense (SN) 
primer

Antisense 
(ASN) primer

Region of 
MMTV LTR 
amplified

PCR product 
size (bp)

1 2 1 0 279 Cl 91
2 661 821 C2 182
3 2 1 0 689 C1-C2

Intervening
region

501

Table 2.1 Predicted size of vSag PCR products. Sequence specific PCR primers 
were selected to allow amplification of the conserved regions of vSag (vSagCI and 
vSagC2) and the intervening region. The numbers in columns two and three refer to 
local primer reference numbers.

These sequence specific primers were used to amplify PCR products from normal 

human placental DNA. More than one distinct band was visible for each primer pair 

when human placental DNA was used as the template, some of which were of similar 

size to the murine PCR product. PCR reactions were carried out at different annealing 

temperatures (45°, 50° and 55°), the lower temperatures producing less stringent 

conditions. At an annealing temperature of 45°, at least three additional bands were 

visible using primer pair 1. Primer pair 2 gave two distinct products, while primer pair 3 

generated four bands in addition to the predicted 500bp product of the murine vSag 

(figure 2.2). With primer pair 1, a faint band was consistently identified in the absence 

of template DNA. This band was of similar size to the 91 bp product amplified from 

3’LTR MMTV, but was still present after new reagents were used, making it unlikely 

that it resulted from contamination with MMTV DNA.
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As there was more than one PCR product in each reaction, all of which warranted 

investigation, the PCR products were cloned rather than directly sequenced. A TA 

cloning vector (pCR, Invitrogen) was used, which takes advantage of the non-template 

dependent activity of Taq polymerase which adds a single deoxyadenosine to the 3’- 

end of duplex molecules. The resultant 3’ A-overhangs are used to insert the PCR 

product into the vector which contains single 3’ T-overhangs at its insertion site. The 

different sized PCR products amplified from human DNA at an annealing temperature 

of 45°C were investigated. The PCR products from reactions using primer pair 1 (SN 

210, ASN 279), primer pair 2 (SN 661, ASN 821 ) and primer pair 3 (SN 210, ASN 

689) resulted in the isolation of 6 , 2, and 4 different sized recombinants respectively 

(Table 2.2). The recombinants derived from each PCR product were then sequenced 

and analysed for homology to murine vSag.

2.3.2 DNA sequence analysis of potential human vSag-related PCR products

The purified recombinants isolated from normal human placental DNA were 

sequenced to identify those with greatest homology to murine vSag. Sequencing was 

performed using an ABI 377 DNA Sequencer (Perkin Elmer) with forward and reverse 

universal primers as described in section 2.2.3. The DNA sequence size of each PCR 

product derived from human DNA using primer pairs 1, 2 and 3 are shown in Table

2 . 2  and sequence data for the recombinants in Table 2.3.
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Sequence No. Primer pair Target DNA Target DNA 

sequence size

Human DNA 

sequence size

1 1 vSagCI 91 96

2 1 vSagCI 91 128

3 1 vSagCI 91 128

4 1 vSagCI 91 169

5 1 vSagCI 91 192

6 1 vSagCI 91 2 1 1

7 2 vSagC2 182 176

8 2 vSagC2 182 214

9 3 vSagC1-C2 501 183

1 0 3 vSagC1-C2 501 351

1 1 3 vSagC1-C2 501 391

1 2 3 vSagC1-C2 501 539

Table 2.2 Sizes of cloned PCR products amplified from human placental DNA 
with sequence specific primers for vSagCI, vSagC2 and the intervening region 
(vSagC1-C2). PCR products were cloned directly into the pCR vector (Invitrogen), 
without prior agarose purification to separate fragments. PCR products of a size 
closest to the murine sequences are highlighted in red.
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Seq.
No

Target
DNA

DNA SEQUENCE

1* vSagCl TCTGCTGCAA
TCACAGGAAT

ACTTGGCATA
TCGAGGGCTC

GCTCTGAGTT
TCACCCTTGA

CAACCATTTC
CTCTTT

TGCTGCGTTC GCAGCTGGTC

2 vSagC 1 TCTGCTGCAA
CAAGGAGCAT
GACTCTTT

ACTTGGCATA
TTCTACAACC

GCCCAAATCA
TCTGCTGCCT

CTCCATGAAA
CTACCGCAAA

TTGGGGTGTG
TGAAACGGGC

GCATCTGCCT
TCTCACCCTT

3 vSagCl TCTGCTGCAA
TGAGGAAAAG
GACTCTTT

ACTTGGCATA
CAGAAATGCC

GCTGAAAATA
CATCTGGACA

CCAATTAATT
CTAAGAGAAT

TTCAATAGTC
CCCTGTGGGC

CAGCCCATCA
TCTCACCCTT

4 vSagCl TCTGCTCCAA
GTGAAAAGAA
TGGAAAAGGT

ACTTGGCATA
TGACTGTAAT
GGACATGCTA

GCATTTACCA
GGGCCCCTGA
GGGTGGTGGG

AAATTTGCCA
GCCTTGCAGG
CTCTCACCCT

GAGCAGACAG
GAGTATCTGG
TGACTCTTT

GCATCTCCAT
TCTCCATGAA

5 vSagC 1 TCTGCTCCAA
CGCTTTTCCT
CAGGGTGGTT
CCTTGACTCT

ACTTGGCATA
CCCTGGATCA
TTGCTCTCCA
TT

GCTGCTGTCA
CGCATTACAA
AGGACATTTG

GGTGACTGAA
GTACATGCTT
GCAACTTCTG

GCATTTGGAC
TTGAAACAGT
GAGAAACTTA

TTGAGAAGAA
GCTTCTGAAC
GGGCTCTCAC

6 vSagCl TCTGCTCCAA
GTATCCTCAT
GGATGTCATA
TTTCATCCTG

ACTTGGCATA
CTGTGAAATG
AAGGCACCTC
GGCTCTCACC

GCATGAGCTT
TAGGTAATTA
CCATCATTAA
CTTGACTCTT

AGCCAAGTTA
TCTCCACCTC
CAGCTGTGTG
T

ATTAACCTCT
ATACCACTGG
GCCGGAGAGG

CTGGNCCTCC
GGTAATGGCT
CCATGGGCTC

7 * vSagC2 CAAAATAGGA
GGTGACAGGT
CGAGTCGCAT

GACAGGTGGT
AACAACCTGA
TTCCGCATAG

GGAGGGTGGG
GGCACTGGAG
CGCCTCCTTC

ATCTGCCTGC
AGGGAGAGCA
AGACCGTGAA

CGAGAACGAG
CGCGTGATGT
AGACTCGCCA

GAAGGGCATC
TCCTCAGAAA
GAGCTA

8 vSagC2 CAAAATAGGA
AGTGCCGGGA
AACAGGATCT
CAGCAAGCGC

GACAGGTGGT
CCCTTGGCAA
TGGTAGTCAA
TCCGTGAAAG

GGTAAATGCC
GCCGCCTGGG
GGGGTTGGAG
ACTCGCCAGA

TATGTGGACA
CTCTCTGACA
AGATGGAATG
GCTA

CAGTCCCACT
CTCAGCCACT
GACGGGGCAG

GCTGCTGCTC
CTGCCTGTGA
GCCAGGCACT

9 vSagCl-C2 TCTGCTGCAA
TGGATGGATG
AATAAGACTA
GAC

ACTTGGCATA
GCCAGATGGG
CCTTCAGTTA

GCACTGGCAC
CTAGTAGGCA
TTGGTACAAT

TCAGTAGACC
AGTAGTTACG
CCTTTATCAT

CTGGACAAGA
GAGGACAGGG
CATCCAGCTC

ACTGCATGGA
AAGAATAAGG
TCTTTGTTCT

1 0 vSagCl-C2 TCTGCTGCAA
GGAAGATCCA
CAGCACACAC
CAAAACCCAG
CAACCAACTG
AAATATAGAC

ACTTGGCATA
ACCTTGAAGA
CTAAGAGAGC
AATCCCAGGA
GCCAAAACAG
TTCCCAAGAG

GCCCCCAAAG 
TTACAGAAGA 
AGGACATCTG 
GACCTAGGAC 
AGGAGCCAGA 
TGAAGACAG' :

GCCTCTGGGA
CGTGAGGCAA
AAGGCTATAG
AGAAGGAACT
GCGAAGCCTA
GGACTTATAG

GTGAGCAGTG
CTGGTTCTTT
AAGCCAGTCC
GAAAAAGTGA
GAAATGTTGA
GGGACCTTAC

GTTCACTTTG
TTCTAGACAA
ACAATAATGT
TGAAAAATGG
TGATTCGGGA
A

11 vSagCl-C2 TCTGCTGCAA
AGCAAATGGG
CTGGTGACGC
TTC TTTTTTA
AAACTACTAC
AAATGCTACT
GAATTATAAG

ACTTGGCATA
AGTTCAACCT
TGTGGTCTTC
GGACTGTGAT
ACCCTGAAGT
TCTAGATTTG
GGACTTATAG

GCTCAGGATG
GCTCATGTGT
TACTGTCCAA
GCTCTGAGTT
TTCATCTTTG
GGAGGCTCCC
GGGACCTTAC

TCATCAGAAA
GAAAATGCTG
CAGTGGTATC
GCAGTTCAGG
TATGCAATTA
ACTGTCCACA
A

CATCTTCTTT
GTGCGTCTGG
CACAGTACAT
AACATCTCCC
GTTACTAAGT
AGGGTGACCA

GAAAGTAGTA
GTTTACCCAG
CAGCCTCAAT
CTAGGAATCC
ACACTGAATC
CTACGAGTCT

1 2 vSagCl-C2 TCTGCTGCAA
TAAGAAAAGA
AGGACTAAGA
GAGAAGCAGC
CATTTGCTTT
CTTTTTCAGT
GAACAAAGAG
CTTATTCTTC
CCATGCAGTT

ACTTGGCATA
CAGTGCCTGT
GATTCTTGGA
CTGGTATATA
GAGACTCCCA
AGGAAACCCC
AGCTGGATGA
CCTGTCCTCC
CTTGTCCAGG

GCCCACAGCT
TGTGGTCTGT
ACCTAGTTTT
GAAAGATCAT
CTCTCCATGT
CAGTTTTAAT
TGATAAAGGA
GTAACTACTT
GTCTACTGAG

CCAATATCTA
TAACATGATA
ATCAATATAG
TGAATATGAA
AAACAGGAAT
ATCTGAGATT
TTGTACCAAT
GCCTACTAGC
GTCCAGTGCT

GTCCAGTGTT
ATCATTTCAG
CCAGTAGTAC
GTCAGAATGC
ATCTTTGGTG
GTGTTATGAG
AACTGAAGGT
CCATCTGGCC
ATGCCAAGTT

GGTGGCTAGT
GGGGTTCTTA
TTGTTGAACA
CAAATGTGTC
TGCATGCATC
GCTTAAGTCA
AGTCTTATTC
ATCCATCCAT
TGCAGCAGA

Table 2.3 DNA sequences of cloned PCR products amplified from human 
placental DNA with sequence specific primers for vSagCI, vSagC2 and the 
intervening region (vSagC1-C2). PCR products were cloned directly into the pCR 
vector (Invitrogen), without prior agarose purification to separate fragments. The 
primer sequences are highlighted (Red: MMTV 3’LTR Sn210, Blue: MMTV 3’LTR 
Asn279, Pink: MMTV 3’LTR Sn661, Turquoise: MMTV 3’LTR Asn821, Brown: MMTV 
3’LTR Asn689). Sequence 1 and 7 shared greatest homology to murine vSagCI and 
vSagC2 respectively. Only the 5’ sense primer (MMTV 3’LTR Sn210) was present in 
sequence 9. Sequence 12 had the same primer at each end, with a 3’ antisense copy 
of MMTV 3’LTR Sn210.
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2.3.3 Sequence analysis for homology to vSag

Homology of human placental DNA derived sequences to murine vSag was assessed 

using the ‘microgenie’ computer software (Beckman) of Queen and Korn (231). The 

human DNA sequences with the greatest homology to murine vSagCI and vSagC2 

were sequence 1 and sequence 7 respectively. No human sequences were identified 

with significant homology to the region between the two conserved regions (vSagCI- 

C2). None of the remaining ten PCR products had open reading frames, and were 

less homologous to murine vSag. Two of these sequences (sequence 9 and 12) were 

difficult to explain as the sequences of both PCR primers could not be identified. The 

3' antisense primer sequence was not identified in the 183 bp product generated using 

primer pair 3 (sequence 9). The sequence of the vector’s multiple cloning site was 

accurate when sequenced using both forward and reverse primers, indicating a 

satisfactory sequencing reaction. The PCR product may have been cleaved prior to 

ligation into the cloning vector, although there was no sequence similarity with the 

other products identified using this primer pair. The 539 bp product generated with 

primer pair 3 (sequence 12), although of similar size to the murine vSag product, was 

found to have the complementary sequence to the sense primer Sn201 at the end of 

the PCR product instead of the antisense primer Asn689. This PCR product will have 

resulted from the presence of a DNA sequence the reverse of (but the same sense 

as) the primer Sn210 downstream from the complementary sequence to which the 

Sn210 primer had annealed. Extension of the PCR product would produce a 

sequence complementary to Sn210 to which this primer could then anneal, allowing 

the polymerase chain reaction to proceed.

The 96 bp product of primer pair 1 (sequence 1) had a similarity index 

(matches/length) of 71 % to the first constant region of murine vSag (vSagCI ) with 

47% homology when the PCR primer sequences were excluded from the analysis.
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The 176 bp product of primer pair 2 (sequence 7) had a similarity index of 52% to the 

second conserved region of murine vSag (vSagC2) with 38% homology between PCR 

primers (figure 2.3). These sequences were not found on a DNA database search, 

and have subsequently been referred to as HRC1 (human-related C l) and HRC2 

(human-related C2). Homology to vSag was not found in any of the other sequences 

and there was no homology between the different sequences amplified using the 

same primers.

A

v S a g C l TCTGCTGCAAACTTGGCATAGCTCTGCTTTG. . CCTGGGGCTATTGGGG. . GAAGTTGCGGTTC. GTGC. . T . CGCAG 
S eq  1 TCTGCTGCAAACTTGGCATAGCTCTGAGTTCAACCATTT. CTGCTGCGTTCGCAGCTG. GTCTCACAGGAATTCG. AG 

* * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * *  * * * * * * * *  * * *

v S a g C l GGCTCTCACCCTTGACTCTTT 
S eq 1 GGCTCTCACCCTTGACTCTTT

M a tc h e s  70 M is m a tc h e s  18 U n m a tc h e d  11

L e n g th  99 M a tc h e s /L e n g th  71% M a tc h e s /L e n g th  ( e x c lu d in g  p r im e r s )  47%

B

vS agC 2 CAAAATAGGAGACAGGTGGTGGCAACCAGGGACTTATAGGGGACCTTAC. ATCTACAGACCAACAGATGCCCCCT. . T
S eq 7 CAAAATAGGAGACAGGTGGTGGAGGGTGGGATCTGCCTGCCGAGA.. ACGAGGAAGGG. . CATCGGTGACAGGTAACA 

* * * * * * * * * * * * * * * * * * * * * *  *  *  *  *  *  *  *  *  *  *  *  *  * * * *  *

vS agC 2 ACCATATACA. . GGA. AGATATGACTTAAATTGGGATAGGTGGGTTACAGTCAA. TGGC. TATAAAGTGTTATATAGAT
Seq 7 ACCTGAGGCACTGGAGAGGGA. GAGC. . ACGCGTGAT. GTTC. CTCAGAAACGAGTCGCATTTCC. GCATAGCGCC. . T 

* * * * * * & * * * * * * * * * * * * * * * * * * * * * * * *  * * *

vS agC 2 CCCTCCCTTTTCGTGAAAGACTCGCCAGAGCTA
S eq 7 CCTTCAGAC. . CGTGAAAGACTCGCCAGAGCTA 

*  * * *  * * * * * * * * * * * * * * * * * * * * * *

M a tc h e s  99 M is m a tc h e s  69 U n m a tc h e d  22

L e n g th  190 M a tc h e s /L e n g th  52 . 1% M a tc h e s /L e n g th  ( e x c lu d in g  p r im e r s )  38%

Figure 2.3 DNA sequence homology between murine vSag and human PCR 
products. ‘Microgenie’ computer software was used to analyse nucleotide sequence 
homology between murine vSag and the human PCR products amplified with vSagCI 
and vSagC2 primers. A. murine vSagCI and a human PCR product (sequence 1) 
amplified using the sequence specific primers MMTV 3’LTR Sn210 and MMTV 3’LTR 
Asn 279, and B. murine vSagC2 and a human PCR product (sequence 7) amplified 
using the sequence specific primers MMTV 3’LTR Sn661 and MMTV 3’LTR Asn821.
* Matching nucleotides
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2.3.4 Predicted amino acid sequences

The nucleotide sequences of HRC1 and HRC2 were translated using the ‘Microgenie’ 

software. The predicted amino acid sequences are shown together with the homology 

to the vSag encoded protein in figure 2.4. Both HRC1 and HRC2 sequences had 

potential open reading frames, with no translation termination codons in two of the 

reading frames of HRC1 and in one of open reading frame in the HRC2 sequence, 

multiple stop codons being present in the other reading frames. There were no 

methionine initiation codons in any of these sequences. The amino acid sequence 

homology ranged between 29% and 35% (39%-42% if including conservative amino 

acid substitutions). This homology was significantly influenced by the PCR primer 

sequences. When these were excluded, the homology between murine vSagCI and 

HRC1 was 17%. The amino acid sequence homology between murine vSagC2 and 

HRC2 was 16% between the PCR primers although this increased to 29% if 

conservative amino acid substitutions were included.
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A.HRCl 1̂'̂ open reading frame

v S a g C l  I L C C K L G I A L L C L G L L G E V A V  
HRCl L L Q T W H S S E F N H F C C V R S W S H

- - P C R  P r i m e r -  
R A R R A L T L D S  
R N S R A L T L D S

M a tc h e s  9 M is m a tc h e s 22 U n m a tc h e d  0 C o n s e r v a t iv e  s u b s t i t

L e n g th  31 M a tc h e s /L e n g th  29% S i m i l a r / L e n g t h  39%

B . H R C l  2"^ o p e n  r e a d i n g  f r a m e  

— PCR p r i m e r -
v S a g C l  C C K L G I A L L C L G L L G E V A V R A R * R A L T L D S F  
HRCl C C K L G I A L S S T I S A A F A A G L T G I R G L S P L T L

M a tc h e s  11 M is m a tc h e s 19 U n m a tc h e d  1 C o n s e r v a t iv e  s u b s t i t

L e n g th  31 M a tc h e s /L e n g th  35% S i m i l a r / L e n g t h  42%

C . HRC2 o p e n  r e a d i n g  f r a m e  

- - P C R  p r i m e r -
vSagC2 K I G D R W W Q P G T Y * R G * P Y I Y R P T D A P L * P Y T  
HRC2 K I G D R W W R V G S A C R E R G R A *  S V T G N N L R H W R

— PCR p r i m e r -
vSagC2 G R Y D L N F D R W V T V N G Y K V L Y R S L P F R E R L A R A  
HRC2 G R A R V M F L R * N E S H *  F R T A *  P P S  D * R E R L A R A

M a tc h e s  22 M is m a tc h e d 34 U n m a tc h e d C o n s e r v a t iv e  s u b s t i t

L r e n g t h  63 M a t c h e s / le n g t h  35% S i m i l a r / l e n g t h  41%

Figure 2.4 Predicted amino acid sequence homology between murine vSag and 
human PCR products. Homology between the conserved regions of the murine vSag 
protein and the predicted amino acid sequences of human PCR products HRC1 and 
HRC2, amplified using sequence specific primers for vSagCI and vSagC2, was 
assessed using ‘Microgenie’ computer software.
A, B: potential open reading frames of sequence HRC1. C: potential open reading 
frame of HRC2. Regions representing PCR primer sequences are indicated. Matching 
amino acids highlighted in red. Conservative amino acid substitutions highlighted in 
pink.
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Isolation of vSaa-related DNA sequences from a genomic library

In order to investigate the human genomic loci containing vSag-related sequences, a 

human placental DNA library was hybridised with the human sequences HRC1 and 

HRC2, and the X Dash clones containing these sequences were isolated. 

Hybridisation of the genomic library with vSagCi and vSagC2 DNA under reduced 

stringency conditions was undertaken to allow the identification of additional human 

DNA sequences with significant homology to murine vSag.

2.3.5 Screening of human placental DNA library with human vSag-related PCR 

products

Screening of the human placental DNA library with HRC1 and HRC2 probes under 

high stringency conditions resulted in the identification of 9 À dash recombinants 

containing DNA which hybridised to HRC2. No recombinants hybridising to HRC1 

were identified. An example of screening is shown in figure 2.5. This figure illustrates 

the general pattern observed throughout the screening of the library; i.e. a single first 

round hybridisation signal giving multiple positive signals in the second round stage, 

with the vast majority of the third round plaques hybridising to the probe.
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#

1st round screening 2nd round screening 3rd round screening

Figure 2.5 Screening of a placental DNA library with a combination of HRC1 and 
HRC2 DNA. Phage DNA was transferred to nitrocellulose as described in Materials 
and Methods. Filters were hybridised with ^^P-labelled DNA probes at 37°C, in a 
mixture containing 50% formamide. Plaques which gave hybridisation signals were 
removed and the recombinant phage were purified by two further rounds of screening 
(as described in Materials and Methods). The figure shows the autoradiographs 
corresponding to the three rounds of screening.

2.3.6 Screening of human placental DNA library with murine vSag probes

Screening under reduced stringency (25% formamide) with probes amplified from the 

Cl and 02 regions of murine vSag resulted in the isolation and purification of 32 X 

dash recombinants. Examples of positively hybridising DNA recombinants are shown 

in figure 2.6. Hybridisation with the murine vSag derived probes gave varying 

strengths of signal. Recombinant 38a is an example of one of the most strongly 

hybridising recombinants detects, while 39b is one of the weakest.
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Figure 2.6 Screening of a placental DNA library with a combination of vSagCI 
and vSagC2 DNA under reduced stringency condition. Phage DNA was 
transferred to nitrocellulose and filters hybridised with ^^P-labelled DNA probes at 
37°C, in a mixture containing 25% formamide. Plaques which gave hybridisation 
signals were removed and the recombinant phage were purified by two further rounds 
of screening. The figure shows the autoradiographs corresponding to two rounds of 
screening giving examples of strong (38a) and weak (39b) hybridisation signals.
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2.3.7 Preparation of X dash DNA

The large scale DNA preparation of 41 X dash recombinants was undertaken; 9 

hybridised to the combined HRCl and HRC2 probes, 32 hybridised to the combined 

vSagCI and vSagC2 probes. This gave yields of between 30-100 pg recombinant 

DNA. The size of the human DNA inserts was estimated after EcoRI digestion of the 

DNA, and ranged from approximately 12 kb to 20 kb.

2.4  Discussion

Using primers derived from conserved regions of murine vSag, 12 PCR products were 

amplified from human DNA, and subsequently cloned and sequences. Although the 

human PCR products of the expected size were most promising for further 

investigation, products of other sizes were also investigated, as these could have 

resulted from insertions or deletions of otherwise homologous sequences. The most 

direct method of assessing the significance of the PCR results generated from human 

placental DNA, was to clone and sequence all of the PCR products. This was 

achieved by ligating the products of each PCR reaction into a cloning vector. By 

selecting a large number of clones for each ligation it was possible to isolate a 

representative of all of the different sized bands identified in the PCR reactions (figure 

2 .2).

Of the 12 cloned PCR products, two sequences (HRCl and HRC2) were considered 

most promising for further investigation. They were selected because they had 

greatest homology to murine vSag (to the first and second conserved regions) and 

also had open reading frames, so could potentially encode protein. The sequence 

similarity indices, calculated by dividing the number of nucleotide matches by the total
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length of the sequences being compared, were 71% and 52% for the sequences 

related to vSagCI and vSagC2 respectively. However these similarity indices dropped 

to 47% and 38% respectively when only the region between the PCR primers was 

compared. (The significance of this degree of homology will be discussed in detail in 

chapter 4).

Indraccolo et ai (149) used a similar approach to amplify human DNA sequences 

using murine vSag PCR primers, although they did not select primers to the 

conserved region of MMTV LTR, but rather used a random series of primers over the 

vSag gene. PCR products amplified with MMTV LTR specific primers were 

subsequently probed with a 1.4 kb Bglll- Hpall MMTV LTR restriction fragment, 

although this probe extended over the PCR primer binding sites, limiting the 

significance of any hybridisation. They identified three PCR products that hybridised to 

the MMTV probe. None of these PCR products were of a size predicted from the 

murine vSag sequence. A primer pair giving a predicted PCR product of 591 bp 

resulted in the amplification of two products of 275 bp and 477 bp. A different primer 

pair giving a predicted PCR product of 355 bp resulted in the amplification of a 410 bp 

product. Only the 275 bp sequence had a short region of 90% homology to murine 

vSag over twenty nucleotides. None of these sequences were homologous to the 

twelve human PCR products described in this chapter.

To investigate the genomic loci from which the two human vSag related sequences 

HRCl and HRC2 had been amplified, these PCR products were used to probe a 

genomic library, The library was screened under high stringency conditions with a 

mixture of the two PCR products, resulting in the isolation of 9 A, dash recombinants. 

The characterisation of these clones is described in the following chapters.
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The strategy described above depended on the selected PCR primers having very 

precise sequence similarity to the human related DNA sequences. However, distantly 

related sequences may have been missed, despite having significant homology, if 

there were mismatches at critical residues involved in annealing of extension of the 

PCR primers. Although increasing the number of PCR cycles or using degenerate 

PCR primers would be expected to increase the number of sequences isolated, many 

of these would be irrelevant, with no homology to vSag in the DNA sequence between 

the PCR primer annealing sites. An alternative approach was therefore employed 

where the human genomic library was screened directly, with murine DNA from the 

conserved regions of vSag. Probing the placental DNA library under reduced 

stringency conditions directly with a mixture of the murine probes derived from the 

conserved regions of vSag (vSagCI and vSagC2) resulted in the isolation of 32 X 

dash clones. It was not possible at this stage to determine whether each probe was 

hybridising to clones representing unique regions of DNA, or to overlapping stretches 

of the same sequence. The relative strength of the hybridisation signals varied 

between clones, but this could have resulted from overlapping clones containing a 

shorter part to the sequence complementary to the probe.

In summary, this chapter has described the isolation of 41 DNA clones from a human 

placental DNA library, detected by probes derived from murine vSag and human 

vSag-related sequences. The next chapter will deal with the preliminary 

characterisation of these DNA isolates.
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3 CHAPTER THREE

Preliminary characterisation of X clones isolated from a placental 

DNA library using probes derived from murine vSag and human 

vSag-related sequences

3.1 Introduction

This chapter describes the initial characterisation of the X dash DNA 

recombinants isolated in chapter 2, by hybridisation analysis, restriction mapping and 

Southern blotting. Clones likely to be of greatest interest were selected for subcloning 

and sequencing (described in chapter 4) by identifying those which hybridised under 

higher stringency conditions and by looking for clones which hybridised with other 

vSag derived probes. Hybridisation analysis of specific DNA sequences was 

undertaken by “dotting" the cloned DNA of interest onto nitrocellulose filters and 

hybridising with radioactively labelled DNA probes. The stringency of the hybridisation 

reaction was controlled by increasing the concentration of formamide, thereby allowing 

the relative degree of homology of the clone to vSag to be assessed. Hybridisation of 

the clones to each probe (vSagCI, vSagC2, HRC1 and HRC2) was undertaken to 

assess whether the homology to vSag extended to adjacent DNA sequences. The X 

dash clones were also hybridised to MMTV gag, pol and env probes, to determine 

whether the isolated DNA sequences were of retroviral origin and remained in a 

proviral configuration.
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Restriction mapping and Southern blotting of digested DNA from % clones identified 

those representing overlapping fragments of DNA and determined how many different 

vSag-related sequences had been isolated. Maps of the restriction enzyme sites 

within the DNA clones were also needed for subcloning and sequencing procedures 

(see chapter 4).

3.2 Materials and Methods

3.2.1 Characterisation of X clones by Dot-Blot Hybridisation.

Dot blotting of X recombinant DNA

DNA from the 41 À dash recombinants was immobilised onto nitrocellulose in the form 

of matrices of dots, using a “Biodot" manifold (Bio Rad). Using this apparatus, sheets 

of nitrocellulose are held in a fixed position and the DNA is absorbed in a matrix of 

dots. In addition to the 41 X clones, DNA prepared from the following were included as 

controls; X dash (negative control), MMTV 3’LTR, vSagCI, vSagC2, HRCl, HRC2.

DNA was prepared for dotting using the following protocol. Phage DNA isolated with 

murine probes vSagCI and vSagC2 under reduced stringency (wells 1-32) was 

“dotted” at lOOng per well, while clones isolated under high stringency conditions with 

the human derived probe HRC2 (welts 33-41) were “dotted" at 25 ng per well. For 

control wells: lOOng X dash (negative control), 5 ng MMTV plasmid (including gag, pol, 

env and LTR) and 0.4 ng of each PCR product vSagCI, vSagC2, HRCl, HRC2. For 

each dot required for a given recombinant, the DNA was first diluted with TE, to give a 

final volume of 41.5 pi. The sample was then denatured by adding 10 pi of 1M NaOH 

and heating at 37°C for 10 minutes. After cooling on ice, the DNA solution was made 

up to a final volume of 100 pi by the addition of 15 pi of a solution of 0.3 M Tris-HCI 

(pH 8), 0.67 M HCI and 1 mg/ml ethidium bromide, followed by 33.5 pi 20 x SSC. After
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dotting, the manifold was dismantled and the filters submerged in a solution of 6 x 

SSC (90 mM NaaCitrate and 0.9 M NaCI) for 2 minutes and dried on Whatman paper 

for 15 minutes. DNA was finally fixed on the nitrocellulose by baking at 80°C under 

vacuum for 2 hours. The filters were sealed into airtight bags and stored at 4°C until 

required.

Preparation of radiolabelled probes by nick translation

Hybridisation probes (vSagCI, vSagC2, HRC1, HRC2, MMTV gag, MMTV gag-pol, 

MMTV env, MMTV LTR) were radiolabelled by nick translation, as described in 

chapter 2. MMTV gag (1.1 kb), gag-po! (4.0/4.3kb), env (2kb) and LTR (1.5kb) probes 

were derived from subgenomic Pst\ fragments from MMTV (118).

Hybridisation

Hybribisation was carried with each probe at 10 kBq/ml. The stringency of the 

hybridisation reactions was controlled by varying the percentage of formamide in the 

hybridisation solution. Filters containing the dot-blotted DNA were prehybridised 

overnight at room temperature. All hybridisations were at 37°C for 48 hours as 

described in chapter 2, with between 25-50% formamide. Filters were washed at 37°C 

(see chapter 2) with formamide at the same concentration used in the hybridisation of 

the particular filter. The filters were finally dried and exposed against pre-flashed X-ray 

film.

3.2.2 Restriction mapping of X clones.

The recombinant DNA was cloned into the SamHl site of X dash. The initial analysis of 

the clones consisted of digesting the DNA singly with four restriction enzyme (EcoRI, 

HindWl BamH\ and Xba\). Digests were in 16 pi reaction mixtures, containing 500 ng
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of DNA and 100 pg/mi BSA (bovine serum albumin), in a restriction buffer of the 

composition recommended by the enzyme manufacturer for 3 hours at 37°C. The 

restriction enzymes were used at 4 fold excess, (N.B. one unit of a restriction enzyme 

is defined as the amount required to digest 1pg% DNA to completion in one hour at 

37°C). Digested DNA samples were then electrophoresed on 1 % agarose gels with 

HindWl digested X DNA molecular weight markers, for approximately 450 volt-hours. 

The pattern of bands produced by restriction digest was observed by staining the gel 

in a solution of 0.5 pg/ml ethidium bromide and illuminating under UV light. The sizes 

of the restriction fragments produced by each digest were determined by comparison 

of the migration distance of the bands to the X DNA markers.

Double digests of selected X clones

Selected X clones representing six families of overlapping clones were subsequently 

analysed by double digests with combinations of the four restriction enzymes 

described above. 500 ng of DNA was digested with an 8 fold excess of the restriction 

enzymes as shown in Table 3.2 and incubated for 37°C for 5 hours to ensure 

complete digestion. Digested DNA samples were electrophoresed on 1% agarose gels 

as described above. Further digests using an additional four restriction enzymes {Pstl, 

Sad, Smal and Kpnl) were required for the clones 26a and 44b, due to the absence of 

BamHl and HindWl sites in these clones.
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locus phage Restriction enzyme com bination
CIA 26a+44b EcoRI+Xbal
C1B 38a /-//ndlll+SamH! Hind\\\+Xba\ SamHI+Xbal
C1C 40a EcoRI+H//?cflil EcoR\+Xba\ H/7?c/lll+Xbal
C2A 5a EcoRI+BamHI EcoR\+Xba\ BamHI+Xbal
C2B 37a EcoRI+H/ncflll EcoR\+Xba\ Hind\\\+Xba\

HRC2 2x EcoR\+Hind\\\ EcoR\+BamH\ Hind\\\+BamH\

Table 3.2 Double digests of selected X clones.

3.2.3 Southern transfer of restriction enzyme digested X clones.

After imaging the ethidium bromide stained gel on which the digested DNA clones had 

been electrophoresed, the restriction fragments were transferred to nylon membranes 

by Southern blotting, to allow hybridisation with the vSag related probes. Prior to 

transfer, the gels were placed in denaturing solution (0.5 M NaOH and 1.5 M NaCI) for 

30 minutes and then neutralised in 1 M Tris-HCI (pH 5) containing 3 M NaCI. The 

nylon membrane soaked in 20 x SSC (0.3 M NaaCitrate and 3 M NaCI) was laid over 

the gel on transfer apparatus (comprising a Whatman wick on a glass plate in a tray 

containing 20 x SSC), and allowed to transfer overnight.

Hybridisation probes, radiolabelled by nick translation, were prepared as described in 

chapter 2. Hybribisation was carried with each probe at 10 kBq/ml.
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3.3 Results

3.3.1 Hybridisation analysis of X clones under varying stringency conditions

The DNA isolated from the human placental library was immobilised onto 

nitrocellulose filters. As the human placental library had been originally screened with 

combinations of probes (vSagCI and vSagC2; HRC1 and HCR2), hybridisation with 

individual probes identified which vSag-derived probes hybridised most strongly, and 

assessed whether homology to vSag or other MMTV genes extended to adjacent DNA 

sequences. The position of the DNA from each X clone on the nitrocellulose filter is 

shown in figure 3.1. These Hybridot' filters were hybridised with a series of probes: 

vSagCI, vSagC2, HRCl, HRC2, MMTV gag, MMTV gag-po!, MMTV env and MMTV 

LTR. The strength of the hybridisation was assessed by varying the percentage of 

formamide, allowing preliminary grouping of the clones.
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Figure 3.1 Key for Hybridot filters showing the position of “dotted” DNA from 
the A clones. Yellow: 32 A clones isolated with the combined vSagCI and vSagC2 
probes; Blue: 9 A clones isolated with the combined HRC1 and HRC2 probes; Green: 
control DNA (A, MMTV, vSagCI, vSagC2, HRC1, HRC2 and No DNA).

For the 32 A clones isolated from the human placental DNA library with the 

combination of murine probes vSagCI and vSagC2, all hybridised preferentially to one 

of the two conserved region probes (Figure 3.2 and Table 3.3). Under the original 

screening conditions (25% formamide) all 32 A clones hybridised to either vSagCI or 

vSagC2 probes (Table 3.3). The vSagCI and vSagC2 probes hybridised strongly with 

the MMTV plasmid and to their respective positive controls (vSagCI or vSagC2 PCR 

product). The vSagCI probe also hybridised strongly to the HRC1 PCR product 

control even at increased stringency conditions (35% formamide), while the vSagC2 

probe only hybridised weakly to the HRC2 under these conditions.
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A. vSagCI probe

e #

i X :
•  #

MMTV Cl 02 HRCl HRC2

Formamide: 25%

#

•  •  
#  #

#

#  #  #

MMTV Cl C2 HRC1 HRC2

30%

MMTV C1 C2 HRC1 HRC2

35%

B. vSagC2 probe

# e #  *  *

#  #  #

#  #  

#

#  #
MMTV C1 C2 HRC1 HRC2

Formamide: 25%

MMTV C1 C2 HRC1 HRC2

30%

MMTV C1 C2 HRCl HRC2

35%

Figure 3.2 Hybridisation of probes vSagCI (A) and vSagC2 (B) to the X DNA 
recombinants at varying stringency. X DNA (clones 1-32: 100 ng per dot, clones 
33-41: 25 ng per dot) was immobilised on nitrocellulose filters, using a Biodot 
manifold. Nitrocellulose strips containing the immobilised DNA were hybridised with 
the ^^P-a-dCTP-labelled probes (10 kBq/ml) as described in Materials and Methods. 
The prehybridisation, hybridistion and wash solutions contained 25%, 30% or 35% 
formamide. The positions of the X recombinants are shown in figure 3.1.
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Of the A clones preferentially hybridising to the vSagCI probe, 26a, 33a, 33b, 35a, 

38c, 41b, 42a, 44a, 45b, 47a and 48a hybridised weakly to the vSagC2 probe under 

reduced stringency conditions (25% formamide), but did not hybridise when the 

formamide concentration was increased to 30%. Of the A  clones preferentially 

hybridising to the vSagC2 probe, 21c and 38d gave weak hybridisation signals with 

the vSagCi probe (25% formamide).

Three of the A  clones isolated with the combined HRCl and HRC2 probes (8x,16y, 

18x) hybridised to the vSagC2 probe, giving a weak hybridisation signal with 25% 

formamide, but not under higher stringency conditions. None of these clones 

hybridised to the vSagCI probe.

Hybridisation of the A  clones with the 1.5 kb Pstl fragment of MMTV containing the 

complete 3’LTR is shown in figure 3.3. All 32 of the clones originally isolated with the 

combined vSagCI and vSagC2 probes hybridised to the MMTV 3’LTR when the 

formamide concentration was 25%, but the strength of hybridisation signal reduced as 

the fomamide concentration was increased, and at 35% formamide, only 8 clones 

hybridised weakly (5a, 13a, 20a, 21a, 21b, 21c, 26a, 44b).

89



%  #  # #  --

'

*■

«

»

,

#  ;

MMTV 01 02 HR01 HR02

Formamide: 25%
MMTV 01 02 HR01 HR02

30%
MMTV 01 02 HR01 HR02

35%

Figure 3.3 Hybridisation of MMTV 3’LTR to the A DNA recombinants at varying 
stringency. A DNA (clones 1-32: 100 ng per dot, clones 33-41: 25 ng per dot) was 
immobilised on nitrocellulose filters, using a Biodot manifold. Nitrocellulose strips 
containing the immobilised DNA were hybridised with the ^^P-a-dCTP-labelled 1.5 kb 
Pst\ fragment of MMTV (10 kBq/ml) as described in Materials and Methods. The 
prehybridisation, hybridistion and wash solutions contained 25%, 30% or 35% 
formamide. The positions of the A recombinants are shown in figure 3.1.

The strength of the hybridisation signal with vSagCI, vSagC2 and MMTV 3’LTR for 

each of the 32 A clones originally isolated with the combined vSagCI and vSagC2 

probes is shown in Table 3.3. The A clones were provisionally grouped based on the 

strength of the hybridisation signals at varying stringency as shown in Table 3.4. 

Group 1 clones gave positive hybridising signals under the highest stringency 

conditions (35% formamide), group 2 clones hybridised strongly at 30% but not at 

35% formamide, group 3 clones hybridised strongly at 25% but no more than weakly 

at 30% formamide, and group 4 clones hybridised only weakly at 25% formamide.
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A DNA vSagCI vSagC2 MMTV 3’LTR

Formamide Formamide Formamide
25% 30% 35% 25% 30% 35% 25% 30% 35%

5a - - - +++ ++ + ++ H" +/-
13a - - - +++ ++ + ++ + +/-
19b - +/- - - - - +/- - -
20a - - - +++ ++ + + + +/-
21a - - - +++ ++ + + + +/-
21b - - - +++ ++ + + + +/-
21c +/- - - +++ ++ + ++ + +/-
24b + + - - — - + + -
24c - - - + +/- - +/- - -
26a +++ ++ +/- +/- — - ++ + +/-
33a +++ + - +/- - - + +/- -
33b +++ +++ - +/- - - + + -
35a +++ - - +/- - - + - -
35b - - - + - - +/- - -
37a - - +++ ++ - ++ + -
37b +++ +++ - - - - ++ -
38a +++ +++ - - - - ++ + -
38b +/- - ++ + - + + -
38c +++ + - +/- - - ++ +/- -
38d +/- +/- - +++ ++ - ++ + -
39a - +/- - +++ +/- - ++ +/- -
39b - - - ++ - - + - -
40a +++ +++ - - - - ++ + -
41a - +/- - +++ + - + + -
41b +++ +++ - +/- - - ++ + -
42a + - - +/- - - +/- -
44a ++ - - +/- - - +/- - -
44b +++ ++ +/- - - - + + +/-
45a ++ + - - — - + +/- —
45b ++ + - +/- - - + +/- -

47a ++ + +/- - - + +/- -
48a +++ +++ - +/- - - ++ + -

A - - - - - - _ - -
MMTV 3’LTR +++ +++ +++ +++ +++ +++ +++ + + + +++

vSagCI +++ +++ +++ - - +++ + + + +++
vSagC2 - - - +++ +++ +++ +++ + + + +++
HRCl +++ +++ ++ - - - +■+ + + +
HRC2 - - - ++ + +/- + +/- -

Table 3.3 Hybridisation strength of vSaqCI. vSagC2 and MM TV 3’L’PR pro bes to
the A  DNA recombinants. The A  clones isolated from a human placental DNA library 
with the combined vSagCI and vSagC2 probes which had been hybridised with ^^P-a- 
dCTP-labelled vSagCI, vSagC2 and MMTV 3’LTR probes (figure 3.2 and 3.3), were 
graded for strength of hybridisation at varying stringency conditions (determined by % 
formamide in prehybridisation, hybridisation and wash solutions):
-negative, +/-very weak, +weak, ++strong, +++very strong.
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vSagCI hybridising 
clones

vSagC2 hybridising 
clones

Group 1 26a,44b 5a, 13a, 20a, 21a, 21b, 
21c

Group 2 33b, 37b, 38a, 40a, 41b, 
48a

37a,38d

Group 3 33a, 35a, 38c, 44a, 45a, 
45b, 47a

38b, 39a, 41a, 39b

Group 4 19b, 24b, 42a 24c, 35b

Table 3.4 Preliminary grouping of A DNA recombinants based on hybridisation 
strength of vSagCI, vSagC2 and MMTV 3’LTR probes. A  clones isolated from a 
human placental DNA library with the combined vSagCI and vSagC2 probes which 
had been hybridised with ^^P-a-dCTP-labelled vSagCI, vSagC2 and MMTV 3’LTR 
probes (figure 3.2 and 3.3), were grouped based on the strength of hybridisation at 
varying stringency conditions: Group 1= positive hybridisation at 35% formamide, 
Group 2= strong (++ or +++) hybridisation at 30% but negative at 35% formamide, 
Group 3= strong (++ or +++) hybridisation at 25% but negative or weak (-, +/- or +) at 
30% formamide. Group 4= weak (+/- or +) at 25% formamide only.

As shown in Table 3.4, of the vSagCI hybridising clones, two clones were categorised 

as groupl, six as group 2, seven as group 3 and three as group 4. Of the vSagC2 

hybridising clones, six clones were categorised as group 1, two as group 2, four as 

group 3 and two as group 4.

The same eight clones hybridising to vSagCi or vSagC2 at 35% formamide 

concentration (Group 1) gave weak hybridisation signals with MMTV 3’LTR under 

these conditions. All of the Group 2 clones hybridised well to the MMTV 3’LTR at 30% 

but not 35% formamide. The same clones not hybridising to vSagClor vSagC2 at 

30% formamide (24c, 35a, 35b, 39b, 42a, 44a) together with clone19b, failed to 

hybridise with MMTV 3’LTR at 30% formamide concentration, but hybridisation signals 

were identified for the remaining 25 clones under this stringency.

92



3.3.2 Hybridisation of A clones with HRC1 and HRC2 probes

The ‘hybridot’ filters were hybridised separately with the human PCR products HRC1 

and HRC2. Of the 9 A clones isolated with the combined HRC1 and HRC2 probes (2x, 

3y, 6x, 8x, 9x, 11 x, 16x, 16y, 18x), all hybridised strongly with the HRC2 probe, with no 

change in the strength of hybridisation signal as the formamide concentration was 

increase from 30% to 35% (figure 3.4). The HRC2 probe hybridised strongly with the 

HRC2 PCR product control, but did not hybridise to the MMTV plasmid or vSagC2 

control even at lower stringency (30% formamide). The HRCl probe did not hybridise 

with any of the clones, although it hybridised strongly to the HRCl and vSagCI PCR 

product controls and to the MMTV plasmid (data not shown).

e  #  e #

MMTV 01 02 HR01 HR02
Formamide: 30%

MMTV 01

# # # 0  
# #

#

02 HR01 HR02
35%

Figure 3.4 Hybridisation of HRC2 probe to the A DNA recombinants at varying 
stringency. A DNA (clones 1-32: 100 ng per dot, clones 33-41: 25 ng per dot) was 
immobilised on nitrocellulose filters, using a Biodot manifold. Nitrocellulose strips 
containing the immobilised DNA were hybridised with the ^^P-a-dCTP-labelled HRC2 
probe (10 kBq/ml) as described in Materials and Methods. The prehybridisation, 
hybridistion and wash solutions contained 30% or 35% formamide. The positions of 
the A recombinants are shown in figure 3.1.
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Of the A clones originally isolated with vSagCI and vSagC2 probes, 5a and 21c 

hybridised weakly to the HRC2 probe with a formamide concentration of 30% but not 

35%. None of these clones hybridised to the HRCl probe.

3.3.3 Hybridisation of A ciones to MMTV gag, pol, and env derived probes.

Probes derived from the MMTV gag, gag-pol and env regions (subgenomic MMTV 

Pst\ digestion fragments 1.1 kb, 4.0/4.3 kb and 2.0 kb respectively (118)) were 

hybridised with the A DNA clones at 25% and 30% formamide concentrations. None of 

the probes hybridised in 30% formamide (data not shown). At lower stringency 

conditions, the higher background made results difficult to interpret, but the MMTV 

gag-pol probe hybridised to clones 26a, 40a and 45a (Figure 3.5), each of these 

clones preferentially hybridising to the vSagCI probe. The MMTV gag and env probes 

(MMTV Pstl 1.1 kb and 2.0 kb fragments) did not hybridise to any of the human A 

recombinants.
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MMTV

i

MMTV MMTV

gag probe gag-pol probe env probe

Figure 3.5 Hybridisation of MMTV gag, gag-pol and env probes to the A DNA 
recombinants at varying stringency. A DNA (clones 1-32: 100 ng per dot, clones 
33-41: 25 ng per dot) was immobilised on nitrocellulose filters, using a Biodot 
manifold. Nitrocellulose strips containing the immobilised DNA were hybridised with 
^^P-a-dCTP-labelled gag (1.1 kb), gag-pol (4.0/4.3 kb) and env (2 kb) subgenomic 
Pst\ fragments of MMTV at 10 kBq/ml as described in Materials and Methods. The 
prehybridisation, hybridistion and wash solutions contained 25%, 30% or 35% 
formamide. The positions of the A recombinants are shown in figure 3.1.

3.3.4 Restriction analysis of A clones.

Maps of the restriction endonuclease sites contained within each A clone were 

constructed to allow identification of overlapping clones, and to find suitable restriction 

fragments for subsequent subcloning experiments. The 41 A clones were each 

digested singly with four restriction enzymes (EcoRI, HindWl, BamHl and Xbal). A 

simplified restriction enzyme map of A Dash is shown in figure 3.6.
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20kb (long arm) DNA insert 8.8kb (short arm)

Figure 3.6 Simplified restriction enzyme map of A Dash.

As restriction endonuclease sites for both EcoRI and Xbal were preserved at each 

end of the DNA insert, digestion with these enzymes gave 20 kb and 8.8 kb fragments 

representing the long and short arms of A dash, the remaining fragments resulting 

from digestion of the DNA insert. Some BamHl sites were preserved at the cloning 

site, but the A  Dash HindWl sites were deleted at the boundaries of the DNA insert.

Southern blots of the singly digested A  clones (1-32) were hybridised with vSagCI or 

vSagC2 depending on which probe preferentially hybridised in the hybridot 

experiments (figure 3.7). Although 18 A  clones hybridised preferentially to the vSagCI 

probe by hybridot analysis, one clone (19b) did not give a hybridisation signal with this 

probe with Southern blotting but hybridised to the vSagC2 probe instead. Although this 

clone had apparently hybridised weakly with the vSagCI probe at 30% formamide, 

there was no hybridisation at 25% formamide in the Hybridot experiments with either 

vSagCI or vSagC2 probes. This may have resulted from the DNA being inadvertently 

omitted when preparing the Hybridot filters. Therefore of the 32 A  clones isolated from 

the human placental using probes to the first and second conserved region of the 

murine vSag gene, 17 clones hybridised to vSagCI and 15 clones hybridised to 

vSagC2.
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Restriction digests were analysed and restriction maps constructed. These showed 

five families of overlapping clones which accounted for 18 of the 32 clones isolated 

with the vSagCI and vSagC2 probes (figures 3.8a and 3.8b). The remaining ^4X 

clones had hybridised relatively weakly in the dot-blot hybridisation experiments 

(section 3.3.1), and comprised all the group 4 clones and eight of the eleven group 3 

hybridising clones.

vSagCI hybridising X clones

Of the seventeen X clones isolated using the murine probe vSagCI, eight originated 

from three genetic loci. Restriction maps of these three loci are shown in figure 3.8a. 

The region to which the vSagCI probe hybridises is highlighted. Two overlapping 

clones originated from locus CIA (26a, 44b), two overlapping clones originated from 

locus GIB (33b, 38a) and four originated form locus GIG (37b, 40a, 41b, 48a). The 

remaining nine X clones hybridising to the vSagGI probe appeared to be from distinct 

loci, with no restriction fragment lengths of similar size.
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Group A vSagCI hybribising clones
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Figure 3.8a Restriction maps of vSagCI hybridising X DNA ciones. The restriction 
sites within the X DNA clones were positioned by analysis of single digests with EcoRI, 
H/ndlll, BamH\ and Xbal. The names of the X DNA clones are indicated at the nght 
hand side of the appropriate map. The region of the clones to which the vSagCI 
probe hybridised is highlighted in red.
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vSagC2 hybridising X clones

Of the fifteen X clones isolated with the murine probe vSagC2, ten originated from two 

genetic loci. Six overlapping clones were derived from the C2A locus (5a, 13a, 20a, 

21a, 21b, 21c) and four overlapping clones from the C2B locus. Restriction maps of 

these two loci are shown in figure 3.8b. The remaining five X clones did not share 

restriction fragments of similar length.

C2A locus

I  I  I

M M
Scale =2kb

13a

20a

C2B locus

Group A vSagC2 hybribising clones

X  *  X  *81 g I?  I I I  I

H M
Scale =2kb

37a

38b

38d

41a

Group B vSagC2 hybribising clones

Figure 3.8b Restriction maps of vSagC2 hybridising X DNA clones. The restriction 
sites within the X DNA clones were positioned by analysis of single digests with EcoRI, 
Hind\\\, BamH\ and Xbal. The names of the X DNA clones are indicated at the nght 
hand side of the appropriate map. The region of the clones to which the vSagC2 
probe hybridised is highlighted in red.
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HRC2 hybridising X clones

The nine X clones isolated using the HRC2 probe (amplified from human placental 

DNA with sequence specific PCR primers to the second conserved region of murine 

vSag) each represented an overlapping clone from the same genomic locus. The 

restriction map of this locus is shown in figure 3.9.

HRC2 locus

a % I I I  I I I U I &= I
m
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Scale
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2x
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8x
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11x

16x

16y

18x

HRC2 hybridising clones

Figure 3.9 Restriction maps of HRC2 hybridising X DNA clones. The restriction 
sites within the X DNA clones were positioned by analysis of single digests with EcoRI, 
Hind\\\, SamHI and Xbal. The names of the X DNA clones are indicated at the right 
hand side of the appropriate map. The region of the clones to which the HRC2 probe 
hybridised is highlighted in red.
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3.3.5 Restriction analysis of X clones by double digests

To confirm the restriction maps for the six loci identified above, and to identify 

restriction fragments suitable for subsequent subcloning experiments, representative 

clones were selected and double digests undertaken using pairs of restriction 

enzymes (Table 3.2). For the clones 38a, 40a, 5a, 37a and 2x, the restriction 

fragments resulting from these double digests were as predicted from the single 

digests. Hybridisation of the vSagCI (38a and 40a), vSagC2 (5a and 37a) and HRC2 

(2x) probes to DNA digested with combinations of two restriction enzymes are shown 

in figure 3.10, giving the restriction fragment sizes in Table 3.5.
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loci probe phage Restriction enzymes Fragment size
C1B vSagCI 38a Hindlll +Xbal 2.3 kb
C1C vSagCI 40a (41 b) Hindlll + Xbal 1 kb
C2A vSagC2 5 a (13a) SamHI + Xbal 5 kb
C2B vSagC2 37a Hindlll 3.2 kb
HRC2 HRC2 2x SamHI + Hindlll 3.2 kb

Table 3.5 Restriction fragments of % ciones hybridising to vSagCI, vSagC2 or 
HRC2 probes. The X clones were digested with a combination of four restriction 
enzymes (EcoRI, HindWl, BamH\ and Xbal). The combination of restriction enzymes 
giving restriction fragments of a size suitable for subcloning into a plasmid vector are 
shown. (Note clone 41b used in subsequent cloning instead of 40a as insufficient DNA 
for detailed subcloning and sequencing experiments. The overlapping clone 13a was 
used instead of 5a for subcloning, because 5a did not encompassed the entire 7 kb 
SamHI / Xbal fragment hybridising to the vSagC2 probe.)

To confirm that the clones 26a and 44b overlapped, digests with additional restriction 

enzymes were undertaken. This was necessary as these clones did not have any 

SamHI sites and there was only one HindWl site at the end of the clone 26a, which 

was not present in the 44b clone. In addition, although EcoRI / Xbal double digests 

were consistent with the restriction map shown in figure 3.7, these appeared to be 

partial digests, resulting in two restriction fragments of varying length which hybridised 

to the vSagCI probe. These two clones were singly digested with the restriction 

enzymes Pstl, Sad, Smal and Kpnl clearly showing that they represented overlapping 

clones (figure 3.11). Southern blots gave restriction fragments of 0.6 kb {Pstl) and 1.2 

kb (Sad) which were subsequently subcloned into the Bluescript vector as described 

in the following chapter.
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3A Discussion

The 41 X clones isolated in the previous chapter were initially characterised by 'dot- 

blot' hybridisation experiments, where the purified cloned DNA was immobilised on 

nitrocellulose filters. These clones had originally been isolated from the human 

placental library using probes in combination (HRC1 and HRC2, or vSagCI and 

SagC2), and by hybridising with individual probes it was possible to identify the region 

of vSag to which each clone preferentially hybridised. As 32 of these clones were 

isolated under reduced stringency conditions (25% formamide concentration) using 

the murine probes vSagCI and vSagC2, it was of interest to see which clones 

hybridised at increased stringency. This allowed the clones to be grouped according to 

their strength of hybridisation under varying stringency, as determined by the 

concentration of formamide in the hybridisation reaction. This gave an indication of 

which clones shared greatest homology to the murine vSag constant regions vSagCI 

and vSagC2. It also made possible hybridisation experiments looking for clones 

sharing homology to other regions of MMTV genes beyond the region used to 

generate the vSagCI or vSagC2 probes.

Of the 32 clones isolated from the placental library with the combined vSagCI and 

vSagC2 probes, eighteen hybridised preferentially to vSagCI and fourteen to vSagC2. 

Of the clones hybridising to vSagCI, two hybridised at 35% formamide (group 1), six 

hybridised strongly at 30% formamide, but not at 35% (group 2), seven hybridised 

strongly at 25%, but no more than weakly at 30% (group 3) and three hybridised only 

weakly at 25% formamide (group 4). Using the same scoring to group the fourteen 

clones preferentially hybridising to the vSagC2 probe, there were six group 1 clones, 

two group 2 clones, four group 3 clones and two group 4 clones.
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None of the clones hybridised strongly to both vSagCI and vSagC2 probes, although 

weak ‘cross-hybridisations’ were found. Eleven of the X clones preferentially 

hybridising with the vSagCI probe also hybridised weakly to vSagC2. Two of the X 

clones preferentially hybridising with the vSagC2 probe also hybridised to the vSagCI 

probe, again under reduced stringency conditions.

The absence of strong hybridisation with both of the vSag constant region probes 

suggested that none of the clones had an extended region of homology to vSag 

spanning the two conserved regions of the retroviral gene. There was also little 

evidence of homology to other retroviral genes. MMTV gag, pol and env probes failed 

to hybridise when the formamide concentration was 30%. Weak hybridisation was 

detected with the gag-pol probe at lower stringency conditions with three of the clones 

isolated using the vSagCI probe, although these hybridisation signals were very 

weak.

Southern blotting of single restriction enzyme digests of the 32 clones isolated with the 

combined vSagCI and vSagC2 probes, suggested that 17 clones shared homology 

with vSagCI and 15 clones shared homology with vSagC2. One clone (19b) which 

apparently hybridised preferentially, albeit weakly, to the vSagCI probe in the hybridot 

analysis, was found to hybridise only to the vSagC2 probe in the Southern blotting 

experiments.

The division of the clones into groups based on hybridisation strength was further 

clarified by restriction mapping. This confirmed that the group 1 clones isolated with 

the vSagCI and vSagC2 probes each represented overlapping clones. Two families of 

overlapping clones made up the group 2 clones isolated with the vSagCI probe. Four 

overlapping clones were found within the group 2 and group 3 clones isolated with the
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vSagC2 probe. These five families of overlapping clones accounted for 18 of the 32 

clones originally isolated with vSagCI and vSagC2 probes, of which only three clones 

had been categorised below group 2 based on hybridisation strength.

Of the remaining fourteen clones, all hybridised relatively weakly to their respective 

probe. Nine were originally isolated using the vSagCI probe, and represented all of 

the clones categorised as weakly hybridising group 3 or group 4 clones. The 

remaining five clones were originally isolated with the vSagC2 probe and again were 

all either group 3 or group 4 clones according to their hybridisation strength. None of 

these clones appeared to be overlapping as there were no shared restriction fragment 

lengths following the single digests. It was not possible to group these fourteen weakly 

hybridising clones any further, and as they had only weak homology to the murine 

vSag gene, they were not investigated any further.

All nine of the X clones isolated from the human placental library with the mixture of 

vSag-related PCR products HRC1 and HRC2, hybridised to HRC2 alone. No 

recombinants hybridising to HRC1 were identified. This is in keeping with the result of 

Southern blotting experiments with normal placental DNA, which also failed to identify 

a hybridisation signal with the HRC1 probe (data not shown). Only one band was 

identified on the Southern blots with the HRC2 probe, suggesting that the 9 different X 

dash recombinants isolated were most likely to represent overlapping clones from the 

same genomic loci. This was confirmed by the restriction maps of the nine X clones 

(fig. 3.9). Three of these clones (8x, 16y, 18x) hybridised weakly to the vSagC2 probe 

under reduced stringency (25% formamide), but none hybridised to MMTV gag, pol, 

env or LTR probes.
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The failure to identify the genomic loci from which the HRC1 PCR product was 

amplified may have resulted from a defective probe. However the same result was 

obtained with a newly prepared HRC1 probe. In the dot-blot hybridisation experiments 

the HRC1 probe hybridised to itself at high stringency and to MMTV 3’ LTR containing 

plasmid under reduced stringency conditions, demonstrating that the HRC1 probe 

hybridised under the conditions employed. Failure of the HRC1 probe to hybridise to 

genomic DNA under the high stringency conditions employed when the placental 

library was screened, may have resulted from differences between the human 

sequence and the murine PCR primer sequences, which account for 44 nucleotide out 

of a 96 nucleotide sequence. Alternatively, the HRC1 sequence identified by PCR 

may not be present in normal placental DNA. Complex primer dimers can be 

generated by PCR reactions and a very faint band of similar size to HRC1 was seen 

when target DNA was omitted from the reaction (Fig. 2.2). Although the HRC1 

sequence does not reveal obvious repetition of the PCR primers, a short stretch of the 

sense primer is repeated, raising the possibility that this product may be a primer 

dimer.

In order to validate the restriction maps deduced from the single restriction enzyme 

digests, representatives from the six families of overlapping clones were selected and 

digested with combinations of EcoRI, H/ndlll, Xba\ and SamHI. Restriction fragment 

length analysis and hybridisation confirmed the restriction maps for all but clones 26a 

and 44b (C1A locus) which required further analysis using additional restriction 

enzymes. These clones (26a and 44b) did not have any SamHI sites and there was 

only one HindlW site at the end of the clone 26a, which was not present in the 44b 

clone, so combination digests using these enzymes would have been helpful. In 

addition, while EcoRI / Xbal double digests were consistent with the restriction map 

shown in figure 3.7, these appeared to be partial digests, resulting in two restriction
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fragments of varying length which hybridised to the vSagCI probe. Single digests with 

the restriction enzymes Pstl, Sad, Smal and Kpnl confirmed that these two clones 

overlap and Southern blotting gave restriction fragments of 0.6 kb and 1.5 kb {Pstl 

and Sad digests respectively) which hybridised with the vSagCI probe and were 

subsequently used for subcloning.

These experiments have identified the six regions of human DNA with the greatest 

homology to the murine vSag gene. However they give only limited information on the 

potential importance of these sequences. The most direct way to investigate further 

their potential to encode a human superantigen was to sequence these regions of 

DNA, allowing homology and open reading frame analysis to be carried out. This work 

is described in the next chapter.
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4 CHAPTER FOUR

Analysis of X  clones by nucleotide sequencing of DNA 

restriction fragments

4.1 Introduction

The initial characterisation of the 41 X clones isolated in the chapters two and three 

led to the identification of six human genetic loci that merited further investigation. 27 

of the 41 X clones isolated from the DNA library were from these six loci, as several 

overlapping clones had been identified. The remaining 14 X clones hybridised 

relatively weakly, nine to the vSagCI probe and five to the vSagC2 probe and were 

not investigated further. Representative clones from each of the six loci were selected 

for detailed restriction mapping and subsequent sequencing. Three clones {X26a, 

X38a and X41b) that hybridised to the vSagCI probe, and were therefore potentially 

related to the first constant region of murine vSag, were selected to represent the loci 

CIA, 01B, and CIO respectively. The clones derived from the other three loci were 

potentially related to the second constant region of murine vSag. Two clones {X^3a 

and A.37a) that hybridised to the vSagC2 probe, were selected to represent the loci 

C2A and C2B respectively. The clone X2x was selected to represent the group of nine 

overlapping clones isolated from the DNA library which hybridised to HRC2, the PCR 

product amplified from human placental DNA with primers to the second constant 

region of murine vSag. This chapter will describe the subcloning, detailed restriction 

mapping and sequencing of these X clones.

As the X DNA clones were too long to be directly sequenced, the six representative 

clones (26a, 38a, 41b, 13a, 37a and 2x) were subcloned into a plasmid vector. The
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subcloned DNA fragments were then characterised by restriction analysis, allowing 

detailed maps of the restriction enzyme sites within each clone. These maps were 

needed for procedures involved in the sequencing process. Restriction fragments less 

than1 kb in length which hybridising to the relevant probe were required for the 

automated sequencing techniques employed. This involved further subcloning in some 

cases.

4.2 Materials and Methods

4.2.1 Subcloning of X restriction fragments into Bluescript KSM13

The plasmid vector chosen for the characterisation and nucleotide sequencing of the 

clones was the Bluescript KSM13- (Stratagene Cloning Systems, San Diego, 

California). The vector is derived form a pUC parent plasmid, but has been extensively 

modified to enable its use in sequencing. The plasmid contains an ampicillin 

resistance gene, which allows the selection of bacteria transformed with KSM13- from 

non-transformed bacteria, by growing the cells on agar plates treated with ampicillin. 

The vector also contains the gene for p-galactosidase (Lac Z), which results in the 

blue coloration of colonies from bacteria transformed with KSM13- when grown of 

plates containing an inducer and substrate for the Lac Z gene. A series of 21 unique 

restriction sites, comprising the “multiple cloning site" of the vector are located within 

the Lac Z gene, resulting in the loss of activity when a DNA fragment is inserted into 

the multiple cloning site. This system allows the identification of recombinant plasmids 

by colour testing for p-galactosidase activity on indicator plates.

The multiple cloning site of the Bluescript vector is flanked by RNA polymerase 

promoter sequences derived from the T7 and T3 phages, one at each end and on 

opposite strands (to enable the transcription of strand-specific RNA probes from the
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cloned insert) and by the universal forward and reverse primer sites to enable 

sequencing reactions. The composition of the multiple cloning site of KSM13- is 

shown in figure 4.1.

T7 promoter
Sad
BsfXI
Sadi
EagI
Not\
Xbal 
Spel 

SamHI 
Smal 
Pst\ 

EcoRI 
EcoRS/ 
Hindlll 

Clal 
Sail 

Hindi 
Accl 
Xhol 
Oral I 
Apal 
Kpnl 

T3 Promoter

Figure 4.1 Muitipie cloning site of the KSM13- Vector

Restriction maps of the six human genetic loci with potential homology to vSag 

(chapter 3) allowed the production of restriction fragments from the relevant X clones 

of between 1 kb -7kb which hybridised with the vSag probes as shown in Table 4.1.
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ioci probe phage Restriction enzymes Fragment size
CIA vSagGI A,26a Sad 1.2 kb
GIB vSagGI À38a HindlW + Xbal 2.3 kb
GIG vSagGI M ib HindlW + Xbal 1 kb
C2A vSagG2 113a SamHI + Xbal 7 kb
G2B vSagG2 137a HindWl 3.2 kb

HRG2 HRG2 12x SamHI + HindWl 3.2 kb

Table 4.1 Restriction fragments of the six representative X DNA ciones which 
hybridised to vSag derived probes. These restriction fragments were ligated with 
the KSM13- plasmid and XL-1 cells transformed by electroporation.

Restriction fragments from these six X clones were subcloned into the Bluescript 

KSM13- vector. The bacterial host chosen for the growth of the plasmid was E. coli 

XL-1. In brief, the subcloning was achieved by digesting both plasmid and X dash 

recombinant DNA with the appropriate restriction enzymes, after which the digested 

DNA was ligated and used to transform XL-1 cells. Bacterial colonies were grown up 

overnight and replica nitrocellulose filters hybridised with the relevant probe as 

described In chapter 2. Bacterial colonies transformed with recombinant plasmids that 

hybridised with the probes were selected and the recombinant DNA was analysed to 

identify appropriately sized inserts.

Preparation of KSM13- DNA for subcioning

In order to accept the restriction fragments of the X clones, KSM13- DNA was 

digested with the same restriction enzymes used to produce the fragment and the 

termini of the linearised plasmid dephosphorylated with calf intestine alkaline 

phosphatase (GIF) to prevent self-ligation of the vector during subcloning.

10 ]Lig KSM13- DNA was digested to completion with 4 fold excess of the appropriate 

restriction enzymes (Table 4.1) and then extracted twice with phenol/chloroform, once 

with chloroform and precipitated with ethanol. The DNA pellet was then dissolved in 

50 fxl of a buffer containing 50 mM Tris (pH 9), 1 mM MgCL, 100 |liM ZnCL, and 1 mM
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spermidine. The digested plasmid was dephosphorylated by adding 4 \x\ of alkaline 

phosphtase (0.09 units CIP which represents a two fold excess of the enzyme) and 

incubating at 37°C for 1 hour. (One unit of CIP is the amount of enzyme required to 

dephosphoryiate 100 pmol of 5’ ends of DNA; which represents 222 pg of a 3 kb linear 

DNA molecule such as KSM13-). The CIP was inactivated by heating at 68°C for 10 

minutes, after first adjusting the reaction mixture to 30mM Tris (pH 8), 50 mM NaCI 

and 0.5 mM EDTA, The dephosphorylated DNA was then extracted twice with 

phenol/chloroform, once with chloroform (followed by a TE back extraction) and 

precipitated with ethanol. The yield of the dephosphorylated plasmid DNA was 

determined by running an aliquot of each digest on an agarose minigel together with 

100 ng undigested KSM13-. The final concentration of the DNA was adjusted to 200 

pg/ml with TE and stored at -20°C.

Subcioning and bacteriai transformations

The 1 dash clones shown in Table 4.1 were subcloned by digesting 2.5 |ig of DNA for 

1 hour at 37°C with a two-fold excess of the appropriate restriction enzymes. Where 

ligation of blunt ended fragments was required, the restriction fragments ends were 

'filled-in' after digestion by incubating with Klenow (0.5 units) and 0.2 mM dNTPs for 5 

minutes at room temperature, 5 minutes on ice and 5 minutes at 70°C. After 

estimating the yield (by electrophoresing an aliquot of the digested DNA on a 0.8% 

minigel) 500 ng of the digested 1 clone was ligated with 50 ng of the 

dephosphorylated plasmid DNA in a reaction mixture containing 50 mM Tris-HCI (pH 

7.6), 10 mM MgCb, 10 mM DTT, 50 pg/ml BSA and T4 DNA ligase (0.2 units in 5 fil 

reaction mixture). Ligations were incubated overnight at 15°C. The ligation was 

checked by electorphoresing samples taken before addition of the ligase and after 

incubation on a minigel.
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Transformation of XL-1 cells was achieved by electroporation. For each ligation, an 

aliquot of XL-1 cells in glycerol was allowed to thaw and 0.5 pi of ligation reaction 

mixture added. The DNA/cell mixture was transferred to an electroporation cuvette 

and pulsed with 2.5 kilovolts. Immediately following electoporation, 600 pi of SOC 

broth was added and the mixture incubated at 37°C for 45 minutes to allow the cells to 

recover. The cells were then spread on agar plates and incubated overnight at 37°C. 

Nitrocellulose replica filters were made (see materials and methods chapter 2) and 

hybridised with the relevant probes, thereby allowing selection of recombinants of 

digestion fragments containing the region of DNA hybridising to these probes. In 

subsequent subcioning procedures, cells were spread on indicator plates (see section 

2.2.2), incubated overnight at 37°C and colonies containing DNA insert (white) 

selected for DNA minipreparation as described in chapter 2. Recombinants of the 

appropriate size were identified by electrophoresing on a 3% agarose gel.

4.2.2 Restriction mapping of subcloned DNA.

The initial analysis of the subclones consisted of digestion with a panel of eleven 

restriction enzymes to determine which sites were contained within each clone. The 

enzymes used (obtained from a number of suppliers) were; Apal, BstXl, EcoRV,

HincW, Kpn\, Pst\, Sail, Smal, Xhol, Sad and Sadi. (Further digests of the 126a 

subclone were not undertaken, as a detailed restriction map had already been 

produced using the enzymes Pstl, Sad, Smal and Kpnl). These restriction enzymes 

cut only at the multiple cloning site of KSM13- (Figure 4.1). in some cases, these 

restriction sites would have been excised during the subcioning procedure, if they lay 

between the two restriction sites into which the recombinant had been ligated. 

Combinations of these enzymes with others which cut within the vector multiple 

cloning site only were used to obtain accurate measurements of fragments which 

would otherwise include the whole plasmid. DNA was digested for 3 hours at 37°C in 5
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jj.1 reaction mixtures containing 200 ng of DNA and 50 |iig/ml BSA in a restriction buffer 

of the composition recommended by the enzyme manufacturer. Buffers were selected 

which were compatible with the combination of enzymes used. The restriction 

enzymes were used at 4 fold excess. Digested DNA samples were then 

electrophoresed on 0.8% agarose minigels with H/ndlll-digested 1 markers. The 

pattern of bands produced by restriction digest was observed by staining the gel in a 

solution of 0.5 |ig/ml ethidium bromide and illuminating under ultraviolet light. The 

sizes of the restriction fragments produced by each digest were determined by 

comparison of the migration distance of the bands to the X DNA markers.

4.2.3 Automated DNA sequencing of subcloned DNA.

DNA was sequenced by the staff of the Molecular Biology Facility at Newcastle 

University, using dye terminator cycle sequencing (Perkin Elmer), as described in 

section 2.2.3. Purified double stranded DNA was used as the template with the 

universal forward and reverse primers at each end of the cloned insert. This 

sequencing technique produces readable sequences of up to 500 nucleotides from 

the primer. Subcloned inserts of up to approximately 1000 nucleotides could therefore 

be sequenced using both the forward and reverse primers to sequence form each end 

of the insert (off opposite strands and in opposite directions).

4.2.4 BLAST analysis of DNA and predicted amino acid sequences

The statistical significance of the regions of homology identified between the vSag 

probes and the six genomic loci hybridising to these probes was assessed using the 

computer facilities provided by the National Center for Biotechnology Information
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(National Library of Medicine, National institute of Health, Bethesda, USA, 

http:/www.ncbi.hih.gov). BLAST (Basic Local Alignment Search Tool) is the search 

algorithm used by a number of search tools (see Box 2) to calculate significance of 

homology using the statistical methods described by Karlin and Altschul (232).

biastp compares an amino acid query sequence against a protein 

sequence database

blastn compares a nucleotide query sequence against a nucleotide 

sequence database

blastx compares the six-frame conceptual translation products of a 

nucleotide query sequence (both strands) against a protein 

sequence database

tbiastn compares a protein query sequence against a nucleotide sequence 

database dynamically in all six reading frames (both strands)

tbiastx compares the six-frame translations of a nucleotide query 

sequence against the six-frame translations of a nucleotide 

sequence database

Box 2

Local alignments are assessed by means of a score, which is computed as the sum of 

scores for aligned pairs of residues and scores for gaps. The fundamental unit of the 

BLAST algorithm output is the High-scoring Segment Pair (HSP). An HSP consists of 

two sequence fragments whose alignment is locally maximal and for which the 

alignment score meets or exceeds a threshold or cut-off score. The task of finding 

HSPs begins with identifying short words of length W in the query sequence that either 

match or satisfy the threshold score T when aligned with a word of the same length in
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a database sequence. These initial word hits act as seeds for initiating searches to 

find longer HSPs containing them. The word hits are extended in both directions along 

each sequence for as far as the cumulative alignments score can be increased. 

Extension of the word hits in each direction are halted when the cumulative alignment 

score falls off by the quantity X from its maximum achieved value, the cumulative 

score drops below zero, or the end of either sequence is reached. The sensitivity of 

the programme can be adjusted by changing the parameters W, T and X, and by 

adjusting the reward for matches and penalty for mismatches.

In blastn, the M parameter sets the reward score for a pair of matching residues; the 

N parameter sets the penalty score for mismatching residues. M and N must be 

positive and negative integers, respectively. Higher ratios of M;N corresponds to 

increasing divergence of nucleic acids (PAMs: point accepted mutations per 100 

residues). The default values for M and N are 5 and -4, giving a ratio of 1.25. This 

corresponds to about 47 nucleic acid PAMs, or about 58 amino acid PAMs for protein 

searches.

In general, the blastn programme is not intended for finding distantly related nucleic 

acid sequences. The parameters are optimised for speed, not sensitivity. The biastp, 

blastx, tbiastn and tbiastx offer more flexibility in scoring systems. The default scoring 

matrix used by these programmes is the BLOSUM62 matrix (233), but several PAM 

amino acid scoring matrices are provided in the BLAST software. Each matrix is most 

sensitive at finding similarities at its particular PAM distance. Searches using a 

combination of scoring matrices are required particularly when the mutational distance 

between potential homologs is unknown and the significance of their similarities may 

be weak
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The principle equation relating the score of an HSP to its expected frequency of 

chance occurrence is:

E = K N exp(-Lambda S) 

where E is the expected frequency of chance occurrence of an HSP having score S 

(or higher) ; K and lambda are Karlin-Altschul parameters; N is the product of the 

query and database sequence lengths and exp is the exponentiation function. Lambda 

may be thought of as the expected increase in reliability of an alignment associated 

with a unit increase in alignment score. Reliability is expressed in units of information 

(bits). The expectation E calculated for an alignment between the query sequence and 

a database sequence can be extrapolated to an expectation over the entire database 

search, by converting the pairwise expectation to a probability and multiplying the 

result by the ratio of the entire database size (expressed in residues) to the length of 

the matching database sequence. Due to inaccuracy in the statistical methods as they 

are applied in the BLAST programme, whenever E is less than about 0.05, its value 

can practically be treated as being equal to the probability (p).

Searches were performed using the two "non-redundant” sequence databases 

maintained by the NCBI (one for proteins and one for nucleic acids). These databases 

are constructed using sequence data from several sources, including GenBank, the 

EMBL Data Library, the DNA Database of Japan (DDBJ), as well as data from US and 

European patents, and are continually updated. Eliminating the large degree of 

internal “redundancy” between sequences derived from many different sources, allows 

faster database searches, and avoids large outputs of similar or identical alignments 

which can obscure novel matches.
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4.3 Resufts

4.3.1 Subcloning X DNA recombinants into the KSM13- vector.

To facilitate DNA sequencing, the restriction fragments of the six representative X 

recombinants shown in Table 4.1 were subctoned into KSM13- vector. Subclones 

containing DNA that hybridised to the relevant probes were identified for each of the 

six X clones. The density of the positive colonies produced after transforming XL-1 

ceils with the KSM13- vector ligated with the 7 kb BamH\/Xba\ fragment of X^3a was 

very low. This may have been due to the large size of the recombinant. The sizes of 

the inserts obtained from digesting minipreps of the purified subclones were as 

expected based on the restriction maps.

Further subcloning was required prior to DNA sequencing, to produce recombinants 

no greater than 1 kb in length which hybridised to the relevant probes. More detailed 

restriction maps were required for all but the X26a subclone. Additional restriction sites 

were identified in the other subclones by digesting the subcloned DNA with the panel 

of restriction enzymes shown in Table 4.2.
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38a 41b 13a 37a 2x
Apal - - - + -

BstX\ + + + - +
EcoRV - - - - -

HincW - - - -

Kpnl - - + - +
Pstl - - + + +
Sail - - - - -

Sma\ - + + - +
Xho\ - - - - -

Sad + - - -

Sadi - - - + -

Table 4.2 Restriction sites within the subcloned DNA restriction fragments. The
restriction fragments of À38a, M1b, X^3a, X37a and À2x (Table 4.1), which had been 
subcloned into KSM13-, were singly digested with Apa\, SsfXI, EcoRV, HincW, Kpn\, 
Pst\, Sal\, Sma\, Xho\, Sad and Sadi to identify additional restriction sites.
(+ restriction site(s) present within recombinant DNA, -  no restriction site present 
within recombinant DNA).
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4.3.2 Restriction mapping and sequencing of vSagCI hybridising DNA 

subclones.

The restriction maps of the three subcloned X DNA fragments to which the vSagCI 

probe hybridised are shown in Figure 4.2.

1.2 kb Sac I subclone of X 26a ^■ ' 0.2 kb

17  ̂ I p T3

< ►
Region sequenced (500 bp)

2.3kb Hind Ill/Xba I subclone of X 38a 2 kit
MX (/)

T7 K r  ^ T3

Region sequenced (1500 bp)

Ikb Hind Ill/Xba I subclone of A. 41b |l) 2 kS|

Region sequenced (600 bp)

-T -

Fiqure 4.2 Restriction maps of vSagCI hybridising DNA subclones. The
restriction sites within the DNA subclones were positioned by analysis of single digests 
with Apal, BsfXI, EcoRV, HincW, Kpnl, Psfl, Sa/I, Smal, Xho\, Sad and Sadi. The 
region of the subclones to which the vSagCI probe hybridised is highlighted in red 
and the region sequenced indicated.
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The restriction map for X26a (deduced from figure 3.11) shows a 0.5 kb region to 

which the vSagCI probe hybridised, flanked by Sad and Pstl restriction sites, which 

was an appropriate length for sequencing. The subcloned 1 2kb Sad fragment of X 

26a was digested with Pstl to remove the 0.7 fragment downstream from this region 

and the vector containing the hybridising 0.5 kb fragment re-ligated. Transformed XL-1 

cells with this new subclone were then isolated and purified prior to sequencing with 

both forward and reverse universal primers.

For the Ikb H//?dlll/Xbal subclone of X 41b, the downstream 0.4kb fragment flanked by 

Smal and H/ndlll was digested out and ligated to give a 0.6 kb recombinant for 

sequencing. This involved the ligation of blunt ended fragments as the Smal site in the 

vector’s multiple cloning region would have been excised when the original 1 kb 

H//7dlll/Xibal fragment was ligated into this site.

The 1.5 kb Sad restriction fragment of A,38a was subcloned by ligating with the 

KSM13- vector and transformed XL-1 cells isolated as previously described. The X38a 

derived subclone containing the 1.5 kb Sad fragment was still too large to be 

sequenced, and required further digestion. Restriction enzymes which did not cut the 

KSM13- vector were used to digest the subclone. The 1.5 Sad fragment was found to 

have a restriction site for Sg/ll, as shown in figures 4.2 and 4.3. By digesting out the 

0.6 kb fragment upstream and the 0.9 kb fragment downstream from the Sg/ll site, 

and ligating the blunt ends of the residual recombinants, two new subclones were 

isolated. These were sequenced with forward and reverse universal primers giving a 

sequenced region of 1.5 kb.
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1.5 kb Sad subdone of X  38a
Scale =0,2kb

COX (Xt CO
T7 % T3

Figure 4.3 Restriction map of 1.5 kb subclone of 138a. Restriction digestion with 
Sg/ll divided the 1.5 kb subclone of 138a into 0.6 kb and 0.9 kb fragments which were 
subcloned and sequenced separately using the universal forward and reverse primers.

The DNA sequences of the three representative subclones hybridising to vSagCI are 

shown in figure 4.4. The lengths of these sequenced regions ranged from 478 -  1422 

nucleotides. The reverse (lower) strand is shown for the sequences derived from the 1 

clones 26a (CIA) as homology to the vSagCI probe was identified in this orientation. 

The restriction enzyme sites at each end of the cloned regions are highlighted 

together with the any restriction sites within the cloned sequences. Alterations of the 

restriction sites resulting from ligation of blunt ended fragments are also shown.

The graphical representation of a typical sequencing reaction is shown in figure 4.5, 

This sequencing reaction was performed on the 0.6 kb Xba\/Sma\ subclone of 141b 

using the universal forward primer. This shows the multiple cloning site of the KSM 13- 

vector starting at position 77 (Sac I- GAGGTG) with the insert cloned into the Xba\ site 

(TGTAGA) at positon 100. Although the sequence data beyond position 500 was 

difficult to interpret, sequencing of the reverse strand of the subclone gave a large 

region of overlap. The two sequences were then merged using DNA analysis software
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(Microgenie), giving the complete sequence of the subclone, with a total length of 632 

nucleotides.

Loci probe phage length

C1A vSagCI 126a 478 bp

Reverse strand 
P s t l
CTGCAGCAAT CCCCCNTTCC CAAAGTTANG GGGATTATAA GCACGGAGCC 
NGGCNTANGG ATTTCTTACT GAGAAAACTG GATTCCACAA AAAATCATAG 
AACTGGTTGT TTGAAATTGT ATCAGTAAGA ATAAAAACAT TCCACTCTTG 
CTAAGACACA GAGAAGCAGT CTTGACTTCC AAGCCAGGNG AAGGAAAAAG 
AGACAACAGT TCCCATCTAT CTTAACTGTA GTATTCACGG AAACAGAACC 
GGTGGTCCAG ACCTGATGTT AATGCCNTTA TTTGCAGCTC TGCTTTGCCT 
AAAAACACTG CTTCATTTAA ATGTCATCAG AACTCCACAC CTCCCAGAAA 
AATTTCATCC ATTCCTTTGT TTGGTGAGAT GTTCCAAGGT TNCCTTGAGC

CATCATGCCC 60
ACTATTACAA 120
CTTGGAGGAC 180
GGGTTTCTGA 240
TGGGGTCCAT 300
GGGGCCTCTC 360
GCCCTGGGTT 420 

S a d  
GTGAGCTC 4 78
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Loci probe phage length

cTb vSagCI 138a 1422 bp

Forward strand
X b a l
TCTAGAACTC TCATCTCAAC TCTTGATATC CATCCAGCTT CCTGGAGATG GGCTACCCAC 60
CAGAAGTCAG CGACCAGAGA AAACCTCCAC TTCACAAATG CACATTGACA CTGTAAGCAG 120
TGGAATAAAT TGGCCTGTTT TCATTGCAGA AAAATCAGCA TATTCTGAAA TGATAGAAGC 180
TCCCCGTCAA TTAGGGAAAT TAACATCCCT CTCTGTGGTT GGTGCTATTG CTGCACTTCA 240
TTTGCCTGAC CCAAAGCACA GCAGTTTCTT TTTCATGAGC CGTTCCAGTT GGAAAGTAAA 300
TAGGATTTTT GGGGTCTTCT TTCTGTGGGT CCTGCTCCAG ACTGGGCTCT CAATTCTGCC 360
TGTGGTGTCC TCACAGAGTG AGATGGGAGG CAGATGCACA TTGGGGAAAG TTGCGGTTGT 420
GCTATTTGGA GCAAGTAATA ATAGACATAG TAAAGCACAA ATTAAGAATT GTTCTTGCAC 480
AACATGCCCA GCTGTCTCTA GTGAGGAACA GCAGGCGAGT

BgJII
AGATCAGATC TACTGGACTG 540

GATCAATAAG TCCCATTGGT TAAAATGATC GGGGCAAAAT GATTAAGAGA TCCGAGTTTC 600
AGTTTACTTA GTAAGAAAAT ACAGGCATAT CTCAGAAATA TTGCAGGTTC AGTTCTGGGC 660
CACTGCAATA AAGCAAGTAT CATAATAAAG CAGGTCACAC ACATTTTTTT GGTTCCCTAG 720
TACGTATAAA AGTTATATTT GCACTATGCA AGTCTATTAA GTGTACAATA ATATTTTGTC 780
TAAAAAAAGA TGTACATACC TGAATTAAAA AATACTTTAG TGCTAAAAAA TGCTTACCAT 840
GATCTGAGCC TTCAGTGAGT CATAATATTC TTCCTGGCTG GAGGGGTCTG CCTCAGTATT 900
GATGGCTGCT GACGATCGGG TGTGGTTGCT GAAGGTGGGG TGGCTGTGGC AATTTTTCCT 960
TTTTTTTGGG AGAGGGGTTC TGGCTTGTCA TCCTGGCTAG AGGGCAGTGG TGCATTCATA 10 20

GCACCCTGTA ATTTCAAATT CCTGGGCTCA AGTAATGTTC TGGCTTCANC CTTCTGCCTC 10 80

AGTTTCCCAA ATAGCAAGGA CNACAGGCTA TTCTTGGATA ACTTTTAAAA AGTTTTTTAG 11 40

AAACAAGGTC TCACTATGTT GTCCAGACTA TGTGAGCAAT ATTGATTGAT TGATTGATTG 1200

AGTCAGGGTA TCCCTCTGTC GCCCAGGCTG GAGTGCAGTG GTGTGTTCTT GGCTTACTGC 1260

AGCCTCCGCC TCCTGGGCTC AAGTGATCTT CCCGTCTCAG CCTCCCGAGT AGCTGGGACC 1320

ACAGGTGCAT ACCACCATGT CTGGCTGATT TTCTTTTTTG TAATTTTTGA TAGAGATGGG 1380

GTTTTGCCAT GTTGCCGACG TGGGTCTTGA
S a d

ACTCNTGAGC TC 1422
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loci probe phage length

C1C vSagCI 141b 632 bp

Forward strand 
Xbal
TCTAGAGCTG TCGACGCGGC
CACATTAAGT CAGGTGCTAC 

BstXI
CACCCACACG CCTGGTTTTG 
TCCTATGCAG AGAGGCAGGT 
CTTTAGAGTT CAGAGTTCAG 
TACTTCAACT CTGTAATGCC 
ATACCTCATA AGTGTTGCTT 
GGCCAAGCAT GGTGTCTGAC 
TGACCGGAGG TTGGGAGTTC 
AAAAATACAA AAATTAGCAG 
GCCGAGGCAG GAGAATCACT

CGCGTAATAC GACTCACTAT AGGGCGAAGA
TTGGGGAAGT TGCTTCGTTT TCTTGTGCTC
GGGAGAAGGA TAAGGACGGT GTTTCTAAAC
GACTGTGTAT GGCTCAACTT GCAGACTCTA
ACACCAGCTT TGCCTCTTGT CCTTGTAACA
TCAGTTTCCT CATCTGTGAA ATGGGGGTAA
GGAATAATGC CCACTACCAC GTTCAAAATT 

BstXI
CCCTGTAATC CCAGCACTTT GGGAGGCCAA
GAGACCAGCC TGACCAACAT GACAAAACCC
GGTATGGTGA CAAGCACCTG TAATCCCAGC 

Smal/Hindlll (blunt) 
TGAACCCAGC TT 632

ATTCGGATCC 60 
TAAGATCTCT 120 
ATGCTGTGTT 180 
AAGCCAACTA 240 
TGGCACAGGT 300 
TAACTGTGTT 360 
CANCTGCTGG 420 
GGCAGGCAGA 4 80 
CATCTTTACT 54 0 
TACTCAGGAG 600

Figure 4.4 Nucleotide sequences of the representative vSagCI hybridising 
subclones. Plasmids containing recombinants that hybridised to the vSagCI probe 
were sequenced using dye terminator cycle sequencing (Perkin Elmer) with 
AmpliTaq® DNA Polymerase, FS, using universal forward and reverse primers. The 
positions of restriction endonuclease sites are indicated. Where the sequence data 
gave an equivocal result for a specific nucleotide, or where there was a discrepancy 
between the forward and reverse sequencing, the letter N was used. The number on 
the right indicates the position of the last nucleotide in the line.
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4.3.3 DNA sequence homology to the murine vSagCI probe.

Regions of homology between the human DNA sequences and the vSag derived 

probes were initially identified using the Microgenie computer software which allows 

simultaneous analysis of both forward and reverse nucleotide strands. The sequences 

of the three subclones hybridising to the vSagCI probe are shown in figure 4.6. The 

similarity indices (number of nucleotide matches divided by the total length of the 

sequence) ranged from 52.2%>58.2%. For the C1A sequence, there was 100% 

homology over the 20 nucleotide region corresponding to vSagCI 20-39. For the C1B 

sequence, a 23/25 (92%) nucleotide match was identified with vSagCI 41-65. 

Although the C1C sequence had a shorter region of exact homology, over the length 

of the probe the similarity index was highest (58.2%) with a 39/53 (74%) nucleotide 

match over the region vSagCI 36-88.
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C1A locus

v S a g C l  TCTGCTG. CAAACTTGGCATAGCTCTGCTTTGCCTGGGGCTATTGGGGGAAGTTGCGGTTCGTGCTCGCAG 
C IA  GTTAATGCCNTTATTTGC.. AGCTCTGCTTTGCCTGGGGCCTCTCAAAAACACTGC. . T T C A T . TTAAATG

*  * *  *  *  *  * *  * * * * * * * * * * * * * * * * * * * *  *  *  * * *  *  *  * * *  *

v S a g C l  GGCTCTCACCCTTGACTCTTT 
C IA  TCATCAGA. ACTCCACACCTC

*  *  -k -k k  k  k  k  k

M a t c h e s  48 M i s m a t c h e s  37 U n m a tc h e d  7
L e n g t h  92 M a t c h e s / L e n g t h  52 .2%

C1B locus
v S a g C l  TCTGCTGCAAACTTGGCATA.. GCTCTGCTTTGCCTGGGGCTATTGGGGGAAGTTGCGGTTCGTGCTCGCAG 
C IB  CCTG. TGGTGTCCTCACAGAGTGAGATGGGAGGCAGATGCACATTGGGGAAAGTTGCGGTT. GTGCTATTTG

k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k  k k k k k k k k k k k  k  k  k  k  k  k

v S a g C l  G.GCTC.TCACCCTTGACTCTTT 
C IB  GAGCAAGTAATAATAGACATAGT

*  *  *  *  *  *  *  *  *  *

M a t c h e s  50 M i s m a t c h e s  44 U n m a tc h e d  6
L e n g t h  95 M a t c h e s / L e n g t h  52 .6%

C1C locus
v S a g C l  TCTGCTGCAAACTTGGCATAGCTCTGCTT. TGCCTGGGGCTATTGGGGGAAGTTG. . . CGG. T T C . . GTGCTCGCAG 
C IC  TATAGGGCGAAGAATTCGGATCCCACATTAAGTCAGGTGCTACTTGGGGAAGTTGCTTCGTTTTCTTGTGCTCTAAG

*  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  * * * * * * * * * *  *  *  *  *  *  * * * * * *  *  *

v S a g C l  GGCTCTCACCCTTGACTCTTT 
C IC  ATCTCTCACCC. ACACGCCTG

* * * * * * * * *  *  *  *  *

M a t c h e s  57 M i s m a t c h e s  33 U n m a tc h e d  8
L e n g t h  98 M a t c h e s / L e n g t h  58 .2%

Figure 4.6 DNA sequence homology between vSagCI and human subclones 
hybridising to this probe. ‘Microgenie’ computer software was used to align the 
nucleotide sequences of subcloned 126a (C1A locus), 138a (C1B locus) and 141b 
(CIC locus) against the sequence of murine vSag (MMTV 3’LTR (230)). Asterisks 
indicate matching nucleotides. The similarity index is the percentage of matching 
nucleotides over the length of the sequence.
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4.3.4 Restriction mapping and sequencing of vSagC2 hybridising DNA 

subclones.

The restriction maps of the two subcioned 1 DNA fragments to which the vSagC2 

probe hybridised are shown in Figure 4.7.

7 kb BamH I Xba II subclone of 13a

T7 I

1.5

3 T3I

3.2 kb Hind III subclone of X 37a

T7 i  I
■ ■+

■4 ............►

Region sequenced (800 bp)

T3

4 ►
Region sequenced (1000 bp)

Figure 4.7 Restriction maps of vSagC2 hybridising DNA subclones. The
restriction sites within the DNA subciones were positioned by analysis of single digests 
with Apa\, BstX\, EcoRV, HincW, Kpn\, Pst\, Sa/i, Smal, Xho\, Sad and Sad I. The 
region of the subciones to which the vSagC2 probe hybridised is highlighted in red 
and the region sequenced indicated.

To produce recombinants under 1 kb in length which hybridised to the vSagC2 probe, 

further subcioning was required prior to sequencing. The 0.8 kb restriction fragment of 

113a flanked by Smal and Kpnl, and the 1 kb Pstl restriction fragment of 137a (Figure 

4.7) were ligated with the KSM 13- vector. Transformed XL-1 ceils were isolated as 

described previously. New subclones containing the 0.8 kb Smal/Kpnl fragment of 

113a and 1 kb Pstl fragment of 137a were identified by digesting minipreps with the 

appropriate enzymes and electrophoresing on minigels.
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The DNA sequences of the two representative subciones hybridising to the vSagC2 

are shown in figure 4.8. The lengths of the sequenced regions were 819 bp and 952 

bp for the C2A and C2B loci respectively. The restriction enzyme sites at each end of 

the cloned regions are highlighted.

loci probe phage length

C2A vSagC2 113a 819 bp

Forward strand
Smal
CCCGGGTTCA TGCCATTCTC CTGCCTCAGC CTCCTGAGTA GCTGGGACTA CAGGCGCCCG 60
CCACCATGCC CAACTAATTT TTTTGTATTT TTAGTAGAGA TGGGGTTTTA CTGTGTTAGC 120
CAGGATGGTC TTGATCTCCT GACCTCGTGA TCTGCCCACA TCGGCCTCCT AAAGTGTTGG 180
GATTATAGGC GTGAGCCACC GCACCTGGCC GCCACATACT TTTAAACAAC CAGATCTCAC 240
AAGAACTCAC TCACTATCAG CAGGACAGTA CCAAGCCATT CATGAAGGAT CTGCCCCATA 300
ACCCAAACAC CTCCCACTAN GGCCCACTTC CAACACTGGG GAATTATATT TCAACATAAG 360
ANTTGGGGGG ACAAATATCC AAACTATATC ACTTCGGTTT AATTGTCTGT TAATCAGAAC 420
CTTGAAATCA CTGCCTTCTC CTTTGCCTCT TTCAATCAAC CCAAGGCCCA CCCCAGAATT 480
TCTGTACATA TGTCACTTAA CTTGNTAGCA ACCCTTGGGG GAAGGGAGTA GACTACACTC 540
AAGTTCTCTG NACATCCCTA GTCATTGAGT TGCCACTTTC ATGTCTGCAA GTGGCCGGCA 600
GCCGTGCAAT GAGGGAGACA GGTGGTGGCG CCCAGGTCCT GCCCTAGGTA GAAAAGTGAT 660
GGAAGATCCC TGCTTGATGC TGAGGCCCCA GCCGCGCCCG CCCTGGAAAG ATAAAAGAGG 720
AACTGGCCTA TCCTATCCTG ATGCCGAAGG GAAGGGAGAG AAAGGAAAAT NTCCTNTAAG 780

Kpnl
AGCAAAGAGC CACCTGGCCC TCCTACAGTG TGTGGTACC 819
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loci probe phage length

C2B vSagC2 137a 952 bp

Forward strand
Pstl
CTGCAGTAAG GCTGGACTGG ACTCTTTCAG CCAGGTTTTA GGTGCTCCGG GCACACAGAC 60
GGGAGGATGC GATTTCCCCG TTTACCCTTC CCAGGCCTGA GGGCCTCCAC AGCTGGCCCT 120
CGGCTGTGGC CAGTTATTCC CACTTCTGCC TGCTTTTTTC TTCAGACATC TTATGGTAGC 180
GTCTTGCTAA TGAGGAATTT GGTTTGAGAT TTTGTGTAGT TTTTTACTTG ATGAAATGTC 240
CCAGTTTTAG TTTAACATTG TCCATCACCA NCCTTAAGAT ATAACTTGCT g t t t a a a t a c 300
GTCTGTCATT ATTGTTGAAT ATTTACTAAA GTTTCATCAG ACAGGTGGGG CAACCAGGGA 360
TTTCTATTAA GTGANAACAA AATACAGCGT TAATAAGTGA CTCCAAAACC NCCAAAACAT 420
TATGCNAAGT TAAANAAGTA ATATATGAAA AGTTACATAT GGTATGATCC CNTTATATAA 480
ANATCTAAAA TAAANACTCC AGTNGGNGAC ATGGGANACA TGGNTCACAA TTTGGGGAAG 540
AGAGAGTGAA GAAAGAGTTA TGGACCACAG TGTTGGCAAT AACAGAGTTC CAGTAGGATT 600
GGGATTGAAA GGAACCATTT GATTCAGAAG GTGGGAGTTC TTGGCAAAAA CATTCTTGGG 660
GATGGCTGGG CGTGNTGGTT CATGCCCGTA ATCCCAGCAA TTTTGGGAGC CCAAGGCGGG 720
TGGATCACCT GAGGTTCAGG AGTTCAAGAC CAGCTTTGCC AACATGGTGA AACCCTGTNT 780
NTACAAAATA TACAAAAGTT AGCCAGGCGT GGTGGCAGGC GCCTGTAATC CCGGCTGCTC 840
GGGAGGCTGA GGCAGGAGAA TCGCTTGAGC CCAGGAGTCA GTGGTTGCAG TGAGCCGAGG 900

Pstl
TTGTGCCATT GCACTCCAGC CTGGGCGGCA GAGTGAGACT CTGTTTCTGC AG 952

Figure 4.8 Nucleotide sequences of the representative vSagC2 hybridising 
subclones. Plasmids containing recombinants that hybridised to the vSagC2 probe 
were sequenced using dye terminator cycie sequencing (Perkin Elmer) with 
AmpliTaq® DNA Polymerase, FS, using universal forward and reverse primers. The 
positions of restriction endonuclease sites are indicated. Where the sequence data 
gave an equivocal result for a specific nucleotide, or where there was a discrepancy 
between the forward and reverse sequencing, the letter N was used. The number on 
the right indicates the position of the last nucleotide in the line.
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4.3.5 DNA sequence homology to the murine vSagC2 probe.

Regions of homology between the human DNA sequences and vSagC2 are shown in 

figure 4.9. The similarity indices were lower (48% and 43.7% for the C2A and C2B 

nucleotide sequences respectively) than with the subciones hybridising to the shorter 

C1 probe. For the C2A sequence, there was a 21/23 (91%) nucleotide match over the 

region vSagC2 8-30. A similar region of the C2 probe (vSagC2 10-32) had greatest 

homology to the C2B sequence with 22/23 (95%) nucleotides matching.

C2A locus

vS agC 2 CAAAATAGGAGACAGGTGGTGGCAACCAGGGACTTA. . TAGGG. GACCTTACATCT. ACAGACCAAC. AGATGCC. . .  
C2A CAATGAGGGAGACAGGTGGTGGCGCCCAGGTCCTGCCCTAGGTAGAAAAGTGATGGAAGATCCCTGCTTGATGCTGAG 

* * * * * * * * * * * * * * * *  * * * * *  * * * * * * * * * * * * * * * * * * * *

vSagC2 CCCTTACCATATACAGGAAGATATGACTTAAATTGGGATAGGTGGGTTACAGTC. .A A T G G C T A . . TAAAGTGTTAT 
C2 A GCCCCAGCCGCGCCCGCCCTGGAAAGATAAAAGAGGAACTGGCCTA. TCCTATCCTGATGCCGAAGGGAAGGGAGAG 

*  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *

vS agC 2 A T A . GATCCCTCCCTTTTCGTG. AAAGACTCGCCAGAGCTA 
C2A AAAGGAAAATNTCCTNTAAGAGCAAAGAGCCACCTGGCCCT 

*  *  *  *  *  *  *  *  * * * * * * *  *  *  *  *  *

M a t c h e s  94 M i s m a t c h e s  87 U n m a tc h e d  15

L e n g t h  19 6  M a t c h e s / L e n g t h  48 .0%

C2B locus
vS agC 2 CAAAAT. AGGAGACAGGTGGTGGCAACCAGGGACTTATAGGGGACCTTACATCTACAGACCAACAGATGCCCCCTT 
C2 B AAGTTTCATCAGACAGGTGG. GGCAACCAGGGATTTCTA. . TTAAGTGANAACAAAATACAGCGTTAATAAGTGAC 

*  *  *  * * * * * * * * * *  * * * * * * * * * * * *  *  *  *  *  *  *  *  *  *  *  *  *  *  *

vS agC 2 ACCATATACAGGAAGATATGACTTAAATTGGGATAGGTGGGTTACAGTCAATGGCTATAAAGTGTTATATAGATC 
C2 B TCCAAAACCNCCAAAACATTATGCNAAGTTAAANAAGTAA. TATATGAAAAGTTACATATGGTATGATCCCNTTA

* * *  *  *  * *  *  * *  *  + *  *  *  *  * *  *  *  * *  * * *  * *  *  * *  *

vS agC 2 CCTCCCTTTTCGTGAAAGACTCGCCAGAGCTA 
C2B TATAAANATCTAAAATAAANACTCCAGTNGGN

*  *  *  *  *  * * * * *

M a t c h e s  80 M i s m a t c h e s  98 U n m a tc h e d  5

L e n g t h  183 M a t c h e s / L e n g t h  43 .7%

Figure 4.9 DNA sequence homology between vSagC2 and human subclones 
hybridising to this probe. ‘Microgenie’ computer software was used to align the 
nucleotide sequences of subcioned 113a (C2A locus) and 137a (C2B locus) against 
the sequence of murine vSag (MMTV 3’LTR (228)). Asterisks indicate matching 
nucleotides. The similarity index is the percentage of matching nucleotides over the 
length of the sequence.
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4.3.6 Restriction mapping and sequencing of HRC2 hybridising DNA subclone.

The restriction map of the subcioned 1 DNA fragment to which the HRC2 probe 

hybridised is shown in Figure 4.10.

3.2 kb BamH/ Hind III subclone of k 2x

T7 3 2  2  i  T3

4 ►
Region sequenced (600 bp)

Figure 4.10 Restriction maps of the HRC2 hybridising DNA subclone. The
restriction sites within the DNA subclone were positioned by analysis of single digests 
with Apa\, BstX\, EcoRV, HincW, Kpn\, Pst\, Sail, Smal, Xhol, Saci and Sacii. The 
region of the subdone to which the HRC2 probe hybridised is highlighted in red and 
the region sequenced indicated.

The restriction map for 12x shows a 0.6 kb region to which the HRC2 probe 

hybridised, flanked by BamHl and Pstl restriction sites. The subcioned 3.2 kb 

BamHl/HindWl fragment of 12x was digested with Pstl and Xhol to remove the 2.6 kb 

fragment downstream from this region and the vector containing the hybridising 0.6 kb 

fragment re-ligated. Transformed XL-1 cells with this new subdone were then isolated 

and purified prior to sequencing with both forward and reverse universal primers.

The DNA sequence of the subdone hybridising to the HRC2 probe is shown in figure 

4.11. The length of the sequenced region was 685 nucleotides. The reverse (lower) 

strand is shown as homology to the HRC2 probe was identified in this orientation
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loci probe phage length

HRC2 HRC2 Ï2x 685 bp

Reverse strand 
X h o l / P s t I  ( b l u n t )

CTCGGGCC ACACTCCCTC CAGAGGCTTT GGGGAGAATC TGTTGGGTGG GTGGGGGAGG 58

TCCTGGGGCT GCTGGCGTTC CTTGGCTCAC GGGCGCTTCC GTGGGATGTG TGGGTGGGTG 118

GTCACATCGC CGCCTCCTCT TCTGGGGTGT GTGTCTGGGT GAAAGGTGGG TGTGGGTGGT 178

CCTCATAAGG ANATTTATCC AATTTAGCAC CCACCTAGAT AATGGAGGTA TAATGTTGTG 238
CTCTCAAAAT CATCCATCAA ATCAAATCTT CAAAGACAGG TTTTGGAAGG TGAGGGAAGG 2 9 8

TGTACACCTT TGGCAGACCA TCATTGCAGA GGAGGGGGAG AAAGAGGGGA GGGAGGTGGT 358
GGAGGGTGGG ATCTGCCTGC CGAGAACGAG GAAGGGGATG GGTGAGAGGT AAGAAGGTGA 418
GGCACTGGAG AGGGAGAGCA CGCGTGATGT TGGTGAGAAA GGAGTGGGAT TTGGGGATAG 478
CGCCTCCTTC AGACCGTGAG AGATCGGGAG AGGGGGTGGG GTTTGGGTTG TGTTGTGTGA 538
ACCTACAGTT AAGCCCAAGC CAGGGGGGGC TTTTGGGTAA TGAAGATGGG TTTGTTGGGT 598
GGACCTGACC CTGTTACAGG AAAGCCGCGC

BamH
TTTGATGAAA GGAGTTGTTT AAAATGAAAG 658

ATGGTATTAA AAGCCATAAC AGGATCC 68 5

Figure 4.11 Nucleotide sequences of the representative HRC2 hybridising 
subcione. Plasmid containing the recombinant that hybridised to the HRC2 probe was 
sequenced using dye terminator cycle sequencing (Perkin Elmer) with AmpliTaq®
DNA Polymerase, FS, using universal forward and reverse primers. The positions of 
restriction endonuclease sites are indicated. Where the sequence data gave an 
equivocal result for a specific nucleotide, or where there was a discrepancy between 
the forward and reverse sequencing, the letter N was used. The number on the right 
indicates the position of the last nucleotide in the line.

4.3.7 DNA sequence homology to the murine vSagC2 and HRC2 probes.

The DNA sequence of the subclone of 12x is shown in figure 4.12. This clone was 

isolated with the probe HRC2, the PCR product amplified from human DNA with 

primers to the C2 region of vSag. The figure compares the cloned sequence with both 

the PCR product used as the probe and the second conserved region of murine vSag. 

100% homology was found between the cloned sequence and the probe for the region
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between the PCR primers (132 nucleotides). The PCR primer binding regions were 

similar but not identical to the primers. The 5’ PCR binding site had 20/25 (80%) 

matching nucleotides with 2 mismatches and 3 unmatched nucleotides. The 3’ PCR 

binding site had 17/22 (77%) matched nucleotides, with 4 mismatched and one 

unmatched. Over the length of the region binding to the HRC2 probe, the homology 

to the murine sequence vSagC2 was 47.7%, with localised regions of greater 

homology at each end of the probe at the PCR primer binding sites.

vS agC 2 C A . A A A T A . . GGAGACAGGTGGTGGCAACCAGGGACTTATAGGGGACCTTAC. ATCTACAGACCAACAGATGCCCCCT. 
P r o b e  C A . A A A T A . . GGAGACAGGTGGTGGAGGGTGGGATCTGCCTGCCGAGA. . ACGAGGAAGGG. . CATCGGTGACAGGTAA 
2 x  CAGAAACAGGGGAGCCAGGTGGTGGAGGGTGGGATCTGCCTGCCGAGA..ACGAGGAAGGG..CATCGGTGACAGGTAA

* * * * * *  * * * * * * * * * * * * * *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *  *

vS agC 2 . TACCATATACA. . GGA. AGATATGACTTAAATTGGGATAGGTGGGTTACAGTCAA. TGGC. TATAAAGTGTTATATAG 
P r o b e  CAACCTGAGGCACTGGAGAGGGA. GAGC. . ACGCGTGAT. GTTC. CTCAGAAACGAGTCGCATTTCC. GCATAGCGCC. 
2 x  CAACCTGAGGCACTGGAGAGGGA. GAGC. . ACGCGTGAT. GTTC. CTCAGAAACGAGTCGCATTTCC. GCATAGCGCC.

* * *  * ★★ * ★ * * ■ *  * * * ★ * * * * * * * * * * * *

vS agC 2 ATCCCTCCCTTTTCGTGAAAGACTCGCCAGAGCTA 
P r o b e  . TCCTTCAGAC. . CGTGAAAGACTCGCCAGAGCTA 
2 X . TCCTTCAGAC. . CGTGAGAGA. TCGCCAGAGGGC

*  *  *  *  *  * * * * *  *  *  *  * * * * * * * * *

M a t c h e s  92 M i s m a t c h e s  75 U n m a tc h e d  26

L e n g t h  193 M a t c h e s / L e n g t h  47 .7%

Figure 4.12 Sequence homology between the 12x subclone, probe (HRC2) and 
the second conserved region of vSag (vSagC2). The HRC2 probe was amplified 
from human genomic DNA by PCR using primers to the second conserved region of 
vSag. The PCR primer sequences are highlighted blue. Nucleotide homology between 
the sequence derived from the 12x and vSagC2 is indicated by asterisk.

4.3.8 BLAST analysis of human DNA sequences hybridising to vSag

The nucleotide sequences of the six human sub-clones isolated using vSag derived 

probes were subjected to BLAST analysis, thereby determining whether they were 

homologous to any known human genes. This analysis was also useful in assessing 

how significant the regions of homology to vSag were likely to be. These search 

programmes generate a list of matching database sequences together with an 

alignment score and Expect (E) valve. The Expect value (E) is a parameter that
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describes the number of hits one can "expect" to see just by chance when searching a 

database of a particular size. It decreases exponentially with the Score (S) that is 

assigned to a match between two sequences. Essentially, the E value describes the 

random background noise that exists for matches between sequences. In the new 

versions of the BLAST programmes, the E value is used instead of the P value 

(probability) to report the significance of matches. For example, an E value of 1 

assigned to a hit can be interpreted as meaning that in a database of the current size 

one might expect to see 1 match with a similar score simply by chance.

The nucleotide sequences shown in figures 4.4, 4.8 and 4.11 were submitted as query 

sequences via the GenBank World Wide Web server (http;/www.ncbi.nih.gov) and 

were matched to sequences in the NCBI non-redundant nucleotide database (see 

4.2,4). Contaminating human Alu subfamily sequences were obtained with these 

searches for CIB, CIC, C2A and C2B when the sequences were submitted in 

unedited form. In order to avoid this contamination, the regions of the nucleotide 

sequences representing the contaminating Alu subfamily sequences were excluded 

prior to submission. The output derived from these searches is shown in figure 4.13 

(top twenty matches). The CIA, CIC and C2A sequences gave almost exact matches 

with previously identified human DNA sequences, each the result of large sequencing 

projects and did not represent known genes. The C IA sequence was 98% identical to 

a DNA sequence mapped to chromosome 10, giving an E value of 2e-27. The CIC 

sequence was 98% identical to a DNA sequence mapped to chromosome 6 (E value 

1e-36), and the C2A sequence shared 96% homology with a DNA sequence mapped 

to chromosome 9, giving an E value of 6e-86. Relatively weak alignments to murine 

vSag genes were identified for C IA (E value 0.084) and C l B (E value 0.36), but not 

for the other sequences. There were no significant alignments to any known retroviral 

genes.
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As functionally related genes can share relatively short regions of homology at the 

nucleotide level, where the homologous sequences encode critical regions of the 

protein, the DNA database searches were repeated restricting the query sequences to 

the short regions with greatest homology to vSag. Nucleotide sequences ranging from 

20-50 bp in length were submitted for BLAST analysis using the NCBI non-redundant 

DNA database. Significant matches to vSag sequences were obtained for C1A and 

C1B (E values 0.006 and 0.05 respectively, data not shown). A weak match was 

identified between vSag and C2A (E value 2.9). The remaining sequences (C1C, C2B 

and HRC2) failed to matched with vSag sequences in the DNA database.

Query sequence C1A

S e q u e n c e s  p r o d u c i n g  s i g n i f i c a n t  a l i g n m e n t s :

g b I A C 0 0 6 1 0 1 .3  IA C 0 0 6 1 0 1  c i t b _ 3 3 8 _ f _ 2 4 , c o m p l e t e  s e q u e n c e  ( H o . ,
e m b I A L 3 5 7 0 9 5 .2  ICNS05TDU Human c h ro m o s o m e  14 DNA s e q u e n c e  * * . .  
r e f  INC 0 0 1 5 0 3 . 1 !  M ouse  mammary t u m o r  v i r u s ,  c o m p l e t e  genome

Mus m u s c u l u s  e n d o g e n o u s  mouse  m a m m ar. .  
Mus m u s c u l u s  h o s t / v i r u s  j u n c t i o n  f r a . .  
E x o g e n o u s  m ouse  mammary t u m o r  v i r u s  . .  
E n d o g e n o u s  m o use  mammary t u m o r  v i r u s . .  
Mus m u s c u l u s  mammary t u m o r  v i r u s - 3  s . .  
Mus m u s c u l u s  mammary t u m o r  v i r u s - 3  5 . .  
Mouse  mammary t u m o r  v i r u s  s t r a i n  R I I . .  
Mouse  mammary t u m o r  v i r u s  c o m p l e t e  p . .  

Mouse  mammary t u m o r  v i r u s  s u p e r a n t i g e n . .  
g b I U 1 3 8 6 1 .1  IX X U 1 386 1  pMSG-CAT c l o n i n g  v e c t o r ,  c o m p l e t e  s e q u . . 
g b I U 1 3 8 6 0 . 1 1XXU13860 pMSG c l o n i n g  v e c t o r ,  c o m p l e t e  s e q u e n c e  
g b 1AF04 3 6 9 0 .1  IA F 0 4 3 6 9 0  Mus m u s c u l u s  M o use  mammary t u m o r  v i r . .
g b 1A F 0 4 3 6 8 9 . 1 1 A F 0 4 3 6 8 9 Mus m u s c u l u s  M ouse  mammary t u m o r  v i r . .
g b I A F 0 4 3 6 8 8 . 1 1 A F 0 4 3 6 8 8  Mus m u s c u l u s  Mouse  mammary t u m o r  v i r . .

g b j A F 2 6 3 9 1 0 . 1 1 A F 2 6 3 9 1 0  
g b | A F 0 0 9 6 5 8 . 1 | A F 0 0 9 6 5 8  
g b | A F 2 2 8 5 5 1 . 1 | A F 2 2  8551 
g b |A F 2 2  8 5 5 0 . 1 | A F 2 2 8 5 5 0  
g b jA F 1 1 9 3 4 2 . 1 IM T V 3 L T R 2  
g b | A F 1 1 9 3 4 1 . 1 IMTV3LTR1 
g b i A F 1 3 6 9 0 0 . 1 ! A F 1 3 6 9 0 0  
g b j A F 0 3 3 8 0 7 . 1 I A F 0 3 3 8 0 7  
g b [ U 7 1 2 7 1 . 1 IMMU71271

g b |U 0 2 4 3 2 . 1 | X X U 0 2 4 3 2  
g b |U 0 2 4 3 1 . 1 | X X U 0 2 4 3 1  
g b |U 0 2 4 3 0 . 1 I X X U 0 2 4 3 0

C l o n i n g  v e c t o r  pMAMneo, c o m p l e t e  s e q u e n c e  
C l o n i n g  v e c t o r  pM AM neo-CAT, c o m p l e t e  s . .  
C l o n i n g  v e c t o r  p M A M n e o B lu e ,  c o m p l e t e  s . .

S c o r e E
( b i t s ) V a l '

125 2 e - 2 7
42 0 . 0 2 1
40 0 . 0 8 4
40 0 .0 8 4
40 0 . 0 8 4
40 0 .0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 .0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
40 0 . 0 8 4
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Query sequence C1B

S e q u e n c e s  p r o d u c i n g  s i g n i f i c a n t  a l i g n m e n t s ;

g b I A F 1 9 6 9 6 8 •1 IA F 1 9 6 9 6 8  Homo s a p i e n s  PAC 7 0 4H 177 7  c h r o m o s o m e .  
g b | A C 0 0 2 1 0 9 . 1 1A C 002109 G e n o m ic  s e q u e n c e  f r o m  M ouse 9 ,  c o m p l . 
g b I M 1 1 0 2 4 . 1 1MUSERMMTR Mouse  e n d o g e n o u s  mammary t u m o r  v i r u s  . 
g b |A C 0 2 1 0 4 9 . 1 2 I A C 0 2 1 0 4 9  Homo s a p i e n s  1 2 p l 2 - 2 1 . 8 - 2 7 . 2  BAG RP. 
e m b I Z 8 5 9 9 6 .1  IH S 431A14  Human DNA s e q u e n c e  f r o m  PAC 431A14 o n .  
g b I M 3 6 8 0 1 .1  IHUMHXMA05 Human h e m o p e x i n  g e n e ,  e x o n  7 
g b I A C 0 1 9 0 1 4 . 1 1AC019014 Homo s a p i e n s  c l o n e  R P 1 1 -2 2 1 G 1 9  f r o m  . 
g b I A C 0 0 9 2 2 9 .3  IA C 0 0 9 2 2 9  Homo s a p i e n s  c l o n e  R P 1 1 -3 1 4 C 9 ,  c o m p l .  
g b I A C 0 0 0 0 6 4 . 1 |H SA C 000064  Human BAC c l o n e  RG083M05 f r o m  7 q 2 1 .  
g b I A C 0 0 3 0 1 0 .1  IH U A C003010  Homo s a p i e n s  C h rom osom e 16 BAC d o .  
g b I A C 0 0 7 5 6 6 .1  IA C 0 0 7 5 6 6  Homo s a p i e n s  c l o n e  RG010G05, c o m p l e t ,  
e m b I A L 0 3 1 6 2 7 .1  ICEY102A5C C a e n o r h a b d i t i s  e l e g a n s  c o s m id  Y 1 0 2 .  
e m b I A L 1 3 3 3 9 8 .2  IA L 1 3 3 3 9 8  Human DNA s e q u e n c e  f r o m  c l o n e  R P l - 2 .  
e m b I Z 8 2 0 5 8 . 1 1CET27C5 C a e n o r h a b d i t i s  e l e g a n s  c o s m id  T 2 7 C 5 ,  c .  
e m b I Z 9 3 2 4 1 . 1 1  IH S 222 E 1 3  Human DNA s e q u e n c e  f r o m  c l o n e  R P l - 2 2 .  
e m b I Z 8 6 0 9 0 . 1 0  IHS 229A8 Human DNA s e q u e n c e  f r o m  c l o n e  229A 8  o .  
e m b IA L 0 2 2 3 1 6 . 2  IH S126B4 Human DNA s e q u e n c e  f r o m  c l o n e  C T A -1 2 .  
e m b IA L Q 3 5 0 7 1 .1 7  IH S 1 0 8 5 F 1 7  Human DNA s e q u e n c e  f r o m  c l o n e  1 0 8 .  
e m b I A L 1 1 7 2 5 7 .1  IH S 2 1 3 J IP B  Human DNA s e q u e n c e  f r o m  c l o n e  2 1 3 J .  
d b j I A B 0 0 9 0 4 8 . 1 1A B 009048 A r a b i d o p s i s  t h a l i a n a  g e n o m ic  DNA, c .

S c o r e  E
( b i t s )  V a l u e

38 0.,36
38 0.,36
38 0.,36
36 1 .,4
36 1.,4
36 1 .. 4
34 5,,6
34 5,.6
34 5,, 6
34 5,, 6
34 5,. 6
34 5.,6
34 5..6
34 5,, 6
34 5.. 6
34 5,. 6
34 5..6
34 5,.6
34 5,. 6
34 5,.6

Query sequence C1C
S e q u e n c e s  p r o d u c i n g  s i g n i f i c a n t  a l i g n m e n t s :

e m b I A L 3 5 7 0 5 7 . 1 9  I A L 3 5 7 0 5 7  Human DNA s e q u e n c e  f r o m  c l o n e  R P l l . . .  
e m b I X 9 7 1 9 1 .1  IRNMAFAEXl R . n o r v é g i e n s  MAFA g e n e ,  e x o n l  ( j o i n  a c r o s . .  
d b j I A B 0 2 3 3 1 0 . 1 1AB 023310  C y a n i d i o s c h y z o n  m e r o l a e  g e n e  f o r  F t s H 2 ,  
g b I A F 1 1 9 6 7 6 . 1 1A F 1 196 76  Mus m u s c u l u s  s m a l l  G T P - b i n d i n g  p r o t e i n  R A . . 
g b I A F 0 5 5 8 9 8 .1  IA F 0 5 5 8 9 8  Zea m ays  a l a n i n e  a m i n o t r a n s f e r a s e  ( a l t )  g . .  
g b I A F 0 3 0 3 8 5 .1  IA F 0 3 0 3 8 5  Zea m ays  n i t r a t e - i n d u c e d  NOI p r o t e i n  g e n e . ,  
g b I A F 2 4 0 0 0 2 .1  IA F 2 4 0 0 0 2  Mus m u s c u l u s  a d e n i n e  n u c l e o t i d e  t r a n s l o c a . .  
g b IA F 0 4  3 4 3 3 .1  IA F04 3 4 3 3  A n o p h e l e s  g a m b ia e  p u t a t i v e  p u p a l - s p e c i f i c . . 
gb  I A F 1 3 5 1 2 5  . 1 1 A F 1 3 5 1 2 5  Mus m u s c u l u s  n u c l e a r  f a c t o r  )cappa B s u b u n . . 
g b I A F 0 7 8 9 0 0 . 1 1A F 0 789 00  O r y c t o l a g u s  c u n i c u l u s  h e n s i n  (D M B T l)  g e n e . ,  
g b I A F 1 0 5 1 4 3 . 1 1A F1 051 43  B r a s s i c a  n a p u s  c h ro m o s o m e  N3 d i s e a s e  r e s i . .  
g b I A F 0 7 8 9 2 5 . 1 1A F 0 789 25  Homo s a p i e n s  P2X1 r e c e p t o r  g e n e ,  p a r t i a l  c d s  
e m b IA X 0 2 7  3 5 7 . 1 1AX027 357 S e q u e n c e  5 f r o m  P a t e n t  W 00037488 
e m b I Y 1 4 8 3 8 . i l HSCHEMR23 Homo s a p i e n s  ChemR23 g e n e
d b j I  ABO1 5 6 7 0 . 1 |ABO1567  0 B a c i l l u s  s p . g e n e s  f o r  C D ase ,  C G Tase ,  M B . . .
e m b I A J 0 1 0 7 3 5 .1  IA T A J 1 0 7 3 5  A r a b i d o p s i s  t h a l i a n a  g r l  ge n e
r e f  INC 0 0 1 1 4 1 .1 1  S a c c h a r o m y c e s  c e r e v i s i a e  c h ro m o s o m e  I X ,  c o m p l e t . . .
e m b IZ 4 6 8 3 3 . 1 1SC8277 S . c e r e v i s i a e  c h ro m o s o m e  I X  c o s m id  8277
d b j I D 1 0 5 9 5 .1  IY SCNPSl S a c c h a r o m y c e s  c e r e v i s i a e  N P S l  g e n e  f o r  n u c l . . .
g b I M 8 3 7 5 5 . 1 1YSCSTHIA S a c c h a r o m y c e s  c e r e v i s i a e  S TH I g e n e ,  c o m p l e t . . .

Query sequence C2A

S e q u e n c e s  p r o d u c i n g  s i g n i f i c a n t  a l i g n m e n t s :

e m b I A L 1 5 8 8 2 8 .1 4  IA L 1 5 8 8 2 8  Human DNA s e q u e n c e  f r o m  c l o n e  R P 1 1 - 3 5 9 J . . 
g b I A F 2 2 7 5 1 0 .1  IA F 2 2 7 5 1 0  Homo s a p i e n s  c h ro m o s o m e  21 map 2 1 q 2 2 .1  c l . ,  
e m b I A L l 6 3 2 4 8 . 2  IH S 2 1 C 0 4 8 Homo s a p i e n s  c h ro m o s o m e  21 s e g m e n t  HS21C048 
e m b I A L 1 6 1 5 7 2 .2  IA TC H R IV 68  A r a b i d o p s i s  t h a l i a n a  DNA c h ro m o s o m e  4 ,  
e m b I A L 0 3 5 5 2 4 .1  IA T T 1 3 J 8  A r a b i d o p s i s  t h a l i a n a  DNA c h ro m o s o m e  4 ,  B A . . 
g b I A E 0 0 3 4 6 5 . 1  IA E 0 0 3 4 65 D r o s o p h i l a  m e l a n o g a s t e r  g e n o m ic  s c a f f o l d  . .  
g b I A C 0 0 6 3 4 6 . 1  IA C 0 0 6 3 4 6 Homo s a p i e n s  PAC c l o n e  R P 5 -8 2 0 G 2 2  f r o m  7 , . .  
g b I A C 0 6 8 1 3 0 .3  IA C 0 6 8 1 3 0  Homo s a p i e n s  c l o n e  R P 1 1 - 6 4 0 F 2 2 ,  c o m p l e t e  
g b IA C 0 2 0 9 0 8 . 6 I A C 0 2 0 9 0 8  Homo s a p i e n s  c h ro m o s o m e  19 c l o n e  C T D - 2 5 2 8 . .  
r e f  IN M _ 0 0 8 7 4 1 . 1 1 Mus m u s c u l u s  n e u r o n  s p e c i f i c  g e n e  f a m i l y  m e m b e r . .  
g b I A C 0 0 4 0 9 6 .1  IA C 0 0 4 0 9 6  M o use  C o s m id  m a 6 6 a l0 0  f r o m  1 4 D 1 -D 2 ,  c o m p l . .  
g b I A C 0 0 3 1 1 9 . 1 1HUAC003119 Human C hro m oso m e  16 BAC c l o n e  C I T 9 8 7 S K - . .  
g b I A C 0 0 7 0 5 5 .3  IA C 0 0 7 0 5 5  Homo s a p i e n s  c h ro m o s o m e  14 c l o n e  BAC 2 0 1 F . . 
e m b I A L 1 2 1 9 8 3 . 1 3  IH S A160H 22 Human DNA s e q u e n c e  f r o m  c l o n e  R P l l - 1 6 0 . .  
g b I A C 0 0 3 9 9 5 . 1 1AC003995 M ouse  C o s m id  m a 66a0 94  f r o m  14 D 1 -D 2  ( T - C e l . .  
e m b I A L 0 3 1 6 6 0 . 1 6  IH S 387 E 2 2  Human DNA s e q u e n c e  f r o m  c l o n e  R P 3 - 3 8 7 E 2 . .  
e m b I A L 0 3 1 2 8 6 .1  IH S 6 8 1 J 2 1  Human DNA s e q u e n c e  f r o m  c l o n e  6 8 1 J 2 1  on  
g b I A C 0 0 0 3 7 3 .1  IH S A C 000373  Human c o s m id  g l 8 6 2 d 2 1 8 ,  c o m p l e t e  s e q u e n . . 
embI A L I I  6 5 1 4 . 1 1CNS01D8Q B o t r y t i s  c i n e r e a  s t r a i n  T4 cDNA l i b r a r y  
e m b IA L 1 1 6 4 5 0 . 1 IC N S 01D 6Y  B o t r y t i s  c i n e r e a  s t r a i n  T4 cDNA l i b r a r y

S c o r e E
( b i t s ) V a l u e

157 l e - 3 6
50 2 e - 0 4
48 6 e - 0 4
46 0 . 0 0 2
46 0 . 0 0 2
46 0 . 0 0 2
44 0 . 0 1 0
44 0 . 0 1 0
44 0 . 0 1 0
44 0 . 0 1 0
44 0 . 0 1 0
44 0 . 0 1 0
44 0 . 0 1 0
44 0 . 0 1 0
44 0 . 0 1 0
44 0 . 0 1 0
40 0 . 1 5
40 0 . 1 5
40 0 . 1 5
40 0 . 1 5

S c o r e E
( b i t s ) V a l u e

321 6 e - 8  6
40 0 . 3 4
40 0 . 3 4
40 0 . 3 4
40 0 . 3 4
38 1 .  4
38 1 . 4
38 1 .  4
38 1 . 4
38 1 .  4
38 1 . 4
38 1 . 4
38 1 . 4
38 1 .4
38 1 . 4
38 1 .4
38 1 .4
38 1 .4
38 1 .4
38 1 . 4
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Query sequence C2B

S e q u e n c e s  p r o d u c i n g  s i g n i f i c a n t  a l i g n m e n t s :

e m b I A L 3 5 4 7 7 3 .8  IA L 3 5 4 7 7 3  Human DNA s e q u e n c e  f r o m  c l o n e  R P 5 - 8 5 5 L 2 4 .  
g b | A F 1 3 1 2 1 5 . 1 I A F 1 3 1 2 1 5  Homo s a p i e n s  c h ro m o s o m e  8 map 8 p 2 3 - p 2 2  c l ,  
g b | A C 0 1 6 3 9 6 . 5 I A C 0 1 6 3 9 6  Homo s a p i e n s  c l o n e  R P 1 1 -1 7 9 B 1 5 ,  c o m p l e t e  .
g b 1A E 0 0 0 0 5 8 . 1 1 MPAE000058 M y c o p la s m a  p n e u m o n ia e  s e c t i o n  58 o f  63 .
e m b iA L 0 3 3 3 9 2 . 5  IHS403M6 Human DNA s e q u e n c e  f r o m  c l o n e  403M6 o n  c h .  
g b I A C 0 1 0 1 6 3 .7  IA C 0 1 0 1 6 3  Homo s a p i e n s  c h ro m o s o m e  10 c l o n e  R P 1 1 - 9 0 J .  
g b 1A C 0 0 8 0 4 6 . 4 I A C 0 0 8 0 4 6 A r a b i d o p s i s  t h a l i a n a  c h ro m o s o m e  I  BAC F5A . 
g b I A C 0 1 6 9 2 5 . 1 5 1 A C O l6 9 2 5  Homo s a p i e n s  X BAC R P 1 1 -4 3 4 J 4  ( R o s w e l l  P .  
g b 1A C 0 3 5 1 5 0 .1  IA C 0 3 5 1 5 0  Homo s a p i e n s  c h ro m o s o m e  1 9 ,  BAC C IT 9 7 8 S K B .
g b 1A C 0 0 7 1 2 6 . 6 IA C 0 0 7 1 2 6  Homo s a p i e n s  c h ro m o s o m e  4 c l o n e  C 0 4 9 6 D 0 8 , .
g b 1A E 0 0 1 8 1 1 . 1 1AE001811 T h e r m o t o g a  m a r i t i m a  s e c t i o n  123 o f  136  o f .  
g b I A C 0 0 6 2 1 3 .1  IA C 0 0 6 2 1 3  Homo s a p i e n s ,  c l o n e  h R P K . 1 5 _ A _ l ,  c o m p l e t e ,  
e m b I A L 1 5 9 1 5 2 . 1 1 1A L1 591 52  Human DNA s e q u e n c e  f r o m  c l o n e  R P 1 1 -1 6 5 N .  
g b | A C 0 0 4 7 6 4 . 1 IA C 0 0 4 7 6 4  Homo s a p i e n s  c h ro m o s o m e  5 ,  P I  c l o n e  2 5 5 g 5 .  
e m b 1A L 1 2 1 7 8 1 . 3 8  IH S J1 1 6 4 C 1  Human DNA s e q u e n c e  f r o m  c l o n e  R P 5 - 1 1 6 4 ,  
e m b I A L 0 4 9 7 7 8 . 3  IC NS00004 Human c h ro m o s o m e  14 DNA s e q u e n c e  * * *  I N  . 
e m b I A L 3 5 4 5 9 2 . 1 1LMFL8138 L e i s h m a n i a  m a j o r  F r i e d l i n  c o s m id  L 8 1 3 8 ,  .
e m b I A L 0 8 0 2 7 4 . 2 1 1H S1012F16 Human DNA s e q u e n c e  f r o m  c l o n e  R P 5 - 1 0 1 2 .  
e m b I A L 0 3 1 9 6 5 .7  IH S 355 N1 1  Human DNA s e q u e n c e  f r o m  c l o n e  355N 11  o n  . 
g b I Ü 7 1 1 5 5 . 1 1TMU71155 T h e r m o t o g a  m a r i t i m a  DNA m is m a t c h  r e p a i r  p r o .

S c o r e E
( b i t s ) V a l u e

40 0 . 3 1
38 1 . 2
38 1 . 2
38 1 . 2
38 1 . 2
36 4 . 9
36 4 . 9
36 4 . 9
36 4 . 9
36 4 . 9
36 4 . 9
36 4 . 9
36 4 , 9
36 4 . 9
36 4 . 9
36 4 . 9
36 4 . 9
36 4 . 9
36 4 . 9
36 4 . 9

Query sequence HRC2

S e q u e n c e s  p r o d u c i n g  s i g n i f i c a n t  a l i g n m e n t s :  

e m b I Y 1 3 9 0 1 . 1 1HSFGFR4G Homo s a p i e n s  FGFR-4 g e ne
g b I A C 0 0 4 9 0 0 . 2 [ A C 0 0 4 9 0 0  Homo s a p i e n s  PAC c l o n e  R P 4-8 1 6 G 1  f r o m  1 4 q .  
g b I A C 0 0 7 3 8 0 .3  IA C 0 0 7 3 8 0  Homo s a p i e n s  BAC c l o n e  R P 1 1 -1 5 0 O 1 3  f r o m  2 .  
gb  I AE(D01274 .1  IA E 0 0 1 2 7 4  L e i s h m a n i a  m a j o r  c h ro m o s o m e  1 ,  c o m p l e t e  s .  
e m b I A L 3 5 9 2 0 4 . 1 0  IA L 3 5 9 2 0 4  Human DNA s e q u e n c e  f r o m  c l o n e  R P 1 1 -1 4 7 H .  
e m b 1A L 1 3 8 7 1 6 . 6  IA L 1 3 8 7 1 6  Human DNA s e q u e n c e  f r o m  c l o n e  C T A -K B 5 2 1 C .  
e m b 1A L 1 3 7 8 8 1 .1 2  IA L 1 3 7 8 8 1  Human DNA s e q u e n c e  f r o m  c l o n e  R P 1 1 -4 Ü A 8 .  
e m b i Z 8 2 2 4 5 . 1 1 H S 799F 10  Human DNA s e q u e n c e  f r o m  c l o n e  C T A -7 9 9 F 1 0  o .  
g b IM 5 7 7  6 6 . 1 1 M A C IN l l  M . f a s c i c u l a r i s  i n t e r l e u k i n  11 mRNA, c o m p l e t e ,  
g b I A C 0 1 1 8 1 1 .4 2  IA C 0 1 1 8 1 1  Homo s a p i e n s  c h ro m o s o m e  u n k n o w n  c l o n e  b 2 . 
r e f  I N C _ 0 0 1 7 2 6 . 1 1 C a r r o t  m o t t l e  m i m i c  v i r u s ,  c o m p l e t e  genome 
g b I A C 0 1 1 5 5 5 .5  IA C 0 1 1 5 5 5  Homo s a p i e n s  c h ro m o s o m e  19 c l o n e  L L N L R - 2 8 .  
r e f [ N M _ 0 1 6 1 5 1 . 1 1 Homo s a p i e n s  t h o u s a n d  a n d  o n e  a m in o  a c i d  p r o t e i .  
g b [A C 0 0 9 1 4 5 .4  IA C 0 0 9 1 4 5  Homo s a p i e n s  c h ro m o s o m e  16 c l o n e  R P l l - 5 5 6 .  
g b I A C 0 0 7 0 5 6 ,4  IA C 0 0 7 0 5 6  Homo s a p i e n s  c l o n e  f r o m  human c h ro m o s o m e  , 
g b ! A C 0 0 2 5 2 3 .1  ! A C 0 0 2 5 2 3  Homo s a p i e n s  Xq28 BACs 360 F 1 2 ,  GS H B-555C . 
g b |A C 0 0 0 0 5 7 .1 !H S A C 0 0 0 0 5 7  Human BAC c l o n e  RGQ67M09 f r o m  7 q 2 1 - 7 q 2 2 ,  
g b j A F 0 6 1 9 4 3 . 1 1A F0 619 43  Homo s a p i e n s  p r o s t a t e  d e r i v e d  S T E 2 0 - l i k e  . 
g b I A C 0 0 5 5 8 8 .1  IA C 0 0 5 5 8 a  Homo s a p i e n s  PAC c l o n e  R P 5 -1 1 6 1 G 2 3  f r o m  7 , 
g b 1A C 0 0 5 0 3 4 .1  IA C 0 0 5 0 3 4  Homo s a p i e n s  BAC c l o n e  R P 1 1 -3 4 2 K 6  f r o m  2 , ,

S c o r e E
( b i t s ) V a l u e

44 0 . 0 2 0
36 4 . 8
36 4 . 8
36 4 . 8
36 4 . 8
36 4 . 8
36 4 . 8
36 4 . 8
36 4 . 8
34 19
34 19
34 19
34 19
34 19
34 19
34 19
34 19
34 19
34 19
34 19

Figure 4.13 BLAST search of a non-redundant nucleotide database with DNA 
sequences isolated from a human genomic library with vSag-derived probes.
The Basic Local Alignment Search Tool (BLAST) software provided on the National 
Center for Biological Information (NCBi) web site was used to search a non-redundant 
nucleotide database (658,628 sequences, 2,198,227,069 total letters, search date 
26/9/2000) for DNA sequences homologous to the subclones X26a (locus CIA), À38a 
(locus CIB), M lb  (locus C1C), 113a (locus C2A), 137a (locus C2B) and 12x (locus 
HRC2). Matches to murine vSag sequences are highlighted in red.
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4.3.9 Open reading frame analysis of predicted amino acid sequences.

Potential open reading frames within the six sequenced subclones were identified 

using the NCBI “ORF Finder” programme. This tool identifies ali possible open reading 

frames in a DNA sequence by locating the standard and alternative stop and start 

codons. Open reading frames with potential encoding regions ranging between 43-156 

amino acids, which contained limited regions of homology with vSag, were identified 

for the sequences CIA, CIB, CIC, C2A and HRC2 (figure 4.14). No open reading 

frames were found within C2B.

CIA open reading frame (Length: 43 aa)
316 atgttaatgccnttatttgcagctctgctttgcctggggcctctc 

M L M P L F A A L L C L G P L  
361 aaaaacactgcttcatttaaatgtcatcagaactccacacctccc 

K N T A S F K C H Q N S T P P  
406 agaaagccctgggttaatttcatccattcctttgtttggtga 447 

R K P W V N F I H S F V W *

CIB open reading frame (Length: 156 aa]

98 atgcacattgacactgtaagcagtggaataaattggcctgttttc 
M H I D T V S S G I N W P V F  

143 attgcagaaaaatcagcatattctgaaatgatagaagctccccgt 
l A E K S A Y S E M I E A P R  

18 8 caattagggaaattaacatccctctctgtggttggtgctattgct 
Q L G K L T S L S V V G A I A  

233 gcacttcatttgcctgacccaaagcacagcagtttctttttcatg 
A L H L P D P K H S S F F F M  

27 8 agccgttccagttggaaagtaaataggatttttggggtcttcttt 
S R S S W K V N R I F G V F F  

323 ctgtgggtcctgctccagactgggctctcaattctgcctgtggtg 
L W V L L Q T G L S I L P V V  

368 tcctcacagagtgagatgggaggcagatgcacattggggaaagtt 
S S Q S E M G G R C T L G K V  

413 gcggttgtgctatttggagcaagtaataatagacatagtaaagca 
A V V L F G A S N N R H S K A  

458 caaattaagaattgttcttgcacaacatgcccagctgtctctagt 
Q I K N C S C T T C P A V S S  

503 gaggaacagcaggcgagtagatcagatctactggactggatcaat 
E E Q Q A S R S D L L D W I N  

548 aagtcccattggttaaaatga 568 
K S H W L K *
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CIC open reading frame (Length: 64 aa)
11 ctgtcgacgcggccgcgtaatacgactcactatagggcgaagaat 

L S T R P R N T T H Y R A K N  
56 tcggatcccacattaagtcaggtgctacttggggaagttgcttcg 

S D P T L S Q V L L G E V A S  
101 ttttcttgtgctctaagatctctcacccacacgcctggttttggg 

F S C A L R S L T H T P G F G  
14 6 gagaaggataaggacggtgtttctaaacatgctgtgtttcctatg 

E K D K D G V S K H A V F P M  
191 cagagaggcaggtga 205 

Q R G R *
(Note alternative initiation codon- ctg)

C2A open reading frame (Length; 79 aa)
581 atgtctgcaagtggccggcagccgtgcaatgagggagacaggtgg 

M S A S G R Q P C N E G D R W  
62 6 tggcgcccaggtcctgccctaggtagaaaagtgatggaagatccc 

W R P G P A L G R K V M E D P  
671 tgcttgatgctgaggccccagccgcgcccgccctggaaagataaa 

C L M L R P Q P R P P W K D K  
716 agaggaactggcctatcctatcctgatgccgaagggaagggagag 

R G T G L S Y P D A E G K G E  
761 aaaggaaaatntcctntaagagcaaagagccacctggccctccta 

K G K X P X R A K S H L A L L  
806 cagtgtgtggtacc 819 

Q C V V

HRC2 open reading frame (Length: 102 aa)
301 ctgtacacctttggcagaccatcattccacagcacgcccagaaac 

L Y T F G R P S F H S T P R N  
34 6 aggggagccaggtggtggagggtgggatctgcctgccgagaacga 

R G A R W W R V G S A C R E R  
391 ggaagggcatcggtgacaggtaacaacctgaggcactggagaggg 

G R A S V T G N N L R H W R G  
436 agagcacgcgtgatgttcctcagaaacgagtcgcatttccgcata 

R A R V M F L R N E S H F R I  
481 gcgcctccttcagaccgtgagagatcgccagagggcgtgggcttt 

A P P S D R E R S P E G V G F  
52 6 ccgttctgttctctgaacctacagttaagcccaagccaggggccg 

P F C S L N L Q L S P S Q G P  
571 cttttccctaatgaacatgcctttcttcggtggacctga 609 

L F P N E H A F L R W T *

(Note alternative initiation codon- ctg)

Figure 4.14 Potentiai open reading frames predicted form the DNA sequences 
isolated from a human genomic iibrary with vSag-derived probes. Open reading 
frames were identified with the NCBi programme “ORF finder" with standard (atg- 
C1A, C1B, C2A) and alternative (ctg-C1C, HRC2) start codons. Ali sequences 
terminate with a tga stop codon except the subclone C1A which potentially extends 
beyond the sequenced region.
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The predicted amino acid sequences from these potential encoding regions were 

submitted as query sequences for analysis using the blastp programme with the NCBI 

non-redundant protein database (234). Protein database matches with vSag amino 

acid sequences were found for the subclone C2A (figure 4.15), resulting from a short 

region of homology over 12 amino acids (figure 4.16). Weak alignments were also 

identified for the C1B and C1C subclones (figure 4.16). No other regions of significant 

homology were found between the human sequences and murine vSag.

Query sequence C2A (predicted amino acid sequence)

S e q u e n c e s  p r o d u c i n g  s i g n i f i c a n t  a l i g n m e n t s ;

r e f  I N P _055 611  .1  I K IA A 0 7 4 8  g e n e  p r o d u c t  > g i  | .3882217 | d b j  | BAA3 . 
e m b IC A A 4 6 4 3 6 . 1  I (X 6 5 3 3 9 )  ORF o f  M T V -7 ;  w i t h i n  l o n g  t e r m i n a l ,  
p i r l I S 2 3 0 5 9  s u p e r a n t i g e n  M tv 4 3  -  mouse  mammary t u m o r  v i r u s  . 
sp lP 1 0 2 6 1 IP R 7 R _ M M T V G  PROTEIN PR73 ( 3 ' ENDOGENOUS) > g i | 6 1 6 2 8 | .  
e m b IC A A 4 4 7 5 7 .1  I (X 6 3 0 2 5 )  mammary t u m o u r  v i r u s  3 ,  s u p e r a n t i g .  
s p lP 0 3 3 1 9 IP R 7 3 _ M M T V C  PROTEIN PR73
e m b IC A A 4 4 7 5 5 .1  I (X 6 3 0 2 4 )  mammary t u m o u r  v i r u s  1 ,  s u p e r a n t i g .  

L - l o n g  t e r m  r e p e a t  (Mus m u s c u l u s )
( A F 1 1 9 3 4 2 )  s u p e r a n t i g e n  3 (Mus m u s c u l u s )  

( 0 3 8 6 3 9 )  r e t r o v i r i d a e  p r o t e i n  (M ouse m am m ar. 
( A F 0 4 3 6 8 9 )  vSAG p r o t e i n  (Mus m u s c u l u s ) 
(U 7 1 2 7 1 )  s u p e r a n t i g e n  (M ouse  mammary t u m o r  v .  
exoMTV v S A G = v i r a l  s u p e r a n t i g e n  t y p e  I I  m e m br.  

sp lP 0 3 3 2 1 IP R 7 L _ M M T V G  PROTEIN PR73 ( 5 ' ENDOGENOUS) > g i | 7 4 5 3 6 | ,  
r e f | N P _ 0 5 6 8 8 4 .1  I P r4 8  > g i | 1 3 0 8 4 1 1sp IP 1 0 2 6 0 IP R 7 3 _ M M T V B  PROTE. 
g b I A A B 3 3 8 8 6 .1  I MTV p r o t e i n  (m ouse  mammary t u m o r  v i r u s  MMT, . 
g b I A A B 2 9 1 8 6 .1  I (S 6 7 3 6 5 )  vSAG23=T c e l l  r e c e p t o r  V b e t a  7 - s p e .  
g b IA A D 2  6 4 64 . 1 IA F l3 6 8 9 9 _ 1  (A F 1 3 6 8 9 9 )  s u p e r a n t i g e n  (M ouse mam.
g b IA A D 2  6 4 6 3 . 1  IA F l 3 6 8 9 8 _ 1  (A F 1 3 6 8 9 8 )  s u p e r a n t i g e n  (M ouse mam.
d b j I B A A 0 5 3 9 0 .1  I (D 2 6 3 5 9 )  s u p e r a n t i g e n  ( E x o g e n o u s  m ouse  mamm.

p r f I  I 0 8 0 3 2 4 5 A  
g b iA A D 2 4 7 7 1 . 1 | 
d b j I B A A 0 7 6 2 G . 1  
g b I A A C 1 6 2 8 1 .1  I 
g b | A A C 5 7 0 6 3 . 1 | 
g b |A A B 2 1 4  6 8 . 1 |

S c o r e E
( b i t s ] V a l u e

34 0 . 1 4
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2
29 4 . 2

Figure 4.15 BLAST search of a non-redundant protein database with the 
predicted amino acid sequences of clones isolated from a human genomic 
library with vSag-derived probes. The Basic Local Alignment Search Tool (BLAST) 
software (234) provided on the National Center for Biological Information (NCBI) web 
site was used to search a non-redundant protein database (536,932 sequences; 
168,632,586 total letters: search date 26/9/2000) for sequences homologous to the 
predicted amino acid sequences derived from subclones :126a (locus CIA), X38a 
(locus C1B), M ib  (locus C1C), XI3a (locus C2A), X37a (locus C2B) and X2x (locus 
HRC2). Matches to murine vSag sequences are highlighted in red.
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CIB ; 32 LGKVAV 37 
LG+VAV 

vSag : 2 4 LGEVAV 29
Score = 13.0 bits (23), Expect = 323715 
Identities = 5/6 (83%), Positives = 6/6

CIC : 24 LLGEVASFSCALRSLT 39 
LLGEVA A R+LT 

vSag : 23 LLGEVA--VRARRALT 36

Score = 14.8 bits (28), Expect = 96050
Identities = 10/16 (62%), Positives = 11/16 (68%), Gaps = 2/16 (12%)

C2A : 4 GDRWWRPGPALG 15 
GDRWW+PG G 

vSag : 201 GDRWWQPGTYRG 212
Score = 29.2 bits (60), Expect = 4.2 
Identities = 8/12 (66%), Positives = 9/12 (74%

Figure 4.16 BLAST alignments between vSag and predicted amino acid 
sequences. BLAST alignments were generated from searching a non-redundant 
protein database (234) with the predicted amino acid sequences of clones X38a (locus 
C1B), X41b (locus C1C) and X13a (locus C2A). Significant alignment were not 
identified with X26a (locus CIA), X37a (locus C2B) and X2x (locus HRC2).

Figure 4.17 shows the positions of each of the open reading frames against the 320 

amino acid vSag gene product. (Note the CIB sequence contains four methionine 

residues at position 1, 25, 60 and 96, the Met®° being taken as the start codon in the 

alignment shown in figure 4.17)
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vSag M P R L Q Q K W L N S R E C P T L R R E A A K G L F P T K D D P
CIB M S R S S W K V N R I F G V

•Cl region-------------
vSag S A C T R MpSJP D K I I I C K L G I
CIA 1_ M L M P L F A
CIB F F L W V L L Q G L S I I p V V S S Q S
CIC L_SJT P R 'I' '1 H Ÿ R A K N W D

A L L C L G 
A L L C L G
E G G R C 1

S Q V HL L  G

vSag

CIB
CIC

I V A V
iZDA c
V A V
V A E

R Acrn A L
Q N _S_T TKl

V L F G A S N N  R|H S K 
Els El A L Rl a 11 T

N S S V
P W C"
A Q 1 K
G F G E

L N N s E N S 1 F
fFv Iw
T T C p A V S s E
g Pv Is K H A V F P

vSag L I G Q G P
CIB r ç Q A S R
CIC M R G R *

P]k  P
Li I N

H R L C P S E I E I R M L A K N Y I
K S H W L K *

vSag F T N K T N P I G R L L I M M L R N E S L S F S T I F T Q I Q R

vSag L E M G I E N R K R R S T S V E E Q V Q G L R A S G L E V K R G
C2A M S A
HRC2 L Y T F G R P S

vSag K R s T L y K
C2A S G Rpû. P C n |
C2B I 1- T K V

aHRC2 F H S T P k

G D R W W Q 
G D R W wfR
S

P G
  P G

D R W W Q P G
â ~ Ir w  wOa y G

) Y R i?

t e
s AfClE.

P Y Y R P T D A P|%"
M E D P C L M I L

G R A S V T G N N L
-C2 reaion-

vSag Y T G R Y D L N F D R W V T V N G |y K V L Y
C2A P Q P P P P W k D K R n T G L è Y P ü A E G
HRC2 R H W R G R A R V M F L R N E s H |F R i l A L

F R E R L A
G K X P X R
E R S P E G

vSag R
C2A .

A P P P IftI r p' T. T Q IF F. K
A K S H L A L L Q C V V

HRC2 . V G F P F C S fe N L L S

K D D I K Q Q V H

S P S Q G P L F P

Y I Y L G T G M N

E H A F L R W T *

vSag V W G K I F H Y T K E G A V A R Q L E H Z S A D T F G M S Y N G

Figure 4.17 Alignment of open reading frames of sequences C1A, C1B, C1C, 
C2A and HRC2 against the complete vSag gene product. Identical and similar 
residues shared by more than one sequence are boxed, where identical residues are 
highlighted in red and similar residues highlighted in pink. A short region of sequence 
alignment is shown for C2B (18 AA), although this did not represent an open reading 
frame. The conserved regions of vSag (Cl and 02) are indicated, and represent the 
regions to which probes were targeted. Similar residues were members of the set; 
L=I=V=M, R=K=H, F=Y=W, S=T, E=Q, D=N.
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4.4 Discussion

Previous chapters have described the identification and isolation of the human 

genomic clones hybridising with greatest affinity to the murine vSag derived probes. 

The most direct way to determine the significance of these regions of DNA was to 

sequence them. This allowed the accurate assessment of homology to vSag and by 

identifying open reading frames, gave an indication as to whether the DNA sequences 

had the potential to encode proteins. As the sequencing reactions could give accurate 

data for lengths up to 500 bp, it was necessary to digest the original X clones (with 

inserts up to 10 kb), identify the fragments hybridising to the probes and re-ligate 

these smaller fragments into another vector (KSM13-).

Sequence data was obtained from recombinant inserts ranging from 478 -952 bp. 

Accuracy of the sequence data was improved by sequencing forward and reverse 

strands of DNA, merging the complementary strands using computer software 

(Microgenie). For longer sequences (>800 bp) the overlap between forward and 

reverse strands was relatively short, resulting in potential sequence errors. To 

minimise such errors, the graphical output of the sequence data was analysed 

visually, and the letter “N” inserted where doubt existed. The number of undetermined 

nucleotides per sequence ranged from 1 to 15 (0.15%-1.67%), with the largest 

number being present in the longest uninterrupted sequence (952 bp Pst\ subclone of 

137a).

The initial assessment of the sequence data was undertaken using computer software 

(Microgenie) which identifies regions of homology between two sequences. The DNA 

sequences of the subclones were compared with the complete murine vSag 

sequence. Homology to murine vSag was identified only within the region of the 

subclones binding to the probes. The degree of homology, expressed as a ‘similarity
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index’ (number of matches divided by the length of the sequence) was relatively low. 

For the subclones isolated using the vSagCI probe, the similarity indices over the 

length of the probe (91 bp) ranged from 52.2-58.2%, while the similarity indices for the 

subclones isolated using the 182bp vSagC2 probe, were 43.7- 48%. For each 

subclone there was a short region of high homology, with 20/20 nucleotides matching 

(CIA), or 22/23 matching (C2B). Only sequence 010 had a longer region with 39/53 

nucleotide matches.

For some of the subclones, the short regions of strong homology to the vSag probes 

had high 0 :0  contents which would have increased their hybridisation melting 

temperature (Tm). This is a consequence of 0 -0  interaction involving formation of 

three hydrogen bonds rather than the two involved in A-T interactions. The 0 :0  

content of the 91 bp 01 probe was 56%. This increased to 65% over the 20/20 

nucleotide stretch with homology to 01 A. The 0 :0  content of the 182 bp 02 probe 

was 45%, which increased to 65% over the region of the probe sharing 21/23 

matching nucleotides with 02A. The 0 :0  content of the short hybridising regions of 

the other subclones ranged from 50-58%.

The sequence data from the subclone hybridising to the HR02 probe revealed the 

extent of homology that the FOR primers had with the genomic DNA from which the 

probe was originally amplified. The region to which the 22 nucleotide long 5' primer 

annealed had 20 matching nucleotides with 3 unmatched (gaps) and 2 mismatched 

nucleotides. The 3’ primer (22 nucleotides long) annealed to a region with 17 

matching nucleotides, with 1 unmatched and 4 mismatched nucleotides. These primer 

binding sites had the greatest homology to the vSag sequence. Over the length of the 

probe (176 bp) the similarity index was 47.7% which was similar to that of the C2A
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and C2B sequences isolated directly with the probe to murine vSagC2. There were 

again no significant regions of homology out with the region binding to the probe.

While experiment is the best method of determining biological significance, 

mathematical analysis by sequence similarity search programmes can indicate which 

similarities are unlikely to have arisen by chance and can be considered statistically 

significant. The NCBI (National Center for Biotechnology Information, National Library 

of Medicine, National Institute of Health, Bethesda, USA, http:/www.ncbi.hih.gov) was 

used as this provided easy access via the internet to a range of up-to-date DNA and 

protein databases. When the complete sequences of the subclones were submitted 

for database searching, in four of the six sequences (C1B, C1C, C2A and C2B), 

human Alu subfamily sequences with high E (Expect) values were present throughout 

the output data. (The E value is number of hits one can "expect" to see just by chance 

when searching a database of a particular size). The Alu family (named due to the 

presence of the recognition sequence for the restriction endonuclease Alu\ within the 

sequence) are short interspersed repetitive nuclear elements (SINEs) which are 

scattered throughout the genome. Their function is unknown. SINEs vary in length 

form 130-300 bp and are repeated some 7000 times. These repetitive sequence can 

confound database searches, as sequences with lower, but significant, alignment 

scores may not be identified. To get round this problem, it is recommended that 

database searching should be performed in phases, with a query first compared to a 

small database containing domains representative of large sequence families. 

Regions of the query that match one or more of these domains can then be masked 

(or deleted) prior to full scale searching, thereby eliminating most of the redundant 

output. By doing this, matches to vSag sequences in the NCBI (non-redundant) DNA 

database were identified for the sequences 01A (E value 0.084) and GIB (E value 

0.36). Almost exact sequence matches were identified for three of the sequences.
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C1A matching with a region of chromosome 10, CIC with a region of chromosome 6 

and C2A with a region of chromosome 9. In each case the database sequences were 

from large sequencing projects, and did not represent known genes. Matches to vSag 

sequences were not identified in database searches with the other sequences.

The database searches with the sequence data from the 6 representative subclones 

indicated that they were only weakly related to vSag genes with no statistically 

significant matches being identified with vSag sequences. Functionally related genes 

can however share relatively short regions of homology at the nucleotide level, where 

the homologous sequences encode critical regions of the protein. When the DNA 

database searches were repeated restricting the query sequences to the short regions 

with greatest homology to vSag (range 20-50 nucleotides), significant matches to 

vSag sequences were obtained for CIA and CIB (E values 0.006 and 0.05 

respectively).

The presence of open reading frames (ORFs) within a DNA sequence can give an 

indication to the location of protein-encoding regions (i.e. exons). The ‘ORF finder' 

programme (NCBI) was used to identify standard and alternative initiation and 

termination codons and deduce amino acid sequences in the 6 subclones. Open 

reading frames containing short regions of homology to vSag in the predicted amino 

acid sequence were identified in 5 of the 6 subclones (CIA, CIB, CIC, C2A, HRC2). 

These open reading frames ranged in size from 43 to 156 amino acids. Alignment of 

these predicted amino acid sequences against that of vSag demonstrates localised 

areas of homology, shared by each of group sequences, C1A, Cl B and CIC sharing 

homology in the first conserved region of vSag, and C2A and HRC2 sharing homology 

in the second conserved region of vSag. None of the open reading frames extended 

to include both first and second conserved regions.
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The potential biological significance of the human vSag-related sequences described 

above will be discussed in chapter 7. We will first turn our attention to the presence 

and expression of vSag related sequences in the human autoimmune condition, 

Sjogren’s syndrome.
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5 CHAPTER FIVE

Search for vSag related sequences In DNA and mRNA from 

patients with primary Sjogren’s syndrome

5.1 Introduction

The preceding chapters have described the search for endogenous retroviral 

superantigens in normal human genomic DNA. There are several pathological 

conditions in which such genes could play an important role. As described in chapter 

one, both superantigens and retroviruses have been implicated in many of the human 

autoimmune diseases, but to date, there have been no published studies looking for 

the presence of murine vSag related sequences in these conditions.

Sjogren’s syndrome was chosen as a model human autoimmune condition for these 

studies. This disease is characterised by lymphocytic infiltration of lacrimal and 

salivary glands, causing destruction of the glands giving rise to the classical features 

of ‘dry eyes’ and ‘dry mouth’. The condition can be secondary to other autoimmune 

conditions, such as rheumatoid arthritis or primary biliary cirrhosis, or can overlap with 

disorders which share similar systemic features (eg systemic lupus erythematosus 

(SLE), scleroderma or mixed connective tissue disease). Diagnostic criteria for the 

‘primary’ condition (1°SS) are shown in Chapter 1 (section 1.4).

A number of clinical features are found in 1°SS, which may reflect an over active 

immune system in these patients. The characteristics of an overactive immune system 

could theoretically result from a response to a superantigen. This chapter describes
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the search for potential retroviral superantigen sequences in 1°SS. Eight patients were 

selected who fulfilled the European diagnostic criteria for 1°SS and were anti-Ro 

antibody positive. DNA was extracted from peripheral blood samples of these patients 

and investigated for the presence of genomic vSag-related sequences. mRNA was 

extracted from minor salivary gland biopsies from five of these patients to look for 

evidence of gene expression. The PCR primers directed against the conserved 

regions of murine vSag, which had been used to identify potential vSag related 

sequences in normal human DNA in chapter two, were used to look for evidence of 

vSag related sequences unique to 1°SS patients. The murine vSag constant region 

probes (vSagCI and vSagC2), which had been used to isolate vSag related 

sequences from the human placental DNA library (chapter 2), were hybridised with 

1°SS peripheral blood DNA to look for evidence of other vSag sequences not 

identified in the human genomic library. Evidence of gene expression was sought by 

hybridising mRNA from minor salivary gland biopsies with the human vSag related 

sequences C1A, C1B, C1C, C2A, C2B and HRC2, shown in previous chapters to be 

present in normal genomic DNA.

5.2  Patients and Methods

5.2.1 Patients

Eight patients, who were under regular review In a specialist clinic (Department of 

Rheumatology, Freeman Hospital), were recruited. Written consent was obtained for 

isolation of DNA for the genetic studies. Patients fulfilling the diagnostic criteria for 

rheumatoid arthritis, SLE or scleroderma were excluded from the study. Any patients 

with sarcoidosis, graft-versus-host disease, acquired immune deficiency syndrome or 

pre-existing lymphoma were also excluded. All were white Caucasian females with a 

median age at diagnosis of 55 years (range 17-65). The median disease duration was
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10 years (range 6-20 years). They were asked to complete the 6 item symptom 

questionnaire described by Vital! et al (180, 181). A full clinical assessment was made 

looking for evidence of extraglandular manifestations (skin rashes, Raynaud’s, 

lymphadenopathy, arthritis, lung involvement, serositis and neuropathy) and glandular 

manifestations including a Schirmer’s test and unstimulated salivary flow rate. The 

Schirmer’s test was considered abnormal if there was less than 5 mm wetting after 5 

minutes as defined in the European criteria. The inability to produce more than 0.5 ml 

of saliva in 5 minutes was also considered abnormal. Blood was taken for extraction of 

DNA. Minor salivary gland biopsies were available in some patients (stored at -70°C) 

where they had been performed for diagnostic purposes. Other blood investigations 

included full blood count, ESR, urea and electrolytes, CRP, liver function tests, thyroid 

function tests, immunoglobulins, serum electrophoresis. An extended autoantibody 

profile was carried out by the Immunology Department at Royal Victoria Infirmary.

ANA and salivary gland antibodies were assessed by immunofluorescence with titres 

>1/40 reported as positive. Antibodies to DNA, Ro, La, RNP and Sm, were assayed 

by a commercial ELISA (Sigma) while RF was determined by a particle agglutination 

assay (positive titre >1/40).

5.2.2 Extraction of DNA from peripheral blood of 1°SS patients.

5 ml of peripheral blood in EDTA was mixed with 15 ml SOW and centrifuged at 4,000 

rpm (Beckman JS 13 rotor) for 15 min at 4°C. After draining off the supernatant, 10 ml 

of sucrose buffer containing 1.09 g sucrose, 10 mM Tris (pH 7.5) and 5 mM MgCb 

was added, and vortexed thoroughly to resuspend the nuclei. This was re-centrifuged 

at 4,000 rpm (Beckman JS 13 rotor) for 10 minutes at 4°C, and the supernatant 

drained off thoroughly. The pellet was then resuspended in 0.5 ml of TE buffer and 

vortexed to obtain a uniform suspension of nuclei. 5 ml of extraction buffer containing
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50 fxg RNase, 10 mM Tris (pH 8), 50 mM EDTA and 0.5% SDS was added to the 

suspension of nuclei while vortexing continuously. The suspension was incubated for 

3 hours at 50°C with 500 pg proteinase K and then extracted overnight with 5 ml of 

phenol at room temperature. After centrifuging at 10,000 rpm (Beckman JS 13 rotor) 

for 10 minutes at 4°C, the aqueous phase was transferred to a clean Corex tube to 

which 100 mM NaCI and 2 volumes of 100% ethanol was added, mixing well to 

precipitate the high molecular weight DNA. This was recovered by centrifuging at 

10,000 rpm (Beckman JS 13 rotor) for 10 minutes at 4°C. After pouring off the ethanol, 

the DNA pellet was re-suspended in 75% ethanol and left overnight at 4°C, then 

centrifuged at 10,000 rpm (Beckman JS 13 rotor) for 10 minutes at 4°C, and the 

ethanol drained off again. The DNA pellet was dissolved in TE buffer, and after 

measuring the DNA concentration on a spectrophotometer, was diluted to give a final 

concentration of 500 pg/ml.

5.2.3 PCR amplification using vSag specific primers

DNA extracted from the peripheral blood of 1°SS patients was used as template DNA 

for polymerase chain reactions using the specific PCR primers to the first and second 

conserved regions of murine vSag (see chapter 2). PCR reactions were under the 

conditions describe in section 2.2.1, with 100 ng of patient DNA in each reaction. 

Control samples were DNA extracted from peripheral blood of a normal human blood 

donor and DNA from the GR mouse strain. Thermal cycler setting were as described 

in section 2.2.1, except that reactions were continued for 30 cycles.

PCR products were electrophoresed on 3% agarose minigels containing 0.5 pg/ml 

ethidium bromide.
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5.2.4 Southern analysis of 1°SS DNA using vSag related probes.

DNA extracted from the peripheral blood of the 8 1°SS patients was digested with the 

restriction enzymes HindWl and Xba\. DNA extracted from peripheral blood of a normal 

blood donor was used as a control. Digestions were in 16 p.1 reaction mixtures, 

containing 5 pg of DNA and 100 jag/ml BSA , in a restriction buffer of the composition 

recommended by the enzyme manufacturer. The restriction enzymes were used at 4 

fold excess and digestions carried out at 37°C for three hours. Digested DNA samples 

were then run on 1% agarose gels with Hind\\\ digested 1 DNA molecular weight 

markers, for approximately 450 volt-hours. After staining with ethidium bromide to 

determine the position of the molecular weight markers, the digested DNA was 

transferred to nylon membranes as described in chapter three.

Hybridisation probes, radiolabelled by nick translation, were prepared as described in 

chapter 2. Four probes were prepared; the murine probes vSagCI and vSagC2, and 

the human PCR products, HRC1 and HRC2, amplified with primers to the first and 

second conserved region of vSag. Hybribisations were carried out under reduced 

stringency conditions (25% formamide) with the vSagCI and vSagC2 probes, and 

under higher stringency condition (50% formamide) with the HRC1 and HRC2. 

Hybribisations were carried out with each probe at 40kBq/ml. In order to differentiate 

the predicted restriction fragments based on the known restriction maps (chapter 3), 

HindlW digested DNA was hybridised with the vSagCI and HRC2 probes, while Xba\ 

digested DNA hybridised with vSagC2 and HRC1 probes. (Note a restriction map was 

not available for HRC1, as 1 clones had not been isolated from the genomic library 

with this probe).
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6.2.5 Extraction of mRNA from minor salivary gland biopsies.

Messenger RNA was extracted from minor salivary gland biopsies in five of the eight 

1°SS patients (clinical features shown in Table 5.2). Each lip biopsy showed 

characteristic histological features of 1°SS with a focus score > 1 (focus defines as an 

agglomeration of at least 50 mononuclear cells; focus score defined as the number of 

foci per 4 mm^ of glanduair tissue). There were between 4 and 6 minor salivary glands 

for each patient, which were stored at -70°C prior to extraction of mRNA. A salivary 

gland biopsy from an otherwise healthy patient with chronic sialadenitis secondary to 

parotid duct obstruction was used as a normal control.

Isolation of mRNA with Oligo(dT)2s magnetic beads

Messenger RNA was isolated using magnetic beads covalently bound to an oligo dT 

sequence (Dynabeads, Dynal, Oslo, Norway). This method relies on the base pairing 

between the oligo dT sequence and the poly (A)+ residues of most messenger RNA. 

The oligo(dT) 2 5  beads are superparamagnetic polystyrene beads, 2.8 pm in diameter, 

with 25 nucleotide long chains of deoxy-thymidylate attached to the bead surface via a 

5’ linker group. By placing an Eppendorf tube containing the beads against a magnet, 

the beads and attached mRNA can be isolated.

For each isolation, 250 pi of the stock bead suspension in PBS was added to an 

RNase-free Eppendorf tube and placed against a magnet. After the suspension 

cleared (30 seconds), the supernatant was discarded, and the beads washed once 

with 0.2 mis lysing/binding solution containing lOOmM Tris-HCI (pH 8), 500 mM LiCI,

10 mM EDTA (pH 8), 1% SDS and 5 mM dithiothreitol (DTT). For each patient, frozen 

tissue was transferred to a glass homogenizer containing 1 ml lysis/binding buffer and 

homogenised manually for 2 minutes. The viscosity was reduced by passing the lysate 

three times through a 21 gauge needle with a 1 ml syringe. The lysate was centrifuged
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for 1 minute in an Eppendorf centrifuge to remove debris and the supernatant added 

to the prewashed oligo dTgs magnetic beads, mixed well, and left to anneal for 5 

minutes at room temperature. The tube was placed against the magnet for 5 minutes 

to isolated the annealed mRNA. The beads were washed three times in 1 ml washing 

buffer containing 10 mM Tris-HCl (pH 8), 0.15 M LiCI, 1 mM EDTA and 0.1% SDS, 

mixing thoroughly in the washing buffer and removing the supernatant completely 

between each washing step. The mRNA was eluted by incubating at 65°C for 2 

minutes in i5 pi of 2mM EDTA (pH 8). The tube was placed against the magnet, and 

the supernatant containing the mRNA transferred to new Rnase-free tubes. The 

concentration of mRNA was measured by spectrophotometry and adjusted to 

lOOpg/ml, giving an approximatie yieid of 3 pg mRNA per patient sample.

5.2.6 Northern analysis of 1°SS salivary gland mRNA using vSag related 

probes.

RNA samples were electrophoresed on a denaturing gel containing 1.2% type II 

agarose and 17% formaldehyde in PB buffer. Prior to loading, for each lane on the 

gel, 0.5 pg mRNA was denatured by incubating for 20 minutes at G5°C in a solution 

containing 17.9% formaldehyde, 0.05 mM EDTA, 0.05 mM DMSO and 2% 

bromophenol blue in PB buffer. 10 pg total RNA from the MCF-7 cell line was 

denatured in the same way to run as a molecular weight marker. Samples were run on 

the gel for approximately 450 volt-hours. After imaging the ethidium bromide stained 

gel to determine the position of the marker ribosomal RNA, the denatured mRNA was 

transferred to nylon membranes by Northern blotting, to allow hybridisation with the 

vSag related probes. Prior to transfer, the gel was washed in 20x 880 (0.3 M 

NasCitrate and 3 M NaCI) for 40 minutes. The nylon membranes, which had been 

soaked in 20 x SSC, were laid over the gel on transfer apparatus (described in 

chapter 3), and allowed to transfer for 24 hours. The nylon membranes were then
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baked at 80°C for 2 hours and irradiated for 90 seconds on a transilluminator prior to 

hybridisation.

Preparation of vSag related probes for hybridisation

Probes were prepared from the vSag related subclones described in chapter five. In 

order to isolate the insert DNA for use as probes, the subclones were used as 

templates for PCR reactions, using T3 and T7 primers. The size of the product for 

each subclone is shown in Table 5.1. The original HRC2 probe was used, as this 

shared 95% homology with the subclone of X 2x (see chapter 4).

Sequence Subclone PCR product size
CIA 26a SacI 1200 bp
CIB 38a Xba\ / BglW 600 bp
CIC 4^bXba\ I Sma\ 600 bp
C2A 13a Smal / Kpn\ 800 bp
C2B 37a Pst\ 1000 bp

Table 5.1 Sizes of PCR products amplified from subclones for use as 
hybridisation probes. T3 and T7 primers were used to amplify the DNA inserts from 
the subclones of 126a (locus CIA), 138a (locus CIB), 141b (locus CIC), 113a (locus 
C2A) and 137a (locus C2B). These PCR products were purified and radiolabelled by 
nick translation as described in chapter two.

The plasmids were linearised by digesting with the restriction enzyme Seal which does 

not cut within the multiple cloning site of KSM13-. The digested plasmids were run on 

a 0.8% agarose minigel, to estimate the yield and to ensure the restriction enzyme 

had not cut within the DNA insert. Two restriction fragment were present after 

digesting the subclone 37a Pst\, indicating that a second restriction site for Seal was 

present within the recombinant DNA. The subclone 37a was therefore not linearised 

when used as a template for PCR, but the dénaturation temperature of the first four
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cycles of the PCR reaction was increased to 96°C to account for this. Seal restriction 

sites were not present within the other recombinants.

PCR reactions were with 2 ng plasmid DNA in 50 pi volumes under mineral oil, with 

200 ng of each primer (T3 and T7), 0.2 mM dNTPs, 5 pg BSA, PCR buffer and Taq 

polymerase (1,25 units/reaction). The thermal cycler settings were 25 cycles of 94°C 

dénaturation for 30 seconds, 55°C annealing for 30 seconds and 72°C extension for 

60 seconds (with 4 cycles of 96°C dénaturation temperature where non-linearised 

plasmid was used as template DNA). PCR products were run on 3% agarose minigels 

(1g agarose type 1, 2g Nusieve in lOOmIs THE) containing 0.5pg/ml ethidium bromide.

Prior to use as hybridisation probes, the PCR products were purified and radiolabelled 

by nick translation as described in chapter two. Hybridisations were carried out in 50% 

formamide at 42°C for 3 days with each probe at 160 kB/ml. Filters were washed at 

37°C (see chapter two) with 50% formamide and were finally dried and exposed 

against pre-flashed X-ray film.
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5.3 Results

5.3.1 Clinical features of 1°SS patients

The clinical details of the eight patients are shown In Table 5.2. Each patient fulfilled 

6/6 of the European criteria for the diagnosis of 1°SS. All were anti-Ro and anti-La 

antibody positive. The mean IgG level was 21.3±9.4 g/L (normal range 6-15g/L). Four 

patients had lung involvement (3/8 pleural effusions, 1/8 fibrosing alveolitis). 

Lymphadenopathy was present in 3/8 patients, parotid swelling in 4/8 and interstitial 

nephritis associatied with renal tubular acidosis in 1/8. Three patients were on oral 

corticosteroids but none of the patients were on other types of immunosuppressive 

medication.

Patient Age at 
diagnosis

Disease
duration

Lung
disease

Parotid/LN
enlarged

Renal
disease

Steroid
dose

IgG
(g/L)

1 51 20 P. Effusion 7.5 mg 23.5
2* 58 6 Parotid 17.9
3* 65 11 Parotid/LN 13.6
4* 32 16 P. Effusion Parotid 39
5 62 8 FA 7.5 mg 13.4
6* 17 6 Parotid/LN 23.8
7* 45 10 P. Effusion RTA 5 mg 10.5
8 55 7 LN 28.5

Table 5.2 Clinical details o f patients with l^’SS. DNA was extracted from peripheral 
blood as described in Materials and Methods. All patients fulfilled 6/6 European criteria 
and were anti-Ro and anti-La antibody positive. P.Effuslon= pleural effusion; FA= 
fibrosing alveolitis; LN= lymph node enlargement; RTA= renal tubular acidosis.
* RNA extracted from minor salivary glands in these patients
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5.3.2 PCR amplification using vSag specific primers with DNA extracted from 

1°SS patients

Sequence specific PCR primers to the first and second conserved regions of murine 

vSag (vSagCI and vSagC2) were used to amplify products from DNA isolated from 

the peripheral blood of patients with 1°SS. The sizes of these PCR products were 

compared with products amplified from normal human DNA by electorphoresing on 

agarose gels, to investigate whether any unique products were found in the patient 

group. The PCR products amplified from eight fS S  patients are shown in figure 5.1. 

There were no PCR products unique to 1°SS patients. PCR amplification with the 

primer pair to vSagCI gave a single product of similar size to the 96 bp product 

cloned and sequenced from normal human DNA (see chapter 2), the equivalent 

murine vSag sequence being 91 bp. As with normal human DNA, two main PCR 

products (176 and 214 bp) were identified using the primers to vSagC2. Under the 

conditions employed (50°C annealing temperature with an increase in PCR cycles 

from 25 to 30), a number of larger PCR products were identified with this primer pair, 

both in the 1°SS patients and in normal DNA. These were not considered significant in 

view of the large discrepancy in size between these products and the 182 bp product 

amplified from the vSag gene of the GR mouse DNA.
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Sjogren's patients 

M 1 2 3 4  5 6  7 8 N G R

1500

HR Cl (96 bp) 

vSagCI (91 bp)

a. PCR primers to vSagCI

M

Sjogren’s patients 

1 2  3 4  5 6 7 8 N G R

1500

214 bp 

< vSagC2 (182 bp) 

HRC2 (176 bp)

b. PCR primers to vSagC2

Figure 5.1 PCR products amplified from 1°SS DNA with primers to vSagCI and 
vSagC2. DNA was extracted from peripheral blood of eight patients with1°SS and one 
normal control (N). (a) Products amplified with sequence specific PCR primer to the 
first conserved regions of murine vSag (vSagCI). (b) Products amplified with 
sequence specific PCR primer to the second conserved regions of murine vSag 
(vSagC2). The products amplified from GR+ murine DNA were of the sizes predicted 
for vSagCI (91 bp) and vSagC2 (182 bp). M= molecular weight marker (bp).
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5.3.3 Southern analysis of 1°SS DNA using vSagCI and vSagC2 probes.

The murine probes vSagCI and vSagC2 were hybridised under reduced stringency 

conditions to DNA extracted from the peripheral blood of 1°SS patients which had 

been digested with the restriction enzymes HindïW and Xba\. Autoradiographs were 

analysed for the presence of restriction fragments corresponding to the sizes 

predicted for the C1A, C1B, C1C, C2A and C2B loci (chapter 3). Only very weak 

hybridisation signals were identified when the Hind\\\ digested DNA was hybridised 

with the vSagCI probe (data not shown). These weakly hybridising restriction 

fragments did not correspond to the lengths to the Hindlll restriction fragments of the 

1 clones isolated in chapter two.

The autoradiograph of a Southern blot hybridised under reduced stringency conditions 

(25% formamide) with the murine probe vSagC2 is shown in figure 5.2. A 4 kb Xba\ 

fragment was identified after hybridising the vSagC2 probe with the Xba\ digested 

DNA, which corresponded to the restriction fragment of the 137a clone (locus C2B). 

This restriction fragment was present in all eight patients and normal DNA. Hybridising 

restriction fragments otherwise gave very weak signals. A 9 kb Xba\ restriction 

fragment, corresponding to the Xba\ restriction fragment of 113a (locus C2A), was 

weakly visible in the DNA of patients 3 and 4. The vSagC2 probe also hybridised very 

weakly to a 7 kb Xba\ restriction fragment of the DNA extracted from patient 3, a size 

corresponding to the Xba\ restriction fragment of 139a (Figure 3.7b). This clone had 

not been sub-cloned or sequenced due to the relative weakness of its hybridisation in 

the dot-blot experiments (see chapter 3).
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5.3.4 Southern analysis of 1°SS DNA using HRC1 and HRC2 probes.

DNA from the 1°SS patients was hybridised with probes prepared from the 96 bp 

(HRC1) and 176 bp (HRC2) PCR products amplified from normal human DNA with 

primers to the first and second conserved region of murine vSag respectively. 

Hybridisations were carried out under high stringency conditions (50% formamide). No 

restriction fragments were identified which hybridised to the HRC1 probe, even when 

the stringency of the hybridisation was lowered, by reducing the formamide 

concentration from 50% to 45%. Figure 5.3 shows an autoradiograph of HindWl 

digested peripheral blood DNA from patients with 1°SS, which had been hybridised 

with the HRC2 probe. This probe hybridised to a 7.5 kb restriction fragment (patients 

3, 4, 5, 7, 8 and normal DNA) which corresponds to the restriction fragment length 

predicted from the restriction map of the HRC2 locus (chapter 3). The probe 

hybridised to an apparently longer restriction fragment (7.6kb) in patients 1, 2 and 6, 

suggesting the presence of a small insert of approximately 100 nucleotides in these 

patients.
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5.3.5 Northern analysis of 1°SS salivary gland mRNA using vSag related 

probes.

To look for evidence of expression of the human genomic DNA sequences sharing 

regions of homology with murine vSag sequences, mRNA extracted from the salivary 

glands of 1°SS patients was hybridised with the probes C1A, C1B, C1C, C2A, C2B 

and HRC2. Only weak hybridisation signals were identified. The C2A probe hybridised 

to a 1.87 kb mRNA transcript from patient 6 (figure 5.4). The C2B probe hybridised to 

similar sized mRNA transcripts in patients 3 and 6 and to a 2.2 kb mRNA transcript in 

patient 2. Hybridisation to discrete mRNA bands was not identified with the probes 

C1A, C1B, C1C and HRC2 (data not shown). The 1.87 mRNA transcript was of a 

similar size to 18S ribosomal RNA (corresponding length = 1874 nucleotides). To 

confirm that the probes were not hybridising with contaminating ribosomal RNA, they 

were hybridised with total RNA extracted from the MCF-7 cell line, which gave an S I8 

ribosomal RNA band (which had been used as a molecular weight marker). None of 

the probes hybridised with 818 ribosomal RNA (data not shown), suggesting true 

mRNA species had been identified.
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5.4 Discussion

In this chapter, evidence was sought for the presence and expression of vSag-related 

DNA sequences in patients with 1°SS. As vSag genes are highly polymorphic in mice, 

with individual strains having several different vSag genes at different sites within their 

genomes, it was relevant to look for similar polymorphisms in human genomic DNA. 

This was done using both PCR and Southern blotting techniques. PCR had the 

advantage of being extremely sensitive, but could potentially fail to identify unique 

products if two or more were of the same length. Southern blotting of digested 

peripheral blood DNA with vSag probes was therefore also used, as this would allow 

the identification of multiple vSag-related sequences in the genome, showing any 

differences between patient and normal DNA as restriction fragment length 

polymorphisms (RFLPs).

PCR primers specific for the first conserved region of murine vSag amplified the same 

sized product from the DNA of all eight 1°SS patients which was of comparable size to 

the product amplified from normal human DNA. This 96 bp product compared to the 

91 bp product amplified from the vSag gene of the GR mouse DNA. When sequenced 

from normal DNA, this PCR product had a similarity index of 71% to the murine vSag 

sequence (chapter two), however the identities of the PCR products amplified from 

1°SS patients were not confirmed either by sequencing or restriction enzyme 

digestion. The PCR products amplified with primers to the second conserved region of 

murine vSag were also of simitar size in 1°SS and normal DNA. These primers gave 

two products of 176 bp and 214 bp, compared to the 182 bp product of murine vSag, 

with a similarity index of 52.1% between vSagC2 and the 176 bp product of normal 

DNA. Again the PCR products amplified from the 1°SS patients were not sequenced. 

Although a number of larger products were amplified from both 1°SS patient and 

normal DNA using the primers to vSagC2, these were not likely to be significant, as
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they were relatively weak bands, and were not of comparable size to the murine vSag 

product.

The Southern blots of I'^SS peripheral blood DNA were probed under reduced 

stringency conditions with the murine probes vSagCI and vSagC2. Hybridisation with 

the murine vSag probes failed to identify hybridising restriction fragments unique to 

1 °SS patients and there were no obvious restriction fragment length polymorphisms 

between normal and 1°SS DNA. Only very weak hybridisation signals were identified 

with vSagCI. None of these weakly hyridising Hind\\\ restriction fragments 

corresponded to the lengths of the restriction fragments identified in the X clones 

isolated from the human placental DNA library (chapter 2). This may simply reflect the 

relative insensitivity of Southern blotting, however reducing the stringency of the 

hybridisation further, by decreasing the formamide concentration to 20% resulted in 

very high background signal. The vSagC2 probe gave a clearer hybridisation signal 

with a 4 kb restriction fragment, a length corresponding to the Xba\ restriction 

fragment of the clone X 37a (locus C2B) isolated from normal human placental DNA 

library. Other hybridisation signals were very weak. 9 kb and 7 kb Xba\ restriction 

fragments were just visible in the 1°SS patients 3 and 4, as well as in normal DNA. 

These restriction fragments corresponded to the 9 kb Xba\ fragment of X13a (locus 

C2A), and the 7 kb Xba\ fragment of X39a. This latter clone had not been investigated 

beyond the dot-blot hybridisation analysis (chapter 3) as it had been shown to have 

relatively weak hybridisation strength.

The probes HRC1 and HRC2, prepared from the PCR products of normal human DNA 

with primers to the first and second conserved regions of vSag respectively (see 

chapter two), were hybridised with Southern blots of 1°SS and normal DNA. This 

showed that the 176 bp PCR product amplified with vSagC2 specific primers was

175



present as a single copy in the genome of all eight of the 1°SS patients (figure 5.3). 

The Hind\\\ restriction fragment of DNA from the I'^SS patients was approximately the 

same length as that identified in the X clones isolated from the normal human 

placental DNA library, however there was an apparent minor size difference between 

the restriction fragments in three of the patients. This could have resulted from the 

insertion of a small DNA fragment within the HRC2 locus in these patients.

Probing the Southern blots with the 96 bp human PCR product amplifed with primers 

to the first conserved region of vSag failed to identify any hybridising restriction 

fragments, either in normal or 1°SS DNA. This probe had also failed to hybridise to 

any of the X clones from the normal human placental DNA library (chapter two). The 

failure of this probe to hybridise under high stringency conditions could have resulted 

from its relatively low C:G content. At 50% between the PCR primers, this was 

significantly below that of the HRC2 probe, which had a C:G content of 56.8%, and 

would have resulted in a lower Tm for hybridisation. Hybridisations were therefore 

repeated under less stringent condition (45% formamide) with a freshly prepared PCR 

probe, but again no hybridisation signals were identified. It was therefore concluded 

that the 96 bp PCR product amplified from human DNA with primers specific for the 

first conserved region of vSag was a spurious product, that could have resulted from 

complex primer dimer formation.

Northern blotting experiments were performed to look for evidence of expression of 

the human DNA sequences C1A, C1B, C1C, C2A, C2B and HRC2 in the minor 

salivary glands of 1°SS patients. These glands had multiple foci of lymphocytic 

infiltrates, and if vSag related genes were involved in driving a sustained immune 

reactions in these patients, it would be expected that mRNA would be detectable at 

this site. mRNA was extracted directly from the minor salivary glands of five patients
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with 1°SS using oligo(dT) 2 5  magnetic beads. A salivary gland biopsy from a patient 

with chronic sialadenitis resulting from parotid duct obstruction was used as a normal 

control. The oligo(dT)2 5  magnetic beads were chosen for mRNA extraction, as this 

gave reasonable yields of intact mRNA from the minor salivary gland biopsies. 

Although some mRNA species might have been lost with this technique, for example, 

those lacking poly (A)+ residues as a result of partial degradation, this method 

eliminated the need for an intermediate total RNA step, giving high purity mRNA, with 

minimal contamination from DNA or ribosomal RNA.

Although less sensitive. Northern blotting was used rather than RT-PCR, as even 

minute levels of DNA contamination would give positive results with RT-PCR, and in 

the absence of known introns, the PCR products would be of the same length in DNA 

as in mRNA. Only weak hybridisation signals were identified, suggesting that the 

mRNA species were rare. The C2A and C2B probes hybridised to a 1.87 kb mRNA 

from one 1°SS patient who had both parotid gland swelling and lymphadenopathy. A 

similar sized mRNA species, which hybridised only with the C2B probe, was identified 

in a second patient with lymphadenopathy. The C2B probe also hybridised with a 2.2 

kb mRNA species from a third 1°SS patient with parotid gland enlargement.

The 1.87 kb mRNA was of similar size to SI 8 ribosomal RNA, raising the possibility 

that the probes might be hybridising with contaminating ribosomal RNA. However, 

none of the probes hybridised with 818 ribosomal RNA from total RNA extracted from 

the MCF-7 cell line. These transcripts would be comparable in length to the murine 

vSag transcripts, although the open reading frame in the sequence C2A was only 240 

nucleotides (79 amino acids), and no significant open reading frames were identified 

in the sequence C2B. There were no hybridising transcripts in the remaining two 1°SS
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patients or in the control. No transcripts were identified which hybridised to the probes 

C1A, C1B, C1CorHRC2.

The significance of these putative mRNA transcripts is unclear. The salivary gland 

samples from which they were extracted came from patients with parotid swelling 

(Talbe 5.2). Although it is unlikely that the human vSag-related sequences describe in 

this thesis have an aetiological role in 1°SS, their expression could reflect increase cell 

turnover within the salivary tissue. The potential relevance of these findings will be 

discussed further in the general discussion in chapter seven „
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6 CHAPTER Six

Search for HTLV-1 t a x  in DNA and mRNA from patients with 

primary Sjogren’s syndrome

6.1 Introduction

The preceding chapters have described the identification and characterisation of 

human DNA sequences sharing regions of homology with the murine retroviral 

superantigen gene, vSag, encoded in the 3’LTR of the mouse mammary tumour virus. 

Evidence of expression of these DNA sequences was sought in the autoimmune 

condition fS S , by looking for mRNA transcripts in the minor salivary glands of these 

patients. Putative transcripts were identified in three of the five patients examined. The 

C2A probe hybridised with a distinct mRNA band from a minor salivary gland extract 

of one patient, while the C2B probe hybridised to distinct mRNA bands in three 

patients. Both these probes shared limited regions of homology with the second 

conserved region of murine vSag.

Other retroviral gene transcripts have been described in the minor salivary glands of 

1°SS patients (For reviews see (154, 235, 236)). As discussed in chapter one, an 

exocrinopathy resembling Sjogren’s syndrome develops in mice transgenic for the tax 

gene (205), encoded by the retrovirus human T cell leukaemia virus type 1 (HTLV-1 ). 

HTLV-1, which is endemic in the West Indies and in South West Japan, is 

aetiologically associated with adult T cell leukaemia /lymphoma (ATL) (237-239), 

tropical spastic paraparesis (TSP) (240-242) and possibly multiple sclerosis (243). 

HTLV-1 tax sequences, but not gag, pol or env genes, have been detected in the
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minor salivary glands of some patients with Sjogren’s syndrome in two separate 

studies (202, 203), although it was not found in peripheral blood DNA in British 

patients with rheumatological conditions (244).

The disparity between these reports could have resulted from the geographical origin 

of the patients studied. The report by Sumida eta! (203)originated from Japan, where 

HTLV-1 is endemic, with a 10-25% prevalence of serum antibodies to retroviral 

proteins in adults over 40 year (245). It was therefore of interest to look for evidence of 

HTLV-1 fax in the white Caucasian patients with 1°SS from the North East of England.

6.2 Materials and Methods

6.2.1 Patients

The DNA samples were extracted from the peripheral blood of the eight 1°SS patients 

describes in section 5.2.1. mRNA was extracted from minor salivary gland biopsies of 

five of these patients (see Table 5.2, chapter five).

6.2.2 PCR amplification with HTLV-1 tax specific primers.

Specific Oligonucleotide primers for PCR were synthesised by a Beckman 1000M 

DNA synthesiser and their concentration adjusted to 1 mg/ml in TE pH 8. The primer 

sequences were the same as those used by Mariette et al (202, 246) (SK 43/44) and 

were combined as shown below (each primer at 100 |ig/ml). The position of the PCR 

primer is shown in figure 6.1.

SK43 sense 638 CGGATACCCAGTCTACGTGT

SK44 antisense 776 CGATGGACGCGTTATCGGCTC
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reaion

Open reading frame

159 bp 
SK43 SK44

7358-7377 7496-7516

Figure 6.1 Open reading frame in the 3’LTR of HTLV-1 encoding tax. The position 
of the PCR primer SK43 and SK44 are shown (red boxes).

A cDNA clone of HTLV-1 tax derived from the Hut 102 cell line in the plasmid 

pSP65 (supplied by Dr Ruth Jarrett, Leukaemia Research Fund Centre, University of 

Glasgow) was linearised prior to PCR amplification by digestion with Hind\\\ and the 

concentration adjusted to 1 pg/ml. DNA extracted from normal human placenta 

(negative control) and peripheral blood of 1°SS patients was diluted to 100 pg/ml.

PCR reactions were carried out in 25 pi volumes under mineral oil with 100 ng of each 

primer, 0.2 mM dNTPs, 2.5 pg BSA, PCR buffer and Tag polymerase (0.625 

units/reaction). 1 ng plasmid DNA and 100 ng human placental or 1°SS peripheral 

blood DNA were amplified in a thermal cycler (96°C dénaturation for 90 seconds, 45°C 

annealing for 30 seconds and 72°C extension for 30 seconds, followed by 25 cycles of 

96°C, 50°C and 72°C each for 30 seconds, with a final extension at 72°C for 120 

seconds). The degree of stringency of the reactions was adjusted by altering the 

annealing temperatures (45°C,50°C and 55°C) in the thermal cycle (the lower 

temperatures producing less stringent conditions). PCR products were run on 3% 

agarose minigels (1 g type I agarose, 2 g Nusieve in 100 ml TBE) containing 0.5 pg/ml 

ethidium bromide.
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6.2.3 Reverse transcription of minor salivary gland mRNA

mRNA extracted from the minor salivary glands of five patients with 1°SS and a 

control with chronic sialadenitis (see section 5.2.5) was reverse transcribed in 10 pi 

volumes by incubating 100 ng mRNA for 1 hour at 37°C in a reaction mix containing 

1.25 pg random primers, 0.5 mM dNTPs, 10 mM DTT, RT buffer and 5 units RNA 

guard (incubating at 37°C for 3 minutes prior to adding the Rtase MoMuLV). 1 pi of 

cDNA (corresponding to 10 ng mRNA) was amplified by PCR with the HTLV-1 tax 

specific primers as described in section 6.2.1. The Hind\\\ linearised plamid containing 

the cDNA clone of HTLV-1 tax (1 ng) was used as a positive control for the PCR 

assay. As a positive control for the reverse transcription, ribosomal primers were used 

to amplify cDNA reverse transcribed from 20 ng total RNA from the MCF-7 cell line. 

Samples were electrophoresed on 3% agarose minigels containing 0.5 pg/ml ethidium 

bromide.

6.3 Results

6.3.1 Optimisation of the HTLV-1 tax PCR

The PCR conditions were optimised using the HindWl linearised plasmid containing the 

cDNA clone of HTLV-1 tax as a template. No PCR products were amplified with the 

initial thermal cycler settings; 30 cycles of dénaturation 94°C for 30 seconds, 

annealing 50°C for 30 seconds, extension 72°C for 30 seconds. As the C:G content of 

the expected 159 bp product was 60%, giving a high predicted Tm, the dénaturation 

temperature was increased to 96°C. PCR reactions were also carried out with 5% 

formamide or 5% DMSO added to the reaction mixture, again to facilitate
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dénaturation. Under each of these conditions, the predicted 159 bp product was 

amplified from the HTLV-1 tax containing plasmid.

6.3.2 PCR amplification of peripherai biood DNA from 1°SS patients using 

HTLV-1 tax specific primers.

PCR reactions were carried out under the conditions described above using the 

HTLV-1 tax specific primers with DNA extracted from the peripheral blood of eight 

patients with 1°SS together with normal placental DNA. The 159 bp product predicted 

from the HTLV-1 tax sequence was generated when the Hind\\\ linearised plasmid 

containing the cDNA clone of HTLV-1 tax was used as the template (figure 6.2). No 

PCR products of this size were identified in the DNA extracted from peripheral blood 

of 1°SS patients or in the normal placental DNA control when PCR annealing 

temperature was 50°C (data not shown). Lowering the stringency of the PCR reaction, 

by reducing the annealing temperature to 45°C, resulted in the formation of a 1.3 kb 

product in the eight 1°SS patients and in the normal DNA control. A very weak band 

of similar size to the HTLV-1 tax product was also present in the patient samples and 

normal placental DNA under these PCR conditions. These products were not 

sequenced to confirm their identity.
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Sjogren’s patients
NO

2 3 4 5 6 7 8 N Tax DNA

159 bp

Figure 6.2 PCR products amplified from 1°SS DNA with primers to HTLV-1 tax.
DNA was extracted from peripheral blood of eight patients with1°SS and one normal 
control (N). Products were amplified with sequence specific primer for HTLV-1 tax at 
an annealing temperature of 45°C. A 159 bp product was amplified from HindlW 
linearised plasmid containing the tax gene. In addition to a 1.3 kb product, a very weak 
band of similar size to the HTLV-1 tax product is present in the DNA extracted from 
the peripheral blood of 1°SS patients and normal placental DNA .
M= molecular weight marker (bp).

6.3.3 RT-PCR of mRNA extracted from minor salivary biopsies of 1°SS patients 

using HTLV-1 tax specific primers

mRNA extracted from the minor salivary glands of five 1°SS patients was reverse 

transcribed and assayed for the presence of HTLV-1 tax using specific PCR primers. 

Ribosomal primers amplified an appropriate sized product from the total RNA, 

confirming successful reverse transcription. No PCR products were identified of an 

equivalent size to that obtained using the HTLV-1 tax containing plasmid as template 

DNA (figure 6.3). There was therefore no evidence of HTLV-1 tax mRNA in the 1°SS 

patients’ salivary gland biopsies.
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Sjogren s patients

159 bp

Figure 6.3 RT-PCR of 1°SS mRNA from minor salivary gland biopsies with 
primers to HTLV-1 tax. mRNA was extracted from the minor salivary glands of five 
1°SS patients and one control patient (C) with chronic sialadenitis using oligo(dT)2 s 
magnetic beads. The mRNA was reverse transcribed prior to PCR amplification with 
sequence specific primer for HTLV-1 tax at an annealing temperature of 45°C. A 159 
bp product was amplified from Hind\\\ linearised plasmid containing the tax gene but 
not from mRNA extracted from minor salivary glands of 1°SS patients. Rib= RT-PCR 
of total RNA from MCF-7 cell line with primers to ribosomal RNA. M= molecular weight 
marker (bp).

6.4 Discussion

In this chapter, the peripheral blood DNA and salivary gland mRNA extracted from the 

1°SS patients described in Table 5.2 was investigated for the presence of HTLV-1 tax. 

The sequence specific primers described by Mariette et al (202, 246) (figure 6.1) were 

used in PCR and RT-PCR assays. These authors had found evidence of HTLV-1 tax 

DNA by PCR and in situ hybridisation in minor salivary glands from two of nine 1°SS 

patients (202). In our study, PCR products were only identified when the stringency of 

the PCR reaction was reduced, by lowering the annealing temperature. In addition to a

1.3 kb product, a very weak band of similar size to the 159 bp HTLV-1 tax product was 

identified (figure 6.2). This product was present in the peripheral blood DNA of all 

eight 1°SS patients, but also in the normal human placental DNA. These PCR 

products were not sequenced, and so conclusions about their identity cannot be
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made, however if weakly related to HTLV-1 tax, these amplified products do not 

appear by be unique to 1°SS syndrome patients.

There was no evidence of HTLV-1 tax in the mRNA extracted from the minor salivary 

glands of the five 1°SS patients studied using RT-PCR. This contrasts with a report 

from Japan (203), where HTLV-1 tax mRNA was identified in the minor salivary glands 

of four out of fourteen 1°SS patients, again using RT-PCR. HTLV-1 fax was also found 

in the DNA extracted from the minor salivary glands of these patients. The identity of 

these PCR products was confirmed by sequencing, giving 100% homology to HTLV-1 

tax over the sequenced region. In both this study and the report by Mariette et al 

(202), there was no evidence of HTLV-1 gag, pol or env sequences and HTLV-1 tax 

was not identified in peripheral blood DNA. There was also no evidence of serum 

antibodies to HTLV-1 proteins in any of the patients.

The absence of antibodies to HTLV-1 In these two reports is at odds with the results of 

other investigators, where antibodies to HTLV-1 were present in around 30% of 1°SS 

patients (247). In the Japanese study by Sumida et al, because HTLV-1 was endemic 

in the area, patients with positive serology were excluded. As up to 30% of the I^SS 

patients might be expected to have cross-reactive antibodies, the patients studied 

would be an unrepresentative group. The study by Mariette et al (202) was undertaken 

in France. Although the ethnic origin of their nine patients was not reported, none had 

previously lived in areas endemic for HTLV-1. Only four of these nine patients had 

primary Sjogren's syndrome, the other five having Sjogren’s syndrome associated with 

rheumatoid arthritis (RA). Of the two patients in which HTLV-1 tax DNA was identified, 

one had primary and the other secondary Sjogren’s syndrome. These conditions are 

clinically and immunogenetically distinct, making it is difficult to interpret these results.
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In a study from the UK (244), PCR was used to look for evidence of HTLV-1 tax and 

HIV-1 gag DNA sequences in patients with rheumatological conditions who had serum 

antibodies cross-reacting with these retroviruses. Antibodies to HTLV-1 were identified 

in nine of sixty-two patients with rheumatological conditions (4/30 with RA, 3/13 with 

polymyositis, 2/5 with systemic lupus erythematosus and 0/14 with 1°SS) compared to 

two out of a control population of eighty, comprising osteoarthritis, Crohn’s disease 

and bacterial endocarditis, and none out of 30 healthy controls. Antibodies to HIV-1 

p24 were detected in one RA and one 1°SS patient and in two osteoarthritic patients. 

PCR using HTLV-1 tax specific primers (SK43 and SK44) failed to amplify the 

expected 159 bp product from peripheral blood DNA extracted from those patients 

with positive serology. However PCR for HTLV-1 tax was not undertaken in any of the 

patients with 1°SS.

Our study of 1°SS patients from the North East of England has also failed to identify 

HTLV-1 tax in the peripheral blood DNA or mRNA extracted from minor salivary gland 

biopsies. Taken together with the above report (244), these results do not lend 

support to the hypothesis that HTLV-1 tax is involved in the aetiology of 1°SS.
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7 CHAPTER SEVEN 

General Discussion

The principle reason for undertaking this study was to determine whether endogenous 

superantigens are present in the human genome. All known endogenous 

superantigens in mice are encoded by vSag, a retroviral gene that lies within an open 

reading frame in the 3’LTR of MMTV. As the human genome contains numerous 

MMTV-related sequences, it was appropriated to conduct a search for human DNA 

sequences related to vSag. It was decided to look for these sequences in DNA rather 

than for mRNA transcripts, as it was not known which tissues might express human 

endogenous superantigens, and although searching within genomic DNA may have 

resulted in the identification of non-coding sequences, any potentially expressible 

MMTV-related superantigen would be identified. To avoid missing endogenous 

superantigens that did not lie within a proviral configuration, it was decided to screen 

human genomic DNA directly with probes and PCR primers derived from the MMTV 

superantigen-encoding gene, rather than screening MMTV related clones isolated with 

gag-pol probes.

In this study, six genomic loci have been identified in human DNA that contain DNA 

sequences with short regions of homology to vSag. There were no human DNA 

sequences that were closely related to vSag over the entire length of this gene. 

Furthermore, the six weakly vSag-reiated sequences did not appear to lie within a 

proviral configuration. These sequences did, however, have open reading frames, 

giving predicted proteins ranging between 43 and 156 amino acids in length.

188



Although smaller than the predicted 320 amino acid sequence of murine vSag, could 

these human sequences with short regions of homology to vSag be biologically 

relevant? As discussed in chapter one, there is evidence that the biologically active 

form of vSag is an 18 kDa molecule, significantly smaller than the predicted 320 

amino acid protein. This may result from either proteolytic digestion of the full-length 

vSag, or from the use of an alternative translation initiation codon, but both would 

result In a predicted active protein of approximately 150 amino acids. This truncated 

protein encompasses the second conserved region (vSagC2) together with the highly 

polymorphic carboxyl terminal that Is predicted to bind to the Vp region of the T cell 

receptor, it is therefore theoretically possible that the three clones (C2A, C2B and 

HRC2) sharing short regions of homology with vSagC2 could possess some of the 

functions of the biologically active 18 kDa murine vSag protein. In particular, a seven 

amino acid sequence motif (DRWWQPG) appears to be conserved between murine 

vSag and the three vSagC2-related clones. As discussed in chapter one, this region 

of murine vSag may be involved in the interaction with the MHC class II molecule, 

which could explain why it is so highly conserved.

The observation that the human vSag-related clones do not lie within a proviral 

configuration raises questions regarding the origin of the retroviral vSag gene. In mice, 

fully functional vSag genes have been identified that do not lie within a complete 

proviral configuration. Hybridisation data indicates that the Mtv-6 provirus is missing 

most of the gag and env genes and the entire pol gene (248). It was originally thought 

that this isolated vSag gene could be an integrated copy of a vSag transcript, however 

sequence data suggests It is a deletion mutant (153). This large deletion (6.2 kb) 

could have occurred at the stage of viral replication, or as a result of recombination 

after integration of a complete provirus.
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An alternative interpretation of the existence of human vSag-related sequences that 

are not in proviral configuration is that they could represent cellular sequences, which 

during evolution have been acquired by infectious retroviruses. Directly transforming 

retroviruses carry within their genome a transduced cellular gene encoding a protein 

involved in normal cell cycle regulation (58). When a cell is infected by a directly 

transforming retrovirus, RNA encoding the transduced cell growth-controlling protein is 

expressed in a dysregutated fashion leading to cellular proliferation and ultimate 

oncogenic transformation. These genes that affect host cell behaviour do not arise out 

of retroviral RNA, but rather are incorporated into the retroviral genome from RNA 

transcribed from cellular homologues (249), It is therefore possible that the open 

reading frame in the MMTV 3’LTR that encodes vSag is derived from a host protein of 

similar function. A Sag gene of cellular origin could have been maintained in the 

retroviral genome through positive selection pressures, resulting from the stimulatory 

effects of vSag inducing proliferation of cells in which the provirus was integrated.

It has been suggested that the possible function of a cellular Sag gene would be to 

serve as a co-ligand for peptide antigen recognition (250). The co-ligand would 

participate in normal T cell receptor function, helping to align the TCR and co-receptor 

(CD4 or CD8) over the peptide-binding site in the MHC class II molecule. The major 

function of a peptide antigen would be to induce a conformational change in this 

already partially cross-linked TCR, the conformational change of such bound 

receptors leading to signals that generate T cell activation. If this hypothesis were 

true, the retroviral superantigens could be transduced copies of these cellular 

superantigens, and through mutation, may only have retained limited homology.

It is clear from the bacterial enterococcal toxin, that superantigens can have 

remarkably diverse primary structures and yet have closely related biological functions
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(1). Further research will be necessary to investigate the potential biological activity of 

the human clones sharing short regions of homology with murine vSag. Further study 

of cDNA clones is required to prove that vSag-related sequences are transcribed. The 

next step would be to produce proteins encoded by the cloned vSag-related 

sequences, using an expression vector system. The potential function of these 

proteins could then be assess in a number of ways.

In order to prove that expressed human vSag-reiated sequences have the potential to 

function as superantigens, it will be necessary demonstrate two fundamental 

properties; that these proteins can bind to MHC class II molecules, and that the 

protein-class II complex can stimulate T cells in a Vp specific manner. A strategy 

which has been used to demonstrate the superantigen function of an endogenous 

retroviral protein derived from the pancreas of patients with type I diabetes mellitus 

(215), could be adapted to serve this purpose. In these experiments, retroviral 

transfectants of monocyte and B lymphocyte cell lines were generated and tested for 

their ability to stimulated MHC-compatible and incompatible T cell lines in a Vp- 

specific manner. This system allows the demonstration of MHC class II dependence, 

by controlling the expression of class II molecules, through the action of interferon-y 

(IFN-y). Direct evidence of MHC class li binding could be obtained by experiments 

similar to those undertaken by Mottershead et al (95), who demonstrated binding of 

recombinant forms of murine vSag proteins to HLA-DR molecules. Monoclonal 

antibodies could be raised against predicted human vSag-related sequences, in an 

attempt to demonstrated inhibition of T cell Vp specific proliferation, as has been 

reported with monoclonal antibodies against the carboxyl terminal region of murine 

vSag (81 ). These monoclonal antibodies could also be used to look for evidence of 

human vSag-related protein expression on different cell types.
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If the experimental approaches described above were to demonstrate that the human 

vSag-related sequences do not have superantigen activity, it raises intriguing 

questions as to why such genes have been conserved in the murine genome, but are 

not present in man, where other MMTV-related sequences clearly exist. It is possible 

that the human genome never contained retroviral derived Sag genes, in which case 

chance homology has resulted in the isolation of the DNA sequences described in this 

thesis. Alternatively, human vSag genes may have existed in the past, but have not 

been conserved in the human genome. As discussed in chapter one, endogenous 

retroviral superantigens appear to protect against exogenous MMTV infection and 

subsequent mammary tumour formation in susceptible individuals (104,105). This 

protection against retroviral induced tumours would provide a selective pressure to 

maintain functional endogenous vSag genes. Endogenous superantigens may also 

protect against the effect of bacterial enterotoxin superantigens, which presumably act 

as a virulence factor favouring the bacteria. If human endogenous retroviral 

superantigens do not exist, it suggests that similar selective pressures are not 

present.

There are a number of possible explanations why evolutionary pressures in humans 

may not have resulted in the retention of endogenous vSag genes. Such genes may 

not protect against the development of retroviral induced breast carcinoma. Indeed, 

despite extensive research in this area, a causal retroviral agent in human breast 

cancer has not been identified. In any case, human breast cancer typically affects 

women beyond there reproductive years, limiting the selective advantage of a 

protective gene. Bacterial enterotoxins do however have pathological effects In 

humans, causing food poisoning and toxic shock. Protection against these toxins 

would presumably be advantageous to the human host.
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The protective effect of vSag genes in mice results from the deletion Vp specific T 

cells, causing large gaps in the T cell repertoire (105). Although this has not been 

associated with immune deficiency syndromes in mice, it is conceivable that such 

deletions could result in subtle immunological defects, which could perhaps result in 

impaired response to some human specific pathogens, or a failure of immunological 

surveillance against tumour antigens. The price paid for protection against 

superantigen-encoding exogenous retroviruses and bacterial enterotoxins may simply 

have been too high in humans to constitute a positive selective pressure. However, as 

new human infectious retroviruses evolve, this situation might change. There is 

evidence that HIV-1 encodes a superantigen (9), and if stable integration in germ line 

cells were to occur, it is conceivable that this gene might provide protection in 

subsequent generations.

In the final sections of this thesis, evidence was sought for the involvement of 

endogenous retroviral genes in the human autoimmune condition primary Sjogren’s 

syndrome. In addition to human vSag-related sequences, the presence and 

expression of HTLV-1 tax was studied, as this putative transactivator gene has 

recently been implicated in the pathogenesis of 1°SS (202, 203, 205). Although 

disease specific endogenous retroviral genes were not identified, a number of 

interesting observations were made which merit further investigation.

The peripheral blood DNA of I'^SS patients was initially examined for the presence of 

unique vSag-related sequences. The strength of hybridisation signals with vSag 

probes was no greater with 1°SS DNA than with normal DNA, excluding the possibility 

that a gene closely related to murine vSag is present in the genome of patients with 

this condition. There was however an apparent restriction fragment length 

polymorphism in three of eight 1°SS patients, on hybridising the HRC2 probe with
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HindlW digested DNA. Further analysis of this possible polymorphism in 1°SS DNA is 

required before any significance can be attached to these findings, including analysis 

of a normal control population and other disease groups, to determine whether the 

polymorphism is disease specific.

The next step in assessing the potential involvement of vSag-related sequences in 

1°SS was to look for evidence of gene expression in salivary gland biopsies, the 

commonest site of inflammation in these patients. Rare mRNA transcripts were 

detected in salivary gland biopsies from three of five ^°SS patients that hybridised with 

the vSag-related sequence C2B, the mRNA from one of these three patient also 

hybridising with the C2A probe. Cloning and sequencing of these transcripts is 

required to confirm that they have been transcribed from the genetic loci from which 

the probes were derived. Again analysis of a larger patient and control population is 

required before an association with 1°SS can be made.

Finally, PCR amplification with specific primer for HTLV-1 tax did not find evidence of 

this retroviral gene in peripheral blood DNA or in cDNA from the salivary glands of the 

1®SS patients studied. However, under reduced stringency conditions, a faint band of 

the predicted size was identified in the DNA of 1°SS patients and normal control 

samples. Cloning and sequencing of this PCR product is required to determine 

whether it may represent an endogenous retroviral sequence related to HTLV-1 tax.

As discussed in chapter one, gene expression at a site of pathology does not 

necessarily imply a pathogenic role for the expressed gene. If the human vSag-related 

DNA sequences described in this thesis were to encode superantigens that could be 

demonstrated to stimulate T cells in a Vp-specific manner, a causal role could be 

inferred if the infiltrating T cells in the salivary glands shared that Vp region. Potential
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therapeutic strategies that have been proposed for the treatment of superantigen- 

mediated autoimmune disease include TCR Vp blocking monoclonal antibodies, or 

treatment directed against vSag genes. However, the evidence that superantigens 

cause autoimmune disease remains highly controversial. Overall the observations in 

this thesis do not support the hypothesis that superantigens have a causal role in 

1°SS, and such therapeutic goals remain a long way in the future.

Much of the work described in this thesis has involved the isolation, cloning, 

subcloning and sequencing of human DNA. Such information will be readily available 

in the future. The first draft of the human genome project has recently been published 

and covers an estimated 88% of the human genome (112, 251). It is interesting that 

only three of the six genomic loci sequenced in this study were present in the 

searches of the human genome database, and highlights the need for further work to 

complete this international project. Open access to sequence databases will allow 

research of the nature described in this thesis to progress at a rapid pace. However, 

the interpretation of the mass of sequence data will remain a challenge for decades to 

come.
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Appendix

A bbrev ia tions

ATP adenosine-5’-triphosphate

BSA bovine serum albumin

bp base pair

DNA deoxyribonucleic acid

DTT dithioerythritol

EDTA ethylenediaminotetraacetic acid

kb kilobase

PBS phosphate buffered saline

PCR polymerase chain reaction

RNA ribonucleic acid

RT-PCR reverse transcriptase polymerase chain reaction

SDS sodium dodecyl sulphate

SDW sterile distilled water

TAE Tris-HCI acetate EDTA buffer

TBE Tris-HCI borate EDTA buffer

TBS Tris buffered saline

Tm melting temperature
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