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SUMMARY

Two computer programs, one for interframe collapse and the 
other for overall collapse as influenced by initial imperfections, 
have been developed and the results compared with experiments and 
with present design codes.

A treatment is presented for the buckling strength analysis of 
ring stiffened„cylinders under external hydrostatic pressure and axial 
compression. The energy method by Ritz approach is used because of 
its adaptability to the solution of complicated buckling forms.
Equations accounting for non-uniform and uniform-lateral pre-buckling 
displacements are presented in this thesis. The effect of uniform 
and non-uniform lateral pre-buckling displacements on collapse pressure 
under uniform external pressure is shown by means of numerical examples. 
Such effect does not yet appear to have been carried out. Comparison 
with classical Von Mises equation for elastic buckling under uniform 
external pressure is good for the case of uniform lateral pre-buckling 
displacement.

Factors such as initial shape imperfections due to fabrication, 
welding and cold-bending residual stresses of the shell are considered.
The technique used to model such imperfections is solely the author's 
original contribution. An approximate method using the secant modulus 
is introduced to account for inelastic behaviour. These factors are 
considered to be the most important adverse features which distinguish 
offshore structural response from that of aerospace structures. The 
effect of strain reversal is assumed to be small and negligible. Ideal 
elastic perfectly plastic behaviour (with no strain hardening) is assumed 
for the material.

Quantitative imperfection studies defining the sensitivity of inter­
frame shell buckling to the form and amplitude of initial distortion and 
residual stresses have been carried out. Such studies do not yet appear 
to have been carried out. The effects of initial geometrical shape im­
perfections are shown to be most serious with axial compressive load.
This/



This is followed by external pressure and the less sensitive radial 
(lateral) pressure loading. A study of the effects of welding residual 
stresses on interframe collapse pressure under uniform external pressure 
confirms that the"compressive welding residual stresses of the shell is 
detrimental to buckling strength of cylindrical shells. The cold- 
bending residual stresses in the shell have negligible effect on the 
collapse pressures of the shell. Comparisons are made with the BS5500 
design code and the DnV Rules for interframe collapse. For overall 
collapse comparison with BS5500 design code is included. Results 
obtained by the present theory are also compared with results obtained 
by finite difference dynamic relaxation and finite element methods. 
Comparisons with experimental data for both interframe and overall 
collapse behaviour under uniform external pressure demonstrate good 
agreement with the theory.



CHAPTER 1 INTRODUCTION AND AIM

1.1 INTRODUCTION

The use of fabricated^stiffened and unstiffened cylinders is 
a growing phenomenon in structural engineering. Currently cylinders 
of relatively -large -diameters are commonly in use in offshore 
structures - pressure hulls of submersibles, components of deep-water 
drilling rigs, storage tanks and sea-bed installations of various 
kinds - and also increasing applications in various other civil 
engineering structures.

* The last few years' offshore oil and gas exploration boom, 
especially in the North Sea, together with a progressive move, into 
deeper and more hostile waters, has created a demand for bigger offshore 
platforms either floating or fixed for exploration and production pur­
poses. This situation has created a lot of problems for the designers.
A clear example of rapid development insufficiently backed up by 
research exists today - the intensive design and construction activity 
of North Sea oil platforms. These are, in effect, the second generation 
of such structures; the originals were developed for drilling and pro­
duction in the Gulf of Mexico. The latest structures are designed for 
deeper water and a generally more hostile environment than those in 
America.

For hydrodynamic reasons, elements of the steel structures often 
take the form of large cylinders made of relatively thin plating. As 
offshore structures become larger with the move into deeper waters, it 
seems inevitable that there will be a steady progression to an increas­
ingly thin-walled nature in their components. This is especially true 
of the supporting legs and jackets which are in effect cylindrical 
shells with longitudinal and/or circumferential stiffeners. Buckling 
is the primary form of ductile failure for thin-walled steel components 
and, for supporting legs, is associated with compressive loading coming 
from external hydrostatic pressures and the deadweight of the super­
structure.' This is augmented by bending and torsional effects arising 
from/
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from wave and wind loads. These loading conditions can be multiple, 
and during the launching and subsequent working life of the platform 
can occur in various combinations. Each main component of loading is 
associated with one or more mode of buckling and it is possible that, 
when combinations of loading components occur, the various buckling 
modes will interact. It is here that difficulties will arise.

Two primary design.problems emerge with the use of these cylinders. 
On one hand,-the designer is faced with an immediate lack of reliable 
design guidance. The lack of experimental evidence on probable strength 
levels for these cylinders hinders classification societies in their 
attempts to provide designers with safe, but relatively economical_ 
cylinder design guidance. On the other hand, there is also a major 
lack of knowledge about the behaviour of such cylinders under various 
loadings - axial compression, external hydrostatic pressure and longi­
tudinal bending moment.

Many of the design rules to counteract buckling have been derived 
from the aerospace industry based on tests of aluminium cylinders with 
stiffening fins machined or riveted in place. Much of this work was 
carried out during the early 1960s for the design of rocket bodies which 
were subsequently proof-tested. Now the rules are being applied to very 
much bigger cylinders constructed by welding from high-strength steel.

The difficulty in formulation of offshore design codes is shown
by the fact that, out of the classification societies involved with off-

(1) *shore structures, only Det norske Veritas (DNV) has so far produced
a comprehensive set of rules concerning offshore cylindrical structures. 
They treat unstiffened cylinders, ring stiffened cylinders, stringer 
stiffened cylinders, and ring and stringer stiffened cylinders. Load­
ings covered include axial compression, bending, external pressure,
shear, or any combination of these actions. The bases for these rules

(2)are adapted from NASA 'Shell Analysis Manual' . They assume similar 
types of behaviour as in aero-structures and suggest the use of similar 
types of buckling strength curves. This rather free transfer from 
aero-space technology leaves many shortcomings which are clearly outlined 
in references (3), (4), (5) and (6 ).

*References listed at back



Buckling failure of most cylindrical components occurring in
offshore installations takes place inelastically (elasto-plastic), in
a way which depends more or less strongly on imperfections, including
particularly initial deformations of shell plating, stiffeners and
residual stresses caused by welding and cold-forming. Generally
stiffened cylinders of this type are normally proportioned to fail by
elastic/inelastic interframe buckling of the shell plating with hoop
stresses close to yield level. As yet there is no satisfactory
solution foroverall collapse of stiffened cylinders and so existing 

(7 8 9)design codes ' ' require high factors of safety against elastic 
general instability and against frame tripping, and specify maximum 
permissible out-of-circularity to avoid frame yield. These procedures 
make no explicit allowance for residual stresses.

„ Experimental studies of the buckling of ring-stiffened cylinders 
under external pressure have shown that collapse of the shell plating 
between ring frames is frequently preceded by the yield of shell 
material. This would indicate that-inelastic shell buckling may be an 
important consideration in the strength design of pressure vessels, 
particularly when it is realised that residual welding and cold-bent 
stresses often induce inelastic behaviour at pressures well below the 
design strength. Such cylinders are likely to lie in th:e range 
35 < R/t < 150 for which buckling occurs inelastically.

In recent years the finite element approach has largely super- 
ceded the type of elementary approach and several computer packages 
are available which are capable of examining instability problems in a 
wide variety of geometries, such as thin cylindrical shells, conical 
shells and domes. However, because of their generality and size, these 
routines are often too costly to use. This much more superior tech­
nique of finite element or finite difference method requires extensive 
computer time for development. At the time when this work began the 
University of Glasgow had no computer facilities but was sharing the 
Newcastle Computer (NUMAC), hence resulting in a bad turn-round for a 
job. Bearing this in mind a reasonable method had to be adopted to 
suit the facilities available.

\



As a result of the previous considerations, it appears desirable 
to concentrate attention on the energy method and to develop a tech­
nique to allow for the following complications:

a) initial out-of-circularity (initial shape 
imperfections)

b) ~ residual stresses due to welding and cold-
bending

c) inelastic behaviour

d) various boundary conditions
- «f

e) under external hydrostatic pressure and 
axial compression

The purpose of the present work is to develop an economical 
analytical technique to predict the buckling pressures of ring-stiffened 
cylinders under external pressure and axial compression. Ring 
stiffeners and transverse diaphragms (intermediate deep ring frames) 
provide the most effective means of reinforcing cylindrical shell under 
external pressure. This form of reinforcement is universally used in 
the pressure hulls of submarines, submersibles and offshore structures. 
Failure of a ring stiffened cylinder under external pressure may occur 
in any of the following modes:

i) Shell instability (interframe buckling)

Interframe shell buckling between rings usually occurs when 
the shell is stiffened by relatively heavy rings. The shell 
wall buckles between the rings, while the rings remain essentially 
circular. The buckling pattern is characterised by the formation 
of lobes or waves around the circumference. The minimum number 
of circumferential buckle waves is equal to two, corresponding 
to buckling into an oval shape. For closely spaced cylinders, 
the number of circumferential waves is usually much greater than 
two. Buckling of cylindrical shells induced by external pressure 
can take place in two basic modes, axisymmetric buckling, during 
which/ ■" . ' .



which circumferential corrugations develop along the axis 
and asymmetric buckling, whereby inward and outward lobes 
appear alternatively around the circumference. Buckling 
modes involve a number of n of circumferential waves which 
increases as the length reduces. In very short cylinders

< 1) buckling occurs in an axisymmetric (n = 0 ) mode. 
Cylinders of such range are not very practicable in engineer­
ing usage. Hence much attention will be on asymmetric 
buckling mode. -

ii) General instability (oVefall 'instability)

General instability or overall instability refers to 
the simultaneous buckling of the shell and stiffening rings 
causing an overall collapse at the critical load. Under 
external pressure, the general instability buckle-wave form 
is such that the longitudinal half-wave length is normally 
equal to the length of the cylinder between bulkheads, and 
the minimum number of circumferential waves is equal to two 
or more. General instability is strongly influenced by the 
frame-spacing and the geometrical properties of the stiffening 
rings and is likely to be sensitive when the rings are light.
The general instability of ring stiffened cylinders can be 
divided into two types:

a) the general instability under external pressure 
of circular cylindrical shells with evenly 
spaced, equal strength ring frames. Non-uniform 
frame spacing will not be considered here.

b) the general instability under external pressure 
of circular cylindrical shells of evenly spaced, 
equal strength ring frames with heavy intermediate 
ring frames.

In most practical cases, however, collapse by general instability 
will involve yielding of stiffeners and will be influenced by 
out-of-circularity and residual stresses caused by welding and 
possibly cold-bending. Only type (a) will be considered in 
this thesis. A good theoretical background for general in­
stability of type (b) can be found in references (10), (11), (12),(13)

\
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iii) Local instability of ring stiffeners

In designing the stiffening rings for cylinders, major
attention is usually given to the strength of the ring in its own
plane. There is also a possibility that a ring may trip, that is,
it may buckle or deform laterally. If such deformation became
large, the support furnished by the ring to the cylinder may be
seriously impaired. ,,The reinforcing efficiency of a ring stiffener
increases with each of the following three parameters: Ix , A_ and e.o f

For a given cross-sectional area the most efficient stiffener 
•is obtained when most of the stiffener material is contained in a 
flange which is connected to the shell by means of a long thin web.
The extent to which this can be done effectively is determined by the

■a*
phenomenon of local instability. A web which is too thin will buckle 
as thin shell and a section which has too little resistance to bending 
or twisting out of the plane will develop some form of bending or 
torsional instability. The analysis of local instability of ring 
stiffeners needs complex numerical technique and is a major subject by 
itself. Therefore it will not be pursued here, but some good literature 
on the subject can be found in references (14)', (15) , (16) and (17) .



CHAPTER 2 REVIEW OF LITERATURE

' 2 *1 SHELL INSTABILITY

The problem of the shell instability proved of interest as early
Q 8)as 1888 when Bryan , employing a strain energy approach, obtained

a solution for the buckling of a thin-walled infinitely long circular
cylindrical shell under uniform external lateral pressure. Later 

(19)Southwell obtained a solution for the buckling of a short tube,
but his result unfortunately contained an unknown parameter. Then
Von Mises made a break-through when he obtained the elastic buckling
pressure of a thin shell, simply-supported at its edges and subjected
to uniform external lateral pressure. Von Mises derived three separate
shell differential equations based on equilibrium of the shell, and by
substituting an assumed deflection configuration into these equations,
he obtained the required solution. Later in 1929 he extended the

(21)solution to include the effect of uniform axial pressure . But as
in the previous case, he assumed a deflection configuration which allowed
no rotational restraint at the edges. Attempting to verify the second

(2 2)Von Mises formula by experiment, Windenburg and Trilling noticed 
that for long thin shells, agreement was reasonable, but for shorter 
shells there was little connection. They concluded that the longer 
shells buckled elastically, while the shorter ones collapsed by a yield- 
buckling mode. Unfortunately the models of Windenburg and Trilling were 
fabricated by rolling and soldering and this introduced much distortion 
to many of the models. These initial imperfections would affect the 
cylinders, but was not considered by Von Mises.

(23)In 1941 Sturm carried out a theoretical and experimental in­
vestigation on the buckling of thin cylindrical shells under lateral 
pressure and external pressure. Although he buckled several tubes, 
many of these were of little use because they were fabricated .by welding 
and rolling and suffered considerable distortion. In the theoretical 
approach Sturm made many simplifications to his elastic shell equilibrium 
equations and these have made the predictions of his solutions too in­
consistent. The possibility of shorter shells buckling inelastically



was pointed out by Sturm and he suggested that an "effective" modulus, 
related to the tangent and secant moduli, should be employed instead 
of the elastic modulus. However, this modification does not appear to 
solve the problem.

"---' (24)Nash recognised the inadequacy of the Von Mises approach, 
insofar as that only certain buckling forms can be considered, and 
using a new strain energy expression, he obtained the elastic buckling 
pressure for a cylindrical shell with its edges fixed. The solution 
proved to be even further out with the existing experimental observations 
than the Von Mises solution.

A much more recent investigation of shells which buckle in the
(25)inelastic range was presented by Reynolds . The author obtained 

two’' inelastic solutions, one based on failure by buckling and the other
failure by yield. The first solution involved the use of the secant

o,and tangent muduli, and by relating these two functions to the experi­
mental stress intensity obtained from simple mechanical tests, it was 
possible to calculate the inelastic buckling pressures at certain stress
intensities. The other solution employed the Hencky-Von Mises criterion

(26)for yielding and also the Von Sanden-Gunther stress analysis, and
from these Reynolds obtained an applied pressure-stress intensity 
relationship. The plotting of the pressure-stress intensity relation­
ship from these two solutions on the same axis, found the two curves to 
intersect at a point, and the pressure at this point was taken as the 
inelastic buckling pressure. Both shape imperfections and residual 
stresses are ignored. Agreement with observations were shown by the 
author to be good. However, it was shown later in (27) that the 
Reynolds solution is too inconsistent.

(28)In 1962 Reynolds developed a small deflection analysis for 
the elastic interbay buckling of ring-stiffened cylindrical shells in 
which the influence of the rings on deformations before and during 
buckling was considered. Tests were carried out with a machined, ring- 
stiffened cylinder subjected to external hydrostatic pressure. The 
theory predicted with accuracy the elastic buckling for closely spaced 
ring stiffeners, at least where stiffeners were external. The solutions 
predicted much higher buckling pressures when compared with welded models.



One major setback in comparing the relative merits of these
solutions is the lack of experimental work in accurately perfect
machined models. Another missing consideration is the effect of
boundary conditions on the buckling pressure. When small elastic
stiffening rings bound a shell, there is a possibility that these may

(27)afford only partial constraint to rotation of the edges. Ross , 
employing the energy method, obtained the following solutions for inter­
frame shell instability:

i) partially fixed edges
ii) totally fixed edges
iii) simply supported edges

He represented the pre-buckling stresses by the membrane stresses.
Howfever, comparison with experimental results is too inconsistent.

None of the above authors has considered the effect of shape
imperfections (initial out-of-circularity) in their analyses. This
effect and its detrimental influence on cylinders has been pointed out

(29)as early as 1945 by Koiter . Effect of shape imperfections on
buckling of thin cylinders under various loadings has been studied by

_  (31, 32, 33, 34, 35, 36, 37, 38) . ..many authors . Therefore, any theor­
etical analysis of shell instability will be incomplete and irrelevant with­
out considering the effect of initial out-of-circularity. Many 
authors have shown great difficulties in explaining the results of 
experimental with theoretical solutions. The theory available or being 
developed was for perfect structures, whereas the models employed for 
confirmation were imperfect.

2.2 GENERAL INSTABILITY

General instability or overall instability was first pointed out 
(39)by Tokugawa . He obtained a solution for this mode by a similar . 

approach to that of Von Mises, but careful examination of his result 
reveals that it is only a combination of a ring buckling formula and a 
shell buckling expression, each taking place separately. This assumption 
is incorrect because it does not represent an overall behaviour and no 
allowance was made for the number of ring stiffeners nor for the length 
of unsupported span.



For several years after Tokugawa’s work the ring stiffeners 
were designed by many methods based on this approach and it was not 
until 1950 that Salerno and Levine resolved this inad­
equacy. They represented a buckling configuration extending over 
the whole shell-frame assembly and substituting this and its various 
derivatives into a strain energy expression, they obtained the buckling 
pressure by minimising the total potential. Salerno and Levine employed 
in their expressions items such as extensional strain energy, bending 
strain energy, axial and radial potential, and many other terms, but 
unfortunately neglected the fact that the radius of the centre of the 
‘frames may be different to the radius of the mid-surface of the shell. 
Also, in comparing the buckling pressure, they neglected the pre-
buckling deformations altogether. Because of this shortcoming and *
because of certain errors in their energy expressions, the analysis 
is not considered correct.

(43 44 45)Kendrick noticed this and made the simplifying
assumption of uniform lateral and axial contraction prior to buckling.
He assumed simply-supported edges and introduced a '1-cos' term in the 
buckling displacements to allow for the sagging of the shell plating 
during buckling. Kendrick found lower buckling pressures than the 
solutions of Salerno and Levine. Although his method was simpler than 
that of Salerno and Levine, it neglected only trivial terms - shear, 
torsion, out-of-the plane bending and twisting of the frames. The 
range of application of the simplifying assumption concerning pre- 
buckling deformation is very limited and its effect will be pointed out 
later in this thesis.

Nash^^ did not accept Kendrick's view that the shear, torsion, 
out-of-the plane bending and twisting of the frames were negligible, 
nor did he accept Kendrick's belief that the magnitude of rotational 
restraint at the edges has no serious effect on the buckling pressure.
He took all of these into account and found that the difference in the 
predicted buckling pressure was indeed significant.

(47)Kaminsky attempted to find out more clearly the difference in 
buckling strength for clamped end and hinged end cylinders by comparing 
Kendrick's/
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Kendrick's solution with a clamped ends solution obtained through the 
strain energy expressions used by Kendrick. This too was found to have 
significant variations.

— Reynolds and Blumenberg tested without destroying four
accurately machined models, the edges of these being subjected to
various boundary conditions. The authors found from their observations
that the boundary conditions of the models had an appreciable effect on
the buckling pressure. Their experimental results of almost simply-
supported edges was in good agreement with the simply-supported edges

(45)solution of Kendrick, part III

There are various assumptions and simplifications in Kendrick's 
Part III theory, so complete agreement with test results cannot be 
expected.

a) Out-of-plane bending, torsional and warping 
terms are omitted when strain energy in the 
ring stiffeners was evaluated

b) Neglected that the radius of the centre of 
the frames may be different to the radius of 
the mid-surface of the shell

c) The pre-buckling deformations were considered 
uniform that the discontinuity effects imposed 
by the stiffeners were neglected

This feature has not yet been investigated in the case of general in­
stability. However, it shall be considered in this thesis. Finite
pre-buckling displacements have a profound effect on the bifurcation
load^~^. To ignore these displacements, as is done in most instability 
analyses, is to invite major errors, usually on the unsafe side. It
will be shown later that this effect is serious and detrimental. Most
of the authors mentioned above represented the pre-buckling stresses by 
the membrane stresses.

d) The theories available or developed were
for perfect structures, whereas the models
employed for confirmation were imperfect 
due to normal processes of fabrication.

\  'V



(49)In 1962 Roxburgh employed a uniform radial displacement 
and a uniform longitudinal contraction for the pre-buckling deform­
ations, and thus neglecting the sagging of the shell plating between 
the frames. This is particularly serious in widely framed cylinders. 
Further, a uniform radial displacement does not satisfy the boundary 
conditions neither at the frames nor at the bulkheads. On close 
examination Roxburgh used only linear terms for shear expression for 
the shell platingr " Inclusion of higher order terms in the shear 
expression would lower the buckling pressure significantly.

(13) (28)In 1976 Creswell used Reynolds energy terms for the
elastic analysis of overall instability for ring-stiffened cylindrical 
shells. Fourier functions are used to represent the buckling displace­
ments. In the general case, arbitrary frame sizes and spacings, matrix 
dimension is 3NfNs, where Ns is the number of frame-spaces and Nf is the 
limit to the number of basis functions required to represent the buckling 
displacements. This form of representation of the buckling displace­
ments resulted in (60 x 60) matrices for a solution which could be 
obtained by the present theory requiring only (5 x 5) matrices within 
a few per cent of the former. The cost of running such a computer 
program is obviously too expensive for design purposes. The theory 
only considered perfect cylinder and only limited comparison was m a d e .
A comparison will be shown later between the present theory and that of 
Creswell's. The work of Creswell is more general in the manner that 
unequal ring frame spacing is allowed.

There is still no satisfactory inelastic solution for an overall 
collapse. For a reasonable solution of such kind one would require a huge 
computer program by finite element or finite difference technique re­
presenting each individual frame and shell elements throughout the whole 
length of the cylinder. Because of this enormous task attention has 
been focused on problems of the frame-shell combination failure by 
buckling rather than on overall collapse. Smith and K i r k w o o d d e ­
veloped a finite-element computer program in which the frame cross- 
section (and shell) is subdivided into fibres or layers over its depth
and which allows for the influence of initial deformations and residual 
stresses/



stresses to be included. The program considered progressive yielding 
and strain reversal and it has been used to examine these effects for 
cold-bent and shell deformations.

A complete analysis of the buckling of ring stiffened cylinders
would be extremely lengthy since each frame would undergo different
deformations and would go plastic at different pressures. It is
necessary to make someT sweeping approximations in order to produce a

(53)practicable solution. Kendrick used an approach to consider the 
behaviour of a stiffener near to the centre of the cylinder length and 
to modify a single stiffener analysis so that the following obvious 
requirements are satisfied:

*' a) The elastic stresses in the stiffener for zero
out-of-roundness are the same as for the ring 
stiffened cylinder

b) The elastic buckling pressure should be the same 
as for the ring stiffened cylinder

c) - The plastic limit load assuming perfect circular­
ity should be the same as for the ring-stiffened 
cylinder

d) The elastic stresses caused by an initial out-
of -roundness in a pure buckling mode should be
the same as for the ring-stiffened cylinder.
He concluded that the collapse load of a ring
stiffener can be greatly reduced by the presence
of cold-bending stresses, which is not surprising
as it has already been confirmed by previous 

(52)work . This simple modification to the ring 
stiffener theory could lead to an under-estimate 
of the true collapse pressure-

(52)It must be reminded that the previous works by Smith and 
(53)Kendrick are aimed at the effect of cold-bending stresses in the 

ring stiffeners on the collapse pressure, as this is the common 
practice of fabrication of ring frames in navy submarine construction. 
In the offshore industry most ring frames are fabricated from cut-outs



and welded together and hence the absence of cold-bending stresses.

In the field of finite difference energy method, several authors
 ̂ (54, 55, 56, 57)  ̂ ^have made much contribution . Most of the works are

applicable to perfect structures and are meant for the aeronautical
industry. In the aeronautical field much of the work on cylinders is
based on the principle of 'smeared theory'. A good guidance in this

-T * <58' 59' 60' 61' 62' 63' 64> mufield is available from references . The
smeared theory technique has its limitations. It assumes that both the 
shell plating and the ring frames have the same yield strength.
•Secondly, the increase in critical load due to stiffeners or stringers 
is the same as that obtained by uniform thickening of the shell with the 
same amount of material. This second assumption is definitely not 
true as it depends on the frame spacing and perhaps for very close 
spacing the differences might be insignificant. Finally, this tech­
nique of smeared theory is not applicable to offshore industry as the 
geometry, material and fabrication processes of the cylinders are 
different as that of the aerospace industry.



CHAPTER 3 THEORY

3.1 BASIC CONCEPTS

The principal sources of non-linear structural behaviour are 
non-linearities in the material properties and the geometric non- 
linearities caused by rotations of structural elements. Since the 
latter is the physical reason for static instability, we shall con­
sider its effect and influence.

Buckling of a structure occurs either at a bifurcation point or 
at a limit point. A bifurcation point indicates a load level at and4*
above which some new deformation mode is possible. The existence of 
a bifurcation point indicates only that the equilibrium on the primary 
path loses its stability. The structural behaviour at and beyond 
this point is governed by the conditions on the secondary path. This 
secondary equilibrium path can be stable (Fig. 1) or unstable (Fig. 2) , 
symmetric or asymmetric. An unstable bifurcation point indicates an 
imperfection sensitive structure.

A limit point (Fig. 3) corresponds to the maximum of the load- 
displacement curve visualising the primary equilibrium path. Under a 
load exceeding this maximum, there exists no equilibrium configuration 
in the immediate neighbourhood. For shells of general shapes, buckling 
or collapse will in most cases occur through the passing of a limit point.

The influence of initial shape imperfections on the stability 
behaviour of thin shells is most important. The equilibrium path 
for imperfect cylindrical shells corresponds to substantially lower 
load levels (Fig. 4). The dramatic reduction of the critical buckling 
load for cylinders has received both experimental and analytical con­
firmation^^' The central significance of the shape of the secondary
equilibrium path in determining the influence of initial imperfections is 
evidenced by the tremendous reduction of the bifurcation buckling load.
Lack of knowledge of this secondary path introduces an element of un­
certainty.

The/



The energy method by Ritz approach is used because of its 
adaptability to the solution of complicated buckling forms. Briefly 
the basis of the energy method is as follows. Strain energies of 
shell and ring frames, and external load potential, are expressed in 
terms of the displacements from the unstressed state. Total dis­
placements are then expressed as a sum of displacements along the axi- 
symmetric primary path, and the asymmetric secondary path on buckling. 
The critical pressures'are the pressures at which there exists a 
non-trivial solution for the buckling displacements, which satisfies 
the condition that the total potential of the system plus its loads is 
minimies with respect to the buckling displacements. Both the primary 
path and secondary path must satisfy the boundary conditions of the 
structure. To find the critical pressures it is then only necessary 
to solve an eigeiwvalue problem of the form:

(tal - ^  [b]) [X] = 0 (1)

where [x] is the buckling deformation vector. Matrix [a] is a stiff- 
ness matrix derived from the strain energy of the shell and ring frames 
and [b] is a load-geometric matrix derived from the (negative) change 
in potential of the external loads, and the (positive) work done by 
stresses developed on the primary path immediately before the onset of 
secondary deformation.

3.2 ASSUMPTIONS

The formulation is based on the usual assumption of the thin 
shell theory:

1. The shell is assumed to be isotropic and its thickness 
is small compared to its radius so that the problem
is restricted to two dimensions. The.co-ordinates 
are as defined in Fig. 5. " •

2. Stresses normal to the midplane of the shell and the 
stiffener axis are ignored and the transverse shear 
deformation is neglected in both the shell and the 
stiffener/



2. (Cont'd)
stiffener, so that the hypothesis of pre­
servation of straight normals during deformation 
is retained.

3. The Kirchoff assumption will be used to relate 
the deformation of the shell and frame fibres 
distant,from the shell-median surface to the 
displacements of the shell-median surface. The 
external load will be taken to act at that same 
surface.

4. Kendrick's non-linear extensional strain- 
displacement expressions will be used in the 
derivation.

5. The ring stiffeners are of solid rectangular or 
'T' cross-section.

6 . Ring stiffeners are to be fabricated from cut-outs 
and not by cold-bending. Hence there is no 
residual stresses due to cold-bending (Fig. 6 ).

7. Stress-strain curves are irreversible. That is 
the effect of strain reversal is neglected.

8 . Material has ideal elastic perfectly plastic be­
haviour with no strain-hardening.

9. There is no initial tilt in the ring stiffeners.

MATHEMATICAL FORMULATION

The total potential energy of a system is defined by:

Sm = 2 + S. + S- + W, (2)T s b f . d

where Sg is the extensional strain energy of the shell

S. is the bending strain energy of the shell b
is the strain energy of the ring frames

and W. is the work done by the external loadingsd
The effect of welding residual stresses is outlined at the end of 
this chapter. \ .



For any cylindrical element the strain energy is defined as:

h Iff oe R dQdxdz (3)

Applying the thin-shell theory, the constitutive (stress-strain law) 
relations are:

°x = <ex + “V  (4a)

°e = <ee + ^  (4b)
E

ax0 2 (l + y)ex0 (4c)

The extensional kinematic (strain-displacement) equations are from 
Ref. (67).

e = U + 35(Wa + V 2 + 2W W )  (5a)X X X X OX X

ee “ -V  -? + 2î (we + u0 -2WV0 + 2WO0W0 - 2wow) (5b>- R

e = U0 + V + ̂ -(WAW +W AW +W W.) (5c)0 —  x R 0 x o 0 x  ox0
9W 9V

where: u = , w = , V = 9x , etc.x ox 9x x

Substituting equations (4) , (5) into (3) and retaining only third order 
terras, we get



Omission of the fourth and higher order terms

The admissibility of the omission of terms of the fourth and 
higher order may be examined through calculations and comparison with 
the remaining contributions in the energy equations. Such comparisons 
have been carried out by Koiter in Ref. (29), page 293. It has been 
extensively proved by Koiter that the fourth and higher order terms may 
indeed be neglected if:

1 - /=* «  6 )
X .

x *where the ratio —  is defined in Fig. (45) and is termed the reduction 
factor. ^

* For welded cylinders, the reduction factor can go as low as 0.30 
depending on the R/t and £/R ratio and the degree of imperfections.
The reduction factor is always positive. Hence in practice the above 
inequality is well satisfied and the omission of the fourth order terms 
may indeed be neglected. The inclusion of higher order terms would 
lead to more complex mathematical formulation and this is unnecessary 
unless one is looking at the post-buckling behaviour. One may argue 
that a more refined shell theory is more necessary than higher order terms.

The bending strain energy expressions are', from Ref. (6 8) as 
suggested by Kendrick, such that near agreement with the Vlasov 
differential equations can be obtained.

ERtk .v Vi-* ■' ■ > •

3
+ ~(l-y) (V +W )2 + 2yW (WQ +v ) + 2RU W ] dxd0 (7)2 x x0 xx 00 0 x xx v"

The term a will be unity for an elastic solution and less than 
unity for an inelastic solution. This point will be discussed later.
The limits of integrations will be from £ to 0 and 2tt to 0 for inter­
frame instatibility, and from L to 0 and 2tt to 0 for an overall in­
stability. Also Sf = 0 for interframe buckling.

The/

Y
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The strain energy expressions for the ring frames are adopted 
from Refs. (45) and (28) , but modified to suit the co-ordinate system 
as shown in Fig. 5.

EA a N 2tt
sf » 2 (5 =5-, * 4  [(wee+ v e ) W ~  ee]!dS * - *1=1

+ i K f  " (wee+ v e)2 r! de x = i*2(R-e> . , o 1=1
EI a N 2lT+ __zo_J. I f [eW -U + (R-e)W ]2d0 .
2 (R-e)3 i=l o x r t

GC c. N 2* '
+ r f E 1 [U + RW J 2 de v-il <8>
2 (R-e)3 1=1 o 6 x0 x - lZ

where e is given in eq. (5b).D

* Work done by the external pressure on an imperfect cylinder can 
be derived as follows:

Initial volume of cylinder VOL 1 = hf f 2 dQdx

Deformed volume of cylinder VOL 2 =

hff(R-W-W V  (1+U ) (1+V_/R) d0dx' 0 X 0

Change in volume (VOL 2 - VOL 1) =
hff [W2 -2RW + 2W W- 2R(W +W) (U + V 0/R)+RU V +R2 U +RV ] dxdQ o o x t? x o x o

Hence work done by the radial (lateral) pressure component:

W = - — // [2W W-2RW+W2-2R (W +W) (U +VQ/R)+'RU V.+RV JdGdx (9)pi 2 o 0 X 0  x G b

and work done by the axial pressure component

W _ = -p0 R2/2 ff U d6dx ’ (1Q)p2 2 x

where W _ = W _ + W 0 (11)d pi p2

For axial compression W = w „ and for radial pressure only W, = W .d p2 d pi

During/



During buckling, the system passes from an initial or pre­
buckling equilibrium state, in which all deformations are axisymmetric, 
to the buckled or asymmetric state. .The interaction state is defined 
as the interaction behaviour between the pre-buckled state and buckled 
state. The total, displacements are then expressed as a sum^ of dis­
placements along axis-symmetric primary path and the asymmetric secondary 
path on buckling. The overall diagrammatic representation of buckling 
behaviour could be expressed as below:

PRE-BUCKLED STATE INTERACTION STATE BUCKLED STATE

The pre-buckling state is a self-equilibrium state. For an 
initially circular cylindrical structure the primary deformation is axis- 
symmetric. The effect of initial shape imperfections is small and 
negligible at the pre-buckled state, unless the initial shape imperfections 
are purely axis-symmetric, which is not possible in welded cylinders.

A set of appropriate pre-buckled displacements could be 
assumed as follows:

u = f(x)
v = 0 (1 2)
W  = -,f(x)

Hence U^ = u + U

VT = V (13)
TW = w + W

Where the subscript T denotes total displacements at buckled state, the 
small letters u, v, w represent pre-buckling displacements, and capital 
letters U, V, W represent additional displacements due to buckling. 
Substituting equations (13) into (6), we get:

ERt 1
1 = TTi— a//[-(M +M ) (W2 + V 2 +2W W )-2-2Mi (v -w) (V +w ]s 2 (1-y ) 2 1 x X  ox x R 2 1 0  0 o

- (M+yM_)-2 (W2 + U 2 -2WV +2W QW —2W W)1 2  R 0 0 0 o 0 0 o

1 (V +W )+ 2M U (W +W ) + 2yM —  (V -W) (W +W )-2yM U 0 o 3 x x ox 3R 0 x ox 1 x — ---

+ a-y)M,~(lk/R +V ) (W +W -)] d0dx (14)3R SN x 0 o0



where:
M. = “ , M0 = - — ■ , M = |—  (derivative of eq. (12))1 R  £ dX j dX

and the term w shall denote this work done due to the interaction s
behaviour, and must be added to eq. (2) to complete the equilibrium 
of the system.

In the case of overall instability the same procedure should be 
applied to eq. (8 ) resulting/ in the additional work done due to the
ring frames as: _

EA a N 2tr r
“ Z f [-M (W 2 + UQ - 2WV.+2W W -2W W)wf = 2 (R-e) o L 1 6 0 0 o0 0 o

V ve+wo5 '"ee"e'R '"0t#i W ' e«+V r V W V  w)lde x=i£ as)
where . = w/R
Similarly eq.(15) has to be included in eq.(2) to complte the equilibrium 
system for an overall instability.

3.4 REPRESENTATION OF THE PRE-BUCKLING ' DISPLACEMENTS

Both Kendrick and Reynolds have in their analyses made 
the simplifying assumption of uniform lateral and axial contraction 
prior to buckling. R o x b u r g h u s e d  a better assumption, but still 
in error because the assumed pre-buckling displacements do not 
satisfy the boundary conditions. The function f (x) in eq. (12) has 
to be of the form that satisfies the boundary conditions and physic­
ally sound. For simple supported edges:

3w 32r—  f 0 and r—r = 0 at x = 0 and x = £ or Lox ox2

For partial fixed edges:

^ 0 and f 0 at x = 0 and x = t or LoX oX

For clamped edges^

<*w 32w , „ 0r—  = 0 and — 5- f 0 at x = 0 and x = £ or L3x 3x

In the case for overall buckling behaviour the "1 - Cos" form
has to be introduced to allow for the effect of sagging of shell 
plating between the ring frames.



i) Simple supported edges:

Recalling eq. (12), the axis-symmetric pre-buckling displace­
ments satisfying the above conditions are assumed as follows:

9u—  = constant9x
v = 0 (16a)

TTXw = w^Sin (— )

TTXInitially a form of u = u Cos—  was adopted, but it was found to giveZ Xf
higher buckling load than that suggested in eq. (16a) - See Fig. 7.

After some numerical observation a uniform axial contraction is adopted
for the u function.

In the case of overall instability the following pre-buckling 
displacements are assumed: ___

9u—  = constant3x

v = 0 (16b)
« • TTX ■ ~ 2tTX.w -• w S m —  + ^

2 t t xThe (1 - Cos—— ) term is to allow for the effect of sagging of shell 
plating between the ring frames. and are arbitrary constants
to be determined from the pre-buckling equilibrium state.

ii) Partially fixed edges

The pre-buckling displacements assumed are as follows

9u
9x = constant

v = 0 (17a)
. TTX ,  TTXw = .w2 (Sin—  + S m 2

For overall instability the following displacements are 
adopted:

9u—  = constant 9x

v = 0 \ (17b)



iii) Clamped edges

For interframe instability the pre-buckling displacements
are:

9u ^—  = constant 9x

v = 0 (18a)
o 2ttxw = w2 (l - Cos— -)

For overall instability the pre-buckling displacements
are:

- 9u . .—  = constant9x

v = 0 (18b)
r  , ,  _  2 t t x . „ ^  2 t t x .w = (1 - Cos— -) + W2 (1 - Cos—jj— )

3.5 REPRESENTATION OF THE BUCKLING DISPLACEMENTS

The choice of the buckling displacements has to be made such
that the amount of computer time required to solve the problem is
not too excessive. t From the experience of several

(27,43,44,45,47) ^  . . ' . . . . .  .authors the following buckling displacements are
adopted for various boundary conditions:

i) Simple supported edges

For interframe instability:



For overall instability:

TTXU =̂ . A Cos n0 Cos— ̂ 1 L
TTX 9  TTXV = B Sin n© Sin— + B Sin n0 (1 - Cos—-— ) 1 L 2 %

TTX 2  TTXW = C Cos n0 Sin—  + C Cos n0 (1 - Cos—z— ) 1 L 2 «
^ TTX 2 TTXW — C , Cos n0 Sin—  + C ^Cos n0 (1 - Cos— ;— ) o ol L o2 %

Partially fixed edges 

For interframe instability:

TTXU = A^Cos n0 Cos—

TTX TTXV = B Sin n0 (Sin— + Sin2 — )X X/ Xe

TTX TTXW = C^Cos n0 (Sin—  + Sin2 — )

W = C Cos n0 (Sin—  + Sin2o o H &

(19b)

(20a)

For overall instability:



iii) Clamped edges

For interframe instability:
TTXU = A^Cos n0 Cos-j-

2  TTXV = B^innO (1 - Cos-j~)
. / 2 TTXW = C^Cos n0 (1 - Cos— ^— ) (21a)

(21b)

2frxW = C Cos n0 (1 - Cos— «-)o o X,

For overall instability:

U = A^Cos n0 Cos-^p

V = B Sin n0 (1 - CoS"|j-X) + B Sin n0 (1 - Cos^^-)X L 2 X
2 TTX 2 TTXW = C Cos n0 (1 - Cos— —̂ ) + C Cos n0 (1 - Cos-4^)X Xi 2 -c
2 tT X  9<TrvW = C Cos n0 (1 - Cos--) + C Cos n0 (1 - Cos— '— )o ol L o2 £

As mentioned in Ref. (44) (80) there are other possible forms of buck­
ling displacements which cater for "infinite" cylinders. The term 
"infinite" is not clearly defined by K e n d r i c k . A more appropriate 
non-dimensional parameter is necessary in order to draw a line between 
"finite" and "infinite" cylinders.

The form of buckling displacements suggested by Kendrick for 
"infinite" cylinders are:



The author disagrees with the form of eq.(22a) for the U-displacement. 
A rather more correct displacements are:

(22b)

slightly lower

A 1 ' B1 r C 1 ' B 2 # C 2 are ar^itrary constants to be determined
from the minimisation of eq. (2). The terms C , C , , C « areo ol o2
amplitudes of the shape of imperfections and are known to designers by 
means of past experience or from collected data.

TTXThe (1 - Cos) term is used instead of a Sin-^- , to allow for
TTXthe effect of sagging between ring frames. A sin-g- term would cause

a discontinuity at the position of the ring frame, hence not a physical
configuration. The (1 - Cos) term is particularly dominant in widely

(45)spaced ring stiffened cylinder. It has been shown by Kendrick 
that to ignore this term is to invite major errors, usually on the 
unsafe side.

The shape of imperfection has been assumed to resemble the
buckling mode. It has been proved numerically that the configuration
of the most severe shape of imperfection resembles the buckling
mode(52,62,63,67)  ̂ term represents the out-of-circularity
of the ring frames and C  ̂ (or C ) measures the out-of-circularity ofo2 o
the shell between the ring frames. The solutions obtained by this 
assumed configuration are sufficiently accurate for design purposes.

U = A Cos n0 Cos—

2 ttxV = B^Sin n0 + B^Sin n0 (1-Cos—j—)

2 TT XW = C^Cos n0 + C^Cos n0 (1-Cos—j—) ■
OaryW = C Cos n0 + C Cos n0 (l-Cos^^)o ol o2 Jc

As we shall see, the latter displacement pattern gives 
0

buckling pressures and is therefore more correct.



We shall see later that the solutions obtained are in close agreement
(52)with~solutions obtained in finite element analysis . The main 

obstacle is that the true shape of imperfection is not known at design 
stage, until the cylinder is fabricated. Furthermore, the degree of 
shape imperfection depends'on the fabrication method and this varies 
from place to place. Most codes are explicity on the degree of out- 
of-circularity required expressed as the difference between maximum 
and minimum diameter and BS5500 and ASME use a value equivalent to 
a departure of 0.5% on radius. This criterion only covers ovality 
and more complex shapes and localised dents require a different 
criterion. Various methods of measurement are described in Ref. (34). 
Since the type of imperfections that the cylindrical structure will 
exhibit is not yet well known, shells are designed for the 'worst' type 
of imperfections that are likely to occur. It is now widely accepted 
that significant advances towards more accurate predictions of the 
buckling load of thin shells depend on the availability of extensive
data of realistic initial imperfections and their correlation with

- . . (70,71,72,73).manufacturing techniques



3.6 RESIDUAL STRESSES

3.6.1 Cold bending residual stresses

The residual stresses caused by cold rolling the skin plates to 
the required curvature must be considered, although it is believed to 
be less important than those caused by welding and flame cutting.

The-simple theoretical model, shown in Fig. Al, comprises an
elasto-plastic stress distribution for the bending phase on which is
superimposed a reverse elastic distribution due to spring-back. The
net final effect is the well known zig-zag stress pattern, the exact
form, of which depends on the ratio of the radius k to thickness t (see

(79)Appendix I) . Results at Cambridge by Pascoe on 36 mm plate with 
470 N/mm2 support the validity of this model. Pascoe also showed 

that the Bauschinger effect made very little difference to the final 
pattern. If we accept the simple model, the final pattern of circum­
ferential residual stress due to cold bending is as plotted in Fig. Al, 
depending on the quantity Et/Ra^.

The above treatment assumes that the plating is bent once and 
released. In practice it probably goes through the bending rolls 
several times before reaching the desired curvature.

In the skin plates the bending operation will give rise also to 
longitudinal stresses, from the Paisson's ratio effect. These are 
likely to be less than the circumferential ones and will not be con­
sidered in this thesis.

The effect of cold-bending residual stresses on the potential 
energy of the system can be expressed as follows:

Let S , be the strain energy due to the cold-bending residual cb
stresses:

S , = hfffo k RdxdOdz (23)cb cb 0

where/



where

terms.

k is the circumferential curvature strain given by 0

ke = " iF (w68 + w) + W  ueewx " W  wx up to 2nd order

Substituting for k̂  in eq. (23) we get:

scb = h R U K b{~ W % e  + m  + i^eeWx - i k V  } dxd0dz

s = HR/fa {-sr(w„. +w) + r r u  w w 2 }axae cb cb E 00 R2 00 x 2R x (24)

where

a , = /a , z dzcb cb

which is derived as follows:

- orCOMF’/tESSiOK/

(25)

Reference to the figure above, the stress distribution across the shell 
thickness t can be represented by two simple linear equations.

From A to B and C to D:

cb
(°2 + °1) (0 2l  + ° l Vz(t/2 - tx) (t/2 - t ) (26)

and

From B to C:



where

(t/2 -
1 -

(30)*

Hence eq. (24) has to be included in eq'. (2) to account for the presence 
of cold bending residual stresses.

Ring Frames

The T-section ring frames are made up of ten or eight sections 
which are then butt welded together to form a complete ring (Fig. 6b) . 
Each section is built-up from plate in the following manner:

The sections are then jigged into the correct circle and joined 
by full penetration butt welds to form a complete ring.

The above procedure of fabrication is a normal practice carried 
out in most offshore fabrication yards. There is no cold bending 
carried out except for the sectional flange strips which are very thin
compared with the web depth. Therefore the presence of any cold bending

\
residual stresses in the ring frames can be ignored.

i) Flame cut web segment to correct shape from
plate to plate - cutting proceeds continuously 
around the profile of the segment.

ii) Roll the flame - cut flange strip to the correct 
curvature

iii) Tack the flange to the web

iv) .Complete the web-to-flange welds, with the plates 
clamped into the jigs to maintain correct curv­
ature and to prevent tilt of web.



3.6.2 Welding residual stresses

The effect of welding residual stresses on the buckling load
of stiffened cylinders is much more serious than that of the cold
bending residual stresses. Much work has been done on the measure-

(73 74)ment of these residual stresses in Cambridge ' . Earlier work
on the calculations of deformations of welded metal structures can be 
found in Reference (75). The effects of residual stresses on the 
ductile strength of ring stiffened cylinders are outlined by Faulkner 
in Reference (76).

, From the above references a simple mathematical model will be 
presented here as shown

2̂ i

<rrc

lzLz h

The width nt of the yield tension block each side of the weld
joint is governed by the welding process and, in particular, by the
heat input (or rate of weld deposity)nf,yield stress and thickness of
the members joined. From experiences gained in weld imperfections of
stiffened panel, initial values of n in the range 4.5-6 seemed typical.

(77)Measurements on larger models suggest much higher values of n . It 
appears reasonable to assume that the compressive residual stresses a 
in the plating are balanced by the tension block in the plating.

Then:

rc 2 n  
£/t - 2r| (31)

There is very scant information on this subject. One value for a 
specific/



(78)specific submarine gave o = 0.17 a as measured. Typicalrc y
values for a from 0.10 a to 0.20 a are practical for stiffened rc y y
welded cylinders.

(H(i\
As outlined by Faulkner , for internally stiffened cylinders 

welding the ring frames to the shell produces interframe compression 
residual stresses from two sources:

i) from tension block n actions from along-the-
weld shrinkage as represented by eq.(31)

ii) from typical interframe shell distortion
caused by the welding

The source (ii) cannot be included here as it is already considered for
under the effect of shape imperfections, W . This supports the logico
that welded cylinders can never have'perfect circularity.

The effect of welding residual stresses on the potential energy 
of the system shall now be expressed as follows:

Let S be the strain energy due to the welding residual stresses w
and a the welding residual stresses in the shell plating, w

Then:

S = hfffo e.R d0dxdz (32)w w 0

where

a = a (at the tension block)w y

and

(compressive stress at mid-bay, computed
by eq.(31)

Substituting/



Substituting for e from eq. (5b)0

sw = ^t//aw [(V0-W)/R + ^  <W0> + vg> - 2WV0+2Wo0W
- 2W W] d0dx o

(32)

Hence eq. (32) has to be included in eq. (2) to account for the presence 
of welding residual stresses in the shell plating. To evaluate eq.(32) 
step-integration would be performed.



CHAPTER 4 METHOD OF SOLUTION

4.i PREBUCKLING MATRICES

The pre-buckling state is a self-equilibrium state. Sub­
stituting the pre-buckling displacements of eq. (1 2) into eq. (2) , 
where ew. (12) will take the form of eqs. (16) to (18) depending on 
the boundary conditions and the mode of buckling, interframe or overall 
buckling, we get in matrix form: *

v>T = h t x ] T [r][x] - +'1 ts]T tx]| (33)

where [r] is the stiffness matrix
[s] is the load matrix

TThis potential energy u must be a minimum, 
respect to vector [x], we get:

- M M  - ^[s] = 0
(34)

or [r] [x] = fjs]

The vector [x] can then be solved in terras of <{>̂, and these are needed
to calculate W and W_ later on. s f

4.2 BUCKLING MATRICES

The total potential energy of the buckled state includes the terms
W and W_ and the terms to account for the presence of residual stresses, s f
The buckling displacements will take the form outlined in eqs. (19) to 
(22) , depending on the boundary conditions and the mode of buckling.
After substituting, we get:

TDifferentiating u with

This/

UT - 4R'h V )  - ^ M ) M  - ^ t c 1 T [X]) (35)



T TThis potential energy U must be a minimum. Differentiating U with
respect to vector [x], we get:

T = ([a] - ^[bDIx] - ♦1[c] = 0
(36)

([a] b])[X] = ̂ 1 [c]

where * •
[a] is the stiffness matrix at buckled state
[b] is the load matrix at buckled state
[c] is the column matrix due to initial shape imperfections

For*a perfect cylinder, the matrix [c] is a null matrix, and hence re­
ducing equation (36) to simply:

([a] - * 1 [ b ] ) [X] = 0 (37)

the smallest root of <j>̂ and hence the buckling pressure is of interest
here.

It is easy to solve for the smallest value of of eq: (37) than 
eq. (36). Eq. (37) can be written:

(i - l a l f ^ f x )  = o
where

[<3] =  [ a ] ' 1  [ b ]
and I is the unit matrix
Let $ = l/4>̂  and eq. (38) becomes:

($[1] - [d])[x] = 0

The largest root of eq. (39) and the associated vector [x] is 
easily found by repeated premultiplication of an arbitrary column vector 
by [d]. The theory is given in Ref. (81) and a numerical example 
follows:/

(38)

(39)



follows:

" 274.0 -145.2 5.58 ” 135.5 191.8 -432.2
[a] =- -145.0 924.7 i N3 O [b] - 191.8 819.1 174.2

5.58 - 72.0 6.69 -432.2 174.2 836.2

~ 0.00453 0.00453 Q.0239" -9.252 7.157 18.542 “
[a]~1 = 0.00258 0.00816 0.0856 [d] = -36.09 22.09 71.92
■ ' _ 0.0239 — “0.1)856 1.051 -434.5 257.8 883.4

The matrix [d] is now used as a premultiplier on an arbitrary column 
matrix. A suitable choice of column matrix is as follows, but any
will do although a poor choice can slow down the convergence:

tf r
0
0.10 

.1.0° J

The last number (B̂  say) in the resulting column matrix is an approx­
imation to the largest ' eigenvalue $ and the matrix is an approxim­
ation to the required matrix [X]. Dividing throughout this column 
matrix by 3 and repeating the process of premultiplication by [d] 
leads to a better approxkmation to anĉ  a better approximation to 
M  after once again dividing by . This process converges to the 
exact value of B and [x] after several iterations depending on the size
of the matrix [d] and starting value of [x] . The collapse pressure is
then given by the dominant root of eq. (39) .

Before eq. (36) can be solved a slight modification has to be 
introduced. Eq. (36) can be rewritten in element form as follows:

"all al2 al3 0 " bll bl2 bl3 cl ~X1

( a21 a22 a23 0
‘ +1

b21 b22 b23 c2 ) X2 = 0 (40)
a31 a32 a33 0 JL b31 b32 b33 c3 X3
0 0 0 0 0 0 0 0 _1.00

Eq. 40/



Eq. (40) is still mathematically the same as eq. (36) and the zeroes 
are just dummy elements. From eq. (40) it can be seen how the column 
matrix [c] affects the collapse pressure through its influence in the 
load matrix [b] . . The inverse of [a] is only performed on non-zero 
matrix elements, hence the (3x3) matrix elements only. If [e] is 
the inverse of [a], then elements the elements are:

"ell el 2 el3 0

= ' e21 e22 ©23 0 (41)
e31 e32 ©33 0
0 0 0 0

The multiplication of matrices [e] and [b] (as in eq. (40)) will 
give the required matrix [d] which is now (4x4) matrix. The problem 
of eq. (36) is now reduced to the equivalent of eq. (39). Therefore, 
the iterative process for the smallest value of <f>̂ is similar to the 
procedure of eq. (39).

This technique of solving eq. (36) is compared with results ob­
tained by Dynamic-Relaxation Finite difference method for axial compression

(82)of unstiffened cylinders with simple supported boundary conditions 
The same function is used for shape imperfections in both methods.
Numerical examples for cylinder of R = 800 mm, t = 6 mm, = 600 mm are 
compared and shown in Fig. (8) . The results show close agreement with 
the present technique. A mesh size of (18 x 64) was used in the finite 
difference program. It is interesting to note that the computer time 
needed for the finite difference program is enormous - approximately 
1000 seconds (cpu time) for each loading point on an ICL 2976 computer, 
compared with 2 seconds for each buckling load at a specified mode by the 
present technique. The above comparison is made on elastic solution 
basis only. The cost of an inelastic solution by the finite difference 
program is far too frightening to be mentioned here - perhaps not within 
the scope of the present ICL 2976 computer. A brief description of 
dynamic relaxation is as follows:

Dynamic/



Dynamic Relaxation is a procedure for moving towards a correct 
solution from a non-equilibrium starting guess involves the use of 
dynamic equations. The starting guess with zero velocities is taken 
as the initial conditions. The static loads are then applied and held 
constant as the system is allowed to move dynamically until motion dies 
out. The promise of success soon fades as one tries to apply the 
method. If-the "physical characteristics are used to model the mass 
and damping, one can expect very large transients which persist for 
long times. This means excessive solution cost and difficulties in 
controlling spurious oscillations in the solution. An obvious remedy 
is to assume artificial properties which assure strongly damped re­
sponses. The question then shifts to how to estimate those artificial 
properties. The necessity of obtaining contrived terms for both mass 
and damping properties detracts further from the method. Other

/og\
superior methods are reviewed by Crisfield and dynamic relaxation 
lies low in comparison.



CHAPTER 5 YIELD CRITERION

5.1 YIELD FUNCTION

Yield function employed here is that developed by Ivanov and
(83)outlined by Robinson and'is more accurate than Ilyushin's approx­

imation . Further advantages of Ivanov's yield criterion over
—   ___   (85)Ilyushin's approximation yield function are reviewed by Crisfield

The yield function:

fy 2 = Qt + hQm + A  0.-25011? + Q2^) (42)

where

and

N
®t N 2o

M
Q.m M 2 o

MN
=tm M N o o

N . = N 2 + N 2 - N N. + 3N *Q2;X 0 X 0  X0

M = M'2 + M .2 - M M + 3M 2x 0 x 0 X0

MN = MA  + M0N0 - %M N0 - ** N, + 3Mx0Nx0

n = to; o y-

M = -0.25 to 2o y

N , N« , N - forces/unit circumferencex 0 xy
M , M„ , M - bending moments/unit circumferencex 0 X0



rvFf-
N X  =  r v  <EX  +  W £ e )  (43a)

N e* = i7 2 (ee + ̂ x *  (43b)
Et ^N = h. a — - (e ) (43c)x6 ai+w x0

Et3
1 2 (1-y2) ~xM = a v> /~]— TFT k.. (44a).

Et3
*9 ~ 12 (1-y2) “ 0Mrt = a — — 777- kQ (44b)

Mx0 a 1 2 (1-y2) kx0 (44c)

where a = E /E s

k = -WX  X X

k0 = - % e + W)/R2

k = -W n/R - V /R + U./R2 x0 x0 x 0

(♦includes the residual stresses).

It is clearly obvious that for an elastic solution a = 1.00 and 
for an inelastic solution, a will be less than unity.

The cylinder is divided into mesh size of (9 x 20) for the pur­
pose of computing the yield function, f at each nodal point. For an 
overall instability the arrangement is made such that only 3 or 5 nodes 
are located between two ring frames in the axial direction, depending on 
the length of the cylinder.

5.2/
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5.2 ELASTIC SOLUTION

Recall the pre-buckled matrix equation (34) and the buckled 
matrix equation (36):

pre-buckled: [r] [x] = ^[s].......  (34)

—  bffckled: ([a] - [b]) [x] = cf)̂ [c] ... (36)

The pre-buckled equation is related to the buckled equation through 
the matrices [b] and [c] - both contain the vector [x]. For an
elastic solution and assuming an ideal elastic stress-strain curve, the 
value of a is one. The case of strain-hardening effect will not be 
considered here.

The steps taken to arrive at the convergent value of <f>̂ are 
as follows:

1. Calculate matrices [r] and [s] and from an 
initial guess value of (say zero) and then 
solve for [x] from eq. (34).

2. Knowing [x], calculate matrices [a], [b] and [c]
and solve for the minimum value of <{>̂ from eq. (36)
by iteration - call it $ *

3. Compare the value of <(> * with used in step 1.
If the latter agrees with the former within some 
small predetermined tolerance, proceed to step 4. 
If they do not agree use <|> * as an improved 
estimate and go to step 1 .

4. Use <f>̂* and eq. (36) to solve for [X] and then 
evaluate the total strains (including the resid­
ual strains).

The resulting behaviour from equations (34) and (36) under axial com­
pression for various Cq/R values is as shown in Fig. (43).

\

\ <



5.3 INELASTIC SOLUTION

Buckling failure may occur in the inelastic region, particu­
larly in welded and closely framed cylinders - say £/R < h.
Elastic buckling is more likely to occur in widely framed cylinders

yand cylinders with high R/t (say 200) and large C /R. In any case,o
it is necessary to check first whether the failure is due to in­
elastic or elastic behaviour.

Poison's ration, y t is regarded as a variable in the inelastic 
(87)region , and can be accurately expressed as a function of Eg by 

the equation:

E
w =

The steps taken to arrive at the convergent value of <f>̂ for an 
inelastic solution are as follows:

5. Proceeding from step 4, the yield function at 
each node of the shell plating is computed.
Any yield function greater than one, suggests 
yielding at the node. The value of a is then 
reduced - say 0.90, and then proceed to step 1.
This cycle goes on until all points have yield 
function equal to or less than one, with a de­
creases or increases at each cycle. As a de­
creases, <j>̂ decreases, hence lowers the collapse 
load.

This process of determining the value of a such that the maximum 
yield function at any nodal point is less than or equal to one, is' an 
iterative procedure and applies only to the shell plating. The yield 
criterion for the ring frame shall be dealt with separately in a 
different manner.

5.4/



5.4 YIELDING OF RING STIFFENERS

The problem of stress analysis of ring frame of a stiffened 
cylinder in an accurate manner is of very great complexity and it is 
unlikely that a two-dimensional thin shell theory will be able to 
tackle such a problem. Therefore a very crude approach has to be 
introduced. In most practical cases, however, collapse by general 
instability will jLnvolve yielding of ring stiffeners and will be in­
fluenced by out-of-circularity and residual stresses. Hence it is 
essential to check whether failure is due to yielding of ring stiffeners 
or general instability. Failure is assumed to. occur when the sum of
the circumferential bending stress, ex, , and the hoop compressive stressb
a , reaches yield at the outer fibres of the ring frame. It is im- Fc
plicitly assumed that the total stress is given by the sum of o ^  and 

with sufficient accuracy up to the yield-point of the stress of the 
material, and that failure is synonymous with the pressure at which 
yielding in the extreme fibre begins*. The latter assumption is, of 
course, conservative. However, once yielding starts it progresses 
rapidly and the ultimate pressure is generally not expected to be much 
greater than the pressure at which yielding begins.

The stresses will be highest in the flange of the frames which
are situated at the furthest distance from the rigid ends. For
cylinders with an odd number of ring frames, the magnitude of the 
maximum flange stress is given by:

°F “ E [ (wee + V  #  + <W- V R] <45)
at 0 = 0

x = L/2

where e ^  is the distance of the frame flange from middle surface of 
the shell. For cylinders with an even number of ring frames the 
maximum stress will be less than this value but the difference will be 
negligible unless the number of ring frames is small. The maximum 
flange/



flange stress may be written:

a„ = a_ + a (46)F Fc b

and a = -E (nB - C )/R (47)Fc 1 1

-Ow = '̂E(nB:''- n2 C ) e^ _/R2 (48)b 1 1 f f

where B^ and are calculated from eq.(36).

Hence the yield criteria of the ring frame is:

a_ + o, = a _ (49)Fc b yF

The pressure to cause yielding is then obtained by reducing of eq. (36)
in an iterative procedure such that eq.(49) is satisfied.

Two computer programs, one for interframe collapse, and the 
other for overall collapse, are developed for the purpose of this 
analysis.



CHAPTER 6 RESULTS AND DISCUSSION

6.1 COMPARISON" WITH VON-MISES CLASSICAL EQUATION FOR
— __INTERFRAME S BUCKLING UNDER UNIFORM EXTERNAL PRESSURE

(21)Von Mises obtained the elastic buckling pressure of a thin
shell simply-supported at its edges and subjected to uniform external
pressure, by solving'"three separate shell differential equations based
on equilibrium of the shell and substituting an assumed deflection -
configuration into these equations. Comparisons with Von Mises
equation are as shown in Figs. (9), (10), (11) and (12) for various
values of 1/R and R/t. Good agreement is obtained with Von Mises
equation for the case where uniform lateral and axial contraction are

3 uassumed in the pre-buckling displacements , 7̂  = constant and w = con­
stant. For £/R = 0.250 and £/R =0.500 the difference is negligible.
For £/R = 0.750 and Z/R = 1.00, exact agreement with Von Mises equation 
is obtained. Evidently the energy expressions used here are in agree­
ment with the differential equations obtained by Von Mises.

It is interesting to note that a lower buckling pressure is ob­
tained when the lateral pre-buckling displacement is no longer uniform, 
as in eq. (16a) . It is clearly evident that the generators of the 
cylinder are no longer straight, but are allowed to vary non-linearly 
between stiffeners. The former set of pre-buckling displacements 
assumes that the generators remain straight and hence give.a higher 
buckling pressure. This explanation is comparable with the Foppl 
formula for the collapse of a circular ring under uniform circumferential 
load. Another important point no designer can afford to ignore is the 
type of pressure loading which is often referred to as live loading as 
opposed to dead loading which does not change direction as the structure 
deforms. This is one area of application that has received particularly 
no attention. The assumption that the generators remain straight is an 
equivalent of a dead load situation, because the pressure is always
acting perpendicular to the generators. For rings and some buckling

(91)modes of shells the results can be in error by as much as 50% . The
error depends very much on the ratio R/t. It is clearly obvious from 
Figs.(9),(10),(11) and (12) that the gap widens as R/t increases. With 
the present North Sea offshore structures having R/t as high as 300 
restraint/ \\\V



restraint should be applied as some rules, especially BS 5500, involved 
the use of Von Mises formula.

6.2 EFFECT OF INITIAL SHAPE IMPERFECTION ON INTERFRAME
SHELL BUCKLING

Quantitative imperfection studies defining the sensitivity of 
interframe shell buckling to the form and amplitude of initial dis­
tortions and residual stresses do not yet appear to have been carried 
out. The most significant initial distortions are those corresponding 
in form to the.--interframe shell buckling modes. Figs. (13) , (14) , (15) ,
(16)and (17) show the initial shape imperfection sensitivity of inter­
frame shell buckling under uniform external pressure for cylinders.
It is evident that the sensitivity increases with the ratios R/t and 
Z/R, but is more pronounced with R/t. As no other available study is 
obtainable, comparison cannot be made here.

**
Figs. (18),(19),(20),(21) and (22) show the initial shape imperf­

ection sensitivity of interframe shell buckling under radial (lateral) 
pressure for various R/t and Z/R ratios. Again sensitivity is more 
pronounced for increasing R/t ratio than Z/R. On the whole the effect 
of initial shape of imperfection on buckling load is more sensitive under 
external pressure than under radial pressure. This is easily explained 
by the fact that the absence of the axial pressure component reduces the 
sensitivity under radial pressure loading. It is a well known fact 
that axial compressive load is the most destructive type of loading. 
Typical curves of imperfection sensitivity under axial compression are 
shown in Fig. (23) - the curves are steeper and drop suddenly at small 
initial imperfection.

It would be incomplete not to mention Koiter's work. He derived 
the sensitivity of the axial compressive load to initial imperfections 
as shown in Fig. (45) . This is reproduced from Fig. (9) of Ref. (29) .
A closer examination of the equations in Fig. (45) revealed that they 
are independent of the Z/R ratio. Koiter assumed axi-symmetrical. shape 
imperfections. One must recall that Koiter presented a theory that gives 
an explanation for the large differences between theoretically and ex­
perimentally determined buckling loads. Also the wide scatter in the 
experimental results is satisfactorily explained by the great sensitivity 
of the bucklihg load to small changes in the magnitude of the deviations. 
Hence* Koiter's work is generally on the adverse factors affecting 
buckling/ ,
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buckling load, rather than on the numerical tool to predict buckling load.

A comparison with the classical solutions of Flugge, Donnel and 
Timoshenko is shown in Fig. (44).

DnV R u l e s sp ec i fy  a tolerance on local shell deformation between 
-— frames. Tolerances on deviation from circularity specified in the other 
rules relate primarily to ring frames and do not adequately cover inter­
frame shape. The proposal made by Kendrick to the British Standards 
Institution and accepted by PVE/-/5 Committee allows a maximum tolerance 
within 0.50% on radius

6.3 EFFECT OF COLD-BENDING RESIDUAL STRESSES

Table 1 shows the influence of cold-bending residual stresses 
in the shell plating on interframe collapse pressure under uniform 
external pressure. The influence is very small indeed and negligible, 
but of course it is not the same for ring frame which is an equivalent 
of a very thick cylindrical shell. The presence of cold-bending 
residual stresses does not appear to have any significant effect on 
the interframe collapse pressure. This conclusion is also confirmed 
by limited experiments employing stress-relief. An attempt to assess 
the effect of residual stresses on collapse pressures was carried out 
by K e n d r i c k u s i n g  two models which were nominally identical ex­
cept that in one of the models the cold-bending stresses had been 
removed by heat treatment after cold-bending. The collapse pressure 
of the models was in fact slightly different, the stress relieved 
model being the weaker. This was found to be due to the stress re­
lieving having lowered the yield stress by about 7%. Making allowance 
for the difference in yield stress, it was concluded that the cold- 
bending did not appear to have any significant effect on the collapse 
pressure.

6.4 EFFECT OF WELDING RESIDUAL STRESSES

Tables 2, 3 and 4 show the influence of welding residual stresses
on interframe collapse pressure under uniform external pressure for
simple supported and clamped boundary conditions. It is well
established that the compressive residual stresses a are detrimental

(76)to ductile strength of both plated structures or cylindrical shells
It is confirmed here that an increase in a follows an increase in therc
percentage loss of strength -- approximately an increase in o results



in a same percentage in loss of strength. At a higher ratio of R/t 
the percentage loss of strength can be enormous, and the same applies
to an increase in £/R ratio. For R/t = 200, %/R = 0.675, a /a =0.154rc y
and C /R = 0.0050, the percentage loss of strength can be as high as 32% o
for simple supported edges and 39% for clamped edges. Hence it is 
obvious that no designer can afford to ignore the effect of welding 
residual stresses.

/ ■
.y

6 .5 COMPARISON WITH DNV RULES, BS5500 RULES AND EXPERIMENTAL 
DATA OF FIG. (24) FOR INTERFRAME COLLAPSE PRESSURE UNDER 
UNIFORM EXTERNAL PRESSURE

The BS5500 design code mentioned here is referred to the proposal
(92) (7)made by Kendrick to the British Standards Institution , and is

based on the experimental data plot of Fig. (24) . Fig. (24) is a
revised version of Fig. (3) of Ref. (92) . It is a plot of well-
documented experimental data using the parameters p /p _ , p /p _ whichc c5 m c5
are defined in Appendix B. This data from about 700 collapsed cylinders 
covers the range:

250 > R/t > 6 . 0  

50 > l/R > 0.04

and with cylinders .usually less than 2.5 ft. (762 mm) in radius. In 
most cases the cylinders tested had departures from the mean circle
which were much less than 1% of the radius, although in some cases the
values were in excess of 1%. Since the majority of cylinders tested 
have had out-of-roundness values less than 1% it is reasonable to con­
sider that the lower bound curve only applies for cylinders of this
accuracy of manufacture. It must be pointed out that Fig. (24) origin-

03)ated from the navy submarine design code for interframe collapse 
pressure.

The DnV rules of interframe collapse stress is from section• 
C3.4.2.5 and the plasticity reduction factor from section C3.2.1.1 of 
Ref. (1) . The stress level is then converted to pressure by means of 
pressure = stress x (t/R) for comparison purposes.

Figs. (25),(26),(27,(28) and (29) show the comparison between the 
present theory, BS5500, DnV Rules and experimental data, for various 
values/ \
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values of R/t and Z/R. The present theory is based on simple supported
boundary conditions, E/cj = 841, a /a = 0.120 and C /R - 0.0050.y rc y o
The experimental data curve refers to the lower bound curve of Fig. (24).
As mentioned earlier, BS5500 is based on collected experimental data of
cylinders having R/t < 250. This is confirmed here that for values of
R/t greater than 250, the present theory predicts lower collapse pressures
than permitted by BS5500. The DnV rules on the whole predict higher
collapse pressure than BS5500 and in some cases even much higher than
the experimental data>- ^This can easily be explained by the fact
that the DnV rules are not derived from experimental data like BS5500.
The present theory curves on the whole lie lower than the experimental *
data curve, except for R/t < 150 at Z/R = 0.250 and R/t < 125 at
Z/R = 0.500. This is explained by the fact the simple supported edges
are assumed for the present theory but the likely boundary condition
for experimental data is between simple supported and clamped condition.■0
This is true in cases of elastic collapse failure. The reverse effect
applies when inelastic collapse failure occurs, because the plasticity
reduction factor is less for simple supported edges than any other
boundary conditions. Secondly, being small scale cylinders (as
suggested by the maximum radius being much less than 762 mm) the value
of a might even be less than the assumed value of 0.120 a . As we rc y
have seen earlier, initial shape imperfections play a more major role
than welding residual stresses in the reduction factor of collapse
pressure, therefore, it is more likely that the tested cylinders have
C /R less than 0.0050. Further information on this matter regarding o
Fig. (24) is not available. Hence, exact comparison is impossible
unless one can obtain an experimental curve of tested cylinders having
same, or nearly same, C /R ratio.o

BS5500 curve is derived from the lower bound curve of Fig. (24) 
by introducing a factor of safety of 1.50. Hence it is only right 
that BS5500 curve must lie below the present theory curve - and this 
is true in all cases of Z/R ratio and all R/t < 250. It is obvious 
that the practice of overstretching design rules (in this case R/t > 250) 
can produce disastrous results. With the present North Sea offshore 
structures having R/t as high as 300, restraint should be applied when 
using BS5500 rules, even although it is much more reliable than DnV 
rules, as far as interframe collapse pressure uniform external pressure 
is concerned. The pitfalls of extrapolating research information or 
design rules to areas for which they were never intended cannot be over­
emphasised, as such an expedient may often be a recipe for disaster.

\,



(94)6.6 COLLAPSE OF DPI FRIGG FIELD BUOYANCY TANKS '

Engineers in Norway, U.K. and France are wondering whether there
was a fundamental design error behind the buckling of all 16 temporary
flotation cylinders aboard Elf's Frigg field jacket, DPI. The
failure during October 1974 launching operation caused the 6700 ton
jacket to hit the bottom buckling two internal legs. Designer
McDermott is particularly sensitive about discussing any possibility
of error, but informed"opinion claims the company may have let its
Gulf of Mexico platform design experience, with much lighter structures,

(94)guide its choice for inadequate tanks . From the information ob­
tained from Ref. (95) the tanks were designed to withstand a working 
pressure of 100 psi (694 kN/m2 ) . From the collapsed sections of tank 
removed from the Frigg jacket it was observed that on tank after tank 
the outer shell crumpled between stiffeners to leave a battered steel 
concertina - indicating interframe collapse failure. With limited 
information available about the yield stress and degree of initial out- 
of-circularity, the interframe collapse pressures for varying values of
C /R and a /a are plotted in Fig. (30). The mean radius of the tank o rc y
was 800 mm, which exceeded the maximum radius of tested cylinders of 
BS5500 rules. Hence it can be assumed that the initial out-of-circular­
ity of the Frigg tanks could have a value of 0.005 R or even more. It
is obvious from Fig. (3)) that with C /R > 0.0040, failure would occur.o —
BS5500 is reliable at its permitted maximum C /R = 0.0050, comparedo
with the present theory. The DnV rules (1977 edition) predict a higher
value:of 686.5 kN/m2 . The DnV rules (1974 edition) give a much higher
value of 1035.0 kN/m2 . Since the tanks were designed in 1974 the finger
points to DnV rules (1974 edition). Although DnV rules (1977 edition)
are a much improved version of the 1974 edition, there are still some
doubts. For example, from section C55, Fig. C9.7 of Ref. (1) , 1977
edition, DnV maximum permissible C /R for Frigg buoyancy tanks is 0.0046.o
From Fig. (30), for C /R = 0.0046, the present theory predicts a pressureo
of about 600 kN/m2 to 650 kN/m2 , whereas DnV predicts a pressure of 
686.5 kN/m2 .

6.7/
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6 .7 KINRA’S ONE-FIFTH SCALE MODEL TEST

The cylinder is orthogonally stiffened and subjected to uniform
external pressure. The model failed due to shell buckling between
the rings at a hydrostatic external pressure between 110 psi and
115 psi. The cylinder had 24 stringers of rectangular section of
0.116" by 1.40". The stringers are smeared into an equivalent
thickness in order that comparison with the present theory is
possible. Jtence theoretical predictions should be judged with this
in mind. An out-of-roundness of 0.21 inch was mentioned but no further
detail measurement was given. With the above information and an
assumed value of a = 0.156 a the predicted collapse pressures are
plotted in Fig. (31). An out-of-roundness of 0.21 inch gives a
C /R = 0.0073 and collapse pressures from Fig. (31) are: o

i) pc = 75 psi for simple supported edges

ii) p^ = 90 psi for partially fixed edges

iii) p^ = 127.5 psi for clamped edges

The predicted collapse pressures are reasonable and sound since the 
experimental collapse pressures lie between the pressures predicted 
at simple supported edges and clamped edges. On the whole the results 
are in good agreement with the collapse pressure.

6 •8 COMPARISON WITH MACHINED-MODEL EXPERIMENT FROM REF. (28)

The cylinder was machined and subjected to uniform external 
pressure. The experimental collapse pressure was 633 psi at a mode 
of 11 circumferential waves. The experiment was designed to fail by 
elastic buckling/ hence the choice of material of high yield stress of
82500 psi. Comparison with the present theory for different boundary 
conditions is as shown in Fig. (32). With a buckling mode of n = 11 
for the experimental model the simple supported condition is ruled out. 
An out-of-roundness of C^/R = 0.00035 with clamped edges, the present 
theory predicts an exact buckling pressure of 633 psi. Such an out-of- 
roundness is possible to induce through misalignment of lathe shaft when 
machining. Even for perfect circular cylinder the buckling pressure 
of 655 psi for clamped edges is in very good agreement with the ex­
perimental/



experimental collapse pressure - within 3%. This comparison confirmed 
that clamped boundary condition is possible in machined cylinder, and 
secondly, the assumed displacement functions used in the analysis are 
correct.

6.9 COMPARISON WITH WELDED MODEL EXPERIMENT RESULTS 
FROM REF. (25)

/
Five welded cylinders with external ring stiffeners of T-frame 

were subjected to uniform external pressure. The models are T-2, T-3, 
T-6 , T-2A and T-7A and their properties are listed in Table 5. As in 
most experiments, no measurement of residual stresses or geometrical im­
perfections was carried out. Therefore, some assumptions have to be 
inade before comparison with the present theory is possible. A value of 
n = 4 is assumed for all models when calculating the compressive residual
stresses, a . The predicted pressures are plotted in Figs. (33) (34) m rc
(35 (36) and (37) . It is interesting to note at this point that material
used had very high yield strength, the lowest being 84000 psi, more than
twice the strength of the material normally used in offshore structures.
As can be seen from the figures, the results on the whole are in good
agreement for partially fixed edges and for value of C /R < 0.0020. Theo
value of C /R < 0.0020 for geometrical imperfections is comparatively o
lower than those suggested in previous comparison. This can be explained 
by the fact that externally stiffened cylinders are seen to be signific­
antly stronger than internally stiffened cylinders probably due mainly to 
the favourable direction of welding distortion associated with external 
stiffeners. This is also confirmed in Fig. (24) where externally 
stiffened cylinders are stronger than internally stiffened cylinders.

6 .1.0 AXIAL COMPRESSION

Comparison with experiment under axial compression for interframe 
shell instability is not possible due to difficulty in obtaining 
results from ring-stiffened cylinders under axial compression. Most 
experiments used cylinders with longitudinal stringers. The smearing 
technique is not possible as in most cases the yield strength of the 
stringers and the yield strength of the shell plating are differ­
ent^' Secondly, the increase in critical load due to
stringers is considerably less than that obtained by uniform thickening



of the shell with the same amount of material . Although some
experiments for ring-stiffened cylinders under axial compression have
been carried out at University College, London, the results are still 

(97)not available . Therefore, the comparison under axial compression 
will only be made with unstiffened cylinders and DnV Rules ̂  .

The stability of cylindrical shells under axial compression has
been studied in the past both theoretically and experimentally by very
many investigators.The experimental values were much lower than the
classical theoretical values and the data had a large scatter band. . .
Initial geometrical imperfections have come to be accepted as the main 

(31)degrading factor . This is absolutely true and is confirmed in 
Fig. (23). As can be seen at even a. small value of C^/R = 0.0005 a 
reduction factor of 0.53 is observed for R/t = 200. Needless to say 
the degree of initial geometrical imperfections sensitivity depends on 
the R/t and Z/R ratios of the cylinders., Data collected from 700 ex­
perimental results are plotted in Figs. (38), (39) and (40). The

(98)data are from 18 publications where all experiments which had
buckling stresses exceeding two thirds of the yield stress of the
material were disregarded. The reduction factor a is a ratio ofo
buckling stress/a where a = 0.605 Et/R. All the tested cylinders cr cr
satisfied the requirements:

i) The largest inward amplitude of initial
geometrical imperfections does not exceed 
0.04 /St.

ii) The effects of non-uniform distribution of the
load at the boundaries are alleviated.

iii) The displacements in the plane of cross section
are prevented along both edges of the shell.

iv) The length of the cylinder does not exceed
0.95 /R/t.

As shown in Figs. (38), (39) and (40) the present theory curve is 
based on a simple supported boundary condition, a Z/R ratio of one and
O.OlOv^t (a quarter of the maximum allowed). The present theory curves 
are/
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are in close agreement with the experimental data, particularly 
Fig. (40) . There are some scattered data between R/t of 100 and 
300 in Fig. (38) lying below the present theory curve. This is 
because the tested cylinders for these data points were likely to 

- have initial geometrical imperfections greater than the value assumed 
for the present theory. By assuming a value of = 0.02 ^Rt these 
data points can easily be accounted for. The comparison should be 
judged in mind that the experimental boundary conditions were unlikely 
to be simple supported, but perhaps near to it. Finally, this com­
parison proves that initial geometrical imperfections is the main ' *
degrading factor. Figs. (38) to (40) are for the length range 0 .7 < Z/R < 5.5.

Fig. (41) shows, for various levels of yield stresses, the comparison- 
with DnV Rules (1977 edition) for cylinders under axial compression. The

41 *
present theory is based on a yield stress of 246 N/mm2 , simple supported 
boundary conditions and initial geometrical imperfection is based on DnV 
maximum permissible value taken from C55, Fig. C9.7 of Ref. (1) and re­
produced here in Fig. (42). As shown in Fig. (41) the present theory 
(for = 246 N/mm2) predicts lower values than that permitted by DnV 
Rules, particularly for R/t > 150. The difference cannot be due to 
boundary conditions as DnV Rules are based on simple supported boundary 
conditions. The main reason for the differences lie in the DnV maximum 
permissible value of initial geometrical imperfection. From Fig. (42),
for a same R/t ratio, DnV Rules permit increasing values of C /R for in-o
creasing Z/R ratios. This is surely incorrect, as long cylinders are 
more sensitive to initial geometric imperfections than short cylinders. 
Secondly, DnV Rules for axial compression (C3.4.2.1, Ref. (1)) contain 
no Z/R term in reduction factor for Z >_ 20. As confirmed earlier, the 
degree of initial geometrical imperfection sensitivity depends on both 
R/t and Z/R ratios. The comparison shows that DnV Rules are generally 
less conservative and unreliable for certain range of R/t. The independ­
ence of the DnV Rules to Z/R is clearly shown by numerical values in 
Table 13. The elastic buckling stress of the cylindrical sh^ll is 
calculated by means of classical formula for axial compression, then 
with modification factors for imperfections and reduction factor for 
plasticity. The modification factors are independent of the Z/R ratio.

Overall Instability/



Overall Instability

Table 6 shows the comparison between the results of Eq. (22a) and 
Eq. (22b) for various lengths of a cylinder. The comparison is just
to demonstrate that the displacement pattern of Eq. (22b) gives slightly 
lower buckling pressures than Eq. (22a). At critical buckling pressures 
a difference of 5% is observed throughout.

6.11 COMPARISON WITH KENDRICK PART III

Table 7 shows'<the"comparison between the results obtained from 
present theory and results from Kendrick Part III. The comparison 
is based on a numerical example of Ref. (80). Eq. (19b) represents 
simple supported boundary conditions at the rigid ends of the cylinder. 
Eq. (20b) and eq. (21b) represent partially fixed edges and clamped 
edges respectively. Eq. (19c) consists of the same buckling dis­
placements as eq. (19b) but different pre-buckling displacements, that 

3uis ~ =  constant .&, w= constant - uniform lateral and axial contraction 3x
prior to buckling. The out-of-plane bending, torsional and warping 
terras are omitted for the strain energy in the ring stiffeners for 
eq. (19c) . This is done so as to simulate the condition as near as 
possible to Kendrick's assumptions. It can be seen from Table 7 that 
the results of eq. (19c) are in good agreement with Kendrick's solution 
within a few per cent. The slight difference is due to certain 
different terms used in bending strain energy of the shell. Comparison 
between eq. (19b) , eq. (20b) and eq. (21b) at critical buckling pressures 
suggests the effect of boundary conditions at rigid end is insignificant 
for value of L/R < 4.50. For design purposes simple supported condition 
is sufficient.

The assumption that the generators remain straight (or uniform) 
is an equivalent of a dead load situation, because the pressure is al­
ways acting perpendicular to the generators. Eq. (19c) has pre-buckling 
displacements that assume such condition. Hence eq. (19b) is more 
correct than eq. (19c) . Hence eq. (19b) and eq. (22b) are of interest 
here as to which one would predict a lower critical buckling pressure 
for the cylinder of Table 7. Eq. (22b) gives lower critical buckling 
pressures than eq. (19b) for L/R 6 . At L/R >_ 7.5 the cylinder buckles 
in the pattern of eq. (19b) . It is interesting at this stage to compare 
the critical buckling pressures (p̂.) predicted by the present theory and 
that of BS5500 design rules. BS5500 rules for an overall critical 
buckling/ \



(99)buckling pressure use the Byrant's formula , but introduced an
effective length, instead of full length of interframe spacing. The
pressure to cause yielding in the ring frame (P^) calculated by BS5500
is as outlined in Appendix B. ' For L/R <_ 6.0, BS5500 predicts much
higher values of p^ than present theory and vice-versa for L/R >_ 1.5.
This is because Byrant's formula is an approximation of eq. (19b) and
the cylinder buckles in the pattern of eq. (22b) for L/R <^6.0. The
p^ of the present theory and BS5500 are based on C^/R = 0.0050 for
the ring frame. As p ^  depends on p^ therefore it is obvious to see
the difference "in p^ qf BS5500 and present theory for L/R ^ 6.0.
The small difference between p of BS5500 and p of present theoryn n
for L/R ^7.50 is due to the fact that Byrant's formula is based on 
an overall instability of one ring frame, whereas eq. (19b) represents 
an overall instability of the whole cylinder.

Another numerical example, with the same dimensions as the 
cylinder in Table 7, except that the interframe spacing is increased 
to 50 inches, is in Table 8 . The aim of this example is to prove 
that for higher Z/R ratio (wider framing spacing) the overall in­
stability of the cylinder follows the pattern of eq. (22b) for greater
L/R range. For all values of p determined by eq. (22b) the resultedn
p values are lower than that allowed by BS5500. This again proves
the close agreement between eq. (19b) and BS5500.

6.12 COMPARISON BETWEEN PRESENT THEORY AND EXPERIMENTAL 
RESULTS OF REF. (100)

Table 9 shows the comparison between present theory and Cres-
well's experiment on a machined aluminium cylinder under external
pressure. The use of aluminium alloy model is to ensure elastic
buckling. The experimental collapse pressure was recorded at 450 psi
at a circumferential wave of two. Unfortunately no measurement of
initial geometrical imperfections was carried out, and the most likely
out-of-circularity mode is n = 2 resulting from ovality of lathe shafts.
Therefore, comparison has to be based on assumed values of initial
geometrical, imperfections. The shell plating is very thin - only
0.030 inch (0.762 mm) . Hence any initial out-of^-circularity would
be more likely to be in the shell plating than in the ring frame.
The buckling pressures from eq. (22b) and eq. (19b) for various values
of C „ are as shown in Table 9. For a cylinder of such thinness a o2
value of C = 0.20 mm is possible and eq. (19b) gives a corresponding oz _
value/ \



value of 447.8 psi which is in close agreement with experimental 
collapse pressure of 450 psi. The comparison should be judged 
that no exact theoretical comparison is possible without some know-: 
ledge about the degree of initial out-of-circularity. Secondly, the
very small frame width made strain-gauging of frames impossible and 
this has inevitably excluded direct observation of the maximum stresses 
occurring in the frames.

6^13 COMPARISON BETWEEN PRESENT THEORY AND EXPERIMENTAL 
~~ RESULTS OF "REF. (96)

The overall instability of orthogonally stiffened welded steel
cylinders under uniform external pressure was carried out by Kinra^96 .̂
An experimental collapse pressure of 270 psi was recorded and an initial
out-of-circularity for the ring frame was mentioned as 0.234 inch.
Comparison is only possible by smearing all the stringers, as the
present theory only considers ring-stiffened cylinders. The results
calculated from eq. (19b) and eq. (22b) are as shown in Table 10. A
value of o = 0.197 o for shell welding residual stresses was assumed, rc y
The results from both equations at the same C01/R of Ref. (96) are in 
close agreement with the experimental collapse pressure. Not sur­
prisingly, BS5500 predicts the same mode of failure as eq. (19b). 
Unfortunately no strain measurement in the ring frame was recorded 
and this makes it impossible to confirm whether failure was due to 
premature yielding in the ring frame or overall instability, as pre­
dicted by eq. (22b).

This comparison shows that buckling failure of an orthogonally 
stiffened cylinder under external hydrostatic pressure can be treated 
conservatively as that of a ring stiffened cylinder by smearing the 
stringers.

6.14 INFLUENCE OF OUT-QF-CIRCULARJTY ON COLLAPSE STRENGTH

T^ble 11A shows the comparison between present theory and 
(52)

Smith results obtained by finite element method for externally, 
pressurised ring-stiffened cylinders. The results of Ref. (52) are 
in close agreement with that of eq. (19b) within a few per cent.
Eq. (22b) predicts much lower values. One must not be too hasty 
to accept results obtained by finite element method as more reliable 
and accurate than other simple mathematical techniques. Whatever the 
analytical tool, there are always assumptions made in the analysis. 
Smith's work assumed that an overall collapse analysis of a stiffened 
cylinder/ \



cylinder can be represented by simply the overall collapse analysis 
of one ring frame with attached strip of shell plating. Although 
it is claimed that this assumption is accurate enough for long 
cylinders, the difficulty is how and where would one draw a line 
between short and long cylinders. As to whether a cylinder would 
behave as a short or long cylinder depends not only on length but 
radius, interframe spacing, shell thickness and frame area of the 
cylinder.' A"numerical example in Table 11B proves the point.
This is a difficult situation as there is. no attempt made so far to 
define the term "long cylinder" in a proper engineering term.

The main aim of this comparison is to show how simple mathe­
matical modes can predict results as close to that of finite element 
method**, not mentioning the higher computer time required for the latter.

6.15 COMPARISON BETWEEN PRESENT THEORY AND FINITE
ELEMENT METHOD OF REF. (91‘)

The comparison is based on numerical example of Ref. (91) for 
an overall instability of a ring stiffened cylinder under external 
pressure. The cylinder was modelled by seven sub-structures with a 
total of 16 triangle elements and 8 stiffener elements in each sub­
structure. The stiffener elements use cubic interpolation functions 
for the displacements. Each sub-structure consisted of one stiffener 
and its contributing portion of the shell. The end of the cylinder 
was simply supported with no longitudinal motion allowed. The analysis 
predicted a buckling pressure of 1525 psi. The analysis allows the 
loading to change direction as the shell deforms and buckles - a live 
loading condition. Table 12 shows the results predicted by the present 
theory. The critical buckling pressures by eq. (19c) and eq. (19b) 
are 1550.7 psi and 1466.1 psi respectively. Eq. (19b) assumes a non- 
uniform lateral pre-buckling displacement, whereas eq. (19c) assumes a 
uniform lateral pre-buckling displacement. Eq. (19b) is close to’ a' 
live loading condition and its result is within 3.8% of that predicted 
by finite element method. It is very close indeed, as finite element 
method depends very much on the mesh size for its accuracy.



CHAPTER 7 CONCLUSIONS AND FUTURE RESEARCH

CONCLUSIONS

Two computer programs, one for interframe collapse and the 
other for overall collapse as influenced by initial imperfections, 
have been developed and the results compared with experiments and 
with present design codes.

Equations accounting for non-uniform and uniform lateral - 
pre-buckling displacements are presented in this thesis. Factors 
which have a significant effect on the behaviour of ring stiffened 
cylinders,~such as initial geometrical shape imperfections and 
residual stresses of the shell due to welding and cold-bending, are 
included in the present theory. The energy expressions used here 
are in close agreement with the differential equations obtained by 
Von Mises for interframe buckling under uniform external pressure.
This is particularly true when uniform lateral pre-buckling displace­
ments are assumed. However, for non-uniform lateral pre-buckling 
displacements, the present theory predicts lower buckling pressure 
than the Von Mises' equations. This is due to the fact that the non- 
uniform lateral pre-buckling displacements vary non-linearly to 
accommodate the type of pressure loading which is often referred to 
as live loading, and changes direction as the structure deforms.
Such effect is not accounted for in Von Mises differential equations. 
The effect of live loading as opposed to dead loading depends on the 
R/t and £/R ratios and in some cases a difference of more than 10% is 
obtained.

An examination of the effects of initial geometrical shape im­
perfections confirms that they are most serious for axial compressive 
load. This is followed by external pressure and the less sensitive 
radial (lateral) pressure loading. This is due to the absence of 
the axial pressure component reducing the sensitivity of the radial 
pressure loading.

The/
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The influence of welding residual stresses of the shell on 
interframe collapse pressure under uniform external pressure was 
examined. This confirms that the compressive welding residual 
stresses of the shell is detrimental to the ductile strength of 
cylindrical shells. It is shown that as an approximation an increase 
in the compressive welding residual stresses results in a similar 
percentage loss in strength. At high ratios of R/t the percentage 
loss of strength can be very high. Although the effect of cold- 
bending residual stresses in the shell does not appear to have any 
significant effect on the collapse pressure of the shell, further 
experimental verification is necessary.

„ Comparison with experimental results for interframe collapse
and overall collapse under uniform external pressure is good. Inter­
frame collapse by design code BS5500 is adequate for R/t < 250. For 
greater values of R/t further experimental verification is necessary. 
BS5500 is preferred to the DnV Rules for interframe collapse under 
external pressure. For overall instability, BS5500 is in good 
agreement with eq. (19b) of the present theory. Results obtained 
by the present theory for overall instability are in close agreement 
with results obtained by finite element methods. In some examples 
overall collapse pressures from BS5500 are thought to be inadequate 
when compared with those determined by eq. (22b). Therefore it is 
advisable to use both equations for an overall collapse prediction.
The limited numerical comparisons show that DnV Rules for axial com­
pression for unstiffened cylinders appear to be incompatible with their 
specified tolerances.

Finally, the buckling failure of an orthogonally stiffened 
cylinder under external hydrostatic pressure can be treated as conserv­
atively as that of a ring stiffened cylinder by smearing the stringers.
This view is supported by the comparison made with experimental results

* * k v  <96) reported by Kmra



FUTURE RESEARCH

There is no theory available which can accurately predict 
the elasto-plastic behaviour of stiffened cylinders for overall
collapse with shape imperfections and residual stresses accounted

/
for. The influence of stiffener tilting on overall collapse 
strength has received practically no attention at all. The problem 
including these effects is of very great complexity and it is unlikely 
that theory will be able to tackle such problems, except in a very 
crude manner for a long time yet.

Future research should be directed towards cheaper and 
faster solution techniques for non-linear equations for special 
problems, such as stiffened cylinders under combined loading. Non­
linear finite element or finite difference equations should be solved 
more cheaply than at present . ^e are concerned with the be­
haviour of inelastic materials, where there is a non-linear system 
to solve at each loading step. This applies both to the quasi-static 
or dynamic equations of plasticity, and to the problems of large dis­
placement. A general approach to the solution of non-linear systems 
or the minimisation of non-quadratic functionals, which applies to both
finite difference and finite element models, has been successfully used
• 4T ■ 4.x, * (102, 103, 104) _  . _in the field of numerical methods . Other numerical
tools that are well adapted to finite difference method are clearly
presented in references (105, 106 and 107).
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axial buckling displacement amplitude 

area of ring frame section 

stiffness matrix of the cylinder 

circumferential buckling displacement amplitudes 

-load matrix^of the cylinder 

radial buckling displacement amplitudes 

initial out-of-circularity amplitude 

torsional constant of the ring frame section 

column matrix due to initial shape imperfections 

depth of the web of the ring frame

distance of the centroid of the frame section from the 
shell mid-surface; positive for internal frame and 
negative for external frame

Young's modulus of elasticity

secant modulus

width of the flange of the frame 

shear modulus of elasticity

moment of inertia of frame section about the axis 
parallel to the axis of the cylinder which passes through 
the C.G. of the section (only)

moment of inertia of frame section about the vertical 
axis of the frame which passes through the C.G. of the 
frame section (only)

= ta/(12R2) , shell curvature term

distance between rigid ^d^bulkheads

distance between ring frames or length of unstiffened 
cylinder

number of buckled longitudinal half-waves 

number of buckled circumferential waves



(Cont'd)

number of ring frames between bulkheads 

radial pressure component of the external pressure 

axial pressure component of the external pressure 

= p^ + p^ = external pressure 

interframe collapse pressure

presshre^ to^cause yielding in the shell midway between 
stiffeners

elastic interframe buckling pressure by Von Mises equation 

elastic overall buckling pressure of a perfect cylinder 

pressure to cause yielding in the ring frame 

stiffness matrix of cylinder at pre-buckled state 

mean radius of the cylinder

load matrix of cylinder at pre-buckled state 

total potential energy of a system 

extensional strain energy of the shell 

bending strain energy of the shell 

strain energy of the ring frames 

shell thickness

thickness of the flange of the frame 

thickness of the web of the ring frame 

axial displacements at pre-buckled state 

Poison's ratio

Poison's ratio in the elastic limit 

axial displacement at buckled state 

circumferential displacement at pre-buckled state 

circumferential displacement at buckled state 

radial displacements at pre-buckled state 

radial displacement at buckled state



NOMENCLATURE (Cont'd)

wd work done by the external loadings

wo radial displacement initial shape imperfections

[x] displacement matrix at pre-buckled state

[X] displacement jnatrix at buckled state

z = £2/ l-yt'/Rt

♦l = P;LR(l-y2)/Et

= P2R(l-y2)/Et

.a = E /E for shell s

“ f = E /E for ring stiffener s
K •

X
axial curvature strain

K e circumferential curvature strain

Kx0 twisting strain

ee extensional strain in circumferential direction (hoop)

e
X

extensional strain in axial direction

eX0 shear strain

°0 '°x'ax0 their respective stresses

ay yield stress of shell plating

aYF yield stress of ring frame

ab circumferential bending stress in the flange of 
ring frame

a

^FC circumferential compressive stress in the flange of 
a ring frame

aF total circumferential stress in the flange of a 
frame

ring

arc compressive welding residual stresses of the shell 
plating

T warping constant of the ring frame section



NOMENCLATURE (Cont'd)

A = irR/L

= ttR/^

X 3 .  “  “ X 2

nt half width of the tension block of welding residual
stresses distribution



APPENDIX A

RESIDUAL STRESSES OF SHELL PLATING DUE TO COLD BENDING

j yT- initial position

Constrained 
position —

PIG.I —Ring Forming Procedure

FKJ.B —Ring Residual Stresses; (a ) Consbamed; Cb) Springback; ( c) fi’nul

Let R be the radius of curvature into which the ring frame is to be 
formed, R^ the radius of curvature to produce the elastic-plastic 
moments required, and R^ the radius of curvature under the action of 
elastic springback forces.

Mg = springback moment per unit length

a, = bending stresses (hoop) b
M = applied moment per unit length B

By equating the curvatures it follows that ^ .......... (i)R R_ + R_
and
static equilibrium equations are:

/_ o, dA = o.............................. ........ (ii)A b
/ a, z dA = M_........................... ........  (iii)A b B

/. M = 2a (t/2 - tr) (tl/2 + t/4) + 2a V / 3  = a (fcV 4- *1/3)B y  l y  y
\
\ •.



also:
t = a R./E 1 y 1

and M = -M = EI/R_ where I = t3/12 s B 2

* 2 = -e i/m b

Substituting for R^ in (i) , we get

1 = 1 
R R.

12a a R.
(t2 /4 - i2)X i  

e / 3 "
(iv)

In ̂ eq. (iv) , R„ >a »E and t are known and therefore R„ can be easily 1 y 1
solved by numerical iteration. Knowing R. , M and M can then beI s  B
calculated.

M zgIf a is the springback stress, then a = ---s. s i

a, = a + a ...........  (vi)1 y s

^  Mand a0 = a + t, s / • . x2 y 1   (vn)

Numerical Example:

Given: R = 800 mm, t = 6 mm, a = 258 N/mm2 , E/a = 800y  y
substituting in eq. (iv)

~  = —  -  6 944  x 10~^ (9 -(—  ---)2) *..........  (viii)R R, b-y44 X 1U (y 1385.6 ’

Solve R^ by trial-and-error procedure (this can be easily programmed by
a simple iterative procedure). 

Try/

\ •\



Try = 530 mm,

Right hand side of eq. (viii) = - 0.0006148 = 0.00127

R . = 786.2 mmcal. ,

" Next-try— R£" = 536.2 mm

Right hand side of eq. (viii) = ■ _ - 0.0006146
D  <3 o  • ^

R = 799.81 (near to sufficient accuracy)cal.

Hence‘R = 536.2 mm is the accepted value for eq. (viii) to give a 
value of R » 800 mm.

Then,

t^ = 0.670 mm

7. Mg = 2283.4 x 103

and from eqs. (vi) and (vii),

d, = - 0.475 a1 . . . . . . . . . y
a_ = .0.670 a2 y

This technique of calculating and are valid for rectangular 
cross-section only.

Calculated values for Et/(Ra ) = 20, 150 are as follows:y

Et/ (Rcr ) o/o t /ty i y 2 y 1

20 0.496 0.869 0.0435
150 0.499 0.980 0.0065

; ' It/
j • '

\

\



It is obvious that for Et/(Ra ) -► 00 a,/a = 0.500 and a_/a = 1.00y 1 Y 2 y

Values of (cr'/a ) , (a^/a ) and (t,/t) against Et/(Ra ) are plotted 1 y 2 y / 1 y
in Fig. Al.
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APPENDIX B

i) The procedure to calculate the pressure to cause yielding in the 
extreme fibre of a ring frame under expternal pressure.

The circumferential compressive stress a in the flange of an
(88)internal ring-frame^erived by Wilson as:

PFVR2 ( 1  -a. ~-------- -----------Fc A
tR„ (1 + 1

v/here:

F' 2N t
Xht.€ + — —  ) w

= pressure at which yielding begins in the extreme of 
a ring frame

Rp = radius to the centroid of the ring section

A1 = R2 Af/Rf2

. o4x = 3(1 - u2 ) / (R2 t2 )

N = [Cosh(a1^1> - Cos(a1£1)]/[Sinh(a1£1) + Sinfa^^)]

£. = £ - ht1 w

An approximate circumferential bending stress in the flange of a ring
(89)frame derived by Kendrick as:

Eeff Co l (n2 ~ 1) pFy
°b = < W

where:

p^ = critical pressure for overall instability of 
perfect cylinder

CQ1 = initial out-of-circularity amplitude of ring frame

e__ = distance from mid-surface of shell to extremeft
fibre of the ring frame 

The rest of the notations are defined in the nomenclature section.



Equating the sum of circumferential compressive stress and the
circumferential bending stress to the yield stress a of the ringyF
frame results in a quadratic equation in Ppy*

a. + = o _b FC/ yF

After substitution we get a quadratic equation of the form:

where:

and:

p 2 - p„ H. + H0 = 0Fy Fy 1 2

Hi = (D2/Dl + pn + ayF/D!,

H2 = V X P n/Dl

D1 = aFc/PFy

D0 = Ee _C (n2 - l)/(n-R2) Z II ol

Hence minimum p is given by: Fy

PFy = 0.50 (HI - /h I2 - 4H2)

(7)This procedure has been adopted in the BS5500

ii) Von Mises equation for elastic buckling pressure under uniform 
external pressure.

Et 1 r 1 k2 r 2 a i l
Pm = V  7^2----1 X"LV»\ *  t----------  + TTT- "  1 + Xo J 'm R (n -1 + -5A0 ) a + 1 j2 2

X2
It is necessary to minimise the buckling pressure with respect to n. 
This is easily done by a simple computer program. A chart for de­
forming the number of lobes n for which p is a minimum is given inm
Ref. (7).

Pressure/



Pressure to cause yielding in shell plating midway between 
stiffeners:

'to
 Yl___

Pc5 = R U f W
aim „ ol41 . „ , al41 aim,-2 [Sinh — -—  Cos — -—  + Cosh — -—  Sin — -— J
(Sinh + Sin

V 1 - V
(Â  + twt) (1 + 31)

2tN,
(Â  + twt)

*where A^ , are as defined previously.



APPENDIX C

.Interframe Buckling

+ a ^~y)n2 (1+k) + 2aRW2(1-y2)n2 

= -4yaX3nT13 - 2a (1-y) nX^T14

a13 = 4yaX^ T13 - 2ka(1-y)n2X^T14

a22 = ' 4an2 Til + 2a(1-y)X^ (l+3k)T15

a23 = -4anTll - 6ka(l-y)X3 nT15 + 4kayX^ nT16 - 2aRWlrt(l-y2)

a'33 = 4aTll(l+k(n2-l)2) +4kaX34 T17 + 8ka(l-y)X32 n2T15

-8kyaX32 n2T16 - 2aRRC (1-y2) Tl/R + 2aRWl(1-y2)n2

b ^  = 4ax^n2 T4 - 4ayx2n2 T6

b^2 = -4ayx^X nT9 - 2X3nT12l

b13 = ~8a^2X1^3 T7 ” 4a(l-y)x A naT10

b22 = 4ax2X^ T1 + 4ayx^X^ T2 + Sax^ T S

b23 = -8ax^nT3 + 4ayn(x2T5 - 2^2Xi^3<r8̂ + 4 a x i^2n^3T^

+ 4nTllI

b33 = -4ax2X3 Tl + 4yax^X3 T2 + 4ax^T3n2 - 4ayx2n2 T5

+16ayx1X2X3T8 - 4T11I

c_ = -8aX0x_X2 T7C + 4ayx_X_T9C - 4a(1-y)x.X_n2T10C
1  2 1 3 0 1 3 0  1 2  O

+4X_T12C I 3 o

c_ = 4ax_nT3C - 8ayx_X X nT8C + 4a(1-y)x_X_X_nT8C
2 l o  1 2 3 0  1  2  3  O

+ 4nTllC I o

c_ = 4ax T3C (n2-2) - 4ax.X2 TIC + 4ayx.,X r (XnT2 + 2X_T8)3 l o  2 3 o  1 3 o 3  2
-4ax_T5 (n2 -1)C - 4T11C I - 2aRWl(l-y2)C (n2-l)/<j)n2 o o o 1



r1]L = 2aT18 (1+k) + 2kaX24 T19 + 2<>lT18I - aRRC (1-y2) X;J T21/R

rl2 = -2T20 (ay + (Ĵ I)

sn = 2T20I + aRRC (1-y2 ) T20/ (<{>̂R)

Simply Supported Edges

Tl = /Cos2 g dx

T2 01 = /Sin g Cos2 g dx

T3 = /Sin g Sin2 g dx

T4 = /Sin g CQS2g dx

T5 = /Sin2 g dx

T6 = /Cos2 g dx

T7 s /-0.50 Cos g Sin g Cos g dx

T8 = /0.50 Cos g Sin g Cos g dx

T9 = /Sin g Sin3 g dx

TlO = /0.50 Cos g Cos g Sin g dx

Til r /Sin2 gf dx

T12 = /-Sin2 g[ dx

T13 = / Sin2 g dx

T14 = /Cos2 g dx

T15 = /Cos2 g dx

T16 = /-Sin2 g[ dx

T17 = /Sin2 g dx

T18 = /Sin2 g dx

T19 = /Sin 2cf dx

T20 = /Sin g dx

T21 = ■ /Cos2 g
\

dx\\ \



Partially Fixed Edges

T1 = (Cos g + Sin2g)2 dx

T2 = (Sin q + Sin2q) (Cos g + Sin2g)2 dx

T3 = (Sin q + Sin2q) (Sin g + Sin2g)2 dx

T4 = (Sin q + Sin2 q) Cos2 g dx

T5 = :___ (Sin"g^+ Sin2g)2 dx

T6 = Cos2g dx

T7 = 0.50(Cos q + Sin2q)Sin g (Cos g + Sin2g) dx

T8 = 0.50(Cos q + Sin2q)(Sin g + Sin2g)(Cos g + Sin2g)

T9 = -(Sin q + Sin2q)Sin g (Sin g + Sin2g) dx

T10 = 0.50(Cos q + Sin2q)Cos g (Sin g + Sin2g) dx

Til = (Sin g + Sin2g)2 dx

T12 = -0.50 Sin g (Sin g + Sin2g) dx

T13. = Sin g (Sin g + Sin2g) dx

T14 = Cos g (Cos g + Sin2g) dx

T15 = (Cos g + Sin2g)2 dx

T16 = (Sin g + Sin2g)(2Cos2g - Sin g ) dx

T17 = (2Cos2g - Sin g)2 dx

T18 = (Sin q + Sin2 q)2 dx

T19 = (2Cos2q - Sin q)2 dx

T20 = (Sin q + Sin2q) dx

T21 = (Cos q + Sin2q)2 dx

Clamped Edges

Tl = 4 Sin2 2g dx

T2 = 4(l-Cos2g) Sin22g dx

T3 = (l-Cos2q)(1-Cos2g)2 dx

T4 = (l-Cos2q)Cos2g dx

T5 = (l-Cos2g)2 dx



Clamped Edges (Cont'd)

T6 = /Cos2g dx

T7 = /-2Sin2q Sing g Sin2g dx

T8 = /2Sin2q Sin2g(l-Cos2g) dx

T9 = /Sing g(l-Cos2q)(l-Cos2g) dx

TlCi = /Sin2q„Cos g„(l-Cos2g) dx

Til = /(l-Cos2g)2 dx

T12 = /-Sin g(l-Cos2g) dx

T13 = / Sin g(l-Cos2g) dx

T14 = /2Cos g Sin2g dx

T15 * = /4Sin2 2g dx

T16 = /4(l-Cos2g)Cos2g dx

T17 = /16 Cos2 2g dx

T18 = /(l-Cos2q)2 dx

T19 = /16 Cos2 2q dx

T20 = /(l-Cos2q) dx

T21 = /4Sin2 2q dx

where:
IM T X  TTXg = T" ' q = T

x^ and x2 are solutions of eq.(34)

RW1 = So Sin2g dx w

RW2 = So Cos2g dx w

RRC = a . from eq.(29) cb

I = 1  for uniform external pressure 

1 = 0  for axial compression



Overall Buckling

a _ = 2aX 2 + a (1-y) (l+k)n2 + 4 (1-y2)a n^QQ6(H3 + H5)1J- 1 F
+ 2ft(1-y2) n2 RW2 + 2H4(1-y)a n2QQ6F

a^2 = -4ayX^nS43 - 2a(1-y)X^nS48

a13 = -4ayX nS45 - 4a (1-y) X2nS47

a.. = 4ayX S43 - 4ka (1-y) n2 X S48 - 4H3 (1-y2) X QQ5 n2 (— n2 +1 1 1 F R - . .
1 - £/R) - 2H4(1-y)a n2 X QQ5 - 4H5(1-y2)a n4 (l-£/R)X QQ5F I F 1
+ 4kaX^ S55 - 2a(1-y2)RRCn2X1S48/R

a. _ = 4ayX,.S45 - 8ka (1-y) n2 X S47 - 8kaX X 2 S44Id 1 2 1 2
-4a(1-y2)RRCn2X2S47/R

a22 = 4an2S6 + 2a(1-y)X^ S52(l+3k) + 4H2(1-y2)apn2QQ3(1- /R)2

+4H1(1-y2)a QQ3n2r

a2  ̂ '= 4an2S16 + 4a(1-y)X^X^S49(l+3k)

a ^  = -4anS6 - 6ka(1-y)X^X2S52 + 4kayXj* nS53 - 2a(l-y2)nRWl

-4H2aT!1 (1-y2) nQQ3 (l-£/R-n2 £/R + n2 A 2 ) -4H1 (1-y2 ) awQQ3n3 F R F

a „  = -4anS16 - 12ka(l-y)X X nS49 + 16kayX2 nS442d 1 2  2
-2a (1-y2) nRW4

a^3 = 6an2 + 4a(1-y)X^ (1 + 3k)

a ^  = -4anS16 - 12ka(1-y)X^X2nS49 + 4kayX^ nS54

-2a (1-y2) nRW4

a - 6an - 12ka (1-ji) X 2 n ~8ka|iX 2 n - 2a (1-ji2) nRW335 2 2

aA. = 4aS6(l+k(n2-l)2 + 4kaX ̂  S50 + 8kX2 n2 (a(l-ji)S52 -44 1 1
yaS53) + 4H1(1-y2)a OQ3nh + 4H2a (1-y2)QQ3(n2^  - 1)F F R
(n2|-l) + 4H3(l-(i2)aFQQ4X12 <n4<|)2 + (1-Jt/R)2 + 2n*l(l-|)

+2H4 (1-H)n2 X 2 a QQ4 + 2a (1-y2 ) n2 RW1 +4H5(1-y2)a n A 2 QQ4I F  F I



Overall Buckling (Cont'd)

a = 16kaX2 X * S51 + 4aS16(l+k(n2-1)2) +16a (1-/J.) X X„n2 S4945 2 1 1 2
-4ka|in2 (X^ S54 + 4X22 S44) + 2a (1-p.2) n2 RW4 

-4a(1-ji2 )RRCX X S49/R

arc = 6a(l+k(n2-l)2) + 32kaX,f + 16ka(l-|i)X2 n2 + 16kd^iX2 n2
5 5  /  2  2  2

+2a(l-*i2 )n2.RW3 - 4a (l-JJ-2) RRCX^ /R

b = 4an2 (x S4 + x S7) + 2ajix n2 + 4H (l-|i2 ) a x n2 QQ2
1 1  1  2  3  2  F I

b = 4ajin(x X S14 + x X S15) + 2X nS43IJL JL Z X X

b^^ ̂ = 4ajinX̂  (x^SlS + x2S17) + 2X^nS45I

b14 = 4X S43I + 4aX12 (X^SIS + 2X2x2S19) - 2a(l-ji)n2

( X 1 x 1 S 2 4  +  2 X 2 x 2 S 2 6 )

b _ = 4X S45I + 8aX X (X xS19 + 2X x S22) - 2a(l-|i)n215 1 1 2  1 1  2 2
(X x S25 + 2X2x 2S27)

b22 = 4aX^ (x^S20) + 4apiX̂  (x^SS + x2Sll) + 8an2 (x^Sl + ^2S3)

+8H2 (l-|l2) n2 apQQl x^l-A/R)

b23 = 8aX1X2x3S21 + 8ajuX X2 (x^SlO + x2S13) + 8xn2 (x^S3 + ̂2S2)

b = -8an(x SI + x S3) - 4aM-nx S40 + 4nS6I - 4ajinX (X x S8 +
X w O X X X

2X x S10) - 4H2 (1-jLL2 )a x QQln(2-n2 &/R) + 2a(l-|i2)nX
2  2  F I  1

(x XXS8 + 2X2x 2S10)

b__ = -8an(x.S3 + x_S2) - 4ajinx_S41 + 4nS16I - 8ajJ.nX_ (X.x.SlO +
2 5  1  2  3  2  1  1

2 X 2 x 2 S 9 )  +  2 a ( l - j i ) n X 1 ( X 1 x 1 S l l  +  2 X 2 x 2 S 1 3 )

b = 8aX2 x + 16ajiX2 (x S9 + x S12) + 8an2 (x S2 + x S5)
w J £+ .L JL £ •



Overall Buckling (Cont'd)

b = -8an(x S3 + x S2) - 4a|inx S41 + 4nS16l - 4a|inX (X x
X ^ O JL X

Sll + 2X x S13) + 4a (1—p.) n (a X S10 + 2X x S9)

b = -8an(x S2 + x S5) - 4ajinx S42 + 6nl -8jianX (X x S133.5 1 2 3 2 1 1
+ 2X x S12) + 4a(l-li)nX (X x S13 + 2X x S12)

jU £m X  X  b  M

b = xgS20 + 4a^X^ + X2S^^^ + ^an2 x̂^s -̂ + X2S^̂

+  4 a J i n 2 x ^ S 4 0  -  4 S 6 I  +  8 a | i X ^  ( X ^ x ^ S 8  +  2 X 2 x 2 S 1 0 )

+ 4H2 (l-̂ i2 ) a x n2 QQ1r 1

b.^ = 8aX,X.x.S21 + 8ap.XX (x.SlO + x0S13) + 4an2 (x„S345 1 2  3 1 2 1  2 1
+ x^S2) + 4ap.n2 (x^S41) - 4S16I + 4ajiX̂  (X^x^Sll

+ 2X2x 2S13) + 8afiX2(X1x1S10 + 2X2x2S9)

bcc = 8ax X 2 + 16a|iX2 (x S9 + x S12) + 4an2 (x S21 + x S5)
5 5  3  2  2  1  2  1  2

+ 4a|J.n2x^S42 - 61

c. = -4ayC X_ (x S14 + x S15) -4ayC X (x S15 + x S17)
1 o l  1  1 2  O 2  1 1  2

-4X, C S43I - 4X_ C S45I + 4aC X 2 (X x S18 + 2X„x S19)1 ol 1 o2 ol 1 1 1 2 2
+8aC 0X0X_ (X.X.S19 + 2X * S22) - 2a(l-|i)n2C (X.X.S24o2 2 1 1 1 2 2  o l l l
+2X x S26) - 2a(l-Ji)n2C (X x S25 + 2X x S27)2 2 o2 1 1  2 2

c_ = 4an(zlSl + z„S3)C , + 4nl(C S6 + C 0S16)2 2 ol ol o2
“4au.XnnC , (Xx S8 + IX x.SlO) - 8ajinX C _(XxS10 +1 o l  1 1 2  2 2  o 2  1 1
2X x S9) + 2a (l-|i) nX C ..(X x S8 + 2X x S10)

2 2  1  o l  1 1  2  2

+2a(l-|i)nX,C -(X.x.Sll + 2X_x_S13) + 4anC 0(x_S3 + x S2) 1 o2 1 1 2 2  o2 1 2



Overhall Buckling (Cont'd)

c, = 4anC 0(xS2 + x0S5) + 4anC , (x,S3 + x0S2) + (6C _ + 4C ,S16)3 o2 1 2 ol 1 2 o2 ol
-4apnC ,X (X x Sll+ 2X x_S13) -8aynX_C . (X,x,S13 + 2X_x_S12) ol i l l  2 2  2 o2 1 1 ' 2 2
+4a (l-y)nX C (X x S10 + 2X x S9) + 4a(l-y)nX C

2  O l  1 1  2  2  2  0 2

(X x S13 + 2X x S12)
1 1  2 / 2

c. —  4flC-=-X >x"s20 + 8aX X C _x0S21 + 4ajiC X,2 (x,S8 + x sil)
4  0 1 1 3  1  2  o 2  3  o l  1  1  2

+8ajiC 0X_ X_ (x S10 + x S13) + 4aC , (n2 -2) (x,Sl + x„S3) •
0 2  1 2  1  2  o l  1  2

+4aC 0(n2 - 2) (x, S3 + x_S2) + 4apiC , (n2 -l)x^S40 + 
o 2  . 1 2  o l  3

4ajiC 0 (n2 - l)x S41 - 4C ,861 - 4C 0S16I + 4a|iX ,C , ( ,x,S8) 
o 2  3  o l  o 2  1  o l  1  1

+2X«x S10) + 8ajiC oXo (Xx,S10 + 2X_S9) - 2a(l-^i2)(n2 -1)Z Z O Z Z 1 1  z

(RWl CQl + RW4 Cq2) /01 + 4H2 (1 - jl2 )apx QQ1 Cq1 (n2 - 2 + n2 l/R)

cc = 8ax_X2 C _ + 8aC -X_X„x;-S21 + 16ajiC _X 2 (x, S9 + x_S12)
D  3  2  0 2  o l  1  2  3  O 2  2  1  2

+8ajiC .X X (x S10 + x_S13) + 4aC „ (x, S2 + x„S5)(n2 - 2) 
o l  1 2  1  2  o 2  1  2

+4aC _ (n2 - 2) (x, S3 + x„S2) + 4afxC _ (n2 -l)x0S42 
O l  1  2  0 2  3

+4afiC , (n2 - l)x_S41 - 4C _S16I - 6C 0I + 4a|iX,C _ (XxSll + 
o l  3  o l  o 2  _ 1  o l  1  1

2 X  x 2 S 1 3 )  +  8 a | i C o 2 X 2 ( X 1 x 1 S 1 3  +  2 X 2 x 2 S 1 2 )

- 2 a  ( 1  -  j l )  ( n 2 -  1 )  ( R W 3  C  +  R W 4  C  , )  / 0 ,
0 2  O l  1

r = 2aS6(l + k) + 2kaX.4S50 + 20S6I + 2H2 (1 - \i2 >0^8311 1 1  F
+2H3 (1 - |i2) (1 - l/R)2 a X 2 QQ4F 1 1

r = 2S16 (a + 0^1) + SkaX^ X22 S51

rl3 = 2iiaS56 - 20^561

4i22 = 3(a + ka + 0^1) + 16kaX2



Overall Buckling (Cont'd)

2S56I + a (1 - Jl2 )RRC S56/(R0 )

21 +' a(l - jl2 ) RRC* (R01)

1.0

HI xc
tLR (R - e)

H2
AfR

tL(R - e)

H3
I R zo

tL (R - e)

H4
C R r

tL(R - e) 3

H5 TR
tL (R - e) 5

Simply Supported Edges:

SI /Sin3g dx

S2 /Sing (1 - Cosh)2 dx

S3 /Sin2 g (1-Cosh) dx

S4 /Sing Cos2 g dx

S5 / (1 - Cos h)3 dx

S6 /Sin3 g dx

S7 /Cos2 g (1 - Cos h) dx

s8/

\ ; \



Simply Supported Edges (Cont'd)

58 = /Sin g Cos2g dx

59 __=_ /Sing Sin2 h dx

510 = /Sin g Cos g Sin j dx

511 = -/Cos2g^(l - Cosli) dx

512 = /Sin2 h (1 - Cos h) dx

513 = /(I-Cosh) Sinh Cos g dx

S14* = /Sin3 g dx

515 = /Sin2 g (1 - Cos h) dx

516 = /Sin g (1-Cosh) dx

517 = /Sin g (1-Cosh)2 dx

518 = /Sin g Cos2 g dx

519 = /Cos2 g Sin g Sin h dx

520 = /Cos2 g dx

521 = /Cos g Sin h dx

522 = /Sin2 h Sin g dx

524 = /Sin g Cos2 g dx

525 = /Cos2 g (1 - Cos h) dx

526 = /Sin h Cos g Sin g dx

527 = /Sinh Cos g (1-Cosh) dx
\
\



Simply Supported Edges (Cont1d)

540 = /Sin2 g dx

541 = /Sin g (1-Cosh) dx

542 = /(I - Cosh)2 dx

543 = /Sin2 g dx

544 = //Sin g Cos h dx

545 = /Sin g (1-Cosh) dx

S47* = /Cos g Sin h dx

548 - /Cos2 g dx

549 = /Sin h Cos g dx

550 = /Sin2 g dx

551 = /Sin g Cos h dx

552 = /Cos2g dx

553 = -/Sin2g dx

554 = -/Sin g (1 - Cos h)' DX

555 = /Sin2 g dx

556 = /Sin g dx

QQ1/

\



Simply Supported Edges (Cont'd)

QQ1 = 21 Sin3 g

QQ2 = . ECos2 g Sin g

QQ3 = ESin2 g

QQ4 = ECos2 g

QQ5 = ECos2 g

QQ6 = ECos2 g

RWl = fa Sin2 g dx w

RW2 = /a Cos2 g dx w

RW3 = /a (1 “ Cosh)2 dx w

RW4 = //a Sin g (1 - Cos h) dxw

Partially Fixed Edges:

51 = f (Sin g + Sin2 g)3 dx

52 = /(Sin g + Sin2g) (1 - Cosh)2 dx

53 = /(Sin g + Sin2g)2 (1 - Cos h) dx

54 = /(Sin g + Sin2g) Cos g dx

55 = /(1-Cosh)3 dx

56 = /(Sin g + Sin2g)2 dx

57 = / (1 - Cos h) Cos2 g dx

S8/
\ /



512

513 

S14* 

Si 5

516

517

518

519

520

521

522

524

525

526 

321/

Fixed Edges (Cont'd)

/(Sin g + Sin2g)(Cos g + Sin 2g)2 dx

/ (Sin g + Sin2 g) Sin2 h dx

/(Sin g + Sin2g)(Cos g + Sin 2g) Sinh dx

/Sin2 h (1 - Cos h) dx

/(I -Cosh) Sin h(Cos g + Sin" 2g) dx

/Sin g (Sin g + Sin2g)2 dx

/Sin g (Sin g + Sin2g)<1 - Cos h) dx

/(Sin g + Sin2g) (1-Cosh) dx

/(I-Cosh)2 Sin g dx

/Sin g (Cos g + Sin 2g)2 dx

/(Cos g + Sin 2g)2Sin h dx

/(Cos g + Sin 2g)2 dx

/(Cos g + Sin 2g)Sin h dx

/SinOh Sin g dx

/(Cos g + Sin 2g) (Sin g + ‘Sin2g) Cos g dx 

/(Cos g + Sin lg) (1-Cosh) Cos g dx 

/Sin h Cos g (Sin g + Sin2g) dx

Sll  /..(Cos g-'  2g)2 (1 - Cos h) dx

\



Partially Fixed Edges (Cont'd)

S27 ISin h Cos g (1 - Cos h) dx

S40 /(Sin g + Sin2g)2 dx

S41 /(Sin g + Sin2g) (1-Cosh) dx

S42 — /-(I— Cash)2 dx

S43 /Sin g (Sin g + Sin2g) dx

S44 /Cosh (Sin g + Sin2g) dx

S45* /Sin g (1 - Cos h) dx

S47 /Cos g Sin h dx

S48 /Cos g (Cos g + Sin 2g) dx

S49 /Sin h (Cos g + Sin 2g) dx

S50 /(2 Cos 2g - Sin g)2 dx

S51 /Cos h (2 Cos 2g - Sin g)!dx

S52 / (Cos 2g - Sin g) (1 - Cos h) dx

S55 -/Sin g (2 Cos 2g - Sin g) dx

S56 /(Sin g + Sin2g) dx

QQ1

QQ2

QQ3

QQ4

E (Sin g + Sin2g)

ECos2g (Sin g + Sin2g) 

E(Sin g + Sin2 g)2

E(Cos g + Sin 2g)2

\  . ' ,



Partially Fixed Edges (Cont'd)

QQ5 = ECos g (Cos g + Sin 2g)

QQ6 = ECos2g

RWl = fa (Sin.--ĝ + Sin2 g)2 dx w —

RW2 = fa (1-Cosh)2 dx w

RW3 = fa (1-Cosh)2 dx w

RW4* = fa (Sin g + Sin2g) (1 - Cos h) dx w

Clamped Edges:

51 = /(l-Cos 2g)3 dx

52 = /(l-Cos 2g)(l-Cosh)2 dx

53 = /(l-Cos 2g)2 (l-Cosh) dx

54 = / (1 - Cos 2g) Cos g dx

55 = / (1 - Cos h)3 dx

56 = /(l-Cos 2g)2 dx

57 = / (1 - Cos h) Cos2 g dx

58 = /4(1 - Cos 2g) Sin2 2g dx

59 = / (1 - Cos 2g) Sin2h dx

510 = /2(l-Cos 2g) Sin 2g Sin h dx

511 = /4 Sin2 2g (1-Cosh) dx
\



Clamped Edges (Cont'd)

512 = /Sin2 h . (1 - Cos h) dx

513 = /2 (1 - Cos h) Sin h Sin g dx

514 = /Sin g (l-Cos^g)2 dx

515 = /ISin g (1 - Cos 2g) (1 - Cos h) dx

516 = /(l-Cos 2g)(l-Cosh)2 dx

517 = /Sin g (1-Cosh)2 dx

518 = /4 Sin g Sin2 2g dx

519 = /2 Sin 2g Sin g Sin h dx

520 = /4 Sin2 2g dx

521 = /2 Sin 2g Sin h dx

522 = /Sin g Sin2h dx

523 = /Sin g Cos2g dx

524 = /2 Sin 2g (1 - Cos h) Cos g dx

525 = /2 Sin 2g (1 - Cos h) Cos g dx

526 = /Sin h Cos g (1 - Cos 2g) dx

527 = /Sin h Cos g (1 - Cos h) dx

540 = /(l-Cos 2g)2 dx

541 = / (1 - Cos h) (1 - Cos 2g) dx

542 = /(I -Cosh)2 dx
\

\\ \



Clamped Edges (Cont'd)

543 = /Sin g (1 - Cos 2g) dx

544 = /Cos h (1 - Cos 2g) dx

545 = /Sin g (1^-Oos h) dx

546 = /Sin g Cos h dx

547 = /Cos g Sin h dx

548 . = /2 Cos g Sin 2g dx
*

549 = /2 Sin h Sin 2g dx

550 = /16 Cos2 2g dx

551 = /4 Cos h Cos 2g dx

552 = /4 Sin2 2g dx

553 = /4(1 - Cos 2g) Cos 2g dx

554 = /4 Cos g (1 - Cos h) dx

555 = /-4 Sin g Cos 2g dx

556 = /(1 - Cos 2g) dx

QQ1 = E(1-Cos 2g)3

QQ2 = ECos2 g (1 - Cos 2g)

QQ3 = E(1 “ Cos 2g)2

QQ4 = E4 Sin2 2g
\



Clamped Edges (Cont'd)

QQ5 = 2 Sin 2g Cos g

QQ6 = Cos2 g
/

RW1 = So (1 - Cos 2g)2 dx w

RW2 = fo Cos2 g dx w

RW3 = fo ( 1 - Cosh)2 dx w

RW4 = fo (1 - Cos 2g) (1 - Cos h) dx w

where:
TTX 2fTX

g  =  T 'h  =

X1 ' X2 r X3 ar0 so^ut:'‘-ons e<2 (34)

1 = 1  for uniform external pressure 

1 = 0  for axial compression
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TABLE 1; INFLUENCE OF COLD-BENDING RESIDUAL STRESSES
ON INTERFRAME COLLAPSE PRESSURE

R/t = 133 , Z / R  = 0.675 , E/a = 841 , R = 800 mmy

(C /R) % o
SIMPLE SUPPORTED CLAMPED
IR = 0 IR = 2 IR = 0 IR = 2

0.00 1369.4 ^ 1369.3 1687.9 1687.8
0.05 1273.0 1272.9 1569.2 1569.1
0.10 1189.3 1189.1 1466.1 1466.0
0.20 1051.0 1050.8 1295.8 1295.7
0.30 941.5 941.3 1160.9 1160.8
0.40 852.7 852.5 1051.5 1051.4
0.50 779.2 778.9 960.9 960.8
0.60 717.4 717.1 884.7 884.6

R/t = 133 , Z / R  = 0.338 , E/a = 841

(C /R) % o SIMPLE SUPPORTED CLAMPED

H » II O IR = 2 IR = 0 IR = 2

0.00 2839.7 2839.6 4077.0 4077.0
0.05 2650.8 2650.7 3807.7 3807.5
0.10 2485.5 2485.4 3571.6 3571.4
0.20 2209.9 2209.8 3177.5 3177.4
0.30 1989.3 1989.3 ■ 2861.7 2861.6

0.40 1808.8 1808.7 2603.0 2602.9

0.50 1658.3 1658.2 2387.2 * 2387.1

0.60 1530.9 1530.8 2204.5 2204.4

IR = 0 - without cold-bending residual stresses

IR = 2 - with cold-bending residual stresses

Pressures are in kN/m2 .



TABLE 2: WELDING RESIDUAL STRESSES ON INTERFRAME
COLLAPSE PRESSURE

Pressures in kN/m2

R/t = 133 , ' H / R = 0.675 , E/a = 841 , a /a = 0.110 , n = 4.5   y rc' y '

(C /R)% o
SIMPLE SUPPORTED CLAMPED

IR = 0* IR= 3* % LOSS IR = 0 IR = 3 % LOSS
‘ 0.00 1369.4 1287.6 6.0 1687.9 1561.5 7.5
0.05 1273.0 1191.8 6.4 1569.2 1443.8 8.0
0.10 1189.3 1108.6 6.8 1466.1 1341.5 8.5
0.20 1051.0 971.2 7.6 1295.8 1172.7 9.5
0.30 941.5 862.4 8.4 1160.9 1038.9 10.5
0.40 852.7 774.2 9.2 1051.5 930.4 11.5
0.50 779.2 701.1 10.0 960.9 840.6 12.5
0.60 717.4 639.7 10.8 884.7 765.1 13.5

* IR = 0 - without welding residual stresses
* IR = 3 - with welding residual stresses

R/t = 133 , £/R = 0.675 , E/a = 841 , a /a = 0.125 / n = 5.0y rc y

(C /R)% o
SIMPLE SUPPORTED CLAMPED

IR = 0 IR = 3 % LOSS oIIPiH IR = 3 % LOSS

0.00 1369.4 1277.7 6.7 1687.9 1546.6 8.4
0.05 1273.0 1182.0 7.1 1569.2 1429.0 8.9
0.10 1189.3 1098.8 7.6 1466.1 1326.8 9.5
0.20 1051.0 961.6 8.5 1295.8 1158.1 10.6
0.30 941.5 852.9 9.4 1160.9 1024.6 11.7
0.40 852.7 764.7 10.3 1051.5 916.2 12.8

o LT O 779.2 691.7 11.2 960.9 826.4 14.0
0.60 717.4 630.4 12.1 884.7 750.9 15.1

R/t = 133/

\

- r\
j



TABLE 2: (Cont'd)

R/t = 133 , a/R = 0.675 , E/a = 841 , a /a = 0.154 , n = 6.0^  y rc y

(C /R) % o
SIMPLE SUPPORTED CLAMPED

IR = 0 IR = 3 .% LOSS IR = .0 IR = 3 % LOSS

0.00 1369.4 1257.6 8.2 1687.9 1516.5 10.1
0.05 1273.0 1162.0 8.7 1569.2 1399.2 10.8
0.10 1189.0 1079.0 9.2 1466.1 1297.2 11.5
0.20 1051.0 941.9 10.3 1295.8 1128.9 12.9
0.30 941.5 . 833.4 11.5 1160.9 995.5 14.2
0.40 852.7 745.4 12.6 1051.5 887.4 15.6
0.50 779.2 672.6 13.7 960.9 797.8 16.9
0.60 717.4 611.3 14.8 884,7 722.5 18.3

\



TABLE 3; INFLUENCE OF WELDING RESIDUAL STRESSES
IN INTERFRAME COLLAPSE PRESSURE

Pressure in kN/m2 , r  = 800 mm

R/t = 200 , Jt/R_=J>r675 , E/a = 841 , a /a = 0.110 , n = 6.7y rc y /

(C /R) % o
SIMPLE SUPPORTED CLAMPED

IR = 0 IR = 3 % LOSS H » II O IR = 3 % LOSS

0.00 . 490.4 433.8 11.5 612.1 524.3 14.3
0.05 439.7 383.8 12.7 548.7 462.1 15.7
0.10 398.5 343.3 13.8 497.2 411.5 17*. 2
0.20 335.6 281.3 16.2 418.7 334.4 20.1
0.30 289.8 236.2 18,. 5 361.5 278.3 23.0
0.40 255.1 201.9 20.8 318.1 235.7 25.9
0.50 227.7 174.9 23.2 284.0 202.3 28.7
0.60 205.7 153.3 25.5 256.5 175.3 31.6

R/t = 200 , fc/R = 0.675 , E/a = 841 , a /a = 0.125 , n =7.5y rc y

(C /R)% o
• SIMPLE SUPPORTED CLAMPED

IR = 0 IR = 3 % LOSS IR = 0 IR = 3 % LOSS

0.00 490.4 426.4 13.0 612.1 512.9 16.2
0.05 439.7 376.5 14.4 548.7 450.9 17.8
0.10 398.5 335.9 15.7 497.2 400.5 19.4
0.20 335.6 335.9 18.3 418.7 323.6 22.7
0.30 289.8 229.1 20.9 • 361.5 267.6 25.9
0.40 255.1 194.9 23.6 318.1 225.1 29.2
0.50 227.7 168.0 26.2 284.0 191.7 32.5
0.60 205.7 146.4 28.8 256.5 164.8 35.7

R/t = 200/



TABLE 3; (Cont'd)

R/t = 200 , i/R = 0.675 E/a = 841 ,y a /a = 0.154 rc y r) = 9.2

(C /R) % o
SIMPLE SUPPORTED CLAMPED

IR = 0 IR = 3 % LOSS IR = 0 IR = 3 % LOSS

0.00 490.4 412.3 15.9 612.1 491.8 19.6
0.05 439.7 362.6 17.5 , 548.7 430.0 21.6
0.10 398.5 322.3 19.1 497.2 379.8 23.6
0.20 335.6 ”260.6 22.3 418.7 303.3 27.6
0.30 289.8 215.8 25.5 361.5 247.6 31.5
0.40 255.1 181.7 28.8 318.1 205.3 35.4
0.50 227.7 154.9 31.9 284.0 172.1 39.4
0.60 205.7 133.3 35.2 256.5 145.3 43.4



TABLE 4: INFLUENCE OF WELDING RESIDUAL STRESSES ON
INTERFRAME COLLAPSE PRESSURE

Pressures in KN/m2 , L - 270 mm

R/t = 133 , £/R = 0.338 / E/a = 841 , a /a = 0.154 , n = 3.0y rc y

SIMPLE SUPPORTED CLAMPED
(C /R) % o IR =  0 IR =  3 % LOSS IR =  0 IR =  0 % LOSS
0.00
0.05
0.10
*0.20
0.30
0.40
0.50
0.60

2839.7
2650.8 
2485.5
2209.9
1989.3 
1808.8
1658.3
1530.9

2745.6
2557.2
2392.2
2117.2
1897.0
1716.0
1566.6 
1439.5

3.3
3.5 
3.7
4.2
4.6
5.2 , 
5.5 
6.0

4077.2 
3807.7.
3571.6
3177.5
2861.7 
2603.0
2387.2
2204.5

3930.7
3661.7
3426.0
3032.5 
2717.3
2459.0
2243.6
2061.1

3.6 
3.8 
4.1
4.6
5.0
5.5
6.0
6.5

R/t =  133 £/R =  0.338 , E / a  = 841 , a /a rc y =  0.250 , n =  4.5 ,

SIMPLE SUPPORTED CLAMPED
(C R/)% o IR =  0 IR =  3 % LOSS IR =  0 IR =  3 % LOSS

0.00
0.05
0.10
0.20
0.30
0.40
0.50
0.60

2839.7
2650.8 
2485.5
2209.9
1989.3 
1808.8
1658.3
1530.9

2692.5 
2504.3'
2339.5
2064.7
1844.8
1664.8
1514.8
1387.8

5.2
5.5 
5.9
6.6
7.3 
8.0 
8.5
9.3

4077.2 
3807.7
3571.6
3177.5
2861.7 
2603.0
2387.2
2204.5

3852.9 
3584.0
3348.5
2955.5
2640.5
2382.5 
2167.2
1984.9

5.5 
5.8 
6.2 
7.0 
7.7
8.5 
9.2
10.0



TABLE 5: PROPERTIES OF CYLINDERS

Cylinder Radius
R
in.

Thickness
t
in.

Unsupported 
Length 
of Shell

a
in.

Frame
Area
Af
sq. in.

Frame
Faying
Width

tw
in.

Yield % 
Strength 

a *y
psi

T-2 .38.87 0.264 7.24 1.885 0.260 88000
(c)

We"lded T-3 38.87 0.260 . 8.74 1.625 0.260 108000
(c)

115000
(c)

with
T-Frames

T-6 26.87 0.256 7.24 1.170 0.260

T-2 A 38.87 0.254 7.24 0.796 0.260 103000

T-7A 26.87 0.263 8.74 0.683 0.260 84000

* All yield strengths are defined at offset strain 
of 0.002.

(c) Specimens of shell material taken from collapsed 
cylinders

Specimens for all other cylinders were obtained 
. prior to fabrication



TABLE 6: OVERALL BUCKLING PRESSURES

Comparison between Eg. (22a) and Eg. (22b)

Dimensions: R = 100" , t = 1.00" , H = 30.0" , d = 7.36"
t.:' = 0.32" , f = 4.0" , t, = 0.64"w ^ ^  f

Material Properties: E = 30.x 10^ psi , a = 50,000 psi

Pressure in P.S.I.

L = 150" L = 300" L == 450"n
Eg.(22a) Eg.(22b) Eg.(22a) Eg.(22b) Eg.(22a) Eg.(22b)

2 768 724 846 801 871 827
3 2177 2087 2369 2279 2430 2341
4 3383 2712. 3603 2899 3671 2962
5 3874 2635 4028 2788 4073 2834
6 3833 2499 3928 . 2614 3955 2644
7 3589 2356 3646 2439 3662 2459
8 3308 2225 3343 2285 3353 2299

L = 600" L = 750" L = 3000"
n Eg.(22a) Eg.(22b) Eg.(22a) Eg.(22b) Eg.(22a) Eg.(22b)

2 883 839 890 847 913 869
3 2460 2371 2478 2389 2532 2442
4 3704 2989 3723 3005 3780 3038
5 4095 2853 4108 2863 4146 2799
6 3968 2657 3975 2663 3997 2676
7 3669 2468 3674 2472 3687 2480
8 3358 2305 3361 2307 3369 2313



TABLE 7: COMPARISON BETWEEN PRESENT THEORY AND 
KENDRICK'S THEORY (80)

Overall Instability of Ring Stiffened Cylinder under External 
Pressure.

/

Dimensions+: R = 100^-/ I = 30.00" , d - 7.36" , tw = 0.32"
—  --- -f~=^.0" , tf = 0.64" , t = 1.00"

6Material Properties: E = 30 x 10 psi , a = 50,000 psi

Buckling Pressures in P.S.I. L = 150"

0 Kendrick 
Ref. (80)

PRESENT THEORY
Eq.(19c) Eq.(19b) Eq.(20b) Eq.(21b) Eq.(22b)

2 4598 4656 4002 3979 3965 724*
3 4020 3939 3399 1 3344 3475 2087
4 3405 3425 2913 2839 2856 2712
5 3521 3634 2976 2943 2918 2635
6 3218 3318 2810 2801 2789 2499
7 2927 3018 2599 2598 2592 2356
8 2678 2763 2403 2404 2402 2225
14 2126* 1893* 1903* 1913*

BS5500 p_ = 622.4 psi ,- p = 3497 psi , n = 4 fy n
Present Theory p = 531.9 psi 
* critical value

! ;Buckling Pressures in P.S.I.   L = 300"

n Kendrick 
Ref.(80)

PRESENT THEORY
Eq.(19c) Eq.(19b) Eq.(20b) Eq.(21b) Eq.(22b)

2 4138 4139 3534 3869 3869 801*
3 1946* 1959* 1931* 1957* 2197* 2279
4 2990 3044 2792 2743 2746 2899
5 3487 3592 3073 3052 3039 2788
6 3211 3310 2879 2877 2873 2814
7 2923 3022 2647 2647 2645 2439
8 2674 2774 2435 2436 2436 2285

BS5500 p = 583.8 psi , p = 1859 psi , n = 3 Fy \ n
VPresent theory .1̂  = 563.9 ^si



TABLE 7: (Cont'd)

Buckling Pressures in P.S.I. L = 450"

n Kendrick 
Ref.(80)

z PRESENT THEORY
Eq.(19c) Eq.(19b) Eq.:20b) • Eq.(21b) Eq.(22b)

2 1677 1683* 1658* 1886 2728 827*
3 1666* 1688 1685 1694* 1822* 2341
4 2958 3023 2800 2756 2747 2962
5 3494 3593 3103 3085 3Q74-, 2834
6 3206 3313 2897 2895 2892 2644
7m 2916 3027 2657 2658 2656 2459
8 2666 2779 2442 2443 2443 2299

BS5500 p_ = 554.0 psi , p = 1541 , n = 3 Fy n
Present Tehory p = 582.3 psi.

Buckling Pressurs in P.S.I. L »- 600"

n Kendrick 
Ref.(80)

PRESENT THEORY
Eq.(19c) Eq.(19b) Eq.(20b) Eq.(21b) Eq.(22b)

2 1000* 1007* 1014* 1167* 1747 839*
3 1603 1631 1628 1628 1702* 2371
4 2953 3024 2808 2766 2752 2989
5 3491 3595 3114 3098 3088 2853
6 3200 3315 2903 2901 2899 2657
7 2908 3029 2661 2662 2660 2468
8 2656 2781 2444 2446 2445 2305

BS5500 p„ = 529.2 psi , p = 938.7 , n = 2 Fy n
present Theory p = 574.5 psi



IbU.

TABLE 7: (Cont'd)

Buckling Pressures in P.S.I. L = 750"

n Kendrick 
Ref.(80)

PRESENT THEORY
Eq.(19c) Eq.(19b) Eq.(20b) Eq.(21b) Eq.(22b)

2 775* 784* 795* 898* 1294* 847*
3 1583 1613 1609 1603 1651 2389
4 2951 3027 2813 2771 2754 3005
5 3487 3596 3120 3105 3094 2863
6 3193 3316 2906 2905 2903 2663
7 2900 3030 2663 2663 2662 2472
8 2647 2783 2446 2447 2446 2307

BS5500 pFy = 459.0 psi , p^ = 717 psi , n = 2

Present Theory p„ = 498.0 psi Fy

Buckling Pressures in P.S.I. L = 3000"

n Kendrick 
Ref.(80)

PRESENT THEORY
Eq.(19c) Eq.(19b) Eq.:20b) Eq.(21b) Eq.(22b)

2 579* 592* 600* 605* 633* 869*
3 1563 1599 1589 1574 1575 2442
4 2945 3039 2822 2780 2760 3038
5 3404 3600 3129 3115 3106 2799
6 3068 3320 2911 2910 2908 2676
7 2740 3035 2666 . 2666 2666 2480
8 2462 2787 2449 2449 2448 2313

BS5500 to = 381.0 psi , p = 546 , n = 2 Fy n

Present Theory p = 403.0 psi 

* Critical Value
+ A cylinder designed to collapse under external pressure 
in the range 400-700 psi according to the steel uses (80)\,
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TABLE 9; COMPARISON BETWEEN PRESENT THEORY AND
EXPERIMENTAL RESULTS OF REF. (100)

Overall Instability of Ring-Stiffened Machined Aluminium Cylinder 
Under External Pressure.

Dimensions: R = 1.015" , t = 0.030" (0.762 mm) , Z = 2.50"
L = 12.50" , d = 0.150" , t = 0.040" (external

W stiffeners)
Properties of Material: E = 10.7^ psi ± 3% , = 39.1 tons/in2 .

• Experimental collapse pressure = 450 psi , n = 2

(co2/r)% Co2
(inch)

Co2
(mm)

Buckling Pressure 
Eq. (22b)

Buckling Pressure 
Eq. (19b)

0.00 0.0000 0.0000 •612.3 (2)* 611.9 (2)
0.10 0.0010 0.0254 588.6 (2) 584.9 (2)
0.20 0.0020 0.0515 566.6 (2) 560.3 (2)
0.30 0.0030 0.0762 546.2 (2) 537.1 (2)
0.40 0.0040 0.1030 527.3 (2) 516.9 (2)
0.50 0.0050 0.1288 509.6 (2) 497.6 (2)
0.60 0.0061 0.1547 493.1 (2) 479.8 (2)
0.70 0.0071 0.1800 477.7 (2) 463.2 (2)
0.80 0.0081 0.2060 463.2 (2) 447.8 (2)
0.90 0.0090 0.2280 440.0 (2) 430.0 (2)

*Circumferential buckling wave number, n 
buckling pressures in p.s.i.

BS5500 p = 510.6 f n = 2



TABLE 10: COMPARISON BETWEEN PRESENT THEORY AND
EXPERIMENTAL RESULTS OF REF, (96)

Overall Instability of Orthogonally Stiffened Welded Steel Cylinder 
under External Pressure. '

Dimensions: R = 35.85" , t* = 0.297" , £ =  9.00" , d = 0.150"
t / = 0.040" , L = 189.0" w

(*smeared shell thickness - all 24 stringers of 0.186" x 2.033" 
are smeared)

Measured out-of-circularity = 0.234" (or 0.0065R)
g

Properties of Material: E = 29.0 x 10 psi ' °y ~ 39000 psi

Experimental collapse pressure = 270 psi

Assumed 
(Col/R)%

Assumed
(Co2/R)% n

Collpase Pressure 
Eq. (22b) psi

a /a F YF

0.650 0.00 2 272.3 0.955
0.650 0.05 2 265.8 0.942
0.625 0.00 2 276.0 0.948
0.625 0.05 2 269.4 0.934

Assumed
(C /R) % ol

Assumed
(Co2/R)% n

Collapse Pressure 
Eq. (19b) psi

o /a F YF

0.650 0.00 3 275.9 1.00
0.650 0.05 3 269.7 1.00
0.625 0.00 3 282.5 1.00
0.625 0.05 3 276.3 1.00

Assumed
(C /R)% ol

Assumed
(C 0/R)% o2 n

Collapse Pressure 
BS5500 psi °F^aYF

0.650 0.00 3 275.0 1.00
0.625 

<-----------
0.00 3 280.0 1.00



TABLE 11A: COMPARISON BETWEEN PRESENT THEORY AND
FINITE ELEMENT- METHOD OF REF. (52)

Influence of out-of-circularity on collapse strength of typical 
long externally pressurised ring-stiffened cylinder.

Dimensions: R = 120t ̂ I  = 20t , d = 8t , t. = 0.75t ,  __,,' w
f = 5t , t = 1.5t , L = 440t

Buckling 
Mode (n) C _/R ol

% Less of strength due to out-of-circularity
SMITH(52) Eq. (19b) Eq.(22b)

2 0.0002 3 2 2
2 0.001 11 10 6

*
2 0.005 31 35 23

TABLE 11B: OVERALL INSTABILITY OF RING STIFFENED CYLINDER
UNDER UNIFORM EXTERNAL PRESSURE

Dimensions: L = 720" , t = 1.00" , I = 30.0" , d = 7.36" ,
t = 0.32" , f = 4.0" , t = 0.64" w - f

Pres sure in P.S.I.

Radius, R 
(inches)

Eq. (19b) Eq. (22b)

101.0
105.0

811.4 (2) 
767.8 (2)

823.1 (2) 
739.9 (2)



TABLE 12: COMPARISON BETWEEN PRESENT THEORY AND 
FINITE ELEMENT METHOD OF REF. (91)

"Overall Instability of Ring Stiffened Steel Cylinder under External 
Pressure.

Dimensions: t = 0.010R I = 0.15R , L = 2R , d = 0.033R
f  ="0T0052R , f = 0.032R , t_ = O.007R w f

6Properties of Material: E = 30 x 10 psi , V = 0.300

Solution from finite element method = 1525 psi , n = 4

PRESENT THEORY

BUCKLING PRESSURE IN PSI
n

Eq. (19c) Eq. (19b)

11213.0 8985.4 2
2188.4 1985.2 3
1550.7 1466.1 4

Eq. (19c) consists of the same buckling displacements as Eq. (19b) , 
but a different pre-buckling displacement, i.e. ~  = constant andoX
w = constant^uniform lateral and axial contraction prior to buckling.

Eq. (19c) represents a dead load situation and Eq. (19b) represents 
a live load model, where the loading changes direction as the 
structure deforms.



TABLE 13: DNV RULES - AXIAL COMPRESSIVE BUCKLING STRESSES (N/mm2)

O =245 N/mm2
VsSsR/t
£/k ^ 100 150 200 250 300 350 400 450 500

0.50
1.00
1.50
2.00

0

210.3
210.3
210.3
210.3

179.9
179.9
179.9
179.9

151.4
151.4
151.4
151.4

127.3
127.3
127.3
127.3

107.3
107.3
107.3
107.3

92.10
92.10
92.10
92.10

79.32
79.32
79.32
79.32

68.87
68.87
68.87
68.87

60.20
60.20
60.20
60.20

0 = 367.5 N/mm2
y

0.50
1.00
1.50
2.00

273.6
273.6
273.6
273.6

214.9
214.9
214.9
214.9

170.5
170.5
170.5
170.5

138.1
138.1
138.1
138.1

114.1
114.1
114.1
114.1

95.92
95.92
95.92
95.92

81.74
81.74
81.74
81.74

70.43
70.43
70.43
70.43

61.23
61.23
61.23
61.23

a = 490.0 N/mm2y
0.50
1.00
1.50
2.00

314.4
314.4
314.4
314.4

233.1
233.1
233.1
233.1

179.2
179.2
179.2
179.2

142.6
142.6
142.6
142.6

116.6
116.6
116.6
116.6

97.38
97.38
97.38
97.38

82.63
82.63
82.63
82.63

71.0
71.0
71.0
71.0

61.61
61.61
61.61
61.61


