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ABSTRACT

The paradoxical nature of M. furfur colonisation versus infection in dermatological disease
is subject to much research. The aim of this experimental work was to measure the innate
immune response of the skin to M. furfur, via the use of skin models. Living skin
equivalents (LSE), excised breast reduction tissue (BRT) and keratinocyte (KC)
monolayers were all utilised in an attempt to elucidate the possible immune evasive and

stimulatory capabilities of M. furfur.

The constitutive production of human {3 defensin 2 (HBD-2), an inducible antimicrobial
peptide, was measured KC monolayers, LSEs and BRT. In addition the skin model’s
response to fungal challenge was elucidated. Wide variation in the basal expression of
HBD-2 was detected in all skin model donors. M. furfur cell wall and killed whole M.
furfur initiated a slight depression in HBD-2 expression by KC monolayers, however these
results were not statistically significant in all donors and merely indicated a trend. Likewise
KC monolayers, BRT and LSEs reacted to viable M. furfur with slight inhibition of HBD-2
production at 24hr with subsequent stimulation of expression. However donor variation in
this pattern was detected and these results were not continuously significant. Due to the

non-continuous nature of these measurements these results were inconclusive

As M. furfur infection of the skin is associated with alteration of the normal pigmentation
in patients, melanin synthesis by B16 mouse melanoma cells and BRT was assessed in
response to M. furfur. Viable M. furfur and C. albicans stimulated an increase in melanin
synthesis in B16 mouse melanoma cells. The ability of viable M. furfur cells to stimulate
melanin synthesis appeared to be localised within the cytoplasm of the organism. However,
this ‘viable cell stimulation’ did not appear to be restricted to M. furfur, as C. albicans also
stimulated melanin synthesis. On BRT there was little difference in the melanin and
tyrosinase production of BRT in reponse to M. furfur and C. albicans growth. The capacity
of M. furfur and C. albicans cell wall to alter the cytokine profile of KCs was also
measured and KC monolayers exhibited a time-dependent increase in IL.-1a, IL-8 and ET-1
expression in response to M. furfur and C. albicans cell wall. C. albicans cell wall initiated
a significantly greater increase in the expression of these cytokines by the KCs. However

little correlation between the mRNA procfuétipn and peptide production was measured




using RT-PCR.

Growth of M. furfur and C. albicans on the skin models was assessed using scanning
electron microscopy (SEM) and histological observation of the colonized tissue. Growth
was also compared by means of viable cell counts. The effect of growth on the proliferation
of the epidermis was measured by counting the number of proliferating cells in the basal
layer of the epidermis of each tissue. Growth of M. furfur and C. albicans was detected on
LSE and BRT and hyphal transformation of both organisms was observed on BRT and
LSE, although hyphal transformation of C. albicans was found more commonly on the
LSE. Indeed, overall growth of C. albicans was more widespread and rapid on LSE than it
was on BRT. By contrast M. furfur appeared to undergo hyphal transformation more
frequently on BRT, and this feature was donor-dependent. The viability of M. furfur varied
when tested on BRT from different donors or on different batches of LSE. The proliferative
index of the tissues indicated that growth of both M. furfur and C. albicans initiated an
increase in the proliferation of the BRT and LSE epidermis. Overall, these studies show
that growth of M. furfur and C. albicans differs in the various skin models and this effect
was dependent on the different qualities of the donor tissue and donor KCs. The growth of
M. furfur, while slower than that of C. albicans, does stimulate a larger increase in the

proliferation of the BRT epidermis.
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1 INTRODUCTION

11 MALASSEZIA FURFUR

1.1.1 HISTORY

The role of fungi in dermatological disease has been controversial with regard to the genus
Malassezia. Yeast cells were first reported by Eichstedt (1846) and Robin (1853) in
association with skin scrapings from pityriasis versicolor (PV). Subsequently Rivolta
(1883) described yeast involvement in psoriasis and Malassez (1874) was the first to
associate the yeast with scalp scaling. Much controversy surrounds the correct
nomenclature for both genus and species of Malassezia/Pityrosporum; the latter term is
still used, most predominantly by J. Faergemann (Faergemann, 1993). Malassezia has,
however, been more widely accepted by the scientific community and in particular by
Gordon who had initially adopted the name P. orbiculare to describe the organism he
isolated from PV (Gordon, 1979). Until recently, controversy surrounded the distinction
between what were considered to be two different species: P. orbiculare and P. ovale. By
karyotyping it has been shown that these organisms represent two different morphological
stages of the same organism (Gueho and Meyer, 1989). Hence the round P. orbiculare,
oval P. ovale and mycelial M. furfur are in fact the same organism which can be grouped
under the common nomenclature of Malassezia furfur (Table 1). Seven organisms are
currently identified within the Malassezia genus including M. furfur, M. pachydermatis, M.
sympodialis, M. globosa, M. obtuse, M. restricta and M. slooffiae (Boekhout ¢t al., 1998).
The majority of these organisms are implicated in the pathogenesis of veterinary infections,
particularly M. pachydermatis and M. sympodialis in otitis externa. Due to the previous
confusion surrounding nomenclature, the naming of Malassezia organisms in disease has
been widely misinterpreted. It is, however, widely accepted that M. furfur is the primary

human pathogen, implicated in a range of human skin and systemic infections.
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Table 1: Classification of Malassezia species.

ORGANISM FEATURES PATHOGENICITY

M. furfur Lipophilic, dimorphic. Mycelial stage of organism associated with
PV Seborrheic dermatitis (SD), dandruff,
and an allergen for atopic dermatitis etc.

M. pachydermatis | Non-obligatory lipophile. | Common veterinary pathogen, found also

Small ovoid yeast cells.

on human skin.

M. sympodialis

Lipophilic,  dimorphic,

oval/globose yeast cells.

Often implicated in systemic infections

following lipid emulsion therapy.

M. globosa Large, cylindrical, | Commonly associated with otitis externa in
dimorphic yeast cells. cattle.
M. obtuse Large, cylindrical, | Lipid-dependent organism

dimorphic yeast cells.

recently

associated with canine otitis.

M. restricta

Spherical/oval yeast cells

with no evidence of

Lipophilic organism identified as skin

commensal in humans.

budding.

M. slooffiae Short, cylindrical cells. Also associated as a veterinary and human

pathogen with otitis infection.

1.1.2 STRUCTURE/ GROWTH

M. furfur displays characteristics common to other yeast species. The organism can be
observed in culture in both its oval and cylindrical forms, ranging in size from 2.5 to 5.0um
and 1.5 to 3.0 to 2.5 to 8.0um respectively. Hyphal transformation can be induced in vitro
by the addition of exogenous sterols, cholesterol and cholesterol stearate (Porro et al.,
1977). Standard culture of the organism requires the addition of long chain, C;»-Cy4, fatty
acids as the organism cannot synthesise the lipids de novo, and they are essential for its
membrane integrity (Porro et al., 1976). Optimum growth is achieved in the temperature
range of 22-37°C. The cell wall has been studied by electron microscopy revealing a
glycan-rich structure with extensive invaginations on the periplasmic side with indentations
into the plasma membrane and a distinct lamellar layer (Mittag, 1995). It has been
hypothesized that one of the major allergens of M. furfur, the Malf-1 protein, is attached to
the cell wall (Schmidt et al., 1997), possibly at the periplasmic side, and is revealed during
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reproduction. As M. furfur is an obligatory lipophile it comes as no surprise that it
produces both a soluble and insoluble lipase and lipoperoxidase that is essential for growth

(De Luca et al., 1996).

1.1.3 ANTIFUNGAL SENSITIVITY

The in vitro antifungal sensitivity of M. furfur is broad ranging, as measured by various
growth inhibition assays. Azoles-agents which interfere with membrane ergosterol
biosynthesis by interference with the cytochrome P-450 enzyme, lanosterol-14-a
demethylase-have been shown to be effective in inhibiting growth (Strippoli et al., 1997).
In vitro activity has also been shown with climbazole (Schmidt, 1997), zinc pyrithione,
selenium disulphide (Van Cutsem et al., 1990), piroctone-olamine (Pierard-Franchimont et
al., 2000), itraconazole (Rhie et al., 2000), fluconazole and terbinafine (Gupta et al., 2000).
Antifungal activity has also recently been attributed to the 1,8-cineole-1-terpinen-4-ol
component of tea tree oil (Hammer et al., 1997). It is also interesting to note the in vitro
sensitivity of M. furfur to androgenic steroids, testosterone and dehydropoandrosterone; by
contrast these compounds have no activity on C. albicans (Brasch, 1993). This finding is
not consistent and conflicts with the effect in vivo as there is an accumulation of these
androgenic steroids in the pilosebaceous unit, which is thought to be the site of M. furfur
colonisation in SD. This study points out the disparity between in vitro and in vivo
antifungal sensitivity and highlights the danger of extrapolating in vitro data for in vivo

usage.

1.1.4 HABITAT

M. furfur can be isolated from the scalp and skin of the majority (74-100%) of the normal
healthy population (Roberts, 1969). There is a greater frequency of colonisation of the
sebaceous areas of the back and chest as has been shown by comparative quantification of
organism numbers isolated from skin scrapings at both sites (Abraham et al., 1987,
Faergemann, 1984). This is also supported by the increase in infection in adolescents when
lipid production by the sebaceous glands is at its peak (Powell et al., 1984). In infants it has
been shown that colonisation of the arms, back and chest affects approximately 32% of the
neonatal population (Broberg, 1995; Broberg and Faergemann, 1989). The source of infant
colonisation is thought to be either health care workers (Chang et al., 1998) or parents

(Ahtonen et al., 1990), and length of hospital stay directly correlates to increased frequency
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of colonisation (Bell et al., 1988).

1.1.5 PATHOGENICITY

As M. furfur can be isolated from various body sites of a large percentage of the
population, it has been difficult to establish the role of this commensal in dermatological
disease. Evidence for the organism’s role in various cutaneous infections comes primarily

from the correlation between disease resolution and response to antifungal treatment.

1.1.5.1 PITYRIASIS VERSICOLOR

The clinical presentation of this infection is characterised by chronic scaling of the upper
trunk, chest, back and neck, often accompanied by hypo- and hyper pigmentation of the
affected area (Faergemann, 1989). The lesions often coalesce to form large areas with
abnormal pigmentation, with the colour of the lesion dependent upon exposure of the area
to sunlight and the underlying pigmentation of the individual (Karaoui et al., 1981). The
highest incidence of this infection occurs in areas of high relative humidity, which
correlates to increased frequency of infection in tropical climates (Kim et al., 1999). Due to
the predisposition of the organism for lipid, it is hardly surprising that the areas most
affected are those with elevated lipid content, namely the sebaceous regions of the body,
trunk and back. This corresponds to the elevated rate of infection in post-pubertal males
who have high sebum secretion rates (Noble and Midgley, 1978). Clinical diagnosis is
made by distribution and appearance of lesions, confirmed by fluorescence of infected
areas under a Wood’s lamp. Skin scrapings also yield culturable M. furfur and KOH
digestion of samples should reveal the organism in both yeast and mycelial forms,
commonly referred to as 'spaghetti and meatballs' (Faergemann et al., 1983b). In biopsies
of infected areas the organism is confined to the epidermis and is generally observed in the
stratum corneum with a mild mononuclear infiltrate in the upper epidermis often evident.
Increased pigmentation in the basal layers and hyperkeratosis are also features (Janaki et
al., 1997). It has been shown recently that the organism, although restricted to the stratum
corneum, can elicit an increase in IgG and IgM-specific responses compared to unaffected
(non-PV+ve) individuals (Silva et al., 1997). Treatment for PV includes synthetic detergent
with added antifungal agents including ketoconazole (Borelli, 1980), zinc pyrithione and
selenium sulphide at 2-5% (Chu, 1984). In chronic cases prophylaxis with fluconazole

(Strippoli et al., 1997), itraconazole (Galimberti et al., 1987) and ketoconazole (Meisel,

25




1983) must be used to ensure non-recurrence.

Controversy surrounds the ability of the organism to alter pigmentation in PV. It has been
hypothesised that inhibition of tyrosinase production (Nazzaro-Porro and Passi, 1978),
disruption of melanosome distribution and size (Karaoui et al., 1981) and phospholipase
production (Riciputo et al.,, 1996) may all be organism-derived factors that alter
pigmentation. It has not been established which of these mechanisms, if any, predominate

in the control of pigmentation changes seen in PV.

1.1.5.2 MALASSEZIA FOLLICULITIS.

Folliculitis, resulting from M. furfur infection, presents as an erythematous papulopustular
rash commonly found on the back, shoulders, anterior chest and neck (Klotz et al., 1982). It
is thought that the organism plugs the pilosebaceous unit, where budding cells are found in
the infundibulum, resulting in follicle destruction and perifollicular inflammation. Puritis
and crusting of the lesion leads to a chronic infection (Ford, 1984) and diagnosis is made
on clinical presentation and histopathology of the infected follicles (Lim et al., 1988). The
efficacy of antifungal agents, including selenium sulphide shampoos, ciclopirox and topical
azoles (Parsad et al., 1998), all point towards fungal aetiology and can aid in the
differential diagnosis between acne vulgaris and acneiform exanthema (Sandin et al.,
1993). Again an association between host immune status and M. furfur infection has been
indicated by the latest folliculitis study (Rhie et al., 2000), further supporting a role for the

immune response in regulating the pathogenicity of this commensal yeast.

1.1.5.3 SEBORRHEIC DERMATITIS

SD presents as a yellow/ brown greasy scaling most often affecting the scalp, but also
found on the face and upper trunk (Bergbrant, 1995). The link between Malassezia and SD
has only recently been established in treatment studies showing the efficacy of antifungals
in disease resolution (Heng et al., 1990; Skinner et al., 1985) corresponding to declining
frequency of colonisation (Shuster, 1984). SD affects 1-3% of the general population,
accounting for 7% of all dermatological out patients and presenting in 20-83% of patients
with acquired immunodeficiency syndrome (AIDS) (Schechtman et al., 1995b). Although
clinical diagnosis is often facilitated by the obvious characteristics of infection, differential

diagnosis must also be made between psoriasis vulgaris, PV and histocytosis X in infants.
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Dandruff is a mild non-inflammatory form of SD confined to the scalp (Hay and Graham-
Brown, 1997; Priestley and Savin, 1976; Shuster, 1984) which is treated effectively using
one of the many commercial applications (Pierard-Franchimont et al., 2000). Histologically
the disease presents as hyperkeratosis with increasing frequency of nucleated corneocytes
in the upper epidermis and a significant increase in scalp colonisation with M. furfur
(McGinley et al., 1975). The increasing incidence of SD in AIDS patients (Aly and Berger,
1996; Ross et al., 1994) can be correlated with a declining T-cell count (Figure 1); hence, it
is thought that the loss of an immunological response in AIDS patients may contribute to

the initiation of SD.

Recent immunological studies have shown that decreased IgG reactivity to protein extracts
of M. furfur correlates with increased severity of SD (Kieffer et al., 1990); however, other
authors have shown increased IgG and IgA production (Ashbee et al., 1994). Unchecked
proliferation of the organism in the skin could induce inflammation, triggering the
hyperkeratosis and increased KC proliferation seen in SD. Production of IL-2 and IFN-y is
found to be decreased in SD sufferers while there is a marked increase in CD4+ expression
on infiltrating T-cells, and increased NIK-cell circulation and IL-10 production (Bergbrant
et al., 1991b). It has still not been established with any clarity whether M. furfur can initiate
a primary immune response in skin; however, recent studies have shown that it is able to
stimulate Langerhans cell (LC) maturation and migration, indicating its ability to stimulate
the adaptive immune response (Buentke et al. 2000). Conventional SD treatment is 2%
ketoconazole and this results in marked improvement in the symptoms of SD (McGrath

and Murphy, 1991).

1.1.5.4 INFANTILE SEBORRHEIC DERMATITIS

Infantile SD presents in a similar way to the adult form of SD (Broberg and Faergemann,
1989). Greasy scales on the scalp thicken and compress to form a cap, which overlies
mildly erythematous skin-hence the generalised use of the term ‘cradle cap’ (Ruiz-
Maldonado et al., 1989). Involvement may also occur over the body with erythema
particularly affecting the flexural folds and nappy area. It has been shown that infants with
infantile SD share a common disruption in their essential fatty acid metabolism and that
correction of this abnormality with maturation results in disease resolution (Tollesson et

al., 1997). The role therefore of M furfur in this disease may be associated with an altered
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lipid profile, encouraging growth of the organism (Broberg and Faergemann, 1989).
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Fig. l.a. Virology or natural history of HIV infection. (Courtesy of World Health
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Health Communications, New York, N.Y.)

Figure 1: Decreasing CD4 T-cell count (Fig. 1.a.) and onset of AIDS correlates to

increased incidence in SD and other dermatological diseases (Fig. 1.b) (Faergemann,

1994).

1.1.5.5 CONFLUENT AND RETICULATE PAPILLOMATOSIS
This rare disorder, which generally affects young women, presents as grey-brown
pigmented papules which coalesce, most commonly at the neck and upper trunk, to form

hyper-pigmented patches (Faergemann et al., 1980; Kirby and Borrie, 1975). Although the
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organism can be identified from lesions, its role in the initiation of infection is unclear
(Kumar and Pandhi, 1984). It is thought that a genetically predisposed abnormal immune
response towards M. furfur may be responsible (Broberg and Faergemann, 1988).

1.1.5.6 ATOPIC DERMATITIS

The role of M. furfur as an allergen in individuals with AD has recently been assessed
(Tengvall Linder et al., 2000). It has been established that the organism is an important
allergen in individuals with AD localised to the face and neck (Waersted and Hjorth,
1985), as 78% of these patients show positive skin prick test reactivity to M. furfur extracts
(Young et al., 1989) and positive skin prick test also correlates to efficacy of oral
ketoconazole in AD resolution. In this M. furfur-sensitive population there is a greater
frequency of IgE antibody specific to the organism, and serum shows elevated overall 1L-4
and IL-10 levels (Jensen-Jarolim et al., 1992; Kroger et al., 1995). T-helper cells play an
important role in the pathogenesis of AD, and allergen-specific T-cells isolated from
individuals are often of the Th2 subclass. Treatment with antifungal agents does not, as in
SD, correspond to disease resolution in general AD sufferers but does in individuals with
AD localised to the head and neck (Broberg and Faergemann, 1995). Interestingly there
appears to be a cross-reactive component of both M. furfur and C. albicans for atopics,
who express a common and cross-reacting IgE response to these organisms (Zargari et al.,
1994). How these commensals exacerbate AD is subject to much hypothesis, and it is
possible that gastrointestinal sensitization to C. albicans growth in AD sufferers may result

in a cutaneous reaction to M. furfur following exposure on the skin.

1.1.5.7 PSORIASIS

Controversy also surrounds the putative role of M. furfur in the initiation of lesions in
psoriasis. Animal models develop psoriatic-like lesions following application of M. furfur
(Rosenberg et al., 1980) and, as M. furfur activates the alternative components of
complement, this is a possible mechanism by which the organism could induce
inflammation in psoriasis (Squiquera et al., 1994). It has been recently established that
Malassezia-derived lipase stimulates release of arachidonic acid, a precursor for various
pro-inflammatory agents from epithelial cell culture (Plotkin et al., 1988), and that a
specific immunoglobulin response to this organism is detected in psoriatics but not in

healthy individuals (Mathov et al., 1996). In some susceptible psoriatics M. furfur-derived
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proteins may initiate an inflammatory immune response, resulting in plaque formation; this
has been substantiated by the initiation of psoriatic plaques by M. furfur-derived
components (Bunse and Mahrle, 1996; Lober et al., 1982). The inflammatory response
initiated by the organism may accumulate, resulting in the hyperproliferative, neutrophil-
rich plaque common to psoriasis. This susceptibility to M. furfur may be due to the genetic
predisposition identified for psoriatics, where a mutation in the human lymphocyte antigen
(HLA) gene shows a positive correlation to disease allowing inflammatory agents to

exacerbate the already pre-existing condition (Baker et al., 1997).

1.1.6 SUMMARY

M. furfur is a lipophilic dimorphic yeast which is implicated, often inconclusively, in many
dermatologic diseases. Much still has to be established regarding the relevance of this
organism in these disorders, particularly the role it plays in the initiation of the immune
response of the skin. An investigation into the immunomodulating activity of Malassezia
on the skin may provide an insight into the organism’s role in the pathophysiology of the

infections mentioned above.

1.2 C.ALBICANS

C. albicans is a dimorphic yeast belonging to the genus Candida. C. tropicalis and C.
albicans can be isolated from normal skin as part of the cutaneous microflora. The
spectrum of human infection caused by C. albicans is vast; however, in relation to skin,
this organism only becomes relevant when the host becomes severely
immunocompromised.l Chronic mucocutanous candidiasis is a group of symptoms
characterized by chronic superficial Candida infection of the skin, nails and oropharynx.
Increased incidence of C. albicans involvement in skin infection has been associated with a
declining T-cell population, but as yet no distinct reversion of this commensal to
pathogenicity has been identified during normal cutaneous colonisation. C. albicans is
however implicated in onychomycosis, where the production of a keratinolytic proteinase
has been identified as a pathogenic factor (Hattori et al., 1984) and, as C. albicans exhibits
cross-reactivity with a M. furfur-specific antibody, there is a possible role for this yeast in
aggravating cutaneous disease (Doekes et al., 1993). It is possible that the yeast stimulates

the skin via the mannose receptor, beta- glucan receptor and complement receptor type 3,
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which upon binding activates the alternative pathway of complement (Suzuki et al., 1998).

13 SKIN MODELSAND SKIN

1.3.1 HISTORY

Preliminary work on attempting to create ‘skin models’ originated from research on the
interactions between the epidermal and dermal cells in co-culture as opposed to
monolayers (Ponec and Kempenaar, 1995). Cell differentiation and proliferation mimic in
vivo patterns of growth more representatively in three dimensional culture systems and
these findings have revolutionised the field of tissue engineering (Stoppie et al., 1993).
More recently the need for replacement tissues, not exclusively skin, has induced research
in applied tissue engineering with specialisation in various tissue equivalents becoming
more refined. The use, therefore, of LSEs for both toxicological and immunological studies

has become more commonplace (LeClaire and de Silva, 1998).

1.3.2 STRUCTURE

The LSE is a three dimensional model with a viable stratified epidermis supported upon a
fibroblast-contracted collagen matrix. Many different protocols for formulating a LSE have
been devised, utilising hair follicle KCs, neonatal KCs, de-epidermised dermis and
fibroblast-embedded collagen matrices (Lenoir and Bernard, 1990). The most commonly
used protocol incorporates a fibroblast-embedded collagen matrix, seeded with neonatal
KCs. This skin equivalent produces a differentiated stratified epidermis which expresses
the appropriate keratin markers (Coulomb et al., 1998) with a distinct deposition of laminin
and type IV collagen at the basement membrane (Sugihara et al., 1991). Although skin
equivalents do represent normal skin in many respects they lack some cellular components,
such as melanocytes (MCs) and LCs, which also contribute to tissue homeostasis
(Asselincau et al., 1986). To utilize the LSE as an experimental model the investigator
must be aware of the practical constraints of the model and compare the reactivity of the
LSEs to the known activities of skin. Two areas in which the skin equivalent fails to be
representative of real skin, and which are particularly relevant to M. furfur infections, are

its lipid profile and immunological responses.
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1.3.3 LIPID COMPOSITION

With reference to the stratum corneum, the lipid profile of the skin is high in ceramides,
converted from glucosyl ceramides, long chain Cy,-Csyg free fatty acids, free sterols and
cholesterol sulphates. The lipoprotein of corneocytes is cross-linked to the ceramides of the
horny layer and recent studies have shown that the lipid content or ceramide profile of the
LSE does not correspond to the in vivo level (Ponec et al., 2000). Hence the functioning of
the LSE stratum corneum differs substantially from normal skin in that it is more
absorbent, and has less of a barrier function than natural skin. It has recently been shown
that the addition of vitamin C (50 pg/ml ascorbic acid in the medium) improves epidermal
cell morphology and normalises the lipid content of the stratum corneum, and in particular
the ceramide content (Ponec et al., 1997b). It is thought that by optimising the lipid profile
of the skin equivalent, the balance between differentiation and proliferation exerted by
ceramides and glucosyl ceramides respectively, will result in the normalisation of the
desquamation rate of the LSEs stratum corneum (Vicanova et al., 1996). Other methods for
normalising the lipid content of reconstructed epidermis involve supplementing the

medium with essential fatty acids or reducing the relative humidity and temperature (Ponec

et al., 1997a).

1.3.4 IMMUNOLOGICAL ACTIVITY

Although the basic structural, morphological and biochemical interactions of the skin
model are equivalent to the situation found in normal skin, the lack of systemic humoral
and cellular immunological responses makes the model limited in its immunological
relevance. Although certain cytokine profiles have been measured (de Brugerolle de et al.,
1999), little work has been carried out into the immunological response of the skin model
to infection. Hence, although we cannot mimic the humoral in vivo immune response, we
can easily investigate some of the cellular response of the skin equivalent to infection.
Macrophages and granulocytes participate in the amplification of the cytokine network of
the skin, while LCs and dermal dendritic cells present antigen to activated T-cells (Figure

2). The role of MCs, LCs and KCs in the SIS will be discussed.
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Table 2: Cellular components of the SIS. Table modified from (De Bos and
Kapsenberg, 1993).

CELLULAR CONSTITUENTS OF THE SKIN IMMUNE RESPONSE
INNATE ADAPTIVE
Tissue Macrophage Langerhans cell
Monocyte/ Granulocyte  Dermal dendritic cells
Keratinocyte T-cells

Mast-cells Endothelial cells

Activated T-cell
migration to the
epidermis*"”* "

* Pifokine release
A KU Proliferation

processing (o)

*»yLCs

Maturation and

movement of -Antigen presentation j
activated LCs to to naive T-cells
the lymphatics
® < 0
/

i

Figure 2: Cellular components of the skin immune response. Figure modified from

(Grabbe and Schwarz, 1998)

1.3.5 KERATINOCYTES

KCs are one of the major immune cells of the epidermis capable of initiating a cytokine
response which has a myriad of effects on the cells of the SIS. Culture of these cells on a
dermal equivalent results in a comparable differentiation and stratification of the KCs into
basal, spinous, granular and stratum corneum layers.The main KC function in the SIS is in
the production of cytokines which follow a microbial/inflammatory challenge. Following
direct exposure of certain ligands to the epidermis, KC respond with IL-la release and this
in turn effects the epidermis in several ways including increased proliferation and further

cyokine production.
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1.3.5.1 KC ANTIGEN PRESENTATION

KC are considered the non-profesional antigen presenting cells of the epidermis. As KCs
express the MHC class HLA-DR protein it is thought that antigen can be expressed in
association with this molecule. Expression of HLA-DR associated antigen results in
upregulation of further HLA-DR expression, attracting T cells to the site of inflammation
(Myint et al, 2000). While KCs do express HLA-DR constitutively, y IFN has been shown
to upregulate expression of this molecule on KCs (Basham et al, 1985) and while KC can
produce y IFN (Howie et al, 1996) it is thought that the recruitment of T cells to the site of
antigen expression amplifies this expression as T cells express y IFN. In terms of infection
no evidence as yet exists as to the ability of KCs to directly process microbial or fungal
antigen. While KCs do possess some phagocytotic ability (Luger et al, 1981), this has not
been demonstrated in relation to fungal particles. Viral components, which do not require
KC processing are however thought to be presented in association with HLA-DR
molecules (Londei et al, 1984). Therefore as KC possess antigen presenting molecules they

may amplify the initial immune response of the skin to infection by fungal agents.

1.3.5.2 CYTOKINES

KCs function in vivo on the skin as the main source of cytokines in an inflammatory
response following trauma or infection (See table 3). The production of cytokines in the
LSE has been measured in response to infectious agents (Fucso et al., 1993) and UV
(Corsini et al., 1997), and has shown an equivalent response, due mostly to KC-derived
cytokines. The innate immune response function of KCs ir vitro seems to be equivalent to
the in vivo profile. Aside from their immense cytokine profile, it has only recently been
established that KCs also secrete complement component C3, a precursor for C3d and
C3dg required for the activation of the alternative pathway of complement stimulation
(Seguin et al., 1997). KCs also produce an anti-leukoproteinase which is a soluble serine
protease inhibitor and one of the innate antimicrobial agents of human skin (Wiedow et al.,
1998). This inhibitor directly acts as an antimicrobial agent by inhibiting proteolysis,
confributing further to the innate SIS. Non-specific stimulation of the KC results in
expression and release of these factors that act as primary immunological agents in the

initiation and amplification of several non-specific and specific responses.
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1.3.5.3 DEFENSINS

Antimicrobial peptides are an integral component of the innate immune system of many
species of plants and animals (Boman, 1995). KCs produce HBD-2 and HBD-3 in response
to inflammatory mediators, TNFo and killed whole bacterial and fungal cells (Harder et al.,
1997). However the exact role of defensin in the SIS has not been fully elucidated. Over 70
defensin peptides are known, all sharing close structural and sequence homology, and five
distinct types of peptide can be characterised; these will be discussed in chapter 2 in more
detail. Those peptides with two or more disulphide bonds, commonly f-sheet structures
and anti-parallel chains, are called 3-defensins. These peptides are on average 29-34 amino
acid residues in length, contain four or more interlinked half cysteines and are very basic
with a high arginine residue content (Ganz and Lehrer, 1994). They are genetically coded
as propeptides and are modified on secretion from cellular vacuoles into the active peptide.
The common action of these defensins is on the membrane integrity of the organism
(Lehrer et al.,, 1989). Primary electrostatic interactions facilitate the attachment of the
peptides (cationic) to the organism’s membrane (anionic), and heterodimerisation of the
peptides results in pore formation and cell lysis. Human defensins have been mapped to
chromosome 8, band 23, and they are found to be constitutively expressed in many
mucosal sites; upregulation of transcription is found in states of infection/inflammation
(Ganz and Lehrer, 1995). This has been linked to the presence of a NFkB (heterodimer)
binding site upstream of the defensin gene and the presence of this binding site, and an IL-
6 CTGGGA responsiveness binding site, point towards transcriptional upregulation of
human { defensins in response to inflammatory mediators. The role of HBD-2 in

protecting the skin from microbial challenge will be discussed in chapter 2 in more detail.
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Table 3: Cytokine production by KCs.

IL-1a

CYTOKINES PRODUCED BY KERATINOCYTES

IL-1 o accumulation in the KC is released
by non-specific trauma to the skin. This
cytokine in turn stimulates further cytokine

production by KCs.

IL-6

Produced by KCs following IL-1c
paracrine stimulation. Functions in B- and
T-cell proliferation and differentiation and

is an endogenous pyrogen.

IL-10

Increased transcription in

LIPS etc.

response to

cytokines, Stimulates IL-1ra

production limiting IL-lo effects. Is
chemotactic for monocytes, neutrophils and

T-cells.

COLONY STIMULATING FACTORS (CSF)

GM-CSF, G-CSF, M-CSF and 1L-3 which
induce stem cell proliferation. LPS and IL-

lavincrease KC CSF production.

TNF o

Transcription is initiated by UV, cytokines

and

tumor promoters. Crucial for LC

viability it stimulates NFxB transcription.

ENDOTHELIN-1

Produced by KC and endothelial cells in
response to cytokine, stimulates oMSH

production and vasoconstriction.

Produced in response to IL-la, a
chemokine which acts as a chemoattractant

for neutrophils.
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1.3.6 LANGERHANS CELL

These dendritic cells are the main antigen-presenting cells of the skin and, until recently,
have not been applied in skin models. By immunohistochemical analysis of skin it has been
revealed that the main area of residence of L.Cs is the basal layer of the epidermis with
dendritic extensions of the cells reaching into the stratum corneum. LCs are the main
professional antigen presenting cell of the skin and interact with exogenous antigens,

presenting them to the appropriate T cell population.

1.3.6.1 ANTIGEN PROCESSING AND PRESENTATION

Following skin exposure to antigen, LCs express maturation cell markers and in response
to changes in their cell adhesion molecule expression and lymphatic and epidermal factors,
they migrate to peripheral lymphatic organs (Weinlich et al, 1999). It is thought that LC
movement from the epidermis occurs as the antigen is being processed (Axelrod et al,
1994). Once activated into maturation following antigen internalisation, the LC migrates
through the epidermal/dermal junction, dermal perivascular unit and to the peripheral
draining lymph nodes, where it stimulates T-cell populations by presentation of antigen in
association with MHC complex. Migration is in response to both efferent lymphatic and
skin-derived factors, and as such, LC antigen presentation is essential for the stimulation of

the adaptive immune response of the skin (Kripke et al, 1990).

1.3.7 MELANOCYTES

MCs are found at low frequency in the normal epidermis and are the resident pigment-
producing cells of the epidermis. The major function of MCs is the production of
melanosomes, the pigment-producing centres of the skin, which are transported to KCs by
secretion and endocytosis. These melanosomes then function in the production of melanin
which protects cellular DNA from UV irradiation damage. The MC is also essential in
amplifying the immune response of the skin, as it has recently been shown that these cells
are capable of transcribing various cytokines in response to stimuli, including TGF-a, EGF
and TGF-B (Morelli, 1993). MC control is exerted in part by KCs which have recently been
shown to secrete pro-propiomelanocortin, a precursor of o-MC stimulating hormone
(aMSH) and KC-derived IL-1a production stimulates aMSH receptor expression on MCs
(Schauer et al., 1994).
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1.3.8 ENDOTHELIAL CELLS

Endothelial cells act as important regulators of cell trafficking throughout the body. As
these cells line the vasculature of the body they have a myriad of functions on many cell
types including smooth muscle cells, where they can regulate growth and on fibroblast
growth, as they secrete FGF. Most importantly endothelial cells regulate the
transendothelial movement of material and cells between blood and interstitial fluid, thus
regulating immune cell traffic. As one of the main components of the perivascular unit this
is particularly relevant in the regulation of immune cells into and out of the epidermis.
Thus in response to an immune signal, often cytokine production, endothelial cells express
cell adhesion molecules which act as a chemoattractant for immune cells and this process
has been termed ‘Endothelial cell activation’(Pober, 1988). Signals from the epidermis
stimulate adhesion molecule expression and ICAM-1, MHC class 1 and VCAM-1 have all
been shown to be upregulated in response to inflammatory mediators (Schneemann et al,
1993). Expression of these receptor encourage B and T lymphocyte migration to the
affected area. With particular reference to fungi, dissemination of C. albicans results in
endothelial cell phagocytosis of the organism and increased ICAM-1 and VCAM-1
expression (Orozco et al, 2000). In skin, endothelial cells react mainly to the
immunomodulating cytokines produced by the resident dermal and epidermal cells. It has
been suggested that endothelial cells may themselves act as antigen presenting cells as they
express HLA-DR (Hirschberg et al, 1980). However this has been shown to be unlikely,

with LC thought to account for the vast majority of dermal antigen presentating cells of the
skin.
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L4 AIMSAND OBJECTIVES

The aim of this work was to create and assess a series of skin models which would yield
definitive answers as to M. furfur’s role in the various cutaneous diseases. The major
questions to be addressed, regarding M. furfur infection were:

1. Does M. furfur initiate an innate immune response? The possibility of host-
specific reactions to M. furfur in donor tissue might account for the reversion from
commensal to pathogen in only some individuals.

2. Do M. furfur or M. furfur-derived products directly alter melanin synthesis?
Clarification of the effects of M. furfur on melanin synthesis might directly
implicate the organism in the pigmentory changes associated with PV.

3. Does M. furfur grow at different rates on different donor tissue and in
different skin models? Differences in the growth patterns of the organism on
different host tissues might account for the pathogenic nature of M. furfur in some

individuals only.
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2 ANTIMICROBIAL PEPTIDES

2.1 INTRODUCTION

The innate immune response of multicellular organisms provides a rapid, specific and
effective defence against possible invading pathogens. Whereas clonal expansion of
antigen-specific B and T-cells is a lengthy process, the innate immunity, and its multitude
of constituents, provide an immediate barrier against the array of environmental pathogens
encountered by the host. Antimicrobial proteins, first recognised in the form of lysozyme
(Fleming, 1922), are some of the main constituents of innate immunity in plants,
amphibians and mammals (see Table 4). These molecules represent one of the principal
lines of non-specific innate defence and in particular the smaller antimicrobial peptides,
classitied as those less than 100 amino acids in length, are common throughout nature. The
smaller antimicrobial peptides show common structure, function, sequence and
transcriptional regulation indicating either a functional convergence or evolutionary
divergence for these molecules. In light of the recent discoveries in Drosophila (Hoffmann,
1995) the theory of an evolutionary divergence has been widely accepted. The
antimicrobial peptides remain a common and important constituent of the innate immune
response of many organisms and they are an ancient component of this protective response.
The smaller cationic peptides are a significant element of this non-adaptive immune
response and they are ubiquitously found in a variety of epithelial secretions and in specific

cellular compartments.
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Table 4: Antimicrobial protein components of the human innate immune response.

PROTEIN

LOCATION

ACTION

Transferrin

Phagosomes

Competes for Fe** with the
organism, inhibiting

growth.

Defensin

Epithelial cells

Pore formation in
organism’s membrane

resulting in cell lysis.

SLPI

Keratinocytes

Proteinase inhibitor which
protects elastin fibers from
proteolytic damage and is

directly antibacterial.

Properdin

Plasma

Activates complement
synthesis in absence of
antigen/antibody

stimulation.

Lysozyme

Phagosomes

Disrupts cell wall linkage

resulting in cell lysis. *

* Disrupts N-acetylmuramic acid and N-acetylglucosamine linkage.
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2.1.1 GENERAL FEATURES

The majority of information amassed on antimicrobial peptides is based on research carried
out in insect systems (Boman, 1991). It was observed early in the 1980s that injection of
the giant silkworm Hyalophora cecropin haemolymph with bacteria resulted in
phagocytosis and clearance of the organism with a resultant overall increase in both RNA
and protein synthesis (Steiner et al., 1981). The 9 proteins which were isolated from this
moth were later found to have structural homology with each other and were subsequently
termed the Cecropins. Much of the information regarding mammalian antimicrobial
peptides has been generated in line with the development in knowledge of the Cecropins.
Over the years the antimicrobial peptides, with now over 400 known, have been classified

into 4 overall groups as determined by sequence, functional and structural homology

(Boman, 1995).

2.1.1.1 LINEAR HELICAL PEPTIDES WITHOUT CYS

This grouping is composed mainly of the insect-derived molecules, particularly the
Cecropins. These peptides have a strong basic N-terminus with a long hydrophobic stretch
at the C-terminus. They have a 12 amino acid consensus sequence that is virtually

unchanged throughout and are approximately 40-70 amino acids long.

2.1.1.2 LINEAR PEPTIDES WITHOUT CYS AND A HIGH PRO AND ARG CONTENT

The first peptide to be isolated with this structure was an apidaecin from the honey bee
(Casteels et al., 1989). These peptides incorporate the bovine neutrophil peptides Bac 5 and
Bac 7 and include the Drosophila drosocin peptide (Frank et al., 1990).

2.1.1.3 PEPTIDES WITH ONE DISULPHIDE BOND
This group includes bactenecin, isolated from bovine neutrophils (Romeo et al., 1988) and
several antimicrobial amphibian skin peptides (Clark et al., 1994). These molecules are

short, loop-forming peptides with 1 disulphide bond, often located at the C-terminus.

2.1.1.4 PEPTIDES WITH TWO OR MORE DISULPHIDE BONDS
This group contains the most biologically important class of mammalian antimicrobial
peptides, the defensins. They contain six invariant cys residues and are basic peptides

which form (-sheet structures with anti-parallel chains.
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2.1.2 DEFENSINS

Defensins are the best studied family of what have been termed antibiotic peptides. Human
defensins were first recognised in 1966 having been purified from phagocytic granules of
neutrophils (Zeya and Spitznagel, 1966). The isolated peptide was subsequently recognised
as a major component of the non-oxidative killing mechanism of neutrophils which is
required to kill bacteria, and human neutrophil peptide 1 (HNP-1) was the first defensin
ever formally classified (Selsted et al., 1983). By studying the innate immune mechanisms
of neutrophils, and comparing this to the immunity of other insect and mammalian species,
much progress has occurred in our understanding of defensins. These cationic peptides are
produced by proteolytic cleavage of a 29 amino acid precursor and are antimicrobial for a
range of bacteria, fungi and enveloped viruses. They are produced by a variety of species
and are abundant in nature. They include:

Insect: Drosomycin is produced by the liver-like fat body of the insect and is extremely
active against the fungal pathogens of Drososphila (Meister et al., 1997).

Plant: Inducible production of Raphanus sativus antifungal peptide is initiated in the plant
Raphanus sativus when the radicle places pressure on the outer lamellar layer of seed. This
is thought to protect the germinating seed from initial fungal infection (Tailor et al., 1997).
Mammalian: Tracheal antimicrobial peptide (TAP) and lingual antimicrobial peptide
(LAP) of bovine origin are produced in response to infection and inflammation of the cows

trachea and tongue respectively (Diamond et al., 1991).

2.1.3 HUMAN DEFENSINS

With particular reference to humans there are only 8 defensins presently identified.
HNP1-4: Human neutrophil peptide is isolated from the auzorophil granules of neutrophils
and accounts for 85% of the protein content of neutrophils. These peptides are stored in the
specialist auzorophil granules and act when bacteria are phagocytosed. They function by
initiating pathogen cell permeabilisation.

HNPS5-6: These molecules are produced by Paneth cells of the small intestine, and are
secreted into the intestinal villi crypt. They are also referred to as human antimicrobial
defensin 5 and 6 (HADS-6).

HBD-1: Human f§ defensin-1 is secreted mainly in the genito-urinary epithelia and is also
isolated from trachea and conjunctiva.

HBD-2: HBD-2 is found in skin and pulmonary epithelia and is released from the cells in
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response to inflammatory stimuli.
The human defensins can be further classified into two major groups, o and f, as

determined by their structure.

2.1.4 o DEFENSINS

These peptides have 6 invariant cys residues and hence 3 disulphide bonds at C1-6, C2-4
and C3-5. They are synthesised in a 90 amino acid precursor form, which becomes an
active peptide of approximately 29-30 amino acid length. X-ray crystallography of the
HNP-1 homologue, rabbit NP-1, has shown its 3D secondary structure to be composed of a
triple stranded beta sheet with connecting hairpin loop. This group contains HNP1-3 and
the intestinal defensins HNP5-6 (Hill et al., 1991).

2.1.5 {3 DEFENSINS

These peptides are slightly longer, 38-47 amino acids long, with high Arg and Lys residue
content. Disulphide bonding occurs at C1-5, C2-4 and C3-5 with dimerisation of the {-
defensins occurring at the opposing hairpins. This results in a 4-stranded hydrophobic f-
sheet and these peptides are expressed in a range of animals. HBD-1 and HBD-2 belong to
this [ defensin classification (Table 5).

2.1.6 HUMAN 3 DEFENSIN-1

HBD-1 was first isolated in 1995 when experimentation to improve the extraction of
peptides from human haemofiltrate revealed a novel molecule with extensive homology to
the bovine B defensins (Bensch et al., 1995). This peptide was later named human §
defensin 1 (HBD-1) and has the characteristic 6 Cys repeat sequence common to human,
bovine and other mammalian defensins.

2.1.6.1 SITES OF PRODUCTION

Purification of the peptide from vaginal lavage fluid has permitted sequencing and cloning
of the gene, allowing construction of mRNA probes and monoclonal antibodies specific for
the peptide to measure expression of transcription and effective translation of HBD-1 in
tissues. Following these experiments it has been established that the peptide is produced by
a range of epithelial tissues including the respiratory tract (Zhao et al., 1996), urogenital

epithelia (Zhao et al., 1996), ocular epithelia (Haynes et al., 1999), placenta (Svinarich et
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al., 1997) and intestinal epithelia (O'Neil et al., 1999). At least sixteen isoforms of the
peptide, ranging from 36-47 amino acids in length, have been shown to be produced by the

genito-urinary epithelia (Hiratsuka et al., 2000).

Table 5: 3-Defensins from various animal species.

NAME OF PEPTIDE ANIMAL TISSUE EXPRESSED
TAP/LAP: Tracheal and | Cow Trachea & tongue
Lingual antimicrobial epithelia.

peptide

SBD-1, 2: Sheep f | Sheep Gastrointestinal tract.

defensin-1,2

HBD-1: Human B | Human Kidney, salivary gland &
defensin-1 trachea.

HBD-2:  Human  f§ | Human Skin.

defensin-2

Gallinacins Chicken Heterophils.

THP 1-3; Turkey { Turkey Heterophils.

heterophil peptide-1-3

PBD-1:  Porcine P | Pig Tongue, respiratory and
defensin-1 gastrointestinal tract.

2.1.6.2 ROLE IN DISEASE

Using semi-quantitative RT-PCR and in situ hybridisation/immunohistochemistry, it was
possible to establish that there is no upregulation of HBD-1 transcription in response to
inflammatory stimuli in most infection models (Zhao et al., 1996). In nude mice models it
has been shown that the antimicrobial effects of bronchial fluid are due to HBD-1, as
treatment of the cells with antisense HBD-1 results in loss of the bacteriostatic activity of
the fluid (McCray and Bentley, 1997). These results indicate that this defensin, in common
with many antimicrobial peptides, has a role in maintaining the innate immunity of the
epithelia from which they are produced. In addition there is a putative connection between

a lack of HBD-1 production in some malignancies. It has been proposed, following a study
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on the lack of HBD-1 production in selected carcinoma epithelial cell lines, that lack of
control of the microflora and subsequent establishment of a damaging infection may be
responsible for conversion to malignancy (Abiko et al., 1999). This is the hypothesis
linking Helicobacter pylori infection to intestinal cancer and hence warrants further
investigation particularly in oral carcinoma. Finally the production of HBD-1 in mammary
gland epithelia supports the hypothesis that this peptide may also be essential in neonatal

immunity via colostrum (Tunzi et al., 2000).

2.1.6.3 GENETIC INFORMATION

Production of cDNA allowed cloning and isolation of the HBD-1 gene on human
chromosome 8, band p23 (Figure 3). This locus is 150bp away from the a-defensin human
neutrophil genes indicating common phylogenic ancestry between these defensins, despite

their structural and sequence differences.

2.1.7 HUMAN § DEFENSIN-2

HBD-2 (Figure 4) was first isolated in 1997 following investigation into the infrequency of
cutaneous infections in psoriatics (Harder et al., 1997). On dissolution of psoriatic scales,
this peptide was isolated and purified and shown to have sequence similarity to bovine
LAP and TAP. In common with its homologues, HBD-2 is produced by lung, kidney,
stomach and small intestine at a basal level, as shown by both Northern blotting and RT-

PCR (Bals et al., 1998).

2.1.7.1 SITES OF PRODUCTION

HBD-2 mRNA and peptide production has been detected in many epithelial cells including
lung gland and pulmonary epithelia (Becker et al., 2000). Basal expression of HBD-2 is
found primarily in skin, lung, trachea, and salivary gland epithelia (Singh et al., 1998;
Weinberg et al., 1998).

2.1.7.2 GENETIC INFORMATION

Isolation of the HBD-2 gene reveals its location on chromosome 8, region 8p21. HBD-1
and HBD-2 share the same 1.5MB region; hence, this area is thought to be responsible for
the coding of human f-defensins. Drawing comparisons from the work accumulated on

bovine and porcine B-defensin expression, HBD-2 was thought to be induced in a similar
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way by inflammatory stimuli. Several lines of experimental data support this theory:
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Figure 3: Diagram of chromatin fiber FISH mapping of human defensin genes (Liu et
al., 1998).

In vivo models. HBD-2 expression has been shown in situ in wounded skin (Ali, 2000). In
addition, lung epithelia expression is increased as measured in bronchioalveolar lav<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>