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SUMMARY .

The object of this research is to examine two particular problemg of
transonic flow. The first problem of axisymmetric nature is solved in the
physical plane. The gecond problem is-of two dimensional character and the
solution is obtained by a transformation to the hodograph plane. Thue part I
of this thesis deals with the case of transonic flow past a glender pointed
parabolic-arce body of revolution at zerv angle of attack. Part IT deals witlh
the design of a straight walled wind tunmel with a finite porous section to gi
reduced blockage interference in high subsonic compresggible flow.

Continuous solutions for the problem in Part I have been obtained by
Spreiter and Alksne (1) and by Cole and Royce (2). These approximate solutic
were determined from the second order linearised partial differentianl equatior
obtained by replacing one of the partial differential coefficients in the non-
lincar term of the transonic small disturbance flow equation by a linear para=
meter, The method we use to obtain our golubtion is very similar to that usec
by Spreitor and Alksne. The difference in the complete solution to the proble
is that they used the solutions of three different linearised equations to obt
a continuous solution while we use only the solutions of two linearised équati
along with a shock surface to give a solution. 4s it is not possible to give
rigorous mathematical justification for the approximaté mcthods used, the only
way whereby their validitj may be egtablished is to compare the values obtaine
for the coefficients of pressure on the surface of the body with experimental
results. Over the fore-~body, where our solution and that of Spreiter and Alk
are identical, the valueg obtained for the coefficient of pressufe agree very

well with those obtained in the theory of Cole and Royce and with the experime
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results, Over the rear part of the body the values obtained by Spreiter ana
Alkene, and by Cole and Royce, and lower than those given by the experimenta
results while our values are in a good agreement with them.

In Part II it is assumed that a solution to the problem can be determin
by a perturbation from the solution found by Helliwell (5) for a tunnel with
solid straight walls. This approximate solution was-derived from Tricomi's
equation which is the second order linear partial differential equation obta
by interchanging the dependent and independent variables in the transonic sm
disturbance flow equation. From the "perturbation" solution it is shown tha
is possible to eliminate some of the blockage interference and that it shoul
possible to eliminate the blockage interference entirely by the use of mater
with greater values of porosity than those for which the pres;nt theory is w
It should be noted that the solubion presented here may not be strictly Just:
for the flow of an ideal gas as the order of the approximations made in deri-
the basic Tricomi solution are of the same order as those made in deriving ti
"perturbation" solution. One may however consider the identical problem for
flow of a "Tricomi” gas. In this case the exact governing equation for the :
is Tricomi's equation and a perturbation theory based upon this equation is -
fully justified.

1. Spreiter, J. R. and Alksne, A, Y, Thin Airfoil Theory Based on Approx:
Solution of the Transonic Flow Equal
N.A.C.A. Rep. 1359, 1958,

2. Cole J. D. and Royce, W. W. An Approximate Theory for the Pressi
Distribution and Wave Drag of Bodies
Revolution at Mach Nuinber One.
Proceedings of the Sixth Annual Con:

rence on Fluid Mechanics,
University of Texas, 1959
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SUMMARY. .

e

The object of this research is to examine two particular problems of
transonic flow. The first problem of axisymmetric nature is solved in the
physical plane. The second problem is of twe dimensional character and the
solution is obtained by a transformation to the hodograph plane. Thus part I
of this thesis deals with the case of transonic flow past a slender pointed
parabolic-arc body of revolution at zero angle of attack. Part II deals with
the design of a straight walled wind tumnel with a finite porous section to give
reduced blockage interference in high subsonic compresgsible flow.

Continuous solutions for the problem in Part I have been obtained by
Spreiter and Alksne (1) and by Cole and Royce (R). These approximate solutions
were determined from the second order linearised partial differential equations
obtained by replacing one of the partial differential coefficients in the none
linear term of the transonic small disturbance flow equation by a linear para=-
meter. The method we use to obtain our golution is very similar to that used
by Spreiter and Alksne. The difference in the complete solution to the problem
is that they used the solutions of three different linearised equations to obtain
a continuous sclution while we use only the solutiong of two linearised equations
along with a shock surfaée to give a solution. As it is not possible to give a
rigorous mathematical justification for the approximaté methods used, the only
way whereby their validity may be established is to compare the values cobtained
for the coefficients of pressure on the surface of the body with experimental
results. Over the fore-body, where our solution and that of Spreiter and Alksne
are identical, the values obtained for the coefficient of pressure agree very

well with those obtained in the theory of Cole and Royce and with the experimental




results, Over the rear part of the body the values obtained by Spreiter and
Alksne, and by Cole and Royce, and lower than those given by the experimental
results while our values are in a good agreement with them.

In Part II it is assumed that a solution to the problem can be determined
by & perturbation from the solution found by Helliwell (3) for a tunnel with
solid straight walls. This approximste solution was derived from Tricomi's
equation which is the second order linear partial differential equation obtained
by interchanging the dependent and independent variables in the transonic smaill
disturbance flow eguation. From the "perturbation” solution it is shown that it
1s possible to eliminate some of the blockage interference and that it should be
possible to eliminate the blockage interference entirely by the use of materials
with greater values of porosity than those for which the present theory is valid.
It should be noted that the solution presented here may not be strictly Justifiec
for the flow of an ideal gas as the order of the approximations made in deriving
the basic Tricomi solution are of the same order as those made in deriving the
"perturbation" solution. One may however consider the identical problem for the
flow of a "Tricomi" gas. In this case the exact governing equation for the flow
is Tricomi's equation and a perturbation theory based upon this equation is then
fully Justified,

1. ©Spreiter, J. R. and Alksne, A, Y. Thin Airfoil Theory Based on Approximate
Solution of the Transonic Flow Equation.
N.A.C.A. Rep. 1359, 1958.

2. Cole J. D. and Royce, W. W. An Approximate Theory for the Pressure
Distribution and Wave Drag of Bodies of
Revolution at Mach Number One.
Proceedings of the Sixth Annual Confe=-

rence on Fluid Mechanics,
University of Texas, 1959
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CHAPTER 1.

Introduetion,

The fact that it is not possible in goneral to obtain an exact analytic
golution for the partial differential equation of transonic flow, as the
equation is non=-linear and of mixed character, has prevented the rapid increase
of the analyeils which has occurred in recent years with both subsonic and super-
gonic theory. A result of this is that the so%izigﬁg‘fcr thrce dimensional
transonic flow have to be found by usiag certainA?ules. One of theso is the
transonic mimilarity rule which pertains to the bressures and forces on affinely
related families of wings and bodies of revelution. Another is the emggbically
established rule by Whitcomb (1) which stateg that "near the specd of sound
tho zero-1ift drag rise of a low-aspect-ratio wing and body combination is
primarily dependent on the axial distribution of the cross-seectional area normal
to the air stream." Heaslet and Spreiter (2) showed that Whitcomb's rule can
be theoretically justified for bodies which are pointed at the front and taper
to o point at the rear. This mcans that if the solution of the transonic
equation can be found for a slender, pointed, non-~lifting body of revolution
the solution for any slender body having the same longltudingl distribution of
cross=scctional arca and tapering to a point at the rear is also determined.
These rulcs and the frequent use of bodies of revolution in practical applications
show that the solution of the transonic equation for glender pointed bodies of
revolution in flight at zero angle of attack at Mach number near unity is of

congiderable importance tn aircraft designors.
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Jince an exarct analytic solution cannot be obtained for the transonie
equation the designer has e¢ither to rely on experimental data obtained in
wind tunnels or to use approximate methods for the solution. In thoe following
analysis wo shall consider a method which gives an approximate solution of the
transonic flow equation.,

The first approximate solutions for the transonic equation were used in
the solution of problems in airfoil theory. The simplest methods, used by Munk,
Prandtl and Glagert and others (3), are based on the completc linearisation of
the equation. However this linearised theory has two significant limitations.
The first is that the theory gives only a first approximation waich is correct
only for airfoilg of small thickness ratio. The gecond is that the Mach
numbers (of the velocity) cannot be close to unity anywhere in the field of
flow,

The failure of the above methods to give a solution for high subsonic
flows led to the use of the hodograph transformation by means of which the
non~-linear transonic equation is transformed into a linear differential equation,
(for example Tricomi's Equation)s This method has been applied with consider~
able success in tho study of high gsubsonic flows around wedges 2nd flat;plete
airfoils and a number of sgpecific results have been given in rccent years by
Guderly and Yoshihara(4), Helliwcll and Mackie (%)mong,others. Howcver it
is very difficult to apply this method to calculate high subsonic flows around
arbitrary airfoils with curved boundarics.

Other approximatc methods of solving the non~linesar equation for the case of
trangonic flow past a slender body are duc to Oswatitsch and Keunc (6).  They

suggested that the non=linear transonic small disturbance flow cquation, which is
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the firsct order approximation of the exact transonic flow equation, xan be
linearised by replacing one of the partial differential coefficients in the
non~linear term by a parameter. This method has been successfully applied

to transonic flows past two-dimensional bodies by Maeder and wWood(?7), Spreiter
and Alksne (8). In the method used by Masder and wWood the golution to the
problem wag found as a function of the parameter which was used to linearise
tiie equation. The method used by Spreiter and Alksne is similar to the one
used by Maeder and Wood. The difference is that after selving the linearised
equation the parameter is given its correct value and the resulting differential
squation is solved to give a solution to the problem while in Mpeder and Wood!s
theory the parameter is replaced by a censbtant.

Since, in the two dimengional case, the method used by Spreiter and
Alksne gave a better agreement with the experimental results than the one used
by Maeder and Wood it seemed likely to asgume that this method would give the
better agreement with expefimental results when applied to the golution eof the
flow past slender bodies of revolution at zero angle of attack in a free stream
at Mach numbers near unity.

In the following problem an approximate solutlion to the transonic equation
was found by using a method gimilar to the one used by Spreiter and Alksne in
the two~dimensional case. Hawaver, while‘this work was being done Spreiter
and Alksne (9) published their solution for the same problem. By this time we
had found an approximate solution to the equation for accelerating flow which is
of the same form as the one obtained by Spreiter and Alksne although a different
analysis was used te ebtain it. The difference in the complete solution to

the problem fer the flow at sonic speed past a slender pointed parabolic-arc
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body of revolution is that Spreiter and Alksre use three approximate solutions o-
the equation to glve them a continuous solution while in this work two approximal
solutions of the equation are used together with a shock relation to give a
solution.,

Spreiter and Alksne obtained a continuous solution for the fluid velocity o
the surface of the body in the following manner. From the boundary conditions or
the surface of the body they obtained a continuvous expression for one of the velc
city components. The expression for the other component was found from the solu
tion of the transonic flow equation. In order to obtain an approximate solution
of this equation Spreiter and Alksne linearised it using three different
approaches in such a way that they obtained either a hyperbolic, o parabolic or
an elliptic second order partial differential equation. The hyperbolic equation
was to be used in regions where the flow was purely supersonic, the elliptic
equation in regions where the flow was purely subsonic and the parabolic equatio:
in regions where the Tlow was of mixed character. These equations were reduced :
a manner analcgous to that of the present work to give first order ordinary diff:
rential equations for the required velocity component on the surface of the body.
In each case g family of solubtions was obtained, but the members of a single
family could not be fitted to yield a continuous solution over the complete sur-
face of the body. The solution to the problem was now found by using a combine-
tion of the above families of solutions. Over the fore~body the parabolic
equation may be used as the fluid velocity changes from subsonic to supersonic,
Now the ordinary differential equation obtained in this case has a singular poim
which occurs at a certain position on the fore-body. Spreiter and Alksne showed

that there was only one solution from this parabolic family which was continuous
through the singular point. This solution was then taken to yileld the required

velocity component over the fore-body. Over the centre of the body the hyperboli
equation
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may be used as the fluld velocity is supersonic. This time the required
solution wag found by teking that which gave a smooth transition from the
golution for the fore-body. Over the rear~part of the body the elliptic
equation is able to bo used as the fluid wveleocily ia subsonic. Again the
solntion which gave a smooth trangition from the solution for the centre of
the body was taken, and thug a continuous solution was obtained for the fluid
velocity on the surface of the body.

An alternative solution to the above problem has also been given by Cole
and Royce (10)s In this paper the transonic small disturbance flow equation
ig lineariged by replacing the non-linear term by a linear term which is a
goced approximation for it near the surface of the body. This linearised
equation is solved and it gives a continuous solution to the problem.,

As it is not possible to give a rigorous mathematical justification for the
various approximate methods which may be ﬁsed, and in particular for the cne we
used in solving the transonic equation, the only way we can establish its validity
is to compare the values we obtain for the coefficiont of pressure on the surface
of a slender body of revolution with experimental results. In this work such a
comparison is made for the case of a slender parabolic-arc body of rovolution
in a free-stream in whick the. velcedty far upstroam is equal to that of sounde

The agreement between theory amdrexperiment is found te bs satisfactory.
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CHAPTER _ 2.

The Bagic Bquationg of Tramsonic Flow.

Transonic flow is sald to occur when the velocity of fluid particules
in some regions of the field of flow is little different from the velocity of
sound The basic equations which govern such a flow are derived in this
section. The fluid is assumed to be a non~viscousg, non-heat conducting perfect
gas to which the adiabatic gas law applies. The motion is supposed to be
steady, irrctational and dependent upon no external forces for its support.

The Equation of Continuity.

In a source and sink free region of the fluid consider a closed surface S
enclosing a volume V. Let . be the outward-drawn normal vector to the
element Oks of the surface. Denote by 9 and q_ the density and velocity

of the fluid respectively at time A .
T

AN
e ‘L’/
dst

.

-

-
s\~
>
The time rate of change of mass inside the finite gurface is g 5%% Jﬁ“
v
, >
and the rate at which fluid flows across § into \/ is — & g g ds.
3

Since no fluid is created or lost within § the mass can only be increased hy

flow across the boundary. Therefore the above two rates must be equal.
33&::1\/~i~ QQ%.w_j_.,A.S': o)
M 5

An application of Gauss'! Theorem to the surface integral yiclds

§ [ %% + {:\w(g%)l(l\/no,
v
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But V was an arbltrarily chosen volume. Therefore the integral

vanishes identically. Hence.

%“% + C}.&w(g%) T 0. (1)

Thus for steady flow the equation of continuity is
A4 ; us 2
din-(9g) = O (2)

The Boguations of Motion.

=

£

N

The fluid is again considered in an arbitrary volumy V enclosed

e

by a surface S .

The.rate of change of mowentum of any volume element is equal to the
sum of forces acting on it. Application of this result to the volume V

glvesd

%—t. quol\/ = mgtprﬂ, ds ; (3)

where p is the pressurc in the fluid and DQt: = c{v 1 gt denotes the

time rate of change operator following a particle.

. )] >
But %}E@%(LV = g ® F%AV + 5/% g}(gclv).

v

Now if we consider a fluid particle of infinitesimal volume C{‘\/ , then

the mass of this fluid particle cannot change as it moves about,

D -
> (g cl\/) = Q.

and %—:S?%(Av: 39'3.%» dv .
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On application of Gauss' Theorem to the surface integral and substituting

D PG .
S g E..% o(v for 5% S}g q v equation (3) becomes

Clg 28 + vpldv = 0
\}3 [3 5 -t V}) ('1. -
But \/ was an arbitrarily chosen volume.

Therefore the integrand
vanished identically.

Hence

D ,
¢ 5‘%’ + \7}) = O. (4)
For steady state flow the equation becomes
: : A =

Now k and ¢ are related by the adiabatic gas law.
. .4
b o ¢,
where 2‘\ 1s a constant and ?5’ is the ratio of the specific heat of the

gas at constant pressure to its specific hea® at constant volume

vh = v,

HH

X
= & Ve
where @ 1s the local velocity of sound.

Substituting for V}: in equation (5) we get

(6)




=

This equation is now multiplied by g(’ senlarly and from equation (2)

“((:'?5’ can be roplaced by -~ @ V. 9
%,v(-g-cg%-ﬁv%: 0. o)

Perturbation Velocities.

We will now assume that we have a uniform steady flow whose velocity
is L& » and direction of flow is parallel to the x=axis of the three
dimensional co-ordimte gystem. If we now place in this flow, along the
x~-axis, a slender body of revolution with a smooth gurface the digturbances
caused to the uniform flow by the body will be small apart from the small
region near the stagnation point at the nose of the body. Since the flow
is the same in all moridisn planes it will therefore ke indepondent of the

& ~co-ordinate in our cylindrical co-ordinates { =, v, ®) .

AT

U M“"Qw“'(‘ S
¢ 'Q,‘-'\';w [P

‘d_.-"'"‘ -....,\,‘-
N i o IR T
a4

smniy
Then we may write,

U = the component of velocity in x-direction = U + w 3

and V' = the component of velocity in er)}-direction=\~

is

Vru)s + vy,

1

where 4 and ;Eﬁ are the unit voctors in the direction of the % and -~

axes respectively.




The Equation of Mobion in Terms of the Perturbation Velocities.

On substituting for g in cquation (7) we obtain,

}:&(‘U' k) Lo /*3‘] Y% 1‘.‘%\ E(U,*" “’5&* "faﬂ -~ a? \V4 EL}.*LL)A_._ w\.r-'}l = O

Ly, PV R 1 B R
\}.;-.u_)[’U*bL\ ﬁx*“fbx]+VLU*¢) "’bwf’] T 3 T Y S
= O
But the flow is irrotational 3
W v
LR, Iy T WX (8)
ad AW Qv av
QU +u.,) f“ + Qf\r{l)-r.u):!‘“ f\r g"\:: - hx T T
= O (1)

In order to obtain a suitable expression for aa in terms of W and A

we ugse equation (6) which gives,
-
Therefore &'
g - V% A L v-1 § ]1"-— 0.

On multiplying both sides by % s;falarly we get

- - Ry ¥
(%,\/-5-;‘/1 1-%‘71"%%1‘.’}““? ]""Oa

.




and using the fact that *D—ﬁ - \V4 we obtain
Dt 1
Doro o Ry ‘om) “
Dt (4 T T oy Q.
) A ’?%K x-1!

<Y v OFT S = C,

a congtant following a particle

) (10)

which is Bernoulli's Eguation ,

= U4

Tho flow conditions at infinity upstream /U'v»a 9 and

@ = &, are used to evaluated C€ and inserting the perturbation variables

the oquation becomes

a e

LA a, T a2 ol 1

TU o 2 e ey ] * -1 - ()
2 LU 3

> = a - R e

Substitution of this expression in equation (9) gives

W A X E A
%&LU,-f&U.u*u‘u + &(Qv,u+w+w31

)

. 2 A .
- S:L"WQ— Ql“ + 3i:“;j:'-'-.(;lU,.ut. + AL+ )} + (U + w) S%

]

- - 4 A .
(o2 - B {Levteaan)] ¥ = o 12)
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As 44 and AF are smalll comparad with U

, and @, , scuares and higher

2
powers of these quantitics may be neglected by comparisons with U, and

' 2
a"& , and on dividing by Qa, we get

; e a |
" A+ M, w - M,
S VLI L“gwwmw]l+ %ME.MTTWW,_l'
bm LAY 4 N qi 3y b t .
p - 1\ P -
M ) R S ML e ¥ (13)
AT S%r - L ! U, j v ©,

where M is the local Mach number of the flow and suffix (.I) here and hereafter

refers to conditions infinitely far upstream.

The Transonic Bouation for Flows with Mach Number near Unity.

Since the upstream velocity of the fluid is very close to the veloeity

.of gound, (l - M;"‘). is small. Now let -3’: be of\the order £ 5 ’b"’{;‘
. - o
bo of the order & , %"_}, b:l of the order & _ Y bo of the order
e
&, “;{“i: be of the order § and, () - M,a ) be of the order & <

where &  is small and @ and & are positive. Therefore on applying

these orders of magnitude to the terms in equations (8) and (13) we secc that

I+ € cg,-rQr
e o= e
and 1+ e ;1*-2 Qa+C + o +€ o+ tte
& + & € v € + &
peerd wand o

In the second eguation the third, fifth and seventh terms can be
neglected as they arc of a higher order than the fourth and sixth terms
respectively. Thus

1+ dg 2+ b e awd
¢ + £ + £ + £ = O




From the first equation we gsee that

l““(ﬁ‘:a*%

¢ = o+ QI“! (14)

Honce the last equation becomes

]‘*‘g+£ ?,1-4?/ "9.0‘_1-@»( 6\‘*'0"

C e { + & + E C}-

il

In the mogt general case all four terms will be present.

Therefore a. must be %% ; R must be 1, and €  and g&‘ must

2
be equale These values for @ and £ show that AL and |- 4

arc of thc same order of magnitude and that disturbances in the radial
direction will be less than those in the longitudinal direction.
The transonic small disturbance equation for flows with Mach number

near unity is thus

Wy, WM e T 3
Ix LM7-1 ) j S ~ = 0. (15)

The Velocity Potential.

The condition for irrotationsgl flow is

D s

A = dx




s

Since this is the condition that M GLvtﬁ'chvis a perfect differcntial,

there exists o funcition LP guch that

QL{P = &&.cloc T+ g J/r_

(16)

g
o= A% QMML

J.i

4)i£ called the velocity potential.

Substituting in equation (15) for AL and " in terms of the velocity

potential we obtain
- Yoo A %d)
X VRSTRRN SOLI B  A T
Yy b Y ¥

v, bES T )

Boundary Conditions.

For a fluild there can be no flow through a solid surface, but for a

non=viscous fluid slip past the golid surface may occur. If the equation

of the surface is g('x,"r) = Q s thon tho condition of zero

velocity normal to the surface yields

4. VP(X,T) = 0.

;

ok
+ Ar

7.hﬂ*u) DX

i

(74

N O.




3 since 4 can be neglected
as 1t is small compared with U,.

t ol/x_ 2 (19)

where <= Rﬁx) is the equation of the
surface.

Since the body is élendef, within the order of the approximations already
made, the value of ~v (¢Y %éé) on the surface can be taken s the value of
Aron YT =0 , To obtain an estimate of the velocity near the axis
we see from equation (15) that

('r Y o= }_ M- ‘9‘.’._5* M*au] DS%L :

3.
d

-

W
In general AL and 5 are not infinite, so that as - -5?(3?

'§%r (*f'v) ~ )

This means that near the axis "\ behaves like ﬂ#r . Therefore
the correct form for the approximate boundary conditions on the axis may

be obtained from equation (19) as follows.

d R
Ty o= U [~ HE)«-,R ,
dR
ov ”ﬁmmi('r'\*) = U R dx . (20)

~ P
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Relalions across a Statlonery Shock Surface which is perpendicular to
the free stream velocity in a flow with sonic conditions far upstream.

In deriving the basic equations of this section we have neglected the
viscosity of the fluid. This assumption is not justified in certain problems
and this is reflected in the nonexistence of a continuous solution, In the
flow of a real fluid there may exist narrow regions in which a very rapid
change of density and velocity take place due to viscous effects, In the
theory of an ideal gas such a region is represented by a surface across
which the velocity vector, the density and the pressure experience Jjumps.
These jumps are governed by certain relations (shock conditions) which are
derived from mechanical and thermodynamic considerations. In a steady
state flow shocks only occur at supersonic speeds, though the flow becomes
subsonic upon crossing the shock.

There are five shock conditions. The first, second and third state
that the mass, momentum and energy are continuous across the shock. The
fourth requires that the tangential component of the momentum is continuous
across the shock surface., If there was a jump in the component it would
have to be balanced by tangential forces acting on the surface. However all
the forces on the fluid are pressure forces which are perpendicular to the
surface against which they act, therefore the fourth condition must hold.
Since the mass across the surface is continuous, the continuity of the
tangential component of the momentum implies the continuity of the tangential
component of the velocity across the shock surface, The fifth condition
requires that the entropy of a particle increases upon crossing a shock
surface, This condition means that the shock is compressive and the fluid
velocity decreases upon crossing the shock surface so that the flow becomes

subsonic behind.
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e will now find the shock relations across a stationery shock surface
perpendicular to the x-axis in a flow where the fluld velocity at infinity
upstream is parallel to the x-axis and equal to the speed of sound. We will
let the guffixes 2 and 3 refer to the conditions before and after the shock

surface respectively. Then the shock relations are:

Congervation of Mass |

Palvy v u) = gylusagd (21)

Congervation of Momentum N
X a
-?& (.ul * 4‘“’3,) - \)’fl ~ QB(U] + uj) * })#3 3 (22)

Conservation of Enf:rgy)

f"\}a A (24.)
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The Increase of Entropy gives 5

From equations (23) and (24) we see that

X

.} 2
J"zi'(u.“"a) T e “g;” &(U"“”‘Q > k{* 'Pj . (26)

From equations (21) and (22) we sec that

‘73 = k’a - ?B(Ul+ M3)&"’ g5 (U, + a) (U, + U3}
b = g.'-‘: : .E% - (Ui + u?’)q . (ul-}- “-a.)(u.""“ﬁ) 5

+ A
v, - }’g -
Vo % %,

(U, - uy o, - 4ty )

On substituting in equation (26) this expression for -‘%} we
3

obtain

2y
o) B
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But from equation (25)
M, - My X O.

VAR TR e o —hg - (Ve ) =0 (27)
N

A vh
b A a o4 K 2 A
PRI RN 3 (ORT SV SRVl B 2
Y u? A
A 4 S .
-1 ¢ ¥ Uity = g (g + )
)
as o, = U, at infinity upstroam.
. N L .
On substituting this expression for 15 oo in eguation (27)
Pa
we obtain
~ R -
1 v ) QA
L - — -
U+ gl rug) "‘tuwua\,L 7 U, wy -l “a"""’a)_{

X,‘i H -4
u o, Lintoory XYy Yugug
Flugra) v Flogru)) ~g(ugeg) ¥ Mt 4a) ¥-1 =@

As the second, third and fifth terms are of higher order than the first

and fourth they can be neglected.

U Y U
) ":""’(“3*'“3)“ ’“‘%-"’:{"‘“'(“n'?'ug\ = 0.
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3 a (28)

Change in Veloecity Potential across a Shock Surface.

From equation (16)

d,(? - A.LArx-P"UOLT"Q

oxr %(P = Mrb’:c-t-f‘u%‘f'

Across a shock surface normal to the x-axls therc ls no change in -~

(i.6e v 20 ) Now the changes in AL across the shock surface are
finite. Therefore as %o - o R S,Lp -2 G

. This means that ([
is continuous through a shock surface.
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CHAPTER 3.
An Approximate Solution of the Problem of Trangonic Flow past a Slender

Pointed Body of Revolution.

The transonic small disturbance flow equation is

VTR T TR AP

,/%/’

This equation is elliptic, parabolic or hyperbolic depending on whether
!:l _ M,a” E'Ufl’, M'a %g } is greater than, equal to or less than zero
respectively« TFor values of Pﬂ,, near unity the type of solution depends
on the sign of %ﬁ% . As the equation stands it is non-linear and very
difficult to solve.

In the case of subgonic flow the flow equation is elliptic in character
and in the case of gupersonic flow it is hyperbolic in character., This
leads one to use an approximate method for solving the transonic small
disturbance flow equation which will make it parabolic in character, and
thus intermediate between the elliptic and hyperbolic character of the
subsonic and supersonic flows respectively.

The transonic small disturbance flow equation is now written in the

following form so that the L.He.S. is parabolic in character |

. 2y 0
YO Ty MP ooy 3
Yo d T 3w M, dx 3’ ("Pt) 3t




However we must cemember that although Oswabitch found that the form
of the non-linear term in the transonic flow equation is unimportant fhe
term itself is important. We must therefore have a term in the L.H.S. of
our equation which represents the non-linear term and still keeps the

character of our equation parabolic. Thig means that the term we introduce

A

must not include 1S~«-a + Therefore the simplest term which 1s clogest
o d
in form to the non-linear term is 3%%i times a parameter N .
[4

An _Approximate Solution of the Transonic Eauation for Accelerating Flow.

We thersfore proceed in a manner analogous to that used by Spreiter

and Alksne (8). We subtract )\ %ﬂi from both sides of the equation,

where A is a positive parameter .
Ly s ey A J.P
2):(? A adi A ;‘g SRR (-1 )

T S AERTR TR I RNORTI

),

{ ' Pt k- (30)
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We now use the Green's Function Q( T, A, T, -w(,) which gatisfies
the equation

Yy AL D4

i T e » = = Ntoc- e

J ;\"’VG b"\—d) }\0 )\ b:x; S('D( '3(0) %(T "'{'o) 5 (31)
where g(jt *Dco) 3("“»"'«3) denotes a Dirac delta function, to help us in

finding a solution to equation {29).

Fouation (29) is multiplied by the Green's Function C; and the current
co-ordinates of equation (29) are changed to x, end T, « BEquation (31)
is multiplied by ({) and subtracted from the multiplied equation (29), and
the reaulting equation is integrated over a region K , in which C; has a

finite value.

) ’.'.9"3"4‘,("%%%?:0)* ¢ 2y - nwg MY [de,
R,

Q¥

N N e N O N R O | E L e

o
4]

The contour o encloges the region Q{, in an anti-elockwise direction.




Now ﬁ: ﬂ'; "S\)";;,u(*ﬂ, %%]) - (P ';x‘a( ¢ )ﬂ‘,)ldlz

i3 [ 3063 ) 2 (038 )k,

°(1 %%,,z "’L"O:

i}

$1

{
Ly T
T

..’{
i
r-&:

50 3L - o %im : i; e 209

Lo de,
(D(w,’r) s

Therefore on substituting for the above terms in equation (32) we obtain,

S B g R da, fradgd- SS«:»?( IGelk - Qo)

.'Qp(l';r) rg{’l",c}‘i *Tuq bd' )Jqo §'\“ A(P‘:OL qg‘l‘f %;T*‘)GAR (33)

i

and )f (.PS,J( x)%(*‘f‘ '\"w) cj.;’o

q'\ o

i

Equation (33) is now applied to the region shown in the figure below.

Yo /1
_ - e ""‘lE
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The contour GG is the surface OABCDEFHO, and ABC is a shock surfuce.
The contour surrounds the upstream flow field in the plans from u, = — <0

to 2  excluding the body and the shock surface

Consider first .

!

"

¢ p £ H v
&

A
YA ) boE o
_\J(TDCIS%‘,“T‘*@S%,)JWO”S*S*§+§ :’;4.:.;%‘*
GC’

Within the order of the approximations already made the boundary conditions
on the surface of the body are referred to the line v, = © . Thus
on OA and CD W, 18 taken as zero, and from equation (20) we obbtain the

Y,

boundary condition ( o ‘S;.*o> = S(X‘a)psay.

ﬂ ‘? xﬂ.’ 'f‘,*‘?u 5‘ d

: - ;

-0 Vst ¢l vz dey - $(003) da
0 ¢ ° 2 Tz 0

From D to E there is no change in X

!‘» S‘ ::‘. D

On EFH, as the curve is an infinite distance from the body

and G may be taken ag zero.

FS = O
g

Along H(‘)J ':L(k = o
) -

g
"
H
D
[~
.
=
¥
Nt
o
£




X
¢ >4 3¢ X
: .B("‘UC. I, ”GLP S:;)Cl% = V80 Clx sty v, e da
C
) 3 Y TR
) S (LPTD -Tv) {"Lyﬂ’ “3(4}%3?)0[""&
¢ Yz 0 ad er,,*v
+ integral round the shock
surface .
A £ K W .o
Now J’T@}\(PC;(LAQ = ) ] + )
¢ © ¢] B ¢ [n] i M
Q

From H to A and C to D there is no change in

o A ”
b "} 3
g = 5 = S = O
H o <€
Along the part EFH (,P ¥ Q and G may be taken as zero
H
F = 0O

LF]

Along DE we let the value of G be zero

Q

J e
in
1]

!
(. Fo A [p(; oLru = value of theintegral round the shock surface .

) |
Do) = §stay Cloms amerdda, - § (e ) da,

)3
5
- Y((D"rﬂ S‘:_ )Jﬂu-@- values of integrals round the shock surface .
[+]

0 K (34)
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The Bvaluation of the Function G (X, 2, 1 = 7).

The function G satisfies the equation
Y (W) e N - ] e
L(nd) cmh M = ey st

and has to satisfy the following conditions.

1) (:(9(3 Yo 3 ™ »1-0) = © on A, = K,
2) ¢lx, Aoy v, v, ) dsfiniteon T, = O
and (3) Glog %5 7w 7) = o as T, > ed

Let ’\Q "",39“;‘*-

Equation (31) now becomes

Y (e M) e ae 3 = Sy)See)

S—:‘s"e\ o 3%

Multiplying both sides of the above oquation by £ &  where D is

a positive parameter, and integrating w.r.t "‘3} from = o to O we obtain
L

%;(‘Q %;‘%ﬁ) - Prma = Sle-v) (35)

\ ¢ J”‘cL?f |
9 T Q,Ig(mﬂ-"’e) * B-'f\’a(ﬁk’v"‘}).

where % e
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When 4y <~y | 5 T A l;(\;\‘}, )  because 9 is finite at Ty = ©
Jhen Yooy g = B Ku(m" -,) because C} -3 O as w, =E e,

and when v, % ~ the solubion is combinmous .

AL« = BKAN}p.~) (36)

Equation (35) is non integrated w.r.t. ¥, from - £ to v+ g
~+E % T+E AL
p]
Q L( )CL"@ N &f\‘n}’o& de, = §%(~r~ Yehr,
g g
(Lc} € ""';f
=~ -~ =
g

¢ is now allowed to tend to zero

B BK () - Db+ RT (G =
o - Ipor B K (Vo) Bp v AT (Hp ) = | (37)

Therefore on solving equatiocns (36) and (37) for A and B and using the fact that

O T+ B AL (5w = X7 »
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we obtain

-
‘,
i
-~
7
2

Vo

and

g8 = - TAVp

oe
}

Y [\T;P ’\‘") IDCHF‘T‘;) for v, 2«

, (38)

1

= K‘ot \‘E\P "t“a) T.o{yi }p.‘r)

for ~, » .

Welab
Now q = T’A. g ca 6
Y-
1 i X(g{«-w:)/ b Ny,
GoF oAy ¢ T b";:xo)] for  Ho < X,

i

O

for 3{0.7?(

These expressions for (1l were obtained from reference (1)

The Evaluation of the Function <D

Insertion of the expressions for ( given by equation (38) into
equation (34) yields

x Art |
(D(X;r) = S}S(‘:rb) m .QWJ(J-'JKO“* S)S\(: 9(3‘@,"2)0['?0

<

+ vglue of the integrals round the shock surface
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Y we now assume that the shock surface is normal to the ¢ _ axis,
the values of the integrals round the shock surface are zero as CP

and "»’b‘g are continuous across the shock surface .
0Ty

X era
¢ S(?(o o YOO .
Ry
% A

3 () 2
e -
. vl L 202 30)
1 alv-x) © ]
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!:L
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V- Ry w0
i
4
2,
&
<
Ty
EE
e
[ USSR |
O§
+

* 532 S;g G g(:x ). dR
%, a
= ic §{,) [ii:-:)“ © %‘t}t) " a:;:) . i\t;.,-x) } e,
R L L
- st %TI%O PRSOR {%«‘;ﬁ ¥ a2
mq ) det, otz * “x =

.x » ) {
N r“ﬂ'{.;%i;) § f(f . ]J,x.., ng, ¢Lz )k,

r
5 ey (v nqy = AL
S (19) = §_ *,20) X )
=z Sm < v )f o - l*ax) % * S;:\\ n.q.g(%,n)ﬂ?a,
o Ry

\ x| A ,
.?l}]..(,,.".ﬁ.l’.) ~ S mi_(.f‘,e.)_ » LG ) 2 g( % . C. %('xuj«;)d KJ.;-
AL 2 (x~x) ¢ S

Ru




Now on the surface of the body v = Rlx)
a

X
‘3 £ (I, R) ) S'(.],D} >sR ') 2
pYTA - = % Qiyg,x} & ey (}au * é: 23’:« .E.{%,jrn)(;(?l)zo; R;q)c!l?”
@ ©
>~ Ra | % AR
= QRIEAE S(x) g PO g}..‘.ms‘(".).._. e m:ola
a 3 alx, -2 ¢ alor,-x) o
=]
3 .
* 35 SS ?{m‘,,-r,) (: %, R ) dE,,
o A
3 s(«x 5'{x) ( ¢ 282
~ -a - ........._. L (¢~ X)
- S ’(0"’ fJV)( * el S A~ £ C14°
200
* Ja SS E( 3 "’] C(D‘:y“’) ,."’»)Ou?a
Ro
AR
as & WX, { for © < X <X and the integrand of the

first integral is finite for all values of =, in the range o £, £¥x.

ol

ﬂx R) > slx) - s« )J _ sd ¢ ) "”?f
J % = X Al e a ;:%
iwx.
+ lm SS ?(wa,f) C(& 34‘;; ﬁ’,'r.,)dﬁ',.

Now fo_’m ,,Q:VXJN} ~ Qm [ | j as %gn-:\ is small
AR" L and C is Buler's constant,
b 2

BCP(?(JE’) . 9 s' (%)~ s'{x) S{”‘) ¢ Z*f_j
ot § e boy | & 35
p ( ) . .
+ S; ng Yo _%(Wuj'f‘) q()! y"o &’,rru)d?b .
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' . iy’ \ftplwp-)
The parameter X\ is now replaced by 7T 1 ST

)
can be evaluated and hence the

so that the

above integral over the region ﬁ’ o

hl
expression for -;g on the surface of the body can be found .

( [_Nsl"‘ ) >\ u}
% ')fs»p) | - KX*’,) M"‘)‘

if the above expression is

substituted for A in equation (30).

It follows that

%; S;S ""u»z ¥ ) (1( ¥, A, Q)'ﬂ) &R“

A
q g‘(m‘i))\b’ s &JE&I:%) AR, (l,
061 Mg‘ a(‘x;x) I la x.:x)] M
-'&'1:*:0‘\“0
2 x RY o 2
(MY, L (2 R Mo 2Rn ),
(KH) 2 3 Y Agad K J"a 2l 20 @
A,ys b T,20

The inner integral may be evaluated (see c.g. reference (12) page

2 (e slan; €Y AR,
R,

394)s Thus we find

X A gza 32 (e’ =)
- A g A R [ nlaen) | Tan
C%:*l)'i11 .%.;2 ~ 3(3’;‘1} “ [ A A * e - J&q‘)
; A2 ol .

- - Alay, g dor,
b 3’-1-]) M‘R x S =al ?
Y A )

h‘"‘ﬂ ) Nla




)q/(w f”) f ‘S'(I‘,}- S‘(X)J,,{ N SI(I)DO,

o ROy i“cP(x,s%}J (-,

4, b 3 a .

D?L J(Wo—}() a B . l+3( u, (h’_*,')\r}‘
[j {3%)

) MI ﬁ') 4 ‘} 7(;@) v
It will be noted that S QmL and = )“ '
Y }M:

)R bu‘
Now clM = Ix fJL:x + 3 DL'Y‘ 5
hITS

. + oy
= Y. 7%, on using equation (8)

ha, Moo, wody
do IR c)'x;G

On the surface of the body ++ R (x)

i+

and from equation (19)

(%%)Pn%: (gf_)&ﬂlv; (%:?) S‘{rgx).

On substituting the expression in equation (39), and dropping the

we obtain

suffix body, we obtain
X

s'x) - $(x) - M)V
VO S: alx, -2) J/x Q{dl‘) M2 _
i"l) 3 .ec Rl(w+l)f‘4, S,!:Y:. - S,(?.() d@
iy p"- l bx Y, {ol/x R L? ?
de _ 0 s9 dE
or o = E dx

R "ﬁg%‘ fi- M3y, s{x,) - (*)
f“«?’“‘f‘“‘“:%ls’(x}}“’(wmf‘ 'g‘ dx (AO)

y-4 Ri( M, al
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Special Case of a Body with_a Parabolic-Arc Profile in a Frec-Stream

with Sonic Veloeity.

We shall consider the special form of the solution in the case where the
longitudinal section of the body is symmelric with the upper boundary of the

parabolic curve - = R{x) = S x(i - x) where § is a constant.
A _
Then S(*x) = U S (1 - 2% )( 1 -'x)(‘x) 3

Sy 7 U 8 (- bxs b2

X . . SB\ ?;(' 2 2
andl C sh)-s0d g o Y & “bxgrbadebx - b
A - X,) ° & (X, - %) i

hd 3

[ %}

R
S[*(;. -r-(,('xo-s-.x)] c.l/xu 5

u% L bx, * 3%, +(,xx]x

1

o L °7x - (..-'.‘X.j .
On application of these results to equation (40) remembering that Ml-' =1,
it becomes,
~ A 2 .
CLM_ 3V, (1=toe + Lo ) 1= %)

dzm ) x()-=x)

.
~ $U o a -
!"‘U . 1\ - T"-{Q‘ﬁ -—(nc)‘{
pl
i (1o o) )

This equation has singular points at ¢ = © L. B, i

i
We shall denote the values 7 —‘E}- and -+ -+ J-g



respectively. However it is possible to find a continuous solution for Aa

from 2 = @ to *% = %, .« This solution was found by giving M-

a
the value ggi(91ﬁ~ﬁxj at K o=x, . Then if WHis
the value of éﬁﬁ at o= X, we have
o ] us .
SRS i sl Ll
T )G “"‘(m_u

p- . S am' — 3 ka i
9 U s axe) e [LY“)%:’“(‘“X}-" '

T § where A is a positive constant
pao }4 anI fe [3 3 P ]

and B is a constante.

Since this equation has only one rcal root it follows that there is only
one solution of equation (41) that passes through the singular point at X=X,
By means of a Taylor Series the values of 4&/[{ slightly removed from the
gingular point can be calculated. Once these values are known the values
of L&/Lﬁ on the surface of the body in the range 0 4 X < DC&. can

be found numerically. These values of &k/i) for differcnt values of

t

% are shown in tables I, II, IIT, IV, and V. { pages 53  to 57 )

If however we use the values of &A/Lh obtained near the singular point
X =2 ve see that 3;2 is zero just upstream of it and infinite just
downstream of it. This mcans that we cannot use this solution to obtain
the values of &&/Lﬂ over the rear-part of the body. The physical reason
for this is that the fluid velocity decreascs over the rear part of the body

and this violates the condition that N  is a positive paramoter.




I\
Hovever “he valucs of *&lt{ over the entire body can be calculated by
coasidering the solution in sections and joining the various results togethoer.
Thus we will now proceed to find a solution of equation (18) in which we
impose the condition that ;§§?§ is always negative. This solution can

be used in the region where the flow is decelerating and the above solution

can be used in the region where the flow is accclerating.

An Approximate Solution of the Transonic Eguation for Decelerating Flow,

The transonie small disturbance equation can be written in the following

.- 2 2 7
2+ ‘)"(‘?“) = t KJ* M) L L(Ea - (i-™?) %‘gij

v 3 toAx M

We now procecd in a manner analogous to that of the preceding section,

D
by adding ~ Tg% to both sides of the equation, wherc )\  is

a positive constant.

» > RNV ANY SRLARC.
Lle =) eoh w2 TS waclend s

\ : ) : a
where %('X}"\") -—-U-ﬂ— M‘ S;c 't""'“_d "("‘Ml 5*;:? ‘f')\ "'”;:' - (43)

W i

il

Equation (42) is now multiplied by the Green's Function C:(jlitxu; ﬂ“‘ﬁl)

wiich satisfics the equation




Y ¥ . L

where %(xﬁtu) %(""‘ T;) denotes a Dirac delta function at X = Ay
T= v, and the running co-ordinates of equation (43) are changed to X,
and v, . Equation (44) is multiplied by (P and subtracted from the
multiplied equation (43) and the resulting equation is integrated over a

region RL in whieh (_’1‘ has a finite value

g 3038 - 0 Rl de) a2 g e

@

LT""q- g("‘ﬂ,""e - ‘Q%(""*o)‘i(%«;)]o[& o (48)

A ‘ru

‘\\
N —

X
X

The curve Co encloses the region Ro in an anbi-clockwise direction.
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Thus, exactly as in the previous analyesis for accelerabing flow, it

follovws

(P('J."T) - SJ}: < 31" -, (P b.,.:lo'.a 3 )\d;){‘ +SS l)%ﬁa).diﬂ

C,
Equation (46) is now applied to the region shown in the figure belows

% 1

N

The contour f", ig the curve ABCDEF.IIA, and BCD is a shock surface, The
contour surrounds the downstream flow field from N = xg, to of excluding the

body, which we shall suppose to be of unit length, the wake and the shook surface.

As the analysis in the remaining part of this section and in the next two
sections is formally identical apart from certain changes of sign and the regions

of integration to that used in ovaluating tho velocity componont gt on the surface

of the body for acmlore.tina f£iow, only the important gteps in the analysis are

givon.
On evaluating the integrals in equation (46) round the contour ABCDEFHIA we

obtain



T

¢ i o

Pl = U560 ¢l o da, *S’(n&%%})ol% - G(P%%)d«
X X o=@ ! J“l;:o

i
f}_Y'ﬁ, %(X,;G) d("‘,"" 55 7,) rlf\)u + value of the integrals round the shock
R surface . (47)

The Evaluation of the Function C (‘X‘ H, ., 1, ’!'u)

The function C;('x,')f#'; a, ‘1‘;) satisfies the equation

N N J -

and has to satisfy the following conditions

1) c(m.xed' v, %) = 0 on X, = X,
2) C(:r,‘xo; ¥, 7, ) is finite en =0,

and 3) C(D(} L, Y, Ny P @ m Ve 2l
Let ftg_ = X~ D,

Equation (44 ) now becomes

Lln) A syl )

U}VB’
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The solution to the equation for the above boundary conditions has

already boen obtained in a previous section

X &
N+

)
R FALEYSe)) AT )
C: =~ g(:ro‘” )(’) :EO Eé(xo'l) ror :xu zx °

(49)

T
Q

for DLO"-DC..

The Evaluation of the Function QP

On assuming that the shock surface is normal to the X axis and inserting

the expressions for (,; given by equation (48) into equation (47) yields

O L TN T

K,
Hence on the surface of the body ~ = R(’C ) we obtain

I)u Ss(x.,)-s‘(u)cla . S(x)g L)\Raﬂ.‘-]
’ (50)

5 Alx-20 by (1=20

b rya’
+ .S; SR& r, C()} j)(’}; R)‘fo) g('xo;{;). Cl» RU
0 Ce+1) M? )"(Pf*xnr}

The parameter is now replaced b e d el SR
A d U, x>

so that the above integral over the region R , can be evaluated and hence

the following expression ig obtained for Q—'Q on the gurface of the body,
30
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3,0 - S AR - M

3%

-

2 (% -x) \¥#) M,

+ s () wal R - (XH M 34} % } (52)

2 (-0 0,

It will be noted that o@———ﬁ-——l

l“(vt - AL Ja "
%M ) (%:)ma: (aZ)M (j,f) Si(i%)'

[ig?
On substituting the above expressions in equation (51) and dropping the
suffix body we obtain

PN,L vl

du S'(x')_ AR
dx R don

LU=y o1 M -1V, ’5‘(10)4‘(;{) N
& R (sM? VH }&H_ g da)

Special Case of a Body with a Parabolic-Arc Profile in a Free-Stream with
Sonic Veloecity

We shall consider the special form of the solution in the case where the

longitudinal section of the body is symmetric with the upper boundary of the

parabolic curve # = R(x) = 8x(1 ~ x) where & is a constant



Then

S(lpt) = U, %a("auxi—:’()(vi)p

I

S‘(D‘) U, E}} ( I= Gx =+ Gxa)

N
and

wnw i

i ~~° : a.. - !
27 3 L bx, +3x, f-(wuu]

x 5

Sé Sx)- s ) Y s*
x

3()%

il

(33l-— H-1)

On application of these results to equation (53) and remembering that (M = |
it becomes

O(,q. - SQU,(I"(:mﬁ-L:ca)(l*Jx)
L .
'7(.( :-‘() _ EUI'%Q(g)r-J)(D(_-t)
- LAY Q “F’ w- 1 - (54)
_e? %a' 1““(1»-:;)(\@;) U %2( b= o +L::ca)

It is of interest to note that, if the transformation

‘\3:' ) - e

is applied to the above equation, it becomes
R
AM_ _ % U.(l"’&m{\‘ +t,~>f)(i-2{3)

"g(l-va)
LU,

q U _
M, - %‘“‘" (Ch.;* lﬂér)

P 5 R R y (55)
e 67 (- ) ) i (1 by by

which is the same differential equation as the one obtained for

AL over the
fore=body.




The Bva'luction of 44 over the Complete Surface of the Parsbolic=Arc Profiles

In the above two sections we have seen how expregsions may be obtalned
for ar over the fore~body and rear-body respectively. The problem still
remaing however of the manner in which these two solutions should be
matched in order to give a solution over the complete body.

We consider first the solution for the after-bedy. From equation (54)
it is easily seen that as »x = =x 5 from the rear of the body if 44 >

s

: )
U . - S aon s .
}_, Z ' (g,( 1}(:\‘. -1} ‘the value of T at o Xy 1s infinite. Further

35%0, e

- (_32. -1} -!) the value of T

But the solution for 44, over the fore-body

more for all values of 4. <

is zero at 20 = xa .

which is valid in the range O« ¢ <« X gives the value of  §=7 at

& C

X = :{9\ a8 Zero. However it is not possible to have a continuous solution

for . through the point X = Bl by matching the fore-body solution to
the after-body solution since the value of A from the fore-body solution is
3§87V '
greater than «-%\"4 3 a“ |)( xs_" ’) at A= 2 %
As equation (55) isHentical in form with equation (41) it follows thab
there is only one continuous solution for A4 in the range 2, < 2 < I.
This solution is a mirror image about the point 2t = i/;;[ of the continuous

solution for M  obtained from equation (41l) wrich is valid in the range

o< X< Xa . From this solution we see that X is zero at x = X,

BU

and that the valuc of 4L 1is greatcr than (Cfcx - bX, ) at =X, .

This means that if we use this value for AL in cquation (41) the value of

dax

e is infinite at X = x, . Hence we cannot have a continuous

solution for AA  through the point 2C = x, .



wdy ]
It is thercfore impossible to find s contianuous solution for 44

from cquations (41) and (54) ovor the surface of a parabolic-arc body as
3;;- is positive for all regions whore equation (41) is applicable and is

negative for all regions whore equation (54) is applicable.
Since we cannot obtain a continuous solution the only way to connect
up the valves of AL over the fore~body and rcar~body is to introduce

a saock surface normal to the free-strecem. From equations (28) and (25) the

relationships between the perturbation velocitics before «ua and after
’Ll.3 the shock are
'ug, = - u'& 3
and
Mo > My

If now the curves of the two solutions, valid in the range o < x « £
and (< X < ] are drawn (sve figures 9 and 10) it is clear that
there exislts no value of x where the shock conditions can be satisfied.
This implies that the shock surface must be at either =x = 2, or ‘Jca
At 2 = =, the condition &La? u, cannot be satisfied. Therefore

 hock supf. - N |

the shock surface must be placed at 2 = A, 5 (= - ™ ) i

The values of 44 over the rear-body may now be found by solving numerically
equation (54) with the condition that at X = X, the value of AL is
equated to the negative of the corresponding value of AA obtained from the

solution of equation (41) valid in the range © < X < A a - The values

3




of AL over the complete surface of the parabolic arc body of revolution
may thus be determined.. The valued af*AﬂA for different valies of %

are given in tables I II, ITI, IV and V on pages 53 to 57
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COAPTER L.

The Pressure Cocfficient.

The preasure coefficient C_ is defined by

P ~F
¢ = oo
From the adiabatic gas law we have
- (g , G-
! o
and from equation (1l1) we have '

-é:F -{y +u) -maj = “5‘ g"{?"ﬁ 'IJ
= ‘%E -E-'- [(_‘g:')b’-“‘ﬂ.

$» -4
75'-{_ 3 a
I R
- '~{ AR N
‘{g‘) :I;‘- ﬂ(uu-ru-f-'u)i

M ! -
o~

a
w-.f.. ,{ au‘u o+ ,u‘a»}rva) -+ ""“' Pauaua /tfr ﬂ(u‘aj'\fa),

ap ay
Therefore on substitubing this expression for (m.) in equation (56)
we obtain 1 a 2
i .

‘3*‘9‘ %{RU& + T“\r) FY 2 _f,;,, U o

- e A

(7}., L ua{au“}“"' ) %My

I.."f.

L.

R A AT
- -all) -0-md) (&P - )

Since the problem under investigation is one in which the fluid velocity.

at infinity upstream ig sonic, we have
. ARy [\ o f R
¢, = -208) - (), b ol (57)
Now from our analysis of the magnitudes of the terms in the transonic

equation (12) we found that if (U‘) has a magnitude of & , then the magnitude of



7~

3,
‘1 *
where € is a small parametor. However if we compare

Ary
the values of’}ﬁ%)and (({}obtained on the surface of the body, see Table I, II

(%%) is €
III, IV, and V, from the solution of equation (15) and from the boundary
conditions given by equation (19) respectively, we see that the above relation
betwsen their magnitudes does not hold at all polnts on the surface of the body.

In faot over certain parts of the surfece of the body the value cf(%f] ig greater
than the value of (%%) . This does not imply that the transonic small diste-
urbance equation (12) used for the above analysis is not generally valid, but

that in certain special small regions of the field of flow ibts uso may be doubtful.
We shall investigate this validity further in the remaining paragraph of this
section. Before doing so we should remark that a comsequence of this fact

i1s that the term involving (%f}ain equation (57) may be important in the cal-
culation of pressure and should be retained,

A
We now look at the terms in cquation (12) containing f%;} which we previously
[ 3

neglected to see if we can still justify their omlssion. Theso terms are

3
b2 ¥
\%’ 'va %‘i K%,. ~ %'!fr and g ".:': « Referring back to equation (12)
: 7
and using the notation employed in the order of magnitude discussion we note that
Q“-»Q +{ ha 'OE" ha fa"'f
the magnitude of these terms are £ )5 and € respectivelys
a*E' a"'«e' aAa. + Qp -{
Now tho magnitudes of the terms in equation (15) are & 5 R &
Rar b
end £ ¢ regspectively. Thercfore thoe first of the terms we neglected

2
1s & times the magnitude of the third and fourth terms in our transonic equati on
aa

’v
and the second and third terms we neglected are 4 or (17’

>
’] times the

maghitude of the third and fourth terms in our transonic cquation. This means
that the terms we noglected are always of a much higher order than the third and

fourth terms in our transonic equation and that we are still justified in




neglecting them. It also means that our .form for the transonic equation
given by equation {15) still holds even if ('?f) is not of the same order of
magnitude as that given by our order of magnitude analysis, so long as it is
not of zoro order.

We can thus define the coefficient of pressure on the surface of our body
with some degree of reliabllity, by

e, « ~al¥) - )" (57)

Graphs of Gp against x may now be drawn for differenf values of O
These curves are shown in figures 1, 2,3,4 end 5 for 5 ='%§'a§§§: %fa i;
end 1%‘ respectively. On the same figures are the curves obtained by

Spreiter and Alksme (9) by Cole and Royee (10) and from experimental date (13,14 )
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CHAPTER __5.

CONCLUSIONS,

The curves of the coefficient of pressure shown in figures 1, 2, 3, 4 and 5,
for different values of s calculsted from our analysis are now compared with
those obtained by Spreiter and Alksne (9), by Cole and Royece (10) and with the
experimental results obtained from references (13) and (1l4).  Over the fore~
body our curves and the ones given by Spreiter and Alksne are identical because
our solutions are identical for ttis roglome In this region the curves given by
Coloe and Royce are almost identical with thosc we obtained and all three curves
agree very well with the experimental results. Over the resr-body in the
region Q.7< x <1 the curves given by Cole and Royce, and by Spreiter and
Alksne give values of the coefficlent of pressure which are lower than those
given by the experimental rasﬁlts while the curves we have obtained are in good
agreement with the experimental results. In fact the use of a shoek surface
to connect up the solutions for M for the accelerating and decslerating regions
of the flow gives a very good approximation for the rapid increase in the co-
efficient of pressure which the experimental results indicate exists near the
point ¢ = x 1(: 4o+ ‘rg») . However it ghould be noted that the stcepness of
this rise in the coefficient of pregsure shown by the experimental rosults may
be caused by the sting on the model which was tested.

However there is one slight anomaly in the prescnt solution in that over a
small region just after the shock surface the coefficient of pressure decreascs a
little before it increases; as one would expect a continuous increage from the

shock surface to the tail of the body. Nevertheless the effect of this slight
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fall in the eoefficient of pressure is insignificant because it is easily seen
that in tho calculation of the drag coefficiont (sce Appendix I) its effect

is negligible.

We now investigate our analysis to seo if we can find any reason for this
fall in the coefficient of pressure immediately behind the shock surface. As
we have already seen the order of magnitude of {{EEJ on the surface of the body
is not the same as the order given by our order of magnitude analysis. Thus
it is of interest to scc how the magnitude of the term (%%?a in equation (57)
for the coefficient of pressure comparcs with the magnitude of the term E%ﬁ-
In figures 6,7 and 8 are shown the graphs of “Ja AWV, against x, for
different values of @, and on the seme figures the graphs of EMJ/LA against
x arc superimposed. The graphs of ]mqlun againgt x are usefud, because in .our
order of mapnitude analysis we neglected all the terms whose magnitudes were &
(or 4~IU. ) times the magnitude of any of the terms have retained in the
transonic equation given by equation (15). From these figures we see that in
the region near x = , that is near the shock surface, a‘]%;r! i~ ‘15‘:[' '
This means that in this region we have included a term in the evaluation of the
coefficient of pressure which has the same order of magnitude as terms we have
already neglected in our analysis. Therefore in order Lo obtain a.more accurate
value for the coefficient of pressure in this region we slould rotain all the
gocond order terms in our transonic equation and in the relevant boundary
conditions. However as we have already stated, this fall in the coefficient of
pressure behind the shock surface is insignificant for the calculation of the

drag coofficient and we do not believe that it justifies an attempt to obtain

a more accurate solution than the one which we have presented.
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APPENDIX X

"The Drag Coefficlent

The drag coefficient (C’.D ) for a body of revolution is defined by

= Drag/free stream dynamic pressure x maximum

cross~sectional area of the body,

_ D
) 2
%0 USSR
Consider a meridian plane of a slender body of revolution
X\') ,«\“1”‘
/‘LMM’NW'MN'\ 3
7 %

It is customary to define the drag as the component in the free stream
direction of the force exerted on the surface of the body by the excess pressur.

difference { ’9"- P, ). Thus over an element % S of the surface there arises
an element of drag S D given by
' Nt )
%D - (‘9‘&)‘)%5 M(Q “(‘P " where (Pis the angle between

the tangent to the element 45

of the surface and the x-axis.

b-b) .55 s,
b b) Lo 5,
= (&) »}f,) g;(ﬁ : %x ) where T = R{x) is the equation

of the surface.

%0

1

i}

the element of drag arising from an elemental ring of the body surface

-

Therefore




3o
L5

.
IR
AT R(p-b) I o

Hence the total drag for a body of revolution of unit length is given by

D = SMRW?')‘S}E@AA‘ -

C =
) 2 2
’:’;IS’. U~ A
- AR
= %TE gfp.ﬁ. ;P da. | (58)
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APPENDIX [ TABLE I
* %1 %l CP
L0113 . 3258 - 4oeT .6992
L0313 3125 ~. 2868 L4759
L0513 2991 -.2518 3Th2
L0713 .2858 -.19%8 L3058
L0913 2725 -. 1638 .2534
L1113 2591 -.1388 .2104
1313 L2458 -.1169 1735
L1513 .2%25 -, 09Tk . 1408
L1713 .2191 ~. 0797 L1114
L1913 .2058 -. 0633 . 084k
2113 L1925 -. 0481 L0592
2313 NNECE -, 0338 . 0355
.2513 .1658 -, 0203 . 0131
2713 L1525 -. 0075 -. 0083
.2913 . 1391 +, 0048 ~-. 0289
3113 1258 L0165 -, 0488
.3313 .1125 .0276 -. 0679
3513 . 0991 . 0383 -. 0865
3713 .C858 . 086 -. 1046
.3913 .0725 . 0584 ~-. 1221
113 . 0591 . 0678 -.1391
U313 L0458 .OT67 -. 1556
A513 L0325 |- L0852 -.1716
A3 . 0191 . 0933 -. 1869
L4913 ., 0058 . 1009 -.2018
5113 -, 0075 L1079 -.2159

O =3

* %1 %1 CP

5313 ~. 0209 L1145 -.2294
5513 ~, 0342 1205 -.2lp2
5713 -. 0475 . 1259 -.25M
5913 -. 0609 . 1307 -. 2652
6113 -. 0742 . 1349 -.2753
.6313 -. 0875 . 1384 -. 2846
6513 -, 1009 L1413 -.2918
6713 -~ 1142 L1436 -.3002
.6913 - 1275 L1453 -, 3069
L7113 -. 1409 L1467 -.3133
L7313 -, 1542 JIUTT -.3192
.T513 - 1675 . 1486 -.3253
LTT13 -.1809 . 1491 -.33%09
. 7887 -, 1925 . 1493 -.3357
. 7887 -.1925 -. 1493 +.2615
.8087 -.2058 -.1496 .2568
. 8287 -.2191 -.1506 2532
. 8487 -.2325 -.1528 .2515
8687 -.2458 -. 1571 .2538
. 8887 -.2591 -. 1660 .2649
.9087 -, 2725 -.1816 .2889
. 9287 -.2858 -.2055 .329%
.OU8T -.2991 ~.2398 3901
.9687 -.3125 -.2022 . 4867
. 9887 ~. 3258 -. 4001 L6941
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TABLE II
* yﬁl %1 CP
L0113 L2304 -.2276 . 4021
L0313 .2209 -.16T1 2854
L0513 .2115 -.1368 .2289
L0713 .2021 -.1149 . 1889
.0913 . 1927 -, 0970 L1570
L1113 .1832 -, 0817 . 1299
L1313 L1738 ~-. 0681 . 1060
L1513 L1644 -.0558 . 0846
1713 L1549 -. Ol . 0649
.1913 L1455 -.0339 . 0466
2113 . 1361 -, 0241 . 0296
.2313 L1267 -,0148 L0135
.251% L1172 -, 0060 -.0016
2713 L1078 +,0022 -.0161
.2913 . 0984 . 0101 -, 0298
.3113 . 0889 L0175 -.0l29
.3313 L0795 . 0246 -. 0555
3513 . 0701 .0313 -. 0675
3713 . 0609 L0376 -. 0789
.3913 L0512 . Ol36 -, 0898
4113 L0418 L0492 } -.100%
U313 . 0324 . 545 -.1101
513 . 0229 L0595 -.1195
4713 L0135 . 0641 -.128%
L1913 . 0041 . 0683 -. 1367
51135 | -, 0051 L0722 | ~.14b)4

* YU::L %1 CP
.5313 -,0148 L0757 -.1515
.5513 -, 0242 . 0787 -.1581
5713 -, 0336 L0814 -. 1639
.5013 -, 0431 . 0837 -.1693
6113 -. 0525 . 0856 -, 1740
6313 -.0619 . 0872 -.1782
6513 -, 0713 . 0884 -.1819
6713 -, 0808 . 0893 -. 1851
.6913 ~, 0902 . 0900 -, 1881
.T113 -.0996 . 0906 -.1911
L7313 ~. 1090 L0911 -, 1941
.T513 -.1185 . 0915 -.1970
1713 -.1279 .0918 ~-.2000
L7887 | -.1361 L0919 | -.2023
. 7887 ~.1361 -.0919 +.1653
.8087 -. 1455 -, 0920 .1628
8287 -.1549 -.0926 L1612 1
L8487 -. 1644 -.09%6 . 1602
8687 -, 1738 -. 0956 .1610
. 8887 -.18%2 -. 0997 L1658
.9087 -.1927 - 1077 L1782
. 9287 -.2021 -.1210 .2012
L9487 -.2115 -, 1404 .2361
L9687 | -.2209 | -.1692 2896
.9887 -, 2304 -. 2255 <3979
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TABLE III
x yﬁl %1 GP
.0113 . 1955 -, 1713 3044
.0313 L1875 -.1287 .2223
L0513 L1795 -. 1060 .1798
L0713 LAT15 -.0891 . 1487
. 0913 L1635 -, 0753 . 1238
L1113 <1555 -, 0632 .1025
.1313 <1475 -. 0525 . 0832
L1513 <1395 -, 0427 0659
LT3 L1315 -, 0336 L0500
.1913 L1235 -. 0252 . 0352
2113 L1155 -.0173 L0213
.2313 L1075 ~-.0099 . 0083
2513 . 0995 -. 0029 -, 0041
2713 .0915 +, 0037 -, 0157
.2913 . 0835 . 0099 -, 0268
.3113 L0755 .0159 -, 0374
3313 . 0675 L0214 -, OlTh
3513 L0595 . 0267 -.0570
3713 L0515 L0317 -. 0661
.3913 L0435 . 0364 - OT47
A3 . 0355 . 0408 -. 0829
L4313 . 0275 .Oll9 -, 0905
4513 L0195 L0487 | -.09TT
LAT13 L0115 L0522 -, 1045
L4913 . 0035 L0554 | -.1107
5113 -.0045 L0582 -.1165

x %1 %1 CP
5313 -.0125 | .0608 | -.1217
5513 | -.0205 L0630 | -.1265
5T13 | -.0285 L0650 | -.1307
5913 -. 0365 0666 -. 1345
6113 |-, 0885 L0679 | -.13718
~6313 -, 0525 . 0689 -. 1406
6513 -. 0605 . 0697 -, 1431
6713 | -.0685 0105 | -.1854
6913 |-.0165 | .ot08 | -.14715
.T113 | -. 0885 L0712 -.1#961
73513 | -.0925 0716 | «.1518!
7513 ~.1005 .0T9 { - 1539 |
713 P -01085 0721 { =.1560 ;
1887 1155 | .oT22 | 1577
7887 | -.1155 T ootz | +.1311
.8087 -.1235 -. 0723 . 1293
8287 §~.1315 | -.0726 3279 |
B8t 1 -.1395 | -.0734 L1273
8687 | -.14T5 -, 0748 .1278 |
.8887 | -.1555 | -.0776 .1310 ;
. 9087 -.1635 -, 0835 . 1403
29287 | -.1715 | -.0935 L1576
Q48T -. 1795 -,1084 1 .1&%i
L9687 | -.1875 | -.1301 | .2250
9887 | -.1955 | -.1715 .5078{

-

——
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TABLE IV
* %1 %1 CP

.0113 .1629 -.1278 . 2291

L0313 L1562 -. 0961 . 1679
L0513 L1496 | -, 0795 . 1366
0713 ., 1429 -, 0669 L1134
0913 | 1362 | -,0565 | .ooudl
1113 1296 | -, 0473 .OTT9|
L1313 .1229 ~-. 0391 . 0631

L1513 .1162 -, 0316 . 0497
1713 . 1096 -. 0246 L0372
L1913 .1029 -.0181 . 0256
.2113 . 0962 -, 0120 L0148
2313 . 0896 -, 0063 . 0046
2513 . 0829 -, 0009 -. 0051

L2713 L0762 | +.0042 -, 0142}
2913 . 0696 . 0090 -, 0228
3113 . 0629 L0135 -.0310
.3313 L0562 L0178 -, 0388
.3513 , 0496 L0218 | -.0462
3713 . 0429 . 0256 -. 0531

3913 . 0362 .0292 -. 0596
L4113 . 0296 . 0325 -, 0658
JA313 . 0229 0355 -.0T16
U513 .0162 L0383 { -.0769
JAT13 . 0096 .0ko9 | ~-.0819
U913 . 0029 .Ol32 -, 0864
5113 -. 0038 . 0453 - . 0906

* %1 1%1 CP l
5313 -.0104 . O4T1 -.0943{
5513 | =017 .OB8T | -.097T
5713 | -.0238 L0500 | ~.1006 |
5913 | -.0304 L0511 | =.1031 |
6113 -, 0371 . 0520 -.1053!
6515 | -.0u38 | .0526 | -.1072 |
L6513 | ~.0504 L0531 | -.1088
6713 | -, 05T 0535 | -.1103 |
6913 | -.,0638 . 0539 ~.1118}
LT113 - OTOL L0541 -.1132 1
7313 | - 07T JO5H | -, 1147
.T513% -. 0838 L0546 -.1162
L7713 ~, 0904 LOB4T | - 17T
7887 | -.0962 L0548 | -.1188
. 7887 -,0962 | -,0548 +, 1003
. 8087 -. 1029 -, 0548 . 0991
.8287 -.1096 | ~.0551 . 0982
8487 -.1162 -. 0556 . 0978
.8687 ~.1229 -. 0566 . 0981
. 8887 -.1296 -. 0585 . 1001
L9087 | «.1362 | ~-,0626 . 1065
.9287 ~. 1429 -, 0TO0 L1195
JOM87 | -.1496 | -,0810 .1396
. 9687 -. 1562 -.0969 | .1693
9887 | -.1629 | -.1264 | .2262
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TABLE V
* %i %i CP

.0113 L1396 | ~,0986 1778
0313 21339 | -.0749 1318 |
L0513 .1282 -, 0621 .1078
L0713 .12285 -, 0524 . 0897
.0913 .1168 -, Olth2 LOThT
L1113 L1111 ~. 0370 L0616
1313 'L, 1053 -, 0304 . 0498
L1513 . 0996 -, 0244 0390
L1713 L0939 | -.0189 . 0290 |
L1913 . 0882 -, 0137 L0196
.2113 . 0825 -, 0088 ,0109
2313 . 0768 -. 0043 . 0026
.2513 L0711 +,0000 { -.0051
2713 . 0653 . 0041 -, 0125
.2913 . 0596 . 0079 -.0194
3113 .39 L0115 -.0260
.3313 . 0482 L0149 | -,0322
L3513 .Oli52 . 0181 -. 0380
3713 . 0368 L0211 ~-. 0135
5913 L0311 . 0239 -, 0487
JA113 . 0253 . 0264 -. 0535
L4313 . 0196 . 0288 -. 0580
513 .0139 L0310 | -,0622
JUT3 . 0081 . 0330 -. 0660
L1913 . 0025 L0347 -, 0695
5113 -.0032 . 0363 -. 0726

1
=7
* %1 %1 GP

5313 -.0089 .0376 -, 0754
+5513 - 0147 .0388 -.0778
S5T13 ~. 0204 . 0398 ~. 0800
5913 -. 0261 . 0406 -.0818!
6113 -.0%18 o2 -. 0834
6313 - 0375 L0116 -. 0846
6513 -, 0l32 . 0420 -.0859
6713 | -, 0489 L0423 | -,0869
L6913 | -, 0547 L0425 -. 0880

S LT113 | -. 0604 .0427 | -.0890
L1313 -. 0661 . 0429 -.0901
513 -. 0718 . 0430 -,0912
LTT13 - OTT5 . 0431 -. 0923
. 7887 -.0825 LOlz2 -.0931
. 7887 ~, 0825 -, 0l32 +,0795
.8087 -.0882 -.0l%2 . 0786
.8287 -.0939 -. 0434 . 0780
8487 -, 0996 - ;0438 LOTTT
. 8687 -, 1053 -. 0445 0778
.8887 -, 11N -. 0458 . 0793
.9087 -.1168 -. 0488 . 0840
.9287 -.1225 -. 545 . 0941
L9487 -, 1282 ~. 0631 .1098
.9687 -.1339 -. 0753 L1327
.9887 -. 1396 -. 0975
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CHAPTER. L.
IAPTER L.,

Introduction. .

Sirce it is generally ilmpossible by theorstical means to predict the
performance of an aircraft the aircraft designer has to rely on experimental
data obtained in wind tunnels. The desgigner can then establish the laws of
gimilarity between the flow about the model in the wind tunnel and that aboutb
the actual aircraft by means of theorctical rcasoninge

It ie relatively easy to test the model in a closed tunnel or in a frac

ot of alr when the speeds arc well below sonic speed. In this casc the

T

significent similarity parameter is the Reynolds number. However in order
to obtain complete gimilarity at high subsonic speeds a gecond sinmllarity
paraneter, which is o function of the upstream Mach number and body thickness,
must be congidered. Tests nust now be performed at a porticular Mach and
Reynolds number for a gilven body.

The principal difference between the flow about an aircrait f£lring in the
atmosphere and the flow about iks model in a wind tunnel, if thc acrodynamic
similarity parameters are the same, is caused by the finite lateral extension
of the tunnel airstream. It can be shown that in a conventional wind tunnel
this difference increases as the speed of sound is approached. Moreover, if a
test sectlion with solid walls is used, at a cortain subsconic Méch nunber the
model will cause the same effect as the throat of a Laval Nozzle. The speed
of the upstrcam flow cannot be increascd without change of upstream density, and
the tunnel is then said to be choked. Thorefore for an appreciable range of
high subsonic gpeeds no testing is possible in a closed tunnel.

We will now consider the streamline patterns of flows at subsonic speeds
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about scoxe body in free flight, in a solid straight walled tunnel and io & Zree

cause the streamlines of the parallel flow to be deflected in such a wer vhet
the mazs flow inside a stream tube remains constant, and the centrifugal forces
cavsed by the streamline curvature are in equilibrium with the pressure forces.
If the ianfinite parallel flow is replaced by a finite stream surrounded by
solid straight walls, as will be the case in a wind tunnel, the streamlines
forming tae flow about the body are squeezed together more tnaa they would be
in free flight. This wall interference introduces changes in the pressure
distribution over the body and leads in some cases to the phenomenon of choking.
In the open jet type of wind tunnel the boundary is air at rest, which fact has
the consequence that the curvature of the outside streamlines becomes greater
than that of an infinite free stream, in order to balance the forces caused by
the body since there is no longer any outside flow to resist the deformation.
The flow pattern obtained is therefore one in which the streamlines are further
apart than for free flight. This type of interference in which the distance
between streamlines 1s effected by the boundary of the flow is called blockage
interference.

In subsonic flow one can usually compensate for this effect by applying
a correction factor., The body behaves as 1f it were tested at a higher or lower
speed th?p that measured in the tunnel, depending on the type of boundary used.
However in high subsonic flow the tunnel may be choked oxr a section of the
desired speed range may be lost becuase of the change in character of the
governing equations as the speed of sound is passed. It is therefore the
removal of the blockage interference that is of the most importance in the

design of & high subsonic wind tunnel,
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onc method used to eliminate blockege interforence is the use of flexible
walls wiich can be setb to lie along the streamline that would ocecur in the
infinite stream, The main disadvantage of this method lies in the time
required to set the walls as a new setting is required for each Mach number.

Since golid straight walls and open jet boundaries influcnce the stream—
lines in opposite manners a possible solution of the problem for the climination
of the blockage interference should be obtaincd by using a boundary which is a
combination of thesc two.  This combination has led to the use of a straight
walled tunnel with a finite glotted section along it and hence to a straight
walled tunnel with a finite porous section along it.

4 mathematical theory was developed by L.C. Woods (1) enabling wind
tunnels with porous walls to be designed to give zero blockage interfercnce
in subsonic incompressible flow. The tunncl walls are taken to be porous
over a finite range R and solid everywhcre else, and a sealed jacket is
placed over the porous section so that the pressure on the outside wall can
be contiolled. The porous wall is assumed to have the characteristic that
the component of the velocity normal to the wall is proportional to the pressure
drop acroge it, the constant of proporticnality b being termed the porosity
of the walle It has been shown by Preston and Rawcliffe (2) that it is
possible to design a porous wall obeying this linear law. In the paper by
L.C. Woods the relationghip between the tunnel width H, the Mach number M,

A and R was found so that the blockage interference was zero. This
relationship showed that for a given valuc of the porosity the length of the
porous section must be reduced when the Mach nunber is increased to keep the
zero blockage interference. Thus the tunnel nceds to be fitted with adjust-
able scctions of solid wall which can be moved across porousg surfaces to

reduce thelr effective length.




Yinco .bue flow patierns obtained for incompressible subgonic are gimilar
to those for compressible subgonic flow the overall design characteristics of
a high su*sonic wind tunnel for zero blocksge interference will be similar to
the one obtained by L.C. Woods.

The problem considered in the following analysis is the design of a straight
walled wind tunnel with a finite porous section to give zero blockages inbterw
ferenne in high subsonic compregsible flow.

Since we are dealing with the flow past a slender body, the transonic
small disturbance flow equation, which is a first order approximstion of the
exact transonic flow equation is taken as the governing equation. The hodograph
method 1s used in this problem to obtain a golution of this approximate equation.
In this method the trangonic small disturbance flow equation is transformed
into a second order linear partiasl differential equation, viz. Tricomi's equation,
by interchanging the dependent and independent variables. The solutions of the
linear equation are first order approximations of the solutions for the flow of
an ideal gag.

In the following analysis it ig assumed that a solution tc this problem
can be determined by a perturbation from the solution obtained by Helliwell (4)
for a channel with solid walls. This solution was obtained by using Tricomifs
equation and is therefore a first order approximation of the solution for the
flow of an ideal gas. Thus our solution may not be strictly justified for the
flow of an ideal gas gince the approximations made in obbtaining the perturbations
are of the same order as those made in deriving Tricomi's equation.  However

Tricomi's equation is the exact equation which governs the flow of a "Tricomi'




gas. The propertiss of this gas in the neighbourhood of the spoed of sound
are very similar to thogse for an ideal gas. (sce e.g. Bers(9)) For such a

gas our golution will be strictly correct to first order.
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CHAPTER 2

THE BASIC EQUATTONS OF TRANSONIC FLOW

Transonic flow is saild to occur when the velocity of the fluild particles
in some reglon of the flow is little different from the velocity of sound.
The fluid we are considering is assumed to be é non-viscous, non-heat conduct-
ing perfect gas to which the adiabatic gas law applies. The motion is supposed
to be steady, irrotational and dependent upon no external -forces for its support.
The basic equations of continuity and momentum governing the flow have been
obtained earlier in Part I of this thesis. In terms of the velocity (q),
density (P)’ pressure (p) and speed of sound (a) in the fluid these equations

take the form

o{w-(gc&) = 0O 5 (1)
%V% + ’%‘Vs?:G; (2)
and ¢ \7(‘5{5(,) -a V % = Q. (3)

PEPTURBATTON VELOCITIES

We will now assume that we have a uniform steady flow whose velocity is U
and direction of flow is parallel to the X-axis of the two-dimensional coordinate
system. If we now place in this flow, along the X-axis, a slender body with a
smooth surfacs the disturbances caused to the uniform flow by the body will be

small apart from the small region near the stagnation point at the nose of the

body.
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Then we may write,

U = the component of velocity in X-direction = Uy (1 + u'),

v

Hi
il

the component of velocity in Y-direction = Uyv',
Therefore q=U0i(1 +u') L+ Uv'j,
where 1 and j are the unit vectors in the direction of the X and Y axes

respectively.

THE EQUATION OF MOTION IN TERMS OF THE PERTURBATION VELOCITIES

On using the condition that the flow is irrotaticnal we obtain the

relationship ‘
v D
X 7Y - (%)

From equation (2) and using the flow conditions at infinity upstream, viz

q = Uil and a = a3, we obtain Bernoulli's Equation

a®

i .43 O i, 3
= + = = U e
x 9 ¥ 2 T (5)
On substituting for g in equation (3) and using equations (4), (5) and
the fact that as w'U and v'U are small compared with U; and a,, squares and
higher powers of them may be neglected by comparison with U§ and a?. By a

similar development to that of Part I we obtain,
D 2 3 7 )V‘_, TVC N EVERA
3% =0+, ]+ v [Igw)u.m f=-avM % ()

where M is the local Mach number of the flow, and suffix (1) here and hereafter
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rercrs Lo conditions Infinitely far upstrean.

LB TRANSCNIC FQUATION FOR FLOWS WITH HIGH SUBSONIC VELOGITIED

We will now consider the particular case where the upstrean velocity of
the fluid is a little less than the velocity of sound, so that My < 1 and 1 - M}

is small, Now let u' be of the order &€ , v' be of the order of 5“”, 5; be of

the order C% ’ 2 be of the order Ed, and (1 - M?) be of the order {_‘ewhere £

Y

is small and a, b, d and e are positive, Therefore on applying these orders

of magnitude to the terms in equations (4) and (6) we see that
a*% +d

3 = &

H&*Q 2+ {. dra+d ,&*J 1+ d
& + £ * + £ = ¢ _

In the second equation as the two terms whose orders of magnitude are

rard

E &7 are of a higher order than the term whose order of magnitude is
o+d

¢ they can be neglected. Thus"

d

f+e 4+ .
€ +¢'a+gr+a“ = ¢

From the first equation we see that

a+b=1+4d,

-.o d.=a+.b""|
Hence the last equation becomes
h«ﬂ.-r@ ;HQ da+ Qr“‘
+ £ + £ = O

The index b 1s common, thus
i+ &

2
& +& *£ =
In the most general case all 3 terms will be present, Therefore g must e -8

and e must equal 1. These values for a and e show that u' and 1 - Mf are of

the same order of magnitude and that the disturbances in the transverse
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dili reblion will be less than those in the horigzontal direction.

Iha transonic small disturbance equaetion for two dimensional flow is

)%l 3 ) - 'Q . )’U.t —
2 [mt-trgnie] v o= o (7)
P 2
Now let A= =M - e M7 (&)
and Ar = LY Phafxsn (9)

Subgstitubtion of these values in (4) and (7) gives

Ly

dY X 9 (10)
Ju _ O .

N 5y 0. (11)

It is not possible to obtain an exact analytic solution of the above

equations, However it is possible to transform the equatlions into linear

ones. This is accomplished by the hodograph transformstion in which the

dependent end independent variables are interchanged.

Thus we take

>< = X(U..)"\J) 2 (12)
a,ndI = I(u,‘\*') . (13)

3
Solving the simultaneous equations in %%% and. -S%E obtained by differentiating

equations (12) and (13) w.r.t. X we find

2= /s,

3X
ALVREe) §
and Y = ™ / TAY 5
vhere . AIX DX
A et D“* D‘U‘
Y Y
MW S
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o 3dmllar manner we find —)—i'f - - OX A
dYY dnr A >
3 pEV) IX /
and = o= T
3Y Jw
Therefore substituting these values in (10) and (11) we get
X DY .
Sl v "
I A 2 (14)
dY J X
S R (19)

so long us /) # 0. The special case A = O is referred to later.
To eriminate X from (14) and (15) we differentiate (14) w.r.t. u and

(15) w.r.t. v and add. Thus

VY Y
-;S—;a + AL S T o . (16)

This is the equation of Tricomi and is elliptic, parsbolic or hyperbolic
eccording as u is greater than, equal to or less Than zero. The relationship

between u and M is now found.

RELATTONSHTP BETWEEN u and M

We have previously defined U= U‘(‘ V= u,f) and V= Ui 'l
R 2 .3
a \Jla(l-i» U..) + U, J
- >
CJA
a2
L ;
o =% (l'f‘ Qu') 3
Q.
4 a
M a
- 1 $ i
- ag (l + 24&) . (.l.-r)
2

To evaluate 5.%‘1 we return to equation (6) which gives

! [

! P . R
R DA O I




2

A
b (-0 o M al+ LUt

i

' Q) y A
w330 5 P 530 M, (18)

1]

iRy

2
Substituting for ,:a from equation (17) we obtain

(lrQu M"‘ [l+ (Xf)M] = ].,._i( ¥ i) MIQ
Now 1 w - (1~ M‘q)
M\a(x+‘)

AL

]
)

L
M,
- L 2? -H)Mm ] M2 [I*%(X"')Ma] = "’"%(K"’)Mua

2
b+ + ~1
Mrﬂﬂﬁ-f#?”ﬂ- (19)
g (- M
qa. ™M >
From equation (17) to zero order of approximation we see that 53~ *F:'ILQ
Therefore equa.tion (18) to zero order is
M ! [ SN | 2
Mu (X") Mn - br 'f,f(X'*l) M, .
Therefore to zero order approximation M; = M, and hence
M= =M (20)

As in subsequent development we shal.l he interested in flows which have
velocities no higher than sonic velocity u will always have a non-negative
value,

Now/\ = O corresponds to a limiting line in the mapping from the hodograph
plane back to the physical plane., It is known that the limiting line is the
envelope of one set of characteristics of the governing equation for the flow.
Thus in flows which are entirely subsonic limit lines cannot occur, /A £ O
except possibly at exceptional points, and the hodograph transformetion is valid

since the relevant differential equation is everywhere elliptic,
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ELEMENTARY SCLITIONS OF TRICOMI'S BQUATION

If a new variable r defined by

. A 3a 2, a %ﬁ&
T = T 47 = 3“(!«1\1)3 (21)

is introduced cimple solutions of Tricomi's Equation can be obtained by
separation of variables., Egquation (16) now becomes

SY o, LodY MY

dv? T4 v T O3am T O (22)

y
3
By setting )f = Y %ﬂ(ﬁBVQSOIutions of equation (22) can be found by

ceparation of the variables and lead to solutions of the type

Y = '*1:“/,4s ‘Q.i’/\.w‘gt ,/30"‘")

where %%*?‘Aﬁj io any linear combination of Bessel Functions of order # VB
- 3 ‘
and )\ is a constant, either real or imaginary.

(23)

BOUNDARY CONDITIONS

I BSOLID SURFACES

For a fluid there can be no flow through a solid surface, but for a non-

vigeous fluid slip past the solid surface may occur. If the equation of the

surface is £(X,Y) = 0, then the condition of zero velocity normal to the surface

9. vg(x,z) -0,
) 3

lJ,(f* ‘Af) S{% 4-{%'\f S = O
5

o= Eit since u' can be neglected
d Y’ asc it 1s small compared

dY with unity

d X

yields

{i

1

slope of surface. (24)
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Tob NJ = (Ff+[) Pﬁtvaj
Toecsforz cn all solid surfaces the boundary condition 1s glv un by
SERYL bta x  the slope of the surface,
(a) If the surfaces are parallel o the X axls the boundary cculition ls given
by
v =0 (25)
(b) Tor a slender wedge whose seml~-angle is % and whose nose is et the origin

of lhe coordinate system the equation of the face is glven by }_”: S X

Yy
’]f/(ﬂ >
Therefore the boundary condition on the face of the wedge is given by
a
Gren M s,

No o, (say) (26)

v

1

IT POROUS WALLS

Z._,
W-—-J'-—-—--—-—-——. . e e wem s -
3

A .
ey

Conslder a wall bounding the fluld snd lying parallel to tl.» flow far
upstresm;, in which there occurs e porous section from A to B, Let there be a
chamber behind the porous wall in which the fluid can be maintained at a
constant pressure t@ by means of pumps. It has béen shown [6] tﬁaﬁ the
boundary condition on the porous wall is homogeneous because of the viscous
efflects of the fluld there and that the pressure drop across the wall is
proportional to the normel component of the fluid velocity at tlhe porous wall.
Thus along the section AB we shall assume the following relatiounship between

the velocity and pressure.
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vz b k) (27)

'W‘he.ccev) is o constant of proportionality,
= (p-b) - (pe-b] (28)

Iron the adiahatic gas law we have

b-b = b U—%)Kmil (29)

and from equation (5) we have

\ G, 1Y A s (50)
2
7 D opeg)”

Therafore on substituting the expression for (%)X in equation (29) we

obtain
‘9” l’l = %i (Una‘“‘f/a))

I N Y S T
_.i_i.[(/‘ -0 (1Y - U v L

A *
T —p U u, a8 «' and ' can be neglected

= —-5-—L~?'Uq [u.~u1 (31)
M)
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where M.l = i-—M.,a

o 0F - oy e
-G iy [ ] (s2)

Therefore on subgtituting for this expression in equation (28) we fing

@% Y, .
—_— @-%’ (") = (he-p)].

i
e
R -
!
=
9)
[
o
2

g
fo )

T A
it IH
—~ e )

r ~
' e
o
==

THE STREAM FUNCTION

From the equation of continuity (1) in the case of two dimensional Fflow
eov) dpVv)
J X dY

Since this is the condition that gUde ?\/ot.)( is & perfect differentisa’

there exists a function "f’ such that

we have

dV = gUdY —gVvdXx . (35)
Pl 4 -
¢V= Y end =gV =Ry

In steady motion the particle paths coincide with the streamlines, and on a

ax _ 4y

gy ?V

streamline

{
o




S s T
oV dx = eUdY
Therefor2 on a shrzamline Ci"‘f" =
l.e. '\f’ = constant.
Thercfore ¥ = constant gives the streamlines, and "V is called the
stream-{finetion.

Now equation (35) gives

01./\}’,3-" ?U.(H »u") d}_’ - gUl'v' A X

= oU dY + g>U,u.'dY -?ul.ﬂu'c&x‘
In the above equation the second and third terms can be neglected as thay

are small when compared with the first term.

(',l"{':: ?U, (LY

Y

. -

Y = S 9U'JY , vwhere A is any constant.
A .

Since at any point in the flow the velocity differs by terms of first
order Trom thet at infinity upstream the density p will also differ by first

order tsrms from py. Thus to terms of zero order p may be replaced by p: in
in the above integral, Y
. (=
S AR
A
Now if the line Y = 0 is taken as ¥ = O,

¥ o= o Y

e " (36)

FREE_STREAMLINES

e X AN

Bernoulli's equation along a streamline is L =

Now if a streamline divides the flow into two regions :D and D, we have
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o2y ~ . L oa, 5
29 * ¥ g R LA ¥- g}} =G

en bhe corglitions of flow on the streamlines in the regions‘j) and D respective.
If P is & point on the dividing streamline, and we approach P from the region g)
the pressure takes a value p;, the velocity a value gy and the density a value
p1. Similarly by approaching P from the region D the corresponding values are

Pz, dz and pp. Therefore at P the equations are

"g‘ T ¥ g VI
a 1 2 L X
= ERE MR 9’1’ = Gy

But the pressure must be continuous at P,
i.eu Pl = P2|
Now 1f pi = pp then p; must equal pp in view of the adiwbatic gas law.

Thus
qf - qg = a constant.

This equation shows that the velocities in the two reglons are not con-
tinuous unless the constant in the above equation is zero., In particular if
one of the regions is at rest (i.e. s = 0) the streamline which separates the
fluid in motlion from the fluid at rest is called a free streamline. The
properties of a free streamline are that the pressure, veloeity, density and

stream-function are constant along it.

TIE PRESSURE COEFFLCIENT

The pressure coefficient (3b is defined by
Cp = _'lb - F'a
P R Ul
On substitution for p - py from equation (31) we obtain

-

a -
I G&’ " () P;l,atuhu‘;] " (37)




LI DIRAC CORPETCT N

The drag coefficient over a surface GD is defined by

Drag over the surface ‘

D Free stream dynsmic pressure x a suitable length
a

%. Qlua 2

Consider a plane surface inclined at an angle (.p to the -axis as shown

H

in ‘the figure below

\ @ wake

—— o ) L 3 Xeaxis

- ey So— ———

It is customary to define the drag over the surface as the force exerted
upon it by the excess pressure difference (p - p1). Thus over an element $S

of the surface there arises an element of drag SD given by
QD = u;-&h)_g& /.lul.«(v 5
=(b-b) tam . SX,

which for a slender body, since tan ¢ = g—;ﬁ where ¥ = g(x) in the equation of

SD ={k~bj:§%f%x“

For o slender wedge whose semi~-angle i1s 5 and whose nose is at the origin

the surface, becomes

of the coordinate system the equation of the face is given by Y= X .

Therefore the drag over a single face of the wedge of lengbh £ is given by
p
- X
D:— §‘\b”}’|)%v&x
2
G s SI‘J (}1- })‘)% CLX

D
Toud

J

i

L
n
y) g QY"%' Cb(.
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2% ¢ '
T e e M-, from eguation (57\.
e ) A% :
But X = X(T )’V} .
% OX
<A = ij; Jn' + 3“‘ Amw
But on the face of a wedge
N = Ay
AX
(ix = (3"’;) OL’(.
: WL

If the values of r at the nose and shoulder of the wedge are r and v

respectively, then

\2/3 - Im
. @)% %) de o]
o Q) M2 ] 5;"' ( 3“"1\;:%: T |

Now it is an experimental fact that for transonic flow past a wedge sonic
velocity occurs at the shoulder. Therefore at the shoulder u = 0, and hence
r =0,
S !
At the nose of the wedge there is a stagnation point. This means that
¢
M = 0 and the value of u is of the order & . Therefore as the magnitude of

u at the stagnation point is of lower order than that assumed for u in the

theory, the value of u at the nose of the wedge is taken as . Hence r, =
and
3)'3/3 -2 2%
G = __La_‘__‘;! 2 l § ( ) (lfr' + Ar
D (X""l) M . U ’V'-:"V‘} (58)




CHAPTER 3.

L Investigation of High Subsonic Flow past a Wedge in a Lhannel of which
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Ehysical Flane.

The channel has a semi-width K and the porous section of the channel
walls is from F to B, The chamber behind the porous wall heaz been

designed so thal the pressure of the fluid can be kept at a constant value

Pﬁ by means of pumps. The slender wedge of unit length and semi-angle

e

5 1s symmetrically placed at zero angle of attack in the channel with its

nose at the origin (A) of the co~ordinate system (X,7)

The dividing streamline ¥ = O comes from infinity upstream (0)
where the fluid has Mach number M, and associated T =-~f and is parallel

to the channel wall until it resches the nose of the wedge at the stagnation
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point 4. T e streamline then divides and as the flow is symmetrical about

tas Xoexls only the upper part of the strecamline is now considsred.  After A
tiae sbreamline goes along the face of the wedze to the shoulder at B where

tone fluid velocity bpecomes sonic. The streamline then breaks away freely

from the wedge and the fluid velocity remains sonic until the streamline

agaln beconmesg parallel to the channel wall at C. It then continues parallel
to the channel wall to infinity downstream and the fluid velocity decreases

so that its Moch number and associated ~ value at infinity downstream (D)
become P1a and 5 respectivels. 'This form for the streamline leaviag
the shoulder has been baken because it has been shown by Roshko (3) in studies
of flow of incompressible fluids that it gave a better aggrement with exper-
imental rcsults than the standard form used by Kirchkoff and delmholtz in which
the flow breaks away from the sghoulder with the shoulder velocity and keeps
tiils velocity to infiiLity downsbream.  Since subsonic compressivle flows and
incompressible flows have similar behaviour it is assumed that the Roshko form
will agein give the better cgreement.

On the solid walls of the channel from O to F and & to D the value

———

of the stream function "f’ is i{ and K} regpectively. Along
the porous gectlon FE the stream function will be a variable function of

position depending essentially upon the rate at which fluid passes from the

channel into the chamber behind FE.

From equation (R7) we see that the boundary condition on the solid wall
of the channel from O to F and B to D, and on the dividing streamline rv*: 1

from O to A and C to D is given by A= . The bdundary condition on




S o 1 -
the faco of the wedge (A to B) is given by ~JS= J, as shown by eguation (28).
Along the porous section ¢f the channel wall from F to E the boundary condition
is given by A=) Flv) as shown by equation (34).

It is known that for the flow past a wedge in a channel with solid walls
the fluid accelerates along the channel wall from infinity upstream to
infinity downstream. As we will be determining the soluticn of the porous
wall problem as a perturbation from the solution in the case of a solid wall
we impose the condition that the fluid in the chamnel with porous walls
still accelerates along the channel wall from infinity upstream to infinity
downstream. Thercfore, if the wvalues of ~+ ot T and B are "fg and

Ty

respectively, T, > rr’s > TP Ty
The boundary value problem is now selb up in the hodograph plane which

is shown in the fugure below

A
v; Y=o

B M
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For a wedze of the same dimengions placed in a similar position

in a channel with solid walls, and using the same notation, the hodograph
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plane and boundary values are shown in the diagrem ag descri..i in an
earlisr peper (4) by J.B. Helliwell, The suffix (0) here and hereafter
will be cssoclated with the solution for the wedge in the chonnel with

golid walls.

) M=o | :
f\l["’ u—lsn vy R : ) . ——
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/\f'J =0 A g N !\llja = t.:,.
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The boundary conditions are as follows,
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Vo= k £, 4 T A= 0

On comparisun of these two figures we see that the boundary value
problem for the wedge in a channel with porous walls is similar to the
boundary-value problem for the wedge in a channel with solid walls.

We now look more closely at the boundary conditions on the wall of the
channel with the porous section. Now as some fluld has either been pushed

into or sucked out of the chamber behind the porous waoll the streamline

w
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”ﬂ*::]( will eiltice have gene into thils cnaimber or have been puched out

intos the main stroeam, It heg boen shown by Le.o. Woods (1) that im the

K

case of an incompressible flow tho value of Y could be taken a <

w“

onn tie wall of the chemmnel fron infinity downstrean to infinity upsiream
without incurring more than a secoud order error term provided thse anount
of fiuvid pumped into or sucked out of the chamber is of first order magnitude
when compared with the amount of fluid passing through the channel. Since
supsonic compressible flows and incompressible flows have ginilar benaviour
: hogmuend .
the value cof '61/ on the channel wall is taken as ]<: (3ce Appendix I.)
It has alresdy been shown by equation (36) that ’NF X tf{
Therefore the boundary conditiong in terms of lﬁf for the wedg: in a channel

witn porous walls arc

Y = o T2 0 V=N
Y = o0 T= 0 OV
Y = Kk Tye TN, T <Tew, V=0 >

Y = K A R '1):=47,F:Lf) ,‘-

In the case of the wudge in a channel with solid walls the boundary

conditions in terms of T[O are
Q
Y = O T= O 0NN,
Q
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YU = QO OF T <y A>T, A= ¢
N '. =
o 7 K T < T=T ©

Since 'q is small 1t means that the houndory conditions are very

similar. Thus it will be assumed that the golution of the sresent problem

may be devermined by a perturbation from the solution for a channsl with

golid wells,; and that we nmay write

Y o= Ly

where ’7 is the small parametcr already defined.

~ T = . - - /
By means of a Taylor Series in ~J the value of j{ on W= O

butween E and F can now be found from \/'PT'ﬂﬂ) - P/
=N
'-‘L'U:’r;!:(w')
p MY .
D 40T R S L - K
: DXy ¢ .
Yo » |5 ﬂf‘”’?-’(”")* =K
Ao
- Y, -0\
Yl = K [ ] e o
-y k” + /r) . (_'r) 5
where P
D) = (L) Fe.
)"U'/ﬂ‘);c
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Thv: boundary value problem in tho hedogrepa plane may ncw be given

feor mb, o It is shown in the following fizurc

| - o .,
V! o4 - H

/

¥

Ly e w0 o gee
¢ D E i ° R
n v, T "

The boundary conditions arc ss follows-)

/\;} = O Yz 0 T AL
,\3—: Q = 0 G2 2,
/\gxo O € e nVEO,
/\g = A EAy ~wEo,
=40 T T e o

- ’
Since }f _and }LO satisfy Triconi's equabtion so also must "?r \
Thereforc from equation (26) and using the boundary conditions on ~Jw=a/,

and "= ¢  the solution for AJA, may be written in the form

o0}

> '&)\(m}«-*ﬂ
% — ATEY )
43, = § ca(/\) ~+ J{{(.\ﬁ‘) ) >m)0 ckk

(39)
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The fvnetion 63(,\) is found from the boundary condition on ~u = .

Tl

o0
S} :’)(\) f3 SJ(X”) C)‘>‘ = 0, O v,
o 3
= %("") A‘Nkéfr'é Ty
= Q , T =

By mcans of the Hankel Inversion Formula we f£ind

g;,(,\) = Sﬁ} %(*) 3O dee (34

Ty

4
. . Y L a s
The geries expression for .. . valid in the range T, LT v,

can be obteined from the paper (4) by J.B. Helliwell so that the expressions

for %h) and hence cg(')\) and ma, can be found. The scries form for \f o

is taken rather than the integral form to avoid difficulties in the subsequoent

EyaASS

mendipuletions. Thus
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A8 the above cxpression for fu}‘ could not be cvaluated directly the

orders of integration and summation of the series werc interchanged
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For '1“4‘6' let us consider the contour integral

wvr (1= 55 )

W= o eIk (T dv

5Ty M i YT 2
<

vhere D is a consbtant and the comtour C in the complex v -plane gocs from
~h ot to 44 ob along the imaginary axis, is indented at the origin by
the small gsemi~circle (s) and is closed by the right hand infinite semi-

cirele( (" )
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On the infinitesinal scmi~circle set o= g) Z. then
T 6 & agetr- %)
3 r- a T o - o a <
i : 2,

g Jdv - Sga 'L’( K/( Vo ") A (0 e %) °3 4 >
§ 3
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For small valueg of ? the integral becomes

T .Q_{ '/'5 .
Aol YR LG
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ool ¢ £°1) b Do (T) P (2) (%)
As Q = O the value of tho integral -——=
Thereforce the contribution to W from the indentation at the origin is zero
®
On the infinite semi~cirele (7 ) set V= R 2 then
' Q v R-?fgﬁ'“'%
& - Re. R : ‘ B
> Co @ T ) 1) 2 RO
— v ; L KL o
g( Jdv = JKe I"i( K ( 2 (R2°T)
P z |

Yor largc values of R the integral becomes
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Now at @ = O for large values of R the integrand is

-TR ov)  irw(1- %
R, 2 L 2 ( )

Ty [T o]

- TR : o
T RS
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‘ﬂ‘(»r,}’{/“[ | - Q—ax_ R’ﬂ'}

Therefore the integrand —> 0 as R - « through non-integer values at 6 = O,

—
—

In the range 0 < @ = n/z, sin 6 = a and cos & = b where a and b are both

+ve.
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In the range -"{i‘w@“-() p G @ = w0

where @ and E are +ve .
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Bt | (-, "”’"é) is symotrical in v and 3o

b
N YA - SY Tn
S h ).L(/\T) 3;‘(’\?) e N, dr= = 1/t ( '\/:{)}ﬁ(mf\j:) “““C‘n/,)
o 3 57 ¢ o I < 3 '
if *r‘:,% and << Qayg

The %, v Co-—ordinates

On returning to the co-ordinates (x,y) of the field of flow, ingertion of

the series form for L(T,‘V,%) into the previous expressions for «3, yvields

o | X
ki 5’%?— i”ﬁt(%)“&%)ﬁ Ig/ P K, (—‘l)rlb/ (40)

for £ < Y

ZlTT*::fj & (} TT“) | K U?_I_F_"r' g’f ()
A VIR JE ,( K d,

*”(fﬂ)gﬁ%()‘,(;ﬁi 1 )

13, U 2 b ;.2 % -.—:?j QJ N for Tlf{'r{rrs 5
h e o :,1:3 o

- 5T b kED VP IR W

for = "(3 )
where the function {2 (’é) is given by equation (40)

Now x and y are related by the equations (14) and (15) which on the
3 A% 2/
(a) o

substitution of for A, become:
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RERE) 5 s "
Jr - L’R v dr > “le
dx B
and - = (-13) . ki respectively (45)
a"r \2 )'\r
Therefore considering the range 0% v« Ty Ve obtain {rom

equations (41) and (45)

'/ 2/ :;-Q 5h v ’fz 3 W
S Bz R A5 § 5 TR (E
¥ l’-
'l; B ey i .,‘Z‘i — ¥ v - .
x <8 b T ) § i (v
v "fL" o

where Vl‘\l) is any continuous function

of Af .
But from equations (41) and (46)
13
'1,3 3}/ ‘gb “T T SJ LE b
B ) B2 PR USRI,
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we obtain from equation (43) and (44)

1 B (e ) )T, (0

ho o 2 . e NV -
X = ~i§)“"/*~%1§)f‘.n})' \\%(b—;\%ﬂ) m\h’i—) s %/ gfé,}l;‘_(tgjéj})a gl-)
et G2 ) J{%(t“’")wi*’““) iy AL TR

where R ’1‘) is any continucus function

Of ‘,{-- ‘

sut from equations (43) and (45)

. Y
w () 2 b )k E)eo ) (T, (T,
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I'or the range ‘T’ < T < Ty we obtain from equation (42)

3% ) /B(W)Z*’ %}gf)/w:h.)g’
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as the two apparently divergent sums cancel each othere Therefore using
equation (44 ) we obtain
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But from equations (42) and (45)
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where D is a constant



Pl [s] - ,\}U J__ (4] (/\%
k:} ‘é“ YL!_ 3
i 24 ! . .
2P BTN Sy o (BT T (BT €3 )
-4-(‘“)1” ,a/}’e"’nb})' -\ 2 1)}\/(““35:qu
] Ny e v LV, 3 ERSCA ad
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(50)
Now ){ = Xu'!' " x and ab the noge of the wedge X = 0,
Xz=0 , = oca and hence X = O »  Thercfore from ecuation (49)
O = 0 =+ 4
3= O
Now X o e&nd X are continuous for all values of -1~ .
Thercfore X i1s continuous for all values of ~N" From equation

(47) the value 2 tends to as -3 o is

. T, 1) 6 ) AR
p ER ~Qf'

+ R

P
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cnd {ron cguation (50) the value X tends to as A~ TL- isg

LE
/3 5"3: = bl 13;/ W b, /3 e
@} 4 gu'\”/ l’ %K ) A '))“";;t ),> 0 gf(é)]%(“?uy')% &) Iﬁi f{jﬁi‘p

3 14 )
But thesc two values of X must be cqual
s K
- B L el s
A = b) v, 8’ 9 u‘((i") cmp .

is T > Ty the value ¢ tends to from equation (50) is

h 3% ()& P bl & b7 /s (fﬁ/

3 Y T AT 3D/ ’ 2

3\ A (A < ( V1 k- T})Y : ) 3T\ B
£ (a;;a)g-,l’-“w K WL Y
= 3 L,-L

end the value X tends to from equation (49) is

B ham e T bl T
-(53; ™ (;—\-’:i) f” b c@i{—i) ia(k'g&f),( 5 3%(33) ,L%( F«?) QLB
=1 T‘i“ Li.

But these two values of X must be equal

and hence
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Lolleeting the various expressions, we heve the following form:

X which are all valid in the ronge O < U< A,
Tn tac range 0= T< "r‘*
11/3 2/— -~ AT (24 - ; . A{}Q . T
sl ) & T '}:T[r'\ﬁ /3 _,
x =B+ (BR) 2 b el TR0 ) 2 b k(B 4
P 3 T 3
s i
B+ Oy 4
7l ,&3 AR (51)
f"‘i"lr..z‘ ¥ < 'f3 5
v A 50 - . ;1/ . ~ -
/3 a’ﬂ*’ b’n.’\“ 1EY g 3 : Ld )
x = -3 (";;;;)ZIJ 3 (“‘;gj')ﬁw(%) g(g)lf,f\ 7 daa,
I A b 3
-
l 3 S pTTr Pl > s T
SR DA SRR A L L

y N |
- %} 3' %’: ,(%. Y ’ g{‘L) Ay > (52)



The integrals S) %%3 _%._ bﬂé) ‘/‘i’% > SJ * | %) J\,L-(\ b%—;%) J?(“l

if
snd ? 3 & OI ) )4{/ can be evalurted analytically but cg the
v

exprcessiong are very long and complex they h-ve not been shown here.

The = - co-ordinate at the wedge shoulder.

Lt the shoulder of the wedge where Y= ¢ and N oA, the
velue of x ‘there, say A, , could be found from equetion (51).
However this expansion for X, is very complex. In order to find a

legs complex form for x, Wwe go back to the integral form for x

Now equation (39) gives

R
- - “jl { S ‘ : )
i § %(;\) K 3 >) PSS I Vo

N

and X  and Ny are related by equations (44) and (45).

From equations (39) and (45) we obtain

N ~(’3')l/}'v% f\ o 7, 0m sk )y

N .3~ 3 M& ”Uo

2

o - (__3_)'/1-9/3 ?}3(» 7,00 eod M) gy Lyl

. indh N u,

o 5 AN
3% 3 S M, =) .
and. Sv \ % *X ) 2 )J\ >\ O{X +V (‘\J)’,

where V(“V) is any continuous function of ~J .
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But from cquations (39) and (44)

b & in ) Move =)
o _ R *
S—% = "(:z) ¥ g Xc&(h). 3_% (M) o N A

vinY = o .

and hence \/(”V) = g consbtant =4

‘/3 . ) >\( "-’o""‘-’)
= E%) fP%G g;fé())~.j;%(>* cAnJD ﬂ_B\ml OL)» + A

Now on the face of the wedge AS= U, and onsubstituting for ﬁB()J

the expregsion given by equation (39" ) we obtain

b.,”g 3,000 edbed S T + 0

Lo order to simplify the integraticn in the above expression the order

of integration hasg been interchanged. "hus

s oy
"i“(a) /S g&)gkt{% %\T)Cﬂﬁﬂ«j Av) ). OLn

+ 1. (54)
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The constant 4 1s determined from the fect that at the nose of the wedge

= O and T o0 The value of 2 at the shouller where

can then be found by substituting this value of -y~
equation (54)

" &

i

in

3/3 ..'J
Evaluastion of the Integral T{T"r %’) = T 5(} XJ’) j O‘ C,d'm&\(\ Ve

L
3

de will first consider the value of T(“"’,’é) as v - wd

Let i:": :'\

.
Z\ffﬂ ,t
Tlag) = 8 £ T, (07, ) ek (50) &
'G {\“-‘-0 3 3
At N = o0 t: I~ 5
. }
and ot A= 0 tzo

I%: L= o0 o.t A= 0O,

Tl,3) =

For all values of i in the range O < i < o0 the valuc of the
integrand ig finite. In the neighbourhood of i T 0o, T(ﬂj 5)

R
behaves like g 'Q.' /’Azt

T(~3)

L]

Therefore the conbributicn to

from the lower limit is zero. Near t'«‘ aDJ 'T('T,ér) behaves



! e
b ) - T t
P - e -1"‘ e
like 7 > &_, i <z OU. . Therefore as A )
the conribution to 1 (.”“,‘?a) from the upper limit is zero,

Hence T{ ”‘\’;,'é,_) tends to zero as T tends to infinity .

(&,5) = 0.
We will now find the value of 'T(""";%) at = o .

¥, Y
Q
- /3 ?&(A"") = 4 /\

’ riz)
WYz o
R A = ’/L..
© Tloyz) = 5 §,\ T (0) ) camed () AN

s ‘/3 t’ 2\”}{2})*? R
o Gy aner Y Jw)d )
= F(g") g?_; ‘7 p”).* ét) C«rw(( u)' 2

apt ¥
as < 1’@:@.)
_Sen |3

3,0 = SR

In order to find an analytic expression for T{ 0, 3) the integration

is done hefore the gseries 1s summed

ot \" % - J}’ /;’*9‘}’ e

T{o,é)- L; ir*{; '9;1. ey K\ 2}>m;ﬁ(m>ou)

|é__2’;.|é+“), oh¥

ety P

o wnf 3

~— £
) &Z o) b Tlpe )t
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'/3"3}9 %+'&}9 )
b ~_}E;, . y ) -2 -3 50
’ gy 2 TRk E) (-2 SR G 2),

L™

) X
;Z O

where %, is the Riemann Zeta function, and the expression for the

evaluati v of the g‘ ( ) O{Jt was ovbained from page 32 of reference
<&
(7) }
T > Hlb fﬂf——éﬂ):
Q = S
[ J%) b H }J) ,Vug/3+ ap 2
where :
“%-2p

i aap) -2 F) L (apr§)

P
= a
Hp) b b B

the cengtant A must be zero,. At the ghoulder of the wedge where ~ = ¢

and A= A, - equation (54) gives

ke -5 ¢ e '
. -3 ) o
x,= ) Z alp T Gy g,(})% 55)
=0 "‘\'}4‘ '
The Shoulder Condition.
.Now the wedge is of unit length. Therefore X’ = | at the

shoulder and
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wnere X, is the value of X o

Ca

at the shoulder of the wedgs in the

caannel with solid walls and 2, is the valus of ¢ at tac shoulder of
oae woedge in the channel with a section of the walls porous. The

expression for Xo wes obbained from the papor (4)

; by J.B. Helliwa1ll
D

and lg

. ;us) l\vur <:; g-;) iy (AT b A 2
X i 2 Moo B0 bl Dl (BT

and the expression for X, is given by cquation (55)

i %
;Z(3) k'vu {{'ﬂ L-..;}“n*! " n-3 Y e an 1 An
| n? é' ! e ;';}(}l Y %’(an %/}(‘;’Vu) i (5’:’2) J
Y voud Qb = A 1+2p
3 | 3 \
+(2) " %7;) Hp). v, i % E(}{)Jﬂa

On substitubing the expressicn for P(%) given by equation (40) we
obtain ,
I/; ‘ ' Mt P N P
‘ - } ('V "': l) A r’(“__,!_) (a n =73
= T qa r ( _I.) w "YL' )

¥k e 4. o
,\a) m.,K Hb*%y [ ape 3 :u:\}»; (g)h%} (ﬂ_"f@s)ki{}_&) 7
a/s,,\; m'z)Tm I(“ﬁk’}(
3 '/3 R '\V“ H{ . :),, ;,/4.2‘,“‘_ . +Fr; §'( 0) % 4/(;)}19/
-{i) "\#0 Z...*vo“ pré l.é +‘2%3 Z‘t-;\‘:)
s

p=o
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O ‘ ) amn an
= T L T @ty %(&n-é-)?(%'i:u! AN

s

[y ey ff“-'ﬂ)gl%) (“ﬁ)k’ mTf
Pk (1‘_‘:1)1 (ﬂ),«

o %a= %T:r/s + 23 ( ) B %) }CLX

. and if we 13t of = H%
k
and = RJ»E- we obtain the following expression for
T(L.,lh , from the above equation . |
a2 ™ e ek (e S P 5
K. 7 i) ,:';, I " ) )A * ;(Qv,l L’lw.-) {
e bk ¥ 2rap - Gl
l-—‘ . ) 1
- (3«2 M ﬂ },‘,“E ) 2 L "
"'3&"3 QJ.S ‘J o / ) TP
+a§4L§*“" EIaRD I e TN A
v AT SO
+2) 2 ( "w)‘i.yg(mi@g%j
‘]/3 = ] T}!’W bhiap &9 .2/3/" ol |
By i § 3 Lo S LTk ey
bo 4], ¥ 7 "3
Wy,

Il o

The Draz Coefficient,.

From equation (38) thu drag caefflcient is given by

. a3 ) o e a/ ’/3
C‘D = \\6’:)1‘43 ] S 3 ) J«r ?

i
(]

-



Now X = Xo R

- 6 Do ¥ ’Y‘ (: Dl ?
whore /
B -
D 7 (ww) M K% T Nav, 42
and /
oo
= (% _S ej 1*’/3 (23.) CJ/V’ .
(’ D' - \X’fl) M a G ‘)"f ’l.l"-:-"Ue

The form of GD‘ is that of the drag coefficient relevant to the caannel
[\
whose walls are solid. Therefore from the papsr (4) by J.B. Helliwell we

obtain

Y5 b
R LAY ald) ® '
-l 2

i )™

¢y = B ks

3
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However 1t is to be noted that, for given valuss of K , % and T

'Y'& ig implicitly dependent on 4’1

valurtion of Cp

From equation (46) we sec tnat for

U =7
a 2
f Ty
i r o
(o) ,,(i) ¥ [ X0 / )}’}guﬁr)l(ﬂf)g "“M} )}\ (ET 1) d
)"‘r) ~A3 'Vu AT, _L 3
’ N T ‘)2! 3 1""'
and from cquation (48) we see that for 7 <« T,
MEY
g o t 2fy 21 = HT ”TTT ¥ %' (L
v =@ ~-~)?“* AR P
I = - 3 - 3
= T
- . 2X , ‘
oince the expressions for e have been found in the
:)”'f' N U
form of integrals over the range ’2( = 'T‘Lf to ”fis +he
value of € p 18 now found from the double integral over the rectangle
4
from ~ = 0 to o0 and '%-r: ¥y to Y. 3 - As the
expresaions for ks‘;: = gy have been found for > vx and

~ AqX the area of the double integration has been split into four parts

so that the analytic expression for  Cp . can be found.
*
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The {owr parts are shorn in the following diagram

3)/ T //’%:w‘
o <
) ;}/(:) ()
€y 7
of ;1’ 1’_} rdie
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o l 5 o bl b A
1) =St ) Pl S,
0 }11; ¥=¢
31 Oty () Al ke, (1 f "1 (),
*(D) \'\JO“,)J;?;(' )D{’Vu) r}j J?j “"u) N -:‘; Ve d&»
5:1’;' LE T
o, ST, ‘ Y E ‘ 3
G b e (s
,."(‘* .-7aj
l :‘,.'. m / - o 3 il
() (om0 5 iy
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Thz inner integrals were now evaluated, and are

T‘ - R
(L) - [ w1, (B
Z vl ), | .
)" L T =l ;/31%( ) W L5 5
Tz
K HL! T~ Al Y b ))T}"; g 4 pIT
VBT e <[5 R ) s KSR,
T:’K 2
g& fy ,/ (}ﬂ} T)M _ ‘_’\_J_q_ "‘/3 k,, (}7"”‘“@)
Qﬂ{i ;éq;f \é. Vy - PTTJ 13 Hﬁ .
T3

On gubstitution of these values inbo equation (57) we obtain

b5y 2
o o
o2 ”)35‘ "y T ) K ()4
3
{“3')/3 (3%?';)5,,5 " ey %%[ Rl
+(%)¢5(ﬂ§) fgz;..',)" b. k%(tz—{f-) ?ha) I’é‘( ]}:ZK) o,
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5%y ’
3\3 3’3@0 b | "/ (FT%’ k’(?v :
ey b e
5,:1* > T 2 Ty
% +:{(£:1Ef’~") I(%( fj))} Jqo
b2y ¢
-3 &) &gﬂ” 1 &y
o

In the preceding pages orders of integration and summation have been

frequently interchanged to permit the evalu-tiomm to proceed. The
oo

occurrence of the non-convergent sum Z (=1) P must therefore be
pm

0 ‘oA 5 . 4 N ‘. . v .
interpreted at this stage in the Cesaro sense, its value 1s then finite and

definite, namely ~§ .
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\ kﬂr) dov 3l v, 2 %’a) @L} >

o Wz, "é,}:: “fll__

and 3% >3 ( OL,
o, = e
g, {X+*)M,amu @ )%) d

Hence subgtituting _for T%('é) the expression given by equation

(40) we find: % ’ 5 y y -
N 39 < B 3 & 3 m
Co, = T iis 2y ZK”\T’)?"‘A 1-3.-.( 'va}

' 3 . i
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The X~Co=ordinates at the Ends of the Porous section.

At the ends of the porous section on the channel wall X has the

values XE and X - . Now X = )(01 r] x . Therefore on

l..
approxinating to zero order the values of X e and X = are these
valued found from the expression for Xo when A= O and 7
ST and Ty respectively., The series form for X, valid in

the range Y3 < ¥ < T, with @~ = 06  wag obtained from the paper



Y by J.0. Helliwell and is
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We now turn to consider the evaluation of the following expressions

wialch are obtained from the general results given in the previous section

The Channel Width ()

The expression (56) which defined the channel width may be written

in the form.

-* ) 24,
l%:‘;/’ %l + g’& N F 83 2 (63)

¥ L _ ' -
where %1 (3) T _(:‘!fl F(’n‘"&} (aa“~§# ) %(‘2‘“'3" . L{i;%o)a\: (a:["%a)a -;[)
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A zypical eveliuation of the funcbions g ' ,Ba and [;;3 is
f} .

I
shown in the next section. The relationships between . ;\ 2 and 6‘3
P WV
. I~ M 399 rr %
and the transonlc similariby  parameter == 3134 ,('—’-’ i( { Y )
[.LX i) P’, %’] 3. Vo

are shown on figures 1, 2 and 3 respectively in which the quantities

R WML and Tﬂ‘ . are taken as additional parameters.

WV, ) Yy o

The Drags Coefficient Co

The expression (58) which defines the drag coefficient may be written

in the following form

3

af 5 2 2
G= Ks kw " g %F ! kwg" " K3 ﬁg'"’ ’ o

e Ju = @) 3]
/
gg = '-a(%)a/g(;é;)a;
33 Q/3 T}/vo
37, , A
b= -1 1,
B, °
T G S B TSk e
¥ Sres; S 5
vo :/ - ” i
(&)%) (ﬁ?;)/ T, 0] &
v,
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Cn substituting for K from equation (63) and using the fact that
' 2
My = O{‘H) Mn & we obbain

A vyplical evaluation of the fumctions ~—2z—— (p 5

'/] 3/3 Y3 IS 2/3
Q{j_{.}wfjx_k ¢ 0 and @ML o is shown in the following
’ 6% N TYVE ;! %Y

G UL ) M,
(; 5/ Ry 2 S &/3 b,

section. The relationships beltween

v 2
e )/3 M /3

%, 5/

C ) and the transonic similarity parameter

b
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I~ M,
e te e are shown in figures /4, 5 and 6 regnactively in

[ore7 M2 Vs

Ta { T3 , [ L,_ 3 ] s
i - 2 I it » taken as ad wl parameters.
which (,Vg) 3 k'\Jﬁ) and (_mg) are taken as additional paremeters

The Position of the Porcug sSection.

pery

The X ~co-ordinates of the ends of the porous gection cre X g and

A x o Ty ( T 1’1‘ R
XF wasre XE* X (’Vu" mﬁ)m:.aQ) and ‘;(F_;)( "h’o:’\/oi"vﬁa/
ifow equations (60) and (61) give the zero order expression for X £ and
N : . i .
)(,_- . Therefore on substituting the zero order value of }( ’Vu/} from

equation (63) we obtain

3

MERSOE a(3) g*‘ (;;E) 7 [(:;) I%(Z‘_(_i&)l\/z {i“r:_):f)
-

L/ L N
B I

A typicel evaluation of X and XF is shown in the next section.

The relationship between Xe (or X ) and the transonic similarity
, o : : T : s
parameter is shown in figure &, in which £V is taken as an additional
o

parameter,

LN
_ _ +1) M,
oince the expressions for 2, 3 )“"mg}?;‘"“ 03 and

Joh e 2 ie the fap . “6.,;(71- : .
S e D.L;L can be expressed in the form /ﬁ ( ,U;)) ';If; ) for given
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valuss ol (%-"“ ) and (,,;?_) where EZ stands for the appropriate functions

g [

arditional curves in figures 2, 3, 5 and 6 can easily be obtained for other

v ¢ T3 ._I’t) 1T & :.‘:3..
values of the paramelers {?ﬁ;) and (’Ve in the range 0-4 % % >

:%I: % @) by means of addition and subtraction and hence inlerpolation,
4

as shown in the following example
£(03) 20 ) = [ Zlo3) -2o)| + [ Zlow) - Z2(00)]
Z(04) = Zlo) = | Alo4) - Hod] +[ Zlon) - Flon) |

Hence the value of 2(0-35‘) - 2(0-15’) could be found by

interpolation,

Now from equations (56), (60) and (6l) we see that for given conditions

at infinity upstream

.....L oy ———L (IQ\ T..}. Hrj““ " Bﬁ)
K l/ - Kf 1{3 FUO }) ,Vo 3 ";“V"" " } R e 5

v
) Ve
X = X ( A W Y )
E‘ S Ny I /\J’O )

| - Ta 0"
and X,: - XF( Vs :{i) respectively .

)
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MR })c and

Trherefore for given values of XF , X .

»
' T T, T, \
5 ind t £ _3—) (u_.s_ d (__‘.t £
k ‘UQ;/_,. we can find the values o ("Vo | "Uo.) an e ) rom
the curves shown in figures 1, 2, 3 and &, Hence the value of ( 0 can

be found from the curves shown in figures 4, 5 and 6.

We now consider the difference belween the drag coefficient of a given
wedge in a channel of given width with a finite porous section and the drag
coefficient of the same wedge in a chcked channel of the same width with solid

walls when the conditions at infinity upstream in both chamnels are the same .

X "
* X ) 4
If jg, ) g,,, , }(,; Mo G and (k‘u ,/3> are the
L4
| !
values of %, 5 ELM pg-’ '\4” CD and ( K A ) respectively
e G- -

when {z"’u - (f\’u) , m) = O and therc is no porous

section, we obtain from equation (63) and (65) that

,,_
3
e
q
¥
f
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bg’.,. l) ‘/3 ‘\/’13/3 )

We row find the value of 8.5/3 - ) for the same wedge

in a channel of the same width with a finite porous section when [’33 ) =

Vo
¥\ U D LR |
&) = (o= (fm)”

From equation (63) we see that

Ao * y +0’;8
kv, g' i g'*tga 3 (67)

(68)

On substitution for («n{ ) and L k' + "(%1 + Q? §3 ) from
L/

equations (68) and (67) in equation (65) we obtain

i/ %
b{*’)swf 3@ -

5 p
%/3 X

N
: Qf"’)BM:%Z *
%WBW ]‘LD*G')}
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Therefore on approximating to zero order we obtain

Vs ;VS x '
Cyt) M }-CD~C’§] - M . R,(R,*~ P)

- [ V .
sp 8:‘ Vg .\ (70)

5

v/ ‘3/
. 3 3
. . ) M s .
A typical evaluation of c A Co~C,p is shown
) '/3 7:% - 4
N : - rei) ™ M, _e X
in the next section. The relationship between % -1 C p” o
% -
)
and ~,“"‘""“““""_a R VS (-m) .-3) is shown in figure 7 in
JO+0) 1 ‘o] al W
| X ¥
which |, .{3) I.'.) 13... and. Ti are taken as
k'\fu ) ,Uu 2 '.Uu 'VU

additlional parameters.



NUMERICAL CALCULATION

In this scction we present a typlcal evaluation of the various functions
, ) . . - : v, ’1"1
which have been defined in the previous scection. The values of o \wr
] [
T3 T A .
;\-1-) and fT':" arc taken as *ﬁ- 5 0005, 0.3 and 0.2 respectively .
i

]

The values of the Begsol Functions I (’6) can be found from the
+y

tebles given in reference (8). The values of the Bessel Function Kv (é\

were found from the values of 'I (z) } by using the relationsuip
v

a —
|<\,(va) = s~ L4 k) - iv(g)‘]

. j - T
For large values of %1 the values of J?:Y ?J) and ky(?a) were

found from their asymptoric expansions. These expansions svre

<
4--\
o
—”
5=
TR
&,
o
.
ol %
&
b
L4

;‘}j"\’g '\10
Since the integrals g *b,aialp_l_ nTi ) Lé’ g) Yta }).L (’\mT-é) J’
m:,/\,u T,'_l% 3I“v 3'

SJ %a+a)) ké-(“ '3) A?B and S‘ QJ%”)’ ("rcﬂé)ol,é‘ could not be

T
Ay T'“ ,
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eveluated to give simple analytic expressions their values were obtailned
satisfactorily by mcans of Simpson's Rule. The valucs of the above
integrals for different values of '9 and <t  arc shown in tables 1, 2,
3 and 4 respectively.

The evaluation of thce function I:(F) defined by

2 rlaped) (- )% +£)
Pt Plp+ %)

for different values of %3 is shown in table 4.

F(p)

#c¢ arc now able to calculate the valucs of the various functions which
have already been defined in the previous scction.

Evaluation of the function Q.

The function g, can bc definsd by

_ A U
%' ) M ,-,(_z.) >[Q ( %)’l - R(“)'(?%) ] >

where
. I)‘n’ﬁ'l A~ b p (
o= o AN (- 3 _ ) -+
f\j("n) Sl '(n '(;‘} (.(1\ ' X ERches
<= YO\ 2 \
Tho evaluation of the serics /. R(’“) {5:;,,) " for(% ) : (%‘"}
M= L °
x (*.‘:?_t o .
and (4J0) ~, is given in table 6
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Evalustion of the function %4

N
The function 'i‘));\ can be defined by

'/3 ob R}:"‘ % TB[t’a
33| - 3 ]
%a - \«2) 1Y () Z’ '(H } (3&” _35) S, }
b Y& - _apea 75w
B &2, [ |
P,:u I,, [V
¥,k | 2. & . - v e
,,/ th o & "nTr(1 S !"’o
i ::;)3(3) 335“1,;1"'“5' a Z.,"" b k’%‘" o )g ’@M}’}J"”!?J’?f
] pro ™ Vo
B, Lo® PN PRYC .
a8 ? 2. L N:a,)& 3Ty
~, " oa) e m 3hvo
-9 t%’f:) .5 {%)ésﬁ}ﬁfé) ,‘ZZ:M F’(H ( er) S’ k/ +a}n1,(mﬂ'%)gl,b,
& - apt -§- - T;/u‘, ) ( ap+ 2 Z
, . - e ; I S
The evaluation of ZO 1(P)L P Jq‘/ , df:..t,i‘ }:’-) ) Ap+2 _
fz_’“ Flp) J‘a MTTTa) § zan}’kl ('nﬂ%)f)«
p=o

» o Blvg o,
?Z w Fl) }/ ( lra)% 2 m]~ (m'n“é)ol}

pro M ""u,ﬂu,



i"—'o n= T“we 3
A (‘D‘TBI'UQ ""/3‘1" QJ'? .
a‘me\ 7 7o F[})) !\3,( ~oy ] 5 ”’a ’LJ.(MW?))‘L%T _
‘l“o M=l Thl*v‘, 3
is given in tables 7, 8, 9, 10, 1l and 12 respectively.
1/3 ~ ) s/3 3/
. 3 \ | _ 3 |
' .ga:r: (3-) Wg [0'056%(‘}"1{5‘) la/.} r'(‘j‘) ( ) LO “4-3-3]
) LR
005) Ll 33373 —— 10 O‘Ba"‘lﬂ +51'Tla) ( ) %1[_)LO 00("3(’]
3 ko Mz iy

- g’g‘r‘(%—) (0-&5).(%):m.) lto.;q35]~ 2“‘(%} .;3 “375‘;."%) 0 c:u,ai}

= -~ Q 03302 .

valuation of the function Dﬂ\

The function %5 can be defined by

PR I
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, N _ A 2
.\63 {3)3 . ) [omay]- 2T (§)" (e 05)37--,)@ 1925]
h 33 -
- A l ) (,‘%) —57;%(_3[) J\O-olko"f])
= - 0-loo] .

Evaluation of the function BL,"

The function %L;. is defined by
_. _ a 2
b= @WIE- &)
" Ig)«t» N (%) [(%)&* k0~0'§}a] 3
= 0bold.

Bvaluation of the function Q 4

The function E ; is defined by

s 2
= ol "
e = 23" @)"S

i
|
<
w
-

bvaluation of the function D G

The function gt_ can be defined by
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M=l 3 f+’U.
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+ 6T (‘«V";) J.m Al %m) S. F: ““('"WS)J”
M=l 3 “"’Ve
¥ s oo *\ﬂrva | ‘*/s
“CTr(T' -z~. ~, )\ j/ “W’\)
Fe) 515§ n Ly
' by 22 fn'ﬂ'—r Vo 4}
T (2)" 7 Kl )S YT, dy
m=ij 2 q.\;
Qt o I‘V Y
The evaluation of Z M :L( MT’{ ) ) ’ ’20, k”‘" (Y\.Tfé,) {)’7} 2
MoTt T‘r’-‘\lg 3 d
ey .@fuu o f e
- T oy - T, 4‘/3 -
m]i’ (l‘dl}.’l‘.yi 2® I}(."’Jr“é)cl@ 5 /. I (’3’“‘“3)§ 2 l( (‘\‘L,U?)(L
’lét 3 )ﬁ«l'\«? 3 0 Mz 30 Tlr/v,,a EN
0 ’ff-u
< Ty @300 bf
and Z_ . }<3 ""R,T(;") S % 31 . (’*’*-v;)) Clﬂ. is shown in tables 13, l4,
nal 3 ‘\’,_'_‘,ue 3 J
15 and 16 respectively.
- 8/3 ) -103 %/3
D=3l B {-ﬁ%%j +6T{005) " [0-0i5a]
A | 8 L1 - a2 ' ‘

%

+(,’TT(,,%) [0-001089] ‘Gﬂ”(%

)2/3(‘5 .Gg')% Jlo 03377]

-UT( ) 0 001@‘#5&

= =0 06263 .
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respectively
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CHAPTER 6

CONCLUSIONS

The problem considered in this work was the design of a straight walled
and tunnel with a finite porous section to give a reduced blockage interfer=nce
in high subsonic compressible flow., The blockage interference will be redﬁced
if we can choose values for the various parameters so as to meke the value of
the drag coefficient evaluated from equation (58) more nearly equal to the drag
coefficient for the same wedge in a free stream when the upstream conditions
are the same,

The relationship between the drag coefficient for a wedge in a free
stream and the transonic simllarity parameter was found by J., B. Helliwell
and A. G. Mackie [5] and 1s shown in figure 9.

Now from equations (58), (56), (60) and (61) we see that for given

conditions at infinity upstream

s
et) MGy T
- "( ~ 5 )2,) >

b,
555/3 N, ? . 2 v, p) “q >
f _ ( SR W ¥ be
!’x"’ua%* i gﬁ Mo 1Ay x;},y]“' L)‘J
| (e m
>< F - n Np g
(& =
and X £ = w N Ny, R ) respectively.
On substituting for CD the value of CD free obtained from figure 9 with
the given value of l;}) we see that theoretically, for given values of K, b »
4]
-1 X
D, s Xﬁ and X?, on elimination of (~3)' (22. and L—ﬁL) from the above equa.:
¢ Vol 3\, Vo tions

a value of q? can be found which will give zero blockage interference. However
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this velue is of considerably larger magnitude than the values 0f’7 for which
the prerent perturbation theory is valid. This means that it is not possible
to design a straight walled tunnel with a finite porous section to give zero
blockage interference in high subsonic compressible flow on the basis of a
solution to the problem derived by a perturbation from the solution in the
case of the chamnel with solid walls. However figure T shows the relationship
between the difference of the drag coefficient of a given wedge in a channel
of given width with a finlte porous section and the drag coefficient of the
sane wedge in a choked channel of the same width with solid walls, when the
conditions at infinity upstream in both channels are the same, and the down-
Ik

stream parameter is (w«
Vs

Y

that the difference in the drag coefficients increases as the value of

in the porous case. These curves show

Ve
is upstream of the wedge nose, which means that some of the blockage inter-

%@ —_
(_3_) (ﬁ)% increases and the increase is greater when the porous section

ference has been eliminated. The curves also suggest that it should be possible
to eliminate the blockage interference entirely by the use of larger values of
ﬂq than those for which the present theory is valid. This follows because

we could then suck out more fluid from the channel and thereby increase the

*l;:lﬂii Dﬁ+l)%§p1%é
: ,» hence increasing the value of \ . G
() 126 ]Y3 - O

value of ..
[
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APPENDIX T

The Change in the Value of the Streamm Function (w) across the Porous Section

From equation (35) we obtain

A= gAY + gUudY - g U dx,

and from equation (30) we obtain

S . ¥-1 o o2 gy T
{?) § [ by F.'(U'"?/) ,
L {5 2
A IR
= b Ji((f?‘)(usa*t)f"Q““Usa"’u"‘auia"”‘auia))
~ ] - rﬂ;l , & u'? and v'? can be neglected when

compared with u'.

i Cqub = S?lk)l[j |- Pﬁaai*'t*l'"‘*glbdla ] Ct }f
- Q,U‘ f’\)‘» ,\,CN'M'Q]J\XD

= oV [ 1 w(-MY P MY

T N2y
~o.U~ - M X

In the coefficient of dY the second and third terms can be neglected as

they are of magnitude 5;3 compared with the first term. In the coefficient



w139

of dX the second term can be neglected as it is of higher order than the

first.

A(\l/ = o, ‘lY - ?iUI’U’&-Y.

Now along the porous section from E to F dY = O and from equation (33)

we obtain

SRR AR N

- .9V o 9/3
a VO’«»!)[*L‘"“l -k ]Ax

R S P WL

(y+)M?
Vs % "'/ ’
e [ b g,

Q) M2
v, 'v)% o] dx,

B[ v (%) -
- eus :ot.t?(‘;“,)%“ d(‘gﬂ%*@] Ix

() Mk
Thus since o, P and & are of first order it follows that the chenge in 3 across

the finite porous section 1is of second order, and may be neglected within the

order of approximation in the main body of the thesis.
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APPFNDIX IT
.)"'E/""u &ﬂl}» —
Table 1. Valueg of g 3 J y («JT% ) c%
Tiefo, :
et 0 1 2 3
1 5,9071 % 107 3,991 x 1074 2.826 x 1077 2,088 x 1070
2 1.0395 x 1072 74124 x 1074 5.113 x 1077 3.827 x 1070
3 1.9328 x 1072 1.349 x 1072 94845 x 1077 Te484 x 1070
4 3.8084 x 107° 2.708 x 1072 2.012 x 107% 1.554 x 1072
5 7.8239 x 1077 5,668 x 107 4283 x 1074
6 1.6563 x 107+ 1.222 x 1072 9.388 x 1074
7 3.6072 x 107+ 24706 x 107° 2,110 x 1070
8 7.9199 x 107 6,048 x 1072
9 1.7755 14378 x 10™
10 400346 3,178 x 107+
11 9.2765 70411 x 107
12 2,1566 x 10
A3 5.0590 x 10
14 11947 x 107
15 2.8575 x 10°
16 6.,8553 x 10°
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B,
Table 2.  Valueg of v;/S ”}7 I’ (q«.’ﬁ’é) J,b,
M
- 0 1 2 3
1. L3442 x 107° 8.986 x 1074 64320 x 1077 4a656 x 107°
2 2,358, x 10~ 1.60L ¥ 107 Lol42 x 1074
3 4369 x 1077 3.024 x 1072 24197 x 1074
4 8.5793 x 107~ 6,060 x 10~ 4e486 x 207
5 1.7575 x 107 1.266 x 107 9.545 x 1074
6 3.7120 x 107 2.727 x 107
7 8.0686 x 107t 6,080 x 107
8 1.7692 1.348 x 107
92 3.9619
10 8.,9964
11 2.0674 x 10
12 48047 x 10
13 1.1269 x 107
14 2.6609 x 107
15 643646 x 10°
16 1.5270 x 10°
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T3/,
Table 3. Values of %3‘“)“ K, () “Lb’
w ’1-} v, 2
o 0 T 2 3
1 3,768 x 107 2434 x 1074 1.652 x 1077 1,173 x 1070
2 1.2422 x 107 7.857 x 1077 5.228 x 1070 3.643 x 1077
3 | 4.6873 x 107 2,905 x 1077 1.895 x 1070
/, 1.8819 x 1074 1.143 x 1077 7.310 x 1077
5 7.8433 x 107° fe664, % 1070 2.926 x 1077
6 3.3758 x 1077 1.967 x 1070 1,210 x 1077
7 14819 x 1077 8.443 x 107 5,088 x 1070
8 6.6311 x 107° 3.702 x 1077
9 3.0079 x 1070 1.642 x 1077
10 1.3882 x 1070 7423 x 1078
11 6.4491 x 1077 3.373 x 107
12 3,0421 x 1077
13 L4424 x 1077
14 6.9367 x 107°
15 3.4979 x 107°
16 1.6127 x 1070
17 8.1428 x 10~ 9
18 40771 x 1077
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2
Table L. Values of § 3% 2 K, (xTT3) be/
Tlv, 3 |
ot o L 2 . 3
1 8.6957 x 107 5,529 x 1074 3.713 x 1077 2.621 x 107°
2 2.8865 x 107 1794 x 1074 1.179 x 1072 8.157 x 1077
3 1.6985 x 107 6,672 x 1070 40290 x 2070
4 4eki516 x 1074 2.642 x 1070 1.662 x 1070
5 1.8730 x 1074 1,086 x 1072 6,689 x 1077
6 8.1458 x 107 4619 x 1078
7 3.6125 x 1077 2,001 x 107°
8 1.6347 x 1072 - 8,855 x 1077
9 75067 x 1070 3.971 x 1077
10 3,504 x 100 1.814 x 1077
11 16476 x 1070
12 7.8599 x 1077 F
13 3.7686 x 1077
14 1.8323 x 1077
15 9.2814 x 1070
16 423358 x 107 |
17 2.2142 x 1078 |
1.1182 % 107

o
6.3
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TABLE 5 VALUES OF F(p)
o | o | 1 . ; v
1-2" B72P| 6. 8502x107 " 9.2125x107"| 9.8031x10™ | 939508x107!| 9.9877x10™ | 9. 9969x1 07}
p?"2P 8 2 5 x 1070 | 1.25x1070 | 5.125%1072 | 7.8125x107
fép-i%) 1,354 1.5046 1.4711x10 | 3.8903x10% | 1,9864x¢10" | 1.6658x10°
Q{zm@ 2.1320 141090 1.0223 1.0052 1.0013 1.0Q03
»! 1 1 2 6 2.4 x10 | 1.2 % 107
r(p+d)  |2.6789 8.9297x10™ [ 1.1906 2. 7781 9,260l 3, 0128%10
F(p) 5.9057 -3, 429 3.0957 -2,9181 2.7960 -2, 7025
P 6 T 8 9 10 11
1-@"5}5“'2P 9.9592x10™ | 9.9998x10"" {1, 0000 1. 0000 1. 0000 '1.0000
p2"2P 1.9551x1077 4.8828x10™*{1,2207x107" 3.0518x107° | 7.6294x1 0"® 1.9074x10'6
r(epi2)  2.0750x10° | 3.5887x10' 0|8.2460x10'3 2. 4280x10'2| 8. 9134x10" 7| 3, 9912x102° 1
%213-1-2—) 1.0001 1.0000 1.0000 1.0000 1.0000 1.0000 i
p! 7.2 x 10 | 5.00 x 10° |4.052x10" | 3.6288x10° |3.6288x10° |3.9917x107 i
P(p+d) |2 1802107 | 1.3550x10° [9.9399x107 | 8.2833x10" | 7.7310x10° | 7.9889x10° i
2.6274 ‘ -2.5652 2.5122 2.4239  l2.3868 '

F(p)

t‘e. )-"653
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8 _ rafv
2p+~ s
TAILE T % (p). [ 1
p=0 <2P + ) r4/vo
P 0 1 2 3 4
2p + % 2.6667 L, 6667 6.6667 8. 6667 10,6667
2p+§-
AR 102 - -5 -1, :
= 1.3680x10 |5, 4719x107 '} 2. 1887x107| 8. 7550x10" | %.5020x10
oS
FAREE -2 -3 -1 -5 ¢
- 4,0333x10 ©13,6230x10 7| 3.2670x10" | 2.9402x107~] 2.6462x10
8 rs/v . = ;
[zep*?] / ° 2.6653x10°2]3. 0758x1073] 3. 0481x10™ ] 2. 8526x10™] 2. 6112x10¢
Ya 'VO
rs/vo *
( ) [ 2p+% .‘ . 05903 -, 00227 .00074 - . 00001 . 00000
2p+y ra/v,
ra/vo
% F(p)s 7—! [ZEM/ 5} 05689
p=0 ( op+ B-E ) ra/v,
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ro/v

o o}
TABLE 3 z  Fp). EP]TE) [ZQP%’ ]
p=0 T4/Vo
P 0 1 2 3
o2p + 2 2 4 6 8
2pt2
r bl - ‘- -
(ﬁ) b x 1072 1.6 x 1070 6.4 x 107 2.56x106
]
apie
Loy - - - -
(T> 9::'102 8.1 x 107 7.29x104 6,561 x 107
O
rg/v
0
2p+2 - -3 - -
[zp] , 5 % 107% 6.5 x 10~ 6.65x104 6.305 x 1077
-rqr/vo
J?S/V
1 +2 © |
F(p) [ZQP ‘ ] 0. 1476 ~0., 0056 0. 0003 -0, 0000
2p+2 /v
4V
ra/V
00 Q
1 2p+2
z  F(p) B 78 [z :l = 0,142
on Ep + 2 r4/vO 25
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Vaglues of M . F (l’))
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3 v

m.ﬂ"r

am1Ta

| r ey

)§ lf”“"k’ (T3 dp

}:-u'nl

Iy p 0 1 2 3 b
1 +04613 - Q0174 »00011 ~, 00001 00000
2 «02021 ~.00075 « 00004, -+ 00000
3 00951 -, 0003/, 00002
4 « 00469 ~, 00017 [ 00001
5 «00240 ~+ 00008 »00000
6 .00127 ~+ 00004
7 . 00069 -+ 00002
8 00038 ~+ 00001
9 00021 ~, 00001

10 .00012 -+ 00000

11 »5O0U7 4

12 00004,

13 .00002

14, « 00001

- 15. 00001
16 .00000
Col. Totals 08576 -,00316 .00018 ~+ 00001 00000
’Ir"'a -’i)*l“b ]
S*;: w F(p L (W) S’ Hﬁ_(m‘ﬂé) J‘g» = .08277
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/ ?m. F })) I\;,/( o ) ol ,L i 012{

p=0 m=1 Ya.'ﬂ"x T/,
Values of 4 LN r(}J) K,’I/ ) g 221-3 - ('TﬂTé) cbq
Tilv,
N 0 1 2 3 4
1 | L004354 -. 000171 . 000011 ~+ 000001 « 000000
2 001440 - -.000058 00000/, ~+ 000000
3 » 000441 - 000018 . 000001
4 . 000135 -+ 000006 » 000000
5 . 000042 ~« 000002
4 6 000013 ~» 000001
7 . 00000/, ~+ 000000
8 , 000001 |
9 000000
Col. Totals «0064,30 ~+ 000256 000016 =+ 000001 . 000000
7 o

ez T} € uab
. Z{:ﬂ V(P)- K%( Ay )g}m’; l%("“ g) A%, = ,006189
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27 T

/'YL..

Values of Y. F('D) I%(

’rﬂTﬂr )

g {' heat V(%Tfé)a%

‘*’Vu

"-*%% R T

T
MP

N 0 L 2 3

1 .1065 ~. 0039 .0002 . 0000
2 0470 -+ 00L7 .000L
3 0223 -.0008 .0000
4 .OL11 -+ 000/,
5 «0057 - 0002
6 .0030 -+ 000L
7 .0017 -, 0001
‘s .0009 ~.0000
9 .0005
10 .0003
11 , 0002
12 0001,
13 . 000L
1 «0000

Cole Totals <199/, s 0072 .0003 -+ 0000

%*#k L nTe) c% = 0.1925
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LABLE 12 = & . (T 5l 1
2L b K S o AT
Vo
Values of .. F(':) K.%. q..g%.&.) g; 43 + 2}’ I (,.n |17 ) OLéf
3 v,
F‘:;'“\Eﬁ_ 0 1 2 3

1 « 00991 ~. 00039 «00002 400000
2 .00327 ~.00013 ] . 00001
3 . 00100 -.00004 | « 00000
4 .00030 - 00001
5 . 00009 ~+00000
6 . 00003
7 . 00001
8 - 00000 |

Col. Totals . 01461 -+ 00057 .00003 00000

. ?fw bl Ky(ﬂ":)g qatr/“.:PI' (m’ﬂ.b)rﬂbqa, = 0407
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