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QUASISPECTRAL OPERATORS -
by

SALEH B, M, AL-KHEZI

A dissertation submitted for the degree of

| Master of Science in the University of Glasgow.

SUMMARY

The main subject in this thesis is the study of quasispectral
operators, their basic properties, their roots and logarithms,

In Chapter One, which is not claimed as original, we include the
main results on the spectral theory of linear operators and the basic
properties of prespectral operators which will be required in other
chapters.,

In Chapter Two, We prove the existence of a complex Banach space Y
and a homomorphism E(*) from Zp into a bounded Boolean algebra of pro-
jections on Y such that E(e) is not a spectral measure of any class.

In Chapter Three we prove that if S is a scalar-type operator and
A is an operator that leaves invariant all the maximal spectral subspaces
of S, then A commutes with S.

In Chapter Four, which is the main part of this thesis, we introduce
the concept of quasispectral operator. We prove that a quasispectral
operator of class T has a unique resolution of the identity of class T
and a unique Jordan decomposition for resolutions of the identity of all
classes, We show that every prespectral operator of class T' is quasi-
spectral of class T but that there exists a quasispectral operator which
is not prespectral of any class. We show that a quasispectral operator

is decomposable, We prove that if a quasispectral operator has a closed



range, then so does its scalar part. Finélly in thié chapter we consider
further decbmpositions of quasispectral operators.

In Chapter Five we obtain analogues for ¢uasispectral operators of
results in Chapter 10 of [12] on logarithms and roots of prespectral
operators. We give an affirmative answer to the following question, Does
there exist a prespectral operator.T of class T such that f(T) = A, whereA
is é given prespectral operator of class I?

Finally in Chapter Six, we prove a commutativity theorem for Q,-scalar

operators, where CZ,= C(K) and K is a compact subset of the complex plane.



_f{eld of real numbers

R

C field of complex numbérs

L(X) algebra of bounded linear operators on X

c(K) . algebra of all continuous complex-valued functions
on a compact Hausdorff space K under the supremum norm

X dual space of X

T+ » adjoint of an operator T

T|Y restriction of a mapping T to Y

I‘TII norm of T

R(T) range of T

N(T) null-space of T

a(T) spectrum of T

p(T) resolvent set of T

ca(T) approximate point spectrum of T

GC(T) continuous spectrum of T

or(T) residual spectrum of T

op(T) point spectrum of T

v(T) spectral radius of T

Y’L annihilator of a closed subspace Y of X

X, characteristic function of 7

Zp- o-algebra of Borel subsets of 9

A or clA closure of the set A

a° interior of the set A

Al complement of the set A

<fx,y>> value of the functional y in X* at the point x of X

c is contained in

C is strictly contained in

A@®B direct sum of A and B



CORRIGENDUM

Avgap occurs in the proof of Theorem 4.1.5 on page 3.
Define

K={xec: [a] < ftl3.

Let § be a closed subset of C>~K. Observe that E($8)X is

invariant under T and o(T|E(§)X) € §. Also o(T|E(8)X) < K,

Hence o(T|E(8§)X) = @ and therefore E(§) = 0. There

since |T|E(O)X| < ||IT

is a countable family {Tn} of closed subsets of C K. Since
E(ty) =0 for each n it follows from the countable additivity
of E(*) in the I'-topology that E(C~K) = 0 and so E(K) = I.
Now define

So = IK AE(dA)’ NO = T-Soc

Then S, is a scalar-type operator with resolution of the identity
E(+) of class T and SoNg = NSy using Theorem 3.1.1. Since So
and T.commute, it is easy to see that, for § closed, the spectral
radius of NOIB(G)X does not exceed the diameter of 6. The
argument given shows that No is quasinilpotent. It now follows
that o(S,) = o(T) and hence that S = Sgs N = N . This

completes the proof.




Let AC X. We denote by K;Ao and A' the norm closure, the interior
and the complement of A in X réspectivel&.

Let Y be a closed subspace of X. The quotient space of X by Y is.
denoted by X/Y.

Let TE L(X) and let TYL Y. The restriction of T to Y is denoted
by TIY. The operator induced by T on the quotient space X/Y will be
denoted by Ty.

"We write N(T) and R(T) for the null-space and range respectively
of the operator T. o(T) and p(T) denote the spectrum and resolvent set
of T respectively.

_y'(T) denotes the family of complex functions analytic on some open
neighbourhood of o(T).

ca(T) denotes the approximate point spectrum of T,

cC(T) denotes the continuous spectrum of T.

cp(T) denotes the point spectrum of T.

Or(T) denotes the residual spectrum of T.

v(T) denotes the spectral radius of T.

2. Spectral theory of linear operators

1. DEFINITION, Let TEL(X). The resolvent set p(T) of T is the set
of complex numbers A for which (AI-T) is invertible in the Banach algebra

L(X). The spectrum o(T) of T is the set C\p(T). The function

A+ OI-D) Y Qep(m)

is called the resolvent of T,

2. DEFINITION. Let TE L(X). The spectral radius of T is defined

by
v(T) = sup{|a| : Aea(T)}.



3. DEFINITION. Let TEL(X). T is said to be quasinilpotent if

. and only if .
i T[] /™ = o.

n -+ e
Let TEL(X). The resolvent set p(T) is open. Also the spectrum
o(T) is a compact set which is non-empty. The function

A (AI-T) Y (e p(T))

is anélytic. The spectral radius of T has the properties

1
w(1) = 1inl T [ < ||7]].
n-+w

It follows that T is quasinilpotent if and only if o(T) = {O}.

The spectra of T and T#* coincide, Moreover

(AI-m)HE = Qs (e p(m)).

For proofs of these facts, see DZ], pp. 3-7.

4. DEFINITION. Let T€L(X). Define
op(T) = {Ae ¢ : AI-T is not one-to-one};
cc(T) = {A€E { : AI-T is one-to-one, |
XI-T)X = X but (AI-T)X ¥ Xj;
Ur(T) = {A€C : AI-T is one-to-one but (AI-T)X } X}.

oP(T), oC(T) and or(T) are called respectively the point spectrum, the

continuous spectrum and the residual spectrum of T, Clearly UP(T),OC(T)

_and Ur(T) are disjoint and

o(T) = GP(T)U GC(T)U cr(T).

If AeroP(T) we say that A is an eigenvalue of T. If this is the
case there is a non-zero vector x in X such that Tx = Ax. Such a vector

is called an eigenvector corresponding to the eigenvalue A of T.



5. DEFINITION. Let TEL(X). Define

oa(T) = {AéC : there is a sequence {xn} in X with

1= || = 1 and 1im||(A1-T)x || = 0.1,
n -+ e

Oa(T) is called the approximate point spectrum of T.

6. DEFINITION, Let TEL(X). We denote by ) the family of all
functions which are analytic on some open neighbourhood of o(T). Let
££7(T) and let U be an open subset of E whose boundary B consists of
a finite number of rectifiable Jordan curves., We assume throughout

that B is oriented so that

Jv(x—u)’l dx = 211 (pev),

B
I G- hdar=0  (wéuub).
A |

Suppose that U2 o(T), and that UUB is contained in the domain of

analyticity of £. Then the operator £(T) is defined by the equation

_ 1 oyl
£(T) -2—“—3-_-[ £(A)(AI-T) —ax.
B
The integral exists - as a limit of Riemann sums in the norm of L(X).
It follows from Cauchy's theorem that £(T) depends only on the function

f and not on the open set U chosen to define this operator,

7. THEOREMN. Let TEL(X) and let f(—‘,}(T). Then £(o(T)) = o(£(T)).
For a proof of this result, the reader is referred to [IZ] s D.13.

This result is known as the spectral mapping theorem.

8. THEOREM., (i) Let AEL(X)., Then exp A = I
n=o
(ii) Let A,BEL(X) and AB = BA. Then

An
Ho

exp(A+B) = exp A. exp B.



(iii) Let A€L(X). Then exp A. exp (-A) = I,

(iv) Let A€ L(X). Then exp A is invertible in L(X).

For a proof of this result see Theorem 1.23 of [I2], p.1u-15.

9. THEOREM, Let S,NEL(X), where SN = NS and N is quasinilpotent.

Then o(S+) = o(S). If f is analytic on a neighbourhood of ¢(S), then

co

£f(S+) = I
n=o

£ sy
n!
For a proof of this result the reader is referred to Theorem 1.27
of [12], p.19.
Let Y be a closed subspace of X, Then Y is a Banach space under
the norm of X. The annihilator Y+ of Y is the closed subspace of X%
defined by

Y‘L = {fex® ; f(y) = 0 for all y in Y}.

Now let TEL(X) and let Y be a closed subspace of X. Then Y is

said to be-invariant under T if and only if TYC Y. If this is the case

we can define an operator T|Y in L(Y) by

(T|V)y =Ty  (yeY).

TIY is called the restriction of T to Y. Next, we introduce an equivalence

relation on X as follows

%, " x. if and only if x

l 2 —X26 Yo

1
The set of equivalence classes of elements of ¥ corresponding to

this equivalence relation is a complex vector space under the operations

[xl]Y + [};2]Y

[xl+x2 2

a[x]Y = [ax]Y (a 69)‘

This vector space is called the ‘quotient space of X modulo Y and is denoted




by X/Y. Define

|_|[x]Y|| = inf{||x+y|| : yevl}.
This is indeed a norm on X/Y and moreover X/Y is a complex Banach

space under this norm. The mapping ¢ defined by
6(x) = [X]Y

is called the canonical mapping of X onto X/Y. ¢ is continuous, linear

and H¢|| < 1. For a complete discussion of these facts the reader is
referred to [h—], pPP.99-101 and 194,
Now let TEL(X) and let Y be a closed subspace of X invariant

under T. The map

1B, = [,

is well-defined, MHoreover TY is a bounded linear operator on X/Y, -since

10. 'PROPOSITION. Let Y be a closed subspace of X. Then there is

a linear isometry Jy of (X/Y)* onto vl which is given by

<x,le> = <[*<] Y,z>

for all z in (X/Y)* and all x in X.

For a proof of this result, see Theorem 5.4.5 of [h«], p.196,

11, 'PROPOSITION, Let Y be a closed subspace of X. Then there is

a linear isometry J, of X*/YJ‘ onto Y* wvhich is given by

2

<Y9J2 [z] Y> = < y,z>

for all z in X* and all y in Y.

For a proof of this result, see Theorem 5.4.4 of [_-LL], p.195,

Let EEL(X). Then E is called a projection if and only if £ = E.



If E is a projection on X, there are closed subspaces Xl and X2 of X

. such that:

(i) X, is the range of Ej

(ii) X, is the null-space of E;

(iii) x = X; @Xz.

Conversely, let Xl and X2 be closed subspaces of X such that

x=xl@x2.

Then there is a projection E in L(X) whose range is Xl and whose null

space is X Moreover E is uniquely determined by these conditions.

2.
For proofs of all these facts the reader is referred to [L#], pp.336-340.

Now let E,T€ L(X) and let E be a projection. Suppose that T

leaves invariant the range of E. This is equivalent to

ETEx = TEx (x€X)

and hence ETE = TE.

Closed subspaces X, and X, are said to reduce T if X = Xy @X2

and Xl,X2 are both invariant under T. Let E be the unique projection

whose range is X. and whose null space is X Then the condition that

1 2°

Xl’X reduce T is equivalent to ETE = TE and

2
(I-E)T(I-E) = T(I-E).

These conditions are equivalent to ET = TE,

12.° PROPOSITION. Let TEL(X). Suppose that the closed subspaces

X X2 of X reduce T. Then

19
o(T) = o(Tle)U c(T|X2).

For a proof of this result the reader is referred to

Proposition 1.37 of [(2].



. E:ina;lly in this‘ section we introduce the concept c;f épectral

. projection. Let TEL(X) and let T be an open-and-closed subset of
(-)'(T). There is a function f in .7('1‘) which is identically one on ‘r'and
which Vanishés on the rest of o(T). We put E(t,T) = £(T). If it is
clear vwhich operator T is being referred to we write E(1) for con-
venience, It is clear from Cauchy's theorem that E(t) depends only
on'T and not on the particular f in }(T) chosen to define it. E(1) is

called the spectral projection corresponding to t. If the open-and-closed

set 1 consists of the single point A, the symbol E(XA) will be used instead
of E({A}). It will be convenient also to use the symbol E(t) for any
set 1t of complex numbers for which 1N\ o(T) is an open-and-closed subset

of o(T). In this case we put

E(t) = E(tn o(T)).

Thus E(1) = 0 if 1\ o(T) is empty.

13. THEOREM. Let TEL(X). Let L, denote the Boolean algebra of
open-and-closed subsets of o(T). If T€ s then E(t) is a projection,
TE(x) = E(1)T and of(T|E(1)X) = 1. The map 1 + E(1) is an isomorphism

of I onto a Boolean algebra of projections in L(X). This means that

(i) E(4) = o,

(ii) E(o(T)N1) I-E(t) (TEZO),

(ii3) E(r,07,) = E(ry)4E(x,)-E(r))E(r)

(iv) E('rln T,) B(Tl)E(Tz) (11,126 ):o).

For a proof of this result, see Theorem 1,39 of [IZ].

3. Prespectral operators

1. DEFINITION. A Boolean algebra B of projections on X is a

commutative subset of L(X) such that



(i) E2 = E (EEB);

(ii) 0¢€B;
(iii) if E€ B, then I-E€ B;

(iv) if E€ B, FE B, then

EvF = E+F-EFE B,
EAF = EFE B,
2. DEFINITION, A Boolean algebra B of projections on X is said

to be Bounded if there is a real number M such that

[|E]] <M  (E€B).

3. PROPOSITION. Let Bl’EQ’ cees En be a finite family of pro-
jections on X such that ErEs =01if 1 <r < s < n., Suppose that

Oys sees ane C. Then
n
llglarErll <M sup{la | :1 <r<n},

where M = sup{||E|| : E€B} and B is the (necessarily finite) Boolean

algebra of projections generated by Eis eees En.

For a proof of this result, see Proposition 5.3 of UZ] .
Next, we introduce the concept of spectral measure and then define

a prespectral operator,

4; DEFINITION. A family T C X* is called total if and only if x€X

and \/x,f> = 0 for all f in T together imply that x = O.

5. DEFINITION. Let £ be a c-algebra of subsets of an arbitrary
set Q. Suppose that a mapping E(*) from I into a Boolean algebra of

projections on X satisfies the following conditions:



(1) E(Gl)+E(62)-E(61)E(G2) E(GlU 52)_ (61,62612)}

(ii) E(Gl)E(62) = E(8,16,) (6,,8,€ L)
(iii) E(2\8) = I-E(S) . (8ez);
(iv) | E(Q) = I

(v) there is M > O such that ||E(§)|]| < ¥ for all é in I;
(vi) there is a total linear subspace I' of X* such that <t(-)x,f is
countably additive on I, for each x in X and each f in T.

Then E(¢) is called a spectral measure of class (Z,l).

6. DEFINITION. An operator T in L(X) is called a prespectral
operator of class TI' if and only if the following two conditions are
satisfied:

(i) there is a spectral measure E(+) of class (Zp,r) with values in

L(X) such that

TE(S) = E(8)T (se z:p),

vwhere Zp denotes the o-élgebra of Borel subsets of the complex plane;

(ii) o(T|E(8)X)E § (662p).

The spectral measure E(e) is called a resolution of the identity of

class T for T.

The next proposition shows how to construct a prespectral operator

from an arbitrary spectral measure

7. PROPOSITION. Let Q@ be a set and ¥ a o-algebra of subsets of Q.
Let E(+) be a spectral measure of class (Z,I') with values in L(X) and
let £€B(Q,I), where B(Q,%) is the Banach algebra of bounded measurable

functions on Q under the supremum norm. Define

p(£) = J f(A)E(AN).
0O

Then if x€¥, yET and u(1) = <B(T)X,y> (1e1), we have



(uEm,y I £(A)u(ar).
. Q .
befine

EF(t)

E(F (1)) (e 2 ).

Then Y(f) is a prespectral operator with a resolution of the identity

F(e) of class I'. Also
v(f) = l AF(dA).
C
For a proof of this result, the reader is referred to

Proposition 5.8 of DZ].

8. DEFINITION. Let S be a prespectral operator on X with a

resolution of the identity E(e) of class T such that

S = I AE(dAr).
a(S)

Then S is called a scalar-type operator of class T.

9, PROPOSITION, Let S be a scalar-type operator on X with a

resolution of the identity E(+) of class T. Define

p(f) = J F(A)E(AN) (fec(o(s))).
o(8)

Then
(1) o(y(£)) = £(a(S)) (£€c(o(8)))

and (ii) ¢ is a bicontinuous algebra isomorphism from C(c(S)) into L(X).

For a proof of this result, see Proposition 5.9 of DZ].

10. THEORENM. (i) Let T be a prespectral operator on X with a resolution

of the identity E(s) of class I'. Define
S = J AE(dA) , N = T-S.
o(T)

Then S is a scalar-type operator with a resolution of the identity E(e) of



class 'y and N is a quasinilpo%ent operator commuting with {E(T)::rezp}.
~ Moreover a(S) = O(T?.

(ii) Let S be a scalar-tyﬁe operator on X with a resolution of the
identity E(¢) of class I'. Let N be a quasinilpotenf operator on X
commuting with {E(t) :'tEZEg. Then S+N is a prespectral operator with
a resolution of the identity E(s) of class T. Moreover o(S+N) = o(S).

For a proof of this result, the reader is referred to Theorem 5.15

of [I12].

11. DEFINITION, Let T be a prespectral operatof on X with a

resolution of the identity E(e) of class I'. Define

S = J AE(dA) , N = T-S.
o(T)

Then S+N is called the Jordan decomposition of T corresponding to the

resolution of the identity E(-). S is called the scalar part and N the

radical part of the decomposition,

The following results summarize the fundamental properties of the

class of prespectral operators.

© 12, THEOREM, Let T be a prespectral operator on X with a resolution

of the identity E(e) of class T'. Let AEL(X) and let AT = TA. Then

AI F(A)E(AN) = J F(ME@N)A  (fec(o(T))).
a(T) a(T)

For a proof of this result the reader is referred to Theorem 5.12

of [IZ].

13. THEOREH. Let T be a prespectral operator on X with a resolution

of the identity E(+) of class T.

(i) If F(e) is any resolution of the identity for T, then



F(AE@AN) = J £(A)F(dX) - (fecla(T))).

J'g(T) a(T)

(ii) T has a unique resolution of the identity of class T.
(iii) T has a unique Jordan decomposition for resolutions of the
identity of all classes.

For a proof of this result see Theorem 5.13 of DZJ.

14, THEOREM. Let T be a prespectral operator on X with resolution
of the identity E(e¢) of class T, Let f€.}(T). Then £(T) is a pre-

spectral operator with resolution of the identity F(e) of classT given

by
F(1) = E(£ (1)) (rex).

For a proof of this result the reader is referred to Theorem 5.16

of [i12].

15. THEORE!!. Let K be a compact Hausdorff space, and let ¥ be a
continuous algebra homomorphism of C(K) into L(X) with ¢(1) = I, Let

N, in L(X), be a quasinilpotent commuting with ¢(f) for every f in C(K).
Then there is a spectral measure E(e) of class (ZK,X), where Iy denotes
the o-algebra of Borel subsets of K, with values in L(X*) such that

(1) ()= j F(X)E(N) (£€ C(K))
K

and (ii) N#*E(7)

E(T)n* (t€1).

K
Moreover if SE€ Y(C(K)), then the adjoint of T = S+N is prespectral of
class X, and S#+N® is the Jordan decomposition of T#,

For a proof of this result the reader is referred to Theorem 5,21

of [I2].

16, THEOREH. Let S,NEL(X). Suppose that S is a scalar-type

operator and N is a quasinilpotent commuting with S. Suppose also that



AEL(X)'and A commutes with S+N. Then A commutes with each of S and N,
Moreover, if S+N = SO+NO, where SO is-a scalar-type operator on X, NO
is a quasinilpotent and SN = NS then S=S and N=N .

oo oo o o

For a proof of this result see Theorem 5.23 of [z2].

17, THEOREM, Let S be a scalar-type operator on X. Let N, in L(X),
be-a quasinilpotent operator with SN = NS, Then if T = S+N is pre-
spectral, every resolution of the identity for T is also a resolution

of the identity for S. Also, T = S+N is the unique Jordan decomposition
for T. Moreover N commutes with every resolution of the identity for T.

For a proof of this result the reader is referred to Theorem 5.24

of D?J. !

18, THEOREHM, Let S be a scalar-type operator on X with resolution
of the identity E(e) of class I'. Let N, in L(X), be quasinilpotent

with SN = NS. Then S+N is prespectral of class T if and only if

NE(t) = E(T)N (te ZD).

For a proof of this result see Theorem 5.25 of [IZ].

19, THEOREM. - Let T be a prespectral operator on X with resolution
of the identity E(e) of class I'. Let T be an open-and-closed subset

of o(T)., Then E(t) is equal to the spectral projection corresponding
to T. |

For a proof of this result the reader is referred to Theorem 5,27

of [j2].

20. THEOREHN, Let T be a prespectral operator on X. Then ca(T) = o(T).

For a proof of this result see Theorem 5.47 of [IZ].



CHAPTER TWO

Solution to a problem of T.A. Gillespie

The purpose of this brief chapter is to answer affirmatively
thé following question posed by Dr. T.A. Gillespie., Is it possible
to construct a complex Banach space Y and a homomorphism E(e) from
ZP into a bounded Boolean algebra of projections on Y, such that E(e)

is not a spectral measure of any class?
1. The example

In order to construct an example of the type specified above, a

preliminary result is required.

1. LENMA. Let TEL(X). Let E,F be projections in L(X) such that

EF = F and T,E,F commute. Then
o(T|FX) € o(T|EX) C o(T).

PROOF. Let A&p(T). Now E commutes with T and hence also with
_(AI—T)_l. Therefore (AI-T)—l leaves EX invariant, and its restriction
to that subspace is a bounded operatof, clearly inverse to (AI-T)]EX.
Hence A€ p(T|EX) and o(T|EX) C o(T). Similarly T|EX commutes with F|E¥,

and o(T|FX) € o(T|EX).

2. EXAMPLE., On the subspace of 7 consisting of convergent
sequences, the map which assigns to each such sequence its limit is a
linear functional of norm one. Throughout this’section L denotes a
fixed linear functional on £ with ||L|| = 1 such that for each con-

vergent sequence {£ } we have
g q 0



LUE D = limk .

n >

Define oﬁerators S and A on & by

s{g } = '{nn},
where n, = & (n =1,2),
_ n-=2 _ .
= -I—l_—l- n (n - 3,”,5, 000),
ale )} = {L({g 1), Lg 1), 0,0,0, ...},
Clearly |]A|] = 1 and A% = 0. Also
ste ) = {e ) - {v ),
where Y, = O (n = 1,2),
-1 - aun
- -I'T——l-gn (n e 3,’1’,5’ .0.).

Since L({Yn}) = 0, then AS{EH} = Aign}. It is easy to see that

SA{ED} = A{En}, and hence

AS = SA.
0(S) is the totally disconnected set consisting of 1 and the numbers
(n-2)/(n-1) for n = 3,4,5, «ee « By regarding S as the adjoint of an
operator on %!, it is easy to see that S is prespectral with a (unique)

resolution of the identity E(¢) of class 2! satisfying

E({l}){gk} :.{Elsgzaosoaoa "'}3
n-27- _ _
E((EEe ) = (6, 83 (0= 3, ..,
where akn denotes the Kronecker delta, Define the sequence.{ln} by
setting
An = 1 (n = 1,2),
A= B2 (n = 3,4,5, ...).



Then it is easy to see'that for T in EP"E(T) is the operator which
multiplies the nth term of a sequence by 1 if )‘neT and by 0 if )‘né T,

The sequencé4{fn} of functions on o(S), given by

. n-2
fn()n) A if l<571-,

n-2

fF)=1 1f X2,

for n = 3,4,5, ... converges uniformly to the function identically equal

to A on ¢(S). One sees directly that

I fn(A)E(dA) converges to S in the norm of L(2"),
a(s)

and hence

S = J AE(dxr).
c(S)

Observe that
(i) S is a scalantype operator on & of class 2l
(ii) S is the adjoint of a scalartype spectral operator on 2!;
(iii) (27)* is weakly complete by IV.8,16 and IV.9.9 of []g];

(iv) o(S) is totally disconnected.

We now construct another resolution of the identity for S.

Define

F(1) = E(1)+AE(T)-E(T)A (rezp). (1)

Using the relations A2 = 0 and AE(T)A = O OIEZP), it is easily verified
that F(e) is a homomorphism from Zp into a Boolean algebra of projections
on £° with F(6(S)) = I. Clearly ||F(t)]| < 3 for all 7 in Zp.

For each positive integer n let e, in 2! be given by

and let ei be the corresponding linear functional on 27, Let Fl be the

ot
«

total linear subspace in (2 )% generated by'ei-L, e,

-L, and



'{eiz n .= 3,4,5, «se}s Since for each t in Zé and x in &

3,4,5, eee),

| <F('r)x,e;':> = <ﬁ(r)x,e§> (n

<r(r)x,e';';'—L>= xt(l)<x,e;':-L> (n = 1,2),

it follows that F(¢) is Pl-countably additive., Since E(+) and A

commute with S, elementary algebra shows that

F(t)S = SF(1) ('re}:p).

In order to prove that F(e) is a resolution of the identity for S it

remains only to show that
o(S|F(LIC T (r€x).

By virtue of Lemma 2.1.1 it suffices to prove this inclusion when T is

a closed subset of ¢(S). Again by Lemma 2.1l.1, and the fact that o(S)
‘is totally disconnected, it is sufficient to prove the inclusion for an
open-and-closed subset t of ¢g(S). It is easy to see from the definition
of F(s) that E(+) and F(+) agree on finite subsets of o(S)\{1}. Since
every open-and-closed subset of o(S) is such a set or the complement

in 0(S) of such a set, F(+) and E(+) agree on open-and-closed subsets

of 0(S). Therefore
o(S|F(T)L) = o(S|E(1)LT)C 1

for t open-and-closed in o(S). Observe that

AE({1}) {1,1,1, ...} = {0,0,0, ...}

and
E({1})A{1,1,1, ...}

{1,1,0, ...},

Hence, although A commutes with S, A does not commute with the resolution
of the identity E(¢). It now follows from (1) that F({1}) # E({1}).

Therefore F(e¢) and E(e) are distinct resolutions of the identity for S.



Observe that F#(s) and E%(+) are Boolean algebra homomorphisms
from XP into L(Y), where Y = (£7)%, Also F*(s) and E%(s) are bounded,

and

We observe that F#(1)S* = S*F*(1) and then prove that

O(S*lf;"‘(‘[)Y)_C_ T (t EZP).

By virtue of Lemma 2.l.1, it suffices to prove this inclusion when T
is a closed subset of o(S). Again by Lemma 2.l.1, and the fact that
o(S) is totally disconnected, it is sufficient to prove the inclusion
for an open-and-closed subset T of ¢(S). We note that for such a 1
F(t) = 2—1— j (AI-8) Lax,
mi
B
where B is a suitable finite family of Jordan contours which enclose T

but exclude o(SNT. We have
F*(t) = _2£_ I (AI—S*)-]‘dA
i g

and so F*(1) is the spectral projection corresponding to the open-and-

closed subset Tt of ¢(S%*) = o(S). Thus

o(s*|F#(1)Y) = 1 (t open-and-closed)

and so

o(s*|Fx(1)Y)C T (1 ézp).

It was established earlier that E(¢) and F(+) coincide on open-and-
closed subsets of o(S). Hence F%(s) and E*(e) also coincide on open-and-
closed subsets of o(S*) = o(S). Thus, the argument above establishes

similarly that S*E%(t) = E*(1)S* and

o(s*|EX(T)Y)C T (t EZP).

Now, S is prespectral operator and so, by Theorem 5,22 of [|2] , S%



is a prespectfal operator on Y. As noted earlier, Y is veakly complete
and so, by Theorem 6.11 of [I2], S* is a scalar-type spectral operator.
By Theorem 6.7 of>D2], S* has a unique resélution of the identity

G(e) say. If E%(e) and F#%(e) were both spectral meésures, then they
would form distinct resolutions of the identity for S%*, and so at least
one, H(*) say, is distinct from G(¢). Thus, there is a complex Banach
space Y = (27)% and a homomorphism H(*) from Zp into a bounded Boolean
algebfa of projections on Y such that H(e) is not a spectral measure of

any class.



CHAPTER THREE

A commutativity theorem for a scalar-type operator

The purpose of this section is to show that if S is a scalar-
type operator and A is an operator that leaves invariant all the
maximal spectral subspaces of S, then A commutes with S. The method
of proof is to first observe that the argument given in Theorem 1 of
[Q], P.526-530 is sufficient to deduce a special case of the result
above. The general case then follows from a result of Colojoara and

Foias.

l. The commutativity theorem

Prior to proving the first result in this section we require some
additional notation. R denotes the real line. Also, if 1C C, and
z €C, then x(t,2z) denotes the characteristic function of the set t

evaluated at z.

1. THEOREM. Let S be a scalar-type operator of class T' on X. Then
8% is a scalar-type operator on X* with resolution of the identity F(e),
say, of class X. Suppose that A, in L(X), has the property that

ARF(§)X% C F(8)x

for every closed subset § of C. Then AS = SA.

~

PROOF ., We first obtain some consequences of the hypothesis of the

theorem, The first is merely a restatement of this hypothesis,

(1) If §C C is closed, then A*F(§) = F(8)A™F(S).

Next, we obtain an analogous result for open subsets of C.

-~



.

(2) If TC C is open, then F(T)A%.= F(T)A*F(1).

To see this, observe that C\t is closed and so by (1)
A*(I*-F(t)) = (I#-F(1))A*(I*~F(1)).
On rearranging we obtain (2). We require also the following result.

(3) If §C C is closed, TéZp and TN 6§ = ¢, then F(8§)A%F(T) = O.
To see this result observe that by (1) and hypothesis
F(8§)A*F(T) = F(§)F(T)A*F(T) = O.

Now, post-multiplying both sides of the equation F(8)A%F(T) = O by F(t)
gives the desired result.

Now let E(+) be the resolution of the identity of class T for S.
Define

R = I ReAE(d\) , J = [ ImE(dr).
a(s) a(s)

Observe that S = R+iJ. By Theorem 5.22 of DZ], P.137, we have

(j f(A)E(,dA))=’==[ FOIFN)  (£ec(a(s))).
a(S) o(S) A

Using this in conjunction with 1.3.7, we see that R* is a scalar-type

operator on X* with resolution of the identity G(e¢) of class X such that

RE = I a6l , 6(eR) = o,
o(R) i

and for every real number £,
(%) G({g}) = (L),

vhere LE is the line parallel to the imaginary axis through the point g.
Let x€X, yEX¥*, Define

g() = (8x,6((= 2] )y > (ER),

h(x) =Q,G((—w,x] )A'-'> (AER).



Now <AX,G(‘ )y> and <x,G( . )A='=y> may be regardéd as complex Borel measures
on R, Hence g and h are right-continuous complex functions of bounded
variation on R. Therefore the set D of points of R at which either g

or h is discontinuous is countable. If £& R\D we have

{ a,60{ENYY = {x,6({eNA%y) = O,
Hence, using (4) we obtain
(5) <X,A=‘=F(L€)y>= <x,F(L€)A='=y>= 0 (ge§m).
Now, o(S) is compact, and .so there is a positive real number K such that
(6) o(S) C {zeC : -K < Rez < + K},
Let Q denote the set on the right-hand side of (6). Observe that
(7) F(C\e) = F(g\ﬁ) = 0,

Next, we construct a suitable sequence of functions converging uniformly
to Rez on Q. Let n be a positive integer. Since D is countable, R\D is

dense in R and so we may choose points'{gm :m=0,1, see, 2041} in R\D

-~

such that the following two conditions hold:

(8) “K = E < E) <eee< £, o T 4K

(@ |t -2K/(2n+1)| < 2K/(2041)°  (m = 0,1,2, +.., 20).

m+l-€m

Ve obtain immediately from (9)

K
(10) £ E < o

Form = 0,1, .es, 2n+l, let Lm be the line parallel to the imaginary

axis through the point gmo Define

(11) T ='{z€:g : &, < Rez< Em} (m=1, ¢oey 2n+l);
S ='{ze;9 : (Em_l+5m)/2 < Rez < Eﬁ} (m =1, vuu, 20+l);
(12)
n n _ _
fn(z) = I 52m+lx(T2m+l’Z) + E E2mx(12m,z) (ze Q).

m=o m=1



"Observe that by (10), fn(z) converges to Rez uniformly on & and so as

SN >

(13) I £ (A)F(d)) » J ReAF(dr) = I ReAF(dXr) = R¥,
o o(S)

Q

(The first equality follows from (6).) This leads us to consider the
expression n defined by

n
= & - g
n '<X’m§o€2m+1(‘°‘ Pt omn ) F (Tongn 1A )y>

(1u)

’ n
+(x, I Ezm(A*F(?m)—F(?Qm)A*)y> .
m=1

Now, by (11),

T, ST, UL U I (m =1, ..., 2n+l)

and the sets on the right-hand side of this equation are pairwise dis-

joint. Therefore
(15) F(Tm) = F(Tm)+F(Lm_l)+F(Lm) (m=1, .c., 2n+l).
However by (5)
(X,A*F(Lm)y> =<X,P(Lm)A"'-'y>= 0 (m=1, «oe, 2n+l)
and so (14) becomes

2n+1 .
(16) n =<X,m§l «Em(A“F(‘rm)—F(Tm)A"‘)y>.

Observe that by (1)

AP(T ) = F(TIAE(T ) (m = 1, ..., 2041),

Combining this with (15) gives for m = 1, ..., 2n+l,

A='=(F(Tm)+F(Lm)+F(Lm_ ))

1

= (F(r J+F(L )+F(L__ ) )A%(F(r )+F(L )+F(L 1)),

1



This may be rewritten as

(17)  ARF(r)-F(r DA% = F(L__, JA*F(7 )+F(L )A*F(T )

by virtue of the equations
F(Tm)A" = P(rm)AwF(rm), A“F(Lm) = F(Lm)A“P(Lm),

AE(L 1) = F(L__ ML),

1

F(rm)A*F(Lm) = F(Tm)F(Lm)A*F(Lm) =0,

) )

F(r )AF(L__ F(t )F(L__, JA*F(L__ 0,

1 1

)

F(L IA*F(L_ ) = F(LF(L _ JARF(L_ ) = 0,

1 1

F(L l)A‘-"F(Lm)

. F(L__,)F(L )A*F(L ) = O,

all of which follow from (1), (2) and (3). From (16) and (17) we obtain

2n+l
(18) n =<X, z Em(F(Lm_l)A""F('rm)+F(Lm)A*F(Tm))y>.
m=1 T Y T T

We require two more formulae for n. To obtain the first of these,

observe that by (6) and (8) we have F(LO) = F(L2n+ ) = 0. By (1) and (5)

1

(x,F(Lm)A='~’F(Lm)y> = <’x,A='=F(Lm)y>= 0,

F(L )a*F(C\(t_U T ., UL )) = 0.
It follows from the last two equations and (5) that

</X,F(Lm)A*F(Tm)y> + <X,]:“(Lm)A='=F('rm+l )y> =<X,F(Lm)A='-'y> = 0.

From these facts we may rewrite equation (18) as follows

, 2n
X

(19)  n =(x, T (5 -F (L KTk Dy .
R

m_

Now, it follows from (3) that F(Lm)A‘-'=F(Tm\ Gn) = 0. Therefore (19) may

be revritten



- (20) n —<x, L (€ ¢ )P(Lm)A='=r(,6m)y>.

m=1
If m # v, then 3%/1 L, = ¢ and so it follows from (3) that
F(L )A*F(8 ) =

Also, if m § r, then Gmlﬁ Sr = ¢4 and Lm/W Lr = 4. Hence

-n = nl+n2 )
where 2n
= (r,(2K/ (20110 T (F(1, IME(S D)y
m=1

2n
<x (2K/(2n+1) ) (F( U L )A*E( LJ 8 ))y>

m=1

2n
n, =<>, T (g - —2K/(2n+l))F(L YATF (S )y>
n=1

Now let I = sup{||F(0)|]| : T€I ). Then lf < and
In,| < xsCoaa) | a1 =] | 11yl
In,| < (unx/C2nt1)®) ] |a] 1 ]| [19l],

using (9). Hence
Inl < ux/Cnr)n?]|a]] 1x]] |ly]]

(21) Cxi/m | al] 1= | lyl].

|A

From (10) we obtain
n

- K
(22) sup|Rez- Z o +lx(‘r2m+l,z)-— § £2mx(12m,z)| <=
z€E Q n=o0 m=1

Now, if f is any bounded Borel measurable function on o¢(S), xoe X and
yoé;X*, then we have

23 (%, ] FOR@)y D] < vl = || |1y |]sup| 0]«
(o a(S) °> B © OAeo!S)

Take X, = Ax, Yo =V and



. : h. n
£(z) = Rez- §o£2m+lx(r2m+l’z)_ L

. i l£2mx(12m,z‘) © (z60(8)).

We get from (22) and (23)

n n
<x’(A"R"' L o1y )= T By ARF(T, )y >
m=o m=1

< Ga/m)[[al] [Ix[] [ls]].

Next, in (23) take X =X and v, = A*y, Then we obtain

n

. n
AN N T %
(. (R Z EomsaF(Tomen A E Bonl (Ton) A0y b

m=

< Gan/m)|[al] [l=[} [yl

From the last two inequalities and (14) we obtain
(28) | (x, (atRe-Rent)y > = nl < Cea/md|[A]] [1x]] |1yl

From (21) and (24) we get

|<x,(A='=R='=-R=~=A='=)y>| < x| |a]] |1=[] |ly]]/m) Gees).

Now n,x and y are arbitrary. Hence A%R® = R%A*, Similarly A®*J® = J%A%,
Since S* = R%+iJ®, we deduce that A%S* = S%A* and hence that AS = SA.
This completes the proof of the theorem.

In order to prove the more general version of this theorem which
we require, it is necessary to introduce a more general class of

operators containing the prespectral operators.

2. DEFINITION, Let TEL(X). A closed subspace Y of X is called

a maximal spectral subspace for T if

(i) Y is invariant under T,
and (ii) Z is another closed subspace of X, invariant under T, such

that o(T|2) C o(T|Y),
then Z C Y.



3. DEFINITION. An‘operator T, in L(X), is called decomposable
if for every finite open covering {Gi : 1 <i<n} of o(T) there exists

a system {Yi.-: 1<i < n} of maximal spectral subspaces for T such that

(i) o(r|y)) C 6 (1<i <n),
n
(ii) every x in X can be expressed in the form x = I Yi» where
i=1
yieYi for i =1, oo, D
4, THEOREM. A prespectral operator on X is decomposable.
PROOF . Let T be a prespectral operator with resolution of the

identity E(e) of class I'. Let § be a closed subset of 9. It was shown
in Le@a 14,3 of DZ] s P«266 that E(8)X is the union of all closed sub-
spaces Y of X with TYC Y and U(TIY)Q 8. In other words, E(8§)X is a
maximal spectral subspace for T.

Let {Gi :i=1, ..., n} be an open covering of o(T). Let A€0a(T).

Then AéGr, for some r = 1, ..., n. There is an open disc Q, with

X
centre ) such that QAQ Gr' Let DA be the open disc centre A and radius
half that of 2. The discs {DX : A€ a(T)} cover o(T) and so, by the

compactness of o(T), there is a finite subcovering Dl’ coes Dm’ say.
We may assume without loss of generality that for r = 1, ..., n each Gr
contains at least one of the discs Dl’ coey Dm' Observe that for each

J =1, «eey m we have

D, n(cG,) = ¢,

for some i = 1, +4., n. By Urysohnv's lemma, there is a function fj, in
C(o(T)), such that fj takes the value 1 on 3:} and the value 0 on C:\G,,
and satisfies

0< fj(k) <1 (@(eo(m).




Define Si to be the set of j such that supp fj£2 Gio (Here supp denotes

the support of the function.) Then we define

Fl = I fj.
jéSi
n
How define F = I F, and observe that
j=1 *
n m
F= LF > If.
i=1 5=1 7

We note that for each x in o(T) we have

m
F(x) > I f.(x)>1
=1

since, by construction, fj(x) 1 for at least one j. Now define

n
¢, = /(T F)  (i=1, .., n
i=1
Observe that
¢, € C(o(T)) (i=1, veu, m),
n
4.0 =1  (Aeo(T)
i=1
and

Gi:supp ¢iQGi (i:l’ oo ey n)o

Then, for any x in X, we have

n
x= I s where X, = J ¢i(A)B(dA)xé£E(6i)X.

=1 o(T)
It suffices to take Yi = B(Si)X (i =1, ¢ees n) in the definition 3.1.3
to establish that T is a decomposable operator.

We are now in a position to prove the main theorem of this chapter.

5. THEOREM. Let S be a scalar-type operator on X with resolution of

the identity E(e) of class T and let AE€L(X). Suppose that for each closed



set 6§ of C we have AE(8§)X C E(8)X. Then AS = SA,

PROOF. Define an operator C(S,S) on L(X) by

C(S;S)T = TS-ST (T EL(X)).

By the last theorem, S is a decomposable operator. It follows from the

hypothesis of this theorem and Theorem 2.3.3 of [§], p.48 that

1
Lim ||c(s,8)%a] /™ = o,
n - o

Clearly 1
lim |]c(s®%, g ) ams] | /n
n->

:0,

where C(S%%,5%*) is defined in an analogous way as an operator on L(X#*%),

Again, from Theorem 2.3.3 of [5], p.48, we conclude that

ARG ( 8 )X C G(8 )X

for each closed set §, where G(*) is the (unique) resolution of the
identity of class X* for the scalar-type operator S%*, (Note that, since
S is a scalar-type operator, so are S* and S*%,) Ve now apply

Theorem 3.1.1 to the operators S* and A* to conclude that A®S%* = SHA%,

Hence AS = SA, completing the proof.



CHAPTER FOUR

Quasispectral operators

Ernst Albrecht introduced the class of quasispectral operators
and established that a quasispectral operator of class T' has a unique
resolﬁtion of the identity of class I' and a unique Jordan decomposition
for resolutions of the identity of all classes. In this chapter we
give a different proof of these results which is simpler in some respects
than ‘Albrecht's but less so in others, It is shown that every pre-
spectral operator of class I' is quasispectral of class I but that there
exists a quasispectral operator which is not prespectral of any class.
In the remainder of this chapter and in later chapters, we develop

further properties of the class of quasispectral operators.

1. The basic properties of quasispectral operators

Albrecht [l] introduced the following class of operators.

1. DEFINITION, Let TEL(X). Then T is said to be a quasispectral
operator of class I' if there is a spectral measure E(+) of class (ZP,P)

with values in L(¥) such that for all closed subsets § of C we have

(1) TE(SNC E(8)X,

and (ii) o(T|E(8)X) C 6.

The map E(+) is called a resolution of the identity of class T

for T,



It is clear from this definition tﬁat if T is a prespectral
operator with résolution of the identit& E(*) of class I'y, then T is
also a quasispectral operator with resolution of the identity E(e)
of class I's As will be shown later in this chapter, the converse is
false, |

In order to establish properties of quasispectral operators it
is necessary to introduce the concept of the single-valued extension

property.

2. DEFINITIONS, Let TEL(X) and let x€X. An X-valued function

fx’ defined and analytic on an open subset D(’x) of C such that
(zI-T)f, () = x  (z € D(£))),

is called a pre-imaging function for x and T. It is easy to see that

-1
£.() = (I-T) x (zep(T) N D(£.)).

If for all x in X and all pairs f(l) f(2)

o Iy of pre-imaging functions for

x and T we have
(1) _ (2 (1) (2)
fx (¢) = fX () (¢ E,D(fx N D(fX ),

then T is said to have the single-valued extension property. In this

case there is a unique pre-imaging fupction with maximal domain p(x),
an open set containing p(T). The values of this function are denoted
by {x(z) : zep(x)}. Let o(x) = g\p(x). Clearly o(x) € o(T). p(x)
is called the resolvent set of x and o(x) is called the spectrum of X.
For a proof of the following result, the reader is referred to

Theorem 5.31 of [I2], p.1u3.

3. THEOREN, Let T be a prespectral operator on X with resolution

of the identity E(e) of class I' Then T has the single-valued extension



.

property.
The following elementary result proves to be quite important in
the theory of quasispectral operators. Observe that it is converse to

Theorem 3.1.5.

4, "PROPOSITION, Let S be a scalar-type operator on X with resolution
of the identity E(+) of class I'. - Suppose that A EL(X) and AS = SA. Then

for every closed subset § of C we have

~

AE(8)X C E(8)X.

PROOF . If 6 is a closed subset of C, then by Theorem 5,33 of [IZ],

p.143 we have
E(8)X = {x€X : o(x)C &},

Now if %€ X, we have

(zI-8)Ax(r) = A(gI-S)x(z) = Ax (zep(x)),
since AS = SA., Also the map ¢ » Ax(z) is analytic in p(x), and so we
obtain successively
p(Ax) 2 p(x) 3 o(Ax) C o(x).
Hence if x €E(8)X, then also AXxE E(S8)X. The proof is complete.

Next, we require a stronger version of Theorem 5.10 of[lZ], pPp.l1l24-5,
The proof of that theorem does not carry over directly to the present

situation.

5. THEOREIl. Let T be a quasispectral operator on ¥ with a resolution

of the identity E(e) of class I'. Define

S

J AE(dA), N = T-S.
a(T)

Then S is a scalar-type operator with resolution of the identity E(¢) of



class T and Il is a quasinilpotent wiﬁh NS = Sli.

-

¥

PROOF . The first statement of the theorem is immediate. Now let

e > O be given., Then we can find a finite open covering of the compact
set o(S) by sets'{Gi : 1 <i<n(e)} each of diameter less than e, where

the diameter d(G) of a set G is defined by

d(6) = sup{|r-u| : A€ G, ueal.

Since S is a scalar-type operator, it is decomposable by Theorem 3.1.4.
Hence there is a finite family'{Yi :1<1 f_n(e)} of maximal spectral

subspaces for S such that Y. = E(si)X with 6i closed,

o(sly;) C 8. ¢ 6, (1 <ic<nle), (1)
n(e)
and every x in X is of the form © y. with y.eY..
427 % i77i

Observe that by the hypothesis of the theorem we have

TY; C Y, (1 < i < n(ed).

We now define
8, = (8=A;D]Y;, (1 <i<nle)), (2)
T, = (T DY, (L <1< ne)), (3)

where A.€ G,. It follows from the spectral mapping theorem and (1) that

we have successively

0(5,) = {a=; : Aeo(s|Y,)},

a(s;) ¢ {x-2; : 2eG;l,

o(s;) c {u: |u] <€} @ <i<nle)). (w)
Similarly

N ” ,
¥ dce rnj“.’/vuiwm_
[



o(T;) ,{x-xi 1 AE c(TlYi')}, '
o(Ti) Cix-; : 2e G},

o(T) C{n: |u| <e} (1 <i<n(e)). (5)
As noted on p.3 of this thesis, the spectral radius formula

1 ,
1n |71/ = sup{|A] : reo(T)}
n-+

is valid for all T in L(X). Ve therefore deduce from (4) and (5) that

1
in ||s}]] /"
n-+w

sup{ || : )\eo(Si')} < g,

1
1in [|T2/P
ns>e

sup{ |A| : reo(T,)} < e,

valid for 1 < i < n(e).
Since the terms of a convergent sequence are bounded, we deduce

the existence of a real constant He > 0 such that

HS?H < enI-IE for every n > 0 and 1 < i < n(e), (6)

||TIlI|| <‘enM€ for every n > 0 and 1 < i < n(e). (7)

Since T is a quasispectral operator with a resolution of the

identity E(e) of class I'y it follows from the definition 4.l1.1 that

TE(8)X C E(§8)¥

for every closed subset § of C, An application of Theorem 3.1.5 now
yields the conclusion TS = ST, Hence SN = NS,
We deduce from (6) and (7) that for 1 < i < n(e) and every positive

integer n we have successively

2 ~k, 0y K. (n=k
e8] = 11 2 GRS,

k=0



n
k ~n-k
[(13-5)7] | ;_k50<§>||Ti|| 118311

k n=k

2 2 2
[[(gms "] cml = (ee™™ = ml(2e)”,

k=0

n
using the fact that 2% = (1) = 3 (?).
k=o ©

Now define

Y = Yl @ ;oo @Yn(s)o

Observe that the linear mapping

¥1 @ °ee eyn(e) MRS Teew t In(e)

(8)

from Y into X, being continuous and surjective, it follows from the

closed graph theorem that there exists a constant 11 > O such that, for

every x in X there is a Y1 D eee ®yn(e) with x = Y1t eee T V(o) and

gl + eee vy 11 < 8l 1l

(9)

From (2), (3), (8) and (9) it follows that for every x in X and all

positive integers n we have successively

n(e)
-8%|] = [| = (7-9)%,]],
i=1
n(e)
(=8| < = ||(T-8)%,]],
i=1 .
0 n(e) n
eSS PR TTC RN A TN
i=1 +
n n(e) N
sl < 2 s sl
n(e)
-9 < e £ ]yl
i=1l
[](t=5)"%]] < r-mi(ze)nl l2]],



whence

(-] < r-n-ii(ze)f‘.

It follows that

, 1
| | (r-9)°] | /® ilim(m‘ii)l/n «(2e) = 2.

n > w - n-> o

Now, if a sequence of non-negative real numbers fails to converge to O,
thenits upper limit is positive., Since £ > O is arbitrary, we conclude
that

1
vin| | (T-8)"|| /™ = o
n > o

?

and hence that N is quasinilpotent. The proof is complete,
Our next result is an improved version of the last result and

contains the converse theorem.,

6. THEOREM. (i) Let T be a cuasispectral operator on X with a

resolution of the identity E(¢) of class I'. Define
S = I AE(dA), N = T-S.
o(T)

Then S is a scalar-type operator of class T' and N is a quasinilpotent

operator commuting with S. Moreover o(T) = o(S).

(ii) Let S be a scalar-type operator on ¥X and let N be a quasinil-
potent operator commuting with S. Then S+N is a quasispectral operator.

tioreover o(S+1) = o(S).

PROOF. (i) The only statement not already proved in the last theorem

is o(T) = o(S). This follows from the quasinilpotence of N and
Theorem 1.2,.9.
(ii) Observe that if E(+) is a resolution of the identity for S,

then for each closed set T we have SE(t)X C E(t)X. Also, by



Proposition 4,1.4, we obtain NE(1)X& E(r)X. We deduce that

(S+N)E(1)X C E(1)X,

for eaéh closed set t. Finally, we deduce from Theorem 1.2.9 that
o((S+N)|E(1)X) = o(S|E(T)X)C T

for each closed set T and the proof is complete.
This theorem leads us to the following definitions.
7. DEFINITIOINS. Let T be a quasispectral operator on X. A sunm

S+ such that T = S+N, SN = NS, S is a scalar-type operator and N is

a guasinilpotent, is called a Jordan decomposition for T. S is called

the scalar part and N the radical part of the decomposition.

Next, we prove that the adjoint of a quasispectral operator is a

prespectral operator.

8. THEOREHN. Let T be a quasispectral operator on X with, a resolution
of the identity E(¢) of class I'. Then T®* is a prespectral operator on

X% of class X.

PROOF. Define
S = I AE(dA), N = T-S;
o(T)
F(AE@@AN)  (fec(a(T)))
0(£) j FOIE(@)  (£€C(a(T)).
o(T)

It follows from Theorem 4.1,6 that N is a quasinilpotent operator and

NS = SN. By Theorem 1.3.12, we have

Y(E = My(£) (fe c(o(T))).

It now follows from Theorem 1,3,15 that T# is a prespectral operator on



X% of class X and the-proof is complete.
The following basic properties of quasispectral operators were

established by Albrecht by a different method. See Theorem L4 of

(11, p.302,

9., THEOREM. Let T be a quasispectral operator on X with a resolution

of the identity E(e) of class I'. Let A, in L(X), satisfy AT = TA. Then

(1) AJ FQUE(N) = FQOE@)A  (£€C(a(T))).
a(T)

Jo(T)

(ii) If F(e) is any resolution of the identity for T, then

J £(AE(AN) = I F(A)F(dX) (fec(a(T))).
o(T) o(T)

(iii) T has a unique resolution of the identity of class T.

(iv) T has a unique Jordan decomposition for resolutions of the

identity of all classes.

PROOF . By Theorem 4,1,8, T* is prespectral of class X. There is a

unique resolution of the identity G(e) of class X for T with the
property that

([ f_(;\)E(dA))*=[ f(x)e(ax) (fec(o(T))).
o(T) o(T)

(See Theorem 5.22 of [Q], p.137.) Sinée A%T% = T#A%  the first statement
now follows from Theorem 1.3.12, the corresponding result for pre-
spectral operators. Statement (ii) follows similarly from Theorem 1.3.13
and statement (iv) then follows immediately.

Now suppose that the resolution of the identity F(e) is also of

class I'e Ve have already established that

I f(AME@A) = I F(AF@A)  (fe cla(T))).
o(T) o(T)



" Let x€X, yeT. Define -

u(t) = <E('t)x,y> (t E,Zp),

v(T) = <F(t)x,y> (t ezp),

By Proposition 1.3.7,

IA fF(AM)u(ar) = <'J
o(T)

J £(A)v{dr) =<J f(A)P(dA)x,Y>)
o(T) o(T)

F(A)E(dA )x,y>
o(T) )

for all f in C(o(T)). Hence

J £F(Au(dr) = fF(A)v(dr)  (fec(o(T))).
a(T)

IU(T)

pu(*) and v(e) are finite countably additive measures with supports
contained in o(T). Hence they are regular measures, and by the Riesz

representation theorem u = v, It then follows that
<E('r)x,y> = (F('r)x,y\> (Tezp,xeX,yeI‘).

Since T is total, conclusion (iii) follows and the proof is complete.

As promised we now give an example to show that the class of

quasispectral operators is strictly larger than the class of prespectral

operators.
10. "EXAMPLE, On the subspace of 2 consisting of convergent

sequences, the map which assigns to each such sequence its limit is a
linear functional of norm 1. Throughout this section, L denotes a fixed
linear functional on % with ||L|] = 1 such that for each convergent
sequence' {gn} we have

L’({En}) = lim g .

n -+ e



Define operators S and A on 2 by

S{En} :. {Els % 529 % 53’ "'}9
Ag } = {L({g 1),0,0, ...}

Clearly ||A|] = 1 and A2 = 0. Mlso
ste} = g } - {n },

where n = 0 and

= 2,3,4, ses)ds

Jon }
1
H

Ty

~
>
!

Since L({nn}) = 0, we have AS{En} A{En}. It is easy to see that
SA{En} = A{gn}, and hence

AS = SA.
0(S) is the totally disconnected set consisting of 1 and the numbers
l-n-l forn = 2,3,4, «ee « By regarding S as the adjoint of an operator

on 2! we see that S is prespectral with a unique resolution of the

identity E(s) of class &! satisfying

E({11){E, }

'{gl,o,o,o, eeel,

=14 : -
E({—;?J){En} {Gkngk} (n = 2,3,4, eee)e

Define the sequencel{kn} by setting Al =1 and

A :P_:]_'.

n = (n = 2,3,4, vua)e

It is easy to see that for T in ZP, E(t) is the operator which multiplies
" the nth term of a sequence by 1 if Ane_r and by 0 if An¢ T, The

sequence'{fn} of functions on 0(S) given by

iF A < Eil ,

if A > 2

n
>

£.())
n

"
)

fn(k)



for n = 2,3,4, ... converges uniformly to the function identically equal

to A on 0(S). One sees directly that
J fn(A)B(dA) converges to S in the norm of L(L)
o(s)

and hence

g = J AE(dN).
o(S)

It follows that S is a scalar-type operator on 2" of class 2!. Since

AEC({1I){1,1,1, ...} = {0,0,0, ...}

and

E({1})A{1,1,1, ...} = {1,0,0, ...},

it follows that A commutes with S but not with the resolution of the

identity E(e). Ve now define T = S+A. Thus T is the sum of S and a
nilpotent A that commutes with S. It follows from Theorenm 4.1.6 (ii)
that T is a quasispectral operator on %” of class gl. Ve show now that
T 1s not prespectral of any class.

Suppose to the contrary that G(e¢) is a resolution of the identity
of class I' for the prespectral operator T. Then G(*) would also be a
resolution of the identity for S, the scalar part of T, and A commutes

with every value of G(s). How, by Thzorem 5.33 of DZ], p.143, the

projections G({1}) and E({1}) have the same range. Also

c({1}){1,1,1, ...} E({1}1)e”

and
AG({1}){1,1,1, ...} = {0,0,0, ...},
However
A{1,1,1, ...} = {1,0,0, ...}e E{1})e” = c({1})s”
and

c({11)a{1,1,1, ...} = {1,0,0, ...}.



This gi&es a contradiction and so T is not prespectrai of any class,
If A were to commute with any resoiution of the identity for S,
then T would be prespectral. A does not commute with any resolution
of the identity for S. In fact every quasispectral operator which is
not prespectral has the following property: its radical part does not

commute with any resolution of the identity of its scalar part.

We have already tacitly used the following result in the course

of proving Theorem 4.,1.9. Ve record it for completeness.

11. NOTE. Let T, in L(X), be a quasispectral operator with a
resolution of the identity E(+) of class T'. Let p denote the union of
all dpen subsets v in g such that E(v) = O, Then p can be expressed as
the union of countably many such open sets: p =L) Vs Saye Then for

n
each n

<E(Vn)X,Y>
<E(p)XSY>

It follows that E(p) = 0. The complement of p is called the support of

0,

0 (x€X, yeT).

E(s). Define
S = [ AE(dAr).
o(T)

Then, by Theorem 4,1.6 (i), we have o(T) = o(S). Also, by Note 5.7 of

DZ], p.121, the support of E(¢) is equal to o(S) = o(T).

ile now proceed to obtain some further basic properties of quasi-
spectral operators. Let T be a quasispectral operator on ¥ with
resolution of the identity E(e) of class I'. Recall that in

Definition 1l.2.6 we defined f(T), for each f in ;’(T).

12, 'TEEOREK. Let T be a quasispectral operator on X with resolution

of the identity E(e) of class I'. Let f¢ ; (T). Then £(T) is a quasi-



spectral operator with resolution of the identity F(+) of class T given

by
F(t) = E(£ (1)) (rez).

PROOF « The formula above clearly yields a spectral measure of class
(ZP,P). Let T be a closed subset of C. Since f is continuous on some
neighbourhood of o(T), f-l(r) is also a closed set. Also, since T is a

quasispectral operator,
-1 , -1
TE(f ~(1))2 & E(f “(1))X.

It follows from the equation T£(T) = £(T)T and Theorem 4.1.9 that
£(T)S = S£(T), where S denotes the scalar part of T. Then from

Proposition 4,1.4 we obtain

FMEE ()% € BE ()X,

Hence

£(T)F(T)X & F(1)Xe (1)
If Aoe C\t, the function h given by
-1
h(A) = (-0

is analytic on a neighbourhood of f—l(T). Hence if C is a suitable
finite family of rectifiable Jordan curves surrounding f-l(r) we have,

by Definition 1.2.6 and Proposition 1l.2.1

1 - - -1 |
{55; JCh(A)io(h)dk}AOI-¢(T))E(¢ (1)) = E(£ (1)),

where

T () = {(AI—T)IB(f—l(T))X}-l.

This shows that

o(£(T)|F()) C . (2)

From (1) and (2) we deduce that F(s) is a resolution of the identity for



T, and the proof is complete.

13. THEOREM., Let T be a quasispectral operatdr on X with resolution

of the identity E(¢) of class I'. Define

S = J AE(dA) , N = T-S.
o(T)

Let f€ } (T). Then

£(1) = £ Lo J £ e,
n=o ° Jo(T)

the series converging in the norm of L(X).

PROOF .« It follows from Theorem 4,1.6 that o(T) = o(S) and so

;'(T) = ;'(S). The present theorem will follow immediately from

Theorem 1.2.9 as soon as we show that

£(8) = j £(A)E(dA) (fe 7 ().
a(s)

Let x€X and yET. Then if u(t) =<E(T)x,y> (te ZP) we have

<]

for every g in C(o(S)). Observe that, if C is a suitable finite family

g(A)E(d)\)x,y>= f g(M)ulaxr) (3)

o(S) o(S)

of rectifiable Jordan curves surrounding o(S) and if £ € %;(S), then by

Proposition 1.3.7

(é(s)x,y>- 1 Jf(A)((u-s)'lx, >dx
c

27w

- I £00) {J -£)"Nu(ae)} an.
C a(8)

A standard argument involving Fubini's theorem shows that we may inter-

change the order of integration in the double integral to get



() = J EOu@). (1)
) o(s) . ]
.Since T is totél, it follows from (3) and (45 that
£(8) = J F(ME@@AN)  (fe 51 (s)).
a(S)

This completes the proof.

14, DEFINITION, Let T be a quasispectral operator on X with resolution

of the identity E(*) of class I'. Define

S = [ AE(dr) , N = T-S.
(T)

T is said to be of type m if and only if

m .0
£(T) = ngJ Mooz e 7 .
n=o ° ‘o(T)
15, PROPOSITION, Let T bea quasispectral operator on X with resolution

of the identity E(e¢) of class I'. Define
S = j AE(dA) , N = T-S.
o(T)

(i) T is of type m if and only if N - 0.

(ii) T is a scalar-type operator if and only if it is of type O.

PROOF, If Nm+l = 0, then clearly the formula of Theorem 4.1.13 reduces

to the formula of Definition 4.1,14, Conversely, if T is of-type m, ve
see by putting

£ = A"/ (mi)

in these two formulae that
0= ™t J E(dr) = L,
o(T)

This completes the proof of (i). Statement (ii) follows immediately.



16. PROPOSITION, Let T be a quasispectral‘operatorvon X with'

resolution of the identity E(*) of class I. Define

s = J AE(dA) , N = TQs.
a(T)

Let f€ ; (T). The scalar part of the Jordan decomposition of £f(T) is

equal to £(S). If T is of type m, then £(T) is also of type m.

PROOF . By Theorem 4.1.13 and its proof, we have
£(1) = 1z £™(s) g—n,- .
n=o *
£(s) = J £(A)E(dN).
a(T)
Define
F(r) = B(F 1 (x) (€1,

By Theorem 4,1.12 and Proposition 1.3.7, F(+) is a resolution of the
identity of class T for both £(T) and £(S). Thus if we can show that the
operator

o n

N, = I f(n)(s) N
1 - n!
n=l

is quasinilpotent, the first statement will be proved. Let a,be the closed

commutative subalgebra of L(X) generated by N and
'{J £(A)E(dA) : £E€C{o(T))].
o(T)

Observe that the radical of(},is a closed ideal of & . Hence NI

, is cuasi-
nilpotent. To prove the second statement, note that gt = 0 and so
m n
w,o= 1z £™(s) X
1 _ n.
n=1l

Hence NT+1 = 0 and the proof is complete.



We have alréady'seen that a quasispectral operator may have
distinct resolutions of the identity corrésponding to distinct total
‘linear subspaces of the dual space., However, as we now show, the pro-
jection corrésponding to an open-and-closed subset of the spectrum
always coincides with the spectral projection. Also, the ranges of the

projections corresponding to a closed set are egual.

17, PROPOSITIOHN, Let T be a quasispectral operator on X with
resolution of the identity E(*) of class I'. Let T be an open-and-closed
subset of o(T). Then E(t) is equal to the spectral projection corres-

ponding to T.

PROOF . Observe that

o(T|E(1)X) C 1 and ofT|(I-E(1))X)C C\t.

The desired conclusion now follows from Proposition 1.53 of []21, p.37.
In order to prove that the ranges of the projections corresponding

to a closed set are equal, some preliminary results are required.

18, LEMHA. Let TEL(X) and let Y be a closed subspace of X in-

variant under T. If T has the single-valued extension property, then so

does T|Y.

PROOF . Let y€Y, and let f and g be analytic Y-valued functions,

defined on open sets D(f) and D(g) respectively, such that

(EI-T)Ff(E) = ¥y (e D(£)),

(eI-T)g(€) =y (g£eD(g)).
Since T has the single-valued extension property,

£(g) = g(g) (e D(£)ND(g)).

Therefore TIY has the single-valued extension property.



19. THEOREM, Let T be a qﬁasispectrai operator on X. Then T has -

the single-valuedA extension property.

PROOT . It follows from Theorem 4.1.8 that T* is a prespectral

operator. By Theorem 5,22 of ['2], p.137, T";='¢ is also a prespectral
operator and so by Theorem 5,31 of ﬁZ], p.143, T** has the single-valued
extension property. Now T is the restriction of T#* to its closed in-
variant subspace X, It now follows from the preceding lemma that T also

has the single-valued extension property and so the proof is complete,

20. LEMMA. Let T, in L(X), have the single-valued extension property,

and let xEX. The spectrum o(x) of x is empty if and only if x = O.
PROOF. The function £ + x(£) is entire. If |&| > ||T||, then

(x(6),yp = {EI-T) Tx,y>  (yexs)

and the right-hand side tends to O as £ + «», By Liowwville's theorem

x(E) = 0 (E€ C) and so x = (EI-T)x(E) = O,

21. THEOREM. Let T be a quasispectral operator on X with resolution

of the identity E(¢) of class I'. Let § be a closed subset of C. Then

E(8)X = {x€X : o(x)C &}.

PROCF. Let x €E(§)X so that E(§)x = x. Since o(T|E(8)X)C &, we see

from the relation
. -1 _ - -1
(EI-T)|EE)X) TEGIx = (EI-T)|EGIN x

that for £ in C\§ the left-hand side is a nre-imaging function for x and

T. Hence p(x)D C\§ and so o(x)C 6.
- Lincitas bin

Conversely, assume that o(x) € 8. Observe that there is ah sequence

{‘rn} of closed subsets of the set o(T){) (C\8) with

©

Uz =amAN (c\s).

n=1




By Urysohn's lemma, there is a function hn,in C(a(T)) such that
hn(A) =1 (Ae‘rn) . hn(A) =0 4(>\é §Na(T)),

0 f.hn(k) <1 (AEo(T)) and the support of hn is disjoint from 8. As in
Proposition 4,1.4, the spectrum of the element y = I h_(A)E(dA)x is

' o(T)
contained in o(x%) and in the support on hn' By Lemma 4.1.,20, y = 0. Let

yleI‘ ‘and u(t) :<E(t)x,y‘> ('re)lp). By Lebesgue's theorem of dominated

convergence and Note 4,1,11

<kI—E(6))x,§>’= lim J hn(l)u(dk) =0
o(T)

n-+
and so, since I' is total, E(8)x = x.

Finally, we show that the spectrum and the approximate point
spectrum of a quasispectral operator coincide, For the definition and
properties of the approximate point spectrum the reader is referred to

Definition 1,15 and Theorem 1.16 of [IZ], pp.8-9.

22, THEQREM. Let T be a quasispectral operator on X with resolution

of the identity E(e) of class I'. Then oa(T) = o(T).

PROOF . Let G = G(T)\Ga(T). Now G is open, since it is equal to the
intersection of C\Ua(T) and the interior of o(T). If § is any compact

subset of G, then oa(TIE(é)X) = ¢ since

o (T|E(®)X) C o(T|E(8X) N 0_(TIC 8 N o (T) = 4.

Hence, by Theorem 1.16 of DZ], p.9, the boundary of the compact set
o(T|E(8)X) is empty and so o(T|E(8§)X) = 4. Therefore E(§)X = {0}, and
so for all x in X and y in ' we have <f(6)x,y>>= 0. Each measure
(B(')x,y> is countably additive on ZP and so <B(G)x,y>= 0. Since I is
total E(G) = 0. Hence, by Note 4,1.11, E(p(T) U G) = O, Again by

Note 4,1,11, p(T) is the largest open set on which the spectral measure



E(+) vanishes. Therefore G = ¢ and oa(T) = o(T).

2. Restrictions of guasispectral operators.

The main purpose of this brief section is to show that a quasi-

spectral operator is decomposable,

1. PROPOSITION, Let T be a quasispectral operator on X and let Y be
a closed subspace of X invariant under T, If T|Y is a quasispectral

operator, then o(T|Y) C o(T).

PROOF . By Theorem 4.1.22, o_(T) = o(T) and oa(TIY) = o(T|Y). Also,

by Theorem 1.16 (i) of [I2], p.9 we have oa(TlY)£; o_(T) and so the
desired conclusion follows.,

Next, we show that if T is a quasispectral operator on X with a
resolution of the identity E(e), then E(8)X is a maximal spectral sub-

space for T for each closed subset § of C.

~

2. PROPOSITION, Let T, in L(X), be a quasispectral operator with
resolution of the identity E(+) of class T and let 8§ be a closed subset
of C. Then E(8)X is the union of all closed subspaces Y of X with

TY £ Y and o(T|Y) C S.

PROOF.  Let Y be a closed subspace of X with TYS Y and U(TIY)E}G.

Lemma 4,1,18 shows that TIY has the single-valued extension property.
Let Yy, and Yy be respectively the maximal X+valued and Y-valued analytic

functions which satisfy

(£1-Thy,(§) =y, for all £ in py(y),

(EI-T)yY(E) y, for all £ in pY(y),

where pX(y) and pY(y) are the domains of definition of these functions.

Let cX(y) and cY(y) be the complements of these sets. y, may be regarded



as X-valued and so by the maximality of px(y) we have pY(y)£; px(y).
Therefore

0, (y) & oy(y) & o(T|Y) C 6.
By Theorem 4,1.21 we have

E(§)X = {x€X : o, (x) C &}
and so YC E(8)X. Finally o(T|E(§)X)C 6 and so the proof is complete.

In view of the preceding proposition, the argument of the proof of

Theorem 3.1.4 suffices to prove the following more general result.

3. THEOREMNM, A quasispectral operator is decomposable,

3. Relationships between a quasispectral operator and its scalar part.

The purpose of this section 1s to present analogues for quasispectral
operators of results of Foguel [H] on the relationships between a spectral
operator and its scalar part. The corresponding problem for prespectral
operators was investigated by Dowson [q ] and Nagy EZO].

Let T be a quasispectral operator on X with resolution of the

identity E(e) of class I'. Throughout this section

S = I AE(dA) , N = T-S.
o(T)

1. LEMMA, Let T be a quasispectral operator on X with resolution

of the identity E(e) of class I'. Then S is in the closed subspace of

L(X) generated by {E(t) : TEZP, Oé?}.

PROOF. Let € > O be given. By the definition of the integral there

is a partition TgoTys oo T of 0(S) into Borel sets with the point O

in at most one of the closures ?& and with



. n _ )

lls - z AiB(Ti)|| <.e
. i=o . ‘

for any choice of the complex numbers Ai in Tse If Oécﬂs) this proves

the lemma. If 0€0(S) we may without loss of generality take Oe:'ro and

)\O = 0 in the inequality above, which proves the lemma in this case too.

2. THEOREM. Let T be a prespectral operator on X with resolution
of the identity E(¢) of class I'. Let T belong to the right (left) ideal
J in L(X). Then every projection E(t) with O¢? belongs to J. If J is

closed, then S and N also belong to J.

PROOF. Suppose that TE,ZP and Oé?. Let T = T|E(t)X. Since
o(T|E(T)X) € T, it follows that Oé';p(TT), and hence T;l exists as a
bounded linear operator on the space E(1)X. Let Voo in L(X), be defined
by the equation

vox = T_:lE('r)x (xEX).
Then TV = E(tr) = VTT, which proves that E(t)E J. It follows from Lemma

4,3.1 that S and hence N also belong to J if J is closed.

3, THEOREM. Let T be a quasispectral operator on X with resolution
of the identity E(e¢) of class T. Let T belong to the closed right (left)
ideal J of L(X). Then every projection E(t) with O¢? belongs to J.

Also S and N belong to J.

PROOF, By Theorem 4.1.8, T® is a prespectral operator on X* with

resolution of the identity F(s) of class X such that

U f(k)E(d)\)]* =J FOOE(N)  (Fec(a(T))) .
o(T) o(T)

It follows that the Jordan decomposition of T# is S®*+N®*, Observe that

the family J% = {A%€ L(X*) : AEJ} is a closed left (right) ideal of L(X%).



By the previous theorem S*€ J* and éo clearly we have SEJ. Now observe
‘that S is a scalar-type operator and so prespectral. Another application
of the previous theorem shows that if Oé"r_, then E(t)€J. TFinally, since
J is an ideal, TEJ and SE€J, we have also N = T-SE£J. The proof is

complete,

4, 'COROLLARY, Let T be a quasispectral operator on X with resolution
of the identity E(¢) of class ', If T is compact, then so are S,N and

every projection E(t) with O¢7r—.

PROOF . By Corollary 2.9 of [IZ], p.48, the compact operators on X

form a closed two-sided ideal of L(¥X).

5. COROLLARY. Let T be a quasispectral operator on X with resolution
of the identity E(+) of class I'. If T is weakly compact, then so are S,N

and every projection E(1) with Oé_'r_.

PROOF. By Corollary V1.4.6 of [—llf1 , D.U484, the weakly compact
operators on X form a closed two-sided ideal in L(X).

Observe that if Y is a closed subspace of X, the set
"{AeL(X) : AXC Y} is a closed right ideal of L{(X). Hence we can deduce

the following result from Theorem 4,3.3.

6. COROLLARY, Let T be a quasispectral operator on X with resolution
of the identity E(e) of class I'. Then the ranges of S,N and E(1) with
O(f/,"_r_ are contained in the closure of the range of T.

Let A, in L(X), be fixed. Then the sets

{AEL(X) : AL = 0},

0},

"{AEL(X) : AA_

are respectively closed right and left ideals of L(X). Hence our next



-

result al;o follows from Theorem 4.3.3.

7. COROLLARY, Let T be a quasispectral operator on X with resolution

of the identity E(*) of class I', If AT =0 (respectively TA, = 0), then

AS = AN = AE(r) =0 if 0¢ T (respectively Sh_ = NA_ = E(T)A_ if 0¢ 7).
For the definition of a quasispectral operator of finite type m

the reader is referred to Definition 4.1,

8. COROLLARY. Let T be a quasispectral operator on X with radical
part N. Then T is of finite type if and only if NPT = 0 for some positive

integer p.

PROOF . If T is of finite type, then 1 = 0 for some positive integer

n and so ¥'T = T8" = o, Conversely if some power of N annihilates T, say

wPr = mF = o,
then it follows from Corollary 4.3.7 that NP+l = 0 and so T is of finite

type.

9., COROLLARY. Let T be a quasispectral operator on X with resolution

0 and O¢:r-, then

of the identity E(e) of class I'. Let x€X, If Tx

PROCF . Observe that for a given x in ¥, the set

{AEL(¥) : Aax = 0}

is a closed left ideal of L(¥). The result now follows at once fron

Theoren 4,3.3.

10, COROLLARY. Let T be a cuasispectral operator on ¥ with resolution
of the identity E(e) of class T, Let’{xn} be a bounded sequence in ¥ for

vhich {Txn} is convergent. Then



(i) if Oé?,' {E(T)Xn} is convergent;
(ii) '{an} is convergent;

(iii) '{an}_is convergent.

PROOF, The set of all A, in L(X), for which'{Axn} is convergent, is

a left ideal of L(X) which is closed because'{xn} is bounded. The

result now follows at once from Theoren 4,3,3,.

11, COROLLARY, Let T be a quasispectral operator on X with resolution
of the identity E(+) of class T. Let'{xn} be a bounded sequence in ¥ for

which'{Txn} is convergent to O. Then

(i) if 047, {E('r)xn} is convergent to 0
(i1) '{an} is convergent to 03

(iii) '{an} is convergent to O.

PROOF . The set of all A, in L(X%), for which‘{Axn} is convergent to O,

is a left ideal of L(}) which is closed because {xn} is bounded. The

result now follows at once from Theorem 4.3.3.

12, THEOREM. Let T be a quasispectral operator on X with resolution
of the identity E(s) of class I'. Let AEL(X) and let N = NE({0}). Then

TA = 0 if and only if A-E({0})A

1"
=
o
o>
n
(@]
.

PROOF., Let NoA = A-E({O0})A = 0. Then we have

E(1)2 = E(T)E(CN{O})A = O

if Oéf?. It follows from Lemma 4.3.1 that SA = 0. loreover

ne = N[E({O})+E(C\{0O})] 2
= KE({0})A+HE(CN{0})A
= N A+ [A-E({oD)A]

= 0.



It follows that TA = SA+NA = O,

Conversely, let TA = 0., Observe that the set

{BEL(X) : BA = 0}

is a closed left ideal of L(X). Hence, by Corollary 4.3.7, we have
E(t)A = 0 if OéﬁF. Now, for each x in X and y in I' we have
(E(g\{o})Ax,y> = 1im {E(1_)Ax,yD ,
n -+ o«
where
._l}

T, =1{z: |z] > n

for each positive integer n. Since T is total, A-E({0})A = O and the proof

is complete,

13. COROLLARY, Let T be a quasispectral operator on X with resolution
of the identity E(e) of class I'. If E({O}) = O, then TA = O if and only

if A = 0.

PROOF . By Theorem 4.3.12, TA = O if and only A = O in this case.

The following result is valid for quasispectral operators but for
its proof we require the special case of the result for prespectral
operators., We include the proof of this for completeness. See Theorem 11.12

of [I2], pp.218-219.

i4, THEOREM. Let T be a prespectral operator on X with resolution of
the identity E(e) of class I'. Let x£X and let n be a positive integer.

Then (AI-T)"x = O if and only if E({A})x = x and Nx = o,
PROOF . Let (AI-T)™x = O and let T be a closed subset of C such that
AeC\T. Let T = T|E(1)X and I_ = I|E(1)X. Then A€ p(T ) and so

E(1)x
E(t)x

(AIT—TT)-D(AI—T)nE(T)x,
(XIT—TT)-nE(r)(AI—T)nx = 0.



Let T = {z : |z=x| _>_n_l} and let y€ T. Then

| <E(9\{l})x,y>= )lim<E(Tn)x,y>= 0.

n-+e

Since T' is total we obtain

1
X

E(g\{x})x =0, E({aH)x

Hence

Sx = SE({A})x = J }uE(du)x AE({A})x = Aix,
{2

which shows that

(AI-T)x

"
1
=
x

and hence that

0 = (AI-T)"x = (-1)"N"%.

This proves the necessity of the conditions. Now, conversely, suppose
that E({A})x = x and N'x = O. It follows as above that (AI-S)x = O and
hence that

OI-T)"x = (-1)™3 k.
Therefore (AI-T)"x = 0.

In order to prove the more general version of the last result
applicable to quasispectral operators, some preliminary results are
required. Prior to proving these, we introduce some notation.

Let S be a scalar-type operator on X with resolution of the identity

E(*) of class I'. Let fecC(o(S)). Define

supp f = c1{ie o(S) : £(1) } 0}
and
Y(£) = J £(AE(AN).
o(s)
15. LEMMA. Let S be a scalar-type operator on X with resolution of

the identity E(e) of class I'. Let x€X and £€ C(o(S)). Then



o(y(£) € supp f.

PROOF . Suppose that £€ C\supp f. Then the function gE'defined by
gg(l) = fé%l for A # £,
gE(E) = 0,

is in C(o(S)). Moreover the function

E‘*lb(gg) (g€ Cysupp f)

is an analytic operator-valued function., Furthermore

(EI-5)¥(g,)x = (D)x

and so £€ p(Y(f)x). The result follows.,

16. PROPOSITION. Let S be a scalar-type operator on X with resolution

of the identity E(*) of class I'. Let x€X and fEC(0(S)). Suppose that

o(x) N supp £ = #.

Then Y(£f)x = 0.

PROOF. Let £ + x(£) be the (unique) X-valued analytic function

defined on p(x) and satisfying

(£1-8)x(g) = x (£e p(x)).

It follows that

(EI-SI(EIx(E) = P(EI(EI-SIx(E) = ¢(fI)x  (E€ p(x))

and so p(x)g p(P(£)x). Taking complements we obtain
o(V(£)x) C o(x).

However, by the previous lemma,



“o(p(£)x) C supp f. -

Hence

o(v(£)x) = 4.
We deduce from Lemma 4.1,20 that ¢(f)x = O.
17. THEOREM., Let S be a scalar-type operator on X with resolution of
the identity E(+) of class I'. Let § be a closed subset of C. Then

X EE(8)X if and only if Y(£f)x = O for all f in C(o(S)) with support dis-

joint from §.

PROOF. Let x EE(8)X. By Theorem 4,1.2., we have o(x)C 6. If

f€C(o(S)) and §Nsupp £ = ¢, then
o(x)(\Vsupp £ = ¢

and, by the preceding proposition, we have Y(£f)x = O.
Conversely, assume that y(£f)x = O for all f in C(c(S)) with support
hereast

disjoint from 8., Observe that there is anksequénce {Tn} of closed subsets
of the set o(S8){\ (C\§) such that

Ut = a(8)N (Crs).

n -

n=1l

Let n be fixed. By Urysohn's lemma, there is a function hn in C(o(S))

such that

"
[

h_ (1) (et),
- n n

hn(x) 0 (Ae sNa(8)),

and O _f_hn()\) < 1, for all X in o(S). Observe that

1imh (W) =1 (Aea(s) /) (cNs)),
no>wd -

lim hn(k) =0 (Le a(S)YN §).
n -+ e

By Mote 4.1.11, the support of the spectral measure E(+) is o(S).



" Let yET. It follows that

o ((I—E(G))x,y>= <E((C\6)n U(S))x,y>.
Let p(t) =(E(‘r)x,y> (e EP). Observe that the measure y is finite and

so, by Lebesgue's theorem of dominated convergence,

<E((C\6)f\ O(S))x,y>= lim I hn(A)u(dA)
- o(S)

n > <«

= 2im (¥ dx,yp = 0,

n -+ o
by hypothesis. Hence
((I-E(8))x,yp = © (yeT)

and, since T is total, E(8)X = x. This completes the proof.

18, THEOREM. Let T be a quasispectral operator on X with resolution
of the identity E(*) of class T'. Let x€X and let n be a positive integer.

Then (AI-T)"x: = 0 if and only if E({A})x = x and i"x = O.

PROOF . First, we note that it follows from Theorem 4.1.8 that T* is

a prespectral operator on X* with resolution of the identity F(+) of class

X such that

U f(x)z(dx)]"‘: J EQF(@N)  (FEC(o(T)).
o(T) o(T)

Also, by Theorem 5.22 of [IZ] , Pe137, T#% is a prespectral opberator on *"

with resolution of the identity G(e) of clasc ¥* such that

H f(A)F(dx)}*z J £()6(AN)  (FEC(o(T))).
o(T) o(T)

It follows that

” f(x)z(dx)]""'"=j £)a(dn)  (Fec(o(T))).
o(T) o(T)



In particular, the Jordan decomposition of T# is S*+N* and the Jordan

decomposition of T## is S#*%4N**, Let

X+ X
denote the canonical embedding of X into X¥%,

Suppose that (AI—T)nx = 0, Then from above

(XI**—T**)H; =0

and so, by applying Theorem 4.3.14 to the prespectral operator T#%, we

deduce that

(w#)% = 0,
G({A1)x% = x.

Hence ™ = 0 and x €C({A})X*%, Suppose that £, in C(o(T)), has the
property that AE C\supp f. By the previous theorem and the discussion

above we have successively
J £(A)G(dN)x% = 0,
o(T)

atadts
e

[ J f(A)E(dA)} % =0,
o(T)

£f(A)E@A)x = 0.

4a(T)
Hence x € E({A})X, again using Theorem L.3.17.

Now conversely, suppose that E({A})x = x and N'x = 0. We have
Sz = SE({a})x = J pE@@p)x = AE({A})x = ax,
{2}

vhich shows that
(A\I-T)x = -lx
and hence that

(AI-T)%x = (-1)™1%k = o,



Thus , the conditions are necessary and sufficient., This completes the

proof.

Observe that in the course of proving the last theorem, we have

established the following result.

19. COROLLARY, Let T be a quasispectral operator on X with scalar

part S. Then OP(T)Q; OP(S).

For completeness we include the special versions of Theorems 4.3.14

and 4,3,18 applicable to scalar-type operators.

20. THEOREM. Let S be a scalar-type operator on X with resolution
of the identity E(+) of class T. Then AE 0 (8) if and only if E({2}) { O.
Moreover, if for some x in X and some positive integer n we have

(AI-3)"% = 0,then Sx = Ax., Thus if AE.UP(S) the ascent of the operator

AI-S is one.

21, THEOREM, Let X be separable and let T, in L(X), be a quasispectral
operator with resolution of the identity E(e) of class I' Then op(T) is

countable,

PROOF . By Theorem 4.3.18, we have oP(Tﬁ C {x : E({a}) $ 0}. There is
1 > O such that
HE(]] <t <w (rez).
Let‘xAE:X, qu:X with the properties |IXA|| = ||xu|| =1, E({A})XA = %y
and B'({u})xlJ = XH' Then if p and A are distinct points of op(T) we have
w1 : _ .-l S
| I.x}\-xul I i l'] I IB({)‘})(X)\_XU)I I =1 | IXAI =M.

Since X is separable, it follows that cp(T) is countable.

For a proof of the next result, the reader is referred to Theorem 11.19

of [12], p.221.



22, THEOREM. ' Let T, in L(X), be a prespectral operator of class T.

If T has a closed range, then so does S, the scalar part of T.

We deduce from this a more general version applicable to the class

of quasispectral operators.

23, THEOREHM. Let T, in L(X), be a quasispectral operator of class T.

If T has a closed range, then so does S, the scalar part of T,

PROOF. It foldows from Theorem 4,1,8 that T® is a prespectral operator

on X* with Jordan decomposition S*+N%, By Theorem V1.6.2. of [li], p.u87,
since T has a closed range, so also does T#, It follows from Theorem
4.3,22 that S* has a closed range. By Theorem V1.6.4 of [”F], pPp.488-489,

S has a closed range and so the proof is complete.

For a proof of the next result, the reader is referred to Theorem

11.20 of [12], pp.221-223.

24, THEOREM. Let T be a prespectral operator on X with resolution
of the identity E(+) of class I'. Then T has a closed range if and only if

the following two conditions hold.

(i) Either 0 € p(T) or O is an isolated point of o(T).

(ii) The operator TE({0}) has a closed range.

We deduce from this a more general version applicable to the class of

quasispectral operators.

25. THEOREM. Let T be a quasispectral operator on X with resolution
of the identity E(s) of class I'. Then T has a closed range if and only if

the following two conditions hold,

(i) Either O0€ p(T) or O is an isolated point of o(T).

(ii) The operator TE({0}) has a closed range.



PROOF: Suppose that T has a closed range. It follows from Theorem

4,1.8 that T* is a prespectral operator on X*, By Theorem V1,6.2 of
D#J, p.487, since T has a closed range so also does T*. It follows by
applying the preceding theorem to the prespectral operator T* that either
0 € p(T*) or O is an isolated point of o(T#). Since o(T) = o(T%), we
have proved that either O € p(T) or O is an isolated point of o(T). In
the f&rst case E({0}) = 0 and the second condition (ii) is proved. Suppose
now that O is an isolated point of o(T)., Let C be the positively oriented
circle centre O and radius € > O so small that o(T)\{0} lies outside C.
Then

1

E({0}) = == J (AI-T) " tda
c

and so TE({0}) = E({0})T. Let y be in the closure of the range of TE({0})
and let'{xn} be a sequence in X such that TE({O})xn + y. Since T has a

closed range, there is an x in X with Tx = y and so

TE({0})x = E({0})Tx = E({O})y = y,

which proves (ii).

Conversely we assume (i) and (ii). If O0€E p(T), then TX = X, and so
we may assume that O € o(T). Let y€TX and let {xn} be a sequence in X
such that Tx - y. Since O is an isolated point of o(T), the argument above

shows that TE({0}) = E({0})T and so
TE({OD)=x_ = E({0})Tx ~ E({0})y
and, since the range of TE({0}) is closed, there is a vector w with

TE({0})w = E({O})y.

Again, using the fact that O is an isolated point of o(T), we deduce that
()ép(T[E(C\{O})X) and so for some z in E(CM0})X we have Tz = E(C\{O})y.

Hence



T(x+E({0})w) = E(C\{ODy+E({0N)y = y, .

which proves that the range of T is closed.

4, Decompositions of quasispectral operators

The purpose of this section is to prove analogues, valid for quasi-
spectral operators, of two results of Dunford pertaining to algebras of
spectral operators; namely Theorem 13 of [K5], Pp.343-344 and Theorem 14 of
031, pp.3u4i4-345, We then proceed to consider various decompositions of
quasispectral operators.

If T,U, «e., VEL(X), the symbol Cz(T,U, eees V) denotes the smallest
subalgebra of L(X), which is closed in the norm topology of L(X), which
contains T,U, ..., V and I, and which contains the inverse W-l of any of
its elements, provided that the inverse exists as an element of L(X). If
K is a compact subset of C, R(K) denotes the uniform closure of complex
rational functions with poles in E\K. Clearly R(K) is a closed subalgebra
of C(K). Two Banach algebras are salid to be eguivalent in case they are

topologically and algebraically isomorphic,

1. THEOREM. Let T, in L(¥), be a quasispectral operator of class T.
Let T = S+N be the Jordan decomposition of T, Then Cl(T,S) is a commutative

Banach algebra and

CL(T,s) = a(s) @ J,
where J is the radical of 0,(T,S). Furthermore, CL(S) is equivalent to

R(o(T)), and every operator in Cl(T,S) is quasispectral of class T.

PROOF. Since aXT,S) is the norm closure in L(X) of elements of the
form p(T,S)Eq(T,S)]—l, vhere p,q are polynomials, it follows that 6L(T,S)
is commutative. Let E(+) be the resolution of the identity of class T for

T. There is M such that



HE(M)]] <1 <= (_rezp).

If £ is rational and analytic on o(T) = o(S), then by the spectral mapping

theorem we have £(o(S)) = o(£f(S)) and hence

sup |£)] < []£()]]| < w11 sup [£(N)].
AEa(S) A€0(S)

IA

' . ] hoh-22c0
Thus &/(S) is equivalent to R(c(S)). Since CL(S) has nqdquasinilpotent

elements, ve see that Cl(s) + J is a direct vector sum contained in CL(T,S).
To get an inclusion in the opposite direction, we first observe that, since

S+N is a Jordan decomposition for T we have SN = NS and

S = J AE(dX).
o(T)

Define

v(f) = [ F(A)E(AN) (fec(o(T))).
o(T)

Observe that it follows from Theorem 1.3.12 that

Np(£) = (£ (£€c(a(T))).

By Theorems 4,1.12 and 4.,1,16, f(T) is a quasispectral operator of class

I' with Jordan decomposition

£(T) = f(s)+Nl,

where Nl is a quasinilpotent commuting with S, Hence, in particular, if

T exists then

T = s'l+N2. (1)
Also
T" = snh:s,
7™ = s“*”mu
and so
p(T,S) = p(S,S)+N (2)



where p is a polynomial and N5 is a quasinilpotent operator which commutes
with S because it is a polynomial in S and N, If q is also a polynomial

in two variables, the operator
r(T1,8) = p(7,8)[a(1,8)] "

will be defined as an element of Cl(T,S) if and only if q(A,A) * 0 for all

A in 0o(T). In this case we see from (1) and (2) that

r(T,8) = r(8,S)+N,

where N6 is a quasinilpotent operator commuting with S. An arbitrary U in
CL(T,S) is a limit of rational functions r in T and S, Let hbbe the

maximal ideal space of 6L(T,S). Since

o(T) = o(S) = s(ht) = T(jM/)

and

T(m) = S(m) (mep),
we obtain
sup  |r_(A,2)-r_(A,2)| = sup|{r_(T,S)-r_(T,S)}(m)|
reo(s)y & P meu O P

< ||rn(T,S)-rP(T,S)| .

Hence there is f in R(o(S)) such that rn(l,l) + £(X) uniformly on o(S).

Thus rn(S,S) -+ £(8) in a,(S). Also'{rn(T,S)~rn(S,S)} is a Cauchy sequence

of elements of J, each of which commutes with S, Since J is a closed two-
sided ideal of a(T,S), it follows that UE a (S) ®J. Finally each

operator in Cl(T,S) is the sum of an operator of the form y(g) for some g

in C(c(S)) and a quasinilpotent which commutes with S. By Theorem 1.3.12,[.3.7,
it follows that each operator in a,(T,S) is the sum of a scalar-type
operator and a commuting quasinilpotent operator. By Theorem 4.1.6 (ii)

such an operator is quasispectral of class T and the proof is complete.

The last result in this section is an analogue of Theorem 14 of [B],



pp.344-345, It is proved by a method similar to thét of the last theorem

and so we merely state it. -

2. THEORELl. Let T, in L(X), be a quasispectral operator with resolution

of the identity E(e) of class I'. Define

y(£) = J £(A)E(Ar) (fec(o(T)).
o(T)

Then 6L1=Ct{T,w(f):(féc(oCT))} is a commutative Banach algebra and

(L= () : fec(a(TNI @ J,

where J is the radical of CL. Furthermore, every operator in 6Eis quasi-

spectral of class T,

Earlier in this chapter we obtained the Jordan decomposition of a
quasispectral operator. Ve now consider some other decompositions of

aquasispectral operators.

3. LEMIA, Let S be a scalar-type operator on X with resolution of the

identity E(e) of class I's Then S can be expressed in the form

S = Sl+182,

where Sl and 52 are scalar-type operato»s of class T such that

() 3132 = SQSl’

(i1) c(Sl) and 0(82) are sets of real numbers,

(iii) the Boolean algebra of projections generated by the resolutions

of the identity of Sl and S, is bounded.

2

PROOF .

wn
1]

j AE(dA) = I ReAE(dr) + ij Im\E(dr)
o(S) o(S) o(S)

n

1 ) 2

N

j AE. () + ij AE. (d)),
(R) (®



where Sl is the operator on the left and isz the operator on the right,

and

E({z : z

El(t) x+iy and x€7l}),

E2(-r) E({z : z = x+iy and yet}.

Conditions (i), (ii) and (iii) are easily verified.

4, THEOREHM. Let T be a quasispectral operator on X with resolution
of the identity E(e) of class I'. Then there exist operators R and J on X

such that

(i) T = R+iJ and RJ = JR;
(ii) o(R) and o(J) are sets of real numbers;
(iii) R is a scalar-type operator of class I
(iv) J is a quasispectral operator of class T
(v) the Boolean algebra of projections generated by the resolutions

of the identity of R and J is bounded.,

If R and J satisfy conditions (i) and (ii), then they are quasi-

1
spectral operators of class I and there exists a quasinilpotent operator
Q such that

R = R#Q, J, = J+iQ.

If Ry and Jl satisfy conditions (i), (ii) and (iii), then R = R and J = Jl.

"PROOF Let S+N be the Jordan decompbsition of T. Using the notation

of Lemma 4,4,3, define

1> J = S,-iN.

Conditions (i)-(v) then follow from Lemma 4.4.3 and Theorem 4,1.6 (ii).

Now suppose that Rl and Jl satisfy conditions (i) and (ii). Then

R,T = TR, and JlT =TJ

1 1 1+ It follows from Theorem 1.3,12 that Rl,R,J and

1



J all commute. Let a = a(R,Rl,J,Jl) and let Mbe the maximal ideal

space of this algebra; Observe that
0= (T-D(m) = (R-R)MHW-3)m  (mch.

However (R-Rl)(m) and (J-Jl)(m) are real numbers by condition (ii) and

hence

(R-Rl)(m) = (J-Jl)(m) =0 (mé%&).
Thus if Q = Rl-R, then Q is a quasinilpotent and Jl = J+iQ. Another
application of Theorem 4.1.6 shows that Rl and Jl are quasispectral

\
operators of class T,

Finally, suppose that in addition R1 is a scalar-type operator of
class I'. Then, since U(Rl) and o(R) are sets of real numbers, we deduce
from Theorem 5.40 of DZ], DP.154, that after appropriate equivalent
renormings of X, both R, and R become hermitian operators. By Theorem 4,18

1

of DZ], P.109, there is an equivalent renorming of X under which R and Rl
become simultaneously hermitian. Assume that this renorming has been
carried out. Then R—Rl is hermitian and quasinilpotent. By Sinclair's

(See Theoren 4,10 of [IZ], p.105.)

theorem, Q = 0, R = Ry and J = Jl'

The proof is complete.

"‘NOTE. The argument given in the proof above shows that if we merely

assume that R, and Jy satisfy cOnditions'(i), (ii) and the condition

(iii) Rl is a scalar-type operator,

then the conclusion R = Rl and J = Jl remains true.

5. LEIIA. Let S be a scalar-type operator on ¥ with resolution of the

identity E(e) of class I's Then there are scalar-type operators Sl and S,

both of class T satisying



(1) 8,8, = 8,8, = S,
(ii) o(Sl) is a set of non-negative real numbers,
(iii) 0(82) is a subset of the unit circle,
(iv) the Boolean algebra of projections generated by the resolutions

of the identity of Sl and 82 is bounded.

"PROOF . It follous from the operational calculus for a scalar-type

operatof that

S = J AE(dA) = f Ix|EC@n) I sgnAE(dA),
. Ja(s) o(S) a(S)
where
sgn A = T%T iFA$0
and

sgn 0 = 0,

Thus S = S.S TThere

S, = J IajEC@@n) = J
- a(8)

vhere El(-) is defined by

uBl(du),

.

)

E (1) = E({x : |ale D)
and

82 = J sgn)lE(dA) = J uEz(du),
c(S) C

where C 1s the unit circle in C and

Conditions (i)-(iv) are casil; verified.

6. 'THEORE!N, Let T be a prespectral operator on I uith resolution of

the identity E(e) of class I'. Then therc ciist tio operators P and U such



(ii) o(P) is a set of non-negative real numbers,
(iii) o(U) is a subset of the unit circle in C,
(iv) U is a scalar-type operator of class T,

(v) P is a prespectral operator of class T,

(vi) the Boolean algebra of projections generated by the resolutions

of the identity of P and U is bounded.

PROOF . \ Let T = S+ be the Jordan decomposition of T, Using the

notation of the preceding lemma, put U = S, and P = Sl+S;lN. Observe that

2

it follous from Theoren 1.3.10 that S.IT = IS Conditions (i)-(vi) are

2 2°

easily verified fron Lemma 4,4.5 and Theorenm 1.3.10.

X

7. THEORLiI. Let T be a quasispectral operator on I with resolution
of the identity E(e) of class I'. Suppose that T is invertible and power-

bounded in the sense that

T <X <= (ne2).

Then T is a scalar—-type operator of class T,

PROOF . Let T = S+ be the Jordan decomposition of T. By Theorem 4,1.8,

T% is a prespectral operator on X#* of class X and its Jordan decomposition
is T% = S*41%*, lioreover, T is invertible and powver-bounded, It follows

from Theorem 10,17 of DZ], PpP.212-213 that T% is a scalar-type operator;

.,

that is !i* = 0. Hence ¥ = O and the proof is complete.

8. ~THEORE!M, Let Sl and 82 be commuting scalar-type operators. If

Sl+S2 is a quasispectral operator, then it is of scalar-type.

PROCF. Let El(.) and EQ(-) be resolutions of the identity of S. and 82

1

respectively., Define



R = ReAE.(d)A) , J. = j ImAE, (d))
15 ] AL RAA) s Yy 14447
o(Sl) o(Sl)
R = ReAE,(dA) , J, = j ImAE_ (dA).
2 dotsy 2 2 Jasy 2

It follows from Theorem 1.3.12 that Rl’Jl’RQ’

Theorem 5.40 of DZ], p.154, we deduce that, after appropriate equivalent

J2 all commute, From

renornings of X, both Rl,Jl and R2,J2 become hermitian operators.

Let E(e) be a resolution of the identity of the quasispectral

operator Sl+52. Define

wn
fl

[ AE(@) , Q = 545,75,
c(Sl+82)

ReAE(AA) , J = ImAE(dA).

Jo(Sl+52) Io(Sl+82)

Again by Theorem 5.40 of []2], p.154, it follows that there is an equivalent
renorming of X under which R and J become hermitian operators. By Theorem
4,1.,9, the seven operators R,J,Rl,Jl,RQ,JQ,Q all commute. By Theorem 4,18
of DZ], p.109, there is an equivalent renorming of X under which
R’J’Rl’Jl’R2’J2 become simultaneously hermitian. Assume that this renorming

has been carried out. Define

(= 0 cro0,R,43,,7,00,,0,

and lettVbbe the maximal ideal space of a,, We have

Rl(m)+R2(m)+iJl(m)+iJ2(m) = R(n)+iJ(m)+Q Gnehi).

Therefore

(R1+R2-R)(m)+i(Jl+J2-J)(m) =0 (mef/VL).



It follows that

R #R,-R = 0 , Jy+J,-J = 0,

and so Q = 0., Therefore S +S2 is of scalar-type and the proof of the

:

theorem is complete.



CHAPTER FIVE

Roots and logarithms of quasispectral operators

The purpose of this chapter is twofold. 1In the first section we
obtain aﬁalogues of results in Chapter 10 of DZ] on logarithms and roots
of prespectral operators. In the other section we solve affirmatively
the following problem., Let A be a prespectral operator of class I'. Does

there exist a prespectral operator T of class T such that £(T) = A?

1. Roots and logarithms of quasispectral operators

1. DEFINITIONS, If T is an operator on X, an operator A on X such
that exp A = T is called a logarithm of T, Also, if m is a positive
integer and B is an operator on X which satisfies B" = T, then B is called

an mth root of T.

2. LEMMA, Let TE L(X). Suppose that

where each Xr is a closed subspace of X invariant under T and T‘Xr is quasi-
spectral of class Pr (r=2, ..., n), where each Pr is a subspace of

X (r = 1, eesy D). T?gh T is quasispectral of class I', where
T

7 r=r, @... 0.

Va

PROOF. //ﬂet Er(o) be the resolution of the identity of class I‘r for
/ n
EjX .I/If/x = I x_with x_€ ¥_, we define for every 1 in I
—p p=1 T r” “r P




n
E(t)x = ZE (1)x .
I‘=l r r

Clearly E(+) is a spectral measure of class (zp,r). Let § be a closed

subset of C. By hypothesis
TBP(G)xr = Er(G)TEr(G)xr (r=1, «ee, n),

and so we obtain

n n
T TE_(8)x_ = £ E_(S)TE_(8)x_,
- r r P r r
r=l r=1

from which we deduce that for each closed subset 8§ of C and all x in X

we have

TE(§)x = E(S)TE(S)x
and so TE(§)X C E(§)¥. How let A€ C\§. By hypothesis we have

l, LI IR Tl)

c(TIEr(G)Xr) C s (r
and so it follows that

1, eae, D).

X E p(TIE_(8)%) (r

Hence AI-T maps each of the subspaces EP(S)XP in a one-to-one manner @nto
all of itself, Therefore AI-T maps E(8)X in a one-to-one manner onto all

of itself. This shows that A€ p(T|E(§)X) and hence that
o(T|E(S)X)C & (8 closed),
which completes the proof that T is a quasispectral operator of class T.

3. LEHEA, Let S be a scalar-type operator on ¥ with resolution of

the identity E(*) of class I'. Let P€L(X). Suppose that P2 = P and

PE(t) = E(1)P € ezp).



Then S|PX is a scalar-type operator of class T.

PROOF . Define G(t) = E(1)|PX (rezp). Observe that I' is a total set
for the Banach. space PX. Hence G(*) is a spectral measure of class (ZP,P)

with values in L(PX). It follows from Lemma 2.1.1 that

o(s]a(t)Px) € o(S|E(T))E T (rezp).
Clearly

s|px = J AG(dx)
c

-~

and so S|PX is a scalar-type operator of class T.

4, TIEOREL., Let So be a scalar-type spectral operator on X with

finite spectrum. Assume that SO # 0.

(i) Let T be a quasispectral operator on X with resolution of the

identity G(e) of class I'. Suppose that TS, = ST and

G(T)So = SOG(T) (rezp).

Then T+So is quasispectral of class T.

(ii) Let S be a scalar-type operator on X with resolution of the identity

G(¢) of class T'. Suppose that
G('r)So = SOG(T) (rezp).
Then S+SO is a scalar-type operator of class T.

PROOF . Let E(e) be the resolution of the identity of S, and let
'{Ar :r =1, .., n} be the non-zero points of a(S,). Then
n

S = T A EQ),
e] _. r
r=1



where

n a
I =E(0)+ ZE(M)-
r=1 r
and
X = E(O)X @ E(Al)X ®... @E(An)x. (1)

Let Y be one of the (n+l) subspaces on the right-hand side of (1) and let
P be the projection of X on to Y. Then, by the commutativity theorem for
spectral operators.

PG(t) = G(T)P (rezp).

Let T = S+N be the Jordan decomposition of T. By the previous lemma, S|Y

is a scalar-type operator of class I'. Therefore, by Proposition 1.3.7,

the operator (S+SO)|Y, which is S|Y plus a scalar multiple of the identity
on Y, is also a scalar-type operator of class I'. Moreover, since

NSO = SON, we have NP = PN and NIY is a quasinilpotent operator that commutes
with (S+SO)|Y. It now follows from Theorem 4.1.6 that (S+SO+N)|Y is a
quasispectral operator of class I'+ An application of Lemma 5.1.,2 suffices

to complete the proof of the theorem.
A similar argument establishes the following result,
5. THEOREUN. Let SO be a scalar-type spectral operator on X with finite
spectrum, Assume that S_ $ o.
(i) Let T be a quasispectral operator on X with resolution of the
identity G(e) of class T'. Suppose that TS, = ST and

G(t)s_ = s G(1) (tez ).
o o D

Then SOT is quasispectral of class T.

(ii) Let S be a scalar-type operator on X with resolution of the identity

G(e) of class I'. Suppose that



G(t)s_ = s G(t) (tez).
o o . P
Then SOS is a scalar-type operator of class T,

6. THEOREM,. Let A, in L(X), be a quasispectral operator of class T.
Suppose that the point O lies in the unbounded component of p(A). Then

there is T, in L(X), with the following properties.
(i) T is quasispectral of classT and exp T = A.

(ii) If B, in L(X), commutes with A, then B commutes with T.

PROOF, For each A in o0(A), there is an open disc Q(X) with XEQ(X)

but O¢SKA). A finite family Q(Al), cees Q(An) of these discs cover o(A).
n

Let Q be the open set formed by taking the union of L}Q(Ar) and the bounded
r=1

components of p(A). Then @ is simply connected and so by Theorem 13,18(g) -

of [21], pp.262-263 there is f analytic in © such that

exp £(A) = A (AEQ).

Since o(A)C 2, feC(o(A)). Let E(*) be the resolution of the identity

of class T for K. Define

S = [ CAE(AN),
o(a)
N = A-S,
S = J £(A)E(dN).
© a(a)

Note that exp(So) = S, Define

I
i1

N exp(-So).

Since A = S+N is the Jordan decomposition of A we have NS = SN, It then

follows from Theorem 1.3.12 that NSO = SON. Hence Q is quasinilpotent.



Let C denote the circle, centre the origin, radius 3}, described once

counterclockwise.

N =

is well-defined., Also O(Nb)

exp N °

Since NéSo = SONO and NSO

exp( S, o)

Define T = S +1 , Observe

o O

class T and a

quasispectral of class T.

Suppose now that BA =

BN = NB, and BS = S B,
o o

B(A\1-Q) "t

commuting quasinilpotent,

The operator

o 2_1er l .("I"Q)—llog(l+>\)d>\

C

{0}, and so N_ is quasinilpotent. Further

I+Q.

SON, we obtain

~z 7 =
exp S exp N (exp So)(I+Q)

(exsp S ) + (exxp S )N exp(-S )
o Y % %

S+l = A,

that T is the sum of a scalar-type operator of

Hence by Theorem 4,1.6 (ii) T is

AB., It follows from Theorem 4.,1.9 that BS = SB,

Hence BQ = QB,

= (A1-0) "B (A Ep(Q)),

and so BNO = NoB° Therefore BT = TB and the proof is complete.

"NOTE.

Clearly the hypothesis of the last theorem could be weakened,

Only the existence of a continuous logarithm on 6(A) is required.

7. THEOREHM.

quasispectral operator of class T,

Let m > 2 be a positive integer.

Let A, in L(X), be a

Suppose that the point O lies in the

unbounded component of p(A). Then there is T, in L(X), with the following

properties,

(1)

T is quasispectral of class T and ™ = A,



(ii) If B, in L(X), commutes with A, then B commutes with T,

"PROOF » By Theorem 5.1.6, there is To’ in L(X), with the following

properties,
(a) TO is quasispectral of class I' and exp To = A.

(b) If B, in L(X), commutes with A, then B commutes with To'

Define T = exp(m—lTo). Then T has the required properties.

NOTE. Clearly the hypothesis of the last theorem could be weakened.,

Only the existence of a continuous mth root on o(A) is required.

2. Roots of prespectral operators

We note first that two of the theorems in []2], PpP.196-199 have
essential hypotheses omitted., The correct statements of these results are

as follows,.

1. 'THEOREM. Let SO be a scalar-type spectral operator on X with finite

spectrum, Assume that So # 0.

(i) Let T be a prespectral operator on X with resolution of the identity

G(*) of class I'. Suppose that TS, = SOT and
G(T)So = SOG(T) ,(re,zp).

Then T+SO is prespectral of class T.

(ii) Let S be a scalar-type operator on X with resolution of the

identity G(e) of class I'. Suppose that
G(z)s, = SOG(T) (rezp).

Then S+So is a scalar-type operator of class T.



2, THEOREM. = -Let So be a scalar-type spectral operator on X with

finite spectrum. Assume that S $.0.

(i) Let T be a prespectral operator on X with resolution of the identity

- G(*) of class I'. Suppose that s,T = TS, and
cé(t)s = s G(1) (tez).
o o P
Then'SoT is prespectral of class T,

(ii) Let S be a scalar-type operator on X with resolution of the identity

G(+) of class T'. Suppose that
G(t)s_ = s G(1) (tez).
o o P
Then SOS is a scalar-type operator of class T.

3. THEORE!i. Let A be a prespectral operator on X with resolution of
the identity E(e) of class I'. Let f be a function analytic on a region Q,
such that o(A) € £(2) and £/(1) $ 0 for all A in Q. Then there is an

cMecl
operator T on X such that T is prespectral of class nuand £(T) = A.

PROOF . Let A€ o0(A). Then there exists a point £ in @ such that

£(z) = Ao By Theorem 10.34 of [2!], P.217, there exist open neighbourhoods

V_ and W
g .

N such that f is one-to-one mapping of VC onto W,. The set W, is

A A

Hence we can find an cpen disc D, which is properly con-

A® A
tained in LY and has A as its centre. Let §(A) be the open disc with centre

A and radius half that of D

open and A€W

A As X runs through o(A), the corresponding

discs

{6(0) : reo(n)}

cover o(A), Since o(A) is compact, there is a finite subcovering; that is

n
a(A)e (Jsm).
r=1 T



For brevity, let Sr denote 6'(>\r) and let wr denote the open neighbourhood

corresponding to )\r. Let &, be the inverse of f on WI-,. Define

sl
n

1 = 8 Na(n),

T, = (5,88) No(a),

—— o~ - — — - S S

n-1

6 LU s o).
r=l

-
1]

Observe that {—cr tr=1, +o., N} is a family of pairwise disjoint sets

such that -rrE, Zp,

Trggrg v (r =1, vo., n).
n
o(r)e Uz .
-~y
r=1
Define
n
T = @gr(A|E(Tr)>f).
r=1
Ve know that
G(AlE(TP)X)Q :r-r (r =1, eoey ).

Also by Theorem 14.2 of [!2], DPD.265-266, A|B('rr)X is a prespectral
operator with resolution of the identity E(-)]E(rr)x of class T.

liow, by Theorem 10.34 of [42(:[, D.217, &, is analytic on Wr’ and so
it follows from Theorem 5.16 of [(2], pp.130-131 that gr(AlE('rr)X) is also

prespectral of class I's It follows from Theoren 5.16 that the resolution

of the identity of class T for g (A|E(x )) is F_(+), vhere
T r ™

-1 .
Pr(a) E(g, (5))|E(Tr),..

E(g;l(é)/\ T IEEIX (8250 = 1, «oey ).




Define

n .
F(8) = I F_(¢8) (6€z ).
r=1 ¥ P

We wish to pro.ve that T is a prespectral operator with resolution of the
identity F(+) of class I' and that £(T) = A.

Let 61,626 Zp. Cbserve that

n
F(Glﬂ 62) rilf‘r(éln (‘32)

oo
= E E(gr (61/\ GQ)I\TP)
r=1l

R | -1
= PElE(gr (Gl)ﬂ'trf\ g, (62) N Tr)

"
nems

-y —1 -1
n(gr ((Sl)/\ TP)E(gr (GQ)ATr)

r=1

It follows that
n
F(alf\sz) = rElFr(al)Fr(esz) = F(Gl)F(Gz) (61,62 E zp),

using the fact that Tys eees T, are pairwise disjoint. Also
n

b Fr(c)
r=1 ~

F(C)

S
I‘fl’f,(gr ©n )

n
T E(Tr)
r=1

E(a(pr)) = I.

How let 662p. Observe that



o
E F_(C\8)
r=l

f(C\B)

oo
riln(gr (C&) A 1)

_ 2 -1 -1
= 1 [E(g (0N 1) - E(g(6) N 1,)]

r=1

n -1
= rzlscrr)[xfz(gr ONER)

oo
= I~ I (gr )n ‘rr)
r=1l

= I - F(s)o

Let 61,626 }:P. Then

F(Gl V) 52)

F(CMCY,) Nl (CN6,))
= I- F((_c_:\sl)/\ (9\62))
= I = F(C\8,)F(CNS,)

= I - (I-F(6))(I-F(5,))

= P(61)+F(62)~F(61)F(62).

Also if ||E(1)]|| < M < =, then clearly ||F(z)|]| < nM < = (TGZP).

We deduce that if {Gm} is a pairwise disjoint sequence of sets in Zp,

then
(]j k
FCU S )= £ F(8)).
m=1 m m=1 m

Hence if x€ X and y€T, then we obtain



kK - k |
(F( §] Gm)x,y> = I <F(6m)x,y>
m=1 m=1 . .
k n

= (8_)x, :
BRI
‘ k n -1 >
= mzl ril <E(gr (6, )N T )x,y

n k
= I <B(grl( U Gm) N Tr)x,y> .
r=1 m=1

Let k + =, Using the properties of the inverse image and the countable

additivity of <E(-)x,y> on EP for x in X and y in I', we deduce that

k

(a)  1lim (FCU S )x,y> exists (x€X, y&T)
k> m=1 "

k ®
(b) lim <F( U Sm)X,y> = <F( Usm)x,y> (xeX, yeT).
k+ o m=1 X m=1
This completes the proof that F(e) is a spectral measure of class (XP,I').
Since g, is analytic on a neighbourhood of "r-r,
1

- _ -1
gr(AlE(Tr)X) = = IBg\P(A)(,(AI A)IE(TP)X) da,
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where B is a suitable finite family of contours in p(A|E(’rr)X). Since A

is prespectral, it follows that
AE(t) = E(T)A (€ zp)

and so AlE(Tr)X commutes with E(-)IE(Tr)X. We deduce readily from this

that Pr(°) commutes with gr(AIE(Tr)X) and consequently

TF(t) = F(1)T (TEZP).

Also
oo, -1
F(8)X = E(gr 8y Nt )X (6ez).
r=1 r P



Each of the subspaces on the,right-hand side reduces T and so, by

Proposition 1,37 of [I1Z], p.25-26

n -1
U o(]E(g, (8) N 7 )X

r=1

o(T]F(8)X)

n
U (g, (A|ECe IN[E((6) N 1 )%)

r=1
c T _
c s (s ezp)

by Theorem 4.1.12, It follows that F(.) is a resolution of the identity
for T. Finally

£(T)

1]

n
£( @ g (A|E(x X))

r=l

n
;gi(fogr)(AlB(Tr)X)

n
® A|E(T )X
r=1 r

:A’

and so the proof is complete.

4., COROLLARY. Let A, in L(X), be a scalar-type operator of class T.
Let Q@ be a region and let f be a function analytic on Q such that c(A)C @
and £'(A) # 0 for all A in Q. Then there is a scalar-type operator S of

dmsr&mhﬂntﬂﬁ%%%ﬁ@éﬂxdf@ﬁA.

PROOF. By Lemma 5.1.3, AlE(Tr)A is a scalar-type operator of class T
for each r = 1, ..., n, in the notation of the proof of the last theorem.
It follows from Proposition 1,3.7 that gr(AlB(Tr)X) is also a scalar-type
operator of class I' and hence that T is a scalar-type operator of class T,

This completes the proof,



Finally, to round off the considerations in this section we state
the special case of Theorem 5.3.,3 for speci:ral operators together with a

result of Apostol [Z].

S. THEOREM, Let A, in L(X), be a spectral operator. Let 2 be a

region and let f be a function analytic on Q such that o(A)Z £() and

£1(3) :]: O for all A in Q. Then there is a spectral operator To on X such
ot c and

thatAf(To) = A. Moreover, if TEL(X) and £(T) = A, then T is a spectral

operator,



CHAPTER SIX

A commutativity theorem for certain a« -scalar operators

The purpose of the final chapter of this thesis is to prove a
commutativity theorem for a-scalar operators, where CL = ¢(K) and K is

a compact subset of the complex plane.

1, The commutativity theorem

Let K be a compact subset of E' Let S be an a,—scalar operator on
X, in the sense of Foias and Colojoara, where a, = C(K). It follows that

there is a continuous algebra homomorphism y from C(K) into L(X) such that

lJJ(fo) =1, ‘b(fl) =S,
where

£Q) =1 (AEK) , £0) =2 (AEX).

Hence there is a real constant M such that

e <mll£l]  Fecxn,

where ||f|| denotes the supremum norm on f. We note the following properties

of such an operator S.
(i) S has the single-valued extension property.

(ii) Let 8 be a closed subset of C. Then

Xg = {xEX : o(x) C 6}

is a closed subspace of X and is a maximal spectral subspace for S.

(iii) S is a decomposable operator.




‘For the definition of a decomposable operator the reader is referred
“to Definition 3.,1.5. For the definition and properties of Ci-spectral

-operators and a,-scalar operators, the reader is referred to [5] Pp.59-67.

"1, THEOREM. Let K be a compact subset of C and let (l = C(K). Let

S be an Cl-scalar operator on X, Let A, in L(X), have the property that

b4
A5 & %

for every closed subset & of C., Then AS = SA.

PROOF . By Theorem 1.3.15, S* is a scalar-type operator on X# of class
X. It then follows from Theorem 5.22 of DZJ, p.137 that S** is a scalar-
type operator on X% of class X%,

Define an operator C(S,S) on L(X) by
c(S,S)T = TS-ST (TEL(X)).

As stated previously, S is a decomposable operator. It follows from the

hvpothesis of this theorem and Theorem 2.3.3 of [5], p.48 that

1
1in||c(s,s)"a]] /P = o.
nn > ™

Clearly

1
liml lC(S-.'::’:,S:'::':)nA:'::':II /n = 0,
n-—+®

where C(S%#%,S%%) is defined as an analogous way as an operator on L(X%%),

Again, from Theorem 2.3.3 of [5], p.48, we conclude that
ATSRG(8) % C G(§ )X .

for each closed set &, where G(e) is the (unique) resolution of the identity
of class X% for the scalar-type operator S#%, le now apply Theorem 3.l.1l
to the operators S* and A" to conclude that A%S® = S%A%, Hence AS = SA,

completing the proof.

REMARK. It is an interesting but unsolved problem as yet to characterize

those algebras a,for which the conclusion of Theorem 6.1.1 holds.,



2. COROLLARY. - Let K be a conpact subs_e‘c of C and iet C{ = c(:).

Let X, and ¥, be two non-zero complex Banach spaces., Let S, and 82 be

1 2 1
a -scalar operators on Xl and X2 respectively., Let A be a bounded linear
mapping from Xl into X2 such that
e (8) € %y (8),
1 2
for every closed subset § of C, where
Xg (8) = {x %y o(x) C 6},
1
Xg (8) = {x€¥, : o(x) C 5},
5 2
Then IA‘;Sl = S2A.
PROOT . There are continuous algebra homomorphisns 10 and Ty such
that
1;’).'(f0) =1, '*"1(f1) = S,, q;z(fo) =1, “"2(fl) =8,
in the notation of the theorem. Let ¥ = Xl }12 and
Sl 0
S =
0 S|,
[0, () 0
V(£) = (£ec(x)).
0 v, (£)
N 2
Then ¢y is a continuous algebra homono=phism from C(K) into L(I) with

‘u,')(fo) = I end Y(£,) = S, By Proposition 1.1.3 of [5], De3

0g((y511,)) = OS.'(XJ_) U GSQ(XQ) ((y53,) €30,

If 6 is a closed subset of C, then by Proposition 1l.4 of [5], p.t, ue have



He (8) @ x, (8) = (L,@1,).(8)
5 82 172°Ss )

ern on the rignt-hand side is the maximal spectral subspace

E )
[¢4]
Ip]
(6}
ch
®
t

~
to 6, lloir A can be represented on X by

Hence by the hypothesis of the theorem

AX(8) & X (8)

for all closed subsets § of C. By the previous theorem AS = SA, This

is equivalent to

and hence that AS, = S_A,
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