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Chapter 1

INTRODUCTION

1.1. The problem of discrimination

The problem of discrimination, also known as the problem of
classification or allocation, may be described in the following
general terms. Previous work has separated a number of ind ividual
experimental units (individuéls)'into k claéses or categories,
labelled 1, ..., k, these being n, individuals in class 1
(i =1, vos, k). On each of the n =n; + ..o + 1 individuals the
same m characteristics have been measured. The characteristics may
be qualitative, such as the presence or absence of a headache or
quantitative3 such as diastolic blood pressure. The data available are

therefore nxm—dimensional vectors, Eij being the vector associated

.th

with the j  individual in the‘ith class (j =1, «u¢, n.; 1= 1, cie,

For easy reference we shall denote the complete set of data by

z = Liij tj=1, eee, n.; i=1, +e., k}. Almost invariably there
is appreciable variability in the vectors, even within the vectors
of a single class. A new unclassified individual with vector
observation x is now under scrutiny., The problem of discrimination

is : to which of the classes 1, ..., k does this individual

belong?
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Fig. la gives a graphical illustration of a typical set z of
data for the case of two-dimensicnal vectors. More generally the
picture is one of k clusters of points in an m-dimensional record

or sample space, with possible overlaps of the clusters. A -

discriminant procedure can then be defined as a partition of this

m~d imensional record §pace into k regions.Al. ey Ak with the
classification rule : if x ¢ Ai classify the unit as from class
i(i=1, ..., k). See Fig. 1b.

There are two requircments for a satisfactory solutioé of such
a problem. First, we must be able to postulate a suitable model for
the generation of the data. This model must be probabilistic in
order to explain the variability in the data. Secondly, we must be
able to define what 1is meant by good discrimination; this will
involve consideration of the consequences of misclassification of
various kinds. The particular type of model and the criterion of
good discrimination mist depen& on the particular practical situation
under investigation.

The problem of discrimination can be formally set out as one of
mltiple hypothesis testing, the k hypotheses involved being:
x arises from the distribﬁtibn associated with the i*" class
(i=1, ..., k). The theory of testing many hypotheses is, however,
one of the areas of statistics where there is no general consensus of
opinion and so there appears to be no great advantage in such a
formulation., It seems better to exploit whatever particular aspects

the discrimination problem holds,
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1.2, Examples of fields of application

(i) Taxonomy. The first effective statistical treatment of
discrimination was presented by Fisher (1936) in a problem of
botanical taxonomy, This was the problem of discriminating between

the two plants Iris setosa and Iris versicolor, on the basis of

four measurements: sepal width, sepal length, petal width and

.

petal length. Similar taxonomic problems occur in other branches
of sc&ence. Another familiar early study is one in anthropology by
Martin (1936); this involves an investigation of a series of

Egyptian mandibles, the vector of characteristics being 6-dimensional,

(ii) Medical diagnosis. One of the more promising recent applications

of statistical discriminant analysis and one which seems likely

to grow in imporfance, is that of diagnosis of diseases; see

Bailex (1965), Boyle (1963), Ledley and Lusted (1962), Radhakrishna
(1964), and Warner (1961), Here the observation vector x describes
the state (signs, symptoms, results of clinical trials, medical
history, etc.) of a patient as yet undiagnosed, and that data z are

the set of such state vectors recorded in the past for diagnosed

patients within a relevant class of diseases.
The difficulties in this field of application are obvious and

.considerable. The state vector required for careful diagnosis

appears in most cases to be of high dimension, The problem can be/...,



L&EH-

/be complicated by the cost and time of observing some of the
elements of the vector. It is certainly a problem which when
eventually properly formulated will involve the use of large
automatic computers for its operation ; sece Baron (1965), Boyie (1965)

(iii) Locating faults, An interesting and less familiar application

is in the location of a fault.in a machine. Here we have a number
of sources of fault which give rise to various symptoms. The
problem 1s to try to locate the fault efficiently on the basis

of the symptom. vector x presénted, and the past history z of

located faults.

1.3, Outline of the thesis

Chapter 2 deals with so-called classical discrimiration

procedures. The main idea underlying these is the attempt to

construct some linear combination of the elements of the state

vector to form a linear discriminant. The magnitude of this

discriminant for the stafe vector x of the new individual is then
used as a means of allocating the individual to his class. The

theory is entirely based on the assumption of multivariate normal
distrilbutions for tﬁe description of the variability of the data.

In Chapter 3 we discuss Bayesian discrimination procedures.

For the operation of these procedures some a priori information
about the relative plausibilities of the various classes is
required. This prior information is subsequently comverted, after
the observation of X, into a posterior appraisal of the various

classes. The allocation is based on this posterior appraisal, /[....s+:
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/appraisal, possibly taking into account the relative serioﬁsness
of the various types of misclassification. In the literature on
Bayesian discrimination the data z are usually assumed to be
extensive and this assumption is used to make plausible the use of
known distributions in the basic Bayesian:model. At the end of
Chapter 3 we suggest how this assumption might be relaxed.

In the next two chapters procedures of more recent origin are

discussed. In Chapter 4 we consider two procedures - an order

statistic procedure and a comvex-hull procedure, both recently

presented by Kendall (1965). The subject of Chapter 5 is a review
of methods suggested by Sebestyen (1962), in particular a distance

or similarity index procedure and a non-linear procedure.

Where possible, the procedures are illustrated by examples and

in Chapter 6 we present some general comments and conclusions.
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Chapter 2

CLASSICAL DISCRININATION PROCIDURES

2,1, Introduction

The first discrimination procedure was prescnted by
Fisher (1936). This was for two classes and based on the
assumption of multivariate normality., The main ideas underlying
his procedure were as follows. If two clusters of points in
m-d imensional space are roughly ellipsoidal in shape then an
appropriate way to attempt to sepafate them is by means of a
hyperplane. The equation of such a hyperplane involves a linear
combination 8’§ of the clements of the state vector x of an
iﬁdividual. This combination will be normall& distributed whether
the individual is class 1 or class 2. The choice of B is at our
disposal. Each B gives two one—dimensionil normal distributions
for B'g, one on a class 1 assumption and one on a class 2 assumption,
Now thie amount of separation of two one-dimensional normal
distribufions N(Al,oz) and N(Az, 62) increases as lll-xzvﬁ
increases, as shown in Fig. 2a, b and ¢. It thercfore seens

Vd
plausible to take as appropriate values of 8 in the discriminant £ x

that 8 which maximises

|8 X, - sz.l
Y8’ s B)

where x are the means of the sets of class 1 and class 2

1.* *2.

vectors, ard S is the pooled sample variance-covariance matrix.



Fig. 2b. where o is smaller

Fig. 2c. where lkz-lll is smaller
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In this chapter we first present Fisher's procedure, and
then various other versions of it based on likelilood-ratio

arguments by Wald (1944), Smith (1945) and Anderson (1957).

2.2, Notation
We make the assumptions of multivariate normality and of

independence of the state vectors. Thus our model is the following.

The state vectors in z = {§ij tji=1, «.u, n;3 i=1, 2}
are independent,
G =1, eeu, nl) being N(ul, ),

23 (3 =1, cuv, n2) being N(uz,z ),
Note that there is an assumption of equality of variance-covariance

ratrices, We write

1
1
X, = = I x;. ,
1 ny =1 1j
na.
X - L 22 X
L J 3 ’
2 n, j= 2]
1 k ni /
s = I I (xij'-x )( i3 %)

for the usual estimates of My My and T ,
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2,3, Fisher's approach

If x is N(u, ) then 8,x is N(B/x, B,E B) and the mean

. . . . / .
and variance of the distribution of B x arecstimated by

(1) B’xl. and B’S B if x is from class 1 ,
(i1i) B’xz_ and B/S B - 1if x 1s from class 2.
The use of B x as a discriminant gives an estimated "measure of

separgbility” of these two distributions :

|87 ¢x,, = x,)] //(8” s 8).

The choice of B to maximize this ''measure of separability" is given

by,
7/
2 i Ol L
I8 /(8”5 8)

ice. |
( - ,S - / - S = 0
Xl. xz.) B B 8 (xl. XZ') B = .

/
By noting that B’S B/,B(xl.- X2-> is a factor constant for all the
unknown coefficients, we see that the required coefficients are

proportional to the solutions of the equations.
(x),= %) = S&.

Thus Fisher's discrimination rule chooses a constant ¢ and then

allocates x to class 1 if

/-1
(xl.- xz.) S X >c 3

otherwise x is allocated to class 2.
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2.4, Wald's contribution

Wald's contribution to the problem of discrimination was
essentially to point out that a 1ikelihood—ratio criterion leads,
for the case of known normal distributions, to the use of a lineér
discriminant,

The likelihood-ratio criterion is the following, If
the density functions associated with class 1 and 2 are Pl(x) and
pz(x)\then the likelihood-ratio is defined as

Ax) = pl(x)/pz(X) R
and the rule of classification is : allocate x to class 1 if this
ratio is greater than a given number c; otherwise allocate it to

class 2,Welch (1939). For normal density functions,

P GO = L exp (=} Geu)' B Geu)} (=1, 2)

in, |}
(2m) |z]

so that we are interested in an equality such as

Potem

exp {- (x—ul)'z-l(x—ul)}
A(x) = . > ¢
exp (= 4 (xp) 5 (xmuy))

N

Since the logarithmic function is a monotonic increasing

function an equivalent inequality can be obtained in terms of

logarithnm as
: ’ -1 /I -1 /
-3 {(x-ul) z (x-ul) - (x-uz) z (x-uz)} >logc=c

. =l ) S ’
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The first term of the above inequality is a linear
function of the components of the observation vector; it is a
linear discriminant. The secondAterm is, of course, a known
constant and can be absorbed into the constant on the right-hand
side of the inequality to givg prqcedures'of the following

form : if Y

/-1 '
x 2y muy) >,

a constant, allocate to class 1 ; otherwise allocated to

- class 2.

Note that the data z are not relevant to this case since

the assumption is that the class distributions are known.
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2.5, Smith's likelihood-ratio approach

The difficulty of Wald's analysis of the probleﬁ of
discrimination is that we seldom know the distributions associated
with the two classes. Smith's solution to this difficulty was to
assume that ﬁhe class variabilities are described by classes of

density functions

{p;(x[o;) : o;€ 0.} (i=1,2)
of known (in his treatment, normal) forms, to obtain from the data

z, estimates.él(z) and 52(2) of the unknown parameters 6, and 6,

and to apply the Vald criterion with
Alx, z) = pl(xlel(z)> /pz(x]ez(z))
For the case where Eij (13=1, ..., n. ; i=1,2)

are independent N(ui, ) (i1 =1, 2) we have

exp E— %(x-xl_ )I st (x-xl.):" |

Ax, 2) = - > ¢
exp [ - 4ex, ) s"1(x~x2)]
/1 ’ -1 ’
i.e. -4 (x—xl.) S (x—xl_) -'(x—xz.) S (x—xz') > log c = ¢
. / "1 _ 1 - ! "'1 ‘ _ /
i.e. x S (x1. X2°) 3 (Xl- XZ-) S (X1- xz.) > c

Since the second term is constant, we can abscrb it in the right

hand side with the constant ¢/ . Then the rule of discrimination is:
. s -1 " ]

allocate x to class 1 1f x S (x1.~x2.) > c otherwise allocate

it to class 2., Thus Smith's approach gives exactly the sane
PP g y

linear discriminant as Fisher's original approach,
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Smith also considers the case where the varilance—covariance

matrices could be different, that is where Eij (G=1, «vs, ni)

are independent N(ui, Zi) (1 = 1, 2). Writing S1 and 82 for

the estimators of L. € I, so that

1 2
1 : / .
Si T — Z(Xij—xi-)(xijuxi-) (i=1, 2)
n. -1
i
we have
: ) : / -1 .
\ ema[-%(rx ) S, (x-x i] 7
| 1. 1 1,
Ax, 2) = 7 > ¢
S o-le.
exp[ 3(x=x, ) 83* (x xz.)j
leading to '
/7 -1 -1 / -1 -1 4
ix (S1 - 52 x - 2x (x2_82 “1-51 ) >c .

<]

Here the rule of discrimination is : allocate x to class 1 if

x satisfies the above inequality: otherwise allocate to class 2.

|
2.6. Anderson's likelihood-ratio criterion

Smith had overcome the limitations of Wald's assumption of
known class distributions by substituting estimates for unknown
parameters in the Wald likelihood-ratio criterion, One point made
by Anderson (1957) is that Smith's substitution is in a sense
incomplete in that he absorbs the second term (xl.— xz.)l S-l(xl_— xz_)
of the inequality into the constant of the inequality. Anderson
suggests that it may be more reasonable to carry the substitution
into this second term and so use a discrimination procedure

as follows ; if -1

!
/ o _ -1 _
x S (xl' XZ-) 3 (xl. xz.) S (xl. xz.) >c
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allogate to class 1 ; otherwise allocate to class 2.

But Anderson goes further and shows that it is possible to
apply a gencralised likelihood-ratio criterion to the probler, the
likelihood function being formed for the complete set of daté,

z and x, lore specifically, if the two classes of density functions

are '
{Pi (Tlei) : ei_e @i} (i=1, 2

the generalised-likelihood ratio is defined as

2 %
i
sup pl(xlel) in 54 pi(xij|ei)
0,%x B
1 2
CA(x,z) =
2 nl
9, 9,

A discrimination procedure is then of the form : 1if A(x,z) > ¢
“allocate to class 1; otherwise allocate to class 2,

For the multivaiate normal case this means that he considers
as being independent N(ul , Z) and Xoqs sers Xoo

1 2
as being independent N(uz,ZI) as class 1 hypothesis against the

'.‘{, Xll, sy Xln

class 2 hypothesis that X,,,; eeey X are drawn from N(p, ,I) and
11 1n1 1 _

Xy Xy1p weey X, - are drawvn fron N(pz, L) with His My and ¥

2

unspecified.



LGEC L e 4

Under the class 1 hypothesis the maximum lilkelihood estimates

of “1’ u2 and ¥ are
i—l — (nlxll + X) ﬁ _ x
= — ’ = . ?
11 n o+ 1 12 2
1
1 "1 : ~ ! 3
1T GiBr Gy wpp) Ooym owgy) + Gl ) Gy
n, +n, +1
iy A N
gk Goym up) Ogym vp)) -
Since
nl . R / - R /
jil(xlj-' ull)(xlj- “11) + (x - ull)(x - “11)

/ /
= - - -1 -1 - 3 (% =y
= I Orpym ) Gogmxg ) oy G m iy ) Gy igg) + Gem gD “15
4 nj /
=T (xlj- xl_)(xlj— xl.) + -n—l-:—l— (x - xlo)(x - xl.)

We can write il as

-~ 1 nl ,
I, = (x-x J(x=-x ) + H ,
1 n,+ n.+ 1 n1+1_ , 1 1

2 n /
Bo= gy Ogym %0 Gg5m %0

where

Under the assumption of the class 2 hypothesis we find that the

maximum likelihood estimates of the parameters are

a S
L e U Y. ny+ 1
A 1 oy /
and I = e———— (x-xz.)(x-—x,') + H
2 n,+ n.+ 1 n.+ 1 T .




The likelihood ratio criterion A(x, z) is then given

by
- nz /
2/(n1+n2+1) l£2| I H + *ﬂz;i- (x - xz.)(x - Xz.) I
A(x, 2) = = — : y
2 1
1z, | 1+ o (x = %) Mx = =x) |
- 1 + 72 (x - x )H-l(y-x )/
\ Iz, | n,+1 2¢ ) 2¢
» . 2 2 .
il.e, —— = 7/ .
n : -
2:ll 1+——l-(x'-x)H1(x-x)
le” 1.
n,+1

1



2,7. Illustration

To illustrate these different methods we give this example
(Kemta11l (1957)] .

A group of 25 normal and 25 psychotic individuals were given
certain tests, and for each irdividual a size and shape variable

x and y were determined., The results are shown in the following table,

Normals Psychotics lormals Psychotics

X y X y X y X y
22 6 24 38 13 13 3 12
20 14 19 36 20 14 10 o1
23 9 11 43 19 13 22 | 22
23 1 6 60 20 11 11 30
17 8 9 32 15 17 6 30
24 9 10 17 20 7 20 01
23 13 3 17 23 6 20 43
13 8 15 56 23 23 15 43
22 16 14 43 .1 25 4 ] 53
19 18 20 o 25 ) 10 43
20 17 8 46 21 12 13 19
20 31 20 62 23 7 12 4
21 9 14 36
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Normals . Psychotics
llean of x ' %= 20.8 | x,,=12.8
lean of y ¥1.= 12.32 ‘ Yo" 3C.4
Variance of x 6,92 ."36.75
Covaiance - 5,27 _- 13,92
Variance of y 40, 39 287,92
Correlation - 0.3 : 0.14

I"e can sce from the last table that tlie correlation 1s not

[

s

gnificant but the variances are siguificant%diffcreut. So it

seems that a quadratic discriminant function will be better than
a linecar one,

(i) Fisher's technique

To apply Fisher's linear discriminant we have to assume that
the variances amd covariances are the same, so it is nccessary to
get a conmon value for the two classes. The most natural one te
take is Fisher's variance within groups, which is simply the

veizhted mean of the variances for normals and psycuotics, tiwe

weights being the nunber of degrees of frecdom,



Lagts 40

24 x G.O92 + 24 = 36,75

Coriron Variance of x = = 21,33

43
. 24 x =5.,27 + 242 13,72

Common covar iance = = 4,33

181
. . 24 x 40,89 + 24 x 287.02

Cormrmon Variance of v = - : > = 164, 4

LG
© 4

0

!y The linear discrimirant function 1

Alx, v) = 5x - 2v - 36,
By applying this linear function we found that A is positive

for all the norwals qivirg a zcro ernirical error of nisclassification

=]

of normals, and negative for all but 4 of psychotics giving a
167 ewpirical error of misclassifying psychotics.

(ii) Srith's techuique

By using Smith's method, we get the quadratic discrirminant

function

"
- 23 v = G
Ax, y) = = ) + 2
2 5

By applying this function we found that A(x, y) is nesative

- 15

all but 2 of the norrals giving an crror of &7 and positive for

all but 2 of the psychotics giving an error of &7,

-
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(iii) Anderson's technicmue

By applying Andcerson's method to this exarple, vhere

0.06  =0.001

—
jog
I
-

-0,NCL 0.006

x4
]

(20, 12.32)

\ x = (12.¢ 3G.4)

}cr

Ve found thatx;ll the normalsthe ratio is greater than one
giving zero error, while it is less than one for all psychotics

except 4 giving 1067 error, Ve notice that the same persons wlho
o

A

were misclassified by Fisher's method were misclassified by

this nethod. So this technique gives for this example the
\ : '
sane result as Fisher's discriminant function.
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Chapter 3

BAYESIAII DISCRIIIFATION PROCEDURLS

3.1. Introduction

The pattern cf the development of Bayesian discriminant
procedures is very similar to that of classical or frequentist
discrimination procedures from Wald to Anderson - first;-the
assu@ption of known class distributions, secondly the substitution
of estimated paramncter values within the procedure developed
for the first case, and then a full Bayesian analysis,

We first recall the result in conditional probability
theory, cormonly lnown as Bayes's theorem. If a class of density
functions {p(-le) . B¢ 8} on a record space X form tliec prossible
descr%ptions of an experiment and if a density function w(8)
can be assuned to express the gsses;mcnt of the uncertainty alout
the parameter prior to experimentation, then the assessment
postericr to the obsecrvation of the record x in the experinent
is given by the density function w(8|x), where

relwy - 2&l0) w1 e
p (x)

where, of course,

p(x) = f n(x]6) m(e) de (xe X
9



3.2, Case of lnown class distributions

On the assurmption of known class distributions the
data z are irrelevant, and the parametric space m'can be identified
with the set I = {1, 2, ..., k} , the sct of class labels.
We supposc that thc ith class distrilution has known denéity
function p(+{i) on X and that thc a priori probability that an
indiﬂidual is from class 1 is w(i)., If x is the observed state
vecto; of the individual awvaiting piassification, then the

posterior probability that the individual is in the ith class

is, by T"(ilx)
where n(ilx) “(i)P(XLi)
’ \ p(x)

3.2.1. Bayesian discriminant functiou‘éirnbaun (1960), Bailey (1965))-

We can define a discrimination procedure in terms of a

I

partition { Als sees Ak} of the record set X in the following way.

Let A. = [ x

; : w(i]x) = max 7(G|x)}

jel

and define the discriminant function Gﬂ : X1

by

Gﬂ(x) = i (xEAi) (1=1, «oe, k).
In words, we assign x to the class for which the posterior
probability m(i|x), or equivalently (i) ﬁ(xli), is largest.

Note that we have explicitly shown in the notation the dependence

of the discriminant function and hence the procedure on n ,
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3.2.2, Hisclassification probabilities

Probabilities of misclassification can be of two tyées
(1) conditional and (ii) unconditional.

(i) The probability that ar individual of class 1 is
nisclassified as of class j is a conditional probability; we
denote it by U Gli. }

T

(i1) The probability that an individual (whose ciass is
assumed selected by the prior prcbability structure) is
nisclassified in some way is an unconditional probability; we

denote it by q; .
T

These misclassification probabilities can be cvaluated
A}

in terms of the class density functions.

a5 G =I p(x[i) dx ,
w A,
i
k
q, = I w@) T aq. (i)

6‘“ i=1 J+l sﬂ'
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3.2,3. Admissibility of 6“.

We say 6“ is admissille if there is no other &8 such

L

that q(S(in)(qG (jli) fa every jand i and i ¢ j .
%

The Bayesian discrim:nant 'function Gﬂwhich maximizes
the quantity w(i) p(x|i) is tle same as the one which minimizes
the probability of misclassification Qg

‘ 6,” which minimizes q, is adm}r_ssible for, if not, there
exist!s another discriminant fu:c'tion having none of its error-
probabilities larger, and one or tﬁore smaller than the
g (Gli)'s of 61r in O But this would give a smaller value
tc::“q‘S , thus contradiczing the fact that 6“ minimizes g
Thus gﬂ is admissible, "

We have seen that when the p(x|i) are known'density
functions we can find a number of admissible Bayesian discriminant
functions 5" in terms of the relative magnitude of the quantities
n(i) p(x|i); each arbitrary choice of the hypothetical probabilities
7{1) defines onesuch function.

In a given classification problem it will be of interest
to consider. for possible use at least several different such

functions 6" and to compare them on the basis of their respective

‘sets of erfor-rprobabilities ds (jli).
. T
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The first probles which mustrbe met in using these
method s in practice is the choice of one or several sets of
hypothetical probabiliticsv‘n(i) to use in defining the first
Bayesian discriminant function to be examined. Unfortunately
there are no general rules available which give very useful
quantitative information te¢ govern this choice, except for
the case where a priori estimates are available, However, mch
qualitative information becomes available as to the directions
in which the = (i)'s shoulc be varied to get desired modif ications
of successive discriminant rules considered.

Investigations of robustness are usually advisable in
most statistical applicaticns.. In this context such an
investigation would take the following line., Construct the
(Ai) corresponding to the suggested m and then ask: 1Is there
some subset of the set {w(i) : =(i) >0, g 7(i) = 1}

i
of all possible priors which leads to the same (Ai)'

The basic concept here is the property of admissibility
of each of the discriminant functions obtained. Also a useful
fact is that if a given set of w(i)'s gives error-probabilities
which include too small a probability of correct classification
for individuals from a certain class i, then, by increasing only

the correspording n(i), and decreasing some or all of the /.eeuvesrs



rage 4o

/the other w(i)'s one will generate a new disciminant function
with smaller probabilities of error of each kind possible for

individuals from the given class,

3.3. Generalised Bayesian Procedure, (Birnbaum (19601).

The Bayesian procedure discussed up to this point is
a simple Bayesian procedure. Sometimes the érroerrobabilities
found by this simple procedure are unsatisfactory. In this case
we consider some generalised Bayesian procedure. The basic
method for constructing a generalised Bayesian procédure is

as follows,

Let (lji) be a kxk array where b1 = 0 for each i,

<

For every discriminant function 6 we can calculate the weighted

sum of its error-probabilities

l ok ( I
| Vo= § oI o2,.q.Gli).
qe1jel IS

The procedure which ninimizes W for any given array (zji) is a
gencralised Bayesian procedure which is admissible. W is
minimized by the discriminant function which takes for each x
the value j for which

k
W (x) = izl ' p(x]i)

is minimized. Then, knowing the distribution p(x]i) and the /.....+
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/the array (2ji), to ccnstruct the generalised Bayesian
discriminant function ve have to compare for each x the k
quantities Wj(x), as ccntraéted with the k quantities = (i) p(x|i)
required for a simple layesian discrimin;nt function.

It is useful to note that by increasing one zji i+
while leaving the othefs-unchanged tends go rcduce the
cgfresponding s Gli) androf course to incrcase one or more of
other error-probabilities.

While the method is not restrigted to a special class
of distributions (e.g. normal) it does however involve the
assumption that the distributions are known.

Ve note that we do not usually know the distribution in
practical work. Even if the p(x|i)'s are known to be of a given
parametric form we need a large sample in ofder to use the abové
method in anlapproximate way by substituting estimates for parameter
values, If we Qse a small samble in this case the method will
not be very satisfactory since the estimates ﬁill typically be
subject to fairly large sampling error.

It would be possible to apply Bayesian procedure in
the case where the data are not sufficient to allow the assumption

of known distribution. For example, suppose that the distributions

are of known forms, say pl('lel), coes pk(-lek).
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Write 0 = (61, P ek) and Z = (xu, cons xknk) and

6 = 5 ety |
p(z|8) = = m p.(x. 8.)
i=1 v=1 * W1
The parameter space is now I x @ and an assumption about a

prior on this,say =(i, ©) would lead, by a straightforward

application of Bayes's theorem to a posterior evaluation.

n(i,8) pi(x, Bi) p(zle)

n(i, elz, Xx) =
I w(i,e) p,(x[e;) p(z]e)
i
We might then consider evaluating the marginal posterior

densities, say

ﬂ(ilz, X) = jﬁ w(i,6| z, x) d6
8

and choosing the class which gives maximum n(i|z, x).

~d
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llustration

occur i
symptom
history
locatio
p;oblcm

which 1

Machine
fault
at

(1)
(ii)

There are two locations 1 and 2, at which a fault may
n a machine, and there are four mutually exclusive
s which may be displayed when a féult occurs. The previous
of machines of this type has shown proportions of
n x symptoms qombinations as in thé~tab1e“below. The
is to devise a discrimination procedure, which tells us

ocation should be examined first for each given symptom.

Symptom
1 2 3 4
1 0.05 0.16 0.10 0.03
2 0.09 0.13 0.33 0.11

We shall find the following discrimination procedures,
the simple Bayesian discrimination procedure;
the generalised Bayesian discrimination procedures, based
on the following cost structures :
(a) costs of‘inspecting locations 1 and 2 are 1 and 2
respectively,
(b) costs of inspecting locations 1 and 2 are 1 and &

respectively.
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(i) From the table, we have

m(l) = 0.34 m(2) = 0.66 ;
also the table gives p(x, i) (i = 1, 2) on each symptom from
which we can obtain p(x|i) from the formula p(x, i) = p(xli)n(i).
Knowing the p(x|i)'s we can get the posterior

probabilities n(ilx)'s, where

'ﬂ'(ilX) = E(xli)“(i)

p(x)

p(x) = m(p(x[1) + n(2)p(x]2).

The following table shows the posterior probability, one

on each symptomn,

a(1]x) | 7(2]x) Symptom
0.357 0.642 1
0.552 0.448 2
0.232 0.767 3
0. 214 0.785 4

From this table we see that,

r(1]x) < 7(2]x) for the symptom 1
w(l]x) > 7(2|x) won " 2
u(llx) < 7(2]x) "oow " 3
w(l]|x) < w(2]x) v "4

which tells us that for symptoms 1, 3 and 4 location 2 should/.....ses



/should be examined first, for symptom 2 location 1 should be
examined first. |
(ii) If the costs of inspection are a, and a, for 1 and 2
respectively then expected cost of inspecting location 1
first is ‘

a, n(1l|x) + (a1 + az) n(2]|x) ,

and of inspecting location 2 first is

(a; + a,) a(1]x) + a, 7 (2]x)

The following table shcws these values for each symptom

in the two different cases.

Ay

The rule of discrimination is : we examine

the location which has minimum expected cost of inspection,



hatnd = Eaas

Case a

Case b

Expected cost

Expected cost

Expected cost

mxvmon.mm cost

Symptom of inspecting of inspecting of inspecting of inspecting
location 1 first location 2 first location 1 first location 2 first
1 2.283 1.713 3.567 4.351
2. 1.896 2.104 2.792 4,552
3 2,333 1,463 - 4,067 5.228
4 2.569 1.427 4,139 4,210

According to these results we examine location 1 first for the symptom 2 only in

case a, but in case b it is better to examine location 1 for all the symptoms.
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Chapter 4

RECENT DISCRIMIFATION PROCEDURES - THE ORDIR

STATISTIC Aiw CONVLEX TULL PROCEDURLS

4.1, Introduction

Two discriminant procedures recentlyvsuggested by
Kendall (1965) are described in this chapter. The firsﬁ - the order
statistic procedure — has the advantage of being distribution-free
‘but suffers from the handicap that consideration of components of
the state vectors one at a time may miss sonme effective means of
discrimination depending on combinations of components., The second -
the convex hull procedure - consﬁsts of constructing the convex lmll
of each class cluster amnd allocating a new state vector only if it

falls within one and mly one of the convex hulls, It is unfortunately

difficult computationally.

4.2, The order-statistic discrimination procedure.

Consider the case of two classes. We can represent the
ordering of the first components of the set z of state vectors
“as in the diagram below, and we can say that the vectors in class 1
to the left of a; and the vectors in class 2 to the right of b1

are "separated" by this corponent,

First component a b Class Symbol

! ' 1 o
JODRVRNN IFPREIIR
’ _ 2 X
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We can obtain such a separation for each of the components,
Suppose that il,is the component which separates most vectors,

say class 1 having components below a; and class 2 having
' 1
components ahove bi . Kendall sugzests that we now reprocess
1
the vectors unseparated by component i1 , examining what is the

best additional separation by another component, Suppose that it
is i2 , and that for this component the separation is for class 1

components falling above bi ‘and class 2 components falling below
2

a; . The still unseparated vectors are then reprocessed, and
2

the processing continues until a satisfactory separation is obtained.
The discriminant procedure then takes the following form:

(1) If the ilth component is below a; allocate to class 1, if
, . ] .
above bi allocate to class 2; otherwise proceed to (ii),
1 .
(ii) If the izth component is above bi allocate to class 1, if
. 2
below a, allocate to class 2; otherwise proceed to (iii),
) , )
And so on,

4,2,1, Tustration

To illustrate this rmethod consider again problem (2.7) of
classifying individuals as normal or psychotic, based on two

measurements x (size) and y (shape).

The ordering process can be conveniently set out here as

two frequency tables.



idape
Frequency table of x and y for normals and psychotics

X Formals Psychotics y Normals Psychotics
<10 - 10 £6 5 1

11 - 2. 7-10 6 1

12 - 1 11-14 6 1

13 1 1 15-18 6 2

14 - 1 19-22 - 2

15 - 2 23-26 1 -

16 - 2 27-30 - 2

17 1 - 31-34 1 1

18 2 - 35-38 - 3

19 2 1 39-42 - -

20 6 4° 43-46 -

21 2 - 47-over -

22 2 1

23 7 -

24 1 1

25 1 -

el
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We observe that the y—component gives the greater scparation, thcre
being a cormon range O & y < 34 with 35 vectors in it, and one
non-overlapiny range y > 34 with 15 vectors in it and so separated,
For the x-comronent the overlap rance is 13 < x 24, containing
36 vectors, so that only 14 vectors are séparated by x. Thus we
take as our first discriminating variable y with the following first
part of the discrimination rule.
(1) If y 2 35 allocate to psychotic; if y < 35 procecd to
step (ii). |
By doing so we have 35 cases for which y lies in the cormon range.
We nowv take the 35 unseparated vectors and construct a

<

frequency table for them in respect of the x component,

Frequency Table for 35 unseparated vectors.

X Normals Psychotics

12 -
13
14
15
16
17
18
19
20
21
22
23
24

i
I = ==

1
I = 1 =1 11 !

MNP

\'4
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Accprding to this table ve see that there is a common range
13 ¢ x.< 22, 19 cases lying inside this fange. We can thus add
to step (i) the following step:

(ii) If x g 12 allocate to psychotics;.if X 2 23 allocate

to normals; otherwise proceed to step (iii).

Since this step exhausts the components available we add the

final step.

(1iii) No reasonable allocation can be made.

. 4,3, The convex hull discrimination procedure.

Any cluster of points z, = fxll’ seey Xlnl} in
m~dimensional space has a convex hull
. ™M !
C(zl) = {iﬁlai X Foan2 O(1=1, .., nl), iilai = 11,

the smallest comvex set containing all the points. Thus, for the
data of each class cluster we can construct a corresponding convex
hull, 1If z, = {x21, :.., ngz} is the cluster associated with
class 2 then we denote by C(zz) its convex hull, Kendall (1965)
then sucgests the following discrimination procedure for the

case of two classes.

If xe‘C(zl) - C(zz) allocate to class 1, if xéC(zz) - C(zl)
allocate to class 2; otherwise regard the vector as unclassificd
on the information available,
lote that By this procedure x remains unélassificd if it belongs

either to the intersection C(zl)(\C(zz) or to the exterior of

both convex hulls, {C(zl)LIC(zz)}, . Sece Fig. 3, vhere /eeecsares



x class 1, zy

2

Second

component
4

o class 2 , z

» First component

Fig. 3.
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/where the case of two-dimensional vectors is illustrated,
For rore than tvo classes the extension is straightforward,

If x ¢ C(zj) —'i'C(zi) allocate to class j; otherwise regard the
1¥]

vector as unclassifiable, Presurably in the latter case sone
partial classification may be possible; for example, if

x€C(z. YnC(z. ) - .;. .C(z.) then wve night conclude that x is
J]_ 32 1 .}1332

likely to belong to one or other of classes j1 and j2 but not to any

other\class.

In most applications the vectors will be rulti-dimensional
and the main problem is how to deternine, without the possibility of
a graphical representation, whether x belongs to a given convex hull,
Kendall expresscscthis as mathematical prograrming problenm as
follows.
Minimiic, with respect to (ai) gnd subject to aiz,O

|
‘(L =1, «4s, n) and Zai = 1, the sun of the absolute values of the

n.
i
components of ‘Zlai X5 T X If this minirmum is zcro then x € C(31%
1=

We 1llustrate the method by applying it to the norral-psychotic
problemn, Fig. 4 shows the clusters of points for the two classes and
their convex hulls, For this example we see that 12 cases are left
unclassified.,

On comparing the result of the two methods we find that all 12
vectors urclassified by the convex lull procedure are unseparated Lty
the order-statistic procedure, and the 7 further vectors unclassificd
by the order-statistic procedure are in fact classified by the

convex-lmll procedure,
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X psychotics

0 normals

Fig.

4.
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Chapter 5

RECENT DISCRIMINATION PROCEDURES BASED ON DISTANCE

AND SIMILARITY INDICES

5.1. Similarity .

Let z = {xl, cees xn} be a cluster of n points in
m—d imensional séace and x some point in this space. Suppose
that a distance function or ﬁetric d is defined for this space,
The similarity S(x, z) of x and the cluster z is deined as the
mean—square distance between x and the n members of the cluster,

so that

8

n
a®(x, x) (5.1.1)
j=1

S(x, z) =

It is, of course, possible to define similarity indices withﬁut
the use of a distance function (bee, for example Sokal ard
Sneath (193 ) ), but the use of S does provide one convenient
way of ordering boints by their closeness to z.

5.2. Similarity discrimination procedure

Suppose that there are two classes, with given clusters
z, and z, of data. The similarity discrimination procedure, as
defined by Sebestyen (1962), can then be stated in the following way.
" If S(x, zl) < S(x, zz) allocate x to class 1, if

S(x, zz) < S(x, zl) allocate x to class 2. The extension to

more than two classes is obvious : allocate x to class j, where/.....



/where S(x, zj) = m%n s(x, zi).

The metric ; to be used has not been specified., There
will usually be many possible metrics on the space, ard the question
now arises as to how the metric should be chosen.

Clearly any discrimination procedure depends .not only
on the '""mearness’ of x to the’va;iOUS'clu;ters, but also on the:
relative measures of concentration of the clusters. Oné.way of
taki?g account of this aspect is to attempt to choose a metric
whicﬁ in some sense gives small distances between points of the
same class cluster and large distance between points of different
clusters.

To ach%eve this we define the following two measﬁres.

The intra-cluster similarity index A(zl) of cluster 2 is defined

as the mean-square distance between all pairs of points in Zy5
|

so that
Ay = —2 rr a1 (5.2.10)
a ‘%1 ) 1i* *1j et
nl(n1~ 1) 1%3

The inter-or between-cluster similarity index of 2 and z, is

defined as the mean-square distance between all pairs of points,

one from z. and one from Z,, 8O that

1
1

B b

- 2
Qd(zl, zz) = d (xli, xzj) (5.2.2.)
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The objective of "separating” the class clusters while concentrating
the points within clusters is then achieved by choosing a metric
to maximise B(zl, zz) while holding constant A(zI\J zz), the
intra~-cluster index for the two clusters zy énd z, regarded as
one cluster, That is, we try to éhoosé d* so that

Ag(zV 2)) = & " (5.2.3.)
and | —

Bix(z;, 2,) = max {Bd(zl, ;2) : Ad(zIU z2,) = k } (5.2.4,)
Sebestyen modifies this approach in the following way. He first
simplifies the problem by a restriction of the class of possible
metrics to those of the form

dz(x, y) = ? wi; (x° - yv)2 (5.2.5.)

v=1

l\ <
The justification of this choice is considered in 5.3.

5.3. MNon-linear procedures

Sebestyen describes his similarity index approach of $ 5.2.
in terms of linear transformations and Euclidean metrics, He
points out that if the metric is the square root of a positive
definite form then the problem of determining the optimum metric
is equivalent to asking the question : what linear transformation

is such that the transformed clusters have maximum mean square/.eeevses



/square inter—cluster Euclidean distance for given specified
mean square intra-set Euclidean distance.

Consider the linear transformation

y = Wx (5.3.1.)
so "that

y1i® Wxif(l = 1, vas, nl) . y2j= Wij(J = 1, eee, n2) . (5.3.2,)

form the transformed clusters, If Bw(zl, zz) denotes the

mean-square inter-cluster Euclidean distance for the W-transformed

data then
n n 2
1 1 %2 '
Bw (Zl, 32) o .21 ‘51 |I,y1i - yzj 'I (50.3033)
\ 12 1 J
1 / / _ .
= — ? ? (xli— XZj) W W(xlif x2j) (5.3.3b)
1™2 J
m

- wVow, (5.3.3¢c)

/ . th )
where v, [wk1 .o wkm} is the k™ row; of W and

1 Tt /
‘ r I (xli~ xzj)(xli- xzj) (5.3.3d)

nn, i=]1 j=1

has the structure of a variance covariance matrix. In exactly

the same way the mean-square intra-cluster Fuclidean distance can

be expressai in the form /oo'ocnoooloot
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 /form
/7 _
Cw(zl, zz) = I Vkka | (5.3.4.)
where T is again a kind of variance covariance matrix constructed

from z = (zl, zz).

The problem is thus seen to be that of choosing
Y

wk(k =1, eoey M) to maximise I w Vv, subject. to .the condition.
/ ' -
that I w,Tw, = c , a constant, Using the method of Lagrange

k" 'k

multipliers we thus maximise

/ /
I kawk - A(kaka- c)
with respect to Vi (k=1, .e., m) and A. Thederivative

equations for the maximising Gk and A are thus

~ 7 ~
L wTw = ¢ (5.3.6.)

k™ "k .
From (5.3.5.) and (5.3.6.) we have that

Bﬁ(zl’ zz) = XL wkka = Ac - (5.3.7.)

Thus we must take A to be the largest root of |V - AT| =0,

i.e. the largest eigenvalue of T-IV. Then ;1, say may be the

eigenvector corresponding to this largest eigenvalue and
satisfying

/. - '
GlTwl = C, and wk = 0 (k = 2, ey m) ' (5.3'80)
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The fact that

W

justifies Sebestyensépecial form of metric.

This technique of dealing with linear transformations
may be extended to the case of non-linear transformations. The
class of all continuous transformations is too general to yield
a practical solution, and the class considered by Sebestyen is
restricted to polynomial transformations, in the following sense.

(k)

The kth component y of y, the result of transforming x is

given by

\V/
' P
Y(k) - vgl Wk'[;(ki] €5.3.9.)
' the

Thus the matrix W = (j;k;] defines‘lransformation. Again
Sebestyen succeeds in determining a W which gives an optimum

metric in the sense already defined. The computations are naturally
more complex and we do not reproduce the complicated algebra

here.
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5.4. An illustration

The computations involved in the applications of ‘9,5. 2.
and 5.3. are heavy though not prohibitive on én automatic computer.
We illustrate the technique here for another, computationally
simpler version suggeéted by Sebest yen, _This iﬁ effect uses
two metrics, one for measuring distances from 2y the other for

measuring distances from 2z These metrics are selected from the

9°
class (5.2.5.) and are such that the mean-square distance
between vectors of a cluster is minimised subject to the volume
of t:hé cluster being held constant,

Applying this technique to the normals-psychoticé
problem we find

w, = .93, w, = 0,07 for normals

1 2

w, = ,97 , w, = 0,03 for psychotics
1 2
Jor Sor
and that'(all the 25 normals except two S(x, N) < S(x, P) and/all
25 psychotics except 6 S(x, P) < S(x, N). We note that 8 cases
are misclassified by this method, 2 from normals and 6 from

psychotics.
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Chapter 6

GENERAL COMMENTS ON THE DISCRIMINANT PROCEDURE

6.1, General remarks

In this chapter we set out briefly some of the advantages
and disadvantages of the various discrimination procedures we have
discussed. There is certainly no procedure which is generally
applicable. It is possible to envisage for each procedure a
simple practical situation where it will fail. The problem of
statistical discrimination is clearly only at a very early stage of
its development, It could be argued that it remains a difficult
problem because of its multi-dimensional character. For state
véctoré of one, two or three dimensions. it is easy to obtain a
pictorial representation of the clusters of classes and, from the
patterns we see, be guided to sensible discrimination procedures,
For higher dimensional vectors no such picture is available to us
and this prevents us from easily detecting patterns or clusters.
The main hope at the moment for off-setting this human deficiency
seems to lie in the possibility of organising computers to engage

in some sophisticated form of pattern recognition.



6.2, The advantéges and disadvantages of the procedures

(i) Classical procedures. These are wholly based on the

assumption of multivariate normality of the state véctors, and
largely on the assumptior of equality of covariance matrices. The
question of how useful such a procedure is when these assumptions
are not justifiable is Lhe question of robustness. Little work
on robustness has been done in this area, and only conjectures
can be made. The procedure leads to a linear discrimiﬁant, that
"is a division of the state vector space by a hyperplane, or
hyperplanes. It might be conjectured that the procedure would
give reasonable discrimination for most situations where the
clusters are roughly ellipsoidal (see Fig. 5). It does not
follow that any calculations of misclassification probabilities
based on normality assumpti&ns would neceséarily be reliable.
When the cova;;ance matrices are unequal classical
procedures lead to '"quadratic discriminants™. For example with
data of Fig. 5 some curved dividing line would probably be more
reliable than the straight line division because of differing
concentration pattern of the classes. The classical procedure
would probably again give sensible discrimination even although

normality could not be assumed.



Class  Symbol

1 o
2 X
\
T

Fig. 5.



(ii) Bayesian procedures. These depend on the ability

of the experimenter to provide prior information. If this is
available then Bayesian procedures are versatile encugh to deal
with most parametric models. They are very readily applied to
situations where the state vector consists of qualitative
components, Because of the greaterldifficulty of making prior
assessments for distributions of quantitative factors they are
clearfy less attractive in this field.

(iii) Order-statistic procedure. The classical and Bayesian

procedures are both based on assumptions about the parametric
form of the distributions of state vectors. The main attraction
of the order-statistic procedure is that it is distribution-free
and is computationally simple. Its great disadvantage is that it
examinﬁs the components of the state:vecfor one at a time. The
examination of the components of the state vector one at a time

is a mixed blessing., In some situations it will as claimed by
Kendall give some clue about which components are most effective
in discriminating. For example, an application to Fisher's example
(see Table 6.1) of discriminating between Iris setosa and Irs
versicolor, the state vector being of four components, showed that
the classes could be completely discriminated with the use of a
single component petal length or petal width, and the rule of

discriminating is : allocate setosa if petal length less than/........
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/than 2, otherwise allocate to versicolor. But on petal width
allocate to setosa if petal width less than 0.7, otherwise
allocate tg versicolor., We note that in two cases there is no
range of overlaﬁ%ng. But if we consider sepal length getting a
range of overlapgng which is 4,9 < sepal length < 5.8 with 57
vectors in it. And on sepal width the common range 1is
2.3 sepal width g 4.4 with 96 vectors in it. While the
procedure thus gives the appearance of placing the components in
order of discriminatory impoftance it may fail completely even in
a simple case where discrimination can be satisfactorily carried
out in terms of a combination of components., For example, in
Fig. 6 order-statistic procedﬁre gives no discrimination while it
is clear_that the straight line shown separates the two classes
effectively.

The procedure differs from classicél and Bayesian
procedures in that it may leave some state vectors unclassified,

This may well be a more realistic conclusion than that of forcing

a complete classification,

(iv) Convex-hull procedure, The idea underlying this
procedure is attractive but it has a number of serious practical
disadvantages. It involves a considerable computation when the
state vectors are of high dimension, and it cannot be applied to

qualitative components. DMoreover, we can envisage situations/......
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/situations where it will fail completely; see, for example
Fig. 7.

(v) Linear and non-linear transformation and similarity.

For the different ways of defining and measuring similarity it
is left to the investigator to choose the one which is applicable

under the given circumstances, The simplest concept of measuring

similarity mean-square distance was discussed by Sebesteyn,

The success of linear transformation depends on the
choice of the model and the nature of classes to be discriminated.
It gives a good discrimination in the situation where the
frobability densities of classes are unimodal i.e. they possess
only a single hump. The linear transformations operate on one
dimensionél information and ignoring all the other directions.
When the number of classes increase linear transformations give
very poor results and using non-linear transformations yield
good results. The difficulties of these techniqﬁes involve a
complicated calculation and the use of digital computers is

necessary.
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SUMMARY

In.ﬁhis thesis a critical surveyﬂof'techniqueé of statistical
discrimination is undertaken. The problem of statisticaln |
digcrimination arises where previous work has scparated a mumber
of indiv&duals into k distinct_classes, there being available on
eéch:individual a vector of m-measurements. The problem is to
assign a new unclassified individual for which the vector of
mrmeasutements'is'qvailable, to one of the k classes.

Many different techniqﬁesvfor sélving this problem have beeﬁ

" suggested and these are considered in Chapters 2-5'of the thesis.

The idea of classical techniques (Chapter 2) is to find a
liﬁear coﬁbination of the m-measurements and use its‘§alue for
the allocation of the new individual. This idea is derived from
the assuﬁption of normality of the variability of the data for the

different classes. The technique was introduced by Fisher (1936).

“Another technique; called Bayesian discrimination (Chapter 3)
requires séme prior information about the relative frequenci: .
the different classes which, after the observation of the new
individual, can be converted into a posterior information by the
use of Bayes's theorem. The wmain developments of this theory to
 data reqﬁife'knowledga of ﬁhe di#tributions of the different

classes.



Some techniques - order-statistic and convex-hull methods.

(Chapter 4) have ;ecently.been intrcduced by Kcﬁdal} (1965).

. For the fifst method the digcriminatién procedure is built up in
'stages.‘ A first step towards discrimination is taken by
considering ;he.measurements one at a time, and using that
measurement which separat;s into classes the most individuals.
At sx}BseQuer,lt stages, only previously -hncz‘lassified individurals
and uused measurements are considered in the search for the
furtﬁer‘refingment bf-the procedure. The secon& meﬁhod consists

of constrdcting.the convex~hwll of each class and - allocating the

.

new individual if and only if it falls in one of the comvex-tulls,
. Other recent technidues have been introduced by Sebestyen (1962

and are termed similarity irdex proccdures (Chapter 5). The idea

underlyiﬁg this theory is to calculate the similarity of the
individual to eachciasg and allocate it to the claés which is most
similar, Thé concept of measuring similarity ﬁhich is sﬁggested by
Sebestyen is tbe'calculation of the mean-square distance between a
point and a class of points.

Thé main conclusion (Chapter 6) is that there is no geperal
procedure which can be followéd in every situation. The application
- of any technique depenés on the'ﬁature of the practical problem.

The hope of obtaining imptdvedvprccedures seems to lie in the use of
large scale computers to provide in some convenient form a
geometric picture of the high-dimensi&nai data involved in most

practical problems.



