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ABSTRACT

The subject matter of the thesis concerns the 

instability of shallow spherical shells. It 
presents an analytical and experimental investigation 
of the elastic, nonlinear, axisymmetric behaviour of 

such shells under the action of uniform pressure and 

point loading at the apex.

Chapter I is a critical survey of the relevant 
published literature. The survey outlines the 
development of the theoretical aspects of shell 

buckling and shows how this was influenced by the 

results of experimental investigations. It further 
outlines the development of highly refined 
experimental techniques which reduced the scatter of 
results characteristic of previous work. It is then

shown that even experimental work using these refined 

techniques, provides only a partial substantiation of 
theoretical analyses and it is concluded that the 
apparent disparity may be due to the uncertain 
character of the displacement dependent boundary 

restraints employed.

In Chapter II, the essential equivalence of the



governing differential equations adopted by many 

authors is demonstrated for the first time in an 

integrated manner. The solution of these equations 
is discussed with special reference to an original 
analysis of the case of a pressure loaded, freely 
supported shell. Alternative solutions by direct 

integration and the Galerkin method are discussed but 

these are shown to lead to excessive computational 
difficulties. The effect of various boundary 
conditions is then examined and their influence on 
critical load values is shown to be significant.

In the research undertaken, displacement 

dependent boundary conditions were avoided by using 
only force dependent conditions in the experimental 
work. The simplest of these conditions are those 

corresponding to a free support.

In Chapter III, the requirements of experimental 
techniques necessary to obtain the equilibrium path in 
both the stable and unstable states of equilibrium are 
discussed. This has led to the development of new 

techniques of preparation of accurate, stress-free 

specimens and the adoption of a new, controlled 
deflection loading technique. The experimental
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investigation also presents, for the first time, the 

measurement of surface strains throughout the loading 

history of the shells.

The results of the experimental investigations 
are discussed and compared with theory in Chapter IV.
A critical comparison with the published experimental 

work of previous investigators is included where 
relevant.

Chapter V summarises the main findings of the 
investigation regarding the basic aspects and shows 

that good agreement with theory is obtained by the 

refinement of experimental techniques introduced so as 
to approach as closely as possible, the assumptions of 
the theoretical analysis. Thus, for the first time 
to the author’s knowledge, experimental results which 

are both consistent in themselves and in agreement with 

theory have been obtainedo The application of the 
results of the investigation to practical engineering 
problems is considered.

A Bibliography and Author’s Index is provided 

in Chapter VI, followed in Chapter VII by Appendices 
giving details of analyses considered in the thesis, 
together with a full presentation of the results of the 
experimental investigationo
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NOTATION

a base radius of shallow cap
R spherical radius of curvature
t thickness of spherical shell

r, 6 polar co-ordinates

h rise of spherical cap given by h = a2
2R

y dimensionless parameters defined by

i > r  t

meridional and circumferential strain

u, V, w tangential, axial and normal components

of displacement
6 deflection parameter given by ô = ^

Ô dimensionless deflection at r = 0o
rotation of normal to shell surface 

N^, N q meridional and circumferential membrane
force per unit length 

M q meridional and circumferential bending
moment per unit length 

Q shear force per unit length

^ stress function given by = rN^
E,V . Young’s modulus and Poisson's ratio



VXIX

D Etflexural rigidity D = Y2j^— -—

B extensional rigidity B = Et

\  ̂rj dimensionless shell parameters defined by:

= 2 3(1 - lA , .-2iÿ =
) a

ry = 12(1

p

p

axial point load at apex of shell 

uniform pressure load intensity

PR
Et-

point load parameter

£Ra'
E t ^

pressure load parameter

q classical buckling pressure for complete 
sphere given by

Q = 2Et ,

1?̂  [a(i



CHAPTER I

REVIEW OP PUBLISHED LITERATURE



I •1 Introduction

In view of the inherent complexity of the shell 
buckling phenomenon, early theoretical treatments were 

based on relatively simple concepts regarding the 

assumed behaviour of idealised shells. The results of 
experimental investigations indicated collapse loads 
which were considerably lower than those obtained on 

the basis of these early theoretical analyses. It was 

obvious, therefore, that the actual mechanism of 

buckling was appreciably more complex than that assumed 

in the analysis and that the phenomenon was influenced 
by factors outwith the scope of the early theoretical 
treatments. At the same time as the theoretical 

analysis was extended to take account of these factors, 

workers in the experimental field attempted to 

manufacture and test specimens which conformed more 
closely with the idealised shells of the theory. Thus 
a continuous process of extension of the theoretical 
work and refinement of experimental technique was 

initiated•

It therefore appears reasonable to review the 
published literature chronologically and thus 

illustrate this continuous development of the



theoretical analysis and refinement of experimental 
technique whereby a better understanding of the 
buckling phenomenon has emerged.

Before examining in detail some of the more 

recent contributions to the understanding of the 
phenomenon of instability in shallow shell segments, 
it is convenient to survey briefly the early approaches 

to the problem indicating the formulation of the basic 

concepts of shell buckling. It is also,convenient to 

review the criteria governing instability and to 
indicate how greater refinement in theoretical 
treatments became necessary in the light of experimental 
data. With special reference to the latter, a brief 

analysis of the factors influencing experimental work 
is presented so that a more critical assessment may be 
made of papers dealing with this aspect when these are 
reviewed later.

The first investigations of the phenomenon of 

elastic instability were concerned with the problem of 

the complete sphere subject to external pressure. The
f1 ) (2 )work of ZOELLY'^ ^  and SCHWERIN^'  ̂ introduced the 

concept of the classical definition of a critical 

pressure. Both ZOELLY and SCHWERIN considered
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f  8 )rotationally symmetric deformations but VAN DER NEUT^^ 
was more general in bis assumptions. In tbeir 
analyses, only linear terms were retained in defining 

strains in terms of displacements. The resulting 

governing differential equations were thus linear in 
character. Their work represented the classical 
analysis based on the classical criterion of instability 
This was defined as the lowest pressure at which an 

adjacent stable equilibrium configuration was possible.

The first experimental work was reported in 1939 
by KARMAN and TSIEN^^^, This work was carried out on 
a copper hemisphere of 0,02 in. wall thickness and 18 

in. radiuso The shell snapped into a rotationally 

symmetric form at about one quarter of the classical 

pressure. This and later work indicated an apparent 
failure of the classical theory to predict instability. 
It therefore became clear that analysis of the post­

buckled states was necessary and this problem was 

assumed to be that of a spherical segment clamped at 

the boundary. These early analyses were based on the 
assumption of a simple algebraic term with a single 
undetermined constant to describe the deformation of 
the shello Such an assumption has been shown to yield



substantial error in the light of subsequent 
experimental work. From this stage, only work 

relevant to the shallow spherical shell is 

considered.

The use of so called energy methods to solve * 
the governing differential equations led to the 

formulation of the energy criterion of buckling.

This was defined as the lower limit of all values of 

the pressure for which a buckled state of equilibrium 
existed with an energy level below that of the unbuckled 
state. Several authors subsequently discussed at some 

length the validity and interpretation of the energy 

concept. As a criterion, it was artificial and 

appeared to yield a lower bound on the theoretical and 
(almost) all the available experimental data and did 
not contribute materially to the better understanding 
of the problem.

Later, when the inherent limitations implied in 
the use of a single term to describe the deformation 
of the shell had been appreciated, attention was 
focussed on the numerical difficulties involved when 

further terms were retained. In 19 6 3 FEODOS ̂  ̂̂

introduced dynamic terms into the governing equations.
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basing the evaluation of the equilibrium condition on 
the frequency parameter. He showed that the solution 

of the resulting algebraic equations in his variational 
approach could be simplified and thus introduced a new 
concept of general application into the solution of the 

problem. The main advantage accruing from his approach, 

was that the investigator was not bound in advance by 

definite criteria of stability.

Until fairly recently, the major part of the 
published literature has been based on assumed 
symmetrical behaviour of the shell. It has been 

recognised for some time that the agreement between the 

theory and experimental data has been disappointing for 
some ranges of shell form. This has led authors to 
seek means of explaining the discrepancy. Such a 
discrepancy may arise from two sources; the theory may 

be at fault by omitting, for example, the effects of 

imperfections or the experimental data may be suspect.
In considering the theoretical aspect, some authors have 
investigated the influence of assumed initial irregularity 
This by itself has been insufficient to account for some 

of the disparity. More recent analyses have recognised 

that collapse of the shell may occur via nonsymmetric 
modes and this has been shown to have an important effect



on the critical load. Recent research has shown that 
early authors were insufficiently critical of the 

available experimental evidence with which they compared 
their theoretical results. Experimental results are 
very sensitive to a variety of factors only in part 

considered by previous workers.

I •2 The Effect of Errors of Measurement

In order to verify any particular theoretical 
solution, certain basic requirements of the experimental 

model must be fulfilled. In general, a shell theory 

will include dependent parameters which define the 
shell geometry, the load and the elastic properties of 
the shell itself.

Considering first the shell geometry, the

relevant shell parameter may be defined by
A

Similarly, the pressure load parameter may be 
defined by

P  a y  2.C I -
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These definitions are those most commonly 

adopted, and it is obvious that the parameters depend 

on the following quantities:

a = base radius of shell 
R = spherical radius of shell 
t = thickness of shell 

which define the shell geometry, and

= Poisson® s ratio 
E = Young®s modulus 

which represent the material properties of the shell.

Let K = 1 - V , then the relative error in jlà. 
and P , expressed as a function of the relative errors 
in a, R, t, E, p and K will be

M  4 K  o. Z R 2 t

and

=& 1 i 2 SJ? +' *1 4* 4*P 2 K ^ I? fc E ^

Consider the relative error in /x « It is 

clear that this depends largely on a which can, however, 

be measured with considerable accuracyo The effect 
of errors in R and t is not so pronouncedo



The determination of the error in P is more 

complicated due to the quadratic dependence on R and t . 

Errors in t, apart from those due to faulty measurement, 
may arise from random non-uniformity in the thickness 
of the shell. Where such random variations occur in 
the thickness of the shell, it is difficult to decide 
what value of t should be used in correlating 

theoretical and experimental work. For example, an 
error in t of _+ yfo could lead to calculated values of 
P differing by 12^. Similarly, an error in the 

determination of the spherical radius has effects of 

the same order. Thus an uncertainty of the order of 

Hh 3^ in both R and t could lead to values of P differing 
by 2 4 ^ 0 It may be concluded therefore, that extreme 
care must be exercised in determining as accurately as 
possible the geometry of the shell.

Accuracy is obviously dependent on the precision 
with which the elastic constants E and v are known and 
hence some care is necessary in measuring themc An 
error in E has a direct effect on P . The effect of 

an error in V is not so easily established. Apart 

from V appearing in the both P and // where its effect 
is easily assessed, it also enters the solution of the 

problem through the boundary conditions. The effect



of an error arising from this source may not be readily 

estimated except by repeating the calculations for a 

finite variation in V

The basic requirements may now be recognised. 

Since the presence of initial stress is inadmissible if 

theoretical comparisons are to be made, it is necessary 
to produce a stress free shell of regular geometry.
The shell, measured so that the geometry is defined, 
must be supported and loaded in accordance with the 

various conditions assumed in the theoretical analysis.

Most of the papers reviewed have dealt with the 
case of the clamped shell. The most commonly adopted 
method of attempting, to secure a clamped boundary has 

been to bolt the shell between rings. Evidence gained 

from an experimental investigation of this particular
(35)method of edge restraint'  ̂ has shown that it offers 

only a poor approximation to the fully clamped condition 
Of even more importance is the fact that this method of 

mounting shells will almost inevitably apply random 

force and moment actions to the shell boundary, thereby 

inducing an initial state of stress. Since instability 
is total stress dependent, any such initial state of 

stress, which cannot be incorporated in the theoretical 

analysis due to its random character, should be avoided.
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It is possible that these force and moment actions 
could produce a state of pre-stress in the shell of 
sufficient magnitude to precipitate the premature 

collapse phenomena which has characterised much of 

the experimental work recorded. At the very least, 

these actions will introduce a scatter into the 
experimental results which will greatly diminish the 
value of the latter in testing a particular solution.

I .3 The Point Loaded Shell

The first theoretical treatment of the buckling 
of freely supported shallow spherical shells was 

reported by BIEZENO^^^ in 1935° At this time, other 

investigators were still adhering to the classical 

linear approach to the problem of the pressure loaded 
complete sphere. BIEZENO recognised the need to adopt 
nonlinear strain-displacement relations with the result 
that the differential equations became nonlinear in 

form. Indeed, most of the subsequent work was based 

on equations analogous to those of BIEZENO. He 
assumed that the deflected form of the shell under a 

central point load was related to that for a flat plate 
by an undetermined multiple with the addition of a
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linear term. Thus he assumed, the deflected form

c, E + loga 1.2.1

where Cj and C^ are two undetermined constants.
Solving the appropriate differential equatio.n with this 

substitution, he obtained a solution for ly which was, 
of course, different to the form quoted above.
Assumi.ng that both the final form and the approximate 

form given by 1.2.1 would yield the same central 

deflection and change of slope at the boundary, he 

obtained the values of C ̂ and C^ and hence calculated 
the equilibrium path. The effect of his assumption 
is difficult to estimate but it should be .noted that 

this procedure allowed the deflected form to change as 

loading progressed. Thus it recognised an inherent 
feature of the buckling phenomenon and it therefore 
offered a. considerable advantage over the one term 
* Galerki.n ' approach adopted by other authors. It 

would require a minimum of two such Galerkin terms to 

provide a similar degree of flexibility in permitting 
changes in the deflected form during loading.
Furthermore, it is unlikely that a general term, unless 
very carefully selected, would represent the deflected 

form as accurately as the approximation from the
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inextensional flat plate analogy.

Other work relevant to the point load action was 

reported by CHIEN^ ̂  ̂ in 1956* He examined the 
stability of shells subject to a ring load at the apex 

and bending moments round the edge of the shell. The 
equations derived were nonlinear and an attempt was 
made to solve these by assuming a single term to 

represent the deflected form. In the limit as the 

radius of the ring tended to zero, the case of a point 
load at the apex was obtained.

ASHWELE^^^ in 1959 applied Love's principle of 

applicable surfaces to the problem. According to this 

principle, the deformed portion of the spherical shell 

was an inverted spherical surface, or nearly so « By 
matching the radial displacements and shears at the 
boundary between the deformed and undeformed portions 
of the shell, which was assumed to remain spherical, 

linear differential equations were obtained. He also 

conducted experimental work on four aluminium alloy 

shells for values of jji of 4*7, 4*9» 5*8 and 6.4* The 
results of his experimental work were reported to agree 

well with the analytical solutions and with BIEZENO»S 

results.
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A.n extensive experimental study of buckling
under central point loading was reported in 1 9 ^ 2 by

( 9 )EVAN-I¥ANO¥SKI, CHENG and They tested a very
wide range of shells in copper, steel, aluminium and 

vinyl polyethelene. For the metallic specimens, they 

adopted the hydroform process to produce shells with 

spherical radii varying from 5 in « to 10 in., base 

radii varying from 0.953 in. to 3-812 in. and // 
varying from 3-72 to 14-95* Both clamped and freely 
supported shells were tested. For the clamped tests, 
the shells were restrained at the boundary by rings 

 ̂machined to fit ̂ the shell contour. In view of the 
method of manufacture of the metallic shells, it seems 
unlikely that the sliells were of a stress free 

character. Their method of obtaining a clamped 

boundary in the case of the fixed shell tests, also 

seems open to criticism. No reference was made of 

the method used to measure the spherical radius of 
curvature or whether an attempt was made to measure 
variations in thickness. Their results, while showing 

considerable scatter due, probably, to their 

experimental technique, show a tendancy which is in 

general agreement with the predictions of BIEZENO and 
ASH¥ELL. Some of their results are shown in FIG. 1.1 

and FIGo 1 .2 . where they are compared with the theory
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of BIEZENO ̂ ̂  ̂ for V = 0.33* Their work is examined
in more detail in Chapter IV.

Theif main conclusions were:

(1) Simply supported shells of /A less than 

3 . 7  did not snap but merely deflected in 
a nonlinear manner.

(2 ) Known analytical solutions agreed well in 

the range 3 * 7  ^ /A K, 6 . 5  for symmetric 
deformations.

(3 ) Shells with /A ^ 10*2 buckled 
nonsymmetrically.

(4 ) Very deep shells did not exhibit buckling 
(probably due to large plastic 

deformations).

(5 ) Variations in the parameter h/a did not 
affect the critical loads but might affect 
the deflected forms.

Though stresses were measured, they were not correlated 

to any existing theory. They also tested clamped 

shells but these did not exhibit any snap through 
phenomenon.

In the same year EVAN~I¥AN0¥SK1^^^^ presented 

results of a further experimental study. In this
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investigation, the behaviour of both simply supported 

and clamped shells was examined under eccentric local 
load and uniform pressure superimposed on eccentric* 
load action. It was noted that critical combinations 

of dead-weight and pressure were independent of the 

order in which the loading was applied - a result 
which is not surprising. He was, however, disturbed 
to find that when the concentrated load was applied 
eccentrically,' a higher combination of the total load 

resulted as compared with the axisymmetrical case.

At first sight, this might appear to be unexpected in 
view of the natural expectation that an eccentric load 
would tend to encourage nonsymmetric collapse leading 

to lower collapse loads for certain values of yx 

EVAN-1WAN0¥SKI does not appear to have considered the 

possibility that the application of an eccentric point 
load will influence the total potential energy of the 
system and could therefore raise the critical 

combination of the buckling load. While it was 

recognised that ihitial imperfections influenced the 
buckling load of a shell subject to external pressure, 
the corresponding influence was much less pronounced 
in shells under point load action since, in general, 

the large local deformations in the neighbourhood of
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the load point may well swamp all but very large 
initial irregularity.

I .4 Pressure Loaded Shells

The behaviour of the pressure loaded shells is 
characterised by the theoretical and experimental 

investigations of the clamped shell segment. This 

definition of the problem arose in the post-buckling 
analysis of the complete sphere in which the behaviour 
of a clamped segment was assumed to be representative 
of the phenomenon of dimple formation.

As mentioned earlier, the problem of the 

stability of the spherical segment is distinct from 
that of the complete sphereo The restraint at the 
boundary of the segment prevents uniform contraction 
of the shell and bending thus occurs on the first 

application of the load. The behaviour is therefore 

one of continuous bending until snap results when the 
maximum deflection is comparable with the total height 
of the shell initially. In view of the large bending 
distortions which occur, it is apparent that nonlinear 

terms must be retained in the strain analysis if a 

true picture of the buckling phenomenon is to be



1"'

obtained. The inherent nonlinear character of the 
problem has been recognised by most authors who, with 

some recent exceptions, have further assumed 

axisymmetric behaviour.

In the experimental field, work was reported by 

TSIEN. By using oil as a loading medium, he 

constrained the shells to snap under approximately 

constant volume conditions. Later, in 1953» tests on
f 1 1 )domes were carried out by KLOPPEL and JUNGBLTJTH^  ̂• 

Since they adopted air pressure for loading the shells, 
the snap occurred at approximately constant pressure. 
Using high speed photography, they showed that snap 

between rotationally symmetric states could occur 
nonsymmetrically. Much of the work reported above, 
was carried out on relatively deep shells and hence 
the nonsymmetric behaviour is not unexpected.

The first detailed investigation of the snapping
/'ip')of shallow shells was carried out by KAPLAN and FUNG^  ̂

in 1954' They assumed rotational symmetry and 
retained nonlinear terms in presenting their 
equilibrium equations. The differential equations 

which they derived were essentially equivalent to 

those which BIEZENO proposed some eighteen years
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previously. In writing their equilibrium equations, 
it was assumed, that the radial membrane stress was 
influenced by the deformations. The governing 

equations, which are based on force equilibrium and 
strain-displacement compatability requirements, are 

presented as follows:

D  of J, (rdw) — rdr dr^

ar R d r
1 .3 . 1

N r /  r  4- c ) w  ) 4- i  tor 1 c 3 . 2R dr/ 2 '

where N
—  V

c/u 
d r

w  I /dw\ -fv/u -w\
R 2 Id?; ir

and u, w are the tangential and normal displacements 
respectively.

They used a perturbation method to solve the 

above equatio.ns by expressing the dependent variables
Wow, and p in terms of = — as a.parameter and

expanding all the variables in powers of . The
boundary conditions assumed were those of a clamped 
shell and the critical pressure was obtained by setting

They found that for ^  = 4 » the^  = 0dw.o
convergence of the solution was good but deteriorated
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rapidly for higher values. The convergence was, 
however, good enough for small values of to

indicate the mode changes which might be expected 

to occur. Thus for ^  approximately ?, the 
maximum deflection is no longer at the centre. .For 

yU approximately 9 ? the mode changes again and t.he 
maximum deflection is agai.n at the centre. These 

modes, which are of course axisymmetric, are shown in 

FIG * lo3 and will be subsequently referred to as 
Modes 1, 11 and 111 respectively. More recent

experimental work indicates that for yW greater than 
about 5 j shells may behave .nonsymmetrically. Thus 

their solution, based on assumed axial symmetry, may 

be considered reasonably adequate for values of // up 
to about 3* Whilst they were no doubt concerned about 
the poor convergence at higher values, the value of 
effort spent in overcoming this difficulty for assumed 

axial symmetry is marginal, since the shell may well 
behave nonsymmetrically.

KAPLAN and FUNG also carried out experimental 

work on shells of 8 in. base diameter and .nominal radii 

of 2 0 in, and 3 ^ in, with thicknesses varying from 

0 o 0 3 2 in. to 0,102 i.n. The shells were formed by 

spinning from hot magnesium plate. Though the
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magnitudes were not given, this process almost 
certainly introduced thickness variations, the effect 

of which has been discussed earlier. It also seems 

likely that the process would induce fairly substantial 
residual stresses. The value of /a was obtained from 
measurement of the shell rise because * variations of 
the specimens from true spherical form* implied that 

the radius of curvature was in doubt. Initial 

imperfection amounted to of the thickness at some
points. To provide a clamped boundary, the shells 
were mounted between rings which were bolted together « 

They conducted tests with both oil and air pressure 

(corresponding to constant volume and constant pressure 
conditions) but no perceptable difference in behaviour 
of the shells was recognised under the two media.
They claimed that their experimental results were in 

fair agreement with their theoretical work fosr the 

lower values of /A and for the range up to /J 

approximately 3 , the criterion = 0 for the
determination of the collapse pressure appeared valid. 
At higher values of jla their experimental results 

were less satisfactory (due probably to limitations on 

their method of testing and the onset of nonsymmetric 
buckling) and they supposed that the use of the energy
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There then followed two papers, by SIMONS and 
ARCHER respectively, attempting to obtain solutions to 
REISSNER'S^^^^ equations (1950). These equations are 
directly analogous to those of KAPLAN and FUNG,

In 1 9 5 6 , SIMONS ( ̂ ) adopted a power series

method in which he expanded and rN^ in terms
rof the independent variable ^ . He intended to use

the condition = 0 to locate the maximum pressuredw
but was unable to obtain any satisfactory solution due 

to poor convergence of the series. Though his method 

could be applied to freely supported shells, he 
considered only the case of the clamped boundary,

(1 5 )In the same year, ARCHER'  ̂ used a perturbation

technique expanding the dependent variables in terms

of w^g^^ the maximum displacement which need not be at

the centre. He adopted the condition = 0  to
■ ^^max

locate the turning value of the equilibrium path.
His results were higher than the available experimental 

evidence and he attributed this to finite disturbances 
during loading.
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In 1957 REISS, GREENBERG and KELLER^^) used a

power series method similar to that of SIMONS to solve 

equations equivalent to those of REISSNER. They used 
a computer to deal with a large number of terms. To 
obtain the maximum pressure they adopted a computational 
technique by evaluating as p^^^^ the pressure at which 

the search for-an adjacent equilibrium position became 

fruitless. They also attempted to locate the lower 
buckling pressure but the convergence of the series was 
poor in the post-buckled region.

f 1 7 )In the following year REISS^ suggested that 

the problem could be examined by solving two linear 
problems. He first solved the eigenvalue problem of 
a segment supported at the edge in such a manner that 
only membrane stresses were induced in the shell prior 

to buckling. Hence he obtained a series of curves of 

the critical load against yx. for different initial 
modes of buckling. He then solved the linear bending 
problem of a clamped segment to obtain values of 

at which the initial mode changed. For y/ less than 

the first mode change position, the initial bending is 

Mode I; for yx beyond the first mode change, the 
initial bending is Mode II. He thus developed a 
continuous curve of the buckling pressure as a function
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of JLK . This curve passed through the experimental 

points.

In 1 9 5 8 , W E I N I T S C H K E ^ a d o p t e d  the method of 
SIMONS and used a computer to deal with a large number 
of terms of the power series. To determine the 
critical pressure he used the criterion = 0 .dWo
He expressed a doubt about the validity of the 
perturbation approach. He considered both clamped 
and simply supported shells.

(1 9 )VON WILLICH^ ' in 1959 used an energy method 
for solution; Both he and CHEN(^^) adopted similar 

nonlinear terms to those of KAPLAN and FUNG in 
expressing the total potential energy. Assuming 

rotational symmetry, VON WILLICH used a single 

algebraic term to express the deflected form in terms 

of w, the normal displacement and derived a 
corresponding expression for the tangential 
displacement u. Finally, he obtained an energy 
expression in terms of two parameters only. He 

assumed that one of these parameters could be considered 

constant during loading, implying that the deflection 
at any point was proportional to that at the centre at 
all times. CHEN, recognising that this assumption
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was unjustifiable, used a similar method but avoided 
this restriction. Both authors defined the critical 

pressure by setting = 0 . CHEN further examineddWo
the effect of initial irregularity of the middle 
surface and showed that this could have considerable 
effect on the behaviour of the shell.

f 2 1 )In the same year, KELLER and REISS^  ̂ attempted
a new solution by an iterative process using a finite

difference approximation of the nonlinear problem.

Confining their attention to the range of ^  for

which Mode I (FIGo 1.3) buckling occurs, they calculated
the maximum pressure of the equilibrium path as well
as the lower buck.ling pressure and the energy criterion
pressure. They concluded that the latter was of little
value in explaining the behaviour of shallow shells.

( 22 )At the same time BUDIANSKY^ ^  derived the
f 2 T )axisymmetric equations of MARGUERRE' ^  which are 

equivalent to. those of REISSNER. BUDIANSKY developed 

corresponding integral equations which he solved by 

numerical integration and hence located the maximum 

pressure. He examined both initially perfect and 
imperfect shells and concluded that at the higher 
values of yx , assumed initial imperfection could not, 
in itself, account for the lack of agreement with
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experimental evidence. He came, therefore, to th.e 

conclusion tHat this disparity could only be accounted 
for by nonsymmetric behaviour. Some of his results 
are shown in FIG. 1.4 •

Further experimental work was undertaken by 

HOMEWOOD, BRINE and JOHNSON^^^t THe shells they 
tested were of 5 4 diameter and nominal radii of
curvature of 4 0 in, and 7 8 in. with thicknesses 

ranging from O.O67 in. to 0 . 2 6 0  in. The thickness 
variation within any one specimen was of the order of 

2 4^. It was not recorded whether any attempt was 
made to measure initial imperfection nor was there any 
reference as to how the shell parameter y/ was 

calculated. The shells were spun from hot rolled 
sheet steel and wrought aluminium alloy. The method 
of clamping and testing was similar to that used by 
KAPLAN and FUNG. In view of the experience of KAPLAN 

and FUNG, it may be inferred that the test results may 

have been influenced by the presence of residual stress 
in their specimens.

All the theoretical work so far reviewed has 
been concerned with the analysis of the shallow shell 

segment the behaviour of which has been assumed to be
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symmetrical. The relatively poor agreement of such 

analyses with experimental data from shells with 
greater than about 5» has been attributed to the 
development of nonsymmetric modes. Thus an 

increasing number of authors have turned their 

attention to an analysis of this type of behaviour.

The problem of nonsymmetric snap was examined
by GRIGOLYUIC^^^^ in 1959. He used a Galerkin method
to solve the equations of MARGUFRRE. To deal with

nonsymmetric deformation, he assumed that the
deflection was given by:-

w - -twip^cosn©)

where

This form allows two degrees of freedom and permits 

the deflected form to change during loading. 
Substitution of this assumed form into the governing 

differential equations led to two simultaneous

algebraic equations. He did not indicate how he

intended to solve these and thus did not present 
results. He did not discuss criteria by which he 
would recognise snap.

In 1 9 6 1 , THURSTON(^^) carried out numerical
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solutions of REISSNER’S equations for the axisymmetric 
buckling of a clamped spherical cap. The method of 
solution was to assume an approximate result for the
nonlinear differential equations* A correction to

this solution was obtained by solving the resulting 

linear nonhomogeneous ’variational’ equations. This 
correction was used to compute a new assumed solution 
and the process repeated until the correction 

approached zero.

BEELINEANTE(^^) in 1962, adopted a hydroforming 

technique to make shells with nominal radii of
curvature of 8 in. and 23 in. in aluminium. He
considered that this method was superior to spinning 

as the thickness variations were reduced. The range 

of thicknesses tested were from 0.028 in. to 0 . 2 5  in. 
with thickness variations of _+ 0.001 in. within a 
specimen. Initial imperfections and the method of 

measuring shell geometry were not recorded. The 

state of residual stress would also appear to be 

unknown but may be expected to be high. The shells

were clamped between rings of internal diameter 10 in.'
and tested under oil pressure. It should be noted 

that the general geometry of his shells violated the 

shallowness assumption.
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In 1 9 62 a collection of papers on the 
instability of shell structures was published. The 

following five papers are of special interest.

W E I N I T S C H I Œ ^  ̂ noted that several recent 
theoretical axisymmetric analyses had shown good 
agreement with each other but a marked disagreement 

with experimental work. While he did not contest the 

validity of the latter, he suggested that the lack of 

agreement was due to nonsymmetric deformation. He 
therefore approached the problem by superimposing 
small asymmetric deflections on finite axisymmetric 
displacements. He showed that the symmetric states 

of deformation were unstable over certain ranges of 

load. He suggested that axisymmetric deformation took 
place until a critical value was reached at which point 
bifurcation of solutions of the basic equations 

occurred. One branch of the solutions corresponded 

to axisymmetric states, other branches corresponded 

to asymmetric states which, in the vicinity of the 
bifurcation point, differed from the axisymmetric 
states by infinitesimal amounts. He used two 
different techniques to determine the onset of 

instability. One amounted to the calculation of the 

second variation of the appropriate potential energy
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Sanction, the other reduced the stability problem to 
a nonlinear eigenvalue form. The results of his 

analysis is shown in FIG, 1,5 and indicate a trend 
in general agreement with experimental data,

PARMERTER and FUNG^^^^ also considered 
nonsymmetric behaviour and adopted a Galerkin method 

of solution for VON KARMAN’S large deflection equations. 

They represented the deflection in a form asymmetric 

with respect to 9 by;

9 ) = f<v) + c^Cr) Cos

Where Çcr) g(r)

They chose the deflected form to include two 
independent parameters. On substituting the assumed 

form into the differential equations, two simultaneous 

algebraic equations were obtained. The paper 
represented an interim report of work then being 
undertaken, A full analysis was presented by 
PARMERTER in 19^3 and will be reviewed separately,

KELLER and R E I S S e x a m i n e d  in some detail the 

possible mechanism of buckling in the light of criteria 

governing the loss of stability. Their main conclusion
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was tliat wlixle bifurcation of solutions could be 

predicted, closely controlled experimental work on 
this feature was desirable.

(3 1 )THUHSTON'^-^^ used a computer to solve REISSNER'S 
finite deflection equations for any shell of 

revolution with continuous second derivatives of the 

parametric equations of the shell middle surface.
The nonlinear ordinary differential equations of the 
finite deflection theory were solved by an extension of 
Newton’s method for calculating the roots of algebraic 
equations. He also calculated the strain energy and 

potential energy at each equilibrium state by 

integrating over the shell surface. In considering 
axisymmetric imperfection, he found that their effect 

was greater than the corresponding results obtained 

by BUDIANSKY and he attributed this to the difference 

in the assumed shape of imperfection. He suggested 
that his axisymmetric analysis could be extended to 
allow asymmetric behaviour with the possibility of 

including asymmetric imperfections in the analysis.

VON EARMAN and KERR^^^^ examined the total 
potential energy concept with special reference to its 
value in interpreting equilibrium states. They also
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concluded that the energy criterion was of little value 

in stability analysis.

Also in 1 9 6 2 , GJELSVIK and BODNER^^^^ in an 
investigation of nonsymmetrical behaviour, included an 

analysis of symmetrical collapse. Their work, based 

on the total potential of the system, used a single term 

to describe the deflected form. Thus it did not 
recognise the changing form as loading progressed.

In 1 9 6 3 u paper was published by PEODOS’EV^^^ 
in which he introduced a new approach to the solution 

of the axisymmetrie problem of the pressure loaded 
clamped shell. He noted that the use of variational 
methods to solve problems of stability had limitations 
in that they become excessively cumbersome when 

generalised. He pointed out that, in general, 

deformations are such that they cannot be represented 
with acceptable accuracy over the range of load by 
considering one or two terms. The problem becomes 
computationally difficult as the variational approach 

leads, as a rule, to a system of nonlinear algebraic 

equations (frequently cubic in form), the number of 

simultaneous equations being equal to the number of 
variable parameters. In the first part of his paper 

he solved the axisymmetrie bending problem using a
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finite difference method with varying interval. In 

the early stages of the loading history, successive 
approximations of the load were predicted by linear 
interpolation. Near critical states, quadratic 
interpolation became necessary. The critical pressures 

were determined by the criterion of multiple roots.

He thus established the axisymmetrie behaviour of the 

clamped shell with acceptable accuracy. He then went 
on to show that the use of only one independent 
parameter in the approximating function in the 
variational method was only acceptable for a limited 

range of shells. He indicated that the use of more 
terms might well lead to insuperable computational 
difficulties associated with the solution of the 

resulting algebraic equations. He thus proposed the 

introduction of a time dependent variable which, rather 

than complicating the matter, led to a simplification.
He therefore introduced inertia terms and linear 
damping effects> into the normal equilibrium equation. 
Dynamic effects were assumed to have a negligible 

effect on radial equilibrium. Assuming three 

independent parameters in his approximating function, 

he reduced the differential equations to three 
simultaneous cubic algebraic equations. These he
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solved by finite difference methods and the results 
showed general agreement with his earlier numerical 
integration approach. The concept is of interest in 

that the introduction of time dependence has the 
effect of changing the variable. Elimination of the 

time dependent terms reduces the algebraic equations 
to those obtained by the more usual variational 
approach. It is important to note that the essential 
nonlinearity of the problem does not materially 

influence the solution of the time dependent equations. 

He suggested that the method was of wide application 

and could be used in the analysis of plastically 
deformable bodies.

In 1 9 6 3. ICRENZKE and KIERNAN'^^^ reported the

results of an experimental investigation of the 

collapse of pressure loaded clamped shells. They 
noted that previous experimental work had been 
characterised by a lack of repeatability while the 
results of their own investigations followed a definite 

pattern. They claimed that this had been achieved by 

very careful preparation of models in which a high 

degree of geometric precision had been maintained.
They prepared their specimens by machining relatively 
small caps from solid aluminium stock so that the shell
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and xts supporting ring were continuous. Xn this way 
they probably produced the closest possible 
approximation to a fully clamped shell by ensuring 

continuity of the shell and its support. From the 

geometrical stability of the models during the final 
stages of the machining process, they deduced that 
negligible residual stresses were present. The 
spherical radii of curvature of the specimens were 
2 in. and 3 in. with base radii varying from 0.43 in. 

to 1 in. The errors in spherical radii were less than 

0,01^ with variations in thickness less than 1 The 
results of their investigation are shown in FIG. 1.6. 
Though their claim of a definite trend in their results 

appeared to be substantiated, the values of collapse 

pressures were consistently low by as much as 20^ in 

comparison with theory. The consistency in their 
results indicated that a high degree of uniformity had 
been achieved in the preparation of their specimens 

and thus factors which had caused varying degrees of 

scatter in previous work had been eliminated. By 
machining their specimens from solid material, they 
had at least achieved symmetrical support conditions.
It would appear from the consistently low results which 

they obtained for the collapse pressures, that even
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this method of attempting to achieve the clamped 
boundary condition does not in practice reproduce the 
conditions of no change in slope and no movement of 

the support as assumed in theoretical treatments.
This fact further substantiates the view that such a 

condition, which is so critical in instability, can 
never be achieved in practice.

In 1 9 6 3 PARMBRTER(^^) published the results of 
an experimental and theoretical investigation referred 

to earlier. Using the equations of MARGUERRE, he 
examined both the symmetric and nonsymmetric.modes of 
collapse for the pressure loaded clamped shell. He

adopted a Galerkin procedure using three terms. The

resulting cubic algebraic equations were solved 

iteratively by Newton’s method. His results showed 
a measure of agreement with the work of HUANG( )  whose 
theory is shown in FIG. I ,7. It is of interest to 

note that his findings were in marked contrast with 

the work of W E I N I T S C h K E ' a n d  PARMERTER suggested 
that the good agreement with experimental data claimed 
by Veinitschke was possibly fortuituous in view of the 
substantial experimental errors of previous work. 

PARMERTER also carried out very closely controlled 

experimental investigations on almost, perfect shells



3 6.

made by the electro-forming technique. In this way 
he was able to produce stress free shells with thickness 
variations of the order of l/5 0 th of the thickness.
The shells had nominal radii of curvature of 20 in. and 

4 0 in. but the radius of curvature used in the 
reduction of the data was calculated as the radius of 
the circle having the minimum least squares deviation 

from 17 measured ordinates on the surface of the shell. 
By repeating measurements along other meridians, he 
deduced that the spherical radius could be determined 
to within about 0.1^. The base radius of his specimens 
was 4 in. _+ 0.02^. The shells were loaded by oil 

pressure and the buckling pressure determined to 

within 1^. To obtain a clamped boundary, the shell 

was located in a cavity 0 . 0 1 5  in. wide and the space 
filled with an epoxy cement. No reference was made as 

to whether any movements of the shell in the support 

were detected. PARMERTER went to considerable lengths 

to obtain accurate values of Young’s modulus, E, in 
tension. Tests were performed on specimens 200 in. 
long with an estimated error of less than 3^* He 
obtained Poisson’s ratio from transverse strain gauges 

on the tensile specimen. He reported good agreement 
between his experimental results and his theoretical
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work. His results are sliown in FIG. 1.8.

The most recent paper on the subject of 

instability in shells, was published by T H U R S T O N^ ^  in 
1 9 6 4 . In it he described a computer program for the 
analysis of any shell of revolution under external 
pressure, axial load, torsion and axisymmetric 

temperature gradients or any combination of these load 

actions. The natural frequencies of free vibration 
could also be obtained under all loads except torsion. 
The solution of the nonlinear problem was restricted 
to thin isotropic shells of revolution in which the 

thickness and Young’s modulus could vary in the 

meridional direction. The boundary conditions could 
be any linear combination of stress resultants and 
deflections. He claimed good agreement with the work 

of HUANG for the special case of the clamped shell 
subject to external pressure.

1 . 5  Critical Summary

In reviewing previous theoretical work, an 

attempt has been made to show how a basic lack of 

understanding of the mechanism of buckling forced
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investigators of the problem to make far reaching 

simplifying assumptions such as assumed initial 
perfection of geometry and axial symmetry of behaviour. 
Historically, the study of the clamped spherical cap 
arose in the investigation of the post-buckling 
behaviour of dimple formation in the complete sphere. 

Thus most authors have attempted to correlate their 
findings for the restricted problem of the clamped 
segment with that of the complete sphere. The basic 
assumptions which characterised the early theoretical 

work were ;

(i) the shell is initially stress free
(ii) the shell is geometrically perfect

(iii) the behaviour of the shell is symmetrical

in addition to these, most workers on the problem of the

pressure loaded sphere have assumed that

(iv) the shell is fully restrained in
position and in direction at the 

boundary (i.e. clamped).

It is only relatively recently that experimental 

work has been directed towards a more critical 
examination of the effects of these basic assumptions.
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Most of the experimental results were characterised by 

an appreciable scatter and a disturbing lack of 
repeatability. It would seem, therefore, that the 
experimental shells, their conditions of support and 
their behaviour only in part conformed to the 

requirements of the theoretical approach. Even with 

the adoption of highly refined techniques for the 
preparation of specimens and the most careful test 
procedures, only partial substantiation of the 

corresponding theory was possible. Theoretical 

treatments were extended to include the effects of 

nonsymmetric behaviour and initial imperfection but on 
the experimental side, the inconsistent nature of the 
results indicated that factors such as the reliability 
of assumed support conditions might be in question.

It can therefore be seen that as the theoretical 

approach was successively extended to include 
additional factors, the experimental techniques became 
more refined so that the actual behaviour of shallow 

shells was examined from two converging points of view.

Having examined in outline the background of the 
shell buckling problem, it is appropriate to deal in 
rather more detail with the main contributions and 

findings of investigations of the phenomenon.
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In general, authors have used very similar 

differential equations based on those of REISSNER or 
MARGUERRE for their analyses. The differences 
therefore lie mainly in the methods adopted to obtain 

solutions. Until relatively recently, only 

axisymmetric deformations were considered. For 

pressure loaded shells with clamped boundaries, the 
evidence, suggests that the range of shells for which 
such behaviour is valid, is limited to yW less than 
about 5•5* Over this range, substantial agreement 

between authors suggests that the problem of 
axisymmetric buckling is now fully understood and 
that collapse can be predicted with acceptable 
accuracy. Shells with other boundary conditions 

and other types of load action have been the subject 

of relatively few papers and none of these has examined 
possible nonsymmetric behaviour analytically. Thus 
no conclusion can be reached regarding the expected 

limits of symmetrical deformation for these other cases

For clamped shells under pressure load, 

nonsymmetric behaviour must be considered when j l X  

exceeds about 5-5« The problem of nonsymmetric 
deformation has been the subject of several recent 
papers which are not in complete agreement with one
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another. In this respect, WEINITSCHKE claimed good 
agreement with experimental data and predicted 
critical pressures for a clamped shell considerably 
lower than both PARMERTER and HUANG. Since WEINITSCHKE 

computed the stability curves for the asymmetric buckling 
of perfect shells and the experimental data may be in 

error due to imperfections in the experimental technique 
and specimens tested, the agreement would appear to be 

somewhat fortuituous. This view is to some extent 

strengthened by the results of PARMERTER'S experimental 

work where collapse occurred at pressures appreciably 
higher than would have been predicted by WEINITSCHKE.

CHEN and BUDIANSKY have shown that the effect 
of initial imperfection of the middle surface may have 

a pronounced influence on the critical pressure.
THURSTON also examined the effect of imperfection and 
found that the effects were more far reaching than 
suggested by BUDIANSKY. This he attributed to 

differences in the assumed form of the imperfection.

In shells loaded by local loads, the large deflections 
in the vicinity of the load point tend to swamp all 
but very large imperfections and hence the effect of 
assumed irregularity is much less marked.
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In the experimental field, it has been shown 
' that very careful attention must be paid to the need

to produce accurate stress free specimens, the thickness 
of which must be uniform. The geometry of the 

specimens must be capable of accurate measurement so 

that the shell parameter may be determined with high 

precision. Furthermore, the shell must be mounted in 

accordance with the theory to be tested.

Many investigations have been concerned with 
clamped shells. This particular boundary condition 
has been shown to be one of the most difficult to 
achieve in practice. Thus a large volume of 

experimental work is open to criticism and its value 

in substantiating the various solutions open to doubt.

In this context, the work of PARMERTER is exceptional 
in that he was the first to appreciate the need for 
very closely controlled experimental work. In 

endeavouring to bring their theoretical work into line 

with experimental data, the majority of authors have 

been insufficiently critical of experimental technique.

Most of the theoretical work carried out, has 
had as its objective, the determination of critical 
states. To predict these it was often sufficient to
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carry out approximate analyses such, as the Galerkin 
method adopted by some authors, using one or two terms. 
While such analyses may be adequate for predicting 
collapse, there is no guarantee that they would 
describe the state of stress in a shell with 

corresponding accuracy. Very little work has been 

reported on the variations of the stress distribution 
in the shell as loading progresses. This seems to be 

a significant omission.

It has also been shown that the behaviour of 
shells is very sensitive to the boundary support 
conditions. Thus the work of most authors on the 

fully clamped edge must represent an upper bound on 

collapse loads achieved in most practical applications, 
where such an edge condition is unlikely to obtain.
Thus analyses of the fully clamped shell, while valuable 
in understanding the fundamental phenomenon of 

instability, are of restricted value in engineering 
applications.
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CHAPTER II

THEORETICAL ANALYSIS



FIG, 11,1 Notation for sliell analysis
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II. 1 The Governing? Dilf erential Equations

Consider a shallow spherical shell segment as 

shown in FIG. II.1 where

R - spherical radius of curvature 
a - base radius 
t - thick-ness (constant) 

r - radial distance from the axis of 

symmetry

The deformation of the middle surface is assumed 
to be radially symmetric and is specified by

u displacement measured tangentially on 

the middle surface 

w displacement measured perpendicular to 
the middle surface 

Vp = rotation of the normal to the 

middle surface

Small finite deflections are considered and
terms up to the second degree in are retained

7though is neglected in comparison to unity. In

consequence of the assumed thinness of the shell, the 

Kirchhoff conditions apply;
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(i) lines normal to the middle surface 
remain normal during bending

(ii) stresses normal to the surface are 

neglected.

The shell is assumed to be sufficiently shallow 
that if z is the height above the base plane, then

W « '
It is common practice to restrict the term 

'shallow' to shells for which

h ^ -g where h is the rise of the shell o

Under these conditions, the equations of 
equilibrium are,

A (r Mr) — M q - r - Q a o  Il.I.lad r ^
—  Nrl - a O 11,1.1bdr ' ^

r'’Q  =  - 1  J r p d r  - N r ( . C  + II.1.1c

in which
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N,

M 0

Q —

meridional membrane force per unit length 
circumferential membrane force per unit 

length
meridional bending moment per unit length 
circumferential bending moment per unit 
length

shear force normal to middle surface per 
unit length

The strains of the middle surface, expressed in 
terms of displacements are :

y - vy 
r R

II.1o2a

II.1.2b

from which u, w may be eliminated to give the equation 
of compatability as

= ° 1 1 .1 .3 c

The force actions per unit length may be 
expressed in terms of displacements thus,

=

w

du — 
dTr

W - r

w
R

7.4- I lU + V/U - W  \ ? ‘  ̂ r  f? /
w 4- du — w R dr r:

II. 1 .4a 

II.1o 4b
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M,. = D dr r
Mi + V dy r dr

I I . 1 . 4c 

I I . 1 .4 d

where
B  = E. t 

\ -

o  = EL"

Substitution of equations II.1.4c,d into the 

equilibrium equation Il.I.la with II.1o1c yields the 
first governing differential equation

^d4- L d  (rY) r dr = Nr(il +• P Ilo1.5

in which

P = i p:r for uniform pressure load
or P = ~2^  for a point load at the apex

Noting that the force actions of the mid-plane 

may be expressed in terms of the corresponding strains 
of the mid-plane

Nj. = &(£<■ + Vgg)

Ng = Ô + v?£r)
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these expressions, together with the equation of 

compatibility II.1.3 yield the second governing 

differential equation

r d  i d /'r^N)r)+lEtV^+Etx IV = O  II. 1.6dr rdr^  ̂ t

V rWith the introduction of the parameters 5 “ p
and ^  = rNp , the governing differential equations

II•1•5 and II.1.6 may be expressed in the form derived
(1 3 )by REISSNER' ' for the case of the pressure loaded

shell as

It t
= 6 4 - Pi?^ 5 + y  Æ I I . 1 .7

Z i
Æ>" + #  - 4> = -eEbf'+'+ II. 1.8

I f  ;

w h e re  t h e  p r im e s  i n d i c a t e  d i f f e r e n t i a t i o n  w i t h  r e s p e c t  

t o  % .

I n t r o d u c i n g  t h e  d im e n s io n le s s  p a r a m e te r s  

p = ^   ̂ y  = ^  O n d  ly = t2 t h e  e q u a t io n s

I I . 1.5 a u d  1 1 . 1 . 6  may be  w r i t t e n  i n  t h e  f o r m  a d o p te d  

by MUSHTARiG®), thus

I I . 1.9
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= 7 +py) -V-
7 0

II.1.10

which are thus directly analogous to those of REISSNER.

The equations of BIEZENO^^^ are expressed in 

terms of the radial and vertical components of the 
normal and tangential displacements u and w.

1/ = U - r WR

Hence the strain-displacement'relations 

II.1.2a,h may be expressed in terms of v and the 
rotation yv thus.

£ - = di/ ■»■ £ + Midr R Z II.1o1 la

II.1.11b

The corresponding force actions may now be 
expressed in the form derived by BIEZENO thus.

N r — £>

Ng = B

dy -h vy 4- r q/ + Y dr r R 2

r dr R • 2

M - Y + Vdy 
. dr

II.1.12a

II.1.12b

II.1.12c

Ilo1.12d
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Tlie governing equations of BIEZENO may now be 
obtained by substitution of relations II.1#12a-d into 
tbe equations of equilibrium II.1.1 a,b « Tbus,

r -h rdy - 1/ -t r^(r t - t - • + r'f =o ii, i. 13
d r  I? or R 2

ar D II . 1 .14

As may be seen from tbe foregoing derivations, 

tbe equations of REISSNER, MUSHTARI and BIEZENO, wbicb 

are typical of tbe forms used in most investigations, 
are merely different expressions of tbe same basic forms

Tbree alternative methods of solution of tbe 

governing differential equations bave been examined*

Tbese are

(1) a new extension of tbe technique 
originally proposed by BIEZENO ̂ ̂  ̂

(2 ) direct numerical integration

(3 ) tbe Galerkin method.

A critical examination of these alternative 
approaches, indicate overwhelming advantages,associated 

with the technique proposed by BIEZENO. In 

consequence, this approach is incorporated in tbe body
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of the thesis for the case of the pressure loaded, free 
shell. The exploratory work associated with the 
investigation of the other two techniques, is presented 

in Appendices VII.2 and VII.3•

II.2 The Solution for the Pressure Loaded Shell

The method of solution of the governing 

differential equations is an extension of the technique
(s')originally proposed by BIEZENO'  ̂ in connection with 

a study of the buckling of a freely supported shallow 
shell subject to a point load at the apex. In addition 

to obtaining the equilibrium path, the analysis has 

been extended to the"determination of the distribution 
of deformation, force actions and surface strains for 
the case of the pressure loaded shell. A similar 
analysis for the point load case is presented in 
Appendix VII.1.

The governing differential equations are II.1.13 

and II.1.14 * These are repeated here for the case of 
a shell subject to uniform pressure loading.
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r^dfy -t- rdv - V + r +V)d^ + {z-^)r *4̂ + ù-v)r Y  =o 11.2.1
dr^ dr p "̂ dr p 2

r^dV + r d ^  - Y =  pr + r /f +^1 Nr II.2.2d r̂  dr 2D d 'k /

where Nr — E> 11 .2.3

In order to obtain a suitable solution of the 

differential equations, a solution for y/ corresponding 

to the inextensional bending of a freely supported flat 
plate subject to a uniform pressure loading is taken 
as a first approximation.

With R =: co and = 0 equation II.2o2 becomes

r^dh' + rdîü - Y  = Pr^ II.2 . 4
dr* d r  2D

for which the solution is

u/ = A, r + A, _rf 11 .2.5
 ̂ g a*R

The solution for for the shallow spherical
shell is taken to be represented by the sura of an 
unknown multiple of the expression given by II.2.5 with 

the addition of a linear terra in r . Thus a suitable 

first approximation is
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Y =  Cl r + Cz _r_ I I . 2 . 6

and Cl f 5 C2jr

Equation II.2.3 becomes

r d V  +  r d v  ■ v' + Q_ [’i + Ç i V 5 - ' ? ) r  dr* Jr c'zV -2 A /

5 Z 7+ ■ es- v)(it Ci) r + Cz ('l-N?)r = 0  
a*!?"*

wbicb bas tbe solution

V = A\r+ & — r 
r 2 ô 1?̂

   - Cz (7-y) r
Z4a*I?*- Z o *e ^

I I . 2 .  7

wbere tbe arbitrary constants A and B are determined 
from tbe conditions

At r = 0, V is finite and hence B = 0 
At r = a, = 0

le 4r yy 4- r Y +• Y dr r R *2
= o

rack
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from which the constant A is determined as

A  ( I + >?) = Ci (\-^C\](a,-v)fe^v) a + Cz A+CiVs-Vys+o)
 ̂ se* 24?^

+ Q. h-'f)htv) a -c.^i + ci)o. ~C2Ci+Ci)c\ - Cz a II.2.8
2 4Se* ï'ë» RZ I  ë*

Substitution of II.2•7 and II.2.8 in II.2.3 yields

/s/ir ~ E>^l— \? ) c\

+ C2(i + c*Yi" X  ) +
\t

IIo2.9

With the substitution of II.2.9 with II.2.6 into 
equation II.2.2, after some manipulation, yields

o/v r
d r 2  D Ô D (?S

, 5
«>̂z JT + ^3 r

cx̂
+ +• ô s r * IIo2o

in which

Z 2
o^j =S C l 0  4“0 ) (^ |  +  +  C& ^l +  C i) +  Cz ( l - t -C i )

^ 3  12

3 I?
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oC = CxCz(i^Q) « CiO +9)(i4*C,) -4- ^  +
\2

3̂ = - C \ C z ( )  +  C t ^ ^  Cz fi+Ci) = -^22 2,

ô A “ ë C^ (l-t C,) 12 ^

Cz
12

- £-5 
12

II.2.1la-e

where

£i = 

^2 =

^5 =
^A =

^6 =

C» 1̂ •+• C \')(I + 0  )

c,Cz A  4- 9)2 '
Cz Cl +C,'^ ^

C% ̂  I 4- Cl)

II.2.12

The solution of equation of I I .2.10 takes the

form
4^— Ar -t G» 4 Pr + 6 f 1 - ) ck

16D SO R ̂ ô .̂ ï
a

4- Jz r ■+ 0/3 r 4  0/4 4. 0/5 r
ÀàcC SOcC \Wc^ .
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where A and B are arbitrary constants which are 

determined from the condition of symmetry at the origin 

and from the boundary condition on at r = a.

At r = 0, 
At r = a,

= 0  and hence B = 0
dY 4 y Y  
d r  r

= 0

Hence

A(l+y) - - (^ + v) ÈL21 "To.
\(oO Ô

4" ^5 4v) c/z 4 A  t y) «*̂ 3 4* (9 4 v) 0/4
24 48 80 )2p

II.2 . 1 3

in which
Ô D

The final expression for becomes

Y =  P 3 , . z 1 r - (34v)ar + To?
ikO 14V I 14\) 3 8

[4" i _r
ex'

(5 4\>)cxr") ^  4 r
It y 3 2 4 t

(7±v)ck W  ̂  
14^ 3 46

f JĈ  - (l±^)cv*r 5 4  + f - 
 ̂a** i+v) J Ô 0   ̂ofi

Cu±2)c?r} o/g 
I f  V JIZo

II.2 . 14



Integration of this expression for y/ gives 

the deflection in the form

38

W  5 3 hc\R ( i / -  fs+vl/rf ?h 4  ̂Z ' i4>?y\cx/ }

II.2.15

in which
A - h = 

2R
In order to determine the two constants C^ and 

C^, it may be postulated that the expressions II.2.6 

and II.2 . 1 4  lead to the same change in slope at the 

boundary r = a . Similarly, the central deflection 
given by II.2.15 may be equated to that given by
II.2 . 6  when integrated.

Thus equating deflections at the centre leads to

f>g0̂  =1 -2a'̂ (s4V)o/i 4- (7+y)o/'x 4- (9 4-y,):̂
S Î& 32

4  (it+v)A + (134-
5 0 72 * 9  )

3(i-vK s4-v)
II.2 . 1 6
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Taking V = 0.33» equation II.2.16 reduces to

0.75 o/, 4 O. >62S03&4o/z 4 0,1094043 1 0/3

0 . 7 4 6 7 3 5 5 7  (c  I 4  Cz)

II.2.17

Equating slopes at r = a leads to

z(Ci4Cz)
30-y)

II.2.18

For V = 0 . 3 3  this reduces to

p =
Et^

A 0 * 7 5  ô » 4  O. 1 (ff6>Ccf 6» (oCololz 4  0 . 1 2 5 4  O. I

4  O .O Ô 35533330 /& - 0.99SOZ4ô7{c, 4-Cz)

II.2 . 1 9

Equation II.2.17 and II.2.19 can be written as

Efĉ
* o ( 4“ A II.2.20a

and

p K(X 
Et^

CKo + 80 X II.2.20b
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Hence, on subtraction,

+X(bi*-b2;)=:0 II.2.21

with

I » -0.74673637 (c i 4 Cz j

0.2 = -0.99502487 (c, 4Cz)

II.2.22a

IIo2.22b

0.2Sd, + 0.i52803S4o/-2

4 0.10940461 0/3 + O.0Ô5O2ÔI4 «̂ 4 + 0.06947050/5,

O.̂ Sô i 4" O'1 6 6 6 6 667 0^2 4* 0 .1760/3 

+ 0 .1 0 /4 + 0.003335535«/s

11.2.22c

II.2o22d

Integration of II.2.6 yields the deflection at 
the centre as

and noting that the rise of the shell at the centre is 
given by

S = vy = -("Ci + II.2 . 2 3
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From II.2.22a

a, = 0.7/I67SS&7 G

and from II.2.23

II.2.24

From equations II.2.11a-e it can be seen that 

I ̂  - etc. are defined in terms of C ̂ and •
Hence, equation II.2.21 is in fact a general cubic 

equation in terms of C^ and only. From 11.2,24, 
can be expressed explicitly in terms of C^ and , 

tbe deflection at tbe centre. Tbus, substitution of 

equation II.2.24 into equation II.2.21 yields a cubic 

equation in C ̂ and S .

Equation II.2.21 becomes

3 2Q^c, + ck̂ c, 4 a^Ci 4 -  sf O II.2.25

wbere

a© = — A 0 . 0 0 1 2 7 0 7 5 5

= A -0.0207942 45 + O. 0034 <&572I4 + S )
+ 0.0(0397127 (24 £) - O. 00646,93272^1 4 2S')
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= - 0.99 5024 Ô7 4 X -0.01386ZÔ33 +0.00346S72 14 S 
+ 0.010397127(1 + 2^)“ 0.0064693272 Ç(2 + S)

= -l.24351437 S + X 0.010397127 S - 0.0064693272 S

Th-us by specifying successive values of S* , tbe 
coefficients a^, a^, a^, a^ can be calculated.

Equation II.2.25 can tben be solved for C^ using 
standard procedures sucb as Cardan’s method. In 
practice, „ only one real root is found tbougb for 
values of A greater tban 3 0 0 , multiple roots occur. 

Since tbe analysis assumes symmetric behaviour, this 
does not have any real importance since practical 

shells do not behave symmetrically at sucb high values
of A

With C ̂ determined, tbe load parameter can be 

obtained by substitution in equation II.2.20ao Hence 

tbe equilibrium path can be established. Thus

t>Rcx a 0.74613S37 S - X “0.0937 3046 Ç + 0.1463SÔ19 ̂
^5 ■ L-0.<7SSS&5 556 X t 10.097*96( 6 - C?. 00679906 S -0.09373046 (l +2S) +

+ O. I453S819 ̂ (2+ S) - 0. (6666667 C# +



6 3 .

+  1 ^ 0 . 1 4 5 7 9 4 2 4  -  0 . 0 8 6 7 9 9 0 6 ^  f 4  f  ) -  0 .O9S73O4 6  (2+ 3 )

•) Z4 0.14635819 (l+ 2 %) -0.1666 6667 S j Ĉ
4* 0.001270724 C/

II.2 . 2 6

Determination of Stress Resultants

From equation II.2«9

Nr a
ëi^

X
&

II.2 . 2 7

Prom equation II.1.12b with the relations 
II.2.14 and II.2.7

Ng - h. 
£fcl Ô

IZ
II.2 .28



From equation II.I.12c with, relation 11,2,14

6 4 ,

Mr  .S - “ (S-Vn?)/I- - ?  - 2i.

+ C9 +V)^, ^  + (II +v)| 1 -

From equation II. 1 « 12d with, relation 11,2.14

10 II 0 4 . 2 9

Mg _S. = “• h-KSf- f (3 4 y) — A
Êfĉ  J 8

+ [ ( 9 + V )  - ( l + 9 v ) ( Z j * j A  +  ^(ll +  ' ' ) - ( l +  I l 9 ) ( ^ ) " ' j

II.4 . 3 0

Determination of Surface Strains

The membrane strains are given by equations 
II.1.11 a,b. The surface strains can be obtained by 

adding the rotation components to the membrane strains. 
Thus

Sr =■ dy + r Y  + + k <à±
d r  S  7 z olr

II.2.31
Eg = J/ + fc it r  Z r

II.2.32
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The surface strains can therefore be computed, 
from II c 2. 31 and II .2. 32 alo.ng with II. 2.7 and II. 2.1 4 .

As can be seen from the foregoing, the solution 

of the governing differential equations requires 
considerable algebraic manipulation. Once the algebra 
has been carried out, however, the numerical 
computation of the results is readily achieved. Since 

the solution of the shell problem is based on a first 

approximation obtained from the inextensional bending 
of a similarly loaded flat plate, a separate analysis 

must be carried out for each load conditio,n. Such an 

analysis for the case of the point loaded shell is 

presented in Appendix VII.1. The approach can be 

extended to the case of combined load actions though 
the algebra would become considerably more tedious.

The success of the method depends largely on 

the close approximation to the shell problem provided 

by the solution for y/ obtained from the inextensional 
bending of the flat plate. The approach also has the 

merit that since two independent parameters ( G and C^) 
contribute to the deflected form, the distribution of ; 

stress and deformation is allowed to vary along the 
equilibrium path.
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The equilibrium paths for various shell 

parameters are presented in. FIG. II. 2 and FIG. II.3 

for both pressure and point loading respectively.

The varying distribution of membrane force and bending 
moment in a typical shell ( A  = 4 8 ) at intervals 
along the equilibrium path, is shown for both cases 
of loading in FIG. II. 4a., b and FIG. II.5a,b.

II.3 The Theoretical Equilibrium Paths

Pressure Loaded Shells The equilibrium paths for 

pressure loaded shells for various values of shell 
parameter are shown in FIG. II.2. It may be seen 

that the behaviour of freely supported shells becomes 
progressively more nonlinear with increasing shell 
parameter. The equilibrium paths have no turning 

value until the value of X exceeds 17 (approximately). 

For A  greater than this value but less than 300, the 
equilibrium path has both a maximum and a minimum 
turning point. For A greater than 300, computed 
equilibrium paths have four turni.ng values though it 

is doubtful if the theory for this range has physical 

meaning. Since symmetrical behaviour, which forms 
the basis of the analysis, is unlikely to obtain at
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bigb vaines of , tbe range bas been restricted.

Point Loaded Shells FIG. II.3 sbows tbe corresponding 

eqnilibrium patbs for point loaded shells for various 

values of A . Again, tbe equilibrium patbs become 
more nonlinear until A exceeds 1 7» when subsequent 
patbs exhibit two turning values.  ̂ When A exceeds 
approximately 3 0 0 , tbe equilibrium patbs have two 

maxima and two minima tbougb, once again, it is 

doubtful if the theory "has physical meaning in view of 
tbe restriction of symmetry.

II.4 Distribution of Membrane Force and Bending Moment

Pressure Load Tbe distribution of membrane force 
and bending moment in tbe meridional and circumferential 
directions is shown in FIG. II. and FIG. II.^b at 

approximately equal intervals along tbe equilibrium path.

For tbe pressure load case, tbe membrane forces 
in tbe meridional and circumferential directions are 
equal at tbe apex. In addition, since tbe shell is 
assumed to be freely supported,, tbe meridional membrane 
force is zero on 'the boundary. At small deflections 

of tbe order of half tbe shell rise, tbe meridional
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membrane force bas two turning values along tbe radius 

As tbe deflection increases, becomes monotonie

until tbe distribution at = 1 . 3 6  is very similar

to tbat at So = 0 • •  Between So = 1 .68 and 
So = 2oO , tbe distribution of changes rapidly

and in tbe latter stage has tbree turning values.
Tbe changing distribution of N q is rather less marked 

and varies fairly slowly as tbe deflection increases.

Tbe bending moments in tbe meridional and 
circumferential directions are equal at tbe apex for 
a pressure loaded shell. Since tbe shell is freely 

supported, is zero on tbe boundary. As tbe

deflection increases, tbe distribution of tbe bending 
moments changes fairly rapidly initially. For 
deflections greater than tbe shell rise, tbe 
distribution of bending moment changes less rapidly 

until at So 2 tbe bending moments in both 

meridional and circumferential directions are 
substantially tbe same in magnitude for r/a 4 0.5.

Point Loaded Shells Tbe distribution of membrane
force and bending moment in tbe meridional and 

circumf erential directions is shown in FIG. II.5a. and 

FIG. II.5b at approximately equal intervals along tbe 
equilibrium path.
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For the point load case, the meridional 
membrane forces in tbe meridional and circumferential 

directions are again equal at tbe apex. Since tbe 
sbell is freely supported, tbe meridional membrane 
force and bending moment are zero on tbe boundary.

Tbe distribution of meridional membrane force 

changes very rapidly until deflections exceed tbe 

tbickness of tbe sbell and at S© = Q.Aj. a pronounced 

ripple develops in tbe distribution, along tbe radius. 
Witb increasing deflection, tbe ripple is intensifled 
until tbe central deflection approaches tbe sbell rise. 

At So = 1 . 3 6  tbe ripple in tbe meridional membrane 
force is reduced and subsequently changes its. 

character completely witb deflections approaching twice 
tbe sbell rise. As in tbe case of tbe pressure loaded 
shells, tbe corresponding circumf erential membrane 

action alters its form less radically and tbe change 
is more uniformly progressive.

Tbe bending moments in tbe meridional and 
circumferential directions are both infinite under tbe 

load point and tbe magnitude of both actions falls 

very rapidly away from tbe apex. This rapid fall in 
magnitude along tbe radius is characteristic at all 
values of deflection and it is only at very large
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deflections approaching twice the shell rise that 

distribution of the bending moment actions changes 

markedly.

II•5 The Influence of Boundary Restraint

It has been shown by FEODOS'EV^ ' that a 
variational solution in which a single term has been 
used to approximate the deflected form, may predict 
the behaviour of shallow shells with reasonable accuracy 

for restricted values of the shell parameter. The 

range of values of the parameter for which such a 

solution provides an adequate approximation to the true 
behaviour is dependent on the type of loading. The
results of the present investigation on freely 

supported shells indicate that for pressure loading, 

the single term Galerkin solution can be used to infer 

the behaviour of freely supported shells for values 
of A  up to about 30» It is possible that the type 
of boundary condition may influence this limiting value, 

though direct evidence of this is not available in the 

present investigation. On the assumption that the 
effect of boundary support does not radically influence 
this limiting value, the behaviour of shells within 
this range have been examined. The Galerkin procedure
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is suited to this type of investigation since the type 
of support merely modifies constants involved in the 

numerical analysis.

The behaviour of shells under pressure loading 

has been examined for four different boundary 

conditions in order to assess their influence. The 
results, of these computations are shown graphically 
in FIG. II.6 and FIG. II.? for A  = 23 and A = 4 8  

respectively.

FIG. II.6 and FIG. II.7 show the effect of 
various edge restraints on the behaviour of pressure 

loaded shells for A  = ^3 and X  = 4^ respectively.

As expected, the freely supported shell has 
the lowest buckling load as defined by the turning 
value of the equilibrium path. The effect of radial 
restraint is to increase the buckling load almost five 

times in the case of X = 23. After the first 

turning value, the equilibrium path falls very rapidly 

and becomes negative. This indicates that an 

internal pressure (approximately two thirds of that 
required to produce the first snap) would be necessary 
to 'unbuckle' the shell.
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The behaviour of a shell which is rotationally 

restrained at the boundary but is free to move 
radially, is nonlinear with no turning value. The 
combination of this case with that of the radially 

restrained shell, yields the boundary condition 

corresponding to the clamped segment. In this case, 
the effect of rotational restraint is only noticeable 
at in the latter stages of the equilibrium path since, 
in the initial stages, the stiffness of the clamped 

shell derives mainly from its membrane action. Thus 
the effect of imposing rotational restraint is more 
marked at large deflections where bending actions 
contribute significantly to the shell strength. The 

contribution of these bending actions is sufficient to 

raise the lower buckling pressure to a positive value 

about half the upper buckling pressure for A = 2 3 *

The behaviour of the freely supported shell is 
strongly influenced by bending actions. If 

rotational restraint is first superimposed, the bending 
strength of the shell is significantly increased and 
the subsequent behaviour of the shell is of a 
nonlinear character with no turning value. If edge 

displacement is now prevented, a clamped condition 

results. The effect of radial restraint is to increase
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the contribution to the shell strength derived from 
membrane action. This contribution is immediately 
effective in increasing the initial stiffness of the 
shell. When the shell is subject to large deflections 

of the order of the rise, the state of high membrane 

stress reduces the load carrying capacity of the shell 
in the presence of large surface rotations which 
accompany the large deflections.

Thus the behaviour of the clamped shell may be 
deduced in a qualitative manner by combining the 
separate effects of different boundary restraints with 
the behaviour of the free shell.

In the same way, .the behaviour of the clamped 

shell for A = 4 8 (PIG. II.7 ) may be logically 
developed in a qualitative manner.
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Boundary Condition
Critical Pressure

X = 2 3 X = 48

Rotationally free, 
radially free.

upper lower upper lower

0 . 8 5  0 . 6 7  1 . 1 0  0 . 4 2

Rotationally free, 
radially restrained. 4 . 1 0  -2 . 5 0  6 . 9 6  “5 . 2 9

Rotationally restrained, 
radially free. no turning value

Rotationally restrained, 
radially restrained. 4 . 1 0  2 . 0 0  6 . 1 9  0 . 3 0

It can be seen, therefore, that the behaviour 
of the shell is influenced to a very considerable 
extent, by the degree of restraint provided by the 
support. To the author's knowledge, the influence 

of such restraints has not previously been 

investigated with a view to assessing their effect 
on shell behaviour.
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CHAPTER III

EXPERIMENTAL INVESTIGATION
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III.1 The Background to the Experimental Investigation

One of the basic assumptions of the theoretical 

treatment is that the shell remains fully elastic 
throughout the loading history. If experimental 

substantiation of the theoretical analysis is to be 
expected, the requirement of elastic behaviour must be 

maintained as far as possible.

In any shell under point load action, 
theoretically infinite stresses exist under the load. 

Thus the value of the load must be restricted in order 

to reduce the area of the shell affected by post-elastic 

stresses to an acceptable size. Since the primary aim 
of the investigation"is an examination of the elastic 
behaviour of the shell, the shell parameter must be so 
chosen that nonlinear behaviour obtains and at the 
same time, the value of the load is restricted. Thus 

the general geometry of the shell must be, to some 
extent at least, a compromise.

It has been shown in previous investigations 
over a wide range of rise to base ratio, that the degree 

of shallowness has no apparent influence on the 

behaviour of the shell, provided that the implied
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restriction in the term 'shallow* is not violated.
This is, of course, in accord with the theoretical 

considerations where this ratio is not a parameter 
which influences the behaviour of the shell.

The experimental investigation was directed at 
the examination of two distinct aspects of instability 

of shallow spherical shells under uniform pressure and 
point loading at the apex.

The first of these was the determination of the 
equilibrium path through both stable and unstable 

states. To effect this, a new technique using a 

controlled deflection method was developed.

The second was the examination of stress and 
deformation states during buckling. These, to the 
author's knowledge, have not been investigated 

previously.

Published experimental work to date, has failed 
to substantiate adequately relevant theoretical 

treatments. Though many factors may contribute to 

the apparent divergence, it has been shown that precise 

measurement of dimensions and freedom from imperfection 
and initial stress is of considerable importance in 
meeting the assumptions of the theory. Thus special
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attention has been directed to this end, In view of 
the difficulty of achieving experimentally closely 

defined displacement dependent support conditions, 
force dependent conditions have been adopted throughout.

III.2 The Material Characteristics of the Test Specimens

Choice of Material: It was decided to form the test
specimens from sheet material in order to ensure 
uniformity of thickness.

A material was sought which could be formed 

readily without resorting to the use of very high 

temperatureso In addition, it was necessary to choose 
a material which had good linearity of stress-strain 
properties at normal temperatures. It was recognised 
that forming the specimens at an elevated temperature 

would avoid residual stresses which were associated 
with other forming techniques.

An aluminium alloy, Noral M57S, fulfilled these 

requirements. The manufacturer's specification for 

this material was as follows : '
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(i) Composition Al - 97 « 75^
Mg - 2.00fo

Mn - O.Z5fo

(ii) Mechanical Properties (annealed, soft)

0.1^ Tensile Proof Stress 5 tonf/in^
Ultimate Tensile Stress 12 tonf/in^

The two constants of relevance in the experimental 

analysis were Young's mpdulus, E, and Poisson's ratio, V

Young* s Modulus : An attempt to obtain Young's modulus

from suitably strain gauged tensile specimens yielded 
variations in E of the order of 6fo» To avoid the use 
of strain gauges, a more fundamental approach was 
adopted•

Strips of sheet material were cut from each 

thickness of sheet and bent under symmetrical four-point 
loading so that constant bending moment obtained over 
the central portion. Young's modulus was calculated 
from observations of the central deflection from which 

the radius,of curvature of the beam specimen was 
obtained. , In this manner, consistent values for E 
were obtained with an estimated accuracy of 2^. The
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value of Young’s modulus was taken as 10.3 ^ 10 Ibf/in^ 
throughout,

Poisson’s Ratio; Poisson's ratio was obtained from 
the ratio of transverse to axial strain gauge 

measurement from four tensile tests. The value 

V = 0.33 "was adopted for all subsequent calculations.

III.3 The Fabrication of Test Specimens

Two sets of dies of 10 in base diameter were 
machined on a profile following lathe to radii of 
curvature of 80 in and 100 in. The ordinates of the 
die profiles were subsequently checked for accuracy 

to within 0.0002 in.

Discs 10 in. diameter were cut from the alloy 

sheet with a tolerance of 0.0005 in. in the radius.
A disc was placed between the dies and heated in an 

oven to 360^0. The oven was maintained at this 

temperature for about four hours and then allowed to 
cool.

It may be seen for FIG. Ill.1 that the yield 
stress of the aluminium alloy falls very rapidly
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beyond lOO^C and tliat at the forming temperature, the 
maximum stress that could exist in the specimen was 
about 1 tonf/in^. By maintaining the forming 

temperature, the relatively poor creep properties of 

the material reduced these stresses still further, 

obviating in consequence, the possibility of residual 
stress actions in the final form.

Ill, Dimensional Survey of Test Specimens

On removal from the dies, a dimensional survey 
including thickness of the specimen was taken at 21 

points across the diameter, so that a complete profile 

of the shell was determined. The radius of curvature 

of the shell was taken as the radius of the circle 
which had the minimum least squares deviation from the 
measured ordinates.

Thus, the equation of the circle, tangent to the 

X-axis at the origin is

X ̂ + y 2 + 2Ry = 0

In general, the measured points will not 
satisfy this equation exactly. The square of the 

error which is assumed to be a function of the radius R
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is given by

f(R) = 27 ( x ^ + y ^ - H  2Ry)

For minimum deviation

Af = 0 = 2 2  Ry ̂ + 2 x^y + 2
0^

Hence R = z x"y + 4. y 
2 Z  y2

The results of two typical measurement analyses 
are presented in Appendix VII.8 where data relevant 
to an 80 in. and a 100 in. radius shell is analysed.

It was found that the value of the spherical 

radius obtained in this way, agreed closely with the 
nominal radius of curvature of the dies, the actual 
radius of curvature lying usually within 1^ of the 
nominal value. There was no measurable spring back 

of the specimen on removal from the dies and this 

provided a further check on the stress free character 
of the shell. Further measurement of other typical 
profiles showed good symmetry and consistent curvature. 
The maximum initial imperfection from the true profile 

was less than 2^ of the thickness.
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The nominal dimensions of the shells tested 
are given below:

of
imens R a t A

4 8 0 5 0 . 0 3 6 7 5 . 3 5

4 8 0 5 0 . 0 4 8 4 2 . 3 9

4 8 0 5 0 . 0 6 4 2 3 . 8 4

4 1 0 0 5 0 . 0 3 6 4 8 . 2 3

4 100 5 0 . 0 4 8 2 7 . 1 3

4 100 5 0 . 0 6 4 1 5 . 2 6

III.5 The Experimental Equipment

In order to obtain the equilibrium path through 

both stable and unstable ranges, special test 

techniques were developed. Since equilibrium may be 
interpreted in terms of energy which is deformation 

rather than load dependent, a controlled deflection 

loading technique was adopted. A typical equilibrium 

path is shown in FIG. III.2.

If the load is applied incrementally, the shell 
will follow a stable equilibrium path up to the turning 

point on the path at A. Any further increase in the 

load causes the shell to snap suddenly from A to B on
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the second stable portion of the path. Decrease of 
the load from B in the second stable range, causes the 

shell to follow the path down to C. Further decrease 
in the load produces a second snap to D on the first 
stable portion of the path.» Thus by varying the load, 

only stable equilibrium states can be achieved. At 

any intermediate load between the snapping conditions, 

there will be, in general, three equilibrium 

displacements, two of which will be stable and one 
unstable. It is therefore obvious that if the complete 
equilibrium path is to be achieved, it is necessary 

to specify the deflection rather than the load.

Merely by specifying the deflection and simultaneously 
measuring the load, the complete equilibrium path can 

be traversed. Since axial symmetry is assumed in 
order to simplify the stress analysis, the deflection 

at the centre of the shell is a convenient parameter 

to use to determine the equilibrium path.

The test apparatus is shown in FIG. Ill.3 » The 
shell was placed in a support ring attached to the top 
of the pressure chamber. A beam ABCD was supported 
in ball-bearings at B in such a manner that the length 

AB equalled the length BC. A threaded wheel fitted 

closely into a slot in the beam at C. By turning tl̂ e
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wheel, a threaded rod was advanced axially through the 

beam. A dial gauge located above the rod recorded 
the axial movement.

Ill•6 Test Procedure

Point Load: The shell was placed convex side up for

these tests. The load was transmitted to the shell 
by a ball-bearing located at the lower end of the rod. 
Since the beam was freely supported at B, the force 

transmitted by the rod to the shell was recorded on a 

proving-ring at A. The load was measured at successive 
increments of 0.01 in. of central deflection. The test 
was carried through until the central deflection 
exceeded twice the original rise of the shell. In an 

average test some thirty points were measured along 

the equilibrium path depending on the initial rise of 

the shell. The deflected form of the shell was 
determined from dial gauges situated at 1 in. intervals 
from the apex of the shell»

Pressure Load: In the case of the pressure load tests,

the shell was penetrated at the apex and attached to 
the rod so that the concave side was uppermost. In
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these tests, the proving-ring was removed and 

adjustable stops were set at D to restrict the free 

movement of the beam to 0,001 in » Air pressure was 
controlled by a reducing valve and a needle valve »

The pressure in the chamber was measured on a water 

manometer with an effective maximum height of 5 ft.
To carry out the test, the deflection was given to the 
shell by setting the wheel at G, This produced a
force in the rod connected to the shell and brought
the beam against the lower stop at D. The pressure

was then gradually increased in the chamber until the

beam just ’floated' between the preset limits 
controlling its free travel. At this pressure, the 
shell was in equilibrium at the given deflection with 

no force in the rod at C, In this way the stable and 

unstable ranges of the equilibrium path were traversed.

Some leakage of air took place at the support 
since no special measures were adopted to effect a 
seal. This leakage was fairly constant and, in fact, 

facilitated the problem of controlling the pressure.

In order to assess the effect of the hole at the apex 
of the shell, the stable ranges of the equilibrium path 
were examined on similar shells with no such 
penetrations. No appreciable effect arising from this



87

source was recognised.

The tests on both point and pressure loaded 
shells were repeated on further specimens of the same 
geometric form to assess the degree of consistency in 

the results. It was found that the critical load 

could be reproduced to within about 3 ™

III.7 The Measurement of Strain

Six shells were straingauged using 3 8 , % in. 
linear, 7 0 ohm foil straingauges attached to both 
surfaces of the shell along a meridional line,in the 

circumferential and radial directions. Thus the 

state of strain was determined at nine points on both 

top and bottom surfaces of the shell »

The tests on the straingauged shells were 
carried out using a similar test procedure to that 
adopted for the determination of the equilibrium path. 

The strain readings were recorded using 'Solartron Data 

Logging Equipment’. This equipment measured voltage 

changes corresponding to strains on a digital voltmeter 
and printed out the readings at speeds up to 10 channels 

per second. All the surface strains were measured at
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each increment of deflection so that in an average 

test, some 1100 strain readings were recorded.

The strain measuring equipment is shown in 

FIG. III.4 .
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CHAPTER IV

COMPARISON OP EXPERIMENTAL AND

THEORETICAL RESULTS
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Th.e comparison of experimental and theoretical 

resnlts is considered in two parts. In the first 
part, the hehavionr of both point and pressure loaded 

shells is examined from the point of view of load- 

deformation and deflected form. In the second part, 
the comparison of experimental and surface strains 

is considered.

The results of the investigation are presented 
in full in Appendix VII.8. In all cases, the

experimental results are presented as plotted points 
and compared with theory which is shown as a full line.

IV.1 The Equilibrium Path and Deflected Form

Pressure Loaded Shells; FIG. VII.1 a shows the 
experimentally determined equilibrium path and 

variation of deflected form for the shell with X = 23 

For the equilibrium path, the experimental data and 

theory are in good agreement for values of central 
deflection up to the original rise of the shell.

Beyond this deflection, the equilibrium path of the 

shell diverges slightly from theory which is somewhat 

lower. This may be attributed to the development of 

plasticity at the higher deflections.
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To illustrate the changing deflected form, the 

deflection at any radius is plotted as a ratio of the 

value at the centre. The deflected form measured 

experimentally is in close agreement with theory.

The experimental and theoretical equilibrium 
paths X = Zj-2 are compared in FIG. VII. 2a. As in the 
previous case, good agreement is obtained for central 

deflections of the order of the shell rise o Thereafter, 

the experimental path lies above the corresponding 
theory and gradually diverges from the latter up to 
central deflections twice the original rise of the 

shell•

FIG, VII.2a also shows the variation of the

deflected formo Here, the theory is fully
substantiated by the experimental data. Comparison 

of the changing deflected form for this shell may be 

made with the corresponding results for A = 23  

(fig. VII.la). It may be seen that as loading 

progresses, the thinner shell (A -  Î4.2 ) is
appreciably more nonlinear in behaviour and this is
reflected in greater changes in the deflected 
form.
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For the case of Â = 4 8 , the experimental and 

theoretical equilibrium paths are in very good 

agreement even at large values of central deflection. 

This shell was one of the thinnest tested and as a 
result, the stress levels were generally lower than 
in the thicker shells represented by lower values of 

the shell parameter. Thus, as expected, the general 

behaviour of this shell was more elastic with little 
residual deformation at the end of the test. The 

behaviour of this shell is compared with theory in 
FIG. VII. 3a- which also shows the variation of the 
deflected form. The deflected form is again in close 
agreement with theory throughout the range.

From the behaviour of the shells examined, it 
is clear that the behaviour of the shells becomes more 
nonlinear with increasing shell parameter. This 

nonlinearity is reflected in the changing deflected 

form where the latter varies most in those shells with 
the highest values of A

Equilibrium paths for X =15» A = 2 7  and 

A  = 7 5  are shown in FIG. VII.4 • For central 
deflection of the order of the shell rise, the 

equilibrium paths for the two lower values of the shell
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parameter are in good agreement with relevant theory.

At higher deflections, the agreement is less good hut 

the general behaviour of the shells is substantiated 
by the experimental data though the influence of 
plasticity is noticeable. For the particular case of 
X = 75» however, the experimental equilibrium path is 

markedly different from that predicted theoretically.

At approximately the first turning value on the path, 
the experimental results deviate rapidly from the 
theory and agreement thereafter is relatively poor. 
During the test on this shell, nonsymmetric behaviour 

was observed and subsequent tests on shells with the 

same parameter produced similar results. It would 
therefore seem that X = 75 must represent 
approximately the limit of symmetric behaviour.

FIG. VII.5 shows a comparison of experimental 

and theoretical buckling pressures based on the turning 

values of the corresponding equilibrium paths. It 
may be seen that experimental values are in good 
agreement with the theory. Since nonsymmetric 

behaviour was confined to post buckling states for 

X = 75» the buckling pressure has not been appreciably 
influenced, though the lower buckling pressure at 
which the shell would snap back to the first stable
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range, has been affected#

Point Loaded Shells: FIG. VII.6a shows a comparison

of the experimentally determined equilibrium path 
and variation of deflected form with relevant theory 
for the shell with X = 23* The behaviour of the 

shell as determined experimentally, is in close 
agreement with theory throughout the loading history. 

The deflected form as measured on the shell is in fair 
agreement with theory though the latter consistently 

overestimated the actual deflection at r/a = 0.4 by a 
small amount.

The behaviour of the shell with X = J4.2 is shown 
in FIG. VII.7a. The experimental and theoretical 
equilibrium paths are in substantial agreement for 
deflections up to the order of the shell rise. The 

effect of plasticity may be recognised subsequently 

by some divergence at larger deflections. The area 
affected by plasticity may be assumed to be fairly 
small since the theory based on assumed elasticity 

predicts the general behaviour of the shell adequately.

FIG. VII. 73- also shows the changing deflected 
form at intervals along the equilibrium path. As in
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the case of the pressure load, shells with higher 
values of the shell parameter are more nonlinear in 

behaviour and this is reflected in a more rapidly 
changing deflected form.

The behaviour of the shell with A = 48 is 

compared with theory in FIG. VII.8a. The experimental 

and theoretical equilibrium paths are in substantial 
agreement for most of the loading history though the 
effects of plasticity may be recognised in the later 
stages of the path. The measured deflected forms are 

in good agreement with those predicted theoretically.

Equilibrium paths for A = 15» A = 27 and 
X = 75 are shown in FIGo VII.9• Again, the paths 
for the two lower values of the shell parameter are in 
substantial agreement with relevant theory for 

central deflections up to the order of the shell rise. 

For A = 27» the effects of gradually developing 
plasticity may be recognised in the later stages of 
the path, though the general behaviour is in general 

agreement with the elastic theory. For A = 75» 

however, the experimental buckling load as defined by 
the turning point.on the equilibrium path, is somewhat 
lower than that predicted theoretically. Nonsymmetric
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behaviour of the shell accounts for the marked 
divergence which characterises the subsequent portions 

of the path. Experimentally, this shell was the 
least consistent in behaviour in that further tests on 

shells with the same parameter yielded some variations 
in the experimental equilibrium paths. While 

nonsymmetric behaviour was noticeably present, the 
effect on the buckling loads was not very significant,

PIG, VII,10 presents a comparison of experimental 

and theoretical buckling loads. Here, the general 

order of agreement is good. The lower buckling loads 

where the shells would snap back to the first stable 
range of the equilibrium path show some slight 
divergence from theory. This may be attributed to 
the fact that deflections at these positions on the 

path are fairly large and the effects of plasticity 
are apparent.

IV.2 Surface Strains

Strain analyses were carried out on six shells; 
three subject to pressure load and three subject to 
point load.
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The nominal dimensions of the shells tested were

No. of shells R a t

2 80 5 0 . 0 6 4

2 80 5 0 . 0 4 8

2 100 5 0 . 0 3 6

Some 1100 strain measurements were made in each 
test and the large volume of experimental data obtained 

was processed by digital computer to yield the complete 
deformation history of each shell. Typical results 

for the surface strain distribution are presented 
graphically at six points along the equilibrium path. 
These six points have been chosen arbitrarily at 
approximately equal intervals of central deflection.

Pressure Load: for A = 23» the general agreement of

experimentally determined strains with theory is good. 
It is of interest to note that the measure of agreement 

is maintained throughout the loading history» The 

correlation of experimental data with theory is shown 

in FIGo VII.1b and PIG. VII.1c»

PIG. VII.2b and PIG » VII.2 c show the surface 
strains for the case of \ = 1̂.2, In the initial

range up to central deflections of three-quarters of
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the original rise of the shell, the experimental strains 

are in good agreement with theory. Beyond this point, 
the strains in the circumferential direction are 
numerically higher than theoretical predictions would 
indicate. The meridional strains do not show the 

same divergence and are in better agreement with theory.

For the case of A = 4 8 , the thinnest shell 
tested, the general measure of agreement of the 
experimentally measured strains with theory is good at 

all points along the equilibrium path » The comparison 

of experimental data with theory is shown in PIG. VII.3b 
and PIG. VII.3c.

Point Load: For the shell parameter A =23» PIG. VII.6b
and PIG. VII.6c, the experimental strains indicate 

similar behaviour to that predicted theoretically.
The circumferential strain readings are somewhat 
higher than those deduced from theoretical 

considerations particularly in the neighbourhood of the 
load point. This may be attributed to the development 

of plasticity near the apex. In addition to this, it 
must be recognised that the measurement of strain in 

the presence of high stress gradients is more likely 
to be somewhat in error.
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FIG. VII.7b and FIG. VII.7c show the comparison 
of experimental and theoretical surface strains for 
the case of A = 4 2 . Again, the experimental surface 

strains are in general agreement with theory though a 
significant deviation exists for gauges near the apex.

For the shell parameter A = 4 8 , the trend of 
experimental results is in agreement with theory.

Once again, the presence of high stress gradients and 

the onset of plasticity in the neighbourhood of the load 

point, caused some divergence between experimental 
strain values and corresponding theory. The results
for this case are compared with theory in FIG. VII.8b 
and FIG. VII.8c.

IV.3 Commentary on the Experimental Work

From the present investigation, it would appear 
that A = 75 represents the probable limit of symmetric 

behaviour for both pressure and point loading. For 

this particular case, nonsymmetric behaviour is limited 
to the unstable state and appears to have little effect 
on the first buckling load.

In the case of the point loaded shells, the
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effects of plastic deformation could .not be avoided.
By careful choice of the shell dimensions, the effects 
were restricted to a fairly small area in the 

neighbourhood of the load point. Plasticity did not 

have a.n appreciable effect on the behaviour of the 

shells as load carryi.ng structures but it did influence 
the distribution of surface strain. This factor, 
together with the presence of high stress gradients in 

the neighbourhood of the apex, caused a significant 

divergence between the experimental strain distribution 
and corresponding theory. I.n this respect, strain 
measurement was less satisfactory than in the case of 
pressure loaded shells where stress levels were, in 
general, considerab 1 y lower, I.n spite of these 

factors, the experimental strain distribution was in 
general agreement with relevant theory.

For pressure loaded shells, the general agreement 

of experimental data with theory was of a high order.

The absence of high stress gradients and ge.nerally 

lower stress levels meant that the assumptions of the 
theoretical treatment were more nearly fulfilled than 
in the case of point loaded shells. The presence of 
a small hole at the apex of these shells, caused a 

stress conce,ntration which was reflected in the strain
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measurements. The effects of the concentration were 
local to the immediate vicinity of the hole and had no 
apparent influence on the behaviour of the shell.

The close agreement between shells of similar 

shell parameter, indicates that the method adopted to 
manufacture the test specimens produced shells of 
consistent performance.

A basic assumption of the theoretical treatment 

is that of symmetric behaviour. Use was made of this 
assumption in the experimental investigation of 
surface strain in that strain measurements were made 
along a typical meridian. It is recognised that by 

attaching all the strain gauges along a single radial 
line, the essential symmetry of the shell must be 
disturbed to some extent. However,- since load-deflection 
relationships were consistent with those for shells 

without strain gauges, slight nonsymmetric behaviour, 

if present, may be assumed to be negligible.

IV.4 Comparison with Previous Experimental Work

A considerable volume of literature has been 

published on the pressure loaded clamped shell but, to
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the author’s knowledge, no comparable work has-been 
carried out on freely supported shells. In the case 

of clamped shells, experimental investigations have 
been directed at the determination of buckling pressures 
only and no attempts appear to have been made to 
establish equilibrium paths. There are no recorded 

instances where the distribution of stresses in shells 

during buckling have been examined.

In the field of point loaded shells, the most 
detailed investigation was reported by EVAN-IWAN0¥SKI, 
CHENG and LOO^ ̂  ̂ in 1962. These authors tested a very 

wide range of shells most of which were freely supported 

though some were clamped. Their specimens were formed 

in a variety of materials including copper, aluminium, 
steel and rigid polyethelene sheet. The metallic 

specimens were formed by the hydroform process with 

spherical radii of curvature varying from 5 iu. to 

11.2 in. and base radii from 0 »6 9 7 in. to 3.812 in.

In their paper, no information was presented 
relating to possible initial stress. They did not 
indicate how the spherical radius of curvature of 

their specimens was measured and it would appear that 

they accepted nominal values as a basis for calculating
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their shell parameters. They did .not present 
information from which initial imperfection might be 

assessed.

They noticed that certain shells exhibited 
discontinuous load-deflection behaviour. Though this 
phenomenon would appear to be consistent with a change 

in the deflection mode, the authors did not comment on 
this aspect but claimed that, in most cases, 

rotational, symmetry was preserved.

Nearly half of the freely supported shells which 

they tested may be classed as non-shallow i.n that h/a 

was greater than 1/8. Of the non-shallow shells, more 

than half deformed nonsymmetrically. They claimed 
symmetrical behaviour for all but two of the shallow 
shells.

Their results showed a significant scatter which 

might be attributed to their experimental technique and 
the difficulty i.n determining the geometry of their 
specimens which were very small in some cases (1.394 
in base diameter). It would also appear that some of' 

their calculated values of their shell parameters were 
inconsistent with the published dime.nsions and, on 
analysis, gave an imaginary value for Poisson*s ratio.
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The lack of agreement with theoretical work became 

more serious in the range of shells exhibiting the 

discontinuous behaviour and for the shells for which 

the deformation was recognisably nonsymmetric.

It is significant that the shells which they 
found to give discontinuous equilibrium paths, had 

shell parameters which were greater than or equal to 
the limit found by the present author for symmetrical 
behaviour,.

FIG. IV.1 shows experimental data obtained from 

the graphs presented by EVAN-I¥ANO¥SKI et al. compared 
with the theory presented in this thesis. The 
comparison is intended to show only approximate 
theoretical behaviour assuming a value of 0.33 for 

Poisson*s ratio, and is restricted to values of

less than 80. ¥ithin this range, they obtained fair

agreement though for some shells, the correlation with
theory is poor. At higher values of A , the
agreement with the present work deteriorates and it 

would appear that A = 80 may well represent the 
probable limit of symmetrical behaviour.
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CHAPTER V

SUMMARY AND CONCLUSIONS
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V.1 The Nonlinear Behaviour of Shallow Shells

From a survey of literature on the shell 

bnohling phenomenon, it becomes clear that previous 
experimental data was neither consistent in itself, 

nor did it offer more than a partial substantiation 
of relevant theoretical treatments. In this thesis, 

it has been shown that a major cause of the disparity 
between theoretical behaviour and previous experimental 

data lies in the failure of researchers to recognise 
errors arising from fundamental shortcomings in 
experimental techniques.

While some previous researchers have appreciated 
the need to form specimens which conform closely to 
the conditions implied in relevant theoretical 

treatments, none have considered fully the true 
implications of displacement dependent support 

conditions; and thus none have appreciated that in 
attempting to achieve these conditions experimentally, 

they have introduced a major source of error.

In the present work, the effect of degrees of 
boundary restraint has been clearly demonstrated.
From the measure of agreement between several analyses
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of the pressure loaded clamped shell, it seems that 

the academic problem of collapse of these shells is 

now fully understood, though highly sophisticated 
treatments of the nonsymmetric problem are largely 
unsupported by valid experimental data.

In the present investigation, simple force 

dependent conditions haye been adopted. The concepts 
of shell buckling as incorporated in the theoretical 
analysis, have been fully substantiated by experimental 
data which is both consistent in itself and repeatable.

In the experimental investigation, good agreement 
with theoretical work has been shown to depend on the 
success with which the shell specimens conform to the 
assumptions embodied in the theory. In this respect, 
the method developed to prepare specimens in the 

present work offered considerable advantages over those 

adopted in previous work. The method combined the 
ability to produce shells of accurate and consistent 
geometry and at the same time maintain the requirement 
of a stress free character. In addition, the process 

was relatively simple in concept and has been shown to 
produce shells of consistent performance. The success 
of the subsequent experimental work depended to a 
large measure on these factors.
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The development of the controlled deflection 

technique allowed accurate determination of the 

equilibrium path and at the same time permitted the 
measurement of surface strain. Thus, it was possible 
to examine both the equilibrium path and distribution 
of deformation experimentally.

In the case of the point load, local plasticity 

near the load point was reflected in the measurement 
of surface strains though the behaviour of the shells 
as load carrying structures has not been influenced. 

The presence of a hole at the apex of the pressure 

loaded shells produced a stress concentration which 
had a slight effect on the strain distribution but, 
again, the behaviour of the shells was not seriously 
affected. In the case of both point and'pressure 

loaded shells, it would appear from the results of the 
experimental work that the onset of nonsymmetric 
behaviour occurs in the neighbourhood of A = 80.

V .2 Shallow Shells in Engineering Practice

It is clear from the present work and that of 
previous authors, that the theoretical analysis of the 
buckling problem is qnly of real value when the basic
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assumptions of the analysis are fulfilled in practical 

applications. The problem is such that even a limited 

departure from these assumptions may well produce 
effects which cannot be accurately assessed in the 
light of present knowledge. The behaviour of shallow 

shells can only be adequately predicted for a somewhat 

limited range of problems.

The design of practical shells is usually 
dependent on factors other than considerations of shell 
stability. The problem is, therefore, usually one of 

checking existing designs for possible buckling. For 
this purpose, the types of analyses at present 
available are restricted to rotationally symmetric 
cases. The author feels that in view of the critical 

influence of such factors as initial stress, 
imperfection and uncertainty of support restraint, it 

would be unwise to assume that critical loads deduced 
from analyses which predict snapping can be relied upon 
to justify increased carrying capacity. It would 

similarly be unwise to assume that any useful measure 

of restraint at the support may be relied upon in 
practice, though a design based on an assumed free 
support would undoubtedly be conservative in the 
absence of other effects. It may, however, be
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acceptable to permit large nonlinear deflections 

provided that these are recognised as such and that 
buckling does not occur. For this, the shell 
parameter A = a^/R^T^ should be limited to about 
17 for both point and pressure load conditions.

In most engineering applications, the behaviour 

of a shallow cap would probably approximate to that of 

a freely supported shell even when some measure of 
restraint is provided. The problem of more extensive 

shells would most probably be approached by 

introducing stiffeners arranged in such a manner as to 
divide the shell into a number of shallow caps of 
limited shell parameter. In such a structure, the 
conditions of continuity of the shell over the 

stiffeners would probably produce some degree of 
restraint at the cap boundary. Thus the assumption 
of a free support would be conservative, though this 
must be balanced against the effect of initial stress 

and random imperf ec tio.ns .
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VII « 1 Solution for the Point Loaded Shell

The governing differential equations of a 
shallow shell subject to a point load at the apex are 

given by 11.1,13 and II.1,14• These are.

r^d U 4- — V 4-("Z- V ) - t  i - v  r Y  O v i i  . 1 . 1
dr  ̂ 1? 2

4- - Y - Pr 4- r Nr( r hY)
otr^ d r  2 ttD  d  ^where

^  4* VU 4- 7r  •hi!:' 1 Y dr r f? 2 ̂

VII .1 . 2

VII.1 . 3

In order to obtain a suitable approximate solution 

for the differential equations VII.1.1 and VII.1.2, a 

comparable solution for is established for the
in ex t en s i ona1 bending of a freely supported flat plate 
subject to a concentrated force P at the centre.

With R = 0 0 and = 0 equation VII .1.2
becomes,

f dip + rçW/ - 4; = .Pr VII .1.4
dr^  d r  ZTTD

for which the solution is

Y " At X  4- Ao r log a VII. 1 .5
R R ^
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The solution for 'Y for the shallow spherical 

shell can be represented by the sum of an unknown 

multiple of the expression given by VII.1.5 with the 
addition of a linear term in r , Thus a suitable

approximate solution is

VII.1.6

and djf = 1 — C'z') 4- Cz log O
dr R r

Equation VII.1.1 becomes

4- rdu -  u =
oT?

4-

d r
( l 4Ci )C2 - C i ( l Ci)('à-'9)

z

r Z
Cz - (I 4'c:,)C2(3"VJ i, '“9 2

rZ 3 <7C'Z 2)-\? _r fog a 
Z r

which has the solution

U - A TT 4- 6> — r (ttCQ C2 (5'=>v) 4- 4 9)(3-v) 4 Ü2 (9-7v)
^  Z I (o

3r

Cz 4* ( I 40\}Cz (2>-v}
4- r ( og o. — Cg (3>"V) I og Q 

8 RZ  ̂r 2 r VII.1 .7

where the arbitrary constants A and B are determined 

for the conditions:
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At r = 0, V is finite and hence B = 0 
At r = a, = 0

i.e.
d r

0 -f v) A = 8 L4

B = 0

= 0
2 r-= a

determined.

2 . 
J  Cl ) 

j

Cl
2

1 2 loq exJ y- VII.1.8

Substitution of VII.1.7 and VII.1.8 in VII.1.3
yields

N r  — G»( I V J [ r 3  ̂I -h C\̂ C2 4'C>(14Ci) 4* JL O2 ) C )8 |_( 4 Z IG )

+ ^3 Cl 4 A-fCi) dgj log 0  -b Ç2 loĝ  A VII. 1 . 9

Substitution of VII.1.9 with VII.1.6 into VII.1.2 
yields, after some simplification,

r  d  Y 4 r d Y  — Y  = P r — CJjAPl) 6
d r d r ZtïD o

4 l o g  ^  " h o i ^ r ^ i c ?0 a. 4 I 4 o i^ r ^ lo ^ a VII.1.10
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in which

o(.| - I 4 c, y  I 4 Cl) 4 3 (I 4 Ci)̂ Cg 4*X (I 4C,)Ci = E, 4  § 4J7
2 4 , IC 4 iCa

1 3
d o  =r "“C i f l 4 C i ) C 2 “ ^ n  4 C , ) Cg — J? C 2 - - By “ S - JZ S  c,

2 - 4  i<4 A \G

o< a = Ci ( l 4 0)C2 4 1̂4 cJ^Ci 4 5 ( ) 4C*) cf 4  J S3 4  S 4 j
2 2 iCp Z l(b

y 2 3^21" ^^14 C,) C% 4 5 C2 = 3 4 ̂2 4 Z 4

3
= £2 fs

where

VII.1.11a-«

E, - Cl O  4 0  )( I 4C() 2
62 - Cv C-2 C I 4 C()

2
^5 = (1 4C,)^Ci

B a - 6 4 Cl) Cl
= Cl

VII .1.12

The solution of equation VII.1.10 takes the form

Y  " Ar 4 5 4 K.,ĉ r̂  4 Xy 4 Ko r toq a 4 K . 1 Og a
r  "r ~r

4  log a 4 y i ,^r^ log% 4 V I I .  1.1 3
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with the t'urther abréviations

VijS ^ 4 3^2 4 3 6^ 4 4 2̂1 £s)
5 4  g 4 4 04

Vto =î "‘A (d, 4 S csZ, i- 13 d A 4 65  ̂/s,4 S Eg 4 7 Eo-b ^  84 -i-JXl £̂ )Z/l Î2 72 2SS '2 C=  ̂ 24 1̂ 4

Hi = 4Tfb

= - ifĉ z = ( ̂ 2 “t “t 2 )
S S A ids

H&= "it 7ô3 4 5 4 l_9 ĉ s) =: "Ï ■*■ - 4̂ -h 35 Es)
24 6 24 24 24

X« = - %  *̂ s = '“-̂
' 24 48

VII.1.14a-g

where

V — Û — V  ) JB A 5 ( I — )
81?^ D 2 R ̂

In equation VII.1.13, A and B are arbitrary 
constants which are determined from the condition of 

symmetry at the origin and from the boundary condition 
on .
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At r 
At r

so that

= 0, = 0 hence B = 0
a, = Dr 4 V Y  

-dr r jr = c\
A O

A  ̂ -.^11V 5̂4V)Vl, 4(S4V) - VẐ - VII.1.15

and equation VII,1.13 now becomes

= ( I loq  w . r  -  o f  
■’ai ^ TTvI + V ^34V)Vlj 4 ( S4\?) Wg

4- a ^ K , r ^  "4 r  ̂  r  ^ I o g  rc\

r  Kg log r .  4  r ^ H ^ l o g V  “  Ic g ^ r VII .1.16

Integration of this expression for 'Y gives the 
deflection in the form,

4  A Vt,8 = W  = -
h 4 TîD _J__ -  i oq r  4 i  j-hV a 2

4 /S 4 V - Vl4 -YL^ I / r f  4 Yli/X^^ 4  Hz/xX I 1 4v / I 4 V 14 V ) I V 2 I Cl / 3 I

VII .1.17

Wy ( r\̂ ( log r  -  _! l o q ^ r  4 1 log rY  \ Z “ 4 )
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in whi ch

c\Zl'Z h A ^
ZR

In order to determine the two constants 

C ̂ and C2 , it may he postulated that when integrated 

the expression VII.1.6 and VII.1.17 lead to the same 
value of deflection at the centre. Similarly, these 
two expressions may lead to the same value of rotation 
at the boundary.

Integrating VII,1.6 and equating to the result 

VII.1 . 1 7  gives :
C34V) ^  4 V 

ZHD ^
( f74S By 4/zt9 4 -h ( ^3

36 Z.I6 Z132

4  E a 4 ( A37 4191 Vj £ s
576 10568

VII.1.18

Equating VII. 3->6 and VII o 3 « 1 6 at r - a,

Rp 4  yg^R 
4rrD a 3 (5 9

VII.1 . 1 9
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Taking Poisson*s ratio to 0.3 3 , VIT,1,18 and 
VIT.1 . 1 9  become

PR A - A 0422186152^, 4 0.0603S036<2.6£^ -b 0.053SI54IH <5% 
Et3 ^

4 0.0485345^9 £4 -1-0.011374877 <£5 -0.93B727S9 (c, 4- O2) VII . 1 ,20
2 ^

Pg « 
Et^

- I.S6298144 C( - X 0430899 60S 5, 4 0.0546/315397 E

4 0 . 0 5 4 5 4  15397 8 3  4 0.0436 332 31 -i-0.009317S j2 a  <S £> VII.1.21

Equations VII,1.20 and VII.1.21 respectively can 
be written in the form

PR
Et^

=7 c\ I 4  X

and

in which

PR A g "2 4  t>o XE6% ^

Oi = -0.93872759(0, 4 Cz)
2 ‘

0^2 = ” I-5629&/44 C\

VIIo1.22a,t

0 .1 2 2 I8 6 ISZ<S, 4 0 .06 0 3 5 0 5 6 8 6  8 2  "b 0 .05 5 6154111 8 ^ 

4 0.04 &55 4599 £ 4  -b 0.011374877

- 0.130599695g, 4 0 ,05A£4l5397£2 40.05454 lS397 £3

-b 0.04363 32 31 84 4 0.0093175125 £s VII.1,23a-d
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By subtracting equations VII*1.22a,b

(0 ,-0 2 ) 4( b, = 0  VII. I,2[̂

By integrating VII.1.6, the deflection at the centre is

Wo A “ g (c, 4 Cz ]
ZR 2

and noting that the rise of the shell at the centre is 
given by

2R

£q — Wo A — ( Ci 4-
h % VII.1 . 2 5

From VII.1.23a

a, A 0.93B727S9 £

and from VII.1.25

C 2 = - 2 ( C i + S )  VII.1=26

It is convenient to solve equation VII.1 . 2 4  for 

specified values of the central deflection . With
VII.1 .2 6 , relations VII.1.12 may be written in terms 
of C and £ . Thus,
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£, A Ci o  4 Ct)C i 4 Cl j « C) -b 3 c7 4 £^^
2 2 2

Eg A c < C ( 4 C'̂  = — 2 c, ̂  — 2Ci Ci 4 S) —
2 7

^3" (14C,)^C2 - - 2 S - Z C i C ( 4 2 S ) “ ZCi^C24€)“ ?C,^

64 - Cl 4 Cj C2 A AS 4 ACx^C'Z 'i- £) 4 4  c, Cl42f) 4 4 C

85 - 6*2 A - Sc,^ - l AC^S - 24Ci f ̂ - 8  E ̂
VII.1. 2 7

Equation VII.1.24 may now be expressed as cubic 
in C.J . Thus,

3 2OoCi 4 a,C, 4 Ci 4 A O  VII. 1.28

in wbi ch 
Og a A [o.aoaSG6 9&ZÎ8 j

Q| = A [ 0.0130703 I 4 5  4 0.011 6 1 5 0 5 7  8 C f -+-$)" O . O O I 4 5 Z 2 S 7 2  C z 4  S)L 2
-  0 - 0 1 8 6 0 5 4 7 2 ( 1  4 2  E )  4 0 . 0 4 9 3 7 6 7 4 0 8  s ]

0 2 -  I.S6298I4 4 A 0.00871 3543 4 O.OH6iao578 $
2 *1- O.OOI4S22S72 (I 42 E)-0.019605472 E(24S) 40.049 37674 08 S J

a^A 0.093872759 E 4A[“O.Ooi432272 ̂  - o. oiO| 6054 72 VII.1.29a~c
3 T4 0.016458914 5
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For successive values of $ , the coefficients
of VII.1.28 can be calculated from VII.1.29. Equation 
VII.1.28 can be solved numerically using standard 

procedures such as Cardan * s method. In practice, only 

one real root is found though for values of A greater 
than about 300, multiple roots occur. Since practical 
shells do not behave symmetrically at such high values 
of the shell parameter, multiple roots are not of real 

significance.

The solution of equation VII.1.28 yields the 
value of the constant C « The value of the load can 
now be computed from either of the equations VII,1.22a,b. 
Thus, the first of these gives.

PR = 0-93672759 E - A - 0.1076 6 ̂  40J94IBS392 %
3— 0.09o9990i6 %

—A 0,0145553 4 0-C?£>25l40n F -  0 .076656652  £ C,

-A 0,041454645 - 0.0527016465 % C, VII.1.30

O. 006904052 C,



1 3 6 .

Determination of Stress Resultants

From VII.1.9,

 ̂3(l-bC,)C-2 -b <2,(14. g)

(4 jKCkJ  ̂CX 2 Os
VII.1.31

From II.1.12b with relations VII.1.7 and VII.1.16

~[|C2 H-6+c.;)Qjj3iogr -i-ÿr)%ÿpi09V  + 2 |qgrj(r)''

From 11.1.12c with VII.1.16

Mr R = PR ( t-vv). 1 og F + A -Vi,C3iV)fi —£^3 g 8 L C

“M2(s +\?)[ I "(ĝ )'’] - log r '̂ ')(£)*̂ “‘j

-Hs ̂ (cs+v) log r + Cs+v>j lo^r +

-n^[fs.v)l0 9h  + 3logVj(r) VII.1.33
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Prom II. 1.1 2d witli VII .1.16

g = _L ^
4TT

( i + v )  l o g  r  4 - v - i + il 
6

Vl|rO + SV)̂ £̂ '̂ - (3+Vjj

+ H2^(l + 5 v } ( r ]^  -(s  + w j  -  ^^Cl+5v; log r  "  ' I

-H5 (̂c i + sv) log r +'̂ )(£)"*-' I

"t" v<.(^^r^Vi+£v) log ’̂ r  + z v l o g  r j

—  y(. . VII.1.34

Determination of Surface Strains

Tlie membrane strains are given by equations 
II.1 .1 1a,b. Tbe surface strains can be obtained by 
adding tbe rotation components to tbe membrane strains. 

Thus,

VII.1.35

VII.1 . 3 6
dr R Z 2 dr

Tbe surface strains can therefore be computed 

from VII.1 . 3 5  and VII.1 . 3 6  along witb VII.1 .? and VII.1 . 1 6
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VII•2 Solution by Numerical Integration

To illustrate this approach., the governing 

equations 11.1,13 and II.1.14 may be considered. The 
basis of this solution is to express these two 
nonlinear simultaneous second order differential 

equations as four nonlinear first order differential 

equations.

Thus, the following quantities may be defined,

Let VII.2 ola

dr VII.2.1b
d r

Considering the case of the pressure load, the 

relations VII.2.la,b may be substituted into equations 

II.1.13 and II.1 .1 4 .

r ^do l 4- y d  -u -t-rfr Y + = 0
dr ^  Z

VII.2 o2a

cl r ZD D
VII.2 .2b
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d  d % y  — (I-vj
d r . R

d r 20

d U 5 oC
d r

dit = P»d r

R

-t 4-(r Yr  ̂R 1 ̂ (r
R ^

VII.2.3a

VII.2.3b

VII.2.3c

VII.2.3d

The problem as formulated by equations VII.2.3a-d 
was programmed for digital computation using a four stage 

Runge-Kutta method for integration. The method 

integrated forward the set of simultaneous equations 
step by step.

In order to carry out this procedure, it is first 

necessary to determine the starting values of the 

equations to be integrated. These are dependent on 
the boundary conditions. While any consistent set of 
boundary conditions may be considered, the problem will 
be illustrated with respect to those for a simply 

supported shell. These boundary conditions are

r ~ 0, yv ' = 0 and v = 0 
r = a, = 0 and = 0
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Thus at the start of the integration at 

r = 0, Y  = V = 0 but and ?> are unknown. It

is therefore necessary to estimate oi and p such 
that on completing the integration to the remote 

boundary at r = a, and are both zero. In
the case of initial trial values of cÀ and P , the 

condition on and will not be satisfied in

general and further trial values of o< and P must 

be assumed. It is important to note that at any one 
boundary only two of the four possible parameters can 
be specified. This is known as a * Jury * problem with 

two degrees of freedom and special techniques must be 
developed to set up an iteration procedure to secure 
the required terminal values of and . The
solution of the Jury problem is discussed in general 

terms in Appendix VII.3•

A computer programme was written to carry out 
the numerical work for the shell problem in accordance 

with the procedure described above. The final objective 
was to obtain the equilibrium path and, in addition, 

calculate the distribution of deflection, the variation 
of (Stress ahd m nr face strain along a typical meridian.
The programme to carry out this analysis was thus long
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with, a co.nsequie.nt heavy demand o.n machine storage.

The Ferranti Sirius Computer, which was used in this 

investigation, had a limited store of 4 OOO words and 
was considerably slower tha.n more rece.nt machi.nes.
The calculation, therefore, had to be carried out in 
stages with a consequent loss in efficiency, though the 

programme was translated into basic machine code in an 
attempt to speed computation.

The mai.n conclusions of this investigation 
were that :

(i) numerical integration was an uneconomically 

slow process,
(ii) co.nverge.nce of the Jury problem analysis 

was, in itself, slow, requiring several 

trial integrations. Convergence

deteriorated as the buckling condition 
was approached as the .numerical work 
became in créas ingly unstable.
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VII.3 Solution of the General Jury Problem

The method outlined below was proposed by 
WARNER(^^) and is an extension of Aitken*s method to 

may variables.

If there are n functions f (u, v, . , z ) , 
g(u,V,,..,z), ..., m ( u , v , o f  the same n
independent variables, it is necessary to interpolate 
between n + 1 sets of values of f,g,...,m to find the

n values of u,v,...,z required to form the wanted 
values of the functions. With more than one variable 
only linear interpolates are possible, as the extension 
to higher order interpolates become unprofitable and 
difficult to generalise.

Consider the case of three variables corresponding 
to three degrees of freedom. The problem is to obtain 
three parameters u,v,w which have to be estimated at 
the start of the range so that three functions f,g,h 
of these parameters are zero at the end of the range.

Now f = f (u, V, w), g = g(u,.v,w), h = h(u,v,w) may 

be inverted to give u = u(f,g,h), v = v(f, g, h), 
w = w(f,g,h) provided that the Jacobi an of the
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transformation does not vanish, at any of the points in 

question. This may be assumed for any given set of 
numerical functions.

Denoting the values of u, v, w, ..., taken

when f = g = h = 0 by U,V,¥, U^,,.., respectively,

a Taylor's series truncated after its first order terms 
may be obtained

u = U + fU_ + glT + hU- f g b

From four such equations (derived from the 
approximations u^, u^, u^, u^)

+ S A g  + + U  =

+ V h  + ^ = ^4

U^, U^, may be eliminated to give the required 
interpolate U.

This set of equations may be solved by the Gauss 
elimination process to give U without back-substitution
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Further sets of equations for V and ¥ differ 
from the foregoing for U in that u^ to u^ are replaced 
by V^ to and w^ to respectively. Hence the 
whole process may be represented in matrix form as

hi 1 ^f ^f ¥f ^1 ^1 Wi

^2 ^2 1 u
s

¥g ^2 '̂ 2 ^2

^3 1 ^h ^h ^h ^3 "3 W 3

"̂ 4 ^4 ^4 1 u V ¥ "4 ""4 " 4

and the elimination process may be carried out to give 
the result in the form

FU FV F¥ u V w

whence U = u/F, V = v/F, ¥ = w/F. This process may 
then be repeated with four sets of values comprising 
(U, V, ¥) and the three best approximations from

V.J, W.J ), . . . (ù^, v^, w^).

Formal solution of the matrices gives
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VII•4 Solution by the Galerkin Method

MUSHTARI( )  obtained the governing differential 

equations for the pressure loaded shell in the form

+ y  + pa Y  = o VII.4.1a

P d  A 4  ( P  + Ü &  (<i> +  P a )  + =. o VII. 4.1b
dp P dp  ̂ * R/ 20

where P = —  , Tj = 12 ( 1 - ) (&) and ^  is

a stress function such that

N = Et $ N„ = Et d VII. 4.2
F ® d?

The meridional bending moment is given by

= 2 / + V y  A VII .4.3®- V d p p )
Mr

It is convenient to consider generalised 
boundary conditions assuming elastic restraint at the 

support. Thus the meridional bending moment may be 
assumed to be proportional to the angle of rotation ^  

at the boundary.

rM = k,Y, at p = - = 1r • ' ‘ • a

where k̂  is the stiffness of the rotational restraint.



146

Hence

d Y  4* nrs Y  — ̂  ot' p =-i V U  .4*4
d p

where m »  V t g  K, = V + Ap Ct

and C .j = represents the flexihxlity of the support.

Similarly, the meridional membrane force action
may be assumed to be proportional to the 

displacement at the boundary thus,

= k^u at p = 1 VII.4.5

where k^ is the stiffness of the support.

At the boundary, the' deflection w = 0 and u, the 

tangential displacement u is given by

u = a Eo Vll.4 . 6

Combining VII.4-5 and Vll.4 * 6  with the relation

E q = JL ( -v?Nrj
the result is

VII.4.7
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T T 4 -where Q = - \? - -— - = - and = ;—It 2 a 2 2 X

To obtain a solution of the differential equations 
Vll.4*la,b by the Galerkin approach, an expression for 

is assumed in the form of a series, thus

Y  = ^  - '̂ n p") VII.4.8

which satisfies the boundary conditions given by 

Vll.4•4 and Vll.4*7 and the conditions implied by 
symmetry when Vn = 2 + n + nn and W n  are

n-t* pTfc
undetermined constants.

Introducing Vll.4*8 into equation Vll.4•1 a and 

integrating twice, ^  is obtained. The constants 
of integration are determined from the condition 
VII,4•7 and the requirement of boundedness of the 
solution at the origin.

The expression for (J) and the assumed form for

'Y as given by Vll.4*8 are substituted into equation
Vll.4 .lb. The resulting equation is multiplied
successively by B Y  and integrated over the range

Ô
from p = 0 to p = 1 to yield n simultaneous 

algebraic equations in ' cl?, - « -, . These
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equations are cubic in form and simultaneous solution 
yields values of tbe undetermined constants

^  » ) ̂ 2. ; "  • Hence tbe final expression for vp
is obtained. Tbe deflection at any point may be found 
by integrating tbe expression for Lp

Tbe lengthy algebraic manipulations to obtain 
the Galerkin integrals is presented in detail in 

Appendix Vll.5•

The advantage of such a Galerkin solution is 
that the coefficients for the simultaneous cubic 
equations can be generated merely by specifying the 

number of terms to be included in the approximating 

function for V  • -Once the generalised Galerkin 

integrals have been evaluated as shown in Appendix V11.5> 
the numerical computation may be conveniently carried 
out by computer. A programme was written to do this 

without difficulty though the computation process was 

naturally lengthy.

An iterative procedure was adopted to solve the 
system of cubic algebraic equations. Initially, the 

iteration process was fairly rapid but, as the 

deflection increased, the contribution from the higher
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order terms increased, leading eventually to an 
iteration failure in some cases. The problem was 

further.complicated by the occurrence of multiple roots 
in the solution of the algebraic equations. An 

extrapolation process was required to discriminate 
between possible equilibrium states. This latter 
difficulty became more acute as the number of terms in 

the approximating function. To avoid some of these 

difficulties, a new form was assumed for Y' and the 

corresponding analysis and evaluation of the associated 
Galerkin integrals is presented in Appendix Vll.6.

It is of interest to note that some time later, 

FEODOS'EV^^^ in a general discussion of the variational 

approach, noted that simultaneous solution of the 
associated algebraic equations is not always possible. 
An analysis of the cause of iteration failure in the 

present work, showed that a contributory factor was an 
apparent sensitivity of the solution to slight 

variations in the coefficient associated with the load 
term. It would appear that this effect, which is 
dependent on the type of load, boundary conditions and 

to some extent the assumed form for , is inherent

in systems subject to transverse load action. In the
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corresponding analyses of edge loaded plates, for 
example, the form of the approximating function has 
relatively little effect on the load term, and so the 
solution of the edge load problem is appreciably more 
stable in this respect. FEODOS'EV suggested that the 
difficulties of this type might be overcome by 
considering dynamic effects with linear damping. This 
has the effect of changing the variable and in his 

analysis, the damping coefficient, which was an essential 
feature of his method, was chosen arbitrarily and had 
the effect of stabilising the solution.
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VII.5 Galerkin Solution of Shallow Shell Equations - (a)

The governing differential equations may be 

considered in the form expressed by II.1.9,and II.1,10. 
These are

^ t  VII.5.1

p d . t d ( p Y )  = 7 ^ C Y + P { T ) +  + Ê2 l VII .5.2
d p  P o p  2 D  2TtD

where

P= r  , 7 = , y = a

p = uniformly distributed pressure load 
P = point load at apex of shell

A solution is assumed in the form
Y\

which satisfies the boundary conditions when

Vpj s 2 + r> + TV>
rt 4* na
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S u b s t i t u t i o n  o f  V I I . 5 . 3  i n t o  V I I . 5 . 1  g i v e s

Y\ n

dp P dp
 ̂ r+s+2 r+s

— C' r̂ Y  Vs) p -V rV s p

1T4S+4

- n  If'
r c+2 r* 
P -Vrp

i i  I w f  <M.Zssï r-ï
^P4S+4 , r+s+-2 r + sP  _ Nr+Vs)P Y VrVs P
r +S+4

n
y %] COX' rzi

P

r + s +2

r+J 1

r+s

r+3 r+\ +• A

y y\ ir\
P<Y a ̂  r £ COpCOsA Ss * r=i

r+s+Co , r-vs+4  ̂ r+s + 2_P_______  — (Vr + Vs)P 4. Vr \)s p
(r+s+4)1 r+S46) (r+s+2Xr+s+4) (r+5)(r+s+z)

n
y Y cuf r=i - d r A A l(r+s)(r4.&)

4. AP 4- e> 
Z

Afc P=o , ^  IS finite /. e> = o
At p= I , ( ^ 4 ^  ̂+ ĉ ( =0 where t|̂= -v- Cg

n n
1 Z Z cOr W s2 S3.1 rai

r-t 5 + B____  «. (r+s+3)(vp +Vs) ^ VyVs (r+s +0
(r+s+4)(r+s+6) (r+s+2) ( r+s+4) (r+s)( r+s + %)

n
r curai r + 4 ^ Vr (r+ 2)

n n
+CI-i I r o»rûJs 

^ 2 S - 1  pa  1

(r+s)(r+6) (r+0(r+3)

- Vr + Vs

+ A 2

VrVs
Cr+s+4)(r+6+fc) (p4s+2)(r+5+4) (r+s)(r+S+2)

n
Z  <Or V>V'

Cr+zKr+s) (r+iKr+5) +* A cĵ 5f O
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A = -z
»

r\ ni Z ZcorCDj1 s= I Ta \ [< r + S+S____  ... Cr+ S+5)(vr +V5 )
r+S+4)( r+<,+ (o') (r+s+%Xr+s+A)

n
+ Vr Vs Co+S + O ) _  Y ZcorÇ
(r+s)(o + s + 2I ) r-

I . « V r C r + 2) 1
I l(T^bXr+5) (r+0( r+&) J

n n
+ 5* ^ Z dDr Ws T _2 5%1 rai Hjr

Vv̂  +vs
1 5%i Pal HJT+S+4KP+S+G) (r+a+2)( r+s+4)

VrVs
lr+s)(r + 5 + 2

n
)j ^ ̂  l(r+i)CrT&) (r+Otr+a)]

Hence

f--------03r<0s
I s® * r«i

_ (Vr+VsY'-""'"'' + VrVsfC!:' 
(r+s+4Xr+s+W (r+s+2)( r+s+4) (r+s)(r+s+2)

Y\
ÿ Zcor^ r=\

r+4
(r+2))(r+S)

_ Vr ’’
(r+\)(r+3)

-  f
l + Cĵ

n n
1  2  I  r + S  +  S » ( r + & + 5) (V r -V V s ^  +  V r V s  ( r + S + 0  7
2 s= \ r= I ( (r + 6+4)(r4-s+c,) (r+s+2)(r + s+4) (r+s)Cr+s+z))

if rf,"- (
r+A _  9 r  ( r + 2 ) I 

(r+2>l(r+s) (r+\Xr + â) 3
n n

+ 3  Z  Z  cor CVS f  i  ____ _________________
2 S-l ra.1 I (r+S+4')(r+s+6,3 (r+S+zKr+s+43 (r+s)(r+s+2)

_ -Or + Vs VrVs

n
q y  Icürf L_— . - , _ Y r _  )raj t(r+^)(r+S3 (r+\)Cr+%3 )

VII.5 . 4
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The e x p r e s s i o n  f o r  S/ g i v e n  b y  V I I . 5 • 3  and  t h e  

e x p r e s s i o n  f o r  ^  g i v e n  b y  V I I . 5 * 4  a r e  s u b s t i t u t e d  

i n t o  e q u a t i o n  V I I . 5 T h u s ,

A  r r+i 1— 11
Leo (r+v)(r+3»)f - (r-0(r+0 P

7 1 I f I w r w s w ,  f
2 6a 1 s=i ra\ ( (r+s+4)( r+s+fc) (r+s+2)(r+S+4 )

fr+5 )( r+s+2) (r+s +4) C r+s+c,)

(r+s+2)(r+s+4l (r+s) (r+s + i") )

-  y I  Icurwsf5 sira\ ( Cr+^Xr+5) Cr+0(r+2>)

+ v v v s p T I " ^ )
(r+iXr+s") {r+0(r*+2.') /

!___ I I Z Ujra>s&Jtî-k3±lËZ^51L - (rtS4.%'1(Vri-Vs)p*̂tai s=j ra\ I (r+s+4Xr+s+6,) (r+s+2)( r+s + 4)

6+^ _ b +)
4 Vy Vs ( r + S + G  P _ ( r  + & + S)Vb P

(r+s)( r+s+z) (r+s + 4) (r+S+ (o3

4 (r + S+3»KVr+Vs)VbP̂  - Vr Vs Vfr (r+S+0 P
(r+s+2)( r+s+4) (r+s) C r+s+2)

n r\4 * y Z 7 P . - Cr+2)VrP (r +4)VsP + (r+2)'̂ rVs P )l+cj, ® spiral t(r+5)(r+s) (r+i)£r+s'i (r+sX r+s"3 (r+i)(r+%) )
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. ^  I  E I io^lo^toA— Z________ - (s?r+vs)P  + _VvL2sf---+ balsaJ'^*' t(r+s+A)Cr+s+b>) (r+5+2)(r+s+4) (r+s)(r+s+z)

6 + J . . L+1 6 + 1 -\>?fcf______ + (Vr +Vs)V6p _ Vr Vs Vfcp /
(r+5 + 4Xr+S+C») (r+s+2)(r+s+4) Cr+s)Cr+S"Vz) \

+ 3x- Y Z f  WrWsC - Vs TI +c^  ̂5 aj ra j ((r+sXr+5) (r+jKr+s) (r+s)(r+s) (r+\)(r+2>) J

- y y h f  f w r o p s L  ____- cvrivsipDT:^ -h v w s p I:!^^
2 5= I rz' t Cr+s+Aur+s+Ca') (r+s+2)(r+s+4l (r+s)(r+s+z)

_ y Iwrf P l L  - VrP'-'h 
r=.\ (. (r+s)(r+s} (r+i)(r+5) )

2 r r
— P I -i Z £ Wrcvs { r +&+ s  _ (r +s+ 2>^(Vr +vs) 4. \>yVs(r+s+i) 1
i + ^ (  2 Sal rai ( Cr+5 +4)(r+5 +6 ) (r+s + 2)(r+s+4) (r+s)(r+s+2) )

n
-y Icorl— n ± ± —  - 'h'-jjr+l)— '}rai I (r+s)(r+6) Tr+îTTr+S))

n n
+ 3 - 1  Z w r W & f _____ !  - ___(\?r-»N>s) ^ )

2 spiral ((r+s+4)(r+s+W (r+s+z)(r+^+4) (r+s?Cr+6+2 ) ̂

n .

^  ̂  r= [ (r+sKr+s) " (r+ixr+ai ̂ j

4- + Pĉ  _ 0
2 D  ZTlb’

VII.5 .5
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Equation VII. 5 • 5 may now be multiplied through.

by BY and integrated over the range p = 0 t o p = 1  . 
dcOn

This yields an algebraic cubic equation of which the 
coefficients may be determined as follows* ■

Coefficients of third power terms

7  i Z IZ tal Sa I r=.i L

 ______ I__ V(A   _  Or + ______
(r+S+4K r + s+C>Ur+s+6+u +Ô) (r+5+2)(r+s+4)(r+ s+c + u+g)

.______ (Vr+ vs) Vu  4 .  OrVs__________
Cr+5+2)C r+s+AXr+s+b+u +6,) (r+sXr+s+z)( r+s+t+u. + é>)

Or Vs Vu __ Vfc-
(r+s)Cr+s+z)(r + s+ e.+w +A) tr+s+A)Cr+s+fe>) (r+s +t +u + 8  J

.  ________ Vu Vfr___________ 4, C Vr + Vs) S7 (r________(r+S+AKr+S + 6,) (r+s + 6 + u+ 6»j (r+s +%)(r+S+A)(r+S + 6 + cx+ 6 )

Cvr+VsWuVt VvYs Vfc
(r+s+2}( r+ s+A)(r+s+ fc+ (r+s)(r+ s + z)( r+s+fc + u+ 4 ^

V r Vu
(f+6)(r*ts+2)(o+s+ 6 + ̂  +
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  I I  I CUrWswl C±â±Ë  - ,-------------------Z(l-Kl) 6*1 r= ' (( r+s+4)( r+s+6)(b+utW Cr+s+4)Cr+s+c.)Ct-+ + a)

_  (r+s+2>)( vr + Vs) 4 (r+s + 3.)(̂ r + vs) V(a
(r+s+2;(r+s+A)(b+u+G) (V+s+zU r+ s+4 )(6 + u +4 )

4  (r+& + i) VrVs _ Cr+ 5+ 0 v r v s Vt-<
(r+sXr+s+z)C6-+t^+6=) (r+S)C r+s+z)C(r+'^ + A)

 (r+ 5 + s1 Nfc 4  (r+ s + s ) V  k Vfx
(r+S+4)(r + S+WCe+M+A) (r+S+4)CV'+S + 4>)(fc 4 U+*2)

4 (r+6 + 3)(vr + vs)oe  ̂ . (r+5+^)CVy+'V5)Ve^^
(r+s+z)(r+S+4 IC 6 + LA+4) (r+s + 2)C r*+S+4)(t* + ̂+2.3

(r+s + i)VrVsV(r  4  (r+s+i ) VrVs Vr Vm. )(r+ s)Cr + s+%)(k+M+4) (r+&)(r+S+2) Cb+fx+z) j
h r\ n

I Vm— ^  _1 % £  ZwrcosRp^fI 2 b=-' 5-irai L(r+s +4)Cr+S+6»)(("̂ f4+ 6»*) ( r+S+4)(r+5+ 6*)(b +1*+4)

______ (Vy+Vs)___________  4 (V y + V s )V u ________
(r+ S + Z K  r + S + 4 -U t  +  u+û-) C ^+S +2)(r + S + 4 ) ( t  + ̂ + A )

Vr Vs _ VrVsVa
(r+s>Cr+s+z)(e+tA+o> ( r+sX r+s+2X<r+(^+A)

__________ Vt____________  4   V+________
C r+ 6 + 4 X r+ s + c » )(b  +M.+4) Cr+s+4Xr+s+<^)(6 + <̂ '̂ 2.)

4  (V r+ V s3 v (r   _  (Vr+v&)Vfe Vĉ ______
{r+s+ a) Cr +S+4) 6(:+<a +4) Cr+S+2)C r+6+4Xb+u+z)

VrVS^fe______  4  VrVaVfcVu______
(r-i-£»3(v'+s+iX t+u +4) Cr+s)Cr+s+2)(fc+u +2)

] l



Coefficients of second power terms

1 5 8 .

-  ' -  -   ________________SiiV rat ((r+ s)(ir+s)(0+ s+ 6 + 9) Cr4 5Kr+s>)Cr+s+t ++)

_______Vy_______ 4-  OvVfc_____
(r+9(r42>)Cr+s+fc+7) (r +iXr+ + s)

Vs vsve
Cr+sK. r+s)Cr+s+1 +i) (r+a)C r+6)Cr+s+e +S)

4 _____ VrOS_____  _  VyVsVfe__
(r+0Cr+î>)Cr+s+6+^) (r+ tJC r+3)( s+1+3»)

o A .

Y __L_ I Icorcos) r+-̂  - —  (r+4)Vfc1+ 3  Sal ra I ICr+sXr +6%s+6+6) (r+s)Cr+&)Cs+1+4)

(r+z) Vy 4 (r+z) Vy V6
(r+iX r+s>Cs+ b + W  (r+i)Cr+3X % +b+4)

(r+4) Vs (V+4) V sVCr
Cr+5Xr+s)(st6 +4) (r+3)(r+s) Cs+ 6+ Z)

4  (r+2)VyVs_____
(r+iXr+S) (5+6+4)

Çr+2) VyVsVe 
(r+f)(r +&X5+ fc + 2) !

n n
4" --3l. Z  ZcOyCOs f - - - !— - -  -    £È_ _ _

1+ ^  Sat r=| ( (r+syr+5ys+6+6) Cr+sXr+S)(s+t + A)

Vy Vr V6 V5
Cr+OC r+aX&+6+Ê») Cr+0<.r+3')(s+fc+A) (r+sXr+s)(s+6+4)

(r+iXr4s%#g+2)
vyV% VC"

p̂4l ^+i)Cr+&)(&+6+2)
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n o ^

—  J. £  £  ̂ _______l ( r+s+4)(r+s+c,)(r+s+6+9) Cr+s+4)Cr+s+Wcr+s+t + 7j

V r+ N ? s  4  (O r+ V s ^ V è r
^  ( r + S + 2 ) ( r + S + A X r + S + e  +  7 )  ( r + 5 + 2 ) ( r  +  S 'M ) C r + 5 + 6  +  S )

4    O y V 6  Vfr_ )
C r + 5 ) ( r + s + z ) (  r + 5 + b + s )  ( r + s ) C r  +  â + 2 ) ( o + s  +  t  + s )  J

4. I (■ _ 1 _  _  J î t .  )  f i  f  fu > r < u s (  r 4 -s + s  _ C rts^-aX w -yv>s) +  ( r 4 S i - i ) 0 r V s  ]
l +  3 ( C ^ + s )  Cfc+5)) { 2 S 3 irs »  (C r + 6 + 4 ) ( r + s + W  ( r+ s + z K ^ + s + A )  ( r+ s )C *" + s + z )

+ _!_ - _fk )A Z I w f w J  L, - ________________________^) [Zszir=» ((( +%((b+6) Ce + 3) ) {.Zsairsi L (r+5+4)(r+s+(=) (r+s+z)(y+s+4) 6r+sX>^+5+z)]

Coefficients of linear terms

n
i<Or [ (r+0Cf43) _ Cr-OCr+QVr _ (r+i)(r+&)V5 + (r-iVr+i) VrVs ?
raj  ̂ (r+s+4) (r  + s+z) (r+s+z) (r+s) 3

r+3)(r+5)( r+s+8) (r+s)(r+s) (r+s+e)

V r  4,  O r\>s
(r+0Cr+3)Cr+s+û») <r+OCr+3)<r+s+4

h
.i

- _L f _1_ - .21l+«̂ l ((:+&■) (6+î)) Z Wr $ <-'"''4) - (r+2) )) rzL Ur+sHr+s) (r+0(r+3)>
r\

^  f ' -* >?fc ]• £ c o r (  ' ..- - -  ^  }l+̂ J.ift+5) (6+3) j r* ' ((r+sYr+s) (r+iUr+S))
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Coefficients of lead, .terms

t= a 1 _
IB (fc+5)

P g
2ITD (fc + l)
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VII.6 Galerkin Solution of Shallow Shell Equations - (b)

The governing differential equations may be 

considered in the form expressed by II.1.9 and II.1.10. 

These are

VII.6.1

= 7 +Ff) + ^
dp ^dp 2rrD

VII.6.2

where
2. 1

b = uniformly distributed pressure load 
P = point load at apex of shell

A solution is assumed in the form 
n

Y  ® y Iconn = o
n+3 , ,, r>-» VII .6.3

which satisfies the boundary conditions when

= '

b n  =
Zn + nrv ^

Cn = 2n + m -v S
Zn + rrt +\

and n is an even integer

( br\ + 0
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Substitution of VII.6.3 into VII.6.1 gives

_Ld. (P4>) = Y  - pVY dp p dp Z

/  Z  I b2 " 5=» o rso
r-hs+c»  ̂  ̂ r+s+4(v"+4)(s-t4)p ■+ \ Cr-t'4)Csi'2) bs 'i' (r+2)(s-t4)

4-̂ (r4r4)̂ 5̂ Cr-h2)f-s4z) bp bs •+ r(s4-4)Cr j p
r-hS + 2

-b fcr+2)s bpC^ + r(S4 2) bsCrj r.S CrC$ p ri-S-2

y ^ CJr r= o
r+4 r-t2 r(r-t-4jp + {r-v*2)bv̂ p 4- rCrp

Integrating

n n
PcfpÇL (p<p) i= E ̂ COrCOSip 2 u 5=or=o

r+s*+̂(Y'44)(S4'4'> P 4-f̂ r4-4)̂ S4-2)bs 4> (r4-2)(.St4)bTjP
r+s+6, C r+s+4 )

+ f(r+4)sCs + (r-fZYst%)brb5 + r(s44)Cr) ^^+542 
( r-vs + ̂ )

+  C( r t z Ŝ brCs 4  r(S4%) bsCv"  ̂ +. P. s C r i ls  p'"
i r+s r+S-2

- 4 Cr4-2;brP̂ '*'̂  4- rCv'-p̂ ? f A
" iTzo  ̂(T't'A) (r+2) r J
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Integrate' again

r\ n r4-S4-S(r t4)(54'4) P + C (f "t-̂ XSa-VẐ bs 4 (r+zXs-M^ by*? p
 ̂ f)T4''&4-AX r + s + W  J

Ï—\ S4-6»
(r4-s-v<b)(r'V6-v B>

4" ^(r+4)sCs -V Cr*i'2)̂‘S't2.) bv b̂  + r̂ ‘S4*4 )Cr
(r4s+2)Cr+s -V A'i r]p

r46 +4

r-t’S+x4- f  ( r 4  2) s b r C s  4 r($4'2)bsCv')p ”  -f PS Cy Cs P
i (r4'SX'»'-v*s+2) J (r̂ -s-zKri'S)

r+S 1

/ I w rr* o
rt&>

r+4 r+2
+" A p + S  

2 ‘

At" p- o ) IS .% B = o

At p-i » f ^ ] f  I ^ ^  wHere £̂ =.->?-c-z

Ti n
1 Z" Zwrios2  ̂&= o rz o

Qr+A)C5+4)̂ y*̂ s+7j 4 (~(r+AXs4>2)bs +(r+2)(st4)bY')̂ r4̂ 4 si 
(r4-s+6,Xr+s+g) < fr45+AKrt'5+w J

^r(r+4)s^S + (r+2)Cs+2)br bs 4 r̂ s+4)<̂V’? Cr4s*v5)
i (r4S42)(r+s+4) 3

4- f Cr42)s brCs 4 r̂ 5>42)bs (r4s4l) + r.s (r+5"l)CvCs
( (r+s)Cr45+z)  ̂ (r4s-2)(r+s)

- /  Z w r (r-ts) +» (r+3) br 4. (r+OCv"
(r+6) Cr+4) (V'+z)

A
Z.
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J. E Ecorcos f (r +C(r44Xs+z)bs t (r+z)(s+Â  br?
Z ® S=o r=o L (r4S +W( r+s4<g) l (r+$44i(.r+s+<̂ ) )

+ ( Cr+4)SCs + Cr+2)(a42) br fa*s + rCs+4')CY')
 ̂ * (r+s+zX r+ 5 +4) )(r+6+zK r AS+4)

CrCs4- J* Cr + Z)SbrCs rCS42)b5 Cv? 4- f. S <
 ̂ (r+s)Cr̂ S42 (r+s-2)(r+s)
n

-V^ZiOf/ J _  + ±21 + _ÇL_ ) + Kr»o *• r+ 6 r+4 r-vzJ 2

/„ A= ' 2_Z . fi É E^orcos
I 12  ̂s=or%o

n n
Cr+4)CS + 4)C r + S + 7+q,)

(r +s4-6>XY'+6+6)

^ ÇÇy+̂ X̂ b’VZ) bs 4 (r+2){S44̂  br ?fv*+& + S +^) 
fr+s+4)Cr+^-v{43 3

4̂ ( Cy+A)*S>Cs +^r+2XS+2)bvbs +r ̂S44)CY-)( r+s+3 +0 ) 
(r+s+z)(r+s+4) 3

4-f(r+2)^byCs + (̂*s+̂ )bsc-r ?Cr+s-vi+g|>) + y-.sCvCaCr̂  S" 1+H-) 
 ̂ (r+s)Cv’+S'+z) (f+s-zXf+5)

n
- Lu^rl r4rS+cy + (r+‘£> + q̂ b̂r +(rjM+2k)Cr{ r-o r+Ga r+A r+2

3> = i ŷ  ̂  (r+4Xs+Al /fy-vs+23<2+\<̂ p)
2 0 S^OTaO (r+S+6)(r4-S4 0)1 V / )
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n
p Y ̂  y E eur-o

d i d  (pip)= y ZlOy 
dp F dp r=o

r+4 r+2 T(r+4lp +Cr+2)bvf +- rCrf

2 r+â *2 r+% 2 r-iCr+4) p + Cr+z) brp +r Crf

(r+z)(r+4)p +rfr+2f^rf + (r-z)r^rp^

n
f ê , f i " ’"'* '1^1“ ''

r+Z %, rCr+zXr+43 p  + r(r+2) brp + (r-%) r Crf

The equation VIT .6.2 with VII .6.3 and VII .6.1*.
becomes

n
^ EcUrr=o

2 r + Z g y» -2 T"" 2
( r + % X r + / & ' \  p  H- r ( r + i )  b v - p  +  l r - 2 ) r  C v - p

fr+AK-i + Â  + - ̂(r + S+"7) K2+ j  p£r+s+Ê>;Cv"+s+ô)( V
\, / r+s+fc+Ô t+2\  ̂/r+s+c+fa. . 6\ 1( 6 + 2 -|̂ cr+s+"7) Kz+*<̂ Jp |̂̂ (r+s+"*̂ ẑ+'̂ \̂ p )(+ r+s+t +69

+ (r+4) C s + z ) + C r + 2 j G s + 4 ) / p   ̂ - f(r+s+s)<2 + k>1 1
r r+ S 4 - 4 ) i  r + s + f o ^  (  V  l  J * /

e+A
Gr4̂ +4)l r+s+fô
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+ (fc+2)bt(f> -[Cr+6+s)K2+Kî^p^*^*^) + - [(r +6+ G) 4 p ) j

4 Cr+4)SC6 + (r47)<̂ +̂7)by-t>± + rfe+4)<̂v f£tr4Â /*P -fCv+g+a) 3(r+s42Xr+s+A) e u  /

, r+s+6+4 . , , 6+z \ , r+s+t+z ,+(6+2)b6(p - |Cr+i+3))<2 rK̂ Jp j + 6 ̂̂6 ( p -> Xr+s+à) <z + K,j p j j

+ (r+zlsby2:s + r(s+2)t>sCrUf:4^Xp^'^^'* |(r+s-v0 +
(r+s)(rHrS+27 e V J

M / r + s+fc+z t4î / r+s46 tv)+ £t+z)bt(p -IGr-vs+OKî, ̂ Kilp +fcCc-(p - [Cr+s+OKz+ *̂« jf j(

—SlÈŜ H£L Ĉ̂ ’*-'̂ )( " f(r+s-0 + k»\ p )(r+s-2)f r-vs) t -)

\, / r+s+t - . t+z\ , r+s+t-2 6\%+ (6 + z)bfr(p - {Cr+-s-»)K'a+Kl Jp - {(r+s-0'^2+<)\f 3 .

“ r+s+6 f , S+4,-I LwrWs S= o CbO _J  ÎCs-iA)(p " /*Gr4s)i<a+tc,} p )(r+w (  ̂ J

r M  /  r  . S 4 ' 2 v  /  r + S 4 4  .  .  5+ Cs+2)bs(p - [Cr+&)i<2 +tr̂  j p )+ sCs(p - {(r+s}Ki + K»]p )j

V- + 4

r+&+4

ps+4)(p -{£r+33»<2 + k»Jp )

,1 / r+s+4 s+2\ ^ /  r+s+z ^ 5\1
+ GS42)bs^p -. ((r+3)K% +K- ĵ p j +  sCs^p -  + Kr,jp j  j
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4- £s+Z^bs(p - {(r+n + p ) 4 SCs^p - {(r+0*<2 + ̂<) J

-** ?!rV
n n

1 E ZwrWs2 S=<> r-o (f+4)(544) Ç Xr+^+V) ̂ Z+'<llplC v-*t.̂ 4(i)Cr+s+61 C L

r+s+64- tr+4XS+2)bs 4 £r + Z)(S4-4)by Cp - fCr+S+S) <2 +K, ) p)£r4$,+4Xr+s+fo) e'  ̂ J

i-4S4it (r+-A)6Cs 4 (r+2)($4z)brb̂  +rfe+4)Cr(p - f(r+&+3)K'2 + kr,lp?
£r+s+2>( r+s+A) i ^

4 (r+2)s byCa + rfe+2)b>sCrfp f Gr-^S+OKi +K,Ip 1L ' >* J' J(r+s)Cv4S+2)

+ r.s Cr r p
Cr+S"ZXv-4s) L

r+s*“) [tr+s-0 vc'z + »<»}f ]

A
- I CUf'AO

fcr+sX<2 +K.^P + bv/ [Cr+̂ *î <2+Vtf,̂ p \
ir+ (o r+4

r+\+ rv-(p - (Cr+o kr% 4-K1 jp"\ 
\ r+2 ^

+  b A "
? D

+ Pg
2'Rt> = o VII.6.5
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Equation VII•6.5 may now be multiplied through
by ^w and integrated over the range p = 0 to p = 1 

dcOn
This yields an algebraic cubic equation of which the 

coefficients may be determined as follows.

Coefficients of third power terms

+   I C1T+S+£r+s+6Vy*4S+0U O  r+s+64U4,6 ETu49 /

+ bu/ I - + i _ <r±âîllBJLÏl')?'•r+5+t+u+\^ ^̂ 4.1 / e r+s+t+u+n t+w+s / 3

+ £’t‘+2) bt; f (____1_____ _£r + ̂+i)K%+ KA + bu(____ \  ̂Cr+S+~?)̂ a+KAt'" v'+'S+t+u+ĵ  fc+u+7 ' e + ù4u+n t-tu+s /

+ Cu( t - (r+s+l)Kz + KA') + ^Ceff \ - (r+S+7)K2+K,\r+s+t+u+9 t + w+^ r+s+fc+^4U e+u+s /

+ bu/-_J "(r+s+7)K2 +w>\ + ct̂/ I » (r+s+i)<%+<,)) IIr+ s+k4 u+s t+u+3 / ^r+s+fc+u+T e+u+i /)j

+ (Y"+AXS+2)bs 4 (r+zXs+4)br  ̂ -£r+5+6)K2 + »<>j
(r+s+A)(r+s4C@) 1 C' r+6 + 64u+i3 t+u+g

4 I - £r+6+&)<2 +VC\̂  ^Cu,f t -, Cr+s + &)Wz + K))?I r + 5464-ùi + b fc+u+i / \ r+s+t+u+s fa+ô s / )

4-6 +2)64f/ I -Cr+6 +s)K2+-K'A 4buf_____t -CrtS+s^kTz+KA(e r+s+6+u+H t+w+i  ̂ \ r^s+t+u+s t+u^a /
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+  C u (  !______- fr+s+s)K2 + ̂ Ct\(______ 1_____ - (r+s+s)Ki + w A
 ̂r+s+t + u-fi t+u+î /J (V r+5+fc+u43 e+u+£ /

+ ba( '______- (r4 S+S)Wa 4Kr*'| + Cu.7 1  « £r4S+SlKz+k"%
 ̂r+S+t + U + 7 fc4U4S  ̂ V r+S46+C/ + S t-hU+l

+  Cr+4)SC$-+ £r+z)Qs+2 )brbs + r(s+4)cr r^(^4)Ç/ \ _ (r+s+^^Kg + K n
(r+s+2)£ r+s+4) [ Ur+s+t+w-fn t+u+s /

+ buf \______- (r+s+3")Ki4KA +. Cuf \_______ - (r+s+&) Kz + k A ]
\ r + s + t + u + g  fc+u+7 * \ r+s+e+u+i fc+u+s /)

+ (6+z) b^ Ç(_____!______ - £r+S4â) ̂ z + trA + bu /_____ \ -Gr4"S+3)K"2 + K ^
r+ S46 4U 4 9 fc + u+T / \ r+s4e+ui-T e+et+B /

+ Ct4 ( ______[______ - ( r+S+3^Kz 4 <A ) +  £ Cfc ((______I______- Cr4S4 3l K'a + < A
r+54 6 4ei + S 64 u 43 C^r4'S4fc4a+7 64« + S ^

4 bu ( _____\______  - £ r 4 S 4 4K) \ +. ( _____\______  _ (r4S4 + 1 ]
e r 4 S 4 6 4 U 4 &  6+W43 /  ̂r+S4 64U4S 646<4\ / j I

+  (r+2)sbrCs 4 r^'s+z^bscr C/'^+A^C/ v - ^r + s+O 4 tc, \
(r+sXr+s+z) \ (V r+s+1 +u 4 3  t+a+s /

f b(A /____ ! - £r4'540«z+'<A -t Cuf I - fr+s + OKz 4K\'\3
^r+S464U+7 6 4U47 / e r+S464U4S 64W4-& /)

+ (6+2) b/t-f/ !______ - fr+s+OXz4V<i\ 4   i___ ___ - (r+s+i) fCt 4k:A
(.1 V4S46 4U+7 t4U+7 / V r4S+64M4B fc^uTi /

4 C u ( _ J   “ £r454 AK"? 4-kA) 4 6 C6 /7 I * £r4s+0>^24-kAr4S4£4W 4% 64U + 3 /) ( ̂  r+S464«4£. 64^X4& /
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+ i>u( 3 + Cu.( \___  — £r+S + >)Kz + Ki ̂r+S+fc4U4l fc4U4) ,

+ r.SCrCs r(6+A)f/____ 1
Cr+S"Z)(r+^ {

- (r+s-OXz+xA + bu,/ 
^ fc + U49 / I

\ -. (r+S"0Ki4\<,
V"+S+fc+U-YS ^+U 47 ’)

+ Cu,f L ̂r+S+64(x+3- £r+s-i) t<2 + Xi]) 4 /6+2)b̂ C/ 
fc+U4& (\

 \_____- £r4'&- 0 Kz 4
r+s+t+a+s 6 4U+7 /

- ( r4S464U43 -. (r+s-OtCz 4K, \ 4 C(\(_____»
6 4 W 4 S  /  ̂r+S4iy*'4S4fc+tA+ ) £r45"i)Kz t- 

t4a4*3

4 fcC(. f/ I____ — fr+s-OXa 4 i<̂>\ 4 bw ( \ - £r+s-i)v<2 4^> \
t l  r 4 S 4 £ 4 U  + 2  t + e î + S   ̂ e 4 4 6 4  6414-4% t - 4 U 4 â  /

+ Cu/ !____  — ( 445-1) Kz 4 '<%
e 44 S 46  4L4— I 6 4 W 4 ) )?}

Coefficients of second power terms

- 9 / Z EoorCosS= o r»o
_J  fcs44)ff - Ur4Slt<2 4 < A
(r+Call (L 44S46413 StC49 /

+ bi/   ̂ C445) K 2 4 K A 4 Ctf \ - (44S3K2 4 k A)
'^r4S4fc4\V 54647 / \ T4S4 6 49 €Vt4S /)

(642)fc>^C/__i__- t44£y<2±̂ i\ + b. / I (44S)K2+KA
i e V 4 S 4 t  +  l\ -S4647 /  ^ 1 4 4 5 4 6 4 ^  S+t+B /
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A*TuI I - (r4s)Kz+KAl 4_ f/ I - (r-tŜ Kz +%A 
r+646+7 (Ir+^TE^ ~4fc45""^

+ bf,/ > _ (r+sl Kz 4 K A 4 Cfc (  I « (r-ts")Kz + w A ))
\ r-4S4&4l s-vfc+3 / V r-tS4t4£> S4t4\ /Jf

4 t>r 
rt A

Vs+A'i U  _ _ ] _ _  - (r43)Kz 4 KA (e riS+t+U S+t-v9 /

+ I -  £ r 4 3 ) K 2  +K\] 4 Ctf — J—  " e r 4 b ) K 2  + Kjl )
H  r + S 4 6 + 9  s  +  t 4 7  /  \  r + S + b  + 7  S 4 6 - +  5  / )

4  (s+Z^^sC/ I - (V453K2 +KA 4b^/ I «(r+bVz +Ks\ 
r+S4649 5-tfc*+7 / e r4S+t+7 6464& /

4  C f c /  t „  ( r + S l K z  + k A ‘)  4  S C s ( /  I  )' r 4 546 + 5 546 43 (' r4â4fc47 54645 /

4 / i (r4 3)Kz4Ki\ + Ct ( \ - Cr4B3K2 4X^11
e r4S4 6 + S  6 + 6 4 3  /  1 ^ 4 5 4 6 + 3  546 +  ) ^ J j

4 -  f  ( S + 4 )  ([  I -  G r + Q K z  +  x Ar+2 [ ( F4646+9 5+ 649 /

4-bfr. / \ - (r + 0K14KA 4 Q.( 1 - ( r4-0(C2 4krAl
e r + 5 + 6 4 7  - S + 6 + 7  /  L  r H r S + f c  +  S  5 + 6 + S  /  j

4.fe+2jb<f/  ) (r+i)K'2 +K,\ 4- bf. / \ « £r4-0tr% 4 K A(V r4546 + 7 %+^47 / \ r + 6 + 646 6+6+5 /

•V Cl; f  \ - (r+O Xz,4X A ) 4 5^5 (/ t — (r+QXz 4 Ki'j
e  r +  5 +  6  +  3  S 4 6  +  3  / )  Z \ r 4 5 4 f c + 5  S 4 6 + 5  /
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+  ̂  ̂ —  (r + O Kz 4 ^ Ct f ) —  ( 111- 1
v r+ s+ t+ a  646+3 / \ r+S46 41 6464) *̂ ij

n n
4 i Z EcOràJs (r44)(S4A) (f \  _ Cr4S+7)^2 4 xA

2ssor'so (r4S46)(r4 546)(l r+S + t + lB 6+1 /

4  b ^ 7  I _ (r+s+l^Kz +  x U  4  C e (  \ -  ( r 4 5  4i)Kz 4 x A ")er + s+fe+n t4S / e. C4.5-̂ 6 4 9 643 / )

4 Cr4AVS42)bs 4 (V"42)^S4A)br f (  t _ £r4-s+5)k'a 4Xtl
(r+s 4A)£ r*+S46») (\ V"4S464i\ tr4l

4 1 - c r+6 4 B) Kz 4\<A 4 ' — £V*464&)Kz 4 1<̂'̂ )
Vr4S+64'3 645 / \  >"4 64 6 47 6+3 /  )

4 CV44)SCS 4(r42V642)brbs 4r£S4 A)Cr(/ t - Cr4S43)Kz4'<A
(r43 42)(r4S44) ( I  r4S4649 6 41 /

4 &6̂ ( I Cr45 4&)Kz 4 Ki \ 4- Ce/ l — ( r4 64 3)krz4 k’A')
\ r4S464l 645 / I r4S4 64S 6 + 3 /)

4- £r42 ) sbrCs 4 r 542)b5Cv-('/, I______  £r454t)K% 4
Cr4S)Cv-4S42) cl 1T4S46 41 6 + 7 /

4 bt ̂  ' — Çr 4541) K% 4 4 Cfc/ * — (r4 S4 0 Xz 4 Ki
I r4S+64S t4S J \ r4s4 64& 6+3 /)

4 r.s Cr Cs (( \ -, Cy-4 S"Ot<g 4 \<̂ \6"4S“2)(r4s) 6\ r4S4 64B 641 /

•h bf.f I____ r- ^V4S- \)X2 4Wg-A ^ Cc C I - ( r 4 6-0X2 4K,\) 1
I r + 64643 64 S J ^r+S46 4» 64& /J
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y Wr r=.o '
Cr+zXr+A) 4 (r4z>(v*4A) bs 4  Cr+z)£Y-4Af Cs

r+6+1 r+S4s

4 r^r+zf br 4 rC.r+2)̂ t>Y-bs + r (r+2) bv-cg 
r+stS r+6+3 r + 64)

4 Cr-T.'ir̂ Cr 4 (r-2)r^bsCr 4 (r-zir Crcs
r+S43 r4S4i r  4 5 - '

+ 7 Zcur 1 Ç / \ _ CT'^S)Y^ 4 Wv ̂
r+6, C I  V4S4U 5+7 /

4 b«/ - J___ -\ r+649
C v4S)X2 + xA 4 Cs^ ) — ( r+ s)X%4X,'\^

S4S / \ r4S+7 543 )

+ bv* f  (  ' Cr+s^Xa 4X>\ 4. b s f _ L _  -  Cr+b)Kz 4 xA
T4A ( I r4S49 S47 / r4S41 S + S J

C$ (  I -  £r+3) Kz 4xU ') 4 Cv- C / e V-4S4 S43 J) r+2 ( I
I — C r4%y X-2 4X»

1T4S41 S47 ■j
4 b^ /  I — ( r  4>) Xz 4 ><■! \  4  /
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I — Cr+'CXz 4 X1r 4S43 S43 ')]

Coefficients of load terms

2 Eta'
\ + br*

IT+7 r4S
4. cv

r+3

2ir£ta'’ b"r 4 CrT4 S r+ 3 r + i
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VII.7 The Détermination of Spherical Radius

The spherical radius of curvature was 

calculated as the radius of the circle having the 
minimum least squares deviation from ordinates 
measured at ^ in intervals across a diameter of the 
shell. Typical data is presented for two shells of 

nominal radius of curvature of 80 in and 100 in. 
respectively.

(a) • X ^0 ^ 9 0 ^180 Y 2 7 0

0.0 0.0000 0.0000 OoOOOO 0,0000
0.5 0 . 0 0 1 5 0 . 0 0 1 3 O 0OOI4 0 , 0 0 1 4

1 . 0 0 . 0 0 6 2 0 . 0 0 6 5 0 . 0 0 6 0 0 . 0 0 6 4

1.5 0 , 0 1 4 1 0 . 0 1 3 8 0 . 0 1 4 5 0 . 0 1 3 8

2 . 0 0.0245 0 , 0 2 5 3 0 . 0 2 5 8 0 . 0 2 5 9

2.5 0 . 0 3 9 0 O 0O3 9 4 0 . 0 3 9 4 0 . 0 3 9 5

3.0 0 . 0 5 6 8 0 . 0 5 5 8 0 . 0 5 6 7 0 . 0 5 6 8

3.5 0 . 0 7 7 0 0 . 0 7 6 0 0 . 0 7 7 0 0 . 0 7 6 1

4.0 0 . 0 9 8 5 0.1010 0.1008 0. 1000
4»5 0 . 1 2 7 0 0 . 1 2 7 0 0 . 1 2 6 8 0 . 1 2 5 5

5.0 0 . 1 5 6 8 0 . 1 5 7 3 0 . 1 5 7 0 0 . 1 5 5 9

lDIUS 80.00 8 0 . 3 2 7 9 . 6 4 8 0 . 2 7

Mean radius of curvature = 8 0 . 0 6  in.
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(b) Nominal Radius of Curvature 100 in.

X ^ 0 Y9 0 ^ 1 8 0 Y 2 7 0

0 . 0 OoOOOO 0.0000 OoOOOO OoOOOO
Oo5 0.0013 0.0012 0.0011 0 . 0 0 1 5

•1 .0 0 . 0 0 5 4 0 . 0 0 5 0 0 . 0 0 4 5 0 . 0 0 5 4

1 -5 0 . 0 1 1 4 0.0112 0.0120 0 . 0 1 1 3

2,0 0.0205 0 . 0 1 9 0 0.0210 0 . 0 2 0 5

2.5 0 . 0 3 1 3 0 c0 3 1 2 0 . 0 3 1 5 0 . 0 3 1 4

3.0 0 . 0 4 5 0 0 . 0 4 4 0 0 . 0 4 5 6 0 . 0 4 5 6

3.5 0 0 0 6 1 3 O 0O6 1 3 0 . 0 6 1 4 0 . 0 6 1 2

4.0 0 . 0 8 0 6 O.O8 O5 0 . 0 8 0 8 0 . 0 8 0 1

4.5 0 . 1 0 2 0 0 . 1 0 1 0 0 . 1 0 1 4 0 . 1 0 2 0

5.0 0 . 1 2 5 0 0 . 1 2 5 8 0 . 1 2 5 2 0 . 1 2 6 0

RADIUS 9 9 . 6 9 9 9 . 9 1 9 9 . 6 1 9 9 . 3 6

Mean radius of curvature - 9 9 . 6 4  in.
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VII,8 Results of Expérimental Investigation
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