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Abstract

RNA viruses are responsible for the vast majority o f diseases affecting vertebrates and 

invertebrates. One o f the largest single groupings o f RNA viruses have been classified in 

the family Picornaviridae. The prototype member o f the Picornaviridae is poliovirus, 

though rhinovirus (causative agent o f the common cold) and foot and mouth disease virus 

have in recent years been more economically significant to developed countries. Since the 

early 1980’s poliovirus has provided a useful model for understanding the replication o f 

the Picornaviridae and less amenable RNA viruses, like the human caliciviruses and 

hepatitis C virus (HCV).

W ithin this study, an attempt was made to further the current understanding o f picornavirus 

replication by investigating viral RNA and protein-RNA interactions involved in the 

replication o f poliovirus. To achieve this, three approaches were used: (i) interactions 

between the viral replication proteins and the RNA were studied using the yeast 

three-hybrid system, (ii) regions o f suppression o f variation at synonymous sites identified, 

w ith in aligned Human Enterovurus genomes using a bioinformatic package were studied 

using a subgenomic replicon system and ( iii)  an attempt was made to further the current 

understanding o f the interaction between the viral polymerase and the 3’UTR by 

characterising the N18Y mutation previously documented by Meredith et al (Meredith et 

al., 1999).

To investigate the regions o f the genome and anti-genome w ith  which the viral proteins, 

interacted, using the yeast three-hybrid system, a cDNA library was created that enabled 

expression o f hybrid RNAs that contained fusions o f 100-200bp fragments o f the 

poliovirus genome w ith the MS2 coat protein-binding sites. In addition to the hybrid RNA, 

the yeast three-hybrid system involves the expression o f two fusion proteins (i) a fusion o f 

the GAL4 binding domain and the MS2 coat protein and (ii)  the v ira l protein to be 

investigated (3CDpro, 3Dpo1, 3AB or 2C) fused w ith the GAL4 activation domain. 

Transformants were selected but analysis o f these failed to provide evidence for any 

specific interaction between the viral proteins and the poliovirus R N A (although 

expression o f the non-structural proteins could be detected by western blotting).



The second approach used to identify RNA sequences or structures o f functional 

importance was more fru itfu l. A  bioinformatics package that recognises phylogenetically 

conserved sequences identified a region o f the poliovirus genome (nt 6768-7148) that 

showed suppression o f variation at synonymous sites. Predictions about the structure o f the 

RNA at this specific location were used to plan mutagenesis studies. Mutations that 

disrupted the structure o f this region, which lies w ith in the region encoding the viral 

polymerase, were introduced using asymmetric and overlapping PCR. The effect o f 

introducing these mutations on viral replication was investigated using a luciferase-based 

subgenomic replicon system. The availability o f a reverse genetics system for poliovirus 

also enabled the effect o f the mutations on the phenotype o f the virus to be studied within 

the context o f a complete replication cycle. The reduction in the ability o f one o f the 

mutants investigated to replicate lead to the identification o f a possible species-specific 

replication element. Although it is possible that this sequence functions as an anatagonist 

o f the immune system or as a membrane-targeting signal sequence it was not possible to 

verify either o f these possibilities w ithin the confines o f this study. Identification o f the 

function o f this sequence provides an exciting avenue o f future work and may provide 

valuable insight into differences between picornaviruses at the species level.

Lastly, 3Dut and 3DN18'1 polymerases were expressed in Escherichia coli, purified and their 

relative activity was investigated and compared using a variety o f biochemical assays 

(uridylylation, polymerisation and terminal transferase). Although prelim inary analysis o f 

3DNm indicated that it led to an increase in the intrinsic polymerisation activity o f the 

polymerase, subsequent analysis has suggested this may relate to differences between the 

preparations o f 3Dut and 3DNI8Y.



V

Amino Acid Table
Amino acid table showing single letter codes for proteins and codons.

Single letter codes Amino acid Three letter code
A Alanine Ala
R Arginine Arg
N Asparagine Asn
D Aspartic acid Asp
C Cysteine Cys
Q Glutamine Gin
E Glutamic acid Glu
G Glycine Gly
H Histidine His
I Isoleucine lie
L Leucine Leu
K Lysine Lys
M Methionine Met
F Phenylalanine Phe
P Proline Pro
S Serine Ser
T Threonine Thr
W Tryptophan Trp
Y Tyrosine Tyr
V Valine Val

U C A G
U uuu F ucu UAU UGU U

uuc ucc s UAC Y UGC c C
UUA L UCA U AA Stop(ochre) UGA Stop(opal) A
UUG UCG UAG Stop(Amber) UGG w G

C CUU ecu CAU H CGU U
cue L CCC p CAC CGC R C
CUA CCA CAA CGA A
CUG CCG CAG Q CGG G

A AUU ACA AAU AGU U
AUC I ACC T AAC N AGC S C
AUA ACA AAA AGA A
AUG M ACG AAG K AGG R G

G GUU GCU GAU GGU U
GUC V GCC A GAC D GGC G C
GUA GCA GAA GGA A
GUG GCG GAG E GGG G
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AD Activation domain
A2RE hnRNP A2 response element
ATP Adenosine tri-phosphate
3-AT 3-aminotriazole
BD Binding domain
BEV Bovine enterovirus
CAT Chloramphenicol acetyl transferase
CNS Central nervous system
CRE cA-acting replication element
cDNA DNA complementary to RNA
DI Defective interfering
DTT Dithiothreitol
dNTP Deoxyribonucleoside 5’ triphosphate
DNA Deoxyribosenucleic acid
E.coli Escherichia coli
elF Eukaryotic initiation factor
EF Elongation factor (Prokaryotic)
EMCV Encephalomyocarditis virus
ER Endoplasmic reticulum
ERAV Equine rhinitis virus
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GTP Guanidine tri-phosphate
GuHCl Guanidine hydrochloride
H A V Hepatitis A  virus
HCV Hepatitis C virus
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H IV Human Immunodeficiency virus
HSV Herpes simplex virus
HRPO Horseradish peroxidase
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HRV14 Human rhinovirus 14
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IRE Iron response element
IRP Iron response protein
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nt nucleotides
NTR non-translated region
ORF Open reading frame
ONPG O-nitrophenolgalactosidase
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PV Poliovirus
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RdRp RNA dependent RNA polymerase
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1 Introduction

1.1 Positive-sense strand RNA viruses

RNA viruses containing positive-sense single stranded genomes include one-third o f all 

virus genera and have evolved to replicate w ith in prokaryote and eukaryotic cells.

Amongst the viruses which have a positive-sense single stranded genome are a number o f 

pathogens o f economic and medical importance which have made headlines in recent 

years. These viruses include SARS coronavirus, foot and mouth disease virus (FMDV), 

hepatitis C virus (HCV) and the causative agents o f “ winter vom iting disease”  the 

Caliciviridae.

The RNA viruses are grouped into families based on common features such as genomic 

organisation and particle structure. Examples o f families and the prototype virus associated 

w ith each fam ily are shown in table 1.1. Families o f viruses that contain a single-stranded 

positive-sense RNA genome can be divided into two groups: those viruses which surround 

their protein capsid w ith a lip id bilayer and those that do not.

1.1.1 Enveloped viruses with positive-sense RNA genomes

RNA viruses w ith a single-stranded positive-sense genome that have an enveloped particle 

include the Togaviridae, Flaviviridae and Coronaviridae families.

Viruses in this group contain a protein capsid that has been encased in a lipid bilayer 

derived from host-cell membranes. Viruses w ith in this group encode glycoproteins, which 

form characteristic projections or 'spikes' in the envelope, when the particles are visualised 

by electron microscopy (EM). The glycoproteins interact w ith the cellular receptor and 

uncoating o f viruses w ith in this group occurs as a result o f fusion between the lipid bilayer 

encasing the virus particle and the plasma membrane.



Virus fam ily Genus Type species Host

N arnaviridae Narnavirus Saccharomyces cerevisiae 20S 
narnavirus

Yeast

Leviv iridae Levivirus

Allolevirus

Enterobacteria phage MS2 

Enterobacteria phage QB Bacteria

Barnaviridae Barnavirus Mushroom bacilliform virus Fungi

P icornaviridae Enterovirus

Rhinovirus

Hepatovirus

Cardiovirus

Aphthovirus

Parechovirus

Erbovirus

Kobuvirus

Teschovirus

Poliovirus 1 

Rhinovirus 1A 

Hepatitis A virus 

Encephalomyocarditis virus 

Foot-and-mouth disease virus 0  

HpeV-1 and 2 

Equine Rhinitis virus 

Aichi virus 

Porcine Teschovirus

Vertebrates

Thedthoviridae Cricket
paralysis-like

viruses

Cricket paralysis virus Invertebrates

F lav iv ir idae Hepacivirus

Pestivirus

Flavivirus

Hepatitis C virus 

Bovine diarrhea virus 

Yellow fever virus

Vertebrates

C a lic iv iridae Vesiculovirus

Norwalk-like
viruses

Lagovirus

Swine vesicular exanthema virus 
Norwalk virus

Rabbit hemorrhagic disease virus

Vertebrates

Togaviridae Alphavirus

Rubivirus

Sindbis virus 

Rubella virus

Vertebrates

Tombusviridae Tombusvirus

Carmovirus

Tomato bushy stunt virus 

Carnation mottle virus

Plants

Potyviridae Potyvirus

Bymovirus

Potato virus Y 

Barley yellow mosaic virus

Plants

Sequiviridae Sequivirus

Waikavirus

Parsnip yellow fleck virus 

Rice tungro spherical virus

Plants

Com oviridae Comovirus

Nepovirus

Cowpea mosaic virus 

Tobacco ringspot virus

Plants

Table 1.1 Classification o f Positive-stranded RNA viruses
Information obtained from www.ncbi.nih.gov/ICTV

http://www.ncbi.nih.gov/ICTV
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1.1.2 Non-enveloped viruses with positive-sense RNA genomes

RNA viruses w ith single-stranded positive-sense genomes that are non-enveloped include 

the Caliciviridae and a large number o f plant viruses. However viruses o f this type are 

typified by the Picornaviridae, which w ill be described in more detail in the fo llow ing 

sections.

Viruses w ith in  this group do not possess a lipid-containing envelope and as a consequence 

interaction o f viruses w ith in  this grouping and their cognate cellular receptors is mediated 

directly by contact between the receptor and the protein capsid and not indirectly via the 

use o f a glycoprotein.

1.1.3 Replication of positive-sense single-stranded viruses

A ll known RNA viruses encode an RNA-dependent RNA polymerase (RdRp) that 

replicates the input genome. Replication o f the viral genome cannot begin until the 

polymerase and supplementary proteins involved in the replication process have been 

synthesised.

A ll RNA viruses replicate their genome on membrane structures derived from host-cell 

membranes and modified by viral proteins to form functional replication complexes. The 

membranous replication complexes function to protect the input genome, 

intermediate-replication structures and the progeny-genomes from cellular RNAases and 

from activating anti-viral cell-responses.

Synthesis o f  progeny RNA from the input genome occurs only fo llow ing the cessation o f 

translation. Thus RNA viruses must encode a “ molecular switch”  that alters the function o f 

the genome from acting as m RNA to providing a template for the RdRp to synthesize a 

negative-sense RNA copy. Replication o f the positive-sense single-stranded (+ve ss) 

genome from the negative-sense RNA copy is asymmetric in nature generating between 10 

and 100 fold excess o f progeny strands over the anti-genome. In all (+ve ss) RNA viruses 

the negative-sense strand is only ever found in double-stranded or partially double­

stranded forms.



Inga Dry______________________Introduction___________________ Chapter 1 3

1.2 Picornaviridae

The picornaviruses are amongst the smallest ribonucleic acid containing viruses identified
19

and were named to reflect this observation i.e. pico (a small unit o f measurement {10‘ }

RNA virus). Currently the picornavirus fam ily is subdivided into nine genera. These are 

the enteroviruses, rhinoviruses, cardioviruses, aphthoviruses, parechoviruses, 

hepatoviruses, erboviruses, kobuviruses and teschoviruses (Table 1.2). Classification is 

based on common genomic organisation and particle structure.

The enterovirus genus consists o f a large group o f human pathogens that cause a wide 

range o f clinical conditions ranging from m ild to severe (see section 1.2.1.1). As the name 

suggests they are associated w ith infection o f the alimentary canal. On the basis o f 

antibody neutralisation studies approximately 70 serotypes o f enteroviruses have been 

identified so far (Pallansch &  Roos, 2001). It has been proposed that the Enterovirus genus 

can be subdivided into nine species. These are poliovirus (PV), Human enterovirus A 

(HEV-A), Human enterovirus B (HEV-B), Human enterovirus C (HEV-C), Human 

enterovirus D (HEV-D), Human enterovirus E (HEV-E), Bovine enteroviruses (BEV), 

Porcine enterovirus (PEV) and Simian enteroviruses (SEV)

(www.ncbi.nlm .nih.gov/ICTV). The classification o f the human enteroviruses w ill be 

discussed further in section 1.2.1

Members o f the rhinovirus genus are morphologically very sim ilar to the enteroviruses 

however they have adapted to grow in nasopharyngeal tissue. Rhinoviruses can be 

distinguished from enteroviruses on the basis that the former are acid labile and are 

adapted to grow at 34 °C. W ith the exception o f rhinovirus 87, which uses sialic acid as a 

receptor, the rhinovirus genus can be subdivided into two species; the major rhinovirus 

(HRVA) and the minor rhinoviruses (HRVB), on the basis o f receptor usage. 74 different 

serotypes have been classified as members o f the H R V-A  species and 25 serotypes 

constitute the HRV-B species. Rhinoviruses are the predominant causative agent for the 

common cold being responsible for 50% o f clinical cases investigated.

Parechoviruses cause mainly gastroenteritis and respiratory infections. There are two 

species o f parechovirus, Ljungen virus (1 serotype) and human parechovirus (two 

serotypes).

http://www.ncbi.nlm.nih.gov/ICTV


Genus Speciis Serotypes

Enterovirus Polioirus PV 1-3

Humai Enterovirus A C VA 2-8, 10, 12, 14, 16, EV-71

Humai Enterovirus B CVB 1-6, CVA9, El-33, EV69-73

Humai Enterovirus C C VA 1,11,13,15,17-24

Humai Enterovirus D EV-68, EV- 70

Boviie Enterovirus BEV-1, BEV-2

Porciie Enterovirus A PEV-8

Porciie Enterovirus B PEV-9, PEV10

Simiai Enterovirus A SEV-A

Rhinovirus Humai Rhinovirus A HRV 1,2,7, 8, 9 -1 3  etc

Humai Rhinovirus B HRV 3-6,14,17,26 etc

Parechovirus Humai Parechovirus H peV-1 and 2

Ljungin Virus LV

Hepatovirus Hepattis A virus H AV

Avian Encephalomyelitis Virus AEV

Cardiovirus Encepialomycarditis Virus EMCV

Theileovirus TM EV, VHEV

Aphthovirus Foot aid Mouth Disease Virus FMDV-O, A ,C ,Asial, SAT1-3

Equine Rhinitis A virus ERAV

Erbovirus Equine Rhinitis virus ERBV 1 and 2

Kobuvirus Aichi /irus A iV

Bovine Kobuvirus BKV

Teschovirus Porcine Teschovirus PTV 1-11

Table 1.2 Classification ojPicornaviridae.
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The cardiovirus predominantly infect mice though they can infect humans, monkeys, pigs, 

elephants and squirrels. There are two species o f cardiovirus, Encephalomyocarditis virus 

(1 serotype) and Theilovirus (2 serotypes). Theiler’ s murine encephalomyelitis (TMEV), a 

member o f the Theilovirus species, can produce infections in mice that clinically resemble 

paralytic poliom yelitis and multiple sclerosis.

The aphthovirus genus contains only two species, foot and mouth disease (FM DV) and 

equine rhinitis virus (ERAV). Seven serotypes o f FM D V and only one o f ERAV have been 

identified. FM D V  shows a lim ited tropism infecting cloven-hooved animals, for example, 

cows, goats, sheep and horses.

Two species form the hepatoviruses - the hepatitis A  viruses and avian encephalomyelitis 

virus. Although there is only one hepatitis A  virus (H A V ) serotype there are two strains 

infecting humans and primates. FIAV is unusual amongst the Picornavirus family as it 

infects the liver.

Erbovirus, Kobuvirus and Teschovirus, relatively new genera in the picornaviridae, are 

known to infect horses, insects, cows and pigs.

In addition a number o f viruses have been identified in invertebrates (Lommel et al., 1985, 

Muscio et al., 1988, Toriyama et al., 1992) and from the ocean (Culley et al., 2003) that are 

morphologically and physio-chemically similar to picornaviruses. These are commonly 

referred to as “ picorna-like”  and have not been o ffic ia lly  assigned to the picornavirus 

family.

1.2.1 Human enterovirus classification

Human enteroviruses infect m illions o f people worldwide every year resulting in disease 

ranging from m ild respiratory conditions to acute flaccid paralysis. Classification o f the 

human enteroviruses was originally carried out on the basis o f the virulence o f the isolated 

viruses in suckling mice and the human disease they were associated with. The original 

four categories were (a) polioviruses (poliomyelitis in humans but mostly non-pathogenic 

to mice), (b) coxsackie A  viruses (central nervous system disease and flaccid paralysis in 

mice), (c) coxsackie B viruses (myocarditis, central nervous system disease also cause 

spastic paralysis o f  mice) and (d) echoviruses (not known to be associated w ith human
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disease or pathogenesis in mice) (Melnick, 1996b). The classification o f the enteroviruses 

was changed w ith  the identification that echoviruses could be associated w ith human 

disease. Currently the classification o f enteroviruses is based on a mixture o f molecular 

analysis and biological properties o f the virus. The human enteroviruses constitute five o f 

these species: (I) PV (II) HEV-A (III)  HEV- B (IV ) HEV- C (V ) HEV- D. Phylogenetic 

mapping o f the relationship between human enterovirus species is shown in figure 1.1. The 

previous classification that placed the echoviruses as a separate species has been altered 

and they are now classified w ith in the HEV-B species. In addition phylogenetic analysis 

(Figure 1.1) has shown that the genetic relationship between poliovirus and the viruses that 

constitute the HEV-C species is so close as to make them indistinguishable at the species 

level (Brown et al., 2003, Hyypia et al., 1997, Poyry et al., 1996).

1.2.1.1 HEV pathogenesis

Viral diseases are characterised by a specific set o f symptoms and host range. The 

described symptoms can often be correlated w ith infection o f specific tissue types. While 

the majority o f infections are m ild or asymptomatic the enteroviruses can cause a wide 

range o f syndromes. These are summarised in Table 1.3. Perhaps unsurprisingly, the 

diseases associated w ith infection o f humans by the enteroviruses broadly correlate with 

the genetic relationship identified between viruses using molecular phylogeny, for example 

CAV-16 and EV-71 are associated w ith hand, foot and mouth disease and classification 

places both viruses in the HEV-A species.
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Figure 1.1. Consensus phylogenetic tree fo r  representative human 
picornaviruses and nonhuman enteroviruses. Numbers at nodes 
represent the percentage o f 100 bootstrap pseudoreplicates that contained 
the cluster distal to the node. Major clusters supported by bootstrap 
values o f at least 67% are enclosed by circles. For clarity, branch lengths 
are not drawn to scale. Taken from Oberste et al., 1999.
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Enteroviruses are transmitted by the faecal-oral route. W hile taking their name from the 

alimentary (enteric) tract that they predominantly inhabit, enteroviruses are associated 

clin ically w ith diseases w ith  CNS and cardiac involvement. Invasion o f the central nervous 

system is a characteristic o f  the prototype picornavirus and human enterovirus, poliovirus, 

and results in acute flaccid paralysis. Coxsackie A  viruses (HEV-C species) can also 

induce flaccid paralysis. In contrast, Coxsackie B viruses have been shown to have a 

propensity for heart muscle, in addition to nasopharyngeal cells. Coxsackie group B 

viruses (HEV-B species) are also associated w ith meningoencephalitis and myocarditis.

1.2.1.2 Transmission and replication of poliovirus in vivo

Infection w ith  poliovirus is in over 90% o f cases asymptomatic or marked by little  more 

than a m ild malaise. Paralytic poliomyelitis only occurs in approximately 1% o f cases 

(Melnick, 1996a). As w ith other enteroviruses the natural poliovirus infection begins with 

ingestion o f the virus. Follow ing the digestive tract phase o f infection, poliovirus and the 

other enteroviruses are found in the oropharynx and intestine. It is these cells that the virus 

uses to propagate itself.

Translocation o f poliovirus across M -like cells found in the epithelial sheet o f the Peyers 

patches has been demonstrated in vitro (Ouzilou et al., 2002). Translocation o f the virus 

particles across M  cells brings the virus into contact w ith cells o f the immune system. This 

is believed to aid the spread o f the virus to the cervical and mesenteric lymph nodes. The 

viraemia that follows the spread o f the virus to the lymph nodes is believed to be an 

important step in the development o f paralytic poliomyelitis. Neurovirulent strains o f 

poliovirus type 1 have been shown to be able to replicate w ith in  peripheral blood 

mononuclear cells whilst vaccine strains cannot (Freistadt &  Eberle, 1996). Following the 

onset o f viraemia, the virus can invade the central nervous system (CNS) and replicate in 

neurons. Experimental evidence using transgenic mice suggests that poliovirus inoculated 

intravenously predominantly invades the CNS by crossing the blood brain barrier (Yang et 

al., 1997).
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Paralytic poliomyelitis occurs as a result o f the destruction o f neurons follow ing CNS 

invasion. The paralytic form o f poliovirus has a high specificity for the anterior horn cells 

o f the spinal cord. Although perhaps not the main pathway o f dissemination a neural 

pathway for CNS infection has been reported in humans, monkeys and transgenic mice. 

Research using transgenic mice has shown that poliovirus particles could be transported by 

the fast retrograde axonal transport pathway via the sciatic nerve (Ohka et al., 1998). The 

recent identification o f an interaction between PVR and the dynein-motor complex 

component Tctex-1 by M ueller et al has been offered as an explanation as to how 

poliovirus is transported from the axon to the neuronal cell body in a PVR-dependent 

manner(Mueller et al., 2002). A  model for the invasion o f the CNS using the neuronal 

retrograde transport pathway is shown in figure 1.2. A  condition has been described which 

has been termed provocation poliomyelitis as it results fo llow ing physical trauma during 

infection w ith poliovirus. Gromeier and Wimmer have managed to replicate the condition 

o f provocation poliomyelitis experimentally and have shown that skeletal muscle injury 

stimulates the retrograde axonal transport o f poliovirus thereby leading to CNS invasion 

and the development o f poliomyelitis (Gromeier &  Wimmer, 1998).



Enterovirus Serotype Clinical diseases associated with Infection

Poliovirus

1-3 Paralytic poliomyelitis and mild febrile illness

Coxsackie A

2, 4, 7, 9, 10 Aseptic meningitis

5, 10, 16 Hand, foot and mouth disease

21,24 Common cold

Coxsackie B

1-6 Aseptic meningitis

1-5 Myocarditis, pleurodynia, severe systemic 
disease in infants

4,5
Upper respiratory illness, pneumonia 

and post-viral fatigue syndrome

Eehovirus

All except 12,24,26,29 Aseptic meningitis

4,6,9,11,30 Paralysis

4,9,11,20,25 Respiratory disease

1,6,9,19 Myocarditis

1,6,9 Epidemic myalagia

4,9 Hepatic disturbances

Enterovirus

68 Pneumonia

70 Acute haemorrhaging conjunctivitis

71 Hand, foot and mouth disease

Table 1.3 Clinical syndromes associated with infection by enteroviruses (reviewed in

Pallansch & Roos, 2001)
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Figure. 1.2 Proposed model o f CNS invasion by poliovirus Taken from 
Mueller et al., 2002. 7, fo llow ing virus replication in muscle, virions are 
released near or at the NMJ, and taken up at the presynaptic membrane o f a 
motor axon by CD155-mediated endocytosis. Muscle in jury or inflammatory 
responses due to the PV infection may facilitate this process by up-regulation 
o f CD 155 expression. The virus-receptor complex by interaction w ith Tctex-1 
is targeted to the microtubular network o f the axon. 2, the intact 160S virions 
complexed to the dynein motor by virtue o f CD155 interaction w ith Tctex-1 
are transported along m icrotubuli by fast retrograde axonal transport. 3, 
arriving at the motor neuron's cell body, the change in environment from 
axoplasm to cytoplasm triggers virus uncoating. V ira l genomic RNA is 
released into the cytoplasm, and virus replication ensues, thereby k illing  the 
motor neuron. Paralysis o f the muscle fiber formerly innervated by this motor 
neurons follows. Lateral spreading to neighboring spinal motor neurons may 
occur, which k ills  those neurons directly and independently o f retrograde 
axonal transport.
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1.3 Picornaviridaeparticle structure

Atomic resolution structures o f the virus particle have been determined for all the 

picornavirus genera (reviewed w ith in Hogle, 2002). The RNA genome is packed w ith in an 

icosahedral capsid, 20-30 nm (~ 300A) in diameter. The capsid is composed o f sixty copies 

o f each o f the four viral structural proteins. VP1, VP2 and VP3 are exposed on the surface 

o f the virion, VP4 is located beneath the surface o f the v irion and is found in association 

with the viral RNA. In entero- and rhinoviruses (Figure 1.3A ) a deep gap (~20 A) can be 

observed surrounding the 3- fold axis (rosette-shape) and 5- fold axis (propeller shape).

This deep gap is absent from the particles o f aphthoviruses (Figure 1.3B) and 

cardioviruses..



“ Canyon”
-receptor binding site

Figure 1.3 Representative structures of picornavirus virions
(A ) Structure representative o f the entero- and rhinovirus genera. The virion 
shown in this case is that o f H R V I4 (Rossman et al., 1985).
The “ Canyon”  that binds the cellular receptor is marked with an arrow. (B) 
Structure representative o f aphtho- and cardiovirus genera. The virion shown 
in B is that o f  FM D V  (Acharaya et al., 1989).



Inga Dry______________________Introduction

1.4 Genome Organisation

Chapter l 9

Sequencing has shown that the genomes o f picornaviruses range in size from 7,209 bases 

(HRV14) to 8,450 bases (FM D V) in length. Despite this variation in length sequencing has 

shown that picornavirus genomes share a common organisation (Figure 1.4).

The picornavirus genome is unusual in that the 5’ end o f the genome lacks the 7- 

methylguanosine cap structure that is covalently linked via a 5'-5' linkage to the terminal 

base o f the m ajority o f cellular mRNA (Lee et al., 1977). Instead a small protein, VPg 

(V irion protein, genome), which varies only slightly in size between different 

picornaviruses, is covalently attached to the 5 ’ terminal -pU pU p, o f both genomic RNA 

and the negative sense replication intermediate, by a phosphodiester linkage to the 

phenolic hydroxyl group o f a tyrosine residue (Rothberg et al., 1978b, Wimmer, 1982). 

VPg functions as a protein primer for the initiation o f positive and negative-strand 

synthesis.

The protein-coding region is flanked by untranslated regions (UTR), whose sequences tend 

to be strongly conserved and carry cis-acting elements that are functionally involved in 

translation and RNA synthesis. Amongst the picornaviruses the 5’UTR varies in length 

from 624 nucleotides (nt) in length in rhinovirus 14 (HRV14) to approximately 1,200 nt in 

FMDV. The 5 ’UTR o f cardioviruses and aphthoviruses also contains a poly (C) tract. The 

size o f the poly (C) tract varies in length between viral isolates and ranges from 80-250 

bases in length amongst the cardioviruses and 100-170 bases amongst the aphthoviruses.

In contrast to the 5 'U TR  the 3 ’UTR is short, ranging from 47 bases in length in HRV14 to 

126 bases in length in EMCV. The 3’UTR is required for efficient replication o f the viral 

genome. The genome is tailed by a genetically encoded poly (A) tract. The length o f the 

poly (A ) tract ranges from 35 (EM CV) to 100 (FM D V ) residues in length.



Figure 1.4 Common Picornavirus Genome Organization

For the purposes o f this figure the genomic organisation o f the 
Teschovirus and Erbovirus are not shown.

A ll genomes contain VPg a 22 amino acid protein attached to the 
proximal 5’ end o f the genome. The coding region is preceded by a 
long highly structured non-translated region (5 ’UTR) and at the 
3’terminus o f the genome by the short structured non-translated region 
(3 ’UTR) and a poly A  tail. In addition Cardio- and Apthoviruses 
contain a poly C tract that precedes the IRES element in the 5’UTR.

The main difference in genomic organization o f the coding region o f 
the genome are the L protein and 2A. A t least four different types o f L 
protein have been identified in the five genera that have a protein at 
this locus (Cardiovirus, Aphthovirus, Erbovirus, Teschovirus and 
Kobuvirus). There are also four structurally diverse protein types coded 
for by the 2A locus. Other differences o f genomic organisation 
between the picornaviruses are the 3 copies o f VPg (3B) carried by the 
Aphthoviruses and the substitution VP4/VP2 w ith  VPO in the Parecho- 
and Kobuviruses.
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1.5 Overview of the replication cycle

M ultip lication o f the picornaviruses occurs entirely in the cytoplasm. As a model for the 

picornavirus replication cycle that o f poliovirus is illustrated (Figure 1.5). No significant 

differences from this model have so far been described for the other picornaviruses.

The in itia l event in infection is the interaction o f the virion w ith its cellular receptor (1). 

The interaction o f the v irion w ith its receptor causes a conformational change. This 

displaces VP4 and releases the genomic RNA into the cytoplasm (2). Upon entry into the 

cytoplasm VPg is cleaved from the genomic RNA by a cellular enzyme, unlinking enzyme, 

and the genome is translated (3). Autocatalytic cleavage o f the viral polyprotein releases 

the viral proteins (4). The first segment o f the virus that is released is the PI region, 

followed by P2 and P3.

Following the synthesis o f  the proteins encoded by the P2 region o f the genome, the host 

cell is modified to form the viral replication complexes from the endoplasmic reticulum. 

The first step in the synthesis o f genomic RNA is the in itiation o f synthesis o f a minus- 

strand copy o f the incoming RNA (5). The minus strand copy then serves as the template 

for synthesis o f  positive strands (6). In virus infected cells numerous positive strands are 

synthesised from every negative strand leading to the formation o f a double stranded 

replication intermediate (RF). During the infection, newly synthesized RNA molecules are 

translated (7) to allow  the formation o f additional replication complexes. This results in a 

massive amplification o f the number o f viral genomes that are present w ith in the 

cytoplasm (7—* 4 —>5—> 6).

Assembly o f the virus capsid proteins into pentamers occurs spontaneously fo llow ing 

cleavage o f the PI precursor (8). VPg-linked RNA is then packaged into the assembled 

pentamers by an unknown mechanism (9). The resultant provirions are not infectious. 

Production o f infectious virions requires a maturation cleavage, o f VPO to VP4 and VP2, 

which occurs late on in infection. The infectious virions are released by the lysis o f the 

host cell. The whole viral replication cycle takes between 5 and 10 hours.



Figure 1.5 Schematic representation o f the poliovirus replication 
cycle.

Virus binds to cellular receptor (1) and the genome is delivered into the 
cytoplasm by uncoating o f the viral particle (2). VPg is removed from 
the viral RNA by a host cell enzyme (unlinking enzyme) and the viral 
RNA is translated (3). Modification o f the endoplasmic reticulum by 
proteins encoded by the virus results in the formation o f replication 
vesicles where RNA synthesis occurs. (5) V ira l +ve strands (Black 
strand) are copied by the RNA polymerase to form fu ll length negative 
sense-strand (red strand). Numerous positive strands are amplified o ff 
the one negative sense template (6). An am plification cycle occurs 
where the newly synthesisized positive strands are translated and 
replicated (7- 4 - 5 - 6). The capsid proteins are processed from the viral 
polyprotein and spontaneously assemble into non-infectious procapsids 
(8). The positive strand genomes are packaged into the preformed 
capsids (9). Cleavage o f VPO causes a conformation change in the 
capsid structure that results in the formation o f fu lly  functional virus 
(10). The infectious virions are released upon host cell lysis (11). The 
entire replication cycle takes between 5 and 10 hours.
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The receptors for poliovirus, coxsackie B virus, echovirus and the major rhinoviruses have 

all been mapped to human chromosome 19 (Rueckert, 1996). Wide ranges o f cellular 

proteins have been identified as receptors for the Picornaviridae. These include proteins o f 

the integrin, SCR-like and immunoglobulin (Ig) lineages (Figure 1.6). Additionally, while 

polio-, rhino-, cardio- and hepatoviruses appear not to require additional factors for cellular 

infection to occur, this is not the case for all enteroviruses. The requirement for accessory 

factors amongst the Picornaviridae is summarised in table 1.4.

Attachment o f  poliovirus to cells is mediated solely by the poliovirus receptor (PVR). PVR 

is an 80kDA surface glycoprotein that belongs to the Ig-superfamily. Although PVR usage 

appears to be a defining characteristic o f poliovirus, the receptor usage o f the other 

picornaviruses does not always correlate with the phylogenetic relationship between the 

viruses. Cellular proteins used as receptors by more than one picornavirus genus include 

ICAM-1 (major group rhinoviruses and CAV 13, 18 and 21), avp3 vitronectin (FMDV, 

CAV 9 and echovirus 22) and sialic acid (rhinovirus 87 and bovine enterovirus).

W ithin individual genera it is the enteroviruses that show' the most diversity in receptor 

choice. The use o f proteins o f the integrin, SCR-like and Ig-like lineages as the cellular 

receptor has been described for representatives o f the enterovirus genera. The cellular 

protein identified as a receptor o f enteroviruses w ith the most frequency is decay- 

accelerating factor (DAF), otherwise known as CD55. DAF has been identified as the 

receptor for all haemagglutinating strains o f echovirus (Powell et al., 1997), CAV21 

(Shafren et al., 1997), CBV 1, 3 and 5 (Bergelson et al., 1995, Shieh &  Bergelson, 2002) 

and enterovirus 70 (Karnauchow et al., 1996). Recent work has shown that the binding 

sites on DAF o f the haemagglutinating enteroviruses are different (W illiam s et al., 2003). 

This provides evidence that the use o f DAF has arisen through a process o f convergent 

evolution. This suggests that there must be a selective advantage in using DAF as a cellular 

receptor. I f  the haemagglutinating enterovirus-DAF interaction is reflective o f all 

picornavirus-receptor interactions this would suggest that the cellular proteins used must 

positively influence virus infection in some way. It has been suggested that benefit to the 

virus may include enhancing virus entry via receptor internalisation or the recruitment o f



CAR PVR iCAM-1 VCAM-1 DAF LDLR HAVcr-1 a2\^ 3

Key
O Ig-like □  LDL-like Integrin

A  SCR-like *  GPI anchor l _ ._j T/S/P hexamers

Fig. 1.6 Schematic representation o f the proteins known to function as 
picornavirus receptors. Figure taken from Evans and Almond, 1998.

Domains (o f Ig-like, SCR-like or LD L-like  folds) implicated in virus binding are 
depicted in black. Domains that are not shaded are not involved in virus binding. 
Domains for which no information is available are shown in grey. Abbreviations: 
CAR, coxsackie-adenovirus receptor; DAF, decay-accelerating factor; GPI, 
glycosylphosphatidylinositol; HAVcr-1, hepatitis cellular receptor type 1; ICAM -1, 
intracellular adhesion molecule type 1; LD L, low density lipoprotein; LDLR, low 
density lipoprotein receptor; PVR, poliovirus receptor; SCR, short consensus repeat; 
T/S/P, threonine/serine /proline; VCAM -1, vascular cell adhesion molecule type 1.



Virus name and 
serotype

Receptor Receptor lineage Accessory
factors

Anhthovirus
Foot and Mouth disease 

virus
a3 p5 Vitronectin 

receptor
Integrin

Heparin sulphate 
proteoglycan

Cardiovirus
Encephalomyocarditis

virus
Encephalomyocarditis

virus

VCAM-1

Sialylated 
glycophorin A

Ig-like

Carbohydrate

N /A

N /A

Enterovirus
Poliovirus 1-3 PVR Ig-like N /A

BEV Sialic acid Carbohydrate N /A

C AV 13,18,21 ICAM-1 Ig-like N /A

CAV 9 ayp3 Vitronectin 
receptor

Integrin N /A

CAV 21 DAF SCR-like ICAM-1

CBV 1,3,5 DAF SCR-like avP6 Integrin

CBV 1-6 CAR
SCR-like N /A

EV 1 a2pi Integrin Integrin p2m

EV 3,6,7,11- 
13,20,21,24,29,33

DAF SCR-like p2m

EV22 avP3 Vitronectin 
receptor

Integrin
N /A

Enterovirus 70 DAF SCR-like
N /A

Henatovirus
H AV HAVcr-1

Ig-like and 
mucin-like

N /A

Rhinovirus
M ajor group ICAM-1 Ig-like

N /A

M inor group LDLR LD LR
N /A

Rhinovirus 87 Sialic acid Carbohydrate
N /A

Table 1.4 Picornavirus receptors and accessory molecules involved in cell infection.
Table was taken from Evans and Almond, 1998. Abbreviations used: p2m, p2- 
m icroglobulin;CAR, coxsackievirus and adenovirus receptor; DAF, decay-accelerating 
factor;F IAVcr-l, hepatitis cellular receptor type 1;N/A, not applicable (no accessory 
molecules are currently implicated in virus infection); PVR, poliovirus recptor; SCR, short 
consensus repeat (s );V C A M -l, vascular adhesion molecule type 1.
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naive cells and activation o f the apoptopic response to facilitate virus release (Evans &  

Almond, 1998).

1.6.1 Viral entry and uncoating

The interaction w ith the receptor ultimately must result in the release o f the genome into 

the cytoplasm o f the cell. Studies using poliovirus have shown that the interaction between 

the canyon region o f the poliovirus particle and the PVR causes a conformational change 

in the virion. The virus particle, upon interaction w ith the cellular receptor, extrudes VP4 

and the N-term ini o f VP1, that are located in the interior o f  the virion, near the 5-fo ld  axis 

o f symmetry (Hogle, 2002).

A model for poliovirus entry has been proposed where the myristylated VP4 and the N- 

termini o f VP1 become embedded w ithin the plasma membrane. In this model proposed by 

Belnap et al (Belnap et al., 2000) symmetrical expansion results in the alteration o f the 

location o f VP3 w ith in the particle. The viral genome is extruded from the particle through 

the transmembrane pore formed through these conformational changes (Figure 1.7). 

Research into the uncoating abilities o f mutants o f VP4 by Danthi et al has recently 

provided supporting evidence for this model (Danthi et al., 2003). W hilst poliovirus has no 

requirement for receptor-mediated endocytosis to mediate cell entry (Perez &  Carrasco, 

1993), receptor-mediated endocytosis has been demonstrated to occur in several rhinovirus 

serotypes (Nurani et al., 2003, Schober et al., 1998).

The conformational changes that occur follow ing the virus-receptor interaction can be 

monitored by changes in the sedimentation coefficient o f the particles. The poliovirus 

virion, which has a sedimentation coefficient o f 160 S, shows a reduced sedimentation 

coefficient after undergoing conformational change (135 S). The 135 S particle is more 

commonly referred to as the A  particle. The empty particle that sloughs o ff  from the cell 

follow ing release o f genomic RNA has a sedimentation coefficient o f 80S. The uncoating 

procedure is not efficient, it is estimated that between 50-90% o f all attached particles are 

eluted or sloughed o ff  abortively. As a consequence o f this, picornaviruses are 

characterised by a high particle:infectivity ratio.



membrane membrane

135S PORE

Figure 1.7. A possible mechanism for uncoating of poliovirus RNA
Taken from Belnap et al., 2000.
VP2, VP3, and VP4 are colored cyan, yellow, red, and green, 
respectively. In the crystal structure o f the v irion (upper right), the beta- 
tube o f VP3 (red) forms a plug at the fivefo ld axis that separates the virus 
interior from the outer surface. Attachment o f  the 160S particle (upper 
left) to the poliovirus receptor (three gray circles) triggers conversion to 
the 135S form (lower left). Upon conversion, cell attachment is mediated 
by externalized VP4 (green tubes) and the N termini o f  VP1 (blue tubes). 
The N term ini emerge from the bottom o f the canyon and extend along 
the sides o f the fivefo ld mesa towards the apex. Once the N-terminal 
helices o f VP1 have inserted into the membrane, they rearrange to form a 
pore (lower right). To permit the RNA (purple tube) to pass through the 
pore into the cytoplasm, it would be necessary for the VP3 beta-tube (red 
rectangle) to shift on its 40-residue tether (red tube) and for the VP1 
barrels to splay farther apart.



Inga Dry______________________ Introduction

1.7 Genome translation

Chapter 1 13

Upon infection the uncapped picornavirus genome is directly used for translation. The use 

o f a cap independent pathway for translation was first described in picornaviruses in 1988 

(Pelletier et ah, 1988, Pelletier &  Sonenberg, 1988). Since this time the use o f 

cap-independent pathways has been described in other RNA viruses (hepaciviruses and 

pestiviruses), cellular RNAs and the coding regions o f some retroviruses.

1.7.1 IRES

The ability o f picornavirus genomes to bind the ribosomal subunits in the absence o f a cap 

structure resides in the presence at the 5’UTR o f a complex cis-acting element called the 

internal ribosome entry site (IRES).

The IRES element is a highly ordered structure o f approximately 450 nucleotides in length 

that directs the assembly o f the ribosomes close to the initiation codon. The IRES’s o f the 

Picornaviridae can be roughly subdivided into three groups on the basis o f biochemical 

analyses. The entero- and rhionovirus genera show a type I IRES, whilst the aphtho-and 

cardiovirus genera contain a type II IRES. The IRES o f hepatitis A  virus is distinct and is 

referred to as a type III IRES. Despite biochemical and phylogenetic differences it has 

been shown recently that all picornaviruses IRES’s are morphologically similar when 

analysed using transmission electron microscopy (Beales et ah, 2003).

The type I IRES consists o f six domains numbered I to VI. The structure predicted to form 

(Figure 1.8A) has been supported by chemical and enzymatic analysis. Mutational analysis 

o f the poliovirus IRES has demonstrated that domains II, IV  and V are essential for 

translation. In contrast, domain I II  can be removed in its entirety without any deleterious 

effect on translation (D ild ine &  Semler, 1989, Nicholson et ah, 1991, Pilipenko et ah, 

1989b). Indeed BEV strains, which have a type I IRES, do not contain domain III.



Type II

Motif BMotif A

lAUG

Motif A(PV)

S  Loop C
Motif B

Lm— i-------

Figure. 1. 8 Schematic representation o f the predicted secondary structure o f 
type I and type II  viral IRESes. Taken from Kean, 2003. Cartoons are shown 
o f the entero/rhinovirus (type I) and cardio/aphthovirus (type II) IRESes. 
Letters or roman numerals identify individual domains. Grey rectangles 
represent pyrim idine-rich sequences and the in itiation codons used are shown 
for each type o f IRES. Arrows designate conserved motifs: A  = GNRA 
tetraloop (GYGA for PV); B and C=C-rich loops (AAC C A and AA AC C A for 
PV). An attenuating mutation in the vaccine strains o f each PV serotype lies 
with in the grey oval. A  star highlights a large lateral bulge-loop 
(UCGUAACGCGCAAG for PV type 1).
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The consensus structure o f the type II IRES (Figure 1.8B) typified by EM CV and FM DV 

consists o f twelve stem-loops that have been termed domain A-L. This consensus structure 

has been confirmed using mutational analysis, chemical and enzymatic probing (Jang &  

Wimmer, 1990, Pilipenko et al., 1989a). Mutational analysis has shown the critical 

elements o f the EM CV type II IRES to be I and J and the single-strand loops in the J and K 

domains. The IRES o f parechovirus though classified as a type II IRES has no requirement 

for domain H and L.

Despite the differences in structure between the IRES a number o f common structural 

features are shared between the type I, II and III IRES elements. The IRES elements all 

contain an Yn-Xm -AU G  m otif at the 5’UTR boundary (Pilipenko et al., 1992a). In this 

m o tif the Yn is a pyrim idine rich region and Xm is a spacer o f 15-25 nt. Analysis o f this 

m o tif has shown that the number o f residues in the pyrim idine rich region and the length o f 

the spacer region appear to be more important than the precise sequence (Jang &  Wimmer, 

1990). Both the type I and type II IRES’s contain a GNRA tetraloop and A/C rich regions. 

No specific function has yet been identified for the motifs though it has been postulated 

that the GNRA tetraloop mediates protein /RNA interactions. It has also been suggested 

that the A/C rich region, in the type I IRES, may form a pseudoknot (Le et al., 1992). In 

addition to these common structural motifs a sim ilarity exists, in the relative position o f the 

structure to the AU G  and the secondary structure o f the remainder o f the IRES, between 

domain V o f the type I IRES and the Y shaped domain o f the type II IRES. Nearly all the 

mutations affecting the structure o f domain V abrogate translation (D ildine et al., 1991, 

Haller &  Semler, 1992, Kuge &  Nomoto, 1987, Pelletier et ah, 1988).

In the majority o f  picornaviruses, host cell translation is shut-off by the virus through the 

cleavage o f the cap binding protein, eIF4E, from eIF4G. This cleavage is mediated by the 

viral protease, 2A  (Krausslich et al., 1987) or, the functional analog o f 2A, the L protease. 

The cellular in itiation factors, except eIF4E, but including the cleaved form o f eIF4G 

appear to be an essential requirement for the initiation o f translation at the IRES (reviewed 

in Belsham &  Sonenberg, 2000, Pestova et al., 1996). In addition the picornavirus IRES 

appears to require additional cellular proteins, not generally associated w ith translation, for 

efficient translation. The requirement for these non-canonical in itiation factors differs 

between IRES groups and appears to have some effect w ith respect to determining cellular



Cellular protein Virus Binding site within 
IRES

References

La autoantigen Coxasickie B3 (Ray &  Das, 2002)

La autoantigen ?V Domain V I
(MIeerovitch et al., 

1993), (Meerovitch et 
al., 1989)

La autoantigen EMCV

PTB EMCV
(Jang &  Wimmer, 1990, 
Kaminski et al., 1995)

PTB PV

Unr RAV (G raff et al., 1998)

Unr HRV (Hunt et al., 1999)

Unrip HRV

PCBP2 PV
Stemloop B o f 
cloverleaf and 

Domain IV  o f IRES

(Blyn et al., 1997) 
(Parsley et al., 1997)

eIF4G FV Domain V o f IRES (Ochs et al., 2003)

eIF4G EMCV Domain J-K-L (Ochs et al., 2003)

eIF4G FMDV Domain IV (Ochs et al., 2003)

eIF4B PV Domain V and 
Domain V I

(Ochs et al., 2002)

eIF4A FMDV Domain IV (Ochs et al., 2002)

eIF4A EMCV Domain J-K-L (Ochs et al., 2002)

Table 1.5 TWins-activating cellular proteins required for IRES function.
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tropism and viral pathogenicity. Poliovirus appears to have more complex demands for 

non-canonical factors than the type II IRES o f foot and mouth disease (FM DV) and 

encephalomyocarditis (EMCV). The requirement for non-canonical translation factors in 

IRES mediated translation amongst the Picornaviridae is summarized in Table 1.5. Due to 

the complexity o f the requirements that appear to be necessary for the trans-activation o f 

the IRES the way these proteins interact w ith the IRES has not been fu lly  deduced. The 

pattern o f binding o f the required cellular factors is much more defined for the EMCV and 

FM DV, which appear to have substantially lower requirements.

The ability o f the IRES to interact with cellular factors appears to be a major determinant 

o f neurovirulance. Analysis o f the reversions o f the Sabin 3 strain identified a reversion at 

nt 472, o f a uridine residue to a cytosine, that could be demonstrated to restore 

neurovirulence (Evans et al., 1985). The presence o f a uridine at nt 472 was demonstrated 

to cause a 10-fold reduction in translation in neuroblastoma cells, though translation levels 

o f the same strain were comparable with wildtype levels in HeLa cells (Svitkin et al.,

1985). Recently this mutation has been demonstrated to abrogate the binding o f the 

canonical initiation factor eIF4G (Ochs et al., 2003). Mutational experiments have also 

demonstrated that mutation o f PTB binding sites also selectively reduces translation and 

replication efficiencies o f poliovirus in neuronal cells but not in HeLa cells (Gutierrez et 

al., 1997). This effect is mediated by the reduced binding o f the neuronal PTB isoform 

compared with the ability o f cellular PTB form to bind the mutated structures.
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1.8 Processing determinants and Cleavage products

The translated genome produces a large polyprotein ranging in length from 2,178 amino 

acid (aa) residues to 2,332 aa residues. The full-length polyprotein is seldom detected 

w ithin infected cells as cleavage o f the protein occurs co-translationally.

The picornavirus polyprotein can be divided into 3 regions, designated P I, P2 and P3 

based on function. The PI region corresponds to the capsid protein precursor, the middle 

region o f the polyprotein, designated P2, contains the non-structural proteins 2A-2C, which 

are predominantly involved in alteration o f the cellular architecture. The most C-terminal 

section o f the polyprotein, designated P3, encodes the non-structural proteins 3A-3Dpoi that 

are all involved in RNA synthesis.

Initial cleavage o f the polyprotein (Figure 1.9) mediated by 2A proat the PI - 2A junction 

results in the separation o f the structural (P I) and non-structural proteins (P23) (Toyoda et 

al., 1986). In entero-and rhinoviruses this cleavage is proteolytic. In aptho- and 

cardioviruses 2A this cleavage is not proteolytic and has been proposed to occur via a 

novel translational skip mechanism at the carboxy-terminus (Donnelly et al., 2001b) 

(Donnelly et al., 2001a).

Further processing o f the P23 ORF, by 3Cpro and 3CDpro, results in the production o f 

numerous intermediate and mature viral proteins that are required for a complete infectious 

cycle (Figure 1.10).



Figure 1.9 Primary processing o f the picornavirus polyprotein. In cells 
infected w ith enteroviruses and rhinoviruses, the PI region is cleaved from P2 
by 2A pro. In cells infected w ith cardiovirus and apthoviruses the P1/P2 
junction is cleaved by 3Cpro. The 2A protein o f cardioviruses and apthoviruses 
are not proteinases, but cause their own cleavage by a novel “ translational 
skip”  mechanism (Donnelly et al., 2001). In all viruses shown the P2/P3 
junction is cleaved by 3Cpr0 . In hepatoviruses and parechoviruses, 3Cproalso 
carries out the primary cleavage at the 2A/2B junction. The L pr0 proteinase 
autocatalytically releases itse lf from VP4. Unless otherwise stated the 
schematics are labelled according to the diagram o f the entero- and rhinovirus 
polyprotein. Cleavages carried out by 3Cpr0 are shown by a straight arrow.
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Figure 1.10. Secondary processing event o f the poliovirus poly protein

Secondary cleavages carried out by 3CDproare marked w ith a *. Alternative 
secondary cleavage carried out by 2Aproto generate 3C’ and 3D ’ is marked w ith 
a blue sphere. Cleavages carried out by 3Cproare marked w ith a black arrow. In 
other picornaviruses, the secondary processing all secondary cleavages are 
mediated by 3Cpro
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As previously outlined, upon release into the cytoplasm the viral RNA is translated and 

processed cotranslationally by viral proteases. Prior to processing, myristic acid is 

covalently linked to the N-terminus o f the polypeptide (Chow et ah, 1987). The presence 

o f myristic acid covalently linked to the N-terminal glycine is required for the assembly o f 

pentamers (14S subunit), an intermediate in the process o f v irion assembly (Figure 1.11). 

The covalent attachment o f myristic acid to the N-terminal glycine requires the removal o f 

a methionine residue from the polyprotein o f entero- and rhinoviruses and the removal o f 

the leader peptide among cardio- and aphthoviruses (Chow et ah, 1987, Paul et al., 1987).

The m yristoyl-P l precursor is released from the polyprotein co-translationally by the 

mechanisms outlined previously in section 1.7. V irion assembly is controlled by the 

cleavage o f the m yristoyl-P l polypeptide to myristiyl-VPO, VP1 and VP3. M yristoyl-P l 

cleavage is slow during the early stages o f infection as the levels o f  the m yristoyl-P l
pro

precursor and the viral protein 3CD that processes the precursor are low. As the 

m yristoyl-P l precursor is cleaved, the structural proteins produced from the cleavage, 

myristoyl-VPO, VP3 and VP1 spontaneously aggregate to form a protomer (sedimentation 

coefficient o f 5S). The aggregation o f five protomer units results in the formation o f a 

pentamer structure. The pentamer structure is often referred to as the 14S subunit. 

Association o f twelve pentameric subunits results in the formation o f capsids containing 60 

copies each o f myristyl-VPO, VP3 and VP1. This process o f viral assembly is illustrated in 

figure 1.11. Research carried out by Verlinden et al using a cell-free system suggests that 

the pentamers are the key intermediate in the encapsidation o f poliovirus RNA (Verlinden 

et al., 2000). As a consequence, in the model shown in figure 1.9 the encapsidation o f the 

viral RNA is shown to occur by association w ith the pentamer subunits during the 

formation o f the capsid. However it has also been suggested that the viral RNA is 

encapsidated into preformed capsids. Whatever the exact mechanism o f encapsidation o f 

RNA it is known from studies that encapsidation is specific for viral genomic RNA and 

requires de novo synthesis o f the genome (Barclay et al., 1998, M olla et al., 1991, M olla et 

al., 1993).
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x l2r
RNA genome

Figure 1.11 Model o f particle assembly
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Maturation o f the virus particle is required for the virus to become infectious. Maturation 

requires the cleavage o f myristoyl-VPO to yield myristoyl-VP4 and VP2. The cleavage is 

believed to be autocatalytic and the subsequent protein rearrangement results in the 

formation o f a more stable particle.

1.8.2 Nonstructural proteins

A ll non-structural proteins, have some role in RNA synthesis - only 2A is not resident in 

the membrane replication complexes that are the site o f RNA synthesis in vivo (Girard &  

Baltimore, 1967).

1.8.3 2A

Despite a high level o f conservation amongst the various genomes o f the Picornaviridae 

the region encoding the viral 2A protein is the most divergent region o f the genome.

In entero- and rhinoviruses 2A pruis an endopeptidase that belongs to the serine protease 

family. 2Apro is unusual among the serine protease fam ily as the catalytic triad that makes 

up the protease’ s active site contains a cysteine residue rather than a serine. This has been 

confirmed by the crystal structure o f HRV2 2A protease (Petersen et al., 1999) and site- 

directed mutagenesis studies (Yu &  Lloyd, 1992). In poliovirus 2A pm can cleave 3CD in an 

alternative pathway to generate 3C’ and 3D’ (Hanecak et al., 1982). The function o f 3C’ 

and 3D ' proteins remains unclear, as at least in tissue culture, the 3C73D’ cleavage site 

can be mutated without affecting the ability o f the virus to propagate itse lf efficiently (Lee 

&  Wimmer, 1988).

Aside from processing the P1/2A junction and the alternative cleavage o f 3CDpr0, 2Ap'°is 

an important determinant o f cell viability. Expression o f 2Api°o r the cardiovirus 2A in 

cells alone leads to cell death (referenced with in Aminev et al., 2003). As a protease 2Apro 

is responsible for the cleavage o f eIF4G, a component o f the translation factor eIF-4F 

(Krausslich et al., 1987, Lamphear et al., 1995, Lamphear et al., 1993, Ventoso et al.,

1998). The initiation factor eIF-4F comprises eIF-4E, which is responsible for the 

recognition o f the 7-methylguanosine-cap structure, eIF-4A an RNA helicase and eIF4G 

which functions as a bridge between the mRNA and the ribosome (Gingras et al., 1999).
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Figure 1.12 Eukaryotic closed-loop model o f translation initiation.
Taken from Kean, 2003. Schematic representation o f the role o f eIF4G and the 
eIF4F holoenzyme complex in 40S ribosomal subunit recruitment on a capped 
polyadenylated cellular mRNA. The eIF4F complex interacts w ith both the 
capped 5' end o f the RNA (black spot; via eIF4E) and the poly(A ) tail (via 
PABP), and recruits 40S subunits via its association w ith eIF3. Stabilisation o f 
this complex results from the simultaneous interaction o f eIF4B with ribosomal 
RNA, mRNA and eIF3. For simplicity, other proteins described to intereract with 
eIF4G have been omitted.



Inga Dry______________________ Introduction____________________Chapter 1 19

Two isoforms o f eIF4G exist: eIF4GI and eIF4GII. Cleavage o f the eIF4G isoforms 

prevents the recruitment o f the methylguanosine-capped RNA to the ribosomes by 

preventing the interaction between eIF4E and eIF4G occurring (Ventoso et al., 1998). The 

cleavage o f eIF4G leads to a significant decrease in the ability o f  the host to synthesize its 

own proteins and enables the virus to take over the cellular translational machinery for its 

own ends. The “ shu t-o ff’ o f host-cell translation by the cleavage o f  eIF4G by 2Apro, 

supplemented by cleavages o f other cellular proteins carried out by 2Apro and 3Cpr0, means 

the virus is the only possible winner in the outcome o f the infection o f the cell. The 

cleavage o f eIF4G by 2A pro in poliovirus-infected cells occurs rapidly post-infection. Gradi 

et al have suggested that it is the cleavage o f the eIF4GII which coincides w ith the shut-off 

o f host cell synthesis in picornavirus-infected cells and not cleavage o f eIF4GI (Gradi et 

al., 1998).

Translation o f the cellular mRNA may be further inhibited by the cleavage o f poly-A 

binding protein (PABP). PABP interacts w ith the eIF4F complex during translation and it 

has been postulated that this enhances the translation o f cellular mRNA through the 

formation o f a circular structure (Figure 1.12) that allows ribosomes to reinitiate protein 

synthesis rapidly on the same mRNA (reviewed in Kean, 2003). PABP has been shown to
pro pro

be cleaved by both 2A and 3C in vitro. However i f  PABP cleavage contributes to the 

down regulation o f host-cell mRNA translation it does so via a mechanism other than the 

disruption o f the circular structure. Joachims and others have shown that the cleavage sites 

o f both 2A pro and 3Cpro map to the C-terminal region o f PABP (Joachims et al., 1999, 

Kerekatte et al., 1999). The domain o f PABP which is known to bind eIF4G is however 

located w ith in  the N-term inal region.

Expression o f 2Apro in COS-1 cells showed that, in addition to cap-mediated translation, 

cellular transcription was also inhibited (Davies et al., 1991). Inhibition o f transcription by 

the 2A protease may be mediated by cleavage o f cellular proteins. In addition to cleavage 

mediated by 3Cpro the TATA-binding protein (TBP) is targeted for cleavage by 2Apro 

(Joachims et al., 1999, Yalamanchili et al., 1997a, Yalamanchili et al., 1996). A ll cellular 

RNA polymerases are positioned at the promoter by a transcription factor complex 

containing TBP. Cleavage o f TBP by 2Apro only removes the N-terminal residues o f the
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protein. It is known that this cleavage does not prevent the RNA polymerase II from 

initiating transcription but it may have a role in the down-regulation o f transcripts from 

RNA polymerase I and III promoters.

Research into coxsackievirus B3 has implicated 2Apmas a probable mechanism or 

contributing factor in the medical condition dilated cardiomyopathy. Badorff et al have

p r °  . • i  i
demonstrated using in vitro and in vivo studies that 2A cleaves two sites w ith in the

pro
cytoskeleton protein dystrophin. The cleavage by 2A o f dystrophin separates the 

N-terminal actin-binding site from the rod domain and the C-terminal p-dystroglycan 

binding domain and in doing so disrupts the interaction that occurs naturally between the 

internal cytoskeleton and the external basement membrane (Badorff et al., 2000).

The contribution o f 2A pro to virulence has also been observed in swine vesicular disease 

virus (SVDV). Virulent strains o f SVDV cause clinical symptoms indistinguishable from 

FM DV though antigenically and genetically it is more closely related to coxsackievirus B5 

(Zhang et al., 1999). Sakoda et al have shown that the virulence o f the virus maps to a 

single residue in 2A pro adjacent to the catalytic triad (His21, Asp39 and Cysl 10). In non- 

pathogenic strains o f the virus an isoleucine (lie) residue is located at position 20 o f 2Apro. 

In virulent strains this residue is an arginine (Arg). A comparative analysis o f the virulent 

and avirulent strains o f SVDV in vitro and in vivo showed that the 2Api° containing a lie 

residue at position 20 was significantly less effective at inducing cleavage o f eIF4G and 

stimulating IRES-mediated translation in trans than 2Apro containing an Arg residue at 

position 20. However no difference in the efficiency o f cleavage o f the VP 1/2A junction 

was seen between the proteins. Sakoda et al engineered an Arg residue at position 20 o f 

2Apro into the cDNA o f an avirulent strain o f the virus and reported that the phenotype 

associated w ith the virulent strains o f the virus i.e. efficient cleavage o f eIF4G and trans- 

activation o f the viral IRES was restored (Sakoda et al., 2001).

In the cardio- and aphthoviruses genera 2A does not have proteolytic function. In 

aphthoviruses functions associated with the 2Apro proteolytic cleavage o f eIF4G are 

replaced by the Leader (L) protease. This is not the case in cardioviruses, which contain an 

L protein which is proteolytically inactive. Recently Aminev et al have shown that the



Inga Dry______________________Introduction ____________  Chapter 1 21

cardiovirus 2A, in contrast to the 2Apro encoded by poliovirus, is localised to the nucleus. 

Aminev et al showed that deletions, which prevented nuclear localisation, resulted in a 

reduction in the effectiveness in which 2A shut-o ff host-cell protein synthesis. Aminev et 

al have proposed a model based on their observation that ribosomal RNA synthesis is up 

regulated in cells expressing the cardiovirus 2A and previous observations that the 

cardioviral 2A is found in association w ith ribosomes. In the proposed model the 

cardioviral 2A protein is incorporated into the ribosome structure during the assembly o f 

the ribosome. When exported to the cytoplasm these modified ribosomes preferentially 

translate viral RNA over host-cell mRNA in a process directed by the 2A protein (Aminev 

et al., 2003).

1.8.4 2B, 2C and 2BC

The final cleavage products o f the P2 region o f the genome are 2Apr0, 2B and 2C. The 

cleavage cascade also results in the formation o f the stable intermediate protein 2BC.

Using electron microscopy it has been determined that 2B, 2C and 2BC are all membrane- 

associated w ith in  cells (Bienz et al., 1987, Bienz et al., 1990). 2B, 2C and 2BC have all 

been implicated w ith the changes to the cellular architecture that are associated w ith 

infection o f cells by picornaviruses.

Picornavirus 2B is approximately 100 amino acids in length. Two hydrophobic regions o f 

the protein have been identified. Both hydrophobic regions (PV3 residues W TSTITE KLL 

KN LIK IIS SLV 1ITG 55 and PV3 residues 6ITTTV LA TLA LLG C D V S P W Q W L81) are 

believed to span the membrane bi-layer (reviewed in Nieva et al., 2003). Experiments 

using the yeast and mammalian -two hybrid systems implied that 2B was capable o f 

oligomerisation (Cuconati et al., 1998b, de Jong et al., 2002). Recent research using 

isolated unilamellar vesicles in vitro showed that oligomerisation o f 2B occurred only in 

the presence o f membranes (Nieva et al., 2003). The oligomeric structure proposed for 2B 

(Figure 1.13) is a hairpin ‘a-loop-a’ m otif (Agirre et al., 2002, van Kuppeveld et al., 

1997b). Support for this structure arises from two observations. Firstly, Van Kuppenveld et 

al showed that both hydrophobic domains are required to increase membrane permeability 

(van Kuppeveld et al., 1997a). Secondly, the structure proposed by Van Kuppeveld et al is 

structurally sim ilar to the membrane inserting domain o f the Bacillus thuringiensis Cryl A 

toxin (Masson et al., 1999). In the in vitro system expression o f 2B was shown to be able
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to cause the efflux o f small solutes (M W  660) at low protein to lip id ratios (Nieva et al., 

2003). The data provided by Nieva et al predicts that the functional oligomeric unit 

required to permeabilise the membrane is a tetramer. This is consistent w ith a role for 2B 

as a viroporin. The view that 2B is a viroporin was supported by earlier observations made 

by Van Kuppeveld et al that expression o f the CB3 2B protein was sufficient to induce the
2“hinflux into the cytoplasm o f Ca ions from ER-stores and extracellular sources (van 

Kuppeveld et al., 1997a). The ability o f 2B to increase the permeability o f the cells was 

also observed using the poliovirus 2B protein in a study by Doedens and Kirkegaard 

(Doedens &  Kirkegaard, 1995). In terms o f the virus lifecycle Van Kuppeveld et al have 

shown that coxsackievirus requires a functional 2B protein to allow the efficient release o f 

the progeny virus (van Kuppeveld et al., 1997a). In this sense, the function o f 2B protein 

appears to be sim ilar to that o f the influenza M2 protein and the togavirus 6K protein 

(Liljestrom et al., 1991, Ruigrok et al., 1991). A model for how 2B mediates the effective 

release o f virus progeny from the cell is shown in figure 1.14.

Expression o f 2B has been associated w ith the inhibition o f protein secretion (Doedens &  

Kirkegaard, 1995) and the disassembly o f the Golgi complex (Sandoval &  Carrasco,

1997). Sandoval and Carresco propose that 2B, through an interaction w ith the Golgi 

membrane, promotes fusion o f the Golgi with the ER. This fusion is responsible for the 

swelling o f the ER observed in poliovirus cells, and results in the accumulation o f 

glycoproteins in the ER (Sandoval &  Carrasco, 1997). Previous mutagenic studies 

investigating the function o f 2B have shown that in addition to these functions 2B may also 

function in virus replication (van Kuppeveld et al., 1996a, van Kuppeveld et al., 1996b, 

Vankuppeveld et al., 1995).

The ability o f mutations in 2B to abolish RNA synthesis may relate to the function o f the 

intermediate proteins: 2BC or 2BCP3. Expression o f 2BC alone has been shown to result 

in cellular changes sim ilar to those produced in virus-infected cells (Aldabe &  Carrasco, 

1995, Cho et al., 1994, Suhy et al., 2000). However it has been demonstrated that vesicles 

produced in this manner are unable to support viral RNA synthesis (Egger et al., 2000, 

Jurgens &  Flanegan, 2003). This w ill be discussed in more detail in section 1.10.1. The 

ability o f 2BC to induce vesicle formation has been demonstrated to occur independently 

o f the 2C NTPase activity (Cho et al., 1994). Instead it has been proposed that 2BC



Figure 1.13 Schematic models o f PV-1 2B membrane structures.
Taken from Nieva et al., 2003.In the integral hairpin, the amphipathic 32-55 
helix is shown with hydrophilic and hydrophobic sides in light gray and black, 
respectively, while the hydrophobic 61-81 helix is dark gray.
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Figure 1.14. ModeI fo r  the mobilization o f ER-stored Ca2+, the influx o f 
extracellular Ca2+ and the release o f virus progeny by protein 2B through 
the formation o f  membrane-embedded pores. Taken from Van Kuppeveld 
et al., 1997. Early events (up to 4 h p.i.) in the viral replicative cycle involve: 
(1) production o f protein 2B and insertion in the ER membrane, leading to a 
release o f Ca2+ and, as a consequence, opening o f capacitative Ca2+ entry 
channels; (2) transport o f 2B to the plasma membrane where it is inserted 
and causes in flux o f extracellular Ca2+; (3) induction o f the membranous 
vesicles by protein 2BC that are required for viral plus-strand RNA 
replication (possibly through the release o f ER-stored Ca2+). Late events 
(from 5 h p.i.) in the viral replicative cycle involve: (4) translation o f newly 
formed plus-strand RNAs yielding large numbers o f protein 2B; insertion o f 
these proteins in the ER membrane causes a rapid evacuation o f Ca2+ and 
gives rise to an increased capacitative Ca2+ entry; (5) collapse o f Ca2+ 
gradient maintained by the plasma membrane by massive insertion o f 2B 
proteins; (6) progressive increase in the size o f the pores formed by 2B 
causes disruption o f the membrane and results in the membrane lesions that 
allow virus release.
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induces vesicles by promoting the efflux o f Ca2+ ions from the ER Lumen (van Kuppeveld
2"b • • • 2+ •et al., 1997a). The ER membrane is stabilised by Ca“ binding protein-Ca ion-

94 - • •

phospholipid interactions. E fflux o f Ca ions from the ER leads to a reduction in 

membrane stability. Eventually the membrane w ill become significantly destabilised and 

collapse, resulting in the formation o f vesicles. Vesicularisation, occurring in this manner, 

is observed in cells treated w ith calcium ionaphores (Sambrook, 1990). However, the 

ability o f 2BC to induce vesicle formation must be enhanced by functions contributed by 

the 2C domain as expression o f 2B alone does not result in the same cellular 

rearrangements.

The 329 amino acid 2C protein is highly conserved amongst all picornaviruses but shares 

little  homology w ith cellular or viral proteins. The similarities that 2C does share w ith 

known proteins are two NTPase binding motifs (m o tif A  and B) and a series o f residues 

that have homology to the helicases o f SV40 T antigen and papillomavirus E l (m otif C) 

(Gorbalenya et al., 1990). Both the NTPase binding motifs and the helicase m o tif are 

located in the central region o f the protein (Figure 1.15). The first NTP binding m otif found 

in 2C contains the conserved A/GxxxxGKS/T (m o tif A ) that has been shown to bind the 

phosphate groups o f NTPs, while the second NTP binding m o tif found in 2C shares 

homology w ith NTPase binding m otif B (DD/E). M o tif C is found downstream o f m o tif B 

and though it is found in viral helicases the function o f this m o tif is currently unknown. 

Consistent w ith the proposed role for 2C as a viral helicase introduction o f mutations that 

abrogated the ability o f 2C to hydrolyse NTP abolished virus v iab ility  (Mirzayan &  

Wimmer, 1994a, Teterina et al., 1992). The requirement for NTPase activity for viral 

replication to occur has been confirmed by investigations into the action o f guanidine 

hydrochloride, a reversible inhibitor o f poliovirus replication, which has been 

demonstrated to inhibit the ATPase activity o f the 2C protein (Pfister &  Wimmer, 1999). 

However although the ability o f 2C to hydrolyse ATP and GTP can be demonstrated it has 

yet to be proved that 2C has helicase activity (Mirzayan &  Wimmer, 1994b, Rodriguez &  

Carrasco, 1993).

Expression o f 2C, independent o f the other non-structural proteins, is sufficient to cause 

membrane rearrangements. The ability o f 2C to rearrange the cellular membranes resides 

in the first 88 amino acids o f the protein (Teterina et al., 1997). In itia l binding studies have 

identified an amphipathic helix present at the N-terminus o f the 2C protein (amino acids 

18-35) that is important for the interaction between 2C and membranes (Paul et al., 1994b).
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A subsequent study has implied that the C-terminal residues (amino acids 252-329) may 

also be involved in the interaction o f 2C with the membrane (Teterina et al., 1997). In 

addition to the membrane binding domains, the 2C protein also contains two RNA-binding 

domains. These RNA-binding domains are located at the amino and carboxy-termini o f the 

2C protein (Rodriguez &  Carrasco, 1995). It has since been reported that both 2C and 2BC 

specifically bind to stemloop b o f the cloverleaf structure found at the 3’termini o f the 

negative-sense replication intermediate in both poliovirus (Banerjee et al., 2001) and HAV 

(Banerjee & Dasgupta, 2001). The importance o f this observation w ith respect to the 

mechanism o f RNA synthesis is not yet understood. The study o f temperature sensitive 

mutants o f 2C, and studies using replication inhibitors have also suggested that 2C has a 

role in uncoating (L i &  Baltimore, 1990) and encapsidation (Vance et al., 1997) o f the viral 

RNA.

A variety o f interactions between the proteins o f the P2 region (2C, 2B and 2BC) have 

been detected using the yeast-two hybrid (Cuconati et al., 1998b), mammalian two-hybrid 

systems (de Jong et al., 2002) and GST-pull down assays (Cuconati et al., 1998b) (Figure 

1.16). The contribution o f these interactions to the cytopathic effects observed in 

picornavirus-infected cells has not yet been quantified.

1.8.5 3A, 3B and 3AB

Like the proteins o f the P2 region, the non-structural proteins 3 A  and 3AB are found 

associated w ith cellular membranes in infected cells (and Datta &  Dasgupta, 1994, Semler 

et al., 1982). A  stretch o f 22 hydrophobic amino acids w ith in 3A  mediates the interaction 

o f both viral proteins w ith the cellular membrane (Towner et al., 1996). 3 A, in common 

w ith 2BC and 2B, has been shown to alter the membrane permeability o f the infected cell 

(Lama &  Carrasco, 1992). Furthermore, it has been demonstrated that expression o f 3A 

results in the down-regulation o f cellular immune responses. Expression o f poliovirus 

protein 3A has been demonstrated to reduce the amount o f interleukin-6, interleukin-8 and 

beta-interferon (Dodd et al., 2001) secreted from the host cell, during the course o f the 

viral infection (Doedens et al., 1997, Doedens &  Kirkegaard, 1995). The latter occurs due 

to inhib ition o f the ER to Golgi transport. A further consequence o f the down regulation o f 

ER-Golgi transport is the reduction o f MHC class I (Deitz et al., 2000) and the tumour 

necrosis factor (TNF) receptor (Neznanov et al., 2001) on the surface o f infected cells. It is 

known that the ability o f 3A  to down-regulate the ER-Golgi transport resides in the
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Figure 1.16. Map of P2 interactions

Double arrows indicate positive reciprocal interactions, whereas single 
arrows denote unidirectional interactions. Interactions detected only w ith a 
GST pull-down (Cuconati et al., 1998) and not in yeast (Cuconati et al., 
1998 or mammalian two-hybrid systems (de Jong et al. , 2002) are marked 
w ith a *. Interactions only detectable in a yeast two-hybrid system 
(Cuconati et al., 1998) are marked w ith a ?.
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N-terminal o f the protein (Neznanov et al., 2001), however it remains unclear whether the 

increase in membrane permeability and the down-regulation o f the immune system are 

linked or i f  these reflect two distinct functions o f 3A.

Recently evidence has been presented that a function o f 3 A  is required for the production 

o f genomic sense strands, though this same function is not required for negative-sense

strand synthesis. Although it is not yet understood what function o f 3A is required for 

positive strand synthesis, the research showed that 3A was not required for the templated 

addition o f uridylate residues to VPg, a process known to be specific for genomic RNA 

synthesis (Teterina et al., 2003).

3B is VPg (V irion Protein, genome) which is found covalently attached to the 5’ terminal 

o f the genome and anti-genome. In its uridylylated form (VPg-pUpU or VPg-poly U) VPg 

functions as a primer for the initiation o f negative and positive strand synthesis. In FMDV 

research has shown that viral proteins 3A and 3B have a role in determining host range 

(Pacheco et al., 2003).

The precursor to 3 A  and 3B, the intermediate protein 3AB, has a number o f functions 

independent o f those o f the final cleavage products. Biochemical data has shown that 3AB, 

by interaction w ith 3CDp,° and 3Dpo1, provides functional stimulation to these proteins. 

Interaction o f 3AB to 3CDpro stimulates both the binding specificity o f 3CDprofor the 

cloverleaf (in presence o f 3AB interaction occurs even in the presence o f 1000-fold excess 

o f tRNA) (Harris et al., 1994] (Xiang, 1995 #9483) and the self-cleavage o f 3CDpr°to the 

final cleavage products 3Cpm and 3Dpo1 (Molla et al., 1994, Xiang et al., 1995b). In 

addition, interaction o f 3AB w ith the viral polymerase has been demonstrated to stimulate 

the polymerisation activity o f the polymerase at low concentrations (Lama et al., 1994,

Paul et al., 1994a, Plotch &  Palant, 1995).
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3Cpro is the only protease to be conserved within all members o f the picornavirus fam ily 

and is responsible for the majority o f the cleavages in the poliovirus polyprotein. The 

picornavirus 3C proteases fall into two groups w ith the rhino- and enteroviruses forming a 

closely related group containing the catalytic triad Cys-147, His-40 and Glu-71. The 

catalytic mechanism o f the second group, which includes the aphtho-, cardio- and 

hepatoviruses remains unresolved.

The cleavages mediated by 3Cpro occur exclusively at G ln-G ly (Q-G) dipeptides. However 

not every Q-G residue in the viral polyprotein is cleaved by 3Cpro suggesting that other 

factors play a role in determining substrate specificity (Long et al., 1989, N ick lin  et al., 

1988). In addition to its role in processing the viral polyprotein 3Cprohas also been 

implicated in the cleavage o f a number o f cellular proteins. The cleavage, by 3Cpr0, o f the 

cellular transcription factors TFIIIC , Oct I, TBP and CREB results in the down regulation 

o f transcription from pol II and pol III promoters (Clark et al., 1993, Yalamanchili et al., 

1997a, Yalamanchili et al., 1996, Yalamanchili et al., 1997b). The inhibition o f 

transcription from these promoters is apparent 4 and 5 hours post-poliovirus infection 

respectively. In addition to direct cleavage o f the transcription factors TFIIIC , Oct I, TBP 

and CREB, evidence has also been obtained for the degradation o f the transcription factor 

and tumour suppressor p53 by 3Cpr0(Weidman et al., 2001). The degradation o f p53 is not 

mediated directly by 3Cprobut has instead been shown to require an unidentified cellular 

factor, a function which is inhibited by vaccinia virus infection (Weidman et al., 2001). 

Weidman et al postulate that the ability o f 3Cpmto mediate the degradation o f p53 is 

advantageous to the virus as it prevents the activation o f the apoptotic cellular response 

therefore ensuring the successful assembly and release o f progeny virus from the infected 

cell.

As well as having a role in down-regulation o f transcription, 3Cpro has been shown to 

cleave PABP, PTB and La auto-antigen. PABP is known to stimulate the translation o f 

poly-A tailed RNA. Research suggests 3Cpro cleavage o f La auto-antigen may result in its 

redistribution to cytoplasm from the nucleus where it is known to be involved in 

stimulating the IRES-mediated translation o f the viral genome (Shiroki et al., 1999). 

Cleavage o f PTB at multiple cleavage sites (A la-X -X -G ln/A la) by 3Cpi° results in the 

redistribution o f the cleaved fragment to the cytoplasm. A  recent report has shown that the
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cleaved fragments o f PTB can suppress the translation o f the viral genome. Back et al have 

proposed that this contributes to the “ molecular switch”  in the use o f the viral genome 

from translation to replication (Back et al., 2002).

3CDpro is a relatively stable intermediate protein responsible for cleavages in the viral 

polyprotein. Binding o f 3CDpro to the cloverleaf increases the a ffin ity  o f PCBP from the 

IRES to the cloverleaf. Given that replication and translation cannot occur at the same time 

Gamarnik and Andino have proposed a model in which this event acts as a molecular 

switch moving the role o f the genomic strand from translation to replication (Gamarnik &  

Andino, 1998). In entero- and rhinoviruses 3CDpro is also responsible for the processing o f 

the PI precursor (Jore et al., 1988, Ypma Wong et al., 1988).

3Dpo1 is the 52 kDa RNA-dependent RNA polymerase (RdRp) encoded by the 

picornaviruses. 3Dpo1 is discussed in more detail in section 4.1.1 to section 4.1.1.4. Briefly, 

3Dpo1 is responsible for the covalent addition o f two uridylate residues to the viral protein 

VPg. The addition o f two uridylate residues, termed uridylylation, o f VPg to form 

VPg-pUpU enables VPg to function as a primer for the in itiation o f negative- and positive 

strand synthesis. 3Dpo1 is also responsible for the template-dependent elongation o f VPg- 

pUpU to synthesise full-length positive and negative-sense strands.
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A ll known RNA viruses encode RNA-dependent RNA polymerases (RdRp) that mediate 

genomic replication. In RNA viruses with a positive-sense single-stranded RNA genome 

replication is initiated only after the synthesis o f the viral replication proteins.

Infection o f a cell by all characterised RNA viruses is associated w ith intracellular 

alterations, in particular the formation o f membrane vesicles and/or membrane 

rearrangements. The replication o f all characterised positive-stranded RNA viruses occurs 

on intracellular membrane structures, termed the replication complex. These replication 

complexes are derived from specific intracellular membranes, for example alphaviruses 

use endosomal and lysosomal membranes (Kaarianinen &  Ahola, 2002) and nodaviruses 

use mitochondrial membranes (M ille r et al., 2001).

The use o f membranous replication complexes is believed to provide RNA viruses with 

three important functions. Firstly, the formation o f a membrane structure localises and 

concentrates the proteins required for replication and assembly. Secondly, the membrane 

complex has been shown to protect the RNA genome w ith in from degradation (Ahlquist, 

2002). Lastly, it has been suggested that the replication complex hides the presence o f 

double-stranded (ds) RNA and by doing so prevents or reduces the level o f activation o f 

dsRNA-induced host immune responses, like the double-stranded RNA induced protein 

kinase R (PKR) response and RNA silencing (Ahlquist, 2002).



Figure 1.17 Electron micrograph o f an isolated replication complex, 
called a rosette. Bar, 0.1 pm (Bienz et al., 1990)
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In vitro, the poliovirus polymerase is able to copy artific ia l templates. However, in vivo 

only the virus genome is replicated. It is therefore clear that the viral RNA possesses 

signals that allow the polymerase to differentiate the viral RNA from cellular RNAs. A 

number o f cA-acting RNA elements have been identified in the genome o f the 

picornaviruses, both internally and at the genomic termini.

1.9.2.1 Cloverleaf

The first 100 nucleotides o f the 5’UTR forms a cloverleaf structure (Figure 1.18). A  very 

sim ilar structure has also been identified HRV 2 and HRV14 w ith sequence conservation 

o f 70% (Xiang et al., 1995b). Protein binding studies have demonstrated that the 

5’cloverleaf binds 3CDpr0, the uncleaved precursor o f  3Cproand the viral polymerase 3Dpro, 

to stem loop d and a cellular protein PCBP binds to stem loop b to form a ternary 

ribonucleoprotein complex. Experimental evidence has shown that mutations affecting the 

structure o f the 5' cloverleaf or the binding domain o f 3CDpr0, so disrupting the formation 

o f the ternary ribonucleoprotein complex, result in replication deficient phenotypes 

(Andino et al., 1990b, Andino et al., 1990c). It is now postulated that the 5' cloverleaf 

provides the "switch" mechanism between translation and replication by altering the 

preferential binding site o f PCBP 1 and 2 from domain IV  to stemloop b o f the cloverleaf. 

However, it has been estimated that the cellular concentrations o f PCBP are sufficiently 

high to allow binding to both sites simultaneously. Although this can be explained by the 

localisation o f picornavirus replication to membranous structures, it remains to be defined 

whether this is the sole mechanism o f a "switch" to replication. However, some form o f 

switch must occur as, the directional movement o f the ribosomes and polymerase along the 

template strand is incompatible with simultaneous replication and translation (Barton et al., 

1999).
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Figure 1.18 Structure o f the poliovirus type 3 Cloverleaf. Adapted from 
http://www.med.uni-jena.de/.../ picorna/pv3sab.html. Andino et al have 
demonstrated that a functional ribonucleoprotein complex formed around this 
structure, first proposed by Rivera et al (Rivera et al., 1988), is required for 
the initiation o f RNA synthesis (Andino et al., 1990, 1993).

http://www.med.uni-jena.de/.../
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A cA-acting replication element in the ORF o f the picornavirus polyprotein was in itia lly  

identified in HRV14 (McKnight &  Lemon, 1998). Subsequently sim ilar cA-acting 

replication elements have been identified in cardiovirus (Lobert et ah, 1999) and poliovirus 

(Goodfellow et ah, 2000a). The CRE o f poliovirus resides in the coding region o f 2C. In 

contrast the CRE o f HRV14 and cardiovirus are located in the region o f the polyprotein 

coding for the capsid proteins. The predicted structure o f these cis-acting replication 

elements is shown in figure 1.19. Goodfellow et al have recently shown using RNAase 

structural mapping that the terminal loop o f the PV CRE (Figure 1.19A) is larger and so is 

structurally similar to that o f HRV14 (shown here in Figure 1.19B) (Goodfellow et ah, 

2003a).

Despite the differences in positioning within the ORF, the Human rhinovirus and 

enterovirus cA-acting replication elements contain a conserved G X X X A A A X X X X X X A  

m otif (Yang et ah, 2002). Mutational analysis has shown that the first two A residues o f 

the “ A A A ”  sequence are critical for virus v iab ility  (Paul et ah, 2000, Rieder et ah, 2000). 

Paul et al have demonstrated using an in vitro system that these A  residues template the 

addition o f uridine residues to VPg. It has since demonstrated that this occurs by a 

“ slideback”  mechanism (Paul et ah, 2003). Figure 1.20 outlines the principle by which this 

templated addition occurs. V ira l protein 3CDpr0 binds to the CRE and by doing so increases 

the affin ity for the CRE by the VPg-3Dpo1 complex (step 1). A  uridylate residue (U) is 

covalently linked to the hydroxyl group o f VPg using the first A  residue as a template. The 

VPg-pU complex slides back and hydrogen bonds to the second A  nucleotide (step 2). A  

second U residue, once again templated by the first A  residue, is linked to the first U 

residue to form VPg-pUpU. Although VPg-pUpU is the primer used to initiate both 

positive and negative-sense RNA strands it has been demonstrated that VPg-pUpU 

synthesised from the CRE-templated addition o f uridylate residues to VPg is only used in 

the initiation o f positive strand synthesis (Goodfellow et al., 2003b, Morasco et al., 2003, 

Murray &  Barton, 2003).
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Figure 1.19 Structure o f CRE in different picornavirus genera
(A) PV3 CRE found at nt 4435 - 4495 o f the virus genome as described by 
Goodfellow et al (Goodfellow et al., 2000) (B) CRE structure o f 
E1RV14 found at nt 2318-2413 as described by M cKnight and Lemon 
(M cKnight and Lemon, 1998). (C) Structure o f the Theilers virus CRE 
found at nt 1568-1603 o f the virus genome Lobert et al (Lobert et al., 1999)
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In comparison w ith the 5’UTR o f poliovirus the 3 ’UTR has been comparatively little 

studied. As a consequence very little is known about the precise role o f the 3’UTR in 

picornavirus replication. Experiments carried out using viruses that lacked the complete 

3'UTR or contained a mutated 3’UTR have shown that these viruses were viable, albeit 

only weakly (Meredith et al., 1999, Todd et al., 1997). It would therefore appear that there 

is no obligatory requirement for the presence o f the 3’ UTR in tissue culture for the 

replication o f picornaviruses. However, the efficiency w ith  which replication occurs 

depends on its presence.

The 3'UTR o f all enteroviruses appears to fold into the same core structure consisting o f 

either two or three stem loop domains in which part o f  the poly A  tract is included 

(Pilipenko et al., 1992b) (Figure 1.21). Supporting evidence for this structure has been 

obtained by three independent studies using both thermodynamic (Jacobson &  Zuker,

1993, Melchers et al., 1997) and phylogenetic approaches (Pilipenko et al., 1992b). In 

contrast to the enteroviruses, the 3’UTR o f rhinoviruses consists o f a solitary stem-loop 

structure. Despite a lack o f sequence and structural conservation Rohll et al have 

demonstrated that the 3’UTR o f poliovirus type 3 is functionally interchangeable with that 

o f HRV14 (Rohll et al., 1995).

Two alternative structures have been proposed for the tertiary structures o f the 

enteroviruses. In the first model a classical pseudoknot is formed in which bases o f domain 

Y hydrogen bond w ith nucleotides located in the region o f  the genome encoding 3Dpo1. 

Alternatively, it has been proposed that the tertiary structure formed is the result o f a 

“ kissing interaction”  between the nucleotides o f domain X  and domain Y. Although 

experimental evidence is available that supports the existence o f  a pseudoknot (Jacobson &  

Zuker, 1993) the formation o f this structure is at odds w ith  other evidence. Mutational 

analysis suggests that both site directed mutations (Melchers et al., 1997) and insertions, o f 

up to 1000 nucleotides (Pierangeli et al., 1995, Rohll et al., 1995), used in such a way as to 

effectively prevent such a structure forming had no effect on the replication o f the virus. 

Further support for a “ kissing interaction”  at the 3 ’UTR has been provided by research 

using poliovirus and coxsackie B virus. In these studies, viruses containing mutations 

designed to disrupt the “ kissing interaction”  were demonstrated to be replication deficient 

(Mirmomeni et al., 1997, Pilipenko et al., 1996).
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Figure 1.21. Picornavirus 3 ’UTR’s.
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coxsackievirus B4 (D) is the 3’UTR o f HRV14.
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Furthermore, Mirmomeni et al demonstrated that all isolated phenotypic pseudorevertants 

contained mutations that restored the “ kissing interaction” . Thus, the bulk o f accumulated 

evidence appears to favour the formation o f a tertiary structure through a “ kissing 

interaction”  rather than pseudoknot formation (M irmomeni et ah, 1997).

Studies using poliovirus showed that chimeric poliovirus containing the 3'UTR o f either 

HAV or BEV replicated to significantly lower levels than those containing the 3'UTR o f 

either HRV14 or coxsackievirus B4 (Rohll et ah, 1995). This suggests perhaps that 

modulation o f the replication process may be due to interaction w ith cellular factors. A  

number o f cellular factors have been found to interact w ith the 3'UTR. These include p i 05, 

p68 and p45 for poliovirus (Waggoner &  Sarnow, 1998), p34-p36 for rhinoviruses (Roehl 

&  Semler, 1995) and p38, p45, p47, p84 and p i 10 for H A V  (Kusov et ah, 1996). O f all 

these proteins only p i 05 has been purified. Partial sequencing o f this protein has indicated 

that it is identical to nucleolin, a protein normally found in the nucleolus o f HeLa cells 

(Waggoner &  Sarnow, 1998). The biological significance o f this interaction and that o f the 

other cellular proteins is not fu lly  understood. However use o f a chimeric poliovirus 

replicon, containing a mengovirus IRES which allows efficient translation in the absence 

o f HeLa cell proteins, demonstrated a HeLa cell factor is required for RNA synthesis to 

proceed (Gamarnik &  Andino, 1996).
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In addition to the 3’UTR picornaviruses encode a poly A  tract at the 3’ end. Although the 

length o f poly A  tail is conserved w ithin genera, it is different between genera. Analysis o f 

poly U tails at the 5’ end o f the negative-sense strand o f replicative intermediates shows 

that they are o f sim ilar length and heterogeneity as the poly A  tail o f the genomic RNA. 

This indicates that the poly A tract is genetically encoded. Although the exact function o f 

the poly A tail is not understood it has been demonstrated in poliovirus that deletion o f the 

poly A  tail leads to a loss o f infectivity (Rohll et al., 1995, Sarnow, 1989). This has also 

been demonstrated in H A V  (Kusov &  GaussMuller, 1997) and encephalomyocarditis virus 

(Cui &  Porter, 1995) as well as in other positive strand viruses, such as, bamboo mosaic 

potexvirus (Tsai et al., 1999). While in HAV the poly A tail has been demonstrated to be 

part o f a recognition element for the viral replicase (Kusov &  GaussMuller, 1997) 

additional functions o f the poly A  tail, other than binding the protein primer, have yet to be 

shown in poliovirus.
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1.10 Models of poliovirus RNA replication

1.10.1 Model of minus strand synthesis

The first step in the replication o f the poliovirus genomic RNA is the formation o f a 

negative sense copy o f the viral genome. The initiation o f the negative sense copy, like the 

initiation o f positive-strand synthesis, requires the presence w ith in the cell o f the 

uridlylated version o f VPg. Recent literature has suggested that the VPg-pUpU that is 

synthesised from the CRE is not used for the initiation o f negative-sense RNA strands 

(Goodfellow et al., 2003b, Morasco et ah, 2003, Murray &  Barton, 2003). Although no 

definitive proof exists as yet, it has been suggested by more than one research group that 

the VPg-poly (U) could be used as a primer for initiation o f negative strands.

The proposed model for the formation o f the negative strand replication intermediate is 

illustrated in figure 1.22. The viral protein 3AB is shown inserted into the endoplasmic 

reticulum (ER). In accordance with the data obtained by Andino et al (Herold &  Andino, 

2001) the synthesis o f the negative-sense strand is shown to occur fo llow ing circularisation 

o f the viral genome. Circularisation o f the viral genome is believed to occur via a protein- 

protein bridge formed between two molecules o f 3CDpro. Follow ing circularisation o f the 

genomic RNA the poly (A) tail is in close proxim ity to VPg (3B). In the current model for 

the synthesis o f the negative-sense RNA strand VPg-poly (U) is required for initiation.

This is templated by the poly (A) tail in a reaction catalysed by the RdRp 3Dpo1. VPg-poly 

(U) is then elongated by the viral polymerase until a full-length negative-sense strand has 

been formed. The negative-sense strand is only found in virus-infected cells in the form o f 

a partially double-stranded or fu lly  double stranded molecule. The fu lly  double-stranded 

molecule is often described as the replication intermediate or RI genomic form.



Figure 1.22 Model o f negative strand synthesis (Not to scale)

3CDpro (green oval) and the cellular protein PCBP (purple oval) interact w ith each 
other and w ith  the 5’ cloverleaf structure to form a circular RNP complex. The 
binding o f the proteins and the circularisation o f the genome leads to the inhibition 
o f translation. The inhibition o f translation in itiation enables the virus to switch to 
replication. Translation continues only as long as ribosomes actively engaged in 
protein synthesis are maintained on the genome (A). Once the template RNA is 
cleared in itia tion o f RNA synthesis can occur. In the model 3AB,VPg (yellow 
sphere), 3A (red oval), is shown embedded in the ER membrane. The addition o f 
uridylate residues to VPg is templated for by the poly A  tail in a reaction catalysed 
by the viral polymerase 3Dpo1 (Blue sphere) (B) . Negative strand synthesis 
initiates through the elongation o f the VPg-poly U primer by 3Dpo1. The synthesis 
o f negative-sense RNA disrupts the circular structure o f the RNP (C).



o

kQ
Ooo

Q
00

Q_
CO
O
Q_

00
<oo

0
c
CO
I—
-Q
E
0

<oo

s

0
>

•M0
CD
0

z

0  "a (/) c 
c  0  
0

CO CO

= )
CL
3
CLI
CD

CL
>
D
C l

D
C li

O

0> 0 -n
■5 w cg I 5
£  “  »

Q.00
<
CL

<D
*

< QQ



Inga Dry_____________________ Introduction____________________Chapter 1 36

1.10.2 Model of plus-strand synthesis

The current model o f positive-sense strand synthesis in poliovirus is shown in figure 1.23. 

In the model proposed by Goodfellow et al and others, the CRE, throughout the duration o f 

negative-sense strand synthesis, templates the formation o f a pool o f  VPg-pUpU 

(Goodfellow et al., 2003b). Following synthesis o f VPg-pUpU on the CRE the protein is 

released from the template. This release is believed to occur due to a structural m o tif in the 

polymerase that prevents the addition o f further U residues to the VPg (Paul et al., 2003).

Following termination o f the negative-sense strand the viral RdRp can use the VPg-pUpU 

complexed w ith the 3’ termini o f the negative-sense strand as a primer to initiate the 

synthesis o f positive-sense strand. The mechanism by which the 3Dpol-VPg-pUpU complex 

is translocated to the 3 ’end o f the negative-sense strand is unknown. The synthesis o f 

genomic-sense strands w ithin a virus-infected cell occurs w ith  greater efficiency than that 

o f the negative-sense strands. Two features o f the current model o f positive-strand 

synthesis can be used to explain this bias. Firstly, in the replication complex the negative- 

sense strand is only ever found in a fully double-stranded (termed RF) or partially double­

stranded (known as RI) complex. As a result o f this, the only residues available for the 

CRE-templated VPg-pUpU primer to interact with are found at the 3 ’ termini o f the 

negative-sense strand. Secondly, in vitro it has been demonstrated that the formation o f 

VPg-pUpU by 3Dpo1 occurs relatively inefficiently when uridylylation is templated by poly 

A (Paul et al., 2003). In contrast, CRE-templated addition o f U residues by 3Dpo1 in vitro 

has been shown to be a relatively efficient process (Paul et al., 2003, Paul et al., 2000).

Following initiation o f positive-strand synthesis, unwinding o f the template by 3Dpo1 

ensures that the residues at the 3 Termini o f the RF template are free to interact w ith further 

polymerase-primer complexes. A large pool o f preformed primer would enable 3Dpo1 to 

rapidly initiate multiple rounds o f positive-strand synthesis on any one RF template. Thus, 

asymmetric replication, which results in a 50:1 bias towards genomic-strand synthesis 

(Jarvis &  Kirkegaard, 1992), occurs as a consequence o f differential rates o f initiation 

between positive- and negative-strands.



Figure 1.23 Model fo r  the synthesis o f positive-sense RNA 
strand

During negative-sense strand synthesis (dotted line) the CRE acts 
as a template for the production o f VPg-pUpU. The VPg-pUpU is 
retained w ith in  the replication complex (A). Following 
completion o f negative-sense synthesis the VPg-pUpU can 
associate w ith the terminal A A  residues at the 3’ end o f the 
negative sense strand (B). The viral polymerase (blue sphere) can 
elongate the VPg-pUpU thus initiating positive-strand synthesis.
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The information encoded by all RNA viruses is two-fold. A t the primary level the 

sequence acts as a message carrying all the information required for synthesis o f essential 

structural and non-structural virus protein to occur. However in RNA viruses the control o f 

protein expression, genomic replication and even packaging o f the progeny genomes 

resides in RNA secondary structure and RNA motifs.

The picornavirus fam ily provides the largest single grouping o f RNA viruses. Poliovirus, 

the prototype picornavirus, is arguably the best characterised o f all mammalian viruses.

The available information regarding the mechanism o f picornavirus replication has not 

changed significantly in ten years. However, the identification o f the CRE in HRV14 in the 

early 90’ s, has opened up the possibility that picornavirus genomes may contain further 

m -acting  replication elements that have yet to be identified. The overall aim o f this project 

was to further the current understanding o f picornavirus replication. Three approaches 

were used in this study o f picornavirus replication:

a) To identify the binding sites o f the non-structural proteins 2C, 3AB, 3CDpro and 

3Dpo1 w ith in the genome and anti-genome.

b) To investigate whether highly conserved regions o f the virus genome, which had 

been identified through the use o f suppression o f synonymous site variation (SSSV) 

analysis by a collaborator o f the laboratory, were o f functional significance in terms 

o f picornavirus replication.

c) Previous research in the laboratory had identified a coding change (N 18Y) in the 

viral polymerase that compensated for deleterious changes in the 3’UTR (Meredith 

et al., 1999). It was hoped that characterisation o f the effects o f N18Y on the 

biochemical attributes o f the virus polymerase would provide further insight into 

the importance o f the 3’UTR in terms o f the efficiency o f picornavirus replication.
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The “ primordial soup”  hypothesis states that all life originated from self-replicating RNAs. 

This evolutionary view is supported by the available evidence which suggests that, despite 

occupying a diverse range o f niches, a basic replication strategy exists that is common to 

all RNA viruses. Thus, while the overall aim o f this project was to obtain valuable 

information regarding the mechanics o f picornavirus RNA synthesis, the information 

obtained, due to the common evolutionary origins o f all RNA viruses, provides a valuable 

insight into replication strategies that may be employed by less easily studied viruses like 

the human caliciviruses and HCV.



2 Identification of protein-RNA interactions using 

the Yeast three-Hybrid system

2.1 Introduction

RNA-protein interactions are fundamental to a number o f cellular processes including 

post-transcriptional regulation, translation and RNA stability. In addition, the targeted 

expression o f eukaryotic genes has been demonstrated to be important for the correct 

development o f Drosophila embryos, and morphogenesis o f the algae Acetahularia 

acetabulum occurs as a result o f interactions between RNA transcripts and specific cellular 

proteins (Edwards et al., 2001, also reviewed in Okita &  Choi, 2002). Amongst RNA 

viruses the specific interactions that occur between proteins, o f cellular and viral origin, 

and the viral RNA (including in certain viruses subgenomic niRNAs) are critical to the 

efficiency w ith which the virus can replicate. Indeed the ability o f the viral RNA to 

efficiently interact with cellular proteins has been shown to be a determinant o f cell 

tropism and virulence. Interruption o f protein-RNA interactions important for virus 

genomic replication provides one area for therapeutic drug development to explore.

Research over the past 20 years has elucidated the significance that RNA-protein 

interactions have for the successful replication o f the picornaviruses. It has been 

demonstrated that RNA-protein interactions modulate the use o f the viral genome between 

its functions as a template for translation or genomic amplification. It is also likely, though 

no encapsidation signal has yet been found, that an interaction between a viral protein and 

the positive-sense genome is required for the specific encapsidation o f the genomic RNA 

into the virus particle. While the binding sites for a number o f the cellular proteins 

involved in the translation o f the genome have been elucidated (see table 1.5) the 

interactions o f the individual viral proteins with the viral RNA has been less 

comprehensively documented.

Several techniques have been developed to facilitate the study o f a number o f RNA-protein 

interactions. These include phage display (Laird-Offringa &  Belasco, 1995) and methods 

o f in vitro selection like SELEX (systemic evolution o f ligands by exponential enrichment) 

(Ellington &  Szostak, 1990, Tuerk &  Gold, 1990). SenGupta and colleagues have
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developed an in vivo yeast-based system to identify proteins that interact w ith RNA 

(SenGupta et al., 1996). This method is based on the observation that a number o f cellular 

transcription regulators are composed o f two domains, a D N A binding domain and an 

activation domain. Brent and Ptashne (Brent &  Ptashne, 1985)showed that the activation 

domain o f the yeast transcription factor GAL4 could be fused to the D N A binding domain 

o f the E.coli LexA transcription factor to create a functional transcriptional activator. 

Subsequent experiments by a number o f groups, (Ma &  Ptashne, 1988, Triezenberg et al., 

1988) demonstrated that the activation domain did not have to be part o f the same 

polypeptide as the DNA binding domain to reconstitute a functional transcriptional 

activator. Fields and Song subsequently demonstrated that this feature could be used to 

study the interactions between proteins, which are not transcription factors, i f  the potential 

interactors were expressed as chimeras with the D N A binding domain or the activation 

domain (Fields &  Song, 1989). The method developed by Fields and Song, termed the 

yeast two-hybrid system, utilised yeast genetics to allow the ability o f  the yeast to 

synthesise amino-acids to function as a reporter gene alongside the more conventional 

reporter gene p-galactosidase.

The yeast three-hybrid screening method, developed by SenGupta et al is an extension o f 

the yeast two-hybrid system to allow the study o f protein-RNA interactions. It consists o f 

three (fusion) constructs that interact to reconstitute the transcriptional activator. The first 

o f these fusion proteins is constitutively expressed in Saccharomyces cerevisiae 

(iS.cerevisiae) strain R40coat. In the system that was utilised in this study the fusion protein 

consists o f a fusion between a GAL4 binding domain (G AL4BD ) and the bacteriophage 

MS2 coat protein. The second hybrid construct in the system is often referred to as the 

“ bait”  hybrid as it contains a fusion o f the 19nt RNA hairpin that has been shown to 

interact directly w ith the bacteriophage MS2 coat protein, and the RNA o f interest.

The third hybrid construct, termed the “ prey”  allows for the fusion o f the activation 

domain o f GAL4 in-frame with a known or unknown protein o f interest that is believed to 

interact w ith the expressed RNA. It is only when the RNA expressed as a fusion w ith MS2 

interacts w ith the “ prey”  protein that the GAL4 activation domain (GAL4 AD) can interact 

w ith the GAL4 BD thereby releasing the repression o f reporter genes that are under the 

control o f a GAL4 promoter (Figure 2.1 A). The regulatory regions for the reporter gene 

lacZ and the auxotrophic marker histidine contain a number o f copies o f the GAL4 binding 

site that act as upstream activation sequences (UAS) in yeast.
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Traditionally the yeast three-hybrid system is used to “ fish”  for proteins that interact with 

an RNA sequence o f known importance. This approach has been used successfully to 

identify cellular proteins that interact specifically w ith sequences and structures identified 

in mRNAs and viral RNAs. However, the yeast three-hybrid can also be used to “ fish”  for 

RNA that interacts w ith a protein o f interest. Although not used as frequently the use o f the 

yeast three-hybrid system as a technique to identify RNA has been successfully employed 

by groups researching in the fields o f virology (Kang et al., 1999, Sokolowski et al., 2003) 

and cellular biology (Edwards et al., 2001, Sengupta et al., 1999).The work documented in 

this chapter explores this approach as a method to identify putative cA-acting replication 

elements w ith in the genome o f poliovirus type 3.

Previously it had been demonstrated that the PI region o f the poliovirus genome could be 

deleted without affecting the ability o f the virus to replicate (Percy et al., 1992) so the 

investigation concentrated on examining the P2 and P3 regions o f the genome. To do this a 

cDNA library was created that would be representative o f the entire P2 and P3 regions o f 

the viral genome. The library consisted o f 50-250 bases o f cDNA fused with a cDNA o f 

the 19nt MS2 hairpin. The 50-250 base cDNA fragments were generated by restriction 

enzyme digestion. The viral proteins 2C, 3AB, 3CDpro and the viral polymerase (3Dpo1) that 

have already been characterised as having important roles in viral replication were used to 

“ fish”  the cDNA library to identify RNA sequences that specifically bound the viral 

proteins. Subsequent mutational analysis would be used to confirm a role for any RNA 

sequences retrieved from the cDNA library as cA-acting replication elements. Any 

subsequent analysis would also hopefully shed light on the exact function the retrieved 

RNA sequence influences and consequently improve the current understanding o f the 

mechanics o f poliovirus replication.



Figure 2.1 Illustration o f the principle behind the yeast three-hybrid 
system.
The yeast- three hybrid system consists o f three constitutive parts a bait 
protein containing a transcriptional binding domain (blue domain) fused to 
the MS2 coat protein (mauve). An RNA expressed as a fusion w ith the 
MS2 packaging signal, and lastly a prey protein containing a fusion o f a 
protein o f interest (purple) w ith a transcriptional activator (blue domain). I f  
the RNA and protein interact (2.1 A) transcriptional repression is relieved 
and the reporter gene is expressed. Transcriptional repression is not 
relieved i f  the protein and RNA fail to interact (2. IB ).
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2.2 Creating a cDNA library

2.2.1 plllA/MS2-1

The hybrid RNA functions w ithin the yeast three-hybrid system to lock the RNA to be 

screened onto the promoter binding protein. The interaction between the bacteriophage 

MS2 hairpin and coat protein is the most commonly used RNA-protein interaction to 

accomplish this. This is primarily because the bacteriophage MS2 coat protein and its 

binding partner interact w ith high affin ity (Lowary &  Uhlenbeck, 1987).

The plasmid p IIIA /M S 2-l (Figure 2.2) is an expression vector containing a cDNA used to 

produce the hybrid RNA following transformation into S. cerevisiae The RNA is 

transcribed in large quantities (up to 1300 copies per cell) from the RNAase P promoter 

present in the plasmid by RNA polymerase III (reviewed by Bernstein et al., 2002). The 

RNA produced contains 5’ and 3’ sequences derived from RNAase P and two MS2 coat 

protein binding sites (Figure 2.3A). The introduction o f two MS2 coat protein binding sites 

into the hybrid RNA utilises the known ability o f the MS2 coat protein to bind 

cooperatively to adjacent MS2 binding sites to strengthen the interaction between the 

hybrid RNA and the promoter binding hybrid protein. RNA sequences to be screened using 

the yeast three-hybrid system can be cloned into the cDNA using either the Sma I or the 

Sph I site. This orientates the RNA o f interest downstream or upstream, respectively, o f the 

tw in MS2 coat protein binding sites.

The plasmid p IIIA /M S 2-l also contains the genes URA3 and ADE2 the gene products o f 

which enable selection o f yeast maintaining the plasmid on uracil deficient and adenine 

deficient medium respectively. The presence o f the ADE2 gene on the cDNA is o f 

particular importance as selection on adenine deficient media provides a useful 

colorimetric method to identify false positives. In the absence o f adenine, S. cerevisiae 

R40coat strain attempts to synthesise adenine in a de novo manner, which results in the 

accumulation o f a red metabolite. Flowever, in cells capable o f synthesising the ADE2 

gene product no accumulation o f the red metabolite occurs and the cells remain white in 

colour.
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Figure 2.3 Schematic structure of hybrid RNAs expressed from the cDNA p IIIA/MS2-1 upon 
transformation into S.cerevisiae strain R40coat The hybrid RNAs are transcribed by RNA 
polymerase I I I  from an RNAase P promoter. The hybrid RNA (A) maintains the 5 ’ stemloop structure 
and the 3’ end of the RNAase P RNA (thin lines). The internal region of the RNAase P RNA has been 
removed and two MS2 coat protein binding sites have been introduced (bold black line). Both of 
the MS2 coat protein binding sites contain a mutation (star) known to enhance the 
RNA-protein interaction (Lowary and Uhlenbeck,1987). An example of a hybrid RNA is shown 
in schematic B. This shows the RNA of interest, in this case the cloverleaf (bold blue line), fused 
downstream of the MS2 sites.
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A cell that can activate the HIS3 gene independently o f  the RNA plasmid w ill “ lose” 

p IIIA /M S 2-l during the course o f replication. In colonies that have lost p IIIA /M S 2-l a red 

colour w ill appear as the adenine in the media becomes lim iting.

2.2.2 Generation of cDNA fragments

To identify novel viral protein-RNA interactions involved in viral replication, using the 

yeast three-hybrid system, a cDNA library was created. As it had been well documented 

that the sequences encoding the capsid proteins could be removed without affecting 

poliovirus replication these sequences were excluded from the cDNA library.

The decision to exclude the sequences o f the structural proteins from the cDNA library to 

be screened meant that the sequences o f the non-structural proteins could be derived from 

cD N A ’s o f subgenomic replicons available w ithin the laboratory. pT7FLC/Rep is a 

subgenomic replicon that was constructed from the poliovirus type 3 Leon strain. In 

pT7FLC/Rep VP4, VP2 and the amino terminus o f VP3 have been deleted and replaced by 

the CAT gene, in-frame with the rest o f the viral genome. M onitoring o f the production o f 

CAT by enzymatic assay follow ing transfection o f RNA, transcribed from pT7FLC/Rep, 

into mammalian cells showed that the RNA was amplified fo llow ing transfection and 

could be packaged in trans by helper virus (Percy et al., 1992). The viral sequences used in 

the creation o f the cDNA library were obtained from a subgenomic replicon derived from 

pT7FLC/Rep called pT7FLC/Rep3. The only difference between pT7FLC/Rep3 and 

pT7FLC/Rep is that pT7FLC/Rep3 contains a larger deletion o f the PI region o f the 

genome (Barclay et al., 1998).

Analysis o f the sequence o f pT7FLC/Rep3 using the computer package Vector NTI 

identified three restriction enzymes that recognise a number o f sites distributed throughout 

the cDNA o f the viral genome. A ll three restriction enzymes, Rsa /, Alu I and Hae III, 

recognise four base palindromic sequences and leave a blunt-end fo llow ing restriction o f 

the sequence. Figure 2.4 shows the distribution o f the palindromic recognition sites o f each 

enzyme w ith in the plasmid pT7FLC/Rep3.
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Figure 2.4 shows that though the palindromic sequences recognised by each restriction 

enzyme are widely distributed throughout the genome relatively large fragments exist 

where, independently, no recognition sites are present. For example, the Vector NTI 

analysis o f the location o f the four base palindromic sequence recognised by Alu I (AGCT) 

identified a 1.2 kb fragment in the region o f the cDN A encoding the viral proteins 3A, 3B 

and 3Cpro which was resistant to digestion (Figure 2.4). However, the Vector NTI analysis 

o f the location o f the four base palindromic sequences recognised by Hae III (GGCC) and 

Rsa I (GTAC) showed the presence o f five and six recognition sequences w ith in this 

fragment respectively. The overlapping coverage between the three enzymes is such that 

complete restriction enzyme digestion o f the entire plasmid pT7FLC/Rep3, using an 

enzyme m ix containing Rsa /, Alu 1 and Hae III, identifies only four regions o f the genome 

where fragments larger than 200 bases in size are obtained. Two o f these lie within the 

cDNA encoding the viral proteins and generate fragments o f 222 and 247 bases in size 

respectively and two are located in the vector sequence (502 and 375 bases in size 

respectively). Overall, the average size o f fragment produced fo llow ing complete 

restriction enzyme digestion o f pT7FLC/Rep3 is 87 nucleotides in length, which is reduced 

to 77 bases i f  only the sequences corresponding to the viral cDNA are included for 

analysis.

It was important that the cDNA library represented every sequence and possible structure 

in the viral genome. The decision to create the cDNA library using a method o f partial 

restriction enzyme digestion was taken on the basis o f the information on fragment size 

provided by the computational analysis. Analysis o f the products o f complete restriction 

enzyme digestion using Vector NTI o f fragments derived from the cDNA o f the viral 

genome showed that a number o f fragments which would be generated were smaller than 

50 nucleotides in size. These sequences comprised 36% o f the total number o f cDNA 

fragments obtained from the viral genome and ranged from 6-49 bases in size with an 

average size o f 21 nucleotides. It was believed that a number o f these small fragments were 

too small to form secondary structures or be successfully purified from agarose follow ing 

complete digestion o f pT7FLC/Rep3. Adding further support to the decision to use a 

method o f partial restriction digestion to create the cDN A library was the observation that 

a number o f the small fragments were derived from the poliovirus 5’UTR which contains 

two well-characterised and essential cA-acting secondary structures: the IRES and the 

cloverleaf.
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The cloverleaf structure constitutes the first 100 nucleotides o f the vira l genome. Vector 

NTI analysis showed that the first 127 nucleotides o f the cDNA sequence contained two 

Alu I, one Hae III and three Rsa I recognition sites and that digesting the plasmid 

pT7FLC/Rep3 to completion using these enzymes would result in the production o f 

fragments o f 10, 26, 17, 16, 8 and 50 bases in size. These fragments are too small to 

generate the independent stem-loops that form the cloverleaf structure. This is important as 

an interaction between the viral protein 3CDproand the cloverleaf structure has been 

documented to be essential to the replication o f the virus (Andino et al., 1990a). The 

presence o f the cloverleaf in the cDNA library, either as a complete structural m o tif or as 

independent stem-loops structures, provides an important internal control for the yeast 

three-hybrid cDN A library screen.

The optimal fragment size for screening using the yeast three-hybrid is between 100-150 

bases in size. To ensure that every sequence was represented in the cD N A library the 

decision was made to optimise the generation o f cDNA fragments in the range o f 50-250 

bases. This decision was made so that the cDNA library would include the two fragments 

o f 222 and 247 bases that are not restricted by the three enzymes used to generate the 

cDNA library. It was decided to set the lower range o f fragments o f cD N A at 50 bases to 

ensure that every fragment o f cDNA in the library was capable o f form ing secondary 

structure. Optimisation o f the partial restriction enzyme digestion method to generate 

fragments ranging in size between 50-250 bases identified the optimal conditions as being 

30 minutes at 37° C using 0.1 U o f each enzyme in a final volume o f 50pl. An additional 

benefit o f using a partial restriction enzyme digestion method to create the cDNA library 

should be that each fragment generated is random in nature as it can not be pre-determined 

which sites recognised by the restriction enzymes w ill be cleaved during the digestion 

period.
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2.2.3 Construction of the cDNA library

The cDNA fragments were purified from agarose and ligated into the plasmid 

p IIIA /M S 2-l at the Sma I  (Figure 2.2) site thus fusing the cDNA fragment downstream o f 

the MS2 sites. This is illustrated schematically in figure 2.3 B. Prior to ligation w ith the 

purified cDNA fragments the linearised p IIIA /M S 2-l was treated w ith  1 U shrimp alkaline 

phosphatase for 1 hr at 37 °C to minimise the risk o f recovering religated p IIIA /M S 2-l 

fo llow ing transformation. The ligations were redigested w ith Sma I to further minimise the 

possibility o f recovering religated vector, purified and transformed into E.coli DH5a using 

standard electroporation conditions (see section 6.4.10.2). Transformed colonies were 

selected by growth on media containing ampicillin.

The genomic coverage that was required to ensure that the cDNA library was truly 

representative was calculated using the equation (Sambrook et al., 1989):

N= In (1-P) /  In (1-F)
F= median size of fragment/ total genome size
P= probability required
N=Number of independent clones required

Using the above equation it was calculated that the number o f independent clones in the 

cDNA library that were required to guarantee 99.99 % probability that the entire P2/P3 

region was represented w ith in the cDNA library from the partial restriction digest o f 

pT7/Rep3 was 635. The number o f independent colonies w ith in the cDN A library created 

by partial restriction digest was 2167.

Colony polymerase chain reaction (PCR) was used to identify the presence o f insert in a 

number o f independent clones in the cDNA library (Figure 2.5). A  number o f the amplified 

PCR products appear to be greater in size than 100-200 nt in length (marked by * in figure 

2.5). This can be explained in two ways. Firstly, more than one fragment may be ligated 

end-end in the cDNA or secondly it is DNA greater than 100-200 nt in size that has been 

carried through the purification procedure. Automatic sequencing o f the purified PCR 

product o f the seventeen clones, which generated a positive signal, using the forward
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oligonucleotide primer O-AB-61 (see Table 6.2 materials and methods) was carried out at 

the in-house facility.

The results o f the sequence analysis o f the seventeen cDNAs are shown in table 2.1. Table

2.1 shows that the sequences obtained from eleven o f the seventeen were derived from the 

poliovirus cDNA. The sequences obtained although few in number do offer some insight 

into the created cDNA library. The sequences o f the cDNA correspond to both the 

genomic-sense poliovirus RNA and the negative-sense replication intermediate. For 

instance, the sequence o f cDNA obtained from clones 2 and 4 shows that both these clones 

express a hybrid RNA corresponding to nucleotides 3648-3749 o f the PV3 genome. 

However cDNA 2 expresses the sequence in its genomic form whilst the hybrid RNA 

expresses by cDNA 4 is the anti-sense form o f the same sequence. This provides evidence 

that the cDNA library provides “ bait”  for interactions that the viral proteins may have with 

the negative-sense replication intermediate as well as interactions that may occur between 

the proteins and the genomic RNA. Secondly, the sequences corresponding to the 

poliovirus genome that were obtained cover almost the entire length o f the poliovirus 

genome. This level o f coverage suggests that the cDNA library should be representative o f 

the entire viral genome. Lastly, o f the seventeen cDNA sequenced two, cDNAs 1 and 18, 

express RNA o f the same region though not the same size. The RNA produced by cDNA 1 

covers nucleotides 4407-4510 o f the poliovirus genome, whilst the RNA expressed by 

cDNA 18 is much larger in size (nt 4158-4532). This sequence data informs that some 

fragments larger than 250 bases in size have come through the purification step in creating 

the library. More importantly, the presence o f cDNAs fragments w ith in the library that 

overlap smaller cDNA fragments o f the same region, should enable the identification o f the 

minimum protein-binding site o f the viral protein through the identification o f the smallest 

cDNA fragment that can be successfully retrieved by the viral protein.

Although sequencing o f 0.1% o f the cDNA is not statistically enough to determine that the 

library was random and nonbiased the sequencing o f the cDN A strongly suggests that the 

partial restriction digestion method has created a cDNA library that is random in nature 

and that the restriction enzymes have not biased the library towards particular regions o f 

the genome or the size o f cDNA fragments obtained.
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F ig u re  2.5 Colony Polymerase Chain Reaction of independent clones from  
the cDNA library.
PCR analysis of the cDNA library was used as a preliminary analysis of 
independent clones to confirm the presence of insert. PCR analysis was 
carried out using oligonucleotide primers MS2 leader and MS2 terminator 
that bind to the regions flanking the insert. The presence of insert was 
determined by comparing the PCR products of independent cDNA clones 
with a known positive control, pIIIaMS2-l2Ccre(+), and negative control 
pIIIaMS2-l (-). Independent clones that show the presence of insert are 
greater than 100-200 bases in size are marked with a *.



cDNA
number PV3 nt Orientation cDNA

number PV3 nt Orientation

1 4407-4510 Sense 13 Cloning
vector

2 3749-3648 Antisense 14 Cloning
vector

3 Cloning
vector

N /A 15 2431-2642 

+ Additional 

sequences

Antisense

N /A

4 3561-3749 Sense 16 1120-1105 Antisense

5 632-492 Antisense 17 318-372 Sense

6 18 4158-4532 Sense

7 6049-6008 Antisense 19 4295-4441 Sense

9 3940-3763 Antisense 20 6553-6407 Antisense

12 Cloning
vector

Table 2.1. Sequence analysis o f PCR products amplified from  
cDNA library. N /A, not applicable; no insert
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2.2.4 Identification of known RNA cis-acting replication elements 

in cDNA library

As a number o f cA-acting replication elements have been identified in the poliovirus 

genome it was important that these should be represented in the cDN A library (LibRe).

PCR was carried out using primers designed to am plify the cloverleaf, CRE and the 3’UTR 

(Materials and methods Table 6.2). To confirm that the primers did not bind in a non­

specific manner to the plasmid vector, p IIIA /M S 2-l was used as negative control for the 

PCR reaction. As a positive control for the PCR the replication signals were amplified 

from the subgenomic replicon pT7FLC/Rep3. A  second library (L ib o N A a s e )  that was 

constructed by Dr.I Goodfellow in the laboratory, by partial DNAase treatment was also 

tested by PCR for the presence o f the three known replication signals.

Conformation o f the presence o f the cloverleaf w ith in the cDNA library provides an 

internal control for the detection o f RNA elements by the viral protein 3CDpm. The 

cloverleaf was amplified using the forward primer O-AB-21 (for primer details see table

6.2 materials and methods) that binds to nucleotides 1-18 o f the poliovirus cloverleaf. 

Primer ID1 was used in conjunction with the reverse primer O-AB-31 that binds to 

nucleotides 89-106 o f the poliovirus cloverleaf. Figure 2.6A shows that the cloverleaf 

could be detected in both cDNA libraries using PCR.

The second cA-acting replication element that was analysed for its presence w ith in the 

cDNA libraries was the CRE. The CRE as amplified by the primers 2Css and 2Cas that 

have been documented previously (Goodfellow et al., 2000b). Figure 2.6B shows that 

using these primers the CRE could be shown to be present in both cDNA libraries.

Lastly it was decided to see i f  the poliovirus 3’UTR could be detected in either o f the 

cDNA libraries. The 3 ’UTR was amplified using the forward primer IG10 that binds to 

nucleotides 7208-7308 in conjunction with the reverse primer IG 11 that binds to 

nucleotides 7392-7308. Figure 2.6C shows that the 3’UTR could be detected in both 

cDNA libraries.

Figure 2.6 therefore confirms that all three o f the known replication signals are represented 

w ith in both cDNA libraries.
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Figure 2.6. PCR screening fo r the presence o f known CRE within the cDNA library.
PCR analysis was used to confirm the presence o f CRE within the cDNA library. The presence o f 
CRE was determined by comparing the PCR products o f the cDNA library with a known positive 
control, p T7FLC/REP3 (Percy et al., 1992) (+), and negative control pIIIaM S2-l (-). The PCR 
analysis showed the presence o f the cloverleaf (2 .6 A ), CRE (2.6.B) and 3’NTR (2.6C) within 
cDNA libraries made by partial restriction digest (libRE) and DNAase treatment (libDNAase).
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2.3 cDNA expressing viral non-structural proteins

The non-structural proteins that were used in this investigation were 2C, 3AB, 3CDproand 

3Dpo1. To express the viral non-structural proteins as fusions w ith  the GAL4 AD the 

coding sequences were fused in-frame with the coding sequence o f the G AL4AD  in the 

plasmid vector pA C TII (Figure 2.7).

The non-structural proteins 2C, 3AB and 3Dpo1 had been cloned into pACTII by 

Dr.I.Goodfellow. Previously, a coding change o f a histidine to an alanine residue at residue 

40 o f 3Cpr0 had been engineered into a cDNA o f 3CDpro that was available in the lab. This 

coding change renders 3Cpro proteolytically inactive (Hammerle et ah, 1991, Paul et ah, 

2000). This plasmid, pET3CDtl40A was used to obtain the sequences required to construct a 

G AL4A D /3CDH40a fusion.

3 C d 1,40a was preferred in this screen to allow identification o f RNA that was bound by 

3CDp'°and prevent identification o f RNA bound by 3Cpro alone. In addition the use 

3CDM40A would possibly result in a reduction in any toxic ity that may be associated with 

expressing a protein w ith proteinase activity w ithin S.cerevisiae.

The sequence o f 3CD1140A was amplified using the primers IG25 and IG26 (Materials and 

Methods Table 6.2). Following amplification the purified PCR product was digested w ith 

the restriction enzymes Not I and Bam HI. The PCR product and pACTII, which had been 

digested in a sim ilar way, were purified from agarose prior to being ligated together. The 

ligations were purified prior to transformation into E.coli DH5a. The presence o f insert 

was detected by digesting the cDNA recovered from the transformants w ith Not I and Bam 

HI. Plasmids positive for insert showed the presence o f an additional band o f 

approximately 2 kb in size in comparison to pACTII, which had been sim ilarly digested 

w ith Not I and Bam HI, when visualised by agarose gel electrophoresis.

The constructs used and the predicted molecular weights o f the fusion protein expressed 

from the plasmids are summarized in table 2.2.
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Figure 2.7  Yeast three hybrid vector map.

All constructs are cloned into the expression plasmid pACTII using the 
Nco 1/ BamHI restriction sites (A). Expression of the protein in 
S.cerevisiae generates an N-terminal fusion of the cloned protein with the 
Gal 4 activation domain (B).



cDNA

(Laboratory
identification
code)

V ira l protein 
expressed as fusion 
with G A L4  
activation domain

Functions associated with  
viral protein

Predicted 
Molecular weight 
of protein + 

G al4AD tag 
(19.1kDa)

pACTII2C 2C •ATPase 

•Encapsidation 

•Role in RNA synthesis 

•Membrane rearrangements

56.6 kDa

(37.5 kDa- 
Gal4AD tag)

pACTII3AB 3AB •Membrane association 

•Stimulation o f 3D and 3CD 

•Essential for RNA 
replication

31.2 kDa

(12.1kDa -  
Gal4AD tag)

pACTII3D Viral polymerase 

(3D)

•RNA synthesis 

•Polymerisation-dependent 
unwinding o f ds RNA 

•Uridylylation o f VPg 

•Interaction with Sam 68

71.4kDa

(52.4 kDa- 
Gal4AD tag)

pACTII3CDH40A 3CDH40A 

(Proteolytically 
inactive form o f the 
protein)

•Viral protein processing, 
•Formation o f RNP complex

91.2 kDa

(72.1kDa-Gal4AD
tag)

Table 2.2 cDNAs expressing viral protein- Gal4AD fusion used during 
yeast three-hybrid screen
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2.3.1 Expression of the viral proteins in S. cerevisiae R40

Expression o f foreign proteins within S. cerevisiae can result in morphological changes 

such as a small colony phenotype when the yeast cells are cultured on agar and slow 

growth in liquid culture. Any changes in the morphology are a consequence o f a feature o f 

the expressed protein that is toxic to the yeast. Previously it has been shown that the 

poliovirus non-structural proteins 2Apro and 2BC were toxic when expressed in yeast 

{S.cerevisiae) (Barco &  Carrasco, 1995, Barco et al., 1997). Barco and Carresco have 

demonstrated that the ability o f yeast expressing 2A pro to grow corresponds to the 

acquisition o f mutations which decrease the proteolytic activity and transactivation 

functions o f the expressed protein (Barco et al., 1997).

Transformation o f S. cerevisiae with the fusion protein constructs pA C T IB A B , 

pAC TII3C D H40A or pAC TII3D pul did not result in any obvious morphological changes that 

would correlate w ith the expression o f the proteins being toxic to the S. cerevisiae R40coat 

cells. Transformation o f S. cerevisiae R40coat w ith the fusion protein construct pACTII2C 

resulted in the slow growth o f the cells using both solid and liquid culture mediums. The 

slow growth o f the cells was observed phenotypically as small colony size when cultured 

on solid media. This is a classic phenotype o f yeast cells expressing a toxic product. The 

observation that 2C was toxic when expressed in yeast was unsurprising as it had been 

previously observed that 2BC was toxic to yeast cells (Barco &  Carrasco, 1995). The 

toxic ity o f both 2BC and 2C is likely to relate to their ab ility  to m odify cellular membranes 

(Cho et al., 1994).

To confirm that the poliovirus fusion proteins were expressed in S.cerevisiae R40 protein 

expression was determined by western blot analysis. Though the viral proteins are fused to 

the (19.1kD) G AL4 activation domain, the pACTII vector also contained an influenza 

haemagglutinin epitope, YPYDVPDYAG, (Figure 2.7), which was expressed as part o f the 

fusion protein. To detect expression the fusion proteins that has been immobilised onto a 

nitrocellulose membrane were probed with a mouse monoclonal antibody that had been 

raised to the haemagglutinin epitope, diluted 1:5000 in 4% m ilk  powder/PBS. The use o f 

an antibody raised to the haemagglutinin epitope to detect the immobilised protein enabled 

the same antibody to be used to detect the expression o f the different viral proteins. 

Follow ing washing w ith PBS/0.1% Tween 20, the blot was incubated w ith HRPO
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conjugated anti-mouse IgG (Pierce). The immunoreactive proteins were visualised after 

further washing using the Supersignal West chemiluminescent detection k it (Pierce).

Figure 2.8 shows that expression o f all the fusion proteins could be detected by western 

blotting. The inherent toxicity o f 2C raised the concern that expression o f the protein 

would result in the selection o f variants o f 2C that had been grossly truncated. Despite the 

obvious toxicity to the yeast cells expressing viral protein 2C, western blot analysis 

showed that the 2C was not apparently truncated by the yeast cells (Figure 2.8B). No 

further analysis was carried out to identify whether the 2C expressed by the yeast carried 

mutations that would abrogate any o f the protein functions.

The molecular weight o f the fusion protein o f 3AB and the G AL4A D  was predicted at

31.2 kDa. The molecular weight o f the fusion protein was calculated as the combined total 

o f the molecular weight o f the GAL4 AD tag, as provided by Clontech, and 3AB, as 

calculated by Pallansch et al (Pallansch et al., 1984). Unexpectedly the majority o f the 

antibody could be consistently shown to react w ith a protein that migrated at 

approximately 50kDa. A  faint band marked by a black arrow on figure 2.9C is localised to 

the predicted molecular weight. As no bands o f this size were obtained when probing the 

extracts o f S.cerevisiae transformed with cDNA expressing the other viral proteins (Figure 

2.8 A, C, D and E) this cannot be explained by antibody cross-reaction. One possible 

explanation for the observed increase o f the molecular weight o f 3AB could be due to its 

hydrophobic nature. W ithin virus-infected cells, 3AB is inserted into the membrane. It is 

possible that the higher molecular weight observed for this protein is the result o f an 

aggregate o f membrane or protein that was not disrupted by the boiling o f the sample prior 

to loading on the protein gel.

The molecular weights o f the fusions between the G AL4 AD  and the viral proteins 3Dpo1 

and 3CDH40A were predicted to be 71.5 and 91.2 kDa respectively. Western blot analysis 

(Figure 2.8D and E respectively) confirmed that both 3Dpo1 and 3CDH40A were expressed 

by S.cerevisiae. An additional band was detected when probing for 3CDII40A (Figure 2.8E). 

Further western blot analysis showed that this band was not always present suggesting that 

it is a product o f proteolytic degradation or mechanical shearing o f the protein that has 

occurred as a result o f the process used to obtain the yeast extracts.
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Figure 2.8 Western blot analysis o f yeast extracts

Expression of the Gal4 AD alone (AJ. Expression of fusion 
of Gal4AD and viral protein 2C (B). Expression of fusion 
of Gal4AD and viral protein 3AB (C ). Expression of 
Gal4AD fused with viral protein 3 0 ^ (0 )  and 3CDH40A 
(E). Expressed protein with the expected molecular weight 
for each fusion protein have been marked with a black 
arrow.
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2.4 Identification of a characterised viral protein-RNA 

interaction

Although expression o f the full-length fusion proteins in S. cerevisiae could be detected 

immunologically it was not known whether the yeast three-hybrid would be able to detect 

interactions w ith the viral RNA when it was expressed as a fusion.

One o f the best characterised protein/RNA interactions in poliovirus occurs between the 5’ 

terminal cloverleaf RNA structure and viral protein 3CDpr0. Using the yeast three-hybrid 

screening system interactions between protein and RNA can be identified in two ways both 

qualitatively by (3-galactosidase filte r-lift assay and quantitatively by liquid p-galactosidase 

assays. To confirm that the yeast three-hybrid system could be used successfully to 

distinguish positive viral protein/RNA interactions a P-galactosidase filte r lif t  assay was 

carried out using S. cerevisiae transformed with the fusion proteins and with a plasmid 

encoding only the MS2 hairpin RNA or a plasmid containing a fusion o f the MS2 hairpin 

RNA w ith the cloverleaf or CRE.

The p-galactosidase filte r lift  assay, shown in figure 2.9, demonstrates that the expression 

o f the 19nt MS2 hairpin was not enough to release the repression o f transcription from 

HIS3/ P-galactosidase promoter when it was expressed in conjunction with the viral 

proteins. The p-galactosidase filter lif t  assay did however detect a positive interaction 

between 3CD1I40A and the Als"cloverleaf. Figure 2.9 shows that no interaction was observed 

between any o f the other proteins and the cloverleaf.



Number Protein RNA Result

1 3CDH40A MS2Cloverleaf +

2 3CDH40a MS2
-

3 3AB MS2Cloverleaf -

4 2C MS2Cloverleaf -

5 3D MS2Cloverleaf -

6 AD MS2Cloverleaf -

7 AD MS2 -

8 3CDH40A MS2
-

Figure 2.9. Qualitative ft-Galactosidase filte r assay. The 
transformed S.cerevisiae were selected for by growth on media 
lacking leucine and uracil.
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3CDH40A/MS2Cloverleaf 3c d H40A/MS2 AD/MS2Cloverleaf

Viral protein/RNA interaction

Figure 2.10. Interactions o f 3CDH40A as determined by liquid p-galactosidase assay.

Each interaction was testes for p-galactosidase production in triplicate. Units of P- 
galactosidase were calculated as a mean of the three independent reactions. Error bars 
were calculated to show the range of p-galactosidase units produced between the 
independent samples.
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To investigate the strength o f the interaction between 3CDH40A and the MS2cloverleaf a 

liquid p-galactosidase assay was carried out using ONPG as the substrate. Because o f the 

quantitative nature o f liquid assays they can be used to compare the relative strength o f the 

interactions, though Estojak et al demonstrated that in the yeast two-hybrid system there 

was no direct correlation between (3-galactosidase and the kd o f an interaction (Estojak et 

al., 1995). A ll liquid assays were carried out using (9-nitrophenolgalactosidase (ONPG) as 

the substrate. The strength o f the interactions was calculated using the M ille r equation 

(M ille r, 1972).

To confirm that the yeast three-hybrid could discriminate clearly between the known 

interaction and additional RNAs, the liquid ONPG assay was carried out using S.cerevisiae 

that had been transformed with pACTII3CD1!40A and cD N A expressing one o f the 

N1s2cloverleaf or MS2CRE. The results o f the liquid p-galactosidase are displayed 

graphically in figure 2.10. These results show that the positive reaction is 12 times stronger 

than the negative controls.

2.5 Background activation of the (3-galactosidase 

promoter

3-aminotriazole (3-AT) is a competitive inhibitor o f the HIS3 gene product. To diminish 

the number o f false positives obtained during the library screen, concentrations o f 3-AT 

were titrated to reduce the background whilst permitting “ real”  positives to grow. Although 

typically 3-AT is used at a concentration o f 2-5mM it has previously been demonstrated 

that strong interactions can be detected on 25mM 3-AT (Bernstein et al., 2002, SenGupta 

et al., 1996).

To investigate the level o f background activation o f the reporter genes that occurred, a 

titration was carried out to detect the ability o f yeast transformed w ith the fusion protein 

expression vector and the “ empty”  RNA vector p IIIA /M S 2-l to grow on media containing 

3-AT. The growth o f yeast over a range o f OmM to 30mM 3-AT was assessed. The results 

are displayed in table 2.3.



Inga Dry Identification o f protein-RNA interactions using the yeast three-hybrid system Chapter 2 54

The ability o f the yeast expressing the viral proteins to activate the HIS3 reporter gene 

non-specifically correlates w ith the resistance o f S. cerevisiae to 3-AT. As a negative 

control the GAL4 activation domain (AD) and MS2 RNA were co-expressed in 

S. cerevisiae. As documented in table 2.3 no growth o f S. cerevisiae transformed with the 

GAL4 A D  and the MS2 RNA hairpin was observed at a concentration o f 3 mM 3-AT or 

higher.

Table 2.3 shows whilst yeast expressing a known positive, 3CDII40A and MS2Cloverleaf, 

were able to grow on agar containing a concentration o f 3-AT up to 30 mM , no other 

tested interaction was able to sustain growth successfully above a concentration o f 10 mM 

3-AT. In addition the resistance to the presence o f 3-AT in the growth medium, as 

displayed in table 2.3, correlates well w ith the known lack o f RNA-binding specificity o f 

the viral proteins 3AB and 3Dpo1 (Pata et ah, 1995, Xiang et al., 1995a).

On the basis o f the results o f the background activation test a concentration o f 5 mM 3-AT 

was used for cDNA library screens involving 3CDH40A and 3Dpo1 and a concentration o f 

7mM 3-AT was used in cDNA library screens using 3AB. In the absence o f any selection, 

expression o f 2C in S. cerevisiae is toxic and as a consequence the ability o f S. cerevisiae to 

grow over a range o f 3-AT concentrations was not investigated. When undertaking cDNA 

library screens using 2C a concentration o f 3 mM 3-AT was used to select for positive 

interactions.



of 3-AT(mM) 

Protein-RNA interaction

0 3 10 20 30

3C D"40A/MSi!cloverleaf +++ ++ ++ + +

G AL4AD/M S2 +++ - - - -

3CDH40A/MS2 +++ + - - -

3AB/MS2 +++ + + +/- -

3Dpol/MS2 +++ ++ - - -

Table 2.3 Sensitivity o f “false positives” to the inhibitor 3-A T. Transformed 

S.cerevisiae were selected for by growth on leucine and histidine deficient media. 

Growth was marked according to density (on a scale o f + to +++). No growth was 

marked w ith a dash.
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2.6 cDNA library screen

In itia lly  problems were encountered in obtaining a transformation efficiency high enough 

(10 M O 6 cfu/m l) to generate a truly representative cDNA library screen. However altering 

the method o f transformation o f the expression plasmids into S. cerevisiae from a method 

o f co-transformation to one o f sequential transformation did result in a significant increase
o r / -  . . .

in the transformation efficiency o f the cDNA library from 10 to 10 /10 cfu/ml. V iability  

o f the transformants as tested by growth on leucine-deficient media was calculated as 

being approximately 1 x 108 cfu/ml for cells expressing 3CDI140A, 3D po1 and 3AB and lx lO 7 

cfu/ml for cells expressing 2C.

Table 2.4 gives a list o f the transformation efficiencies obtained for the cDNA screens as 

determined by growth on uracil-deficient media. The transformation efficiencies given in 

table 2.4 are approximations based on colony counting. The potential for colonies to merge 

during the incubation period does attach a margin o f error to the calculated transformation 

efficiencies. Table 2.4 shows that the transformation efficiency for cDNA library screens 

using the proteins 3CD1!40A, 3Dpo1 and 3AB ranged from 4x 104 to 2x 106cfu/ml. In 

contrast, the transformation efficiency for cells expressing 2C was low, ranging between 1
4 . . .

and 3x 10 cfu/m l, presumably the low transformation efficiency was due to the toxic 

effects that 2C expression has on S. cerevisiae.

Following transformation o f S.cerevisiae expressing the AD  fusions, w ith the cDNA 

library, the S.cerevisiae were plated out on a media (Leu- His-) containing 3-AT, at 

pre-determined levels, that would select for protein-RNA interactions. The plates were 

incubated at 28 °C for seven days after which white colonies were picked and plated onto 

fresh selective media containing 3-AT. The colonies were allocated a number and the 

growth and colour o f  the colonies after 3-4 days was assessed. A t this stage the colonies 

could be split into two groups: the putative positives and RNA-independent colonies.

RNA-independent colonies are colonies o f yeast that can grow well in the absence o f 

histidine, the selection for interactions, but which have lost the cDNA that expresses the 

hybrid RNA. RNA-independent colonies, as has already been described, can be identified 

by a change in the colour phenotype o f the cells. Yeast cells that have maintained the RNA 

plasmid are white in colour while RNA-independent colonies are wholly pink/red in colour 

or contain pink segments.



Inga Dry Identification o f protein-RNA interactions using the yeast three-hybrid system Chapter 2 56

A common observation o f the cDNA screens conducted was that a significant drop o f the 

number o f white colonies would be seen follow ing replating. The most plausible 

explanation for this given that many o f these were small white colonies is that in areas 

where the 3-AT has been degraded, or is lower, the S.cerevisiae can begin to grow through.

The remaining white colonies that had come through screening were streaked onto leucine 

and uracil (Leu'Ura") deficient media. A  few more colonies did not survive the plating onto 

Leu' Ura'media suggesting that the colour-selection for RNA-independent activation o f the 

reporter gene is not absolute. Table 2.4 shows that (3-galactosidase activity was not 

detectable by quantitative analysis for the colonies that came through the screening 

procedure for the library versus the viral proteins 2C, 3AB and 3Dpo1. Figure 2.11 shows 

the result o f  one o f the qualitative p-galactosidase filte r- lift assays carried out over the 

course o f the cDN A  library screen.



Number Protein RNA Result

1 3CDH40a MS2Cloverleaf +

2 3CDH40A MS2
-

3 3CDH40A Unknown 1 -

4 3CDH40A Unknown 2 -

5 3CDH40a Unknown 3 -

6 3CDH40A Unknown 4 -

7 3CDH40a Unknown 5 -

8 3CE>H40a Unknown 6 -

Figure 2.11 Results of a qualitative p-galactosidase filter assay using 
S.cerevisiae recovered from a cDNA library screen. The transformed 
S.cerevisiae were selected for by growth on media lacking leucine and

uracil.
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2.7 Discussion of results

The yeast three-hybrid system (figure 2.1) has become an important tool in the study o f 

RNA-protein interactions. Much o f the work carried out using the yeast three-hybrid 

system has concentrated on the discovery or conformation o f proteins that bind a known 

RNA sequence. The work described in this chapter approaches the subject from an 

alternate angle. In this chapter the poliovirus replication proteins were used, in the context 

o f the yeast three-hybrid system, to try and identify RNA partners for poliovirus proteins.

As has previously been described, no RNA partners for the proteins were identified. This is 

intriguing as preparatory work showed that the cloverleaf c/s-acting replication element 

was present w ith in  both cDNA libraries. It is unlikely that this is due to the transformation 

efficiency reported in this study (Table 2.4) being too low  to detect a positive interaction. 

Table 2.5 shows data derived from the published literature. Table 2.5 shows that the 

transformation efficiencies reported in this study at least for the viral proteins 3D po1 and 

3CDH40A are in accordance with those published.

It is possible that the reason that no positive interactions were identified was because the 

fusion protein was misfolded. Although no investigation was carried out to confirm that the 

fusion proteins, 2C, 3AB, 3Dpul and 3CDH40A were correctly folded, results that were 

obtained suggested that the viral proteins were not grossly altered in their structural form. 

Firstly, preparatory work showed that the construction o f the fusion protein and the hybrid 

RNA did not alter the structures o f 3CDH40A and N,S2cloverleaf significantly as the known 

protein-RNA interaction could be detected. Secondly, upon transformation o f the cDNA 

from which the viral protein 2C was expressed the transformed S. cerevisiae showed a 

distinct phenotypic change that suggested that 2C was toxic to the yeast cells. As 2C is 

known to cause rearrangement o f intracellular membranes it is like ly that the toxicity 

observed in yeast cells transformed with the 2C expression plasmid is a consequence o f 2C 

being functionally active in the context o f the fusion protein.



^  ^ 0 ^ 0 ) + 
CM ^  _J CO —  +

0
(/>
«
T3
</)
O■*-<
O
05

0
>

0
D> (/) 

O 
CO. Q.

C
0

"D </)
C 0  "5
S ^ ™ £^  Q- . 0

<  ® « o  2
z  ?  °  c  o
0£ .E  Q- CD (/)

I

S +
£  ~'r. <d -
0  <4-1 I
c/> ■ - i !

On

NO

«3
~c2

cd
'a

ON in
n

m
NO

£  3
C _ 0  h-
0  O i_

°  E -D O iJ
»- *- 0  **- 
0  O c  ^  ro
E c  S
^  S o 8 -g  S4Z  £: co >x > "O

oo
o

NO
moo

£
0L.

_Q

C
0

■*->o1—
CL

1/1o
-TO

w"io
’—1 X X
X <N <N
— m ro

X

in

X
NO
CM

tr
Q
Uro

8
<
Z
Q

X)
X

I
Q
Uro

UJ
Cg

X
X

CQ
<ro

<
Z
Q

X
X

~Q
<rn

UJeg
X
X

X
x

£<
z
Q

X
X

u
(N

©N.
cl

*3

>3
3
s*.•■»»

•»»
"S
Ci,

QNj
N.

-a.
3

v.
O

>
<N

-Si
-3

(2



R
el

ev
an

t 
In 

vi
vo

n i CM i

P
os

iti
ve

in
te

ra
ct

or
s

■'3- CM

R
N

A
de

pe
nd

en
t

i
O

ON i

P- ga
la

ct
os

id
as

e
po

si
tiv

e
6

6

t3" I 1
2

0

m
CM 1

0
0

W
hi

te

6
6

^3-

0009

i 49 40
0

Tr
an

sf
or

m
an

ts

sO
O

X
CM

O

X
m

I/-*o
X

m

o
X

m

in
O

X
in

o
O

X
CM

R
N

A

A
sh

l 
3’

U
T

R
H

is
to

ne
 

S
L

HC
V 

3’
X

In
flu

en
za

 
N

P
As

h 
E3

T.
cr

uz
i 

S
L

T3a
o3

CMOO
CM

■i—«<U
v-T<u
=3
CQ

c
’C
co
e
S-.<u
OQ
£o

c,
o

'5b<us-
T3 <U ■*—> 03
175

T3 ®<u
Qh J

-oo3
coo3
£

CM

—X3C3
H
t*5

2
et:

H
D

<u
o)-la,o

j j
CJ3

Z
CU
2

>
u

03O,<D
SS
>
U
K

COCO

< (U 
5 J  iZ, Ju X) 
^ -O
% < 
b  d?3V.
»C>

<uJ-H<u

'n
<N

*C ,<L) 5.
£  £



Inga Dry Identification o f protein-RNA interactions using the yeast three-hybrid system Chapter 2 58

No interaction between 3AB or 3Dpo1 and the viral RNA has been as well characterised as 

the interaction that occurs between 3CDH40A and the cloverleaf. In addition the expression 

o f 3AB and 3Dpoi by S.cerevisiae was not accompanied w ith phenotypic changes, 

consequently determining that these proteins are functional in the context o f the fusion 

protein is d ifficu lt. Direct evidence for the correct functioning o f the 3Dpol-fusion could be 

tested, by assessing the ability o f the purified fusion protein to catalyse the uridylylation o f 

VPg and the polymerisation ability o f the polymerase using the documented in vitro 

assays. However, this requires the expression and purification o f large quantities o f the 

protein in yeast. Direct evidence for the correct folding o f the multifunctional protein 3 AB 

with in the context o f the fusion protein would be easier to obtain. Function could be 

determined by confirm ing its known association w ith cellular membranes and interactions 

w ith 3CDP'° and 3Dpo1. Additionally, the ability o f 3AB to alter membrane permeability 

could be exploited to determine the functionality o f the 3AB-fusion. None o f these 

approaches were followed as the results o f the background activation test using 3-AT 

provided evidence that the 3Dpo1 and 3AB-fusion proteins retained RNA-binding activity. 

Non-specific RNA-binding activity is a known characteristic o f both 3Dpo1 and 3AB and so 

this provides indirect evidence that both these proteins are folded into a structurally 

functional conformation. The western blot analysis carried out to confirm expression o f the 

fusion proteins in S. cerevisiae provided further indirect evidence that 3AB was folded in 

the correct conformation as it clearly suggested the 3AB-fusion was capable o f forming a 

higher order complex, a characteristic associated w ith functional 3AB.

The identification o f RNA binding activity for 3AB, 3D po1 and 3CDH40A and the toxic 

effect o f 2C suggests that the reason that no RNA binding partners were identified was not 

due to the abolition o f function o f the proteins, due to a gross structural change. One 

consequence o f expressing the viral proteins as a fusion is that the fusion GAL4 activation 

domain may be positioned structurally to block the RNA binding domain o f the protein 

partially or completely. Figures 2.9 and 2.10 show that the RNA binding domain o f 

3 CDH4°a i s not blocked as the interaction between 3CD1140A and the MS2cloverleaf can be 

detected indirectly through assaying for (3-galactosidase activity. No positive test could be 

carried out for the other proteins though the titration o f 3-AT showed that 3AB and 3Dpo1 

showed non-specific RNA binding activity.

One possible lim itation o f the yeast three-hybrid system arises from the observation that 

optimal reporter gene activity is obtained when the hybrid RNA contains inserts o f
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between 50 and 200 nucleotides in length. Table 2.6 displays the length o f RNA sequences 

known to interact w ith  proteins. Table 2.6 shows that the majority o f identified RNA 

binding sites fa ll w ith in the optimal range o f the yeast three-hybrid system. The size 

lim itations on the insert making up the hybrid RNA does preclude the identification o f 

protein binding sites that are formed by the tertiary structure o f the RNA molecule o f 

interest. For example, in this study the construction o f the cDNA library used a method o f 

partial restriction enzyme digestion to obtain overlapping fragments o f between 50 and 200 

nucleotides. One drawback to this approach is that using short overlapping fragments 

requires the RNA sequence that makes up the protein-binding site to be linear in nature. An 

additional problem that may be encountered is that the removal o f flanking sequences may 

alter the most thermodynamically favoured secondary RNA structure for the sequence o f 

interest.

It is therefore possible that the “ positive”  cognate RNA binding partners o f the viral 

protein are misfolded in the context o f the hybrid RNA. M isfolding o f this sort, illustrated 

in figure 2.12 has been described in other studies (Cassiday &  Maher III, 2001, Edwards et 

al., 2001) and can prevent interaction o f the RNA with both the bacteriophage MS2 coat 

protein and/or the protein o f interest. Edwards et al in 2001 overcame this problem by 

inserting a G-C clamp into the hybrid RNA (Figure 2.12).

Although the m is-folding o f RNA provides a rational explanation for why no positive 

partners were identified in the cDNA screen, engineering a G-C clamp into p IIIA /M S 2-l 

may not offer a solution to the problem. In the situation where a known RNA structure is 

being tested for an interaction with an unknown protein partner(s), the RNA can be 

manipulated by the insertion o f a G-C clamp to form a secondary structure that has been 

described by other techniques. In contrast, where the RNA provides the unknown variable, 

insertion o f a G-C clamp may create structures that are not present in the viral RNA 

naturally, or may destroy secondary structures that are found. W hile positive interactions 

may be obtained from library-screens carried out using RNA that has been structurally 

“ fixed”  by the introduction o f a G-C clamp, the presence o f the G-C clamp must be 

accounted for when describing and elucidating the functional relevance o f any identified 

RNA sequences.

One other factor that may play a part in explaining the results obtained in this study is the 

orientation o f the RNA relative to the MS2 coat protein binding sites. The orientation o f



RNA Length of 
RNA (nt) 
excluding 

iMS2

Cellular or 
Viral Origin

Protein Reference

ashl E3 127 Cellular She3p 1

NRE 57 Cellular Pumilio 2

Histone RNA 
hairpin

28 Cellular HBP(SLBP) 3

IRE 51 Cellular IRP-1 4

bI4 1600 Cellular Leu RS 
bI4 maturase

5

TAR 58 Viral Tat 4

H IV y 139 Vira l H IV  Gag 6

RSVMy 320 Vira l RSV Gag 7

HCV SL3.2 48 Viral 8

HCV 3’X 98 Vira l L22,L3,S3
mL3

9

Poliovirus
cloverleaf

1 0 0 Viral 3CD
PCBP2

1 0 , 11

Poliovirus
CRE

60 Viral 1 2

Table 2.6. Known RNA-protein interactions in both cellular and viral systems.
References: l(Long et al., 2000), 2 (Sonoda &  Wharton, 1999), 3 (M artin et al., 
2000), 4 (SenGupta et al., 1996), 5 (Rho &  Martinis, 2000) 6 , (Bacharach &  Goff, 
1998), 7 (Lee et al., 1999), 8  (You et al., 2004), 9 (Wood et al., 2001), 10 (Andino et 
al., 1990a), 11 (Gamarnik &  Andino, 1998) and 12 (Goodfellow et al., 2000a).
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the RNA sequence and the MS2 sites can affect the strength o f the reporter gene signal. 

Insertion o f the iron response element (IRE) upstream o f the MS2 sites has been shown to 

increase transcription o f the hybrid RNA two to three-fold above the level o f transcription 

observed when the IRE is positioned upstream o f the MS2 sites (Bernstein et ah, 2002). 

However Bernstein et al have reported that systematic studies carried out to test this 

feature o f the yeast three-hybrid system have reported that both orientations yield specific 

activation o f the reporter gene by the RNA-protein interaction. This is supported by the 

observation that published literature on the yeast three-hybrid system has used both the 

downstream orientation used in this study and the upstream orientation as used by 

Bernstein et al. Therefore it is unlikely that the sole reason no positive RNA-protein 

interactions were detected was due to the orientation o f the RNA to the MS2.

It is however s till possible that the orientation o f the RNA sequence o f interest w ith respect 

to the MS2 sites remains a factor. One hypothesis that cannot be ruled out is that the 

binding o f the MS2 coat protein to the MS2 binding sites results in the covering o f the viral 

protein binding site on the RNA o f interest (illustrated in figure 2.13). Construction o f a 

second cD N A library using the upstream positioning o f the RNA w ith respect to the MS2 

coat protein binding sites and repeating the yeast three-hybrid screen would possibly 

confirm whether this is indeed the case.

One further possibility to be explored is the effect o f reducing the level o f the His3p 

competitive inhib itor 3-AT used to suppress “ false positives”  w ith in the screen. Although 

the levels o f  3-AT used w ithin the cDNA library screen fall w ith in the ranges described in 

other studies (Bernstein et al., 2002), it may be that the levels were too stringent for the 

detection o f weak or transient specific interactions between the viral proteins and RNA. 

Repetition o f the library screen in the presence o f a lower level o f 3-AT, in the range o f 

1-2.5 mM  3-AT m ight generate positive results, despite a relative increase in the 

background o f “ false”  positives.

Even i f  the hybrid RNA and proteins are correctly folded the straightforward yeast 

three-hybrid system detailed in figure 2 . 1  does not account for the modulation o f protein 

function by protein-protein and multiple protein-RNA interactions. Four types o f 

multi-protein interactions have been identified. These are independent interactions, bridged 

interactions, coupled interactions and complex interactions. These are illustrated in figure 

2.14.
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Independent interactions, as illustrated in figure 2.14A, occur when two proteins 

independently bind to two sites on the same RNA. The binding sites used by the two 

proteins are separate and the binding o f the proteins is unaffected by the binding o f the 

other protein. An example o f an independent interaction used to mediate the function o f the 

RNA is the interaction o f the bI4 maturase and the leucyl-t RNA synthetase with the cob 

bI4 intron (Rho &  Martinis, 2000).

Bridged interactions (Figure 2.14B) occur when two proteins are required to mediate 

binding to a single RNA site. Long et al showed in 2000 that the apparent interaction o f 

She3p w ith the ASH1 RNA only occurred in the presence o f She2p (Long et al., 2000).

Coupled interactions, as shown diagrammatically in figure 2.14C, occur when two proteins 

interact with each other and w ith the RNA. Examples o f coupled interaction include the 

interaction that occurs between the HIV-1 Tat protein, the cellular protein CyclinT l and 

H IV  TAR RNA (Bieniasz et al., 1999, Bieniasz et al., 1998). The formation o f a coupled 

interaction may occur in two different ways. Firstly formation o f the coupled interaction 

may require an in itial interaction between one o f the proteins involved in the complex 

interaction and the RNA to facilitate the formation o f a protein-protein interaction w ith the 

second protein in the setup. On the other hand prior formation o f the protein-protein 

interaction may be required before interaction w ith the RNA by the proteins can occur. 

Bieniasz et al have shown that the interaction which occurs between HIV-1 Tat, TAR and 

Cyclin T1 occurs according to the latter procedure (Bieniasz et al., 1999).

Complex interactions i.e. where more than two proteins are involved in a series o f RNA- 

protein and protein-protein interactions (Figure 2.14D) are also known to exist (Sonoda &  

Wharton, 2001).

In each o f the examples above the multiple protein interaction are known to be functionally 

important. In addition to this, the interactions have all been described through modification 

o f the basic yeast three-hybrid system. The condensed nature o f the genomes o f RNA 

viruses, in particular the picornaviruses, requires that the information carrying capacity o f 

the genome is maximised. One method that the picornaviruses have used to achieve this is 

that the number o f proteins coded for by the viral ORF is increased through the use o f a 

proteolytic cascade (Figure 1.14), which generates functional intermediate proteins. Taking 

the P3 region o f the poliovirus ORF as an example the viral intermediate proteins 3AB



Figure 2.12 A schematic diagram o f the secondary structure o f hybrid RNA 
molecules with and without the use o f a G-C clamp.

The RNA sequence is a short stem-loop X indicated by the thick blue line. The 
natural secondary structure context o f stem-loop X  is shown in the inset. Thin 
black lines correspond to the RNAase P leader and trailer sequences. The thick 
black lines correspond to the MS2 coat protein binding sites. A shows the 
predicted secondary structure o f the hybrid RNA expressed in the absence o f 
stem-loopX. B The secondary structure o f the hybrid RNA formed fo llow ing 
the insertion o f stem-loop x -  a structure in which neither the MS2 coat protein 
binding sites or stem-loop x is folded in the functional conformation. C The 
introduction o f a G-C clamp (boxes plus black lines) restores the conformation 
o f both stem-loop x and the MS2 coat protein binding sites. Diagram is adapted 
from Bernstein et al., 2002
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Figure 2.13 Schematic diagram illustrating how altering the orientation o f the 
RNA to the MS2 binding sites can alter the interaction o f the protein with the RNA 
transcript

(A) The protein binding site (bold blue line) is shown in its natural position and with 
its cognate binding protein (blue oval) bound. When the RNA o f interest is 
positioned downstream o f the MS2 coat protein recognition sites (Bold black lines) 
binding o f the MS2 coat protein (Grey oval) prevents the protein o f interest from 
recognise the presence o f its binding site (B) .As a consequence no interaction 
occurs between the transcriptional DNA binding domain (orange oval) and the 
transcriptional activation domain (yellow sphere). When the MS2 coat recognition 
site are positioned upstream o f the RNA sequence o f interest (C) the binding o f the 
MS2 coat protein does not interfere with the binding o f the protein to its cognate 
RNA binding site. As a result the DNA binding domain and the transcriptional 
activation domain can interact thus activating transcription o f the reporter gene.
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(RNA-binding protein involved in polymerisation and precursor to VPg) and 3CDpro 

(sequence-specific RNA binding activity and proteinase activity) are known to have 

functions that d iffer from those o f the final cleavage products that include a proteinase 

(3Cpr0), evasion o f the immune system (3A), the protein primer required for the initiation 

o f RNA synthesis (3B=VPg) and the viral polymerase (3Dpo1).

A  further way o f achieving maximum functional capacity from a small genome is for the 

encoded proteins to modulate the function o f each other and cellular proteins by the use o f 

protein-protein interactions. This is certainly the case for poliovirus. The documented 

interaction between 3AB and 3CDpro results in the stimulation o f the autocatalytic cleavage 

o f 3CDpmthat is a fa irly  stable intermediate protein (M olla  et al., 1994, Xiang et al.,

1995a).The poliovirus intermediate protein 3AB has also been shown to positively 

modulate the polymerisation activity o f the 3Dpcl (Lama et al., 1994, Paul et al., 1994a, 

Plotch &  Palant, 1995). Figure 2.15 is a summary o f the interactions and known functions 

o f the proteins encoded by the P3 region o f poliovirus (Xiang et al., 1998). The picture is 

further complicated intracellularly by the presence o f cellular proteins that may modulate 

the viral proteins. An interaction between 3Dpo1 and Sam6 8  has been previously described 

in the literature (McBride et al., 1996) although as yet no function has been ascribed to this 

interaction. Other interactions may exist between the viral proteins and cellular proteins 

that have not yet been identified.

It is therefore possible that the reason for the failure to detect specific RNA binding sites 

for the proteins screened in this study resides in the fact that a coupled interaction occurs 

fo llow ing an interaction between two proteins. Studies on known RNA-protein interactions 

have overcome this problem by modifying the basic yeast three-hybrid system through the 

introduction o f one or more additional cDNAs into the S.cerevisiae R40coat strain 

(Bieniasz et al., 1999, Sonoda &  Wharton, 2001). Extension o f this method to the 

poliovirus screen described in this study would for example express 3AB from a multicopy 

plasmid as a non-fusion protein in the presence o f 3Dpo1 or 3CDpr0. This type o f 

multi-protein cDN A library screen could be extended to search for cellular protein/viral 

protein complexes through the introduction o f a cDNA library expressing cellular proteins 

as fusions and the viral proteins expressed as non-fusions.

One further modification o f the yeast three-hybrid system has been described that enables 

screening for proteins that are involved in complex interactions. Sonoda et al described in
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Figure 2.14 Analysing multicomponent interactions
A  diagram o f four permutations o f complexes involving one RNA and 
two or more proteins. Each type o f permutation has been analysed in 
the yeast three-hybrid system. Adapted from Bernstein et al Methods 
2002. Black bold line corresponds to the RNA 1 and 2 correspond to 
proteins 1 and 2. Examples o f  each type o f multicomponent interaction 
are shown adjacent to the relevant diagram.Relevant citations are A  
Rho and Martinas., 2000 B  Long et al., 2000 C  Sonoda et al., 1999; 
Bouffard et al., 2000; Bieniasz et al., 1998, 1999 and D Sonoda et al., 
2001
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Figure 2.15 Working model fo r  interactions and diverse functions o f the P3 
polypeptides (1) 3Dpq1 is depicted as a tetramer although its precise status in solution is not known. 
3Dpo1 oligomers are more active than monomers in RNA chain elongation, and the same may be true for 
the 3AB/3Dpo1 complex. (2) The function o f 3CDPro/3CDPro dimers is not known, but they may be 
required for autocleavage and/or viral protein processing. (3) 3AB and its cleavage product 3A alter 
host membrane permeability and inhibit protein secretion. Whether these proteins must assemble to 
dimers or multimers (through interactions o f their hydrophobic domain) to produce these effects is 
unknown. (4) 3AB and 3CDPro can form a complex in solution that (5) can bind with high specificity to 
the 5' cloverleaf, a process required for the initiation o f positive-strand RNA synthesis. (6) When 3AB 
and 3CDpro are bound to each other, 3AB can stimulate the autocleavage o f 3CDpr0 into 3C and 3Dpoi. 
3DPo1 and 3AB may remain in a tight complex with increased RNA polymerization activity. (7) A 
3AB/3DP01 complex is likely to recognize the 3' NTR o f the genome for the initiation o f negative-strand 
RNA synthesis. (8) The half-life o f 3AB is regulated by 3CDp|0, since membrane-bound 3AB can be 
cleaved by 3CDPro into 3A and 3B (VPg), two cleavage products whose functions are distinct from 
those o f the 3AB precursor. (9) VPg, in turn, is uridy ly lated by 3DPo1 to VPgpU(pU), the primer for 
3DPo1. Taken from Xiang et al, 1998
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1999 the curiosity o f the interaction between hunchback RNA and the cellular protein 

Nanos. Sonoda et al demonstrated that while Nanos would interact w ith the hunchback 

RNA when it was tethered by Pumilio, no interaction was observed when the hybrid RNA 

was tethered by the MS2coat protein/MS2 hairpin linkage (Sonoda &  Wharton, 1999). A  

sim ilar phenotype was observed by Bouffard et al in 2000 when investigation protein 

interactions w ith hY5 RNA (Bouffard et al., 2000).The strategy employed to identify 

protein-RNA interactions like these is summarized in figure 2.16A.

The principle o f the modified yeast three-hybrid system outlined in figure 2.16A is that the 

linkage provided by the interaction between the MS2 hairpin and the MS2 coat 

protein/DNA binding domain fusion can be functionally replaced by any known 

RNA/protein interaction. Bouffard et al chose to fuse the protein Ro60 w ith the DNA 

binding domain. The known interaction between Ro60 and hY5 RNA was then used as bait 

in a library screen o f cellular proteins fused to the activation domain. Sonoda et al 

expanded the technique further by the introduction o f a third non-fusion protein into the 

equation. This is illustrated in figure 2.16B.

Given what is already known about the interactions that occur between the proteins 

encoded by the P3 region o f the viral polyprotein the use o f complex interactions such as 

those described above is likely. It is already known that in poliovirus the RNA specificity 

o f the intermediate protein 3CDpro resides in 3Cpro rather in the viral polymerase 3Dpul 

component o f the protein (Andino et al., 1993, Andino et al., 1990c). Therefore other 

protein-protein interactions that occur during the course o f the viral replication cycle may 

be responsible for mediating the interaction between proteins and genome. M odification o f 

the yeast three-hybrid though not attempted during the course o f this study does provide an 

interesting avenue o f future work.



BD

(3-galactosidase reporter gene

BD
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Figure 2.16. Screens to identify proteins from  multicomponent complexes

(A )  a screen for protein-RNA complexes. The DNA binding domain is fused 
to an RNA-binding domain o f choice (1) which interacts w ith the RNA. The 
RNA/RNA binding domain (BD) complex is then used as bait for an 
unknown protein (2) fused to the activation domain (AD). The basic 
principle was modified further by Sonoda et al in 2001(Sonada et al, 2001) 
by the introduction o f non-hybrid component (3) to form a ternary RNA 
complex that is used as bait to screen unknown AD  fusions.
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2.8 Future work

One o f the major concerns identified during the course o f this study has been the inability 

o f the yeast three-hybrid system to identify an interaction between 3CD1140A and the 

MS2cloverleaf during the cDNA library screen. The use o f PCR did however show that the 

cloverleaf element was present, in its entirety, w ith in the cDN A library (Figure 2.6A).

One experiment that should be carried out is to identify whether the cloverleaf present 

w ith in the cD N A library retains 3CDH40A binding activity. To determine this, cDNAs 

expressing the MS2cloverleaf RNA should be retrieved from the library using colony 

hybridization (Sambrook et al., 1989). In this technique, an imprint o f bacterial colonies 

transformed w ith the cDNA library is made from an agar plate onto nitrocellulose 

membrane. Lysing o f the bacterial cells, imprinted on the nitrocellulose membrane, leaves 

the DN A extracted from each cell immobilised on the membrane at the precise location 

that the cell was imprinted. The immobilised DN A can be subsequently probed for using 

radio-labelled oligonucleotides or RNA that are anti-sense w ith respect to the target- 

sequence. The presence o f the target-sequence can be visualised by exposing the 

nitrocellulose membrane to X-ray (autoradiography) film . By orienting the nitrocelluose 

membrane correctly to the agar plate bacterial colonies corresponding to signals positive 

for the target-sequence on the nitrocellulose membrane can then be picked and amplified.

Isolation o f the plasmids expressing N1s2cloverleaf RNA would enable a number o f 

questions to be answered. The ability o f the individually expressed MS2cloverleaf RNAs to 

interact w ith 3CDH40A independently o f the other cDNAs could be monitored by using the 

quantitative and qualitative [3-galactosidase assays described w ith in this chapter. 

Sequencing o f the retrieved cloverleaf cDNAs w ill identify i f  any mutations have been 

accumulated that might block or reduce the binding o f 3CDi,40A. Lastly, the retrieval o f 

cDNA clones expressing the MS2cloverleaf RNA using the southern blotting technique w ill 

enable determination o f the number o f copies o f the cloverleaf present w ith in the cDNA 

libraries. Sequencing o f the retrieved cDNAs would also enable determination o f whether 

the majority o f  the MS“cloverleaf RNA expressed in S.cerevisiae is functional (sense- 

strand) or non-functional (anti-sense strand) w ith respect to 3CDH40A binding. I f  the 

majority o f the MS2cloverleaf RNA is expressed as sense-strand than the observation that it 

could not be retrieved using 3CDH40A in the yeast three-hybrid cDN A library screens raises
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questions regarding the sensitivity o f the yeast three-hybrid screen in comparison with 

PCR. The question o f the sensitivity o f the yeast three-hybrid system can be answered 

using a sensitivity assay. Basically, a defined copy number o f cDN A w ill be used per 

transformation. Each yeast three-hybrid screen w ill be carried out using a dilution o f 

p IIIA /MS2cloverleaf as part o f the total copy number used. The remainder o f the cDNA 

used to achieve the total copy number used per transformation w ill be either p IIIA /M S 2-l 

or p IIIA /MS2CRE. PCR w ill be carried out on the samples at the concentrations used in the 

yeast three-hybrid screen both in the presence and absence o f cDN A encoding different 

sequences. Questions that should be answered by the results o f this sensitivity assay 

include:

• How many copies are required to be present in the library before the cloverleaf can be 
successfully picked out o f the cDNA yeast three-hybrid library screen?

• Using PCR what is the minimum copy number o f the cDN A p IIIA /MS2cloverleaf that 
results in a positive identification?

• Does the presence o f additional cDNAs encoding different RNA structures decrease 
the sensitivity o f  both PCR and the yeast three-hybrid system?

The results accumulated in the sensitivity assay may generate an explanation for the failure 

o f the yeast three-hybrid screen outlined in this chapter to identify novel RNA-protein 

interactions. M odify ing the conditions o f the yeast three-hybrid to take account o f the 

results o f the sensitivity assay results may lead to the identification o f other RNA-protein 

interactions. I f  not then modification o f the yeast three-hybrid system to account for 

multi-component interactions may provide a solution to the problems encountered in this 

study.



3 Analysis of the functional significance of a 

region of suppression of RNA sequence 

variation in poliovirus

3.1 Introduction

The functional importance o f RNA secondary structure in the replication o f RNA viruses 

has long been established. RNA elements have been described for both mammalian and 

prokaryotic viruses that signal functions as diverse as translation, genome replication and 

encapsidation. The recent use o f computational methods as a way o f identifying potential 

RNA secondary structures o f functional importance has been documented for a number o f 

RNA viruses, including hepatitis C virus (Tuplin et al., 2002) and Ebola virus (Crary et al., 

2003). Computational analysis was also used to provide supplementary evidence for the 

existence o f the CRE in poliovirus (Goodfellow et al., 2000b).

Numerous algorithms have been developed independently to aid the identification o f RNA 

secondary structures that may be o f biological significance. Traditionally algorithms have 

been based on thermodynamics. Thermodynamic algorithms, for example M FOLD 

analysis (Mathews et al., 1999, Zuker, 1989, Zuker, 2003), rely on data experimentally 

obtained on the free energy o f stems and loop structures (Antao et al., 1991, Antao &  

Tinoco, 1992, Varani et al., 1991, Xia et al., 1997). The structures predicted to form using 

thermodynamic calculations have been demonstrated to be in good accord w ith data 

provided from experimental methods o f analysis such as nuclear magnetic resonance 

(NM R) (Tinoco &  Bustamante, 1999), chemical (Mathews et al., 1999) and enzymatic 

probing (Goodfellow et al., 2003a).

In contrast to thermodynamic methods o f analysis, that predict the formation o f structures 

on the basis o f  a single sequence, new algorithms have been developed that take advantage 

o f comparative sequence data. Suppression o f synonymous site variation (SSSV), one such 

algorithm, works by analysing genomic alignments for sequence constraints that are 

present but which can be demonstrated to be independent o f the protein coding sequence. 

The maintenance o f such sequences w ith in a population may result from constraints placed 

on the genome by the presence o f structures or sequences that have an essential or 

important biological function. Analysis o f the enterovirus genus using SSSV analysis has
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identified a number o f regions o f suppression. This chapter describes the application o f 

molecular techniques to one o f these regions to investigate whether its functional 

significance can be determined.

3.2 Analysis of SSSV amongst the Enteroviruses

Suppression o f the sequence diversity o f a region o f a viral genome may result from 

constraints placed on the genome by the presence o f structures that have a direct bearing 

on virus replication (Simmonds &  Smith, 1999).

The level o f  SSSV w ith in a genome is calculated using parsimony analysis. This method 

calculates the proportion o f sim ilarity between aligned sequences at each codon. In order to 

identify regions o f suppression; variability is normalised to account for codon degeneracy . 

Variability is then plotted over a sliding window. In this case a sliding window o f 21 

codons was used. Areas o f codon suppression below the baseline level are predicted to 

consist o f secondary structures or sequences o f functional importance, as the underlying 

RNA sequence must be constrained by factors unrelated to protein function.

Parsimony analysis carried out on human enteroviruses by Prof. P. Simmonds (University 

o f Edinburgh) identified regions o f SSSV (Figure 3.1) centred on nucleotides 3841, 5339 

and 6467. The nucleotide numbering refers to the position o f the nucleotide w ithin the 

open reading frame (ORF) o f the polyprotein i.e nucleotides 1-3 are the initiation codon 

AUG. No SSSV was identified in the region o f the genome encoding the capsid proteins. 

The areas o f SSSV centred on nucleotide 5339 (blue arrow) and nucleotide 6467 (purple 

arrow) are localised w ith in the region encoding the viral polymerase. The marked area o f 

SSSV at position 6467 is located w ithin nucleotides 6768-7148 o f the full-length 

poliovirus genome. The marked area o f SSSV centred on nucleotide 3841 occurs in the 

region o f the genome where the CRE (black arrow) is localised. The CRE was in itia lly 

identified using M FO LD analysis. The identification o f the CRE is important for two 

reasons. Firstly, it provides supporting evidence that SSSV analysis can identify structures 

o f functional significance by its ability to identify a known element. Secondly, it informs 

that elements o f functional importance should be predicted by more than one method o f 

computational analysis.
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Figure 3.1. Suppression o f synonymous site variation analysis o f the 
enterovirus genus. Synonymous codon variab ility  analysis was used to 
analyse an alignment o f  enterovirus genomes. The alignment generated 
by CLUSTAL used all enterovirus sequences available from 
G ENBANK, which differed from each other by >1% . Marked areas o f 
suppression were identified at positions 3841, 5539 and 6467. The 
CRE (black arrow) localises to the area o f suppression at position 3841. 
The marked area o f suppression at positions 5539 (blue arrow) and 
6467 (purple arrow) localise to the region o f the genome encoding the 
viral proteins 3C and 3D. The nucleotide numbering refers to the 
position o f the nucleotide in the ORF i.e. nucleotides 1-3 are the 
in itia tion codon AUG.
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3.3 MFOLD analysis of poliovirus type 3 Leon nt 

6768-7148

One o f the most commonly used computational algorithms for predicting RNA secondary 

structure is the M FO LD programme (Zuker, 1989, Zuker, 2003), that calculates the free 

folding energy o f a given RNA structure. The algorithm works by calculating the pairing- 

number (P-num) value that assesses the likelihood o f any one base pairing w ith any other. 

A  high P-num value indicates that a base is promiscuous in its interaction w ith other bases 

during folding for bases w ith low P-num values the converse is true. The P-num value 

calculated for any one sequence can be presented either as a structure format plot or a 

P-num plot.

M FOLD analysis carried out o f the region o f codon suppression in the genome o f 

poliovirus type 3/Leon, using the MFOLD web server,

hltp://xvxvx\\bioinfo, rpi. eclu/applical ions/m fold, identified a highly structured region with a 

predicted free energy o f -93.7 (Figure 3.2). The P-num values for the region are low 

(Figure 3.3) consistent w ith a region in which secondary structure would be predicted to 

form.

The presentation o f the data as a structure format plot predicts the formation o f two stem- 

loop structures. The first o f these stem-loop structures (structure I) is 87 nucleotides in 

length. The predicted structure contains five bulge loops and a terminal loop o f eleven 

nucleotides. The second o f the stem-loop structures (structure II) shows a less classical 

stem loop structure. Structure II shows a trident like- structure w ith three stem-loops that 

protrude from two bulge loops present with the structure. The stem-loops that crown the 

structure each contain a terminal loop o f four or five residues. M FOLD analysis o f the 

equivalent regions w ith in  the genomes o f poliovirus type 1 (Mahoney) and type 2 

(Lansing) predicts the formation o f similar structures (Figure 3.4).
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Figure 3.2 Structure format plot of nt 6768-7148 of the genome ofpoliovirus type 3 (Leon). 
MFOLD analysis was carried out using the MFOLD server. The MFOLD analysis predicted 
the formation o f two stem-loop structures: Structure I and Structure II, which are 
highlighted in green and blue respectively.
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Figure 3.4 M F O L D  analysis o f  nt 6893-7100 in poliovirus type 1-3
(A ) M F O L D  analysis o f  nt 6893-7100 o f  po liov irus type 1( M ahoney),
(B) M F O L D  analysis o f  nt 6983-7100 o f  po liov irus type 2 (Lansing) and
(C) M F O L D  analysis o f  nte 6983-7100 o f  po liov irus type 3(Leon)
M F O LD  analysis o f  the R N A sequence was carried out using the M F O L D  server.
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3.4 Disruption of the stem loop structures I and II

i f  the secondary structures identified by MFOLD analysis are important or critical for virus 

replication then the introduction o f mutations that disrupt these structures, but which 

maintained the correct protein, would be expected to create a phenotype. Sim ilarly, i f  the 

underlying sequence, independent o f the presence o f structure, is essential then mutations 

that alter the sequence, but not the structure o f the region, would create a phenotype. 

Synonymous sequence changes to be into structures I and II that would cause their collapse 

were designed in itia lly  by eye though computer analysis was used latterly (see appendix 3 

for linear information on all described sequence changes). Unless otherwise stated, 

numbering o f the nucleotides refers to its position in the full-length genome.

3.4.1 Disruption of structure I

In itia lly  the design o f changes that were to be introduced to the sequence was determined 

by manual analysis. The effect that the introduction o f nucleotide alterations would have 

on the RNA structures was predicted using M FOLD analysis. Residues were identified that 

could be altered which would cause a targeted collapse o f structure 1 or structure II. 

Analysis o f structure I by eye identified three possible regions to mutate. For purposes o f 

analysis, structure I was subdivided into three sections. The first o f these sections was the 

terminal loop o f structure I, the second possible region was a conserved GCCU stem 

situated in the middle o f the structure and lastly the base o f structure I.

Oligonucleotide primers were designed to allow mutagenesis o f  structure I using an 

overlapping PCR strategy described later on in this chapter. In order to aid the 

identification o f cDNAs carrying mutagenic sequences restriction sites were engineered 

into the primers. In order to fu lly  disrupt the base stem region o f structure I two primers 

were designed, 0-BSmut3Dpol and 0-BSmut3Dpolrev (see materials and methods, table 

6.2), that introduced five point mutations. In addition the primer pair had been designed so 

that two o f the point mutations that were to be introduced would create a unique Nhe I 

restriction site in the viral cDNA sequence.

M FOLD analysis o f the predicted structure o f the region fo llow ing introduction o f the non­

coding mutations U 6 95sG, A 6967U, A 6970U, U 6974A  and C6975G showed a slight increase in 

the free energy state compared to that o f the parental sequence (Figure 3.5). M FOLD
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analysis predicts that the base stem region o f structure I up to the second bulge loop w ill 

collapse. However the terminal loop and the fifth  bulge loop are predicted to remain intact. 

The introduction o f these changes to the RNA sequence is predicted by M FOLD analysis 

to collapse structure II into four independent stem-loop structures.

Computational programs can be used to identify the least energetically stable structure 

from a dataset o f synonymous variants. As the number o f possible synonymous variations 

on a 99 nucleotide sequence is in the region o f 4 per base lim itations must be placed 

w ith in the algorithm to enable calculation o f the results w ith in a suitable time-frame.

Analysis o f the folded region 6768-7148 showed that a minimum o f four non-coding 

nucleotide changes introduced into structure I would result in its m inimum free energy 

state being formed. Using computational analysis two independent series o f four mutations 

were identified that resulted in the collapse o f structure I. Computational analysis predicted 

that the introduction o f the non-coding changes C6913A, C6922A, U 6929C and C6952U would 

result in the collapse o f structure I. The M FOLD structure format plot, shown in figure 3.6 

predicts that the introduction o f these mutations would result in the formation o f a free 

energy state o f -8 6 . 8  in comparison with the wild-type poliovirus sequence that has a free 

energy state o f -93.7. The MFOLD analysis shows that structure I has been completely 

disrupted at the top o f the structure though the base o f the structure remains unaffected. In 

addition the MFOLD analysis clearly shows that structure II and the flanking regions are 

unaffected by the introduction o f these mutations when compared to the M FOLD analysis 

o f the w ild-type poliovirus type 3 sequence. An oligonucleotide primer, O -A D -IE , was 

designed that allowed the introduction o f these mutations into structure I using an 

asymmetric PCR strategy described later in this chapter. As a consequence o f the 

mutations being introduced into the parental sequence a Bgl II restriction enzyme site was 

created that could be utilised for screening purposes.
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The computational analysis also identified that the introduction o f the non-coding changes 

C6952A, T 6958A, C6 9 6 ]T and A 6967T was capable o f collapsing structure I. The M FOLD 

structure format plot predicts that the introduction o f the sequence changes C6952A, T 6958A, 

C6 9 6 iT  and T6967A  would result in a structure that was significantly less stable than the 

parental sequence that has a free energy state o f -93.7 (Figure 3.7). The M FOLD analysis 

predicts that the introduction o f these nucleotide changes would result in the disruption o f 

both structure I and structure II (Figure 3.7). The introduction o f these mutations to the 

viral cDNA sequence, by the oligonucleotide primer 0 -A D -5F  created an Nde I site that 

could be utilised for screening purpose.

3.4.2 Disruption of structure II

Analysis o f the folded region 6768-7148, using computer analysis, identified two sets o f 

mutations that would result in the collapse o f structure II. An early version o f the 

computational algorithm used to identify the least energetically favourable structure from a 

dataset o f  synonymous variants identified that the introduction o f seven nucleotide changes 

into the sequence o f structure II would result in the collapse o f the structure. The M FOLD 

structure format plot predicts that the introduction o f the sequence changes A7037U, C7043A, 

C7044A, G7046A, G7049A, C 7056U and G7058A would result in a structure that was 

significantly less stable (free energy state o f -81.3) than the parental sequence that has a 

free energy state o f -93.7. The structure format plot (Figure 3.8) predicts that structure II 

w ill be completely disrupted, by the introduction o f the aforementioned mutations, except 

for the 6  base pair stem found at the base o f the structure. M FOLD analysis predicts that 

structure I and the flanking regions are unaffected by the introduction o f these mutations 

when compared to the M FOLD analysis o f the w ild-type poliovirus type 3 sequence. An 

oligonucleotide primer, 0-AD -3E , was designed that allowed introduction o f these 

mutations into structure II using an asymmetric PCR strategy described later in this 

chapter. As a consequence o f the mutations being introduced into the parental sequence an 

additional Apo /  restriction enzyme site was created that was used for screening purposes.
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A later version of the computer algorithm detected that the introduction of eight nucleotide 

changes would collapse structure II. These were T69 8 sC, T 6 9 9 1C, C6 9 9 4T, T 6 9 9 7A, A6 9 9 8T, 

G6 9 9 9C, T 7 0 0 0A and C7 0 0 3A. The MFOLD structure format plot predicts that the introduction 

ol the sequence changes T 6 9 8 5C, T 6 9 9 1C, C6 9 9 4T, T 6 9 9 7A, A 6 9 9 sT, G6 9 9 9C, T 7 0 0 0A and C7 0 0 3A 

would result in a structure that was significantly less stable than the parental sequence that 

has a free energy state of -93.7 (Figure 3.9). The MFOLD analysis predicts that the 

introduction of these nucleotide changes would result in the collapse of structure II. In 

contrast, the MFOLD analysis predicts that structure I will be unaffected, by the 

introduction of these nucleotide changes. An oligonucleotide primer, 0-AD-4F, was 

designed that allowed introduction of these mutations into structure II using an asymmetric 

PCR strategy described later in this chapter. As a consequence of the mutations being 

introduced into the parental sequence an additional Nsi I restriction enzyme site was 

created that was used for screening purposes.

The calculated free energies for each o f the mutated RNA structure and the structure 

format plots predicts that the synonymous changes introduced should successfully disrupt 

the targeted structure (either structure I or structure II).
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3.5 Site directed mutagenesis of the region nt 6768-7148

In order to investigate whether disruption o f structures I and II would result in a replication 

phenotype the mutations were built into a replicon containing the fire fly  (Photinus pyralis) 

luciferase gene, constructed by Dr. I Goodfellow, based on the well characterised replicon 

pT7Rep3 (Percy et al., 1992).

The cDN A fragments, bearing the desired changes in structures I and structure II, which 

were built into the replicon were created using two different PCR mutagenesis strategies. 

The cDNA constructs engineered in the course o f this study are described in table 3.1. A ll 

mutagenic PCR reactions, as described below, were carried out using pfuplaUnum polymerase 

supplied by Invitrogen.

3.5.1 PCR mutagenesis using an overlap strategy

The overlap PCR mutagenesis strategy requires 4 primers (Figure 3.10). The first primer 

pair requires a forward primer (primer 1) that anneals to the 5’ end o f the region that is to 

be amplified and a reverse primer (primer 3) that anneals in a downstream position. The 

reverse primer was designed to contain the point mutations that were to be introduced into 

the sequence.

The second primer pair was designed so that the Forward primer (primer 2) had a region o f 

complementarity to the 3’ region o f the PCR product produced from the first primer pair. 

Where the point mutations would allow for the introduction o f a unique restriction site for 

screening purposes complementarity o f the primers was designed around this site. The 

reverse primer (primer 4) in the second primer pair like the forward primer o f the first 

primer pair introduces a restriction enzyme site. As the first round products share a region 

o f complimentarity the PCR products can anneal together and act as template in the 

second-round PCR reaction that uses the primer pair (1+4) to generate the full-length 

product. The final PCR product was cloned into the plasmid vector o f  choice using the 

restriction enzyme sites X  and Y. PCR mutagenesis using an overlap strategy was used to 

construct pT71uc3DA/w+R.



Product PCR1

Primer 1 Primer 3
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X ds DNA product y

Figure 3.10 Mutagenesis using an overlapping PCR Strategy.

Figure 3.10 outlines the requirements for each stage o f the overlap PCR method to 
create a full-length PCR product. Basically, the first round products share a region o f 
complementarity and can anneal together. They can therefore be used as templates in 
a PCR reaction which uses the external primer pair (primers 1+4) to generate the fu ll- 
length product. The PCR product can then be cloned into the vector o f  choice using 
the restriction enzyme sites X  and Y. In Figure 3.10 the parental DNA sequence is 
shown in blue while the area o f mutagenesis is highlighted in red.
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3.5.2 Mutagenesis using an asymmetric PCR strategy

In addition to the overlap PCR strategy as a way o f introducing mutations into cDNA, an 

asymmetric PCR strategy was also employed (Figure 3.11). This technique requires the use 

o f three primers. The first primer pair requires a forward primer (primer B) that anneals to 

the 5’ end o f the region that is to be amplified and a reverse primer (primer C) that anneals 

in a downstream position. The forward primer (primer B) is designed w ith approximately 

1 0  nucleotides o f wildtype sequence flanking on either side the region into which the point 

mutations are to be introduced. The reverse primer (primer C) in the first primer pair 

introduces a restriction enzyme site (X) that was used for cloning into the plasmid vector 

o f choice.

The presence o f 10 nucleotides o f wildtype sequence at the 5’ end o f the PCR product 

produced from the first primer pair enables the polymerase to use the anti-sense strand o f 

the PCR product as a reverse primer in the second round o f PCR. The Forward primer 

(primer A ) in the second round PCR anneals to the 5’ end o f the region to be amplified.

The forward primer like the reverse primer used in the first round PCR introduces a 

restriction enzyme site (Y) that is used for cloning the PCR product into the plasmid 

vector.

Thus the second round o f PCR uses the purified PCR product from the first round PCR as 

a “ megaprimer”  to generate a fu ll length PCR product. Mutagenesis using the asymmetric 

PCR method was used in the construction o f replicons pT71uc3D',/;o/+R, pT71uc3DAaW+R, 

pT71uc3D Vw '+R and pT71uc3D/̂ ///+R. In constructing pT71uc3Dfig///+R an annealing and 

extension step, o f  six cycles prior to the second round o f PCR, was shown to increase the 

yield o f fu ll length product.



PCR round 1
Primer B

y

r -
Pr i mer  C

I

PCR round 2

Primer A

Figure 3.11 Mutagenesis using asymmetric PCR.

Figure 3.11 outlines the requirements o f each stage o f the asymmetric PCR 
method to create a full-length PCR product. Basically, the first round product 
can be used as a primer in a second PCR reaction to generate the full-length 
product. The PCR product can then be cloned into the vector o f  choice using the 
restriction enzyme sites X  and Y. In Figure 3.11 the parental DN A sequence is 
shown in blue while the area o f mutagenesis is highlighted in red
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3.6 Construction of subgenomic replicons bearing 

mutations in 3Dpo1 structure I and li

Point mutations that were to be built into the luciferase replicon pT7Luc+R were 

introduced into the region 6773- 7173 using the PCR mutagenesis techniques described 

previously. In each case the non-mutagenic primers used were the forward primer IG48 

(see Table 6.2 materials and methods) that binds upstream o f the Spe I site and the reverse 

primer Rep3rev (see Table 6.2 materials and methods) that binds downstream o f the Sal I 

site in pT7Luc+R (Figure 3.12). The final PCR product and the plasmid vector were 

prepared for cloning by digestion with Spe I and Sal /  restriction enzymes. The restricted 

insert and vector were purified from agarose and ligated together. The ligations were 

cleaned up prior to transformation into electrocompetant E.coli ER278 cells. Transformed 

cells were plated onto antibiotic selective media. D N A was prepared from putative clones 

and analysed for the presence o f distinct restriction digestion patterns that identified that 

the mutagenesis had been successful.

To verify the presence o f the designed mutations and to rule out the introduction o f 

unwanted mutations that introduced coding changes the cloned 2  kb region was sequenced, 

by automated sequencing at the in-house facility, using the primers 0-A D -7B , 0-AD-8C , 

IG24 and IG26 (see Table 6.2 materials and methods). W ith the exception o f 

pT7Luc3D',/;o/+R this sequencing verified that no coding changes had been introduced into 

the region by the PCR and that only the desired mutations were present. pT7Luc3D '^o/+R 

w ill be discussed in more detail later.
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Figure 3.12 Luciferase replicon pT7Luc+R.

(A ) The vector map o f replicon pT7Luc+R. (B ) The transcript produced by 
the bacteriophage T7 RNA polymerase contains the information for 
expression o f the luciferase gene fused to the message encoding the viral 
replication proteins at the P1/P2 junction.The presence o f a ribozyme in the 
vector results in a fu lly  authentic v ira l R N A-like  5’ end.
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3.7 Introduction of mutations in 3Dpo1 structure I and II 

into an infectious cDNA

The use o f secondary structures as signals for the selective packaging o f genomes into the 

viral particle had been identified in a number o f viruses including HBV and HIV-1 

(Schlesinger et al., 1994). Though earlier work using subgenomic replicons had argued that 

a packaging signal in the genome o f picornaviruses must exist (Barclay et al., 1998, Jia et 

al., 1998, Porter et al., 1998) the first picornavirus encapsidation signal was identified, in 

A ichi virus, only recently (Sasaki &  Taniguchi, 2003). In contrast to A ich i virus, where the 

packaging signal was identified in the 5’UTR the accumulated evidence provided by 

studies using genetically-modified viruses (Alexander et al., 1994, Todd et al., 1997) and 

subgenomic replicons (Barclay et al., 1998) indicates that the poliovirus packaging signal 

is located w ith in the region o f the genome encoding the non-structural proteins. Given that 

Nugent et al (Nugent et al., 1999) had observed that packaging in poliovirus is coupled to 

replication the possibility was raised that though a replication phenotype might not be 

observed using the replicon-based system, a severe phenotype might be observed when the 

mutations were analysed in the context o f a fu ll virus lifecycle.

To investigate the possibility that structure I and structure II influenced such as packaging 

or uncoating the synonymous changes, that had given a subtle replication phenotype in the 

replicon system, were introduced into an infectious clone available in the laboratory. This 

work was carried out prior to obtaining the results o f the translation and processing assay 

discussed in section 3.8 .2.2.

To construct pT7FLC3D l/W from the subgenomic replicon pT7Luc3D '^o/+/? the restriction 

enzyme sites Not I and BssHll (Figure 3.13) were utilised. Both the restricted insert (VP 1-4 

derived from pT7FLC) and cDNA backbones, bearing the changes, were purified from 

agarose prior to being ligated together.



N ot I (11103)

P1/P2 junction

Polyprotein

Figure 3.13 Vector map of the infectious clone pT7FLC

The infectious clone is based on poliovirus P3/Leon/37 (type3). The infectious 
clone has been engineered to contain a T7 promoter and a unique Sal 1 site. The 
proteins o f the PI region (VP 1-4) are shown in red, the proteins o f the P2 region 
are highlighted in green and the replication proteins (P3 region) are shown in 
blue. Restriction enzyme sites used in the construction o f  infectious clones are in 
bold.
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pT7FLC3DA/w was constructed in a slightly different manner. pT7Luc3DA/'fe’/+.K was 

digested w ith Xho 1 and Sal 1 restriction enzymes. Both the insert obtained from 

pT7Luc3DA/,<?/+/? and the vector, pT7FLC that had been digested in a similar way, were 

purified from agarose and ligated together. The ligations were cleaned up prior to 

transformation into electrocompetant E.coli ER278 cells. Transformed cells were plated 

onto antibiotic selective media. The presence o f the capsid gene in putative pT7FLC3D ‘*/K,/ 

cDNAs were screened for using a Sma I /Xho I digestion pT7FLC3DA/w was screened 

using the unique Nhe I site. Correct orientation o f the cloned fragment in putative 

pT7FLC3DA/'c y cDNAs was screened using Xho 1 and Sal I restriction enzymes.
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3.8 Functional studies on the effect of mutations in 3Dpo1 

structure I and li

3.8.1 Analysis of the influence of structure I and II mutations on 

replication

Naturally occurring defective interfering (D I) particles o f poliovirus have been shown to 

replicate their genomes efficiently though they can have up to 13 % o f the parental genome 

deleted (Kajigaya et al., 1985, Omata et al., 1986). A ll naturally occurring DI particles o f 

poliovirus contain in-frame deletions in the capsid coding region o f the genome (Cole &  

Baltimore, 1973, Kuge et al., 1986). DI genomes constructed from cloned cDNAs have 

been demonstrated to be translation and replication competent (Hagino Yamagishi &  

Nomoto, 1989, Percy et al., 1992).

The ability o f the DI genomes to be translated and replicated in the absence o f the capsid 

sequences has been used to construct self-amplifying subgenomic replicons. In addition to 

poliovirus (Kaplan &  Racaniello, 1988, Percy et al., 1992) subgenomic replicons have 

been constructed from the genomes o f several picornaviruses including hepatitis A  virus 

(Y i &  Lemon, 2002), foot and mouth disease virus (Mclnerney et al., 2000), rhinovirus 14 

(M cKnight &  Lemon, 1996) and Aichi virus (Sasaki et al., 2001).

pT7FLC/Rep is a subgenomic replicon that was constructed from the poliovirus type 3 

Leon strain. In pT7FLC/Rep VP4, VP2 and the amino terminus o f VP3 have been deleted 

and replaced by the CAT gene, in-frame w ith the rest o f the viral genome. Monitoring o f 

the production o f CAT by enzymatic assay fo llow ing transfection o f the RNA transcript 

into mammalian cells showed that the RNA synthesised from pT7FLC/Rep was amplified 

fo llow ing transfection. Addition, post-transfection, and maintenance throughout the 

incubation period o f guanidine hydrocholoride in the cell media inhibited the CAT signal. 

As a known inhib itor o f poliovirus RNA synthesis (Baltimore et al., 1963, Tershak, 1982), 

the ability o f guanidine hydrochloride to inhibit the production o f CAT enabled a direct 

correlation to be made between the production o f CAT and the replication-competent 

nature o f the RN A transcripts tested. The observation that RNA derived from pT7FLC/Rep 

could be packaged in trans by helper virus enables this system to be extended to study 

packaging signals (Percy et al., 1992).
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In order to investigate whether the introduced mutations had an effect on the replication o f 

the viral genome, the mutations had been introduced into the replicon pT71uc +R. 

pT71uc+R is a subgenomic replicon that was derived from pT7FLC/Rep3, a replicon 25% 

smaller in size than the fu ll length parental genome (Barclay et al.). Expression o f the 

luciferase gene from the pT71uc+R construct has been shown in previous studies, using 

replicons based on the poliovirus type 1 genome, to be a readily quantifiable and 

reproducible marker for viral genomic amplification when used in this way (Andino et al., 

1993).

Replicons were linearised using Sal I. RNA was transcribed from the linearised template 

using the bacteriophage T7 polymerase. Normalised levels o f RNA were transfected into 

HeLa T4 cells using electroporation. The cells were incubated in DMEM/10%FCS at 

37 °C/ 5% CO 2 . Cellular extracts from the cell were harvested at 6  hours post transfection 

and assayed for luciferase activity. Guanidine hydrochloride was added to the 

DMEM/10%FCS o f the negative control at a concentration o f 4 mM post transfection and 

maintained throughout incubation. The production o f luciferase is presented as an average 

o f three independent transfections with error bars calculated to show the variation between 

the independent samples.
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3.8.1.1 Influence on replication of structure I

Follow ing six hours incubation, significant luciferase signals could be obtained following 

transfection o f FleLa cells w ith RNA derived from pT71uc3DA/w+R, pT71uc3DAc/e/+R or 

pT7luc3DZ7g///+R. Analysis o f the production o f luciferase produced showed that the RNA 

synthesised from pT7luc3DA/,L' y+R was reduced by approximately 0.5 logio w ith respect to 

RNA derived from the parental cDNA (Figure 3.14A). A  decrease in replication o f 

approximately 0.5 logio w ith respect to RNA derived from the parental cDNA was also 

observed w ith RNA derived from pT71uc3Dfig///+R (Figure 3.15A) or pT7luc3DWe/+R 

(Figure 3.15B). As a result functional characterisation o f RNA derived from 

pT7luc3DAg///+R or pT7luc3D VyW+R went no further. Consistent w ith  the luciferase signal 

being an accurate measure o f replication, no signal was obtained from cells transfected 

w ith RNA that had been incubated in the presence o f guanidine hydrochloride (Figure 3.14 

and 3.15). Although the difference between the RNA derived from the parental cDNA and 

pT71uc3DA/w+R was subtle, it was shown to be consistently reproducible.

In order to try and ascertain the point o f the replication cycle that was affected by the 

mutations the transfections were repeated and cellular extracts were harvested at 0, 1, 2, 4, 

6  and 8  hours post transfection. The efficiency o f the RNA synthesised from 

pT71uc3DA/,e/+R to replicate in HeLa cells was reduced in comparison to RNA synthesised 

from the parental cDNA at an earlier stage o f the viral replication cycle. Figure 3.14B 

shows that at 4 hours the replication o f RNA derived from pT71uc3DA/,tJ 7+R is reduced by 

approximately 0.5 logio when compared to the parental clone. A t 8  hours post transfection 

luciferase production from pT71uc3DA/'c/+R appears to be equivalent w ith that produced 

from the parental clone. Although subtle, the differences in replication observed between 

pT71uc3DA/,l// +R and the parental clone over the duration o f the time-course were 

consistently observed.
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Figure 3. 14 (A) Replication of p T7Luc3DNheI+R, using the luciferase system. 
Normalised levels o f  RNA were transfected into HeLa T4 cells. Cellular lysates 
were harvested at 6  hours post transfection and assayed for luciferase activity. 
Guanadine hydrochloride a known inhib itor o f  poliovirus replication was used as 
a negative control for replication. RNA derived from the parental replicon 
pT7Luc+R was used as a positive control. (B) Time course of replication of 
RNA derived from pT7Luc3DNheI+R. Normalised levels o f  RNA were 
transfected into HeLa T4 cells. Cellular extracts were harvested at 0,1,2,4,6 and 8  

hours post transfection and assayed for luciferase activity. RNA derived from the 
parental replicon pT7Luc+R was used as a positive control. Error bars were 
calculated to show the variation between the individual samples.
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Figure 3.15. Replication assay using the luciferase system.
(A) Replication of pT7Luc3D^glII+R. (B ) Replication of pT7Luc3DNdeI+R. Normalised 
levels of RNA were transfected into HeLa T4 cells. Cellular lysates were harvested at 6  

hours post transfection and assayed for luciferase activity. Guanadine hydrochloride a 
known inhibitor of poliovirus replication was used as a negative control for replication. 
RNA derived from the parental replicon pT7Luc+R was used as a positive control. 
Error bars were calculated to show the variation between the individual samples.
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3.8.1.2 Influence on replication of structure II

Following six hours incubation significant luciferase signals could be obtained follow ing 

transfection o f HeLa cells w ith RNA derived from pT7luc3D Vw 7+R and the parental 

replicon pT7luc+R, but not pT7luc3D ,/7 0 /+R. Consistent w ith the luciferase signal being an 

accurate measure o f replication no signal was obtained from cells, transfected w ith RNA 

derived from either pT71uc3D Vw 7+R or pT7luc+R, that had been incubated in the presence 

o f guanidine hydrochloride (Figure 3.16A). A  decrease in replication o f approximately 0.5 

logio w ith respect to RNA derived from the parental cDN A was observed w ith RNA 

derived from pT7luc3DVw 7+R.

In contrast, to the subtle replication phenotype observed when analysing the replication 

efficiency o f RNA derived from pT7luc3D Vw *+R no significant luciferase signal could be 

detected above that o f the negative control when the replication efficiency o f transcripts 

derived from pT7luc3D !/w 7+R was assessed (Figure 3.16B). Thus while the RNA 

transcribed from pT7luc3D/J/;o +R appeared to be competent as a template for translation it 

appeared that RNA derived from pT7luc3D'!/;o7+R was replication-incompetent. The reason 

as to why RNA derived from pT7luc3D ip0 7+R is replication-incompetent while RNA 

derived from pT71uc3DA w/+R is replication competent w ill be discussed in depth in section 

3.8.2.
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Figure 3.16. Replication assay using the luciferase replicon 
(A) Replication of pT7Luc3DV5//+R. (B ) Replication of pT7Luc3D4/w/+R. 
Normalised levels of RNA were transfected into HeLa T4 cells. Cellular lysates 
were harvested at 6 hours post transfection and assayed for luciferase activity. 
Guanadine Hydrochloride a known inhibitor of poliovirus replication was used as 
a negative control for replication. The parental replicon pT7Luc+R was used as 
a positive control. Error bars were calculated to show the variation between the 
individual samples.
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3.8.2 Influence on translation and processing of mutations in 

3Dpo1 structure I and II

In order to confirm the RNA bearing changes was being translated and processed correctly 

an in vitro translation and processing reaction was carried out using a FLE X I®  rabbit 

reticulocyte lysate system (Promega) supplemented w ith  HeLa S10 extracts. HeLa S10 

extracts have been demonstrated to contain all the cellular factors required to support the 

translation and replication o f infectious poliovirus in vitro (Barton &  Flanegan, 1993, 

M olla et al., 1991). The HeLa S10 extracts used in this experiment were made and donated 

by Dr. I. Goodfellow. The in vitro translation and processing assay can be used to analyse 

the correct processing o f the protein product translated from RNA synthesised o ff  either 

subgenomic replicons or full-length cDNAs.

In order to generate the large quantities o f good quality RNA required to carry out a 

translation and processing assay the R IBO M AX1m transcription k it (Promega) was used.

2 pg o f purified RNA was used per translation reaction. 2 mM  guanidine hydrochloride 

was added to each translation reaction to prevent the replication o f the transcribed viral 

RNA. The radiolabelled protein products o f the translation and processing reaction were 

visualised using a phosphoimager and analysed using the Personal FX computer program 

(BioRad) fo llow ing SDS-PAGE gel electrophoresis.

3.8.2.1 Translation and processing of RNA derived from the subgenomic 

replicons pT7luc3DNcte/+R and pT7luc3DNs"+R

The in vitro translation and processing reaction o f RNA derived from pT7luc+R was used 

as the positive control (Figure 3.17 Lane 2) as to whether the viral proteases 2Apro, 3Cpro 

and 3CDpro were able to correctly process the polyprotein derived from subgenomic RNAs,
*2 c

bearing changes in structure I or structure II. As a further control S '-methionine labelled 

poliovirus type 3 infectious lysate (Figure 3.17 Lane 1) was run alongside the samples 

from the in vitro translation and processing reactions on the SDS-PAGE electrophoresis 

gel. Visualisation o f the products o f the in vitro translation and processing assay confirmed 

that there was no difference in the processing o f the polyprotein expressed from RNA 

derived from the cDNAs pT71uc3D V/W+R (Figure 3.17 Lane 3) and pT71uc3DVw/+R
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Figure 3.17 In vitro translation and processing assay.

Transcribed RNA was translated in rabbit reticulocyte 
supplemented w ith HeLa S10 extracts. The translated products 
derived from RNA transcribed from the luciferase replicons 
pT7Luc3DAWe/ +Rand pT7Luc3Dv,s//+ Rare shown in Lanes 3 
and 4 respectively. The translated products derived from the 
parental cDNA pT7Luc+R was used as a positive control (Lane 
2). As a further control a sample o f S35-methionine labelled 
poliovirus type 3 infectious lysate was also run on the 
SDS-PAGE gel (Lane 1)
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(Figure 3.17 Lane 4) w ith that observed w ith the parental polyprotein (Figure 3.17 Lane 2). 

The in vitro translation and processing reaction appears to suggest that luciferase is 

produced in greater abundance from the transcripts than the other protein products. 

However, in picornaviruses the RNA is translated as a single transcript and the encoded 

proteins are released from the resultant polyprotein via a proteolytic processing cascade. It 

is therefore infeasible that luciferase is produced in greater amounts than the virus proteins 

instead it most like ly reflects an artefact o f the system o f labelling the protein products via
35the incorporation o f S -methionine.
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3.8.2.2 Translation and processing of RNA derived from full-length cDNAs 

pT7FLCM,e' and pT7FLCppo'

Whether RNA derived from the pT7luc3DUe/+R and pT71uc3D/l,’",+R was capable o f 

being correctly translated and processed was not analysed using the in vitro translation and 

processing reaction. Instead these mutations were assessed using the in vitro translation 

and processing reaction in the context o f the virus genome. The translation and processing 

o f RNA derived from the infectious cDNA pT7FLC was used as the positive control as to 

whether the viral pro teases 2Apr0, 3Cpr0 and 3CDpm were able to correctly process the 

polyprotein derived from full-length cDNAs bearing mutations in structure I (pT7FLCA/w) 

or structure II (pT 7F L C ^o/). As a negative control the FleLa S10 supplemented rabbit 

reticulocyte lysate extract was incubated in the absence o f RNA. In the absence o f RNA no 

radiolabelled products were observed (Figure 3.18 Lane 1) confirm ing that the bands 

observed in lanes 3-5 are all products o f the translation o f the virus RNA. Analysis o f the 

results o f translation shows that translation occurred efficiently in all three clones.

However closer inspection o f the products resulting from polyprotein processing by the 

viral proteases indicates that the viral polymerase (3Dpo1) and the polymerase precursor 

(3CDpr0) in pT 7 F L C ^o/(Lane 4 Figure 3.18) were smaller in size than the counterpart 

bands in clones pT7FLC and pT7FLCA/w (Figure 3.18 Lanes 5 and 3). Although this 

suggests the presence o f a truncation w ithin the region o f the polymerase, sequence 

analysis clearly showed the absence o f a frame-shift leading to the introduction o f a stop 

codon. However, the sequence o f pT7FLC^po/ indicated that, the earliest version o f the 

computer program designed to introduce synonymous changes to the RNA sequence 

without affecting the reading frame, had through a programming error introduced 6  coding 

changes to the viral polymerase. The coding changes that were introduced to the viral 

polymerase were M354L, P3 56K, A 357T, D358N, S360F, and A361T. The number given for each 

coding change refers to its position in the polymerase i.e. where 1 is the first codon o f the 

virus polymerase fo llow ing cleavage from the polyprotein. The introduction o f the coding 

changes is postulated to alter the isoelectric point (PI) o f  the viral proteins 3D and 3CD, 

thereby causing a difference in behaviour in comparison to the w ild-type protein during 

SDS-PAGE electrophoresis.
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Figure 3.18 In vitro translation and processing assay.

Transcribed RNA was translated in rabbit reticulocyte supplemented with 
HeLa S10 extracts. The translated products derived from RNA transcribed 
from the infectious clones pT7FLCA/?e/ and pT7FLC'4po/ are shown in Lanes
3 and 4 respectively. The translated products derived from the parental 
infectious clone pT7FLC was used as a positive control (Lane 5).As a 
negative control the supplemented rabbit reticulocyte were incubated in the 
absence o f RNA (Lane 1). Lane 2 was left empty.
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The introduction o f coding-changes that inactivate the viral polymerase explain why RNA 

derived from pT71uc3D4/;o +R was demonstrated to be replication-incompetent but RNA 

derived from a different structure II mutant (pT71uc3Dw +R) was replication-competent.

3.9 Infectivity assay

In order to investigate whether structure I controlled an aspect o f the virus lifecycle not 

tested by the subgenomic replicon system i.e. uncoating or packaging o f the viral genome, 

the ability o f the virus RNA to successfully infect mammalian cells was tested. Consistent 

w ith the results o f the subgenomic replication assay and the translation and processing 

assay virus (P3/leon/37A;'e/) could be successfully recovered from transcripts synthesised 

from pT7FLC3DN/,t,/. In accordance with the previous data no virus could be recovered 

from transfection into cells o f RNA transcribed from pT7FLC3D4/;o/ (data not shown).

In itia lly  in fectivity assays were carried out in HeLa cells but inconsistencies in the 

plaquing o f both P3/leon/37A/'1’1 and P3/leon/37 led to the use o f a different cell line for this 

assay. Due to time limitations, the repetition o f the in fectiv ity assay using P3/leon/37A/w 

and P3/leon/37 in Rhadomyosarcoma (RD) cells was carried out by Dr.H.Harvala. 

Normalised levels o f RNA, as determined by C 14 incorporation, transcribed from linearised 

pT7FLC or pT7FLC3D v/,e/ were diluted 10 fold serially in dH 20. The diluted RNA was 

transformed into RD cells using DEAE-dextran. The plaque morphology o f the virus and 

its titre was determined after two days growth by staining the cells w ith crystal violet. The 

plaque phenotype o f P3/leon/37A//t' 7 (Figure 3.19B) was uniform ly smaller (diameter o f ~ 

0.5 mm) than that o f the parental virus (diameter o f ~1 mm) (Figure 3.19A), a phenotype 

consistent w ith a replication defect. Calculation o f the titre showed that P3/leon/37A/,c/ was 

reduced in titre in comparison w ith the parental virus by approximately 0.51ogio. These 

results are consistent w ith the data obtained using the subgenomic replicon based system. 

Subsequently Dr.H.Harvala has shown that the same plaque phenotype and difference in 

titre between P3/leon/37A/,t; and P3/leon/37 that was obtained in RD cells can be observed 

when the same virus RNAs are analysed in Vero cells (data not shown).
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The stability o f the mutations introduced, into structure I was investigated by passaging 

P3/leon/37A/w on HeLa cells. Plaque assays carried out on the harvested virus showed that 

the plaque phenotype o f P3/leon/3 7 A/,e/remained stable after 3 passages (Figure 3.20 A+B) 

though the plaque phenotype was mixed. The plaque phenotype that was observed in RD 

cells was smaller and more uniform in nature than that observed in HeLa cells for 

P3/leon/37A/'e/. The difference in plaque phenotype o f both P3/leon/37A/,t,/ and the parental 

virus observed between HeLa and RD cells may have arisen in part from the different 

overlay medium (2% bactoagar and 0.5% carboxymethylcellulose diluted in 5% 

FCS/DMEM) that was used.

Recent characterisation o f P3/leon/37A/wby Dr.H.Harvala has shown that the replication 

defect is temperature-sensitive. A t 39 °C replication o f P3/leon/37A/,e7was reduced by 2 

logio when compared w ith the parental virus P3/leon/37 (Figure 3.21 A). The reduction in 

growth o f 2 logio o f P3/leon/37A/,t / at 39 °C was observed over a range o f starting M.O.Fs 

(0.1, 1 and 5) (Figure 3.21B).
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Figure 3.19 Infectivity assays stained after 48 hours incubation at 37 °C..

Ten-fold dilutions o f (A) P3/Leon/37 (type 3) and (B) P3/Leon/37A77<?/ (type 3) 
were used to transfect RD cells. The infection was allowed to proceed for 48 hours 
before the cells were stained w ith crystal violet.
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Figure 3.20 Stability o f mutations

Poliovirus P3/Leon/37A/,e/ was passaged three times in HeLaT4 cells. 
The plaque phenotype o f poliovirus P3/Leon/37A7,<?/ (A ) at pass 0. The 
plaque phenotype o f poliovirus P3/Leon/37M,<?y at pass 3 (B). 
Poliovirus P3/Leon/37 at pass 0 and at pass 3 (C and D respectively) 
are shown for comparison. Staining o f the cell sheet was carried out 48 
hours after virus had been applied to cell layer.
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Figure 3.21 Temperature-sensitive growth phenotype o f  P3/Leon3 7NheI in RD cells. 
(A) One step growth curves o f P3/Leon/37 and P3/Leon/37M7e/at 37 and 39° C from a 
starting M .O .I o f  10. (B) Titres o f P3/Leon/37 and P3/Leon/37M?e/ at 37 and 39° from a 
starting M.O.I o f  0.1, 1 and 5.
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3.10 Discussion of results

Evidence has steadily accumulated that though RNA viruses w ith a positive-sense 

single-stranded genome are a highly diverse group a basal replication strategy exists that 

has been preserved from a common progenitor. The use o f cX-acting elements to signal 

functions like in itiation o f genomic replication is a phenomenon associated w ith many 

viruses including the coronaviruses (Fosmire et al., 1992, Repass &  Makino, 1998), and 

tombusviruses (Park et al., 2002, Pogany et al., 2003). W ith in the Picornaviridae three e x ­

acting elements have previously been identified to be essential for efficient genomic RNA 

replication: cloverleaf, CRE and 3!UTR. A  further cX-acting element, the IRES, functions 

in the in itia tion o f polyprotein synthesis.

The use o f SSSV as an indicator o f the presence o f RNA signals o f functional importance 

has previously been reported for HCV (Tuplin et al., 2002, Walewski et al., 2001) and 

poliovirus (Tuplin et al., 2002). Tuplin et al were able to demonstrate that in both 

poliovirus and HCV areas o f SSSV correlated well w ith thermodynamic predictions that 

are an established method o f predicting areas o f localised secondary structure (Tuplin et 

al., 2002). In their analysis o f poliovirus Tuplin et al were able to identify a strong region 

o f SSSV centred on the CRE, which is the only known essential cX-acting RNA element to 

be located in the ORF o f the poliovirus genome. The identification o f a well-characterised 

cX-acting replication element by SSSV provided evidence that this type o f analysis was 

capable o f identifying RNA sequences or structures o f functional importance from aligned 

sequences. Further support for this view has been supplied recently by a research group 

investigating the mechanics o f HCV replication. Tuplin et al described a region in the 

gene encoding the virus RNA-dependent-RNA polymerase (NS5B) that showed strong 

SSSV (Tuplin et al., 2002). This analysis identified two new stem-loops 5BSL1 (nt 111- 

128) and 5BSL2 (nt 333-342) as well as three structures that had previously been identified 

by Smith and Simmonds using sequence inspection methods (Smith &  Simmonds, 1997). 

The structures identified by Smith and Simmonds: 5BSL3.1, 5BSL3.3 and 5BSL3.4 

constitute part o f  a cruciform structure (nt 539-591) which includes a fourth stem-loop 

structure 5BSL3.2, that has recently been identified as a context dependent essential HCV 

cX-acting replication element (You et al., 2004). Concrete evidence therefore exists that 

SSSV provides a good predictor o f functionally important RNA sequences or structures.
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The investigation, presented in the course o f this chapter, was concerned w ith assessing the 

functional relevance o f an area o f SSSV in the gene encoding the poliovirus polymerase 

that was in itia lly  identified by Tuplin et al (Tuplin et al., 2002). The effect o f  introducing 

destabilising mutations into structures w ith in this region was analysed using both 

subgenomic replicon and viral systems. In the subgenomic replicon system a reduction in 

the level o f replication, compared to the parental replicon, o f  approximately 0.51ogio was 

consistently observed. The growth phenotype o f virus recovered, that contained the same 

nucleotide changes, was comparable with that observed in the subgenomic replicon 

system. Thus, while the data from the virus characterisation studies strongly argues against 

the RNA secondary structure under investigation, functioning as an uncoating or packaging 

signal it does provide support for the argument that it contains a determinant o f replication. 

There are a number o f possible explanations for why only a 0.51ogio decrease in replication 

was observed, which w ill be discussed below.

Investigations into the replication phenotype o f the mutagenized cDNAs over time using a 

luciferase reporter gene system suggested that the observed difference between the parental 

cDNA and the mutagenized cDNA pT71uc3DA/w was as a result o f an effect w ith in the 

first six hours o f initiation o f genomic RNA synthesis. No difference was observed 

between the parental cDNA and the mutagenized cDNA pT71uc3DA/w at 8  hours post 

transfection. Due to the sensitivity associated with the luciferase reporter gene (in the range 

o f 8  orders o f magnitude) this is unlikely to be due to saturation o f the assay. One 

explanation o f the difference in phenotype observed over time between the parental cDNA 

and pT71uc3DA/w was that the RNA differed in stability. In this model the mutagenized 

RNA would be more sensitive to the degradative enzymes present w ith in  the cell. In a cell 

infected w ith poliovirus the replication o f genomic RNA occurs exponentially between 4-6 

hours post-infection. A t 6 - 8  hours post infection the priority o f the virus switches from 

replication viral genome to assembly o f the virus particle as the ability o f  the cell to 

support translation rapidly decreases.
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The ability o f the virus to support translation occurs as a result o f the cleavage by the 

protease 2A o f eIF4E, the cap- binding factor, from the transcription factor eIF4G. This 

cleavage “ shuts-down”  the host cell by preventing the translation o f the majority o f cellular 

mRNAs as a consequence o f which cellular proteins are degraded and not replaced. The 

accumulated effect o f the degradation o f host cell proteins is that the cell gradually loses 

the ability to provide the host cell factors that poliovirus requires to support the translation 

and replication o f its genome. As there is an inherent requirement for the genome o f 

poliovirus to be translated before it can be replicated it would be expected that a subtle 

decrease in the stability o f the genomic RNA would only be observed at the peak o f the 

cycle o f translation and replication. Between 6 and 8 hours the cell w ill no longer be 

capable o f supporting the translation and replication o f the virus.

One unusual feature o f the replication o f poliovirus is the selective inhibition o f nuclear 

import via the degradation o f the nuclear pore complex (NPC) proteins Nup 153 and p62 

(Gustin &  Sarnow, 2001). These proteins form what is termed the classical import 

pathway. In 2001 Gustin and Sarnow demonstrated that the glucocorticoid receptor import 

and CRM1 export pathway remain functional in infected cells (Gustin &  Sarnow, 2001). 

The inhibition o f the classical import pathway in cells leads to the cytoplasmic 

accumulation o f cellular factors that are predominantly nuclear in uninfected cells. The 

cellular factors that have been shown to accumulate in the cytoplasm o f infected cells are 

summarised in table 3.2 along with their reported cellular functions.

Among the cellular factors that are accumulated in infected cells are the La autoantigen 

and PTB that are both known to be involved in translation o f the viral genome (Hellen et 

al., 1993, Meerovitch &  Sonenberg, 1993). In addition Sam68 and Nucleolin have been 

shown to interact w ith the viral polymerase and the 3’UTR o f poliovirus respectively 

(McBride et al., 1996, Waggoner &  Sarnow, 1998). Although functions have been 

described for La and PTB, no definitive functions in viral replication have been ascribed to 

the remainder o f the proteins known to accumulate during the course o f infection. Whilst 

inhibition o f nuclear import has been postulated to provide a mechanism by which the 

virus can down regulate the antiviral interferon response (Gustin, 2003) this is unlikely to 

be the only benefit o f inhibiting nuclear import.
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The cellular proteins that accumulate as a consequence o f inhib ition o f nuclear import all 

have known functions in mRNA transport, mRNA stability, translation or polyadenylation 

(Table 3.2). As poliovirus has a limited coding capacity it is probable that these proteins 

have functional roles in the replication o f the virus.

The cellular proteins Nucleolin, hnRNP K  and hnRNP C have all been reported to be 

involved in stabilisation o f mRNA. The interaction o f Nucleolin w ith the 3 ’UTR o f 

poliovirus has previously been documented (Waggoner &  Sarnow, 1998). As o f yet no 

interaction has been described between hnRNP K  and C w ith a viral protein or RNA 

structure. However, it is probable that these proteins are involved in the stabilisation o f the 

viral genome through interaction with RNA secondary structure or sequences present 

with in the genome. Disruption o f this interaction would correlate w ith a decrease in the 

in fectiv ity o f  the virus as a consequence o f a reduction in translation and replication o f the 

viral genome. In vivo this phenotype would be expected to result in a less severe 

pathogenic outcome. As these cellular proteins are ubiquitously expressed the use o f these 

proteins to stabilise the viral genome, and the sequence or structure that would facilitate 

the interaction would presumably be a highly conserved mechanism used by 

picornaviruses.

A  second explanation for the phenotype observed in the replication time course would be 

that in the RNA containing mutations in structure I the defect affected the in itiation o f 

RNA synthesis but not the elongation stage o f the process. One possibility w ith regards to 

the apparent defect in initiation observed with the cD N A pT71uc3DUe/ is that the 

mutations involved affect the ratio between positive and negative strands. It is probable 

that cis-acting replication elements that regulate the process o f genomic RNA synthesis are 

located w ith in the genomes o f all positive single-stranded RNA viruses. Genome 

replication in positive single-stranded RNA viruses occurs in two distinct stages. In itia lly  

there is the production o f a negative strand complementary to the incoming genome. The 

synthesis o f an anti-genome strand results in the formation o f a double-stranded replication 

intermediate (RF) that is subsequently used as a template for the synthesis o f large amount 

o f f  positive single-stranded RNA strands. In a poliovirus-infected cell the ratio is 

approximately 50:1 ratio in favour o f the positive-sense strands to the negative-sense RNA 

strands (Novak &  Kirkegaard, 1991). This is consistent w ith a model in which numerous 

positive strands are synthesised o f the RF template. Amongst the tombusviruses this bias is 

approximately 100:1 in favour o f the synthesis o f positive-sense strands. Recent work on
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the tomato busy stunt virus (TBSV), the prototypic tombusvirus, (Pogany et al., 2003) has 

identified a small RNA element located at the 3’ terminal end o f the viral genome that 

negatively regulates the initiation o f minus strand synthesis. The down-regulation o f 

negative strand synthesis thus biases RNA synthesis towards the accumulation o f 

positive-sense strands. Pogany et al propose that the presence o f a “ replication silencer”  

element in the genome o f TBSV is beneficial to the virus as it can minimize the wasteful 

production o f non-infectious template. In addition Pogany et al proposed a second benefit 

o f replication silencing. As a consequence o f the downregulation o f negative sense strands 

the level o f RF templates w ith in the cell would also be reduced. Pogany et al propose that 

in TBSV infections the reduced amount o f RF templates delay recognition o f the infection 

by the host post-transcriptional gene silencing (PTGS) response (Vance &  Vaucheret, 

2001, Waterhouse et al., 2001). The PTGS response has a sim ilar outcome to the 

double-stranded RNA-induced protein kinase R (PKR) response in mammalian ceils. A 

delay in the onset o f these antiviral responses would enable the virus infection to take hold 

o f the cell. In the model proposed by Pogany et al an increase in the yield o f RF templates 

would increase the rapidity o f the innate immune response to the viral infection. One 

consequence o f this may be a reduction in the pathogenesis o f the virus. Any reduction in 

pathogenesis could be tested using the transgenic mouse models available to study 

poliovirus pathogenesis (Ren et al., 1990).

I f  the c/s-acting replication element identified w ith in this study was to function as a 

replication silencer then destabilisation o f this element through the introduction o f 

nucleotide changes would not necessarily introduce a dramatic replication phenotype in 

vitro as determined by reporter gene quantification. This is due to the requirement o f the 

poliovirus RNA to be translated prior to its use as a template for genomic synthesis. 

Alternatively, it therefore remains possible that a severe replication phenotype was not 

observed because the mutations that were introduced into the cDNAs to disrupt structure I 

or structure II did not fu lly  prevent a long-range R N A-RN A interaction, constituting the 

poliovirus “ replication silencer”  from occurring. A fter all, a known lim itation o f using 

computational analysis is that the thermodynamics favouring formation o f tertiary structure 

or long-range interactions have not been clearly elucidated (reviewed in Tinoco &  

Bustamante, 1999). I f  either o f these scenarios is correct an alteration in the ratio o f 

genomic and anti-genomic strands synthesised by P3/leon/37A/'w in comparison with the 

parental virus should be detectable using radiolabelled oligonucleotide probes.
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The method by which replication silencing functions works in tombusviruses is by 

promoter masking (Figure 3.22). In poliovirus infected cells, i f  RNA silencing is used to 

promote asymmetric synthesis an RNA-RNA interaction would have to occur between this 

element (region encompassing structure I and structure II) and the Ori R, which is involved 

in the in itiation o f negative-strand synthesis. The 3'UTR o f all enteroviruses appears to 

fold into either two or three stem-loop domains in which part o f  the poly-A tract is 

included (Figure 1.21). This core structure (Pilipenko et al., 1992b) has been supported by 

thermodynamic (Jacobson &  Zuker, 1993, Melchers et al., 1997) and phylogenetic studies 

(Pilipenko et al., 1992b). However research using chimeric viruses has strongly suggested 

that the 3 'U TR o f all enteroviruses forms a common single stem-loop tertiary structure 

(Rohll et al., 1995) that arises as a result o f an intramolecular “ kissing interaction”  between 

the stem-loop domains o f the 3 'UTR (Mirmomeni et al., 1997, Pilipenko et al., 1996). 

Consistent w ith a role in the regulation o f picornavirus replication is the observation that 

virus, though severely compromised, can be recovered that contains a complete deletion o f 

the 3’UTR (Todd et al., 1997). How the 3’UTR mediates the efficiency o f virus 

replication remains unclear, though one possibility is that it functions to negatively 

regulate the production o f anti-genomes. To investigate the possibility that an interaction 

between structure I or structure II and the 3’UTR might function as a replication silencer, 

the sequences o f these elements was analysed for regions o f complementarity. The search 

for complementarity between the elements was concentrated on the sequences o f the loops 

as it was believed that these were the likeliest regions o f the structures to be involved in 

any action. Figure 3.23 shows that no regions o f sequence complementarity exist between 

the loop structures o f the 3’UTR and either structure I or structure II. In my opinion, this 

clearly suggests that i f  this element is involved in replication silencing it makes it unlikely 

that poliovirus employs a promoter masking mechanism.
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SL3
CGGUUGAUCUCACCCUUCGGGC 

CGGUUGAUCUCACCCUUC. GGC 

CGGUUGAUCUCACC.UUCGGGC 

CGGUUGAUCUCACCCUUCGGGC 

UGCUCUCACCACCAGUUACUGC 

CGGUUGAUCUCACCCUCC.GGC 

CGGUUGAUCUCACCCUCCGGGC 

CGGUUGAUCUCACCCUUCGGGC 

CGGUUGAUCUCACCCUUCGGGC 

CGGUUGAUCUCACCCUCCGGGC 

CGGUUACACCCCAUCCUUCGGC 

CGGUUGAUCUCA. CCUUCGGGC

AUACCCUGAAGUUUAGUAAGGC

CACCAAUGCACACCAGAAAUGC

SL2
gPR

T lT
WAGAGAUCGCUGGAAGCACUACCGGACAACCGGAACAUUGCAGAAAUGCAGCCC

WAGAGAUCGCUGGAAGCACUACCGGACAACCGGAACAUUGCAGAAAUGCAGCCC

WAGAGAUCGCUGGAAGCACUACCGGACAACCGGAACAUUGCAGCAAUGCAGCCC

VUAGAGAUCGCUGGAAGCACUACCGGACAACCGGAACAUUGCAGAAAUGCAGCCC

JUAGGUGAGAGUGUAAAACAGACAGUGUAAAAGCUGAAAUUGUCUUCGGACAGCC

VUAGAGAUCGCUGGAACACUACCGGACAACCGGAACAUUGCAGAAAUGC.AGCCC

\UAGAGAUCGCUGGAAACACUACCGGACAACCGGAACAUUGCAGAAAUGCAGCCC

iUAGAGAUCGCUGGAAGCACUACCGGACAACCGGAACAUUGCAGCAAUGCAGCCC

VUAGAGAUCACUGGAAGCACUACCGGACAACCGGAACAUUGCAGCAAUGCAGCCC

VUAGAGAUCGCUGGAAACACUACCGGACAACCGGAACAUUGCAGAAAUGCAGCCC

[UUAGGGGUGUGCUGGAAGCACCACCGGACAGCCGGAACAUUGCCGAAAGGCAGCCC

WAGAGAUCGCUGGAAGCACUACCGGACAACCGGAACAUUGCAGAAAUGCAGCCC

VUAAAUGACGCUUGGUUUUACCUGAAAUCCCUUCCAUGCUUUGCAUGGUAGCCC

\UAAGUGUAUUGGUUCUUAAUUUUCAUCCCUUGCGUGGAAACACGCUAGCCC
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3.10.1 Identification of a species-specific sequence

The genomic sequences were re-evaluated, fo llow ing the identification o f a subtle 

phenotype, to identify whether the changes that were introduced might lie up or 

downstream from a significant sequence or structure that may have been missed during the 

in itia l analysis. Re-analysis o f the region using M FO LD o f individual enterovirus 

sequences identified a small stem loop structure that was present in all strains o f the 

poliovirus and non-poliovirus HEV-C viruses analysed (Figure 3.24 A  and B). The small 

stem-loop structure for the purposes o f this thesis has been labelled m otif X. Figure 3.25 

shows that the sequence o f m otif X was 100% conserved in coxsackievirus A21 (accession 

number NC 001428), coxsackievirus A24 (accession number CXA24CG) and a number o f 

other HEV-C w ith respect to the sequence present in poliovirus type 3. However analysis 

by eye suggested that the sequence was absent in viruses, more distantly related to 

poliovirus and coxsackie A  viruses (HEV- C) that are classified w ith in the HEV-B species. 

To determine whether the sequence/structure was a species-specific determinant, SSSV 

analysis was carried out on the HEV- C and HEV- B species independently. The results as 

illustrated in Figure 3.26 show that whilst the CRE is identifiable in both the HEV-B and C 

species the region o f SSSV in the viral polymerase is only observed in the HEV-C species 

viruses. In addition the region o f SSSV that has been studied in this chapter (purple arrow 

centred on nucleotide 6467 in figure 3.26) amongst the HEV-C shows a greater degree o f 

SSSV than the CRE. This indicates that the region o f SSSV must be o f great importance to 

the HEV-C.

M o tif X  is situated between the two major stem-loop structures predicted by the M FOLD 

analysis. In 2001 W itwer et al demonstrated using computer algorithms (alidot and pfra li) 

that search large RNAs for secondary structures using a combination o f thermodynamic 

structure prediction and phylogenetic analysis, that no structural feature apart from the 

CRE was shared among the picornaviruses. In the computational analysis undertaken by 

W itwer et al the potential for the formation o f structures w ith in  the coding region o f the 

viral polymerase in all picornavirus genera was observed. In six o f the genera the potential 

structure lies at the end o f the coding region o f the polymerase adjacent to the 3 ’UTR 

(Figure 3.27). According to the analysis carried out by W itwer et al a structure o f 

significance would be predicted to form at nt 7414-7430 o f the enteroviral viral genome 

(W itwer et al., 2001). This structure is downstream o f the sequence identified using SSSV
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analysis in this study. The data presented by W itwer et al does raise an important question 

regarding whether the SSSV analysis has identified an important species-specific sequence 

rather than an important RNA structure. This is a definite possibility. The SSSV algorithm 

is calculated independently o f considerations for the formation o f RNA secondary 

structure. As a consequence though SSSV analysis can be demonstrated to identify known 

RNA structures o f functional importance i.e. the CRE, the analysis w ill also identify 

sequences o f functional significance with the same frequency. I f  the m o tif identified by 

SSSV analysis was a sequence-specific recognition m o tif for a protein then disruption o f 

the surrounding structure would only affect the function i f  the important sequence was 

masked, or the non-coding changes introduced altered critical residues o f the sequence 

motif.

The identification o f a putative species-specific replication determinant w ith in the genome 

o f the HEV- C species raises some interesting questions regarding its function. Although it 

has been proposed previously in this discussion that the element described in this chapter 

could function as a “ replication silencer”  and therefore promote asymmetric replication 

this is at odds w ith the identification o f m otif X  as a species-specific sequence. Given the 

degree o f sim ilarity w ithin the picornavirus fam ily a shared mechanism for this feature o f 

RNA synthesis would be expected. The identification o f a species-specific sequence is also 

at odds w ith the case presented for a possible role in genomic stabilisation via the binding 

o f ubiquitous cellular factors.

To investigate the function o f m otif X the aspects o f the enterovirus replication cycle that 

could possibly be influenced by a species-specific sequence need to be considered. To my 

mind there are three possible areas, which w ill be discussed in turn. These are 

pathogenesis, RNA recombination and membrane targeting.
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in the enterovirus C viruses. These are centered on nucleotides 5339 
(nucleotide 5539 in the fu ll length genome, marked by a blue arrow) and 
6467 (nucleotide 6841 in the fu ll length genome, marked w ith a purple 
arrow) o f the viral ORF. The nucleotide numbering refers to the position 
o f  the nucleotide in the ORF i.e. nucleotides 1-3 are the initiation codon 
AUG.
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Figure 3.27 Overview o f Picornavirus genomes. Putative conserved RNA 
elements are indicated above the diagrams o f the reading frames. The black 
boxes indicate the J,K-element. Proteins: leader protein L (only present in 
aphthovirus, cardiovirus and teschovirus), capsid proteins 1A-1D, viral 
protease 2A, proteins involved in RNA synthesis 2B, 2C, unknown function 
3A, VPg 3B, major viral protease 3C, RNA-dependent RNA-polymerase 3D. 
Figure 3.27 taken from W itwer et al, 2001.
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3.10.1.1 Motif X as a determinant of viral pathogenesis?

One aspect o f the viral lifecycle that can be influenced in a species-specific manner is 

pathogenesis. Previous work using chimeric viruses has demonstrated that w ith in the 

enteroviruses species-specific blocks do exist that lim it the tropism o f the virus. As has 

been described elsewhere (see introduction Table 1.3), poliovirus and HEV-C species 

viruses are causal agents o f flaccid paralysis, a disease associated w ith replication o f the 

virus in the CNS. The HEV-B viruses, on the other hand, whilst known to cause meningitis 

are not associated w ith flaccid paralysis (Melnick, 1996a).

Research carried out using chimeric viruses to analyse the effect o f the IRES as a virulence 

determinant in a mouse model o f myocarditis showed that a species-specific block existed. 

A  chimera was constructed using coxsackie B3 (HEV-B), the agent responsible for the 

majority o f viral myocarditis, but containing the IRES o f poliovirus (Chapman et al.,

2000). The chimeric virus was shown to have abrogated the cardiovirulent phenotype in 

vivo. Likewise chimeric poliovirus containing the 5’UTR o f rhinovirus 2 has been shown 

to reduce the neurovirulent phenotype observed with poliovirus (Gromeier et al., 1996). It 

is important to note that these effects are observed only w ith in certain cell types. Gromieier 

et al demonstrated that whilst significant defects were observed in both neuroblastoma 

cells and in transgenic models o f poliomyelitis the rhinovirus/poliovirus chimera replicated 

efficiently in HeLa cells (Gromeier et al., 1999). Similar cell-type specific effects were 

observed when the replication ability o f the coxsackie B3 chimeras in different cell-types 

was investigated. In both these cases the reduction in virulence correlates w ith the ability 

o f the viral IRES to recruit cellular factors required for IRES function.

In addition to the 5’UTR, the Z domain o f the enterovirus B 3 ’UTR has been shown to 

play a role in the pathogenesis o f coxsackie B3 virus. In vivo it was demonstrated that 

while a recombinant virus lacking the Z domain was able to replicate in the pancreatic 

tissue, infection o f the heart tissue was abortive. In addition it was shown that removal o f 

the Z domain did not affect the ability o f the virus to replicate in tissue culture (Merkle et 

al., 2002).
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The first indication that m otif X might not be a cell-type specific replication determinant 

was provided by the temperature-sensitivity studies using P3/leon/37A/w. Dr.H.Harvala 

observed that a 21ogio decrease in growth o f P3/leon/37A/,w could be obtained, using a 

standard cell line, at higher temperatures. More recently Dr.H.Harvala has characterised 

the growth o f a virus containing mutations in m o tif X. The results obtained have shown 

that the introduction o f mutations into m o tif X  significantly debilitates the growth o f the 

virus in HeLa cells at 37 °C (2 logio decrease in titre relative to the parental virus) and 

39 °C (4 logio decrease in titre relative to the parental virus). Thus, the accumulated 

evidence argues against the function o f m o tif X being a determinant o f neurovirulence but 

rather infers that it performs a role fundamental to the replication o f the HEV-C viruses.

3.10.1.2 A putative role for motif X in RNA recombination?

Recombination o f poliovirus occurs frequently w ith in the human enteric tract. The rate at 

which recombination happens has been calculated to be 10'4 per base pair per replication 

cycle (Jarvis &  Kirkegaard, 1992). It has since been postulated that the frequency o f 

recombination provides one way for the virus to maintain general fitness in the face o f the 

high mutagenic rate o f the virus polymerase.

Investigations have identified both replicative (Jarvis &  Kirkegaard, 1992, Kirkegaard &  

Baltimore, 1986) and non-replicative (Gmyl et al., 1999) mechanisms o f recombination 

using poliovirus. Experimental data suggests that in vivo the predominant mechanism o f 

recombination in poliovirus is replicative. Replicative recombination occurs when the 

polymerase prematurely terminates during the elongation o f the nascent strand. Elongation 

o f the nascent transcript is completed follow ing re-association o f the nascent 

strand-polymerase complex with a different template (Figure 3.28). A  consequence o f this 

is that replicative recombination is more commonly referred to as template-switching. 

Investigations into the process o f replicative recombination have suggested that template- 

switching occurs w ith high frequency during the synthesis o f the anti-genome (Kirkegaard 

&  Baltimore, 1986). Using EM it has recently been identified that in the presence o f RNA 

the poliovirus polymerase forms a highly-ordered lattice structure (Lyle et al., 2002a). Lyle 

et al proposed that the high levels o f template-switching could be explained by the 

presence o f multiple templates undergoing RNA synthesis at the same time on a shared 

polymerase-lattice (Lyle et al., 2002a). The presence o f a polymerase lattice ordered in the 

presence o f RNA may also explain the observation made by Duggal et al that replication-
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deficient genomes were competent to act as a template for recombination (Duggal et al., 

1997).

The basic model for template-switching argues that recombination can either be 

homologous (as shown in figure 3.28) i.e. the polymerase-donor strand complex switches 

to an analogous position on the acceptor template, or non-homologous i.e. the polymerase- 

donor strand complex switches to a different position on the acceptor strand thereby 

leading to a deletion or insertion o f genomic material. According to this basic model o f 

recombination the cross-over points are random so homologous or non-homologous 

recombination should occur with equal frequency. This however is not supported by 

analysis o f  poliovirus recombinants which suggests that homologous recombination is 

favoured (Jarvis &  Kirkegaard, 1992, Wimmer et al., 1993). This observation has 

previously led to the proposal that alignment o f parental strands involved in recombination 

is mediated by RNA secondary structure (Romanova et al., 1986, Tolskaya et al., 1987) or 

specific sequence motifs (King, 1988). The presence o f specific sequences or RNA 

structures w ith in  the genome that promote recombination at specific sites in the genome 

and between closely related viruses would be advantageous to the virus. Random 

recombination, o f genomes by strand-switching during minus strand synthesis, lays the 

virus open to the possibility that it may recombine w ith an incompatible partner. For 

example, experiments have shown that the proteinase 3C o f HRV14 and coxsackievirus B3 

can process the non-structural proteins o f the respective virus but not the precursor o f the 

structural proteins (Dewalt et al., 1989). The existence o f specific sequence or structural 

recombination motifs would provide a mechanism for preventing any virus from 

recombining w ith viruses that are incompatible w ith itse lf at the level o f protein function.

A further advantage to the virus o f specific sequence or structural recombination motifs 

would be the reduction in the probability that the recombinants generated would be 

replication-incompetent due to deletions or insertions in its genome.
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Figure 3.28 Strand-switching model for homologous recombination during 
picornavirus replication.

The polymerase carrying a nascent negative strand detaches from the donor strand 
(shaded rectangle) during negative strand RNA synthesis (A ) and reattaches to a 
second genomic RNA ( B ) , termed the acceptor strand (rectangle w ith diagonal lines), 
w ith in  the replication complex. For clarity in this diagram the nascent strand is shown 
diffusing up to the acceptor strand. A fter hybridization to the acceptor strand RNA 
synthesis is completed. The resultant fu ll length negative strand is then copied ( C ) . 
Homologous recombination occurs when the polymerase complex switches to the 
same position on the acceptor template. Heterologous recombination occurs when the 
polymerase switches to a different position on the acceptor template.
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I f  there is a requirement for secondary structures or specific sequences to form 

recombination structures then it would be expected that genomic “ hotspots”  o f 

recombination would exist. Analysis o f enterovirus recombinants has shown that the 

majority o f these sites are found within the region o f the genome encoding the non- 

structural proteins. Recent research carried out analysing naturally circulating 

enteroviruses has shown that recombination occurs frequently in the 3CD region (Lindberg 

et al., 2003, Lukashev et al., 2003) in HEV-B and HEV-C species viruses (Brown et al., 

2003). Amongst the analysed recombinants o f poliovirus and HEV-C viruses 

recombination sites have been identified at nucleotides 6824/6825 o f Sabin 3 (Blomqvist et 

ak, 2003)and 6379/7441 o f poliovirus l(L iu  et ak, 2003). The region o f SSSV, which was 

analysed for a putative function, was centred on nt 6841 o f the full-length genome. This 

lies just downstream o f the cross-over point identified by Blomquist et al and w ith in the 

region identified by L iu et al as the crossover point. It can therefore not be ruled out as a 

possibility that the region o f SSSV identified is involved in the alignment o f HEV-C 

species viral genomes prior to recombination. The absence o f these sequences in HEV-B 

species would make it less like ly that HEV-B and HEV-C species would become closely 

enough aligned to make recombination a strong possibility.

Lukashev et al and others have shown that intraspecies recombination amongst the HEV-B 

enteroviruses exists (Lindberg et ak, 2003, Lukashev et ak, 2003, Oberste et ak, 2004).

Like the recombination observed between HEV-C enteroviruses, this occurs predominantly 

in the region o f the genome encoding the non-structural proteins. On the basis o f a model 

where the species-specific sequences are involved in promoting recombination at specific 

regions o f the genome it would seem reasonable to suggest that HEV-B enteroviruses 

would have evolved sequences that would enable close alignment o f HEV-B genomes. 

SSSV-analysis suggests no such species-specific sequences exist (figure 3.26). In my 

opinion, this argues against the species-specific m o tif being a determinant o f HEV-C 

recombination.
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3.10.1.3 A putative role for motif X in membrane targeting?

Fluorescent in situ hybridisation (FISH) used to trace the migration o f viral genomes 

fo llow ing uncoating o f the viral particle showed the presence o f a few distinct replication 

sites on the perinuclear membrane. W ithin cells that had been infected w ith poliovirus type 

1/Mahoney and type 2 Sabin it was shown that at early and late stages o f infection > 85% 

o f replication complexes at these distinct sites contained both genomes (Egger &  Bienz, 

2002). It is still unknown how and why the genomes migrate to the perinuclear sites o f 

replication. Amongst circulating enteroviruses it has been well documented that only 

intraspecies recombination is observed (Blomqvist et al., 2003, Brown et al., 2003, L iu et 

al., 2003, Lukashev et al., 2003). While it is possible that the apparent absence o f 

interspecies recombination is due to differences in receptor usage alone it is tempting to 

speculate that the reason for this is the absence o f a common sequence or structural 

recognition factor between enterovirus species that functions in cis to target the viral 

genome to specific areas o f the perinuclear region. In this model, targeting o f the genomic 

RNA would occur through hijacking o f cellular RNA transport pathways. The specific 

targeting o f m RNA to specific regions o f cells via molecular “ zipcodes”  has been 

described in plants (reviewed in Okita &  Choi, 2002) and mammalian cells (reviewed in 

Oleynikov &  Singer, 1998). Amongst viruses the use o f RNA transport systems to 

facilitate nuclear export o f spliced and unspliced RNA has been observed in retroviruses 

(H IV , M PM V, RSV), Hepadnaviruses (HBV) and Herpesviruses (HSV-1).

W ithin mammalian cells, one RNA transport pathway that has been characterised is the 

hnRNP-A2 transport pathway. The cellular protein hnRNP-A2 has had numerous functions 

assigned to it. W ith in  the nucleus it has a role in the regulation o f splice site selection 

(Mayeda et al., 1994) and nuclear export (Daneholt, 1999, Lall et al., 1999). In 

oligodendrocytes hnRNP-A2 has been demonstrated to mediate the anterograde transport 

o f RNAs along microtubules (Ainger et al., 1997). A 21 nt c/s-acting signal 

(GCCAAGG AG CCAG AG AG CAUG ) originally identified in myelin basic protein (MBP) 

mRNA has since been identified as the hnRNPA2 response element (A2RE). A2RE-like 

sequences have been identified in a wide range o f cellular RNAs (Ainger et al., 1993, Shan 

et al., 2003) and all complex retroviruses (Mouland et al., 2001).

In H IV , in addition to the REV/REX mediated export o f  unspliced RNA, hnRNPAl/A2 

mediated export o f viral RNA transcripts occurs. Mouland et al demonstrated the presence
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o f A2RE-like sequences in transcripts encoding gag and vpr. Mouland et al have proposed 

a model whereby the viral RNAs encoding the structural proteins are targeted for 

transportation to the periphery o f the cell by the presence o f the A2RE-like sequences. The 

targeting o f  the gag and vpr to the plasma membrane, via the hnR N P Al/A 2 transport 

pathway, (Mouland et al., 2001) restricts expression o f the structural proteins to the site o f 

v irion assembly (Figure 3.29). This provides the virus w ith a mechanism by which the risk 

o f the structural proteins being localised in different regions o f the infected cells at the 

point o f v irion assembly can be minimised. L ittle  homology is observed when the 

nucleotide sequence o f 19 nt m o tif X  (GACGCTAGTCTCCTAGCCC) is compared with 

the HIV-1 A2RE-like sequence (G AC AAG G AC CAAAAG AAC CCU ). However the 

A2RE/hnRNPAl transport pathway is like ly to be only one pathway out o f many involved 

in intracellular RN A transport. W ithin plant cells, in addition to a constitutive pathway, 

two regulated RNA transport systems have been described that target mRNAs to distinct 

regions o f the ER (Hamada et al., 2003). It may be therefore that the poliovirus genomic 

RNA is transported via a different transport pathway to the distinct site o f replication. I f  

RNA transport elements present w ith in genomes o f enteroviruses do target the genomic 

RNA to different locations w ith in the secretory pathway then recombination between 

different enterovirus species would be unlikely to occur, as recombination requires that the 

donor genomes are in close proximity. W hilst this proposal is highly speculative it is 

known from research using inhibitors o f the cellular secretory pathway, such as brefeldin 

A, that differences do exist amongst the Picornaviridae in the cellular membranes from 

which the replication complexes are derived (Gazina et al., 2002). Whether there is an 

inherent need for these differences in membrane utilisation in terms o f productive viral 

infection is unknown. Recent research using Flock House virus (FHV), an alphanodavirus, 

has demonstrated that this virus, at least, does not have a specific requirement for its usual 

cellular target, the mitochondrial membrane, as the virus was still able to replicate after it 

had been re-targeted to the ER membrane (M ille r et al., 2003). This o f  course does not rule 

out the presence o f species-specific sequence or structural motifs in picornavirus genomes 

that influences the choice o f membrane used. A fter all recombination forms a natural part 

o f viral evolution. The use o f one particular membrane for viral replication by any given 

virus may allow  a mechanism to increase the probability o f two viral genomes capable o f 

recombining coming in contact.
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Figure 3.29 Putative model for hnRNP A2/A2RE-mediated in HIV-1

Adapted from Mouland, Xu et al, 2001. gag RNA (green squiggles) and vpr RNA( 
red squiggles) both contain A2RE-like sequences that bind to hnRNP A2( blue 
spheres) in the nucleus. In the cytoplasm, multiple gag and vpr RNA molecules, 
w ith hnRNPA2 associated, assemble into granules (orange spheres). Granules 
containing both gag and vpr RNA are transported to the plus ends o f microtubules 
in the periphery o f the cell where the Gag protein (green spheres) and Vpr protein 
(red spheres) are co-translated. Gag and Vpr proteins co-assemble w ith H IV  
genomic RNA (green squiggles) at the plasma membrane.
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3.11 Future work

The identification o f a species-specific replication determinant raises questions regarding 

its possible functions, which due to time limitations could not be answered. As a priority, 

an attempt to select revertant viruses must be undertaken. I f  compensating mutations, 

mapping either to the m o tif X or to the non-structural proteins, can be identified this w ill 

provide valuable clues as to the function o f m otif X.

Conformational analysis o f the structure o f the RNA, using standard biochemical and 

enzymatic techniques, may also generate valuable information about the important 

nucleotides in the m o tif X  sequence by the way it is presented for interactions with 

proteins or other RNA. Using the information provided by this analysis it may be possible 

to produce a virus w ith  a “ knock-out”  phenotype.

The work carried out in this chapter raises the possibility that a second region o f SSSV 

which also appears to be species-specific (Figure 3.26) may also be a determinant o f 

replication or pathogenesis. When describing future work one possibility that must be 

considered is that the two regions o f SSSV, identified as being species-specific, are 

somehow linked in function. In this study, the introduction o f non-coding changes was 

targeted solely at the region o f the SSSV that showed the most suppression. It may be that 

the regions can compensate for one another to a lim ited extent and that mutations are 

required in both regions o f SSSV before a severe functional effect can be observed.



4 Preliminary characterisation of 3DN18Y

4.1 Introduction

W ork carried out previously by Rohll et al on the effect o f  the 3 ’UTR on picornavirus 

replication showed that a natural poliovirus 3’UTR (Figure 4.1 A ) (a two stem-loop 

structure) could be functionally replaced by the equivalent structure derived from HRV14 

(single stem-loop structure) (Rohll et al., 1995). During the course o f their investigation 

Rohll and colleagues mutagenised a highly conserved stem located at the base o f the 

rhinovirus 3’UTR (Figure 4.1C). One o f the mutants identified in the study, designated 

mut4 (Figure 4.1B), though predicted to be as structurally stable as the wildtype rhinovirus 

3 ’UTR, was shown to be replication deficient when analysed in the context o f a 

subgenomic replicon containing a C A T  reporter gene. Further characterisation o f the mut4 

3 ’UTR mutation, in the context o f virus, identified a single compensating mutation in the 

N-terminus o f the viral polymerase (N 18Y) that could rescue virus w ith a mut4 3’UTR 

(Meredith et al., 1999). The N1 8Y mutation was selected when the mut4 3’UTR was 

studied in the context o f a poliovirus or rhinovirus backbone. This provided evidence that 

the rhino- and enterovirus polymerases interact w ith the 3 ’UTR in the same manner. By 

investigating the effect o fN 18Y  on the biochemical attributes o f the polymerase it was 

hoped that insight would be provided into the nature o f the 3'UTR-RdRp interaction. To 

put these studies into context an overview o f the RNA-dependent RNA polymerase (RdRp) 

encoded by poliovirus (3Dut) w ill now be provided.

4.1.1 Crystal structure o f3 D wt

A ll RNA viruses require an RdRp to catalyse the replication o f their genomes. The size o f 

the RdRp encoded by RNA viruses varies according to the length and type o f RNA 

genome. The first RNA-dependent RNA polymerase to be crystallised was the poliovirus 

polymerase 3D"1' (Hansen et al., 1997).

The crystal structure showed that the 53 kDa polymerase, despite showing a lack o f 

sequence homology w ith known DNA-dependent DN A polymerases (DdDp), DNA- 

dependent RNA polymerases (DdRp) and reverse transcriptases (RT), did share a common 

tertiary structure w ith these enzymes. The tertiary structure o f 3Dwt, shown in figure 4.2, 

resembles an upturned right hand with fingers, palm and thumb motifs (marked with



G
U G

U G
A  U

A C
G A

A - U  

U - A  

C - G
C -  G

U - A  
U -  A

U A -  U
U - A
U -  G
C - G

U - A  

G - C  

A -  U

C - G  A A

U U c - G
C U A - U

C - G  G - U  ^  U -  A
A - U  U - A
U - A  G - U
A - U  U - A
U - A  U - A

h a  c
A  U A G G U U A A C A

C -  G G U A p o ly A
A  A  A  A

i U U U U U C U U U
i i i  i i i i i i u

A A A A A G A G G  
A  C U

A
p o l y A

c HRV la AUAUAg----------- cUAUpolyA
HRV lb AUAUAg--------- — cUAU "
HRV2 AUAUAg----------- uUAU "
HRV 9 AUAUAg----------- uUAU "
HRV 14 AUAUAg----------- uUAU "
HRV 16 AUAUAg----------- uUAU "
HRV 8 5 AUAUAg-------- -- uUAU "
HRV89 AUAUAa--------- — uUAU "

Figure 4.1 Structure and sequences o f 3 ’UTR, Taken from 
Meredith et al., 1999. (A ) Secondary structure o f the PV3 
3 ’UTR (B) Structure o f the HRV14 3 ’UTR. (B) also shows the 
sequence change at the base o f  the stem to generate mut 4 (C) 
Conserved sequence at base o f the 3’ stem o f HRV 3 ’UTR
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arrows). In addition to the fingers, palm and thumb sub-domains, the poliovirus 

polymerase contains a structural element composed o f residues N-terminal to the fingers 

sub-domain. Using a computer-based method o f structural prediction Reilly and Kao 

suggested that the RdRp o f viruses from the picorna- bromo-, tombus, and hepatitis C-like 

virus families these virus families shared this unique N-terminal extension o f the fingers 

sub-domain (Reilly &  Kao, 1998).

Six amino acid residues are conserved across all species o f eukaryotic RNA viruses 

(Koonin, 1991). In the poliovirus RdRp these residues are lysine 159, glycine 289, aspartic 

acid 233 and 238, asparagine 297 and two highly conserved aspartic acid residues (aa 328 

and 329) located in m o tif C (Hansen et al., 1997).

4.1.1.1 The poliovirus RdRp palm domain

The palm domain contains a core structure found in all classes o f polymerase (motifs A- 

D). A  fifth  motif, known as m otif E, has been shown to be unique to RdRp and RT 

enzymes (Poch et al., 1989) and is located between the palm and the thumb subdomains 

(Figure 4.3B). Five o f  the conserved residues found in all RdRp, aspartate 233 and 238 

(m o tif A), asparagine 297(m otif B), aspartate 328 and aspartate 329 (m o tif C), are all 

found with in the core structure. Through structural analogy w ith RT and mutational studies 

the functions o f the RdRp conserved residues w ith respect to the process o f RNA synthesis 

is slowly being elucidated. The structural core o f the palm domain in all polymerases 

provides the platform for catalysis to occur. In the majority o f polymerases this core 

structure consists o f two a-helices located beneath four anti-parallel p-sheets (see Figure 

4.3A Gorbalenya et al., 2002), a m otif similar to the RNA-recognition m o tif o f  splicing 

and ribosomal proteins (Hansen et al., 1997). In the crystal structure obtained by Hansen et 

al aspartate 233, aspartate 328 and aspartate 329 are clustered closely together (figure 4.4). 

The presence o f cations is an essential requirement for the process o f catalysing the 

incorporation o f NTP into nascent strands. In vivo RdRp’s preferentially utilise magnesium 

cations. In 3Dut aspartates 233 and 328 are believed to be involved in the chelation o f 

magnesium cations in vivo. Recent analysis has indicated a role for asparagine 297 in the 

process o f cation selection (Grotty et al., 2003).

In poliovirus 3Dul aspartate 238 hydrogen bonds w ith asparagine 297, an interaction that is 

analogous to the Tyr 115-Phel60 interaction in HIV-1 RT. In Moloney murine leukaemia
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Figure 4.2 Crystal structure of Poliovirus type 1 polymerase

Location o f residue 18, highlighted in yellow, w ith in the crystal structure o f 
Poliovirus type 1 polymerase obtained by Hansen et al., 1997 . Location o f 
residue 18 in the molecule was highlighted using 3nCD available via the NCBI 
web server
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virus (M M LV ) mutation o f Tyr 115 to a phenylalanine residue resulted in an alteration in 

the preferred substrate (dNTP or NTPs) o f the RT enzyme (Gao et al., 1997). It has been 

proposed that an aspartate at residue 238, which can be aligned w ith residue 115 o f the 

HIV-1 RT, could favour the preferential binding o f NTP compared to dNTP by RdRp.

4.1.1.2 The poliovirus finger and thumb domains

The fingers domain is composed o f two polypeptide sections one N terminal (aa 97-194) 

and a second region located between the core motifs A  and B (aa 240-285). Two o f the 

conserved residues, lysine 159 and Glycine 289, map w ith in  this domain o f the 

polymerase. The function o f Lysine 159 has been proposed to be the stabilisation o f the 

triphosphate moiety o f the incoming NTP, while glycine 289 forms part o f the NTP 

binding pocket. In the crystal structure o f 3D'U significant regions o f the fingers 

sub-domain (residues 98-180 and 267-290) were disordered so no conclusions could be 

drawn regarding any structural similarities that might exist between 3DvUand RT. However 

the ordered regions o f the finger domain showed significant difference from the analogous 

region in the HIV-1 RT.

The poliovirus thumb domain is composed mainly o f residues C-terminal o f the palm 

domain and is largely alpha-helical in structure. The crystal structure o f the 3DNU showed 

that the thumb domain begins w ith a short [3-sheet that interacts w ith m o tif E. The 

remainder o f the thumb is composed o f a series o f five a-helices. One o f the five a-helices 

(termed aK) is positioned along the active site cleft. In crystal structures o f H IV -1 RT, T4 

DNA polymerase and T7 RNA polymerase an a- helix is located in an analogous position. 

The co-crystal structure o f H IV -1 RT complexed w ith D N A has shown that the a-helix is 

positioned in the minor groove o f the DNA. Data obtained on the primer/template 

requirements o f the HCV polymerase supports the view that the thumb sub-domain o f 

RdRp functions to correctly position the RNA template in the active site (O'Farrell et al., 

2003, Zhong et al., 2000). In the crystal structure o f 3Dut the thumb domain appears to 

interact w ith the unique N-terminal region o f the polypeptide (Figure 4.2). It remains 

unclear how this might affect the positioning o f the template and nascent strand in 3Dut.
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Figure 4.3 The structure o f the palm  domain o f the, 3I)Hl. (A ) Schematic 
o f  the poliovirus palm domain. Taken from Gorbalenya et a l,  2002 (B) the 
location o f the palm domain w ith in  the the three-dimensional structure o f 
poliovirus polymerase. The five canonical RNA-dependent RNA 
polymerase domains are colored as; follows; m o tif A, ; m o tif B, blue:
m o tif C, red: m o tif D, purple: and m o tif E, . V a l391, identified as
important for the binding o f viral pirotein 3AB , is shown in_ . The 
metal ion at the active site is shown in .Taken from Lyle et al., 2002 
and references w ith in



Figure 4.4. Amino acid residues that are located within 
5 A  of the metal ion present at the active site o f 3Dwt.
Figure 4.4 has been taken from Lyle et al., 2002. The Ca2+ 
ion present in the polymerase crystal is shown in ; 
this is presumably replaced by M g2+ or M n2+ during 
catalysis. The ribbon diagrams o f the canonical 
polymerase domains are coloured as described in Fig. 4. x 
(m o tif A, ; m o tif C, red). The location o f Asp358
that has been demonstrated to be required for 3B 
uridylylation but not polymerisation is shown in



Inga Dry Preliminary characterisation o f 3D Chapter 4 105

4.1.1.3 N-terminal region

The unique N-terminal region o f the 3Dvst polypeptide chain is essential for the catalytic 

functions o f the polymerase. Unfortunately, only two segments o f the unique polypeptide 

region o f the poliovirus polymerase were ordered in the 3 D ut crystal. The first ordered 

region (aa 12-37) extends upwards from the active site to the top o f the thumb domain. The 

second ordered segment (aa 67-97) forms an a- helix that is positioned at the base o f the 

fingers domain. An intramolecular connection between these two regions (shown as a blue 

line in Figure 4.5) would span a distance o f > 44 Angstrom (A). It is for this reason that 

Hansen et al postulated that the N-terminal residues could be donated by an adjacent 

polymerase molecule. This type o f intermolecular interaction would require the N-terminal 

amino acid residues to span a distance o f <32 A (Red line Figure 4.5).

4.1.1.4 Polymerase-polymerase interactions

Analysis o f purified polymerase suggested that 3Dut-3D "1 interactions were important for 

the RNA binding and polymerisation (Pata et al., 1995). Glutaraldehyde cross-linking (Pata 

et al., 1995) and yeast two-hybrid system (Hope et al., 1997, Xiang et al., 1998) analysis 

have provided further support to the idea that oligomerisation is important for 3Dut 

function. The crystal structure o f 3D'vt identified two interfaces between polymerase 

molecules: Interface I and II (Figure 4.6).

Interface I involves an interaction o f residues located on the back o f the palm w ith residues 

found on the side o f the thumb domain. The Interface I interaction involves at least 23 

amino acid side chains and through these interactions a head to tail polymerase fiber is 

formed in which each polymerase molecule is rotated 180° relative to the adjacent 

molecule (Hansen et al., 1997). Mutational disruption o f Interface I was demonstrated to be 

lethal to the virus (Diamond &  Kirkegaard, 1994). Further analysis demonstrated that the 

Interface I polymerase-polymerase interactions were important in binding RNA (Hobson et 

al., 2001, Lyle et al., 2002a). This is in agreement w ith the model, based on the location o f 

ds-DNA in the co-crystal structure o f H IV -1 RT in which the RNA template would be 

bound along the oligomeric fiber (Figure 4.7).
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Figure. 4.5 Interactions between the N-terminal strand (light gray) and the 
thumb subdomain o f poliovirus polymerase. Taken form Hobson et al., 2001 . 
The positions o f mutations introduced at Interface II are labeled and shown in 
yellow, modelled as the mutated amino acid. Intra- (shown in blue) and 
intermolecular distances (shown in red) between residues 35 and 69 in crystals 
o f  poliovirus polymerase.
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Figure 4.6 Polymerase-polymerase interactions in the three- 
dimensional structure o f poliovirus polymerase and location o f the 
3AB binding site. Taken from Lyle et al., 2002 The unit cell o f the 
crystal structure is shown, w ith each polymerase coloured distinctly. 
Residues that constitute the 3AB binding site are shown in 
The GDD sequence at the active site is shown in red. Interface I can 
be seen as the abutment o f  polymerase monomers in the horizontal 
dimension. Interface II is apparent as the abutment o f monomers in 
the vertical direction and the intermolecular donation o f the N- 
terminal strand o f one monomer into the thumb o f the adjacent 
monomer. The N-terminal strands that are donated by monomers 
outside the unit cell are shown in white.
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In this model the intermolecular donation o f the N-term inal domain o f one polymerase to a 

region o f the thumb near the active site o f an adjacent polymerase molecule provides the 

second interface (Interface II) (Figure 4.5 and Figure 4.6). Support for this model has been 

obtained using disulphide cross-linking (Hobson et ah, 2001). Interestingly, polymerase 

molecules unable to form Interface II interactions show no deficit in their ability to bind 

RNA when compared to wildtype polymerase (Hobson et al., 2001). However the N- 

terminal residues are critical for the ability o f the polymerase to elongate templates 

(Hobson et al., 2001, Plotch et ah, 1989).

Recent EM analysis o f purified polymerase showed large sheets and tubes o f polymerase 

molecules were formed. EM analysis o f Interface I and Interface II polymerase suggests 

that both interfaces are required for the formation o f the w ild-type polymerase structures. 

Under conditions o f low salt Lyle et al demonstrated that polymerase could be visualised 

by immunostaining on tubular structures derived from the membranous replication 

vesicles. These tubular structures were similar to those obtained using analysis o f purified 

protein (Lyle et ah, 2002a). On the basis o f this Lyle et al have proposed a model in which 

sheets o f polymerase coat the replication vesicles. The model proposed by Lyle et al is 

shown in Figure 4.8. As 3Dut is not membrane associated, the 3D'U are shown tethered to 

the membrane through the previously described interaction w ith 3AB (Lyle et ah, 2002b). 

The head to tail arrangement o f  the polymerase molecules connected by Interface I 

interactions to form fibers, as described previously by Hansen et al, would enable 3AB to 

tether the 3Dut fiber to the membrane every second molecule. In the model proposed by 

Lyle et al the individual polymerases fibers (shown horizontally across the model) are 

joined via Interface II interactions. Due to the requirement o f the N-terminus for the 

catalytic activity o f the polymerase catalytically active centres would be formed where 

polymerase fibers were connected by Interface II interactions.
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Figure 4.7 Model of a poliovirus polymerase-dsRIVA complex. 
Taken from Hobson et al., 2001. The structure is based on the structure 
o f H IV -1 RT complexed to dsDNA (Huang et al., 1998).



Figure 4.8 Model of higher order polymerase structure.

The model o f  polymerase array formation as proposed by Lyle et al., 2002 
is shown. 3AB is represented as a globular integral membrane protein in 
black and grey. Fibers o f polymerase connected across interface I lie 
horizontally. These fibers area connected to one another through 
interactions at interface II, modelled to extend the lattice as a planar array, 
shown in perspective. Contacts w ith 3AB through the 3AB binding sites 
(Hope et al., 1997;Lyle et al., 2002) rendered in space-filled yellow side 
chains could occur at every other polymerase along the axes defined by 
both interfaces.
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4.2 HCV polymerase: structure-function model for 3Dwt

Recently crystal structures have been obtained o f the RdRp (NS5B) o f HCV (Bressanelli et 

al., 1999, and O'Farrell et al., 2003). In the crystal structures o f the HCV polymerase the 

N-terminal residues are an extension o f the fingers sub-domain and interact w ith  the thumb 

domain to close the polymerase into a circular structure (Figure 4.9).

Three pieces o f evidence have been used to argue that the crystal structure o f HCV NS5B 

may offer a more accurate reflection o f the complete structure o f 3Dut.

• The ordered region o f the fingers sub domain o f 3Du l( residues 181-194 

and 240-266) are structurally analogous to the HCV counterparts 

(Bressanelli et al., 1999)

• The P- sheet that connects the palm and thumb domain, that is often referred 

to as the “  primer grip”  is similar in both HCV and poliovirus

• Similar crystal structure has been resolved for the calicivirus polymerase 

(Ng et al., 2002) and q> 6 (reviewed in Van D ijk  et al., 2004) suggesting all 

RdRp may share the same overall structure.

4.2.1.1 C rysta l s tru c tu re  o f HCV N S5B

Figure 4.9 shows the structure o f the HCV strain B4 strain polymerase (Bressanelli et al.,

1999). From the crystal structure o f HCV (Figure 4.9) it can be seen that the fingers sub- 

domain folds mainly into a-helices (labelled w ith numbers) located near the palm domain 

and p- sheets (labelled with numbers) distal to the palm domain. The distal region o f the 

fingers domain, described by Bressanelli et al as the “ fingertips”  consists o f a six-stranded 

P-sheet and an a-helix (Figure 4.9). Two loops originating from this structure have been 

described (A l)  and (A2). The first o f these, A l, extends away from the fingertips and via a 

short a-helix (helix A  formed from residues 24-30), interacts w ith residues in the thumb 

domain located between helixes O and Q. No corresponding region to A l has been 

identified in the HIV-1 RT enzyme. However a sim ilar loop to A2 has been observed in the 

H IV-RT (Bressanelli et al., 1999). The interaction o f the A l loop w ith the thumb domain



Inga Dry Preliminary characterisation o f 3D Chapter 4 108

and the position o f the A2 loop creates two tunnels w ith in the structure: the NTP tunnel and 

the RNA-binding groove (Bressanelli et al., 1999).

4.2 .1 .2  In te rn u c leo tid e  bond form ation: the H C V  m odel

Although the exact positioning o f the template and the nascent strand w ith in 3DvU has not 

been deduced, structural similarities suggest the formation o f internucleotide bonds w ill 

occur in a similar manner between RdRp. Based on the complex structure o f H IV -1 RT 

complexed to its template/primer and NTP (Huang et al., 1998) a model for HCV has been 

constructed (Figure 4.10). In this model a maximum o f 5 nucleotides o f template would be 

bound by the H C Vpo1 RNA binding-site. This is consistent w ith the in vitro biochemical 

data that has shown the m inimal template length to support the initiation o f RNA synthesis 

to be 5 nts (Zhong et al., 2000).

A [3-hairpin structure that is part o f the thumb domain is positioned facing towards the 

active site. No p-hairpin structure is found at the analogous position in the thumb domain 

o f 3Dut. In the computer model produced by Zhong et al the 3’ o f the template abuts the p- 

hairpin structure. This interaction could ensure that the template is in the correct position to 

enable the formation o f the optimal structure between T+3 and the incoming NTP for 

catalysis o f the nucleotidyl transfer reaction to occur. Alternatively, Zhong et al postulate 

that the p-hairpin structure may function to separate the nascent RNA strand from the 

template, as has been shown for the N-terminal domain o f T7 RNA polymerase, which 

occupies the same spatial arrangement (Cheetham &  Steitz, 1999). This suggestion was 

based on the fact that the formation o f a second nucleotidyl transfer reaction (between T+4 

and an incoming NTP) requires the translocation o f the template towards the P-hairpin.
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Figure 4.9 The crystal structure of the HCV RdRp.
In the schematic at the top, residues o f the fingers sub-domain are highlighted 
in , the palm domain in and the thumb domain in . The C- 
terminal residues are shown in yellow. The crystal structure o f the RdRp o f 
HCV. Taken from Bressanelli et al., 2003. In the crystal structure o f  HCV 
NS5B.a- helices are labelled w ith capital letters and p-sheets are labelled w ith 
numbers. Connecting loops are shown as yellow tubes. (B) The “ fingertips”  
are composed o f f  a mixed barrel o f an a- helices and p-sheets. Two loops (A l 
and A2 ) emanate from this barrel to close the enzyme by interacting w ith the 
back o f the thumb.



Figure 4.10 Model fo r  internucleotide synthesis in HCV NS5B. Taken from 
Zhong et al., 2000 .The HCV NS5B protein is depicted by a molecular 
surface colored by local electrostatic potential from red to blue as the 
potential ranges from negative to positive. The thumb subdomain is omitted 
from this structure. Atoms o f RNA are shown and denoted T + l through T+8 
on the template strand and P+l to P+2 on the primer strand. P+l and P+2 
base pair w ith T + 1 and T+2, respectively. The incoming NTP base pairs 
w ith  T+3. The P-hairpin is shown in yellow. The 3’ o f the template is abut 
the (3-hairpin structure. An interaction between this structure and the 
template could ensure that the template is in the correct position to enable 
the formation o f the optimal structure between T+3 and the incoming NTP 
for catalysis o f the nucleotidyl transfer reaction to occur. Alternatively, the 
(3-hairpin structure may function to separate the nascent RNA strand from 
the template, as has been shown for the N-terminal domain o f T7 RNA 
polymerase, which occupies the same spatial arrangement. The direction o f 
the motion o f the nucleic acid and the NTP during nucleotidyl synthesis are 
indicated by arrows.
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Recently a crystal structure o f NS5B complexed w ith  single-stranded RNA has been 

obtained that is in agreement with the computer predicted model (O'Farrell et al., 2003). 

The co-complexed structure obtained showed that the last base o f the Us-oligo interacted 

with the p-strand and residues o f the C-terminus o f the protein. In addition direct 

interactions between the U j-oligo and residues 14, 93, 95, 97, 98, 139, 141 and 160 o f the 

fingers domain were observed. It is proposed that these direct interactions play an 

important role in directing the RNA to the correct position in the active site thus enabling 

the phosphoryl transfer reaction to occur.

4 .2 .1 .3  O lig o m erisa tio n  o f HCV NS5B

Analysis o f HCV NS5B polymerase molecules have shown that the efficiency o f RNA 

synthesis increased under conditions that promoted oligomerisation (Wang et al., 2002). 

Two interfaces have been described between NS5B molecules (Figure 4 .11), both o f which 

involve the “ fingertips and A l and A2 region o f the HCV polymerase. Interface A  is a head 

to tail interaction between the thumb domain (a- helixes T and U) o f one structure and the 

“ fingertips”  o f the adjacent molecule ([3-sheets 1, 4 and 8). The second interface is a head 

to side interaction between the back o f the thumb domain in one molecule (loops between 

a- helixes T and U) and an anti-parallel p-strand o f the fingers sub-domain o f an adjacent 

molecule (a- helix B and p-sheets 2 and 5 found in A l and A2 loops) (Wang et al., 2002).



Figure 4.11. Interactions between molecules o f  the HCV RdRp in a crystal 
lattice. Taken from Wang et a l, 2002. The crystal structure o f HCV NS5B- 
AC21 was solved at a resolution o f 2.9A. The two interfaces identified from 
the N35B crystal lattice are highlighted and labelled Interface A  and Interface 
B. Nomenclature for the key motifs is the same as in figure 4.9.



Inga Dry Preliminary characterisation o f 3D' Chapter 4 110

4.3 N18Y mutation

In the entero-, hepatoviruses and HRV14 residue 18 is conserved as an asparagine (N18). 

In the arrangement o f the N-terminus in the crystal structure o f 3Du lthe N18 residue is 

located towards the base o f the active-site cleft (Figure 4.2). I f  the position o f residue N18 

is modelled onto a circular RdRp structure, based on the HCV NS5B crystal structure then 

it is positioned in an analogous position to the A1 loop (Figure 4.12).

In the original characterisation o f the N18Y mutation it was demonstrated that in the 

absence o f the mut4 3’UTR the resulting virus could replicate 0.5 logio higher than the 

parental PV3-HRV14 chimeric virus (Figure 4.13). It was in itia lly  suggested that the 

increase in fitness o f the PV3-FIRV14 chimeric virus containing the N18Y was due to a 

non-specific enhancement o f the polymerisation activity o f the polymerase. However 

Meredith et al demonstrated that the N18Y was a specific coding change as the N18Y 

coding change was not one o f the compensating mutations recovered from transfections o f 

viral RNAs that had the entire 3 ’UTR deleted (Meredith et ah, 1999).

So what aspect o f polymerase function could the N18Y mutation effect? The overviews o f 

the current models about 3Dutand HCV offer some insight into the potential functions 

affected by this change:

Oligomerisation - In the crystal structures o f 3Du land HCV the N-terminal residues 

have been implicated in the oligomerisation o f the polymerases. In both HCV and 

3Dut RNA synthesis and RNA-binding have been shown to be co-operative. An 

alteration in the ability o f the protein to form oligomers could have effects on the 

formation o f the polymerase lattice and indirect effects on RNA binding and 

polymerisation.
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RNA-binding - The data published by Meredith et al suggests a direct interaction 

between N18Y and the virus 3’UTR. Interestingly, w ith in  the HCV-liganded 

complex (O'Farrell et al., 2003) it was shown that residue 14 o f the HCV polymerase 

directly interacts w ith the RNA template. Structural alignments o f HCV and 3Dut 

seem to indicate that N 18 is structurally analogous to residue 14 o f the HCV 

(Bressanelli et al., 1999). I f  N18 is functionally analogous then it may be that the 

only difference between 3D "1 and 3DNI8Y might be an alteration in the affin ity o f 

binding o f the protein to the 3’UTR.

To define how the N18Y coding change exerts its effect the polymerase must be 

characterised biochemically. This requires the expression and purification o f large 

quantities o f protein. The decision was taken to express 3Dut and 3DNI8Y, using a bacterial 

expression system, in an untagged form to ensure the data obtained from the in vitro 

biochemical studies was as relevant as possible to what occurs in vivo. Preliminary 

characterisation using in vitro assays developed previously to study attributes o f 3DvU 

including polymerisation and uridylylation would ensure that the purified recombinant 

proteins were functional. It was also hoped that the prelim inary characterisation would 

elucidate the biochemical basis for the phenotype observed by Meredith et al.



Figure 4.12 The location o f  N18Y within the polymerase structure is 
shown based on the crystal structure o f HCV NS5B
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Figure 4.13 A one step growth curve to compare N18Y viruses.
Taken from Meredith et al., 1999. The key indicates the chimeric 
viruses used in the growth curves.
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4.4 Construction of DNA vectors expressing 3Dwt and

3DN18Y

It has previously been documented that enzymatically active 3DNU can be successfully 

expressed in and purified from E.coli (Morrow et al., 1987, Plotch et al., 1989). The 

plasmid that was used to express 3D'vtand 3DNm in bacterial cells was pET16b 

(Novagen). Expression o f proteins from the expression vector pET16b occurs from a T7 

promoter (Figure 4.14). The expression vector pET16b encodes an N-terminal His-Tag 

sequence to enable purification. However it was decided to purify an untagged version o f 

the polymerase. To achieve this, the protein was fused in-frame at the Nco /  restriction 

enzyme site (blue letters in Figure 4.14) and Bam HI site (red letters in Figure 4.14).

Oligonucleotide primers IG24 and IG25, which contain the relevant restriction sites (Table 

6.2 materials and methods), were used to amplify the cDN A sequence o f 3DNU using PCR 

from the subgenomic replicon pT7FLC/Rep3 (Barclay et al, 1998). Oligonucleotide 

primers IG24 and IG25 were also used to amplify the cDN A sequence o f a 3Dut containing 

the N18Y mutation (3DNI8'  ). The cDNA sequence o f the polymerase 3DN18> was 

amplified from pT7FLCN18Y a plasmid that contained a complete cDNA copy o f the 

genome o f PV3.mut4 3’UTR.3DK18\  The plasmid p'T7FLCN18Y was constructed by Janet 

Meredith. The expression plasmid pET16b3DNI8'r was constructed by Dr.V.Cowton.

The PCR product and the vector were digested w ith Nco I and Bam HI. The digested 

vector and PCR product were purified from agarose prior to being ligated together. The 

ligations were purified and transformed into E.coli DH5a using standard electroporation 

conditions. The transformants were screened for the presence o f insert by redigesting the 

recovered plasmids w ith Nco I and Bam HI. Transformants positive for insert were 

identified by the presence o f an additional band, when compared to linearised pET16b o f 

approximately 1.5 kb in size. Sequencing was used to confirm  that no additional coding 

changes had been introduced to the viral polymerase.



T7 promoter______

AGAT C T C GAT C C C GC GAAAT T AAT AC GAC T C AC T AT AGGGGAAT T G T GAGC G GA

TAACAATTCCCC T C TAGAAATAAT T T T G T T T AAC T T T AAGAAGGAGAT AT AC CAT

G G G C CAT CAT CAT CAT CAT CAT CAT CAT CAT C AC AG C AG C G G C CAT AT C G AAG G T C

GTCATATGCTCGAGGATCCGGCCTGCTAACAAAGCCCGAAAGGAAGCTGGGAGTT

GGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTCTAAACG
<4------------------------------------------------------------

GGTCTTGAGGGGTTTTTG 

T7 terminator

Figure 4.14 pET16b cloning/expression region

The lac operon (bold black line) and His tag (bold grey line) are 
highlighted. The restriction enzyme sites used to clone the 3DN18Y and 
3Dwt cDNA sequence into pET16b were Nco I ( Blue letters) and Bam HI 
(red letters). The T7 promoter and terminator sequences are shown with a 
black arrow. Information was obtained from Novagen.
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4.5 Expression of 3Dwt and 3DN18Y

Expression o f the viral polymerase from the expression vector is driven by a T7 promoter. 

The T7 promoter in the expression vector is under the control o f the lac operon (Figure 

4.14). As a consequence expression o f the protein o f interest is suppressed in the presence 

o f glucose. In the absence o f glucose the expression o f the protein o f interest can be 

induced by isopropylthio-|3-galactosidase (IPTG), a lactose analog.

To express 3D"1, the expression construct pET16b3Dul was transformed using calcium 

chloride into E.coli BL21 DE3 and E.coli BL21 DE3 (PlysS). Both these strains o f bacteria 

contain a chromosomal copy o f the T7 RNA polymerase under the control o f an IPTG- 

inducible promoter. In addition, to the T7 RNA polymerase E.coli BL21 DE3 (PlysS) also 

expresses T7 lyzozyme. In itia lly  the transformed E.coli cells were grown as a starter 

culture overnight at 37 °C for 16 hours, with shaking. A fter carrying out small-scale 

expression analysis it was discovered that expression o f the protein from the cDNA was 

greater i f  the starter culture had been grown in the presence o f 2 % glucose. The small 

scale expression analysis also showed that the recovery o f  protein was greatest from E.coli 

B121 DE3 (PlysS). A ll large scale expression studies were subsequently carried out using 

freshly transformed E.coli B121 DE3 (PlysS).

The starter culture, which had been grown for 16 hours in the presence o f 2 % glucose with 

shaking, was used to inoculate 3 litres o f LB media to an O D6ooof 0.3. A fter growing the 

culture at 37 °C w ith shaking t ill the OD600 was between 0.6 and 1.0 the expression o f the 

protein was induced w ith the addition o f IPTG, the final concentration o f which was 1 

mM. The IPTG was maintained in the culture for the duration o f the 5 hour induction. 

3DN18V was expressed in the same way as 3Dvvt.
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4.6 Purification of the ZD™1 and 3DN18Y

Following a 5 hour induction the bacterial cells were harvested by centrifugation at 3000 

rpm in a Sorvall GS-3 rotor. The supernatant was removed and the pelleted bacterial cells 

were frozen at -20 °C. The frozen cells were thawed and resuspended in 20 mis o f 

resuspension buffer I per litre o f original culture (for details see materials and methods 

6.3.1). The expression o f T7 lysosyme by E.coli BL21 DE3 (PlysS) aids the rupturing o f 

the bacterial cells during thawing.

The lysed bacterial cells were then subjected to 5 cycles o f sonication using a sonicator 

(Dawe instruments type 7532-1 A). Each burst o f sonication was carried out for 1 minute. 

Following sonication, the bacterial preparation was centrifuged for 30 minutes at room 

temperature at 20,000 rpm in a Sorvall SS34 rotor. Analysis o f the soluble and insoluble 

fractions showed that the majority o f the protein was located in the soluble fraction.

Purification o f the polymerase was carried out using an sulphopropyl (SP)-sepharose 

column w ith a bed volume o f 1.5ml. Prior to purification the column was equilibrated 

using 8 column volumes o f resuspension buffer I. The soluble cell lysate fraction was then 

adsorbed onto the column. Prior to elution the sepharose was washed w ith four column 

volumes o f wash buffer I. The proteins bound to the column were eluted sequentially by 

four column volumes each o f elution buffers I-IV . Samples positive for 3Dwt, as 

determined by SDS-PAGE gel electrophoresis, were dialysed overnight at 4 °C in 

polymerase storage buffer. Purified polymerase was stored at -70 °C in polymerase storage 

buffer.

Figure 4.15 presents the data from the SP-sepharose purification o f 3D "1 (Figure 4.15A) 

and 3DNI8Y (Figure 4.15 B).
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Figure 4.15 SDS-electrophoresis gel analysis offractions from the 
purification o f 3DHt (A) and 3DN18Y (B) using an SP-sepharose column. 
Soluble cell lysate obtained from cultures o f BL21 DE3 (PlysS) expressing 
either 3Dwt or 3DN18Y were loaded onto an SP-sepharose column that had 
been equilibrated w ith resuspension buffer I .For analysis purposes, 
fractions relating to the column flowthrough (lanes 1 -  4), column washes 
(lanes 5 and 6) and 100 (lane 7) and 200 mM (lane 8) elution 
steps o f the purification procedure were run on an SDS-Page electrophoresis 
g e l.
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4.7 Preliminary functional characteristics of 3 0 ^  and

3DN18Y

4.7.1 Uridylylation

Two mechanisms have been identified through which RdRp initiate RNA synthesis: primer 

independent (■de novo in itiation) or primer dependent. The RdRp o f many viruses, 

including HCV and bacteriophage Qp, can initiate RNA synthesis de novo (Kao et al., 

2001). Picornaviruses and viruses in the picorna-like superfamily, on the other hand, 

absolutely require a primer in vivo to initiate RNA synthesis. A  virus encoded protein, 

designated VPg, which is found covalently attached to the 5’ term inal-pUpUp, o f the 

genome and anti-genome (Rothberg et al., 1978a) is utilised as a primer by picornaviruses 

follow ing uridylylation. The covalent linkage o f uridylate residues to VPg is catalysed by 

3Dut, in a reaction templated for by a single adenylate residue located in the loop o f the 

CRE (VPg-pUpU synthesised in this manner is utilised in the initiation o f positive-strand), 

using a slideback mechanism (Paul et al., 2003), or by poly A  (VPg-poly U synthesised in 

this manner is believed to be used to initiate negative-sense strands). The synthesis o f VPg- 

pUpU by 3Dwtcan be replicated in vitro using full-length genomic transcripts or transcripts 

o f CRE. In vitro the uridylylation reaction is stimulated more than 20-fold when 3CDpro is 

included in the reaction (Paul et al., 2000). Functional analysis carried out by Pathak et al 

on 3DNSt Interface I mutants identified that an interaction between the back o f the thumb 

domain o f the polymerase and 3Cpm was required for this stimulation to occur (Pathak et 

al., 2002).

To ensure that the purified polymerases were functional w ith  respect to their ability to 

uridylate VPg an in vitro uridylylation assay was carried out using the method described by 

Paul et al (Paul et al., 2000). The incorporation o f [a-32P] UTP in to VPg-pUpU by 3Dut 

enables the products o f the reaction to be visualised using a phosphoimager documentation 

system fo llow ing electrophoresis on a 12 % Tris-tricine SDS-polyacrylamide gel. The 

ability o f the 3Dutand 3DNlfn to uridylate VPg was assessed over concentrations ranging 

from a maximum concentration o f 2 pg and 0.5 pg. To obtain these concentrations 3Dwt 

and 3DN18V were serially diluted in 3Dpo1 storage buffer.
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Figure 4.16 shows the developed image o f products o f the in vitro uridylylation assay as 

synthesised by either 3Du lor 3DNI8Y. Figure 4.16 confirms that both the purified 3D'vtand
N 1 8 Y r*3D1 are both functionally capable o f catalysing the addition o f uridylate residues to 

VPg. No significant difference in the relative abilities o f 3Dvvtand 3DNI8'' to catalyse the 

uridylylation o f VPg to form VPg-pU can be observed at 0.5 pg and 2 pg. Figure 4.16 

does suggest that a difference may exist in the ability o f 3DK18'' to catalyse the formation o f 

VPg-pUpU compared to 3D'Nt. An explanation for this phenotype is provided in section 

4.8.1.



+ UTP*

1 2  3 4

< VPgpUpU
< VPgpU

Figure 4.16 Visualised products o f  an in v itro  uridylylation assay 
synthesised by 3Dwt or 3DNI8Y

The ability o f  the 3DwX (lanes 1 and 2) and 3DN18Y ( lanes 3 and 4) to 
catalyse the uridylylation o f VPg was tested w ith  2 (lanes 1 and 3) and 
0.5 jag (lanes 2 and 4) o f  the purified protein.
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4.7.2 Polymerisation

In vivo 3D "1 is highly specific w ith respect to the template that it copies. In contrast to the 

situation in vivo it has been demonstrated that in vitro 3D "1 can catalyse the elongation o f 

artificial templates (Arnold et al., 1999, Morrow et al., 1987, Plotch et al., 1989). To 

investigate whether 3 D "1 and 3Dni8'1 retained functional polymerisation activity the ability 

o f both polymerases to elongate a poly- (U) primed poly- (A ) template was assessed. 

Elongation o f the template was monitored by calculating the picomoles o f [a- “P] UTP that 

were incorporated over 30 minutes at 34 °C. The ability o f  the 3D "1 and 3DN18,1 to elongate 

a poly-(U) primed poly-(A ) template was assessed over concentrations ranging from a 

maximum concentration o f 20 pM to a minimum concentration o f 0.16 pM. To obtain 

these concentrations the polymerase stocks o f 3 D "1 and 3DN18̂  were serially diluted in 

3Dpo1 storage buffer. To ensure that the reactions were started at the same time the reaction 

mix (see materials and methods 6.10.9) was added to the pre-aliquoted polymerase on ice. 

The reactions were then transferred to the 34 °C incubator. Reactions were stopped with 

the addition o f 0.5 m M  EDTA. 5 pi o f each reaction was spotted onto a DE81 filter 

(supplied by Wakeman) that was washed several times in 0.5 M  sodium bi-carbonate and 

airdried prior to be counted in a scintillation counter (Beckman model number LS5000 

CE). Each polymerase concentration was analysed in triplicate independently and the
• T9 •average picomoles o f [a-' P] UTP for each concentration was calculated. Error bars were 

plotted as a measure o f variation above and below the mean value. The polymerisation 

activities o f 3D "1 and 3DNI8V were tested at pH 7.5 and pH 5.5, a pH at which 

oligomerisation is promoted (Pata et al., 1995).
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Figure 4.17 Poly r(U) polymerase activity o f the 3Dwt and 3DN,8y PV3 
polymerase measured at at pH7.5(A) and a pH5.5 (B). In both A and B 
3D"4 is represented as a black line and 3DN18Y is represented w ith a purple 
line.
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Figure 4.17 confirms that both the purified 3Du tand 3DNI83 have retained functional 

polymerisation activity. Using the poly-(U) primed poly-(A) template a difference in the 

rate o f polymerisation activity between the 3Dvsland 3DN18' at both pH 7.5 (Figure 4.17A) 

and pH 5.5 (Figure 4.17 B) was observed. Figure 4.17 shows that the average picomoles o f 

[a-32P] UTP incorporated into the template by 3D'U and 3DM83at pH 5.5 is greater than 

that observed at pH 7.5. This is consistent w ith what has previously been reported (Pata et 

al., 1995). A t both pH 5.5 and pH 7.5 the average picomoles o f [a-32P] UTP incorporated 

into the template by 3DN183 over the range o f concentrations from 2.5 to 20pM is greater 

than that observed in reactions catalysed by 3D'vt. The observation that the average 

incorporation o f [rx-,2P] UTP into the template by 3D'u and 3DNm differ suggests that the 

kinetics o f polymerisation o f 3D'stand 3DNl83 are different. Using a different template 

these results could not be reproduced. Reasons for this are discussed fu lly  in sections 4.9.1 

and 4.9.3.

4.7.3 Terminal transferase activity

In vitro, 3Dul has been reported as having terminal uridyl transferase activity (Neufeld et 

al., 1994) though whether the terminal uridyl transferase activity has any in vivo relevance 

remains unclear. To investigate whether 3DNl83 retained terminal uridyl transferase 

activity the ability o f 3Dul and 3DNl83 to catalyse the addition o f [a-32P] UTP to PV3 

RNA at pH 7.5 was tested. The terminal transferase activity o f the polymerases was tested 

at concentrations o f 2, l and 0.5 pg o f the purified proteins. Figure 4 .18 shows the 

developed image o f products o f the in vitro terminal uridyl transferase reaction as 

synthesised by either 3DNU or 3DNl8Y. Figure 4 .18 confirms that both the purified 

polymerases retain terminal uridyl transferase activity. No significant difference in the 

ability o f 3D'U and 3DNl83 to catalyse the addition o f a uridylate residue to the PV3 RNA 

was observed between the proteins at higher concentrations o f protein (2 pg). A  subtle 

difference in terminal uridyl transferase activity was detected at lower concentrations (0.5 

pg). Determining the significance o f this difference would require further investigation.



RNA + UTP
3D"*

* --------------- ► RNA*

3Dwt 3D N 1S Y

1 2 3 4 5 6 7

Figure 4.18 Terminal transferase activity of 3Dwt and 3DNI8YPV3 polymerase 
measured at pH  7.5. The terminal transferase activity of 30^  and 3DN18YPV3 
was tested at concnetrations of 2 (lanes 1 and 5), 1 (lanes 2 and 6) and 0.5 (lanes 
3 and 7) jug of purified proteins.
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4.7.4 Oligomerisation

The crystal structure o f 3Dvsl implied that the N-term inal residues o f the protein might be 

involved in the oligomerisation o f the polymerase (Interface II interaction). Analysis o f the 

N-terminal region has confirmed that mutations in the N-terminal 3Dutcan abolish 

polymerase function (Hansen et al., 1997). Biochemical analysis has shown that 3Dxvt-3D "1 

interactions are important for the polymerase functions o f RNA binding and 

polymerisation (Pata et al., 1995). Research has since shown that the elimination o f 

function does not result from an inability o f N-terminal mutants to bind the RNA (Hobson 

et al., 2001). These observations have resulted in the proposal o f a model in which 

catalytically active polymerase centres are formed, w ith in  a lattice structure, only where 

Interface II interactions occur. Any alteration in the N-terminal residues might result in an 

alteration in the ability o f the RdRp to oligomerise. One consequence o f this might be 

alterations in RNA binding and polymerisation. To identify whether any difference existed 

in the interactions o f 3D 'U molecules compared w ith those observed between molecules o f 

3DNI8V it was decided to analyse the interactions o f the polymerase using the yeast-two 

hybrid system. This system was chosen as it also provided a method by which the effect o f 

the N 18 Y mutation could be studied on the interactions w ith the replication proteins 3 AB 

and 3CDpr0. To investigate these interactions fu lly  it was decided, in addition to 3DN!8Y,
N18 Vthe N 18Y should be expressed, in the yeast-two hybrid system as 3CD

4.7.4.1 Y ea s t-tw o  hybrid  system

The yeast-two hybrid system (Figure 4.19) was developed as a genetic method for studying 

protein interactions in vivo (Fields &  Song, 1989). This system utilises the observation that 

the activation domain (AD) o f cellular transcriptional factors does not have to be part o f 

the same polypeptide as the DNA binding domain (BD) in order to reconstitute a 

functional transcriptional activator (Ma &  Ptashne, 1988, Triezenberg et al., 1988). Figure 

4.19 shows a standard yeast-two hybrid system. Basically, the proteins o f interest are fused 

in frame w ith either the BD (BD/proteinX) or A D  (AD/protein Y) o f  the transcription 

factor.



Expression 
of reporter 

gene

No

Reporter gene

Yes  

Reporter gene

Figure 4.19 The yeast-two hybrid system 
The yeast-two hybrid system consists o f  a bait protein 
containing a transcriptional binding domain (blue domain) 
fused to protein X. The system also contains a prey protein 
containing a fusion o f a protein o f interest, in this case 
protein Y  with a transcriptional activator (black crescent 
moon shape). I f  the two proteins interact (C) transcriptional 
repression is relieved and the reporter gene is expressed. 
Transcriptional repression is not relieved i f  the two proteins 
fail to interact (A  and B).

Reporter gene
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I f  protein X  interacts w ith protein Y, in the nucleus, the AD  w ill be brought together w ith 

the DNA BD to reconstitute transcriptional activation and hence gene expression. Positive 

interactions between proteins are identified by expressing the hybrid proteins w ith in yeast 

strains that contain reporter genes, for example lacZ, that are under the control o f 

regulatory regions that contain binding sites o f the designated transcription factor. 

Although different transcription factors could be used, all available systems are based 

around the GAL4 or LexA transcription factors.

4 .7 .4 .2  C o n s titu tiv e  G A L 4-b ased  y eas t-tw o  hybrid  sys tem

N18 V4.7.4.2.1 Construction of plasmids expressing 3Dwt and 3D as fusion proteins 
with a G AL4- activation domain

To express 3D'vt, 3CDpr0, 3DNm and 3CDNI8'r as fusions w ith the GAL4 activation domain 

(AD) the coding sequences were fused in-frame w ith the coding sequence o f the G AL4AD 

in the plasmid vector pACTII (Figure 2.7). 3Du'and 3CDprohad previously been cloned 

into pACTII by Dr.I.Goodfellow.

The cDNA sequence o f 3CDNI8V was amplified from pT7FLCN18Yusing the primers 

IG25 and IG26. The cDNA sequence o f 3DNm was amplified using the primers IG24 and 

IG25 (for primer details see materials and methods Table 6.2). Follow ing amplification the 

purified PCR product was digested with the restriction enzymes Not I and Bam HI. The 

PCR product and pACTII, which had been digested in a sim ilar way, were purified from 

agarose prior to being ligated together. The ligations were purified prior to transformation 

into E.coli JM109. The presence o f insert was detected by digesting the plasmid recovered 

from the transformants w ith Not I and Bam HI. Plasmids positive for insert showed the 

presence o f an additional band o f 1.5 (3DNI8Y) or 2 (3CDNI8Y) kb in size in comparison to 

pACTII, which had been sim ilarly digested w ith Not I and Bam HI, when visualised by 

agarose gel electrophoresis.

The pACTII constructs and the predicted molecular weights o f the fusion protein expressed 

from the plasmids are summarized in table 4.1. The in-house sequencing service was used 

to confirm no additional coding changes had been introduced by the PCR amplification o f 

the cDNA sequence o f 3DNm and 3CDNI8Y.
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n um ber
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p53 antigen fused 

to a G A L 4  binding 
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68 C onstitu tive P -A D -4A

p G B K T 7 -La m in a

Lam in fused to a 

G A L 4  b inding 
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SV40 T  antigen 

fused to G A L4  

activation domain

97 C onstitu tive P -A D -3A

p G B K T 7-

3D po1

3D po1 fused to a 

G A L4  b inding 

domain

81 C onstitu tive P -A D -6A

pG B K T7-
3DN18V

3 D Nm fused to a 

G A L 4  b inding 

domain

81 C onstitu tive P -AD -7A

pA C T II

3D po1

3D U| fused to 

G A L4  activation 

domain

72 C onstitu tive P -A D -6B

p A C T II

3C D po1

3C D wt fused to 

G A L4  activation 

domain

92 C onstitu tive P-AD -3B

p A C T II

3 j-jN18Y

3 D nisV fused to 

G A L4  activation 

domain

72 Constitu tive P -A D -8A

pA C T II

3CD N18Y

3C D NI8Y fused to 

G A L4  activation 

domain

92 Constitu tive P -A D -9A

pHybLex/Zeo-Fos2h

Fos2 antigen fused 

to a Lex A  b inding 

domain

C onstitu tive P-AD-1F
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Constitu tive P-AD -3F

pYES Trp2-

Junb

Jun anrigen fused 

to B42 activation 

domain

Inducib le P-AD -2F

pH ybLex/Zeo-

3D po1

3D po1 fused to a 

LexA b inding 

domain

C onstitu tive P-AD-9G

pH ybLex/Zeo-

3C D po1

3C D po fused to a 

LexA b inding 

domain

C onstitu tive P -AD -1H

pH ybLex/Zeo-
3q NI8Y

3 D n|8S fused to a 

LexA binding 

domain

C onstitu tive P-AE-5B

pH ybLex/Zeo-
3Cd ni8y

3C D N18Y fused to a 

LexA b inding 

domain

C onstitu tive P-AE-4B

pYESTrp2-

3D p0‘

3D po1 fused to B42 

activation domain
Inducib le P-AD -2H

pYESTrp2-

3C D po1

3C D |xl fused to 

B42 activation 

domain

Inducib le P-AD-8G

pYESTrp2-
3DN.8Y

3D N18V fused to 

B42 activation 

domain

Inducib le P-AE-3B

pYES Trp2-

3C D N18Y

3 C D NI8Y fused to 

B42 activation 

domain

Inducib le P-AE-1B

pY E S T rp2-3A B
3A B  fused to B42 

activation domain
Inducib le P-AD -7G

Table 4.1. Yeast-two hybrid expression plasmids.
a Positive and Negative controls for the constitutive Y2H system supplied by Clontech 
b Positive and Negative controls for the inducible Y2H system supplied by Invitrogen
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4.7.4.2.2 Construction of plasmids expressing 3D"‘ and 3DNm as fusion proteins 
with a GAL4 binding domain

To express as 3Dwt, 3CDpr0, 3DNllŜ  and 3CDNl8  ̂ fusions w ith the GAL4 binding domain 

(BD) the coding sequences were fused in-frame w ith the coding sequence o f the GAL4 BD 

in the plasmid vector pGBKT7 supplied by Clontech (Figure 4.20). The cDNA sequences 

o f 3Dwt and 3CDpr0 were amplified from the template pT7FLC/Rep3 using the primer pairs 

IG24/IG25 and IG25/IG26 respectively. As has been previously described the cDNA 

sequences o f 3DNlli,i and 3CDNm were amplified from pT7FLCN18Y.

Following amplification the purified PCR product was digested w ith the restriction 

enzymes Not I and Bam HI. The PCR product and pGBKT7, which had been digested in a 

sim ilar way, were purified from agarose prior to being ligated together. The ligations were 

purified prior to transformation into E.coli JM109. The presence o f insert was detected by 

digesting the plasmid recovered from the transformants w ith Not I and Bam HI. Plasmids 

positive for insert showed the presence o f an additional band o f either 1.5 (3DvU and 

3DN18Y) or 2 kb (3CDpi° and 3CDNI8Y) in size in comparison to pGBKT7, which had been 

sim ilarly digested w ith Not /  and Bam HI, when visualised by agarose gel electrophoresis.

The pGBKT7 constructs and the predicted molecular weights o f the fusion protein 

expressed from the plasmids are summarized in table 4.1. Sequencing at the in-house 

facility confirmed that no coding changes had been introduced to the cDNA sequences o f 

3D'U and 3CDpro. The in-house sequencing service was also used to confirm no additional 

coding changes had been introduced by the PCR amplification o f the cDNA sequence o f 

3DN18Y and 3CDN18Y.
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Figure 4.20 Cloning vectorpGBKT7. The information was supplied by 
Clontech. Restriction enzyme sites Nco I and Bam HI found in the 
m ulti-cloning site were used for the construction o f all plasmids based on 
pGBKT7 (see table 4.1).
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4.7.4.2.3 Expression of the GAL4 fusion-proteins in S. cerevisiae Y187

To confirm that the poliovirus fusion proteins were expressed in S.cerevisiae Y187 protein 

expression was determined by western blot analysis.

Though the viral proteins are fused to the (19.1 kD) G AL4AD , the pAC TII vector also 

contained an influenza haemagglutinin epitope, YPYD VPD YAG , (Figure 2.7) that was 

expressed as part o f the fusion protein. Similarly, though the coding sequences o f the virus 

proteins 3Dwt, 3DNI8Y, 3CDpr0 and 3CDNI8> are fused to the sequence encoding the -29  kD 

GAL4BD with in the vector pGBKT7 a c-Myc epitope (EEQ KLISEDL) present w ithin 

pGBKT7 is expressed as part o f the fusion protein (Figure 4.20). The plasmids, pACTII 

and pGBKT7 were co-transformed into S.cerevisiae Y187 using lith ium  chloride. 

Transformants were selected for using the nutritional markers encoded by these vectors. 

Cell extracts were prepared as described in materials and materials section 6.11.4.

To detect expression the fusion proteins immobilised on a nitrocellulose membrane were 

probed w ith a mouse monoclonal antibody that had been raised to the haemagglutinin 

epitope, diluted 1:5000 in 4% m ilk  powder/PBS. The use o f an antibody raised to the 

haemagglutinin epitope to detect the immobilised protein enabled the same antibody to be 

used to detect the expression o f the different viral proteins. Following washing w ith 

PBS/0.1% Tween 20, the blot was incubated w ith HRPO conjugated anti-mouse IgG. The 

immunoreactive proteins was visualised after further washing using the Supcrsignal West 

chemiluminescent detection k it (Pierce). The nitrocellulose membrane onto which the 

proteins has been immobilised was then stripped and re-probed w ith  a mouse monoclonal 

antibody that had been raised to the c-Myc epitope diluted 1:1500 in 4% m ilk  powder/PBS. 

Following washing w ith PBS/0.1% Tween 20, the blot was incubated w ith HRPO 

conjugated anti-mouse IgG (Pierce). The immunoreactive proteins was visualised after 

further washing using the Supersignal West chemiluminescent detection k it (Pierce). No 

cross-reactivity o f the monoclonal antibodies that had been raised to Haemagglutinin or c- 

Myc w ith S.cerevisiae Y187 proteins was observed.

The molecular weights o f the fusions between the Gal 4 AD  and 3Dul was predicted to be 

71.5 kDa. Monoclonal antibody raised to the haemagglutinin epitope could not detect the 

expression o f 3Dutor 3DNm (Figure 4.21 A lanes 3-6). A  band o f approximately 20.1 kDa 

was detected by the monoclonal antibody raised to the haemagglutinin epitope in the
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cellular extract o f S. cerevisiae Y187 that had been transformed w ith pACTII (Figure 4.21 A 

lane 1). The 20.1 kDa band detected corresponds to the known molecular weight o f the 

GAL4 activation domain. Immunoreactive bands corresponding to the predicted molecular 

weight o f 3Dvvlor 3CDp,° were however obtained when the nitrocellulose membrane, on 

which the proteins had been immobilised, was re-probed w ith mouse monoclonal antibody 

raised against the c-Myc epitope (Figure 4.2IB  lanes 3-6). An immunoreactive band o f 

approximately 20.1 kDa was detected by the monoclonal antibody raised to the c-Myc 

epitope was detected in a cellular extract o f S. cerevisiae Y187 that had only been 

transformed with pGBKT7 (Figure 4.2IB  lane 2).

From previous expression work using pACTII it was known that expression o f 3Dvvt by 

S.cerevisiae from this vector could be detected using western blotting (see section 2.3.1). 

Furthermore, it was shown that expression o f 3Dut was not toxic. The most likely 

explanation for these results, given that the GAL4 BD fusion proteins were detectable 

follow ing stripping o f the blot, is that the expression o f the 3Dwt -GAL4 AD from pACTII 

is at a level beneath that which can be detected using immunoprobing. It is likely that it is 

this inequality in expression o f the AD/3Dpo1 fusion proteins compared to the DNA 

BD/3Dpo1 hybrid, w ith in S. cerevisiae Y187, detected via western blot, that explains why no 

interactions could be detected using a liquid p-galactosidase assay (data not shown).

Previously, it had been documented that interactions between the proteins o f the P3 region 

could be successfully detected using a LexA-based yeast-two hybrid system (Xiang et al., 

1998). As a consequence o f this the decision was taken to introduce 3DN18Y, 3D "1,

3CDNI8Y, 3CDvvtand 3AB into a LexA-based yeast-two hybrid system. The LexA-system 

that was chosen was the Hybrid Hunter™ supplied by Invitrogen that allows the inducible 

induction o f AD  fusion proteins.
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Figure 4.21 Western blot analysis o f S.cerevisiae Y187 extracts

(A ) Immunoreactive proteins detected by monoclonal antibody 
raised against the haemagglutinin epitope. (B) Immunoreactive 
proteins detected by monoclonal antibody raised against the c-Myc epitope. 
Cellular extracts o f  S. cerevisiae Y 187 transformed w ith pA C TII alone (Lane 1), 
pGBKT7 alone (Lane 2), pGBKT73CDN18Y /pACT3DN18Y(Lane 3) 
pGBKT73CDvvt /pAC TII3D wt (Lane 4), pGBKT73Dwt/pAC TII3D wt (Lane 5), 
pGBKT73DN18Y /pAC TII3D N18Y (Lane 6 ).
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4 .7 .4 .3  In d u c ib le  LexA -based  yeast-tw o  hybrid  sys tem

4.7.4.3.1 Construction of plasmids expressing 3Dwt and 3DNI8' as fusion proteins 
with a LexA binding domain

To express 3Dwt, 3CDpro, 3DN18V and 3CDNI8Y as fusions w ith the LexA binding domain 

(BD) the coding sequences were fused in-frame w ith the coding sequence o f the LexA BD 

in the plasmid vector pHybLex/zeo (supplied by Invitrogen) (Figure 4.22). The cDNA 

sequences o f 3DNNt and 3CDpr0 were amplified from the template pT7FLC/Rep3 using the 

primer pairs 0 -A C -2D /0 -A C -3D  and 0-AC -1D /0-A C -3D  respectively. Using the same 

primer pairs 3DNm and 3CDNm were amplified from the template pT7FLCN18Y (for 

primer details see materials and methods Table 6.2).

Following amplification the purified PCR. product was digested w ith the restriction 

enzymes Sac I and Sal I. The PCR product and pFIybLex/Zeo, which had been digested in 

a similar way, were purified from agarose prior to being ligated together. The ligations 

were purified prior to transformation into E.coli JM109. The E.coli JM109 transformed 

with pHybLex/Zeo were selected for using low salt LB agar containing zeocin at a 

concentration o f 25pg/ml. The presence o f insert was detected by digesting the plasmid 

recovered from the transformants with Acc I. Plasmids positive for 3D'Nt and 3DNm insert 

showed the presence o f bands o f 3.8, 1.5 and 0.82 kb while those containing 3CDpr0 and
N 18 V3CD insert generated fragments o f 3.8, 1.9 and 0.82 kb when visualised by agarose gel 

electrophoresis. Fragments o f 3.8, 0.86 and 0.084 kb were obtained when pFIybLex/Zeo, 

which had been digested w ith Acc /, was visualised by agarose gel electrophoresis

The pHybLex/Zeo constructs and the predicted molecular weights o f the fusion protein 

expressed from these plasmids are summarized in table 4.1. Sequencing at the in-house 

facility confirmed that no coding changes had been introduced to the cDNA sequences o f 

3Du land 3CDpro. The in-house sequencing service was also used to confirm no additional 

coding changes had been introduced by the PCR amplification o f the cDNA sequence o f 

3Dni8Y and 3CDNI8Y.
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4 .7 A 3 .2  C o n s tru c tio n  o f  p lasm ids expressing v ir a l  n o n -s tru c tu ra l p ro te in s  as fus ion  
p ro te in s  w ith  a B42 a c tiva tio n  d o m a in

• x j  1 o  v
To investigate the intramolecular and intermolecular interactions o f 3Dwt and 3D the 

non-structural proteins 3AB, 3Dut, 3CDpo1, 3DNI8Y, 3CDNm were introduced into a 

plasmid pYESTrp2 (supplied by Invitrogen), that would express the proteins as a fusion 

w ith the B42 activation domain, a known activator o f  LexA transcription factor (Figure 

4.23). The expression o f fusion proteins from pYESTrp2 is constitutive in S.cerevisiae L40 

but occurs in an inducible manner in S.cerevisiae EGY48 strains. In S.cerevisiae EGY48 

induction o f the expression o f the fusion proteins from pYESTrp2 is controlled by the 

presence o f glucose in the culture medium. In the absence o f glucose, the addition o f 

galactose to the culture medium releases the transcriptional repression o f the GAL1 

promoter controlling the expression o f the fusion proteins.

As has been described before the cDNA sequences o f 3D "1 and 3CDpr0 were amplified from 

the template pT7FLC/Rep3 using the primer pairs 0 -A C -2D /0 -A C -3D  and O-AC- 

1D/0-AC-3D respectively. Using the same primer pairs 3DNm and 3CDNI8V were 

amplified from the template pT7FLCNl 8Y (for primer details see materials and methods 

Table 6.2). The cDNA sequence o f 3AB was derived from pT7FLC/Rep3 through PCR 

amplification using the forward primer 0-AC-9C and the reverse primer 0-AC-5D .

Following amplification o f 3Dut, 3CDpo1, 3DNm and 3CDN18V the purified PCR product 

was digested w ith the restriction enzymes Sac I and Sal I. The plasmid vector pYESTrp2 

and the purified product o f the PCR amplification o f 3AB were digested w ith the 

restriction enzymes Sac I and Xho I. The individual PCR products and pYESTrp2 were 

purified from agarose prior to being ligated together. The ligations were purified prior to 

transformation into E.coli JM109. The presence o f insert was detected by digesting the 

plasmid recovered from the transformants with Ava I. When the products o f digestion were 

visualised by agarose gel electrophoresis plasmids positive for 3DNNt and 3DNm generated 

fragments of, 4.2, 2.0 and 0.8 kb while fragments o f 4.2, 2.0, 0.8 and 0.6 kb were obtained 

for plasmids positive for 3CDpr0 and 3CDN18'1 insert. Bands o f 2.9, 2.3 and 0.8 kb were 

observed in plasmids containing the 3AB insert. The fragments obtained were visualised 

and compared by agarose gel electrophoresis w ith those o f pYESTrp2 which when 

digested w ith Ava /  generates bands o f 2.9, 2.0 and 0.8 kb in size.
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The pYESTrp2 constructs and the predicted molecular weights o f the fusion protein 

expressed from the plasmids are summarized in table 4.1. Sequencing at the in-house 

facility confirmed that no sequencing changes had been introduced to the cDNA sequences 

o f 3AB, 3Dvvt and 3CDpi°. The service was also used to confirm  no additional sequencing 

changes had been introduced by the PCR amplification o f the cDN A sequence o f 3DN18Xl 

and 3CDni8Y.

Due to time limitations, analysis o f the intra- and intermolecular interactions o f the viral 

polymerases (3DN18Y and 3DvU) using the LexA yeast-two hybrid system was not 

completed. Although expression o f the fusion proteins has been detected by western 

blotting (data not shown) at the current time, the conditions required for the optimal 

expression o f proteins using the Hybrid Hunter™ system and the optimal time to assay 

expression o f the lacZ reporter gene are still being deduced.
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4.8 Discussion of results

A ll RNA viruses require an RdRp to catalyse the replication o f their genomes. Aside from 

the fingers, thumb and palm domain common to all types o f polymerase RdRp contain a 

unique N-terminal region not found in other types o f polymerase (RT, DdDp and DdRp). 

This would argue that the function o f the N-terminus has evolved in relation to the RdRp 

unique property o f transcribing RNA from an RNA template.

In the work published by Meredith et al a coding change in the N-terminus region was 

found to be the sole change required to rescue a poorly replicating virus that contained a 

mutated 3’UTR. To characterise the mechanism by which the N18Y coding change can 

compensate the mut4 3 ’UTR a bacterial expression system was used to express 

recombinant poliovirus type 3 RdRp containing the N18Y mutation. The parental 

poliovirus type 3 RdRp was also expressed using this system. Consistent w ith the 

published literature the majority o f the expressed protein was located in the soluble 

fraction. Both 3Dul and 3DNm were demonstrated to bind to SP-sepharose. Elution o f 

3DNm was shown to be more sensitive to salt than 3DvU. The prelim inary characteristics o f 

3D'U and 3DN18V confirmed that the purified proteins were functional.

4.8.1 Uridylylation

In picornaviruses, in itiation o f RNA synthesis requires a protein primer. In contrast to the 

picornaviruses, flaviviruses initiate RNA synthesis de novo. Reilly and Kao presented data 

that showed that amongst the virus families that contain a unique N-terminal region were 

the flavivirus, that includes HCV. This data suggested that the function o f the N-terminus 

is related to a feature common to these virus families and so the N18Y mutation was 

unlikely to have an effect on the ability o f 3D'U to uridylylate VPg. Consistent w ith this 

hypothesis is the data that has been presented in this chapter. Using the uridylylation assay 

described by Paul et al (Paul et al., 2000) the prelim inary data confirmed that no difference 

could be detected in the ability o f purified 3Dut and 3DNm o f catalysing the uridylylation 

o f VPg to form VPg-pU. The preliminary data did suggest that a difference did exist 

between 3D'U and 3DNI8V in their ability to catalyse the formation o f VPg-pUpU from 

VPg-pU. One possible explanation for this phenotype is that there is a difference in the
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proportion o f polymerase molecules that are “ active”  in uridylylation. This could have 

arisen as a consequence o f the bacterial expression system used.

The expression o f recombinant protein in bacteria requires the presence o f polypurine 

Shine-Dalgarno sequence on the mPvNA transcript (AGGAGG) that is capable o f binding 

the 50s ribosomal subunit. The ribosome scans the RNA sequence until it reaches the first 

AUG downstream o f the Shine-Dalgarno sequence where protein synthesis is initiated by 

the binding o f N-form yl-m ethionyl-tRNA in the ribosomal P site at. The process by which 

an mRNA transcript is translated w ith in mammalian cells is sim ilar to that which occurs in 

prokaryotes though it does not require the presence o f a Shine-Dalgarno sequence. In a 

poliovirus-infected cell the translation complex is assembled on the IRES and the 

ribosomes scan the genome for the first AUG whereby translation is initiated. The 

translation o f the poliovirus genome results in the production o f a polyprotein that is co- 

translationally processed by the proteases encoded by the virus. The poliovirus 

polymerase is expressed by the processing o f the polyprotein by 3Cpro that recognises a 

glutamate/glycine cleavage site. Under normal circumstances the first residue o f 3Dutis 

therefore a glycine rather than a methionine residue. In E.coli the formyl-methionine 

encoded by the in itiation codon is removed in a two-step process involving the enzymes 

cellular deformylase and methionine aminopeptidase (Ben-Basset et al., 1987, Rajagoplan 

et al., 1997). However this process does not occur with 100 % efficiency (Sandman et al., 

1995). As a result, a proportion o f the purified recombinant protein w ill have retained the 

amino-terminal methionine. Recently, it has been reported that purified 3Dpo1 with a non- 

authentic amino-terminal shows a 25-fold reduction in polymerisation activity when 

compared w ith the wild-type activity (Gohara et al., 1999). Although, no data has been 

published on the effect an amino-terminal methionine has on the process o f uridylylation it 

is possible that this influences the ability o f the polymerase to catalyse the formation o f 

VPg-pUpU. I f  this the case then the variation in the ability o f 3D 'u and 3DN18Yto catalyse 

the formation o f VPg-pUpU reported in this prelim inary characterisation may be explained 

by differences in the proportion o f enzyme w ith an authentic amino-terminus w ithin each 

preparation. To rule out this possibility, polymerase w ith an authentic 5’ end should be 

purified and characterised using the in vitro uridylylation assay. The ubiquitin-based 

purification system developed by Gohara et al (Gohara et al., 1999) provides a method by 

which this could be achieved. This system w ill be discussed in more detail in section 4.8.3.
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4.8.2 Oligomerisation

It is known that deletion o f the N-terminal residues o f the HCV polymerase and those o f 

3D'vl eliminates polymerase function (Gerber et al., 2001, Hansen et al., 1997, Lohmann et 

al., 1997). The observation that deletion o f the N-terminal residues abolishes function o f 

two distantly-related polymerases confirms that the N-terminal performs a role 

fundamental to the functioning o f the RdRp o f mammalian RNA viruses. One property 

common to the HCV polymerase (Wang et al., 2002) and 3D'vt (Hansen et al., 1997,

Hobson et al., 2001, Pata et al., 1995) is the ability o f the polymerase molecules to 

oligomerise. Support for the view that the N-terminal region o f the polymerase may be an 

essential requirement for oligomerisation to occur is provided by the observation that the 

Q[3-like virus polymerases, which are not known to form oligomers, do not contain a 

region N-terminal o f the fingers domain (Reilly &  Kao, 1998).

A number o f approaches can be used to study the oligomerisation o f polymerase 

molecules. The approach that was taken to study this aspect o f  the polymerase was the 

yeast two-hybrid approach. It was decided to take this approach as it remained a possibility 

that the N18Y mutation exerted its compensating effect through the polymerase-precursor
N18 V3CD . Additionally it is equally possible that the compensating effect is exerted through 

the interactions o f 3DN18Y w ith 3CDN m or as a result o f an alteration in the interaction 

between 3AB and 3DNI8Yor 3AB and 3CDpro

In itia lly  the decision was taken to investigate the homo- and heteromultimeric interactions 

o f the polymerase 3DN18,> and 3Dul using a GAL4-based yeast two hybrid system. 

Interaction o f the GAL4-binding domain and activation-domain fusion proteins within 

S.cerevisiae Y187 was not detectable by liquid (3-galactosidase ONPG assay. Western 

blotting confirmed that the GAL4-binding domain fusion proteins were expressed by the 

S.cerevisiae Y187 strain. In contrast, the expression o f the GAL4-activation domain 

fusion-proteins could not be detected. Expression o f the GAL4-activation domain 

fusion-proteins from the plasmid pACTII is detectable in the S.cerevisiae R40coat strain. 

The failure to detect the expression o f the GAL4-activation domain fusion-proteins in 

S.cerevisiae Y 187 is most likely reflects low-level expression o f the protein rather than a 

complete absence o f synthesis o f the GAL4-activation domain fusion-proteins w ithin the 

cell. To overcome this problem 3DN18Y, 3D'vt, 3CDN18Y, 3CDpo1 and 3AB have been built
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into a LexA-based yeast two-hybrid system supplied by Invitrogen that enabled the 

inducible expression o f the LexA-activation domain fusion-proteins. The decision was 

taken to introduce the proteins into a LexA-based system as this approach had been 

successfully used by Xiang et al (Xiang et al., 1998). Due to time constraints, this aspect o f 

the project was not followed through to completion. It is hoped that fo llow ing further 

optimisation o f the conditions for the expression o f the AD/polymerase fusion proteins and 

the (3-galactosidase assay used to determine positive interactions this system w ill provide 

valuable insights into any differences that may exist in the intra- and intermolecular 

interactions o f 3DNm and 3Dwt.

Approaches other than the yeast-two hybrid system have been developed that enable 

oligomerisation to be studied. One such approach is to use the turbidity o f a solution o f 

purified polymerase as a measure o f oligomerisation (Figure 4.24). Lyle et al showed that 

an increase in turbidity, as determined by measuring the optical density o f 350 nm over 

time, o f a solution o f purified polymerase was dependent on the ability  o f the polymerase 

to form Interface I and II interactions (Lyle et al., 2002a). Therefore any disparity in the 

ability o f  3DN18V to oligomerise, compared w ith 3Dut, should be reflected by variations in 

the turbidity profiles o f the solutions o f purified polymerase. Furthermore, the use o f EM 

analysis may highlight differences in the lattice structures formed by the 3Dutand 3DNm 

in the presence and absence o f RNA.
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Figure 4.24 The use o f turbidity as a measure fo r  
oligomerisation. Taken from Lyle et al., 2002. Optical density 
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4.8.3 Polymerisation

Two further functions common to all RdRp are the preferential binding o f NTP and the 

catalysing o f the incorporation o f these nucleotides into a nascent strand. As a preliminary 

characterisation the ability o f 3D'stand 3DN!83 to catalyse the elongation o f a poly-U 

primed poly-A template was measured by incorporation o f [a-32P] UTP. The result o f the 

elongation reaction suggested that 3DNm catalysed the incorporation o f [a-32P] UTP at a 

higher rate than 3Dvvt. However recent data obtained by Dr.I.Goodfellow has suggested that 

this result may be an artefact o f the expression/purification system and template used in 

this study.

As has been discussed previously, the presence o f a non-authentic 5’end was shown to 

reduce the activity o f purified 3Dwt, as determined by poly (rU) polymerase assay (Gohara 

et al., 1999). Systems have been developed that allow protein w ith  a fu lly  authentic 5’end 

to be purified. One such system is the two-step purification system, developed by Gohara 

et al (Gohara et al., 1999), that is based around a ubiquitin-tag. In the first step the cell 

lysate is passed over a column that binds the ubiquitin-tagged recombinant protein. 

Following washing the bound protein is eluted from the column. In the second stage the 

ubiquitin-tag is removed from the 5’ end o f the purified protein by enzymatic treatment. 

3Dutand 3DNm purified using the ubiquitin-tagged system was used in the polymerisation 

assays carried out by Dr. I. Goodfellow. One other difference between the polymerisation 

assay that was described here and that carried out by Dr.I.Goodfellow was the template.

The template used by Dr.I.Godfellow was the sym/sub template previously described by 

Arnold et al (Arnold &  Cameron, 2000). This template consists o f a lOnt self- 

complementary RNA that forms a 6 nt duplex flanked by 4 nt overhangs. Each overhang o f 

the sym/sub template is capable o f templating the incorporation o f a unique nucleotide.

This allows single and multiple cycles o f nucleotide incorporation by a polymerase to be 

calculated at stoichometric levels. It has been reported that the template used to study 

polymerase activity can make a difference to the results obtained. One such report has 

shown that while a mutation in m otif B o f the palm domain only reduces polymerase 

activity 2-fold poly(rU) polymerase activity, the same mutation using the sym/sub system 

is reduced 15-fold in activity (Arnold &  Cameron, 2000).
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One possible explanation for this is the report that on heteropolymeric RNA primer- 

template 3D 'vtcan bind in two orientations. The first o f these has the 3’OH o f the primer in 

the catalytic centre o f the polymerase. This is the “ correct”  orientation. The second way 

that 3Dut can bind is w ith the 3’OH o f the template strand in the catalytic centre, the so 

called “ wrong”  orientation. It has been reported by Arnold et al that 3Dut bound in the 

“ wrong”  orientation can catalyse the addition o f nucleotides to the blunt end o f the 

template/primer (Arnold et al., 1999). Characterising 3Dut using a heteropolymeric RNA 

primer-template is therefore complicated by the fact that a proportion o f the 3Dul 

molecules in the reaction w ill be bound in the “ wrong”  orientation.

4.8.4 Recycling of the polymerase

Both the massive amplification o f genomes observed in infected-cells and 

replication-dependent recombination require the recycling o f polymerase molecules. The 

process o f recycling o f polymerase molecules i.e. the disassociation o f the polymerase 

from one template to re-associate and re-initiate transcription on another is illustrated in 

Figure 4.25. In the absence o f a lim iting amount o f enzyme in a reaction this cycle should 

ensure that all primer-template is extended. Flowever a number o f research groups have 

independently reported that in vitro only a low percentage o f all primers are extended by 

3Dut under non-lim iting conditions (Arnold &  Cameron, 1999, Arnold &  Cameron, 2000, 

Pata et ah, 1995, Rodriguez-Wells et al., 2001). This can be explained by three in vitro 

biochemical observations.

• 3Dut in the absence o f nucleotides is turned over rapidly - t i /2 o f ~ 1 min at 42°c 

(Richards et al., 1992)

• The a ffin ity  o f 3D'Nt for the primer-template is low (Kd = ~1 pM ) compared to 

the a ffin ity  o f the majority o f polymerases that are in the nanomolar range 

(Arnold &  Cameron, 1999, Arnold &  Cameron, 2000). The high Kd value (Kd = 

k0fr/ kon) observed for 3Dut indicates that the association o f the polymerase w ith 

the template (low kon value) and the formation o f the active catalytic complex 

occurs slowly.
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• The k0ff value o f 3Dul is low consistent w ith slow release o f the polymerase 

from the template (Rodriguez-Wells et al., 2001)

I f  these factors are looked at in combination the fo llow ing model is suggested. The low 

affin ity for the primer-template lim its the association o f 3Dutto the primer-template. The 

enzyme that remains unbound follow ing this in itia l association w ill rapidly become 

inactive. Following elongation o f the genome (~ 7.5 kb in length), which in vitro 

biochemical data implies occurs in the majority o f occasions, from a single binding event 

(Rodriguez-Wells et al., 2001), the recycling o f the polymerase occurs slowly. Re­

association o f 3DUI is subject to the same low rates o f association and rapid inactivation o f 

polymerase molecules. Thus the low-level o f primer extension observed in vitro relates 

directly to the low rate at which the polymerase is recycled.

It is like ly however that in vivo the rate o f recycling o f 3Dvvl is greater than then the 

observed rate in vitro. In vivo 3AB is purported to tether the polymerase onto the 

membranes o f the “ rosette-like”  replication complexes (Lyle et al., 2002a). In vitro 

analysis demonstrated that 3DNt is stimulated by the multifunctional membrane-bound viral 

protein 3AB (Plotch et al., 1989). The stimulation o f 3Dut by 3AB corresponds to an 

increase in processivity (the average number o f nucleotides added to the primer in a single­

binding event between the primer-template and polymerase) o f  3Dut from 5400 to 18,000 

nt (Rodriguez-Wells et al., 2001). Biochemical analysis o f  the stimulatory effect o f 3AB 

has shown that the disassociation constant (k0fr) molecules o f 3D'vl (k0ff=  0.011 m in '1) was 

reduced by ~3-fold in the presence o f 3AB (k0ff=  0.037 m in '1) (Rodriguez-Wells et al., 

2001). In addition to stabilising the 3Du’-template/primer complex experimental data 

obtained also showed that the 3A B /3D "1 interaction also enhanced the rate o f initial 

association o f the polymerase with the primer/template (Rodriguez-Wells et al., 2001). 

Furthermore, it is known that the concentration o f nucleic acids and viral proteins in the 

v icin ity o f the replication complexes is high. The association o f 3Dut w ith these membrane 

structures and allied factors may substantially increase the stability o f  the polymerase in 

vivo.
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Figure 4.25 Illustration o f the process of recycling of 3Dwt
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I f  the lattice model proposed by Lyle et al is an accurate representation o f the replication 

complex then these factors suggest that the kon rate in vivo would be higher than the 

calculated rate in vitro. The increase in the kon value would lead to an increase in the rate o f 

polymerase recycling by enhancing the ability o f the polymerase fo llow ing disassociation 

for the template. Certainly the ability o f 3Dutto recycle efficiently in vivo is suggested by 

the rate at which replicative recombination occurs (Jarvis &  Kirkegaard, 1992).

4.8.5 RNA binding

Biochemical analysis has shown that the stimulation o f the polymerase upon binding o f 

3AB to 3D "1 is associated with an increase in binding o f the 3 AB /3D "1 complex to the 

primer-template (Rodriguez-Wells et al., 2001). In vitro both 3AB and 3D "1 show non­

specific RNA binding activity. It is o f interest to deduce the mechanism by which the 

3A B /3D "1 super-polymerase in vivo specifically recognises the 3’ termini o f the poliovirus 

genome and anti-genome. Three possible explanations for this have been put forward. The 

first is the existence o f an unidentified cellular factor that promotes the interaction o f the 

3AB/3Dut complex w ith a specific structure w ith in the template. A  second explanation o f 

the specific-recognition o f the poliovirus genome as a template for RNA synthesis would 

be the exposure o f a m o tif w ithin the polymerase, upon binding o f 3 AB  that specifically 

recognises a specific structure at the 3’term inii o f the picornavirus genome and 

anti-genome. Lastly, it is equally possible that the polymerase, though showing a relatively 

low affin ity for nucleic acid binding in vitro (Arnold &  Cameron, 2000), does have a 

higher a ffin ity  for the virus genome. This increase in a ffin ity  for genomic template could 

be mediated by a direct interaction between 3D "1 and a RNA secondary structure present 

w ithin the genome. A  slight increase in the binding a ffin ity  o f the polymerase for the 

genomic template in the context o f the replication complex, which contains a high 

localised concentration o f virus factors and nucleic acids, could be enough to confer 

specificity to the process o f RNA synthesis.

Support for the idea that N18 may be involved in RNA-binding has been provided by 

research on RT and 3D "1 that implicates the thumb domain that is adjacent to N18 in the 

crystal structure o f 3D "1, in binding the RNA template. Additional supporting evidence can 

be drawn from structural alignments o f HCV NS5B and 3D"1. Evidence from the structural 

alignments (Bressanelli et al., 1999) indicates that N18 is located in an area o f the 

polymerase analogous to a region o f NS5B that has been shown to be in direct contact w ith
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the template strand (O'Farrell et al., 2003). Given that an increase in the a ffin ity  o f the 

“ superpol”  for its template correlates to a stimulation o f 3DNU polymerisation activity one 

explanation for the phenotype, o f PV3.HRV14 3’UTR.3DNI8Y, observed by Meredith et al 

(Figure 4.13) is that the N18Y mutation positively influences the kon rate o f the RdRp. An 

increase in k0„ rate o f 3Dut could be by enhancing the inherent ability o f the polymerase to 

bind the 3’UTR. It is also possible that the N18Y mutation increases the rate at which the 

in itia l isomerisation reaction to form the active catalytic complex occurs. A  positive 

influence on the kon rate through either o f the above mechanisms should be reflected in a 

higher a ffin ity for the primer-template i.e. a reduction in the Kd value o f the polymerase 

should be obtained.

In HCV residues 14, 93, 95, 97, 98, 139, 141 and 160 directly contact the RNA (O'Farrell 

et al., 2003). By directly contacting the RNA the polymerase can position the template so 

that it is positioned correctly w ith respect to the primer and the incoming nucleotide. The 

data obtained by Meredith et al suggested that the N18Y repaired a direct-interaction 

between the 3 ’UTR and polymerase that had been disrupted in viruses w ith a mut4 3’UTR 

(Meredith et ah, 1999). By drawing an analogy w ith the HCV-liganded structure two 

models can be put forward to describe how an effect on RNA-binding could explain the 

phenotype observed by Meredith et al. The mutations introduced by Meredith et al into the 

stem o f the HRV14 3’UTR to create mut 4 disrupted the interaction between N18 and the 

RNA. Based on the HCV-liganded structure it would be expected that multiple contacts 

between the polymerase and the RNA exist. As a consequence the disruption o f the 

N18/3’UTR interaction would not be predicted to completely abolish binding. The 

phenotype o f virus with a mut4 3’UTR, in the absence o f the N18Y mutation, can be 

explained by the follow ing scenario. Disruption o f the N18/3’UTR enables the template to 

“ slip”  w ith in the polymerase. In the HCV-liganded structure the template and incoming 

nucleotide fit tightly in RNA-binding groove and NTP tunnel respectively (O'Farrell et al., 

2003). I f  the genome w ith the mut4 3’UTR was to “ slip”  w ith in  the polymerase molecule it 

is likely that it would either slip into the binding site o f the incoming nucleotide or towards 

the thumb domain. Both o f these scenarios would result in a reduction in the kon value, by 

decreasing the rate at which a productive catalytic complex would be formed. It is also 

possible that slipping o f the template might increase the k0ff rate. A  decrease in the affin ity 

o f the polymerase for the genomic RNA in vivo, either by increasing the k0ff rate or 

decreasing the kon rate would reduce the efficiency o f polymerase recycling. As a
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consequence the titre o f virus progeny produced from a virus w ith a mut4 3 ’UTR would be 

expected to be decreased relative to the parental virus.

It is clear that the N 18 Y mutation must reform the disrupted interaction between the 

polymerase and the virus 3’UTR in the case o f PV3.mut4 3’UTR.3DN18Y. However, what 

is the possible explanation for the effect exerted on the growth o f PV3.HRV14 3’UTR by 

the presence o f 3DNI8Y (Meredith et al., 1999)? One possibility is that the N18Y coding 

change results in a subtle narrowing o f the RNA-binding groove around residue 18. This 

subtle narrowing may be enough to prevent the RNA w ith a mut4 3’UTR from slipping out 

o f place. In virus w ith a parental 3’UTR this subtle narrowing may increase the stability o f 

the 3 DNm /template complex. The effect o f this may be an increase in the rate at which a 

productive catalytic complex is formed. It is also possible that a subtle narrowing o f the 

RNA-binding groove may decrease the k0ff rate o f the polymerase.

Alternatively, the presence o f a tyrosine at residue 18 may increase the inherent affin ity o f 

the polymerase for the genomic template. I f  the presence o f a mut 4 3’UTR on a genomic 

RNA resulted in a higher rate o f disassociation o f the polymerase for the template this 

could be compensated by increasing the rate at which the RdRp binds the template. An 

example o f this type o f compensation is provided by RT which shows characteristic low 

processivity and high kon values (DeStefano et al., 1992, Huber et al., 1989, Reardon,

1993). An increase in the inherent kon value o f 3DNI8Y, in comparison w ith 3D'vt, would 

result in an increase in fitness o f the virus by enhancing the rate o f polymerase recycling.

Equations exist that enable the association (kon), the disassociation (k0ff) and affin ity (Kd) 

constants o f polymerases for template in vitro to be calculated. I f  N18Y compensates the 

mut 4 3’UTR through a non-specific increase in the inherent kon value then this should be 

detectable in vitro using sym/sub. In addition the enhancement in the recycling rate that 

accompanies an increase in kon value should result in an increased percentage o f primer- 

template being extended by 3DN18Y, compared to 3DNU, over the course o f a standard 

reaction in vitro. I f  the effects o f N18Y are affected by a subtle narrowing o f the RNA- 

binding groove it may be that differences exist in the kon and k0ff values o f 3Dutand 

3DN18V. However as the 3’UTR is structured it may be that to fu lly  characterise any 

differences in the konand k0ff values between 3D"'and 3DNI8V a template w ill have to be 

designed that more fu lly  mimics the mut 4 and parental HRV14 3’UTR tailed genomes.
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4.8.6 Conclusion

During the course o f the chapter the expression and purification o f functional 3D'vl and 

3DNm has been described. The preliminary characterisation o f polymerisation activity 

appeared to show that 3DNI8  ̂ was catalytically more active than 3D"1, though recent 

characterisation has not been able to confirm this. Further characterisation o f polymerase 

oligomerisation and o f the polymerase-3’UTR interaction using purified 3D "1 and 3DNm 

polymerases w ill hopefully enable the biochemical basis o f the phenotype observed by 

Meredith et al to be elucidated.

However in characterising purified 3DNm it has to be remembered that the in vitro 

techniques used to analyse the purified polymerases does not completely reconstitute the in 

vivo situation where 3D "1 appears to be found in large lattice structures, built on a 

membrane scaffold. It therefore may be that subtle variation in an activity, for example 

terminal uridyl transferase or RNA binding, between the purified polymerases in vitro may 

be reflected in vivo by a virus that can replicate more effic iently in the presence or absence 

o f the mut 4 3’UTR.



5 Discussion of results

Since the worldwide vaccination campaign against poliomyelitis was initiated remarkable 

advances in eradicating the disease have been made. According to W orld Health 

Organisation (W HO) statistics the number o f cases o f poliomyelitis has decreased from

350,000 in 1988 to less than a 784 in 2003 (http://www.who.int/vaccines/case count.cfrn). 

Problems encountered during the eradication campaign include the low symptomatic: 

asymptomatic infection ratio, political interference and the number o f viruses, amongst 

them the coxsackie A  viruses, which result in sim ilar clinical outcomes (flaccid paralysis) 

to symptomatic poliovirus infections.

W ithin the picornavirus fam ily nine distinct genera have so far been defined. W ithin 

certain genera further distinctions can be made. Phylogenetic analysis o f the enterovirus 

genus has shown that individual enteroviruses cluster into the same four species regardless 

o f whether the phylogeny is based on the structural or non-structural genes (Poyry et al., 

1996). Phylogenetic analysis has shown that members o f the HEV-C species cluster, which 

includes both poliovirus and some coxsackie A  viruses, can only be distinguished from 

each other by receptor usage (Brown et al., 2003). Evidence from outbreaks o f vaccine- 

associated disease, like the recent case in Hispaniola in which the entire non-structural 

region o f the isolate’ s genome had been derived from HEV-C viruses (Figure 5.1), suggest 

that all HEV-C viruses capable o f using PVR can cause paralytic poliomyelitis (Kew et al., 

2002).

Oberste and others have demonstrated using phylogenetic analysis that whilst intra-species 

recombination occurs frequently w ithin the non-structural region o f the genome the 

structural proteins (VP 1-4) are always inherited as a single unit. Oberste et al therefore 

suggested that enteroviruses could be viewed either as replicons in search o f a vehicle that 

allows them to access the host machinery required for virus replication or as capsid 

proteins looking for the non-structural proteins o f the highest replication fitness (Oberste et 

al., 2004). Several independent studies have reported that while intra-species 

recombination is highly prevalent amongst circulating enteroviruses no inter-species 

recombination can be detected (Lukashev et al., 2003, Oberste et al., 2004). Thus, while 

enteroviruses can be viewed as replicons in search o f capsid sequences it would appear that 

recombination is restricted to species level. There are a number o f possible explanations

http://www.who.int/vaccines/case
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for why recombinants between more distantly related enteroviruses are not observed in 

circulating viruses.

An absolute requirement is that two enteroviruses genomes must be w ith in the same cell. 

This is defined by receptor usage. A t a phylogenetic level this has been used as the 

explanation as to why distantly related serotypes are significantly less like ly to recombine 

with each other than more closely related serotypes (Brown et al., 2003, Poyry et al., 1996, 

Pulli et al., 1995). However as the receptors used by enteroviruses (Table 1.4) are fa irly 

ubiquitous in their expression on the cell surface it is like ly  that co-infection o f cells is 

more common than the recombination rate suggests.

A  second explanation for the apparent species-block is incompatibility between the viral 

proteases that process the viral polyprotein and the heterologous polyprotein resulting from 

recombination between enterovirus species. A  compatibility requirement such as this has 

been observed between enterovirus species in vitro where it has been demonstrated that 

3Cpr° o f  CVB3, in the context o f the full-length genome, was incapable o f processing the 

structural proteins o f PV1 (Dewalt et al., 1989, Lawson et al., 1990). Correct processing o f 

the PV1 non-structural protein (regions P2-P3) by the CVB3 3Cpr0 in vitro could be 

demonstrated to occur in the same system (Dewalt et al., 1989, Lawson et al., 1990). The 

enterovirus species-block on the processing o f the PI region observed in vitro is surprising 

given the conserved nature o f the protein between picornaviruses, and the ability o f 3Cpr0 

to cleave a wide variety o f cellular proteins. Therefore it may be that the apparent species- 

block on processing o f the P 1 region is an artefact o f the in vitro translation system used to 

investigate the processing o f the virus in these studies. Certainly, the available evidence 

suggests that protease/processing incompatibility between enterovirus species is restricted 

to the processing o f the capsid proteins. W ithin the literature it has been documented that 

exchanging the CB4 2Aprogene for the PV1 2A pro gene does not affect virus viab ility  (Lu 

et al., 1995). It has also been reported that the CB3 3B gene can be swapped with that o f 

PV3 3B without affecting the growth o f the virus (Barclay et al., 1998) and that viable 

virus can be generated w ith CB3/PV1 2B hybrid proteins (van Kuppeveld et al., 1997c).
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Figure 5.1 Location of recombination breakpoints of the four different classes 
found among Hispaniola Vaccine-derived poliovirus isolates. In the schematic 
of the poliovirus genome the single ORF is indicated by a single rectangle, flanked 
by the 5’ and 3' UTR. VPg is shown as a yellow circle. In rectangles A to E Sabin-1 
derived sequences are indicated by a white fill. Sequences derived from enteroviruses 
other than Sabin OPV strains are indicated by coloured fills. The rectangles symbolise 
isolates (A) D0R00-013 (B) D0R00-041C1 (C) HAI00-003 and (D)HAIO 1-007.
Figure was taken from Kew et al, 2002
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The probability o f inter-species recombination occurring could be reduced further i f  

differences between the species existed at the level o f replication or packaging. Both these 

processes involve protein-RNA interactions. Therefore a detailed analysis o f RNA may 

highlight differences between enterovirus species. The use o f computational algorithms to 

assess similarities and differences between aligned related genomes provides a useful 

method o f identifying genera and species-specific motifs that may exist w ith in virus 

families. Previous computational analysis o f aligned picornavirus genomes identified 

unique RNA structural motifs w ithin each genus (W itw er et al., 2001). In contrast, a 

computational algorithm, that analyses aligned genomes for regions o f SSSV, was used in 

this study to identify sequences that were subject to constraint and therefore o f putative 

functional importance. The identification o f a functional role for one o f these regions in the 

replication o f poliovirus was followed by its subsequent identification as an HEV-C 

species-specific sequence. W ithin poliovirus the introduction o f mutations w ith in this 

region caused a consistent small-plaque phenotype in HeLa cells that has since been 

confirmed independently by Dr.H.Harvala in RD and VERO cell-lines. Though it was not 

tested in this study, the expectation would be that introduction o f mutations into the 

analogous region o f any o f the non-poliovirus HEV-C viruses would result in the same 

small-plaque phenotype. The identification o f a defined replication phenotype w ithin a 

standard cell line argues that the RNA secondary structure influences a fundamental part o f 

the replication o f the HEV-C viruses. W ithin the literature no evidence has been presented 

so far that suggests that the mechanics o f RNA synthesis d iffer significantly between 

members o f the picornavirus fam ily at the species-level. One area where differences might 

exist between the HEV-B species and HEV-C species is in the compartmentalisation o f the 

virus replication complexes w ithin the infected cell.

Recent characterisation using FISH analysis has shown that upon uncoating the poliovirus 

genome migrates to a precise region o f the perinuclear region. Egger and Bienz were able 

to demonstrate that sequential co-infection o f a cell w ith two different serotypes o f 

poliovirus resulted in -80%  o f the replication complexes formed in the cell containing both 

genomes (Egger &  Bienz, 2002). Variation in the localisation o f the replication complex, 

between species, w ith in the cell would significantly reduce the probability that any two 

enterovirus genomes would be found in close enough proxim ity to allow 

template-switching to occur. From the published material indirect evidence can be 

provided to support and refute this view.
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Research using brefeldin A (BFA), an inhibitor o f COP I dependent stages in the ER-Golgi 

transport system has established that differences exist between picornavirus genera in the 

cellular membranes that are utilised to form the replication complex (Gazina et al., 2002). 

However the data obtained has shown that the replication o f both poliovirus (Cuconati et 

al., 1998a, Irurzun et al., 1992, Mayneil et al., 1992) and the HEV-B echovirus 11 (Gazina 

et al., 2002) were inhibited in the presence o f BFA. This suggests that the replication 

complexes o f all enteroviruses are derived from the COP I pathway. On the basis o f this 

observation the balance o f probability argues that the genomes o f all enteroviruses should 

localise to the same region o f the perinuclear region defined by Egger and Bienz for 

poliovirus.

In contrast, data obtained by studies investigating HEV-C encapsidation has suggested that 

variation in the precise location o f the replication complex amongst HEV may exist.

W ithin picornaviruses it is known that the encapsidation o f the genome is coupled to 

replication (Nugent et al., 1999). A  consequence o f this is that any difference in the cellular 

localisation o f the replication complex between enterovirus species would be expected to 

influence the profile not only o f recombination but also o f /r<ms--encapsidation. Research 

carried out by Barclay et al showed that by using an M .O.I o f  1000 a 10-fold increase in 

the /nmv-encapsidation o f PV3 by CB4 could be observed (Barclay et al., 1998). A t the 

time Barclay et al discussed the possibility that the increase in M .O.I led to an increase in 

the local concentration o f replication complexes and as a direct consequence this increased 

the probability o f RNA and the capsid proteins from the different enterovirus replication 

complexes coming into contact. The observations, made by Barclay et al therefore provide 

indirect support for a difference in compartmentalisation between enterovirus species.

5.1 A membrane-targeting hypothesis

I f  the RNA secondary structure did function as a membrane-targeting signal three 

questions are raised. Firstly, what are the possible implications for this w ith respect to 

enterovirus replication? Secondly how does such a model correlate w ith the results that 

have been obtained using the subgenomic replicon and virus systems? And lastly, how 

could these possible factors impact on future research in this area?

A model can be put forward where the uncoated genome, via the presence o f an RNA 

sequence or structure, is recognised and bound by a cellular transport protein (or complex).
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The cellular protein would transport the viral genome, perhaps using the microtubule 

system, to a specific region o f the ER-Golgi system thereby restricting translation to the 

membrane bound ribosomes, found on the rough endoplasmic reticulum. Following 

translation, the membrane associated non-structural proteins, would be inserted directly 

into the ER-Golgi, thus coupling translation to the formation o f the replication complexes. 

Differences that are known to exist in the steps o f the ER-Golgi secretory system affected 

by the formation o f these replication complexes would arise from differences in the exact 

location at which the proteins are co-translationally inserted into the membrane. In other 

words, compartmentalism at the genera and species level might exist because the viruses 

have evolved to interact w ith cellular proteins that result in the formation o f the replication 

complexes at distinct locations w ith in the ER-Golgi system.

To my mind the hijacking o f a cellular transport system to target the genome to the 

perinuclear region offers the virus two possible advantages. Firstly, the binding o f a 

cellular protein, or the coating o f the genome by a cellular transport complex could reduce 

the possibility o f the genome being degraded by cellular RNAases. Secondly, by targeting 

the genome to a region o f the cell where the concentrations o f components required for 

translation and replication to occur are optimal, the virus ensures that the genome is given 

the best opportunity to replicate successfully.

So w ith this in mind what would the consequences o f introducing mutations into the RNA 

structure or sequence be? In terms o f the above model the effects o f  introduction o f 

mutations into the RNA sequence or structural recognition m o tif could range from the 

subtle to the severe depending on how great the effect on the kon value o f the protein for 

the RNA genome is.

5.1.1 Possible effect of disrupting the membrane-targeting of the 

genome: Scenario 1

I f  binding o f the cellular factor was completely abolished then one possible outcome is that 

the genome would be retained near the site o f un-coating. It is known from studies o f other 

viruses that the translation o f structural proteins occurs at the perimeter o f  the cell e.g. the 

known site o f translation o f HIV-1 gag and vpr mRNA is at the plus end o f microtubules, 

near the plasma membrane (Mouland et al., 2001). It is therefore possible that translation 

o f the virus genome at the site o f un-coating could occur. The implications for the
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replication phenotype observed in vitro in this case are hard to quantify, though based on 

EM analysis that suggests only low-amounts o f “ free”  ribosomes are found at the perimeter 

o f the cell, it is probable that the efficiency o f replication would be greatly reduced, as a 

direct consequence o f translation being down-regulated.

A number o f techniques have been described that would enable this hypothesis to be 

tested. Firstly, in an area o f the cell where the concentrations o f ribosomes are low it is 

likely that the number o f polysomes traversing an RNA molecule w ill be reduced. The 

number o f polysomes traversing the P3/leon/37 and P3/leon/37A/w fo llow ing uncoating 

could be analysed using EM analysis. Secondly, under normal circumstances the poliovirus 

replication complexes are derived from the COP I membranes o f the ER-Golgi. In the 

situation outlined above, where the genome was retained at the periphery o f the cell the 

replication complexes would instead be derived from the plasma membrane. Immuno-gold 

labelling o f markers o f either the ER-Golgi or plasma membrane would enable the origin 

o f the membrane, from which the replication complex is derived, to be determined using 

EM. Alternatively, the origin o f the membrane could also be identified by assessing 

whether the replicating RNA co-localises w ith markers o f either the ER-Golgi or plasma 

membrane, using confocal microscopy.

Lastly, the location o f the RNA w ithin the infected cell could be identified. The most 

common way to investigate the location o f RNA w ith in a cell is to use FISH (Egger &  

Bienz, 2002, Troxler et ah, 1992b) however it has been recently reported that Ribogreen, a 

Fluorescent dye used to measure RNA concentration, can be used to label genomic RNA 

inside intact HRV capsids (Kremser et ah, 2004). Kremser et al also reported that the 

fluorescently labelled genome could be detected upon release from the capsid in a heat- 

induced manner (Kremser et ah, 2004). Given the structural sim ilarities between the 

capsids o f HRV and poliovirus it may be possible to label the poliovirus genome using the 

method described by Kremser et al. I f  the poliovirus genome could be successful labelled 

in this manner this would provide a method o f tracing the genome fo llow ing uncoating o f 

the virus capsid using live-cell microscopy. I f  scenario 1 is correct then the P3/leon/37A/'"’/ 

genome should be detected at the periphery o f the cell using either Ribogreen-labelling or 

FISH techniques.
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5.1.2 Possible effect of disrupting the membrane-targeting of the 

genome: Scenario 2

As an alternative, the genome may not be restricted to the periphery o f the cell. In this case 

the genome should be translated upon “ free”  ribosomes w ith in  the cytoplasm. The proteins 

w ill be co-translationally processed and the proteins like 2BC and 3AB that contain 

hydrophobic domains w ill then be inserted into the nearest membrane. As a consequence 

o f this instead o f the discrete sites o f replication usually observed in poliovirus-infected 

cells using FISH analysis numerous areas o f the cell would be like ly to fluoresce, as 

multiple distinct replication sites were created. The formation o f the replication complexes 

in a poliovirus infection is characterised by the high localised concentrations o f virus 

proteins. W ithout membrane targeting the concentration o f the P2 proteins and 3AB, 

through the process o f random insertion into the membranes, may be diluted over a wide 

area. One possible side effect o f this is that the onset o f RNA synthesis might be delayed 

until such a time when the required concentration o f factors is reached.

5.1.3 Possible effect of disrupting the membrane-targeting of the 

genome: Scenario 3

The last possible scenario that can be foreseen is one in which the introduction o f the 

mutations does not prevent the formation o f the protein/RNA complex but does 

significantly destabilise it. I f  this was the case then the significant destabilisation might 

result in a high percentage o f the complexes disassociating before reaching the ER-Golgi 

system. Although a reduction in virus titre would be expected the effect o f such a defect on 

the replication phenotype o f the virus would depend very much on the probability o f a 

productive wild-type infection occurring. Though such a scenario does im ply the growth 

defect w ill be more severe at lower M.O.I.

The results presented shown in figure 3.20 have shown that at the non-permissive 

temperature the replication phenotype is not more severe at a lower M.O.I. I f  the RNA 

sequence is identified as a membrane-target signal this would argue against scenario 3 

being relevant. Interestingly, the results from the analysis o f replication over time 

suggested that the RNA sequence affected an early stage in the replication o f the virus.

This would be consistent w ith the possible situation described in scenario 2.



Inga Dry General Discussion Chapter 5 145

5.2 Motif X as an antagonist of the anti-viral response

The presence o f double-stranded RNA, w ith in a cell induces a number o f anti-viral 

responses, including dsRNA-dependent protein kinase R (PKR) and 2 ’ -5 ’oligoadenylate 

synthetase, that result in the inhibition o f translation, induction o f apoptosis and the 

stimulation o f cytokine and chemokine production (reviewed in Goodbourn et al., 2000). 

To replicate efficiently, viruses must evade stimulating these responses. W ithin the 

literature, numerous virus countermeasures have been documented. These range from the 

production o f proteins that, through binding, inhibit transcription from promoters o f 

interferon (human papillomavirus 16 and human herpesvirus-8; Ronco et al., 1998; Zimring 

et al., 1998) to the production o f short RNA molecules that bind to but do not activate PKR 

(adenovirus and H IV-1; (reviewed in Gunnery et al., 1990, Mathews, 1995). Recently, it 

was identified that Epstein-Barr virus produced microRNAs, to regulate virus and cellular 

gene expression (Pfeffer et al., 2004). Amongst the cellular genes predicted to be targets o f 

these microRNAs were chemokines, cytokines and components o f the signal transduction 

pathway (Pfeffer et al., 2004). One possibility, that can not be discounted, is that RNA 

transcripts may be derived from the m o tif X  region that function as antagonists o f anti-viral 

responses.

5.3 Future work

The investigation, detailed w ithin has led to the identification o f a species-specific 

replication determinant. Aside from the availability o f a reverse genetic system and a 

small-animal model o f  disease a number o f techniques have been developed that enable 

aspects o f RNA virus replication to be analysed. These areas include assays to analyse the 

effect o f mutations on the catalytic functions o f the polymerase, the yeast three-hybrid 

system, to detect virus and cellular protein-RNA interactions and microscopy techniques to 

assess the migration o f the RNA genome to its location w ith in  the replication complex.

As a first step in identifying the function o f this RNA structure the selection o f revertant 

viruses at the non-permissive temperature must be a priority. There are four possible 

outcomes, each o f which have implications regarding the avenue future research w ill take 

(summarised in figure 5.2). The four outcomes are as follows:
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• No revertants can be selected

• Non-synonymous changes are selected

a) Structural proteins

b) Non-structural proteins

• Direct revertants are selected

a) Sequence

b) Structural

• Synonymous second site changes

5.3.1.1 No revertants are recovered

From the study o f viral escape mutants it has been shown that the introduction o f a single 

nucleotide change into a sequence occurs w ith a frequency o f 1 x 10" . I f  two nucleotide 

changes are required to cause a reversion, a revertant virus would be expected to arise from 

a virus population with a frequency o f 1 x 10‘6. I f  no revertants are obtained from the initial 

screen then one possibility that must be considered is that the number o f mutations 

required to recover the wild-tvpe replication phenotype is greater than 2 nucleotides. In the 

published research on the CRE Goodfellow et al reported that revertants could only be 

selected once the number o f mutations introduced into the CRE was reduced from 8 to 3 

(Goodfellow et al., 2000b). I f  no compensating mutations are selected from blind passages 

o f P3/LeonA/'c’1 then it may be that to recover compensating mutations, viruses with a 

reduced number o f mutations introduced into structure I must be constructed. It may then 

be possible, through blind passage o f the tissue culture supernatant, to select revertants.
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5.3.1.2 Non-synonymous changes to the viral proteins are selected

Given that enterovirus non-struetural proteins have not been detected w ith in capsids, the 

identification o f compensating coding changes that map to these same proteins would be at 

odds w ith a role for the RNA sequence as a membrane-targeting signal. However 

identification o f coding changes that compensate for the mutated RNA sequence would 

provide insight into the possible function o f the sequence and the best approach to be used 

to investigate the function o f this RNA-protein interaction further. The observation that 

introduction o f destabilising mutations into structure I generates a replication defect means 

it is possible that any revertants selected may have coding changes that map to the viral 

polymerase. In chapter 4 the expression and purification o f 3Dpo1 and 3DNI8Y using a 

bacterial expression system was described. This successful purification o f functional 3Dpo1
N 1 8 Y *and 3D 1 w ill enable a fu ll biochemical characterisation o f the protein, including K on, 

K 0ff constants and the ability o f the protein to form oligomers. However, as reported in 

section 4.8.1, discrepancies have been reported between protein purified using this system 

and polymerase purified using the ubiquitin-tagged system described by Gohara et al 

(Gohara et al., 1999). The advantage o f the ubiquitin-tagged system is that it enables the 

generation o f large quantities o f polymerase with a fu lly  authentic N-terminus. The data 

from in vitro biochemical characterisation obtained using the latter should provide a more 

accurate picture o f the activities o f the 3Dpo1 in vivo, than that obtained using His-tagged 

3Dpo1 or 3Dpnl that has an N-formyl methionine as the first codon. Given that the 

biochemical differences between variants o f 3Dpo1 might be quite subtle, this would argue 

strongly that all future research should be carried out using the ubiquitin-tagged system 

described by Gohara et al (Gohara et al., 1999).

A  number o f functions have been described for the final cleavage products (2B, 2C, 3A,

3B or 3Cpro) and the intermediate proteins (2BCP3, 3AB and 3CDpr°fo r example) o f the P2 

and P3 regions o f the polyprotein (see introduction section 1.8.2). Distinguishing whether 

the coding change introduced affects the function o f the final cleavage product or the 

intermediate protein would require biochemical analysis. Subsequent to this, the yeast 

three-hybrid system could be used to investigate potential virus and cellular proteins that 

may interact with the RNA/protein complex.
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5.3.1.3 Direct revertants are selected

The identification o f compensating mutations that reconstitute either the structure or 

sequence o f structure I but which does not introduce non-synonymous changes into the 

non-structural proteins would be consistent w ith a function dependent on an interaction 

with a cellular protein or RNA structure. In such a scenario the compensating mutation (s) 

that are retrieved provide information regarding whether putative interactions are 

dependent on the sequence or the structure o f the motif.

It w ill be important to determine whether the RNA binds a cellular protein. Although the 

yeast three-hybrid system could be used for this purpose, problems such as the sensitivity 

o f the screen, described in chapter 3, argue against its use at this stage o f the process. 

Instead a prelim inary test, using UV-crosslinking, could be carried out to identify whether 

the un-mutated structure binds a cellular protein. Further conformation that this interaction 

is required for efficient virus replication would be obtained i f  binding could be 

demonstrated to be abolished in RNA with a disrupted structure and recovered following 

introduction o f the identified compensating mutations.

I f  an RNA-protein interaction can be demonstrated to occur then establishing the identity 

o f the protein becomes a priority. This can be achieved through the use o f matrix-assisted 

laser desorption/ionisation-time o f flight (M A LD I-TO F) mass spectrometry analysis. I f  the 

membrane-targeting hypothesis is correct, it is like ly that the cellular protein identified w ill 

belong to a class o f transport proteins, for example a protein like hnRNPA2. I f  the function 

o f the protein involved in the interaction is involved in a cellular process other than 

intracellular transport, then identification o f the protein involved may offer valuable insight 

into the advantage this interaction imparts to the virus. The nature o f the interaction can be 

further investigated by quantifying the strength o f the interaction by surface plasmon 

resonance (SPR) or filter binding analysis.

5.3.1.4 Synonymous second-site changes are selected

The last possible outcome from the selection o f revertants would be the identification o f a 

synonymous second-site mutations. This would im ply that structure I was involved in an 

RNA-RNA interaction. RNA-RNA interactions have previously been reported to control
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aspects o f the replication o f bacteriophage Qp (K lovins et al., 1998, Klovins &  van Duin, 

1999) and tombusviruses (Pogany et al., 2003).

The identification o f an RNA-RNA interaction required for efficient replication o f the 

HEV-C viruses would not rule out the possibility that the function o f the structure formed 

was a recognisable cellular membrane targeting signal. It is possible that the 

membrane-targeting signal is non-linear in sequence. In such a scenario the cellular 

transport protein would recognise the tertiary structure formed as a result o f  the RNA-RNA 

interaction rather than the sequence itself. However the identification o f an RNA-RNA 

interaction would also raise the prospect that the resultant structure was functionally 

required for a different aspect o f HEV-C replication such as down-regulating the initiation 

o f negative-strand synthesis or the translocation o f VPg-pUpU from the CRE to the 3’end 

o f the negative-sense strand.

The compensating mutation(s) identified provides a valuable source o f information about 

the RNA-RNA interaction. Firstly, the position o f the second site mutation w ith in the 

genome provides information about whether the RNA is involved in a long or short-range 

interaction and secondly, the synonymous mutation may enable the determination o f which 

strand (genome or anti-genome) the interaction occurs. Although, it is not clear whether 

there would be any anti-genome sequence available to participate in an RNA-RNA 

interaction. The detection o f which strand the R N A-RN A interaction is formed has 

consequences for research aimed at deducing its role in the replication o f the HEV-C. For 

example, an RNA-RNA interaction occurring in the positive-sense strand would argue 

against a role in recombination but would not exclude the possibility o f the interaction 

functioning as a membrane-targeting signal. The converse is true o f an RNA-RNA 

interaction that occurs w ith in the anti-genome.

Independently o f whether the RNA-RNA interaction occurs in the genome or anti-genome, 

the follow ing question needs answered: Does the function o f the interaction depend on its 

location w ith in the genome? This question can be answered by analysing the mutations 

using an in vitro cassette-vector similar to that described by Goodfellow et al (Goodfellow 

et al., 2003a).
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5.4 Conclusion

One o f the most pressing questions to be answered by the WHO concerning the global 

eradication o f poliomyelitis is whether the niche left vacant by poliovirus could be filled by 

a related enterovirus. The view, put forward from phylogenetic analysis, is that 

enteroviruses are replicons in search o f a capsid sequence, though the evidence does 

suggest this is restricted to species level. W ithin this thesis evidence is presented o f the 

identification o f a highly conserved determinant o f replication common only to viruses o f 

HEV-C species. Characterising the exact function o f the species-specific m o tif in terms o f 

virus replication w ill provide further insight into the replication o f a group o f medically 

important viruses and may help further our understanding as to why inter-species 

recombinants are not observed. Taken as a whole the accumulating evidence suggests that 

viruses classified w ithin the individual enterovirus clusters (HEV A-D ) have evolved so far 

from the progenitor enterovirus and hence away from each other that recombination 

between species is not feasible on a number o f different levels. In terms o f the global 

poliovirus eradication program this strongly suggests that i f  a virus were to evolve to re- 

occupy the niche vacated by poliovirus, such a virus would only be like ly to originate from 

the HEV-C species and not from one o f the other enterovirus clusters.

Aside from the concerns raised regarding the poliomyelitis eradication campaign, 

poliovirus has, in recent years, provided a valuable model for understanding the replication 

o f less amenable viruses, such as the human caliciviruses and HCV. The identification o f a 

further replication determinant in the poliovirus genome implies that picornaviruses still 

have much to teach us in terms o f understanding the interactions o f positive-strand viruses 

with the host cell.



6 Materials and Methods

6.1 Computer programs

A ll SSSV analysis, described w ithin this thesis, was carried out by Prof. P. Simmonds 

using the Simmonic computer package. SSSV analysis was carried out using a CLUSTAL 

alignment o f enterovirus sequences that differed from each other by >1%. The Genbank 

accession numbers o f all HEV-C and HEV-B sequences used in the alignments are shown 

in appendix 1 and 2, respectively.

Thermodynamic predictions were carried out using the M FO LD server (Zuker, 1989, 

Zuker, 2003) available online at http://www.bioinfo.rpi.edu/mfoldserver.

Sequencing was analysed by Bioedit, while plasmid maps were generated using Vector 

NTI. Figures were generated using Microsoft PowerPoint, Adobe Illustrator and Adobe 

Photoshop packages.

6.2 Solutions and Chemical suppliers

A ll chemicals were supplied by Sigma-Aldrich or BDH

6.2.1 Standard solutions

Phenol: chloroform
25 parts phenol: 25 parts chloroform: l part isomayl alcohol.
Two microspatulas o f 8-hydroxyquinoline were added prior to use.

1 0 X T E
100 mM  Tris-HCl pH 7.5 
10 mM EDTA pH 8.0

IPX Lithium Acetate
1 M Lithium  acetate pH 7.5

Z buffer
60 mM Na2H P 04
40 mM NaH2P 04
10 mM  KC1

1 mM MgSO4.7H20

http://www.bioinfo.rpi.edu/mfoldserver
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Cracking buffer stock solution
8 M Urea 
5% (w/v) SDS 
40 mM Tris-HC l pH 6.8 
0.1 mM EDTA

For Com plete Cracking Buffer
add 1% (v/v) p-mercaptoethanol to cracking buffer stock solution

Resusnension buffer I
50 mM Tris-HCl pH 8.0
0.5 mM EDTA
1.0 mM DTT
0.1 % (w/v) Nonidet-P40

Wash buffer I
50 mM Tris-HCl pH 8.0
0.5 m M EDTA
1.0 m M  DTT

Elution buffer I-IV
50 mM Tris-HCl pH 8.0 
0.5 m M  EDTA
1.0 mM DTT
In addition to the above recipe elution buffers I to IV  contained NaCl at final 
concentrations of:
+ 50 mM NaCl (Elution buffer I),
+ 100 mM NaCl (Elution buffer II),
+ 200 mM NaCl (Elution buffer III),
+ 500 mM NaCl (Elution buffer IV),

Polymerase storage buffer
50 mM Tris-HCl pH 8.0
50 mM KC1
20 % (v/v) Glycerol 
2 mM DTT

6x native loading dye
30% (v/v) glycerol 
0.25% (w/v) bromophenol blue 
made up in TAE

l x T A E
40 mM Tris-acetate 
2 mM EDTA

lOx TBE (1 litre)
890 mM Tris-HCl 
890 mM Boric Acid 
20 mM EDTA pH 8.0
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lOx Tris-Glycine buffer ( 1 litre)
250 mM Tris-HCl 
2.5 M  Glycine 
1 % (w/v) SDS

Destain
10% (v/v) methanol,
10% (v/v) acetic acid 
80% (v/v) dH20

Coomasie Brilliant Blue stain
20% (v/v) methanol,
20% (v/v) glacial acetic acid,

0.2% (w/v) coomassie brilliant blue

2x HBS
50mM HEPES 
280 mM NaCl 
1.5mM Na2H P 04 
pH to 7.1

IPX glucose
10g/ litre

Crystal violet (1 litre)
0.5g crystal violet dissolved in 20mls ethanol, 
0.9g NaCl,
100ml 40% formalydehyde 
make up to 1 litre with dH20

6.3 Antibodies

Antibody Manufacturer Type of antibody Dilution used at

a-HA Sigma Mouse Monoclonal 1:5000

a-cMyc Cell signalling 

technologies

Mouse Monoclonal 1:3000

a-SV5 n/a Rabbit Polyclonal 1:1000

a-mouse 
HRPO conjugate

Pierce Goat monoclonal 1:10,000

a-rabbit 
HRPO conjugate

Pierce Goat monoclonal 1:10,000

Table 6.1 Antbodies used
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6.4 Nucleic acid manipulations

6.4.1 Nucleotide suppliers

Unlabelled nucleotides (rNTPs and dNTPs) were supplied by Promega. Radiolabelled 

nucleotides [ l4C] ATP (57 mCi/mmol), [^S ] methionine (1,175 Ci/mmol) and [a- 32P]

UTP (3000 Ci/mmol) were supplied by Amersham Pharmacia.

6.4.2 Oligonucleotides

Oligonucleotides were in itia lly  supplied by M W G-Biotech and Cruachem. Latterly 

oligonucleotides were supplied by TAGN. Table 6.2 shows all the oligonucleotide primers 

used during the course o f this work.

6.4.3 Polymerase chain reaction (PCR)

PCR was used to am plify regions o f DNA for cloning and to introduce specific mutations. 

A  typical reaction contained 20 ng o f template DNA, 100 pmol o f each primer, 25 mM o f 

each dNTP, 2 mM M gS 04 lx  pfx reaction buffer and lx  pfx enhancer and 10 units o f 

p fxpiat"u|m polymerase (Invitrogen) in a total volume o f lOOpl.

Am plification o f the D N A was carried out using a Techne touchgene gradient thermal 

cycler using the fo llow ing parameters: 94°C for 1 minute, to denature the DNA; 50°C for 1 

minute, to allow primers to anneal to the template D N A; 72°C for 1 minute per thousand 

base pairs to be amplified. The amplification was performed for 30 cycles, fina lly the 

reaction was held at 72°C for 10 minutes to ensure that the m ajority o f  final product was 

full-length double-stranded DNA. The annealing temperature o f the reaction was varied 

according to the particular base composition o f the primers involved.
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6.4.4 Agarose gel electrophoresis

DNA was run on agarose gels containing 0.5 pg/ml ethidium bromide in lx  TAE buffer. 

Samples were loaded into gels using 6x native loading dye. D N A was visualised using 

Biorad’ s gel trans-illuminator system. The size o f D N A fragment that was obtained was 

estimated using lkb  ladder (Invitrogen).

6.4.5 Restriction digestion of DNA

Enzymes were supplied by New England Biolab (NEB), Roche and Promega. Restriction 

digests were carried in buffers recommended by the manufacturers for use w ith the 

appropriate enzyme. Enzymes were used at a concentration o f 1 unit (U) per pg o f DNA in 

a final reaction volume o f 50pl for preparative digests and 15pl for analytical digests. 

Restriction digests were carried out at 37° C unless otherwise specified by the 

manufacturer, in which case that temperature was used.

6.4.6 DNA extractions

DNA that was to be extracted was visualised on a longwave UV transilluminator, 

follow ing gel electrophoresis, carried out using low melting point agarose (Roche). The 

DNA was excised from the agarose with a scapel. The D N A was extracted from the 

agarose gel slice using Promega's Wizard extraction kit.

6.4.7 SAP treatment of DNA

DNA vector that was to be used in ligations was treated w ith Shrimp Alkaline phosphatase. 

A  standard reaction contained lx  reaction buffer (Roche), 5 U o f Shrimp alkaline 

phosphatase and 2 pg purified linearised D N A in a final volume o f 50 pi. The reaction was 

incubated at 30° C for 30 minutes. The treated vector was purified using standard 

phenol-chloroform extraction and DNA precipitation techniques.
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Name of 
oligonucleotide

Sequence 5 ’ 3 ’

Comments

O-AB-21 TTAAAACAGCTCTGGGGT Cloverleaf sense

O-AB-31 GTTGCGGGGGAGGGAGTA Cloverleaf antisense

O-AB-41 TGGGTG TCCG TG TTTG GT IRES sense

O-AB-51 TTCACTGGATGGCCAATC IRES antisense

O-AB-61 GGCCTCGTGGCGCACATG MS2 leader sense

O-AB-71 GGAAGTTGGATATGGGGG MS2 terminator antisense

O-AB-81 GAGAGATATCCTAAACAAGCAAACC 3D sequencing primer sense

O-AB-91 GGTGTTAGAGAAAATTGGTTT 3D sequencing primer sense

IG 10 GGAGTGTGCCAATCGGAAGAGC 3’ end sense primer binds 
nucleotides 7288-7308

1G11 CCCCTACAACAGTATGAC 3’end antisense primer binds 
nucleotides 7392-7409

1G25 GCGCGGATCCCTAAAATGAGTCAAGCCA 3D antisense primer

IG26 GCGATGCCATGGGGCCTGGGTTTGACTATG 3C sense primer

1G50 GTAATACGACTCACTATAGGGCGA T7 sequencing primer

0-BSmut3Dpol GGGGACGATGTTATTGCTAGCTATCCC Mutates the base stem o f the 
stem loop 1 identified in region 
6773-7173 o f PV3.Contains an 
Nhe I  site. Sense primer

0-BSmut3Dpolrev ATGGGGATAGCTAGCAATAACATCGTCCCCATAGG
CAATCAT

Mutates the base stem o f the 
stem loop 1 identified in region 
6773-7173 o f PV3. Contains an 
Nhe I  site. Antisense primer

IG24 GCGATGCCATGGGTGAAATCCAGTGGATG 3D sense primer

2CSS TTTAAAACGCGTCATTAATAATTACATACAG 2C LOOP sense (Goodfellow et 
al., 2000a)

2CSA TTTAAAGCGCGCACTAACAAACATACAGG 2C LOOP antisense 

(Goodfellow et al., 2000a)

Rep3Rev TTGAAGGCTCTCAAGGGCAT Binds just downstream o f Sal 1 
site in Rep3

34-0042 ATGAGACCATCAAAGGAGGC (Meredith et al., 1999)

PV3 sense primer to amplify 3D 
region

IG48 GCCA TTTTA CCAACTGCA GCCTCACCTGGTGA G Mutagenic primer. Binds to 
region in 3C

0-AC-8C CAGCAGGAGCTCGGTGATAGTTGGTTGAAA 2C sense primer contains S a d  
site.

0-AC-9C CAGCAGGAGCTCGGACCACTCCAGTACAAA 3A sense primer contains SacI 
site.

O -AC -ID

_ _ _

CAGCAGGAGCTCGGGCCTGGGTTTGACTATGCA 3C sense primer contains S a d  
site.
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0-AC-2D CAGCAGGAGCTCGGTGAAATCCAGTGGATG 3D sense primer contains SacI 
site.

0-AC-3D CAGCAGGTCGACCTAAAATGAGTCAAGCCAAC 3D antisense primer contains 
Sal /site. Stop sign just before 
cloning site

0-AC-4D CTGCTGCTCGAGCTATTGGAACAAAGCCTCCAT 2C antisense primer contains 
X hol. Allows cloning into Y2H

0-AC-5D C TG C TG C TC G A G C TA TTG C A G TTTTG C TG C 3B antisense primer contains 
Xho I  site.

O -AD -IE C GTC AC C A TAAGCAATCATTTTTAAGTGGTCCAGA
T C T A T T C C C T T G T A T G T T T T C A G

Contains Bgl I I  site. Antisense 
mutagenesis primer

0-AD-8C GCTTACGGAATCAACCTAACC Sense sequencing primer. Binds 
nt 6418-6437 PV3.

0-AD-3E G AC TATGGACTAACCTTGACTAAGACAAATAAATT 
TACCACTTTTGAG

Sense mutagenesis primer. 
Contains Apo I  site

0-AD-4E C CAAT CAG GAGAAGACTAT GGAC T GACC T T GAT T G 
CGGCAGATAAATCTGCCGCTTTTGAGA

Sense mutagenesis primer

0-AD-4F CCTATCCCCACGAGGTCGATGCATCACTACTAGCC
CAATC

Contains Nsi I  site. Introduces 
mutations designed to disrupt 
structure 11

0-AD-5F CTTAAAAATGATTGCATATGGAGATGATGTTATAG
CTTC C

Contains Nde I  site. Introduces 
mutations designed to disrupt 
structure 1

Table 6.2 Oligonucleotides

6.4.8 Ligations

Ligations were carried out in a final reaction volume o f  10-15pl. Each reaction contained 

lx  ligase buffer; a molar ratio o f 1:3 o f  vector:insert and 10U o f  T4 DNA Ligase 

(Invitrogen). Ligations were left overnight at 16° C. All ligations were cleaned up by 

ethanol precipitation and resuspended in 5pl o f  SDW  prior to transformation.
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6.4.9 Strains and genotypes of E. coli

Strain o f  
E. coli

G enotype o f E. coli strain Supplier 
o f  E .coli 
Strains

ER 2738 F 'p roA  B lacF A (lacZ )M l 5zzf: .m in iTn lO  (KanR)
/A(argFlacZ)U169glnV44e 4-(M crA-)
rfb D  1 ?recA 1 relA 1 ? end A 1 s p o T l? th i- l A(m crC m rr) 114:: is 10

NEB

JM 109 F ’traD36proA B la cF A (la cz )M l5/A(lac-proAB) glnV44014~ 
gyrA 96recA Ire lA  lend  A 1 thihsdR 17

NEB

DH5oc F ’/endA 1 hsdR 17(rimk+)glnV44th i 1 recA lgyrA Q re lA  1 A (lac IZYA argF )U 16 
9deoR(phage80dlacA(lacZ/M 15):

BL21DE3(pLySs) F  'ompThsdSH(^R-mH-)galdcm (DE3)pLysS (CamR)

Table 6.3 Genotypes o f  bacterial Strains used

L auria-su lnhate Broth

10 g/litre Bacto tryptone 

5 g/litre Bacto Yeast extract 

5 g/litre NaCl

6.4.9.1 Preparation of Electrocompetant E. coli

A single colony o f  E. coli was used to inoculate 5 ml o f  LB media. The innoculated culture 

was then incubated at 37° C in an orbital shaker overnight. 2.5 ml o f  the overnight culture 

was used to inoculate 500 ml o f LB media. The freshly inoculated culture was incubated at 

37° C, with shaking, until the OD600 was between 0.5-0.6 at which point the bacterial 

culture was transferred into 2 x 500 ml centrifuge bottles that had been pre-chilled at 4° C. 

The cells were pelleted by centrifugation at 4,200 rpm, for 20 minutes, using a Multifuge 

3R benchtop-centrifuge (Heraeus). The supernatant was removed from the cells and the 

pellet were washed once in 500mls ice cold dH20 (w /v) and once with 40 ml ice-cold 10% 

glycerol (v/v). The cells were pelleted by centrifugation for 15 minutes at 2000 rpm, using 

a Multifuge 3R benchtop-centrifuge (Heraeus). The pellet was resuspended in an equal 

volume o f  ice-cold 10% glycerol and aliquoted into pre-chilled cryovials. The aliquots o f  

competent cells were frozen on dry ice and stored at -70° C.
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6.4.9.2 Preparation of Calcium chloride competent cells

A single colony o f  E. coli was used to inoculate 10 ml o f  LB media. The innoculated 

culture was then incubated at 37° C in an orbital shaker overnight. The cells were pelleted 

at 3000 rpm using a Multifuge 3S-R benchtop centrifuge (Haereus). The supernatant was 

removed and the pellet was resuspended in 10 mis o f  ice-cold 0.1 M CaCl2. The cells were 

re-pelleted at 3000 rpm using a Multifuge 3S-R benchtop centrifuge (Haereus) after 30 

minutes during which time the sample was incubated on ice. Following centrifugation the 

pellet was resuspended in 1 ml o f  ice-cold 0.1 M CaCl2.

6.4.10 Bacterial cell transform ations

Two methods o f  transforming bacterial cells with plasmid DNA were used. For 

retransformations calcium chloride treatment was the preferred option; for the 

transformation o f  ligations electroporation was the preferred method.

6.4.10.1 Transformations using Calcium chloride

For calcium chloride transformations the cells were prepared as described in section 

6.4.9.2. 150pl o f  calcium chloride competent cells were incubated on ice for 30 minutes in 

the presence o f  2pl o f  DNA. The cells were heated shocked for 90 seconds at 42° C and 

allowed to recover for 15 minutes on ice prior to plating out on Lauria agar containing the 

required concentration o f  antibiotic.

6.4.10.2 Transformation using electroporation

Electroporation was carried out using BTX ECM 100 electroporator set at 1600v, 100Q 

and 25 pF. Following transformation 1 ml o f  LB was added and the cells were allowed to 

grow at 37° C for 1 hour prior to plating out on Lauria agar containing the required 

antibiotic. All agar plates were inverted and incubated at 37° C for 24 hours.
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6.5 Antibiotic selection

C hapter 6 160

C onstruct 
derivative o f  

plasm id

C om pany
supplier

A ntibiotic
selection

Concentration o f  
Antibiotic selection used

pIIIA/M S2-l Clontech Am picillin 50 pg/ml
pT7FLC n/a Am picillin 50 pg/ml

pT7FLC/Rep3 n/a Am picillin 50 pg/ml
pGBKT7 Clontech Am picillin 50 pg/ml
pACTII Clontech Am picillin 50 pg/ml

pHybLex/Zeo Invitrogen Zeocin 25us/m l-E.coli ER2738 
200us/ml - S.cerevisiae 
EGY48/pSH 18-34

pYESTrp2 Invitrogen Kanamycin 25 pg/ml
Table 6.4 Antibiotic selection used with each plasmid

6.6 Preparation of plasmid DNA

Overnight cultures o f  10 or 500ml were set up in LB in the presence o f  antibiotic as 

required. Small scale preparation o f plasmid DNA was carried out by using the alkaline 

lysis method (Sambrook et al., 1989). Large scale preparation o f  plasmid DNA was carried 

out using a Quiagen maxi-prep kit.

6.7 Sequencing

All sequencing was carried out at the Glasgow U niversity’s inhouse sequencing centre 

(Molecular biology sequencing unit;MBSU), using a Perkin-Elmer ABI Prism™ 377 DNA  

sequencer using multicolour ABI dRhodamine 'BigDye' terminators. Prior to sequencing 

PCR templates were purified using Qiagen’s Qiaquick PCR purification kit. Sequencing 

was also carried out using a plasmid (cDNA) template that had been prepared using 

Qiagen’s Midi-preparation kit.

6.8 T7 RNA transcriptions

6.8.1 Preparation of linearised DNA tem plate

Plasmid DNA was linearised using the restriction endonuclease Sal I. The linearised 

template was extracted using phenol chloroform and precipitated using ethanol and sodium
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acetate. The template was washed in 70% ethanol and airdried before being resuspended in 

15pl dH20.

6.8.2 Preparation of rU15 I poly (rA)40o prim er/tem plate (x20 stock)

40 pM oligo U j5 and 3 pM poly(rA)4oo were mixed and heated to 85° C in 50 mM HEPES 

pH 7 and 10 mM KCl. The solution was then allowed to cool slow ly to room temperature.

6.8.3 T7 RNA transcription reactions

2 pg o f linearised template was incubated in 1 x transcription buffer, in the presence o f 2.5 

mM rNTPs, 50 units o f  RNAase OUT (NEB) ribonuclease inhibitor and 125 U o f  T7 RNA 

polymerase in a final reaction volume o f 50 pi. The reaction was incubated at 37° C for 2 

hours. An aliquot was then visualised on an agarose gel electrophoresis using Biorads gel 

documentation system.

In order to generate enough good quality RNA to carry out a translation assay Promega’s 

RIBO M AX,N1 transcription kit was used. Briefly, 5pg o f  linearised D N A  was incubated for 

2.5 hours at 37° C in the presence o f  1 x transcription buffer, 6 mM o f  each rNTP and 3pi 

o f  T7 enzyme mix (supplied with the kit). Transcribed RNA was purified using lithium 

chloride after being treated with 1 unit DNAase RQ1 for 30 minutes at 37° C. The RNA 

was washed in 70% ethanol and dried prior to resuspension in 20pg nuclease free H?0.

6.9 Protein analysis

6.9.1 Preparation of dialysis tubing.

Tubing cut to the desired length was boiled for 10 minutes in 500m ls o f  2% (w/v) 

sodiumbicarbonate and l mM EDTA pH 8.0. The dialysis tubing was washed thoroughly 5 

to 10 times following boiling in dH20. Following washing the tubing was boiled for a 

further 10 minutes in 500 ml o f l mM EDTA pH 8.0. Prepared tubing was stored at 4° C 

in 500 ml l mM EDTA till required. The dialysis tubing was washed and allowed to 

equilibrate in dialysis buffer, prior to use.
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6.9.2 Protein concentration determination

The concentration o f  protein was assayed using a Bradford protein assay kit supplied by 

Biorad. The dye reagent was prepared by diluting 1 part o f  the dye reagent concentrate 

with 5 parts o f  dH20 .  A series o f  dilutions o f  the protein standard (bovine serum albumin) 

were prepared. 20pl o f  each standard and sample solution were assayed in 200pl o f diluted 

dye reagent. The samples were thoroughly mixed and incubated at room temperature for 5 

minutes. The absorbance at 630nm was measured using a plate reader (Dynex), and the 

protein concentration o f  the samples was calculated from the standard curve.

6.9.3 SDS-PAGE electrophoresis

To ensure full denaturation samples were heated to 95° C for 5 minutes in 2X SDS-sample 

buffer. Full reduction o f  the protein samples was achieved by the addition o f  0.1% 

P-mercaptoethanol to the 2x SDS-sample buffer (40% glycerol, 6% SDS 

125mM Tris pH 6.8, 0.25% bromophenol blue in distilled water).

SDS-PAGE electrophoresis was carried out using BioRad’s Protean II or III 

electrophoresis tanks. Acrylamide was supplied by National diagnostics. Proteins were 

separated by SDS-PAGE, using 5% stacking gels and 12.5% separating gels unless 

otherwise specified. Electrophoresis o f  SDS-PAGE gels was carried out in lx  Tris-glycine 

buffer.

6.9.4 Tris-Tricine SDS polyacrylam ide gel electrophoresis

Gels contained 15% acrylamide 0.4% bis-acrylamide. The cathode buffer contained 0.1 M 

Tris, 0.1 M Tricine and 0.1% (w/v) SDS. The anode buffer contained 0.2 M Tris-Cl pH 

8.9. Electrophoresis o f  Tris-tricine SDS polyacrylamide gels was carried out at 50 volts 

until dye had run-off the base o f  the gel.

6.9.5 Urea-Acrylam ide gel

Polyacrylamide (19:1 acrylamide: bis-acrylamide mix) was purchased from Biorad. 

Urea-Acrylamide electrophoresis was carried out using BioRad’s Protean II or III
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electrophoresis tanks. Electrophoresis o f  Urea-Acrylamide gels was carried out in 0.5x 

TBE buffer.

6.9.6 Coomasie brilliant blue staining

Proteins separated by denaturing SDS-PAGE were visualized by staining with Coomassie 

brilliant blue stain for 30 minutes at room temperature with rocking. The staining solution 

was removed and the gel was destained. The Destain (for recipe see 6.3.1.) was changed 

frequently until the background was clear.

6.9.7 W estern blotting

Proteins separated by SDS-PAGE were electrophoretically transferred onto 

Hybond™ECL™ nitrocellulose membrane (Amersham Pharmacia), using a Biorad sem i­

dry blot apparatus. Briefly the procedure was as follows: the gel was washed in transfer 

buffer (25 mM Tris, 200 mM Glycine, 20% [v/v] methanol) and was then placed on top o f  

three layers o f  filter paper and nitrocellulose membrane that had been presoaked in transfer 

buffer. A further three presoaked layers o f  filter paper were placed on top carefully to 

ensure all air bubbles were removed. The blot was placed in the semidry blotting apparatus 

and an appropriate current (0.5m A/cm “) was applied for 60 minutes.

The membrane was incubated in blocking solution (PBS with 5% non-fat dry milk and 

0.1% Tween 2 0 {Sigm a}). After blocking the nitrocellulose membrane was incubated with 

the primary anti-sera at room temperature, with rocking, for 1-2 hours. Where more 

sensitive detection was required the nitrocellulose membrane was blocked for 1 hour and 

then incubated on a rocker, at 4°c, in the presence o f  the primary sera overnight. Following 

washing with PBS/0.1% Tween 20, the blot was incubated with F1RPO conjugated IgG for 

1 hour. The membrane was visualised after further washing using the Supersignal West 

chemiluminescent detection kit using the instructions provided by the manufacturer 

(Pierce).

The blot was exposed to X-ray film (Kodak) and developed using an automatic developer 

(Konica SRX- 101 A).
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6.9.8 Stripping Antibody from proteins immobilised on 

nitrocellulose membrane

The nitrocellulose membrane was incubated at 80°C for 40 minutes in 100 mM p- 

mercaptoethanol, 2% SDS and 62.5 mM Tris-HCl pH 6.7. The nitrocellulose membrane 

was then thoroughly washed in PBS prior to re-probing with primary antibody.

6.9.9 Standard VPg Uridylylation assay

Reaction mixtures contained 0.5pg 3CD, 0.5pg CRE template, and 2pg VPg in reaction 

buffer (50mM  HEPES p H 7.5, 10% glycerol, 5mM magnesium acetate, 60pM  Zinc 

Chloride, 10 mM p-mercaptoethanol, lOpM UTP and 0.004pM  [a-j2P] UTP). The 

reactions were initiated by the addition o f  3D po! to the reaction before which all reactants 

were mixed and placed on ice. Reaction mixtures were incubated at 34 0 C for 30 minutes. 

The reaction was halted by the addition o f  an equal volume o f  loading buffer (lOOmM 

EDTA in 90% formamide containing 0.05% bromophenol blue and xylene cyanol dyes). 

VPg uridylylation was visualised by Tris-tricine SDS polyacrylamide gel electrophoresis.

6.9.10 Poly (rll) polymerase assay

Reactions contained 3Dpol and 2pM rU15 /0.15pM  poly (rA)4oo primer/template in 

reaction buffer (50 mM HEPES pH 7.5, 10 mM p-mercaptoethanol, 5 mM MgCl2, 500 pM 

UTP and 0.4 pCi/pl [a -’2P] UTP). Reactions were initiated by the addition o f  3D poland 

were carried out in a total volume o f 25pl. The addition o f  a final concentration o f  50 mM 

EDTA was used to stop the reaction after incubation at 34° C for 30 minutes. 5 pi o f  each 

reaction was spotted on to a DE81 filter disc and allowed to airdry completely. The dried 

D E 81 were washed in 5 % dibasic sodium phosphate solution. Bound radioactivity was 

quantified by liquid scintillation counting in 3 ml o f  Ecoscint scintillation fluid (National 

Diagnostics) using a Beckman LS5000 CE scintillation counter.

6.9.11 Terminal uridyl transferase assay

Reactions contained 250 ng o f RNA in reaction buffer (50 mM HEPES pH 7.5, 10 mM (3- 

mercaptoethanol, 5 mM M gC f, 8 U RNAase inhibitor, 150 pM UTP and 0.4 pCi/pl
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[a-'2P] UTP). Reactions were initiated by the addition o f  3D po1, diluted to the required 

concentration, and were carried out in a total volume o f  20pl. The reaction was stopped by 

the addition o f  an equal volume o f  RNA loading buffer (8 M urea, 0.025% (w/v) 

bromophenol blue, 0.025% (w/v) xylene cyanol), after the samples had been incubated for 

1 hour at 30 °C. 20pl o f  the sample was loaded onto a 12.5% urea-acrylamide gel which 

had been pre-run for 30 minutes at 150 V.

6.9.12 Luciferase assay

Transfected cells were pelleted at 13,000 rpm in a benchtop centrifuge. The transfected cell 

pellets were washed once in PBS and resuspended in lOOpl lx  cell culture lysis reagent 

(Promega). After incubating the resuspended pellets at room temperature for 10 minutes, 

the sample was centifuged at 13,000rpm for 2 minutes in a Biofuge pico (Haereus) the 

supernatant was collected. Luciferase activity was detected from lOpl o f  the supernatant, 

using a TD 20/20 luminometer (Promega), after the addition o f  lOOpl o f luciferase reagent 

(Promega). Prior to mixing, both supernatant and luciferase reagent were allowed to 

equilibrate at room temperature for 1 hour.

6.9.13 In Vitro translation and processing assay

Each translation reaction contained 2mM guanidine hydrochloride, lx  transcription buffer 

(containing amino acids-methionine) and 50pCi o f  3:,S-labelled methionine per reaction. 

Rabbit reticulocyte lysate (Promega) and HeLa S10 extracts (Barton & Flanegan, 1993, 

Molla et al., 1991) made up 10% (v/v) and 60% (v/v) o f  the final reaction volume o f  50pl 

respectively. The samples were incubated at 30° C for five hours. Laemmeli loading buffer 

was added to lx  and equal volumes o f  the sample were loaded onto a 12.5% SDS-PAGE  

gel. The gel was dried using a vacuum gel dryer (Biorad) and exposed to an autorad. The 

image was visualised using a phosphoimager and analysed using the Personal FX computer 

program (BioRad).
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6.10 Yeast Techniques

6.10.1 Strains of S.cerevisiae used

Strain o f 

S.C erevisiae
G enotype Supplier

AH 109

MATa, trpl-90, leu2-3,l 12, ura3-52, his3- 
200, gal4A, gal80A, LYS2::GAL1 UAS- 

G AL1 tata-HIS3,GAL2uas-GAL2tata- 
ADE2,URA3 ::MEL 1 uas-MEL 1 TATA-lacZ Clontech

Y187

M ATa,ura3-52,his3-200,ade2- 
101 ,trp 1901 ,leu2-3,112,gal4A,met,gal80A, 

URA3:: GALluAS^GALljATA-lacZ, MEL1
Clontech

EGY48/pSH 18-34

MATa ura3 trpl his3 6 lexAop-leu2  
URA3:(8LEXAop-lacZ) expressed from 
plasmid pSH 18-34 pretransformed into 

EGY48 strain
Invitrogen

R40coat

MAYa, his3A200, trp l-901 leu2-3, 
112 ade2 LYS2::(41exAophis3) 

URA3::(81exAop-lacZ)gal4

Table 6.5 Genotypes of yeast strains used

6.10.2 Yeast media and solutions

Y2H and Y3H solutions were made up according to Clontech Yeast Protocols handbook. 

Dropout media and supplements were supplied by Clontech initially and later by Anachem.

Yeast Media

YPD 20g/litre Difco Peptone 
lOg/litre Yeast Extract 

add dEEO to 950ml. Autoclave then add Glucose to 2% ( filtersterilised)

Y PD A  as above but add adenine hemisulphate solution to final concentration o f
0.003%.
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Synthetically  defined m edium
26 .7g Yeast Nitrogen Base
required amount o f drop out supplement
dFEO to 1 litre

Agar for culturing yeast on was made as above except Bactoagar was added at a 

concentration o f  20g per litre o f media prior to autoclaving.

6.10.3 Yeast transformation

6.10.3.1 Preparation of yeast cells competent for transformation

Single colonies o f  S. cerevisiae were grown overnight, at 30° C in an orbital shaker, in 10 

ml o f Y P D  or the required selective media. 50 ml (sm all-scale transformation) or 300 ml 

(library scale transformation) o f Y PD  were inoculated with the overnight culture to an 

OD600 o f  0.2-0.3. The freshly inoculated cultures were grown at 30 °C in an orbital shaker 

till the O D 6oo was between 0.4-0.6. The yeast cells were centrifuged at 2000 rpm for 10 

minutes in a Kendro multifuge 3S-R. The supernatant was removed and the pelleted yeast 

cells were resuspended in 50 ml o f lx  TE. The yeast cells were pelleted at 2000 rpm for 10 

minutes in a Kendro multifuge 3S-R and after removal o f  the supernatant the cells were 

resuspended in lx  L iA c/lx  TE to a final volume o f  2 ml.

6.10.3.2 Transformation of DNA

For each transformation 1 pg o f plasmid DNA and lOOpg denatured sheared salmon sperm 

was incubated with lOOpl o f  the prepared competent cells. Each sample was thoroughly 

mixed by inverting the tube and 600pl o f  lx  LiAc/40% PEG /lx TE solution was added. 

Following the addition o f  the lx  LiAc/40% PEG /lx TE solution each transformation was 

incubated at 30 °C for 30 minutes with shaking. Following incubation DM SO was added to 

10% (v/v) and inverted to mix. The sample was heat-shocked for 10 minutes at 42 °C. The 

heat-shocked yeast cells were pelleted at 2000 rpm using a biofuge pico centrifuge 

(Flaereus). The yeast cells were resuspended in lx  TE buffer prior to plating out on the 

required selective agar. The agar plates were inverted and incubated at 30 °C.
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6.10.4 Extraction of protein sam ples from yeast

Single colonies o f  S.cerevisiae (containing the expression plasmid to be tested) where 

grown overnight, at 30° C in an orbital shaker, in 5ml o f  media selective for the protein 

coding plasmid (Leucine deficient media). The entire overnight culture was used as 

innoculum in a final volume o f  50 ml o f  selective media as the expression culture. The 50 

ml culture was grown at 30°c in an orbital shaker until the OD 600 o f  the culture was 

between 0.4-0.8.

To pellet the yeast cells, the entire 50 ml culture was centrifuged at 2000 rpm for 10 

minutes in a Kendro multifuge 3S-R. The supernatant was removed and the pelleted yeast 

cells were washed once in 50 ml o f dFCO. Following washing the pelleted cells were frozen 

at -20° C. The frozen cells were thawed in complete cracking buffer that had been

prewarmed to 60° C. Complete cracking buffer was used at a volume o f  lOOpl per 7.5 total

OD 600 units:

Total OD6oo units = OD600 units in 1 ml x volume o f  yeast culture

The resuspended cells were transferred to a 1.5ml screw-cap vial containing approximately 

100-150 pi glass beads. The sample was then vortexed vigorously for 1 minute. Afterwards 

the sample was boiled at 100 °C for 10 minutes. The sample was centrifuged briefly in a 

Beckman biofuge pico to pellet the glass beads. The supernatant was transferred to a fresh 

1,5ml vial. The sample was then loaded onto an SDS-PAG E electrophoresis gel. The 

remainder o f  the sample was stored at -20 °C.

6.10.5 P-Galactosidase activity

To confirm that the interaction between the protein and RNA was a true positive the yeast 

were assayed for p-galactosidase activity. A quantitative and a qualitative method were 

used:

6.10.5.1 p-galactosidase colony filter lifts.

After 3 days o f  growth on the mating plates (media lacking leucine and uracil), filters 

(Whatman 5) were lifted from the plates. The yeast on the filters were lysed using repeated
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freeze-thawing before being incubated at 30° C in the presence o f  X-gal (10 mg/ml) in Z 

buffer. Where the protein interacts with the RNA plasmid the colony will be positive (blue 

colour).

6.10.5.2 Liquid O-nitrophenyl-p-D-galactopyranoside (ONPG) assay

For verification o f  the relative affinity o f  the RNA-protein interaction a liquid ONPG assay 

was used to determine p-galactosidase activity. Single colonies o f  the strains to be tested, 

were grown overnight at 30°c in an orbital shaker, in 5ml o f  media selective for both the 

protein coding plasmid (Leucine+ gene) and the RNA containing plasmid (uracil+ gene). 

2m ls o f the overnight culture was used to inoculate 8mls o f  selective media and was grown 

with shaking to an OD 600 o f  between 0.2-0.3. The cells were grown at 30° C in an orbital 

shaker to an O D 600 o f  between 0.4-0.8.To enable calculation o f  the p-galactosidase units 

produced the exact OD 60 0 . when the cells harvested, was recorded. For each colony o f  

interest the assay for p-galactosidase activity was carried out in triplicate. 1.5 ml o f  the 

culture, per sample, was transferred to a microcentrifuge tube. The yeast cells were 

pelleted at 13,000 rpm for 30 secs using a Biofuge pico centrifuge (Haereus). The pelleted 

cells were washed once in 1 ml o f  Z buffer. Following the single wash step the cells were 

resuspended in 300pl o f  Z buffer. The yeast samples were lysed using repeated 

freeze-thawing. lOOpl o f  sample was incubated at 30° C in the presence o f  0.6 mg ONPG 

and 700 pi Z buffer/p-mercaptoethanol (370:1 v/v ratio) Reactions were stopped by the 

addition o f  Na2 C0 3  to a concentration o f 0.5 rnM. The cellular debris was removed by 

centrifugation, and the supernatant was transferred to a cuvette. The optical density o f  the 

supernatant was measured at O D 4 2 0 .  The relative strength o f  the interactions was 

determined by calculating, using the Miller equation (Miller, 1972), the p-galactosidase 

units produced.

The M iller equation

1 OOOxOD42o/TxVxOD6oo 
where T = Incubation time in minutes 

V= 0.1 x Concentration factor

The OD60o was determined from 1 ml o f  culture. If 1.5 ml o f  culture is pelleted and 

resuspended in 0.3 ml Z buffer, this corresponds to a concentration factor o f  5.
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6.11 Mammalian cell techniques

6.11.1 Cell culture

HeLa T4 cells were cultured in Dulbeccos modified eagles medium (DM EM ) containing

10% FCS and L-glutamine and incubated at 37° C /5% CO2 .

6.11.2 Cell techniques

6.11.2.1 Transfection using electroporation

Cells were trypsinised and washed in PBS. Cells were resuspended in PBS to give 4x 106 

cells per 500 pi transfection. Electroporation cuvettes (0.4cm ) were chilled prior to the 

addition o f  the RNA/cell mix. Cells were electroporated at 250V , 250pF and 4 0 0 0 . 

Following electroporation cells were plated out and incubated at 37° CI5%COj in the 

presence o f  DM EM /10% FCS.

6.11.2.2 Transfection using DEAE-dextran

RNA to be transfected was made up to lOOpl in transfection buffer ( lx  HBS, lx  glucose 

50pg DEAE-dextran) and pre-ineubated on ice for 30 minutes. Cells to be used in the 

transfection were prepared as previously described. Cells were incubated for 30 minutes at 

room temperature, follow ing addition o f  the transfection m ix, with occasional shaking to 

ensure complete coverage o f  the cells.

6.12 Virological techniques

6.12.1 Passage of virus

Virus was used to infect cells that were 80% confluent at an M.O.I. o f  approximately 10 

overnight in serum-free DMEM. The supernatant was freeze thawed three times and the 

cellular debris was removed by centrifugation at 1500 rpm in a Multifuge 3S-R (Flaereus). 

The virus supernatant was aliquoted and frozen at -20° C.
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6.12.2 Plaque assays

Cells were prepared to 80% confluency in DMEM/10% FCS (v/v) and L-glutamine in 6 

well dishes. Serum was removed by washing in PBS. Virus was incubated for 30 minutes 

at room temperature, in the absence o f  media, with occasional shaking. Overlay media was 

used in a 67:30 ratio to 2 % bactoagar. 4mls o f  overlay agar was added to each well and 

incubated at room temperature until the agar was set. Plates were subsequently inverted 

and incubated at 37° C/ 5% CO2 for 2-3 days and plaques were visualised following 

staining with crystal violet.



Inga Dry__________________ Bib liography

7 B ib i l io g r a p h y

172

Agirre, A., Barco, A., Carrasco, L. & Nieva, J. L. (2002). Viroporin-mediated membrane
permeabilization. Pore formation by nonstructural poliovirus 2B protein. Journal o f  
Biological Chemistry 277, 40434-40441.

Ahlquist, P. (2002). RNA-dependent RNA polymerases,viruses and RNA silencing.
Science 296, 1270-1273.

Ainger, K., Avossa, D., Diana, A. S., Barry, C., Barbarese, E. & Carson, J. H. (1997).
Transport and Localization elements in M yelin Basic Protein mRNA. The journal 
o f  Cell Biology 138, 1077-1087.

Ainger, K., Avossa, D., Morgan, F., Hill, S. J., Barry, C., Barbarese, E. & Carson, J. H. 
(1993). Transport and localisation o f  exogenous myelin basic protein mRNA 
microinjected into oligodendrocytes. Journal o f  Cell Biology 123, 431-441.

Aldabe, R. & Carrasco, L. (1995). Induction o f  membrane proliferation by poliovirus 
proteins 2C and 2BC. Biochem Biophys Res Commun 206, 64-76.

Alexander, L., Lu, H. H. & Wimmer, E. (1994). Polioviruses containing picornavirus type- 
1 and/or type-2 internal ribosomal entry site elements - genetic hybrids and the 
expression o f  a foreign gene. Proceedings o f  the National Academy o f  Sciences o f  
the United States o f America 91, 1406-1410.

Aminev, A. G., Amineva, S. P. & Palmenberg, A. C. (2003). Encephalomyocarditis viral
protein 2A localises to nucleoli and inhibts cap-dependent mRNA translation. Virus 
research 95, 45-57.

Andino, R., Rieckhof, G. E., Achacoso, P. L. & Baltimore, D. (1993). Poliovirus RNA 
Synthesis Utilizes an RNP Complex Formed Around the 5'-End o f  Viral RNA. 
EMBO Journal 12, 3587-3598.

Andino, R., Rieckhof, G. E. & Baltimore, D. (1990a). A functional ribonucleoprotein 
complex forms around the 5' end o f poliovirus RNA. Cell 63, 369-380.

Andino, R., Rieckhof, G. E. & Baltimore, D. (1990b). A functional ribonucleoprotein 
complex forms around the 5'end o f  poliovirus RNA. Cell 63, 369-380.

Andino, R., Rieckhof, G. E., Trono, D. & Baltimore, D. (1990c). Substitutions in the
protease (3Cpr0) gene o f  poliovirus can suppress a mutation in the 5' non-coding 
region. Journal o f  Virology 64, 607-612.

Antao, V. P., Lai, S. Y. & Tinoco, I., Jr. (1991). A Thermodynamic study o f  unusually 
stable RNA and DNA hairpins. Nucleic acids research 19, 5901-5905.

Antao, V. P. & Tinoco, I., Jr. (1992). Thermodynamic paramaters for loop formation in 
RNA and DNA hairpin tetraloops. Nucleic acids research 20, 819- 824.



Inga Dry____________B ib liography 173

Arnold, J. J. & Cameron, C. E. (1999). Poliovirus RNA-dependent RNA polymerase 
(3Dpol) is sufficient for template switching in vitro. J  Biol Chem 274, 2706-16.

Arnold, J. J. & Cameron, C. E. (2000). Poliovirus RNA-dependent RNA polymerase 
(3D(pol)). Assembly o f  stable, elongation-competent com plexes by using a 
symmetrical primer-template substrate (sym/sub). J  Biol Chem 275, 5329-36.

Arnold, J. J., Ghosh, S. K. & Cameron, C. E. (1999). Poliovirus RNA-dependent RNA  
polymerase (3D(pol)). Divalent cation modulation o f  primer, template, and 
nucleotide selection. J  Biol Chem 274, 37060-9.

Bacharach, E. & Goff, S. P. (1998). Binding o f  the human immunodeficiency virus type 1 
Gag protein to the viral RNA encapsidation signal in the yeast three-hybrid system. 
Journal o f  Virology 72, 6944-9.

Back, S. H., Kim, Y. K., Kim, W. J., Cho, S., Oh, H. R., Kim, J. E. & Jang, S. K. (2002). 
Translation o f  polioviral mRNA is inhibited by cleavage o f  polypyrimidine tract- 
binding proteins executed by polioviral 3C(pro). J  Virol 76, 2529-42.

Badorff, C., Berkely, N., Mehrotra, S., Talhouk, J. W., Rhoads, R. E. & Knowlton, K. U. 
(2000). Enteroviral protease 2A directly cleaves dystrophin and is inhibited by a 
dystrophin-based substrate analogue. Journal o f  Biological Chemistry 275, 11191- 
7.

Baltimore, D., Franklin, R., Eggers, H. J. & Tamm, I. (1963). Poliovirus-induced RNA 
polymerase and the effects o f virus-specific inhibitors on its production.
Proceedings o f  the National Academy USA 49, 843-849.

Banerjee, R. & Dasgupta, A. (2001). Interaction o f  picornavirus 2C polypeptide with the 
viral negative-strand RNA. J  Gen Virol 82, 2621-7.

Banerjee, R., Tsai, W., Kim, W. & Dasgupta, A. (2001). Interaction o f  poliovirus-encoded 
2C/2BC polypeptides with the 3' terminus negative-strand cloverleaf requires an 
intact stem-loop b. Virology 280, 41-51.

Barclay, W., Li, Q., Hutchinson, G., Moon, D., Richardson, A., Percy, N., Almond, J. & 
Evans, D. (1998). Encapsidation studies o f  poliovirus subgenomic replicons. 
Journal o f  General Virology 79, 1725-1734.

Barco, A. & Carrasco, L. (1995). Cloning and inducible synthesis o f  poliovirus non- 
structural proteins in Saccharomyces cerevisiae. Gene 156, 19-25.

Barco, A., Ventoso, I. & Carrasco, L. (1997). The yeast Saccharomyces cerevisiae as a 
genetic system for obtaining variants o f  poliovirus protease 2A. J  Biol Chem 272, 
12683-91.

Barton, D. J. & Flanegan, J. B. (1993). Coupled translation and replication o f  poliovirus 
RNA in vitro: synthesis o f  functional 3D polymerase and infectious virus. J  Virol 
67, 822-31.



Inga Dry B ib liography 17 4

Barton, D. J., Morasco, B. J. & Flanegan, J. B. (1999). Translating ribosomes inhibit 
poliovirus negative-strand RNA synthesis. Journal o f  Virology 73, 10104-12.

Beales, L., Holzenburg, A. & Rowlands, D. J. (2003). Viral internal ribosome entry site 
structures segregate into two distinct morphologies. Journal o f  Virology 77, 6574- 
6579.

Belnap, D. M., Filman, D. J., Trus, B. L., Cheng, N ., Booy, F. P., Conway, J. F., Curry, S., 
Hiremath, C. N ., Tsang, S. K., Steven, A. C. & Hogle, J. M. (2000). Molecular 
tectonic model o f  virus structural transitions: the putative cell entry states o f  
poliovirus. Journal o f  Virology 74, 1342-54.

Belsham, G. J. & Sonenberg, N. (2000). Picornavirus RNA translatiomroles for cellular 
proteins. Trends in Microbiology 8, 330-335.

Ben-Basset, A., Bauer, K., Chang, S. Y., Myambo, K., Boosman, A. & Chang, S. (1987). 
Processing o f  the initiation methionine from proteins: Properties o f  the Escherichia 
coli methionine aminopeptidase and its gene structure. Journal o f  Bacteriology 169, 
751-757.

Bergelson, J. M., Mohanty, J. G., Crowell, R. L., St. John, N. F., Lublin, D. M. & Finberg, 
R. W. (1995). Coxsackievirus B3 adapted to growth in RD cells binds to decay- 
accelerating factor (CD55). J  Virol 69, 1903-6.

Bernstein, D. S., Buter, N ., Stumpf, C. & Wickens, M. (2002). Analyzing mRNA-protein 
com plexes using a yeast-three-hybrid system. Methods 26, 123-141.

Bieniasz, P. D., Grdina, T. A., Bogard, H. P. & Cullen, B. R. (1999). Analysis o f the Effect 
o f  Natural Sequence Variation in Tat and in Cyclin T on the formation and RNA  
Binding Properties o f  Tat-Cyclin T complexes. Journal o f  Virology 73, 5777-5786.

Bieniasz, P. D., Grdina, T. A., Bogerd, H. P. & Cullen, B. R. (1998). Recruitment o f  a 
protein complex containing Tat and cyclin T1 to TAR governs the species 
specificity o f  HIV-1 Tat. EMBO 17, 7056-7065.

Bienz, K., Egger, D. & Pasamontes, L. (1987). Association o f  polioviral proteins o f  the P2 
genomic region with the viral replication complex and virus-induced membrane 
synthesis as visualized by electron microscopic immunocytochemistry and 
autoradiography. Virology 160, 220-6.

Bienz, K., Egger, D. & Pfister, T. (1994). Characteristics o f  the poliovirus replication 
complex. Arch Virol Suppl 9, 147-57.

Bienz, K., Egger, D., Pfister, T. & Troxler, M. (1992). Structural and Functional
Characterization o f  the Poliovirus Replication Complex. Journal o f  Virology 66, 
2740-2747.

Bienz, K., Egger, D., Troxler, M. & Pasamontes, L. (1990). Structural organization o f
poliovirus RNA replication is mediated by viral proteins o f  the P2 genom ic region. 
Journal o f  Virology’ 64, 1156-1 163.



Inga Dry____________B ib liography 1 7 5

Blomqvist, S., Bruu, A.-L., Stenvik, M. & Hovi, T. (2003). Characterization o f  a 
recombinant type 3/type 2 poliovirus isolated from a healthy vaccinee and 
containing a chimeric capsid protein VP l . J  Gen Virol 84, 573-580.

Blyn, L. B., Towner, J. S., Semler, B. L. & Ehrenfeld, E. (1997). Requirement o f  Poly(rC) 
binding protein 2 for translation o f  poliovirus RNA. Journal o f  Virology 71, 6243- 
6246.

Bouffard, P., Barbar, E., Briere, F. & Boire, G. (2000). Interaction, cloning and
characterization o f  RoBPI, a novel protein binding to human Ro ribonucleoprotein. 
RNA 6, 66-78.

Brent, R. & Ptashne, M. (1985). A eukaryotic transcriptional activator bearing the DNA  
specificity o f  a prokaryotic repressor. Cell 43, 729-36.

Bressanelli, S., Tomei, L., Roussel, A., Incitti, I., Vitale, R. L., Mathieu, M., De Francesco, 
R. & Rey, F. A. (1999). Crystal structure o f  the RNA-dependent RNA polymerase 
o f  hepatitis C virus. Proceesings o f  the National Academy o f  Science 96, 13034- 
13039.

Brown, B., Oberste, M. S., Maher, K. & Pallansch, M. (2003). Complete genomic
sequencing shows that poliovirus and members o f  human enterovirus species C are 
closely related in the noncapsid coding region. Journal o f  Virology 77, 8973-8984.

Cassiday, L. & Maher III, J. (2001). In Vivo Recognition o f  an RNA Aptamer by Its 
Transcription factor Target. Biochemistry 40, 2433-2438.

Chapman, N. M., Ragland, A., Leser, J. S., Hofling, K., Willian, S., Semler, B. L. & Tracy, 
S. (2000). A group B coxsackievirus/poliovirus 5' nontranslated region chimera can 
act as an attenuated vaccine strain in mice. J  Virol 74, 4047-56.

Cheetham, G. M. & Steitz, T. A. (1999). Structure o f  a transcribing T7 RNA polymerase 
initiation complex. Science 286, 2305-2309.

Cho, M. W., Teterina, N., Egger, D., Bienz, K. & Ehrenfeld, E. (1994). Membrane
rearrangement and vesicle induction by recombinant poliovirus 2C and 2BC in 
human cells. Virology 202, 129-145.

Chow, M., Newman, J. F., Filman, D., Hogle, J. M., Rowlands, D. J. & Brown, F. (1987). 
Myristylation o f  picornavirus capsid protein VP4 and its structural significance. 
Nature 327, 482-486.

Clark, M. E., Lieberman, P. M., Berk, A. J. & Dasgupta, A. (1993). Direct cleavage o f
human TATA-binding protein by poliovirus protease 3C in vivo and in vitro. Mol 
Cell Biol 13, 1232-7.

Cole, C. N. & Baltimore, D. (1973). Defective interfering particles o f  poliovirus: IV. 
M echanisms o f  enrichment. Journal o f  Virology 12 No. 6, 1414-1426.



Inga Dry____________B ib liography 17 6

Crary, S., Towner, J., Honig, J., Shoemaker, T. & Nichol, S. (2003). Analysis o f the role o f  
predicted RNA secondary structures in Ebola virus replication. Virology 306, 210- 
218.

Crotty, S., Gohara, D. W., Gilligan, D. K., Karelsky, S., Cameron, C. & Andino, R. (2003). 
M anganese-Dependent Poliovirus Caused by Mutations Within the Viral 
Polymerase. Journal o f  Virology 77, 5378-5388.

Cuconati, A., Molla, A. & Wimmer, E. (1998a). Brefeldin A inhibits cell-free, de novo 
synthesis o f  poliovirus. J  Virol 72, 6456-64.

Cuconati, A., Xiang, W., Lahser, F., Pfister, T. & Wimmer, E. (1998b). A protein linkage 
map o f  the P2 nonstructural proteins o f  poliovirus. J  Virol 72, 1297-307.

Cui, T. & Porter, A. G. (1995). Localization o f  binding site for encephalomyocarditis virus 
RNA polymerase in the 3'-noncoding region o f  the viral RNA. Nucleic Acids Res 
23, 377-82.

Culley, A. 1., Lang, A. S. & Suttle, C. A. (2003). Elighdiversity o f  unknown picorna-like 
viruses in the sea. Nature 424, 1054-1057.

Daneholt, B. (1999). Pre-mRNP particles: from gene to nuclear pore. Current Biology 9, 
R412-R415.

Danthi, P., Toteson, M., Li. Q. & Chow, M. (2003). Genome Delivery and Ion Channel
properties are altered in VP4 Mutants o f  Poliovirus. Journal o f  Virology 77, 5266- 
5274.

Datta, U. & Dasgupta, A. (1994). Expression and subcellular localization o f  poliovirus
VPg-precursor protein 3AB in eukaryotic cells: evidence for glycosylation in vitro. 
J  Virol 68, 4468-77.

Davies, M. V., Pelletier, J., Meerovitch, K., Sonenberg, N. & Kaufman, R. J. (1991). The 
Effect o f  Poliovirus Proteinase 2Apro Expression on Cellular Metabolism - 
Inhibition o f  DNA Replication, RNA Polymerase-II Transcription, and Translation. 
Journal o f  Biological Chemistry 266, 14714-14720.

de Jong, A. S., Schrama, I. W., W illems, P. H., Galama, J. M., Melchers, W. J. & van
Kuppeveld, F. J. (2002). Multimerization reactions o f  coxsackievirus proteins 2B, 
2C and 2BC: a mammalian two-hybrid analysis. J  Gen Virol 83, 783-93.

Deitz, S., Dodd, D., Cooper, S., Parham, P. & Kirkegaard, K. (2000). MHC-I dependent 
antigen presentation is inhibited by poliovirus protein 3A. Proceedings o f  the 
National Academy o f  Science USA 97, 13790-13795.

DeStefano, J. J., Buiser, R. G., Mallaber, L. M., Fay, P. J. & Bambara, R. A. (1992). 
Parameters that influence processive synthesis and site-specific termination by 
human immunodeficiency virus reverse transcriptase on RNA and DNA templates.
Biochim.Biophys.Acta 1131, 270-280.



Inga Dry____________Bib liography 177

Dewalt, P. G., Lawson, M. A., Colonno, R. J. & Semler, B. L. (1989). Chimeric 
picornavirus polyproteins demonstrate a common 3C proteinase substrate 
specificity. Journal o f  Virology 63 No. 8, 3444-3452.

Diamond, S. E. & Kirkegaard, K. (1994). Clustered charged-to-alanine mutagenesis o f
poliovirus RNA-dependent RNA polymerase yields multiple temperature-sensitive 
mutants defective in RNA synthesis. J  Virol 68, 863-76.

Dildine, S. L. & Semler, B. L. (1989). The deletion o f  41 proximal nucleotides reverts a 
poliovirus mutant containing a temperature-sensitive lesion in the 5' noncoding 
region o f  genomic RNA. Journal o f  Virology 63, 847-862.

Dildine, S. L., Stark, K. R., Ilaller, A. A. & Semler, B. L. (1991). Poliovirus Translation 
Initiation - Differential Effects o f  Directed and Selected Mutations in the 5' 
Noncoding Region o f  Viral RNAs. Virology 182, 742-752.

Dodd, D., Giddings Jnr, T. & Kirkegaard, K. (2001). Poliovirus 3A protein Limits 
Interleukin-6(IL-6),IL-8 and beta interferon secretion during viral infection. 
Journal o f  Virology’ 75, 8158-8165.

Doedens, J., Giddings Jnr, T. & Kirkegaard, K. (1997). Inhibition o f  ER-golgi traffic by 
poliovirus protein 3A: genetic and ultrastructural analysis. Journal o f  virology> 71, 
9054-9064.

Doedens, J. R. & Kirkegaard, K. (1995). Inhibition o f  Cellular Protein Secretion By 
Poliovirus Proteins 2B and 3A. EMBO Journal 14, 894-907.

Donnelly, M. L. L., Hughes, L. E., Luke, G., Mendoza, IT, ten Dam, E., Gani, D. & Ryan, 
M. (2001a). The'cleavage' activities o f  foot-and-mouth disease virus 2A site- 
sirected mutants and naturally occurring'2A-like'sequences. Journal o f  General 
Virology 82, 1027-1041.

Donnelly, M. L. L., Luke, G., Mehrotra, A., Li, X., Hughes, L. E., Gani, D. & Ryan, M. 
(2001b). Analysis o f  the apthovirus 2A/2B polyprotein 'cleavage'mechanism  
indicates not a proteolytic reaction,but a novel translational effect: a putative 
ribosonal 'skip'. Journal o f  General Virology 82, 1013-1025.

Duggal, R., Cuconati, A., Gromeier, M. & Wimmer, E. (1997). Genetic recombination o f  
poliovirus in a cell-free system. Proceedings o f  the National Academy o f  Science 
94, 13786-13791.

Edwards, T. A., Pyle, S. E., Wharton, R. P. & Aggarwal, A. K. (2001). Structure o f  Pumilo 
reveals similarities between RNA and peptide binding motifs. Cell 105, 281-289.

Egger, D. & Bienz, K. (2002). Recombination o f  Poliovirus RNA Proceeds in Mixed
Replication Complexes Originating from Distinct Replication Start Sites. J. Virol. 
76, 10960-10971.

Egger, D., Pasamontes, L., Bolten, R., Boyko, V. & Bienz, K. (1996). Reversible
Dissociation o f  the Poliovirus Replication Complex - Functions and Interactions o f  
Its Components in Viral-Rna Synthesis. Journal o f  Virology 70, 8675-8683.



Inga Dry____________Bib liography 178

Egger, D., Teterina, N., Ehrenfeld, E. & Bienz, K. (2000). Formation o f  the poliovirus
replication complex requires coupled viral translation, vesicle production, and viral 
RNA synthesis. Journal o f  Virology 74, 6570-80.

Ellington, A. D. & Szostak, J. W. (1990). In vitro selection o f  RNA m olecules that 
specifically bind specific ligands. Nature 346, 818-822.

Estojak, J., Brent, R. & Golem is, E. A. (1995). Correlation o f  two-hybrid affinity data with 
in vitro measurements. Mol Cell Biol 15, 5820-9.

Evans, D. & Almond, J. (1998). Cell receptors for picornaviruses as determinants o f  cell 
tropism and pathogenesis. Trends in Microbiology 6, 198-202.

Evans, D. M. A., Dunn, G., Minor, P. D., Schild, G. C., Cann, A. J., Stanway, G., Almond, 
J. W., Currey, K. & Maizel, J. V. (1985). Increased neurovirulence associated with 
a single nucleotide change in a noncoding region o f  the sabin type-3 poliovaccine 
genome. Nature 314, 548-550.

Fields, S. & Song, O. (1989). A novel genetic system to detect protein-protein interactions. 
Nature 340, 245-6.

Fosmire, J. A., Hwang, K. & Makino, S. (1992). Identification and Characterization o f  a 
Coronavirus Packaging Signal. Journal o f  Virology 66, 3522-3530.

Freistadt, M. S. & Eberle, K. E. (1996). Correlation between poliovirus type 1 Mahoney 
replication in blood cells and neurovirulence. Journal o f  Virology 70, 6486-6492.

Fujiwara, T., Oda, S., Yokota, A. & Ikehara, Y. (1988). Brefeldin A causes disassembly o f  
the Golgi complex and accumulation o f  secretory proteins in the endoplasmic 
reticulum. Journal o f  Biological Chemistry 263, 18545-18552.

Gamarnik, A. V. & Andino, R. (1996). Replication o f  poliovirus in Xenopus oocytes 
requires two human factors. Embo J  15, 5988-98.

Gamarnik, A. V. & Andino, R. (1998). Switch from translation to RNA replication in a 
positive-stranded RNA virus. Genes and Development 12, 2293-2304.

Gao, G., Olova, M., Georgiadis, M., Hendrickson, W. A. & Goff, S. P. (1997). Conferring 
RNA polymerase activity to a DNA polymerase: A single residue in reverse 
transcriptase controls substrate selection. Proceedings o f  the National Academy o f  
Science USA 94, 407-411.

Gazina, E. V., Mackenzie, J. M., Gorrell, R. J. & Anderson, D. A. (2002). Differential 
requirements for COPI coats in formation o f  replication com plexes among three 
genera o f  Picornaviridae. J  Virol 76, 111 13-22.

Gerber, K., Wimmer, E. & Paul, A. V. (2001). Biochem ical and genetic studies o f  the
initiation o f  human rhinovirus 2 RNA replication: identification o f  a cis-replicating 
element in the coding sequence o f 2A(pro). J  Virol 75, 10979-90.



Inga Dry____________Bib l iography 179

Gingras, A. C., Raught, B. & Sonenberg, N. (1999). eIF4 initiation factors:effectors o f  
mRNA recruitment to ribosomes and regulators o f  translation. Annual Review o f  
Biochemistry 68, 913-963.

Girard, M. & Baltimore, D. (1967). The poliovirus replication complex: Site for synthesis 
o f  poliovirus RNA. Journal o f Molecular Biology 24, 59-74.

Gmyl, A. P., Belousov, E. V., Maslova, S. V., Khitrina, E. V., Chetverin, A. B. & Agol, V.
I. (1999). Nonreplicative RNA recombination in poliovirus. J  Virol 73, 8958-65

Gohara, D. W., Ha, C. S., Ghosh, S. K. B., Arnold, J. J., W isniewski, T. J. & Cameron, C. 
(1999). Production o f  "Authentic" Poliovirus RNA-dependent RNA polymerase 
(3Dpol) by Ubiquitin-Protease-Mediated Cleavage in Escherichia coli. Protein 
Expression and Purification 17, 128-138.

Goodbourn, S., Didcock, L. & Randell, R. E. (2000). Interferons:cell signalling, immune 
modulation,antiviral responses and virus countermeasures. Journal o f  General 
virology 81, 2341-2364.

Goodfellow, I., Chaudhry, Y., Richardson, A., Meredith, J., Almond, J. W., Barclay, W. & 
Evans, D. J. (2000a). Identification o f  a cis-acting replication element within the 
poliovirus coding region. J  Virol 74, 4590-600.

Goodfellow, I., Kerrigan, D. & Evans, D. J. (2003a). Structure and Function analysis o f  the 
poliovirus cA-acting replication element (CRE). RNA 9, 124-137.

Goodfellow, I. G., Chaudhry, Y., Richardson, A., Meredith, J. M., Almond, J. W., Barclay, 
W. S. & Evans, D. J. (2000b). Identification o f  a cis-acting replication element 
(CRE) within the poliovirus coding region. Journal o f  Virology 74, 4590-4600.

Goodfellow, I. G., Polacek, C., Andino, R. & Evans, D. J. (2003b). The poliovirus 2C cis- 
acting replication element-mediated uridylylation o f  VPg is not required for 
synthesis o f  negative-sense genomes. Journal o f  General Virology 84, 2359-2363.

Gorbalenya, A. E., Koonin, E. V. & Wolf, Y. I. (1990). A new superfamily o f  putative
NTP-binding domains encoded by genomes o f  small DNA and RNA viruses. FEBS 
Letters 262, 145-148.

Gorbalenya, A. E., Pringle, F. M., Zeddam, J. L., Luke, B. T., Cameron, C., Kalmakoff, J., 
Hanzlik, Gordon, K. H. J. & Ward, V. K. (2002). The Palm Subdomain-based 
Active Site is Internally Permuted in Viral RNA-dependent RNA polymerases o f  
an Ancient Lineage. Journal o f Molecular Biology 324, 47-62.

Gradi, A., Svitkin, Y. V., Imataka, H. & Sonenberg, N. (1998). Proteolysis o f  human
eukaryotic translation initiation factor eIF4GII, but not eIF4GI, coincides with the 
shutoff o f  host protein synthesis after poliovirus infection. Proc Natl Acad Sci U S  
A 95, 11089-94.

Graff, J., Cha, J., Blyn, L. B. & Ehrenfeld, E. (1998). Interaction o f  poly(rC) binding
protein 2 with the 5' noncoding region o f  hepatitis A virus RNA and its effects on 
translation. J  Virol 72, 9668-75.



Inga Dry____________Bib liography 180

Gromeier, M., Alexander, L. & Wimmer, E. (1996). Internal ribosomal entry site
substitution eliminates neurovirulence in intergeneric poliovirus recombinants.
Proceedings o f  the National Academy o f  Sciences o f  the United States o f  America 
93, 2370-2375.

Gromeier, M., Bossert, B., Arita, M., Nom oto, A. & Wimmer, E. (1999). Dual stem loops 
within the poliovirus internal ribosomal entry site control neurovirulence. J  Virol 
73, 958-64.

Gromeier, M. & Wimmer, E. (1998). Mechanisms o f  injury-provoked poliomyelitis. 
Journal o f  Virology 72, 5056-5060.

Gunnery, S., Rice, A. P., Robertson, H. D. & Mathews, M. B. (1990). Tat-responsive 
region RNA o f  human immunodeficiency virus 1 can prevent activation o f  the 
double-stranded RNA-activated protein kinase. Proceedings o f  the National 
Academy o f  Sciences 87, 8687-8691.

Gustin, K. E. (2003). Inhibition o f  nucleo-cytoplasmic trafficking by RNA viruses: 
trageting the nuclear pore complex. Virus Research 95, 35-44.

Gustin, K. E. & Sarnow, P. (2001). Effects o f  poliovirus infection on nucleo-cytoplasmic 
trafficking and nuclear pore compelx composition. EMBO  20, 240-249.

Gutierrez, A. L., Denova, O., Campo, M., Racaniello, V. R. & delAngel, R. M. (1997). 
Attenuating mutations in the poliovirus 5' untranslated region alter its interaction 
with polypyrimidine tract-binding protein. Journal o f  Virology 71, 3826-3833.

Hagino Yamagishi, K. & Nomoto, A. (1989). In vitro construction o f  poliovirus defective 
interfering particles. Journal o f  Virology 63, 5386-5392.

Haller, A. A. & Semler, B. L. (1992). Linker Scanning M utagenesis o f  the Internal 
Ribosome Entry Site o f Poliovirus RNA. Journal o f  Virology 66, 5075-5086.

Hamada, S., Ishiyama, K., Sakulsingharoj, C., Choi, S., Wu, Y., Wang, C., Singh, S., 
Kawai, N ., M essing, J. & Okita, T. W. (2003). Dual regulated RNA transport 
pathwaus to the cortical region in developing rice endosperm. The plant cell 15, 
2265-2272.

Hammerle, T., Hellen, C. U. & Wimmer, E. (1991). Site-directed mutagenesis o f the
putative catalytic triad o f  poliovirus 3C proteinase. Journal o f  Biological Chemistry 
266, 5412-5416.

Hanecak, R., Semler, B. L., Anderson, C. W. & Wimmer, E. (1982). Proteolytic processing 
o f  poliovirus polypeptides: antibodies to polypeptide P3-7c inhibit cleavage at 
glutamine-glycine pairs. Proceedings o f  the National Academy o f  Sciences o f  the 
United States o f  America 79, 3973-3977.

Hansen, J. L., Long, A. M. & Schultz, S. C. (1997). Structure o f  the RNA-dependent RNA  
polymerase o f  poliovirus. Structure 5, 1109-22.



Inga Dry Bibliography 181

Harris, K. S., Xiang, W., Alexander, L., Lane, W. S., Paul, A. V. & Wimmer, E. (1994). 
Interaction o f  poliovirus polypeptide 3CDpro with the 5' and 3' termini o f  the 
poliovirus genome. Identification o f  viral and cellular cofactors needed for efficient 
binding. Journal o f  Biological Chemistry 269, 27004-27014.

Hellen, C. U. T., Witherell, G. W., Schmid, M., Shin, S. H., Pestova, T. V., Gil, A. &
Wimmer, E. (1993). A cytoplasmic 57-kda protein that is required for translation o f  
picornavirus RNA by internal ribosomal entry is identical to the nuclear pyrimidine 
tract-binding protein. Proceedings o f  the National Academy o f  Sciences o f  the 
United States o f  America 90, 7642-7646.

Herold, J. & Andino, R. (2001). Poliovirus RNA replication requires genome 
circularization through a protein-protein bridge. Mol Cell 7, 581-91.

Hobson, S. D., Rosenblum, E. S., Richards, O. C., Richmond, K., Kirkegaard, K. &
Schultz, S. C. (2001). Oligomeric structures o f  poliovirus polymerase are important 
for function. Emho J 2 0, 1153-63.

Hogle, J. M. (2002). Poliovirus Cell entry: Common structural themes in viral cell entry 
pathways. Annual Review o f Microbiology 56, 677-702.

Hope, D. A., Diamond, S. E. & Kirkegaard, K. (1997). Genetic dissection o f  interaction 
between poliovirus 3D polymerase and viral protein 3AB. J  Virol 71, 9490-8.

Huang, H., Chopra, R., Verdine, G. L. & Harrison, S. C. (1998). Structure o f  a Covalently 
trapped catalytic complex o f H IV -1 reverse transcriptase: implications for drug 
resistance. Science 282, 1669-1675.

Huber, H. E., McCoy, J. M., Seehra, J. S. & Richardson, C. C. (1989). Human
immunodeficiency virus 1 reverse transcriptase template binding,processivity, 
strand displacement synthesis and template switching. Journal o f  Biological 
Chemistry 264, 4669-4678.

Hunt, S. L., Hsuan, J. J., Totty, N. & Jackson, R. J. (1999). unr, a cellular cytoplasmic 
RNA-binding protein with five cold-shock domains, is required for internal 
initiation o f  translation o f  human rhinovirus RNA. Genes & Development 13, 437- 
448.

Hyypia, T., Hovi, T., Knowles, N. J. & Stanway, G. (1997). Classification o f  enteroviruses 
based on molecular and biological properties. Journal o f  General Virology 78, 1-
1 1 .

Irurzun, A., Perez, L. & Carrasco, L. (1992). Involvement o f  membrane traffic in the
replication o f  poliovirus genomes - effects o f brefeldin-A. Virology 191, 166-175.

Jacobson, A. B. & Zuker, M. (1993). Structural analysis by energy dot plot o f  a large 
mRNA. J  Mol Biol 233, 261-9.

Jang, S. K. & Wimmer, E. (1990). Cap-independent translation o f  encephalomyocarditis
virus RNA: structural elements o f the internal ribosomal entry site and involvement 
o f a cellular 57-kD RNA-binding protein. Genes & Development 4, 1560-1572.



Inga Dry____________B ib liography 182

Jarvis, T. C. & Kirkegaard, K. (1992). Poliovirus RNA recombination - mechanistic 
studies in the absence o f  selection. EMBO Journal 11, 3135-3145.

Jia, X. Y., Van Eden, M., Busch, M. G., Ehrenfeld, E. & Summers, D. F. (1998). trans- 
encapsidation o f  a poliovirus replicon by different picornavirus capsid proteins. J  
Virol 72, 7972-7.

Joachims, M., Van Breugel, P. C. & Lloyd, R. E. (1999). Cleavage o f  poly(A)-binding
protein by enterovirus proteases concurrent with inhibition o f  translation in vitro. J  
Virol 73, 718-27.

Jore, J., De Geus, B., Jackson, R. J., Pouwels, P. H. & Enger Valk, B. E. (1988). Poliovirus 
protein 3CD is the active protease for processing o f  the precursor protein PI in 
vitro. Journal o f  General Virology 69, 1627-1636.

Jurgens, C. & Flanegan, J. B. (2003). Initiation o f  poliovirus negative-strand RNA 
synthesis requires precursor forms o f p2 proteins. J  Virol 77, 1075-83.

Kaarianinen, L. & Ahola, T. (2002). Functions o f  alphavirus nonstructural proteins in RNA  
replication. Prog.Nucleic.Acid.Res. Mol.Biol 71, 187-222.

Kajigaya, S., Arakawa, EL, Kuge, S., Koi, T., Imura, N. & Nom oto, A. (1985). Isolation 
and characterization o f defective-interfering particles o f  poliovirus Sabin 1 strain.
Virology 142, 307-316.

Kaminski, A., Hunt, S. L., Patton, J. G. & Jackson, R. J. (1995). Direct evidence that 
polypyrimidine tract binding-protein (PTB) is essential for internal initiation o f  
translation o f  encephalomyocarditis virus-RNA. RNA 1, 924-938.

Kang, Y., Bogerd, H. P., Yang, J. & Cullen, B. R. (1999). Analysis o f  the RNA binding 
specificity o f  the human tap protein, a constitutive transport element- specific 
nuclear RNA export factor. Virology 262, 200-209.

Kao, C. C., Singh, P. & Ecker, D. J. (2001). De N ovo Initiation o f  Viral RNA-dependent 
RNA synthesis. Virology 287, 251-260.

Kaplan, G. & Racaniello, V. R. (1988). Construction and characterization o f  poliovirus 
subgenomic replicons. Journal o f  Virology 62, 1687-1696.

Karnauchow, T. M., Tolson, D. L., Harrison, B. A., Altman, E., Lublin, D. M. & Dimock, 
K. (1996). The HeLa cell receptor for enterovirus 70 is decay-accelerating factor 
(CD55). J  Virol 70, 5143-52.

Kean, K. M. (2003). The role o f mRNA 5' non-coding and 3'end sequences on 40S
ribosomal subunit recruitment, and how RNA viruses successfully compete with 
cellular mRNAs to ensure their own protein synthesis. Biology o f  the Cell 95, 129- 
139.



Inga Dry____________B ib liography 183

Kerekatte, V., Keiper, B. D., Badorff, C., Cai, A., Knowlton, K. U. & Rhoads, R. E.
(1999). Cleavage o f Poly(A)-binding protein by coxsackievirus 2A protease in vitro 
and in vivo: another mechanism for host protein synthesis shutoff? Journal o f  
Virology 73, 709-17.

Kew, O., M orris-Glasgow, V., Landaverde, M., Burns, C., Shaw, J., Garib, Z., Andre, J., 
Blackman, E., Freeman, C. J., Jorba, J., Sutter, R., Tambini, G., Venczel, L., 
Pedreira, C., Laender, F., Shimizu, H., Yoneyama, T., Miyamura, T., van Der 
Avoort, H., Oberste, M. S., Kilpatrick, D., Cochi, S., Pallansch, M. & de Quadros, 
C. (2002). Outbreak o f  poliom yelitis in Hispaniola associated with circulating type 
1 vaccine-derived poliovirus. Science 296, 356-9.

King, A. M. (1988). Preferred sites o f  recombination in poliovirus RNA: an analysis o f  40 
intertypic cross-over sequences. Nucleic Acids Research 16, 11705-1 1723.

Kirkegaard, K. & Baltimore, D. (1986). The mechanism o f  RNA recombination in 
poliovirus. Cell 47, 433-443.

Klovins, J., Berzins, V. & van Duin, J. (1998). A long-range interaction in Qbeta RNA that 
bridges the thousand nucleotides between the M -site and the 3' end is required for 
replication. Rna 4, 948-57.

Klovins, J. & van Duin, J. (1999). A long-range pseudoknot in Qbeta RNA is essential for 
replication. J  Mol Biol 294, 875-84.

Koonin, E. V. (1991). The phylogeny o f RNA-dependent RNA polymerases o f positive- 
strand RNA viruses. Journal o f  General Virology 72, 2197-2206.

Krausslich, H. G., Nicklin, M. J., Toyoda, H., Etchison, D. & Wimmer, E. (1987). 
Poliovirus proteinase 2A induces cleavage o f  eucaryotic initiation factor 4F 
polypeptide p220. Journal o f  Virology 61, 2711-2718.

Kremser, L., Okun, V. M., Nicodemou, A., Blaas, D. & Kenndler, E. (2004). Binding o f  
Fluorescent Dye to Genomic RNA Inside Intact Human Rhinovirus after Viral 
Capsid Penetration by Capillary Electrophoresis. Analytical Chemistry 76, 882-887.

Kuge, S. & Nom oto, A. (1987). Construction o f  viable deletion and insertion mutants o f  
the Sabin strain o f  type 1 poliovirus: function o f  the 5' noncoding sequence in viral 
replication. Journal o f  Virology 61, 1478-1487.

Kuge, S., Saito, I. & Nom oto, A. (1986). Primary structure o f  poliovirus defective-
interfering particle genomes and possible generation mechanisms o f  the particles. 
Journal o f  Molecular Biology 192, 473-487.

Kusov, Y., Weitz, M., Dollenmeier, G., Gaussmuller, V. & Siegl, G. (1996). Rna-protein 
interactions at the 3'-end o f  the hepatitis-a virus- rna. Journal o f  Virology 70, 1890- 
1897.

Kusov, Y. Y. & GaussMuller, V. (1997). In vitro RNA binding o f  the hepatitis A virus 
proteinase 3C (HAV 3C(pro)) to secondary structure elements within the 5' 
terminus o f  the HAV genome. Rna-a Publication o f  the Rna Society 3, 291-302.



Inga Dry____________B ib liography 18 4

Laird-Offringa, I. A. & Belasco, J. G. (1995). Analysis o f  RNA-binding proteins by in
vitro genetic selectionddentification o f  an amino acid residue important for locking 
U1A onto its RNA target. Proceedings o f  the National Academy o f  Science USA 
92, 11859-1 1863.

Lall, S., Francis-Lang, H., Flament, A., Norvell, A., Schupbach, T. & Ish-Horowicz, D. 
(1999). Squid hnRNP protein promotes apical cytoplasmic transport and 
localization o f  Drosophilia pair-rule transcripts. Cell 98, 171-180.

Lama, J. & Carrasco, L. (1992). Expression o f  Poliovirus Nonstructural Proteins in
Escherichia- Coli Cells - Modification o f  Membrane Permeability Induced by 2B
and 3 A. Journal o f  Biological Chemistry 267, 15932-15937.

Lama, J., Paul, A. V., Harris, K. S. & Wimmer, E. (1994). Properties o f  purified
recombinant poliovirus protein 3AB as substrate for viral proteinases and as co­
factor for RNA polymerase 3Dpol. J  Biol Chem 269, 66-70.

Lamphear, B. J., Kirkweger, R., Skern, T. & Rhoads, R. E. (1995). Mapping o f functional 
domains in eukaryotic protein synthesis initiation factor 4G (eIF4G) with 
picornaviral proteases. Journal o f  Biological Chemistry 270, 21975-21983.

Lamphear, B. J., Yan, R., Yang, F., Waters, D., Liebig, H .-D., Klump, H., Kuechler, E., 
Skern, T. & Rhoads, R. E. (1993). Mapping the cleavage site in protein synthesus 
initiation factor eIF-4G o f the 2A proteases from human coxsackievirus and 
rhinovirus. Journal o f  Biological Chemistry 268, 19200-19203.

Lawson, M. A., Dasmahapatra, B. & Semler, B. L. (1990). Species-specific substrate
interaction o f  picornavirus 3C proteinase suballelic exchange mutants. Journal o f  
Biological Chemistry 265, 15920-15931.

Le, S. Y., Chen, J. H., Sonenberg, N. & Maizel, J. V. (1992). Conserved tertiary structure 
elements in the 5' untranslated region o f  human enteroviruses and rhinoviruses.
Virology 191, 858-866.

Lee, C. K. & Wimmer, E. (1988). Proteolytic processing o f  poliovirus polyprotein:
elimination o f  2Apro-mediated, alternative cleavage o f  polypeptide 3CD by in vitro 
mutagenesis. Virology 166, 405-414.

Lee, E.-G., Yeo, A., Kraemer, B., Wickens, M. & Linial, M. (1999). The gag domain 
required for avian retroviral RNA encapsidation determined by using two 
independent assays. Journal o f Virology 73, 6282-6292.

Lee, Y. F., Nom oto, A., Detjen, B. M. & Wimmer, E. (1977). The genome-linked protein 
o f  picornaviruses I. A protein covalently linked to poliovirus genome RNA. 
Proceedings o f  the National Academy o f  Sciences o f  the United States o f  America 
74 ,59-63 .

Li, J. P. & Baltimore, D. (1990). An intragenic revertant o f  a poliovirus 2C mutant has an 
uncoating defect. Journal o f  Virology 64, 1102-1107.



Inga Dry B ibliography 18 5

Liljestrom, P., Lusa, S., Huylebroeck, D. & Garoff, H. (1991). In vitro mutagenesis o f full- 
length cD N A  clone o f Semlike Forest Virus: the small 6,000- molecular weight 
membrane protein modulates virus release. Journal o f  Virology 65, 4107-4113.

Lindberg, A. M., Andersson, P., Savolainen, C., Mulders, M. N. & Hovi, T. (2003). 
Evolution o f  the genome o f  Human Enterovirus B: incongruence between 
phylogenies o f  the VP1 and 3CD regions indicates frequent recombination within 
the species. Journal o f  General Virology 84, 1223-1235.

Lippencott-Schwartz, J., Yuan, L., Bonifacino, J. S. & Klausner, R. D. (1989). Rapid 
redistribution o f Golgi proteins into the ER in cells treated with brefeldin A: 
evidence for membrane cycling from the Golgi to ER. Cell 56, 801-813.

Lippencott-Schwartz, J., Yuan, L., Tipper, C., Amherdt, M., Orci, L. & Klausner, R. D. 
(1991). Brefeldin A's effects on endosom es,lysosom es, and the TGN suggest a 
general mechanism for regulating organelle structure and membrane traffic. Cell 
67, 601-616.

Liu, H., Zheng , D., Zhang, L., Oberste, M. S., Kew, O. M. & Pailensch, M. A. (2003). 
Serial recombination during circulation o f  Type 1 Wild vaccine Recombinant 
Poliovirus in China. Journal o f  Virology 77, 10994-11005.

Lobert, P. E., Escriou, N., Ruelle, J. & M ichiels, T. (1999). A coding RNA sequence acts 
as a replication signal in cardioviruses. Proceedings o f  the National Academy o f  
Sciences o f  the United States o f  America 96, 11560-1 1565.

Lohmann, V., Kroner, F., Herian, U. & Bartenschlager, R. (1997). Biochemical properties 
o f  hepatitis C virus NS5B RNA-dependent RNA polymerase and identification o f  
amino acid sequence motifs essential for enzymatic activity. Journal o f  Virology 
71, 8416-8428.

Lommel, S. A., Morris, T. J. & Pinnock, D. E. (1985). Characterization o f  nucleic acids 
associated with Arkansas bee virus. Intervirology 23, 199-207.

Long, A. C., Orr, D. C., Cameron, J. M., Dunn, B. M. & Kay, J. (1989). A consensus
sequence for substrate hydrolysis by rhinovirus 3C proteinase. FEBS Letters 258, 
75-78.

Long, R. M., Gu, W., Lorimer, E., Singer, R. H. & Chartrand, P. (2000). She2p is a novel 
RNA-binding protein that recruits the M yo4p-She2p com plex to ASH1 mRNA. 
EMBO journal 19, 6592-6601.

Lowary, P. T. & Uhlenbeck, O. C. (1987). An RNA mutation that increases the affinity o f  
an RNA-protein interaction. Nucleic Acid Research 15, 10483-10493.

Lu, H. H., Li, X. Y., Cuconati, A. & Wimmer, E. (1995). Analysis o f  Picornavirus 2A(Pro) 
Proteins - Separation o f  Proteinase From Translation and Replication Functions. 
Journal o f  Virology’ 69, 7445-7452.



Inga Dry Bibliography 186

Lukashev, A. N., Lashkevich, V. A., Ivanova, O. E., Koroleva, G. A., Hinkkanen, A. E. &  
Ilonen, J. (2003). Recombination in circulating enteroviruses. Journal o f  Virology 
77, 10423-10431.

Lyle, J. M., Bu llitt, E., Bienz, K. &  Kirkegaard, K. (2002a). Visualization and functional 
analysis o f  RNA-dependent RNA polymerase lattices. Science 296, 2218-22.

Lyle, J. M., Clewell, A., Richmond, K., Richards, O. C., Hope, D. A., Schultz, S. C. &  
Kirkegaard, K. (2002b). Similar structural basis for membrane localization and 
protein prim ing by an RNA-dependent RNA polymerase. J  Biol Chem 277 , 16324- 
31.

Ma, J. &  Ptashne, M. (1988). Converting a eukaryotic transcriptional inhibitor into an 
activator. Cell 55, 443-6.

Martin, F., M ichel, F., Zenkluson, D., Muller, B. &  Schumperli, D. (2000). Positive and 
Negative Selection in the human histone-binding protein using the yeast three- 
hybrid system. Nucleic Acid Research 28, 1594-1603.

Masson, L., Tabashnik, E., Liu, Y. B., Brousseau, R. &  Schwartz, J. L. (1999). Helix 4 o f 
the Baccillus thuringiensis C ry l Aa Toxin Lines the Lumen o f the Ion Channel. 
Journal o f  Biological Chemistry 21 A, 31996-32000.

Mathews, D. H., Sabina, J., Zuker M &  Turner, D. H. (1999). Expanded Sequence 
Dependence o f Thermodynamic Parameters improves Prediction o f RNA 
secondary structure. Journal o f  Molecular Biology' 288, 911 -940.

Mathews, M. B. (1995). Structure,function and evolution o f adenovirus virus-associated 
RNAs. Current Topics in Microbiology and Immunology 199, 173-187.

Mayeda, A., Munroe, S. H., Caceres, J. F. &  Krainer, A. R. (1994). Function o f conserved 
domains o f hnRNP A1 and other hnRNP A/B. EMBO  13, 5483-5495.

Maynell, L. A., Kirkegaard, K. &  Klymkowsky, M. W. (1992). Inhibition o f Poliovirus 
RNA Synthesis by Brefeldin-A. Journal o f  Virology 66, 1985-1994.

McBride, A. E., Schlegel, A. &  Kirkegaard, K. (1996). Human Protein Sam68
Relocalization and Interaction W ith Poliovirus RNA-Polymerase in Infected-Cells.
Proceedings o f  the National Academy o f  Sciences o f  the United States o f  America 
93, 2296-2301.

Mclnerney, G. M., King, A. M., Ross_Smith, N. &  Belsham, G. J. (2000). Replication- 
competent foot-and-mouth disease virus RNAs lacking capsid coding sequences. 
Journal o f  General Virology> 81 Pt 7, 1699-702.

McKnight, K. L. &  Lemon, S. M. (1996). Capsid Coding Sequence Is Required For
Efficient Replication o f Human Rhinovirus-14 RNA. Journal o f  Virology 70, 1941- 
1952.



Inga Dry__________ Bibliography 187

McKnight, K. L. &  Lemon, S. M. (1998). The rhinovirus type 14 genome contains an
internally located RNA structure that is required for viral replication. RNA 4, 1569- 
84.

Meerovitch, K., Pelletier, J. &  Sonenberg, N. (1989). A  cellular protein that binds to the 5'- 
noncoding region o f poliovirus RNA: implications for internal translation initiation.
Genes & Development 3, 1026-1034.

Meerovitch, K. &  Sonenberg, N. (1993). Internal Initiation o f Picornavirus RNA 
Translation. Semin. Virol. 4, 217-227.

Meerovitch, K., Svitkin, Y. V., Lee, H. S., Lejbkowicz, F., Kenan, D. J., Chan, E. K.,
Agol, V. I., Keene, J. D. &  Sonenberg, N. (1993). La autoantigen enhances and 
corrects aberrant translation o f poliovirus RNA in reticulocyte lysate. J  Virol 67, 
3798-807.

Melchers, W. J., Hoenderop, J. G., Bruins Slot, H. J., Pleij, C. W., Pilipenko, E. V., Agol, 
V. I. &  Galama, J. M. (1997). Kissing o f the two predominant hairpin loops in the 
coxsackie B virus 3' untranslated region is the essential structural feature o f the 
origin o f replication required for negative-strand RNA synthesis. J  Virol 71, 686- 
96.

Melnick, J. L. (1996a). Current Status o f Poliovirus Infections. Clinical Microbiology 
Reviews 9, 293-300.

Melnick, J. L. (1996b). Enteroviruses : Polioviruses, Coxsackieviruses, Echoviruses, and 
Newer Enteroviruses. In Fields Virology, pp. 655-712. Edited by B. N. Fields, D.
M. Knipe &  P. M. Howley. Philadelphia: Lippincott-Raven.

Meredith, J. M., Rohll, J. B., Almond, J. W. &  Evans, D. J. (1999). Similar Interactions o f 
the Poliovirus and Rhinovirus 3D polymerase w ith  the 3' Untranslated Region o f 
Rhinovirus 14. Journal o f  Virology 73, 9952-9958.

Merkle, I., van Ooij, M. J., van Kuppeveld, F. J., Glaudemans, D. FI., Galama, J. M.,
Henke, A., Zell, R. &  Melchers, W. J. (2002). Biological significance o f a human 
enterovirus B-specific RNA element in the 3' nontranslated region. J  Virol 76, 
9900-9.

M iller, D. J., Schwartz, M. D. &  Ahlquist, P. (2001). Flock House virus RNA replicates 
on outer mitochondrial membranes in Drosophilia cells. Journal o f  Virology 75, 
11664-11676.

M iller, D. J., Schwartz, M. D., Dye, B. T. &  Ahlquist, P. (2003). Engineered Retargeting 
o f viral RNA Replication Complexes to an Alternative Intracellular Membrane. 
Journal o f  Virology 77, 12193-12202.

M iller, J. (1972). Experiments in Molecular Genetics: Harbor Laboratory Press, Cold 
Spring Harbor, NY.



Inga Dry__________ Bibliography 188

Mirmomeni, M. H., Hughes, P. J. &  Stanway, G. (1997). An RNA tertiary structure in the 
3' untranslated region o f enteroviruses is necessary for efficient replication. Journal 
o f Virology 71,2363-2370.

Mirzayan, C. &  Wimmer, E. (1994a). Biochemical studies on poliovirus polypeptide 2C: 
evidence for ATPase activity. Virology 199, 176-87.

Mirzayan, C. &  Wimmer, E. (1994b). Biochemical-studies on poliovirus polypeptide 2c - 
evidence for atpase activity. Virology 199, 176-187.

Molla, A., Harris, K. S., Paul, A. V., Shin, S. H., Mugavero, J. & Wimmer, E. (1994). 
Stimulation o f poliovirus proteinase 3Cpro-related proteolysis by the genome- 
linked protein VPg and its precursor 3AB. J  Biol Chem 269, 27015-20.

Molla, A., Paul, A. V. &  Wimmer, E. (1991). Cell-free, de novo synthesis o f poliovirus. 
Science 254, 1647-1651.

Molla, A., Paul, A. V. &  Wimmer, E. (1993). Effects o f  temperature and lipophilic agents 
on poliovirus formation and RNA synthesis in a cell-free system. J  Virol 67, 5932- 
8 .

Morasco, B. J., Sharma, N., Parilla, J. &  Flanegan, J. B. (2003). Poliovirus cre(2C)- 
Dependent Synthesis o f VPgpUpU is Required for Positive- but not Negative- 
Strand RNA synthesis. Journal o f  Virology 77, 5136-5144.

Morrow, C. D., Warren, B. &  Lentz, M. R. (1987). Expression o f enzymatically active 
poliovirus RNA-dependent RNA polymerase in Escherichia coli. Proceedings o f  
the National Academy o f  Sciences o f  the United States o f  America 84, 6050-6054.

Mouland, A. J., Xu, H., Cui, H., Krueger, W., Munro, T. P., Prasol, M., Mercier, J.,
Rekosh, D., Smith, R., Barbarese, E., Cohen, E. A. &  Carson, J. H. (2001). RNA 
trafficking signals in human immunodeficiency virus type I. Molecular and cellular 
biology 21, 2133-2143.

Mueller, S., Cao, X., Welker, R. &  Wimmer, E. (2002). Interaction o f the Poliovirus 
Receptor CD 155 with the Dynein Light Chain Tctex-1 and Its Implication for 
Poliovirus Pathogenesis. The Joournal o f  Biological Chemistry 77, 7897-7904.

Murray, K. E. &  Barton, D. J. (2003). Poliovirus CRE-Dependent VPg Uridylylation Is 
Required for Positive-Strand RNA Synthesis but Not for Negative-Strand RNA 
Synthesis. J. Virol 77, 4739-4750.

Muscio, O. A., La Torre, J. L. &  Scodeller, E. A. (1988). Characterization o f Triatoma 
virus, a picorna-like virus isolated from the triatomine bug Triatoma infestans. 
Journal o f  General Virology 69, 2929-2934.

Neufeld, K. L., Galarza, J. M., Richards, O. C., Summers, D. F. &  Ehrenfeld, E. (1994).
Identification o f terminal adenylyl transferase activity o f the poliovirus polymerase 
3Dpol. J  Virol 68, 5811-8.



Inga Dry__________ Bibliography 189

Neznanov, N., Kondratova, A., Chumakov, K. M ., Angres, B., Zhumabayeva, B., Agol, V. 
I. &  Gudkov, A. V. (2001). Poliovirus protein 3a inhibits tumor necrosis factor 
(tnf)-induced apoptosis by eliminating the tn f receptor from the cell surface.
Journal o f  Virology 75, 10409-20.

Ng, K. K. S., Cherney, M. M., Vazquez, A. L., Machin, A., Alonso, J. M. M., Parra, F. &  
James, M. N. G. (2002). Crystal structures o f active and inactive conformations o f a 
caliciviral RNA-dependent RNA polymerase. Journal o f  Biological Chemistry 277, 
1381-1387.

Nicholson, R., Pelletier, J., Le, S. Y. &  Sonenberg, N. (1991). Structural and functional 
analysis o f the ribosome landing pad o f poliovirus type-2 - in vivo translation 
studies. Journal o f  Virology 65, 5886-5894.

N icklin, M. J., Harris, K. S., Pallai, P. V. &  Wimmer, E. (1988). Poliovirus proteinase 3C: 
large-scale expression, purification, and specific cleavage activity on natural and 
synthetic substrates in vitro. Journal o f  Virology 62, 4586-4593.

Nieva, J. L., A.girre, A., N ir, S. &  Carrasco, L. (2003). Mechanisms o f membrane 
permeabilization by picornavirus 2B viroporin. FEBS letters 552, 68-73.

Novak, J. E. &  Kirkegaard, K. (1991). Improved Method for Detecting Poliovirus Negative 
Strands Used to Demonstrate Specificity o f Positive-Strand Encapsidation and the 
Ratio o f Positive to Negative Strands in Infected Cells. Journal o f  Virology 65, 
3384-3387.

Nugent, C. I., Johnson, K. L., Sarnow, P. &  Kirkegaard, K. (1999). Functional coupling
between replication and packaging o f poliovirus replicon RNA. J  Virol 73, 427-35.

Nurani, G., Lindqvist, B. &  Casasnovas (2003). Recepter Prim ing o f Major Group
Rhinoviruses for uncoating and entry at M ild  low-pH environments. Journal o f  
Virology 77 , 1 1985-1 1991.

Oberste, M. S., Maher, K. &  Pallensch, M. A. (2004). Evidence for frequent recombination 
w ith in species human enterovirus B based on complete genomic o f all thirty-seven 
serotypes. Journal o f  Virology 78, 855-867.

Ochs, K., Saleh, L., Bassili, G., Sonntag, V. H., Zeller, A. &  Niepmann, M. (2002). 
Interaction o f translation initiation factor eIF4B w ith the poliovirus internal 
ribosome entry site. J  Virol 76, 2113-22.

Ochs, K., Zeller, A., Saleh, L., Bassili, G., Song, Y., Sonntag, A. &  Niepmann, M. (2003). 
Impaired binding o f standard initiation factors mediates poliovirus translation 
attenuation. J  Virol 77, 115-22.

O'Farrell, D., Trowbridge, R., Rowlands, D. J. &  Jager, J. (2003). Substrate complexes o f 
hepatitis C virus RNA polymerase (HC-J4): Structural evidence for nucleotide 
import and de novo initiation. Journal o f  Molecular Biology 326, 1025-1035.



Inga Dry__________Bibliography 190

Ohka, S., Yang, W. X., Terada, E., Iwasaki, K. &  Nomoto, A. (1998). Retrograde transport 
o f intact poliovirus through the axon via the fast transport system. Virology 250, 
67-75.

Okita, T. W. &  Choi, S. (2002). mRNA localization in plants:targeting to the cell's cortical 
region and beyond. Current opinion in Plant biology 5, 553-559.

Oleynikov, Y. &  Singer, R. H. (1998). RNA localization: different zipcodes,same 
postman? Trends in cell biology 8, 381-383.

Omata, T., Horie, H., Kuge, S., Imura, N. &  Nomoto, A. (1986). Mapping and sequencing 
o f RNAs without recourse to molecular cloning: application to RNAs o f the Sabin 
1 strain o f poliovirus and its defective interfering particles. J. Bio chem. (Tokyo) 99, 
207-217.

Ouzilou, L., Caliot, E., Pelletier, I., Prevost, M. C., Pringault, E. &  Colbere-Garapin, F. 
(2002). Poliovirus transcytosis through M -like cells. J  Gen Virol 83, 2177-82.

Pacheco, J. M., Henry, T. M., O'Donnell, V. K., Gregory, J. B. &  Mason, P. W. (2003). 
Role o f Nonstructural proteins 3 A  and 3B in host range and pathogenicity o f foot 
and mouth disease virus. Journal o f  Virology 77, 13017-13027.

Pallansch, M., Kew, O., Semler, B., Omilianowski, D., Anderson, C., Wimmer, E. &  
Ruekert, R. (1984). Protein processing map o f poliovirus type 1. Journal o f  
Virology 49, 873-880.

Pallansch, M. &  Roos, R. P. (2001). Enteroviruses: Polioviruses, Coxsackieviruses,
Echoviruses and Newer Enteroviruses. In Fields Virology>, Fourth edn, pp. 723-777. 
Edited by D. M. Knipe, P. M. Howley &  D. E. G riffin : L ippincott-W illiam s and 
W illiams.

Park, J., Desvoyes, B. &  Scholthof, H. B. (2002). Tomato Bushy stunt virus Genomic RNA 
Accumulation is regulated by interdependent cA-acting Elements w ithin the 
Movement Protein open reading frame. Journal o f  virology 76, 12747-12757.

Parsley, T. B., Towner, J. S., Blyn, L. B., Ehrenfeld, E. &  Semler, B. L. (1997). Poly (rC) 
binding protein 2 forms a ternary complex w ith the 5'- terminal sequences o f 
poliovirus RNA and the viral 3CD proteinase. RNA 3, 1124-34.

Pata, J. D., Schultz, S. C. &  Kirkegaard, K. (1995). Functional oligomerization o f 
poliovirus RNA-dependent RNA polymerase. RNA 1, 466-77.

Pathak, H. B., Ghosh, S. K., Roberts, A. W., Sharma, S. D., Yoder, J. D., Arnold, J. J., 
Gohara, D. W., Barton, D. J., Paul, A. V. &  Cameron, C. E. (2002). Structure- 
function relationships o f the RNA-dependent RNA polymerase from poliovirus 
(3Dpol). A  surface o f the primary oligomerization domain functions in capsid 
precursor processing and VPg uridylylation. J  Biol Chem 277, 31551-62.

Paul, A. V., Cao, X., Harris, K. S., Lama, J. &  Wimmer, E. (1994a). Studies with
poliovirus polymerase 3Dpol. Stimulation o f poly(U) synthesis in vitro by purified 
poliovirus protein 3AB. J  Biol Chem 269, 29173-81.



Inga Dry__________ Bibliography 191

Paul, A. V., Molla, A. &  Wimmer, E. (1994b). Studies o f a putative amphipathic helix in 
the N-terminus o f poliovirus protein 2C. Virology 199, 188-99.

Paul, A. V., Peters, J., Mugavero, J., Yin, J., Van Boom, J. H. &  Wimmer, E. (2003).
Biochemical and Genetic Studies o f the VPg Uridylylation Reaction Catalyzed by 
the RNA Polymerase o f Poliovirus. J  Virol 77, 891-904.

Paul, A. V., Rieder, E., Kim , D. W., van Boom, J. H. &  Wimmer, E. (2000). Identification 
o f an RNA hairpin in poliovirus RNA that serves as the primary template in the in 
vitro uridylylation o f V P g.J  Virol 74, 10359-70.

Paul, A. V., Schultz, A., Pincus, S. E., Oroszlan, S. &  Wimmer, E. (1987). Capsid protein 
VP4 o f poliovirus is N-myristoylated. Proceedings o f  the National Academy o f  
Sciences o f  the United States o f  America 84, 7827-7831.

Pelletier, J., Kaplan, G., Racaniello, V. R. &  Sonenberg, N. (1988). Cap-independent 
translation o f poliovirus mRNA is conferred by sequence elements w ith in the 5' 
noncoding region. Molecular and Cellular Biology 8, 1103-1112.

Pelletier, J. &  Sonenberg, N. (1988). Internal in itiation o f translation o f eukaryotic mRNA 
directed by a sequence derived from poliovirus RNA. Nature 334, 320-325.

Percy, N., Barclay, W. S., Sullivan, M. &  Almond, J. W. (1992). A  Poliovirus Replicon
Containing the Chloramphenicol Acetyltransferase Gene Can Be Used to Study the 
Replication and Encapsidation o f Poliovirus RNA. Journal o f  Virology 66, 5040- 
5046.

Perez, L. &  Carrasco, L. (1993). Entry o f poliovirus into cells does not require a low-pH 
step. Journal o f  Virology’ 67, 4543-4548.

Pestova, T. V., Shatsky, I. N. &  Hellen, C. U. T. (1996). Functional dissection o f
eukaryotic initiation-factor 4F - the 4A subunit and the central domain o f the 4G 
subunit are sufficient to mediate internal entry o f 43s preinitiation complexes. 
Molecular and Cellular Biology 16, 6870-6878.

Petersen, J. F., Cherney, M. M., Liebig, H. D., Skern, T., Kuechler, E. &  James, M. N.
(1999). The structure o f the 2A proteinase from a common cold virus: a proteinase 
responsible for the shut-off o f host-cell protein synthesis. Emho Journal 18, 5463- 
75.

Pfeffer, S., Zavolan, M., Grasser, F. A., Chein, M., Russo, J. J., Ju, J., John, B., Enright, A. 
J., Marks, D., Sander, C. &  Tuschl, T. (2004). Identification o f Virus-Encoded 
M icroRNAs. Science 304, 734-736.

Pfister, T. &  Wimmer, E. (1999). Characterization o f the nucleoside triphosphate activity 
o f poliovirus protein 2C reveals a mechanism by which Guanidine inhibts 
poliovirus replication. The Journal o f  Biological Chemistry 274, 6992-7001.



Inga Dry__________ Bibliography 192

Pierangeli, A., Bucci, M., Pagnotti, P., Degener, A. M. &  Perez Bercoff, R. (1995).
Mutational analysis o f the 3'-terminal extra-cistronic region o f poliovirus RNA: 
secondary structure is not the only requirement for minus strand RNA replication. 
FEBS Lett 374, 327-32.

Pilipenko, E. V., Blinov, V. M., Chernov, B. K., Dmitrieva, T. M. &  Agol, V. I. (1989a). 
Conservation o f the secondary structure elements o f the 5'- untranslated region o f 
cardio and aphthovirus RNAs. Nucleic Acids Research 17 No. 14, 5701-5711.

Pilipenko, E. V., Blinov, V. M., Romanova, L. I., Sinyakov, A. N., Maslova, S. V. &  Agol, 
V. I. (1989b). Conserved structural domains in the 5'-untranslated region o f 
picornaviral genomes: an analysis o f the segment controlling translation and 
neurovirulence. Virology> 168, 201-209.

Pilipenko, E. V., Gmyl, A. P., Maslova, S. V., Svitkin, Y. V., Sinyakov, A. N. &  Agol, V.
I. (1992a). Prokaryotic-Like Cis Elements in the Cap-Independent Internal 
Initiation o f Translation on Picornavirus RNA. Cell 68, 119-131.

Pilipenko, E. V., Maslova, S. V., Sinyakov, A. N. &  Agol, V. I. (1992b). Towards
identification o f cis-acting elements involved in the replication o f enterovirus and 
rhinovirus RNAs: a proposal for the existence o f tRNA-like terminal structures.
Nucleic Acids Res 20, 1739-45.

Pilipenko, E. V., Poperechny, K. V., Maslova, S. V., Melchers, W. J., Slot, H. J. &  Agol,
V. I. (1996). Cis-element, oriR, involved in the in itiation o f (-) strand poliovirus 
RNA: a quasi-globular multi-domain RNA structure maintained by tertiary 
('kissing') interactions. EMBO J  15, 5428-36.

Plotch, S. J. &  Palant, O. (1995). Poliovirus protein 3AB forms a complex w ith and
stimulates the activity o f the viral RNA polymerase, 3Dpol. J  Virol 69, 7169-79.

Plotch, S. J., Palant, O. &  Gluzman, Y. (1989). Purification and properties o f poliovirus 
RNA polymerase expressed in Escherichia coli. Journal o f  Virology 63, 216-225.

Poch, O., Sauvaget, I., Delarue, M. &  Torodo, N. (1989). Identification o f four conserved 
motifs among the RNA-dependent polymerase encoding elements. EMBO journal 
12,3867-3874.

Pogany, J., Fabian, M., White, K. &  Nagy, P. (2003). A  replication silencer element in a 
plus-strand RNA virus. EMBO 22, 5602-5611.

Porter, D. C., Ansardi, D. C., Wang, J., McPherson, S., Moldoveanu, Z. &  Morrow, C. D. 
(1998). Demonstration o f the specificity o f poliovirus encapsidation using a novel 
replicon which encodes enzymatically active fire fly  luciferase. Virology 243, 1-11.

Powell, R. M., Ward, T., Evans, D. J. &  Almond, J. W. (1997). Interaction between 
echovirus 7 and its receptor, decay-accelerating factor (CD55): evidence for a 
secondary cellular factor in A-particle formation. J  Virol 71, 9306-12.



Inga Dry__________ Bibliography 193

Poyry, T., Kinnunen, L., Hyypia, T., Brown, B., Horsnell, C., Hovi, T. &  Stanway, G.
(1996). Genetic and phylogenetic clustering o f enteroviruses. Journal o f  General 
Virology 77, 1699-1717.

Pulli, T., Koskimies, P. &  Hyypia, T. (1995). Molecular comparison o f coxsackie A  virus 
serotypes. Virology 212,30-8.

Rajagoplan, P. T., Datta, A. &  Pei, D. (1997). Purification,characterization, and inhibition 
o f peptide deformylase from Escherichia coli. Biochemistry 36, 13910-13918.

Ray, P. S. &  Das, S. (2002). La autoantigen is required for the internal ribosome entry site- 
mediated translation o f Coxsackievirus B3 RNA. Nucleic Acids Res 30, 4500-8.

Reardon, J. E. (1993). Human immunodeficiency virus reverse trasncriptase A  kinetic
analysis o f RNA-dependent and DNA-dependet D N A  polymerisation. Journal o f  
Biological Chemistry 140, 1-22.

Reilly, E. K. &  Kao, C. C. (1998). Analysis o f RNA-dependent RNA polymerase structure 
and function as guided by known polymerase structures and computer predictions 
o f secondary structures. Virology 252, 287-303.

Ren, R., Costantini, F., Gorgacz, E. J., Lee, J. J. &  Racaniello, V. R. (1990). Transgenic 
mice expressing a human poliovirus receptor: a new model for poliomyelitis. Cell 
6 3 , 353-362.

Repass, J. F. &  Makino, S. (1998). Importance o f the positive-strand RNA secondary 
structure o f a murine coronavirus defective interfering RNA internal replication 
signal in positive-strand RNA synthesis. Journal o f  Virology 72, 7926-7933.

Rho, S. B. &  Martinis, S. A. (2000). The bI4 group I intron binds directly to both its 
protein splicing partners,a tRNA synthetase and maturase, to facilitate RNA 
splicing activity. RNA 6, 1882-1894.

Richards, O. C., Yu, P., Neufeld, K. L. &  Ehrenfeld, E. (1992). Nucleotide Binding by the 
Poliovirus RNA Polymerase. Journal o f  Biological Chemistry 267, 17141-17146.

Rieder, E., Paul, A. V., Kim, D. W., van Boom, J. H. &  Wimmer, E. (2000). Genetic and 
biochemical studies o f poliovirus cis-acting replication element ere in relation to 
VPg uridylylation. J  Virol 74, 10371-80.

Rodriguez, P. L. &  Carrasco, L. (1993). Poliovirus protein-2c has atpase and gtpase 
activities. Journal o f  Biological Chemistry 268, 8105-8110.

Rodriguez, P. L. &  Carrasco, L. (1995). Poliovirus protein 2c contains 2 regions involved 
in rna-binding activity. Journal o f  Biological Chemistry 270, 10105-10112.

Rodriguez-Wells, V., Plotch, S. J. &  DeStefano, J. J. (2001). Primer-dependent synthesis 
by poliovirus RNA-dependent RNA polymerase (3D(pol)). Nucleic Acids Res 29, 
2715-24.



Inga Dry__________ Bibliography 194

Roehl, H. H. &  Semler, B. L. (1995). Poliovirus infection enhances the formation o f two 
ribonucleoprotein complexes at the 3' end o f viral negative-strand RNA. J  Virol 69, 
2954-61.

Rohll, J. B., Moon, D. H., Evans, D. J. &  Almond, J. W. (1995). The 3'-untranslated region 
o f picornavirus RNA - features required for efficient genome replication. Journal o f  
Virology 69, 7835-7844.

Romanova, L. I., B linov, V. M., Tolskaya, E. A., Kolesnikova, M. S., Viktorova, E. G., 
Guseva, E. A. &  Agol, V. I. (1986). The primary structure o f crossover regions o f 
intertypic poliovirus recombinants: A model o f recombination between RNA 
genomes. Virology 155, 202-213.

Ronco, L. V., Karpova, A. Y., Vidal, M. &  Howley, P. M. (1998). Human papilomavirus 
16 E6 oncoprotein binds to and inhibits its transcriptional activity. Genes and 
Development 12, 2061-2072.

Rothberg, P. G., Harris, T. J. R., Nomoto, A. &  Wimmer, E. (1978a). The genome-linked 
protein o f picornaviruses V. 04-(5'- U ridy ly l)- tyrosine is the bond between the 
genome-linked protein and the RNA o f poliovirus. Proceedings o f  the National 
Academy o f  Sciences o f  the United States o f  America 75, 4868-4872.

Rothberg, P. G., Harris, T. J. R., Nomoto, A. &  Wimmer, E. (1978b). 04-(5 '-
uridyl)tyrosine is the bond between the genome linked protein &  the RNA o f 
poliovirus. Proceedings o f the National Academy o f  Sciences o f  the United States o f  
America 75, 4868-4872.

Rueckert, R. R. (1996). Picornaviridae: the viruses and their replication. In Fields 
Virology, 3 edn, pp. 609-654. Edited by B. N. Fields, D. M. Knipe &  P. M.
Howley. Philadelphia: Lippincott-Raven.

Ruigrok, R. W. H., Hirst, E. M. A. &  Hay, A. J. (1991). The specific inhibition o f
influenza A  virus maturation by amantadine: an electron microscopic examination. 
Journal o f  General Virology 72, 191-194.

Rust, R. C., Landmann, L., Gosert, R., Tang, B. L., Hong, W., Hauri, H. P., Egger, D. &
Bienz, K. (2001). Cellular COPII proteins are involved in production o f the vesicles 
that form the poliovirus replication complex. J  Virol 75, 9808-18.

Sakoda, Y., Ross-Smith, N., Inoue, T. &  Belsham, G. J. (2001). An attenuating mutation in 
the 2A protease o f swine vesicular disease virus, a picornavirus, regulates cap- and 
internal ribosome entry site-dependent protein synthesis. J  Virol 75, 10643-50.

Sambrook, J., Fritsch, E. F. &  Maniatis, T. (1989). Molecular Cloning: A  laboratory 
Manual: Cold Spring Harbor Laboratory Press, Cold Spring Harbor,NY.

Sambrook, J. F. (1990). The involvement o f calcium in transport o f secretory proteins from 
the endoplasmic reticulum. Cell 61, 197-199.

Sandman, K., Grayling, R. A. &  Reeve, J. N. (1995). Improved amino-processing o f
recombinant proteins synthesized in Escherichia coli. Biotechnology 13, 504-506.



Inga Dry__________ Bibliography 195

Sandoval, I. V. &  Carrasco, L. (1997). Poliovirus infection and expression o f the
poliovirus protein 2B provoke the disassembly o f the Golgi complex, the organelle 
target for the antipoliovirus drug Ro-090179. J  Virol 71, 4679-93.

Sarnow, P. (1989). Role o f 3'-end sequences in in fectiv ity o f  poliovirus transcripts made in 
vitro. Journal o f  Virology 63, 467-470.

Sasaki, J., Kusuhara, Y., Maeno, Y., Kobayashi, N., Yamashita, T., Sakae, K., Takeda, N. 
&  Taniguchi, H. (2001). Construction o f an infectious cDNA clone o f the Aichi 
virus ( a new member o f the fam ily Picornaviridae) and mutational analysis o f a 
stem-loop structure at the 5' end o f the genome. Journal o f  Virology 75, 8021-8030.

Sasaki, J. &  Taniguchi, K. (2003). The 5'-End Sequence o f the Genome o f A ichi Virus, a 
Picornavirus, Contains an Element Critical for V ira l RNA Encapsidation. J. Virol. 
77, 3542-3548.

Schlesinger, S., Makino, S. &  Linial, M. L. (1994). C is-Acting Genomic Elements and 
Trans-Acting Proteins Involved in the Assembly o f Rna Viruses. Seminars in 
Virology> 5, 39-49.

Schober, D., Kronenberger, P., Prchla, E., Blaas, D. &  Fuchs, R. (1998). Major and minor 
receptor group human rhinoviruses penetrate from endosomes by different 
mechanisms. J  Virol 72, 1354-64.

Semler, B. L., Anderson, C. W., Hanecak, R., Dorner, L. F. &  Wimmer, E. (1982). A 
membrane-associated precursor to poliovirus VPg identified by 
immunoprecipitation with antibodies directed against a synthetic heptapeptide. Cell 
28, 405-412.

Sengupta, D. J., Wickens, M. &  Fields, S. (1999). Identification o f RNAs that bind to a 
specific protein using the yeast three-hybrid system. Rna 5, 596-601.

SenGupta, D. J., Zhang, B., Kraemer, B., Pochart, P., Fields, S. &  Wickens, M. (1996). A 
three-hybrid system to detect RNA-protein interactions in vivo. Proceedings o f  the 
National Academy o f Sciences o f  the United States o f  America 93, 8496-501.

Shafren, D. R., Dorahy, D. J., Ingham, R. A., Burns, G. F. &  Barry, R. D. (1997).
Coxsackievirus A21 binds to decay-accelerating factor but requires intercellular 
adhesion molecule 1 for cell entry. Journal o f  Virology 71, 4736-4743.

Shan, J., Munro, T. P., Barbarese, E., Carson, J. H. &  Smith, R. (2003). A  Molecular 
mechanism for mRNA trafficking in neuronal dendrites. The journal o f  
neuroscience 26, 8859-8866.

Shieh, J. T. &  Bergelson, J. M. (2002). Interaction w ith decay-accelerating factor
facilitates coxsackievirus B infection o f polarized epithelial cells. J  Virol 76, 9474- 
80.

Shiroki, K., Isoyama, T., Kuge, S., Ishii, T., Ohmi, S., Elata, S., Suzuki, K., Takasaki, Y. &  
Nomoto, A. (1999). Intracellular redistribution o f truncated La protein produced by 
poliovirus3Cpro-mediated cleavage. Journal o f  Virology 73, 2193-2200.



Inga Dry__________ Bibliography 196

Simmonds, P. &  Smith, D. B. (1999). Structural constraints on RNA virus evolution. J  
Virol 73, 5787-94.

Smith, D. B. &  Simmonds, P. (1997). Characteristics o f nucleotide substitution in the
hepatitis C virus genome: constraints on sequence change in coding regions at both 
end o f the genome. Journal o f  Molecular Evolution 45, 238-246.

Sokolowski, M., Scott, J. E., Heaney, R. P., Patel, A. H. &  Clements, J. B. (2003). 
Identificantion o f Herpes simplex virus RNAs that interact specifically with 
regulatory protein ICP27 in vivo. The journal o f  Biological chemistry 278, 33540- 
33549

Sonoda, J. &  Wharton, R. P. (1999). Recruitment ofNanos to hunchback mRNA by 
Pumilio. Genes and Development 13, 2704-2712.

Sonoda, J. &  Wharton, R. P. (2001). Drosophila Brain Tumor is a translational repressor. 
Genes and Development 15, 762-773.

Suhy, D. A., Giddings, T. H., Jr. &  Kirkegaard, K. (2000). Remodeling the endoplasmic 
reticulum by poliovirus infection and by individual viral proteins: an autophagy- 
like origin for virus-induced vesicles. J  Virol 74, 8953-65.

Svitkin, Y. V., Maslova, S. V. &  Agol, V. I. (1985). The genomes o f attenuated and
virulent poliovirus strains differ in their in vitro translation efficiencies. Virology 
147, 243-252.

Tershak, D. R. (1982). Inhibition o f poliovirus polymerase by guanidine In V itro. Journal 
o f  Virology 41 no. 1,313-318.

Teterina, N., Rinaudo, M. S. &  Ehrenfeld, E. (2003). Strand-specific RNA synthesis 
Defects in a poliovirus with a mutation in protein 3 A. Journal o f  Virology 77, 
12679-12691.

Teterina, N. L., Gorbalenya, A. E., Egger, D., Bienz, K. &  Ehrenfeld, E. (1997). Poliovirus 
2C protein determinants o f membrane binding and rearrangements in mammalian 
cells. J  Virol 71, 8962-72.

Teterina, N. L., Kean, K. M., Gorbalenya, A. E., Agol, V. I. &  Girard, M. (1992). Analysis 
o f the Functional Significance o f Amino Acid Residues in the Putative NTP- 
Binding Pattern o f the Poliovirus-2C Protein. Journal o f  General Virology 73, 
1977-1986.

Tinoco, I., Jr., &  Bustamante, C. (1999). How RNA Folds. Journal o f  Molecular Biology 
293,271-281.

Todd, S., Towner, J. S., Brown, D. M. &  Sender, B. L. (1997). Replication-competent
picornaviruses w ith complete genomic RNA 3' noncoding region deletions. Journal 
o f Virology 71, 8868-8874.



Inga Dry__________ Bibliography 197

Tolskaya, E. A., Romanova, L. I., Blinov, V. M., Viktorova, E. G., Sinyakov, A. N.,
Kolesnikova, M. S. &  Agol, V. I. (1987). Studies on the recombination between 
RNA genomes o f poliovirus: the primary structure and nonrandom distribution o f 
crossover regions in the genomes o f intertypic poliovirus recombinants. Virology 
161, 54-61.

Toriyama, S., Guy, P. L., Fuji, S. &  Takahashi, M. (1992). Characterization o f a new
picorna-like virus, himetobi P virus, in planthoppers. Journal o f  General Virology 
73, 1021-1023.

Towner, J. S., Ho, T. V. &  Semler, B. L. (1996). Determinants o f membrane association 
for poliovirus protein 3AB. J  Biol Chem 271, 26810-8.

Toyoda, H., N ick lin , M. J., Murray, M. G., Anderson, C. W., Dunn, J. J. &  Wimmer, E. 
(1986). A  second virus-encoded proteinase involved in proteolytic processing o f 
poliovirus polyprotein. Cell 45, 761-770.

Triezenberg, S. J., Kingsbury, R. C. &  McKnight, S. L. (1988). Functional dissection o f 
VP 16 the trans-activator o f herpes simplex virus immediate early gene expression. 
Genes and Development 2, 718-729.

Troxler, M., Egger, D., Pfister, T. &  Bienz, K. (1992a). Intracellular localization o f
poliovirus RNA by in situ hybridization at the ultrastructural level using single­
stranded riboprobes. Virology 191, 687-97.

Troxler, M., Egger, D., Pfister, T. &  Bienz, K. (1992b). Intracellular-localization o f 
poliovirus rna by insitu hybridization at the ultrastructural level using single­
stranded riboprobes. Virology 191, 687-697.

Tsai, C.-H., Cheng, C.-W., Peng, C.-W., Lin, B.-Y., L in, N. S. &  Hsu, Y. H. (1999).
Sufficient length o f a poly(A) tail for the formation o f a potential pseudokont is 
required for efficient replication o f bamboo mosaic potexvirus RNA. Journal o f  
Virology 73, 2703-2709.

Tuerk, C. &  Gold, L. (1990). Systematic evolution o f ligands by exponential enrichment: 
RNA ligands to bacteriophage T4 DNA polymerase. Science 249, 505-510.

Tuplin, A., Wood, J., Evans, D. J., AH, P. &  Simmonds, P. (2002). Thermodynamic and 
phylogenetic prediction o f RNA secondary structures in the coding region o f 
hepatitis C virus. RNA 8, 824-841.

Van D ijk, A. A., Mayekev, E. V. &  Bamford, D. H. (2004). In itiation o f viral RNA- 
dependent RNA polymerization. Journal o f  General Virology 85, 1077-1093.

van Kuppeveld, F. J., Galema, J. M. D., Zoll, J., Van den Hurk, P. J. &  Melchers, W. J. 
(1996a). Coxsackie B3 virus 2B contains a cationic amphipathic helix that is 
required for viral RNA replication. Journal o f  Virology 70, 3876-3886.



Inga Pry__________ Bibliography 198

van Kuppeveld, F. J., Hoenderop, J. G., Smeets, R. L. L., W illems, P. H. M., Dijkman, H.
B. P. M., Galama, J. M. D. &  Melchers, W. J. (1997a). Coxsackievirus protein 2B 
modifies the endoplasmic reticulum membrane and plasma membrane permeability 
and facilitates virus release. EMBO 16, 3519-3532.

van Kuppeveld, F. J., van den Hurk, P. J., Zoll, J., Galama, J. &  Melchers, W. J. (1996b).
Mutagenesis o f the Coxsackie B3 virus protein 2B/2c cleavage site: determinants o f 
processing efficiency and effects on viral replication. Journal o f  Virology? 70, 7632- 
7640.

van Kuppeveld, F. J. M., Melchers, W. J. G., Kirkegaard, K. &  Doedens, J. R. (1997b). 
Structure-function analysis o f coxsackie B3 virus protein 2B. Virology 227, 111- 
118.

van Kuppeveld, F. J. M., van den Hurk, P., van der V liet, W., Galama, J. M. D. &
Melchers, W. J. G. (1997c). Chimeric coxsackie B3 virus genomes that express 
hybrid coxsackievirus-poliovirus 2B proteins: functional dissection o f structural 
domains involved in RNA replication. Journal o f  General Virology 78, 1833-1840.

Vance, L. M., Moscufo, N., Chow, M. &  Heinz, B. A. (1997). Poliovirus 2C region 
functions during encapsidation o f viral RNA. J  Virol 71, 8759-65.

Vance, V. &  Vaucheret, H. (2001). RNA silencing in plants - defence and counterdefence. 
Science 292, 2277-2280.

Vankuppeveld, F. J. M., Galama, J. M. D., Zoll, J. &  Melchers, W. J. G. (1995). Genetic- 
Analysis o f a Hydrophobic Domain o f Coxsackie B3 Virus Protein 2b - a Moderate 
Degree o f Hydrophobicity Is Required For a C is-Acting Function in Viral-Rna 
Synthesis. Journal o f  Virology 69, 7782-7790.

Varani, G., Cheong, C. &  Tinoco, I., Jr. (1991). Structure o f an unusually stable RNA 
hairpin. Biochemistry 30, 3280-3289.

Ventoso, I., Macmillan, S. E., Hershey, J. W. &  Carrasco, L. (1998). Poliovirus 2Apro 
cleaves directly the eIF4G subunit eIF4F. FEBS letters 435, 79-83.

Verlinden, Y., Cuconati, A., Wimmer, E. &  Rombaut, B. (2000). Cell-free synthesis o f 
poliovirus: 14S subunits are the key intermediates in the encapsidation o f 
poliovirus RNA. J  Gen Virol 81, 2751-4.

Waggoner, S. &  Sarnow, P. (1998). V ira l ribonucleoprotein complex formation and
nucleolar-cytoplasmic relocalization o f nucleolin in poliovirus-infected cells. J  
Virol 72, 6699-709.

Walewski, J. L., Keller, T. R., Stump, D. D. &  Branch, A. D. (2001). Evidence for a new 
hepatitis C virus antigen encoded in an overlapping reading frame. RNA 7, 710- 
721.



Inga Dry Bibliography 199

Wang, Q. M., Hockman, M. A., Staschke, K., Johnson, R. B., Case, K. A., Lu, J., Parsons, 
S., Zhang, F. &  Rathnachalam, R. (2002). Oligomerization and Cooperative RNA 
synthesis Activ ity  o f Hepatitis C Virus RNA-dependent RNA polymerase. Journal 
o f  Virology 76, 3865-3872.

Waterhouse, P., Wang, M. B. &  Lough, T. (2001). Gene silencing as an adaptive defence 
against viruses. Nature 411, 824-842.

Weidman, M., Yalamanchili, P., Ng, B., Tsai, W. &  Dasgupta, A. (2001). Poliovirus 3C 
Protease- Mediated Degredation o f Transcriptional Activator p53 Requires a 
cellular activity. Virology 291, 260-271.

W illiams, D. T., Chaudhry, Y., Goodfellow, I. G., Lea, S. &  Evans, D. J. (2003).
Interaction o f Decay Accelerating Factor (DAF) w ith haemagglutinating human 
enteroviruses: U tilis ing variation in primate DAF to map virus binding sites. 
Journal o f  General Virology 85, 731-738.

Wimmer, E. (1982). Genome linked proteins o f viruses. Cell 28, 199-201.

Wimmer, E., Hellen, C. U. T. &  Cao, X. M. (1993). Genetics o f Poliovirus. Annual Review 
o f Genetics 27, 353-436.

Witwer, C., Rauscher, S., Hofacker, I. L. &  Stadler, P. F. (2001). Conserved RNA
secondary structures in Picornaviridae genomes. Nucleic Acids Res 29, 5079-89.

Wood, J., Frederickson, R. M., Fields, S. &  Patel, A. H. (2001). Hepatitis C virus 3'X
Region interacts w ith Human Ribosomal proteins. Journal o f  Virology 75, 1348- 
1358.

Xia, T., McDowell, J. A. &  Turner, D. H. (1997). Thermodynamics o f nonsymmetric
tandom mismatches adjacent to G.C base pairs in RNA. Biochemistry 36, 12486- 
12487.

Xiang, W., Cuconati, A., Hope, D., Kirkegaard, K. &  Wimmer, E. (1998). Complete 
protein linkage map o f poliovirus P3 proteins: interaction o f polymerase 3Dpol 
w ith VPg and w ith genetic variants o f 3AB. J  Virol 72, 6732-41.

Xiang, W., Cuconati, A., Paul, A. V., Cao, X. &  Wimmer, E. (1995a). Molecular
dissection o f the multifunctional poliovirus RNA-binding protein 3AB. Rna 1, 892- 
904.

Xiang, W., Harris, K. S., Alexander, L. &  Wimmer, E. (1995b). Interaction between the 5'- 
terminal cloverleaf and 3AB/3CDpro o f poliovirus is essential for RNA replication. 
Journal o f  Virology 69, 3658-3667.

Yalamanchili, P., Datta, U. &  Dasgupta, A. (1997a). Inhib ition o f host cell transcription by 
poliovirus: Cleavage o f transcription factor CREB by poliovirus-encoded protease 
3C(pro). Journal o f  Virology 71, 1220-1226.



Inga Dry Bibliography 200

Yalamanchili, P., Harris, K., Wimmer, E. &  Dasgupta, A. (1996). Inhib ition o f basal
transcription by poliovirus: a virus- encoded protease (3Cpro) inhibits formation o f 
TBP-TATA box complex in vitro. J  Virol 70, 2922-9.

Yalamanchili, P., Weidman, M. K. &  Dasgupta, A. (1997b). Cleavage o f transcriptional 
actiavtor Oct-1 by poliovirus encoded protease 3Cpro. Virology 239, 176-185.

Yang, W. X., Terasaki, T., Shiroki, K., Ohka, S., Aohi, J., Tanabe, S., Nomura, T., Terada, 
E. &  Nomoto, A. (1997). Efficient delivery o f circulating poliovirus to the central 
nervous system independently o f poliovirus receptor. Virology 229, 421-428.

Yang, Y., Rijnbrand, R., McKnight, K. L., Wimmer, E., Paul, A., Martin, A. &  Lemon, S. 
M. (2002). Sequence requirements for viral RNA replication and VPg uridylylation 
directed by the internal cis-acting replication element (ere) o f  human rhinovirus 
type 14. J  Virol 76, 7485-94.

Y i, M. &  Lemon, S. M. (2002). Replication o f subgenomic hepatitis A virus RNAs
expressing fire fly  luciferase is enhanced by mutations associated w ith adaptation o f 
virus to growth in cultured cells. J  Virol 76, 1171-80.

You, S., Stump, D., Branch, A. &  Rice, C. M. (2004). A  cis-acting replication element in 
the sequence encoding the NS5B RNA-dependent RNA polymerase is required fro 
Hepatitis C virus RNA replication. Journal o f Virology 78, 1352-1366.

Ypma Wong, M. F., Dewalt, P. G., Johnson, V. H., Lamb, J. G. &  Semler, B. L. (1988). 
Protein 3CD is the major poliovirus proteinase responsible for cleavage o f the PI 
capsid precursor. Virology' 166, 265-270.

Yu, S. Y. F. &  Lloyd, R. E. (1992). Characterization o f the Roles o f Conserved Cysteine 
and Histidine Residues in Poliovirus 2A-Protease. Virology 186, 725-735.

Zhang, G., Haydon, D. T., Knowles, N. J. &  McCauley, J. W. (1999). Molecular evolution 
o f swine vesicular disease virus. Journal o f General Virology 80, 639-651.

Zhong, W., Ferrari, E., Lesburg, C. A., Maag, D., Ghosh, S. K. B., Cameron, C., Lau, J. Y. 
N. &  Hong, Z. (2000). Template/Primer Requirements and Single Nucleotide 
Incorporation by Hepatitis C Virus Nonstructural Protein 5B Polymerase. Journal 
o f Virology 74,9134-9143.

Zimring, J. C , Goodbourn, S. &  Offermann, M. K. (1998). Human herpesvirus 8 encodes 
an inteferon regulatory factor (IRF) homolog that represses IRF-1 mediated 
transcription. Journal o f Virology 72, 701-707.

Zuker, M. (1989). On finding all suboptimal foldings o f an RNA molecule. Science 244, 
48-52.

Zuker, M. (2003). M fo ld web server for nucleic acid folding and hybridization prediction.
Nucleic acid research 31, 3406-3415.



Inga Dry

Appendix 1

Appendices 201

Species C sequences (n = 50)

Genbank accession number Comments

AF405669 Human poliovirus 1 isolate H AI00003, complete genome.

AF405682 Human poliovirus 1 isolate DOR00041C1, complete genome.

AF405690 Human poliovirus 1 isolate DOR00013, complete genome.

AF462418 Human poliovirus 1 99/056-252-14, complete genome.

AF462419 Human poliovirus 1 R U S -1161-96-001, complete genome.

AY056701 Human poliovirus 1 strain 3788ALB96 polyprotein gene, partial cds.

AY056702 Human poliovirus 1 strain 3914ALB96 polyprotein gene, partial cds.

AY056703 Human poliovirus 1 strain 4019ALB96 polyprotein gene, partial cds.

A Y  184219 Human poliovirus 1 strain Sabin 1, complete genome.

AY278553 Human poliovirus 1 isolate PI W /Bar65 (19276), complete genome.

H PO 132960/A J 132960 Human poliovirus 1, complete genome. Isolated from faeces o f  an 

immunodeficient patient

HP0132961/ Human poliovirus 1, complete genome. Isolated from an 

immunodeficient patient

H P 0 4 16942/ A J4 16942 Human poliovirus 1 genomic R N A fo r polyprotein, strain C H A T  10A- 

11.

POLIO 1 A / VO 1148 Genome o f  Human po liovirus type 1 (Mahoney strain). (One o f  two 

versions.).

NC 002058 Human poliovirus 1, complete genome
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AJ430385 Human poliovirus 1 genomic R N A for polyprotein gene, strain Cox.

POLIOS 1 VO 1150 J02282 J02285 

J02286 V 0 1 133

Human poliovirus strain Sabin 1 complete genome

AF448782 Human poliovirus 2 strain EGY88-074, complete genome.

AF448783 Human poliovirus 2 strain EGY93-034, complete genome.

AY177685 Human poliovirus 2, complete genome.

A Y  184220 Human poliovirus 2 strain Sabin 2, complete genome.

AF405666 Human poliovirus 1 isolate H AI01007, complete genome.

AY238473 Human poliovirus 2 strain MEF-1 polyprotein gene, complete cds.

AY278549 Human poliovirus 2 isolate P2S/Mog65-3 (20120), complete genome.

AY278550 Human poliovirus 2 isolate P2S/M og65-l (20003), complete genome.

A Y 278551 Human poliovirus 2 isolate P2S/Mog66-4 (21043), complete genome.

AY278552 Human poliovirus 2 isolate P2S/Mog65-2 (20077), complete genome

PIPOLS2/ X00595 Poliovirus type 2 genome (strain Sabin 2 (P712, Ch, 2ab).

PO L2C G 1/ Human poliovirus 2 genomic R NA, complete sequence.

P O L2LA N / M 12197 Poliovirus type 2 (Lansing strain), complete genome.

A Y  184221 Human poliovirus 3 strain Sabin 3, complete genome

H P0293918/ A J293918 Human poliovirus type 3 complete genome, live-attenuated strain

P IP03XX/ X04468 Poliovirus type 3 strain 23 127 complete genome.

P IP 03119/ X01076 Poliovirus type 3 complete sequence (strain P3/119).
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PIPOLS3/ X00596 Poliovirus type 3 m R N A  (vaccine strain Sabin 3 (Leon 12alb).

PIPOX3/ X00925/K00043 Poliovirus type 3 leon 12 a lb  sequence (P3/Leon 12 a lb ).

POL3L37/ K O I392 Poliovirus P3/Leon/37 (type 3), complete genome.

AF546702 Fluman coxsackievirus A21 strain Kuykendall, complete genome.

NC_001428 Coxsackievirus A21, complete genome.

CXA24CG D90457 Human coxsackievirus A24 D N A, complete genome.

AF499636 Human coxsackievirus A 1 1 strain B e lg ium -1, complete genome.

AF499637 Human coxsackievirus A 13 strain Flores, complete genome.

AF499638 Human coxsackievirus A15 strain G9, complete genome.

AF499639 Human coxsackievirus A17 strain G12, complete genome.

AF499640 Human coxsackievirus A18 strain G13, complete genome.

AF499641 Human coxsackievirus A19 strain 8663, complete genome.

AF499642 Human coxsackievirus A20 strain IH35, complete genome.

AF499643 Human coxsackievirus A22 strain Chulman, complete genome.

AF499635 Human coxsackievirus A1 strain Tompkins, complete genome.



Inga Dry Appendices 204

Appendix 2

Species B (n = 68)

Genbank accession number Comments

AY302560 Enterovirus 69 strain To luca-1 complete genome

AY302559 Human echovirus 7 strain Wallace complete genome.

AY302558 Human echovirus 6 strain D 'Am ori complete 

genome.

AY302557 Human echovirus 4 strain Pesacek complete genome.

AY302556 Human echovirus 33 strain Toluca-3 complete 

genome.

AY302555 Human echovirus 32 strain PR-10 complete genome.

AY302553 Human echovirus 31 strain Caldwell complete 

genome.

AY302552 Human echovirus 3 strain M orrisey complete 

genome.

A Y 302551 Human echovirus 29 strain JV-10 complete genome.

AY302550 Human echovirus 27 strain Bacon complete genome.

AY302549 Human echovirus 26 strain Coronel complete 

genome.

AY302548 Human echovirus 25 strain JV-4 complete genome.

AY302547 Human echovirus 24 strain DeCamp complete 

genome.
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AY302546 Human echovirus 21 strain Farina complete genome.

AY302545 Human echovirus 20 strain JV-1 complete genome.

AY302544 Human echovirus 2 strain Cornelis complete 

genome.

AY302542 Human echovirus 19 strain Burke complete genome.

AY302541 Human echovirus 16 strain Harrington complete 

genome.

AY302540 Human echovirus 15 strain CH 96-51 complete 

genome.

AY302539 Human echovirus 14 strain Tow  complete genome.

A Y  186746 Human echovirus 13 strain Del Carmen complete 

genome.

A Y  186747 Human coxsackievirus B1

A Y  186748 Human coxsackievirus B1

NC_001472 Human coxsackievirus B1

AF085363 Coxsackievirus B l,  complete genome.

NC_000881 Coxsackievirus B2 strain Ohio-1 polyprotein gene, 

complete cds.

AF231763 Coxsackievirus B2, complete genome.

AF231764 Coxsackievirus B3 strain 3 1-1-93, complete genome.

AF231765 Coxsackievirus B3 strain P, complete genome.

CXA3CG Coxsackievirus B3 strain PD, complete genome.
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M33854 Coxsackievirus B3 (C V B 3) complete genome

C XA3G M l 6572. Coxsackievirus B3, complete genome

C XAB3CG M88483 Coxsackievirus B3 m RNA, complete genome.

CXU57056 U57056 Coxsackievirus B3 W oodru ff variant, complete 

genome.

AF241359 AF241360 Enterovirus CA55-1988, complete genome.

A F 311939 Human coxsackievirus B4 strain E2 variant, 

complete genome.

NC 001360 Coxsackievirus B4, complete genome.

PICOXB4 X05690 D00149 Coxsackievirus B4 complete genome

S76772 polyprotein [Coxsackie B4 virus CB4, host=mice, 

E2, o rig ina lly  derived from Edwards CB4 h

A F 3 17694 Human echovirus 18 strain M e tca lf polyprotein gene, 

complete cds

AY 167107 Human echovirus 19 strain K/542/81 polyprotein

gene,

A F 3 1 1938 Human echovirus 30 strain Bastianni, complete 

genome.

H EC 295172 A J295172 Human echovirus 30 genomic R NA for partial 

polyprotein gene, isolate ITA97-002.

NC_000873 Echovirus 30, complete genome.

AF504533 Human enterovirus 73 isolate 2776-82 polyprotein 

(pol) gene, partial cds

NC_002347 Coxsackievirus A9, complete genome
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A F 1 14383 Coxsackievirus B5 strain Faulkner, complete 

genome.

NC_001342 Coxsackievirus B5, complete genome.

AF105342 Coxsackievirus B6 strain Schmitt, complete genome.

A F 1 14384 Coxsackievirus B6 strain Schmitt, complete 

genome.

NC 002003 Coxsackievirus B6, complete genome.

NC 003986 Human echovirus 1, complete genome

NC 002601 Echovirus 5, complete genome.

NC_001657 Echovirus 6, complete genome.

AY036578 Human echovirus 7 strain U M M C  polyprotein gene, 

complete cds.

AY036579 Human echovirus 7 strain Wallace polyprotein gene, 

complete cds.

AF524866 Human echovirus 9 strain Barty, complete genome.

AF524867 Human echovirus 9 isolate D M , complete genome

EC H O V 9X X  X92886 Echovirus 9 (strain Barty), complete genome.

NC 001656 Echovirus 9 complete genome.

A Y  167103 A F 446118 AF447459 AF447474 Human echovirus 11 strain Hun/90

A Y  167104 A F 446123 AF447462 AF447473 Human echovirus 11 strain Kar/87

A Y  167105 A F446122 AF447460 AF447477 Human echovirus 11 strain Kust/86

AY  167106 A F 4 4 6 113 AF447467 AF447488 Human echovirus 11
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E l 1276224 AJ276224 Human echovirus 11 genomic RNA for polyprotein.

EV11VPCD X80059 Echo V irus 11 genomic D N A.

EC12TCG X77708 Echovirus type 12, prototype Travis complete RNA 

genome.

EC12TCGW T X79047 Echovirus type 12, prototype Travis w ild  type 

genome.
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Appendix 3
G A A A A C c T A C A A
G A A A A C c T A C A A
G A A A A C c T A C A A
G A A A A C ■ T A C A A
G A A A A C c T A C A A
G A A A A C c T A C A A

C T T A A A A A T G A T
C T T A A A A A T G A T
C T T A A A A A T G A T
c T T A A A A A T G A T
C T T A A A A A T G A T
C T T A A A A A T G A T

A A T A G C T T C C T A
A T ■ G C T | 1 C T A
A T A G C T T C C T A

A A T A G C T T C c T A
A A T A G C T T C c T A
A A T A G C T T C c T A

T A G T C T C C T A G C
T A G T C T C C T A G C
T A G T C T C C T A G C
T A G T C T C C T A G C
T A G T C T C C T A G c

C T ■ c T A G c

T G G A C T A A C C A T
T G G A C T A A C C A T
T G G A c T A A C C A T
T G G A c T A A C C A T
T G G A c T A A C C mT
T G G A c T A A C C A T

T G C C A C T T T T G A
T G C C A C T T T T G A
T G C C A c T T T T G A
T G C C A c T T T T G A
T | C C A c T T T T G A
T G c C A c T T T T G A

T G T A A c T T T C T T
T G T A A c T T T C T T
T G T A A c T T T c T T
T G T A A c T T T c T T
T G T A A c T T T c T T
T G T A A c T T T c T T

A G A T G A G A A A T A
A G A T G A G A A A T A
A G A T G A G A A A T A
A G A T G A G A A A T A
A G A T G A G A A A T A
A G A T G A G A A A T A

A G 
A G 
A G 
A G 
A G 
A G

Appendices

G G G C A T A G A T
G G G C A T A G A T
G G G C A T A G A T
G G G ■ A T A G A T
G G G c A T A G A T
G G G c A T A G A T

T G C c T A T G G T
T G C c T A T G G mT G C m T A T G G
T G C T A T G G T
T G C c T A T G G T
T G C c T A T G G T

T C C c C A T G A G
T C C c C A T G A G
T C C c c A T G A G
T C c c c A T G A G
T c c c c A T G A G
T C c c c A ■ G A G

C C A A T C A G G A
C C A A T C A G G A
c C A A T C A G G A
c C A A T C A G G A
c C A A T C A G G A
c C A A T C A G G A

G A C T C C G G C A
G A C T c C G G C A
G A C T c C G G C A
G A C T c C G G C A
G A c T | 1 G■ C A
G A c T c C G G C A

G A c A G T C A C A
G A c A G T C A c A
G A c A G T C A c A
G A c A G T C A c A
G A c A G T C A c A
G A c A G T C A c A

G A A A A G A T T C
G A A A A G A T T C
G A A A A G A T T c
G A A A A G A T T c
G A A A A G A T T c
G A A A A G A T T c

C C C C T T C C T c
C C C C T T C C T c
C C C C T T c C T c
C C C C T T c C T c
C C C C T T c C T c
C C C C T T c C T c

209

T T G G A C c A PV3wt
T T G G A C c A 3DNheI
T T G G A C c A 3DNdeI
■ T G G A C c A 3DBglII
T T G G A C c A 3DApoI
T T G G A C c A 3DNs.il

G A C G A T G T PV3wt
G A C G A T G T 3DNheI
G A mG A T G T 3DNdeI
G A c G A T G T 3DBglII
G A c G A T G T 3DApoI
G A c G A T G T 3DNsiI

G T T G A c G C PV3wt
G T T G A C G C 3DNheI
G T T G A c G C 3DNdeI
G T T G A c G c 3DBglII
G T T G A c G c 3DApoI
G T ■ G A ■ G c 3DNsiI

A A A G A C T A PV3wt
A A A G A C T A 3DNheI
A A A G A C T A 3DNdeI
A A A G A C T A 3DBglII
A A A G A C T A 3DApoI
A A A G A C T A 3DNsiI

G A T A A A T C PV3wt
G A T A A A T C 3DNheI
G A T A A A T C 3DNdeI
G A T A A A T C 3DBglII
■ A T A A A T ■ 3DApoI

G A T A A A T C 3DNsiI

T G G G A G A A PV3wt
T G G G A G A A 3DNheI
T G G G A G A A 3DNdeI
T G G G A G A A 3DBglII
T G G G A G A A 3DApoI
T G G G A G A A 3DNsiI

T T C A G A G C PV3wt
T T C A G A G C 3DNheI
T T c A G A G C 3DNdeI
T T c A G A G C 3DBglII
T T c A G A G C 3DApoI
T T c A G A G C 3DNsiI

A T A C A T C c PV3wt
A T A C A T C c 3DNheI
A T A C A T c c 3DNdeI
A T A C A T c c 3DBglII
A T A C A T c c 3DApoI
A T A C A T c c 3DNsiI

PV3wt
3DNheI
3DNdeI
3DBglII
3DApoI
3DNsiI

The sequence shown encompasses nucleotides 6907 to 7148 o f  the fu ll-length PV3/Leon/37 genome 
(PV3wt). The mutations that were introduced in order to destabilise structure I 

(3DNhe 1,3DNde I and 3DBgl I I ) and structure I I  (3D Apo I and 3DNsi I ) are highlighted in blue.


