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The object of this research is to examine two particular problems of 

transonic flow. The first problem of axisyrametric nature is solved in the

physical pianok The second problem is of two dimensional character and the

solution is obtained by a transformation to the hodograph plane. Thus part 3 

of this thesis deals with the case of transonic flow past a slender pointed 

parabolic-arc body of revolution at aero angle of attack. Part II deals witi 
the design of a straight walled wind tunnel with a finite porous section to gj 

reduced blockage interference in high subsonic compressible flow.

Continuous solutions for the problem in Part I have been obtained by 

Spreiter and Alksne (i) and by Cole and Royce (2). These approximate solutic 

were determined from the second order linearised partial differential equatior 

obtained by replacing one of the partial differential coefficients in the non­
linear term of the transonic small disturbance flow equation by a linear para­

meter, The method we use to obtain our solution is very similar to that usee 

by Spieitor and Alksne-. The difference in the complete solution to the proble 

is that they used the solutions of three different linearised equations to obi: 

a continuous solution while wo use only the solutions of two linearised equati 

along with a shock surface to give a solution. As it is not possible to give 

rigorous mathematical justification for the approximate methods usedj the onlj> 

way whereby their validity may be established is to compare the values obtaine 

for the coefficients of pressure on the surface of the body with experimental 

results. Over the fore-body, where our solution and that of Spreiter and Ali 

are identical, the values obtained for the coefficient of pressure agree very 

well with those obtained in the theory of Cole and Royce and with the experime
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results. Over the rear part of the body the values obtained by Spreiter ana 

Alksne, and by Cole and Royce, and lower than those given by the expérimenta 

results while our values are in a good agreement with them.

In Part II it is assumed that a solution to the problem can be determin 

by a perturbation from the solution found by Helliwell (5) for a tunnel with 
solid straight walls. This approximate solution was derived from Tricomi’s 

equation which is the second order linear partial differential equation obta 

by interchanging the dependent and independent variables in the transonic sm 
disturbance flow equation. From the "perturbation” solution it is shown tha 

is possible to eliminate some of the blockage interference and that it should 

possible to eliminate the blockage interference entirely by the use of mater: 

with greater values of porosity than those for which the present theory is vi 

It should be noted that the solution presented here may not be strictly just: 

for the flow of an ideal gas as the order of the approximations made in derl 

the basic Tricomi solution are of the same order as those made in deriving t] 

"perturbation" solution. One may however consider the identical problem for 

flow of a "Tricomi" gas. In this case the exact governing equation for the : 

is Tricomi*8 equation and a perturbation theory based upon this equation is i 

fully justified.

1. Spreiter, J. R. and Alksne, A, Y. Thin Airfoil Theory Based on Approx:
Solution of the Transonic Plow Equal 
N.A.O.A. Rep. 1359̂  1958.

2. Cole J. D. and Royce, W, ¥, An Approximate Theory for the Pressi
Distribution and Wave Drag of Bodlef 
Revolution at Mach Number One. 
Proceedings of the Sixth Annual Conj 
rence on Fluid Mechanics,
University of Texas, 1959
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SUMMARY.

The object of this research is to examine two particular problems of 

transonic flow. The first problem of axisymmetric nature is solved in the 

physical piano* The second problem is of two dimensional character and the 

solution is obtained by a transformation to the hodograph plane. Thus part I 

of this thesis deals with the case of transonic flow past a slender pointed 

parabolic-arc body of revolution at gero angle of attack. Part II deals with 

the design of a straight walled wind tunnel with a finite porous section to give 

reduced blockage interference in high subsonic compressible flow.

Continuous solutions for the problem in Part I have been obtained by 

Spreiter and Alksne (l) and by Cole and Royce (2). These approximate solutions 

were determined from the second order linearised partial differential equations 

obtained by replacing one of the partial differential coefficients in the non­

linear term of the transonic small disturbance flow equation by a linear para­

meter. The method we use to obtain our solution is very similar to that used 

by Sprsitor and Alksne. The difference in the complete solution to the problem 

is that they used the solutions of three different linearised equations to obtain 

a continuous solution while we use only the solutions of two linearised equations 

along with a shock surface to give a solution. As it is not possible to give a 

rigorous mathematical justification for the approximate methods used, the only 

way whereby their validity may be established is to compare the values obtained 

for the coefficients of pressure on the surface of the body with experimental 

results. Over the fore-body, where our solution and that of Spreiter and Alksne 

are identical, the values obtained for the coefficient of pressure agree very 

well with those obtained in the theory of Cole and Royce and with the experimental



resuî.ts. Over the rear part of the body the values obtained by Spreiter and 

Alksne, and by Cole and Royce, and lower than those given by the experimental 

results while our values are in a good agreement with them.

In Part II it is assumed that a solution to the problem can be determined 

by a perturbation from the solution found by Helliwell (3) for a tunnel with 
solid straight walls. This approximate solution was derived from Tricomi’s 

equation which is the second order linear partial differential equation obtained 

by interchanging the dependent and independent variables in the transonic small 

disturbance flow equation. From the "perturbation" solution it is shown that it 

is possible to eliminate some of the blockage interference and that it should be 

possible to eliminate the blockage interference entirely by the use of materials 

with greater values of porosity than those for which the present theory is valid. 

It should be noted that the solution presented here may not be strictly justifiée 

for the flow of an ideal gas as the order of the approximations made in deriving 

the basic Tricomi solution are of the same order as those made in deriving the 

"perturbation" solution. One may however consider the identical problem for the 

flow of a "Tricomi" gas. In this case the exact governing equation for the flow 

is Tricomi*s equation and a perturbation theory based upon this equation is then 

fully justified.

1. Spreiter, J , R. and Alksne, A. Y. Thin Airfoil Theory Based on Approximate
Solution of the Transonic Flow Equation, 
N.A.C.A. Rep. 1339, 1958.

2. Cole J . D. and Royce, W. W, An Approximate Theory for the Pressure
Distribution and Wave Drag of Bodies of 
Revolution at Mach Number One. 
Proceedings of the Sixth Annual Confe^ 
rence on Fluid Mechanics,
University of Texas, 1959
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PART I.



CHAPTER i.

Introduction.

The fact that it ia not possible in general to obtain an exact analytic 

solution for the partial differential equation of transonic flow, as the 

equation is non-linear and of mixed character, has prevented the rapid increase 

of the analysis which has occurred in recent years with both subsonic and super­

sonic theory. A result of this is that the solutions for throe dimensional 

transonic flow have to be found by using certain^rules. One of these is the

transonic similarity rule which pertains to the pressures and forces on offinely
I

related families of wings and bodies of revolution# Another is the omçdrically 

established rule by Jhitcomb (l) which states that "near the speed of sound 

the aero-lift drag rise of a low-aspeot-ratio wing and body combination is 

primarily dopendent on the axial distribution of the cross-sectional area normal 

to the air stream." Heaslot and Spreiter (2) showed that Whitcomb's rule can 

be theoretically Justified for bodies which are pointed at the front and taper 

to a point at the rear. This moans that if the solution of the transonic 

equation can be found for a slander, pointed, non-lifting body of revoJutlon 

the solution for any slender body having the same longitudinal distribution of 

cross-sectional area and tapering to a point at the rear is also determined.

These rules and the frequent use of bodies of revolution in practical applications 

show that the solution of the transonic equation for slender pointed bodies of 

revolution in flight at zero angle of attack at Mach number near unity is of 

considerable importance to aircraft designers.
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Üinoe an exact analytic solution cannot bo obtained .for tho transonic 

equation the designer has either to roly on experimental data obtained in 

wind tunnels or to use approximate methods for the solution* In tho following 

analysis wo shall consider a method which gives an approximato solution of the 

transonic flow equation.

Tho first approximate solutions for the transonic equation wore used in 

the solution of problems in airfoil theory. The simplest methods, used by Munk, 

Prandtl and Glau<̂ rt and others (3), are based on the complete linearisation of 

the equation. However this linearised theory has two significant limitations. 

Tho first is that the theory gives only a first approximation wnich is correct 

only for airfoils of small thickness ratio. The second is that the Mach 

numbers (of the volocity) cannot bo close to unity anywhere in the field of 

flow.

Tho failure of the above methods to give a solution for high subsonic 

flows led to the use of the hodograph transformation by means of which the 

non-linear transonic equation is transformed into a linear differential ©qugtion, 

(for example Tricomi*s Equation). This method has been applied with consider­

able success in tho study of high subsonic flows around wedges and flat-plate 

airfoils and a number of specific results have been given in recent years by 

Guderly and Yoshihara(4), Helliwell and îfeckie (5)gunoi*ĝ ,others. However it 

is very difficult to apply this method to calculate high subsonic flows around 

arbitrary airfoils witn curved boundaries.

Other approximato methods of solving the non-linear equation for the case of 

transonic flow past a slender body are duo to Oswatitsch and Keunc (6). They 

suggestod that the non-linear transonic small disturbance flow equation, which is
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the firso order approximation of the exact transonic flow equation, :an be 

linearised by replacing one of the partial differential coefficients in the 

non-linear term by a parameter. This method has been successfully applied 

to transonic flows past two-dimensional bodies by Maeder and ^ood(?), Spreiter 

and Alksne (d). In the method used by Maeder and Wood the solution to the 

problem was found as a function of the parameter which was used to linearise 

ta© equation. The method used by dpreiter and Alksne is similar to the one 

used by Maeder and Wood. The difference is that after solving the linearised 

equation the parameter is given its correct value and the resulting differential 

equation is solved to give a solution to the problem while in Maeder and Wood's 

theory the parameter is replaced by a constant.

Since, in the two dimensional case, the method used by Spreiter and 

Alksne gave a better agreement with the experimental results than the one used 

by Maeder and Wood it seemed likely to assume that this method would give the 

better agreement with experimental results when applied to the solution of the 

flow past slender bodies 4f revolution at zero angle of attack in a free stream 

at Mach numbers near unity.

In the following problem an approximate solution to the transonic equation 

was found by using a method similar to the one used by Spreiter and Alksne in 

the two-dimensional case. However, while this work was being done dpreiter 

and Alksne (9) published their solution for the same problem. By this time we 

had found an approximate solution to the equation for accelerating flow which is 

of the same form as the one obtained by Spreiter and Alksne although a different 

analysis was used to #btain it. The difference in the complete solution to 

the problem for the flow at sonic speed past a slender pointed parabolic-arc
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body of revolution is that Spreiter and Alksne use three approximate solutions or 

the equation to give them a continuous solution while in this work two approximal 

solutions of the equation are used together with a shock relation to give a 

solution,

Spreiter and Alksne obtained a continuous solution for the fluid velocity c 

the surface of the body in the following manner. From the boundary conditions oi 

the surface of the body they obtained a continuous expression for one of the velc 

city components. The expression for the other component was found from the solu­

tion of the transonic flow equation. In order to obtain an approximate solution 

of this equation Spreiter and Alksne linearised it using three different 

approaches in such a way that they obtained either a hyperbolic, a parabolic or 

an elliptic second order partial differential equation. The hyperbolic equation 

was to be used in regions where the flow was purely supersonic, the elliptic 

equation in regions where the flow was purely subsonic and the parabolic equation 

in regions where the flow was of mixed character. These equations were reduced : 

a manner analogous to that of the present work to give first order ordinary diff< 

rential equations for the required velocity component on the surface of the body 

In each case a family of solutions was obtained, but the members of a single 

family could not be fitted to yield a continuous solution over the complete sur­

face of the body. The solution to the problem was now found by using a combina­

tion of the above families of solutions. Over the fore-body the parabolic 

equation may be used as the fluid velocity changes from subsonic to supersonic. 

Now the ordinary differential equation obtained in this case has a singular poin 

which occurs at a certain position on the fore-body. Spreiter and Alksne showed

that there was only one solution from this parabolic family which was continuous
through the singular point. This solution was then taken to yield the required
velocity component over the fore-body. Over the centre of the body the hyperboli 
equation
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may be used as the fluid velocity is supersonic. This time the required 

solution was found by taking that which gave a smooth transition from the 

solution for the fore-body. Ovor the rear-part of the body the elliptic 

equation is able to bo used as the fluid velocity 5s cubsan5.o. Again the 

solution which gave a smooth transition from the solution for the centre of 

the body was taken, and thus a continuous solution was obtained for the flun.d 
velocity on the surface of the body.

An alternative solution to the above problem has also been given by Cole 

and Royce (lO). In this paper the transonic small disturbance flow equation 

is linearised by replacing the non-linear term by a linear term which is a 

good approximation for it near the surface of the body. This linearised 

equation is solved and it gives a continuous solution to the problem.

As it is not possible to give a rigorous mathematical justification for the 

various approximate methods which may be used, and in particular for the one we 

used in solving the transonic equation, the only way we can establish its validity 

is to compare the values we obtain for the coefficient of pressure on the surface 

of a slender body of revolution with experimental results. In this work such a 

comparison is made for the case of a slender parabolic-arc body of revolution 

in a free-stream in which the- velotity- far upstream is equal to that of sound 

The agreement between theory and-'exporimont is found bo satisfactory.
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CHAPTER 2.

The Basic Equations of Transonic Flow.

Transonic flow is said to occur when the velocity of fluid particules 

in some regions of the field of flow is little different from the velocity of 

eound The basic equations which govern such a flow are derived in this 

section. The fluid is assumed to be a non-viscous, non-heat conducting perfect 

gas to which the adiabatic gas law applies. The motion is supposed to be 

steady, irrctational and dependent upon no external forces for its support.

The Equation of Continuity.

In a source and sink free region of the fluid consider a closed surface Ç  

enclosing a volume N/ • Let qjj. be the outward-drawn normal vector to the 

element ciS of the surface. Denote by ÿ and ^ the density and velocity 

of the fluid respectively at time Àl .
Î

___________

The time rate of change of mass inside the finite surface is civ

and the rate at which fluid flows across S into \/ is & 9 ^ H  cl S .
S

Since no fluid is created or lost within S the mass can only be increased by 

flow across the boundary. Therefore the above two rates must be equal,

S d V  “t ^  ̂ ^ j S ~ O .
V ' -S

An application of Gauss* Theorem to the surface integral yields

^  ^  +  ri-vv ^) ( T v  ~  0  ,
V
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But V was an arbitrarily chosen volume. Therefore the integral

vanishes identically. Hence.

ll. . U)
bt cIaat f ̂  r O

Thus for steady flow the equation of continuity is

Jxwr ( ̂  <|) - O  . (2)

The Equations of Motion.

The fluid is again considered in an arbitrary volum^ V enclosed 

by a surface 5 •

The rate of change of momentum of any volume element is equal to the

sum of forces acting on it. Application of this result to the volume V

gives/

Dt ^ ^  Î I s   ̂ (3)
V 6

where p is the pressure in the fluid and V  -i- denotes the

time rate of change operator following a particle.

But f t  ^  ^ t  T  9 ^ ̂  ̂ V V

Mow if we consider a fluid particle of infinitesimal volume 4 v  , then

the mass of this fluid particle cannot change as it moves about,

,  o .
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On application of Gauss' Theorem to the surface integral and substituting 

? c d v  for H equation (3) becomes

Ç [ 3  +  v L j - t v -  =  o.
V '

But \/ was an arbitrarily chosen volume. Therefore the integrand 

vanished identically. Hence

? dI' v )> = o . U)

For steady state flow the equation becomes

■* Y  o  . (5)

Now p and. are related by tho adiabatic gas law.

 ̂ 9%
whore is a constant and V  is the ratio of the specific heat of the

gas at constant pressure to its specific heat at constant volume ,

• Vjo - V ÿ ,

z R  V 5, .

where OC is the local velocity of sound.

Substituting for in equation (5) we get

t  b i  +  f  V ;  .  o .  (6)
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This equation is now multiplied by ^ sealarly and from equation (2) 

replaced by ÿ ^  ̂

. '  . %  . v ( l ÿ ' )  -  C h ' ^ v .  ^  ^  O .  ( ^ )

perturbation Velocities.

We will now assume that we have a uniform steady flow whose velocity 

is U, , and direction of flow is parallel to the x-axis of the three 

dimensional co-ordinate system* If we now place in this flow, along the 

x-axis, a slender body of revolution with a smooth surface the disturbances 

caused to the uniform flow by the body will be small apart from the small 

region near the stagnation point at the nose of the body. Since the flow 

is the same in all meridian planes it will therefore be independent of the 

6' ~co-ordinate in our cylindrical co-ordinates { , G) .

Then we may write,

X

U  = the component of velocity in x-direotlon - 4 u. ^

and V  = the component of velocity in #@[rdirection=f%r

- , \  ~ lU, f ) i T 'V y  ,

where L and arc the unit vectors in the direction of the x  and -r' 

axes respectively.
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The Equation of Motion in Terms of the Perturbation Velocities.

On substituting for ^  in equation (?) we obtain,

[ lU, + V.) L + -V V it f-Ajj - a?

, ' _(V, + u.)|(U, - a') I t  I;] + I t  fe] - r  ̂  t  I T

But the flow is irrctational ^

i ü  _ ^
S'Y ^ ^ K  (3)

. A q + u . )  1“  + S'vCv+^a) It + It "  ̂It "0- at ~ V
= o. (9)

In order to obtain a suitable expression for a  in terms of u, and 'Xr 
we use equation (6) which gives,

%  +- 4 ~ o
Therefore

%■'='% - f e  V " ] =  0.
c

On multiplying both sides by ^  s^alarly we get ̂

% V i t  ̂• V i ~|q“ 9̂  ] - ° )
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and using the fact that ^ ^  obtain

a constant following a particle ^

a»-
i  y-i ~  = , (10)

which is Bernoulli's Equation ,

Tho flow conditions at infinity upstream  ̂ ^ % U, 1 and

d  % a,, are used to evaluated C and inserting tho perturbation variables 

the equation bocomos

u j  + - Y ~ -  - A  + + -ÿq- _ (11)

[ 2.V, w. + v.^4- -V^ j

Substitution of this expression in equation (9) gives

I™ j u3+ %V, M. -t - 0.3 4- ^(3^1 " +

+■ - 0. 3 •*• 3 V W- f -tf + V*) I f 2^ ( u, + “) ̂

' i a |  - + a. A*V,)] = o  . (12)
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As and. a x  are small oomperi-sd wltli and ct, , squares and higher

powers of these quantities may be neglected by comparisons with U, and
\ 2, and on dividing by a, wo get

I ^  , I + — —  j + !.. — —  - ‘.J

+ 1  Miz. _ r, _ ^  .r O  (13)
U, 7) ’Y' ' L/, J 3

where M is the local Mach number of the flow and suffix (J) here and hereafter

refers to conditions infinitely far upstream.

The Transonic Equation for Flows with Mach Number near Unitv.

Since the upstream velocity of the fluid is very close to the velocity

of sound, (l small. Now let “0** be of the order £ ^

bo of the order £  ̂ be of tho order £ ̂   ̂ bo of the order

£  ̂ be of the order £ ̂  and (} - be of the order £[

where (f is small and ci and 4 are positive. Therefore on applying 

these orders of magnitude to the terms in equations (8) and (13) we see that
i t ^ Ok V

6  = 6  ^

and & a+c-t-i  a -* t a + i + e
â + £ - ' - £  f

, _ a + d ) + a. *cL
t 6 ■* t - Ü  -

In the second equation the third, fifth and seventh texmis can be 

neglected as they are of a higher ord.er than the fourth and sixth terms 

respectively. Thus
11 & + ̂  ^ 4 a-^e (k 4- (4

t £ *6. * £ - o



From tho first equation we see that

i C  - CL -+ 4 -

Hence the last equation becomes

I 4" % + ^  'X.-f ^  { X 4 " c t

£ ^ C + 6

In the most general case all four terras will be present.

Therefore ol must be %  ^  must be 1, and e and dl must

be equal* These values for a. and ^  show that M. and f

are of tho same order of magnitude and that disturbances in the radial

direction will be less than those in the longitudinal direction.

The transonic small disturbance equation for flows with Mach number 

near unity is thus

The Velocity Potential.

The condition for irrotational flow is



Since this is the condition that dot'v/cLnris a perfect differential, 

there exists a function such that

ci.(} - u . cLil -t 'Xf d-Y" (16)

U. “ Oov«v
(17)

(p iis called the velocity potentials

Substituting in equation (I5) for \X and in terms of the velocity

potential we obtain

hi*-1 + V T b-r 0
(18)

Boundary Conditions.

For a fluid there can be no flow through a solid surface, but for a 

non-visGous fluid slip past the solid surface may occur. If the equation

, thon tho condition of zeroof the surface is O

velocity normal to the surface yields

'Î
. V l U r )

à
o

lu -•■u) ■+• or 3 ^  = 0-



“  / u  \ since U, can bo neglected
y * J3C / O-TT as it Is smalJ. compared with U,

41
^  ^  Ix. 3 (19)

where *T Rk) is the equation of the 
surface.

Since the body is slender, within the order of the approximations already
{ \made, tho Value of or bŸ/ on the surface can be taken as the value of

'Xr on IT % O # To obtain an estimate of the velocity near the axis

we see from equation (15) that

^/'T'vr) = T  P 1 ■+ M, n]
Oir

buIn general \ X  and are not infinite, so that as -nr o ̂

.r^(-r-v) o  .

%
This means that near the axis '\T behaves like Therefore

the correct form for tho approximate boundary conditions on the axis may 

be obtained from equation (19) as follows.

trr f m l  (-r-v) •= U, R (Lx , /go)



Relations across a Sbationery Shock Surface which is perpendicular to
I—  I "I. I. I ■■ .1 11 II I II 1 ■ I ' I W " I * VI,' I ■ iiNil I ........    I la I — »■ » " i i| * i fiM ##iii —the free stream veloci;^ in a flow with sonic conditions far upstream.

In deriving the basic equations of this section we have neglected the 

viscosity of the fluid. This assumption is not justified in certain problems 

and this is reflected in the nonexistence of a continuous solution. In the 

flow of a real fluid there may exist narrow regions in which a very rapid 

change of density and velocity take place due to viscous effects. In the 

theory of an ideal gas such a region is represented by a surface across 

which the velocity vector, the density and the pressure experience jumps. 

These jumps are governed by certain relations (shock conditions) which are 

derived from mechanical and thermodynamic considerations. In a steady 

state flow shocks only occur at supersonic speeds, though the flow becomes 

subsonic upon crossing the shock.

There are five shock conditions. The first, second and third state 

that the mass, momentum and energy are continuous across the shock. The 

fourth requires that the tangential component of the momentum is continuous 

across the shock surface. If there was a jump in the component it would 

have to be balanced by tangential forces acting on the surface. However all 

the forces on the fluid are pressure forces which are perpendicular to the 

surface against which they act, therefore the fourth condition must hold. 

Since the mass across the surface is continuous, the continuity of the 

tangential component of the momentum implies the continuity of the tangential 

component of the velocity across the shock surface. The fifth condition 

requires that the entropy of a particle increases upon crossing a shock 

surface. This condition means that the shock is compressive and the fluid 

velocity decreases upon crossing the shock surface so that the flow becomes 

subsonic behind.
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\h will now find the shook rotations across a stationary shock surface 

porpondicular to tho x-axis in a flow where the fluid velocity at infinity 

upstream is parallel to the X“axis and equal to the speed of sound. We will 

let the suffixes 2 and 3 refer to the conditions before and after the shock 
surface respectively. Then the shock relations are:

Conservation of Mass ,

Conservation of Momentum ̂

( u, -4* Z K  ’

Conservation of Energy^

Continuity of Tangential Component of Momentum ^

*2r ^  (24)
3



The Increase of Entropy gives ^

4A 9 ^  ^^3 * (25)

From equations (23) and (24) we see that

From equations (21) and (22) we seo that

aU,Y

■ I 2 = h .-h-
?3 ?3 9ak

U, + Uj
"  u,

J

3̂  3 '

On substituting in equation (26) this expression for -k. y© 

obtain



- \H-

But from equation (25)

. . 1  ~ ^ ;  (U, + « P  = O  (27)

Now from equation (10) we obtain

jr ~ i  I + Twr)^

■ ^ - i  { J

as zr U, at infinity upstroam.

Y bOh substituting this expression for in equation (27)
we obtain

d  ■^ÛVT«^ L v^t " k  ■*'%̂ ).J

- ~  ( ̂  =  O .

If, Alrt / . J / ^  3 1 Y V, / \
', ^  ■ f - T ' V ' - ' l '  " v t "  "  ■

As the second, third and fifth terms are of higher order than the first 

and fourth they can be neglected*

; tJ, / \ V  U, / \
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. (28)

Change in Velocity Potential across a Shock Surface. 

From equation (l6)

cL (D - u  cLc + o) ctr 5

or % (|) -

Across a shock surface normal to tho x-axis there is no change in ^  

(i.e. S-r O )♦ Now the changes in across the shock surface are 
finite. Therefore as o  ̂ % c|) O  . This means that

is continuous through a shook surface.
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CHAPTER 3.

An Approximate Solution of the Problem of ..Transoplc. Flow , past g Slepder 

Pointed Body of Revolution*

Tho transonic small disturbance flow equation is

I ~ M, - ~ 0  .

This equation is elliptic, parabolic or hyperbolic depending on whether 

11 ^ is greater than, equal to or less than zero
r*  ̂ ' * wJ
respectively. For values of M, > near unity the type of solution depends 

on the sign of • As the equation stands it is non-linear and very

difficult to solve.

In the case of subsonic flow the flow equation is elliptic in character 

and in the case of supersonic flow it is hyperbolic in character. This 

leads one to use an approximate method for solving the transonic small 

disturbance flow equation which will make it parabolic in character, and 

thus intermediate between the elliptic and hyperbolic character of the 

subsonic and supersonic flows respectively.

The transonic small disturbanco flow equation is now written in the 

following form so that the L.H.S* is parabolic in character

" T  l! ^ s  I? "‘(i-h;)



or

However we raasb remember that although Oswatitoh found that the form 

of the non-linear term in the transonic flow equation is unimportant the 

term itself is important. We must therefore have a term in the L.H.3. of 

our equation which represents the non-linear term and still keeps the

character of our equation parabolic. This means that the term we introduce

%

in form to the non-linear term is times a parameter \
d X

must not include . Therefore the simplest term which is closest

An Approximate Solution of the Transonic Equation for Accelerating Flow, 

We therefore proceed in a manner analogous to that used by Spreiter

and Alksne (8). We subtract ^  from both sides of the equation,V JC

where X  Is a positive parameter .

■ jfj Il - If Il

(29)

where
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We now use the Green's Function ] T, ) which satisfies

the equation

3
3t

us inwhere denotes a Dirac delta function, to help

finding a solution to equation.(29).

Equation (29) is multiplied by the Green's Function Cj and the current 

co-ordinates of equation (29) are changed to . Equation (31)

is multiplied by and subtracted from the multiplied equation (29), and
the resulting equation is integrated over a region R ̂ in which has a
finite value.

/- 5 ' [ <  - f

A

The contour encloses the region in an anti-elockwise direction.



-24-
Now

\]
* arj^«^ %,}'■ ïr,

l?o
c'' ;-

- - ^  I. ^ a t  I >

R,
b!y bxj , 1  /,D ^ \ ') I , I

A Ilf (/I ̂ 0 f̂i),

( '»‘o ^  <P cj cLr.
Co

»’o

Therefore on substituting for the above terms in equation (32) we obtain,

- 4 iîo ■ <Ç cho - ir, =
C<j Ru

'. - Îl"̂ » Î V  t '■  ̂ (33)
Bo ‘

Equation (33) is now applied to the region shown in the figure below.

"C/]N

N

i
0 * I
iff
>f' i

0 -> a
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The contour (?q is the surface OABCDElFHO, and. ABC is a shock surfce. 

The contour surrounds tho upstream flow field in the plans from - - -taO 

to X  excluding the body and the shock surface

Consider first .

Within the order of the approximations already made the boundary conditions 
on the surface of the body are referred to the line ■= O . Thus

on OA and CD %  is taken as zero, and from equation (20) we obtain the 

boundary condition - S(%u%say .
fl O X,, CM

\  ^ -r \  . C 5̂ 0 ; r,-r„ =o) I v ,  - ^ f f  S ^) ■

o

From D to E there is no change in % 
E

- O .

&
On EFH, as the curve is an infinite distance from the body 

and G may be taken as zero*

e''\  -  o
■ ■ i

A l o n g  W O  j  \

k  _ A  0
\,~o

f . - flr.ip 3̂ .)
  Û

H
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^  ,n ^■ f  ̂ ,n ay \ & c- , i
. . .) I %  4 ^  b %  / ^ 4 ( â  ̂*̂3

’̂j -t> " QO Tg =(*
+ integral round the shock 

surface .

From H to A and G to D there is no change in 

o H  D

. .  ̂ " S  ̂ S = .
H " «

Along the part EFH c|) ̂  o and G may be taken as zero 

4
.', i-'S = o

E
Along DE we let the value of G be zero

B

.'. Î - O
Q

\ 'fu X ̂  clfo - value of theintegral round the shook surface

3<- + values of Integrals round the shock surface .
lae (24)
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The Evaluation of the Function_

The function G satisfies the equation

. K  (31)

and has to satisfy the following conditions.

1) 'To) -  O  on ^  J

2) C t  '̂ 0 ) finite on - O

and (3) ^  (:%, :*« i "T, TT ) - ^ 0  as -^o

Let zr :%a " 3L ,

Equation (31) now becomes

Multiplying both sides of the above equation by -€ where p is

a positive parameter, and integrating w.r.t from - a# to O we obtain

è k f e )  - (35)

^  n - ^ / r .  —  r.) ,„X

whore a  r j *î • ■* 1
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When

^hen

 ̂ r A 31 y;) because ^  is finite at Vg ^ •

because O as OÔ

and when 'T' the solution is continuous

(36)

Equation (35) is non integrated w.r.t. %  from T - E to (

"f+E

I è  k o  t r u  " î )̂ ''-o H
t-£

-Tt£

h j

0 -T-

r3

T-E
X |> <̂ cLr%

6 is now allowed to tend to zero

Ï Ç \ >  Y , 6  Iĉ  fyq? -r) -  J tjj» . -r A ■v) -  I >

•r (37)

Therefore on solving equations (36) and (37) for A and B and using the fact that

T
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W3 obtain

fl = -

and

Now

6

ICJ5%|> y;) X„(5X F Y-) for

- w :i3p

-̂1 2[xp-x)

X(nrV
for < T

0 for JY >  X  .

These expressions for (J were obtained from reference (11)

The Evaluation of the Function ^

Insertion of the expressions for cj given by equation (38) into 
equation (34) yields ^

([î(x,t ) = J  S(t .)
o Ro

+ value of the integrals round the shock surface,
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,I‘f we now assume that the shock surface is normal to the axis,

the values of the integrals round the. shock surface are zero as (j)

and are continuous across the shock surface .

\ i «»/«), à '̂ 0.

ù%

X r l
1*0

R.. I
X t
4lt̂ -5QS ( r . )

•«• o/*., +
s(%.) A y ’-

X)
-n

-%1 = 0
r ^ r r  S^.)Î ̂  L ^ : x )  - a(Y

= f ̂  k  -o

But for pointed bodies S(o) - O.

t*3c \
kax) + s;

f?u

!)oi
sf%o)
2(x*-x)

A

-e
A yy
^ ’dU. -b %ÙTX Yo-C

(?o
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Now on the surface of the body "T : )

A i l  •

O

rop
oj>

A

P s b J
Î  ^  -  i ï ï î S  -

X /,sfxj - s'k) 1 %,,
sb)

;>

a
r _ i _ _  <

A £

as Ĵ

x<r
t for o c X and the integrand of the

first integral is finite for all values of in the range o

I?) p s'bo) - sb) I sb;—•••■"'—"■■“■'**■ ••’ TTT̂' \       . y-J
3 ®

Xx

$ '

Wow
R«

4^

% as -—  is small

3 ffx.Rj
5x

-  SfP w
and C is Euler's constant,

= s ' b j  - s 'fx) 'Ixo
x<? 1

^6
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• (yt-Q M,
The parameter X  now replaced by (J • so that the

above integral over the region can be evaluated and hence the

expression for on the surface of the body can be found .

\/  ̂ (M, -l) \U,
• ■ - (yen

if the above expression is 

substituted for X  in equation (30).

It follows that

\l-rSf0

"X

) >(MlVU, _  
Is+i) M f  i

4S~.- ^
I I d , .

T.-» 0

The inner integral may be evaluated (see e.g. reference (12) page 

394)* Thus we .find

(î’-Dnp

(?..

M l  ^ u(y~x.)

K

2  C c U
Î F Ï Ï W  A . *

- . Ikf.-f)", 
IVt, ) M.» ■
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P s K ) - s M ,  s'&) D È P W ] (M fd ,y;r' " } ' Tnl J’

It will be noted that

Now oLvL

:>(l)l3t,<?)
)% U-, aiid

(Vi)
bu. \
^ > ) U u

ÙX "i"i cLf

5u-
<io(. ^  in’

>X- -* on using equation (8)

ch. J .  b\/ <tr
r  X  — — ' *>«■ .>.

u'X 0% cioc

and from equation (19)On the surface of the body -r r (? ( x) 

we obtain

f d R  \ $ *(%)
"' 0 1 I  I I p # #  " W  r  itrmmmrmi-iim mt t

Çjl / R

On substituting the expression in equation (39), and dropping the 
suffix body, we obtain

X
U. -

J i J n / '
1

Xm.\ 
,'^xh ]

V V Û W v

sU Û I iL e IL K îI î î  ® S cU s'(x) 4S (
+ a ^ ‘U  u. clx R d  !

or It S W  d R
T "  "ÆF

4.x (/, 4/X/!L
S'W U
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§ne5iâi™ Case_o£„5L_BQdy m th „a  _P araM lic-à rG _P ro file__ in_a  .,ZmQ,rSizeaBl 

with Sonic Velocity.

We shall consider the special form of the solution in the case where the 

longitudinal section of the body is symmetric with the upper boundary of the 

parabolic curve *r R(x) - ^ " x) where S is a constant.

Then

and

5(x) = U, % ( I - I j

S (x) - U, S (l-GxY-üxjj
A  'S d,')- S (*:) I ^ -(sx^*ù.r^-t-(p3c - ù x ^  ,

U, %'

o
a

a o
V. A  -
a

V,

. 1 ^ - +  3*f+(,xacJ ^

‘T lx^~ t>xj ,
a

On application of these results to equation (40) remembering that ?; 1, 

it becomes,
(^1. S ( f — OC -f L DL )( I " ^ )

ctx x(i - x)

4-U, ■u.
tan , (41)

x(i-ï) -e® I ( I - 6 X + k 7̂ )
1 J7 rr

This equation has singular points at x. “=•  ̂̂  and j

We shall denote the values ^  ^  and 4- by oc, and %



respecti.vely. However it is possible to find a continuous solution for &L

• This solution was found by givingfrom to "DC z. %

the value 

the value of

/Yn -

V.

clac

at X  zi X, .
we have

Then if is

I4-U,
U.

! Ynum ■>'£. z; ------------- —  —
^ 3}*,-p.

d"
l+u^

IX+l)

A YvXi +6 J where A is a positive constant, 

and B is a constant.

Since this equation has only one real root it follows that there is only 

one solution of equation (4I) that passes through the singular point at % c 

By means of a Taylor Series the values of slightly removed from the

singular point can be calculated. Once these values are known the values 

of on the surface of the body in the range o <* oc < can

be found numerically. These values of  ̂ for different values of

^ are shown in tables I, II, III, IV, and V . (pages 53 to 57 J

If however wo use the values of / U obtained near the singular point
cUnX  - X  ̂  we see that is zero just upstream of it and infinite just

downstream of it. This moans that wo cannot use this solution to obtain 

the values of over the rear-part of the body. The physical reason

for this is that the fluid velocity decreases over the rear part of tho body 

and this violates the condition that X  is a positive parameter.



Hovrevor bhe values of U, over the entire body can be calculated by 

considering tho solution in sections and joining tho various results together. 

Thus we will now proceed to find a solution of equation (l8) in which we 

impose the condition that is always negative. This solution can

be used in the region where the flow is decelerating and the above solution 

can be used in the region where the flow is accelerating.

An Aonroximate Solution of the Transonic Equation for Decelerating Flow.

The transonic small disturbance equation can be written in the following 

form ^

-  d ̂  M .'il
We now proceed in a manner analogous to that of the preceding section, 

by adding x  '*(— •; to both sides of the equation, where- /\ is

a positive constant.

(x y)  ̂ (4 2 )

where - ( I ' M.*) . W )

Equation (42) is now multiplied by the Green's Function "'A Tu )
which satisfied the equation
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"Î'
X b 4

T S(.7(- S( r - x J (44 )

where denotes a Dirac delta function at rx =, ^

Ti %  and the running co-ordinates of equation (43) are changed to X  « 

and T(.p » Equation (44) is multiplied by and subtracted from the

multiplied equation (43) and the resulting equation is integrated over a 

region R  in which C| has a finite value

' ■ 14 W""" h ) " E /  K
^0

"  jj 4 . f  . U5)
n  V  .J

The curve C  ̂ encloses the region in an anti-clockwise direction.



-

Thus, exactly as in the previous analysis aocelorating: flovj-, it 

follows

(pfâ r) ^ ïl, ~ T, $. ï4]l«o X f 4 f 5
 ̂o

Equation (46) is now applied to the region shown in the figure below#

wj F

The contour is the curve ABODE?JIA, and BCD is a shock surface* The 
contour surrounds the downstream flow field from ^  s to c/> excluding the 
bodyy which we shall suppose to be of unit length, the wake and the shook surface*

As the analysis in the remaining part of this section and in the next two 
sections is formally identical apart from certain changes of sign and the regions
of Integration to that uaod in evaluating tho velocity oomponont on the- surface
of tho body for aooolorating igjLoW; only the important stops in tho analysis are 
given#

On evaluating the integrals in equation (46) round the contour ABODEFHIA we 
obtain



Ci/>

- Î K f  & % ) ^ o  - B:
X  ^  , *

t*̂ ()(ix v'C value of the integrals round the shock
R ' surface . (47)

The Evaluation of the Function C (“y. 1 )

The function 'T% ) satisfies the equation

'''Of - J3C„

and has to satisfy the following conditions

1) (j ; "T-J '<;) -  O  on

2 ) Cf t ^0 j 'T'j ) is finite *n = O  ̂

and 3) f 3Ĉ  a:, ; r  t;,) — ^  ^  on *ï'c -? oO

Lot -\A = %  - X „  .

Equation (44) now becomes

tKl?)

(44-)

(48)



The solution to the equation for the above boundary conditions has 

already boon obtained in a previous section

for X. ^

(49)

o
The Evaluation of the Function

for Xo

&
On assuming that the shock surface is normal to the %  axis and inserting

the expressions for Cj given by equation (48) into equation (47) yields

4 - X-r""
([)(•?(,r) T - (50)

X
Hence on the surface of the body t  - )

i(P(^,R) P S'W-5'(%)

X

we obtain

a(x„-x) oLx
s'W AT"H x r V

1+ (I -x) (51)
+ &  Î\ R,^o) 1  .

(Y+l) N  ̂  -r)The parameter ^  is now replaced by h:— ^ — L — — J— .

so that the above integral over the region  ̂ can be evaluated and hence 

the following expression is obtained for
•34.

on the surface of the body,



lbX
I- M

a.

4- P4----   X^i\
2  à

\Y-y\) M,̂

4( i-x) u, J (52)

It will be noted that

% N
yyi^.g) - ( V

= W p ,  ^

( \ /dLE-i s (>)
■>

T" I

à 0
On substituting the above expressions in equation (51 ) and dropping the 

suffix body we obtain

OXL
t x

< U )  J L R
R JUc

. J t i h i U A .  j£^X

a(^o'

(53)

Special Case of a Body with a Parabolic-Arc Profile in a Free-Stream with 

Sonic Velocity

We shall consider the special form of the solution in the case where the 

longitudinal section of the body is symmetric with the upper boundary of the 

parabolic curve Y*« R(x ) = 0x(l - x) where Ô is a constant.



-hen

S(pt) —  U  , "b ( I - I J

and

a

3U, &

“

. a

4>Xu 4- ?ar„ +  L x  v„

On application of these results to equation (53) and remembering that - 

it becomes ̂

oLc _ ^h,(|-(,x ̂ Lx̂ Xl'Sx )
■xCi ~ a )  ,a

^U. ■eol.
y  ' I ,. k ,, +L%:j

■juii (?5c-i)(x-0 ^ ------   [ (54)

It is of interest to note that, if the transformation 

is applied to the above equation, it becomes

+
bu, & A<. - “™  to\p

-«tp- — ') (55)

which is the same differential equation as the one obtained for AX over the 

fore-body.



The Evaluation of over the Complete Surface of the Parabolic-Arc Profile.

In the above two sections we have seen how expressions may be obtained 

for At over the fore-body and rear-body respectively* The problem still 

remains however of the manner in which these two solutions should be 

matched in order to give a solution over the complete body.

We consider first the solution for the after-body. From equation (54)

it is easily seen that as % ic ̂  from the rear of the body if ^  >

3 f t h e  value of 4 ^  at is infinite. Further-

more for all values of 'C i the value of

is zero at . But the solution for iĵ over the fore-body
I

which is valid in the range O < x  <• X  ̂  gives the value of at

X  - as zero. However it is not possible to have a continuous solution

for LL through the point %  % XL ̂  by matching the fore-body solution to 

the after-body solution since the value of <a from the fore-body solution is 

greater than ( 3 l)(3C^~f) at %  =: oc ̂  .

As equation (55) is identical in form with equation (41) it follows that 
there is only one continuous solution for bL in the range ^ < I ■

This solution is a mirror imago about the point x  r ijf̂ of the continuous

solution for U, obtained from equation (4I) wrich is valid in the range 

O <  DC < . From this solution we see that is zero at x  “

and that the value of it is greater than ) at X  - X* .

This means that if we use this value for it in equation (4I) the value of 
is infinite at X - X, - Hence we cannot have a continuous

solution for iA through the point X  ̂  x, ,
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It is therefore impossible to find a continuous solution for At 

from equations (41) and (54) over the surface of a parabolic-arc body as

is positive for all regions where equation (41) is applicable and is

negative for all regions where equation (54) is applicable.
Since we cannot obtain a continuous solution the only way to conneot

up the values of it over the fore-body and rear-body is to introduce

a 8nock surface normal to the free-stroam. From equations (28) ,ond (25) the

relationships between the perturbation velocities before xi and afterA
the shock are

^

and

If now the curves of the two solutions, valid in the range o < tc < 

and ^ X  < 1 are drawn (see figures 9 and 10) it is clear that
there exists no value of pc where the shock conditions can be satisfied. 

This implies that the shock surface must be at either %  % or oc 

At X - Xj the condition bL > cannot be satisfied. Therefore

the shock surface must be placed at -% = ^  ̂ -t j

The values of U, over the rear-body may now be found by solving numerically 

equation (54) with the condition that at X  % x_ the value of Kx. is 

equated to the negative of the corresponding value of Ax obtained from the 

solution of equation (4I) valid in the range o < 'X c ^ 3  - The values
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of 4L over the complete surface of the parabolic arc body of revolution 

may thus be determined. . The valued of for different valies of S
are given in tables I II, III, IV and V on pages 53 to 57



CHAPTER

The Pressure Coefficient,

The pressure coefficient C is defined by

I’ ^
From the adiabatic gas law we have y

K  ft') ~ M , (56)
and from equation (li) we have

4- f  ’i ^ i  h

■ if '*J )
h

If)
t-,  I

ÏT“ t
" I ■* ^ (5H t ,

.. [ | ; f  U< - ^
ir I - ( @lU, 4 3ÎŸ y  ̂  ̂ ()(<* jOf̂ .

Therefore on substituting this expression for in equation (56)
we obtain 3 ^

{:? - K  “ ( 3L I/, ̂  t-u^) + ^  ^

~  (3W, U +U.*-,. ^  4,.\

= -.d%) - % r -  R f  4^)%
= - ^ 1 4 )  ■ 0 “ '̂-'*) ( a f  -

Since the problem under investigation is one in which the fluid velocity. 

at infinity upstream is sonic, we have

Ch = ~ X ^ }  - h- (57)
Now from our analysis of the magnitudes of the terms in the transonic

equation (12 ) we found that if has a magnitude of 6 , then the magnitude of
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[̂ -'l is f where 6 is a small parameter. However if we compare
1 \  fqjr \the Values of j'jrjand ([[j obtained on the surface of the body, see Table I, II 

III, IV, and V, from the solution of equation (15) and from the boundary 

conditions given by equation (I9) respectively, we see that the above relation 
between their magnitudes does not hold at all points on the surface of the body#

In fact over certain parts of the surface of the body the value of (%) is greater 

than the value of (^) • This does not imply that the transonic small dist­

urbance equation (12) used for the above analysis is not generally valid, but 

that in certain special small regions of the field of flow its use may be doubtful,. 

We shall investigate this validity further in the remaining paragraph of this 

section. Before doing so we should remark that a consequence of this fact 

is that the term involving in equation (57) may be important in the cal­

culation of pressure and should be retained.
•ii

We now look at the terms in equation (12) containing which wo previously

neglected to see if we can still justify their omission. Thcso terms are

^  3 x' • Referring back to equation (12)

and using the notation employed in the order of magnitude discussion we note that

the magnitude of those terms are t t and c respectively.

Now tho magnitudes of the terms in equation (l5.) aro £  ̂  ̂ £

and £ respectively. Therefore tho first of the terms we noglectod
.a

is C times the magnitude of the third and fourth terms in our transonic equation 

and the second and third terms we neglected aro f or \ \ĵ *) times tho 

magnitude of the third and fourth terms in our transonic equation. This means 

that the terms we neglected are always of a much higher order than the third and 

fourth terms in our transonic equation and that we are still justified in



neglecting them. It also means that our form for the transonic equation 

given by equation (15) still holds oven if |̂ '] is not of the same order of 

magnitude as that given by our order of magnitude analysis, so long as it is 

not of zero order.

We can thus define the coefficient of pressure on the surface of our body 

with some degree of reliability, by

(57)
Graphs of against x may now be drawn for different values of S 

Those curves are shown in figures 1, 2,3,4 arid 5 for S 3 ^  %

and "éf respectively* On the some figures are the curves obtained by 

Spreitor and Alksne (9) by Colo and Royce (lO) and from experimental data (13,14).
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CONCLUSIONS.

The curves of the coefficient of pressure shown in figures i, 2, 3, 4 and 5, 

for different values of & , calculated from our analysis are now compared with 

those obtained by Spreiter and Alksno (9), by Cole and Royce (10) and with the 

experimental results obtained from references (l3) and (I4). Over the fore­

body our curves and the ones given by Spreiter and Alksne are identical because 

our solutions are identical for this -rogion* In this region the curves given by 

Colo and Royce are almost identical with those we obtained and all three curves 

agree very well with the experimental results. Over the rear-body in the 

region 0,7< x  <1 the curves given by Cole and Royce, and by Sproiter and 

Alksne give values of the coefficient of pressure which aro lower than those 

given by the experimental results while the curves we have obtained are in good 

agreement with the experimental results. In fact the use of a shook surface 

to connect up the solutions for U. for the accelerating and decelerating regions 

of the flow gives a very good approximation for tho rapid increase in the co­

efficient of pressure which the experimental results indicate exists near the 

point %  c ^ f '0̂ ) # However it should be noted that the steepness of

this rise in the coefficient of pressure shown by the experimental results may 

bo caused by the sting on the model which was tested.

However thore is one slight anomaly in the present solution in that over a 

small region just after the shock surface the coefficient of pressure decreases a 

liitJ.o before it increases? as one would expect a continuous increase from the 

shock surface to the tail of the body. Nevertheless the effect of this slight
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fall in tho coefficient of pressure is insignificant because it is easily seen

that in the calculation of tho drag coefficient (see Appendix l) its effect

is negligible.
Wo now investigate our analysis to see if we can find any reason for this

fall in the coefficient of pressure immediately behind the shock surface* As

we have already soon the order of magnitude of (*^j on the surface of the body 

is not the same as the order given by our order of magnitude analysis. Thus 

it is of interest to see how the magnitude of the term in equation (5?)

for the coefficient of pressure compares with the magnitude of the term .

In figures 6,7 and 8 are shown the graphs of " V f against x, for 
different values of •£, and on the same figures the graphs of against
X are superimposed. The graphs of against x are useful, because in .our
order of magnitude analysis we neglected all the terms whose magnitudes were 
(or ) times the magnitude of any of the terms have retained in the

transonic equation given by equation (15). From these figures we see that in 

the region near % % , that is near the shock surface, gJîïTOj 0,

This means that in this region we have included a term in the evaluation of the 

coefficient of pressure which has the same order of magnitude as terms we have 

already neglected in our analysis. Therefore in order to obtain a more accurate 

value for the coefficient of pressure in this region we should retain all the 

second order terms in our transonic equation and in the relevant boundary 

conditions. However as we have already stated, this fall in the coefficient of 

pressure behind the shock surface is insignificant for the calculation of the 

drag coefficient and we do not believe that it justifies an attempt to obtain 

a more accurate solution than the one which we have presented*
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APPENDIX I

The Drag Coefficient

The drag coefficient (G ̂  ) for a body of revolution is defined by

= Drag/free stream dynamic pressuz'e x maximimi 
cross-sectional area of the body,

Consider a meridian plane of a slender body of revolution

!> \-r

It is customary to define the drag as the component in the free stream 

direction of the force exerted on the surface of the body by the excess pressur. 

difference ( ^ ̂  ). Thus over an element S S of the surface there arises

an element of drag ^ D given-by

S D - (G K ) t S. ( a ~ ̂)

. . S o  -  (j'J-1’ . )  . S s  (.) 3

~  iG K )• Ga'. (|).

where (j) is the angle between 
the tangent to the element ^5 
of the surface and the x-axis.

where 'Ts. R(x) is the equation 
of the surface.

Therefore the element of drag arising from an elemental ring of the body surface



- 52 -

air
Hence the total drag for a body of revolution of unit length is given by

S airelUNc

^  (5»)
O
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TABLE I 5

X V
Ui

u
Üi %

.0113 .5258 -.4027 .6992

.0515 .3125 -.2868 .4759

.0515 .2991 -.2318 .3742

.0715 .2858 -.1938 .3058

.0915 .2725 -.1638 .2534

.1113 .2591 -.1388 .2104

.1515 .2458 - .  1169 .1735

.1515 .2325 -.0974 .1408

.1715 .2191 -.0797 .1114

.1915 .2058 -.0633 .0844

.2113 .1925 - . 048l .0392

.2315 .1791 -.0338 .0355

.2513 .1658 -.0203 .0131

.2715 .1525 -.0075 -.0083

.2915 .1391 +.0048 -.0289

.5115 .1258 .0165 -.0488

.5515 .1125 .0276 -.0679

.3515 .0991 .0383 -.0865

.3713 .C858 .0486 -.1046

.3913 .0725 .0584 -.1221

.4113 .0591 .0678 -.1391

.4313 .0458 .0767 -.1556

.4513 .0325 .0852 -.1716

.4713 .0191 .0955 -.1869

.4913 .0038 .1009 -.2018

• 5113 -.0075 .1079 -.2159

1
X

V
Ui

u
Üi

---
cp

.5313 -.0209 .1143 -.2294

.5513 -.0342 .1205 -.2422

.5713 -.0473 .1239 -.2341

.5913 -.0609 .1307 -.2632

.6113 -.0742 .1349 -.2733

.6313 -.0873 .1384 -.2846

.6313 -.1009 .1413 -.2918

.6713 - . 1142 .1436 -.3002

.6913 -.1273 .1433 -.3069

.7113 -.1409 .1467 -.3133

.7313 -.1542 .1477 -.3192

.7513 -.1673 . 1486 -.3233

.7713 -.1809 .1491 -.3309

.7887 -.1923 .1493 -.3357

.7887 -.1923 -.1493 +.2613

.8087 -.2038 -.1496 .2568

.8287 -.2191 -.1306 .2332

.8487 -.2323 -.1328 .2313

.8687 -.2438 -.1371 .2338

.8887 -.2591 -.1660 .2649

.9087 -.2725 -.1816 .2889

.9287 -.2858 -.2053 .3293

.9487 -.2991 -.2598 .3901

.9687 -.3123 -.2922 .4867

.9887 -.3238 -.4001 .6941
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TABLE II 5 — 1
3j2

X V
Ui

u
Ui %

.0115 .2304 -.2276 .4021

.0313 .2209 -.1671 .2854

.0513 .2115 -.1368 .2289

.0713 .2021 -.1149 .1889

.0913 .1927 -.0970 .1570

.1113 .1832 -.0817 .1299

.1313 .1738 -.0681 .1060

.1513 .1644 -.0558 .0846

.1713 .1549 -.0444 .0649

.1913 .1455 -.0339 .0466

.2113 .1361 -.0241 .0296

.2313 .1267 -.0148 .0135

.2513 .1172 -.0060 -.0016

.2713 .1078 +.0022 -.0161

.2913 .0984 .0101 -.0298

.3113 .0889 .0175 -.0429

.3313 .0795 .0246 -.0555

.3513 .0701 .0313 : -.0675

.3713 .0609 .0376 -.0789

.3913 .0512 .0436 -.0898

.4113 .0418 . 0492 -.1003

.4313 .0324 .0345 -.1101

.4513 .0229 .0595 -.1195

.4713 .0135 .0641 -.1284

.4913 .0041 .0683 : -.1367

.5113 -.0051 .0722 -.1444

X V
Ui

u
%

.5313 -.0148 .0757 -.1515

.5513 -.0242 .0787 -.1581

.5713 -.0336 .0814 -.1639

.5013 -.0431 .0857 -.1693

.6113 -.0525 .0856 -.1740

.6513 -.0619 .0872 -.1782

.6513 -.0713 .0884 -.1819

.6713 -.0808 .0893 -.1851

.6913 -.0902 .0900 -.1881

.7113 -.0996 .0906 -.1911

.7313 -.1090 .0911 -.1941

.7513 -.1185 .0915 -.1970

.7713 -.1279 .0918 -.2000

.7887 -.1361 .0919 -.2023 ;

.7887 -.1361 -.0919 +.1653 1

.8087 -.1455 -.0920 .1628 j

.8287 -.1549 -.0926 .1612 i1

.8487 - .1 644 -.0936 .1602

.8687 -.1738 -.0956 .1610

.8887 -.1832 -.0997 . 1658 I

.9087 -.1927 -.1077 .1782 ]

.9287 -.2021 -.1210 .2012 ;

.9487 -.2115 -.1404 .2361 1

.9687 -.2209 -.1692 .2896 j

.9887

1

-.2304 -.2255 .3979

!1
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TABLE III

X V
Ui

u
Ui °P

.0115 .1955 -.1713 .3044

.0313 .1875 -.1287 .2223

.0513 .1795 -.1060 .1798

.0713 .1715 -.0891 .1487

.0913 .1655 -.0753 .1238

.1113 .1555 -.0652 .1025

.1313 .1475 -.0525 .0832

.1313 .1395 -.0427 .0659

.1713 .1315 -.0336 .0500

,1913 .1255 -.0252 .0352

.2113 .1155 -.0173 .0213

.2313 .1075 -.0099 .0083

.2513 .0995 -.0029 -.0041

.2713 .0915 +.0037 -.0157

.2913 .0835 .0099 -.0268

.3113 .0755 .0159 -.0374

.3313 .0675 .0214 -.0474

.3313 .0595 .0267 -.0570

.3713 .0515 .0317 - .  0661

.3913 .0435 .0364 -.0747

.4113 .0355 .0408 -.0829

.4313 .0275 .0449 -.0905

.4313 .0195 .0487 -.0977

.4713 .0115 .0522 -.1045

.4913 .0035 .0554 -.1107

.3113 -.0045 .0582 -.1165

X V
%

U
Üi %

.5313 -.0125 ; .0608 -.1217

.5513 -.0205 .0630 - .1 2 0

.5713 -.0285 .0650 -.1307

.5913 -.0365 .0666 -.1345

.6113 -.0445 :: .0679 -.1378

.6313 - .0 5 ^ .0689 —.1 4o6

.6513 -.0606 .0697 -.1431

.6713 -.0685 .0703 -.1454 .

.6913 - .0 7 0 .0708 -.1476  i

.7113 -.0845 .0712 -.1496 1

.7513 -.0925  ; .0716 ; -.1518 !

.7513 -.1006  ; .0719 i: -.16391

.7713 -.1083 i .0721 j  ̂ -.15601

.7887 -.1165  :' .0722 ' - .1 6 7 7 1

.7887 -.1156 -.0722 :. +.1311 j

.8087 -.1235 -.0723 .1293 I

.8287 . -.1315 -.0726 .1279 j

.8487 -.1395 ‘ -.0734 .1273 1

.8687 -.1475  1 -.0748 .1278 1

.8887 -.1555  ■ -.0776 .13 10 i

.9087 -.1635 : -.0835 .1403 1

.9287 -.1715 -.0935 .1576,

.9487 -.1795 ' -.1084  • . 1846 i

.9687 -.1875 -.1301 ; .2 2 5 0 1

.9887 -.1955 -.1715 .3078 I

;
. U
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TABLE IV

2Z
V
Ü i

u
U i S X V

U i
u
U i °» i

.0115 .1629 -.1278 .2291 .5313 -.0104 .0471
S

-.0943 I
.0315 .1562 -.0961 .1679 .5513 -.0171 .0487 -.0977 I
.0513 .1496 -.0795 .1366 .5715 -.0258 .0500 -.1006 j
.0713 ,1429 -.0669 .1134 .5913 -.0304 .011 -.1031 j
.0913 .1362 -.0565 .0944 .6113 -.0371 .020 -.103 !
.1115 .1296 -.0473 .0779 .6313 -.0438 .026 -.102 1
.1313 .1229 -.0391 .0631 .013 -.0504 .031 -.1088 !
.1313 .1162 -.0316 .0497 .6713 -.0571 .035 -.1103 1
.1713 .1096 -.0246 .0372 .6913 -.0638 .039 -.1118 !
.1913 .1029 -.0181 .0256 .7113 -.0704 .041 -.1132 I
.2113 .0962 -.0120 .0148 .7313 -.0771 .044 -.1147
.2313 .0896 -.0065 .0046 .7513 -.0838 .046 -.1162
.2513 .0829 -.0009 -.0051 .7713 -.0904 .047 -.1177
.2713 .0762 +.0042 -.0142 .7887 -.0962 .048 -.1188
.2913 .0696 .0090 -.0228 .7887 -.0962 -.048 +.1003
.3113 .0629 . .0135 -.0310 .8087 -.1029 -.048 .091
.3313 .0562 .0178 -.0388 .8287 -.1096 -.051 .0982
.3515 .0496 .0218 -.0462 .8487 -.1162 -.056 .0978
.3713 .0429 .0256 -.0531 .8687 -.1229 -.066 .081
.3913 .0562 .0292 -.0596 .8887 -.1296 - . 0 0 .1001
.4113 . 0296 .0525 -.0658 .9087 -.1362 -.0626 .1065
.4313 .0229 .0355 -.0716 .9287 -.1429 -.0700 .1195
.4513 .0162 .0383 -.0769 .9487 -.1496 -.0810 .1396
.4713 .0096 .0409 -.0819 .9687 -.1362 -.0969 : .1693
.4913
.5113

.0029
-.0038

.0432

.0453
-.0864
-.0906

.9887 -.1629 -.1264 .2262
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TABLE V Ô a

X V
Ul

U
Ui S

.0113 .1396 -.0986 .1778

.0313 .1359 -.0749 .1318

.0 1 3 ,1282 -i0621 .1078

.0713 .1225 - .0 2 4 .0897

.0 1 3 .1168 -.0442 .0747

.1113 .1111 -.0370 .0616

.1513 ' .1 0 3 -.0304 .0498

.1513 .0 9 6 -.0244 .0390

.1713 .0 3 9 -.0189 .0290

.1913 .0882 -.0137 .0196

.2113 .0825 -.0088 .0109

.2313 .0768 -.0043 .0 0 6

.2513 .0711 +.0000 - .0 0 1

.2713 .0653 .0041 -.0125

.2913 .0 9 6 .0079 -.0194

.3113 .0 3 9 .0115 -.0260

.3313 .0482 .0149 -.0322

.3513 .0452 .0181 -.0380

.3713 .0368 .0211 -.0435

.3913 .0311 .0 3 9 -.0487

.4113 .0255 .0 6 4 - .0 3 5

.4313 .0196 .0288 - .0 8 0

.4513 .0139 : .0310 -.0622

.4713 .0081 .0330 -.0660

.4913 .0025 .0347 -.0695

.5113 -.0032 .0363 -.0726

X V
Ui

u
Ui %

.5313 -.0089 .0376 -.0754

.5513 -.0147 .0388 -.0778

.5713 - . 0 0 4 .0398 -.0800

.5913 - .0 6 1 .0406 -.0818

.6115 -.0318 .0412 - .  0834 j

.6313 -.0375 .0416 -.0846 1

.6513 -.0432 .0420 - .0 0 9  1

.6713 -.0489 .0423 -.0869

.6913 - .0 4 7 .0425 -.0880

.7113 -.0604 .0427 -.0890

.7313 -.0661 .0429 - .0 0 1

.7513 -.0718 .0430 - .0 1 2

.7713 -.0775 .0431 -.0923

.7887 -.0825 .0432 -.0931

.7887 -.0825 -.0432 + .0 7 0

.8087 -.0882 -.0432 .0786

.8287 - . 0 3 9 -.0434 .0780

.8487 -.0996 - rf0438 .0777 j

.8687 - .1 0 3 -.0445 .0778 j

.8887 -.1111 -.0458 .0793 j

.9087 -.1168 -.0488 .0840 1

.9287 -.1225 - .0 4 5 .0941 '

.9487 -.1282 -.0651 .1098 1

.9687 -.1339 -.0753 .1327 1

.9887 -.1396 -.0975 .1754 j

!
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PART II.



ô 0
GHAPm 1.

Introduction*

Sinco it is generally impossible by theoretical means to predict the 

porformancG of an aircraft the aircraft designer has to rely on experimental 

data obtained in wind tunnels* Tho designer can then establish the laws of 

similarity between tho flow about the model in the wind tunnel and that about

the actual aircraft by means of theoretical reasoning*

It is relatively easy to test the model in a closed tunnel or in a free 

jot of air when the speeds are well below sonic speed. In this case the 

significant similarity parameter is the Reynolds number. However in order 

to obtain complete similarity at high subsonic speeds a second similarity

parameter, which is a function of the upstream Mach number and body thickness,

must be considered. Tests must now be performed at a particular Mach and 

Reynolds nunber for a given body*

The principal difference between the flow about an aircraft flying in the 

atmosphere and the flow about its model in a wind tunnoi, if the aerodynamic 

similarity parameters aro the same, is caused by the finite lateral extension 

of the tunnel airstream. It can be shown that in a conventional wind tunnel 

this difference increases as the speed of sound is approached. Moreover, if a 

test section with solid walls is used, at a contain subsonic Mach number the 

model will cause the same effect as the throat of a Laval Nozcle. Tho speed 

of the upstream flow cannot be increased without change of upstream density, and 

tho tunnel is then said to be choked. Therefore for an appreciable range of 

high subsonic speeds no testing is possible in a closed tunnel.

Wo will now consider the streamline patterns of flows at subsonic speeds
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about 80oe body in free flight, in a solid straight vailed tunnel and in a free 
jeu. iheji the body is placed in a parallel flov of infinite e'<c-06ion it will 
cause tho streamlines of the parallel flov to be deflected in such a va;v ohat 

the maso flov inside a stream tube remains constant, and the centrifugal forces 

caused by the streamline curvature are in equilibrium vith the pressure forces. 

If the infinite parallel flov is replaced by a finite stream surrounded by 

solid straight vails, as vill be the case in a vind tunnel, the streamlines 

forming the flov about the body are squeezed together more t.ao.i they would be 

in free flight. This vail interference introduces changes in the pressure 

distribution over the body and leads in some cases to the phenomenon of choking. 

In the open jet type of vind tunnel the boundary is air at rest, which fact has 

the consequence that the curvature of the outside streamlines becomes greater 

than that of an infinite free stream, in order to balance the forces caused by 

the body since there is no longer any outside flov to resist the deformation.

The flov pattern obtained is therefore one in which the streamlines are further 

apart than for free flight. This type of Interference in which the distance 

between streamlines is effected by the boundary of the flov is called blockage 

interference.

In subsonic flov one can usually compensate for this effect by applying 

a correction factor. The body behaves as if it were tested at a higiaer or lover 

speed than that measured in the tunnel, depending on the type of boundary used. 

However in high subsonic flov the tunnel may be choked or a section of the 

desired speed range may be lost becuase of the change in character of the 

governing equations as the speed of sound is passed. It is therefore the 

removal of the blockage interference that is of the most importance in the 

design of a high subsonic vind tunnel.
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Oiiü method usod to eliminate blockage interference is tho use of flexible 

walls which can be set to lie along the streamline that would occur in the 

infinite stream. The main disadvantage of this method lies in the time 

required to set the walls as a new sotting is required for each Mach number*

Since solid straight walls and open jet boundaries influence the stream­

lines in opposite manners a possible solution of tho problem for the elimination 

of the blockage interference should bo obtained by using a boundary which is a 

combination of these two. This combination has lod to the use of a straight 

walled tunnel with a finite slotted section along it and hence to a straight 

walled tunnel with a finite porous section along it.

A mathematical theory was developed by L.G. Woods (1) enabling wind 

tunnels with porous walls to be designed to give zero blockage interference 

in subsonic incompressible flow. The tunnel walls are taken to be porous 

over a finite range R and solid everywhere else, and a sealed jacket is 

placed over the porous section so that the pressure on the outside wall can 

be controlled. The porous wall is assumed to have the characteristic that 

the component of the velocity normal to the wall is proportional to the pressure 

drop across it, the constant of proportionality X being termed the porosity 
of tho wall. It has been shown by Rreston and Rawcliffe (2) that it is 

possible to design a porous wall obeying this linear law. In the paper by 

L.G. Woods the relationship between the tunnel width H, the Mach number M,

A  and R was found so that the blockage interference was zero. This 

relationship showed that for a given value of the porosity the length of the 

porous section must bo reduced when the ivlach number is increased to keep the 

zero blockage interference. Thus the tunnel needs to be fitted with adjust­

able sections of solid wall which can be moved across porous surfaces to 

reduce their effective length.
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Üinco.tue flow patterns obtained for incompressible subsonjo are simiJar 

to those for compressible subsonic flow the overall design characteristics of 

a high sû  sonic wind tunnel for zero blockage interference will be similar to 

the one obtained by L.C. Woods*

The problem considered in the following analysis is the design of a straight 

walled wind tunnel with a finite porous section to give zero bJockage inter­

ference In high subsonic compressible flow.

Since we are dealing with the flow past a slender body, the transonic 

small disturbance flow equation, which is a first order approximation of the 

exact transonic flow equation is taken as the governing equation. The hodograph 

method is used in this problem to obtain a solution of this approximate equation^ 

In this method the transonic small disturbance flow equation is transformed 

into a second order linear partial differential equation, viz. Tricomi's equation, 

by interchanging the dependent and inâqPendent variables* The solutions of the 

linear equation are first order approximations of the solutions for the flow of 

an ideal gas*

In the following analysis it is assumed that a solution to this problem 

can be determined by a perturbation from the solution obtained by Helliwell (4 ) 
for a channel with solid walls* This solution was obtained by using Tricomi^s 

equation and is therefore a first order approximation of the solution for the 

flow of an ideal gas. Thus our solution may not be strictly justified for the 

flow of an ideal gas since the approximations made in obtaining tho perturbations 

are of the same order as those made in deriving Tricomi's equation. However 

Tricomi's equation is the exact equation which governs the flow of a "Tricomi"
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gas. Tho properties of this gas in the neighbourhood of the speed of sound 

are very similar to those for an ideal gas. (see e.g. Bors(9)) For such a 

gas our solution will be strictly correct to first order*
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CHAJ?T.ER 2

THE BASIC EQUATIONS CE TRANSONIC ELOW

Transonic flov is said to occur vhen the velocity of the fluid particles 

in some region of the flov is little different from the velocity of sound.

The fluid ve are considering is assumed to he a non~viscous, non-heat conduct­

ing perfect gas to vhich the adiabatic gas lav applies. The motion is supposed 

to be steady, irrotational and dependent upon no external forces for its support., 

The basic equations of continuity and momentum governing the flov have been 

obtained earlier in Part I of this thesis. In terms of the velocity ((̂ ), 

density (p ), pressure (p) and speed of sound (a) in the fluid these equations 

take the form
dcA.r ( Ÿ - O ; (l )

a
^  -h O p (2)

ana ~ cj' V. g = C) . (3)

PERTURBATION VELOCITIES

We vill nov assume that ve have a uniform steady flov vhose velocity is 

and direction of flov is parallel to the X-axis of the tvo-dimensional coordinate 

system. If ve nov place in this flov, along the X-axis, a slender body vith a 

smooth surface the disturbances caused to the uniform flov by the body vill be 

small apart from the small region near the stagnation point at the nose of the 

body.



Then ve may vrite,
U - the component of velocity in X-direction = Ui(l + u'),

V = the component of velocity in Y-directlon = U^v*.

Therefore + u ’)i + U i V * ,

vhere 1 and ̂  are the unit vectors in the direction of the X and Y axes 

respectively.

THE EQUATION OF MOTION IN TERMS OF THE PERTURBATION VELOCITIES

On using the condition that the flov is irrotational ve obtain the 
relationship

w  _  w  
i x  ■

From equation (2) and using the flov conditions at infinity upstream, viz
q - U%i and a = â , ve obtain Bernoulli's Equation

a %2 a 2 O-T (5)

On substituting for ^in equation (5) and using equations (4), (5) and 
the fact that as u*U and v'U are small compared vith Uj and â , squares and 

higher povers of them may be neglected by comparison vith uf and af. By a 

similar development to that of Part I ve obtain,

\ /- '..3 n
y i r O  + I y  1] ^ - I V  M,' ^ (6)

vhere M is the local Mach number of the flov, and suffix (l) here and hereafter
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lei'crR to conditions infinitely far upstream^

THE nmïïSONIC EQUATION FOR FLOWS WITH HIGH SUBSONIC VELQGITIEG

We vill nov consider the particular case vhere the upstream velocity of 

the fluid is a little less than the velocity of sound, so that Mi < 1 and 1 - 

is small, Nov let u' he of the order f , v* he of the order of ^  he of
0 V 1

the order ( , he of the order f , and ( 1 - Mf ) he of the order £  ̂  vhere f

is small and a, h, d and e are positive. Therefore on applying these orders

of magnitude to the terms in equations (4) and (6) ve see that 
_ _ l + cL
6 ~ â ^

I+J2.1-6 ati l + a + i. c <3.4(1
6  + £ 4 e + f = f

In the second equation as the tvo terms vhose orders of magnitude are 
_ l+'a.-fJlt are of a higher order than the term vhose order of magnitude is
..OL-tdC they can he neglected. Thus '

l+«+0 a + 1
£ + (£ -+ 6: - 6 .

From the first equation ve see that

a + h = 1 + d,

, ’, d - a + h - 1,

Hence the last equation becomes

E + 6 b (S - O .

The index b is common, thus

6 -t f  ^  ^ - o ,

In the most general case all 5 terms vill be present. Therefore a must be-f- 

and Q must equal 1, These values, for a and e shov that u’ and 1 - are of 

the same order of magnitude and that the disturbances in the transverse
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d;Li .on vlll ‘be less than those in the horizontal direction.

The transonic small disturbance equation for tvo dimensional flov is

H." - (Ï..)
S x

0

Nov let 

and ' \ r  r

( r )

(8)
(9)

Substitution of these values in (4) and (7) gives

:)X 0

ÂX

by
b u. 5 \r

b Y 0

(10)

(11)

It is not possible to obtain an exact analytic solution of the above 

equations, Hovever it is possible to transform the equations into linear 

ones. This is accomplished by the hodograph transformation in vhich the 

dependent end independent variables are interchanged.

Thus ve take
X - ^

and X  - Y( ‘'3., W  >
(12)
(15)

 ̂u. barSolving the simultaneous equations in ^  and obtained by differentiating

equations (ig) and (I3) v.r.t. )«̂ ve find

b ï

and

vhere

I n  _ 
bX
bar
bX

A bx
t) lA bow
n bï



-

'.1% ‘i. sibiii.l.ar manner ve find ~ j a

b vand / ùb Y bv.
Therefore substituting these values in (10) and (ll) ve get

^  ^ i f  _

+ T i  = ^ (14)

b Y  b X
ana y;; - 3 1  =  <̂ -■> (15)

SO long a,s/\ 0. The special case « 0 is referred to later.

To eliminate X from (14) and (I5) ve differentiate (l4) 'w.r.t, u and 
(15) v.r.t. V and add. Thus

Ÿ Ï  ̂ , f  Ï  ̂3 1  + yy, -  o  . (16)

This is the equation of Tricomi and is elliptic, parabolic or hyperbolic 

according as u is greater than, equal to or less than zero. The relationship 

between u and M is nov found,

RELATIONSHIP BETWEEN u and M

We have previously defined U  - V, ( I -+ vJ) and V  - U, 'V *,

31 u^( I+
or

Cr -^ ( I -f a u'}

a
X

To evaluate ^  ve return to equation (6) vhich gives

't ( V-j) c)̂  a- Y-f) U,
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CL̂  4 i  (Y-O -■ a-,̂ 4- i)U,^

-5 A(Y-.) = I 4 i(V-0 M, . (18)o3 I /., \ . 2 , , , . 3,
i

Substituting for ^ from equation (l7) ve obtain

(l t 3 u' ) M^] - I 4 -^( v-i.) M,^.
Navr , -(I- M ^ )

2 
t .

3
( 19)

From equation (l?) to zero order of approximation ve see that
a* jvj <

Therefore equation (l8) to zero order is

- 11- M /  .

Therefore to zero order approximation =% M, and hence

AX = 1-h^, (20)
As in subsequent development ve shall be interested in flovs vhich have 

velocities no higher than sonic velocity u vill alvays have a non-negative 

value,

N o v = 0 corresponds to a limiting line in the mapping from the hodograph 

plane back to the physical plane. It is known that the limiting line is the

envelope of one set of characteristics of the governing equation for the flov.

Thus in flovs vhich are entirely subsonic limit lines cannot occur, A  0 

except possibly at exceptional points, and the hodograph transformation is valid 

since the relevant differential equation is everyvhere elliptic.
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ELEMjMTAHY 801,0:1 QHS 0? imCQMX^S EQUATION 

If a nevr variable r defined by

T  = 4̂  =: ft I - ^ (21)
io introduced cimpie colutionc of Tricomi*q Equation can be obtained by

reparation of varlablec. Equation (16) nov becomer

■j’ Y  , I. :> Y  , f  Y
Ÿ ?  ■" Î-.- T T  ’ o   ̂ <“ )

By Getting %  - "Y  ̂ ('t; v) colutiono of equation (22) can be found by

reparation of the variablen and lead to Golutiono of the type

h
(25)

vhere la any linear combination of Bessel Functions of order ±

and X  1:3 a constant ̂ either real or imaginary.

BOUNDARY CONDITIONS

I SOLID SURFACES

For a fluid there can be no flov through a solid surface; but for a non- 

vis cous fluid slip past the solid surface may occur. If the equation of the 

surface is f(X,y) ~ Oj then the condition of zero velocity normal to the surface 

yields
i- V  (x,Y)

i b L {  ̂k since û  can be neglected
bV j 3 %   ̂ as it is small compared 
Y  vith unity

d x

slope of surface. (24)
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Ti'ierofoj:o cii all solid sm*faces the 'boundary condition is giv :n 'by

AJ  r X the slope of the sm'faee.

(a) If the surfaces are parallel to the ‘a2cis the boundary ccndii'.ion is given 
'by

V = 0 (25)
(h) For a slender -wedge whose semi-angle is % and whose nose is at the origin 

of I,he coordinate system the equation of the face is given by ^  O  % X

-> X
Therefore the boundary condition on the face of the wedge is giv on by

'-''0 J (say) (26)

II POROUS WALLS

9 0

Consider a wall bounding the fluid end lying parallel to tlj..̂ flow far 

upBtre.'Am̂  In which there occurs a porous 'section from A to B, Let there be a 

chamber behind the porous wall in which the fluid can be mainhained at a 

constant pressure by means of pumps. It has been shorn [6] that the 

boundary condition on the porous wall is homogeneous because of the viscous 

effects of the fluid there and that the pressure drop across the wall is 

proportional to the normal component of the fluid velocity at the porous wall. 

Thus along the section AB we shall assume the following relationship between 

the velocity and pressure.
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AJ I ,
where Tj 1b a constant of proportionality^

1
l'roLi the adiabatic gas law we have

K -
9 
9,

and from equation (5 ) we have

Y-
1
S k

9,

i  { i?]
y

y - i

y
V-i

k  f - k . P l  _  l l  9, L 9 t>. 'J >

i f f
I f

- I +

h

Ï ' .  f  i i .

9, I'197/

y j
a v

X
a y-'

j -f.

(27)

(28)

(29)

(30)3 y  |pi

Therefore on substituting the expression for f ^ in equation (29) weV 9̂,
obtain

?- ^  Uj u'̂  SLS u and -v can be neglected

Î A - (31)
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Therefore on substituting for this expression in equation (28) ve find

=  ̂ (33)

^ ^.F('t)^ (34)
where r i|) ,

and

1- J

- H " K
THE STREAM PÎJHCTION

Erom the equation of continuity (1) in the case of two dimensional flow

V o u )  3(?v)    îmim ■* ****̂)) X b ï
Since this is the condition that çUcl Y -  çVotX is a perfect differential 

there exists a function ̂  such that

- Ç ̂  A Y - 9 V cly . (55)

b T  ,, _  b t
ç u -  Ï Y

In steady motion the particle paths coincide vith the streamlines> and on a

/ streamline
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\/

r

ç V t i x  = IV cl y

Therefore on a (Streamline d. "Y - 0 ^

i.e. ^  - consteint.

Therefore^f' := constant gives the streamlines^ and is called the 

stream- function.

Hov equation (55) gives

1 4  •= ? M ( t •+ ̂ ‘ ) lA i  Ç u,-v' I x  ,

- 9 u, (A X t Ç ̂ -u.' cl Y ' Ç u, 'v'(A X .

In the above equation the second and third terms can he neglected as they 

are small vhen compared vith the first term,

. (A 4 - 9 0, i Y , 
J

' 'Ÿ  ~ J 9 A Y  J  where A is any constant.
Since at any point in the flov the velocity differs hy terms of first

order fi'om that at infinity upstream the density p vlll also differ by first 

order terms from pj. Thus to terms of zero order p may he replaced hy pn in 

in the ahove integral. y

. , -  9.Ü,  ̂A Ï .
A

Nov if the line Y  = 0 is taken as = 0̂

' 4  * 9.V, Y  .

. ' . T  (X 1  . (56)

FREE STREAMLINES

Bernoulli’s equation along a streamline is ^  ^  « C.

Nov if a streamline divides the flov into tvo regions (J) Gind D; ve have
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±  Y h p X  a , 'is' b «
a %  + Ç "= ^ob a 5/ yT,” f  ^  ^ 0

b.t> l'.he c.oii'lltions of flow on the streamlineo In the regions j) and D respective.'. 

If P is a point on the dividing streamline^ and we approach P from the region ̂  

the pressure takes a value p̂ , the velocity a value and the density a value 

Pi. Similarly hy approaching P from the region D the corresponding values are 

Vsij Qg and pg. Therefore at P the equations are

ItY-) ■
But the pressure must he continuous at P,

i.e. Pi = pg.

how if Pi “ pg then pi must equal pg in view of the adiahatic gas law.

Thus
qf - qf- « a constant.

This equation shows that the velocities in the two regions are not con­

tinuous unless the constant in the ahove equation is zero. In particular if 

one of the regions is at rest (i.e. qg = O) the streamline which separates the 

fluid in moÜion from the fluid at rest is called a free streamline. The 

properties of a free streamline are that the pressure, velocity, density and 

stream-function are constant along it.

THE PPESSUEE COEFFICIENT

The pressure coefficient Cu is defined hy
e -  h h  
^ I' ■ i9, u f  •

On substitution for p - Pi from equation (31 ) we obtain

(57)
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The drag coefficient or-'br a surface is defined by

Q ^    Drag over the surface____ _______
'D Fi'ee stream dynamic pressure x a suitable length ^

Consider a plane surface inclined at an angle Cy to the -axis as shown 

in the figure below

wake
— — ■ X-axis

It is customary to define the drag over the surface as the force exerted 

upon it by the excess pressure difference (p - Pi). Thus over an element SS 

of the surface there arises an element of drag ^ D given by
S . xiluv. ^

* i b Ip* )  ̂ S X p
dYwhich for a slender body, since tan 4* = where Y - g(x) in the equation of 

the surface; becomes

s  D =

For a slender wedge whose semi-angle is S Q^d whose nose is at the origin 

of the coordinate system the equation of the face is given by ^  ^ X .
Therefore the drag over a single face of the wedge of length  ̂is given by

D - ) Ijp - V l  i
(i

e - i x

= J  ?  Cj,. I x .



for a of milt leagtli
I

e D V C b. ‘â . c\ Xcs '

But X = XC t '̂v) .

A x  - ^

from equation ($%).

But on the face of a wedge
V

A/ Z
If the values of r at the nose and shoulder of the wedge are r and r^ S

respectively^ then
3\%

Ç  - _ £V.a.. _ I Ü L 1
" OA-O i

Tyx
% /  :> X %

-V= -VL0
Now it is an experimental fact that for transonic flow past a wedge sonic 

velocity occurs at the shoulder. Therefore at the shoulder u - 0̂  and hence 

= 0.
At the nose of the wedge there is a stagnation point. This means that

oM = 0 and the value of u is of the order f . Therefore as the magnitude of 

u at the stagnation point is of lower order than that assumed for u in the 

theory, the value of u at the nose of the wedge is taken as oo. Hence r^ = oo

and

+ T
%"I

(38)



An Investigation of High Subsonic Plow past a v/eoge in a ohannei of which 

a diction of the Wails is Porousc

o A -> X

Sllsical^Plane»

The channel has a semi-width K and the porous section of the channel 

walls is from F to E, The chamber behind the porous wall has been

designed so that the pressure of the fluid can be kept at a constant value

by means of pumps. The slender wedge of unit length and semi-angle 

^  is symmetrically placed at zero angle of attack in the channel with its

nose at the origin (a ) of the co-ordinate system (X,f)

The dividing streamline O  comes from infinity upstream (O)

where the fluid has Plaoh number and associated "T zr -fj and is parallel 

to the channel wall until it reaches the nose of the wedge at the stagnation



point’ A. ï _e stroaniiino thon divides and as the flow is symmetrical about 

tas X--axis only the upper part of tho streamline is now considered. After A 

the streamline goes along the face of the wedge to the shoulder at 3 where 

tho fluid velocity becomes sonic. The streamline then breaks away freely 

from the wedge and the fluid velocity remains sonic until the streamline 

again becomes parallel to the channel wall at C. It then continues parallel 

to the channel wall to infinity downstream and the fluid velocity decreases 

so that its Koch number and associated 'i" value at infinity downstream (d) 

become and respectively. This form for the streamline leaving

the shoulder has been taken because it has been shown by Roshko (3 ) in studies 

of flow of incompressible fluids that it gave a bettor aggrement with exper­

imental results than the standard form used by Kirchkoff and Helmholtz in which 

the flow breaks away from the shoulder with the shoulder velocity and keeps 

this velocity to infinity downstream. Since subsonic compressible flows and 

incompressible flows have similar behaviour it is assumed that the Roshko form 

will again give the better agreement.

On the solid walls of tho channel from 0 to F and E to D the value

of the stream function is K and IC, respectively. Along

the porous section FE the stream function will be a variable function of 

position depending essentially upon the rate at which fluid passes from the 
channel into the chamber behind FE.

From equation (2?) we see that the boundary condition on the solid wall

of the channel from 0 to F and E to D, and on the dividing streamline ü

from 0 to A and G to D is given by OT s: o , The boundary condition on
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the faûo of the wedge (a to B ) is given by c '\Ĵ as shown by equation (28). 

Along the porous section of tho channel wall from F to E the boundary condition 

is given by c ^  . Fit) as shown by equation (34)»

It is known that for the flow past a wedge in a channel with solid walls 

the fluid accelerates along the channel wall from infinity upstream to 

infinity downstream. As wo. will be determining the solution of the porous 

wall problem as a perturbation from the solution in the case of a solid wall 

we impose the condition that the fluid in the channel with porous walls 

still accelerates along the channel wall from infinity upstream to infinity

downstream. Therefore, if the values of "T at F and E are and
7^ respectively.

The boundary value problem is now set up in the hodograph plane which 

is shown in the fugure below

if I
X

For a wedge of the same dimensions placed in a similar position 

in a channel with solid walls, and using the same notation, the hodograph
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plane and boundary values are shown in the diagram as descri'.r̂ I in an 

earlier paper (/+) by J.B. Helliwell, The suffix (O) h^re and hereafter 

will be associated with the solution for tho’ wedge in the channel with 

solid walls,

'X,, ■=. o

a
Û
nr:

A

" f t  h

The boundary conditions are as follows.

1 :  = 0 T à  0

To - O T T  O O  S -V ̂  ^

T o  = Ü  ̂^  > T, 'V = O

T o  = k -re: -r, 'Xf-o .

On comparison of these two figures we see that the boundary value 

problem for the wedge in a channel with porous walls is similar to the 

boundsry-value problem for the wedge in a channel with solid walls.

We now look more closely at the boundary conditions on the wall of the 

channel with the porous section, Now as some fluid has either been pushed 

into or sucked out of the chamber behind the porous wall the streamline
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|< will either have gene into this chamber or have been pushed out 

into the nain stream. It has boon shown by L,J. Woods (i) that in the 

case of ,an incompressible flow the value of could be taken as

on the wall of the channel from Infinity downstream to infinity upstream 

without incurring more than a second order error term provided the amount 

of fluid pumped into or suckod out of the chamber is of first order magnitude 

when compared with the amount of fluid passing through the channel,, Since 

suiosonic compressible flows and incompressible flows have similar behaviour 

the value of on the channel wall is taken as (3co Appendix I,)

It has already been shown by equation (36) that ^

Therefore the boundary conditions in terms of ^  for the wedgr in a channel

walls are

Y = 0

Y = 0

Y = 0

Y % k

Y = k

0

O  é  T   ̂r n; = O ^

T < T  < O

Tĵ  ̂  Y < 73 = 0̂ . F/y)

In the case of the wedge in a channel with solid walls the boundary 

conditions in terms of , are



0^1

V
to

o

TT^O

3

Since is small it moans that the boundary conditions are very

similar. Thus it will bo assUDied that the solution of the present problem 

may be determined by a perturbation from tho solution for a channel with 

solid walls, and that wo may write

whore 41 is the small parameter already defined,

ny means of a Taylor Series in n s the value of on q

between E and F can now be found from \ / / \
Y  (-r.v) = K  .

F<t)

bY|
K J

y  Y d f h ( X

y  Y p ) X

-TO. I'A) +

+  ; -  I . T). t d h

where

a Y  ~
, F h ) .

J>

\

to first order
of 1
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The boundary value problem in tho holograph plane may new bo given 

for , It is shown in the following figure

V/\

4'- o

1 m : 0  'is - ̂  - O V
e D e F O A T

r- T, V, VA >»•

The boundary conditions are as follows ̂

/X = O T  » 0 =

„ 0 T  =: 0 Û Vy ^

r s x - 0  J

/Vi ~ o  'Y' > :>

Since ^  and satisfy Triconi’s equation so also must

Therefore from equation (26) and using the boundary conditions on -z 

and 4T- O the solution for may be writton in tho form

T  ^  J ^(x) -r (39)
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e iTinrtion is found from the boundary condition on c Q

oO

J do
O   ̂ o < '1-̂

(■v) _ 4  T-

=  0  , ^>-^3

By means of the Hankel Inversion Formula we find
p >  J, rs
J 'r .  cLr . (39 ĵ
'̂4-

The series expression for %  ̂ valid in the range z: "T ̂  iT̂

can be obtained from the paper (4) by J.B. Heiliweli so that the expressions
for ^[y) and hence <^(X) and can be found. The series form for

is taken rather than the integral form to avoid difficulties in tho subsequent

mani pula ti ons, Thus
%

 ̂ -n*i ^ ^
+ K (

j " f 3 5  ̂ î

'Y\-> 3  ̂  ̂ ^

(10)
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^  ̂ VL 3 K\t/ T "Ï ? ^ 3 -*UL 3
T3

''w',, n  Î -nr, . ^ 3 ^ 3 ' -f -I*Y" '* *3^4
and

-5 = % ' *  f  i  I * 4 . ,o %

+ 1^i -^)]% Icî 1 X .

'W
-v«

y;-w.A Av,ï J '

à
c i \  •

As the above expression for could not be evaluated directly the 

orders of integration and summation of the series were interchanged
cXj "̂3

V i ., ,. „ fdh^hV^ir-1^ \  4I, k '̂i - IT ' M

.  % '/ir :

d/0 ' H-l ' 3 1]̂ 3
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wnore ■/\X(Xr)
3

So ries forms .. L (x "V O

1st X V. IT t

f  M  t : ;  J j ~ v 7 v r t ; : 7  J i .  f r V ""3 b / X,

ïX (

IT P, _  ,T^±
t  i, I

-v; Jo
U

y | Z X * V
/V
/u

3

;>

For let us consider the contour integral

V /  = 0

where D is a constant and the contour 0 in the complex V  -plane goes from 

« t i:M> to 4- t aü along the imaginary axis, is indented at the origin by 

the small semi-circle (s) and is closed by the right hand infinite semi­

circle ( )

V- plane
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z: D y  ) -I. iyUL +  D ) <• +  0  -f D  \  ^

“0Û ^

< e
On tho infinitosinai somi-circle sot 'v' s ç ^  then

-' '̂ o / xi-w ( ÿ it) ■’ ^
a

For small values of ^  tho integral bocomes

-c ~ S : r  'n- f r y  9f ^ I ^  i _
(f)\ 21^0 /  r(fr ( . N  5 ^ s ( f ) \  a.'vVo /  r(f)

<? &  T  /  T   I

^ ( j À )  ’ '  ̂ * ' 0  r ( f )  K f )

As ^  ̂ Q  the value of tho integral — ^  O

Therefore tho contribution to W from the indentation at the origin is %oro 

On the infinite semi-circle ( P ) set V  ̂  R  then

? (  , . v
n If 3 •>' a
For large values of H the integral becomes

0 / %
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iG {V V Q  - G,(I- r ) <: RÏÏl I - % )ĉ G -Rfr(l-
“ p ^ 0

ir t Tl C^ &  -f\Tr 0
Ji. Ji -  -e

Now at 0 = 0 for large values of R the integrand is

_ TTR

\ iRlTe«,0 (KTT-'w©

{ ? %  -e
4 i y ^ )

/V("2 -t ) - -t R 1T m

]

Therefore the integrand —> 0 as R -> oo throng non-integer vaines at 0 *= 0. 

In the range O < 0  g #/2, sin 0 = a and cob 0 = "b -where a and h are both

+ve.

.*, \ integrand |
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0 as R  for O O  ̂

if ^

Tr

In the range 

where a and ^

<

-  2  :£ ©  < O
<% Ô  ZZ CL- and oa-) Q  - ê-

are +ve .

R 'v,,
+Rirtl- ~;)(U

I t  f V  

.  - “ ( v - > i  ■ I?»»
K ^0

9

— ^ O as cj>0 for - 4f é: ©  ^cl
if ^  O  ,

Therefore the contribution to yj from thoinfinite semi-circle P 

is zero as long as O < < 'SlVjj .
o

\
“(&0
U  ) JX

0
.. ? -r /1' -I":
- j %

I / I IT

- oO 3
' » iw ,'" m u tk"    I m m  * iip *  #  « . w *  ^

( a. y.4 Tr ̂

-yAîrf

LL

o
QÙ

h  3

) "-/* 'h-^ '̂ o /hi-i 'v,e ' 3 3
P  <  ( I.'A,/ / t\i
0

i. J M-7

A. <1
t ( — A M  TT̂

il. ‘ J
7



J -Ôunrt̂'lfv lyA nV3

P I I
/*.\ îi M it6-

/ H ;  M  \ IT ) ••
+  Ij.1 ' -V,

3 ■■ ■> ! 3

/"nixu\) ■/» -e

-  C

r -

Tr

T(l- -w
■oi„

-J

OÜ
p  A yx

O
%yiT)

; D-JyU.

as

Ï
<TN_ + ivÏÏ

'  J T - T .  t: ;"io J■'ÎMa ̂

/ % A H

P,.lr

2 Jt TT ) t\

4" imaginary part



%- ? ly T fifT-rX -r- / mT(i - vJ I
- J "̂ 0 / T-\   ^  imag.lno.ry part

N jvi by Cauchy's U.corom W is equal to — ^Ti v tinos tho sum of the 

residues of tho integra,id at its poles. The pole of the integrmdfor W
occur at V  = 1, 2, 3..,

I JI21 \ jx- f -Y, JTx̂  \
^  a p  I - e

AA,lrO-^P

-PTia 0 g  I1T
na~*

Now K-v-jV.") Tr
O'V.

X Real part of W

îr . vO “ A

i n o l t o '  % | ] ,
n=i 3 3 a

3 % ^h/

^  } ./O/txvt

“ “  lie M W Æ hV

if <r and O-ŝ
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But is symmetrical in y' and 7̂

l y \ M
air ®?

if and D 3.%o i#

The Xj y Co-ordinates

On returning to the co-ordinates (x,y) of the field of flow, insertion of 

the series form for into the previous e;expressions for
h r

yields

aiT-r V
f 'V, (40)

i l l /  7 "

o ^ X  f

f l

I; 4 L *) V |y T

¥ J

(42)

_  i l  r  i
-M

Jjij
(43)

for

where the function is given by equation (40)

Now X and y are related by the equations (14) and (l5) which on the
V 3substitution of for lA. become;



and.
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O'U 15 j

13^*^
C*T ^ ti') ^

"T â IT

/3 respectively

{a a )

(45)

Therefore considering the range O ^  ^  ^  -T^ we obtain from 

equations (4I) and (45)

X

-Ï)
*ï<ï

p  Vv ,J,--. rA -V„ j % ' (46)

|>.  ̂ |y i
 ̂ r u B

'V  >4
& V(v)

and

d*v
,3/" Vqaïl
•■•l) ""

where

f V  ( v)

is any continuous function 

of .

But from equations (41) and (46)

v (m ] - a constant A
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ll\
'h j/3
T

t>-' ■ s

In the range 'T'* >  '*3 we obtain from equation (A3) and {AA)

5 x
5v

T

X

(k/ŸV-CI

Ibr-l-v 1

r'
where {̂'t ) is any continuous function

of '1'” ,

hut fron equations (43) and (45)

r'2.
5t

X

a constant B

x w (L -+ 8  iiiS)
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For tho range we obtain from equation (42 )

è'T
- T

+  T  .

I,

-* .

-f 'T'

as the two apparently divergent sums cancel each other- Therefore using 

equation (44) we obtain

•''îM.'vVl

y.MAvl X——
r

%  / 1  ■

% laîr 
W.f/^ r ink +
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1 *v 1  ̂I /

c- î>fo ̂
b - 1  ̂ 3

A  ^H'iY

R i - r )where ^ { i t ] is any continuous function of T", 
'6 --- *"

4'

Ip' 'T V "0

o / _ w  3U
5

A J  <  J  ^7 > ' +
3 ^

P'W

- 2 \ %

c
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ob

, f ^ j  T  f i r )

as

y  •

B-
^DC
nr

4
./ 'A

W't) f

18
00
y d a

Sut from equations (42) and (45)

I'VdiS:
OÜ

)K(
3

4
nr

4̂■4

3 J 'Wo where D is a constant
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'A

% } i  1 i^)%
4i 'I \   ̂ 3 ^

4-
%  faj;

a/̂ "14

1?

3 . 4  J _
a/ -V, ft  It 4

(50)

Now X  ” X  0 and at tho nos© of the wedge X — O j

^ J nr ~ ^  and hence :x ^ O • Therefore from, equation (49)

O  ^  O 0

13 ^  o  .

Now X ^  and X  are continuous for all values of n'" ,

Therefore X  is continuous for all values of nr* 

(47) the value X  tends to as n r n T j ^  is

From equation

3 %  pir\ ^
i) w .

r '  3 , -Yi 3

4- A



loi

:.nd fr'jLi equation (50) the value %  tends to as ' T ~ T'̂_ is
T*

j?-l 3 ^

But these two values of %  must be equal

'k
or.

p

As T T 3 the value tends to from equation ( 50 ) is

 ̂ P- /
< l h U ‘h L
13/ v ^ J T O T  //

and tho value X  tends to from equation (l9) is

~(l)
^î/aiî

But these two values of %  must be equal

D - 1:3 >

and hence

A
'/3 ,

1K 1/



1 '.acting the! vr.riou:̂  expressions, we 'icve the following fo'nn;:-; 

0 X  >rhich are all valid in the range o  c  ' \ T  < •

In t;ie range hT < nT

%  = iâ;© '

V-
 ̂ ^/3'ir ihr I

(5/)

-r <. 2

,,3̂ 3 a/3
I& T-

W ;

+  t e '

\

%r

3

i / '  J.
■ -v,-.

T

"S
(52)

and nr *> T3 ;

X
'(T

(53)
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The ntegrals ^  |(^) 1 1 ( - ÿ )  | ( W  Ki.( ̂ ‘5 ^ )  4
P  '/? P/ > \ ' " 3  <

raid  ̂<^ ',; i Cj j  cli) C0J1 be evaluated analytically eut as the

expressions are very long and complex they h ve not been shown here*

The jx - co-ordinate at the wedge shoulder.

At the shoulder of the wedge where T=. o and oj - the

value of X . there, say 7Ĉ  , could be found from equation (51).

However this expansion for is very complex. In order to find a

less complex form for we go back to the integral form for x

Now equation (39) gives

p  . 'h ^  I 
'-'-V, - \ T  — -ir-T-------- U  > ,

and %  and are related by equations (44) and (4 5)o

From equations (39) and (45) we obtain

e h ) ̂ ^ O -2 \

%  'X u„

, v ^ P  K /  \
-ID- o 3

where V('"v ) is any continuous function of -
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Blit from equations (39) and (44)

- r

V'('v) = o .

and hence v ( - v ) = a constant = A .

. X ■ÛÂ WiXvF7

Now on the face of the wedge A/ - 'V̂  and onsubstituting for c^(A) 

the expression given by equation (39') we obtain

^  = (f-) \ X .+ A.

In order to simplify the integration in the above expression the order 

of integration has been interchanged* Thus
T,

= \jl J V
t>o

[h) c<sie«J (Xv.) JLX. <t
/ w o 2 ^ *3 <

A .
Y

(54)
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The constant A is determined from the fact that at the nose of the wedge 

%  - O and “ OÔ , The value of PC at the shoulder where

O can then be found by substituting this value of *t “ in 

equation (54)

Evaluation of the Integral

W:e will first consider the value of  ̂"fj ) as o/)

Let t  ^  ar 
X* pa

- T(t,, ) = t'  ̂\i*'> Ot t) '-“J- ( J
V o  3 3

At X = oO 1  = oO

m d  at A  ■= 0

l| t - oD ojt X “ O ̂
-  o .

For all values of t in the range o < ii < oo the value of the 

integrau'̂  is finite# In the neighbourhood of ^  O .  ̂ ^
A .-'A ,1 ^behaves like j X caa- # Therefore the contribution to

from the lower limit is zero. Near behaaves
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tr 'V »

like T   ̂ \ Â. Ait , Therefore as nr cd)Ï V  * «Lt
the contribution to from the upper limit is zero.

Hence ^  ^  ̂ tends to zero as T" tends to infinity .

T ( o O ^ ^ )  =  0 .

Ne will now find the value of at --r =• o .

,, %  
it -t-. O , T  ■

• t (o ,'?) ^ 't v t t  \ X X%) (X v )  I x

as  ̂/ \ ̂ \ I

In order to find an analytic expression for the integration

is done before the series is summed

■ ■ ■

r t  k- -r j
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where is the Riemann Zeta Function, and the expression for the

évaluât! vi of the ^ ( ) cl^ was obtained from page 32 of reference

where , ,

"'p) - — m r w i r f j ) — ^  —

Since T /oÔ  « O and O. “ D at 'T ̂  oO

the constant A must be zero. At the shoulder of the wedge where y ' “ O 

and ' equation (54) gives

The Shoulder Condition.

Now the wedge is of unit length. Therefore ) at the
shoulder and

I =■ Xo '+• n



1Û 8 *‘-
where the value of at the shoulder of the wedgo in the
cnannel with solid walls and is the value of pc at tno shoulder of

one wedge in the channel with a section of the walls porous. The 

expression for X was obtained from the paper (4) by J.B. Helliwrnl "L
nd rs

7 crv- /

and the expression for is given by equation (55)

^  'sx-i

'A
S i t  ! "(N r o

^4 3 '

On

obtain

substituting the expression for given by equation (40) we

4  4--Z Iff
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,3.4. *

3-h-̂
-  l a t j

M "  Vv.

nZaA
t

Now

aid

i . «,0 + «
' f e f t f | . ( - S ‘) a K ) i j ‘̂ -.

and if we let . ^  k
°k - a  j.i

a;
we obtain the following expression for

KvoVi
tA

from the above equation .

%
^  . ,  , 3 .  L -fi%  ^+5p 3p/o

\r

2-n J

,4 ] " ^ r )  1  yj I ̂ . j

il) f f  MIN f p - P .
ta'.o 7/ ^ -"=' J  3

lA, . , ̂ TrO-r , _.?! ,
W

(56)

The Dra,2L Coefficient.

From equation (38) the drag coefficient is given by

m  ̂- y■O 'V A/C 0 =
a(ir S
( V+OMf



110

Now

e

OÛ

o 'V;?'V<t

whore

c

'h

0.
-+- nr,

Vs
-ji

and

e0.
~ ^ ^ - p  |1?:\ <lr

The form of ^  0̂  is that of the drag coefficient relevant to the cnannel 

whose walls are solid. Therefore from the paper (l) by J.B. Helliwell we 

obtain

3 % .  %  l-r.. - O (1 , "Af W'
6  p . (1 )

, 3 ^ . %  V, \ |-r, n  ( x f l  " i-voj
k) - kJJ"
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HoweTf-;r it is to be noted that, for given values of K   ̂ ^ and ^

nTg is implicitly dependent on 1

Evaluation of o

From equation (46; we see that for
To

and from equation (48) we see that for 7 T"
d

^3L 
V iir

3\ '/3 / XÎ1
la) V 'v/

oO
HÎ

A/ -Air l-T /

Since the expressions for O'X' ' -V = n,

r .

have been found in the

form of integrals over the range z to

value of C 0  is now found from the double integral over the rectangle

--C the

from "T - O 

exnr-eRiions for

to oO 
I h

and -r.3 As the

and! I have been found for ^  v ̂

'X' X t h e  area of the double integration has been split into four parts

so that the analytic expression for C q ■ can be found.
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The four parts are shown in the following diagram

A

A,

10

/
iz.
o

/
/

ta) y  

(3)

Ts

(4 )

r,

t* A/2fV„ br*  ̂ T=n

2 k  (
J k,

M o l  v Q \ h i - " d ’

73 o6

y
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The .Inner- integrals were now évalua tod ? and are

'T,
a'

'T̂ o

fr
\ V3 -r (

-r 1, I v r
'Tz'X

h-

V
OÔ

oaJ. \ j(tr

(%\

/ ;

êu- ~
\ 4/3
, )C I-— -[oTr/ d ''Yj  ̂ a;„/ ĵ,Tî

nj. V)
T. / (i_l2

3

"Uo) V)

Tr-r

On substitution of these values into equation (5?) we obtain

qO
}l\
3ir/I ( W

o '-V::■V,.

55.

!/■
t

f>r|
^-'V

\L a

Vi

X-1 j
3



H i t e )  .

à V

ya
a

-  ( ? t e .  . >

w.^7
y s

z l H ) .  y  :

In the preceding pages orders of integration and summation have been

frequently interchanged to permit the evaiu:itî n to proceed. The
^  , hoccurrence of the non-convergent sum / tew must therefore be6. j3sn

interpreted at this stage in the Cesaro sense, its value is then finite and 

definite, namely ^  ,

■ ! ii) " 4i)0 'Vz -v,.

'/i

V
and

C
1 %

D. - t X + O M / %

-̂ 3.

Hence substituting for

(4-0) we find:
3 S i l <

c

I) à

the expression given by equation

0, Om-i ') M,
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p-

3 V) ̂  f̂ TTi 1 p  ( -y^Tr^ \,. / -nlT

1fl=l
l = \ 't n

3 s%, k
lV+1) M,l ' r teL-

,3ic

o4/v«

3 s I, k'

4̂1 = 1
%

'X
3

'̂ shc

.J « J

i
i v - f r O t e  L

- y  ■-ĵ i'̂ o p  V/î ^  . ( IT  ̂ \%

^ V .  % .
f-v

Substituting the expression for C p and C^ into the equation for

C^ and lotting CK

Si

a/o

t e  "  ( I )  1<  ^  [ ( § j  -  ( % )
3 ^ Is -v, ot

and R  - Z3-— 3-
r  4^

/ 3te f Aa lâV ^ IQ-J 
h + l / A  M %

we obtain

hf. 
?
*4

n;

'C,

P )

(W f) M, L*- * a Jrt̂i

f - r ) V ji1-'>Ib P

k .  6 r J j j i f i  TTj)

m  tJ7% ^
' '3 / J



116

i I ^ / a J I

 ̂u s v  f [  v’- e j V l t e i t e y - ^ ) p K !

+■ p

Wv.

; J  ■ ^58)

The Z-Go'-ordinates at the Ends of the Porous Section.
t il  I,# ,,.#  *1,1% ■ If  II' n  wfc«<f in I. I II m iiii# . # . <#— w#«  iimnwL'*.a"™%r,''»#

At the ends of the porous section on the channel wall X has the 

values X g and X ̂ » Mow X ^ X Yj X . Therefore on

approximating to zoro order the values of X ̂ and X j- are these

valued found from the expression for X  ̂  when 'hJ “ O and T  

c and oĉ  respectively. The series form for X valid in

the range < hr with ^  zr O was obtained from the paper



{ . u V  t) ■■ J- * Heiiiweii and is

; fA Ix %
X „  = Z  1(3)O /yîf ! 3 3

oiTTt'

Ys

Hi) o
f ï  ''< T

"V. (f9)

.Va où

X o
r . l l V kStaJ IX%  W j  ^

nl'/
>  >

( T, aA / "wTTYgi

KK v„

3 Q

Vi

i  4(
Viïr,
'V/,.

’> t e  ,. 'A I I h
w p%) Ir.r \

■?

k  /IX a. \ U  
3

Z.» "V„ / (

(60)

a( l ) \ d  ( 3 %  1 k j ^ jind X r 0 / ' 
3

i f  j( t e t e  1
,-vJ t e  V 'XH / XTxk 'V̂ o

0 / 

telFfa

Vs
&] k(a; It'- (61)

The length of the porous section = X  - — X  r, ^ ( 62)
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CHAPTER L.

NUMERICAL ANALYSIS

We now turn to consider the evaluation of the following expressions 

which are obtained from the general results given in the previous section*

The expression (56) which defined the channel width may be written 
in the form.

-h o< ; 3 A

where

J

i Aah) ^  (-0 

11-,

- 1 3

Ate na-

oO

}).

(63)

Ë.r-(s5;) ]>

a II) Z  ^ r, A  -1 '^/
% " p â )

%

=v„

scy

VI

cw Hit)



“  p h
■\ :/picai 6vaju;).tlon of the functions and

I) Ishown in the next section* The relationships between f ^
t)̂U*  ̂f

)€
 ̂ !

are sho’wn on figures 1, 2 and 3 respectively in which the quantities 

Jk and tet . are taken as additional parameters.
J "Vo

OS
and

ana the transonic similarity pararaeter — flTHT -i 3A » ( “ 0  (

5

The Drag Coefficient ^ n

The expression (56) which defines the drag coefficient may be written 
in the following form

D ht' 4
S *  I) , a

+- les Py~f 3 (64)

wnere

and

jOAc-f, y/î

%

1 4 a

-nirr,

T,

% V3
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On substituting for ^  from equation (63) and. using the fact that
'^o - A+i ) M /  % we obtain

C
% D

L A4
-— k- ■■ #. .11— -t

' A
t e l  ii. c

% 0

f) |\
K.  ̂̂  Ic '*■ ; ty Î)
tl\ tel) _ jh ^ 1

I t L  -» if (65)

./
>

H* «X p p M  b' ■a
K.

If

'°a' te' ''b te'

%
P H h (66)

nte-A “oypical evaluation of the functions Tr—  C  ̂  .»A IX-.. .06 SM e is shown in the following

and

»3 -  t e t e Y
l Y - t / f > rrelationships between — --- qrr~—  C q — I Csection. The 

1/
0

<̂ 6 A C 0 and the transonic similarity parameter



ît
I M ,

fw;.)

12,

are shown in figures 4, 5 and 6 resoectterely in

which j and j are taken as additional parameters'

The Position of the Porous Section.

The X  -co-ordinates of the ends of the porous section z re X ̂  and
IVX _ where 

F te

how equations (6o) and (6l) give the zero order expression for 
X  p  . Therefore on substituting the zero order value of 

equation (63) we obtain

^ 3(1) - T  (5) Z.
V  3 3

and

from

jT, \ r- / 'YvTT r \
‘  f e )

A typical evaluation of
ISJ -

or

X a n d  X p  is shovjn in the next section*

The relationship between (or ) and the transonic similarity

parameter is shown in figure 8, in which ~  is taken as an additional0
parameter.

dince the expressions for
'A %

and

Ŝ-/3 Q  can be expressed in the form / (  ̂ ^  ^  j for given
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|2 -j. and where ^  stands for the appropriate functions ^

additj.OL.al curves in figures 2, 3? 5 and 6 can easily be obtained for other 
values of the parameters | ^ )  and in the range 0 4 ^  S  ^

by means of addition and subtraction and hence interpolation, 

as shotm in the following example

- ? ( «  ') -■ [ ? ( 0 3 )  -4f o  a ) j  +  [ f ( o - a ) - f ( o  / ) J  ^

^ J(o î) -7(o-3)J ■t|'^(o-3) - 1) I ,

Hence the value of could bo found by
interpolation.

Now from equations ($6)j (60) and (61) we see that for given conditions 

at infinity upstream

J _  t e  / pa Ü  I t  ,-v, H j
IC % ' h t e  ' h  h /  ^

X p  ^ X f  ( 7̂  J  t e j

respectively
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Therefore for given values of ^  ^  te  ̂ and

k t e  we can find the values of  ̂['U) and
the curves shown in figures 1, 2, 3 and 8. Hence the value of C q 

be found from the curves shown in figures 4; 5 and 6*

from
can

We now consider the difference between the drag coefficient of a given 

wedge in a channel of given width with a finite porous section and the drag 

coefficient of the same wedge in a choked channel of the same width with solid 

walls when the conditions at infinity upstream in both channels are the same

If

values of |)
V ' D̂ ,

and are the

M . e o and

when i drvJ 'V.

I )

i \ÿj J respectively

and there is no porous

section, we obtain from equation (63) and (65) that

i w :

and '4 %
t e + 0  M l  e

O

!) *
d ;

iJ
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We now find the value of  te p for the same wedge

in a channel of the same width with a finite porous section when j r
t : and j’ ( A )

From equation (63) we see that

y r (67)

oL -
t e a (68)

On substitution for ) and ( from

equations (68) and (67) in equation (65) we obtain

■4
i Y ^ O  N

,̂ S/3 t e  =
t)

■ j i
f

1 ^

■■

te

|C.- C
j) te
f It

(69)
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Therefore on approximating to zero order we obtain

'/3 %
(ïîOiLi. c'

d

A typical evaluation of

(70)

ie shown

in the next section. The relationship between

a

IX+I -

and r.
'  W  [^:i

which
kV, '6 j  ;

r. '<'3
-U / ; l-v,

and

s/3

is shown in figure 7 in

'Tl are taken as

additional parameters.



CHâîTFlR 5.

NUMERICAL CALCUL/ITION

In this Bcotion we present a typical evaluation of the various functions 

which have been defined in the previous section. The values of
a,and Ijh 1 aro taken as  ̂0.0^, 0.3 and 0,2 respectively .

V / V '

Thee values of the Bessol Functions (7 ) can be found from the
+v 0

tables given in reference (8). The values of the Bessel Function ICy (̂ ^

were found from the values of %  ] by using the relationship
IV

V
a I V P

For large values of the values of J- ) and t'y ̂  1̂ 1 were

found from their asymptotic expansions. These expansions ore

-ir
1

and

Bince the integrals

)  4 ,
■'i/w.

(Sir.)•A «

J 3 h iho

\ h a
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evaluated to give simple analytic expressions their values were obtained 

satisfactorily by moans of Simpson's Hul<e. The values of the above 

integrals for different values of and an aro shown in tables 1  ̂2 
3 and 4, respectively.

The evaluation of the function F([>) defined by

M b

for different values of is shown in table 5*

ĵG are now able to calculate the values of the various functions which

hcve already bvon defined in the previous section.
hEvaluation of the function __

Tho function -

_ 3 ( 3 ^

' ' Pif

 ̂ can bo defined by

"n" \ 1 -Trt
* I

f w .  tat. -
("TV

where
I

Tho evaluation of the series 3^  ̂ for )

and j “ is givon in table 6



D 3Sè 1

îï'̂ . r(j)

C..>

O - o - 00 33

O  3893.

Evaluation of the function

The function can bo defined by

3/A i oO

1 \ay y/3 r(~) J  ''(H
^ ĥ ü

A
-r../

% cO f(i>) I’ K

_a))+a t;3/v„

+ 3 )a l  f i  rlî)

*K
ou 5<

h

-3 i1T 15;1 fâ)  ̂ ^?««£,,, ^ "̂4
o\. TTr, \ P^i ho

oô

The évaluation of / l'(jp) ■
|?-o

:k4
1"'

3 ■ "̂ î/v„ _
/ t-

ri ;» V
'*ho

1
a ̂ +3

% b ;
OO t3<t»

()=û *ns
..') <iO

Vû

i f  - Hi>)
J?--i> 'H-' ^ *̂‘*|'Vft
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fÛ où

cuylĴ  ^  /i ^  ‘ ^
j?zo

is given in tables 7? 9  ̂ 10̂ , 11 and 12 respectively.

'k

u  - vaj a % r m
I

r^-
'A

o^6%9
3

t a i r d o o s / ^ L ' " ' fa-n-.l.̂ ) §) ^ ^ ^ [ o  oowsq]

\a; y/3 n ± )  \tf [ 0 1 4 .33]

?6 I ,'A [ocMi,.o'7|

0 O3ao3k .

Evaluation of the function

The function -K can be defined by
ad-ajo

-Ti

i f -  rtH

T;K.

W  K/ gV) p(j) 'Vo / j jr Ô

ki^?h
LI V
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2 1  f
- [ o  1433]- 19 35']

- %1T . i;î \ ' ^  I #  
a I W  ) f/i rii)

0 • o i 40 7I

0- ioo I

Evaluation of the function

The function is defined by

-

O * b O I#, I .

Evaluation of the function

The function is defined by

5, .  - .(if K d
r

- -aCJf
=  -  1 9 3 9  .

Evaluation of the function

The function can be defined by

u ~ 3 _ Lü
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Tfl̂» ^ ^

-  w  I  - b
'«=»  ̂ -9+1̂ 0

.-P , 'nV'f, \ f'-'̂ sba ;i I . j
The evaluation of ^  1 — 7Q j ^ ^  Ki-l'^ j)

^=' ^ ^

tl“J cTt~i  ̂ Ŵv(,

, TJ-. 1
and Z« ̂  - 2;V {̂x / J ^  1/ shown in tables 13:? 14)

3 "3
15 and 16 respectively,

r  ? ■■ 3/3 3i"b'^ , %  p. -,) “ 3 - j^] -1- I + A î K o  °5) fo ■ülif.5'̂  j
2j ^

i-ATT^.^) ^0 oo iosi] ' * 6> i r ( v )  b  of) | o - 0^1 .97 ]

- 4 i r  ( ~ )  l> o o ^ u .^ s - ]

“  « 0 ÔG (̂>3 ,
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ï’’vaiu.aï.-..on of the function 4 wTr
i\

The function can be defined by

3 !” a

j
w  1 1 ' I -  n

A /

5
3̂/

or\-«
fv..

.  - 3 1  f -
a-ï 03

0*3(
t i r ( o - o s f ^ ^ f o  0 5 5 3 7 ]  - t> Vr{^)[o oo3Lu.'isl

0  I q 5 :9 .

'A %
Evaluation of C ---   r % Da

( Y f j  j d
f h  '

^ IXa

Kl
S' .

o-faoW
0-2893 939

= 0 - 1 5 0  ,
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*6 %  

(X±l) lL c 0.

.."'■

% p.

D
r M.

FO'
JL

O' GG363 fQ-6ouyo û^aoa)
0 -2^^ 2 i o a » 9 a ) a

:>

0 014.7

Evaluation of X  ̂  and X  _     —   —  ., - .,   —  ̂I ,,„ I  ̂/tr

X X( «) and X  p X ( -

Now
*A j %  ^

y ( 5 n  a(i) i Rl Z' '([̂ 'Yl'f

- n \ \  /-nTTr.

nvTTr \H■V,

u / I' -V*

f
Vs I ^ > / 3  j-rsViT

%.) ~ I v J  J
O'! Uir'i

The evaluation of Z  [ ( J J  î a ( ^ 7 ^ )  j “ fe)
3 3 3 3

for i  - 24. and 'V , is shown in tables 17 and IS
respectively
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/ I , %

I r/a \ Vs
+ 3/ (o -259 a) n (-at,.
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'■ \ ' ^ 1 }  y

X r  ^ (o as 9%)
(o-3j ( o o ' - l o s )

4*
X h

3 >  0-2992 A ' V
(0-3)'''̂ '

- i - a ^ ^ .

iXVi MEvaluation of ' f

ÈtoV""'
C 4 3

Now

f h

a{3)

-

ir''" r(l) '

*
C  - C

6̂ oO

0\-5 1

^4 -
r

)**
)‘

J

(?i7 .
.. Ÿ'^ 

Q'vJ )

I f-P)
- . J  . ^

-r

0 4 4 9 4 ]

r O 9.9)2
t/j 00

)' - %  î )
=  r o ' O ù 3 2 G g ]

V  r(t) ^

a-H

o • OÔI9 SL ,
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1

IT.
a  I '

( | )  . (o-os) ̂

0 00 3 7 5

'k %
[ c  . e -  

rf/3 L 0 D.
O'Oqi'iSo O  06ail O Oo 19SL
0-29/a 0 29,a 0-03 3 o a

0 003750 . o-OO28Ç0+    ---
0 -29/a 0-29/a

z 0 - 0 0 0 4 .
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CONCLUSIONS

The problem considered in this work was the design of a straight walled 

and timnel with a finite porous section to give a reduced blockage interference 

in high subsonic compressible flow. The blockage interference will be reduced 

if we can choose values for the various parameters so as to melte the value of 

the drag coefficient evaluated from equation ($8) more nearly equal to the drag 

coefficient for the same wedge in a free stream when the upstream conditions 

are the same.

The relationship between the drag coefficient for a wedge in a free 

stream and the transonic similarity parameter was found by J, B, Helliwell 

and A. G. Mackie [5] and is shown in figure 9-

Now from equations (98), (98), (60) and (6l ) we see that for given 
conditions at infinity upstream

ix+ij h /  ^0 „ ) / .h^ s/j 'Vj

X

Vi liÎ

F

and X

Ti , 2 k
■y.

-Vo ’

'TV-)'̂ 0 /1

respectively.^ P I T  31 \
f  ̂ 'Vo )

On substituting for C^ the value of C^ free from figure 9 with

the given value of we see that theoretically^ for given values of S >

n ; ]L, Eind on elimination of {Zk.\ and — from the above equa*
^ ^  ^  > W J  tionc
a value of can be found which will give zero blockage interference. However
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this 'VcrJ.us is of considerably larger magnitude than the values of'tj for which 

the present perturbation theory is valid. This means that it is not possible 

to design a straight walled tunnel with a finite porous section to give zero 

blockage interference in high subsonic compressible flow on the basis of a 

solution to the problem derived by a perturbation from the solution in the 

case of the channel with solid walls. However figure 7 shows the relationship 

between the difference of the drag coefficient of a given wedge in a channel 

of given width with a finite porous section and the drag coefficient of the 

same wedge in a choked channel of the same width with solid wadis ; when the 

conditions at infinity upstream in both channels are the same, and the down- 

stream parameter is | I —AI in the porous case. These curves show

that the difference in the drag coefficients increases as the value of
/3 / y- ) Increases and the increase is greater when the porous section 

is upstream of the wedge nose, which means that some of the blockage inter­

ference has been eliminated. The curves also suggest that it should be possible 

to eliminate the blockage interference entirely by the use of larger values of 

Tj than those for which the present theory is valid. This follows because 

we could then suck out more fluid from the channel and thereby increase the 

value of , hence increasing the value of 1---i----Lu. L r. .
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APPENDIX I

The Change in the Value of the Stream Function (m/) across the Porous Section 

Prom equation (35) we obtain

Ç u, i ï  +  4 Y

and from equation (30) we obtain

9 a x

1 ^ /u* N , as u ’̂  and can be neglected when 
compared with u*,

U,[ N N ,  ] d ï

- Ç,^, Îa;'. ] fix ̂

- (i-fi, j-u* M, ] cl Y

b  (^X

In the coefficient of dY the second and third terms can be neglected as 

they are of magnitude compared with the first term. In the coefficient



-  159
of dX the second term can he neglected as it is of higher order than the 

first,

4 4  -  Ç.d  Ï  ~ Ç I V  cl X  ,

Now along the porous section from E to F dY « 0 and from equation (55) 

we obtain

'O/ dl
I

a

= - l i b i L
(T+I )

i X

9 - d
IXV<) M,

3 k

% T, N7J'\/i
‘Hv, - fv, ciX

Thus since a, p and 6 are of first order it follows that the change in ijr across 

the finite porous section is of second order, and may be neglected within the 

order of approximation in the main body of the thesis.



APPFNDIX II

Table 1. Values of U 'U a

0 1 2 3

1 5.9071 X 10"̂ 3.991 X 10"4 2.826 X 10"5 2.088 X 10“^
2 1.0395 X 10"2 7.124 X 10“'̂ 5.113 X 10“^ 3.827 X 10"̂
3 1.9328 X 10"̂ 1.349 X 10“̂ 9.845 X 10"5 7.484 X 10“°
4 3.8084 X 10"2 2.708 X 10"3 2.012 X 10"'̂ 1.554 X 10"̂
5 7.8239 X 10“̂ 5.668 X 10“̂ 4.283 X 10"4
6 1.6563 X lO"'̂ 1.222 X 10"2 9.388 X 10“̂
7 3.6072 X 10"̂ 2.706 X 10“̂ 2.110 X 10"̂
8 7.9199 X 10"1 6.048 X 10"2

9 1.7755 1.378 X 10~1
10 4.0346 3.178 X 10“̂
11 9.2765 7.411 X 10“̂
12 2.1566 X 10

.13 5.0590 X 10
14 1.1947 X 10̂ ,

15 2.8575 X l(f ;
16 6.8553 X 10^
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Table 2.

M v ,

X
0 1 2

.......  1
3

J. 1.3442 X 10"̂ 8.986 X 10“̂ 6.320 X 10"5 4.656 X 10"̂
2 2.3584 X 10"̂ 1.601 X lO”'̂ 1.142 X 10“'̂
3 4.369 X 10“̂ 3.024 X 10"3 2.197 X lo"4
4 S.5793 X 10“̂ 6.060 X 10“̂ 4.486 X 10~̂
5 1.7575 X 10“̂ 1.266 X 10“̂ 9.545 X 10“'̂
6 3.7120 X 10"̂ 2.727 X 10"2
7 8.0686 X 10"1 6.080 X 10"̂
S 1.7692 1.348 X 10"̂
9 3.9619
10 8.9964

11 2.0674 X 10

12 4.8047 X 10

13 1.1269 X 10^
14 2.6609 X 10̂
15 6.3646 X 10̂
16 1.5270 X 10̂ --- ■ - ..... .. , ..... , ■
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Tabled Values of
T

1.652 X 10

4.6873 X 10
1.143 X 10 
4.664 X 10 
1.967 X 10'

7.310 X 10
2.926 X 10'
1.210 X 10
5.088 X 10

3.702 X 10
3.0079 X 10
1.3882 X 1010

6.9367 X 10
3.4979 X 10
1.6127 X 10 
8.1428 X 10“ 917
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4.0).

Tl

2.621 X 103.713 X 10

1.794 X 10 1.179 X 10

1.662 X 10
1.086 X 10 6.689 X 101.8730 X 10

2.001 X 10
1.6347 X iJ 

7.5067 X 10' 3.971

1.8323 X 10



!TABLE 5 VALUES OF F(p)

p 0 1 2 5 4

6.8502x10"’ 9.2125x10"’ 9.8031x10“’ 9*9508x10"’ 9.9877x10"’ 9.9969x1 O’"?
23-2P 8 2 5 X 10"’ 1.25x10"’ 3.125x10"^ 7.8125x10"^
r^P-(|) 1.5541 1.5046 1.4711x10 5.8903x10^ 1.9884x1 o’’ 1.6658x10^

w 2.1520 141090 1.0223 1.0052 1.0015 1.0005
pi 1 1 2 6 2.4 X 10 1.2 X 10̂

r(p+3) 2.6789 8.9297x10"’ 1.1906 2.7781 9.2604 4,0128x10
F(p) 5.9057 -5.4429 5.0957 -2.9181 2.7960 -2.7025

P 6 7 8 9 10 11

1.2-̂"3-2p 9.9992x10"’ 9.9998x10"’ 1.0000 1.0000

_  - —  

1.0000
r  ■■

1.0000
g5-2p 1.9531x10"^ 4.8828x10"’’ 1.2207x10" 3.0518x10"^ 7.6294x10" 1,9074x10'°
r(2p+f) 2.0730x10® 3.5887x10’° 8.2460x1 o’® 2.4280x10’̂ 8.9134x10’? 3.9912x10®°
A, s \t|2p+|) 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000

P' 7.2 X 10^ 5.04 X 10̂ 4.032x10 3.6288x10^ 3.6288x10^ 3.9917x10?

r(p+i) 2.1402x10̂ 1.3554x10̂ 9.9399x10̂ 8.2833x10’’ 7.7310x10^ 7.9889x10^
F(p)

.. ..
2.6274 -2.5652 2.5122 -2.4653 2.4239 -2.3868
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TAbLE T

P

2p + 8

W v

00
^  F ( p )
p-0

2p+| rs/v

r^/Vo

0

2.666?

1.3680x10-2

-24.0333x10

2.6653x10"̂

4.666?

-45.4719x10

3.6230x10'^

3.0758x10"5

6.666?

2.1887x10"5

3.2670x10-%

3.0481x10-4

3

8.666? 

8.?55Qx10-7

2,9402x10"^

2,8526x10

4

10.666? 

5,5020x10 

2.6462x10 

2.6112x10"

( #
8,2p-t-5

ra/v
.05903 -.00227 .00014 -.00001 .00000

00
. * .  2  F ( p ) .  7- - ■ - g"

p*=0 ( 2 p +  g
05689
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TABLE 3
00
t F(p). ’
PkO

SP+2
*•3/'

V

p

2p + 2

2p+2

îp+2

o

2p+2
rs/v

r̂ /v.

F(p) 2p'i'2
2p+2

»3/v

r4./v.

0

4 x 1 0 -2

9 X 10-2

5 X 10

0.1476

”2

1.6 X 10 ^

8,1 X 10"̂

6.5 X 10“^

"0.0056

6.4 X 10 "̂

8

2.56 X 10-6

7.29 X 10 -5

6,65 X 10-4

0.0005

6,561 X 10

6.305 X 10"̂

- 0.0000

00 ,2p+2
p=0

^3/7
= 0.1423
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TABIÆ
s's/

Values of /Yl
/Yl i/

'V.,

0 1 2 3 4

1 ,04613 -.00174 .00011 -.00001 .00000
2 ,02021 -.00075 .00004 -.00000
3 .00931 -.00034 .00002 1

4 .00469 -.00017 .00001

5 ,00240 -.00008 .00000

6 ,00127 -.00004

7 .00069 -.00002
8 ,00038 -.00001
9 ,00021 -.00001
10 ,00012 -.00000
11 0̂0007 ■

12 .00004
13 .00002
14 ,00001

:■ 15- .00001
16 .00000
Col, Totals ____.#576___ .00018 -.00001 .00000

<x) <sO

= .08277
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-■IRy  / /Yi
k ^-1 * V  /p- V M ■

Values of '^ . F ( ]̂j . |<(̂y (
A

0 1 2 3 4

1 .004354 -.000171 ,000011 -.000001 ,000000
2 .001440 -.000058 .000004 -,000000
3 ,000441 -.000018 ,000001
K .000135 -.000006 ,000000
5 ,000042 -.000002
6 ,000013 -.000001
7 .000004 -.000000
8 .000001

-...9_....... .000000
Col. Totals .006430 -,000256 ,000016 -.000001 ,000000

eti 00

j?irO '>'*<
F(R K % R = 0  Î = .006189

% .
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Jjro W l  ^%-/v.

Values ûf on .

1065 0002 #0000
0001
0000

OUI

0057 0002
0030 -•0001
0017 0001
0009 0000

0003
0002
0001
0001
0000

Col. Totals 0072 0003 -.0000
"îj/v

f . . r(^). = 0.1*5
■' —  * 1 0 — — —
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pxo 'TL̂I '

Values of m. ,

ujx/i,

'yiTT’T, Vî+îi}>
^1

\ / v .  ^

0 1 2 3

1 .00991 -.00039 .00002 -.00000

2 .00327 -.00013 .00001

3 .00100 -.00004 .00000

4 .00030 -.00001

5 .00009 -.00000

6 .00003
7 .00001

8 .00000
Col. Totals ,01461 -.00057 .00003 -.00000

JîAo

| | - f W f , i - ^ Ç s ' * ' ' » i , i , V \
-̂Vo

= .01407
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(jOI

01-I

- 152 - 

-p / oiTTt-
• -til

3
J 4s

/71
i : v v - 5 ) 4

1 .007811

2 .003423

3 .001610

4 .000795

5 .000407

6 .000215

7 .000116

8 .000064

9 .000036

10 .000020

11 .000011

12 .000007

13 .000004

14 .000002

15 .000001

16 .000001

1%_ ..., .000000

ihv

H

•7? lC('nTU}cl, =r .01452
\ ^  J à Ü
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ïabi®™JL4 oûZ
11=4

ori

nn
---

1 .0007372
2 .0002439
3 .OOOO'y/fy
4 .0000229
5 .0000071
6 .0000022
7 .0000007
8 .0000002
9 .0000001
10 .0000000

%/YLllT
-V,

,Vv.

‘v-l'Vo

.0010890
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TABLE 15

nz/

V 3
C
W 4 r

nn

1 .01803
2 . 0 0 7 9 5
3 . 0 0 3 7 7

4 .00188
5 . 0 0 0 9 7
6 . 0 0 0 5 2

7 .00028
8 .00016
9 . 0 0 0 0 9

: 1 0 . 0 0 0 0 5
11 . 0 0 0 0 3

12 .00002
13 .00001
1 4 .00001

-15.. .00000

= .03377
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% -  iz: Z'i,K)<v.
1 .001677
2 .000553
3 .000169
4 .000052
5 .000016
6 .000005
7 .000002
a .000001
9 ,000000

oo

L
'K-l

iho

Wv. ®
= .002475
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a

n-i 3
I *»• 1

\'\j„

\%

(») lal

in k f u ^ ) K , r J : i WJ __ / 0) - (3)

1 0.2618 : 0.0975 0.1643
2 0.0613 0.0105 0.0525

3 0.0225 0.0017 0.0208
4 0.0095 0.0003 0.0092

5 0.0044 0.0001 0.0043
6 0.0022 0.0000 0.0022
7 0.0011 0.0011

. 8 0.0006 0.0006
9 0.0003 0.0003
10 0.0002 0.0002
11 0.0001 0.0001

■ 12 0.0001 0.0001
13 0.0000 0.0000

. - fe fI j 3 r
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TABIE 13
1TL=I
ID

A/o \ a \ V.

la)

w3 -3:3 V.

01 WiJ Xv\ 0̂ 0 /
pTT-Ojr I^T' tA

W J  'v„j 0)- (p)

1 0.1522 0.0981 0.0541

2 0.0270 0.0158 0.0112

3 0.0070 0.0037 0.0033

4 0‘.0022 0.0010 0.0012
5 0.0007 0.0003 0.0004

6 0.0003 0.0001 , 0.0002
7 0.0001 0.0000 0.0001
8 0.0000 0.0000

oO p

Zffe
4l-i

/ 'vCTii
= 0.0705
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