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Abstract

Epidemiological evidence suggests strongly that consumption o f fruit and vegetables 

is associated with a reduced risk o f cancer and cardiovascular disease. There is 

evidence that the polyphenol content o f fruit and vegetables contribute to these 

protective effects. This study examines the antioxidant properties and effects o f a 

range of plant extract polyphenols (PEP) on endothelial function and platelet 

aggregation, examining the PEP ability to scavenge superoxide and increase nitric 

oxide bioavailability.

A crude raspberry extract (RE) containing a mixture o f polyphenols, a raspberry 

extract that had been processed through an artificial digestive system (GR), 2 purified 

polyphenols- quercetin-3'-sulphate (QS) and quercetin-3-glucuronide (QG) were 

examined together with ascorbic acid (AA) as a positive control.

The scavenging capacity o f PEP for superoxide (O2 ) generated from 

xanthine/xanthine oxidase, and for the elevated levels o f C>2~ from arteries o f female 

stroke prone spontaneously hypertensive rats (SHRSP), was measured by lucigenin 

chemiluminescence. Nitric oxide bioavailability was measured mainly in carotid 

artery rings from SHRSP but some studies were carried out using its normotensive 

control the Wister Kyoto Rat (WKY). It was expressed as the increase in contractile 

responses to phenylephrine in the presence o f the nitric oxide synthase inhibitor L- 

NAME. ADP dependent platelet aggregation was measured in an agrogometer in 

plasma from healthy human volunteers in the presence and absence o f PEP. 

Differences between groups were compared by t-test with Bonferoni correction, n = 

4-10/ group for all studies.

EC50 values for scavenging O2-  by PEP when O2-  was generated by xanthine/ 

xanthine oxidase were as follows with 95% confidence intervals in brackets (ranked 

in order o f potency highest to least potent); QG 0.012pg/ml (0.006-0.022), GR 

0.012pg/ml (0.0055-0.024), RE 0.026pg/ml (0.012-0.059), QS 0.047pg/ml (0.020- 

0.103) and AA 0.192 (0.089-0.415). In contrast to scavenging O2 generated by 

xanthine/ xanthine oxidase, the PEP showed no scavenging effect on the elevated O2



levels in arteries o f SHRSP. All PEP showed the ability to increase NO bioavailability 

in SHRSP; no effect was seen in the control WKY. RE was able to increase NO 

bioavailability in SHRSP (over the concentration range 90-0.36pg/ml). QG and QS 

improved NO bioavailability at 50pg/ml (100pmol/l) and 12pg/ml (31 pmol/1) 

respectively. QG and QS were found to increase NO bioavailability at even lower 

concentrations when given in combination; QG 0.3pg/ml (6 pmol/1) and QS 0.5pg/ml 

(lpmol/1) when combined. RE at lOOpg/ml was the only PEP to show a significant 

inhibitory effect on platelet aggregation.

In conclusion the PEP have been found to scavenge C>2~ and improve endothelium 

function but results suggest they have less effect on platelet aggregation. RE appeared 

to be the most potent but the active ingredients still have to be fully identified and 

their in vivo bioavailability confirmed. In contrast QS and QG have been identified in 

plasma and are strong candidates to contribute to the cardiovascular protective effects 

o f fruit and vegetables. Discrepancies between the PEP’s ability to scavenge O2 and 

improve NO bioavailability suggest that mechanisms in addition to O2 scavenging 

may contribute to cardiovascular protective effects o f PEP.



1. Introduction



1.0 Introduction

l.ICardiovascular Disease (CVD) and endothelium function

Cardiovascular disease (CVD) is a major problem worldwide and there is a great need 

for further research into both causes and treatments. Despite the best efforts of 

modern medicine CVD claimed the lives o f more than 16 million people last year or 

caused 29.2% of total global deaths in 2003 (World Health Organisation (WHO) 

2004). More than 50% of deaths are from heart disease and strokes in industrialized 

countries (Outside East Asia). CVDs are the major causes o f death in the UK, 

accounting for just under 238,000 deaths in 2002 (BHF-Statistics Database). More 

than one in five men and one in six women die from coronary heart disease (CHD) 

(BHF-Statistics Database).

Figure 1 a) Deaths by cause, women 2002, UK, b) Deaths by cause, men 2002, 

UK (BHF-Statistics Database)
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Deaths by cause, men, 2002, United Kingdom
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By 2010 CVD is estimated to be the leading cause o f death in developing countries. 

Approximately 20 million people survive heart attacks and strokes every year, but this 

requires costly clinical care (WHO, 2004).

The rise in CVDs reflects a significant change in dietary habits, physical activity 

levels, and tobacco consumption worldwide as a result o f industrialization, 

urbanization, economic development and market globalisation (WHO, 2004). Heart 

disease has no geographic, gender or socio-economic boundaries. Many o f the 16.7 

million deaths could have been prevented by life style changes: such as having a 

healthy diet, taking regular physical exercise and not smoking (WHO 2004).

Some of the most important contributing factors in CVD are hypertension, 

atherosclerosis and diabetes. Hypertension is believed to affect one in four American 

adults (American Heart Association 1999) and only 47% Americans have optimal 

blood pressure (BP;<120mmHg systolic/<80mmHg diastolic) (Burt et al 1995). In 

England hypertension is estimated to effect 41% of men and 33% of women (this is 

using the definition o f hypertension as being systolic >140mmHg or diastolic 

>90mmHg) (Ramsay et al 1999). Atherosclerosis is virtually ubiquitous in the 

developed world and begins in childhood.
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Endothelium dysfunction is a characteristic feature o f hypertension, atherosclerosis 

and diabetes. Endothelial function is dynamically regulated and the endothelium’s 

vasodilator, anti-inflammatory and antithrombotic properties are markedly diminished 

by injuries such as hypertension, atherosclerosis, diabetes and inflammation and aging 

(Verma et al 2003). Endothelial dysfunction in both coronary and peripheral arteries 

may precede the development o f the clinical consequences o f atherothombosis 

(Celermajor et al 1992). Endothelial dysfunction is believed to be one o f the earliest 

stages of atherosclerosis and can be observed in apparently healthy people with risk 

factors for heart disease (Celermajor et al 1992). Endothelial dysfunction is correlated 

with sub-clinical measures o f CVD and is prospectively associated with an increased 

risk for clinical CVD events (Schachinger et al 2002).

Endothelial cells play an important role in maintaining the structural and functional 

integrity o f the vasculature.

The primary vasodilator released by the endothelium is nitric oxide (NO) (Furchgott 

et al 1980; Palmer et at 1987). Other relaxing factors released by endothelium include 

endoelium-derived hyperpolarizing factor, prostacyclin, C-type natriuretic factor, 5- 

hydroxytryptamine (5-HT), adenosine triphosphate (ATP), substance P, and 

acetylcholine (Ach) (Harris et al 2004). Basal blood flow maintains a continual 

release o f endothelium derived relaxing factors, and an increase in blood flow 

increases the release of relaxing factors in healthy blood vessels. NO is released from 

the endothelium in response to changes in the shear stress on the vascular wall (Harris 

et al 2004)

The contracting factors that endothelium releases include endothelin-1, thromboxane 

A2 , prostaglandin H2 , superoxide anions, and ATP (Harris et al 2004). Normally 

endothelin levels in plasma are very low. Higher levels have been reported in some 

disease states such as hypertension. NO can eliminate endothelin-induced arterial 

constriction and inhibit further release o f endothelin from the endothelium (Harris et 

al 2004).

In addition to regulating vessel tone, endothelial cells help prevent the build up of 

lipids and platelets that initiate the atherosclerotic process. Both NO and prostacyclin
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inhibit platelet aggregation, whereas the release of tissue plasminogen activator 

enhances fibrinolysis (Wu et al 1996). Other anticoagulant factors, such as 

thrombomodulin, are present on endothelial cell surfaces to prevent cellular adhesion 

of the vascular wall (Wu et al 1996). All of these mechanisms combine to help 

prevent the build up o f atherosclerotic plaques along arterial walls.

Inflammation is widely thought to play a role in CVD pathogenesis. Damage to the 

endothelium can enhance inflammatory responses through the release o f 

chemoattractants that promote cellular adhesion and uptake of lipids and macrophages 

into the abluminal space. Damage to the endothelium results in the release o f growth 

factors such as platelet-derived growth factor, which can promote connective tissue 

growth and enhance smooth muscle cell proliferation, resulting in vascular wall 

thickening (Luscher et al 1997).

In a healthy state, the autonomic nervous system (ANS) and the endothelium work 

together to maintain vascular tone. There is tonic balance between the release o f the 

vasodilating factors from the endothelium and vasoconstricting factors from the 

sympathetic nerve terminals, Fig 2. The balance between these opposing forces acts 

on the vascular smooth muscle cells to maintain the appropriate vessel tone (Harris et 

al 1990).

Figure 2 Interactions autonomic nervous system and endothelium on smooth 

muscle tone of blood vessels (Adapted from Harris et al 2004)
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When the endothelium is damaged NO release may be diminished and the balance 

between vasorelaxation and vasoconstriction perturbed. NO released from the 

endothelium decreases the sensitivity o f smooth muscle cells to the vasoconstrictor 

effects o f the sympathetic nervous system (SNS) and inhibits central and peripheral 

SNS activity (Harris et al 2004). In contrast, NO may increase central and peripheral 

parasympathetic nervous system (PSNS) activity while enhancing sensitivity to PSNS 

sites of action. This suggests that NO released from endothelial cells may play a 

modulating role in the balance between the SNS and PSNS branches o f the ANS 

(Harris et al 2004).

Evidence exists for a negative influence o f oxidative stress on both ANS and 

endothelial function (Harris et al 2004). Oxidative stress is said to be present when the 

radical-scavenging mechanisms are overcome by the level o f ROS (Reactive 

Oxidative Species, e.g. superoxide, hydroxyl radical) (Halliwell et al 1989). Oxygen 

radicals can attenuate NO mediated responses by combining with it to form 

peroxynitrite (Beckman et al 1996). Oxidative stress promotes the release o f 

endothelin from endothelium enhancing its activity (Landmesser et al 2001). 

Exposure to oxidants can damage the endothelium, decreasing the ability o f the 

endothelium to provide a barrier between the blood and sub-endothelial matrix (Lum 

et al 2001). Oxidative stress promotes leukocyte adhesion to endothelial cells (Lum et 

al 2001). Oxidative stress also contributes to impairment in ANS function. Oxidation 

induces neuronal cell death, including apoptosis in SNS neurons (Murphy et al 1998). 

Peroxynitrite, formed from the interaction o f superoxide with NO, is a principal 

oxidizing agent o f the ANS (Harris et al 2004).

1.2 Nitric Oxide in prevention of CVD

Before the 1980s nitric oxide (NO), was believed to be just another toxic molecule, 

one o f a lengthy list o f environmental pollutants found in smoke and smog, a free 

radical gas that is formed in the atmosphere during lightning storms (Koshland 1992). 

It is now known that NO is also formed in an enzyme catalysed reaction between 

molecular oxygen and L-arginine in mammals and more primitive species (Rang et al

1999). NO has been found to be involved in areas as diverse as fertilisation (Kuo et al

2000), neurotransmission, immune function, secretion, haemostasis, vascular tone,
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peristalsis, arthritis, septic shock, carcinogenesis, erectile function, several 

degenerative neuronal diseases and pyloric stenosis (Fennell 2002). NO acts as a key 

signalling mechanism in the cardiovascular system (Furchgott et al 1980; Palmer et al 

1987) and nervous system (Snyder et al 1998) and has a role in host defence (Marietta 

et al 1988).

A physiological function o f NO was first realized in the vasculture when it was 

discovered that the endothelium derived relaxing factor (EDRF) described by 

Furchgott & Zawadzki in 1980 was NO (Ignarro et al 1987; Plamer et al 1987). As 

research in the field grew the importance o f NO gained recognition, being named 

“Molecule o f the year” by Science in 1992 (Koshland et al 1992) and the 1998 Nobel 

prize for medicine was awarded to Furchgott, Murad and Ignarro for their work 

demonstrating the importance o f NO as a signalling molecule. In 1980, NO was the 

subject of only 12 academic papers. In the next 20 years, over 40,000 papers were 

published on NO and NO research exploded.

Furchgott (1980) observed that despite very potent vasodilating action in vivo, 

acetylcholine (Ach) does not always produce relaxation o f isolated preparations o f 

blood vessels in vitro. The relaxation effect was lost when the intimal surface o f the 

vessel was rubbed off. The possibility that the rubbing o f the intimal surface had 

removed endothelial cells was put forward by Furchgott in 1979, and it was 

demonstrated that relaxation o f isolated preparations o f rabbit thoracic aorta and other 

blood vessels by Ach requires the presence o f endothelial cells, and that Ach, acting 

on muscarinic receptors, stimulates the release o f a substance termed EDRF that 

causes relaxation o f the vascular smooth muscle. It was suggested by Furchgott that 

EDRF could be NO, as nitrovasodilatiors which release NO mimic the effect o f 

EDRF. The biological activity o f EDRF and NO was measured by bioassay 

(Gryglewski et al 1986). In the bioassay the tissue-induced relaxation o f EDRF was 

indistinguishable from that induced by NO. Both substances were equally unstable. 

Bradykinin caused concentration-dependent release o f NO from the cells in amounts 

sufficient to account for the biological activity o f EDRF. The relaxations induced by 

EDRF and NO were inhibited by haemoglobin and enhanced by superoxide dismutase 

to a similar degree. Thus it was concluded that EDRF is NO.
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It was discovered independently that NO is the endogenous activator of soluble 

guanylate cyclase, leading to the formation o f cyclic GMP (cGMP) a second 

messenger in many cells including nerves, smooth muscle, monocytes and platelets. 

In the late 1970s, Murad and collegues had shown that nitroglycerine, nitroprusside 

and other smooth muscle relaxants increased cyclic guanosine monophosphate cGMP 

levels in various smooth muscle preparations (Katsuki et al 1977). It was proposed 

that NO formed from some endogenous precursor activated guanylate cyclase causing 

the increase in cGMP in intact cells and tissues and vasodilation (Murad et al 1999). 

Unknowingly, doctors had been using NO to treat angina and hypertension since 

Victorain times by giving patients drugs based on amylnitrite. Brunton published the 

first comprehensive report on the potential use o f amyl nitrite as a treatment for 

angina in 1869 (Lincoln et al 1997).

Reduced NO bioavailability is a common finding in many forms o f vascular disease. 

A reduction in either NO or NO-mediated vasodilation characterized as endothelium 

dysfunction has been reported in vascular diseases as diverse as hypertension 

(Cifuentes et al 2000), hypercholesterolaemia (Creager et al 1990), diabetes (Calver et 

al 1992) and chronic renal failure (Wever et al 1999). It has been demonstrated that 

patients with essential hypertension have impaired endothelium-dependent 

vasodilation (Panza et al 1993). Panza illustrated this by investigating the effect o f the 

arginine analogue N -monomethyl-L-arginine (L-NMMA, inhibitor o f nitric oxide 

synthase) on forearm blood flow. L-NMMA was infused under baseline conditions, 

during infusion o f Ach (an endothelium-dependent dilator), and sodium nitroprusside 

(direct smooth muscle dilator) to 11 hypertensive patients and 10 control subjects. L- 

NMMA produced a significantly greater decrease in blood flow in control subjects 

than in hypertensive patients. The vasodilator response to Ach was reduced in patients 

compared with control subjects. L-NMMA did not modify the response to sodium 

nitroprusside in either control subjects or patients. The findings strongly indicated that 

a defect in the endothelium derived NO system partly accounted for both the increase 

in vascular resistance under basal conditions and impaired response to endothelium- 

dependent vasodilators.

NO not only acts as a vasodilator it has important anti-platelet properties. This was 

first shown for NO vasodilators. This inhibitory effect can be potentiated by



maintaining the intracellular thiol redox state (Loscalzo et al 2001). NO has been 

shown to have important antiplatelet actions activating guanylate cyclase, inhibiting 

phosphoinositide 3-kinase, impairing capacitance calcium influx, and inhibiting 

cyclooxygenase-1. Endothelial NO also limits platelet activation, adhesion, and 

aggregation (Loscalzo et al 2001), fig 3.

Figure 3 Effects of NO on platelet signalling and function (Adapted from 
Loscalzo et al 2001)

NO derived from endothelial cells or from platelets, suppresses platelet activation by 
activating guanylyl cyclase (GC), leading to an increase in the conversion of GTP to 
cGMP, enhancing calcium ATPase-dependent refilling o f intracellular Ca2+ stores, 
inhibiting the activation o f PI 3K. As a result o f second-order effects mediated by the 
first two of these signalling systems, intracellular Ca2+ flux is suppressed, leading to 
suppression o f P-selectin expression and o f the active confirmation o f glycoprotein 
Ilb/IIIa (GPIIb/IIIa) required for the binding fibrinogen. NO also reacts with O2 to 
from peroxynitrite (O O N O ), which can react with protein tyrosin residues on 
cyclooxygenase-1 to inhibit enzyme conversion o f arachidonic acid (AA) to 
prostaglandins G2 and H2 (PGG2/H2), with a resulting reduction in thromboxane A2 
synthesis. Solid arrows indicate activation; dashed arrows inhibition.
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Platelets are an important source o f NO, and this platelet-derived NO pool limits 

recruitment o f platelets to the platelet-rich thrombus (Loscalzo et al 2001). Under 

normal conditions of blood flow and shear stress the source o f NO on platelets is 

endothelial derived NO (Loscalzo et al 2001). However, under conditions of 

endothelial dysfunction or denudation, especially in the setting o f an acute coronary 

syndrome, other sources o f NO become important in regulating platelet responses. A 

constitutive NOS has been found in human platelets and megakaryocytic cells 

(Loscalzo et al 2001). Using an NO-selective microelectrode, adapted to a platelet
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aggregometer, Freedman (1997) showed that this platelet derived NO not only 

modestly modulates platelet activation to strong and weak agonists but also, more 

importantly, markedly inhibits platelet recruitment to the growing platelet thrombus. 

These in vitro findings were confirmed in an animal model o f deficient platelet- 

derived NO, the NOS3-Null mouse. In this model, Freedman et al (1999) found that 

there is no detectable NOS3 gene in marrow cells, that platelets generate no detectable 

NO on activation, and that the bleeding times of NOS3-null mice are correspondingly 

shorter than those in wild type mice. Thus, endothelial and platelet derived NO pools 

both contribute to normal haemostatic function, and a deficiency o f either pool 

enhances haemostatic responses to acute vascular injury (Loscalzo et al 2001).

Loss of NO results in the loss of many o f the antiatherogenic effects of NO such as 

the prevention o f LDL oxidation, reduction o f expression o f monocyte 

chemoattractant protein-1, CD11/CD18, P-selectin, and the adhesion molecules 

VCAM-1 and ICAM-1, all o f which prevent leukocyte adhesion and migration 

(Loscalzo et al 2001).

Nitric oxide is an uncharged diatomic molecule composed of seven electrons from 

nitrogen and eight electrons from oxygen (Beckman 1996), fig 4.

Figure 4 Structure of NO (Beckman et al 1996)
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NO only reacts rapidly with a select range o f free radicals, and with transition metals 

like heme iron. NO has a half-life o f  1.6-16 seconds in vivo (Beckman et al 1996). 

With the reaction rates as a guide the biological chemistry o f NO can be simplified in 

a reasonable approximation to just three reactions; its activation o f guanylate cyclase, 

responsible for signal transduction; its destruction by reaction with oxyhemaglobin; 

and its transformation to peroxynitrite (ONOO ) by the reaction with superoxide 

(O2 ) (Beckman et al 1996) fig 5.

Figure 5 Three principal reactions of NO simplified by reaction rates (Adapted 
from Beckman et al 1996)

Nitric oxide produced in the endothelial cell will diffuse out far faster than it will 
react with most intracellular components. Nitric oxide binds to and activates 
guanylate cyclase (green dashed arrow). If it diffuses into a red blood cell, it will be 
eliminated by oxyhemoglobin (Hb-0 2 ) to form nitrate (black dashed arrow). NO 
reacts with oxygen to give nitrogen oxides (NO2 and N2O3), which react with other 
molecules e.g. thiols, or amines, or they simply hydroylase to form nitrate (NO3)  
(Goldstein et al 1995). The reaction with superoxide to form peroxynitrite is normally 
limited by the micromolar concentration o f superoxide dismutase in cells (dark red 
dashed arrow). metHb = methemoglobin.
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Nitric Oxrae>Synthase
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/

GMP
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Vascular smooth muscle

NO can diffuse through most cell diameters (on the order o f 100-200pm), with little 

consumption or direct reaction (Beckman et al 1990). The site of NO producing cells 

is unimportant, because o f its extremely high diffusion coefficient, the action o f NO 

depends more on the number o f NO producing cells than the location (Beckman et al 

1990). In vivo the effects o f NO are greatly limited by the reaction o f NO with
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haemaglobin which, drains a large proportion o f NO from the vessel wall. Direct 

measurement o f NO using a porphyrinic microsensor showed that the endothelium 

can produce 10 to 40 times the amount o f NO required to activate guanylate cyclase 

(Beckman et al 1996).

NO synthase (NOS) enzymes are central to the control o f NO biosynthesis. There are 

three known isoforms o f NOS; an inducible form (iNOS or NOS-II), expressed in 

macrophages, kupffer cells, neutrophils, fibroblasts, vascular smooth muscle and 

endothelial cells in response to pathological stimuli such as invading microorganisms 

and two so called constitutive forms that are present under physiological conditions in 

endothelium (eNOS or NOS- III) and neurons (nNOS or NOS- I) (Rang et al 1990), 

fig 6. All three NOS isoforms are dimeric enzymes, bearing similarities to the 

cytochrome P450 enzymes.

Figure 6 Structure of nitric oxide synthase (NOS) isoforms (Adapted from 
Goovers 2001).

Homology in amino acid sequences between the 3 NOS isoforms (white boxes), 
homologous in nNOS and eNOS (green boxes), isoform specific sequences (red 
boxes). For eNOS, regions o f  acetylation and in the binding o f cofactors are indicated 
as well as the oxygenase and reductase domain and the direction o f the intramolecular 
electron flow.

nNOS

iNOS

eNOS

oxygenase reductase

— - ...........

Electron flow
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NO is synthesised from L-arginine through a five-electron oxidation step that 

produces NO and citrulline through the production of an N°-hydroxy-L-arginine 

intermediate fig 7. Several cofactors are required for NO generation; these include 

flavin mononucleotide (FMN), flavin adeninedinucleotide (FAD) and 

tetrahydrobiopterin (BH4 ). Futhermore, the enzyme contains binding sites for haem 

and the allosteric activator calmodulin, (Gover et al 2001). The constitutive enzymes 

generate small amounts o f NO (picomolar) whereas the activity o f iNOS is 

approximately a thousand times greater (Rang et al 1999).

Figure 7 Production of NO (Stryer 1995)
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The regulation o f eNOS is complicated and occurs at every level from transcription to 

translation and protein-to-protein interactions. Several factors up-regulate eNOS 

transcription including shear stress, protein kinase C inhibitors, hydrogen peroxide 

(H20 2), oestrogen, vascular endothelial growth factor (VEGF), insulin, basic 

fibroblast growth factor and low concentrations o f oxidised LDL (Gover et al 2001). 

Transcription o f eNOS can be down regulated by factors such as hypoxia, 

erythropoietin and high concentrations o f oxidised LDL (Gover et al 2001).

Phosphorylation o f eNOS also plays a role in eNOS regulation but this depends on the 

kinase and the residue involved and is not completely understood. The protein kinase
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Akt phosphorylates a specific eNOS serine leading to eNOS activation (Dimmeler et 

al 2003). This renders eNOS more sensitive to calcium/ calmodulin. VEGF, 

oestrogen, insulin and shear stress can also cause calcium independent activation of 

eNOS (Gover et al 2001).

eNOS plays a central role in the regulation of basal vascular tone and thus 

hypertension. This is illustrated by the eNOS knock out (KO) mouse. The KO mouse 

has no endothelial-dependent vasodilation to Ach unlike wild type mice, and is 

hypertensive having both elevated systemic and pulmonary blood pressure. Blood 

pressure is about 30mmHg greater in KO mice than wild type mice (Huang et al 

1995).

1.3 Superoxide (0 2 ) and pathogenesis of cardiovascular disease 
(CVD)

Numerous studies suggest that levels o f O2-  are increased in CVD. Enhanced NO 

biodegradation by vascular O2-  occurs in most forms o f CVD (Miinzel et al 1999). 

NO is scavenged by O2- , which produces peroxynitrite (ONOO- ). The latter is a 

strong oxidant with only minimal vasodilator activity (Murphy et al 1998). O2-  may 

be produced by xanthine oxidase (XO), cyclooxygenase and mitochondrial oxidases 

(Miinzel et al 1999; Rajagopalan et al 1996) but vascular NAD(P)H oxidases are the 

principal source o f O2 in most forms o f CVD (Miinzel et al 1999).

Recent clinical and experimental studies provide indirect evidence that in chronic 

heart failure (CHF) the production o f oxygen derived free radicals is increased 

(Miinzel et al 1999). Polymorphonuclear leukocyte production o f oxygen-derived free 

radicals has been reported to be increased 4-fold in patients with heart failure 

compared to controls (Prascal et al 1992). Dahalla et al (1994) showed that the 

production o f O2 in cardiac tissue is increased as a consequence o f reduced 

antioxidant reserve in heart failure. In patients with CHF, levels of malondialdehyde 

are increased, compatible with increased lipid peroxidation by oxygen-derived free 

radicals (Diaz-Velez et al 1996).

Baursachs (1999) added to the understanding of the interactions between O2-  and NO 

in heart failure. These authors induced heart failure in rats by producing myocardial
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infarction. The animals had a marked degree o f endothelial dysfunction, despite 

increased expression o f both eNOS and soluble guanyl cyclase. Incubation o f aortas 

from these animals with radical scavengers normalized cGMP responses to sodium 

nitroprusside and improved vascular relaxations. These investigators also identified 

vascular NADPH oxidase as the likely source o f vascular O2 in this model 

(Buarsachs et al 1999).

There is also evidence for excess C>2_ production in patients with coronary artery 

disease (CAD). In isolated rings o f internal thoracic artery (ITA) and saphenous vein 

(SV) from patients that had undergone coronary artery by pass graft surgery (CABG), 

treatment with superoxide dismutase and tiron to scavenge O2 potentiated carbachol- 

stimulated relaxation in ITA and SV. In addition tiron treatment resulted in a 

significant increase in basal NO in arteries (Hamilton et al 1997).

Spiekermann et al (2003) characterized the vascular activities o f XO and NAD(P)H 

oxidase, and their relationship with flow-dependent, endothelium-mediated 

vasodilation in patients with CAD. The authors presented the first electron spin 

resonance measurements o f XO and NAD(P)H oxidase activity in human coronary 

arteries. The results support the concept that increased activities o f both enzymes 

contribute to increased vascular oxidant stress in patients with CAD. Furthermore, the 

results suggested that increased XO activity contributes to endothelial dysfunction in 

patients with CAD and may thereby promote the atherosclerotic process 

(Spiekermann et al 2003).

In vessels from rats with either genetic (Grunfield et al 1995) or angiotensin II- 

induced (Rajagopalan et al 1996) hypertension, enhanced endothelial O2 production 

has been reported. Lucigenin chemiluminescence has shown increased levels o f O2  

in several models o f hypertension (Grunfeld et al 1995; Rajagopalan et al 1996). 

Direct measurement o f NO using a porphyrinic microsensor showed a reduction in 

endothelial NO generation in both spontaneously hypertensive rats (SHR) 

(Broukouych et al 1999) and stroke-prone spontaneously hypertensive rats (SHRSP) 

(Grunfeld et al 1995), which was associated with increased O2 levels.
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Loss of NO mediated-vasodilation (related to increased release o f O2- ) also occurs in 

diabetes (Landmesser et al 2001). Diabetes has been associated with increased 

NAD(P)H oxidase activity (Landmesser et al 2001). Human endothelial cells treated 

with a high glucose concentration have been shown to increase both O2 levels and 

DNA synthesis (Zanetti et al 2001).

0 2 _ may contribute to the pathogenesis o f atherosclerosis, in addition to being an 

effective scavenger o f NO, by mediating LDL oxidation. The altered bioactivity of 

oxidized compared with unoxidized LDL was first reported by Chrisolm and 

colleagues (1983). It was shown that monocyetes/ macrophages, the major 

inflammatory cell component o f atherosclerotic lesions, could cause LDL oxidation 

(Cathcart et al 2004). Macrophage-mediated LDL oxidation has been shown to be 

entirely dependent on the production o f O2-  by the NADPH oxidase enzyme complex 

(Cathcart et al 2004). Myeloperoxidase and ceruloplasmin have also been implicated 

in mediating lipid and LDL oxidation in atherosclerotic lesions (Chisolm et al 1999). 

O2-  is a required substrate or cofactor in the oxidation reactions catalysed by these 

enzymes, particularly myeloperoxidase, ceruloplasmin, and lipoxygenases (Cathcart 

et al 2004).

In non-vascular tissues, XO, mitochondrial oxidases and arachidonic acid are the 

major sources o f oxidative molecules, whereas NADPH oxidase appears to be the 

most important source o f O2-  in vascular cells (Griendling et al 1994). The NAD(P)H 

enzyme comprises five subunits: three cytosolic subunits, namely, p22phox, p47phox, 

and a low weight molecular weight G protein (Rac 1 or Rac 2), and two membrane 

associated subunits p22phox and gp91phox (Ying et al 2004). The assembling of 

cytosolic subunits o f NAD(P)H oxidase to the membrane facilitates electron transfer 

from NAD(P)H to molecular oxygen and leads to the production o f O2- . Relative 

mRNA expression o f NAD(P)H subunits p67phox (2.5%) and gp91phox (1.1%) are 

much lower in endothelial cells than in leukocytes (Ying et al 2004). It is suggested 

that the expression level o f these two subunits may be the rate limiting factors for O2 

production. NAD(P)H oxidase is expressed in endothelial cells, smooth muscle cells 

and adventitial fibroblasts. It is upregulated by angiotensin II (Ying et al 2004), sheer 

stress and cytochromes. In cultured vascular smooth muscle angiotensin II, platelet 

derived growth factor (PDGF-BB) and thrombin potently activate NAD(P)H oxidase
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whereas, in cultured endothelial cells, angiotensin II, vascular endothelial cell growth 

factor, tumour necrosis factor-alpha and lysophosphatidylcholine were found to 

activate NAD(P)H oxidase (Cai et al 2000).

In humans treatment with AT i receptor antagonists not only reduces blood pressure, 

but also attenuates C>2_ production, presumably by inhibiting this oxidase (Bobik et al

2003). In spontaneously hypertensive rats ATi receptor antagonism lowers vascular 

O2 levels by in part down regulating p22phox. The importance o f NAD(P)H enzymes 

in blood pressure regulation has been demonstrated in p47 phox -/- mice, in which the 

rise in blood pressure in response to angiotensin II is severely blunted compared to 

wild type p47 phox +/+ mice (Bobik et al 2003).

XO is capable o f generating O2-  and hydrogen peroxide (H2 O2). Recently it has been 

shown that vascular endothelial cells possess glycosaminoglycan (GAG) receptors, 

which reversibly bind XO via saturable, high affinity binding sites (White et al 1996). 

This serves to concentrate the enzyme at the cell surface, which when supplied by its 

substrates xanthine or hypoxanthine generates O2-  and H2 O2 by reducing O2 . This 

association may be relevant to atherosclerosis, since it has been argued that an early 

response to hypercholesterolaemia is a localized hypoxia in the vessel wall, which 

would lead to ATP catabolism and the formation o f XO substrate (White et al 1996). 

These substrates accumulate under ischaemic or hypoxic conditions. A XO inhibitor, 

oxypurinol was used to reduce both O2-  and blood pressure in the spontaneously 

hypertensive rat (SHR) model o f hypertension (Nakazono et al 1991). Similarly, XO 

inhibition with allopurinol in a rabbit model o f hypercholesterolaemia resulted in 

increased relaxations to Ach and reduced O2-  (White et al 1996). Human saphenous 

veins and internal mammary arteries o f patients undergoing CABG treated with a 

specific XO inhibitor (allopurinol) showed a reduction in O2 production of 

approximately 32% and 42% respectively (Raha et al 2000). Thus XO is an important 

source o f O2 present in endothelial dysfunction.

In cardiovascular diseases it has been demonstrated that eNOS, when uncoupled from 

the essential cofactor tetrahydrobiopterin (BH4), can act as a source 0 2 _ (Gover et al

2001). Under normal conditions eNOS produces NO and low levels o f ONOO . (For 

normal function, eNOS requires substrates NADPH, L-arginine and O2 and the
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cofactors FMN, FAD, BH4, Calmodulin, and Ca2+). When the cofactor BH4 is not 

present in sufficient concentration oxidation o f arginine and the reductions of 

molecular oxygen by eNOS is ‘uncoupled’ resulting in the incomplete reduction of 

molecular oxygen to O2-  (Gover et al 2001). NOS has been shown to be an important 

source o f O2-  in animal models o f hypertension (Bobik et al 2003). In patients BH4  

has been shown to improve endothelium-dependent vasodilation in 

hypercholesterolaemia (Stroes et al 1997), coronary artery disease (Tiefenbacher et al 

2000) and diabetes (Heitzet et al 2000). The availability o f L-arginine also plays an
  ri

important role in the generation o f O2 by eNOS (Gover et al 2001). N -nitric-L - 

Arginine methyl ester (L-NAME) results in increased O2-  production. In controls O2  

detection increased by 63% in the pressence o f L-NAME, this is the result when 

eNOS is functioning normally. In CCF patients, incorporation o f L-NAME reduced 

0 2 production by 39%, indicating O2-  production by eNOS uncoupling and the 

importance o f L-arginine (Dixon et al 2003).

O2 is produced by the reduction o f molecular oxygen by one electron, which has two 

paired electrons (Beckman et al 1996).

•O-O* + le~ -> - :0 -0 - (0 2“ )

Consequently, superoxide still has one unpaired electron that rapidly combines with 

NO, with the release o f 22 kcal/mol energy (Beckman et al 1996).

“ O-O- + N-O -> "O -O -N -O

The large Gibbs energy makes the formation o f peroxynitrite (ONOO ) essentially 

irreversible. The reaction rate for ONOO-  was determined to be 6.7± 0.9 x 109M/S, 

which is approximately 6  times faster than the competing reaction o f SOD for O2 , 

which is itself the fastest known enzyme-catalysed reaction (2xl0 9M/S), fig 8  

(Beckman et al 1996).
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Figure 8 The reaction rates of O2 with NO and SOD (Adapted from Beckman et 

al 1996)

Super oxide (O2 )  concentrations are controlled by reaction rates with possible 

targets multiplied by the target concentration. Superoxide dimutase (SOD) is present 

in micromolar concentrations and is generally the major drain o f removing O2 - 

Concentrations o f nitric oxide (NO) that cause vasorelaxation are on the order o f 5- 

WnM and will not effectively compete with SOD for O2 When the concentration o f 

nitric oxide rises to micromolar concentrations, it can effectively compete with SOD 

because o f its rapid rate constant.
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The interaction between O2 and NO leads to the formation o f ONOO ; ONOO is 

more reactive and damaging than its precursors, therefore more toxic to cells than 

H2O2 , O2-  and NO (Murphy et al 1998). ONOO-  has been associated with 

atherosclerosis, hypertension, ischaemia-reperfusion injury, rheumatoid arthritis, and 

neurodegenerative diseases. The major limitations of ONOO production are the 

amount o f NO and O2-  produced and the amount o f other reactants (especially 

oxyhaemoglobin and SOD respectively) available to compete for them. ONOO has a 

relatively long half-life o f approximately 1.9s at pH 7.4, this permits diffusion across 

several cell diameters. ONOO-  decomposes to generate a potent oxidant similar to 

hydroxyl radical (HO-) in reactivity (Beckman et al 1990), and it may cross cell 

membranes through anion channels as has been demonstrated for O2 (Murphy et al 

1998).

ONOO is capable o f oxidising iron/sulphur centres, lipids, zinc fingers, cytochrome 

C, and protein thiols in cells. In the main, the majority of ONOO-  formed will react 

with CO2 in the blood and with thiols in cells. In vivo ONOO reacts with CO2 to 

produce nitroperoxocarbonate (ONO2 CO2- ), which is short lived and decomposes to 

carbon dioxide and nitrate. ONOO-  also reacts with haemoglobin, haem-containing 

peroxidases, glutathione synthase and proteins containing zinc-thiolate centres, 

including DNA-binding transcription factors (Fennell 2002). When ONOO reacts 

with glutathione it generates oxidized glutathione and O2- , which are scavenged by 

glutathione reductase and SOD respectively. This seems to be the main cellular 

system o f protection against ONOO- ; there are no specific enzymes or antioxidants 

for ONOO (Fennell 2002).

ONOO inactivates antioxidants such as glutathione synthase, cysteine and a- 

topopherol. The reaction with CO2 results in the generation o f more reactive species 

(Murphy et al 1998). ONOO-  reaction compounds (largely NO2 and CO3- ) produce 

hydroxyl radicals, initiate lipid peroxidation, nitrate tyrosine residues and damage 

DNA (Murphy et al 1998). This results in disruption o f the cell membranes, cell 

signalling and cell survival (Beckman et al 1996).
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ONOO-  inactivates MnSOD, thus increasing the amount o f O2 available to react 

with NO and establishing an autocatalytic spiral in increasing mitochondrial 

peroxynitrite formation (Murphy et al 1998). ONOO has also been associated with 

the uncoupling o f NOS by BH4 oxidation leading to another positive feed back loop 

of O2-  production (Milstien et al 1999).

Large amounts o f ONOO-  rapidly lead to cell death due to overbearing oxidative 

stress. This can occur in vivo under conditions o f ischaemia-reperfusion or 

inflammation. Lower levels o f ONOO-  formation can still result in cell death by 

induction o f apoptosis (Murphy et al 1998).

In vivo ONOO oxidation o f proteins, nitration o f protein tyrosine residues to 3- 

nitrotyrosine is widespread in human atherosclerotic lesions. Because nitrotyrosine is 

negatively charged, its incorporation disrupts protein shape and function (Beckman et 

al 1996). Tyrosine nitration also blocks tyrosine phosphorylation thereby disrupting 

tyrosine kinase signalling pathways. Tyrosine nitration is also believed to modify 

cytochrome C, an important component o f both the mitochondrial electron transport 

chain and apoptosis (Murphy et al 1998).

ONOO causes generalized oxidative damage, reacting with DNA to form 8 - 

hydroxydeoxyguanosine and single -strand DNA breaks; it causes protein oxidative 

damage and the formation o f protein carbonyls; induces lipid peroxidation; oxidises 

thiols; and hydroxylates phenolics (Murphy et al 1998). ONOO-  can damage DNA by 

reacting directly with DNA, inhibit DNA repair processes and can damage it by 

increasing production of H2O2 and alkylating agents (e.g. nitrosamines) both of which 

are genotoxic (Fennell 2002).

ONOO has some vasorelaxant properties but is less potent than NO, being very 

short-lived (Beckman et al 1996). ONOO-  like NO causes vessel relaxation increases 

cGMP in smooth muscle and inhibits platelet aggregation and leukocyte adhesion 

(Beckman et al 1996). These properties may be the result o f the reaction of ONOO 

with thiols producing S-nitrothiols, which release NO (Murphy et al 1998). However 

these effects are very short lived.
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1.4 Fruit and vegetable consumption, vitamin C and E trials, and 

Cardiovascular Protection

Numerous ecological and epidemiological studies strongly indicate that a high 

consumption o f fruit and vegetables is associated with a reduced risk o f cancer 

(American Institute for Cancer research, 1997) and cardiovascular disease (Joshipura 

2001; Liu et al 2000), Fig 9.

Figure 9; Consumption of fruit and vegetables and incidence of CVD mortality 
(BHF-statistic data base, 2002)
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Despite cultural differences in cuisines worldwide that are associated with different 

macronutrient profiles, there are some shared characteristics o f healthy dietary 

patterns. Most notably they include fruit and vegetables, legumes, whole grains, and 

fish, and because o f this, all are high in fibre, relatively high in g o -3  fatty acids, and 

low in saturated fat, trans fat, and dietary cholesterol (Hu et al 2002). There have been 

a few prospective cohort studies examining the cardio-protective effects o f fruit and 

vegetables that have reported negative findings (Ness et al 1997). However most 

studies included in the meta-analysis carried out by Ness were consistent with a 

strong protective effect o f fruit and vegetables for stroke and a weaker protective 

effect for coronary heart disease. The Mediterranean diet, which is rich in fruit and
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vegetables that have been minimally processed, has been reported to reduce the 

recurrence o f myocardial infarction in the Lyons Heart Study (de Lorgeril 1999).

Other studies in which highly selected populations underwent short-term intensive 

dietary interventions increasing fruit and vegetable intake substantially, a rise in 

plasma antioxidant concentrations and lowering o f blood pressure was observed 

(Appel et al 1997).

A randomised, controlled trial investigating the effects o f a 6 -month intervention to 

increase fruit and vegetable consumption to an extra five portions a day, also 

produced favourable results. The study was carried out in 690 participants from a 

healthy general population. It was found that plasma concentrations o f a-carotene, p- 

carotene, luetin, and ascorbic acid increased by more in the invention group than in 

the control group. Groups did not differ for changes in lycopene, retinal, a -  

tocopherol, y-tocopherol, or total cholesterol concentrations. Systolic blood pressure 

fell more in the intervention group than in controls (difference=4.0 mmHg, 2.0-6.0; 

p<0.0001), as did diastolic blood pressure (1.5mm Hg, 0.2-2.7; p=0.02). It was 

concluded that the intervention on fruit and vegetable consumption leading to a rise in 

plasma antioxidants and lowering o f blood pressure would be expected to reduce 

cardiovascular disease in the general population (John et al 2002). The results were in 

accordance o f the DASH (Dietary Approaches to Stop Hypertension trial) (Appel et al 

1997).

A much larger study conducted by Bazzano et al (2002), took advantage o f the large 

participant size and prolonged follow up experience o f participants in the National 

Health and Nutrition Examination Survey Epidemiolgic Follow-up Study (NHEFS) to 

examine the association between fruit and vegetable intake and the risk o f subsequent 

cardiovascular disease. 9608 adults took part in the study, aged 25-74 years, who were 

free o f cardiovascular disease at the time o f their baseline examination (between 1971 

and 1975). Fruit and vegetable intake at baseline was measured with a food-frequency 

questionnaire. The incidence o f and mortality from cardiovascular disease was 

obtained from medical records and death certificates. Over approximately the next 19 

years, 8 8 8  strokes (218 fatal), 1786 ischaemic heart disease events (639 fatal), 1145 

cardiovascular disease deaths, and 2530 all-cause deaths were documented.
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Consuming fruit and vegetable more than three times a day compared with once a day 

was associated with a 27% lower stroke incidence {relative risk}, 42% lower stroke 

mortality, 24% lower ischaemic heart disease mortality, and 15% lower all-cause 

mortality after adjustment for the established cardiovascular disease risk factors. The 

results showed a strong inverse association o f fruit and vegetable intake with the risk 

o f cardiovascular disease and all-cause mortality in the general US population. As a 

result an increase in consumption o f fruit and vegetables to 400g or five portions a 

day has been advocated by national and international bodies (James et al 1988, Report 

o f WHO study group 1990) on the assumption that such a change would reduce the 

incidence both o f cancer and cardiovascular disease.

The mounting evidence that consumption o f fruit and vegetables benefits our health 

and has cardio-protective properties has lead to research into what bioactive 

compounds, the extra nutritional constituents that naturally occur in small quantities 

in plant products and lipid rich foods (Kitts et al 1994) are contributing most to this 

apparent cardio-protective effect. Observational epidemiologic studies suggest that 

dietary nutrients such as potassium, antioxidants, and folic acid abundant in fruit and 

vegetables are associated with a lower incidence o f mortality from cardiovascular 

disease (Khaw et al 1987; Tribble et al 1999). In the Nurses Health Study and the 

Health Professionals follow up study, a 4% reduction in coronary heart disease for 

each increase in serving o f fruit and vegetable intake per day was noted (Joshipura et 

al 2001). Green leafy vegetables and vitamin C rich fruit and vegetables were reported 

to contribute the most to this apparent protective effect. Vitamin C has been found to 

improve vascular endothelium function in vitro, by increasing nitric oxide 

bioavailability (Ulker et al 2003).

Vitamin C and E have been reported as the most important antioxidants (Frei et al 

1989). Vitamin C alone or in combination with vitamin E has been shown to enhance 

NO generation and reduce blood pressure in hypertensive animals (Xu et al 2000). 

Vitamin C is an important water-soluble antioxidant in human plasma and is capable 

o f scavenging oxygen derived free radicals such as superoxide anion (Frei et al 1989). 

Studies o f administration o f intra-arterial vitamin C in the forearm in subjects with 

cardiovascular risk factors, other than age, have reported increased endothelium- 

dependent relaxation in forearm resistance vessels (Landmesser et al 2001; Taddei et
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al 1995). In one study Taddei et al (1995), observed that impaired endothelium- 

dependent relaxation in response to acetylcholine was reversible by vitamin C in 

healthy sedentary older subjects.

Vitamin E supplementation improves cell-mediated immunity in mice and in humans. 

In addition to modulating the oxidation o f low-density lipoproteins, vitamin E can 

modulate immune/ endothelial cells interactions, thus reducing the risk of CVD 

(Meydani et al 1999). Vitamin E is reported to be a major antioxidant in LDL 

particles; it exerts potent antioxidant effect against free-radical-mediated oxidation of 

LDL, but is not capable o f inhibiting LDL oxidation mediated by non-radical 

mechanisms (Diaz et al 1997). However, when vitamin E works as an antioxidant it is 

oxidized to harmful radicals which need to be reduced back to a a-tocopherol, e.g., by 

vitamin C (Packer et al 1979).

A study investigating the antioxidant effects o f both vitamin C and E found that both 

had protective properties in vitro in a model o f genetic hypertension associated with 

enhanced oxidative stress. The ability o f vitamin C (10 to 1 OOpol/L) or E (lOOpol/L) 

to modulate vascular function by regulating enzymatic activities o f endothelial nitric 

oxide synthase and NAD(P)H oxidase, in the thoracic arteries o f male spontaneously 

hypertensive rats and their normotensive counterparts Wistar-Kyoto rats was 

examined. The results showed that both vitamins improved endothelial function, 

reduced O2- production as well as NAD(P)H oxidase activity, and increased eNOS 

activity and NO generation in SHR aortas to the levels observed in the aortas o f the 

WKY vitamin treated rats. It was concluded that endothelial NAD(P)H oxidase is the 

major source o f vascular O2” in SHR and that vitamin C and E are critical in 

normalizing genetic endothelial dysfunction through the regulation o f eNOS and 

NAD(P)H oxidase activities (Ulker et al 2003).

In a prospective study; the Antioxidant Supplementation in Atherosclerosis 

Prevention (ASAP), a 6 -year study examining the combinational effect of 136 IU o f 

vitamin E plus 250mg o f slow-release vitamin C given twice daily, it was concluded 

that supplementation with this combination slowed down atherosclerotic progression 

in hypercholesterolemic patients (Salonen et al 2003). 440 adults aged 45 to 69 years 

with serum cholesterol > 5.0mmol/L completed the study. The common carotid artery
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intima-media thickness was measured. In both sexes combined, the average annual 

increase o f the mean was 0.014mm in the un-supplemented and only 0.010mm in the 

supplemented group. The effect was larger in subjects with either low baseline plasma 

vitamin C levels or CCA plaques. Vitamin E had no effect on HDL cholesterol 

(Salonen et al 2003).

However, in prospective placebo controlled clinical trials the protective effects o f oral 

vitamin supplements is not a constent finding. The MRC/ BHF Heart Protection Study 

on antioxidant vitamin supplementation had 20, 536 UK high-risk patients, aged 40- 

80 years with coronary heart disease, or other occlusive arterial disease including 

diabetic participants. The subjects were allocated randomly to receive antioxidant 

vitamin supplementation (600mg Vitamin E, 250 mg Vitamin C, and 20 mg P- 

carotene daily) or matching placebo. An average o f 83% o f participants in each 

treatment group remained compliant during the scheduled 5-year treatment period. 

The results showed plasma concentrations o f a-tocopherol had doubled, vitamin C 

had gone up by a third and p- carotene had quadrupled. Despite the increase in blood 

vitamin levels there was no significant differences in the 5 year mortality from, or 

incidence of, any type o f vascular disease, cancer, or other major outcome (Heart 

protection study group 2 0 0 2 ).

In the Primary Prevention Project (PPP- 2001) a randomised controlled open 2x2 

factorial trail in 4495 people, mean age 64.4 years with one or more o f the following: 

hypertension, hypercholesterolaemia, diabetes, obesity, family history o f premature 

myocardial infarction, the effects o f low-dose aspirin (lOOmg/day) and vitamin E 

(300mg/day) were investigated. It was concluded that low-dose aspirin given in 

addition to treatment o f specific risk factors contributed an additional effect, but that 

vitamin E showed no additional protective effect. Other intervention studies which do 

not support the hypothesis, that vitamins are responsible for the CVD and cancer 

protective effects, observed when intake o f fruit and vegetables is high include the 

following trials; Alpha-Tocopherol 1994; Omenn et al 1996; Hennekenset et al 1996; 

The Heart Outcomes Prevention Evaluation Study 2000. This lead to the conclusion 

that mechanisms other than antioxidant vitamin content must contribute to the health 

benefits o f eating fruit and vegetables (Appel et al 1997).
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Indeed one study showed treatment with the Mediterranean diet but not oral vitamin C 

improved endothelium dependent and endothelium independent dilation (Singh et al

2002). Vitamins do not explain the “French paradox”, that is why, despite a high 

saturated fat diet short in vitamins, the French have a lower incidence o f coronary 

heart disease (Ulbricht et al Southgate 1991; Renaud et al 1992). Epidemiological 

studies have suggested that the antioxidants in red wine may be responsible for this 

finding. Red wine is a rich concentrated source of polyphenolic substances (Kris- 

Etherton et al 2002).

Polyphenol compounds are present in virtually all plant foods; green tea, red wine, 

apple, orange juices, cocoa and legumes are plant foods that are particularly high in 

polyphenols. Flavonoids (a major class o f polyphenols) and other phenolic 

compounds appear to contribute highly to the antioxidant capacity observed in certain 

fruit and vegetables (Gao et al 2001). The antioxidant capacities, measured as oxygen 

radical absorbance (ORAC) o f some flavonoids, have been reported to be several 

times stronger on a molar basis than vitamins C and E (Gao et al 1999, Wang et al

1997). Population studies have reported an inverse association between flavanoid 

intake and the risk o f coronary disease (Hertog et al 1996). The phenolic compounds 

identified in red wine include phenolic acids, flavonols, monomeric catechins, and 

polymeric anthocyanidins. Catechin, a flavan-3-ol compound is the most abundant 

polyphenol in red wine and is present at concentrations up to 300mg/ml (Singleton et 

al 1988). Flavanols (quercetin and kaempferol) are present in smaller concentration 

approximately 30mg/ml, and phenolic acids at 140mg/l. All o f these phenolic 

compounds have been shown to have antioxidant properties in vitro (Frankel et al 

1993). Studies have shown that red wine inhibits oxidation o f LDL in vitro (Frankel et 

al 1993) and increases the antioxidant capacity in plasma. There is evidence that 

phenolic compounds have anti-thrombotic properties that appear to be the result o f 

reduced susceptibility o f platelet aggregation, reduced synthesis o f prothrombotic and 

proinflammatory mediators, decreased expression o f adhesion molecules, and tissue 

factor activity (Rotondo et al 2000). There is also evidence that polyphenols can 

improve endothelium function by modulating the production o f nitric oxide, resulting 

in vasorelaxation (Rotondo et al 2000).
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The effects o f polyphenols appear to be independent of whether the source is wine or 

grape. In one study it was found that juice from purple grapes (7ml/kg body weight 

per day for 14 days) decreased platelet aggregation (58% vs. 39% control), increased
ft ft

platelet derived nitric oxide release (6.0pmol/10 platelets vs. 3.5 pmol/10 platelets), 

and reduced O2-  production (30 vs. 19 Arbitury units). Thus it was concluded that 

these protective effects were independent from alcohol consumption. A number o f 

studies have found that moderate alcohol consumption (1 to 3 drinks/day) attenuates 

the risk o f CHD (Rotondo et al 2000). However other studies have shown that only 

red wine has protective effects, beer and sprits being with out effect (Truelssen et al

1998). Therapeutic properties o f polyphenols have been reported from food sources 

other than grapes, such as semisweet chocolate (Rein et al 2000) and green tea 

(Negishi et al 2004, Ying et al 2004).

1.5 Polyphenols: Chemistry metabolism and structure activity 
relationship

Polyphenols are a class o f phytochemicals found in high concentrations in wine, tea 

and grapes (Harbory et al 1997). Phenolic compounds are ubiquitous in the plant 

kingdom and the term refers to substances that possess an aromatic ring bearing one 

or more hydroxyl substituients (Rice-Evans et al 1996).

Over 8000 phenolic compounds have been identified in a dozen chemical sub­

categories. The major dietary families o f polyphenols are the flavan-3-ols, flavonols, 

flavanones and anthocyanins. Over 4,000 flavonoids have been identified. These are 

one o f the most nutritionally important classes o f polyphenols and are widley 

distributed in plant food, Table 1.1.

Natural polyphenols can range from simple molecules such as phenolic acid to large 

highly polymerised compounds such as tannins. Conjugated forms o f polyphenols are 

the most common, where various sugar molecules, organic acids and lipids are linked 

with the phenolic ring structure. Differences in this conjugated chemical structure 

account for different chemical classification and variation in the modes o f action and 

health giving properties o f the various compounds.
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Table 1.1; General structure and Trolox equivalent antioxidant activities 

(TEAC) of some dietary flavonoids ( Adapted from Rice-Evans et al 1996)

The assay for the total antioxidant activity (TAA), or the Trolox equivalent 
antioxidant activity (TEAC), measures the concentration o f Trolox solution with an 
equivalent antioxidant potential to a standard concentration o f the compound under 
investigation. The TEAC is defined as the concentration o f Trolox solution with 
equivalent antioxidant potential to a ImM concentration o f the compound under 
investigation.

Class Structure Flavonoid Dietary Source TEAC(mM)

Flavanol

Flavone

Flavonol

• f i b r i n

Oft?

Flavanone

Isoflavone

a $ °

Anthocynidin

-■ *-*» — ' WBaSOmtk

cyMdtfbi

Tea 2.4
Tea 2.5
Tea 4.75
Fruit skins 1.43
Parsley, celery 1.45
Red wine, buckwheat citrus, tomato skin 2.4

Red pepper 2.1
1.74-0.79

Broccoli, black tea, grapefruit, leek 1.34

Apple skin, broccoli, onion, olive oil, 
lettuce, red wine, tomato, tea

4.7

Cranberry grapes, red wine 3.1

Citrus, grapefruit 0.24
Citrus fruits 1.53
Citrus fruits 1.9
Lemons 1.8
Oranges 1.08
Soybean 1.24
Soybean 2.9
Soybean 1.15
Soybean 1.25

Colured fruits 2.35
Cherry, raspberry, strawberry 4.42

Flavonoids have the diphenylpropane (C6C3C6 ) skeleton (Rice-Evans et al 1996), are 

benzo-y-prone derivatives consisting o f phenolic and pyrane rings and are classified 

accordingly to substitutions, fig 10. Dietary flavonoids differ in the arrangements o f 

hydroxyl, methoxy, and glycosidic side groups, and in the conjunction between the A- 

and B- rings, fig 11. During metabolism, hydroxyl groups are added, methylated, 

sulphated or glucuronidated. The most commonly occurring flavones and flavonols 

are those with dihydroxylation in the 3 ' and 4 ' positions o f the B ring, and to a lesser 

extent, those with a lone B ring-hydroxyl group in the 4 ' position. Most dietary 

flavonoids occur in food as O-glycosides and polymers (Rechner et al 2002). The

29



most common glycosidic unit is glucose, but other examples include glucorhamnose, 

galactose, arabinose, and rhamnose (Rechner et al 2002).

Figure 10 Nuclear Structure of flavonoid (Heim et al 2002)

Figure 11 Interconnections of flavonoid subgroups (Adapted from Rice-Evans et 
al 1996)

3xC2 units C9 unit

3-Desoxy-Ci5 unit 3-Hydroxy-Ci5 unit
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Polyphenols particularly flavonoids are among the most potent plant antioxidants 

(Rechner et al 2002). Flavonoids and phenolic acids can act as anti-oxidants by a 

number o f pathways, but perhaps the most significant is by free radical scavenging in 

which the phenolic compounds can break the free radical chain reaction. Polyphenols 

form complexes with reactive metals such as iron, zinc and copper reducing their 

absorption. This may seem a negative side effect (reducing nutrient absorption), but 

excess levels o f such elements (metal cations) in the body can promote the generation 

o f free radicals and contribute to the oxidative damage o f cell membranes and cellular 

DNA. In general, polyphenols (flavonoids) are thought to deliver health benefits by 

four main mechanisms;

• Direct free radical scavenging (scavenging o f hydroxyl, peroxyl, or synthetic 

radicals).

• Termination o f the chain reaction in the lipid phase, involving peroxyl 

radicals and hydroperoxides.

• Protection and regeneration o f other dietary antioxidants (such as ascorbate, 

which may reduce and recycle the flavonoid radical or vice-versa).

•  Cheletion o f metal ions (diavalent cations used to initiate oxidative events).

It was suggested in 1959 that flavonoids are rapidly absorbed and converted to a 

variety o f hydroxyaromatic acids, which are rapidly eliminated in the urine (Rechner 

et al 2002). Due to molecular size, absorbtion o f polymeric flavonoids across the 

intestinal epithelium requires preliminary degradation to smaller, low molecular 

weight compounds. Polyphenols presence in plasma appears to be largely transient, 

although a short half-life does not prelude these compounds from playing an 

important role in disease prevention. Peak concentrations o f flavonoids typically 

occur approximately 2 hr after ingestion, although one study reported peak levels at 

24hours following an oral dose o f epicatechin (Rechner et al 2002). In healthy 

volunteers, the half-life o f quercetin has been reorted to be high ranging from 20-72 

hours (Walle et al 2001). Provided that sufficient dietary intake is sustained, this long 

half-life o f quercetin is conducive to accumulation in plasma and concomitant 

bioactive potential. Indeed several flavonoids and anthocyanins have been detected in
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human plasma at levels that allow biological activity although there is less evidence 

regarding absorption o f phenolic acids (Heim et al 2002).

Although quercetin represents but one of hundreds o f dietary flavonoids, it is among 

the most abundant, potent, and widely studied and provides insight into the absorption 

and metabolism of polyphenols. The average daily intake o f flavonoids in the 

occidental diet is 23mg, o f which quercetin represents 60 to 75% (Rice-Evans et al 

1996), fig 12.

The absorption kinetics varies considerably among foods, owing to the heterogeneity 

o f sugars and other functional groups of the flavan nucleus (Rice-Evans et al 1996). 

Absorption may also depend on dosage, vehicle administration, antecedent diet, sex 

differences, and microbal population o f the colon (Pannala et al 2001).

Figure 12 Representation of quercetin metabolism (Rice-Evans et al 1996)

HOOC OH

pknjrtacitic add phcaylacetie add

Due to the affinity o f flavaonoid hydroxyl groups for proline residues, the antioxidant 

capacity o f catechin gallates in vitro is attenuated by presence o f proteins such as p- 

casein (Arts et al 1998). This suggests proteins in the food itself, and the bloodstream 

may potentially mask the biological activity o f polyhydroxylated flavonoids (Rice- 

Evans et al 1996). However, addition o f milk to black tea had no effect on the
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Evans et al 1996). However, addition o f milk to black tea had no effect on the 

absorption of quercetin or kaempferol in a group o f healthy individuals (Rice-Evans et 

al 1996).

During the past 15 years structure activity relationships study has generated several 

consistent lines of evidence supporting the role o f specific structural components as 

requisites for radical scavenging, chelation and oxidant status, structural components 

o f interest are;

• Hydroxyl groups

• O-methylation

• The 2-3 double bond and 4-oxo function

• Carbohydrate moieties

• Degree o f polymerisation 

(Heim et al 2002)

The spatial arrangement o f substitiuents is perhaps a greater determinant of 

antioxidant activity than the flavan backbone alone. Both the configuration and total 

number o f hydroxyl groups substantially influence several mechanisms o f antioxidant 

activity. Free radical scavenging capacity is primarily attributed to the high 

reactivities of hydroxyl substituents that participate in the following reaction (Heim et 

al 2 0 0 2 ):

F-OH+R '—*F-0 ' + RH

F-OH= Flavonoid hydroxyl group 

R ’=Reactive oxygen species 

F-O = Stable flavonoid radical 

RH=Hydrogen reactant

The B-ring hydroxyl configuration: this is the most significant determinant o f 

scavenging of ROS (Rice-Evans et al 1996). Hydroxyl groups on the B-ring donate 

hydrogen and an electron to hydroxyl, peroxyl, and peroxynitrite radicals, stabilizing 

them and giving rise to relatively stable flavonoid radicals. Among structurally
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homologous flavones and flavannones, peroxyl and hydroxyl scavenging increases 

linearly and curvilinearly, respectively, according to the total number o f OH groups 

(Rice-Evans et al 1996).

A 3 '4 '-catechol stucture in the B-ring strongly enhances lipid peroxidation inhibition 

(Rice-Evans et al 1996). This arrangement is a salient feature of the most potent 

scavengers of peroxyl, superoxide, and peroxynitrite radicals (Rice-Evans et al 1996).

O-methylation: Differences in antioxidant activity between polyhydroxylated and 

polymethoxylated flavonoids are most likely due to differences in both 

hydrophobicity and molecular planarity. Although the ratio of methoxy to hydroxyl 

substituents does not necessarily predict the scavenging ability o f a flavonoid, the B- 

ring is particularly sensitive to the position o f the methoxy group. Alternating a 6 '- 

OH/4'-Ome configuration to 6'-Ome/4'-OH completely abolishes the scavenging of 

DPPH by inducing coplanarity (Rice-Evans et al 1996).

The 2-3 unsaturated double bond in conjugation with a 4-oxo function: This is a 

distinguishing feature among general flavonoid structural classes (Heim et al 2002). 

Comparison o f quercetin with taxifolin suggests that in flavonoids fulfilling other 

structural criteria, the 4-oxo and double bond distinguishes the better antioxidant. 

Quecetin is a more potent inhibitor o f ferrous sulphate-induced MDA formation than 

taxifolin; both structures have a 4-oxo group, but taxifolin is saturated between 

carbons 2 and 3. Flavonoids with a 2-3 double bond in conjugation with a 4-carbonyl 

group exhibit lower IC50 values (indicative o f stronger antioxidant activity) in a 

microsomal system compared to those with saturated heterocycles. The majority of 

research suggests that flavonoids lacking one or both features are less potent 

antioxidants than those with both elements (Heim et al 2002).

Carbohydrate moieties: Aglycones are more potent antioxidants than their 

corresponding glycosides (Gao et al 1999). Daidzein and genestein aglycones exhibit 

greater TEAC values (1.25 and 2.9) than their 7-glycosides (1.15 and 1.24, 

respectively) (Heim et al 2002). Aside from the presence and total number, the 

position and structure o f the sugar plays important role. For example luteolin and 

quercetin aglycones significantly exceeded their 3-,4'- and 7-O-glucosides in retarding
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the accumulaion o f hydroperoxides in membrane bilayers, but a 4 '- sugar was more 

suppressive than 3- or 7-substitution. Whether the sugar moiety is glucose, rhamnose, 

or rutinose is relevant. For example, compared to rutinose, a rhamnose moiety on 

quercetin significantly reduces scavenging of radicals generated by stimulated human 

neutrophils (Heim et al 2002). Aside from occupying free OH groups necessary for 

hydrogen abstraction and radical scavenging, any sugar substituent is capable o f (i) 

diminishing coplanarity o f the B-ring relative to the rest o f the flavonoid, and/or (ii) 

lending hydrophilicity and altering access to lipid peroxyl and alkoxyl radicals during 

the propagation o f lipid peroxidation (LPO) in membranes.

Polymerization o f flavonoids: Procyanidin dimmers and trimers are more effective 

than monomeric flavonids against O2- , but the activities of dimmers and trimers differ 

little (Heim et al 2002). Tetramers exhibit greater activity against peroxynitrite and 

O2 mediated oxidation than trimers, while heptamers and hexamers demonstrate 

significantly greater O2-  scavenging properties than trimers and tetramers. It appears 

that to a point, increasing the degree o f polymerisation enhances the effectiveness o f 

procyanidins against a variey o f radical species (Heim et al 2002).

1.6 Polyphenols, vasodilation and nitric Oxide bioavailability

Polyphenols have shown many properties suggestive o f an NO sparring effect. They 

enhance many o f the important functions carried out by NO.

Polyphenols derived from red wine, grape juice and grape skin have been shown to 

enhance endothelium-dependent vasorelaxation o f  the rat-precontracted aorta 

(Fitzpatrick et al 1993). Wine polyphenols fed to SHRSP for 8  weeks attenuated the 

elevation in blood pressure and improved aortic biomechanical properties compared 

with control animals (Mizutani et al 1999). Red wine polyphenols encompass 

anthocyanins, proanthocyanidins, monomeric flavanols, flavonols, and phenolic acids, 

as well as stilbene derivatives. O f these resveratol (stilbene) (Orallo et al 2002), 

delphinindin (anthocyanidin) (Andriambelsan et al 1998), and quercetin (flavanol) 

(Flesch et al 1998) were the red wine polyphenols to show a vasorelaxation effect.
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Andriambelson and collegues (1997) reported that concentrations of red wine extract 

enriched in polyphenolic compounds (RWPC) from 10' 5 to 10'2 g/1 elicited enhanced 

NO generation, cyclic guanosine 3", 5-monophosphete accumulation and endothelial- 

dependent relaxation in aortic rings from Wister Kyoto Rats. The study was expanded 

to investigate which groups o f polyphenols were able to cause endothelium-dependent 

vasorelaxation. RWPC were chromatographically resolved into 10 fractions in order 

to separate the two groups o f polyphenols that contain polymerised flavanols and 

anthocyanins. The endothelium-dependent and -independent relaxing effects o f these 

fractions were compared to those o f commercially available polyphenols. Fractions 

enriched into either anthocyanins or oligomeric condensed tannins exhibited 

endothelium dependent vasorelaxant activity (maximal relaxation in the range of 

59%-77%) compared to the original RWPC. However polymeric condensed tannins 

elicited a weaker vasorelaxant response than the original RWPC (maxiamal relaxation 

in the range 20-47%). Furthermore representatives o f phenolic acid derivatives 

(benzoic acid, vanillic acid, gallic acid), hydroxycinnamic acid (p-coumaric acid, 

caffeic acid) or the flavanol [(+)-epicatechin] classes failed to induce vasorelaxation. 

Among the anthocyanins, delphinidin (maximal relaxation being 89%), but not 

malvidin or cyanidin, showed endothelium-dependent vasorelaxation 

(Andrambeloson et al 1998).

Tea polyphenols have also been shown to attenuate the development o f hypertension 

in SHRSP (Negishi et al 2004). In one study SHRSP rats were fed either tap water 

(30ml/d); black tea polyphenols (3.5g/L thearubigins, 0.6 g/L flavonols and 0.4g/L 

catechins), or green tea polyphenols (3.5g/L catechins, 0.5g/L flavonols and lg/L 

polymetric flavonoids). The intake of tea polyphenols for 3 weeks attenuated blood 

pressure increases measured by telemetry, in addition a marked reduction in plasma 

NO concentration and urinary NO excretion was observed. This data suggests that 

alleviation o f oxidative stress by tea polyphenols diminishes ROS-mediated NO 

inactivation and raises the bioavailability o f NO (Negishi et al 2004).

In another study (Negishi et al 2004) decreased phosphorylation o f myosin light 

chain (MLC) in the aorta o f rats fed black or green tea polyphenols occurred. This 

finding suggests that the inhibition o f MLC phosphorylation contributes to the 

reduction in blood pressure. It was postulated that the phosphorylation o f MLC could
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be reduced by the inhibition o f rho-kinase constrictor activity through an increase in 

NO bioavailability in the SHRSP treated with tea polyphenols (Negishi et al 2004; 

Chitaley et al 2002).

Leikert et al (2002) provided further data showing that an alcohol-free red wine 

polyphenol extract (RWPE) strongly increases NO release, eNOS activity, and eNOS 

expression in human umbilical vein endothelial cells, fig 13. Exposure to RWPE 

(100-600pg/ml) significantly increased eNOS protein levels up to 2.1 fold. 

Furthermore an increase in human eNOS promoter activity (up to 2-fold) in response 

to RWPE (18 hours, 100 to 600pg/ml) was demonstrated by a luciferase reporter gene 

assay.

Figure 13 schematic diagrams showing the effect of red wine polyphenols on 
eNOS exression. Adapted from Leikerts study (2002)
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Mendes et al (2003) investigated the mechanism of vascular relaxation produced by 

phenolic substances from red wine. Relaxation induced by procyanin from grape 

seeds (GSP), anthocyanins, catechin and epicatechin were assessed in Wistar rat 

aortic rings either left intact or endothelium-denuded. GSP-induced relaxations were 

assassed in noradrenaline precontracted preparations in the presence or absence o f the 

NO synthase inhibitor L-NAME. The preparations were incubated with reactive blue 

2 (RB2, an antagonist o f P2Y purinoceptors), with apyrase (an enzyme which
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hydrolyses ATP and ADP) or with a -p  methylene ATP (an inhibitor o f ecto 

ATPases). The data confirmed that modest relaxations observed with cathechin and 

epicatechin are endothelium independent but that GSP and anthocyanins induce a 

relaxation which is endothelium dependent and involves the synthesis and release of 

NO. Inhibition o f relaxation by apyrase and the increase in the presence o f ecto- 

ATPase inhibition, suggest that GSP and anthocyanins could act via an initial release 

of nucleotides, which in turn could activate P2Y1 and/ or P2Y2 purinoceptors of 

endothelial cells, trigging the synthesis and release o f NO (Mende et al 2003).

It has been known for many years that quercetin exerts systemic and coronary 

vasodilator effects (Perez-Vizcaino et al 2002). When given orally, it reduces blood 

pressure, cardiac hypertrophy, and vascular remodelling in spontaneously 

hypertensive rats and NO-deficient rats (Duarte et al 2001). The vasorelaxation effect 

o f quercetin may be related to a direct action on smooth muscle cells at high 

concentrations, perhaps as result o f cyclic nucleotide phosphodiesterase inhibition 

(Bertz et al 1978), although other studies suggest that it is quercetins ability to 

scavenge O2 that results in a NO sparring effect (Lopez-Lopez et al 2003). In an vivo 

study in which spontaneously hypertensive rats were fed high doses o f quercetin 

(lOmg kg'1) for 5 weeks quercetin reduced the elevated blood pressure, the cardiac 

and renal hypertrophy and the functional vascular changes in SHR without having any 

effect in WKY. These effects were associated with a reduced oxidant status due to 

antioxidant properties o f quercetin (Duarte 2001).

The anthocyanin delphinidin elicits endothelium dependent relaxant (Andriambeloson 

et al 1998). This action depends on the ability o f delphinidin to stimulate NO 

production through the increase in cytosolic calcium, independently o f its anti-oxidant 

property (Martin et al 2002). In addition, delphinidin has been recently reported to 

inhibit the growth o f a human tumour cell line by shutting off the epidermal growth 

factor receptor downstream signalling cascade. Delphinidin can activate ERK-1/2 

pathway resulting in an over expression o f e-NOS in bovine aortic endothelial cells 

leading to increased NO production and protection against apoptosis (Martin et al 

2002).
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Several reports have suggested that flavanoid consumption may inhibit platelet 

aggregation (Wolfram et al 2002; Hertog et al 1996). Grape polyphenols administered 

to rats reduced thrombin-induced platelet aggregation (Xia et al 1998) and grape juice 

inhibited platelet aggregation and thrombosis in stenosed canine coronary arteries 

(Demrow et al 1995). Wolfram examined the effect o f a 1-month consumption of 

500ml black tea containing 2.0mg quercetin in healthy human volunteers. A single 

administration o f tea did not effect plasma 8 -epi-PGF2a levels, 11-DH-TXB2, or 

ADP-induced platelet aggregation. However after 1-week and to a greater extent 1 

month regular tea intake, there was a significant decrease in most o f these parameters 

(Wolfram et al 2002).

Onion juice has been shown to inhibit in vitro human platelet aggregation (Goldman 

et al 1996). In another study dogs with mechanically damaged and stenosed coronary 

arteries, with periodic platelet-mediated thrombus formation followed by 

embolization, were administered 0.09±0.01mL/kg onion juice intravenously. This 

resulted in a reduction in collagen-induced whole-blood platelet aggregation (ex 

vivo). It was concluded that consumption o f raw onion might help prevent platelet- 

mediated cardiovascular disorders. A greater effect was observed with dog’s blood 

than humans in in-vitro experiments (Briggs et al 2001).

Quercetin and the flavone apigenin (2500pmol/l) significantly inhibited collagen- and 

ADP- induced aggregation in platelet-rich plasma (Janssen et al 1998). However 

lower concentrations that might occur in vivo had no effect. Moreover in a study in 

which 18 healthy volunteers were fed 220g onions/d providing 114mg quercetin/d, 5g 

dried parsley/d providing 84mg apigenin/d, or a placebo for 7 days in a randomised 

cross over study no significant effects o f onion or parsley were found on platelet 

aggregation, thromboxane B2 production, factor VII, or other hemostatic variables. It 

was concluded that the antiaggregatory effects o f flavonoids seen in vitro are due to 

concentrations that cannot be attained in vivo (Janssen et al 1998)

As well as inhibiting platelet aggregation there is evidence o f polyphenols reducing 

cell proliferation and inflammatory mediators. Phenolic acids, such as caffeic acid 

have been shown to protect cultured endothelial cells against the cytotoxic effects o f
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low-density lipoprotein (LDL) oxidation, possibly by blocking the intracellular 

signalling triggered by LDL oxidation (Vieria et al 1998). Caffeic acid is a specific 

inhibitor o f nuclear transcription (NF-kB) (Natarajan et al 1996).

1.7 The super oxide scavenging ability of polyphenols

Reactive oxygen species (ROS), especially O2-  and hydroxyl radical (OH*), are 

important signalling molecules in cardiovascular cells that influence both normal and 

abnormal cell processes, including cellular growth, hypertrophy, remodelling, lipid 

oxidation, modulation o f vascular tone, endothelial permeability and adhesion for 

leukocytes (Lum et al 2001). The main flavonoids o f interest are anthocyanins, 

flavon-3-ols, and their polymeric products flavanones, flavonols, and flavones 

(Haslam et al 1998). In vitro these compounds have been shown to scavenge O2 , 

OH*, and peroxyl (ROO*) (Van Acker et al 1996), inhibiting lipid peroxidation 

(Vinson et al 1998), and protecting LDL against oxidation (Furhman et al 1995). A 

3’4 ’-catechol structure in the B-ring strongly enhances lipid peroxidation inhibition; 

this feature o f flavonoids allows potent scavenging o f O2 and ONOO (Hu et al 

2002).

Oxidative modification of LDL by free radicals particularly C>2_ is an early event in 

the pathogenesis o f atherosclerosis. The rapid uptake of oxidatively modified LDL via 

scavenger receptors leads to the formation o f foam cells. Oxidised LDL also has a 

number o f other atherogenic properties. A number o f mechanisms are likely to 

contribute to inhibition o f LDL oxidation by flavonoids (Rajnarayana et al 2001). 

Flavonoids may directly scavenge O2-  by acting as chain breaking antioxidants. In 

addition, they can recycle other chain-breaking antioxidants such as a-tocopherol by 

donating a hydrogen atom to the tocopheryl radical (Francel et al 1993). Transition 

metals such as iron and copper are important pro-oxidants, and some flavonoids can 

chelate divalent metal ions, hence preventing free radical formation.

The flavonol quercetin has free radical-scavenging effects (Robak et al 1988; Van 

Acker et al 1996), inhibits low-density lipoprotein peroxidation, and reduces the 

progression of atherosclerosis in vivo (Hayek et al 1997). In SHR rats, quercetin 

reduced the oxidative status, as indicated by lower concentrations o f markers of
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oxidative stress including plasma and hepatic malondialdehyde and urinary 

isoprostane-F2(x (Duarte et al 2001).

The effects of quercetin (lOmg/kg) and the anti-hypertensive drug verapamil 

(20mg/kg/day) administered daily, on hypertension and oxidative status in different 

tissues in a DOCA-salt hypertension model in rats were compared (Galisteo et al

2004). Both compounds reduced systolic blood pressure and significantly reduced 

hepatic and renal hypertrophy. Only quercetin reduced cardiac hypertrophy and 

improved endothelium-dependent relaxation to acetylcholine o f aortic rings from 

DOCA rats (Galisteo et al 2004). Increased plasma and heart thiobarbituric acid 

reactive substances (TBARS) and total glutathione (GSH) levels in the heart, with 

decreased liver glutathione peroxidase (GPX) and liver and kidney glutathione 

transferase (GST) activities were observed in the DOCA-salt-treated rats compared to 

the control animals. In the above study the antihypertensive effect o f quercetin was 

accompanied by normalisation o f plasma TBARS, improvement o f the antioxidant 

defence systems in the heart and liver restoring total GSH levels in both organs and 

altered liver GST and GPX activities, and improving kidney GST activity. Verapmil 

treatment restored GSH levels in heart, but had no effect on the other observed 

alterations induced in DOCA chronic-salt administration. Thus quercetin showed both 

antihypertensive and antioxidant properties, while verapmil exhibited only 

antihypertensive effects (Galisteo et al 2004).

Cyanidin-3-O-glucoside is a scavenger o f ONOO-  and inhibits multiple peroxynitrite- 

induced processes (Serraino et al 2003). The Chilean berry Aristotelia, a rich source 

o f polyphenols including cyanidin, had high total radical trapping potential and total 

antioxidant reactivity in in vitro antioxidant capacity tests compared with the other 

commercial berries lower in polyphenols (Mirand-Rottmannet al 2002). It proved 

effective in inhibiting copper induced LDL oxidation and showed concentration 

dependent protection from hydrogen peroxide-induced intracellular oxidative stress in 

cultured endothelial cells (Mirand-Rottmannet et al 2002).

Francel et al (1993) examined red wine inhibition o f copper-catalyzed oxidation o f 

LDL in humans. Natural flavonoids in wine were found to donate hydrogen or react
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with O2 , hydroxyl radicals and lipid peroxyl radicals, all o f which contribute to lipid 

preoxidation in vivo. Two possible mechanisms for this action were advanced; firstly 

thait the phenolic compounds complexed with Cu2+ to reduce Cu+, which may in turn 

redluce H20 2, and seconly that during the LDL peroxidation, phenols in wine may act 

as self-regenerating reducing components. The authors concluded that regular 

ingestion o f these antioxidant phenols via red wine resulted in a collective reduction 

in the oxidation o f lipoproteins, which may contribute to the improvement of 

athierosclerois and morbidity and mortality from CVD (Francel et al 1993). However 

the; conclusions drawn from Francel’s study were not supported by other data 

(Rajnarayana et al 2001). Miyagi et al (1997) conducted a similar study to that of 

Francel. Miyagi compared the effects o f flavonoids from red wine and grape juice, 

and confirmed that both red wine and grape juice inhibited the Cu2+ catalysed human 

LDL oxidation in vitro. However, only red wine consumption resulted in LDL 

resistance to oxidation in vivo (Miyagi et al 1997).

This led to the question, did the polyphenols need the alcohol present in red wine to 

exert their therapeutic effects in vivo. Further in vivo investigations were carried out 

into the effect o f purple grape juice on endothelial function and LDL oxidation (Stein 

et al 1999). Fifteen humans with an average age o f 62 years, suffering from 

angiographically documented coronary artery disease, received a dietary supplement 

o f 7.7ml/kg/d o f purple grape juice. A significant improvement in endothelial function 

and reduction to the susceptibility o f LDL to copper-induced oxidation was observed 

in these CAD patients.

Duffy et al showed that short- and long-term consumption o f black tea reversed 

endothelial vasomotor dysfunction in patients with coronary artery disease (Duffy et 

al 2001). The daily tea polyphenol intake (2.6mg/d) was quite low (Mukamal et al 

2002), thus the free radical scavenging ability o f tea polyphenols should be limited. 

This lead Ying et al (2004) to hypothesize that the effect o f tea polyphenols on ROS is 

mainly due to the regulation o f enzymes related to ROS formation and degradation in 

vascular endothelial cells. To test this hypothesis, protein expression of NADPH 

oxidase subunits p22phox and p67phox, cytosolic Cu/Zn SOD (SOD-1), and catalase 

in human endothelial cells were evaluated. The results showed that tea polyphenols at 

0.4|ig/ml and 4.0jag/ml (from either green tea or black tea, table 1.2) down- regulated
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NADPH oxidase p22phox and p67phox expressions in a concentration dependent 

manner at the concentrations examined, and up-regulated the expression o f catalase, 

fig 14 (Ying et al 2004).

Table 1.2 Components of Tea Polyphenols. A dapted from Ying et al (2004)

Green tea Polyphenols 
(GTP)
%

Black Tea Polyphenols 
(BTP)
%

Catechin 70 8

Flavonols 1 0 1 0

Thearubigins - 70
Theaflavins - 1 2

Polymeric Flavonoids 2 0 -

Figure 14 schematic diagram  showing regulation of NAD(P)H oxidase subunits 
by tea polypheols. A dapted from Ying et al (2004)
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Quercetin has also been shown to inhibit several O'T generating enzymes such as 

xanthine oxidase (Chang et al 1993), and the neutrophil membrane NADPH oxidase 

complex (Tauber et al 1984).

1.8 Potential of quercetin and raspberry polyphenols in

cardiovascular protection

Raspberries have been reported to have a number of heath benefiting properties, 

recently receiving great media attention (Telegraph, Times, Daily Mail, Daily Express 

June 2004). They contain quercetin and are also an important source of 

anthocyanidins particularly cyanindin (Rice-Evans et al 1996). In addition raspberries 

contain high concentration o f ellagic acids, which have been reported to have 

anticarcinogenic and antioxidant effects (Macheix et al 1996).

Raspberry extracts have shown high antioxidant potential in several studies (Mullen et 

al 2002, Kakhonen et al 2001). Raspberry extracts were effective in inhibiting the 

formation o f H20 2 in bulk methyl linoleate. In an earlier study a phenolic extract o f 

red raspberries inhibited human LDL and liposome oxidation (Heinonen et al 1998). 

Raspberries have shown a remarkably high scavenging activity toward chemically 

generated active oxygen species (Constantino et al 1992; Wang et al 2000). However 

scant information is available on the contribution o f different phenolic subgroups or 

single compounds in this observed activity (Kakhonen et al 2001).

Mullen et al (2002) examined the polyphenol compounds in Glen Ample raspberries 

(Rubus idaeus L.), by gradient reverse phase HPLC and identified eleven 

anthocyanins. Significant quantities o f ellagitannin, sanguiin H-6 and another 

ellagitannin were present together with lambertianin C at lower concentrations. The 

flavaonols quercetin-3-rutinoside, quercetin-3-glucoside and querctin-3-glucoronide 

were present along with kaempferol glucoronide conjugate and a putative xyloside 

conjugate o f methylquercetin, traces o f ellagic acid and its sugar conjugates were also 

detected, table 1.3. In addition, raspberry juice is reported to contain catechins (Arts et 

al 2000). Raw raspberry extracts also contain non-phenolic substances such as sugars, 

organic acids, proteins and pigments (Macheix et al 1990).
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Table 1.3 Summary of polyphenols detected in extracts of Glen Ample 
Raspberries following HPLC analysis (Adapted from Mullen et al 2002)

Polyphenol Compound Wave length 
A,max(nm)

cyanidin-3,5-diglucoside 519
cyanidin-3-sophoroside 519
cyanidin-3-(2g-glucosylrutinoside) 519
cyanidin-3-glucoside 519
cyanidin-3-sambubloside 519
pelagonidin-3-sophoroside 503
cyanidin-3-xylosylrutinoside 519
cyanidin-3-rutinoside

519

pelagonidin-3-(2G-glucosytrutinoside) 503
pelagonidin-3-glucoside 503
pelagonidin-3-rutinoside 503

lambertianin C 250
sanguiin H-6 250

ellagic acid-pentose conjugate 361
ellagic acid-pentose conjugate 365
ellagic acid 365

quercetin-3-rutinoside (rutin) 365
quercetin-3-glucoside 365
quercetin-3-glucuronide 365
methylquercetin-pentose conjugate 365

ellagic acid acetylxyloside 360
kaempferol glucuronide 365
ellagic acid acetylarabinoside 360

_
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Anthocyanins like other flavonoid members such as quercetin are effective 

antioxidants (Stinzing et al 2004). The anthocyanin cyanidin present in high 

concentrations in raspberries like quercetin has a high TEAC value indicating high 

antioxidant status, table 1.4 (Rice-Evans et al 1996). Anthocyanins have the ability to 

scavenge reactive oxygen species (Kong et al 2003); and protect low-density 

lipoproteins from oxidation thus improving cardiovascular performance (Ghiselli et al 

1998). Some anthocyanins such as delphidin but not malvin or cyanidin have been 

reported to show endothelium-dependent vasorelaxation (Andriambelson et al 1998), 

which can improve endothelium function. However low bioavailability of 

anthocyanidins appears to cast doubt on their ability to exert proposed beneficial 

effects. This prompted McDougall and collegues from the Scottish Crop Research 

Institute (SCRI) to investigate the gut metabolism of Glen Ample raspberry 

anthocyanidins, using an in vitro digestive procedure adapted from the method 

outlined by Gil-Izquierdo et al (2002), which was adapted from the work of Miller et 

al (1981). McDougall provided evidence that the active components in at least eight 

o f the anthocyanins, plus other polyphenols reported being present in Rubus idaeus L, 

were not broken down by digestion

Table 1.4. Hierarchy of Trolox Antioxidant Activities of Polyphenols (Adapted

from Rice-Evans et al 1996)

Compound Family TEAC

(mM)

Epicatechin gallate Flavonol 4.9 ± 0.02
Epigallocatechin gallate Flavanol 4.8 ± 0.06
Quercetin Anthocyanidin 4.7 ±0.1
Delphinidin Anthocyanidin 4.44± 0.11
Cyanidin Flavonol 4.4 ±0.12
Epigallocatechin Anthocyanidin 3.8 ± 0.06
Keracyanin Flavanol 3.25± 0.1
Myricetin Hydroxybenzoate 3.1 ±0.30
Galleic acid Anthocyanidin 3.01±0.05
Ideain Flavonol 2.9 ±0.03
Morin Flavanol 2.55±0.02
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In further studies Mullen and collegues examined the antioxidant and vasodilatory 

activities o f raspberry polyphenol fractions. The major peak o f antioxidant activity 

was found in the sanguiin H-6 fraction. Calculations for the overall antioxidant 

activity showed, the vitamin C fraction reduced 1.6xl017 radicals/g fresh weight (fw), 

the ellagitannin fractions reduced 3 .2xl017 radicals/gfw and the anthocyanin fractions 

reduced 3.8x1017 radicals/gfw (Mullen et al 2002).

Vasodilatory assays were also under taken. The anthocyanins exhibited little activity, 

while the fractions that contained the lambertiannin C and sanguiin H-6 showed major 

activity. They were shown to be vasodilators in rabbit aorta (Mullen et al 2002).

Quercetin is the predominant polyphenol in the diet (DeVries et al 1998) and is found 

in fruits, vegetables, nuts seeds, flowers and bark. There is epidemiological evidence 

for a protective effect against CVD from foods providing 16 to 24mg/day o f quercetin 

(Knekt et al 1996). In addition to raspberries the main dietary sources o f quercetin are 

onion, lettuce, broccoli, cranberry, apple skins, other berries, olives, tea and red wine 

(Rice-Evans et al 1996). Quercetin and its metabolites have been reported in plasma 

and urine, and quercetin has been reported to have a long half-life o f 20-72hours in 

man (Warden et al 2001). Quercetin has been reported to exert a number of properties 

protective against cardiovascular disease, this fact combined with evidence that it is 

bioavailable in humans makes it an exciting polyphenol to investigate in relation to 

CVD. Although prospective randomised clinical trials are lacking several studies 

using animal models support these potential protective effects o f quercetin in 

cardiovascular disease (Middleton et al 2000). Quercetin exerts systemic and coronary 

vasodilator effects (Duarte et al 2001; Perez-Vizcaino et al 2002). When given orally 

it reduced blood pressure, cardiac hypertrophy, and vascular remodelling in 

spontaneously hypertensive rats and NO-deficient rats (Duarte et al 2001). It also 

exerts free-radical-scavenging effects (Robak et al 1988; Van Acker et al 1996). It 

inhibits low-density lipoprotein per oxidation, and reduces the progression o f 

atherosclerosis in vivo (Hayek et al 1997). Quercetin has a high Trolox Antioxidant 

Activity value (TEAC), which represents high antioxidant potential compared to the 

other polyphenols, Table 1.4 (Rice Evans et al 1996).
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When Itoigawa (1999) tested different flavonoids for positive inotropic effect on 

guinea pig papillary muscle. Quercetin showed the most potent intrinsic activity, and 

produced the strongest inotropic responses among the different flavonoids. The 

relative order for potency o f the tested flavonoids was quercetin> morin = 

kaempferol>cateolin = apigenin > fisectin = galangin (Itoigawa et al 1999).

The interactions between quercetin and NO yield a confusing picture. Concentrations 

o f quercetin present in the average diet are unlikely to have any effect in reducing NO 

availability. However quercetin has been reported to scavenge NO at very high non- 

physiological concentrations. At concentrations >100pM quercetin inhibits the 

activity o f the endothelial nitric oxide synthase (eNOS) and the neuronal and 

inducible isoforms o f NOS (Chiesi et al Schwaller 1995). In vivo, high doses of 

quercetin (above 200mg/kg/d for 10 days) increased the activity, but not the 

expression, o f vascular eNOS, whereas at low doses (5 and lOmg/kg/d for 5 weeks) 

no changes were observed in vascular eNOS, inducible NOS expression or total NOS 

activity (Duarte et al 2001). Quercetin directly scavenges O2 (Robak et al 1988). In 

SHR rats quercetin reduced the oxidative status, as indicated by lower concentrations 

o f markers of such oxidative stress such as plasma and hepatic malondialyde and 

urinary isoprostane-F2 (x (Duarte et al 2001). By reducing O2-  concentrations, 

quercetin might be expected to protect NO from 02_  driven inactivation. Quercetin 

improved the endothelial function in SHR rats (Duarte et al 2001), possibly by the 

enhancement o f NO bioavailability. At lower concentrations that would occur in vivo, 

quercetin is believed to increase NO bioavailability because o f its ability to scavenge 

02 " .
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2. Aims



2.0 AIMS

As discussed raspberries contain a range o f polyphenols that have antioxidant 

properties. A number o f these polyphenols have been identified in plasma and could 

contribute to the cardiovascular protective effects o f fruit and vegetables, although 

most studies utilised high concentrations o f polyphenols which would be difficult to 

achieve in the normal diet. The aim o f this study is to investigate whether the 

raspberry polyphenols and two purified quercetins improve endothelium function by 

decreasing superoxide levels, increasing nitric oxide bioavailability and decreasing 

platelet aggregation, at biological relevant concentrations.

The following plant polyphenols extracts were studied;

And

Crude Glen Ample raspberry extract (Rubus idaeus L.)

Rubus idaeus L. processed through an in vitro digestion procedure 

Quercetin-3 -glucoronide 

Quercetin-3 '-sulphate

Ascorbic acid as a positive control.
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3. MATERIALS AND METHODS

3.1 Materials
3.1.1 Test compounds- Plant extract polyphenols (PEP)

The four PEP investigated in this study were a crude raspberry extract (RE), the same 

raspberry extract after processing in an artificial gut system (GR) both supplied by D. 

Stewart and G. McDougall from the Scottish Crop Research Institute (SCRI- 

Invergowrie, Dundee), plus two purified polyphenols quercetin-3-glucuronide (QG) 

and quercetin-3'-sulphate (QS) supplied by A. Crozier at the division o f Biochemistry 

and Molecular Biology University o f Glasgow. The PEP were examined together with 

ascorbic acid (AA) (supplied by Sigma) as a positive control.

3.1.2 Preparation of crude Raspberry Extract- carried out by SCRI

The raspberries were homogenized in an equal volume o f acidified acetonitrite- this 

gives good extraction o f soluble phenolics without solubilising too much protein and 

cell wall polymers. The extract is precipitated with 50% then 75% ethanol to remove 

pectins, which would cause viscosity problems. This has the advantage that 

effectively all o f the vitamin C in the extracts is oxidised-therefore any effects seen is 

the result o f the polyphenols.

3.1.3 Preparation of Gut raspberry carried out by SCRI

Crude RE could be metabolised during digestion, therefore some potential active 

polyphenols could be destroyed while others could be formed during the digestive 

process. Therefore studies were undertaken using a RE, which had undergone in vitro 

digestion to determine whether digestion resulted in loss o f activity.

Dialysis tubing, containing the sample o f interest is placed in chemical solutions that 

mimic the chemical reactions o f the gastric and pancreatin digestion system, and 

maintained at physiological pH and temperatures. The dialysis bag restricts movement 

o f the particles to intra-pore diffusion only. In vitro gastric digestion is stimulated by
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pepsin. After gastric digestion is complete, pancreatin and bile salts plus sodium 

bicarbonate solutions are added to represent pancreatin digestion (as described in Gil- 

Izquierdo et al, 2002). Once the dialysis phase is complete, samples are ready for 

HPLC/MS (High Performance Liquid Chromatography/ Mass Spectrometry) analysis, 

which allows identification o f the polyphenols present in the extract.

Phenolic compounds were detected with a PDA (photo diode array) detector, which 

records wavelengths between 230 nm and 600 nm. In order to identify the unique 

compound(s) present in a particular sample MS/MS (or MS2) feature o f the HPLC/MS 

apparatus is used. The MS/MS breakdown pattern appears as a series o f peaks on the 

mass spectrum with decreasing mass/charge ratios. Analysis of data was performed 

using Qual Browser software.

3.1.4 Preperation of the quercetin compounds carried out by the Division of 

Biochemistry and Molecular Biology University of Glasgow

QG was purified from green beans (Phaseolus vulgaris). Raw beans were freeze dried 

and powdered. Extracts were then homogenized with 70% methanol and cooled on 

ice, and then filtered through filter paper. The fractions were then partially evaporated 

to remove methanol. The resultant aqueous phase was defatted by serial extraction 

with hexane. The aqueous layer was fractionated in two portions on a polyamide 

column; neutral flavonols were eluted with methanol/ ammonia. The purity o f the 

quercetin fraction was checked by HPLC/MS and was found to be greater than 97%.

QS was chemically synthesized. Quercetin (lg; 3mmol) and sulphamic acid (0.58g; 

6mmol) were heated in pyridine (5ml; 80°C; lh) with continuous stirring. After 

cooling the reaction medium was diluted with 5% potassium acetate (100ml; pH 7.2)
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and extracted with ethyl acetate. The precipitate from the ethyl acetate extract was 

isolated by filtration and purified on Sephadex G-10 using a gradient on methanol in 

waiter as solvents. The purity of the synthesis was checked by LCMS and was found 

to contain >97% quercetin-3'-sulphate.

3.1..5 Concentrations of test compounds

Thie stock solution o f the RE supplied by SCRI contained 1809pg/ml polyphenols. 

RE contained a mixture o f polyphenols therefore a molar concentration could not be 

calculated. For this reason the concentrations o f all the PEP have been expressed as 

pg/iml to allow for comparisons between PEP. The stock solution o f GR was 1785 

pg/m l dissolved in water.

The stock solution o f QG equalled 4808 pg/ml ( 1 0 mmol/l) and was dissolved in 

| DM SO, and QS 30482pg/ml (80mmol/l) was dissolved in DMSO.
I

AA was made up in Krebs to 1761pg/ml (10mmol/l).

I 3.1.6 Tissue preparation

!
In v itro  studies were carried out to measure O2 -  levels and nitric oxide (NO) 

bioavailability in vascular tissue. Female SHRSP were used for the majority o f the 

studies. Some experiments were undertaken in normotensive Wister Kyoto Rats 

(W KY) to allow for comparison between effects o f PEP in ‘normal tissue’ and tissue 

from animals exposed to high levels o f oxidative stress. The animals were obtained 

from colonies established in Glasgow by brother-sister mating.

The animals were sacrificed by an overdose o f  halothane. The abdominal and thoracic 

arteries were carefully removed for O2-  measurement. The carotid arteries were

I
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removed for NO bioavailability organ bath studies. The arteries were transported to 

the laboratory in Krebs solution.

3.1.7 Buffers

Krebs Solution

The Krebs buffer used through out this study had the following composition 

mmol/litre: Sodium Chloride (NaCl) 130, Potassium Chloride (KC1) 4.69, Sodium 

Hydrogen Carbonate (NaHCOs) 14.9, Potassium Dihydrogen Orthophosphate 

(KH2PO4 ) 1.18, Glucose 5.5, Magnesium Sulphate-7-hydrate (MgS04) 1.17, Calcium 

Chloride (CaCh) 1.6, Ethylenediamine Tetraacetic Acid (EDTA) 0.03 and 

indomethacin 0.02. Indomethacin inhibits any prostanoid-mediated effects.

3.1.8 Solutions for superoxide assays

Xanthine oxidase (X0)-0.09g/10ml in distilled water (lU/lOml), Bis-N- 

Methylacridinium Nitrate (Lucigenin) (5x l0_3M) 0.0030g/100ml in distilled water 

and xanthine (2xlO_8M) 0.0030g/l 00ml ethanol.

3.1.9 Chemicals

All chemicals were supplied by Fisher Chemicals, BDH AnalaR® or Sigma (Dorset, 

United Kingdom), unless otherwise stated in the text.

3.1.10 Plastic ware

All plastic ware (pipettes, eppendorf tubes, centrifuge tubes, etc.) were purchased 

from Gibco. Packard Bioscience Company supplied the polythene (PE) vials used for

O2-  measurement.
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3.2 Methods

3.2 Measurment of Superoxide
3.2.1 Xanthine/ Xanthine Oxidase Lucigenin chemiluminescences

Xanthine oxidase (XO) is capable o f generating O2 and H2O2 by reducing O2 , when 

supplied with its substrates xanthine or hypoxanthine (White et al 1996).

The effect o f PEP on Oi~ levels generated by xanthine/ XO was investigated by 

lucigenin chemiluminescence. Serial dilutions o f the stock PEP were prepared in 

Krebs. AA was examined at the following final concentrations- 9 to 0.0009 pg/ml. RE 

at 9 to 0.0009 pg/ml, GR at 9 to 0.0009 pg/ml, QG 2 to 0.0002 pg/ml and QS 3 to 

0.0003 pg/ml. The PEP were added to miniature 6ml polyethylene (PE) vials 

containing 2ml Krebs. XO 0.002U, lucigeninl 5pmol/l and xanthine 800nM were 

added to the PE vial and chemiluminescence read in a TRI-CARB 2100 TR liquid 

scintillation analyser (Packard Bio Sciences), set to count at 10-second intervals for 

three minutes. Counting was initiated immediately after introduction o f XO. The 

results obtained in the presence o f PEP were compared to standards in which no PEP

was present to determine if  PEP had reduced O2 -  levels. A blank containing only 

15pmol/l lucigenin was also included.

The blank was subtracted from all readings. The data obtained was expressed as a 

percentage o f 02~ inhibited in the presence o f PEP compared to the control, the 

calculation is shown below;

P E P -b lan k  X 100 A = ----------------
Control-blank

A = % O2-  detected in presence o f PEP 

100 -  A = % inhibition o f Oi~ by PEP
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3.2.2 Assessment of superoxide levels in the aorta of SHRSP

Lucigenin chemiluminescence was also used to investigate O2 levels in the 

abdominal and thoracic arteries o f SHRSP, in the presence and absence of PEP. The 

arteries from the SHRSP were cleaned and cut in to 4mm rings weighing 

approximately 0.01 g and placed into a PE vial containing 2ml Krebs. The weight of 

the tissue was recorded and the artery ring was incubated for one hour with PEP.

AA was made up to a final concentration o f 130 pg/ml (738|iimol/l), RE 90 pg/ml, GR 

90pg/ml, QG 240 pg/ml (500pmol/l) and QS 310 pg/ml (809pmol/l). The control 

consisted of 100 pi Krebs.

After the hour’s incubation, O2-  was quantified against a standard curve generated 

from xanthine and XO and 15pmol/l lucigenin. Combinations o f xanthine 100- 

lOOQnM and XO 0.002U generate O2-  and produce transient chemiluminescence 

signals dependent on xanthine concentration. The reduction o f oxygen by XO can 

occur by both univalent and divalent pathways. The percentage reduced to superoxide

depends on pH and other experimental conditions. The yield o f 02_ under our 

experimental conditions has been determined previously and is shown below in Table 

3.1.

Table 3.1 Yield of Super oxide for given quantities of xanthine and xanthine 

oxidase

0 2

Concentration

Krebs Xanthine Xanthine

Oxidase

Lucigenin

OnM 2ml Opl-OnM 20pl/0.002U 60pl

28nM 2ml lOpl-lOOnM 20pl/0.002U 60pl

56nM 2ml 20pl-200nM 20pl/0.002U 60pl

84nM 2ml 30pl-300nM 20pl/0.002U 60pl

112mM 2ml 40pl-400nM 20pl/0.002U 60pl
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These values were used to calibrate the chemiluminescent signal. Total luminescence 

was quantified by integration o f the areas under the curve generated. The calibration 

procedure was carried out before each experiment.

In our studies lucigenin (15pmol/l) was incubated with the tissue for 6 mins prior to 

counting. Results were expressed as nmol/mg wet weight/min.

Lucigenin itself has been reported to generate O2 -  at higher concentrations (Skatchov

et al 1999). This is more o f a problem in the presence o f high concentrations of

NAD(P)H and does not effect basal measurements 02~ in tissues to any significant 

effect (Berry et al 2000).

3.2.3 Potential quenching of chemiluminescence

It was necessary to insure that the plant compounds were having a genuine effect on 

O2 levels and not simply quenching the light because o f their deep colour and 

viscous make up. This was a particular concern for RE, which had very strong colour 

in its concentrated form.

Tritiated noradrenaline ([3H] NA) was added to 2mls o f sintillation fluid in a PE vial. 

The radioactive emission from [3H] NA is captured by the sintillation fluid (sintillent), 

which converts it into light that the liquid scintillation analyser records.

RE because o f its pigment could be absorbing light, which would result in lower 

counts. Alternatively the RE pigment if  it reacted with the lucigenin could produce 

pseudo counts; the result would be more counts. No change in counts per minute 

(CPM) would indicate that the RE was having no effect.
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3.2 Measurement of Nitric Oxide
3.2.4 Organ bath studies

The carotid arteries were cleaned o f connective tissue and cut into 2mm rings. Then 

the rings were mounted in an individual organ baths containing lOmls o f Krebs 

solution for the measurement o f isometric tension (the isometric tension studies were 

performed using a force transducer and recorded using a Mac Lab dedicated 

computer). The rings were suspended between two wire hooks attached to an 

isometric force transducer and were stretched to achieve approximately lg  o f resting 

tension (determined from previous work to produce optimal length-tension o f this 

tissue). The baths were maintained at 37°C and bubbled with 95% Oxygen and 5% 

Carbon dioxide during the experiment.

Equilibration o f 30 minutes was allowed before exposing the tissues to a test dose o f 

3jamol/l phenylephrine (PHE) (an a l  adrenergic receptor agonist) and to 3|umol/l 

carbachol (CARB) (a muscarinic agonist). After washing out thoroughly the tissues 

were contracted with 10mmol/l KCL twice with a 20 minute wash out in between. 

After the second constriction to KC1, another wash out was carried out and 

approximately 30 minutes was allowed for the tissues to return to resting tone before 

further studies were undertaken.

A cumulative does-response curve to PHE (O.Olpmol/l to 1 Opmol/1) was then 

constructed which allowed the vessels to reach a stable plateau, from this point 

relaxation to CARB (0.01pmol/l to 10pmol/l) was recorded. The tissues were then 

washed out thoroughly before the test compounds were added.

The PEP were added to give the following final concentrations; RE 90, 18, 1.8, 0.36 

and 0.036pg/ml, GR 1.8pg/ml, QG 50pg/ml (lOOpmol/l) and 10 pg/ml (21pmol/l) and 

QS 60 pg/ml (157 pmol/1), 12 pg/ml (31 pmol/l) and 3pg/ml ( 8  pmol/1). AA was 

studied at 18pg/ml (lOOpmol/l). In the WKY studies only RE was tested at the 

following concentrations; 18 and 1 .8 pg/ml.

The combined effect o f QG and QS was also investigated. The two compounds were 

added at concentrations, which had no effect on nitric oxide bioavailability when
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added alone. Two concentrations were studied; QG lOpg/ml with QS 3jig/ml and QG 

3 jig/ml (6.3|tmol/l) with QS 0.5pg/ml (lpmol/1).

Additional rings were incubated with vehicle, krebs buffer for RE, GR and AA. 

DMSO for QG and QS.

The artery rings were incubated with one o f the PEP for one hour. After the 

incubation period the concentration response curves to PHE (0.01pmol/l to 10pmol/l) 

and CARB (0.01pmol/I to 10pmol/l) were repeated. After wash out the vessels were 

incubated with 100pmol/l N°-Nitro-L-Arginine methyl ester (L-NAME) a nitric oxide 

synthtase inhibitor. After 20 min incubation a concentration response curve to PHE 

(0.01jimol/l to lOpmol/1) was again constructed.

The contractile responses to KC1 at the start of the experiment allowed standardisation 

o f the results obtained from the different rings in the different organ baths. The 

increase in tension caused by PHE in the presence of L-NAME compared to in the 

presence of the PEP provides a measure of basal NO bioavailability. NO 

bioavailability was calculated for each ring over the full PHE concentration-response 

curve and for each sample and was expressed as the area between the two curves 

(AUCgm/gm), shown in fig 3.1 page 61.Calculation shown below;

[PHE + L-NAME I  _  [  PHE+PEP |
« .  M “ I= X = AUCgm/gm

2
(Measurement of NO bioavailability)
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3.1- Diagram illustrating nitric oxide (NO) bioavailability measurement

JL-NAME 
PHE curveNO bioavailability 

(difference between the two PHE 
curves) = AUC gm/gm

of

PEP PHE 
curve

PHE curve CARB curve PHE curve
L-NAME present

PHE curve CARB curve
PEP present

3.2 Measurment of Platelet Aggregation
3.2.5 Platelet aggregation

25mls o f  blood from healthy human volunteers was collected to investigate the effect 

o f PEP on platelet aggregation. The antecubital blood was mixed with 3.15% o f 

sodium citrate to obtain a ratio o f 9:1 (blood: anti-coagulant).

The mixture was then centrifuged at 1000 rev/min (centrifuge-MSE MISTRAL 2L) 

for 18 minutes to obtain platelet rich plasma (PRP). The PRP was pipetted off and 

collected in an empty centrifuge tube. The reminder o f  the sediment was spun again at 

2000 rev/min for 10 minutes to obtain platelet poor plasma (PPP). The PPP was 

collected and the sediment from the final spin containing the red blood cells was 

discarded.

A 450pl aliquot o f PPP in a glass vial was placed in the aggregometer. The 

aggregometer (Chrono-Log corporation Aggregometer) was adjusted so that the PRP 

gave no light transmittance and PPP gave 100% light transmittance.

The PEP or vehicle (DMSO or Krebs) were added to 450pl aliquots o f PRP in glass 

vials. RE was tested at a final concentration o f  20 and lOOpg/ml, GR 20 and 

lOOjxg/ml, QG 260pg/ml (540pmol/L), QS 340pg/ml (890pmol/L) and AA 235pg/ml 

(1334pmol/L) and lOOpg/ml (556pmol/L).
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Adenosine Diphosphate (ADP) was the aggregating agent added to the samples at 

concentrations o f 0.3, 0.6, 1.2, 2.5, 5.0, 10, 20 mmol/1 to promote aggregation. The 

rate and degree to which dispersed platelets in a sample o f plasma form clumps 

(aggregate) after the addition o f ADP was examined. The aggregating o f platelets 

causes the sample to become colourless (less turbid). The aggregometer measures the 

change in turbidity and prints a graphic recording o f the results (paper tracer supplied 

by Servogor Belmont Instruments) as a percentage of platelet aggregation.

3.3 Statistical Analysis

3.3.1 In vitro scavenging of O2-  (generated by xanthine/ xanthine oxidase)

EC50 values o f PEP for scavenging O2-  were obtained using the Prism programme. 

ANOVA was used to test for over all differences between EC50 values for the 

different PEPs followed by paired t-tests with Bonferroni correction. P values < 0.05 

were regarded as significant. n=3-6 per group. Results are expressed mean ± S.E.M. 

(standard error o f the mean).

3.3.2 Scavenging of O2 generated in SHRSP aortic tissue

The O2 levels in arteries form SHRSP were analysed using paired t-tests comparing 

levels in the absence and presence o f PEP in vessels from each animal using Minitab. 

n=6-10 per group. Results are expressed mean ± S.E.M.

3.3.3 Nitric Oxide bioavailability

Unpaired t-tests using Minitab were carried out comparing NO bioavailability in the 

presence o f PEP and the appropriate vehicle with Bonferroni correction tests for 

multiple comparisons. A value o f P < 0.05 was regarded as significant. n= 6-10 per 

group results expressed mean ± S.E.M.

3.3.4 Platelet Aggregation

EC50 values for aggregation in the presence and absence o f PEP were calculated using 

the statistics package Prism. Paired t-tests were carried out to compare values in the 

absence + presence o f PEP in blood from the same individual. n= 7 per group all 

results expressed mean ± S.E.M.
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4.Results



4. RESULTS

4.1 Scavenging capacity of plant extract polyphenols (PEP) for super 

oxide

Polyphenols have been reported to exert free radical scavenging properties; they 

scavenge free radicals, including O2-  and hydrogen peroxide (Robak et al 1998; Van 

Acker et al 1996). Oxidative stress occurs when the production o f damaging ROS 

overwhelms the antioxidant defences (Halliwell et al 1989). Endothelial dysfunction 

tends, not to be due to disruptions in the production o f NO, but to increased 

inactivation o f NO by excessive production o f 02_ (Hamilton et al 1997; Boulomie et 

al 1997)

The aim o f these studies is to investigate the ability o f selected PEP to scavenge O2 .

The O2 scavenging ability o f a crude raspberry extract (RE) and a raspberry extract 

that had been processed through an artificial gut system (GR) were examined. Two 

purified polyphenols, quercitin-3'-sulphate (QS) and quercetin-3-glucuronide (QG) 

were also examined. Ascorbic acid (AA) acted as the positive control.

The scavenging capacity o f the PEP for O2-  was measured in two ways; firstly the 

ability o f the PEP to reduce O2 levels when C>2~ was generated in vitro by xanthine 

and xanthine oxidase (XO) was examined; secondly the ability o f the PEP to reduce 

the elevated levels o f O2-  in the aorta o f a hypertensive rat model was examined. O2 

levels were determined for both methods using lucigenin chemiluminescence.

The results were expressed in pg/ml. This was to allow for comparison between the 

PEP. For the raspberry extracts a pmol/1 concentration could not be calculated 

because they contained a mixture o f polyphenols.

4.1.2 Potential Quenching by plant extract polyphenols (PEP)

Before measurement of O2-  by lucigenin chemiluminescence could be carried out it 

had to be determined if  the PEP, because o f their strong pigmentation, could interfere
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with the lucigenin chemiluminescence. The pigment could quench the light, which 

would result in lower counts, or the PEP pigment could produce chemiluminesence 

giving artificially high results. To investigate these possibilities, counts per minute 

(CPM) from a standard amount o f tritiated noradrenaline ([3H] NA) were recorded in 

the presence and absence o f the raspberry extract (RE).

These studies were carried out in the presence o f 18pg/ml and 180pg/ml of RE. 

Tritiated noradrenaline ([3H] NA) +/- PEP was added to 2 mis o f scintillation fluid 

and CPM recorded, as described in methods 3.2.3.

Table 4.1 A Effect of raspberry  extract (RE) on counts per m inute (CPM) 

produced by [3 H] NA

n=3 per group. Results expressed as mean counts per minute (CPM) ± standard error 

o f the mean (S.E.M).

SAMPLES CPM  ± S.E.M

[JH] NA 276 ± 29

[3H] NA + 18pi/ml RE 213 ± 21

[3H] NA + 180pl/ml RE 239 ± 7

There was no significant difference in CPM between RE and control samples, Table

4.1 A.

It was concluded that RE pigment was not having a significant quenching effect on 

[ H] NA and was not having a generalised artifactual effect when using scintillation 

counting.

The potential quenching effect o f the PEP was analysed further comparing baseline 

counts per minute (CPM) in the presence o f PEP and 15pmol/l lucigenin with controls 

containing only 15pmol/l lucigenin. RE and GR were tested at the following 

concentrations 9, 0.9, 0.09pg/ml.
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Table 4.2B Effect of RE and GR on basal lucigenin counts

The effect o f RE and GR on basal lucigenin counts are expressed as mean counts per 

minute (CPM) ± SE.M . n= 4-7 per group. Paired t-tests were then carried out, 

comparing PEP with the control, P<0.05 was regarded as significant.

PEP PEP plus 
15 pmol/ml 
lucigenin 
(CPM)

Control 
15 pmol/ml 
lucigenin 
(CPM) n=4-7

P value

RE 9 pg/ml 16217 ±718 17368 ± 6 6 6 0.255

RE 0.9 pg/ml 16227 ±913 17368 ± 6 6 6 0.329

RE 0.09 jug/ml 17865 ±222 18628 ± 309 0 . 1 0 1

GR 9 pg/ml 18229 ± 579 17368 ± 6 6 6 0.342

GR 0.9 pg/ml 17297 ± 816 17368 ± 6 6 6 0.947

GR 0.09 pg/ml 19896 ±298 19571± 135 0.376

Paired t-tests showed no significant effect o f PEP on base line counts. Therefore the 

use o f lucigenin to measure the O2-  scavenging ability o f the PEP was continued.

4.1.3 Scavenging capacity of PEP on O2-  generated by xanthine/ xanthine 

oxidase

C>2- was generated by 800nM xanthine and 0.002U XO in the presence and absence o f 

PEP and measured by chemiluminescence using 15pmol/l lucigenin. The PEP were 

made up in a 1 : 1 0  serial dilution and tested at five different concentrations as 

described in the methods section 3.2.1.

All the PEP showed the ability to scavenge O2-  in a concentration dependent manner. 

At the highest concentrations tested all PEP showed near maximum inhibition o f O2 

( 1 0 0 % inhibition).

From the concentration response curves, RE, GR and QG appeared to be the most 

potent in inhibiting O2-  levels and AA showed the least potency, figure 4.1C page 6 8 .
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EC50 values for scavenging O2-  were calculated using the package prism and are 

shown in table 4.3D. QG and GR had the lowest EC50 values, indicating greater 

potency for scavenging O2-  (GR EC50 0.012pg/ml and QG EC50 0.012pg/ml). AA had 

the highest EC50 0.178pg/ml indicating least potency for scavenging O2 . It must be 

noted that the slope o f GR was shallower than QG, this could reflect the different 

compounds present in the GR compared to a pure compound such as QG. No 

significant differences were found between EC50 values for the different PEP and AA 

using ANOVA. However when unpaired t-tests were carried out with bonferoni 

correction three o f the PEP (QG, GR and RE) differed significantly from AA, 

P<0.005.

Table 4.3D; PEP EC50 values for scavenging O2-  generated by xanthine/ xanthine 

oxidase

Plant Extract EC 50

pg/ml

Number per 

group (n)

95%

Confidence

Interval

Quercetin

Glucuronide

0 . 0 1 2 4 0.006-0.022

Gut Raspberry 0 . 0 1 2 5 0.0055-0.024

Raspberry

extract

0.026 6 0.012-0.059

Quercetin

Sulphate

0.047 5 0.020-0.103

Ascorbic Acid 0.178 6 0.089-0.415
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Figure 4.1C Scavenging capacity of PEP of O2 generated by xanthine/ xanthine 

oxidase

Concentration response curves showing the ability o f the PEP to scavenge O2 , 

generated by 800nM xanthine and 0.002U xanthine oxidase.
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4.1.4 Effect of PEP on the elevated O2 levels in SHRSP aortic tissue

The SHRSP, is a well-characterised model o f hypertension and has a reduced NO 

bioavailability which is the result o f the scavenging o f NO by the elevated 

concentration o f vascular O2 (Kerr et al 1999).

Thoracic and abdominal 4mm artery rings o f SHRSP were used to assess the effect of 

PEP on 0 2 _ levels in vitro, using 15pmol/l lucigenin, as described in 3.2.2 of the 

methods section. The tissues were incubated with the PEP or vehicle for one hour 

prior to measuring O2 levels.

Vehicle and PEP treated rings were studied in parallel to allow for differences in O2 

levels in aortas from different animals. There was a slight tendency for all the PEP, 

with the exception o f GR, to reduce the elevated O2 levels compared to their controls 

after an hour’s incubation, fig 4.2E. However when paired t-tests were carried out no 

significant differences were observed p>0.05.
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Figure 4.2E Effect of the PEP on the elevated levels in SHRSP arteries.

Counts per minute (CPM) are measured and read against a standard curve to give O2 

levels in nmoles. Results are expressed as nmol/gram wet weight tissue/min ± S.E.M.
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4.1.5 Summary of the scavenging capacity of the PEP for O2

The results showed that all the PEP in this study incuding AA could scavenge O2 

generated from xanthine and XO in vitro.

However none o f the PEP were able to reduce the elevated levels o f O2 in the 

arteries o f SHRSP. This may suggest that PEP have the ability to scavenge 

extracellular O2 but not intracellular O2- , this could be due to poor lipid solubility o f 

the PEP.

i

i
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4.2 Plant extract polyphenols (PEP) effect on Nitric Oxide (NO)

bioavailability

Previous studies have reported that polyphenols can increase nitric oxide 

bioavailability in vivo (Andriambelson et al 1998, Fitzpatrick et al 1993) but often 

only at very high concentrations. Endothelial NO is essential for healthy endothelium 

function; it is responsible for vasorelaxation, inhibition o f platelet aggregation, 

leukocyte adhesion and smooth muscle cell proliferation and migration. A reduction 

in NO can result in endothelium dysfunction; therefore the ability to increase NO 

bioavailability might be anticipated to have cardiovascular protective effects.

Most studies have examined the ability o f PEP to enhance NO release in response to 

agonists such as acetylcholine and bradykinin. However the effect o f PEP on basal 

levels o f NO may have more physiological relevance. Measuring the effect of PEP on 

changes in isometric tension in vitro may give a closer approximation to this than 

i studying relaxation to acetylcholine.
i

!

| In this study the effects the PEP on basal NO bioavailability were assessed in organ

I bath experiments using 2mm carotid artery rings from SHRSP and Wistar-Kyoto rats

(WKY). Responses to phenylephrine were assessed in the presence and absence o f the 

NOS inhibitor L-NAME as detailed in 3.2.4 methods. The carotid arteries were 

incubated with the PEP for an hour before the phenylephrine curve was constructed.

The PEP investigated were two raspberry extracts, a crude extract (RE) and an extract 

that had been processed through an artificial gut system (GR), the two purified 

polyphenols quercitin-3’-sulphate (QS) and quercetin-3-glucuronide (QG) were 

studied and ascorbic acid acted as a positive control. In addition the combinational 

effects o f the two purified polyphenols were investigated.
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4.2.1 Effect of raspberry extract on NO bioavailability in SHRSP arteries in vitro

A series o f concentrations were examined for RE and a concentration response curve 

was obtained. Significant increases in NO bioavailability were seen from 90- 

0.36pg/ml RE compared with the control krebs buffer, fig 4.3F page 73. The active 

ingredients of RE are still not known, nor has the effect o f digestion on the extract 

been determined. Therefore experiments were repeated on a raspberry extract that had 

been processed through an artificial gut system (GR). Due to time constraints only 

one concentration o f GR was examined. The GR was examined at 1.8pg/ml, one o f 

the lower concentrations o f the RE to show a significant effect on NO bioavailability. 

GR was also found to significantly increase nitric oxide bioavailability, and appeared 

to be at least as potent as the original extract at the same concentration. This may 

indicate that the active ingredients o f RE are not lost during digestion. It is also 

possible that additional active compounds are formed during the digestive process.

AA at 18pg/ml (100pmol/l) also increased NO bioavailability significantly compared 

to the control. The effect was similar to that observed with RE at 18pg/ml but the 

study was not designed to compare AA and RE in detail.

4.2.2 Effect of QS and QG on NO bioavailability in SHRSP arteries in vitro

Both the two purified polyphenols QS and QG significantly increased NO 

bioavailability compared to their vehicle DMSO, unpaired t-tests p<0.05, fig 4.4G 

p74.

The effects were concentration dependent except in the case o f QS. At 60pg/ml QS 

showed no significant effect on increasing NO bioavailability, yet at 12pg/ml a 

significant increase in NO availability was observed.
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Figure 4.3F Effect of raspberry extract (RE) and a gut raspberry extract (GR) 

om Nitric Oxide bioavailability in the arteries from SHRSP

Basal NO availability was measured as the difference in contractile response to 

pihenylephrine in the presence and absence o f the NOS inhibitor L-NAME. NO 

b’ioavailability was expressed as the difference between the two curves AUC gm/gm.

T he results are expressed as mean ± S.E.M.

* Indicates a significant difference between the raspberry extracts and the control, 

uising unpaired t-tests with boneferroni correction tests for multiple comparisons using 

M initab. p< 0.05 was regarded as significant.



AU
C 

gm
/g

m

3

2 

1

_L
_L

J L

o
DM SO QG50pg/ml QG10|ig/ml QS60pg/ml QS12|ig/ml QS3pg/ml

Figure 4.4G Quercetin-3-gIucoronide (QG) and quercetin-3’-sulphate (QS) effect 

on Nitric Oxide bioavailability in the arteries from SHRSP

Basal NO availability was measured as the difference in contractile response to 

phenylephrine in the presence and absence o f the NOS inhibitor L-NAME. NO 

bioavailability was expressed as the difference between the two curves AUC gm/gm.

The results are expressed as mean ± S.E.M.

* Indicates a significant difference between the quercetin extracts and the control 

(DMSO), using unpaired t-tests with boneferroni correction tests for multiple 

comparisons using Minitab. p< 0.05 was regarded as significant.
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4.2.3 QG and QS combined effects on NO bioavailability in SHRSP in vitro 

studies

A greater effect on NO bioavailability was observed when the two quercetins were 

added to the organ baths together. The two quercetins were initially added in 

combination at concentrations which had previously been shown to have no effect on 

their own, QG 10pg/ml (21|iimol/L) and QS 3 jig/ml (8 jimol/L). A significant 

increase in NO bio availability was observed. The two quercetins were then added at a 

lower concentrations QG 0.3pg/ml ( 6  pmol/1) and QS 0.5pg/ml (lpmol/1) and a 

significant increase in NO bioavailability was again observed. If time had permitted 

still lower concentrations would have been tested to determine the lowest effective 

concentrations, fig 4.5H page76.

4.2.4 Effect of RE on NO bioavailability in WKY arteries in vitro

The effect o f the PEP on NO bioavailability in control Wistar-Kyoto rat arteries 

(WKY) was also investigated to determine if  PEP increased or improved NO 

bioavailability out-with the hypertensive animal model.

Only 18pg/ml and 1.8pg/ml RE were examined. No significant difference in NO 

bioavailability was found compared to the control Krebs buffer, at either 

concentration, fig 4.61 page 77.

It should be noted however under control conditions basal NO bioavilability was 

higher in arteries from WKY than SHRSP (2 vs. 1.6 respectively). This is consistent 

with previous work and is believed to be related to lower O2-  levels in WKY arteries 

(McIntyre et al 1997).
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Fig 4.5H Quercetin-3-glucoronide (QG) and quercetin-3’-sulphate (QS) 

combinational effect on Nitric Oxide bioavailability in the arteries from SHRSP

Basal NO availability was measured as the difference in contractile response to 

phenylephrine in the presence and absence o f the NOS inhibitor L-NAME. NO 

bioavailability was expressed as the difference between the two curves AUC gm/gm.

The results are expressed as mean ± S.E.M.

* Indicates a significant difference between the quercetin extracts and the control 

(DMSO) using unpaired t-tests with boneferroni correction tests for multiple 

comparisons using Minitab. p< 0.05 was regarded as significant.
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Fig 4.61 Crude Raspberry extracts (RE) effect on nitric oxide bioavailability in 

the carotid arteries from WKY

Basal NO availability was measured as the difference in contractile response to 

phenylephrine in the presence and absence o f NOS inhibitor L-NAME. NO 

bioavailability was expressed as the difference between the two curves AUC gm/gm.

The results are expressed as mean ± S.E.M.

There was no significant difference between the RE and the control treated WKY 

arteries.



4.2.5 Summary of PEP effect on NO bioavailability in vitro studies

All PEP treated vessels showed a significant increase in NO bioavailability compared 

to their vehicle treated in the carotid arteries of SHRSP.
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4.3 Plant extract polyphenols (PEP) effect on Platelet Aggregation 

(PA)

Inhibition of platelet aggregation by polyphenolic compounds has been proposed to 

contribute to a reduction in heart disease and stroke in people consuming high 

concentrations o f fruit and vegetables (Hertog et al 1996). However many studies 

suggest that the antiaggregatory effects o f flavonoids seen in vitro are due to 

concentrations that cannot be attained in vivo (Janssen et al 1998).

The aim of this study was to determine whether any o f the PEP, which had been 

shown to increase NO bioavailbility in SHRSP carotid arteries, were able to attenuate 

platelet aggregation.

25mls o f blood was collected from healthy volunteers. PA was stimulated by 0.3- 

20mmol/l Adenosine Diphosphate (ADP) and recorded by an aggregometer, in the 

presence o f PEP or its vehicle (DMSO or Krebs) as explained in 3.2.5 o f methods 

section.

4.3.1 Raspberry extracts effect PA

RE and GR were investigated at 20pg/ml and lOOpg/ml. Only the RE at lOOpg/ml 

showed a significant reduction in PA compared to the appropriate controls, fig 4.7J.

From the ADP dose response curves EC50 values were calculated for the raspberry 

extracts. RE at lOOpg/ml was the only PEP to show a significantly lower EC50 

indicating greater potency in inhibiting PA compared to its vehicle, table 4.4M page 

84.

79



Raspberry Extract effect on platelet aggregation
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Figure 4.7J Inhibition of platelet aggregation by crude raspberry extract (RE) 

and an extract after processing by an artificial gut system (GR).

Platelet Aggregation was stimulated by 0.3-20mmol/l ADP and recorded by an 

aggregometer, using platelet rich plasma from healthy human volunteers, in the 

presence o f raspberry extract or it’s vehicle (Krebs buffer).

Results were calculated using the prism package and are expressed as a mean ± 

S.E.M. n= 7 per group.
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4.3-2 Quercetins effect on PA

Initial studies showed that DMSO, the vehicle for QG and QS had a strong inhibitory 

effect on PA. The effects o f QG and QS on PA were therefore compared to those o f 

DMSO alone in each subject.

QG was examined at a concentration o f 260pg/ml (540pmol/l) and QS 340p,g/ml 

(89(0jixmol/l), the concentrations were chosen, as they were similar to the 

concentrations used by others (Wolfram et al 2002). From the ADP concentration 

response curves (fig 4.8K) the EC50 values for QS and QG and their control DMSO 

were calculated, Table 4.4M page 84. Paired t-tests showed the difference between 

the quercetins EC50 value and their control DMSO was not significant P>0.05. As no 

effect o f either QG or QS was observed and the concentrations were already much 

higher than could be achieved in vivo, no further experiments were carried out, fig 

4.8K page 82.

4.3.3 Ascorbic Acids effect on PA

The effect AA on PA was examined at the following concentrations; 235pg/ml 

(1334pmol/l) and 98pg/ml (556pmol/l). At neither concentration was an inhibitory 

PA effect observed, fig 4.9L page 83. From the ADP concentration response curves 

the EC50 values were calculated and AA compared to the control. No significant 

difference was observed, paired t-test P>0.05, table 4.4.M. Both concentrations o f AA 

used were too high to have any relevance for in vivo studies; therefore further 

experiments at higher concentrations o f AA were not carried out.
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Quecetin-3-Glucoronide effect on platelet aggregation
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Fig 4.8K Inhibition of Platelet Aggregation by quercetin-3-glucoronide (QG) and 

quercetin-3'-sulphate (QS)

Platelet Aggregation was stimulated by 0.3-20mmol/l ADP and recorded by an 

aggregometer, using platelet rich plasma from healthy human volunteers, in the 

presence o f quercetin or it’s vehicle (DMSO).

Results were calculated using the prism package and are expressed as a mean ± 

S.E.M. n= 7 per group. No significant difference was found between the EC50 values 

o f  the two quercetins and their vehicle when paired t-tests were carried out. P>0.05.
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Ascorbic acids effect on platelet aggregation
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Fig 4.9L Inhibition of Platelet Aggregation by Ascorbic Acid (AA)

Platelet Aggregation was stimulated by 0.3-20mmol/l ADP and recorded by an 

aggregometer, using platelet rich plasma from healthy human volunteers, in the 

presence o f ascorbic acid or it’s vehicle (krebs buffer).

Results were calculated using the prism package and are expressed as a mean ± 

S.E.M. n= 7 per group.

No significant difference was found between EC50 of AA and it’s vehicle when paired 

t-tests were carried out, P>0.05.
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Table 4.4M Inhibition of Platelet Aggregation (PA) by plant extract polyphenols 

(PEP)

PA was stimulated by 0.3-20mmol/l Adenosine Diphosphate (ADP) and recorded by 

an aggregometer, using 25mls o f blood collected from healthy human volunteers, in 

the presence o f PEP or its vehicle (DMSO or Krebs). Results are shown for the 

highest concentration o f PEP examined.

The ADP concentration response curves were constructed using the prism package, 

and E C 5 0  values o f the PEP and their respective vehicle calculated. Paired t-tests were 

carried out to test for significance, P<0.05 was regarded as significant.

PEP Number 

per group

(n)

E C 50

PEP

pg/ml

E C 50

Vehicle

pg/ml

P

value

Ascorbic

Acid

(AA)

7 0.023 0.498 0.155

Raspberry

Extract

(RE)

7 1.617 7.512 0 . 0 0 1

Quercetin

Sulphate

(QS)

7 0.898 2.19 0.137

Gut

Rasberry

(GR)

7 1.18 0.98 0.59

Quercetin

Glucuronide

(QG)

7 1.047 0.657 0.701

RE (atlOOpg/ml) was the only PEP at to show a significant reduction than its vehicle 

on platelet aggregation.
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4.3.4 Summary of the effect of the plant extract polyphenols on platelet 

aggregation

Blood was taken from healthy volunteers. As a result o f time constraints, it was not 

possible to obtain ethical permission for taking blood from hypertensive patients, and 

not enough blood could be obtained from SHRSP for the PA experiment to work.

RE at a concentration o f 100pg/ml was the only PEP tested to show a significant 

reduction in platelet aggregation compared to it’s control krebs buffer, in platelet rich 

plasma from healthy human volunteers. However for RE the concentration required to 

inhibit PA was very high and unlikely to be achieved in vivo.
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5. Discussion

A ll the PEP tested in this study scavenged O2 when it was generated in vitro by 

xanthine/xanthine oxidase (XO). The order o f potency for the PEP determined by the 

E C 50 values is as follows; (the lowest EC50 indicating greatest potency) quecertin-3- 

glucoronide EC50 = 0.012pg/ml, gut raspberry 0.12pg/ml, crude raspberry extract 

0).026pg/ml, quercetin-3'-sulphate 0.047pg/ml and ascorbic acid 0.178pg/ml. When 

ANOVA was carried out comparing all groups no significant differences were found. 

However when PEP were compared to AA using unpaired t-tests with bomferoni 

correction, QG, RE and GR had significantly lower EC50 values (P<0.05) but the EC50 

QS did not differ to that o f AA.

In contrast to the studies with xanthine/ XO no effect was observed with any o f the 

P EP on scavenging elevated O2-  levels ex vivo from SHRSP arteries. As most o f the 

O 2 in SHRSP is generated intra-cellularly, these results may suggest that these PEP 

only  scavenge extra-cellular O2 , this could be due to poor lipid solubility o f the PEP.

0>n a weight basis the PEP in this study appeared to be more potent at scavenging 

extra-cellular O2-  than AA. This is consistent with previous studies, where the 

antioxidant capacities, measured as oxygen radical absorbance, o f some flavonoids 

including quercetin have been reported to be several times stronger on a molar basis 

than  AA (Cao et al 1997, Wang et al 1997). Quercetin has a very high trolox 

equivalent antioxidant activity (TEAX) value (4.7mM) compared to other 

polyphenols (Rice-Evans et al 1996), which would be consistent with the high EC50 

value o f purified QG. Alternatively quercetin has been reported to be a strong 

inlhibitor o f xanthine oxidase (IC5o=7.23pmol) (Chang et al 1993); this could explain 

wlhy it is a potent inhibitor o f C>2_ when it is generated by xanthine oxidase but not in 

vascular tissue from SHRSP. In SHRSP C>2~  is generated predominantly from 

NAD(P)H oxidase and eNOS thus inhibition o f XO would have very little effect on 

O2  production in the arteries from SHRSP. Quercetin binds to the reactive site of 

xainthine oxidase, which prevents the production o f O2- , the 3-hydroxyl group on 

bemzopyranane from quercetin results in reduction o f the binding affinity (Lin et al 

20i02).
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All PEP where able to increase NO bioavailability ex vivo in SHRSP. On a weight 

basis RE appeared the most potent. QG appeared to be the least potent; however the 

studies were not designed to make direct comparisons between the groups. The 

observation that QG appeared the least potent compared to the other PEP in the NO 

bioavailability studies is the opposite finding to the O2-  studies, in which QG was 

found to be one o f the more potent scavengers o f C>2_ generated by xanthine oxidase. 

The different ranking o f potency (of the PEP) between the two studies would be 

consistent with other mechanisms in addition to O2-  scavenging contributing to NO 

production.

QS unlike the other PEP did not show a concentration dependent response in 

increasing NO bioavailability. This could occur due to type two errors due to small 

sample size. However this finding is consistent with previous studies, where at 

concentrations >100pM quercetin has been reported to scavenge NO production, 

through the ability to inhibit the endothelial nitric oxide synthase and the neuronal and 

inducible forms o f NOS (Chiesi et al 1995). However at lower concentrations of 

quercetin (<100pM) no effects were observed on either vascular eNOS or inducible 

NOS expression or total NOS activity (Duarte et al 2001), and quercetins ability to 

scavenge O2 was believed to have an NO sparring effect.

QG and QS have been reported in plasma and urine in man at concentrations of 

around 7-10pM (Grafe et al 2001), and have reported to have a long half-life-20-72 

hours (Walle et al 2001). When both QG and QS were combined, increases in NO 

bioavailability were observed which were not seen when QG and QS were added 

alone. The concentration o f the two quercetins when combined which showed the 

ability to increase NO bioavailability was getting close to concentrations that had 

been reported to be found in plasma. If  time had permitted further experiments would 

have been carried out using even lower concentrations. In previous studies reporting 

vasodilator effects o f polyphenols the concentrations used were frequently so high 

that they could never be achieved in vivo. In one study reporting vasodilatory effects 

3.5g/l thearubigins, 0.6 g/1 flavanols and 0.4g/l catechins were used (Negishi et al 

2004), while in the study o f Leikets et al (2002), 100-600pg/ml red wine polyphenol 

were used. In our study QG 3pg/ml ( 6  pM) and QS 0.5pg/ml (1 pM) caused a
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significant increase in NO bioavilabilty which would suggest that vasodilatory effects 

may be achieved at concentrations that could be attained in vivo.

GR increased NO bioavailability to a similar extent, as RE, at 1.8jig/ml suggesting 

that the digestive process does not destroy the active vasodilatory raspberry 

components. However it is still not known if  the gut would absorb the active 

components. Mullen et al (2002) reported lambertianin C and sanguiin H - 6  were the 

two main raspberry polyphenols to show the major vasodilatory activity in rabbit 

aortas. It is interesting to compare these two structures with the two quercetins, which 

are present in raspberries but were found to have minimal vasodilatory effect in 

comparison with lambertianin C and sanguiin H - 6  fig 5.0 page 90. The major peak of 

antioxidant activity was found in the sanguiin H - 6  fraction (Mullen et al 2002), 

making this polyphenol an interesting compound for further cardiovascular studies.

Assuming that biologically significant concentration o f polyphenols can be achieved 

in the diet an additional consideration is their stability. Freezing + thawing have been 

shown to have no effect on the antioxidant capacity o f polyphenols whereas levels of 

AA antioxidant activity decline under the same conditions (Mullen et al 2002).
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Figure 5.0; S tructures of Quercetin-3-glucoronide, Q uercetin-3'-suIphate, 
Sanguiin H-6 and lam bertianin C

From  the structure, Sanguiin  H-6 and Lam ertianin C are a lot larger com pared w ith 
the quercetins. They both contain  m any hydroxyl groups, w hich previous research has 
reported to have im portant im plications in the therapeutic properties that polyphenols 
possess, particularly  in scavenging free radicals. This m ay explain why Lam bertianin 
C and sanguiin H-6 in R E have been found to be m ore poten t vasodilators than 
quercetin. The fact that quercetin-3-glucoronide show ed m ore effect in scavenging 
O2 w hen it was generated by xanthine oxidase than the RE, could be due to the fact 
that it is a sm aller m olecule and has greater affinity, therefore able to block the 
reactive binding site o f  the xanthine oxidase enzyme.

Q  t i e r c e l  i  n - 3  f - s  u l p h a t  c

Lambertianin C

Sam uiin H-6
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In the platelet aggregation (PA) experiments only RE had any effect. This appears to 

be in contrast to the studies on NO bioavailability. Only healthy volunteers could be 

investigated in this study. Time constraints did not permit ethical approval being 

obtained for studies in patients, therefore PA effects were not examined in patients 

with high oxidative status in whom the effects o f PEP on PA might have been greater. 

In the NO bioavailability studies increases NO bioavailability in the presence of RE 

was only observed in the SHRSP, not the WKY controls. The same could hold true 

for the PA experiments it is possible that PEP only show thereupeutic effects when 

the oxidative status is raised.

Different polyphenol components in the RE could be responsible for the inhibitory PA 

effects than the ones that increase NO bioavailability. GR did not show any effect in 

inhibiting platelet aggregation; this suggests that the compounds in RE that inhibit PA 

could be broken down by digestion. It has been reported that polyphenols compounds 

ability to inhibit PA is not exclusively related to their ability to increase NO 

bioavailability. Results obtained by incubation o f human platelets or animal cells with 

isolated flavonoids suggest that flavonoids inhibit PA by inhibition o f cycooxygenase 

activity (Laughton et al 1991). Other studies have suggested that flavonoids may have 

an effect on the concentrations o f plasma coagulation or fibrinolysis factors such as 

fibrinogen, factor VII, and plasminogen (Beretz et al 1978). It would be interesting to 

investigate purified sanguiin H-6 on PA, as this compound may only be responsible 

for the vasodilatory effects seen with RE and have no effect on reducing PA.

In the quercetin PA studies the results were consistent with other findings that at 

lower concentrations (<2500pmol/l), quercetin showed no anti-aggregatory effects 

(Janssen et al 1998).

To conclude these studies confirm that the PEP examined can scavenge O2-  and 

increase nitric oxide bioavailability. In addition RE showed a reduction in PA. The 

benificaial effects o f PEP on NO bioavailability and PA could not be related directly 

to their efficacy as O2-  scavengers.
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QS and QG have the potential to offer cardioprotecitive effects. Both showed the 

ability to scavenge O2-  and increase NO bioavailability at low concentrations, 

especially when combined. The RE also showed CVD therapeutic potential, but 

whether the active ingredients in the RE and GR are absorbed still needs to be 

determined.

Future work is planned in SHRSP, to determine if  dietary PEP are able to scavenge 

O2-  and increase NO bioavailability in vivo. Studies feeding onion extracts and 

raspberry extracts are currently underway. Further work both in vitro and in vivo 

using purified polyphenols such as lambertiannin C and sanguiin H-6, plus other 

purified polyphenols with reported cardio-protective effects, would aid a greater 

understanding into which chemical structures o f polyphenols have clinically sought 

after cardiovascular protective properties.
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