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Abstract

Wave propagation in natural or man-made bodies is an important problem in civil 

engineering, electronic engineering and ocean engineering etc. Common examples 

of wave problems include earthquake wave modeling, ocean wave modeling, soil- 

structure interaction, geological prospecting, and acoustic or radio wave diffraction. 

The Boundary Element Method (BEM) is a widely-used numerical method to solve 

such problems in both science and engineering fields.

However, conventional BEM modeling of wave problems encounters many diffi

culties. Firstly, the method is expensive since influence matrices are computed at 

each time step and BEM solutions at every former time step have to be stored. 

Secondly, if large time steps are used, inaccuracies arise in BEM solutions; but if 

small time steps are used, computational costs become impractical. Thirdly, the di- 

mensionless space-time ratio must be limited to a narrow range to produce a stable 

solution.

In this thesis, we attack these problems by introducing adaptive schemes and 

mesh refinement. Instead of using uniform meshes and uniform time steps, er

ror indicators are employed to locate high-gradient areas; then mesh refinement in 

space-time is used to improve the resolution in those areas only. Another strategy is 

to introduce the space-time concept to track moving wave fronts. In wave problems, 

wave fronts move in space-time, and high gradients arise both in space and in time. 

It is thus inadequate to refine the mesh in space only because there are high gradi

ents in time as well. Hence, besides a locally mesh refinement scheme employed in 

space, local time stepping is also used to improve the accuracy and efficiency of the 

algorithm.

This adaptive scheme is implemented in the C language and used to solve scalar 

and elastodynamic 2D and 3D wave propagation problems in a open and closed field. 

Gradient-based and resolution-based error indicators are employed to locate these 

moving high-gradient areas. A space mesh refinement scheme and the local time



iv

stepping is used to refine the area to achieve higher accuracy. The adaptive BEM 

solver is 1.4 ~  1.8 times faster than the conventional BEM solver. It is also more 

stable than the conventional BEM. We also parallelize the BEM solver to further 

improve its efficiency. Compared with the non-parallel code, using a 8-processor 

Linux cluster, a speed-up factor of four is achieved. This suggests that substantial 

further gains can be obtained if a larger parallel computer is available.
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Chapter 1

Introduction

1.1 Background of research

Wave propagation in natural or man-made bodies is an important problem in civil 

engineering, electronic engineering and ocean engineering etc. Common examples 

of wave problems include earthquake wave modeling, ocean wave modeling, soil- 

structure interaction, geological prospecting, and acoustic or radio wave diffraction.

The mathematical partial differential equation model for linear wave propaga

tion and scattering was developed as early as 1747 ( by the French mathematician, 

D ’Alembert ). However, since solving a PDE with complicated boundary conditions 

is never a trivial task, wave problems are normally solved numerically. Numerical 

modeling techniques for wave equations have been developed since the advent of 

computers from the 1960s. These may be categorized into domain-type numerical 

methods such as finite difference methods (FDM), and boundary-type ones such as 

boundary integral equation methods (BEM). The difference between a domain mesh 

and a boundary mesh is shown in Fig. 1.1.

Compared with domain-type numerical methods such as FDM or FEM, boundary- 

type methods have several advantages. Firstly, the problem scale in BEM is much 

smaller since only boundaries are discretized and only boundary physical quantities 

are solved. Secondly, the BEM solution automatically satisfies the infinite boundary 

conditions in an open domain. Thirdly, the notorious problem of numerical damping 

in the wave propagation problem is less severe since the BEM model employs fewer

1



1.1. Background of research 2

Figure 1.1: A domain mesh and a boundary mesh (After Prof. Lothar Gaul, Uni- 
versitat Stuttgart, Germany [28])

nodes. Finally, the BEM provides efficient representation of cracks and geological 

features, such as faults and planes, making it a powerful analysis tool for crack wave 

scattering problems. Hence, BEM has become a widely-used numerical methods to 

solve wave problems in both science and engineering fields.

The first time-domain Boundary Element formulation was introduced by Cole 

(1978) [15] to solve transient 2D elastodynamic problems for the anti-plane case. A 

general boundary element scheme to solve the 2D transient elastodynamics prob

lem was derived by Mansur &; Brebbia (1983) [54]. Later, similar methods for 2D 

scalar wave and elastodynamic wave propagation were also developed by Banerjee 

& Ahmad (1988) [2]. The 3D elastodynamic time-domain BEM formulation and 

implementation were studied by Karabalis & Beskos (1984, 1985) [43] in the context 

of 3D dynamic soil-structure interaction problems. However, these early research 

works lacked a systematic analysis of error estimation, convergence and stability. 

Instabilities were observed even for uniform meshes when the dimensionless param

eter, space-time ratio (3 (the ratio between time steps and element size), fell outside 

a specific range [0.3 ~  1.5].

Over the last decade, there have been increasing efforts to develop more effi

cient solution techniques. Various spatial and temporal interpolation schemes have 

been implemented to improve accuracy and efficiency, such as combinations of con

stant, linear and quadratic functions (Dominguez 1993 [20]), B-splines interpolation 

schemes ( Rizos & Karabalis 1994 [71]), quadratic time interpolation schemes ( 

Wang & Wang 1996 [86]). However, these high-order BEM schemes don’t improve 

the stability of the method. Siebrits&; Peirce (1995) [64] have discussed the stabil

ity properties of a time domain BEM approach, and have proposed the so-called

half-step scheme to improve the stability. A time and space weighted method was
Julv 11. 2007
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also suggested ( Yu & Mansur, 1998 [89]), in which the Galerkin method in the 

time domain was used to make the numerical methods more stable. However, these 

methods are not necessarily more accurate, because they only improve the stability 

of BEM by averaging out the instability.

Further difficulties arise when impulse wave propagation problems are solved 

by numerical methods such as FEM or BEM. Zienkiewicz classes the impulse wave 

propagation problem in the list of unsolved problems by numerical methods. ( 

Zienkiewicz, 2000 [92]). Because wave phenomena require spatial modeling which 

is capable of resolving the oscillations, good accuracy cannot be achieved unless at 

least four quadratic elements (8-10 nodes) are used per wavelength. This places a 

limitation on the frequency of waves which can be adequately treated on a given 

mesh. As an example, the scattering of 3 meter radar waves by an aircraft is 

shown in Fig. 1.2. The solution of the problem required some 15 x 106 elements 

or approximately 3 x 106 nodes. This size of problem clearly demands substantial 

computational facilities. However, a 1 /10th reduction of the incident wavelength 

will increase the number of nodes by 103 for FEM and about 102 for BEM, which is 

beyond the capacity of very large computers used today, and yet such a wavelength is 

not extraordinary. Thus, Zienkiewicz drew the conclusion that this problem remains 

unsolved and a completely new method of approximation is needed to deal with such 

problems .

In summary, the BEM modeling of wave problems encounters many difficulties. 

Firstly, solving impulse wave problems in large and complex domains reveals well- 

known weaknesses in dynamic BEM wave solvers. The solver requires a very fine 

mesh to accurately represent the moving wave front. The time step also needs 

to be small enough to correctly represent the sharp gradients in impulse waves. 

Fine space meshes and small time steps demand large computer memory and long 

computational time. Thus, there is a need to develop a BEM solver with less memory 

limitations and higher computational efficiency.

Secondly, it is still difficult for time-domain BEM solvers to produce stable re

sults, specially for impulsive loads and complex geometries. The time domain BEM 

solver should be made more robust to capture impulsive transient dynamic responses

Julv 11. 2007



1.2. R e se a rc h  s tra te g ie s  a n d  O b jec tiv es 4

(i»)

Figure 1.2: (a) the problem domain (b) mesh intersection with aircraft (After Prof. 
Zienkiewicz, University of Swansea [92])

in any arbitrarily-shaped domain.

Thirdly, the time-stepping algorithm is problematic in wave problems. Because 

current numerical methods put a strict constraint on the ratio between time step 

and element size. i.e. the space-time ratio (3 is constrained within a specific range 

[0.3 ~  1.5]. Hence, it is still a open problem how to choose the best time marching 

scheme for BEM with a non-uniform mesh, and how to derive a generally stable 

time marching scheme. The strategy to solve these problems will be addressed in 

the next section.

1.2 Research strategies and Objectives

1.2.1 A daptive strategy

The key issue to improve the com putational efficiency of dynamic BEM is to intro

duce adaptive schemes, which include error estimation and au tom atic  mesh refine

ments.

If a moving wavefront can not be resolved with a mesh fine enough, all numerical 

methods, including FEM, FDM and BEM, will produce inaccurate and unstable

J u lv  11. 2007
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results. However, the problem is that because the location of moving wavefronts are 

not known a priori, it can not be predicted where best to introduce mesh refinement. 

Hence, an adaptive strategy is employed here: computational results from the last 

time step are postprocessed to locate moving wavefronts; then meshes there are 

refined, and the problem is solved again. The whole process is repeated until the 

error tolerance satisfied. The refinement process can be simply to add more nodes 

near the wavefront, i.e., to use smaller elements to better approximate the function 

where it changes rapidly.

1.2.2 Space-time concept and Local time stepping

The space-time separation strategy is widely used in solving dynamic problems nu

merically. The conventional BEM solution follows the same routine: it consists of 

discretization in space using BEM, and discretization in time using the finite dif

ferential method (FDM). However, a difficulty with this strategy arises because the 

stability condition demands use of small time steps, which are related to the smallest 

elements in the mesh. Thus, small time steps have to be applied to elements for 

all regions, which is computationally wasteful. It is more efficient to build a BEM 

model with local time stepping, combined with a space adaptive scheme which in

dicates where it should apply. Ideally, in this adaptive scheme, elements are refined 

and the time step size is adjusted near wave fronts, while other elements remains 

unaltered where the solution is smooth or quiescent.

In local time stepping, the same time step is no longer applied for all elements. 

Instead, for impulse wave problems, regions of high stress or high strain will have 

their own time steps which are different from the rest of mesh. The set of elements 

are partitioned into N  classes according to their different sizes. The bigger time 

steps will be applied to elements with bigger size, the smaller time steps will be 

applied to smaller ones. The time stepping will rotate among different classes until 

all of them reach the next time step.

Julv 11. 2007
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1.2.3 Research objectives

The aim of the research carried out for this thesis is to develop a framework for 

an adaptive dynamic BEM solver, which can capture moving wavefronts and refine 

the mesh around them; offer different local time stepping schemes for elements 

of different sizes to ensure the accuracy of the solution, and ultimately solve the 

impulsive wave propagation problem in a more efficient, more accurate and more 

stable way. The detailed research objectives include:

• An effective posteriori error estimation will be developed to locate moving 

wavefronts by postprocessing numerical results from the previous computation. 

The error estimation should be computationally cheap, easy to implement, and 

accurate to identify elements for refinement.

• After the problem elements are identified, automatic mesh refinement will be 

developed to create a series of conforming elements in smaller sizes than the 

original one, and to change the mesh topology accordingly.

• A local time stepping scheme will be constructed to offer a range of flexible time 

steps for elements with different sizes while maintaining time compatibility and 

stability of the solution.

• A adaptive dynamic BEM programme written in the C language will be devel

oped to implement the error estimation; the automatic mesh refinement and 

local time stepping schemes. A new BEM solver will also be designed for the 

adaptive mesh, which will change in each time step.

• A parallel dynamic BEM solver based on Linux clusters will be developed to 

further improve the efficiency of the BEM solver for impulsive wave problems.

1.3 Outline of Thesis

This thesis consists of eight Chapters, through which the development of the research 

work is presented from the basic dynamic BEM theory to detailed implementation

for 2D wave propagation, 3D wave propagation and 3D elastodynamics problems.
Julv 11. 2007
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The fundamental mathematical theories are described first to lay down a sound 

foundation; then the basic strategies and implementations for error estimation, au

tomatic mesh refinement, and adaptive BEM solvers are described in detail with the 

increasing complexity. The content of each Chapter is summarized below:

In Chapter 2, the literature is reviewed in order to describe the history, state- 

of-the-art and remaining difficulties in solving scalar wave and elastodynamic wave 

propagation problems using BEM. Three different BEM approaches for dynamic 

problems are introduced and distinguished from each other. Early research on dy

namic BEM and current research for improving its accuracy, efficiency and stability 

are described to give the context of the research in this thesis. The contribution 

as well as disadvantages of these researches are summarized one by one. Then, 

the literature review moves to cover the field of error estimation, which introduces 

three main strategies: residue methods, gradient methods and re-solution methods. 

Consequently, this is followed by three mesh refinement strategies, h- adaptive, p- 

adaptive and new shape functions based on the partition of unity. A literature re

view of papers concerned with space-time concepts describes the current state of 

research in this field. Finally, the current research on parallel computing in BEM is 

surveyed.

In Chapter 3, fundamental mathematical theories are introduced to build a sound 

foundation for the later implementations. First, the governing PDE equations for 

scalar wave propagation and elastodynamics are presented. After introducing the 

reciprocal relations and Green’s functions, the solutions for those PDEs, in the 

form of integral representation formulas, are derived for scalar wave and elastody

namics problems. By taking the limit of the integral when source points approach 

the boundary, boundary integral equations are obtained. These boundary integral 

equations are the starting point for the numerical solutions in the later chapters.

An adaptive dynamic BEM solver for 2D scalar wave problems is developed 

in Chapter 4. First, a new boundary integral equation is derived to consider the 

general variation of boundary values in space-time. Then the boundary integral 

equation is discretized in both space and time. The evaluation of the time integral 

and the space integral is described, which paves the way for the numerical solution.
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Adaptivity of the BEM solver is introduced by choosing proper error indicators and 

adaptive schemes accordingly. Finally, numerical examples are given to demonstrate 

the effectiveness of the new algorithms for 2D wave propagation problems.

In Chapter 5, after introducing curved triangular elements in 3D, the BEM 

integral equation for 3D scalar wave problems is discretized in space-time. The sig

nificant difference between 2D and 3D problems is that only part of the boundary 

is integrated for Green’s functions and this part is different in each time step for 

3D case. This triggers a totally different BEM solution for the time integral and 

the space integral for 3D scalar wave problems. Elements in 3D space are indexed, 

like books in a library, to accelerate the spatial search to decide which part of the 

boundary mesh should be integrated in different time steps. Then, gradient-based 

and two-solution-based error indicators are used to locate moving high-gradient ar

eas, and a triangular element refinement based on longest edge propagation path 

(LEPP) is employed to improve solution accuracy while retaining computational effi

ciency. Local time stepping is designed to fully employ space-time adaptivity. Then, 

numerical implementation and programming issues, such as programme structures, 

geometry modeling, large memory management, and fast space-search (based on 

sphere trees etc.) are described in detail. We apply the method to solve problems of 

wave propagation in a 3D bar. Compared with traditional dynamic BEM, the solu

tion is more accurate, less artificially-damped and more stable. Finally, we compute 

a problem of an acoustic field inside a car to demonstrate that a reasonably accurate 

simulation for this complex problem can be attained using an ordinary desktop PC.

In Chapter 6, the same approach is applied to the BEM integral equation for 3D 

elastodynamic problems. Basic strategies are the same for the scalar wave case, but 

more emphasis is put on how to compute the space integral and the time integral 

for the vector fields, and how to compute the boundary stresses. Of course, some 

modifications of gradient-based & resolution-based error indicators, space refinement 

schemes and local time stepping for 3D elastodynamic problems are also described 

in detail. We apply the method to solve the problems of a 3D spherical cavity 

under various explosive loadings, and the simulation of a rigid foundation in a half

space under periodic loading. The accuracy and efficiency of the new method is
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demonstrated in these examples.

In Chapter 7, an implementation of parallel BEM on Linux clusters is developed 

to further improve the efficiency of dynamic BEM. First, some useful strategies 

of BEM parallelization are introduced. Then, based on domain decomposition in 

space-time, the boundary domain is divided into several sub-domains, and can be 

computed in parallel to accelerate the calculation of the elements of matrices [G] 

and [H]. Time steps are also divided into several time ranges to compute the past 

influence vector {FI }  in parallel to speed up the whole solution. The numerical 

implementation and programming issues for these parallel algorithms are described 

in some detail. We apply the parallel BEM solver to model a 3D underground 

explosion of a complex geometry. It is shown that the parallel strategy has the 

potential to solve large-scale dynamic BEM problems.

In the final Chapter, a statement is given of the findings and conclusions reached 

from the results presented in previous Chapters. A summary of the overall perfor

mance of the adaptive dynamic BEM solver is presented and comparisons are made 

with the uniform dynamic BEM solver in order to highlight the advantages and 

disadvantages of two approaches. In the final section of the thesis, we outline pos

sible development of a time-domain elastoplastic BEM solver and a wavelet-based 

adaptive scheme for time-domain BEM.

Julv 11. 2007



Chapter 2

Literature Review

2.1 Introduction

Wave phenomena are ubiquitous in science and engineering, from applications in 

elastodynamics, hydrodynamics, through seismic and acoustic wave propagation, 

telecommunications, non-destructive testing, geological exploration, radar, sonar 

etc. Wave propagation and elastodynamic modeling of the interaction of waves with 

natural and man-made bodies is the key problem in many important engineering 

applications.

For example, one obvious civil engineering applications is the simulation of earth

quake waves traveling through the earth. Clearly, we may expect to improve the 

design of safer and earthquake resistant civil structures if this basic problem can be 

modelled effectively. Elastodynamic equations are also used in geosciences both for 

geological prospecting and for assessing the effect of fault movement and fracture 

propagation on surface structures and mining excavations.

Another related application is the assessment of the interaction between soil and 

structural foundations due to dynamic imposed load or incoming seismic waves. 

Three-dimensional elastodynamic models are needed to capture wave propagation 

phenomena in the semi-infinite domain.

Further important applications are the accurate calculation of wave fields caused 

by reflection from complex geometry objects such as airplanes, theaters etc. These 

calculations are essential in forming high-resolution images, improving acoustic per
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formance etc.

A mathematical model for linear wave propagation and scattering was developed 

quite early. The French mathematician, D ’Alembert, derived the “wave equation” as 

early as in 1747 when studying the vibration of a violin. To simulate phenomenon 

based on wave physics requires the solution of an appropriate wave equation such 

as Maxwell’s equations, acoustic or elastodynamic wave equation. For all but the 

simplest geometry or media, this requires the use of numerical computational tech

niques.

Computational techniques for wave equations were developed from the 1960s. 

In the early days, these were numerical methods such as low order finite difference 

methods (FDM), or boundary integral equation (BEM) methods for time-harmonic 

scattering. The desire to solve more complex problems revealed weaknesses in clas

sical wave equation solvers. Domain type numerical methods, such as FDM or 

FEM-based methods, require many nodes to accurately represent the field. Also, 

non-reflective absorbing artificial boundaries need to be created for FDM and FEM 

for infinite or semi-infinite domains.

Modelling impulse wave propagation introduces further numerical difficulties for 

domain type wave equation solvers. For these solvers, space elements must be small 

enough to capture the impulse (usually 8-10 nodes per wavelength are needed) and 

stability consideration demands that time steps must be small as well. Thus com

putational magnitude soon becomes so large that it is beyond the reach of the most 

powerful computer today. Thus, computational limitations mean that more efficient 

methods are needed to solve impulse wave propagation.

The boundary element method offers some advantages for wave propagation and 

elastodynamic problems. First, in the boundary element method, the problem scale 

is much smaller since only the boundaries are discretized, and the boundary con

dition of the open domain is naturally satisfied by the Green’s function. Second, 

the notorious problem of numerical damping in the wave propagation problem is 

less significant because the method employs fewer nodes. Thirdly, the BEM pro

vides efficient representation of cracks and geological features such as faults and 

parting planes, making it a powerful analysis tool for crack wave scattering prob
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lems. Finally, the boundary-only mesh in BEM offers advantages in wave scattering 

problems involving moving boundaries.

This chapter introduces the three most widely-used methods for dynamic BEM 

(Section 2.2). Then we discuss historical developments in the time-domain BEM 

theories (Section 2.3). We also comment on unsolved problems in each technique. 

There follows a literature review on error estimation and adaptive schemes in the 

context of BEM (Section 2.4). Latest developments of space-time concepts in nu

merical methods is discussed in Section 2.5. Finally, parallel computing in BEM is 

discussed in section 2.6.

2.2 Three dynamic boundary element methods

There are three BEM approaches to solve the wave equation and the elastodynamic 

equation, i.e., the Laplace transform method, the time-stepping method and the 

space-time integral equation.

2.2.1 Laplace transform method

The Laplace transform method transforms the time-dependent PDEs from the time 

domain into the frequency domain. For each fixed frequency, a boundary integral 

equation in the frequency domain is solved in a similar way to the static problem. 

Finally the solution is transformed back to the time domain by employing the inverse 

Laplace transform (Cruse, 1968, Cruse & Rizzo, 1968 [16]).

The advantage of this method is that dynamic responses can be obtained at a 

specific time without referring to all previous time steps. A disadvantage of the 

method is that computation of the numerical Laplace transform and its inverse 

transform is laborious. It would be very time-consuming if we want to calculate the 

time history of transient dynamic response for a longer time. Furthermore, since it 

is based on the Laplace transform, it is not valid for nonlinear analysis.
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2.2.2 Time-stepping method

The time-stepping method is similar to the time-stepping FEM. It employs the 

technique of the separation of variables in space and time. The space differential 

operators are solved by using BEM while the time differential operator is usually 

discretized using finite differences [20].

There is a difficulty in the time-stepping method. Since the solution after a time 

step does not vanish inside the domain, it is necessary to include the volume integral 

in the equation in the next time step. However, the discretization of the domain 

destroys BEM’s elegance of boundary mesh only. In order to do the justice to the 

name of BEM, instead of using a volume discretization, some radial basis functions 

are employed to transform the volume integral onto the boundary. This is usually 

called Dual Reciprocity method. (Nardini, Brebbia 1982 [58]).

Comment: the advantage of Dual Reciprocity BEM (DR-BEM) is that it solves 

dynamic problems using static Green’s function. All widely-used time-stepping meth

ods such as the Newmark method and the Runge-Kutta method can be employed. 

However, the smooth radial basis functions are used to represent the solution in the 

volume domain. Thus, they are usually inadequate to describe high frequencies wave 

accurately. It yields worse results for impulse problems than the standard BEM in 

the most cases. [3]

2.2.3 Space-time integral equations.

The time-domain BEM has some advantages over frequency domain approaches. 

For example, the latter is not well suited for impulse problems, and can not deal 

with non-linearity.

The time-domain method employs the Stokes solution as the fundamental so

lution, and makes use of Betti’s reciprocity law to derive the boundary integral 

expression in space-time. Its principal disadvantage is that it is more computation

ally demanding because it is necessary to recalculate the matrix at each time step. 

The causality law implies that the integral equations at later times are influenced 

by events at early times. Numerical methods constructed from these space-time

Julv 11. 2007



2.3. D ynam ic BEM  Research 14

boundary integral equations are global in time. That is, one must compute the 

solution for all preceding time steps to obtain the current solution. The space-time 

boundary is the spatial boundary extruded in the time dimension and therefore has 

one dimension more than the boundary of the spatial domain. This means a sub

stantial increase in complexity. Thus, the system matrix is much larger and consists 

of high-dimensional integrals.

While the increased memory demands cannot be completely avoided, certain 

special features of the problem mitigate the problem:

• The system matrices are usually highly sparse due to the convolution of the 

Dirac delta function in time.

• For similar reasons, the domain of integration does not extend over the whole 

boundary of the space-time cylinder, but only over its intersection with the 

surface of the backward wave cone. Here the integrals are of the same dimen

sionality as for the static problems, and that current response is not influenced 

by events which took place indefinitely far into the past. These “retarded po

tential” integral equations are of importance for the scalar wave equation in 

three space dimensions and to a certain extent for equations in elastodynamics. 

However, it is interesting to point out that this phenomenon does not apply 

to the wave equation in two space dimension, nor for the heat equation.

• When low order basis functions in time are used, the system matrices are of 

block-triangular Toeplitz form. Matrix solution proceeds one block inverse at 

a time and the whole system solution remains manageable.

2.3 Dynamic BEM Research

2.3.1 Development of boundary integral theories for dynam

ics

The mathematical foundations of the Boundary Element Method can be traced 

back to a time much earlier than the invention of modern electronic computer.
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Prom the 18th century to the early 20th century, basic ideas were formed in the 

development of the potential theory, Green’s function theory, and integral equation 

theories. The solutions of some physics problems could be written either in the form 

of differential equations ( Newtonian system) , or in the form of integral equations 

(Hamilton system). This reflects the fact that physical principles can be expressed 

as the balance of certain physical quantities, or as the minimal of certain functional. 

In the early 20th century, some numerical solutions using integral equations were 

obtained without using electronic computers, but it was after computers became 

popular that it began to be widely studied by researchers.

The mathematical principles behind dynamic BEM analysis are relatively simple. 

The dynamic response due to a point impulse load in space and time is obtained 

from the Green’s function. According to the linear superposition principle in linear 

space, the weighted sum of the dynamic response of impulses distributed on the 

boundary are determined in such a way in which total dynamic response satisfy 

both the prescribed boundary conditions and the initial conditions.

2.3.2 Early dynamic BEM research

It is interesting to note that the dynamic BEM was developed simultaneously with 

its static counter-part. The earliest direct BEM formulation can be traced back 

to three papers by Jaswon (1963) [39], Symm (1963) [79] and Jaswon & Ponter 

(1963) [40] for static potential problems, and to a paper by Rizzo (1967) [72] for 

elastostatics. The earliest development of the Boundary Element Method in dy

namics is attributed to Shaw (1962) [81] and Banaugh &; Goldsmith (1963) [4] for 

their papers on acoustic and elastodynamic problems using the integral equations. 

It was in 1968 when Cruse & Rizzo (1968) [16] first derived the direct BEM formula

tion to solve transient elastodynamics problems. Cruse wrote his PhD dissertation 

(1968, only 40 pages long) using a to introduce a Laplace transform method to solve 

BEM problems in the frequency domain. Manolis & Beskos (1981) [51] extended 

this method to achieve higher accuracy. Niwa (1975, 1976) [60] and Dominguez 

(1978) [20] solved transient problems in the context of soil-structure interaction, by 

means of the Fourier transform and a frequency domain BEM formulation.
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The time-domain method was developed much later than the frequency domain 

method. The first time-domain Boundary Element formulation (Cole, 1978) [15] was 

used to solve transient 2D elastodynamic problems for the anti-plane case. A gen

eral boundary element scheme which employs the 2D time-dependent fundamental 

solution to solve the 2D transient elastodynamics problem was derived by Mansur 

& Brebbia (1983) [54]. Later, similar results for 2D scalar wave and elastodynamic 

wave propagation were developed by Banerjee, Ahmad k. Israil (1988) [2]. The 3D 

elastodynamic time-domain BEM formulation and implementation was developed by 

Manolis k  Beskos (1981) [52] in the context of 3D dynamic soil-structure interaction 

problems.

Comments: These early researches lacked a systematic analysis of error estima

tion, convergence and stability. Instabilities were observed even for uniform meshes 

whenever space-time ratio (3 fell outside a specific range. This restricted these meth

ods to elementary problems with the simple geometries.

2.3.3 Improving accuracies

Over the last decades, there have been increasing efforts to develop more efficient 

solution techniques. It has been found that higher-order methods are very attractive 

for decreasing the grid density needed to model wave propagation. This also has led 

to the development of adaptive boundary element methods (in section 2.4) and high 

order discontinuous Galerkin boundary element methods (in section2.5) for short 

wave scattering. To address these problems, there are three principal strategies.

• First, accuracy can be improved by employing higher-order spatial and tem

poral interpolation schemes. Various combinations of spatial and temporal 

interpolation schemes have been tried to improve accuracy and stability, such 

as combinations of constant, linear, quadratic functions and cubic B-spline 

interpolation etc.

• Second, some methods have been borrowed from some widely-used numerical 

techniques in FEM and FDM, such as the linear 9 method.
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• Third, some special features of the boundary integral equation have been used 

to derive some extra equations to improve stability.

To improve accuracy, Rizos and Karabalis (1994) [70] developed a B-spline interpo

lation scheme and a direct time domain BEM formulation for general 3-D elastody

namic problems. Instead of using the Dirac delta function, body forces are expressed 

in terms of B-spline functions in time to deduce the Green’s function. Higher order 

spatial and temporal discretization schemes were applied to the boundary integral 

equations. This yields a time marching solution for the characteristic response of 

the system due to excitation by a B-spline time distribution, which can be extended 

to any transient load function.

Comment: this method can produce more accurate results, but it is much more 

complicated to use B-splines than the normal one.

Karabalis (1991) [43] employed a direct time domain boundary element method 

to solve problems in soil-structure interaction. Constant elements were used for the 

time marching scheme while constant, linear and quadratic elements were used in 

the space domain. Dominguez (1993) [20] presented a 2D formulation that included 

isoparametric quadratic elements with constant and linear temporal variations of 

displacements. Wang & Wang (1996) [86] introduced quadratic time interpolation 

schemes for 2D elastodynamic problems. Israil & Banerjee [38] described a 2D 

multi-region transient elastodynamic BEM formulation that employs isoparametric 

quadratic spatial elements and constant and linear temporal variation of traction and 

displacement respectively. Birgisson & Crouch (1998) [7] solve the similar problem 

using straight-line elements with a piecewise quadratic variation in space and linear 

variation in time. The advantage of using straight-line elements is that all integrals 

can be performed analytically.

Comments: These methods mainly introduced higher order interpolation in space 

and in time. However, most addressed 2D problems, which severely limit their use

fulness.

Walker & Bluck (2002) [85] developed a time-domain boundary integral equation 

(BEM) solution for large electromagnetic scattering problems. It employs isopara

metric curvilinear quadratic elements to model fields, geometry, and time depen-
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dence. The approach is implicit, which seems to provide stability and also permits 

arbitrary local mesh refinement to model geometrically difficult regions.

Comments: The implicit quadratic shape functions in the time domain is claimed 

to offer unconditional stability. However, this conclusion is widely doubted [19].

2.3.4 Fast BEM solution methods

The boundary element method produces non-symmetric, dense matrices, which are 

computationally expensive to solve using direct methods. Gauss elimination requires 

O ( N 3) arithmetical operations for systems with N  degrees of freedom. Even if 

iterative linear equation solvers are used, such as the GMRES or Lanczos method, 

the complexity is still of order O (N 2). However, in the BEM matrices, entries are 

almost zero when elements are far away from the collocation points. Based on this 

idea, some very fast solvers of BEM of O (N logN)  have been developed in the past 

decade. The three most widely-used methods are: panel clustering, fast multi-pole 

method (FMM) and wavelet transform methods.

2.3.4.1 Panel clustering

The panel clustering method was mainly developed by a German group. Hackbusch 

& Nowak (1989) [33] gave an algorithm of 0 ( N  (logN)d+2) with the help of an 

expansion of Green’s functions in the far field and decompositions of the spatial 

domain with “ panels ” ( d is a dimension of a problem). The panel clustering 

method is similar to the FMM method, which will be described in the following 

section.

2.3.4.2 Fast m ulti-pole m ethod

The Fast multi-pole method (FMM) was first introduced by Rokhlin [32] as a fast

solution method for integral equations for the two-dimensional Laplace equation.

In Rokhlin’s paper [32] the term FMM  did not appear but the main framework of

FMM was constructed. Later, Greengard [32] refined the algorithm, and applied

FMM to two and three-dimensional N-body problems with Coulomb’s potential and

showed the applicability of FMM to various fields. Rokhlin uses FMM in conjunction
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distant particles local particles

Figure 2.1: Illustration of Fast Multi-pole method ( after Nishimura, Japan [57] )

with an iterative solver to reduce the computational complexity for matrix-vector 

multiplication from O ( N 2) to O (N).  Rokhlin used multi-pole moments to represent 

distant collocation points in BEM and introduced a local expansion to evaluate the 

contribution from distant collocation points in the form of a series. The multi

pole moment associated with a distant collocation point can be translated into 

the coefficient of the local expansion associated with a local point (see Fig. 2.1). 

Greengard introduced the hierarchical decomposition of a spatial domain with a 

quad-tree in two dimensions and an oct-tree in three dimensions to carry out efficient 

and systematic grouping of collocation points with tree structures.

FMM is becoming the mainstream method to solve medium and large scale 

problems using BEM. It was applied to solve the 2D & 3D Laplace equation, the 

2D & 3D elastostatics, and the 2D & 3D elastodynamics. Because BEM is suitable 

for wave analysis in the infinite domain, applications of FMM-BEM to large-scale 

wave problems, particularly to acoustical and electromagnetic scattering problems, 

have been investigated by many researchers: such as Rokhlin, Lu & Chew, Song h  

Chew, Fukui & Katsumoto, Yoshida [57].

2.3.4.3 W avelet transforms

Wavelet-based methods were introduced by Beylkin (1994) [6] for the compression 

of large matrices in BEM. Wavelet transforms provide a fast solver which can be 

implemented as a black box in existing BEM codes, requiring little code change. 

Fast wavelet transforms remove the redundancy of far-field information in BEM by 

compressing these data after the matrices have been assembled by standard means.
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Although less efficient than the other two techniques mentioned before, it is easier 

to implement.

2.3.5 Stability of dynamic BEM

The conventional time-domain BEM exhibits numerical instabilities at later times, 

particularly when more complicated geometries and loading configurations are mod

eled. For example, the time domain direct BEM formulations proposed by Mansur 

for 2D problems [12] exhibit increased oscillation at later times, indicating potential 

instability. Dominguez [20] put his 2D time-domain elastodynamic BEM code in 

public domain. When this code is used to solve a benchmark problem of a circle 

embedded in the infinite domain with a Heaviside load, it yields unstable results 

after 2000 time steps, see Fig. 2.2 [26]. Manolis [26] presented a 3D time domain 

direct BEM, with results for less than 25 time steps. This scheme used repeated 

averaging in time in order to filter out the oscillations in the results.

Some stable time-stepping strategies were borrowed from FEM to improve the 

stability of transient dynamic BEM solution, such as the linear-# method by Yu 

(1998) [90]. The procedure is similar to that of the Wilson-# method, but whereas the 

Wilson-# method assumes linear time variation of acceleration, his method assumes 

linear time variation for both displacements and tractions for elastodynamic waves. 

The best values of # for stable results vary at different time steps.

Mansur & Carrer (1998) [53] developed the time-discontinuous traction method. 

The additional unknown variables introduced by discontinuities can be obtained by 

coupling the standard boundary integral equation for displacement and the one for 

traction.

Comment: It is computationally expensive to invoke the hypersingular boundary 

integral equation for traction.

Marrero & Dominguez (2002) [55] combined boundary integral formulations for 

several time steps, assuming that velocities are constant (in time).

For stability in dynamic FEM and FDM, the time step must be smaller than a 

certain critical value. Peirce & Siebrits (1996,1999) [64] were the first researchers 

to investigate the stability problem of elastodynamics BEM. A sequence of simpler

Julv 11. 2007



2.3. D ynam ic BEM  Research 21

300 --------------------------------------

Selhcrf 3 Problem. Q | *0.6

250 ■

Dominguez. Nl ■ 2000 
Bkfiwm, N( •> 3000

300 400

(a) (b)

Figure 2.2: a) Circular cavity suddenly loaded with normal traction b) Unstable 
results after 2000 time steps (A. Frangi and G. Novati, [26] )

time-dependent PDE problems, which is similar to the dynamic BEM equations, 

were analyzed by using the ^-transform method which reduces the time convolu

tion equations to simple algebraic equations. Their analysis demonstrated that 

the source of the exponential instability is that the Green’s function does not decay 

rapidly enough with space and time. Therefore, an over-estimated coupling between 

neighboring elements and remote ones leads to as situation in which the response 

of neighboring elements to a stimulus from a given element is more energetic than 

the original signal. This positive feedback causes the exponential growth observed 

in numerical solutions. Their analysis showed that eliminating this problem needs 

enhanced self effects ( enlarge the diagonal terms in BEM matrices) to achieve more 

stable schemes.

Another cause of instability is that continuously moving wave fronts are poorly 

approximated by discrete time steps. High gradient areas such as wave fronts are 

unknown a priori, and can not be properly approximated by ordinary shape func

tions in uniform meshes. Spurious oscillations or even instabilities are often observed 

in these regions. Alternatively, dispersion occurs if lower-order approximations or 

bigger time steps are used to damp these oscillations. These high gradient areas 

must be tracked and well represented by adaptive schemes. This is the reason why 

adaptive schemes in space-time have been chosen to improve the stability of dynamic 

BEM in this research project.
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2.4 Error Estimation & Adaptive Schemes

2.4.1 Objectives of error estimations and adaptive schemes

In the dynamic BEM, uniform meshes can produce reasonable results if solution 

functions are smooth and regular. However, they will be inadequate if local high- 

gradients appear in the solution. Adaptive schemes are needed to construct an 

optimum mesh for domains where high resolution is needed. Adaptive schemes for 

BEM involve:

• Mathematical models: Mathematical models and formulations are derived. 

Geometries and boundary conditions are defined for the problem domain.

• Mesh initialization: Create the initial mesh for the boundary element analysis.

• Boundary element analysis: Boundary element analysis is performed for the 

current mesh. The solution for displacements or tractions are obtained on the 

boundary.

• Error estimation & Convergence satisfaction: The errors of the boundary ele

ment solutions are estimated at each step. The convergence criterion is checked 

to decide whether further refinement is needed.

• Adaptive schemes and mesh refinement: The element errors computed above 

are used to determine which elements are to be refined according to the pre

scribed criterion. Then those elements are refined according to h- or p- refine

ment schemes.

Accurate error estimation plays a key role in the efficiency of the algorithm. Since the 

1990s, a substantial of literature have been devoted to adaptive methods for BEM. 

Most of them are devoted to the formulation and implementation of better error 

estimations. Some error estimations which are the most relevant to the scalar wave 

and elastodynamics are described Here. Some observations and heuristic formulas 

are presented since it is far from a mature theory and is subject to ongoing research.
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2.4.2 Error estimation in space

2.4.2.1 R esidue m ethods

Consider the 2D potential problem:

\ j 2u = 0 onQ, (2 .1)

du
u — u onT u q = —  = q o n T q (2.2)

where u and q are the potential and its flux respectively. Taking u* as the fun

damental solution, then the integral representation of the boundary value problem 

is:

CiUi — J  [qu* — uq*]dT =  0 (2.3)

Discretizing the boundary T , we obtain:

N

L(u) = c ^ i  — / [qu* — uq*]dT = 0 (2.4)
i Jr>

where Dps a piece of boundary, N  is the total number of element. Assuming the 

approximate solution of u and q is u and q, the potential and flux error, as shown 

in Fig. 2.3, the residual error of displacements eu are:

N r
eu = L(u) = CiUi — / [qu* — uq*]dT = 0 (2.5)

3 J r >

If a Galerkin BEM is employed, it can be mathematically proved that the solution 

errors are bounded by the residue of the boundary integral equation:

Ci||R ||<|| eu ||< c2\\R || (2.6)

where Ciand C2are two contants. Thus, the residual can be used as an efficient 

error estimator. A global error estimate can be defined as some norm of point-wise 

errors. To choose a proper norm is subtle since it varies from one problem to another.
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Figure 2.3: Illustration of residue-based error estimation
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Figure 2.4: Error estimation based on sensitivity

According the Hiao (2004) [35], a H° Norm is better for smooth functions while a 

H 5 norm is better for non-smooth ones.

Such residue-based error estimates are widely-used in FEM. However, if the 

Galerkin BEM is used, a fifth-order integral is needed, which is too expensive for 

most practical problems. This is the reason why BEM is usually formulated as a 

collocation method. However, in the collocation BEM, residue errors disappear at 

collocation points as shown by Eq. 2.5. To overcome this problem, Guiggiani Sz 

Paulino [63] developed error indicators based on nodal sensitivity. The initial anal

ysis is done by the ordinary boundary elements. Then nodes are displaced slightly 

to get another solution, (e.g. for constant elements, nodes would be displaced off- 

center a little, as shown in Fig. 2.4). The difference between the two solutions is 

the residue of this point. But no rigorous mathematical formula like Eq. 2.6 can be 

proved. It can only be demonstrated numerically.
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Figure 2.5: Error indicators based on quadratic interpolation

Super-convergence based error estimation

Zienkiewicz (1992) [61] proposed an error estimation for FEM based on super- 

convergence of the recovered stress of the FEM solution. For integral equations, the 

residual can be used as an error estimator provided that the BEM is super-convergent 

(Geng, 2001) [30]. When the Galerkin BEM is used, the super-convergence of BEM 

can be established easily under certain conditions. However, this is more difficult for 

collocation BEM. Geng also showed that it is important to consider numerical inte

gration errors, which can destroy super-convergence and render the whole method 

useless.

Comments: Because some strong conditions must be satisfied, its application to 

practical problems is limited.

2.4.2.2 Interpolation and Gradient m ethods

Zhao (1996) [91] developed a simple error indicator based on quadratic interpolation. 

The method assumes that in the vicinity of a quadratic element, the state variable 

should vary quadratically, too. An error indicator can be derived by calculating the 

difference between the BEM solution and the interpolated solution. The method 

does not require extensive computation and is demonstrated by Fig. 2.5.

Comments: This method is very difficult to extend to the 3D situation when

interpolation is much more complex.

Rencis h  Kita [23] developed an interpolation error estimation scheme. Assuming

that a higher-order interpolation yields a more accurate solution than a lower-order
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one, the difference between the two solutions is considered as the error. This method 

is widely used since it is simple. However, it is uncertain that a higher-order solution 

is necessarily more accurate than a lower-order solution.

Gradient error type

Errors usually arise because lower-order methods can not approximate the higher- 

order terms in the true solution. A gradient-based error estimation method simply 

assumes that errors arise near high gradient areas. The error indicator is based on 

the local magnitude of the first or second derivatives of displacements or tractions 

in the solution.

ê  = Ui-  uh = A m €%= p i -  = A pi

/ ( £ m a „ . ) 2 + ( e m a  u . y d r .

f d T i
(2.7)

where e^and e? are the point-wise errors of displacements and tractions; Ui and 

Pi are point-wise solutions of displacements and tractions; Ui and Pi are point-wise 

approximated solutions of displacements and tractions on the discrete mesh; N  are 

shape functions; T* is the ith boundary element; |||| is the L2 norm.

Comments: This method is simple to implement and is used widely in error 

detecting on shock waves problems, etc. or strong impulse waves. However, it is not 

particularly accurate for coarse meshes.

2.4.2.3 R e-solution m ethods

Some researchers [45] have suggested schemes in which errors are calculated based 

on re-solution. An ordinary analysis is carried out first and then a different scheme 

is used in the re-solution, e.g., from N  elements to 2N  elements, or the same mesh 

from lower-order shape functions to higher-order ones, or from ordinary Lagrangian 

shape functions to derivative-continuous Hermite shape functions, etc.

Comments: This method is simple to implement and is used widely. The disad
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vantage is that the computational cost is high.

2.4.3 Error estimation in time

Time-step adaptivity has been used for ordinary differential equations for many 

years. Dynamic FEM can be simplified to coupled or uncoupled ODE problems 

in time, which can be solved by recursive time-stepping methods, explicitly or im

plicitly. The solution for the next time step is determined from the solutions of 

a few previous time steps. This is not the case for dynamic BEM. Since Green’s 

functions are global operators, all time steps are coupled. Although we do have 

error estimates for static Galerkin BEM and first-order time-dependent BEM such 

as heat conduction, it is quite difficult to develop an error estimate for second order 

time-dependent BEM, such as the wave equation. Thus, instead of rigorous theory, 

heuristic methods will be used to calculate error estimates in time.

2.4.3.1 Post processing based error indicators

This method is the counterpart in time for Zienkiewicz’s error estimate in space. 

After we obtain the solution for each time step, we can post-process the solution 

to get improved estimates which we shall consider to be more accurate. Wiberg 

(1993, 1994) [87] postprocessed the displacement vectors u, stress tensor a and 

velocity vector ^  based on the assumption that the third-order time derivatives of 

displacements t vary linearly over each time step. As a posterior temporal error 

estimate of displacement and velocity is the difference between the original values 

uhj 07n ^  and the postprocessed ones u, cr, The temporal error in the total 

energy norm can be written as:

\et \\ ~  ||u - u h\\ =
LJn

(du 
' ~dt ~

duh. .du
n r )p {T t

du} 
dt

)dfl +  /  (a — (Jh)D l (cr — crfl)dQ
Jn

1/2

(2.8)

where p is the density of the material and D  is the constitutive matrix. 

Comments: This method is efficient and easy to implement. However, the as-
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sumption of linear third-order time derivatives of the displacements is not universally 

true for most dynamic problems.

2.4.3.2 R e-solution based error indicators

In the re-solution method, the time-steps are chosen such that the local error in 

each step satisfies the prescribed error tolerance. The local error is estimated by 

comparing two different time discretizations. If the estimated error is too large, then 

the time step is decreased. If it is smaller than the tolerance, then the step size can 

be increased. In this way, the balance between the accuracy and the efficiency is 

maintained. Also, no initial guess of the step has to be supplied.

Another strategy of re-solution is to employ different order of interpolations. 

The solution based on the higher-order interpolation is assumed to be more accurate 

than that of lower-order one. An error indicator can be calculated as the difference 

between the two solutions.

Comments: This simple method is widely used, including the research of the 

author.

2.4.3.3 Discontinuous Galerkin BEM  error indicators

In the discontinuous Galerkin BEM [14], a natural choice of the temporal error 

indicator is the local temporal jump term across the interfaces between space-time 

sub-domains, as shown in Fig. 2.6.

Comments: This is an efficient error estimator which has been mathematically 

shown to converge to the real solution error. However, the method is confined to the 

discontinuous Galerkin method only.

2.4.4 Adaptive schemes for static problems

After calculating error estimates for meshes using various methods, we will move on 

to show how to refine those elements with large errors. Suppose that u is the true 

solution to an n-dimensional elliptic variational problem of order m; also assume 

that uh is the numerical solution in the discrete space S h and k is the order of the
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t

Figure 2.6: Illustration of time-discontinuous approximation

polynomial in shape functions. An a priori error estimation formula in the bilinear 

form is [24]:

a(u — uh, u — uh) < C 2h2(k~m  ̂ | u \2k (2.9)

where C  is a constant, | u ^  is the L 2 norm of kth derivative of u, h 2 ( k - m ) is the

rate of convergence in strain energy. From this equation, it is clear that errors can 

be reduced either by increasing the number of the elements, or decreasing the size 

of the elements h, or employing higher-order shape functions.

2.4.4.1 h- adaptive and hierarchical h- adaptive schem es

The h- refinement scheme simply involves increasing the number of the elements 

while keeping the order of the interpolation function intact. The naive h- adaptive 

scheme is simple to implement, but it is very computationally expensive since the 

global influence matrices [G], [H] have to be re-computed. To solve this problem, 

the h- hierarchical refinement scheme, proposed by Kita, Kimaya & Parreira [46], 

can be implemented. Standard and h-hierarchical linear shape functions are shown 

in Fig. 2.7.

In the hierarchical h- refinement scheme, the initial analysis is carried out using 

standard shape functions. Then the h- hierarchical interpolation functions are added 

to the solution. We suppose
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(a) Initial interpolation function

Standard type h-hierarchical  type

(b)Two sub-elements

Standard type h-hlerarchlcal  type

(c) Three sub-elements

Figure 2.7: Standard and h-hierarchical linear interpolation functions

u =  N kuk +  ^ 2  N *u<* (2-10)

where ua are the newly generated degrees of freedom. The matrix equation for the 

initial mesh is

A u X i  =  b (2 .11)

After the refinement, we obtain the new matrix equation

^11 ^12 

^21 ^22
(2 .12)Xl I _  J bl

x 2 J [ b2

where the coefficient matrix An remains the same and only the entries in the influ

ence matrix for the newly-added terms (involving A12, A21, A22) need be computed. 

This saves a great deal of computing time.

2.4.4.2 p- adaptive schemes

In the p-refinement scheme, the initial mesh is not refined but the order of inter

polation functions are increased, everywhere or only in some elements. There are
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(d) Four th -o rder  in te rpo la t ion  funct ion

Figure 2.8: Adding new collocation points in p- hierarchical scheme

two categories of p-refinement schemes: 'the ordinary type ’ using ordinary trial 

functions and ’ the hierarchical type ’ using p- hierarchical trial functions.

In the p- hierarchical refinement scheme, the conforming linear trial function is 

used first; then higher order p- hierarchical trial functions are added in, such as the 

Legendre polynomials and Peano family.

Legendre polynomials Nk = 2k-*(k-iy. W ^  -

Peano family N k = ^  (£k -  b)

where £ is the local coordinates, d and b are Legendre constants and Peano 

contants respectively.

The Peano family is more convenient to use and performs better.

When the order of the interpolation is increased, new collocation points are 

located on the element to be refined. There are two ways of adding new collocation 

points: one is ’ the symmetric type ’ and another is ’ the true hierarchical type ’. 

The differences between them are shown in Fig. 2.8.

2.4.4.3 hp- adaptive schemes

It is natural to combine the h- adaptive and p- adaptive schemes. Heuer, Mellado 

and Stephan (2005) [59] developed a hp-adaptive two-level method for Galerkin
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boundary integral equations on the curved boundaries. An a posterior error esti

mate was derived from a comparison between the original solution and the half-size 

element mesh. A hp-adaptive algorithm is used to increase polynomial interpola

tion order by one and reduce element size by half. If the solution of the problem is 

smooth and regular, this method converges exponentially to the true solution.

Comments: The refinement scheme is very straight forward. However, it may 

give poor results for problems with sharp corners and other singularities.

2.4.4.4 N ew  shape functions

Perrey-Debain and Trevelyan (2004) [65] developed wave boundary elements to deal 

with high frequency wave problems. Besides ordinary polynomials, they incorpo

rated the plane wave as a shape function and obtained good results. Only 2.5 wave 

boundary nodes are required per wavelength, instead of the 8-10 nodes required by 

conventional interpolating methods.

Comment: The method offers higher accuracy using a coarse mesh. However, 

the plane wave shape functions are no longer orthogonal to each other and this leads 

to ill-conditioned system equations.

2.4.4.5 Summ ary of adaptive schemes

If the problem solution is smooth, p- adaptive schemes are more efficient than h- 

adaptive schemes. However, if non-smooth functions or singularities appear, the 

h-adaptive schemes are more stable, but may require an exponential increase in 

element numbers. The hp- adaptive scheme may be the best choice for smooth 

and regular solution because of its fast convergence. It is better to approximate 

singularities by adding singular shape functions to the element or by using graded 

meshes.

2.4.5 Adaptive schemes for dynamic problems

The primary objective of an adaptive scheme is to use the largest possible time step 

while maintaining accuracy and stability.

Julv 11. 2007



2.4. Error Estim ation & Adaptive Schemes 33

2.4.5.1 M oving m esh and dynam ic m esh refinement

Many adaptive methods in FEM and BEM have been proposed to address general 

problems of this nature. Two classes of adaptive methods for dynamic problems 

can be distinguished; namely, (i) moving mesh methods and (ii) dynamic mesh 

refinement with h- , p- or hp- adaptive schemes.

In moving mesh methods [1], nodes evolve in the space-time domain and dis

cretization of the governing equations is coupled with the moving mesh. The ad

vantage of this method is that it uses fewer nodes and larger time steps if the nodes 

travel smoothly. But consequent mesh distortions can introduce considerable dif

ficulties. Above all, controlling the movement of mesh itself is a computationally 

intensive task.

In dynamic mesh refinement methods the location of the original mesh is fixed. 

The h- adaptive method involves adding more nodes when they are necessary and 

removing them when they are no longer needed. The p- adaptive method captures 

rapidly changing functions by refining the shape functions. For example, in order 

to accommodate discontinuities, the Discontinuous Galerkin method was developed. 

However, it doesn’t solve the problem of rapidly moving high gradients in general. 

Farhat et. al. (2001) [25] suggest using the discontinuous enrichment method to 

address the multi-scale problem. Chessa & Belytschko (2004) [13] proposed a space

time element of X-FEM to capture arbitrary discontinuities in the time domain. 

Yue & Robbins [94] observed that adaptive schemes should be applied to both space 

and time domains.

Comments: Moving mesh methods are popular for solving dynamic FEM, but 

they are not very suitable for solving dynamic BEM. Since BEM is a global operator 

applied on the boundaries of the problem domain, it is of little use to move nodes 

around to achieve better accuracies for dynamic problems. Thus, dynamic mesh 

refinement is used in this research.

2.4.5.2 Local tim e steps

If dynamic problems are solved using space adaptive schemes, it is necessary to 

adapt the time discretization to the space mesh as well. The time step A t  must
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be adapted to the smallest mesh size in the whole spatial domain, even if the finer 

elements are only concentrated in a small domain. If the spatial meshes are refined 

locally, the time step A t  must also be refined to maintain the accuracy and stability 

of the numerical scheme. This means that even if the spatial refinement scheme 

is applied in a small domain, the complexity of the whole problem increases quite 

substantially. To avoid this problem, some researchers introduced local time steps 

that are adapted to the local mesh spatial refinement.

Bacry & Mallat (1992) [21]suggested a wavelet based space-time adaptive nu

merical method for PDEs. They focused on problems in which high resolutions are 

needed only in region where singularities and high gradients occur. It is necessary to 

adapt the time steps according to the spatial adaptive schemes in order to maintain 

the stability and precision of the scheme.

Piperno (2006) [67] suggested a local time-stepping discontinuous Galerkin Time 

Domain method for wave propagation problems. Some unstructured, locally-refined 

meshes were used to handle complex geometries. Usually the time step is restricted 

by the smallest elements in the mesh for the sake of the stability. A local-time step

ping algorithm is constructed to use large time steps for most parts of the the mesh 

while smaller time steps are used where the elements are finer. Comments: Local 

time steps are necessary to improve the overall efficiency of the adaptive scheme for 

dynamic BEM.

2.5 The space-time concept in numerical methods

2.5.1 Introduction

The numerical solution of the wave problems usually leads to the discretization in 

space using FEM or BEM, and discretization in time using finite difference method 

(FDM). It is conditionally stable and therefore stability demands a small time step 

dictated by the smallest elements in the mesh. It causes no difficulty for a uniform 

mesh with a fixed time step which is prescribed according to the mesh size. However, 

it is impossible for adaptive schemes to keep a single time step size while refining 

meshes in space.
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Furthermore, traditional time stepping methods will have numerical difficulties, 

such as severe numerical damping or instability. For example, when standard second 

order time stepping methods, such as Crank-Nicolson and Newmark methods, are 

applied for problems involving the propagation of wave impulses over a large distance 

and time, they exhibit significant dispersion errors as well as spurious oscillations 

near to the moving wave fronts [67] . Thus, space-time adaptivity is needed for the 

reliable and efficient numerical solution for time-dependent wave propagation.

2.5.2 Space-time research in FEM

In the field of FEM research, one of the most promising high-order space-time meth

ods is the time-discontinuous Galerkin space-time finite element methods (DGFEM) 

which employs finite element discretization of the time domain as well as the usual 

discretization of the spatial domain ( Hughes, 1988, [37]). The DGFEM possesses 

high-order accuracy and is unconditionally stable, and its principal features are:

• Higher-order approximations in both space and time,

• Unstructured meshes in both space and time are possible,

• Physically based dissipative mechanisms,

• Algebraic form provides natural setting for predictor/corrector and iterative 

solvers for high-performance parallel computation.

These features offer the promise of significant advances in efficiency, reliability, and 

flexibility in numerical simulation designed for time-dependent wave-propagation 

over large distances and time and for complex geometries. High-order space-time 

finite element methods are capable of delivering very high accuracies for wave propa

gation simulations over large distances and time, particularly for problems involving 

sharp gradients in the solution which typically arise in the vicinity of fluid-structure 

interfaces and near inhomogeneities such as structural joints, and material discon

tinuities. For such problems, solutions obtained with standard numerical methods 

have difficulty resolving the discontinuities or high gradients.
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The notion of allowing discontinuous finite element approximations in time origi

nated in the classical work of Lesaint & Raviart (1974) [62], over nearly two decades 

ago for first-order hyperbolic equations. Johnson and co-workers [42] generalized 

the theory of discontinuous finite element methods by introducing mesh-dependent 

norms and were able to derive a priori error estimates for first-order hyperbolic sys

tems and conservation laws. Time-discontinuous methods have since been applied 

to parabolic systems and advection-diffusion systems [76] [78], Space-time finite 

element methods have gained popularity for computational fluid dynamics (CFD) 

simulations where accurate resolution of shocks, multiscale phenomena, and moving 

boundaries is important [10]. The idea of using time-discontinuous space-time finite 

elements has been extended to second-order hyperbolic equations governing time- 

dependent wave propagation and in particular to the structural acoustics problems, 

including problems with infinite domains [5] [66] . These methods give a consistent 

and unified methodology for obtaining accurate and stable solutions in both time 

and space dimensions, and provide a solid mathematical framework for adaptive 

space-time solutions.

Discontinuous Galerkin methods use finite element discretizations in space and 

time simultaneously with basis function which are continuous in space and discon

tinuous in time. Discontinuous Galerkin methods are implemented over space-time 

slabs Sn = D x Tn, where Q is the space domain and Tn are time steps. The ba

sis functions are discontinuous across the solution at time t (Fig. 2.9). It has been 

shown [37] that the space-time finite element method possesses properties missing in 

traditional semi-discrete approaches. In particular, Discontinuous Galerkin methods 

often lead to A-stable, higher-order implicit time-stepping schemes and are suitable 

for the various type of adaptive schemes.

Wiberg, Zeng & Li [87] employed the space-time concept for error estimation and 

adaptivity in elastodynamics . The adaptivity in space was done by mesh refinement 

(h-version); by increasing the order of the approximation polynomials (p-version) or 

a combination of the two (hp-version). In the time domain, the integration is either 

made by mode superposition of the characteristic functions or by direct integration. 

The adaptation in time may either involve changing the global time-step (h-version)
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Figure 2.9: (a) Illustration of space-time adaptivity  (b) Illustration of time-
discontinuous approximation

or increasing the order of the approximation polynomials (p-version). They also 

presented some new error estimators and error indicators based on interpolation 

theory and total energy obtained from postprocessed stresses.

Ericksony & Guoy (1992) [87] presented an algorithm to construct space-time 

meshes over a rb itrary  spatial domains which are suitable for space-tiine discontin

uous Galerkin FEM  methods. Given an arb itrary  simply meshed space domain 12, 

the algorithm extruded it into the space-time domain S n = Q x  Tn, keeping the size 

of the space-time elements in proportion to th a t  of elements in space mesh. Becache 

(2004) [22] also employed space-time mesh refinement for some problems in elasto- 

dynamics. He used different time step sizes for the refined spatial meshes, in order 

to keep the space-time ratio constant and to decrease the numerical dispersion. Yue 

& Robbins (2005) [94] employed an adaptive space-time scheme of finite element 

meshes to solve elastodynamic problems. Huang & Costanzo (2002) [34] also used 

space-time finite elements for the solution of elastodynamic problems with strain 

discontinuities.

Comments: Although the discontinuous Galerkin method offers a good framework  

to solve the elastodynamic problems adaptively, it is not ideally suited fo r  modeling 

wave propagation in open fields. Some special infinite elements or wave-absorbing 

elements have to be employed to model the infinite boundary condition. Moreover, 

the discontinuous Galerkin F E M  still does not avoid spurious oscillations around
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moving wave fronts totally. Commonly, a least-square method is used to suppress 

these oscillations.

2.5.3 Space-time research in BEM

There is far less literature on space-time adaptive schemes in the dynamic BEM. The 

obstacle is obvious: coupling current time step with all previous time steps in dy

namic BEM makes it far more complicated than its counterpart in FEM. Ha-Duong 

& Ludwig (2005) [82] present a space-time Galerkin BEM for transient acoustic scat

tering by an absorbing obstacle. Space-time boundary elements are implemented in 

the model to increase the stability for a wide range of situations.

Comment: Galerkin BEM in space-time appears to be quite cumbersome since 

it involves a 5th-dimensional integral (four dimensions for the space domain, one 

dimension for the time domain). So far, no work has been reported on the space-time 

collocation BEM method, which is explored in this thesis.

2.6 Parallel Computing in BEM

2.6.1 Introduction

For dynamic BEM, the computation is demanding because new influence matrices 

are computed at each time step. In order to obtain more efficient solutions, some ac

celeration technology is needed. Parallel computing techniques are the right solution 

to address this challenge.

However, parallel computing is a complicated process where the efficiency and 

accuracy of results depend on the chosen hardware and software. Efficient imple

mentations vary from one parallel system to another. The key to achieve increased 

speed for numerical models is the implementation of appropriate parallel algorithms 

which take advantage of the specific computational features of parallel computers. 

Most parallel computers belong to two categories: shared memory and distributed 

memory computers. Shared memory systems have relatively few but very powerful 

CPUs which each has a large memory. Distributed memory computers consist of a
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large number of ordinary computers (such as PCs) which have their own memory. 

The computing task will be divided and assigned to different computers, controlled 

by the communication between the processors. The author has a 8-CPU Linux PC 

cluster available to him: this is a distributed memory MIMD (multiple instruction, 

multiple data) parallel computer.

2.6.2 Theory of BEM parallel computing

The factors which need to be considered for optimum performance include domain 

decomposition, load balancing and parallel solvers. Some parameters are also intro

duced to evaluate the performance of parallel algorithm.

2.6.2.1 D om ain decom position

Domain decomposition means division of the original, complex domain into smaller, 

simpler sub-domains. The simplified solution in each sub-domain is solved by differ

ent computers. The whole solution is then reconstructed by setting up equations for 

the interfaces between different sub-domains. A well-designed decomposition scheme 

will minimize both the time spent on local computers and on inter-computer com

munications. Further, time spent on inter-computer communication will be lower 

by minimizing the boundary size of sub-domains and the total number of messages 

sent.

2.6.2.2 Load balancing

Load balancing is a key issue controlling the efficiency of distributed computers, 

such as a Linux cluster. It is more than dividing up the computing task and as

signing them into each computer evenly. For example, for the current hardware 

implementation, communication between the computers is relatively slow. There

fore, it is necessary to optimize both the load imbalance and communication rather 

than simply using more CPUs.
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Figure 2.10: Configuration of parallel computer systems

2.6.2.3 Parallel Solvers

Besides domain decomposition, the whole BEM analysis process, such as the assem

bly of influence matrices, the solution of the linear system etc., can be distributed 

to different computers ( Fig. 2.10). The linear system solver is usually the most 

time consuming routine in BEM codes. We choose certain highly efficient machine- 

specific linear system solvers for non-symmetric and dense matrices. For example, 

LAPACK ( Linear Algebra Package) [48] is a high performance parallel library espe

cially written for solving linear algebra problems on various parallel computers. The 

ScaLAPACK (Scaled LAPACK) [75] package is a subset of LAPACK routines re

designed for distributed memory MIMD parallel computers. ScaLAPACK is written 

in FORTRAN/C and can be freely downloaded from the Internet. Thus, using stan

dard and sophisticated libraries as linear solvers, parallel computing performance can 

be substantially improved.

2.6.2.4 Perform ance of parallel schem e

The performance of a parallel scheme can be measured in terms of two indexes, i.e. 

speed-up and efficiency. The speed-up index is a measurement of the improvement 

gained by the parallel program with regard to a single processor. The speed-up index
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is defined as

_ , user time fo r  one processor / x
Speedup = ------------- -— - ---------------  (2.13)

user time fo r  N processors

It is controlled by both the inherent parallelism of the application and the effi

ciency of the system facilities. High speed-up implies that the computational time 

taken will be very much reduced but it may be achieved by using a large number 

of processors, and therefore, the efficiency may not be high. The efficiency of the 

scheme can be measured as speed-up per processor, that is

E ff ic ien cy  = ------ ------ sPeeduP-----------  (2.14)
number o f processors used

2.6.3 Research in BEM parallel computing

The first parallel implementation of BEM was done by Simkin (1976) [77] for an elec

tromagnetic field problem. He solved the Maxwell equation with Dirichlet boundary 

condition in a circle using a shared memory computer. In early work, the paralleliza- 

tion of BEM mainly focused on solving the linear equation system with parallel 

solvers. Calitz & Du Toit (1990) [11] employed a shared memory computer to ac

celerate the solution of an axisymmetric electromagnetic problem. Later, parallel 

computing on distributed computers were introduced by Davies (1997) [18] in the 

field of potential problems.

Cunha & Telles (2004) [50] developed a parallel version of a code presented 

by Brebbia & Dominguez (1989) [8] for solving potential problems by using high 

performance parallel libraries such as LAPACK. In the paper, it is mentioned that 

the use of LAPACK lead to a reduction of 46% in the execution time.

Kreienmeyer & Stein (1997) [47] did some research on the parallel implemen

tation of several solvers (GMRES and Bi-CGSTAB) for BEM on a MIMD parallel 

computer. In their paper, they concluded that for solving large non-symmetric and 

dense systems, iterative solvers have a superior performance compared with direct 

solvers such as Gauss elimination.

Inevitably, time-domain BEM requires both large memory and incurs high com
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putational cost. Kawaguchi (2003) [44] constructed a parallel computer system in 

which influence matrices from each past time step was stored and computed in indi

vidual PCs, and assembled on a master PC later. It achieved high speed-up because 

only vector values were communicated among computers.

Iterative methods are commonly used for solving large-scale systems of linear 

equations. Gonz&lez, Pena & Cabaleiro (2004) [31] employed parallel sparse ap

proximate preconditioners to speed up the solution process.

Nishimura (2004) [80] developed a fast BEM parallel program for large scale 

elastodynamic problems in the time domain. A Plane Wave Time Domain Algorithm 

(PWTD) was used to reduce the amount of computation, which utilizes the plane 

wave expansion of the fundamental solution and the hierarchical structure of the 

space-time in the elastodynamics equation in 3D. A parallel algorithm for shared 

memory computers using MPI-OpenMP hybrid parallelizations was developed to 

enable an analysis of large-scale problems with more than 1 million spatial degrees 

of freedom.

2.7 Summary

In this chapter, the literature has been reviewed in the relevant areas of elastody

namic wave propagation dealing with accuracy, efficiency and stability. Since domain 

type numerical methods such as FEM and FDM need many elements to solve wave 

propagation problems in 3D open fields, and non-reflective artificial boundaries are 

also needed to satisfy infinite far field boundary conditions, dynamic BEM is a good 

choice to solve this problem. However, the conventional BEM is still very expensive 

since impulse waves just occupy a small area in space-time. An adaptive scheme is 

necessary to capture the features of moving wave fronts and to offer a higher resolu

tion there. Not only do the meshes need to be refined in space, the time steps near 

the spatial refinements are also changed adaptively in order to maintain the stability 

and accuracy of the whole solution. Finally, literature on parallel algorithms have 

been reviewed in the context of improving the efficiency of dynamic BEM solvers.
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Chapter 3

Boundary integral formulations in 

elastodynamics

3.1 Introduction

The general equations governing linear scalar wave propagation, linear elastodynam- 

ics and their boundary integral formulations are briefly introduced in this chapter. 

Section 3.2 is devoted to the governing equations of the scalar wave problem and 

linear elastodynamics. The Green’s identity and reciprocal relation, which lay the 

mathematical foundation of BEM, are described in Section 3.3 . Green’s functions 

and their properties for scalar wave propagation and linear elastodynamics are given 

in Section 3.4. The reciprocal relationship derived in Section 3.3 leads to the inte

gral representation of the general problem of wave propagation and elastodynamic 

problems (Section 3.5). Finally, the integral equations for the wave propagation and 

elastodynamic problems are derived (Section 3.6). Only basic equations and ideas 

needed to develop the boundary element solution are presented here. More complete 

details can be found in the books by Manolis & Beskos [51], Dominguez [20] and C 

Pozrikidis [68].

3.2 Governing equations

The governing equation of scalar wave propagation
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For a regular domain Q with boundary T, the governing equation for scalar wave 

propagation with non-zero body sources in the region £1 is:

d2u(x, t) d2u(x, t) d2u(x, t) 1 1 d2u(x, t) . .
dx2 dy2 dz2 c2 c2 dt2 [ J

where u(x, t) is the displacement in 4D space-time, x denotes the spatial coor

dinates (x, y , z), u tu is a tensor notation for \ / 2u  = §]£ +  fjj! + b is  the body 

force and c is the wave speed.

Alternatively, in vector form:

v2u+> = S  p-2>
The boundary conditions are:

u(x, t) =  u(x, t) on T i

^ ^  =  ?-(x,i) on r2 (3.3)

where n is the unit normal vector at x, IA (J T2 =  T and Ti f] F2 = 0 .

The initial conditions are:

u(x,0) =  u0(x)

and

^  =  V„(X) (3.4)

The governing equation of linear elastodynamics 

The governing equations of elastodynamics are:

d2\li
f i Ui j j  +  (A +  /i)u jji +  pb, =  (3.5)
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where u(x, t) is the displacement in 4D space-time, p(x, t) are tractions on the 

boundary, x  denotes the spatial coordinates (x , y , z ) , bj  is the body force, p  is the 

density, pi and A are Lame’s constants.

Alternatively, in vector form:

Qp I I

( iV i t ! +  ( H / i ) w »  +Pb =  -Qp (3.6)

The displacements u  are prescribed on the T i , and the tractions p are prescribed 

on the r 2, thus:

Ui (®, t) |rx = Hi (®, t) pi ( x ,  t ) =  |r2 Pi (sc, t) (3.7)

To complete the problem statement, initial conditions are prescribed at time 

t = 0:

Ui ( x ,  0) |r — u 0i {x)  Ui (a,0) |r =  v 0i ( x )  (3.8)

for all the points x  in the body fi, where the boundary Ti |J  T2 =  T and Ti f) T2 =

0 .

The Lame’s constants can be written in terms of Young’s modulus E  and Pois- 

son’s ratio v

E  E
^  2(1 + u) ’ ^ (1 +  i/)(l -  2i/) ^

3.3 Green’s identities and reciprocal relations

3.3.1 Green’s identities and reciprocal relations for Laplace 

equation

Green’s first identity states that any two twice-differentiable functions /(x , y, z) and 

y, z) satisfy the relation:
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Figure 3.1: A control volume (a) with a closed surface (b) with a collection of closed 
surface

0 V 2 /  =  V ’ W v / ) - v4>- V /  (3-10)

In index notation, this can be written as:

a2/ _ d f  a/ _ &£ (3 U)
dxidxi dxi dxi dxi dx 

Interchanging the roles of /  and 0, we obtain:

/  V 2 4> =  V ■ ( /  V <t>) -  V /  • V<t> (3-12)

Subtracting 3.10 from 3.12, we derive Green’s second identity:

^ v 2 /  -  /  v 2 </> =  V • (<PV f  -  f  V <P) (3-13)

If both functions /  and 0 satisfy Laplace’s equation, the left-hand side of Eq. 

3.13 vanishes, and we get the reciprocal relation for the Laplacian operator:

V - ( 0 V / - / V 0 )  =  0 (3.14)

Integral form of the reciprocal relation

We integrate both sides of Eq. 3.13 over an arbitrary volume V  which is bounded 

by a closed surface or a collection of closed surfaces T, as illustrated in Fig. 3.1. 

Using the Gauss divergence theorem, the volume integral can be converted to a
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surface integral, and we obtain the integral form of the reciprocal relation:

f  V - ( 4 > V f - f V < t > ) d V = [ n - ( < f i \ / f - f s 7 < t > ) d r  = 0 (3.15)
Jv  J r

or

J  n-(f)\7 f d r  = J  n - / v 0 d r  (3.16)

3.3.2 Riemann convolution and dynamic reciprocal relation

The reciprocal relation in elastodynamics is an extension of the reciprocal relation for 

Laplacian operators. Before deriving it, some properties of the Riemann convolution 

are introduced at first. We assume two scalar functions 0(x, t) and /(x ,  t) are 

continuous in the space Q, x T +; where is a region, T~  is the open time interval 

(—oo,0) and T + is the half open time interval [0,oo). The Riemann convolution is 

defined as:

( f ) * f=  f  0 (x ,t —r ) / ( x , t ) dr V(x,t) E D x T +
Jo

<£*/  =  0 V ( x , t ) G f i x r  (3.17)

Some useful properties of Riemann convolution are:

0 * /  =  /*<£

^ ( 0 * / )  =  T ^ * /  +  ^(x ,° ) / ( x ,i) (3.18)

As a direct corollary from these properties, we can derive the second time deriva

tive of the Riemann convolution:
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(3.19)

The reciprocal of the above formula is:

(3.20)

Subtracting Eq. 3.19 from Eq. 3.20, and noting that the left sides are the 

identical, we obtain:

3.3.3 Reciprocal relation for wave equation and elastodynam-

From the reciprocal relations for the Laplacian operator Eq. 3.14 and the reciprocal 

relations for the second time derivative (Eq. 3.21), we can derive the reciprocal 

relation for the wave equation. Assume that any two twice-differentiable functions 

/(x , t) and 0(x, t) both satisfy the wave equation, then

^ ( V 2/ + l b - l g )  =  0 (3.22)

Interchanging the roles of /  and </> , we obtain

ICS

(3.23)

Subtracting 3.23 from 3.22, and using Eq. 3.14 and 3.21, we have:
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V - W v / - / V ^ ) + ^ ( W - ^ ( x ,  0 )/-</>(x,  ° ) ^ + ^ ( x > O ) 0 + / ( x ,  0 ) ^ - 6 * * / )  =  0

(3.24)

Eq. 3.24 can be integrated over an arbitrary volume V  bounded by a closed 

surface T, using Gauss divergence theorem, leading to a surface integral. The integral 

form of the reciprocal relation for the wave equation is:

J  <j)n-\7jdS + /JL(6^+f(x,0)^/(x,0)f)^ (3.25)

=  I s f n ' V<^  +  I v  ^ +  +  ^

The integral form of the reciprocal relation for elastodynamics can be derived in 

a similar way. The only difference is that fa  and fk are vector functions instead of 

scalar functions.

J  fan  • V fkdS  +  J  p(6fc* 0 fc +  ^ ( x ,O ) < ^  +  / fc( x ,O ) ^ ) d f t

J  fk,n ' \7 fadS  +  J  (̂̂ ★/fe +  ^ ( x , O ) / fc +  0 fc (x ,O )^ )d fi (3.26)

3.4 Green’s Functions

Green’s functions are fundamental solutions of the governing PDEs when the body 

force is replaced by a unit point load. The difference between FEM and BEM is 

that FEM uses piece-wise polynomials as trial functions while BEM uses Green’s 

functions to do so. The Green’s functions can also be considered to the counterpart 

of the inverse of the stiffness matrix in FEM with infinite dimensions.

3.4.1 Green’s functions for 3D scalar waves

By definition, the Green’s function for the wave equation in 3D satisfies the singu

larly forced wave equation [68]:
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(3.27)

where

•  x  =  (z, y , z) are the coordinates of the “ field point “.

•  x 0 =  (xq, VqZq) are the coordinates of the “ source point or “singular point “.

• S(x — x 0) , explicitly written as S(x — xq,y — yo,z — z$), is the Dirac delta

function in 3D, and 8(t) is the Dirac delta function in the time domain.

The Dirac delta function in 3D has the following properties:

• 5{x — x 0,y  — y0,z  — zq) is zero everywhere except at the point x  = xo,y = 

Vo,  z = z0 , where it becomes infinite.

• The integral of the Dirac delta function in 3D over a volume D that contain

the singular point x 0 =  ( x q , yo,zo) is equal to unity,

delta function in 3D over a volume Q that contains the singular point x0 =

volume Q does not contain the singular point Xo =  (%o,yozo), the value of 

integral is zero.

• The Dirac Delta function S(x — xq, y — yo, z — z q )  arises from the function:

in the limit as the dimensionless parameter A tends to infinity, where

S(x -  x 0,y  -  2/0, z -  z0)dxdydz =  1 (3.28)

• The integral of the product of an arbitrary function f ( x , y , z )  and the Dirac

(rr0, yozo) is equal to the value of the function at the singular point. If the

5 ( x - x 0, y -  2/0, ^ -  z0) f(x ,  y, z)dxdydz = f ( x 0, y0z0) (3.29)

r = |x — x 0| — y / ( x -  x 0)2 +  (y -  y0)2 +  (z -  z0)2
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Figure 3.2: A series of functions which approximate the Dirac delta function 

and L is an arbitrary length.

Fig. 3.2 shows a series of functions F  plotted against the distance X  =  x  — x 0 for 

A =  2, 5,10, 20, 50,100, 300, 500. The maximum height of each graph is inversely 

proportional to its width, so that the area underneath each graph is equal to unity.

3.4.1.1 T h e  free space G re en ’s function

The Green’s function for an infinite open domain is [68]:

G(x, t } x0) =  Y ~ S { t  - - )  = -  r)
47rr c 47T r

(3.30)

where

r = |x — x 0| =  y / ( x -  x 0)2 + (y -  Vo)2 +  (z -  z0)2

3.4.1.2 G re e n ’s function  in  bou n d ed  dom ains

The Green’s function for bounded domains is composed of a singular part which is 

the same as the free-space Green’s function (Eq. 3.30), and a complementary part 

which may be written as a harmonic function H , which is non-singular throughout 

the solution domain [68]:
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<2(x,£,xo) =  Y ~ 5 ( t  -  - )  +  H ( x , xq) (3.31)
47rr c

In general, the particular form of H  depends on the geometry of the boundary. 

For certain simple boundary geometries involving planar and spherical shapes, the 

function H  can be found by the method of images, i.e. by placing free space Green’s 

functions and their derivatives at specially chosen positions outside the solution 

domain. For example, the Green’s function for a half-space domain bounded by a 

plane surface located at x = a is:

1 T 1 rplm
G (x , t, x 0) =  — S(t  - - )  +  -— j - 5 ( t --------) (3.32)

v ' 47rr c 47rr/m v c '

where r = |x — x0| , r Im =  |x — xj5m| and xj771 =  (2a — xq, oo) is the image of the 

singular points x 0 with respect to the surface.

3.4.1.3 In teg ra l p ro p e rtie s  of G re en ’s functions

We consider a single or multiple connected control volume fI in 3D, bounded by a 

collection of closed surfaces T. We assume that all surfaces are smooth, i.e. they do 

not exhibit conical, edge-like or cusp-like corners.

Integrating Eq. 3.30 over the control volume Q, and using Gauss divergence 

theorem, and the properties of Dirac delta function, we obtain the integral identity:

i ^ d K _ i n ' v ( x ’ t ’ Xo)<ir =  <

1 when  xo is inside Q 

\  when  x 0 is on T (3.33)

0 when x 0 is outside Q,

where the unit normal vector n  points outwards from the control volume ft. 

When the point xo is located on the boundary T, the integral on the left-hand side 

of Eq. 3.33 is integrated as a principal value integral.

3.4.1.4 G re en ’s fu n ctio n  d ipole

Differentiating a Green’s function with respect to the coordinates of the source point

Xo =  (x0,y0z0), we obtain a vectorial singularity called the Green’s function dipole.
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GD — \ / qG(x , t, Xq) —
d G (x ,t ,x 0) d G (x , t ,x 0) d G (x ,t ,x 0) 

dx0 ’ dyo ’ dz0
(3.34)

where the subscript “ 0 “ means differentiation with respect to the Cartesian 

components of x0.

& ( x } t, xq) =  d • Vo^(a:, t, xo) (3.35)

where & (x ,t ,x 0) is the dipole field function which describes the field direction 

and strength of a dipole. Vector d is the directional distance between two source 

points. The scalar field of a dipole may represent the temperature or electric concen

tration field due to a point source dipole of heat or electrical charge located at the 

point xq. The direction and strength of the dipole is determined by the orientation 

and magnitude of the vector d.

Differentiating the right-hand side of Eq. 3.30, we get the 3D free space point 

source dipole
Gn = ^ s { t _ r

4?rr3 c 4ttt2 dr

where z =  1,2,3 corresponds to x, y, z, x  =  x  — Xo and r = |x — xo|.

3.4.2 Green’s functions for 3D elastodynamics

The Green’s function for 3D elastodynamics is the solution of the following equation:

Q2\\-
Pciu i,jj +  pci +  <5(x -  xo)S(t )  6i = (3.37)

where u  is the displacement, C\ is the dilatational wave speed and C2 is the shear 

wave speed, and e* is an unit direction vector, which points in the x, y, z direction 

when z =  l, 2, 3.

3.4.2.1 T he free-space G reen ’s function

The free-space Green’s function Gik (®, £; x l) for an infinite domain is: (Dominguez 

[20])
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11 G(x, t )

Figure 3.3: Impulses received at t =  |x — x 0|/ci and t = |x — x0|/c2

+  (3 -38)

+  % > ( < - - ) }
rc{ c2

where r  =  \x — x %\, H (x)  is the Heaviside function and <5(x) is the Dirac-delta 

function. Any impulse emitted from x0 at t =  0 is felt at x  only from the arrival of 

the first wave (t = |x — xo|/ci) up to the arrival of the second wave (t = |x —x o | /c 2), 

as shown in the Fig. 3.3.

3.4.2.2 Free-space stress tensor and tractions tensor

The corresponding stress tensor is derived from Eq. 3.38 using the constitutive 

relation:

®km P(ci C2)Uj,ĵ l<m -f- T  Umifc) (3.39)

We also have

&km Glkm l̂ (3.40)

where cr^m represent components of the stress tensor in the k and m  direction 

when a point load is applied in the I direction. From Eq. 3.38, Eq. 3.39 and Eq.
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3.40, we obtain:

_ *  I f  c J 2 r  c r ,£r ,fcr \ m  b k m r ,l +  &klr ,m + & k l r ,k-1 t  \ u ( +  T \  r / / ^  r M^ { - 6c2[5---^----------------- -2----------

+ 2[ J  w ,m  -  ^  +  ^  +  . [J(t -  L )  -  | 5(t _  J ) ]

+ - r ,  l V , m[S(t -  1 )  -  %(* -  -)] -  -  4 m  -  - )  -  ^  -  f ) lrc2 c2 q  q  r 2 q  Ci Ci Ci
far,m + _ _r _ jr  ̂ _ r_ (3 41)

r 2 c2 c2 c2

where where afkm represent components of the stress tensor in the the k and 

m  direction when a Dirac Delta function load is applied in the I direction. The 

corresponding traction kernel function p*k ( x , t ] x o), ( when I indicates the traction 

in the direction I , and k indicate the point force direction k), can be obtained from 

Eq. 3.41, using equilibrium equation, which yields:

1 ( dv \  dv
p*lk (x, t\ x l) = — { ( — 5lk +  r!kn i j  A + r ti r k— B  +  r tin kC} (3.42)

where the coefficients A, B , C are:

6c;
Cl c2 c2 Cl

1 r r • r
[S( t  ) ------<5(t -  —)]

T l  C2 C 2 C2

-  ( 3 - 4 3 )
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3.5 Integral representation

3.5.1 For Green’s functions

To develop the boundary integral representation, we apply Green’s second identity 

in 4D space-time ( Eq. 3.24), and recast it in the form:

^ ( - f r * 0 + ^ ( x ,O ) /+ ^ ( x ,O ) ^ - | f ( x ,O ) 0 - / ( x ,  0 )^ + 6 * * /)  =  V W ’V / - / V 0 )

(3.44)

Next, we assume that /  is a solution of the wave or elastodynamic equation, and 

(f) is assumed to the Green’s function G of the same governing equation, namely the 

solution of the wave equation or elastodynamic equation in the infinite domain for 

a unit impulse point force as:

\ b *  = S(x -  xo)S(t) (3.45)
c

centered at the point Xo at t = 0. Using Eq. 3.44, we obtain:

^ ( - b * <j> +  ^ ( x , 0 ) /  + 0(x, 0 ) ^  -  ^ ( x ,  0)4> - / ( x , 0 ) g )

+<5(x -  x 0)S(t) * /  =  v  • {4>V f  -  f V  <t>) (3-46)

We now select a control volume V  bounded by a closed surface T, integrate Eq. 

3.44 (using Eq. 3.45) over the control volume and time from the initial instant t = 0 

up to the current instant (the plus sign here means the upward limit). Applying 

Gauss divergence theorem to convert the volume integral to a surface integral on
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right-hand side, we obtain:

f  J  S(x — xo)S(t) * fdV d t  + J  ^ ( ^ ( x ,  0) /(x , t) +  G(x, 

f  J  G(x, t, x 0) [n • V / ( x ,  t)] -  / ( x ,  t) [n • V ^ ( x > x o)]dTdt

r t f
+ I [  \ ( - b *  G { x , t , x Q))dVdt

fo Jv  °2
t f

+ f  f  4 ( i3r(x.O)G!(x,t,xo) + f ( x , 0 ) ^ ^ t f ^ - ) ) d V d t  (3.47)
'0 ./v

Using the “sifting” property of the delta function <5(t — t0) and <J(x — xo) , and 

noting that G(x, 0) and ^ ( x ,  0) are both zero since Green’s function G remains 

quiescent at t = 0, we obtain the integral representation:

f ( x o , t )  =  f  f  G (x , t , x 0)[n • \ j f (x , t )}dTdt -  f  f  f ( x , t ) [ n - \ / G ( x , t , x 0)]dTdt
Jo Jr Jo J r

+ I  I I  ^2(~b*G(x,t,xo))dVdt
+  Jo J y i {^ {X’0)G(X’ *’Xo) +  /(X ’ (3.48)

In this equation, there are:

• Two domain integrals: one involves the product of the Green’s function and 

the body force; another involves the initial conditions f ( x ,  0) and |£ (x ,0 ).

• Two boundary integrals: these integrals represent the field due to dynamic 

impulse point sources and point-source dipoles distributed over the bound

aries of the solution in the space-time domain. The analogy can be made 

between these two quantities with corresponding boundary distributions of 

electric charges and charge dipoles in electromagnetics, called single-layer and 

double-layer potentials. The densities, defined as the strength per unit of sur

face area, of these potentials are equal to the boundary distribution of the 

normal derivative and to the boundary values of the displacement potential of 

the solution.
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Integral representation of the gradient

An integral representation of the gradient V /  can be derived by differentiating 

Eq. 3.48, which yields

df (xo , t )  f*° f d G ( x , t , x 0) ,  f to f  „  dG(x, t , xo

+
f to f  1 /  i /  \ d G ( x , t , x o ) .  .

7o J v  C2 d x Qi

f l° f  1 , 0 / ,  N <9G(x, £, x 0) ^ ^ Gf(x }^ x 0)
+  I  + f { x ' 0) ^ d r ) ) d V d t

where in the term [rij • summation over the repeated index j  is implied.

3.5.2 For the wave equation

Substituting the free space Green’s function for the 3D wave equation into the 

integral representation Eq. 3.48 for displacement u, the first time integral can be 

carried out, using the “sifting” property of Dirac delta function in time domain. 

Thus:

[  [  G(x, t, a;0) [n • v / ( x ,  t)}drdT
Jo Js

= f  fQ S [ { t - T ) - { r / c ) ] - { n - y f ( x , t ) ) d T d V { x )

=  f  4̂  f 0 ^ - (r/c) “  T1 ' [" ' V/(z> t)]<Zr<Zr(x)

=  J  f i x , 1 - ( r ! c))dT(x) (3.50)

One can compute the normal derivative of the Green’s function before computing 

the second term as follows:

n ■ s?G(x, t, xo) = (3.51)

=  £ {4 ^  - (r/c) - r ] + i ? i slt - (r/c) “ r]}

=  £ {i ^  - (r/c) -  t ] + i L i s[t - (r/c) - r]}
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Substituting Eq. 3.51 into the second integral in Eq. 3.50 yields:

[  f  f (x ,  t) [n • SjG{x, t, x0)]drdT 
Jo Js

=  I  L ^ { ^ s [ t - { r / c ) - T ] + ^ c ^ 5 [ t - { r / c ) - T ] } u d T d r { x )  

=  I   ̂- r / c ) + dr(x) (3-52)
where the property of the Dirac delta function:

r  ^ - « ) f { x ) d x = { _ l f ] dkf ( * \
—oo d x k d x k

has been employed. Similarly the body force integral can be treated in the same 

way:

f  f  -^(b* G(x, t, Xo))drdV = f  -—  f  5[t — ( r /c) — r]b(x,t)dTdV
Jo Jv  c Jv  Jo

[  - b ( x , t - r / c ) d V  (3.53)
Jv  r

1 f  1
47T

Taking account of Eqs. 3.50, 3.52, 3.53, we get the integral representation for 

the wave equation:

1

47T

1
+ ---

47T

1
+ ---

4 7 r

/■*<
+ /

Jo

d T [ x )

(3.54)
'V

1 d f  ( nNaG (x,t,xo) aG (x,t,xo), 7 ^ ’ 0 ) " dxoi +  / ( X - 0) d ^ d t  ) )d td V

The above equation is also known as Kirchhoff's integral representation.

Julv 11. 2007



3.5. Integral representation 60

3.5.3 For elastodynamics

From the reciprocal relation for the elastodynamics equation ( Eq. 3.55):

J  (p kn -v fkd r  + J  p(bk *(pk + ^ ( x , 0 ) ( t ) k + f k { x , Q ) ^ ) d Q

f k ’ \7 4*kdF

+ J  ^ ( K * f k + ^ ( x , ° ) f k + M x , Q ) ^ ) d f t  (3.55)

Assuming that 4>k is the free space Green’s function G(x , t , x q )  due to an impulse 

load applied at the internal point xq in the direction at time t =  0,

pb*k = 6{x -  x 0)5(t)Sik (3.56)

For quiescent initial conditions, Green’s function 4>k(x , 0) =  0 and 0) =  0, the

integral representation for the displacement ui at point (xo,t):

ui(xo,t) = /  /  Gik(x ,t  -  T,x0)[n • \7 f k(x,r)}drdr
Jo J r

-  J  J [ n  • \ / G ik{x,t -  T,x0)\fk(x,r)drdT

+  f  f  P{-bk{x,T)Gik(x ,t  -  T,x0))dVdT (3.57)
'o J v

*+
J J  ̂— 'T, ^o) H- o) —----------- JdVdr

This equation gives the displacement ui at point (x 0, t ) in the terms of the dis

placements and tractions on the boundary T at time r  G (0, t +). The time integra

tion for any point x  starts when the first wave arrives at r  = t — \x — #o|/ciand ends 

at r  =  t — \x — Xq\/c2 .
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3.6 Boundary integral equations

To derive the integral equations for the boundary distributions of the displacement 

function u  and its normal derivative, based on the integral representation Eq. 3.48, 

we take the limit as the field point xq approaches a local smooth boundary T.

f ( x 0 , t 0) =  [  (  G ( x , t , x 0) [ n  ■ \ j f{x, t) )dVdT -
Jo J r

-  I I  f { x , t ) [ n - \ j G { x , t , X o ) ) d T d T  
Jo Jr

+  1 1  -^z(—b ( x , t ) ' k G ( x , t , x o ) ) d V d T  (3.58)
' 0  J V  c

+ Jo f  ° ) G (X ’ *1 xo) +  f { x ,  o) — ))dVdr

The first term on the right-hand side which involves the single-layer potential 

varies continuously as r  approaches the time to, and as ^approaches and crosses the 

locally smooth boundary T. However, the second term which involves the double

layer potential produces a “j u m p ” term. This can be evaluated by augmenting the 

boundary by a hemispherical surface around the collocation point Xq and integrating 

Green’s function over this spherical surface as its radius e —> 0, as shown in Fig. 3.4. 

For the dynamic problem, we need a s h r i n k i n g  h e m i s p h e r e  in space-time to compute 

the limit of the integral. This is the reason why we take the time convolution from 

0 to to . Here means to take the upper limit of time to to avoid boundary integral 

falling exactly on the time t Q, which allows us to compute the limit of the integral 

in time. The integrals are integrated as principal values:

f  f  f ( x ,  t )  [n  • X j G ( x ,  t ,  x 0 ) ] d S d r
Jo J s - s £

o f
= lim / / f ( x , t ) [ n  - S / G ( x , t , X o ) \ d S d r

{x0—S,r—to} J o J s - S e

+ lim /  /  f ( x , t ) [ n ' S / G ( x , t , X o ) ] d S d T
{x0 —S,T—10} J o J Se

r4  rPV !
=  f ( x ,  t ) [ n  • x j G ( x ,  t ,  x o ) ] d S d r  4- - f ( x 0 , t o)  (3.59)

JO JS-Se Z
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Augmented surface

Boundary point ^
Boundary surface

Figure 3.4: Boundary point augmented by a small hemisphere

where P V  denotes the principal value integral.

Substituting Eq. 3.59 into Eq. 3.48, we obtain the integral equations for smooth 

boundaries.

c{xo)f(xQ, t0) = G(x,t ,xo)[n • V f (x , t ) ]dSdr
Jo Js

/ ( x ,  t ) [n  • \ /G(x , t : Xo) ] dSdr
*o r P V

r0 JS

+

+

f  [  - ^ (—b(x , t )*G (x , t ,xo) )dVdr  
o J  v c
r t '

(3.60)

o Jv t' x°) + f(x’ dG d̂t X°̂  ̂ dVdT

where the coefficient c(xo) =

Boundary corners

If the boundary S  is not smooth and it has edges, corners and other discon

tinuities in geometry, c { x q )  is no longer equal to one half. The general formula 

is

c(:ro) =  £  (3.61)

where the solid angle a  is defined as the surface area of the sector of the unit 

sphere that is centered at the point xq and enclosed by the cone, as shown in the
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xo
xo

Figure 3.5: (a) a conical domain with apex at x 0 (b) solid angle a  defined in a 
enclosed corner in a volume

Fig. 3.5.

Hypersingular integral equations

Integral equations for the boundary distribution of the normal derivative (flux 

or traction) can be derived from Eq. 3.60. Taking the limit as r  approaches time to, 

and Xo approaches and crosses the locally smooth boundary T, differentiating Eq. 

3.60, we obtain the hypersingular integral equations:

(  ̂ , ^ d f ( x 0, t0) /**« [ pv ( ^d G (x , t , x 0)c(xo)ni{x0)—  --------- =  / / 7ii(:r0)-----------  [n • f{x,t)]dSdT
OXo i Jo Js a x 01

[ FP j.u I \ d 2G(x, t, x 0) (~ / / f(x ,t )[ni(x0)— — -z-------- nj{x)]dSdT
Jo Js OXoiOXj

+ j f  J  ^ ( - b ( x , t ) * n i ( x a) d^ * J ' ^ )dVdT 

+ Jo Jv ^ m {x'0)niixo)- ^ r )dVdT
+  f  f  \ ( f ( x , 0 ) n i ( x 0) d  GJ X,tn’-X°J ) d V d T  (3.62)

'o Jv  c2 ’ dxoidt

where

[  [  f{x, t)[ni(xo)^ . n .(x)\dSdT (3.63)
'0 Js OXoiOXj

= rlin\  I [  \  f ( x ^ ) lni(x o)d . nj(x)\dSdr  — ^ - f ( x 0}t0){£-►0} I Jo Js  OXoiOXj  IE

F P  denotes the finite part of the integral; e is the radius of a small sphere 

centered at the point x0, t0 and excluded from the integration domain.
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3.6.1 3D scalar wave

From the free-space Green’s function for the 3D scalar wave equation (Eq. 3.30) 

the integral equation is:

+  [  -b (x , t  — r/c)dV  (3.
4tT J v r

f  - b(x, t — r/c)dV  
Jv  r

(3.64)

where the integrals are integrated in the Cauchy Principal Value sense and the

can also be calculated indirectly from the static boundary integral using constant 

potential considerations. It is also interesting to notice that the 3D scalar wave 

integral equation does not include the time integral. However, the same does not 

apply for 3D elastodynamics as shown below.

3.6.2 3D elastodynamics

From the free-space Green’s function for 3D elastodynamics Eq. 3.38, we obtain the 

integral equation for the displacement iq. However, since its mathematical expres

sion is quite complicated (Dominguez [20]), here we omit its explicit expression:

Cik(xo)ui(xQ,t) = /  /  Gik(x,t -  T,x0)[n • \ / f k(x,r)]dSdr

coefficient c(xo) =  \  when the boundary is smooth at xq and c(xo) =  ^  when the 

boundary is not smooth, and a  is the solid angle as defined in Eq. 3.61. Its values

i+'0

(3.65)

+ /Jo L
p[(x, t -  r , x 0) ^ - ( x ,  0)Gik +

dGik(x,t  -  r, x q ) f k(x,0)]dVdr
dt
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where the coefficient cik(xo) -  \$ik when the boundary is smooth at £0 and 

Qfc(^o) — 4̂  when the boundary is not smooth, a  is the solid angle.

3.7 Summary

In this chapter, based on Green’s identities and reciprocal relations for the 3D wave 

equation and elastodynamics , the integral representation formulas are derived. By 

taking the limit of these integrals when the source points approach the boundary, the 

boundary integral equations are obtained. Implementation of these equations will 

require the boundary discretization and shape functions to approximate the function 

distributions on the boundary: this will be described in the following chapters.
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Chapter 4 

Adaptive BEM for scalar wave 

propagation in 2D

4.1 Introduction

This chapter describes a new boundary element formulation for 2D scalar wave 

propagation based on an adaptive scheme in space-time (Section 4.2). Later a 

numerical implementation of the formulation derived above is presented (Section 

4.3). This includes: spatial and temporal discretization, singular and non-singular 

kernel integrations, assembly of the system equations and solution algorithms. The 

error estimates for 2D wave BEM and adaptive schemes are presented in Section 

4.4. Some examples of the application of the method are given to demonstrate its 

efficiency (Section 4.5).

4.2 Formulations of 2D scalar wave propagation in 

space-time

4.2.1 Governing equation

The scalar wave propagation equation in 2D is:
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with initial conditions

it(x ,0)|r = u 0 (x) du ^  °-  |r =  (x) (4.2)

and boundary conditions

u (x, t) |rx =  u (x, t) du^  ^  = |r2 q (x, t) (4.3)

where x denotes spatial coordinates (x, y), n  is the unit normal vector on the 

boundary T, boundary Ti U T2 =  T and Tx D T2 =  0 , u (x, t) are unknown displace

ments on the boundary, b is the body force, c is the wave speed in the medium, 

ii0(x) and v0 (x) are given displacements and velocities on the boundary when time 

t =  0, u ( x , t )  and <?(x, t)are given displacements and pressure on the boundary Tx 

and r 2 separately at all time.

4.2.2 Green’s function and the Boundary Integral Formula

tion

The boundary integral equation derived in the Chapter 3 also applies to 2D prob

lems. It is written as:

ro r  r  o
c - u ( x 0,t) — / /  u*(x,(t — r) ,x 0) • q(x ,r )dSdr  — / / q*(x, (t — r) , x 0) • u(x ,r )dSd

Jo Js  Jo Js

+  [  [  \ ( - b ( x , T ) - u * ( x , ( t - T ) , x 0))dVdT (4.
Jo Jv c

f  1 ( du . . N du*(x, (t — r) ,x 0) \
+  J J  ?  ( ^ ( x >0) ’^ (x > ( * - r )>x o ) + ^ ( x >0)  qI j d V d r

where u ( x 0,t) are unknown displacements on the boundary, u*(x, t ,x 0) and 

g*(x,t,xo) are Green’s functions for displacement and pressure; S  is the boundary 

surface and V  is the volume domain the enclosed by the boundary surface. The 

2D domain under study can be treated as a special case of a 3D problem where the 

geometry and boundary conditions are unchanged in the z  direction, as shown in 

Fig. 4.1 .

Julv 11. 2007



4.2. Formulations of 2D scalar wave propagation in space-tim e 68

Figure 4.1: The plane and the corresponding 3D prism

The 2D domain Q and its boundary T can be defined as the intersection of the 

prism with the x  — y plane, and dS  = dT • dz. The first integral on the right-hand 

side of Eq. 4.4 can be written as

u*(x, t — r, x q )  • g(x, r)dSdr
'o J s

f+r*o r r°°
/ / / u*(x, t — r, Xo) • g(x, r)dz dTdr

Jo J  r  J - o o

u2D(x, t — r, x0) • g(x, t )  dTdr
ro J  r J  — oo

(4.5)

where the Green’s function U2D(x, t, x0) is defined by:

/ oo
u*(x,t -  r, x 0)

•oo
dz (4.6)

The same process can be applied for the other integral terms in Eq. 4.4. For 

the sake of simplicity, assuming zero body sources b =  0 and zero initial condition 

u(x, 0) =  0 and §^(x, 0) =  0, the 2D scalar wave BEM equation can be written as:

c-u(xo, t )  =  J  u* (cc, t — t; £Co) ■ q(x, r)dTdr

— J  q* (x, t  — r;xo) - u(x,r)drdT (4.7)

For simplicity, we write u*2D (®, t — r; a?o) =  u* ( x ,  t — r; X q )  and q2D (®, t — r; cc0) =
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q* (x , t  — T]Xo). Then, the Green’s functions u* and q* are given by (Dominguez 

(20]):

u*(x,t  — T,Xi) = ---------  r H(c(t  — T) — r) (4.8)
27t (c2t 2 — r 2) 2

q*(x, t - T , Xi) = ^ - \  ------------- —---------- 5-H(c ( t - r ) - r )  +
' 2ir (c2 (t — r )2 — r 2) 2 2ir (c2 (£ — r )2 — r 2) 2

(4.9)

with r = \x — ®o|j #0*0 is Heaviside function, and t is the time difference between 

the source point and field point.

4.2.3 New boundary integral formulation in space-time

Traditionally, dynamic BEM employs a finite difference methodology in time and 

a boundary element discretization in space. However, in impulse wave problems, 

regions of high gradients evolve over time and exhibit a high degree of localization 

at any instant in time. Using smaller time steps for all regions is computationally 

wasteful. Thus, building a BEM model in which the space-time continuum is dis

cretized in a true sense, combined with an adaptive scheme in both space and time 

domain should be more efficient. Here we derive a new space-time boundary integral 

formulation for the general variation in time instead of uniform time stepping.

Putting the explicit form of the Green’s functions u* (Eq. 4.8) and q* = ^  

(Eq. 4.9) into Eq. 4.7, the first integral term in the equation Eq. 4.7 is quite 

straight-forward:

J  u* (x, t  — r; x q )  • q(x, T)dTdr

/  -------------   r i7 (ct — r) ■ q(x, r)dTdr
2n (c2(t — r )2 — r 2) 2

(4.10)

dH(c ( t -  
di
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The second integral term is written as:

f  q*u(x, r )drdr  
r

= fr  I --------   xH(c( t  — r)  — r) H--------------------  dH(c{t-r)-r) j _  ̂ T ) d V d r

(4.11)

The first term of the right-hand side of Eq. 4.11 is simple. However, in the 

second term, the derivative of the Heaviside function dH(c(t-j)~r) needs to be treated 

carefully.

Here the author introduces a new formula for 2D scalar wave propagation with 

arbitrary shape functions in space-time. Instead of using decoupled shape functions 

N  {£), 1V(t), here we use arbitrary shape functions N k (f, t )  in space-time. Then,

“distance” in space-time is written as:

c ( t - r )  - r  =  c(U -  ^ 2  Nk  ( f»r ) ' t f)  ~  r = c(ti ~  ® (£>r )) “  r (4-12)

where J ]  N k (£, r)  • ^  = $  (£, r). The derivative of the Heaviside function in Eq.

4.11 is calculated as follows:

dH(c(t  -  t )  -  r) =  a f f ( c ( t j - $ ( g ,T ) ) - r )  _4 ^
dr dr

Since it is a Heaviside function, it can be shown (Appendix A):

dH(c(t  — r ) —r) _  1 dH(c(t  — r) — r)
dr c $$(£, t )

=  1 d H ( c ( t - r ) - r )  d r  1
c dr  cKE>(£,r) c dH^T).

Substituting Eq. (4.14) back into Eq. (4.11)

f  q*udT(x, t) 
r

/  d H ( c ( t  — r )  — r)  \
=  a d  -  r ) “  r) +  , , • OslLii P  (* ,r )d r (x ,

\  2 7 r ^ c 2 ( t —r )  —r 2 J 2 2 7 r ^ c 2 ( £ —r )  — r 2 j 2  9 r  /

(4.15)

With some rearrangement, the following integral representation for an arbitrary time
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shape function is obtained:

CiUi (®f, t) = f r u* (x, t - T \  Xi) * q{x , r)dT{x, r)

-  fr **«(£> T)~w* du(Z,T) 
dr dT(x, t )

(4.16)

where 2:* and u>*are as follows:

=
dr
d n

c (r —c(t—r))

27r(c2(f—t)2—r2) 3 dr \  dr J 27r(e2(t—r)2—r2)
H(c (t — t )  — r)

w —  _1 dn \dr )
2 n( c 2( t—T)2—r 2')

T ' H(ct — r)

(4.17)

The author believe that this is the first time that the integral representation of 

2D wave propagation for an arbitrary time shape function has ever been derived. 

This provides a solid mathematical foundation for adaptive schemes in space-time 

later.

4.3 Discretization of the integral equation for wave 

2D

To discretize Eq. 4.16, we divide the geometric boundaries into N e boundary ele

ments with N  nodes, which are associated with N  unknown displacements or their 

normal derivatives. In order to solve those unknown quantities, we write down N  

equations by applying Eq. 4.16 to each node; this is called the nodal collocation 

method. Then we have N  equations for N  unknowns displacements at the nodes. 

The boundary integral equation is discretized and reduced to a set of linear algebra 

system equations.

4.3.1 The spatial and temporal discretization

The boundary is divided into linear or quadratic elements in space, and the time 

axis is divided into equal time steps, which later can be changed into different sizes 

according to local time stepping. The displacements u(x, r)  and pressures q(x, t )  

are approximated over the boundary elements using the general shape functions in
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space-time:

w (x,r) = '^T/ '5 2 N mi (Z,t )
J rn

q{x,T) = Y J ' £ N m i t i ' T) (lmj (418)
j  m

where N mi ( f , t )  is a two-dimensional shape function in space-time. The superscripts 

j  and m  denote the point j  at the time step m; the superscript k denotes the kth 

element; and u, q represents the displacements and the pressures, respectively. After 

the numerical approximation, Eq. (4.16) takes the discrete form:

n  k  r  r= EE / u" ■ N mj (Z,T)qmjdTdr
m =  1 fc=l ^

< W ^ (£ ,r ) '

rk
Z * Nmj ( ( f T ) - W *

dr
umjdTdT (4.19)

where IT indicates the kth boundary element, and are the nodal values of 

the displacement and the pressure at the point j  at the time step m; N  is the total 

number of time steps, and K  is the total number of elements.

Letting

G T  =  J  Jr j u '  ■ dTdr

H™> =  /  J  [z* A™ (£, r )  -  w, BNm̂  dTdr 

Then Eq. 4.24 can be written as

(4.20)

Adopting the notation:

N J

w ? = E  E [ Gr « mj' -  (4-21)
m =  1 j=l

z in m  a /  a

H ™ = 1  V (4.22)
+  Ci i = j
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the system of equations for all boundary nodes can be expressed as:

E E =E E G™ i? (4-23)
m =l j = l  m —1 j —1

or in matrix form:

N  N

V ' H nmum =  V  Gn,nqm (4.24)
7 7 1 = 1  7 7 1 = 1

where H nm and G nm are matrices whose elements are obtained by integration 

over boundary elements in the time interval m  while the collocation point is in the 

time interval n.

Eq. 4.24 is solved step-by-step. Once um and qm are known for previous time 

steps, the solution for time step n  is obtained from

77 — 1

Hnnun =  Gnnqn +  Gnmqm -  Hnmum (4.25)
7 7 7 = 1

The columns of Hnm and Gnm can be swapped to separate known boundary 

conditions (sent to the right-hand side) and unknown ones ( kept in the left-hand 

side). Eq. 4.24 becomes a square linear system of equations:

K  nx n =  F n (426)

where the known vector Fn contains the second term on the right-hand side of 

Eq. 4.25, which corresponds to all previous influences, combined with the product 

of the right-hand side matrix (re-ordered) and the known vector of the boundary 

conditions at time step n.

4.3.1.1 Solution of BEM  equations

For 2D wave problems, the matrix K n is fully populated and non-symmetric. Eq. 

4.26 is usually solved by Gauss Elimination ( an 0 ( N 3) procedure ) or the General 

Minimal Residual iterative algorithm (GMRES) (E. Stein [47] ). Given the compu

tational demands of this approach, an adaptive scheme (Section 4.4) for the impulse
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time

Figure 4.2: All signals from rm_i and rm has arrived 

wave problem appears to be profitable.

4.3.2 Evaluation of time integral

Generally in the space-time scheme, the time integral is treated by using numerical

quadrature, like the spatial integrals. However, since the adaptive scheme will be

introduced on the top of a uniform mesh, the time integral on the uniform mesh is 

evaluated analytically to maintain efficiency and accuracy. We follow Dominguez [20] 

for the analytical evaluation of the time integral. Firstly, we split the space-time 

shape function N mi (£, r) into the time shape function and the space shape

function </>(£)• To evaluate the time integral of Eq. 4.19, we assume a piece-wise 

linear approximation for u and a piece-wise constant one for |^ ,  that is, /im(r) =  1 

for rm_i < r  < Tm  and fim(r) = 0 elsewhere. The first term of the time integral is:

r =  f  u > m( r ) d r =  r  cHj°( tn ~  r ) ~  r \ - d T (4.27)
Jo JTm—l 27Tyjc2(tn -  r)2 -  r 2

Eq. 4.27 is the integral of the effect on point x 1 at tn from a source point at xJ 

between rm_i and rm. There are three cases to consider:

1 )  r  <  c(tn -  Tm )

All of the signal has arrived, as shown in Fig. 4.2.
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time

m—1

X

Figure 4.3: Part of signal from Tm - \  and rm has arrived

r™ c
Unm = /   - = = = d r

Jrm-1 7̂TyjC^(tn -  t )2 ~  T2

—  ̂ In**0 — 1
27T Q/J 4- yJo^ — \

where
Tm — l )  , c ( t n  7"m )

Oq = ----------------  ana a\ = -------------
r  r

2) c(tn -  T m )  < r  < c(tn -  Tm - 1)

Part of the signal has arrived, as shown in Fig. 4.3.

,,r = tn-T
j j n m  __

' Tm— 1 
1

27Ty/c2{tn ~  T)2 -  T2
dT

2n
■In oiq + \ !  0% — 1

3) r  > c(tn Tm —i)

None of signal has arrived, as shown in Fig. 4.4.

Unm = 0

(4.28)

(4.29)

(4.30)
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time

m-1

Ah

x

Figure 4.4: No signal from rm_i and rm has arrived

The singularity only appears when tn = rm and r  —> 0 . This singularity is of 

the same type as that in the static problem. All other space integrals can be done 

by using standard Gauss quadrature, whereas for tn = rm and r  —► 0, analytical 

integration is necessary.

For the uniform space-time mesh, we assume the time shape function /im(T) for 

the displacement u to be linear. The second term of the time integral (Eq. 4.16) is:

h  = z*u (£, r) — w
du (g ,r) 

(dr
dT dr

Substituting the numerical approximation of the displacement u:

(4.31)

h  = z*u (^, t ) — w:
du ( f , r)

dr

z*m(r) • um

1K , r ) d r

dTdr

dm {T) • um (g ,r)' 
dr

drdr

(4.32)

(4.33)

(4.34)

where

Q nm = z*fim(tn -  t ) -  u;!
dr

dr  (4.35)
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m-l m+1m

Figure 4.5: Linear time shape function for u

where 2* and w* are given by Eq. 4.17, tn is the current time and n  is current 

time step, m  are the past time steps .

The shape function iim{r) varies linearly from 0 to 1, as shown in Fig. 4.5.

^ ( 7-)  __ ;  A * ( r  Tm - l )  r m - l  <  T  <  Tm  

(̂ "m+ 1  T ) 7"m — ^  — 7"m+l

Substituting Eq. 4.17 and Eq. 4.36 into Eq. 4.35, yields:

(4.36)

Q1
f Tm dr (r -  Tm_i) c[r -  c(t -  r)] 
Tm-i 27r(c2(tn -  t )2 -  r 2)i

[ T™ dr 1 1

H[r — c{t — r)\dr

+

Tm—i dn  27T(c2(tn -  t )2 -  r 2)a 
rTm+i dr (rm+i -  r)  c[r -  c(t -  r)]

Tm dn A t  2tt (c2(tn — r )2 — r 2)a

— c(£ — r)]dr

H[r — c(t — r)]dr

'Tm+1 Qr — 1

Tm dn A t  2ir(c2(tn — r )2 — r 2)2
- i7 [r  — c(t — r)]dr (4.37)

This integral can be considered in four cases:

1) r  < c(tn -  Tm+1)

All of the signal has arrived:

‘4'38>
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where

c ( tn  7"m_ l )  7 7"m) ? 7"m-|-i)cmq =   ana au —  and a 2 = -----------------

2 ) c(£n 7-m_|_i) <  t  <  c(tn Tm)

Part of the signal has arrived:

« ”  -  ( 4 - 3 9 )

3) c(£n -  rm) <  r <  c(tn -  rm_ i)

Part of the signal has arrived:

4) r > c(tn -  rm_i)

None of the signal has arrived:

Qnm = 0 (4.41)

The singularity only appears when tn = rm and r —> 0 . This singularity is of 

the same type as that in the static problem. All other space integrals can be done 

by using standard Gauss quadrature, whereas for tn = rm and r  —» 0, analytical 

integration is necessary.

Once the coefficients of Unm and Qnm have been calculated, the entries of G™™ 

and H ^ 71 can be obtained by space integration along the boundary elements, as 

described in the next section.

4.3.3 Numerical schemes for space integrals

4.3.3.1 Evaluation of non-singular integrals

The space integrations along the boundary elements, except the singular case tn = rm 

and r —> 0, can be done by standard Gauss quadrature after introducing the space 

shape function 4>j, which is defined as follows:
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The isoparametric numerical approximation for physical quantities is used here:

Z =  01 ( 0  Xi  +  0 2 ( 0  X2 +  03  ( 0  ^3 

2/ =  01 (? )  2/1 +  02  (? )  2/2 +  0 3  ( 0  2/3 

^  ( 0  =  01 ( 0  Ui  +  02  (? )  tt2 +  03  ( 0  1/3 

9 (? )  =  01 ( 0  9 l +  02  ( 0  92 +  03  (0 93

(4.43)

Substituting time integrals Eq. 4.27 and Eq. 4.35 into the discrete integral 

representation Eq. 4.19, it becomes:

N J

Ci< =  E  E  /  Unm( x \ t - T ,  **(£)) ^ r ( x ) -  f  Qnm { x \ t -  T, x*(0) ■ faumidT(x
m=  1 j = 1

(4.44)

where Unm (xl, t  — r, a^'(?)) and Qnm ( x \ t  — r, £J,(?)) are analytical integrals of 

the time kernel, and qmi are displacements and pressures at element j  at time 

step m. The total number of elements is J , and total number of time steps is N.  

Substituting the quadratic shape functions of Eq. 4.42 into Eq. 4.44, we obtain:

UnmfaqJ‘dT(x) =  /  Unm ( x \ t -  r, rr*(£)) [fa fa fa}dTj(x)

$  J

 ̂ Qnm ■ faumUT{x)  =  f  Qnm (x \  t -  r, ^ (£ ))  [fa fa fa]dTj(x) <
J ^ ^ 3

uJl
uJ'2 > (4.45)
7/m 

j'3\ J /
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After applying Gauss quadrature, the above integrals are written as:

N g

GT  =  Z  ■ u "m (xi-* -  T- M i M t )  •
a= l

Ng

W  =  E < Q nm & , t -  T, **«)) <M£) J(€) • u»„ (4.46)
a = l

where u;Q is the weight of the Gauss quadrature, Ng is the total number of the 

Gauss points. 0a ( f ) are the shape functions defined in Eq. 4.42, Unm, Qnm are time 

integral kernel functions, u™a, q™a are the displacements and their normal derivatives 

on the boundary. J(£) is the Jacobian, which is defined as follows:

^ -V (s),+(S)’ ( , -17>

can be calculated from Eq. 4.42.

Owning to the O (Inr) or the 0 ( r -1) behaviour of the Green’s functions, it is 

more efficient to adjust the number of Gauss points used according to the distance 

between x l and xJ. More details can be found in (X. W. Gao and T. G. Davies [27]).

4.3.3.2 Evaluation o f the singular integrals

If the integral is evaluated at the first time step and the collocation point is in the 

integration element, the Green’s function u* has a singularity O (In r) while q* has 

a singularity which can be removed according to the following arguments:

=  »  1 (•̂ n - r f - r »)*
dn  27t A t r

The denominator goes to zero as r  —► 0, but goes to zero with order O (r ) as 

well. Thus, q* = O (1) as r —> 0 . The integral of the normal derivative can be done 

through standard Gauss quadrature as described in the previous section.

However, the singular integrals of the Green’s function u* have to be evaluated 

by a special numerical scheme. The time integral of Green’s function u* is given by 

Eq. 4.29. At the first time step, when tn = A t  and rm_i =  0, it becomes:

Julv 11. 2007



4.4. Error indicators and adaptive scheme 81

u nm = 1 - ln  (c A t +  (c2 A t2 -  r 2) +  2 - i n i  (4.49)

Substituting the above into the first term of the right-hand side of Eq. 4.16:

[  u*qdTjdT =  f  In (c2 A f 2 - r 2) 3J +  Zn- ^  (4.50)

The second term of the above equation has a logarithmic singularity when r —> 

0. We can separate the logarithmic singularity and integrate it using the Gauss 

integration rule for logarithmically singular functions ( The nonsingular terms can

be easily integrated using ordinary Gauss quadrature). The Gauss quadrature rule

for a logarithmic function takes the form:

/•i  ̂ n
1 =  loge- f { x ) d x  = y 2 w k f { x k) (4.51)

Ja x  *=i

where the interval of integration is from zero to unity and the ordinates Xk and 

the weights Wk can be found in (X. W. Gao and T. G. Davies [27]).

When all entries of influence matrices Gij and Hij are obtained, they are assem

bled into matrices [G] and [H\. Once matrices [G] and [H] have been obtained, the 

matrix equation can be solved using standard matrix solvers as described in Section 

4.3.1.1.

4.4 Error indicators and adaptive scheme

In this section, we establish error representation formulas and show how the bound

ary element solution error can be estimated a posteriori , that is, with knowledge 

based on postprocessing the BEM solution.
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4.4.1 Hierarchical type error estim ation in 2D wave propa

gation

The basic idea of hierarchical type error estimation is to compute an approxima

tion u  with hierarchically expanded shape functions at a low computational cost.

Supposing the discrete space where Uh lies in is T4, the hierarchical expanded space 

V ,  total solution space is V .  The hierarchically refined solution u  is a better ap

proximation of the exact solution u e V  than the former discrete solution u ,̂ G T4 

according to the Saturation Assumption (Hsiao & Wendland [35]):

\\u -  u\\ <  C \\u -  u h \\ (4.52)

where ||*|| is an energy norm, C  is a constant C  G [0,1). It means that we assume 

that u G V  converges faster to u G V  than Uh G V&. With the saturation assumption 

and the triangle inequality we can derive a posterior error estimator:

Y ~l~ c  ^  ~~ Uh  ̂ ~  ~ i ~- ’c  ̂  ~ Uĥ 4̂'53̂

where eu are point-wise errors of displacement.

The point-wise errors of normal derivatives eq satisfy the same condition:

II? -  ?h|| <  ||e,|| <  y ^ c  ^  4̂ '54^

Theoretically, point-wise errors are defined as follows:

eu =  u  — Uh — Su

eq = q - q h = 8q (4.55)

where eu and eq are the point-wise errors of displacements and tractions, w, q 

are exact values which satisfy the governing equation, while uht qh are values in the 

discrete space of the same problem. Based on point-wise errors , we can derive

element-wise errors in L2 norm, which dictate where to refine the boundary element
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mesh further.

where Ni are shape functions used in the space-time domain, Sui and Sqi are point- 

wise errors of displacements and normal derivatives in the mesh, which are obtained 

from Eq. (4.55), and K  is the total number of nodes within one element. The 

central idea is to find the way to compute u G V  cheaply after we obtain the 

boundary element solution Uh £ Vh. For example, the results obtained with coarse 

and refined mesh, taken as u and u ,̂, can be used to calculate point-wise errors. 

The advantage of this strategy is that we combine two processes of error estimation 

and adaptivity by continuing the refinement of elements whose errors are big while 

stopping the refinement of elements whose errors are small. The adaptive process 

will be described in more detail in the next section.

4.4.2 Error indicator and adaptive scheme

Given a posteriori global error estimator, we now use a h- adaptive scheme to refine 

the current BEM mesh, as described in Sec. 4.4.2.1. The strategy to select elements 

for refinement is described in Section 4.4.2.2.

4.4.2.1 h- adaptive scheme

For the BEM 2D problem, curved line elements are usually refined by halving the 

marked elements. However, it is inefficient for the whole influence matrix to be 

recalculated after each refinement. Instead, a hierarchical h- adaptive scheme is 

employed here:

u(x, t ) =  N m ( f , r) um +  N a (£, r) ua (4.57)

where N m (£, r)  and um are the ordinary shape functions and displacements on 

the root mesh; N a (£, r)  and ua are the hierarchical shape functions and extra free

doms associated with them. The simplest hierarchical orthogonal shape functions
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0 . 5

- 0 . 5

-1

Figure 4.6: Legendre polynomials as hierarchical shape functions

N a (£, t )  can be based on Legendre polynomials or on standard trigonometric func

tions (Robert L.Taylor and O.C.Zienkiewicz and E.Onate [49]), as shown in Fig. 4.6. 

More advanced hierarchical shape functions based on the concept of the partition 

of unity can also be used (Melenk, [41] ).

4 .4 .2.2 A d ap tiv e  process

When the error estimates for each element are known, the global error over the 

whole mesh can be simply obtained by summing them up.

N  N

rf1 = eui nq =  J !  ev  (4-58)
i = 1 i= l

where N  is the total number of elements.

The adaptive process for the solution of 2D wave propagation is:

Step 1: Apply the coarse mesh on the boundary of the problem domain;

Step 2: Carry out the BEM analysis;

Step 3: Apply the refinement to all elements at the first time step. Compute

local node errors Su and 5q\ the element errors eu, eq and the global errors of r)u,

Tjq . Then, locate the maximum of the local errors:

C  =  Max(eu) , ^  =  Max( eq) (4.59)

Step 4: An element is refined if the element error indicators eu, eq are bigger
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than t o l . r j t o l . r f ^ w  where tol is an error tolerance given beforehand, which is 

usually chosen in the range 0.5 and 0.8.

eu > t o l . r j  e, > tol.r?«ax (4.60)

We stop the adaptive process if the following conditions are satisfied:

i f  < f)G and r)q < i c  (4-61)

here fjG and f)qG are the principal global error tolerances. Since absolute errors are 

unknown, the stop condition for the adaptive scheme depends on experience and 

accuracy required. Here the error tolerance is chosen around 3% ~  5%. (Marcus 

Riiter and Erwin Stein, [73] )

Step 5. Use the hierarchical adaptive scheme to enrich the approximation for 

those elements in space, use half time step at the marked time steps for all elements, 

then back to step 2.

The adaptive process is shown in Fig. 4.7.

4.5 Numerical Examples

Some examples are presented in this section to demonstrate the performance of 

space-time BEM to improve accuracy and stability of the 2D wave equation.

4.5.1 2D Rod

The numerical example here is the simple plane wave problem where a strip of 

height L = 8m, extending indefinitely in the y direction, has an uniform pressure 

P(t)  applied on the upper surface, where P(t) is the Heaviside function. The wave 

speed is 200m/s. This is shown in Fig. 4.8.

This problem is essentially one-dimensional in space, and has been widely used 

as benchmark since the jump load causes instabilities in numerical methods. Also, 

the analytical solution is available. Here we solve it in two dimensional space-time 

by taking a strip of 8m x 4m and meshing it in the full space-time domain. The
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Init the mesh on the boundarŷ >

Global error > Tolerance

Time-domain BEM analysis

BEM analysis on the refined mesh

Mark those elements with larger errors

Applying refinement to all elements

Move to the coarse mesh in the next time step

Refine marked elements in space-time

Compute element errors and global errors

Figure 4.7: The flowchart of adaptive scheme

/ /  / /  /  7  / 7  7 V 7 /  7

P=H(t)

L

Figure 4.8: Plane wave problem.
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boundary was initially discretized into 600 constant and linear mixed elements in 

space-time. The space-time ratio (3 = 1; the mesh size is 4m; the time step is 0.02s, 

and there are 100 time steps. We initiate the adaptive scheme by refining the whole 

mesh. The process is schematically illustrated in Fig. 4.9.

time

A -----

B C

Figure 4.9: h- adaptive scheme in space-time 2D.

First we presents some results to demonstrate the numerical difficulties in this 

problem: small time steps lead to unstable results, while big time steps lead to 

significant numerical damping and loss of accuracy, as shown in Fig. 4.10. The 

most important parameter to define the relative time step size to its mesh size is 

space-time ratio p\

0  =
c- A t 

A h
(4.62)

When p  =  0.1, the result is obviously unstable; When P = 0.3, the result

improves but is still unstable; When P =  0.5, the results becomes unstable again;

when 0.5 < P < 1.0, and especially when p = 0.7, the solution is optimum for

stability and accuracy. When P > 1.2, the results gradually lose accuracy but gain

stability. Similar results can be found for the structure under an impulse load (Fig.

4.11), as shown in Fig. 4.12. According to these results, accuracy and stability

appears to be mutually exclusive of conventional dynamic BEM.

Now we consider the adaptive BEM scheme for this problem. After refining the

mesh to 12 elements (in space), we draw the graph of relative element errors e^,e?

in Fig. 4.13. The X  axis represents the element number, the Y  axis represents

the time step, and the Z  axis represents relative element errors. Since the upper

side of the rectangle has the same solution as the lower one, displacement errors of
Julv 11. 2007



4.5. N um erical Exam ples 88

Q 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
—  Analytical
• B=0.10

m a sk

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0-2 .5
—  Analytical 

•  p=0.30
-2

-1 .5

(00.
CL
LU

-0 .5

0.5
ct

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0 -2 .5 i------ 1------ '------ '------   “r 6---- ; , 1 1
: : : : :  —  Analytical 

: •  B=0.70

-2 .5

-2 —  Analytical 
•  p=0.50

-1 .5-1 .5

-0 .5

0.50.5

ctct

-2 .5

-2

-1 .5

flj —1 
Q_a
m -0 .5

0 

0.5

1

1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0
—  Analytical 

•  B=1.50
— •*

•
*—

•

1
4

—2.5 

—2 

-1 .5

rt ~1 Q_
CL

m -0 .5  

0 

0.5 

1

—  Analytical 
•  p=2.00

•
•

•
• •

•
: •
: •

•

•
•

•
•

•  ■;

4

Figure 4.10: Time history of the normal traction at the fixed end (point D) with 
different /?, under a Heaviside Load
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0.8 P(t)= e ' {t_003) /od05‘

0.6

0.4

0.2

Time(s)

Figure 4.11: Gaussian type impulse load

elements 1 — 6 are symmetric to those of elements 7 — 12. Here we can see that the 

error estimates indicate the correct position of the moving wave front in the graph 

of displacement errors. Because q are zeroes at most places except at the fixed end, 

there is only one narrow band in the graph of pressure errors. It has peak values 

when the wave front reach the fixed end and drops to zero when q remains constant 

afterward. The time history of q at the fixed end can be seen in Fig. 4.14.

After the solution errors are located in the BEM mesh, we use hierarchical refine

ment and smaller time steps near the wave front and re-compute it. Improvements 

near the area of the wave front at points A, B, C, D are observed in Fig. 4.14. 

W ithout the refinement scheme, the solution near the rectangular wave fronts is 

seriously damped while the refined one offers a better approximation.

4.5.2 Transient loads on the surface of half-plane

We consider the half-plane under a surface load uniformly distributed over a length 

2b = 152m, the wave speed in the media is c =  200m/s .  The load is suddenly 

applied and maintained there, as shown in Fig. 4.15. (Manolis [51]). The dynamic 

response at point A, which is at the center of the applied load, is sought after the 

Heaviside function is applied. This is a benchmark which is widely used for BEM in
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Figure 4.12: Time history of the normal traction at the fixed end (point D) with 
different (3, under an impulse load
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ab so lu te  T Error Matri* o fh  adaptive
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Element No
E lem en t No

Figure 4.13: (a) Relative element error of displacement; (b) Relative element errors 
of normal derivatives
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Figure 4.14: Adaptive refinement results:
(a) Displacements at points A, B, C without refinement;
(b) Traction at point D without refinement;
(c) Displacements at points A, B, C with refinement;
(d) Traction at point D with refinement
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geomechanics because a semi-infinite domain is involved and the analytical solution 

is available. Here the surface is discretized into 20 quadratic boundary elements; 

element size A h  = 7.6m, time step A t  = 0.03s, and (3 = 0.8. The solution is 

computed for 50 time steps, and the time history of the vertical displacement at 

point A is shown in Fig. 4.16. The numerical solution agrees with the analytical 

solution very well. However, it is interesting to notice that it still remains stable 

when the time-space ratio (3 is very small (/? =  0.1), which caused the instability for 

the wave propagation in the rectangle, as shown in Fig. 4.17(a). It is not difficult 

to explain why after we examine the discrete BEM formula:

n—1

Hnn -un = G"n -qn + Y j  Hnm ' «m +  Gnm ' <T (4-63)
771=1

Since all elements are on the horizontal plane, =  0, all elements except the 

diagonal ones in H nn are zeros; and all elements in H nm are zeros, too. Eq. 4.63 

can be rewritten as:

H R  ... 0
: j r n n  :

22

0 HnnU . . .  n N N

Here qn and qm are Heaviside functions and remain at a constant value. Gnn is 

a matrix with the fixed values as well. Gnm becomes smaller and smaller at later 

times. Therefore, there is no source of instability as the time steps decrease.

We also notice that larger (3 doesn’t cause numerical damping (Fig. 4.17(b) ). 

This is simply because that there is no wave front in the boundary elements when 

the Heaviside function is applied on a half-plane, which are all dissipated as they 

move towards the infinite boundary. The analytical solution is a slowing changing 

function Thus, relatively large time steps do not cause any inaccuracies.

Refinement can be applied to this problem, but no obvious advantage can be 

achieved, as shown in Fig. 4.18. Because it only increases accuracy, which can be 

achieved by using smaller time steps as well. From this numerical example, we draw 

the following conclusions:
Julv 11. 2007
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p ( t )

Figure 4.15: Half-plane under transient surface load
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A nalytical
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Figure 4.16: Half-plane solution: relative vertical displacement at point A, (3 =  0.8
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Figure 4.17: Half-plane solution: relative vertical displacement at point A, (a) 0  
0.1 (b) 0  =  3.0
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Figure 4.18: Half-plane solution with refinement: relative vertical displacement at 
point A, (3 = 1.0
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* In the problem of half-plane subjected to a Heaviside function, because wave 

energy dissipates in the open domain, the final dynamic response will converge to 

the static one.

* When the time-space ratio (3 is very small {(3 <  0.1 in this case), the solution is 

still stable; when (3 is very large ( (3 > 3.0), there is no obvious numerical damping, 

either. The numerical solution in this example is not sensitive to /? values.

* Adaptive schemes lead to more accurate solutions, but without further im

provement of its stability.

4.6 Summary

In this chapter, a new boundary integral equation for 2D scalar wave has been 

derived by the author to accommodate more flexible shape functions in the space

time. The difficulty in BEM solution for impulse wave propagation is to locate the 

moving high gradient areas which can not be captured by ordinary shape functions 

in an uniform mesh. The author proposes an adaptive scheme in which moving wave 

fronts are detected by error estimation in space-time, and a hierarchical adaptive 

scheme is used to refine the area in order to achieve higher accuracy.

However, 2D Green’s function for wave equation is an artificial solution which 

doesn’t represent reality. In the next chapter, we examine the 3D case explicitly.
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Chapter 5 

Adaptive BEM for scalar wave 

propagation in 3D

5.1 Introduction

BEM 3D models better describe the true physics of wave phenomena but 3D nu

merical models are computationally demanding and therefore adaptive schemes are 

imperative.

This chapter focuses on adaptive numerical implementation of the boundary 

integral equations for scalar wave propagation in 3D. In Section 5.2, we describe 

the discretization of BEM formulations of 3D wave equations; spatial descriptions; 

the evaluation of the time integral, and numerical integration of singular & non

singular kernel functions . In Section 5.3, error estimation and the consequent 

adaptive schemes for 3D geometry and local time stepping methods are introduced. 

In Section 5.5, various aspects of BEM programming, such as 3D geometric modeling 

of arbitrary shapes and their data structure; the memory management of large arrays 

and matrices; a fast spatial search algorithm; a h- adaptive scheme for 3D mesh 

refinement and a BEM solver associated with multi-refined meshes, are discussed 

in detail. Finally, some examples of applications of the adaptive space-time BEM 

model are discussed in Section 5.6.
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5.2 Boundary element method for 3D scalar wave 

propagation in space-time

5.2.1 Boundary integral formulation for space-time BEM elas- 

todynamics

The governing 3D scalar wave equation is:

d2u d2u d2u 1 1 d2u , .
d ^  + d y ^ + d ^  + ^  = ~ ? W

with initial conditions

u (x, 0) |s =  u0 (x) |5 =  Vq (x ) (5.2)

and boundary conditions

u (x > t) Ui =  u (x, t) Ua =  Q (x > t) (5-3)

where x  denotes spatial coordinates (x, y,z),  n is the unit normal vector on the 

boundary surface 5; on the boundary Si US2 =  S  and Si n S 2 = 0; uo(x) and v0 (x) 

are given displacements and velocities on the boundary when time t = 0; u (x, t) 

and q (x, t) are prescribed displacements and normal derivatives on the boundary 

S\ and S 2 separately at all time. The integral representation for the displacement 

u at a source point x, on the boundary 5, at time t with zero body forces and zero 

initial conditions can be written as (Dominguez [20]):

r  C d u
c ( x i ) u ( x i , t )  =  J  j  G (x i)5t -  r , x )  — (x ,r)rf5(x)rfr  (5.4)

f t+ r b c
-  J  J  -  r , x ) u ( x , r ) d 5 ( x ) d r

where x  is a field point on S'; r  means the time convolution from 0 to t+\ t +means 

to take the upper limit of time t. The Green’s function G(xit, t  — r, x) is given by
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(Dominguez [20]):

G(xi„ t  t ,  x) =  ^ < 5  ( ( t -  t ) -  0  (5.5)

where r = \x — Xi\, c is the wave speed, S(x) is the Dirac-delta function.

Substituting the Green’s function into Eq. 5.4 , and assuming g(x, r )  =  ,

the first time integral of Eq. 5.4 can be written as:

J  J  t — r, x)g(x, T)dS(x.)dr = J  J  8 ( jj  — r)  — q(x,r)dTdS(x)

=  / i 9(x>' - 3 d5(x) ( 5 - 6 )

In order to compute the second integral in Eq. 5.4, we need to compute the normal 

derivative of Green’s function

(5.7)

dn \  \  Airr2 \  c)  i n r  dr \ c

dn f \  4irr2 \ cJ Airrcdr \  c

Thus the second integral in Eq. 5.4 can be written as:

■t+f  C dC
I I —  ( x i ^ t  -  r , x ) u ( x , r ) d 5 ( x ) d r

{ ( ~ 4 ^ S ( (* -  T) -  3  + i L P  ( {t ~  3  “  3 )  } < ^ ) d S ( x ) d r'0 JS
dr
dn

i J M  !-.»«*> <5'«»
Taking account of Eqs. 5.6 and 5.8, the integral representation of the 3D scalar 

wave equation can be written in the terms of space integrals only (Dominguez [20]):
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c(xi)u(xi,t) = f  -  • g(x,£ -  (r/c))dS(x)  (5.9)
47r J s r

+ h  I  £ {^ “ (x-f “ r / c ) + d 5 ( x )

In Eq. 5.9, the value of u at the point x* at time t is determined from the 

values of tt(x, r), g(x, r) and du<£ T̂ on the boundary at r  = t — (r/c). Thus, Eq. 

5.9 is called a retarded potential equation because the displacement is determined 

by what has happened earlier. The space-time integrals of the products of w(x, r), 

g(x, r)  and Dirac delta function 8 (t — £) become integrals over space only, which 

surprisingly makes the integral equation of 3D problems much simpler than the 2D 

counterpart.

Here, the author introduces a new interpolation scheme. Not only is the spatial 

domain interpolated via shape functions, but also the temporal domain is interpo

lated using N k (£, 77, t ) as a space-time interpolation function:

u =  '^ 2 ,N k (£„rt,T )uk-, q =  ^ 2 N k (£,7] ,T)qk; t  =  ^  N k (£, t / , t )  t k\

(5.10)

The distance in space-time is defined as:

|ct - r \ =  c(U - ^ N k (£, 77, r ) - t k) - r  = \c(U -  $  ( f , 77, r)) -  r | (5.11)

where, N k (£, 77, r) • t) = $  (£, 77, r).

After disretizing the surface boundary into M  surface elements and replacing 

u and q with their numerical approximation, Eq. 5.9 takes the form of a sum of
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integrals of M  elements.

c(Xi)u(xi, f) = £ m =  1 f  ^ ■ ^ 2  N k (£, T), t ) ■ cfkdS{x)
- J  S rn

J Sm

u Om
(5.12)

Letting

Gij = f Sm^ - 1r - N k ^ V , r ) d S ( x )

6 ,i = Ism m - 7 > - N k ( t V , r ) d S ( x )

+  / s m i ^ - t ^ % l l U - ( r/ o ) ^ )  (5-13)

and adopting the notation:

H i j = {  ^ 3 (5.14)
H li +  cl i = j

the system of equations for all boundary nodes can be expressed in matrix form

as
N  M  N  M

EE //'V E E 6'0'''’ (5.15)
m=1 j = 1 m= 1 j= l

where TV is the total number of time steps, and M  is the total number of nodes in 

the space domain. The summation rule applies to j  on both sides of the equation.

The causality law requires that boundary values at later times are only influ

enced by quantities at earlier time, but not vice versa. Thus, numerical methods 

constructed from these space-time boundary integral equations are global in time,

i.e., it is necessary to compute the solution for all time steps from the beginning to

obtain the current solution. The system is solved step-by-step: once u  and q  are

known for the previous time steps, the solution for the nth  time step is obtained
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n=-

trom:

Figure 5.1: Curved quadrilateral element

n—1
p j ( n n ) z j u (n ) j  _  Q ( n n ) t j q ( n ) j  Q ( n m ) i j ^ { m ) j  _  j ^ ( n m ) i j u ( m ) j  (5.16)

m — 1

The boundary consists of the spatial boundary extruded into the space-time, like 

a cylinder extruded from a 2D circle into 3D space. The increase in dimensionality 

is offset by special features of the problem. So it retains the same dimensionality as 

static problems, which are discussed in Section 5.2.3.

5.2.2 D iscretization  of the 3D scalar wave equation  in space

In order to approximate arb itrary  shapes and boundary conditions, the geometry 

and field variables, i.e. coordinates, displacements and tractions, are discretized in 

the same manner to create the numerical approxim ation in space.

x  = ^ 2 N k  ( f , V) x k\ V =  ^  N k (C 77) y k;

u =  ^ a T ( £ , t i ) Uk\ q =  ( £ , „ ) * ;  (5.17)

For 3D problems, elements commonly used are 6 -node tr iangular elements and 

8 -node quadrilateral elements.
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Figure 5.2: curved triangle elements

5.2.2.1 T he 8-node curved  q u a d rila te ra l elem ent

The curved quadrilateral element shown in Fig. 5.1 has shape functions:

0.25(1 +  £0)(1 +  +  1)

0 .50 (1+  £2)(1 - % )

0.50(1 +  £0)(1 — V2)

i f  a  =  1,3, 5, 7 

i f  a  — 2, 6

i f  o  =  4 ,8

(5.18)

where £o =  £ • £Q and 7/0 =  rj ■ rja , with £ and ?/ being the two independent 

coordinates and (£q , /7q) the coordinates of node a  as shown in the Fig. 5.1 .

In order to use numerical integral schemes such as Gauss quadrature, Carte

sian coordinate system has to be transformed to a local intrinsic coordinate system 

through Jacobian matrix:

J  = dp, y ) dx d]L
dt d{, _
dx, dy_
dij drj _

#E Wq(g.q) r  dHNg(£,Ti)^a Ae Uadi
#E Na(Z,rj) 

d r j
X,

d E  Na (g.ry). 
d r j

(5.19)

The Jacobian m atrix  is the measure of the local element distortion.

5.2.2.2 T he 6-node curved  tr ia n g u la r  e lem en t
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Figure 5.3: Local param etric coordinates of a triangle

The curved triangular element shown in Fig. 5.2 has shape functions:

Ni

N 2

n 3

n 4

n 5

n 6

6(2?1 -  1) 

6(2&  - 1 )  

& (%  -  1) 

4£i&

4 6 6

4?3?1

(5.20)

where £3 are the local param etric coordinates of the triangle shown in Fig.

5.3.

In order to use numerical integral schemes such as Gauss quadrature , Carte

sian coordinate system has to be transformed to a local intrinsic coordinate system 

through Jacobian matrix:

1 1 1 1 i 1

1

dx
<96
dy  
5£ 2

dx
<96 
d]L 
9 6  .

9 E  Na(Z,7])
<96

d Z N a ( ( , V ) ?l 
5 6  y®

9 £ N a ( 6  7 7)

5 6  Q 
<9£ N a (S,ri)

5 6  Ja

9 £  Na (Z,rj)
5 6  Q 

d T ,  N a (z,n)
5 6  Ua J

/  —  dx_ 5 x  dx_ — d ' £ N a (£,ri) 1 5 2 1 1
A c ,  a c „ A c .,  A c ,  x a  a c „ a c „ x a

5.2.3 T im e integral

After the shape functions are defined, the influence matrices [GJ and [H] are obtained 

by integrating over the boundary elements using Eq. (5.13). If the space-time 

domain 5 (x ,  t) is divided into n  parts  along the time axis, the integrals for the m th  

time interval (£m_i, tm) is the integral over the surface elements tha t lies within two



5.2. Boundary elem ent m ethod for 3D scalar wave propagation in
space-tim e 104

X* m+l

c.dt

Figure 5.4: Element j receives a signal from the collocation point i during the time 
interval tn — rm+1 < ~c < tn — rm; The coefficients G y , Hij are integrated over the 
shaded area only

concentric spherical surfaces of radius rm = c(tn — tm)and rm+\ =  c(tn — tm+1) (Fig.

5.4 ).

For this reason, the system matrices [G] and [H] are highly sparse. This special 

structure follows from the convolution of the Dirac delta function in the integral 

equations. The integration does not extend over the whole boundary of the space

time domain, but only over its intersection with the surface of the backward propa

gating wave cone. This means that integrals have the same dimensionality as those 

for static problems, and that current dynamic responses are not affected, in general, 

by events that extend far into the past. These features are important for 3D scalar 

wave equations and elastodynamics equations in three dimensions. However, they 

do not apply to the 2D wave equation. Unlike Dirac delta function in the kernel of 

3D scalar wave equations, the 2D kernel influence continue indefinitely.

5.2.4 A fast algorithm for triangle subdivision and global in

tersection search

This section is the result of a cooperative research endeavour with Dr. Tomasz 

Koziara, who has expertise in fast spatial searches for contact detection in discrete 

objects. In the dynamic BEM, we integrate over the intersection of the boundary
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surface mesh and spheres with growing radii. The problem is to find those elements 

which fall into the envelope of the sphere quickly. This is the objective of fast spatial 

searches.

For an efficient implementation of the computational framework described here, 

two purely geometrical problems must be addressed. The first one is the triangle- 

sphere intersection, resulting from the integration over the boundary surface con

tained between the two spheres. The second problem concerns an effective global 

search for the triangle and sphere pairs that intersect.

5.2.4.1 Triangle subdivision

BUBBLE

Figure 5.5: Eight out of the nine possible configurations of triangle-sphere intersec
tion (the triangle outside of the sphere case is omitted).

The triangle-sphere intersection problem is resolved by first identifying one of the 

nine possible intersection configurations (Fig. 5.5), followed by sub-triangulation of 

the area contained in the sphere. In order to minimize the number of sub-triangles, 

while keeping a good approximation of the intersection boundary, six-node second 

order sub-triangles are used. Rather than calculating the triangular area contained 

between the two spheres, two separate sub-triangulations are obtained by intersect

ing the triangle with, respectively, the bigger and the smaller sphere. As a result, 

the terms integrated over the first sub-triangulation are added, while those inte

grated over the second sub-triangulation are subtracted (Fig. 5.6). This approach is 

both simpler and more efficient than the explicit derivation of the sub-triangulation 

contained between the two spheres.

5.2.4.2 Global intersection search

For typical benchmark problems, composed only of a small number of triangles, the 

issue of efficient identification of the intersecting triangle-sphere pairs can be ignored. 

This is not true for fine meshes, where the global search for the intersecting pairs
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U

Figure 5.6: Intersection of the triangular mesh of a mechanical component with a 
pair of spheres. The sub-triangulation boundaries are marked in light grey (terms 
to be added) and dark grey (terms to be subtracted).

becomes a com putational bottleneck. Working with n  nodes and m  triangles, it 

is evidently far from optimal to perform a brutal force O (n ■ m)  check, testing all 

possible pairs of spheres and triangles. The problem a t hand falls into the broader 

category of spatial search problems (see [74] for a general introduction), which is 

common to a range of fields (e.g. contact mechanics, com puter graphics, etc.). The 

specific features here can be summarized as follows

1. The mesh geometry and connectivity does not change during the course of 

simulation;

2. The search for an intersection takes place w ithin the volume contained between 

two spheres whose radii increase with time, while their difference (being of an 

order of the minimal distance between adjacent nodes) remains constant.

The sphere pairs (the query spheres) are centered a t  the mesh nodes. At each time 

step, the set of query spheres S  intersects a set of surface triangles T .  This generates 

for each node two sub-triangle lists - one for adding and one for subtracting terms 

during the system m atrix  assembly. In order to facilitate an efficient identification 

of intersecting pairs from S  x T ,  two techniques were investigated and one of these 

is advocated here. The first m ethod exploits a multi-level range and segment tree 

s tructures implemented in a state-of-the-art algorithm HYBRID, presented in [93]. 

For the reasons to be shown later, this approach proves to be inferior to the one 

based on a considerably simpler, sphere-tree s tructure  [36] (called SPH T R EE).
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To make use of HYBRID, all objects from the sets S  and T  need to be packed 

into their axis aligned bounding boxes. The algorithm proceeds by processing the 

two lists of boxes (of query spheres and surface triangles) and recursively building 

segment and range tree s tructures along each of the coordinate directions [74,93]. 

The gain from the use of recursion is the O (n  +  m)  space utilization1, while the run

time complexity is O ((n  +  m )  log3 (n +  m)  +  k ) , where k is the number of reported 

box overlaps. This algorithm performs well in many practical cases, although here 

it cannot show its full strength. Firstly, it is not able to take advantage of the 

fact th a t  the mesh geometry remains unchanged. A more serious drawback is tha t 

when query spheres reach a size comparable to the size of the overall domain, the 

com putational overhead of HYBRID is more significant than  th a t  of SPH TREE. 

Thus, HYBRID performs well only as long as the size of the query spheres remains 

comparable to the size of the individual surface element.

Figure 5.7: Example of a sphere-tree hierarchy built for an airplane surface composed 
of 10904 triangles.

The S P H T R E E  approach is be tte r  for the current case. At the initial stage 

of com putations, the surface triangulation is wrapped into a sphere-tree hierarchy 

(Fig. 5.7), which provides the da ta  structure  later queried with pairs of spheres. This 

stra tegy exploits the fact th a t  the structure remains unchanged during the compu

tation. Here the sphere-tree is built in a simple, top-down manner by the recursive 

application of a median-plane coordinate bisection along the direction aligned with 

the longest distribution of surface triangles. At each level of the tree, eight nodes 

are created, while the last level nodes store no more than  sixty four leaf spheres 

bounding mesh triangles. This tree building strategy is sufficient to show good per

formance of the sphere-tree based framework, although further research is needed

'Conventionally O (nlog3 n ) for a self-intersection test among n  boxes [93].
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to assess the efficiency of more sophisticated approaches.

The sphere-tree also naturally addresses the issue of finding intersections with a 

pair of expanding spheres. At each level of the tree, the computations proceed only 

if the bounding sphere of the current node passes through the volume described by 

the pair of query spheres. Thus nodes placed inside of the smaller or outside of 

the bigger of the query spheres are easily omitted. Query traversal is fast, as the 

necessary numerical tests comprise only a few inexpensive operations (Algorithm 1). 

The SPHTREE algorithm performs well not only for query spheres with small radii, 

but also for those of the size comparable to the size of the domain, which is the case 

for dynamic BEM as here.

A lg o rith m  1 Surface triangles sphere-tree (T) traversal with a pair of query spheres
(Pj Rmim Rmax)-

I  = query_spheres_ traverse  (T , P , Rmin, Rmax)
1. d = | | p - r . p | |
2. i f  d < (Rmax +  T.R) A d  > (Rmin -  T.R)  then
3. i f  is_node (T) then
4. fo r  each Q in  T.Children
5. query_spheres_ traverse (Q , P , Rmin, Rmax)
6. endfor
7. e lse  i f  T.Triangle in te r s e c ts  ( P , Rmin,Rmax) /* i t ’s a leaf  */
8 . V — vertex_0f (P »R m i n  > R m a x )

9. T sub = in te rs e c t io n  (TT r ia n g le ,P , R m i n )

10. T add = in te rs e c t io n  (T .Triangle, P , R m a x )

11. I  =  I U  {V,Tsub, T add)
12. end if
13. en d if

5.2.5 Singular integral

If the source node is not within the current element, standard Gauss quadrature is 

sufficient. Otherwise, singular integrals need careful treatment. For the displace

ment singularity, the singularity is 0 ( l / r )  and can be treated by employing an 

element subdivision technique to divide the original elements into several triangles. 

Each triangle subelement can be mapped into square intrinsic element space where 

the weak singularity is nullified and the integral can be performed using normal 

Gauss quadrature (Gao and Davies [27]). For the traction singularity of 0 ( l / r 2), an
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indirect method is used which employs the rigid body motion condition to calculate

or GMRES (Gao and Davies [27]).

5.3 Error indicators and adaptive scheme in 3D

In dynamic BEM, there are three kinds of solution errors, i.e., spatial integration 

errors, time integration errors and interpolation errors. BEM error analysis by Wen-

rors interfere with each other and accumulate during time stepping. These analysis 

help us to choose mathematically correct and practical local error estimators. With

out good estimators, computational effort will be wasted due to the poor balancing 

of space and time errors. Here we confine ourselves to using two simple heuristic, 

local error indicators. These error indicators, which are cheap and easy to use, will 

be used to trigger the refinement in high gradient regions.

5.3.1 Gradient-based error indicators

The gradient-based error indicator is based on the assumption that high gradients 

are strongly localized in space-time, and errors occur in the high-gradient areas. 

The error indicators are the derivatives of physical quantities within each element, 

which are normalized by their own pseudo-volumes in space-time.

The error in an element is defined as:

the c]k coefficient and Hg. By looping over each node and element, all terms are cal

culated and assembled into matrices [G] and [H]. Once matrices [G\ and [H ] have 

been obtained, the resulting matrix equation is solved by using Gauss elimination

land & Shaw [35] shows that the local space and time errors go to zero if spatial and 

temporal mesh sizes decrease monotonically. They also show how different local er-

f f

f f d S e d t
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C/i —
s i (&) + dSPdt

f f d S e d t
(5.22)

where u, q are displacements and tractions on the boundary mesh obtained from 

BEM solutions; x, y are the local curved coordinates on the boundary surface 5e; t 

is the time.

We substitute the spatial discretization described in Sec. 5.2.2, u = ^ 2 N k (£, 77, r)  it*.; 

q =  J 2 N k (£, 77, r)  q*. , and we apply some transformations:

du
dx
du _
dy
du

_ dt _

dt] dr  
dx dx dx
d£ dr] dr
dy dy dy
d£ dr] dr
dt dt dt

du
dd
du
dr)
du
dr

(5.23)

d u \  /  &u\ ( du
d x )  +  \ d y )  +  \ d t

du du du
dx dy dt

du du du
d£ dr) dr

du du du
d£ drj dr

du
dx
du
dy
du
dt

§L
dx

dr/
dx

dr
dx

§L
dy

dr)
dy

dr
dy

§i
dt

dr)
dt

dr
dt

- 1)7 J~ 1

T r r  -.

§ i dr) dr du
dx dx dx dt
§£ dr) dr du
dy dy dy dr)

§L dr) dr du
dt dt dt dr

du du du
d£ dr) dr (5.24)

where we assume

since

J~ l =

drj dr
dx dx dx
91 dr) dr
dy dy dy

§L dr) dr
dt dt dt

du
9i
du _
drj
du
dr

dx dy dt
dd dd
dx dy dt
dr) drj dr)
dx dy dt
dr dr dr

du
dx
du
dy
du
dt

(5.25)

(5.26)
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We define

also

J  =

dx dy dt
dn dt d£
dx dy dt
dr] dr] drj
dx dy dt
dr  dr  dr

dxdydt = | J\ d^drjdr

(5.27)

(5.28)

Hence:

f
Gii —

du du du du du duL dz dr] dr L Qz dr] dr | J\ d^drjdr

f  | J\ d^dydr

I §1 d£ ( j - ' f j - 1 §SL dg
L dr] d r 1 »Z dr] d r

| J\ d^drjdr

f  | J\ d^drjdr

where

du du du d £  N k(£,r],r)uk d £  Nk(Z,r],T)uk d J 2 N k (Z,r],r)uk
I dt dr] dr dZ dr] dr

dg dq dq d T , N k(£,r],r)qk d £  N k(Z,r),r)qk d £  N k(£,r],r)qk
I &Z dr] dr I dZ dr] dr

(5.29)

N k (£, Vi r) are the shape functions used in the space-time domain; Uk and qk 

are errors of nodal displacements and tractions on the boundary and \J(£,v)\ is 

the determinant of the Jacobian obtained from Eq. 5.27. Assuming that curved 

triangular elements are used in space and linear elements are used in time, the exact 

formula for error estimation can be derived from these formulas. The displacement 

is:

u = T Tm— 1
I'm 7"m—1 k=1 Tm—1

(5.30)
k=1

which yields:

du T  7~m—l

Tm Tm—] £
fe=i

9 N k (£,r)) k
um +

7m — r £
k =1

d N k (S,ri)

d t
um —1



5.3. Error indicators and adaptive schem e in 3D 112

du =  r - T m _ i  y ^ d N k(t,ri) k

dr] rm -  rm_i ^  dr] Um
r m  — T E d N k ( ^ r j )

r~m r~m— i dr]
um— 1

S = E E N "& v X  -  7-=T~ E Nkt i ’ v X - 1d r  Tm  Tm —i  Tm  Tm —\
(5.31)

where the derivatives of the 2nd order shape functions of the triangle element 

with respect to the local coordinates are:

d N k{i,rj)
ae

- 1  +  4$, 0, - 3 +  4 $ +  4T), 4t], -4 $ ,  - 4  ( - 1 + r / +  2$)

d N k^ , V)
dr] 0, - 1  +477, - 3  +  4 $ +  4t/, 4$, - 4  ( - 1  +  27/ +  $), -4 $

(5.32)

Since time f is independent of the local curved space coordinates (x,y),  the 

determinant of the Jacobian is:

\J\ =

dx ch/
dt
dx dy_
dr\ dt]

0 0

dx d]l
dt d t
dx dy
dr] dr]

(5.33)

Thus the inverse of the Jacobian is

J_1  \J\

dn dn
dr] dt

_dx dx
dr] dd .

(5.34)

where
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5.3.2 Re-solution error estimation

Besides deriving errors from high gradients of boundary values, error estimates can 

also be obtained from the difference between coarse and refined meshes. The defi

nition of the error indicator for displacements u is the difference between the gra

dients A-f^ =  -f^l — , because we assume that errors only exist whenaxi oxi I new oxi I old ’ J

two displacement field’s gradients are different. The error indicator for traction q is 

Ag =  qnew ~  Qoid• Qnew are the values from the refined elements while q0id are the 

values from the coarse mesh. The formulas for their error estimates are:

IS (A§)2+(At)2+(Af):dSPdt\
f f d S e d t

en =
f  f  f  (Ag)2 dSedt 
1 f f d S edt

(5.36)

In discrete form:

Ci/.
I d A u  dA u  d A u

d£ dr] d r
- 1 \ T  7 - 1( J  ) J d A u  d A u  d A u

d£ dr] d r
| J  (f,77)| dtdrjdr^

f  \ J  {^r]) \d^drjdT  
\

= ( J ( A g ) 2 |J(g,yy) |dgdy?dr\  2 
6q \  f \ J ( £ , v ) \ d £ d r i d T  J

where all the terms are the same as the last section except that
r i  T

the displacement vector “ m «m U3m vA uA vAm m m
1T

9m 9m Qm Qm Qm Qmand the traction vector 

are changed to:

AuL  A vA A uL A u t  A v A  A u t  

and 4

/

(5.37)

A 9m A 9m A 9m A 9m A Qm A <lr 

The advantage of this strategy is that we combine the error estimate and the

adaptivity together. We continue the refinement of elements where errors are large
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Figure 5.8: Refine a triangle into (from left to right) into two, three and four sub
triangles.

while halting the refinement in elements where errors are small.

5.3.3 The triangulation refinement based longest edge prop

agation path (LEPP)

Once the elements with the largest errors are found, they are refined to reduce 

discretization errors. Triangular elements in the surface can be refined into two, 

three or four subtriangles as shown in Fig. 5.8. All these divisions are based on the 

strategy of dividing the longest edge. In Fig. 5.8, the bottom edge of the original 

triangle is the longest one and it is halved in any refinement.

Here the author uses the triangulation refinement scheme based on the Longest- 

Edge Propagation Path (LEPP) of a triangular mesh (M. Rivara and N. Hitschfeld 

[69]). For any triangular element to of any conforming triangular mesh, the Longest- 

Edge Propagation Path of t0 is the ordered list of all the triangle elements to, U ,t2, ...tn, 

such that ti is the neighbour triangle of by the longest edge of £*_i, for i = 

1,2, ...,n. The ordered list of all the triangle elements to , t i , t2, ...tn is denoted as 

LEPP(to)-  Two adjacent triangles (t*, t<_i) is called a pair of terminal triangles if 

they share the longest edge in the triangle list. In addition, U itself alone will be 

a terminal boundary triangle if its longest-edge lies on the geometry boundary. In 

Fig. 5.9, the Longest-Edge Propagation Path of t0 is the ordered list of triangles 

(^0j^i>^2»̂ 3); the pair (t2, t 3) is a pair of terminal triangles.

Fig. 5.9 also illustrates the process of the refinement of the triangle t0 based on 

LEPP. First we find the Longest-Edge Propagation Path of to is the ordered list of 

triangles ( to,t i , t2, t 3). The terminal triangles {t2, t 3) are refined by the bisection of 

the longest common edge. Then the new triangle list of the Longest-Edge Propa

gation Path of to is set up and the last pair is bisected again. The Longest-Edge
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b)a)

d)c)

Figure 5.9: LEPP refinement of triangle t0 (a) Initial triangulation (b) First step of 
the process (c) Second of the process (d) Final triangulation

Propagation Path of the triangle to is repeatedly built up over the current mesh in 

order to find the last two terminal triangles to refine, until the initial triangle to is 

refined.

It can be mathematically shown [69] that the LEPP refinement scheme guar

antees the construction of good-quality refined meshes with linear time complexity, 

provided that an initial good quality triangular mesh is used. In order to implement 

this algorithm, a suitable data structure that explicitly manages the neighbour- 

triangle relation is used, which will be described in more detail in Section 5.5.2. The 

algorithm of LEPP refinement is described in Algorithm 2.

A lgorithm  2 LEPP-refinement procedures 
LEPP.Refine ( t ,T)

1. w hile t  remains w ithout being b ise c te d  do
2. Find th e  LEPP(t)
3. i f  tn, £n_i ,  th e  l a s t  p a ir  of th e  LEPP(t) are  te rm in a l t r ia n g le s
4. then
5. b is e c t  7̂t~i
6. e lse
7. b is e c t  tn only
8. end if
9. end while
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5.3.4 Adaptive algorithm

The automatic mesh refinement strategies for 3D scalar wave problems can be sum

marized as:

S O L V E  => E S T I M A T E  => M A R K  => R E F I N E

Given the initial triangulation of surface boundaries, one has to compute the BEM 

solution in the first step S O L V E . The solution error is estimated by postprocessing 

the solution results from the last step: this is the second step, E S T I M A T E .  On the 

basis of the refinement indicators derived from the error estimate, the step M A R K  

identifies the elements in the current mesh in need of refinement. The new mesh is 

generated in the last step R E F I N E  and sent to S O L V E  step in the next loop. The 

iteration continues until the BEM solution satisfies the prescribed error tolerance. 

The general adaptive process is similar to the one in the Chapter. 4.

5.4 Local time stepping

Usually, BEM employs a finite difference methodology in time and boundary ele

ment discretization in space. This means that the same time step is applied for all 

elements. However, for impulse wave problems, regions of high stress or high strain 

evolve over time, and rapidly moving regions of high stress gradients exhibit a high 

degree of localization at any instant in time. Using smaller time steps for all regions 

is computationally wasteful. Thus, it is more efficient to build a BEM model with 

local time stepping, combined with an adaptive scheme which indicates where it 

should apply.

5.4.1 Objectives of local tim e stepping

Here a simple example of a rod subjected to Heaviside load is used to demonstrate 

local time stepping. The configuration of the problem and the moving wavefront in 

space-time are shown in Fig. 5.10. Since it takes different times for the wave front 

to reach different points along the rod, the displacements at different points will be
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u ( t )

F(t)

r t im e

(a) (6)

Figure 5.10: (a) Heaviside load on a rod; (b) moving wavefront in space-time

quiescent at various times (shown in Fig. 5.10) .

In the integral representation formula for 3D wave problems (Eq. 5.38), the 

numerical approximation of du(£ T̂ causes significant problems if the time step is too 

large.

c(xi)u(xi, t) =  J -  /  -  • g(x, t -  (r /c) )dS(x ) (5.38)
47r Js  r

For example, if u(x,  r)  is approximated linearly in time and quadratically in 

space ( any higher order approximation will have similar problems), the numerical 

approximation of u(x, r )  and its time derivative are:

/ \ T ~  Tm- 1 / \
U(X,  T)  =  ------------------ U( X)

Tm Tm—i

du(x, t ) 1 ( .
— «----- = ---------------u(x) (5.39)

Tm  -  T m - !

Substituting these expressions into the representation formula, the third term in 

the integral of Eq. 5.38 is

4 = b  I  t {T c ^ ^ û } d5(x) (5-40)
In reality, the term du(£ T̂ = c. However, in the linear time approximation 

scheme, the discontinuities of u(x, r)  is not considered in the approximation. Thus,
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• q~t ' = —~w(x ) instead. This term can produce large errors when the time

step is large. This conclusion holds for any impulse loading according to the same 

reasoning. Of course, this problem can be alleviated by applying smaller time steps 

to better resolve the rapid change of displacement in time. Unfortunately, since 

the wavefront is moving, the high gradient of du(£ T̂ occurs in different locations 

at different times. If global time stepping is used, although the refined time step 

is needed in only a small area, the time step will be refined for all elements, and 

this is wasteful from the computational point of view. After local time stepping is 

introduced, only the time step of high gradient areas will be refined while others 

will retain large time steps.

5.4.2 Local time stepping scheme and implementation

The fully explicit algorithm of local time stepping for BEM proposed in this section 

was developed by the author, inspired by a paper in the FEM context (S. Piperno 

[67]). In that paper, a symplectic local time-stepping for the arbitrarily unstructured 

FEM mesh is used to solve the wave diffraction problem. The set of elements are 

partitioned into N  classes according to their different sizes, the global time step of 

algorithm is At; for 1 < k < N , elements of the class k will be time-advanced using 

the leap frog method with the local time step A t / 2 N~k; the largest elements are in 

class N  and the smallest in class 1. The time stepping rotates among the different 

classes, in a zigzag fashion, until all of them reach the next time step tn+1 from tn.

However, there are some complications in local time-stepping for adaptive BEM 

which are different from FEM:

1. The elements to be refined are unknown before the computation. They are 

different at each time step, and have to be decided by error estimation after 

postprocessing the BEM solution. The partition of elements can not be done 

once and for all; the classification of elements should be dynamically updated 

at each time step.

2. FEM in dynamics usually involves physical values at the last time step, or 

past several steps at most for the multi-time-step case. As a global operator,



5.4. L ocal t im e  s te p p in g 119

(a)

dt/2i d t/2

3 y dt/4

3 y dt/4
; dt/2 dt/2

2 T dt/4

o Q
.i

i : d t/2 
t

i

1 : d t/2  
T2 J dt/4

(c) (d)

Figure 5.11: Local time stepping: sub-steps are performed from step 0 to step 3

dynamic BEM involves physical values at all past times. Thus local time 

stepping should be carefully designed to allow for this.

The new local time stepping proposed by the author was designed with consideration 

for these differences from the FEM. Let us firstly assume that:

1. The set of elements are partitioned into N  classes. This parti tion  will be 

dynamically updated a t  each time step based on the error estimation of BEM 

solutions and on geometrical or physical criteria.

2. The global time step of the algorithm is At ;  Elements of the class k (0 <  k <  N)  

will be time-advanced using the integral representation formula of BEM with 

the local time step A t / 2 k; the largest elements are in class 0 and the smallest 

in class N.

The algorithm is schematically illustrated in Fig. 5.11 and is described in more 

detail as follows:

Let us denote the algorithm R n (t ) for advancing classes N  in time over the time 

interval r  >  0 ( If we s ta r t  from a uniform mesh, all elements belong to class 0. The 

elements after the first refinement belong to class 1; those after second refinement 

belong to class 2, and so on ). We define R N (r)  in a recursive way. Since the uniform 

mesh advancing in global time step A t  using ordinary BEM is called R ° ( t ), for any 

N  >  0, the R N+l(r)  is defined as follows:
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1. Start with boundary values u(x)  and g(x) which are known at time tn — n A t

5

2. Advance all elements in class k < N  with R N(At)  to obtain all unknown 

boundary values u{x) and <?(x) at time tn+1 = ( n + 1) A t ; Use gradient-based 

error estimation to mark those elements with high gradient values, which are 

labeled as class N  +  1.

3. Refine the elements in class N  + 1, Advance all elements in class N  +  1 with 

R N(At/2),  see Fig. 5.11 (b). If required, use values at time tn+l for elements 

in class N.

4. Since the elements in class N  + 1 are solved twice so far, use the two solution 

error estimates to mark those elements with large errors, which are labeled as 

class N  +  2.

5. Refine the elements in class N  +  2, Advance all elements in class N  +  2 with 

R N(At/4),  see Fig. 5.11 (c). If required, use values at time tn+1 for elements 

in class k < N  +  1.

6. Continue this process of two solution error estimates, refinement in both space 

and time to be class k and advance the element in class k with R N(A t /2 k), 

until the error tolerance is satisfied.

7. After the high-gradients of the boundary values u(x) and q(x) are located and 

refinements are made, for all element in class k  > 0, finish the remaining time 

with R N( A t /2 k) in one step until tn+1 is reached. For an example shown in 

Fig. 5.11 (d), we can write down the boundary integral equations in space

time for elements in class 2 to finish another three time steps (A t/4  ), then 

elements in class 1 in another A t / 2  time step to reach tn+1( which are all 

marked in grey).

8. All unknowns at time tn+1 have been computed with local time stepping as 

well as satisfying the prescribed tolerance for the solution error.
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5.5 Numerical Implementation

In this section, the numerical implementation using the C language is explained in 

outline. The computer program discussed here may be used to solve 3D scalar wave 

propagation problems for arbitrary geometry and boundary conditions.

5.5.1 Program structure

The adaptive boundary element program can be separated into five basic parts:

1. Geometry and boundary condition input module, mesh preprocessor

2. Compute the Gfj and Hfj— influence matrices of each element, assemble into 

general matrices [G\ and [H] .

3. Linear system solver

4. Error estimation and marking those elements with large errors

5. Boundary element refinement

Fig. 5.12 shows a schematic flow-chart for the adaptive boundary element program. 

Each of the modules is very complex in practice. In the subsequent sections we will 

discuss the programming aspects for each of these modules.

The implementation process is divided into 7 subsections: Section 5.5.2 describes 

the basic data structure for surface vertex, triangles and surface meshes in 3D, which 

are used to describe objects with arbitrary shape. Since 3D BEM models may involve 

hundreds or thousands of nodes and elements, Section 5.5.3 describe the memory 

management codes for large arrays and large list structures. In order to do a fast 

search for intersections between spheres and boundary surfaces, surface meshes are 

enveloped in a special data structure called sphere trees. How to construct such a 

sphere tree and how it functions is described in Section 5.5.4. Section 5.5.5 discusses 

various other issues, such as computing the influence matrices of each element, G - 

and Hfj\ assembling them into the general matrices [G\ and [H ] and linear system 

solvers. In Section 5.5.7, the mesh refinement strategy and its implementation are 

described. Various error estimation methods are described in Section 5.5.6 and
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Input initial Geometry 
boundary conditions & dyn loadinĝ

Loop over time m = 1, M

Global error > Tolerance

Linear solver to solve [ u}, {q)

Compute global error

Linear solver to solve {u), {q}

Compute influence matrices [H], [G]

Compute influence matrices [H], [G]

Refine marked elements in space-time

Gradient error estimation & Mark elements

Two solution error estimation & Mark elements

End loop time step m

End

Figure 5.12: Simplified scheme of adaptive boundary element program
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(a) (b)

Figure 5.13: Some objects modeled by triangular elements, (a) a cube; (b) a me
chanical part

B N NULL

Figure 5.14: Double direction list structure

finally Section 5.5.8 describes the changes needed in the BEM solver after introducing 

the new adaptive meshes.

5.5.2 Geometry modeling - surface mesh and data structures

The geometry of surface boundaries are modeled by triangles in 3D. The triangular 

element is chosen for its ability to approximate any geometric shape in 3D while 

quadrilateral elements fail in certain cases. Some objects modeled by triangular 

elements are shown in Fig. 5.13.

The two main functions of a mesh are: i) describing the locations of nodes, ii) the 

relationship between nodes and elements, i.e., which nodes belong to which element. 

Data structures of the surface mesh mainly consist of two list structures: the double

direction list (as shown in Fig. 5.14 ) of vertexes to describe the coordinates of 

nodes, the double-direction list of triangles to describe node-element relations, and 

the structure of a mesh which includes the two lists above.

The double-direction list of vertexes includes its 3D coordinates, boundary val

ues, its own number in the vertex list, the radius for two intersection spheres, two 

list pointers for sub-triangles to be added or subtracted, and list pointers to the 

previous one and to the next one, as shown in Algorithm 3.

The double-direction list of triangles consists of a 6-element array: it has a
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A lg o rith m  3 Data structure of the surface vertex
struct surface_vertex 
{
double coord [3];
Surface_Boundary_Value *sbv; 
unsigned int number; 
double rmin, rmax;
Surface_Sub_Triangle *add; 
Surface_Sub_Triangle *sub; 
Surface_Vertex *prev, *next; 
>;

// vertex coordinates 
// Vertex boundary values 
// vertex number
// Radii of intersection spheres 
// list of sub-triangles to be added 
// list of sub-triangles to be subtracted 
// list structure

A lg o rith m  4 Data structure of the surface triangle
struct surface.triangle 
{
Surface_Vertex *ver [6];
Surface_Boundary_Value *sbv 
Surface.Triangle *nei [3]; 
unsigned int number;
Surface_Triangle *prev, *next;// list structure 
>;

// vertexes
// Vertex boundary values 
// neighbors 
// triangle number

pointer of surface vertexes which indicate which nodes belong to which element; 

triangle boundary values, three pointers to neighbouring triangles (which is useful for 

LEPP-based mesh refinement and postprocessing of stresses etc.); triangle number 

and list pointers to the previous and to the next triangle, as shown in Algorithm 4.

The data structure of the surface mesh consists of the order of the triangle (either 

3-node linear elements or 6-node quadratic elements); several memory-pools (whose 

function will be explained in the next section); the total number of vertexes; a 

pointer to the list of vertexes; the total number of triangles; a pointer to the list of 

triangles, and a pointer to the sphere tree (which will be explained in Section 5.5.4).

5.5.3 Memory management for large arrays

Because BEM 3D models usually involve thousands of vertexes and surface triangles, 

it is essential to deal efficiently with large memories in which the same data structure 

repeats many times. A memory pool allows dynamic memory allocation such as 

malloc in C or the operator new in C + + . The implementations suffer from memory
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A lg o rith m  5 D ata  structure of the surface mesh
s truct  surface_mesh 
{
short order; 
s truc t  mempool vpool 
s truc t  mempool tpool  
s truct  mempool ipool  
s truc t  mempool spool  
s truc t  mempool bpool; 
unsigned int  nver;
Surface_Vertex *ver; 
unsigned int  n t r i ;
Surface_Triangle * tr i ;  
Sphere_Tree *tree;
>;

/ /  order of t r ia n g le s
/ /  vertexes  pool
/ /  t r ia n g le s  pool
/ /  in t e r s e c t io n  t r ia n g l e s  pool
/ /  sphere tree  pool
/ /  boundary values pool
/ /  vertexes  count
/ /  l i s t  of vertexes
/ /  t r ia n g le s  count
/ /  l i s t  of t r ia n g le s
/ /  sphere tree  for  t r ia n g l e s

free chunk
used chunk

•  •  •

dead chunk

Figure 5.15: Schematic image of a memory pool
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A lg o rith m  6 Data structure of a memory pool
struct mempool 
{
void *blocks; // list of allocated memory blocks
char *freechunk; // next free chunk of memory
char *lastchunk; // last chunk in current block
void *deadchunks; // list of deallocated chunks of memory
unsigned int chunksize; // size of a chunk
unsigned int chunksinblock; // number of memory chunks in a block
>

fragmentation because of variable memory block sizes, and their performance is 

poor. A more efficient solution is to pre-allocate a number of memory blocks with 

the same size called a memory pool, as shown in Fig. 5.15. Each rectangle represent 

a unit of the data structure. Usually a memory pool with 256, 512, 1024 or more 

units is pre-allocated at the beginning of the program. When a data set is created, 

it is put into a free chunk of the pool. When a data set is dismissed, the chunk of 

memory which it once occupied will be freed and available for new data sets. When 

a memory pool is used up, a new one with the same size ( 256, 512, 1024 or more 

) will be initiated. When the program ends, the whole memory pool will be freed. 

The memory pool can allocate, access and free blocks represented by pointers at 

runtime. Its data structure is shown in Algorithm 6.

Memory pools allow memory allocation with constant execution time with no 

fragmentation. The memory release for thousands of objects in a pool is just one 

operation, not thousands of operations. Memory pools also make it faster for the 

program to access large volume of data since they are all physically reside next to 

each other.

5.5.4 Sphere trees and implementation

In the dynamic BEM, the influence matrices [H]nm and [G]nm ( n - current time 

step, m - past time step) have to be calculated at each time step according to the 

intersection between different size spheres and the boundary surface. In a com

puter, the shape of an object may be represented by tens of thousands of elements. 

In conventional BEM programs, the intersection check will loop over all triangles,
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Figure 5.16: Schematic image of a sphere tree

Algorithm 7 Sphere tree data structure
struct sphtree 
/\
double center [3]; // sphere center
double radius; // sphere radius
Surface_Triangle *tri; // stored triangle
unsigned char leaf; // leaf flag
Sphere.Tree *lower; // lower level nodes
Sphere_Tree *next; 
>;

// next sphere on this level

which requires a massive amount of computing time. In order to have a fast inter

section search, triangles are replaced by the tree structure of hierarchical spheres 

which envelop them, as shown in Fig. 5.16. This reduces the amount of computing 

drastically and thus speeds up the solution. The data structure of sphere trees is 

shown as Algorithm 7. More algorithm details can be found in Section 5.2.4.

5.5.5 BEM integration modules

The basic BEM solution consist of computing the entries of the influence matrices 

Hij for each element and assembling them into the general matrices [G\ and 

[H]. The process is as follows :

Firstly, we loop over all vertexes on the surface mesh, using time step n (Q..N — 

1) and step size dt to determine the two sphere’s radii (rmin = c • ndt , rmax = 

c ■ (n +  1) • dt) which intersect with the boundary surface. The intersected sub-area
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Loop all vertex

Loop all add_submesh

Get vertex number i

Put Gij into [G] matrix

Put Hij into [H] matrix

Get submesh contributing vertex number j

Set radii of two spheres 
Intersect with boundary surfaces

Gij = weight(Xi.Yi) * GKemel * ShapeFunc * Jacob

Hij = weight(Xi.Yi) * HKemel * ShapeFunc * Jacob

Put intersection into submesh addjist & subtract_list

End loop add_submesh

Same process loop over subtract_submesh

End loop all vertex

End

Figure 5.17: BEM integration process
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of elements are put into the sub-mesh list of the vertex. The true intersection area 

is computed as the difference between the bigger sphere and smaller one: the add- 

list submesh means the intersection with the bigger sphere while the subtract-list 

submesh means the intersection with the smaller one. We loop over the submesh 

to numerically integrate and H\j and assemble them into the general influence 

matrix [G] and [H]. After looping over all vertexes in the mesh, all integrations for 

the integration representation formula are done.

5.5.6 Error estim ation module

The algorithm for gradient-based error estimation for detecting the errors in each 

element is shown as Fig. 5.18. At each time step, we loop over all elements, compute 

the transformation matrix J  according to Eq. 5.33; compute | | ,  accord

ing to Eq. 5.32; perform the time integral of the terms analytically; then perform 

the space integral of the terms numerically. The same process will be applied to 

§f ’ If’ if' After looping over all elements, we can find the largest element error 

indicator of u and q. Then we loop over all elements again to mark those elements 

whose error indicators are larger than tol • max  (eu) or tol ■ max  (eq).

Following a similar process, the algorithm of re-solution error estimation is shown 

in Fig. 5.19.

5.5.7 Mesh refinement module

After the elements with large errors are found through error estimation methods, 

these triangular elements are refined further. The refinement strategy for the tri

angular mesh in this program is to divide the original triangle into two based on 

LEPP-refinement scheme. The algorithm is shown as in Fig. 5.20.

Firstly we loop over all elements to be refined; we find the LEPP triangle list of 

marked elements, and refine the last terminal pair in the LEPP triangle list. Then 

we create new vertexes with new coordinates, number etc.; put them into the vertex 

list of the new mesh as well as the relevant old vertexes. We also put new refined 

triangle elements into add_mesh list, and put old triangles into the delete_mesh
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Compute local derivatives of shape functions

Loop all elements

r ~

Compute Jacobian matrix J

I

u

/

se numerical

du du du 1% Wrj Ft

integral to c

(j-)V '

ompute error

du du duIfi] Wt

index

| J\ d̂ drjdr

I
dq dq dq 
1% Ml $T

ir)dr 

Oq dq dqsf $rj Fr \J\ d̂ dqdr

I  |J|dE<4)dr

End loop all elements

I

Find the biggest error wax (eu) , max (eq)

Mark elements whose errors bigger than P • max (eu) or • max (eq)

Figure 5.18: Gradient-based error estim ation
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Compute local derivatives of shape functions

Loop all elements

Compute Jacobian matrix J

Use numerical integral to compute error index

l
/  f  [ SA u 0 A u  flA u 1 i r - \ \ T  r - i  f d A u  S A u  8 A u  1 i j  i c

~W ■srjl'7 ) ' 7 [-BT W  TT | I ' M l w r
I\J(£,ri)\didqd- 

1 1 (A(?f \J {^J})\d^dTjdT
\  JV ((,t/)|^Vt

^End loop all elements

Find the biggest error max (eu) , max (eq)

Mark elements whose errors bigger than P ■ max (eu) or p • max (eq)

End

Figure 5.19: Re-solution error estim ation
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Loop all marked elements

No
This neighbor exists?

Yes

Create new vertices

Refine it into 2 trianglesRefine them into 4 triangles

Locate longest side of triangle

create new triangles for add_mesh list

create new triangles for delete_mesh list

Locate neighbour triangle to the longest side

End loop all elements

Figure 5.20: Algorithm of refining triangular meshes
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list. The LEPP refinement continues until the marked element itself is refined. The 

same process is repeated for other marked triangles until all marked triangles are 

done.

5.5.8 Adaptive solver

Because the surface mesh is refined at different places at each time step, the conven

tional uniform mesh BEM solver is no longer adequate. Here the author developed 

a new dynamic BEM solver for adaptive meshes. The new solver is based on the 

observation that since the impulse wave fronts only occupy a small position in the 

total space-time, the refined elements are only small percentage of the whole mesh. 

Rather than creating a new mesh at each time step, we store one copy of the original 

mesh in the memory, then at each time step we only create a list of elements which 

are to be removed (called delete_mesh ), and a list of elements which are to be 

added (add_mesh). The final mesh is the superposition of these three meshes, as 

shown in Fig. 5.21. Two large triangles are in the root mesh. If it needs to be 

refined, two large triangles will be put into delete_mesh, and four small triangles 

will be put into add_mesh.

The advantage of new algorithm is that coefficient matrices [G] and [H] of the 

original uniform mesh will not be re-computed. We only make changes to some 

entries based on delete_mesh, and augment the matrices to add new entries based 

on add_mesh, as shown in Fig. 5.22.

When computing coefficient matrices [Gnm] and [Hnm] from past influences, first 

we copy the matrices [Gnm] and [Hnm] of the uniform mesh into augmented ma

trices; then we loop over the vertexes in the root uniform mesh to intersect with 

delete_mesh and add_mesh at time step m, and put those entries into the upper 

right of the augmented matrices. If the mesh at time n  itself is refined, we loop 

over the vertexes in add_ mesh at the current time step n  to intersect with the root 

uniform mesh and refined meshes (delete_mesh and add_mesh at time step m), 

and put those entries into the lower part of the augmented matrices. The algorithm 

is shown in Algorithm 8 below:

When computing coefficient matrices [Gnn] and [Hnn] at the current time step
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delete mesh

add m esh

root mesh

Figure 5.21: Superposition of adaptive meshes

Figure 5.22: BEM formula in the form of augmented matrices
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A lg o rith m  8 Computing influence matrices from adaptive meshes
past_adaptive_m esh_influence_now (root_m esh,

adpMeshAdd,adpMeshDel,n,m)
1. add_mesh = adpMeshAddfm]
2. del_mesh = adpMeshDelfm]
3. copy root_mesh [Gnm],[Hnm]in to  augmented m atrices
3. i f  mesh a t  cu rren t tim e s te p  n not re f in e d
4. then
5. root_mesh in te r s e c t  del_mesh, compute [Gnm], [Hnm]
5. root_mesh in te r s e c t  add_mesh, compute [Gnm], [Hnm]
6. e lse
7. add_mesh_now = adpMeshAddfn]
5. add_mesh_now in te r s e c t  root_mesh,compute [Gnm] ,[Hnm]
5. add_mesh_now in te r s e c t  del.m esh, compute [Gnm], [Hnm]
5. add_mesh_now in te r s e c t  add_mesh, compute [Gnm] ,[Hnm]
8. end if
9. end

n, first we copy the [Gnn] and [Hnn] matrices of the uniform mesh into augmented 

matrices; then we loop over the vertexes in the root uniform mesh to intersect 

with delete_mesh and add_mesh at the current time step n , and put those entries 

into the upper right of the augmented matrices. We also loop over the vertexes in 

add_mesh at time step n  to intersect with the root uniform mesh, delete_mesh and 

add_mesh at time step n , and put those entries into the lower part of the augmented 

matrices. The algorithm is very similar to Algorithm 8.

5.6 Numerical examples

In this section, we present some numerical examples for 3D scalar wave propagation 

problems. As well as benchmark tests, we also demonstrate a reasonably realistic 

3D application of an acoustic problem inside a car.

5.6.1 Wave propagation in a 3D bar

Wave propagation in a 3D bar with a uniform cross section, subjected to Heaviside 

loading, is shown in Fig. 5.23. This problem has been used as a benchmark test 

by several researchers (Mansur [54]) due to its simple geometry and its tendency
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p(t)

8 m
y

time

Figure 5.23: A 3D bar with a Heaviside load

to produce severe numerical instabilities. It can also be analyzed using a scalar 

formulation. It is essentially an one-dimensional problem because of its symmetry 

about two axes.

The bar’s dimensions are 8m x 4m x 4m. The uniform surface pressure P(t)  is 

a Heaviside function applied at the free end at x  =  8m. The opposite is fixed where 

x  =  Om . All other surfaces are traction-free. The wave velocity in the material is: 

c = 200m /s.

The boundary mesh consists of 320 quadratic triangular elements, as shown in 

Fig. 5.24. The temporal shape function is linear for displacements and constant for 

tractions. The time step size was defined by dimensionless parameter (3 = cA t /A h ,  

where c is the wave velocity and A h  is equal to the radius of the circumscribed circle 

of the triangular element. During the BEM solution and mesh refinement, (3 keeps 

the value of 1.0 to keep the solution stable. In Fig. 5.24, the displacements on the 

boundary at various times are shown.

The computed time history of the normal traction at the fixed end, with var

ious parameters (3 = 0.3 up to 1.4, is shown in Fig. 5.25, and is compared with 

the analytical solution. The x axis is the dimensionless time and the y axis is 

the normalized traction Stable results were obtained for (3 > 0.5; numerical 

damping increases as (3 increases.

The refinement process is invoked as the wave fronts move between the free 

surface and the fixed end. The computed time history of the normal traction at 

the fixed end, with various parameters (3 = 0.3 up to 1.4, is shown in Fig. 5.26. It 

is observed that the refinement scheme improves the accuracy and the stability for 

almost all cases except when (3 = 0.3. In this case, because the time step is too small
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2.06e-05  U [m]

9  3 .24e-05  U [m] j 4 .16e-05  U [m]

Figure 5.24: A 3D bar represented by 320 elements. Displacements a t  time t 
=0.015s, 0.026s, 0.040s

for the refinement scheme to be stable, the refinement scheme actually accelerates 

the instability.

While the geometric and boundary  conditions are kept the same, an impulse load 

was applied in the free surface, defined as:

_  ( t - 0 . 0 2 ) 2

F( t )  = e (°°o2 (5.41)

The time history of the traction a t  the fixed end is shown for both BEM without 

refinement and with refinement (Fig. 5.27). This figure clearly shows th a t  the 

adaptive BEM solver has less artificial damping, less phase change, and remains
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Figure 5.25: History of the normal traction at the fixed end for various /?, using 
normal BEM solver
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Figure 5.26: History of the normal traction at the fixed end for various different /?, 
using adaptive BEM solver
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stable while the non-adaptive approach fails.
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Figure 5.27: (a) Time history of load; (b) Traction on the fixed end, with & without 
refined mesh

To obtain the efficiency of adaptive BEM, we record the computing time for each 

simulation with the time-space ratio (3 from 0.3 to 2.0. (Table 5.1). For the adaptive 

BEM, the sizes of the elements change at each time step. Thus, the final maximum 

time-space ratio (3 is used for the adaptive case. When (3 =1.1, the adaptive BEM 

is 41% faster than the conventional BEM. When the (3 values increase (that is, the 

initial mesh grows more coarse), the computing efficiency of adaptive BEM increases 

from 30% to 44%.
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II o C
O

0
0

oIISQ. /3 =  1.1 0  = 1.4 0  =  2 . 0

Conventional BEM (s) N /A 406.2 234.5 186.0 100.7
adaptive BEM (s) N /A 290.1 138.0 116.3 56.0

Table 5.1: The computing time of the 3D bar simulations with various (5 values

Figure 5.28: A model of interior acoustic field of a car 

5.6.2 A coustic field inside a car

A practical application of the adaptive dynamic BEM for the analysis of the interior 

acoustic field in a car is shown in Fig. 5.28, which is a crude model of the 3m 

long, 1.2m high and 1.8m wide car. The geometric model of the car was developed 

by Brooks and Morgans [9], which they analyzed using frequency-domain BEM. 

Humans can hear sounds with frequencies varied between 20 ~  20, 000 Hz. To 

find out how people perceive sound at different places inside a car, we com pute the 

acoustic field due to low-frequency cyclic noise from the engine of the car. The 

objectives of this simulation are to determine

• the acoustic pressure d is tribution inside the car for various frequencies;

• the locations of maximum acoustic pressure inside a car;

• the influence on stability and accuracy of the algorithm, for various element 

sizes, time-space ratios /?, etc.

This problem is analyzed using a 3D scalar BEM formulation because it can be 

treated as a potential problem, when sound pressure p  is equivalent to displacement u
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and velocity v to traction t. (Wu, [88]). Here the sound velocity in air is c =  343ra/s. 

Several test plans are designed as follows:

(a) The pre-processor Gid [29] is used to mesh the surface of the car; the mesh of 

494 surface triangle elements and 974 nodes is shown in Fig. 5.29. The time-space 

ratio (3 =  1.0 . A 100 Hz harmonic excitation representing the sound transmission 

through the engine firewall is applied to the vertical surface at the front of the car. 

The acoustic pressure distribution inside the car is computed, and the time history 

of the point with maximum acoustic pressure is drawn.

(b) A mesh with smaller elements (comprising 1,130 surface triangle elements 

and 2,364 nodes shown in Fig. 5.30), with a 440 Hz harmonic excitation (which is 

equivalent to the note middle C in music), is used to compute the acoustic pressure 

distribution again. The place and the absolute value of the maximum acoustic 

pressure is found and compared with case (a).

(c) A series of time-space ratios (3 =  0.3 — 2.0 are used to find its influence upon 

stability and accuracy.

In order to obtain good accuracy for harmonic wave propagation, at least four 

quadratic elements are needed per wave length. At /  =  100772:, the wave length 

A =  3.43m. Since there are 15 elements per wave length in longitude, 28 elements 

per wave length in width, and 11 elements per wave length in height, the accuracy 

criterion is therefore satisfied for the mesh in case (a). Even in case (b), /  =  440Hz,  

which yields a wave length A =  0.78m, the criteria is also satisfied.

Because the radius of the circumscribed circle of the triangular elements of the 

car is between r = 0.3 ~  0.8m, the proper time step is: A t = 0.0025 ~  0.0055. For 

acoustic wave /  =  100Hz,  after 100 time steps (roughly 5 periods of the harmonic 

load), the acoustic field achieves its steady state and the contour of the pressure 

field on the surface of the car is shown in Fig. 5.31. Not surprisingly, it is observed 

that the most noisy place is the front space of the car near the driver. However, it 

is less obvious that the corner of the back seats should also be quite noisy. Some 

sound absorbent material could be installed in both areas to improve the traveling 

experience.
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Figure 5.29: (a) Car exterior meshes with 494 elements; (b) car interior mesh

Figure 5.30: Car exterior surface meshes with 1,130 elements
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Figure 5.31: Pressure magnitude inside the car, f =  100 Hz

For acoustic wave /  =  440H z, the radius of the circumscribed circle of the 

tr iangular elements of the car is between r =  0.1 ~  0.3?n; the proper time step is: 

A t  — 0.0005 ~  0.001s. After the acoustic field achieves its steady state, the contour 

of the pressure field on the surface of the car is shown in Fig. 5.32. it is clear th a t  

the distribution of the m aximum acoustic pressure for /  =  440H z  is different from 

the above one. The most noisy place is the front space of the car near the driver 

and the upper corner of the back seats. Therefore, the further study is needed to 

decide which noise frequency is dom inant in the real driving situation. Some sound 

absorbent materia l can be placed in the right places accordingly.

For acoustic wave /  =  100H z,  we select the time-space ratio (3 from 0.3 to 2.0. 

Numerical results show th a t  it will not converge when (3 < 0.3 for conventional 

BEM (Table 5.2). For the adaptive BEM, the sizes of the elements change a t  each 

time step. Thus, the final m axim um  time-space ratio  (3 is used for the adaptive 

case. When the f3 values increases, the conventional BEM becomes stable but lose 

accuracy by numerical dam ping while the adaptive BEM can still retain  accuracy 

by refinement.
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Figure 5.32: Pressure m agnitude inside the car, f =  440 Hz

II o C
O II o C
n

00oIIso. / ? =  1.0 II to o

Conventional BEM unstable stable stable stable stable
adaptive BEM stable stable stable stable stable

Table 5.2: The stability of the numerical results with various (3 values

For acoustic wave /  =  100H z,  we record the computing time for each simula

tion with the time-space ratio (3 from 0.3 to 2.0. (Table 5.3). When the (3 values 

decreases, the com puting time increases greatly. To reach the similar accuracy, the 

adaptive BEM is 37.5% faster than  the conventional BEM.

Several conclusions may be drawn from this numerical examples:

• For the acoustic wave /  =  100H z, the maximum sound pressure locates in the 

front of a car near the engine and the corner of the back seats.

• When the acoustic wave has a different frequency, the distribution of the m ax

imum sound pressure changes.

II o C
o (3 = 0.5 II o 00 (3 =  1.0

oc4II

Conventional BEM (s) N /A 2907.2 1711.2 1362.5 707.9
adaptive BEM (s) 2898.4 1817.0 1069.5 851.6 442.5

Table 5.3: The computing tim e of the simulations with various (3 values
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• When the smaller (3 are used, the conventional BEM algorithm loses its sta

bility while the adaptive BEM is still stable.

• To reach the similar accuracy, the adaptive BEM is about 30% ~  40% faster 

than the conventional BEM.

5.7 Summary

Based on the BEM integral equation for 3D transient acoustic wave problems, the 

boundary domain is discretized into 6-node curved triangles. The linear system 

equations are assembled from the element influence matrices which are computed 

from the space-time integrals of Green’s functions. In order to better approximate 

high gradient areas, gradient-based and resolution-based error indicators are used to 

locate them, and space-refinement schemes and local time stepping are employed to 

better resolve the moving wavefront, while retaining computational efficiency. We 

apply this method to solve the problems of wave propagation in a 3D bar and show 

that, compared with traditional dynamic BEM, the solution is more accurate, less 

artificially-damped and more stable. Finally, we analyze the acoustic field inside a 

car, and demonstrate that a reasonably accurate simulation for this complex problem 

can be obtained using an ordinary desktop PC.



Chapter 6

Adaptive Boundary Element Method 

for elastodynamics in 3D

6.1 Introduction

In principle, for many complex dynamic problems in geomechanics such as earth

quake wave propagation, soil-structure interaction etc., elastodynamic BEM in 3D 

is a powerful numerical method.

In this chapter, the numerical implementation of the boundary integral equations 

for 3D elastodynamics is described. In Section 6.2, we discuss the discretization of 

BEM formulation of the 3D elastodynamics vector field equation; the evaluation of 

the time integral, and singular and non-singular kernel integrations. In Section 6.3, 

we introduce error estimates based on stress recovery and the consequent adaptive 

schemes for 3D elastodynamics and local time stepping. In Section 6.4, various 

aspects of BEM programming, such as the vector field kernel time integrations, and 

stress resolution based error estimation etc., are discussed in detail. Finally, some 

examples of the application of adaptive space-time BEM are given and discussed in 

Section 6.5.
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6.2 Space-time BEM for elastodynamics in 3D

6.2.1 Boundary integral formulation for space-time BEM elas

todynamics

The governing equations of elastodynamics are:

(c? -  c\)ujtij +  cluijj  + fi = iii (6.1)

where u*(x, t) is the displacement in 4D space-time in the i th direction (i =

1,2,3) and ii* is the corresponding acceleration, x  denotes the spatial coordinates 

(x ,y ,z) \  fi = b i/p, b; is the body force; p is the density; C\ is the pressure wave 

speed and is the shear wave speed.

The displacements are specified on Si, while tractions are specified on S 2 ’

u» (x, t) |Sl =  u i (x, t) P i (x, t) \s2 =  P i (x, t) (6.2)

where the boundary Si U S 2 = S, Si H S2 =  0.

Initial conditions are prescribed at time t = 0:

Ui (x, 0) |s =  u 0i (x) ui (x, 0) |s =  v 0i (x) (6.3)

u 0i (x) are the initial displacements on the boundary, and v 0i (x) are the initial

velocities on the boundary. Assuming zero body forces fi =  0, and quiescent initial 

conditions Uoi (x) =  0 and v0i (x) =  0, the 3D elastodynamic BEM integral equation 

is: ( Dominguez [20])

c\kuk i) =  Js u*k (x > t ~  t; x %) * pk (*, r) dS  (x , r)

~  J  Pik (x ’1 ~  r ; x%) * r)dS(x,  t )  (6.4)

where, x l refers to a specific collocation point on boundary S. The Green’s function 

u\k is [20]:
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uIk

[n * - = 9 - " K ) 1}

+ % < ? ( « - - ) }  (6.5)
rc{ c2

where r =  \x — x l \, H (x ) is the Heaviside function and 5(x) is the Dirac-delta 

function. The traction kernel function p\k (x, t\ x l) can be obtained from the Green’s 

function u*lk , using Hooke’s law and the equilibrium equation, which yields:

o t
+  r j r yk~ B  +  r yin kC} (6.6)

where the coefficients A , B, C are :

1 r t • r

B  =  4 ^  t [H(t -  f  f ) ]
r c  i c2

.2 
2
2 1r * " ' c2' cf ' ci

-  (6-7>

In Eq. (6.4), the integrals of the products of pk( x , t )  and the Heaviside function 

H (t — J) or the Dirac-delta function J (t — ^) in space-time become spatial integrals 

of pk(x ,r )  over the boundary. Most of the integrals of the product of uk(x ,r )  and 

the fundamental traction solution can be similarly reduced to spatial integrals. For
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example, the product of the integral of the displacement Uk(x,r) and the time 

derivative of Dirac delta function is:

j  ------^  C1 uk{x,T)dS{x,r)  =  j  --------— — — dS(x)  (6.8)

Here, we introduce a new interpolation scheme. Not only is the spatial domain 

interpolated via shape functions, but also both temporal domains are interpolated 

using N k (£, 77, r) as a space-time interpolation function. Thus:

uk = Y ^ Nk (£, v , r ) P k  = J 2 Nk (€>^ r )
j  j

h  = ^ ^ * ( £ , 77, 7-)^ ; (6>9)
j

where uk, pj. and lPk are nodal values of displacement, traction and time respec

tively.

Distance in space-time is defined as:

|ct - r \ =  c{U ~ ^ 2 N k (£, 77, r) • tk) -  r (6 .10)

where, U is the time of the source point x*, tk is the time of the field point in 

element j ,  r is the distance between the source point and the field point, and c is 

the wave speed.

After this numerical approximation, Eq. (6.4) takes the form:

N r
c\kuk = • NJ (f > ^  r ) Pfcd5,(*> r )

J=1

-  [  p*k' N3 ( ^ rl,T)uJkdS(x,T))  (6.11)
JSj

where uk, pj are nodal values of displacement and traction, (£, 77, r) are shape 

functions, Sj is the surface boundary element, and N  is the total number of boundary 

elements.
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Letting

G i l  =  Is, u tk ■ N i  (?. V, t )  d S ( x , t )

H '1 + c

(6-12)
Hlt = f SjP;k -W(t;,T,,T)dS(x,T)  

we adopt the notation:

* ^  J (6.13)
i  =  j

The system of equations for all boundary nodes can be expressed in the matrix 

form:

=  (6-14)
j =1 j=1

where N  is the total number of nodes in the space-time domain.

The causality law requires that boundary values at later time are only influ

enced by quantities at earlier time, but not vice versa. Thus, numerical methods 

constructed from these space-time boundary integral equations are global in time,

i.e., it is necessary to compute the solution for all time steps from the beginning to

obtain the current solution. The system is solved step-by-step: once u and p are

known for the previous time steps, the solution for the nth  time step is obtained 

from:

=  G < r)yp<rM (6.15)
n — 1

*~i (n m ) i j  (m ) j  t j (n m ) i j  (m ) j
+ " lk u * 

m— 1

where n is the current time step, m  is the past time steps, point i is the source 

point, point j  is the field point. I is the Ith component of the vector value on the 

source point; k is the kth component of the vector value on the field point. H  

and G are the influence matrices; uand p are vector values of displacements and 

tractions. The boundary consists of the spatial boundary extruded into space-time, 

like that of cylinder extruded from a 2D circle into 3D space. The increase in 

dimensionality is offset by special features of the problem. Therefore, it remains the 

same dimensionality as static problems, as discussed in Section 6.2.2.
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6.2.2 Evaluation of tim e kernel integral

Generally in the space-time scheme, the time kernel integral is treated by using 

numerical quadrature like the space integral. However, since the adaptive scheme

analytically to maintain both efficiency and accuracy. In order to integrate the time 

convolution analytically, the time interval of interest t is discretized into N  time steps 

of duration A t, so that t = n -A t ,  where n  =  1,2,..., N.  The current time is denoted 

as r. A linear time variation is assumed for displacements while a constant one is 

assumed for tractions at a given point Xi as shown in Fig. 6.1. The displacement is 

explicitly written as:

where um and um_i are spatial variation of the displacements at time rm and 

Tm_! respectively. The function <&m(t) is a piece-wise linear shape function in time:

will be introduced into a uniform mesh in space-time, the time integrals are evaluated

7"m 7"m— 1
um_i(x) $ m(t) (6.16)

=  H  [r — (m — 1) A t\ — H  [t — m  A t\ (6.17)

Tractions with constant time variation are written as:

N

(6.18)
m=1

where Pm is the spatial variation of the traction at time rm.

To evaluate the time kernel integral of the displacement Uk in Eq. 6.4, we write 

down the Green’s function u*lk in matrix form:
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Figure 6.1: Linear variation of displacement Ui and constant variation of traction Pi 
over a time interval
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Assuming that the shape function for tractions is constant, we put this matrix 

formula into the time integral [rm_i, rm], and split the resulting integral into 3 parts:

'TVn
j j n m  _ (6 .20)

T m —1

(6 .19)
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The first term is written as follows:

L =
*Tm

Tm — 1
( t ~ T)
Airpr3

c i

dr dr  
dx dx

dr dr 
dx dy

dr dr  
dx dz

t-H
l

0

1
o

3 - dr dr  
dy dx

dr  dr  
dy dy

dr dr  
dy dz

— 0 1 0

dr dr  
dz  dx

dr dr  
dz dy

dr dr  
dz dz 0 0 1

V c2
dr (6 .21 )

Eq. 6.21 means the effects upon point x z at time t from the point xJ between

times and ( t - r ) -

The second term is:

Io =
Tm

1
47rpr

Airpr

dr dr  
dx dx
dr dr  
dy dx
dr dr  
dz  dx

dr dr  
dx dx
dr dr  
dy dx
dr dr  
dz dx

dr dr  
dx dy
dr dr  
dy dy
dr dr  
dz  dy

dr dr  
dx dy
dr dr  
dy dy
dr dr  
dz dy

dr dr  
dx dz
dr dr  
dy dz
dr dr  
dz  dz

dr dr  
dx dz
dr dr  
dy dz
dr dr 
dz dz

Cf  \  C!

I—
1

i  „
~ 2 P

A
ci ~ ~ 2 P

4 c2

r
t ---------

c2
Pdr

(6 .22)

This equation means that the current displacement u(x, t )  is influenced by the 

term at early times defined by backward cones ( rq =  C \ { t  — r )  & r 2 =  c2(t — r)  ) 

and the space boundaries.

The third term is:

h  =
Tm_ x 47rprc^

1 0 0 

0 1 0 

0 0 1

1 0 0
1 1

47r prc\ 0 1 0
c2

0 0 1

8 ( t  I Pdr
c2

t - Pc 2
(6.23)
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Here, the current displacement u(x, t) is influenced by the term at early times 

defined by the backward cone ( r 2 =  c2(t — r)  ) and the space boundaries.

The traction p*k is written in matrix form:

Pll Ph Ph 

P21 P22 Ph

ph p h  ph

1
47T

/
1 0 0 dr dn dr dn dr dn

dr
dx dx dx dy dx dz

< 0 1 0 + dr dn dr dn dr dn >
dn dy dx dy dy dy  dz

0 0 1 dr dn dr dn dr dn
V dz  dx dz  dy dz  dz _ >

1
47T

dr
dn

dr dr  
dx dx

dr dr  
dx dy

dr dr  
dx dz

+ r ' c '47T

dr dn 
dx dx

dr dn 
dx dy

dr dn 
dx dz

■ B dr dr  
dy dx

dr dr_ 
dy dy

dr dr  
dy dz

dr dn 
dy dx

dr dn 
dy dy

dr dn 
dy dz

dr dr  
dz dx

dr dr 
dz dy

dr dr  
dz dz

dr dn 
dz dx

dr dn 
dz dy

dr dn 
dz dz

where A , B , C  are defined in Eq. 6.7.

(6.24)

Assuming that displacements vary linearly with time, we put this formula into 

the time integral [rm_ i,rm], and split the resulting integral into 3 parts:

P nm =  /  Plk
J Tm — 1

— I 1 + I2 + h

T Tm — 1 Tm T
   Um H  -------
Tm Tm —\ Tm Tm —\

'U'm—1 • dr

(6.25)
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The first term is written as follows:

rr+
h  =

+

T~m— 1

f 6 c22

47r
• A

d r
0 ^  • Oij +  r  jr k

T Tm— 1 

Tm Tm—i T
Tm  -  T

Tm TVn—l
'̂ 777—1 dr

r 4 rm -  rm_i
1 3 2 \
  [ai * ' Um-l] I ----- 20,3 ~^~2aA -̂--- a? )
■ 7Vm—i \  r  Cj r  c 2 /

3 cl
~o^5 +  -o

C2 2
c t  r "

r
c2

1 0 0
d r

d n
0 1 0 +

0 0 1

4- &2
\

7̂777—1J 
\

\  r 2

a7j  • 7̂7i—l r

dr dn dr dn dr dn
dx dx dx dy dx dz
dr dn dr dn dr dn
dy dx dy dy dy dz
dr dn dr dn dr dn
dz  dx dz  dy dz  dz

Ur

(6.26)

where

T3 t  +  Tm-m- 1 _2 + ^  ̂ |*6
3 1 2fll =  I  T H « T ~  * • T m -lT  I \ta

. . t  +  Tm 2 , t 3 \  a2 =  I tmT ^ T + j  |t‘

t ~ h ~  Tm- 1 , Tm- 1a3 =  ------    ana 04 = ------ 1----------
7*777 7*01—1

X - ./  j  rm - ( t - £•)
a5 =  --------   — a n a  a&--------- ---------—

7*771 7Y n—l

a7 = — ------  (6.27)
7*777 7*o i— l

where t is the current time, rm_i and rm are the times at step m  — 1 and m, r  is 

the distance between the source point and the field point, tah  tb are the lower and 

upper limits of the time integral, ai (i = 1,..., 7) are coefficients in the formula.

The second term is:

Tm 7*777-- 1

7*771 ^ t  ~
C2 J

7*777

1

Tm - 1
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(6.28)

The third term is :

+

+
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_1_
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A ~ ' D47T
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Tim—1

Eqs. 6.26, 6.28, 6.29 mean that we integrate the traction kernel p* for point x* 

at time t due to loading at point between time rm_i and rm.

The physics of these integrals is illustrated by Fig. 6.2. At first, the element 

is quiescent since no signal from the field point has yet arrived. The time integral 

begins to have non-zero values when the pressure wave arrives at the element during 

the time interval [rm_ i,rm]. The integral domain is the band between radii CiTm_i 

and Ci • rm. The same thing happens to the shear wave. There are three cases to be
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considered:

• Terms in the time integral associated with the pressure wave term 5 ( t — f-

• Terms in the time integral associated with the shear wave term 5

• Terms in the time integral associated with both H  +  H

The integral domain is the area between [c2rm_i, CiTm] in Fig. 6.2.

After the shear wave passes, the element is quiescent and the time integral be

comes zero again. For this reason, the system matrices are highly sparse, which is 

quite similar to the 3D wave BEM case. This special structure follows from the

tions. The integration does not extend over the whole boundary of the space-time

Section 6.4.

6.2.3 Space integration

We can distinguish between two kinds of space integration: non-singular and singu

lar. In the former case, the distance r between the field point Xk and source point xi 

on the surface element is not zero. In the latter case, the field point Xk may coincide 

with a source point xi on the surface element.

6.2.3.1 Non-singular case

We consider first the non-singular case. From Eq. 6.11 and the time integrals Eq. 

6.20 and Eq. 6.25, and after introducing the shape functions in space, the integrals 

involving the displacement Green’s function u\k and its derivative p*k become:

The integral domain is the shaded area between [cirm_i, Cirm] in Fig. 6.2.

The integral domain is the shaded area between [c2Tm_i, c2rm] in Fig. 6.2.

convolution of the Dirac delta function and Heaviside function in the integral equa-

cylinder, but only over a band within the surface of two propagating wave spheres. 

Details of implementation of the resulting time integral algorithm can be found in
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Figure 6.2: The band between radii [cirm_i, CiTm\ and [c2rm_i, C2rm] for the time 
integral

G\k = f s 3 u ik • N * T) T)

=  f o  f o  U n m  (x (£> ^ ) ) ' ^  J  (f > 6̂'30^

=  EfcLi ^ nm (x (ffc> 77*)) (&, *7*) </ (fib, Vib)

f i l l  =  I s ,  Plk • ^  (f>*?>r ) r )

=  f o  fo1 p n m  (XK> *?)) • ^  K ’ J  (f ’ (6-31)

=  E f = i pnm (x (f*> *7*)) ^  (&> J  (&> *7*)

where f/nm (x (f , 77)), P nm (x (f , 77)) are time integrals of the displacement and 

traction kernel functions, W  (£*., 77*,) are shape functions for 6-node curved triangular 

elements, J  (£k,Vk) is the Jacobian for the local coordinates, and Wk are the weight 

coefficients of Gauss quadrature, K  is the total number of the Gauss points.

Because only some of elements are influenced at each time step, Glf  and H\3k in 

other elements are all zero. It is a waste of time to use brute force to loop over all 

elements to check whether they are zero or not. One approach is to check if the 

signal has reached the center of an element. If so, the whole element is considered to 

be affected (M. Marrero and J. Dominguez [55]). However, this approach introduce 

significant errors if elements are large. In order to improve accuracy, an element
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Figure 6.3: Subdivisions of a quadrilateral element and a triangular element ( M. 
Marrero and J. Dominguez [55]) 2003)

II

Figure 6.4: Intersection of triangular elements to decide integral areas exactly

may be divided into subelements as shown in Fig. 6.3. This method is simple, but 

can be very time-consuming.

Here, we introduce a more efficient method. When the wave sphere intersects 

with elements, the exact integral domain of the intersection is calculated and divided 

into several smaller curvilinear triangles in local coordinates as shown in Fig. 6.4. If 

the source node is not within the current triangular element, standard 9-point Gauss 

quadrature for the triangle is applied for each curved subtriangle, and then summed 

to complete the whole space integration. This process is applied to both pressure 

waves and shear waves. During the integration procedure, four spheres intersect the 

boundary surface, as shown in Fig. 6.2.
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Figure 6.5: Element subdivision for singular integrals

6.2.3.2 Singular case

If we examine the displacement kernel u*k ( x , t ] x l) in Eq. 6.5 and the traction ker

nel pik (x, t\ x l) in Eq. 6.6, two kinds of singular integral need careful treatment. 

We note that there is a weak singularity of 0 ( l / r )  in the displacement kernel, and

Singularity of the displacement kernel

The displacement singularity can be treated by employing an element subdi

vision technique to subdivide the original singular element into several triangular 

subelements. The common vertex of all subelements is the singular point, as shown

(vertex 1, 2, 3) or subdivision into 2 subelements (vertex 4, 5, 6). In the case of a 

rectangular element, we subdivide it into two subelements (vertex 1, 2, 3, 4) or 3 

subelements (vertex 5, 6, 7, 8).

Then, each subtriangle can be mapped into square intrinsic element space as 

shown in in Fig. 6.6. Thus, nodes 1, 4 and 8 collapse into the same point P. As 

a result of this mapping, it can be shown that the Jacobian of the transformation 

is of order r, where r is the distance from the vertex P. Consequently, the weak 

singularity of 0 ( l / r )  is nullified and the integral can be performed using normal

a strong singularity of 0 ( l / r 2) in the traction kernel. Fortunately, the term in 

1 /r3 before the term H  (t  — — ) — H i t  — —) is not singular because as r —► 0,

in Fig. 6.5. In the case of a triangular element, either no subdivision is needed
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1,4;

Figure 6.6: Transformation of a triangular subelement with singularity at node P  
to be a square

Gauss quadrature [27]. In general, the numerical quadrature can be written as:

[  f ( x ) d S  =  [  [  /(£ , r))J(£, r))d£dr]
Js J - 1J - 1

= 12™! [  [  ' 5 2 N k(£,ri)fk(£,ri)J(Z,ri)d€dTi (6.32)
J - i J - i  k=1

where (£,77) are the local coordinates; N k(£,r}) are quadratic shape functions for a 

8-node rectangle; J(£,r]) is the Jacobian;/fc(£, 77) is the function value at the sam

pling point ($,77); M  is the number of triangular subelements.

Singularity of the Traction kernel

For the traction singularity, an indirect method is used which employs the rigid 

body motion condition to calculate the sum of the 4  coefficient and [H]kl using 

Eq.6.13. The key idea behind the indirect scheme is that by prescribing a rigid 

body motion to the computational domain {w*} =  {1}, the corresponding tractions 

are all zeroes because rigid-body displacements do not cause any deformation or 

stresses. Then, the diagonal singular entries can be written in terms of the off- 

diagonal entries in the same row. In particular, if a rigid body motion is applied to 

Eq. 6.4, and all pk (®, r)  are zero:
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where, Xi refers to a specific collocation point on S. 

We can write it in the matrix form:

N

i m  = Vu  - 1) e ™ (6.34)

However, if we are dealing with infinite region problems, this strategy has to be

modified. Since there are two boundaries to consider, (one is a finite part S , while 

the other is an infinite part 5<x>), Eq. 6.33 becomes (Gao &; Davies [27]):

Therefore, the diagonal submatrix of the traction kernel can be calculated from

The same method can be applied to semi-infinite region problems, which leads

to:

Solid angle

Another way to compute the singularity of the traction kernel is to compute the 

solid angle subtended by the local region around the collocation point. Since plane 

triangles are used to represent the geometry of the computational domain, the term 

d r /d n  = 0 when the field point x*, and the source point x/ are on the same plane. 

The singular integral of the traction kernel is always zero except for the jump term

(6.35)

The last integral on the left-hand side can be integrated analytically,

(6.36)

the equation:

N

(6.37)

(6.38)
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at the singular point x;. i.e.:

Q

£  [  vik (x . * -  r ; x *) dS (x . r ) =  o
,=i

(6.39)

Therefore the diagonal singular entries are the jump terms c\k(xi) only, which 

can be computed from the solid angle a  from the following equation:

4 k ( x i) =  ^  (6'4°)

By looping over each node and element, all terms are calculated and assembled 

into matrices [G] and [H], Once the matrices [G] and [H] have been obtained, the 

resulting matrix equation is solved by using Gauss elimination or GMRES.

6.2.4 The calculation of boundary stress

Once the boundary element solution for the problem is obtained, the stresses cr^ at 

any point on the boundary S  can be determined by post-processing the displacement 

and traction nodal values in elements.

First, we introduce a local Cartesian coordinate system (x^x^x^) in which x\ 
and x2 are tangential to the surface and x3 is directed in the normal direction. Their 

relation to the general curved orthonormal basis (si, s2,n) is shown in Fig. 6.7.

Denoting the displacement components in terms of the local coordinate system 

as u[, the local tangential strains =  e2\ and £22 components of the strain

tensor at the point can be obtained as

'___ 1 ( @ua 1 ^  ̂ ( (  \ d'U'm , ( \ ^ (a a i \
a0 ~  2 +  W a )  ~  2 v (s“ ' 6 m ) +  0 ■ m) d s a )  ( 1

Also, using Hooke’s law and the definition of the traction vector, all the compo

nents of the symmetric stress tensor can be obtained ( see Fig. 6.8):

f 7 /  \^33 ~  3̂ = IT ’ Cmĵ m
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a e,

x,

n

Stress point

Figure 6.7: Local orthonormal coordinate system & global coordinates

*11 = 1 -  v

*22 ~ 1 -  1/
2\i e22 +  veu  +  ua'33

* 1 3  * 3 1  ^1 (^ 1  ' ^ m )^ 7

'  '  '  (  \  
* 2 3  * 3 2  ^2 (^ 2  ' ^ m ) t r

t 1
* 1 2  —  * 2 1  — 12 (6.42)

Thus, once the strain components £af3 and traction components t'a are known, the 

computation of the stresses is straightforward. However, the computation of those 

components of the strain tensor is rather involved since the values of the tangential 

derivatives of the displacement dui/dsa are not directly obtained from the BEM 

solution.

Using the results from K. H. Muci-Kuchler (2001) [56] , the tangential derivatives
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Stress point

Figure 6.8: Components of the stress tensor in a local coordinate system 

of the displacements are:

dm 1
dsa \J\ 

where d,

(#22<̂ i — #12^2^ + ^11^2 — #21 d l) (6.43)

dxi. dx2 dx3 \  ̂ ^  ^  an<̂  | j |  _  (gQ/?). in the boundary
(  dr)a ’ drja ’ dr),

discretization, the values of Jĵ *- can be computed from the nodal values of the dis

placements and the derivatives of the shape functions with respect to the parametric 

coordinates 771 and 772

Mdm ^  d N k
dr]a “  drja

(6.44)

where M  is the number of the nodes in the element; N k are the shape functions 

associated with the kth node, and uk are values of the displacements at the kth 

node.

Once all the components of the stress tensors are determined in the local coor

dinate system, their counterparts in the global system can be obtained by using the
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transformation law for second order tensors:

(6.45)

6.3 Error estimates and adaptive schemes in 3D 

elastodynamics

As in the 3D wave case ( see Chapter 5), the computation of error indicators in 

3D elastodynamic problems is based on gradient-based error indicators, and based 

on the measuring the difference between two different numerical solutions of the 

boundary stresses.

6.3.1 Gradient-based error indicators

The gradient-based error indicator is based on the assumption that high gradients 

are strongly localized in space-time, and errors occur in the high-gradient areas. 

Thus, error indicators are derivatives of physical quantities within each element, 

which are normalized by their own pseudo-volumes in space-time. The difference 

between these error indicators and the corresponding 3D scalar wave error indicators 

is that the physical quantities here are vectors instead of scalars. The gradients of 

boundary stresses are used here rather than that of surface tractions.

The errors in an element are defined as:

f f
2 2

(a  = 1 ,2 ,3 )
f f d S edt

f f
2 2 2 2

(a,/3 =  1,2,3) (6.46)
J  J d S edt

where ua, aap are displacements and stresses obtained from the boundary mesh;
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x, y are the local coordinates on the boundary; t is the time and Se is the surface 

area of the boundary element. We can sum these errors, thus:

;« =  £ e£
3 3

= £ £ ya(3

Q=1
'o /  . /  . ~<j

a = l  (3=1

(6.47)

6.3.2 Stress resolution based error indicators

We suppose that for a given problem, a sequence of approximate solutions for the 

boundary stresses may be calculated:

(6.48)

where the solution c - P (x) has more degrees of freedom than d y _1'(x ). As the 

number of degrees of freedom increases, then according to the saturation assumption 

[35], the solution with more degrees of freedom will be a better approximation of the 

exact solution. That is, the sequence converges to the true solution as the number 

of degrees of freedom increases:

ay(x) -  4 nl(x) 0 as n —» oo (6.49)

where cr^(x) is the exact solution, <j ^ ( x) is the approximate solution.

If this is true, the two different approximate solutions in the sequence must 

approach arbitrarily close to each other, that is

4 m}(x) -  a<">(x) 0 as n, m  —» oo (6.50)

since

° « ( x ) -  +  ° « ( x ) -  d y " '(x )

> <Tij(x) -  4">(x) - < 7 y (x )-d f> (x ){m}
ij

C ' ( x ) - 4 " ' ( x )

(6.51)
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The two approximate solutions with different number of degrees of freedom can 

be chosen arbitrarily as long as they both fulfill the convergence requirement. Thus, 

an error estimate can be obtained from the difference between boundary stresses 

obtained from a coarse mesh and a refined one. The definition of error indicator for 

boundary stresses is:

Although theoretically any stress component can be used in the formulation 

above, quantities such as the Von Mises stress, the maximum principal stress, the 

minimum principal stress, or the maximum shear stress are good choices since they 

are more commonly used in the design of engineering structures to evaluate the risk 

of structural failure.

6.3.3 General adaptive algorithm

The general adaptive algorithm for 3D elastodynamic problems is the same as that 

described earlier for 3D scalar wave problems in Chapter 5. It follows the same 

process as before:

Given the initial triangulation of the domain boundaries, we compute the solution 

vectors of displacements u / and tractions p / in the first step SO L V E.  The solution 

error is estimated by postprocessing the displacements Uj and boundary stresses cri:7- 

results from the last step ( this is the step of E S T I M A T E ) .  On the basis of the 

refinement indicators derived from the error estimates, the step M A R K  identifies 

the elements in the current mesh in need of refinement. The new mesh is generated 

in the last step R E F I N E  and sent to the S O L V E  step in the next loop. The

(6.52)

Similarly, in discretized form,

f f  (Acr(e)) 2 | J  (?, jj)| d^dTjdr
f  f \ J  (£,*?)! d idrjdr

(6.53)

S O L V E  =4- E S T I M A T E  =* M A R K  =*• R E F I N E
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iteration proceeds until the BEM solution satisfies the prescribed error tolerance. 

The general adaptive process is similar to that described in Chapter 4.

6.3.4 Local time stepping in 3D elastodynamics

Local time stepping in 3D elastodynamics is very similar to that for 3D scalar wave 

problems. The difference is that there are two values {u(xi), q(xi)} at each vertex in 

wave problems while there are 6 values {ui(xi), i(xi)} (I = 1,2,3) at each vertex on 

the boundary in elastodynamic problems. The basic idea is to partition elements into 

N  classes, which will be dynamically updated at each time step based on the error 

estimates; elements in the different classes k will be time-advanced using different 

local time steps A t / 2 k. The algorithm is briefly described as follows:

We denote the algorithm R N{r) for advancing class N  in time over the time 

interval r  > 0. We define R N (r) in a recursive way. The algorithm R°{t ) describes 

how the original mesh advances one global time step At.  For any N  > 0, R n +1(t ) 

is defined as follows:

1. Start with all boundary values of displacements u* and tractions p / known at 

time tn = n A t  ;

2. Advance all elements in class k < N  with R N(At)  to obtain all unknown 

values of displacements u / and tractions pi at time tn+1 = (n +  1) A t: use the 

gradient-based error estimate to mark those elements with high-gradient values, 

which are labeled as class N  + 1.

3. Refine the elements in class N  +  1. Advance all elements in class N  +  1 with 

R N( A t / 2). If required, use values at time tn+l for elements in class N.

4. Since the elements in class N  +  1 are solved twice so far, use the re-solution 

error estimate to mark those elements with large errors, which are labeled as class 

N  +  2. For those elements with small errors, cancel its refinement in class N  +  1: 

use the values in class N.

5. Refine the elements in class N  +  2, Advance all elements in class N  +  2 with 

R N(A t /4 ) /  If required, use values at time tn+1 for elements in class k > N  + 1.

6. Continue this process of further refinement in both space and time. If we 

call the last refined class k , then advance the corresponding elements in class k with



6.4. N um erical im plem entation 171

R N ( A t / 2 k). This process goes on until the prescribed error tolerance is reached.

7. After high-gradients of displacements u / and tractions p / are located and 

refinements are performed, for all element in class fc> 0  , finish the remaining time 

with R N( A t /2 k) in one space-time BEM step to reach time step tn+1.

8. At this stage, all unknown displacements u / and tractions p i at time tn+1 have 

been computed with local time stepping and satisfy the prescribed tolerance.

6.4 Numerical implementation

In this section, only aspects of the numerical implementation which are special for 

elastodynamics are explained. Because most of the programming of 3D elastody

namics is quite similar to that of 3D wave problems, what has been presented in 

Chapter 5 will not be repeated here.

6.4.1 Program structure

The adaptive boundary element program for 3D elastodynamics consists of five 

modules:

1. Geometry and boundary condition input module, mesh preprocessor

2. Compute the G?j and Hfj— influence matrices of each element, assemble into 

general matrices [G\ and [H] .

3. Linear system solver

4. Compute the gradient-based and resolution-based error estimates, and mark 

those elements with large errors

5. Boundary element refinement module

The implementation for 3D elastodynamics requires operations on vector vari

ables to compute the elements of influence matrices G® ■ & Hfj; numerical integration 

of the weak singularity, and an adaptive algorithm with local time stepping. In the 

subsequent sections, we discuss some of the relevant programming aspects.



6.4. N um erical im plem entation 172

6.4.2 Numerical integral of the weak singularity

As mentioned in Section 6.2.3.2, the weak singularity of the displacement kernel (of 

0 ( l / r ) )  can be treated by employing an element subdivision technique to divide 

the original singular element into several triangular subelements. Then each sub

triangle can be mapped into a rectangular element space for which the integral can 

be performed using normal Gauss quadrature. The algorithm is shown in Fig. 6.9. 

First, 6 nodes of a subtriangle are mapped into 8 nodes of a degenerated rectangle. 

However, the singular point must be one of the corner points of the rectangle. Then 

the normal 4 x 4  points Gauss quadrature is applied to compute the displacement 

kernel with the weak singularity.

6.4.3 Computing influence matrices G f j  and H f j

Since all boundary values in the elastodynamics boundary integral equations are 

vector variables, the influence coefficients G^  and Hfj are no longer scalar but are 

3 x 3  matrices. If the number of degrees of freedom on the boundary is n, the total 

number of equations is 3n. The algorithm is shown in Fig. 6.10.

Firstly, we loop over all vertexes on the surface mesh, and use two sphere pairs 

with radii r lmin = cxm  • dt, r lmax =  Ci (ra +  1) • dt) and r2min = c2m  • dt, r 2max =  

C2 (m +  1) • dt) to intersect the boundary surface (m = 0,..., A  — 1), where N  is 

total number of time steps. The intersected sub-area of elements are put into the 

sub-mesh list of the vertex. Since the influence coefficients for one vertex are 3 x 3  

matrices now, we loop over K  = 1,3 and L  == 1,3 to numerically integrate each entry 

of Gij and Hij, then assemble them into the general influence matrices [G] and [H] 

according to the relation in the Fig. 6.10. Because the true intersection area is 

computed as the difference between the bigger sphere and smaller one, the add- 

submesh means the intersection with the bigger sphere while the subtract-submesh 

means the intersection with the smaller one. After finishing the integration with 

the add-submesh, we do the same thing with the subtract-submesh, but subtract the 

values from the general influence matrices [G] and [H].
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Loop Gauss points

Gt = 0.0

Compute U or P kernel functions Pf-i

Map 6 nodes of triangle into 8 nodes o f degenerated retangle

Compute weakly singular integrals
G t =  G t+  j z ' t t h  • w (&, rji) ■ J

Compute Gauss points global coordinates
8 8 

xco = £  N k ( 6 ,  ffc) 4 ,  yco = J2N k VI) y ko

Compute Jacobian for degenerated retangle

E L  ^ * ( 6 dE L , Nh&™)v

End loop Gauss points

End

Figure 6.9: Numerical integration of the weak singularity
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Loop over vertex

Loop over vertex’s sub_mesh

L =  1,3

i = vertex No.

j = contribution element’s vertex No.

All vertexes intersect with triangular mesh

Assemble integrals Gt, Ht 
into [G], [H]

l i t  =  111+  - - p i ,  ■ bJ (&, Tfc ) • J

Comput Gt, Ht integrals
G t =  G t  +  • u  (fc, 77,)  • J  (&, 77,)

End loop L
‘ _L_ .
End loop K

' J '
End loop sub_mesh

End loop vertex

End

Figure 6.10: Computing elements of influence matrices G\̂  and Hfj
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6.4.4 Adaptive algorithm with local tim e stepping

As mentioned in Section 6.3.4, local time stepping involves partitioning elements 

into N  classes which are dynamically updated at each time step based on error 

estimation: then elements in different classes k are time-advanced using different 

local time steps A t / 2 k. The algorithm is shown in Fig. 6.12.

The original uniform mesh is called the root_mesh and labeled as class 0. The 

root_mesh is advanced one step A t  from tn to tn+1 and the gradient-based error 

indicators are used to mark those element with large errors. We refine those marked 

elements and label them as class 1. The boundary integral equations are applied 

to those vertexes in elements of class 1 only with local time step set to A t/2 .  If 

required, we use the boundary values at time tn+1 for elements in class 0. After 

solving the displacements u i and tractions p *, we use the resolution error estimate 

to compute element errors and the global error. If the global error is bigger than the 

prescribed tolerance, elements with large errors are marked and refined as classes 

k(k = 2,3,...) while the refinement is removed from elements with smaller errors. 

The boundary integral equations are applied to those vertexes in elements of class k 

only with local time steps: A t / 2 k. If required, we use boundary values at time tn+1 

for elements in class (0,1,..., k — 1). The same process continues until the global 

error is smaller than the prescribed tolerance. The space-time BEM equation is 

applied for all elements in the refinement class (1,2, ...,/c) with time step (A t / 2 k) 

until tn+1 is reached. Thus, all elements are refined if necessary to satisfy the error 

tolerance while using their own local time stepping. The process is repeated until 

the final time is reached.

6.5 Numerical Examples

In this section, we present three numerical examples of 3D elastodynamic wave 

propagation problems.



6.5. N um erical Exam ples 176

Gradient error estimate & mark elements

Root_mesh foward dt from t" to t' 
First solution of {u}, (P)

Global error > Tolerance

Current layer -

Refine marked elements in space-time 

& create new layer of add_mesh

Loop vertex in current layer

Set vertex with sphere radii Rmax = c * dt /  T , Rmin = 0 

Intersect with root_mesh, compute Gij. Hij, put into [G], [Hi

Loop add_mesh = 1, (current layer -1 )

End loop add_mesh

End loop vertex current layei

Mark element with large errors

Cancel refinement with small errors

Use iterative method to solve {u } = [H] {u ) + [G] {P ]

Re-solution to compute element errors & global errors

Set vertex with sphere radii Rmax = c * dt /  2T , Rmin = 0 

Intersect with add_mesh, compute Gij, Hij, put into [G], [H

Figure 6.11: Adaptive algorithm with local time stepping, part 1
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Loop add_mesh = 1, current layer

End loop add_mesh

End

Solve the rest of vertexes from t to t*' 
&find solutions of all (u), {P]

Set vertex with sphere radii with time step from t to t ** 

Intersect with add_mesh, compute Gij, Hij: put into [G], [H

Figure 6.12: Adaptive algorithm with local time stepping, part 2

z

X

Figure 6.13: Spherical cavity embedded in an infinite continuum 

6.5.1 Explosion inside a spherical cavity

The problem of a spherical cavity in infinite space subjected to explosive pressure 

is modeled by a suddenly applied pressure (Heaviside function). An analytical so

lution for the displacements and the stresses is available for comparison. Here we 

assume that the radius of spherical cavity R = 5.38m, the density of the surround

ing material p = 2.67 x 103k g /m 3 and Poisson’s ratio v = 0.25. The geometry and 

coordinate system is shown in Fig. 6.13.

The pressure wave speed c\ =  527.45m/s, and the shear wave speed C2 =  

303.95m/s. An internal radial pressure p0 = 6.90 x 106 Pa  is suddenly applied 

and sustained thereafter. We compute the dynamic response of the spherical cavity
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A.

Figure 6.14: Mesh of an octan t of the spherical cavity with 130 nodes, 64 triangular 
elements

wall under this loading, th a t  is, the time history of the resulting displacements and 

stresses. Because of symmetry, we only model one octan t of the spherical surface, 

using 64 curved triangular elements and 130 nodes, as shown in Fig. 6.14. The 

zero normal displacement boundary condition is applied on the shear-free planes of 

symmetry.

Fig. 6.15 shows the time history of the radial displacement of the cavity wall. The 

y axis is the radial displacement normalized by their sta tic  values; the x  axis is the 

time normalized by the time taken for the pressure wave to travel the distance of the 

sphere radius R. The accuracy of the time-domain BEM solver is evident when the 

results are compared with the analytic solution (Timoshenko & Goodier [83] 1970). 

For the displacement, the m aximum error is around 2%. The time step d t =  0.004s; 

space-time ratio (3 =  0.4. In to tal there are 27 time steps.

If the time step is too large, for example, A t > 0.008s, or (3 > 0.8, the solution 

fails to capture the peak value of the dynamic response, as shown in Fig. 6.16. If 

the time step is too small, A t  <  0.002s, or (3 < 0.2, the solution becomes unstable, 

as shown in Fig. 6.17. Therefore, the optimal space-time ratio (3 is between 0.3 and 

0.7.

To study the dynamic response of the spherical cavity under different load histo

ries, the normalized radial displacements histories a t the cavity wall are computed 

for loads with different time variations, as shown in Fig. 6.18. These are: (a) a
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Figure 6.15: Normalized radial displacement time history of the spherical cavity
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Figure 6.16: Normalized radial displacement time history of the spherical cavity, 
13 = 0.8, A h =  2m , A t= 0.008 s
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Figure 6.17: Normalized radial displacement time history of the spherical cavity, 
/3 =  0.1, A h = 2m , A t = 0.001 s

ramp-type load with linear rise until time to =  2c\t /R  is reached; (b) an exponential 

time rising load with the form 1 — e- ^ 0; (c) a rectangular pulse load until time to 

is reached; (d) a triangular pulse load with linear rise and fall at the turning point
-0t-to/2)2 

2a2 , a = t0/6.t0/ 2; (e) a Gaussian-type pulse load with the form - j ^ exP

The normalized radial displacement histories at the cavity wall for these different 

loads are plotted in Fig. 6.19. The reference response is the response under the 

Heaviside load. The response in the case of the ramp load resembles the reference 

one: it just reaches the peak value much later and then converges to the static 

solution. The response to the exponential increasing load just follows the load itself, 

gradually increasing to the static solution. The response of the rectangular load 

follows the first part of the Heaviside one, and then drops to zero. The response of 

the last two cases are similar to each other; both rise to their peak values and drop to 

zero. The difference is that rectangular one drops to zero slower than the triangular 

one since more energy is released in the former case. It is evidence of the accuracy 

and robustness of the algorithm that while the response from maintained-type loads
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Figure 6.18: Loads with different time variation
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Figure 6.19: Normalized radial displacement history for various loads

converge to the static solution, while the response from impulse-type loads settles 

back to the quiescent state quickly after one or two oscillations.

It is interesting to note that in none of these cases does the peak radial displace

ment exceed the corresponding state value by a significant margin.

6.5.2 Rigid surface foundation under external load

We now explore the dynamic response of a rigid surface foundation supported by a 

linear elastic, homogeneous half-space and subjected to an external dynamic force. 

The dynamic interaction between soil and structures is of course very relevant to 

problems of geotechnical seismic design. The objectives of this numerical example 

are to find:

• The time history of the displacement of the rigid foundation under different 

loads, such as harmonic and impulsive loads;

• The traction distribution under the square foundation;

• The influence on stability and accuracy of the algorithm due to different ele

ment sizes, time-space ratios (5 , etc. ;
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p ( t )

Figure 6.20: Geometry and coordinate system of a rigid surface foundation

• The compliance of the foundation under the different frequencies of harmonic 

loads.

The foundation is a square of dimension 2b =  15m. The geometry and coordinate 

system is shown as Fig. 6.20. The foundation is assumed to be a rigid massless 

body.

The soil’s material properties are A =  6.623 x 106, p, = 3.315 x 106, and p =  

2.82 x 102kg /m 3, in consistent units. A vertical centric dynamic force is applied to 

the foundation. We assume that the foundation and the soil do not separate from 

each other during the motion. We compute the wave speeds:

Cl =
A T  2p

P

c2 = (6.54)

which yields a pressure wave speed c\ =  2.168 x 102m /s, and a shear wave speed 

C2 =  1.084 x 102m /s. The numerical test program involves:

(a) The soil-foundation interface is modeled by 36 triangular elements and 85 

vertexes ( Fig. 6.21). W ithout refinement, we compute the time history of the
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displacement of the foundation due to harmonic and impulsive loads;

The traction distribution on the soil-foundation;

The time history of the displacement of the foundation for a series of time-space 

ratio f3 = 0.1, 0.3, 0.5, 0.8, 1.2 to find its influence on stability and accuracy;

The compliance of the rigid foundation;

(b) The mesh is now dynamically refined at each time step. We compute the 

time history of the displacement of the foundation due to harmonic and impulsive 

loads using refinement schemes. The results are then compared with the previous 

set of results.

(c) A larger foundation ( 2b = 20m) is modeled by 64 triangular elements and 

145 vertexes (Fig. 6.21(b)). We compute the time history of the displacement of 

the foundation due to harmonic and impulsive loads.

Before proceeding to the numerical results, some discussion of the technique 

employed to implement the mixed boundary condition is needed. The problem is 

that neither displacements nor tractions are specified. However, the displacements 

are subject to the condition that they all are equal, while the tractions are subject 

to the condition that their integral is equal to the prescribed force F(t). The BEM 

equation is:

n—1
H n n u n  =  g r a y  +  V '' Q n m p m  _ (6.55)

7 7 1 = 1

where n  is the current time step, m  is the past time step.

The integral of the traction on the interface is equal to the external force F(t):

(6.56)
r

Its discrete form is:

[A] ■ {?/*} =  Ft (6.57)

where [A] is the discrete form of the integral operator and F(t) is the external 

dynamic load applied on the foundation.
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Figure 6.21: Discretization mesh of soil-rigid foundation (a) Original mesh 3x3 (b) 
a bigger foundation with mesh 4x4
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We rewrite Eq. 6.55 and Eq. 6.57 in the matrix form:

(6.58)

where N  is the total number of degrees of freedom of the original BEM problem. 

Now the problem becomes a linear system with one more unknown.

Thus, we prescribe the external load F( t ), and solve Eq. 6.58 step by step 

through time to calculate the tractions p(t) and displacements u(t) until the final 

time is reached.

For case (a), we compute the time history of the displacement of the foundation 

due to harmonic and impulsive loads with different /?, as shown in Fig. 6.22 and 

Fig. 6.23. The dynamic responses u(t) exhibits a phase change relative to the input 

harmonic loads, normally represented by ’complex number’ functions. As (3 values 

grow, the solutions become less and less accurate due to the numerical damping. 

However, when (3 is too small (/? =  0.1), the solution becomes unstable, as shown 

in both the harmonic load and the impulse load case.

The traction distribution on the soil-foundation interface is shown in Fig. 6.24. 

Just as elastic theory predicts, singularities arise along the edges of the rigid foun

dation.

The refinement scheme is then applied to this numerical example. The refinement 

is invoked as the wave fronts move along the surface of the rigid foundation. The 

time history of the displacement of the foundation due to harmonic and impulsive 

loads for various values of (3, as shown in Fig. 6.25 and Fig. 6.26. It is observed that 

the refinement scheme improves accuracy for almost all cases except when (3 = 0.1. 

In this case, because the time step is too small for refinement scheme to be stable, the 

refinement scheme actually accelerate the process of instability. With the adaptive 

scheme, we can start with a coarse mesh and obtain a much more accurate solution, 

as the case for f3 =  0.8 and (3 = 1.2.

To obtain the efficiency of adaptive BEM, we record the computing time for each 

simulation with the time-space ratio (3 from 0.1 to 1.2. (Table 6.1). For the adaptive

j^nn  Qnn

0 A

U '

V
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Figure 6.22: Time history of the displacement of the foundation due to harmonic 
loads with /3 =  0.1, 0.3, 0.5, 0.8, 1.2
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Figure 6.23: Time history of the displacement of the foundation due to impulse 
loads with (3 =  0.1, 0.3, 0.5, 0.8, 1.2
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Figure 6.24: Traction distribution on the soil-foundation interface with harmonic 
load at time t = 0.004, 0.007, 0.015, 0.030, 0.0037, 0.041, 0.045, 0.082 s
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Figure 6.25: Time history of the displacement of the foundation, after refinement 
applied, due to harmonic loads with (3 =  0.1, 0.3, 0.5, 0.8, 1.2
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Figure 6.26: Time history of the displacement of the foundation, after refinement 
applied, due to impulse loads with (3 — 0.1, 0.3, 0.5, 0.8, 1.2
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0  = 0.1 ■C
o II o (3 = 0.5 ■c
a II o 00 (3= 1.2

Conventional BEM (s) N/A 142.4 89.4 53.5 41.0
adaptive BEM (s) N/A 109.6 63.8 31.5 22.8

Table 6.1: The computing time of the rigid foundation simulations with various (3 
values
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Figure 6.27: Comparison of history of vertical displacement between foundations of 
two sizes (a) 2b = 15m  (b) 2b =  20m

BEM, the sizes of the elements change at each time step. Thus, the final maximum 

time-space ratio (3 is used for the adaptive case. When (3 =0.4, the adaptive BEM is 

23.2% faster than the conventional BEM. When the (3 values increase (that is, the 

initial mesh grows more coarse), the computing efficiency of adaptive BEM increases 

from 23.2% to 44.4%.

In case (c), we compute the dynamic response of a larger foundation. The time 

histories of vertical displacement of the two foundations is shown in Fig. 6.27. 

Naturally, the amplitude of displacement of the larger foundation is smaller, but 

otherwise there is very little difference in the results.

In order to compare with numerical results obtained by other researchers, the 

vertical compliance of the rigid foundation is expressed as a function of the dimen- 

sionless frequency a0 =  ub/c2 . A series of unit amplitude sinusoidal loads of various 

frequencies are applied to the rigid foundation, and the time history of the response 

is calculated. Then, after several cycle of oscillation, the system reaches its steady 

state, as shown in Fig. 6.22 and Fig. 6.25. The peak value A z of the vertical 

displacement is used to compute the vertical compliance:
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Figure 6.28: Vertical compliance of a square rigid foundation

Cvv = fib/\z (6.59)

The computational results of vertical compliance for the adaptive scheme are shown 

in Fig. 6.28, and compared with results from other researchers. These are: (a) Qian 

& Beskos (1995) [84] who used 8 x 8  quadratic elements in the frequency-domain; (b) 

Ahmad & Manolis (1988) [2] who used 18 quadratic elements assuming quadrennial 

symmetry in the frequency-domain; and (c) Dominguez (1978) [20] who used an 

8 x 8  constant element discretization in the frequency-domain. It is obvious from 

Fig. 6.28 that the time-domain approach yields results in reasonable agreement with 

the three frequency-domain approaches.

From this numerical example, we can draw following conclusions:

• The dynamic displacement of a massless rigid foundation decreases at higher 

loading frequencies. Displacements are phase-shifted with respect to the input 

harmonic load.

• The time-space ratio (3 needs to be chosen with care. In this case, a value 

between 0.4 and 0.8 is proper one. Smaller values of (3 leads to instability
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while bigger ones leads to inaccuracy.

• The refinement scheme improves accuracy for almost all cases, except when /? 

is very small. It also make the computation more efficient.

• To reach the similar accuracy, the adaptive BEM is about 20% ~  45% faster 

than the conventional BEM.

6.5.3 Spherical cavity embedded in a half-space

A spherical cavity is embedded in a half-space is shown in Fig. 6.29. We wish to 

explore its dynamic response to explosive pressure at various embedding depths. In 

particular, we examines:

• The time history of the displacements of the cavity wall under various explosive 

loads ( Heaviside, Gaussian etc.);

• The influence of embedment depth.

• The influence of different discretization of the free ground surface.

• The influence on stability and accuracy of element size , time-space ratios (3 

and refinement scheme.

Here R  = 1.00m  is the radius of the spherical cavity, and d is the distance 

between the cavity center and the ground surface. The numerical test program 

involves:

The radial pressure po = 6.90 x 106P a  is suddenly applied and maintained on the 

sphere wall. Two embedment depths are examined. We compute the time history of 

the displacements at the cavity wall and the ground surface on points A, B , C, D 

(as shown in Fig. 6.30) for embedment depth d =  2R, 5R  . the influence of ground 

surface discretization is explored by using two meshes: one of dimension is 12Rx 12R 

and one of dimension is 30Rx30R.  A Gaussian-type impulse load is also considered. 

We also capture the snapshots of the ground surface’s displacement movements.

We mesh the cavity and the free surface with 199 nodes and 92 triangular ele

ments, as shown in Fig. 6.31. There are 56 triangular elements for the cavity: each
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Figure 6.29: A spherical cavity embedded in a half-space
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Figure 6.30: The configuration of spherical cavity embedded in a half-space
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Figure 6.31: Mesh of underground sphere and free ground surface with b =  6 m

element is about dh =  0.5m in size. The free surface is represented by 36 elements, 

as shown. Each of these element is about dh = 2.0m  in size. We compute the time 

history of the displacement of the cavity wall and surface on points A, B , C, D, 

for depth (d) of 2R and 5R as shown in Fig. 6.32 and Fig. 6.33. The 'reference’ 

curve in these figures represents the dynamic response of a cavity embedded in an 

infinite domain.

It is clear from Fig. 6.32 and Fig. 6.33 that dynamic responses are larger than 

that in reference case, which reflects the fact that the static displacements are also 

greater. The surface effect also results in non-symmetry ( compare results fro points 

A, B, & C). The influence of the embedment depth of the cavity is also quite evident. 

When D =  2R, the displacement at the surface point D jumps to a value which is 

even greater than those on the cavity wall. However, when D =  5R, the surface 

displacement is relatively small. Because a non-uniform mesh is used, /3 is not the 

same for all elements. The larger value (3max is a control parameter in this case, 

which means that the smaller mesh dictates the overall accuracy of the solution. 

The time-space ratio (3max does not appear to affect the stability too much is this 

case. Good results are obtained for values of (5max in the range 0.3-0.8.

We now enlarge the ground surface mesh to 30i? x 30R, using total of 335 nodes 

and 156 triangular elements, as shown in Fig. 6.34. There are 56 triangular elements 

for the cavity and 100 elements for the free surface. We compute the time history
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Figure 6.32: Time history of the displacement of the cavity wall and surface on
points A, B , C, D due to Heaviside load with (5max =  0.3, 0.5, 0.8, 1.2 ; depth =
2R, b =  6m
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Figure 6.34: Mesh of underground sphere and free ground surface with b =  15 m

of the displacements at points A, B, C , D, with two different depths d = 2R, 5R, 

as shown in Fig. 6.35 and Fig. 6.36.

The results are very similar to those obtained earlier: slightly greater displace

ment are observed at later times. To make it more obvious, a zoom-in version of the 

time history of the displacements at points D  under the impulse loading is shown 

in Fig. 6.37. Indeed two results almost overlap with each other except the very end 

of the time.

Using the coarse surface mesh of 12R  x 12R, the adaptive scheme is now exam

ined. The time history of the displacements at points A, B , C, D  are shown in 

Fig. 6.38 and Fig. 6.39. It is observed that the displacements of point A  and point 

D are larger than those obtained earlier.

To compare the effects of using adaptive schemes, a zoom-in version of the time 

history of the displacements at points D  under the impulse loading is shown in 

Fig. 6.40. The adaptive BEM resolves the wave front more accurately than the 

convention BEM.

We apply the Gaussian-type impulse load and obtain the results shown in Fig. 

6.41 and Fig. 6.42. On the shallowly-embedded case, we see that the displacements 

of the cavity wall closely follows the impulse loading, and that ground surface suf

fers even greater displacements than the cavity itself. For the deeply-embedded case, 

there is no strong interaction between the sphere and ground and surface displace

ments are relatively small. Snapshots of ground surface displacement at various 

times are shown in Fig. 6.43. We see that a wave is formed in the center which later 

propagates in all directions.
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Figure 6.35: Time history of the displacement of the cavity wall and surface on
points A, B , C, D due to Heaviside load with (5max =  0.3, 0.5, 0.8, 1.2; depth =
2R, b=15 m
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Figure 6.37: Radial displacement history at point D of the cavity at depth of 2R 
and 5R, with the different sizes of the free surface mesh
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Figure 6.38: Time history of the radial displacement of the s wall and surface on
points A, B , C, D due to Heaviside load with /3max =  0.31, 0.51, 0.82, 1.29 , depth
=  2R, b =  6m, refined scheme
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Figure 6.40: Radial displacement history at point D of the cavity at depth of 2R 
and 5R, with and without the refinement
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C
O

oII XS
5 II O CJ
I (3 = 0.9 (3= 1.3 (3 = 2.0

Conventional BEM (s) 116.0 72.5 42.8 33.2 19.9
adaptive BEM (s) 89.3 51.8 25.2 18.4 11.04

Table 6.2: The computing time of the underground cavity simulations with various 
/3 values
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tĈ R

Figure 6.41: Time history of the displacement of the cavity wall and surface on points 
A , B , C, D  due to Gaussian-type impulse load with (3max — 0.31, 0.51, 0.82, 1.29 
, depth - 2R, b - 6m, refined scheme

To obtain the efficiency of adaptive BEM, we record the computing time for each 

simulation with the time-space ratio (3 from 0.3 to 2.0 (Table 6.2). For the adaptive 

BEM, the sizes of the elements change at each time step. Thus, the final maximum 

time-space ratio (3 is used for the adaptive case. When (3 =0.3, the adaptive BEM is 

23.0% faster than the conventional BEM. When the (3 values increase (that is, the 

initial mesh grows more coarse), the computing efficiency of adaptive BEM increases 

from 23.0% to 44.7%.

From this numerical example, we can draw following conclusions:

• The dynamic response of the near-surface cavity subjected to Heaviside loading
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Figure 6.43: Snapshots of the whole ground surface mesh displacement a t  time t =  
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converges to infinite domain case as embedment depth increases.

• The time-space ration /? has to be chosen with care. In this case, a suitable 

choice is between 0.3 and 0.8.

• The extent of the ground surface mesh has a little influence on response to 

impulse loads, except at later times.

• To reach the similar accuracy, the adaptive BEM is about 23% ~  45% faster 

than the conventional BEM.

6.6 Summary

Based on the BEM integral equation for 3D elastodynamic problems, gradient-based 

and resolution-based error indicators are used to locate high gradient boundaries. A 

space refinement scheme and local time stepping is employed to capture the moving 

wave fronts. We apply the method to solve the problems of a 3D spherical cavity 

under explosive loading, the simulation of a rigid foundation in a half-space under the 

periodic loading, and a underground cavity under explosive loading. The adaptive 

BEM solver can solve the problem with a coarse mesh. Compared with conventional 

dynamic BEM, the same accuracy is achieved with fewer nodes and less CPU time.



Chapter 7 

Parallel Programming

7.1 Introduction

Dynamic problems are computationally intensive. Data must be computed for many 

time steps and new influence matrices are computed at each time step. There are also 

substantial memory demands because data for past time steps has to be retained. 

To obtain more efficient solutions, parallelization of dynamic BEM is very attractive.

For an efficient parallel implementation of dynamic BEM, the most time-consuming 

computational procedures, such as the time stepping schemes, numerical integrals 

etc., must be analyzed for their feasibility for parallelization. Section 7.2 describes 

parallel algorithms of computing influence matrices, time stepping schemes, numer

ical integrals and iterative solvers for dense and non-symmetric system. The imple

mentation of these algorithms is described in Section 7.3. Finally, some examples of 

applications of parallel space-time BEM are discussed in Section 7.4.

7.2 Parallel algorithm for the dynamic BEM

7.2.1 Basic strategy of parallelization for BEM

The main strategy in parallelization is to partition the overall problem into separate 

tasks; to allocate tasks to different processors and to synchronize those tasks to 

obtain final results. Parallel programming can only be applied to tasks that are
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inherently parallelizable, which implies that the tasks are data independent. Or, 

simply put, each task can run independently without requiring data from other 

tasks. A problem can be partitioned based on domain decomposition or functional 

decomposition, or a combination of these two. There are two major approaches to 

parallel programming.

• Implicit parallelism — the system (the operating system, the compiler, or 

some other programs) partitions the problem and allocates tasks to processors 

automatically. For example, current dual-CPU Microsoft Windows OS can 

function like this.

• Explicit parallelism — the programmer must annotate the program to show 

how the problem is to be partitioned.

Many computational procedures in dynamic BEM are data independent and thus 

inherently parallelizable. Examples are computing the influence matrices [<G]nm,

[H]nm at different time steps ( n — current time step, m  — all past time steps), that 

is, computing the entries Gij,H ij in the influence matrices. At a small scale, each 

function evaluation at the Gauss points for the numerical integrals can be performed 

in parallel. The following sections describe these processes in more detail.

7.2.2 Computing influence matrices

The boundary integral equation for the dynamic BEM is:

c\kuk {x \  t) =  J  u *ik (®>t -  u  **) * Pk (x , r )  dS  (®, r )

-  /  p*l k ( x , t - T \ x %) * u k( x , T ) d S ( x , r )  (7.1)
Js

where x % refers to a source point; x  refers to a field point on the boundary u*k 

is the Green’s function for displacements; p*k is the Green’s function for tractions; 

Uk and pk are displacements and tractions on the boundary.

Its discrete form is:
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4 * 4  =  u*k' N j  ( Z > V , T ) p { d S ( x t T)
j = 1 JSi

-  [  Pik ' NJ (?> *?>T) ui dS  T) (7 -2 )
JSj

where are nodal values of displacements and tractions; iVJ' ( f , 17, r) are

shape functions; Sj is the surface boundary element, andTV is the total number of 

boundary elements.

The influence matrices are computed from:

G \k =  [  u iV  N j  ( Z , v , T ) d S ( x , T )
JSj

HU = [  p;k -W (Z ,r i,T )d S (x ,T )  (7.3)
JSj

Clearly, the computation of these matrix entries of [G] and [H] is an independent

process and is parallelizable. Thus, if there are N  vertexes in the loop over all

elements and M  processors available, the N  -vertex loop is partitioned into M  

tasks. Each processor will perform N /M  vertex loops to compute the matrix entries 

G i j , H i j  until the whole of the [G] and [H] matrices are formed. The process is 

shown in Fig. 7.1.

7.2.3 Parallel time stepping

This parallelization is based on domain decomposition in the time dimension. From 

previous chapters, the numerical methods constructed from these space-time bound

ary integral equations are global in time, i.e., it is necessary to compute solutions for 

all past time steps to obtain the current solution. The system is solved step-by-step: 

once u  and p are known for the previous time steps, the solution at the nth  time 

step is obtained from:
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End

Figure 7.1: Parallel computation of matrix entries , HtJ

n — 1
H ( n n =  G(n»Wp(~)j + £  G (nm)«p (m)j _  (7 4)

m =1

The solution at the nth  time step is dependent on the previous solution m (m  =  

1,2, . . . , 7 1  —  1). However, the matrices at different time steps are

independent for each other, because they are the integrals of different kernel function

Unm and P nm:

H,Ik Pik- NJ (&y>T) dr j ( x , r )

P nm (x (f, 77)) • N 3 (£, 77) J  ( f , 77) d^drj (7.5)

where C/nm (x(f, 77)), P nm (x(f, 77)) are time integrals of the displacement and 

traction kernel functions, TV-7 (£fc,?7fc) are the shape functions of 6-noded curved tri-
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Figure 7.2: Parallel algorithm for time stepping

angular elements, J  (tik^k) is the Jacobian for the local coordinates, and (£,77) are 

the local coordinates for the space integration.

These matrix entries are independent from each other, and can be partitioned 

into parallel tasks in such a way that different processors are responsible for the 

numerical integration of H ^ m̂ u for different time steps. For example, in the

schematic description of the parallel strategy in Fig. 7.2, time steps No. 1 — 10 are 

assigned to task 1, time steps iVo.ll — 20 are assigned to task 2, and so on.

7.2.4 Parallel numerical integrations

Since computing function values at many Gauss points in the numerical integration 

is very time-consuming, it is highly desirable to parallelize it. Individual matrix 

coefficients for the boundary integral equations consists of integrals which are two 

dimensional in space and one dimensional in time. For example, the numerical
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integral of the displacement kernel in 3D elastodynamics is:

=  f l  1 f - 1  U nm (x(£, r j ) ) • N j  ( £ ,  T]) J  ( £ ,  rj) d £ d r j  (7.6)

=  £ )* = 1  U nm (x (&> Vk))  (& , Vk) j  (£k, Vk) Wk

where U nm (x (£ , rj)) is the integral of the displacement kernel over the time 

dimension, which is done analytically; W  ( f , rj) are the shape functions for the 

space interpolation; (£*, rjk) are the Gauss points; w^ are the associated quadrature 

weights, and K  is the total number of Gauss points.

The spatial integration is approximated by Gauss quadrature. The same process 

is repeated for every matrix coefficient in [G] and [H]. In order to parallelize this 

process, the summation series from k = 1 — K  is partitioned into parallel tasks. To 

achieve the best parallel efficiency and minimum load imbalance, the tasks taken by 

each processor are evenly distributed. After these tasks are completed by individual 

processors, the data are transmitted to a master processor, which calculates the final 

results, which is entered into [G] and [H]. A synchronization process is needed to 

ensure that this is done correctly. The procedure is repeated for each entry until the 

whole of the [G] and [H] matrices are formed. As an example, shown in Fig. 7.3, a 

16-point numerical integral scheme is run on a 4-processor parallel computer. After 

identifying the space coordinates of the collocation point and the Gauss points, data 

for four Gauss points are sent to each processor; the synchronization process receives 

the data from all processors and computes the final result.

7.2.5 Parallel iterative solvers

The solution of the linear system equations can also be parallelized. Solving these 

equations is usually the second most time consuming routine in BEM codes (Cunha 

& Telles [50]). Highly efficient machine-specific parallel implementations of linear 

system solvers for non-symmetric and dense matrices already exist. For example, 

LAPACK [48] ( Linear Algebra Package) is a high performance parallel libraries 

specially written for solving linear algebra problems. The ScaLAPACK (or Scalable 

LAPACK) library includes a subset of LAPACK routines redesigned for distributed
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Figure 7.3: Parallel algorithm for the numerical integration of entries in [G] and [H] 
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memory MIMD parallel computers (The Linux cluster which the author employed 

belongs to this category). ScaLAPACK is designed for heterogeneous computing 

and is portable on any computer that supports Message Passing Interface (MPI).

7.3 Implementation of parallel BEM

7.3.1 Parallel hardware and software architectures

Hardware environment for parallel computing

The hardware environment used here for parallel computing is a Linux cluster. 

A Linux cluster is a group of loosely coupled PCs. The component PCs of a cluster 

are commonly connected to each other through a fast local area network (LAN). 

They are usually controlled by a single computer called the master processor which 

coordinates and improves their performance.

A Linux cluster provides increased performance by splitting a computational task 

across the processors in the cluster. It is optimized for workloads which require sep

arate processors to communicate actively during the computation. Many functions 

for parallelization may be realized by using software libraries such as MPI, which is 

specially designed for writing scientific applications on parallel platforms.

Software environment for parallel computing

Message Passing Interface (MPI) is a software environment for parallel comput

ing. It is a computer communications protocol and is implemented via libraries 

which can be easily incorporated within user’s programs. It is the most popular 

standard for communication among individual processors running a parallel pro

gram on a distributed memory system. MPI implementations consist of a library of 

routines that can be called from FORTRAN, C and C + +  programs. The advantage 

of MPI over older message-passing libraries is that it is both portable and fast. MPI 

has been implemented for almost every distributed memory architecture, and each 

implementation is optimized for the hardware on which it runs.
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A lg o rith m  9 Data structure of M PI_vertex_List 
struct MPI_vertex_List 
{
int CPUNumber; // Number of processors available
Surface_Vertex * para_tag; // Mark the begin and end of subtask 
Surface_Vertex * meshList;
}

A lg o rith m  10 Data structure of tri_elements representation of a matrix 
s t r u c t  tr i_ e lem en ts[n ]
{
int i; // entry’s row No. 
int j; // entry’s column No. 
double Gij; // Value of Gij 
double Hij; // Value of Hij 
}

7.3.2 Implementation

To efficiently implement parallelization of the calculation of the influence matrices, 

some special data structures are defined to decrease the communication traffic be

tween processors. First, we send a copy of the vertex list and other geometric data to 

each processor, and identify which vertexes should be processed by which processor. 

A header is created for this function, as shown in Algorithm 9.

Since each processor calculates only some entries of the matrices [G] and [H], 

it is a waste of communication bandwidth to use full size matrices in transmission. 

A more compact data structure called a tri_ element representation of a matrix is 

used here, as shown in Algorithm 10. Hence, it is a tri_ element array which is sent 

from each slave processor to the master processor.

The whole parallel process is shown in Fig. 7.4. The usual time stepping is em

ployed for the parallel version of dynamic BEM. At each time step, after the inter

section of sphere pairs and boundaries, a copy of the vertex list with the intersection 

subtriangles is sent to each processor. Each processor independently computes ma

trix entries of G^, H^, stores them in the tri_ element array and sends them back to 

the master processor which assembles the general matrices [G] and [H]. When the 

past influence vector {FI }  is computed, a copy of the vertexes and mesh list at past
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times and the time step range is sent to each processor. Each processor computes 

its allocated intersection, with the sphere radii defined by time step m. Then, the 

matrices [G]nm and [i7]nmand { F I } mare computed. Finally { F I } m is transmitted 

to the master processor which computes the final results.

7.4 Numerical examples

3D underground explosion modeling

The dynamic response of a 3D riverbank-tunnel system (shown in Fig. 7.5) 

subjected to an impact load inside the tunnel is considered in this example. The 

tunnel center is located at a depth of 14.5m from the ground surface. It is modeled 

as a cylinder r  =  1.5m, with one end open and the other closed. The explosion takes 

place in the middle of the tunnel, which is 9m away from the closed end and over a 

distance of 6m. It is modeled as a Heaviside function suddenly applied to the tunnel 

wall, with radial pressure p0 =  6.90 x 106Pa. The river bank is 5.5m wide at the top, 

with a slope height of 14.5m as shown. The density of soil is p = 2.67 x 106A;g/m3; 

Poisson’s ratio v = 0.25.

The ground surface, the slope and the wall of the tunnel are discretized by bound

ary elements. By symmetry, only half of the riverbank-tunnel system is modeled. 

The model, using the pre-processor package Gid, is shown in Fig. 7.6. In the mesh, 

there are 1,649 triangular elements and 3,363 nodes, as shown in Fig. 7.7. It is a 

formidable computational problem, which demands more than 2 Gbyte memory and 

is beyond the computing power of ordinary desktops.

The performance of a parallel BEM can be measured in terms of two indexes, i.e. 

speed-up and efficiency. The speed-up index is a measurement of the improvement 

gained by the parallel program with regard to a single processor, defined as:

user time for one processor   .
Speedup = ------------- -— - ---------------  (7.7)

user time fo r  N  processors

High speed-up implies that the computational time taken will be very much 

reduced but it may be achieved by using a large number of processors, and therefore, 

the efficiency may not be high. The efficiency of the scheme can be measured by
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Figure 7.4: Parallel process of dynam ic BEM
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Figure 7.5: Geometry of the riverbank-tunnel system

z

Figure 7.6: Gid model of the riverbank-tunnel system
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zy ^  x

Figure 7.7: Mesh of the riverbank-tunnel system

CPU time (s) Speed-up Efficiency
1 CPU 43,542 1.00 1.00

2 CPUs 31,453 1.38 0.69
4 CPUs 19,765 2.20 0.55
8 CPUs 10,332 4.21 0.52

Table 7.1: Performance of Parallel BEM algorithm 

the speed-up per processor:

E f f i c i e n c y  =    sPeeduP------------- (7-8)
num ber o f  processors used

The efficiency of the parallel algorithm is shown in Table 7.1, for up to eight 

processors. Compared with one processor, when all 8 processors are employed, the 

speed-up is approximately four, yielding an efficiency of more than  50%. The trend 

suggests tha t this type of problem is very well suited for parallelization and th a t  

many more processors could be employed to solve a large problem effectively.

7.5 S um m ary

An implementation of parallel BEM on a Linux cluster has been developed to reduce 

com putational time in dynamic BEM. The results suggest th a t  efficiency of the 

dynamic BEM solver can be further improved if the necessary hardware is available.



Chapter 8

Conclusions

8.1 Conclusions

From the literature review in Chapter 2, several problems are apparent in the con

ventional dynamic BEM. Firstly, the method is expensive since influence matrices 

are computed at each time step and BEM solutions at every former time step have to 

be stored. Secondly, if large time steps are used, inaccuracies arise in BEM solution; 

but if small time steps are used, computational costs become impractical. Thirdly, 

the dimensionless space-time ratio in the conventional BEM must be limited to a 

narrow range (roughly 0.3 - 1.5) to produce a stable and accurate solution.

The basic strategy to attack these problems is to introduce adaptive schemes 

and mesh refinement to the dynamic BEM. Instead of using uniform meshes and 

uniform time steps, error indicators are employed to locate high-gradient areas; then 

mesh refinement in space-time is used to improve the resolution in those areas only. 

Another strategy is to introduce the space-time concept to track moving wavefronts. 

In wave problems, wavefronts move in space-time, and high gradients appear both 

in space and in time. It is thus inadequate to refine the mesh in space only because 

there are high gradients in time as well. Hence, besides a locally mesh refinement 

scheme employed in space, local time stepping is also used to improve the accuracy 

and efficiency of the algorithm.
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8.1.1 2D scalar wave problems

Scalar wave problems in 2D are solved using the strategy mentioned above. A new 

formula in 2D scalar wave BEM has been derived by the author to make it possible to 

use adaptive schemes in space-time. Then, gradient-based and resolution-based error 

indicators are employed to locate those moving high-gradient areas. A h- adaptive 

mesh refinement scheme is used to refine the area to achieve higher accuracy. Using a 

benchmark of a 2D bar under impact load, the adaptive BEM solver is 30% ~  40% 

times faster than the conventional BEM solver. It is also more stable than the 

conventional BEM.

8.1.2 3D scalar wave problems

A significant difference between 2D and 3D problems is that in 3D BEM integration 

is necessary over only part of the boundary, and the part which has to be integrated 

changes in each time step. This requires a totally different BEM solution for the 

time and space integrals. Elements in space are indexed, like books in a library, to 

accelerate the spatial search to determine which part of the boundary mesh should 

be integrated in different time steps. This greatly improves efficiency of the dynamic 

BEM solver particularly if the total number of elements is large.

Difficulties arise when dealing with non-uniform meshes. Conventionally, we 

either lose accuracy by using large time steps, or lose stability by using small ones. 

Adaptive BEM solvers are the right solution for the wave problem with non-uniform 

meshes. By starting with uniform time steps, local time stepping is triggered which 

offer different time steps to elements with different sizes controlled by error estimates.

It appears that the impulse wave propagation problem (labeled as an unsolved 

problem by Prof. Zienkiewicz) may be attacked by employing adaptive BEM wave 

solvers. Using the benchmark of a 3D bar under impact loads, the adaptive BEM 

solver is about 20% ~  45% times faster than the conventional BEM solver, and is 

also more stable.
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8.1.3 3D elastodynamics

The same adaptive approach is applied to the BEM integral equation for 3D elasto- 

dynamic problems as for the scalar problem. Further work has been done to compute 

the space integrals and the time integrals for vector fields, and how to compute the 

boundary stresses. A similar improvement in efficiency is also obtained here.

For conventional BEM solvers, the proper space/time ratio (3 in 3D elastodynam

ics is more limited than that which applied for scalar wave problems, because there 

are now two different wave speeds. The adaptive BEM solvers bypass this problem 

in 3D elastodynamics by using local time stepping, which in theory can even assign 

different time steps for different wave speeds. The overall effects of adaptivity is to 

increase stability.

8.1.4 Parallel dynamic BEM

Many computational procedures in dynamic BEM are independent from each other 

and thus inherently parallelizable. Examples are computing influence matrices at 

different time steps; computing entries in influence matrices and the function eval

uations in the numerical integrals. All these processes can be easily paralleled by 

partitioning the overall process into separate tasks; allocating tasks to different pro

cessors and synchronizing the tasks to obtain the final results.

We apply the parallel BEM to solve the problems of a 3D underground explosion. 

Compared with the non-parallel code, using a 8-processor Linux cluster, the “speed

up” is factor of four. The trend suggests that further “speed-up” is possible if more 

processors are employed.

8.1.5 Final remarks

For the scalar or elastodynamic 2D or 3D wave propagation problems in open or 

closed fields, conventional BEM dynamic solvers are usually inefficient and unstable 

for impulsive loading or complex geometries. Through deriving new BEM formulas 

for adaptive schemes and solving several numerical examples, we show that adaptive 

dynamic BEM solver offers more efficient, more accurate and more stable solution.
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8.2 Suggestions for further research

8.2.1 Time-domain elastoplastic BEM

In some situations it is desirable to use elastoplastic material models to allow more 

realistic simulations. A time-domain BEM solver is necessary for this purpose. It is 

not only capable of solving linear elastodynamics, but also paves the way for solving 

the nonlinear problems too. In the basic theory of elastoplasticity, it is assumed 

that the strain is infinitesimal; the strain tensor can be decomposed into an elastic 

part and a plastic part , and the elastic strain tensor follows the linear constitutive 

relation

£ = eE + £P where a = C  : £E (8.1)

or

a = C : ( £ - £ P) (8.2)

Hence the strategy of solving nonlinear problems using BEM is to set up bound

ary integral equations which govern elastic problems with distributions of a priori 

unknown initial strains or stresses (see Fig. 8.1):

c\kuk {x \  t ) =  uik (ah t -  r; x l) * pk (x , r) dS (x, r)
Js

p*lk (*, t -  t;  x %) * uk( x , r)dS(x,  r )  +

+  [  £*ljk (®, t -  t ;  x l) * apk(x, r ) d S ( x , r)  (8.3)
J v p

These equations are discretized as before, but include a new term of domain 

integrals containing a p . The boundary integral equations and their discrete coun

terparts have to be solved by iteration because the equations are no longer linear.

Since the plastic region, where the plastic deformation occurs, is not known a priori, 

it may be adaptively updated at each step of the iteration. The adaptive schemes 

proposed in this thesis could play this role.
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v - v

Figure 8.1: Domain consists of both plastic region W a n d  elastic region V  — V p

8.2 .2  W avelet-based  adaptive schem es for tim e-dom ain  BEM

During this research, the author found th a t  mesh-based adaptive schemes have draw

backs. F irst of all, the construction of adaptive meshes is a laborious task. Elements 

with large errors as well as their neighbouring elements have to be divided into 

smaller elements, and relevant geometric information such as their neighbouring el

ements have to be updated after each refinement. The com puter implementation is 

highly complex because old elements have to be physically removed from the list of 

elements, and new elements and their vertexes have to be inserted into the element 

list and the vertex list separately. Secondly, the refinement ratio between new ele

ments and old ones should take a reasonable value (less than  ten, say). If the ratio 

is too large, the resulting linear system equations will become ill-conditioned, and 

yield unreliable solutions.

Some non-mesh based adaptive schemes with new shape functions can be used 

to overcome these difficulties. Just like polynomials, wavelet functions are a series 

of complete, orthonormal multi-scale functions which can be used to approxim ate 

any arb itrary  function. Because of their orthonormal property  (i.e., any function is 

orthogonal to other functions in the functional space), adaptiv ity  can be achieved 

by applying another set of functions w ithout removing the  old ones. Also, since 

the function itself is multi-scale, the coefficients will be approxim ately of the same 

scale and the problem of ill-conditioning will be avoided.( Dahmen, K urdila and 

Oswald [17])

The s tar ting  point of wavelet-based adaptive schemes is the same as the conven
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tional time-domain BEM solver. The boundary integral equations are discretized 

on the boundary and shape functions are used to transform the arbitrary geometry 

into regular geometric shapes, such as unit squares. Unlike the conventional isopara

metric method ( which applies the same shape functions to physical quantities and 

geometries), in wavelet-based adaptive schemes, those physical quantities are ap

proximated by using wavelet-like shape functions. If element solutions are found to 

have large errors, wavelet-like shape functions (at a smaller scale) can be added to 

offer a better resolution in these high-gradient areas. The process is repeated until 

the prescribed error tolerance is satisfied. This promises to be a fruitful area for 

future research.

<END>
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Appendix A

A new formula of the derivative of 

Heaviside function in space-time

A .l Basic formula of Dirac delta function

Kronecker delta function is defined by:

(A .1.1}
1 fo r  i =  j

Dirac Delta function can be interpreted as a continuous version of the Kronecker 

delta function:

8(x — xq) =  <

0 f o r  X  ^  X q

OO f o r  X  =  X q , (A .1.2)

but f * ™  5 (x  — xq)d x  =  1

which means that it is zero when x  ^  x0, it is infinite when x  =  xq , but the total 

area of this function is an unit.

It also can be viewed as the derivative of the Heaviside step function,

S(x -  x q )  =  -^~{H(x -  X q )  (A .1.3)
ax

The physics interpretation of Dirac Delta function can be any concept associated
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with a physics quantity at one point in a field. For example, Dirac Delta function 

can represent a point charge in an electromagnetic field, or a point heat source in a 

thermal field, or a point source in a fluid field, or an impulse load in a wave field.

The delta function has the fundamental property:

+00J  f (x)  • S(x -  x0)dx =  f { x 0) (A.1.4)
—0 0

Based on the equation above, the fundamental equation that defines derivatives 

of the delta function is:

+ 0 0  + 0 0J  f ( x)  • 8̂ n\x ) d x  =  — J  • Ŝ n~1\x ) d x  (A.1.5)

or

+ 0 0

d ^ f ( x )J  f ( x)  • <5(n)(z -  x0)dx =  ( - 1 ) ’
dxn

(A.1.6)
X=XQ

A.2 A new formula of the derivative of Heaviside

function in space-time

After introducing the arbitrary shape functions N k (£, r) in space-time, the “dis

tance” in space-time is :

c t - r  =  c(U ~ ^ N k (£, r ) - t k) - r  =  c(U -  $  (£, r)) -  r  (A.2.7)

where N k (£ ,r) • tk — <F(£,t). The derivative of the Heaviside function is 

calculated as follows:

dH (ct -  r) =  d H ( c ( t j - $ ( Z , T ) ) - r )  _A 2 g.
dr dr

Since it is a Heaviside function, from the property of the Dirac delta function (Eq.
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A.1.3):

dH(ct — r) 
dr

also

=  — S(ct — r) (A.2.9)

9 m i , r )  =  ~ C  '  &{ct -  r )  ( A - 2 - 1 0 )

From Eq. A.2.9 and Eq. A.2.10, we obtain the identity:

dH (ct -  r) _  1 dH(ct -  r)
dr c '  (A.2.1*)

Finally we get the formula of the derivative of Heaviside function in space-time 

with an arbitrary shape functions N k (£, r):

dH(ct — r) _  1 dH(ct — r) d r  1 dH(f T 
dr c d r  d<F(£, t )  c d®(£>T)

(A.2.12)

Based on this formula, we can derive a new space-time boundary integral formu

lation for the general variation in time instead of uniform time stepping.
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