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Abstract

In many spatial and temporal data sets, nonparametric techniques have recently 

been widely used because of their ability to model without requiring any assump­

tions on the distributional form of the data. However many nonparametric tools 

assume independent errors, that is not always the case. The present work ex­

tends some of the well established nonparametric techniques in order to make 

them applicable even with correlated data. Simulation studies will show the 

performances of the proposed methodologies. The methods are applied to air 

pollution data monitored over Europe in last quarter of the twentieth century 

by EMEP (Co-operative Programme for Monitoring and Evaluation of the long 

Range Transmission of Air Pollutants in Europe) and by OECD (Organization 

for Economic Co-operation and Development).

Chapter 1 gives a background to the air pollution problems, introduces the 

questions of interest and the aims of this work. It also shows some characteristics 

of the data that will be necessary to take into account for the analysis that will 

be done in the following chapters.

Chapter 2 reviews some of the existing nonparametric methodologies that, 

however relying on the assumption of independent errors, could be applied to the 

data.
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Chapter 3 presents a diagnostic to detect discontinuities in a one-dimensional 

nonparametric regression accounting for correlated errors. A simulation study 

shows the performance of the proposed test, and the results of its application to 

air pollution data (50 2 ,5 0 4  in air and 5 O4 in precipitation) monitored across 

130 sites in Europe from 1970’s to 2000, will be presented.

Chapter 4 presents the generalization of well established nonparametric tech­

niques that can model and test correlated data. Simulation studies show the 

performances of the proposed modeling tools.

Chapter 5 shows applications of the methodologies presented in Chapter 4 to 

air pollution data.

Chapter 6 develops binned versions of the methodologies introduced in Chap­

ter 4 allowing to fit and test models with large data sets, such as spatiotemporal 

ones, that show correlation.

Chapter 7 presents an analysis of the relationship between the SO 2 emissions 

and the monitored SO 2 concentrations.

Chapter 8 will summarize the main conclusions with a final discussion on 

possible future work.
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Chapter 1 

Aim, Background & Exploratory  

Analysis

1.1 Aim of this work

All data present in nature have a spatial and/or a temporal structure. Several 

methodologies are presented in the literature concerning spatial analysis and time 

series data, but few of them are able to deal with spatiotemporal data where these 

two studies are combined. Most of the spatiotemporal analysis methods belong 

to the parametric approach which although powerful, is usually based on distri­

butional assumptions that are difficult to justify in nature. The objective of this 

thesis is to propose a flexible methodology that is able to analyze spatiotemporal 

data using nonparametric techniques that do not make distributional assump­

tions on the data. In particular we want to build nonparametric model fitting 

and testing techniques that allow us to:

• include in the model an undefined number of covariates,
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•  include nonlinear and nonmonotonic relationships between the response and 

the covariates,

•  analyze separately the effect of each covariate over the response,

•  produce estimates and standard error bands, that account for (spatial and/or 

temporal) correlation of the data,

•  detect abrupt changes in trend (discontinuities),

•  test models or single covariates accounting for correlation,

• deal with large data sets, as spatiotemporal ones often are.

Methodological developments of such techniques will be shown in the follow­

ing chapters along with simulation studies that will prove their benefits. Appli­

cations to air pollution data (mainly sulphur compounds) monitored in Europe 

from 1970’s to 2000 will show some interesting answers to the scientific ques­

tions of interest. The remainder of this chapter will introduce the environmental 

background, some characteristics of the data, and some preliminary statistical 

analysis.

1.2 Background to the air quality problem

During the last quarter of the twentieth century, great importance has been at­

tached to the condition of the atmosphere because of its connection with public 

health risks and sensitive ecosystems. Coordinated international monitoring of 

acidifying air pollution in Europe developed steadily from the 1950’s, when the
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Swedish monitoring network supervised by the Institute of Meteorology, Stock­

holm, was first extended to a number of other countries under the name of the 

European Air Chemistry Network (EACN). Around 100 sites were involved and 

by the 1960’s observations indicated an expanding area of Europe subject to 

highly acidic precipitation (pH =  3-4). In 1976, in response to the observed 

acidification of a growing region of Europe, the Co-operative Program for the 

Monitoring and Evaluation of the Long Range Transmission of Air Pollutants in 

Europe (EMEP) was established. The programme included coordinated back­

ground measurements of acidifying air pollutants to be performed by countries 

themselves, with data assembled by the Chemical Coordinating Centre (CCC) 

of EMEP, hosted by the Norwegian Institute for Air Research (NILU). This pro­

gramme has since served the technical requirements of international agreements 

under the 1979 Geneva Convention on Long Range Transboundary Air Pollution 

(CLRTAP); the first of these was the 1985 Protocol on the Reduction of Sulphur 

Emissions or their Transboundary Fluxes. The acidification programme itself has 

extended beyond sulphur to include oxidised and reduced nitrogen compounds in 

air and precipitation. In addition to acidification, ozone, VOC, and trace conta­

minant programmes have also been estabilished. In 1988 a Protocol Concerning 

the Control of Nitrogen Oxides or their Transboundary Fluxes was agreed which 

sought to stabilise emissions. In 1994, the Protocol on Further Reduction of 

Sulphur Emissions was negotiated. These protocols have stipulated that EMEP 

should oversee levels and depositions of relevant compounds across Europe. The 

latest agreement was signed by many countries in 1999 and was called the “multi­

pollutant, multi-effect” protocol, because it related the problem of acidification 

to other photochemical problems. The environmental issue that is the focus of
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this thesis is to assess whether the efforts that have been made during the last 

quarter of the twentieth century to reduce the emissions of pollutants, have led 

to real improvement in environmental quality and a real change in the acidifying 

environment. A key point is that emissions within a region may not represent the 

critical influences upon air quality in that region and so there has been interest 

in the correspondence between emission changes resulting from policy and the 

observed quality of the atmosphere.

1.3 The monitoring network and the data: some 

interesting characteristics

This work is based on the data collected as part of EMEP (Co-operative Pro­

gramme for Monitoring and Evaluation of the long Range Transmission of Air 

Pollutants in Europe), and from the OECD program (Organization for Economic 

Co-operation and Development). The data that will be analyzed are the daily 

concentrations of 502, SO a in air, and SO^ in precipitation from 130 European 

stations. A map of the locations of the EMEP sites in Europe is shown in Figure 

1.1. Most of the time series have been downloaded from the EMEP web site 

(www.emep.int), with recorded data starting from the late 1970’s. However for 

some of the other European sites, more data are available from the OECD pro­

gram, which was started in the early 1970’s. The data have been recorded daily, 

and exploratory analysis of these values showed immediately some interesting 

features. Some examples are reported in the following graphs (Figure 1.2, Fig

1.3, Fig 1.4).

http://www.emep.int
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Figure 1.1: Location of the EMEP sites in Europe.

Characteristics that immediately appear are: the presence of some outliers, 

the presence of shifts in level, the presence of missing values, the skewness of the 

distribution.

The presence of outliers was unexpected, since the data are quality controlled 

firstly by each country, and secondly by the central body. However some of the 

values (as in Figure 1.3), are clearly too extreme to be included in the analysis,
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daily S 0 2 , monitored at Stoke ferry
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days

Figure 1.2: daily data for S02 at Stoke Ferry (GB04)

making necessary their exclusion.

A further technical issue is the presence of shifts in level, clear from Figure

1.4, due mainly to the “detection limits” . The “detection limits” are those levels 

below which the instrumentation is not able to measure concentrations accurately, 

and therefore the concentrations are reported as less than a constant fixed value. 

Over the years, the instrumentation has improved. Therefore, sometimes it is 

possible to observe a shift in values due to an improvement in the detection 

limits.

The presence of missing values, clearly seen in Figure 1.2 and Figure 1.3, has 

required further study.
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daily S 0 2 , monitored at La Hague

Figure 1.3: daily data for S02 at La Hague (FR05)

•  Are there compounds that have a significant number of missing values?

• Are there stations that have a significant number of missing values?

•  Are the missing values uniformly spread across the observed period, or are 

they present as “missing blocks” (months, or even years)?

To have a clearer idea of the amount of missing data for each compound at each 

station, a bar graph for the counts of missing (Figure 1.5) and the percentages of 

missing values (Figure 1.6) for some stations are shown. Looking at these Figures, 

it is clear that a huge number of missing values affect SO^ in precipitation. This 

ranges from 45% for the British station (GB02), to 90% for the Austrian station
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daily S 0 2 , monitored at Jungfraujoch
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Figure 1.4: daily data for S02 at Jungfraujoch (CHOI)

(AT02). For SO 2 and SO 4  in air, except for the Austrian (AT02), the Finnish 

(FI04), and the two French (FR03, FR05) stations, the proportion of missing 

data is below 10%. The focus of this thesis will therefore be on SO 2  in air.

An analysis of the location and the structure of the missing values for each 

compound at each site has been performed by plotting graphs such as Figure 

1.7, Figure 1.8 and Figure 1.9. The missing (1) and the observed (0) values, and 

a smooth curve, obtained by local linear regression, have been plotted. These 

three figures clearly show the different situations at different sites. For example, 

the Danish site shows quite a few missing observations that are spread across 

the whole monitoring period (Figure 1.7). The Finnish one presents instead a
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Figure 1.5: counts of missing daily data across compounds/sites

block of missing observations (Figure 1.8), while the French one presents not only 

blocks but also a constant amount of missing values (Figure 1.9).

This graphical analysis has been supported by a numerical one. For each 

compound at each station a matrix was constructed whose rows corresponds to 

the years that showed missing values, and whose columns corresponds to the 

months. The cells of those months that have more than 15 missing values, have 

been filled with the number of missing days. In this way it has been possible to 

show which months have only a very small number of observations. Examples of 

these data are given in Table 1.1 and Table 1.2. It is possible to note immediately 

that for the Danish site (Tange), very few months have blocks of missing data,

42

7



CHAPTER 1. AIM, BACKGROUND & EXPLORATORY ANALYSIS 10

SE08
SE05
SE02
NQ15
NO08
NO01
GB02
FR05
FR03
FI04

DK05
DK03
DE05
DE04
DE03
DE02
DE01
CH02
CH01
AT02

SE08
SE05
SE02
N015
NQ08
NO01
GB02
FR05
FR03
FI04

DK05
DK03
DE05
DE04
DE03
DE02
DE01
CH02
CH01
AT02

Rndpmn

so?

percentages of missing values

Figure 1.6: percentages of missing daily data across compounds/sites

while for the French site (La Crouzille), quite a few months have more than 15 

missing values.

The results of these graphical and numerical analyses confirm the impression 

from the first two bar plots (Figure 1.5, Figure 1.6), that SO 4  in precipitation, 

exhibits a huge amount of missing values and so it will not be analyzed further. 

For SO 2 and SO 4  in air, interesting results for the missing values have been 

obtained. In fact, from the bar charts, the stations AT04, FI04, FR03 and FR05 

were the only ones to have more than 10% missing values (for both SO 2 and 

SO 4  in air). However from the analysis of the plots of missing values over time 

and from the matrix of “Missing Blocks” , it is clear that the Finnish station,

47
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m issing values for S 0 2  monitored at Tange

o b se rv a tio n s

Figure 1.7: missing data for SO 2 at Tange (DK03)

Ahtari (FI04), is a different case from the other three (AT04, FR03 and FR05). 

In fact its high percentage of missing values is due entirely to a missing period 

of three and half years (6/1997-12/2000). Apart from this, across its range of 

observations (10/1977-5/1997) there are very few missing observations. However, 

for the other three stations (AT04, FR03 and FR05), there is a high percentage 

of missing values across all its range of observations. All of these characteristics 

are extremely important for future stages of the study, and on the basis of these 

results it will be necessary to choose the appropriate methodologies of future 

analysis.
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missing values for S 0 2  monitored at Tit ri

 9'0- % -O

00o

coo

d

CVJ
d

o
d

0 2000 4000 6000 8000

Figure 1.8: missing data for SO2 at Ahtari (FI04)

1.4 Exploratory Analysis of Trend and Season­

ality

Prom the previous section it has been evident that the daily data are clearly 

skewed and show considerable variation, making the interpretation of the trend 

and seasonality difficult. The logarithm of the data over time was plotted to give 

a clearer idea of the main features of the data. It is necessary to point out that, 

because of the presence of some zero values in some data  sets, a small positive 

offset equal to half of the minimum value of the series has been added to each 

data value before taking natural logs.
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m issing va lues for S 0 4  in precipitation monitored at La Crouzille
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Figure 1.9: missing data for SO4 in precipitation at La Crouzille (FR03)

For example Figure 1.10 a) presents the logarithm of the concentration over 

the entire period of observation. It is possible to note that the presence of straight 

lines are due to a detection limit problem. This graph also shows a clear downward 

trend, and peaks indicating the presence of seasonality. To look more carefully 

at the seasonal cycle, the detrended data over one year of observations have 

been plotted in Figure 1.10 b). The detrended data have been obtained by 

fitting a local linear regression, that can be thought of as a general kind of local 

moving average, and whose computation will be explained in more detail in the 

next chapter. From Figure 1.10 b) it is possible to note a seasonal yearly cycle, 

characterized by lower values in summer and higher values in winter.
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Month
Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1978 31 28 31
1979
1980
1981
1982
1983 19
1984
1985
1986
1987
1988
1989
1990
1991
1992 20
1993
1994
1995
1996
1997
1998
1999
2000 16

Table 1.1: Presence of Missing data in each month for SO2 monitored at
Tange.

Another kind of seasonality, characterized by shorter seasonal length was also 

studied. Indeed Figure 1.11 and Figure 1.12 show that a weekly cycle seems 

to characterize the data. This is possibly explained by the fact that factories 

are closed during the weekend, reducing the emissions of SO 2 on Saturday and 

Sunday. However this cycle, according to the chemistry, should not appear for 

SO4 in air, in contrast with what has been noted in this analysis across most of 

the sites (i.e. Figure 1.12). It has been suggested by experts, that the presence
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Month
Year

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1979 31 28 31 30 31 30 31 31 30 31 30 31
1980 31 29 31 30 31 30 31 31 30 31 30 31
1981 31 28 31 30 31 30 31 31 30 31 30 21
1982 26 25 26 30 29 28 31 31 28 31 29 24
1983 28 24 27 26 25 29 31 31 30 31 30 31
1984 31 29 31 30 31 30 31 31 30 31 30 31
1985 31 28 31 30 31 30 31 31 30 31 30 31
1986 31 28 31 30 31 30 31 31 30 31 30 31
1987 31 28 31 30 31 30 31 31 30 31 30 31
1988 31 29 31 30 31 30 31 31 30 31 30 31
1989 31 28 31 30 31 30 31 31 30 31 30 31
1990 22 26 18 19 26 27 23 16 19 26
1991 28 28 31 30 31 23 28 31 30 29 30
1992 30 28 22 20 21 22 20 22 20
1993 24 27 26 18 17 23 17 29 24
1994 18 25 27 22 22 27 29 30 16 26 21 26
1995 20 28 29 31 28 29 28 17 21 23 29
1996 29 22 26 24 22 27 28 23 24 19 22
1997 25 18 30 30 17 23 23 25 18 18
1998 19 24 25 28 20 23 27 25 27
1999 19 22 18 25 22 20 16 19 23 17
2000 25 16 25 17 19 25 18 27 23 18 21 19

Table 1.2: Presence of Missing data in each month for SO4 in precipitation
monitored at La Crouzille.

of this cycle also for SO 4  in air may means that the filter that measures SO4, 

also measures SO 2 , possibly due to moisture.

In order to handle the effect of the short cycle and to reduce the variability 

that is affecting the data, the weekly means will be analyzed. However before 

computing the weekly means, it is necessary to keep in mind the problem of 

missing values that affect our data. In fact, because of the large number of 

missing values in the series, the computation of the weekly means based simply 

on the original daily values, would be highly biased. In some cases, the weekly
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a) logarithm of daily data of S02 at lllmitz 
across years

b) logarithm of the detrended daily data 
of SQ2 at lllmitz over a year
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Figure 1.10: SO2 at lllmitz (AT02): a) daily data across years, b) detrended
data over one year

values would rely only on one or two days that could belong to the high or the 

low part of the cycle, skewing the results. So it was necessary first to remove the 

seasonality, and this has been done by applying a linear model, fitting the days 

of the week as factors, and then the de-seasonalised daily data have been used to 

obtain the weekly means. Figure 1.13 shows the steps that have been followed in 

computing the weekly means.

In particular, Figure 1.13 a) shows the natural logarithm of the daily data; 

Figure 1.13 b) shows the natural logarithm of the daily data after removing the 

“day within the week” seasonal component; Figure 1.13 c) shows the weekly 

means of the natural logarithm of the daily data after removing the “days within
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logarithm of the detrended daily data of S 0 2  
at lllmitz over a w eek

Mon Tue Wed Thu Fri Sat Sun

days of the week

Figure 1.11: logarithm of the detrended daily data of SO2 at lllmitz (AT02)
over a week

the week” seasonal component; Figure 1.13 d) show the estimates of the “day 

within week” parameters of the linear model. The days of the week are considered 

as factors and their contrast matrix includes each level as a dummy variable, 

excluding the first one. So the 6 values that are present in the plot of Figure 1.13 

d), represent the values for Tuesday, Wednesday, Thursday, Friday, Saturday 

and Sunday compared with Monday. From these plots, the presence of a daily 

seasonality is apparent, showing lower values during the weekend than in the rest 

of the week.

It is important to note that, for SO 4  in precipitation, the weighted weekly 

means are calculated where the weights are determined by the volume (mm) of
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logarithm of the detrended daily data of S 0 4  
in air at Eskdalemuir over a w eek

Mon Tue Wed Thu Fri Sat Sun

days of the week

Figure 1.12: logarithm of the detrended daily data of SO a in air at Eskdale­
muir (GB02) over a week

precipitation (for those sites where the data are present).

Figure 1.14 show an example of plotting the weekly means across years (Figure 

1.14 a), and the detrended weekly data across weeks of the years (Figure 1.14 b).

Graphs like Figure 1.14 have been produced across all the sites, and most of 

them show that the yearly cycle is still present after removing the weekly cycle 

and the trend. From a quick look at the plots, it is clear that the weekly means 

of the logarithm of the data give a clearer pattern of the data, characterized by 

much less skewness and variability. In fact, taking the log first and the weekly 

means afterwards (Figure 1.14 a), it is possible to obtain data that are more 

interpret able. Therefore, most of the following analysis has been done using the
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a) logarithm of daily S 0 2  b) logarithm of daily S 0 2  at Stoke ferry (GB04),
monitored at Stoke ferry (GB04) removing the days within the week effect

1984 1988 1992 1996 2000 1984 1988 1992 1996 2000

days in year days in year

c) weekly means of the logarithm of daily S 0 2 , d) Seasonality (days within the week).
monitored at Stoke ferry (GBQ4) SQ2 monitored at Stoke ferry (GB04)
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Figure 1.13: Analysis of seasonality for S02 at Stoke Ferry (GB04). a) log 
of the daily data; b) deseasonalised log daily data; c) weekly 
means of the deseasonalised log daily data d)estimates of the 
“days within week” parameters (l=Tue, 2=Wed,... ,6=Sun).

weekly means, rather than the daily ones.

Across the plots that have been produced, it has also been noted that the 

decreasing trends do not follow a linear pattern. In most cases, it seems more 

appropriate to model the trend by smooth curves. The following section will 

present some of the main approaches in analyzing trend.
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Figure 1.14: SO2 at lllmitz (AT02): a) weekly log data across years, b)
detrended weekly log data over one year

1.4.1 Literature review of trend analysis m ethodology

There are various ideas associated with the concept of trend and in particular 

different statistical approaches have been proposed for detecting and estimating 

trends. Trend analysis represents a huge area of study and the literature on this 

topic is vast. Even the definition of trend has involved many contributions. One 

of the most common is “long term systematic change in mean” . That gives a 

good idea of what the trend is, but the interpretation of the words “long term” 

is subjective. So, a more appropriate definition is given by Granger (1966), 

who said that “trend in mean” comprises all the frequency components whose
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wave lengths exceed the length of the observed series. Here some of the most 

important methodologies that are typically implemented in trend analysis are 

presented. These methodologies are classified into two areas: those that consider 

linear trends and those that relax this assumption of linearity.

1.4.1.1 Trend Analysis in Tim e Series: Linear Trends

An excellent review of linear trend analysis, was carried out by Hess et al. (2001), 

who compared seven methodologies for the analysis of linear trend. The method­

ologies described are:

• The Spearman Partial Rank Correlation (SPRC) to test for the presence of 

trend after correction for seasonality, proposed by McLeod et al. (1991).

• The Seasonal Kendall Test (SKT) proposed by Hess et al. (2001).

• The Seasonal Kendall Test for dependent data proposed by Hirsch and Slack 

(2002).

•  Generalized Least Squares (GLS) with autoregressive errors, proposed by 

Reinsel and Tiao (2002), that can account for atmospheric variables, and 

that can combine the trend estimates from several stations, determining a 

general trend estimate.

•  The Kolmogorov-Zurbenko (KZ) filter that Rao and Zurbenko (1994) have 

suggested in order to estimate trend. The KZ filter is an iterative moving 

average that separates trend from high frequency components.

•  The £-test to assess the hypothesis that the difference between the means
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of the first and the second half of observations is statistically significant, 

described by Hess et al. (2001).

•  the deseasonalised t-test (described by Hess et al. (2001))

After presenting all these different procedures, Hess et al. (2001) presented some 

applications. Their results suggest that the deseasonalised t-test, and the SKT, 

should be preferred to the others. As well as being easily applicable, they are the 

ones that maintain the significance level and have high power with the variation 

of the trend considered.

Recently, Yue et al. (2002) investigated the interactions between a linear trend 

and an AR(1) process in a time series. They demonstrated through Monte Carlo 

simulation experiments that the serial correlation increases the size of the Mann- 

Kendall (M K ) test statistic. Yue et al. (2002) also showed that serial correlation 

does not alter the central tendency or mean and the distribution of the M K  

statistic, but on the other hand, the presence of a trend affects the estimate of 

the serial correlation. Yue et al. (2002) also showed that a more accurate estimate 

of the true AR{  1), is obtained detrending the series prior to pre-whitening. They 

also proposed an alternative approach to detecting a significant trend in serially 

correlated series. This new approach comprises four steps (Yue et al., 2002):

1. The slope of the trend in the sample data is computed.

2. If the estimated slope differs significantly from zero, the identified trend is 

assumed to be linear and is removed from the sample data.

3. The lag-1 serial correlation coefficient of the detrended series is computed, 

and the AR(1) process is removed from the series.
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4. The identified trend and the modified residual series are combined and the 

MK test is applied to this combined series to assess the significance of trend.

Weatherhead et al. (1998) analyzed the factors affecting the detection of trends 

with applications to environmental data. They showed how the number of years 

of data needed to detect a given trend is dependent on the autocorrelation and on 

the natural variation of the data (noise). It was also shown that the occurrence of 

level shifts in the data can add significantly to the uncertainty in trend estimates, 

thereby increasing the number of years necessary to detect a given trend.

1.4.1.2 Trend A nalysis in Tim e Series: Non-Linear Trends

Methodologies that aim to relax the assumptions of linearity have also been devel­

oped. A wider view of methodologies has been proposed by Brillinger (1994), who 

presented some techniques for trend analysis in time series, classified as paramet­

ric, semi-parametric and nonparametric. Esterby (1993) compared assumptions 

of some of the trend analysis methods which have been used for environmental 

data, concluding that modeling seasonality provides a much more informative 

analysis than blocking on season. After presenting the Seasonal Kendall Test 

and least squares regression, Esterby (1993) shows that in some cases the seasonal 

variation may be poorly represented by sinusoidal terms and a general smoothing 

procedure may be more appropriate. Cleveland et al. (1990) presents a Seasonal 

Trend decomposition based on Loess (STL), that decomposes a time series into 

trend, seasonal and remainder components. STL consist of an inner loop nested 

inside an outer loop. In the inner loop, the seasonal and the trend components 

are estimated and updated at each loop. In the outer loop the robustness of the 

weights that will be used in the run of the following inner loop are computed.
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Esterby (1993) also presented applications of locally weighted regression smooth­

ing (loess), and of the related STL. Esterby (1993) has shown on the basis of 

water quality data monitored in the provinces of Alberta and Saskatchewan since 

the early 1950s that the STL algorithm can model gradual change from year to 

year of the seasonal component in a particular season, whereas, in the blocking 

methods, the seasonal component is assumed constant from year to year.

El-Shaarawi (1995) provides a summary of some test statistics that are of­

ten used for the detection of trends in environmental time series data. In the 

parametric area, he describes Rao’s efficient score statistic to test simultaneously 

the presence of trend and correlation, requiring only computation of the Maxi­

mum Likelihood (ML) estimates under H0. The Kendall’s S-score test provides 

the equivalent test in the nonparametric area. The Kendall’s S-score test is an 

extension of the Seasonal Kendall test that accounts for autocorrelation.

The effects of autocorrelation on estimates of trend have been the subject of 

many studies. The work of Tiao et al. (1990) discussed the characteristics of the 

data that affect the estimates of the time trends and of the spatial correlation. 

Tiao’s principal findings were as follows.

1. Auto-correlations in the monthly observations affect critically the estimates 

of the time trends.

2. The temporal sampling rates of daily measurements under systematic sam­

pling do not affect the estimates of the time trends and of spatial correlation 

between two neighboring stations.

3. The time lag between measurements taken at the two stations affects the 

estimate of spatial correlation between two neighboring stations.
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An important tool in time series analysis is represented by Generalized Ad­

ditive Models (GAMs), and several papers have been published on the use of 

GAMs. In particular, Hastie and Tibshirani (1987) used some applications to 

show that GAMs provide a flexible method for analyzing the effects of an unde­

fined number of covariates in a variety of settings. Nonparametric estimates of 

the effects of the covariates can be used to suggest parametric transformations in 

order to perform usual linear analysis on the transformed variables. Hastie and 

Tibshirani (1987) pointed out that in literature there has also been a quite wide 

investigation and development of inferential tools for estimating and testing the 

covariates’ effects in GAMs. In their work Hastie and Tibshirani (1987) used the 

local scoring algorithm to estimate the functions, using a scatterplot smoother 

as a building block. Hastie and Tibshirani (2000) also proposed a “general pro­

cedures for posterior sampling from additive and generalized additive models” . 

They propose a Bayesian backfitting procedure that uses the ideas coming from 

Gibbs sampling and from the backfitting algorithm, in a way that at each step of 

the “backfitting algorithm” , a noise effect is added to each component in order 

to obtain new realizations.

Berhane and Tibshirani (1998) proposed an extension of the GAMs that ac­

count for intrasubject correlation of longitudinal data. The fitting of these GAMs 

for longitudinal data is performed through the Local Quasiscoring Algorithm 

that is based on a multivariate form of quasilikelihood. This algorithm assumes 

fixed and user-supplied degrees of freedom that do not account for correlation. 

The testing performed by Berhane and Tibshirani (1998) is based on approxi­

mate model-based and empirical tests on the nonparametric contributions of the 

smooth terms that are not based on solid theoretical justification. Berhane and
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Tibshirani (1998) conclude that formalization of inferential tools supported by 

simulation studies are needed.

Wood and Augustin (2002) presented theory and applications of GAMs with 

penalized regression splines, combining the idea of GAMs with Generalized Spline 

Smoothing (GSS) (Wahba, 1990). They noted how model selection techniques of 

GAMs can be improved using the GSS algorithm for estimating multiple smooth­

ing parameters.

Some theory of penalized spline generalized additive models has also been 

given recently by Aerts et al. (2002) who derived simple closed form approxima­

tions to the degrees of freedom of the estimator and its components for ordinary 

additive models and for GAMs. Cleveland and Devlin (1988) instead investigated 

the use of locally weighted regression (LOESS) as a way of providing: exploratory 

information of the data, indication on the parametric form to model the data, and 

nonparametric estimates of the regression surface. Cleveland and Devlin (1988) 

stressed the importance of using nonlinear local procedures that can relax the 

assumptions of normality and constant variance of the errors that characterize 

most of the more traditional methodologies.

Dominici et al. (2002) discuss the use of GAMs for estimating relative rates 

of mortality associated with exposure to air pollution in time-series analysis of 

air pollution and health. Re-analyzing the data of the National Morbidity, Mor­

tality, and Air Pollution Study (NMMAPS), Dominici et al. (2002) concluded 

that GAMs provide a more flexible approach for adjusting for nonlinear con- 

founders compared with fully parametric alternatives. However the use of GAMs 

through statistical packages, such as Splus, requires considerable caution because 

the default parameters need to be more stringent.
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All these methodologies that have been discussed are potential methods of 

modeling trend. However, with air pollution data, there is also a need to consider 

the effect of meteorology. The next section will present an exploratory analysis 

of some meteorological variables of interest. Some of the main trend analysis 

approaches that account for meteorology will also be discussed.

1.5 Exploratory Analysis of M eteorological Vari­

ables

The analysis of atmospheric pollutants must also consider, where possible, the 

effects of meteorology. Thus at many pollutant monitoring sites meteorology is 

measured too.

The meteorological variables that are commonly available and that could 

be of interest are: Temperature, in terms of Mean, Minimum and Maximum 

(degrees Celsius), Humidity (%), Precipitation (mm) and Wind Speed (knots), 

and Wind Direction (degrees). We have acquired meteorological data at 11 sta­

tions, namely at Eskdalemuir (GB02, Scotland), Westerland (DE01, Germany), 

Waldhof (DE02, Germany), Schauinsland (DE03, Germany), Deuselbach (DE04, 

Germany), Brotjacklriegel (DE05, Germany), Kosetice (CZ03, Czech Republic), 

Rorvik (SE02, Sweden), Bredkalen (SE05, Sweden), Hoburg (SE08, Sweden), 

Payerne (CH02, Switzerland). The meteorological data, collected hourly, have 

been aggregated to daily values first, and then weekly. It is clear that the com­

putation of weekly values of temperature (mean, minimum and maximum), hu­

midity, amount of rain and wind speed, is straightforward, but not for wind
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direction. So two different kinds of mean for wind direction were computed. 

The first is the mean direction proposed by Mardia (1972). If Pi, i = 1 , . . . ,  n 

are points on the circumference of the unit circle corresponding to the angles Oi, 

i =  1, . . . , n, then the mean direction Xq of 0\ , . . . ,  0 n is defined to be the direction 

of the resultant of the unit vectors O P \ , . . . ,  OPn. The cartesian co-ordinates of 

Pi are (cos Oi, sin Oi), i = 1, . . . ,  n, so that the center of gravity of these points is 

(C,S)  where
1 n i  n

C = - V  cosfli, S  = — sin Oi (1.1)
n n  '

2=1  i=1

therefore, if

R  = (C2 + S 2) i  (1.2)

then R = nR  is the length of the resultant and Xo is the solution of the equations

C = Rcosxo, S  = R sin^o (1.3)

To this definition of mean direction we provide a slight modification, in which

we compute the mean direction weighted by wind speed. In other words we have

amended the previous definition, replacing 1.1 with

1 n n

C = j ^ X i  cos Oi, S = j ^ 2 X i S m 0 i  (1.4)
i=1 i = 1

n
where A*, i = 1, . . . ,  n represents wind speed, and A =  ^  Â .

2 = 1

Other than meteorological variables, two other “time” variables have been 

added, to account for the trend and the seasonality of the pollutants: days within 

the year, from 1 to 366, and years, in terms of fractions of days within the year,
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i.e.: 1973.003,... 2001.997. Clearly for the weekly values, the variables created 

are weeks within the year, from 1 to 53, and years, in terms of fractions of weeks 

within the year, i.e.: 1973.019,... 2001.981.

Starting with the analysis of the daily values, a simple graphical inspection 

of the scatterplots of meteorology against time, is shown in Figure 1.15, Figure 

1.16, Figure 1.17 (for wind direction 0 corresponds to North).

a) daily  m e a n  te m p era tu re

01* 1/1673 01* 1/1000 01/01/1087 12/31/1663 12/31/2000

b) daily m inim a te m p era tu re

01* 1/1073 01/01/1680 01/01/1687 12* 1/1003 12/31*000

day*

c) daily m axim a te m p e ra tu re

01/01/1673 01* 1/1680 01* 1/1087 12* 1/1003 12* 1/2000

Figure 1.15: a) Mean, b) minima and c) maxima daily Temperature at Es-
kdalemuir (GB02).

It is possible to note from Figure 1.17 b), that the precipitation is strongly 

skewed. Therefore its logarithm (Figure 1.17 c), gives a clearer idea of its pattern.

However these plots still show large variation, that could be reduced using 

the weekly means, as can be seen from the Figure 1.18, Figure 1.19, Figure 1.20. 

A first idea of the relation (if any) between pollutants and meteorology, is



CHAPTER 1. AIM, BACKGROUND & EXPLORATORY ANALYSIS 30

a) daily wind sp e e d

01^)1/1973 01/01/1960 01/01/1967 12/31/1993 12/31/2000

b) daily wind direction

S g j g p f l 5

01/01/1973 01/01/1960 01/01/1967 12/31/1993 12/31/2000

c) daily wind direction w eighted  with s p e e d

01/01/1973 01/01/1960 01/01/1967 12/31/1993 12/31/2000

Figure 1.16: a) daily wind speed, b) daily wind direction and c) daily wind 
direction weighted by speed at Eskdalemuir (GB02).

given by a simple graphical inspection of the plots of pollutants against meteo­

rology, as presented from Figure 1.21 to Figure 1.26. From these plots it is clear 

that some relationships between meteorology and pollutants exist. However more 

analysis will be necessary to assess the significance of any meteorological effect 

on air pollution.

1.5.1 Literature review of M eteorological adjustm ent in 

Trend Analysis

One potential assessment of policies to reduce air pollution is to evaluate whether 

there has been a decrease in pollutant concentrations over time. Unfortunately,



CHAPTER 1. AIM, BACKGROUND & EXPLORATORY ANALYSIS 31

a) daily m ea n  humidity

014)1/1673 01/01/1060 01/01/1087 12/31/1003 12/31/2000

b) daily am o u n t of rain

01/01/1973 01/01/1960 014)1/1087 12/31/1909 12/31/2000

<fey>

c) daily am o u n t of rain

01/01/1073 014)1/1080 01/01/1087 12/31/1003 12/31/2000

Figure 1.17: a) daily humidity, b) daily amount of precipitation and c) log
of daily precipitation at Eskdalemuir (GB02).

attempts to find trends in ambient pollutant concentrations have often been con­

founded by the effects of meteorology on pollutant formation, accumulation, and 

destruction. This section presents an overview of the most relevant methodologies 

concerning meteorological adjustment in trend analysis.

A good review of this topic is presented by Thompson et al. (2001), who un­

derlined how much development is going on in this area while simple linear regres­

sion, non-linear regression (Bloomfield et al., 1996), regression trees (Huang and 

Smith, 1999) and partial least squares (Libiseller and Grimvall, 2002) represent 

the most commonly used techniques. In recent years there has been an increase 

in the use of techniques such as cluster analysis (Davis et al., 1998), and artificial 

neural networks (Gardner and Dorling, 2000b), (Libiseller and Nordgaard, 2003), 

all concerned with meteorological adjustment for trend analysis
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a) w eekly  m ea n  te m p era tu re

1073 1080 1087

b) w eekly  m inim a te m p era tu re

1094 2001

i
1073 1080 1987

c) w eekly  m axim a te m p era tu re

1094 2001

1073 1060 1087 1004 2001

Figure 1.18: a) Mean, b) minima and c) maxima weekly Temperature at
Eskdalemuir (GB02).

An important paper in this area was written by Bloomfield et al. (1996). In 

the past, the methodologies that have been developed to quantify the impact of 

meteorology on the pollutant compounds were mainly based on linear models, 

which have difficulty in capturing the complex relationships. Therefore Bloom­

field et al. (1996) stress that complex, stratified, non-linear regression models 

are needed to approximate the true underlying mechanisms. The model strat­

egy proposed by Bloomfield et al. (1996) consists first of all in using scatterplot 

smoothing and nonparametric regression in order to explore the effects of meteo­

rological variable on the pollutants. On the basis of the nonparametric estimates, 

a parametric model is then fitted by non-linear least squares. If it is observed 

that the model residuals have seasonal dependence, a seasonal term is included 

in the model. A trend component is finally added to the model to describe the
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a) weekly wind speed

1973 1960 1987 1994 2001

b) weekly wind direction

c) weekly wind direction weighted with speed

Figure 1.19: a) weekly wind speed, b) weekly wind direction and c) weekly 
wind direction weighted by speed at Eskdalemuir (GB02).

change in pollutant concentrations, having accounted for meteorological variation 

and seasonality.

Gardner and Dorling (2000a) used UK ozone data as a case study to demon­

strate that statistical models of hourly surface ozone concentrations require inter­

actions and non-linear relationships between predictor variables in order to cap­

ture the ozone behaviour accurately. The technique proposed by Gardner and 

Dorling (2000a) was the Multi-Layer Perceptron (MLP) neural network model 

that supposes a time series of ozone 0 (t) as the sum of a long term e(t), a sea­

sonal S(t) and short term W(t)  components: 0( t )  = e(t) +  S(t)  +  W{t).  The 

long term component is due to climate and /  or emission and /  or background 

changes. The seasonal component is due to the annual cycle in solar radiation, 

while the short-term component is due to the day-to-day variations in weather.
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Figure 1.20: a) weekly humidity, b) weekly amount of log precipitation at
Eskdalemuir (GB02).

Using UK daily maximum surface ozone concentrations, they show that MLP re­

moved more of the meteorological variability than techniques based on time series 

filters and regression models. In other work, Gardner and Dorling (2000b) use 

UK hourly surface ozone concentrations as a case study to compare linear regres­

sion, regression tree and multilayer perceptron neural network models. Although 

MLP are shown to capture any smooth functional relationship between the pre­

dictors (meteorological and temporal variables) and the response (hourly ozone 

concentrations), the regression tree models provides easier physical interpreta­

tions. Regression trees were the object of analysis of Huang and Smith (1999), 

who aimed to separate what they called the genuine trends from meteorological 

fluctuations. An advantage of this procedure is that it allows different trends at 

each cluster to be considered, and the variability of the estimated trend among

weeks

a) weekly mean humidity
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the clusters is reduced using an empirical Bayesian adjustment.

Similarly to Huang and Smith (1999), Cocchi et al. (2002) proposed a tree 

based approach. They assumed the daily maxima of ozone concentrations fol­

lows a Weibull distribution and proposed a random effects model for the natural 

logarithm of the quasi-scale parameter of this distribution. The modeling of the 

natural logarithm of the quasi-scale parameter is very close to the proposal of Cox 

and Chu (1993) but differently from Cox and Chu (1993), Cocchi et al. (2002) 

analyzed the quasi-scale parameter in each “group by year” cluster. Besides the 

Cox and Chu (1993) trend estimation is based on the assumption of a linear 

functional form for the trend component.

Shively and Sager (1999) proposed a semi-parametric regression approach to 

model the long-term trend in ozone levels accounting for the effects of meteoro­

logical conditions. The authors indeed maintain that the parametric approach 

risks “incorporating too much prior information” into regression models, but at 

the same time the nonparametric models may “incorporate too little” .

Niu (1996) introduces a class of additive models in which each component 

of the additive model is fitted using cubic smoothing splines, and, in order to 

account for serial correlation, an ARMA model is fitted to the error structure 

at each step of the backfitting algorithm. This technique combines the usual 

backfitting algorithm with the Box-Jenkins modeling strategy.

Davis et al. (1998) modeled the effects of meteorology on ozone in Houston 

in two stages. Firstly they used cluster analysis (average linkage and then k- 

means) and then generalized additive models are used to analyze the relationship 

between ozone and meteorological variables within each “meteorological regime” 

(i.e. cluster).
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Classification methods were also studied by Cape et al. (2000), who analyzed 

trace gas measurements arriving at Mace Head (Ireland) at midday between 1995- 

1997. They combined cluster analysis of the ground-based ozone concentrations 

(average linkage) with cluster analysis based on the origin of the sampled air 

(air-mass back trajectories). This technique allows analysis of extreme events by 

air mass origin.

On the basis of the same classification philosophy, Tprset et al. (2001), studied 

trends in ambient air concentrations in relation to air mass origin by sector analy­

sis. 5 sectors of 72 degrees were obtained, and for each sector, the Mann-Kendall 

Test was then performed on the annual average concentrations.

Libiseller (2003) provided a study of the comparison between “one-step” and 

“two-steps” approaches for trend testing purpose. The first approach is based on 

multivariate trend tests that try to include covariates as numerical variables in 

the test formula. The latter approach instead consists firstly in the application 

of normalization techniques that “clean” the covariate effects, followed by the 

application of trend detection techniques. Among the “One-Step approaches” , 

Libiseller and Grimvall (2002) presented the Partial Mann-Kendall (PMK) test, 

and they showed how covariates can be introduced in a general multivariate 

Mann-Kendall test and in the seasonal Kendall test for trends in serially corre­

lated data. Among the “Two-Steps approaches” , Libiseller and Grimvall (2003) 

presented Partial Least Squares Regression (PLS) to fit linear models to the data, 

and Artificial Neural Networks (ANNs) to allow for non-linearity. Libiseller et al. 

(2003) also examined the performances of different normalization models using 

trajectory data as explanatory variables, along with local meteorological data.

Libiseller (2003) summarized the results, suggesting that multivariate tests
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are employed solely to test the significance of trends, while normalization pro­

cedures are used primarily to elucidate underlying developments and changes, 

although they can also be followed by a trend test. In other words, the objec­

tive of normalization procedures is to carefully model, and thereby remove, the 

dependencies between the response and the covariates; whereas the multivari­

ate tests are based on monthly or annual (mean) values, and determine whether 

both variables develop jointly, correcting the test statistic of the response variable 

accordingly.

1.6 Conclusions

Having obtained a good idea of the main features of the data, the next chapters 

will propose and carry out some analysis that deal with the characteristics of the 

data just identified.

The focus of the statistical methodologies will be on nonparametric proce­

dures. In particular, smoothing techniques for independent data will be described 

in Chapter 2, and then extended to deal with the correlated case in Chapter 4. 

In Chapter 3 a diagnostic for detecting abrupt changes in trends will be pre­

sented. Chapter 4 will present the fitting and the testing of additive models for 

correlated data to model pollutant data by an undefined number of covariates. 

Their properties will be shown through simulation studies. An application to 

sulphur dioxide with meteorology will be also shown. Chapter 6 will present a 

spatiotemporal study accounting for both the spatial correlation across years, 

and temporal correlation across sites. Chapter 7 will present an analysis of the
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relationships between observed sulphur dioxide monitored across the EMEP sta­

tions and countries’ emissions data. Effects of the neighbouring countries will be 

also analyzed. General conclusions will be discussed in Chapter 8.
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a) weekly S02 Vs weekly mean temperature b) weekly S02 Vs weekly minima temperatures
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Figure 1.21: a)502 Vs Mean Temperature, b)S0 2  Vs Minima Temperature, 
c)S0 2  Vs Maxima Temperature, <1)502 Vs Humidity, at Es- 

kdalemuir (GB02).

a) weekly S02  Vs weekly amount of rain
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b) weekly S 0 2  Vs weekly wind speed
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c) weekly S 02  Vs weekly wind direction d) weekly S02  Vs weekly wind direction & speed
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Figure 1.22: a) SO2 Vs Rain, b) SO2 Vs Wind speed, c)S0 2  Vs wind direc­
tion, d )5 0 2 Vs wind direction weighted by speed, at Eskdale-

muir (GB02).
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Figure 1.23: a)5 0 4  in air Vs Mean Temperature, b)<S,0 4  in air Vs Minima 
Temperature, c)5 0 4  in air Vs Maxima Temperature, d)5 '04  in 

air Vs Humidity, at Eskdalemuir (GB02).
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Figure 1.24: a) SO± in air Vs Rain, b) SO± in air Vs Wind speed, CjSO^ in 
air Vs wind direction, d)»S'04  in air Vs wind direction weighted 

by speed, at Eskdalemuir (GB02).
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Figure 1.25: a)£04 in precipitation Vs Mean Temperature, b)<S,04 in pre­
cipitation Vs Minima Temperature, c)504 in precipitation Vs 
Maxima Temperature, d)504 in precipitation Vs Humidity, at 

Eskdalemuir (GB02).
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Figure 1.26: a) SO 4  in precipitation Vs Rain, b) SO 4  in precipitation Vs 
Wind speed, cjSO^ in precipitation Vs wind direction, d)(S,04 
in precipitation Vs wind direction weighted by speed, at Es­

kdalemuir (GB02).



Chapter 2 

M odeling Pollutants W ith  

Independent Errors

This chapter presents a modeling approach when the data are assumed indepen­

dent. Firstly, the theory of fitting and testing nonparametric additive models 

is presented and then some applications to pollutant concentrations monitored 

across Europe since 1970’s are given.

2.1 Linear and Generalized Additive M odels

One of the most commonly used modeling tools is the multiple linear regres­

sion model, where dependence of a response variable (y ) on a set of covariates 

( x i , , xp), is modeled by:

y = a +  Xifii +  . . .  +  xppp +  e

42
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assuming; E(e)  =  '0 and  V a r(e )  =  a 2. As n o ted  by Has;tie an d  T ibsh iran i (1990), 

the advantages of this m odel are th a t:

• it pro vides a  simpLe descrip tion off the  da ta ,

• it  snmmarizies the  contribution  off each predictor w ith  a single coefficient 

and,

• it  provides a  sim ple m eth o d  for predicting; new observations.

Obviously th is  m odel .makes a strong; assum ption  ab o u t the dependence of E( y )

on x i ,  ,acp„ nam ely th a t  th e  dependence is linear in  each of the  predictors.

There are  cases w here such m odels ean n o t be applied beca/use of the  intrinsic 

nonlinearity in  th e  da ta . I t  is possible to  ex tend  the linear m odel very sim ply by 

adding or m odifying terms; (such as; logarithm s, quadratics, an d  so on), b u t often 

it is difficult to  guess th e  m ost appropria te  functional form ju s t ffromi looking at 

the data . A no ther powerful too l th a t  generalizes the linear m odel is nonparam et­

ric regression models. N onparam etric  regression m odels the d a ta  by le ttin g  th e  

da ta  show th e  app ropria te  functional form, w ith o u t pre-speciffymg any  particu lar 

shape. This is th e  idea beh ind  the sca tte rp lo t sm oother th a t  h ighlights th e  func­

tional dependence w ith o u t im posing a rigid param etric  assum ption  ab o u t th a t 

dependence.

A  sm oother is a too l for sum m arizing th e  tre n d  of a  response m easurem ent y

as a function of one or m ore predictor m easurem ents xi^x\ 2 , ___, x p. I t  p roduces

an estim ate  off th e  tre n d  (m ) th a t  is less variable th a n  y  itself, hence th e  nam e 

sm oother. T h e  n o ta tio n  rh indicates th e  estim ate  produced by a sm oother. T he  

single p red ic to r case Is th e  m ost com m on an d  so-called sca tte rp lo t sm oothing,
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defined as a function of x  and y, produces a function m  with the same domain 

as the values in X .  Smoothers have two main uses. The first use is description 

as through a smoother it is possible to enhance the visual appearance of the 

scatterplot of y against X .  The second, but not less important, use is to estimate 

the dependence of the mean of y on the predictors. Most smoothers attem pt to 

mimic category averaging through local averaging, that is, averaging the y-values 

of observations having predictor values close to a target value. The averaging is 

done in neighbourhoods around the target value.

There are two main decisions to be made in scatterplot smoothing:

1. how to average the response values in each neighbourhood, and

2. how big to take the neighbourhoods.

For the latter question it is necessary to define the size of the neighbourhood in 

terms of an adjustable smoothing parameter. Intuitively, large neighbourhoods 

will produce an estimate with low variance but potentially high bias, and con­

versely for small neighbourhoods. Thus there is a fundamental trade-off between 

bias and variance, governed by the smoothing parameter or bandwidth. This 

issue is exactly analogous to the question of how many predictors to put in a re­

gression equation). The former question is really the question of which “brand” 

of smoother to use, because smoothers differ mainly in their method of averaging. 

Many approaches are available, as discussed by Green and Silverman (1994), Si- 

monoff (1996), Bowman and Azzalini (1997) and many other authors. Although 

the methods differ in philosophy and style, the end results in terms of estimation 

are often similar. It is therefore acceptable to select a method of smoothing which 

is convenient to the problem at hand.
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The local linear method of smoothing (Cleveland, 1979) is adopted here. It 

is a conceptually appealing way of constructing an estimate from observed data 

{(ajj, 2/i); z =  1, . . . ,  n} by fitting a linear model in a local manner, using weights 

w(xi  — x\ h) to focus attention on the estimation point x  of interest (where h 

is the smoothing parameter or bandwidth). Specifically, the estimator m(x)  is 

taken as the least squares estimator a which arises from the criterion 2.1.

n

min {yi — cl — (3(xi — x)} 2 w(xi — x\ h) (2.1)
i=l

The weight function w(.\h) should be a smooth, symmetric, unimodal function 

which is here taken to be a normal density function with mean 0 and standard
(i,— x)2

deviation h, so that w(xi — x;h) = e w2 . General expressions for the bias and 

variance effects are shown in Ruppert and Wand (1994), and are:

h?
E{m(:c)} «  m(x)  +  — Vwm "(.x ) (2-2)

uar{rh(s)} *  (2.3)

where cr  ̂ denotes J  z 2 w(z)dz , a(w)  denotes f  w(z) 2 dz , and /  denotes the local 

density of the design points. Expression 2.2 shows that the higher the smoothing 

parameters and the degrees of curvature (m"), the bigger the bias. Expression 

2.3 shows instead that the higher the smoothing parameters and the density 

of the design points at values neighbouring of x , the smaller the variance. An 

approximate balance between bias and variance as a function of the smoothing 

parameter is therefore required.
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Bowman and Azzalini (1997) summarize the methods available for estimating 

the variance a2. On the basis of the linear model, one of the most common 

estimator is given by:
~2 R s s

( 2 - 4 )

where df  stands for degrees of freedom and their definitions will be shown later 

on.

An alternative approach was taken by Rice (1984) who proposed an estimator 

based on differences of the response variable, in order to remove the principal 

effects of the underlying mean curve. Specifically the estimator is given by:

* 2 =  2 ( ^ 1 )  ~  Vi~l f  ( 2 -5 )

where for simplicity of notation, it is assumed that the observations (Xi,yi) have 

been ordered by X{.

Local linear regression has a number of attractive properties. Conceptually, 

it can be viewed as a relaxation of the usual linear regression model. As h be­

comes very large the weights attached to each observation by the kernel functions 

become similar and the curve estimate approaches the fitted least squares regres­

sion line. It is appealing to have this standard model within the nonparametric 

formulation. Prom a more theoretical perspective, Fan and Gijbels (1992) and 

Fan (1993) showed the excellent properties which this estimator possesses.

As said before, in the present work, the kernel mainly used is the normal 

density function. However, when dealing with particular variables, it has been 

necessary to amend the kernel function. In particular, variables such as “weeks of 

the year” and “wind direction” need to be modeled by circular smoothers. Since
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there is no natural analogue of linear regression on a cyclical scale, a local mean 

estimator can be constructed as

n

min -  a } 2 w(xi -  x\ /i), (2.6)a '
i= 1

X f c\ j X \
where the weight function is now defined as w(xi — x\h)  =  e^ cosv * r ) ̂  with r 

representing the range of the sample space for x. The use of this Von Mises weight 

function ensures that the estimate, taken again to be the least squares solution 

d, is adapted to the cyclical scale, with observations at one end influencing the 

estimate at the other end. Loader (1999) describes a similar approach using 

different weight functions, that will be briefly described here but it will not be 

used in the following applications. He uses a tricube weight function W(d/h)  = 

(1 — |d//i|3)3, where h is the bandwidth and d is a periodic distance function, 

defined by:

d(xi, x 2) = 2| sin{(:ri -  x 2 )/{2s)}\ (2.7)

where 5 is a scale parameter. A periodic component through a bivariate model 

(e.g. trend Sz seasonality), can be fitted using a bivariate distance function given 

by: ^

d[(xi, yi), (x2, 2/2)] =  [2 sin{(2/i -  y2 ) ^ / r y} f  +  ^  (2.8)

where ry and rx are the width of the range of y  and x  respectively. W(>) produces 

the weights to give local parameter estimates of a circular local quadratic model:

Tx(xi) = a0  +  aissm{(xi  -  x ) / s}  +  a2 s2[ 1 -  cos{(xj -  x)/s}\  (2.9)
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As local regression is based on a weighted least squares criterion, the resulting 

estimates can be expressed as linear combinations of the elements of the vector 

of response data y. It is convenient to define a smoothing matrix S  whose rows 

contain the weights which are appropriate for estimation points on the scale 

of the covariate. The vector of estimated values m  at these points then has the 

convenient representation m  =  Sy.  This is particularly useful for the construction 

of standard errors and methods of model comparison.

An alternative formulation in the case of independent data arises by first 

rewriting the local least squares criterion (2.1) in vector-matrix form as

{y -  a l n -  Xf3}TW { y  -  a l n -  X/3} (2.10)

where X  denotes a vector with zth element (Xi — x) and the matrix W  has the 

elements w(x* — x\ h) down the diagonal and 0’s elsewhere. Explicit solution of 

criterion (2.1) for the standard local linear estimator is given in expression (2.11), 

and details are given in Wand & Jones (1995), Bowman and Azzalini (1997) and 

other authors.

T t  T t  T t  T t

( J 2 W i y i ) ( J 2 X i Wi )  -  ( J 2 W i Xi V i ) ( J 2 Wi X i )

-  - J 5T-* n --------1--------  (2.H)
{ J 2 w i x i ) ( J 2 w i )  -  i J ^ W i X i ) 2 

i i i

The local constant estimator is a special case of the local linear estimator, and 

its explicit representation follows as:
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Bowman and Azzalini (1997) suggested that standard error bands for the 

smooth estimate y can be built by computing standard errors, given by:

s.e.(y) = ^ v a r ( S y )  = y/diag(SST)cr2 (2.13)

where var(y) = a 2 1, and I  is the identity matrix.

The local linear regression smoother given in expression (2.1) can be extended 

to the case of two covariates. The bivariate local linear regression smoother, is

defined as the value of a  from the weighted least squares problem:

n

min Y ' {yi  -  a -  (3{xu -  x x) -  7 (x2i -  x 2) } 2W i ( x u  -  x x; h 1 )w2 (x2i -  x 2; h2) 
a,0,7 ̂ “7

(2.14)

Denoting by X  the n x 3 matrix whose zth row is {1, (xu — xi),  (x2* — £2)}, and 

with W  the diagonal matrix whose (z,i)th element is Wi = Wi(xu — x\\ hi )w2 (x2 i ~  

x 2 \h2), then the solution of the weighted least-squares problem (2.14), is

(.X TW X ) ~ lX TW y  (2.15)

The local linear estimate is defined by the first element of this vector of length 

3. The elements of the 3 x 3  matrix A = (a^) =  ( X TW X )  are all of the form 

Wi(xu — Xi; h\)r(x2i — x 2\ h2)s, where r  +  s < 2. To obtain the first element of
i

the least squares solution, we need only the first row of ( X TW X )-1 , denoted by 

(61, 62, 63). By applying standard linear algebra results, reported for instance by



CHAPTER 2. MODELING WITH INDEPENDENT ERRORS 50

Healy (1986, section 3.4) these can be written as:

fa  — 1 j  ^ a n  — —{ ( a i 2&33 — ^ 1 3 ^ 2 3 )^ 1 2  +  ( a i 3a 22 — ^ 1 2 ^ 2 3 ) a i 3 } )

fa — “T(a13&23 ~  ^12̂ 33) a

fa — -7(^12023 — &13&22) a

where d = 022̂ 33 — &23- When the vector (61, fa, fa) is post-multiplied by X TW , 

the result is a vector of length n , whose ?th element is {faWi +  fa(xu — X\)Wi +  

fa(x 2 i ~  x 2 )wi}. The inner product of this vector with y produces the local linear 

estimates at (21, 2:2).

Local linear regression smoothing presents some problems when more than 

two predictors are present, namely:

•  with neighbourhoods of two or more dimensions there is usually some met­

ric assumptions made which are difficult to justify when the variables are 

measured in different units or are highly correlated,

• the “curse of dimensionality” , i.e. as the number of independent variables, 

p, increase, a fixed number of points, n, rapidly becomes sparse. When p is 

large then, the number of neighbourhoods is less local for a fixed span than 

a single variable smoother and large bias will result,

•  Multivariate versions are computationally expensive to compute.

It is with these problems in mind that Hastie and Tibshirani (1990) took a dif­

ferent approach and used the one dimensional smoother as a building block for a 

restricted class of nonparametric multiple regression models. In fact the additive
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model that they proposed has the following form:

v
Vi = &i + '%2,mj (x j i )+£h Z =  1, . . .  , n  (2.16)

3 = 1

where the errors e are independent of the Xj,E(s) = 0, Var(e) = a 2 and the 

rrij are arbitrary univariate functions, one for each predictor, and it is easy to 

imagine them as smooth functions that are individually estimated by a scatterplot 

smoother. In fact additive models retain the important feature that they are 

additive in the predictor effects which can be examined separately. That means 

that the nature of the effects of a variable on the response does not depend on 

the values of the other variables, thus the smoothing is always one dimensional 

and consequently no dimensionality problems occur, at the cost obviously of an 

approximation of the errors. So the variation of the fitted response surface holding 

all but one predictor fixed does not depend on the values of the other predictors. 

In practice this means that, once the additive model is fitted to data, it is possible 

to plot the coordinate functions separately to examine the roles of the predictors 

in modeling the response. Such simplicity does not come free; the additive model 

is almost always an approximation to the true regression surface, but hopefully a 

useful one. Additive models are more general approximations than linear models.

There are many ways to approach the formulation and estimation of additive 

models. Typically they differ in the way the smoothness constraints are imposed 

on the functions in the model. The backfitting algorithm (Hastie and Tibshirani, 

1990) is a general algorithm that enables one to fit an additive model using any 

regression-type fitting mechanisms. It is an iterative fitting procedure, and this 

is the price one pays for the added generality. Conditional expectations provide
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a simple intuitive motivation for the backfitting algorithm. If the additive model 

is correct, then for any covariate k , E{y  — a  — ^  rrij(xj)\xk} = m ^x ^ ) .  This 

immediately suggests an iterative algorithm for computing all the nrij, which in 

terms of data and arbitrary scatterplot smoothers S j , can be summarized in the 

following steps:

1. Initialize: a = = S\(y  — a), =  Sj(y — a  — ^  m ^ ) , j  =  1, . . .  ,p
k<j

2. Cycle: r h f  = Sj{y -  a  -  J2 ~ E ^1°), 3 =
k>j k<j

3. Continue 2) until the individual functions don’t change,

where mf* indicates the smoother of variable j  at iteration i. In order to en­

sure unique definitions of the estimators, the intercept term can be held at 

a = y, the sample mean, throughout and additional adjustment to ensure that 

E z = 0 for each j  can be applied at each step.

The main idea is to fit the functions simultaneously, so the individual smooth­

ing steps make sense. When readjusting rhj, the effects of all the other variables 

from y are removed, before smoothing this partial residual against Xj.

Applications are also given in Hastie and Tibshirani (1987). Hastie and Tib- 

shirani (2000) proposed a general procedure for posterior sampling from additive 

and generalized additive models. They proposed a Bayesian backfitting proce­

dure that smooths the same partial residual that the usual backfitting algorithm 

does, and then adds appropriate noise to obtain a new realization of the cur­

rent function. This is equivalent to Gibbs sampling for an appropriately defined 

Bayesian model.

Opsomer and Ruppert (1997) explored the sufficient conditions guaranteeing 

convergence of the backfitting algorithm for the bivariate additive model, using
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local polynomial regression. Opsomer and Ruppert (1997) also showed the as­

ymptotic properties of the estimators. Opsomer and Ruppert (1997) provided the 

theoretical framework that Opsomer and Ruppert (1998) applied in developing a 

plug-in bandwidth selection method for additive models. Opsomer (2000) derived 

explicit expressions for the backfitting estimators of the component functions of 

D-dimensional additive models for general linear smoothers.

Hastie and Tibshirani (1990) have also proposed another class of models called 

Generalized Additive Models, that allow an extension of the generalized linear 

model in the same way that the additive model extends the linear regression 

model. The Generalized Linear Model assumes that the expectation of y, denoted 

by //, is related to the set of covariates Xi , . . .  , xp by g(/T) = 77 where 77 =  a  +  

X\Pi +  . . .  +  xp(3p, and y  is assumed to have exponential family density as follow:

py (y' ,6 \ 4>) =  exp |  y °  a ^ ~  + c (y> <!>) |

where 9 is called the natural parameter, </> is the dispersion parameter, 77 is the 

systematic component, called the linear predictor, and g(.) is the link function. 

Generalized Additive Models differ from Generalized Linear Models in that an 

additive predictor replaces the linear predictor. Specifically, we assume that the 

response y has an exponential family density, with mean = E(y \x i , . . . ,  xp) 

linked to the predictors via

p
g(n) = a  + '^2 m j(Xj)

3= 1
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The estimation of a  and m i , . . .  , m p is accomplished by replacing the weighted 

linear regression in the adjusted dependent variable regression by an appropriate 

algorithm for fitting a weighted additive model, proposed by Hastie and Tibshi- 

rani (1990) and called a local scoring procedure.

2.2 Testing M odels

Once the models have been fitted, the next step is to compare them. The follow­

ing sections will present some of the most common tests for model selection in 

both linear and nonparametric cases. The theory behind these tests is explained 

in order to have a better understanding, when their generalized versions that 

account for correlation will be presented.

2.2.1 Testing Linear M odels w ith Uncorrelated Errors

In fitting a linear model y = X b  +  e, a general hypothesis that sometimes is of 

interest is H  : R Tb = L, where y is the n-order response vector, X  is the n  x p 

design matrix of rank p, b is the p-order parameter vector, R T is any matrix of s 

rows and p columns, L  is a vector of order s of specified constant value. The only 

limitation on R T , is that it must have full row rank (r (RT) =  s). The F-statistic 

that is usually formulated to test the hypothesis H  : R Tb = L , is based on the 

following assumptions:

y ~  N { X b , a 2 I) 

b = ( X TX ) ~ 1 X Ty 

b -  N[b, ( X TX ) ~ 1 a2] (2.17)
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and therefore R Tb -  L ~  N[RTb -  L, R T( X TX ) ~ lR a 2].

The F  test is also based on three theorems that are worth recalling (Searle,

1971):

•  Theorem 1: When x  is iV(/x, V), then E(xTA x ) =  t r (AV)  +  /iTA tji.

•  Theorem 2: When x is N(fi, V),  then xTAx  ~  x 2[r (^)> V?A[i/2\ if and only 

if AV  is idempotent.

•  Theorem 3: When x ~  N(fi,V),  the quadratic forms xTAx  and xTBx  

are distributed independently if and only if A V B  = 0 (or equivalently 

B VA  = 0).

Recalling Theorem 2, it is possible to see that, setting Q to:

Q =  (RTb -  L)T[RT{XTX ) ~ 1 R] - 1 (RTb -  L)

then

Q / a 2 ~  x 2{«, (R Tb -  L)T[RT( X TX ) - 1 R]~1 (RTb -  L ) / 2 a 2}

Replacing b by ( X TX ) ~ 1X Ty, and knowing that (RTR)~i exists, because R T has 

full row rank, it is possible to express Q in the following way:

Q = [ y - X R ( R TR ) - 1 L]TX { X TX ) - 1 R[RT( X TX ) - 1 R]- 1 R T( X TX ) - 1 X T[ y - X R ( R TR ) - 1 L\

Noticing that [I — X ( X TX ) ~ 1 X T] is symmetric and idempotent, and X T[I — 

X ( X TX ) ~ 1 X T] = [I — X ( X TX ) ~ 1 X T]X = 0, it is possible to write the residual
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sum of squares:

R S S  = ( y - y ) T( y - y )  = yT[ I - X ( X TX ) - 1X T}y 

= [ y - X R ( R TR ) - 1 L]T[ I - X ( X TX ) - 1 X T] [ y - X R ( R TR ) - 1 L]

Therefore recalling Theorem 2, it is possible to write

R S S / e 2 ~  X2 {r[I -  X ( X TX ) ~ 1 X T],bTX T[I -  X ( X TX ) ~ 1X T]Xb/2o2}

Both Q and R S S  are also expressed as quadratics in the vector y —X R { R TR)~ 1 L,  

which is a normally distributed vector, and the matrix in each quadratic is idem- 

potent. The product of the two matrices is null:

[I -  X ( X TX ) - 1 X T} X ( X TX ) - 1 R[RT( X TX ) - 1 R] - 1 R T( X TX ) - 1X T =  0

and recalling Theorem 3, hence:

Q/s  Q/s
RSS/[n  -  r(X)] ~  ~¥~  
F { s , n -  r(X ), (R Tb -  L)T[RT( X TX ) ~ 1 R]~1 (RTb -  L) /2a2}

and under the null hypothesis H  : R Tb =  L,F(H)  ~  FB,n-r(x)-

For the degrees of freedom, a possible interpretation is obtained looking at 

the expected value of R S S  =  yT[I — X ( X TX ) ~ lX T]y. In fact recalling Theorem 

1, it is possible to see that:

E[RSS] = tr[I -  X ( X TX ) ~ 1 X T]I<j2  + bTX T[I -  X { X TX ) ~ 1 X T]Xb
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=  r[I -  X ( X TX ) - 1 X T]a2 

= [n — r(X)]a 2

so the degrees of freedom can be seen as the ratio of the expected value of the 

residual sum of square over the residual error variance (df = E[RSS]/cr2).

At this point the F-statistic can be interpreted as the proportional increase in 

the residual sum of squares that is obtained moving from the full to the reduced 

model (multiplied by the ratio of the degrees of freedom).

2.2.2 Testing non linear M odels w ith Uncorrelated Errors

2.2.2.1 Approxim ate F test

All the theory that has been explained up to now is related to the inference 

for linear models. This framework can be expanded to the nonparametric case, 

when smoothing is used. In fact, using the definition of the residual sum of 

squares and of the degrees of freedom of section 2.2.1, it is possible to derive the 

analogous quantities for the nonparametric case. A general nonparametric model 

can be formulated as y = m{X)  +  e, where m ( X )  is the true function and the 

errors e are independent and identically distributed with mean zero and variance 

a2. Most of the nonparametric estimators of m  are characterized by linearity, 

in such a way that they can be expressed as m  = S y , where S  denotes the 

smoothing matrix (also called the projection or hat matrix) whose rows consist 

of the weights appropriate to estimation at each evaluation point. Both X b  and 

Sy  are estimators of the same quantity, m, for the linear and nonparametric cases 

respectively. Therefore it is possible to define the residual sum of squares and the
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degrees of freedom for the nonparametric case, by analogy with the linear one, 

in order to define an “approximate F-statistic” .

In fact expressing the residual sum of squares as follows:

R S S  = ( y -  y)T(y - y )  = { y -  Sy)T(y -  Sy) = yT{I -  S)T(I -  S)y  

and recalling Theorem 1 of 2.2.1, it is possible to write:

E[RSS\  = t r [ ( I - S ) T( I - S ) a 2 ]PfxTS T [ { I - S ) T{ I - S ) ] S f i  

= [n -  tr(25 -  STS)]<r2 +  fiTS T[{I -  S )T(7 -  S)\S»

where fiTS T [(I — S)T(I — S)]Sfi is the bias of the estimator when using the 

smoothing matrix S. If we then assume that the bias is zero, then n —tr(2S—S S T) 

is a good estimator of df. This definition of degrees of freedom has been given 

by Hastie and Tibshirani (1990). They proposed two other definitions of degrees 

of freedom for a linear smoother, namely tr(S)  and tr (5 5 T). The first definition 

t r (S ), is interpreted as the “effective number of parameters” of a smoother and 

is the equivalent to the linear regression case where the degrees of freedom are 

defined as the trace of the hat matrix (X { X TX ) ~ lX T). In fact df  becomes the 

sum of the eigenvalues of S,  and gives an indication of the amount of smoothing 

done. The second definition of degrees of freedom tr(*S'S'T), is relative to degrees 

of freedom for variance. If s* is the ith  row of the smoothing matrix S  then it 

follows that the summed variances of the fitted values are given by:

^ ~ 2var(m(xi )) =  J ^ v a r f a y )
i i
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= ^ 2  var(sim +  Sie)
i

=  S i ( s i ) T o -2

i
=  tr ( SS T)a2 

=  t r(STS)cr2

Therefore the definitions of degrees of freedom proposed by Hastie and Tibshirani 

(1987) are:

dfpar. = tr(S)  

dfvar. = t r ( SST) 

dferr. = tr{2 S  -  S ^ )

Having defined the residual sum of squares and the degrees of freedom, the ap­

proximate F test can be formulated similarly to expression (2.18), as follows:

„  ( R S S o - R S S J / i d h - d f o )
F  =  R S S ^  n - d f l )  (2'18)

where RSSo, df0  and RSSi ,  dfi indicate respectively the residual sum of squares 

and the degrees of freedom for the reduced model and for the full model. Hastie 

and Tibshirani (1990) proposed that this statistic should be compared to an F  

distribution with dfi — df0  and dfi degrees of freedom, by analogy with linear 

models. It is necessary to point out however that the presence of bias in the 

residual sums-of-squares and the absence of the required properties in the un­

derlying projection matrices mean that the test statistic will not follow an F  

distribution under the null hypothesis. However, this distribution does provide a
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helpful benchmark.

It is important to note that the numerator of the approximate F test con­

sists of the difference of the R S S  of the reduced minus the full model, that are 

both affected by the bias expressed in 2.2. Therefore using the same smoothing 

parameters for both, reduced and full models, the bias of the test will be canceled.

2.2.2.2 Pseudo Likelihood Ratio Test

An alternative method of testing nonparametric models is based on quadratic 

form calculations. In fact, a tool for quantifying the difference between the resid­

ual sums of squares is provided by a statistic such as:

_  R S S p  -  R S S ,
R S S i 1 }

which is proportional to the usual F  statistic and whose construction as a ratio 

scales out the effect of the error variance a 2 (RSSo  and R S Si  are the residual 

sum of squares of the reduced model and the full one respectively). As in the ap­

proximate F test, in formulation (2.19), by using the same smoothing parameter 

for the reduced and for the full model it will be possible to have a reduction in 

bias. Formulation (2.19) is essentially the same test statistic as the approximate 

F test of expression 2.18. The difference concerns the distributional calculations, 

and a suitable name for expression (2.19) is Pseudo Likelihood Ratio Test (PLRT) 

statistic, as discussed by Bowman and Azzalini (2003). To implement the test, 

it is necessary to find the distribution of the F  statistic under the reduced model
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H0. Expressing the F  statistic in terms of quadratic forms:

R S S 0  = yT (I -  S0)T(I  -  S 0 )y, R S S 1 = yT(I  -  S 1)T(I  -  S J y

where So and Si denote the smoothing matrix for the reduced and for the full 

model respectively, it is possible to express the F  statistic as the ratio of quadratic 

forms in Normal random variables with means approximately zero and the same 

variance, as follow:
yT By  
yTAy

where A  is the matrix (I  — Si)T(I — Si) and B  is the matrix (I — So)T(I — 

So) — {I — S\)T(I — S\). Unfortunately, standard results from linear models do 

not apply because the matrices A  and B  do not have the necessary properties, 

such as positive definiteness. Fortunately there are results which can be used 

to handle statistics of this kind under more general conditions. These results 

require only that the matrices from which the quadratic forms are created are 

symmetric, which is the case here. As a first step it is helpful to reformulate the 

problem, and to focus on the significance of the statistic F  as expressed in its p 

value. This is:

p = ¥ ^ ^ > F obs\ = ¥ { y TC y > 0 } (2.20)

where F0 bs denotes the value calculated from the observed data, and C  is the 

matrix given by (B — F0 t,sA). Johnson and Kotz (1972) summarize general results 

about the distribution of a quadratic form in normal variables, such as yTCy,  for 

any symmetric matrix C. These results can be applied most easily when the 

normal random variables have mean zero. In the present setting y has mean p
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under the null hypothesis. However, it is easy to see from the form of the residual 

sum of squares RSSo  and R S S i , which are the building blocks of the test statistic 

F, that p  cancels out because of the differences involved. Indeed the numerator 

of expression (2.20) can be expressed in the following way:

E(yTBy) =  E[(/i + s ) T ( I  -  S 0f { I  -  S 0)(f i  +  e) -  

(fi +  e n i - S 1f ( I - S 1)( ti +  s)]

=  E \nT ( I  -  So)T {I  -  5 0)m + eT ( I  -  So)T ( I  -  So) s  -

HT ( I  -  S i f i l  -  50m -  sT ( I  -  5 i)T( /  -  SOe] (2-21)

where using the same smoothing parameter for 5*0 and Si,  it is not unreasonable 

to assume E[/ir ( /  — So)T(I — 5o)m] — ®[/iT( /  — Si)T(I — S'i)^] that means that 

the expected values of the estimates under the reduced (Model 0) and the full 

(Model 1) model are assumed the same. In this way the bias is canceled out and 

the numerator of expression (2.20) can be expressed in the following way:

E (yTBy)  = E [£TBe\ (2.22)

In the denominator the bias will be still present, but since it will make the 

denominator bigger, and the test statistic smaller, its effect is conservative. The 

quadratic form yTCy  is equivalent to the quadratic form Q = eTCe. The results 

of Johnson and Kotz (1972) then allow the probability p defined above to be 

calculated exactly, although in numerical rather than analytical form. Their 

results show that it is possible to obtain an approximation to the p value, by 

replacing the distribution of Q by another more convenient distribution, with
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the same first three or four moments. This approach is known to work well 

in a number of similar situations. By matching the moments of an aX% +  c 

distribution, that is the shifted and the scaled x 2 distribution, with the moments

of Q , it is possible to define a = \Ks\/(AK2),b =  (8i^ |) /^ 3  and c = K \  — ab,

where Kj = 2J-1(j — l ) \ tr{(VQy},  where V  is the correlation matrix of y (that 

in the present setting is equal to the identity matrix I). The p value of interest 

can then be accurately approximated as 1 — g, where q is the probability of lying 

below the point —c/a in a x 2 distribution with b degrees of freedom.

2.2.3 Comparing com ponents of A dditive M odels with  

Uncorrelated Errors

In this section two tests are presented to compare components of two different 

additive models. Fitting two additive models of the following form:

y = ai  +  m x(x) +  m z(z) +  e\ (2.23)

y = a 2 + m x(x ) + £ 2 (2.24)

indicating with m Xji and mX)2, the estimates for m x of model (2.23) and model 

(2.24) respectively, interest could be in testing the hypothesis that the estimate 

m Xfi is equal to the estimate rhXj2. This problem arises, for the air pollution 

application, when we want to compare estimates of trends or seasonal components 

with and without the effect of other covariates, such as meteorological variables. 

Bowman and Azzalini (1997) proposed a statistic for comparing regression curves,
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based on:
~ (mXti -  m x>2)T{mxA -  m Xf2)

F  =  ^ --------------------

where d 2 denotes an estimate of the error variance a 2 that can be obtained from 

equation (2.4) or (2.5). The test statistic (2.25) can be expressed in two different 

formulations, one similar to the approximate F test (it will be indicated with Fa), 

and another one similar to the Pseudo Likelihood Ratio test (it will be indicated 

with Fl).  The one similar to the approximate F test has the following expression:

p  y T (P * , i  -  p * ,2 )t ( p * ,i  -  P . M 4 T
A yT(I -  S , Y ( I  -  S \ )y /d f

where PX]i is the smoothing matrix that gives the smooth estimates m Xti =  PXfiy, 

similarly Px$ is the smoothing matrix that gives the smooth estimates rhx^  — 

PXf2 V, and Si is the smoothing matrix of model (2.23), that produce the estimates 

V = Siy.  It is therefore clear that the numerator of expression (2.26) consists of 

the sum of squares of the differences between the estimates of the same component 

(x) of two different models. The denominator of expression (2.26), consists of the 

estimate of the variance of y. Indeed yT(I  — Si)T(I — Si)y  is the residual sum of 

squares and the degrees of freedom of the denominator (df) are:

df =  n — tr( 2 S\ +  S^Sf)  

while the degrees of freedom of the numerator (df*) are:

d f  =  tr[(PXtl -  P ,,2)t (P,,i -  Px,2 )\ (2.28)

(2.27)
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Expression (2.25) can also be written in a similar expression to the Pseudo Like­

lihood Ratio Test introduced in section 2.2.2.2, and given by:

p  = yT(P*, i -  f*,2)T(fx,i -  Pxg)y = f Q v
L yT(I -  S . V i l  -  S J y  yTB y  ( ' 1

and its p values will be given by

p = r ^ > F \ ^ C y > 0 } (2.30)

where Fl^  denotes the value calculated from the observed data, and C is the 

matrix given by (Q — FL.obsB). Results from this formulation of the test can be 

obtained from Johnson and Kotz (1972) analysis, summarized in section 2.2.2.1.

For both ways of testing the statistic (2.25), a graphical display can be 

obtained by drawing standard error reference bands for the difference of the 

smoothers m x^ and rh^ 2, given by:

s.e.(raIil- m , |2) =  \Jvar{(Rx^ -  PXt2 )y} =  \Jdiag{(PX]i -  PxS){Px,i ~  P xaV } 17'2

(2.31)

where var(y) = a 2 1, and an estimate of a can be obtained by equation (2.4).

2.2.4 Tests for no effect with uncorrelated errors

This section presents two tests for assessing the presence of trends. Fitting a 

model of the following form:

Model 1 : y =  m{x) +  e (2.32)
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interest could be in testing if there is any effect of x  over y. This could be done

by comparing Model 1 versus Model 0, where y is just seen as function of its

mean value /x.

Model 0 : y = fi +  e (2.33)

In order to compare Model 1 and Model 0, Bowman and Azzalini (1997) proposed 

two tests, based on the ones introduced in sections 2.2.2.1, and shown below.

( R S S o - R S S J H d f r - d f o )
F  ~  R S S ^ n  -  df l ) {2'34)

RSSo — RSS\  , .
F  =  RSS\  (2'35)

where R S S 0 , dfo and RSSi ,  dfi indicate respectively the residual sum of squares 

and the degrees of freedom for the reduced model (Model 0), and for the full 

model (Model 1). Both tests are based on the assumption of independent errors, 

and the R S S  and df used are the ones listed below:

dfi = n -  tr(2Si + S?Si); i = 0,1 

RSSi  =  yT(I -  Si)T(I -  Si)y; i = 0,1

where So and Si are the smoothing matrices for Model 0 and Model 1 respec­

tively. Because of the nature of Model 0, So is a matrix whose elements are

l
n '

Bowman and Azzalini (1997) also proposed standard errors band around 

Model 0, within which Model 1 should lie if Model 0 and Model 1 are less 

than 2 standard errors apart. The standard errors proposed by Bowman and
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Azzalini (1997) are given in equation (2.36)

s.e. =  y/var{(SQ -  Si)y} = y/diag{(S0  -  Si)(S0 -  S i ) T } & 2  (2.36)

where var(y) = a 2 1, and an estimate of a  can be obtained by equation (2.4) or 

equation (2.5).

2.3 Application of modeling trend and season­

ality in pollutants

In this section the trend and the seasonality of the pollutants will be modeled by 

fitting some parametric, semiparametric and nonparametric models that assume 

independent errors.

The models that will be fitted are the ones proposed by McMullan (2004), 

according to the general formula shown in expression (2.37).

Hi — a{xi) +  /3(xi)cos(27rXi -  9(xi)) +  £t (2.37)

In expression (2.37), yi corresponds to the concentration of each compound, Xi is 

the time (week of each year), a(xi) is the mean level for each compound, (3(xi) is 

the amplitude of the cosine curve and 6 {xi) is the phase of cosine curve. cn(xi), 

P(xi) and 6 (xi) are allowed to vary smoothly over time X{. The assumptions 

on £i are that they have mean zero and constant variance. Prom Model (2.37), 

deciding to fix some parameters and leaving others to vary smoothly over time 

Xi, it is possible to obtain different models. In particular, the models fitted here
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were the following ones:

• Model 1 : yi =  a  +  (3 cos(27TXi — 0) +  £*,

•  Model 2 : yi = ot(xi) +  /?cos(27tXi — 6 ) +  e*,

•  Model 3 : yi = a(xi) +  (3(xi) c o s ( 2 7 — 0) +

• Model 4 : ŷ  = a(xt) +  /̂ (a;*) cos(27ra:i — 0(a;*)) +

The simple non linear Model 1 is the most basic model with all three terms fixed, 

and may be fitted using the non linear regression modeling techniques adapted 

from Venables and Ripley (1994). In Figure 2.1 there is an example of its fit to 

the logarithm of SO 2 monitored at Eskdalemuir (GB02).

The semiparametric Model 2 allows the mean level to vary smoothly over time 

while keeping the amplitude and phase of the seasonal variation fixed. It can be 

expressed in the form:

Vi = (30 +  (3\Zi +  m(xi) +  £i (2.38)

where Zi denotes cos(27txi — 6 ), /30  is the overall mean level of the pollutant,

and m ( x i )  allows the mean level to vary smoothly over time while keeping the

amplitude and phase of the seasonal variation fixed. To fit this model it is possible 

to use the results from Green et al. (1985) who considered a penalized least 

squares approach for this problem. Express Model 2 as follows:

y = Vp  +  m( x)  +  e (2.39)

where Vp  represents the linear component. Explicit solutions for the estimates
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ln(S02) at Eskdalemuir 
Model 1

 1 1-----------1 1-------- 1 1-------- 1 1--------- 1 1-------- 1 1--------1 1-------
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Figure 2.1: Fit of Model 1 for SO2 monitored at Eskdalemuir (GB02). 

can be derived as:

p = (VT(I -  S )V)~ lV T{I -  S)y  (2.40)

m(x) = S(y — V p ) (2-41)

where S  is the smoothing matrix. This holds for a linear smoothing technique 

when there is only one nonparametric term in the model. The sm. weight function

from the sm library is used to construct the smoothing matrix S  (Bowman and

Azzalini, 1997) using the local linear approach. Figure 2.2 is an example of the 

model’s fit to the logarithm of SO 2 monitored at Eskdalemuir (GB02).
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ln(S02) at Eskdalemuir 
Model 2
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Figure 2.2: Fit of Model 2 for SO2 monitored at Eskdalemuir (GB02).

Model 3 belongs to the class of models called “varying coefficient model” , 

where the mean level of each compound and the amplitude of the seasonal vari­

ation vary smoothly over time, while the phase of the seasonal variation is kept 

fixed. The additive varying coefficient model can be fitted by applying two dimen­

sional nonparametric regression, using the local linear method with a very large 

smoothing parameter for the z  component, where z  again denotes cos(27nr — 6 ). 

This creates an estimator which is linear in z but whose coefficient varies as differ­

ent neighborhoods of x are used to define the data to which this linear regression 

is applied. In Figure 2.3 there is an example of its fitting to the logarithm of S O 2  

monitored at Eskdalemuir (GB02). It is possible to analyze the three-dimensional
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ln (S02) at Eskdalemuir 
Model 3
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Figure 2.3: Fit of Model 3 for SO2 monitored at Eskdalemuir (GB02).

nature of this model plotting a graph, whose x-axis is the term cos(27r£i — 9), 

y-axis is time and z-axis is the compound under analysis. It can be seen that the 

effect of z is fixed to be linear, but the slopes and the intercepts are allowed to 

vary smoothly over the year (x). Figure 2.4 shows the changing amplitude of the 

seasonal variation, in other words examining the slope of the various lines along 

the ^-axis, it is possible to identify the effect of amplitude.

The fourth model allows all three terms of the model to vary smoothly over 

time and so is the most flexible. This non linear varying coefficient model is the 

most complex to fit as it requires a non linear model to be estimated in a local 

manner. As suggested by McMullan et al. (2005), the fitting could be achieved
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ln(S02) at Eskdalemuir 
Model 3 in 3D

Figure 2.4: Fit of Model 3 for SO2 monitored at Eskdalemuir (GB02).

by using a technique introduced by Venables and Ripley (1994), who point out 

that known weights may be handled in non linear regression models by writing 

the formula as sqrt(W)  * (y — M)  instead of y — M  in Splus, where W  is a 

weight vector at each point of interest x, weights across the corresponding row 

of W  are of the form exp(—0 .5 (^^ i ))2, y is the response and M  is the model 

(Po(xj)+/?i (Xi) cos(27xxi—6{xi)). Hence, estimates for the mean level of pollutants 

/?o, the amplitude of seasonal variation P\ and the phase of seasonal variation 9 

can be obtained at every point of interest Xi. The varying phase in this model 

allows us to identify seasonal changes. In Figure 2.5 an example of its fit to the 

logarithm of SO 2 monitored at Eskdalemuir (GB02) is shown.
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ln(S02) at Eskdalemuir 
Model 4
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Figure 2.5: Fit of Model 4 for SO2 monitored at Eskdalemuir (GB02).

These models seems to work quite well. However it is possible to note that 

there is a large amount of variation around the fitted curves of the four models, 

indicating that there could be other covariates not included in the model that 

may improve the fitting of the model. Therefore there is interest in fitting models 

that can account for meteorological variables. In the following section the fit of 

Additive Models, that allow several covariates to be included, will be shown.
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2.4 Application of Additive M odels

In this section we apply Additive Models (AMs) to the daily and then the weekly 

means of the natural logarithm of SO 2 , SO 4  in air and SO4 in precipitation mon­

itored from 1970’s up to 2000 at 11 sites across Europe: Eskdalemuir (GB02, 

Scotland), Westerland (DE01, Germany), Waldhof (DE02, Germany), Schauins- 

land (DE03, Germany), Deuselbach (DE04, Germany), Brotjacklriegel (DE05, 

Germany), Kosetice (CZ03, Czech Republic), Rorvik (SE02, Sweden), Bredkalen 

(SE05, Sweden), Hoburg (SE08, Sweden) and Payerne (CH02, Switzerland). Me­

teorological variables have been used as covariates. In particular, the meteoro­

logical variables that have been used in this analysis are: Temperature, in terms 

of Mean, Minimum and Maximum (degrees Celsius), Humidity (%), Precipita­

tion (mm) and Wind Speed (knots), Wind Direction (degrees), and average Wind 

Direction weighted by Wind Speed.

In the previous chapter, the pollutants and the meteorological variables have 

been explored. Now a more detailed analysis, assuming independent errors, will 

give a better understanding of the relations between pollutants and meteorology.

It is necessary to note that some of the variables could have a statistically 

significant non-linear effect. So AM with a loess smooth for each variable will be 

fitted using the gam function available in Splus or R. Tests of the significance of 

non-linear effects of the predictors will be computed.

Fitting a full AM to SO 2 at GB02 and testing it against the full linear model,

. the F statistic gives a significant p value (1.6e_ n ), indicating the presence of 

some significant non-linear components.

Proceeding with the AMs, the nonparametric fit has been tested against the
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linear fit on each term, using the “approximate partial tests” . This is a test 

automatically implemented by Splus and R, and is used for screening variables’ 

inclusion in the model as non linear terms. These tests, in other words, give 

us information of the importance of the smooth component of each term in the 

model (the approximate nature of these tests is discussed in Hastie and Tibshi- 

rani (1990)). For each variable in the model, this is equivalent to testing for a 

difference between a linear fit and a smooth fit, which includes a linear term along 

with the smooth term.

Once the tests have been performed, the best semiparametric model for SO 2  

at GB02 is given by:

ln (S 0 2) =  (5Q + lol {Y) + lo2 {W) + (51 Mean.T + loz{Max.T) + ^ 2 W.S.

+  lo^W.D.) +  lo5 (W.D.S.) +  £ (2.42)

where Y are the years, W are the weeks, W.D.S. is the Wind direction average 

weighted by the wind speed, W.D. is the Wind direction average defined by 

Mardia and Goodall (1993), W.S. is the Wind speed average, Mean.T is the 

mean temperature, and Max.T is the maximum temperature. This means that 

for Y, W , M ax.T , W.D., W.D.S., there is a statistically significant nonlinear effect, 

while Mean.T  and W.S  have a statistically significant linear effect but not a 

nonlinear one. A visual inspection of the model just built, can be obtained by 

plotting each of the selected terms in the model. In particular the graphs in 

Figure 2.6 show all main-effect functions of each predictor, with upper and lower 

pointwise twice-standard-error curves.
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Figure 2.6: Semiparametric fit for SO2 monitored at Eskdalemuir (GB02).

Applying and fitting semiparametric models to those sites that have meteo­

rology as well, it is not possible to define a common model for all the compounds 

across all the stations. It really seems that each compound at each station be­

haves quite differently. However, almost always, highly significant results for the 

trend and seasonal component are found.

It is necessary to specify that the models presented here are based on the 

assumption of independence of the errors, an assumption that is definitely not 

respected by our data. In addition, the gam function of Splus/R does not allow 

circular smoothers to be fitted, and these are required for components such as 

weeks (W.) and wind direction (W.D. and W.D.S.). Moreover the gam function
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doesn’t release as output the projection matrix, that would be useful for testing 

purposes. So the need of more general and flexible smoothers to fit each compo­

nent, and the need of redefining the algorithm for fitting an Additive Model, will 

represent the main tasks of the following chapters. Before starting the analysis of 

the Additive Model with correlated data, a diagnostic for detecting discontinuities 

in correlated regression settings will be shown in the next chapter.



Chapter 3

D etecting D iscontinuities

3.1 Introduction

One of the main purposes in analyzing time series in general and the applica­

tion discussed in this thesis in particular, is to identify the presence of a trend. 

However the ability to model and detect trends can be affected by a number of 

features, which need further study. In particular one of the most relevant pieces 

of information is the presence of any change point in the trend. If a discontinu­

ity is present and is detected, it is necessary first of all to know its cause, and 

secondly to decide what to do with it. W ith respect to air pollution data, a 

discontinuity could be due to several reasons, such as a change in emissions, a 

change in laboratory or instrumentation used or a particular climatic condition.

The presence of such a discontinuity or change will have an impact on the 

overall detection of a trend in the pollutant level. It may be necessary to adjust 

the data series, or if this is not possible, to treat each sub-period separately. A 

“change point” in this research means a change in the mean level, where the

78
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change can be permanent or temporary. W ith the EMEP data, the presence of 

discontinuities and whether any discontinuities are common to stations within 

each country and across countries are questions of scientific interest. In this 

section, first some of the methodologies present in the literature are presented, 

then a methodology for detecting discontinuities proposed by Bowman et al. 

(2004), and finally an amended version to account for the correlation of the data 

will be described.

3.2 D etecting Discontinuities: literature review

There is a variety of ways of approaching the problem of detecting discontinuities, 

and in this section these are classified into two broad classes. The methodologies 

can be classified as nonparametric or likelihood based.

3.2.1 Literature Review of Discontinuity D etection  M ethod­

ologies: nonparametric m ethods.

Starting with the nonparametric approach, there has been considerable develop­

ment in the use of these methods since the 1990’s.

One of the first nonparametric procedures for detecting a change in a distri­

bution was proposed by Bhattacharya and Frierson (1981). This model arises 

in the context where a machine produces items from which random samples are 

taken at frequent intervals. This methodology aims to detect small disorders in 

the machine that change the cumulative distribution function (cdf) of the ran­

dom samples. A one-sided stopping rule based on cumulative sums of sequential
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ranks is considered.

One paper that represents a common reference in many of the recent studies 

among the nonparametric methodologies to model discontinuities is by McDonald 

and Owen (1986). They proposed the “split linear smoothers” that are obtained 

by computing at each “evaluation point” a weighted average of linear fits obtained 

by windows of various sizes and orientations (windows could be entirely centered, 

entirely to the left or to the right of the evaluation points). The weights of the 

“split linear smoother” are obtained by the goodness of fit of the linear models 

for each evaluation point, window size and orientation.

On the basis of the work of McDonald and Owen (1986), Hall and Titterington 

(1992) proposed an alternative, edge-preserving, smoothing algorithm with spe­

cific analytical properties that is less complicated to implement than the method 

of McDonald and Owen (1986). Hall and Titterington (1992) based their algo­

rithm loosely on kernel-type smoothing, whereas McDonald and Owen (1986) 

used ordinary least squares fitting. Bowman et al. (2004) followed a similar ap­

proach building an overall test to detect discontinuities comparing one sided local 

linear regression smoothers. This approach will be described in more detail in 

the following sections.

Another important paper that gave the insight to many other researchers, 

was the one proposed by Lombard (1988) who showed how Fourier analysis of 

the cumulative sum (CUMSUM) statistic can be used in the analysis of change- 

point detection.

A few years later, Muller (1992) proposed a methodology for detecting change- 

points based on nonparametric regression analysis. In this article, estimators for
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the location and size of discontinuities are obtained as the solution of a maximiza­

tion problem involving the difference of left and right one-sided kernel smoothers. 

Muller (1992) mainly focuses on the properties of convergence of the estimators 

of the locations. Muller and Song (1997) showed that the asymptotic rate of 

convergence can be improved by adding a second step to the procedure proposed 

by Muller (1992). Once an initial estimate of the change point and the associ­

ated confidence intervals are obtained, the second step consists in maximizing a 

weighted mean difference within these intervals.

Inspired by the article of Muller (1992), Loader (1996) proposed an estimate 

of the location of the discontinuity based on a one-sided nonparametric local 

polynomial model fitted by weighted least squares. The author pointed out that 

the estimate is similar in principle to that studied by Muller (1992), but by 

imposing different conditions on the weights assigned to the observations the 

estimates proposed in this article show higher rates of convergence and also show 

the same asymptotic distribution as maximum likelihood estimates considered by 

other authors under parametric regression models.

Qiu and Yandell (1998) focused on the detection of jumps in derivatives of 

one-dimensional functions. They suggested that if jumps exist in the m th order 

derivative, then the coefficient of order m +  1 of a local polynomial function 

fitted to the underlying regression function, should show an abrupt change. This 

method can be applied to the regression function itself simply considering the 

case m  =  0

Previously, Qiu and Yandell (1997) use local least squares (LS) to analyze 

the presence of jumps in regression surfaces (JRS). They suggested to fit a LS 

plane at each “evaluation point” , and using the coefficients of this plane to get
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an approximated value of the gradient direction of the JRS. The jump detection 

criterion is then based on the comparison of two neighbours along the gradient 

of the LS plane.

Local polynomials have also been used recently by Horvath and Kokoszka 

(2002), who compared the estimates of the coefficients of local polynomials fitted 

from left and from right.

Linear splines to estimate discontinuous regression functions, was the ap­

proach of Koo (1997). They noted that wherever there is a discontinuity, the 

fit of two continuous splines is improved by fitting a discontinuous spline and a 

continuous one.

Local linear kernel regression with long-range dependent errors was analyzed 

by Anh et al. (1999). In this paper, the authors apply local linear (LL) kernel 

estimation to test whether the mean function of a sequence of Long Range De­

pendent (LRD) processes has change-points and they construct nonparametric 

estimates both for the locations of change-points and for the corresponding jump- 

sizes. They also establish asymptotic distributions of the constructed estimates.

The change-point problem for dependent observations has been the object of 

study by Giraitis et al. (1996). This paper proposes an approach for detecting 

discontinuities of the marginal distribution function on the basis of the asymptotic 

behavior of Kolmogorov-Smirnov type tests.

Horvath (2001) proposed a change point detection technique for dependent 

observations assuming that they have a parametric form described by the para­

meters (kk, Xk) = [(fcM , Afc,i), (fcfc,2, Afc)2) , . . . ,  (kk>p, Xk,p)]. They formulated a test
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based on the limit distribution that tested the null hypothesis:

Ho • (&i) ^ 1) =  (̂ 2> ^2) — . . .  — (kn, Xn) 

against the alternative:

Hi : there is an integer k*, 1 < k* < n, such that

(A4, Ai) =  . . .  =  (&&*, A£*) ^  (kk*+i, Afc*_|_i) =  . . .  =  (A:n, An)

3.2.2 Literature Review of D iscontinuity D etection M ethod­

ologies: likelihood based m ethods.

Another large part of the discontinuity literature is concerned with likelihood 

based methodologies. Gombay and Horvath (1997) presented an application of 

likelihood to change-point detection. In their paper, they reanalyze the log- 

transformed data of water discharges from Nacetinsky from 1951 to 1990 analyzed 

previously by Jaruskova (1997). Her analysis, based on the assumption that 

the monthly averages follow a log-normal distribution with different means and 

variances and that the transformed series is an auto-regressive sequence with 

no changes at the end of the sequence, showed a change in the mean of the 

transformed variables, but no changes in the variance of the transformed variables 

could be detected, so there was no change in the shape factor. Their analysis 

instead demonstrates that a likelihood method can be used to detect possible 

changes in the parameters of the distributions of the observations.



CHAPTER 3. DETECTING DISCONTINUITIES 84

Jaruskova (1998) presented a review of change detection in the behaviour of 

meteorological and hydrological series. She illustrated practical problems that 

can often be encountered and have not yet been solved in using some of the new 

results present in the study of change-point detection. In particular Jaruskova, 

after distinguishing two kinds of discontinuity (Sudden Change and Continuous 

Change), presents, for each of these two, tests to assess the presence of discontinu­

ities, all based on the idea of “test of maximum type” . That is, given an interval 

of n observations, the objective is to look for the time k where the test statis­

tic achieves a maximum value (using a max function). The approximate critical 

values for these tests, and the description of different types of max function that 

could be used are presented.

Later on, Hawkins (2001), taking the idea from regression trees, provided an 

exact and reasonably fast algorithm for performing a multi-way split on the basis 

of continuous or ordinal predictors. In contrast to the regression trees procedure 

that refers only to the case of the normal mean, this algorithm is suitable for an 

arbitrary parameter in an exponential family model.

Another large part of discontinuity studies involved the use of wavelets. Work 

in this area was suggested by Wang (1995) that used wavelet transformation of 

one-dimensional functions, in order to detect jumps and sharp cusps. Asymptotic 

theory is established and practical implementation is discussed in his work. The 

wavelets used are the Daubechies form with 1, 2 and 3 vanishing moments, and the 

threshold used is the universal threshold. Later on, Wang (1998) took the same 

approach in order to extend his technique (Wang, 1995) to detect discontinuities 

in a two-dimensional function.

Odgen and Parzen (1996) proposed a data dependent technique for selecting a
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threshold that divides the “large” coefficients from the “small” ones. The former 

should describe the significant signal, while the latter are due to noise and are 

shrunk to zero.

3.3 M ethodology

Distinct from most of the methodologies proposed in the previous literature re­

view, Bowman et al. (2004) proposed a global test for detecting discontinuities 

that would be interesting to use in this study. However Bowman et al. (2004) 

based their test on the assumption of independent errors, that is not clearly the 

case for air pollution concentrations. Therefore after presenting the methodology 

proposed by Bowman et al. (2004), its generalization for correlated data will be 

shown. Later sections will also show the properties of the proposed test through 

simulation and applications to air pollution data.

3.3.1 Test for independent data

The situation considered in Bowman et al. (2004) is the one in which the data 

are noisy observations of a function defined on an interval, and the form of the 

function is not specified, except that it may have a finite (but unknown) number 

of discontinuities, and between discontinuities it is smooth. It is important to 

say that the objective of this analysis is not to estimate the function but to 

discover the presence of discontinuities. In this research the word “discontinuity” 

or “change point ” means a change in the mean level, where the change can 

be permanent or temporary. Observing f/i,2/2» • • • >2/n where yi =  m(xi) +  e* for 

i = 1, . . . ,  n, it is assumed that the e* are identically normally distributed with
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mean 0 and finite variance a2.

The smoother used here to estimate m(z)  at z £ (0,1), is a local linear 

regression smoother defined in expression (2.11) of Section 2.1 and here recalled

m (*) =  £

/  n n '
n x f W i )  ~  ( W i X i ) ( J 2  Wi Xi )

) i= 1 z=l

=1 |  i T , w i x i ) ( T , w i )  -  ( E ^ i ) 2
v i= 1 i—1 i= 1

i = 1

where Wi = w(xi — z\ h) is defined by a normal density function with mean 0 

and standard deviation h. The true regression function m  is assumed to be a 

piecewise Cr function on the interval [a,b], by which we mean:

• there are a < t \  < . . .  <td < b  points at which g has discontinuities;

•  at each discontinuity point tj the left m(t j—) and the right m(tj+)  limits 

exist and are different;

•  m  has at least r > 2 derivatives at each x  E [a, b] \  {a, £i , . . . ,  td, b}.

The case d = 0 is allowed and that means that m  has no discontinuities. Smooth­

ing through discontinuities gives very poor results in terms of mean integrated 

squared error, or mean squared error in the neighbourhood of discontinuities. The 

situation is often much worse than this: the effect of discontinuities may be felt 

twice by typical nonparametric smoothers which use a global bandwidth selector 

(.h). A bandwidth which is reasonable for the smooth part of the function between 

discontinuities will cause over-smoothing at the discontinuities, which has an in­

flating effect on the mean integrated square error. On the other hand, a global 

bandwidth selector which trades estimated curvature against estimated residual 

variance may be perturbed by discontinuities in the direction of under-smoothing,
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because the function will appear to the selector to be globally rougher than it 

is away from the discontinuities, or may be perturbed in the opposite direction 

because the discontinuities may inflate the estimated variance. The overall effect 

is hard to predict, but one would generally expect the combination to exaggerate 

any tendency to under-smooth where the function is smooth, and to over-smooth 

where it is rough or discontinuous. The idea on which this diagnostic is based, 

is to compare at each point two linear smooths of the data. Each smooth is 

“one-sided” in that it is defined in terms of data lying entirely to the right or 

entirely to the left of the point at which we wish to test for a discontinuity. It 

is important to underline the fact that, among the above assumptions, no infor­

mation about the derivatives of m  is transm itted across a discontinuity: there 

are no assumptions about the relationship between m'( t j—) and The

left-smooth and the right-smooth are given, respectively by:

where I  denotes the indicator function in the usual way. The main fact that 

it is necessary to note is that the estimators are linear in the observations f/*. 

These last two smooths are separate estimates of the value of ra(z), using the 

data lying on opposite sides of the point of interest z. If we ignore the possibility 

of discontinuities, we would expect the two smooths to have similar values, but 

if there is a discontinuity then we might hope to detect a difference between the 

two. The estimate fhi(z) is easily recognized as the value that would have been

n

(3.2)

n

(3.3)



CHAPTER 3. DETECTING DISCONTINUITIES 88

obtained if the estimator m had been applied with the data truncated so that all 

the design points to the right of z were missing. Precisely this situation arises 

when nonparametric regression estimates are made under standard conditions at 

the boundary of the data. Thus in general the accuracy of rhi(z) as an estimate 

of m(z)  will depend on how well the smoother m  performs at the boundary of 

the data. For testing purposes, all points z  between two adjacent but distinct 

design points should be effectively equivalent so we need to evaluate the smooths 

fhi and m r only at the midpoints of the intervals between distinct design points. 

So assuming that the design space is equi-spaced, indicated by Xi = i / n , for 

i =  1, 2 , . . . ,  n, the midpoints will be Zi = (xi +  Xi+1)/2. Thus the observations 

are made in the interval (0,1), and similarly to expression 3.1, the estimates can 

be written in the follow way:

n

™(Zj) = 5 Z  sijVi =  SJy^ 3 = !> • • • > n
i = 1

where y = (j/i, /̂2, •. •, yn)T is the vector of observations, and although it is not 

clear from the notation, S j  depends on the smoothing parameter h. Obviously, 

it is possible, similarly, to re-write the left and right smooths, whose difference is 

written as:

Tj = m T(zj) -  =  (-« £ , s t y y  (3.4)

where clearly S j  = (s j, sT). Since Sj may be regarded as an estimate of the size 

of the jump at Zj, it is natural to consider the test statistic:

=  yTDTDy (3.5)
3=1
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where D is the matrix whose j th  row is given by (—sJ^sT).  It is natural to expect
n

Y2 r 2 to be large if there are discontinuities and small otherwise. In order to use
3 = 1

(3.5) as a test statistic, it will clearly be necessary to standardize it by the variance 

of rj. Because r = D y , and its variance is given by var{r) = diag(DDT)a2, 

expression 3.5 can be reformulated in the following way:

r 23 yTDTA~1Dy
' var(rA1=1 x ■>'

(3.6)

where A is a matrix whose diagonal elements are given by diag(DDT) and zero 

elsewhere. Assuming independent errors, an alternative estimate <j2 of the noise 

variance <r2 is given by:

2 yTA y  V i ~ l ) 2
a =

trA 2 (n — 1)
(3.7)

where

A =

1 - 1 0 ••• 0

1 to - 1

T“l1o

0

2 - 1

0 •••

t“H1o

1

is the second difference operator.

The null hypothesis that we want to test is absence of discontinuities in the 

interval [a, 6], and so if the observed value of F (h) is bigger than some critical 

value CQ, chosen so that when H 0  is true P{F(h)  > Ca} = a , the null hypothesis
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will be rejected. The problem of defining the distribution under the null hypoth­

esis is solved using results of section 2.2.2.1 by writing this function as the ratio 

of quadratic forms in Normal random variables with means approximately zero 

and the same variance, as follow:

P  > *) =  P(yTAy -  lyTP y  > o) =  P{yTQy > 0) (3.8)

where, t is the observed value of the statistic F  =  where A  = DTA~1 D,

TD   A
tr(A)'

3.3.2 Test for correlated data

This section presents a generalization of the test proposed by Bowman et al. 

(2004) in order to account for serial correlation of the data, based on the idea of 

Yap (2004). Indicating with V  the estimated correlation matrix, the variance of 

7j-, given in expression (3.4), now becomes var(rj) = var(Dy) = diag(DVDT)a2. 

Expression (3.6), then becomes:

r(n Y' rFrrar'Dy
w  E i  v a f ( rA  a 2  ̂ ’

.7—1 J

where is a matrix whose diagonal elements are given by diag(DVDT) and zero 

elsewhere.

In expression (3.9), it has been assumed that the correlation matrix V  is 

known. In practice, it will often be required to estimate this. As in the case of 

linear models, an effective strategy is to fit an independence model and use the 

residuals from this to identify a suitable structure for the error component. This
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follows the approach of Niu (1996). In this work, the correlation matrix will be

formulation is based on the assumption that residuals follow an AR(1) model.

While we would not expect this to hold exactly, it should nevertheless absorb 

the majority of the structure of the correlation. This aspect of the model is a 

“nuisance” feature and so it is not the principal focus.

In the nonparametric case an additional issue arises as a result of the bias 

which is inevitably present in the estimation of the regression function, as dis­

cussed in Section 2.1. However, this bias will be transferred to the residuals, 

leading to inflation of the estimates of the error correlation and variance para­

meters. Indeed on the basis of expression (2.2), it is possible to write:

The inflation of the rj estimates will increase both numerator and denominator 

of expression (3.9), and an overall reduction of the bias in the test statistic (3.9) 

is then expected.

It has to be noted in addition that, in the case of correlated errors, the variance

indicated with V, whose [i,j\ element is given by f iXi Xj\  and p is the estimated 

correlation coefficient at lag 1 of an AR{  1) model. Obviously the choice of this

(3.10)

estimate of y (<r2) given by equation (3.7) is not an unbiased estimate. An 

estimate of the variance of the detrended y , can be written as follow:

n

71— 1
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where m  = Sy  is a nonparametric estimate of the trend, S  is the smoothing 

matrix, and T =  ■I' s  ̂ (T~s \  The expected value of (3.11) is given by:

E(yTTy) ~  a 2 tr(TV)  (3.12)

and therefore from expression (3.12), it follows that:

e{̂ H2 (3-i3>
An appropriate estimate of a 2 is therefore given by:

*2= w h  <3-14)

Following the terminology of Hastie and Tibshirani (1987), the normalizing con­

stant tr(TV)  is referred to as the approximate degrees of freedom. When V  is 

replaced by the identity matrix this reduces to one of the standard definitions of 

approximate degrees of freedom used in the independent errors case.

For the case of correlated errors expression (3.8) still holds, but A  and B  are 

now written as:

A  = E?ST'D-, (3.15)

and Q = D TQ~1D — t ^ ^ y y  where t is the observed value of the F  statistic.

In the following sections, simulations of the test will be performed and appli­

cations to pollutant data will be shown.
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3.4 Simulation Study

In this section the size and the power of the discontinuity test have been studied 

by simulation. Data from four kinds of models have been simulated.

flat, y = c I (x  > 0 .5 )+  £ (3.16)

linear, y =  r  +  c / ( x > 0 . 5 ) + e  (3-17)

quadratic, y = Ax1 + c I (x  > 0.5) +  e (3.18)

sine, y = sin(27rx) +  c I (x  > 0.5) +  £ (3.19)

These functions have been chosen because they cover a wide range of situations 

that axe usually present in nature. Simulations consisted in generating 200 data 

sets of 100 data points equally spaced between 0 and 1 from each of the models 

listed above. Setting the significance level of the test at a = 0.05, we would 

expect that the number of significant p values under the null hypothesis follows a 

Binomial distribution, that means that percentage of significant p is in the range 

n a ±  2y/n a  (1 — a) = 5% ±  3.1% (i.e. 10 ±  6.2 over the 200 simulated data 

sets). Simulations have been carried out using the values listed below:

• the £ have been generated from an AR(1) model with different correlation 

parameters (0,0.2, 0.4,0.8) and standard deviation equal to 1;

• h = 0.08,0.12,0.16,0.20,0.24,0.28, h is the smoothing parameter used for 

the test;

•  c = 0,1,2,3.



CHAPTER 3. DETECTING DISCONTINUITIES 94

Some simulation results are presented in Tables 3.1 and 3.2 and these show that 

the proportions of significant p values from 200 simulated sets of data for correla­

tion values of 0 and 0.4. It is clear that when c is equal to 0, no jump is generated 

and the results refer to the size of the test. Whenever c is different from 0, a 

jump is generated and the results therefore refer to the power of the test.

Table 3.1: proportions of significant p values from testing for discontinuities 
with data simulated from models (3.16) (3.17) (3.18) (3.19) with 

correlation parameter of 0.

size (c =  0) power (c =  1)

flat linear quadratic sin flat linear quadratic sin
h = 0.08 0.070 0.070 0.070 0.065 0.110 0.110 0.100 0.100
h = 0.12 0.020 0.040 0.045 0.030 0.150 0.150 0.105 0.090
h = 0.16 0.020 0.070 0.065 0.090 0.180 0.180 0.190 0.120
h = 0.20 0.035 0.035 0.035 0.285 0.205 0.075 0.240 0.145
h = 0.24 0.035 0.035 0.040 0.510 0.305 0.170 0.335 0.150
h = 0.28 0.045 0.045 0.065 0.700 0.250 0.270 0.290 0.170

power (c =  2) power (c =  3)

flat linear quadratic sin flat linear quadratic sin
h =  0.08 0.220 0.220 0.225 0.265 0.515 0.510 0.525 0.515
h = 0.12 0.470 0.470 0.475 0.475 0.785 0.790 0.830 0.760
h = 0.16 0.635 0.635 0.625 0.410 0.940 0.945 0.925 0.820
h = 0.20 0.725 0.725 0.715 0.265 0.995 0.990 0.970 0.760
h = 0.24 0.805 0.805 0.795 0.255 0.990 0.995 0.990 0.675
h = 0.28 0.855 0.855 0.830 0.185 0.975 0.975 0.990 0.640

The proportions for the flat, the linear, and the quadratic model are approxi­

mately 5% for all smoothing parameters and for all correlation values, except 0.8, 

while the same cannot be said for the sine trend, where the size for all correlation 

values does not seem to work with smoothing parameters bigger than 0.16. This
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Table 3.2: proportions of significant p values from testing for discontinuities 
with data simulated from models (3.16) (3.17) (3.18) (3.19) with 

correlation parameter of 0.4.

size (c =  0) power (c =  1)

flat linear quadratic sin flat linear quadratic sin
h =  0.08 0.145 0.145 0.145 0.130 0.185 0.185 0.175 0.170
h = 0.12 0.075 0.075 0.075 0.075 0.135 0.135 0.125 0.085
h = 0.16 0.060 0.060 0.060 0.065 0.105 0.105 0.125 0.060
h = 0.20 0.055 0.055 0.060 0.110 0.140 0.140 0.115 0.060
h = 0.24 0.060 0.060 0.065 0.165 0.115 0.115 0.150 0.085
h = 0.28 0.040 0.040 0.035 0.245 0.115 0.115 0.140 0.100

power (c =  2) power (c =  3)

flat linear quadratic sin flat linear quadratic sin
h = 0.08 0.280 0.280 0.275 0.240 0.380 0.320 0.360 0.395
h = 0.12 0.245 0.245 0.235 0.225 0.385 0.395 0.430 0.385
h = 0.16 0.270 0.270 0.255 0.150 0.440 0.470 0.425 0.335
h = 0.20 0.275 0.275 0.265 0.135 0.490 0.495 0.570 0.250
h = 0.24 0.335 0.335 0.330 0.080 0.585 0.605 0.600 0.225
h = 0.28 0.360 0.360 0.315 0.055 0.615 0.570 0.555 0.200

is mainly due to the fact that the sine is a cyclical function and therefore the 

amount of smoothing applied should not be any bigger than h = 0.16. Figures

3.1 and 3.2 show the size/power as a function of the smoothing parameter for 

each type of trend. It is possible to note how the huge amount of smoothing 

for the sine trend functions affects the results of both size/power. For the flat, 

the linear, and the quadratic trend, the power of the test increases as soon as 

the smoothing parameter increases; for the sine trend, the power has maximum 

value for a smoothing parameter around 0.12, and then it reduces as soon as the 

smoothing parameter increases.
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It is possible to note from figures 3.2, that for a correlation of 0.8 the size of 

the test does not seem to work for all four kinds of trend, and for all smoothing 

parameters. Indeed it is expected that with the higher correlations, the simulated 

data will be less smooth and therefore the detection of discontinuities will be more 

difficult.

The power of the test has been further analyzed by looking at the location of 

the discontinuities detected. Up to now the power simulation study has analyzed 

how powerful the test is in detecting the presence of a simulated discontinuity. 

In order to obtain an indication of the locations of the discontinuities identi­

fied, the standardized difference between the left and the right smooths at each 

point has been computed. Indeed it is expected that if the p values are sig­

nificant, the point with the highest standardized difference of the left and the 

right smooth is a possible candidate for locating the discontinuity. Therefore for 

each of the four correlation parameters (0, 0.2, 0.4, 0.8), for each of the three 

jumps (c =  1, c =  2, c =  3), and for each of the smoothing parameter values 

(h = 0.08,0.12,0.16,0.20,0.24,0.28) the proportions of significant discontinuities 

detected with the highest standardized difference of left minus right smoother, 

whose location was between 0.4 and 0.6 have been computed and displayed in 

Figures 3.3, 3.4. Comparing Figures 3.3, 3.4 with Figures 3.1, 3.2, it is possible 

to note that nearly always, whenever the p value is significant, the discontinu­

ity detected with the highest standardized difference of left - right smoother, is 

located between 0.4 and 0.6. Indeed for all the correlation values, for all the 

trend types, and for all the size of jumps, the graphs of the power as functions 

of the smoothing parameters are very similar to the graphs of the proportions 

of significant discontinuities detected with the highest standardized difference of
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left-right smoother, whose location is between 0.4 and 0.6.

Figures 3.5, 3.6 show the histograms of the locations of the significant disconti­

nuities detected with the highest standardized difference of left - right smoothers, 

for different values of smoothing parameter (h = 0.08,0.12,0.16,0.20,0.24,0.28), 

for flat, linear, quadratic and sine trends, with correlation parameter of 0.2 and 

a jump of c = 2. The figures show that most of the discontinuities detected are 

located between 0.4 and 0.6, confirming that the discontinuities detected with 

the highest standardized difference of left - right smoother represent a useful 

guideline in determining the location of the discontinuity.
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Figure 3.1: size (jump=0) and power (jump=l, 2 and 3) of the discontinuity 
test as function of the smoothing parameter, for flat (F), linear 
(L), quadratic (Q) and sine (S) trend, and with correlation = 0,

0 .2 .
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est standardized difference as function of the smoothing parame­
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sine (S)) with jump = 0, 1, 2 and 3, and for correlation = 0, 0.2.
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Figure 3.5: locations of significant discontinuities detected with 
the highest standardized difference of left minus right 
smoothers, for different values of smoothing parameter 
(h = 0.08,0.12,0.16,0.20,0.24,0.28) and with flat and linear

trends.



CHAPTER 3. DETECTING DISCONTINUITIES 103

location of signif. discont. with 
the highest std. diff., trend=quad, 

h=0.08

location of signif. discont. with 
the highest std. diff., trend=quad, 

h=0.12

I
0.0 0.2 0.4 0.6 0.8 1.0

location of discont.

location of signif. discont. with 
the highest std. diff., trend=quad, 

h=0.20

location of discont.

location of signif. discont. with 
the highest std. diff., trend=quad, 

h=0.24

location of signif. discont. with
the highest std. diff., trend=quad,

h=0.16

I .
0.0 0.2 0.4 0.6 0.6 1.0

location of discont.

location of signif. discont. with 
the highest std. diff., trend=quad, 

h=0.28
« . w -

o  o  •

■

8  ■

1 1
■■

0 0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0

location of discont. location of discont.

I,
0.0 0.2 0.4 0.6 0.8 1.0

location of discont.

location of signif. discont. with 
the highest std. diff., trend=sin, 

h=0.08

location of signif. discont. with 
the highest std. diff., trend=sin, 

h=0.12s

J L
location of discont.

0.0 0.2 0.4 0.6 0.8

location of discont.

location of signif. discont. with 
the highest std. diff., trend=sin, 

h=0.16

0.0 0.2 0.4 0.6 0.8 1.0

location of discont.

location of signif. discont. with 
the highest std. diff., trend=sin, 

h=0.20

location of signif. discont. with 
the highest std. diff., trend=sin, 

h=0.24

location of signif. discont. with 
the highest std. diff., trend=sin, 

h=0.28
U, . to ■

oo  • o  •

o  , s ■

. — ■ — _________ •_____ _ •  •____
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

location of discont. location of discont. location of discont.

Figure 3.6: locations of significant discontinuities detected with 
the highest standardized difference of left minus right 
smoothers, for different values of smoothing parameter 
(h = 0.08,0.12,0.16,0.20,0.24,0.28) and with quadratic and sine

trends.
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3.5 Applications and Results

The data that have been analyzed are the weekly means of the natural logarithm 

of the daily data for S 0 2 , S 0 4  in air and precipitation, across Europe. As was 

shown in Section 1.4, the daily data are clearly skewed and show considerable 

variation, making the detection of discontinuities difficult. Therefore the tests 

have been applied to the weekly means of the logarithm.

In particular the analysis in 1.4, showed the presence of two kinds of seasonal­

ity, “days within the week” and “weeks within the year” . As explained before, the 

first kind of seasonality has to be removed before computing the weekly means, 

because of the missing values, in order to avoid highly biased weekly means. The 

second kind of seasonality, is also removed because it could affect the results of 

the test. In fact, if a cycle is present in a time series, the test could detect as a 

discontinuity a change that is just due to the seasonal cycle.

Therefore, from the daily data, both kinds of seasonality were removed before 

computing the weekly means, and this has been done by applying a linear model, 

fitting the days of the week and the weeks within the year as factors, and then the 

de-seasonalised data have been used to obtain the weekly means. Fig.3.7 shows, 

the steps that have been followed before computing the weekly means.

In particular, Figure 3.7 a) shows the logarithm of the daily data, fitting a 

trend and the linear model that accounts for seasonality. Figure 3.7 b) shows the 

logarithm of the daily data after removing both seasonal components; the trend 

of the deseasonalised data is also plotted. Figure 3.7 c) and Figure 3.7 d) show 

the estimates of the “day within week” and “week within year” parameters. The 

days of the week and the weeks of the year are considered as factors and their
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Figure 3.7: Analysis of seasonality for S02 at Vreedepeel (NL10). a)log 
of the data; b)log of the deseasonalised data; c)estimates of 
the “day within week” parameters (l=Tue, 2=Wed,... ,6=Sun); 

d)estimates of the “week within year” parameters.

contrast matrix includes each level as a dummy variable, excluding the first one. 

So the 6 values that are presented in the plot of Figure 3.7 c), represent the values 

for Tuesday, Wednesday, Thursday, Friday, Saturday and Sunday compared with 

Monday. Similarly, Figure 3.7 d), presents the values of the weeks of the year 

compared to week number 1. From these plots, the presence of a daily and of a 

weekly seasonality is apparent.

The data used for the discontinuity test were the de-seasonalised weekly means 

without removal of trend.
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As a result of the edge bias in smoothers, fifty “testing points” at the start and 

fifty at the end of the series have been excluded. This means that all the points 

of the series are used to estimate the left and the right smoother, but only the 

observations in the central part of the series are used in the discontinuity test. The 

identification of discontinuities is based on several pieces of information. Firstly 

extremely helpful is the scatterplot of the left and the right smooth and of a 

shaded region which is bounded by the curves obtained by adding to the average 

of gi and gr plus or minus one and half (estimated) standard deviations of g i ~ g r • 

This is referred to as a “reference band” and it gives a guide to places where 

discontinuities may be found, because if both left and right smooth leave the 

shaded region, then they are separated by more than three standard deviations, 

suggesting the possible presence of a “change point” . Since the reference bands 

are pointwise bands, the choice of three standard deviations gives an informal 

protection against the multiple comparisons problem. Figure 3.8 shows the same 

case of Figure 3.7 (SO 2 Vreedepeel, NL10), with the reference band and relative 

dates (expressed in terms of “week/year”) of where the discontinuities have been 

detected. The bold line marks the most significant discontinuity detected.

For a better understanding of the change in the mean level, another kind of 

graph is presented in Figure 3.9. The entire time series is divided into sections 

lying between the identified change-points, and the trend in each separate section 

is plotted. In diagnosing discontinuities, a third output of the analysis is repre­

sented by the list of the positions of the points whose left and right smooths are 

more than three standard deviations apart, and the difference between left minus 

right smoothers.

From Table 3.3 and from the pictures introduced before, it is possible to
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S02 at NL10
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gure 3.8: Discontinuities for SO 2 at Vreedepeel (NL10).
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Figure 3.9: smoothing the sub-trends at the discontinuities detected for SO2

at Vreedepeel (NL10).
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Site Compound Week Year Jump
NL09 S02 52 1995 -1.850
NL09 S02 53 1996 1.561
NL09 S04air 40 1995 -0.671
NL09 S04air 17 1996 0.626
NL09 S04prec. 15 1994 -1.012
NL09 S04prec. 53 1994 -0.995
NL10 S02 52 1995 -1.111
NL10 S02 4 1997 1.402
NL10 S02 32 1997 -0.928
NL10 S04air 6 1997 0.855

Table 3.3: Discontinuities detected at Kollumerwaard (NL09) Vreedepeel
(NL10).

have an idea of the presence of discontinuities across the stations in a country, 

and on the basis of this analysis it is possible to compare the “common national 

discontinuities” . For example, for the case presented above it is interesting to note 

how SO 2 and SO4 in air monitored at a nearby Dutch station Kollumerwaard 

(NL09), showed similar discontinuities, between the end of 1995 and the end 

of 1996. Figures 3.10, 3.11, 3.12 and 3.13 show the graphs for S 02 and SO4 

in air monitored at Kollumerwaard (NL09), and it is possible to note how the 

observations in 1996 are characterized by higher values than the others.

This test has been applied to 113 sites across 16 European countries, covering 

the period 1977-2000. The test has detected some similar discontinuities across 

countries and across compounds, revealing some interesting features of the data. 

Experts suggested that some of the discontinuities may be due to change in 

meteorology. The idea is that modeling pollutants accounting for meteorology 

would eliminate those changes in trend.
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S02 at NL09

weeks in year

Figure 3.10: Discontinuities for SO2 at Kollumerwaard (NL09).
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Figure 3.11: smoothing the sub-trends at the discontinuities detected for
SO2 at Kollumerwaard (NL09).
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S04 in air at NL09
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3.12: Discontinuities for SO4  in air at Kollumerwaard (NL09).
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Figure 3.13: smoothing the sub-trends at the discontinuities detected for
SO4 in air at Kollumerwaard (NL09).



Chapter 4

M odeling W ith Correlated Errors

This chapter presents an extension of methodologies proposed in Chapter 2 in 

order to account for correlated error. Air pollution concentrations are typically 

affected by correlation, and if a model is fitted assuming independent errors, se­

rious dangers could affect the models’ estimation and selection. Univariate and 

bivariate smoothers that account for correlations will be introduced. A refor­

mulation of the backfitting algorithm (Hastie and Tibshirani, 1990), that has as 

output the projection matrix of the entire additive model at convergence will be 

presented. Tests for additive models’ selection, and for comparing components 

across models, are also presented. Simulation studies will show the performances 

of the proposed methodologies.

4.1 Univariate sm oothing with correlated errors

Local linear regression, as presented in section 2.1, is based on the assumption 

that the errors are independent. It is clear that this assumption does not always

111
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apply, especially for air pollution time series data. Opsomer et al. (2001) re­

viewed the existing literature in kernel regression, smoothing splines, and wavelet 

regression in the presence of correlation, both for short-range and long-range de­

pendence. They address the problems that the presence of correlation can create 

with smoothing parameter selection methods, such as cross-validation or plug-in. 

They propose data-driven smoothing parameter selection techniques which ap­

ply to correlated data. However in their work, Opsomer et al. (2001) used the 

standard focus of nonparametric regression and did not consider the possibility 

of defining new smoothers that account for correlation.

McMullan et al. (2005) considered the problem of nonparametric estimation 

in additive models when the errors terms are correlated. In the context of the 

simple model

Vi = m(xi)  +  £*, (4.1)

the vector of errors e is assumed to have variance matrix a 2 V , where V  is a corre­

lation matrix. McMullan et al. (2005) suggested moving to a scale where a model 

with independent errors could be applied, through the transformation z = K ~ lry, 

where the correlation matrix V  has the Cholesky decomposition V  =  K K T. 

Model (4.1) can then be written as z = m(x)  +  77, where the elements of the 

error vector 77 are now independent. The regression function m  is equivalent to 

K ~ lm . Examination of the structure of this term, and specifically the hypothesis 

m  = 0, can be examined on the new model scale. However, estimates of m  by 

back-transformation from rh can be problematic in the absence of conditions on 

K ~ l which guarantee smoothness. This procedure seems to behave well with a
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small number of covariates (around 2 or 3). However when the number of covari- 

ates increases, problems appear. In fact, when the estimates of each component 

are produced, and multiplied back by the K  matrix obtained from the Cholesky 

decomposition, the resulting estimates do not have a smooth pattern, and are 

characterized by high variability.

The methodology proposed here instead resolves the problem of correlation at 

the first stage of analysis. It produces local linear regression smoothers that do 

not assume independence of the errors. To obtain these smoothers it is necessary 

to recall equation (2.10). This immediately suggests a local least squares criterion 

which incorporates the correlation structure directly as:

min{y -  a l n -  x(3}T{ K ~ l}TW { K ~ 1}{y -  a l n -  x(3} (4.2)
a,p

where K  is obtained from the Cholesky decomposition, V  = K K T, where V  

indicates the correlation matrix. The form (4.2) emphasises the connection with 

the transformation approach of McMullan et al. (2005).

In expression (4.2), it has been assumed that the correlation matrix V  is 

known. In practice, it will often be required to estimate this. As described in 

section 3.3.2, the approach of Niu (1996) will be followed. This consists of fitting 

an independence model and using the residuals from this to identify a suitable 

structure for the error component.
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An explicit expression can be derived from criterion (4.2) as

n n n n
2[(E'VijWjiyi +  yj)]{Y^x ivijWjxj) -  E vijwj (xiyj +  xjyi)][J2vijwj(xj +  Xi)}

_  hi______________ hj______________ hj___________________hj_____________
n n n

4 ( £ vijwjx ixj ){Yl vijWj) -  [^VijW^Xj  + i f)]2
i,j hj i,j

(4.3)

where Vij indicates the (i, j ) th  element of the inverse correlation matrix V-1.

The local constant estimator is a special case of the local linear estimator, 

and its explicit representation follows as:

y\ yr vaWiivi + yA 
Mx)  = (4-4)

Standard error bands for the smoother estimates y can be obtained by com­

puting their standard errors, given by:

s.e.(y) =  \ / var(Sy)  = \ /d iag(SV S T) a 2 (4.5)

where var(y) = a 2 V. A  suitable estimate of the variance of the detrended y  is 

obtained by expression (3.14), and recalled here as

-2 yTvV ^
°  =  tr(TV) (46)

where m  = Sy  is a nonparametric estimate of the trend, S  is the smoothing 

matrix, and T =  U-s) v  (i - s )
’ n—1

Notice that the effect of bias in the estimation of the mean component of the

model has a conservative effect by inflating the estimate of <j 2.
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4.2 Bivariate sm oothing with correlated errors

In the case of two predictors ( x i , x 2) ,  the least squares problem (4.2) can be 

extended to the bivariate case by solving the following weighted least squares 

problem:

min{y -  a l n -  x x (3 -  x 2' y } T { K ~ 1} T W { K ~ 1} { y  - a -  x i ( 3  -  x 2' y }  (4.7)
a,Pi7

The solution of equation (4.7), is given by:

( X T V - 1W X ) - l X T V - 1W y  (4.8)

where X  is the n x 3  matrix whose zth row is {1, (rrii — ^i), ( x 2i — z 2 ) } ,  W  is the 

diagonal matrix whose (z,z)th element is Wi =  W i ( x u  — z \ \  h \ ) w 2 { x 2i — z 2 \ h 2) ,  and 

z \  and z 2 are the points where the estimates are computed.

The local linear estimate is defined by the first element of the vector (4.8). 

The elements of the 3 x 3  matrix A  = (ay) =  (X TV ~ lW X ) are all of the form

Y ,  V j i W i j ( x i j  -  Z i ; h i ) w 2j ( x 2j -  z 2 ; h 2) { x u  -  z 1 ) n  { x 2i -  z 2) r2 ( x y  -  z x) Sl ( x 2j -  z 2 ) 32 

i j

where r\ +  Si +  r 2 +  s 2 < 2, where Vji are the elements of the correlation matrix 

V ~l . To obtain the first element of the least squares solution, we need only the 

first row of ( X TV ~ 1 W X ) ~ 1, denoted by {bi,b2 ,bs). By applying standard linear 

algebra results, reported for instance by Healy (1986) (section 3.4) these can be
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written as:

fa 

fa 

fa

where d = 022(233 — ^23- Multiplying the vector (fa, fa, fa) by (X TV ~ 1 W ), the 

result is a vector of length n, whose ?th element is

f a Y l Vi3Wli(Xli -  Zu f a ) W2i(X2i -  M
3

+  f a ^ V i j W u i x u  -  Zi',h1 )w2 i(x2i -  z2, h2)(xij -  Zi )

3

+  f a ^ V i j W u i x u  -  Zi; hi)w2i (x2i -  z2, h2 )(x2j -  z2)
3

The inner product of this vector with y produces the local linear estimates at 

(x \ , x2).

The local constant estimator is a special case of the local linear estimator, 

and as for the univariate case is defined by:

=  1j  (^11 — ^{(ftl2&33 — <2l3a23)&12 +  (<2l3&22 — ai2(223)a13}^

— “ 7  ((213(223 ~  (212(233)a

— "T ((212(223 — (213(222) a
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4.3 Deriving the sm oothing matrix in the back- 

fitting algorithm

As has been explained in Chapter 2, the fit of a model with more than two covari- 

ates can be tackled by additive models (Hastie and Tibshirani, 1990), expressed 

in equation (2.16), and recalled here as

v
yi = ati + ^ 2  nrijixji) +  eh I = 1 , . . . ,  n. (4.10)

3 = 1

On the basis of the results of Sections 4.1 and 4.2, it is now possible to fit an 

additive model whose building blocks are the univariate and bivariate local linear 

regression smoothers that account for correlation of the errors e.

Recalling the definition of the backfitting algorithm (Hastie and Tibshirani, 

1990) presented in Chapter 2, it is possible to note that the estimated y are 

updated in such a way that at step (z) the y ^  are “projected” from the obser­

vations y using a hat matrix that differs from the one used at the previous 

step This means that, when the algorithm converges, the definition of a

projection matrix S  is not straightforward.

Hastie and Tibshirani (1990) proposed an algorithm for computing approxi­

mate versions of the projection matrix Pj (using notation of Hastie and Tibshirani 

(1990), section 5.4.4, Pj corresponds to Hj)  that at convergence give f j  = Pjy. 

This algorithm consists in applying the backfitting procedure to each of the n 

unit n-vectors that are the columns of / n, the n x n  identity matrix. The result of 

backfitting applied to the zth unit vector produces fitted vectors f j , j  = 1, . . .  ,p
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where / j  is the zth column of P j .  Similarly, / j .  is the zth column of P .  The de­

grees of freedom for error are dferr =  n — t r ( 2 P  — P P T ).  For model comparisons, 

the change in the error degrees of freedom A dferr due to an individual term is 

required. Let Py) denote the operator that produces the additive fit with the j th  

term removed, then it is possible to define dfjVr, the degrees of freedom for error 

due to the j  th term:

dfYr = tr(2P -  P P T) -  tr(2P{j) -  PU)P ^ )

This is the expected increase in the residual sum of squares (up to a scale factor) 

if the j th  predictor is excluded from the model, assuming its exclusion does not 

increase the bias. It is immediately understandable that these definitions are not 

attractive from a computational point of view. Each is obtained by applying 

the backfitting algorithm n x n  times, each of which needs an undefined number 

of iterations before converging.

A different methodology is proposed here to compute an approximate version 

of the P j  matrix. This methodology is computationally less expensive, because 

it consists in updating and storing the projection matrix at each step of the 

backfitting algorithm. For the simplest case of two variables, it is possible to 

write the first two steps of the backfitting algorithm in matrix form as follows:

1. first step:

= ( I - N ) S i y  

=  { I - N ) S 2[ I - { I - N ) S 1}y 

=  ( I  -  N ) S 2[I -  P P ] y
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2. second step:

m<2) =  (I -  N)Si[I  -  (I -  N ) S 2(I  -  PP)]y  

= (I -  t y & l l  -  I?>]y 

=  (I -  N ) S 2[I -  (I -  N ^ I  -  p ( 2))]y 

= (I -  N ) S 2[I -  P f f e

where the N  matrix is an n x n matrix whose elements are Using induction, 

it is possible to note that the projection matrix for variable jf, “updated” at 

iteration (z) is obtained from the following formula:

P f  =  (J -  AOS,- i - E p L 1]+ E p t
(0

k>j k<j

where, initializing Pf^  = I , at convergency step (z), it is possible to obtain = 

P ^ y .  In order to ensure unique definitions of the estimators, the intercept term 

can be held at a = y, the sample mean, throughout and additional adjustment 

to ensure that Yli =  0 for each j , can be applied at each step.

Therefore, once the algorithm has converged at iteration (z), it is simply 

necessary to sum together the estimates of each component r h ^ \ j  = 1, . . .  ,p, 

and a  to obtain y. In other words

y = y +  (Pi +  P2 +  . . .  +  Pp)y = {N +  Px +  P2 +  . . .  +  Pp)y = Py.  (4.11)

Having obtained the hat matrix P  for the additive model, it is now possible to 

compute the residual sum of squares and degrees of freedom, in order to compute
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the F test statistic. However the R S S  and df  proposed in chapter 2 are based 

on the assumption of uncorrelated data. Therefore, in the next section their 

generalizations to the correlated case are presented.

4.4 Testing models with correlated errors

4.4.1 Testing linear models with correlated errors

Given the linear model y = Xb  +  £, where e ~  N( 0 , a 2 V),  where V  is a known 

n x n positive definite matrix, it is possible to write V,  using the Cholesky 

decomposition, as a function of a non-singular n x n matrix K , such that V  = 

K K T. Therefore setting z = K ~ xy, W  = K ~ lX,  rj = K ~ le, it is possible to write 

the model y = Xb  +  e, e ~  iV(0, a 2 V),  as z =  Wb  +  rj, 77 ~  A^O, cr2/) , where W  

is a n x p matrix of rank p (Seber, 1977). At this point, it is possible to write 

the results obtained in Section 2.2.1 firstly for W  and z, and then in terms of X  

and y. So the residual sum of squares can be written as follows:

R S S  =  zT[I -  W ( W TW ) ~ l W T]z 

= (.K~ly)T[I -  K - 1 X [ X T( K K T) - 1 X ] - 1 ( K - 1 X ) T]K~1y 

= S/T[^ -1 ~  V - lX [ X TV - lX ] - lX TV ~ l)y 

= yTV~x[I — H]y

Regarding the degrees of freedom, indicating with r(.) the rank of a matrix, it is 

possible to use the expression:

E[RSS\ = tr[I -  W ( W TW ) - 1 W T)Ia 2 +  bTW T[I -  W { W TW ) - 1 W T\Wb
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=  r[I - W ( W TW)~ 1 W T]a2  

= [ N - r ( W ) ] a 2  

=  [TV — r ( K ~ lX)]a 2  

=  [TV — r(X)]a2

and therefore, df  = E[RSS]/a 2 =  [TV — r(X)]. At this point, all the components 

that are needed to compute the F statistic for linear models have been defined. 

In the same way that this section extends the R S S  and df to the correlated case 

for the linear models, the next section will extend the R S S  and the df  definitions 

of the nonparametric models to the correlated case.

4.4.2 Testing nonlinear models with correlated errors

4.4.2.1 Approxim ate F test with correlated errors

On the basis of the linear case with correlated errors it is possible to define 

the residual sum of squares and the degrees of freedom in order to compute an 

approximate F statistic that accounts for correlation. For the residual sum of 

squares, it is possible to write:

R S S  = ( y -  Sy)TV~1(y -  S y ) =  yT(I  -  S f V ^ I  -  S)y  (4.12)

and bearing in mind Theorem 1 of Section (2.2.1), it is possible to write:

=  t r [ ( I - S ) TV~ 1 ( I - S ) V a 2] + iJr S T[ ( I - S ) TV - 1 ( I - S ) ] S y ,  

= tr[I -  V~l S V  -  S T + S t V~ 1 SV]<t2  +  n T^ r [{I -  S)TV ~ \ I  -  S)]S/j,
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and therefore, d/errc. = n — tr[V~1S V  +  S T — S TV ~ 1 SV\. Always working in 

the context of correlated errors, the definition tr(S),  as the “effective number of 

parameters” of a smoother, still holds, but a small change is necessary for the 

degrees of freedom for variance. In fact it now becomes t r ( S V S T). If Si is the 

zth row of the smoothing matrix S  then it follows that the summed variances of 

the fitted values are given by:

All the definitions of degrees of freedom obtained so far, are listed below:

^~2var(m(xi)) =  ^  var(siy)
i i

= var(sim + Sis)

tr  { SV ST)a2 = t i {STV S ) a 2.

d f p a r .  = tr(S)

d f v a r .  = t r ( S S T)

d f v a r .c .  = t r ( S V S T)

d f e r r .  =  Tl —  tr( 2 S  — S S T) 

d f e r r . c .  = n -  tr[V~l S V  + S T -  S TV ~ lSV]

v a r .c .

v a r .

(4.13)

where d f p a r _, d f v a r . , d f e r r _ are the ones that don’t account for correlation, while
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4.4.2.2 Pseudo Likelihood R atio test w ith  correlated errors

The Pseudo Likelihood Ratio Test expressed in section 2.2.2.2 can account for 

correlation simply by amending the formulation for the RSS.  In fact, given the 

expression
„ RSSr -  RSSfF  = ----------------- -

RSSf

the F  statistic can be expressed in terms of quadratic forms in a way that accounts 

for correlation using the following expression for the residual sums of squares:

RSSr =  yT (I -  Sr)TV - \ I  -  ST)y, RSSf = yT(I -  Sf )TV ~ \ I  -  S, )y

where Sr and Sf denote the smoothing matrices for the reduced and full models 

respectively. Expressing the F  statistic as the ratio of quadratic forms in Normal 

random variables with means approximately zero and the same variance, it is 

possible to write:
F yTBy  

yT Ay

where A is the matrix (7 — Sf)TV~l (I — Sf) and B is the matrix (I — Sr)TV~1(I — 

Sr) — (I — Sf)TV ~ \ I  — Sf). Results from Johnson and Kotz (1972) can now be 

applied in the same way as summarized in Section 2.2.2.1. The only difference is 

that the correlation matrix V is no longer the identity matrix 7.
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4.4.3 Comparing com ponents of A dditive M odels w ith

Correlated Errors

In this section two tests for comparing components of two different additive mod­

els, that account for correlation, are presented. Fitting two additive models of 

the following form:

y = ati +  m x(x) +  m z(z) +  £i (4.14)

y = a 2 + m x(x) +  e2 (4.15)

and indicating by mX)i and mX)2 the estimates for m x of model (4.14) and model 

(4.15) respectively, interest could be addressed in testing the hypothesis that 

the estimate rhXj 1 is equal to the estimate m x Bowman and Azzalini (1997) 

proposed a statistic for comparing regression curves, based on:

* _ {rhXti -  mX)2)T(mX)i -  m Xt2) (A
t  = -----------------Tj-----------------  (4-16)

where a 1 denotes an estimate of the error variance a2. The formulation of the

test proposed by Bowman and Azzalini (1997) is based on the assumption of 

independent errors and more details have been given in Section 2.2.3. Here two 

generalizations of the test statistic (4.16) that account for the correlation of the 

data are proposed.

A first formulation of the test is based on the idea of the approximate F test, 

and is given by the following formulation:

p vT(P*. 1 -  -  P ^ y / d } ^
A corr yT(I -  S ^ V - ' i l  -  SJy/dfcorr (4' i7J
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where PXji is the smoothing matrix that gives the smooth estimates m Xji = Px,iy, 

similarly Px 2 is the smoothing matrix that gives the smooth estimates m x^ — 

PXt2 y, and Si is the smoothing matrix of the overall model (4.14), that produces 

the estimates y = Siy. The numerator of expression (4.17) consists of the sum of 

squares of the differences between the estimates m Xyi and rhx^. The denominator 

of expression (4.17) consists in the estimate of the variance of y.

The degrees of freedom used in the denominator (d/corr) of expression (4.17) 

are given in the following formula:

dican- =  t r [ V - l S i V  +  S f  -  S f V - ' S i V ]  (4.18)

and the degrees of freedom used in the numerator (df*^)  are obtained by:

C orr =  M (PXl] -  -  Pxfi)V} (4.19)

The presence of bias in the residual sums of squares and the absence of the 

required properties in the underlying projection matrices mean that the test 

statistic will not follow an F  distribution under the null hypothesis. However, 

comparing Fa .cott to an F  distribution with df larr and d/c^r degrees of freedom 

does provide a helpful benchmark.

A second formulation of the test is based on the quadratic form test, and is 

given by the following formula:

p  =  vT(P., 1 -  P*?)Tv - \ P z , i  -  P**)v = £ Q y  a
Lcorr y T { I  -  S r Y V - ^ I  -  S 1)y  y ^ B y  {

Having expressed the F ^ corr as a ratio of quadratic form, it is now possible to
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apply the theory of the Pseudo Likelihood Ratio Test presented in Section 4.4.2.

Once both tests have been implemented, a graphical display of the testing 

can be obtained by drawing a standard error reference band for the difference of 

the smoothers rhx\ and m ^ , given by:

s.e.{mx<i -  mti!) =  yjvar{(PXtl -  Pxa)y)

=  yjdiag{(PXii -  PX,2 )V{PX>1 -  Px,2)t }<t2 (4.21)

where var(y) =  a 2 V, and an estimate for a 2 can be obtained by expression (3.14).

4.4.4 Tests for no effect with correlated errors

This section presents two tests for assessing the presence of trends accounting 

for correlation of the errors, generalizing those presented in Section 2.2.4. Given 

Model 0 and Model 1, the purpose of the tests is in testing any effect of x  on y 

accounting for any correlation present in y.

Model 0 : y = [i + £

Model 1 : y = m(x) +  £

Model 1 and Model 0 will be tested using the same formulations expressed in

equations (2.34) and (2.35) of section 2.2.4, and here recalled as:

(.RSSp -  R S S J / jd f i  -  df0)
R S S 1/(n  -  dh)

R S S 0  -  RSSi  
F  =  R S Sl

(4.22)

(4.23)
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where R S S q, dfo and R S S i, dfi indicate respectively the residual sum of squares 

and the degrees of freedom for the reduced model, Model 0, and for the full model, 

Model 1. In order to account for correlation of the errors, the R S S  and the df 

used will be the ones that account for correlation. The R S S  is the generalized 

version given below:

R S S i  =  y T  (I -  Si)TV - \ l  -  S i ) y ;  i = 0 ,1

where var{y) =  a 2 V, and So and Si are the smoothing matrices for Model 0 and 

Model 1 respectively. Given the nature of Model 0, it can be seen that So is 

a matrix whose elements are A The df used here are the df for the error that 

account for correlation, obtained in section 4.4.2.1 and recalled below:

dfi =  t ^ V - 'S i V  + S f -  S j V - lSiV\, i =  0 , 1

In this way it will be possible to test for a significant effect of x  on y accounting 

for the correlation of the errors.

Using the generalized R S S , it is possible to obtain the standard errors band 

modified for correlation and given in equation (4.24):

s.e. =  y/var{{So -  Si)y} = V diag{(S0  -  Si)V{So -  (4.24)

where var(y) — a2V . The meaning of this band is that if Model 1 lies outside

the band, then Model 1 differs by more than 2 standard errors from Model 0 at

that point.

As described in section (4.1), the estimate of the correlation matrix will follow
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the approach of Niu (1996), which consists in fitting an independence model and 

using the residuals to identify a suitable structure for the error component.
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4.5 A simulation study

This section presents the results from a simulation study carried out to under­

stand the performances of the approximate F  test and the Pseudo Likelihood 

Ratio test, both accounting for and not accounting for correlation. For the ap­

proximate F  test, the definitions of the degrees of freedom that have been used 

are those introduced in section 4.4.2.1, and listed in (4.13).

The study was formulated to match the general patterns of the SO 2  data. 

Given Models Ma, Mb, M e :

M 4 : y = a  +  m w (weeks) +  £

M b : y =  ol +  m y (years) +  m w(weeks) +  e

M e : y = ol + m yw(years, weeks) +  e

two different situations have been considered for the present simulations:

•  S ituation 1: The tests’ performances were analyzed when they axe used in 

testing the presence of trend. In other words this means that Ma and M B 

were tested, generating data from Ma (size study), and generating data 

from Mb (power study).

• S ituation 2: The tests’ performances were analyzed when used in testing 

for changes in seasonality. In other words this means that Mb  and M e  

were tested, generating data from Mb  (size study), and generating data 

from M e  (power study).

The following subsections will analyze each of these two situations described 

above.
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4.5.1 Test for trend

4.5.1.1 Size

Data were simulated from the additive model (4.25)

1 („ w e e k s \  e
53"

If — 2 — -  cos ( 27r———J  +  -  (4.25)

where the errors e were sampled from an AR(1) process with variance 1 and 

correlation parameter p = 0,0.2,0.4. Comparisons of models M a and M b were 

carried out to assess evidence for the presence of trend over the years.

The following steps provide a summary of the estimation and testing proce­

dures used for this simulation study:

•  Step 1: Values are simulated from Model (4.25).

• Step 2: Model M B, assuming independent errors, has been fitted to the

simulated data of Step 1 with smoothing parameter h.

•  Step 3: The residuals from Step 2 are used to compute the autocorrelation 

function, assuming an AR(1), from which an estimate of the correlation 

coefficient at lag 1 is used to estimate p.

•  Step 4: Models M a and M b have been fitted to the simulated values of 

Step 1 with smoothing parameter h, and correlation parameter p and p: p 

is the estimated correlation parameter of Step 3; p are plug-in values of the 

correlation parameter.

•  Step 5: Models fitted in Step 4 will be tested using the approximate F  test

(with degrees of freedom given in expressions 4.13) and the quadratic form
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method.

Simulations consisted in generating 200 data sets of 11 years of data (1990-2000), 

with 53 weeks per year. Therefore the test will present a reasonable size if the 

proportions of significant p values under the null hypothesis are 5% ±  3.1%. 

Simulations have been carried out using different values of h = (/ii,/i2) and p. 

A reasonable choice for the smoothing parameters is h\ = 1.3 and /i2 — 0.4. 

Other values have been used for simulations, multiplying h = (/ii,/i2) by four 

different multipliers: 0.5, 0.67, 1.5, 2. In this way, the behavior of the tests will 

be analyzed when the smoothing parameters used, range from half to double the 

choice of a well-chosen smoothing parameter.

c o rre la tio n s  correlation=0.2 correlation=0.4O
co­
ca-

. ° . \ : *o ° o

® o f  • •  * ® ) 0 CO-

** jjf A* * Ik

•/ v °y°:w ° « 0 O o
©

1 .  o f  ° > °« °*° °S f % oS 
\  0 I  °  9  °
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V f y r ' V - ,  *;•

1990 1992 1994 1996 1996 2000 1990 1992 1994 1996 1998 2000 1990 1992 1994 1996 1998 2000
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Figure 4.1: Simulations from Model (4.25) for correlation 0, 0.2, 0.4, with
the seasonal component plotted by a line.

Figure 4.1 shows examples of simulated values from Model (4.25) for different 

correlation values with the seasonal component plotted by a line. Table 4.1 shows 

simulation results generated with correlation parameters p =  0, 0.4, and using 

the independent version of the Pseudo Likelihood Ratio test (Q.F .), and the 

approximate F  test with degrees of freedom given by dfpar_, dfvar., dfvar^ , dferr_ 

(see equation 4.13). The row (pi) presents size results when the true correlation
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value is plugged in, while the results in the row indicated with (p) refer to the 

simulations when estimated correlations were used. Prom table 4.1, it is clear 

that the sizes across all the tests are not well controlled. The only two sensible 

size results are for the Pseudo Likelihood Ratio test (Q.F.) and the approximate 

F  test with d/err. when data are simulated with no correlation. However, even 

these increase substantially when correlation is present. Similar results have 

been obtained also for situation 2. Therefore from now on the simulation study 

shown will consist of the results concerning the Pseudo Likelihood Ratio test 

that accounts for correlation, and the approximate F  test with dferr c. (for easier 

representation the dferrc. will be replaced by simply df). The results for the size 

study of situation 1, are shown in table 4.2. Each table refers to simulations 

generated with a different correlation parameter (p = 0, 0.2, 0.4). Each row 

presents size results when different plug in correlation values (p) or estimates (p) 

are used.

Table 4.1: Empirical sizes results of the approximate F  test with degrees of 
freedom defined by dfpar_, dfvar., dfvar,c., dferr. and the independent 
version of the Pseudo Likelihood Ratio test {Q.F.) from 200 data 
sets simulated with correlation parameters p = 0, 0.4, smoothing 
parameters h = (/ii, hf) = (1-3, 0.4), and using the true (p) and

the estimated (p) correlation.
p—0

'sF0II

dfpar. dfvar. dfvar.c. dferr. Q.F. dfpar. dfvar. dfvar.c. dferr. Q.F.

p 0.29 0.39 0.40 0.03 0.04 0.83 0.87 0.78 0.74 0.71
p 0.31 0.37 0.39 0.04 0.06 0.93 0.96 0.91 0.83 0.79

Results of tables 4.2 show that whenever the correlation is known, the sizes 

of both tests, the approximate F  test and Pseudo Likelihood Ratio test, perform
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well across the smoothing parameters and the correlations used. There is some 

indication that the size of the approximate F  test is consistently too low.

From Table 4.2, it is possible to note that whenever a correlation value of 

the test is smaller than the one used for simulating the data, the size of the 

test increases. This can be explained by thinking of correlation as generating 

irregular “waves” , thus the estimated bivariate surface will consider a part of 

these “waves” to be due to correlation, since a small correlation parameter has 

been used. Therefore the “waves” left will be attributed to a bivariate term 

that can not be modeled just by an additive term. Therefore the smaller the 

correlation, the more frequent the rejection of the null hypothesis. On the other 

hand, if the correlation used for the estimates of the surfaces is greater than the 

one used for simulating the data, the size becomes smaller. This is due to the 

fact that a larger correlation parameter will model the true correlation generated, 

and also a proportion of the trend in the data due to the regression surface.

The results in Table 4.2 show that when the correlation has to be estimated, 

the choice of the smoothing parameter plays an important role. Low smoothing 

parameters cause underestimation of the correlation, increasing the size of the 

test, while high smoothing parameters overestimate the correlation, decreasing 

the size of the test. Therefore a conservative approach of adopting a fairly high 

smoothing parameter seems to be safer.

4.5.1.2 Power

Data were simulated from the additive model (4.26)

1 / 1 ( ~ w eeks\  e . t .y = 2 -  — (years -  1990) -  -  cos ( 2tt j  +  -  (4.26)
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where the errors e are sampled from an AR(1) process with variance 1 and cor­

relation parameter p = 0,0.2, 0.4. Model (4.26) is characterized by a decreasing 

trend of ^  over 11 years, i.e. a reduction of 2.5% over 11 years. Simulations have 

been also undertaken with different amounts of trend, but the results presented in 

this section will refer to ^  because this gives the most interesting results in terms 

of the performances of both tests, the approximate F test and Pseudo Likelihood 

Ratio test. Figure 4.2 shows examples of simulated values from Model (4.26) for 

different correlation values with the seasonal component +  trend plotted by a 

line. Comparisons of the models M a and M b were carried out to assess evidence

correlations correlation=0.2 correlation=0.4
.

CO CO
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o •  .  * 5  j o  ^  *  #

•  °  o e *

-

O ' O

1990 1992 1994 1996 1998 2000 1990 1992 1994 1996 1998 2000 1990 1992 1994 1996 1998 2000
Years Years Years

Figure 4.2: Simulations from Model (4.26) for correlation 0, 0.2, 0.4, with 
the seasonal component + trend plotted by a line.

for the presence of trend over the years.

The steps used in this power study are the same as in Section 4.5.1.1, apart 

from Step 1 where the values are simulated from model (4.26) rather than model 

(4.25).

Simulations consisted in generating 200 data sets of 11 years of data (1990- 

2000), with 53 weeks per year. Simulations have been carried out using different 

values of h =  (h i,/^ ) and p. On the basis of the results of section 4.5.1.1, a
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reasonable choice for the smoothing parameters seem to be hi =  1.3 and h<i =  0.4 

or larger. The smoothing parameters values used are therefore hi = 1.3 and 

/12 =  0.4 multiplied by 1, 1.5, 2. In this way we will be analyzing the power of 

the tests for larger smoothing parameters that produce effective size results.

The results are shown in Table 4.3. The rows for p refer to those simulations 

where the true correlation was used. The rows p refer to those simulations where 

the estimated correlations were used.

Table 4.3 shows that the power performances are not substantially affected 

by the fact that the correlation is known or is estimated. The Pseudo Likelihood 

Ratio test seems to have slightly higher power compared to the approximate 

F  test. Using different smoothing parameters does not have a large effect on 

the power results. However, high correlation reduces the power of both tests as 

expected. Overall, it can be said that both tests perform well when they are used 

to test for changes of trend of more than 2.5% in 11 years.

4.5.1.3 Test for trend: Conclusions

The simulation study just presented aimed to look at the performances of the 

approximate F  test and Pseudo Likelihood Ratio test when they were used for 

testing the presence of trend (or what was called situation 1 in Section 4.5). 

Results show that both tests are characterized by sizes which are dramatically 

high when correlation is not accounted for. The Pseudo Likelihood Ratio test that 

accounts for correlation, and approximate F  test with degrees of freedom defined 

by d/err.c. m  expression (4.13) are the only two formulations that show good 

size results, when the correlation is known, under all different settings analyzed. 

When the correlation has to be estimated, the size of both tests is dependent
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on the choice of the smoothing parameters, which affects the estimates of the 

correlation parameters. However, the choice of a higher smoothing parameter is 

a safer approach in terms of its effect on the size of the tests. The power of both 

tests seems excellent for detecting changing of trends of at least 2.5% in 11 years. 

The next section will show the performances of the Pseudo Likelihood Ratio test 

accounting for correlation, and of the approximate F  test with degrees of freedom 

defined by dferr_c_ when they are used for testing changes in seasonality (or what 

was called situation 2 in Section 4.5).

4.5.2 Test for changes in seasonality

As noted in Section 4.5, in the second situation, the performances of the methods 

were analyzed when testing for changes in seasonality. In other words, this means 

that M b and M e  were tested on data generated from model M b (size study), 

and from model M e  (power study).

4.5.2.1 Size

Data were simulated from the additive model (4.27)

year — 1990 1 /  w ee k \ e
y = 2 ~ —  2cosr^rJ + 2 ^

where the errors e are sampled from an AR(1) process with variance 1 and cor­

relation parameter p =  0,0.2,0.4. Comparisons of the models M b and M e  were 

carried out to assess evidence for changes in seasonality across years.

The following steps provide a summary of the estimation and testing proce­

dures used for this simulation study:
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• Step 1: Values are simulated from Model (4.27).

•  Step 2: Model Me, assuming independent errors, has been fitted to the

simulated data of Step 1 with smoothing parameter h.

• Step 3: The residuals from Step 2 are used to compute the autocorrelation 

function, assuming an AR(1), from which an estimate of the correlation 

coefficient at lag 1 is used to estimate p.

• Step 4: Models M b and Me  have been fitted to the simulated values of

Step 1 with smoothing parameter h , and correlation parameter p and p: p 

is the estimated correlation parameter of Step 3; p are plug-in values of the 

correlation parameter.

• Step 5: Models fitted in Step 4 will be tested using the approximate F  test 

and the Pseudo Likelihood Ratio test.

Simulations consisted in generating 200 data sets of 11 years of data (1990-2000), 

with 53 weeks per year. The test will present a reasonable size if the proportion 

of significant p values under the null hypothesis is 5% ±  3.1%. As in situation 1, 

simulations have been carried out using h = (1.3,0.4), scaled by 0.5, 0.67, 1.5, 2. 

Figure 4.3 show examples of simulated values from Model (4.27) for different 

correlation values with the seasonal component +  trend plotted by a line. Results 

are shown in Table 4.4. Each table refers to simulations generated with a different 

correlation parameter (p = 0, 0.2, 0.4). Each row of each table presents size 

results when different plug in correlation values (p) or estimated correlations (p) 

are used.
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Figure 4.3: Simulations from Model (4.27) for correlation 0, 0.2, 0.4, with 
the seasonal component + trend plotted by a line.

The results in Table 4.4 show that whenever the correlation is known, the size 

of the Pseudo Likelihood Ratio test is well controlled, while the approximate F  

test results seem to have a smaller size.

As in situation 1, from Table 4.4, it is possible to note that whenever a 

correlation value of the test is smaller than the one used for simulating the data, 

the size of the test becomes bigger. On the other hand, if the correlation used for 

the estimates of the surfaces is larger than the one used for simulating the data, 

the size becomes smaller.

Even in this situation, the results show that when the correlation has to be es­

timated, the choice of the smoothing parameters plays an important role. Indeed, 

low smoothing parameters cause underestimation of the correlation, increasing 

the size of the test. On the other hand, high smoothing parameters overestimate 

the correlation, decreasing the size of the test. Therefore a conservative approach 

of choosing a fairly high smoothing parameter seems to be safer in this context.
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4.5.2.2 Power

For the power study of situation 2, data need to be generated by a model whose 

seasonal component changes across years. Two different changes of seasonality 

across years have been considered: changes in amplitude, and changes in the 

phase of the seasonal cycles.

Data were therefore simulated from the additive models (4.28) and (4.29).

week year — 1990 \  e
~ i r - — — J +5 <t28>

year — 1990 1 /  w e e k \  year — 2001 e , ,  s
* =  2 - ^ - l ----------- 2 COS ( 27r̂ 3 -  J ^-----10------ +  2 {4-29)

where the errors e are sampled from an AR(1) process with variance 1 and corre­

lation parameter p. Comparisons of the models M b and M e  were carried out to 

assess evidence for changes of seasonality over the years. Model (4.28) refers to a 

situation where the phase of the seasonal component changes across 11 years by 

about 2 months. Model (4.29) referred to a situation where the amplitude (peak 

- trough) of the seasonal component changes from 1.1 to 0 across 11 years.

Simulations have been also undertaken with other values of changes in am­

plitude and in the phase of the seasonal component, but the results presented 

in this section refer to the ones formulated in Model (4.28) and Model (4.29), 

because they show the most interesting results in terms of performances of both 

tests.

The steps used in this power study are the same as section 4.5.2.1, apart from 

Step 1 where the values are simulated from model (4.28) and from model (4.29), 

rather than model (4.27).

year -  1990 1 (
y = 2 ------------------     cos 2-7T
y 5 2 V
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The simulations consisted in generating 200 data sets of 11 years of data 

(1990-2000), with 53 weeks per year. Simulations were carried out using different 

values of h = (hi,h,2 ) and p. In particular, a sensible choice for the smoothing 

parameters is h\ =  1.3 and /12 =  0.4. Then on the basis of results of section 

4.5.2.1, other smoothing parameter values have been used for simulations by 

multiplying h = (h i , /i2) by two different multipliers: 1.5, 2. In this way we will 

be analyzing the power of the tests for large smoothing parameters that guarantee 

safer size results.

co rre la tio n ^  correlation=0.2 correlation=0.4
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Figure 4.4: Simulations from Model (4.29) for correlation 0, 0.2, 0.4, with
the seasonal component + trend plotted.

Figure 4.4 shows examples of simulated values from Model (4.29) for different 

correlation values with the seasonal component +  trend plotted by a line. Figure 

4.5 shows examples of simulated values from Model (4.28) for zero correlation, 

with the seasonal component +  trend plotted by a line.

The results of the simulation are shown in Table 4.5. The results in the rows 

for p refer to those simulations where the true correlation was used. Results in 

the rows for p refers to those simulations where the estimated correlations were 

used.
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Figure 4.5: Simulations from Model (4.28) for correlation 0, with the seasonal
component + trend plotted by a line.

Table 4.5 shows that the power performances reduce as the correlation in­

creases. Both tests seem relatively unaffected by whether the correlation is 

known or estimated. The Pseudo Likelihood Ratio test seems to have slightly 

higher power compared to the approximate F  test, especially with high corre­

lations. When the correlation is known, the power is not substantially affected 

by the choice of smoothing parameter. When the correlation is estimated, differ­

ent smoothing parameters have relatively little effect on the performance of the 

Pseudo Likelihood Ratio test, while the power of the approximate F  test seems 

to reduce quite substantially.

Overall, it can be said that, both tests seem to have a high power of detecting
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changes in phase of the seasonal component longer than 2 months across 11 years, 

and changes in amplitude (peak - trough) of the seasonal component of more than 

1.1 across 11 years. There are some indications that the Pseudo Likelihood Ratio 

test is more effective.

4.5.2.3 Test for changes in seasonality: Conclusions

The simulation study just presented aimed to look at the performances of the 

approximate F  test and Pseudo Likelihood Ratio test when they were used for 

testing changes in seasonality over time (or what was called situation 2 in Section 

4.5). When the correlation is known, the size of the Pseudo Likelihood Ratio test 

seems to work very well under all different settings analyzed. However the sizes 

of the approximate F  test seem rather low. As for “situation 1” , when correla­

tion has to be estimated, the size of both tests is dependent on the smoothing 

parameters, whose choice of higher values guarantee a safer approach in terms 

of better controlled size. The power of both tests seems excellent for detecting 

changes in amplitude (peak - trough) of more than 1.1 in 11 years, and changes 

in the phase of the seasonal component of about 2 months across 11 years.

4.6 M odeling with correlated errors: Conclu­

sions

This chapter presents techniques that allow correlated data to be modeled as a 

function of a number of covariates. Tests for model selection and for components’ 

comparison that account for correlation are also shown. The extension of well
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established nonparametric techniques such as local linear regression, backfitting 

algorithm, approximate F  test and Pseudo Likelihood Ratio test to account for 

correlation are shown to be flexible and powerful tools that can be used with a 

variety of data. Simulations show the importance of using these methodologies 

when correlation is present. Indeed not accounting for correlation, when it is 

present, would damage the size of the tests. The power of both tests seems 

excellent for detecting trends of at least 2.5% in 11 years, changes in amplitude 

(peak - trough) of more than 1.1 in 11 years, and changes in the phase of the 

seasonal component of about 2 months across 11 years. The following chapter 

will apply these methodologies to air pollution and meteorological data showing 

the importance of accounting for correlation. Besides, since the simulation study 

showed that the choice of the smoothing parameters affects the estimates of the 

correlation parameters, the next chapter will also present a sensitivity analysis of 

the results of the application with different correlation estimates.
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Table 4.2: Empirical sizes of the test to compare models Ma and M#. For 
each parameter setting, 200 datasets were simulated from Model 
(4.25), with smoothing parameters of hi = 1.3 and /12 — 0.4 mul­
tiplied by the values indicated in the table. Within each cell the 
upper value refers to the approximate F test, while the lower value 
refers to the Pseudo Likelihood Ratio test. Each table is referred 
to simulations generated with a different correlation parameter 
(p = 0, 0.2, 0.4). Each row of each table presents size results 
when different plug in correlation values (p) or correlation’s esti­

mates (p) are used.
p= 0

h multipliers 0.5 0.67 1 1.5 2

II O 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

II O to 0.00
0.00

0.00
0.00

0.00
0.00

0.005
0.01

0.01
0.0100II 0.04

0.055
0.035
0.06

0.02
0.03

0.025
0.03

0.01
0.01

p 0.095
0.13

0.04
0.06

0.035
0.055

0.02
0.02

0.01
0.01

p=0.2
h multipliers 0.5 0.67 1 1.5 20II 0.00

0.00
0.00
0.00

0.005
0.01

0.00
0.00

0.005
0.005CMOII 0.05

0.065
0.025
0.04

0.015
0.05

0.015
0.04

0.035
0.04OOII 0.225

0.32
0.195
0.25

0.165
0.225

0.1
0.11

0.055
0.09

P 0.165
0.19

0.065
0.09

0.045
0.06

0.03
0.045

0.005
0.01

II 0

h multipliers 0.5 0.67 1 1.5 2

*C>
t II 0 0.025

0.04
0.015
0.03

0.02
0.035

0.025
0.025

0.02
0.045

,5 =  0.2 0.275
0.365

0.275
0.36

0.185
0.23

0.135
0.17

0.13
0.15500II 0.635

0.665
0.48

0.565
0.375
0.445

0.325
0.375

0.22
0.3

P 0.225
0.29

0.1
0.145

0.06
0.075

0.03
0.03

0.02
0.035
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Table 4.3: Empirical power of the tests to compare models Ma and Mb - For 
each parameter setting, 200 datasets were simulated from Model 
(4.26), with smoothing parameters of hi = 1.3 and /12 =  0.4 mul­
tiplied by the values indicated in the table. Within each cell the 
upper value refers to the approximate F test, while the lower value 
refers to the Pseudo Likelihood Ratio test. Simulations generated 
with a different correlation parameter (p = 0, 0.2, 0.4). Results 
in row p refer to those simulation where the true correlation was 
used. Results in row p refer to those simulations where the esti­

mated correlations were used.

p = 0 p = 0.2 p = 0.4
h multiplier 1 1.5 2 1 1.5 2 1 1.5 2

P 0.85 0.905 0.925 0.695 0.695 0.725 0.465 0.47 0.515
0.89 0.925 0.945 0.76 0.725 0.785 0.525 0.535 0.56

P 0.885 0.895 0.9 0.69 0.705 0.67 0.46 0.47 0.41
0.915 0.935 0.92 0.75 0.76 0.72 0.555 0.53 0.475
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Table 4.4: Empirical sizes of the test to compare models Mg and Me- For 
each parameter setting, 200 datasets were simulated from Model 
(4.27), with smoothing parameters of hi = 1.3 and /12 = 0.4 
multiplied by the values indicated in the table. Within each cell 
the upper value refers to the approximate F test, while the lower 
value refers to the Pseudo Likelihood Ratio test. Each table refers 
to simulations generated with a range of correlation parameter 
(p = 0, 0.2, 0.4). Each row of each table presents size results 
when different plug in correlation values (p) or correlation esti­

mates (p) are used.
p= 0

h multipliers 0.5 0.67 1 1.5 2

II O 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

p = 0.2 0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.005

0.00
0.0000II 0.015

0.035
0.02

0.075
0.01
0.05

0.015
0.035

0.01
0.045

P 0.14
0.295

0.02
0.09

0.005
0.025

0.00
0.01

0.00
0.005

p=0.2
h multipliers 0.5 0.67 1 1.5 20II 0.00

0.00
0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.005

1

CNOII‘Q. 0.02
0.06

0.02
0.04

0.00
0.04

0.01
0.045

0.01
0.045

II O O 0.645
0.845

0.415
0.625

0.23
0.395

0.095
0.255

0.065
0.19

P 0.31
0.49

0.085
0.18

0.005
0.055

0.005
0.015

0.00
0.00

II 0

h multipliers 0.5 0.67 1 1.5 2

II 0 0.015
0.04

0.005
0.03

0.015
0.07

0.005
0.035

0.01
0.085

p =  0.2 0.84
0.94

0.6
0.795

0.34
0.495

0.16
0.33

0.08
0.275

II 0 0 0.995
1.00

0.98
1.00

0.795
0.905

0.405
0.595

0.215
0.41

P 0.655
0.84

0.15
0.285

0.005
0.095

0.00
0.03

0.00
0.05
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Table 4.5: Empirical power of the tests to compare models Mb and Me- For 
each parameter setting, 200 datasets were simulated from Model 
(4.28) and from Model (4.29), with smoothing parameters of hi = 
1.3 and h2 = 0.4 multiplied by the values indicated in the table. 
Within each cell the upper value refers to the approximate F test, 
while the lower value refers to the Pseudo Likelihood Ratio test. 
Simulations generated with a range of correlation parameters (p = 
0, 0.2, 0.4). Results in row p refer to those simulations where 
the true correlation was used. Results in row p refer to those 

simulations where the estimated correlations were used.

Model (4.29) p = 0

OII II o

h multiplier 1 1.5 2 1 1.5 2 1 1.5 2
P 0.94 0.99 0.965 0.81 0.905 0.84 0.50 0.575 0.56

0.98 1.00 0.995 0.88 0.975 0.95 0.665 0.725 0.76
P 0.96 0.965 0.915 0.925 0.79 0.68 0.65 0.49 0.415

0.995 0.99 0.975 0.955 0.91 0.86 0.795 0.72 0.615

Model (4.28) p = 0 p = 0.2 p = 0.4
h multiplier 1 1.5 2 1 1.5 2 1 1.5 2

P 1.00
1.00

0.995
1.00

1.00
1.00

0.95
0.985

0.97
0.985

0.965
0.995

0.7
0.83

0.725
0.865

0.755
0.87

P 1.00
1.00

0.99
1.00

0.955
0.995

0.94
0.965

0.92
0.975

0.795
0.96

0.795
0.86

0.65
0.815

0.49
0.75



Chapter 5

Applications Of A dditive M odels 

W ith Correlated Errors

This chapter presents some applications to air pollution data of the methodologies 

introduced in Chapter 4. Trend and seasonal cycles for SO 2 will be studied 

accounting for correlation and for meteorological effects at 11 stations across 

Europe. The sensitivity of the results to the correlation estimates will also be 

presented.

5.1 Modeling S O 2 accounting for meteorology

Additive models that account for meteorology have been applied, and the results 

are presented. The data analyzed in this section are the concentrations of SO 2  

monitored at: Eskdalemuir (GB02, Scotland), Westerland (DE01, Germany), 

Waldhof (DE02, Germany), Schauinsland (DE03, Germany), Deuselbach (DE04, 

Germany), Brotjacklriegel (DE05, Germany), Kosetice (CZ03, Czech Republic),

148
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Rorvik (SE02, Sweden), Bredkalen (SE05, Sweden), Hoburg (SE08, Sweden), 

Payerne (CH02, Switzerland), from 1973 up to 2001. The predictors used are: 

years (as fraction of weeks), weeks of the year, weekly amount of precipitation, 

weekly temperature mean, weekly humidity mean, weekly mean of wind direction 

weighted by wind speed (defined in equation (1.4) of section 1.5). Because of the 

skewness of SO 2 and of the amount of rainfall, it has been decided to work on 

the logarithm of SO 2 and on the logarithm of amount of rainfall. The models 

that have been fitted are:

=  ii + m yw(years, weeks) +  m r(rain) +  m t{temperature)

P mh(humidity) + m W'd.s.(w'i'n d-directi°n .speed) + e (Model a)

= p p  m y(years) +  m w(weeks) +  m r(rain) +  m t(temperature)

P rrih(humidity) P mw^.sX'wind.direction.speed) P  e (Model b)

= p p  m yw(years, weeks) P e (Model c)

= p p  m y (years) +  m w (weeks) P e (Model d)

All these models are fitted accounting for temporal correlation and for circular 

smoothers where needed (e.g. m w(weeks), m w.d.s.(wind-direction, speed)), using 

the methodology explained in the previous sections.

Model a - Model d have been fitted because the purpose of this application 

is answer the following questions of interest:

•  Is the meteorology significant in explaining the variability of 5 0 2?

• Do the trend and the seasonal cycle estimates change if meteorology is

ln (S 0 2)

ln (S 02)

ln (S 02)

ln (S 02)
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accounted for?

• Is the seasonality changing significantly across years?

The following subsections will tackle each of the above questions.

5.1.1 Testing the significance of meteorological variables.

Model b includes all the meteorological variables and each of them was fitted 

in an additive model, using univariate smoothers that account for correlation. 

Examples of the fits of each component of Model b at Deuselbach (DE04), and at 

Rorvik (SE02) are shown in Figure 5.1 and 5.2. The estimated components are 

red dashed lines, and the standard error bands are shown with continuous red 

lines. The dashed black lines and green bands are the estimates and the standard 

error bands that are obtained if correlation is not accounted for. Apart from the 

trend estimates for the meteorological variables, inclusion of correlation produces 

much wider bands.

At both sites, there are decreasing trends and a seasonality characterized by 

lower values in summer time. At Deuselbach as the amount of rain, the temper­

ature and humidity increase, the concentration of SO 2 decreases. Moreover, the 

highest concentration of SO 2 corresponds to the wind values coming from the 

east and north-east. At Rorvik the relationships between the response variable 

and all the meteorological variables are almost flat, giving an indication that 

the meteorological variables may be not significant. In order to analyze if the 

meteorological variables give significant extra information in explaining the SO 2  

variability, Model d, which includes only trend and seasonality, has been fitted, 

and compared with Model b. The overall fits of Model b and Model d across
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Figure 5.1: a) fit of my(year) component versus years; b) fit of mw(week) 
component versus weeks; c) fit of mr(rain) component versus 
rain values; d) fit of mt(temperature) component versus temper­
ature values; e) fit of nih (humidity) component versus humidity 
values; f) fit of mW'd.s.(wind.direction.speed) component versus 
wind values; of Model b for ln(502) monitored at Deuselbach

(DE04).
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all the sites, are displayed in Figure 5.3 and Figure 5.4, where the thin dashed 

red line is the fit of Model b, while the thick continuous blue line is the fit of 

Model d. At Rorvik (SE02) and Bredkalen (SE05), the two lines are almost in­

distinguishable, giving no indication of a significant effect of the meteorological 

variables. By contrast at the other nine sites, Model b clearly tracks the data 

more closely than Model d , especially where there are rapid fluctuations. This 

indicates that useful explanatory information is contained in the meteorological 

data.

These impressions are confirmed by comparing Model b and Model d more 

formally through the approximate F  test and the Pseudo Likelihood Ratio test. 

The results of both tests give p values close to 0 across all the sites, except 

for Rorvik (SE02) and Bredkalen (SE05) whose p values are bigger than 0.05. 

In other words, this means that the meteorology is statistically significant in 

explaining the variability of SO 2 , except for two Swedish sites.

These results are confirmed by the R 2 values in Table 5.1. The R 2  value of a

Table 5.1: R2 values from the Additive models

R 2 Model a Model b Model c Model d
GB02 0.786 0.774 0.648 0.623
DE01 0.526 0.470 0.241 0.184
DE02 0.801 0.794 0.644 0.626
DE03 0.686 0.666 0.425 0.382
DE04 0.721 0.699 0.530 0.487
DE05 0.665 0.646 0.421 0.381
CZ03 0.688 0.670 0.486 0.449
SE02 0.604 0.582 0.599 0.570
SE05 0.617 0.596 0.609 0.587
SE08 0.557 0.540 0.391 0.359
CH02 0.471 0.417 0.352 0.283
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Figure 5.3: fits of Model b and Model d across all sites.

model such as Mi : y = a +  m(x) + £ is obtained by

>2 RSS0 -  RSSi
Rz =

RSSo
(5.1)

where RSSi  is the residual sum of squares of model Mi, and RSSo is the residual
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Figure 5.4: fits of Model b and Model d across all sites.

sum of squares of a model A/0 : y = a +  e with no covariates (i.e. RSSo — 

(y — y)1 V~ l (y — y)). For Rorvik (SE02) and Bredkalen (SE05), the R2 values of 

Model 5, and the ones of Model d are much closer than those for the other sites. 

Figure 5.5 shows a map of part of Europe with the estimates of the wind
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component from Model a. In red are plotted those directions whose estimates 

were negative, and in black are plotted the positive ones. This means that at each 

site, the wind that is blowing from the “red” direction reduces the concentration 

of ln(502), while those winds that blow from the “black” direction increase the 

concentration of ln (5 0 2)- In the southern sites, concentration of ln(502) de­

creases when the wind is blowing from the south and south-east, and increase 

when the wind blows from the north and north-west. For the northern German 

sites, the British and the southern Swedish (SE08) sites the concentrations of 

ln(502) seem to increases when the wind blows from the west.

5.1.2 Comparing trend and seasonality estim ates for the  

effect of meteorology.

The second question of interest was to analyze if trend and seasonal cycle es­

timates change when meteorology is accounted for. In other words this means 

that the m y(years) and the m w(weeks) components of Model b have to be tested 

versus the m y(years) and the m w(weehs) components of Model d. In order to 

give an answer, test (4.17), presented in Section 4.4.3, has been applied across all 

the eleven sites, and results are presented in Table 5.2. For the trend component 

m y(years), across most of the sites the p values are significant, which means that 

the trend estimates differ significantly if meteorology is included in the model. 

The only exceptions axe two Swedish sites SE02  and SE05, whose trends es­

timates do not change significantly if meteorology is accounted for. However 

these two sites (S E 0 2  and SEQ5) already showed nonsignificant meteorological
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Figure 5.5: Map of the wind estimates from Model a.

effects. For the seasonal component, mw(weeks), the results show that the esti­

mates change significantly if the model accounts for meteorology, except at SE05 

where the seasonal signal remains the same, with or without the meteorological
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information.

Figures 5.6, 5.7, 5.8 and 5.9 compare the trend, m y(years), and the seasonal 

components, m w(weeks), of Model b (continuous line) and Model d (dashed line) 

across all the sites. A standard error reference band, defined in equation (4.21), 

is also shown and this indicates where the estimates are more than two standard 

errors apart. For the trend components, in most of the sites the two estimates 

match very well. The trends diverge temporarily at a few points but the general 

shape is preserved. These deviations are possible explanations for the significant 

p values. For the seasonal component, m w(weeks), the change is much smaller 

at SE02 and at SE05, where the meteorology was not statistically significant, 

than the other 9 sites. Apart from SE02 and SE05, the seasonality changes 

dramatically from Model b to Model d across all the other sites. In particular 

the seasonal pattern is stronger when the meteorology is not accounted for. This 

arises from the fact that some meteorological variables present strong seasonal 

signals and when these variables are not included in the model, the m w(weeks) 

component will be estimating part of the seasonality as well.

5.1.3 Testing for significant changes in seasonality across 

years.

The question that we tackle now concerns the analysis of possible changes of 

the seasonal cycles across time. In order to answer this question, Model a has 

been fitted at DE01, DE02, DE03, DE04, DE05, SE08, GB02, CH02, CZ03 and 

Model c has been fitted at SE02 and SE05. Both Model a and Model c allow 

the seasonal component to change over time, however Model a still accounts for
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Table 5.2: Testing for equal trends and seasonalities with and without ac­
counting for meteorology.

Trends Seasonalities
approximate 

F  test
Pseudo Likelihood 

Ratio test
approximate 

F  test
Pseudo Likelihood 

Ratio test
GB02 0.005 0 4.2e-5 3.1e-8
DE01 0.003 0 3.6e~8 2.2e-16
DE02 0.004 8.2e-15 0 8.2e-15
DE03 1.5e-4 0 0 0
DE04 0.001 0 0 0
DE05 8.2e"4 2.6e-9 0 2.6e-9
CZ03 5.0e-4 0 5.2e-15 0
SE02 0.117 0.090 0.024 1.4e"5
SE05 0.173 0.287 0.252 0.327
SE08 2.5e~4 0 8.5e~12 0
CH02 0.017 9.9e-16 0 0

meteorological effects, while Model c does not. Examples of the fits of Model a 

at DE04 and Model c at SE02 are shown in Figures 5.10 and 5.11 respectively.

In order to test for significant changes of the seasonal component across time, 

at DE01, DE02, DE03, DE04, DE05, SE08, GB02, CH02, CZ03, Model a has 

been tested versus Model b, and at SE02 and SE05, Model c has been tested ver­

sus Model d, using approximate F  tests and Pseudo Likelihood Ratio tests. The 

p values are listed in Tables 5.3 and 5.4. From these tables, it can be seen that at 

Waldhof (DE02), Brotjacklriegel (DE05), Kosetice (CZ03), and Hoburg (SE08) 

the best model to be fitted is Model b, where the trend and seasonal component 

are fitted as univariate. This means that seasonality does not change significantly 

across years. Instead, at Eskdalemuir (GB02), Westerland (DE01), Schauinsland 

(DE03), Deuselbach (DE04) and Payerne (CH02) the trend and seasonal com­

ponent give significant extra information in explaining the variability of SO 2 if
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Figure 5.6: Fits of the trends (my{years)) for Model b (continuous line) and
Model d (dashed line).

they are modeled with a bivariate smoother by Model a. At Rorvik (SE02) and 

at Bredkalen (SE05), it is possible to say tha t there was a statistically significant 

change in seasonality across years, arid therefore at both sites the best model is 

Model c. These results are also confirmed by Figures 5.12 and 5.13, which show
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Figure 5.7: Fits of the trends (my(years)) for Model b (continuous line) and
Model d (dashed line).

the different seasonal cycles, allowing the seasonality to change or to be fixed 

across years. The dashed black line shows the m y(years)+mw(weeks) component 

of Model b at DE01, DE02. DE03, DE04. DE05, SE08, GB02, CH02, CZ03 and 

Model d at SE02 and SE05. The continuous red line shows the m yw(years, weeks)
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Figure 5.8: Fits of the seasonalities (mw(weeks)) for Model b (continuous
line) and Model d (dashed line).

component of Model a at DE01, DE02. DE03, DE04, DE05, SE08, GB02, CHQ2, 

CZ03 and of Model c at SE02, SE05.

At those sites where the seasonality changes significantly over the years, 

graphs such as Figures 5.14 and 5.15 have been also produced to analyze whether,
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Figure 5.9: Fits of the seasonalities (mw(weeks)) for Model b (continuous
line) and Model d (dashed line).

and if so how, the peaks and troughs change over the years. Figure 5.14 shows 

the weeks where the yearly troughs (red) and peaks (black) of m yw(years, weeks) 

component, have been registered for Model a at DE04. Figure 5.15 shows the 

weeks where the yearly troughs (red) and peaks (black) of m yw(years, weeks)

estim ates of m( w eeks ) 
for ln(SQ2) at SEOfl
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Figure 5.10: a) fit of myw(years, weeks) component versus years and weeks 
component; b) fit of mr(rain) component versus rain values; c) 
fit of mt(temperature) component versus temperature values; 
d) fit of mh(humidity) component versus humidity values; e) fit 
of mw ±s. {wind.direction.speed) component versus wind values, 

of Model a for ln^C ^) monitored at Deuselbach (DE04).
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Figure 5.11: a) fit of m.yw(years, weeks) component versus years and weeks 
of Model c for ln(502) monitored at Rorvik (SE02).

component, have been registered for Model c at SE02. At DE04, the troughs 

are in the period May-July, while the peaks are around December-February. At 

SE02, the troughs are in the period July-September, while the peaks are around 

December- February.

Figures 5.16 and 5.17 show the pattern  followed by the peaks (continuous 

lines) and troughs (dashed lines) of m yw(years, weeks) component for Model a 

at DE01, DE03, DE04, CH02, GB02, and for Model c at SE02 and SE05 re­

spectively. At DE01, the peaks move from winter months to spring ones, while 

troughs move from summer to winter. At DE03, peaks move from spring to 

summer, while troughs, after a variable period, seem to converge toward winter
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Table 5.3: p values from testing Model a versus Model b

p-values approximate Pseudo Likelihood
F  test Ratio test

GB02 0.016 0.002
DE01 8.4e-5 8.8e-8
DE02 0.664 0.739
DE03 0.050 0.014
DE04 0.009 8.5e-4
DE05 0.172 0.104
CZ03 0.217 0.149
SE08 0.649 0.722
CH02 4.3e-5 8.8e-8

Table 5.4: p values from testing Model c versus Model
p-values approximate Pseudo Likelihood

F  test Ratio test
SE02 0.006

reiT—1

SE05 0.073 0.025

months. At DE04, the peaks remain steady in winter months, while troughs 

move from the late summer to early summer months. For CH02, both troughs 

and peaks remain constant in summer and in winter, apart from a shift around 

1995 where the trough moved to winter and the peak to spring. At GB02 the 

peaks and the troughs seem to stay in winter and summer months respectively 

until 1992 where they seem to swap, with peaks in summer time and troughs in 

winter. At SE02 and SE05, the peaks and the troughs seem to move from early 

winter and summer weeks to late winter and summer weeks respectively.
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Figure 5.12: The dashed black line shows the my(years) + inw(weeks) com­
ponent of Model 6, and the continuous red line shows the 
myw{years, weeks) component of Model a at DE01, DE02, 

DE03, DE04. DE05, CZ03.

5.2 Sensitiv ity  analysis of th e  te s t  for changes 

in corre la tion

All the results that have been shown in the previous sections are based on the 

assumption that the correlation estimate is correct. In contrast with the simula­

tion study, with real data it is not possible to have knowledge of the correlation,
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Figure 5.13: The dashed black line shows the my(years) + mw(weeks) 
component of Model b at SE08, GB02, CH02 and Model d 
at SE02 and SE05. The continuous red line shows the 
myw(years, weeks) component of Model a at SE08, GB02, 

CH02 and of Model c at SE02, SE05.

therefore there could be the risk that the smoothing parameter chosen would 

produce a biased estimate of the correlation, leading to poorer fits of the models,
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and consequently misleading results of the tests.

The models presented in Section 5.1 have been fitted, with estimation of 

the correlation parameters as 0.20 for Deuselbach (DE04), and 0.27 for Rorvik 

(SE02). In order to analyze the sensitivity of the results to the correlation es­

timates, this section presents the results using five different plug in correlation 

values (0, 0.2, 0.3, 0.4, 0.6), and these results will be compared to those of Section 

5.1. Indeed according to the analysis in Section 5.1, the best model at Rorvik 

(SE02) was Model c, while at Deuselbach (DE04) it was Model a. This means 

that at Rorvik (SE02), the meteorological variables are not significant, while at 

Deuselbach (DE04) the meteorological variables give significant extra informa­

tion. However, at both sites, the changes in seasonality across years have been 

identified as statistically significant. Table 5.5 presents the R 2 values for the 

models fitted at Rorvik (SE02) and Deuselbach (DE04). From Table 5.5 it can 

be seen that the R 2 decreases as the correlation increases, but the general picture 

is similar to the one obtained in Section 5.1. W ith a high correlation (0.6) the 

R 2 can not be calculated for Model a and Model b since their residual sums of 

squares are higher than the ones for the model with no covariates.

Table 5.6 presents the p values that have been obtained from testing the 

models using different plug-in correlation values, using both the approximate F  

test (upper value in the cells) and Pseudo Likelihood Ratio test (lower value in 

the cells). From Table 5.6, it can be seen that at SE02, whatever correlation 

parameter is used, the meteorology remains not statistically significant when 

testing Model a against Model c. This result agrees with the one obtained in 

Section 5.1. From Table 5.6, it is also clear that testing Model c against Model d, 

when the plug-in correlation is below 0.4, the p values agree with the result of
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significant change in seasonality across years of Section 5.1. For correlation values 

greater than or equal to 0.4, significant change in seasonality across years is not 

identified.

The results from Table 5.6 seem to indicate that at DE04, for correlation 

values of equal or higher than 0.4, the tests for assessing the change in seasonality 

give non-significant results, in contrast with results described in Section 5.1. The 

tests for assessing the statistical significance of the meteorological variables give 

the same results as Section 5.1, apart from a correlation value of 0.6.

Finally from Table 5.6, for high correlation (0.6), both the approximate F  

test and the Pseudo Likelihood Ratio test do not seem to work, because the 

residual sum of squares of the reduced models becomes smaller than that for 

the full model, implying that the models do not seem to perform well with high 

correlation.

Table 5.5: R 2 values from the additive models, using p=0, 0.2, 0.3, 0.4, 0.6 
___________________at SE02 and at DE04_________

SE02 p= 0

<N©II ■c> II © CO ■o II o p=0.6
Model a 
Model b 
Model c 
Model d

0.736
0.709
0.732
0.697

0.652
0.628
0.647
0.616

0.588
0.566
0.583
0.555

0.507
0.487
0.501
0.476

0.281
0.271
0.289
0.273

DE04 p= 0 p=0.2

COoIIQ. II o

©oIIQ.

Model a 0.783 0.722 0.675 0.605 -
Model b 0.758 0.701 0.656 0.589 -
Model c 0.628 0.532 0.463 0.382 0.199
Model d 0.596 0.488 0.448 0.430 0.493
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Table 5.6: p values from testing the Additive models, using p=0, 0.2, 0.3, 0.4, 
0.6 at SE02 and at DE04. The values above are obtained from the 
approximate F test, the ones below from the Pseudo Likelihood 

_____________________________ Ratio test.____________________
SE02 p= 0 p=0.2

COoIIQ. II o

<ooIIQ.

Model a Vs Model c 

Model c Vs Model d

0.677
0.733
l . le -9
l . l e -16

0.860
0.909
1.5e-4
6.6e-7

0.893
0.925
0.016
0.002

0.890
0.896
0.294
0.236

0.263
0.998
0.999

DE04 p= 0 p=0.2 II p bo II o p=0.6
Model a Vs Model b 

Model a Vs Model c

1.5e~5
3.1e-9

0
0

0.009
7.7e-4

0
0

0.087
0.048

0
0

0.602
0.656

0
0

0.562

1
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yearly peaks & troughs at DE04

Figure 5.14: yearly troughs (dashed line) and peaks (continuous line) for 
the estimates of myw(years, weeks) of Model a at Deuselbach

(DE04).
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Figure 5.15: yearly troughs (dashed line) and peaks (continuous line) for the 
estimates of m yw(years, weeks) of Model c at Rorvik (SE02).
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Figure 5.16: Yearly troughs (dashed lines) and peaks (continuous lines) of 
myw(years, weeks) component of Model a at DE01, DE03, 

DE04, CH02, GB02.
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Figure 5.17: Yearly troughs (dashed lines) and peaks (continuous lines) of 
myw(years, weeks) component of Model c at SE02 and SE05).
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5.3 D etecting discontinuities after the removal 

of sm ooth seasonality and meteorological ef­

fects through additive models

Chapter 3 showed an example of how discontinuities can be detected in a variable 

of interest. In chapter 3, seasonality was removed by fitting a factored model, 

with weeks of the year as factors. In the present context, the fit of an additive 

model suggests another way of deseasonalizing the data. Indeed, from fitting a 

simple additive model ln(502) =  fi + m y (y ear s) + m w (weeks) + e it is possible to 

obtain a smooth estimate of the component m w(weeks) which, when subtracted 

from the observed pollutant concentrations, gives a different deseasonalization 

procedure. The two different ways of deseasonalizing the data, by a factor model 

and by a smooth term, could also result in different outcomes for the test re­

sults. In fact, the factor model is able to fit abrupt changes over years, while 

the fit of an additive model would produce a smooth estimate that would not 

catch these abrupt changes. Therefore some discontinuities could be removed by 

deaseasonalizing the data through the factor model, and hence not be detected 

by the test. In other words, by applying the discontinuity test to the deseason- 

alized data obtained from the additive model fit, it could be possible to detect 

some discontinuities, that may not be found from fitting a factor model for the 

seasonal pattern.

Figures 5.18, 5.19, and 5.20 present the discontinuities detected across the 11 

sites when seasonalities are removed by factor models (left hand plots), and when 

seasonalities are removed by smooth terms (middle plots). Table 5.7 shows the p
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Figure 5.18: Discontinuities detected removing the seasonal pattern by a fac­
tor term (left hand plots), by a smooth term (middle plots), 
and removing meteorology and the seasonal pattern by smooth 

terms (right hand plots).

values of discontinuity tests computed by removing the seasonal component as a 

factor term (1st column), and removing the seasonal component as a smooth term 

(2nd column). From Figures 5.18, 5.19, and 5.20, and from the first two columns 

of Table 5.7, removing the seasonality with a factor model does not change the 

conclusions of the test, except for Hoburg (SE08). As expected removing the
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Figure 5.19: Discontinuities detected removing the seasonal pattern by a fac­
tor term (left hand plots), by a smooth term (middle plots), 
and removing meteorology and the seasonal pattern by smooth 

terms (right hand plots).

seasonality with a smooth term rather than with a factor model, results in a slight 

increase in the number of discontinuities detected and lower p values obtained by 

removing a smooth seasonal term. In particular at Hoburg (SE08), the p value is 

not significant when the factor model is used to remove the trend, while it is lower 

than 5% when the seasonal term is modeled by a smooth term. In this context
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Figure 5.20: Discontinuities detected removing the seasonal pattern by a fac­
tor term (left hand plots), by a smooth term (middle plots), 
and removing meteorology and the seasonal pattern by smooth 

terms (right hand plots).

some further analysis can be conducted on the cause of discontinuities. In fact 

chemistry experts suggested that some of these discontinuities could be due to 

meteorology effects. Therefore it will be interesting to see what would happen 

in detecting discontinuities after the meteorological effects are removed from the 

pollutant concentrations. Smooth estimates of the meteorological variables can 

be obtained from Model b that was fitted in section 5, here recalled as:

ln(502) =  p  +  m y(years) +  m w(weeks) +  m r(rain) +  m t {temperature)

+  mh{humidity) + myj'ds^wind.direction.speed) + e Model b
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Table 5.7: p values of discontinuities tests computed removing the seasonal 
component as a factor term (1st column), removing the sea­
sonal component as a smooth term (2nd column), removing the 
seasonal component and the meteorology as smooth terms (3rd 
column), at Eskdalemuir (GB02), Westerland (DE01), Waldhof 
(DE02), Schauinsland (DE03), Deuselbach (DE04), Brotjackl- 
riegel (DE05), Kosetice (CZ03), Rorvik(SE02), Bredkalen (SE05),

Hoburg (SE08), and Payerne (CH02).
p values Factor Seasonality Smooth Seasonality Smooth Seasonality 

& Meteorology
GB02 2.2e-4 3.5e-4 0.025
DE01 0.001 0.001 1.3e-5
DE02 0.003 5.7e-4 0.211
DE03 l.Oe-4 4e-4 0.067
DE04 3.8e-5 1.8e-5 0.006
DE05 0.002 8.2e-4 0.002
CZ03 0.027 0.015 0.166
SE02 2.6e-4 1.3e-4 0.011
SE05 7.1e-6 4.9e-6 2.9e-5
SE08 0.072 0.029 0.282
CH02 1.8e-8 1.2e-9 1.8e~6

By fitting Model 6, it is possible to obtain an estimate of the effect of each 

covariate and to remove it in order to test for the presence of discontinuities. 

In the present work, the effect of all the meteorological variables and the sea­

sonal term have been removed from the observations, and the residuals tested for 

discontinuities.

The right hand plots of Figures 5.18, 5.19, and 5.20 and the right hand column 

of Table 5.7 present the discontinuities detected and the p values across the 

11 sites when seasonalities and meteorological variables are removed by smooth 

terms. The conclusions of the discontinuity test are different if meteorological 

effects are removed from the SO 2 concentrations. Indeed at Waldhof (DE02),
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Schauinsland (DE03), Kosetice (CZ03) and Hoburg (SE08), the discontinuities 

detected are no longer significant after removing the effect of the meteorology. 

As expected as well in the other sites, the number of discontinuities detected is 

reduced and the p values increase.

5.4 Conclusions

This chapter presents an application of the techniques presented in Chapter 4 

to air pollution data. Analysis of sulfur dioxide at Eskdalemuir (GB02, Scot­

land), Westerland (DE01, Germany), Waldhof (DE02, Germany), Schauinsland 

(DE03, Germany), Deuselbach (DE04, Germany), Brotjacklriegel (DE05, Ger­

many), Kosetice (CZ03, Czech Republic), Rorvik (SE02, Sweden), Bredkalen 

(SE05, Sweden), Hoburg (SE08, Sweden), Payerne (CH02, Switzerland), from 

1973 up to 2001 shows that the meteorology is statistically significant in explain­

ing the variability of SO 2 across all sites except for two Swedish sites (Rorvik 

(SE02), Bredkalen (SE05)). The inclusion of meteorological variables changes 

significantly the trend estimates at a few points. However generally the shapes 

of trend estimates do not seem to change when meteorology is accounted for. 

Accounting for meteorology does seem to change the estimates of the seasonal 

component. Indeed when meteorology is excluded, the seasonal component is es­

timating part of the seasonal cycle of some meteorological variables. Concerning 

the seasonal cycle, the analysis also showed that at Payerne (CH02), Brotjackl­

riegel (DE05), Kosetice (CZ03) and Hoburg (SE08) the seasonality of SO 2  did 

not change significantly from 1973 to 2000, while it did at Eskdalemuir (GB02), 

Westerland (DE01), Schauinsland (DE03), Deuselbach (DE04), Payerne (CH02),
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Rorvik (SE02) and Bredkalen (SE05). Meteorological variables seem also to be 

the cause of significant discontinuities detected at Waldhof (DE02), Schauinsland 

(DE03), Kosetice (CZ03) and Hoburg (SE08).

Therefore it can be finally concluded that for further applications, if the in­

terest lies in analyzing the shapes of trends, there is no need to look at the 

meteorological variables. On the other hand, if the aim of the analysis is to have 

fewer frequency components, such as seasonal cycles, peaks and troughs, mete­

orological variables represent significant components to be accounted for in the 

model.



Chapter 6

Spatiotem poral Analysis

6.1 Introduction

In the previous chapters, the main problems associated with modeling air pollu­

tion have been presented. Fitting and testing additive models were reviewed in 

chapter 2 and their generalizations to deal with correlated data were presented in 

chapter 4. These models have been used to analyze the effects of meteorological 

variables on SO 2 (Chapter 5) showing that in most cases meteorological variables 

have a statistically significant effect in explaining the variability of SC>2 - However 

the estimated trend does not seem to change dramatically when meteorological 

information is not accounted for in the model.

However the analysis performed up to now has focused entirely on the time 

series analyses of SO 2 , without considering the spatial pattern. The aim of this 

chapter is to describe the spatiotemporal SO 2 trend through additive models ac­

counting for spatiotemporal correlation, using time trend, seasonality and spatial 

locations as covariates. In order to determine the spatiotemporal correlation,

182
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two marginal analyses have been performed: a spatial analysis across time, and a 

time series analysis across space. These spatiotemporal additive models will also 

be compared through an approximate F  test that accounts for spatiotemporal 

correlation.

The data analyzed in this chapter are the natural logarithms of the monthly 

means of sulphur dioxide concentrations ln(S02), monitored from 1990 to 2001 

at 130 sites across Europe. The decision to focus on these 12 years of data is 

a consequence of the low percentages of missing values present after 1990. The 

data are therefore quite dense in time, but sparse in space, which is a common 

feature in many spatial problems.

There are a number of approaches to modeling space-time data in the statis­

tical literature and the following section briefly reviews some approaches relevant 

to the analysis presented here.

6.2 Literature review of spatiotem poral trend 

analysis

Environmental processes, such as atmospheric pollutant concentration, are char­

acterized by spatial and temporal variability. In order to analyze similarities and 

differences between the approaches that are present in the literature, the follow­

ing notation will be used consistently across the different techniques described 

below. Whether the aim of the analysis is description, inference or prediction, 

space-time data are often modeled as a realization of a spatiotemporal random 

function (RF) Z(s, t), indexed in space by s G D  C R d and in time by t E T  C R.
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The space-time covariance function is defined as:

c(s1 , s 2 ; t 1 , t 2) = cov[Z(s1 \ t i ) ,Z {s 2 ’, t 2 j], su s 2 e  R d, t 1 , t 2 G R  (6.1)

A useful introduction to the main approaches available in the literature is pro­

vided by Gneiting and Schlather (2002). They propose the classification of space­

time modeling, and space-time covariance functions, into two general approaches:

1. Geo statistical methods. These methods give highest priority to the fitting 

of the space-time covariance function, that is usually expressed in simple 

or closed form.

2. Model based approach. The choice of the space-time covariance function is 

subordinated to the choice of the stochastic model that has higher priority. 

Therefore the covariance function can range from simple to very complex 

forms.

Therefore geostatistical approaches are conceptually simple, but may not offer 

the flexible covariance structures of the model based approaches. Subsequent 

sections will review the main techniques presented in the literature for each of 

the two approaches. The geostatistical approach will be described in more detail 

than the model based approach, since in the following sections, a technique that 

can be characterized as a geostatistical approach will be proposed.

In the following sections more emphasis will be given to the different ap­

proaches to the analysis of the spatiotemporal correlation structure. This is an 

active area of research and there are many studies concerning spatiotemporal 

non- st at ionar i ty.
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6.2.1 G eostatistical space-time models

Since the principal feature of geostatistical space-time models is the covariance 

function, there are two main groups that can be distinguished: separable models 

and non-separable models. The difference between separable and non-separable 

models concerns the structure of the covariance function (6.1). In particular 

separable models make the assumption that expression (6.1) can be simplified as 

follows:

c(si, s2;* i,*2) =  cov[Z(si,ti), Z(s 2 \ t2)], su s 2 e  R d, *i,t2 e  R

= cov[Z(si,s2)\ +  cov[Z(ti\t2)\ (6.2)

or

= cov[Z(si-s2 )\cov[Z(ti;t2)\ (6.3)

In other words, expressions (6.2) or (6.3) assume that the spatial covariance 

structure is the same across time, and the temporal covariance matrix is the 

same across space. Non-separable models do not make this assumption and give 

the space-time covariance function a more general form. This section is divided 

into two parts: a review of separable models, and a review of non-separable ones.

6.2.1.1 G eostatistical space-tim e models: the separable approach

Kyriakidis and Journel (1999) presented a useful review of geostatistical space­

time separable models. They distinguished two approaches of modeling spa­

tiotemporal data.

1. The first approach consists in modeling a single spatiotemporal function
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Z (s,t), typically decomposed into a trend component, describing smooth 

patterns, and a stationary residual component, describing higher frequency 

fluctuations.

2. The second approach analyzes multiple vectors of spatial functions or vec­

tors of time series. Within this approach, it is then possible to distinguish: 

models that treat the spatiotemporal process Z(s , t )  as a collection of a 

finite number T  of temporally correlated space functions Z(s),  and mod­

els that view the Z ( s , t ) as a collection of a finite number N  of spatially 

correlated time series Z(t).

1) Single spatiotem poral model.

Kyriakidis and Journel (2001a) propose a methodology for stochastic spa­

tiotemporal modeling applied to atmospheric pollution. They summarized their 

approach in five steps:

1. Station specific temporal trend models.

2. Regionalization of temporal trend coefficients.

3. Simulation of spatiotemporal trend.

4. Location specific temporal residual models.

5. Simulation of spatiotemporal residuals.

Kyriakidis and Journel (2001b) applied this spatial time series methodology to 

monthly averaged daily values of particulate sulphate SO 4  dry deposition over 

Europe. The data were provided by the Norwegian Institute for Air Research 

(NILU), and were collected through the Cooperative Program for Monitoring
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and Evaluation of the Long-Range Transmission of Air Pollutants in Europe 

(EMEP).

There are several other works which follow the single spatiotemporal model. 

Bogaert and Christakos (1997) analyzed the spatiotemporal pattern of calcium, 

chloride and nitrate which provide important indicators of water contamination. 

The regression space-time model they proposed consists of a purely spatial com­

ponent, a purely temporal component, a space homogeneous-time stationary com­

ponent, and a space-time mean function. In order to make the model operational 

and describe its main features, Bogaert and Christakos (1997) assumed that the 

spatiotemporal covariance function was separable, the random components of 

the regression model were statistically independent, a parametric expression for 

the mean was available and the spatial locations remained the same for all time 

points.

Luo et al. (1998) used “smoothing splines ANOVA” to produce spatiotemporal 

estimates of air temperatures data monitored by a network of stations. They show 

how the “smoothing spline ANOVA” can correct for the biases that result from 

the usual smoothing spline methods due to the incompleteness of sampling over 

time.

Kammann and Wand (2003) presented geoadditive models obtained from the 

fusion of geostatistical and additive models. There are several ways to combine 

the ideas of geostatistics and additive modeling. They propose to incorporate a 

geographical component expressing kriging as a linear mixed model and merging 

it with an additive model to obtain a single mixed model.

Christakos (1992) developed a spatiotemporal Random Field (RF) for ana­

lyzing complicated spatiotemporal deposition trends. A mathematical operator
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Q can be defined in space-time that transforms the RF Z(s, t)  to a zero mean 

homogeneous-stationary process Y(s , t )  = Q[Z(s,t)]. The Q operator filters out 

any existing space-time trends. The ordinary covariance c(si, t\\ s2, £2)5 which is 

generally space inhomogeneous and time nonstationary, can be decomposed into 

a spatially homogeneous and temporally stationary part g(h, r )  (h = Si — s2 and 

t  =  ti — £2 ) 5  which is called the generalized spatiotemporal covariance, and a 

polynomial in Si, s2, £1, £2-

Vyas and Christakos (1997) applied this spatiotemporal random field model 

to sulphate deposition over Eastern Europe. Christakos and Vyas (1998) applied 

the same spatiotemporal random field model to ozone concentration over Eastern 

Europe. Their analysis showed that temporal and spatial variations cannot be 

separated in simple ways, as they interact and influence each other. Theoretical 

arguments as well as numerical results show that composite spatio-temporal de­

position maps lead to improved estimates of concentrations compared to purely 

spatial or purely temporal analysis.

In later work, Christakos and Serre (2000) proposed a Bayesian version of the 

spatiotemporal random field model, called Bayesian Maximum Entropy (BME). 

They discussed an application to particulate m atter concentration (PM 10) in 

the state of North Carolina. The P M 1 0  maps show significant variability both 

spatially and temporally, a finding that may be associated with geographical 

characteristics, climatic change, seasonal patterns and random fluctuations.

2) M ultiple vectors o f spatial functions or vectors o f tim e series.

The second approach views the spatiotemporal process Z(s , t)  as a set of 

temporally correlated spatial functions, or a set of spatially correlated time series.
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Sampson and Guttorp (1992) presented a nonparametric method for estimat­

ing the spatial covariance assuming temporal stationarity, but neither spatial 

isotropy nor spatial stationarity. The model is constructed in two steps. Firstly, 

multidimensional scaling (MDS) is used to generate, from the original geographi­

cal coordinates (also called the G plane), a two-dimensional coordinate represen­

tation of the sampling stations (also called the D  plane) whose spatial dispersion 

is stationary and isotropic. Secondly, a thin plate spline interpolation is used to 

relate the two coordinate systems. Estimates of the covariance between observa­

tions at any two locations are smoothed functions of the geographical coordinates.

Guttorp et al. (1994) examined hourly ozone data at 17 sites around the 

Sacramento area. Their analysis showed a different covariance structure between 

night-time and day-time and therefore the spatial and temporal correlation struc­

tures of the residuals could not be assumed separable.

In later work, Meiring et al. (1998) applied a space deformation approach to 

ozone data and found a diurnally varying covariance structure. The covariance 

structure is clearly nonstationary and cannot be separated into purely spatial 

and purely temporal components. The focus of their analysis was mainly the 

spatial structure of the residuals from site-specific time series models. The pro­

cedure proposed consists firstly in a temporal pre-whitening of the time series at 

multiple monitoring stations and then the computation of spatial and space-time 

covariances between the pre-whitened series at different sites.

Mardia and Goodall (1993) apply kriging after detrending the data and co- 

variance transformations in order to view the data as repeated measurements in 

space. When the data showed non stationarity and anisotropy in space, they 

apply a space deformation in order to obtain new coordinates for the monitoring
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stations so that the spatial covariance became stationary and isotropic.

6.2.1.2 G eostatistical space-tim e models: th e  nonseparable approach

Among geostatistical approaches, Gneiting and Schlather (2002) present a review 

of nonseparable covariance functions. Nonseparable covariance functions can be 

modeled using mainly three different approaches: models based on space-time 

metrics, physically based models, and models based on Fourier analysis.

Among the physically based models, Cox and Isham (1988) present a physical 

model for rainfall. Jones and Zhang (1997) discuss the space-time covariance 

functions associated with the solutions of certain stochastic partial differential 

equations. Brown et al. (2000) build on physical dispersion models which could 

correspond to phenomena such as the spread of an air pollutant. These models 

are again generated by stochastic differential equations. The physical background 

of these models is appealing but the approach does not readily lead to closed form 

expressions for the space-time covariance functions.

Among the models based on Fourier analysis, the approach of Cressie and 

Huang (1999) focuses on the analytical derivation of covariance functions through 

Fourier inversion. Gneiting (2002) provides a Fourier-free implementation of the 

Cressie and Huang (1999) approach and enlarges the class of valid spatiotemporal 

covariance functions.

6.2.2 M odel Based Approaches

A good overview of the model based approach is given by Diggle et al. (2002). 

They set out the basic methodologies for dealing with geostatistical problems.
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Diggle et al. (2002) distinguish two main cases of study: the Gaussian and 

the non-Gaussian model. The first is based on the assumption that the “sig­

nal process” is Gaussian, while the second relaxes this assumption. For the 

Gaussian model two main methods of inference can be distinguished: paramet­

ric and Bayesian methods. In the parametric approach estimation is based on 

variogram analysis. Bayesian methods of inference for Gaussian models treat pa­

rameters in the model as random variables, allowing for parameter uncertainty 

in predictive inference. Among the non-Gaussian models, Generalized Linear 

Spatial Models (GLSM) represent a widely used class of models.

Huerta et al. (2004) propose a model within the Bayesian framework by using 

dynamic linear models to analyze hourly ozone levels in Mexico City accounting 

for temporal non-stationarities in the data. Markov Chain Monte Carlo methods 

are used to produce predictions in time and interpolation in space.

Wikle et al. (1998) illustrate the Bayesian hierarchical view in space-time 

settings. A flexible five-stage hierarchical model is presented by the authors: “The 

first stage of the model specifies a measurement error model for the observational 

data. The second stage of the model allows for site specific time series models 

and the incorporation of space-time dynamics. In the third stage, the parameters 

of the site specific time series models are described with priors through a Markov 

random field that generates spatial dependence structures. The final two stages 

complete the Bayesian formulation by specifying priors on the parameters” . The 

aspect that is central to this article and distinguishes this approach from the 

other hierarchical space-time formulations is the third stage, where the dynamic 

terms are modeled. The Bayesian hierarchical strategy that they propose allows 

complicated structures to be modeled in terms of means at various stages, rather
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than a model for a massive joint covariance matrix.

Wikle and Cressie (1999) try to combine the geostatistical approach with the 

model based approach. In fact the former approach is limited in that difficul­

ties often arise in the specification and implementation of realistic covariance 

functions. They therefore combine both approaches through the spatiotempo­

ral Kalman filter. The Kalman filter, commonly used by control engineers and 

other physical scientists, has been successfully used in such diverse areas as the 

processing of signals in aerospace tracking and underwater sonar and the statis­

tical control of quality. Meinhold and Singpurwalla (1983) present an interesting 

article on how the Kalman filter can be easily understood and useful to statis­

ticians if a Bayesian formulation and some well known results in multivariate 

statistics are used. The essential difference between the Kalman filter and the 

conventional linear model representation is that, in the former, the state of na­

ture analogous to the regression coefficients of the latter is not assumed to be a 

constant but may change with time.

Brown et al. (2000) proposed a non-separable spatiotemporal model based on 

a physically sensible dispersion model which can model phenomena such as the 

spread of an air pollutant. The model consists in producing spatial maps that 

evolve in time by “blurring” the values at the previous time point and adding a 

spatial random field.

Oehlert (1993) presented a spatiotemporal model to estimate the ability to 

detect trends in wet-deposition sulphate, using data monitored in North America. 

This model includes spatial and temporal correlation among the monitoring sta­

tions and provides a way to estimate regional values from a scattering of stations 

by using a discrete smoothing prior. The first problem addressed by this article



CHAPTER 6. SPATIOTEMPORAL ANALYSIS 193

is to determine the variance of regional trend estimates for response variables of 

interest, while the second considers the addition and the deletion of stations to 

the current network. The first involved modeling the spatial covariance (between 

stations) using an exponential model, while the second one was based on two 

criteria: minimizing the average regional variance, and keeping the largest of the 

local variances from becoming too large.

Studies conducted by Shannon (1999) regarding data collected during the last 

16 years in US and in Canada, and by Lynch et al. (1995) on 13 years of data from 

the National Atmospheric Deposition Program (NADP), used regression analysis 

to reveal a considerable inter- and intra-regional variability, even in small regions 

with multiple sites. These studies showed that if, on the one hand, regional 

averaging is recommended to remove small scale variability, on the other hand, it 

is possible to obtain non-significant estimates at regional scale even if significant 

estimates of trends are obtained at the individual station level.

The approach taken in this work differs from the ones presented in this litera­

ture review because it tackles the spatiotemporal problem using a nonparametric 

approach that does not make any distributional assumptions about the data. The 

methodology proposed here describes the spatial pattern of the data through a 

smooth surface that can change its mean level smoothly over time, taking into 

account the spatiotemporal correlation. The flexibility of this model comes at the 

price that a separable model is assumed for the error term and that the spatial 

surface does not change in shape over time.
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6.3 Spatial analysis across tim e

This section will present an analysis of the spatial trend at 130 sites in Europe 

across each month from 1990 to 2001. Time series analysis of the spatial correla­

tion structure will be also performed.

6.3.1 Spatial analysis across time: N otation

The model assumed for the data is:

%ij — Zj^Si) =  /ij(Sf) +  7yj(Si), i = 1, . . . , 77., j = 1 , . . . ,  £,

where n = 130 is the number of sites, t = 144 is the number of time points 

and s i , . . . , s n denote the positions of the monitoring sites, fij represents the 

spatial trend at time j , and r/j is the error term at time j  whose expected value 

is zero. (It should be noted that not all sites monitored SO 2 over the period of 

analysis and some values of 2^ are therefore missing). The process is said to be 

(weakly) stationary if E{Zj(si)} = (ij, and Cov{Zj(si), Zj(si>)} = C(si — Sj/) (or 

equivalently Cov{rjj(si ) 1 Vj(si')} = C(si — Si>)), and it is said to be intrinsically 

stationary if E{Zj(si)}  = fij, and Var{Zj(s i ) — Zj(s^)} =  27 (s* — s /̂) (or equiva­

lently Var{r)j(si) — r)j{si>)} = 27(s* — s*/)). The spatial processes rjj are modeled 

here through semivariogram functions 7j given by:

-  Si>) = Var{r}j(si) -  77̂ / ) }  (6.4)

where Si and s*/ are the locations of two stations. If the argument of 7j depends 

only on d = ||sj — s^||, where the norm ||.|| usually represents the standard
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Euclidean metric, the process is said to be isotropic.

This model raises the questions of what appropriate structures should be used 

for the trend functions fij and the variograms 7j. In particular, evidence for dif­

ferences in the 7j functions over j  has important implications for the construction 

of a suitable spatiotemporal model. These questions will be addressed below.

Since spatial analysis is based on distances between sites, the measure of 

distance used must be considered. The locations of the sites are expressed in 

latitude and longitude. In order to account for the curvature of a globe, the 

location coordinates will be translated to the coordinates of a tangent plane to 

the north pole. The translations have been done using the Lambert (or Schmidt) 

projections that translate equal areas on the surface of the spherical map to equal 

areas on the plane projection (Fisher et al., 1993). The distances between sites 

can then be computed using Euclidean distances. Indicating latitude with 6  and 

longitude with 4 i, the Lambert projections are given by:

All the results in this paper are obtained on the projected plane, and are trans­

lated back to the original latitude and longitude for visualization.

6.3.2 Spatial analysis across time: m odel fitting

Exploratory graphs (Figure 6.1a) of the observed values of ln(502) clearly indi­

cate the presence of spatial trends.

x

y (6.6)

(6.5)
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a) observed values ol S 0 2  
January 1990______

■ ■
a) observed values of S 0 2  

August 1995

b) estimated trend of S 0 2  
January 1990

b) estim ated trend of S 0 2  
August 1995______

J
3

c) kriging predictions of S 0 2  
1990

d) standard errors for kriging predictions of S 0 2  
August 1995

■  ■
c) kriging predictions of S 0 2  

August 1995

d) standard errors for knging predictions of S 0 2

Figure 6.1: Contour plots of: a) observed values, b) estimated trend, c) krig­
ing predictions, d) standard errors for kriging predictions for SO2 

in January 1990 (left hand side) and in August 1995 (right hand
side).
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In order to construct variograms to model the spatial covariance with an 

assumption of intrinsic stationarity, the trends must be removed. However, a 

unique methodology for trend detection and identification does not exist. In this 

analysis four different trend models have been fitted:

•  Model 1: ln(502)*j =  /?oj+/?ij£*+Ay2/*+£y» for each time point j  = 1 , . . . ,  t, 

across n  sites i = 1 , . . . ,  n.

•  Model 2: ln(5'02)y =  fj{%i, Vi) +£ij, for each time point j  = 1 across 

n sites i = 1, . . . ,  n.

•  Model 3: ln(S02)y =  a  +  7rkj +  tpij +  Vi +  £#, where 7rk, <Pi, Vi denote factor 

levels for month, year and site, and the notations kj and lj indicate that 

the month index k and the year index I are identified from the index j  of 

the time point.

•  Model 4: In (5 0 2)y =  a  +  irkj +  (pi. +  ^  +  (7Tip)^  +  (7Ti/)kji +  , where

years, months and site codes are again treated as factors.

Model 1 describes the spatial structure with a different plane at each time point 

(j = 1, . . .  Model 2 allows the spatial structure to be a smooth surface at 

each time point. Models 3 and 4 describe the spatial structure by including year, 

month and site as factors. Both these models assume that the time trend is the 

same across sites, but Model 3 assumes in addition that the seasonality is the 

same across sites and across years, while Model 4 allows the seasonality to change 

across sites and across years. Model 4 was the most general factor model fitted, 

since it was not possible to fit the interaction term between year and site, due to 

the fact that not all the sites have monitored SO 2 across the same years.
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The fitting of Models 1, 3 and 4 was carried out using least squares, while 

Model 2 has been fitted by a bivariate local linear regression smoothing procedure 

(Bowman and Azzalini, 1997). For n sites with coordinates (2+  yi), i = 1, 2 , . . . ,  n, 

the bivariate local linear regression smoother involves solving the weighted least 

squares problem:

min y '{ ln ( 5 0 2)y -  olj -  Sjfa -  y )  -  T j ( x i  -  x ) } 2W i { y i  -  y \ h 1 )w2 (xi -  x; h2)
ai ><b>Tj 7 7  1=1

(6.7)

for each time point j .  The estimate of the surface at position (x, y) is given by the 

value of dij. The smoothing parameters h\ and h 2 control the width of the kernel 

functions Wi ( . )  and W2O) respectively. Here the smoothing parameters have been 

chosen subjectively as h = (/ii,/i2) =  (0.06,0.06).

For the residuals of each of the four models fitted, the variogram has been 

computed using a “robust” alternative version of the usual variogram proposed 

by Cressie (1991):

27(d) — n Arr, , 0.4940.457 + n
(6.8)

where, given a finite number of observations s = s i , . . . , s n, N(d)  denotes a 

collection of (si5 Sk) pairs of sites whose Euclidean distance lies within a given 

neighborhood of d, and |.| denotes cardinality. The semivariogram estimate (6.8) 

is an approximately unbiased estimator when the data are normally distributed, 

but is less affected by outliers than the common estimator of the semivariogram. 

Figure 6.2 gives examples of the empirical variograms of the residuals from the
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four models, at two different time points (January 1990, August 1995). In these 

figures, as in most of the cases that have been observed, the fitting of Model 

1, ln(S 0 2 )ij =  Poj +  PijXi +  /%jVi +  £ij, seems to be the only trend surface 

that gives a bounded variogram which is monotonically increasing. Models 3 

and 4 give unbounded variograms at most of the time points, which apparently 

suggests that spatial correlation is always present between any two points across 

Europe. Since the variograms increase indefinitely with increasing lag distance, 

the process is not second order stationary and the covariance does not exist. One 

possible explanation for this is that the residuals from Model 3 and Model 4 still 

include some trend, since these two models assume that the time trends are the 

same across sites. The variograms from Model 2 show no evidence of positive 

correlation, which suggests that this model is overfitting the data, capturing 

not only the trend but also part of the correlation structure as well. The most 

plausible trend estimate is therefore the plane (Model 1). The bounded pattern of 

the variograms obtained from Model 1 provides a suitable model of the underlying 

spatial covariance.

The results for Model 1 could be obtained from Model 2 by using a very large 

smoothing parameter. Indeed, the local linear regression smoother can be viewed 

as a relaxation of the usual linear regression model. Indicating with h the two 

smoothing parameters of equation (6.7), h = (hi, hi), and changing their values 

by the same amount, it is clear that as the smoothing parameter h becomes very 

large, the curve estimate approaches the fitted least squares regression surface. It 

is appealing to have this standard model within the nonparametric formulation. 

Figure 6.3 shows the empirical variograms of the residuals obtained by fitting 

a bivariate local linear regression smoother to the data for January 1990 with
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a  Model 1 a) Model 1
A ugust 1995Ja nuary  1990

b) Model 2 
Ja n u ary  1990

b) Model 2 
A ugust 1995

c) Model 3 
Ja n u a ry  1990

0.25 0.30

A ugust 1995

0.10 0.20 0.2S 0.30

d Model 4
Ja n u ary  1990

d) Model 4
A ugust 1995

0.0 005 0.10 0.16 020 0.25

Figure 6.2: Observed variograms of the residuals from: a) Model 1, b) Model 
2, c) Model 3, d) Model 4 for SO2  in January 1990 (left hand 

side) and in August 1995 (right hand side).
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different smoothing parameters. As the smoothing parameter increases, the shape 

of the variogram approaches the one obtained from the plane. A visual impression

January 1990, h=( 0.01 ,0.01 January 1990, h=( 0.03 , 0.03)

2 2
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Figure 6.3: Observed variograms of residuals obtained from a bivariate local 
linear regression smoother with different smoothing parameters

of January 1990.

of the fit of the plane of Model 1 is given by Figure 6.1 b. Generally, the fits seem 

to agree quite well with the observed values shown in Figure 6.1 a.

Having established that Model 1 describes the trend, three different theoretical 

variograms were fitted to the residuals:
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• Spherical model

7o (d) =

0, d = 0,

C0 +  C1 { l l  “  2 ( I ) 3} ’ 0 < d -

cq C\ d >  R

(6.9)

• Exponential model

7o {d) =
0, d = 0,

c0 +  C i ( l  -  e~d/R), d > 0,
(6.10)

•  Gaussian model

7o(d) =  <
0, d =  0,

c0 +  C!(l -  e(~d/jR)2), d > 0,
(6.11)

In each of the expressions (6.9), (6.10), (6.11), R  > 0, a scale parameter, is 

the range, Co ^  0 is the nugget effect, and c\ is the sill All the resulting functions 

are negative definite.

Each of them has been fitted by Cressie’s weighted least squares procedure 

(Cressie, 1991): given a sample variogram 7 (d) evaluated at a finite number of 

values of d, say d\, c?2, . . . ,  and a model 7(^5 A) depending on unknown parameters 

A, where A is chosen to minimize:

(6 .12)

This method is not dependent on a particular sample estimator. It is relatively
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straightforward to calculate through nonlinear optimization, and no complicated 

likelihood evaluation is required. A practical disadvantage is that there is no easy 

way to obtain standard errors for the estimators, or to test hypotheses about the 

parameters.

To minimize expression (6.12), the Gauss-Newton algorithm has been used. 

Results from fitting the three theoretical variograms at each time point seem to 

indicate that the Gaussian model can be easily fitted in most cases, while with 

the Spherical and the Exponential models the algorithm does not converge at 

some time points. Figure 6.4 shows the fit of the estimated Gaussian variograms, 

obtained from the residuals of Model 1, for January 1990 and August 1995.

January 1690 August 1965

o.o 0.06 0.10 0.15 0.20 0.25

3

0.0 0.05 0.10 0.15 0.30

Figure 6.4: Fitting Gaussian variograms to the residuals of SO2 from fitting 
Model 1 to monthly means of January 1990 and August 1995.

Once the variograms for each time point have been estimated, an ordinary 

kriging procedure has been used. Figure 6.1 c and d show respectively the pre­

dictions and the standard errors for kriging predictions using contour plots. The 

predicted values of Figure 6.1 c have been obtained by adding the ordinary krig­

ing predictions to the plane surface shown in Figure 6.1 b. The predictions seem
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to agree quite well with the main features of the data.

6.3.3 Spatial analysis across time: parameter estim ates

It is now of interest to consider the temporal dimension of the data by first 

inspecting the pattern of the coefficients of the plane for projected latitude and 

longitude and to assess if they vary over time.

Figure 6.5 shows time series plots of the estimates of the intercept (fio), the 

coefficients for x (fii) and for y (/?2) of Model 1. Smooth estimates of trend 

(local linear regression smoothers) for each time series are plotted (continuous 

lines), together with global averages (dashed lines) and reference bands for no 

effect. A test for no effect of the parameters (introduced in Section 4.4.4) has 

been implemented and p values for the test applied to the Model 1 parameters 

are respectively 0.342,0.358,0.819 (Pseudo Likelihood Ratio test). From the test 

results and from Figure 6.5 it is clear that no significant changes across years 

are affecting Model 1 parameters. Figure 6.6 shows the plots of the estimated 

monthly parameters of the variograms (range, sill, and nugget effect) across time. 

Figure 6.6 also shows smooth trends, global average and a reference band for no 

effect. A test for no effect of the parameters (introduced in section 4.4.4) has been 

implemented and p values for the test applied to the range, the sill and the nugget 

are respectively < 0.0001,0.255,0.0003 (Pseudo Likelihood Ratio test). For the 

sill it is therefore possible to say that there has not been a significant change 

across years. The results for the range and the nugget, have shown significant 

p values. However it is possible to see from Figure 6.6, that the trends are not 

monotonic and the effects are small (the values for the range and the nugget at
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Figure 6.5: Temporal plots of foj faj, Pij across t time points j  — 1
Displayed are smooth trend curves (continuous lines) and global 
averages (dashed lines) superimposed. Reference bands for no 

effect are also displayed.

i
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N u g g e t  e s t i m a t e s  a c r o s s  t im e

Figure 6.6: Time series of monthly estimates of Range (R j ), Sill (coj) and 
Nugget (cij) parameters across t time points j  = 1, . . .  ,t. Dis­
played are smooth trend curves (continuous lines) and global 
averages (dashed lines) superimposed. Reference bands for no 

effect are also displayed.

1990 are very close to the ones in 2001). Therefore we have proceeded by defining 

a spatial correlation structure for the entire period 1990-2001 by averaging the 

monthly estimates of the range, sill, and nugget effect parameters. Monthly 

averages of the variograms’ parameters across all the time points are displayed 

by dashed lines in Figure 6.6. Using these values in the theoretical variogram 

defined in section 6.3.2 would result, assuming a separable model, in a matrix 

which could be used together with a time correlation matrix across space, to
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undertake spatiotemporal analysis.

6.3.4 Spatial analysis across time: Conclusions

This section presents an approach to the spatial analysis of sulphur dioxide from 

1990 to 2001 at 130 sites across Europe. At each time point, a plane seems 

to be the most appropriate model for the SO 2 trend surface. Analysis of the 

resulting residuals showed that the Gaussian variogram model fits better than 

the Exponential and the Spherical models. Time series analysis of the range, 

the nugget, and the sill showed no evidence that the spatial correlation changes 

markedly over time. Therefore the average of the estimates for each parameter 

could be used to define a spatial correlation matrix for the period of analysis. 

Thus a separable space-time covariance structure for SO 2 on this spatial scale 

and over this time period is appropriate.

However in order to build a separable model, there is a need to define a time 

correlation matrix that could be used in combination with the space correlation 

matrix to model the spatiotemporal trend. Therefore, the following sections will 

present some time series analyses across space, in order to define a time correlation 

matrix of the monthly SO 2 data from 1990 to 2001, for the 130 sites.

6.4 Time series analysis across space

Using the same data set analyzed in Section 6.3, in this section time series analysis 

across space is performed. The techniques used to perform these analyses are
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identical to those presented in Chapter 4.

ln(502)u — otu +  m u(years, months)  +  eu u = 1 , . . . ,  130 (6.13)

At each of the 130 sites, (Model 6.13) has first been fitted assuming independent 

errors. An AR(1) model has then been fitted to the residuals. Visual inspection 

across the sites showed that the AR(1) assumption is not unrealistic. The top 

graph of Figure 6.7 shows the fit of Model (6.13) at an Italian site (IT04). The 

middle left and middle right graphs of Figure 6.7 show the acf  and pacf  of 

the residuals from the fitting of Model (6.13) at IT04. The bottom left and 

right graph of Figure 6.7 show respectively a contour plot and a boxplot of the 

estimated correlation coefficients across all sites. Both contour plots and boxplot 

indicate some variability in the correlation coefficient, but the average of the 130
130
X/ pu

estimated correlation coefficients (-^ -Q =  0.23) is proposed to provide a single 

estimate of the temporal correlation across all sites. Consequently the element 

[i,j\ of the time correlation matrix across all sites will be

6.5 Spatiotemporal additive model

In this section spatiotemporal additive models will be fitted and tested, account­

ing for the spatiotemporal correlation, obtained by combining the spatial corre­

lation matrix across time (Section 6.3) with the time correlation matrix across 

space (Section 6.4).
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Figure 6.7: Fitted Model 6.13 to an Italian site (IT04); acf and pac.f of the 
residuals. Contour plot and boxplot showing the distribution of 

the time correlation estimates across all sites.
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6.5.1 Spatiotem poral additive model: introduction

Sections 6.3 and 6.4 showed “marginal spatial analysis” and “marginal time series 

analysis” respectively. This section proposes a spatiotemporal model that models 

the spatial and the temporal trends using at the same time all the data that are 

available, across space and time simultaneously.

Additive Models 6.14 and 6.15 are the additive models that we want to fit 

here, accounting for circular smoothers for the variable “months” , and for the 

spatiotemporal correlation.

y =  a +  m idyears ,  months) +  ms^(latitude, longitude) +  e (6.14)

y = a  +  mi(years) +  m 2 (months) +  mz^(latitude, longitude) +  e (6.15)

For an additive model of the form 6.15 or 6.14, it is necessary to think about 

its computational applicability. For fitting a model with such characteristics it 

is necessary to build a smoothing matrix of dimension n x n, where n is the 

sample size. If we think about monthly means of 10 years data across 100 sites, 

it would be necessary to build and to do computations with smoothing matrices 

of dimension 12000 x 12000. Computationally, it is understandable that this is 

extremely expensive, and because of that it is necessary to use an algorithm to 

avoid this dimensional problem. The next section will develop an approach using 

binning in the fitting of additive models.
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6.5.2 Spatiotem poral additive model: binning large data

In nonparametric statistics, binning represents one of the most common tools to 

apply to computationally expensive procedures (Bowman and Azzalini, 2003). 

The concept of binning consists of reducing the raw data to frequencies over a 

fine grid. If the number of grid points is set to be large then the accuracy of the 

simplest form of binning can be maintained at a high level without introducing 

complications into the computational formulae. When a fine grid is placed over 

the sample space, the original data can be recoded as frequencies at grid locations 

and, for regression data, sample means and standard deviations of the response 

variable. Bins containing no observations should be omitted from the recorded 

list. Using the notation:

• b the number of bins,

• yij refers to observation j  which lies in bin i ,

• Xi the location of the bin z,

•  yi and s* denote the mean and the standard deviation of the responses for 

the data in bin z,

• rii denotes the bin frequencies.

it is possible to rewrite the least squares problem for fitting a local linear regres­

sion, minimizing, at each evaluation point z, the following expression:

sets

(6.16)
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Expression 6.16 can be expanded also in the following formula:

y :  niS?w(xi -  z;h) + ^ 2  ni{Vi - a -  (3(xi -  z )} 2 w(xi -  z\ h) (6.17)
i i

which shows that the estimation of a , and hence the construction of the non- 

parametric regression curve, can be based solely on the bin means, locations and 

frequencies.

Denote the local mean estimator as y = Hy,  where H  denotes the smoothing 

matrix (n x n). With binning the dimensionality of the smoothing matrices is 

determined by b rather than by n, which is a very considerable reduction. In fact 

the local mean estimator can be written as y = B S D y , where:

• S  is the smoothing matrix of dimension b x b defined by x*;

• D  is the matrix that reduces the response variable y to the binned data 

y (y = D y ), reducing the dimensionality from n to b. D  is of dimension 

b x n, whose elements of row j  are all zeros, except those (j, i ) elements at 

position i of y that belong to bin j  that are defined by 1 /rij, where rij is 

the frequency of bin j .

•  B  is the matrix that expands the values of y back to a vector corresponding 

to the original data y , assigning the value yi to the position jf, in the vector 

yij. B  is of dimension n x b  whose elements of column j  are all zeros, except 

those (i , j)  elements at position i of y that belong to bin jf, that are defined 

by 1.
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6.5.3 Spatiotem poral additive model: binning additive

models

The fitting of additive models has been carried out in Section 4.3 by defining and 

computing a smoothing matrix at iteration (z), such that y = H ^ y .  The 

backfitting algorithm described in Section 4.3 starts by computing the smoothing 

matrices of each component. For the binned data, the smoothing matrix of the 

additive model for component j  will be defined as Hj = B jS jD j , where these 

matrices have been defined in Section 6.5.2.

In this section, a computationally less expensive version of the backfitting 

algorithm is proposed. This consists in updating the matrices B j ,S j ,D j  sepa­

rately at each step rather than H j , so dealing with matrices of lower dimensions. 

Indicate by N,  a matrix of dimension n x n whose elements are - .J ’ n

Using a similar approach to the one described in Section 4.3, for the simplest 

case of two variables, it is possible to write the first two steps of the backfitting 

algorithm in matrix form as follows:

1. first step:

=  ( I - W B & D w

=  ( /  -  N ) B 2 S 2 [D2 -  D 2{I -  ^ B A D ^ y

= ( I -  N ) B iS 2 [D2 -  Q ^ ] y

2. second step:

A<2) =  ( I - N ) B 1 S 1 [D1 - D 1 ( I - N ) B 2 S 2 (D2 - Q ^ ))]y
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=  (I -  A O B A l D i  -  Q®]y 

m<2) =  ( I - N ) B 2 S 2 [D2 - D 2 ( I - N ) B 1 S 1 (D1 - Q f ))]y 

= (I -  N ) B 2 S 2 [D2  -  Q f ] y

Using induction, it is possible to derive the projection matrix for variable j , 

updated at iteration (z), from the following formula:

H f  =  ( /  -  N)BjSj(Dj  -  Qf )

where,initializing =  / ,  at iteration i it is possible to write:

Q f  = E  -  Q t 1}) + E  -  Q ^
k>j k<j

where 

Pjk = Dj(I  — N)BkSk

It is worth noting that the previous expression can still be reduced in dimension­

ality. For example by expressing

Pjk =  DjBkSk — DjN BkSk

it is possible to see that the first term of the difference is no longer an n x 77- 

matrix, and the second term can be simplified further as

DjNBkSk = CjkSk
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where Cjk is a matrix of dimension bj x bk, where bj and bk are the numbers of 

bins present respectively in variables Xj and Xk. The Cjk matrix for each of the 

j  rows has bk elements: rii/n , r ^ /n , . . . ,  n&fc/n , where denotes the frequencies 

of bin i.

In a similar way

H f  =  (J -  -  Qf )

can be expressed as

H f  = (BjSj  -  NBjSj)(Dj  -  Q f )

where it is possible to note that the first term of the first difference is no longer 

an n  x n matrix, and the second term can be further simplified by expressing it 

as:

N B M  = CjS} (6.18)

where Cj is a matrix of dimension n x bj, where for each of the n rows, there are 

bj elements: rq /n , n2/ n , . . . ,  n^./n.

Once the algorithm has converged at iteration i, it is simply necessary to sum 

together the estimates of each component = H j^ y , j  = 1 , . . .  ,p, to obtain 

an estimate of y. It is worth remembering that for the sum of the projection 

matrices of each component it is necessary to include the mean of y , in order to 

get a final H  matrix that, when multiplied by ?/, gives an estimate y. In fact the
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projection matrices were computed assuming that:

y = y + (H1 + H 2 + . . .  + Hp)y = (N  + H 1 + H 2 + . . .  + Hp)y = Hy  (6.19)

Having obtained a hat matrix (H ) for the additive model, it is now possible to 

compute residual sums of squares and degrees of freedom, in order to compute 

the approximate F  test.

6.5.4 Spatiotem poral additive model: binning additive

m odels w ith correlated errors

For the correlated errors case, the binned version of the backfitting algorithm 

needs to be extended. It is firstly necessary to define the correlation matrix £  for 

the response variable y that accounts for both spatial and temporal correlation. 

Assuming a separable model, it is possible to obtain the full correlation matrix 

£  as the direct product (known also as the Kroneker product) of the temporal 

correlation matrix © with the spatial correlation matrix T, namely £  =  © 0  T.

As expressed in Chapter 4, the computation of the smoothing matrices needs 

to be amended for the correlation of the errors, as does the definition of degrees 

of freedom and residual sum of squares of the model. The correlation matrices 

needed for estimating the local linear smoothers can be easily obtained using 

the matrix D  defined in Section 6.5.2. Therefore the correlation matrix of Dy  is 

D E D t .

The computation of degrees of freedom and residual sum of squares are also 

different in the correlated case. Using the definition of degrees of freedom of the 

error (dferr,c.) given in section 4.4.2, using the present notation, it is possible to
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write the following expression:

df  =  tr(E _1ffE  + HT -  H T'E,~1 H'£,) (6.20)

In order to reformulate the previous expression to a less expensive one, the final

smoothing matrix H  can be decomposed as the sum of smoothing matrices H  =

N  +  Hi +  H2 +  . . .  +  Hp.

Since the matrices involved in (6.20) are of dimension n  x n, making their com­

putation extremely expensive, it is necessary to decompose each of the elements 

of the sum in (6.20) as follows:

p v
i r fS - 'H S )  =  ^ t r ( S - 1//)S ) =  j ^ t r ( E E  ~1 Hj ) =

j =1 j =o

=  (6.21)
j =o

tr (HT) =  £  t r (H j )  =  £  tr[(Dj -  Q f ) T£%B j ( I  -  JV)T] (6.22)
j= 0 j - 0

tr{HTT,-l HY)  =  t r [ ( ^ H j E - 1) ( ^ H jE)] =  f r [ ^ ^ l f feI'E -1ff;,.E] =
j= 0 j= 0 k=0 j = 0

=  t r [ £  E P *  -  Q k f S l  Bl(I -  N f X - 1
k=0 j —0

(J -  N)BjSj (Dj  -  Q f  )E] (6.23)

where Hq corresponds to the N  matrix. Prom expressions 6.21, 6.22 and 6.23, it 

is possible to obtain more efficient computations, calculating the matrix product
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in blocks to avoid the computation of full n x n matrices.

For the computation of the Residual Sums of Squares (RSS), the calculation 

of (y — y)Y>~l (y — y ), can be written in a simpler computational formula as 

( y - y ) 0 ~l <g>r~l { y ~ y ) .

6.5.5 Spatiotem poral additive model: application

On the basis of the methodology presented above, the additive models that have 

been fitted here are:

ln(S02) =  a  +  mi(year)  +  m 2 (month) +  mz(lon., lat.) +  £ (6.24)

ln(S'02) =  ol +  m i2 (year, month) +  m3(/on., lat.) +  e (6.25)

Both models have been fitted to the monthly means of SO 2 from 1990 to 2001

at 130 sites across Europe. The temporal correlation matrix (0  as expressed in

Section 6.5.4) has been computed by the procedure shown in Section 6.4. The 

spatial correlation matrix (T as expressed in Section 6.5.4) has been computed 

by the procedure shown in Section 6.3. The fits of both models are shown in 

Figures 6.8 and 6.9.

The bottom panel of Figure 6.8 and the right panel of Figure 6.9 describe the 

spatial pattern of ln(502) concentrations of Model 6.24 and Model 6.25 respec­

tively. Both show higher values in Eastern and Central Europe.

It is possible to note that Model 6.24 fits the trend and the seasonality as 

two univariate components, assuming then that the seasonal pattern (top right 

hand panel in Figure 6.8) is constant over the years, or that the trend component 

(top left hand panel in Figure 6.8) is constant in each month. Model 6.25 instead
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presents trend and seasonality as a bivariate term and therefore the seasonal 

cycle is allowed to change over time. Indeed from the left panel of Figure 6.9 it is 

possible to analyze the three-dimensional nature of the time component, where 

the :r-axis is the trend, the y-axis is the seasonal component and the z-axis is the 

^(*902) concentration. It can be seen that the 12 lines along the z-axis show a 

decreasing trend across all the months, while the 12 lines along the the y-axis 

describe the seasonal pattern per each year.
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Figure 6.8: Fits of the components m(year), m{month), and
m(latitude, longitude) for model 6.24.

These models have been tested, applying the approximate F test, in order to 

check for changes in seasonality. The resulting p  value is 0.011. This significant 

p value means that Model 6.25 is a better fit compared to Model 6.24. In other 

words it means that there is evidence of a change in seasonality across years over



CHAPTER 6. SPATIOTEMPORAL ANALYSIS 219

estimate of m(year, month) for ln(S02) estimate of m(latrtude.longitude) for ln(S02)

ao

Figure 6.9: Fits of the components m(year, month), and
m(latitude, longitude) for model 6.25.

Europe. Following the analysis of section 6.3, two semiparametric models have 

been fitted:

ln(502) =  ol +  mi(year) 4- m 2{month) +  /3\lat. +  (32lon. +  e (6.26) 

ln(S02) — a  +  m i2 {year, month) +  j3ilat. +  (32lon. +  e (6.27)

In fact, from the analysis of section 6.3, the plane seemed to be the most reason­

able model for the spatial trend. However, those conclusions were made just from 

a visual inspection of the spatial trends at each time point separately. Therefore, 

from fitting model 6.26 and model 6.27, and testing them versus model 6.24 and 

model 6.25, it will be possible to analyze if the spatial trend can be adequately 

described by a plane. From the tests that compare the four models, it appears 

that model 6.25 is the best. In other words, both nonparametric components, 

temporal and spatial, are needed to describe their pattern. For the temporal 

component, years and months need to be modeled by a bivariate term, rather 

than two univariate ones.
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It is necessary to clarify, that the choice of a linear plane in Section 6.3 in 

order to estimate correlation, does not contradict the choice of the smooth surface 

that is selected here to describe the trend. Indeed, the linear plane is supposed 

to remove just the main part of the trend, leaving the residuals that will be used 

to quantify the correlation. Once the correlation is computed and accounted in 

the model, then the trend surface to be selected will be the one that better fits 

the data.

estimate ot m( y ear) for ln(S02) estimate of m( month ) for ln(S02)

?  o  

8 °
9

9

2 6 8 10 12

9

9

9

9
20001900 1002 1904 10081006

estimate of the plane
b1*1ongituae + D Z ' t a p . m a e  t o t  ln(S02)

Figure 6.10: Fits of the components m{year), m(month), and (3i*Latitude+
0 2  * Longitude for model 6.26.

In order to have a better understanding of how the seasonality changed, the 

12 seasonal cycles from 1990 to 2001 are displayed in Figure 6.12. It is possible 

to note that the seasonal cycle keeps the same shape in terms of location of
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estimate of m(year, month) for ln(S02) estimate of the plane

A O

Figure 6.11: Fits of the components m(year, month), and (5\ * Latitude +
(32 * Longitude for model 6.27.

Table 6.1: p-values from testing Models: 6.24, 6.25, 6.26 and 6.27
Models 6.24 6.27

6.25 4.8e-i0 le " 20
6.26 le - 20 1.3e-9

peaks (winter months) and troughs (summer months). However the winter values 

increase and the summer ones reduce from 1990 up to 1993, stressing more the 

difference between peaks and troughs. From 1994 to 2001, the winter values 

reduce and the summer ones increase, giving a smaller difference between peaks 

and troughs, and indicating that further movement in this direction, might cause 

the seasonal signal to disappear.

6.5.6 Spatiotem poral additive model: conclusion

This section presents a spatiotemporal analysis of ln(502) across Europe from 

1990 to 2001. Fitting and testing techniques for additive models that can deal 

with large data sets and that account for correlation have been illustrated. The
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Figure 6.12: Seasonal cycles from 1990 to 2001.

results show a decreasing time trend across Europe and a seasonal cycle that 

changes significantly across time over Europe. The seasonal signal shows higher 

values in winter and lower ones in summer. However in the later years this 

seasonal pattern became flatter. A possible explanation for this could be due 

to the increase in the use of air conditioning, leading to higher emissions during 

summer months. The spatial pattern seems to indicate higher concentrations in 

the centre and in the east of Europe and lower values in the north west.
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6.6 Spatiotemporal Analysis: Conclusions

Two marginal analyses, the spatial trend across time and time trend across space, 

have been performed, from which spatial correlation across time and time corre­

lation across space have been obtained respectively. The spatial correlation does 

not seem to change significantly over time, and the time correlations seem quite 

homogeneous over Europe.

Fitting and testing techniques for additive models that can deal with large 

data sets and that account for correlation have been shown. Analysis of SO 2  

data monitored at 130 sites from 1990 to 2001 showed higher concentrations in 

the center and in the east of Europe and lower values in the north west. A 

decreasing time trend across Europe and a tendency of the seasonal cycle to 

disappear over time have also been noted.



Chapter 7

Analysis Of Em issions’ Effects

7.1 Introduction

In the previous chapters, we analyzed some of the main characteristics of the spa­

tiotemporal pattern of sulphur dioxide concentrations monitored across Europe 

in the last 30 years. As stated at the very beginning of this work (chapter 1) 

the main purpose was to see if the efforts that have been made during the last 

quarter of the twentieth century by European countries to reduce emissions have 

resulted in a real improvement in environmental quality and in a real change in 

the acidifying environment. In this chapter we present an analysis of the relation­

ship between sulphur dioxide concentrations monitored at 112 sites across Europe 

from 1990 to 2001, and the emissions data that European countries publish every 

year.

Pollutant concentrations have been the subject of a great deal of study. How­

ever few of them have looked at the relationship with emissions. Hunova et al.

224
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(2004) presented the observed trends of some pollutants in air and in precipi­

tation at rural sites in the Czech Republic from 1993 to 2001. A statistically 

significant decreasing trend in SO 2 was explained by the political and economic 

change in the Czech Republic and neighbouring countries in the 1990s, and by 

the adoption of new technologies. They also pointed out the non-linearity in the 

response of sulphur to emission reductions.

Barbieri et al. (2004) analyzed a series of wet deposition samples from 1982 to 

1998 in the southern region of the Central Alps. Relationships between deposi­

tions and distance from the emission sources were explored and quantified using 

principal component analysis and linear models. Results showed the existence of 

an ionic concentration gradient along a south-north axis and with altitude.

Vuorenmaa (2004) analyzed the long-term changes of acidifying deposition 

in Finland from 1973 to 2000. In order to determine deposition trends with 

respect to implementation of international emission reduction agreements (CLR- 

TAP), annual means were divided into two time periods 1973-1985 and 1986-2000. 

These time periods represent periods prior to and after sulphur emission reduc­

tion abatements. The Kendall-r test was applied to examine the significance of 

the trends, and a simple linear regression model was used for slope estimates. For 

the period 1973-1985, no significant changes were observed for sulphate deposi­

tion, while increasing trends were observed for deposition of nitrogen compounds. 

For the second period 1986-2000, substantial decreases (30% in northern and 60% 

in southern Finland) were observed for sulphate deposition. Nitrogen deposition 

also decreased but less than sulphate deposition.

Sirois (1997) presented a study of the temporal variation of the oxides of
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sulphur and nitrogen at 8 sites in eastern Canada. Using kernel smoothing re­

gression and spectral analysis, Sirois noted a difference between the long-term 

trends of SO 2  and SO a, and his explanation was based on the fact that SO 2 is 

influenced mainly by local sources (Canadian sources) and SO 4  by more distant 

sources (USA sources).

Berge et al. (1999) analyzed the temporal trend of the atmospheric emissions 

and depositions of sulphur and nitrogen compounds in Europe using EMEP data. 

Source-receptor matrices, which quantify the transboundary transport between 

the European countries, were presented. They proposed the use of source-receptor 

matrices, as a convenient way of presenting the budgets of the transboundary 

fluxes between European countries. In such a matrix the amount of airborne 

transport of acidifying sulphur and nitrogen from one country to any other coun­

try is established by the use of a deterministic model. The model used by Berge 

et al. (1999) is the one developed by EMEP, that is a two dimensional Lagrangian 

trajectory model utilized to calculate the transboundary fluxes and depositions 

of acidifying compounds in Europe from 1985 to 1995. Berge et al. (1999) found 

that the total deposition to all grid cells in the EMEP domain, from 1985 to 

1995, reduced by 34%, 9% and 12% for sulphur, oxidized and reduced nitrogen 

respectively. For the same period, the deposition reductions were 5%, 1% and 

6% smaller than the emission reductions for sulphur, oxidized and reduced ni­

trogen respectively. Berge et al. (1999) pointed out that, apart from reduced 

nitrogen which has a shorter lifetime, for sulphur and oxidized nitrogen, many 

countries in Europe receive most of the acidifying compounds from emissions in 

other countries. Berge et al. (1999) also commented that the seasonal variability 

in the meteorological conditions affects the annual deposition.
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In the USA, studies conducted both by Holland et al. (1999) and by Lynch 

et al. (2000) confirmed a strong correspondence between the 35% reduction in 

reported emission and the 32% reduction in sulphur dioxide concentrations cal­

culated with a regression technique. The difference in reductions become null if 

the data from only the last three years are considered, despite the fact that they 

are obviously affected by short time scale deviations in meteorology. Holland 

et al. (1999) examined both trends at individual sites and those for aggregated 

regions, finding it more problematic to assign regional descriptors to complex ter­

rain. Problems of both meteorological variability influencing short records and 

of difficulty in defining regions was taken up by Blanchard et al. (1996). They 

noted that in areas subject to higher levels of deposition (> 20kg S 1/ha 1/yr) 

the power to detect trends could be expected to reach 90% within around two 

years, while monitoring regions with levels of deposition below this may take 

twice as long to identify a trend. However the time taken to quantify that trend 

is likely to take an additional 6-7 years even in the higher deposition zone. Their 

study also revealed that even if identification of a trend may be possible with a 

limited monitoring network, defining isopleths for given deposition criteria then 

becomes quite uncertain. An important study in the United Kingdom was con­

ducted by Downing et al. (1995) who compared the dry and the wet deposition 

of sulphur between 1978 and 1993. They constructed maps for wet deposition 

for 1978-1980 to compare with equivalent maps for 1989-1993 for the whole of 

mainland Britain. Wet deposition of sulphur for the UK as a whole declined by 

43% while UK emissions fell by 32%. During the same period decline in SO 2  

concentrations and dry deposition in remote areas reached as much as 70%. This 

indicates that UK emissions alone could not account for the changes in British
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air quality.

In contrast with the approaches described in this brief literature review, this 

chapter will propose a statistical analysis of the emission effects on the observed 

concentrations using nonparametric inferential tools. On the basis of the EMEP 

data sets, sulphur dioxide (SO 2 ) concentrations, monitored in Europe from 1990 

to 2001, are related to “own” and neighbouring countries emissions, through ad­

ditive models accounting for the data correlations. The nature and the statistical 

significance of the relationships are examined.

The data analyzed are the monthly means of the natural logarithm of SO 2  

concentrations monitored daily from 1990 up to 2001 at 112 sites across Europe 

by the EMEP network and the natural logarithm of the annual total emissions 

per each European country, obtained from the UNECE/EMEP emissions data­

base, available at h ttp ://w e b d ab .e m ep .in t. Annual emissions have also been 

expressed monthly, dividing the annual values by 12.

For those 11 sites that monitored meteorological variables (Eskdalemuir GB02, 

Westerland DE01, Waldhof DE02, Schauinsland DE03, Deuselbach DE04, Brot- 

jacklriegel DE05, Kosetice CZ03, Rbrvik SE02, Bredkalen SE05, Hoburg SE08, 

Payerne CH02) wind data will be used to build a neighbouring countries emis­

sions covariate. The models fitted in this chapter are mainly additive models 

whose fitting and testing techniques used will be those presented in Chapter 4.

http://webdab.emep.int
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7.2 Analyzing relationship between observed trends 

and emissions

This section looks at the relationship between observed SO 2  concentrations and 

reported emissions. The additive models that have been fitted in this analysis 

are the following ones:

ln(502) =  ol +  m m(month) + m v(year) +  m0(ln(oe)) +  e (7.1)

ln(502) =  a  +  m m(month) + mG(ln(oe)) +  e (7.2)

ln(502) =  ol H- m m(month) + m y(year) + e (7.3)

ln(502) — at + m m(month) +  £ (7.4)

lnfS'Cy =  ol +  m m{month) + fli In (oe) +  e (7.5)

where oe stands for own country emissions.

For six countries, estimates m y(year) in Model 7.3 have been plotted in Figure 

7.1 for each site with the annual emissions of the country to which the site belongs. 

The estimated trends are plotted as thin dotted lines with confidence bands in 

light gray and the trend scale is plotted on the left axis. The emissions are plotted 

as triangles linked by thick continuous lines and the scale is plotted on the right 

axis. For the six countries displayed, the observed trends and the emissions show 

a similar decreasing pattern. However, since emissions and estimated trends are 

plotted on different scales, no comments on proportionality can be made, and 

further analysis of their relationship will be investigated later.

In order to analyze the significance of the “own emissions” component, consid­

eration needs to be given to the relationship of the m y(year) and the m0(ln(oe))
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components. Both terms describe the ln(502) trend, as ln(oe) is itself a func­

tion of year. Therefore a model that includes both terms could be affected by 

concurvity (the nonparametric analogue of collinearity), causing problems for its 

fitting and testing. In order to compare the amount of variability of ln(S02) 

that each of the two terms explains, the R 2s of models 7.1 - 7.4 have been com­

puted. A histogram of the R 2s of Model (7.2) has been plotted in Figure 7.2. 

The histogram shows a wide range of R 2 values across these sites.

For each site, differences in R 2s of Model 7.1 (x), Model 7.3 (o) and Model 7.4 

(+) from the R 2s of Model 7.2 have been plotted in Figure 7.3. The continuous 

lines are the distances from R 2 of Model 7.3 (o) to R 2 of Model 7.2, while the 

dotted lines are the distances from R 2 of Model 7.4 (+) to R 2 of Model 7.2. From 

the length of the dotted lines, it is clear that the model with the seasonal term 

alone has a large increase in R 2 if either the emissions or the years component 

is included. It is also possible to note from the continuous lines, that the R 2s of 

Model 7.3 don’t differ too much from the R 2s of Model 7.2 apart from a few sites 

where the differences in R 2 is about 0.2. Also a model that includes both year 

and ln(oe) leads to only a very small increase in R 2 compared to the models with 

just one of these two terms, year or ln(oe). It is therefore possible to conclude 

that a reasonable model that describes the SO 2 variability need contain only the 

emission term and the seasonal component.

To explore the form of the relationship between SO 2 emissions and SO 2 ob­

servations, Model 7.5 was fitted across all sites to assess if a linear relationship 

between log emissions and observed In(£02) concentrations was adequate, rather 

than the nonparametric term for ln(502) concentrations fitted in Model 7.2. The 

difference between those two models was investigated using the Pseudo Likelihood
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Ratio test. The p values are shown in Figure 7.4, where triangles (at 66 sites) 

show nonsignificant p values, while circles (at 46 sites) show significant p values. 

This shows that at 46 sites it is not possible to model the lftS U y  concentra­

tions by a linear function of the log emissions, while at 66 sites, log own country 

emissions are linearly related to ln(502) concentrations. It can also be seen that 

by rewriting equation (7.5) as equation (7.6), the proportionality assumption 

between observed concentrations and emissions is valid only for f t  =  1.

S 0 2 = ea+m^ m(mth^oeple£ (7.6)

Figure 7.5 shows the estimated f t  coefficients, and the respective confidence 

intervals for those 66 sites where it is possible to model the ln(502) concentrations 

by a linear function of the log emissions. It is clear that the confidence intervals 

for the f t  estimates generally do not include the value of 1 (where the dashed 

line is displayed). This means that strict proportionality between concentrations 

and own country emissions does not hold at the majority of sites. Most of the f t  

estimates are greater than one indicating that a decrease in emissions corresponds 

to a greater decrease in concentrations. Figure 7.6 shows a contour plot of the 

/3i estimates at those 66 sites where Model 7.5 has not been rejected. It can be 

noted that the central-east and UK areas are characterized by low positive f t  

estimates, while the Alps and the Netherlands show higher f t  estimates.
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7.3 Analyzing neighbouring countries emissions

For each of the 11 sites that reported wind information, an analysis of the effects 

of the neighbouring countries emissions has been performed.

In order to define the neighbouring countries emissions covariates (ne), at each 

of the 11 stations where meteorological variables were reported (k = 1 , . . . ,  11), 

for each of the 12 years (t  = 1990, . . . ,  2001), weighted sums of the 33 log neigh­

bouring countries emissions have been calculated using the following expression.

33

nekt = ' ^ 2 w d(djk)wt(6jk)ln(Ejt), fc =  l , . . . , l l ,  t = 1990, . . . ,  2001 (7.7)
j = i

Here Ejt are the emissions of country j  in year t, Wd{djk) are weights based on 

the distance between site k and country j ,  wt{6 jk) are the weights based on wind 

direction and speed, from direction country j  to site k in year t.

An appropriate weight function for the distances between each of the 11 mon­

itoring sites with each of the 33 neighbouring countries is

Wd{djk) = e_ 2 ? j  =  1 , . . . ,  33, k = 1 , . . . ,  11, (7.8)

where djk is the distance between site k and the center of country j  and hd 

is a smoothing parameter which regulates the weights given to each distance. 

This means that the smaller the value of hd, the smaller the weight given to 

the long distances, the bigger the value of hd, the higher the weights given to 

long distances. To define the distance between each of the 11 sites and each 

of 33 neighbouring countries, “country-centers” have been defined subjectively 

by inspection of a map. In order to compute distances that account for the
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curvature of a globe, the latitude (cj) and longitude (A) location coordinates have 

been translated to the x  and y coordinates of a tangent plane to the north pole 

using the Lambert (or Schmidt) projections (Fisher et al., 1993) introduced in 

Section 6.3.1.

The weight function for wind direction and wind speed was created using 

weighted annual averages of the weekly wind directions with the weekly wind 

speed as weights. For each year t , site k and country j, the weight function for 

wind is given by

53

M M  = J  = 1......33, fe = l , . . . , l l
i= 1

t = 1990, . . . ,  2001 (7.9)

where 6 jk is the angle between site k and country j, and (pikt and are the

weekly values for wind direction and speed for each of the 11 sites. hw is a 

smoothing parameter that regulates the weights given to each wind direction and 

speed. Larger values of hw lead to larger weights associated with winds from 

directions close to the direction of site k from country j.

The weighted neighbouring countries emissions computed by expression (7.7) 

and averaged from 1990 to 2001 are plotted in Figure 7.7. This plot gives an 

indication of the effects of the neighbouring countries emissions on each of the 11 

sites. At each site, the longer the spikes, the higher the effect of the emissions 

coming from that direction on the SO 2 concentrations.

Having defined a neighbouring countries emissions covariate, Model (7.10) has
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been fitted at each of the 11 sites;

ln(502) =  ol +  m m(month) +  m0(ln(oe)) +  m n(ne) +  s (?-10)

where ne stands for neighbouring countries emissions. Model (7.10) has been 

compared with Model (7.2) using the quadratic form tests in order to analyze the 

effects of the emissions of neighbouring countries. Results are listed in Table 7.1. 

Neighbouring countries’ emissions were significant at one German site (DE03), at 

the Czech, at the British, and at the Swedish sites. The rest of the German and 

the Swiss sites do not show any significant effect of the neighbouring countries’ 

emissions.

One possible explanation of these results is that the Swedish and the British 

sites are mainly affected by the emissions coming from the European mainland, 

and the Czech site by the eastern European countries. The German site could 

be affected by neighbouring emissions because it is situated near the border and 

at the top of a mountain, at an altitude of over 1200 meters above sea level and 

therefore more exposed to air mass of SO 2 coming from neighbouring countries.

The R 2s of Model 7.10 (o), Model 7.2 (A) and Model 7.4 (+) for each of the 

11 sites have been plotted in Figure 7.8. The dashed lines show the differences 

in R 2s between Model 7.2 (A) and Model 7.4 (+), and the dotted lines show the 

difference in R 2s between Model 7.2 (A) and Model 7.10 (o). It is possible to note 

again large differences in R 2 when the own country emission term is included.

It is interesting to note that there is a big difference in R 2 of Model (7.10) (o) 

and Model (7.2) (A) only at SE02 and SE05, while at SE08, CZ03, DE03, and 

GB02, where the neighbouring emissions were significant, the differences in R 2
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Table 7.1: p values from testing neighbouring countries emissions.
p-values Model (7.10) Versus Model (7.2)

GB02 0.020
DE01 0.431
DE02 0.324
DE03 0.023
DE04 0.315
DE05 0.228
CZ03 0.007
SE02 < 0.0001
SE05 < 0.0001
SE08 < 0.0001
CH02 0.081

are not large. 

Table 7.2 presents a list of the final models selected at each site.

Table 7.2: Models selected at each site.
site Models selected

DE01 Zn(502) =  a  +  m m(month) +  m0(ln(oe) +  £
DE02 ln{S0 2 ) =  ol +  m m(month) +  m0(ln(oe) +  £
DE03 ln(S 0 2 ) =  ol +  m m(month) +  m0(ln(oe) +  m n{ne) +  £
DE04 Zn(502) =  ol +  m m(month) +  m0(ln(oe) +  £
DE05 ln(S 0 2 ) = a  +  m m(month) +  m 0(ln(oe) +  £
SE02 /n(*S'02) =  ot +  m m(month) +  m0(ln(oe) +  m n(ne) +  e
SE05 /n (5 0 2) =  a  +  mm(month) +  m0(ln(oe) +  m n(ne) +  £
SE08 /n (5 0 2) =  a  +  m m(month) +  m0(ln(oe) +  mn(ne) +  e
CZ03 /n (5 0 2) =  a  +  mm(month) +  mG(ln(oe) +  m n(ne) +  e
GB02 /n (5 0 2) =  a  +  m m(month) +  m0(ln(oe) +  m n(ne) +  £
CH02 /n (5 0 2) =  a  +  m m{rnonth) +  raG(ln(oe) +  £
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7.4 Conclusions and discussions

236

This chapter proposes a statistical analysis of observed In(SO 2 ) concentrations 

as a function of ln ^C ^) emissions in Europe from 1990 to 2001. Across most 

of the European sites, the observed SO 2 concentrations show a clear relation to 

the own country emissions and reported R 2 values show that own country emis­

sions explain a substantial part of ln^C b) variability. However, proportionality 

between observed SO 2 concentrations and SO 2 emissions does not generally ap­

ply. Some sites show a nonlinear relationship between own country emissions and 

observed concentrations. For most of those sites where the relationship appears 

to be linear, the rate of decrease of the observed SO 2 concentrations is higher 

than the decrease of the own country SO 2 emissions, and in particular a much 

faster decrease of the observed SO 2 concentrations than own country emissions 

has been noted in the Alps and in the Netherlands areas.

The new neighbouring countries emissions covariate that has been defined 

has resulted in a statistically significant improvement in the model at more than 

half of the sites analyzed. In particular, one German site (DE03), the British, the 

Czech and the Swedish sites show statistically significant effects of the neighbour­

ing emissions over the observed SO 2 , while the Swiss and the other four German 

sites do not show any significant effects of the neighbouring emissions over the 

monitored SO 2 concentrations.
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Figure 7.1: Annual emissions data (thick continuous line), and estimates 
my{year) of model (7.3) (thin dotted line) with standard errors 

bands (shaded regions).
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Figure 7.2: Histogram of R2s from fitting Model (7.2) to each site.
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Figure 7.3: Differences of R2s of Model (7.1) (x), Model (7.3) (o) and Model 
(7.4) (+) from R2s of Model (7.2). The continuous lines are the 
distances from R 2 of Model (7.3) (o) to R 2  of Model (7.2), while 
the dotted lines are the distances from R 2 of Model (7.4) (+) to

R 2 of Model (7.2).
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Figure 7.4: Testing Model (7.5) versus Model (7.2) using the quadratic form 
test. Circles mean statistically significant non linear effect of 
log own emissions over the ln(502) concentrations (p < 0.05). 
Triangles mean not statistically significant non linear effect of 
log own emissions over the In(502) concentrations (p > 0.05).
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Beta estimates

Figure 7.5: Plot of the Pi estimates (x), and confidence intervals (continuous 
lines limited by A) of Model (7.5), obtained at those 66 sites 
where Model (7.5) has been accepted. A dotted & dashed line is

drawn at Pi = 1.
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Figure 7.6: Contour plot of the (3\ estimates at those 66 sites where Model
(7.5) has been accepted.
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DE03

CH02

Figure 7.7: Weighted neighbouring emissions for each of the 11 sites com­
puted from equation (7.7), averaged across t = 1 9 9 0 , 2 0 0 1 .  
The longer the spikes, the higher the effect of the emissions com­

ing from that direction on the SO2 concentrations.
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Figure 7.8: R2s of Model (7.10) (o), Model (7.2) (A) and Model (7.4) (+) 
per each of the 11 sites. The dashed lines shows the differences 
in R2s between Model (7.2) (A) and Model (7.4) (+), and the 
dotted lines show the difference in R2s between Model (7.2) (A) 

and Model (7.10) (o).
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Chapter 8

Conclusions

This thesis proposes new nonparametric methodologies for analyzing spatiotem­

poral data with correlated errors. The flexibility of nonparametric smoothers in 

modeling trends provides a strong alternative to the usual parametric procedures 

that rely on assumptions that are often difficult to justify in nature. However, 

many nonparametric techniques were defined under the assumption of indepen­

dent data. In addition, computational issues make the use of nonparametric 

techniques problematic when large data sets are involved. The extension of non­

parametric methodologies to deal with correlated data and with large data sets 

has therefore been the main objective of this work.

The methodologies have been applied to air pollution data monitored in Eu­

rope in the last quarter of the 20th century by EMEP (Co-operative Programme 

for Monitoring and Evaluation of the long Range Transmission of Air Pollutants 

in Europe), and by OECD (Organization for Economic Co-operation and De­

velopment). The issue raised by EMEP and OECD was that from the 1970’s 

co-ordinated international programmes to monitor acidifying air pollution were

245
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initiated in direct response to observed acidification. At the same time, several 

international protocols on the reduction of acidifying emissions (SO 2 , SO 4  etc) 

were also agreed. The policy question of interest is whether the protocols have 

resulted in a real improvement in environmental quality and a real change in the 

acidifying environment. Our spatiotemporal analysis gives strong indications of 

significant reductions in the SO 2 concentration across Europe in the last quarter 

of the 20th century.

Chapter 1 presented the data and the scientific questions of interest that have 

been tackled in this work. Chapter 2 showed some analysis that can be performed 

with well established nonparametric statistical techniques, some of which rely on 

assumptions that do not hold with the data we try to analyze.

Chapter 3 proposed a diagnostic for detecting change points (discontinuities) 

in trends with correlated errors. The procedure was based on that presented by 

Bowman et al. (2004) and it has been here extended to account for temporal 

correlation of the data. This is a diagnostic for flagging discontinuities in one­

dimensional nonparametric regression. The idea on which this diagnostic is based 

is to compare at each point two linear smooths of the data. Each smooth is 

“one-sided” in that it is defined in terms of data lying entirely to the right or 

entirely to the left of the point at which we wish to test for a discontinuity. If 

no discontinuity is present we would expect the two smooth estimates to have 

similar values, but if there is a discontinuity then we might hope to detect a 

difference between the two. Simulation studies showed good performance of the 

test, when data are generated from flat, linear, quadratic and sine trends. The 

proposed discontinuity test has been applied to the SO 2 , SO 4  in air and SO 4  in 

precipitation concentrations across 130 sites in Europe and the results identified
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the presence of statistically significant discontinuities, some of which are present 

in common across sites and compounds.

Univariate and bivariate nonparametric smoothers that account for correla­

tion are proposed in Chapter 4. Local linear regression smoothers (Bowman and 

Azzalini, 1997) are obtained by solving locally weighted least square problems. 

In order to account for correlation, the smoothers proposed here are computed 

by solving locally generalized weighted least squares problems. These generalized 

local linear regression smoothers produce wider standard error bands. Weights 

based on the cosine function are used to obtain circular smoothers that can be 

fitted to seasonal components or directional variables. Estimates of the correla­

tion matrix are obtained analyzing the structures of the residuals from fitting a 

smoother for independent data.

The generalized local linear regression smoothers are the building blocks of 

additive models that have been fitted here through a reformulated version of the 

backfitting algorithm. The algorithm that is proposed here is based on the idea 

of the backfitting algorithm proposed by Hastie and Tibshirani (1990), but it 

uses a different matrix formulation in order to obtain the projection matrix of 

the overall additive model at convergence. The projection matrix and correlation 

matrix are then used to obtain generalized residual sums of squares and new 

definitions of degrees of freedom that are needed to compute model selection 

techniques. The proposed tests are an extension of the approximate F  test and 

the Pseudo Likelihood Ratio test (Bowman and Azzalini, 1997) and simulation 

studies showed the importance of using these techniques, even when data are 

characterized by a small amount of correlation. When the correlation is known, 

the size of the Pseudo Likelihood Ratio test seems to work very well under all
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the different settings analyzed. However, the sizes of the approximate F  test 

seem too low, especially when it is used to test for the presence of interaction. 

When correlation has to be estimated, the size of both tests is dependent on the 

choice of the smoothing parameters, which affect the estimates of the correlation 

parameters. However, it seems that the choice of a higher smoothing parameter 

is a safer approach in terms of not increasing the size of the tests. The power 

of both tests seems excellent for detecting change of trend of at least 2.5% in 

11 years, or changes in amplitude (peak - trough) of more than 1.1 in 11 years, 

or changes in the phase of the seasonal component of about 2 months across 11 

years. On the basis of the approximate F  test and the Pseudo Likelihood Ratio 

test, procedures for testing for no effect and for changes in components between 

two additive models have also been constructed.

Chapter 5 shows applications of the methodologies presented in Chapter 4 

to air pollution data. Trend and seasonal cycles for SO 2  have been studied 

accounting for correlation and for meteorological effects. Meteorology changes 

significantly the trend estimates at a few points, but it does not seem to affect 

the general shape of the time trend. Analysis of the seasonal components show 

significant changes if meteorology is accounted for, and some sites showed statis­

tically significant changes in seasonality across time. Temporal trend analysis of 

SO 2 as a function of meteorological variables showed them to have a significant 

effect in explaining a substantial part of the variability of SO 2 . Meteorological 

variables seem also to be the cause of significant discontinuities detected at 4 of 

the 11 sites analyzed.

A binned version of the reformulated backfitting algorithm and of the approx­

imate F  test that copes with large data sets (such as spatiotemporal ones) and
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to account for correlation are presented in Chapter 6. Spatial analysis of sulphur 

dioxide from 1990 to 2001 at 130 sites across Europe is performed. At each time 

point, a plane seems to be the most appropriate model for the SO 2 trend surface. 

Analysis of the resulting residuals showed that the Gaussian variogram model fits 

better than the Exponential and Spherical models. Time series analysis of the 

range, the nugget, and the sill showed no evidence that the spatial correlation 

changes over time. Therefore the average of the estimates for each parameter 

could be used to define a spatial correlation matrix for the period of analysis.

Time series analysis of each of the 130 sites showed that an AR(1) model is not 

unrealistic, and that the time correlations seem quite homogeneous over Europe. 

The average of the estimated correlation coefficients at each of the 130 sites has 

been used to provide a unique estimate of the temporal correlation across all 

sites.

A separable space-time covariance structure for SO 2 over Europe across the 

last 30 years has been used to fit a spatiotemporal additive model. The fit of this 

spatiotemporal model shows statistically significant changes in the seasonal com­

ponent across years. The winter values increased and the summer ones reduced 

from 1990 up to 1993, stressing more the difference between peaks and troughs. 

From 1994 to 2001 the winter values reduced and the summer ones increased, 

resulting in a smaller difference between peaks and troughs.

An analysis of the observed SO 2 concentrations as a function of “own country” 

and “neighbouring countries” emissions (weighted by the neighbouring country 

distances and wind directions and speeds) has been undertaken in Chapter 7. At 

each site, a neighbouring countries emissions covariate has been defined as the 

sum of the neighbouring countries emissions weighted by the distances and by
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the wind speeds and directions. Results show a relation between the observed 

values and the own country emissions. The new neighbouring countries emissions 

covariate resulted in a statistically significant improvement in the model at more 

than half of the sites analyzed.

The methodologies proposed in this work relax the assumption of independent 

errors which some of the most widely used nonparametric techniques rely on. 

They suit very well the characteristics of the data analyzed, and are general 

enough to be applied to several spatial and/or temporal data sets. However 

there are several directions in which the methodologies proposed could be further 

extended in order to be used in even wider contexts.

An interesting approach could be to derive a test for detecting spatiotemporal 

discontinuities accounting for correlation. A possible approach could be to use 

some clustering of the discontinuities that have been obtained in each time series 

at each site. Another approach could be represented by the two dimensional test 

proposed by Yap (2004), so that at each time point, discontinuities in space could 

be detected. A time series analysis of the spatial discontinuities detected could 

then be applied.

It would be quite useful to extend the additive model fitting and testing 

techniques proposed here to a multivariate scenario (in order to analyze more 

pollutants simultaneously for example). In the additive model fitting, it would 

be quite interesting to implement a smoothing parameter selection tool that ac­

counts for correlation. The reformulated backfitting algorithm that has been 

presented could be extended in order to account for a cross-validation algorithm 

that would perform the smoothing parameter selection. Methodologies that deal 

with fitting and testing non separable spatiotemporal models would relax the
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assumption of constant spatial correlation across time and constant time correla­

tion over space. The definition of generalized multivariate local linear regression 

smoothers that can account for more than two predictors could also give more 

information on the interactions across all the covariates. Given the computa­

tional difficulties of deriving the multivariate version of the local linear regression 

smoothers, a possible direction of work could be the implementation of different 

smoothers, such as splines, into the backfitting algorithm. Finally the availabil­

ity of meteorological variables across all Europe would represent an interesting 

spatiotemporal analysis.
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