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Frontispiece: Scanning electron micrograph of a clay sample. This

shows a cross-section of the sample, which is composed of platy

particles, most of which are cut through by the cross-section, so they 

appear as lightly-coloured long thin objects. There are voids between 

the particles, which are dark. The micrograph has been mapped into 

groups of subparallel particles called domains and coloured as follow:

blue, sub-horizontal; yellow, down-left; red, sub-vertical; green,

down-right; purple, random cluster. In preparation for microscopy, the 

voids were impregnated with resin. The back-scatted mode of electron 

microscopy was used. The picture width is 20 microns. Same area as 

Fig. 3.la.
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ABSTRACT

Texture, as a visual perception, can be easily seen by eye and 

often described without much difficulty. However, textural recognition 

and measurement by machine is a very different issue and has only 

recently been developed. In this thesis, a whole set of new algorithms 

have been developed to analyse textured images with particular 

reference to the requirements of soil microstructural applications. 

The new technology of parallel processing is used to implement and 

improve the complicated computations.

In this research, the techniques of Image Transformation, Image 

Segmentation, and Mathematical Morphology are used to carry out 

textural analyses of individual and groups of particles, and 

measurements taken over whole images. Rather than basing calculations 

directly on particle-by-particle calculations, as in most existing 

methods, these new approaches base the calculations on pixel-by-pixel 

calculations and analyse the vector given by the intensity gradient at 

each pixel.

Chapter 1 gives an introduction to the research.

Chapter 2 is a literature review of textural analysis.

In Chapter 3, two new textural segmentations, Top-Contouring and 

Consistency Ratio Mapping, are developed. These can be used to map 

areas in which most of the particles lie in the same direction and 

also random clusters, so as to analyse the texture of groups of 

particles. The application of these segmentations to other types of 

images such as aerial photographs was also successful.



Chapter 4 presents a new Orientation Analysis method, for the 

analysis of the global orientation distribution of micrographs based 

on directional data statistics. This method is compared with the Hough 

transform method, the Directed Vein method, and a Convex Hull method. 

These methods all produce polar histograms of the global orientation 

distribution which are in good agreement, and indicate the most 

popular directions of distribution similarly. A novel porosity 

analysis shows the relationship between the local porosity and local 

orientation characteristics in the image.

A Non-linear Greyscale Morphology algorithm has been developed 

and is discussed in Chapter 5. This new method can be applied directly 

to original grey level images rather than to the derived 

black-and-white images, thereby avoiding the deformation of features 

caused by binary conversion. The final result of successive cycles of 

erosion gives the skeletons of the particles. Further, these skeletons 

can be used to analyse the orientation, separation, and contact 

characteristics of individual particles in the image.

In order to accelerate the calculations of textural analysis, the 

latest computing development, parallel processing, was employed in the 

research. A review of parallel processing includes: level of

parallelism; architectures and communications of parallel systems; 

parallel operating systems; and parallel languages, Chapter 6. The new 

algorithms were developed and implemented on parallel systems, 

Chapter 7. This involved setting up three multi-transputer systems, 

choosing a suitable parallel structure for the textural analysis, and 

developing the software for both the algorithms themselves and the 

harness required in the parallel systems.

Chapter 8 is a conclusion of the whole research and suggests some 

future work.
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Chapter 1 Introduction 1

CHAPTER 1 INTRODUCTION

1.1 PROJECT RATIONALE

1.1.1 Soil Microstructure and Microscopy

Interest in extending soil mechanics study from macro-experiments 

to micro-structural analysis has recently become more important, since 

engineers have noticed that the mechanical characteristics of soils 

are anisotropic, and that microstructural changes affect the mode of 

soil consolidation and deformation. For example, when shearing 

consolidated clay, the particles may move around in groups. This 

movement will ultimately cause failure. However, how the particles 

move and how the failure actually occurs are still not well

understood; and many engineers are very interested in learning more

about these phenomena. Almost all that scientists know is that the 

characteristics of the movement will determine the place, the speed, 

and other aspects of the development of failure planes and the 

preceding deformation. Typical reviews are given by Smart and Tovey 

(1981), Bennett et al (1991), and O’Brien and Slatt (1990).

The Frontispiece shows a scanning electron micrograph of clay 

soil which is typical of those analysed by the author. The soil

consists of small plate-like particles with voids between them. These 

voids were filled with resin, which hardened. Then the sample was 

sectioned and carefully ground flat. In the scanning electron
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microscope, the particles are bright and the voids are dark. The

colour was added subsequently as explained in Chapter 3.

Over the last decades, the means available to study the

microstructure of soil have been improved. Optical microscopes, 

transmission electron microscopes, and scanning electron microscopes 

have all been applied to the analysis, thereby to see the details of 

soil microstructure. The results are useful in explaining the 

permeability, compressibility, strength and failure of the soil. Prior 

attempts were summarised by Smart and Tovey (1982). However, this 

field was only at its beginning and needed to be improved. By the time

of starting the author’s research, electron microscopy had been used

for the analysis, and the backscattered electron technique had been 

recommended as a basic way to produce micrographs.

1.1.2 Quantitative Analysis

For over 20 years, it had been necessary to use hand mapping and 

hand measurement on large scale electron micrographs to analyse the 

microstructure of clay soil. It takes a very long time and needs a 

skilled researcher to do this tedious and repetitive work. For 

example, an A4 print took about half a day of hand mapping and another 

half a day of hand measurement to analyse the orientation 

distribution; and even then much detailed information was left 

unmeasured. Therefore, improvement of quantitative analysis became 

unavoidable, and this required the introduction and application of 

computer and image analysis techniques to do the work automatically. 

The previous work done in this field included individual feature or 

domain measurement, overall orientation analysis, and void ratio 

studies. The intensity gradient concept and Consistency Ratio theorem
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of the previous work have been adopted in the author's research.

Unitt (1975) was the first to use a microcomputer to analyse 

scanning electron micrographs of clay. He introduced the intensity 

gradient method to reveal the directional information of each pixel 

and analyse the anisotropy of the whole picture. A vector image 

calculated by an improved intensity gradient method (Smart and Tovey, 

1980) became the basis for the algorithms developed in the author’s 

research. The Consistency Ratio theorem, which had previously only 

been used in conjunction with hand mapping, has also taken an 

important place in the author’s research, particularly with regard to 

Consistency Ratio Mapping and the associated algorithms.

1.2 ALGORITHM DEVELOPMENT

1.2.1 Introduction t~0 Textural Analysis Theories

Image textures can be evaluated qualitatively as having one or 

more of the properties of fineness, coarseness, smoothness, 

granulation, randomness, lineation, or being mottled, irregular, or 

hummocky. Considering features in an image as particles or voids in a 

scanning electron micrograph of soil, these textural properties of an 

image given above can be used to describe the arrangement, the packing 

characteristics and the size of both particles and voids in 

micrographs, i.e. they describe the soil microstructure. So, the 

techniques of textural analysis could be employed to improve the 

quantitative study of soil microstructure.

In this thesis, the author reviewed the previous textural 

analysis algorithms and tried to import some suitable approaches for
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the purpose of studying soil microstructure. The methods of textural 

analysis which have been introduced into this research include 

textural segmentation, filter smoothing, directional data statistics, 

the Hough transform, and the application of mathematical morphology. 

These are discussed in more detail in the next section.

1.2.2 Improvement of Textural Analysis

The previous work on textural analysis is summarized in Chapter 2 

which covers textural segmentation, textural feature detection, and 

textural measurement. All these methods are based on the calculations 

of original grey level images; but what will be described later in 

this thesis are based on the calculations of a vector image, i.e. the 

intensity gradient at each pixel of the original image. So the new 

work brings the analysis to a vectorial calculation of textural 

segmentation, textural feature detection, and textural measurement.

Textural segmentation became the first stage of the research, 

because clay particles normally pack together parallelly and move in 

groups when deformation and shearing occurs. Two textural 

segmentations have been developed in Chapter 3 in order to analyse the 

behaviour of groups of particles. These two segmentations successfully 

map domains in which most particles lie in the same direction, and 

random clusters. After segmentation in this way, future measurement 

can include ’external’ properties such as the sizes of the domain, and 

’internal’ properties such as the void ratio within individual 

domains. These measurements can then be related to different 

mechanical properties of the soil.

The second stage in the development of textural analysis improves
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the measurement of the orientation characteristics of the whole image, 

so as to reveal information for a whole set of images and make 

comparisons between different soil samples. This new method shows the 

details of the anisotropic arrangement of particles in the image more 

clearly than the original intensity gradient method (Unitt 1976), and 

it draws attention on those directions in which many particles lie 

closely parallel (Chapter 4).

The third stage in the author’s textural analysis development 

introduced a new algorithm of greyscale mathematical morphology, which 

avoids the deformation of features caused by binary conversion and

produces the skeletons of particles or voids so as to analyse the

further individual particle or void microstructure (Chapter 5). This 

providetl the preparation for further work such as particle size 

arrangement, separation, contact, and orientation, much of which can 

be done using standard methods such as the Hough transform.

1.3 PARALLEL PROCESSING OF NEW ALGORITHM

For normal sequential computation, a new algorithm can be 

programmed directly. However, the limitation of the processor’s speed 

and the associated memory prompted scientists to try parallel 

computing. For example, in the author’ present research, a huge amount

of information has to be analysed. Three soil mechanical experiments

were being made, and 40 samples were obtained from each experiment 

.with 25 images for each sample. A total number of 3000 images needed 

analysis. The size of each image is 0.25 Megabyte. Thus 3000 x 0.25 MB 

together with other information, makes about 1000 MB of original data 

which needs very complex computation. Therefore, parallel processing 

was introduced into the research to improve the performance of the new



Chapter 1 Introduction 6

algorithms. Once the parallel system had been established, it was

found straight forward to develop new algorithms into their parallel
uform when there is no reconfiguration required.

Generally speaking, parallel processing tries to split either the 

computing tasks or the data onto different processors so as to perform 

calculations simultaneously. To do this there are three factors which 

need to be considered, namely parallelism, hardware, and software. 

Therefore, the purpose of the calculation and size of the data 

determine the method of splitting (mode of parallelism); and in turn, 

the mode of parallelism determines the method of the hardware linking. 

On the other hand, the present hardware set up also restricts the 

parallelism. Once the hardware is settled, the software has to follow 

the linking of the hardware, see Fig. 1.1.

algorithm

parallelism

softwarehardware

Fig. 1.1 Parallelism of hardware and software must be 
designed in parallel.

The software structure in the author’s research was developed for 

the fullest possible use of the hardware facility and for the quickest 

possible developing and calculating of the new algorithms.

Before discussing these new developments, the next Chapter gives 

a review of textural analysis.



PART ONE IMAGE ANALYSIS
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CHAPTER 2 REVIEW OF TEXTURAL ANALYSIS

2.1 INTRODUCTION

Definition: Texture is the net sum of those features which are 

too small to be worth analysing individually.

Kaizer (1955) first tried to use a computer to quantify the 

visual perception —  texture of an image. Textural analysis became a 

serious subject of study in the late 1960s and early 1970s. Although 

there is no formal definition of texture in existence, textural 

analysis has been applied to many types of images such as medical 

images, aerial and satellite photographs, geological thin sections, 

and the scanning electron micrographs which were studied in this work.

The main objects of textural analysis are:

1) to discriminate between fields or features which are believed 

to be different;

2) to map features which differ from their surroundings;

3) to measure some property of the texture itself in the belief 

that this measurement can be interpreted directly.

Texture features are ubiquitously and obviously seen in the image 

and can be qualitatively evaluated as: fineness and coarseness; 

regularity and randomness; smoothness and roughness; granulation and 

mottle; density and separation; uniformity; frequency; orientation and
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anisotropy; linearity; and so on. Referring to Levine (1985), a 

collection of artificial texture features are shown in Fig. 2.1.

Images are sometimes rectified and pre-processed before being 

analysed. The account given below assumes that any necessary 

rectification and pre-processing have been completed, and q, will in 

general refer to the intensity of the resultant image. The 

possibilities include:

1. Differentiation: i.e. q, = mod grad I or z = grad I.

2. Edge detection.

3. Skeletonisation.

4. Erosion to a point.

2.2 METHODS

Features which differ from their surroundings can be mapped using 

either cluster analysis or segmentation, as described below. A number 

of investigators have contented themselves with dividing the image 

into small tiles, but since large filters can be more accurate, this 

new method is also included in the review.

2.2.1 Clustering

Cluster analysis builds up features by placing into the same 

class pixels or small groups of pixels which appear to be similar. To 

give a simple example following Cook and Sandys-Renton (1991), we can 

map highly variable regions by the following procedure:

1. Divide the image into tiles of size 8 x 8  pixels.

2. Let % be a suitable function of I within each tile.
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3. Rank the tiles in descending order of

4. Assuming for the sake of argument that the top 10 % of tiles 

in this ranking do belong to the same population, place these 

into a trial class H’ , and test the next highest tile to see

whether it belongs to the population defined by H’; if so, add

this tile to H’, and repeat this process.

5. When the next highest tile does not belong to H* , accept the

latest version of H’ as H, i.e. the class of highly variable

tiles.

2.2.2 Segmentation

Segmentation cuts features out of an image by removing from 

consideration all pixels or small groups of pixels which fail to

satisfy some criterion. In the example given above, all tiles with 

less than an arbitrary value # are rejected and the remainder

accepted as H.

2.2.3 Fourier Methods

Fourier transforms are ideal for analysing regular structures: 

the transform is a crystalline array of spots, from which the dominant

orientations and wavelengths can be extracted. However: natural

textured images are often irregular; and the spots broaden and merge 

to form a fuzzy and indecipherable mess. Perhaps the distribution of 

density within the transform could be analysed to provide useful 

results; but we have not seen a satisfactory study along these lines. 

Meanwhile, the best chances of success when using Fourier transforms 

appears to be to divide the image into small tiles of size 8 x 8 ,  16 x 

16, or 32 x 32 pixels. (See Haralick, 1986.)
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2.2.4 Statistics

The first-order probability distribution (or histogram) of the 

grey level within an image is a concise and simple summary of the 

information contained in the image. Suppose that %, can take any 

number between {0,1,...,maxgrey} and the probability density function 

or first-order histogram is then we have:

m
mean: p = V V F(q ) (2.1)k k

V 1

m
variance: <r2 = £ (2.2)

q =i rk

1 m  3skewness: p^ = — - £ (Vk-n)3F(y ) (2.3)
cr q  = i

1 mkurtosis: p = — - £ (q -p)4f(q ) - 3 (2.4)4 4 k k(T % =1 rk

2
p and <r provide an indication of how uniform or regular a region is; 

skewness is a measure of how much the outliers in the histogram favour 

one side or another; kurtosis measures the effect of the outliers on 

the peak of the distribution, i.e. the degree of ’peakyness’ (Levine 

1985).

Second order statistics compare #(x) and #(x+h), where x is the 

position of a pixel, h is the separation between a pair of pixels know 

as the lag, and ^(x) is the value of ^ at x. x and h are vectors.
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Haralick (1986) states that the co-occurrence F(a,h) of gray 

tones a and b for an image I is defined as the number of pairs of 

resolution cells (pixels) having grey levels a and b, respectively, 

and which are in a fixed spatial relationship, such as a fixed 

distance apart or a fixed distance and a fixed angle. Here: F(a,b) is 

the number of times and f(a,b) is the probability that q,(x)=a and 

q,(x+h)=b; and the Co-occurrence matrix is symmetrical. In this 

definition:

m m
E E f(a,b) = 1 (2.5).
a=0 b=0

Fourteen second order statistics have been worked out by Haralick et 

al (1973) to analyse the textural characteristics of an image.

Third order statistics, based on comparisons between three 

pixels, #(x), ^(x+h), and #(x+h*), have also been used (see Levine, 

1985).

2.2.5 Structural Method

The structural approach is normally used to analyse regularly 

textured images with well-defined primitives and pattern. Segmentation 

of texture primitives usually involves a prior selection of shape. The 

most obvious choice is an edge element; a second possible shape is a 

spot, which can be detected by using the characteristics of 

centre-surround receptive field. The latest method of edge detection 

in a binary image uses the Hough transform. Then these texture 

elements could be clustered into groups according to the shape 

attributes such as compactness, eccentricity, and orientation. The
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approach is illustrated in Fig. 2.2 (Jacobus and Chein, 1981).

2.2.6 Large filter methods

The definition of large is elastic when applied to a filter, 

typically 20 pixels radius, containing about 1300 pixels. A uniform 

filter is one in which each pixel within the filter carries the same 

weight, so that, as the filter moves from one pixel to the next during 

its traverse of a line in the image, the trailing edge of the filter 

may be dropped and a new leading edge added. Thus, for 20 pixels 

radius, only 82 pixels around the perimeter are involved, a reduction 

of more than 90%. Uniform filters may be used when the algorithms are 

additive.

In the author’s code, the shape of the filter is defined by the 

half chord lengths, e.g. RHS(P), where P is the distance of the chord 

from the centre of the filter. Circular filters are used to minimise 

spurious orientation effects. The filter radius is specified in 

pixels, but 0.4 is added because this was found to improve the 

circularity of ’circles’ up to 7 pixels radius. For a nominal radius 

of 1, the eight nearest neighbours are used; and for a nominal radius 

of 0, the four nearest neighbours are used. In the Fortran versions, 

the two sides of the filter are defined separately:

LHS(-P) = RHS(P) (2.6),

so that shapes such as inclined ellipses or angular segments could be 

used if necessary. Square, rectangular, and straight-line filters are 

also possible.
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For moving from line to line, the top edge is dropped and a new 

bottom edge is added. The top and bottom of the filter are defined by 

TOP(U) and BOT(l/), respectively, where U is the distance of the chord 

from the centre. A separate set of registers is maintained for the 

first pixel in each line, and it is these which are updated; then 

their contents are copied to the registers for the filter which 

traverses the line.

Three schemes are possible to avoid unnecessary tests within the 

double loop needed to process the whole image,

a) In the first version of the author’s code: the image array

exactly equaled its nominal size; and the first filter on each 

line was set up without its leading edge. Then the operations 

within the loop were: add leading edge; calculate; drop

trailing edge. A similar procedure was used for the ’ leading

column’ filter. This method is difficult to code and to 

maintain.

b) In the present code: the image array is extended by one line 

and by one column; (the extra pixels are set to zero for 

definiteness); and the first filter on each line is set up 

naturally. Then the operations within the loop are: calculate; 

drop trailing edge; add leading edge. At the last pixel in 

each line, the unnecessary leading edge is added, because this 

takes less time than would repeated testing to see whether the 

end has been reached. This is the simplest method to code.

c) If the image array cannot be extended, then the loop could be 

shortened by one pixel, and the calculations for the last
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pixel could be made outside the loop. This seems to demand the 

use of the INCLUDE extension of FORTRAN for the repeated 

portions of code; but this would perhaps make the development 

of new algorithms easier.

When using large filters, it is important to avoid leaving large 

unprocessed borders; in the author’s code, the edge swapping and edge 

filling technique have been used. The image (512x512 size) is divided 

into four tiles of 256x256 size, Each quarter of the image is 

processed on one transputer with working space 512*512 and 128 pixels

wide border on each side. Swapping was used to process the inside

borders, and reflecting was used to process the outside borders 

(details see Chapter 7, Smart and Leng 1990 and Smart et al. 1991).

It was difficult to fix the radius of the filter, because there 

was no predetermined optimum size for it. The only rule found was: to

smooth away features of a given size, use a filter of a slightly

larger size (Grant et al. , 1990). The final choice of radius for the

filter is discussed in Chapter 3.

2.3 ANALYSIS OF VARIANCE

2.3.1 Introduction

The region which is analysed may be: a series of images; an

individual image; a series of similar features within one or more 

images; or an individual feature. Therefore, during the analysis, some 

statistical tests should be made along the lines sketched below.
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2.3.2 Mosaics

If a series of images forms a mosaic of several series of 

features, and if the intensity, within each series of features is 

believed to have constant mean and variance throughout that series, 

then there is a danger that unsuspected interactions may have crept 

into the data. The experimental design is exactly that for which the 

classical analysis of variance was designed; and it is best to start 

by defining the statistical model of the data (e.g. see Snedecor, 

1957). Obtaining the correct statistical model is even more important 

when using the variants described below.

2.3.3 Surface Roughness

In mechanical engineering, surface roughness is assessed as follow:

1. Select a number of sampling lengths.

2. Along each sampling length, measure the height above a 

suitable datum of the surface at equally spaced points.

3. Using least squares, fit a mean line through the data for each 

sampling length.

4. Hence find the profile departure, taken as the difference 

between the measured height and the corresponding height of 

the mean line.

Then, the root-mean-square deviation of the profile is given by:

(2.7),

where n is the number of sampling points (BS 6741: 1987). The standard



Chapter 2 Review of Textural Analysis 17

deviation of is now less than that for the corresponding mosaic.

2.3.4 Soil Surfaces

For an irregular surface such as that of soil, the profile 

departure, y, is better calculated from a moving average height, which 

is itself calculated as the average within a large filter (Grant et 

al. , 1990). The standard deviation of y. is now even less than that

calculated by the previous method.

2.3.5 Roads

The texture of roads is often measured by the sand patch method 

(BS 598: Part 105: 1990). This method is equivalent to: assuming that 

the original nominal surface was a ruled surface; measuring the 

profile departure, y, from this original; and calculating the mean 

value of y. As long as the original surface can be located, this 

method measures the amount of erosion of the surface; it could also be 

used to measure the amount of corrosion of a surface provided no 

complications arise. The standard deviation of y is now greater than 

that for the corresponding mosaic.

2.4 VARIOGRAMS

2.4.1 Semi-variance

A variogram is a method of representing the spatial dependence in 

an image by considering the variability between pixels as a function 

of their separation. The variability is given by the semi-variance, 

g(h), defined by:
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g(h) = 1/2 E{[/£(x ) - #(x+h)]2} (2.8),

E denotes ’expected value of’.

Webster and Oliver (1990) calculated the semi-variance from:

. 1-p m-q
g(+p,+g) = E E ~ yd + P ’J+q)]2 (2.9a),

i=l j=1

. 1-p m-q
g(+p,-g) = E E j; - %.(i+p, j-q)]2 f2.9b;,

i=l j=l

g(-p,+g) = g(+p,-g) (2.9c),

g(-p,-g) = g(+p,+g) (2.9d),

l ish&re . m tc f h t  p i c tu r e  $ i ze  ano( 

where normally:

n = (l-p)(m-q) (2.10),

except that any pairs missed from the calculation must be discounted, 

so it is safer to count n = n+1 within the loop of the calculation. 

When calculating over a range of values of h, The author usually 

calculates only within a border of h /2 using pixels at:max

il = i - p/2; i2 = il + p; etc. (2.11).

The turning point of the Semi-variance graph can also be used to 

determine the filter size for smoothing in Top-Contouring and 

Consistency Ratio mapping, (see next Chapter, Fig. 3.8).
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2.4.2 Covariance

Provided the mean, p, is constant throughout the region, 

covariance exists and is defined by:

c(h) = E{fo(x) - fi]fo(x+h) - fi]}

= E[^(x) ^(x+h)] - E #(x) p - E /£(x+h) p + p2

This may be rewritten as:

c(h)= E[/j(x) /jp(x+h)] - p p - p p + p2.

Therefore:

c(h) = E[#(x) op(x+h)] - p2

Putting h = 0:

c(0) = E{[^(x)]2} - p 2

But: g(h) = 1/2 E[#(x)2 - 2 y(x) #(x+h) + #(x+h)2]

= E{[^(x )]2> - Efe(x) <*(x+h)].

Thus: g(h) = c(0) - c(h)

then the

(2 . 12),

(2.13).

(2.14),

(2.15),

i.e. the covariance, if it exists, is the mirror image of the 

semi-variance (Webster and Oliver 1990).
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2.4.3 Autocorrelation Coefficient

If both the mean, p., and the standard deviation, cr, are constant 

throughout the region, then the autocorrelation coefficient exists and 

is defined by:

r(h) = c(h) / c(0) (2.16).

But now: c(0) = E{[/̂ (x)]2} - p 2 = or 2 (2.17).

Thus: r(h) = c(h) / cr2 (2.18),

and: g(h) = <r2 {1 - r(h)> (2.19).

2.4.4 Fractal Dimension

An alternative approach, which is based on fractals, uses the

graph of log <r vs. log mod h, where cr is the standard deviation of: y y

y = y(x) - y(x+h) (2.20).

If this graph is a straight line: then the image is said to be

self-similar at all scales; the fractal dimension, D, is given by:

D = 2 + G (2.21),

where G is the gradient of the graph; and the self-similarity factor, 

H, is given by:

H = 1 - G (2.22).

In practice, the graph is likely to be slightly curved. (Jardine and
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Whitworth, 1991). Mandelbrot (1983) is a treasure house of further 

ideas.

2.5 DEPTH OF TEXTURE

The thought behind using the variance of seems to be that it 

measures the depth of the texture. However, in mechanical engineering, 

the arithmetical mean deviation of the profile, which is given by:

R = T mod y / n (2.23),a

is more popular than R (Section 2.3.3). Alternatively, theq
differences in height between adjacent peaks and valleys may be 

measured and then averaged; or the histogram of // may be used to 

characterise the surface. (BS 6741: 1987).

2.6 CONTRAST

If it is accepted that a black-and-white image is the most 

contrasty possible, then when q, > maxgrey/2, (# - maxgrey/2) should be 

high; and when y, < maxgrey/2, (maxgrey/2 - %) should be high. On this

basis, contrast is measured by:

C = 4 zVV in m2} - 4 Y.% / {n m} + 1 (2.24),

where n is the number of pixels in the summations, and m is maxgrey. 

However, this is effectively using variance as a measure of contrast, 

and some investigators may prefer to use:

C2 = / (  Ev4 / n ) (2.25),
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where y is the profile departure from the mean value of Note that 

C is based on q, lying in its theoretical range of (0, maxgrey), 

whereas C depends on the actual range of Thus, a third approach is 

to use:

contrast, but this appears to be twice the semi-variance (see 

Section 2.4.1, the notation is in Section 2.2.4).

2.7 ACUTANCE

In photography, the sharpness of an edge is measured by its 

acutance, A, which is calculated from a traverse from bottom to top of 

the edge using:

where the traverse is divided into equal intervals, Sx, (Thomas,

1973). The value of A depends on where the traverse begins and ends.

In mechanical engineering, the sharpness of edges is assessed from

either the root mean square slope of the profile:

<?3 = range (̂ ) (2.26).

Haralick (1986) calls:

C = E E fa - b)Zf(a,b)4 (2.27)

A = E t5# / ]2 / [n range(>*)] (2.28),

(2. 29),
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or the arithmetical mean slope of the profile:

8 = Y. mod (5# / 8x) / n (2.30),

taken over several sampling lengths (BS 6741: 1987). The

two-dimensional form of 5 is:q

5 = /  { E [(5*/ 8x )2+ (5* / Sx )2] / n > (2.31),Q V 1 2

where x and x are image coordinates. An alternative is to use:

8 = T mod grad # / n (2.32),q

where the sum is taken over edge pixels only.

2.8 SKEWNESS

The skewness of the profile, which gives a measure of its shape, is:

Sk =  J ( Z^3 / n ) / R^3 (2.33),

where y, is the profile departure from the mean value of

A more detailed analysis follows from plotting the profile 

bearing length ratio, t , vs. where:
p

t = 1 / 1 (2.34),
p P

where 1 is the length cut off at height u. (BS 6741: 1987). Thisp
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method extends easily to distinguishing between concave and convex

surfaces: if y, is measured from the deepest part of the profile, then

£(u/y )dt is less than 0.5 for well-behaved concave surfaces.' *max p

2.9 GRANULARITY

Here, granularity is taken to mean the size of the texture- 

forming features. In photography, the term is used for the standard 

deviation of densiometer measurements, (Thomas 1973).

If the image can be reduced to black-and-white, and if the small 

texture-forming features are separable, then the mean of their areas, 

i.e. (total area) / count, can be taken as a measure of granularity. 

If they are not separable, then it may be possible to use the mean 

chord sizes instead; there will be separate sets of measurements for 

black and white areas. If the chord sizes are anisotropic, then it is 

preferable to measure them from separate scans at, say, 10 degree 

intervals.

If the Fourier transform shows a dominant size, this may be taken 

as a measure of granularity.

The nugget variance may also be usable as a measure of fine-scale 

granularity; but this idea has not been tested in this work. Mottles, 

i.e. coarse-grained granularity, are shown by the appearance of two 

ranges in the correlogram (Thomas, 1973).

The root mean square wavelength of the profile is defined by:

L = 2 n R / Sq q q (2. 35),
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and is said to give a measure of spacing of local peaks and local 

valleys which takes into account their relative amplitudes and 

individual spatial frequencies. Presumably, the average wavelength of 

the profile:

where <r is the standard deviation of the intensity within a large 

filter, and a is the area of the filter; then, k is constant for an 

unmottled image (Thomas, 1973). For a circular filter, this may be

tested either by the straightness of the graph of log <r vs. log d,

where d is the diameter of the filter, or by calculation.

Mottles are also shown from the graph of log <p{v) vs. log u,

where v is the spatial frequency, and <p(v) is the Wiener spectrum:

L 2 n R / 5 (2.36),a a a

does the same. (BS 6741: 1987).

According to Selwyn’s Law, if:

k <r a (2.37),

t) cos 2nvt dt (2.38).

The graph is horizontal for plain images and slopes downwards for 

mottled ones. (Thomas, 1973.)
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2.10 SEPARATION AND DENSITY

If the image can be reduced to black-and-white, and if the small 

texture-forming features are separable, then their separations can be 

analysed either directly or from the chord size distribution, or from 

a graph of count vs. dilation.

Three slightly different concepts are: the spacing of the profile 

irregularities, S , i.e. the distance between two successive whitem
edges in a black-and-white image; the spacing of local peaks, i.e. the 

distance between two successive peaks in a traverse of a grey image; 

and the corresponding spacing of local troughs (BS 6741: 1987).

Remember that the last two of these are rather susceptible to the type 

of noise to which digitised images are prone.

The profile peak density is defined as 1/S (BS 6741: 1987); somem
analysts would perform a grey scale skeletonisation before measuring 

it. More importantly, erosion to a point leads directly to the value 

of density, which may be the best discriminator for patches of texture 

of anomalous size.

2.11 REGULARITY

Crystalline regularity is usually best sought by Fourier 

transforms. Other types of regularity may be evident from 

periodicities in the semi-variogram, steps in the graph of count vs. 

dilation, etc. Local analyses within small tiles, large filters, or 

pre-mapped areas, are advisable.
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2.12 ENERGY

Energy is defined by:

Z Z f(a,h) 2 (2.39),

(Haralick, 1986).

2.13 ENTROPY

Entropy is defined by:

Z Z f(a,b) log f(a,b)
e

(2.40),

(see Haralick, 1986). However, to avoid log^ 0, a small constant value 

is added, for example:

where n = Z Z F(a,b). Entropy was introduced to measure information; 

but it also increases with noise (Shannon and Weaver, 1949).

2.14 POROSITY

If the image can be reduced to black-and-white, and if the small 

texture-forming features are then separable, then their local porosity 

can be found using a large filter.

If the small texture-forming features are not separable, then 

their local porosity, P, can be found for each pixel from:

Z Z { f(a,b) log [(1 + F(a,b)] / n }e (2.41),



Chapter 2 Review of Textural Analysis 28

P = (I - !)/(! - I )
S S V

(2.42),

where I and I are values attributed to pure solids and pure voids,
S V

respectively. If necessary, a gamma correction should be performed 

before making this analysis.

A porosity calculation in conjunction with the vector analysis 

has been carried out in this work (see Chapter 4).

2.15 LENGTH AND AREA

For a linear traverse, the developed profile length is:

(c.f. BS 6741: 1987); and a corresponding formula could be found for 

the slope area of a two-dimensional surface. These measures could be 

used directly in their own right. Alternatively, they could be 

calculated as functions of scale. One method would be to define q, in 

terms of lag. Another method would be to first calculate the area for 

the original image; then reduce the number of pixels by amalgamating 

blocks of 2 x 2  pixels and recalculating; and then repeat the 

reduction process. The results would provide another route to 

fractals.

2.16 ORIENTATION

(2.43),

Anisotropy and preferred orientation of the image is often shown 

when measurements are taken along linear traverses in different 

directions, the principal exception being the fractal dimension (see
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Section 2.4.4); these methods are taken as self-evident here.

Some types of images, such as the scanning electron micrographs 

analysed here, are composed mainly of small texture-forming features 

which are themselves elongated. These small linear features may occur 

singly, or they may form either sub-parallel groups, called domains, 

or random clusters (Chapter 3). If the small linear features have 

two-fold symmetry, then their directions are said to be non-directed, 

and their orientations are modular to base rr; on the other hand, 

linear features such as arrows have definite directions.

2.16.1 Angular Cluster Analysis

In some images, the small texture forming features are rounded, 

mainly distributed randomly, but sometimes occurring in rows; examples 

are: clumps of rushes in a field, the rows following imperfect drains; 

sand grains along partings in geological materials; spots along the 

flanks of fishes. In such cases, it may be possible to find the rows 

by angular cluster analysis, where the angles concerned are the 

orientations of pairs of features. This presupposes that each feature 

can be reduced to a point, either by erosion, or by using its 

centroid. Presumably, some limit on separation will be imposed.

2.16.2 Morphology Method

An alternative approach to the rows of features discussed above 

would be to seek them using successive dilation and erosion with 

angular segment filters; features within rows in the direction of the 

filter would join during dilation and then resist erosion.
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Successive dilation and erosion using a linear filter could be 

used to explore the directional properties of an image containing

elongated features. The facility for this has long been available on 

image analysers such as the Quantimet and Leitz-TAS. A new morphology 

approach based on greyscale image is expressed in Chapter 5.

2.16.3 Hough Transform

The directional properties of an image containing elongated 

features can be analysed by Hough transform of their edges (Costa et 

al 1991a, 1991b); both polar histograms of orientation and

segmentation on the basis of local preferred orientation are possible 

(see Chapter 4). It would probably be better to use skeletons in 

preference to edges (Chapter 5). The Hough transform could also be 

used to improve the grey-scale skeletonization. This suggestion has

been described in more detail in Chapter 5.

2.16.4 Intensity Gradient Methods

The intensity gradient at each pixel of the image is calculated

by:

U = grad I (2.44a)

U = mod grad I (2.44b)

A = arg grad I (2.44c)

A whole series of methods based on the intensity gradient, have 

been developed in the author’s work to analyse images with orientated 

features. These methods include: Top-Contouring and Consistency Ratio 

to map domains with local preferred orientation and random areas 

(Chapter 3); and the mean Vector Method to reveal the orientation
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information over the whole image (Chapter 4).

2.17 SUMMARY

Textural analysis is a very difficult and complicated subject in 

image processing. Up to now, there has been no agreement on the 

definition of texture, even though it is obviously seen in the image. 

However, it seems impossible to make a machine recognize all the 

textures which are very easy for the human eye to recognize. So far, 

there are many methods which have been developed as described above. 

In order to analyse the scanning electron micrographs of clay, in 

which hundreds of different sized long thin particles point in all 

directions, a special series of textural methods have been developed 

in the author’s work to analyse the microstructure of groups of 

particles, whole pictures, special areas, and individual particles.
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Fig. 2.1 Perceptual texture dimension. (Levine 1985)
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CHAPTER 3 TEXTURAL SEGMENTATION

3.1 INTRODUCTION

Clays are composed of micron and submicron-size particles which 

pack together either loosely or densely. There are several types of 

such particles; laths, tubes and, most commonly, ’ thin plates’, some 

of which have been described as 'slippery pennies’. The stable 

configuration for a pair of clay plates is face-to-face rather than 

edge-to-face, corner-to-edge, etc. There is, therefore, a strong 

tendency for the clay plates to be arranged in face-to-face groups 

(domains) with local preferred orientation (Fig. 3.1a).

In order to segment these domains and random areas, in addition 

to the methods described in the last Chapter, two new methods of image 

segmentation, Top-Contouring and Consistency Ratio Mapping, have been 

developed at Glasgow University. These have been used in the 

University of East Anglia to analyse two major experiments, and in 

turn they have been made available in the Semper Image Analysis System 

as standard Routines. Consistency Ratio Mapping is also being used by 

another research student in Glasgow to analyse a whole set of samples. 

The discussion of these two new segmentations is given in this 

Chapter. Because the main information on which the segmentations are 

based is the direction of the particles, the intensity gradient of 

each pixel in the image rather than the intensity itself has been 

employed as the fundamental element for developing these two new
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segmentat ions.

3.2 INTENSITY GRADIENT

Unitt (1975) introduced the intensity gradient method to reveal 

some directional information on digitised scanning electron 

micrographs. In this method, a vector is calculated to indicate the 

greatest rate of change of intensity (i.e. of grey level) at each 

pixel in the image. For the case of a square raster, the intensity 

gradient vector U at point 0 was calculated from the four closest 

neighbour pixels, Fig. 3.2, viz.

U = grad(J)

U = mod (U) = y  X2 + Y2

A = arg (U) = arctan (Y/X)

where:

X = 1/2 (Il - 13)

Y = 1/2 (12 - /4)

where: Ii = intensity or grey level of the pixel at l,

X,Y = intensity differences in the x,y direction, respectively. 

U = strength of intensity gradient,

A = angle of intensity gradient vector.

To improve the accuracy, Unitt (1976) used the one-dimensional 

Taylor expansion and the ’9C’ mask (Fig. 3.2 at 1, . . . 4,9,...12). Later 

Smart (1981) suggested a more circular mask, using 17 pixels (Fig. 3.2 

at 1, . . . 12,21,...24). Smart and Tovey (1988) introduced the 

two-dimensional Taylor expansion to find the coefficients for

(3. 1)

(3.2)

(3.3)

(3.4a)

(3.4b)



* For each of the 20 points in the mask, an equation connecting the 
first 14 differential coefficients was written using the Taylor 
expansion; then a least-squares solution was used to find the 
differential coefficients in term of the intensities I(i,j) at the 20 
points (together with ID if needed).
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different sizes of masks and different degrees of freedom within the 

24 points shown in Fig. 3.2. Of the possibilities, the most circular 

’20’ mask (Fig. 3.2 at 1....20) and the most accurate ’20-14-formula’, 

have been used in the present research. The coefficient matrices for 

calculating the differentiation in the x-direction, dx^, anc* 

y-direction, dy^, are:

.0 .013 .0 -.013 .0

.077 -.207 .0 .207 -.077
-.070 -.280 .0 .280 .070
.077 -.207 .0 .207 -.077
.0 .013 .0 -.013 .0

. 0 . 077 - 070 .077 .0

.013 -.207 - 280 -.207 .013

.0 .0 0 .0 .0
-.013 .207 280 .207 -.013
.0 -.077 070 -.077 .0

(3.5)

(4.6)

Then the strength of the two-dimensional intensity gradient can 

be calculated as:

X = £ dx^I (i, j) (3.7a)

Y = I dy^Ki.j) (3.7b)

= /U = / X2+ Y2 (3.7c)

Id, j) are intensity at i,j position within mask. The angle of 

gradient vector equals:

A = arctan
£ dy^Ki.j)
Z dx. .1 (i, j) 1 J

(3.8)
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In practice, if U is zero, A is indeterminate, and if U is very 

small, Eqn. (3.8) is inaccurate; thus A is labelled ’undecided’; if U 

is below some threshold value, see next section.

3.3 TOP-CONTOURING MAPPING

3.3.1 Introduction

Top-Contouring is a new textural segmentation which maps areas 

with local preferred orientation and random areas.

The process of segmentation is:

1) calculating the intensity gradient of each pixel in the image, 

(Fig. 3.1b);

2) encoding the angle of the gradient vector into groups, 

(Fig. 3.1c);

3) smoothing the encoded angles by using a large circular filter, 

to get the local preferred orientation, (Fig. 3.Id);

4) mapping the pixels with the same preferred orientation into 

domains, (Fig. 3.le).

The flowchart of the segmentation is given in Fig. 3.3.

Before encoding and smoothing, there are five parameters which 

need to be considered:

NOD: number of directions to which the particles in the analysed 

picture will be grouped;

RAD: the radius of the filter;

LOA: the lowest value of U for which A has decided direction.
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LOT: the lowest acceptable number of pixels which lie within the 

filter and for which A has been decided, (if LOT is not 

attained, Top-Contouring Mapping labels the pixel as 

undecided);

EXC: the excess of the maximum number of pixels in a direction 

over the mean number of pixels per direction within the 

filter, which must be exceeded unless the pixel is to be 

labelled ’random’ (here the direction with the maximum 

strength will be taken as the preferred local orientation);

3.3.2 Encoding the Intensity Gradient

The intensity gradient calculation of each pixel in the image has 

been described in Section 3.2. In the present L0i4 has been set as 2. 

Because A is calculated from Eqn. 3.8, if U=0, both dx and dy are 

zero, Eqn. 3.7 is indeterminate; and if both X and Y are small, the 

result may be dominated by errors in the digitization. To exclude 

these cases, A is labelled ’undecided’ when U is small, so the angle 

of the vector may be calculated as:

If U * LOA

then a = 0

If U > LOA 

then

If |y| > |x|

then a = n/2 - arctan[|x| / |y|]

(which gives an angle of 0 —  —^-)4
If |y| ^ |x|

then a = arctan[|y| / |x|]

(which gives an angle of ——  —  —

(3.9a)

(3.9b)

)
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This produces a between 0 and tt/2, The reason for using this method is 

for safety during division. Later the signs of y and x are used to 

ascribe a to its proper quadrant.

In the analysis, because the two opposite directions belong to 

the same domain, the angle a and a+n will have the same code, 

therefore just the angles from 0 to tt need to be considered.

If x — 0 AND y i 0

then A - a (3.10a)

If x < 0 AND y £ 0

then A = n - a (3.10b)

If x < 0 AND y < 0

then A - a (3.10c)

If x ^ 0 AND y < 0

then A = n - a (3.lOd)

In the author’s early tests and often for display, the number of 

encoding directions NOD has been chosen as 4 (shown in Fig. 3.4b). 

Therefore:
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Domain code Direction Angle A ranges

0 undecided;

1 horizontal 0— 1/8tt, 7/8tt— 9/8tt, 15/871— 2tt;

2 downleft 1/871— 3/871, 9/8tt—  11/8tt;

3 vertical 3/8tt— 5/8tt, ll/87T— 13/87r;

4 downright 5/8ti— 7/8tt, 13/871— 15/8tt.

5 random

On the other hand, the group in the University of East Anglia, for

whom this method was developed, are using 8 or 12 encoding directions.

Next, the angles are encoded into 2NOD directions within n (see

Fig. 3.4a). The equation used here is:

cod = 1 + {INT TRUNC [ A * 2 N0D ]} (3.11)

Then cod needs to be turned n/(ZNOD) in the clockwise direction and 

then halved to match the NOD directions code as shown in Fig. 3.4b:

If cod ^ 2NOD cod = 1

At last COD = 1 + [ cod /2 ] (3.12)

When the pixel has an undecided direction, COD = 0. The encoded image 

of Fig. 3. la is shown in Fig. 3. lc, blue: sub-horizontal; yellow:

down-left; red: sub-vertical; green: down-right; black: undecided.
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3.3.3 Smoothing the Encoded Image

A large uniform circular filter is used in the smoothing process. 

A radius of 20 pixels has been chosen to analyse most of the images in 

this research. This section discusses the smoothing technique, 

preliminary details of the large filter method were given in Section 

2.2.6. The next Section will give the details of choosing this best 

radius for smoothing.

Around each pixel, within the area defined by the filter, the 

smoothing process counts the number of pixels lying in each direction 

then finds the maximum value. It then carries out a test to see 

whether this is sufficiently high for the pixel to be labeled as 

having preferred orientation in that direction. Otherwise, this pixel 

will be labeled as random. Here the author will discuss the amount by 

which the strength of preferred orientation has to be exceeded over 

the average of the orientation distribution. First, several parameters 

could be defined as:

MAX: number of pixels lying in the most frequent direction within 

the filter;

MEAN: average number of pixels lying in each direction;

MIN: number of pixels lying in the least frequent direction in 

the filter;

TOT: total number of pixels which lie within the filter and have 

decided directions;

LOX: the limit which MAX must exceed unless the pixel is to be 

labelled ’random’.

According to the definition stated above:
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and:

MAX = MEAN + EXC TOT

MIN = MEAN -

MAX ~ MIN = 2

100 NOD

EXC TOT
100 NOD

, EXC TOT

(3.13a)

(3.13b)

100 NOD (3.13c)

MAX - MIN 
TOT

EXC * 2
100 NOD (3.13d)

Several filter models were considered to test the EXC parameter 

in this research. The first calculation was shown in SERC transputer 

report (Smart & Leng 1991), which was based on a function:

f(A,B) = A + B (cos 20) (3.14)

as the distribution radius, therefore:

when 0 =  0 
n/2 

n

3n/2

2n

20 = 0 cos20 =

7t

2ir

3n

4tt

f = A + B 

A - B 

A + B 

A - B 

A + B

So
■ I

,71
TOT = I f d0 

o

r*= (A + B (cos 20))d0

= An (3.15)
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MEAN = TOT / NOD = An / NOD

The contributions to MAX are distributed around 0=0 within ±a, 

a = IT/2NOD,
a

f d0

= A n/NOD + B (sin in/NOD) )

from (3.13a)

EXC _ MAX - MEAN 
100 ~ MEAN

A n/NOD + B SIN in/NOD) - A n/NOD 
A n/NOD

= -f sin in/NOD)A 7T

The summed distribution R can be calculated as:

R = J X2 + Y2 

r71Where X = f (cos 20) d0
 ̂o

n
(A + B cos 20)) (cos 20) d0

o

= Bn/2

MAX =
= 2

where

(3.16)

(3.17)

(3.18)
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r71Y = f (sin 20) de

rn= (A + B cos 20)) (sin 20) d0

= 0

Therefore R - X = Bn/2

According to the definition of Consistency Ratio 

Section 3.4),

C = R / TOT 

combines with eqns (3.20) and (3.15),

C = B / 2A 

i.e. B/A = 2 C

substitute in eqn. (3.17),

EXC _ _ NOD . f . xjr. n xYqq = 2C — -—  sin in/NOD)

and in terms of probability (see Smart and Tovey 1982),

-C2 TOTp = e

-log p
C = / jQj

EXC _ / 'lo8eP WOD . .
100 = 2 / — TOT-  - IT -  S in  (7 r ///0 D )

For JVOD = 4, radius = 20, p = 0.01,

(3.19)

(3.20) 

(details see

(3.21)

(3.22)

(3.23)

EXC = 10.5%
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Several other filter models were also considered. As an example, 

an ellipse is discussed as a shape for the model. The ratio of long 

axis, a, to short axis, b, was defined as the measurement of the 

orientation distribution characteristics of the filter, i.e. the 

circularity of the ellipse measures the randomness of distribution. 

When a equals b, (a circle) the filter has random distribution. The 

ellipse is:

2
= i (3.24)

The ellipse has a long axis of ’ 2a’ , with MAX distribution within 

±n/(2*N0D) around the long axis; and a short axis of ’2b’ with MIN 

distribution within ±n/{2*N0D) around the short axis (Fig. 3.5a). Due 

to the symmetry of the ellipse, only the range 0° —  90° needs to be 

considered. The previous section has already discussed semicircular 

symmetry. So MAX = 2 OAC, and MIN = 2 OBD in Fig. 3.5a. For easy 

calculation, the area of OBD can be replaced by area of O’A’C’ in 

Fig. 3.5b. So:

{MAX - MIN)/ TOT = 4 (OAC - O’A’C’)/7rab (3.25)

and the formula for the ellipse in Fig. 3.5b is:

1.2 2 (3.26)b a

Lines 0C and O’C’ in Fig. 3.5 can be expressed as:

y = x tan a (3.27)
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Therefore:

✓ X l
{MAX - MIN)/TOT = ?rab (x tan a) dx + a I VJ xl

/ 2 2 ^' a - x dx

x2
(x tan a) dx - b I VJx2

/, 2 2 . -'b - x dx (3.28)

Trab x tan a
xl

x2 2 V arcsin
xl

2X /, 2 2 , b . . .
— / b ' x + —  arcsin — J x2

Now xl, and x2 need to be calculated. Here xl is the intercept of:

f y = x tan a
2 2

+ - l:

So xl = ab / / b2 + a2tan2a

similarly, x2 = ab a2 + b2tan2a

Thus (MAX -MIN)/TOT = 7iab -tan a
2, 2 a b 2, 2 a b

,2 2 . 2 L b +a tan a 2 ,. 2 • 2 a +b tan a

na ab

V 12 / b2+a2tan2a
a2_ 2, 2 a b

2 2 2 b +a tan a

a . xl-n— arcsin---2 a

, 2 ab /---------------  ,2 _7ib / 2, 2 b . x2a b - —^-arcsm-r—  2 b
a2+b2tan2a v a2+b2tan2a
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Mr,» 4 ab , x2 ab j xlso (MAX -MIN)/TOT = ^ — —  arcsin— arcsin—^—

arcsin 1 - xl xl 1 - x2‘

(a2-b2)tan a
—  < arcsm 
t t  I J a2+b2tan2a J b2+a2tan2a

(a2-b2)tan a

arctan
71

J a2+b2tan2a J b2+a2tan2a

, 2 , 2 ,2 . 2  ̂ _  (a -b J tan a_______
( a2+b2tan2a )(b2+a2tan2a)

2_ J arctan ---(a2-b2) tan «
TT 1 J a2b2(l + tan2a)‘

,, _ MAX-MIN 2 (a2-b2) tan atherefore — =^=—  = --- arctanTOT n   . 2ab sec a

? 2 2
  arctan I" a0 —  sin 2a 1tt L 2ab J

Combine with (3.13d)

= [ NOD/2 1* — arctan I" - ^—  sin 2a ] 100 L J 7r L 2ab J

(3.29)

(3.30)

(3.31)

(3.32)

In this example the number of directions for encoding has been chosen 

as 4. Therefore:
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EXC
100 71

4

2L= 1. 2732arctan [ — —  sin 2a]
2 ,2

(3.33)

From (3.33) it can be seen very clearly that the EXC value depends on 

the ratio of b/a, i.e. on the shape of the ellipse model. The 

calculated results of EXC are given in Table 3.1. The EXC* was also 

calculated by numerical integration using eqn. (3.13a)

There is a little difference between the results calculated from these 

two methods. The table also showq the Consistency Ratio, C, and 

probability. In practice, when the distribution is unknown, it seems 

that either of these two distributions are reasonable and could be 

used to decide EXC as suggest above. Finally,

The exact choice of LOT seems to be unimportant; and in the code 

it is set equal to RAD.

Then the statistics of the distribution of direction in the

filter gives the number of pixels lying in the most frequent direction 

in the filter, MAX. The analysis is:

If MAX < LOX

then TOP = NOD + 1 (random)

If TOT < LOT

then TOP = 0 (undecided)

If MAX = 0

then TOP = 0 (undecided)

EXC/100 = {MAX - MEAN) / MEAN

LOX = MEAN (1 + EXC/100)
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otherwise

TOP = the direction of MAX

Thus the encoded number, COD, is replaced by the smoothed result TOP 

as shown in Fig. 3.Id.

3.3.4 Investigation of Choosing the Best Radius

The very important parameter which determines the pattern of 

mapping is the radius of the filter for smoothing. For large 

magnification micrographs, the area of each domain has to be big

enough to contain the quite large particles; for small magnification 

micrographs, the domain has to be small enough without loosing the 

fine structure. Sometimes the machine will divide very large particles 

into different parts according to the orientation of the intensity 

gradient around the sides of the particles (Fig. 3.7).

Several approaches have been considered in order to find the best 

choice of filter radius for mapping different micrographs. The first 

method was to judge the effect by eye. Then a statistical method was 

tried. Finally, a method based on the semi-variogram is suggested.

1) Human Eyes Effect:

After Top-Contouring Mapping, the particles which have been 

ascribed to a certain domain are supposed to lie in a certain

direction. However, high accuracy will bring the boundary of each 

domain as close as possible to each single particle. When the radius

of the filter is equal to zero, the boundaries of the domains will be

identical to the boundaries of the particles. This is not the purpose
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of the smoothing. Top-Contouring is principally mapping domains, which 

can be considered to form a sub-parallel group with most particles 

lying in the same direction. Thus the boundaries of domains should not 

be drawn close to boundaries of single particles, so that they become 

very zigzaged. After comparing Top-Contouring Mapping on the same 

picture with different filter radii, the best radius for different 

pictures has been decided. Three examples are given below.

Fig. 3.6 is a micrograph with the magnification of 2,000, which 

has been used as the normal magnification by the University of East 

Anglia; the picture width is about 20 pm and 512 pixel. The particle 

size at this magnification is reasonably large to show the detailed 

microstructure. At this ratio of particle and picture size, the best 

choice of radius as judged by the human eye was 20 pixels for the 

Top-Contouring Mapping.

Fig. 3.7 shows unconsolidated kaolin. The picture width is 512 

pixel approximately 4 pm. In order to show the microstructure more 

clearly, the magnification had been made much larger than that in 

Fig. 3.6, and it was included here to provide a wider basis of 

comparison. The particles within the picture are much larger than the 

particles in a normal micrograph; in particular, the particle which 

slopes down-right in the centre of the picture is nearly as long as 

the width of the picture. These large particles increased the best 

radius to 35 pixels for Top-Contouring smoothing, which is much larger 

than the best radius for a normal picture. The domain containing the 

central large particles has been mapped reasonably well. At the top of 

this domain, the particles are horizontal, and these have been 

distinguished correctly. At the lower left there is a feature, in a 

previous study it had been mapped by hand as a single vertical domain.



Chapter 3 Textural Segmentation 51

However it was divided into three regions by the Top-Contouring 

Mapping method , two of which were vertical and one inclined according 

to the edge intensity gradient of the particle.

There are both advantages and limitations in deciding the best

radius by eye. For the human eye, the bigger and brighter particles

attract more attention than smaller and fainter ones. When

Top-Contouring Mapping was first developed, judgment by eye was

inevitable, because objective methods had not then been developed. 

This, however, was entirely appropriate because the method had been 

developed from hand-mapping; but by now better methods have been 

developed.

2) Statistical Method

The first automatic method of choosing the best radius for

Top-Contouring Mapping is a statistical method. This method is a

modification of the chi-square error test on the histogram of the

domains’ areas with different radii choice H (k), where r is theR
chosen radius and k is the direction. The observations are listed in 

Table 3.2a and 3.3a.

The average area of different radii is given (Table 3.2a and 

3.3a) as:

H(k) = 1/n £ H (k) (3.34)RR

where, n is the number of different radii which have been chosen in

the test.
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Then the difference between the observed area and the average 

area is presented in Tables 3. 2b and 3.3b by using:

AH (k) = H(k) - H (k) (3.35)R R

And the square sum of the difference in all the directions (Table 

3.2b, and 3.3b) is:

AH = £ AH (k)Z = £ [ H(k) - H (k) f  (3.36)
R k R k R

So the radius with the minimum sum AH could be the best radius of theR
filter for Top-Contouring Mapping. From Table 3.2b, the best radius 

for the micrograph with 2,000 magnification is 20 pixels. From Table 

3.3b, the best radius for the micrograph of Fig 3.7 is 35 pixels. 

These agree reasonably well with the corresponding radii determined by 

eye. This analysis, which was made at an early stage in the project, 

gave some confidence in adopting RAD=20 for 2000 magnification. 

However, the result is dependent to an extent on the details of the 

way in which the average areas have been calculated; so a better 

method was sought.

3) Semi-variogram Method

After Consistency-Ratio Mapping had been established (see next 

section), a geostatistical method, the semi-variogram, has been used 

to test the best radius. Fig. 3.8a is the semi-variogram of Fig. 3.1a, 

calculated for all lags up to 127 pixels in all directions. The 

brightness at each pixel is proportional to the semi-variance, g(h)
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defined by:

g(h) = [lu> - I(i+h)]2 (3.37)

where i: and i+h are the positions of a pair of pixels, 

h: being the lag,

I: the grey level.

The summation was taken over a large central portion of the 

micrograph. A circular model semi-variogram, f, was fitted to the 

data, f was given by:

ft - SIN t)
f = c [1 - — -----  -■-] when h < a (3.38)n

f - c when h > a

t = 2 arc cos (h/a) (3.39)

where a and c are parameters, and t is introduced to simplify the 

formula (Webster and Oliver 1990).

The goodness of fit is illustrated in Fig. 3.8b. The semivariance 

had been scaled into arbitrary units to improve the visibility; but 

this is of no account here, a is known as the range and represents the 

limit of correlation between any pixel and its neighbours; it is 

therefore an appropriate upper limit on the size of a filter such as 

used for Top-Contouring, etc. The value of a obtained was 18 pixels, 

which agrees reasonably with the radii adopted above.

3.4 CONSISTENCY RATIO MAPPING

Consistency Ratio Mapping is a textural segmentation which maps 

areas hy summing the local vectors to find the preferred orientation.
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3.4.1 Introduction

Summing the intensity gradient vectors within a large filter 

gives the local preferred orientation, this segmentation, the 

Consistency Ratio Mapping, is more accurate than the Top-Contouring 

Mapping.

The Consistency Ratio itself is defined as a measure of the 

dispersion of the data, which is given by the normalized magnitude of 

the resultant vector, vector strength, or vector magnitude (Curray 

1956 and Smart and Tovey 1982 used unweighted vectors, but this work 

used weighted vectors). The definition are:

C = R / Y.U (3.40)

where (3.41)

and (3.42)

Rx = £ X i j (3.43)

where and y are the intensity gradient at the (i,j) pixel in the 

x- and y-directions respectively.

The Consistency Ratio varies between zero, for a uniform 

distribution, and unity, for perfect preferred orientation (see Smart 

and Tovey 1982).
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As mentioned above, Curray (1956) adapted a test to calculate the 

significance of two-dimensional data. If N is the number of vectors to 

be summed, then the probability, p, of obtaining a larger Consistency 

Ratio, C, by pure chance is

There are several parameters which need to be defined before 

starting the calculation; they are

RAD: radius of the filter;

NOD: number of directions for segmentation;

TOT: total number of pixels which lie within the filter and which 

have decided directions;

LOT: the lowest acceptable number of pixels which lie within the 

filter and for which the intensity gradient has strength 

larger than zero, (if LOT is not attained, Consistency Ratio 

Mapping labels the pixel as undecided);

R(i,j): vector sum within the filter at pixel (i,j)

r: limiting value of R(i,j), the value of summed vector could

be labeled as random.

For the examples here, the author set:

RAD = 20 

NOD = 4 

LOT = RAD

and took N = TOT = 90% of filter size for simplicity. To compare the
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result of Consistency Ratio Mapping to that of Top-Contouring Mapping, 

p = 0.26% has been chosen for the present analysis, because this 

brings these two results close to each other. Thus, from (3.44)

-log p
c = /  Y0f—  (3.45)

C = 0.07

and considering (3.40), the limiting value of the summed vector is

r = R = C £ t/ (3.46)k

The whole process of Consistency Ratio Mapping segmentation is:

1) calculating the intensity gradient of each pixel in the image, 

(Fig. 3.1b);

2) summing up the vectors within the large circular filter;

3) encoding the angles of summed vectors to get the local 

preferred orientation, (Fig 3.9a);

4) mapping the pixels with the same preferred orientation into 

domains, (Fig. 3.9b).

The flow-chart of this process is given in Fig. 3.10.

3.4.2 Summing Vectors

Both the angle and the strength of the intensity gradient at each 

pixel are used to do the vector summing. Because the intensity 

gradient vectors surrounding each particle all point outwards, they 

are in opposite directions for two parallel edges, so the opposite
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vectors cancel each other out. In order to remedy this problem, 

Krumbein (1939) suggested doubling the angles of the vectors before 

computation, and then halving afterwards.

From Section 3.2, the intensity gradient gives:

C/(i, j) = mod grad I(i,j) (3.47)

i4(i,j) = arg grad J(i,j) (3.48)

After doubling the angle, the values in the x-, and y-directions can 

be expressed as

X(i,j) = (/(i,j) * cos [2A(i,J)] (3.49a)

7(1, j) = l/d, j) * sin [2i4(i, j)] (3.49b)

Then, summing up all the values in x-, y-direction within the filter: 

Rx = £ Xu, j) = £ {(/(i,j) cos [2>l(i,j)] } (3.50a)
k k

Ry = Y = Z {£/<i,J) sin [24(i,j)] > (3.50b)
k k

Where Rx and Ry are the components of the summed vector in x- and 

y-directions respectively.

Then the strength of the summed vector R equals:

R =J  Rx2 + Ry2 (3.51)
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The arithmetic sum of the strengths within the filter S equals:

S = £ U(i,j) (3.52)
k

3.4.3 Encoding Angles

Now the angle of the summed vector within the filter is 

calculated as:

If |fly| =£ |Rx|

then a = arctan [ \Ry\ / |Rx| ] (3.53a)

(which gives a angle 0 —  )4

If |fly | > | Rx |

then a = rr/2 - arctan [ |flx| / |fly| ] (3.53b)

(which gives a angle ——  —  —— )4 2

This first produced a between 0 and n/Z, after which the signs of Rx

and fly were used to ascribe a to its proper quadrant.

If Rx £ 0 AND fly i 0

then A’ = a (3.54a)

If Rx < 0 AND fly 2: 0

then A' = n - a (3.54b)

If flx < 0 AND fly < 0 

then A’ = 7r +a (3.54c)
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If Rx i 0 AND Ry < 0

then A’ = 2*n - a (3.54d)

which gives the angle of the summed vector from 0 to 2n. The angle

then needs to be halved, gives angle between 0 —  n.

A = A W  2 (3.55)

When encoding, the angles of summed vectors encoded to 2NOD directions

within 7T first, (Fig. 3.4a).

If TOT < LOT

then con - 0 (undecided) (3.56a)

If R < r

then con = NOD + 1 (random) (3.56b)

Otherwise

con = 1 + {INT TRUNC [ A*2*N0D/n ] > (3.56c)

(encoded into 2*NOD within n first)

Then the con needs to be turned n/(2N0D) in the clockwise direction, 

and encoded to NOD directions (Fig. 3.4b):

If con * 2NOD

CON = 1

Otherwise

CON = 1 + [ con/2 ]

When a pixel has undecided direction, COD = 0.

(3.57)
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Since the number of code directions NOD was chosen as 4, we have:

In code Direction Degree range CONu, j)

0 undecided

1 horizontal 0— 1/8tt, 7/8tt— 8/8tt;

2 downleft 1/8tt— 3/8tt;

3 vertical 3/8tt— 5/8tt ;

4 downright 5/8tt— 7/8tt;

5 random

Fig 3.9 a was encoded result; then the boundaries were superimposed on 

the original, Fig. 3.9 b; finally the grey level image was coloured, 

Frontispiece.

3.5 DISCUSSION

Top-Contouring and Consistency Ratio Mapping are both based on 

the intensity gradient orientation information and map domains with 

local preferred orientation and random areas successfully. In the 

past, these features have been mapped by hand, but now these two new 

segmentations provide automatic ways to map domains and random 

clusters and the possibility of further measurements of features. 

Fig. 3. 11 is an ultra-thin section of kaolin, which had originally 

been classified merely as random structure by hand (Smart et al 1991). 

However, the automatic mapping has subdivided the micrograph into 

approximately equal areas of horizontal, down-left, and random, with 

negligible areas of vertical and down-right. In this example, the 

quantitative instrumental method has retrieved information which had 

not been obtained by eye.
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Consistency Ratio Mapping was only developed after the present 

work had been moved to the MEIKO machine, where each transputer has 4 

megabyte memory (see Chapter .7). This extra memory enabled the author 

to consider the weighted gradient vector instead of just using the 

angle of the vector. There appear to be two reasons why Consistency 

Ratio Mapping should be more accurate than Top-Contouring Mapping. 

Firstly, Consistency Ratio Mapping uses the weighted intensity 

gradient; however, there is a counter argument that the weighting 

depresses the influence of small faint particles in comparison with 

larger, more intensive particles (Tovey 1991). Secondly, smoothing 

before encoding, as in Consistency Ratio Mapping, is expected to be 

more accurate than smoothing after encoding, as in Top-Contouring 

Mapping. Table 3.4 is the directional distribution of the image 

Fig. 3.1a by using both segmentations. Fig. 3.12 and Table 3.5 give 

the comparison between these two segmentations. The large values are 

in the positions when TOP and CON are in the same direction. There are 

some differences, however, the maximum difference is less than 3% of 

the whole image.

In preparation for further analysis, Figs. 3.13a, 3.13b, 3.13c,

and 3. 13d are the extracted images of Fig. 3. la with preferred 

orientation in the horizontal, down-left, vertical, and down-right 

directions respectively. The methods can be very well employed for 

different scales of scanning and transmission electron micrographs, as 

can be seen in Figs. 3.le, 3.6, 3.7, 3.9 b and 3.14. They can also be 

used for analysing other kinds of images, such as Fig. 3. 15, an 

airphoto of an unidentified island. The segmentation successfully 

draws boundaries around areas within which all the mountains lie in 

certain directions. Postprocessing is now required to map the ocean.
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Table 3.1 Typical EXC for radius = 20 and 4 directions

b/a EXC EXC* C.R. PROB

0.0000 0.0000 0.0000 0.0000 1.0000
0.0196 1.7829 1.7953 0.0099 0.8765
0.0385 3.5311 3.5800 0.0196 0.5962
0.0566 5.2460 5.3540 0.0219 0.3195
0.0741 6.9289 7.1172 0.0385 0.1367
0.0909 8.5809 8.8696 0.0476 0.0474
0.1071 10.2031 10.6110 0.0566 0.0134
0.1228 11.7966 12.3415 0.0654 0.0032
0.1379 13.3623 14.0609 0.0741 0.0006
0.1525 14.9013 15.7692 0.0826 0.0001
0.1667 16.4143 17.4664 0.0909 0.0000

here b/a 
EXC* 
EXC

C.R.
PROB

= ratio of axes of the ellipse;
= approximate value calculated from ellipse model 
= value calculated by numerical integration using 
100*{MAX-MEAN)/MEAN;

= Consistency Ratio calculated by numerical integration.;
= probability corresponding to C.R., i.e. exp(-C /N), without 
any allowance for undecided pixels.
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Table 3.2a The number of pixels lying in different directions after 
different radii of Top-Contouring of Fig. 3.1a

Coded directions

HR(k) 0 1 2 3 4 5
radii undecide horizont

%
downleft vertical downright random

0 3.8 19. 5 20. 4 30.3 25.6 0
5 0 10.8 11.3 35.2 39. 9 2.5
10 0 5.2 9. 43 40. 4 43.9 0.9
15 0 2.7 7.6 43.51 45.8 0.2
20 0 1.3 5.6 46. 1 46.7 0. 1
25 0 0.4 3. 1 48.3 47.9 0
30 0 0. 1 1.5 48.7 49.6 0
35 0 0 0.8 48.6 50.4 0
40 0 0 0 48.9 51.0 0
45 0 0 0 47. 9 52.0 0
50 0 0 0 47.6 52. 3 0
60 0 0 0 46. 0 53.9 0
128 0 0 0 32. 5 67. 4 0

averageHf/O 0.27 2. 857 4.26 43.63 48.53 0.264

Table 3.2b The difference from the average, after Tab. 3.2a
1 AH (k) 1 01 R 1 
radl 1

1 2 3 4 5 AHR

0 3. 53 16. 64 16.145 13.328 22.932 0.264 992.932
5 0.27 7. 94 7. 04 8. 428 8. 632 2. 236 263.220
10 0.27 2. 34 5. 14 3.228 4. 632 0.636 64.248
15 0.27 0. 157 3. 34 0. 128 2.732 0.064 18.737
20 0.27 1.557 1. 34 2.472 1.832 0. 164 13.787
25 0.27 2.457 1. 16 4.672 0.632 0.264 29.752
30 0.27 2.757 2.76 5.072 1.068 0.264 42.227
35 0.27 2.857 3. 46 4.972 1. 868 0.264 48.684
40 0. 27 2.857 4. 26 5.272 2. 468 0.264 60.338
45 0.27 2.857 4. 26 4.272 3. 468 0.264 56.73
50 0.27 2. 857 4.26 3.972 3.768 0.264 56.427
55 0. 27 2. 857 4. 26 3. 172 4. 568 0.264 57.578
60 0.27 2. 857 4. 26 2. 372 5. 368 0.264 60.894
128 0. 27 2. 857 4. 26 11.128 18.868 0. 264 506.286

j.
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Table 3.3a The number of pixels lying in different directions after 
different radii of Top-Contouring of Fig. 3.7

Coded directions

H (k)R
radii

0
undecide

1
horizont

(

2
downleft 
% )

3
vertical

4
downright

5
random

0 9.7 19. 9 26. 9 25.8 17.4 0
5 1. 1 22.2 22.9 31.2 20.0 2.2
10 0.3 25.3 23.2 34.4 15.7 0.9
15 0 26.3 24. 1 35.2 13.8 0.3
20 0 26.0 25.2 35.6 12.8 0. 1
25 0 26.2 26.5 35.2 11.8 0
30 0 25.6 27.5 35.4 11. 1 0. 1
35 0 25. 1 29.2 35. 1 10.3 0
40 0 25.9 30. 4 34.3 9.2 0
45 0 25.5 32. 4 33.0 8.9 0
50 0 23.9 34.5 33.6 7.8 0
55 0 22. 6 36. 1 34. 6 6.5 0
60 0 20. 2 38.0 34. 9 6.7 0
128 0 6. 4 47.7 45.7 0 0

averageHf/O 0.793 22.936 30.329 34.586 10.871 0.2

Table 3.3b The difference from the average, after Tab. 3.3a

AH (k) I 0 1 2 3 4 5 AHR 1 R
radii

0 8.907 3.236 3. 429 8.786 6. 529 0. 257 220. 198
5 0. 307 0.736 7. 429 3.386 9. 129 1.943 154. 405
10 0.493 2.364 7. 129 0. 186 4.829 0.643 80. 421
15 0.793 3.364 6.229 0.614 2.929 0.043 59. 704
20 0.793 3.064 5. 129 1.014 1.929 0. 157 41. 097
25 0.793 3.264 3.829 0.614 0. 929 0.257 27. 25
30 0.793 2.664 2.829 0.814 0.229 0. 157 16. 469
35 0.793 2. 164 1. 129 0.514 0.571 0.257 7. 243
40 0. 793 2.964 0.071 0.286 1.671 0.287 12. 259
45 0.793 2.564 2.071 1.586 1.971 0. 257 17. 958
50 0.793 0.964 4. 171 0.986 3. 071 0. 257 29. 424
55 0.793 0.336 5.771 0.014 4.371 0. 257 53. 218
60 0.793 2.736 7.671 0.314 3.971 0. 257 82. 892
128 0. 793 16. 536 17. 371 11. 114 10. 871 0. 257 818. 021
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Table 3.4 Distribution of the directions after Top-Contouring, 
and Consistency Ratio Mapping (image in Fig. 3.1a)

segmentation

Directions

0
undeci
ded

1
horizon
tal

2
down-
left

3
vertical

4
down
right

5
random

Top-Contouring 0 15129 33191 128861 61248 19636

Consistency Ratio 0 18255 34879 128021 62339 14571

Table 3.5 Comparison of Top-Contouring and Consistency Ratio Mapping 
pixel by pixel (Figs. 3.Id and 3.9)

Consistency Ratio

T
0 1 2 3 4 5

0
p

0 0 0 0 0 0 0
1c 1 0 12514 730 56 968 861
0
N 2 0 815 27756 3422 2 1196
T
0 3 0 29 3847 115349 7018 2618
U
R 4 0 2837 66 5739 51086 1520
I
N 5 0 2060 2480 3455 3265 8376
G
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Fig. 3.1a Scanning electron micrograph of soil at 2,000 
magnification ooCcffW = 'lq *

Fig. 3.1b Differentiation of Fig 3.1a
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Fig. 3.1c Encoded image of Fig. 3.1b

Fig. 3.Id Smoothed image of Fig. 3.1c
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Fig. 3.1e Top-Contouring mapped image of Fig. 3.1a

22 1 5 1 0 1 4 21

1 6 6 2 5 1 3

1 1 3 0 1 9

1 7 7 4 8 20

23 1 8 1 2 1 9 24

Fig. 3.2 Numbering of pixels within the mask
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PICTURE 
(digitised image)

PICCOD
(encoding angles)

PICDIF
(intensity gradient )

PICTOP
(smoothing encoded angles)

PICBOW
(mapping domains)

Fig. 3.3 The process of Top-Contouring.
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Fig. 3.4a Encoding angles to 8 directions within n

Fig. 3.4b Encoding angles to 4 direction within 2n
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Fig. 3.5a Ellipse filter model for calculating EXC, 
with long axis ’2a* and short axis ’2b',
area OAC = MAX/4, OBD = MIN/4.

X2 A ’

Fig. 3.5b Same ellipse filter model turned 90° degree.
for easier calculation, here 0'j4'C'=OBD,
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Fig. 3.6 Scanning electron micrograph with magnification 2,000. 
20 pixels radius has been chosen for Top-Contouring Mapping.

Fig. 3.7 Transmission electron micrograph with pt'cT̂cre tuî Th 4 /urn.
35 pixels radius has been chosen for the Top-Contouring 
Mapping.
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Fig. 3.8a Semi-variogrm of Fig 3.1a. The original image is on the 
left. The Semi-variogrm is at top right, the grey levels have been 
increased to improve visibility, the half-width of the semi-variogrm 
is 128 pixel. Four^ cross-sections of the semi-variogrm are also shown, 
arranged in this picture:

horizontal vertical
down-right down-left

the linear scale of the diagonal pair is compressed.

SEMI-VARIOGRAMS200

150

100

50

0 20 40 60 80 100 120 140
RADIUS (pixels)

Fig. 3.8b Scaled up semi-variogram.
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Fig. 3.9a summed intensity gradient vector of Fig. 3.1a by 
Consistency Ratio Mapping.

Fig. 3.9b Segmented Fig. 3.1a by Consistency Ratio Mapping.
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PICDIF
(intensity gradient )

PICCON
(smoothing angles)

PICBOW
(mapping domains)

PICTURE
(digitised image)

CONMAP
(encoding angles)

Fig. 3.10 The process of Consistency Ratio.
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Fig. 3.11 Ultra-thin section of Kaolin on which the Top-Contouring 
mapping has subdivided horizontal and down-left domains 
from hand mapping random areas.

Fig. 3.12 Comparson of two segmentations, with similar areas
in grey, and the Top-Contouring colours in areas
which differ for Fig. 3.1a.
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Fig. 3.13a Horizontal domains of image in Fig. 3.9 b.

Fig. 3.13b Down-left domains of image in Fig. 3.9 b.
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13c Vertical domains of image in Fig. 3.9

BE

îi
Fig. 3.13d Down-right domains of image in Fig. 3.9 b.
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Fig. 3.14 Consistency Ratio Mapping on small scale image,
(transmission electron micrograph from Smart 1966)



Chapter 3 Textural Segmentat ion 80

Fig. 3.15 Consistency Ratio mapping on air photo of an 
unidentified island.
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CHAPTER 4 GLOBAL ORIENTATION ANALYSIS

4.1 INTRODUCTION

In the last Chapter the author discussed two segmentations which 

could be used to analyse the oriented particles in groups (domains). 

In this Chapter a few new methods of studying the global orientation 
distribution of scanning electron micrographs will be presented.

The directional data statistics algorithm, which is presented 

first, is a synthesis of the theory of the intensity gradient method 

and the vector method of orientation analysis. In this synthesis, the 

modified mean direction and Consistensity Ratio calculation have been 

used to enhance the intensity gradient, thereby eliminating the noise 

from the orientation distribution and revealing a more meaningful 

global histogram of direction. Local variations of porosity are also 

investigated by the method.

The Cooperation with King’s College of London University on the 

global orientation analysis by using the Hough transform has produced 

a result which is comparable with that obtained by directional data 

statistics; and the cooperation with the Department of Electronics and 

Electrical Engineering of Glasgow University using the methods of 

Directed Vein and Convex Hull has also given good results.
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4.2 METHODS OF DIRECTIONAL DATA STATISTICS

4.2.1 Effects of Intensity Gradient

Unitt (1975) was the first to use the polar histogram of the 

intensity gradient vector angle of the image to indicate the global 

orientation distribution of the features within the micrograph (detail 

of intensity gradient calculation see Section 3.2). Fig. 4.1 is an 

example of Unitt’s polar histogram.

Subsequently, Unitt (1976) replaced Equation 3.4a and 3.4b by a 

more accurate approximation obtained by applying the linear form of 

Taylor’s expansion to 5 collinear points; and Tovey and Smart (1986) 

suggested leaving a ’undecided’ when U is less than a threshold value. 

To improve the accuracy and reduce the spikes of the polar histogram 

in Fig. 4.1, firstly the author used the 20,14-formula introduced by 

Smart and Tovey (1988) to calculate the intensity gradient vector (see 

Section 3.2). This was done because the 20,14-formula uses a more 

nearly circular mask, and it smoothes out the variance in the mask. 

Secondly, in the author’s code, for U < 3, the angle of intensity 

gradient a was labelled ’undecided’ and omitted from the histogram 

(detail see Section 3.3.2). Thirdly, when plotting the polar 

histogram, a 5° interval has been used. Fourthly, the digitisation 

used now is 256 grey levels, whereas Unitt may have had to use a 

coarser subdivision of the range. All these reduce the spikes of the 

histogram and produce a smoother ’ellipse’. Fig. 4.2 is a typical 

scanning electron micrograph of clay. Fig. 4.3a and Fig. 4.3b are the 

polar histogram of unweighted and weighted intensity gradient vector 

of Fig. 4.2 calculated by using the 20,14-formula. These two
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histograms give crude measures of the preferred orientation of the 

whole image.

Several factors, which suggest that the histogram of angle should 

perhaps be weighted by the strength of the intensity gradient, will be 

discussed below.

Fig. 4.4 gives an example. If the upwards facing edges of a 

particle are sharp and the downwards edges are diffuse, see Fig. 4.4c, 

there will be more downwards pixels contributing to the histogram. 

Therefore the histogram of angles will be asymmetrical, see Fig. 4.4d. 

However, in the example given here, the deviations from symmetry in 

both the unweighted and weighted histograms, Figs. 4.3a and 4.3b, are 

negligible.

Another case arises if all the edges at the particle’s ends are 

not as sharp as the side edges, then the unweighted polar histogram of 

angles will be distorted. So weighting the angles, a, by the strength 

of the intensity gradient, U, will give a clearer result. It is 

evident from Figs. 4.3a and 4.3b that the histogram weighted by 

strength is thinner than the unweighted histogram. Therefore, the 

average strength in the direction of the shorter axis is slightly 

smaller than in the direction of the longer axis.

However, on the other hand, it has been noticed that there are 

some particles brighter than others in the images, because they have 

been charged up or are composed of a different material. In this case, 

the weighted histogram may give too much prominence to the brighter 

particles (which have higher values of U at their edges), so the 

unweighted histogram may be better.
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4.2.2 Enhanced Orientation Information

Fig. 4.4a shows a single particle and Fig. 4.4b is the 

corresponding polar histogram. In addition to the correct maxima from 

the faces, there are small spurious maxima from the ends. This may be 

one reason that the unweighted and weighted histograms of angle have 

elliptical shapes. In order to eliminate the effect of the particles’ 

ends and of the particles lying in the less popular direction, it was 

therefore decided to smooth the intensity gradient image to obtain 

synthetic and enhanced orientation information.

Normally filtering operations for smoothing are based on the 

original grey level images. Because the intensity gradient image is a 

vector image, the filtering operation has to be based on the 

directional statistics theory. Therefore, in the present work the 

summed vector of the observed intensity gradient vectors within a 

large circular filter has been used to enhance the direction 

information (Mardia 1972, namely mean direction). The details of 

calculation are in Section 3.4.2. To match the texture of the image, a 

large circular filter was employed using the mechanism described in 

Section 2.2.6 to obtain the mean vector. The calculation was carried 

up to the edges of the secondary image. The filter size was 20 pixels 

radius (Section 3.3.3).

The resultant of the summed vector within the filter was used to 

plot the unweighted and weighted polar histograms as shown in 

Fig. 4.3c and Fig. 4.3d. Both Fig 4.3c and 4.3d measure the amount of 

preferred orientation. Since the figures are the enhanced results,
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they show stronger and more obvious distributions than the histograms 

of intensity gradient with bow tie shape. The less frequent 

directions, such as those around the short axes of the ellipses in 

Figs. 4.3a and 4.3b, have been smoothed away. Because Figs. 4.3c and 

4.3d are based on the summed vector within the large filter, they 

express the information of the group of particles within the filter, 

and eliminate the effect of the few particles which were not in the 

most popular direction and of the particles’ ends. These two figures 

indicate that at this scale of filtering most of the particles in the 

image were in the direction between 40° and 60°. Within the main 

tendency, there were two sub-peaks at 40° and 60° with even stronger 

local preferred orientation. Thus Fig. 4.3c and 4.3d give more 

detailed directional information than did Figs. 4.3a and 4.3b.

In Fig. 4.2, it can be seen that the micrograph can be divided 

approximately into two parts, the left side has most particles lying 

in the direction of 40°; and the right side has most particles lying 

in the direction of 60°. Comparison of Figs. 4.3c and 4.3d shows that 

the 40° sub-peak has a stronger local preferred orientation than the 

60° sub-peak. i.e. in general speaking particles in left side are 

longer and thinner than those in right side and with better 

parallelism. On the other hand the area of 60° sub-peak is bigger than 

that of 40° sub-peak, which may suggest that there is less order 

within areas mapped to 60° than areas mapped to 40°.
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4.2.3 Average Summed Vector and Consistency Ratio

If and only if the intensity gradient vectors within the filter

have strong strength and point mostly in the same direction, the mean

direction vector can be large. The average strength of the mean

direction (summed vectors) over the whole image have been calculated

to give the perfection of local preferred orientation and to provide a 

further method of showing whether there are some directions in the 

micrograph having particles lying closely with each other parallelly.

Fig. 4.3e is a polar histogram of the average strength of the

mean direction vector (i.e. of the value of Fig. 4.3d divided by the

value of Fig. 4.3c) which gives a measurement of the perfection of 

preferred orientation in each direction. Fig. 4.3e again shows a

maximum in the direction of 40°, with a sub-peak over the main 

tendency. This indicated that in the direction of 40° of the 

micrograph, not only does a large population of particles lie in this 

direction, they are of long and thin shape, but also these particles 

are packed together very closely, i.e. with good parallelism.

As an alternative to the average mean direction, the consistency 

ratio can also be used to analyse orientation preferences of the 

particles in the image (see Section 3.4). The average consistency

ratio within each 5° interval is plotted in Fig. 4.3f. This figure 

again measures the perfection of local preferred orientation in each 

direction and shows stronger parallelism in the inclined direction of 

40°. Although there are some differences between Figs. 4.3e and 4.3f, 

they both give the packing characteristics of particles against 

orientation on a pixel-by-pixel basis. In some ways, the method in
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Fig. 4.3f may be more realistic than Fig. 4. 3e, because Fig. 4.3f 

corrects both for variations in the number of edges per unit area and 

also for variations in the range of intensity. On the other hand, 

Fig. 4-3e may be better at pointing to features of interest.

In summary, Fig. 4.3a and 4.3b give crude measurements of the 

preferred orientation of the whole image. Fig. 4.3c and 4.3d are the 

measurements of preferred orientation on a domain-by-domain basis 

after the noise and rogue particles have been smoothed away. Fig. 4.3e 

and 4.3f show the perfection of the local preferred orientation.

For comparison with the textural analysis methods described in 

Chapter 3 and Chapter 5, the calculations are also reported for the 

image of Fig. 3.1a. Fig. 4.5 gives the histograms of unweighted and 

weighted intensity gradient and of unweighted and weighted mean 

direction over the image of Fig. 3.la. These figures give the 

preferred orientation between 85° and 110°, and have sub-peaks at 

90°and 105°.

4.2.4 Local Void Ratio

Variations of local porosity, p, are significant both for 

classification of the microstructure and interpretation of results 

from experiments. In particular the local porosity may vary 

systematically with the direction of local preferred orientation. This 

is a factor, which, if it is significant, will have to be taken into 

account in micromechanical computations.

In order to give a large field of view, some scanning electron
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micrographs have been taken at too small a magnification to produce a 

black and white picture. The histogram of grey levels in the original 

image lacks two distinct peaks' with a distinct and low trough between 

them; so grey-level discrimination fails to distinguish particles from 

voids. The modified method of using local histograms for parts of the 

image (Gonzalez and Wintz, 1987, p362) also failed. An approximate

analysis was therefore made using:

I - I
P = fs . j (4.4)

S V

where I : intensity for solid particle,
S

I : intensity for void,
V

I : intensity at the pixel with certain local mean 

direction.

In effect, this is a system of electron beam micro-analysis analogous 

to X-ray micro-analysis. The principal difficulty in using eqn 4.4 

lies in choosing I and I . If possible, I should be measured from aS V V

block of pure resin similar to that used to fill the voids; this 

measurement should be made at the same time and under the same 

conditions as the main microscopy. I is more difficult, perhaps the
S

best method would be to take measurements from both quartz and alumina

standards, and to compute from these the value for the particles in

the sample, which are alumina-silicates. In practice, approximate 

value of I and Î  had to be chosen using the histogram of intensity 

as a guide. The advantage of the grey scale method of calculating 

porosity is that it is not limited by resolution. It is at present 

thought that the orientation analysis can be used for smaller

magnification images than have been used so far, which would cover

larger areas; and the grey scale method of calculating porosity would
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also be suitable for these images.

The polar histogram of local porosity against direction is shown 

in Fig. 4.6. As a basis of comparison, the figure also shows the 

average porosity calculated from the grey levels for the whole image 

(this is not to be confused with the average in each direction). 

Comparison of Fig. 4.4 with Figs. 4.3e and 4.3f shows that there is a 

tendency for the porosity to be less in the directions with stronger 

local preferred orientation, i.e. where the particles are more closely 

packed together parallelly.

4.2.5 Enhanced Orientation Mapping

Further work which could be done following the directional data 

statistics is Enhanced Orientation Mapping. This arises by analysing 

the polar histograms of either the unweighted or weighted mean 

direction vector (Figs. 4.3c and 4.3d). The histograms have two

sub-peaks in the main tendency, which show that in these two

directions, 40° and 60°, particles lie very closely parallel with each

other and form very tightly packed domains. Thus, these two directions

could be used to segment very tightly packed domains, rather than 

using the specified directions for segmentation as described in 

Chapter 3. These domains will be very important microstructures in 

measuring soil mechanic characteristics. This new segmentation based 

on the result of Enhanced Orientation Analysis is called Enhanced 

Orientation Mapping.
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4.3 HOUGH TRANSFORM TECHNIQUE

The Hough transform is a pattern recognition technique which has 

been widely used recently. However, the detected objects, to which the 

Hough transform is applied, are normally very large, and mostly there 

have been only a few or even one feature in a single image, and the 

features have had very simple outlines. The present work is thought to 

be a new effort to use the Hough transform to analyse very complicated 

and very irregular images like scanning electron micrographs of clay, 

such as Fig. 4.7a, which have hundreds of particles in them.

Clay particles normally have thin long shapes, so the edges of 

the particles can be regarded as lines for employing the Hough 

transform to analyse the orientation of the particles.

4.3.1 Theory of Hough Transform

Hough (1962) proposed a method to analyse the specific structural 

relationships between pixels in the image. This method has been used 

in the cooperation with King’s College of London University to analyse 

the edge structures of particles in soil micrographs.

Consider a point i-n the image. The general equation of a

straight line through this point in slope-intercept form gives:

yi = ax ̂ + b. (4.5)

There is an infinite number of lines that pass through the point 

(x.y.), but they all satisfy the equation ŷ  = ax̂  + b for varying
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values of a and b. However, if we write this equation as b = -x^a +

y , and consider the a-b plane (normally called Hough slope-intercept

space), then we have the equation of a simple line for a fixed pair

(x̂ , yi). Furthermore, a second point (x̂ , y^) in the image will also

have a line in Hough space associated with it, and this line will

intersect the line associated with (x , y ) at (a', b’ ), where a’ isi i
the slope and b’ the intercept of the line containing both (x̂ , y^) 

and (Xj, y^) in x-y space. These concepts are illustrated in Fig. 4.8. 

In fact, every point lying on a line in x-y space will have lines in 

Hough space that intersect at (a", 5"). Thus in the simple example

given, the line in x-y space can be found by searching Hough space for 

the point (a’,b’) through which more than one line passes. In general, 

several lines in x-y space can be found by searching Hough space for 

its maxima. In practice, Hough algorithms are implemented by replacing 

continuous Hough space by a discrete two-dimensional histogram, which 

is usually called an accumulator array.

A problem with using the equation y = ax + b to represent a line 

is that both the slope and intercept approach infinity as the line 

approaches a vertical position. One way around this difficulty is to 

use the normal representation of a line, given by:

x COS0 + y SING = p (4.6)

The meaning of the parameters used here is illustrated in Fig. 4.9a.

Instead of straight lines, however, we now have sinusoids as loci in

the p-0 Hough space. As before, M collinear points lying on a line x

COS0 + y SING = p will yield M sinusoidal curves that intersect at J J i
(p̂ , Ĝ ) in the Hough space. The range of angle 9 is ±90°, measured
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with respect to the X axis. Thus, with reference to Fig. 4.9b, a 

horizontal line has 0 = 0° with p being equal to the positive x 

intercept. Similarly, a vertical line has 0 = 90°, with p being equal

to the positive y intercept, or (0 = -90°, with p being equal to the

negative intercept). For the points 1,2,3,4,5 in Fig. 4.9b, there are 

five lines in Hough p-0 parameter space as shown in Fig. 4.9c. These 

lines intersect at point A (Fig. 4.9c) for line 1-3-5 (Fig. 4.9b), at 

B for line 2-3-4, and at C,D,E,F for line 2-5, 1-4, 1-2, 4-5

respectively.

4.3.2 Hough Transform Application

The slope-intercept Hough space was employed to analyse the 

global orientation distribution of scanning electron micrographs of 

clay (Costa et al 1991a, 1991b). The calculations were suggested by

the author and made by Costa. The original micrograph, Fig. 4.7a, was 

firstly processed by edge detection as shown in Fig. 4.7b; then a 

Hough transform was used to recognize the straight lines of edges; 

thence the global orientation distribution of particles was expressed 

by summing up the angles of these straight lines and plotting them on 

a polar histogram.

The implementation was based on Eqn 4.7. For easy calculation, 

i.e. to keep the slope of the line, a, smaller than 1 and larger than 

0, the whole slope-intercept space (0° - 180°) was divided into four 

accumulator arrays, where AB̂  = 0° - 45°, AB^ = 135° - 180°,

AB = 45° - 90°, and AB = 90° - 135°, each with dimension N x {N +1),3 4 a b
where the image size is (N+l )x(AH-l). Then taking AA = 1/N , AB =a
2N/N , for every edge element (x,y) in the image, do:b
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For a = 0  —  N -11 a
b = (y - xa^AA + N)/AB

AB (a ,b ) = AB (a ,b ) + 1 i l l  i l l (4.7a)

For a = 1 —  N2 a
b2 = (y + xa^AA)/AB

AB (a ,b ) = AB (a ,b ) + 1 2 2 2 2 2 2 (4.7b)

For a = 1 —  N3 a
b3 = (x - ya^AA + N)/AB

j4B (a , b ) = 4B (a , b ) + 13 3 3 3 3 3 (4.7c)

For a = 0  —  W -1 4 a
b = (x + ya A/D/AB4 4
4 B(a,b) = AB (a , b ) + 14 4 4 4 4 4 (4.7d)

The slope (4) and intercept (B) of confirmed straight lines can

be obtained from the corresponding peak coordinates, (a ,k bj, by

using the appropriate expression below (e.g. if the peak is in AB ,k
use equ. 4.8 a and 4.8 b and so on).

A = a A4k (4.8a)

B = b AB - Nl (4.8b)

A = -a AA k (4.8c)

B = b AB
2

(4.8d)

A = l/(akAA) (4.8e)

B = -Ab AB - N
3

(4.8f)

A = -1/(a AA)k (4.8g)

B = -Ab AB4 (4.8h)

In the present Hough transform implementation, due to the high
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amount of noise in the edge detected image, the image has been 

segmented in squares of equal sizes, N , in order to reduce thesg
amount of false detected lines and the overall execution time. As each 

of these segments is treated separately (independent accumulator 

arrays), line segments with length larger than N pixels maysq
contribute with more than one vote to the histogram, which is in fact 

a desirable operation: the votes in the histogram will be linearly

weighted by the length of the respective line segments.

In the analysis, the Hough transform has been performed with the 

following parameters:

N = 64a
N = 64b
N = 32sg
maximum gap in the line segments = 1 pixel 

minimum line length = 8 pixels

threshold for peak detection (accumulator array) = 8

Fig. 4.7c depicts the detected line segments after using the Hough

transform, and the respective histogram for the orientations of the 

detected line segments is given in Fig. 4.10.

From Fig. 4.7c, it can be seen that the straight lines in the

image have been detected, and that the background noise has been

eliminated. The histograms for the orientations of the lines were

obtained by updating the histogram position indexed by the slope of 

each detected line. The histogram in Fig. 4. 10 shows the orientation 

of the particles focussing attention on the two major directions of 

preferred orientation and a third minor one, which produce much the
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same pattern as shown in Fig 4. 3.

As a comparison, some segmented images, which only contain the 

domains with preferred orientation in a certain direction, have also 

been analysed by the Hough transform. These segmented images were

obtained by the methods of Chapter 3. Fig. 4. 11a is an image with

segmented down-left domains, Fig. 4.lib is the image with detected 

edges, and Fig. 4.11c is the result after the Hough transform.

Fig. 4.lid is the polar histogram of the detected straight line of 

Fig. 4.11c, which gives an orientation exactly the same as the 

direction of the segmentation i.e. around 45°.

4.4 DIRECTED VEIN AND CONVEX HULL

In addition to the methods reviewed above, the cooperation with 

the Department of Electronics and Electrical Engineering has produced 

two other methods to analyse the orientation of the particles within 

the clay micrograph. They are The Directed Vein and Convex Hull

methods. Both of them are based on processing the chain code of the 

particles’ boundaries. Both methods were developed and implemented by 

Lou (Lou et al 1991)

The Directed Vein method smooths the similarly oriented chain 

code, i.e. vein, then finds the turning points of the straightened 

veins. The linking line between two turning points at two ends of the 

straightened veins is obtained as the centre axis of the particle. The 

direction of the axis is taken as the orientation of the particle.

The Convex Hull method finds the enveloping polygon of a particle
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as shown in Fig. 4.12. The direction of the longest diagonal of this 

polygon is taken as the orientation of the particle.

Fig. 4.13a shows an example of applying the Directed Vein to a

scanning electron micrograph of clay. The particles are shown in

outline, and the directed veins are shown by straight lines. Most

orientations appear to have been correctly found. Fig. 4.13b is a 

polar histogram of the directed veins, which gives a global 

orientation distribution comparable with those given by the methods 

described in the previous two sections. The results from the Convex 

Hull method were also broadly similar.

4.5 CONCLUSIONS

Unitt introduced the polar histogram of intensity gradient angles 

to indicate the global orientation distribution of a micrograph. A 

comparison of the weighted and unweighted polar histograms based on an 

improved intensity gradient calculation has been made here and 

suggests that the weighted polar histogram may give a more distinct

directional distribution. By using the directional data statistics 

method, the orientation information has been enhanced, thereby giving 

a more obvious polar histogram and throwing attention on to 

sub-parallel domains. These sub-parallel domains could be segmented 

following the directions of the main sub-peaks obtained by the 

Enhanced Orientation Analysis; this segmentation is called Enhanced 

Orientation Mapping. Local porosity analysis following these methods 

showed the relationship between the local porosity and the local 

orientation of the particles. The other methods of analysing global 

orientation distribution include Hough transform, Directed Vein, and
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Convex Hull, all of which gave polar histograms which were comparable 

to those obtained from the intensity gradient methods. In order to get 

better results from these methods, the author suggests using skeletons 

of particles (see Chapter 5) instead of edges in the methods of Hough 

transform and Directed Vein.
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A

B

Fig. 4.1 Unitt*s polar histogram shows the global orientation 
distribution of a scanning electron micrograph of clay 
(Unitt 1976).
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Fig. 4.2 Backscattered scanning electron micrograph of 
sheared kaolin



Chapter 4 Global Orientation Analysis 100

B

E

/
7/

Fig. 4.3 Polar histograms calculated for Fig. 3.1a
a) unweighted histogram of angle of intensity gradient,
b) weighted version of (a),
c) unweighted histogram of mean direction,
d) weighted version of (c),
e) Average magnitude of mean direction vector,
f) Histogram of Consistency Ratio.
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Fig. 4.4 a) Particle with sharp edges,
b) histogram of angles for (a),
c) particle with one diffuse edge,
d) histogram of angles for (c).
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Fig. 4.5 Polar histograms calculated for Fig. 3.1a.
a) unweighted histogram of angle of intensity gradient,
b) weighted version of (a),
c) unweighted histogram of mean direction,
d) weighted version of (c),
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Fig. 4.6 Polar histogram of porosity of the image in Fig. 3.1a.
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Fig. 4.7 a) Original image of a clay sample,
b) detected edges of (a),
c) detected straight line segments after Hough

transform (Costa et al 1991a).
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Fig. 4.8 a) x-y plane, (b) Hough a-b parameter space.

X

Fig. 4.9 a) Normal representation 
of a line,

b) five point image,
c) Hough p-0 parameter 

space.

Y AXIS
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Fig. 4.10 The polar histogram for the orientation distribution 
of the straight line segmentas in the image of 
Fig. 4.5a (Costa et al 1991a).
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d)

Fig. 4.11 Processing of the image coresponding to the domains 
with preferred orientation of 45° (Costa et al 1991b),

a) original picture,
b) detected edges,
c) reconstruction of (b) based on the detected straight 

line segments,
d) polar histogram of these straight lines of (c)
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Fig. 4.12 Example of Convex Hull of a particle.
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Fig. 4.13a) Experimental result by Directed Vein method 
(Lou et al 1991).

b) Polar histogram of the directed Vein in Fig. 4.12a 
(Lou et al 1991).
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CHAPTER 5 NON-LINEAR GREYSCALE MORPHOLOGY

5.1 INTRODUCTION

Mathematical morphology is a particular discipline in the field 

of image processing, which has been used to analyse the structures of 

materials in various fields such as mineralogy, petrography, 

angiography, cytology, etc. It was introduced in 1964, when Matheron 

started to investigate the relationships between the geometry of 

porous media and their permeabilities, and Serra was asked to quantify 

the petrography of iron ores in order to predict their milling 

properties. This initial research led to the formation of a team at 

the Paris School of Mines at Fontainebleau, the Centre de Morphologie 

Mathematique, which combined theoretical work with the design of 

practical applications, such as "texture analysis".

One of the basic intuitions of mathematical morphology is that 

the analysis of an image does not reduce to a simple measurement. 

Instead, it relies on a succession of operations which transform the 

image in order to make certain features apparent. These 

transformations mainly include erosion, dilation, opening, closing, 

skeletonization and so on.

Broadly speaking, mathematical morphology is an approach based on 

set-theoretic concepts. It has three aspects: 1) Algebraic, dealing

with image transformation and derived from set-theoretical operations;
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2) Probabilistic, concerning models of random sets applicable to the 

selection of small samples of materials; 3) Integral Geometrical, 

coping with image functions. (Heijmans and Sonse 1990)

A lot of research has been done to investigate the proper 

transforms on black and white (binary) images based on the boundaries 

of the objects. However, for some applications, grey-level 

transformations are needed (v. i. Section 5.2). Meyer (1978) and 

Sternberg (1982) were among the first to extend the mathematical 

morphology to grey-level images. A more thorough discussion, including 

some of the problems which arise if the set of grey-levels is finite, 

can be found in Ronse (1989). Heijmans and Sonse (1990) reviewed the 

previous work done in this field. In this Chapter, Section 5.2 gives 

the general theory and practice of binary morphology; Section 5.3 

describes the development of grey-scale morphology; Sections 5.4, 5.5 

and 5.6 explain the author’s improvement on grey-scale morphology and 

its correction.

5.2 BINARY MORPHOLOGY

Mathematical morphology was first developed for the analysis of 

binary images, and its extension to grey-level images was a later 

development. Harlick et al.(1987) presented a tutorial, which may 

provide a quick understanding for beginning binary mathematical 

morphology. Normally, dilation is a morphological transformation which 

combines structure set B onto object set A by using vector addition of
Nset elements. If A and B are sets in Euclidean N-space (E ) with 

elements a and b respectively, a=(a a ) and b=(b ,...,b ), beingI n  I n
N-tuples of element coordinates, then the dilation of A by B is the 

set of all possible vector sums of pairs of elements, one coming from
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A and one coming from B (Harlick et al. , 1987)

A © B = -|c e EN | c = a+b for some a € A and b € b} « . la>

An example of A © B is shown in Fig. 5.la.

---------  B -------

A A © B

A = {(1,0),(1,1),(1,2),(2,2),(0,3)}

B = {(0,0),(1,0)}

A © B * {(1,0),(1,1),(1,2),(2,2),(0,3)
(2,0),(2,1),(2,2),(3,2),(1,3)}

Fig. 5.la The dilation of A by B

The interpretation can be done in a more convenient way of 

translation. If we define a translation of A by x, which is denoted by 

(A) here x=(l,0) then the translated set is:X

(A)(i Q) = {(2,0),(2,1),(2,2),(3,2),(1,3)}
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(A) (1,0)

A « <(1,0),(1,1),(1,2),(2,2),(0,3)}

x = (1,0)

(A) ( = {(2,0),(2,1),(2,2),(3,2),(1,3)}

Fig. 5.lb The translation of A by x

so the dilation of A by x is simply the union of the translations of A 

by all elements of A to form A © A^, so another way to present 

Equation 5. la as

A © B = U (A) (5.lb)bb

Erosion is a morphological transformation dual to dilation, which

combines two sets using the vector subtraction of set elements. If A

and B are sets in Euclidean N-space, then the erosion of A by B is the 

set of all elements x for which x+b e A for every b € B. (Haralick et 

al 1987 p536)

A © B  = « | x € E N | x+b € A for every b € B j- (5.2a)

An example of A © B is shown in Fig. 5.2a.
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B

A A © B

A = {(1,1),(2,1),(3,1),(4,1),(5,1),(6,1),(2,2),(2,3),(2,4),(2,5)} 

B = {(0,0),(1,0)}

A © B = {(0,1), (1,1), (2,1), (3,1),(4,1)}

Fig. 5.2a The erosion of A by B

This can be interpreted in a more convenient way of translation. If we 

define a translation of A by -x, which is denoted as (A) here
-X

x = (1,0) then

(A) (i o)={(0,l),(1,1), (2,1), (3,1), (4,1), (5,1), (1,2), (1,3), (1,4),(1,5)}

(A)-(1 ,0 )

A={(1,1),(2,1),(3,1), (4,1), (5,1), (6,1), (2,2), (2,3), (2,4),(2,5)} 

x=(1, 0)

(A)(i o) ={(°. 1}» (1.1)» (2,1), (3» D. (4, 1]. (S, 1). (1,2), U,3), (1,4), (1,5)}

Fig. 5.2b The translation of A by -x
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so the erosion of A by x can be expressed simply as the translations 

of A by all elements of A to form A © A so another way to present-x -x
Equation 5.2a could be:

A © B * n (5.2b)i i -bb

Further, A dilated by B following erosion by B gives a closing by 

B; and A eroded by B following dilation by B gives an opening by B. 

And several erosions on A by B (unless it would destroy connectivity 

of A) may yield the medial axis of A, i.e. the skeleton, which is 

given as an example in this section.

In the author’s practice, the structure elements, B, are normally 

circles with different radii, so the transformations of dilation and 

erosion are equivalent, respectively, to adding or removing a layer 

all around an object as shown in Fig. 5.3.

However, none of these transformations discussed above can be 

performed on the real images, unless the grey-level images have first 

been converted into binary images. Normally, the conversion could be 

done by choosing a threshold; the simplest threshold is a certain grey 

value. In an image, if the grey values of the pixels are larger than 

the threshold, then they will be turned to white (value of 255); and 

if the grey values of the pixels are smaller than the threshold, then 

they will be turned to black (value of 0). This conversion may either 

lose much important information of the original image or alter the 

structural features.

Fig. 5.4 gives an example of binary conversion based on different 

thresholds and then obtaining the skeleton of the object, which has 

two unsymmetrical sides. The third dimension expresses the grey level
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of the object. The threshold is like a section cutting through the 

object in the horizontal; different thresholds result in different 

sizes of the binary area Fig. 5.4b and 5.4c. At the end of the 

process, the skeleton of the object will move towards the steep side 

of the object parallelly when the threshold is higher, Fig. 5.4d and 

5. 4e.

Fig. 5.5 is another example of doing the same operations on an 

object which has unsymmetrical ends Fig. 5.5a. The different 

thresholds give different shapes of binary areas Fig. 5.5b and 5.5c, 

which then cause the skeleton to turn in direction Fig. 5.5d and 5.5e.

From the above analysis, the simple grey level threshold not only 

moves the binary area of the object and its skeleton but also changes 

the direction of the skeleton. Adaptive thresholding can be used to 

solve these problems; however, in order to fully use the original 

information, greyscale morphology, which will not need the stage of 

converting to a binary image, has recently been developed. The 

morphological transformations of erosion and dilation can be performed 

on the original grey level image itself.

5.3 PREVIOUS GREYSCALE MORPHOLOGY

Greyscale morphological image processing originally treated the 

grey level function as sets or piles of binary cross sections 

(thresholds) and processing was based on a stereological approach in 

which cross sections were transformed individually or in pairs. This 

approach was later called "decomposition" of greyscale morphological 

structure elements. Different morphological structure elements were 

used separately, then the maximum value of the whole was chosen for
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dilation, and the minimum value of the whole was chosen for erosion 

(Shih & Mitchell 1991).

Dyer and Rosenfeld (1979) developed an algorithm for grey level 

images that is a generalization of the standard thinning algorithms 

for binary images. In their algorithm, two points are connected if and 

only if the grey value of any element along the path that connects 

them is not less than both of them. This method defines the boundary 

point in a grey level image according to the grey level values of its 

neighbourhood, and then thins the image in a parallel mode, by 

substituting each boundary element with its minimum neighbour. Salari 

and Siy (1984) improved this approach and developed Ridge-Seeking of 

the object to obtain the skeleton of grey level images. This method 

requires that the pixels with grey values below a certain threshold 

are set to zero. A 3x3 pixels window is used to process the central 

pixel, NO, Fig. 5.6.

N4 N3 N2

N5 NO N1

N6 N7 N8 ’

Fig. 5.6 Pixel NO and its eight neighbours.

NO will be removed (changed to zero) if the following conditions are 

satisfied:

1) NO is a boundary point (boundary obtained from the threshold);

2) NO is not a local maximum point (not strictly greater than its 

neighbours);

3) NO is not an end point (has more than one 4-neighbour 

nonzero);
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4) NO’s removal does not change the connectedness of its 

neighbours;

5) NO’s removal does not weaken the strength of the 

4-connectedness.

Other earlier methods of skeletonization of digital grey level 

images had been proposed. Levi and Montanari (1970) obtained the grey 

weighted distance transform (GWDT) of the image by associating to each 

point the length of the minimal path from that point to the 

background. The skeleton points are those that do not belong to the 

minimal path of any other points to the background. This method 

requires the digital picture to be segmented into black (background = 

zero) and white (object = non-zero).

Another approach called the min-max medial axis transformation 

(MMMAT) is based on the generalization of shrinking and expanding 

operations for grey level images (Peleg and Rosenfeld 1981). Local 

minimum and local maximum operations in a grey level image correspond 

to erosion and dilation operations of the binary picture, respectively 

(Nakagawa and Rosenfeld 1978).

5.4 NON-LINEAR STRUCTURE FUNCTION

Heijmans and Ronse (1990) gave the underlying 

grey-scale morphology as: if A and B are sets in Euclidean 

then dilation and erosion are:

(A © B)(x ) = sup ( A(x-h) + B(h) ) (5.3)
h€E

theory of 

space (EN),

(A e B)(x) = inf ( A(x+h) - B(h) )
h€E

(5.4)
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Here, A(x) is the function on which the dilation and erosion are 

operated and B(x) is the structure function. The operations are shown 

in Fig. 5. 7.

However, all the previous greyscale morphology has been based on 

a linear structure element B. Even though the object set A has been 

extended from a binary image to a grey level image described by A(x), 

and the structure element has been improved to the structure function 

B(x), this structure function is always the same over the whole image, 

for example see Fig. 5.7.

For some real images, such as the scanning electron micrographs 

of soil on which the author operates, the edges of the particles are 

very fuzzy, or for some reasons quite a few of the particles have grey 

values much lower than that which had been expected. In this research, 

these fuzzy and quite dark small particles are sometimes really 

important and cannot be ignored. In this case, it will be difficult to 

get the correct result by using binary morphological transformations 

after grey value thresholding. In order to transform equally on all 

the edges of both brighter or darker particles, greyscale 

morphological transformations have been chosen in this research.

However, in the work done by Heijmans and Sonse (1990), Fig. 5.7, 

if A(x) is supposed to be the profile of a particle, and B(x) is 

supposed to be the structure function for the transformation, then the 

void could be filled up or become very unclear after dilation, and the 

particles could be taken off or become very unclear after erosion. 

This guides the author to give a further consideration to the 

structure function B(x). The linear structure function should be



Chapter 5 Non-Linear Greyscale Morphology 120

replaced by a non-linear structure function, so that the steep edges 

will be eroded and dilated more than the gentle edges, and for the top 

parts of the particles and the bottom parts of the voids the 

transforms will be affected only a little.

The idea of choosing the magnitude of the intensity gradient at 

each pixel of the image as the structure function of non-linear 

greyscale morphology arose from the above analysis. The author also 

considered using lap I i.e. I = f (J , mod grad I, lap I), butn e w  old

the use of mod grad I alone was sufficient for the work described 

below. Because the gradient of the grey level is just in accord with 

the demands of the structure function which the author wants, the 

steep edges have bigger gradients and gentle edges have smaller 

gradients. Therefore, when eroding the steeper edges, the grey value 

will be decreased more and the edge will be cut back more; on the 

gentle edges, the grey value will be decreased less; and the on flat 

top areas of particles or the flat bottom areas of voids, having

gradient values of zero, the grey value will be unaltered and the 

erosion will not operate. When doing dilation on the steep edges, the 

grey value will be increased more, and the edge will be expanded more; 

on the gentle edges, the grey value will be increased less and the 

edge will be expanded less. Fig. 5.8 illustrates erosion and dilation

operating on a profile of the feature in Fig. 5.4. The structure

function, gradient is calculated as:

U(i) = I (i) - I(i-i), (5.5)

where, Ud) is the value of structure function, i.e. the gradient, 

at point i,

Id) is the grey value at point i.
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So the transformed grey values of I(i) are:

erosion: I (i) =  1(1) - .kU(i); (5.6)e

dilation: I (i) =  I d )  + k U d ) . (5.7)d

Where I (l): the eroded result,e

I (l): the dilated result,d

k: the fraction of transformation.

Note, only absolute value of U(i) had been used here.

Fig. 5.8a is a profile of the feature in Fig. 5.4a; Fig. 5.8b

shows the gradient values on the profile; Figs. 5.8c and 5.8d are the

eroded results and dilated results compared with the broken line of 

the original profile respectively, with fraction value of 1 in

eqn. 5.7.

For a two-dimensional image, I, the grey level of each pixel is 

the third dimension I(i,j). The 20,14-formula (Smart and Tovey 1988) 

for calculating the intensity gradient at each pixel has been employed 

here (see Section 3.2). The coefficients for calculating dx and dy are 

shown in Equations (3.5) and (3.6) respectively: and the

two-dimensional gradient U(i,j) can be calculated as:

(5.8)

So, the transformed grey values of Id, j) equal:

erosion: I (i,j) = I(i,j) - kU(i,j) (5.9)e
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dilation: I (i,j) = I(i,j) + icU(l,j) (5.10)d

A series of operations of two-dimensional grey-level erosions and 
dilations have been carried out on the same feature as Fig. 5.4. and

an illustrated in Fig. 5.9. This figure shows three photographs of the

screen at successive stages of the process. In each photograph, the 

original image is shown at top left and the original ’grey scale

cross-section’ at top right. The partly transformed result after a few

cycles of erosion is shown at centre left; and the successive 

cross-sections are shown at centre right. The partly transformed 

result and the corresponding cross-sections after several more cycles 

are show at the bottom.

5.5 THE CUBIC CURVE CORRECTION

Sampling and digitizing real images often reduce the quality of 

the images, since the particles are not bright enough (it was hoped 

that features have grey value of 255 at the top), and the voids are 

not dark enough (it was hoped that features have grey value of 0 at 

the bottom). After normal greyscale transformation, the contrast will 

stay the same or even smaller than before. There are many existing 

methods to increase the contrast of images. In the author’s

experiment, it was desired to increase the contrast whilst keeping the

basic structure of the image, so the cubic curve correction has 

therefore been employed in this work.

In Fig. 5. 10, the X axis shows the grey value, x, before

correction, and the Y axis shows the grey value, y, after correction.
3 2By using the cubic curve correction, y=ax +bx +cx, the grey value will
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be increased when it is bigger than a certain value, t; and the grey 

value will be decreased when it is smaller than t; at the point of 

(t,t) the value will be unaltered by the correction. The maximum 

value, m, which equals 255, is not changed after correction; and the 

minimum value, which equals 0, is not changed either. These conditions 

may be expressed explicitly as:

thus x = 0 y = 0;

x < t  0 < y < x ;

x = t y = t;

x > t  x < y < m ;

x = m y = m.

3 2So for the curve y = ax + bx + cx (5.11)

has: f m = am3 + bm2 + cm

{ t = at3 + bt2 + ct

or 3 2am + bm + (c-l)m = 0

at3 + bt2 + (c-l)t = 0

2therefore: { am t + bmt + (c-l)t = 0

{ 2at m + btm + (c-l)m = 0

so: amt(m-t) + (c-l)(t-m) = 0

(5.12)
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c * m 2 + b m  + (c-1) = 0mt

m+tbm = (1-c) t

(1-c)(m+t)

Now the curve become:

c-1 3 (m+t)(c-1) 2y = ---—  x -  r  x + cxJ mt mt

with t and c to be determined.

Combining the cubic curve correction. Equation. (5.14), 

grey level transformation of Equations (5.11 and 5.12):

I (i,j)=I(i,j) - kU(i,j)e
I (i,j)=I(i,j) + M J u . j )d

the correction of the transformed image is:

T * c -1 f_ ... n 3 ( m + t ) ( c - l ) / T ... \2I Ci,J) = — T— (Id,j)-kU(i,j)J -  -r (1(1,j)-kU(i,j)J +

+ c(ld, j)-kU(i, j))

1 (i,J) =  - S ^ - ( l d .  J)+kU(i,j))3- ( m + t ^ -C-~ 1 j ( l (i,J) + M J (l, j))2 +

(5.13)

(5.14)

with the

(5.17)

+ c(ld, j)+kU(i, j)) (5.18)
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where I (i,j), I (i,j) are the grey values after erosion and dilation,e d
> >

I (i,j), I (i,j) are the grey values after cubic curvee d

correction.

In the cubic curve correction, there are still two independent 

parameters, t and c; and it will be necessary to adjust these to suit 

the images which are to be processed. Here follows a simple example to 

choose one normal set of parameters. First the author set

t = m/2

then (5.14) becomes:

2(c-l) 3 3 . . .  2y = ---- —  x ----- (c-1 )x + cx2 mm

Now consider: x » m/4

3c+5
y = 32

Now for x = m/4 < t, we require y < x = m/4

3c+5 m 8so: y = — :jg- m < —  = -32- m

therefore:

c < 1

For this example considered above the parameters have been set as:

c = 0.5 

t = m/2 

m = 255
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finally, the cubic curve correction with this set of parameter become:

3 0 2x 3x x re
y -------- ""2m ~2~ (5'19)m

This curve is plotted in Fig. 5.10a. Finally, correcting eroded and 

dilated images respectively:

I3 < i,J) 3I2 < i, j) I (i,j)
I« (1,J> =  + 2̂1 + °~2. ( 5 -20)m

I  ( i , j >  =a

-3i (i,j}a

m

3I“(i,j)a
2m (5.21)

5.6 LOOK-UP-TABLE AND PRACTICE

In practice, grey scale morphological transformation of images 

means evaluating formulae 5. 17 and 5. 18 for each pixel. Direct 

calculation would take a very long time to do only one transform. In 

the author’s code, a Look Up Table of grey value against intensity 

gradient was used. The third dimension, Z, is the grey value of the 

pixel after transformation, X is the original grey value, and Y is the 

intensity gradient. Fig. 5. 11 shows the Erosion Look Up Table, which 

was used for Fig. 5. 12. For the scanning electron micrograph of clay 

in Fig. 5. 12a, the parameters have been set as:
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So, the formula used for this process is:

I e (i,J) = “ î“ (I( i’j)“ 5_U(i,J) 3 — liir(I( i’J)~ _̂U(i»j}) 2+m

+ — U(i,j)) (5.22)

>

In the author’s code when I is larger than 255, it is put equale>
to 255; and when I is smaller than 0, it is put equal to 0. So whene

U(i,j) equals 0, the correction curve is as shown in Fig. 5.10b.

Fig. 5.12 shows an example of the process of skeletonization. 

Fig. 5.12a is a scanning electron micrograph of clay with 2,000x 

magnification. Fig. 5.12b is an early stage of skeletonization, at 

which the program has picked up the particles which need to be

processed, and some very fine particles have been skeletonized. 

Fig. 5.12c shows a mild stage of skeletonization, at which the 

mid-size particles have been skeletonized as well. Fig. 5.12d shows a 

late stage of skeletonization, at which most of the particles have

been skeletonized, and only a few very large particles still need to 

be skeletonized. Fig. 5.12e is the final stage of the process, which

is the skeleton of the micrograph shown in Fig. 5. 12a. From the whole

process, we can see that, when the thin particles have been eroded 

into single lines, the erosion will not affect these skeletons any 

more; the erosion will act only on the fat particles, until they have 

been skeletonized too.

In Fig. 5.12e, the skeletons sometimes are bent, caused by 

joining of the ends of two particles lying in different directions; or
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sometimes for one particle, the skeleton may become discontinuous 

because of variability of the grey level on the ridge of the particle. 

However, all these minor problems can be easily solved by other image 

analysis methods, such as the Hough transform which was discussed in 

Chapter 4.

5.7 CONCLUSION

This new algorithm of non-linear greyscale morphology has been

proved both in theory and in practice; it evades one of the most

difficult stages in image processing, i.e. converting to a binary

image. It treats particles of different brightness and different size

particles equally. This method not only extends the operation from 

binary image to greyscale image; but it also employs the non-linear 

structure function for transformation and combines this with the cubic 

curve correction. Although there are some parameters which need to be 

set according to the characteristics of different images, the 

calculations which has been made in this research have given a very 

successful result in Fig. 5. 12.

There are many methods of improving the skeleton of the images. 

It could be possible, for example, Hough transform could be used both 

to join two lines in the same direction with one pixel gap in between, 

and to cut the joinpoint of lines in different directions. The 

simplest method of cutting the joinpoint is to measure whether there 

are more than two neighbour points in the 3x3 mask not lying on the 

same line, while the middle point is lying on a line.

There are some further applications which could be made. The 

immediate application of this algorithm is using the skeletonized
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image for the Hough transform and the Method of Veins (Chapter 4) 

instead of using the edges of particles, and this will give a much 

more accurate result. Also the skeletonized image can be used to count 

isolated points, the ends of particles, and the Joins of particles, in 

order to classify the images. And the skeleton of voids can be easily 

obtained to analyse the distribution of the voids. The main further 

application of the skeletons could be used to study the microstructure 

of individual particles such as length and size distribution, contact 

angle, and orientation.

In the course of these experiments, it was noted that, by taking 

a proper choice of parameters, either Equation 5.14, or Equation 5.20 

could be arranged to produce a black-and -white image. This might 

be a new way of converting to a binary image. This binary image 

could then be used to do a lot of analysis, such as analyzing the void 

ratio of the image.
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Fig. 5.3 a) Binary transform of erosion

b) Binary transform of dilation
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\oo -soo

20 4 0 60 BO 20 4 0 6 0

Fig. 5.4 a) Feature with unsymmetrical sides;
b) feature has been cut by choosing grey level threshold of 200;
c) feature has been cut by choosing grey level threshold of 100;
d) transformed binary feature and its skeleton

after process of (b);
e) transformed binary feature and its skeleton

after process of (c).
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Fig. 5.5 a) Feature with unsymmetrical sides;
b) feature has been cut by choosing grey level threshold of 200;
c) feature has been cut by choosing grey level threshold of 100;
d) transformed binary feature and its skeleton

after process of (b);
e) transformed binary feature and its skeleton

after process of (c).
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I______ I

A©B

A©B

Fig. 5.7 Dilation and erosion of a function A(x) by a structure 
function B(x) (Heijmans & Ronse 1990).
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b)

c)

d)

Fig.

300

200

100

0
30 5010 20 40 100

40

20

0

-20

-60
0 10 20 30 40 50 60 70 60 90 100

300

200

100

00 10 20 30 40 50 60 100

300

200

100

100 90 50 6040 100

5.8a) One cross section of the feature in Fig 5.4;
b) gradient value at each point of (a);
c) result of eroded transform;
d) result of dilated transform.
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Fig. 5.9 Process of two-dimensional erosion on the feature in 
Fig. 5.4, left: the image; right: successive cross- 
section of the image; top: at start; below: after 
repeated erosion.
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Grey value before cubic correction 

.10a Cubic correction curve with t=m/2; m=255; and c=0.5.
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Grey value before cubic correction

Fig. 5.10b Cubic correction curve with t=m/4; m=255; and c-O.5.



Chapter 5 Non-Linear Greyscale Morphology 137

Fig. 5.11 Erosion Look Up Table.
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Fig. 5.12 The process of skeletonization from a through b,
c, d, to e.
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CHAPTER 6 PARALLEL PROCESSING —  PRINCIPLES

6.1 INTRODUCTION

PARALLELISM —  many processors working together, all 

simultaneously executing some portions of a procedure for solving a 

problem.

Instead of using a single processor which does one operation 

after another in sequence, the idea of dividing one computing task 

into subtasks, which need not be executed sequentially but could be 

executed simultaneously in parallel, has been around for at least 40 

years. However, many reasons hindered the development of parallel 

computing.

Over the last few years, in particular by using transputers, the 

parallel approach has established itself as one of the best ways to 

make computers fast enough and powerful enough to satisfy the demands 

of scientists and engineers.

6.2. LEVEL OF PARALLELISM

To realize parallelism, first the task has to be divided into 

subtasks according to:

1) what kind of problem needs to be solved;
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2) what kind of algorithms will be applied;

3) what kind of data will be dealt with;

4) what kind of machine will implement the work.

There are many ways of separating the subtasks. Mainly there are four 

levels of parallelism (Hockney and Jesshope 1988, Crichlow 1988):

1) job level:

a) between jobs;

b) between phases of job;

2) program level:

a) between parts of program;

b) between different parts of data;

3) instruction level:

a) between phases of instruction execution;

4) arithmetic and bit level:

a) bit-serial;

b) bit-parallel.

At the highest level, the aim of a computer installation is to 

maximise the rate of processing of jobs. In the simplest analysis, 

each job may be considered as being divided into several sequential 

phases, each of which requires a different system program and system 

resources; the main requirement of computer architecture in allowing 

parallelism at job level is to provide a correctly balanced set of 

replicated resources. For example, any large computer installation 

provides several I/O channels or peripheral processors which can 

perform I/O in parallel with program execution, and provides a battery 

of disc and tape drives.

Within a program, there may be sections of code that are 

independent of each other and could be executed in parallel on
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different processors in a multiprocessor environment. Some sections of 

independent code can be recognized from a logical analysis of the 

source code, but others will be data-dependent and therefore not known 

until the program is executed. In another case, executions on 

different parts of a data array may be independent of each other, even 

though different routes are taken through conditional statements 

contained in the code. In this case, each microprocessor can be given 

the full code, and as many parts of the data array as there are 

microprocessors can be passed in parallel through the code. These 

alternative methods of parallelism may be called program-structure 

parallelism and data-structure parallelism respectively.

Instruction parallelism is a lower level of parallelism; the 

processing of any instruction may be divided into several 

suboperations, and pipelining may be used to overlap the different 

suboperations on different instructions. Some FORTRAN compilers have 

been produced which can replace a DO-loop by one or several vector or 

array instructions and can therefore be executed much more effectively 

by machine instructions on suitable machines. The architectural 

features needed are then either pipelined vector computers (e.g. CYBER 

205 and CRAY-1) or replicated processing elements in the case of the 

array processor (e.g. ICL DAP and BSP> Hockney and Jesshope 1988).

At the lowest level, ordinary CPUs process bits in the 

bit-parallel mode, i.e. they process all the bits of a number 

simultaneously; for example, they use 32 bits in 80386 PCs; 32 bits in 

the T800 transputer; and 32 bits in the ICL 3980 mainframe. However, 

special hardware is also used. Arithmetic processors have been 

designed either to perform the arithmetic in a bit-serial mode or in a 

bit-parallel mode. Both these types of processors can be arranged in
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parallel. If for example, the memory is regarded as a two-dimensional 

array of bits holding one set of numbers with all the bits for one 

number stored in one row, then the bit-serial mode reads vertical 

slices of bits and processes all the first bits of the set of numbers 

simultaneously, then all the second bits, and so on. Such are the ICL 

DAP and STARAN machines. Conversely, the bit-parallel mode reads a 

horizontal slice of bits, i.e. all the bits for the first number: such 

are the CDC 7600 and CRAY-1 machines. For array processing, the new 

DAP 500 and DAP 600 have, respectively, 1024 Processor Elements (PEs) 

and 4096 PEs arrayed in a square array of 32*32 or 64*64, each with a 

one-bit wide memory below it, thus giving a cuboid of memory Fig. 6.1. 

Memory addresses are common to all PEs (processor elements), so in a 

given instruction, each PE accesses a bit of memory at the same memory 

address; that is to say a complete ’plane’ of memory is being accessed 

at the same time. Generally, each data item is held in the memory of a 

particular processor, with successive bits of each data item occupying 

successively addressed locations. Thus, a matrix of 16 bit values, for 

example, occupies 16 consecutive bit-planes of the memory. Some 

instructions provide access to one row of memory (corresponding to one 

row of PEs), or to one word of memory (32 consecutive bits in a row), 

selected from a memory plane (Hunt 1989).

6.3 ARCHITECTURE OF PARALLEL SYSTEM

The style of parallelism is very much dependent on the 

architecture of the parallel machine which is used for the work. A 

wide variety of different parallel architectures exists. It is very 

difficult to classify these designs. Some well established 

architectures, particularly the highly successful pipelined computers, 

may not fit into any simple class, or may fit equally well into
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several classes. Hockney and Jesshope gave classification as below 

(1988):

1) SISD —  single instruction stream/single data stream.

This is the conventional serial computer in which there is one 

stream of instructions (and therefore, in practice, only one 

instruction processing unit) and each arithmetical instruction 

initiates one arithmetical operation, leading to a single data stream 

of logically related arguments and results. It is irrelevant whether 

pipelining is used to speed up the processing of instructions or the 

arithmetic. It is what have previously been called a serial scalar 

computer. Examples are: CDC 6600 (unpipelined); CDC 7600 (pipelined

arithmetic); AMDAHL 470V/6 (pipelined instruction processing).

2) SIMD —  single instruction stream/multiple data stream.

This is a computer that retains a single stream of instructions 

but has vector instructions that initiate many operations. Each 

element of the vector is regarded as a member of a separate data 

stream, hence, excepting the degenerate case of vectors of length one, 

there are multiple data streams. This classification therefore 

includes all machines with vector instructions. Again it is irrelevant 

whether the capability of vector processing is realised by pipelining 

or by building arrays of processors. Examples: CRAY-1 (pipelined

vector computer); ILLIAC IV (processor array); ICL DAP (processor 

array); OMEN-64 (processor array).

3) MISD —  multiple instruction stream/single data stream.

This class includes specialised streaming organizations using 

multiple instruction streams on a single sequence of data.
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4) MIMD —  multiple instruction stream/multiple data stream.

Multiple instruction streams imply the existence of several 

instruction processing units and therefore necessarily several data 

streams. This class therefore includes all forms of multiprocessor 

configurations, from linked main-frame computers to large arrays of 

microprocessors.

Over all these different parallel computers, there are two main 

techniques for introducing parallelism into computer hardware: 

replication and pipelining (Hockney and Jesshope 1988). Pipelining can 

be considered as replication which has been made possible through 

sequence, as each component of replication in a pipeline follows 

another in time. The difference between pipelining and array 

replication is that the parallel component operations of a pipeline 

are quite likely to perform different tasks, which when performed in 

sequence make up the operation required. Fig.6.2 illustrates the 

different ways of performing an arithmetic operation on serial, 

pipelined and replication array architectures. As an example, solving 

the problem of adding two floating-point vectors x̂  and y 

(i=l, 2,. . . , n) to obtain the sum vector = x̂  + y (i=l, 2,. . . , n).

The operation of adding any pair of the above elements may be divided 

into four sub-operations: compare exponents; shift; add; normalise.

Pipelined operations are performed by overlapping their simpler 

component operations using parallel hardware. This is performed such 

that at any given time, component parts of a sequence of operations 

are being processed in the pipeline. In this way, a single operation 

will share the pipeline with a number of other operations as it 

progresses through the various stages. Pipelining is an attractive 

form of parallelism, because pipelining does not create the same
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communications problems found using array replication. A pipeline is 

designed to reflect the natural data flow of the operation being 

performed. After more than thirty years development, there are highly 

successful pipelined supercomputers: such as CRAY X-MP and CRAY-2; CDC 

CYBER 205 and ETA. These super computers are pipeline systems with 

shared memory, Fig. 6.3a. The transputer formed pipeline system is a 

pipeline system with foertf distributed memory, Fig 6.3b.

Although it is attractive, pipelining alone will not achieve the 

goal of unlimited computing power, which has motivated the use of 

parallelism in computer systems. This will only come about through the 

use of array replication, or indeed the use of both pipelining and 

array replication (Hockney and Jesshope 1988). The array replication 

will utilise either a fixed network (Fig. 6.4a) or a programmable 

connection network to reflect data flow (Fig. 6.4b). In the first 

case, the network may not necessarily reflect the data flow required 

in the operations being performed, because each processor has its own 

memory. Therefore, communication may be needed between the processors 

in some cases, but it is usually very minor (For an example of the 

author’s system see Section 7.3.3). In the latter case, Fig. 6.4b, 

although programmable connection is more general, the costs are large, 

because the design is focused on how to switch data between 

processors. Typical array supercomputers are the ICL DAP; the 

Burroughs BSP; the Denelcor HEP; and the latest transputer systems.

6.4 COMMUNICATION WITHIN PARALLEL SYSTEM

In parallel systems, a small number of processors may communicate 

efficiently using bussed systems or shared memory. For a larger number 

of processors, the inherent sequentiality of these communication
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methods produces bottlenecks. The designer is then forced to consider 

systems in which data is switched between processors. This switch can 

take place either in a fixed network, in which distances grow with the 

number of processors, or in a programmable connection network, in 

which the costs follow a square law. The theory and construction of 

switch networks are fundamental to the success of large-scale 

parallelism, which has now become feasible through the exploitation of 

Very Large Scale Integration (VLSI) technology. Large scale 

replication is not viable unless connections can be established either 

between processors or between processors and memory in a programmable 

manner.

The communication can be made in different ways:

1) bus on the same chip between processor and local memory;

2) permanently wired;

3) human controllable hardware links;

4) programmable link switch under electronic control, e.g. the 

INMOS C004 chip;

5) automatic configuration electronic switch, e.g. the Meiko;

6) dynamic reconfigurable electronic switch, for example the 

forthcoming system T9000

6.5 PARALLEL OPERATING SYSTEM

After discussing the level of parallelism used in splitting a 

task and the ways in which the machine will be implemented, the next 

stage is to configure these subtasks onto the multiprocessors. 

Parallel operating systems are designed specifically to exercise the 

parallel hardware features, and to control the execution of parallel 

processing software. The parallel strands within the program have to
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be identified; they must be allocated to available hardware units; and 

their interactions ought to be adequately controlled. Several kinds of 

parallel operating system are discussed below:

1) Master-slave organization

Only one processor, the master, executes the operating system, 

and the other processors operate in a slave mode. The Transputer 

Development System, TDS, which the author used in this work 

belongs to this kind of parallel operating system.

2) Floating supervisor control

All the processors execute the operating system, and the 

supervisor role floats from processor to processor.

3) The distributed operating system

One operating system running in a MIMD machine. Each processor- 

memory node contains a separate copy of the kernel of the 

operating system and they are connected by a harness.
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6.6 PARALLEL LANGUAGE

A parallel language must control the structure of the program and 

provide data to the various parts of it to express the inherent 

parallelism of the problem being tackled. These languages allow the 

specification of different parallel streams of activity within a 

program. They also provide mechanisms for interaction among these 

parallel task.

There are several parallel languages available for writing 

programs, such as Occam, ADA, parallel C, parallel PASCAL, and 

parallel FORTRAN. All these compilers are now becoming widely 

available for transputers. Occam is the language which the author is 

using in this work.

6.7 APPLICATIONS OF TRANSPUTERS

Although many of the principles of parallelism discussed here had 

been implemented in the past either on specialised hardware or on 

expensive supercomputers such as the Cray, the recent development of 

transputers has provided a cheap, efficient, and flexible means of 

bringing parallelism to the ordinary user.

The applications of transputers have developed widely and very 

rapidly. They widely cover Image Processing, Signal Processing, 

Communication, Medical 3-D and 2-D, Remote Sensing, Robotics, 

Real-Time Control, Simulation, Object Recognition and Feature 

Detection, Numerical Techniques, Data processing, etc. Image 

processing deals with huge amount of data (up to 1024*1024 pixel or 

even more). Each pixel sometimes requires hundreds of operations. Real
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time video control needs even faster machines. The transputer provides 

an efficient and powerful system for image processing. The author’s 

implementation of a multi-processor transputer system is described in 

the next Chapter.
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Fig. 6.1 The architecture of DAP 610 (Hunt 1989).
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Fig. 6.2 Comparison of serial, pipelined and array structures 
(Hockney and Jesshope 1988).
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Fig. 6.3 Structure of pipeline processors (Soraghan 1989).
(a) with shared memory.
(b) each processor with its own local memory.
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Switching Network : Dictates the Topology or Connectivity of the Processor Array.

Switching Network ; Dictates the Connectivity of the Processor Array

Fig. 6.4 Structure of array processors (Soraghan 1989).
(a) SIMD mode with fixed connections between 

processors and their local memory
(b) MIMD mode with programmable connections between 

processors and memory.
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CHAPTER 7 PARALLEL PROCESSING —  PRACTICE

7.1 TRANSPUTER, IDS, AND OCCAM

The transputer is a microcomputer on a single chip containing 

processor, memory, and links which provide communication connections 

with other transputers. There are three main series of transputers 

available: T2; T4; and T8; and an improved T9 series is expected soon.

The T2 series of transputers are 16 bit 10 Million Instructions 

Per Second (MIPS) processors with 2 KByte high speed on-chip Random 

Access Memory (RAM), non-multiplexed 20 MByte/sec memory interface, 

and 4 pairs of 20 MByte/sec inter-transputer links. (The exact 

performance depends on the clock speed, which is being increased 

progressively). The T4 series are 32 bit 10 MIPS processors, with 2 

KByte high speed on-chip RAM, 32 bit wide 25 MByte/sec memory 

interface, 4 GByte linear address space, and 4 pairs of 20 MByte/sec 

inter-transputer links. The T8 series are 32 bit 10 MIPS processors, 

with integral 64 bit Floating Point Unit, 4 KByte high speed on-chip 

RAM, sustained performance of 1.5 MFlop/sec, 32 bit wide 25 MByte/sec 

memory interface, configurable on-chip memory controller, and 4 pairs 

of 20 MByte/sec inter-transputer links (INM0S 1987). Commercial 

production of the new INM0S T9000 is expected very soon. It has a 32 

bit integer processor, a 64 bit floating point unit, 16 KBytes of 

cache memory, a communications processor and four high bandwidth
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serial communications links on a single T9000 chip. T9000 transputers 

are expected to be 5 - 10 times faster than T800 transputers are 

today. All kinds of available transputer chips are listed in Table 

7.1. Apart from the early work, which used T414 transputers, T800 

(Fig. 7.1) transputers were used in author’s research (INMOS 1988c).

What distinguishes the INMOS transputer from its competitors is 

that it has been designed to exploit Very Large Scale Integration. 

Like some other recent microprocessors, it has a Reduced Instruction 

Set Computing architecture. The area of silicon that has been saved 

has been used for on-chip RAM and an off-chip external memory 

interface (see Fig. 7.1). The external communications system through 

the links is a direct implementation of the point-to-point 

asynchronous communications required by Occam processes. Thus, 

transputers can be linked together to form multiprocessor networks in 

many ways: the basic structures can be pipeline, tree, and array

structures, see Fig. 7.2. As many transputers as needed can be 

connected together to form a multiprocessor network with a mixture of 

these basic structures within it. In addition, several processes can 

be run in parallel within a single transputer, but at present this is 

done by time-slicing. Another important aspect is that the total 

memory used can be increased as more transputers are incorporated in 

the network.

The reasons for choosing transputers rather than other computing 

machines to implement the present work were:

1) Transputers are quite efficient processors; 32 bit integer 

arithmetic for the T4 series, 32 bit floating arithmetic for the T8 

series.
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2) Transputers have large local memory: the boards installed in the PC 

for this research had 2 MByte memory for each transputer; the 

University’s MEIKO machine has 4 MByte memory for each transputer; 

and the latest Parateck’s Super-memory Transputer Module (TRAM) 

PST204 design has 72 MByte local Dynamic RAM (DRAM). The 

communication of the transputer with its local memory is much 

quicker than communication with global memory would be for the same 

number of processors.

3) A parallel system of linked transputers is flexible. The system can 

have pipeline, array, tree structures; or any combination of these 

as required by the research.

4) A parallel system consisting of transputers is extendable. With 4 

links on each transputer, as many as are in hand can be connected 

together to do more jobs with program-structure parallelism or to 

analyse larger images with data-structure parallelism 

(Section 6.2).

5) Many parallel languages can be used on transputers. The compilers 

are available, and there is no serious programing problem and a 

reasonable degree of portability.

6) Transputers are relatively cheap, typically about $55 for T400’s, 

$108 for T425’s, and $180 for T800’s (all 20 Mhz). The system can 

thus be developed step-by-step according to the economic situation.

7) A transputer system can incorporate other processors; in 

particular, Digital Signal Processors and Vector Processors can be 

inserted into the system if necessary.

Occam is a parallel language which treats concurrence in a

simple, consistent, and formal manner. Occam was developed closely in

conjunction with the transputer, so that the central language features
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have built-in hardware support. The language enables a transputer 

network system to be described as a collection of concurrent processes 

communicating with each other through channels. Once it had been 

decided to use transputers, it was decided to use Occam in the 

author’s research, because Occam and the transputer had been designed 

together, and it was anticipated that programs written in Occam would 

run slightly more quickly than programs written in other languages, 

since the software structure of the language and the hardware 

structure of the processor were closely matched.

Occam programs can be described as a combination of processes. 

There are three primitive processes:

input —  receives a value from a channel, 

assignment —  changes the value of a variable, 

output —  sends a value to a channel.

Processes are combined to form sequential, parallel or 

alternative constructs:

SEQ —  the component processes are executed one after another,

PAR —  the component processes are executed concurrently,

ALT —  whichever component process is ready to communicate first 

is executed first.

The Transputer Development System (TDS) is an integrated 

programming environment developed by INMOS to support the programing 

of transputer networks in Occam. It comprises an integrated editor, 

file manager, compiler, and debugging system. It configures the 

subtasks onto the multiprocessors. It is, however, sometimes difficult 

to use, and consideration is being given to using the alternative
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’Occam Toolset’ for future work.

7.2 HARDWARE SYSTEMS

During the last two years of using parallelism, four versions of 

the system were developed for the work. At the same time, the original 

algorithm was improved, and execution time decreased. Table 7.2 shows 

the Top-contouring running times on different systems.

The Top-contouring algorithm beginning was an inefficient PC 

Fortran version (Table 7.2). It needed 4 hours to run on a NIMBUS 

80386 PC and about half an hour to run on a mainframe to analyse one 

single image. Although the use of a single transputer gave some 

improvement, to speed up the calculation and apply it to a whole set 

of images, parallel processing was chosen for the work to solve the 

problem.

In preparation for the parallel system, a single T414 transputer 

board, IMS B004 IBM PC Add-in Board, was installed inside the NIMBUS, 

on loan from SERC. It enables users to evaluate and demonstrate the 

use of transputers. The board is one of a family of compatible 

evaluation boards containing a 32 bit transputer and standard buffered 

INMOS link connections. The board provides a powerful upgrade to the 

IBM PC XT or AT. A multi-transputer network can be built up by linking 

several boards together. Such a network is easily constructed by 

supplying power to each board from the PC bus, and connecting at least 

one link on each board to another board in the network using the 

cables supplied (INMOS 1987). Before the board can be used with the 

TDS and a PC, link and reset connections need to be made between the
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transputer and the PC bus by plugging in a Link Jumper and a Reset 

Jumper on the edge of the board.

In the first multi-transputer system used for this work Fig. 7.3, 

a four-transputer board, IMS B003 Transputer Evaluation Board, was 

connected as a subsystem to the previous B004 single transputer board, 

which was used as the master transputer (see Fig. 7.3). The subsystem 

connection allows the lower B003 board to be controlled by the B004 

board (when the B004 board is reset, the B003 board is reset at the 

same time). The B003 board enables users to evaluate and demonstrate 

the use of multiple transputers. The four 32 bit transputers on this 

evaluation board make it a very powerful processing tool capable of up 

to 40 MIPS. Each transputers has its own 256 KByte dynamic RAM. The 

four transputers are permanently hard-wired in an array using link 

pairs 2 and 3 (see Fig. 7.3). The other link pairs, 0 and 1, are 

brought to the edge of the board, so that the user can either 

cross-connect them or connect them to other boards.

On the introduction of T800 transputers to this work, the whole 

system was upgraded, Fig. 7.4. The master board was replaced by a 

Transtech TSB04 single transputer board with one T800 rather than the 

T414. The subsystem was replaced by an IMS B008 Motherboard (Fig. 7.5) 

with 4 IMS B404 TRAMs (Fig. 7.6) plugged into it. Each TRAM has one 

IMS T800 transputer, 32 KByte of zero wait-state SRAM, 2 MByte of 

single wait-state DRAM, subsystem controller circuitry, and 

communications via 4 INMOS serial link pairs. The TRAM has 16 active 

pins connecting it to the motherboard slots. Link pairs 1 and 2 from 

each of the TRAM slots are hard wired on the IMS B008, such that the 

TRAMs, when plugged in, form a pipeline of processing elements. (An
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optional break in the middle of this pipeline was not used here. ) The 

remaining links can be ’softwired’ using an INMOS IMS C004, 

programmable link switch, incorporated on the IMS B008. By using the 

C004, an array structure was set up as a secondary communication 

system superimposed on the pipeline. The IMS C004 device is controlled 

by an IMS T212 16-bit transputer. To control the motherboard, the link 

pair 1 of the T212 transputer must be connected with the remaining 

link of the master transputer (link 2). For further details of setting 

up the motherboard see INMOS (1988.d, and 1989.b). Additionally, a 

Transtech Harlequin T800 driven graphics board (Transtech 1988) was 

used at the end of the pipeline for displaying pictures on a secondary 

monitor (Fig. 7.7). The six-transputer network shown in Fig. 7.4, 7.8 

and 7.9 formed the basic PC version parallel system for this research, 

(Appendix A).

At the end of the SERC loan, the work was moved to the Glasgow 

University’s Meiko computer machine. The Meiko computer originally had 

32 T800 transputers which were semi-permanently arranged by the

computer manager into groups called domains. One of these domains, 

called T6G, was based on the NIMBUS system. The system of T6G is shown 

in Fig. 7.10. This is not divided into separate boards as in the PC, 

but dotted lines have been drawn across the diagram to emphasize the 

functional blocks into which the system was divided. All the links

(except the pair for the host) are connected electronically. The

diagram shows the wiring used most often, and it will be seen that

this is identical to that used in Fig. 7.4, except for the numbering

of the links, and for the continuation of the pipe back to the top 

transputer. The MK52 transputer controls a second monitor on which 

images are displayed. Each of the six transputers has 4 MByte memory.
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The T6G domain was usually run from a Sun Workstation with the second

monitor beside it; but it could be run from a terminal attached to the

University’s computing network if it was not necessary to see the 

images. After the main research had been completed, the Meiko was

improved, so that users could set up their own domains when logging

on.

7.3 SOFTWARE SYSTEMS

7.3.1 Introduction

In the author’s image analysis system there are three main 

stages: obtain the image; analyse; and display the result. These three 

stages, in parallel processing terms, are three subtasks, forming the 

basic pipeline structure of the parallel practice, as shown in

Fig. 7.11. These three subtasks are located on three multiprocessor

blocks, which can be seen more clearly in Fig. 7.4, where each PC 

add-in board runs one subtask. Almost all analysis in the T6G six 

transputer domain in the Meiko machine used the same parallel

structure, see Fig. 7.10. (Corresponding to different calculation 

requirements in each stage, The author could design different

multiprocessor blocks and link them in the pipeline, each block 

containing one transputer or more as required).

The top block, in Fig. 7.4 and 7.11 obtains the image, contains a 

single transputer which specifically deals with:

1) the interface with the host, which includes input and output of 

pictures and other data and messages from the host;

2) sending the original picture and messages down to the working block
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and to the display block, and getting results and messages from 

these blocks;

3) summarizing the results which come out of the working block.

In the analysis multiprocessor block, data-structure parallelism 

(see Section 6.2) has been chosen to implement the new algorithms 

developed in this research, because:

1) It is much easier to write the program with every working processor 

executing almost the same code on different portions of data than 

with each processor executing different calculations on the same 

data.

2) For image analysis calculations, which inevitably involve large 

amounts of data calculation, data-structure parallelism often needs 

less time for data transfer than process parallelism.

3) Several of the new algorithms use large filters to scan over the 

image, so in practice each transputer must receive all of its data 

before it can begin work.

4) When using data-structure parallelism, it is easy to extend the 

program to include additional stages of programing.

5) Data-structure parallelism places equal loads on the working 

transputers, whereas program-structure parallelism would load them 

unequally, so some of the working transputers would then be idle 

for some of the time.

The lowest block is a graphics board, which is set up to display 

any image which is sent to it.
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7.3.2 Data-structure Parallelism

Currently, each image data array has been divided into four 

quarters or tiles (Fig. 7.13). Each quarter of the data array was

mapped onto one of the four transputers at the corresponding position 

in the analysis multiprocessor block (Fig. 7.15). Two problems which 

then arose are discussed in the next two paragraphs.

Before deciding to divide the image into tiles, consideration was 

given to dividing it into horizontal strips (Fig. 7.13). Some of the 

algorithms use large filters of 20-30 pixels radius for the later 

stages of the calculation. Before using these filters, the results 

from the previous stages are ’swapped* along the internal borders 

between the working transputers. (Later, the author will show how to 

eliminate swapping in ’production’ versions of the code; but the use 

of swapping makes it easier to write code when testing new

algorithms. )

Many image analysers leave unprocessed borders around the edges 

of the image, the width being equal to the radius of the filter. When 

large filters are used, the loss of this unprocessed area is 

significant. For some of the algorithms used here, it was found 

possible to process right up to the edges of the image even where very 

large filters were used. To do this, an area along the image edges

with width equal to the filter radius is reflected outwards. (This

method is not suitable for some algorithms.)

In the PC system, which had only 2 MByte per transputer, it was 

sometimes necessary to place successive versions of the same picture
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in the same workspace. This involved offsetting one version from the 

centre as explained by Smart and Leng (1990); but it is not explained 

in detail here, because it is better to use enough RAM. A method of 

estimating how much RAM is needed is given in Appendix B. In the Meiko 

system, the workspaces on each working transputer are initialized as 

512*512. At present, the images are 512*512 pixels, each working 

transputer has one quarter of the image, which is 256*256, mapped in 

the centre of the workspaces leaving 128 pixel wide borders. However, 

the width of swapping and filling edges can be of any value up to 128 

pixels equally or unequally. Fig 7. 12 shows the arrangement of 

the workspace located on the top left working transputer.

Fig. 7. 13 illustrates swapping and filling edges for tiles and 

strips respectively, for four transputers analysing a 512*512 image. 

The width of edge swapping and filling should be equal to (or larger 

than) the radius of the filter. Table 7.3. compares the amounts of 

the swapping and filling for a width of 20 pixels. In this case, tiles 

involve less swapping and filling than strips; but the pixel-by-pixel 

calculation overestimates the difference, because the movements are by 

block transfer.

7.3.3 Communication

Several processes can run in parallel on a single transputer. 

Because this is done by time slicing, there are three processes 

running in parallel on each working transputer in the analysis 

multiprocessor block (see Fig. 7.14). They are:

1) The 'Tee Process’ is a junction which receives data and messages 

from the upward transputer along the pipeline and passes these both
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to the ’Engine Process’ on the same transputer and to the downward 

transputer along the pipeline. Alternatively, it receives results 

from the Engine Process and passes these to the downward

transputer. All four Tee Process junctions link together to ensure 

a positive direction of transfer from pipehead to pipetail through 

the multiprocessor block without impediment.

2) The ’Resp Process’ alternatively receives messages and results from

the downward pipeline or from the Engine Process on the same

transputer and passes these upwards. All the four Resp Processes 

link together to ensure a negative direction of transfer from 

pipetail to pipehead through the multiprocessor block without 

impediment.

3) Each Engine Process implements arithmetic sequentially on one 

quarter of the image; but the four Engine Processes run 

simultaneously.

The main pipe formed by the Tee and Resp Processes was designed 

as a pair of uni-directional pipes, so that communications in the up- 

and down- directions could never clash and cause it to hang (see 

Fig. 7.15). Some details of the code are given in Appendix B. When 

debugging programs, the main pipe automatically passes commands and 

messages through the system when temporary code in the main processes 

requires these. (The Meiko computer has an additional debugging 

channel via the system control links; but this has not been used, 

because it would not be available on other systems, and the author’s 

pipes were already in use.)

Inside the analysis multi-processor block, since the method of 

dividing the image demands, the four transputers are linked together
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in an array structure by another set of links between them. These 

links are used for swapping, as shown in Fig. 7. 15, and they allow 

very quick interconnection without tangling with the pipeline 

transferring between the different transputers. This arrangement of 

the links is optimised for four transputers working on four quarters 

of the image. If the image were divided into 16 tiles, and mapped onto 

16 transputers, then some of the swaps would have to use the pipeline 

(see Section 7.4).

In the Meiko, there is an extra link pair connecting the Display 

Block at the end of the pipe to the Top Block. In this case, pipehead 

and pipetail of the system have been linked together to form a circle.

This link pair has proved useful for retrieving results from the end 

of the pipeline in the version of the code which the author supplied 

to a research student in the same group.

7.3.4 One Mapping Process

Control of a parallel system of computing must be considered 

carefully in order to keep all the parts of the system working in 

phase with one another. Fig. 7. 16 gives an example of a flowchart 

which was drawn when designing the control structure of the 

Top-contouring mapping program (Chapter 3) on the six transputer 

network installed in the PC.

Fig. 7.17 illustrate the use of four working transputers to 

process four quarters of an image in parallel. The transputers are 

calculating the intensity gradient and encoding the angles (see 

Section 3.3.2) for a fuzzy edged circle. The original circle edge is



Chapter 7 Parallel Processing —  Practice 168

from green (high) through blue to black. The top left transputer had 

already finished encoding (horizontal: red; down-left: yellow;

vertical: green; down-right: blue); the top right was encoding; bottom 

left was calculating the intensity gradient; bottom right had not 

started calculating the intensity gradient.

7.4 FUTURE DEVELOPMENTS

Plans involving additional parallelism have been made both for 

software and for hardware to build up a more extensive system 

specially for the analysis of the microstructure of scanning electron 

micrographs.

Normally sets of about 24 or even more images were taken from 

each sample. So some of the programs have been extended to analyse a 

whole set of up to 99 images automatically. The programs could be 

extended again to analyse all the samples from one mechanical 

experiment.

Two multiprocessor blocks may have to be installed in the present 

system (Fig. 7.18).

1) After obtaining the image, a preprocessing block may be needed to 

deal with image rectification or smoothing to remove noise from the 

image ready for analysis.

2) After analysis, the resulting image can be classified according to 

the characteristics of different textures or other statistical 

measurements may be made.

In this case, several images will be passing down the pipeline 

one in each block, and processed simultaneously.
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Some electron microscope laboratories are planning to increase 

the image size from 512*512 to 1024*1024 pixels. To follow this 

development, each multiprocessor block will need more transputers. For 

example, the analysis block could have sixteen transputers, and each 

transputer would then still have 256*256 size tiles.

From the experience obtained analysing small images divided into 

quarters, several changes have been identified which may be helpful, 

especially when analysing large images in large sets. (1) Dividing the 

image into strips rather than tiles will simplify the 

intercommunications, particularly if more than 4 working transputers 

are used. (2) Some postprocessing routines are easier to write using 

strips than tiles. (3) If the sizes of the filters are all known in 

advance, then swapping can be eliminated by preloading, i.e. each 

working transputer starts with extra lines of data, so that the 

central strips on each transputer initially overlap their neighbours.
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Table 7.1 The transputer product range

Family Part
number

Speed
(MHz)

On—chip 
SRAM

Serial
links

Package Process

T222-G17M 17.5 4K 4 68 PGA Mil-Sld-883C

T225—G20S 20 4K 4 68 PGA Commercial

T2 -  16 bit CPU T225—G25S 25 4K 4 68 PGA Commercial

T225-J20S 20 4K 4 68 PLCC Commercial

T225-F20S 20 4K 4 100 CQFP Commercial

T4C0-G20S 20 2K 2 84 PGA Commercial

T400-J20S 20 2K 2 84 PLCC Commercial

T400-X20S 20 2K 2 100 PQFP Commercial

T4 -  32 bit CPU T425-G20S 20 4K 4 84 PGA Commercial

T425-G25S 25 4K 4 84 PGA Commercial

T425-J20S 20 4K 4 84 PLCC Commercial

T425-F20S 20 4K 4 100 CQFP Commercial

T800-G17M 17.5 4K 4 84 PGA Mil-Std-883C

T801-G20S 20 4K 4 100 PGA Commercial

T801-G25S 25 4K 4 100 PGA Commercial

T8 -  32 bit CPU T805-G20S 20 4K 4 84 PGA Commercial

+64 bit FPU T805-G25S 25 4K 4 84 PGA Commercial

T805-G30S 30 4K 4 84 PGA Commercial

T80S-J20S 20 4K 4 84 PLCC Commercial

T805-F20S 20 4K 4 100 CQFP Commercial

T9 -  32 bit CPU T9000-F40S 40 16K 4 208 CQFP Commercial

+64 bit FPU T9000-F50S 50 16K 4 208 CQFP Commercial

C011-P20S Link adaptor to bus or I/O 28 PDIL Commercial

C011-E20S Link adaptor to bus or I/O 28 SOJ Commercial

T2/T4/T8 C011-S20M Link adaptor to bus or I/O 28 CDIL Mil-Std-883C

peripherals C012-P20S Link adaptor to bus 24 PDIL Commercial

C004-G20S 32 way crossbar switch 84 PGA Commercial

C004-G20M 32 way crossbar switch 84 PGA Mil-Std-883C

T9 C100-F10S System protocol converter 100 CQFP Commercial

peripherals C104-F10S Packet routing switch 208 CQFP Commercial

Further information
INMOS is a member of the SGS-THOMSON  
Microelectronics Group, and supplies high 

performance microprocessors, systems products 
and colour graphics devices worldwide. The 
company has sales offices throughout the world.

supported by a network of experienced Field 
Application Engineers to assist with the designnn 
of the T9000. For further details please contact 
your local SGS-THOMSON Microelectronics 
sales office.
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Table 7.2 Time 
approx.

(minutes) for Top-contouring mapping and display,

Method Analysis Display Remarks

hand mapping 960 — A4 prints
PC 200 3 simple code
mainframe 20 — no display
single T414 2 display via host
6 * T800 in PC 0. 6 0 includes display
6 * T800 Meiko 0. 4 0 includes display

These are timings taken during development not benchmarks. 

PC = 80386/7 16 MHz;
mainframe = ICL 2890, run time, 40 other users;
T414 = 20 MHz;
T800 = 20 MHz.
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Table 7.3 The calculations of swapping and filling for mapping 512*512 
image onto four transputers cutting into either tiles and strips 
with 20 pixels radius filter.

Operations pixels

Tiles

up tile swapping 256*20
down tile swapping 256*20
left tile swapping (256+20)*20
right tile swapping (256+20)*20

total inter—transputer swaps 21280

parallel
upwards filling 
downwards filling

(256+20 *20

parallel
leftside filling 
rightside filling

(256+2*20)*20

total intra—transputer filling 11440

Strips

parallel
0-1 strip swapping 
2—3 strip swapping

512*20

1—2 strip swapping 512*20
parallel

1-0 strip swapping 
3—2 strip swapping

512*20

2—1 strip swapping 512*20

total inter-transputer swapping 40960

parallel
0 strip upwards filling 
3 strip downwards filling

512*20

parallel
0 strip left filling
1 strip left filling
2 strip left filling
3 strip left filling

(128+2*20*20

parallel
0 strip right filling
1 strip right filling
2 strip right filling
3 strip right filling

(128+2*20)*20

total intra-transputer filling 16960
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Fig. 7.1 IMS T800 block diagram (INMOS 1988a).
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1 LINK CONNECTS TWO TRANSPUTERS 2 LINKS IMPLEMENT PIPELINES

3 LINKS CAN BE USED FOR TREE STRUCTURES 4 LINKS ALLOW 2D ARRAYS

Fig. 7.2 Basic structures formed by linking transputers 
together (INMOS 1988a).



Chapter 7 Parallel Processing —  Practice 175

PC HOST

T414 IMS B004 BOARD

SUBSYSTEM

UP
IMS B003 BOARD

T414 T414

T414 T414

Fig. 7.3 Wiring of a system of 5#T414 transputers on 2 
boards in a RM Nimbus PC.



Chapter 7 Parallel Processing —  Practice 176

PC BUS

TSB04 BOARD
TOP

pipehead SUBSYSTEM^!

UP
IMS MOTHER BOARD

T212

WO W1

W2 W3

DOWN

UPpipetial

HARLEQUIN BOARDHarlequin

Fig. 7.4 Wiring of a system of 6#T800 transputers on 3 boards 
(Transtech TSB04, IMS B008 Motherboard, and Transtech 
Harlequin) in a Tandon PC.(The T212 transputer controls 
the mother board)
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Fig. 7.5 INMOS Mother Board with 4 T800 TRAMs.

Fig. 7.6 T800 TRAM with 2 MByte memory.
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Fig. 7.7 The PC showing the second monitor.

Fig. 7.8 Overview interior of author’s PC based multi-transputer 
system.
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Transtech Dw>ce5 L td  
U n it 3 . S t. Johns Estate. 
Penn. B ucks H P1O 0H R  
Telephone 10494 8 1 1 6 6 8 1 
Tele * 838844

Fig. 7.9 The links of the author’s multi-transputer system.
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HOST

TOP BLOCK

MK60

pipehead

ANALYSIS BLOCK

W1WO

W2 W3

DISPLAY BLOCKpipetial

MK52

Fig. 7.10 Wiring of a system of 6*T800 transputers (T6G domain) in 
Meiko computer.
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DISPLAY
RESULTS

OBTAIN
IMAGES

ANALYSE

Fig. 7.11 The three basic stages of my image analysis, 
they can be regarded as three subtasks in 
parallel processing.

WORKSPACE 512*512

BORDER?" Kafffmn"*

11
wtiV.v.v.v.v/.r.;v.vudw*AixVAv.xuuiiii»v.vtiittuuî iiuu '.v

QUARTER
PICTURE
256*2561111!

Fig. 7.12 The arrangement of workspace in each working transputer. 
^  swapped edges 

filled up edges
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(

c
)

)

Fig. 7.13 Segmentation of an image onto four transputers.
Right: tiles; Left: strips.
Top: original image; up-midle: placements on the transputers;
down-midle: swapping borders; bottom: filling edges.
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data.outdata.in
TEE PROCESS

eng.to.t t. to. eng
h. outv. m

ENGINE PROCESS

v. out h. in
eng.to.respresp.to.eng

RESP PROCESSresp.out resp.in

Fig. 7.14 Three processes on each working transputer 
running in parallel
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pipehead

TEE PROCESSTEE PROCESS

ENGINE PROCESSENGINE PROCESS

RESP PROCESSRESP PROCESS

RESP PROCESSRESP PROCESS

\)'4 ENGINE PROCESS “ ENGINE PROCESS

TEE PROCESSTEE PROCESS

pipetial ;

Fig 7.15 Four working processors array on multiprocesor block 

■ pipeline channels

===== internal channels 

::::: swap-edge channels
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HOST MASTER 4 x WORKERS HARLEQUIN
SEND DATA- -GET DATA INITIALS INITIALS
SEND IC0N-—  > — -GET ICON -— > — -GET ICON
SEND DATA-— > — -GET DATA ------ > — -DISPLAY D
SHOW H.D -— < — -FIND H.D FIND U ------ > — -DISPLAY U
SEND C0NT-—  > — -GET CONT
SHOW H.U -— < — -ADD H.U -— < — -SEND H.U
SEND C0NT- —  > — -SEND ICON-—  > — -GET ICON ------ > — -GET ICON

FIND A,C ------ > — -DISPLAY A
SHOW H. A -— < — -ADD H.A -— < — -SEND H.A
SEND C0NT-—  > — -PASS C0NT- —  >  — -GET CONT

SEND C ------ >  — -DISPLAY C
FIND T ------ >  — -DISPLAY T

SHOW H.T -— <  — -ADD H.T -— <  — -SEND H.T
SEND CONT- — >  — -PASS CONT- — >  — -GET CONT

FIND B ------ >  — -DISPLAY B
FIND F

SHOW F -- <"— ADD F -SEND F

Fig. 7.16 Simplified flow chart for Top-contouring mapping. D (=data), 
U, A, C, T, and B, are images; F is a vector (field data); H 
= histogram; ICON is a vector of control numbers; CONT is a 
command from the keyboard to continue. For fast use, some 
displays and histograms are omitted, and most CONTs 
originate from the master, these being used to ensure that a 
complete set of partial histograms are obtained and added 
together before the next set start to arrive. (Smart and 
Leng 1990).

Fig. 7.17 Illustrating the use of four transputers to Top-Contour 
a synthetic image consiting of a single circle. The early version of 
the code has permitted the tile to be processed at different speeds; 
the top left is complete; the bottom right is a lot behind.
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TOP

PREPROCESSOR

ANALYSIS

GRAPHICS

POSTPROCESSOR

Fig. 7.18 Future parallel system structure.
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CHAPTER 8 CONCLUSIONS AND FUTURE WORK

In order to analyse textured images (such as scanning electron 

micrographs of clay), the study of this thesis covered both 

theoretical studies, development of software and the establishment of 

the hardware. The textural analysis in this work used the techniques 

of Image Segmentation, Image Transformation, and Mathematical 

Morphology. The textural analysis included analysis based on 

individual particles, groups of particles, and measurements taken over 

the whole image. The application of parallel processing in this 

research accelerated the calculations and allowed the development of 

more demanding algorithms.

8.1 CONCLUSIONS ON TEXTURAL ANALYSIS

8.1.1 Analysis of Domain Texture

In scanning electron micrographs of clay, particles are normally 

lying in face-to-face groups, i.e. domains (Fig. 3.6). Additionally, 

ridges of mountains seen in aerial photographs sometimes all lie in 

the same direction (Fig. 3.15). Chapter 3 discussed two novel 

segmentations: Top-Contouring and Consistency Ratio Mapping. These two 

segmentations are based on the calculation of intensity gradient at 

each pixel in the image, then combine encoding of the angle (i.e. of 

the direction of the intensity gradient) and smoothing with a large
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filter to obtain the local preferred orientation. They are used to map 

the areas which have the same local preferred orientation (called 

domains) or lack such orientation (called random clusters). These 

methods were shown to be very well suited for different scales of 

scanning and transmission electron micrographs, as can be seen in 

Figs. 3. le, 3.7 and 3.14. They can also be used for analysing other 

kinds of images such as aerial photographs of islands (e.g. 

Fig. 3.15).

Consistency Ratio Mapping requires transputers with larger 

on-chip memory than Top-Contouring. It was developed after the 

calculations had been moved onto Glasgow University’s MEIKO system, 

which made the required memory available. Consistency Ratio Mapping is 

more accurate than Top-Contouring Mapping. Consistency Ratio Mapping 

smooths before encoding, whereas Top-Contouring encodes before 

smoothing; and the present implementation of Consistency Ratio Mapping 

uses weighted smoothing rather than the unweighted smoothing used in 

Top-Contouring Mapping. However, it could also be possible to base 

Consistency Ratio Mapping on the unweighted smoothingn-f aj?j>roĵ rlaTe.

In future work, a further development of segmentation, which is 

suggested in Section 4.2.5, may be called Enhanced Orientation 

Mapping. This segmentation can selectively map the areas corresponding 

to the peaks of the polar histogram of the Enhanced Orientation 

Analysis. Thus this method draws attention on certain directions in 

which the majority of the particles lie, closely packed, with local 

preferred orientation stronger than other directions.
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8.1.2 Analysis of Global Texture

Following Unitt’s global orientation analysis, a comparison was 

made between weighted and unweighted polar histograms based on 

improved calculations of intensity gradient. It was shown that the 

weighted polar histogram may give a more distinct directional 

distribution. By using Enhanced Orientation Analysis explained in 

Chapter 4, the orientation information was enhanced, thereby giving a 

more obvious polar histogram and drawing attention to the dominant 

sub-parallel directions (these sub-parallel directions could be 

segmented by using Enhanced Orientation Mapping as noted above). Also 

in Chapter 4, a method of local porosity analysis was developed, 

which, for the first time, showed the relationship between the local 

porosity and the local orientation of the particles. This method of 

local porosity analysis is believed to be applicable to electron 

micrographs which are at a low magnification to give a large field of 

view and at too low a magnification to permit a 'black and white' 

segmentation of particles and voids.

This enhanced global orientation analysis was compared with the 

methods using the Hough transform, the Directed Vein Method, and a 

Convex Hull method. All three methods gave polar histograms similar to 

that of the Enhanced Orientation Analysis. In this work the 

slope-intercept Hough space was used taking precautions to avoid 

infinite slope and intercept when the line approaches a vertical 

position. To avoid the infinity problem, it is hoped that the p-0 

Hough space could be used in future calculations.
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8.1.3 Analysis of Individual Particle Texture

In order to get better results, the author suggested using 

skeletons of particles instead of edges in the Hough transform and 

Directed Vein methods.

Non-linear Greyscale Morphology was developed in Chapter 5 to 

analyse individual particle texture. This approach evades one of the 

most difficult stages in image processing, i.e. converting to a binary 

image. Although in the new method, a few parameters need to be set 

according to the characteristics of the image, the final result of 

successive cycles of erosion gave the skeletons of particles 

(Fig. 5.12). These skeletons could be used to analyse the orientation, 

separation, size distribution, and contact characteristics of 

individual particles in the image.

There are many methods which could be used to improve the 

skeletons of the images. The simplest method of cutting the joint 

lines in different directions is to measure whether there are more 

than two neighbouring points in the 3x3 mask, and they are not lying 

on the same direction, when the middle point is an on line pixel. A 

better method which could be used is the Hough transform to locate 

(and join) parts of broken lines in the same direction with small gaps 

in between and to cut contiguous non-colinear lines apart.

Some further applications of Non-linear Mathematical Morphology 

could be made. The immediate application of this new algorithm is to 

use the skeletons of particles for the Hough transform and the Method 

of Veins (Chapter 4) instead of using the edges of particles, and this
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is expected to give a much more accurate result. Further, the 

skeletonized image could be used to count isolated points, the ends of 

particles, and the joints of particles, so as to provide measurements 

to classify the arrangement of particles in the images. Also, in some 

cases, the skeleton of the voids could be easily obtained to analyse 

the tortuosity of the voids.

In the course of these experiments, it was noted that, by taking 

a proper choice of parameters, the Non-linear Greyscale Morphology 

transform could produce a black-and-white image. This might be a new 

way of converting to a binary image.

8.1.4 Use of The Semi-variogram

Both the analysis of domain texture and the analysis of global 

texture mentioned above used large uniform filters. No published 

method of deciding the size and shape of these filters was found. The 

introduction of the semi-variogram (Section 3.3.3) appears to have

solved this problem and to be an important advance in the general

practice of image analysis.

8.2 CONCLUSION ON PARALLEL PROCESSING APPLICATION

The latest development in parallel processing, the transputer, 

has provided a cheap, efficient, and flexible means of parallel 

computation. Transputers were employed in this research to implement 

the new textural analysis algorithms. One single and three 

multi-transputer systems were set up in turn to develop the

algorithms. Because there was a limit on the SERC loan, a six
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transputer system became the basic system for the calculations done in 

this research. In order to make full use of the transputer links and 

to build a suitable system for the textural analysis, the harness of 

the system was set up as a pipeline linking the six transputers 

one-by-one, with the four middle transputers also linked in an array. 

The top transputer controls the whole system and communicates with the 

host; the middle block of four transputers does the main calculations; 

and the bottom transputer mainly displays the result on a video 

screen. This system may be alternatively regarded as having three 

’multi-processor’ blocks in a pipeline.

In the image analysis performed in this research, three subtasks: 

obtaining the image, analysis, and displaying the result, have been 

located parallelly on the three multiprocessor blocks which correspond 

to the pipline hardware. According to the requirement of the novel 

textural analyses of this work, data-structure parallelism was 

regarded as the most suitable parallelism for most of the 

calculations. Thus, each image data array was divided into four 

quarters and mapped onto the middle four transputers to do the 

calculations. When necessary, the inter-multiprocessor links, which 

connect the four transputers in the array, were used for data exchange 

during the calculations. This system made a powerful and convenient 

tool for the development of the new algorithms: the developer was able 

to concentrate on the kernal of the application, any necessary 

modifications to the harness being few and simple. In other words, the 

system was flexible, easy to program, and fast in execution.

Both the hardware links and the software configuration were 

designed to build an extensible system especially for the analysis of
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the microstructure of scanning electron micrographs. Sets of images 

normally about 24 or even more, were taken from each mechanical test 

sample; some of the programs have been extended to analyse a whole set 

of up to 99 images automatically. The programs could be extended again 

to analyse all the samples from one experiment. Two further 

multiprocessor blocks may have to be installed in the present pipeline 

system, viz a preprocessing multi-transputer block before the analysis 

blocks, and a postprocessing multi-transputer block after the analysis 

block. Moreover, some electron microscope laboratories are planning to 

increase the image size from 512*512 to 1024*1024 pixels; and to 

follow this development, each multiprocessor block will then need 16 

transputers to analyse 256*256 size tiles on each transputer. 

Extensions such as these are easy to implement on transputer-based 

systems.

8.3 SUMMARY

The use of a set of six transputers provided an efficient means 

of developing and testing novel image analysis algorithms to analyse 

the texture of scanning electron micrographs of clay soils (and 

similar images). These algorithms have been taken into use in a 

cooperative study with the University of East Anglia and for further 

work in Glasgow University; and a derivative has been made available 

commercially in the Semper Image Analysis package.
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APPENDIX A CHOOSING THE NUMBER OF TRANSPUTERS

This appendix shows how there may be an optimum number of

transputers for any particular task.

The calculation was made for the following assumptions:

Set up time using one transputer = s = 0.1

Run time using one transputer = r = 0.9

Total time using one transputer = r + s = 1.0

Suppose there are w workers.

Additional set up time for first worker » s = 0.1

Additional set up time for each extra worker = 0.Is ** 0.01

Runtime = r/w

Total time using w workers = r/w + 2s + (w-l)O.ls

The results are summarized in Table A. 1 and shown in Fig. A. 1,

where the larger gangs are assumed to contain a graphics transputer

which does not count as a proper worker, but which still needs to be

set up. For the case considered, the fastest combination of

transputers had 9 workers in a gang of 11.

L a p r a c t i c e , c c t,(c u t< k£ tm s  ^ k o « .L o (  & e  J x ts e c f cm

C aOtpon&nT
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Table A.1 Time for the multItransputer system (r = 0.9, s = 0.1).

No of transputers No of workers Formula Time

1 1 r + s 1.0
2 1 r + 2s 1.1
3 1 r + 2s + 0.01 1.11
4 2 r/2 + 2s + 0.02 0.67
6 4 r/4 + 2s + 0.04 0.47
11 9 r/9 + 2s + 0.09 0.39
18 16 r/16 + 2s + 0.16 0.42
27 25 r/25 + 2s + 0.25 0.49
38 36 r/36 + 2s + 0.36 0.59
51 49 r/49 + 2s + 0.49 0.71
66 64 r/64 + 2s + 0.64 0.85

time

l

0 5 10 15 20 25 30 35 40 45 50 55 60 65

number of transputer

Fig A.1 Time vs number of transputers.
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APPENDIX B CODE FOR TEE JUNCTION PROCESS

This appendix contains the Occam code of the Tee Process, running 

on the working transputer, linking up the outwards directional pipe 

Fig. 7.14. The Tee Process behave like a gate. It receive data either 

from pipe-head to send downwards to pipe-tail and Engine Process; or 

from Engine Process downwards to pipe-tail. Whichever arrives first 

will be processed first, namely alternative structure (ALT). Anything 

passed into the Tee Process is passed out immediately, otherwise the 

Tee process will wait if it is not reading.

The Tee Process contains a Protocol and a reading process. The 

Protocol has all the data string formats listed. The reading process 

could be made to read in any kind of data string listed in the 

Protocol send to it at any time and then pass it on. However, in this 

version, histograms, his, and messages, mes, are ignored, because they 

usually travel in the inwards direction pipe. The details of what is 

passed are controlled by the Protocol. The destinations are controlled 

by the CASE statements. The code of the Tee Process is shown below.
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PROTOCOL
CASE
dat;
ans
his
cmd
lut
mes
swi
swr
vec
icn

STD

I NT 
I NT 
INT
[4]BYTE; 
INT
BYTE; INT; 
INT 
INT 
INT

[5121BYTE 
INT; INT:: 
HINT 

INT

[]BYTE

[12]BYTE; 
INT::[]INT 
INT::[]REAL32 
[]REAL32

INT

[64]INT:

PROC tee.junction(CHAN OF STD data.in, data.out, t.to.eng, eng.to.t)
  Xiaoling Leng & Peter Smart, Glasgow University
  Version 92.11.23
[512]REAL32 vector:
[512]INT histo:
[512]BYTE line:
[64]INT icon:
[12]BYTE message:
[4]BYTE comm:
INT ii:
INT jj:
INT length:
INT number:
INT member:
BYTE gang:
BOOL working:
SEQ
working: =TRUE 
WHILE working 

ALT
data.in ? CASE 

dat; jj; line 
SEQ

data.out ! dat; jj; line 
t.to.eng ! dat; jj; line 

ans; ii; jj; length::line
data.out ! ans; ii; jj; length::line 

his; length::histo
data.out ! his; length::histo 

cmd; comm; number 
SEQ

data.out ! cmd; comm; number 
t.to.eng ! cmd; comm; number 

lut; number
data.out ! lut; number 

mes; gang; member; message; number
data.out ! mes; gang; member; message; number 

swi; jj; length::histo
t.to.eng ! swi; jj; length::histo 

swr; jj; length::vector
t.to.eng ! swr; jj; length::vector 

vec; length::vector

—  for use if histo overflow
—  histogram or other report
—  whole or part line of image
—  control numbers
—  report from worker to screen
—  command to another transputer
—  number of first pixel
—  number of line
—  number of items sent
—  control number, debug report, etc
—  reference number of reporting transputers
—  reference letter of gang of transputers
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data.out ! vec; length::vector 
icn; icon 
SEQ

data.out ! icn; icon 
t.to.eng ! icn; icon

eng.to.t ? CASE
ans; ii; jj; length::line
data.out ! ans; ii; jj; length: : line 

his; length::histo
data.out ! his; length::histo 

cmd; comm; number
data.out ! cmd; comm; number 

lut; number
data.out ! lut; number 

mes; gang; member; message; number
data.out ! mes; gang; member; message; number 

swi; jj; length::histo
data.out ! swi; jj; length::histo 

swr; jj; length::vector
data.out ! swr; jj; length::vector 

vec; length::vector
data.out ! vec; length::vector
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