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SUMMARY

The technique of sample averaging is considered for application to
the non-stationary vibration problem associated with road vehicle
ride, Time history realisations of the vehicle response are achieved
by a discretised lumped parameter model idealisation simulated on a
digital computer., Sets of realisation histories are collated to
obtain the overal statistical response characteristics. The road
vehicle ride problem is the result of random road roughness exciting
the vehicle as it traverses the surface. This dynamic excitation may
be considered as a stationary function of time, provided the vehicle
traverse velocity does not vary. Under variable velocity conditions
the excitation is a non-stationary function of time. It is the solu-
tion of this non-stationary accelerating vehicle problem which is the

subject of this study.

An glternative method of solution for the non-stationary vehicle prob-
lem has already been achieved., This alternative, like sample averag-
ing, places heavy emphasis on the use of numerical methods on a digital
computer for the evaluation of results. Unlike sample averaging, it

is not normally applicable to road vehicles which possess significant

non-linear dynamic characteristics in their suspension configuration.

Ultimately the objective of this thesis is to make a comparative
appraisal of the viability of sample averaging as a general means of
determining the non~stationary response characteristics of road vehicles.
To permit full justification of the technique and thereby ensure flexi-
bility of application, it is imperative that all methods of digital

simplation are scrutinised prior to implementation,

In essence the simulator consists of two distinet numerical modules,

One module is concerned with the generation of g large sample of statis-
tically independent road surface profile realisations, while the other
applies itself to analysing vehicle response. The additional problems
encountered when interfacing the two modules are also fully investigated.
Upon implementation, the simulator proves itself a flexible and viable
too0l for the solution of the non-stationary problem while providing

some surprisingly new observations.
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CHAPTER I

THE NON-STATIONARY VEHICLE PROBLEM - AN OVERVIEW

1. Problem justification and objectives
In the field of road vehicle engineering, vibrational response is an

important consideration. Vibrational response is of fundamental
concern to passenger comfort and to component stressing and fatigue.
The main source of vertical excitation is caused by road surface
roughness transmitted through the vehicle suspension system to the
vehicle itself. Optimal design of the suspension system is con-
sequently of considerable importance. The dynamic parameters of
both vehicle and suspension influence the optimisation, as does the

nature of excitation caused by road surfacé roughness.

Much work has been done in the statistical description of road

surface roughness. - Strong evidence exists to support the cldim that
vertical undulations on a road surface profile can be considered
stochastically stationary with respect to traverse (or spatial)
distance along this profile. Should the road vehicle traverse this
profile at constant velocity, the resultant vertical input excitation
to the base of the vehicle suspension can be considered stochastically
stationary with respect to both time and spatial distance., (Station-
arity with respect to both time and space follows automatically from
the linear relationship, at constant traverse velocity, between both
time and traverse distance.) Thus at constant velocity, a linear
suépension system can be analysed using the standard simplifications
of stationary stochastic dynamics (see eg Ref. 1). However, under
variable traverse velocity conditions the input excitation ceases to
be stationary with respect>to time. Since the suspension system has

a vibrational response which is time dependent, then non-stationarity
with respect to time adds considerably to the complexity of any stochas-
tic dynamic analysis. It is the analysis of such non-~stationary sus-

pension response that is of concern in this thesis.

Several interesting solutions of displacement response characteristics
of road vehicles subject to varying velocity have been presented be-

fore (Ref. 2 and 3). Their solutions are specific to particular




road profile correlations and rely on the evaluation of compli-~
cated double integrals with infinite bounds. Evaluation requires
specialisgt knowledge and cannot therefore be readily applied by

the vehicle design engineer to all practical road profile cor-
relations and design configurations. It is the objeétive of this
thesis to investigate the practicability of sample averaging at
fixed time instants, a set of computer simulated realisation his-~
tories (henceforth referred to as the sample average (SA) technique)

as an alternative desigm tool for the non—spécialist design engineer.

This SA technique has certain inherent advantages over the evalu~
ation of complicated correlation double integréls. All information
concerning each realisation ié avallable at little extra effort for
further analysis and interpretation. Thus, not only cén.information
concerning the mean square displacement response be obtained, but
also information concerning vertical velocity and acceleration
response characterisﬁics and their associated probability distri-
butions. As the anaiysis ig done by determining transient response
realisationg, it should be possible to cater for.hon-linear sus—
pengion systems. The non-definitive nature of statistical infor-
mation from a sample of deterministic realisations is the major
weakness in this approach. However, this aspect is also fully

investigated.

Before launching into the detailed arguments for the comﬁuter sima-
lation approach employed,'a brief Jjustification must be given for ‘
choosing to simulate on a computer rather than by physical model
tests. Two arguments apply. The first concerns flexibility; a com~
puter simulated model is readily amenable to wvariation in the physical
parameters and obviates the need to have such "variation" components
manufactured. Secondly, computer simulation is far more cost

effective.

A digital rather than & hybrid computer was chosen for two main
reagons, The type of hybrid which would lend itself to this type of
problem was simply not available at that time., Secondly, specialist

hybrid machines are far more difficult to justify than general purpose
digital machines. Consequently, digital machines are far more widely




distributed and correspondingly interest in digital solution
techniques is also greater,

The objectives of this thesis are therefore to investigate the
viebility of sample averaging as an alternative approach to the non-
stationary vehicle problem. As a result of the additional statis-
tical information made available by this SA technique, existing know-
ledge on the non-stationary behavioural characteristics of road

vehicles is extended.

2. Formation of the gimplified vehicle model

From the point of view of dynamic excitation a road wvehicle can be
regarded as an elagtic frame or monocoque structure mounted on
several heavily damped spriné suspension units. The relative stiff-
ness and mass ratios of the frame compared with the suspension is such
that the frame can be considered g rigid mass when the suspension
system is analysed. A lumped parameter model of the vehicle suspen-
sion can therefore be considered. In this idealised system all
stiffness and damping parameters are lumped on the suspension while

most inertia forces are attributed to the rigid frame.

Several suspension units support the frame., In a full dynamic
analysis of the vehicle suspension all relevant degrees of freedom
and the interaction (or cross coupling) between them must all be

modelled. However in establishing the viability of sample averaging . -

simulated time realisations, the majority of the fundamental problems
which require proving are exhibited in a one degree of freedom
lumped parameter model. (A one degree of freedom model is also
desirable for comparison with the aforementioned existing solutions.)
Analysis of a one degree of freedom model is therefore considered
sufficient as vindication of the viability of the sample averaging
technique.

The description of road surface roughness is an important aspect of
the vehicle suspension model as it is the source of excitation.
Normally only vertical input excitations are included in the model
simulation., There are two reasons for this. Firstly, suspension

units are designed to be more 6r less rigid with respect to all
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lateral movement. Secondly, the vehicle configuration ensures that
any latersl input excitation along the line of wvehicle traverse,
would either be absorbed as rotational énergy to the wheel alone,
with negligible transmission to the suspension unit, or damped out
by the tyre itself.

A congiderable number of investigations have been undertaken to
establish the statistical characteristics of vertical displacement
road roughness. There is strong evidence to suggest that the ver-
tical displacement road surface roughness adheres to a Gaussian
probability distribution. However the spatial displacement auto
correlations (or equivalent spectral wave number characteristics)
vary depending on the class of road under consideration, It is usual
therefore to define a road profile in terms of either the spatial
displacement auto correlation or wave number spectrum and assume the

probability .distribution is Gaussian.

A mathmetical description of the one degree of freedom vehicle sus-
pension model can now be formulated (See fig 1.1). (In future for
brevity this model will be referred to as the vehicle model.,) The
vertical equation of motion of the vehicle model takes the form

my(t) + cy(t) + ky(t) = cz(t) + ka(t) (2.1)
where m = lumped inertial mass coefficient of the vehicle

c = viscous damping coefficient of suspension

k = ptiffness coefficient of suspension

y(%t) = time dependant vertical displacement response

z(t) = time dependant vertical displacement input excitation.

The single dot above the variables y(t) and z(t) denotes the derivative

with respect to time
eg. z(t) = dz(%)
dt

while the double dét‘denotes the second order time derivative

ee. y(t) = sﬁzg)
dt

The input excitation displacement and velocity, normally described
in terms of the spatial road profile, are thus defined in terms of




the horizontal traverse distance, x. Consequently vertical dis-
placement and velocity (or displacement gradient) are denoted
respectively by

z(x) andz/(x) = dzfx)

dx

These quantities are related to their time based counterparts,
z(t) and z(t), by the instantaneous traverse velocity x(t), in

accordance with the following simple formulae

z(%) z(X(t)) - (2.2)

n

z(t) = dz(t) = dz(x), dx

dt dx at
rd .
= z(x). x(‘t) -(2-5)
Note Henceforth, the superscript dot () will refer to the

derivative with respect to time, while the superscript prime (') will

refer to the derivative with respect to the spatial variable, x.

It is also convenient to use the term spatially stationary to refei

to quantities which are stationary with respect to 'x', while the

term stationary refers to quantitiés which are stationary with respect
to 't'.

3. Methods of analysing the non-stationary vehicle problem

A brief outline of the possible methods of tackling the non-stationary

vehicle problem are now given to facilitate more detailed discussion,

The alternative method to sample averaging used by Ref. 2 and 3
relies on the evaluation of complicated double integral formulae to
determine the mean square displacement response characteristics.
These double integral formulae are obtained from the convolution

integral relation t

y(t) = [H(T)z(t-T)aT (3.1)
0
where y(t) = displacement response at time, t
z(t) = input excitation displacement at time, t
H(t) = impulsive receptance of the dynamic system

at time,

which determines the displacement response at time t of a linear
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dynamic system initially at rest, and from the relation which

defines the response autocorrelation function Ry(tl,tQ)

ie Ro(ty t5) = (y(t)y(8,)) (3.2)
where (y(tl).y(tQ)) denotes the expected value of the product

Substitute (3.1) in (3.2) to obtain the mean square response

convolution integral formula

- -]

R (ty,%,) 3iw§:ﬁ(Tl)H(T2)Rz(tl-ml)ﬂz(ta-Tz)dmldTQ. (3.3)

Normally, the relationship between the elapse time, t, and the traverse
distance, x, is explicitly defined, and it is possible to reformulate
the right hand side of (3.3) in terms of the spatial variable, x., It
is this approach that forms the basis of the investigations of Ref, 2
and 3. As this approach is based on the convolution integral, it is

consequently restricted to linear suspension configurations.

The evaluation of the resultant integral formuls is an extremely
difficult numerical problem. In Ref. 3 the authors achieved simplif-
ication by the careful selection of road profile autocorrelation
which had a particularly simple analytic form. Their technigue re-
quired specialist knowledge and is not readily applicable to all road
profile correlations., The results obtained upon evaluating these
integrals are, ignoring numerical error, definitive on the expected
value. This is a quality which sample averaging does not disﬁlay
because of the statistical scatter which must be present in a finite
sample. It isg the definitive nature of the golution which made this
method so attractive to the authors of Ref. 2 and 3,

As yet the only resulis available by this alternate method concern dige
placement resgponse values., Should a derivative response correlations
be required it would be necessary to repeat the evaluation with a dif-
ferent mean square regponse convolution integral approximately doub-
ling the work involved, Not only is this approach restricted to

linear suspension configuretions, but no information at all is avail-

able on the probability distribution of the response characteristics.




The teehnique-investigated in this project is that of sample averag-
ing., It relies on the assimilation of statistical information ob-
tained from a set of random time histories simulating vehicle
behavioural response. FRach input excitation realisation is & gener-
ated sample member of a stochastic population which possesses the
statistical characteristics (road profile correlation, probability
distribution and time variant traverse velocity) for the case in

guestion. Conceptually, the approach is very simple,

Since this approach is based on sgimulating the transient response
histories, inherent advantages resuli. These advantages are listed

below

1) Vertical displacement, welocity, and écceleration response
histories are all present in each iransient simulation. It is
therefore pogsible to establish all statigstical response charac-
teristics (ie mean square values and probability distributions).
Such characteristics are important for passenger comfort and com-

ponent fatigue considerations.

2) Ag trensient solutions are being evaluated, careful design
of the numerical factors in the vehicle simulator should allow

for the analysis of non-linear vehicle sgystems.

3) The method of generating realisations of the road profile
allows both realistic and elegant analytical correlations to be

simulated with equal ease.

Again it must be emphasised that, with this technique of sample
averaging, statistical scatter must be anticipated. Consequently
the results will be non-definitive. TUltimately it is the magnitude
of the tolerance achieved by a physically manageable sample size
which will decide the viability of sample averaging as the method of
solving the non-stationary vehicle problem.

4. Segmentation of the problem

When extracting non-stationary response characteristics by sample aver-

aging the analysis breaks naturally into two main segments, The first of
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these is concerned with the design of the overall road vehicle
simulator on a digital computer. The other segment is concerned
with the statistical interpretation of this sample of simulated

realisations,

Investigation of the numerical techniques required to implement the
road vehicle simulatoxr compfises the major part of this thesis. The
extensive nature of the numerical investigation does not mean inflex-
ibility of application. Once established, the simulator can be
readily applied to any design configuration and road profile correl-
ation, It does not therefore affect the technique's usefulness as a

design tool.

The problems associated with the road simulator design can be further

subdivided as follows:

1) The Road Profile Generator is concerned with the problems
agsociated with the generation of a family of statidtically

independant random road profile realisations

2) The Dynamic Vehicle Integrator is concerned with the
problems of digitally simulating the vehicle response

3) ' The Road Vehicle Simulator is concerned with the problems
of interfacing a spatially stationary road profile generator to
a time based dynamic vehicle integrator while including the

effects of non-stationarity.

In the sections which follow, the problems associated with simulation

and statistical interpretation will be briefly discussed.

5. The Road Profile Generator

Both displacement, z(t), and velocity, z(t), are required as input

excitations to the vehicle model equation of motion (2.1). The road
profile generator is required to generate these input realisations.

It is essential that these realisations manifest the correct statis—
tical input characteristics. It is also essential that each realisa-

tion is independant of all others in the sampled population to ensure




correct statistical representation.

This requirement for a large number of iﬁdependant reglisations of
the road profile prompts the consideration of linear stochastic
difference equations (LSDE) as a means of road profile generation.
However, by using such difference equations, it is only practical to
consider stationary profile realisations. If these generated
profiles are made stationary with respect to time it is only possible
to consider constant traverse velocity cases which.is contrary to
the objectives of this thesis. However, if the generators are made
spatially stationary then it is possible to include the effects of
variable velocity in the equatidn of motion of the vehicle model.

It is this latter option which was selected.

Choosing and implementing a linear stochastic difference equation
as a means of generating road profile realisations at spatially

~equal increments is considered in some depth in the ensuing chapters.

Q

6. The Dynemic Vehicle Integrator

The dynamic vehicle integrator is required to simulate the vehicular
response when subjected to prescribed vertical displacement and veloc-
ity excitations. The equation of motion of the time based vehicle
model is given by (2.1). However, the prescribed excitation inputs
are described in terﬁs of spatial increments, x, and so, as mentioned"
in the previous .section, it is necessary to introduce the effects of

variable traverse velocity through the equation of motion,.

The transformation of (2,1) from a time base to a spatial base

(or vice versa) is easily accomplished provided the instantaneous
traverse velocity is explicitly defined. TIn order to simulate the
transformed equation of motion it is necessary to consider a numerical
integration technigue which can accommodate variation of the dynamic
parameters of differential equation (2.1). It is also desirable to
choose a method which can accommodate non-linear suspension con-
figurations. A search for a suitable integration technique was

required.
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Te The Road Vehicle Simulator

The problems encountered by having a gpatially based road profile
generator and a time based dynamic vehicle integrator were briefly
outlined in the previous section. It is necessary to consider how
these segments can best be interfaced. A 'spatially based formulation
is eventually chogen. The reasons for this decision will be discuss-
ed.

8. interpretation of the Statistical Results

The ability to assess the statistical'performance of any arbitrary
road surface and vehicle suspension configuration is the ultimate
objective of this sample averaging technique. The methodk viability
rests on the ability to attain a reasonably definitive molution from
physically manageable sample sizes. Consequently, the gquality of all
statistical information obtained by this method must be studied in
detail, The problems associated with extracting meaningful answers
from manageable simulation sample sizes must also be considered

before reaching a conclusion on the method's viability.

Non-stationary results available from Convolution Integral approach

provide a means of checking this sampling technique.,

9 Conclusion

Consideration of vehicle suspension design is of crucial importance
in the reduction of the road vehicle's vibrational response, The
primary source of excitation is caused by road surface roughness as
the vehicle traverses the road profile, Under variable traverse
velocity conditions, the standard simplifications of stationary
stochastic dynamics no longer apply and other methods of analysis
must be sought.

Unlike the Canvolution Integral approach, this sample averaging

technique can readily be applied to non linear suspension




configurations. The Convolution Integral approach proves rather
unwieldy for the solution of new road profile correlation problems,
in particular those profiles with no elegant mathematical form. The

sample averaging approach is totally correlation profile independant.

Sample averaging also reveals all additional statistical information
(derivative mean square response characteristics, probability dis-
tributions) as a natural by-product of the solution method. However,
it is the degree of convergence obtained from & limited sample of
reglisation records that will ultimately determine the viability of
the technique.

It was proposed to consider a one degree of freedom vehicle sus-
pension model, Awfne degree of freedom model displays all the
characteristics necessary to ascertain the feasibility of sample
averaging for solving the non-gstationary wvehicle problem, :
;
To ensure proper design of the road vehicle simulator, it is necess-
ary to carefully consider the numerical properties of the various
digital simulation aspects. The complexity of designing a road
vehicle simulation should not influence the method's ultimate
viebility, for the design of this numerical tool is a once only

operation,

Comparison with existing non-stationary mean square displacement
response results provides valuable insight into the nature of statis-
tical scatter present in averaging a set of sample realisations, as
.well as ascertaining the method's ability to cope with non-stationary

problems.
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CHAPTER II

USING THE LINEAR STOCHASTIC DIFFERENCE EQUATIONS (LSDE)

1. Introduction

The type of second order ordinary differential eguation that requires

solution in problems such as the vehicle problem is given by

my{t) + cy(t) + ky(t) = cz(t) + ku(t) (1.1)

where y(t) is the displacement response at time, t,
z{t) is the random_input displacement at time, %,

and z(t) is the derivative of z(t) with respect to time.

An equation of the form of (1.1) requires both displacement and the
velocity (or slope) road profiles,z(t) and z(t) respectively, to be
input. Each road profile realisation in the sample must be statis-
tically independant and must adhere to the correct auto- and cross-
correlation cuf%es, while at the same time exhibit Gaussian probab-
ility distribution., It is proposed to generate independaﬁt Gausgsian
probability distributions by means of a Gaussian random number

generator and to use LSDEs to obtain the correct correlations.

It is the selection of the most suitable type of LSDE which is con~
sidered in this chapter. Considerations concerning the LSDE are
easily the most complex part of the road profile generator. For
general reference on the subject consult for example ref, 1 or 2.
Discussion on how to obtain independant and correct probability dis-
tributions for the profile generator is left until chapter III. As
the generator is required to generate both displacements z{t) and
velocities é(t), the requirement for cross-—correlation between

these two random signals suggests that multivariate LSDEs must be
considered. However, the special relationships between all auto- and

]
} cross-correlations (displacement, velocity, displacement - velocity,
r velocity - displacement) permits a monovariate LSDE to fulfil all

generator requirements (see chapter III).




The object of this chapter is therefore to consider the theoretical
aspects of the various types of LSDE and assess which can most effec-
tively generate road profile surfaces. It is also desirable to A
readily establish the filter coefficients when new road correlations

are considered.

2. Types available

The road profile is assumed to be of a stationary nature and as a

consequence of this only three types of LSDE need be considered.

These types are Autoregressive (AR), Moving Average (MA), and Mixed
Autoregressive Moving Average (ARMA) filters

A1l three types are covered by the general difference equation

3 L Fn
AT o= = b, . . : 2.1
i=0 1+ D-i Q jéb J n-=j ( )

If p>0and g = 0, then it is an AR of order p.
If p=0and q> 0, then it is an MA of order g.

If p>0 and q > 0, then it is an ARMA of order p.q.

The a;'s and b,'s are weighting coefficients and the ratio 1/Q

is the scaling factor. The suffix 'n' is the current discretised

sequence increment, and r, is a sequence of mutually uncorrelated

J

random variables having a zero mean and a variance, Var(r).

Clearly, the AR and MA models are particular cases of the more
general ARMA model., It is however useful to consider the properties

of all three cases.

A relationship exists between the “ai" weighting coefficients of
the simple AR filter and the ”bj” coefficients of the simple MA
filter. (Refer Appendix A)

This relationship is important in two respects, It demonstrates

that a finite MA filter can be replaced by an infinite AR filter




and vice versa, and that the "b‘»j's weighting coefficients of an MA
filter can be directly determined from knowvm equivalent "ai" coef~

ficients. The converse is also true.

‘The determination of the "bj"S from equivalent "ai"s is crucial in
establishing sensible MA and ARMA models.

B Stability and Invertibility requiremenis of LSDEs

Stability and/or invertibility are prerequisites for all LSDEs.
Consequently these crifteria are considered before any detailed
discussion on the particular types of LSDEs available. Both

requirements are considered together as they are related.

Consider equation (2.1) with the scale factor l/Q, set to unity

D qb
St i T 3oy o (32)

By definition the laplace Transform, F(s), of any time dependant

function, f(t), is given by
[¢ 2]
F(s) = [ £(t). exp (-st)dt (3.2)
0

Multiply egn. (3.2) by exp (~khs) to give

exp(-khs) F(s) = 5: £(t) exp [ -(t + kh)s ] dt (3.3)
Let t = T - kh and substitute in (3.3) to obtain
exp(~khs) P(s) = Sw £(T - ¥h) exp (-Ts) 4T (3.4)
0

Consequently, multiplying the Laplace transform, F(s), by exp(-khs)
is equivalent to delaying the time dependant function, f£(t), by

"k" increments of length h, and vice versa.

The right hand side of (3.1) possesses a non-recursive formulation

(ie no feedback properties). Consequently, for the purpose of
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stability analysis, it can be regarded as a single input
quantity, ﬁﬁ such that

5 | (3.5)
Rn = j%obj rn_j .

Thus, ﬁﬁ can be regarded as the total stable filter input.

Equation (3.1) can now be written in the form

r —
320 i Zn-i Rn (3.6)
Take the Laplace Transform to obtain
p : . _
- ¥ a,; exp(-ih§) z(8) = R(S) (3.7)

i=0

From control theory the transfer function, TF(S), in the complex
S - plane is given by

TF(S) = z(8) =2t
'ﬁ( S) % a; exp(—ihS) (3.8)
i=0

For stability the roots of the denominator in (3.8) must all lie in
the negative half of the complex S - plane., If the denominator

P P
s . -1
Y a;exp(-ihs) = JI (1- ¢8) = O (3.9)
i=0 i=0
where gi,for i=1, 2, -~ pyare the roots, then for stability

gi:s 0 for all i. TUnfortunately, the form of the denominator makes

the factorisation into roots very difficult.

As the filter (3.6) is discrete, time increments, h, elapse between

sampling instants. An upper band sampling frequency,(ﬂs max’ is
effectively imposed, such that
Wg pax = 28 : (3.10)
h
All frequencies greater than w cannot be processed by the

8 ma.}(/z

filter.
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Thus the effective stable region of the complex S - plane is the

region bounded by the lines

- 00 = Re (gi) <0 )
) (3.11)
- 19 my & I .(gi) < l-gx_s_,,,a,(;
2 2

The stable region defined by (3.11) maps into the unit circle in
the complex A—plane if the complex transformation A = exp(s) is

implemented. Thus in the )\ - plane the stable region is given by
A} =1

Employ this transformation A = exp( hs) to the denominator in the
S - plane (3.9),

hence,
P
> Eai exp ('-ihS) = 0 >
i=0
in the S ~ plane
becomes,
P . .
i -
¥ ai>\ = (1-—hi AN)=0 (3.12)
i==0 iuo

in the A- plane, h;, for all i, ave the roots
If the = 4 InA = 1m A *)

then exp(ihs) = )\ig

(3.12) is the characteristic equation.

For stability all roots hi must lie within the unit circle, ie
|n;|=1

Consequently to check for stability it is necessary to solve the

characteristic polynomial (3.12) and evaluate the roots 8-

To solve for roots of high order characteristic polynomials, by

numerical means, proves difficult., The polynomials are very
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frequently ill conditioned., Roots near the stability bound may
therefore be misinterpreted.

To overcome this problem another complex transformation from the A

to the W - plane is implemented by means of the relation

A = W4+ 1
W-1

(%.13)

The stable region is transformed from within the unit circle of the
A - plane, to the negative half of the cqmplex W ~ plane bounded
for stability by

Re (W) < o ’ o (3.14)

In the W — plane the transformation of the characteristic equation
takes the form

at s i

ié% dy, W o= 0 (3.15)
The solution of this polynomial is no more easily accomplished than
the solution of the characteristic equation (3.12). However, as the
stability is Re (W) <0, it is ammenable to the implementation of
the Routh Hurwitz stability test (see chapter III). By this means

the problem of ill conditioning is overcome.

For the stability considerations attention is concentrated on the
recursive AR filter part (left hand side) of (3.1) and the inputs
Tmd grouped in the single input variable, ﬁ;,defined in (3.5).
However, another criterion must be considered to ensure a sensible
filter is obtained. This criterion is known as invertibility.

The relevance of invertibility is demonstrated by focusing atten-
tion on the non-recursive MA right hand side of (3.1) so that a

filter of form

- 9
% on b, T g (3.16)

is obtained.




Transform into the A\ - plane, to yield
. . .
z(A) = Y b, AT, »(A)
j=0 9
q _ -1 .
5 L . (5.17)

where, gj“l, for all j, are the roots of the characteristic

equation.

(3.17) can be reformulated as

-1

a
(II (17" 2,)) R(A) = =(R) (3.18)
3=0 ‘ o

Expand the left hand side in terms of partial fractions to obtain:-

> k. RA) = =(A) (5.19)

3=0 =1
875 Aj)

where Kj is a scalar constant.

The factor Y

of (3.,19) can be expanded such that
(1—gj P\j) : :

1
—_— ] -1 : -1 2
(1—gj Aj) = , 1+(g3 Aj) + (gj AJ) teee

The series is convergent if lggl|<:1
ie if |a;f>1.

Consequently, by consideration of this constraint imposed on the
equivalent AR filter, it becomes obvious that the roots of the
characteristic equation, gj, of an MA filter must satisfy the
condition |gj|:>l, for j=0, 1, 2 ... q, to ensure a sensible
filter.




4. The Autoregressive (AR) Process

4. 1 Derivation of Yule-Walkexr Relations

The monovariate AR process takes the form
D

Za =S By gt Ty (4.1)
i=1
where the a{ s are the weighting coefficients and = is a

series of mutually uncorrelated discretised random inputs, having

zero mean and variance
Var(r) = (r, T, "p" is the filter order.

Pre multiply by z;l ,where k = 1, 2, 3,-—- p, to obtain

~K

1Y
Znek ’n < > 8 "nk Zn~i ¥ %n-kx Tn
i=l

Taking expected values yields the following relationship

P
Cp =2y 8 Cp g ' (4.2)
i=1
where Autocovariance, C, = <zn-k Zn>
and Zk rn>> = 0, since Z %

is only influenced by inputs T, up until time increment i = (n-k).

The autocorrelations, Ri’ ean then be obtained by dividing through-
out by Co' 80 that

D
R = 221 a; R (4.3)

1
[

where Rk is the Autocorrelation at lag k and RO




R

Expressing this in matrix form, (4.3) becomes

1 1 By BorrrRoall®™
Sl T Raw B || 22
R R R R C.

P p-1 p-2 P-3 ®p

Since the autocorrelation function is symmetrical about the zero

lag point, then

R—k = Rk where k = 1,2, 3. . .p

‘so that the relationship becomes -

x = R.a (4.4)
T
where r = [Rl R2 . . e Rp]
aT = [a a 8
—~ - l 2 » L] . p]
and R = 1 Rl R2 Rp-l
Rl 1 Rl _ .
R2 Rl 1 .
anl . . .. . . .1

(4.4) is the Yule-Walker relationship.

The weighting coefficient vector, g, can be easily and uniquely
determined from (4.4) as follows:-

a = R".r (4.5)

Unfortunately the efficiency of this method of coefficient deter-
mination decreases as the square of process order, p, due to the

necessity of inverting the square matrix, R.



The filter output variance, Var (z), can be determined by taking
expected values as in (4.2), but this time with, k = 0, so that

P
c, = iéiai C—i + Var(r) (4.6)
Since, {( z _ . T ) = (T, .7, )

Divide (4.6) by c, =Var(z), to obtain

2

. .
1l = a . ar\xr» .
gil g By +V ( )/Var(z) (4.7)

Recall that R, = R and rearranging (447) yields

Var(z) = . var(z) . . (4.8)

1 - Y a, R,
iall +

4. 2 Least Squares Agymptotic Estimation

When using the Yule-Walker relations to establish the weighting
coefficients, "ai", en inverse square law exists between efficiency
of coefficient evaluation and filter order, p. It becomes increas-
ingly desirable with higher order filters to establish a more

expedient means of solution.

This can be done by employing a pivotal reduction technique used in

regression analysis.

To establish a filter of order, p, it is first necessary to determine

the weighting coefficients a (i) for i=1, 2, ——p .

The superscript (i) refers to the coefficients present in the ith

order Yule-Walker representation.

Recall the Yule-Walker relation for order p is given by (4.4)

For a first order relation, i =1, a(i) = Rl




From the second order case, i

-}y 5-

- 2, by eliminating a.(2)

1 R
Det 1
ag?) - R1 R2
1 R
Det 1
Rl 1
and similarly, for i = 3
1 Rl R2
Det R1 1 Rl
3(33) ] R, Rl R3
| 1 Rl R2
Det Rl 1 Rl
R2 Rl 1
. ete.
and for i = P
1 Rl * . Rp..l
Rl 1 . . Rp~2
Det
R
a;P) p-1 Y
R1 1 . Rp_2
Det
Rp_1 1
(1)

Thus, the coefficients a)" "y

established.

G2, WP,

N N S e \,/\_/\_/V\_/vvvv\._/\_/\_/vv\./vvvvvvvvvvvvwvvvvvvvvvvv L N N . ey

(p)

1

are

(4.9)
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The a (1) coefficients, for Jj< i, can be determined recursively

J

as follows:-—

The second order Yule Walker relation, yields

(2)
1 R1 al Rz
)|~
Rl 1 a2 R.
or in matrix notation
R, .a, = T, (4.10)

Imbedded in the third order relations are the equations

() ., g .0 _ g

8'2 2 5 =

1

R, al(5) N a2(3) + Ry a3(3) - &,

which can be rearranged, such that

R - r a3

R - R a3l

ie

iy

- ey 5 (4.11)

S
\v)
~
N
~—
N
=
N
!
j=v}
N




and from (4.10)

-1

substitute in (4.11) to obtain

) (3)—

e o . etcl

(i+1)

ai+l

a(i+1)
J

(@)
1

L (@)
2

heras
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(3
pJ

R ji (1) ¢
vl ) &y i+l
i €]
1- - :Z aj Rj
3=1
(1) (i+1) (i)
&5 TRa 0 Boja

M e S M S

(4.12)

for j = i, i"‘l, ooo-l

For high order AR filters this method of establishing the weighting

coefficients is far more efficient.
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4. 3 Roots of the Characteristic Equation and the Effect on

Performance.

The AR filfter can be expressed as
P

2 %1%y T Ty (4.13)
i=0
which has a characteristic equation

D -
Zo a; AT i = 0 (4.14)
i= ‘

On factorisation this becomes

P -1
1 -g, - 0 4.15
{l' (1 -g4 A) , ( )
vhere g;, i= " 1, 2...p, ave the roots of (4.14). Each root

can be either real or complex.
The AR filter must satisfy the constraint of stability (see section 3).
The AR filter can be regarded as a digital filter, which has a trans-

fer function, TF(S), in the complex Laplace domain (or S - domain)
such that

T,F(S-) B -—(-TZH(S) = (4.16)
r 5 25 5, exp(gihs)
“i=0Q

where Si is a constant.

Thus the filter response, zn, for 0=n<~N, can be regarded as

being composed of a sum of damped exponentials (assuming stability
is met). If the root g; 1is complex, the damped response is

ogcillatory, and non-oscillatory if 85 real,

Since the input T, ig of a random nature then these exponential

decays, between one time increment and the next, must have arbitrary

rendom phase,
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As a consequence of the AR filter's recursive nature resulting in
damped exponential response characteristics, an efficient order of
filter parameter idealisation can be achieved for a comparatively

high order process correlation, provided phase is unimportant.

4. 4 Stability

AR filters ére by nature iterative and as such are subject to
numerical instability problems. (In stochastic time series analysis
literature stability is often referred to as stationarity.) The
stability criterion namely :lhi[c: 1 where hi are the roots of
the characteristic equation was established by (3.12).

There is no guaranteed method of establishing weighting coefficients
which are stable. The best that can be managed is to test their
stability before the filter is implemented

A scheme to check for stability is described Iin Chapter III -~
Implementation of a mono-road profile. '

How severe a restriction stability may prove to be, will depend on
the correlations of interest. However, it vaS'empirically observed
in the correlations tested'thaf stability was aiways achieved

(see Chapter IV).

4. 5 Power Spectral Density

The power spectral density can be derived directly from the ay

weighting coefficients in the following manner.
From Appendix B, the power spectral density, S(f), is given by

s(£) = 2.vax(r) |v. exp(- i2ws )|? for 0<£<k (B.7)
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and from Appendix A,

b(B) = a >(B) . : (4.4)

where a(B) = ézg a; B*

and BY is the ith Backward shift operator,

and hence the power spectrum is given by

s(f) = 2 Vvar(r 0<r<%

|f a; exp(- i27e )] B (4.17)
R io0s

By comparing this spectrum with the original road spectrum, an casy
check of the filter model's validity is provided}

5. The Moving Average (MA) Process

5. 1 Derivation of the MA PFilter Coefficients

The monoyariate MA Process takes the form

z, = ij 1m3 ' | ; (5.1)

where the "bj"S are the weighting_coefficienfs and r o, for

0£n<N, is a series of mutually uncorrelated random inputs with

zero mean and variance, Var(r). "q" is the filter order.

Pre?mﬁltiply by z for k=06, 1, 2,++~q, to obtain

k!
Zp-k*%n %j By Tholemj . % bJ n-3
J=0 J=
Take expected valui?, so that
Ck = Var(r) J%n; bj bj-i-k ' (5.2)
where autocovariance, C = <?nrk:yn>

Since rn(t) is mutually uncorrelated, for O0<n<N,

then <rn—k rn> = . Var(r) for k = 0
= 0 for k # 0
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To obtain the autocorrelations divide by Co’ thus

q—k N
R, I Var(r) (543)
Jj=0
where R = Ck/C is the autocorrelation of y(t) at lag k.
i O : -

Express (5.3) in the matrix form

i B [+ e h
R, by by by ... By Fbo
b
By 0O By by b1 1
sz = Var(r) |0 0 by ... bq_2 b,
R 0 0 v.evae.bd b
0
| q;i | L9
or more concisel&
r = Var(r) B .b (5.4)
~J -

Unfortinately, these equations possess no unique solution as there
are q! cross products "bibjﬁ, where j=0, 1, 2, ——yqand i =

o, 1, 2, ~~-yg-J, and only q equations to establish their values.

The "bj" weighting coefficient can in fact be shown to be unique,

once the constraint of invertible stationarity is considered, This
is proved in subsection 5.4 for the general ARMA model of which the
MA model is a subspecies. o '

To meet the invertible stationarity constraints the "bj" weighting

coefficients must be arrived at by an iterative numerical technique.

The output variance, Var(z), is given by (5.2) when k = 0, mo that
Var(z) = Cye

5.2 Bfficient Calculation of MA Filter Coefficients

In Appendix A the relationship

b(B) = a"l(B) is established (A.4)
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This relationship is used by Durbin (3) to establish the coef-

ficients, "bi", from a set of established AR filter coefficients,

"ai". The goodness of fit to a fixed order MA process is depen-
dant on the order at which the equivalent infinite AR process is

truncated.

This meang of numerical estimation ensures that the invertibility
constraint is met (see section 3). Unfortunately, it proves to be
intractible for high ordexr MA filters.

Another means of estimating the "bi" coefficients is to use a

Newton Raphson iterative technique to make an estimate of the

“bi" coefficients.

For the (i+1)™® iteration the relationship is

E}+l = ‘E} '(Qi)_l,E}
where fi = g} E}
D = B +3
B = bo b1 .« . bq—2 bq_1 bq
bl b2 ‘bq-l bq 0
b b b 0 0
2 3 q
b 0 0 0 0
q

and B is as defined in subsecfion 5.1,

Unfortunately, this method takes no account of the invertible
stationarity constraint imposed on the "bi" coefficients. Once

this constraint 1s imposed this method is also intractible for
high order filters.

(5.5)
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5¢3 Roots of the Characteristic Equation and the Effect on

Performance

The MA process takes the form

= q
% ST 5 Tnj (5.6)
50

This has the characteristic equation

q .
- - n_ -
> bjP\( . 0 (5.7)
J=0
which after factorisation becomes

q ©Z1 :
J=0 : :
where gj, j=0,1, 2, ..,q, are the roots of the characteristic

equation, and can be either real or complex.

The MA filter is not subject to the stability constraint but
ingstead is subject to the constraint of invertibility (see

section 3).

The MA filter can be regarded as a digital filter, possessing the
digital transfer function (T.F(S))

Tj exp(gj hs) (5.9)

M2

TF(S8) = Zh(S)/r (Sj = o

where Tj is a constant and S refers to the complex Laplace Domain.

Thus the filter comprises of a finite series of delay operators

applied directly to the input. If the roots, gj, are complex the

response will be oscillatory.

Since, TF(S) ig finite and non-recursive the correlation will
exhibit a sharp cut-off after lag, j = q. ‘

Since, each delay operator deals with only one single random input
at any specific time increment, h, excellent phase characteristics
will be portrayed by the filter up to time lags of magnitude, qh,

at the expense of inefficient fitting for a prescribed correlation

order .’
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5.4 Stability and Invertibility

MA filters are of a non-recursive nature and as such are intrin-
sically stable, Such filters are however subject to the constraint
of invertibility, namely, 'gjl > 1 where, gj, are the roots of the

characteristic equation, in order to ensure a sensible filter.

It is demonstrated in section 6.4 that the invertibility constraint
is necessary to ensure uniqueness of the filter weighting coef-

ficients, "bj"' Unfortunately, there is no sure way of arriving
at the unique, "bj"’ coefficients short of trial and error tests

using the invexrtibility constraint. For high ordexr filters this may

prove a wearisome occupation.

The invertibility constraint impdsed on an MA filter does however

score in one respect over thé stability constraint of an AR filter,
for it does have one unique invertible solution. The AR filter has
no such guarantee of stability. In fact in the empirical tests on
the AR filters described in the following chaﬁfers, instability is

never encountered.

5¢5 Power Spectral Density

In an analogous manner to the AR process, the MA power spectrum,
S(f), is obtained directly from ‘the, "bj“, weighting coefficients.

From Appendix B, the power Bpeétral dengity is given by

s(£) = 2 Var(r) Ib exp(~ {2mf )'I 2 for 0<£<% (B.7)
4 o 0
= 2 Var(z) IZ b, exp(- 1271'1")' (B.10)
j=0 %

Once again an easy check of the filter model's validity is provided

on comparison with the original specfrum.
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6. The Autoregressive Moving Average (ARMA) Process

6.1 General

As mentioned in the introduction, the ARMA model takes the form

p q
1/ao 2 8 %pi < l/a 2 by Tn-j (2.1)

=0 o J-_.-O

=

This is the general form of which the AR and MA models are special

cases:
AR if p>0 and q=0, MAif p=0 and q>0

Mogt of the discussion on the AR and MA filters, with the exception
of the weighting coefficient determination (done in subsection 6.2),
applies to the mixed ARMA model. ‘

In Appendix A ‘the relationshiﬁ between the MA and AR processes is
derived. It demonstrates that a finite MA filter can be equival-
enced by an infinite AR filter and vice versa. However, a process
which is essentially AR in nature cannot be efficiently modelled by
an MA filter. The same is also true for an AR model of an MA process.
A logical extension of this efficient modelling criterion comes when
the process to be modelled contains properties of both types. Under
such conditions it is essential to incorporate both AR and MA charac-
teristics into the model, resulting in an ARMA filter.

6, 2 Efficient Calcunlation of ARMA filter coefficients.

Determination of the AR filter coefficients can quite simply be

done either by the Yule-Walker relations or by the least square '
approximation technique. Determination of the MA terms is less straight
forward because of the non-linear nature of the filter and the

necessity to consider invertibility to establish uniqueness, It

can reasonably be expected, therefore, that coefficient determina-

tion of the mixed ARMA model is yet more complex. This is indeed

the case as the following description will show

The ARMA filter takes the form

- 2 q
z Z a; 7z, . + Z bj rn—,j (6.1)
i=1 j=0 '
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: /
In an analagous manner to that used in the derivation of the

Yule-Walker relations, pre-multiply throughout by, Zp k! to obtain

P g
¢, = .-i.zulai C; *+ ;Eoba‘ <. Tpoy D (6.2)

Since, as before, Ty is mutually uncorrelated, n = 0, 1, 2, ..,N,

and since, 2z y 1s onljr influenced by random inputs prior to time

n-k
instant, n~k, it follows that

oy re3” = 0, for k=j>0
# 0, for k-j<0

" and hence (6.2) reduces to a Yule-Walker type relation, for (k-j) >0,

Do
Re = seRpy
i1

(6.3)

which in matrix notation is

N N N e N e S s

r = R a
~ - N

Since the restriction, (k-j) >0, is imposed, this implies that,
k >q, and since, k = 0, 1, 2, ... ,p, it follows that, p >q. Thus
the ARMA filter, (6.1), considered in the following is subject to

the constraint, p>q.

The ARMA filter of (6.1) can be written in the form

9
> b, = § a, z_ (6.4)
=0 3 “n-J i=0 + ™4
where ag = -1
By considering an MA filter of the form
Pn = § ai. Zn—i (605)
i=0 '

where, -ﬁn' is the output variable and where the "ai” coefficients

A
have already been detérmined from (6.3). The influence these "a,"

coefficients have on the total ARMA filter can be determined.
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This is achieved in an analogous mamner to that used in estab-

lishing the MA relationship:-

Premultiply, (6.5) by, ﬁn-k’ so that
) ) P P
Pk Fn - S8 i D0 Pned

i=0 i=0

Take expected values, to obtain

R(p) = 3 (s, ay,) Vex(z) :
i=0 )
where Rk(p) = <§n—k :P‘n> i (6.6)
' )
or in matrix form _ )
r(p) = Var(z) A 3 3
where A = 'go & ... 8y '
0 a, « .. ap_l
? 0 « .. ap_2
o) 0 a, J
T
a = [ao ap ..o« By 1
and  z(p) = [R(») R(») . .. R(p)]
~ 0 1 P

As in the determination of the pure AR filter coefficients, the
method described above for the ARMA filter does not guarantee that
the constraint of invertibility of the, "bj"’ weighting coefficients

will be met. Consequently, a trial and error check must be
 implemented. Again, for high order filters this proves intractable.
The effect of this pure AR process can then be removed by sub-
tracting the, {p), vector from the total correlation,




- As with the simple MA filter, the Newton Raphson iterative technique
can then be employed to determine the, “bj"’ weighting coefficients
' ]
of this "residual" MA process. For the, (i)th
would lead to the relations

, iteration this

p(1) _p(-1) ((3-) (6.7)

where f(i) = B(l) . }3_’(1) - ,{-"(P)

2
0 0 |
bl(i) Ce bq(i)’
bO(i) bq.ii)
o b (1)
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6.3 Roots of the Characteristic Equation and the effects

on performence.

The ARMA filter is the general model of which the AR and MA

processes are special cases..

From (2.1) the ARMA filter takes the form

T p o q ; '
- ZE ai Zn—i ‘ . bj rn-j
i=0 . . J=0

assuminé  ay = 1. (Remember ag is simply a scaling factor)

(6.8) has the characteristic equations

j=0 Y

faihn-i = 0 g
i=0 %
o | g )
a .
= %hhmj = 0 g
)

which on factorisation become respectively

P .
1~ >\ = 0
j££ (1-g; " A;)

and

e e M S e S N s

q — =1y
Jn

(6.8)

(6.9)

(6.10)

where g5 1=0,1, « . .3p, and éﬁ y J=0,1, 2 . . ,q, are the

respective roots.
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The stability and invertibility constraints both apply to this
mixed filter. )

The ARMA filter can be regarded as the digital filter-which in
the complex, S — domain has the transfer function TF(S) such that

q
T#(s) = =z, (S) J-EOTJ‘ exp(g; b S) (6.11)
r_ (s) $ 8 exp(e; b 8)
i=0

where Tj and Si are constants.

The ARMA filter incorporates the damped exponential response

. characteristics of the AR process‘together with the good phase
characteristics, up to time lags gh, of the MA process (sections
4.3 and‘5.3). To some extent theKmixing of both types of charac-
teristica "muffles" the wirtues of the simple AR or MA filter, In
any event, good phase lag characteristics are superfluous to the

requirements of a road profile generator.

g

6.4 Stability and Invertibility

Since the ARMA model incorporates a recursive AR model with a non-
recursive MA'model, it is _subject to the constrainis of stability
and invertibilify. These concepts are deveioPed in Section 3 and
‘their relevance to AR and MA filters arve discussed in Section 4.4

and 5.4 respectively.

To establish the unique solution of the MA part requires the same
tedisome trial and erxror approach to egtablish the invertible, "bj"’

parameters. As with the AR process there is no guarantee that
stability will be achieved,
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6.5 Power Spectral Density

In a similer manner to that implemented in Sections 4.5 and 5.5
for the AR and MA filters, the power spectral density is easily

seen to be given by

q 2
s(f) 2 Var (r) |Z b, exp(~ i27¢f )'
i=0

5 5 (6.12)
lz a. exp(- iowf )'
j=0 o

for 0<£f<%

6.6 Uniqueness of the general ARMA model

The uniquéness of the general ARMA model can be demonstrated in the
following manner.

Consider the ARMA filter

1

r o
Tt T Rt e (61
which can be expressed in the form
H(l-gB )Z(t) = H(l—ng (%) (6.14)

i=0 j=0

where, . g, and g ,- for i =0, 1, ..,pand j =0, 1, ..,q, are the
roots of the characteriatic equations of the left hand and right
hand sides of (6.13) respectively,

From Appendix B, the covariance geherating function is given by

¢(8) = Vaz(x) b(3) b(F,) (3.2)

where b(B ) = Zb :13J and b(F, ) = Zb 7 J
w O J=0 Jow

and :E;wj is the 30 backward shift operator

and FwJ is the jth forward shift operator.
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However, in the case of (6.14), b(Bw) is the series given by
| D - ft) _ .
n(s,) = I (1-g; B)" LI, (1-8; B)) (6.15)
and b(Fw) has a similar form.
Substitute in (B.6) to obtain
cln) = ver(s) Hol(-s, 3)7 (rgym )Y
W =0, 17w 17w
gbteg s 6gy ) (6.16)

| . Congider the root pair pi*oduct

- - — -2
(l-—-gj Bw) (1—gj Fw) = 1—gj‘Bw-gj‘Fw+gj B, F,

- - -2
= 1-8. B -8. F +%.
&5 B, &5 F 48y (6.17)

- 8imilarly, the product

=2 =L oy ¢a==1 _2 - _
gj (l-gj BW) (1—gj liw) = gj _gj Bw_gj FW+ B FW
= B 2 -g. B -8 + 1
i T8 W8 v
and hence

— — -2, —=1 ~ -1
1-z.B) (1-g. F) = &°(-z. B) (1-7. 6.18
(-85 8,) (1-g; 7)) = &°(-g; B) -5y F)  (6.18)

From (6.16) and (6.18) it follows that (6.15) can be rewritten in
the form

I, (e, 5)a(0) = 2 L2 B )0
g 5 B, Ja0t 18, B )r(t) (6.19)

where P = II é‘i for any combination of products of

J
for 0<5j<q.




-63~

Thus, there are a multiplicity of ARMA filters ( j! combinations)

which satisfy the covariance generating function.

It follows that if any complex root,'gj, lies outside the unit
circle, then, & j"l, lies within, and hence only one ARMA filter

satisfies the criterion of invertibility.

T. Conclusion

From theoretical considerations of the behaviour of the various
types of linear stochastic difference eéuation, it becomes aﬁparent
that the AR filter best meets the design requirements of generating
a monovariate road profile, with the added bonus of easy, "ai“,
-weighting coefficient determination., Theoretically, the most sig-
nificant shortcoming was tﬁe inability to gvarantee stability.
However, empirically, as is shown in Chapter IV, this proves to be
of little hindrance, as nb unstable filters were uncovered using

the methods outlined in Section 4.

To qualify this conclusion, it is necessary to mention both the
coefficient determination characteristics and the performance
characteristicé of each of the linear stochastic difference-
equations in turn and discuss §hei; relevance in meeting the design
requirements of a mono xoad pibfile. This is done in the following

paragraphs.

Filter coefficient determination characteristics

With AR filters irrespective of order, the weighting coefficients
are readily determined from the Yule~Walker relations. Unfor-
tunately, the resultant filters are not guaréntead stable., Despite
this all filters so determined were observed to never violate the
stability constraint.(See Chapter IV).

There is a multiplicity of MA filter coefficients which fit the
prescribed correlation. However, only one unigue set is meaningful

and satisfies the invertibility constraint. The determination of




this set becomes progressively more intractable as the order of the
filter increases, and high order MA filters are definitely not recom-

mended for this reason.

The determination of the ARMA filter coefficients requires the use
of both the AR and MA determination techniques with the drawbacks
of both.

All filters, irrespective of type, are easily validated by evaluat-

ing their Spectra.

Filter Performance Characteristics

AR fiiters, by virtue of their recursive nature, give a parsimonious
filter fit to a high order correlation, since the filter has an
envelope response comprising of damped exponentials, some or all of
which may be oscillatory. This is achieved at the expense of poor

phase lag characteristics.

NOnrrécursive MA filters realise good phgse relations with a sharp
cut -0off, The non-recursive nature also resulits in non-parsimonious
* filter fitting for a prescribed correlation. (If the required:
filter order is too great then determination of the filter coef-
ficients proves intractable.)

Combining both characteriéfics in an ARMA model does to some eitent
muffle the desirable properties of the gimple MA and AR filters.
However, an ARMA model will yield a parsimonious filter with reaéon—
able phase characteristics. As with the simple MA process, if the
order of the MA part of the filter proves to be too high, then
coefficient determination will prove intractable. Since no guaran-
tee of a suitably low order can be given in advance, then attempis

at using this method should be approached with caution.

The phase aspect of the MA part of the ARMA filter'becomes impor-
tant in cases where there is a requirement for prescribed cross-
correlations between different AR filters generating in parallel.
Under such circumstanceg multivariate rather than monovariate
LSDEs must be considered.
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In multivariate processes, ARMA filters must be considered as they
are the only type which maintain the necessary phase characteristics
between parallel generated processes together with parsimonious
generation of the autocorrelations of individuwal processes.

Clearly, as a result of the difficulties of determining the coef-
ficients of ARMA filters, they are best avoided unless extensions

into multivariate processes are contemplated.

No mention is made of the probability distribution of the filter
'output.' It is assumed. Gaussian. These properties are mainly
dependant on the probability distribution of the filter input.
The generation of guch Gaussian inputs, together with the pseudo-~
periodic properties exhibited, are discussed in Chapter III.

)
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APPENDIX A

Equivalence of the coefficients of AR and MA filters

Congider the MA filter
a

%n ZObJ T3 (A.1)

where, as usual, 'bj' are weighting coefficients of the mutually

uncorrelated inputs, r ~of variance Var (x).

»
Define the backward shift operator, B*Wk on, z = as the, kth back
vglge, én-;k, such that
k
B, %n = Znx (4.2)
and the backward shift series as
(B ) = zclb B J (A.3)
. w'q 5=0 J W C
Thus in abbreviated form (Al) is expressed as
W my = b(B) x, o (a.4)
In a similar manner, the abbreviated form of the AR filter
q -
Z = h i .
ggo %5 "n-j n (4.5)
is s.(Bw)q n = T (4.6)
s 3
where av.(Bw )q - Zaj B, (4.7)
. J=0
Multiply (A6) by b(BQ)q to obtain
b(Bw)q a(Bw)q z, = b(Bw)q r
Substitute (A4) in right hand' side of above equation so that
b(Bw)q a(B;”)q 2, = 2z,
. -1
and hence, b(Bw)q - (a(B ) ) (a.8)

| .




On expansion the right hand side of (A8) yields an infinite
series. (A8) demonstrates that any finite MA filter can be

replaced by an infinite AR filter. The converse is also true.
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APPENDIX B

Determination of the Spectrum of a digital filter

Consider the infinite MA process

(o)
2z, 2= Z bj rn-j
j=0 -

with notation as before.

(B.1)

In a similar menner to (5.2), the output covariances, Ck’ for all

lags k = 0, 1, ..., ©© are given by

0
- 2,
C Va:c(r)juobj bj+k

(5.2)

For convenience, define the autocovariance generating function,

C(Bﬁ), {no suffix for oo series) as

c() = ki;in Cc B,

Substitute for, € using (5.2), to give

w0 <«
k
¢(B) = Var(r) 2 2. b.b, B
W k= w00 j=0 3 3k W
@ =]
= Var(r) > 2 b, o, K B k
§=0 ke=—j J itk Tw
since,-bj = 0 for j<O0
Make the substitution 1 = Jj+k, so that

Var(z) EE S b, b p (-3

c(B) =
w j=0  1=0 J 1 7w
= Var(r) b B ' b, B Y
120 1 W 520 J W

It

| Var(r) b (Bw) b (]3W)'1

(B.2)

(B.3)
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In an analagous manner to (A.2) and (A.3) define the e B

forward shift operator "ka", of the series zn“k(t), to be

‘{wkzn(t) = zn+k(t) =~Bw-kzn(t) (B.4)

and the forward shift series "b(F%)q" on welghting coefficients

"bj" to be defined by

b.F Y (B.5)
b(F ) = i it
wva j=0
(no suffices for an infinite series).
Hence, (B.3) becomes
¢(Bw) = Var(r) b(BW); b(Fw) _ (B.6)

and the Power Spectrum, S(f) is easily obtained by assigning

(B)) = exp (- f27mf)
and (Fw) = (Bw>-1 = exp( {27f )

in (B.6) to obtain

S(f) = 2var(r) b exp(- i27f)) b exp( 127f)

= 2 Var(x) ”lb e};p(.—_ {eme)| 2 (Ba7)

‘for 0<f<%
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CHAPTER III

IMPLEMENTATION OF THE ROAD PROFILE GENLRATOR

1. Introduction

It is clearly undesirable to store large quantities of random

road surface data to obtain a sample set of independant road
profiles with the correct statistical characteristics. An alter-
native approach is to use a road profile generator to produce an
infinite number of independant surface realisations, each with
the correct statistical chéracteristics. The only prescribed
information the generator requires is the road profile's dis-
placement autocorrelation. By far the most complex part of road
profile generator design concerns the use of AR filters to
enforce the correct correlation characteristics. (The theory was
considered in Chapter II). However, the generation of indepen-
Qant Gaussian random realisations is now discussed. The various
constituent parts of the road profile generator are then brought
together and the practical implementation of the road profile

generator considered.

2. An overview of the road profile generator

A brief functional description of the components in the road

profile generator is now given for the purpose of c¢larification.

Uniformly distributed random data is generated by means of a
pseudo random number generator (RNG). Although RNGs exhibit
periodic characteristics, the period for repetition is normally
extremely long and since there is an extremely large range of
RNG multiplier coefficients to choose from an almost infinite
supply of indepenq§nt1y generated realisation sources is

available for selection.

As road profile realisations normally have a Gaussian distri-
bution, the uniformly distributed output from the RNG is passed
through a Gaussian trilter. 'The Gaussian filter outputs uncorre-

lated random data with a Caussiazn probability distribution.
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The correct displacement autocorrelation is achieved by means of
an autoregressive (AR) filter., The AR filter processes the
Gaussian random data such that the correct displacement autocor-—
relation is obtained. It was qualitatively anticipated that the
AR filter would have little influence on the probability distribu-
tion. The empirical evidence of Chapter IV confirms this

presumption.

As the vehicle model requires both displacement and velocity
excitation input, some means of generating the velocity road profile
was also reduired. Realisations of the velocity road profile were
obtained by numerically differentiating the displacement realisa-—
tions. A fifth order central difference formula was selected and
used in the velocity filter for this purpose., To ensure both dis-
placement and velocity generations are output in phase, a simple
delay routine (Hold filter) was placed in the path of the displace-

ment generation.

A schematic representation of the displacement road profile

generator is shown in figure 3.1.

3 The Pseudo random number generator (RNG)

A very large number of pseudo random number generators are avail-
able for selection, Virtually all are acceptable and produce
uniformly distributed random data. The description of the simple
RNG algorithm adopted for this project follows.

A simple integer seed value, So’ is accepted by the RNG and multi-
plied by an integer, M, held constant for the duration of the
realisation record. It is essential that, M, has the properties
of a primitive root - othetwise maximvm gequence length is not -
obtainéd. - _ -
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only the, 22 least significant digits of the resultant integer
product are retained, where, ZN is the largest binary digit the
computer can handle, The retained quantity, SN can be more
succinctly defined as follows,

S = SM-(SM%W).W (3.1)

where §SM S, « M

0]

i

voo= 22,1
(The symbol % represents an integer divide operation)

To obtain a newly generated random number, SN substitute the old

value of, Sy for S, and repeat the calculation of (3.1).

N

The algorithm (3,1) produces random data uniformly distributed

within the integer range, 0 to W.

A normalised real output, ThnG? with zero mean value 1s obtained in
the following maenner,

rRNG = 2<SN/W“005) o (3‘2)

The pseudo periodic properties exhibited by the RNG cause the
generated random data to be repeated after every 2N/2 generated
data points. Danger of repetition is not a problem as the realis-

N/2

ation records are normally much shorter than 2 and a very large

supply of alternative primitive root multipliers, M, exists.

Several independant, r a? realisations are generated in parallel,

RN
to be synthesised when input to the Gaussian filter.




==

4. The Gaussian Filter

To process the uniformly distributed random data, to obtain

TRIG?
uncorrelated random output with a Gaussian distribution, a Gaussian
digital filter was introduced. Three alternative filters were con~-
sidered; a Central Limit method, Teichroew's method, and the Polar

method.

The central limit method directly embodied the concept of the Central

Limit theorem, A total of twelve independant, Tong? realisations
/

were summed. The resultant probability distribution proved so rich
'in extreme values as a consequence of truncating after twelve com—
ponents that it was clearly unworkable. A much larger number of
indepen@ant, ToN
tical and this method was considered no further.

o records must be summed. This is clearly imprac-

Teichroew's method (ref. 1) is a development of the basic CGentral

Limit theorem. Again twelve indepen@ant, Trygr Were summed.

12
vy = (2 Ty (1) - 6)/4 (4.1)

i=1

This quantity, Ty is filtered to produce the Gaussian output,

-

as follows

o, = ((((c5 . xg + C4) r52 + C3) r82 + C2) r82 +01) rg  (4.2)
where Cl = 3,949846138,
C2 = 0.252408784,
C3 = 0.076542912,
C4 = 0,008355968,

CH = 0.029899776.
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The Polar method (ref. 2) calculates the product of a Rayliegh

distributed random variable, r and the cosine Polar

ey
coordinate of two independant uniformly distributed random
variables, rRNG(l) and, rRNG(Q)ﬂ The digital approximation to the

Rayliegh distributed variable, Tp, 1s obtained by the formula

rR = ’\/" 2 1n (IRNG (1) ) (4-3)
where rRNG(l) is a uwniflormly distributed random variable in the range
- < <
1< rRNG(l) <1.

(The cumulative dengity function of a Rax}iegh probability distri-

bution takes the form of a truncated log series.)

The cosine Polar random variable, Ty is obtained from

rp = Ta(1) -z 2(2) (4.4)

2 2
rRNG(l) + rRNG(E)

(4.4) is obtained from the trigonometric relation

cos 2 @ = A2 - B2

A2 + B2

Should the denominator of (4.4) lie outside the unit circle, the

attempted evaluation of, Tp must be discarded and a new value

sought by iteration. A certain degree of redundancy exists in this
method. However, once a successful sum-of-square denominator of
(4.4) is found, a Gaussian distributed random variable is obtained

from the relation

r = r, r (4.5)

Both Teichroew and the Polar methods have a standard deviation of

unity.

The Teichrow and Polar methods were compared, with their relative

numerical complexity being considered first, followed by their
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ability to generate Gaussian data.

A comparison Table 3.1 of the number of arithmetic operations
required to generate Gaussian random data by both methods was drawn
up. The Polar method appears at first computationally less tedious
(by as much as a factor of ten) ignoring the calls to two computer
library functions, SQRT( ) and LOG( ). This conclusion is the
result of ignoring the inherent redundancy present in the Polar

method. These results are shown as non bracketed in Table 3.1.

To estimate the degree of redundancy present in the Polar method,
six indepen@aﬁt tests of 1000 realised points were computed. The
results arefshown in Table 3.2. The average degree of redundancy,
normalised with respect to unity, was observed to be 0,272

(25% approximately). As each redundant loop requires two additional
RNG calls, the calculation of the sum of squares denominator of
(4.4), and one further arithmetic IF test. Thus a 25% additional
weighting must be placed on these redundant arithmetic operations

in the Polar method. The bracketed values in Table 3,1 show the net

effect of redundancy.

Since, sQrr{ ), 1o¢{ ), and arithmetic IF are not present in
the Teichroew method, this comparison is not whelly valid and a com-
puter implemented comparison is necessary. On an IBM 370/158 com~
puter the c.p.u. time ratio of ﬁhe‘Polar and Teichroew method was

approximately 1:2-2 in favour of the Polar technique.

Although this evidence was insufficient to permit a firm conclusion
to be drawn, it does give justification regarding numerical effi-
ciency for implementing the Polar method. When it is borne in mind
that the Gaussian filter is implemented at every generated point,

this congideration is very significant.

An empirical comparison of the resultant probability distribution
for both Gaussian filter methods was also undertaken. The compari-
sons were drawn from six independant tests of 1001l points with both
methods, The cumulative density’functions (CDF) were compared with -
the theoretical Gaussian distribution, In the tests each realised

value wés categoriged into any one of eight quantile segments.
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The quantities were arranged to be symmetrically disposed about
the maximum probability value of the Gaussian distribution (in
this case the mean value is zero). Each quantile was designed
to accommodate realised values within a range width of one gtandard

deviation. Any realised value of Tqr can thus be accounted for.

Some empirical performance tests were conducted. Normalised
histograms for the average of six tests of Teichroew and Polar
methods are shown plotted against the Gaussian distribution in
fig. 3.2 and 3.3, respectively. The CDF of the test results is
only accurately known at the end of each gquantile segment. Both

methods perform well.

Both the Teichroew and Polar methods adequately generate random
data which conforms to a Gaussian distribution. The Polar method
was chosen on the grounds of its superior numerical efficiency.

(A more detailed study of the probability distribution is conducted

in Chapter IV when the entire road profile generator is tested.)

5. The Autoregressive {AR) Filter

The AR filter segment is by far the most coﬁﬁlex part of the road
profile generator. The complexities arise from the amount of work -
necessary in ascertaining the filter coefficients and from the
amount of prior checking required -to ensure stable and physically

sensible displacement road profile outputs.

Use of the AR filter is straightforward. The form of the mono-
variate AR filter was described in Chapter IT - (4.1). With uncor-

related Gaussian random input, Tar the equation becomes,
P
z, = i;% a; %, . 3 v Tgn (5.1)

where Zn = is the displacement road value at time increment, tn,

To o= uncorrelated Gaussian random input value at time
’ increment, tn’
ay = welighting coefficients of the AR filter,

P &= AR Cilter order.

In use the AR filter is a simple digital filter.
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Determination of the weighting coefficients, 'ai', to meet the

needs of a prescribed road profile displacement autocorrelation

is much more involved. The process for determining the 'ai'

coefficients is shown schematically in fig. 3.4. The description
follows.

Given a prescribed displacement autocorrelation curve, it is
first necessary to verify its physical realisability. As the
generated road profiles adhere to this correlation curve and as
the profiles are used as physical inputs to an elastic system

(the vehicle model), it is apparent that these input displacements
govern the total elastic strain energy stored in the model. The
elastic strain energy (1) must always be greater or equal to zero
in order to be physically meaningful. In matrix notation this

inequality can be expressed as,

E - % z°42z >0 (5.2)
where 4 = input displacement vector,

A = elagtic stiffness matrix,

0 = null vector,
and B = elastic energy vector.

(5.2) is the definition of positive definite quadratic form, and A
is said to be positive definite provided it is symmetric. A neces-
sary and sufficient test for positive definiteness is to check that
all main diagonal sub-determinants in A are greater than zero. ie,
check if

all 3.12 s e .
a. a, « w
Det A, = 21 ez > 0 for all i.
a e & s a..
11

The Yule-Walker correlation matrix R of Chapter II - (4.4) has the
displacements expressed in this quadratic form, Consequently, all
that need be done to ensure physically realisable correlation curves,
is apply the positive definite determinant test, described for the

matrix, A, to the displacement correlation matrix, R.
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Having established the autocorrelation as positive definite, work
can commence in ascertaining the AR filter weighting coefficients,

'ai'. In Chapter II, two methods of establishing the 'ai' coef-

ficients were outlined (section 4.1 and 4.2). As determination
of the filter coefficients need only be accomplished once per road
profile correlation, the amount of numerical effort required to do
this is not a prime consideration. The direct evaluation of the
Yule-Walker relations was therefore undertaken purely for ease of

implementation of the computer program.

No guarantee can be given that the resultant AR filter will be
stable. It is therefore necessary to empirically test the numeri-
cal stability. As explained in Chapter II - section 3, instability
can be determined by checking if the roots of the characteristic
equation have any moduli greater than unity. If the 6rder, P
of the characteristic equation is high, the direct determination
of the roots of this polynomial is prone to numerical ill condition-
ing. To overcome this problem, the characteristic equation is

W+l

forced to undergo the bi-linear transformation, A = W1 mapping

from the complex A -plane onto the complex W-plane.

The 'ai' coefficients are transformed into 'mj‘ coefficients by

the relation

o 3 SEC)ED @) (5.5)

. where (k) - k! .
‘ e e ! (k-e) !,

while the transformed characteristic equation is given by

-1
my W+ ) Wt e L m, = 0 (5.4)

(5.3) lends itself well to recursive computation. (See Jury Ref. 3).

The test for instability in the AR filter is now simply a matter of
checking if any roots of (5.4) are greater than zero. The Routh

stability criterion can be used for this purpose. The Routh




-80-

technique is not prone to ill~conditioning. This stability test
can be found in any standard text book on Control Theory and will

not therefore be described.

However, should the Routh test indicate instability, the complexity
of the AR filter determination together with the indirect nature of
the stability test makes it impossible to decide how to alter the
filter coefficients to ensure stability while approximately adhering

to the original prescribed correlation curve.

In an attempt to alleviate this ingtability situation an empirical
relooping procedure was implemented in the determination process.
(see fig. 3.4). This relooping procedure was designed to reduce
the order of the prescribed correlation curve by one and new AR
filter coefficients determined by means of the Yule-Walker relation.
This relooping procedure can be repeated asmany times as there are
prescribed correlation points; however, care should be” taken to
ensure the prescribed correlation curve ig still being generated

by the reduced filter.

In all the AR filters determined from physically realisable
(positive definite) road profile correlations, no instability was
ever encountered. It may be that the Routh test is redundant, how-

ever, such a possibility is left for others to consider.

6. Velocity (or displacement gradient) Profile Filter

So far the description has only included the design of the displace-
ment profile generator, however, the second order DE of the vehicle
model also requires a velocity excitation input. If the displace-
ment road profile autocorrelation is defined, then the derivative
correlations of displacement - velocity, velocity - displacement,

and velocity are implicitly defined.

The displacement autocorrelation

{(alx) a(x + 1)) (6.1)
<z(x - L) z(x) >

(1)

or

il
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Where ‘< > denotes the approximate expected wvalue, can be used

to determine the displacement - velocity correlation, Rzé(L), by

differentiating with respect to, L, as follows,

= /Z X b4 + L + SL - X z\X + L

It

<z(x) %f, z(x + L)>

Rzg(L) (6.2)

In a similar manner the other derivative correlations can also be
established from the displacement autocorrelation, to yield the

the following relations,

a_ (R, (1)) - Ry (L) = R (1) (6.3)
dL

n

-<z’(x) z(x + L)>

& (R,(1))
ar?

- Rg(L) (6.4)

Thesé cross correlations which exist between the digplacement and
the velocity profiles make the use of another independent monovari-
ate AR filter to generaté velécity realisations invalid. Either
multivariate ARMA filters can be considered oxr the generated dis—
placement realisation can be numerically differentiated. Differen-

tiation was chosen because of the ease of implementation.

The central difference differentiation formula

- _ 6
z, = (zn+3 ~Zp 3 * 9(zn_2 - Zn+2) + 45(2n+l - zn_l))/60h + 0(n”) (6.5)
where h = incremental step length,

and truncation error, O(hs) = = 1 h6 5 Vii

was used,
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All symmetric finite difference formulae take the form

n bj Zo o, j _ (6.6)

rd
74 =
I .

q
J:

vhere b. are weighting coefficients such that

b. = ~b . and b = 0
J ~J o
Equation (6.6) is similar in form to a MA filter (see Chapter II -

section 5.2). There are however, three egsential differences.

1) fThe summation bounds in (6.6) are -q<j<q compared

with O< j<q (for positive q) in a MA filter.

2) The coefficients of (6.6) are antisymmetric
ie. b, = <-b .
J =J
3)  The filter inputs 23 for all j,in (6.6) are
correlated in accordance with the characteristics of

the digplacement AR filter.

Consider the effect of pre-multiplying (6.6) by Z_j» such that

q
Z % = Z E:

b, 2 .
n-Xx n n-kx . n +
J=-q J J

Take expected values and normalise with respect to<<zn zn:>to obtain

the relation

Rz (L) = qz by R, (L +3)
j==q
- L o@®, @) o @) (6.7)
Similarly,
R 1) = =& (r (1)) +0 () (6.8)

Rzé(L) and RQZ(L) are corrcct to the order of the numerical differentiation,

It follows that Ré(L) is also correctly defined, since

Rg (1) = = (1) &, (1) (6.8)
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Thus by numerically differentiating the displacement road profile,
a velocity profile is generated with the correct derivative
correlation characteristics. As this differentiating filter is

non recursive it is therefore intrinsically stable.

As the velocity (or differentiating) filter is based on a central
difference formula, it follows that this velocity filter is generat-
ing output én at discrete increment number 'n’', while the AR filter
is outputting displacement Zn+q at increment number ‘n+q'. A hold
routine is introduced after the displacement generator to ensure

synchronisation.

Te Conclusion

A monovariate displacement road profile generator can be effectively
implemented. The schematic representation is shown in fig. 3.1. A
pseudo random number generator is used as a source of uncorrelated
uniformly distributed random data. This random data is passed
through a Gaussian filter to achieve the correct probability dis--
tribution. Adherance to a prescribed displacement correlation is
obtained by an AR filter. A velocity filter is used to numeric-
ally differentiate the displacement realisation to produce a velocity
realisation record., A hold routine is implemented in the path of
the displacement realisation to ensure synchronisation between dis-
placement and velocity records. Both displacement and velocity

realisations are required as parallel inputs to the vehicle model.

The determination of the weighting coefficients of the AR filter
is the most complex part of implementation. Both physical realis-

ability of the displacement autocorrelation and numerical stability

of the AR filter must be ensured.
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Operation

Method

Summuta—
tion

M gp ULh

Multip-
lication

"XH

Divi-
sion

net

Integer
Division

1ol

/0

Square
Root

I!\/ "

Log-
ar—

1thm
"LNH

Arith-
metic

IIIFH

Teichroew

~Basic
Routine

~RNG *
calls(12)

-Total

16

12

28

36
42

12

12

bolax

-Basic
Routine

~RNG %
calls (2)

-Total

2 (2%)

2 (2%)

4 (43)

(4%)

6 (7%)

10 (12)

4

2 (28)

2 (2%)

Difference
in total
number of
| operations
{ Teichroew-
Polar)

+24 (+23%)

+32 (+30)

+10 (+9%)

H

(-1%)

* NB
Bach Call
of RNG
requires

Table 301

Comparison of the number of arithmetic operations to
generate one value of T using both Teichroew and Polar methods.

Test

Number 1 2 4 6 Average
Degree of

Redundancy 0,269 | 0.279 0.293% 0.250 0.265 0.278 1 0,272
Table 3.2 Empirical observations on the degree of redundancy

present when using the Polar-Gaussian Filter.
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CHAPTER IV

TESTING THE ROAD PROFILE GENERATOR

1. Introduction and objectivas

A road profile generator is required to generate realistic combina-
tions of displacement and velocity road profiles for input into

the second order DE vehicie problem., Such profile realisations
must meet prescribed requirements concerning their statistical
behaviour. The simplest and most satisfactory method of verifying
the profile generator is by the implementation of empirical tests

on generated realisations.

The two prescribed siatistical requirements which require verifica-

tion are as follows.

1) To ensure the statistical adequacy of the road profile

generator in achieving the correct auto-and cross-correlations,

2) To ensure that Gaussian realisations are adequately repro-

duced.
A1l of the following prescribed road profile correlations were

tested for physical realisability and their numerical stability

ensured before these statistical tests were undertaken.

24 The example road profile correlations tested

Three example road profile correlations were selected for testing
purposes. These correlations are described in the following sub-

sections.

The nature of the road profile generator is such that it requires

a discretised version of the displacement auto-correlation, R (L).
z
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In the process of discretisation, the substitution
nh(x) = L (2.1)
where h(x)

and n

discretised spatial lag increment
0, 1, 2, ..oy N

must be made, to obtain the discretised correlation R, (n h(x)).

The derivative correlations can be similarly discretised.

2.1 The Virchis Correlation

This approximate algebraic description of an actual road profile
correlation was proposed in Ref, 1. This idealised correlation was

described by the equation

Rz (L) = 0.6 exp(--c Bg);+ 0.4 exp(- ¢ L) cos d (2.2)
where c¢ = 0.001, d = T7TL.
29

From Chapter III (6.3), the relation

R,z (L) = =Ry, (L) = _d (g, (L)) (2.3)
DL

was established.

Differentiate (2.2) to obtain

L4 (L) = - 4 1074 {3 L exp(- ¢ L2) +exp(-c L) [cosd+ ™ 10° sin a]}

129
(2.4)
At L = 0, the theoretical relation (2.3) yields the condition
R, (0) = Ry, (0) = O (2.5)
while in (2.4)
R, (0) = -4x 1074 Zo (2.6)

This continuous derivative correlation does not satisfy the theoretical
constraint. (The authors of Ref. 1 could ignore this problem as only
the displacement correlation was considered.) In a discretised empirical

approach considered, the value of R . (0) in (2.6) is sufficiently small

to be ignored.
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2.2 The BExponential Correlation

This idealised correlation takes the form
R, (L) = exp (-B iz 1) (2.7)

It was the correlation analysed in Ref. 2.

The derivative correlation Réz(L) is given by the equation
RZfZ(L) = -Bexp (-B}L}) (2.8)
vwhere B 1is a constant.

As with Virchis, at L = O
Réz(o) £ O.

The fact that the derivative correlation (2.8) achieves maximum

amplitude at L = O, where it also exhibite a large discontinuity,

makes this derivative process meaningless. Uncorrelated realisa-

tions of the derivative process must therefore be anticipated.

2.3 The Modified Exponential Correlation

The modified exponential correlation has the form
R(L) = (1+BILY) exp (-B)L]) | (2.9)
where B is a constant.

The differential correlation

Ry (L) = -B° |uf exp (-3 |1] ) (2.10)
satisfies the zero value constraint at L = 0.
3, The auto- and cross-correlation test resulta

Displacement, velocity, and displacement - velocity auto- and
cross—correlations were celculated from realisations of the road
profile generator. (The velocity - displacement cross-correlation
can reasonably be expected to be the mirror image of the displace-
ment - velocity correlation.) Each realisation test comprised of
1156 generated data increments. An initial period of transience
was allowed to elapse before any correlation measurements were
recorded. Correlations were calculated up to a maximum lag
increment, Nmax’ of 100 (less than one tenth of the realisation
record length). The number of lag increment coefficients, N, pres-
ent in the various AR filters tested was always very much less than
N . Comparisons are, however, drawn between theoretical and

max
generated correlations up to Hﬁax = 100,
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With all observed results up to lag N, the realisations closely
adhered to the theoretical correlation curves, with maximum varia-
tion occurring, as can reasonably be expected, in regions of high
gradient. The variation between any realised correlation value
and the theoretical curve was never more than 10% of the auto-
correlation value at zero lag (ie the standard deviation).

Clearly this variation is dependent on the length of the realisa-
tion record. The standard error (SE) on such realisation records
is known to be inversely proportional to \/M, where M 1is the
number of sample points in the record, thus if M = 1156, then
1AJM = 2,94 B -2, It is interesting to observe that this has the
game order of magnitude as all normalised variations mentioned

above (ie less than 10%).

With lag increments greater than N, the observed realisations may
or may not adhere to the theoretical correlation curve. The.
degree of adherence depends overwhelmingly on the nature of the

correlation curve.

Reference is now made to the individual correlations tested. A
congiderable number of graphs are included. In each graph two
sample realisations are shown plotted with their theoretical

equivalent correlation.

3.1 The Virchis Correlation

A sample Virchis correlation was tested with Nmax set to 20,

and h(x) = 12 ft. The coefficients of this 20 pt filter are
shown in Table 4.1l. Samples of these correlation test results are
ghown in Figs. 4.l.a - 4.1l.c. Lag increments as high as N = 20,
demonstrates faithful reproduction of the theoretical correlation.
Above N = 20 significant residual correlation is evident. From
the theoretical nature of the AR filter this result can be anticip-
ated. An AR filter generates to a prescribed correlation curve by
the use of a series of damped exponential decay functions (both
real and complex) each of random amplitude. Consequently at lags
greater than N sharp cut. off of the correlation is impossible to

achieve. In the case of this Virchis example, at N = 20 the model
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correlation value has significant magnitude (about 0.3 of maximum),
it is hardly surprising therefore that a large residual correlation

is present.

As the derivative correlations are obtained from realisations
which are generated by numerically differentiating the displacement
realisation, it is hardly surprising that these correlations also

have significant residual values.

342 The Exponential Correlation

The discretised exponential correlation had the following parameter

values,
B = 1,246
Nﬁax = 4
h(x) = 1 ft

The coefficients of the 4 pt AR filter are shown in Table 4.2.
(Clearly, by virtue of the fact that the AR filter generates the re-
quired correlation by means of damped exponential impulses, it
should be possible to generate this simple exponential displacement
correlation by a two point filter.) However, the 4 pt filter

tested also achieves good displacement correlation results up

until N = 20 (see fig 4.2.a). For N>20, the degree of correla-
tion is minimal and the realised results are mainly the result of
random noise. The derivative correlations in this case do not

exist.

343 The Modified Exponential Correlation

The parameters of the discretised modified exponential correlation
were as follows,

B 2.181, Nmax = 4

h(x) 1 ft.

This correlation with the above values is a reasonable facgimile of

I

L]

the exponential correlation in the previous subsection. The filter
coefficients are given in Table 4.3, Good auto- and cross-correla-
tion results are obtained up until lag N = 20 (see fig 4.%a, b and
c). With the low degree of correlation recorded after N = 20,

random noise starts to become significant.
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4. Optimum order for the AR Filter

Apart from correlations which have extremely simple forms (like

the exponential correlation where an order of N = 2 would suffice),
it is a difficult task to estimate an optimum filter order. In the
vehicle simulation problem the choice of value for the spatial lag
increment, h(x), is of vital importance to ensure viability in the
final solution. The value of h(x) must be selected in accordance
with the rangerf traverse velocities experienced by the vehicle,
Many realistic road profile correlations take the form of piecewise
continuous functions. FEach continuous segment must be adequately
represented in the AR filter., The combined effect of a predeter-
mined step length h(x), and a piecewise continuous correlation
curve will be to ensure that the optimum AR filter order is approxim-
ately that of the maximum lag increment on the correlation curve.
Thus with realistic correlation curves there is little point in con-
sidering AR filter order optimisation. For this reason, optimisa-

tion is not considered in the test correlations either.

Se Probability distribution of the Road Profile Generator
realisations

The statistical description of a road profile is normally defined
in termslthe displacement auto-correlation RZ(L) (or by the power
spectral density - the Fourier transformed equivalent). Most

measured road surfaces are described in this manner.

Implicit in the displacement auto-correlation description are the

displacement and velocity profile variances, which are defined

<Zn Zn>
i fn) 2
dL

If both profiles are Gaussian random variables, quantifying these

respectively as
Var (z)

R,(0)

Ry (0) = -a® (R, (0))

(4.1)

Var (Z)

i

N N e

variances are enough to fully define the probability distributions.,
Exacting tests are now undertaken to ensure the adherence of the

reglisations to the correct Gaussian distribution.
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In the tests which follow, the cumulative density function (CDF)
of all quantities output by the road profile generator were com-
pared with a Gaussian distribution, The CDF is defined as follows,

V
CDF =" | Pr (v)dv . (4.2)

— Co

where Pr (v) . refers to the probability density- function.

' ) Bach CDF realisation plot
is sampled over 1100 data points. The mean (Mn) and the variance
(Var) of the sample were obtained. Bias was removed from any
realised record of v by the formula
v-M (v)

\Var (v)

The values of v norm were then arranged in ascending order and

v
norm

(4.3)

the CDF distribution curve of VhOrm fdetermined.

Results specific to the various output quantities of the road profile

generator are now discussed in turn.

(a) Output (rG) from the Polar filter.

As mentioned in Chapter III, r is the output of the intermediate

G
stage in the road profile generator prior o processing by the AR
filter. It is important to compare the probability distribution of

r, with the distribution of the guantities eventually output by

G
the road generator, in order to assess the degree of degradation in

the distribution caused by the AR and velocity filtering stages.

A sample normalised CDF (rG) is shown plotted against the theoret-

ical distribution in fig. 4.4.

The maximum divergenc, Max div (rG), from the theoretical

Gaussian distribution was 2,9 E - 2
The non-zero mean value, M (rG) was 6.82 B - 2
The variance, Var (rG) was 1.01

The number of events exceeding a 3 x Var (rG) limit was 3.

(b) Output (z) from the AR filter

Output =z is the disgplacement road profile realisation. The dis~

placement realisations for the various correlations mentioned in
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the previous sections were tested. The results are in Table 4.4.

References to the various graphs are also included in the Table.

(¢) Output (2) from the Velocity filter

Sample realisations of the velocity road profile generator were
measured for probability distribution. Thé results with reference

to appropriate graphs are shown in Table 4.5.

In all three cases (a, b, and c¢c) the realised probability distribu-
tiona are of a very high standard. The realisations were noted to
be slightly rich in extreme events (ie greater than 3 x Var),

With linear suspension configurations this effect is of minimal
concern, however, such effects should be closely monitored when

non-linear analysis is atbtempted.

6. Empirical Evidence as to the stable nature of AR filters

Quite apart from the AR filters specifically described in the
previous sections, other AR filters were tested with many paramet-
ral variations while still keeping to the three aforementioned

road profile correlations. Such variations are not specifically
mentioned as they offer no additional information as to the poten-
tial of the road profile generator, However, with none of these
other AR filters‘extracted and tested was instability ever recorded.
There appears to be considerable empirical evidence to indicate
that physically realisable road profile correlations are always
stable.

Te Conclusion

The road profile generator has been shown to work well with all
the road profile correlations tested. Both probability distribu~

tion and correlation requirements have been satisfied.

The order of the AR filter used to generate a prescribed correla-
tion need not be as great as the maximum lag increment for the

prescribed correlation. However, the criterion which should be

~
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used to optimise the filter order will in fact be overruled by
other physical constraints imposed by the model, These constraints
concern the nature of the correlation curve, which in many real
cases is piecewise continucus, and of the incremental step length
optimised to best suit the range of traverse velocities under

consideration.

The quality of the probability distribution of the output is

exceptional, It is only slightly rich in a few extreme values.

In the many AR filters tested, for any physically realisable road
profile correlation, no instability was ever encountered. It is

suggested from this empirical evidence that AR filters obtained

from physically realisable road profile correlations might always
be stable.
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Filter Order, N = 20; Tncremental step length, h(x) = 12ft

Lag AR Filter Lag AR Filter
Increment, i Coefficient, as Increment, i Coefficient, a;
1.968313%5 E O 11 -1.9278726 E-2
2 =1.7022791 & O 12 ~5.%02453%2 BE-4
6.9039996 E-1 13 9.803%34381 I=-4
4 8.4133426 E-2 14 -2,.738828% E-3
5 -2,6660150 E-1 15 4,3232381 L-3
6 9.8588392 E-2 16 9.2711116 E-4
T 3.25347T1 E-2 17 3.6037029 E-3
8 -6,8717380 E-2 18 1.7752569 E-2
1.0552446 E-2 19 -1.7733661 E-2
10 5.8651%31 E-3 20 2.6920412 E-2
Table 4.1 AR filter coefficients for a 20 point Virchis
Correlation.
Filter Order, N _ = 4; Incremental step length, h(x) = 1ft
Lag AR Pilter Lag AR Filtex

Increment, i

Coefficient, as Increment, i

Coefficient, a;

8,7952211 E-1 3 -2,0468783 E-1%
2 ~1,516171% E-13% 4 2.3509536 E—lB‘
|
Table 4.2 AR filter coefficients for a 4 po

Correlation

int Exponential
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the Road Profile Generator. sample Size,

N=lISG

Filter Order, N = 4; Incremental step length, h(x) ~ 1ft
. lag AR Filter Lag AR Filter
Increment, i | Coefficient, a; Increment, i | Coefficient, a;
1 1.8632284 E O 3 2.,8576759 E~1
~1.1304446 E O 4 -5.0868043 E-2 |
j
Table 4.3 AR filter coefficients for a 4 point Modified
Exponential Correlation.
Number of Max imum
. - events divergence

Corﬁelazlon exceeding from Ag:gige Variance Cizzuit
3 standard Normal ‘ grap
deviations | Distribution

Virchis 3 4,2 E-2 6.04 E-1| 1.80 E 1 | Fig 4.5a

Virchig 5 2,8 E-2 -4.,3% B-1} 2,20 E 1| Fig 4.5b

Bxp. 4 2,6 E-2 5666 E=1| 4,57 Fig 4.5c

Mod., Exp. 5 2.9 E-2 2.13 5.8 B 1| Fig 4.5d4

Table 4.4 Displacement statistics of sample realisations
from the Road Profile CGenerator. sampie sine, N=1156
Number of Maximum
i events divergence .

Corgelaelon exceeding from Aﬁ:ﬁiﬁe Variance Consuﬁt
3 standard Normal ' grap
deviations | Distribution

Virchis 4 2.1 E=2 2,30 E-4 | 2,53 E=2 | T'ig 4.6a

Mod, Exp. 3 4.4 E-2 -1.74 E=3| 2.42 Pig 4.6c

Table 4.5 Velocity statistics of sample realisations from
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CHAPTER V

BASIC CONCEPTS IN NUMERICAL INTHGRATION

1. Introduction

This chapter is concerned with the basic problems encountered when

implementing a numerical integration scheme on a digital computer.
The types of integration method discussed, are those relevant to
the solution of dynamic lumped parameter vehicle models., More
precisely, this involves investigation into the numerical methods
for solving initial value probleme in ordinary differential
equation systems. The chapter covers the appropriate ground work
as a necessary prerequisite to detailed discussion on specific

solution methods.

2, The differential equation problem
A differential equation of order, p, takes the form
F(ydseees ¥ P8) = 0 (2.1)
where vy = y(t), v =4 y(t), ete
at

In general a whole family of solutions to this problem exists.

One method to uniguely fix the solution is to specify, for some
arbitrary value of the independant variable, t (=a, say), the

values y(a), v(a), -, y(p)(a). Solutions for all other instances
of, t, are now uniquely defined. This is known as an initial value
problem in ordinary differential equation. It is this problem which
is of specific interest in this project. Henceforth in the inter-
ests of brevity the term "DE" will be used to refer to this specific

initial value problem.

Normally for evaluation purposes, the DE, (2,1), is expressed in
the form

vy o s, 7, ——y(p"l); t). (2.2)

f is frequently referred to simply as the "function".
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Existence of a solution to the above problem can be established
under fairly general conditions, which are not terribly meaning-
ful for most practical applications. In practice, numerical
values of solution, y, are required for some specified range of
values of independant variable, t. For some special classes of
problem closed form solutions are available. Many more have none.
In such cases it is essential to resort to numerical methods to
obtain an appropriate answer. Discrete variable methods are excel-

lent for this purpose.

Discrete variable (or finite difference, or numerical integration)

methods owe their great sitrength to the fact they are almost univer-
sally applicable to all DE systems, (NB 1In the text discrete
variable methods are also referred to as integgators.) Discretisa~
ation methods do not attempt a2 continuous approximation to the exact
solution. Instead, approximate point solutions, Yis Yps —==¥p» are
sought at discrete increments of the independant variable, tl’ t2,—~-,
tn. These incremental changes to the independant wvariable are often
referred to as the step length, h. The step length need not be

constant. Increment (or step) number, n, refers to the point solu-

tion at time ingtant, tn'

Discrete variable methods use a finite serialised approximation

to the true solution. In general, they can be written in the form

h(f -—=y f -) ) (2'5)

Yo = T s v i, i

n n-i,
where f £ f
and i1 and J are both integers 2 0.

The difference between the true solution of the DE, y(tn),

and the discretised approximate solution, Yo is known as the

truncation (or discretisation) error, e . It is defined by

e, = ¥(t) -y, (2.4)
The magnitude of this error term can be greatly reduced by re-evalu-
ating the "function" at the current step number. Many repetitive
calculations may be required, but then digital computers perform
this task well,
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Broadly speaking, discrete variable methods fall into two general
categories; one step methods, and multistep methods. One step

methods only require information from one incremental step number
in order to re-evaluate at a new step. Thus, for example to solve
for Yn at constant tn, information at instant tn—l’ is all that

is required. This is not so for multistep methods where informa-

tion at instants etc.may also be required.

b0 tn—S,
All truncation errors used by discrete variable methods can be as-

signed an order.

In one step methods, this definition is achieved by algebraically
manipulating the method formula inte the form of a Taylor's Series

-

expansion, thus D (p) +1
Y. =¥ y + oo+ h__yn_lp + 0 (") (2.5)

+h ¥y
n-1 'i—" n-1 p!
By ascertaining the power, p + 1, at which it ceases to be a
Taylor's Series, determines the order of the error. Hence, in

(2.5) the order of the truncation error is said to be p + 1.

In multistep methods, this order is defined by expanding each term
of the discretisation method as a Taylor's Series. The coefficients
of the various powers of h, are then summed and the lowest power

of h, at which such spmggﬁations cease to equate to zero, estab-

lished. If coefficient summutations up to power p, equate to

zero, then the order of truncation error is said to be p + 1.

With either one or multistep methods, if the truncation error is

of order p + 1, then the discrete variable method order is said

to be, p.

Digital computers calculate to a fixed number of significant
figures, The size of these numbers is established in binary arith~
metic and is called the word length of the computer. In computa-
tional work loss of these less significant decimal digits results

in another type of error called round off.

Both discretisation and round off error can be either global or

local., Local error is the error penalty incurred over one single




-119~

inecremental step length, h. Global error arises from error built

up over the entire step by step process.

Integration methods can be either explicit or implicit, With an
explicit integration method, the quantity to be evaluated, Ve is
expressed solely in terms of known gquantities at previous incremen-

tal step numbers., Tor explicit methods, (2.3) can be rewritten as,

h(f

n_ly““: fn*i) ) (2'6>

(p)

artly based on the previous estimate, ¥ (p—l)’ such that (2.3)
p n
takes the form

yh(p) = E(Yh(bﬂl)r yn—l’_-’ yn—i’ h(fn(p-l)’ fn—l,Fan—i)) (2.7)

Ty = £, Yo

A method is implicit if the quantity to be evaluated, Yn y is

Al]1 discrete variable methods are recursive. From a set of estim-

ated values, Yt Y107 Ypoio another set, Yoile? ™7 Yneiak?

advanced by, k steps is also estimated. In turn this set, k steps
advanced, is used as the basis for estimating a second set of
values, 2k steps advanced. The process is continually repeated,

or recursively applied.

Recursive formulae suffer from inherent instability problems. At
any step, n, the approximate solution, Y, (=y(tn) - en), containg
a truncation error ternm, e . It eniﬁ;recursively amplified by the
discretisation process, the result is a numerical explosion known
as instability. Instability totally invalidates any numerical

golution.

As far as this project is concerned, there are two types of instab-

ility. There ig relative instability which arises from the nature

of the DE itself. However, as spring mass systems are intrin-
glcally stable, this criterion is of no great conceran. The othex
type is called conditional (or partial or wealk) ingtability,
although in the text it is simply referred to as instability.
This instability is a function of step length, h. (There is

another stability criterion, known as absolute stability, where the

integrators are stable for all values of, h. However, as shown by

Dahlquist (Ref. 1), this criterion is very restrictive on the
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solution method accuracy and will therefore be discussed no

further. )

Ideally the approximated solution, V! must, by repetitive cal-
culation, tend towards the true solution y (tn) as, h, tends to
zero. This property is known as convergence. It can be shown
-that necessary and sufficient conditions for convergence are
stability and consistency. Stability, or rather instability, has
been defined above. The condition of consistency, for any dis-
crete variable method, is simply the order of the method must be
greater than one, In practice it is an exceptionally easy con-

dition to satisfy.

B Order of integrator for vehicle dynamicsg

The first order DE takes the form

y=£(y, %) (3.1)

where +t is the independent time variable and y _ dy
dt.

A.second order DE has the general form

y = f£(y, v, t) (3.2)
where y = dzz
at°

In both cases the "function" f can be a linear or non-linear com-

bination of ¥, &,'and t.

The second order formula (3.2) can be reformulated as two coupled

first order DEs :-

v
f(Vv Y t) (5-5)

Qs e
il

fl

where v = dy
dt

In vehicle dynamics, valuable information has been gained using

models described by second order DEs.
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A typical example is

my(t) + cy(t) + ky(t) = P(t). (3.4)
where m = wmass, ¢ = damping coefficient, k = stiffness
coefficient, y(t) = displacement, and P(t) = excitation

function. Rearranging this becomes,
F(£) = (P(%) - ey(t) - ly(t) ) 2 (3.5)
. m

and this in turn can be reformulated as the two coupled first order

DEs.

y(t) = v(t)

. (3.6)
v(t) = (P(t) - cv(t) - ky($) ) 1

N e

For higher order DEs, two schools of thoughtexist on how to freat
them. Should the second ordexr be treated directly, or should the

DEs be reduced to a set of coupled first order formulae?

The direct approach to the solution of second order DEs is the one
favoured by the structural engineers. Influencing them in this
choice are two design criteria which take precedence over all
others and which are superfluous to the objectives set by this
project. These criteria are obgervation of symmetry in a matrix
system of similtaneous equations to ensure ease in numerical
manipulation’and the ability to handle stiff systems of differen-
tial equations without encountering instability. Hence, criteria
like accuracy of solution, ability to change step length,'ability

to cope with non-linear system parameters fill a subserviant role.

The approach currently favoured by many numerical analysts is

that which reduces the higher order systems to a set of first
order DEs. In application a system of first order DEs is much
more flexible, In his book, Hemrici (Ref. 2) pp. 109, favours

the first order approach. He argues with both theoretical and
empirical validation, Chapters 4 and 6, that reduction to a first
order system substantially reduces round off error, while there

is little to separate the two approaches as far as truncation
error is concerned. It is also itrue that this first order
approach, when applied to a second order DE dynamic system, autom-

~atically supplies both displaeement and velocity results, while
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the direct approach supplies only displacements. In mechanical
system design, velocity responses are also important as a source
of many dynamic forces. (Velocity responses can be obtained from
the direct approach, but only with the extra computational effort

of subsequent numerical differentiation.)

In conclusion, because of the arguments presented, a decision was
made to opt for the reduction to first order approach. Consequent-
ly in all following discussion on DEs, interest is totally concen-~

trated on first order solution methods.

4o Factors affecting choice of numerical method

In this section desirable numerical integrator design criteria

are listed and discussed. At this initial phase, selection of
method type, the assessment criterion is done on a purely qualita-
tive basis. To attempt anything more is difficult because of the
highly variable nature of the "function", f(y, t), where

y = £(y, t), and the tremendous wealth of methods contained within

any particular type.

The design criteria for the numerical integration process are as
follows.,
1. Computational efficiency
(a) in computer operations
(b) in coﬁputer étorage
2. Accuracy
3. Computational ease of local error estimation
4. Stable numerical properties
5. Variable step length capability
6. Variable order capability
T. Self start up capability

8. Unigueness of numerical solution

4, 1 Computational Efficiency

(a) in computer operationé (computational effort)

The number of numerical operations the method performs, for a

prescribed accuracy, per unit of simulation time governs the method's
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numerical efficiency. Henceforth, it is often referred to as

computational effoxrt.

The four factors which influence computational effort are listed

below,
i the number of incremental time steps per unit of

simulation time,
ii  the order of the integration method,

iii the number of "function"evaluations per incremental
p

time step,
iv  the complexity of the "function" evaluations.

Factors i, ii and iii are a function of the numerical integration
method, while factor iv is simply a function of the DE system to

be integrated.
Clearly, for large systems of coupled DEs "function'" evaluation is
a major source of numerical inefficiency. For a single DE this

may not be the case.

(b) in computer storage

This agpect of efficiency is simply defined as the amount of extra
information the computer must store at each time increment to
permit the method to work. This is dependant on the method of
integration and the size of the system of DEs.

4., 2 Accuracy
This is a prerequisite for any numerical solution. It should

always be consgidered in conjunction with efficiency since it is
always possible to achieve greater accuracy at the expense of
greatly increased computational effort. Primarily, it is a
function of the incremental step length and the order of the integ-

ration formula.

4. 3 Computational ease of local error estimation

The numerical methods used for solving problems in DEs are pro-

cesses regregsing from sets of initial conditions and influenced by
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sets of foreing functions. As such it is an easy matter for the
numerical solutions to deviate significantly from true. A means
of checking for this and thereby enabling corrective treatment to

be implemented, is supplied by the local erroxr estimate.
Clearly, it is desirable for this error estimation to be achieved

with minimal computational effort, as estimates of error should

be obtained at every time increment.

4. 4 Stable numerical properties

Stability is a constraint which all recve sive {type difference
equationé must meet to ensure a meaningful and bounded solutiomn.
Instability manifests itself in what could be described as a numer-
ical explosion after a relatively few number of incremental time

steps. (For fuller explanation see Section 6)

4. 5 Variable step length capability

This feature ig often included in a numerical integrator. Should
the local error fail to meet prescribed tolerance limits as the
integrator time marches, it is usually desirable to make running
adjustments to the incremental step length, h, to reduce the mag-
nitude of this error. However passive error monitoring is adequate

for the objectives of this project.

This ease of step length alteration during the time marching pro-
cess 1s important in the non-stationary problem for quite a dif-
ferent reason. With the non-stationary problem, the marching pro-
cess is accomplished in the space domain and not the time domain,
(See Chapter IX). Under such circumstances the velocity terms of

the second order DEs are broken into the product dy . dx where y
dx dt
is vertical displacement, x is the distance travelled along the

road profile, and, t is the independant time variable. The dx
dt
profile velocity terms are grouped with the physical parameters of

the system of dynamic equations. This separation is equivalent
to altering the step length relative to the time constants of
the differential equation system, Ability to cope with step length

changes during the msrching process consequently becomes important
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because of this time constant alteration.

This step length alteration ability can also prove a useful self

starting device. (See subsection 4. 7)

4. 6 Variable order capability
As with step length alteration this ability to change order can

be used as a method of error control during the time marching pro-
cess. As this gbility is superfluous to requirements the useful-
ness of this device comes as a self starting mechanism. (see

subsection 4. T)

4. T Self start up capability

At the start of the time marching process it is necessary to define

the initial conditions that exist in the physical system. With

some numerical integrators this is all the information required.
Such methods are truly self starting. However by taking into
account the variable step length or variable order ébility of some
integrator methods, it is possible to greatly increase the range

of integration methods which can be self starting. Such pseudo

gelf start methods either begin with a very small step length to
keep initial errors down at low magnitude or, alternatively commence
with a low integration order and then increase the order to estab-
lish all necessary information for the higher oxrder integrator

formula.

4. 8 Uniqueness of the numerical solution

The unigueness of the numerical solution is necessary to ensure

convergence, This is a particular problem in non-linear DEs.
Although in the non-stationary problem (because of the space domain
approach) the parameters are changing as the process time marches,
the DEs are in fact quasi linear because of the parameters‘indepen~

dence of the system's responses.

5e Twpes of solution methods

Attempts at classifying methods into either one step or multistep

methods-become somewhat clouded when particular integration
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method types are considered, There are many instances of method
types which span the boundary between those two classifications,
with some methods residing firmly in the multistep class, while

others of the same type are entrenched in the one step method

class.

In the following subsections the various method types are briefly

discussed,

5. 1 Taylor's Serieg Solution

The Taylor's Series method is not a serious contender in the
choice of integration formula. However, it is of great theoretical
importance., Consequently it is an excellent starting point in the

congideration of method class.,

The Taylor's Series solution takes the form

. 2 . 3 e
= + h +h + h
I I-1 T -1 2 Im-1 gt Tm-1 (5.1)
where ’yg_i' is the 'Nth' derivative with respect to time at time
] t 1t 3 + + -
§m~i , and 'h' is the time step increment (tm tm—l)'

Consider the, by now familiar, DE

vy = £y, t) (5.2)
Differentiate to obtain o

- t 5 i

y = £ +ff (5.3)

i of
where £ = —
0i

At time instant, t ., (5.2) and (5.3) yield

Vo1 = Sy (5.4)

ve + :

Vo1 = Tpe1 t Ty i‘Ym-l (5.5)
respectively.

Substitute in (5.1) to obtain

Vg = Ypat B i +B et w2 )Y 4 oomd)
2 m=1 m-1 m=-1 (5.6)

where O(hs) = truncation error term of highest order.

Consequently it is possible to obtain a solution from the Taylor's Series
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provided the higher derivatives of the original DE (5.2) can be
determined. If 'n' higher derivatives had been considered the

truncation error would have been, O(hn+1). Such solution methods
are of 1ittle practical value because of the computational difficul-~

ty of evaluating these higher derivatives.
The real importance of the Taylor's Series is in establishing the

truncation error in other more readily usable integration methods.

562 Runge Kutta (RK) Methods
The essence of Runge Kutta (RK) methods are easily summarised.

Such methods comprise of the following two basic opeiations.

(1) Successive "function" evaluations are used to iteratively

egstimate the slope, in the following manner,

(o) _
fm - f(.'Ym—l’ tm—l)
1) = £y _,+en f;, t 4 + 8, h)
m
. .
) . (5'7)
] )
f(n) = f( + a ho g + a_h)
m ‘ Ymel ¥ Fop.1 B 'm el n

(2) The 'm' function evaluations are then "averaged" and ¥, evalu~
ated, to yield

(o) (1) (2) (n=1)
T = Ypq t b h (b0 £+ £ b, f ot b f n )

' (508)
| = ¥, + 0Py, )

It is obvious that the general RK method requires no informgtion
other than, Ypo1° to proceed time marching. It is a true self start-

ing method,

Changing incremental step length, h, in the RK method is a trivial

operation,
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The main disadvantage of RK methods lies in their low computation-
al efficiency, especially with higher order formulae, To reduce
the truncation errcr by one order of magnitude it is also neces-
sary to increase the number of "function" evaluations by one,
During a time marching process many incremental time steps are
calculated and the extra computational effort of such additional

"function" evaluations becomes very significant.

53 Predictor-Corrector (PC) Methods
All linear multistep methods take the form
k k
%;O 8 ¥n = h ézé bi fn—i (5‘9)

where ai and bi are constant coefficiénts.

(5.9) is & k - step method. The term linear follows the fact

that the "f"s are entered as a linear series and not, as might be

supposed, because the method is restricted to linear "f"s,

Most predictor corrector (PC) methods come under the classification
of linear multistep methods, There are, however, important excep-
tions to this. PC methods do exist which are not in the true

sense multistep but can in fact be shown to be equivalent to and

to exhibit many properties of multistep methods.

Linear multistep methods can be established as follows,
Take the DE

y = £ (y, %) (5.10)

and integrate between t . and tm, so that

m—-1

t

- ¥y =" £y, ) at (5.11)
%
m-1

while replacing f(y, t) by an interpolating polynomial. Such

m

methods are integration based.

(It is possible to replace y on the left hand side of (5.10) by
an interpolating polynomial of y which is then differentiated.

These methods are in general unstable,)
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Predictor corrector formulae owe their basis to linear multistep
methods. In practice it is normally convenient to have an
explicit Predictor as an initial estimate of I which is then

improved upon by an implicit Corrector.

In essence, Predictor Corrector methods comprise of the following

operations.

(1) The P step
An estimation is made using the explicit Predictor formula as to

the value of 'y' at 'tm'.

- 0 P .
3’151 ) - Zl (85 ¥y + B2y ¥y ) (5.12)
=

where a; and bi are constants.
Neither y . nor £ . are calculated at this stage.
m-i m=~i

They are in fact stored and carried forward from previous time

step increments.

(2) The E step
A function evaluation is next performed by making use of (5.10) and

the last estimated value of ym(jml).
0 3 o1
ALY CAC A R (5.13)

(3) The C step
By means of the 'jth' function evalvation the estimated value of

y 1is now updated, by means of the Corrector formula, to yield

(5+1) I .
Im = j;(ai Ypei TR Py Vp5)

' (3) * (3)
+ ao ym + h bO y‘m (5014)
It should be noted that the order of both Predictor and Corrector

stages is quite independant of the number of function evaluations.

The E step and the C step can be iterated until the desired degree
of convergence is achieved, although clearly it is undesirable for

efficiency reasons to have too many iterations.
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Predictor Correctors have two possible modes of operation.
(1) the P (E C)k mode
(2) the P (E c)k E

where (E C)k is an evaluation (E) step followed by a correction
fC) step, with the sequence being repeated 'k' times. The
stability properties of the two modes are quite different (see
Chase, P.B., Ref. 3). This aspect is discussed in some detail

later.

PC methods require a considerable amount of information to proceed
time marching. They are consequently not self-starting. However
once the process is started maximum usage is made o6f this previous-
1y computed information to make such PC methods computationally
efficient, and unlike RK methods the order of truncation error is

independant of the number of function evaluations per time step.

In the previously derived form PC methods are not amenable to step
length change. Fortunately PC methods do exist (discussed in detail
later) whereby this back value information is not stored in this
back value (multistep) form but in terms of higher derivatives. In
this form, it lends itself to step length changes. This also

means that PC formulae are amenable to pseudo self start procedures.
The initial step length, hI’ is so reduced to keep the initial
truncation error, O(h§+1), well below the error, O(hp+1) of a
typical step, h.

If this latfter type of transformed PC method is adopted, the method

becomes exceedingly desirable provided the self starting mechanism

is not too frequently implemented.

5.4 Other less common types

Less well known types are considered briefly. Some can be quickly
eliminated as being unsuitable for the purpose in hand., Others
are dropped because of scanty knowledge of their numerical behav-
iour, there being no apparent overriding advantage for their

implementation,
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5.4.1 Block type methods
These methods can be either explicit or implicit and take the

general form

a. . =
Z 1 y‘III+1 d

b q
1= J=

q
b.y_.+h Z c, f
o Y J K= -p k "m-k

where e =1, 2, 3,~---p, and By bi, c;y are scaler coefficients.
Next step the method advances 'p' increments so that the values

ym+p+i’ for i = 1, 2, ——-p, are calculated, The fmnk terms can be

replaced by an interpolating polynomial. Clearly it is impossible
to alter the step length at every step length increment, h. This
can only be done in blocks of 'p'. This class must therefore be

ruled out.

5e442 Hybrid type methods
Such methods combine the features of PC and RK methods., They take

‘the form

P
Y™ ;é% { @ Ypy * 0 by foms } +h F(Yms tﬁ)

The terms within | ] are the explicit Predictor part and F is

the explicit RK function evaluation part.

Unfortunately such methods are not self starting, do not lend them~
gselves to step length change, and the RK portion requires many
function evaluationa. They may have future potential especially
if ‘a step length alteration capability is develbped. At the

present state of development this class must be discounted.

S5ede3 Fultistep Multiderivative type methods

Multistep multiderivative methods have much in common with
predictor corrector methods., Unlike predictor corrector methods
which are based on (4.3.2)

L.

m

Yo=Yy = ) £y, t) a
t
m~1
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the multiderivative method has its basis extended to include

higher derivatives of f£(y,%).

The method takes the general form

D Sk k
Vg = > B Vit o2 B2 Py d Gy )
i=0 k=1 i=0 k
dt
where t is the independant variable
and r is the order of higher derivatives included.

These methods can be used in a predictor corrector form, It is
not included in Section 4.3,1It is at a rudimentary phase of
development, although a few applications with stiff systems, not
relevant to this projecf have been attempted - Liniger and
Willoughby Ref. 4 and Enright Ref. 5.

Efficient application of this method requires easy evaluation of

the higher derivatives, & (yhri)’ Such derivative evaluations can
: a
often prove difficult.
. Since this class has no apparent overriding advantages, it was
chought best to reject this method at the preliminary phase for

the reasons discussed in the last two paragraphs.

S5edet. Recursive Convolution Integral type methodsg

Such methods are based on the Convolution integral

t '
y(¢) = »p(t) H(t-7) dr
0
This formula is often used in dynamics, where H(%t) is the impul=-

sive receptance of the system,

P(t) is the input disturbance

y(%) is the system response.
To increase the computational efficiency the Convolution integral
is discretised and expressed in a recursive form, (See Trauboth
Ref. 6).

This type of solution method is based on the superposition prin-

ciple and as such is only applicable to linear elastic systems.




=133~

Although frequently used in structural dynamics, this restriction
to linear systems makes it rather inflexible for use as a

general method of handling the non-stationary (and frequently non-
linear) vehicle suspension problem. It must therefore be ruled

out.,

6. Ixistence and Uniqueness of the Solution

Most types of numerical solution to the initial value problem (3.1)
3} = £(y, t)
can be classed under the general p step method which takes the form
Eég 81 ym—gt) + h G(yét)’ ym~§t2 e ymﬂét)’ & h) = O (6.1)
It is necessary to establish if a unique solution to the numerical
. problem exists. To do this it is best to break the problem into
two halves and determine, in turn, if there is a unique solution
to the differential equation (3.1) and having established this
determine if a unique numerical solution to the difference problem
(6.1) exists.

That a unique solution to the initial value problem (3.1) exists
is proved by Henrici (Ref. 2) pp 15 Section 1.2, The requirements

are merely stated in the following paragraphs.

Conditions for uniqueness of (3.1)

For an initial value proBlem,.(j.l), if the conditions:

(1) that f£(y, t) is defined and continuous in the region
a<t<b, and -00 <y« o0 for any finite a, Db

(2) that a constant, K, exists within the bound a €t < b such
that, for any y and y* '

ke G#,t) - £ (roe)) €1 Jy* - v
— a Lipschitz condition
then there exists only one function y(t) such that
(1) y(t) is continuocus and differential for a < t <D
(2) y(t) £ (y(t), t), fora <t <b

(3) y(a)

q, where g is a constant.
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As for the numerical integration method (6.1), a unique solution
obviously exists if the integration formula is explicit or if the
function to be evaluated has a linear nature. For an implicit

formula,(6.1) can be written in the form

v, = Fly,_;) (6.2)

o