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SUNMMARY

It has been recognised since 1925 (Eddington: "The Internal
Constitution of the Stars" (C,U;P; 1930, », 285) that von Zeipel's
paradox for uniformly rotating stars could be regolved if a large~
scale circulation were set up in meridian planes, Investigations
since then have shown, amongst other things, that the velocity of the
circulation currents is inversely »nroportional to the density, Thus,
even though the currents are very slow deep inside a star, they become
very fast near the surface, If simple, zero density boundary
conditions are applied at the surface, there is a formal singularity
there,

Although the surface layers of non-rotating stars are now
understood in considerable detail, the same cannot be said for
rotating stars, It appears that a detailed theory of the surface
layers nmust take circulation into account, The main purpose of thie
thesis is to develop such a theory, with particular emphasis on the
remcval of the surface singularity,

This singularity must arise from the neglect of some
important physical factor, It has normally been assumed that viscous
and inertial forces are negligible, and this assumption must clearly
be questioned when the theory predicts very large velocities;
However, a preliminary investigation by the author (Smith: Z;fur
Astrophys, 63 166 1966) suggested that this assumption is valid

arbitrarily near the surface if the rotation speed is slow enough,



An assumption which is certainly invalid whatever the rotation speed

is that the photon mean free path is short near the surface, That
assumption is imolicit in the use of an equation for the radiative flux
of a form normally used only in the theory of stellar interiors,
Accordingly, a theory of the surface layers has been developed in this
thesis which uses the non-local radiative transfer equation appropriate
to the theory of stellar atmospheres,

It is found that, although the use of a non-local transfer
equation does remove the formal singularity at the surface, the
circulation speeds near the surface are still unrealistically large,
When the assumption that viscous and inertial forces can be neglected
is re-examined, it is found that, although inertial forces do become
important near the surface, these forces are not sufficient to damp the
speed of the flow, However, the circulation violates a stability
criterion based on the Richardson number (see, for example, L, Prandtl,
Lissentials of Fluid Dynamics, Blackie 1952), and the flow becomes
turbulent in a thin surface layer, Turbulence sets in when the flow
speeds are of the order of the speed of sound, and turbulent viscosity
then acts to prevent the speeds from further increasing, A
qualitative mocdel of the turbulent surface layer has been developed,
on the basis of order-of-magnitude estimates, Although no detailed
prediction is given for the emergent flux, it is concluded that the
commonly uscd von Zeipel gravity-darlkening cannot be correct when

a turbulent layer is present,
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In Chapter 1 of this thesis a general survey is given of

w

previous woxrit in tie field of rotvating stars, with particular reference
to the problem of meridional circulation, In the first section of the
chapter some relevant observations are discussed; in the second scection
a discussion is given of the theoretical results which led to the
formulation of the present problem,

In order to make the problem tractable, it was necessary to
male various assumptions and simplifications, These are discussed in
Chapter 2,

The interior model adopted is thatv of Roxburgn, Griffith and
Sweet (1965), These authors did not discuss the problem of meridional
circulation, and the first stage of the present investigation was to
derive the circulation in the outer layers of their model, “his work,
which has been published (Smith 1966), is described in Chapter 3,

‘"he medel described in Chapter 3 is not realistic, since the
transfor of radiation is not properly itreated, In Chapters 4 to 6 a
model is devcleoped which does give a proper treatment of radiative
transfer, but vhich is bascd on the assumption thwet viscous and inertial
forces are neglicible,

It is found in Chapter 6 that the flow becomes turbulent near
the surface, The cffect of this turbulonce is discussed in Chapter 7,
where a qualitative model of a turbulent layer is developed, with

nm

particular reference to conditions at the surface, he final model is
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summarized in Chapnter 8,

The work in Chapters 3 to 8 of the thesis was done by the
author, with thc exception of section 3 of Chapter 4, vhich is a
discugsion of various well-lmon methods of solution of the transfer
cquation, end Chapter 5, which is mostly a« presentation of knowm theory

in a form suitacle for use in whe present groblem,

The work for this thesis was carvied out while the author was
a rescarch student, and later & nember of staff, in the Department of
Astronomy in the University of Glasgow, One year of the rescarch
studentshin was speat in the Department of Apnlied IHathematics and
Theoretical Physics in the University of Cambricge, and the author is
grateful to both Universitics for »nrovision of facilitics, He also
wishos to aclmowledge the receipt of a grant from the Sciencc Rescarch
Council for the period from October 1763 to October 1966,
nleasurc to thank Professor P, A, Sweet for his
constant guidance and encouragcment and for time spent in velueble
discugsion of the problem, 1lie author is also very grateful to
Professor L, Hestel, vho supervised him while in Cambridge,

Finally, the author wrishes to record his thanks to his wife

for invaluable heln in the preparation of the typescrint,
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CHAPTER 1

Introduction

"Therefore, seeing we also are compassed about with so great
a cloud of witnesses, let us ,,,, run with patience the race that is
set before us, .,."

The New Testament, Letter to the Hebrews, Ch,1l2, v,1,

I Observations

1 ,Rotation

Tt has been known since the time of Galileo (1612), who
recorded the motion of spots across the Sun's disk, that the Sun
rotates about its axis, VWhen it was realised that the stars were
bodies similar to the Sun, it was reasonable to suppose that, in
general, the stars also rotated, However, since a star does not
present a visible disk, evidence of rotation is not so easily or
directly obtained as it is for the Sun,

The method of measuring stellar rotétional velocities
appears to have been suggested first by Captain W, de W, Abney (1877),
although it was thirty-two years before the first successful
measurement was made, by Schlesinger at the Allegheny Observatory
(1909), Abney's method used the fact that the radial velocity,
measured by the Doppler effect, varies across the disk of a star if

the star is rotating, Although it is not possible to measure the

radial velocities at opposite limbs separately, as can be done for the

i



Sun, the variation across the disk wili cause a broadening of lines in
the star's spectrum, sAbney illustrates this effect by supposing the
stellar disk to be divided into three strips, one approaching the
obscrver, one stationary and one receding, The light from the
central strins gives rise to an unshifted line, while the lines
produced by the two outer strips are Donpler-shifted in opposite
directions, In a real star the velocity in the line of sight varies
smoothly over the disk and one brocdened line results, lleasurement
of the width of this line gives the line-of-sight component of the
equatorial velocity of rotetion, The measurecments are comdilicated in
nractice by the need to estimate the contribution of other broadening
mechanisms,; such as turbulence :.nd, especially in early type stars,
the Stark effect,

slthough ibney's method is the one in general use today,
Schlesinger's observation was made in a rather different way, while
observing the velocity-curve of d Librae, wn Algol-type eclinsing
binary, The effect he observed (Schlesinger 1909, 19113 Forbes 1911)
was due to the faint companion's suc.essive obscuration of the limbs of
the bright star at partial eclipse, cuusing the measured radial velocity
to be first greater and then less than expected, He found the bright

star to be rotating in the same direction as the orbital motion, with

& line-of-sight component of velocity of 35 km/sec_

bince  that first measurement, many observations have been
made of stars of all types, The best recent measurements have been

sumnarised by Allen (1963, p.204), An interesting, and still
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unexplained, feature of the results is the strong dependence of
equatorial velocity on spectral type (Fig, 1), first recognised by
Struve (1930), This dependsnce has been confirmed by detailed
éurveys by (among others) Su Shu Huang (1953) and Boiarchuk and
Kopylov (1958), On average, stars of early spectral type rotate
fagter than t-ose of later type, which rotate only slowly, if at all,
The Sun, for example, of type G2V, has an equatorial velocity of about
2 km/sec,

In main sequence siars (Luminosity class V) the division
between fast and slow rotators occurs at about spectral type F, at a
point where eénother division can be made, The structure of stars
varies systematically with their central and surface temperutures,
The central teuperature determines the process of nuclear energy
generation «nd the surface temperature determines the degree of
ionisation of the surface gas, Late-type stars have outer convection
zones (Fig, 2), caused by hydrogen ionisation, which become negligible
at about spectral type T (I1/11,> 1,7 ; StrBmgren 1965, Baker 1963),
" Early-type sturs, whose fully-ionized outer layers are in radiative
equilibrium, begin to develop convective cores at about the same
spectral type (StrBmgren 1965), due to the change-over from the
proton-proton chain to the more temperature-sensitive CN cycle as a
method of hydrogen-burning,

Thus it ap)ears‘that, in general, stars with convective
cores and radiative envelopes are fast rotators, while stars with

radiative cores and outer convection zones (like the Sun) are slow

-3-
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T'Tie dependence of <vesin i> on spectral type is represented
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for stars of the luminosity classes III, IV7and V (after Boiarchuk and
Kopvlovl. The open circles indicate values obtained after cor-
rection for the exclusion of Ap V or Am stars.

for stars of the luminosity class V after correction for the exclusion
of Ap or Am and Be stars.

for stars of the luminosity classes I and II (after Boiarchuk and

Kopylovl). 1UItl)

—uik 6o v

Spectral Type

Fig. 2. --Regions in the Hertsprung-Russell Diagram. Re-
gions C and C' correspond to stars with a convective zone,
D without a convective zone. In region CIl stars present
electromagnetic and equatorial mass loss ; in region OQil,
only electromagnetic mass loss.



rotators, E;P,J, van den Heuvel has given a recent discussion of this
correlation (1965) and has suzgested a sblution in terus of the
magnetic braking of late-type stars by a éo—rotating corona, the
braking occurring after the star his recwched the main sequence; A
recent paper on the solar wind by Brandt (1966) lends some support to
this idea, On the othef hand, Schatzman (1962) favours magnetic
braking in the pre-main-sequence phase of evolution, His ideas have
recently been sunported by Wilson (1966) and by detailed calculations
by Hestel (1967), Other lcess conventional solutions have been
proposed (e,gz. Gough 1966) but no cxplanation has yet gained general
accentance,

Whatever the explanation may be, the correlation enables a
simnlification to be made in the study of the coffects of rotation,
The effects will be greatvest in early-type stars with radiative envelopnes
and small in stars with outer convection zones, which are notoriously
more difficult to treat in detail, Accordingly, it is reasonable to
restrict oncself, in the first instance, to considering the theory of
meridional circulation, onc of the eifects of rotation, in radiative
atmosvheres, The theory is quite different in zones in convective
equilibrium (Biemmann 1951,1958; Kippenhahn 1959,1960,1963) and
convective zones will not be consicdered in this thesis, A brief
revicew of the theory in convective envelopes has becn given by lestel
(1965), The )roblem is complicated by the need to introduce an
anisotropic (tensor) viscosity, whose radial component is larger

than the other com»onents,



2 . Turbulence

Measurements of rotation by Abney's method are complicated
by the fact that lines may be broadencd by turbulent motions as well
as by rotation, Ilost observations of turbulence have been madc of
late-type stars (sce, for cxample, Bell and Rodgers 1964,1967) ond thore
is 1little evidence for turbulence in early-type stars, The
shenomenon has been observed in early-type stars, however (Underhill
1967, persomal communication), and, in view of the prediction of this
thesis that there arce turbulent motions in the surface layers of a
rotating early-type star, it is worth considering very briefly the
difficulvties involved in obscrving turbulence,

Pirst of all, the broadening due to turbulence must be
distinguished frow that due to rotation, In the paper in which the
phenomsnon of turbulence in stuors was first conclusively demonstrated,
Struve and Elvey (1934) showed that this could be done by usings the
curve of growth, since the gradient of the curve of growth is affectad
by turbulence but nut by rotation,

Secondly, the size of the turbulent velocities can be
cstimated in scveral w.ys, These have been conveniently summarized
by Su Shu fu.ng (19503, wno distinguishes the following three methods:
(i) line~profilc measurements; these refer to both large «nd small

eddies, which brocden the line in different manners,
(ii) curve of growth mcasurements; this is the commonest method, and
yields the most »robable velocity of the small eddies, It gives

no information zbout large eddies,
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(iii) Donpler-shift measurements; these refer to individual large
eddies,

In general, the results from the three methods differ, If measure-

ments are available from both of the first two methods, the differences

may be used to find the snectrum of the turbulence, Unfortunately,

line-profile measurements are often not available and it is then

imlossible to say how the enerpy is distributed between various sizes

of eddies, The inter revation of the observed turbulent wvelocity is

uncertain in thot case,

3. Magnetism and abundance sxomalies

Like rotation, o magnet.c field produces non-spherical
distoriions in a star wnd the effects have to be distinguished,
The first stellar magnetic field was measured by Babcocl (1947), who
found « field of 1500 gauss in 78 Vir,, a peculiar A-star (A2p),
uging the~Zeeman effect, Babcock's later work sugrestvs that stellar
nagnetic fields are probably ubiquitous(Babcock l958a) and that
strong ccherent magnetic fields exist in all rajidly rotuting stars
with surface convection zones (BLabcock 1958b), The measured fields
are oftei. of the order of kilo;aucs, and they all vary with time, some
irregalarly,  ovever, Babcock's claim that rapid rotaetion and strong
negnetic fields wre correlated is based on circumst.ntial evidence,
gsince he could not measure both in the same star - the Zecman effect
can only be measurcd in stars vith anarrow spectral lines, @nd not in

those with lines broadened by rotation, Babcock's argument is

-6~



based on two facts: that most of the marmetic stars wvhich he observed
wexe of spectral type A, and that it is in this spectral class that
the mean angular velocity of stars rvaches a maxinum as a function of
srectral type (Talker 1965L),

In order to test his claim, it is necessary to look more
closely at the stars in ivhich magnetic fields have been detected to
see if there is any direct evidence for rotation, Two groups of
shary-lined i-stars are important for %his purpose (Slettebalk 1954),
Cne is that of the metallic line stars (Am) defined by Roman, llorgan
and Lggen (1948), of which a few possess weal: magnetic fields (e few
hundred geuss - Babcock 1958b), Abt (1961) has sugzested that the
Am stars are provably all bincries with inherently slow rotction,
Strittmatter wnd Sargent (1966) give evidence to suyport the
interpretation of the .m stars as intrinsically slow rotators, ond
use This interpretuation to determine empirically the spproximate Hosition
of the zero-rotation main sequence for clusters in which Am stars are
found (see also nert section),

The otier groun com.orises the neculiar A-stars (Ap),
discussed by, for example, Deutsch (1956),lwhich all nossess strong
fields, There iz disagrecnent as to vhether these stars urc
intrinsically slow rotvators or whether they cre rajsid rotators seen
vole-on, «s suggested by Babcock (1958b), Ividence for bot
possibilities has been discussed recently by Walker (1965a,b, 1966)
who concludes finally (1966), from a study of sbundances, thatb,

although some A) siars may be seen sole-on, Ap stars in general

-7-
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probable magnetic stars.



cannot be ranidly rotating normal A-stars seen pole-on, A similar
conclusion was reached by Sargent and Searle (1966), and by Sargent
and Strittmatter (1966), wwho showed that the abnommally weak helium
lines in certain B-stars cannot be explained as being oproduced by
aspect effects in rapidly rotating stars, as had been suggested by
Huong and Strave (1956) and by Guthrie (1964),

However, the main controversy (and the argunent is by no
means over! centres on the A-stars, in vhich spectral class Babcock
found most sta s with magnetic fields, Indeed, his results (Fig, 3)
suggest that there are very few magnetic stars outside the rwnge BS
to F2, but this conclusion is rather doubtful bececausc of observational
selection, For ease of mcasurcment, sharp-lined stars, such as Ap or
fm, are to be preferred, and Tig, 3 provubly only means that Bobcoock
observed far wmore st .rs of this kind than of any other, and therefore
an unnaturally high »roportion of A-stars, Indeed, he points this
out in his cotalogue (Babeock 1958a), There is no observational
re.son why BO-stars, for example, should not also nossess large
magmetic fields,

It is obviously important to obtain good theoreticwl models
of rotating stars in order to be able to decide more definitely
between the various interpietations of the obs:rvations of the Am and
Ap stars, In sarticular, it is important o kunow what effect
circulation currents could have ncar the surfacc, since some observed
abundances migh® perhaps be expleined if it were possible, for cxample,

for material to be mixed throughout the star by the currents, This
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thesic confimms that that is unlikely, Circulation currents moy also
be expected to affect magnetic fields, However, it seems likely that
in stars with strong magnetic fields there is no circulation (Meatel
1966, personal conmunication - sue Chanter 7). Strongly magnetic

stars will not, therefore, be cunsidered in this thesis,

4 Rotational sprcad of the main sequence

Although magnetic fields undoubtedly exist and are of
inpertance in many rotating stars, they arec not themselves necessarily
effects of rotaution, ‘the main intrinsic effect of rotation is to
distort the fi ure of a rotating stor from a sphere, The axis of
rotation necessarily introduces a preferred direction in space and it
is to be cxpected that various observed quantities will vary with thoe
angle of inclinction, i, of the rotation axis to the line of sight,
Even the measured equatorial rotation velocity is a function of i,
since, if v, is the actual cquatorial velocity, the measured gquantity
is vesin i, Actual rotition velocities can be found only if i can
be determmined, as in eclipsing binary systcms, Otherwise,
statistical analysis is needed to find average valucs of Ve for a
given snectral type, and it has not been possible until very recently
to find Ve for a »articular stur, A method for doing so has now been
described by Roxburgh, Sargent and Strittm.titer (1966), The method
makes use of the effccet of rotation on the luminosity and sectral
type (or colour) of a star,

The first cuantitative estimate of this effect was made by

-9~



Sweet and Roy (1953), who showed that rotation could produce a spread
in a Hertzs»orung~-Russell diagram of as much as half a magnitude for a
given spectral type, This could account for at lcast nurt of the
observed soread in the upper half of the main sequconce of clusters
(Strittmatter 1966), even though their results neced some modification
(Sweet 1965, nersonal communication), 4 more detailed discussion of
the spread due to rotition is contained in .ippendix I, where a
criticism of a method of obtaining the zero-rotation main sequence for
clusters is given, A discussion of theoretical results is given in

section II 5 of this chupter,

I1,Theoxry

1,.The origin of meridian circulation

Circulation currents in the atmospheres of rotuting stars
cannot be directly observed, and their presence must be inferred from
their effect on other guantitics which can be observed, It is
therefore essenticl to have a theoretical model which will give the
elfects of circulation on the surface conditions in stors, It is
the aim of this thesis to provide such o model, In the rest of this
cha ster a summary will be given of the most important »revious work
on circulation in rotating stars,

The first important theoreticcl result is that due to von
Zeipel (1924a,b), whose famous paradox concerns the rate of energy

gencration in a uniformly rotating star, Von Zcipel's result was that

«10-
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wvhere € is the rate of energy generation .t a point where the density
is p,_rl.is the constant angulcr speed of rotation and G is the
gravitational constant, It is clear that, since the dengity
decreases to zero in the outer layers of a star, the energy generation
must become negative at some critical density near the surface, that
is, energy will be absorbed rather than liberated, It appears that
von Zeipel himself believed this result (Bdcington 1925), bput it is
not now taken seriously, although there is still a place in the theory
for a critical density, as will be seen later (Mestel 1956), The
paradox was resolved almost simultaneously by Vogt (1925) wund
Ladington (1925), Iddington gives a very clear discussion of the
problem in his book (1930, PD 282-283),

Von Zeidel's resuli dejends on ti:e strict mainten:nce of
radiative equilibrim, thot is, on the balancing of the divergence of
the radiative flux only by (nucle.r) energy generation, The »naradox
mey be resolved by removing thig strict condition, In that case,
ecuilibrium must be maintained by some additional form of energy
transoort, An obvious traansport process is convection, lowever,
convection in this context has not the mecning usually understood in
stellar structure, An atmeosphere in radiative ecuilibrium is said to
be unstable ageinst (ordinary) convection if the temperature gradient
is greater than the adiabatic temperature gradient (Schwarzschild's

criterion (1906) ~ this critezion is altered in the presence of a

1]



magnetic field with a vertical component, which tends to stabilize the
atmosphere (Gough and Tayler 1966)), Convection then starts, and the
temperature gradient settles down to a value nearly ecucl to, and
slightly greater than, the adiabatic value, In that case most of the
energy is carried by the convection currents and radiative energy
transport can be ignored,

However, if th: atmosphere is radiatively stable, as is
assumed in the present cose, ordinary convection will not appear,
Insteud, large-scale laminar circulation currents are set up, caused
by the break-down in radictive equilibrium, the temperature gradient
remaing subadiabatic and the radiative flux carries most of the energy,
The large-scale “convection" currents carry only enough energy to
maintain a steady state, and the structure is still essentially that
of a region in radiative equilibrium, The circulation is coniined
to meridian planes and is generally refexr.ed to as meridizn, or
meridional, circalation, Circulation of this kind mzy also occur in
zones of weak convection where much of the energy is carried by

radiation, In that case, the flow is turbulent (Kipgenhahn 1959),

Onoe effect of the circulation currents is to mix the material
of the star, Colculoations by Bddington (1929) sug ested thet the
currents were foct enouch to keen the star well-mixed and therefore
of homogeneous com»yogition, Hovever, an inhomogeneous model was

successful in explaining the existence of red giants (Hoyle and
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Lyttleton 1942), cnd when detailed work on the evolution of well-

mixed stars come to be done by the Bondis and others about 1950 it

became apprarent that there was some disagrecment with observation (see

llestel's suwmary (1959)\, This discrepancy ﬁas exvyliined when

Eddington's culculations were corrected by Sweet (1950) and 8pik (1951),
; N

They found thut the speed of the currents in the interior was a

million times slower than Dddington had wnredicted, so that the time

recuired for complete mixing is too great for stars to be even nearly

honogencous,

Purther work on this problem was done by lestel (1953), who
investigzated the effect of a non-constant molecular weight, It was
found that inhomogeneities of that kind alsoc cause circualation cuirents
("u—currenos”), These currents wrc in the oprozite sense to the
Eddinston-Sweet circualation and further r=duce the mixing effect of
the latter, It is now gencrally .greed that the mixing by meridional
circulation currcnts is negligible for the purposes of stellar
evolution, Thig has been questioncd by Porfir'ev (1963), who points
out that the above res.lts arc based on the assumption of uniform

h]

rotation, which will be rapidly destroyed by che circulation itself,
Llthough this is true in the absence of ony constraint, the assumption
may bc justified if a suitable constraint is nostulated, as will be
seen later, Porfir'ev sreoduces o cuantitative theory to suport his
contention that the sneed of the currents is fast enough in a non-

uniformly rotating star to cause mixingz, and his second section

oy
denends on the invalid assumpiion that the surface of a ster is a
“. th% s\‘m'\\ov ok wag deva w\(cq h'ﬂ G-‘-ot*m ((9&5)_
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streamline of the circulation, Also, his work on rotation without
meridien circulation appears to be conticdicted by that of Roxburgh
(1964a,b), Schwarzschild's »oaper on the same subject (1947) is wrong
because of the incorrect truncation of a series (Roxburgh 1964a) cnd

it is likely that Porfir'ev's paper is wrong for a similar reason,

3 . Stoady state configurations

The circulation currents arising in a star in unifomm
rovation carry anguiar momcntum, The resultant Coriolis forces
will rapidly destroy the uniformity of the rotution unless there is
some constraint, Such constraints will be considered shortly. In
the absence of constraints, only two final stcady states are possible,
“he star must settle dowvn in a state of non-uniform rotation, either
without meridian circulation or with mcridian circulation and with the
-ngular momentum per unit mass constant on stream lines of the
circulation (Roxburgh 1964a), The latter case is extremely difficult
to treat, as the rotation law is iﬁ ageneral unknown if the streanm
lines are mwmknuwa while the formm of the stream lines is itself
tetemined by the rotetion law, This kind of problem recurs in
every cose where steady circulation could arise, and no solution is
yet knowm, A solution for the case of zero circulation has been
given by Roxburgh (1964a,b), In that case the angular velocity is a
function of the radius only and decreascs outw.rds, His work
rcplaces esrlier (incorrect) work by Schworzschild (1947) and two

rather artificial models due to Rosseland (1936), Roxturgh has ..1so
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shown(1966), by an exiension of von Zeinel's theorcm (1924a,b), that,
in a rotating star with no constraints, therc is no stoady state
configuration -‘here the angulcr velocity dejends only on the distance
from the rotation axis,

Some iterative numeric:il work on the case of steady
circalation has been attcméted by i Mehesvaran (1966, personal
communication) who finds that the circalation breaks up into several

K .
ZONcs, Thiz may be sym tomatic of the result found by X, Fricke
(1967, nersonal communication; to be gublished), who has been
investigating the stebility of steady-state configurations rithout
constraints, IHe finds that Roxburgh's model (Roxburgh 1964a,b) is
unstable to small perturbations, He hes also investigoeted the
vroblem of stead;” circulrtion in the radiative zone of a Cowling
mocel, Usingz the Boussincsqg approximaition, he has been able to
show that this configuration is also unstable, He concludes that no
stabls stcady state configuration is possible for o non-uniformly
rotating ster without construints,

The theoretician is therefore forced to consicer the problem
of rotati n in the prescnce of congtraints, Since constraints are
nscessary in any case, it scems best in the first instance to consider
constrainits which keen the rotation unifomm, That case heg the
advontage of simplieivyr, lso, there is some observational evidence
thet unifom rotation may be the most rcalistic assumytion (TR,
Stoeckley 1967, »ersonal oommunication),

One nlausible constraint is viscosity, In stellar
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conditions, hovever, molocular (nd raciutive viscosities are both so
smell that viscous forces arc gencrally negligible compared to
centrifugal forces, cven near the surfuoce (Smith 1966), In the
interior of a star the ceffect of viscous forces on the rotation law
is certainly ncgligiblic (Jeans 1929), If there is turbulence, the
situation is different, Turbulent viscosity is many timcs grector
thon radictive viscosity end may have an impdortant effect, This
situation has been cousidered by Kippenhahn (1959) and Osaki (1966)
and will be discussed in devail in Chapter 7, The problem is greatly
com ;licated by the still inadequate state of the theory of turbulence,

4 process which may sometimes be cffective is the braking of
& star by the radiative transiort of =n;ular momcatum (Jeans 1925,
1929). However, in most cascs this effect is much smaller theu
that of the Coriolis forces and cui be ignored (Mestol 1955),

The incffectivencess of theso processes and the prevalcence

of magnctic ficld: in stars, noted in section I 3, suggests that
magnetic forces wrce the most likeoly ones to have an aospreciable coffect
on rotation, This has becn supported by most of the recent work on
mognetic svars, As in a non-magnetic svar, strict uniformity of
rovation is not possible because of the perturbing eflfect of the

1T

circulation, Ylowover, in & magnetic star two steady states with

@

o
/

circulation ar. amenable to treatment (FHoxburgh 1963), In one of

%

Giscussed recently by Howard, lloore and Spiegel (1967), This

he rotation may also be affected by thc "spin-down" mechanism

mechanism should also tend to meke the rotation uniform,
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these tlie centrifugal force is teken ws the dominant perturbation,
with nearly uniform rotetion maintained by a weak noloidal field,

In the other case the dominent nerturbation is e toroidal magnetic
field of o narticular form, Taile the first case may be relevant

to early-type rotating stars, the second scems unlikely to have any
application in view of theories of the origin of magnetic fields in
stars (Roxburgh 1963, llestel 1965), all of which suggest much stronger
noloidal ficlds than the sccond case would allow, No soluticn has
yet becn obtained for any other case,

As before, a steady state without meridian circulation can
also be cousidered, Various s»ecial mocdels of non-unifomly rotating
magnetic stars without circulation have becn sivudied by Roxburgh and
Strittmatter (Roxburgh 1966, Roxburgh and Strittmatter 1966a,b),
These models differ from the non-magnetic models considered by
Roxburgh (1964a,b) in that the angular velocity increases outwards
r..ther than inwards, These models arc not ruled out by Fricke's
investigations on stability, Howover, the models uscd are rather
artificiar, since the magnetic ficld is »Hurely toroidal, being built
up by Diecxmamnm's "tattery" effect (19503, It is knowm (Mestel and
Roxburgh 1962) that even a very weak poloidal field is enough to
pravent the "baitery! from overcting, cénd it therefore seems unlikzly
that the models of Roxburgh and Strititmetter are anplicable to many
real stars,

Thus, of the cascs for which solutions exist, the only oncs

which sceiz likely to be relevant to rcal stars arc the case of a non-
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magnetic star in steady non-uniform rotation without circulation and
the case of a magnetic stor with circulation and in ncarly vwniform
rotation, The latter is thorefore the only steady state model

available as a basis for o closer study of meridian circulation,

4 _Surface conditions

The construction of rotating model stars is so complex that
until recently the simplest boundary conditions have becn taken, In
general this has meant taking simple zero pressurc and temperature
conditions at the surface, In this way a model can be constructed
vhich gives a good descrintion of the interior of the star but says
very itittle about the outer layers, Boundary conditions for the
velocity field arce also required, ond it is usuaally assumed that the
velocities at the surface are finite and that there is no net
cutward flow of matter through any closed surface surrounding the star,
(See, for example, Sweet 195Q)

Unfortunately, it scens that these boundary conditions for
the velocity ficld are inconsistent with the simple zero pressure and
tempersture boundary conditions for the structure, That result is

t t
implicit in Opik's Laper (1951), Opik used a perturbation theory to
deter.iine the circulation currents in a uniformly rot.ting star,
employing en oxtension of von Zeipel's orgument (Zddington 1930),
Although his theory wan accuratc only to the first order in the ratio
of centrifugal force to gravity, he rotained a second order temm,

proportional to 1/densit vhich becamne dominant near the surface
.p .p y' .
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This term did not cause trouble in Bpik's model, which had a surface
convection zone in which the theory was invalic, There was therefore
no suggestion of a singularity at the surface,

However, certain difficulties present themselves even
without considering Bpik's second order temm, llestel has noted (1953)
that, although the radlial component of the velocit: field in Sweet's
model (1950) is finite, the tongential commonent has singularities at
the surface and atv the boundaxry of a convection zone, A model of
viscous dissipation was roposed to resolve this problen,

A more detciled study of the beh.viour of the circulation
near the surface has been published by Balker and Kippenhahn (1959),
They showed that, near the surface of & aon-uniformly rotating stor,
the radial comaonent of the velocity ficléd was proportional to
l/density, even using a first order werturbation theory, Their wajer
showed that the finite radial component in Sweet's work (1950) was due
entirely to tiue use of uniform rotetion., o s)ecial case of the more

general class of rotation laws

C

() = C, + 2 (1.-2)

r2sin26

(Cl, 02 constants) for which a first order narturbation theory yields
a finite radial comjonent a2t the surfoce,
Although this result siiowed unifoxm rotation to be a special

il
case when a first order perturbation theory is used, Opik's result

threw some doubt on thie validity of e perturbation tleory near the
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surface, since in his model the second order term dominates over the
first order term «s the surface is approached, To be sure why the
singularity occurs, one shoulcd investigate the bchaviour of the
velocity field near the surface without resorting to a perturbation
theory, This has recently been done by Ilestel (1966), It is now
clear that the l/density derendence is a general feature of the
velocity field for any rotution law, and thot uniiorm rotation is a
snecial case only in the sense that the 1/density terms are of second
order in the ratio of centrifugal force to gravity due to the exact
cancellation of the singular first order tems, A slightly less
general form of the same result had already been found by the
aoresent author (Smith 1966) with the use of o Roche gravitational
notential, This work is described in Chapter 3,

It is therefore clear that the use of a uniformly rotating
mocdel is valid but that a more realistic model of the surface layers
is requireq, The »resent thesis describes such a model,

The main assumptions made in the above models are
(1) that viscous ond inertial forces are negligible compared to the

centrifugel forces due to rotation
(ii) that the loecel equation of energy trunsfer 13}C£.grad T

(G? = radiative flux, T = temperature) can be &ged,
Thile the author has shown thuat assumotion (i) is consistent with the
results obtained from a Roche medel (Saith 1966), the second
agssumption is clearly dubious in the outer layers of a star, since it

assumes vhat the pioton mean free path is much less than the scale
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height, Mestel's work (1956) suggests that it is the form of the
local e¢u..tion vhich leads directly to the l/density singularity, but
even without that resuli one vould be surprised if a loeal equation
were to give rezlistvic results in a region where thé photon mean free
path is comperatively long, 4ll previous stadies of stellar
atmoswherss have required to use the non-local tfansfef equabtion
(which reduces to the local equation at great de sths in the star -~ see,
for example, Chandrasckhar 1939, po 208-211) an? one would hardly |
xnect a rotating stellar atmosphere to he different in that respect,
The only reason that a non-local equation has not been used
until recently in the study of rotating stafs ig that a 150&1 aquation
is easier to handie mathematicglly and cives erfoctl:s adeguate results
for the overall structure of the star, Only when the structure of
the atmospherc is considered is a non-local treatment necessary,

It is found that the use of a nrmn-local transfer equation
leads to the .rorc realistic resulv that the velocity iz finite at the
surface, A formal proof of this result may be given very briefly,
using known results; for example, it may be proved from p, 11 of
Chandrasekhar's book on radiative transfer (1950 - hereafter referred
to as R,T,) by using equation (9) of the author's paper (Smith 1966),
However, to find the value of the velocity at the surface is more
difficult, and requires a solution of the non-local transfer equation

4

in a non-gpherical atmosphere, An approximate solution is derived in

this thesis (Chapters 4 to 6),
Recently, Osaki (1966) has also produced a theory of a

o . -~
- - . - -
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rotating atmosphere with a non-local transfer equation, He assumes
that the atmosphere is locally plane-parellel and uses the exact
plane-parallel solution of the transfer equation to show that the
condition of radiative equilibrium is grossly violated, Unfortunately,
although his treatment adequately represents the variation of various
quantities with latitude, he does not take any systematic account of
the effect of curvature in the atmosphere and it is not clear how one
would extend his model to include cuxrvature effects, The equations
in Chapters 4 and 5 of this thesis represent exactly the effects of
curvature, although so far the equations have only been solved in the
plane-parallel approximation,

The present author agrees with Osaki that the condition of
radiative equilibrium is grossly violated, so that the non-local
theoxy is singular in the sense that it predicts unrealistically large
circulation speeds; This result was obtained independently of
Osaki,

Osaki proposed two models of the surface layers which
might be more realistic; In both models the rotation is non-uniform,
In one model, the angular velocity is supposed redistributed in such a
way that thgre is no circulation and the star is in radiative
equilibrium, In the other model, the circulation speeds are supposed
limited by tgrbulent dissipation, The present author rejects both
these models, It is found that the flow is unstable, so that
turbulence is certainly present, However, Osaki's turbulent model is

internally inconsistent, for reasons which will explained in
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Chapter 7, and the turbulent velocities turn out to be about one
hundred times 1arge£ than those estimated by Oseki, It has not
proved possible to obtain a quantitative model of the surface layers,
but it is cervain from the quaégiﬁative model given in Chapter 7 that
turbulent velocities of the order of the specd of sound are to be

expected near the surface of a rotating early-type star,

5, Observational consequences

The present thesis is the first detailed study of meridian
circulation in an atmosphere with non-local radiative transfer,
However, it is necessary to consider non-local effects to some extent
if the variation of brightness over the surface of a rotating star is
to be calculated, and several aathors have used the theory of stellar
atmospheres for this purposc, without considering circulation,

The surface variation of brightness was first studied by
Sweet and Roy (1953) who used a rotating Cowling-model star with a
local transfer equation and a limb-darkening coefficicnt of 0,6,

More detailed work has been done recently by (for example) Collins
(1963, 1965) and Roxburgh and Strittmatter (1965), These authors use
a combination of non-local transfer theory in a plane-parallel
atmosphere and the von Zeipel gravity-darkening, which is strictly
true only for a local transfer theory, It is not obvious a priori
that von Zeipel's result is a good approximation for a non-local

theory and it is not assumed by either Osaki or the present author,

Nonetheless, it is unlikely that their conclusions are much in exrror
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for stars without meridian circulation,

Both Collins and Roxburgh and Strittmatter use a Roche
gravitational potential, The main difference between their approaéhes
is that Roxburgh and Strittmatter use a rotating interior for their
stellar model based on the rotating stellar model of Roxburgh, Griffith
and Swect (1965), The use of this interior nodel enables them to
dispense with the assumptions made by Collins that the luminosity and
polar radius are the same in a rotating star as in a non-rotating star
of the same mass and chemical composition, Their results show these
assumptions of Collins to be incorrect, but are otherwisc in good
agreement with Collins' results, The main qualitative difference is
in the behaviour, for small rotation speeds, of stars inclined at a
small angle to the line of sight, The initial decrease in luminosity
ags the rotation speed incresses from_zero, caused by a lower central
temperature, is not found by Collins, Apaxrt from this, Collins'
assumptions give qualitatively correct results, In his later work,
Collins (Collins and Harrington 1966) has used the Roxburgh, Griffith
and Sweet rotating interior as a basis fo; the calculation of HB line
profiles for families of rotating B stars,

The most important result of work on the variation of
brightness over the surface of a rotating star is that the observed
luminosity and so the absolute magnitude of a star of a given mass
and chemical composition is a func¢tion of two things: the angle of

inclination, i, of the rotation axis to the line of sight and the speed

of rotation,J:L, The effective temperature, and so the colour, or

24~



EQUATOR ON

I‘lib NON ROTATING

-0A -a.' o.c "V OR
B-v — %

Fin 4. Hertzsiirung-Rusaell 'luinrain ( o tieen-rotHtinc ami full' <m-w* * star*



i

spectral type, is also a function of i anﬂHIL, There is thus a

spread in a colour-magnitude diagram, due to the rotation of the stars
plotted on it, Rotating stars appewr to the right of a notional main
sequence for non-rotating stars, This was recognised by Sweet and Roy
(1953) who found a 11m1t1n5 spread of about nalf a magn1tude

Roxzburgh and Strlttmatter find a rather larger spread (Fig, 4)

Similar results have bcen found by Ireland (1965), who
considers the two extreme cases of a Roche model and of a model of
uniform density, He finds that these models give similar results
despite their great physical difference, Although hc dces not
specifically refer his results to a colour-magnitude diagram, he does
show: that rotation may chaonge tie spectral typse of a star by as many
as five sub-classes, a result more in agrcement with Roxburgh and
Strittmatter than with Sweet and Roy, It should be noted, however,
that Irelend makes no allowance for limb-darkening,

A1l the above work is for stars in uniform rotation,
Roxburgh and Strittmatter and Ireland have also considered non-uniformly
rotating stars (Roxburgh and Strittmatter 1966b; Roxburgh 1963 19663
Ireland 1967). A similar spread is found in the HR diagram,

Ireland (1967) finds that, for rapidly rotating stars, the spread in
luminosity is more sensitive to the degree of non-uniformity of the
rotation than to changes in the rotation speed itself, IHowever, he
uses a very special form of rotation law,

As noted by Roxburgh, Sargent ond Strittmatter (Roxburgh,

Sargent and Strittmatter 1956; Strittmatier 1966; Stritimatter
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and Sargent 1966), the theoretical predictions can, in principle, Dbe
combined with the observed sprecd in the main sequence to obtain a
zero-rotaion moin secuence for stellar clusters, A sumnary of the
method they suggest is given in Aodendix I, viere it is shown that it
is not at all clear that their methiod is reliable with the small
number of currently availcble cbservetions, lionetheless, it is now
possible, in »rincinle, to obtain v as well as v sin i for the
individual stars in a cluster,

If it is assumed that tie results obtained by Sorittmatier
et &l ave substuntia 1y correct, an interésting fact emerges, e
theoretical mocels which appear to agree mogt conviacingly with the
observationz are the models of non-uniforaly rotating stars witi.out
meridian cirecletion (Strittnatier and Sursgent 1986), The uniformly
rotating models sredict a spread in luminosity for a given colour
which is less than one fifth of that observed, This discrepancy
appears Lto be too lurge to be explained by the uncertainties in the
observations,

Hovrever, the uniformly rotating models must all contain
circulation currents, the effect of which has been ignored in previous

alculations (ef, Irveland 31965, »,35), It is possible that the

ineclusion of circulation ciarrents in the treatment of the surface
layers of uniformiy rotating stars may lced to a betiter agreement with

(B}

observation, At any rate, this thesis shiows tnatl the surface

con“itiong are rather different from those assumed in previous

unifomly rotuting models, and there is little doubt that the von
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Zeipel gravity-derkening assumed in these models is a poor approximation,

6 Binary stars

The tlhieory of roteting stellar atmos heres may be applied,
as indicated in section >, to obtain the angle of inclination of the
rotation axis to the line of sight, In binary stars, for which the

ngle of inclination can often be found by observing eclipses, the
theory has another applioation, The problem described below was, in
fact, the original motivation for the present thesis, and it is hoped
to return to this problem at & later date

In a close binary system, each stor is illuminated by the
other on tlhic inward-feacing hemichere, The rodiation from the other
star will be absorbed, or scattered, .nd eventually re-emitted, This
is the wel «lnom reflection effect (see, Tor examnle, Kopal 1959).
Recently (Ovenden 1963) some observations have been made of 57 Cyen
which do not seem to be explicable in terms of the normal reflection
effect (Vapier 1965), It is hoped thot the following considerations
may throw some light on the problem,

The external illumination mey be exnected to =zet up further
motions in the atmosnheric gas, ''he present thesis shows that these
motions will be turbulent, but the problem in a close binary syste
is complicaied by the lack of uxial symmetry and it is »nossible thavc
new lerge-scalce scweaning mey be set up within the wurbulent region,
vhich will redistribute the energyr in the incident radiction over the

surface of the star,



In the absence of external illumination, the boundary condition

for the intensity of radiation is that the iaward intensit; is zero at
he surface, For a close binery system, the external illumination on
eachh star of the system would be renresented by-an inward intensity at
the surface, varying in some »rescribed way over the henisvhere facing
the other stor and zero over the other hemisphere, If the systenm is
in synchronous rot.tion, so that the axes of rotation of the two stars
are parallel to each other and to the axis of rotation of the whole
system and the period of rotation of each star is the same as that of
its revolution about the common centre of gravity, the twc stars always
“resent the same face to each other and the »nroblem is independent of

L

time, ITonetheless, the problem is more compiicated thean that of a
single star, since the boundaory condition is not axizlly symmetric and
an extra independent variable is introduced, The non~oxially-
symmetric provlem has not becu attemnted, A solution has been obtained
only for the artificial axially-symmetric case of illumination parallel
to the axis of rotation (Sweet 1965 - unpublished).

Only circular orbits are truly synchronous, Elliptical
orbits, or gencral non-synchrcnous orbits, introduce the further
complication of time voriation, provubly slightly simnlified by the
existence of & periodic solution, This time-devendent, non~axially-

symmetric problen is well outwith the scove of the present thesis,
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CHAPTER 2

Degcrintion of the basic model

"The basisg or substratum - what you will -
Of the impending eighty thousand lines,”

C.S, Calverley, The Cock and the Bull,

1 . Agsumptions

To make the problem of meridian circulation mathemotically
tractable, it is necessary that the basic stellar model be reasonably
simple, although of course it must be sufficiently realistic that the
results obtained are meaningful, In this chapter various simplifying
agsumptions are discussed and the basic equations and definitions are
stated,

As mentioned in Chanter 1, only early-~type stars will be
conpidered, both because the effects of rotation are expected to be
larger in such stars (on observational grounds - see, for exainle,
van den Iieuvel 1965) and because deep convection zones are notv present
in their atr ospheres, Convection is not yet well enough understood
for a simple description to be known to be adequate, and it was thought
betlier to restrict the investigation to radiative atmospheres, such as
are to be expected in stars of early s ectral type,

Hven in carly-type stars there 1s a convection zone near the
sarfece, associated with the ionization of helium in the same way as

the deep convection zones of late~type stars zre associated with the
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ionization of hydregen, However, in stars earlier thean about 03 the
helium convection zone seems to have disapnearcd (Thaderhill 1950, 1951 )
and even when it is »resent (in stars later than 08) it is usually weak
and only starts at several optical depths below the surface (Underhill
15503 Ruditjobing 1947), EHelium ionizction effects will therefore be
ignored in this thesigf for the saize of simplicity, and the atmosphere
will be assumed to be stable against turbulent convection,
The role of helium in early-type atmospheres is further

discussed in a later paper vy lliss Underhill (1957) here she notes

that the nresence of a small amount of helium has 1little effect on the
temoerature end pressure distribution, That is, to find the structure
of the atmospherc of cn carly-typc star it is sufficient to assumic
thet 1t consists of »ure hydrogen, Since the digtribution of
molecular weight would in any case have been aszumed to be uomoreudous,
the assumption of pure hydrosen does not cause to be migsed any effect
duve to variation in molecular weight, such as the "p-currenis!
investigated by llestel (1953 - see Chapter 1, section II 2). Since
the join% effect of the p~currenis and the meridian circulation con be
found (to first order) simply by supernosing the velocity fields, iv

would seom to add little to the investigation to congider the p-currents

—

23 wel Desides, the velocities in the atmosphere of a star will be

found to be such that the material nezr the surface may be expected to

be extremely vell-nixed, The p~-currents woul

-
L

then be neg:igible,

€
In a private conversation (1967, ALIT IAU) iigs Underhill has

confirmed that this is a good approximation,
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The moleculer weight will thexefore be taken as a constant throughout,
of value 1/2 since at the temperatures concerned the hydrogen will be
virtually fully ionized,

A possible complication in early-type stars is the effect of
radiation pressure on the effective gravity, This problem glso has
been discussed by Miss Underhill (1949), Comparison of Table 1 of her
paper with the tables on pp 201, 207-8 of Allen's "Assrophysical
Quentities"® (1963) shows that, for main-~sequence stars later than about
08, the radiation pressure gradient is less than 10% of the gas pressure
gradient, Vhile this could chenge the effective gravity by an amount
comparable with the change due to rotation, the rodiation pressure is
still basically a small pexturvation, To isolate the eflect of a

1 - [

particul.r serturbotioa, it is useful

£

to congider it as the ouly one
acting, iherefore, since the radiation pressure clearly huas no

dominant effect, it will be omiited from the model discussed in this

R 3 ™,
LSS L it

Pfarther reasons for omitting it are that the effect of

62

radiction pressurc has zlread; been considered (Underhill 1945) and

that its inclusicn unduly complicates the cequations

.
It should be noted that, for o« detailed model atmosphere,
either the radiation pressure (for 0 stars) or a helium ionization
zone (for stars later than sbout 08) should be considered, In the
light of the above discussion, however, the models with these effects
included should not differ qualitatively from the models without the

effects, ‘'he nmodel used in this thesis may therefore be expected to

renresent roughly stars with spectral types in the range 05 to AOQ,
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IPor definiteness, the data below for a BO star will be used when making
numerical estimates,

Under the conditions of the Vogi-Lussell theorem (see, for
example, Chandrasekhar 1939), a star is uniquely determined by its
mass and chemical comnosition, Since these paremeters are not affected
by rotation (unless the stor is rotating so fast that there is mass loss
at the equator or the central tem»rerature changes sufficiently to alter
significantly the rate of nucleur reactions), a rotating star may bec
uniquely specified by its rotation speed and the mass and chemical
composition of its non-rotating counterpart, which will not in general
be of the same spectral type (Ireland 1955), A t;pical non-rotating

O34gm), N

BO star (4llen 1563) hes a uass of about 17, (I = 3,4x1
e ‘i . = 11 . iy
radius of about 7,Jhﬂ) (R =5,3x10 cm) snd a luminosity of about
1'3’<104LG> (LO = 4,9« 1037erg/sec3, These values will be adopted
for the non-rotating star of the same mass and ciiomicol composition as
., bt a4 s 40 .
the rotating model under considerction, A value of 2,2 x10 K will
be used for the effective temperature, This does not cuite agree
g an 4o .
with Allen's value (2,1% 107 K), but was chosen to satisfy %Dprox1mately
1 . 2 4 . 3 AP s s
the relcation Lo = 4nll a'Te (see section 3 of this chaguer),

In a2 more detailed investigation, the radius, luminosity and
cffective temperature would emerge as results of an integration of the
complete structur: cquutions of the star, However, since stellar
interiors are in general fairly well understood, and the present thesis

is investigating essentially only the qualitative surface properties

of the stor, it did not secm worth repeating stonderd inverior
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integrations, Of course, the rotation of the star will alter its
internal structure to & certain extent, TFortunately, this effect has
already been discussed (Roxmxmﬁh Griffith and Swcet 1965) and it is
*

possible to use an existing rotating interior model as a basis for the
new atmospheric investigation,

To obtein a simple, self-consistent, steady~state model,
Roxburgh, Griffitih and Sweet ci:ose to consider a uniformly rotating star
with a weak poloidal magnetic field, Thoe role of this magnetic field
(cf, Chapter 1, sectio: II 3 and Roxburgh 1963) is solely to kecep the
rotation wniform by balancing the (toroidal) Coxriolis forces due to
the meridian circulation, In reality, the rotation is unlikely to be
conpletely wmiform, However, since unifomm rotation coo2s not scem to
be a singular case, it is permissible to mcke the convenicnt
idealisation that the rot.tion is strictl; unifomn, It is assuned
that any meridian plane component of the magnetic force is negligible
compared to the centrifugel forces due to the rotution, This
assumdtion ncs the gre.t nerit that a magnetic ficld never ajpears

explicitly in the s ructurc cquations,

%-

The data guoted zbove do not quite agree with the mass/radius, mass/
luminosity diagrons given by loxburgh et al (1965), This is not
important, since the only umesicel results taken from that paper are
on the variation of R and I with rotation spced (Roxburgh und
Strittoatter 1963, This variation appezrs to be virtually independent

of the exact model adopted,



As a first approximation, it will also be assumed that the
sneed of the meridian circulation is slow enough that viscous and
inertial forces are negligible compared with the centrifugal forces
(cf, Chapter 1, section II 3), This assumption is made in the first
place as a mathematical convenience, bdut it will be seen to be at
least partially justified, Oaly very near the surface (Chapters 6, 7)
Cocs viscosity have to be considercd, and the inertial forces are
always negiigible,

‘e steady-state cquatin of motion for the stellar material

(assumed to be o perfect ges) can then be written sinply o

1 2 :
-EgradP = grad{i) + .ﬂ.@ (2,1)

where P ond p are the prescure and density, @ is the gravitotional
potential, L1 is the rotation speed (o constant) and & is ithe vector
distonce from the axis of rotation, The gravitationel potential of a

geseous, self-yravitating mass in roivation is rather comolicated,

particularly if the rotation is rapid, It would be convenient: to
find an aphroximation which simplified the muthematics while still
retaining the essence of the physical situation,
Such an a)proiimation has been developed by Roxburgh,

Griffith and Sweet (1965 = this paper will hereafter be referred to
as 1GS), In thoir model the star is essentially divided into two
regions, In the outer region tine density is sufficiently low that
the gravitational netential é can be teken as due entirely to the

material of the jzner region, It is therefore found by solving
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lLapiace's equation, Assuming that the inner region contains essentially
211 the mass of the star (an assumption which must, of course, be

checked when the whole model has been assembled, However, Eddington's
nodel stars (Bddington 1930) sugzest that it is likely to be a good

approximation), the solution is

oM Zq *‘?—\ an '
d - — i1+ > 2rW (2.2)
r L c1r R

where G = gravitational constant, II = nass of inner region (= mass of
star), r = distance from centre, Pn(u) is the Legendre polynomial of
order n, B = cos O where 6 is the angle between the rotation axis and

he radius vector, and the a are arbitrary constants, The a are

determined by the degree of distortion from the spherical of the inner
region, It was found by Moneghan and Roxburgh (1965) that the
gravitational effect of the distortion of the inmer region is small
(in polytropes) compared with the centrifugal forces and that only the

P2 term needs to be considered, For preseant purposes, even this term

can be ignored, that is, gll the a  mey be taken as zero (as is in fact

done in RGS) and (¢ is represented simply by the Roche potential

£
G ‘
@ = 7 . (2.3)

In the inrer region of the star, the mass is not negligible,
but @, the ratio of centrifugal force to gravity, is small, even if
this ratio is unity at the surface, This fect allows the use of a
first order perturbation theory, similar o that used by Chandrasekhar

(1933) and Sweet and Roy (1953). Details of this theory, and the
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criteria used to fit the two regions, are given fully in RGS, where it
is shown that the approximations are likely to lead to errors of less
than one per cent, The present theory of meridian circulation makes
no explicit use of the structure of the inner region, and it will not
be further considered here,

Various other assumptions are made, It is clearly
reasonable to asgume symmetry about the axis of rotation and about the
equatorial plane, It is also reasonable to assume that there are no
nuclear energy sources in the surface layers, Indeed, no energy
production is likely by any means near the surface, It ig also
assumed that there is no energy dissipation in the surface layers,
This assumption is re-examined in Chanter 7; The only plausible
dissipative mechanism is viscosity, and the assumpiion of negligible
viscous forces suggests that viscous dissipation is likely to be
negligible as well,

As already mentioned, energy transfer is supposed to be
solely by radia#ion, and by a large-scale laminar circulation in
meridian nlanes, The transfer of radiation can be treated in two
ways, In a "local" theory (nomally used mainly in stellaxr

interiors), the radiative flux :} can be written as

F--r T gear (2.4)

(see, for example, Schwarzschild 1958), Then given by this formula,
jﬂnhé'ﬂﬂﬂ on 1oeal walnes of T A and grad T (T is the temperature,

" Jdepends on local values of T,
C~is Stefan's constant and w is the opacity), In the outer layers
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of a star, where the photon mean free path is long, it would be
surprising if such a local theory were to be adequate, Nonetheless,
local thermodynamic equilibrium, which might also be expected to fail
vhere the mean free path is long, will be assumed, and it seemed worth
investigating the results of a local theox;%

In fact, it will be secn that the local theory does fail,
The assumption of local thermodynamic equilibrium is not invalidated
by this result, the accuracy of the LTE approximation holding
remarkably close to the surface of a star (Kourganoff 1952 p,8), but it
is necessary to use a non-local theoxry for the transfer of radiation,
The relevant equations will be quoted in the summary in the next
section,

Finally, the opacity must be considered, Tor mathematical
simplicity, it is convenient to consider a gray atmosphere with
either a Kramer's opacity (neC o™ e ) or simply n = constant,
corresponding to an electron-scattering atmosphere; 'The latter is
certainly the simpler and will be adopted throughout, although it
nust be recognised that this is not a particularly good approximation

for the atmosphere of a BO star, However, the mathematics becomes

rather complex in the non-local theory and it secmed better in the

>
The local theory was investigated before llestel (1966) had shown that

the 1/density dependence was a general feature, However, even if that
result had becn known, it would still have been useful to have the results

i

of the local theoxry for comparison with the non-~local theory,
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first place to aim for mathematical simplicity rather than for a highly

accurate physical picture; The electron~scatiering opacity should be

good enough to give a qualitatively accurate result, It secms

unlikely that a more accurate opacity law would alter the results of

Chapters 6 and 7 enough to change their 31gn1flcanoe For an

atmogphere of pure hydrogen, » has the value 0,38 (Allen 1963 p,94)

To summarise, then, the initial azsumptions are as follows,

in no particular order:

(1) Steady-state,

(ii) Uniform rotation, maintained against Coriolis forces by a weak
magnetic field,

(iii) Star divided into two regions; Roche gravitational potential
in outer region, the only region considered;

(iv) Axial end equatorial symmetry,

(v) Perfect gas - pure hydrogen atmosphere,

(vi) Radiation pressure negligible,

(vii) Non-rptating star of same mass and chemical composition would
be BO,

(viii) Atmosphere stable against convection, other than large scale
circulation,

(ix) Magnetic, viscous and inertial forces negligible compared with
centrifugal forces,

(X) No energy production or dissipation in the atmosphere,

(xi) Local thermodynamic equilibrium;

(xii) Gray atmosphere with constant (electron-scattering) opacity.
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2 . Equations

With the above assumptions, the equations to be solved are
rclatively simple

Since the interior is not being considered, the

only equations recuired are those which apply in the atmosphere, and
these will now be summarised

Consider first the equation of motion, In view of

assumptions (i) and (ix), the hydrostatic approximation (equation (2,1))
may be uged,

Since uniform rotation and a Roche gravitational
ntial are being assumed (assumptions (ii) and (iii)), it is

possible to define a joint potential'g?'by

GIM
":P' = — + Ji,ﬂ?rzsinze
r

. (2.5)

The meridian~plane component of the equation of motion may then be
written in the convenient form

grad P = p grad‘ﬂ?

(2,6)
which shows tha surfaces of constant P and constant iE'001P01dc, 1)
that P P(ﬁp} Hence also p =

p(i@) and equation (2,6) may be written
in the alternative form

2R

(2.'6)

Because of agsumptions (v) anr. (vi), the equation of state is simply

B
P = =of (2.7)
(1% = gas constant, m = mean molecular weight = 1/2) which shows that
T is also a function of Agionly 1ese¢ results show that it is
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convenient to use‘\l as a coordinate, A coordinate system based on'gz'
is defined in the next section,

The coincidence of suxfaces of constant precssure, density
and temperature, which considerably simplifies the subsequent
mathenatics, depends crucially on assumptions (ii) and (1}:). Some
of the difficulties which arise when aszumption (ix) is not valid are
discussed in Chapter 7, A joint potential can still be defined if
the rotation law is of the form fL. = L (®) (& = distance from
axis of rotation), but the only function of this form which leads to a
self-consistent and tractable model is {L = constant, Any more
general function leads to a singularity on the axis if a magactic field
(with .Q. ©%constant on field lines) is invoked to maintain a steady
stote (of, Ilestel 1965, 1966),

Since the equation of motion is being used in the hydrostatic
approximation, it gives no information about the circulation currents,
The circulation velocity v has two, meridiar&pla;ne, components which
are related by the continuity equation, For a compresiible fluid in
a steady stote this maey be written

div(py) = O - (2.8)(a)
or
Spy_,_d_s_ = 0 over any closed surface, (2,8)(’0)
The component of ¥ perpendicular to a [ -surface is determined by the

equation of thermal equilibrium, which, by assumption (x), is

= v.orad log (B/p) = - div 3 (2,9)

P d

~40-



(cf, Sweet 1950), Here Y ig the ratio of the principal specific heats
of the gas and‘Ziis the radiative flux, Y will be assumed throughout
to be 5/3,
Thether the radiativs flux is given by & local or a non-local
equation, it must satisiy the energy balance equation
L = g'z,_@ﬁ over a surfuce g’ = constant, (2.10)
In this equation L is the total luminosity of the star and is determined
by the interior solution, Its value depends on the rotavion speed
(Ro xburgh and Strittmatier 1965; sce also Appendix VI), Equation
(2,10) takes its simple fom because the surface of integration is a
level surface, It is derived from the more general energy balasice
equation (discussed in Avpendix IIT) by using equation (2,8\(b),
Euations (2,6) to (2,10) are five equations for three scalar
and 3o vector functions, To complste the sot, an expression for the
. o "‘,}. . ) o . < .
vector functio < 1is necessury, and sufficient, The expression

denends on whether a local or a non~local treatment is to be used, In

the local theory, the expression for 'ff is simply (ecaatloq (2 ))

- m3 am ‘
~ L oA
J 3w o ag&HY (2,11)

where & 1is Stefan's constant and w is the opacity (constant, by

assumption (xii)), In the non-local theory, one may write
- s Py I
4= (o) (2,12)

4 4 . s
where },, I and g are the components of 2 in the (¥, X,¢)

t

coordinate systcu defined in the next section, The first two
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s

components of

14 Cf—ﬂ'

ere, respectively, parallel and perpendicular to gradfy'

s "R . , . \
and J g 1s the toroidal component, They are given by:

T= = 51 cos A des
d .
Fx= I sin A cos f do (2.13)

F4 = &f[ sin A sin n de

where: I is the intensity of radiation; A and n avre angles defining
the direction of I, A being the angle between the outward normal to
he local iﬁ surface and the direction of I and m being the angle
between the meridian (;'\ = constant and the projection of the direction
of T on tha surface ﬂﬁ = constant (see Figs, 9 and 10 in Chavnter 4);
dw is an element of solid angle about the direction of I,

The intensity I is given by the differential eqguation

% = = Uup (I - B) (2,14)

(the "trunsfer equation®; see, for example, Kourganoff 1952), Hewe
the derivative is in the direction of I and B is the integrated Planck

funciion (by agsuwaption (xi)), given by

I (2.15)

3, Definitions

‘fhis chepter will be completed by defining two parameters
and describing the coordinate systcus used,

Ecuation (2,5) may be written:
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e 3 |
v - G 1 1+ Le I gine ’ (2,16)
o 33 i
where - ~
g3 |
‘f.' _ - L
- GII ’ (2.17)

The paramefer & is a measure of «, the ratio of centrifugal force to
gravity at the surface, If € << 1, a perturbation theory may be used
to solve the ejuations, as is shown later, Strictly, €& £a,but &
and « may vpe taken to be the same for most Hurposes, The relation
between then is discusscd in Appendix V,

A Turther paremeter &, is defined by

e = £ _ Bt (2‘18)
' T R T mGM ¢

where H = pressure scale height in an isotliemal atmosphere of

temperature Te, and Te is a mean effective temperature, defined by
L= 4miort (2,19)

€, is independent of the rotation speed, and is about 1073 (8,5x10_4
for the assumed BO star), Its significance will be discussed in
Chapter 5,

In these formulae, R is the radius and Lo is the luminosity
of the correshonding non-rotating star, The physical significance
of It and Te is blurred somewhat in a non-spherical star, but they are
useful to define & scale for the srystem,

Mnally, the two main coordisate systerms used musi be

described, They are ag follows,
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(a) Spherical polar coordinates (r,@,¢).
(b) The orthogonal set ('@ ,7(, ¢), lere '@ is defined by ecuation

constant are chosen

(2.5) or by equetion (2,16) and the surfaces X
to be orthogonal to the surfaces ’g = constant, That is, they are

chosen so thut
gracl”—gg . srad 'X = 0 everywhere (2,20)

The general soluvion of this ccuation, with: the condition ¥ = constant,

ig:

36

]

3 ‘
%(cos 6 + 1log tan (6/2)) + 'EE-I;— cos £f(x) (2.21)

R3
where f is an arbitieary function of X, An cbvious particular
solution is
) =X (2.22)
and this is used for all the exact theory (Chapter 3). A solution
vhich is approxinate, but which gives more meaning to K oas a coordinate,

is used in the wnerturbation t:eory T is chosen in such o way that
o J e

6
X =9 +§6£3- sin 6 cos 6 + l—"g"éi-r—é sin 6 cos © (1 + sinze) +O(63)
R R :

) (2.23)
Hote that 9(_ = 6 when 0 =0, n/2 and n,

It should be noted that, sincc ’? increases inwards, the

. y . .o . A
coordinctes (‘y s X s @) forn a left-handcd coordinate system, Also,
-( - - . - 3 .

-'}L!' does not have tie dimensions of a length, co that it is not a

natural coordin..te to work with, t is therefore convenient in the



perturbation theor; to define a new variable s , with the dimensions

of a length, such that surfaces of constant g and constant Y coincide

and such that s increases oulwards, he coordinates (s,Y ,¢) fomm
. ] . -~ .

a right-hinded system, and therefore fjs = - j‘ﬂ . leasons are given

in Appendix IV, section 5, for choosing a particular definition for s

which has the above properties, That definition is used throughout

tl:e main text,



CIIAPTER 3

Meridian circulation

in an atmosphere with a local enexgy transmort ccuation

"Singulavrity is almost invariably a clue,"

Sir A,Conan Doyle, The Adventures of Sherlock Holmes,

1.The equations

In this chapter the meridian circulation velocity field in
the atmosphere of the Roche model describec in Chapter 2 is determined

using the local energy transvort equation for ha‘_ This work has

—®

~

bean published as a short paner in Zeitsclirift fdr Astrophysilz (Smith
1966), 't should be noted that in sections 1 and 2 there is no
restriction on the value of fi., The gencral expressions for the
velocit, would therefore be valid for rapidly rototing stors were it
not for the conclusions of section 4,

The basic equations arc equetions (2,3) to (2,11) of

Chapter 2, rejeated here for convenience,

-Q? = %% + %;fgrzsinzé (3;1)

gred P = p grad” or %%% = p (3;2)
P = %q'p'r (3..'3)

div (py) = O (3.-4)
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- v.grad log (B/p") = - aivD (3.5)
o :
L = ‘X r?’,'\._@ (306)
O X
V= const,
Fj\_ _Eéﬁﬂmrnd'ﬂ (3"7
2 3 up A =T Y !
(da is Stefan's constant; the asterisk is employed in this chapuer

to distinguish it fron the dimensionless variable;, ¢, dofined below,)
In the following formal theory, it is no more difficult to
treat u as variable tlhan it is to tolke w as a constant, In eguation

(3,7), therefore, 1t is tuken to be the Krame:'s opacity

M (3.8)

where Mor © and s arc coastante, The constant b = 6 + 8 + e is
also used,

These equations are not in a convenient form for solution,
The dimecasionless veriables of RGS will be used, with a slight chaage
in notation, “Therc tie notation differs from that of RGS, the

following translotion rules apnlys

!

C'=x, 1’1=V¥', kY =,‘¥* ’ p =%, t=tw-

The dimensionless variables arc defined by:

o
(2a/ N 3

e
Il

(@) =7 W.‘r

D
=
i

il

P k64n4573Lno)(GH)’b+l(m/1%)b+l"e(£f/2)%b!1/6 p =Ap say

~%



= A (GI‘.-IQ_):/S 273 0N

o =
T = (n/®R) ((:;1‘-&.0.)”'3 P
) 2, A ]
v = (1/4n) (€ /oqu)y " 2™ u
' L
and (N = (1/4x) (ﬂl/zaﬁ,{)lf‘ 3‘ .

Using equetion (3,8), and the sccond of equations (3.2), the

equations in dimensionless form are:

o= —ol-, + c?sinze (3..9)

o - 2 (3.10)

p = ot (3:11)

aiv (o*n) = 0 (3.12)

’f = -Lz'%gradc-w (3.13)

o}

%E;gradg-log(p/pﬂ) = - aiv, '} (3.14)
& . 2 (3.15)

d b
Yo Pu(y)
Equation (3,15) is derived from cquation (3_6) with the help of equation

(3,13), h is defined by

n(y) = -;%; Sggmd,'t.@_%, (3.16)

Y = const,

The propertics of the function h cre considered in Appendix II, In
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terms of h,; ecuation (3,13) cen be re-written us:
~t* 1
= - grad Al 1
i IﬂqyJ S ' (3.17)
The subscript o in the above equ.ticns denotes the use of the
dimensionless s>lierical poler coordinates (o‘, Eh.d) . 8o thot,for

examyle,

/2 13
o= (50 3509

gince axical symmetry is being assumed, The subscript wili be dropped
in what follows,

The great mavhematical adventage of this model arises from

S (=}

the decoupling of the structure ecuations from the cquations for the
meridian circulation, The run of temperature und pressure in the
- Ty PR o A Ponnr R ) - ) 2 18) 1 (2 14
otmosphere can be found from eguations (3.9), (3,10_, (3,15} and (3,106),
togethe: with suitable boundar; conditions, without reference to tic

cireulation curxreats, That was done in RGS in the spacial case whexr

the centrifugal forcoc is exuctly ccual to surface gravity at the

‘a

) : e KB | 3y
[ 4

e previous chapter!, The

-7

boundary conditions in this critical config:iration, in which the star

A‘r_ AN i

= v 1
Y lsurface

Y
= 3,277, (Sec RGS and Appendix II,) It will be seen that in fact the

is on the vergs of rototional break-up, are =1 =0 at

theory is not valid for such large values of «,

2, Derivation and discussion of the circuletion currents

The eguations for h, », t and p*‘are such that these functions
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can in practice only be found by numerical integration, Since a

procedure for the numerical solution of the equations has been laid

down in RGS, and since the primary interest in this thesis is in the

circulation currenvs, the functions h, p, t and p* will be supposed to

be knowm functions of ’\’f and the circulation velocity will be found in

+

texms of these known functions, using equations (3,12), (3.14) and

(3.'17).

For this purpose, it is convenient to use the non-~dimensional

form of the orthogenal coordinate system (<, X , 95 ) defined in the

last chapter, In the dimensionless variables ,'\V is defined by

equation (3,9) and X by

'X = %(cos 6 + log tan (6/2)) + OQCOSBB (3018)

The surfaccs ’\2! = constant are showvn in Fig, 5, The ’X-su.rfaces are

orthogonal to them, The meridian circulation velocity u may then be

expressed in temms of its componenis Ty y Yoy perpendicular and

tangential respectively to the surfaces 1{;‘ = constant; i,e,

grad’y grad™

&= Uyigragy] T U fgrady(]

The procedure for finding Uy Uy is as follows:

(1) Find grad log (p/p*Y), which is proportional to grad y,

(2) ¥ina Uy, from equations (3,14) and (3.17),
\3) Find uy from equation (3.12).

First of all,. it is easily shown that

~50-
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- .
grad log (p/p*Y) -1 ; 1 { L. 4t 1’ grad (3,20)

using equations (3,10), (3,11), Hence from ecuations (3,11), (3,14),

(3.17) and (3,19),

o (3.21)

Since \r is known, a further step is possible, TFrom eguation (3.9),

grad¥y = ( - %—r’.‘ + 2¢gin" 8, 2osin 6 cos 6, O)
so that ;gradﬁyf = G(o>, 0)/s-2 (3.22)
3, T & . 2 .'/?. .
wherc G(cr, e) = (1 - 458in%6 + 4o sin e) (3.23)
Also it may be showm that
Vi = 4 (3.24)
Honce finally
. - -t
1) 4o _LdhG |
B¢ Thayen| -
Y - 1 |

This should be compared with the more general formula derived recently
by Hestel (1956),
To find ux , cquation (3,12) mist be solved, The boundary

condition Uy =0 when 0 =0 is used, A fommal solution is casily

i

obtained in the cooxdirate system (ﬂﬁ‘,jy ,g5 ), in which equation
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(3.12) can bhe written

{ 6 sin 61 2 sin 6 .
224 o - ) 26
MU \ P u"‘w’;' j grad X} J y)( { st lg'radnp (3. )

Uy is obtained from this by integrating with respect to’)ﬂ over a

surface 4p’= constant, On such a surface

X X
n —‘/ —_— A———— e ———
a ) o= p de + e~ de
Y 4 A
= A - i
0 d’ly g do + 376 a6

wnd so, eliminaving de~ and using equations (3.9), (3,18), (3.23)

ey i_cos 6 ¢( &, 8)
A ZSnldi—Za:ulﬂ

de on ’4r= constant

Of course, on qy's constant ¥ is a function of ﬂ¥‘and 0 given by

equation (3,9), wiilch cannot be explicitly solved for o, Hence
wg (W, (5, 0), ©) =

B
3cos*xG( e (¥,x),x) ‘h |o*uy gBine | (3.27)
2sinx(1=2:3(y,x )sirfk) L‘“ﬂ maXmJ ('\{, x) .
Jdg ’ '

This expression, albeit purely formal, shows the same
l/density dependence @8 is shown in the expression (3,25) for‘uﬂ',
The boundary conditions n =1t = 0 at the surface (discussed in Chapter
5) require p O.also at the surface (see the solution in RGS) and
so the circulation velocity has & singularity at the surface, As
explained in Chapter 1, this feature is not due to thc use of a Roche

notential (cf, Mestel 1966), However, neither can it be attributed

to the use of a perturbation theory, as might have been thought

4

-52~



because of the results of Bpik (1951) and Baker and Kippenhelmn (1959).
The singularity implics that one of the physical assumptions made is
invalid;

The two least plausible assumptions made are
(l) the transfer of radiation can be described by a "local"™ equation

+

(2) inertial and viscous e.fects are negligible,

The first assumption is implicit in the use of equation (3_7)
for :}, wadich 2s’ & Hloeadl' equation ia the sense that’??(g) depends
only on the local values of p, ¥ and grad T at the point r, As noted
in the last chapter, it would not really be surprising if this
equation, the standard one in the tlhieory of stelliar interiors, were
inadequate in the atmosphere of a star, vhere the radictive Sransier
is usually described by the™on-local’ equations (2,12) to (2,15).

It will be shown in Chapter 4 that the non-local tleory does remove
the surface singulaxity,

However, assumption (2) could also be wrong, Initially, it
would sesm likely that the velocities in a non-local theory would
differ from the prescnt velocities only in a fairly thin layer near
the surface of the star, perhaps of the order of a scale height in
thickness, Thus at, say, one optical depth below the surface the

velocities might be expected to be almost as greagnas on the local

'

¥

Hote that this is a very pessimistic viewpoint, The fact, proved in

Chapter 6, that the non-local theory predicts larger velocities at one
optical depth than thce local theory could herdly have been anticipated

from the results so far,



In that case it is possible that viscous and inertial forces
could be 1mportant near the urface. To test this, the expressions
(3, 25) (3.27) will be used to dorive an order of magnitude estlmate
for the circulation velocities in terms of the rotation speed, It
will be seen that assumption (2) may still be made if the rotation

speed is suificiently slow,

3,.0rder of magnitude of the velocities at thc base of the atmosphere

Provisionally, slow rotation is assumed, This is defined
by a = a(Req)<<.l, where a(r) =‘fffg/GH = ratio of centrifugal force
to gravity in the cquatorial planc, agd Req is the equatorial radius
of the rotating star (cf, Appendix V)., The following values arc
taken for the constants involved:

T

8.3y 10! crg/deg/mole

G =6,7x10" dyne cmz/gm2

Y = 5/3
The values taken for the physical perameters are those given in
Chapter 2 (p, 32), assuming & BO star, o corrcetion for rotation
has been applicd to R or L, since the calculation below is only very
approximete, For simplicity an elecbran-gcatuerxnv opacity is
assumed (as in RGS), so that (cf, equation (3 8)) e = l, s = - 3,

b=4cnd uns= n o~ 0,38 for purc hydrogen (Allen 1963),

The density and temperature at unit optical depth (% = 1)
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are required, Tor slow rotation, it is epproximately true that

-

Friadil Y (3.28)
Also %-;:U“-: - on (3.29)

by definition, Assuming ga- C-?I’JI/R2 = constant, and that P = O at the

surface ("; = O)

Thus oz
P g wI T

The temperature at T = 1 is near cnough To' Hence
Tooqt T, ~ 2.2x 10% % (3.30)
Gilm 1 : -9 3
Prel v s— = ~5,8¢1077 @fem®  (3,31)
HRRT w€R
e

The avkward nart of equation (3.25) is h(ﬁlr), However, in

the case of slow rotation, an cxpansion in « can be used, Since

‘ GII 1 5
'ﬂ = 1+~§a(r) sin ©

i,
the surface value of “~+'=; is

g PREINCY &
o~ - —3 =) >
( Gh .Q.) R 1

Thus, since ’L‘iS >""lfs ’ h(’\‘f) can be expandec in powers of 1/’\lf . It

nay be showm (ef, Appendix II) that



n(y) = 1 - %wf %%JO% (3.32)
& 18,01 3.33
so that ?i‘w;} =€‘-ﬁ+ ‘q; + O(\ -.“’j ( )

Ihe expansion for h('gb ) may be used in a series solution of

equations (3, 10) and (3, 15) for small oC , t may be shown that
4 L1 45 zero order in « (3.34)
dl?’ 4

For large~y , ¢ may be written (fron(3.9) as

1 1 .2 )
o == +=sin 06 + ,,.
\lf[ W3 j
, 2 2 '
so that G(O' 0)= 1 -W psin’0 + .,

These expansions nay ve used in equation (3,25) to find an
expansion for Uy e The term in 1//\(/2 vanishes identically, leaving

tie leading temn

g = 2—;—%;7,%* (1 - 2 sin®) (3.35)

tote that the 6-dependence is just Pz(cos e) wnere P2 is the Legendre
polynonial of order 2,
Ury ay now be found by using the above expansions, and the

fact that

3 2,
|graax| = 2225 a(, o).

Bquation (3.27) yields an expansion for Uy vhose leading term is

Uy -%‘Lg%}‘ sin 26 (3.36)

To find numerical estimates, these expressions must be put in



dimensional form, Thus, for example,

. 1 11./3 s
. ___;_:__(.n. ;5121 A2 (1-ibme)
v T 4m o \2CH) A 9 w5 p(@in)h 2

Using "\\JN ¥ (2/06) and o - .0- &L , M, this gives

~ L. 11 o o0) &°
e 9 GE o (1 + 3 cos 20) &
(3.37)
Similarly V’)( ~ -9-§- "-\Lfﬁ% 7 sin 26 62
6 2
or Ve ~ 2,2%x 10 (1 + 3 cos 20) & cm/sec-l>
(3.38)
Vo 2,2,{106 T sin 20 a2 ciy/sec J

ugsing the values given above, (See also Appendix VII, section 4.)
It ie immediately apvarent that v@, and vx ars comparable
in size, which contradicts the usual approximation to the continuity

equation

found by assuming that A changes appreciably in a scale height H
while PV hes a scale of variation of R, | In fact, since vﬁoﬁ 1/p,
PYp is roughly constant in the atmosphere and the usual approximation
is not validg, The approxirmation to the continuity equation will he
found to be valid in the non-local theory, where the 1/ p dependence
does not appear,v

The next point to note is that the velocity is proportiocnal

2

to a to lowest order, Since a first ordex perturbation theory

predicts non-zero velocity temms (see, for example, Mestel 1965,
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equation (21)), this result is at first rather surprising, The
expansion has shown that first order terms appear, but cancel
identically (the term in 1/4/2 vanishes). This cancellation turns out
to be a consequence of the use of the Roche pocential, If the Roche
potential isg used in the derivation of lMestel's equation (21) instead
of a general gravitational potential, t.:e first order velocity is
indeed zero, This result throws doubt on the use of the Roche
potential, since there will, in general, be non-zero first order temms,
However, for uniform rotation these will be finite, or at worst
nroportional to p‘/p (Sweet 1950; llestel 1965), and so the second order
terms will dominate near the surface; The equations (3,37) may
thereforc be expected to give the right order of magnitude for th
velocities in the surface layers,

It will be seon later that the vanishing of the first order
terms is in part due to the use of a local theory, The non-local
theory yields non-vanishing first order terms even with a Roche
potential,

The third point to be noticed is the sign of the velocity
components, Since Uy is defined by equation (3,19) to be in the
direction of grad\V , and since \p increases inwards, the sign for Yoy
given by equation (3,37) means that the circulation rises at the
equator end sinks at the poles, contrary to the usual first order
result (Baker and Kippenhalm 1959; Sweet 1950), This circulation
reversal in the outer layexs was first mentioﬁgd by gpik (1951) and

has recently been rediscussed by Mestel (1966) , Since v., is
¥ Ta Eaglish - An 2ect ac \Q“Q"I on Thaliem , vnmabioms Ao Qo fha nowedon (G"‘YM WS,
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positive throughout, and X increases with €, the stream lines are as
shown in Fig, 6, whioh agrees
n ' o
with Opik's result, This is
a rather odd result, which
sugrests that the polar

regions continually lose mass,

The non-local theory will

shiow that this material in

fuct returns to the poles

Pig, 6, Local theory strcam lines, very near the surface,

4 Range of velidity of the tlieory
The equations (3,38) can now be used to test the validity of
assumption (2) of scction 2, Consider first the full steady-state

equation of motion (without the nagnetic forces):

grad P = grad @+ %\)grad aiv ¥V - \Jeurlcurl V (3.39)

(L)Y + i

where V = v + 18t is the general velocity of the stellar material

v = velocity in a meridicn plane
% = unit toroidal vector
and V = rodictive (lcinematic) viscosity
* 4
160 17 .
== (see, e,g,, Cowling 1953)
1oupc

Since v changes ranidly near the surfuce, while @ does not,

the meridian~nlane compyonent of equation (3,39) gives:
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2
inertial tems LYJ
H

|aa
]

V = viscous tems~ y \:_3
H2
centrifugal terms ~ oK

I

C

scale height = € 1 = 4,5x1080m,

where H =
An approximation for ¥V may be found as follows

Teking T~T_,

3
o1 T 1 B
3 »w p H 5 2
p3
' L
for slow rotation, and (using

S A

equation (3,34) and the definitions of t and Y/ )

&) ~1 Ze
dr 4 H
Hence vV~ & i --I’-- ~ 9,6,;108 cm2/sec (3,40)
5 2 32
pc” nR
For , v ‘ y the root mean square value of v is taken, that i
8 : \
ix| =\/%g(v?2 +v.%) sin 6 e ‘
o (3.41)
—~— .
- /%Ei-é@-fﬁ% o ~ 1.0 & |
> fo 4 -3
Then, using - i- = =~ 1,510
R
(3.42)

I o -
o 40 d3
Inertial temms are therefore negligible comnared with centrifugal
40 L 1, i,e, if

terms if 1
@< 0,3 , (3.43)



(In the author's paper (Smith 1966) slightly cruder estimates were used,
leading to the slightly less stringent result o<< 0,4, The result
is clearly cualitatively unchanged.)

In the same way it may be shown thati

% ~ 7.200°0 @ << 1 for  a << 1,407 , (3.44)

Thus viscous terms can always be ignored, and inertial terms can be
ignored if the rotation is slow enough,

It should be noted that these results mean that the stellar
model used is not accurate for « = 1, the value adopted in RGS, since
in that case inertial temms are some 4C times greater than the centri-
fugal tems, However, the present order-of-magnicude calculation is
itself inaccurate unless « <L 1, so thal one is entitled to say only
that the inertial and centrifugal terms are likely to be com»paradle
near the surface for a« =1 ond that eguation (3;2) can no longer be
assumed to be valid for such ra) idly rotating stars,

Portunately, few stars are observed to rotate as fast as that,
Allen (1963) quotes a ﬁean value for o of about 10—l for BO stars, so
that to a reasonable approximation the above theory applies to the more
slowly rotating B stars, This conclusion might aprear to be in
disagreenent with the results of Waller (1965b), whose figures suggest
thaot all BO stars are rotating on the verge of break-un, | However,
the present author's computations, on the same data, do not support
Walker's result,

Thoever is right, there is still no doubt that somc stars
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exizt for which assumotion (2) is valid, Attention from now on will
be concentrated on such stars, for which only assumption (1) need be

discarded, The detzils of the non-local theory wiich replaces that

assumption will be given in Chanters 4 to 6,

However, it is appropriate to mention here a snag which will
appear again later in more formidaoble guaise,  lestel lias pointed out
(1965) that strong horizontal sheoring can sometimes give rise to
turbulence, the energy in the flow being sufficient to upset the
othermrise stable density stratification, This is on example of the
Kelvin-Helmnoltz instability, and a sufficient criterion for gtability

, e . £V’
is thoat the Richardson nunber

. gl /o)

(av/ax)?
should be greater then about 1/4, (See, e,8,y Chandrasekhar 1961,)
If the flow did become turbulent, the effective viscosity of the gus
would be much larger than the rodiative value and viscous effects might
not be negligible,

The resgults cuoted here are derived in Appendices IV and VII,

where the notution used is fully expleained, o lowest order (& << 1)

JR = gb(-pé/po) ‘ (3;45)
(dve/dr)g

’GStrictly speaking, this exsression for the Richardson number applies
only in en incompressible fiuid, However, the expression applicable
in a compressible fluid differs from it only by « foctor of order unity

- see Caoster 6, goction 5,
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where g = LLgeN
o R2 y2
y = 8/R (s =r to lowest order, and y = 1 at the boundary)

10
O Q =~

31/ 1.
Ry 1-y,

. - 7 8
and EY_Q) - 3204 é,L" %%QXTJ’ sin2e é’ 8y + 3y

ar 3 -8 (1-y)3 (1-y)*

From these results

( 111.)3 1 Ll"'.Y)'? |
J, = (3,45)
R 1472 w2eSr? sin®20¢t y17(8-55)2

Assuming the values above for G, M, n,€,, R end L, and teking y = 1

except in the term (1~y)7,

' 7

2 4
R sin 26€”
256
The critical value of J, is 1/4. J, = 1/4 if (1-y)T= 8205 4 o
. R X R 34,1056
taking sin“26~1/2 and € = 1077, if
1-y = 1,1,‘-10‘3 (3.47)

Since Jp >1/4 for 1-y greater than this value, insiability is only
possible in a very thin layer near the surface, Jp < 1/4 only in a
boundary layer of thickness

5= 1.1x10° R =1.3H (3.48)
that is, about one scale height or about one optical depth, Thus
ingtability is only possible (and the criterion does not require

instability for Jp < 1/4) in the region where it has already besn
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suggested that the local theory does not apply, It is therefore
logically permissible to ignore for the present the possibility of a
turbulent surface layer, in the hope that the non-local theory will
show thit the velocity gradient is small enough that turbulence can
never appear, That is not in fact so, and the consequences will be

discusged in Chapier 7,



lon-local radiative transfer in a non-spherical atmosphere,

CHAPTER 4

"I do attend here on the general,,."

W, Shakespeare, Otliello, Act III Be, iv,

1,The eguation of transfer

The non~local theoxry differs from the local theory

principally in its representation of the transfer of radiation

through the atn:osphere,

The local equation for the radiative flux,

3 - -

~

is repnlaced by the set of equations

where

3

~

(

. 3
FLIN S S
3 % p grad T ,

r}S,?‘X’"ﬂV)

f]; = SI cos A de

I sin A cos n dw

\

gI sin A sin n dw

at

S = - wp(z-n)
4

p - €L
n

(4;1)

(4.2)

(4;3)

(4.4)

(4.'5)

These equations have already been presented, in Chapter 2, where the

notation was explained,

The definition of s is given in Appendix IV,
< L
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Bquation (4;2) merely defines I}s’%ﬁ( end P‘}(ﬁ to be the comnonents of
?f" in the directions of grad s, grad X and gradgﬁ respectively,
Bquation (4,3) relates (i to the intensity of radiation I, which
satisfies the differential equation (4,4). Eouation (4,5) identifies
B as the integrated Planck function,

Since the temperature T appears in equation (4.5), this set
of equations must, of course, be solved in conjunction with the usual
structure equations, It is, however, useful to re2strict attention
for the moment to equations (4;2) to (4;5) and in particular te
consider equation (4,4), the "equation of transfer", in more detail,

The intensity I is a function of direction as well as of
position, a fact which complicates the general expression for dI/dl,
the derivative of I in the direction of I, Consider first the simnle
case of a non-rotating, spherically syummetric star, It is customary
in that case to take the wtmogphere ag stratified in plane narallel
layers, ©Since the functions describing the stiucture of the
atmogphere depend only on r, the distance from the centre of the star,
end since the radius of curvature of the atmosphere is large compared
with the mean free path of a photon, this is a very good approximation

(see Chanter 5), In that case
dr = cosAal (4.6)

where /\ is the angle between the radius vector and the direction dl
(Fig, 7). Since in this simple situation I must depend only on r and

A, anda ) is constant along dl, equstion (4,4) then reduces
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ﬁ/‘\
z
(r,d1)
dr ng/’,dl
T
Fig 7., See text,
immediately to
_@‘I“ _ ~
cosA - I-3 , )
r (4.7
where T = -S np dr!

Here 7 is the "optical depth", The lower limit of integration is
conventionally cihosen to make T = 0 at the'surface" of the star (see
Chapter 5),

If the mean free path of a photon is not small compared to
the stellar radius, as will be the case for stors with extended
envelopes (see, e.8.;s 1i%Crea 1928, Cliapnan 1966), the plane parallel

arproximation no longer holds, and egcuation (4,6) nust be supplemented

Fig. 8, See teut,
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by the equation

ra\ = -sinA a (4.8)

where the negative sign erises hecause /\ cecreases along 4l (Pig. 8).

In that caze, equetion (4,2) becones

H

- np (I - B) Mé)

.
7

1 gin A D
cos/\ar - T

(ef, R,T, p.23), This form of the trunsfer equation is velid at any
level in the atmosphere of ¢ non-rotating staxn,

In é rotating star, further generalizution is necessary,

Since the symmetry is axial, retiner than spherical, I will depend on

the co-latitude 6 as well as on r, altiough it will still be independent
of gé. Also, one angle is no loager sufficient to soHecify the direction
a1, I is thexrefore in gencral a function of the four varizbles r, 6,

/\ and_F{, where }{ measures the direction of I with respect to a
neridian plane, 45 = constant (see Fig:, 9 - 11, which will be

exnlained shortly).

However, bearing in mind the results of Anpendix IV, these
variables are not the nost suitable for a rotating star, t is better
to choose as position coordinates the variaebles s, ) defined in
Chapter 2 and S)pendix IV aud as anguler variables the angles A, n
defined in Chapter 2 and by Tigs, 9 - 11, The resulting equation will

then be in the correct fom for perturbation theory to be used in its

* . . . L .
In this conitext, H is the Greek letier "canital eta't, It should not
b o5

be confused with H, the scale height,
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solution,
If the correct form for equation (4,4) is to be obtained, it

is necessary to find

ar, . . _elds 2Lax I dr 9L dn |
XM S S AR YA @ Tona - (4.10)

To find the coefficients of the derivatives of I is a laborious
procedure, which is most easily carried out in two stages, These are:
(i) the calculation of dr/dl, 4e/dal, aN/dl and dH/dl in terms of

r, 0, N ’ H . Thig will give the gencral form of the transfer equation

in spherical nolar coordinates,

n
2
r

AR

L
}\“"‘...‘ 2
D "'l‘\( -~

4, -0 ( arbi"craxj;f)

Pig, 9. GSee text,




(ii) using the relations between (s,’,'(, A, n) end (z,0,A ,H ), and
using the results of stage (i), the calculstion of ds/dl, dj(/dl, dh/dl
and dn/dl in tems of s,%, A and n,

However, before procceding to this calcuiation it is
necessary to explain Figs, 7 - 11 in some detail, Fig, 9 shows
portions of the svheres r = constant, r+dr = constant, The point
P (r+dr, o6+d6) is obtained from the point O (r, 6) by moving a

cistonce dl in the direction of I, i,e, in the direction dl specified

Fig 10, BSee text,

L4

X Q04

60B

i it
x =3

OR=0N=0L=1

fi?—surface

% = constant

¢ (surface T = constant)
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by A\ andaH or by A and n.- The angles A and A are the angles
between the direction 4l and.the normals at O to the surfaces of
constant r and constant 'g’ (or s) respectively, The angles M and n
are, respectively, the angles beuireen the meridian (‘P = constant
through O and the projection of ¢l on to the surfaces of constant r and
constant '\If (o:c s) through O, The nommal directions to these surfaces
are shown by the arrows labelled r, n respectively, x + dr, n denote
the normal directions to the corresponding surfaces through P,

The angle between the nommals to the surfaces of constant "J;-f

and constant r through O is denoted by FAR It is defined by

(4.'11)

By’

cos A =1,

where : denotes a wnit vector, By definition

__graal .
lgrad il (4.12)
2 = (1,0,0) in spherical polars

fa )

Hence: r’b o
1l - e'ﬁgsin 6
A
cos LN = = 5

Py
(1 - 2€%,sin0 +& %Gsinze)

(4:13)

It is not possible to express this exactly as an explicit function of
s a.nd?(,, However, AN may be found from this equation, to any
desired order in & , as a function of (r, g) or of (s,x), For
nresent purposes, A is simply regarded as a known function and it is
not explicivly evaluated,

Fig, 10 shows the region near O in more detail, to clarify
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the definition of n, and is largely self-explanatory, The points R,
N and L are the points of intersection of a unit sphere centred on O
with the directions r, n, dl respectively, The resulting spherical
triangle, which is used to find relations between A, n,A,H and & y 18

shown in more detail in Tig, 11,

L
Fip;_. 11, See text,
It is now possible to calculate % .
Staze (i)
It is clear from Fig,l 9 that
dr = dl (4.'14)
or, in components,
ar = al cos /\ l
r do = d1 sin A cos H (4,15)

r sin 6 dP = a1 sinf\sin H

il

Since dA is negesive, it follows from inspection of triangle CCP and

from the definition of /\ thst
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ocP = - aA

Thus, since OD is a great circle
-rdaAN =0D = dl sin/A . (4,16)

Triangle ODE is a spherical triangle on the sphere r = const, in which,
taking r as the unit of measurement, OE = 6, OD = 6 + do, EOD = 180°~ H
and ODE = H + dH.. Since dH, d6 are infinitesimal, the application of
the sine formula of spherical trigonometry (Smart 1944) to these four

elements gives:
dHcosH sin 6 = - d6 cos 0 sin K (4,.17)
This result may also be put in the more easily visualizable form
aH = - d¢' cos 6 (4;18)
by making use of equation (4,.15),. Ceometrically, this means that
DT = - aM

This is a plausible, but not immediately obvious, result , although it
is clear that aH must ve negative, An alternative derivation of
equations (4,16) ang (4,18) is given in Appendix IX,

In swmary, the results of stage (1) are:

ar /a1 = cos M\

d6 /a1 = sin/NcosH /r '
(4.19)

aN/a1 = - sin/V/r

dH/a1 = - sin/\sinHeot o/r
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Stage (ii)

This stage divides naturally into two parts - the
transformation of the coordinates (/\,%4), and the transformation of
‘the coordinates (r, ). It will be seen that the second part cannot
be completed in practice,

For the first purt, the formulae of spherical trigonometry
(sec e,g. Smert 1944) can be applied to triangle NRL (Fig, 11) to
give relations between A, n, A ,H and A, In principlel only two
formulee are needed to give (A,pl) in tems of (A, n,D), In

nractice, The cosine, sine and 4-parts formulae are &ll useful,

Some tedious algebra then leads to the expressions:

% = cosh cos{) + sinA smAcosn B
ae 1 . .
FEla [-» cosh #ind) + sinA cosAcos-lﬂ
%’f = -%l-'— sinh cos A + cosA sinf\ cosn (4,20)
+ sinA sinAsi_nE-n cotd + r cosn -g'—f} (
%—T% = %[(—sin?\. cos L\ + cosh sin/\cosn) sinn cotd
_osimn sind o o .3119]

ginA

These exwreszions are unsatisfactory for several reasons,
Firstly, they still contain r end 6, and indeed tie first two
expressions are not yet the ones required, Turther, the angle A
aprears explicitly, This would not be expected in a generel

expression in the ccordinates (s, X, A, n) since, if the expression
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were obtainable directly, the angle A necd never appear, It only

appears here because equations (4.20) have becn obvained via spherical

polar coordinates,

The first two expressions may be renlaced by ds/dl and
1Y o i J

aX/al1 by writing

ds Ds dr ‘s 46

95 Vs dr a5 49 |
g

al  OYr dl e 4l

aX _dxar  aXae
al  wral e dl

(4;21)

The relation between the (r, 8, C,/:/) and (S,X,gé) components of s gives

It

or

95 _ ool Vsl 1

%% =~ T sin&l?s] J
Similerly %: sin AT
-%%': T cosAlYX, J

These equations, together with cquations (4,20) , combine to give:

%’} = cosk‘?s' l
X |
%—%l = sinA cosn ‘V%‘ j

(4;22)

(4;23)

(4:24)

These expressions are entirely sctisfactory, in that neither A nor

the coordinates (r, 6) anpear explicitly, Also, the second expression

is entirely independent of which solution of equation (2,21) is taken

for ></.



Unfortunately, the methods used to obtain these expressions

are not avnplicable to % or -glll, Since r, 6 (and therefore D) are

known only as implicit functions of s and 7 g 1t seems to be impossible
in practice to find '&')f and E—;} s functions of A, n, S,X,‘Sf’ s} and \VXI
only, Of course it must be possible in »rinciple, but the complexity
of the functional relations between s,X, r, 0 andA is such that the
a.utno:?@ad to admit defeat, albeit reluctantly, It is, therefore, not
yet possgible to give the general form of the transfer equation in the
coordinates (s, , A, -n),

The difficulty is, of course, purely formal, If all
functions are expanded in powers of € J it is easy to find % and %
in terms of s,X; M and n to any order, As the transfer equation is
only susceptible to solution by perturbation methods, the failure to
find a general form for it is not a serious defect of the theoxry,

To summarize, the main results of this section are that the

equation of transfer in a rotating star may be written in genersal ag

N R sinAsinMcote DI

" re——
-

i 2
cos A\ %'If . 8inAcosH 2I

r 36 r O\ r AH '
(4.25)
= - up(r, 6)(I(z, &5 A, #) - Bz, e))
in spherical polar coordinates, or as
Lo ‘\T_a : : - A 5\1‘ IA T’aI
co ol 1 g e dn o1
‘cosA ‘Vsl + sink cosm\.x Sta™Ta 3 ,
. (4,26)
= ~ %p(s)(I(s,X5 A, m) = B(s))
in the more appropriate coordinate system (s,')(,,QS), % and -%l are
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not obtainable in practice in terms of s, ), Pgs‘,liﬁ‘L A znd n only,
but expressions for them in terms of r, €, A and n are given by

equation (4,20),

2,A formal expression for v
B

Although it is not feasible to solve equation (4,25) or
equation (4,26) exactly for I, it is possible to use these equations
to obtain a fomal expression for Vo the component of v in the
direction of {s.

It is known (R,T,p, 11) that, if the transfer equation is
integrated over all directions dl, an expression for diV':} is
obtained, This result is only obvious in Cartesian coordinates, but
it may be verified by integrating equation (4.25) over all solid angles
about tlic normal to the sphere r = const, The use of this equation
rather than equation (4,26) is justified by the fact that the result
is independent of any wparticular coordinate system,

Since the element of solid angle is

46y = sinNaAaW (4.27)
the integral is
-
AT s
N\ (4.2%) sinftaNaH
:é A

which gives, after some manipulation,

aiv ?} = ~ 4mp(J - B) (4,28)
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where

. | .
T = \ I dew, (4.29)

This result could also be obtained directly from energy considerations,
P

If this expression for div <j is substituted in cquation (2,93, which

may be written in the fomm

v, Vel w25 & 108 (7/p7) = - aiv '}, (4.30)

it is eesy to show (cf, Chapter 3) that

- 4ou{J - B) | ’
VS - Ws\ Y ,0_2&_@.2 _ -@ . (4.31)
Y - 1nmds ds
It is imnediately clear that vy (= - viE) docs not have a l/density

dependence, Since the only difference betwecn this formal theory and

A

that of the previous chapter lies in the choice of expression for 7,
this result substantiates the claim that the surface singularity in the
local theory is due simply to the inadequacy of a local transfer
equation near the surface;

Of course, from the form of the continuity equation.vac has
a term proportional to (ﬁyp)vs, However, it wil' be seen in Chapter
6 that p goes to zero exponentially as the surface is approached, so
that ﬁ/p is finite in the non-local theory; The only other question
is whether any factor still present in equation (4,31) could give rise
to a singularity; However, n, J and B must be finite everywhere on
physical grounds and it may;be shown that the denominator vanishes

only for (é,rB/RJ =1, 6= n/2), the set of conditions which corresponds
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to the balence of centrifugel force and gravity at the equator of a
star rotating on the verge of break-up, The bracket containing the
temperature grediers is clways positive by vivtue of assumption (viii)
of Chapter 2 that the atmosphere is stable against convection,

These consideraticns show conclusively that the velocity in
& non-locel theory is finite at the surface, However, it is not zero,
and preliminary estimaces of the size of vy and Vo, ot the surface are
clorming,  There is no reason, a priori, for assuming that the
difference J=B is significantly smaller than either J or B, although
J and B may be expected to be comvarcble in size, In any case, an
upper 1imit for v, may be obtained by assuaing in the first instance

that
J-Bx B = d’Ti . (4..32)
It follows at once from Appendix V that
lSZs‘ =1 (4;33)

Since the expression involving the temperature gradient never vanishes,

it is reasonable in the first instance to assume

Y War ook a¥ , o |
Y-lm ds ~ ds  ds 2 (4.34)

R

It then follows, using the values wuoted in Chapter 3, that

v, lO9cm/sec ‘15 .
. (4,35)

H

~ R 12
v, T RV, 10" “cm/sec J
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These results zgree with Oseki (1966) in predicting speeds greater
than those on the local theoxry by a factor of oxrder % (AflOOO) or more,
If these estimates are borne out by more carzful analysis, then the
theory is clearly invzlid snd some further mechonism for damping the
ges notions muss be invoked, Such a mecheanism will bHe digcussed in
Chaptexr 7,

Yowever, it is not possible to say at this stage whether
further anulysis will confirm i':ese figures or not, The difference
J-B could be much less thsn B, It is at least a first order quantity
(in €), and could even be second order by analogy with the local theory
(Chapter 3), The following analysis is therefore necessary, ceven
Chough it does confirm the above esvimases, Besides, there is no
doubt that a non-local itreatment is necessary, if not sufficient, for
a proper cescription of the atmosphere and itv ig usceful to consider
the simplest non-local treatment first before becomin,; involved in the

complications due to viscous and/or inertial effects,

3 HMethods of solution of the trunsfer equation

In the expression (4,31) for Vs J, B and T are unlown
functions, In order to find these functions, and so to eva}uate vy
more exactly, it is necessary to solve the transfer equation,

It is well known to be difficult to solve the trunsfer
equation, even in the simple formm of eguation (4,7}. In that case,
the only one studied exhaustively, an exact solution is known for B(’Eﬁ

and for I(O,p) (OKp&KL - p = cosA\), tie emergent intensity at~y = O,
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but no exact solution for I(?:,u) is lmown for general’E'; This
¢iscoureges any attemnt at finding an exact solution for I in the
present case; particularly cs even the solution for I(O,u) in the
simple case invelves sophisticated comnlex varisble theory, What is
required is a orocedure wiich is known to give a satisfactory
approximate solution for eguation (4,7) and vwhich ccin be extended to
he solution of equation (4,25) or eguation (4,26).

A great variety of methods has been developed to give
aproximate solutionz for equation (4,73, Of the methods described
by Kourganoff(l952>, the most extensively used secm to be those
based directly on the transfer equation, They are the moment method
(a generalization of the Eddington approximations), the spherical
nharmenic method cad the niethod of discretve ordinates, The mexrits
and defects of these three methods, which Krook (1955) has shown to
be formally equivalent, have been thoroug ly discussed in the livertture,
This seemed a joo0d reason for choosing one of them for use in the
nresent problen,

In the spherical hamonic method, which is due to Iddington
(1930, p,105), the intensity I(“ﬁ,u) is represented by a finite series
of Legendre polynomials Pj(u) wnosc coefficients Ajeto are detemined
by the transfer equation, In this simple form of the method,
difficulties arise due to the impossibility of representing by a finite
sum of continuous functions the function I(O, u), wnich is discontinuous

at p =20 fourganoff (1952 P. 101) mentions an elaboration of the

method, due to Yvon, which partially removes this difficulty, The
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difficulty may be entirely removed by a modification of Yvon's method,
due to Wilson and Sen (1963) whe also give a useful discussion of
the nethod,

e method of discreibe oxdinates was fivst suggested by
Schuster (1905) and Schwvarzsciiild (1906) and was generalized by
Wick (1943) and by Chandrasekhar (R,T,), who has used the method

xtensivly, he radiation field is rspresented by 2n discrete
gtreams of rcdiation, each associated with a particular value of W,
Bo= (i = I 1y, vee I ny B_;= - ui). Integrals can then be
approximated by finite sums, using weights in the same way as in
formulae for numerical quadrature, in excellent critical account of
the method has been given by Kourganoff (1952), who discusses the
relative merits of various quadrature foxmulae, Kourganoff prefers
the Newton-Cotes formulae to the Gaussian formulae used by
Chandrasekhar, but Sykes (1951) has shown that the Gauss method can be
modified to give better results than either the standard Gauss or the
liewton-Cotes fommulae, Carlson (1955) has further refined the method
of discrete ordinates in an application to the numerical solution of
neutron diffusion problems and CGrant (1963) has applied Carlson's
"Sn—approximaiion" to the radiative transfer case,

However, the various modifications in tliese two methods of
solution are &ll cdesigned for more accurate solution of the problem,
In the present case, accuracy was not, in the first instance, the
primary concexn, It éeemed more important to find an approximate

analytical expression for the velocity field which would show
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gualitatively how the velocity varied near tie surface and which would
also confimm or reject the numerical estimates nmade in the last
section, Only if these numerical estimates turned out to be a grossg
overestimation would there be any noint in improving the accuracy of
the solution, 'he main concern, thercfore, was to find the method
which was most satisfactory in its lowest approximation,

Of the two methods discussed so far, the method of dlsﬂrete
ordinates has the advantage that Chandrasclhar has shown (R, p,364
et seq‘) how it may be extended from plane-parallel geometry to
spherical geomctry; he has also cstimated the error of the first
approximation, However, in neither ol the above methods is there any
obvious way of extension to tiie non-spherical case, vhere I depends
also onf)ﬂ and n,

In a first attempt to solve the non-spherical case, the
QXL,n) dependence of I was represented by a Fourier series for the
n-dependence and & series of Legendre polynomials for the

7(J-dependence, Application of the symmetry conditions

(e, Xshy n) = I(sy X5 Ay = m) 1 (4.36)
(s, 2032 n) = I(sy = Y5 2, 7 - n) J |

enabled I to be writien a
J,_) =0

He s M) = 2 T (e A 2, (cosX) oo an (4.37)

U T\’y.u
where m + n is even,

This ap ,roach has several difficulties, Tirst of all, cos?{ and ‘the
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second symmetry condition are meaningful only if 1({= 0 to lowest
order (cf; equation (2;23)), This immediately necessitates the use
of a perturbation theory, which is also required to enable the trangfer
equation to be writien in the cooriinates (s,}i; A, n), This is
unfortunate acsthetically, but the equation is so complicated that
perturbation methods arc inevitably necessary in any case, More
seriously, it is not at all clear where to truncate the expression
(4.37), and problems of consistency arisc unless the equations for the
Inm are derived in general before truncation, This naturally
involves much heavy algcbra, and makes the method a cumbersome one,
Nonetheless, tie resulting equations for the Inm(s; A) can be solved
by the metiiod of discrecte ordinates, in principle to any degree of
approximation, and this method would be the obvious cheice if no more
elegant onec existed;

However, no account has yet been given of the moment method
(Krook 1955) which is, in a certain sense, a gencralization of the
Eddington approximations; Consider the sequence of moment functions
(k = 0,1,2,...)

(41 ) : .
n(t) = %\ WI(p ) a . (4,38)
-1

A corresponding sequence of moment equations can be obtained by
integrating equation {(4,7) over angle; The first 2n of these
equations involve the 2n+l moments of orders 0,1,,.,.,,2n, To obtain

a closed set of equations, it is necessary to express the 2nth moment

in terms of the lower moments, Xrook (1955) showsa that the appropriate

-84~



relation is equivalent to the relation
rn+1 '
X 1'P2n(u) I(Y,u) du = O (4.39)

In the first approximation (n=1), tlis necduces to
K(v) = $300) (4.40)

in the more familiar notation in which J = Mo’ H = Ml and X = Mz,
The Dddington approximations are just equation (4.40) and the

boundary condition
s} = 2m(0) |, (4.41)

Krook's morc general mathod renlaces the factor 2 in equation (4.41)
by /3, but Eddington's boundary condition will be retained in what
follows since it makes the detailed working simpler and that is a more
important cansideration in the first instance then accuracy, which is
not in any case particularly good in the first aphroximation,

This method has the great advantage that there is an obvious
generalization of the first approxi:ation to the case of a noan-
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