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SUMMARY

Two computer programs, one for interframe collapse and the
bther for overall collapse as influenced by initial imperfections,
have been developed and the results compared with experiments and
with present design codes.

Ve .

A treatment is pregented for the buckling strength analysis of
ring stiffened”cylindéf;/under external hydrostatic pressure and axial
compression. The energy method by Ritz approach is used because of
its adaptability to the solution of complicated buckling forms.
Equations accounting for non-uniform and uniform-lateral pre-buckling
aisplacements are presented in this thesis. The effect of uniform
and non~uniform lateral pre-buckling displacements on collapse pressure
under uniform ekternal pressure is shown by means of numerical examples.
Such effect does not yet appear to have been carried out. Couparison
with classical Von Mises equation for elastic buckling under uniform
external pressure is good for the casé of uniform lateral pre-buckling

displacement."

Factors such as initial shape imperfections due to fabrication,
welding and cold-bending residual stresses of the shell are considered.
The technique used to model such imperfections is solely the author's
original contribution. An approximate method using the secant modulus
is introduced to account for inelastic behaviour. These factors are
considered to be the most important adverse features which distinguish
offshore structural response from that of aerospace structures. The
effect of strain reversal is assumed to be small and negligible. Ideal
elastic perfectly plastic behaviour (with no strain hardening) is assumed

for the material.

Quantitative imperfection studies defining the sensitivity of inter-
frame shell buckling to the form and amplitude of initial distortion and
residual stresses have been carried out. Such studies do not yet appear
to have been carried out. The effects of initial geometrical shape im-
perfections are shown to be most serious with axial compressive load.

This/



This is followed by external pressure and the less sensitive radial
(lateral) pressure loading. A study of the effects of welding residual
stresses on interframe collapse pressure under uniform external pressure
confirms that the compressive welding residual stresses of the shell is
‘detrimental to buckling strength of eylindrical shells. The cold-
bending residual stresses in the shell have negligible effect on the
collapse pressures of the shell. Comparisons are made with the BS5500
deéign code and the’PpV Rq;es for interframe collapse. For overall
collapse compariéon with BS5500 design code is included. Results
obtained by the present theory are also compared with results obtaihed )
by finite difference dynamic relaxation and finite element methods.
Comparisons with experimental data for both interframe and overall
collapse behaviour under uniform exterﬁal pressure demonstrate good

agrgﬁmént with the theory. Sttt Lo S



CHAPTER 1 INTRODUCTION AND AIM

1.1 INTRODUCTION

The use of fabricated/;tiffened and unstiffened cylinders is
a growing phenomenon in/structural engineering. Currently cylinders
of relativelymlarge—digﬁeters are;commonly in use in offshore
structures - pressure hulls of submersibles, components of deep-water .
drilling rigs, étorage tanks and sea-bed installations of various
.kinde and also increasing applications in various other civil

engineering structures.

"« The lastvfew yvears' offshore oil and gas exploration boom,
especially in the North Sea, together with a progressive move. into
deeper and more hostile waters, has created a demand for bigger offshore
platformsleither floating or fixed for exploration and production pur-
poses. This situation has created a lot of problems for the designers.
A clear example of rapid development insufficiently backed up by
research exists today - the intensive design and construction activity
of North Sea o0il platforms. These are, in effect, the second generation
of such structures; the originals were developed for drilling and pro-
duction in the Gulf of Mexico. The latest structures are designed for
deeper water and a generally more hostile environment than those in

America.

For hydrodynamic reasons, elements of the steel structures often
take the form of large cylinders made of relatively thin plating. As
offshore structures bécome larger with the move into deeper waters, it
seems inevitable that there will be a steady progression to an increas-
ingly thin-walled nature in their components. This is especially true
of the supporting legs and jackets which are in effect cylindrical
shells with longitudinal and/ér circumferential stiffeners. Buckling
is the primary form of ductile failure fof thin-walled stéel components
and, for supporting legs, is associated with compressive loading coming
from external hydrostatic pressures and the deadweight of the super-
structure.” This is augmented by bending and torsional effects arising

from/



from wave and wind loads. These loading conditions can be multiple,

and during the launching and subsequent working life of the platform

can occur in various combinations. Each main component of loading is

associated with one or more mode of buckling and it is possible that,

when combinations of loading components occur, the various buckling

modes will interact. It is here that difficulties will arise.

e
Two primary desigg,problems emerge with the use of these cylinders.

On one’hand,athe‘desiaher is faced with an immediate lack of reliable
design guidance. The lack ‘of experimental evidence on probable strength

levels for these cylinders hinders classification societies in their

attempts to provide designers with safe, but relatively economical

cylinder design guidance. On the other hand, there is also a major
lack of knowledge about the behaviour of such cylinders under various
loadings - axial compression, external hydrostatic pressure and longi-

tudinal bending moment.

Many of the design rules to counteract buckling have been derived
from the aerospace industry based on tests of aluminium cylinders with
stiffening fins machined or riveted in place. Much of this work was
carried out during the early 1960s for the design of rocket bodies which
were subsequently proof-tested. Now the rules are being applied to very

much bigger cylinders constructed by welding from high-strength steel.

The difficulty in formulation of offshore design codes is shown

by the fact that, out of the classification societies involved with off-

)(1)*

shore structures, only Det norske Veritas (DNV has so far produced

"a comprehensive set of rules concerning offshore cylindrical structures.

They treat unstiffened cylinders, ring stiffened cylinders, stringer
stiffened cylinders, and ring and stringer stiffened cylinders. Load~-
ings covered include axial ¢ompression, bending, external pressure,
shear, or any combination of these actions. The bases for these rules
are adapted from NASA 'Shell Analysis Manual'(z). They assume similar
types of behaviour as in aero-structures and suggest the use of similar
types of buckling strength curves. This rather free transfer from
aero-space technology leaves many shortcomings which are clearly outlined

in references (3), (4), (5) and (6).

*References listed at back
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Buckling failure of most cylindrical components occurring in
offshore installations takes place inelastically (elasto-plastic), in

a way which depends more or less strongly on imperfections, including

-particularly initial deformations of shell plating, stiffeners and

residual stressés caused by welding and cold-forming. Generally
stiffened cylinders of this type are normally proportioned to fail by

elastic/inelastic interframe buckling of the shell plating with hoop

,/
stresses close to yield level. As yet there is no satisfactory

. -
solution for overall -collapse of stiffened cylinders and so existing

design codés(7'8'9) require high factors of safety against elastic

general instability and against frame tripping, and specify maximum

permissible out-of-circularity to avoid frame yield; These procedures

make no explicit allowance for residual stresses.

- 'Experimental studies of the buckling of ring-stiffened cylinders
under external pressure have shown that collapse of the shell plating
between ring frames is frequently preceded by the yield of shell
naterial. This would indicate that 'inelastic shell buckling may be an
important consideration in the strength design of pressure vessels,
particularly when it is realised that residual welding and cold-bent
stresses often induce inelastic behaviour at pressures well below the

design strength. Such cylinders are likely to lie in the range

35 < R/t < 150 for which buckling occurs inelastically.

In recent years fhe finite element approach has largely super-
ceded the type of elementary approach and several computer packages
are available which are capable of examining instability pfoblems in a
wide variety of geometries, such as thin cylindrical shells, conical
shells and domes. However, because of their generality and size, these
routines are often too costly to use. This much more superior tech-
nique of finite element or finite difference method requires extensive
computer time for development. At the time when this work began the
University of Glasgow had no computer facilities but was sharing the
Newcastle Computer (NUMAC), hence resulting in a bad turn-round for a
job. Bearing this in mind a reasonable method had to be adopted to

suit the facilities available.



1.2 AIM

As a result of the previous considerations, it appears desirable
to concentrate attention on the energy method and to develop a tech-
nique to allow fo the following complications:

a) initial out-of-circularity (initial shape

imperfections)

/’///'

by residual stresses due to welding and cold-

bending
c) inelastic behaviour
d) various boundary conditions

e) under external hydrostatic pressure and

axial compression

The purpose of the present work is to develop an economical
analytical technique to predict the buckling pressures of ring-stiffened
cylinders under external pressure and axial compression. Ring
stiffeners and transverse diaphragms (intermediate deep ring frames)
provide the most effective means of reinforcing cylindrical shell under
external pressure."~ This form of reinforcement is universally used in
the pressure hulls of submarines, submersibles and offshore structures.
Failure of a ring stiffened cylinder under external pressure may occur

in any of the following modes:

i) Shell instability (interframe buckling)

Interframe shell buckling betwéen rings usﬁally occurs when
the shell is stiffened by relatively heavy rings. The shell
wall buckles between the rings, while the rings remain essentially
circular. The buckling pattern is characterised by the formation
of lobes or waves around the circumference. The minimum number
of circumferential buckle waves is equal to two, corresponding
to buckling into an oval shape. For closely spaced cylinders,
the number of circumferential waves is usually much greater than
two. Buckling of cylindrical shells induced by external pressure
can take place in two basic modes, axisymmetric buckling, during
which/ -

| N



which circumferential corrugations develop along the axis

and asymmetric buckling, whereby inward and outward lobes
appear alternatively around the circumference. Buckling
modes involve a number of n 6f circumferential waves which
increaseé as the length reduces. In very short cylinders
(Q/VEE'< 1) buckling occurs in an axisymmetric (n = 0) mode.
Cylinders of such range are not very practicable in engineer-
ing usage. Hence mqgh attention will be on asymmetric

—

buckling mode.

D .

' ii) ' General instability (overall "iristability)

General instability or overall instability refers to
the simultaneous buckling of thé shell and stiffening rings
.causing an o&erall collapse at the critical load. Under
external préssure, the general instability buckle-wave form
is such that the longitudinal half-wave length is normally
equal to the length of the cylinder between bulkheads, and
the minimum number of circumferential waves is equal to two
or more. General instability is strbngly influenced by the
frame-spacing and the geometrical properties of the stiffening
rings and is likely to be sensitive when the rings are light,
The general instability of ring stiffened cylinders can be

divided into two types:

a) the general instability under external pressure
of circular cylindrical shells with evenly
spaced, equal strength ring frames. Non-uniform

frame spacing will not be considered here.

b) the general instability under external pressuré
of circular cylindrical shells of evenly spaced,
equal strength ring frames with heavy intermediate

ring frames.

In most practical cases, however, collapse by general instability
will involve yielding of stiffeners and will be influenced by
out—-of~circularity and residual stresses caused by welding and
possibly cold-bending. Only type (a) will be considered in

this thesis. A good theoretical background for general in-

stability of type (b) can be found in references (10),(11),(12),(13).

\ .
O N
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iii) Local instability of ring stiffeners

In designing the stiffening rings for cylinders, major
attention is usually given to the strength of the ring in its own
plane. There is also a possibility that a ring may trip, that is,
it may buckle or deform laterally. If such deformation became
large, the support furnished by the ring to the cylinder may be

seriously impaired. //Thé reinforcing efficiency of a ring stiffener

DI

increaseéuwiéh each of the following three parameters: Ixo, A_ and e.

-

£

For a given cross-sectional area the most efficient stiffener

'is obtained when most of the stiffener material is contained in a

flange which is connected to the shell by means of a long thin web.

The extent to which this can be done effectively is determined by the
phe;omenon of local instability. A web thch is too thin will buckle

as thin shell and a section which has too little resistance to bending

or twisting out of the plane will develop some form of bending or
torsional instability. The analysis of local instability of ring
stiffeners needs complex numerical technique and is a major subject by
itself. Therefore it will not be pursued here, but some good literature
on the subject can be found in references (14{{ (15), (16) and (17).



CHAPTER 2 REVIEW OF LITERATURE

-

2.1  SHELL INSTABILITY

The problem of the shell instability proved of interest as early

as 1888 when Bryan(ls)

, employing a strain energy approach, obtained
a solution for the bgckl;gglof a thin-walled infinitely long circular
cylindrical shell under uniform external lateral pressure. Later

(19) .

Southwell obtained a solution for the buckling of a short tube,

but his result unfortunately contained an unknown parameter. Then

von Mises(20) made a break-through when he obtained the elastic.buckling
pressure of a thin shell, simply-suppdrted at its edges and subjepted

to gniform externai lateral pressure. Von Mises derived three separate
shell differential equations based on equilibrium of the shell, and by
substituting an assumed deflection configuration into these equations,

he obtained the required solution. Later in 1929 he extended the
solution to include the effect of uniform axial pressure(ZI). But as

in the previous case, he assumed a deflection configuration which allowed
no rotational restraint at the edges. Attempting to verify the second
(22)

Von Mises formula by experiment, Windenburg and Trilling noticed

that for long thin shells, agreement was reasonable, but for shorter
shells there was liftle connection. They concluded that the longer
shells buckled elastically, while the shorter ones collapsed by a yield-
buckling mode. Unfortunately the models of Windenburg and Trilling were
fabricated by rolling and soldering and this introduced much distortion
to many of the models. These initial imperfections would affect the
cylinders, but was not considered by Von Mises.

In 1941 Sturm(23)

carried out a theoretical and experimental in-
~vestigation on the buckling of thin cylindrical shells under lateral
pressure and external pressure. Although he buckled several tubes,

many of these were of little use because they were fabricated by welding
and rolling and suffered considerable distortion. In the theoretical
approach Sturm made many simplifications to his elastic shell equilibrium
equations and these have made the predictions of his solﬁtions too in-

consistent. The possibility of shorter shells buckling inelastically

was/
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was pointed out by Sturm and he suggested that an "effective" modulus,
related to the tangent and secant moduli, should be employed instead
of the elastic modulus. However, this modification does not appear to

solve the problem. -

recognised the inadequacy of the Von Mises approach,
insofar as that only certain buckling forms can be considered, and

using a new strain energy exgxesSion, he obtained the etastic buckling
pressure for a cylindeEalw;hell with its edges fixea. The solution
proved to be even further out with the existing experimental observations

than the Von Mises solution.

A much more recent investigation of shells which buckle in the
inelastic range was presented by Reynolds(zs). The author obtained
two’ inelastic solutions, one based on failure by buckling and the other
failure by yield. The first solution involved the use of the secant
and tangent mﬁduli, and by relating these two functions to the experi-
mental stress intensity. obtained from simple mechanical tests, it was
possible to célculate the inelastic buckling pressures at certain stress
intensities. The other solution employed the Hencky-Von Mises criterion

(26)

for yielding and also the Von Sanden-Gunther stress analysis, and
from these Reynolds obtained an applied pressure-stress intensity
relationship. The plotting of the pressure-stress intensity relation-
ship from these two solutions on the same axis, found the two curves to
intersect at a point, and the pressure at this point was taken as the
inelastic buckling pressure. Both shape imperfections and residual
stresses are ignored. Agreement with observations were shown by the
author to be good. However, it was shown later in (27) that the
Reynolds solution is too inconsistent.

In 1962 Reynolds(zs)

developed a small deflection analysis for

the elastic interbay buckling of ring-stiffened cylindrical shells in
which the influence of the rings on deformations before and during
buckling was considered. Tests were carried out With a machined, ring-
stiffened cylinder subjected to external hydrostatic pressure. The
theory predicted with accuracy the elastic buckling for closely spaced
ring stiffeners, at least where stiffenérs were external. The solutions

predicted much higher buckling pressures when compared with welded models.



One major setback in comparing the relative merits of these
solutions is the lack of experimental work in accurately perfect
machined models. Another missing consideration is the effect of

boundary conditions on the buckling pressure. When small elastic

.stiffening rings bound a shell, there is a possibility that these may

afford only partial constraint to rotation of the edges. Ross(27),

employing the energy method, obtained the following solutions for inter-

frame shell instability:

i) partially fixed edges - .
ii) totally fixed edges
iii) simply supported edges

He represented the pre-buckling stresses by the membrane stresses.

Howékver, comparison with experimental results is too inconsistent.

None of the above authors has ' considered the effect of shape
imperfections (initial out-of-circularity) in their analyses. This
effect and its detrimental influence on cylinders has been pointed out
as early as 1945 by Koiter(zg). Effect of shape imperfections on
buckling of thin cylinders under various loadings has been studied by
many authors(31’ 32, 33, 34, 35, 36, 37, 38). Therefore, any theor-
etical analysis of.-shell instability will be incomplete and irrelevantwith-
out considering the effect of initial out-of-circularity. Many
authors have shown great difficulties in explaining the results of
experimental with theoretical solutions. The theory available or being
developed was for perfect structures, whereas the models employed for

confirmation were imperfect.

2.2 GENERAL INSTABILITY

General instability or overall instability was first pointed out
by Tokugawa(39). He obtained a solution for this mode by a similar
approach to that of Von Mises, but careful examination of his.result
reveals that it is only a combination of a ring buckling formula and a
sheli buckling expression, each taking place separately. This assumption
is incorrect because it does not represent an overall behaviour and no

allowance was made for the number of ring stiffeners nor for the length

of unsupported span.

-
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For several years after Tokugawa's work the ring stiffeners
"were designed by many methods bésed on this approach and it was not

(40, 41, 42) resolved this inad-

until 1950 that Salerno and Levine
equacy. They represented a buckling configuration extending over

the whole shell-frame assemﬁly and.substituting this and its various
derivatives into a strain/eﬁérgy expression, they obtained the buckling
préssugg by minimis%pg‘fﬂe total potential. Salerno and Levine employed

in their expressions items such as extensional strain energy, bending
strain energy, axial and radial potential, and many other terms, but )
unfortunately neglected the fact that the radius of the centre of the
‘frames may be different to the radius of the mid-surface of the shell.
Also, in comparing the buckling pressure, they neglected the pre-
bucfling deformations altogether. Because of this shortcoming and
because of certain errors in their energy expressions, the analysis

is not considered correct.

Kendrick(43' 44, 45)

noticed this and made the simplifying
assumption of uniform lateral and axial contraction prior to buckling.
He assumed simply-supported edges and introduced a 'l-cos' term in the
buckling displacements to allow for the sagging of the shell plating
during buckling. Kendrick found lower buckling pressures than the
solutions of Salerno and Levine. Although his method was simpler than
that of Salerno and Levine, it neglected only trivial terms - shear,
torsion, out-of-the plane bending and twisting of the frames. The
range of application of the simplifying assumption concerning pre-
buckling deformation is very limited and its effect will be pointed out
later in this thesis.

(46)

Nash did not accept Kendrick's view that the shear, torsion,
out-of-the plane bending and twisting of the frames were negligible,
nor did he accept Kendrick's belief that the magnitude of rotational
restraint at the edges has no serious effect on the buckling pressure.
He took all of these into account and found that the difference in the
predicted buckling pressure was indeed significant.

Kaminsky(47) attempted to find out more clearly the difference in

buckling strength for clamped end and hinged end cylinders by comparing

Kendrick's/ -



Kendrick's solution with a clamped ends solution obtained through the
strain energy expressions used by Kendrick. This too was found to have

significant variations.

-

(48)

~~—Reynolds and Blumenberg tested without destroying four
accurately machined models, the edges of these being subjected to
various boundary conditions. The authors found from their observations
thét the boundary cgpditigns of the models had an appreciable effect on
the buckling'préssurefl Their experimental fesults of almost simply-

-

supported edges was in good agreement with the simply-supported edges

solution of Kendrick, part III(45).

There are various assumptions and simplifications in Kendrick's
Par} 11T theory, so comg}ete agreement with test results cannot be

expected.

a) Out-of-plane bending, torsional and warping
terms are omitted when strain energy in the -

ring stiffeners was evaluated

b) Neglected that the radius of the centre of
the frames may be different to the radius of

the mid-surface of the shell

c) The pre-buckling deformations were considered
uniform that the discontinuity effects imposed

by the stiffeners were neglected

This feature has not yet been investigated in the case of general in-
stability. However, it shall be considered in this thesis. Finite
pre-buckling displacements have a profound effect on the bifurcation
load(so). To ignore these displacements, as is done in most instability
analyses, is to invite major errors, usuallf on the unsafe side. It
will be shown later that this effect is serious and detrimental. Most
of the authors mentioned above represented the pre-buckling sﬁresses by

the membrane stresses.

d) The theories available or developed were
for perfect structures, whereas the models
employed for confirmation were imperfect

due to normal processes of fabrication.
\, N
\A‘.
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(49)

In 1962 Roxburgh employed a uniform radial displacement

~and a uniform longitudinal contraction for the pre-buckling deform-

ations, and thus neglecting the sagging of the shell plating between
the frames. This is particularly serious in widely framed éylinders.
Further, a uniform radial displacement does not satisfy the boundary
conditions neither at the frames nor at the bulkheads. On close
examination Roxburgh usgd’only linear terms for shear expression for
the shell plating? ’rzhclusidn of higher order terms in the shear
expression would lower the buckling pressure significantly. . "

(13) (28)

In 1976 Creswell used Reynolds energy terms for the

elastic analysis of overall instability for ring-stiffened cylindrical’
shells. Fourier functions are used to represent the buckling displace-
ments. In the general case, arbitrary frame sizes and spacings, matrix
dimension is 3NfNs, where Ns is the number of frame-spaces and Nf is the
limit to the number of basis functions required to represent the buckling
displacements. This form of represéntation of the buckling displace-
ments resulted in (60 x 60) matrices for a solution which could be
obtained by the present theory requiring only (5 x 5) matrices within
a few per cent of the former. The cost of running such a computer
pfog;am is obviously too expensive for design purposes. The theory
only considered perfect cylinder and only limited comparison weas made(51).
A comparison will be shown later between the present theory and that of

Creswell's. The work of Creswell is more general in the manner that

unequal ring frame spacing is allowed.

There is still no satisfactory inelastic solution for an overall

T

collapse. For a reasonable solution of such kind one w@uld require a huge
computer program by finite element or finite difference technique re-
presenting each individual frame and shell elements throughout the whole
length of the cylinder. Because of this enormous task attention has

been focused on problems of the frame-shell combination failure by

(52) de-

buckling rather than on overall collapse. Smith and Kirkwood
veloped a finite-element computer prograﬁ in which the frame cross--
section (and shell) is subdivided into fibres or layers over its depth

and which allows for the influence of initial deformations and residual

stresses/



stresses to be included. The program considered progressive yielding
and strain reversal and it has been used to examine these effects for

cold-bent and shell deformations.

——

A complete analysis of the buckling of ring stiffened cylinders

would be extremely lengthy since each frame would undergo different

deformations and would go plastic at different pressures. It is
T . . .

necessary to make some sweeping approximations in order to produce a

(53)

practicable solution. Kendrick used an approach to consider the .
behaviour of a stiffener near to the centre of the cylinder length and
to modify a single stiffener analysis so that the following obvious

requirements are satisfied:

- a) The elastic stresses in the stiffener for zero
out-of-roundness are the same as for the ring

stiffened cylinder

b) The elastic buckling pressure should be the same

as for the ring stiffened cylinder

¢). The plastic limit load assumimg perfect circular-
ity should be the same as for the ring-stiffened

cylinder

d) The elastic stresses caused by an initial out-
of-roundness in a pure bucklimg mode should be
the same as for the ring-stiffened cylinder.

He concluded that the collapse load of a ring
stiffener can be greatly reduced by the presence
of cold-bending stresses, which is not surprising
as it has already been confirmed by previous
work(52). This simple modification to the ring
stiffener theory could lead to an under-estimate
of the true collapse pressure. | ‘ ‘

(52)

It must be reminded that the previous works by Smith and

(53)

Kendrick are aimed at the effect of cold-bending stresses in the

ring stiffeners on the collapse pressure, as this is the common
practice of fabrication of ring frames in navy submarine construction.
In the offshore i;dustry nost ring frames are fabricated from cut-outs,
and/ ‘ \\ N
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and welded together and hence the absence of cold-bending stresses.

In the field of finite difference energy method, several authors
have made much contribution(54' 53s 56, 57). Most of the works are
applicable to perfect structures and are meant for the aeronauticgl
industry. In the aeronautical field much of the work on cylinders is
baéed‘on the principle df/'smeared theory'. -A good guidance in this

field iQMQGAIIZEIe from references(ss' 59, 60, 61, 62, 63, 64).

The
smeared theory technique has its limitations. It assumes that both the
shell plating and the ring frames have the same yield strength.
‘Secondly, the increase in critical load due to stiffeners or stringers
is the same as that obtained by uniform thickening of the shell with the
same amount of material. This second assumption is definitely not

tru; as it depends on the frame spacing and perhaps for very close
spacing the differences might be insignificant. Finally, this tech-
nique of smeared theory is not applicable to offshore industry as the
geometry, material and fabrication processes of the cylinders are

different as that of the aerospace industry.



CHAPTER 3 THEORY

3.1 BASIC CONCEPTS

The principal sources of non;linedr structural behaviour are
non-linearities in Ehe,mg}erial properties and the geometric non-
linearities caﬁéediﬁy’foﬁations of structural elements. Since the
latter is the physical reason for static instability, we shall con;

sider its effect and influence.

Buckling of a structure occurs éither at a bifurcation point or
at 2 limit point. ‘ A bifuréation point indicates a load level at.and
above which some new deformation mode is possible. The existence of
a bifurcation point indicates only that the equilibrium on the primary
path loses its stability. The structural behaviour at and beyond
this point is governed by the conditions on the secondary path. This
secondary equilibrium path can be stable (Fig. 1) or unstable (Fig. 2),
symmetric or asymmetric. An unstable bifurcation point indicates an

imperfection sensitive structure.

A limit poing (Fig. 3) corresponds to the maximum of the load-
displacement curve visualising the primary equilibrium path. Under a
load exceeding this maximum, there exists no equilibrium configuration
in the immediate neighbourhood. For shells of general shapes, buckling

or collapse will in most cases occur through the passing of a limit point.

The influence of initial shape imperfections on the stability
behaviour of thin shells is most important. The equilibrium path
for imperfect cylindrical shells corresponds to substantially lower
load levels (Fig. 4). The dramatic reduction of the critical buckling
load for cylinders has received both experimental and analytical con-
firmation(es’ 66). The central significance of the shape of the secondary
equilibrium path in determining the influence of initial imperfections is
evidenced by the tremendous reduction of the bifurcation buckling load.

Lack of knowledge of this secondary path introduces an element of un-

certainty.

The / . , \\



The energy method by Ritz approach is used because of its
adaptability to the solution of complicated buckling forms. Briefly
the basis of the energy method is as follows. Strain energies of
~shell and ring fgﬁmes, and external load potential, are expressed in
terms of the displacements from the unstressed state. Total dis-
placements are then expressed as a sum of displacements along the axi-
symmetric primary path, and the asymmetric secondary path on buckling.
The critical pr?ssurggfgre Eﬂé pressures at which there exists a
non—tr@vial solution for the buckling dispiacements, which satisfies
the condition that the total potential of the system plus its loads is
minimies with respect to the buckling displacements. Both the primary
path and secondary path must satisfy the boundary conditions of the
structure. To find the critical pressures it is then only necessary

to solve an eigenmvalue problem of the form:

0 : ‘ (1)

(lal - ¢, (] [x]

where [X] is the buckling deformation vector. Matrix [a]l is a stiff-
ness matrix derived from the strain energy of the shell and ring frames
and [b] is a load-geometric matrix derived from the (negative) change
in potential of the external loads, and the (positive) work done by
stresses developed on the primary path immediately before the onset of

secondary deformation.

" 3.2 ASSUMPTIONS

The formulation is based on the usual assumption of the thin

shell theory:

1. The shell is assumed to be isotropic and its thickness
is small compared to its radius so that the problem
is restricted to two dimensions. The co-ordinates

are as defined in Fig. 5.

2. Stresses normal to the midplane of the shell and the
stiffener axis are ignored and the transverse shear
deformation is neglected in both the shell and the

stiffenex/

-



3.3

2.

(Cont'd)

stiffener, so that the hypothesis of pre-
servation of straight normals during deformation -

is retained.

The Kirchoff assumption will be used to relate
the deformation of the shell and frame fibres

distant from the shell-median surface to the

' displacements of the shell-median surface. The

external load will be taken to act at that same

surface.

Kendrick's non-~linear eXxtensional strain-

displacement expressions will be used in the

derivation.

The ring stiffeners are of solid rectangular or

‘7' cross—-section.

Ring stiffeners are to be fabricated from cut-outs
and not by cold-bending. Hence there is no

residual stresses due to cold-bending (Fig. 6).

Stress-strain curves are irreversible. That is

the effect of strain reversal is neglected.

Material has ideal elastic perfectly plastic be-

haviour with no strain-hardening.

There is no initial tilt in the ring stiffeners.

MATHEMATICAL FORMULATION

The total potential energy ST of a system is defined by:

where

and

ST = SS + Sb + Sf f Wd

Sg is the extensional strain energy of the shell

Sb is the bending strain energy of the shell

Sf is the strain energy of the ring frames

Wd is the work done by the external loadings

The effect of welding residual stresses is outlined at the

\

this chapter. \\\1 ’
. AN

(2)

end of



For any cylindrical element the strain energy is defined as:

% JSJ oe R d6dxdz ‘ A (3)

Applying the thin-shell thedry, the constitutive (stress-strain law)

;élatiggfhfre: B /f////
o, = llu"(ex + ueé) (4a) °
Oy = 1_52 (eq * ue*) | _ o | (4b)
- . oxe B §T§7r33€x6. (4c)

The extensional kinematic (strain-displacement) equations are from

Ref. (67).

€ = U +5W*+V>+2W W) (5a)
X X X X oxX X .

_ (v =W 1 2 2 _ - 5b
€g = eR + ogr (W' +0g 2wy, "_szoewe 2WOW) (5b)
€, = Ue+v +—1—(ww +W W +W W) (5¢)

0 Y b4 R 06 x of x ox 0
ou awo : i
h H = — = —— =
where Ux 83 R Wox 5% ! Vx 9x , etc.

Substituting equations (4), (5) into (3) and retaining only third order
terms, we get

_ ERt 2 2 5 :
= —— + +V.2+
ss 1) o ff[Ux Ux (wX Vx 2wox wx)

L v w2 -
__+ R (Ve W)2 + 2uux(ve W) /R

l. _‘ 2 2 _ - H - 2 2
+ 3 (v6 W) (we +Uq 20V, + 20 W, 2WOW) +R (\6 W) (wx +V 7+ 2woxwx)
U, v
T 2 2 _ L O W WY + -u) (—= 2
tugy (W' 4 Up% = 20V, + 20 (W™= 2W W) 5 (1-1) (=+ V)
1 Y |
A T F V) (MW + W W+ W W) ] axae R

-

\
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Omission of the fourth and higher order terms

The admissibility of the omission of terms of the fourth and
higher order may be examined through calculations and comparison with
the remaining contributions in the energy equations. Such comparisons

have been carried out by Koiter in Ref. (29), page 293. It has been

" extensively proved by Koiter that the fourth and higher order terms may

e

indeed be neglected if:

1 -'3‘_‘ << 6(1-p*)
A _

*
where the ratio %- is defined in Fig. (45) and is termed the reduction

factor. %

* For welded cylinders, the reduction factor can go as low as 0.30
depending on the R/t and £/R ratio and the degree of imperfections.

The reduction factor is always positive.  Hence in practice the above
inequality is well satisfied and the omission of the fourth order terms
may indeed be neglected. The inclusion of higher order terms would
lead to more complex mathematical formulation and this is unnecessary
unless one is looking at the post-buckling behaviour. One may argue

that a more refined shell theory is more necessary than higher order terms.

The bending strain energy expressions are, from Ref. (68) as

suggested by Kendrick, such that near agreement with the Vlasov(Gg)
differential equations can be obtained.
ERtk" ) S L T Co
S = —_—— P2 2 2 - -
20 (VW )7 2uW (W, v '
2 x x6 Mxx 66 9)*-2Ruxwxx] dxd® . -

\

The term @ will be unity for an elastic solution and less than
unity for an inelastic solution. This point will be discusséd later.
The limits of integrations will be from % to @ and 27 to 0 for inter-
frame instatibility, and from L to O and 27 to O for an overall in-

stability. Also Sf = 0 for interframe buckling.

The/ e



The strain energy expressions for the ring frames are adopted
from Refs. (45) and (28), but modified to suit the co-ordinate system

as shown in Fig. 5.

EAf(],f N 2n

e
S, = —— = - 2
£ 2 (R-e) El {> [(W66+ Ve) R? €6] db x=il
EI oa_.. N 21 1 .
+ xo f W, tvV )>= as =
TReey ,'Z fo 06 6" R x=1il
i=1 :
N 2m
4.EIzoaf X S lew B-Uﬁei-(R—e)w 1246 .y
2(R-e)%i=1 o X N x x=4
‘N 27 ' oo
GC_a
+_xrft ¥ S [u, +Rw_]* a6 -3 (8)
2(Reyi=1 o ©° %0 x =1t
where eeis given in eq. (5b). ”
d Work done by the external pressure on an imperfect cylinder can

be derived as follows:

Initial volume of cylinder VOL 1 = /S (R-W )*d6ax

Deformed volume of cylinder VOL 2 =

Lf[(R-W-W )2 (L+U ) (1+V_/R) dedx
4 o X 0

Change in volume (VOL 2 - VOL 1) =
W - - 2y +RV.]dxd6
f;ff [W? ~2RW + 2wow 2R (wo+w) (UX+ Ve/R) +RUXV9+R Ux e] x

Hence work done by the radial (lateral) pressure component:

-~

- - By - 2 - +V_/R)+RU_V;+RV, ]d8ax (9)
wPl 2 I [2wow 2RWHW? —2R (W_+W) (U Vo /R) < Vo e]

and work done by the axial pressure component

= - 32 ded L (10)
W 9 P2'R /2 IS v bd
) (11)
where Wd = W 1 + W 9
For ax;al compression Wd =W 2 and for radial pressure only W_. = W 1"

During/



During buckling, the system passes from an initial or pre-
buckling equilibrium state, in which all deformations are axisymmetric,
to the buckled or asymmetric state. _The interaction state is defined
as the interaction behaviour between the pre-buckled state and buckled

state. The total displacements are then expressed as a sumg’of dis-

—placements along axis-symmetric primary path and the asymmetric secondary

path on buckling. The overall diagrammatic representation of buckling

behaviour could be expressed as below:

o ~
/// /,/

| PRE-BUCKLED STATE |—> | INTERACTION 'STATE |—> | BUCKLED STATE |

The pre-buckling state is a self-equilibrium state. For an
initially circular cylindrical structure the primary deformation is axis-

symmetric. The effect of initial shape imperfections is small and

negligible at the pre-buckled state, unless the initial shape imperfections

are purely axis-symmetric, which is not possible in welded.cylinders.

A set of appropriate pre-buckled displacements could be

- assumed as follows:

-

= f£(x)
v = 0 (12)
w o= _f(x)
Hence UT = u+U
vT = Vv g (13)
WT = w4+ W

Where the subscript T denotes total displaéements at buckled state, the
small letters u, v, w represent pre-buckling displacements, and capital
letters U, V, W represent additional displacements due to buckling.

Substituting equations (13) into (6), we get:

" ERt . 1
= —— - (M_+M 4V %+ -2= ~
W o) alf[-( 2 l) (wx Vy 2wox wx) 2R2M1 (V9 W) »(Ve+wo)
. _1'_ 2 2 _ —
- (Ml+uM2)R2 (we +U, 2wve+2woewe 2w0w)
+ MU (W 4W ) +2uM (v -W) (W 4w )-2uM.u VpTTo)
3 x x oXx 3R 6 X ox 1 x R
+ ’(l—u)M L U./R +V ) (W +W )] dedx ' (14)
' X 6 ob

3R B
\\
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where:
' W _ 3u
M = g =5 M

and the term w shall denote this work done due to the interaction
s

=.%‘}% (derivative of eq. (12)) -

‘behaviour, .and must be added tofeq. {2) to complete the equilibrium

of the system.

In the case of overall instability the same procedure should be

applied to eqg. (8) resultipg/in the additional work done due to the

n‘ )/
ring frames as:
_E:Af(lf N 2w 2-
-M_(W? +U_ - +2W W _-2W W oo
e = 2ee) 5 To MM * U T Mgt HeeMy o

e ' '
+ Ml (ve+wo) (WGB-WG)E- Ml (ve+wo) (Ve— w)lae < =il (15)

where . Ml = w/R

Similarly eq. (15) has to be included in eq.(2) to complte the equilibrium

system for an overall instability.

3.4 REPRESENTATION OF = THE PRE-BUCKLING 'DISPLACEMENTS

(68) and Reynolds(zs) have in their analyses made

Both Kendrick
the simplifying assumption of uniform lateral and axial contraction
prior to buckling. Roxburgh(so) used a better assumption, but still
in error because the assumed pre-buckling displacements do not
satisfy the boundary conditions. The function £(x) in eq. (12) has
to be of the form that satisfies the boundary conditions and physic-

ally sound. For simple supported edges:

ow 02w
ax 7 0 and 5

0 at x=0andx =L or L

For partial fixed edges:

2
gﬁ- # 0 and §;¥ # 0 atx=0andx=~2or L
For clamped edges:
2
%ﬁ» = 0 and %;¥- # 0 at x=0and x=~LorL

In the case for overall buckling behaviour the "1 - Cos" form
has to be introduced to allow for the effect of sagging of shell

plating between the ring frames.

\

\
\, :
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i) Simple supported edges:

Recalling eq. (12), the axis-symmetric pre-buckling displace-

ments satisfying the above conditions are assumed as follows:

2

= constant
ax
v = 0 (16a)
. ,TX
w = ‘wzsln(z )

Initially a form of u = uécds%§

higher buckling load than that suggested in eqg. (16a) - See Fig. 7.

was adopted, but it was found to give

After some numerical observation a uniform axial contraction is adopted

for the u function.

"In the case of overall instability the following pre-buckling

L

displacements are assumed: , » - B

QE- = constant
ox
v = 0_ : © (16b)
. ™ C2mX - , '
= W Sin— + W_(l-Cos—;—
v ) Singm + ) (1-Cot=pm)

The (1 - Cosg%ia term is to allow for the effect of sagging of shell

plating between the ring frames. Wy and Wz

to be determined from the pre-buckling equilibrium state.

are arbitrary constants

ii) Partially fixed edges

The pre-buckling displacements assumed are as follows:

— = constant

9x

v = 0 (17a)
= v (sin™ 4 gin TX

w .w2(Sln£ + Sin 9,)

For overall instability the following displacements are

\ . N\

adopted:
22- = constant
9x
| o \ N .
; v =0 \ (17b)

X 2Tx%

| w = W (SinI + 8in? Eﬁﬁ + w_(1-Cos o



iii) Clamped edges

For interframe instability the pre-buckling displacements

are:
e
?& = constant
ox /
Ty = oo ' (18a)
w = w2(l - Cosz%x-)
' For overall instability the pre-buckling displacements
are:
- 34 = constant
ax
v = 0 , (18b)
2mx, 2TX
w = .wl(l Cos T Y + w2(1 Cos T )

3.5 REPRESENTATION OF THE BUCKLING DISPLACEMENTS

The choice of the buckling displacements has to be made such
that the amount of computer time required to solve the problem is
not too excessive., | . From the experience of several ‘

(27,43,44,45,47)

authors the following buckling displacements are

adopted for various boundary conditions:

i) Simple supported edges

For interframe instability:

_ X

U = AlCos nd Cos 2
V = B_Sinn® Sin™= (19a)

1 2

. TX

W = ClCos nd Sin 2

W o= LS

C Cosnb Sin
o) 2

For/



For overall instability:

U =. AlCos né Cos—ﬂl}f
T —_ 7 . . X 27X
= B.S Sin— + B_Si - Cos=—
\Y/ Bl in ne J.nL 2 inné (1 - Cos ) ) (19b)
. TX ’ . 2mx
W = C1Cos né SlnL + C2Cos nd (1 - Cos 2 )
' . .’/// ™% 2Tx
~W-= C_cC Sin— + C__Cosnf (1 - Cos——
Wo ol os nbd lnL, o2 os nd (1 - Cos T )
»
ii) Partially fixed edges
For interframe instability:
' _ V X
-~ U = A1Cos nd Cos 2
V = B.Sinn6 (Sin’X + Sin® =X) ~ (20a)
1 L L
_ . MX ., TX
1) C1Cos nod (Sln——l + Sin 2 )
_ ,_TX L, TX
Wo COCOS nb (Sln——ﬂ' + Sln N )
For overall instability:
' ™%
= C Cos—
U Al os nb osL
X T 2mX
= . Sin— ¢ 2 o + - Lha
v B151n nd ( 1nL + Sin I )_ stinn (1 .Cos T ) (20?)
mX ™ 21X
= L + s 2 A + . - L8,
W CICos nd (SlnL Sin L ) C251n nd (1 - Cos D )
X X 2nx
- in— + . 2__'_ - Sadiilubd
Wo ColCos no (SlnL Sin L) +C02Cos nd (1 - Cos ) )

iii)/



iii) Clamped edges

For interframe instability:

= X
U = AlCos nod COS,E
V = B.Sinnd (1 - Cos*%y
1 2
s )
- - <X
W = Cl/Clgsne (1 Cos ra ) (21a)

e e—— —_—

_ - cos2X
wo = COCos nod (1 Cos 7 )

For overall instability:

- X
U = AlCos nb Cos 7
. - . X 2mx . 21X
- .V = BlSJ.n nd (1 - CosT) + stln nd (1 - Cos—z—-
, (21b)
_ _ 2mx _ 27
W = ClCos nd (1 Cos——L ) +C2Cos nd (1 Cos—-——[ )
} oo 2MX, o 2TX:
Wo ColCos nd (1 - Cos I ) +CO2Cos nd (1 - Cos 7

As mentioned in Ref, (44) (80) there are other possible forms of buck-
ling displacements which cater for "infinite" cylinders. The term
"infinite" is not clearly defined by Kendrick(so) . A more appropriate
non-dimensional parameter is necessary in order to draw a line between

"finite" and "infinite" cylinders.

The form of buckling displacements suggested by Kendrick(so) for
"infinite" cylinders are:
U = 0
. » o 2Tx
vV = B151n no + B2SJ.n nod (l—CosT) {(22a)
W = C1Cos né + C2Cos nd (1 —C?sg.?-)
2TxX

2C<~3-s nb (1-Cos 7 )

e . S~ T o awm LT

NI
It

Co Coén6+ C
o 1 - ©°

The/.



The author disagrees with the form of eq. (22a) for the U—displacement;

A rather more correct displacements are:

e
(s
U = ACosnd Cost-

e e e

V = B.Sinn6+ B_Sinnb (1-Cos2rX (22b)
1 2 ya Vel
W = C Cosne;-c Cosne(l—Cos%E%
1 2 L
. _ 27X
wo LQlCosne4-C02Cosne(1 COSjZf

As we shall see, the latter displacement pattern gives slightly lower

»
buckling pressures and is therefore more correct.

AllBer IB ,V'C

1 2 2
from the minimisation of eq. (2). The terms Co ' Co

are arbitrary constants to be determined
1 ¢ C02 are
amplitudes of the shape of imperfections and are known to designers by

means of past experience or from collected data.

The (1 - Cos) term is used instead of a Sin%%-, to allow for
the effect of sagging between ring frames. A sin%?-term would cause
a discontinuity at the position of the ring frame, hence not a physical
configuration. The (1l -Cos) term is particularly dominant in widely
spaced ring stiffened cylinder. It hés been shown by Kendrick(45)
that to ignore this term is to invite major errors, usually on the

unsafe side.

The shape of imperfection has been assumed to resemble the

buckling mode. It has been proved numerically that the configuration
of the most severe shape of imperfection resembles the buckling
mode(52'62'63'67). - The term C_, represents the out-of-circularity

of the ring frames and Co (or CO) measures the out-of-circularity of

2
the shell between the ring frames. The solutions obtained by this
assumed configuration are sufficiently accurate for design purposes.

we/
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We shall see lafer that the solutions obtained are in close agreement
with—solutions obtained in finite element analysis(sz). The main
obstacle is that the true shape of imperfection is not known at design
stage, until the cylinder is fabricated. Furthermore, the degree of
sﬁape imperfection/dependé/on the fabrication method and this varies
from place'to élace;—/ Most codes are explicity on the degree of out-
of—cifcularity required expresséd as the difference between maximum )
and minimum diameter and BS5500 and ASME use a value equivalent to

a departure of 0.5% on radius. This criterion only covers ovality

and more complex shapes and‘localised.dents require a different
criteiion. Various methods of measurement are described in Ref. (34).
Since the type of imperfections that the cylindrical structure will
exhibit is not yet well known, shells are designed for the 'worst' type
of imperfections that are likely to occur. It is now widely accepted
that significant advances towards more accurate predictions of the
buckling load of thin shells depend on the.availability of extensive
data of realistic initial imperfections and their correlation with

manufacturing techniques(7o'7l'72'73)'



3.6 RESIDUAL STRESSES

3.6.1 Cold bending residual stresses

The residual stresses caused by cold rolling the skin plates to
the required curvature must be considered, although it is believed to

be less important than thosé caused by welding and flame cutting.

~“\N'I—‘lrie'*—smi'r'ﬁiife/theoretical model, shown in Fig. Al, comprises an

elasto-plastic stress distribution for the bending phase on which is °

superimposed a reverse elastic distribution due to'spring—back. The

., net final effect is the well known zig-zag stress pattern, the exact

form of which depends on the ratio of the radius k to thickness t (see
Appendix I). . Results at Cambridge by Pascoe(79) on 36 mm plate with
oy'= 470 N/mm? support the validity of this model. Pascoe also showed
that the Bauschinger effect made very little difference to the final
pattern. If we accept the simple mgdel, the fihal péttern of circum-
ferential residual stress due_to cold bending is as plotted in Fig. Al,

depending on the quantity Et/Roy.

The above treatment assumes that the plating is bent once and
released. In practice it probably goes through the bending rolls

several times before reaching the desired curvature.

In the skin plates the bending operation will give rise also to
longitudinal stresses, from the Paisson's ratio effect. These are
likely to be less than the circumferential ones and will not be con-

sidered in this thesis.

The effect of cold-bending residual stresses on the potential

energy of the system can be expressed as follows:

Let Scb be the strain energy due to the cold-bending residual

stressess:

-8 = %fffccb ke

RAxA04dz (23)
cb o

where/
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where

(Wog + W) + ﬁ%—u W

60 x 2R

66

4—W) + l U, W

06 x

k9
kg = R2
terms. ~
_Substituting for kb in eq. (23) we get:
Sep = %Rfffoc {-R2 (Wg +W)+
¢
S = MRIG{-=m
cb cb Rz
where
Op = IO 2 92

which is derived as follows:

COMPRE 3SION

-0

TENSION

Reference

thickness

From A to

and

From B to

..._wz

is the circumferential curvature strain given by

up to 2nd order

-2 2

2R
——l—w 2} dxde (24)"

2R
(25)

to the figure above, the stress distribution across the shell

t can be represented by two simple linear equations.

B and C to D:
. (02 + 01)
cb (t/2 - tl)
C:
%
o = = .z
cb t1

(26)

(27)



tl 02 /2 (02 + O ) (0'2_2t-+ o t2) o
. -— - 2 2 2 _
1 L 1 1
By T %3tl 2 | (29)
—tb 23 1
where
= s - 3 2__
Y (t/2—tl) { Sa -ttt l1‘(13 )(0 +ot )
(30)°
t13.
- (o, + 01) }-

Hence eq. (24) has to be included in eq. (2) to account for the presence

of cold bending residual stresses.

L

Ring Frames

The T-section ring frames are made up of ten or eight sections
which are then butt welded together to form a complete ring (Fig. 6b).

Each section is built-up from plate in the following manner:

i) Flame cut web segment to correct shape from
"~ plate to plate - cutting proceeds continuously

around the profile of the segment.

ii) Roll the flame - cut flange strip to the correct

curvature
iii) . Tack the flange to the web

iv) .Complete the web-to-flange welds, with the plates
clamped into the jigs to maintain correct curv-

ature and to prevent tilt of web.

The sections are then jigged into the correct circle and joined

by full penetration butt welds to form a complete ring.

The above procedure of fabrication is a normal practice carried
out in most offshore fabrication yards. There is no cold bending
carried out except for the sectional flange strips which are very thin
compared with the web depth. Therefore the presence of any cold bending

residual stresses in the rlng frames can be 1gnored

1



3.6.2 Welding residual stresses

The effect of welding residual stresses on the buckling load
of stiffened cylinders is much more serious than that of the cold
bending residual stresses. Much work has been done on the measure-
ment of these residual stresses in Cambridge(73'74). Earlier work
on the calculations of deformations of welded metal structures can be
found in Reference {25): " The effects of residual stresses on the

ductile strength of ring stiffened cylinders are outlined by Faulkner

in Reference (76). . . .

From the above references a simple mathematical model will be

presented here as shown

__..|?7t |~ _.qut [~

TR | 1
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v [

! l |

~ o

The width nt of the yield tension block each side of the weld

joint is governed by the welding process and, in particular, by the
heat input (or rate of weld deposity)ai,yield stress and thickness of
the members joined. From experiences gained in weld imperfections of
stiffened panel, initial values of n in the range 4.5 - 6 seemed typical.

(77). It

Measurements on larger models suggest much higher values of n
appears reasonable to assume that the compressive residual stresses orc

in the plating are balanced by the tension block in the plating.

Then:
(¢}
rce _ 2n

There is very scant information on this subject. One value for a

specific/ '
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specific submarine( gave orc = 0.17 Uy as measured. Typical
~values for Grc from 0.10 oy to 0.20 oy are practical for stiffened
welded cylinders.

(76)

As outlined by Faulkner , for internally stiffened cylinders
welding the ring frames to the shell prdduces interframe compression

residual stresses from two sources:

i) from tiension block n actions from along-the- - .

weld shrinkage as represented by eq. (31)

ii) from typical interframe shell distortion

caused by the welding
The source (ii) cannot be included here as it is already considered for
under the effect of shape imperfections, Wo. This supports the logic

that welded cylinders can never have' perfect circularity.

The effect of welding residual stresses on the potential energy

of the system shall now be expressed as follows:

Let Sw be the strain energy due to the welding residual stresses

and Gw the welding residual stresses in the shell plating.

Then:
S = %f[fc e R dodxdz (32)
w w o
where
UQ = OY (at the tension block)
and
v ~ %e (compressivé stress at mid-bay, computeéed
by eq.(31)
Substituting/



Substituting for e, from eqg. (5Db)

)

— _ Loz g
S, = %Rtffow[(ve W) /R +‘;R2 (We + Ug 2W9+2Woew 52,

- 2W W] dedx
o .

-

Hence eq. (32) has to be included in eq. (25 to account for the presence

of welding residual stresses in the shell plating. To evaluate eq. (32)

step-integration would be performed.

\'/'



CHAPTER 4 METHOD OF SOLUTION

4.1 PREBUCKLING MATRICES

e e

The pre~buckling state is a self-equilibrium state. Sub-
stituting the pre-buckling displacements of eq. (12) into eq. (2),
where ew. (12) will take the form of egs. (16) to (18) depending on

- —

o s '
the boundary conditions and the mode of buckling, interframe or overall

buckling, we get in matrix form: ’ ) ' . .
T _ ERtL T o T o
= g R - ¢ ]| (33)
where. ' [r] is the stiffness matrix

hd

[s]  is the load matrix

This potential energy uT must be a minimum. Differentiating uT with

respect to vector [x], we get:

31x] = [r] [x] - ¢'l[S] = 0
(34)
o el = g (s]

The vector [x] can then be solved in terms of ¢1, and these are needed

to calculate Ws and wf later on.

4.2 BUCKLING MATRICES

The total potential energy of the buckled state includes the terms
WS and Wf and the terms to account for the presence of residual_stresses.
The buckling displacements will take the form outlined in egs. (19) to
(22), depending on the boundary conditions and the mode of buckling.
After substituting, we get:

T _ _EtTL AT A » T
U= Raoey G217 ([a) - ¢, [P [X] - ¢, [c]"IXD)  (35)

¢

This/



T .. s s T .
This potential energy U must be a minimum. Differentiating U~ with

‘respect to vector [X], we get:

; v o
U _ E - —
// (36)
= ([a] /—/¢1le) [x] = ¢, 1]
where ¥ .

[a] is the stiffness matrix at buckled state
[b] is the load matrix at buckled state

[c] is the column matrix due to initial shape imperfections

For’a perfect cylinder, the matrix [c] is a null matrix, and hence re-
ducing equation (36) to simply:

([al -¢l[b])[X] = 0 (37)

the smallest root of ¢l and hence the buckling pressure is of interest

here.

It is easy to solve for the smallest value of ¢l of eq. (37) . than
eq. (36). Eq. (37) can be written:

(r - lale)fx] = o© o (38)

where

-1

fal = [al = [b]

and I is the unit matrix

Let B = 1/4)l and eq. (38) becomes:
l1] - [ah[xl = o | (39)

The largest root of eqg. (39) and the associated vector [x] is
easily found by repeated premultiplication of an arbitrary column vector
by [d4]. The theory is given in Ref. (81) and a numerical example

follows:/



follows:

‘ [ 274.0 -145.2 5.58 [ 135.5 191.8 -432.2
[a] =-|-145.0 924.7 -72.0 [b] = | 191.8 819.1 174.2
5.58 - 72.0 6.69 -432.2 174.2 836.2

[ 0.00453 0.00453 0.0239 "[-9.252 7.157 18.542 "
[a] =1 0.00258 0.00816  0.0856 | [d] = |-36.09 22.09 71.92

~—[0.0239—-0:0856  1.051 -434.5 257.8 883.4

The matrix [d] is now used as a premultiplier on an arbitrary column
‘matrix. A suitable choice of column matrix is as follows, but any

will do although a poor choice can slow down the convergence:

o

0.10
1.00

The last number (B1 say) in the resulting column matrix is an approx-
imation to the largest :eigenvalue B and the matrix is an approxim-
ation to the required matrix [X]}. Dividing throughout this column
matrix by 61 and repeating the process of premultiplication by [d]
leads to a better approxkmation to 82 and a better approximation to

[x] after once again dividing by 62. This process converges to the
exact value of B and [X] after several iterations depending on the size
of the matrix [d] and starting value of [x]. The collapse pressure is

then given by the dominant root of eq. (39).

Before eq. (36) can be solved a slight modification has to be

introduced. Eg. (36) can be rewritten in element form as follows:

all al2 al3 O bll bl2 bl3 cl X1
22 a23 0 b22 b2 2 X2
( a2l a_2 a23 _ ¢1 b21 b23 ¢ ) =0 (40)
a3l a32 a33 0 p31 b32 b33 c3 X3
0 0 0 0 o 0 0 O 1,00
Eq. 40/



Eq. (40) is still mathematically the saﬁe as.eq. (36) and the zeroes
are just dummy elements. From eq. (40) it can be seen how the column
matrix [c] affects the collapse pressure through its influence in the
load matrix [b]. . The inverse of [a] is only performed on non-zero
-matrix elements, hence the (3 x 3) matrix elements only. If [e] is

the inverse of [a], then elements the elements are:

“ell el2 13 O
. T
T e] = | €21 e22 e23 O
. é31 e32 33 O
0 0 0 O

(41)

The multiplication of matrices [e] and [b] (as in eq. (40)) will
give the required matrix [d] which is now (4 x 4) matrix. The problem
of eq. (36) is now reduced to the equivalent of eq. (39). Therefore,
the iterative process for the smallest value of ¢l.is similar to the

procedure of eq. (39).

This technique of solving eq. (36) is compéred with results ob-
tained by Dynamic~Relaxation Finite difference method for axial compression
of unstiffened cylinders with simple supported boundary conditions(82).
The same function is used for shape imperfections in both methods.
Numerical examples-for cylinder of R = 800 mm, t = 6 mm, = 600 mm are
compared and shown in Fig. (8). The results show close agreement with
the present technique. A mesh size of (18 x 64) was used in the finite
difference program. It is interesting to note that the computer time
needed for the finite difference program is enormous - approximately
1000 seconds (cpu time) for each loading point on an ICL 2976 computer,
compared with 2 second for each buckling load at a specified mode by the
present technique. The above comparison is made on elastic solution
basis only. The cost of an inelastic solution by the finite difference
program is far too frightening to be mentioned here - perhaps not within
the scope of the present ICL 2976 computer. A brief description of

dynamic relaxation is as follows:

Dynamic/



Dynamic Relaxation is a procedure for moving towards a correct
solution from a non-equilibrium starting guess involves the use of
dynamic equations. The starting guess with zero velocities is taken
as the initial conditions. The static loads are then applied and held
constant as the system is allowed to move dynamically until motion dies

out. The promise of success soon fades as one tries to apply the

methdd.'““If~the'phy§ical characteristics are used to model the mass
and damping, one can expect very large transients which persist for .

long times. This means excessive solution cost and difficulties in

~controlling spurious oscillations in the solution. An obvious remedy

is to assume artificial properties which assure strongly damped re-
sponses. The question then shifts to how to estimate those artificial
properties. The necessity of obtaining contrived terms for both mass

and damping properties detracts further from the method. Other
(86)

superior methods are reviewed by Crisfield and dynamic relaxation

lies low in comparison.



CHAPTER 5 YIELD CRITERION

5.1 YIELD FUNCTION

Yield function employed here is that developed by Ivanov and

(83)

outlined by Robinson and “is more accurate than Ilyushin's approx-

imation(84). Furthe;/advantages of Ivanov's yield criterion over

Ilyushin's approximation yield function are reviewed by Crisfield(ss).

The yield function:

£2 = + V(0.25Qm + Q°
v o + %9 + /(02500 + & ) (42)
* where _
_ N
Qt - N 2
o
ﬁ '
0 T omz
o .
_ MN
%m = My
oo
énd
N = 2 2 N N + N
N _ Nx + Ne Nx. g ! 3NXB
= . R
M M+ MZ - M Moo+ 3M S
MN = MN_ -+ MN, - %MxNe - %MGNX + 3MxeNxe
= to -
N ko,
M = -0.25tc %
o Yy
N ,N , N - forces/unit circumference
X 0 Xy
Mx ' Me ' Mxe - bending moments/unit circumference
N / 5,



Noo= S (ax + ye,) ' _(43af

X 1-u 6
* = -G—-EP—
Ny 1oyt (ee + e ) : (43b)
pd
_ Et
N = %o (e ) | (430)
M = o-—Eb__y (44a)
X 12(1-p?) x asal
- __Et® ) ‘
Mo T Ta(1-p) Yo (44b)
Et? '
Mo = % T2(1-) Fxo (44c)

k = -W
X XX
= 2
ke (wee + W) /R
% -

- - 2
<0 Nxe/R Vx/R + UG/R

(*includes the residual stresses).

It is clearly obvious that for an elastic solution a = 1.00 and

for an inelastic solution, a will be less than unity.

The cylinder is divided into mesh size of (9 x 20) for the pur- -
pose of computing the yield function, fy at each nodal point. For an
overall instability the arrangement is made such that only 3 or 5 nodes
are located between two ring frames in the axial direction, depending on

the length of the cylinder.

5.2/



5.2 ELASTIC SOLUTION

Recall the pre-buckled matrix equation (34) and the buckled

matrix equation (36):

pre—bucklgd;/ [r] [x] = ¢l[s]....... (34)

-

T —

bﬁCkIga: ([a]-¢l[b])[x] = ¢l[c] ee. (36)

The pre-buckled equation is related to the buckled equation through

_ the matrices [b] and [c] - both contain the vector [x]. For an

elastic solution and assuming an ideal elastic stress-strain curve, the
value of o is one. The case of strain-hardening effect will not be

considered here.

The steps taken to arrive at the convergent value of ¢1 are

as follows:

1. Calculate matrices [r] and [s] and from an
initial guess value of ¢l (say zero) and then

solve for [x] from eq. (34).

2. Kﬁowing [x], calculate matrices [a], [b] and [c]
and solve for the minimum value of ¢l from eq. (36)
by iteration - call it ¢l*

3. Compare the value of ¢1* with-¢1 used ?n step 1.
If the latter agrees with the former within some
small predetermined tolerance, proceed to step 4.
If they do not agree use ¢1* as an improved

estimate and go to step 1.

4. Use ¢l* and eq. (36) to sclve for [X] and then
evaluate the total strains (including the resid-

ual strains).

The resulting behaviour from equations (34) and (36) under axial com-

pression for various CO/R values is as shown in Fig. (43).



- 5.3 INELASTIC SOLUTION

Buckling failure may occur in the inelastic region, particu-
larly in welded and closely framed cylinders - say L/R < %,
Elastic buckling is more likely to occur in widely framed cylinders
and cylinders with high R/ﬁ/(say 200) and large Co/R' In any case,
it is necessary to check first whether the failure is due to in-

elastic or elastic behaviour.

Poison's ratior,, 4, is regarded as a variable in the inelastic

(87)

' region , and can be accurately expressed as a function of Es by

the equation:

- ' E
o= %--E—(‘:*ue)

The steps taken to arrive at the éonvergent value of ¢l for an

inelastic solution are as follows:

5. Proceeding from step 4, the yield function at
each node of the shell plating is computed.
Any yield function greater than one, suggests
yielding at the node. The value of a is then
reduced - say 0.90, and then proceed to step l.
This cycle goes on until all points have yield
function equal to or less than one, with o de-
creases or increases at each cycle. As a de-
creases, ¢l decreases, hence lowers the collapse

load.

This process of determining the value of o such that the maximum

yield function at any nodal point is less than or equal to one, is an
iterative procedure and applies only to the shell plating. The yield
criterion for the ring frame shall be dealt with separately in a

different manner.

5.4/



5.4 YIELDING OF RING STIFFENERS

The problem of stress analysis of ring frame of a stiffened
cylinder in an éccurate manner is of very great complexity and it is
unlikely that a two-dimensional thin shell theory will be able to
tackle such a problem. Therefore a very crude approach has to be
introduced. In most pracé&cal cases, however, collapse by general
ihstabilipywyi;Lﬂinyolgé yielding of ring stiffeners and will be in-
fluenced by out-of-circularity and residual stresses. Hence it ;s

essential to check whether failure is due to yielding of ring stiffeners

or general instability. Failure is assumed to. occur when the sum of

" the circumferential bending stress, ob, and the hoop compressive stress

ch' reaches yield at the outer fibres of the ring frame. It is im-

plicitly assumed that the tétal stress is given by the sum of oFc and

cb with sufficient accuracy up to the yield-point of the stfess of the
material, and that failure is synonymous with the pressure at which
yielding in the extreme fibre begins. 'The latter assumption is, of
course, conservative. However, once yielding starts iﬁ progresses
rapidly and the ultimate pressure is generally not expected to be much

greater than the pressure at which yielding begins.

The stresses will be highest in the flange of the frames which
are situated at the furthest distance from the rigid ends. For
cylinders with an odd number of ring frames, the magnitude of the

maximum flange stress is given by:

. Cef
o = E'[(Wee + ve) = + (W—Ve/R] (45)
at o = 0
x = L/2

where ece is the distance of the frame flange from middle surface of
the shell. For cylinders with an even number of ring frames the
maximum stress will be less than this value but the difference will be
negligible unless the number of ring frames is small. The maximum

flaﬁge/



flange stress may be written:

—— 'c = 0 + 0 . ' (46)

I F Fc b
and oFc = —E(nBl-—Cl)/R , (47)
— //—/T/_//Z/ 2
..... o = E(nB1 n Cl)gff/R (48)

where'Bl and c, are calculated from eq. (36).
Hence the yield criteria of the ring frame is:

- c + 0. = 0 (49)

The pressure to cause yielding is then obtained by reducing ¢1 of eq. (36)
in an iterative procedure such that eq. (49) is satisfied.

Two computer programs, one for interframe collapse, and the
other for overall collapse, are developed for the purpose of this

analysis.



CHAPTER 6 RESULTS AND DISCUSSION

6.1 COMPARISON  WITH VON-MISES CLASSICAL EQUATION FOR

©=- - ___ INTERFRAMES BUCKLING UNDER UNIFORM EXTERNAL PRESSURE

(21)

Von Mises obtained the elastic buckling pressure of a thin
shell simply-supported at itsfedges and subjected to uniform external
pressure, by solving/Eﬂzeé/;éparate shell differential equations based
on equilibrium of the shell and substituting an assumed deflection- -
configuration into these equations. Comparisons with Von Mises

equation are as shown in Figs. (9),(10),(11) and (12) for various

- values of %2/R and R/t. Good agreement is obtained with Von Mises

equation for the case where uniform lateral and axial contraction are
assumed in the pre-buckling displacements ., %§-= constant and w = con-
stant. For &/R = 0.250 and %/R=0,500 the difference is negligible.
For 2/R = 0.750 and £/R = 1,00, exact agreement with Von Mises equation
is.Abtained. Evideﬁtly‘the energy expressions used here are in agree-

ment with the_differential equations obtained by Von Mises.

It is interesting to note that a lower buckling pressure is ob-

tained when the lateral pre-buckling displacement is no longer uniform,

"as in eq. (l6a). .. It is clearly evident that the generators of the

cylinder are no longer straight, but are allowed to vary non-linearly

between stiffeners. The former set of pre-buckling displacements

"assumes that the generators remain straight and hence give a higher

buckling pressure. This explanation is comparable with the Foppl(go)

formula for the collapse of a circular ring under uniform circumferential
load. Another important point no designer can afford to ignore is the
type of pressure loading which is often referred to as live loading as
opposed to dead loading which does not change direction as the structure
deforms. This is one area of application that has received particularly
no attention. The assumption that the generators remain straight is an
equivalent of a dead load situation, because the pressurekis always
acting perpendicular to the generators. For rings and some buckling

(91). The

modes of shells the results can be in error by as much as 50%
error depends very much on the ratio R/t. It is clearly obvious from
Figs. (9),(10),(11) and (12) that the gap widens as R/t increases. With
the present North Sea offshore structures having R/t as high as 300

-

restraint/ . \



restraint should be applied as some rules, especially BS 5500, involved

the use of Von Mises formula.

6.2 EFFECT OF INITIAL SHAPE IMPERFECTION ON INTERFRAME
SHELL BUCKLING

Quantitative imperfection studies defining the sensitivity of
interframe shell buckling to the form and amplitude of initial dis-
tortions and residual stresses do not yet appear to have been carried
out. The most signifisgnt initial distortions are those corresponding
in form to the.interframe shell buckling modes. Figs. (13),(14),(15),
(16)and (17) show the initial shape imperfection sensitivity of inter-
frame shell buckling under uniform external pressure for cylinders.

It is gvident that the sensitivity increases with the ratios R/t and
'2/R, but is more pronounced with R/t. As no other available study is
obtainable, comparison cannot be made here. '

Figs. (18),(19),(20), (21) and (22) show the initial shape imperf-
ection sensitivity of interframe shell buckling under radial (lateral)
pressure for various R/t and %/R ratios. Again sensitivity is more
pronounced for increasing R/t ratio than %/R. On the whole the effect
of initial shape of imperfection on buckling load is more sensitive under
external pressure than under radial pressure. This is easily explained
by the fact that the absence of the axial pressure component reduces the
sensitivity under radial pressure loading. It is a well known fact
that axial compressive load is the most destructive type of loading.
Typical curves of imperfection sensitivity under axial compression are
shown in Fig. (23) - the curves are steeper and drop suddenly at small

initial imperfection.

It would be incomplete not to mention Koiter's work. He derived
the sensitivity of the axial compressive load to initial imperfections
as shown in Fig. (45). This ié reproduced from Fig.-(9) of Ref. (29).
A closer examination of the equations in Fig. (45) revealed that they
are independent of the £/R ratio. Koiter assumed axi-symmetrical shape
imperfections. One must recall that Koiter presented a theory that gives
an explanation for the large differences between theoretically and ex-
perimentally determined buckling loads. Also the wide scatter in the
experimental results is satisfactorily explained by the great sensitivity
of the bucklihg load to small changes in the magnitude of the deviations.
Hence; Koiter's work is generally on the adverse factors affecting

buckling/ .
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”5uckling load, rather than on the numerical tool to predict buckling load.
A comparison with the classical solutions of Flugge, Donnel and
Timoshenko is shown in Fig. (44).

(1)

DnV Rules ' specify a tolerance on local shell deformation‘between

‘~-frames. Tolerances on deviation from circularity specified in the other

rules relate primarily to ring frames and do not adequately cover inter-
frame shape. The proposal made by Kendrick to the British Standards
Institution and accepted by PVE/-/5 Committee allows a maximum tolerance

within 0.50% on radius 227

6.3 EFFECT OF COLD-BENDING RESIDUAL STRESSES

Table 1 shows the influence of cold-bending residual stresses

in the shell plating on 'Ainﬁé;fféme cbllapse pressure under unifgrm
external pressure.. The influence is very small indeed and negligible,
butibf course it is not the same for ring frame which is an equivalent
of a very thick cylindrical shell. The presence of cold-bending
residual stresses‘does‘not appear to have any significant effect on

the interframe collapse pressure. This conclusion is also confirmed
by limited experiments employing'stress—reliéf. An attempt to assess
the effect of residual stresses on collapse pressures was carried out
by Kendrick(BO) using two models which were nominally identical ex-
cept that in one of the models the cold-bending stresses had been
removed by heat treatment after cold-bending. The collapse pressure
of the models was in fact slightly different, the stress relieved

model being the weaker. This was found to be due to the stress re-
lieving having lowered the yield stress by about 7%. Making allowance
for the difference in yield stress, it was concluded that the cold-
bending did not appear to have any significant effect on the collapse

pressure.

6.4 EFFECT OF WELDING RESIDUAL STRESSES

Tables 2, 3 and 4 show the influence of welding residual stresses
on interframe collapse pressure under uniform external pressuré for
simple supported and clamped boundary conditions. It is well
established that the compressive residual stresses orc are detrimental
to ductile strength of both plated structures or cylindrical shells(76).
It is confirmed here that an increase in O e follows an increase in the

percentage loss of strength - approximately an increase in Grc results

in/ -



in a same percentage in loss of strength. At a higher ratio of R/t
the percentage loss of strength can be encrmous, and the same applies

to an increase in %/R ratio. For R/t = 200, &/R = 0.675, crc/0y==0.154
~and Co/R = 0.0050, the percentage loss of strength can be as high as 32%
for simple supported edges and 39% for clamped edges. Hence it is
obvious that no designer can afford to ignore the effect of welding

residual stresses.

. e
- /‘/ g
6.5 . COMPARISON WITH DNV RULES, BS5500 RULES AND EXPERIMENTAL
DATA OF FIG. (24) FOR INTERFRAME COLLAPSE PRESSURE UNDER

UNIFORM EXTERNAL PRESSURE

The BS5500 design code mentioned here is referred to the proposal

.made by Kendrick(gz) (7)

to the British Standards Iﬂstitution , and is
based on the experimental data plot of Fig; (24). Fig. (24) is a
revised version of Fig. (3) of Ref. (92). It is a plot of well-
documented experimental data using the parameters Pc/Pcs' pm/p'c5 which
are defined in Appendix B. This data from about 700 collapsed cylinders

covers the range:

250 > R/t > 6.0

50 > 4/R > 0.04

and with cylinders usually less than 2.5 ft. (762 mm) in radius. In
most cases the cylinders tested had departures from the mean circle
which were much less than 1% of the radius, although in some cases the
values were in excess of 1%. Since the majority of cylinders tested
have had out-of-roundness values less than 1% it is reasonable to con-
sider that the lower bound cﬁrve only applies for cylinders of this

- accuracy of manufacture. It must be pointed out that Fig. (24) origin-

(93)

ated from the navy submarine design code for interframe collapse

pressure.

The DnV rules of interframe collapse stress is from section-
C3.4.2.5 and the plasticity reduction factor from section C3.2.1.1 of
Ref. (1). The stress level is then converted to pressure by means of

pressure = stress x (t/R) for comparison purposes.

Figs., (25),(26),(27,(28) and (29) show the comparison between the

present theory, BS5500, DnV Rules and experimental data, for various

values/ - \ '
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values of R/t and 4/R. The present theory is based on simple supported
boundary conditions, E/cy = 841, orc/oy = 0.120 and CO/R = 0.0050.

The experimental data curve refers to the lower bound curve of Fig. (24).
As mentioned earlier, BS5500 is based on collected experimental data of.
cylinders having R/t < 250. This is confirmed here that for values of
R/t greater than 250, the present theory predicts lowér'collapse pressures
thanvpermitted by BS5500. The DnV rules on the whole predict higher
collapse pressure than BSS?Oé and in some cases even much higher than

thé experimental data,f’/&his can easily be explained by the fact

------ . ——

that the DnV rules are not derived from experimental data like BS5500.
The bresént theory curves on the whole lie lower than the experimental *
data curve, except for R/t < 150 at &/R = 0.250 and R/t < 125 at

2/R = 0.500. This is explained by the fact the simple supported edges
are assumed for the present theory but the likely boundary condition
for'experimental data is between simple supported and clamped condition.
This is true in éases of elastic collapse failure. The reverse effect
applies Qhen inelastic collapse failure occurs, because the plasticity
reduction factor is less for simple supported edges than any other
boundary conditions. Secondly, being small scale cylinders (as
suggested by the maximum radius being much less than 762 mm) the value
of Grc might even be less than the assumed value of 0.120 Gy' As we
have seen earlier, initial shape imperfections play a more major role
than welding residual stresses in the reduction factor of collapse
pressure, thereforé, it is more likely that the tested cylinders have
Co/R less than 0.0050. Further information on this matter regarding
Fig. (24) is not available. Hence, exact comparison is impossible
unless one can obtain an experimental curve of tested cylinders having

same, oOor nearly same, CO/R ratio.

BS5500 curve is derived from the lower bound curve of Fig. (24)
by introducing a factor of safety of 1.50. Hence it is only right
that BS5500 curve must lie below the present theory curve - and this
is true in all cases of &/R ratio and all R/t < 250. It is obvious
that the practice of overstretching design rules (in this case R/é > 250)
can produce disastrous results. With the present North Sea offshore
structures having R/t as high as 300, restraint should be applied when
using BS5500 rules, even although it is much more reliable than DnV
rules, as far as interframe collapse pressure uniform external pressure
is concerned. The pitfalls of extrapolating research information or
design rules to areas.fo; which they were never intended cannot be over-
emphasised, as such an eigedieﬁt may often be a recipe for disaster.

N
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6.6 COLLAPSE OF ' 'DPl  FRIGG' FIELD "BUOYANCY TANKS (94)

Engineers in Norway, U.K. and France are wondering whether there -
was a fundamental design error behind the buckling of all 16 temporary
flotation cylinders aboard Elf's Frigg field jacket, DPl. The
failure during October 1974 launching operation caused the 6700 ton
jacket to hit the bottom buckling two iﬁternal legs. Designer
McDermott is partlcularly sensitive about discussing any possibility
of error, but 1nformed opinion claims the company may have let its

R R

Gulf of Mexico platform design experience, with much lighter structures,

(94). From the information ‘ob-"

guide its choice for inadequate tanks
tained from Ref. (95) the tanks were designed to withstand a working

- pressure of 100 psi (694 kN/m?). From the collapsed sections of tank
removed from the Frigg jacket it was observed that on tank after tank

the outer shell crumpled between stiffeners to leave a battered steel
co;certina'— indicating interframe collapse failure. With limited
information available apout the yield stress and degree of initial out~
of-circularity, the interframe collapse pressures for varying values of
CO/R and orc/oy are plotted in Fig. (30). The mean radius of the tank
was 800 mm, which exceeded the maximum radius of tested cylinders of
BS5500 rules. Hence it can be assumed that the initial out-of-circular-
ity of the Frigg tanks could have a value 6f 0.005 R or even more. It
is obvious from Fig. (3)) that with C /R > 0.0040, failure would occur.
BS5500 is reliable at its permitted maximum C /R = 0.0050, compared

with the present theory. The DnV rules (1977 edition) predict a higher
valueof 686.5 kN/m*. The DnV rules (1974 edition) give a much higher
value of 1035.0 kN/mz. Since the tanks were designed in 1974 the finger
points to DnV rules (1974 edition). Although DnV rules (1977 edition)
are a much improved version of the 1974 edition, there are still some
doubts. For example, from section C55, Fig. C9.7 of Ref. (1), 1977
edition, DnV maximum permissible Co/R for Frigg buoyancy tanks is 0.0046.
From Fig. (30), for Co/R = (0.0046, the present theory predicts a pressure
of about 600 kN/m? to 650 kN/m?, whereas DnV predicts a pressure gf

686.5 kN/m? .

6.7/



6.7 KINRA'S ONE-FIFTH 'SCALE 'MODEL’ TEST(96)

The cylinder is orthogonally stiffened and subjected to uniform

. external pressure. The model failed due to shell buckling between

the rings at a hydrostatic external pressure between 110 psi and
115 psi. The cylinder had 24 stringers of rectangular section of
0.116" by 1.40". The stringers are smeared into an equivalent

thickness in order that comparison with the present theory is
v /

_ possible.  Hence theoretical predictions should be judged with this

in mind. An out-of-roundness of 0.2l inch was mentioned but no further
detail measurement was given. With the above information and an

assumed value of Orc = 0.156 cy the predicted collapse pressures are

'plottéd in Fig. (31). An out-of-roundness of 0.21 inch gives a

Co/R = 0.0073 and collapse pressures from Fig. (31) are:

i) pc = 75 psi for simple supported edges .
ii) P, = 90 psi for partially fixed edges
1) p_ = 127.5 psi for clamped edges

The predicted collapse pressures are reasonable and sound since the
experimental collapse pressures lie between the pressures predicted
at simple supported edges and clamped edges. On the whole the results

are in good agreement with the collapse pressure.

6.8 COMPARISON 'WITH "MACHINED-MODEL EXPERIMENT FROM REF. (28)

‘The cylinder was machined and subjected to uniform external
pressure. The experimental collapse pressure was 633 psi at a mode
of 11 circumferential waves. The experiment was designed to fail by
elastic buckling, hence the choice of material of high yield stress of
82500 psi. Comparison with the present theory for different boundary
conditions is as shown in Fig. (32). With a buckling mode of n = 11
for the experimental model the simple supported condition is ruled out.
An out-of-roundness of Co/R = 0.00035 with clamped edges, the present
theory predicts an exact buckling pressure of 633 psi. Such an out-of-
roundness 1is possible to induce through misalignment of lathe shaft when
machining. Even for perfect circular cylinder the buckling pressure
of 655 psi:- for clamped edges is in very good agreement with the ex-

perimental/



experimental collapse pressure - within 33, This comparison confirmed
that clamped boundary condition is possible in machined cylinder, and
secondly, the assumed displacement functions used in the analysis are

correct.

6.9 COMPARISON WITH WELDED MODEL EXPERIMENT RESULTS
FROM REF. (25)

Five welded cylinders/;ith external ring stiffeners of T-frame
were supjgptedﬂ}g~pq}fofﬁ/external pressure. The models are T-2, T-3,
T-6, T-2A ané‘T—7A and their properties‘are listed in Table 5. As in
most experiments, no measurement of residual stresses or geometricél iﬁ;
perfectiéns was carried out. Therefore, some assumptions have to be
made before comparison with the present theory is possible. A value of
n = 4 is assumed for all models when calculating the compressive residual
strgssés, Oic' " The predictéd pressures are Qlotted in Figs. (33) (34)
(35 (36) and (37). It is interesting to note at this point that material
used had very high yield strength, the lowest being 84000 psi, more than
twice the strength of the material normally used in offshore structures.
As can be seen from the figures, the results on the whole are in good
agreement for partially fixed edges and for value of CO/R < 0.0020. The
value of CO/R < 0.0020 for geometrical imperfections is comparatively
lower than those suggested in previous comparison. This can be explained
by the fact that externally stiffened cylinders are seen to be signific-
antly stronger thaﬁ?internally stiffened cylihders probably due mainly to
the favourable direction of welding distortion associated with external
stiffeners. This is also confirmed in Fig. (24) where externally

stiffened cylinders are stronger than internally stiffened cylinders.

6.10 AXIAL COMPRESSION

Comparison with experiment under axial compression for interframe
shell instability is not possible due to difficﬁlty in obtaining
results from ring-stiffened cylinders under axial compression. Most
experiments used cylinders with longitudinal stringers. The smearing
technique is not possible as in most cases the yield strength of the
stringers and the yield strength of the shell plating are differ-
ent(e' 60, 96{ Secondly, the increase in critical load due to

stringers is considerably less than that obtained by uniform'thickening

of/



of the shell with the same amount of material(so). Although some

experiments for ring-stiffened cylinders under axial compression have
been carried out at University College, London, the results are still

(97)

not available .- Therefore, the comparison under axial compression

~_will only be made with unstiffened cylinders and DnV Rules(l).

The stability of cylindrical shells under axial compression has
been studied in the past’botp theoretically and experimentally by very
~many investigators:’jf%ﬁe'égpgrimental values were much lower than the‘
classical theoretical values and the data had a large scatter band. ..
Initial geometrical imperfections have come to be accepted as the main
degrading factor(3l). This is absolutely true and is confirmed in
"Fig. (23). As can be seen at even a small value of Co/R = 00,0005 a
reduction factor of 0.53 is observed for R/t = 200. Needless to say
the degree of initial geometrical imperfections sensitivity depends on
the R/t and &/R ratios of the cylinders.. Data collected from 700 ex-
perimental results are plotted in Figs. (38), (39) and (40). The
(98)

data are from 18 publications where all experiments which had
buckling stresses exceeding two thirds of the yield stress of the
material were disregarded. The reduction factor o is a ratio of
buckling stress/ocr‘where ocr = 0.605 Et/R. All the tested cylinders
satisfied the requirements:

i) The largest inward amplitude of initial

geometrical imperfections does not exceed

0.04 vRt,

ii) The effects of non-uniform distribution of the

load at the boundaries are alleviated.

iii) The displacements in the piane of cross section

are prevented along both edges of the shell.

iv) The length of the cylinder does not exceed

0.95 YR/t.

As shown in Figs. (38), (39) and (40) the present theory curve is
based on a simple supported boundary condition, a &/R ratio of one and Co=
0.010vRt (a quarter of the maximum allowed). The present theory curves

are/



are in close agreement with the experiﬁental data, particularly

Fig. (40). There are some scattered data between R/t of 100 and

300 in Fig. (38) lying below the present theory curve. This is
because the tested cylinders for these data points were likely to
have initial geometrical imperfections greater than the value assumed
for gﬁe present theory. By assuming a value of Co = 0.02 /Rt these
data points can easily be accounted for. The comparison should be

judged in mind that the experimental boundary conditions were unlikely
-

- to be simple supported, but perhaps near to it. Finally, this com-

parison proves that initial geometrical imperfections is the main ™ - *

degrading factor. Figs. (38) to (40) are for the length range 0.7111_/R_<_5.5.

Fig. (41) shows, for various levels of yield stresses, the ;omparisonA
with DnV Rules (1977 edition) for cylinders.under axial compression. The
présent theory is baseé on a yield stress of 246 N/mm?, simple supported
boundary conditions and initial geometrical imperfection is based on DnV
maximum permissible value taken from C55, Fig. C9.7 of Ref. (1) and re-
produced here in Fig. (42). As shown in Fig. (41) the present theory
(for oy==246 N/mm?) predicts lower values than that permitted by DnV
Rules, particularly for R/t > 150. The difference cannot be due to
boundary conditions as DnV Rules are based on simple supported boundary
conditions. The main reason for the differences lie in the DnV maximum
permissible value of initial geometrical imperfection. From Fig. (42),
for a same R/t ratio, DnV Rules permit increasing values of Co/R for in-
creasing £/R ratios. This is surely incorrect, as long cylinders are
more sensitive to initial geometric imperfections than short cylinders.
Secondly, DnV Rules for axial compression (C3.4.2.1, Ref. (1)) contain
no £/R term in reduction factor for Z > 20, As confirmed earlier, the
degree of initial geometrical imperfection sensitivity depends on both
R/t and £/R ratios. The comparison shows that DnV Rules are generally

less conservative and unreliable for certain range of R/t. The independ-

- ence of the DnV Rules to £/R is clearly shown by numerical values in

Table 13. The elastic buckling stress of the cylindrical shell is

calculated by means of classical formula for axial compression, then

. with modification factors for imperfections and reduction factor for

plasticity. The modification factors are independent of the £/R ratio.

Overall Instability/
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Overall Instability

Table 6 shows the comparison between the results of Eq. (22a) and
Eqg. (22b) for various lengths of a cylinder. The comparison is just
to demonstrate that the displacement pattern of Eq. (22b) gives slightly

lower buckling pressures than Eq. (22a). At critical buckling pressures

~

a difference of 5% is observed throughout.

6.11 COMPARISON WITH KENDRICK 'PART III

Table 7Wshowsffﬂ;"céﬁb§rison between the results obtained from
present theory and results from Kendrick Part IIIX. The comparison
is based on a numerical example of Ref. (80). Eq. (19b) represents
simple supported boundary conditions at the rigid ends of the cylinder,
Eq. (20b) and eq. (21b) represent partially fixed edges and clamped
edges respectively. Eq. (19c¢) consists of the same buckling dis-
placements as eq. (19b) but different pre-buckling displacements, that
is %§'= constant &, w= constant - uniform lateral.and axial contraction
prior to buckling. The out-of-plane bending, torsional and warping
terms are omitted for the strain energy in the ring stiffeners for
eq. (19c). This is done so as to simulate the .condition as near as
possible to Kendrick's assumptions. It can be seen from Table 7 that
the results of eq. (19¢) are in good agreement with Kendrick's solution
within a few per cent. The slight difference is due to certain
different terms used in bending strain energy of the shell. Comparison
between eq. (19b), eq. (20b) and eq. (21b) at critical buckling pressures
suggests the effect of boundary conditions at rigid end is insignificant

for value of L/R < 4.50. For design purposes simple supported condition

is sufficient.

The assumption that the generators remain straight (or uniform)
is an equivalent of a dead load situation, because the pressure is al-
ways acting perpendicular to the generators. Eg. (19c¢) has pre-buckling
displacements that assume such condition. Hence eq. (19b) is more
correct than eq. (19c¢). Hence eq. (19b) and'eq. (22b) are of interest
here as to which one would predict a lower critical buckling pressure
for the cylinder of Table 7. Eq. (22b) gives lower critical buckling
pressures than eq. (19b).for L/R < 6. At L/R > 7.5 the cylinder buckles
in the pattern of eq. (19b). It is interesting at this stage to compare
the critical buckling pressures (pﬂ) predicted by the present theory and
that of BS5500 design rules. BS5500 rules for an overall critical

\\ . N

\,

.\\
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(99)

buckling Pressure use the Byrant's formula » but introduced an
effective length, instead of full length of interframe spacing. The

pressure to cause yielding in the ring frame (pfy) calculated by BS5500

. is as outlined in Appendix B. " For L/R < 6.0, BS5500 predicts much

higher values of pn than present theory and vice-versa for L/R > 7.5.
This is because Byrant's formula is an approximation of eq. (19b) and
the cylinder buckles in the pattern of eq. (22b) for L/R < 6.0. The
pfy of the presgnt theory and BS5500 are based on Co/R = 0.0050 for

the ring frame. As pf§“depends on pn therefore it is obvious to see
—~

~ the differeﬁéé’iﬁ’ééy of BS5500 and present theory for L/R < 6.0.

The small difference between pn of BS5500 and pn of present theory .
for L/R > 7.50 is due to the fact that Byrant's formula is based on

. an overall instability of one ring frame, whereas eq. (19b) represents

an overall instability of the whole cylinder.
* Another numerical example, with the same dimensions as the
cylinder in Table 7, except that the interframe spacing is increased
to 50 inches, is in Table 8. The aim of this example is to prove
that for higher 2/R ratio (wider fraﬁing spacing) the overall in-
stability of the cylinder follows the pattern of eq. (22b) for greater
L/R range. For all values of pn determined by eq. (22b) the resulted
pfy values are lower than that allowed by BS5500. This again proves
the close agreement between eq. (19b) and BS5500.

6.12 COMPARISON BETWEEN PRESENT THEORY AND EXPERIMENTAL
RESULTS OF REF. (100)

Table 9 shows the comparison between present theory and Cres-
well's experiment on a machined aluminium cylinder under extefnal
pressure. The use of aluminium alloy model is to ensure elastic
buckling. The experimental collapse pressure was recorded at 450 psi
at a circumferential wave of two. Unfortunately no measurement of
initial geometrical imperfections was carried out, and the most likely
out-of-circularity mode is n = 2 resulting from ovality of lathe shafts.
Therefore, comparison has to be based 6n assumed values of initial
geometrical imperfections. The shell plating is very thin - only -
0.030 inch (0.762 mm). Hence any initial out-of+circularity would
be more likely to be in the shell plating than in the ring frame.

The buckling pressures from eq. (22b) and eq. (19b) for various values
of CO aré as shown in Table 9. For a cylinder of such thinness a

2
value of COZ = 0.20 mm is possible and eq. (19b) gives a corresponding

—
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value of 447.8 psi which is in close agreement with experimental
coilapse pressure of 450 psi. The comparison should be judged

that no exact theoretical comparison is possible without some know=
"ledge about the degree of initial out-of-circularity. Secondly, the
very small frame width made strain-gauging of-frames impossible and

this has inevitably excluded direct observation of the maximum stresses

occurring in the frames.
. e

6.13 COMPARISON BETWEEN PRESENT THEORY AND EXPERIMENTAL
' "RESULTS OF REF. (96)

The overall instability of orthogonally stiffened welded séeel.
cylinders under uniform external pressure was carried out by Kinra(gs).
‘An experimental collapse pressure of 270 psi was recorded and an initial
out-of-circularity for the ring frame was mentioned as 0.234 inch.
Compafison is only possible by smearing all the stringers, as the
pre;ent theory only considers ring-stiffened cylinders. The results
calculated from eg. (19b) and eq. (22b) are as shown in Table 10. A
value of Oic = 0.197 0& for shell welding residual stresses was assumed.
The results from both equations at the same COl/R of Ref. (96) are in
close agreement with the experimental collapse pressure. Not sur-
prisingly, BS5500 predicts the same mode of failure as eq. (19b).
Unfortunately no strain measurement in the ring frame was recorded
and this makes it impossible to confirm whether failure was due to
premature yieldinghln the ring frame or overall instability, as pre-

dicted by eq. (22b).

This comparison shows that buckling failure of an orthogonally
stiffened cylinder under external hydrostatic pPressure can be treated
conservatively as that of a ring stiffened cylinder by smearing the

stringers.

6.14 INFLUENCE OF OUT-OF-CIRCULARITY ON COLLAPSE STRENGTH

Table 11A shows the comparison between present theory and
Smith‘sz) results obtained by finite element method for externally.
pressurised ring-stiffened cylinders. The results of Ref. (52) are
in close agreement with that of eq. (19b) within a few per cent.

Eq. (22b) predicts much lower values. One must not be too hasty

to accept results obtained by finite element method as more reliable
and accurate than other simple mathematical techniques. Whatever the
analytical tool, there are always assumptions made in the analysis.
Smith's work assumed that an overall collapse analysis of a stiffened

\
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cylinder can be represented by simply the overall collapse analysis
.of one ring frame with attached strip of shell plating. Although

it is claimed that this assumption is accurate enough for long
cylinders, the difficulty is how and where would one draw a line
between short and long cylinders. As to whether a cylinder would
behave as a short or long qylinder depends not only on length but
radius, interframe spaciné; shell thickness and frame area of the
chindérT“”‘A“ﬁﬁﬁErié;l example in Table 11B proves the point.

This is a difficult situation as there is no attempt made so far to - .

define the term "long cylinder" in a proper engineering term.

The main aim of this comparison is to show how simple mathe-
matical modes can predict results as close to that of finite element

method, not mentioning the higher computer time required for the latter.

6.15 COMPARISON BETWEEN PRESENT THEORY AND FINITE
ELEMENT METHOD OF REF. (91)

The comparison is based on numerical example of Ref. (91) for
an overall instability of a ring stiffened cylinder under external
pressure, The cylinder was modelled by seven sub-structures with a
total of 16 triangle elements and 8 stiffener elements in each sub-
structure. The stiffener elements use cubic interpolation functions
for the displacements. Each sub-structure consisted of one stiffener
and its contributing portion of the shell. The ehd of the cylinder
was simply supported with no longitudinal motion allowed. The analysis
predicted a buckling pressure of 1525 psi. The analysis allows the
loading to change direction as the shell deforms and buckles - a live
loading condition. Table 12 shows the results predicted by the present
theory. The critical buckling. pressures by eq. (19c) and eqg. (19b)
are 1550.7 psi and 1466.1 psi respectively. Eq. (19b) assumes a non-
uniform lateral pre-buckling displacement, whereas eq. (19¢c) assumes a
uniform lateral pre-buckling displacemént. | Eg. (19b) is close to a’
live loading condition and its result is within 3.8% of that predicted
by finite element method. It is very close indeed, as finite element

method depends very much on the mesh size for its accuracy.
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CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH

CONCLUSIONS

-

Two compdter programs, one for interframe collapse and the

—

other for overall collapse as influenced by initial imperfections,
have been developed and the results compared with experiments and

with present design codes.
//> //

e —

-

Equations accounting for non-uniform and uniform lateral - ..
pre-buckling displacements are presented in this thesis. Factors
which have a significant effect on the behaviour of ring stiffened
cylinders, such as initial geometrical shape imperfections and
residual stresses of the shell due to welding and cold-bending, are

included in the present theory. The energy expressions used here

. are in close agreement with the differential equations obtained by

Von Mises for interframe buckling under uniform external pressure.
This is particularly true when uniform lateral pre-buckling displace-
ments are assumed. However, for non-uniform lateral pre-buckling
displacements, the present theory predicts lower buckling pressure
than the Von Mises' equations. This is due to the fact that the non-
uniform lateral pre-buckling displacements vary non-linearly to
accomnodate the type of pressure loading which is often referred to
as 'live loading, and changes direction as the structure deforms.

Such effect is not accounted for in Von Mises differential equations.
The effect of live loading as opposed to dead loading depends on the
R/t and £/R ratios and in some cases a difference of more than 10% is

obtained.

An examination of the effects of initial geometrical shape im-
berfections confirms that they are most serious for axial compressive
load. This is followed by external pressure and the less sensitive
radial (lateral) pressure loading. This is due to the absence of
the axial pressure component reducing the sensitivity of the radial

pressure loading.

The/



The influence of welding residual stresses of the shell on
interframe collapse pressure under uniform external pressure was
examined. This confirms that the compressive welding residual
stresses of the shell is detrimental to the ductile strength of
cylindrical shells., It is shown that as an approximation an increase

-

ip the compressive welding residual stresses results in a similar
‘percentage loss.in stf;hgth. At high ratios of R/t the percentage
loss of strength can be very high. Although the effect of cold-
bending residual stresses in the shell does not appear to have any
significant effect on the collapse pressure of the shell, further

experimental verification is necessary.

- Compafison with experimental results for interframe collapse
and overall collapse under uniform external pressure is good. Inter-
frame collapse by design code BS5500 is adequate for R/t < 250. For
greater values of R/t further experimental verification is necessary.
BS5500 is preferred to the DnV Rules for interframe collapse under
external pressure. For overall instability, BS5500 is in good
agreement with eq. (19b) of the present theory. Results obtained
by the present theory for overall instability are in close agreement
with results obtained by finite‘element methods. In some examples
overall collapse pressures from BS5500 are thought to be inadequate
when compared with those determined by eq. (22b). Therefore it is
advisable to use both equations for an overall collapse prediction.
The limited numerical comparisons show that DnV Rules for axial com-
pression for unstiffened cylinders appear to be incompatible with their

specified tolerances.

Finally, the buckling failure of an orthogonally stiffened
cylinder under external hydrostatic pressure can be treated as conserv- °
atively as that of a ring stiffened cylinder by smearing the stringers.
This view is supported by the comparison made with experimental results

reported by Kinra(ge).



FUTURE RESFEARCH

There is no theory available which can accurately predict
the elasto-plastic behaviour of stiffened cylinders for overall
collapse with shape imperfections and residual stresses accounted
for. The influence of stigfener tilting on overall collapse

. L
strength has received practically no attention at all. The problem

including these effects is of very great complexity and it is unlikely
that theory will be able to tackle such problems, except in a very

crude manner for a long time yet.

Future research should be directed towards cheaper and
fas}ef solution techniques for non-linear equations for special
problems, such as stiffened cylinders under combined loading. Non-
linear finite element or finite difference equations should be solved
more cheaply than at present(lol). We ére concerned with the be-
haviour of inelastic materials, where there is a non-linear system
to solve at each loading step. This applies both to the quasi-static
or dynamic equations of plasticity, and to the problems of large dis-
placement. A general approach to the solution of non-linear systems
or the minimisation of non—quadratic functionals, which applies to both
finite difference éhd finite element models, has been successfully used
in the field of numerical methods (102 103, 104). Other numerical
tools that are well adapted to finite difference method are clearly

presented in references (105, 106 and 107).
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NOMENCLATURE

Al axial buckling displacemént amplitude
B area of ring frame section
[a] stiffness matrix of the cylinder
Bl' B2 circumferential buckling displacement amplitudes
. //“'—////J
[b) —--load matrix of the cylinder
Cl ,C2‘ radial buckling displacement amplitudes )
s —of-ci . \

Co,Col,C02 initial out-of-circularity amplitude

Fr torsional constant of the ring frame section

[e] column matrix due to initial shape imperfections

d .depth of the web of the ring frame

e distance of the centroid of the frame section from the
shell mid-surface; positive for internal frame and
negative for external frame

E Young's modulus of elasticity

: Es. . secant modulus

£ width of the flange of the frame

G shear modulus of elasticity ~

Ixo moment of inertia of frame section about the axis
parallel to the axis of the cylinder which passes through
the C.G. of the section (only)

Izo moment of inertia of frame section about the vertical
axis of the frame which passes through the C.G. of the
frame section (only)

k = t*/(12R?*) , shell curvature term

L distance between rigid apdbulkheads

L distance between ring frames or length of unstiffened
cylinder

m number of buckled longitudinal half-waves

n number of buckled circumferential waves

—
e \

) | . . )
\\ : N
. N )
N .



NOMENCLATURE (Cont'd)

N number of ring frames between bulkheads

Pl radial pressure component of the external pressure

-

P, . L "axial pressure component of the external pressure

o = p1 + pé = external pres#ure

pc‘ interframe‘Follépse pressure

pc5 ~rwpressﬁfg};;/é;;se yielding in tﬂe shell midway between
- stiffeners ’ .

pm elastic interframe buckling pressure by Von Mises equatiormn.

P elastic overall buckling pressure of a perfect cylinder

pr . pressure to cause yielding in the ring frame

[rj‘ ) stiffness matrix of cylinder at pre-buckled state

R mean radius of the cylinder

[s] load matrix of cylinder at pre-buckled state

ST total potential energy of a system

SS extensional strain energy of the shell

Sb bending strain energy of the shell

Sf> strain energy of the ring frames

t shell thickness

tf thickness of the flange of the frame

tw thickness of the web of the ring frame

u,ul,u2 axial displacements at pre—bgckled state

! Poison's ratio

Mo Poison's ratio in the elastic limit

U axial displacement at buckled state

v circumferential displacement at pre—bﬁckiéd staté

\Y circumferential displacement at buckled state

WiW, oW, radial displacements at ére—buckled state

W radial displacement at buckled state



NOMENCLATURE (Cont'd)

Wd work done by the external loadings
wo radial_displacement initial shape imperfections
[x] displacement matrix at pre-buckled state

[x] displacement matrix at buckled state
z - = £2/11% /Rt

B e e // 4
v —-——= o (Loy?
% p,R(1-u*)/Et

= R —112

a . = Es/E for shell
ac ‘ = Es/E for ring stiffener
Kx - . axial curvature strain
Ke_ circumferential curvature strain
Kxe twisting strain .
€g extensional strain in circumferential direction (hoop)
€, extensional strain in axial direction
€ : . shear strain

x0
oe,ox,oxe their respective stresses
oy yield stress of shell plating
UYF yvield stress of ring frame
Gb circumferential bending stress in the flange of a
_ ring frame-
ch circumferential compressive stress in the flange of

a ring frame

6F ‘ total circumferential stress in the flange of a ring
frame
) Orc compressive welding residual stresses of the shell
plating
T ' warping constant of the ring frame section
/'./ \
\



" 'NOMENCLATURE (Cont'd)

Alf = TR/L
AZ = mR/%
e
A = mA o
3. 2 4
L ~—— . /
nt T——half width of the tension block of welding residual

stresses distribution




APPENDIX A

RESIDUAL STRESSES OF SHELL PLATING DUE TO COLD BENDING

Let R be the radius of curvature into which the ring frame is to be
formed, Rl the radius of curvature to produce the elastic-plastic

moments required, and R

-

tl /—l'niﬁa( posilion

Constrained
position

FIG.I —Ring Forming Procedure

E€e ... Ees
Outside fiber o
e A — —p
\\\ -T. VZ -C- 0 /T

< 2%
el ~o t/z T c;a-\rruslon .
T= Teasion A

Yy s o
(o) + (3] a (c}

N =

FIG.I ~Ring Residual Stresses: (a) Constrained; (b) Springback; ( ¢) Final

¢

elastic springback forces.

MS = gpringback moment per unit length

Gb = bending stresses (hoop)

MB = applied moment per unit length

: . 1 1 1
By equating the curvatures it follows that — = — =
R R. + R
1 2

and
static equilibrium equations are:

‘S\Ub da = o

,!Aobsz = MB

]

—_
-~

\ N

™

2 the radius of curvature under the action of

LR R AN I

ee 00 e e

Tt t. 2 t2 t2
20y(t/2 - tI)_( 1(2 + t/4) + 20y 1 /3 = cy( /4~ "1/3)



also:

t = R_/E
) o ./
= -M_ = EI/R = ¢2
and Ms MB / 2 where T t /12
. = — - /
S Ry = CEI/M R

e ——— e e— —

Substituting for R2 in (i), we get

1 - 1 120 o Rl
=== o= Etg’ (t2/4 - (L=52) : terreeeaeaes (iV)
‘ _ : EV/3

In egq. (iv), Rl,oy,E and t are known and thereforé R1 can be easily

solved by numerical iteration. ‘Knowing R., Ms and MB can then be

1
calculated.
Mz
If Gs is the springback stress, then Os = —%—
120 o R
. t cssecsscsaca
o = /e - () )
.:E.“ E 3 4
.o, = 0 +0 ceceaseenaas (Vi)
1 y s
M
amd o T ytHE eeeneeenees (vid)
Numerical Example:
Given: R = 800 mm, t =6 mm, oy = 258 N/mm?, E/oy = 800
substituting in eq. (iv)
1.2 -5 B . (viii)
—— = — - - z @ 08 0 a0 0 0 00
R T g " &M x 107 O ~lg3grg))

Solve R1 by trial-and-error procedure (this can be easily programmed by

a simple iterative procedure).

Try/




Try R, = 530 mm,

1
Right hand side of eq. (viii) = '3%5- - 0.0006148 = 0.00127
SR, = 786;2,mm
“““‘Nextatry”“Ri' = 536.2 mm
Right hand side of eq. (viii) = ggé—g- ~ 0.0006146
. R = 799.81 (near to sufficient accuracy)

Hence R
1

.

= 536.2 mm is the accepted value for eq. (viii) to give a

valae of R = 800 mm.

Then,

t1 = 0.670 mm

. MB = 2283.4 x 10°

and from egs. (vi) and (vii),

- 0.475 o
. .Y

o
n

Q
I

.0.670 o
y

This technique of calculating o, and o, are valid for rectangular

it/

1 2
~cross-section only.
Calculated values for Et/(Rcy) = 20, 150 are as follows:
Et/(Roy) ol/cy 02/0y tl/t
20 0.496 0.869 0.0435
150 _ 0.499 0.980 0.0065




It is obvious that for Et/(Ro ) + » o./0 = 0.500 and ¢./0 = 1.00
y 1"y 2y

: ' a R
values of (cI/oy) ’ (oz/oyi/an (tl/t) against Et/( cy) are plotted
e '

in Fig. Al. /////

e _—
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" APPENDIX B

i) The procedure to calculate the pressure to cause yielding in the
extreme fibre of a ring frame under expternal pressure.
Ve

The circumferential compressive stress ¢ in the flange of an

internalmring—frame/éé}ived by Wilson(sa) as:

2 _ K
p. R* (1 2)

N 4
oFc Al
1 :
) Rp (1 + — Nt
At -t + ——)
W o
1
vhere:
—pfy = pressure at which yieldiing begins in the extreme of
a ring frame
RF = radius to the centroid of the ring section
= 2 RZ
Ay R* RAg/Re
of = 30 - W/ Ee)
N1 = [Cgsh(alkl) - Cos(alll)]/[Sinh(alzl)~+ Sin(alkl)]
21 = % - Etw

An approximate circumferential bending stress in the flange of a ring

frame derived by Kendrick(sg) as:
2 -
5 - Bege Con (™ -1 gy
= — —
b (Pn pr)
where:
P, = critical préssure for overall instability of
perfect cylinder
C01 = initial out-of-circularity amplitude of ring frame
Cce = distance from mid-surface of shell to extreme

" fibre of the ring frame

The rest of the notations are defined in the nomenclature section.

L



Equating the sum of circumferential compressive stress and the
" circumferential bending stress to the yield stress oyF of the ring

frame results in a quadratic equation in pr.

After substitution we get a quadratic equation of the form:

T —
pr prHl + H2 0
"where:
Hl = -(D2/D1 + P +’UyF/D1)
H2 - 0yF X Pn/Dl
and:
D1 = ch/pr
= . 2 _ _n2
D, EeffCol(n 1) /(n-R?)

Hence minimum pris given by:

' = . | - Y17 -
Pry 0 50 (A1 H1 4H2)

This procedure has been adopted in the'B85500(7).

ij) Von Mises equation for elastic buckling pressure under uniform
external pressure.
1 k?

= Et 1 ) Tn2 - 2
n TR Ly T e
)\ .

2
2

It is necessary to minimise the buckling pressure with respect to n.

This is easily done by a simple computer program. A chart for de-
forming the number of lobes n for which pm is a minimum is given in

Ref. (7).

Pressure/ -



Pressure to cause yielding in shell piating midway between

stiffeners: _
. Tto,
P = R (1 ingl)
. - =2[8sinh a1l Cos alll + Cosh al?l Sin ole]
G- = 2 2 ‘ 2 2
(53 g
1 )////f;j/}nh alll Sin alll)
- Ty .
. y _ Al(l 2)
T + .
(A1+twt) (1 Bl)
A _ 2tNl<
+
1 cll(Al twt) |

. whe;e Al ’ al ’ Rl are as defined previously.



APPENDIX C

.Interframe Buckling

2 = 2a) + a(l-w)n? (1+k) + 20RW2 (1-*)n?

a0 = ~4ual3nTl3 - 2a(1-u)nA3T14

a = Aued. T13 = Ska (1-p)n®A.T14

13 He 3/; a(l-p)n 3Tl.

392 =TT danTal + 20 (1-w) A} (1+3k)T15

3y, = -4anT1l - 6ka(l-u)lg nTl5 + 4kaul§ nTl6 - 20RWln(l-p?)
a, = 4011 (1+k (n -1)?) +4kaA;1Tl7 + Bka(1-w A2 nPTLS

—8kuaA; n®Tl6 - 2aRRC(l-u’)A§ T1/R + 20RW1(1-p?)n?

= 2 - 2
bll 4axln T4 4aux2n T6
b12 = —4aux113nT9 - 213nTl2I
' = - 2 - - 2
b13 8uk2xlk3 T7 - 4a(l u)xlkzn T10
= 2 2 2
| b22 , 4ux213 T1 + 4auxll3 T2 + 8axln T3
b23 = -BaxlnT3.f 4apn(*2T5 - 2X2xlk3T8) + 4&(}-u)x112n13T8
+ 4nTl1lI
= - 2 2 . 2 2
b33 » 4ax2A3 Tl.+ 4uaxlk3 T2 + 4axlT3n 4uux2n TS5
+16auxlA2A3T8 - 47111
= - 2 - P 2
cl BakleAB T7Co +r4aux1A3T9C° da (1 u)xlkzn TlOCo
+4A,T12C I
3 o)
c2 . = 4ax1nT3Co - 8auxlA2A3nT8Co + 4a(1—u)x112A3nT8Co
+ 4nT11C 1
[)
= 2 _ - A?
C, v 4axlT3CO(n 2) 4ax2 3 'I'lCo + 4auxlx3co(A3T2 + 212T8)

- -, 2 _ - - -2 2 _
4aA2T5(n 1)co 4TllCoI 20RW1 (1-p )Co(n 1)/4>l



"-1.0

20T18 (1+k) + 2kak:‘rl9 + 2¢1T181 - aRRC(l—u’)k; T21/R

~2T20 (au + ¢, 1)

-

" 2a

27201 + GRRC(1-}*)T20/ (¢ R)
—

Simply Supported Edges

T1

T2
T3
T4
T5
T6
)
T8
T9
T10
T1l
T12
T13
T14
T15
T16
T17
T18
T19
.T20

T21

-’ \
JCos*g ax\

Iéoszg ax

fSin g Cos®’g dx

fSin g Sin’g dx

/Sin g Cos?*g dx

Jsin’g dax .
fCos?g dx

J-0.50 Cos g Sin g Cos g dx
J0.50 Cos g Sin g Cos g dx
fSin g sin®g dx |
J0.50 Cos g Cos g Sin g dx
féin2 g dx

f—Sin’g dx

Jsin’g dx

JCostg dx

fCos?g dx

f-8in’g d&x

Jsin*g ax

fsin*g dx

fsin"%g ax

fSin g dx

N

L

NG
.



Partially Fixed Edges

Tl = J(Cos g + Sin2g)? dx
(»«\KTZ_ = ~'fzéin g + Sin*q) (Cos g + Sin2§)2 dx
T3 = f(sin q + Sin®’q) (Sin g + Sin®*g)? dx
- T4 = f(Sin g + Sin?’q) Cos?’g d#
5 = ,,i,__>[(sin—ﬁf‘f./siﬁi'§_)2 ax |
T6 = fCos?g dx | ’
7 = J0.50(Cos q + Sin2g)Sin g (Cos g + Sin2g) dx ‘
T8 = /0.50(Cos g + Sin2q) (Sin g + Sin?g) (Cos g + Sin2g) dx
T9‘ = f=(5in g + Sin?’q)Sin g (Sin g + Sin®*g) dx
T10 = J0.50(Cos q + Sin*q)Cos g (Sin g + Sin?g) dx
T11 = f(Sin g + Sin*g)? ax A
T12 = J-0.50 sin g (Sin g + Sin?’qg) dx
T13. = JSin g (Sin g + Sin?*g) dx )
T14 = fCos g (Cos g + Sin2g) dx
5 = f(Cos g + Sin2g)? ax
T16 = f(S;n g + Sin®*g) (2Cos2g - Sin g.) dx
T17 = Jf (2Cos2g - Sin g)? dx
T18 = [(8in q + Sin*q)? ax
T19 = f(2Cos2q - Sin q)? dx
720 = f(Sin g + Sin®*q) dax
T21 = f(Cos q + Sin2q)? ax

Clamped Edges

Tl = f4 8in*2g ax

T2 = f4 (1-Cos2g) Sin?2g dx

T3 = f(1-Cos2q) (1-Cos?g)? dx

T4 = J (1-Cos2q)Cos?*g dx

T5 = J (1-Cos2g)? ax )

-

- \

Z \\1;> X .

N
\;
A,



Clamped Edges (Cont'd)

T6

T7

- —

T8

T9

fCos?g dx

_f‘QSian Sing g Sin2g dx

f2Sin2q Sin2g(1-Cos2g) dx
/Sing g(1-Cos2q) (1~Cos2g) dx

fsin2q _Cos g(l-Cos2g) dx

[ (1-Cos2g)? ax’

f-Sin g(1-Cos2g) dx

/ 8in g(1-Cos2g) dx

J2Cos g Sin2g dx
f4Sin®2g dx

J4 (1-Cos2g) Cos2g dx
J16 Cos?2g dx
J(1-Cos2q)? ax

f16 Cos?2q dx
f(1-Cos2q) ax

J4sin? 2q dx

= DX = IX
g } r 9 )
Xy and x, are solutions of eq. (34)
RW1 = fcw Sin*g dx
RW2 = fow Cos’g dx

= p f o

RRC Ucb rom eq. (29)
I = 1 for uniform external pressure
I = 0 for axial compression



Overall Buckling

15

22

23

24

25

33

34

35

44

2017 + a(l-p) (14+K)0° + 4(1-p*)a n"0Q6 (H3 + HS)

+ 26 (1-u? )n>RW2 + 2H4(1—u)an’QQ6
-4auklns43 - 2a(l-u)klns48

-4aullns45 - 4a(l—u)lan47
- v - 2 - —2 2 (22
4qukls43 4ko (1-p)n lls48 4H3 (1-¢ )AlQQS - (Rr1‘+'v .

1 - #/R) - 24 (1-w)an® A 005 - 4H5(l—u2)aFn4(1—2/R)llQQ5

+ 4ko)? §55 - 2&(1—ﬁ’)RRanllS48/R

S47 - BkaA A2 S44

4auAIS45 - 8ka(l-p)n*A 5

2

-4a(1-u’)RRCn212547/R

4an’S6 + 2a(1—u)kf SS2(1+3k) + 4H2(l-ﬁz)aFanQ3(l- /R)?

+4HL (1-1 ) a_003n*

549 (1+3k)

4an®S16 + 4a(l~u)AlA2

f nS53 - 2a(1-u?)nRWl

—4H2aF(1-u’)nQQ3(1-£/R—n2£/Rth’(%?’)-4H1(l-u’)a£QQ3n’

-4anS6 - 6ka(1-u)A 1,852 + 4kap

-40nS16 - lea(l—u)lllan49 + 16kauA; nS44

-2a (1-p2 ) nRW4
6an® + 4a(1—u)k£ (1 + 3k)

-40nS1l6 - lea(l—u)Alkan49 + 4kauk{ nS54

=20 (1-u? ) nRW4

6an - 12ka(14p)x5£1-akquxs n - 2a (142 ) nRW3

4056 (1+k(n*-1)2 + 4kak£4850 + Bkkf n’(a(l—u)852 =

uasS53) + 4Hl(1—u=)aFggan“ + 4H2aF(1—u’)QQ3(n2§-— 1)
L 4.9 )
20 —112 2 oy 2 - 2 2.0 )

{n R 1) + 4H3(1-u )aFQQ4Al (n (R) + (1-2/R)? + 2n R(1 R)

+2H4(1—u)n’kf aFQQ4 + 20 (1-p®)n?RWl +4H5(l-u2)aFn4Af 004
[T P '

(1”R)(1 R)‘ 20(1-W*)A} RRC  S52/R

AN N

\

~



Overall Buckling (Cont'Qd)

= 2y 2 2 _7y2 - 2
a45 l6ka)\2 ll S51 + 4aS16(1+k(n®*-1) ) +160 (1 u)llkzn S49

-akapn® (A S54 + 412 544) + 20, (1-1£? ) n? RW4

-4a (1-p? )RR_C)\vll2849/R

a = 60 (1+k (n?-1)2) + 32kod 2} + 16ka(1-p)A2 n? + 16kapd? n?
55 P 2 2 2
+20 (1-p* )n?RW3 - 4a(l—u’)RRC)\22 /R
— _ '
= 2 ) 2 152 2
bll 4an (xlS4 + xzs7) + Zaux3n o+ 4H2(l 18 )anln 002
b12 = 4uun(x1AlSl4 + xzlelS) f 2Alns431
b13' = 4aunk1(x1815 + XZSl?) + 2X1ns451
- ) 2 ' ‘__ _ 2 -
b14 _4118431 + 4aAl'(AlxlSlB + 2}2x2519) 20 (1-p)n
(A,%,524 + 2),%,526)
= A A AL - -p) n?
b15 4 lS4SI + 8a 1 2()«lxlSlQ + 2X2x2822) 20 (1-p)n
_(klxlSZS + 2A2x2827)
= 2% 2 2
b22 4ak1 (x3820) + 4aull (xlSB + x2511) + 8an (xlSl + xzs3)
+8H2(1—u’)n2aFQQl xl(l—Q/R)
= : . b 2
b23 8a>«1?«2x3521 + 8au)\17\2(x1510 + x2813) + 8xn (xls3 + x282)
b24 = -Ban(x181 + x283) - 4aunx3840 + 4nSGI-—4aunAl(hlxlSB +
- -2 -2 —112
21,%,510) - 4H2(1-p* ) o x,001n (2-n% £/R) + 20 (12 )nk)
,(xlAISB + 2X2X2S10)
b25 = -8an(x183 + x282) - 4aunx3841 + 4#8161 - SaMnAZ(AleSIO +
2X2x2S9) + 2a(l-u)nll(llxlsll + 2A2x2813)
= 2 2 2
b33 8a12 x3 + 16au12 (xlS9 + x2812) + 8an (xlsz + x285)



Overall

34

35

44

b,

55

c,/

Buckling (Cont'd)

~8on (x, S3 + xzsz)'- dopnx_S41 + 4nS16I - dopnh. (M. x

3 1'11

S11 + 22 _x_S13) + 4oa(l-U)n 2(alk Slp + 2l2x239)

22 2

’ 3S42 + 6nI —Buankz(klxlSl3
+ 2A2x2§l2) + 4a(l—u)nA2(AlxlSI3 + 2k2x2812)

—

-Ban(xlsz + x255) - 4oMnx

2 x 820 + 2 + xS + 4an® (x_S1 + x_S3) * ..
4axl x3 0 4auAl (xlSB x2 11) ag (xl 1 x2 3)

2 -
+ 4gun x3S40 4561 + Squll(klxlsa + 212x2810)

—_1y2 2
+ 4B2 (14 )a x, 0" QQ1

BaA A, X521 + Bauxllz(xlSlO + x,S13) + 4an’(x183

17273 2
2 -
+ x282) + 4oun (X3S4l) 48161 + 4aukl(llxlsll
+ 2A2x2813) + 8auk2(klxlSlO + 2A2x259)

2 2 2
Sux3A2 + lGaukz (xlS9 4+ x,S12) + 4an (xlSZI + XZSS)

2

+ 4oun®x_S42 - 61

3

—4aucolkl(xlSl4 + x2815) -4auC°211(x1815 + x2517)

- - + 2 + S
4),C_ 5431 4AlCO2S4SIV 4aC_ A} (A x S18 + 2) x S19)

. _ _ s
+8uC02X2Al(Xlxlsl9 + 2X2x2822) 20 (1-p) n Col(klxls24

— - 2
‘+2A2x2526) 20 (1-p)n Coz(klxlSZS + 2A2x2327)

4on{zlS1 + z_S3)C + 4nI(C _S6 + C _S16)
ol ol 02

2
~4auklncol(}lx188 + IAZXZSlO) - 8qunA2C02(klx1510 +
212x259) + 2a(l—u)nAlC01(AlxlSB + 2A2x2810)

+2a(l—u)nllC (A x_.S11 + 2A_x

0211 22
Coln(l-l/R)

S13) + 4anC°2(xlS3 + x232)

+ 4H2(l-—p.)0tFx1



Overhall Buckling (Cont'd)

11

12

13

22

23

33

—— ) 2
&MN__Aaclel X

"

4anC02(xlSZ-+x255).+ 4anCol(XlSB-Fx252) + (6CO -+4C01516)

2

—4auncolkl(llx1811-+2A2x2813) —Baunlzcoz(klx1813 + 2A2x2812)

- +
+40. (1 u)nxzcol(xlx151o 2}

+
(XlxlSl3 22

2

x289) + 4a(l-—u)n)\2C02

9 /2312)

~

~
520 + 8011A2C02x3 9

2 _ .
S13) + 4aC°l(n 2)(§lSI-+xzs3) .

3

+8apcolex2(x1310 + X,

2 2
+4aC_, (n* = 2) (x,83 + x,52) + 4opC_) (n* - 1)x,540 +

+ ( 2
S21 4aucolxl (x158-+x S11)

2 . - -
4opC_, (n 1)x3s4l 4C_,S6I - 4C_,S16I + 4auklc ( ,x.58)

2 ol 11

‘ - - 112 2 _
+2A2x2810) + Baucozkz(AIXISlo + 2A289) 20 (1 -p®) (n* - 1)

- 12 2 2
(RW1 C, + Rwd Coz)/¢1 + 4H2 (1 - W )anlQQI Co1 (n® -2 +n*L/R)

1
= 2
BaxsA, Coyp 2

. a _
+8auColAlA2(x1810 + x2813) + 4aC02(xISZ + x285)(n 2)

2 « 2 o
(n 2)(xlS3 + x282) + 4aucoz(n 1)x3S42

2
+ BacolAlA2x3S21 + lGauCozlz (xlS9 + x,.812)

+.
40;Col

2 _ - -
+4apCol(n l)x3S4l 4Co Sl61 6C0

1 2

2A2x2§13) + Baucozlz(xlxlsl3 + 2A2x2s12)

=20 (1 - p) (n* - 1) (RW3 Co

I +J4aullcol(klx151l +

9 + RW4 col)/¢l

20586 (1 + k) +'2kakl4850 + 2¢lSGI + 2H2(1-h’)aFQ83

+2H3 (L - 1?) (1 - 1’,/R)2QLF>\12 004

2 2
2516(a-+¢11) + skaxl Az S51

it

242856 - 20 556 1

3o + ka + @ T) + 16kaA24

=2 (po + ¢1I)

= 20,



Overall Buckling (Cont'd)

s; = 2556 I + o(l - p?)RRC S567 (R¢1)
s = ¥ a(1- i yRRC* (R@))
S, = 1.0
. 5.[xc /‘/7/
i - tL]-R‘(R “e) '
R =
tL(R - e)
. I R
ek
CR
N Ok .
H5‘ = E_Z.IE_R:—eTS
Simply Supported E;ges:
s1 .= fsin3 gax
s2 = /sing (1 -Cosh)? dx
83 = Ssin? g (1L - Cosh) dx
s4 = Jsing Cos®* g dx
s5 | = S(1-Cosh)? dx
S6 = JSin® gdx
s7 = JCos? g (1 ~Cosh) dx
s8/ - \



Simply Supported Edges (Cont'd)

s8 = Jsing Cos*g dx

sy = féirlx; sin® h dx
s10 = J/SingCosgSinj dx
sl11 = —fCos? g/(l—zcgl;’)/‘dx |
s12 = Jsin® h (1 -Cosh) dx
S13 = J (1L -Cosh) Sinh Cos g dx
s14” = fsin® g dx :
S15 = fsin®* g (1-Cosh) dx
sle = J'SVin g (L-Cosh) dax
s17. = fsin g (L-Cosh)? dx
s18 = /Sin g Cos? g dx
s19 = JCos? g sin g Sinh dx
s20 = fCos? g dx
s21 = JCos g Sinh dx
S22 = /sin? hsing dx
sS24 = fsin g Cos? g dx
825 = .fc-os2 g (L-Cosh) dax
S26 = VfSinhCos g Sin. g dx
s27 = f.SiE h Cosg (1L~-Cosh) dx

v
\

N \‘
\ S



Simply Supported Edges (Cont'd)

-840

s41
542
s43
s44
545
sa7
548
s49
550
s51

sS52

S53

554
S55

S56

001/

Jsin? g dx
fsin g (1-Cosh) dx

f(1L - Cosh)? dx

. _— i

"7?53'-.;1’_ g dx

.Jsin g Cosh dx
fsin g »(l—Cosh) ax
JCo6s g Sinh dx
JCos?* g dx
fsinh Cosg ax
/sin® g dx
/Sin g Cosh dx
fcos*g dx

~fsin*g dx = ".‘x. R
-fSin g (1 -Cosh) DX
fsin* g ax

Jsin g dx



Simply Supported Edges (Cont'd)

Q03

Q04

QQ6

RWL

RW2

RW3

RW4

"¥Cos? g —

ICos?® g

ICos? g
.2 d
J GWSln g dx

2
d
fowCos g dx

fow(l-Cosh)’ dx

,”fowSin g (L-Cosh) dx

Partially Fixed Edges:

Sl

s2

S3

s4

s5

' 86

s7

s8/

i

J(sin g + Sin*g)?® dx

J(sin g + Sin’g) (1 -Cosh)? dx
f(8in g + Sin*g)? (1 -Cosh) dx
f(Sin g + Sin®’g) Cos g dx

'f(l -Cosh)?® dx

f(sin g + Sin?*g)? dx

J(1 - Cosh) Cos? g dx

L



Partially Fixed Edges (Cont'd)

s8

Ss9
s10
S1ll -

S12

513

Ssl4,

S15

s1é6

S17

S18

S19

s20

s21

s22

S24

S25

S26

s27/

J(sin g + Sin®*g) (Cos g + Sin 2g)? dx
J(Sin g + Sin?g) Sin*h dx

S(Sin g + Sin?qg) (Cos g + Sin 2g) Sinh dx
e

s

e

--=__ - [(Cos grén 2g)?* (1 -Cosh) dx

Ssin*h (i;-CosIn dx

J(1-Cosh) Sin h(Cos g + Sin 2g) dxA
fsin g (sin g + Sin?*g)? dx

/sin g (Sin g + Sin*g){(l.- Cqsh) dx
S(8in g + Sin?*g) (1 - Cos h) dx
J(1-Cosh)? sin g ax

fsin g (Cos g + Sin 2g)? dx

J(Cos g + éin 2g)?sin h dx

f(Cos g + Sin 2g)? ax

J(Cos g + Sin 2g)Sin h dx

f8inOh Sin g dx

f(Cos g + Sin 2g) (Sin g +‘Sinzg)_ Cos g dx

J(Cos g + Sin 1g) (1 -Cosh) Cos g dx

fSin h Cos g (Sin g + Sin*g) dx



Partially Fixed Edges (Cont'd)

S27 = SSin h Cos g (L-Cosh) dx
s40 = f(sin g + Sin?qg)? dx

s41 = J(Sin g + Sin’g) (1 -Cosh) dx

./"

§42. =—_f(l~Cos h)?® dx

s43 = SSin g (Sin g + Sin?g) ax
.S44 ' = JCosh (Sin g + Sin?*g) dx
845+ | = féin g (1 - Cos.h) Qx .

s47 = JCos g Sin h dx

s48 = fCos g V(Cos g + Sin 2g) ax
sS49 = JSin .h,(Cos g + Sin 2g) dx
S50 = J(2 Cos 2g - Sin g)? dx

s51 = fcosh (2 c;as 2g - Sin g).dx
852 = J (Cos 2g - Sin g) (1 -~ Cosh) dx
‘SSS = ‘—fSin g (2Cos 2g - Sin g) dx
s56 = J(sin g + Sin?q) d;(

001 = L (Sin g + Sin? g)3

002 = ICos®g (Sin g + Sin*gq)

003 = Z(Siq g + Sin%qg)?

004 = L(Cos g +Sln 29)‘\



Partially Fixed Edges (Cont'd)

005 = ICos g "(Cos g + Sin 2g)

(;26 \———/4 / ICos?g

Rwi = _jgw(sin.gféi'n’ é)’ dx

RW2 = 'fo_w(l—Cosh)z dax

RW3 = fow(l-Cos h)? dx

RW4 . >= fow(sin g + Sipég) (1 -Cosh) dx

Clamped Edges:

sl = J(1-Cos 2g)® dx

Ss2 = (1 -Cos 2g) (L -Cosh)? dx

S3- = f(l-C;Js 2g)? (L - Cosh) dx

s4 = J{(1-Cos 29) Cos g dx

s5 = J(1-Cosh)® ax

S6 = f(1L-Cos 2g9)? ax

s7 = S (1 -Cosh) Cos’g dx

S8 = J4(1 - Cos 2g) Sin*2g dx

s9 = J(1-Cos 2g) Sin*h dx

S10 = f2(leos 2g) Sin 2g Sinh dx

s11 = J4 sin®2g l(l‘ ~Cosh) dx
AN

AN

AN



Clamped Edges (Cont'd)

- 812 = /Sin*h . (1 -Cosh) dx
s13 | = f2(1 -Cosh) Sin h Sin g dx
S14 = JSin g (1 -Cos"2g)? dx

_—
s15 =  fisin g (1-Cos 29) (L-Cosh) dx
S16 = J(L-Cos 29) (1 -Cosh)? dax -
s17 = J8in g (1 -Cosh)? dx |
518- = J4 Sin g Sin?2g dx
S19 = J2 sin 2g Sin g éin h dx
520 = f4 sin® 2g dx
s21 . = f2 sin 2g Sin h dx
S22 = /sin § sin*h dx
s23 = /Sin g Cos?g dx
S24 = f2 Sin 2g (1 '~ Cos h) Cos g dx
S25 = J2 Sin 2g (1L -Cosh) Cos g dx
1826 = fSin h Cos g. (1 -Cos 2g) dx
S27 = fSin h Cos g (1L -Cosh) d.x'
S40A = f(1-Cos 2g9)? dax
S41 = f(1-Cosh) (L-Cos 2g) dx
s42 = J(1L-Cosh)?* ax

\
\



Clamped Edges (Cont'd)

/Sin g (1 -Cos 2g) dx

543 =
- S44 = JCos h (1 -Cos 2g) dx
' -

s45 -\\;l____ SSin g4ji;;gpsln dx
S46 = fSin g Cosh dx

s47 = fCos g Sin h dx

s48 . = J2 Cos g Sin 2g dx

549 = f2 Sin h Sin 2g dx

S50 = J16 Cos®2g dx

S51 = f4 Cosh Cos 29 dx
852 | = J4 sin?2g dx

S53 = f4(l;jCos 2g) Cos 2g dx
s54 = f4 Cos g (L-Cosh) dx
§55 = /-4 Sin g Cos 2g dx
s56 = | J(1-Cos 2g) dx

001 = L(l-Cos 2g9)%

002 = 1Cos*g (1 - Cos 29)

Q3 = (1l -Cos 2q)?

4 = T4 éiﬁ* 2g

o

-



Clamped Edges (Cont'd)

005 = 2 Sin 2g Cos g
QQ6 = Cos2g
/
RW1 = SO (1 -Cos 2g)2 dx
W
RW2 = fo Cos2g dx
%
RW3 = fo (1-Cosh)2 dx
W
RW4 = fo (1 -Cos 2g9) (1 -Cos h) dx
W
where:
TIX 2fIX
X1 " X2 r X3 ar0 so”ut:%®ns e (34)
1 =1 for uniform external pressure

1 =0 for axial compression
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DISPLACEMENT PARAMETER

Fig. 1:

-,

Stable. Bifurcation Point

A
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LOAD

DISPLACEMENT PARAMETER

Fig. 2:

Unstable Bifurcation Point
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Fig.

Limit FOIKI ILF)

DISPLACEMENT PARAMETER

Limit point for an equilibrium path
with stable postbuckling behaviour
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IMPERFELY SKELLS

N

DISPLACEMENT PARAMETER

Fig. 4:

Influence of initial shape imperfections

on the equilibrium paths of cylinders

and spheres under hydrostatic pressure
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Coordinate Systeﬁw And Cross Section Of Stiffened Shell

- Figure S
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AX/AL COMPRESSIVE LOAD IN KN /MM
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TABLE 1; INFLUENCE OF COLD-BENDING RESIDUAL STRESSES
ON INTERFRAME COLLAPSE PRESSURE

R/t = 133 , zZ/R = 0.675 , E/a = 841 , R = 800 mm
y

C /R % SIMPLE SUPPORTED CLAMPED
o' T IR = 0 IR = 2 IR = 0 IR =
0.00 1369.4 » 1369.3 1687.9 1687.
0.05 1273.0 1272.9 1569.2 1569.
0.10 1189.3 1189.1 1466.1 1466.
0.20 1051.0 1050.8 1295.8 1295.
0.30 941.5 941.3 1160.9 1160.
0.40 852.7 852.5 1051.5 1051.
0.50 779.2 778.9 960.9 960.
0.60 717.4 717.1 884.7 884.
R/t = 133 , zZ/R = 0.338 , E/a = 841

€ /R) % SIMPLE SUPPORTED CLAMPED
© ma H O IR = 2 IR = 0 IR =
0.00 2839.7 2839.6 4077.0 4077.
0.05 2650.8 2650.7 3807.7 3807.
0.10 2485.5 2485.4 3571.6 3571.
0.20 2209.9 2209.8 3177.5 3177.
0.30 1989.3 1989.3 m 2861.7 2861.
0.40 1808.8 1808.7 2603.0 2602.
0.50 1658.3 1658.2 2387.2 * 2387.
0.60 1530.9 1530.8 2204.5 2204.

IR = 0 - without cold-bending residual stresses
IR = 2 - with cold-bending residual stresses

Pressures are in kN/m2 .



TABLE 2: WELDING RESIDUAL STRESSES ON INTERFRAME
COLLAPSE PRESSURE

Pressures in kN/m2

R/t = 133 , ' H/R = 0.675 , E/ay = 841 , arc/ay = 0.110 ,
C /R)% SIMPLE SUPPORTED CLAMPED
e} IR = 0%* IR= 3* % LOSS IR =0 IR = 3 % LOSS
*0.00 1369.4 1287.6 6.0 1687.9 1561.5 7.5
0.05 1273.0 1191.8 6.4 1569.2 1443.8 8.0
0.10 1189.3 1108.6 6.8 1466.1 1341.5 8.5
0.20 1051.0 971.2 7.6 1295.8 1172.7 9.5
0.30 941.5 862.4 8.4 1160.9 1038.9 10.5
0.40 852.7 774.2 9.2 1051.5 930.4 11.5
0.50 779.2 701.1 10.0 960.9 840.6 12.5
0.60 717.4 639.7 10.8 884.7 765.1 13.5
* IR = 0 - without welding residual stresses
* IR = 3 - with welding residual stresses
R/t = 133 , £/R = 0.675 , E/ay = 841 , arc/ay = 0.125 / n
SIMPLE SUPPORTED CLAMPED
C/R)%  R-0 IR =13 3% L0SS =3 = © IR = 3 % LOSS
0.00 1369.4 1277.7 6.7 1687.9 1546.6 8.4
0.05 1273.0 1182.0 7.1 1569.2 1429.0 8.9
0.10 1189.3 1098.8 7.6 1466.1 1326.38 9.5
0.20 1051.0 961.6 8.5 1295.8 1158.1 10.6
0.30 941.5 852.9 9.4 1160.9 1024.6 11.7
0.40 852.7 764.7 10.3 1051.5 916.2 12.8
o Ho 779.2 691.7 11.2 960.9 826.4 14.0
0.60 717.4 630.4 12.1 884.7 750.9 15.1
R/t = 133/



TABLE 2: (Cont'd)

= = 0. = = . = 6.0
R/t 133 , &/R = 0.675 , E/CIY 841 , O'rc/cy 0.154 , 1

—— S

© /R4 SIMPLE SUPPORTED CLAMPED '

o IR=0) IR=3 | %L0SS.| IR=0] IR =3 | % LOSS
0.00 1369.4 | 1257.6 .2 1687.9 | 1516.5 10.1
0.05 1273.0 | 1162.0 .7 1569.2 | 1399.2 10.8
0.10 1189.0 | 1079.0 9.2 1466.1 | 1297.2 11.5
"0.20 1051.0 941.9 10.3 1295.8 | 1128.9 12.9
0.30 941.5 833.4 11.5 1160.9 995.5 14.2
0.40 852.7 745.4 12.6 1051.5 887.4 15.6
0.50 779.2 672.6 13.7 960.9 797.8 16.9
0.60 717.4 611.3 | 14.8 884.7 | . 722.5 18.3




* TABLE 3:

INFLUENCE ' OF WELDING RESIDUAL STRESSES

. IN INTERFRAME COLLAPSE PRESSURE

Pressure in kN/m?

R = 800 mm

Ve
e

I'd

. 7
R/t =.200 , %/R=0:675, E/oc =841, o /o =0.110, n = 6.7
Y re y ’

(C /R)% 'SIMPLE SUPPORTED CLAMPED
(o2 IR=0 IR =3 % LOSS IR = IR = 3 % LOSS
% 0.00 . 490.4 433.8 11.5 | 612.1 524.3 14.3
0.05 439.7 383.8 12.7 548.7 462.1 15.7
‘6.10 398.5 '343.3 13.8 497.2 411.5 17.2
0.20 335.6 281.3 16.2 418.7 334.4 20.1
0.30 289.8 236.2 18,5 361.5 278.3 23.0
! 0.40 255.1 201.9 20.8 318.1 235.7 25.9
| 0.50 227.7 174.9 23.2 284.0 202.3 28.7
0.60 205.7 153.3 ..25.5 256.5 175.3 31.6
R/t = 200 , &/R = 0.675 , E/Uy = 841 , crc/oy = 0.125 n=1717.5

c /R)% "~ SIMPLE  SUPPORTED ~CLAMPED N
[e] IR = 0 IR = 3 % LOSS IR =0 IR = 3 % LOSS
0.00 | 490.4 | 426.4 13.0 612.1 | 512.9 16.2
0.05 439.7 | 376.5 14.4 548.7 | 450.9 17.8
0.10 398.5 | 335.9 15.7 497.2 | 400.5 19.4
0.20 335.6 | 335.9 18.3 a18.7 | 323.6 22.7
| 0.30 289.8 | 229.1 20.9 |- 361.5 | 267.6 25.9
s
0.40 255.1 | 194.9 23.6 318.1 | 225.1 29.2
0.50 227.7 | 168.0 26.2 284.0 | 191.7 32.5
0.60 205.7 | 146.4 28.8 256.5 | 164.8 35.7
R/t = 200/ - \
\



" TABLE 3: (Cont'd)

. o .
R/t = 200 , %/R = 0.675 ., E/c =841, o /o = 0.154 , n = 9.2
. Yy rc' 'y

. "
’(C /R)% SIMPLE SUPPORTED ’ CLAMPED
o IR =.0. IR =3 % LOSS IR=20 IR = 3 % LOSS
0.00 490.4 412.3 15.9 - 612.1 491.8 19.6
0.05 439.7 362.6 17.5 .| 548.7 430.0 21.6
0.10 398.5 322.3 19.1 497.2 379.8 23.6
0.20 335.6 260.6 | 22.3 418.7 '303.3 27.6
0.30 289.8 215.8 25.5 361.5 247.6 31.5
0.40 255.1 181.7 28.8 318.1 205.3 35.4
0.50 227.7 154.9 31.9 | 284.0 172.1 39.4
0.60 205.7. . |. 133.3. 35.2 | 256.5 145.3 43.4
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- TABLE 4: INFLUENCE OF ° WELDING ' 'RESIDUAL STRESSES ON

INTERFRAME COLLAPSE PRESSURE

Pressures in KN/m* , £ = 270 mm

/
R/t =133 , &/R = 0.338, E/Gy = 841 , orc/oy =0.154 , n = 3.0

e ————e e T

SIMPLE SUPPORTED CLAMPED . -

(CO/R)% IR=0 IR = 3 % LOSS IR =0 IR =0 % LOSS

0.00 2839.7 | 2745.6 3.3 4077.2 3930.7 3.6

0.05 2650.8 | 2557.2 3.5 3807.7.| 3661.7 3.8

0.10 2485.5 | 12392.2 3.7 3571.6 | 3426.0 4.1

-0.20 2209.9 | "2117.2 4.2 -3177.5 3032.5 4.6

0.30 1989.3 | 1897.0 4.6 2861.7 2717.3 5.0

0.40 1808.8 | 1716.0 5.2 © 2603.0 2459.0 5.5

0.50 1658.3 1566.6 5.5 . 2387.2 2243.6 6.0

0.60 1530.9 | 1439.5 6.0 V2204.5 2061.1 6.5

R/t =133, #/R=0.338, Efo =84l , o /o =0.250 ,n=4.5
SIMPLE SUPPORTED CLAMPED

(coﬁ/)% iR =0| IR=3 | % LOSS IR=0] IR =3 { % LOSS

0.00 2839.7 | 2692.5 5.2 4077.2 | 3852.9 5.5
0.05 2650.8 | 2504.3 5.5 3807.7 | 3584.0 5.8
0.10 2485.5 | 2339.5 5.9 | 3571.6 | 3348.5 6.2
0.20 2209.9 | 2064.7 | 6.6 3177.5 | 2955.5 | 7.0
0.30 1989.3 | 1844.8 7.3 2861.7 | 2640.5 7.7
0.40 1808.8 | 1664.8 8.0 | 2603.0 | 2382.5 8.5
0.50 1658.3 | 1514.8 8.5 2387.2 | 2167.2 9.2
0.60 | 1530.9 | 1387.8 9.3 2204.5 | 1984.9 | 10.0




TABLE _5:

PROPERTIES 'OF CYLINDERS

Unsupported Frame
‘Length Frame | Faying | Yield _
Cylinder Radius | Thickness of Shell Area wWidth Strength
R t 2 A t g *
bif W y
in. in. in. sq.in. in. psi
T-2 38.87 - 0.264 7.24 1.885 0.260 88000
.. ) ; (c)
welded T-3 38.87 0.260 _ 8.74 1.625 0.260 ‘108000
with : (c)
T-6 26.87 0.256 7.24 1.170 0.260} 115000
T-Frames (c)
T-2A| 38.87 0.254 7.24 0.796} 0.260{ 103000
T-7A| 26.87 0.263 8.74 0.683 0.260 84000

* All yield strengths are defined at offset strain
of 0.002.

(c) Specimens of shell material taken from collapsed

cylinders

specimens for all other cylinders were obtained

. prior to fabrication
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TABLE 6:

OVERALL BUCKLING PRESSURES

-—___Comparison between Eq. (22a) and Eq. (22b)

= 100" ,

Dimensions: R t =1.00" , & = 30.0" d = 7.36"
ty = 0.32" , £=4.0", t =0.64"
. > / 7/’,/' 6

Material Properties: - E = 30.x 10 psi , Oy = 50,000 psi

Pressufe in P.S.I.
R L = 150" L = 300" L = 450"

Eq. (22a) | Eq.(22b) | 'Eq.(22a)| Eq.(22b)| Eq.(22a)| Eq.(22b)
2 768 724 846 801 871 827
3 2177 2087 2369 2279 2430 2341
4. 3383 2712, 3603 2899 3671 2962
5 3874 2635 4028 2788 4073 2834
6 3833 2499 3928 2614 3955 2644
7 3589 2356 3646 2439 3662 2459
8 3308 2225 3343 2285 3353 2299
L = 600" L = 750" L = 3000"

n | Eq.(22a) | Eq.(22b) | Eq.(22a)| Eq.(22b)| Eq.(22a)| Eq.(22b)
2 883 839 890 . 847 913 869
3 2460 2371 2478 2389 2532 2442
4 3704 2989 3723 3005 3780 3038
5 4095 2853 4108 2863 4146 2799
6 3968 2657 3975 2663 3997 2676
7 3669 2468 3674 2472 3687 2480
8 3358 2305 3361 2307 3369 2313
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TABLE _7: COMPARTISON BETWEEN PRESENT THEORY AND
KENDRICK'S THEORY (80)

Overall Instability of Ring Stiffened Cylinder under External
Pressure.

-
Dimensions+: R = lOOﬁ/jf £ = 30.00" , - 7.36" , tw = 0.32"
S . //
TTf =74,0" , tf = 0.64" , t = 1.00"

Material Properties: E = 30 x 106 psi . oy = 50,000 psi

Buckling Pressures in P.S.I. ' L = 150"

Kendrick ’ PRESENT THEORY
D | Ref.(80) | Eq.(19c) | Eq.(19b) | Eq.(20b) | Eq.(21b)| Eq.(22Db)
2 4598 4656 4002 3979 3965 724%
3 4020 3939 3399 | 3344 3475 2087
4 3405 3425 2913 2839 2856 2712
5 3521 3634 2976 2943 2918 2635
6 3218 3318 2810 2801 2789 2499
7 2927 3018 2599 2598 2592 2356
8 2678 2763 2403 2404 2402 2225
14 2126* 1893* 1903* 1913*%
BS5500 ﬁfy = 622.4 psi ,- p_=3497 psi , n =4

Present Theory Pfy = 531.9 psi

* critical value

. 'Buckling Pressures in P.S.I. , , _ “'L:="300"

n Kendrick V PRESENT THEORY
Ref. (80) | Eq.(19¢)| Eq.(19b)| Eq.(20b)| Eq.(21b)| Eq.(22b)
2 4138 4139 3534 |- 3869 3869 8O1*
3 1946* 1959% 1931% 1957+% 2197*% 2279
4 2990 3044 2792 2743 2746 2899
5. 3487 3592 3073 3052 3039 2788
6 3211 3310 2879 2877 2873 2814
7 2923 3022 2647 2647 2645 2439
8 2674 2774 2435 2436 2436 2285
BS5500 B = 583.8 psi (P =1859 psi , n=3

Present theory E%y = 563.9\331 N



TABLE 7:

(Cont'd)

159.

Present Theory pr

= 574.5 psi

Buckling Pressures in P.S.T. L = 450"
| xenaricx B PRESENT THEORY
. Ref.(80) | Eq.(19c)| Eq.(19b)| Eq.:20b)} Eq.(21b)| Eq.(22b)
2 1677 1683* 1658* 1886 2728 827+
3 1666* 1688 1685 . 1694* 1822%* 2341 ]
4 2958 3023 2800 2756 2747 2962
5 3494 3593 3103 3085 3074-. 2834
6 3206 3313 2897 - . 2895 2892 2644
7 2916 3027 2657 2658 2656 2459
8 2666 2779 2442 2443 2443 2299
BS5500 Pry = 554.0 gsi , P =1541, =n-=
Present Tehory pr = 582.3 psi.
Buckling Pressurs in P.S.I. I, = 600"
Kendrick PRESENT THEORY
N 1 Ref.(80)| Eq.(19¢c)| Eq.(19b)| Eq.(20b) ]| Eq.(21b)| Eq.(22b)
2 1000* 1007* 1014* 1167* 1747 839*
3 1603 1631 1628 1628 1702* 2371
4 2953 3024 2808 2766 2752 2989
5 3491 3595 3114 3098 3088 2853
6 3200 3315 2903 2901 2899 2657
7 2908 3029 2661 2662 2660 2468
8 2656 2781 2444 2446 2445 2305
- BS5500 529.2 psi , p_=938.7, n=2




! 106U.

TABLE 7: (Cont'd)

Buckling Pressures in P.S.I. ' L = 750"
Kendrick PRESENT THEORY
D | Ref.(80)| Eq.(19¢)| Eq.(19b)| Eq.(20b) | Eq.(21b)| Eq.(22b)
2 775% 784* 795% 898* 1294% 847+
3 1583 1613 1609 1603 1651 2389
a | 2051 3027 2813 | 2771 2754 3005
5 3487 3596 3120 3105 3094 2863
6 3193 3316 2906 2905 2903 2663
7 2900 3030 | 2663 2663 2662 2472
g | 2647 2783 2446 ' 2447 2446 2307

BS5500 pr = 459.0 psi , pn é 717 psi , n=2

Present Theory pr = 498.0 psi

Buckling Pressures in P.S.I. L = 3000"

Kendrick PRESENT _THEORY

% | Ref. (80) Eq. (19¢) Eq. (19Db) Eq.:20Db) Eq. (21b) Eg. (22b)
2 579%* 592* 600* 605%* 633* 869*
3 1563 1599 ' 1589 1574 1575 2442
4 2945 3039 2822 2780 2760 3038
5 3404 3600 3129 3115 3106 2799
6 3068 3320 2911 2910 2908 2676
7 2740 3035 2666 . 2666 2666 2480
8 2462 2787 2449 2449 2448 2313

BS5500 x%y = 381.0 psi , P = 546 , n=2

Present Theory pr = 403.0 psi

* Critical Value

+ A cylinder designed to collapse under external pressure
in the range 400-700 psi according to the steel uses (80)

\,

N
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 TABLE _9:

104.

COMPARISON 'BETWEEN PRESENT THEORY AND

EXPERIMENTAL RESULTS OF REF. (100)

Overall Instability of Ring-Stiffened Machined Aluminium Cylinder
Under External Pressure.

Dimensions:

Properties of Material:

e e

. e
R =1.015" , t =
L = 12.50" ,

e
I

E=10.7° psi £ 3% , o

0.030"

(0.762 mm) ,

0.150" , t- = 0.040"
wv

2 = 2.50"

(external
stiffeners) - -

39.1 tons/in?.

- Experimental collapse pressure = 450 psi , n = 2
(602/R)% C02 C02 Buckling Pressure| Buckling Pressure

(inch) " (mm) Eq. (22b) Eq. (19b)
0.00 0.0000 0.0000 '612.3 >(2)* 611.9 (2)
0.10 0.0010 0.0254 588.6 (2) 584.9 (2)
0.20 0.0020 0.0515 566.6 (2) 560.3 (2)
0.30 0.0030 0.0762 546.2 (2) 537.1 (2)
0.40 0.0040 0.1030 527.3 (2) 516.9 (2)
0.50 0.0050 0.1288 509.6 (2) 497.6 (2)
0.60 0.0061 0.1547 493.1 (2) 479.8 (2)
0.70 0.0071 0.1800 477.7 (2) 463.2 (2)
0.80 0.0081 0.2060 463.2 (2) " 447.8 (2)
0.90 0.0090 0.2280 440.0 (2) 430.0 (2)

*Circumferential buckling wave number, n

buckling pressures in p.s.i.

BS5500 p_ = 510.6 , n

2



TABLE 10: COMPARISON BETWEEN PRESENT THEORY AND

EXPERIMENTAL RESULTS OF REF. (96)

Overall Instability.of Orthogonally Stiffened Welded Steel Cylinder
under External Pressure.

Dimensions: R = 35.85" , t* = 0.297" , £=9.00" , 4 = 0.150"
t; = 0.040" , L = 189.0"

(*smeared shell thickness - all 24 stringers of 0.186" x 2.033"
are smeared)

Measured out-of-circularity = 0.234" (or 0.0065R)

Properties of Material:

E = 29.0 x 10° psi , 0, = 39000 psi

Experimental collapse pressure

270 psi

Assumed Assumed Collpase Pressure ch/crYF
(Col/R)% (COZ/R)% n Eg. (22b) psi
0.650 - 0.00 2 272.3 0.955
0.650 0.05 2 265.8 0.942
0.625 0.00 2 276.0 0.948
0.625 0.05 2 269.4 0.934
Assumed Assumed Collapse Pressure UF/OYF
(Col/R)% (Coz/R)% .n Eq. (19b) psi
0.650 0.00 3 275.9 1.00
0.650 0.05 3 269.7 1.00
0.625 0.00 3 282.5 1.00
0.625 0.05 3 276.3 1.00
Assumed Assumed Collapse Pressure OF/UYF
(C ./R)% (C ./R)% n BS5500 psi T
ol 02
0.650 0.00 3 275.0 1.00
0.625 0.00 3 280.0 1.00
N

-t .



TABLE 11A:

COMPARISON BETWEEN PRESENT THEORY AND

FINITE ELEMENT- METHOD OF REF.

(52)

Influence of out-of-circularity on collapse strength of typical

long externally pressurised ring-stiffened cylinder.

,/‘
Dimensions: R =120t7 % =20t , d = 8t , t, = 0.75t ,
£=5t, t =1.5t, L =440t
Buckling c . /R % Less of strength due to out-of-circularity
Mode ' (n) ol SMITH (52) Eg. (19b) Eq. (22b)
2 0.0002 3 2 2
2 0.001 11 10 6
"2 0.005 31 35 23
TABLE 11B: OVERALL INSTABILITY OF RING STIFFENED CYLINDER
" UNDER UNIFORM EXTERNAL PRESSURE
Dimensions: L = 720" , t = 1.00" , 30.0" , d = 7.36" ,
g =0.32", £ =4.0", t_ = 0.64"
Pressure in P.S.I.
Radius, R Eqg. Eg. (22b)
(inches)
101.0 811.4 (2) 823.1 (2)
105.0 767.8 (2) 739.9 (2)
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TABLE 12: COMPARISON BETWEEN PRESENT THEORY AND

FINITE ELEMENT METHOD OF REF. (91)

-

\\““~Overqll,1nstability of Ring Stiffened Steel Cylinder under External

Pressure.

Dimensions: t =0.010R., £ = 0.15R , L = 2R , d = 0.033R

/’ -

==-t- ="0.0052R , £ = 0.032R , t

Properties of Material:

Solution from finite element method =

PRESENT THEORY

-

= 0.007R
6 .
E=30x10 psi, wu = 0.300

1525 psi , n=4

BUCKLING PRESSURE IN PSI
n
Eq. (19c) Eg. (19b)
11213.0 8985.4 2
2188.4 1985.2 ’
1550.7 1466.1

Eq. (19¢c) consists of the same buckling displacements as Eg. (19b),

but a different pre-buckling displacement, i.e.

£
It

22- = constant and
9x

constant,uniform lateral and axial contraction prior to buckling.

Eq. (19¢) represents a dead load situation and Eqg. (19b) represents

a live load model, where the loading changes direction as the

structure deforms.



13: DNV RULES

- AXIAL COMPRESSIVE BUCKLING STRESSES (N/mm?)

- TABLE

R/t 4

/R 100 150 | 200 | -250 300 350 400 450 500
0.50 | 210.3 | 179.9| 151.4| 127.3| 107.3 | 92.10| 79.32| 68.87 | 60.20
1.00 | 210.3 | 179.9| 151.4| 127.3 | 107.3 | 92.10| 79.32| 68.87 | 60.20
1.50 | 210.3 | 179.9| 151.4 | 127.3 | 107.3 | 92.10 | 79.32| 68.87 | 60.20
2.00 |-210.3 | 179.9 | 151.4 | 127.3 | 107.3 | 92.10| 79.32| 68.87 | 60.20
o = 367.5 N/mm’
Y

0.50 | 273.6 | 214.9 | 170.5 | 138.1 | 114.1 | 95.92 | 81.74| 70.43| 61.23
1.00 | 273.6 | 214.9 | 170.5 | 138.1 | 114.1 | 95.92 | 81.74| 70.43 | 61.23
1.50 | 273.6 | 214.9 | 170.5 | 138.1 | 114.1 | 95.92 | 81.74| 70.43| 61.23
2.00 | 273.6 | 214.9 | 170.5 | 138.1 | 114.1 | 95.92 | 81.74| 70.43| 61.23
o.. = 490.0 N/mm?
Y

0.50 | 314.4 | 233.1 { 179.2 | 142.6 | 116.6 | 97.38 | 82.63| 71.0 | 6l.61
1.00 {314.4 | 233.1 | 179.2 | 142.6 | 116.6 | 97.38 | 82.63| 71.0 | 6l.61
1.50 |314.4 | 233.1 | 179.2 | 142.6 | 116.6 | 97.38 | 82.63| 71.0 | 6l.61
2.00 |314.4 | 233.1 | 179.2 | 142.6 | 116.6 | 97.38 | 82.63| 71.0 | 61.61




