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SUMMARY

The technique of sample averaging is considered for application to 
the non-stationary vibration problem associated with road vehicle 
ride* Time history realisations of the vehicle response are achieved 
by a discretised lumped parameter model idealisation simulated on a 
digital computer. Sets of realisation histories are collated to 
obtain the overal statistical response characteristics. The road 
vehicle ride problem is the result of random road roughness exciting 
the vehicle as it traverses the surface. This dynamic excitation may 
be considered as a stationary function of time, provided the vehicle 
traverse velocity does not vary* Under variable velocity conditions 
the excitation is a non-stationary function of time. It is the solu­
tion of this non-stationary accelerating vehicle problem which is the 
subject of this study.

An alternative method of solution for the non-stationary vehicle prob­
lem has already been achieved. This alternative, like sample averag­
ing, places heavy emphasis on the use of numerical methods on a digital 
computer for the evaluation of results. Unlike sample averaging, it 
is not normally applicable to road vehicles which possess significant 
non-linear dynamic characteristics in their suspension configuration.

Ultimately the objective of this thesis is to make a comparative 
appraisal of the viability of sample averaging as a general means of 
determining the non-stationary response characteristics of road vehicles, 
To permit full justification of the technique and thereby ensure flexi­
bility of application, it is imperative that all methods of digital 
simulation are scrutinised prior to implementation.

In essence the simulator consists of two distinct numerical modules.
One module is concerned with the generation of a large sample of statis­
tically independent road surface profile realisations, while the other 
applies itself to analysing vehicle response. The additional problems 
encountered when interfacing the two modules are also fully investigated. 
Upon implementation, the simulator proves itself a flexible and viable 
tool for the solution of the non-stationary problem while providing 
some surprisingly new observations.
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CHAPTER I

THE NON-STATIONARY VEHICLE PROBLEM - AN OVERVIEW

1. Problem .justification and objectives
In the field of road vehicle engineering, vibrational response is an 
important consideration. Vibrational response is of fundamental 
concern to passenger comfort and to component stressing and fatigue.
The main source of vertical excitation is caused by road surface 
roughness transmitted through the vehicle suspension system to the 
vehicle itself. Optimal design of the suspension system is con­
sequently of considerable importance. The dynamic parameters of 
both vehicle and suspension influence the optimisation, as does the 
nature of excitation caused by road surface roughness.

Much work has been done in the statistical description of road 
surface roughness. Strong evidence exists to support the clàim that 
vertical undulations on a road surface profile can be considered 
stochastically stationary with respect to traverse (or spatial) 
distance along this profile. Should the road vehicle traverse this 
profile at constant velocity, the resultant vertical input excitation 
to the base of the vehicle suspension can be considered stochastically 
stationary with respect to both time and spatial distance, (Station- 
arity with respect to both time and space follows automatically from 
the linear relationship, at constant traverse velocity, between both 
time and traverse distance.) Thus at constant velocity, a linear 
suspension system can be analysed using the standard simplifications 
of stationary stochastic dynamics (see eg Ref. l). However, under 
variable traverse velocity conditions the input excitation ceases to 
be stationary with respect to time. Since the suspension system has 
a vibrational response which is time dependant, then non-stationar±ty 
with respect to time adds considerably to the complexity of any stochas­
tic dynamic analysis. It is the analysis of such non-stationary sus­
pension response that is of concern in this thesis.

Several interesting solutions of displacement response characteristics 
of road vehicles subject to varying velocity have been presented be­
fore (Ref. 2 and 3). Their solutions are specific to peirticular



road profile correlations and rely on the evaluation of compli­
cated double integrals with infinite bounds. Evaluation requires 
specialist knowledge and cannot therefore be readily applied by 
the vehicle design engineer to all practical road profile cor­
relations and design configurations. It is the objective of this 
thesis to investigate the practicability of sample averaging at 
fixed time instants, a set of computer simulated realisation his­
tories (henceforth referred to as the sample average (SA) technique) 
as an alternative design tool for the non-specialist design engineer.

This SA technique has certain inherent. advantages over the evalu­
ation of complicated correlation double integrals. All information 
concerning each realisation is available at little extra effort for 
further analysis and interpretation. Thus, not only can information 
concerning the mean square displacement response be obtained, but 
also information concerning vertical velocity and acceleration 
response characteristics and their associated probability distri­
butions. As the analysis is done by determining transient response 
realisations, it should be possible to cater for non-linear sus­
pension systems. The non-definitive nature of statistical infor­
mation from a sample of deterministic realisations is the major 
weakness in this approach. However, this aspect is also fully 
investigated.

Before launching into the detailed arguments for the computer simu­
lation approach employed, a brief justification must be given for 
choosing to simulate on a computer rather than by p^sical model 
tests. Two arguments apply. The first concerns flexibility; a com­
puter simulated model is readily amenable to variation in the physical 
parameters and obviates the need to have such "variation" components 
manufactured. Secondly, computer simulation is far more cost 
effective.

A digital rather than a hybrid computer was chosen for two main 
reasons. The type of hybrid which would lend itself to this type of
problem was simply not available at that time. Secondly, specialist 
hybrid machines are far more difficult to justify than general purpose 
digital machines. Consequently, digital machines are far more widely



distributed, and correspondingly interest in digital solution 
techniques is also greater.

The objectives of this thesis are therefore to investigate the 
viability of sample averaging as an alternative approach to the non- 
stationary vehicle problem. As a result of the additional statis­
tical information made available by this SA technique, existing know­
ledge on the non-stationary behavioural characteristics of road 
vehicles is extended.

2. Formation of the simplified vehicle model
From the point of view of dynamic excitation a road vehicle can be 
regarded as an elastic frame or monocoque structure mounted on 
several heavily damped spring suspension units. The relative stiff­
ness and mass ratios of the frame compared with the suspension is such 
that the frame can be considered a rigid mass when the suspension 
system is analysed, A lumped parameter model of the vehicle suspen­
sion can therefore be considered. In this idealised system all 
stiffness and damping parameters are lumped on the suspension while 
most inertia forces are attributed to the rigid frame.

Several suspension units support the frame. In a full dynamic 
analysis of the vehicle suspension all relevant degrees of freedom 
and the interaction (or cross coupling) between them must all be 
modelled. However in establishing the viability of sample averaging 
simulated time realisations, the majority of the fundamental problems 
which require proving are exhibited in a one degree of freedom 
lumped parameter model, (A one degree of freedom model is also 
desirable for comparison with the aforementioned existing solutions.) 
Analysis of a one degree of freedom model is therefore considered 
sufficient as vindication of the viability of the sample averaging 
technique.

The description of road surface roughness is an important aspect of 
the vehicle suspension model as it is the source of excitation, 
Formally only vertical input excitations are included in the model 
simulation. There are two reasons for this. Firstly, suspension 
units are designed to be more or less rigid with respect to all



lateral movement. Secondly, the vehicle configuration ensures that 
any lateral input excitation along the line of vehicle traverse, 
would either he absorbed as rotational energy to the wheel alone, 
with negligible treuismission to the suspension unit, or damped out 
by the tyre itself.

A considerable number of investigations have been undertaken to 
establish the statistical characteristics of vertical displacement 
road roughness. There is strong evidence to suggest that the ver­
tical displacement ro£ui surface roughness adheres to a Gaussian 
probability distribution. However the spatial displacement auto 
correlations (or equivalent spectral wave number characteristics) 
vary depending on the class of road under consideration. It is usual 
therefore to define a road profile in terms of either the spatial 
displacement auto correlation or wave number spectrum and assume the 
probability distribution is Gaussian,

A mathmetical description of the one degree of freedom vehicle sus­
pension model can now be formulated (See fig l.l). (in future for 
brevity this model will be referred to as the vehicle model.) The 
vertical equation of motion of the vehicle model takes the form

my(t) + cy(t) + ky(t) « cz(t) + kz(t) (2.l)
where m = lumped inertial mass coefficient of the vehicle

c = viscous damping coefficient of suspension
k = stiffness coefficient of suspension 
y(t) = time dependant vertical displacement response 
z(t) *=> time dependant vertical displacement input excitation.

The single dot above the variables y(t) and z(t) denotes the derivative 
with respect to time
eg. z(t) = dz(t)

dt
while the double dot denotes the second order time derivative

eg. y(t) = d^y(t)
d t ^

The input excitation displacement and velocity, normally described 
in terms of the spatial road profile, are thus defined in terms of



the horizontal traverse distance, x. Consequently vertical dis­
placement and velocity (or displacement gradient) are denoted 
respectively by

z (x ) and 2 (x) *= dz(x)
dx

These quantities are related to their time based counterparts, 
z(t) and z(t), by the instantaneous traverse velocity x(t), in 

accordance with the following simple formulae
z(t) = z(x(t)) (2.2)

z(t) « dz(t) = dz(x). dx 
dt dx dt

= z(x). x(t) (2,5)

Note Henceforth, the superscript dot (!) will refer to the 
derivative with respect to time, while the superscript prime (^) will 
refer to the derivative with respect to the spatial variable, x,.

It is also convenient to use the term spatially stationary to refer 
to quantities which are stationary with respect to ’x ’, while the 
term stationary refers to quantities which are stationary with respect 
to 't’.

Methods of analysing the non-stationary vehicle problem 
A brief outline of the possible methods of tackling the non-stationary 
vehicle problem are now given to facilitate more detailed discussion.

The alternative method to sample averaging used by Ref. 2 and 5
relies on the evaluation of complicated double integral formulae to
determine the mean square displacement response characteristics.
These double integral formulae are obtained from the convolution
integral relation ^

y(t) = (H(T)z(t-T)dT (3-l)
0

where y(t) s displacement response at time, t
z(t) E input excitation displacement at time, t
H(t) 5 impulsive receptance of the dynamic system

at time, t
which determines the displacement response at time t of a linear



dynamic system initially at rest, and from the relation which 
defines the response autocorrelation function Rytt^.t^)

le > (3.2)

where (y(t^).y(t^)) denotes the expected value of the product

y(t̂ )*y(t2)
Substitute (3.I) in (3.2) to obtain the mean square response 
convolution integral formula

) a ( T g ) E g ( ) B ^ ( t g - T g ) d T ^ d T 2 . ( 3 . 3 )

Formally, the relationship between the elapse time, t, and the traverse 
distance, x, is explicitly defined, and it is possible to reformulate 
the right hand side of (5*3) iu terms of the spatial variable, x* It 
is this approach that forms the basis of the investigations of Ref, 2 
and 3* As this approach is based on the convolution integral, it is 
consequently restricted to iinear suspension configurations.

The evaluation of the resultant integral formula is an extremely 
difficult numerical problem. In Ref, 3 the authors achieved simplif­
ication by the careful selection of road profile autocorrelation 
which had a particularly simple analytic form. Their technique re­
quired specialist knowledge and is not readily applicable to all road 
profile correlations. The results obtained upon evaluating these 
integrals are, ignoring numerical error, definitive on the expected 
value. This is a quality which sample averaging does not display 
because of the statistical scatter which must be present in a finite 
sample. It is the definitive nature of the solution which made this 
method so attractive to the authors of Ref, 2 and 3#

As yet the only results available by this alternate method concern dis­
placement response values. Should a derivative response correlations 
be required it would be necessary to repeat the evaluation with a dif­
ferent mean square response convolution integral approximately doub­
ling the work involved. Not only is this approach restricted to 
linear suspension configurations, but no information at all is avail­
able on the probability distribution of the response characteristics.



The technique investigated in this project is that of sample averag­
ing, It relies on the assimilation of statistical information ob­
tained from a set of random time histories simulating vehicle 
behavioural response. Each input excitation realisation is a gener­
ated sample member of a stochastic population which possesses the 
statistical characteristics (road profile correlation, probability 
distribution and time variant traverse velocity) for the case in 
question. Conceptually, the approach is very simple.

Since this approach is based on simulating the transient response 
histories, inherent advantages result. These advantages are listed 
below

1) Vertical displacement, velocity, and acceleration response 
histories are all present in each transient simulation. It is 
therefore possible to establish all statistical response charac­
teristics (ie mean square values and probability distributions). 
Such characteristics are important for passenger comfort and com­
ponent fatigue considerations.

2) As transient solutions are being evaluated, careful design 
of the numerical factors in the vehicle simulator should allow 
for the analysis of non-linear vehicle systems.

3) The method of generating realisations of the road profile 
allows both realistic and elegant analytical correlations to be 
simulated with equal ease.

Again it must be emphasised that, with this technique of sample 
averaging, statistical scatter must be anticipated. Consequently 
the results will be non-definitive. Ultimately it is the magnitude 
of the tolerance achieved by a physically manageable sample size 
which will decide the viability of sample averaging as the method of 
solving the non-stationary vehicle problem.

4. Segmentation of the problem
When extracting non-stationary response characteristics by sample aver­
aging the analysis breaks naturally into tvvro main segments. The first of



these is concerned with the design of the overall road vehicle 
simulator on a digital computer. The other segment is concerned 
with the statistical interpretation of this sample of simulated 
realisations.

Investigation of the numerical techniques required to implement the 
road vehicle simulator comprises the major part of this thesis. The 
extensive nature of the numerical investigation does not mean inflex­
ibility of application. Once established, the simulator can be 
readily applied to any design configuration and road profile correl­
ation, It does not therefore affect the technique^ usefulness as a 
design tool.

The problems associated with the road simulator design can be further 
subdivided as follows:

1) The Road Profile Generator is concerned with the problems 
associated with the generation of a family of statistically 
independant random road profile realisations

2) The lynamic Vehicle Integrator is concerned with the 
problems of digitally simulating the vehicle response

3) The Road Vehicle Simulator is concerned with the problems 
of interfacing a spatially stationary road profile generator to 
a time based dynamic vehicle integrator while including the 
effects of non-stationarity.

In the sections which follow, the problems associated with simulation 
and statistical interpretation will be briefly discussed.

5. The Road Profile Generator
Roth displacement, z(t), and velocity, z(t), are required as input 
excitations to the vehicle model equation of motion (2,l), The road 
profile generator is required to generate these input realisations.
It is essential that these realisations manifest the correct statis­
tical input characteristics. It is also essential that each realisa­
tion is independent of all others in the sampled population to ensure



correct statistical representation.

This requirement for a large number of independent realisations of 
the road profile prompts the consideration of linear stochastic 
difference equations (LSDE) as a means of road profile generation. 
However, by using such difference equations, it is only practical to 
consider stationary profile realisations. If these generated 
profiles are made stationary with respect to time it is only possible 
to consider constant traverse velocity cases which.is contrary to 
the objectives of this thesis. However, if the generators are made 
spatially stationary then it is possible to include the effects of 
variable velocity in the equation of motion of the vehicle model.
It is this latter option which was selected.

Choosing and implementing a linear stochastic difference equation 
as a means of generating road profile realisations at spatially 
equal increments is considered in some depth in the ensuing chapters.

6, The lynamic Vehicle Integrator
The dynamic vehicle integrator is required to simulate the vehicular 
response when subjected to prescribed vertical displacement and veloc­
ity excitations. The equation of motion of the time based vehicle 
model is given by (2,1). However, the prescribed excitation inputs 
are described in terms of spatial increments, x, and so, as mentioned 
in the previous section, it is necessary to introduce the effects of 
variable traverse velocity through the equation of motion.

The transformation of (2,l) from a time base to a spatial base 
(or vice versa) is easily accomplished provided the instantaneous 
traverse velocity is explicitly defined. In order to simulate the 
transformed equation of motion it is necessary to consider a numerical 
integration technique which can accommodate variation of the dynamic 
parameters of differential equation (2,1). It is also desirable to 
choose a method which can accommodate non-linear suspension con­
figurations, A search for a suitable integration technique was 
reauired.



7• The Road Vehicle Simulator

The problems encountered by having a spatially based road profile 
generator and a time based dynamic vehicle integrator were briefly 
outlined in the previous section. It is necessary to consider how 
these segments can best be interfaced, A spatially based formulation 
is eventually chosen. The reasons for this decision will be discuss­
ed.

8, Interpretation of the Statistical Results

The ability to assess the statistical performance of any arbitrary 
road surface and vehicle suspension configuration is the ultimate 
objective of this sample averaging technique. The methodfe viability 
rests on the ability to attain a reasonably definitive solution from 
physically manageable sample sizes. Consequently, the quality of all 
statistical information obtained by this method must be studied in 
detail. The problems associated with extracting meaningful answers 
from manageable simulation sample sizes must also be considered 
before reaching a conclusion on the method’s viability.

Non-stationary results available from Convolution Integral approach 
provide a means of checking this sampling technique.

9* Conclusion

Consideration of vehicle suspension design is of crucial importance 
in the reduction of the road vehicle's vibrational response. The 
primary source of excitation is caused by road surface roughness as 
the vehicle traverses the road profile. Under variable traverse 
velocity conditions, the standard simplifications of stationary 
stochastic dynamics no longer apply and other methods of analysis 
must be sought.

Unlike the Convolution Integral approach, this sample averaging 
technique can readily be applied to non linear suspension



configurations. The Convolution Integral approach proves rather 
unwieldy for the solution of new road profile correlation problems, 
in particular those profiles with no elegant mathematical form. The 
sample averaging approach is totally correlation profile independant.

Sample averaging also reveals all additional statistical information 
(derivative mean square response characteristics, probability dis­
tributions) as a natural by-product of the solution method. However, 
it is the degree of convergence obtained from a limited sample of 
realisation records that will ultimately determine the viability of 
the technique.

It was proposed to consider a one degree of freedom vehicle sus­
pension model. A.one degree of freedom model displays all the 
characteristics necessary to ascertain the feasibility of sample 
averaging for solving the non-stationary vehicle problem, ;

To ensure proper design of the road vehicle simulator, it is necess­
ary to carefully consider the numerical properties of the various 
digital simulation aspects. The complexity of designing a road 
vehicle simulation should not influence the method's ultimate 
viability, for the design of this numerical tool is a once only 
operation*

Comparison with existing non-stationary mean square displacement 
response results provides valuable insight into the nature of statis­
tical scatter present in averaging a set of sample realisations, as 
well as ascertaining the method’s ability to cope with non-stationary 
problems,
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CHAPTER II

USING THE LINEAR STOCHASTIC DIFFERENCE EQUATIONS (LSDE)

1. Introduction

The type of second order ordinary differential equation that requires 
solution in problems such as the vehicle problem is given by

my(t) + cy(t) + ky(t) = cz(t) + kz(t) (l.l)

where y(t) is the displacement response at time, t,
z(t) is the random.input displacement at time, t,

and z(t) is the derivative of z(t) with respect to time.

An equation of the form of (l.l) requires both displacement and the 
velocity (or slope) road profiles,z(t) and z(t) respectively, to be 
input. Each road profile realisation in the sample must be statis­
tically independant and must adhere to the correct auto- and cross-

/correlation curves, while at the same time exhibit Gaussian probab­
ility distribution. It is proposed to generate independent Gaussian 
probability distributions by means of a Gaussian random number 
generator and to use LSDEs to obtain the correct correlations.

It is the selection of the most suitable type of LSDE which is con­
sidered in this chapter. Considerations concerning the LSDE are 
easily the most complex part of the road profile generator. For 
general reference on the subject consult for example ref. 1 or 2. 
Discussion on how to obtain independent and correct probability dis­
tributions for the profile generator is left until chapter III. As 
the generator is required to generate both displacements z(t) and 
velocities z(t), the requirement for cross-correlation between 
these two random signals suggests that multivariate LSDEs must be 
considered. However, the special relationships between all auto- and
cross-correlations (displacement, velocity, displacement - velocity, 
velocity - displacement) permits a monovariate LSDE to fulfil all 
generator requirements (see chapter 111).



The object of this chapter is therefore to consider the theoretical 
aspects of the various types of LSDE and assess which can most effec­
tively generate road profile surfaces. It is also desirable to 
readily establish the filter coefficients when new road correlations 
are considered.

2. Types available
The road profile is assumed to be of a stationary nature and as a 
consequence of this only three types of LSDE need be considered.

These types are Autoregressive (AR), Moving Average (MA), and Mixed 
Autoregressive Moving Average (ARNIA) filters

All three types are covered by the general difference equation

I j l ”, V j  <»•«
If p >  0 and q = 0, then it is an AR of order p.
If p = 0 and q >  0, then it is an MA of order q.
If p >  0 and q >  0, then it is an ARMA of order p.q.

The and b^*s are weighting coefficients and the ratio V q

is the scaling factor. The suffix *n* is the current discretised 
sequence increment, and r^ is a sequence of mutually uncorrelated 
random variables having a zero mean and a variance, Var(r).

Clearly, the AR and MA models are particular cases of the more 
general ARI'IA model. It is however useful to consider the properties 
of all three cases.

A relationship exists between the weighting coefficients of
the simple AR filter and the "by coefficients of the simple M  
filter. (Refer Appendix A)

This relationship is important in two respects. It demonstrates 
that a finite MA filter can be replaced by an infinite AR filter



and vice versa, and that the "h\'̂  weighting coefficients of an MA 
filter can be directly determined from knovm equivalent "â "̂ coef­
ficients. The converse is also true.

The determination of the "bys from equivalent "a^"s is crucial in 
establishing sensible MA and ARMA models.

3* Stability and Invertibility requirements of LSDEs
Stability and/or invertibility are prerequisites for all LSDEs. 
Consequently these criteria are considered before any detailed 
discussion on the particular types of LSDEs available. Both 
requirements are considered together as they are related.

Consider equation (2,l) with the scale factor Vo. set to unity

V i  = fj, (5.1)

hy definition the Laplace Transform, ?(s), of any time dependant 
function, f(t), is given by

F(s ) = { f(t), exp (-st)dt (3.2)
0

Multiply eqn. ($.2) by exp (-khs) to give

e x p ( - k h s )  P ( s )  =  J f ( t )  e x p [ - ( t  +  k h ) s  ] d t  ( 3 * 3 )
0

Let t = T - kh and substitute in (5*5) to obtain

exp(-khs) f(s) = J f(T - Idi) exp (-Ts) dT (3*4)
0

Consequently, multiplying the Laplace transform, P(s), by exp(-khs) 
is equivalent to delaying the time dependant function, f(t), by 
"k" increments of length h, and vice versa.

The right hand side of (3*l) possesses a non-recursive formulation 
(ie no feedback properties). Consequently, for the purpose of



stability analysis, it can be regarded as a single input 
quantity, R such thatn

<1
R

Thus, R^ can be regarded as the total stable filter input.

Equation (3*l) can now be written in the form

\  (5.6)

Take the Laplace Transform to obtain
P _

• a. exp(-ihS) z(S)' = R(s ) (3*7)
i=0

From control theory the transfer function, TF(S), in the complex 
S - plane is given by >

TP(S)- eM  =-pi- (5.8)
R(S) D  exp(-ihS) 

i=0
For stability the roots of the denominator in (3.8) must all lie in 
the negative half of the complex S - plane. If the denominator

P P n
E  a. exp(-ihS) = n  (l- g" S) = 0 (5.9)
1=0 1=0 ^

where g^,for i - 1, 2, —  p,are the roots, then for stability 
g^ :< 0 for all i. Unfortunately, the form of the denominator makes 
the factorisation into roots very difficult.

As the filter (3.6) is discrete, time increments, h, elapse between 
sampling instants. An upper band sampling frequency, ^  , is8 IH8,3C
effectively imposed, such that

" s m a x  = P :  (5'10)h

All frequencies greater than CO cannot be processed by thes max^2

filter.



Thus the effective stable region of the complex S - plane is the 
region bounded by the lines

- oo <  Re ( g  ) <  0 )
) (3.11)

The stable region defined by (3.11) maps into the unit circle in 
the complex X - plane if the complex transformation X = exp(s) is 
implemented. Thus in the plane the stable region is given by

|A|<i
Employ this transformation X = exp(hs)to the denominator in the 
S - plane (3.9),
hence,

> a ^  e x p  ( - i h s )  =  0  >
i  =  0  i n  t h e  S - p l a n e

b e c o m e s ,
P . P J
E  = n  (1-h^ X ) = 0 (5.12)

i = s O  i * = 0
i n  t h e  X -  p l a n e ,  h ^ ,  f o r  a l l  i ,  a r e  t h e  r o o t s

(If ihs = i InX = In X  ̂)
(then exp (ihs) = X^ )

(3.12) is the characteristic equation.

For stability all roots h^ must lie within the unit circle, ie 

| h j < i

Consequently to check for stability it is necessary to solve the 
characteristic polynomial (3.12) and evaluate the roots g^.

To solve for roots of high order characteristic polynomials, by 
numerical means, proves difficult. The polynomials are very



frequently ill conditioned. Roots near the stability bound may 
therefore be misinterpreted.

To overcome this problem another complex transformation from the X  
to the V - plane is implemented by means of the relation

X = VLi_i (5.13)
W - 1

The stable region is transformed from within the unit circle of the 
X - plane, to the negative half of the complex W ~ plane bounded 

for stability by

He (W) <  0 (3.14)

In the W - plane the transformation of the characteristic equation 
takes the form

n  a'', = 0 ' (3.15)i=0 J-

The solution of this polynomial is no more easily accomplished than 
the solution of the characteristic equation (3.12). However, as the 
stability is Re (v) <0, it is ammenable to the implementation of 
the Routh Hurwitz stability test (see chapter III). By this means 
the problem of ill conditioning is overcome.

For the stability considerations attention is concentrated on the 
recursive AR filter part (left hand side) of (3.I) and the inputs 
r^ j grouped in the single input variable, R^jdefined in (3.5). 
However, another criterion must be considered to ensure a sensible 
filter is obtained. This criterion is known as invertibility.

The relevance of invertibility is demonstrated by focusing atten­
tion on the non-recursive MA right hand side of (3.I) so that a 
filter of form

is obtained.



Transform into the A - plane, to yield
z ( A) = ê r(A)j-0 4

= n r( A) (3.17)
j=0

where, for all j, are the roots of the characteristic

equation.

(3.17) can be reformulated as
q. -1

( n  (l-g A J )  1(A) = r(A) (3.18)
j=0  ̂ ^

Expand the left hand side in terms of partial fractions to obtain:-

^  k . H( A ) = r( A ) (5*19)
Tw-i Aj)

where is a scalar constant.

The factor 1^ of (3.19) can be expanded such that(i-gT Aj)
(i-gj^Aj) = i+(&j A j ) + (Sj A j)

The series is convergent if |gj |< 1

Consequently, by consideration of this constraint imposed on the
equivalent AR filter, it becomes obvious that the roots of the
characteristic equation, g^, of an MA filter must satisfy the
condition |g |> 1, for j = 0, 1, 2 ... q, to ensure a sensible " J
filter.
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4* The Autoregressive (AR) Process 

4* 1 Derivation of Yule-Walker Relations

The monovariate AR process takes the form
" S  (^.l)

1=1
where the a/ s are the weighting coefficients and is a
series of mutually uncorrelated discretised random inputs, having 
zero mean and variance

Var(r) = ) "p" is the filter order.

Pre multiply by where k = 1, 2, 3»—  P, to obtain

^n-k ^n ^ ^  ̂ i ^n-k ^n-i **" ^n-k ^n 
i«l

Taking expected values yields the following relationship

°k “ .2 °k-i1=1

where Autocovariance, C, = <z , z \k \ n-k n/

< V k  ^n> “ ^n-k
is only influenced by inputs r^ up until time increment i = (n-k)

The autocorrelations, E^, can then be obtained by dividing through­
out by C^, so that

\  (4*5)

where R^ is the Autocorrelation at lag k and R^ = 1.



Expressing this in matrix form, (4*3) becomes
R-,1
2

,
RP

R-1 R-2 R
R R

-p+1 
—p+2

«P-1 V 2 R , . . . 1P“5

a.

a

Since the autocorrelation function is symmetrical about the zero 
lag point, then

R where k-k ” he

80 that the relationship becomes
= R

where 1 «1 «2 . . . EP̂_

£  = [•> »2 # » * 8,

and E = 1 =2 V i ]
1 »

h 1
.

\-l

(4.4)

(4.4) is the Yule-Walker relationship.
The weighting coefficient vector, a, can be easily and uniquely 
determined from (4.4) as follows

a R-^.r (4.5)
Unfortunately the efficiency of this method of coefficient deter­
mination decreases as the square of process order, p, due to the 
necessity of inverting the square matrix, R.



The filter output variance, Var (z), can he determined by taking 
expected values as in (4.2), but this time with, k «= 0, so that 

P
C = E  ̂ 4 ^ i + Var(r) (4.6)

i=l

Since, < 2 ^ • ^n >

Divide (4.6) by , =Var(z)^ to obtain

1 E_. + Ver(r)/y^(^) (4.7)

Recall that R^^ = R^ and rearranging (4,7) yields

Var(z) = '__Yar(r)____  (4*8)
1 - i: a R 

i=l ^

4. 2 Least Squares Asymptotic Estimation
When using the Yule-Walker relations to establish the weighting 
coefficients, "a^", an inverse square law exists between efficiency 
of coefficient evaluation and filter order, p. It becomes increas­
ingly desirable with higher order filters to establish a more 
expedient means of solution.

This can be done by employing a pivotal reduction technique used in 
regression analysis.

To establish a filter of order, p, it is first necessary to determine 
the weighting coefficients a for i = 1, 2,  p ,
The superscript (i) refers to the coefficients present in the ith 
order Yule-Walker representation.

Recall the Yule-Walker relation for order p is given by (4.4)
For a first order relation, i = 1, a^^^ = R^
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Prom the second order case, i

1 R
Let

(2) R^ R

= 2, by eliminating

a

Det
R.

(5)

• « • etc*

and for i =

Det

a (p)

Det

for i = 3
1 «2

Det 1

«2 I'd
1 «2

Det 1

^2 1

P
1 «1 . .

1 • •

Rp-1
R1 *

R

. R

. R
P-1
p—2

RP
. R
. R

P-1
p-2

P-1

Thus, the coefficients a^^\ a^^^, a^^^,
established.

(4.9)

a(p) are
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The coefficients, for j < i, can be determined recursively
as follows:-

The second order Yule Walker relation, yields

1 M H;.

R- 1 .,(21 E,1 2 1

or in matrix notation

Eg . ag (4.10)

Imbedded in the third order relations are the equations

(3) (5)â '' ' + « R,

which can be rearranged, such that

R,
a /5 ) ‘

a (5)
2

R^ — Rg 8-̂

Hg - H^ aj

(3)

(3)

le

= Rg"^
%

- a (5) R-12
R^

3 _2
Ro2 2 2

(4.11)
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and from (4*10)

«1-1
=

2 2

substitute in (4*H) to obtain

-a3(3)
"a2(^)

_a,(3) y.
, . , etc.

These general recursive relations, due to Durbin (s), are given by

(i+1)
^i+1 %i+i

1
-  2  

j=i
1 -

(4.12)

^_j+i i =a.

For high order AR filters this method of establishing the weighting 
coefficients is far more efficient.
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4* 5 Roots of the Characteristic Equation and the Effect on 
Performance*_____________________________ _________

The AR filter can be expressed as 
P
Z  ^i ^n-i ^n (4.15)
i=*u

which has a characteristic equation 
P & = 0 (4.14)

On factorisation this becomes

p ■ _n, (i -gj A) “ 0 (4.15)1= I 1

where i = 1, 2 ... p, are the roots of (4.14). Each root
can be either real or complex.

The AR filter must satisfy the constraint of stability (see section 5)

The AR filter can be regarded as a digital filter, which has a trans­
fer function, TF(s ), in the complex Laplace domain (or S - domain)
such that

= 1

^  exp(gj^hS)
TF(S) = z^- ■ = J. (4.lg)n

r
idO

where is a constant.

Thus the filter response, for 0 ̂  n <  R, can be regarded as
being composed of a sum of damped exponentials (assuming stability 
is met). If the root ĝ  ̂ is complex, the damped response is 
oscillatory, and non-osdilatory if g^ real.

Since the input r^ is of a random nature then these exponential
decays, between one time increment and the next, must have arbitrary 
random phase,
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As a conséquence of the AR filter's recursive nature resulting in 
damped exponential response characteristics, an efficient order of 
filter parameter idealisation can he achieved for a comparatively 
high order process correlation, provided phase is unimportant.

4. 4 Stability

AÏÏ filters are by nature iterative arid as such are subject to 
numerical instability problems, (in stochastic time series analysis 
literature stability is often referred to as stationarity.) The 
stability criterion namely |h^| <  1 where h^ are the roots of 
the characteristic equation was established by ($.12).

There is no guar^teed method of establishing weighting coefficients 
which are stable. The best that can be managed is to test their 
stability before the filter is implemented

A scheme to check for stability is described in Chapter III - 
Implementation of a mono-road profile,

Row severe a restriction stability may prove to be, will depend on 
the correlations of interest. However, it was empirically observed 
in the correlations tested that stability was always achieved 
(see Chapter IV).

4. 5 Power Spectral Density

The power spectral density can be derived directly from the a^ 
weighting coefficients in the following manner.

Prom Appendix B, the power spectral density, S(f), is given by 

S(f) = 2.Var(r) | b , exp(- i 2 7Tf ) |  ̂ for 0:<f:<i (b .?)
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and from Appendix A,
b(B) - a“^(B) (A.4)
where a(s) = B

i "t/lrand B is the i Backward shift operator,
and hence the power spectrum is given by

S(f) = 2 Varjrl Q < p < i
a, exp(- l2 7Tf )| (4.17)

. i=0
By comparing this spectrum with the original road spectrum, an easy 
check of the filter model.'s validity is provided.

5. The Moving Average (MA) Process

5* 1 Derivation of the MA Filter Coefficients

The monoyariate MA Process takes the form

2n = (5.1)
j=U

where the "b^'s are the weighting coefficients and r^, for
0<n< N , is a series of mutually uncorrelated random inputs with 
zero mean and variance, Var(r). "q” is the filter order.

Pre-multiply by for k *= 0, 1, 2,***q, to obtain

j=0 j=o
^n-k*“n

Take expected values, so that 
q-k

• • wk = Vsr(r) %  V k  ^5.2)

where autocovariance, C^ = ^^n-k

Since r^(t) is mutually uncorrelated, for 0 n d; N,

then ^^n-k ^n^ “ Var(r) for k = 0
= 0 for k / 0
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To obtain the autocorrelations divide by C^, thus

where

2  ^j+k
j=0

(5 .3 )

V ( is the autocorrelation of y(t) at lag k.

Express (5*5) ^  the matrix form
po 1̂ 2 . . .

 ̂■ 0 ^0 h
«2: = Var(r) 0 0 '’0 • • • \ - 2

0 0 • * • ... bo

0

or more concisely

* Var(r) B .br/V/ ( 5 . 4 )

Unfortunately, these equations possess no unique solution as there
are q! cross products "b.b,% where j = 0, 1, 2, — ,q and i =1 d
0, 1, 2, -- ,q-j, and only q equations to establish their values

The "b." weighting coefficient can in fact be shown to be unique,
once the constraint of invertible stationarity is considered. This 
is proved in subsection 5*4 for the general ARMA, model of which the 
MA model is a subspecies.

To meet the invertible stationarity constraints the "bj" weighting 
coefficients must be arrived at by an iterative numerical technique.

The output variance, Var(z), is given by (5*2) when k = 0, so that 
Var(z) = Gg.

5*2 Efficient Calculation of MA Filter Coefficients 
In Appendix A the relationship 

b(B) = a”^(B) is established (A.4)



- 5 2 -

Thls relationship is used by Durbin ($) to establish the coef­
ficients, "bĵ ", from a set of established AB filter coefficients,
"a/'. The goodness of fit to a fixed order MA process is depen­
dant on the order at which the equivalent infinite AR process is 
truncated.

This means of numerical estimation ensures that the invertibility 
constraint Is met (see section $). Unfortunately, it proves to be 
intractible for high order MA filters.

Another means of estimating the ”b̂ *' coefficients is to use a
Rewton Raphson iterative technique to make an estimate of the 
"b^" coefficients.

For the (i+l)
n.i+1

th iteration the relationship is

(5.5)

where f. b^

D

B

B + B

h  '>2

b^ bj

. . bb _ b _ bq—2 q-1
b b 0q
b 0 0

0 0 0

and B is as defined in subsection 5*1*

Unfortunately, this method takes no account of the invertible 
stationarity constraint imposed on the "bĵ " coefficients. Once
this constraint is imposed this method is also intractible for 
high order filters.
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5,3 Roots of the Characteristic Equation and the Effect on 
Performance____________ ___ ___________________________ _

The MA process takes the form

“n “ I; '’j ̂ n-3 (5.6)
j=o

This has the characteristic equation

T  b. = 0 (5.7)
p o

which after factorisation becomes

n (i-s. ~̂ A) = 0 (5.8)
j=0 ^

where g., j = 0, 1, 2, .,,q, are the roots of the characteristicj
equation, and can be either real or complex.

The MA filter is not subject to the stability constraint but 
instead is subject to the constraint of invertibility (see 
section $).

The MA filter can be regarded as a digital filter, possessing the 
digital transfer function (T.F(S))

q
TF(S) = (g) = Tj exp(g^ hs) (5.9)

where T^ is a constant and S refers to the complex Laplace Domain.
Thus the filter comprises of a finite series of delay operators 
applied directly to the input. If the roots, g^, are complex the

response will be oscillatory.

Since, TP(s) is finite and non-recursive the correlation will 
exhibit a sharp cut-off after lag, j - q.

Since, each delay operator deals with only one single random input 
at any specific time increment, h, excellent phase characteristics 
will be portrayed by the filter up to time lags of magnitude, qh, 
at the expense of inefficient fitting for a prescribed correlation 
order ,
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5,4 Stability and Invertibility

MA filters are of a non-recursive nature and as such are intrin­
sically stable. Such filters are however subject to the constraint 
of invertibility, namely, j g | > 1 where, g^, are the roots of the 
characteristic equation, in order to ensure a sensible filter.

It is demonstrated in section 6.4 that the invertibility constraint 
is necessary to ensure uniqueness of the filter weighting coef­
ficients, "bj". Unfortunately, there is no sure way of arriving
at the unique, "b.", coefficients short of trial and error testsJ
using the invertibility constraint. For high order filters this may 
prove a wearisome occupation.

The invertibility constraint imposed on an MA filter does however 
score in one respect over the stability constraint of an AR filter, 
for it does have one unique invertible solution. The AR filter has 
no such guarantee of stability. In fact in the empirical tests on 
the AR filters described in the following chapters, instability is 
never encountered.

5.5 Power Spectral Density
In an analogous manner to the AR process, the MA power spectrum,
8(f), is obtained directly from the, "b^", weighting coefficients.

From Appendix B, the power spectral density is given by

' 8(f) » 2 Var(r) jb exp(-: J'2 7Tf ) | ^ for 0 < f  (B.?)

= 2 Var(r) b exp(- Î27Tf )|^ (b .IO)
" j=0 J *

Once again an easy check of the filter model's validity is provided 
on comparison with the original spectrum.
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6* The Autoregressive Moving Average (ARMA) Process

6.1 General

As mentioned in the introduction, the ARMA model takes the form

2  ^n-i “ ^^a 2! ^i ^n-j (2,l)° i=o ° j=o

This is the general form of which the AR and MA models are special 
cases:
AR if p >0 and q « 0, MA if p » 0 and q > 0
Most of the discussion on the AR and MA filters, with the exception 
of the weighting coefficient determination (done in subsection 6.2), 
applies to the mixed ARMA model.

In Appendix A the relationship between the MA and AR processes is 
derived. It demonstrates that a finite MA filter can be equival- 
enced by an infinite AR filter and vice versa. However, a process 
which is essentially AR in nature cannot be efficiently modelled by 
an MA filter. The same is also true for an AR model of an MA process. 
A logical extension of this efficient modelling criterion comes when 
the process to be modelled contains properties of both types. Under 
such conditions it is essential to incorporate both AR and MA charac­
teristics into the model, resulting in an ARMA filter.

6. 2 Efficient Calculation of ARMA filter coefficients.
Determination of the AR filter coefficients can quite simply be 
done either by the Yule-Walker relations or by the least square 
approximation technique. Determination of the MA terms is less straight 
forward because of the non-linear nature of the filter and the 
necessity to consider invertibility to establish uniqueness. It 
can reasonably be expected, therefore, that coefficient determina­
tion of the mixed ARI4A model is yet more complex. This is indeed 
the case as the following description will show
The ARMA filter takes the form

'‘n “ V i  + Z  ?n_j (6.1)
i=l J*=0
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In an analagous manner to that used in the derivation of the 
Yule-Walker relations, pre-multiply throughout by, to obtain

< V k  V j ) (6.2)

Since, as before, r^, is mutually uncorrelated, n = 0, 1, 2, ..,R, 
and since, is only influenced by random inputs prior to time
instant, n-k, it follows that

<  V k  V j )  “ k-j>0

^ 0, for k-j < 0

and hence (6.2) reduces to a Yule-Walker type relation, for (k-j) > 0,

i=l

which in matrix notation is

R a

(6.5)

Slnoe the restriction, (k-j)> 0, is imposed, this implies that, 
k >q, and since, k = 0, 1, 2, ... ,p, it follows that, p >q. Thus 
the ARMA filter, (6.1), considered in the following is subject to 
the constraint, p > q.

The ARMA filter of (6.1) can be written in the form

j=0
- f  a,

i=0 
where a

z1 n-i (6.4)

0 -1
By considering an MA filter of the form

n f  "i "n-i
i=0

(6.5)

where, P^, is the output variable and where the "aĵ " coefficients
have already been determined from (6,$), The influence these 
coefficients have on the total ARMA filter can be determined.



-5 7 -

This is achieved in an analogous manner to that used in estab­
lishing the MA relationshipI-

Premultiply, (6.5) by, P^_^, so that

P P n-k n 2  ̂ i ^n-k-i ■ 2  \  ^n-i
i=0 i«0

Take expected values, to obtain

\ ( p )  = . ^i+k^ Ybjo{z )

where E^(p) = < >

or in matrix form

and

l(p) = Var(z) A ^

A = '^0 ^1 • * • %
0 Uq * • • V i
0 0 # . . V 2

. 0 0 ^0 -
_T
a = [^0 a 2̂ , , * ^  ]
T

r(p) R(p ) b (p ) • • • 
0 1

E(P)]
P

(6,6)

As in the determination of the pure AR filter coefficients, the 
method described above for the ARMA filter does not guarantee that 
the constraint of invertibility of the, "by, weighting coefficients
will be met. Consequently, a trial and error check must be 
implemented. Again, for high order filters this proves intractable. 
The effect of this pure AR process can then be removed by sub­
tracting the, r(p), vector from the total correlation.
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As with the simple MA filter, the Newton Haphson iterative technique 
can then he employed to determine the, "h/', weighting coefficients
of this "residual" MA process. For the, (i)^^ , iteration this 
would lead to the relations

(6.7)

where fCi) = - r(p)

(i)
>

(i) (i) . . . . 0

0

(i)0

0

(1)
q-1

(i)
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6,3 Roots of the Characteristic Equation and the effects 
on performance._________________________

The ARMA filter is the general model of v/hich the AR and MA 
processes are special cases.

From (2,l) the ARMA filter takes the form

V i
1=0 j=0

(6,8)

assuming = 1. (Remember a^ is simply a scaling factor)

(6,8) has the characteristic equations

a. A 0
i=0

a n d b, A j-o J
(6.9)

which on factorisation become respectively

n (i-g"̂ A,) = 0i=i  ̂ ^
(6.10)

where g^, i = 0, 1, . . .,p, and , j = 0, 1, 2 . . ,q, are the 
respective roots.
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The stability and invertibility constraints both apply to this 
mixed filter.

The AHMA filter can be regarded as the digital filter which in 
the complex, S - domain has the transfer function TF(s) such that

q
TF(s ) = z; (s) exp(g. h S)n .1̂ 0 J ^ (6.11)

(S) ^  exp(gj^ h S)
i=0

where T. and S. are constants, j 1

The ARMA filter incorporates the damped exponential response 
characteristics of the AR process together with the" good phase 
characteristics, up to time lags qh, of the MA process (sections 
4*5 and 5*3)* To some extent the mixing of both types of charac­
teristics "muffles" the virtues of the simple AR or MA filter. In 
any event, good phase lag characteristics are superfluous to the 
requirements of a road profile generator.

6.4 Stability and Invertibility
Since the ARMA model incorporates a recursive AR model with a non­
recursive MA model, it is.subject to the constraints of stability 
and invertibility. These concepts are developed in Section 5 and 
their relevance to AR and MA filters are discussed in Section 4.4 
and 5.4 respectively.

To establish the unique solution of the MA part requires the same 
I tedisome trial and error approach to establish the invertible, "b^",

parameters. As with the AR process there is no guarantee that 
stability will be achieved.
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6.5 Power Spectral Density
In a similar manner to that implemented in Sections 4*5 and 5*5 
for the AR and MA filters, the power spectral density is easily 
seen to be given by

S(f) . 2 Vax (r) |Z  b. exp(- Ï2TTS )|
1=0 ■

j Z  a,- exp(- i 2 7Tf ) [ 
'j=0  ̂ '

(6.12)

6.6 Uniqueness of the general ARMA model
The uniqueness of the general ARMA model can be demonstrated in the 
following manner.
Consider the ARMA filter

â ' i  ■ è " !  ' - I

which can be expressed in the form

n(1-g.D )z(t) = n(1-g.B )r(t) (6.14)
i=0 ^ ^ j=0  ̂^

where,, ĝ. and g^ , for i = 0, 1, .., p and j = 0, 1, .., q, are the 
roots of the characteristic equations of the left hand and right 
hand aides of (6.13) respectively.

From Appendix B, the covariance generating function is given by
C(:^ = Var(r) b(B^) b(p^) (S.2)

where b(B ) = Z b  and b(F ) = Z  b
^ j=0 j»0 ^

and B  ̂ is the backward shift operatorw
and F  ̂ is the forward shift operator,w
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However, in the case of (6.14), b(h^) is the series given by

and b(F ) has a similar form.

Substitute in (B.6) to obtain

C(B^) - Var(r) B^)“^ (l-g-.F^)” }̂

; (6.16)

Consider the root pair product

(l-g. B„) (l-gj PJ = 1-g. B„-g.,P^+ëj P^

“ 1-gj B^-g. P„+g.2 (6.17)

since F = Bw w

Similarly, the product

. =w) V ^ j  V  B

= V 5 j  V  :

and hence

(l-Sj B^) (1-gj F^) = s/(l-«f^ B^) (1-g.-^ P„) (6.18)

From (6,l6) and (6,18) it follows that (6,15) can be rewritten in
the form

6 ,  (l-gj_ B^)z(t) = P ]%(1-^ B^)r(t) (6.19)
where P = ^  gj for any combination of products of j

for 0 < q.
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Thus, there are a multiplicity of ARMA filters ( j| combinations) 
which satisfy the covariance generating function.

It follows that if any complex root, g^, lies outside the unit 
circle, then, g lies within, and hence only one ARMA filter

satisfies the criterion of invertibility.

7- Conclusion
From theoretical considerations of the behaviour of the various 
types of linear stochastic difference equation, it becomes apparent 
that the AR filter best meets the design requirements of generating 
a monovariate road profile, with the added bonus of easy, "a^", 
weighting coefficient determination. Theoretically, the most sig­
nificant shortcoming was the iimbility to guarantee stability. 
However, empirically, as is shown in Chapter IV, this proves to be 
of little hindrance, as no unstable filters were uncovered using 
the methods outlined in Section 4*

To qualify this conclusion, it is necessary to mention both the 
coefficient determination characteristics and the performance 
characteristics of each of the linear stochastic difference 
equations in turn and discuss jth^re relevance in meeting the design 
requirements of a mono road profile. This is done in the following 
paragraphs,

Filter coefficient determination characteristics
With AR filters irrespective of order, the weighting coefficients 
are readily determined from the Yule-Walker relations. Unfor­
tunately, the resultant filters are not guaranteed stable. Despite 
this all filters so determined were observed to never violate the 
stability constraint. (See Chapter IV).

There is a multiplicity of MA filter coefficients which fit the 
prescribed correlation. However, only one unique set is meaningful 
and satisfies the invertibility constraint. The determination of
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this set becomes progressively more intractable as the order of the 
filter increases, and high order M  filters are definitely not recom­
mended for this reason.

The determination of the AEiyiA filter coefficients requires the use 
of both the AS and M  determination techniques with the drawbacks 
of both.

All filters, irrespective of type, are easily validated by evaluat­
ing their Spectra.

Filter Performance Characteristics
AS filters, by virtue of their recursive nature, give a parsimonious 
filter fit to a high order correlation, since the filter has an 
envelope response comprising of damped exponentials, some or all of 
which may be oscillatory. This is achieved at the expense of poor 
phase lag characteristics.

Non-recursive MA filters realise good phase relations with a sharp 
cut off. The non-re cur sive nature also results in non-par simonious 
filter fitting for a prescribed correlation, (if the required' 
filter order is too great then determination of the filter coef­
ficients proves intractable.)

Combining both characteristics in an ABMA model does to some extent 
muffle the desirable properties of the simple MA and AR filters. 
However, an ARMA model will yield a parsimonious filter with reason­
able phase characteristics. As with the simple MA process, if the 
order of the MA part of the filter proves to be too high, then 
coefficient determination will prove intractable. Since no guaran­
tee of a suitably low order can be given in advance, then attempts 
at using this method should be approached with caution.

The phase aspect of the MA part of the ARMA filter becomes impor­
tant in cases where there is a requirement for prescribed cross­
correlations between different AR filters generating in parallel. 
Under such circumstances multivai'iate rather than monovariate 
LSUEs must be considered.
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In multivariate processes, ARMA filters must be considered as they 
are the only type which maintain the necessary phase characteristics 
between parallel generated processes together with parsimonious 
generation of the autocorrelations of individual processes.
Clearly, as a result of the difficulties of determining the coef­
ficients of ARMA filters, they are best avoided unless extensions 
into multivariate processes are contemplated.

No mention is made of the probability distribution of the filter 
output. It is assumed.Gaussian. These properties are mainly 
dependant on the probability distribution of the filter input.
The generation of such Gaussian inputs, together with the pseudo- 
periodic properties exhibited, are discussed in Chapter III,



—66-

r e f e r e n c e s - CHAPTER II

Ref, 1 Box, G.E.P. and Jenkins, G.M, (1970 or rev. ed 1976) 
"Time series analysis: forecasting and control" 
pub. Wiley.

Ref. 2 Anderson, T.W, (l97l) "The statistical analysis of 
time series" pub. Wiley.

3 Bui-binj J. (I960) "Tbe. time. i.a.nc.s modeliî
Re,vue JmsT. Da Stat. 2.8^ 2..33 "2.4-3.



-6 7 -

APPENBIX A

Equivalence of the coefficients of AR and MA filters

Consider the MA filter
q
t. .0 n-o. Z b j  (A.l)j=0

where, as usual, 'by are weighting coefficients of the mutually 
uncorrelated inputs, r^ of variance Var (r).

V
Define the backward shift operator, B  ̂  on, z as the, k^^ backw ' n
value, such that

B ^ 2 = z ,w n n-k

and the backward shift series as

(A.2)

,b(B„)^ - f  b (A.3)
J“ 0

Thus in abbreviated form (A1) is expressed as "

s (A.4)

In a similar manner, the abbreviated form of the AR filter

|o V j  = (A'5)
is a(B^)q (a .6)

q .
where a(B ) - g a .  B ^  (A.7)

^ j=0  ̂ ^
Multiply (a6) by b(B^)^ to obtain

t ( 3 w ) q  * ( 2 k ) q  ’= n  “  t ( 3 w ) q

Substitute (A4) in right hand' side of above equation so that 
b(B„)q a(B^)q z„ = z^

and hence, b(B^)^ - (a(B^)^ ) (A.8)
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On expansion the right hand side of (A8) yields an infinite 
series. (A8) demonstrates that any finite MA filter can be 
replaced by an infinite AR filter. The converse is also true,
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APPENDIX B

Determination of the Spectrum of a digital filter

Consider the infinite MA process

= Z b j  (B.l)
j=0

with notation as before.

In a similar manner to (5.2), the output covariances, Cĵ , for all
lags k = 0, 1, ... , oo are given by

00

Cfc “ V k  (5.2)

For convenience, define the auto covariance generating function, 
C(B^), (no suffix for oo series) as

C(B ) = Z  C B (®-2)
^ k=-oo ^ W

Substitute for, C^ using (5.2), to give
CO 00

C ( V  = vax(r) Z  D b .
kcs-OO ,]î=U 

00 00

= Var(r) 2  2  b. b. , B ^
j=o k=-j  ̂ "

since, b^ = 0 for j < 0

Make the substitution 1 = j+k, so that

oo oo

C(B^) « Var(r) 2  2  b b^ B (1-j)
j=0 1=0  ̂  ̂ ^

Vax(r) Z  b b /  Z  b B “J
1=0 ^ ^ j=0 ^

Var(r) b (B^) b (s^)"^ (B.5)
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In an analagous manner to (A. 2) and (A.5) define the 
forward shift operator , of the series %%_%(%), to he

= ^n+k(*) = (3-4)

and the forward shift series "h(l^)^" on weighting coefficients 
" h t o  he defined hy

«.(V, - . <”■ «
% j=0

(no sTiffioes for an infinite series).

Hence, (B*5) becomes
C(Bw) - Var(r) b(B^), b(p^) (B.6)
and the Power Spectrum, S(f) is easily obtained by assigning

(B^) = exp (- Ï 217f )

and (P„) = (B„)-4 ^ I 2:rf )

in (s.6) to obtain

2 Var(r) b exp(- i 2 7Tf ̂, ) 

2 Tar(r) lb exp(- 127rf)|

S(f)

for 0 :̂ f
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CHAPTKR III

IMPLEMENTATION OF THE ROAD PROFILE GENERATOR

1, Introduction
It is clearly undesirable to store large quantities of random 
road surface data to obtain a sample set of independant road 
profiles with the correct statistical characteristics. An alter­
native approach is to use a road profile generator to produce an 
infinite number of independant surface realisations, each with 
the correct statistical characteristics. The only prescribed 
information the generator requires is the road profile's dis­
placement autocorrelation. By far the most complex part of road 
profile generator design concerns the use of AR filters to 
enforce the correct correlation characteristics. (The theory was 
considered in Chapter II). However, the generation of indepen­
dant Gaussian random realisations is now discussed. The various 
constituent parts of the road profile generator are then brought 
together and the practical implementation of the road profile 
generator considered.

2, An overview of the road profile generator 
A brief functional description of the components in the road 
profile generator is now given for the purpose of clarification.

Uniformly distributed random data is generated by means of a 
pseudo random number generator (RNG), Although RNGs exhibit 
periodic characteristics, the period for repetition is normally 
extremely long and,since there is an extremely large range of 
RNG multiplier coefficients to choose from,an almost infinite 
supply of independ^tly generated realisation sources is 
available for selection.

As road profile realisations normally have a Gaussian distri­
bution, the uniformly distributed output from the RNG is passed 
through a Gaussian filter. The Gaussian filter outputs uncorre­
lated random data with a Gaussian probability distribution.
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The correct displacement autocorrelation is achieved by means of 
an autoregressive (a r ) filter. The AR filter processes the 
Gaussian random data such that the correct displacement autocor­
relation is obtained. It was qualitatively anticipated that the 
AR filter would have little influence on the probability distribu­
tion, The empirical evidence of Chapter IV confirms this 
presumption.

As the vehicle model requires both displacement and velocity 
excitation input, some means of generating the velocity road profile 
was also required. Realisations of the velocity road profile were 
obtained by numerically differentiating the displacement realisa­
tions. A fifth order central difference formula was selected and 
used in the velocity filter for this purpose. To ensure both dis­
placement and velocity generations are output in phase, a simple 
delay routine (Hold filter) was placed in the path of the displace­
ment generation,

A schematic representation of the displacement road profile 
generator is shown in figure 5*1*

3• The Pseudo random number generator (RNG)
A very large number of pseudo random number generators are avail­
able for selection. Virtually all are acceptable and produce 
uniformly distributed random data. The description of the simple 
RNG algorithm adopted for this project follows.

A simple integer seed value, S^, is accepted by the RNG and multi­
plied by an integer, M, held constant for the duration of the 
realisation record. It is essential that, M, has the properties 
of a primitive root - cjthe,CvJo:e maximvm length is nc'tr -
oLccVi aëci.
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Only the, least significant digits of the resultant integer
product are retained, where, 2^ is the largest binary digit the 
computer can handle. The retained quantity, can be more 
succinctly defined as follows,

= SM - (SM ̂  W) . W (3.1)

where SM ^ Sq , M

W = 2^/^ + 1

(The symbol °/o represents an integer divide operation)

To obtain a newly generated random number, substitute the old 
value of, Sĵ  for and repeat the calculation of (3*l)-

The algorithm (3*l) produces random data uniformly distributed 
within the integer range, 0 to V.

A normalised real output, r^^, with zero mean value is obtained in 
the following manner,

r = 2(S„, -0.5) (3.2)

The pseudo periodic properties exhibited by the RNG cause the
N/2generated random data to be repeated after every 2 generated 

data points. Danger of repetition is not a problem as the realis­
ation records are normally much shorter than 2^^^ and a very large 
supply of alternative primitive root multipliers, M, exists.

Several independant, r^^, realisations are generated in parallel, 

to be synthesised when input to the Gaussian filter.
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4. The Gaussian Filter
To process the uniformly distributed random data, r^^^, to obtain

uncorrelated random output with a Gaussian distribution, a Gaussian 
digital filter was introduced. Three alternative filters were con­
sidered; a Central Limit method, Teichroew's method, and the Polar 
method.

The central limit method directly embodied the concept of the Central 
Limit theorem, A total of twelve independent, r^^, realisations
were summed. The resultant probability distribution proved so rich 
in extreme values as a consequence of truncating after tv/elve com­
ponents that it was clearly unworkable. A much larger number of 
independant, r^^, records must be summed. This is clearly imprac­
tical and this method was considered no further.

Teichroew's method (ref. l) is a development of the basic Central 
Limit theorem. Again twelve independant, r„„„, were summedXU.'iU

12
d  ZpNO (1) - 6)/4 (4.1)-̂ RNG

This quantity, r^, is filtered to produce the Gaussian output, 
as follows

((((C5 . + C4) + C3) r, + C2) + Cl) r„ (4.2)

where Cl = 5.949846138,
C2 O.2524O8784,

C5 0.076542912,

C4 0.008355968,

C5 0.029899776.
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The Polar method (ref, 2) calculates the product of a Rayliegh 
distributed random variable, rj^^(l), and the cosine Polar
coordinate of two independant uniformly distributed random
variables, The digital approximation to the
Rayliegh distributed variable, r^, is obtained by the formula

2 In (r^^^ (l) T  (4.5)

where is a uniformly distributed random variable in the range

(The cumulative density function of a Rajrliegh probability distri­
bution takes the form of a truncated log series.)

The cosine Polar random variable, rp, is obtained from

^P " ^RRG^^^ " (4,4)

(4.4) is obtained from the trigonometric relation

cos 2 0 =
A^ +

Should the denominator of (4.4) lie outside the unit circle, the 
attempted evaluation of, rp, must be discarded and a new value
sought by iteration. A certain degree of redundancy exists in this 
method. However, once a successful sum-of-square denominator of
(4.4) is found, a Gaussian distributed random variable is obtained 
from the relation

^G ^ ^R ^P (4.5)

Both Teichroew and the Polar, methods have a standard deviation of 
unity.

The Teichrow and Polar methods were compared, with their relative 
numerical complexity being considered first, followed by their
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ability to generate Gaussian data.

A comparison Table 3*1 of the number of arithmetic operations 
required to generate Gaussian random data by both methods was drawn 
up. The Polar method appears at first computationally less tedious 
(by as much as a factor of ten) ignoring the calls to two computer 
library functions, SQJIT( ) and L0G( ). This conclusion is the 
result of ignoring the inherent redundancy present in the Polar 
method. These results are shown as non bracketed in Table 3»1«

To estimate the degree of redundancy present in the Polar method,
six independgdnt tests of 1000 realised points were computed. The

/results are shoim in Table 5*2. The average degree of redundancy, 
normalised with respect to unity, was observed to be 0,272 
(25^ approximately). As each redundant loop requires two additional 
RNG calls, the calculation of the sum of squares denominator of
(4.4)» and one further arithmetic IP test. Thus a 25/̂  additional 
weighting must be placed on these redundant arithmetic operations 
in the Polar method. The bracketed values in Table 3*1 show the net 
effect of redundancy.

Since, SQRT( ), L0G( ), and arithmetic IP are not present in
the Teichroew method, this comparison is not wholly valid and a com­
puter implemented comparison is necessary. On an IBM 370/138 com­
puter the c.p.u, time ratio of the Polar and Teichroew method was
approximately 1:2*2 in favour of the Polar technique.

Although this evidence was insufficient to permit a firm conclusion 
to be drawn, it does give justification regarding numerical effi­
ciency for implementing the Polar method, Wien it is borne in mind 
that the Gaussian filter is implemented at every generated point, 
this consideration is very significant.

An empirical comparison of the resultant probability distribution 
for both Gaussian filter methods was also undertaken. The compari­
sons were drawn from six independant tests of 1001 points with both 
methods. The cumulative density functions (CDP) were compared with ■ 
the theoretical Gaussian distribution. In the tests each realised 
value was categorised into any one of eight quantile segments.
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The quantities were arranged to be symmetrically disposed about 
the maximum probability value of the Gaussian distribution (in 
this case the mean value is zero). Each quant ile was designed 
to accommodate realised values within a range width of one standard 
deviation. Any realised value of r^, can thus be accounted for.

Some empirical performance tests were conducted. Normalised 
histograms for the average of six tests of Teichroew and Polar 
methods are shown plotted against the Gaussian distribution in 
fig, 3*2 and 3*5» respectively. The CDF of the test results is 
only accurately knov/n at the end of each quantile segment. Both 
methods perform well.

Both the Teichroew and Polar methods adequately generate random 
data which conforms to a Gaussian distribution. The Polar method 
was chosen on the grounds of its superior numerical efficiency,
(a more detailed study of the probability distribution is conducted 
in Chapter IV when the entire road profile generator is tested.)

5* The Autoregressive (AR) Filter
The AR filter segment is by far the most complex part of the road 
profile generator. The complexities arise from the amount of work 
necessary in ascertaining the filter coefficients and from the 
amount of prior checking required -to ensure stable and physically 
sensible displacement road profile outputs.

Use of the AR filter is straightforward. The form of the mono- 
variate AR filter was described in Chapter II - (4*l)* With uncor­
related Gaussian random input, r_, the equation becomes,

P
= .][ _ 1 + (5.1)1=1

where » is the displacement road value at time increment, t̂ ,

r^ n = uncorrelated Gaussian random input value at time
increment, t , n

a^ = weighting coefficients of the AR filter,
p = AR filter order.

In use the AR filter is a simple digital filter.
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Determination of the weighting coefficients, 'a^', to meet the
needs of a prescribed road profile displacement autocorrelation 
is much more involved. The process for determining the *â '

coefficients is shown schematically in fig. 5*4* The description 
follows.

Given a prescribed displacement autocorrelation curve, it is 
first necessary to verify its physical realisability. As the 
generated road profiles adhere to this correlation curve and as 
the profiles are used as physical inputs to an elastic system 
(the vehicle model), it is apparent that these input displacements 
govern the total elastic strain energy stored in the model. The 
elastic strain energy (E) must always be greater or equal to zero 
in order to be physically meaningful. In matrix notation this 
inequality can be expressed as,

(5.2)E
where Z

A

and
0
E

input displacement vector, 
elastic stiffness matrix, 
null vector, 
elastic energy vector.

(3.2) is the definition of positive definite quadratic form, and A 
is said to be positive definite provided it is symmetric. A neces­
sary and sufficient test for positive definiteness is to check that 
all main diagonal sub-determinants in A are greater than zero, ie, 
check if

Det Aj

^11 ^12
^21 ^22

^ii

> 0 for all i,

The Yule-Walker correlation matrix R of Chapter II - (4.4) has the 
displacements expressed in this quadratic form. Consequently, all 
that need be done to ensure physically realisable correlation curves, 
is apply the positive definite determinant test , described for the 
matrix. A, to the displacement correlation matrix, R.
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Having established the autocorrelation as positive definite, work 
can commence in ascertaining the AR filter weighting coefficients, 
'a^'. In Chapter II, two methods of establishing the 'â ' coef­
ficients were outlined (section 4*1 and 4*2). As determination 
of the filter coefficients need only be accomplished once per road 
profile correlation, the amount of numerical effort required to do 
this is not a prime consideration. The direct evaluation of the 
Yule-Walker relations was therefore undertaken purely for ease of 
implementation of the computer program.

No guarantee can be given that the resultant AR filter will be 
stable. It is therefore necessary to empirically test the numeri­
cal stability. As explained in Chapter II - section 3» instability 
can be determined by checking if the roots of the characteristic 
equation have any moduli greater than unity. If the order, p 
of the characteristic equation is high, the direct determination 
of the roots of this polynomial is prone to numerical ill condition­
ing, To overcome this problem, the characteristic equation is 
forced to undergo the bi-linear transformation, \ = , mapping
from the complex A -plane onto the complex W-plane.

The *a_' coefficients are transformed into *mu' coefficients by
the relation

k=0

where / k \ k !(:) e ! (k-e) !,

while the transformed characteristic equation is given by

râ  W^ + m^ W^“^ 4-.......... + ra = 0 (5.4)

(5.3) lends itself well to recursive computation. (See Jury Ref. 3)

The test for instability in the AR filter is now simply a matter of 
checking if any roots of (5.4) are greater than zero. The Routh 
stability criterion can be used for this purpose. The Routh



-80-

technique is not prone to ill-conditioning. This stability test 
can be found in any standard text book on Control Theory and will 
not therefore be described.

However, should the Routh test indicate instability, the complexity 
of the AR filter determination together with the indirect nature of 
the stability test makes it impossible to decide how to alter the 
filter coefficients to ensure stability while approximately adhering 
to the original prescribed correlation curve.

In an attempt to alleviate this instability situation an empirical 
relooping procedure was implemented in the determination process, 
(see fig. 5.4)• This relooping procedure was designed to reduce 
the order of the prescribed correlation curve by one and new AR 
filter coefficients determined by means of the Yule-Walker relation. 
This relooping procedure can be repeated as many times as there are 
prescribed correlation points, however, care should be^taken to 
ensure the prescribed correlation curve is still being generated 
by the reduced filter.

In all the AR filters determined from physically realisable 
(positive definite) road profile correlations, no instability was 
ever encountered. It may be that the Routh test is redundant, how­
ever, such a possibility is left for others to consider.

6. Velocity (or displacement gradient) Profile Filter
So far the description has only included the design of the displace­
ment profile generator, however, the second order DE of the vehicle 
model also requires a velocity excitation input. If the displace­
ment road profile autocorrelation is defined, then the derivative 
correlations of displacement - velocity, velocity - displacement, 
and velocity are implicitly defined.

The displacement autocorrelation

R^(l) = ^z(x) z(x + L)^ (6.1)
or = <^z(x - L) z(x) )>
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V/here ^  ^  denotes the approximate expected value, can be used
to determine the displacement - velocity correlation, R^^(l ), by

differentiating with respect to, L, as follows,
d R (l ) = him (<^z(x) z(x + L + SL)\ -<^z(x) z(x +

= him <(z(x) z(x + L + fiL) - z(x + L) \  
fiL-^a " SL ^

= <^z(x) ^  z(x + L)^
dL

= R%x(L) (6.2)

In a similar manner the other derivative correlations can also be 
established from the displacement autocorrelation, to yield the 
the following relations,

^ ( \ ( i ) )  = - = H^g(i) (6.5)
dL

^  (Rg(b) ) = -<^z(x) z(x + L))>
dL^

= “ R^(b) (6.4)

These cross correlations which exist between the displacement and 
the velocity profiles make the use of another independent monovari- 
ate AR filter to generate velocity realisations invalid. Either 
multivariate ARMA filters can be considered or the generated dis­
placement realisation can be numerically differentiated. Differen­
tiation was chosen because of the ease of implementation.

The central difference differentiation formula

^  = (V3 -=n_3 + 5(V2 - V2^ + 45( V i - V f  (6-5)

where h = incremental step length,

Î4Ô ^
and truncation error, O(h^) = - 1 h^ z vii

was used*
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All symmetric finite difference formulae take the form 

J = -l

where h^ are weighting coefficients such that

h . = -h . and b = 0  J -J o

Equation (6,6) is similar in form to a MA filter (see Chapter II - 
section 5»2). There are however, three essential differences,

1) The summation bounds in (6,6) are -q < j < q compared 
with 0< j <q (for positive q) in a MA filter.

2) The coefficients of (6,6) are antisymmetric
ie. b. = -b .J -J

3) The filter inputs ^, for all j,in (6.6) are 
correlated in accordance with the characteristics of 
the displacement AR filter.

Consider the effect of pre-multiplying (6.6) by , such that

^  Gz , z z , y  b . zn - k n n - k I n + j

Take expected values and normalise with respect to to obtain
the relation

= .Z b. (L + j)

4 (H (L)) + 0 (h®) (6.7)

Similarly,
(^)   /'■O u n /^6zz aL (L)) + 0 (h ) (6.8)

R /(l) and R% (l ) are correct to the order of the numerical differentiation, zz zz
It follows that R^(l ) is also correctly defined, since

R. (L) - - (Rgg (D) (L)) (6.8)
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Trms by numerically differentiating the displacement road profile, 
a velocity profile is generated with the correct derivative 
correlation characteristics. As this differentiating filter is 
non recursive it is therefore intrinsically stable.

As the velocity (or differentiating) filter is based on a central
difference formula, it follows that this velocity filter is generat- 

/ing output 2^ at discrete increment number 'n', while the AR filter 
is outputting displacement at increment number ’n+q’, A hold
routine is introduced after the displacement generator to ensure 
synchronisation.

7* Conclusion
A monovariate displacement road profile generator can be effectively 
implemented. The schematic representation is shown in fig. 3*1. A 
pseudo random number generator is used as a source of uncorrelated 
uniformly distributed random data. This random data is passed 
through a Gaussian filter to achieve the correct probability dis­
tribution. Adherence to a prescribed displacement correlation is 
obtained by an AR filter. A velocity filter is used to numeric­
ally differentiate the displacement realisation to produce a velocity 
realisation record, A hold routine is implemented in the path of 
the displacement realisation to ensure synchronisation between dis­
placement and velocity records. Both displacement and velocity 
realisations are required as parallel inputs to the vehicle model.

The determination of the weighting coefficients of the AR filter 
is the most complex part of implementation. Both physical realis­
ability of the displacement autocorrelation and numerical stability 
of the AR filter must be ensured.
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Operation Summuta-
tion

Multip­
lication

Divi­
sion

Integer
Division

Square
Root

Log­
ar­
ithm

Arith­
metic

Method 'V' or "fo" V " "LN" t'lp*'

Teichroew
-Basic
Routine 16 6 1 - - - -
-RÎTG * 
Calls(l2) 12 - 12 - — -

-Total 28 42 1 12 - - -

Polar
-Basic
Routine 2 (2i) 4 (4&) 1 - 1 1 1 (14)
-RBG * 
Calls (2) 2 (2i) ^ (7i) - 2 (2i) - - -

-Total 4 (4f) 10 (12) 1 2 (2t) 1 1 1 (ij)
Difference 
in total
number of 
operations +24 (+23i) +52 (+50) 0 +10 (+9i) -1 -1 -1 (-I4)
(Teichroew-
Polar)
* KB
Each Call 
of RNG 1 5 _ 1 —

requires

Table Comparison of the number of arithmetic operations to
generate one value of r^, using both Teichroew and Polar methods.

Test
Number 1 2 5 4 5 6 Average

Degree of 
Redundancy 0,269 0,279 0.295 0.250 0,265 0,278 0.272

Table 3.2 Empirical observations on the degree of redundancy
present when using the Polar-Gaussian Filter.
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CHAPTER IV

TESTING THE ROAD PROFILE GENERATOR

1, Introduction and objectives
A road profile generator is required to generate realistic combina­
tions of displacement and velocity road profiles for input into 
the second order DE vehicle problem. Such profile realisations 
must meet prescribed requirements concerning their statistical 
behaviour. The simplest and most satisfactory method of verifying 
the profile generator is by the implementation of empirical tests 
on generated realisations.

The two prescribed statistical requirements which require verifica­
tion are as follows.

1) To ensure the statistical adequacy of the road profile 
generator in achieving the correct auto-and cross-correlations,

2) To ensure that Gaussian realisations are adequately repro­
duced.

All of the following prescribed road profile correlations were 
tested for physical realisability and their numerical stability 
ensured before these statistical tests were undertaken.

2. The example road profile correlations tested
Three example road profile correlations were selected for testing 
purposes. These correlations are described in the following sub­
sections .

The nature of the road profile generator is such that it requires 
a discretised version of the displacement auto-correlation, R (l ).
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In the process of discretisation, the substitution
n h(x) = L (2,1)

where h(x) = discretised spatial lag increment
and n - 0, 1, 2, N
must be made, to obtain the discretised correlation (n h(x)).
The derivative correlations can be similarly discretised.

2.1 The Virchis Correlation
This approximate algebraic description of an actual road profile 
correlation was proposed in Ref, 1, This idealised correlation was 
described by the equation

R^ (l) = 0.6 exp(- c L̂ ).\+ 0*4 exp(- c L) cos d (2.2)

where c = 0.001, d = TTIi .
129

Prom Chapter III (6,3)> the relation

(L) = - (L) = _d (H^ (L)) (2.5)
DL

was established.

Differentiate (2,2) to obtain

R / (L) = - 4 10 ^ [ 5 L exp(- c L^) + exp(- c L) [cos d + 7T 10^ sin d ] j
129 (2.4)

At L = 0, the theoretical relation (2.5) yields the condition

(0) = (0) = 0 (2.5)

while in (2,4)
R^, (0) = - 4 X  10“4 ^ 0 (2.6)

This continuous derivative correlation does not satisfy the theoretical 
constraint. (The authors of Ref. 1 could ignore this problem as only 
the displacement correlation was considered.) In a discretised empirical 
approach considered, the value of R^/ (o) in (2.6) is sufficiently small 
to be ignored.
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2,2 The Exponential Correlation
This idealised correlation takes the form

R^(L) = exp (-B IL I ) (2.7)
It was the correlation analysed in Ref, 2.
The derivative correlation R^^(l ) is given by the equation

R/^(L) = -S exp ) (2.8)
where B is a constant.

As with Virchis, at L == 0
\'^(o) ^ 0.

The fact that the derivative correlation (2,8) achieves maximum 
amplitude at L = 0, where it also exhibits a large discontinuity, 
makes this derivative process meaningless. Uncorrelated realisa­
tions of the derivative process must therefore be anticipated.

2.5 The Modified Exponential Correlation
Tlie modified exponential correlation has the form

R^(L) = (1+B |L| ) exp (-B (LJ ) (2.9)
where B is a constant.

The differential correlation
R^/^(L) = -B^ |l | exp (-B |l | ) (2.10)

satisfies the zero value constraint at L = 0.

5, The auto- and cross-correlation test results
Displacement, velocity, and displacement - velocity auto- and 
cross-correlations were calculated from realisations of the road 
profile generator. (The velocity - displacement cross-correlation 
can reasonably be expected to be the mirror image of the displace­
ment - velocity correlation.) Each realisation test comprised of 
1156 generated data increments. An initial period of transience 
was allowed to elapse before any correlation measurements were 
recorded. Correlations were calculated up to a maximum lag
increment, N , of 100 (less than one tenth of the realisation ' max'
record length). The number of lag increment coefficients, N, pres­
ent in the various AR filters tested was always very much less than
N . Comparisons are, however, dra\m between theoretical and max
generated correlations up to II = 100.max
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With all observed results up to lag N, the realisations closely- 
adhered to the theoretical correlation curves, with maximum varia­
tion occurring, as can reasonably be expected, in regions of high 
gradient. The variation between any realised correlation value 
and the theoretical curve was never more than 10^ of the auto­
correlation value at zero lag (ie the standard deviation).
Clearly this variation is dependant on the length of the realisa­
tion record. The standard error (SE) on such realisation records 
is kno\m to be inversely proportional to -\/h, where M is the 
number of sample points in the record, thus if M = II96, then 
l/yM = 2.94 E -2. It is interesting to observe that this has the 
same order of magnitude as all normalised variations mentioned 
above (ie less than 10^).

With lag increments greater than N, the observed realisations may 
or may not adhere to the theoretical correlation curve. The . 
degree of adherence depends overwhelmingly on the nature of the 
correlation curve.

Reference is now made to the individual correlations tested, A 
considerable number of graphs are included. In each graph two 
sample realisations are shown plotted with their theoretical 
equivalent correlation.

5.1 The Virchis Correlation
A sample Virchis correlation was tested with set to 20,
and h(x) = 12 ft. The coefficients of this 20 pt filter are 
shown in Table 4.1. Samples of these correlation test results are 
shown in Figs. 4*1.a - 4.1.c. Lag increments as high as N = 20, 
demonstrates faithful reproduction of the theoretical correlation. 
Above N = 20 significant residual correlation is evident. From 
the theoretical nat-ure of the AR filter this result can be anticip­
ated, An AR filter generates to a prescribed correlation curve by 
the use of a series of damped exponential decay functions (both 
real and complex) each of random amplitude. Consequently at lag's 
greater than N sharp cut off of the correlation is impossible to 
achieve. In the case of this Virchis example, at N = 20 the model
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correlation value has significant magnitude (about 0,5 of maximum), 
it is hardly surprising therefore that a large residual correlation 
is present.

As the derivative correlations are obtained from realisations 
which are generated by numerically differentiating the displacement 
realisation, it is hardly surprising that these correlations also 
have significant residual values.

5.2 The Exponential Correlation
The discretised exponential correlation had the following parameter 
values,

B = 1.246
N = 4max
h(x) = 1 ft

The coefficients of the 4 pt AR filter are shown in Table 4«2, 
(clearly, by virtue of the fact that the AR filter generates the re­
quired correlation by means of damped exponential impulses, it 
should be possible to generate this simple exponential displacement 
correlation by a two point filter.) However, the 4 pt filter 
tested also achieves good displacement correlation results up 
until N = 20 (see fig 4.2.a). For II>20, the degree of correla­
tion is minimal and the realised results are mainly the result of 
random noise. The derivative correlations in this case do not 
exist.

5.5 The Modified Exponential Correlation
The parameters of the discretised modified exponential correlation
were as follows,

B = 2.181, N  ̂ = 4max
h(x) = 1 ft.

This correlation with the above values is a reasonable facsimile of 
the exponential correlabion in the previous subsection, f̂he filter 
coefficients are given in Table 4.5* Good auto- and cross-correla­
tion results are obtained up until lag II = 20 (see fig 4«5a, h and
c). With the low degree of correlation recorded after N = 20, 
random noise starts to become significant.
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4« Optimum order for the AR Filter
Apart from correlations which have extremely simple forms (like 
the exponential correlation where an order of N = 2 would suffice), 
it is a difficult task to estimate an optimum filter order. In the 
vehicle simulation problem the choice of value for the spatial lag 
increment, h(x), is of vital importance to ensure viability in the 
final solution, Tlie value of h(x) must be selected in accordance 
with the range of traverse velocities experienced by the vehicle.
Many realistic road profile correlations take the form of piecewise 
continuous functions. Each continuous segment must be adequately 
represented in the AR filter. The combined effect of a predeter­
mined step length h(x), and a piecewise continuous correlation 
curve will be to ensure that the optimum AR filter order is approxim­
ately that of the maximum lag increment on the correlation curve.
Thus with realistic correlation curves there is little point in con­
sidering AR filter order optimisation. For this reason, optimisa­
tion is not considered in the test correlations either.

5* Probability distribution of the Road Profile Generator 
realisations ______________________________________

The statistical description of a road profile is normally defined 
in terms/the displacement auto-correlation Rg(h) (or by the power 
spectral density - the Fourier transformed equivalent). Most 
measured road surfaces are described in this manner.

Implicit in the displacement auto-correlation description are the 
displacement and velocity profile variances, which are defined 
respectively as

Var (z) . z ^ )  . R^(0) )
Var (z) = </z^ z^y - R/(0) = -d^ (Rg(0)) )

dL^ )
If both profiles are Gaussian random variables, quantifying these
variances are enough to fully define the probability distributions.
Exacting tests are now undertaken to ensure the adherence of the 
realisations to the correct Gaussian distribution.
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In the tests which follow, the cumulative density function (CDP) 
of all quantities output by the road profile generator were com­
pared with a Gaussian distribution. The CDF is defined as follows,V

CDF = J Pr {vUv (4.2)
- oo

where Pr (v) refers to the probability deoi; j.tj -
. Each CDF realisation plot

is sampled over 1100 data points. The mean (Mn) and the variance 
(Var) of the sample were obtained. Bias was removed from any 
realised record of v by the formula

^norm = ^ ” ^̂ n (4.5)
Vvar (v)

The values of v norm were then arranged in ascending order and
the CDF distribution curve of v _  'determined,norm

Results specific to the various output quantities of the road profile 
generator are now discussed in turn.

(a) Output (r^) from the Polar filter.
As mentioned in Chapter III, r^ is the output of the intermediate 
stage in the road profile generator prior to processing by the AR 
filter. It is important to compare the probability distribution of 
r^ with the distribution of the quantities eventually output by 
the road generator, in order to assess the degree of degradation in 
the distribution caused by the AR.and velocity filtering stages.

A sample normalised CDF (r^) is shown plotted against the theoret­
ical distribution in fig. 4.4.

The maximum divergence,, Max dfv (r^^, from the theoretical 
Gaussian distribution was 2,9 E - 2
The non-zero mean value, M^ (r^^ was 6,82 E - 2
The variance, Var (r^) was 1.01

The number of events exceeding a 5 x Var (r^) limit was 5*

(b) Output (z) from the AR filter
Output z is the displacement road profile realisation. The dis­
placement realisations for the various correlations mentioned in
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the previous sections were tested. The results are in Table 4»4« 
References to the various graphs are also included in the Table.

(c) Output (z1 from the Velocity filter
Sample realisations of the velocity road profile generator were 
measured for probability distribution. Thé results with reference 
to appropriate graphs are shown in Table 4*5*

In all three cases (a, b, and c) the realised probability distribu­
tions are of a very high standard. The realisations were noted to 
be slightly rich in extreme events (ie greater than 3  ̂Var).
With linear suspension configurations this effect is of minimal 
concern, however, such effects should be closely monitored when 
non-linear analysis is attempted.

6, Empirical Evidence as to the stable nature of AR filters

Quite apart from the AR filters specifically described in the 
previous sections, other AR filters were tested with many paramet­
ral variations while still keeping to the three aforementioned 
road profile correlations. Such variations are not specifically 
mentioned as they offer no additional information as to the poten­
tial of the road profile generator.. However, with none of these 
other AR filters extracted and tested was instability ever recorded.
There appears to be considerable empirical evidence to indicate ^

that physically realisable road profile correlations are always /
/stable.

7* Conclusion
The road profile generator has been shown to work well with all 
the road profile correlations tested. Both probability distribu­
tion and correlation requirements have been satisfied.

The order of the AR filter used to generate a prescribed correla­
tion need not be as great as the maximum lag increment for the 
prescribed correlation. However, the criterion which should be
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used to optimise the filter order will in fact be overruled by- 
other physical constraints imposed by the model. These constraints 
concern the nature of the correlation curve, which in many real 
cases is piecewise continuous, and of the incremental step length 
optimised to best suit the range of traverse velocities under 
consideration.

The quality of the probability distribution of the output is 
exceptional. It is only slightly rich in a few extreme values.

In the many AR filters tested, for any physically realisable road 
profile correlation, no instability was ever encountered. It is 
suggested from this empirical evidence that AR filters obtained 
from physically realisable road profile correlations might always 
be stable.
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Filter Order, - 20; Incremental step length, h(x) = 12ft

Lag j AR Filter Lag AR Filter
Increment, i j Coefficient, â ^

1
Increment, i Coefficient, a^

1 1 1.9685155 E 0 11 -1.9278726 E-2
' 2 -1.7022791 E 0 12 -5.5024552 E-4

5 6.9059996 E-1 15 9.8O5458I E-4

4 8.4155426 E-2 14 -2.7588285 E-5
5 -2.6660150 E-1 15 4.525258I E-5
6 9.8588592 E-2 16 9.2711116 E-4

7 5.2554771 e-2 17 5.6057029 E-5
8 -6.8717380 E-2 18 1.7752569 E-2
9 1.0552446 E-2 19 -1.7735661 E-2

10 5.8651551 e-5 20 2.6920412 E-2

Table 4*1 AR filter coefficients for a 20 point Virchis 
Correlation.

Filter Order \ a x  “ Incremental step length, h(x) = 1ft

Lag AR Filter Lag AR Filter
Increment, i Coefficient, Increment, i Coefficient, a^

1 8,7952211 E-1 5 -2.0468785 E-15
2 -I.5I6I715 E-15 4 2.5509556 E-15

1
Table 4.2 AR filter coefficients for a 4 point Exponential

Correlation
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Filter Order, ^max “ Incremental step length, h(x) - 1ft

Dag AR Filter Lag AR Filter
Increment, i Coefficient, a^ Increment, i Coefficient, a^

1 1.86)2284 E 0 5 2.8576759 E-1
2 -1.1304446 E 0 4 -5,0868043 E-2 !

... i
Table 4*5 Alt filter coefficients for a 4 point Modified

Exponential Correlation.

Correlation
(Curve

Rumber of 
events 

exceeding 
3 standard 
deviations

Maximum
divergence

from
Normal

Distribution

Average
Value Variance Consult

graph

Virchis 3 4.2 E-2 6.04 E-1 1.80 E 1 Fig 4.5a
Virchis 5 2.8 E-2 -4.33 E-1 2,20 E 1 Fig 4.5b
Ebcp. 4 2.6 E-2 5.66 E-1 4.57 Fig 4.5c
Mod, Exp. 5 2.9 E-2 2.13 5*58 E 1 Fig 4*5d

Table 4*4 Displacement statistics of sample realisations
from the Road Profile Generator.-sample siz.e,

Correlation
Curve

Number of 
events 

exceeding 
5 standard 
deviations

Maximum
divergence

from
Normal

Distribution

Average
Value Variance Consult

graph

Virchis 4 2.1 E-2 2,30 E-4 2,53 E-2 Fig 4.6a
Mod. Exp. 3 4.4 E-2 -1.74 E-3 2.42 Fig 4.6c

Table 4*5 Velocity statistics of sample realisations from 
the Road Profile Generator* sd.mpie s'iz.ê A/=
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CHÂPTER V

BASIC CONCEPTS IN NDÎ4ERICAL INTEGRilTIGN

1. Introduction
This chapter is concerned with the basic problems encountered when 
implementing- a numerical integration scheme on a digital computer. 
The types of integration method discussed, are those relevant to 
the solution of dynamic lumped parameter vehicle models. More 
precisely, this involves investigation into the numerical methods 
for solving initial value problems in ordinary differential 
equation systems. The chapter covers the appropriate ground work 
as a necessary prerequisite to detailed discussion on specific 
solution methods.

2, The differential equation problem 
A differential equation of order, p, takes the form

y(^);t) = o (2.1)
where y = y(t), y = d y(t), etc

dt
In general a whole family of solutions to this problem exists.
One method to uniquely fix the solution is to specify, for some 
arbitrary value of the independant variable, t (=a, say), the
values y(a), y(a), -- , y^^^(a). Solutions for all other instances
of, t, are now uniquely defined. This is known as an initial value 
problem in ordinary differential equation. It is this problem which 
is of specific interest in this project. Henceforth in the inter­
ests of brevity the term "PE" will be used to refer to this specific 
initial value problem.

Normally for evaluation purposes, the PE, (2,1), is expressed in 
the form

y(p) = f(y, y, — t). (2.2)

f is frequently referred to simply as the "function".
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Existence of a solution to the above problem can be established 
under fairly general conditions, which are not terribly meaning­
ful for most practical applications. In practice, numerical 
values of solution, y, are required for some specified range of
values of independant variable, t. For some special classes of
problem closed form solutions are available. Many more have none.
In such cases it is essential to resort to numerical methods to 
obtain an appropriate answer. Discrete variable methods are excel­
lent for this purpose.

Discrete variable (or finite difference, or numerical integration) 
methods owe their great strength to the fact they are almost univer­
sally applicable to all DE systems. (NB In the text discrete
variable methods are also referred to as integrators.) Discretisa- 
ation methods do not attempt a continuous approximation to the exact
solution. Instead, approximate point solutions, y^, y ^ , -- y^, are
sought at discrete increments of the independant variable, t^, t^,---,
t^. These incremental changes to the independant variable are often 
referred to as the step length, h. The step length need not be 
constant. Increment (or step) number, n, refers to the point solu­
tion at time instant, t^.

Discrete variable methods use a finite serialised approximation
to the true solution. In general, they can be written in the form

 '  ’

where f f
and i and j are both integers > 0.

The difference between the true solution of the DE, y(t^), 
and the discretised approximate solution, y^, is Imovm as the 
truncation (or discretisation) error, e^. It is defined by

®n “ - ^n- (2.4)
The magnitude of this error term can be greatly reduced by re-evalu­
ating the "function" at the current step number. Many repetitive 
calculations may be required, but then digital computers perform 
this task well.
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Broadly speaking, discrete variable methods fall into two general 
categories; one step methods, and multistep methods. One step 
methods only require information from one incremental step number 
in order to re-evaluate at a new step. Thus, for example to solve 
for y^ at constant t^, information at instant t^_^, is all that 
is required. This is not so for multistep methods where informa­
tion at instants t t  ̂ etc.may also be required.n-2 n-p,

All truncation errors used by discrete variable methods can be as­
signed an order.

In one step methods, this definition is achieved by algebraically 
manipulating the method formula into the form of a Taylor ̂s Series 
expansion, thus ' / \ ^

= ^n-l + ^  ÿn-l ° (^.5)

By ascertaining the power, p + 1, at which it ceases to be a 
Taylor's Series, determines the order of the error. Hence, in 
(2.5) the order of the truncation error is said to be p + 1.

In multistep methods, this order is defined by expanding each term 
of the discretisation method as a Taylor's Series, The coefficients 
of the various powers of h, are then summed and the lowest power 
of h, at which such summutations cease to equate to zero, estab­
lished. If coefficient summutations up to power p, equate to 
zero, then the order of truncation error is said to be p + 1,

With either one or multistep methods, if the truncation error is 
of order p + 1, then the discrete variable method order is said 
to be, p.

Digital computers calculate to a fixed number of significant 
figures. The size of these numbers is established in binary arith­
metic and is called the word length of the computer. In computa­
tional work loss of these less significant decimal digits results 
in another type of error called round off.

Both discretisation and round off error can be either global or 
local. Local error is the error penalty incurred over one single
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incremental step length, h. Global error arises from error built 
up over the entire step by step process.

Integration methods can be either explicit or implicit. With an
explicit integration method, the quantity to be evaluated, y^, is 
expressed solely in terms of known quantities at previous incremen­
tal step numbers. For explicit methods, (2.5) can be rewritten as,

^n = ^(^n-1,-' ^n-i' ^(^n-l'""' ^n-i^ ) (^.6)
A method is implicit if the quantity to be evaluated, Is
partly based on the previous estimate, y^^^ such that (2.3)
takes the form

yn-i* (2.7)

All discrete variable methods are recursive. From a set of estim-
ated values, y^, y^_^,— , y„_^, another set, —
advanced by, k steps is also estimated. In turn this set, k steps
advanced, is used as the basis for estimating a second set of 
values, 2k steps advanced. The process is continually repeated, 
or recursively applied.

Recursive formulae suffer from inherent instability problems. At 
any step, n, the approximate solution, y^ (=y(t^) - e^), contains 
a truncation error term, e^. If e^ is recursively amplified by the 
discretisation process, the result is a numerical explosion known 
as instability. Instability totally invalidates any numerical 
solution.

As far as this project is concerned, there are two types of instab­
ility. There is relative instability which arises from the nature 
of the DE itself. However, as spring mass systems are intrin­
sically stable, this criterion is of no great concern. The other 
type is called conditional (or partial or weale) instability, 
although in the text it is simply referred to as instability.
This instability is a function of step length, h. (There is 
another stability criterion, known as absolute stability, where the 
integrators are stable for all values of, h. However, as shorn by 
Dahlquist (Ref. l), this criterion is very restrictive on the
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solution method accuracy and will therefore be discussed no 
further.)

Ideally the approximated solution, y^, must, by repetitive cal­
culation, tend towards the true solution y (t^) as, h, tends to 
zero. This property is known as convergence. It can be shovm 
that necessary and sufficient conditions for convergence are 
stability and consistency. Stability, or rather instability, has 
been defined above. The condition of consistency, for any dis­
crete variable method, is simply the order of the method must be 
greater than one. In practice it is an exceptionally easy con­
dition to satisfy.

3. Order of integrator for vehicle dynamics
The first order DE takes the form

y= f(y, t) (3.1)
where t is the independent time variable and y _ ^

dt.

A V second order DE has the general form

y = f(y, y, t) (3.2)
• • 2where y = d y

2dt ■ -
In both cases the "function" f can be a linear or non-linear com­
bination of y, y," and t.
The second order formula (3.2) can be reformulated as two coupled 
first order DEs

y = V
V = f(v, y, t) (3.5)

where v = ^
dt

In vehicle dynamics, valuable information has been gained using 
models described by second order DEs.
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A typical example is
my(t) + cy(t) + ky(t) = P(t), (5.4)

where m = mass, c = damping coefficient, k ^ stiffness 
coefficient, y(t) = displacement, and P(t) = excitation 
function. Rearranging this becomes,

y(t) = (P(t) - cy(t) - ky(t) ) 1 (5.5)
m

and this in turn can be reformulated as the two coupled first order 
DEs.

y(t) = v(t) )
v(t) =x (P(t) - cv(t) - ky(t) ) _1 \

m ^
(5.6)

For higher order DEs, two schools of thought exist on how to treat 
them. Should the second order be treated directly, or should the 
DEs be reduced to a set of coupled first order formulae?

The direct approach to the solution of second order DEs is the one 
favoured by the structural engineers. Influencing them in this 
choice are two design criteria which take precedence over all 
others and which are superfluous to the objectives set by this 
project. Tliese criteria are observation of symmetry in a matrix 
system of simultaneous equations to ensure ease in numerical 
manipulation and the ability to handle stiff systems of differen­
tial equations without encountering instability. Hence, criteria 
like accuracy of solution, ability to change step length, ability 
to cope with non-linear system parameters fill a subservient role.

The approach currently favoured by many numerical analysts is 
that which reduces the higher order systems to a set of first 
order DEs, In application a system of first order DEs is much 
more flexible. In his book, Henrici (Ref. 2) pp, I09, favours 
the first order approach. He argues with both theoretical and 
empirical validation, Chapters 4 and 6, that reduction to a first 
order system substantially reduces round off error, while there 
is little to separate the two approaches as far as truncation 
error is concerned. It is also true that this first order 
approach, when applied to a second order DE dynamic system, autom­
atically supplies both displacement and velocity results, while
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the direct approach supplies only displacements. In mechanical 
system design, velocity responses are also important as a source 
of many dynamic forces. (Velocity responses can he obtained from 
the direct approach, but only with the extra computational effort 
of subsequent numerical differentiation.)

In conclusion, because of the arguments presented, a decision was 
made to opt for the reduction to first order approach. Consequent­
ly in all following discussion on DEs, interest is totally concen­
trated on first order solution methods.

4. Factors affecting choice of numerical method
In this section desirable numerical integrator design criteria 
are listed and discussed. At this initial phase, selection of 
method type, the assessment criterion is done on a purely qualita­
tive basis. To attempt anything more is difficult because of the 
highly variable nature of the "function", f(y, t), where 
y e f(y, t), and the tremendous wealth of methods contained within 
any particular type.

The design criteria for the numerical integration process are as 
follows.

Computational efficiency
(a) in computer operations
(b) in computer storage 

Accuracy
Computational ease of local error estimation 
Stable numerical properties 
Variable step length capability 
Variable order capability 
Self start up capability 
Uniqueness of numerical solution

1.

2.
5
4
5
6

7
8

4* 1 Computational Efficiency
(a) in computer operations (computational effort)
The number of numerical operations the method performs, for a 
prescribed accuracy, per unit of simulation time governs the method's
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numerical efficiency. Henceforth, it is often referred to as 
computational effort.

The four factors which influence computational effort are listed 
below,

i the number of incremental time steps per unit of 
simulation time,

ii the order of the integration method,
iii the number of "function"evaluations per incremental 

time step,
iv the complexity of the "function" evaluations.

Factors i, ii and iii are a function of the numerical integration 
method, while factor iv is simply a function of the DB system to 
be integrated.

Clearly, for large systems of coupled DEs "function" evaluation is 
a major source of numerical inefficiency. For a single DE this 
may not be the case.

(b) in computer storage
This aspect of efficiency is simply defined as the amount of extra 
information the computer must store at each time increment to 
permit the method to work. This is dependant on the method of 
integration and the size ,of the system of DEs.

4. 2 Accuracy
This is a prerequisite for any numerical solution. It should 
always be considered in conjunction with efficiency since it is 
always possible to achieve greater accuracy at the expense of 
greatly increased computational effort. Primarily, it is a 
function of the incremental step length and the order of the integ­
ration formula.

4. 5 Computational ease of local error estimation 
The numerical methods used for solving problems in DEs are pro­
cesses regressing from sets of initial conditions and influenced by
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sets of forcing- functions. As such it is an easy matter for the 
numerical solutions to deviate significantly from true. A means 
of checking for this and thereby enabling corrective treatment to 
be implemented, is supplied by the local error estimate.

Clearly, it is desirable for this error estimation to be achieved 
with minimal computational effort, as estimates of error should 
be obtained at every time increment.

4. 4 Stable numerical properties
Stability is a constraint which all recur sive type difference 
equations must meet to ensure a meaningful and bounded solution. 
Instability manifests itself in what could be described as a numer­
ical explosion after a relatively few number of incremental time 
steps. (For fuller explanation see Section 6)

4. 5 Variable step length capability
This feature is often included in a numerical integrator. Should 
the local error fail to meet prescribed tolerance limits as the 
integrator time marches, it is usually desirable to make running 
adjustments to the incremental step length, h, to reduce the mag­
nitude of this error. However passive error monitoring is adequate 
for the objectives of this project.

This ease of step length alteration during the time marching pro­
cess is important in the non-stationary problem for quite a dif­
ferent reason. With the non-stationary problem, the marching pro­
cess is accomplished in the space domain and not the time domain# 
(See Chapter IX). Under such circumstances the velocity terms of
the second order DEs are broken into the product ^  where y

dx dt
is vertical displacement, x is the distance travelled along the
road profile, and, t is the independant time variable. The ^

dt
profile velocity terras are grouped with the physical parameters of 
the system of dynamic equations. This separation is equivalent 
to altering the step length relative to the time constants of 
the differential equation system. Ability to cope with step length 
changes during the marching process consequently becomes important
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because of this time constant alteration.

This step length alteration ability can also prove a useful self 
starting device, (See subsection 4* 7)

4. 6 Variable order capability
As with step length alteration this ability to change order can 
be used as a method of error control during the time marching pro­
cess. As this ability is superfluous to, requirements the useful­
ness of this device comes as a self starting mechanism, (see 
subsection 4* 7)

4- 7 Self start up capability
At the start of the time marching process it is necessary to define 
the initial conditions that exist in the physical system. With 
some numerical integrators this is all the information required.
Such methods are truly self starting. However by taking into 
account the variable step length or variable order ability of some 
integrator methods, it is possible to greatly increase the range 
of integration methods which can be self starting. Such pseudo 
self start methods either begin with a very small step length to 
keep initial errors down at low magnitude or, alternatively commence 
with a low integration order and then increase the order to estab­
lish all necessary information for the higher order integrator 
formula.

4. 8 Uniqueness of the numerical solution
The uniqueness of the numerical solution is necessary to ensure 
convergence. This is a particular problem in non-linear UEs. 
Although in the non-stationary problem (because of the space domain 
approach) the parameters are changing as the process time marches, 
the DEs are in fact quasi linear because of the parameters indepen­
dence of the system’s responses.

5, Types of solution methods
Attempts at classifying methods into either one step or multistep 
methods•become somewhat clouded when particular integration
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method types axe considered. There are many instances of method 
types which span the boundary between those two classifications, 
with some methods residing firmly in the multistep class, while 
others of the same tĵ pe are entrenched in the one step method 
class.

In the following subsections the various method types are briefly 
discussed.

5. 1 Taylor’s Series Solution
The Taylor's Series method is not a serious contender in the 
choice of integration formula. However, it is of great theoretical 
importance. Consequently it is an excellent starting point in the 
consideration of method class.

The Taylor's Series solution takes the form
+ f, h-1 + 1^ ÿm-1 + f, (5.1)

where 'y^ . ' is the 'Nth' derivative with respect to time at time
't and *h' is the time step increment (t - t ^),4.m-i ' ' m m-1'
Consider the, by now familiar, DE

y = f(y, t) (5.2)
Differentiate to obtain

■ÿ = f* + f (5.3)
i 6f where f = ----.

d±

At time instant, t^_^, (5.2) and (5*5) yield

^m-1 ^m-1 (5'4)
4 - 1  = 4-1 + h-l 4-1 (5.5)

respectively.
Substitute in (5.1) to obtain

= m̂-l + h ( fm-1 + % (f\ + ) i + 0(h5)2 m-1 m-1 m-1

where O(h^) = truncation error term of highest order.
Consequently it is possible to obtain a solution from the Taylor’s Series
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provided the higher derivatives of the original DE (5.2) can he 
determined. If 'n ' higher derivatives had been considered the 
truncation error would have been, 0(h^^^). Such solution methods 
are of little practical value because of the computational difficul­
ty of evaluating these higher derivatives.

The real importance of the Taylor's Series is in establishing the 
truncation error in other more readily usable integration methods.

5.2 Runge Kutta (RK) Methods
The essence of Runge Kutta (RK) methods are easily summarised. 
Such methods comprise of the following two basic operations,

(l) Successive "function” evaluations are used to iteratively 
estimate the slope, in the following manner,

fm
(5.7)

+ .&2n_i  ̂C^> V l  +

(2) The *n’ function evaluations are then "averaged” and y^ evalu­
ated, to yield

= fm-l + t h (b^ + bg

= Vl + h)
It is obvious that the general RK method requires no information 
other than, 
ing method.
other than, y^ to proceed time marching. It is a true self start-

Changing incremental step length, h, in the RK method is a trivial 
operation.
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The main disadvantage of RK methods lies in their low computation­
al efficiency, especially with higher order formulae. To reduce 
the truncation error by one order of magnitude it is also neces­
sary to increase the number of "function” evaluations by one. 
During a time marching process many incremental time steps are 
calculated and the extra computational effort of such additional 
"function” evaluations becomes very significant.

5,3 Predictor-Corrector (PC) Methods 
All linear multistep methods take the form

*1 y* - h Z  bi (5.9)1=U 1=0

where and b^ are constant coefficients.
(5,9) is a k - step method. The term linear follows the fact
that the "f"s are entered as a linear series and not, as might be
supposed, because the method is restricted to linear "f"s.

Most predictor corrector (PC) methods come under the classification 
of linear multistep methods. There are, however, important excep­
tions to this. PC methods do exist which are not in the true 
sense multistep but can in fact be shown to be equivalent to and 
to exhibit many properties of multistep methods.

Linear multistep methods can be established as follows.
Take the DE

y = f (y, -t) (5.10)
and integrate between t  ̂ and t , so that ̂ m-1 m'

K  ~ V l  “ r  (5.11)
V l

while replacing f(y, t) by an interpolating polynomial. Such 
methods are integration based,

(it is possible to replace y on the left hand side of (5.IO) by 
an interpolating polynomial of y which is then differentiated. 
These methods are in general unstable.)
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Predictor corrector formulae owe their basis to linear multistep 
methods. In practice it is normally convenient to have an 
explicit Predictor as an initial estimate of ŷ  ̂ which is then 
improved upon by an implicit Corrector.

In essence, Predictor Corrector methods comprise of the following 
operations.
(1) The P step
An estimation is made using the explicit Predictor formula as to 
the value of ’y * at 't^’.

4°̂  = ^  (̂i Vi h Vi) (5.12)
where a^ and b^ are constants.
Neither y . nor f . are calculated at this stage, m—jL m—1
They are in fact stored and carried forv/ard from previous time 
step increments.

(2) The E step
A function evaluation is next performed by making use of (5.10) and 
the last estimated value of y

= ^(^1'"^' V  (5.13)

(3) The G step
th ' ’By means of the ' j ' function evaluation the estimated value of 

y is now updated, by means of the Corrector formula, to yield

= 2  ( \  V i  + h hi V i  )JL=1

+ %  + h bo (5.14)

It should be noted that the order of both Predictor and Corrector
stages is quite independant of the number of function evaluations.

The E step and the C step can be iterated until the desired degree 
of convergence is achieved, although clearly it is undesirable for 
efficiency reasons to have too many iterations.
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Predictor Correctors have two possible modes of operation.
(1) the P (E C)^ mode
(2) the P (E C)^ E

where (B C)^ is an evaluation (e ) step followed by a correction
(c) step, with the sequence being repeated 'k' times. The
stability properties of the two modes are quite different (see 
Chase, P.E., Ref, 3)* This aspect is discussed in some detail 
later.

PC methods require a considerable amount of information to proceed 
time marching. They are consequently not self-starting. However 
once the process is started maximum usage is made of this previous­
ly computed information to make such PC methods computationally 
efficient, and unlike RK methods the order of truncation error is 
independant of the number of function evaluations per time step.

In the previously derived form PC methods are not amenable to step 
length change. Fortunately PC methods do exist (discussed in detail 
later) whereby this back value information is not stored in this 
back value (multistep) form but in terms of higher derivatives. In 
this form, it lends itself to step length changes. This also 
means that PC formulae are amenable to pseudo self star.t procedures. 
The initial step length, h^, is so reduced to keep the initial 
truncation error, 0(h^ ), well below the error, 0(ĥ '**̂  ̂of a
typical step, h.

If this latter type of transformed PC method is adopted, the method 
becomes exceedingly desirable provided the self starting mechanism 
is not too frequently implemented.

5.4 Other less common types
Less well known types are considered briefly. Some can be quickly 
eliminated as being unsuitable for the purpose in hand. Others 
are dropped because of scanty knowledge of their numerical behav­
iour, there being no apparent overriding advantage for their 
implementation.
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5.4.1 Block type methods
These methods can he either explicit or implicit and take the 
general form

&  V i  = _2 bj ^ “k V k

where e = 1, 2, 3» P» and a^, b^, c^, are scaler coefficients.
Next step the'method advances 'p' increments so that the values
y for i = 1, 2,  p, are calculated. The f , terms can be'^m+p+i’ m-k
replaced by an interpolating polynomial. Clearly it is impossible
to alter the step length at every step length increment, h. This
can only be done in blocks of 'p'. This class must therefore be
ruled out.

5.4*2 Hybrid type methods
Such methods combine the features of PC and RK methods. They take
the form

V r  .2 { Vi + hbi } + h P(ŷ, %,)
1=0

The terms within ( } are the explicit Predictor part and P is
the explicit RK function evaluation part.

Unfortunately such methods are not self starting, do not lend them­
selves to step length change, and the RK portion requires many 
function evaluations. They may have future potential especially 
if a step length alteration capability is developed. At the 
present state of development this class must be discounted.

5.4.3 Multistep Multiderivative type methods
Multistep multiderivative methods have much in common with 
predictor corrector methods. Unlike predictor corrector methods 
which are based on (4.3.2)

- V l  = I b) dt
m-1
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the multiderivatlve method has its basis extended to include 
higher derivatives of f(y,t).

The method takes the general form

=  X X1=0 k=l 1=0 ^^k
where t is the independant variable
and r is the order of higher derivatives included.

These methods can be used in a predictor corrector form. It is 
not included in Section 4»3.It is at a rudimentary phase of 
development, although a few applications with stiff systems, not 
relevant to this project have been attempted - Liniger and 
Willoughby Ref. 4 and Enright Ref. 5*

Efficient application of this method requires easy evaluation of
rm-1the higher derivatives, d^ (y Such derivative evaluations can

dtk
often prove difficult.

Since this class has no apparent overriding advantages, it was 
thought best to reject this method at the preliminary phase for 
the reasons discussed in the last two paragraphs.

5.4.4. Recursive Convolution.Integral type methods 
Such methods are based on the Convolution integral

t
y(t) = \ P(t) H(t-T) dT

0

This formula is often used in dynamics, where H(t) is the impul­
sive receptance of the system,

P(t) is the input disturbance
y(t) is the system response.

To increase the computational efficiency the Convolution integral 
is discretised and expressed in a recursive form, (See Trauboth 
Ref, 6).

This type of solution method is based on the superposition prin­
ciple and as such is only applicable to linear elastic systems.
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Although frequently used in structural dynamics, this restriction 
to linear systems makes it rather inflexible for use as a 
general method of handling the non-stationary (and frequently non­
linear) vehicle suspension problem. It must therefore be ruled 
out.

6. Existence and Uniqueness of the Solution
Most types of numerical solution to the initial value problem (3*1) 

y = f(y, t)
can be classed under the general p step method which takes the form 

a. V . / + h G(v^  ̂ : ... ^m-p1=0

It is necessary to establish if a unique solution to the numerical 
problem exists. To do this it is best to break the problem into 
two halves and determine, in turn, if there is a unique solution 
to the differential equation (3 .I) and having established this 
determine if a unique numerical solution to the difference problem 
(6,1) exists.

That a unique solution to the initial value problem (5*1) exists 
is proved by Henrici (Ref. 2) pp 15 Section 1.2, The requirements 
are merely stated in the following paragraphs.

Conditions for uniqueness of (3.I)
For an initial value problem, (3.I), if the conditions:
(1) that f(y, t) is defined and continuous in the region 

a ^ t ̂  b, and -00 < y < 00 for any finite a, b

(2) that a constant, K, exists within the bound a. ̂  t ^ b such
that, for any y and y*

(y*,t) - f (y,t)J < K (y* - y|
—  a Lipschita condition

(t)then there exists only one function y such that
(1) y(t) is continuous and differential for a ̂  t ^ b
(2) y(t) = f (y(t), t), for a <t  < b
(3) y(a) = q, where q is a constant.
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As for the numerical integration method (6.1), a unique solution 
obviously exists if the integration formula is explicit or if the 
function to be evaluated has a linear nature. For an implicit 
formula^(6.1) can be written in the form

: (G'2)
or rewriting in the iterative form

for i = 0, 1, 2 ---, and where the superscript (p) refers to the
p^^ iterative approximation.

The conditions for the existence of a unique solution are stated in 
the following paragraph. (For proof see Henrici (Ref. 2) pp 2l6 -
217).

Conditions for uniqueness of the implicit method (6.3)
For a numerical initial value problem of the form described by (6,3), 
if the conditions that
(1) F(y^ ĵ) is defined and continuous within the bound - 00 < y <00

(2) a constant K exists such that for any y and y*

|f ( 4 - x ) - ^  ^ 1 4  -
where 0 1

then there exists a unique solution which for any arbitrary
y(^) converges to y and for which the following inequality holds -

|y - y(^)| < K |y(®) - y(®~^| < I® I y
' l-K • 1-K '

(1) _ y(0),

The uniqueness of the integration method is dependant on the con­
ditions for the uniqueness of the DE being satisfied, RK methods 
which are normally explicit possess a unique solution, providing the 
DE solution is unique. PC methods, because of their implicit nature, 
must also satisfy the conditions of a unique integration method.
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7 *  Convergence, consistency and stability
Clearly in order to obtain meaningful answers from any recursive 
integration method, it is vital that at any incremental step number, 
n, the approximated solution, y^, is a good estimate of the true 
solution, y(t^^. To achieve this aim, the integration method must 
meet the condition of convergence.

In future chapters, interest is concentrated on linear multistep 
methods and consequently the following discussion is so orientated.

Prom the linear multistep method (3.9), the characteristic polynomial 
equation

k .2  ( a ^  -  h b j ^ )  r  =  0  ( 7 * 1 )
i=o i

can be obtained.

Por convenience, ( 7 * l )  can be rewritten a s
p ( r )  -  h  ( j ( r )  =  0  (7. 2)

where r^ are the k distinct roots of the polynomial.

Necessary conditions for convergence are stability and consistency 
(for proof see Henrici (Ref, 2) pp 218-220 and pp 224-223 respectively) 
Translating into terms more immediately relevant to linear multistep 
methods, the method is stable when all the roots, r^ for i = 0, 1,
. . , k of the characteristic equation satisfy the condition

< 1 for all i.
Consistency is satisfied if the order of the method is greater than 
one, ie

if p (1) = 0
and if P ( 1 ) = CT ( 1 )
where P(r) = d p(r).

dr
It can be demonstrated (see Henrici (Ref. 2) pp 244-246) that stabil­
ity and consistency are also sufficient conditions for convergence.

These criteria for convergence are in part dependant on the coef­
ficients of the linear multistep method, and partly on the step
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length, h. This reliance on the coefficients of individual methods 
effectively means that the convergence criteria can only be con­
sidered when individual methods are considered. It cannot therefore 
be used as a general decision criterion for selecting a method type.

8, Methods of Local Truncation Error Estimation
Although the order, p, of error terra, 0(h)^, can be established for 
any numerical method of solution in the initial value DE problem, 
some means of estimating the actual magnitude of the local trun­
cation error is required to check for convergence as the integration 
proceeds in time. There are various methods of calculating this 
error. The methods are dependant on the type of integration method 
used.

In the following subsections the main types are dealt with in turn.

8. 1 Error Estimation in Runge Kutta Methods
These estimation techniques are also applicable to other solution 
methods. Normally with multistep methods,, estimation routines, with 
considerably increased computational efficiency can be chosen in pre­
ference. Unfortunately, this is not true of RIC methods.

There are several methods which -can be used. All require two indepen­
dant estimations of the solution at the current time of interest, t^. 
These two independent solutions can be achieved in either of two ways:
(a) by the implementation of the integration formula using two differ­
ent step lengths, and (b) by the implementation of two integration 
formulae of different type or order, (in case (b) the different 
order integration formulae need not necessarily be of the same type.)

As a result of this requirement of at least two independant evalua­
tions per step, error checks incur a severe penalty in computational 
efficiency.

Method (a)
Consider for example, a 4^^ order method.
Let y(t ) be the true solution at t = t +mh and let y be ' m ' o m
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the approximated solution with a step length of h, 
then

y(t^) = yjn + 0(h)5 + --- (8.1)

where 0(h)^ is the most significant error term.

Recompute the solution with a step length of h/2, where y^ is not 
the approximated solution, to obtain

y(t^) = + 0(h/2)5 + ....

= + 0/52(h)5 (8.2)

Eliminate y(t^) from (8.1) and (8,2), and an estimate of the most 
significant local truncation error term can be obtained, thus

0(h)5 = 52/31 ( ^  - y j  (8.5)

To work well, this error estimate (8,3) must assume a reasonably 
constant fifth derivative.

This method of error estimation can be implemented in two ways; with 
the h/2 as the basic step length and error estimates made every alter­
nate h/2 step, or with the h regarded as the basic step and two extra 
formula implementations of step length h/2 required to estimate the 
error at every step, h.

Method (b)
Consider foi 
same method, or even another RK method.

*tlniConsider for example, 4 and 5 order methods, not necessarily the

Once again, let y(t^) be the true solution at t = t^ + mh, and y^^^ 
be the approximated fourth order solution such that

y(t^) = ŷ "̂  ̂+ 0(h)5 + 0(h)^ -f  (8.4)

where 0(h)^ is the most significant error term,g
0(h) the second most significant, etc.

For the 5th order method, the error is given by

y(t^) » y^^^ + 0(h)^ + ---------------  (8.5)
where 0(h)^ is the most significant error term.
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Eliminate y(t ) from (8.4) and (8*5), and hence

0(h)5 = (8.6),

An estimate of the most significant error term in the 4^^ 
order method is obtained.

8.2 Error estimation in Predictor Corrector Methods

For methods of the PC type, one method of error estimation is almost 
universally accepted because of its simplicity and efficiency. It 
relies on the Predictor and the Corrector being of the same order, q.

Let y(t ) be the exact. solution at time, t = t_ + mh (where t^ is m / / \ / \ u ,u
the initial time), and let y^' ' and y^^ ■ be the Predictor and 
Corrector estimates of y(t^), respectively.

Then, y(t^) = y^^P) + ah% d^f (T^) (8.7)
dt^

and y(t^) = + bh^ d ^  (Tg) (8.8)
dt^

where ^

Vgn-k < Tg- <

y(t ) is eliminated to yield the approximate relationm

y^(°) - y^(^) = (a - b) d^f (T) (8.9)
dt%

where < T <

(it is assumed d*̂ f (t ) is approximately constant for the range 
dt'l

of t defined)

(8,9) can be rewritten as

hi d^f (t ) = y - y (p)
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Both (a) and (b) are known constants. They were established when 
Predictor and Corrector were in turn equivalenced with the Taylor's 
Series.

Prom (S.IO) the Predictor and Corrector error can be approximated 
respectively as follows.

Predictor error =  a h^ d^f (t) ~  a (y - y ^ ^ ^ ) (8.II)
dt^

Corrector error b d‘̂f (t ) ~  b (y/® - y^ ) (8,12)
dt^

9. Variable Order Numerical Integration Methods
Any method of the RK or the PC type can incorporate the added flexib­
ility of dynamic order selection. This is a desirable characteristic 
if higher derivative discontinuities exist. Under such circumstances 
if the numerical integration order is not reduced, the meaningless 
higher order differences introduce erratic behaviour into the solution.

The computational complexity in implementing variable order is consid­
erable, Both RK and PC methods require comparisons to be drawn 
between two formulae of different order/ comparing errors of the P^^ 
and the (P + l)^^ order. If the order of the numerical method becomes 
too high, such that discontinuities in the higher derivatives of the 
function to be integrated are encountered, then the erratic behaviour 
of the numerical solution would render the comparison between the P^^ 
and (P + 1)^^ order formulae meaningless. Although meaningless the 
comparison test would be implemented and found wanting. This in turn 
would influence the decision process to opt for a yet higher order, 
and so on ad infinitum. Some means of checking this order escalation 
is necessary. No totally satisfactory method of doing so is avail­
able at present. Those that exist are computationally inefficient.

High order formulae have a narrow stability margin compared with low 
order formulae. Consequently every time the order of the method is 
increased, the stability margin is reduced. Reduction in the 
stability bound should be avoided especially in problems where the 
conventional eigenvalue stability analysis is inapplicable.
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10, Conclusion

Predictor Corrector methods appear to exhibit the best overall 
properties. They are however subject to certain constraints which 
must be considered when individual methods are dealt with.

Por various reasons (see subsection 4.4) the less common methods 
were dropped at an early stage in the decision process. The com­
parisons drawn below are between Runge Kutta (RK) and the Predictor 
Corrector (PC) type. The degree to which both methods meet the 
design criteria is discussed in turn.

l) Computational Efficiency

(a) in arithmetic operations (computational effort)
The order of explicit RK methods is dependant on the number of 
function evaluations. It realises a poor efficiency for a desired 
accuracy. This is particularly true in cases where function evalua­
tions are complex.

Implicit RK methods suffer from added arithmetic complexity because 
of their iterative nature.

Predictor Corrector methods require only a few function evaluations. 
The number of evaluations required is independant of the order of the 
process. Increasing the order by.one, with a corresponding increase 
in accuracy, simply involves a few extra arithmetic operations,

(b) in computer storage
RK methods require a minimal amount of storage as back value infor­
mation. Other than y^ ^ for a current time t^, no additional infor­
mation is needed by the method.

PC methods require infor-mation to be stored about their back values, 
whether stored as back values or in a higher derivative form.

2) Accuracy
Both RIC and PC methods can attain, for a given order n, a truncation 
error of magnitude 0(h^^^). It'is only when qualified by computational
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efficiency that the superiority of PC methods becomes evident.

5) Computational ease of local error estimation
In RK methods, all the techniques of error estimation, whether through 
step length halving or through a secondary integration scheme, approxim­
ately doubles the computational complexity. With the PC method, such 
error estimation is trivial provided the predictor and the corrector 
are of identical order.

4) Stable mumerical properties
All methods irrespective of:class exhibit stability properties which 
are dependant on the parameters of the integration routine, the step 
length, h, and the function to be integrated. No overall class 
properties exist, and this criterion cannot influence the choice of 
method type.

5) Variable step length capability
This is a trivial operation with RK methods as information about 
prior time steps is not required, and the alterations are simply 
achieved by altering the value of h in the formula.

In the case of PCs, step length alteration proves difficult if the 
additional information required by the method is stored in back value 
(multistep) format, since error results when h is changed. Some 
PC formulae store the additional information as combinations of 
higher derivatives. In this form it is amenable to changes in step 
length, and as with RK methods this is achieved simply by altering h 
in the formula.

6) Variable order capability
In both classes of method, the decision processes involved in 
automatic optimisation of the integration order add considerably to 
the algorithm's complexity. PCs have the added difficulty that the
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additional information may not be in a form con.d'usive to order 
change. This would be the case if the additional information was 
stored in a "combination of higher derivatives" form.

Since the order of the process to be integrated is anticipated not 
to vary, and also because of the complexities of order determination, 
a variable order capability was considered irrelevant to the needs 
of this project.

7) Self start up capability
RK methods do not require information about back values. They are 
therefore self-starting.

Tills is not true of PC methods where pseudo start up can be implemen­
ted in one of 3 ways, as follows

i. by use of a very small initial step length, effectively 
keeping the truncation error below that of a typical step length,

ii. by starting with a low order PC method and building the 
order up as the steps progress and more information becomes 
available until the desired order is rbached,

iii. by initial use of an RK method to establish sufficient 
additional information to allow the PC method to proceed.

(i) is only practicable in methods amenable to step length change, 
and (ii) is only of use in those amenable to order change. Both (ii) 
and (iii) are difficult to program,

Por PC methods start up is a relatively complicated operation and 
limits the viability of PC methods to cases where infrequent restarts 
are required during the period of the integration process.

8) Uniqueness of the numerical solution
Before considering the uniqueness of the integration method it is 
necessary to establish the uniqueness of the function to be evaluated.
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Once accomplished the integration methods can then be considered.

If the integration method is explicit as in conventional RK formulae, 
then the uniqueness of the method presents no problem. However 
if it is implicit, as PC methods are, then it can also possess a 
unique solution, subject to some additional constraints.
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chapter VI

CHOICE OF A PREDICTOR CORRECTOR (PC) METHOD

1. Introduction
In the previous chapter the justifications were presented for opting 
for the PC type method. This chapter attempts to do likewise for 
the chosen PC method.

As the range of PC methods is extensive some means had to he found 
to reduce the range to a few best methods, and then by a closer 
examination decide on the one which best suits the vehicle simulation 
design requirements.

The chapter opens by discussing the literature available on PC methods. 
From that together with the results of the few comparative tests avail­
able the chapter forms a short list. The equivalent Adams - Bashford - 
Moulton linear multistep basis of the short listed methods is derived. 
The methods are then briefly stated and a discussion follows on their 
relative capabilities in meeting the vehicle simulator requirements,

2. Discussion on and preparation of a Short List
In the previous chapter, the conclusion was drawn that methods based 
on linear multistep methods of the PC class best met the desired 
integrator's design requirements provided formulations are chosen 
which overcome the inherent shortcomings of linear multistep methods.
By surveillance of the literature the selection of an optimum method 
is attempted.

Because of the extensive nature of the literature it was decided to 
limit the choice to methods which have been fully developed and 
numerically tested. Furthermore it was decided to concentrate inter­
est on methods equivalent to linear multistep methods with correctors 
of the Adams - Moulton form, Adams - Moulton correctors were found 
by Hull and Newbury (Ref, l), to exhibit error tolerances of about 
1/5th the magnitude of any of the others tested. A result which
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held true for up to eight corrector iterations. The predictor 
is simply a tool for making a good initial estimate.

Articles containing results of comparative tests on the various 
methods are few. Host are concerned with comparing the author's own 
with one other method. The paper by Hull, Enright, Fellen, Sedgwick 
(Ref. 2) is the only true comparative test of non-stiff integration 
methods. This paper achieves two main objectives. It defines a 
general quantitative assessment scheme for empirically testing 
integration schemes along very similar lines to Hull (Ref. 5)»
More importantly from the interests of this thesis it empirically 
tests implicit and explicit RK methods (the 4th Order and the 6th 
Order by Butcher, and of the 8th by Shanks), the extrapolation 
method of Bulirsch and Stoer (Ref 4)» and the Adams based methods 
of Gear (Ref. 5) (based on Nordsieck Ref. 6) and of Krogh (Ref. 7) 
on a, wide variety of problems. All their PC tests were implemented 
in an automated variable integration order, variable incremental 
step length form - features which are superfluous to the simulator 
design requirements. It was assumed that the results would hold 
true for a fixed order, fixed step length form.

This article concluded that the method of Bulirsch and Stoer was 
best for differential equations with simple function evaluations 
(up to 25 arithmetic operations), while Krogh was best for more 
complex functions with Gear also performing well. In the comparison 
between Gear and Krogh, the better performance of Krogh was attributed 
to its more flexible implementation with respect to order change.
For this reason both Gear and Krogh had at this stage to be consid­
ered of equal merit. The inflexible size limitation on the function 
evaluations when using the Bulirsch - Stoer caused this method to be 
rejected. RK methods were found in test to be non-competitive - a 
result consistent with the conclusions of the previous chapter.

In the preface to the book of Shampine and Gordon (Ref, 8) it is 
stated that Gear and Krogh are considered to be two of the best 
methods available with the present state of the art. The fact that 
they have both been adopted by the NAG system library in recent years
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adds further weight to the body of opinion backing Gear and Krogh 
as good general methods.

Gear's method is essentially the Nordsieck formula except that it 
contains certain sophistications in program implementation and 
philosophy. Since the interest of this thesis does not include 
such sophistications, the Nordsieck basis is considered and 
henceforth referred to by this name.

3. The Adams - Bashford - Moulton Linear Multistep PC Formulation
This linear multistep method forms the basis of the short listed 
methods of Krogh and Nordsieck, For this reason its derivation 
is included here.

As mentioned in Section 4*3 of previous chapter

ÿ = f(y, t) (3.1)
can be integrated between t  ̂ and t to obtainm-1 m

-  V l  =  I ”  ( 3 - 2 )
V l

If the function f(y, t) is replaced by an interpolating polynomial, 
the basis of the linear multistep method is formed. Depending on the 
polynomial chosen the resulting method can either be an explicit 
prediction or an implicit corrector. The Adams - Bashford predictor, 
and the Adams - Moulton corrector are examples of each. These 
methods are the linear multistep basis for the short listed methods 
of Krogh and Nordsieck.

Before proceeding with the derivation, the standard backward differ­
ence operators must be defined, thus

V / m  =  -  V l
“  V  %  -  V  V l  =  -  % - l  +  V 2

V  \  = S  (-1)^ (^)
r=o
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and hence by rearrangement and recursive substitution

V l  = = (1 -  V )

V 2  = -  2 V  y „  + V  %  -  (1 -  V  )^ y „

V k  = -  ( Ï )  V y ^  + ( g )  V %  -  ( - 1 ^ 0  v %  + . . . .(5-3;
Make the substitution in (3.3) of T = - k, such that

V t = V  Ym + v %  + . . . . + 1^ f l ( T  + 1) v %  + ...1! 2! r ! i=o
(5.4)

- Newton's backward difference interpolation formula.

(5.1) and (3.2) gives the relationship
r s= y m '̂ m-1

t
Ym “ Y__-| + h j “ y(t) dt (3.5)

t Tm - 1
Replace t by t^^^ + hT to obtain 

1
Ym “ Y„_i + k ÿ ( V l  + ®  (3.6)

“  V l  +  ^  I  j V l  +  f y  V V l  +  V l  + . .
r

+ i_ n  (T+i) V % _ 1  +...)aT
r! 1=0 )

(by (5.4) )

and after integration, this equation becomes

-  V l  +  *’ ( V l  ^  V l  +  &  V  ^  V l  +  ) ( 3 . 7 )
which is the Adams - Bashford Explicit Predictor formula.
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The Adams - Houlton Implicit Corrector formula is obtained in the 
following manner :-

Replace t by t - hk in (3,5), so thatm

—  • • •  jdk
(by (5.3)-)

which on integrating gives

- I  ^  V \  -•■••) (3.9)

- the Adams - Moulton Implicit Corrector.

It is obvious the Adams - Bashford - Moulton PC method is not amenable 
to step length change* If a change of step length is contemplated, 
the spacing of the back values ^ is not correct. This could 
only be rectified at the expense of'considerable numerical complexity 
and the method must be rejected.

4 0 Characteristics of Methods
For the purposes of the argument to finalise the choice of PC method, 
it is necessary to outline the two methods and discuss their charac­
teristics, A detailed derivation of both is considered superfluous, 
although the Nordsieck method finally chosen is derived in the next 
chapter. Both methods have a variable step length capacity*

Outline of Krogh*s Method (krogh Ref. 7)
The predictor formula in Krogh’s method, which is capable of handling 
any order differential equation system directly, simplified for a 
single component of a first order DE system takes the form at m
time instant -

D̂.
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/Q\ P“1
^m-1 ^ ^m-1 î(in - l) Fh(m - l) (4*l)

while the corrector is given by

+ \ + i  °p(“ - î'p(”)/BpC“) (4.2)

where
( 1 for i = 0

Gj(m) = [ i Ai<(m) _ (40)
( Î  j+1 ^  ® . . .0=1

( f(t ) for 1 = 0

“ I E.(m) f(t^, ....

) for i = 1, 2, ...

(4.4)

 ̂ 1 for i = 0

h ( “ ) “ ( E (m+l)/E (m) ^^'S)
> j=0 J 4
} for i = 1, 2, ....

The A..(m) are firstly calculated recursively in the followingij
manner,

h .,/E (m) for j = 0
^  and i = 0, 1, 2, ...p

Ai 1 4 i(di) = ( i (4.6)
( B (m) L  A (m) for j = 1, 2, ...p-1
( k=j and i = j, j+1,...p-1

The other variables are defined as follows, 
i

E.(m) = Z  h (4.8)
k=0

tilh = incremental step length at the ”tn " step, m ^

The derivation of these formulae for the general case of a system 
of ”d̂ *̂' order is given by Krogh (Ref, 7). The notation used here
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is consistent with the rest of this section, Krogh's notation 
differs with respect to G, F, B, E which are replaced by their 
Greek equivalents, and with respect to the single suffix on G - a 
simplification resulting from 1 order DEs only being considered 
here.

Krogh*s method essentially is a multistep, multiderivative method, 
with an infinitely variable incremental step length. In (4.I) and
(4*2) it is simplified in form by omitting the multiderivative 
capability and considering only 
form it is numerically complex.
capability and considering only the 1®^ order BE. Even in this

On comparison with Kordsieck*s method it becomes obvious that even 
in the simplified 1^^ derivative form given in (4#l) and (4.2), 
Krogh’s method is considerably more arithmetically complex. Since 
Krogh recommends only gradual changes in step length then no sig­
nificant saving in computational effort can be anticipated from the 
infinitely variable step length capability. Any such computational 
savings which could result from the method can therefore reasonably 
be expected to come from the variable order facility. This is 
borne out by Hull et al, (Ref. 2).

It should be noted that in (4,1) and (4.2), the predictor formula
is of order "p" while the corrector has an order "p +■ 1”, This 
makes error estimation more difficult than it need be (see previous 
chapter, section 7,2).

If the infinitely variable step length facility is removed then
gwith 1 order BEs, the method simplifies to form an Adams - 

Bashford predictor of order "p" and an Adams - Moulton corrector of 
order "p + 1” which as mentioned in section 3 is inflexible with
respect to step length change.

Outline of Nordsieck*s Method, (Nordsieck Ref, 6)
At its inception, the Nordsieck method was geared fundamentally to 
overcome the difficulty of changing incremental step length, while 
maintaining the desirable features of the linear multistep form of 
other PC methods. Step length change is easily accomplished by
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altering *h’ in the Nordsieck predictor - corrector formulae. This 
step length flexibility is accomplished by storing the solution 
history in a vector of additional quantities based on higher deriva­
tives rather than as a series of back values. (A detailed derivation 
is given in the following chapter.)

The p^^ order predictor vector formula is

Jo)'in (4.9)

where
1 1 1  

1 2 
1

1
p-1

0 1 p-1
1

(The Pascal triangular matrix)

and ni m 2,m a (j)p,m
.thfor the j correction.

The p^^ order corrector vector at the (j + l)^“ correction is given byth

a(o+l).m + h A f  o (4.10)

where A  f
(j) (0)
m m

and T Cq c^ . . . . Cp

where = 0, always

A single superficial glance reveals that the Nordsieck method is 
computationally much less complex than that of Krogh, despite the 
requirement for the calculation of a vector of quantities, ^
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In fact the computational efficiency can he shov/n to be greater than 
that of Adams - Bashford - Moulton PC method, which Krogh reduces 
to if the flexible step length capability is removed. Gear (Ref. 9) 
demonstrated that as the predictor matrix, P, was of Pascal trian­
gular form great savings in computational effort could be achieved 
as shown in the accompanying table.

Method Multiplications Additions
Example

comparative
time*

Nordsieck
Adams

p + j - 2 
2p + j — 2

p(p + l)/2 + 2j - 2
2(p + j) - 3

27 units 
31 units

where p = integrator order, j = no. of corrector iterations.
* The example comparative time is taken for p = 5, j «= 2 
where the conservative assumption that the time ratio 
of 1 multiplication ; 1 addition = 2 : 1 .

In the brief outline of the methods no mention was made to the trun­
cation error order, or the stability properties. On these points 
bearing in mind that the order of the integrator is fixed there is 
little to choose between them. However for completeness they will 
now be briefly mentioned.

It is difficult to estimate the algebraic value of the truncation 
error of the Krogh algorithm, owing to its continuously varying step 
length. However, as step length changes occur gradually, then it is 
reasonable to approximate the error by that of the Adams - Bashford 
Predictor and Adams - Moulton Corrector with some mean step length h, 
Krogh’8 method reduces to that of Adams - Bashford - Moulton if the 
variable step length capability is omitted for the case of a first 
order BE, Thus, the predictor error, e^^^, can be approximated by

e(P) = K h P y(P) n
for a predictor of order p - 1.

(c)The corrector error, e^ is given by

(c) _ p+1 (p+l)
K h ŷn “ n

where the corrector is of order p.
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It is the lower order formula which governs the order of truncation 
error for the method, (This is easily shown if the predictor formula 
with its error term is expanded in the corrector.)

The Nordsieck Method can he shovm to he directly equivalent to the 
Adams - Bashford - Moulton linear multistep method, with identical 
truncation error. The predictor and the corrector are of the same 
order in this method.

As was mentioned in the previous chapter, stability is very much 
dependant on the differential equation to be integrated. On a 
variety of test problems done by Hull et al, there appears to be no 
significant difference in stability bounds, (in these variable 
order variable step length forms a limited stability bound would 
have been demonstrated by poor computational efficiency, which 
neither method exhibits.) Although Krogh (Ref, 10) does claim better 
stability properties as a result of the infinitely variable step 
length capability. However, the improvement appears marginal.

5* Conclusion
The literature survey narrowed the choice in the PC class to two 
methods, namely Krogh and Nordsieck, Of these two methods it was 
reasoned that Nordsieck best met the numerical integrators design 
requirements.

The variable order capability was considered superfluous to the 
design requirements of the integrator. It is only with the inclusion 
of this facility that the Krogh Method can prove computationally com­
petitive. Without this facility, on a step by step basis, the 
infinitely variable step length capability in the Krogh Method proves 
too cumbersome to use. It is considerably more complex than the 
fixed step length Adams - Bashford - Moulton PC Method which in turn 
requires more computational effort per step than does a variable step 
length Nordsieck Method.

Related to the design requirement of computational efficiency is the 
requirement of efficient error estimation. Once again, because of 
the rejection of the variable order facility, error estimation in the
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Krogh Method proves difficult, the predictor formula being of a 
different order from the corrector. If the predictor and the 
corrector possess the same order, as is the case with the Nordsieck 
Method, error estimation is a trivial operation (see section 7*2, 
previous chapter).

Start up can be easily accomplished by making use of the variable 
step length capability, where an artificially small step length is 
chosen initially. Although with the Krogh method it is computation­
ally very inefficient, (Krogh in fact advocates use of the variable 
order facility for start up.)

On the other design requirements of accuracy and stability, neither 
Krogh nor Nordsieck possessed any overwhelming advantage.

In short, the Krogh Method relies heavily on its variable order 
capability* Without this facility the method is not competitive. 
However as the order of the process to be integrated is anticipated 
not to vary then order change capabilities appear superfluous to 
design requirements. Consequently, Krogh’s Method must be rejected 
in favour of Nordsieck.
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CHAPTER VII

MODE OP OPERATION OP A NORDSIECK BASED ETTEGRATOR ALGORITHM

1, Introduction
A mode of operation of a Nordsieck based algorithm is arrived at.

An initial preamble through the derivation of the Nordsieck method 
and its equivalence with linear multistep methods, is used as a 
basis to describe the operation sequence of the Nordsieck based 
algorithm which was finally implemented.

Prom this basis the salient features of the implementation are dis­
cussed with reasons given for their adoption.

2. Derivation of the Nordsieck Method
In Nordsieck (Ref. l) it was the author's intention to merge the 
efficient aspects of linear multistep PC methods with an easily 
implemented step length change capability. (The step length change 
capability also facilitates integration start up.) To prevent 
obscuring Nordsieck's objectives it is his original approach which 
is stated in this section rather than the more elegant approach of 
Osborne I966 where the equivalence with linear multistep PC methods 
was demonstrated.

In the solution of the standard first order DE,

y = f(y, t) (2.1)

the approach commences by opting to save at the current time, t , the
th ^quantity, y^, and its, 'p', higher derivatives (for a 'p ’ order 

integrator). Since all stored information applies to the current 
time step, t^, (unlike linear multistep PC methods) no complicated 
interpolation is required for step length changes. At this point the 
method is modified to reduce the insensitivity and consequent inac­
curacy caused by wild fluctuations in higher derivative magnitudes.
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Thus, in the basic Taylor's Series integrator,

,P"1 )

The following substitutions are implemented in, for example the 
5 point vector of higher derivatives,

4!

(2.3)

It is reasonable to assume that the scaling effect of h^~^ causes 
the effect of wild fluctuations in 'y^' to be reduced in proportion
to the order 'i' in the ,.th, m

coefficient.
Now the integrator is fully defined by the following set of Taylor's 
series.

m+1

'm+l

m+1

y* + k + |L ÿ» + 7  + b! yi" + h! y% + y ^

ÿm + ÿm ÿ  y f  + ÿ  ÿ  y f

y :  +  h y r

(2.4)

Let em Ir
(2.5)

Then from (2.5) the following equations are obtained

m+1

m+l

= y + h ( f  + a  + b + c + d + e )m

a'm+1

m+1 =

m+1

m+1

( m m m m m m

a + 5b + 6c + lOd + 15e m m m m m

b + 4c + lOd + 20e m m m m

d + 6e m m

(2.6)
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As an example in equation set (2.6), is derived from (2,3), 
(2,4) and (2,5) in the following manner,

V
^m+1 (2.4)

üm+l

henoe, 4_̂ ^̂  

but em

■ t î ’’"

= bi (yl + h C )5Î

■ ÿ ' " (2.5)

and so = 4^ + 6e^

(0)
If the predicted value of f^^^ is defined by

(2.6)

C l = + 40^ + 54^ (2.7)
then by use of the function evaluation of the differential 

equation f ( y ( V f  - V f  ^n (2.6)

= l/6(f(y(tm+i). tm+l) - fm+1 ) (2.8)

= l/6 D̂ .,

Eliminate em from (2,6) to obtain

^m+1 ~ ^m ^ + 4^ + 1/6 D^) )
)

^m+l “ + 4o^ + 54^ + }
!

V l  “ 

V i  “

+ ^“m + + 15/6 

+ 40^ + 104^ + 20/6 Df

)
)
) (2.9)
)
)

'm+1

m+1

C„ + 54^ + 15/6 Df

dm + %f
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The second equation of set (2,9) is redundant as f^^^ is never 
implicitly required. It can be replaced by f(y( t^^^), This
is not true of the predicted value, where 

r (0) _'m+1 I'm + + 3 \  + 4o^ + 5d^ (2,10)

Consequently, equation (2,10) replaces equation (2,9*ii).

Equation (2.9) with the aforementioned substitution is very unstable.
To improve stability, it is necessary to alter the coefficients of Df 
throughout the equation set. Consequently, the coefficients 1/6,
15/6, 20/6, 15/6, 1 are replaced by the as yet unloiown coefficients 
Y, A, B, 0, D, respectively, to yield the result

(2.11.i) 

(2,11,ii) 

(2,ll,iii)

^m+1 + ̂

^^m+1 “ m-- £ V

'v. m+1 + h Df 7

:e vectors
T

Am %

■ } 1 1 1

T
& - 2 3 4

V? A B c D

matrix 1 3 6 10
U • 1 4

1
10
5

0 . , 1

NB The relations (2,ll) hold for any degree of Nordsieck type 
method.
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Recall from equation (2,8) that

^f " - T^+1 ^

(0) 
m+1

by use of (2,11,ii) to obtain
Eliminate from equations (2,]l.i) and (2,11,iii)

= y* + h fm Jm  + y k (2.12.1)

Am+1= M Zm + b Fm I  (2.12.ii)

Twhere matrix H = U - V g ,

vector E (e - Yg),

and scaler P = f _ - f .m m+1 m

Equations (2,12) yield the variational equations

+ h 6f^ + f  %  + yh - Sf^) )
■ (2.13)

%m+l = : i h (sq^i - SfJ y j

For Rotational convenience, the scalai? substitution q = h d î is
a ôyimplemented, despite the fact o_f is a Jacobian matrix,
dy

•q’ is now substituted into (2,13) smd the equations are rearranged 
to give

(1 - n) . (1 + q - Yq) 6ŷ  + f  j
) (2.14)

q Sy -, V + Sv -, = M 6v - q 6y V )Vi-l'k ^ %i+l - E )
If (2,14.i) is substituted in (2,14,ii), after rearrcmgement the 
result obtained is
ss„l - “ tv, * y?f, (i %. * f  S.) Ï

■  t V  '"•! (2.15,

where matrix
Q = (1-Yq) M 4 q(v iJ).
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q̂uations (2,14.i) Giid (2.15) yield the general partitioned 
matrix relation

(1 + q - Yq) ;, ^ Gy*
- - - - = 1 

l»Yq !
- “ ■

Çfm+1 Y ; Q Ah

(2.16)

The next step in the stability improvement is to establish the 
characteristic equation. This is straight forwardly, if somewhat 
tediously obtained from (2,16) by setting

and Sv.'̂ 1
T X L^a ^b ^c d̂,

for all i
where r̂  ̂ = constant for all k.
(See for example Rutishauser (Ref. 7) )•

The solution of the eigenvalue problem of the resulting determiinant 
is next established, to yield the characteristjc equation

(1 - Yq) (A - 1)5
+ [ 2A + 3B + 4C + 5D - (l + A + 3 + G + D)q] ( A  - l)̂

+ [63 + 24c + 7OD - (2A + 63 + 14c + 30I))q] ( A - 1)5
+ [24G + 1801) - (63 + 36c + 150D)q] ( A - l)̂

+ [ 1201) - (24c + 2401>)q] ( A - 1)
+ (I201))q = 0 (2.17)

Clearly there is no unique choice of Y, A, 3, C, D, and q which
satisfies equation (2,17). however, by r.eans of the i:ethod of undotĉ
mined coefficients, these roots - as functions of Y, A, 3, C, J) end q 
can be determined.
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The function
(l - Yq) is set equal to the left hand side (L.H.S.) of the

n=l
characteristic equation (2,17), where

X -2n = "O.n + *l,n ^ + *2,n 9- + .........
for n = 1, 2, . ,, 5

where u. are the, as yet, undetermined coefficients,J »n

On expansion, powers of q are equated to establish the
coefficients u.0,n,

The essential root, A can be shoi-m to agree with an exponential
6series up to an error of 0(q ), with

= exp (q) - ^ T(5 - 6Y - A + l/5C) ^ / 6 \

+ (49 -  105Y -  14A -  7/5B + 14/50 + D) q ^ /7 î j

+ O(qG) (2.18)

The essential root, ('1̂, as discussed more generally in an earlier
chapter, merely determines the stability of the differential 
equation system.

In order to optimise the stability of the method it is necessary to 
examine the non-essential roots. Since, 'q' is the Jacobian _ i

dy^
for all i, j, it too is highly dependant on the differential 
equation system, as well as on h which can be so adjusted to act 
as a stability controller. 'q' is thus of no great significance 
when looking at the method dependant non-essential roots. Hence, as 
fai' a,s the non-essential roots are concerned, the analysis con be 
simplified by setting q = 0 in equation ( 2. I 7) to obtain

(X- 1) [ A 4 + (2Â + 3B + 40 + 5D - 4) ■
2

+ (~6a — 33 + 12c + 5vD T 6) ^  ^
) (2.19)

+ (6A -  3D -  12G + 55D -  4) A  )
+ (-2A  + 3D -  4c b 53 + 1) 0 )
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To optimise the method's stability it is necessary to adjust 
A, 3, C, D such that all non-essential roots lie on the origin, 
V/hence, equation (z.ld) must take the form

(A- 1) = 0 (2.20)
Equate powers in A for i = 0, 1, 2, 5> to uniquely specify 
A, B, C, B. Hence coefficient values for optimum method stability 
are

A = 25/24 , B = 55/72 , C = 5/48 , D = 1/120.

It is now a simple matter to optimise the method’s accuracy, by
choosing Y such that the essential root, A  , agrees with an

6exponential series through terms in q . Thus, to eliminate the 
term in q̂  in equation (2.18), the value Y = 95/288 must be adopted.

nThe error order or degree, 0(h ), is now minimised for a 5th order 
methods This is in keeping with stability constraint established 
by Dahlquist (Ref. 2) section 2,6, where it is proven that a method 
of order k , where k is odd, can never be stable if the degree of 
the error term is greater than k + 2 , (d.B. This is different
from Dahlquist’s definition of degree. He defines it as the largest 
degree of h for which the method holds. If degree is so defined, 
then by his definition for stability, degree is never greater than 
k + 1 for odd k).

Should an even order of k be chosen then, again from lahlquist, 
the degree of error could never be greater than k + 1 . Clearly 
it is advantageous computationally to choose an odd k value of 
method, assuming maximum degree of error is achieved (as indeed it is 
with hordsiecko

3" Operation sequence of the Nordsieck based algorithm
In this section, the basic operational phones of prediction (P), 
function evaluation (h), and correction (c) ore outlined for the 
Nordsieck Algorithm. These operational steps are then related to the 
sot of two coupled first order 3Es

y(t) = v(t) (5.1)
v(t) = (?(t) - c v (t) - k y (t) ) l/m

which constitute the vehicle dynamics problem (Refer to Chap. 17 sect 2)
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Thus predicting the 6 point vector of the PE

ÿ = f(y, t) (5.2)
at the step from those at the step, proceed as
follows

= ^m-l + ^ [ V l  + &m-l

c(0) _

a

m
(0)m
, (0 ) _m
,(0) =m
(0)

h- l  ^ ^m-l ^ h-l]

^m-1 + t

*̂ m-l ^ ^E-1

m m~l

(3.J)

As a consequence of the Pascal triangular form of the coefficients 
of the y, f, a, h ...etc. on the right hand side of (5.5), prediction 
can he accomplished by the very efficient algorithm (Gear I967)

For I ;=: 0 Step 1 until k - 2 do
For J := k - 1 Step - 1 until I + 1 do

a(j - 1) >  a(j - 1) + a(j)

where A(j) is the component of the vector A such that
Â  = f y A_ f a b c d ]V h

- (see Chapter 7, Section 4 for fuller discussion) 
This algorithm requires no multiplication. - This is the P phase.

NoB. The computer storage locations used by y, f, a, b, c, d at the 
th(m-l) step, can immedia.tely be reallocated to store these quan- 

thtitles at the m step. Reversal of integration direction easily
■fchrestores the (m-l) value set if required fox’ start xip or error 

control.

Function Evaluation (h) is the next : hase to be perforn.ed. It is 
achieved by substituting the predicted value ŷ ^̂  in the original 
DF such that

(3.4)
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Correction (c) is the third operation phase. The difference, , 
between the prediction, and the function evaluation, is
calculated to obtainÿj-f(0)

m
The general form is given by

in subsequent
The predicted vector is then corrected in the

41) 4°̂ +95/288. h D^

f(i)m 4°)4') = 4°̂ 25/24 h D^

4') 4°) +35/72 h D^

4') = 4°) +5/48: h Df

4') 4°) + 1/120; h Df

(3.5)

Further 'E' and 'C* operations can then be performed until the 
desired accuracy is obtained.

Extension to two coupled first order DEs (2.11) is easily accom­
plished. Two separate vectors are held in store; a displacement 
vector Y and a velocity vector Y, Prediction for both Y and Y-'N/ f—' I*#
is first obtained, followed by similtaneous function evaluations 
from which the differences

and

D.

D.
m

Vm

y(0) _ f (0)

7 “ - m

)
) (3-6))

are obtained. Thirdly, the Y and Y vectors are corrected using* 
D„ and D.„ respectively.

%

Incremental step length changes can be easily accomplished, A 
change of step length from h to Kh, where K is a scaling factor.
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is implemented by altering the quantities
h, a, bj Cj d

such that they become
Kh, Ka, K^b, K^c, K^d respectively.

Reversal of the integration direction, from for example "t + h" to 't* 
can be achieved by altering quantities of odd power in h, namely

h, a, c
such that they become

“ h, — a, — c

Both step length change and integration direction reversal follow 
automatically from equations (2.2) and (2.5). Both are important 
for error control and implementation of program start up, discussed 
later in this chapter.

4 . The equivalence of Nordsieck and linear multistep methods

The equivalencing of Nordsieck with linear multistep methods was 
demonstrated by Osborne (Ref. 3).

By recursive substitution of (2,12.ii) the relationship

+ h „(M) V ) (4.1)

is obtained, where matrix /

^m+p+1, m(-) " ^m+pfl-i ̂  )

and « I. 9 the unit matrix )
At the (m + s + 1)^^ step, (2.l2.i) becomes )

)
^m+s+1 " ^m+s ^ ^ ^m+s ^ Jm+s ^ ^  ^m+s j

- h ^  ) (4.2)

+ £ V  + y w )  V) j
by use of equation (4.I). )
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Multiply by the scalar quantities

^s+1’ 8 = 0, 1, . , . P, and sum to obtain

p+l p
Z  ^s^m+s “ Z  ^s+l[^m+s ^ ^m+s ^  ^m+s^8=1 8=0 ( ;

+ ( £  Bs+ l î î ' K  + h ( f  E + B ,m @ )) lj.SwU St=U

(4.5)

If

Z  %B+1 M* = 0 (4.4)8=0 G+J-

then the term in vanishes from the equation and (4*3) reduces to 
a linear multistep method.

It should be noted that (4«3) is a linear combination of the 
Nordsieck method. This fact is important when the question of an 
optimum predictor - corrector sequence is considered.

5* Optimal Predictor-Corrector Sequence.
A decision must be reached on an optimal sequence of prediction (p), 
function evaluation (e), and correction (c). Should the predictor - 
corrector step end with a 'C or an 'E* operation? How many 
iterative 'C* operations should there be? In other words, should 
sequence of operation be P(EC) or' PE(CE) and what value of 'I* 
is optimum?

The first analytic attempt at making such decisions was given by Hull and
Creemer (Ref. 4)> where an Adams multistep P(EC)^ was considered. It
was found that stability was the overriding consideration. This is
generally true. Their method of analysing the stability of P(EC)^

I TAdams model holds good for all P(EC) or p(EC) E multistep methods.
Their method considers the 'i+1^^' application, for i « 1, 2, . . ,1, 
of the corrector forumla at the *m̂ '̂ step

(5.1)
with global error, e , included (as before, y, c are column vectors/\,m ^
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and. G(y) is a correction function). The corrector is then considered, 
with the inclusion of local error, d^. On subtraction an error 
equation is obtained. It takes the form

4 ' ^  (5.2)
dy

i thwhere e^ is the gldbal error vector after 'i' iterations at the 'm ’
step, and y(t ) + d c T. < y(t ) + e and y(t_) is the true value.

By recursive substitution of (5,2) for 1=0,1,..I, an expression for
the final error e^^^ after 'I* iterations is obtained, once the m '
effect of the prediction formula

4 ° ^  = 2jm-l . (5.3)
with B a square matrix, is included. Error growth is determined from 
a stability matrix,

4  - n  (i ̂ (5.4)
c dy )

contained within the resultant expression.

(5.4) is the stability matrix, A full derivation and manipulation
to yield an eigen type solution of the roots for the generalised
multistep form can be found in Gear (Ref. 5)*PP* 1$6-142.

Furthermore, Gear (Ref. 5) chapterIX section 2 demonstrated that the
stability of any PECB • . , sequence used in a multistep formula
possesses identical stability characteristics to the same PECE. . ,
sequence used in its multiderivative equivalent or vice versa. This
analysis ignores numerical round off. The equivalence holds provided
the multiderivative vector a^^^ is a linear combination of the

(i)multistep vector y^ f thus

4 ^ ^  “ : 4 ^ ^  (5-5)
where T is a square matrix, dimensions k x k
where y is a *k' step vector.«\,m
On substitution of (5.5) in the multistep formulae a similar 
derivation to that yielding (5.4) gives a stability matrix.

4  “ (5.6)
for the multiderivative sequence.
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This result is general. It proves that the stability of a PECE . . . 
sequence of an Adams - Bashford - Moulton multistep method is iden­
tical to a similar sequence in the Nordsieck multiderivative formula, 
one method being a linear combination of the other. Consequently 
if an optimal sequence for the Adams multistep method can be found,
it is also optimal for the Nordsieck method.

Hall (Ref. 6) demonstrated experimentally that for multistep methods
of order less than 11, the optimum sequence is P(EC)^E with a predic­
tor and corrector of the same order. The 5ih order formula of Nord­
sieck is equivalent to a 5th order Adams method. Consequently the 
optimum PECB . . . sequence for the chosen Nordsieck method is

P  pP(EC) E and not P(EC) , as originally advocated by Nordsieck.

6. Step length flexibility
No automated step length alteration procedure, based on error con­
trol logic is implemented in this program. However efficient change 
of step length properties were essential for two reasons. Namely, 
to permit easy establishment of the higher order unknown quantities 
at start up, and secondly as a necessary condition for the accomplish­
ment of a space domain analysis of the variable velocity road vehicle 
problem.

Since the initial displacement, y , and velocity, v are known, 
start up is achieved by setting all unknown additional quantities,
(a, b, c, d), to zero and time marching an appropriate number of 
steps to allow an initial estimate of these additional quantities 
(for the 5th order Nordsieck method used the required number of steps 
is 4). After the 4th step, the direction of the integration method 
is reversed (as described in section 3) to permit a return to time 
step zero. The initial values of y and v are reassigned, while 
the new self-generated values of a, b, c, d are retained.

The 4 time steps forward followed by the 4 step reversal procedure 
is repeated to achieve an improved estimate of a , b , c , d at 
the initial start off time. The improved estimates of a, b, c, d 
are now good enough for the integration to commence. Pseudo start 
up has been achieved.
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The step length used during start up is a fractional value of that 
used during normal step lengths. keeping the step length at 
start up small it is possible to keep any initial error in the 
additional quantities (a, b, c, d) below the computer round off 
error obtained during noirmal running step length increments. The 
method of arriving at the fractional step length value is left until 
Chapter VIII.

A full explanation for choosing a space-domain approach is dis­
cussed in Chapter IX, However given that it is desirable for the 
numerical integrator of the non-stationary vehicle simulator to be 
done in the space-domain, then the velocity term, dy/dt, in the 
differential equation is broken into the product dy/dx . dx/dt, 
where y is (as always) vertical displacement, x is distance travelled 
along road profile, and t is time.

The road profile velocity, dx/dt, is grouped with the dynamic 
parameters of the differential equation. It is equivalent to 
altering the step length relative to the decâ  coasurvpsof the two 
first order DEs (4.I). Consequently as the road profile velocity 
changes, so also does the effective step length.

7* Monitoring the Integrators convergence.

The local truncation error has a magnitude given by 863/(12x70 h^ y^^^ 
The equivalence with linear multistep methods already being estab­
lished, this is most easily determined by comparing this equivalent 
linear multistep method with the Taylor's Series expansion (described 
in general terms in Chapter V). It should be borne in mind that the 
Adams linear multistep and Nordsieck methods are equivalent in all 
aspects save error, due to computer round off. This aspect will not 
be considered here.

The test advocated by Nordsieck for local error estimation is essen­
tially that described in chapter V section 8.2. In Nordsieck*s case 
error estimation, at predictor stage is carried out on the predicted 
value of *f. Correction stage error estimation is also carried out
on *f but this is done during the evaluation part of the cycle which 
follows correction. Thus from the point of view of passive error
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monitoring, since the method of Chapter V.8.2 is effectively used,
all that is of concern is local error growth between time steps. 
Consequently at every time step the differences _ f(0) for
both y and v are recorded to observe if growth occurs as the m m
system time marches.

The approximate stability test described by Nordsieck is adopted here, 
due to the simplicity of its implementation and its minimal computa­
tional effort.

The stability criterion involves checking the relative magnitude dif­
ference between successive iterations of the responses y, and v.
The tests are

y(^) - y(4) < 1/8 • - y(°)

and v(2) _ y(l) < 1/8 _ v(0)

These relations are easily arrived at by comparing successive itera­
tions of equation (4*5«i)» namely
y^^^ » + Y h D« (for the ith iteration and where as before m m  X
Ï - 95/288), to obtain 

y(2) _ y(l) = Ï q y(l) _ y(0)

where the *q* is as specified in Section 2.
The inequality and the factor 1/8 stem from stability considerations 
(Nordseick Ref. 1 page 30) - A *Y q' product of l/S ensures all non- 
essential roots lie well within unit circle of the complex X-plane.

No automatic step length control logic is used in the program. Both 
tests are used in a passive manner, as checks on the validity of the 
solution. Vindication of their value is borne out in chapter VIII 
where tests on the integrator algorithm are discussed.

The conditions of consistency of order 7 and stability are thus met 
by this implementation of the Nordsieck algorithm. These two con­
ditions (as discussed in chapter V section 7) are necessary and 
sufficient for the solution to converge.
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8. Extension to non-linear DEs
' th*The general form of the N power non-linear first order DE 

is given by

^  a^(y)^ = f(y^, y^"^, , y, t) (8.1)
i=l

where Q is the power of y non-lineari-ty.

In section 3 the operational sequence of this Nordsieck based integ­
rator was described. The extension of this integrator to include 
such non-linear DEs is trivial although subject to qualification.

Equations ( 3 . 3 )  of the predictor (p) remain unchanged. As do equa­
tions (3.3) of the corrector (c). It is the function evaluation stage 
(e) of equation ( 3 * 4 )  which requires slight modification. The non­
linear equivalent of equation (3*4) is given by

= 1  y „ ^ ^ ..... y^, t^)

(8,2)
"i / J

i-1
where m is the increment number, 
and (P) is the correction number.
Equation (8.2) is easily extended to include systems of coupled 
first order DEs.

The method of monitoring convergence as the integrator time marched 
was discussed In section 7 *  Again the extension to non-linear 
systems is trivial.

The error monitoring technique is still applicable provided it is 
assumed (see chapter V section 8.2) that d^f can be assumed reasona-

dt^
bly constant over incremental time step h, where q is the integra­
tor order. Such an assumption is reasonable for small h in cases 
where the function f is continuous. A category into which most 
dynamic systems fall.

The stability monitoring technique also applies in non-linear DEs.
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Effectively, this technique monitors the convergence pattern of the 
solution at the current time instant alone, and is therefore relative­
ly independant of the non-linear variation in the function evaluation 
as time proceeds. This technique is subject to a qualification. It 
is only valid if the prediction (p) is sufficiently accurate (hence 
a 7^^ order formula). This qualification follows from the fact that 
the function evaluation (e ) of a non-linear DE is non unique. Con­
sequently, it is possible to predict the wrong solution. However 
the h i ^  order integrator formula can be reasonably expected to 
eliminate such an eventuality under most circumstances.

9# Conclusion
Prom the discussion on the implementation the following conclusions 
can be drawn,

1) If the coefficients of the method are chosen as 
described by Nordsieck then the stability is optimised.

2) Dahlquist’s stability theorems demonstrate that it is 
computationally advantageous to choose a method where the 
order, k, is odd, if as in idiis case the error is of 
maximum degree,

5) The method is easily extended to include second order 
ordinary differential equations,

4) Gear's efficient predictor algorithm should be included.

5) The equivalence with linear multistep methods demon­
strates that the optimum predict - evaluate - correct 
sequence for methods of order less than eleven is P(EC)^E.

6) Step length and reversal of integration direction 
facilities must be included to overcome start up difficulties 
and problems incurred in the variable velocity road vehicle 
simulator.

7) The error and stability tests of Nordsieck are adopted, 
but only, for passive monitoring of the behaviour of the 
integrator.
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8) The extension of the integrator implimentation 
to include non-linear systems of coupled first order 
DEs is trivial and can he reasonably expected to yield 
valid results unless under the most extreme non-linear 
conditions.
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CHAPTER VIII

TESTING THE DYNAMIC VEHICLE INTEGRATOR

1. Introduction and Objectives
The dynamic vehicle integrator, based on Nordsieck*s integration 
algorithm, is used to model the response of a road vehicle when 
subjected to deterministic vertical road excitation.

The deterministic excitations can be classified into one of two 
categories. The first category involves inputting, to the vehicle 
model, excitations with simple shape functions eg a sinusoid or a 
step. The second category involves the input of random data. For 
brevity the former excitation category will be referred to as the 
deterministic tests, and the latter as statistical tests.

Only deterministic testing is considered in this chapter. Statis­
tical testing is left until tests on the overall road vehicle simul­
ator are implemented.

The deterministic tests on the integrator were designed to ascer­
tain the following objectives.

a) Establish an optimum step length ratio, H(«h(t)/T) for 
the second order DE of the vehicle model.

b) Establish the effectiveness of the integrator in dealing 
with large sudden discontinuities at start up. (a sudden 
large discontinuity is the condition which exists when the 
current input acceleration due to the externally applied 
input excitation is large in comparison to the response 
acceleration of the previous time step).

c) Establish effectiveness of integration in dealing with 
subsequent* large discontinuities without further start ups.

* The term subsequent refers to discontinuities after time t = 0, 
where no further restart ups were implemented.
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d) Establish effectiveness of stability test in monitoring 
the performance of the integrator so that the viability of 
solutions, where no closed form comparisons exist, can in 
future be ascertained.

2. Design of the Deterministic Tests
The deterministic tests were carried out on the simple 2^^ Order DE 

ÿ(t) + 2 f  y(t) y(t) = P(t) (2.1)

where f » damping ratio, and » natural angular frequency.
In all teats the realistic damping ratio for a motor vehicle of 

r = 0.52 was used. The frequency was normalised to unity
(ie - 27T), The system is initially at rest at time t = 0.

An input excitation load, P(t), is applied. There are two design 
load cases of P(t),

a) P(t) « P cos Wt for t 2 0
*■ 0 for t < 0

This input load case exhibits sudden large discontinuity in 
input excitation at time, t - 0, without subsequent discon­
tinuities in input excitation. This load case proves most 
useful in establishing all deterministic test objectives save 
testing subsequent discontinuities.

b) P(t) « P for 0 <t ̂ T where T - period
- 0 elsewhere•

Sudden large discontinuities to input excitation at times t = 0 
and t = T are exhibited by this load case. It is primarily 
designed to test the integrator*s effectiveness in dealing with sub­
sequent large discontinuities, without further restart ups. This 
feature is important especially when random input.excitations are 
encountered, as such subsequent large input discontinuity events will 
almost certainly occur from time to time.
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3 *  Optimum Step length ratio, H
Decision on an optimum step length ratio, H, was arrived at after 
comparing the integrator results with the closed form solution.
The step length ratio, H, is defined as follows,

H - h(t)/T
where h(t) is the incremental step length used by the integrator 
formula, and T is the decay constant of the DE. In the case of 
a second order DE used for the vehicle model, it is sufficient to 
approximate T by the undamped natural period of the dynamic 
system (=» 2 7r/co). In all the tests which follow it was this 
approximation to T which was used.

The absolute error magnitude, E^

where | | - |y^ - y(t^)
, y(tn)

“ displacement recorded by integrator solution, 
and y(t^) - displacement of theoretical solution

for input excitation P cos wt and various H, is plotted against 
time increment number, N, in the graphs (figs. 8.1 - 8.4). The 
periodic nature of the DE*s response causes the absolute error,
I I , &l80 undergo cyclic variation. Consequently, it was
decided to measure || B | at equivalent points every half cycle.
For the purpose of these graphs the peak value of y(t^) was chosen.

To permit a controlled comparison, it was decided to exclude any 
step length ratio reduction at start up, during the variation of 
*H* tests, provided acceptable results are obtained. (See following 
sub section.)

From these empirical tests, a step length ratio, H « 0.01, was con­
sidered a reasonable compromise between efficiency and accuracy. It 
was this value of H which was used in all subsequent road vehicle 
simulation studies.
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4* Effectiveness in dealing with sudden large discontinuities 
at start-up._____________________________________________

Reference to the graphs (figs, 8.1 - 8*4) demonstrates that the 
integrator can produce acceptable results for step length ratio 
H ̂  0.03. Althou^ the start up procedure is implemented no 
initial step length ratio reduction was introduced and correspon­
dingly in these graphs a reduction by at least one order of mag­
nitude was observed in the absolute error magnitude | E^| after 
only several cycles. This was true for all H tested.

The integrator can thus deal with sudden discontinuities at start up 
without initial step length ratio reduction, although implementation 
of this feature is clearly desirable for the minimisation of initial 
error and subsequent error accumulation.

5. Effectiveness in dealing with subsequent large discontinuities.

The ability of the integrator to deal with subsequent large discon­
tinuities without further start ups is demonstrated by the step input 
excitation load case (b). Here the subsequent discontinuity occurs 
at time, t » T. <

It was observed, for all H considered, the absolute error increased 
at t = T by no more than one order of magnitude. In general after 
only several time steps, the error fell in magnitude to its previous 
before discontinuity value.

For the compromise step length ratio, H » 0,01, the absolute error 
one time increment before this subsequent discontinuity is given by

S  \ - 2.0370 X  10"'*'" H-99
while at one time increment after this discontinuity is given by

I'. I 4.7812 X 10"?
■101

- the absolute error had almost completely recovered from this sub­
sequent shock.

The nature of random road excitation, in a truly uncorrelated form,
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makes it very desirable to have an integrator capable of handling 
large subsequent discontinuities in input excitation, without the 
use of arw step length reduction.

6* Effectiveness of stability test for performance monitoring.
Observation of the frequency of failure in the stability test over 
1000 time increments, yielded the results of the graph fig. 8,5.

In this graph, stability failure occurred when
I y^^^ - ^ I y^^^ - y^^^j • This is a relaxation on the test
advocated by Nordsieck. The factor I/8 was dropped from the 
right hand side of the inequality to ensure that only truly unstable 
events were recorded. (Recall from Chapter Vll only passive monitor­
ing is advocated.)

In fig. 8.5, a marked Increase in stability failure frequency is 
observed with increasing step length ratio, H, The graph demon­
strates that a truly unstable H(*0.l) has a marked increase in 
failure frequency of the stability test.

7. Conclusion
Deterministic excitations with simple shape functions were input 
into the dynamic integrator as the first stage of testing the 
method's viability. A step length ratio of H « 0.01 was decided 
upon as being a realistic compromise between accuracy and computa­
tional effort. The ratio was established by measuring the absolute 
error at equivalent time instants every half cycle. The ability of 
the integrator in effectively dealing with large discontinuities at 
start up and at subsequent time instants was demonstrated. At start 
up an initial step length reduction is recommended. Unfortunately 
such reductions are impractical at subsequent time instants in the 
case of random input excitations. However these step length reduct­
ions are not essential for the successful implementation of the integ­
rator, The viability of the stability test was demonstrated by
correlating frequency of stability test failure with absolute error 
information.
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CHAPTER IX

THE ROAD VEHICLE SIMULATOR

!• Introduction
So far the road profile generator and dynamic vehicle integrator 
have heen treated as two quite separate entities. The road profile 
generator is used to obtain discretised realisations of road surface 
excitation at spatially equal increments. The dynamic vehicle 
integrator is essentially orientated to modelling the response of 
the vehicle while using time as the independent variable. This 
chapter is devoted to the marriage of these two model segments. This 
marriage is not without difficulty. These difficulties are discussed 
together with the techniques employed in overcoming them. The 
chapter ends with a brief description of the end product - a road 
vehicle simulator program.

2, Interfacing the integrator and generator
The road profile generator, described in Chapter III outputs a dis­
placement z(x) and a velocity %(x) are generated at discretised 
distance (or spatial) lag increments h(x), h(x) being held constant 
throughout the entire realisation process. The dynamic integrator 
models a time based differential equation idealisation of the dynamic 
system, and takes the form

my(t) + cy(t) + ky(t) = cz(t) + kz(t). (2.1)
Unless a constant traverse velocity is maintained by the road vehicle 
throughout the entire realisation an incompatibility exists between 
the time and spatial based segments of the simulator. For compatib­
ility either a common spatial or time base must be adopted.

2.1. A time based simulator

To enforce a common time base throughout both segments of the simula­
tor,either the generator must, in some way, be transformed to ensure 
discretised profile points are generated at regular time increments,
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or alternatively, the spatially based profile points must be inter­
polated in accordance with the instantaneous vehicle traverse veloc­
ity to ensure constant time increments are input to the integrator.

To transform the generator in such a way so as to ensure constant 
time increments is clearly impossible when the requirements of the 
AR filter are recalled. As the AR filter is obtained from a spatial 
road profile correlation, the realisation points generated at con­
stant increments must also be spatially based. Only under conditions 
of constant traverse velocity can both spatial lag increments h(x) 
and time lag increments h(t) be held constant, since the relation­
ship between them is given by
h(x) = x(t ) h('t) t h (t) ' (2.2)
Consequently, as variable traverse velocity are of prime concern in 
this project this approach must be discounted.

The alternative time based approach makes use of interpolation. 
However as the intention would be to interpolate between random data 
points a least squares technique would have to be employed. As this 
technique is cumbersome in use an alternative was sought.

2,2, A spatially based simulator
The alternative to a time based simulator is to focus attention on 
the dynamic integrator and transform into a spatially based form.

To achieve this transformation, the differentials y(t) and y’(t) of 
equation (2,l) can be expressed in the following manner.

and

y(t)

V(t)

dy(t)
dt ÈLdx

dx
dt

y(x) x(t)

É ( M l ) )  É  (Ac Ac)dt (dt ) dt (dx dt)
d (^) dx + dy 
dt (dx) dt dx

d^x
dt^

d dx (d̂ ) 
dx dt (dx)

dx)2 d^y + d^x dy
.dt) dx dt^ dx

y(x) + X y(x)

(2.3)
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where y(x) » Acdx
X  » dx - 

dt
and ,2

X  = d X  -

dt^
In an identical manner

z (t) » x(t) z(x) (2,4)

Substitute (2,5) and (2,4) in (2,l) to obtain

[mx^] y(x) + [mx + ox] y(x) + kr y(x) » [ox] z(x) + k z(x) (2,5)
Henceforth, the square bracketed parameters of (2,5) shall be 
referred to as the "pseudo dynamic parameters" of the spatially 
based DE,

Equation (2.5) is the spatially based formulation of the DE (2.1). 
The input excitations z(x) and z(x) can be generated at constant 
spatial increments by the profile generator. The dynamic integrator 
can accommodate such input excitation provided the pseudo dynamic 
parameters of (2.5) are continually updated in accordance with the 
vehicle traverse velocity and acceleration.

Updating the pseudo parameters in accordance with x and x, has the
effect of altering the decay constants of the DE (2,5), As far as
the Integrator algorithm is concerned, altering these dynamic para­
meters is equivalent to altering the incremental step length, h (see 
ChapterVII)* The chosen integrator is amenable to such step length 
changes.

The spatial formulation was the technique adopted for the vehicle 
simulator, the dynamic parameters being continually updated as the 
realisation process proceeds. The difficulties which arise are now 
discussed.

5. Singularity points during simulation

Since the pseudo dynamic parameters of the spatial equation (2.5) 
are dependant on traverse velocity x and acceleration x, then
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under certain specific conditions some of these coefficients might 
disappear and alter the order of the DE, Such singularity points 
together with their methods of solution are now discussed.

When both x and x are zero, the problem is reduced to one of 
static equilibrium and is of no further concern in this project.

When X  a 0 and x /  0, equation is reduced to the first (2,5) 
order DE,

HOC y(x) + k y(x) = k z(x) (5,l)
Typically, this situation is encountered initially when a vehicle 
accelerates from rest, or subsequently under variable acceleration/
deceleration conditions when the velocity is momentarily zero.

Recall from chapter VII, the integrator treats a second order DE as 
pair of coupled first order equations, but under the singularity con­
dition a single order DE requires solution. This dramatic transition 
contravenes the conditions for reasonable continuity required by the 
integrator. Special techniques must be employed to take account of 
these odd singularity points. It is impossible to effect a restart 
as restarts require continuity over several points. The singularity 
exists for isolated points only irrespective of the incremental step 
length. Consequently several alternatives were considered.

The simplest alternative is to replace the zero traverse velocity 
with a small positive value, and effectively banish the singularity 
from the problem. Reasonable results can be expected provided the 
inequality

*0 «  > (3.2)

where Xq = replacement positive traverse velocity,

K^in = shortest duration angular wave number present, 
in the road profile ,

= natural angular frequency of the road vehicle,

holds. Under such conditions, the frequency of the excitation 
energy is far removed from the vehicle's resonant frequency and 
should therefore be a reasonable approximation to the singularity 
condition.
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A more rigorous alternative is to implement a Taylor Series 
extrapolation from the point of singularity to the next discrete 
time increment where the second order DE is again in force. 
Instability is no problem as the Taylor extrapolation is used 
only once and not recursively. The higher derivative response 
quantities required by the Taylor extrapolation can be obtained 
from the singularity equation (3*l)*

It was this latter Taylor Series approach which was implemented.

4, Updating the parameters of the spatial based DB
It is assumed that the pattern of traverse acceleration x (t) is 
explicitly defined. From x (t), the spatial distance,
X (t) (= n h (x)), travelled along the road profile can be deter­
mined, The time varying quantities in the spatial DE can thus be 
determined at any spatial increment number, n. Their determination 
is accomplished in the following manner.

The incremental time step is given by

(t) = j" - (t) + [ ' (t) + 2 Xj (t) h (x) (t)
(4.1)

while the traverse velocity is given by

. *n " ^n-1 (*) + K  (*) \  (*) ■. (4-2)

5* Interpolative matching of space and time
In Chapter VIII a step length ratio h (t)/T of 0,01 was empiric­
ally observed to be nearly optimal. This observation was made with 
fixed dynamic parameters in the DE, As discussed in the previous 
sections, conditions of variable traverse velocity cause these para­
meters to continually change. As constant spatial increments h (x) 
are output by the profile generator, then at low traverse velocities 
the step length ratio h (t)/T is in danger of exceeding the 0.01 
bound. To overcome this difficulty the following interpolation
procedure was implemented to establish the need to interpolate
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and the number of interpolated points required,

a) Interpolate if ratio h (t)/T > 0,005* The O.OO5 was chosen 
to ensure the interpolated step length ratio never exceeded 
0.01.

b) Calculate number of interpolated points
™  (t)/0.005T )

where INT (x) is the nearest integer value to x,

c) Calculate interpolated step length

d) Calculate interpolated vertical displacement and velocity
excitations as follows
’'int, k V l  + ("i - ) /»i
for the interpolated point between the n^^ and (n + l)^^ 
generated road profile points. Do likewise for velocity 
z (x)

e) Calculate interpolated road traverse velocity
*int, k (*) - k-1  (*) + k <*)
(Recall road traverse acceleration x (t) is explicitly and 
externally defined. )

This interpolation procedure should only be required when x (t) 
approaches zero. Under such circumstances

h (t) =: V  (2 h (x)/x (t)j (5.1)
and unless traverse acceleration x (t) is large, the step length 
ratio can easily exceed the 0,01 bound. (With uniform acceleration 
this is only applicable when the vehicle starts from rest.)

6, Random response conditions at start up
Irrespective of whether the road vehicle commences the non-stationary 
traverse from rest or from a uniform traverse velocity, both are 
cases of steady state response initial conditions. As the ultimate 
objective is to converge on the mean square response condition,
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there can be little objection to using the root mean square value 
of these steady state initial conditions as replacements for 
random initial conditions.

7. Extension to non linear vehicle problems
In Chapter VII the ability of the dynamic integrator in handling 
time dependant DEs, coupled or otherwise, was demonstrated. The 
extension to the spatially based non linear DE pair will now be 
demons trated.

The non linear time based equivalent of Chapter VII (8,2) is given 
by

“ 1  (y„^ y„^”\  ....y„, t j  j

i«l ^ J )

where m is the step increment number,
p is the correction number,
N is the power of the non linearity in y,

and ^ is the power of the non linearity in y.

In the two coupled first order DEs of the vehicle model, (?,l) 
becomes

\

- 1 f f(v/, v/-’-, .... v̂ ,  ŷ ,

i»l ^ )

(7.2) )
where, additionally in this case, R is the power of the non 
linearity in velocity, v.

To obtain a spatially based formulation, it is simply a matter of
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substituting relations (2.3) and (2.4) into the above equation (7*2) 
The extension to non linear spatially dependant DEs becomes trivial.

8, An overview of the road vehicle simulator program
Having presented the various design aspects of the digital road 
vehicle simulator, a general overview of the flow logistics of the 
simulator program are now presented.

The overall flow logistics of the simulator are shown schematically 
in fig. 9.1. The road profile generator remains unchanged from the 
description given in Chapter III. The start up vehicle response 
conditions simply use the initial steady state expected values des­
cribed in section 6, Evaluation of the current time based incremen­
tal step length, h^(t), is obtained from (4.I). A decision is made, 
based on the value of, h^(t), as to whether interpolation is necessary 
(section 5). The pseudo dynamic parameters of the spatially based 
DE (2,5) are next evaluated ready for use by the integrator module. 
This module makes use of both interpolated and non interpolated 
values in an identical manner, however if interpolation is required 
the module is re-employed times between the (n-l)^^ and n^^
points on the generated road profile.

The flow logistics of the spatial integrator module are shown in 
more detail in fig. 9«2. Most values input to this module refer to 
the new increment, n, however the old response values of y(x), 
y(x) and y(x) at increment (n-l) are also input. A check for the 
occurrence of the singularity condition (see section 5) in the 
spatial DE is implemented. The occurrence of this singularity 
activates a single step Taylor’s Series extrapolation followed by 
the integrator start up procedure. Otherwise an ordinary integrator 
step is implemented. The implementation of the integrator step and 
start up procedures have already been described in Chapter VII, 
sections 3 and 6.

9. Conclusion
Time dependant second order DEs of the vehicle model can be reformul­
ated as spatially dependant DEs with "pseudo dynamic parameters".
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These parameters are dependant on the instantaneous traverse 
velocity and acceleration. Formulating the DE on a spatial basis 
ensures corapatability with the road profile generator, which gener­
ates road profile points at constant spatial increments. This 
spatial approach is not without difficulty, tests being required 
for singularity points and for the decision of interpolating between 
generated profile points. It is recommended that the random res­
ponse initial conditions be replaced by the steady state expected 
values.

The ease with which this spatially based road vehicle simulator 
is extended to include non linear suspension configurations is 
demonstrated.

The various design considerations can be assembled to form the 
road vehicle simulator program, the flow logistics of which are 
explained in this chapter.
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CHAPTER X

THE ROAD VEHICLE SIMULATOR IN USE

1. Introduct ion
The objectives of this chapter are twofold. Firstly the ability

là c-oasMei'eci..of the road vehicle simulator in dealing with random excitation^ «
The other concerns the establishing of new non-stationary results.

The simulator comprises of two basic modules, a road profile gener­
ator and a dynamic vehicle integrator. Both modules have already 
been tested separately (Chapter III and Chapter VIII respectively). 
Combining the modules into a complete vehicle simulator requires 
testing of a statistical nature. For this purpose both stationary 
(Stat) and non-stationary (N-Stat) tests are considered separately.

The first phase of statistical testing concerned the Stat (or con­
stant traverse velocity) case. Such testing was included to ensure 
the complete simulator could adequately handle random excitation.
The road profile generators' statistical simulation capabilities had 
already been tested and consequently effort was concentrated on the 
dynamic simulator. As both excitation and response spectra can be 
obtained from the simulation, it is a straight forward matter to 
check the results using classical random vibration theory.

Phase two of statistical testing concerned the variable traverse 
velocity (N-Stat) case. It is the problem of ultimate concern to 
this project. Undertaking tests on N-Stat random processes is much 
more difficult. No closed form solutions exist for the purpose of 
vindication. Reliance must be placed on comparisons with other 
numerical evaluations of N-Stat characteristics. (Ref. 1 and 2 - 
Both solutions were established by numerically evaluating the dis­
placement response correlation integrals).

The approach adopted in this project concerns the statistical 
assimilation on non-stationary response realisations, and conse­
quently no deterministic answer can be expected. The inapplicab­
ility of the ergodicity principle serves to worsen this problem.
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Instead, the technique of sample averaging at single instants is 
applied to a large sample of independant realisations.

As a natural by-product, this approach yields additional information 
as to the velocity and acceleration response characteristics of the 
vehicle. No alternative solutions exist for comparison. However 
by the nature of the technique applied, it is sufficient to verify 
the displacement characteristics to ensure viable derivative responses.

Information on the probability distribution of the responses is also 
available. Once again this information is not available by the 
other approach.

Complications arising from this method of sample averaging are dis­
cussed, including problems associated with sample size and statisti­
cal scatter.

The chapter closes with a short discussion on the usefulness of the 
N-Stat information obtained and suggests avenues worthy of more 
detailed examination.

2. Stationary Random Testing
Stationary tests were introduced to vet the dynamic simulator's 
ability to handle random type excitation from the profile generator. 
To this end it was sufficient to compare the simulation response 
spectra with classical vibration theory.

The road profile is a stationary random process with respect to 
traverse distance (%). The stationarity or non-stationarity with 
respect to time (t) of the vehicle's input excitation is dependant on 
the vehicle's traverse velocity (x) profile. At any constant x, 
this vertical input excitation is a stationary random process. This 
fact is easily demonstrated as follows.

The auto-correlation function of the road profile vertical
displacement z(x) as a function of traverse distance x is defined 
by

z(= + L))> (2.1)
where L is the spatial lag. ,



-198-

The corresponding spatial power spectral density, as a
function of angular wave number, K , is given by

^z(x)(^>=^r az(x)(l) exp (- i KL) dL (2.2)

where by definition K «, l/A , X  is the spatial wave length, 
and i is the imaginary operator.

In contrast, the road vehicle's response is a function of time based 
angular frequency, tO . At constant traverse velocity, x, the 
relationship between traverse distance, x, and time, t, is simply

X - X t (2.5)

It follows that the relation between time lag, T, and spatial lag, L, 
is simply

L - X T )
) (2.4)and dL » X d T )

The relationship between CO and x is given by

X - (2.5)
It follows therefore that

ÛJ - X K (2.6)
Combining formulae (2.1) through (2.6) yields, at constant x

^z(x)(^) "àri <(»(*)' z(t + T))> exp(-i «  t) x  dl 

Gz(x)C^) “ ^ ®z(t)^“ ) (2.7)

Equation (2.7) demonstrates the simple relationship which exists at
constant x, between spatial and frequency spectra.

Making use of the classic relation between input, ), and
response ^y(t)( ) spectra

j

ie. Sy(^)((o) - I <3 (lb) I 2 S;(t)(w) (2.8)
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where CY (W ) is the receptance.

For a one degree of freedom system,

| a ( w ) | 2  . U) /  + 4(r W

- u  4  ( f W  oij

- usual notation applies.

yields the relation

(2.9)

It is equation (2.9) which is used to verify the validity of the 
stationary simulations.

Three correlations were tested; Virchis, Exp, and Mod Exp (see chap­
ter IV for their definition). Pig. 10.1 shows typical results of 
plotting the spectral ratio x against wave
number ratio K/K^ where is the lowest recorded wave number.
Ideally this spectral ratio should adhere to |(x((d)j^^ - also
plotted in Fig 10.1. The plotted example is of the Exp correlation.

.-Iwith h(x) « 0.5» ^ = 22„ ^ and B «■0.12841V spectral ratios1.p.s., I '
for a single realisation and over an average of 6 independent realis­
ations are shown.

As with Exp correlation of Pig. 10.1, good results were achieved with 
the other above mentioned correlations.

All spectral results were obtained using the technique of Fast Fourier 
Transform (P.F.T.). Each realisation record comprised 1024 (ie 2^^) 
data points. To eliminate the effects of transience only the latter 
512 (ie 2^) data points were considered. Consequently, the lowest
recorded angular wave number, is given by

K 1
A 512 h(x)

(2.10)

where h(%) is the incremental spatial increment.
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5* Kon-Stationary Random Testing 

5*1 Introduction
Effectiveness of the simulator in handling stationary random data, 
does not automatically guarantee similar ability in non-stationary 
simulation. Recall non-stationarity is introduced into the simula­
tion hy varying the integrator’s dynamic parameters with changes 
in traverse velocity, i. Consequently further testing is essential.

The concept of sample averaging a series of time realisations is not 
new. Normally the ergodicity principle overcomes the need for such 
a course of action. The practical limitations of sample averaging 
must therefore be learned as the tests proceed.

5.2 The Test Correlations
Effort was concentrated on the following two road profile correla­
tions.

a) The Exponential (Exp) Correlation.
This correlation is expressed as
E(L) = exp(- B |L| ) (5.I)
where B «* 0.1284*
The Exp correlation is the one considered in ref. 2. B is a
dimensional constant which in this case is expressed in feet
(of. Sobczyk/Macvean 1976 where the unit of B is metres).

b) The Modified Exponential (Mod Exp) Correlation.
The definition of this correlation is given by
R(L) - (1 + B (L( ) exp(- B |l | ) (3.2)
where B « 0.2247 - also expressed in feet.

In both cases the spatial lag, L, is given by
Il « n h(x)
where n « 0, 1, ..., 4
and h(x) ■ 1.0 feet.

Initially the vehicle starts from rest (x - O) and accelerates 
uniformly such that x » 0.2g.
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3.3 The sample averaging technique
At this point it is necessary to define what is meant by sample 
averaging.

A specific time lapse, t^, after the commencement of the i^^ real­
isation history, an instantaneous or point value y.(t ) is recorded.

i/ïi ^On another independ^t (i + l) realisation, the value y^^^(t^,) is
recorded. By recording the realised point value y^(t^) across a 
large number of realisations - the sample - it is possible to estab­
lish the average value after elapse instant, t̂ . As it is mean 
square values which are of interest in this study, then let the sam­
ple average (SA) mean square (MS) value (SAMS) of the quantity
y(t ) be defined as follows.^ -

SAMS (y(t̂ )) " i (&) (5.3)
^  i-1

where N is the total number of realisations in the sample.

The SAMS values are kept for all recorded time instants, t̂ .

3.4 The èample Size Tested
At the outset it was impossible to predetermine the sample size 
which would reveal meaningfully accurate statistical results. 
Irrespective of the probability distribution under consideration, 
confidence level is normally inversely proportional to N. At this 
stage with this particular non-stationaiy problem it‘is very diffic­
ult to be more specific.

Constraints were placed on the amount of sample data which could be 
stored for subsequent interpretation. Initially, it was also desir­
able to keep the realisation data in an unprocessed form. Use of a 
data condensation technique could cause the loss of information 
which on.hind-sight might prove meaningful.

Each realisation comprised of 1025 sampled data points. At each one, 
the values of inputs z(%), z(x) and responses y(x), y(x), y(x) 
require storage. For 50 independent realisations, then the required

/
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computer storage is in excess of 0.25 x 10^ words (J megabyte). 
Computer restrictions dictated a compromise. The somewhat arbit­
rary compromise decision is described below.

Five adjacent data points at 20 point intervals were saved on every
realisation, A 20 point interval was considered reasonable bearing

’t/hiin mind an order in the AR filter of 4 and a 5 order integrator 
formula. The adjacent points were stored to empirically monitor 
the effects on sample convergence by smearing the mean square 
results over 5 values, (in fact the notion of smearing proved 
totally fruitless and will therefore not be discussed further. )

The curtailment of data as described enabled a five fold reduction 
to be made.

3.5 Statistical characteristics of the sampled input
Both input displacement and velocity excitations are stationary ran­
dom processes with respect to space. SAMS input data is sampled at 
fixed spj 
sampled.
fixed spatial increments. To achieve this, every 25^^ data point is

In Fig. 10.2 and 10.3» the SAMS displacement inputs for both correla­
tions are shown plotted against traverse velocity, i. Similar plots 
are shown in Fig. 10.4 and 10.5 of the SAMS velocities. It is worth 
emphasising that input velocities (ie displacement gradients) are 
measured with respect to the space domain. If these quantities were 
measured with respect to time, their SAMS values would increase 
with X .  All plots (Fig. 10.2 - 10.5) have been normalised by
dividing by the "averaged mean" input value; displacement by "averaged 
mean" displacement, and velocity by velocity, (in future the term 
"averaged MS" value should be interpreted as the mean square value 
averaged throughout each entire realisation record, and across all 
50 members of the realisation sample. This concept is only 
applicable to stationary phenomena ie spatial input excitations.)
In each of the plots considerable scatter is observed about the 
"averaged MS" value line of unity. The ratios, velocity/displace- 
ment of "averaged MS" input values for both correlations are shown 
in Table 10.1.
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Also note from Fig, 10.2 - 10.5, the SAMS value can deviate by as 
much as 40?̂  from the "averaged MS" value.

3*6 Determination of equivalent stationary MS response integrals
Pre^-iminary to estimating the N Stat MS response characteristics, 
the Stat counterparts should be evaluated for varying traverse 
velocity, x. The Stat case will act as datum.

Recall from (2.7) the time based input spectrum can be expressed in 
terms of the spatial road profile spectrum ^^(x)^^^ and x, where 
^z(x)(^) given by (2.2)

First, evaluate S^^^^(K).

For the Exp Correlation,

Gip(- B B) exp(- iK L) dL
oo

= -R« fexpf- (B + IK) lT/ttCb + iK)|
' L . 0

= B / ir(B^ + K^)

B x " ' / ( ( i B ) 2 ( 3. 4)  

since K « U> /±

For the Mod Exp Correlation 
00:

S^(^)(k ) - J, J (1 + B L) exp(- B L) exp (-iK L) dL
2.7T

= — RiLe exp (~ (b + iK) l ) /l + B L + _B  )1
ir(B + iK)  ̂ ® ^ Q

Z'S' ŷ 'fr(B̂  + K^) '

2  x'^B^
7T ((±B)^ + )

Using (2.7) in conjunction with

(3.5)
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spectra the stationary MS responses, <^y^^etc., can
be evaluated by means of the relationship

K ( 3 . 6 )

Thus for the Exp Correlation the response MS displacement is given 
by

<^y^> “ i T | | « ( w )
7T 0

Bx d W
(BÎ) + W

( 3 . 7 )

While for the Mod Exp Correlation, the responses are

<y'>- iriHw)"^
7T 0

T iJ « ( 6))
7T 0

< f > ‘ il ||«(w)|
7T 0

2(Bz) dU)
((Bi)^ + (0^)

((Bx)^ + U) 

2(B&))k|4
((Bx)^ + fi)

dU)

(3.8)

( 3 . 9 )

(3.10)

In the case of the Exp Correlation, no derivative response 
(ie <^y^^, and exists. This follows from the fact that the
Exp Correlation is not physically realisable, being non-differen- 
tiable at zero lag.

The evaluation of these even infinite fractional integrals 
(5*7 - 3.10) la tedious and is achieved in the following manner.

Express the integral, Î , in the complex form

d (a)
27T''o (i«). (- IW)

.+ a.n

and ho x2* - 2 + *1 x2* - 4 + ,+ bn - 1



-2 0 5 -

Once coefficients and bj are determined for all j,
can be evaluated as follows:

(- +n n
Dn

where

determinant D.n
^11 ^12
21

‘In

nl

mr a^^ and a - O for s < 0 and s > n.
dJBx — r, s

Determinant, N^, is obtained from by replacing the entries of 
column 1 (dĝ  ̂d^^ • • • ^In^ by (b^ b^ . . - ^n - 1^ respectively 
(ref,' 3).
The evaluation of these stationary MS integrals is shown 
graphically in fig. 10.6 - 10.9* In fig. 10.6 and 10.7 the
results are shown plotted beside their non-stationary counter­
parts.

The mean square response expressions of equations (3.9) and 
(3.10) are differentials with respect to time. The differen­
tial MS responses recorded from the sample averaged results 
are spatially based. To allow a comparison (3.9) and (3.10) 
can be readily transformed to a spatial (x) base by utilising 
equations (2.'3) of Chapter DC.

From the relation
. I ■
the transformation

is obtained, while

i_ < y ^ >
X 2
X ^ y + X y

< r > ^

y =
yields
under stationary conditions where x  m  0 .

In fig. 10,10 and 10,11 these spatially based derivative 
responses are shown plotted beside their non-stationary 
counterparts.
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3.7 Non-stationary MS Response Characteristics
The non-stationary results obtained by sampling the realisa­
tions are now discussed. All results are normalised with 
respect to the "averaged MS” input displacement.

In fig. 10.6 and 10.7 the variation in MS displacement response 
is shown plotted against x, for both Exp and Mod Exp Correla­
tions. The stationary counterparts are included for comparison. 
It is difficult to establish a criterion for quantitative assess­
ment of the N-Stat results, however, the range of scatter 
observed is only marginally greater than that observed with the 
N-Stat input displacement (see Table 10.2), If the true N-Stat 
responses lie above the unity line of "averaged MS" displacement, 
increased scatter must be expected.

It was demonstrated in ref. 2 that for the Exp Correlation 
with typical traverse acceleration of 0.2g, only marginal 
deviation (1 - 2%) below the stationary result was recorded. 
Clearly such minute variation is beyond the resolution of this 
sampling technique unless for extremely large sample sizes.
The N-Stat results of Fig, 10,6 do nothing to contradict their 
conclusion for the Exp Correlation. The Mod Exp displacement 
results of Fig. 10. 7 'also, agree within the bounds of resolution 
with their stationary counterparts. However, in this case no 
alternative solutions exist for comparison.

Derivative MS responses ( < y^> , < y^> ) for the Mod Exp Correl­
ation are shown plotted in Fig. 10.10 and 10.11 respectively.
The results are in reasonable agreement' with their stationary 
counterparts. All tend to zero asymptotically;

In Fig, 10,12 and 10.13, the N-Stat SAMS responses for the 
Exp Correlation are recorded. The plots are similar in form 
to the Mod Exp results. While the Exp Correlation is not 
physically realisable, it does serve to demonstrate that this 
simulation sampling technique can yield satisfactory results, 
despite making crude mathematical approximations to the displace­
ment road profile correlation at the outset of analysis.
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Note; Neither the correlation exponential decay constant, B, nor 
the traverse velocity, x, act as independent variable parameters.
The introduction of the product property Bx, would have reduced 
the number of the physical parameters by one. However, product Bxr̂-.̂v- 
was not introduced due to the very special nature of both correla­
tions. Product Bx would not have been generally applicable to 
other correlations, nor would it be possible to achieve a 'feel* 
for physically realistic parameters.

3*8 Probability Distribution
The probability distributions of the SAMS v^ues at constant arbit­
rary time instants were established. Ideally for a large enough 
sample the input MS distribution should be Chi-Square with one degree 
of freedom. Both input and output instantaneous values from $0 
Independant simulated realisations were compared with this ideal.

In Fig 10.14 and 10.15, the Exp Correlation input and responses MS 
displacements respectively are shown compared with the ideal Chi- 
Square distribution. Pig. 10.16 and 10.17 do likewise for the Mod 
Exp Correlation.

Input and response MS velocity distributions for the Exp Correlation 
are plotted in Pig. 10.18 and 10.19, while Pig. 10.20 and 10.21 show 
the Mod Exp counterparts.

In Table 10.3, the maximum deviation data of all above mentioned MS 
probability distributions from Chi-Square are summarised for sample 
point 1000.

Given the limited sample size, the results compare closely to the 
Chi-Square distribution. It would appear the deviation of response 
MS values, as compared with the input deviation magnitudes are not 
significantly different. Therefore, it must be tentatively concluded 
that the output MS displacement and velocity conform to a Chi-Square 
distribution of degree 1, and hence output displacement and velocity
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are normally distributed. By implication in a linear dynamic system 
the acceleration response must also adhere to a normal form.

Similar Chi-Square deviations were observed at other arbitrary 
instantaneous data points.

It is reasonable to presume that the quality of a Chi-Square distrib­
ution extracted from a 50 realisation point sample is at least as 
good as that obtained from a 50 point ergodic sample along a single 
realisation record. The justification for this hypothesis lies in 
the fact that when applying the ergodicity principle along a single 
time history, none of the sample data points are statistically 
independent.

In order to utilise this hypothesis to further verify the reasonable 
Chi-Square nature of the 50 point MS sample, probability distrib­
utions from independant ergodic samples were assembled from station­
ary input displacement realisations. The sample sizesE tested were 
50,100, 200, 400, and 800 data points, each with the same sampling 
interval. The resultant distribution plots are shown compared with 
the theoretical Chi-Square ideal in fig. 10.22 - 26. The maximum 
deviations are recorded in Table 10.4. On comparing the ergodic re­
sults of 10.4 with the SA counterparts in Table 10.3, the latter 
(SA) distribution exhibits lower Chi-Square deviation than the 
ergodic sample of equivalent size. This result adds further weight 
to the belief that the non-stationary MS responses exhibit a Chi- 
Square distribution.

3*9 Statistical F - Tests
To further vindicate the reasonable nature of the sample averaged 
results an F - test was applied at arbitrarily chosen sample datatv\eùn st|Oôrc
points on both correlations. The 50 ensembled^points were divided 
into two independant samples (S^ and Sg) each of size 25. The 
F - ratio (S^/Sg) was calculated and a search made for values which 
exceeded the 5 and 95 percentile limits. To exceed these limits 
for two independent samples, each of size 25, the F - ratio must 
lie outside the range

0.5051 <  F - ratio <  1.980.
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Ebcample results for sampled data point 125 are shown in Table 10.5- 
Only two F - ratio results (marked *) exceeded these limits - a 
result not beyond the bounds of statistical probability.

3.10 Implications derived from a single non-stationary 
realisation record_____________________________ _

It is not always practicable to sample average ai large number of 
independant realisations in order to establish non-stationary dyna­
mic characteristics. Consequently it is useful to reflect on the 
amount of information which can be obtained from a single time his­
tory simulation. -

Single non-stationary input and response realisations for both the 
Mod Exp and Exp Correlations are shown plotted against time in 
Fig 10.27 and 10*28 respectively. In both cases, the maximum res­
ponses (shown dotted) can be seen peaking marginally above the input 
displacements. Any attempt at establishing the mean square values 
would require the realisations to be averaged over time, and would 
require the application of the ergodicily principle where stationar- 
ity is assumed. Even if time averaging was applied only in a piece- 
wise manner, the quality of the non-stationary information would be 
impaired.

Information of probability distribution is also impossible, unless 
a time averaging technique is applied here also. However the results 
of section 3*8 (Probability Distribution) indicate that the response 
realisations adhere to a normal distribution within statistical 
limits. It is reasonable to assume this to be true of other linear 
systems undergoing similar non-stationary excursions. No such assump­
tions could be applied to non-linear systems where sample averaging 
is essential to yield this information.

Single velocity response realisations v time are shown plotted in 
Fig. 10.29 and 10.50 for the Mod Exp and Exp Correlations respec­
tively. A marked decrease in response amplitude with increasing 
time is evident. The same trend occurs in the acceleration responses, 
Pig, 10.31 and 10.32. With acceleration, this decay is much more 
pronounced. All velocity and acceleration response realisations
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beax strong resemblance to the decay characteristics of the SAMS 
results.

Clearly the next step is to attempt a least squares fit based on 
the MS values over the entire length of a single realisation his­
tory. It is straightforward in hind-sight to assume this curve 
should adopt a quadratic form. (This assumption follows naturally 
from the shape of the sample averaged MS response curves). Unfor­
tunately, attempts at fitting curves to individual realisation 
records proved totally unsatisfactory. This was due solely to the 
extremely ill conditioned nature of the realisation data. However 
a more detailed study of the problems involved in curve fitting is 
i^equired before the concept is dismissed outright. Had it proved 
possible, in the time available, to overcome these numerical pro­
blems, then it would have been necessary to establish a criterion 
for generalising the order of the least squares fit to other corre­
lations and other traverse acceleration profiles. At present all 
that can be attempted on a single record is a crude envelope curve 
covering the peaks in the mean square response. This will certainly 
achieve a worst case estimate.

4* Conclusion L

4.1 Stationary Random Tests

Testing the simulator's capability in handling stationary (constant 
traverse velocity) excitation proved straightforward. Response 
spectra were obtained which agreed well with classical vibration 
theory.

4.2 Non-Stationary Random Tests

(a) Général -

Analysis was concentrated on the Exp and Mod Exp road profile corre­
lations. The non-stationarity was induced by introducing constant 
acceleration into the problem.

The technique of sample averaging was applied in order to assimilate
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the statistical data. At the outset it was difficult to ascertain 
which information could most usefully be retained from each simula­
tion history for subsequent statistical interpretation. As a result 
of constraints on computer storage, a decision was reached to retain 
samples of all generated information. In hind-sight this was not 
the optimum decision. It would have been more beneficial to retain 
only the running total of sample averaged MS information at every 
point and discard the raw data from each realisation record. Infor­
mation on probability distribution should also be retained at regu­
lar traverse velocity Increments, but certainly not at all generated 
data points.

The averaged results of the MS input realisations were used to ascer­
tain the statistical scatter which could be anticipated in the SAMS 
responses. These input samples appeared reasonably stationary, how­
ever any sampled point could vary by as much as 40^ from the "aver­
aged mean" value given a sample of only 50 realisations. This upper 
error bound could reasonably be expected to decrease as the square 
of the sample size.

To act as datum it was necessary to establish how the stationary MS 
responses varied with traverse velocity. Evaluation of these station­
ary response integrals is a tedious business. The time based MS 
response velocity and acceleration exhibit a marked upward trend with 
increasing traverse velocity. Such trends, although surprising at 
first, can be attributed to the fact that input velocity (displacement 
gradient) measured with respect to a time base Increases linearly with 
traverse velocity.

(b) Sample averaged MS Responses -

Given typical vehicle traverse accelerations, existing papers indi­
cate that non-stationary MS displacement responses show only marginal 
deviation (l - 2^) from their stationary equivalents. For practical 
sample sizes such effects lie beyond the resolution of this sample 
averaging (SA) technique; however the SA results do not contradict 
the findings of these already existing studies. It would appear 
that the effect of non-stationarity on MS displacement response is
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marginal for typical road vehicle accelerations.

There are no existing solutions with which to compare the non- 
stationary MS derivative (velocity and acceleration) response 
results obtained in this project. However if the displacement 
results are in agreement with existing solutions, then 
confidence can also be placed in the derivative responses 
afforded by this SA approach. The derivative results are a 
natural by-product of the simulation.

Both non-stationary displacement and velocity MS responses are 
in good agreement with their stationary counterparts. V/hen 
these derivative quantities are expressed in a spatially based 
form they demonstrate a pronounced asymptotic decay with 
increase in traverse velocity. This is due solely to the 
dominating effect of traverse velocity as indicated in 
section 3-6.

The crudeness of the mathematical road description defined by 
the Exp correlation, meant the derivative velocity input 
correlation is not physically realisable. However, the 
similarity of the conclusions obtained from both Exp and Mod 
Exp non-stationary responses simply serve to demonstrate the 
flexibility of the technique in handling very approximate 
road profile descriptions. This occurrence is frequently 
encountered in practice where correlations are often defined 
in a piecewise continuous manner.

(c) Further Statistical Testing -

By sampling response values at consistent arbitrary traverse 
velocities across all realisations in the sample, it was demon­
strated that the response characteristics adhere, within 
statistical limits, to a normal probability distribution. It 
is proposed that this might be generally true of linear 
systems undergoing non-stationary excitation.
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Fur ther vindication of the reasonable statistical nature of the 
results was achieved by the introduction of an F - test.

(d) Inferences from a single realisation record -

Short of assembling a batch of indépendant realisations it is not 
possible to extract information on the probability distribution of 
non-stationary response results. However based on the results of 
the SA information, it would appear reasonable to assume a normal 
probability distribution, provided the dynamic system is linear.

Upon careful scrutiny of the displacement realisation records, the 
response amplitudes appear to peak marginally above their input 
counterparts. No great inference can be achieved from this other 
than displacement response might be marginally greater than input 
excitation. When a single derivative (velocity or acceleration) 
response record is considered decay characteristics strongly simi­
lar to those of the SA results are observed. Based on the strength 
of these observations, attempts were made at a least squares fit on 
a single realisation of displacement, velocity and acceleration.
Unfortunately the data proved too ill conditioned to be viable. At 
present a crude envelope curve covering the peaks of the MS responses 
will certainly give a worst case estimate of non-stationary effects. 
However a more detailed study of methods of curve fitting applicable 
to this type of random data is required, A more detailed investiga­
tion into the generalised criteria for establishing the order of 
the curve fit on other input correlations and to other road traverse 
acceleration profiles would also be required. Both aspects of the 
problem should be adequately addressed before rejecting outright 
this notion of curve fitting.
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Correlation "True mean" input ratio (velocity/displacement)

Exp 
Mod Exp

0.196

0,0469

Table 10.1 "True mean value" magnitude ratio for Exp and 
Mod Exp Correlations.

Correlation
Input Response

Min, Max, Range Min. Max. Range

Exp 
Mod Exp

0,69

0.61

1.42

1,60
0,75

0.99

0.65

0.77

1.58

2.09

0,95

1.52

Table 10,2 Scatter range of sampled MS displacement values.

Correlation

Maximum Divergence

Input Response

Displacement Velocity Displacement Velocity

Exp 
Mod Exp

0.18

0.25
..

0.16

0,22

0,20
0,22

0.25

0.13

Table 10,5 Maximum divergence of MS probability distribution 
from theoretical Chi-Square with one degree of 
freedom.
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Ergodic Sample 
Size 50 100 200 400 800

Maximum
Divergence 0.54 0.23 0.22 0.18 0.14

Table 10.4 Maximum divergence of ergodic MS sample from
theoretical Chi-Square with one degree of freedom.

Correla­
tion

Input Response

Displace­
ment Velocity Displace­

ment Velocity Accelera­
tion

«1 1,286 1.577 1.021 4.189 6.424

Exp ^2 1,608 1.428 1.565 4.790 6,885

F 0.799 0.964 0.653 0.875 0,955

1,189 5.055 I.5I8 2.255 4.5O8

Mod Exp ^2 1.189 5.217 1,872 4.980 2.107

F 1.000 1.565 0.811 0.455* 2,140*

Table 10,5 Sample F - ratio tests for data point 125 - both 
F - fractions, S^, and S^, comprise a sample 
size of 25 values.
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CHAPTER XI

A COMPARATIVE APPRAISAL OP SAMPLE AVERAGING

1. Introduction

The ultimate objective of this project has been to determine the 
viability of averaging a sample of simulated digital computer 
realisations as a general means of solving the non-stationary 
vehicle problem. It is therefore necessary to reflect and make a 
comparative assessment of the strengths, weaknesses and possible 
potential of the sample averaging approach. The idealised lumped 
parameter vehicle suspension model was the one used. Random roaR 
surface.excitations conforming to any road profile correlation can 
be used.

Clearly such an appraisal is useless if it does not compare the 
results with alternative approaches. Comparisons with the alterna­
tive response convolution integral method are made. The basis of 
both approaches are summarised in Chapter I, Section 5*

2, A lumped parameter digital computer simulation

The characteristics of vehicle dynamics are such as to enable con­
ceptual acceptance of the lumped parameter model idealisation to be 
easily accomplished. The relative stiffness and mass ratios of the 
car body compared with that of the suspension system allows for the 
assumption that all inertia effects can be attributed to the car body 
while stiffness and damping effects stem solely from the suspension 
system.

Road vehicles ride on several suspension units, however only the sim­
ulation of a single suspension unit has been undertaken, A great 
deal of valuable information can be obtained from considering a 
single unit, besides which, the majority of fundamental problems,
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pertinent to establishing the viability of sample averaging, are 
present in this simple model. It is also true that the only non- 
stationary solutions available for comparison consider only a one 
degree model.

For simulation purposes, use of a computer is easily the most viable 
approach. Model tests lack flexibility when variations in physical 
model are required. Such models are also much less cost effective.
A digital (as opposed to analogue) computer was chosen due to its 
much greater accuracy and problem independancy properties, together 
with its universal availability.

Once a decision in favour of digital simulation was made, then it 
was essential to consider the numerical techniques required. There 
is no alternative to finite difference formulae for digitally approx­
imating differential equation models.

3# Digital simulation of the road profile

It is normally the vertical component of road surface displacement 
which is important as a source of vehicle excitation. Suspension 
geometry can normally be regarded as rigid with regard to all lateral 
movement, besides which, lateral input excitation contra to the line 
of vehicle traverse, would either be absorbed in rotational energy 
to the wheel or damped out by the tyre itself.

There are strong indications that displacement profiles along any 
particular road are spatially stationary and that probability distri­
butions are normal (as indeed is the derivative profile surface 
gradient). This spatial stationary quality allows for roads to be 
simply described by a spatial lag auto-correlation function, R(l ), or 
by the four1er equivalent power spectral density, S(k ). The probab­
ility distribution is assumed normal.

Interest is normally centred on vehicle response, given a road profile 
described in this concise auto-correlation form. As this sample 
averaging technique requires a batch of Independant road realisations, 
it is necessary to generate road profiles with appropriate charac-
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teristics. As a large statistically independant sample is required, 
then the only means capable of achieving this is to use linear stoc­
hastic difference equations (LSDE) as profile generators. The number 
of potential independant realisations is very large indeed, being a 
function of the word length of the digital computer and of the number 
of primitive roots available for use in the pseudo random number 
generator, ENG. Normality of distribution can readily be achieved by 
any one of many Gaussian digital filters.

4* Emphasis on numerical methods

4.1 General

In the sample averaging approach to this non-stationary' problem, 
heavy emphasis has been placed on numerical considerations. For this 
there can be no apology. Careful design of these factors is crucial 
for ensuring the method's flexibility in handling all facets of the 
non-stationary vehicle problem. It enables the road profile gener­
ator to mimic all types of road correlation, whether they are of a 
physically realistic piecewise continuous type, or of an elegant 
mathematical form. Careful numerical design also allows the dynamic 
integrator module to simulate all types of suspension configuration 
whether linear or not. Upon implementation this vehicle simulator 
can be applied with equal ease to new road profile/vehicle suspension 
configurations. This flexibility and ease of use is of major advan­
tage when strict timescales require to be met.

The alternative approach, the response convolution integral method, 
uses convoluted double response integrals. Their evaluation also 
relies heavily on numerical methods. However the solution character­
istics are such that it is necessary to first of all simplify the 
integral function and then reassess the validity of the numerical 
approach to the new response integral. Evaluation requires special­
ist knowledge which may not always be available.

4.2 Road profile generator

LSDEs were used on the strength,of their ability to generate a large
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batch of indépendant road profile realisations. However in a general 
assessment of LSDE techniques, the exacting constraints of numerical 
stability and invertibility must be carefully considered prior to 
making a decision. Autoregressive (AR) filters were chosen because 
of their ability to match the properties required by the road profile 
generator.

AR filters can readily mimic high lag value profile correlations 
without the need to resort to excessively high filter orders. The 
filter coefficients are readily calculable given the road profile 
displacement correlation. Although no assurances of numerically 
stable filter coefficients can be given, stability is easily checked. 
The checking procedure is readily automated on a computer. It was 
empirically observed that of all the AR filter coefficients deter­
mined, for a selection of profile correlations, instability was 
never encountered.

While AR filter generators possess poor phase lag properties, this 
feature is normally regarded as superfluous in the description of a 
road profile, (in the description of road profiles such information 
is generally not available.)

AR filters generate discretised profile realisation values at con­
stant spatial increments. In short they exhibit spatially stationary 
characteristics. It is the intention to simulate the non-stationary 
response characteristics induced by variable traverse velocity. The 
non-stationarity can, however, be introduced into the simulation via 
the dynamic integrator (see subsection 4*5)*

The criterion for optimising the filter order was not considered. 
Other constraints dictate what this order should be. The nature of 
the displacement correlation curve, whether mathematically elegant 
or of a piecewise continuous form, influences the decision, as does 
the incremental step length, h(x), which is optimised for the range 
of traverse velocities under consideration.

Usually AR filters assume the probability distribution properties 
of the input signal. Normal distributions can readily be achieved 
by the introduction of a Gaussian filter. This filtering should be
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undertaken immediately following the RNG segment, which generates 
white noise random data, and prior to processing in the AR filter, 
Several Gaussian filters were considered, A Polar filter was 
selected on the basis of its superior numerical properties. Em­
pirical tests carried out on the road profile generator output 
(ie after AR filtering) proved the results to possess good normal 
distribution properties.

4.3 Dynamic vehicle integrator

The lumped parameter approach enabled the dynamic system to be ideal­
ised mathematically by a set of second order ordinary differential 
equations (dEs ). Thus restricted to solving these initial value DE 
problems on a digital computer, there was no recourse but to apply 
finite difference methods.

It is a straightforward matter to reduce a set of N second order 
DEs to an equivalent first order DE system comprising of^ 2N simil- 
taneous equations. A decision was made to pursue the first order 
approach, primarily because of the superior properties in handling 
round off error. The approach also automatically supplies infor­
mation on velocity responses without the need to resort to numerical 
differentiation. Velocity response is very important in mechanical 
design.

Careful consideration of the numerical factors must be entertained 
if the desired flexibility of application is to be incorporated into 
the vehicle integrator. Error build-up and limits, stability, con­
vergence, consistency and arithmetic effort must all be considered. 
The majority of integrator method types could be rejected outright. 
This included a method frequently favoured in linear structural dy­
namics, based on recursive application of the convolution integral, 
because of the inability to handle non-linear suspension systems.
Two types of integration method, namely Runge Kutta (RK) and Predic­
tor Corrector (PC) methods were worthy of closer scrutiny.

Methods of the PC type proved to exhibit superior numerical behaviour, 
Several key factors formed the basis of this conclusion. The arith­
metic effort involved in advancing one incremental step, h, is
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is considerably less for the same order of accuracy with PC type 
methods. This operation is applied repeatedly over a large number 
of incremental steps; it is therefore not surprising that this 
criterion is crucial to the choice of method. When both the predic­
tor and corrector formulae are of indentical order, error evaluation 
is a trivial by-product of the integration process. It is only with 
substantial additional arithmetic effort that error information can 
be extorted from RK methods.

Another important consideration when arriving at a decision on method 
type concerns the ability to change step length continually through­
out the simulation process. This property is important when inducing 
non-stationarity into the dynamic simulator. Non-stationarity is 
introduced into the model by repeated updates to the "pseudo dynamic 
parameters", where the traverse velocity may change after every inc­
remental step, h(x). Such variation in these parameters effectively 
changes the decay constants, T, of the dynamic system and hence for 
a constant, h(x), the step length ratio, H(= h(x)/T), has effective­
ly changed. Fortunately special forms of PC type methods exist which 
are viable when step length changes are enacted. Consequently the 
variable step length criterion does not sway the choice against PC 
methods.

The issues of stability and convergence prove to be functions of 
individual integration methods rather than method types. Their be­
haviour is entirely dependant on the coefficients of the method 
formula. This is easily demonstrated by performing the stability 
analysis using the characteristic equation.

Objective comparisons of numerical integration methods are very few 
in number. Only one study (Hull et al*ref. 6,2) has been conducted 
on the relevant class of HE problem. Of the PC type, with variable 
step length facility tested, two methods performed well, namely 
Krogh (ref, 6.7) and Gear (ref. 6.5). Krogh has the added refinement 
of a variable integration order facility. This refinement is totally 
superfluous to requirement and only serves to make the integrator 
more cumbersome in use. Gear's method better fits the bill, although 
here too the automatic step length change feature is not required. 
Consequently a decision was made to implement the basic Nordsieck 
(ref. 6,6) method on which Gear is founded. However the efficient
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predictor algorithm of Gear (ref. 6.11) should be maintained.

At this stage a conclusion in favour of a Nordsieck based integ­
rator algorithm had been reached. Decisions now centred round the 
refinement of the algorithm to best meet the needs of the dynamic
simulator. To do so it was essential to consider the detailed
derivation of the Nordsieck formula together with the criteria for
optimising stability, A description of the proposed operation se­
quence for a Nordsieck based algorithm was required. Implementation 
comprised essentially of three.operations; predict (P) by estimating 
value at next incremental step, evaluate (E) the DE function based 
on the most up to date value estimate, and correct (c) by comparing 
the new estimate of the function with its predecessor. The exten­
sion to coupled first order DEs was also explained. Equivalence of 
Nordsieck’s algorithm with the Adams - Bashford - Moulton linear 
multistep method (Osborne ref, 7*3) is crucial to the argument for 
choice of predict - evaluate - correct sequence. In his book 
(ref, 7*5)» Gear demonstrated that the stability characteristics of 
any PECE .... sequence is identical in both the Nordsieck form or in 
its multistep equivalent, while Hull (ref, 7.6) empirically observed 
that for Adams -Bashford - Moulton linear multistep methods of order 
less than eleven, P(EC) E is in fact the optimum algorithmic se­
quence. It was proposed to implement only a passive form of error 
monitoring, the automatic step length change feature not being 
required.

5. The road vehicle simulator

Detailed design of the final form of the road vehicle simulator was 
considered. It was necessary to ensure all features of both profile 
generator and vehicle integrator were correctly incorporated and 
interfaced.

Most problems stemmed from the difficulties of interfacing a time 
based integrator to a spatially based generator. It was concluded 
that a spatial formulation was the only feasible way of dealing with 
the problems. Consequently non-stationarity was induced into the DEs 
of the integrator via the "pseudo dynamic parameters," The values of
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these parameters change with instantaneous traverse velocity, x. 
Updates to the current incremental step length, h(x) and, x are 
obtained from the traverse acceleration profile and the previous 
value of X. Normally, it can be assumed that the traverse accel­
eration profile is explicitly defined.

Singularity points occur momentarily, in this spatial approach, when 
the traverse velocity, x, falls to zero. This condition must be 
specifically tested for and a special routine, based on a Taylor's 
series expansion incurred for one incremental step only. Afterwards 
the start-up evaluation algorithm must be reinvoked.

The additional problems caused by interpolative matching of space 
and time can also be effectively overcome. A solution is achieved 
by over estimating the number of interpolated profile points used by 
the integrator. This problem is encountered when traverse velocities, 
X, are very low - but non zero.

Ideally, the start-up initial conditions should be random. However 
the objective is to establish the mean square response characteris­
tics, It was proposed therefore to substitute for these random 
conditions the stationary mean square response values at the start­
up traverse velocity. By so doing it is assumed that the vehicle 
response is stationary up until the instant of start- up. The vari­
ation in stationary mean square response with traverse velocity was 
evaluated for the systems tested, while the calculation procedure 
for alternative stationary profile correlation/vehicle suspension 
configurations is outlined.

6, Empirical testing

6,1 General

Empirical tests were required to validate the numerical procedures 
adopted. Three phases of testing were necessary. One part was to 
verify the road profile generator, while the second was to do like­
wise with the dynamic vehicle integrator module. The final phase of 
testing concerned the statistical behaviour of the entire dynamic 
vehicle simulator.
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6.2 Hoad profile generator

Road profiles adhering to a selection of displacement auto-correda­
tions, were generated and tested. Two criteria require to be met in 
order to validate this module. It is essential to ensure generated 
displacement and velocity profiles adhere closely to the theoretical 
correlations. Good agreement was obtained for most correlations. 
Exceptions were observed in the generated derivative correlations 
where the theoretical equivalent was non-continuous at zero lag (ie 
not physically realisable). The second criterion concerns probabili­
ty distribution. Both the generated displacement and velocity prof­
iles adhere closely to the desired theoretical normal condition.

6.5 Dynamic vehicle integrator

The vehicle integrator tests were of a deterministic nature. They 
were designed to vet the salient features of the integrator module 
while providing a. theoretical solution with which to compare the 
simulated results.

For a realistic vehicle configuration, it was observed that a step 
length ratio, H, of 0,01 was approximately optimal.

The result of sudden large discontinuity tests also proved favour­
able, Despite the simulated response being thrown off true it 
quickly recovered, requiring only several incremental time steps.
Such discontinuity tests are important to validate the integrator's 
ability to cope with rapid large fluctuation in vehicle input excita­
tion. Such fluctuations are almost certain to occur occasionally when 
the simulator is excited by random road data. It is sudden large 
discontinuity events which tax the integrator to its limits.

The availability of theoretical comparisons proved invaluable for 
establishing the empirical error monitoring criterion which would pro­
vide best insight into the simulator's performance. This turned out 
to be the failure frequency of the stability test.
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6,4 Hoad vehicle simulator

Upon the marriage.of the two segments of profile generator and 
vehicle simulator, additional statistical testing was required on 
the complete simulator. In this way the solutions to the spatial/ 
time base interface problems could be vetted.

Two phases of testing were necessary. The first concerned stationary 
tests. For this purpose response spectral tests were sufficient 
(probability distribution tests on the road profile generator having 
already been evaluated). The answers were in good agreement with 
those obtained from classical random vibration theory.

Non-stationary tests comprised the other part of statistical valida­
tion. General ability to determine non-stationary response charac­
teristics is after all the ultimate aim of this project. This phase 
of evaluation is much more complex. The various aspects are dealt 
with in their own right later in the chapter.

7, Q,uality of the non-stationary results

7,1 General

Simulations were conducted using generated road data which adhered 
to one of two test correlations, either Exp or Mod Exp correlation. 
In both cases the road vehicle started from rest and was subjected 
to uniform acceleration. The size of the resultant non-stationary 
realisation sample was 5Û* This limited sample size was due primar­
ily to constraints imposed by the computer system.

In non-stationary analysis, the information of interest comprises 
of the sample averaged mean square response values of displacement, 
velocity, and acceleration, together with instantaneous probability 
distributions across the sample of realised records.

Very few non-stationary results are available for comparison 
(Virchis/Robson ref. 1,2, Sobczyk/Macvean ref, 1.3) • Tlie conclus­
ions reached concern only mean squai’e (MS) displacement response.
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Both concur that for typical vehicle traverse acceleration, the 
effects of non-stationarity on mean square displacement response 
are marginal (only a few per cent different from stationary equival­
ent). No results are available concerning MS velocity or accelera­
tion responses. Neither is there any on probability distribution.
The amount of comparison checking which can be attempted is there­
fore very limited. Fortunately however viable displacement responses 
obtained by this simulation technique also mean viable derivative 
responses. The velocity response must be correct to enable correct 
evaluation of displacement (this fact follows automatically from the 
coupled nature of the first order BE pair).

7,2 ■ Sample averaged mean square results

Upon sample averaging the MS input displacement and velocity excita­
tions, considerable scatter about the "averaged mean square" value 
was observed. Surveillance of input scatter permits a better feel 
for the response scatter which can reasonably be expected.

Datum values of stationary MS response displacement, velocity and 
acceleration for varying traverse velocity were evaluated.

The alternative solution non-stationary MS displacement results 
demonstrated that the non-stationary deviation is minimal and clearly 
beyond the resolution of this technique unless for very large sample 
sizes. Consequently if the stationary MS displacement response curves 
are assumed to be the "averaged mean square" response curves, the 
scatter present in the sample averaged results appears fairly evenly 
distributed either side of these curves. The scatter amplitude is 
only marginally greater than observed in the input results. It must 
be concluded, therefore, that the sample average mean square (SAMS) 
displacement responses do not contradict the results obtained by the 
alternative solution method.

No alternative non-stationary MS velocity response results exist.
Here the SAMS responses drop off sharply with increasing traverse 
velocity. The absolute magnitude of statistical scatter is very much 
reduced enabling more accurate bounds on the estimate of "averaged 
MS" velocity response. The difference between these solutions and
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their stationary counterparts are minimal.

Non-stationary MS acceleration results are also in good agreement 
with their stationary counterparts.

The crudeness of the mathematical road description defined by the 
Exp correlation profile meant the derivative velocity profile was 
not physically realisable. However the similarity in the response 
conclusions reached for both the Exp and Mod Exp correlations demon­
strated the flexibility of the sample averaging technique in deal­
ing with very crude idealisations of road profile description. Such 
occurences are often encountered in the real world.

7,5 Probability distribution

The sample averaging technique readily yields information on the prob­
ability distribution of all response quantities, Bata was sampled 
across the sample at arbitrary fixed instants on the realisation 
record. By comparing MS values with a theoretical Chi-Square dis­
tribution of order one, it was easy to verify normality of the 
response distributions.

Further vindication of the reasonable statistical nature of the sam­
ple averaged results was obtained from the implementation of an 
F - test.

8, Suggested sample averaging technique

In hind-sight it is easy to see that the decisions made for retaining 
data was not optimal. The decision had been made to ensure a selec­
tion of all data was retained to enable every possible type of sub­
sequent post-processing interpretation to be accomplished. However 
it would have proven more beneficial to retain only a running total 
of sample averaged MS information at every point and discard the raw 
realisation data of each simulation record. A little care in the 
design of such a sample averaging processor would ensure the elimina­
tion of possible numerical ill-conditioning problems.



-254-

Probability distribution information should also be retained at 
regular traverse velocity increments but certainly not at all 
generated data points.

9, Inferences from a single non-stationary realisation

The similarity between the results of a single realisation record 
and those obtained by sample averaging is very strong. Naturally 
enough this leads to the question concerning the amount of informa­
tion which can be extracted from a single realisation record,

Non-stationary MS displacement responses peak marginally above the 
input displacements. It is tentatively suggested (based on the con­
clusions of alternative solutions and those obtained by sample 
averaging) that this indicates a response at traverse velocities 
greater than zer<^ which is only marginally higher than input dis­
placement, It is difficult to be more precise. In any event the 
non-stationary deviations are marginal,

A strong similarity exists between the sample averaged MS velocity 
response and the results observed from a single realisation record. 
Reasonably accurate inferences as to the non-stationary behaviour can 
be obtained from such a single record, A crude envelope curve fit 
on a single MS response realisation would certainly indicate non- 
stationary behaviour and also yield a worst case estimate of MS 
response.

Once again with acceleration responses, a marked ^milar'ity is ex­
hibited betv/een MS enserabled results and those of a single realisa­
tion, The argument for a crude envelope fit applies here too.

Attempts to produce more accurate inferences from a single realisa­
tion by means of least squares fitting failed to produce meaningful 
results. This was due to the ill-conditioned nature of the random 
realisation data. However this aspect was not exhaustively studied 
and is probably worthy of closer investigation.

As far as probability distribution is concerned no analytic inform­
ation can be extracted from a single realisation. However the
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probability distribution for the sample realisations for the system 
configurations tested, appeared normal. It is likely that normality 
of distribution can be assumed for all linear suspension systems.

10, Inclusion of non-linearity

Extending the integrator to include non-linear effects is a trivial 
matter* As demonstrated in Chap, EC sect, 7» it is merely a matter 
of altering the function evaluation (e ) stage of the integration 
algorithm. This is a simple arithmetic exercise even for pairs of 
coupled first order BEs,

A non-linear capability greatly enhances the flexibility and appeal 
of this simulation approach. There are numerous examples of dynamic 
road vehicles possessing significant non-linear properties. Auto­
mobiles for example normally have dampers which are far from linear. 
Aircraft suspension systems during take-off or landing exhibit physi­
cal characteristics which although not truly non-linear are time or 
traverse distance dependant. This simulation technique is applicable 
to both these non-linear non-stationary problems.

In cases where non-stationarity is not applicable, non-linear problems 
require solving in the time, as opposed to frequency, domain. As 
far as this simulation technique is concerned stationarity is simply 
a sub set of non-stationarity and is therefore readily solvable. 
However in stationary problems the ergodicity principle is appli­
cable, Consequently there is no need to sample average a set of real­
isations - a single realisation will suffice.

11. Extension to multi freedom systems

Extension of the dynamic integrator to handle multi degree of freedom 
(multi freedom) systems is straightforward. Instead of solving for 
a single pair of coupled first order BEs, a solution for a multi 
merabered set of coupled first order BEs is required. The extension 
to multi freedom simply adds to the complexity of the function evalu­
ation (or E step) of the BEs, but as no matrix inversion is required
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there is no essential difference.

To extend the road profile generator to deal with multi freedom 
input excitation is also trivial, provided the restriction is placed 
that all suspension units traverse the same road profile track. 
Differences in input excitation to the various units are then readily 
introduced by incorporating phase lag at the appropriate suspension 
units. Unfortunately extending the generator to handle multi track 
simulations is not nearly so straightforward. Cross correlation 
relationships between tracks would require incorporation into the 
model, A closer look at multivariate linear stochastic difference 
equations would be necessary, ARMA type filters are most likely to 
fulfil this requirement.

12. A comparative assessment of non-stationary solution methods

The objective of this project is to assess the viability of the 
sample averaging (SA) method as a means of solving non-stationary 
vehicle suspension dynamics. To make an effective appraisal it is 
essential to compare this approach with the alternative response con­
volution integral (RCI) method.

12,1 Accuracy of MS response results

Consider first the quality of the MS results made available by both 
approaches. Only displacement MS responses are available from the 
RCI method. It did however produce definitive displacement responses 
(accurate to within the limits of the numerical techniques applied to 
integral evaluation). The SA method produced displacement results 
with significant statistical scatter. The non-stationary deviation, 
for typical vehicle accelerations, is very marginal and well beyond 
the resolution of the SA method unless for very large sample sizes.
It can be argued, with reasonable justification, that failure of 
the SA method to detect non-stationary deviation indicates that non- 
stationary considerations are insignificant (remember the scatter 
results were fairly evenly distributed either side of the stationary 
MS response curves).
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For a uniformly accelerating road vehicle with a linear 
suspension configuration, the effects of non-stationarity 
are marginal and beyond the resolution of the SA technique 
for any practical sample size. This may not be generally 
true for a vehicle experiencing variable traverse acceleration 
or possessing non-linear suspension characteristics. However 
as far as a definitive solution is concerned the RCI method is 
preferable although the SA approach can readily produce 
information of sufficient quality for design purposes. It is 
the ease of obtaining a variety of design parameters (discussed 
below) which proves to be the most salient aspects of the SA 
technique.

12.2 Probability distribution

Only the SA method can yield useful information on the non- 
stationary probability distribution of all response quantities; 
displacement,velocity, and acceleration. Probability distribution 
is important in fatigue analysis.

12,3 Ease of solution

Once the dynamic vehicle simulator has been developed it is a 
relatively easy matter to obtain results using the SA method, 
for any road profile/vehicle suspension configuration. All 
statistical information concerning displacement velocity and 
acceleration responses is readily available. The RCI method 
requires the complex double integral to be first simplified by 
hand and then numerically evaluated. The MS displacement 
response is thus obtained. If an MS velocity response is 
required, the entire process must be repeated and similarly 
for the MS acceleration. Should the road displacement 
correlation be approximate such that no analytic derivative 
correlation exists, the RCI method cannot be used to achieve 
derivative MS response answers. The SA method requires no 
such analytic niceties to achieve reasonable approximate 
solutions.
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12*4 Non Linear capability

Non linearities are easily included in the SA method. The RCI 
method which invokes the convolution integral for the solution of 
the responses relies on the assumption of linear superposition. 
Consequently it is not applicable to non linear suspension con­
figurations •

12.5 Extension to multi freedom systems

With every additional degree of freedom incorporated into the vehicle 
model, the RCI method becomes more and more intractible. (Every 
additional freedom requires an extra set of auto correlation integral 
expressions together with an extra set of cross correlation integral 
expressions). The SA method is readily applicable to multi freedom 
simulations of the single road track excitation type. Extension to 
multitrack simulations requires a more detailed study of multivariate 
LSDEs.

12.6 Summary

To conclude, the RCI method produces highly difinitive answers, while 
the SA method does not. Hov/ever SA technique can readily yield 
information of sufficient quality for design purposes.

use
The SA method is easy to^and capable of being applied to most road 
profile/vehicle suspension configurations. The RCI method is rather 
inflexible. Flexibility and ease of application are major assets 
when used in an industrial environment where strict timescales nor­
mally require to be met.

All statistical information is readily available via the SA method. 
With the RCI method each MS response requires a separate integral 
evaluation. Generally displacement velocity and acceleration 
responses are important to the design engineer. Internal mechanical 
forces in the vehicle are dependant on all three factors.
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Probability distribution information is only available using the SA 
method. This factor is vital in fatigue analysis.

13. A statistical simulator - a third alternative?

The simulation philosophy applied in this SA technique relied on the 
development of two distinct numerical modules; a road profile genera­
tor and a dynamic vehicle integrator. Both modules are discretised 
approximations to the real thing, and are in essence digital filters. 
The question as to whether the processes effected by each module 
could be combined into one module, must be raised. This which in 
effect is a statistical simulator, would take, the form

where "y^" is the displacement response at incremental step number
"i", "rj" is the uncorrelated random input at increment "j", and
coefficients and "bj" are combined functions of the road profile
correlation, the dynamic parameters of the system and the traverse 
velocity profile.

Such an approach might possibly reduce the amount of numerical pro­
cessing. However this must be weighed against the fact that neither 
velocity nor acceleration response information is directly available. 
This information would have to be obtained from another statistical 
filter or through differentiating the output process. No work has 
ever been attempted in this approach and consequently it will be 
considered no further.

14. In conclusion

It is now necessary to stop and take stock of the advantages and 
weaknesses of this sample averaging technique. It is also time to 
reflect on the method's future potential as the result of further 
developments in the simulator and also because of application to new 
areas.
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As discussed in the text of this thesis, the development of the 
numerical techniques to solve the non-stationary problem by sample 
averaging was not without difficulty. In fact it comprised the major 
part of this project. However development is a once only operation 
and when completed a flexible analysis tool is available for ready 
application to most road profile/vehicle suspension configurations.
It is the flexibility and ease of application which comprise two of 
the three major assets of the sample averaging technique. The other 
major advantage of the method stems from the fact that all statis­
tical information is readily available.

This latter fact is important for full appreciation of design problems.
In mechanical systems all internal forces in the vehicle are depen­
dant on either displacement, velocity or acceleration responses. In 
vehicle design this information is relevant to both stress analysis 
and ride behaviour.

The SA approach is not an unqualified success. This fact was evident 
by the amount of statistical scatter present in the sample averaged 
MS displacement responses. The marginal non-stationary effects for 
linear suspension system undergoing uniform acceleration lie be­
yond the resolution of the SA method. This may not be generally 
true. However the information is of sufficient quality for design 
purposes. The alternative RCI method produced definitive MS dis­
placement response results, but as yet that is all it has pro­
duced.

Information on the response probability distributions is well defined 
by this SA method. No such information is available from the RCI 
method. Response probability distributions are of crucial importance 
when estimating fatigue life of vehicle components.

MS response results from a single realisation can yield crude design 
information as to worst case estimates in situations where sample 
averaging is not always practicable. The strong similarity which 
exists between single realisation records and sample averaged MS 
results indicates that the potential information available from a 
single record has not been fully exploited.
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Extension of the road profile generator to include the multitrack 
model should be considered. This would make the simulator applicable 
to all multi degree of freedom suspension configurations.

Other than the automobile industry, the simulator can be applied to 
any non stiff dynamic system subject to similar non stationary be­
haviour. (a  non stiff dynamic system is one in which all the ideal­
ised natural frequencies of the model lie within a narrow frequency 
band. ) Aircraft suspensions during take-off or landing are ideal 
examples.

In conclusion therefore the sample averaging approach to the non- 
stationary vehicle suspension is not an outright winner. Whether or 
not this approach should be adopted depends very much on which 
criteria sway the balance. The RCI method produces highly definitive 
results. The SA method is easy and flexible in application and all 
relevant statistical design parameters are instantly available.
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Ch.aracter Set used in Program Listings
The attached computer listings are non standard and utilise 
a subset of the full Algol 6o character set. While in most 
cases the differences are obvious clarification is required 
for many of the non alpha numeric, characters - such as " > ", 
" etc. A list of the more obscure symbol definitions
follows,
Arithmetic

L i> Assignment (•-=)
Integer division

< Addition ( +  )
— Subtraction ( - )

Multiplication (X)
Power (t )

1 cals

> Equal to ( =  )
\ Greater than ( > )

) Less than ( < )
/\

Not (-•)
A > Not equal to ( ̂  )
\  > Greater or equal to (S)

) > Less or equal to ( ^ )
+ And ( n )
:0R: Or ( u)

‘.chets and Miscellaneous

[ /..  /] Brackets around array identifiers

[-------] Brackets around procedure parameters
Brackets around a write text format

£ Separates array bounds (;)eg ARRAY A



Progrsn ARFILT
PURPOSE;
This program is used to determine the coefficients of 
an autoregressive filter with prescribed autocorrelation 
characteristics, A discretised description of the 
(Correlation profile is input at regular lag increments, 
up to and including the highest lag value of Interest.
In the process of establishing the filter coefficients 
the necessary tests, are undertaken to ensure that the 
input correlation is positive definite and that the recursive 
autoregressive filter obtained is numerically stable.
(For a fuller description of the program refer to Ph.D.
Thesis Chapter III section 5* The flow logistics are 
shown schematically on the attached figure 3.4).



INPUT 
DISCRETISED 
CORRELATION 
POINTS, R^L)

I TEST FOR
POSITIVE

I DEFINITENESS

Vf

FAIL
STOP

SUCCEED

REDUCE 
NUMBER OF LAG 

INCREMEIvTS 
IN CORRELATION 
R (L) BY 1

IF UlvSTABLE
 ------

SOLVE
Y.’,/.RELATIONS
TO DETERMINEaj WEIGHTING
COEFFICIENTS

PERFORM 
BILINEAR 

TRANSFORMATION 
ON THE a; 

COEFFICIENTS

V
a p p l y

ROUTH STABILITY 
TEST TO 

TRANSFORMED 
ai

IF STABL

OUTPUT \
AUTOREGRESSIVE \ 
FILTER 1
COEFFICIENTS J

FIG 3,4 Prograra flow logistics of the AR Filter coefficient 
dete rmination procedure,’
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ARFiLT - PrograiTL Input
FLTORD (integer)

Defines- the order of the autoregressive 
(AR) filter coefficients,

NOFILT (Integer)
Defines the number of AR filters. For 
the monovariate case this should, he 
assigned the value "1",

RDEL [l : NOFILT „lj NOFILT ,0 ; FLTORD] (Array)
Defines the auto and cross correlation 
vectors from lag increment 
0 to FLTORD.
These vectors are input in the following 
manner,

RDEL [1 „l,l] RDEL[1,2„I] RDEL [l,),l] .... [l, NOFILT, l]
RDEL [2, 2, l] RDEL [2,3,l] . . . .. [2, NOFILT, I]

RDEL [NOFILT 30FILT.I]
And this is repeated for I = 0 , 1 „ . . FLTORD 
(The program will utilise the antisymmetry 
properties to fully define remaining auto 
and cross correlations.)
In the monovariate case, RDEL effectively 
reduces to a one dimensional array.
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Program. DSYS2
PURPOSE;
This program is used to simulate response realisations 
of a vehicle traversing a road profile with variable 
velocity.
The program firstly generates discretised random road 
data at regular spatial lag increments in accordance 
with prescribed correlation characteristics and a Gairssran 
prrobability distribution. Both displacement and gradient 
random data points are produced at every realised point 
on the record. These values are then fed into a dynamic 
vehicle simulator which models in the space domain the 
behavioural response of the vehicle. Response displace­
ment „ together with the first and second spatial derivatives 
are output. The entire process of road generation and 
response simulation is repeated on a point by point basis 
throughout the entire simulated realisation.
The overall flow logistics of the progrant are shown 
scheimatically on Fig 9.1% while the breakdown of the 
segments concerned with road profile generation and 
dynamic vehicle integration are shown in Fig, 3*1 and 
Fig. 9.2 respectively.
For a more detailed description of the mode of operation 
of the program, refer to Ph.D. thesis Chapter IX Section 3 
and Chapter III Section 2,
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FIG 9,1 Program flow logistics of Dynamic Vehicle Simulator
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ẑn - q

FIG 3*1 Program flow logistics of the Road Profile Generator,



22

BEGIN 
STEP i

NONSINGULARSINGULAR

START

\/ NOT
THE
START

OUTPUT- REPEAT 
FOR STEP

CHECK ̂  
FOR 

START OF 
V RECORD ,

^ / C H E C K X  
^  FOR 
SINGULARITY 
X .  POINT .

IMPLEMENT 
SINGLE STEP 

TAYLORS SERIES 
EXTRAPOLATION

PROCEDURE
START-UP

INTEGRATE 
1 INCREMENTAL 
STEP LENGTH,

FIG 9,'2 Program flow logistics of the spatially based Dynamic 
Vehicle Integrator,



 ̂ -I, V
tt t il

\ i,, t s'" I ' 1
'' v r /  ' ,

i'
»\r ' \\ '

%r" , ,' i,‘

(') f-i Q (1 O Q  ̂) r-\ r-s n n '■'>
23

I V

' i

m sO N CO o N tr l/l •0 cO oCl CD a o o o o Q o a N
n O o CD a o Cl O o o o a o o O D o o a o o Q o a O Oo a CD O o o o a o a o o Q G a P o CD a o o D o Q O Oo o O O o o CD a o o o o D Q a O o a o o o O D O O O Oo a O O o o D o o o a D O D a a o D o a o o o O O O oCl C] C» o O o o o a a a D o a o o o a o a o O D O on o '•> o O o CD o a o a a o o o o o o a a O O O o

tvCD(>D-<tMnTin*0 ïvirviruro ri f'I «*1 ri M f*1 n M T
a a o o o o o a o o  
o o o a o o Q o o o
O O O O O O O Q O O  O Q O o a a a o a a  
a  Cl  o  Q  a  a  o  a  a  a
a  o  n  a  o  o  o  n  o  o

l/l

0- o  -« i s '1  q- l/l

Q  o  o  o  
a  □  a  o  
o  a  o  o

r  r  ï -  T  3-
o  o  o  o  o
o  o  a  o  a
o  n  a  a  a
a  o  a  o  D
o  a  a  o  o
CT o  o  o  o

‘C r ^ a 3 t r O “*<Nn3‘ i/iTTTTixiini/iininin
o o n o o a  o  o  o  o£3 13 000000 0 00000000(30 0 0(3000 0 000 0 
o  o  D  o  o  o  o  D  o  o
D  ( 3 o  o  o  o  c  n  o  o

o  o  o  o z oo IL Ü1

es
L/)>.VG
p

X  N  N CD a H

crcd(i)
h*OM X

a

1--O o::d u UN w
a '/« le

?-! U. a D U ,J 3
k a fK X o N o o z X (t
o le O tu l / l o Q

j: u i* \ü a; n: Q U1 N y» 11.
H n . {K A m A A CC A A
UJ U> z kb ta A A *a Ui A «a wb O %a UJ 2 luN in u. H «a •a o z (Ü la (K K z la Z u

O UJ lA e Û o lA ttr A V W U Z A A t-
lu .J uJ z « O u vD u U. lA vj J z z Z zo a: Uu a. CL O o O Q.o o o ü H z o Z H Z u Ui D o Cl cr% z J z lA X r O H r

H- n iL n u <O V U U ' s O S t - C L  KQUlL^-PDrlU. » *:ct:o^<nw*c3>-

O o «rC •« .ü Cl

d û. ?* 01 <

3 - 4) K  te  0  C' Nmd-ifi4)McoChO'-'Nn3i/i<;Ma)OC';-^Nn3Ln'AM(CO' -̂4 <rvj rs<N N N N N «N N n 11 Cl ri fn ri ri m n M o *-» N m 3 Lfl <} D3- 3 T T T T T T T T

("1 m n O -n m



' s ' , >

n o n o O o  o  n
2 4

f N m (h a N n d“ o h- O' o in o 0 a
in lA 0 *0 •0 o -0 'Ù sO N S fs |s fs r% r-* <0 œ '0 co 00 co lîj
CJ a O o Q a o o o o o o Ci o o O a o o o O o o o n Cl o o p CJ a o Q o O

O CJ a CJ o O o o o o o o a o o o O o a o o O o a a a o Cl o o □ a D a a o O a
D o o a a a D o o a o o a o o Q o o O o o O o a o o o o o o o o p o a o o Q
n o o o o o o a o o o a o o O a o o o o O o o o o o o Q o o o o o o a a o
CD a a CJ à c» o a o o o û ü o o o D o o a o D o o Q o a o o o a o o a
n Q o o a o o o o o o D o O o n o o n o o o o a o n

o yi 4) Cl
0* (K o "J p l:j CJ Cl r>
o a o
o a CJ o o o o o o O a n o o a
o û a a Cl p o o a o o n o o o o
CJ o o a a o o o a G o o a o a o
a p a a o CJ o Cl a O o a o a a D

o p o o o n o o p

». _j z  n  1

*t l/l z  I
o  >  z  M  a:

o M
ir. \r\

y. _J <  UJ o
_i t- Z t  te _J o
-i o  z  u  O  m  
•t U J U O « ü J » X L J  O et uw ? k- w %*-• *C >- K -t 2 (K

ri (T
e» CJ u i o
U i X X  
^ - uJ 1 -  IJ  Z

ü. u  lA lU UJ
X et ï  z  r

a ) 1- l / l  u.

u  C) 
Ll  q

:> (t X *t I"
> o  <  l/l z  o

1.1.  u . «r in  >- I  t -  o

-'.-.i

fs «a 'â «J u (J\ UJ * ÜJ X O u a • t- «
_J X û: a h- z I I K a. P

N IL H 3 * I I O CL CL G
1 O Z z O 1̂- LU cr IxJ Z ijJ

J ît iiJ le Z ÜJ O r u.
LAUi o es «C U I Z IK

z 1 D Ui Ui CL O > lU \J t r
iO m CK # w UJ X o i/j X

ijJte X o UJ t» Q. tf a LU UJ
O Ci < O V" 1“ lu tf H H u 0. X

CJ U p 10 z lu tf VJ <
P p M u f- O tf U U -J A

r - i in tf 2 P Le ta tu h- X
CJ u> "s 3 i j P K* H U O a

p n s y: H m tf < U te > n .
Ü uJ o: tf UJ CV J û' tu

ub a rJ t r u tf U O Le % O H UJ u
z 1 cr i t Û _J U kJ lA

LULJ o CK o > U
«J • t m % LU le U o UJ Z

J u 4: CL (K *C H a n r. Z
)tî (il lA et H D H UJ

wlU u z a Z dc UJ
G w lu UI T.
tu u æ: V 3 u U

LU
î:Ou

o
cr

3
_J w s

O

u. (t- c  - *  isj n  T  IJ1 .0  N  co O' Q
u' 1|1 UI I) U) 0  O U) -O o -o O O f-

OJ l*T a -  l / l  -o s  00 0- o  — (M ro 3- 1/1 o  h . (O i t  1_I — ..I rsr'»('»r^rvrs.r'.r>curorom ajtoroajtoooo'cr-O'r v t r O T i n u i t L i r o  o - i i s j o z i / i - o N  tno- o - '  
O' O' O' o O' o  o  o  ra o  CJ o  CO o  a  -< -•

fD # m f?) r n m



/ / . '■  s

,}!:
' ; /  ,"! ' " ' . l X ' / r , : ' x : e  , ,

V  : K V /  - :
1 o  o  © o  o  n  o  o  © o  'O  ̂ ' I,') o

25

n yj .0 IS Id T tn 43 N CU O O ,,4 N m tn 43 fN, œ o N m ft o T 43 O' o FH n tr N O'
N N N <N CM N N N n M "3 m fO n T T r X T T m in m 01 LO m m 10 in

o o o o o O o a O O a a a O a o o o o o o o o D o a O a O D O o o a o o o o a O o o o o O
CD o o O D a a o o o o a o a a o o o o o o o o o o a o O a o O o o o a o o o O CD Q o o o

o a O Q a a o o o D a o o a a o o a a o o o o a o CD O o o o o o D a O o ü o a O a
p D O D Cl o a CD o o o o o o o D o o p o o a o O CD o o o o n O o o o CD n

ri Q o CD o O o D n o o o D o o o o o o n a a o o o Q Cl n a o a a o o a o o a o o o n n O
n (Ns oo t- u. z
z ft. o in wJ UJ wn -J UJ in J u. X lü m

z a H u in u X p
a: a O p LO 10 Xn N z u LJ zs (L U LU f t u Xo tu X LU u. lO

% o ft: Z H CC J z
o z o K ÜJ u Uz H* n UJ w Z W m UJ
IL U cn u a UJ wo U. z IL z z i/3ft: a < o p ft

CO < u X Pz z (L tr in l 10 Lü 5:tu CK iL X w 3 U) r Uà N t- I tn o Dn ft. < J CC in o tn Lü X ft
u K ft. tu o re z Lü o r> ao n cr h- X z H leO N z (L tn u u u oo K Z a: t/i £ u. u z LO X Dn a lü f ft-ji. P o ft. n >- o r \ LU f t u. Ù.

u ft. u. z o o <t z S o LO
u. o z z h- m 3 a tü Xo «J o 2 H ft: z X X UJ oft: z h- kJ ft. 1- o G LO T z _j o>" Z o H U Uu in in z lü oa (L O ti. o H X % X o z

< z iL o N IL z u U U f t o z
n ft. O m z O o h- ü U. lü UJ u u CC
‘v U K H U u o s X H D X u O A
CÜ X le CK u >- QC u. UJ H z _J Z J ft o XO o tL LU Z >- lu P u. ft L- u p z Z
o J j U ft. U AJ cr ft. o o z X LO tü u.
2 CL cr II n N o D LO z O a. 10

a o I— H" o O V N o D X 1* O w tL p u 13 X o -J Q u -J
fD o tn u V D H p n UJ ft w o 10 CL z CC z N u. o V
O le ir >: 3̂ >- t- o u H X tn K LO < O o ub

u. r i S n o O J.Q >- o m M s Z f t Q Lu z z z z z
o Ik LJ >* u z < y- o cr lU UJ o h- ft v6 p A ub p S p p X-J o o H tL H O II ft_ lü r W w X V p ü> p

z Ik p h* UJ z H S
iL >- < X o w 1 u u ft o o

J >- u. s O N Q y- X tn ft Le m lü O z z ft ft
P te p tu tn UJ 3 Z lü tü zC3 a H H X o X O p «J z o

a iY, f“ >- >* O H- Z z z N X ft H 10 05 LO
o ft. o tr o IN >- tn 10Q (L Cl >- iL >“ O <c z D o O 10z IJ c X U ft. LU H H u. LiJ f o z A 1 Lui- IL t“ H .J P <a

U) H u u U D ft. a: 0. CJ z CD z r uî P z
>- U LJ >* L- UJ < K tn z % C) m
a N z ft: y- H H u u z O f t

A p o u_ tn in Z H- O
%a u. u O z -Jid u z tu D u. z

LJ H K Z u w zft; U) D Z Vt 1/1 o D K z u. p
z a ul z UJ III o Z UJ f t n tü LU

H w X o s Z LO z
u ?: I I p tü _Ja z -Jfr z ft: aU) ft. u >

rt' (J c ' «* M n  a- i/ i >0 (S' oS t>‘ O  -< N  r i  S' in  sO I '' to O' CJ - . . ' . N N N N N N N N N N m m m n f T M m M M i n T ' tN tn T If j5 h- to fr o —• tv n T in -I! f'- ft- 0 c’ -< 'N t'' T if' -o i' m o C'
a- f  a- T  f  a 3 T" m in  in ut in  ifi in  in in in n  /) i  -o u -o .o a <i ■£■ iv

#  0  0  #  ($ ■J A fD m



' it .1 !%*■
\ t

" X' 't I

r-i

I
r \

.z - T %   '..........  ' ' ,
■ ■■- ■ " "■;' :y.v"" " fA:": j ' _ ' \_ r,s- ' "ra'j’-î  ̂ .i.i,'.v W;

0- #  #  o  O  ^  o  ®  ^ ®  #
26

a r\y in fsCO o f-4N r>ÿ Ui s CDftD *.fN ftin43N CP o ,-4 ftin43fv. o fSI m f t O N n in-0fvh»rsN COCOCO03m COCT3CO ftftft f t f t f t f t ftfta o o a a arv|M N (SICSJ N N N rvIM (V rsi
D C5 p o a a o O O o O o o O a o a o O o o o O o o a O o Q O a Q o o o C3O o a a o o o O a o O o o

D o D o o Q O o a o o Q o o o o o o o o Û O a o o a o o D a Û o a o o o a a D o a o O oa Q o a o CÎO a o o a O o a o a o o D o O a a o o a o o a o a a a o o o a o D a aa àa o a O a o a o o o Q a o o a O o o a o o a o o o o a a o a a o o o o a o o a o a r.3a o o Do n a o O a o a a CDa O a Q a o à o a o o o o p a o o a D o o o a CÎ o o o o o Cl cn

2 o

o N us cr < Xo rn %: or1 tf* S K
a u a CL CLtc iu K ino o X1 tf* n tf-.J o 1 u Jk a: a IL p tLo z .*• tf-tf* o o tn1 u J z 2.lu u. tf* tf. a% inM J U o mH O tf 2 IL lu k oU 2 O (SI UJ tn tn tf*u. »•* n N tf N z10 U Li in LO Utf k k" tfJ tf s tf-1“N tn u CL u in >- o
X tf (L N tfX zu rv u Id iL on n 1-N o tf* d:CLs uA 1 Q UJ lA,a k«0 N a Z tf- 2A *J Oi 1 C3 lu tf" Nkb o o a 2 O Ü Ori tf* CU u lu tf*1 s z «JM o,Q on>o n u. N tf-' a 'U a2 % J ■i'tflu 00t‘*» 1 k ’S ,/*kX_J p 1 O o tf*(KDk k (L Q % O z o tf"*lO in w % i*"Z Hitf" ktftf H «Jk tfj d
N N in U Lu Ù lu >-ns U ink intf-N

u 10 tftn tf PA tf N tfN
N eb N s O o

n o X 2

s o u %
H P 
>- A A &a
n V

1“ X in o o
c? Z ft

O  P  UI 
V  X

tJ s u *
N N N O ay* —

ft n u- a.

o  m  Ui <  a
O cr z  I-  . J  c.)

- I  ViJUÎ (A
a ft z p

O ft ft ft L5
2  H  O  O UJ
UJ LO U- U. UJ

• • ft 1J w "w '# 19 L9 2P U W W ^ i  «J < I- h- U3<wzzw

oj m  :j ir -0 fv in ft t) N  T  in *0 fs CO ft Dr-j r»» :j i/i -o rv uj th C) i>J rt u- ui *0 i’'' CU ir U) AJ fO T lO 4) N 0> O O *-* IN fO 4 Ul 4) N CO O O 'x ' ; v ui i- u- \ '• i -j m« ^  •'rHf-,r«.f^j'.f^h.rvQjcî»cDLDcooo<iicijaïcoftO'ft<ycyftftftftftOOOOoaoaaCT-^-*-HFrt-^F^FH-**-i-i(MiNtN<N<Nrgr4rM-4 —lOjiNtN (N W N N N

n  o r'l ■X) rl -n # rn



0iî 'U/' V' etV''
Jt s J 1

I r> '""i

i’ ' I !

27

M M N Na o o o o oo o 
a  a

tsi ra 3- in ra ra ra ra ra ra (M ra o a a a o o o o a o a oo o C! o 
o  a  a  a

\
0

1 n
o A
a ûj

o k X
% LU

1 T lii
o 1
% -J
% •a S

a.
Æ us

z u
wï f,

Ul t  n  
:c A  N

U3 VI X  L/(e cUJ z
::î 
z  ^

% „.
IL r  •»  % lu C» 
UJ t»  o

“ >J £uti. S IJJ

-J 3  UJ ra

' O N t a a i h c J » i r a n a ' i / i - < i r a t o O ' Q ” < r a r a a - i / i  rarararaa‘3‘trifa‘TTTa-Ti/ii/ii/ii/iini/i ra ra ra N N râ ra N N Nrarararararara ra ra ra ocaoooooaDraaooooooooo aoDODoo.OOoooooooo ooa a o Q O O o o o d o a o o a a o a  ooo oooacnaoaaaoooocioQooo a oaoooaabQaoooaoCTOOo 
•  « ' 
a  z l - v vO 3'X sz OH J ÜJ lAUJ?: ra lüX
tL a (A raUiK UJ w celA <K SC oluUJZ k M ÜJO (A IKUJ lA Olü ra

X lA
2 ra ra iüO < 4w lAU 4oVJ ra lA(Tfi. <tete

ceUJ
a râJ < tK rao t. , <U râ tü

Ul de 3{K tü tü mUJ X X Ce% ra UJ 3P Q (KZ luo X UJU «d ■ ï»Ul Ui tu Ou o d; k  ' ’ 'V) 3 0. ÜJz 3 (A a  ..2 zin 9, oet & ra ra
1/1WZ *t u
tf* a% w tu Lüz E IK'6 \t,'ra O 0.LU U) z ’■'»•raJ lÀ lu ra ■eu lü lA X 3K t- 3 1- Il *w 4E 3CL ü-

ra ri o r4-'",
S ce ratf" lu D lü oz ra ca ra.Ul UJ ce

X.

3 t- I- z SU
-J  C l U O u ;•• A A s 2 0.{K lA ei LJ l~
0  3 —  U- Ll

lü O  V' Z  —  IL lu
3  ÜJ «t •-••••• ••
3  t -  {K 13
< Z u; UJ

' O r a m O ' O - i r a r a T
m i / i i / ' i / i - o - O ' O ' O ' Ora ra ra ra ra ra ra ra rao o o o o a  o o aa a a a o o o o o  a o a a o o a a o  o o o D o o o a oo o o o r J o a o ara3 m

UI N  Q. 
t Q
O  •> o;

2  N  lüIK o u
û  I- • o  
œ  * t  >- 
D  3  a  UJ

<  o  a  o  u.

I"! >* Il  UJ rara m O ra UJ
UJ ra r  o_

11. «t lA Ul o
a . tü  a i X

lü X  tL «I ce

L f i ' 0 r a m U ' O " « r a r ' i a ' i j i o r a ( D 0 '
a i ' O J i - f l o r a r a t ' - f x r a r a r a r a r a r ararararararararararararararara
0 0 0 0 0 0 0 0 3 0 0 0 0 0 0O O Q O O O O O O O O O O O Oo o Q O a o o o o o o o a o o
0  0  0 0 0 0 0 0 0 0 0 0 0 0 3  
0 0 0 0 3 0  0  0 0 0 0 0 0 0 02tü • o 

2  0  —  o a: ra o u

eo to 3  3  
ra ra ra ra 
0 3 0 0 o o o a o o o o o o o o o o o o

CL X  

O  co
Q  M
te ra o I u ra 
U  u  
«t Jt

r u ra 3
A UJ '0  u . 
L» —  o

13 2 u. u u.

u, ra  z  l/t  te  
0  2  3  2  3

O  lü  Z  <  UJ lA
te  — le  ce wz tü  <t lie o  3

ra »  o  lu  —
<c n  X  u t ce
ce ra ra ra  >  i t

u . I  13 l/t  z  
3  o  ra  2  —  —

u  Lü ÎC o  JT UJ
—  3  x  ra u. 
te 3  n  o  _ j «tUJ < ra V ra
X >  — U i_i —

tü  ra  z  2_j tu — « ra
13 JA 3 ra l/l 3
z  ra J  o  o  u .
—  u  «r lü  zIA tü > K <

te le o  •
rt  te Q  o  u- no 3 o 3 ra

—  I  te  o  « t o

LU X  r a  (T. r a
X X «t (1. o

<• o  3  o  lüra X u 3 ce X
z  lü  <  X  te
UJ ra ra >  o . o
z  lA ta UJ <  u3 •/ ra o

<C UJ z lü

t o o - o  — N O ü i J l ' O r a t o O ' O r a  N M à ' t / t ü ü r a c o O ' C i . - ' N o r i A o r a a t o a — t s j i À Ni*'j('if')inrtiArAPiorAt3irâ“ct*3"a‘a'a"3*T3’iAiAiniALfiiAiAiALiiiA'0-0'0’0 
M  M  tü  Cm Cs| tvi À j tra ira <N csj J"  t-* -■  cs' "S' l ' I

O ' O r a t s j j i a ' t / t r a o r a c o O ' C i L . N o r i A o r a a t o a — t s j i 3 X i A ' O i ' ' a i O ' a ' - ' N r i 3 - i n ' o r a m o .  o — t s i o T  
r o i r â “ c t * 3 " a ‘ a ' a " 3 * T 3 ’ i A i A i n i A L f i i A i A i A L i i i A ' 0 - 0 ' 0 ’0 - 0 ' 0 - 0 ' O ü i ' O r a i r a N i r a r a r a r a r ' r a r ' - o a ( t > a i o [ ) ( 0 ,  
| \ J | \ J N t \ | N N N C Ü N N N N N N A I ( S A t i r a t s j M N N N N I \ | ( N N t r a N N i r a t ü N N C ü N I \ l t M N A l N N r M N N N



/.. ■ >;,■', ■■' .V ,,'!■
1. ! A

• I ' , " - : . .
# # #

’ J f
# # # # # # ' t " ’  o "

V ' '

- V f ; ' ' ? ,  ' c
# #

t 1 *'■,

t

' 9

il' ', 'i 1 V  u
# # # % # #

'''r'VrV',/\%r %' i,% 1,, " ,tV i

-.a
A

O O O ,0  O <D O o  o  © o  o  r ' n n  n
.■ % '

îs;-'

28

;t‘ i n - o f ' ' t u o s o — ( ' 4 M t f - ü i ' O i ' ( i > i > 0 * - ' N ( A ! i ' i n ' O r a o D O ' D — N i A a - i j i > o r a c o O ' 0 — fü 
( . ' n i n t i ) t 0 « ) r t > 0 ‘ 0 ' C A 0 ' 0 ' c i ’ a ' 0 ‘ 0’ 0 ' O t 3 a a o o o o o o  — - — N i r a t viNisj N N N i \ N N N N N N N N N N m m M m m m m  m n m m m m o o n n  n n o  m m mo a a p o o o o a a o o o o o o a o o a a a a o a o o o o D a o a o o o o o oo o o o a a o t D o a o o o a a D a  o o o o o o a o o o o D O O o . o o o a  o o oo o a o a o o o o a o a o Q o D o o a  o o o o o o o o o o o o o a  o o o  o o oo a o o o a Q o o o o o o a o p o o ü a a o o  o o o a o a o o a o  o o o  o o oo o o o o o a a o a o o o a a o a c D o o a a o a a o o o a o o o o o o a o o aN

md-lAsONTO O' o — N oM r ü f M MM W MO r AO r An n n o o o n n o o oo o a o o o o o o o oo o o a o o o a o Q oo o o o o o o o o o oo o o o o o o o o o oo o o o o o o o o o o

T Ifl •A N co CA om m o o M o Xo m o m o m no o o a o D o
D  o o o o D  oo o o o o o oo D o o o o oo o o o o o o

n n 
ra ra

R i

u. >- t f  y

D ViJ tt —
.J <r h- tr 'J)
<  j j  V. a  UJ

%: &
t.

u.. A
— û: I l  i *  o lU A ”> *• O .a "»
w z — o
o.: >"• O II.

A _j 
>A U. n s
^5-
"ï  A

o Drazrau(A — UJ
d o  5V 2 LJ
y D

O >- Z *tf* *“•u D
^ A tf. 
y. *-4 Ak H y.

o o z z
tf. H

k  k  S s 
u  u  >- >•

X s »m tsf o
z z J p 3 ra
W ̂  Y
tf- h- V  tf- 
U  U  k  Ulm Ul u UJ
A A <

y.  P  2  >- y- y

uî m

_J< U5

S
«s tfw

w  UJ
u  X  Ul

3CO k *r
;

té srf — X3 y z -
-J "  SKy tn v 3o ' o m
û  J  ra

üi-OA. too-O — Nna'LAtôNtD&idjrângfïjij'iA'Oi'.tno'a— AjforiA'ONtnOO— Ai03'iA'DratDo-o-H(MoTin>oraino 
a J i O l o a î C O O O ' C A C A D ' O ' C A O ' O ' O ' O O O a O O a a a O - * —  - ‘ “ • " • ' ' • ' N r s i ' N ' V i N i N n j  (S i N N O O o n o n r i O O O
N i M  M i - j i ' j r s j i M n j n v i n j i s j M N i N N m r l r A n i A o o o o  ni  n o o n O r A o t A o o o r i O f ’ i r i r )  0  0 0 0 0 0 0  0  0 0 0  o o o

(R m o  n



JI
I 'ks • ra *<'■') I,# # # 3 #

r 1
I

r\i

, ' ( .  ̂' 1 _' V J. 1
O O O O O 0 © © 0 0  0

' '. 2 9

,( 1,1 s'

'"I;,'',

-ra m  ^ c# t

N  O  T  I/I OT S' tr 5‘ 3* ra m  (A Cl 
3* a- 3 ‘ in

fft ft tn *0h* (6 f t o n ft •o fv o N d* in 4) fv ft O •>*» f t in fs O) a —* ft in o fs

m Ifltn i f l ifi m 4) *0 4) 41 4J 4) 4) 4) rs fs fs fs fs fs fs IS fs fs CO 00 CO CO 00 03 CO Of) ftm r*J rO n n m m rn n n n m M3sS 3 o :S o o O o o a O O O o a o O a o o o o o a O o o o o o a o o o o oo a o CJ o D o o o O a O D a a o o o o o a o o D o C3 o o a o o o Q o o
Ü o o o o o a o a a a o O o o a a o o o o o o a O o a o a a o Q O a o oo o a o o o D a o o o a o D O o a D n a a Q a a o o o a a a D a o o D a D o o Qo o o a o o Û a a a o o o o o a Q o o D a n o a D o a o D a n a O a Q o o a o o a a

o
o

n
v: o S".
u a a
o s
u u
G3 1

v;
U V
i-4 o M
tf. fJ n
z s y
D u

J V o
O _j

0 m
lu 0- sb 2 s
X ItJ p LJ tf* u
tf- S D tf-

lA a Û
tf* A UI V
a. CD D a s k % K s:
1- A A A w lii A 1-

si i i s5 s H M tu
a: n T7 m y

N -J X
A k o V y. 2 OJ in

ai (K A u u A tf*
fd O % O 05 H q 4i sb o
UJ lJU o Z K
U5 (d u.

Û- N tf- o
o Ctl U y tn

2 k 2 a tf.
UJ D z

fi l’' ' Ct‘ m
X t < n

D •) z
tf* C? X IjJ w

in X
r% . tf* -J Z ui Z
Z z a) O D

< û-
K ÜJ V tn z U.

X CD W
K: O in

-W: ' w t j Ul
tf* y K

H CD P CEs a
>- m J S. tf- P

1 o u a W
in V il z

' D D _j U f- G Ul Ul
Z  '■■ D (L D A 1 z X x

D Z (L Mb < u w
111 1 2 ht z CJ m Z z X Ui lA
K w n z p A s n T u

tf- tf- sb u # w tf- CD z
l - % a y X n -J >: y Uirj ^ o . -̂4 Z D -1 r Z

U y o tf* W 2 a cû a:
u -J X w p z w

P  . in o m u tf- Z tn Wa. ‘ UJ . ’ «i lO in n n A Ul X
tf* 10 tf* s sb Ui

CL H (L o tu X s w
u  ^ tf- tf* D »• A u UJcy :- ■ D (L Oh a  L5 y u p z

(A U tf" z Z A w p CJ A
Z  ' J A Mb or u
Î % w  A u r. Zy o <  CE A -J < z u
CO z IE O ÜJ O K

CD UJ Z  • • X  U.

S3
LJ to

u  Z  UJ O  ft;
0 .  K  UJ >
• • W  X  • • • •
w  U) "  ra z

_i ra <  (c 134 z lij œ ui
>  — or 4  OI

- 3 E
0. ee 0 . UJ 
or u. IK ra 
w  lu o  ra (L ra 2 
2  (c O  n 
— W Z &  

ra "  or o 0. lu
Z  Or ra

ra ol ra or
2  (C • •  U I 
U I U I UJ 13
r .  ra 3  UJ 
E J  raa 4 2

ra n  ;t lA Ul ra o) o p  •"' ra o  a- in  «0 ra to O' Cl — N  o  T  in 41 raa”a'a"Ta'a‘Ta'ininirt»ni/iini/ii/iinin'0'0-o-o-o-0 4)-o,̂ , . . _
m  (1 tn  f O M M m o m i n o o o m o m O M O O O o m o o o o o o n i r T f i o o m o o o r i o

c'  — r a o a - L / i u i r a n i o - D  — r a o ^ - i n - o r a t c o r a — r a o a ' L f ' - o r a a j  rarararararararararammtoaiafUwmcoioo-O'O-O'O'raO'O'O'

/ r s o n



' i''-' \'VÙX% 'k t'l i ' ' '■' s* ^

:•-/■ -: ' '.y*.' ' ' '.

"f'Rïs
■ :yV.K̂RV';,

30

‘f4„

IE:

i

3  1" 
« .  W  Ul w

" u.

o  >  
z  w  ra o
■ i ora z 3 X
gra

t X I H

o ui 
a  Û.

3E

0  
o  o

in ■ u W in
1 in m ran 13 4 iL 3 s z M trt «ra or ra O IÜ ra 4

3 6 d S ra b
J

Ul D + râ Or/ :' I-
^ 2  EUt *> < ra a O til
o  . UJ re s  ra E

%  E  0 .  3  4  ra

 ̂2 o o S S h ..34teUJtcZjK4 IK UJ X  Ul 4 R
ra UJ «Ï. z h„ K Ü. V
i:s"“§ïi 
a : s s 5':% :3 Ul a-.x.ra z UJ K + IE Ul ra „ (E
*gS3,"É£S 
. § 2 u g’vi' S H"tSs! Fraar s

tN E  iO 4  ■ 3-•^gaS;§,:“-a g ”̂ ft»gSÏ3 z V o UJ E ra
S!S!S“.e"Soul 1- J UtUi u u
 ̂g in iü.&as-g

■;d Uj S

O r a M P T i n - o h ' O i O ' O r a r ' j t n a ' i n ' O r a  raiSNNINNNNNlNNrimrlMmMfn rn
T T r a - a - a - T T a - a - r a - a - a -  a - a - a - a - a -  
o P O D o c l o a a a o o o o a o o Q O  o o o o o a o o a o o a o o o o o o ü o  o o o o o o o o o o o o a p o o o o  a c j o o o o o o o o a o a o o a  o o  o o o o o o o o o o o o o o c i a o a

O  ra N  rn a-  in -a ra oo
a- r  a- T

a - a - T T a - x T x a - X X X

a ra rij n in in m m

d o o a o o o a o a o o o o a o
a o a o D D C t o o a o a o D O Qa a o p o a o o o o a a o a o oo a o o o a o o o c T o o o a a oo a o o o a a o o o o a o o a o

IK «  ra raUJ IÜ » tn .
I l l  U l 
13 ID

Î = 5 |.S«.B-j
M  o  ; / . " W  H  w

sis IlfIfSg,g'3S

o  ••

o g  d  Era :
ra Ul Û.
Z  Z  "  "
Ul  IK 3  ra 2 ra z 3
(K * 3 3gS 'S
Ul 0 . CK aES>%ra ra w mra o ra ra* z tn 4 
o r a  * IE

s
« IK ra

I u ë ra ra a

X  U l ra  C l

2?.5ë
w g

>• ra ra ••
N  ra  IM ntt ra ra ra 

m z z r a

a  tt  tt z  
I n  n  IE

SÏ5?

A  ra ra UJ

_ j IE  3  IE  U
• t I J  U  U l • •  • •
UJ ID  "  ID  3  Z
3  Ul 3  Ul Ul ra3 ra « ra m 13
4  Z  UJ 2  <  lU
>  r a  IE r a  J  t o

UJ g  ra 2  itD u i
13 r a >-  r a >  0-  r a ^
UJ 3  4  D.  UJ O  ra ra

raEd

^ w c
U A  A  V  

• •  ra I J i J A 3  Z
r a  V  Z  Z  uS in  r a
a  U l U  t  » . r a  132 Z 3 O 3 U lU
Ul £c in in in ra nj

g x
w  o

I :
§ a

n  ra 3
Z  V  K  0 .  
IE  U  3  »
a  z  i n  Ï »T5%%
o  z  u . i~  

:  o ' o ' :
V  N  *  Z
U l I CJ ra  
Z  IJ  4  IK 
11- I -  I E U- 
O  I E A  3
in or us Ut 
A  t n  z  e j

o  u  o  M  4
Z  ra 4  _1 os
Ul Q  (K U  IP

UD'-iwMa-in-at'tajO'Q-iivirtxifî'ôrâtDb'DraiMrna-in-oh-coxoraiMrnxin'On-aixorafMoxin-op'Cuo-DrarMrnx 0'OCiaCiaOaOOOrarauJrarararUl3raratMIMfMIMIMIM(MIMIMIMrlonminrnrnrnrirnxxa-XXXXXXXalintJlinin l'I X X X X u- a- X X X a- X a- b' X, X x'x x x x x x x x x x x x x x a x x x x x x x x x x a x x x x x x x x a x x a x

%,|'̂|| c



t  ̂ *

n  c*

1 'w t/'/ ''N t»  *■

. r . ck , '

;\i
31

i\'
it\ tfrâtû ft. O M T m -À ft Ctfd S W m d-Ul f t CD(tfo N ft *0 ft (tfO «MN ro m 4) f t CD (tfa —4 N p ft m 4> fv «ï O v»f

ifi10tïi o ü) ù *0 4) Üj *0 ü)ts.f t | s ft ft ft ft f t ft m 00 03<x> 00 œ 0)(tf (tf(tf(tf (tf(tf(tf(tf(tfo D o o o O P pft T xt ft ft ft ft ft f t ft ft ft ft ftft ft d- ft ft ft ft ft ft d' ftft ft ft ft ft m m lA in lO in toQ o Q S a O a a d O a o P o a o a o o d a o o O O o a a a o o n a a a Cïo o o o a a O a o o o o o aO a a o a a D o o O Q o P a o o o o o O O o o o o o Q o o o Q D o a o o o o O a o a o oO o o a o o o o O o D o Q o o o a o o o o o O O o o a a o a u o a Q a O o a o o o o O o o sO CJ a CJ o CJ p t;ja o O o a o D o o o o o o o O o a o o o o ü D o CJ D o a o o o o Q o O o C3 o o Q oD C] o o o 6 p a o a o O o a CJ O a o o a o o D ü oinw
o
tf-
o o o o a o

u
oko
o O a o o o o a O a o o a o o O o R

i:o  XK *> O H râ e
.3 s* te w I- IL "
b g

■st. râra tj 
pi w 
râ  U.3 o

_m 3
o " * u. Q ÜJ o 
s :* z

■< ùi î K 3 ü. 
U  ra

Z o:
3 râ ra JU. ra O » ü. 
Z Z , ra WII’ K >
iü d3
ca ir. < UJ

n <t ra te E CE
(E uU) 4 w m

. .3D lü < 
or (E >  o CK o 
r â O Zd"g

.
s» M Mb U -J tK
§bü^, «t tu 3
CE CD ra

râ CE 3 U UJ IL tn * râ lü ra ■ 3 OC en 
O  Q. m  .. lü
ïï'gta o ÜJ2 râ K
^ 2  3
tn ê (E Ul o 45ÜB

' ce 4  raw 3

4 3 0 3 1.> Z râ Xra 3 râ

tü 3 raX râ U.
Il  ra 3  2

M tü  ̂V CE
CL (E 3 0 + h- H* in U O
W f* m % _J ̂

w  or 
CD w  z (K

O

<  t-4 >- *t  u.  s.

k tf* o Ul >UJ 
o  ü.
u  o  w  zk k <f 
X  UJ Ul

o  o

< ûr X «t <D -t p > tf- fv: --z > z ^ o T»
H tf- tf- z o tJ Ul

Z  lA O  kl  P  UJ r

lij k Z // " n sa f t
LJ P /' k  i, Q  ‘«C

*ï 41 1 % ùt ' f t to
z <C ft u. 3

0. y Z >< < o k 3
y A u r (0 % D

z  •* A Mb Ô (K tn râJ tetf* X  q : ul 3 . tf"* U z S O
UJ Z Z z a ' î Z * ( w U f t
a? lü lü P Z X (K k l ' UJ UJ ÜJ X -J
lü ï : P  k l u X te Z f t k

tf- UJ s: -J <cK. UJ < k k

k l  O  tf* U.

•« X  Z  hm

z O in z 2 X fK ^
•* 2 Z 10 Z
-J *k o
•t Ho w tf" z
% "

tf- tf- D Z Z A

liJ 'A U' LJ

P
tf- *-* lA k  CJ D O k C C

k  IK k  0: U
» * k l  • • lü  k  • •
UJ ei  >- uï  • *  Z
D  k l  *« k l  raJ * --J tf" û: tf- < 10

S  s

M4 I

l ü te k  u.

ir fl. k ► 
o  w  VÜ U

-J  tn  Ul LJ

ra z 4

■CI I "  11' et c'.'
4/1 ift 3  ut  a
X X  U' j  3

O ' d r a N ' M  Ü ' t n U )  râ 3  O' Cl ra N M X  3  -0 râ O U  O r a N n x ^ U J r â m C h O r a N r n x U l ' n .  »,  .
‘ ‘ "  ̂ r â r â œ c o o c o o o i B c o t o o J a j c n o - c h C K C K t i c n c n ^ f r t a o r D o a o c j o o O r a r a r a

N m X in 'ù | . .» - ... -.. ,
■ o . O ' i f l ' O . O ' O ' O r â N r â r â r ' r ' ,  
d'  X  X  a- T  X  X  X  X  X  X  a'  X  3 ‘ X X  X  X  X  X

( R ' ' - m m m A



/ ■ R ;
■ M

L'' ' IL
: y,'':'- ', y  , ■ ; y

/ ' v ' y . y yR' . ' ' ; ' .y,' / " ' f ' '*'" V
, v 3  l , y

1 !

y. ' / ■?,

o o o o o Pi o ® 0 ® © •î? «9 e y;
3 2

: \É#
#  6%

ml

■ , .

y.i- ■ y

N  m 3" un ■/> N  (fl O'

Ul Ul Ul in Uld o o ü oCî o ta Q oo o o o aa o a o oa Q o o o

O r a N M X U t ' O h ' k Ü ' d r â l M m X U l O r â W O - O r a N m X U l ' l r â o O X a r a N m X U lN N N N N N N N N N m m m m m  in n m m n x x x x x x x x x x ui ui ui ui ui ui
m u i i n u i u i i n u i 3 i / i u i u i i n i n u i u i u i u î u ) u i u i 3 u i x u i u i u i u i i n u i u i u i u i 3 u i u i u i
D Q o o o o o c a a P O O o a a o o o o o a o a o a a a o o a o a o o o o

i s i i i i i i g i i g i i i i i i i i i i i i i i i i i i i i i i i ia o o a a o t a d o a P o o o a o a o o a o o o o o a a a a a o a a o o o

U) N  ED X  o
Ul U l u l U l o  -o  -o
Ul Ul Ul Ul Ul Ul Ulo a o o o o ao o o o o o oQ o o a a o oo a D a a o oo a o o o o o

Ul X  U l UJ râ  t»
.0  U) U) .0  -t) >0
Ul Ul U l U l Ul U lo a o a o oD o a o o Do o o o o ao o Cl o o oD a o o o o

ID • D 3
g w< ul Ul 4 Kû; X K 3 UJI- 4 3 X

W (K Ul 3 lü 
LD 3  a X z 

a  ta I

UJ K  râ

3 3 *
O 3 3 X râ

râ < 4 LJUl w u % 4: W Xz X Ul 4 _J râ UIO UJ z râ W Zra o (E o X lü E4 râ râ râ X X
-J  râ 3  4  4  4  râ
ÜJ ra » _J K  ra (U
X  ra LJ a; ZX Ul * K 4 + aü
u LU o UJra _J u XUl Ul 3 râ

X Kl W IjJ f.râ a râ z UJ* 4 1CL 3 ÿ u» ra 4 râ ra

M X n 
N » - r â

'̂ê

SE

ra te

ts

râ N
A 3 râ
râM I—U Z 3 V

s X lE ̂râ S u

+ 4  3K n • 0.o râ UJ I-
râ K  3  g  D

4 ta ra râ
K  râ Ul üJ

Lü 3  U  Krâ O >E râl ra +
ÜJ O ia 4 Ul
râ  Z  4  3  I -

3 S E ë S
3 UJ râ 3 râ

»-* CD!;'Ë

I
srâ Ul Ul  ̂ë râ >:

"itsE § s
te 4 , râ

§ ; m ra'if g
s rt A A > A u X ft ro UJCl m N ü) LA uA *-4 ■ ft 1 ko. A 1 V A % D O  (K u o w z ft UJ O » U

E % A o N N UJ tn o z T o k E fL f t T.Z Lù z a  a z r o o;te UJ râ N f t u k Q CL U 3E1 CL Z
lü te n k Lü u. 

!j ̂ 3 D o w W o:
te râ S S ft O UJ z CL U (K o ft ZUl z te u Lu o z O a O UJ z
UJ Z U. X w lu • Lü Ci X a û:

gs
raw ra z 3 te A râ râ rarâ 4 ra SE K UJte ta O 3 o UJ

Lü râ Z  râ Ul te  UJ

lü 4 te ra 
râ te râ UJ

mXUl'ÜrâUlxCIraÀjmÜ' lii ' W HOJ.O'OrâNmXUl'OrâmteOraNMXUl'tlK.lOO'PratMmXLfiOKiDteOranjPjXUl-JJKcOte ra-. -I—I-, raraN(MNNKiKll\|tMNNUltâtnMKlJnKlK|KlraXXXXXXXXXXUlUlXUIUlUlUlUlUlUl-0'0<l'0 4)4)'0,04)0 
1(1 Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ifl Ul Ul Ul Ul Ifl Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul IP Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul Ul U1 Ul Ul U' Ul in  Ul Ul Ul Ul Ul Ul

' R m



' h
/  , * y ' n , ‘ ' H  I ' ( i

ra -, ' ,) ''i
'SjïK (.

' -<'u '
’ R ' il 

\ ' h
,< t" ] t -,,,

' r’; ,‘l f i
% ' ' I /\%vY' :

J  ^ ‘ . M ' R  râ

n  ( ’̂  n  o  O O O o  n  n  0  m n  r i r'. © (?

■ ■ y R R '  3 3
, r\

0- O ra iM M à- lii râjj râ m U'
>0 râ râ râ râ râ K ■ râ K râ râ
m  m  Lft ifl Ul l /l (A m  in  iti i/t o o D a a a o o o » aa a o o a o o o o o a  a o o o o o a o o o »Q a o Q a o a o o o oo a Cî o o ô o Cl a o o

N  . n  X  m  o  K  «b (A a o ra râ râ râ râ râ râ N râ 
•o «0 M) -a -0 o o o o o o o o o

n
X
3

U
X

nUJ
X

X o f i
û: X k
«t o E
ro k

n 1 u O
X in Zft u u X

ru B) X
*) k u
X o f t S!
u u CK <ft A f t
# Mb O

* i n X ft Q u
O X 3 tK ub XCi D X K f t P u

ci ft k k K3
h- U o * ft o O s: -JU X

u
et: Q u Z

o _J
f t(K

k P u 2 A
O V ft Mb

.fc 4«
U

n
X

U ■tft z
2
3

r i in J U ÛZ w
f t , X A £ 2

n (L Z U f t ta ft UJ f t
z r i < O o D ■, ft z n X flu
5 U o o k j z (K D X f t Lü J

1 Ci X X f t X
P M p f t n m A UJ tn
< X V -Jii z x ° î A ft *J tn f t

a .J u -J m J ; k u o
U) V ft -J f t z P  X a W J + s: A

N .J -J K u k / S f t X en Mbr/l n f t A J f t w ..E ") tn LU z
Bî u X f t 1 t 1 ± f t tn

Z. u D n w m W 3 m ' r,ùJ a J Ll
:b X v> X X f t f t in X A E

>- CD f t k a* A . u Mb k (K
•5 A 2 f t i f t o MD-Ej, f t %

Lb X “) l/l Ci z A r X < lU
Ü; k a: D à. k f t ub i k k t/1
O UJ N A m w u k A Mb U 3 iC P U. raJ
II. Mb X ft l5 tn X *•  eu U.

3 o A A 4l üi
U O/J K- 4 AI- o(K Z

lA \~ U ra %-
h- te >“ ü; ra'a. K te O Wo o Mc te Ui

a te % o
UJ te

râ ÎE te te. u D O O K- te te te

< tt te « ta *o * te u te « it

11. ü. te

3 te te telü o o o
râl-AO»«At-lüA 
u  3  4  te Z  3  3  o 4
Z  te ra ra ;» u. _|
M i » t i  U J U J a *  »•
3  t e t e UJ a  t e t ete ra o ote lA te te

V-. PI  râ * '

ra ra !B te te te lü O

z lü o o

[" râ M X l/l -t) K » O' D ra IM râ
f x t ' . o v r ' f - ' r â î ' - r v r â r â a i U J t D c o  
i r  ift tfi Ul Ul LP in ul  l/l in 10 t/l Ul  l/l

xinuiNtoo-Prarârâxuiuir'Coo-ararârâxi/i-OKœo-DrarârâTi/i-oNcoo n ra N m x ui -A
a i œ a a j a j c o O ’ O - f f - O ' O ' o - o - O ' i A O ' a o o o o o o o o o r a r a r a r a - i r a r a r a r a r a r â r â r â r â r â r â r â
t r ï U i m i / l l / l l / 1 l / l i n U 1 1 / l l / l l O U 1 l / l i r i L n ' 0 - A U ) ' 0 - < l - 0 ' O ü J - O U ) U » - 0 ' 0 - f l - / l 4 ) ' 0 - 0 ' 0 , 0 - 0 - 0 ' 0 ' 0 4 I U ) 4 1

' I C O O n ■o 0



f '

f ) 0  f, ;

A

■'■■'. "y. yyy;'yty:yvy:(y:'lr''r.m!''

'flîisas'yiii::1 .

RI C)

- î i
■' r:rA#;.

y, -’:Al' '
0  0

l i

' 'Il

U> N  «J Cr- C! ra  M  r t  a -  in  -à
INI ('i iM râ râ f'i râ râ râ m  râ-0 -n -0 o U) 0 O o o 4) oo u CJ o o a Cl o o o ocaDaoQoaooPa o o o o o o o o o o o
o  Q a a a a O a a a Qo a o o o o D o o o o

fs à) CK _râ râ râ U' te a* à*■0 U) U) </) U) <ia a o o a o oo o o o
œ te te T O 41 U) O 4)Q O a O Oo o D oooo o o o o o a o o  o o o o o o o o o

D ra râ râ tein râ ut in in
4 ) 4 ) -0  4 ) co a o o Da o C3 o C3a o a o oo o o a oo o o o o

râ  4 )  terâ râ râ
4) 4) 4)ooo ooo ooo ooo ooo

0- o ra râ râ 4 ) t e C D t e O r a r â r â t e  
_ _ _ _ , _ 4 ) 4 J 4 t 4 J t e t e t e t e t e

4 ) 4 ) 4 ) 4 ) 4 J 4 ) 4 ) ' 0 4 ) 4 ) 4 ) 4 1 4 ) 4 ) 4 )  OOOO O O O O O O O O O O O  D O D O O D D O O O a O O O O  O O O O O O O O O O O O O O O  O o O O O O O O Q O O O O O Q  O O O O O O O O O O O O O O O

râ 41 te m te o ra

uRrViô

s¥5A«

O nK râO ra

U M

llJ te ra
ft; Osa

U

ê l2 3 ra îï

''""i “ 2

D O «I < :
K k
H

o Lu te "î■J O O te te,
# y  2  LJ L teJvS#./

te r a i y y  O  O  IE;ri 'A 8:';'te
Ir0

vil li .•■ 3, w te te
S 1 P E

u te o ci râ z fi II. W râ

ï i  i■ , 3 ra ra
l’î te te

g" rix s S
râ ra 
râ MrâES 5

te te râ te te K

G/
SAUJ?

UJ

IIT O

f Â
râ a- râ râ râ K N s, Vin ut in %% %

ÜN V V V V
o  N  râ T  en s V V s s u u u u râ
o  o  o  o

ëi gg

A A A A

3 2 2 2
X X s X
OOOO

z u u u u

4) 4)  4)  4)  4)OOOO o O o o o oo o o O ao D o O Oa o o o o

s «J a- o ra rârâ râ râ in râ «1
4) -0  -û 41 -a 41

râ a ' Ul -û N  to te o  ra râ râ . î r U 1 4 ) f s C l t l t e D r a r â r â a - U 1 4 ) N ( n O - a r a
râ râ râ râ râ râ râ r  yr T ’ ur a - a - i r  a - a - T U i m u i u i u i u i u i u i u i u i a ï a i
4 1 4 ) 4 1 . 0  4 1 4 1 4 )  4) ;  4 )  ' 0  4)  ’ 4 )  4 1 4 J 4 ) 4 ) 4 ) . 0 4 ) 4 ) 4 ) 4 ) 4 ) 4 I 4 ) 4 ) 4 ) 4 ) 4 )

4 ) 4 1 4 ) 4 ) 4 )  -
4 ) 4 1 4 ) 4 ) 4 1 4 ) 4 1 4 ) 4 ) 4 ) 4 ) 4 )

4)  4)  4)  OOO OOO OOO OOO ooo

VI% c!

iisUj

o

g

<Xi
T
a  4"

3

te râ

X  N  Q  Q z  u

cfl X  *■ (h T  r j  
n  X  fD X  -4 X d  2  1

A A A A A  A # 5 g
3  3  3  3  3  3 E  o  • •  râ

• • < o * râ 
ü UI  *c Cî  V

V  s  V  V  V  N

O  O  O  O  O  O
u  u  u  u  u  u
k  ic k  k  k  k  
o  o  o  o  o  o

Ul t e  UI  UJ ra
h- A te' u: S

••  Ul u) A te w
a  ■ • c  u) z  m
A r a  UJ «c A E  
41 A te 1- 4)  te 
Cf uS •* te Ul z  <

u  u  o  u  u  u  »*

ïw

te ra z  zr NJ SS te

X  te CD 
<  o  UJ
r  te ta

k  o  +-* N  r i  0- LO 4)  K  râ 0- o  ra râ

* 0 * O ' O « D ' 0 s 0 < l - O ' < J ‘0

# m



>î ,

I R M ) s V ".Vr ')
l , 't -i .  . ' , '

n
n

« u 1 * » V ' ' I n
'"%, 'A '" V

u  ,  .

' î
E"' Aj0't

'. A \ ; ; Y ' 0  
■'V‘, R. :■■„■■

"3 /

, R «0 
, " n

O n  o  o  co 0 ® 0 0 0 e # e e e e o  
3 5

IJLJ %A9:

I#)

V.

'i- m 4t N «I L+ t;s ra râ P) a- in 43 K LO iN Cj 3  ru râ a- ùt >o
t Ù r â r â r â W r â O - O ' ù - D - O ' t e O O ' O ' O ' O P O O C l O O  
• 0 ' n - 0  4 3 4 1 ' 0 4 ) 4 l ' 0 - 0 4 ! 4 ) 4 i O ' 0 4 ) N N I ' ' N K . r â K .

râ
O  D  a

R
L V)

g«ùj
5:la
"3
L

V-
■JJ
ë
3
»-4r

m d" m U) K eo t e o N LA T 01 43 fv t e  t e d N m d" Lfl -4) ft OO (tf o «M N m T LO -4) ft (tf o N m d- m O ft co (tf o N m t t iS\ *0 t m 2:
eo 00 m co Ol co U) O' te te te te te te te o a O a o O O o o O N N M N rs N N N N n n n m m a m r
•0 *0 i o vO o 4t •ù 4) 4) 43 43 4) 4) 41 4f fv N ft ft ft f t ft ft ft f t ft ft ft ft ft f t ft ft ft ft ft f t ft ft ft ft ft f t ft ft
o d D a a o o O a o P a a D O O Q o a a a a O O O o o □ a O o O a O O a a O Q O O O O O a O O o O o a o o a o a o
Q O a a a o o a a Q O a a D Cf O O o D o o a D O o o o o o O o a o O Q a a O O O o O o a o a a o o o a o o o o o o
o a o a a a o o o O a Q o n n 0,0 a O o  a a  o o o a o o a O o o o O O o a O a O o o o o Q a o o o o a o o o o o sa a o a a o o a D C) 13 a o Cl o a  o o D a o o a o o o a a o a o D o D D a o O a O o o a o D a o o o a o Q o o a o o
o ta a Cï o o (3 o b ô a a r.î o Cl ti a  D  a  o  D a o o o o a o a a o o o O O o o O o D D o o o a o o D D o a D o o o o o

II, ftN ft An z ui ftM n U LA m N zLA tn s u o ft 3C z Orâ o z A (K ft 2
X 2 ft X Ji ft Mb ft ft KN u ft z in n O tn
a a o H ri E ft O A zù U. <.z ft A Z ub
z «L ft V) o A tn ft Z ft
a Z o 2 k ui n % U o

o Z z k o ft (K lu CL ft
râ râ ft ft o %«t râ CK CL u O z D %te < O lu Z O A k
LU 3 -J ft J Z ui N
3 lü U. n u I I ft k zW U O z ft Z ft u X M
U U 2 Q U ü. A m lü X
U U. k _J ft ft lO A LA <iü < Q Lu X ui lü U E

3 n k LU -J O o N X T X+ < Û U ft a O a k ft oci ft tu Lu in Z tn z urâ râ il LA O O X A X in CL>< Ll ft ft Z O -J A Mi A oQ Cl Z O J Z vO (K ui ok o Cï Z Lu in lu fto: Ü a X a O o a o oLU ft k Lu z o z ao lu O Z in z aC'J U z ft Z u Z -J -J zk iZ IL l/> u n: ui lüz 3 ft o CL z AU, tu râ o 2 et: a 2 J J o ui
ià O > fi ft O Mi CK D ft IL
a râ râ «J o Z Ztr UJ o W t u o ft U) fv. ft X Llk 11 a râ te ft z -J n o X _J z z CL
H o te te Ü ft Z U. 3 -J Lu X 0. in A lu A K Z) o X ow râ O  lu z 3 O o LU X m5 ft '4Ü Kg N z
P..- u tn LU tn 3 z> ü ft Uj ft ft A M U ft z oUJ w <4 te 43 LU z o U 2 tn V* ft ft oco te j»! z D 2 > ft ft lü m O tn Z tl. (K Oo râ L3 01 CL u ft E lU u tn X ft 2 2C tn ÜJ k h- ftz Q tA 3 0. lü iL u k u o A z u ft O o «tf X z A3 + «ç râ X u) ft # ü. l'D h- 0 vD z ,J râ> K lu m Z a UJ Mb3 «t LU K o ft in Û W o ft z o lu ft Z u R X 0*
X 5te te % râ LA A A lU 2 Z z J ft lü k ü. u z X CCft râ A râ N Mi ■ai m f t Lu O o X E u w ft lüs: uS N X Z O A O a z J ft Z Z A J o J u X u X fta D te O râ (N xO A Mb Z E lu k Lu ft ui z w u (L oUi 2 râ i l Cl d a ià a O «c Û X -J X o u œ o X zX o 2 -J 2 u f t k Lu lu f t f t D k A LA

t: H û i 4 Lu 2 ü. U. o m f t vb o < A o o
te te f t U z lu r. p J uA u D t?: yN r X Ul n. < râ fi 13 n f t ft %; CL z z a a CL z 3n*> X ft râ Ci z LU X te râ N X X o u z h* o UJ

d: IJ1 D râ A râ râ te N U X N N k a k p p O k tnII (N •» u& o râ X A v6 Q LU LU O Q X A o u Lu lü % lu O lu u
H a O r a U) 3 A Z a U ft Mb m lü ÜJ

N vi A râ Z râ LU f t CC f t 2
K G A D và râ 3 râ 2 Z LU 2ft A 1“ râ K X M X 0. 5II (ù râ o z Z X N N W o Oi k O z

w z LU O C3 Cl 2 u k Orâ w>< ) :a % t r. te LU Lit 2
o 1- ft o Uitj/ LJ o a Lu m tu kk

VI
Q.'

\-tu
5:
4:

d

(jJ
V]
J«t
Ç

N  m d- Ul -O X  CO O- O  *-*' N  IO d* in x  oo o* o  . ,  . .  ^
( N N N N N N N N C N N m r i m n m f l

*- X X X X X X X f M f v *  * *  " "f s X t f ' X X X X X X X X

9oGvi
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DSYS2 - Program Input
NOTEST (Integer-)

Defines.the number of generated independent 
realisations required (n ,B, MULT and SEED 
still only need be input for a single test. 
Each realisation assumes the next consecu­
tive SEED values, while maintaining original 
MULT values.)

NORNG (integer)
Defines the number of independent random 
number generators required. (For the polar 
generator used by the program this should 
be set to "5'* • )

NOFILT (integer)
Defines the number of autoregressive 
filters required, (For single track 
realisations this should be set to "1".*.)

FLTOHD (integer)
Defines, the order (i.e. highest lag value) 
of the autoregressive filter.

NOPTS (integer)
Defines the number of points on each 
realisation record, excluding those used 
during the initial transient of the 
autoregressive filter»

INTORD (integer)
Defines the order fo the Predictor 
explicit integration formula. It is 
recommended,, but not essential that 
this variable be set to ”5 " i although 
”4" or "6" are also permissable*

SXPLTH (Real)

HNO (Integer)

Defines the incremental spatial step 
length, h(x), which should be consistent 
with the lag increments of the auto­
regressive filter.

Defines the number of quantile segments 
either side of the mean value thus 
enabling a measure of quality control 
on the assessment of probability distribu­
tion - normally set to "4".

b l o c k : (integer)
Defines the number of consecutive realisa­
tion points along the record over which 
the mean square values should be averaged.
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BLOCK (integer) - continued
As this smoothing technique proved of 
little value for non stationary realisa­
tions,, it is recommended that BLOCK be 
set to "1” .

MEMBER (integer)
Defines a now redundant variable and 
should therefore he deleted from the 
program,

FI [ 1* NOFILT ,,1 ; NOFILT , 1 : FLTORD ] (Array)
Defines the autoregressive filter coeffi­
cients used by the road generator,
Fl[j,L,l] is input in a nested format,, 
with "ly the innermost loop, followed 
by "L", which in turn has "JT" as the 
outermost loop variable. More concisely 
this; can be expressed as follows

(J=l; N0PILT(L=1; NOFILT (1 = 1: FLTORD) ) ) .
If NOFILT = 1, FI is effectively reduced 
to a one dimensional array and the 
coefficients of a single AR filter should 
be input,
If NOFILT = 1, FI becomes a tri-dimensional 
array. Consequently, to obtain more than 
one independent autoregressive filter, 
the Fl[j,L,l] input, should be assigned 
to zero when J^L.

ROWTAW[1:NOFILT,1:FLTORD] (Array)
Defines the theoretical displacement 
road profile correlations,.
ROWTAW[FLTNO,l] is input according to 
the nesting format

(FLTN0=1:N0FLT(I=1;FLT0RD)).
For a single autoregressive filter 
FLTNO = 1 .
For more than one autoregressive filter 
FLTNO > 1.

MULT[1: NOFLT „ls NORNO] ,.SEED [l; NOFLT, 1 : NORNG] (integer Arrays)
Defines the primative root values of the 
variables MULT and the starting values of 
SEED, These quantities axe used by the 
random number generators, and are input 
as a MULT, SEED pair such the nesting 
format fox MULT[J„l] SEED[J ,,l] takes 
the form

(J=l; NOFILT (1=1: NORNG) )
N,B, For each autoregressive filter J ,
NORNG should always assume the value of
" 3 "
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NFREQ.ZETA (Real)
Defines the natural frequency and damping 
ratio respectively for each of the NOFILT 
degrees of reedom. NFREQ and ZETA are 
input in pairs fox each of the NOFILT 
degrees of freedom of the model.

DXT,D2XTG' (Real)
Defines the initial traverse velocity 
and acceleration in units of feet per 
second and "g" respectively. These 
quantities are input as pairs for each 
of the NOTEST independent tests.
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