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ABSTRACT

The subject matter of the thesis concerns the
instability of shallow spherical shells. It
presents an analytical and experimental investigation
of the elastic, nonlinear, axisymmetric behaviour of
such shells under the action of uniform pressure and

point loading at the apex.

Chapter I is a critical survey of the relevant
published literature. The survey outlines the
development of the theoretical aspects.of shell
buckling and shows how this was influenced by the
results of experimental investigations. It further
outlines the deveiopment of highly refined
experimental techniques which reduced the scatter of
results characteristic of previous work. It is then
shown that even experimental work using these refinéd
techniques, provides only a partial substantiation of
theoretical analyses and it is comncluded that the
apparent disparity may be due to the uncertain
character of the displacement dependent boundary

restraints employved.

In Chapter II, the essential equivalence of the



governing differential equations adopted by many'
authors is demonstrated for the first time in an
integrated manner. The solution of these equations
is discussed with special reference to an original
analysis of the case of a pressure loaded, freely
supported shell. Alternative solutions by direct
integration and the Galerkin method are discussed but
these are shown to lead to excessive computational
difficulties. The effect of various boundary
conditions is then examined and their influence on

critical load values 1s shown to be significant.

In the research undertaken, displacement
dependent boundary conditions were avoided by using
only force dependenttconditions in the experimental
work . The simplest of these conditions are those

corresponding to a free support.

In Chapter III, the requirements of experimental
techniques mnecessary to obtain the equilibrium path in
both the stable and unstable states of equilibrium are
discussed. This has led to the development of new
techniques of preparation of accurate, stress-~free
specimens and the adoption of a new, controlled

deflection loading technique. The experimental



vi

investigation also presents, for the first time, the
measurement of surface strains throughout the loading

history of the shells.

The results of the experimental investigations
are discussed and compared with theory in Chapter IV.
A critical comparison with the published experimental
work of previous investigators is included where

relevant.

Chapter V summarises the main findings of the
investigation regarding the basic aspects and shows
that good agreement with theory is obtained by the
refinement of experimental techniques introduced so as
to approach as closely as possible, the assumptions of
the theoretical analysis. Thus,'for the first time
to the author's knowledge, experimental results which
are both comsistent in themselves and in agreement with
theory have been obtained. The applicatién of the
results of the investigation to practical engineering

problems is considered.

A Bibliography and Author's Index is provided
in Chapter VI, followed in Chapter VII by Appendices
giving details of analyses considered in the thesis,
together with a full presentation of the results of the

experimental investigation.
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NOTATION

base radius of shallow cap
spherical radius of curvature
thickness of spherical shell
polar co-ordinates

rise of spherical cap given by h = 2

dimensionless parameters defined by

P-:. Xﬁ

Ol
uw
t

Al

Ao

meridional and circumferential strain
tangential, axial and normal components
of displacement

deflection parameter given by 0§ =

=g B

dimensionless deflection at » = O
rotation of normal to shell surface
meridional and circumferential membrane
force per unit length |
meridional and circumferential bending
moment per unit length

shear force per unit length
stress function given by .@ = N

r

Young's modulus and Poisson's ratio
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: R EtB
D . flexural rigidity D = T2(7 = V)
B extensional rigidity B = T*%%FT
Aak‘sv dimensionless shell parameters defined by:
{ d
4 2 4
A= o p=1 3(1=v?) (.b) = [ﬂ(i-\’q))«]
RTe* &
1
2
= - o
n=12{ v)(_t)
P axial point load at apex of shell
P uniform pressure load intensity
EBB poinﬁ load parameter
Et
EB% i pressure load parameter
Et
q classical buckling pressure for complete

sphere given by

2
- 7EL
i R [2(n )%



CHAPTER 1

REVIEW OF PUBLISHED LITERATURE



To Introduction

In view of the inherent complexity of the shell
buckling phenomenon, early theoretical treatments were
based on felatively simple concepts regarding the
assumed behaviour of idealised shells. The results of
experimental investigations indicated collapse loads
which were considerably lower than those obtained on
the basis of these early theoretical analyses. It Was
obvious, therefore, that the actual mechanism of
buckling‘was appreciably more complex than that assumed
in the analysis and that the phenomenon was influenced
by factors outwith the scope of the early theoretical
treatments. At the same time as the theoretical
analysis was extended to take account of these factors,
workers in the experimental field attempted to
manufacture and test specimens which conformed more
closely with the idealised shells of the theory.  Thus
a continuous process of extension of the theoretical
work aund refinement of experimental technigque was

initiated.

It therefore appears reasonable to review the
published literature chronologically and thus

illustrate this continuous development of the



theoretical analysis and refinement of experimental
technique whereby a better understanding of the

buckling phenomenon has emerged.

Before examining in detail some of the more
recent contributions to the understanding of the
phenomenon of instability in shallow shell segments,
it is comnvenient to survey briefly the early approaches
to the problem indicating the formulation of the basic
concepts of shell buckling. It is also. convenient to
réview the criteria géverning instability and to
indicate how greater refinement‘in theoretical
treatments became necessary in the light of experimental
data. With special reference to the‘latter, a brief
analysis of the factbrs influencing éxperimental work
is presented so that a more critical assessment may be’
made of papers dealing with this aspect when these are

reviewed later.

The first investigations 6f the phenomenon of
elastic imnstability were concerned with the4problem of
the complete sphere subject to extermal pressure. The
work of zOELLY!') and scmwerin(Z2) introduced the
concept of the classical definition of a critical

pressure. Both ZOELLY and SCHWERIN considered



rotationally symmetric deformations but VAN DER NEUT(3)
was more general in his assumptions. In their

analyses, only linear terms were retained in defining
strains in terms of displacements. . The resulting
governing differential equations were thus linear in
character. Their work represented the classical
analysis based on the classicai criterion of instability.
This was defined as the lowest pressure at which an

adjacent stable equilibrium configuration was possible.

The first experimental work was reported in 1939
by KARMAN and TSTEN'Y).  This work was carried out on
a copper hemisphere of 0.02 in. wall thickness and 18
in. radius. The shell snapped into a rotationally
symmetric form at aﬁout one quarter of the classical
pressure. This and later work indicated an apparent
failure of the classical theory to predict imnstability.
It therefore became clear that analysis of the post-
buckled states was mecessary and this problem was
assumed to be that of a spherical segment clamped at
the boundary. These early analyses were based on the
assumption of a simple algebraic term with a single
undetermined c&nstant to describe the deformation of

the shell. Such an assumption has been shown to vield



substantial error in the light of subsequent
experimental work. From this stage, only work
relevant to the shallow spherical shell is

counsidered.

The use of so called energy methods to solve' ¢
the governing differential equations led to the
formulation of the energy criterion of buckling.

This was defined as the lower limit of all valués of

the pressure for which a buckled state of equilibrium
existed with an encergy level below that of the unbuckled
state. Several authors subsequently discussed at some
length the validity and interpretation of the energy
concept. As a criterion, it was artificial and
appeared to yield a\lower bound on the theoretical and
(almost) all the available experimental data and did

not contribute materially to the better understanding

of the problem.

Later, when the inherent limitations dmplied in
the use of a'single term to describe the deformation
of the.shell had been appreciated, attention was
focussed on the numerical difficulties involved when
further terms were retained. In 1963 FEODOS“EV(s)

introduced dynamic texrms into the governing equations,



basing the evaluation of the equilibrium condition on
the frequency parameter. He showed that the solution
of the resulting algebraic equations in his variational
approach could be simplified and thus introduced a new
concept‘of general application into the so;ution of the
problem. The main advantage accruing from his approacﬁ,
was that the investigator was not bound in advance by

definite criteria of stability.

Until fairly recently, the major part of the
published literature has been based on assumed
symmetrical behaviour of the shell. It has been
recognised for some time that the agreement between the
theory and experimental data has been disappointing for
some ranges of shell form. This has led authors to
seek means of explaining the discrepancy. Such a
discrepancy may arise from two sources; the theory may
be at fault by omitting, for eéample, the effects of
imperfections or the experimental data may be suspect.
In considering the theoretical aspect; some authors have
investigated the influénce of assumed imnitial irregularity.
This by itself has been insufficient to account for some
of the disparity. More recent analyses have recognised

that collapse of the shell may occur via nonsymmetric

modes and this has been shown to have an important effect



on the critical load. Recent research has shown that
early authors were insufficiently critical of the
available experimental evidence with which they compared
thedr theoretical results. Experimental results are
very sensitive to a variety of factors only in part

considered by previous workers.

.2 The Effect of Errors of Measurement

In order to verify any particular theoretical
'solution, certain basic requirements of the experimental
model must be fulfilled. In general, a shell theory
will include dependent parameters which define the

shell geometry, the load aund the elastic properties of

the shell itself.

Considering first the shell geometry, the

relevant shell parameter may be defined by

A= o 4,/120-\32)//5—&

Similarly, the pressure load parameter may be

defined by

P a /3(1-v?) R%

2 E t?




These definitions are those most commonly
adopted, and it is obvious that the parameters depend

on the following qguantities:

a = base radius of shell
R = spherical radius of shell
t = thickness of shell

which define the shell geometry, and
vV = Poisson's ratio
E = Young's modulus

which represent the material properties of the shell.

Let K =1 -V , then the relative error in A
and P , expressed as a function of the relative errors

in a, R, t, E, p and X will be

§M o 1 8K EY=} L &R 4 1 8t
AL 4 K * o + 2 R Z ¢
and
8P - 18K 4, 28R 4+ 28 + SE + §p
F 2 K R £ E P
Consider the relative error in J e It is

clear that this depends largely on a which can, however,
be measured with considerable accuracy. The effect

of errors in R and t is mnot so pronounced.



The determination of the error in P is more
complicated due to the quadratic dependence on R and t .
Errors in t, apart f{from those due to faulty measurement,
may arise from random non-uniformity in the thickness
of the shell. Where such random variations occur in
the thickness of the shell, it is difficult to decide
what value of t should be used in correlating
theoretical and experimental work. For example, an
error in t of + 3% could lead to calculated values of
P differing by 12%. Similarly, an efror in the
determination of the spherical radius has effects of
the same order. Thus an uncertainty of the order of
+ 3% in both R and t could lead to values of P differing
by 24%. It may be\concluded therefore, that extreme
care must be exercised in determining as accurately as

possible the geometry of the shell.

Accuracy is obviously dependent on the precision

with which the elastic constants E and VvV are known and

hence some care is necessary in measuring them. An
error in E has a direct effect on P. The effect of
an error in V 1is not so easily established. Apart

from V appearing in the both P and M where its effect

is easily assessed, it also enters - -the solution of the

3

problem through the boundary conditions. The effect



of an error arising from this source may not be readily
estimated except by repeating the calculations for a

finite wvariation in Vv .

The basic requirements may mnow be recognised.
Since the presence of initial stress is inadmissible if
theoretical comparisons are to be made, it is necessary
to produce a stress free shell of regular geometry.
The shell, measured so that the geometry is defined,
must be supported and loaded in accordance with the

various conditions assumed in the theoretical analysis.

Most of the papers reviewed have dealt with the
case of the clamped shell. The most commonly adopted
method of attempting to secure a clamped boundary has
been to bolt the shell between rings. Evidence gained
from an experimental investigation of this particular
method of edge-restraint(35) has shown that it offers
only a poor approximation to the fully clamped condition.
Of even more importance is the fact that this method of
mounting shells will almost inevitably apply random
force and moment actiomns to the shell boundary, thereby
inducing an initial state of stress. Sinée_instability
is total stress dependent, any such initial state of
stress, which cannot be dincorporated in the theoretical

analysis due to its random character, should be avoided.



10.

It is possible that these force and moment actions
could produce a state of pre-stress in the shell of
sufficient magnitude to precipitate the premature
collapse phenomena which has characterised much of
the experimental work recorded. At the very least,
these actions will introduce a scatter into the
experimental results which will greatly diminish the

value of the latter in testing a particular solution.:

I.3 The Point Loarded Shell

The first theoretical treatment of the buckling
of freely supported shallow spherical shells was
reported by BIEZENO(é) in 1935, At this time, other
investigators were still adhering to the classical
linear approach to the problem of the pressure loaded
complete sphere. BIEZENO recognised the need to adopt
nonlinear strain-displacement relations with the result
that the differential equations became nonlinear in
form. Indeed, most of the subsequent work was based
on equations analogous to those of BIEZENO. He
assumed that the deflected form of the shell under a
central point load was related to that for a flat plate

by an undetermined multiple with the addition of a



linear term. Thus he assumed the deflected form

=C£+ 109‘_ L]
Y 15 T CeLloge I.2.1

where C, and C, are two undetermined coastants.

Solving the appropriate differential equation with this
substitution, he obtained a solution for Y which was,
of course, different to the form quoted above.

Assuming that both the final form and the approximate
form given by I.2.1 would yield the same central
deflection aﬁd change of slope at the boundary, he
obtained the values of C, and C, and hence calculated
the equilibrium path. The effect of his assumption

is difficult to estimate but it should be noted that
this procedure allowed the deflected form to change as
loading progressed. Thus it recognised an inherent
feature of the buckling phenomenon and it therefore
offered a. considerable advantage over the one term
"Galerkin' approach adopted by other authors. It
would require a minimum of two such Galerkin terms to
provide a similar degree'of flexibility in permitting
changes in the deflected form during loading.
Furthermore, it is unlikely that a general term, unless
very carefully selected, would represent the deflected

form as accurately as the approximation from the

1.



inextensional flat plate analogy.

Other work relevant to the point load action was
reported by CHIEN(7) in 1956, He examined the
stability of shells subject to a ring load at the apex
and bending moments round the edge of the shell. The
equations derived were nonlinear and an attempt was
made to solve these by assuming a single term to
represent the deflected form. In the limit as the
radius of the ring tended to zero, the case of a point

load at the apex was obtained.

ASHWELL(B) in 1959 applied Love's principle of
applicable surfaces to the problem. According to this
principle, the deformed portion of the spherical shell
was an inverted spherical surface, or mnearly so. By
matching the radial displacements and shears at the
boundary between the deformed and undeformed portions
of the shell, wlhich was assumed to remain gpherical,
linear differential equations were obtained. He also
conducted experimental work on four aluminium alloy
shells for values of u of 4.7, 4.9, 5.8 and 6.4. The
results of his experimentél work were reported to agree
well with the analytical solutions and with BIEZENO'S

results.

12,
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FIG. I.17 . Experimental equilibrium paths of EVAN-IWANOWSKI
et al. - (9) compared.with the theory of BIEZENO (6)
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An extensive experimental study of buckling
under central point loading was reported in 1962 by
EVAN-IWANOWSKI, CHENG and LOO(9). They tested a very
wide range of shells in copper, steel, aluminium and
vinyl polyethelene. For the metallic specimens, they
adopted the hydroform process to produce shells with
spherical radii varying from 5 in. to 10 in., base
radii varying from 0.953 in. to 3.812 in. and u
varying from 3.72 to 14.95. Both clamped and freely
supported shells were tested. For the clamped tests,
the shells were restrained at the boundary by rings
"machined to f£it' the shell coatour. In view of the
method of manufacture of the metallic shells, it seems
unlikely that the shells were of a stress free
character. Their method of obtaining a clamped
boundary in the casé of the fixed shell tests, also
seems open to critioism. No reference was made of
the method used to measure the spherical radius of
curvature or whether an attempt was made to measure
Variétions in thieckness. Thedir resﬁits, while showing
considerable scatter due, probably, to their
experimentél technique, show a tendancy which is in
general agreement with the predictions of BIEZENO and
ASHWELL. Some of their results are shown in FIG. I.1

and FIG. I.2. where they are compared with the theory
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of BIEZENO(6) for Vv = 0.33. Their work is examined

in more detail in Chapter IV.

(2)

(3)

(L)

(5)

Their main conclusions were:

Simply supported shells of M less than
3.7 did not snap but merely deflected in
a nonlinear manner.

Known amnalytical solutions agreed well in
the range 3.7 < L 6.5 for symmetric
deformations.

Shells with um > 10.2 buckled
nonsymmetrically.

Very deep shells did mnot exhibit buckling

(probably due to large plastic

deformations).

Variations in the parameter h/a did not
affect the critical loads but might affect

the deflected forms.

Though stresses were measured, they were not correlated

to any'existing theory. They also tested clamped

shells but these did mnot exhibit any snap through

phenomenon.

In the same year EVAN-TWANOWSKI('9) presented

results of a further experimental study. In this
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investigation, the behaviour of both simply supported
and clamped shells was examined under eccentric local
load and uniform pressure superimposed on eccentric’
load action. It was noted that critical combinations
of dead-weight and pressure were independent of the
order in which the loadiﬁg was applied - a result
which is not surprising. He was, however, disturbed
to find that when the concentrated load was applied
eccentrically, a higher combination of the total load
resulted as compared with the axisymmetrical case.

At first sight, this might appear to be unexpected in
view of the natural expectation that an eccentric load
would tend to encourage nonsymmetric collapse leading
to lower collapse loads for certain values of u .
EVAN-IWANOWSKI does mot appear to have considered the
possibility that the application of an eccentric point
load will influence the total potential energy of the
system and could therefore raise the critical
combination of the buckling load. While it was
recognised that initial imperfections influenced the
buckling load of a shell subject to external pressure,
the corresponding influence wés much less pronounced
in sheils under point load action since, in general,

the large local deformations in the neighbourhood of
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the load point may well swamp all but very large

initial irregularity.

I.4 Pressure ILoaded Shells

The behaviour of the pressure loaded shells is
characterised by the theoretical and experimental
investigations of the clamped shell seément. This
definition of the problem arose in the post-buckling
analysis of the complete sphere in which the behaviﬁur
of a clamped segment was assumed to be representative

of the phenomenon of dimple formation.

As mentioned earlier, the problem of the
stability of the sphérical segment is distiﬁct from
that of the complete sphere. The restraint at the
boundary of the segment prevénts uniform countraction
of the shell énd bending thus occurs on the first
application of the load. The behaviour is therefore
one of continuous bending until snap results when the
maximum deflection is comparable with the total height
of the shell initially. In view of the large bending
distortions which occur, it is apparent that nonlinear
terms must be retained in the strain ahalysis if a

true picture of the buckling phenomenon is to be



obtained. The inherent nonlinear character of the
problem has been recognised by most authors who, with
some receunt exceptions, have further assumed

axisymmetric behaviour.

In the experimental field, work was reported by
TSIEN. By using oil as a loading medium, he
constrained the shells to snap under approximately
constant volume conditiomns. Later, in 1953, tests on
domes were carried out by KLOPPEL anq JUNGBLUTH(11).
Since they adopted air pressure for loading the shells,
the snap occurred at approximately constant pressure.
Using high speced photography, they showed that snap
between rotationally syﬁmetric states could occuxr
nonsymmetrically. ﬁuch of the work reported above,
was carried ouh on relatively deep shells and hence

the nonsymmetric behaviour is not unexpected.

The first detailed investigation of the snapping
of shallow shells was carried out by KAPLAN and FUNG(12)
in 1954. They assumed rotational symmetry and
retained noﬁlinear terms in presenting their
equilibrium equations. The differential gquations
which they derived were essentially equivalent to

those which BIEZENO proposed some eighteen years

AN
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previously. In yriting their equilibrium equations,
it was assumed that the radial membrane stress was
influenced by the deformations. The governing
equations, which are based on force equilibrium and
strain~displacement compatability requirements, are

presented as follows:

2
d i d N | Eb(dw) + Bty dw = I.3.1
"R e g (N g () v RD G
§" JF;QL (r%\%\’.)‘ = Nr( _% +ca)__v?v‘) +%pr I.3.2
- E 2
where Nv = |—t\72 [g_gi - _\g + %(%\r?‘_/) +\?G;\_ _"\g):,

and u, w are the tangeuntial and normal displacements

respectively.

They used a perturbation method to solve the

above equations by expressing the dependent variables

w
w, N, and p in terms of W, = %O as a.parameter and
expanding all the variables in powers of W, - The

boundary conditions assumed were those of a clamped
shell and the critical pressure was obtained by setting
%%0 = 0 . They found that for s = 4 , the

convergence of the solution was good but deteriorated
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rapidly fowr highe? values. The convergence was,
however, good enough for small values of WO to
indicate the mode changes which might be expected
to bnccur. Thus for st approximately 7, the
maximum deflection is no longer at the centre. .For
S approximately 9, the mode changes again and the
maximum deflection is again at the centre. These
modes, which are of course axisymmetric, are shown in
I'IG., IT.3 and will be subsequently referred to as
Modes I, IT and III respectively. More recent
experimental work indicates that for a4 greater than
about 5, shells may behave nonsymmetrically. Thus
their solution, based on assumed axial symmetry, may
be considered reasonably adequate for values of 4 up
to about 5. Whilst they were no doubt concerned about
the poor convergence at higher values, the value of
effort spent in overcoming this difficulty for assumed
axial symmetry is marginal, since the shell may well

behave nonsymmetrically.

KAPLAN'and FUNG also carried out experimental
work on shells of 8 in. base diameter and nominal radii
of 20 in. and 30 in. with thicknesses varying from
0,032 in. to 0.102 4in, The shells were formed by

spinning from hot magnesium plate. Though the

19-



magnitudes were not given, this process almost
certainly introduced thickness variations, the effect

- of which has been discussed earlier. It also seems

. likely that the process would induce fairly substantial
residual stresses. The value of um ﬁas obtained from
measurement of the shell rise because ‘variatioans of
the specimens from true spherical form? implied that
the radius of curvature was in doubt. Initial
imperfection amounted to 40% of the thickness at some
poinfs. "To provide a clamped boundary, the shells
were mounted between rings which were bolted together.
They conducted tests with both oil and air pressure
(corresponding to constant volume and constant pressure
conditions) but no perceptable difference in behaviour
of the shells was recognised under the two media.

- They claimed that their experimental results were in
foir agreement with their theoretical work for the
lower values of @ and for the range up to M
approximately 5, the criterion %%o = 0 for the
determination of the collapse pressure appeared valid.
At higher values of s their expérimental results
were less satisfactory (due probably to limitations on
their method of .testing and the onset of nonsymmetric

buckling) and they supposed that the use of the energy

20.



criterion might be preferable.

There then followed two papers, by SiMONS and
ARCHER respectively, attemptiﬁg to obtain solutions to
REISSNER'S(TB) equations (1950). These equations are

directly analogous to those of KAPLAN and FUNG.

In 1956, SIMONS(1A) adopted a power series

method in which he expanded W = %% and N, in terms

of the independent variable % . He intended to use
. 3 3 —ClR — - 1 . E -

the condition = 0O +to locate the maximum pressure

dw

but was unable to obtain any satisfactory solution due
to' poor convergence of the series. Though his method
could be applied to freely supported shells, he

considered only the case of the clamped boundary.

5)

In the same year, ARCHER(1 used a perturbation

technique expanding the dependent variables in terms

of W,.yx the maximum displacement which need not be at

. . ‘g dp _

the centre. He adopted the condition = 0 to
‘dwmax

locate the turning value of the equilibrium path,.
His results were higher than the available experimental
evidence and he attributed this to finite disturbances

during loading.

27
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In 1957 REISS, GREENBERG and KELLER('®) used a
power series method similaxr to that of SIMONS to solve
equations equivalent to those of REISSNER. They used
"a computer to deal(with a large number of terms. To
obtain the maximum pressure they adopted a computational
technique by evaluating as Pmax the pressure at which
the search for .an adjacent equilibrium position became
fruitless. They also attempted to locate the lower
buckling pressure but the convergence of the series was

poor in the post-buckled region.

In the following year REISS(17) suggested that
the problem could be examined by solving two linear
problems. He first solved the eigenvalue problem of
a segment supported at the edge in such a manner that
only membrane stresses were induced in the shell prior
to buckling. Hence he obtained a series of curves of
the critical load against M for different initial
modes of buckling. He then solved the linear bending
problem of a clamped segment to obtain values of
at which the initial mode changed. For s less than
the first mode change position, the initial bending is
Mode I; for M beyond the first mode change, the
initial bending ié Mode II. He thus developed a

continuous curve of the buckling pressure as a function
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of & . This curve passed through the experimental

points.

In 1958, WEINITSCHKE(18) adopted the method of

SIMONS and used a computer to deal with a large number

of terms of the power series. To determine the
critical pressure he used the criterion %% = 0 .
o}

He expressed a doubt about the validity of the
perturbation approach. He comnsidered both clamped

and simply supported shells.

VON WILLICH(19) in 1959 used an energy method
for solution. Both he and CHEN(ZO) adopted similar
nonlinear terms to those of KAPLAN and FUNG in
expressing the total potential emnergy. Assuming
rotational symﬁetry, VON WILLICH ﬁsed a single
algebraic term to express the deflected form in terms
of w, the normal displacement and derived a
corresponding expression for the tangentiai
displacement ﬁ. Finally, he obtained an energy
expression in terms of two parameters only. He
assumed that one of these parameters could be considered
constant during loading, implying that the deflection
at any point was proportional to that at the centre at

all times. CHEN, recognising that this assumption



was unjustifiable, used a similar method but avoided
this restriction. Both authors defined the critftical
- dp  _ PR :
pressure by setting Tw. = o . CHEN further examined
o
the effect of initial irregularity of the middle

surface and showed that this could have considerable

effect on the behaviour of the shell.

In the same year, KELLER and REISS(21) attemptedl
a new solutionlby an iterative process using a finite
difference approximation of the nonlinear problem.
Confining their attention to the range of  for
which Mode I (FIG. I.3) buckling occurs, they calculated
the maximum pressure‘of the equilibrium path as well
as the lower buckling pressure and the energy criterion
pressure. They coﬂﬁluded that the latter was of little
value in explaining the behaviour of shallow shells.

(22) derived the

(23)

At the same time BUDIANSKY
axisymmetric equations of MARGUERRE which are
equivalent to those of REISSNER. BUDIANSKY developed
corresponding integral equations which he solved by
numerical integration and hence located the maximum
pressure. He examined both initially perfect and
imperfect shells and concluded that at the higher

values of 4 -, assumed initial imperfection could not,

in itself, account for the lack of agreement with

2l .
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experimental evidemnce. He came, therefore, to the
conclusion that this disparity could only be accounted
for by nonsymmetric behaviour. Some of his results

are shown in FIG. I..4.

Further experimental work was undertaken by
HOMEWOOD, BRINE and JOHNSON(EA). The shells they
tested were of 34 in. diaﬁeter and mominal radii of
curvature of 40 in. and 78 in. with thicknesses
ranging from 0.067 in. to 0.260 in. The thickness
variation within any one specimen was of the order of
+ a%. It was not recorded whether any attempt was
made to measure initial imperfection nor was there any
reference as to how the shell paraﬁeter fA was
calculated. The shélls were spun from hof rolled
sheet steel and wrought aluminium alloy. The method
of clamping and testing was similar to that used by
KAPLAN and FUNG. In view of the experignce of KAPLAN
and FUNG, it may be inferred that the test results may
have been influenced by the pfesence of residual stress

in their specimens.

All the theoretical work so far reviewed has
been concerned with the analysis of the .shallow shell

segment the behaviour of which has been assumed to be



Symmetrical. The relatively‘poor agreement of such
analyses with experimental data from shells with
greater than about 5, has been attributed to the
development of monsymmetric modes. .Thus an
increasing number of authors have turned their

attention to an analysis of this type of behaviour.

The problem of nonsymmetric snap was examined
by GRIGOLYUK(ZS) in 1959. He used a Galerkin method
to solve the equations of MARGUERRE. To deal with
nonsymmetric deformatiomn, he assqmed thét the

deflection was given by:-

W o= (Pz—-l)z(wp -f-WxPacosr\G)

where .
= r

P Q
This form allows two degrees of freedom and permits
the deflected form to change during loading.
Substitution of this assumed form into the governing
differential equations led to two simultaneous
algebraic equations. He did not indicate how he
intended to solve these and thus did not present

results. He did mnot discuss criteria by which he

would recognise snap.

In 1961, THURSTON(26) carried out mnumerical

26.



solutions of REISSNER'S-equations for the axisymmetric
buckling of a clamped spherical cap. The method of
solution was to assume an approximate result for the
nonlinear differential equations. A correction to
this solution was obtained by solving fhe resulting
linear nonhomogeneous 'variational' equations. This
correction was used to compute a new assumed solution
and -the process repeated until the correction

approached =zero.

BELLINEANTE(27) in 1962, adopted a hydroforming
technique to make shells with nominal radii of
curvature of 8 in. and 23 in. in aluminium. He
considered that this method was superior to spinning
as the thickness variations were reduced. The range
of thicknesses tested were from 0.028 in. to 0.25 in.
with thickness variations of + 0.001 in. within a
specimen. Initial imperfections and the method of
measuring shell geometry were not recorded. The
state df'residual stress would also appear to be
unknown but may be expected to be high. The shells
were clambed,between rings of dintermal diametér 10 in.
and tested uﬁder oil pressure. i It should be noted

that the general geometry of his shells violated the

shallowness assumption.

27«
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In 1962 a collection of papers on the
instability of shell structures was published. The

following five papers are of special interest.

(28) noted that several recent

WEINITSCHKE
theoretical axisymmetric analyses had shown”good
agreement with each other but a marked disagreement
with experimental work; While he did not contest the
validity of the latter, he suggested that the lack of
aéreement was due to nonsymmetric deformation. He
therefore approached the problem by superimposing
small asymmetric deflections on finite axisymmetric
displacements. He showed that the symmetric states
of deformation were unstable over certain ranges of
load. He suggested\that axisymmetric deformation took
place until a critical value was reached at which point
bifurcation of solutions of the basic equations
occurred. One branch of the solutions corresponded
to axisymmetric states, other branches corresponded
to asymmetric states which, in the vicinity of the
bifurcation point, differed from the'axisyﬁmetric
states by infinitesimal amounts,.‘ He used two
different techniques to determine the onset of"

instability. One amounted to the calculation of the

second variation of the appropriate potential energy
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function, the other reduced the stability problem to
a nonlinear eigenvalue form. The results of his
analysis is shown in FIG., I.5 and indicate a trend

in general agreement with experimental data.

PARMERTER and FUNG(29) also considered
nonsymmetric behaviour and adopted a Galerkin method
of solution for VON KARMAN{S large deflection equations.
They represented the deflection in a form asymmetric

with respect to 0 by:

w(r,8) = fir) + g(r) cos ne

where f(r) & g(r)

-~

They chose the deflected form to include two
independent parameters. On substituting the assumed
" form into the differential equations, two simultaneous
algebraic equations were obtained.v The paper
represented an interim report of work then being
undertaken. A full analysis was presented by

PARMERTER in 1963 and will be reviewed separately.

KELLER and REISS(BO) examined in some detail the
possible mechanism of .buckling in the light of criteria

governing the loss of stability. Their main conclusion
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was that while bifurcation of solutions could be
predicted, closely controlled experimental work on

this feature was desirable.

THURSTON(31) used'a computer to solve REISSNER'S
finite deflection equations for any shell of
revolution with continuous second derivatives of the
parametric equations of the shell middle surface.
The mnonlinear ordinary differential equations of the
finite deflection theory were solved by an extension of
Newton's method for calculating the roots of algebraic
equations. He also calculated the strain energy and
potential energy at each equilibrium state by
integrating over the'shell surface. In considering
axisymmetric imperfe;tion, he found that their effect
was greater than the corresponding results obtained
by BUDIANSKY and he attributed this to the difference
in the assumed shape of dimperfectiomn. He suggested
that his axisymmetric analysis could be extended to

allow asymmetric behaviour with the possibility of

including asymmetric imperfections in the analysis.

VON KARMAN and KERR(BZ) examined the total
potential energy concept with special reference to its

value in interpreting equilibrium states. They also
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concluded that the energy criterion was of little value

in stability analysis.

Also in 1962, GJELSVIK and BODNER33) in an
investigation of monsymmetrical behaviour, included an
analysis of symmetrical collapse. Their work, based
on the total.botential 6f the system, used a single term
to describe the deflected form. Thus it did mnot

recognise the changing form as loading progressed.

In 1963 a paper was published by rEODOS 'EV ()
in which he introduced a new approach to the solution
of the axisymmetric problem of the pressure loaded
clamped shell. He noted.that the use of variational
methods to solve problems of stability had limitations'
in that they become excessively cumbersome wﬁen
generalised; He pointed out that, in general,
deformations are such that they cannot be represented
with acceptable accuracy over the range of load by
considering one or two terms. The problem becomes
computationally difficult as the variationél‘approach
leadé, as a rule, to a system of nonlinear algebraic‘
equations (fre<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>