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Summary

Previous investigations have reported  differences in the affinity of 

hepatic glucocorticoid receptors (GR) for glucocorticoids between the 

Milan hypertensive (MHS) and normotensive (MNS) strains (Kenyon et al.,

1994), the Zucker lean and obese strains (White and Martin, 1990) and 

hypertensive SHR and normotensive WKY strains of ra t (Panarelli et al.,

1995). To determine the possible causes of this phenotypic variation, a 

series of investigations were carried out into the molecular genetics of 

strain specific allelic variants of rat GR.

The original cloning of the rat GR cDNA (Miesfeld eta /., 1986) reported a 

polyglutamine encoding triplet (CAG)n repeat sequence in the amino 

term inal m odulatory  dom ain of the receptor. Given the highly 

polymorphic nature of simple sequence repeats, I investigated the repeats 

as potential mediators and as genetic linkage markers, of altered receptor 

function. CAG repeat length polymorphisms were identified. The GR alleles 

of the hypertensive strains, MHS and SHR, were found to have triplet 

repeat lengths shorter by one codon than in controls; MNS 21, MHS 20, WKY 

20 and SHR 19-CAG repeats. GR triplet repeat lengths in Zucker rats did not 

differ between strains.

As part of a collaborative investigation using the Milan strains of rat, the 

GR triplet repeat polymorphism was used to screen for genetic linkage 

between Grl and glucocorticoid related phenotypes in F2 rats of a 

reciprocal MHS x MNS cross. A significant association (p < 0.005) was found 

between the MHS Grl allele and hypercalcuria in female rats. Homozygous 

MHS alleles were also found to be weakly associated (P < 0.01-0.02) with 

reduced systolic blood pressure in female and reduced body weight in male 

rats.

Optimised typing methods were used to characterise a further 61 inbred rat 

strains and substrains and 155 wild rats from England and central Scotland. 

A discontinuous distribution was found: no GR alleles with repeat lengths of



less than 7, 8-16 or greater than 23 CAG repeats were identified, suggesting 

that these alleles are either absent, or at least are significantly under­

represented. In the 155 wild rats analysed, homozygotes were found for 

each allele, with the exception of GrlCAG17, indicating that the observed 

alleles are compatible with significant viability. The presence of a gap in 

the allelic distribution of GR raised fundamental questions regarding the 

genetic origin of this discontinuity. The observed rGR alleles may have a 

selective advantage through their function as transcription factors or 

alternatively, may reflect a non-random  mechanism by which triplet 

repeats expand and contract.

The reported differences in affinity for glucocorticoids of GR from hyper- 

and normotensive and of Zucker strains, indicated the possibility of a 

primary sequence difference between receptors. The coding sequence of 

GR was therefore determined in MHS, MNS, SHR, WKY and Zucker lean and 

obese rats. Each was found to differ from the published sequence. Re­

sequencing of rat hepatoma cell line 6.10.2.-derived GR cDNA, which was 

used in determination of the original published sequence, indicated that 

the differences were probably due to mistakes in the original report. Apart 

from the polyglutamine tract, no in trastrain  coding differences were 

found. Silent substitutions were detected at nucleotide positions 198, 531, 

and 711. All three were present in MHS and SHR strains, none were present 

in MNS and only that at position 711 was present in WKY. The GR sequences 

of Zucker lean and obese rats were identical.

The four sites of genetic variation identified in rat GR lie in close proximity 

(within about 500 bp), constituting six distinct haplotypes in which the 

rate of recombination is expected to be low. These haplotypes were useful 

in helping to confirm the genetic relationship of ra t strains reported by 

others (Greenhouse et al., 1990; Hedrich, 1990). The Milan rat GR haplotypes 

were distinct, suggesting the separation of GR alleles for thousands of 

generations before fixation in the Milan selection lines (Bianchi et al., 
1984).
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To address the difference between MHS and MNS in GR ligand binding in 

liver cytosol preparations, I investigated the possible effect of differences 

in CAG repeat length. Accordingly, cDNA alleles, GrlGAG2°  (MHS) and 

Qr\CAG21 (MNS) were constructed and expressed in CV-1 cells, together with 

GR cDNAs with 7 and 18 CAG repeats. Western blotting and Scatchard 

analysis of steroid binding properties of the expressed GR proteins showed 

no differences, either in stability, or affinity (Kd) for dexamethasone and 

corticosterone.

Whether or not the gap in the distribution of rat GR CAG repeats reflected 

abnormal receptor properties, was addressed by the construction of full 

length GR cDNAs with 4, 8, 10, 20, and 80 CAG repeats and their expression 

in CV-1 cells. GR steroid binding properties were determined as for natural 

GR proteins. Receptor affinity and capacity (Rl) was not different between 

alleles, implying that intra-allelic differences in the length of the 

polyglutamine tract are unlikely to affect receptor affinity. However, the 

binding affinity for dexamethasone and corticosterone was significantly 

higher for construct, compared with natural alleles (p < 0.001 for dex and 

B). This difference in affinity was n o t  the resu lt of inter-allelic 

differences in the length of the long homopolymeric repeats in the 
different alleles. The difference in sequence between the natural and 

construct GR alleles is shown in bold in the following figure for residues 

on the flanks of the homopolymer:

20Q (natural allele):
66 67 68 69 70 71 72 73 74 75 76 77 78-96 97 98 99 100 101 102 103 104 105 106 107

NH2> F S K G S T S N V Q Q R  (Q)i8 p g l s k v s l s m g  <c o o h

20Q (construct allele):

66 67 68 69 70 71 72 73 74 75 76 77 78-98 99 100 101 102 103 104 105

NH2>F S T L A C G S L E E D  (Q)20 g  v  r  y  g  m  g  <c o o h

Amino acid differences between natural and construct rat GR alleles.

Altered residues are shown in bold.

xiv



It is not known which residue differences contribute to the change in 

receptor affinity, but the phenomenon strongly implies that the structure 

of the m odulatory domain can influence the function of the LBD, 

presumably through a proximity effect in the native molecule. This raises 

the more general question of whether the amino and carboxyl termini are 

able to affect each other's activity, either by contact, or through a mediator 

such as HSP90.

The transcriptional regulatory properties of the different GR alleles has 

been tested in two types of transactivation system:

1.) As activators of MMTV-lacZ

All of the GR variants (natural and construct) showed a similar ability to 

activate MMTV-lacZ through a GRE-containing prom oter following 

hormonal induction. This implies that none of the structural differences 

between GR molecules had any measurable effect on their ability to bind a 

GRE and activate transcription.

2.) As modulators of STAT5

Because of the remaining possibility of tissue or promoter-specific effects 
involving interaction of GR with other transcriptional regulators, studies 

of the gene modulatory effects of GR have also been addressed. GR can 

in teract synergistically with the signal transducer and activator of 

transcription, STAT5, to enhance p-casein gene transcription (Stocklin et 

al., 1996). This work is currently in progress.
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Part 1

Cellular and molecular aspects of glucocorticoid action

1.1.) Endocrine hormones

From the early 1900s, there has been an enormous increase in our 

understanding of endocrine organs and the diverse physiology that they 

coordinate. The hormones that these organs secrete have been shown to be 

profoundly im portan t for controlling verteb ra te  developm ent and 

physiology and maintaining homeostasis. Consequently, each has become a 

major focus of biological and clinical investigation.

In general, hormones can be described as substances produced by cells or 

tissues which, following secretion, have a defined physiological effect on 

their target tissue(s) or cell(s). Hormones which affect the cells which 
secrete them are termed autocrine, whilst those affecting other cells in 

their local environment are termed paracrine in function. In contrast, 

endocrine hormones are secreted by one tissue and exert their effect on 

another distant tissue, normally carried to their site of action by the 

circulation. Some hormones such as cortisol have auto, para and endocrine 

functions.

Endocrine hormones can be classified biochemically as peptides (e.g. 

insulin), amines (e.g. thyroxine) or steroids (e.g. cortisol). Their effects are 

mediated following the binding of the hormone to a specific receptor 

molecule, either on the surface, or in the cytosol or nucleus of the target 

cell. Resultant effects are either direct (e.g. on gene transcription) or 

indirect via an intracellular second messenger. Regulation of hormone 

action is possible at several levels: synthesis, secretion, transport in the 

circulation, d istribution , clearance, tissue uptake a n d /o r  receptor 

interaction, receptor down regulation and signal transduction. The 

experiments described in this thesis concern glucocorticoid hormone

2



action. To pu t the results in context, this introduction will include 

inform ation specifically about regulation involving the glucocorticoid 

receptor (GR).

1.2.) Steroids and the adrenal gland

1.2.1.) Adrenal zonation

Glucocorticoid hormones are secreted by the adrenal gland, which in 

mammals consists of two major parts of different embryonal origin, an 

inner medulla synthesising catecholamines (adrenaline, noradrenaline 

and their precursor, dopamine) and an outer cortex which produces a large 

number of steroids, some of which are hormones (McNicol, 1992). The 

cortex can be further subdivided into three histologically distinct regions 

called, from centre to periphery, the zona reticularis, zona fasciculata and 

zona glomerulosa.

There are three major categories of cortical steroids; the adrenal 

androgens, which are required for the expression of secondary male sexual 

characteristics, and the glucocorticoids and mineralocorticoids controlling 

intermediary metabolism and salt and water balance, respectively. Figure

1.1. shows the main steps in the pathways for adrenal corticosteroid 

biosynthesis. All share a common precursor cholesterol, the basic ring 

structure of which is maintained throughout enzymatic conversion.

1.2.2.) Steroid hormone biosynthesis

Adrenocortical steroidogenesis proceeds via a series of cytochrome P-450 

hydroxylase and dehydrogenase enzymes. Enzymatic conversions are 

com partm entalised, depending on the subcellular localisation of the 

enzymes involved. Cholesterol from cholesterol esters, de-novo synthesis or 

from dietary uptake, is initially transported from the cytosol to the inner 

mitochondrial membrane where cytochrome P450scc (side chain cleavage), 

also known as cholesterol desmolase, cleaves the side chain of cholesterol at 

C21 to form pregnenolone. This is the rate limiting step in steroidogenesis.

3
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Mitochondrial 3p-hydroxysteroid dehydrogenase (3P-HSD) then converts a 

portion of the newly synthesised pregnenolone to progesterone. Both of 

these compounds act as intermediates, providing the substrates for two 

further enzymes associated with the endoplasmic reticulum, P450cl7 (17a- 

hydroxylase) and P450c21 (21-hydroxylase). These enzymes catalyse 

hydroxylations at positions C l7 and C21 of the steroid ring respectively, in 

separate biosynthetic pathways. Corticosterone and cortisol are formed 

from the respective lip -hyd roxy la tion  of deoxycorticosterone and 

deoxycortisol by m itochondrial 1 lp-hydroxylase ( c y p l lb l) .  The end 

products of corticosteroid biosynthesis fall into two main catagories, the 

C21 steroids, which have a two carbon side chain at position C l7 and the C19 

steroids with either a hydroxyl or a keto group a t position C l7. 

Glucocorticoid and mineralocorticoid activities are attributed to the C21 

steroids, which display only small structural differences (Fig. 1.1.). 

Aldosterone is derived from deoxycorticosterone in three steps by the 

actions of a single enzyme, aldosterone synthase (cypllb2).

In m an, C19 s te ro id s  w ith  w eak a n d ro g e n ic  a c tiv ity , 

dehydroepiandrosterone (DHEA) and its sulphate (DHEAS), are the most 

abundant products of the adrenal cortex. They are derived from 17 a- 

hydroxypregnenolone and 17a-progesterone by the enzyme P450C17 (Fig.

1.1.). The products of this reaction, DHEA and androstenedione are 

subsequently converted to low levels of testosterone in the periphery. 

DHEA is known to have anti-glucocorticoid properties (Svec et al., 1995).

The adrenal cortex is functionally zonate. Aldosterone, the most important 

mineralocorticoid in rats and man, is synthesised only in the zona 

glomerulosa while the m ajor glucocorticoids, cortisol in man and 

corticosterone in the rat and the adrenal androgens are synthesised in the 

inner cortical zones (Berne and Levy, 1993). The conversion of 

corticosterone to cortisol requires 17-hydroxylation, which is absent in the 

rat. Therefore, the synthesis of cortisol and adrenal androgens does not 
occur in this species.

4



1.3.) The control of adrenocortical secretions

The norm al secretion pattern  of mineralocorticoid and glucocorticoid 

hormones is maintained by different trophic stimuli; aldosterone secretion 

is regulated by angiotensin II and dietary potassium and is also affected by 

ACTH (Quinn and Williams, 1988). In the zona fasciculata, ACTH is the most 

im portant factor regulating the secretion of glucocorticoids (Waterman 

and Simpson, 1989; White eta/., 1994).

ACTH is produced by the anterior pituitary gland as the derivative of a 

precursor peptide, proopiomelanocorticotrophin [POMC] (Eipper and Mains, 

1980). Multiple hormonal factors regulate ACTH secretion (Antoni, 1986; 

Antoni, 1993), the most im portant being the peptide horm one CRF 

(corticotrophin releasing factor). Neural mechanisms stimulate the release 

of CRF from the hypothalamus. This causes a rise in pituitary ACTH, which 

in tu rn  stim ulates the zona fasciculata, increasing the secretion of 

glucocorticoids (Fraser, 1992). Elevated levels of glucocorticoid in the 

plasma inhibits further ACTH secretion (by feedback inhibition of POMC 

gene expression; Drouin et al., 1989) and CRF gene transcrip tion  

(Lundbland and Roberts, 1988) and consequently, further glucocorticoid 

secretion. The basis of this negative feedback inhibition process is outlined 

in Figure 1.2. The stimulation of ACTH by CRF is potentiated by vasopressin 

(AVP), which can also stimulate ACTH secretion directly. In addition, 

catecholamines, angiotensin II, serotonin, oxytocin, atrial natriuretic 

factor and several others have been implicated in the control of ACTH 

secretion (Rivier and Vale 1983; Antoni, 1993).

ACTH generally regulates glucocorticoid output through the hypothalamo- 

pituitary-adrenal (HPA) axis. Under normal circumstances in man, ACTH 

and therefore cortisol output is controlled in the long term in a circadian 

fashion (Kreiger et al., 1971) and is increased by various types of physical 

and psychological stress (Weitzman eta/., 1971).
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ACTH secretion from the hypothalamus, which leads to the eventual secretion of glucocorticoids 
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env ironm en ta l, phys ica l or p sycho log ica l, CRF: co rtico trop h in  re leas ing  fac to r, ACTH: 
adrenocorticotrophic hormone, CBG: corticostero id binding globulin, SHBG: sex steroid binding 
globulin. Circled arrow relates to high endogenous level.



Since steroids are not stored to any great extent, biosynthesis rates must be 

increased on demand. ACTH stimulates steroidogenesis (Fig. 1.1.) through 

the classical receptor-adenylate cyclase system. Ligand binding to ACTH 

receptors in the cell membrane (Mountjoy et al., 1992) increases adenylate 

cyclase activity, causing stimulation of a G-protein. This in turn leads to 

higher endogenous levels of cyclic AMP (cAMP). The resultant activation 

of a cytoplasmic protein kinase causes the phosphorylation of regulatory 

proteins which induce the process of steroidogenesis.

The secretion of aldosterone is also under tight physiological control. Both 

angiotensin II and potassium act as specific zona glomerulosa agonists 

which stimulate aldosterone synthesis. Angiotensin II is a pressor hormone 

generated in the circulation under the control of the enzyme renin from 

the kidney (Brown et al., 1983). Figure 1.3. summarises the main 

components of the renin-angiotensin system. The inactive precursor 

angiotensin I is first formed by the splitting of the renin substrate 

angotensinogen, which is converted to angiotensin II by angiotensin I 

converting enzyme (ACE). In keeping with blood pressure control, the 

plasma concentration of angiotensin II, through the action of renin is 

directly linked to sodium levels. The normal physiological response to 

sodium depletion is the release of renin, which leads to an increased 

angiotensin II output followed by a respective increase in aldosterone 

secretion. The resultant effect is sodium and water retention, which 

inhibits further renin release and causes an expansion in plasma volume 

(Fraser et al., 1981). Small increases in plasma potassium  leads to 

aldosterone synthesis. In contrast to sodium, large increases in dietary 

potassium  and hyperkalem ia inhibit aldosterone synthesis through 

inhibition of renin release (Beretta-Picoli et al., 1983).

Both potassium and angiotensin II regulate aldosterone synthesis by their 

effects on calcium metabolism (Radke et al., 1989). Increases in potassium 

depolarises the cell membrane, opening voltage-dependent calcium 

channels; angiotensin II also opens calcium channels, as well as 

stimulating the release of stored Ca^+ within adrenocortical cells via a
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cascade of events involving phospholipase C and the release of IP3. Ca^ + 

activates cholesterol side chain cleavage and the steroidogenic conversion 

of cholesterol to aldosterone (see Fig. 1.1.).

1.4.) The major physiological roles of adrenal corticosteroids

1.4.1.) Glucocorticoids

The glucocorticoids are of fundamental importance, exerting a multiplicity 

of actions in a wide range of tissues. They play im portant roles in the 

control of intermediary metabolism, aspects of cardiovascular regulation 

such as the regulation of vascular tone and in the function of skeletal 

muscle, lymphoid and connective tissue and the central nervous system. 

They perform a permissive function in many tissues by potentiating the 

actions of other cellular mediators such as catecholamines. Glucocorticoids 

have a well recognised anti-inflammatory effect and are known to be 

secreted in response to various forms of stress originating from internal or 

external environments. The activities of glucocorticoids are summarised in 

Figure 1.4.

Glucocorticoids generally have an anabolic effect on the liver. In their 

m aintenance of hepatic glycogen stores, glucocorticoids both activate 

glycogen synthase (Hornbrook et al., 1966) and inactivate the glycogen 

mobilising enzyme, glycogen phosphorylase (Stalmans and Laloux, 1979). 

Hepatic glucose production via gluconeogenesis is increased by promoting 

substrate availability and stimulating the release of glucogenic amino acids 

from peripheral tissues such a skeletal muscle. Glucocorticoids mediate this 

process by activating key gluconeogenic enzymes, such as glucose-6- 

phosphatase and phosphoenol pyruvate carboxykinase (PEPCK) (Exton, 

1979)

A catabolic effect is elicited in most other tissues. Lipolysis is acutely 

activated by glucocorticoids in adipose tissue (Fain, 1979). The glycerol
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released during lipolysis provides a substrate for glucose production and 

the liberated fatty acids provide an energy source for the process. The 

breakdown of proteins (Fain, 1979) and reduction of glucose uptake from 

the circulation and its utilization by peripheral tissues (LeBoeuf et al., 1962; 

Munck, 1962) are also mediated by glucocorticoids. The net effect is to keep 

plasma glucose and free fatty acid levels high. The catabolic effects on 

muscle protein provide an explanation for the profound myopathy seen in 

conditions of glucocorticoid excess.

Glucocorticoids exert a direct and indirect effect on bone metabolism. 

Indirectly, glucocorticoids have been shown to inhibit calcium absorption 

from the gut (Lukert and Adams, 1976) and enhance urinary calcium 

excretion by decreasing reabsorption in the kidney (Laake, 1960). 

Excessive exposure to glucocorticoids reduces or inhibits osteoblastic 

activity, leading to osteoporosis (Cheng et al., 1994). This suggests the 

possibility of a direct steroid effect on bone cells.

Distribution and behaviour of cells of the immune system; T cells , (Gillis et 
al., 1979), B cells (Cupps et al., 1985), monocytes, neutrophils and 

granulocytes (Dale et al., 1975) is affected by glucocorticoids, which may be 

m anifest as im m unodeficiency (O rth et al., 1992). Endogenous 

glucocorticoid excess generally suppresses immune responses (Graham and 

Tucker, 1984). Glucocorticoids also modulate the activity of components 

which mediate local inflammatory responses. The anti-inflammatory and 

immunosuppressive effects of glucocorticoids are well established (Cato and 

Wade, 1996). The activities of histamine, a potent vasoactive agent (Fauci, 

1979) and prostaglandins (Russo-Marie et al., 1979) are both inhibited by 

these steroids (see Fig 1.4.).

Supraphysiological concentrations of glucocorticoids inhibit linear growth 

in children, possibly due to the direct inhibitory effects on bone and 

connective tissue (Ferraris and Pasqualini, 1993). In the lung, 

glucocorticoids stimulate the maturation and differentiation of many cell 

types (Snyder et al., 1992). They are also responsible for regulation of



surfactant production by type II pneumocytes (Boggaram and Mendelson,

1988). Lower glucocorticoid levels are stim ulatory, higher levels are 

inh ib ito ry . In the nervous system, glucocorticoids regulate  the 

development of neural crest epithelial cells, the precursors of more 

d ifferen tiated  cell types including autonom ic ganglion cells and 

adrenom edullary cells, into cromaffin cells. Under the influence of 

glucocorticoids, neural crest precursor cells that invade the embryonic 

adrenal gland cease to express 'neurone-specific' gene products such as 

neu ro filam en ts and  acquire the c h arac te ris tic  m orphology of 

adrenomedullary chromaffin cells (Federoff etal., 1988).

Evidence for glucocorticoid effects on blood pressure (reviewed more 

extensively in part 2 of this chapter) comes largely from patients with 

glucocorticoid excess or deficiency. Those with glucocorticoid excess 

usually develop hypertension, often w ithout evidence of functional 

mineralocorticoid excess (Saruta et al., 1986). Patients with glucocorticoid 

deficiency show defective water clearance with increased arginine 

vasopressin (AVP) concentrations (Raff, 1987). Glucocorticoid deficiency 

increases AVP mRNA synthesis in the paraventricular nucleus where it is 

synthesised and secreted (Sonnenblick et al., 1979). Increased AVP levels 

may play a role in maintaining blood pressure in states of adrenal 

insufficiency, such as in Addison's disease. Glucocorticoids also have direct 

effects on ion transport in the colon (Sandle, and McGlone, 1987). The use 

of glucocorticoid analogues, specific for the glucocorticoid receptor 

produce a saturable sodium transport (Bastl, 1987), which is not diminished 

by specific mineralocorticoid receptor antagonists (Bastl, 1988). In the rat 

descending colon, Na-K-APTase a i and (3-subunit gene expression is acutely 

regulated by dexamethasone, but not aldosterone (Fuller and Verity, 1990).

1.4.2.) Mineralocorticoids

The main physiological role of mineralocorticoids is to promote sodium 

retention and potassium excretion in transporting epithelia such as the
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distal nephron of the kidney, salivary and sweat glands and the colon 

(Morris, 1981). In excess, m ineralocorticoids cause hypertension and 

increases in body sodium. Aldosterone effects may also be seen in non- 

epithelial tissues. There is evidence for aldosterone induced activity in the 

brain (McEwen et al., 1986). Intracerebroventricular (icv) infusions of low 

doses of aldosterone effects salt seeking behaviour and ingestion. These 

effects are no t m im icked or blocked by equ ivalen t or higher 

concentrations of corticosterone, but are effectively blocked by specific 

aldosterone antagonists (McEwen e ta l., 1986). The effects of aldosterone in 

both m ononuclear leukocytes and vascular tissues, m ediated through 

mechanisms which do not require MR activation, will be discussed in the 

following section.

1.5.) Non-genomic responses to steroids

Although the majority of evidence suggests that steroid hormones induce 

genomic responses through specific nuclear receptor activation (Beato and 

Sanchez-Pacheco, 1996; Hagar et al., 1996; Jenster eta l., 1997), there is also 

implication of direct steroid effects mediated via membrane receptors. Some 
steroid effects, particularly of an electrophysiogical and behavioural 

nature occur too rapidly to be explained in terms of a classical genomic 

response (McEwan, 1991), which are normally manifest after a period of 

hours, or even days (Steimer and Hutchison, 1981). The rapid induction of 

steroid effects which are not blocked by protein synthesis inhibitors 

(Nabekura et al., 1986) and the modulation of binding characteristics of 

neurotransm itter receptors implies the possibility of steroid hormone 

binding to neuronal membranes (Schumacker etal., 1990).

In female rats, rapid behavioural effects due to short-term  progesterone 

administration have been documented (Kubli-Garfias and Whalen, 1977). 

Progesterone causes a rap id  (40-60s) and tran sien t increase in 

intracellular Ca2+ concentrations in amphibian oocytes, a necessary first 

step in the resumption of meiosis and eventual m aturation (Wasserman et
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al., 1980). Progesterone receptors have also been identified on the surface 

of human sperm and have been implicated in initiating rapid calcium 

influx, a prerequisite for acrosomal exocytosis (Tesarik et al., 1993). 

Oestrogens have been shown to produce adenylate cyclase mediated 

increases in cyclic AMP (cAMP) in target breast cancer and uterine cells 

and intact uterus in vivo by a mechanism that does not involve the 

genomic action of this hormone (Aronica et al., 1994). Corticosterone- 

specific receptors in the synaptic membranes of amphibian brains appear 

to influence male reproductive behaviour (Orchinik et al., 1991). More 

recently, the rapid  in vitro effects of aldosterone on intracellu lar 

electrolytes, cell volume, and the sodium-proton antiporter have been 

described in human mononuclear leukocytes and vascular smooth muscle 

cells, which respond with a sustained rise in free intracellular calcium 

levels within 1-5 mins following aldosterone administration (Schneider et 
al., 1997). The full length cDNA sequence of a progesterone membrane- 

binding protein of porcine vascular smooth muscle cells has now been 

described (Falkenstein etal., 1996).

The rem ainder of this thesis will focus on the classical mechanisms of 

steroid action, with particular emphasis on glucocorticoids.

1.6.) Steroid hormone receptors: an overview

Classically, steroid hormone receptors are viewed as the cellular mediators 

of steroid hormone responses at the level of the genome. Corticosteriods 

bind to cytosolic receptors, the resulting complex interacting with the 

steroid responsive elements of a wide variety of genes, altering messenger 

RNA (mRNA) synthesis. Subsequent altera tions in cellular protein  

synthesis lead to changes in peptide and protein secretion, enzyme levels, 

the synthesis of components of cell-signalling systems, such as adenylate 

cyclase and finally, growth (Miesfeld, 1989). Perhaps the earliest evidence 

that steroid hormones regulate gene expression came from experiments 

showing that ecdysteroid-induction of m etam orphosis in insects is
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associated with changes in chromosome structure (Ashberner, 1980). It is 

now well established that all steroid hormones, as well as thyroid hormone 

and retinoic acid, act by binding to specific intracellular receptors, 

coordinating complex biological events by regulating the expression of 

genes or gene networks (Yamamoto, 1985). The discovery of receptors and 

receptor-related molecules for these hormones in a wide range of species 

suggests that the general mechanisms underlying morphogenesis and 

homeostasis may be ubiquitous.

1.7.) Nuclear receptor superfamily

The expression cloning of the human glucocorticoid receptor provided the 

first completed structure of a steroid hormone receptor and revealed a 

segment of extensive homology with the viral oncogene, erbA (Hollenberg 

etal., 1985; Debuire eta/., 1984). The independent cloning of the human and 

rat receptors for androgen (AR), oestrogen (ER), progesterone (PR), and 

aldosterone (MR), over the following 2-3 years produced evidence for a 

family of related hormone binding molecules (O'Malley, 1990; Laudet et al., 
1992). Further to these advances, the identification of the erbA  

protooncogene product (c-erbA) as the thyroid  horm one receptor 

(Weinberger et al., 1986) gave a unifying element to steroid receptor 

structure and hormone action as well as suggesting a common receptor 

origin from a primordial ancestral regulatory gene.

Figure 1.5. Shows the major com ponents of the steroid  receptor 

superfamily. These molecules form a subgroup of a much larger multigene 

family of nuclear receptors (reviewed by O'Malley, 1990; Evans, 1988), 

including those which mediate responses to thyroid hormone, T3Ra and 

T3Rp; vitamin D3, VDR and retenoic acid, RARa, RARp and RARy (Laudet e t 

al., 1992). The molecules in Figure 1.5. are aligned on the basis of regions of 

maximum protein homology (Johnson and Doolittle, 1986). Each functions 

as a ligand-dependent transcription factor with diverse roles in growth, 

development and homeostasis (Hollenberg and Evans, 1988). Their primary
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sequences have since been characterised in detail (reviewed by Evans, 

1988; O'Malley, 1990).

The observation that hormones, unrelated structurally or biosynthetically 

bind structurally conserved receptors, implies the existence of further 

unidentified genes, the products of which are also likely to be ligand- 

responsive tran scrip tion  factors. The search for these in itially  

hypothetical receptor genes was based on low stringency hybridisation 

techniques using cDNA sequences of already characterised receptor 

molecules (see Arriza et al., 1987). Several new nuclear receptor coding 

genes have now been identified. By 1995, more than fifty members were 

reported, including at least thirty for which an endogenous ligand had not 

been recognised. Such receptors (exampled in Figure 1.5.) are referred to 

as 'orphans' (reviewed by Laudet etal., 1992; Laudet and Adelmant, 1995). 

Some of the first examples of this class of molecule include the oestrogen 

receptor related proteins, ERR1 and ERR2, (Giguere et al., 1988) and a 

homologue of the retinoic acid receptor subfamily, the retinoid X receptor 

(RXR) which is capable of mediating cellular responses to retinoic acid, but 

for which the true cellular ligand remains unknown (Kliewer etal., 1992). 

The reasons for receptor m ultiplicity are debatable. They could be 
im portant in promoter-specific regulation, controlling the expression of 

overlapping gene networks, requiring  tissue-specific p a tte rn s of 

expression (see section 1.13.). Alternatively, they may respond to different 

hormone metabolites. In contrast to positive gene regulatory roles, both 

COUP-TF (Wang et al., 1989) and the closely related homologue EAR2 

(Miyajima et al., 1988) can specifically modulate the cellular retinoic acid 

response by in terfering  with RXR-mediated transactivation . This 

a ttenuation  assigns a negative regulatory function to these orphan 

receptors (Kliewer et al., 1992).

Several gene products with structural similarities to steroid receptors have 

also been identified in Drosophila. Examples include the gap segmentation 

gene, kn irps  (kn i) (Nusslein etal., 1980), knirps-rela ted  (kn rl) (Ore etal.,

1988) and ultraspiracle (usp), required maternally and zygotically and the
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products of the E75 locus, active in chromosome puffing (Segraves and 

Hogness, 1990). This inter-species homology between steroid receptor-like 

transcrip tion  factors suggests that sim ilar chem ical cues underlie 

morphogenic signalling in vertebrate and invertebrate systems and an 

evolutionary conservation of fundam entally im portant transcriptional 

regulatory motifs.

1.8.) The molecular mechanism of glucocorticoid activity

The first clue to the mechanism by which relatively simple steroid 

molecules could elicit diverse and complex physiological responses came 

from the identification of their cellular receptors through the use of 

radiolabelled ligands in the early 1960s (Jensen and DeSombre, 1972; Tata et 
al., 1972). In each case, the hormone induced a change in the receptor 

which was then able to associate with high affinity binding sites in 

nuclear chromatin. This in turn led to the induction or repression of a 

limited number of genes (50-100 per cell) (Ivarie and O'Farrell 1978).

In addition to their influence over the rate of gene transcription, the 

stability and consequent turnover of mRNA may also be affected by 

steroids. These effects support observations that the general nuclear 

localisation of steroid hormone receptors is consistent with the site of 

action of their respective hormone ligands.

1.8.1.) Glucocorticoid signal transduction pathway

The overall molecular mechanism of the glucocorticoid signal transduction 

pathway and subsequent gene regulation is shown in Figure 1.6. (points 1- 

6). The first step (1) involves the passage of the steroid hormone across the 

cell membrane. The exact mechanism by which this is achieved is unclear, 

although processes of both passive diffusion, aided by the highly lipophilic 

nature of steroid hormones and specific uptake mechanisms involving

14
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transport proteins have been proposed (Brann, et al., 1995, and references 

therein).

1.8.1a.) Hormone-receptor interaction and receptor activation 

In Step 2 (Fig. 1.6.), the glucocorticoid hormone interacts with its cognate 

receptor. Inactive GR exists in the cytoplasm as a hetero-oligomeric 

complex (Pratt, 1993). The normal cellular location of other steroid receptor 

family members is in the nucleus (King, 1987). The complete GR molecule 

consists of one receptor polypeptide (the 4s monomeric form), one subunit 

each of HSP70, HSP56 and a smaller HSP of around 27 kd, an immunophillin 

of the FK506 class of cytosolic binding proteins and two molecules of HSP90 

(Pratt, 1993; Hutchinson et al., 1994). The HSP90 molecules perform two 

essential functions. By interacting with the GR ligand binding domain, 

they maintain the receptor in an inactive state in the absence of hormone 

(Dobson et al., 1989; Picard et al., 1988). HSP90 is also required for high 

affinity ligand binding, since in its absence, the receptor can still bind 

hormone but with a much lower affinity (Kauffman et al., 1992). Binding of 

the horm one ligand causes molecular dissociation of the receptor 

heterocomplex and receptor dimerization (Eriksson et al., 1991), liberating 

an activated receptor in a state competent for nuclear translocation (step 3) 

(Carson-Jurica et al., 1990). Cellular HSP90 content can determ ine 

sensitivity to glucocorticoids, through its interaction with GR (Picard et al., 

1990).

1.8.1b.) Receptor dimerisation

Nuclear receptor family members can be sub-divided, depending on 

dimerisation properties. Classically, receptors such as GR are viewed to 

function as homodimers in gene activation mechanisms which involve 

DNA binding (Bamberger et al., 1996). However, more recent evidence 

suggestes that heterodim ers between steroid receptor family members, 

such as GR/MR (Trapp et al., 1995) and GR/AR (Chen et al., 1997) may be 

commonplace in the process of transcriptional modulation. TR, RAR and 

VDR can also bind DNA as homodimers, but this binding is relatively weak. 

DNA-binding is enhanced by a further member of the nuclear receptor
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superfamily, the retinoid X receptor, RXR (Yu et al., 1991; Leid et al., 1992). 

Both RXRot and RXR(3 stimulate binding of TR and RAR subtypes, VDR COUP- 

TF and PRAP to their respective DNA response elements, suggesting that 

these receptors most likely function as heterodimers (Kleiwer et al., 1992; 

Zhang et al., 1992). Other nuclear receptors, such as NGFI-B and FTZ-F1 

appear to function as monomers (Parker, 1993).

1.8.1c.) Translocation

Activated GR is transported into the nucleus as a homodimer (Wrange et al.,

1989), a process aided by nuclear localisation signals. One of these signals 

(NL1) is located towards the carboxyl terminal end of the DNA-binding 

domain, the second (NL2) is a composite part of the ligand binding domain 

(Picard and Yamamoto, 1987). Steps 5 and 6 depict the final stages of the 

signalling pathway, which involves specific binding of the receptor to 

nuclear chromatin, or interaction with other gene regulatory proteins and 

the subsequent regulation/modulation of gene transcription (Bamberger et 

al., 1996).

1.8.Id.) Target gene recognition
The selective DNA binding of different steroid hormone receptors is 

achieved via two components, the receptor DNA binding domain, which 

forms a zinc finger binding motif (Green and Chambon, 1987; Severne et 

al., 1988: see Fig. 1.7a.) and the hormone responsive elements (HREs). HREs 

(Table 1.1.) are discrete cis-acting nucleotide sequences which mediate the 

binding of nuclear receptors to the promoters of their regulated genes 

(Geisse et al., 1982; Payver et al., 1983). They function in a position and 

orientation-independent fashion, behaving like transcriptional enhancers 

(Benoist and Chambon 1981; Chandler et al., 1983), but are dependent on the 

presence of hormone for activity (Scheiderit et al., 1983; Ostrowski etal., 
1984). HREs all follow a consensus nucleotide sequence but maintain a 

specificity high enough to direct the binding of only the correct hormone 

receptor species (Beato, 1989). For example the glucocorticoid responsive 

elem ent (GRE), can be shown to preferentially  bind glucocorticoid 

receptors in vitro with high specificity (Willman and Beato, 1986).
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Invert repeats Binding receptors
1.) GRE (+) GGTACAnnnTGTTCT GR, PR, AR, MR
2.) ERE AGGTCAnnnTGACCT ER
3.) TRE/RRE TCAGGTCAnnnTGACCTGA TR, RAR

4.) GRE (-) ATYACNnnnTGATCW GR

Direct repeats
5.) DR-1 AGGTCAn AGGTCA RXR-RXR, RAR-RXR,

COUP-TF-RXR
6.) DR-2 AGGTCAnn AGGTCA RAR-RXR
7.) DR-3 AGGTCAnnn AGGTCA VDR-RXR
8.) DR-4 AGGTCAnnnn AGGTCA TR-RXR
9.) DR-5 AGGTCAnnnnn AGGTCA RAR-RXR

Table.1.1. Consensus response elements for nuclear receptors.
GRE (+), positive glucocorticoid response element; GRE (-), negative glucocorticoid response 
element; ERE, oestrogen response element; TR E/R R E, thyroid/retinoic acid response 
element. The central core around the axis of symmetry for invert repeats shows a nucleotide 
conservation of 50%  or more (Umesono and Evans, 1989). DR-(n); direct repeat with (n) 
number of nucleotides between direct repeats (Umesono etal.,  1991). N; any Nucleotide.

Gene transfer studies, particularly with the mouse mammary tumour virus 

(MMTV) prom oter and the human m etallothionein IIA prom oter have 

shown that these elements can confer hormonal responsiveness (Robins et 
al., 1982). Most HREs identified have a dyad symmetry, which suggests 

interaction with receptor dimers. It has been shown that selectivity of 

vitamin D3, thyroid hormone and retinoic acid receptors in binding to HRE 

direct repeat half sites is specified by the num ber of nucleotides which 

separates them (the 3-4-5 rule: Umesono et al., 1991). Other steroid 

receptor-related molecules show different binding preferences which are 

detailed in Table 1.1.

1.8. le.) DNA binding

The zinc fingers of steroid receptor DNA binding domains contain zinc 

atoms, essential for DNA binding. The first (N-terminal) finger helps 

distinguish between steroid response elements. M utational analysis has 

identified three residues at the C-terminus of the first finger and in the 

interfinger region that specify GRE recognition. The second (C-terminal) 

finger is required for stabilisation of the binding reaction (Danielsen etal.,
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1989). Nuclear magnetic resonance analysis (NMR) of the GR DNA-binding 

domain expressed in E. coll has shown that the region contacting the DNA is 

an alpha-helical structure located between the two zinc fingers (Hard etal.,

1990). This observation was substantiated by the solution structure of GR 

complexed with DNA (Fig. 1.7b). The crystallographic model of the hGR-GRE 

complex (Luisi et al., 1991) revealed that amino acids in the two zinc 

fingers, im portant for target gene recognition, are found in a helical 

structure which makes direct contact with the major groove of the DNA. 

The residues in the second zinc finger are involved in dimerisation of the 

DNA binding domain.

DNA response elements bound by steroid receptors consist of only a limited 

number of sequence motifs, related to either AGAACT or AGGTCA. DNA- 

binding specificity seems to be determined by the orientation and relative 

spacing of these motifs. For example, GR, MR, AR and PR can all bind to a 

GRE inverted repeat of sequence AGAACA, separated by three nucleotides 

(see Table 1.1. and accompanying references). These recognition sequences 

for DNA-binding help determine hormonal specificity. However, additional 

factors in the DNA recognition process must operate to avoid unwanted 

cross-talk between hormonal responses.

1.8.2.) Transcriptional regulation by GR

Selectivity of gene regulation by steroid receptors is achieved, in part, by 

the restricted expression of receptors to specific cell or tissue types. A 

fu rther level of selectivity may be achieved through variation in 

chromatin structure, which is uniquely organised as a result of cellular 

differentiation, leading to DNA condensation. This in turn  is likely to 

influence the accessibility of the receptor to different subsets of genes. 

There is also increasing evidence that steroid receptors contain promoter- 

specific and cell-type specific transcriptional activation domains, leading 

to restricted transcriptional activity (Horwitz etal., 1996; Guido et al., 1996).
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1.8.2a.) Activation and repression o f gene transcription

Many glucocorticoid-responsive genes have been isolated and shown to be 

regulated at the transcriptional level, e.g. angiotensinogen, ACE, arginine 

synthase, POMC and (3-casein (Parks et al., 1974; Ringold et al., 1975; Karin et 

al., 1980; Evans et al., 1982; Doppler etal., 1989).

Various m odels have been proposed to explain the process of 

transcriptional activation by steroid receptors. Some of the first, developed 

originally for prokaryotic promoters (Ptashne, 1986) suggest that their 

gene regulatory effects are based on the interaction of the DNA-bound 

horm one-receptor complex with other proteinaceous components of the 

cellular transcription machinery (see Fig. 1.8. and section 1.8.2b for a 

cu rren t view). Under conditions of positive gene regulation, basal 

components of the prom oter initiation complex such as TATA-binding 

protein (TBP), TAFs (TBP-associated factors) and RNA polymerase II, are 

thought to either 'initiate' or stabilise at the promoter.

Protein-protein interactions at the DNA level are m ediated by specialised 

domains of GR, which for the process of gene activation are termed trans­

activation domains (Webster etal., 1988). The precise mechanisms by which 

steroid receptors affect gene transcription are still poorly understood. 

Another possibility is that of nucleosom e displacem ent, allowing 

transcription factor recognition of previously inaccessible genes causing 

either gene induction or repression (Beato and Sanchez-Pacheco, 1996).

The mechanisms of gene repression by steroid hormone receptors are also 

dependent on specific regulatory surfaces, which may or may not require 

DNA binding by the receptor to promote their activity. For GR, novel 

repression mechanisms have been proposed (Drouin e t al., 1993). For 

example, the gene encoding POMC contains a negative GRE (nGRE), of 

sequence GGAAGGTCAGGTCCA, which binds three GR molecules. A GR 

homodimer binds to the GRE, followed by a GR monomer on the opposite side 

of the double helix. GR inhibition of transcription may be mediated by
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interference with the activity of o ther  t ranscr iption factors, including 

basal components.

HCLOENZYME RECRUITMENT STEPWISE A SSE M B L Y

r \ ~
SW I/SN F

GALT 1

TFIIH FIIF•TAFs

s w i / s n f ;RNP-II

ADA/GCN5

GALT 1

,SUGiP RB>
TFIIDT1F

TFIIH
TAFs

i\ RNP-II  I) 

M j  ADA/GC.N5

TBPSHR

TATA
HRE

TFIIB

Fig 1.8. Assem bly of the transcription  initiation com plex on a horm one-responsive  
minim al promoter.
Two possible a lternate pathways are predicted. On the left, the recruitm ent of the complete 
RNA Pol-ll holoenzym e; on the right, the stepw ise assem bly of the individual components. In 
both pathways, interaction with the receptors (shown as arrows) could be direct, or mediated 
by one or multiple coactivators (TIF).
(Taken from Beato and Sanchez-Pacheco, 1996).

Gel mobility shift experiments show that GR and the proto-oncogenenic 

t ranscr ip t ion factor jun/API can repress  each others  t ranscr iptional 

act ivi ty  in a rec iprocal  m anner ,  th ro u g h  d i rec t  p ro te in -p ro te in  

interaction which is independent  of DNA binding. Transfection analysis 

using transcription factor mutants shows that multiple domains of GR and 

the leucine zipper of jun/API are involved in this process, either at  the 

level of GR and jun/AP-1, or involving a common unidentified component 

of the transcriptional machinery (Schule etal., 1990).
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The interaction between steroid receptor superfamily and AP-1 family 

members in the regulation of gene transcription is well documented 

(Miner and Yamamoto, 1991; Miner and Yamamoto, 1992). It has been shown 

that the ability of GR to stim ulate proliferin gene transcrip tion is 

enhanced  by c-jun hom odim ers, bu t rep ressed  by c-jun/c-fos 

heterodimers. These effects are also mediated by an nGRE which is capable 

of binding both GR and AP-1 (see also Table 1.1.).

1.8.2b) Transcriptional modula tion by GR

Signal transduction pathways enable many extracellular signals to activate 

latent transcription factors in the cytoplasm. Following common steps of 

dimerization, translocation to the nucleus and specific DNA or protein 

binding, these factors are able to regulate gene transcription. Different 

signalling pathways may even converge on the same prom oter. The 

resultan t transcrip tional regulatory effects depend on the array of 

transcrip tion  factors present at the prom oter and their m olecular 

interactions.

Eukaryotic transcriptional activation is largely dependent on prom oter 

context. Simple promoters containing a series of GREs in association with a 

minimal TATA box (e.g. the tyrosine aminotransferase promoter) depend 

solely on the functional properties of liganded GR for transcriptional 

activation (Jantzen et al., 1987; Grange etal., 1990). Composite promoters, on 

the other hand, are relatively more complex (e.g. the MMTV promoter) and 

contain additional binding sites for widely expressed and tissue-specific 

transcription factors, including OCT-1 (Truss etal., 1995) and NF-1 (Granner 

et al., 1996). NF-1 binding to the MMTV promoter is essential for activation 

by GR. The OCT-1 site modulates both basal and glucocorticoid-induced 

transcription (Granner et al., 1996). Thus, protein-protein, as well as 

protein-DNA and protein-ligand interactions, which most likely take place 

through distinct polypeptide surfaces are all capable of influencing the 

activity of GR.
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The efficiency with which GR activates transcription relies, in part, on the 

affinity of GR for its GRE, a property which depends on both the nucleotide 

sequence of the GRE and the receptor structure specified by the binding 

ligand (Delabre et al., 1993; Lefstin et al., 1995). For example, the 

glucocorticoid antagonist RU38486 can stimulate the translocation of GR to 

the nucleus and binding to a GRE, but the activated receptor is likely to 

rem ain transcriptionally  inactive (Guido e t al., 1996). RU38486 can 

maintain a suppressed state of transcription, even in the presence of a  

constitutive GRE activator (C-terminally truncated  GR). The effect of 

transcriptional repression elicited by an antagonist-activated receptor is 

thought not to result from the sequestering of an accessory transcription 

factor (the same effect can be reproduced in vitro), but from a receptor 

conformation, possibly influenced by the DNA binding sequence, which 

blocks the transfer of promoter activating signals from other factors. It is 

possible that different GREs induce different conformational changes in 

the bound GR in a manner analogous to different ligands, exposing unique 

receptor surfaces for activity with other cofactors. Different subsets of 

cofactors may in turn be required for different functional states of the 
promoter.

The idea that separate transcriptional regulatory sufaces of GR are 

required for promoter specific activity can be demonstrated using receptor 

mutants in which key residues are altered. For example, mutation of residue 

K442G in the DNA binding domain of hGR at one end of the DNA recognition 

helix affects function, not by inhibiting binding to DNA as might be 

expected, but by affecting the interaction of the receptor with other 

accessory proteins bound at the promoter (Montano et al., 1995). Mutation 

of critical amino acid residues can genetically distinguish the promoter 

activity of GR, implying that different residues are im portant for 

in te rac tion  with d ifferen t gene regulators. Consistent w ith this 

observation, hGR mutant K422G fails to repress AP-1 activity and activates 

promoters with AP-1 elements (Heck et al., 1994; Starr et al., 1996). Residue 

442 is therefore probably involved in the transfer of information between 

the GRE and other parts of the GR protein and has implications regarding 

the flow of information between different domains of the receptor.
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i.) Coregulators

Interactions between steroid receptors and basal transcription factors is 

necessary, but not sufficient for efficient transcriptional control. Recent 

evidence shows that apart from contacting the basal transcrip tion 

machinery directly, nuclear receptors recruit an array of coactivators and 

corepressors, which are im portant in the mechanism of hormonally 

induced transcrip tional regulation (Horwitz et al., 1996). This third 

category of factors are thought to stabilise promoter specific interactions, 

providing transcriptional specificity (Goodrich et al., 1993). A growing list 

of such molecules has been described. For example, the gene regulatory 

function of GR in yeast cells is dependent on the SWI/SNF family of 

transcrip tion factors, which act to reverse the repressive effects of 

chromatin components (Chiba et al., 1994). The human homologues of these 

factors, hSNFs also enhance the activity of GR as well as other steroid 

receptors (Muchardt et al., 1993). The exact mechanism of action of these 

coactivators is still unclear, but for SWI/SNF factors, the currently 

favoured model is a stabilisation of the transactivator-PolII holoenzyme 

complex through the complim entary destabilisation of nucleosomes 

(Wilson etal., 1996).

The binding of coactivators to steroid receptors is also likely to be a ligand 

regulated process. The nuclear proteins ERAP 160 (Halachmi et al., 1994) 

and RIP 140 (Cavailles etal., 1995) will only bind a conformationally active 

ER LBD in a reaction which is dependent on oestrogens and is destabilised 

by antioestrogens. These nuclear proteins are found in most tissues, which 

suggests they play a generic role in transcription. Several additional 

factors which interact with nuclear hormone receptors have also been 

described, which may form a large family of related proteins. Examples 

include SRC-1, which enhances the transcriptional activity of GR, ER TR 

and RXR in vivo (Onate et al., 1995). It also interacts with agonist, but not 

antagonist occupied hPR (Onate et al., 1995). GRIP-1, of the same family as 

SRC-1 is a coactivator of steroid receptor LBDs in yeast (Hong et al., 1996). 

There are a whole host of other factors which bind either specifically (e.g. 
ARA7 0 : Yeh and Chang, 1996) or promiscuously (RAP4 6 : Zeiner and 

Gehring, 1995) to steroid hormone receptors. The CBP response element,
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which is often found in association with GREs, is bound and coactivated by 

the cAMP response element binding protein, CBP. Fibroblasts microinjected 

with anti-CBP antibodies are unable to support GR regulated transcription, 

demonstrating the involvement of CBP in glucocorticoid signalling in vivo 

(Hanstein et al., 1996). CBP could act as a cointegrator, coordinating the 

transcriptional effects of signals eminating both from cell membrane and 

nuclear receptors. The end result may be the integration of multiple, 

possibly conflicting signals which might impinge on a promoter.

This procession of recently discovered molecular interactions between 

steroid receptors and other nuclear proteins serves to illustrate the diverse 

molecular interactions which contribute to the transcriptional regulatory 

process. They also introduce a mechanistic complexity in which subtle 

differences in receptor steroid binding or protein sequence might be 

translated into different responses at the level of gene regulation. These 

additional regulatory layers might explain the heterogeneity of hormone 

responses seen in different tissues.

ii.) Synergism between the glucocorticoid and prolactin signalling pathways 

The modulatory capacity of GR has already been used in an experimental 

approach to the assay of receptor function. In recent studies by Stocklin et 

al., (1996) the glucocorticoid receptor has been shown to act as a 

coactivator for the transcription factor STAT5, enhancing STAT5-dependent 

transcription. STAT5 is a signal transducer and activator of transcription, 

one of a family of related transcription factors mediating the final stages of 

signal transduction through JAK/STAT pathways. These pathways are 

activated by cytokines, hormones and growth factors following binding to 

specific transmembrane receptors on the outside of the cell. The resultant 

activation of Janus protein tyrosine kinases (JAKs) leads to tyrosine 

phosphorylation of their associated STAT proteins and STAT dimerisation, 

conferring the ability to bind STAT-response elements in the DNA (Darnell 

etal., 1994).

Although the glucocorticoid and JAK/STAT pathways are apparently 

unrelated, synergism between glucocorticoid and prolactin hormone action
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in mammary epithelial cells is well documented (Doppler et al., 1989). 

Prolactin is a lactogenic hormone (others include hydrocortisone and 

insulin) which, via the prolactin receptor, mediates prolactin-dependent 

induction of milk protein ((3-casein) synthesis in terminally differentiated 

mammary epithelial cells through specific activation of STAT5. The 

coexpression of the prolactin receptor, STAT5 and GR in COS cells, in which 

only trace amounts of GR are normally expressed similarly results in 

synergistic activation of a cotransfected p-casein gene prom oter (Stocklin 

eta/., 1996).

The direct relevance of the interaction between GR and STAT5 to the 

experimental focus of this thesis is discussed further in chapter 7.

Because cytokines can mediate inhibition of glucocorticoid-induced 

apoptosis of lymphocytes (LaVoie and Witorsch, 1995), it may be that STAT- 

GR mediated suppression of gene induction in vivo is responsible for this 

anti-apoptotic effect. It has also been proposed that the glucocorticoid 

receptor acts differently in its role as a negative transcriptional regulator 

in its interactions with AP-1 (Teurich and Angel, 1995) and NFkB (Cato and 

Wade, 1996). As anti-inflammatory agents, the transcriptional repression of 
several cytokines and adhesion molecules relevant to inflamm atory 

processes are repressed by glucocortiocids (vanderBerg et al., 1997). For 

example, the expression of intracellular adhesion molecule-1 (ICAM-1), an 

integrin which plays an essential role in the recruitm ent and migration of 

leukocytes to sites of inflammation, is repressed by opposing effects on the 

NFkB/RelA family member, RelA. This repression does not require GR 

binding to NFkB elements in the DNA, rather, GR interacts with the RelA 

protein. Of the family of steroid receptors, this effect is almost exclusive to 

GR, indicating a m echanism by which glucocortiocids specifically, 

function as anti-inflammatory agents. Few genes that are repressed by GR 

have GRE or nGRE sequences in their promoters, which suggests that DNA 

binding is probably not critical for all aspects of GR m ediated gene 

repression (Truss and Beato, 1993).
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1.9.) Detailed structure of the glucocorticoid receptor: localisation of 

functional domains

The glucocorticoid receptor (GR) was the first mammalian transcription 

factor to be isolated and studied in detail (Muller and Renkawitz, 1991). 

Cloning and sequencing of GR cDNAs from mouse, rat and man (Hollenberg 

et al., 1985; Meisfield et al., 1986; Muller and Renkawitz, 1991) has played a 

pivotal role in the structural and functional characterisation of this 

complex molecule.

The rat glucocorticoid receptor (rGR) at the molecular level displays 

properties characteristic of the steroid receptor superfamily of DNA- 

sequence specific transcription factors. The full length molecule comprises 

795 amino acids (Miesfeld et al., 1986) and divides into several autonomous 

domains showing cooperative molecular interactions. This interpretation is 

based on experimental evidence that discrete proteolytic fragments of GR 

possess some, but not all of the functional properties of the intact molecule 

(Vedeckis et al., 1983). Residues 440-500 make contact with DNA through Zn- 

finger motifs, and present a nuclear localisation signal; the region from 

595-614 interacts with heat shock protein 90 (HSP90), and the domain from 

524-795 binds ligand and exposes a second nuclear localisation signal. The 

domains involved in transactivation of glucocorticoid-regulated genes are 

less well defined and several regions of GR show evidence of regulatory 

properties (McEwan et al., 1997).

1.9.1.) Hormone binding domain (HBD)

Steroid hormone binding is the first step in a series of events which 

translate the structural inform ation of the steroid into a biological 

response. Hydrophobic carboxyl-terminal residues in the HBD fold to 

accommodate the steroid binding pocket, which binds a single steroid 

molecule. Following hormone binding, steroid receptors undergo a 

structural (allosteric) alteration, or 'transformation', which for GR enables 

receptor dimerisation, translocation to the nucleus and finally, DNA 

binding (Garges and Adhya, 1985). The major (overlapping) sequences of
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the HBD responsible for these events are shown in Figure 1.9. The entire C- 

terminal region of GR shows 96% amino-acid sequence identity between 

human, rat and mouse receptors. Homology of the same region between 

other members of the steroid receptor superfam ily is less but still 

extensive, which probably reflects the structural differences between 

their hormone ligands (Evans, 1988). This homology may explain why 

virtually every steroid hormone appears to interact with more than one 

receptor subtype (Teustch et al., 1988).

Many mutations directed to the steroid binding domain of GR cause a 

reduction or loss in steroid binding activity, measured by ability to induce 

an MMTV-CAT reporter gene (Rusconi and Yamamoto, 1987). In contrast, 

amino-term inal m utations reduce the ability of GR to transactivate. 

(Giguere et al., 1986; Hollenberg and Evans, 1988, Dahlman-Wright and 

McEwan, 1996). Mutations occuring naturally in the steroid binding domain 

of GR (e.g., in familial glucocorticoid resistance; see section 1.13.) have a 

similar effect to directed mutations, in reducing steroid binding. There are 

exceptions; mutation C656G of rat GR results not only in increased affinity, 

but also in an enhanced specificity of steroid binding creating a 'super­

recep to r' (Chackraborti e t al., 1991). This supports the view that the 

hormone binding domain, at least in GR, contains a transcriptional 

inactivating function, possibly mediated through HSP90, which is known to 

bind to this region. The complete deletion of the carboxyl-terminus from 

hum an, ra t and mouse GRs also produces constitutive (hormone 

independent) transcriptional activators (Danielsen etal., 1987; Godowski et 

al., 1987; Hollenberg etal., 1987).

1.9.2.) DNA binding domain

The DNA binding domain of steroid receptors is comprised of a highly 

conserved 66-68 amino acid sequence, showing 42-94% homology between 

family members (Evans, 1988). It is the DNA binding domain which 

mediates specific recognition of the cognate steroid hormone response 

element (HRE). Each shows a clustering of basic residues, likely to interact 

with DNA (Umesono and Evans, 1989).
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The critical DNA binding sequence contains nine conserved cysteines, 

eight of which are thought to form two zinc fingers. Each finger (both of 

around 25 amino acids: Giguere et al., 1986) contains four cysteines 

coordinated with one atom of zinc (Evans and Hollenberg, 1987), forming 

motifs which in teract with half turns of the DNA helix (Fig. 1.7.). The 

amino-terminal finger makes sequence specific DNA contacts. Two amino 

acids located at the beginning of the alpha helix, which directly interacts 

with the DNA, are critical in determining binding specificity of GR and ER 

(Danielsen et al., 1989). Mutational analysis of the second finger indicates 

that this region is also required for efficient DNA binding (Hollenberg e t 

al., 1987).

Proof of function of the central nucleic acid binding region from different 

receptors has been aided by 'finger swap' experiments, used to characterise 

receptor domains. For example, substituting the DNA binding domain from 

the human oestrogen receptor (hER) with that from hGR produced a hybrid 

molecule activated by oestrogen, but with the DNA binding specificity of 

hGR (Green and Chambon, 1987).

1.9.3.) Modula tory domain

The am ino-term inal (m odulatory) dom ain of stero id  receptors is 

hypervariable in size and shows very little conservation between family 

members. However, this domain is still important for function. Deletions in 

this region of hGR can reduce transcriptional activity by 10- to 20-fold 

(Hollenberg eta l., 1987; Danielsen etal., 1987). Additionally, NT* (nuclear 

transfer increased) glucocorticoid receptor m utants with a truncated 

amino-terminus, can still bind hormone but are transcriptionally inactive 

(Dieken and Miesfeld, 1992). Mutants are retained in the cell nucleus more 

efficiently than wild type receptors, but fail to activate transcription. As 

well as a trans-activation function, receptors also appear to lose signals 

required for the efficient recirculation to the cytoplasm (Andreasen and 

Gehring, 1981; Westphal et al., 1984; Dieken and Miesfeld, 1992). Similarly, 

an oestrogen receptor with an amino-term inal deletion can normally 

regulate the vitellogenin prom oter, bu t is 10-fold less effective in
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regulating the expression of the oestrogen responsive prom oter, p52 

(Kumar et al., 1987). Structural differences in the amino-terminus may 

therefore influence the functional differences between receptors. The 

functional properties of this domain may involve interaction with general 

and promoter-specific transcription factors, modulation of DNA binding 

and responses to hormonal ligand by exerting an allosteric influence over 

the remainder of the activated receptor (Dellweg etal., 1982).

1.9.4.) Trans-activation domains

W einberger e t al., (1985) using insertional m utants, were able to 

demonstrate the existence of additional sequences, separate from DNA and 

steroid-binding domains with potent transcriptional activating properties. 

The trans-activation functions of the rat and hum an GRs have been 

localised to three distinct regions (McEwan et al., 1997). The strongest 

transactivating region in human GR is xl, located in the amino-terminal 

dom ain. The homologous region in rat GR is enh2, and is delimited by 

residues 108 and 318 (Godowski et al., 1988). Evidence that these regions 
contain transcrip tionally  active surfaces comes from  studies using 

chimeric proteins of both the human and rat GR amino-termini fused to 

unrelated DNA binding domains such as lexA (rat; Godowski et al., 1988) or 

GAL4 (human; Hollenberg and Evans, 1988). Each is capable of promoting 

activation of a reporter gene (e.g. chloramphenicol acetyl transferase; 

CAT) containing the appropriate DNA binding elements. Domains xl and 

enh2, coincide with the major immunogenic domain of their respective GRs 

and therefore are likely to appear on the external surface of the molecule 

(Weinberger et al., 1985). Weaker transactivating surfaces have been 

identified in the rGR protein: en h l co-localises with the DNA binding 

domain (between residues 440-525), and is functionally equivalent to a 

similar region in hGR, x2 (residues 526-556, human receptor sequence. See 

Fig. 1.9.). The x2 domain of human GR (which, unlike xl is also present in 

smaller steroid hormone receptors largely devoid of a modulatory domain, 

such as ER) represents a trans-activator dom ain in its own right, 

functioning in a position and orien tation-independent m anner. Its 

activity, like that of x l, is also increased when multimerised, or when
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expressed in unison with xl. When fused to the yeast transcriptional 

activators GAL4 or GCN4 as part of the ligand binding domain, x2 generates 

a hormone-inducible activator (Hollenberg and Evans, 1988). The location 

of x2, between DNA and hormone binding domains, suggests that it may act 

as a 'hinge' linking the two (Giguere et al., 1986). Mutations in this region 

could therefore block the allosteric transformation necessary for receptor 

activation. McBroom et al., (1995) have recently shown that a similar non­

conserved 'hinge' region of the ROR receptor (a newly described orphan 

member of the steroid-thyroid-retinoid receptor superfamily) is required 

for maximal and efficient DNA bending. A third transcriptionally active 

region of GR locates to the C-terminus and is highly conserved between 

different steroid receptors (Danielian et al., 1992).

i.) Detailed structure o f the glucocorticoid receptor transactivation domains, 
enh2 and xl

The experiments in this thesis are based largely on structure-function 
relationships of rat GR. An understanding of the mechanisms by which 
mutation of amino acid residues in the rGR amino term inus may alter 
molecular function depends on a detailed knowledge of the type and 
distribution of residues, their charge properties and likely contribution to 
specific molecular interactions.

The most detailed dissection of a transactivation domain of GR has been 
carried out in the amino-terminal xl region of hGR (Hollenberg and Evans, 
1988). xl is the homologue of rat enh2 and contains a potent site of 
transcriptional activation in a core sequence located between residues 1 ST- 
244. Recent studies have shown that the xl core sequence (Fig. 1.10.) is 
ordered into three a-helices (HRI, HRII and HRIII) with a defined loop 
structure separating HRI and HRII (Almlof et al., 1997). A sequence 
homologous to the xl core is also found in enh2 spanning residues 210-261. 
These core sequence polypeptides show 83% sequence homology, in which 
the residues key to receptor function are conserved (Almlof et al., 1997; 
Iniguez-Lluhi etal., 1997).

Charge properties, such as those resulting from acidity are known to 
influence the activity of many transcription factors (reviewed by Ptashne,
1988). However, the analysis of a series of xl mutants in hGR (TAs 1-8), each
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of which encodes a small cluster of m utations affecting transcriptional 
activation (Almlof etal., 1995), has indicated that the acidity of individual 
residues is not critical for function. All of the corresponding residues are 
conserved in the aligned rat GR sequence (see Fig. 1.10.). For example TA1, 
in closest proximity to the amino terminal end of xl (and only 16 residues C- 
terminal to a polyglutamine tract in the corresponding position in rat GR), 
defines the effects of mutation of acidic residues; GIU9 2 , G IU 9 4  and Aspioi- 
The neutralisation of these residues produces a receptor protein with 
reduced transactivation activity (80% of wild type). Mutation of other acidic 
residues (predominantly glu, asp) throughout the majority of the xl domain 
also causes variable small changes in transcriptional activation function.

Three amino acid substitutions in the rat core peptide (E219 to K219, F220 to 
L220 and W234 to R234) selectively disrupt the activation, but not the 
repression function of the receptor amino-terminus. This supports the 
theory that specific residues of GR have defined functional roles (Iniguez- 
Lluhi et al., 1997). Each of these residues occurs within a 16 amino acid 
sequence which aligns with the corresponding region of the xl core of 
human GR (Fig. 1.10.). Residues E219 and F220 (rGR) correspond to residues 
in helical region I (HRI) of the xl core sequence. Similarly, residue W234 of 
rat GR is homologous to residue W213, a critical residue of the xl core loop 
sequence. Mutation of W213 to G213 reduces hGR transactivating activity to 
42% of wild type. It has been proposed (Almlof e t al., 1997) that the 
structural components of the xl core are likely to present an array of 
discrete surfaces for interaction with other transcription factors.

The functional complexities of transactivating surfaces are currently 
being defined. The charge properties of different types of residues are 
important: the significance of acidic residues has already been discussed. 
Hydrophobic residues, as well as charged residues, also appear to provide 
im p o rta n t fu n c tio n a l c h a rac te ris tic s , c o n tr ib u tin g  pa tches of 
hydrophobicity which may influence transactivation (Almlof et al., 1995). 
The structural influences these residues induce in the xl core sequence 
suggest an activity mechanism which is more complex than that predicted 
for an acidic blob-like activator domain (Dahlman-Wright et al., 1995) and 
has im portant implications for rGR function. Sequence alignments show 
that, as well as the 'core' sequence, a very high proportion of the acidic 
(Glu, Asp, phosphorylated Ser) and hydrophobic (Phe, lie, Leu) residues are 
conserved between rat and hum an receptors. This homology extends
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GR e n h 2 / T  1 :

r 39>thr val lvs val ser ala ser ser pro ser val ala ala ala ser gin ala asp ser lvs gin gin arq
h 38>thr val lys val ser ala ser ser pro ser leu ala val ala ser gin ser asp ser lys gin arg arg

thr leu ala cys gly ser leu glu glu asp
r 62>ile leu leu asp phe ser lvs qlv ser thr ser ala val gin gin arg
h 61>leu leu val asp phe pro lys gly ser val ser asn ala      

gin gin gin gin gin gin gin

gly val arg tyr gly
r 85>gln gin gin gin gin gin gin gin gin gin gin glr
h — >          gin gin

pro gly leu ser lvs ala val ser leu ser met
pro asp leu  s e r  l y s  a la  v a l  s e r  leu  s e r  met 

r!08>a l v  leu  t v r  met a l v  a lu  th r  a lu  th r  l v s  v a l  met a l v  asn asp  lu e  a l v  t y r
h 87> g ly  leu tyr met g l y  g lu th r  g lu th r  l y s val met gly asn asp leu gly phe p ro gin gin  g l y  g in

92 94 101
rl31> leu a l v  leu s e r  s e r  a l v  a lu th r  asp  phe arg leu leu alu alu s e r i l e  a la asn leu asn arg s e r
hllO> i l e s e r leu s e r s e r g l y  g lu th r asp leu lys leu leu glu glu s e r i l e ala asn leu asn arg s e r

116 118 123 124
rl54> th r  s e r  va l pro alu asn pro l v s s e r s e r th r s e r a la th r  g l y  cys a la th r pro th r a lu l v s a lu
hl33> th r s e r va l p ro glu asn p ro l y s s e r s e r a la s e r th r a la va l s e r a la a la p ro th r glu l y s g lu

137 153 155
rl77>phe pro l v s th r  h i s s e r asp a la s e r s e r  a lu aln aln asn ara  l v s s e r a ln th r  a l v th r  asn a l v
hl56>phe pro l y s th r h i s s e r asp va l s e r s e r g lu gin gin h i s leu l y s g l y  g in th r  g l y th r asn gly

162 166 HRI
r200 > a lv s e r va l l v s leu t v r pro th r asp aln ser th r  phe asp leu  leu l y s [gjuj Iphe ala
hl79> g ly asn va l l y s leu t y r th r th r asp gin ser th r  phe asp i l e leu gin asp le u gTu pHe s e r s e r

LO O P 187 192 1 Q6 1 QR HRII
r223 > a ly s e r pro s e r l v s asp th r asn alu s e r pro ara ser asp asp leu leu i l e asp alu asn
h202>gly s e r p ro  g l y  l y s g lu th r asn g lu s e r p ro t r p arg ser asp le u leu i l e asp glu asn cy s

201 21 n 216 HRIII 220 221
r246»Jeu leu s e r pro leu a la a l v  alu asp asp nrn nhe leu leu a lu a l v asn th r asn alu asp C V S l v s
h224^l e u leu s e r p ro leu a la g l y  g lu asp asp s e r phe leu leu g lu g l y a s n s e r asn glu asp cys l y s

231 232 233 238 243 244
r269>Dro lu e i l e leu pro asp th r l v s  pro l v s i l e l v s asp th r a l v  asp th r i l e leu ser ser pro s e r
h247>pro lu e i l e leu p ro asp th r l y s  p ro l y s i l e l y s asp asn g l y  asp leu val leu ser ser pro ser

259 262
r291>ser val ala leu pro aIn val l v s th r  a lu l y s asp  asp phe ile glu lys CVS th r pro
h270>asn val thr leu pro gin val lys thr glu ile glu leu lys glu asp phe ile glu leu cys thr pro

r311>a l v  va l i l e l y s gin alu l v s leu<318
h293>gly val ile leu gly glu lys leu<299

Fig. 1.10. A lig n m en t of the m ajor tran s a c t iv a t io n  dom ain s  ( t 1 and enh2) of the  
hum an and rat GRs. Open boxed residues in the am ino term inus of the rat sequence (in black) 
denote those residues m utated in rat GRs constructed  in this thesis. R esidues above in green 
represent the corresponding am ino acid m utations. Residues underlined represent sequences of 
hom ology between rat and human GR (shown in red). Am ino acid coord inates w ith in the human 
sequence m ark acid ic residues, w hich w hen m utated, bring about small a lte ra tions in receptor 
transac tiva tion  activ ity  (A lm lo f e t a l . ,  1995). D ashed lines loca te  res idues  m iss ing  in the 
co rrespond ing  sequence. R esidues in ita lics  m ark the m a jo r am ino -te rm ina l transactiva tion  
dom ains; x1 (human: residues 77-262) and e n h l (rat: residues 108-318). Shaded boxes localise 
those residues which make up the three helical regions of the hGR tau 1 core sequence (A lm lof 
et a l . ,  1997). Hom ology in these regions between human and rat GRs are: 83%  (HRI), 82%  (HRII) 
and 83%  (HRIII). C irc les identify residues of the rat GR w hich are known to se lective ly  disrupt 
transactivation function (see text for details).



beyond the perceived amino-terminal boundaries of enh2 and xl and into 
sequences which precede the polyglutamine tract of rat GR (see Figs. 1.9. 
and 1.10.).

Despite these advances in our understanding of the critical structural 
components of enh2 and xl the precise functional limits of these domains 
remain undefined. Most of the focus to date regarding GR amino terminal 
transactivation function has been centred around residues which comprise 
the 'core' polypeptide sequence. In addition, the identification of 
functionally im portant residues has been based largely on those which 
e ither significantly reduce, or com pletely abolish transcrip tional 
activation activity of GR (Godowski etal., 1987; Godowski etal., 1988).

ii.) Polyglutamine tract
Protein sequences rich in basic residues such as glutamine and proline are 

also known to affect transcription. Many proteins have now been described 

which possess homopolymeric stretches of these amino acids (Ross et al., 

1993; Gerber et al., 1994). Transactivation is shown to be affected when 

tracts of polyglutamine or polyproline are covalently inserted between the 

yeast GAL4 DNA-binding moeity and the transcriptional activation domain 

of herpes sim plex-derived VP16 p ro te in , ind icating  th a t these 

homopolymeric tracts could influence transcription (Gerber et al., 1994). 

No such evidence exists for GR. Whilst in the rat, the length of the 

polyglutamine tract varies between 7 and 23 CAG repeats, the mouse and 

human receptors are constant, with 9 and 2 repeats respectively (Danielsen 

et al., 1986, Hollenberg et al., 1985). At the molecular level, no gross 

differences in transactivation function have been reported  between 

human (2 repeats) and rat (21 repeats) GR cDNA clones (Miesfeld et al., 

1987). However, predisposition to prostatic cancer is positively associated 

with shorter CAG tracts in the human androgen receptor (hAR). Deletion of 

the CAG tract in rat or human AR is reported to enhance the activity of 

reporter elements, and long repeats reduce transcription to a degree 

(Mhatre et al., 1993; Chamberlain et al., 1994). In these reports it is difficult 

to exclude the possibility that two-fold differences in transactivation might 

be due, in part, to differences in protein stability. In a case of androgen 

insensitivity, a reduction of polyglutamine repeat length in hAR was
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associated with increased lability of the receptor in tissue culture when 

associated with the mutation T761C in the steroid binding domain (McPhaul 

etal., 1991).

The exact functional role of polyglutamine tracts is unclear, although by 

their very nature they are predicted to lie on the surface of proteins 

where, under non-pathological circumstances, could provide discrete 

surfaces which prom ote p ro te in -p ro te in  in teractions. Perutz and 

coworkers, (1994) have shown that synthetic polymers of glutamine 

residues are capable of forming regular beta-barrel structures, strongly 

held together by hydrogen bonds. These motifs may function as polar 

zippers, providing a means for the interaction of trans-acting factors even 

when bound to separate DNA segments. For example, the glutamine 

activation domains of Sp-1 (Courey and Tjian, 1988) and the POU (proline 

and glutamine-rich) domains of Oct-1 can specifically bind TBP in vitro. 

TBP mutants have now been identified which are defective in activated, but 

not basal transcription. A num ber of TAFs have been shown to bind 
specificaly to particular types of activation domains, e.g., dTAFHO which 
binds to the glutamine-rich domains of Sp-1 (see Triezenberg, 1995).

Interactions between polyglutamine tracts and other proteins has also 

been suggested as a molecular basis of the microsatellite expansion diseases 

such as Huntingtons disease (HD; Myers et al., 1993) spinocerebellar ataxia 

type 1 (SCA 1; Orr et al., 1993) spinal and bulbar muscular atrophy (SBMA; 

LaSpada et al., 1992) and dentatorubral pallidolusian atrophy (DRPLA; Koide 

et al., 1994). Of the gene mutations known to be involved in these diseases, 

only that causing SBMA is known to reside in a transcription factor (AR) 

and it is possible that altered transactivation function may lead to aberrent 

gene regulation. Alternatively, homopolymeric expansion may lead to 

progressive aggregation and co-precipitation of other cellular factors 

(Perutz et al., 1994), although confirm atory evidence of cellular 

precipitates has not been reported.
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Given the m olecular com plexities by which GR can m odulate 

transcriptional activity; GR can even act as a corepressor through 

interaction with other transcription factors such as AP-1 (Pearce and 

Yamamoto, 1993; Diamond et al., 1990), the potential for effects of 

polyglutamine sequences on interactions between GR and these other 

factors, or w ithin GR hom odim ers becomes more apparent. Such 

interactions could have far reaching consequences metabolically or in a 

tissue or developmental stage specific fashion. GR has also been shown to 

form dimers with MR (Trapp et al., 1995), which have an enhanced 

cooperativity in DNA binding and with AR (Chen et a l, 1997), which also 

carries an N-terminal polyglutamine tract in both rats and man. These 

interactions offer yet other ways of modulating glucocorticoid activity in 

tissues which express different combinations of these receptor types.

Part 2

Glucocorticoids and mechanisms of blood pressure control

1.10.) Corticosteroid receptor designation

Classically, corticosteroids are thought to exert their biological effects by 

differential binding to and activation of MR and GR. However, this 

distinction is possibly naive. There seems to be a clear lack of selectivity 

for natural mineralocorticoid and glucocorticoid hormones between these 

receptors. MR has a similar affinity (Kd, around 1 nM) for both aldosterone 

and glucocorticoids (cortisol/corticosterone) and is activated by both of 

these hormones in vitro (Krozowski and Funder, 1983). GR has only a 

slightly higher affinity for glucocorticoids (Kd, 10-50 nM) than for 

aldosterone (Kd, 50-100 nM) (Arriza et al., 1987).

Given that total circulating levels of glucocorticoids are usually several 

orders of magnitude (100-1000-fold) higher than those of aldosterone, 

despite the fact that glucocorticoids are heavily bound to plasma proteins,
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such as CBG (see section 1.3.) while aldosterone is mostly free, how is a 

mineralocorticoid response to aldosterone possible? Figure 1.11. outlines 

the basic mechanism. Primary sequence homology of hMR and hGR is high 

(DNA-binding domains, 94%; hormone binding domains, 57%. Respectively, 

59% and 76 % in the rat). Thus, tissue-specific differences in aldosterone 

and  glucocorticoid activation of m ineralocorticoid (type I) receptors 

cannot be explained purely by receptor differences.

GlucocorticoidMineralocorticoid

Cortisol
(ACTIVE)Distal nephron

SD2 Cortisol 
(ACTIVE)

C o rt is o n e ^
(INACTIVE)

Cortisone
(INACTIVE)

Brain
Liver

TYPE I TYPE

Dex

Na+ Retention

K+ Excretion A
Blood Pressure

Metabolism  

Vasoconstriction  

Blood Pressure

Fig. 1.11. The basic  m echanism  of a ld ostero n e  s e le c tiv ity  in target tissu es .
Glucocorticoids (cortisol/cortocosterone) have a roughly sim ilar a ffin ity for type I and type II 
corticosteroid receptors. In classical aldosterone responsive tissues, however, glucocorticoids 
are norm ally  p revented from  b inding to m inera locortico id  (type I) receptors by 11(3- 
hydroxysteroid dehydrogenase (11 (3-HSD) which rapidly m etabolises these compounds. The 
glucocorticoid metabolites (cortisone and 11-deoxycortcosterone, respectively) have a much 
lower affinity for the m ineralocorticoid (type I) receptor, thus allowing unhindered aldosterone 
binding. The reciprocal reactivation of cortisone and 11-deoxycortcosterone back to the active 
steroids occurs in other tissues, mainly the liver.

Clearly, a protection function preventing unwanted glucocorticoid access 

to type I receptors is necessary in tissues which are required to respond 

almost exclusively to aldosterone. This is achieved by the enzyme ll-(3 

hydroxysteroid dehydrogenase (11(3-HSD) (Monder and White, 1993). This
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enzyme has at least two isoforms (isozymes), the products of two distinct 

genes (Seckl, 1993). ll-pHSD2 (Albiston, et al., 1994; Brown et al., 1996), 

functioning as a reductase, converts cortisol and corticosterone to their 

respective inactive metabolites cortisone and 11-dehydrocorticosterone in 

aldosterone responsive tissues.

The other 11-pHSD isozyme, 11-(3HSD1, is proposed to be an NADP(H) 

dependent enzyme (Agarwal et al., 1989) which reactivates these 

glucocorticoid m etabolites in glucocorticoid responsive tissues. In 

transport epithelia, particularly the distal nephron of the kidney, MR co- 

localises with the ll-pHSD2 isoform (Albiston, et al., 1994; Brown et al., 

1996), which inactivates cortisol/corticosterone allowing aldosterone 

preferential access to the receptor. In brain and hippocampus, the 11 p- 

HSD1 isoform predom inates. In conclusion, the overall effects of 

corticosteroids on blood pressure are the composite result of activating 

more than one type of receptor.

1.11.) Glucocorticoid regulation of vascular tone: mechanisms of 

blood pressure control

Several components determine physiological blood pressure. These include 

cardiac output, resistance of the blood vessels, blood volume and viscosity. 

Total peripheral resistance is inversely proportional to vessel diameter, a 

function of vascular muscle tone and elasicity (Kenyon and Fraser, 1992). 

Each of these components is controlled by num erous neuronal and 

endocrine influences. The central nervous system control of cardiac 

function and total peripheral resistance is a critical factor in blood 

pressure regulation. Resultant effects are m ediated through various 

neurotransm itters such as norepinephrine and acetycholine and their 

receptors (Axelrod and Reisine, 1984). Properties of resistance vessels, 

including structure, basal tone and sensitivity to various pressor agents 

also depends on short and long term influences of systemic and local tissue 

derived hormones (Benjamin and Vallance, 1991). The synthesis, action and
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metabolism of many of these compounds are modulated by glucocorticoids 

and mineralocorticoids (reviewed by Walker and Williams, 1992).

All categories of adrenal steroids; glucocorticoids, mineralocorticoids, 

androgens and oestrogens are capable of influencing blood pressure but, 

glucocorticoids and mineralocorticoids are the major regulators (Sleight, 

1986). The mechanisms by which steroids raise blood pressure differ. In the 

case of aldosterone, the exact nature and functions of all of the induced 

proteins have not been fully identified. In the kidney and in other 

transport epithelia, aldosterone-induced proteins (AIPs) are thought to 

increase cell permeability to sodium, increase the rate of ATP synthesis and 

stimulate the activity of the Na+-K+-ATPase (Horisberger and Rossier, 

1992).

Despite their pronounced effect on blood pressure, mineralocorticoids and 

glucocorticoids do not effect smooth muscle contraction directly. Pressor 

effects of steroids can result from either the potentiation or stimulation of 

secretion of vasoconstrictors, or decrease in the effectiveness of 

vasodilators. The following two sections outline the principal modulatory 

effects of glucocorticoids on chosen examples of vasoactive molecules (see 

Table 1.2.).

1.11.1.) Vasoconstrictors

1.11.1a.) Catecholamines and adrenergic receptor interaction 

The vasoconstrictor properties of glucocorticoids are based predominantly 

on their modulation of vascular smooth muscle sensitivity to noradrenaline 

(NA) (Yagil et al., 1986; Frohlich, 1987; Darlington et al., 1989; Sudhir et al.,

1989). Changes in vascular s truc tu re , second m essenger events, 

adrenoceptor binding characteristics and the activity of enzymes which 

metabolise catecholamines are all known to be involved (Axelrod and 

Reisine, 1984).
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Sites of modulation Glucocorticoid effect Reference

V a so c o n s tr ic to rs
a-ad ren ocep tors In VSMCs of the rat, reduced high 

affinity a-adrenoceptor numbers are 
restored by dexamethasone

Haigh and 
Jones, (1990)

* ANP G lucoco rtico id s su p p re ss  ANP 
production in vivo and ANP activity 
in tissue culture

Kenyon e ta l, 
(1990)

*ACE G lucocorticoids induce ACE in 
endothelial cells

Medelsohn etal., 
(1982)

* A n g io te n s in o g en Circulating levels of angiotensinogen 
are increased by glucocorticoids

Ben-Ari etal., 
(1989)

* R e n in In contrast to m ineralocorticoids, 
glucocorticoids are rep o rted  to 
increase renin gene transcription

Morris etal., 
(1984)

V asodila  tors
(3-adrenoceptors Rat aortic vascular smooth muscle 

cells show increased numbers of (3- 
adrenergic receptors at physiological 
concentrations of dexamethasone

Jazayeri and
Meyer
(1988)

*V asop ressin Glucocorticoids secondarily down 
regulate vasopressin synthesis via 
ANP in response to vascular volume 
expansion

(Kenyon and 
Jardine, 1989)

* ANP G lu co co rtico id s in c re a se  ANP 
synthesis in response to surges in 
vascular volume

Kenyon etal., 
(1990)

Phospholipase A2 Glucocorticoids reduce the production 
of vasorelaxant eicosinoids PGE1 and 
prostacyclin  by down regulating 
phospholipase A2 gene transcription

Flower (1988); 
Axelrod, (1983)

*N O -synthase The inducible form of NO-synthase, 
identified in macrophages and VSMCs 
is inhibited by glucocorticoids

DiRosa etal., 
(1990)

Table 1.2. Vasoactive molecules modulated by glucocorticoids. Abbreviations: VSMC, 
vascular smooth muscle cell; PG E1, prostaglandin E1; Gi, G-protein inhibitory subunit; Gs, G- 
protein stimulatory subunit; IP3, inositol triphosphate; DG, diacyl glycerol; NA, noradrenalin; 
ANP, atrial natriuretic peptide; ACE, angiotensin converting enzyme; NO, nitric oxide. Those 
molecules primarily involved in blood pressure control are marked in bold. Those molecules 
controlled at the genetic level by glucocorticoids are marked with an asterisk.

For example, dexamethasone has been shown to increase the number and 

affinity of aortic binding sites for the specific a i-adrenoceptor ligand, 

prazosin, in adrenalectomized rats (Haigh and Jones, 1990). This effect is 

not produced by aldosterone (Yagil and Krakoff, 1988). Similarly, increased
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numbers of (3-adrenergic receptors in various tissues, including human 

lymphocytes and granulocytes, ra t liver and ra t lung (Davies and 

Lefkowitz, 1980) have been observed.

Although the activity of adrenoceptors is modified in a post-translational 

manner by glucocorticoids (Haigh and Jones, 1990), there are a number of 

molecules with vasoconstrictor properties, which are regulated at the level 

of the genome. Examples include angiotensinogen and angiotensin 

converting enzyme (ACE) (Mendelsohn et al., 1982), both im portant 

molecules of the renin-angiotensin system.

1.11.1b.) Renin-angiotensin aldosterone system

The influence of adrenocortical horm ones over the renin-angiotensin 

system occurs at several levels. Renin, an aspartyl protease, important in 

the regulation of blood pressure and electrolyte balance is expressed in a 

variety of mammalian tissues, predominantly in the afferent arterioles of 

the kidney, but also in the adrenals and vascular smooth muscle cells 

(Makried et al., 1988). The physiological effects of aldosterone suppress the 

renin-angiotensin  system (section 1.3). M ineralocorticoid induced 

hypertension in rats (DOCA treatm ent, or high salt [1%] diet) causes 

suppression of renal renin gene expression, which is thought to be 

mediated by MR. Glucocorticoids oppose the effects of aldosterone and are 

reported to increase renin activity by activating renin gene transcription 

(Glorioso et al., 1989). Possible GREs in the prom oter of the renin gene 

(Dzau et al., 1988) supports this proposal. M ineralocorticoid-induced 

increases in blood pressure are associated with increased vascular 

reactivity to angiotensin. Evidence of angiotensinogen gene regulationn 

by glucocorticoids is widely accepted and is likely to be im portant in 

conditions of glucocorticoid deficiency (Riftina etal., 1995).

ACE is localised to the luminal surface of vascular endothelial cells, the 

major site of angiotensin I conversion in vivo (Caldwell et al., 1976). Other 

prom inent sites of ACE activity include the kidney, brain and small 

intestine. Cultured endothelial cells from bovine aorta and intact rat lung
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in vivo show a net increase (6-7 fold) in ACE production in response to 

dexamethasone (100 nM). DOC and aldosterone are much less effective, 

stimulating only a 2-3 fold increase in ACE activity at 1 concentration 

(Mendelsohn e ta l., 1982). Local levels of vasoactive pepetides, angiotensin 

II and bradykinin are likely to be influenced by glucocorticoids, with 

resultant effects on vascular tone. ACE normally inactivates bradykinin, a 

potent vasodilator (Erdos, 1977), but activates angiotensin II.

Recent studies have also demonstrated that type 1 angiotensin II receptors 

(ATI) are up-regulated by glucocorticoids in the ra t hypothalam ic 

paraventricular nucleus (PVN). ATI receptor mRNA levels and All binding 

were reduced by approximately 20%, following adrenalectomy. This effect 

was prevented by corticosterone administration in the drinking water, or 

dexamethasone injection (100 mg, s.c., daily). Conversely, dexamethasone 

injection into intact rats caused a 20% increase in ATI receptor mRNA. 

Again, this up-regulation would potentiate the vasoconstrictor effects of 

the renin-angiotensin system (Aguilera etal., 1995).

1.11.2.) Vasodilators

Vascular tone is the balance between the action of vasoconstrictor and 

vasodilators m echanisms (Walker and Williams, 1992). Inhibition of 

vasodilation seems most relevant to glucocorticoid induced hypertension. 

The major vasodilators, atrial natriuretic peptide (ANP/ANH) (Kenyon et 

al., 1990), prostaglandins (Bailey, 1991) and the endothelium  derived 

relaxing factor, nitric oxide (DiRosa et al., 1990) are all regulated by 

glucocorticoids.

1.11.2a.) ANP

ANP has direct vasodilatory properties, separate from its natriuretic effect. 

Physiological concentrations of glucocorticoids are required for the 

normal expression of ANP, but glucocorticoids may inhibit ANP synthesis 

and secretion, either by reducing plasma volume, or by regulating ANP
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gene expression (Tonolo et al., 1988). Glucocorticoids may also inhibit the 

responsiveness of vascular tissues to ANP by interfering with ANP signal 

response coupling. For example, renal vascular smooth muscle cells 

(VSMCs) treated with dexamethasone produce less cyclic GMP (cGMP) in 

response to ANP than untreated cells (Yasunari et al., 1990). cGMP is the 

second messenger for a number of vasodilatory processes. Decreased ANP 

and cGMP levels will both tend to prevent vasodilation.

1.11.2b.) Nitric oxide (NO)

Synthesis of nitric oxide in endothelial tissues is controlled by two types of 

NO synthase, one constitutive and Ca^+-dependent and the other inducible 

and Ca^+-independent (Rees etal., 1989). Glucocorticoids block the activity 

of the inducible form of NO synthase (Radomski et al., 1990), limiting nitric 

oxide induced vasodilation. The effect of increase in blood pressure 

following inhibition of nitric oxide synthesis is well established (Haynes et 

al., 1993). Similar effects of glucocorticoids have also been demonstrated in 

macrophages (DiRosa et al., 1990) and have implications regarding the 

anti-inflammatory and immunosuppressive effects of glucocorticoids.

1.12.) Pathophysiological effects resulting from abnormal glucocorticoid 

signalling

Since corticosteroids exert powerful influences over interm ediary 

metabolism, blood pressure control and electrolyte homeostasis, it follows 

that any deviation from their normal rates of production and metabolic 

clearance (Kaplan, 1983), will have profound consequences on receptor 

mediated responses. The effects of abnormal steroid production, and of 

abnormal receptor and catabolising enzyme activities are well documented.

The best known example of clinical glucocorticoid excess is seen in patients 

with Cushing's syndrome, in which primary hyperactivity of the adrenal 

cortex (low ACTH, high cortisol) or of the anterior pituitary (high ACTH, 

high cortisol) causes increased cortisol secretions (For reviews see: Fraser
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et al., 1989; Connell and Fraser, 1991). A characteristic phenotype is 

observed; centralised body fat distribution, degeneration of muscle and 

connective tissue, growth im pairm ent and osteoporosis. Patients may 

develop hypertension, sexual dysfunction and reduced resistance to 

infection. Synthetic glucocorticoids, or ACTH adm inistered over a long 

period produces similar effects (Kenyon and Fraser, 1992). Excess 

a ld o ste ro n e  or 11-deoxycorticosterone (DOC) sec re tio n  causes 

m ineralocortico id-induced  hypertension . M ineralocorticoid  excess 

(resulting in hyperaldosteronism ) typically arises from adrenocortical 

adenom a or carcinoma (Conn and Mich 1955) and is characterised 

biochem ically by suppressed  plasm a ren in  and ang io tensin  II 

concentrations, together with Na+ retention, K+ loss and a metabolic 

alkalosis. The hypertension which ensues, is therefore an indirect 

consequence of changes in sodium levels and plasma volumes. As discussed 

in section 1.10., lip-HSD type I and II regulate the access of cortisol to MR 

and GR. Suppressed llp-HSD2 activity also leads to symptoms of 

hyperaldosteronism  in the absence of aldosterone excess. Two clinical 

situations are known in which the activity of this enzyme is reduced; 

congenital apparent mineralocorticoid excess (AME), in which enzyme 

activity is deficient (Stewart et al., 1988; Mune et al., 1995) and acquired 

AME, which is caused by intoxication with inhibitors of llp-HSD2 activity, 

such as glycerritinic acid, found in liquorice, or its derivative 

carbenoxalone (Stewart etal., 1987).

Reduced adrenocortical activity (eg. in patients with Addisons disease, 

resulting from pathological destruction of adrenal tissue or ACTH 

deficiency) is normally associated with hypotension, hypoglycaemia, 

weight loss, fluid and electrolyte disturbances and abnormal development 

of secondary sexual characteristics (Brosnan and Gowing, 1996).
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1.13.) Corticosteroid receptor mutations

The incidence of mutant corticosteroid receptors in humans is relatively 

rare. Studies of GR in patients with familial glucocorticoid resistance 

syndrome (FGR) has indicated that hypertension is a possible phenotypic 

consequence (Hurley et al., 1991). Sequencing of human GR cDNAs from a 

kindred with FGR revealed a single point mutation in the hormone binding 

domain (V641D) which resulted in a 3-fold reduction in affinity for 

dexam ethasone. The resu ltan t hypertension  was characteristic  of 

mineralocorticoid excess. The m utant GR was unable to switch off ACTH 

synthesis from the anterior pituitary, resulting in elevated levels of plasma 

cortisol. These higher cortisol concentrations presumably overstep the 

capacity of 11-PHSD2 to p ro tec t MR from  over-stim ulation  by 

glucocorticoids. A similar phenotype is encountered in patients with 

prim ary cortisol resistance, which is classified as a glucocorticoid 

receptor-mediated disease, resulting from a reduced affinity of the receptor 

for its horm one ligand (Bamberger et al., 1996). Other forms of 

glucocorticoid insensitivity have also been described. Werner et al., (1992) 

dem onstrated instances of receptor therm olability in association with 

increased rates of GR gene transcription. A novel form of natural 
glucocorticoid resistance is found in the guinea pig GR, in which the 

ligand binding domain contains several novel amino acid substitutions 

(Keightley and Fuller, 1994). This altered GR structure directs constitutive 

transcrip tional activity which is unsuppressed by RU38486 (l^iM). 

Uncontrolled receptor activity in these cases may result from loss of 

interaction with HSP90. M utant GR which do not bind HSP90 are 

transcriptionally active in the absence of hormone (Bronnegard et al., 

1991). Further abnormalities of GR function might be anticipated from 

mutations in the promoter region of the GR gene. As yet, no prom oter 

effects on GR mRNA levels have been dem onstrated. However, their 

identification may depend on promoter usage and the availability of tissue- 

specific transcription factors (Nobukuni etal., 1995).
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Glucocorticoid as well as progesterone, oestrogen and androgen receptors 

have been shown to be constitutively activated by loss of a portion of the 

ligand binding domain (e.g., Carson etal., 1987; Godowski etal., 1987; Brown 

et al., 1988). Resultant proteins are still able to bind DNA, but are no longer 

regulated by steroids. hGRa and hGR(3 are two isoforms of the human GR 

which result from alternate receptor mRNA splicing (Hollenberg et al., 

1985). hGRa is the biologically active isoform. The hGRp isoform is carboxy- 

terminally truncated, has no reported intrinsic activity, but has been 

shown to interfere in hGRa steroid binding studies. The relative levels of 

these GR isoforms may affect GR function, either globally or in a tissue- 

specific fashion. Studies by Bamberger et al., (1995), suggest that 

attenuation of transcriptional regulation by hGRa is brought about by 

competition by the truncated non-steroid responsive hGRp for GRE binding 

sites in the DNA. In the rat, no obvious GR splice variants have been 

observed. However, lower molecular weight hepatic GR isoforms have been 

reported, which possibly result from alternate use of translation initiation 

codons in the GR mRNA (Miesfeld etal., 1986).

Patients with depressive illness, characterised by excessive secretion of 

corticotropin releasing factor and cortoisol, due to hyperactivity of the 

HPA-axis also provide evidence of abnormal patterns of GR expression 

(Pepin and Barden, 1991). This observation derives from the action of anti­

depressants which modulate the GR mRNA content of neuronal cells 

involved in the negative feedback control of HPA-axis function. Similar 

observations have been made by Lamberts eta l., (1994) who described 

female patients with reduced GR expression, overproduction of adrenal 

steroids and pathology resulting from excessive adrenal androgenic 

activity. In support of a consequential loss of GR activity, the directed 

knockout of type II glucocorticoid receptors in mice carrying an antisense 

GR RNA transgene (Pepin etal., 1992) also generates increased activity of 

the HPA-axis, resulting in elevated corticosterone and ACTH levels, 

suggesting a general ineffectiveness of GR in feedback inhibition of 

glucocorticoid secretion.
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The effectivity of the glucocorticoid signal may be reduced by means other 

than interference of steroid binding to GR. Accessibility of activated GR to 

DNA, a vital component of the glucocorticoid signal pathway may also be 

affected. In steroid resistant (SR) asthmatics, (Barnes and Adcock, 1995) 

this condition seems to result from increased binding of GR to AP-1, 

presumably sequestering GR away from other modulatory roles concerning 

the anti-inflammatory actions of glucocorticoids .

1.14.) Essential hypertension in man

Although in man, specific abnormalities of glucocorticoid function have 

been shown to result in cardiovascular disease, in most cases, the cause of 

hypertension is not known. Essential hypertension, of unknown origin, 

represents a major public health issue due to its common occurrence 

(affecting 20-30% of the population) and its long-term complications. As a 

quantitative trait, blood pressure varies continuously in the whole 

population. Its regulation is controlled by a variety of mechanisms 

involving, probably several genetic loci and environm ental and other 

factors such as diet, body weight, stress and physical exercise (Camussi and 

Bianchi, 1988; Corvol etal., 1990; Guyton, 1991).

1.14a.) A role for glucocorticoids?

Several studies have implicated abnormal steroid hormone activity as a 

contributory factor in the aetiology of cardiovascular disease. For example, 

a well defined subgroup of patients have been described with low-renin 

hypertension (Gormez-Sanchez et al., 1985). Since this effect is typical of 

excessive mineralocorticoid activity, but in the absence of a measurable 

m inera loco rtico id  excess, suggestions of novel s te ro id s w ith 

mineralocorticoid properteis, reduced 11|3-HSD2 activity, or abnormal GR 

function have been proposed.

Data from several groups support the conclusion that llp-HSD is impaired 

in some hypertensive patients (Walker, 1993; Soro et al., 1995). In certain

45



sample populations, however, neither mineralocorticoid or glucocorticoid 

levels are found to be sufficiently elevated to explain the rise in blood 

pressure. Abnormally high sensitivity to glucocorticoids might provide an 

explanation; firstly, dexamethasone treatm ent produces a paradoxical fall 

in blood pressure in a subgroup of hypertensives, possibly implicating the 

involvement of cortisol or another ACTH-dependent steroid (Whitworth et 

al., 1989). In essential hypertension, in which cortisol levels remain 

normal, sensitivity to this steroid, as judged by dermal blanching following 

topical administration, is increased (Walker et al., 1995). Again, the authors 

propose the possibility of defective cortisol inactivation by llp-HSD, or 

abnormality of glucocorticoid receptor action.

1.14b.) Genetic evidence for the involvement o f GR
Studies from a number of families have shown that essential hypertension 

is inherited as a polygenic trait (Higgins et al., 1980). However, only 30% of 

the blood pressure elevation has a genetic basis. The search for the 

causative genes in humans has encountered several complex problems 

including; adequate phenotype definition, the availability of informative 

families for genetic studies, the apparent heterogeneity of the disease 

(Lindpaintner et al., 1992a) and the confounding effects of environmental 

factors (listed above). Environmental factors can act over extremely long 

timespans affecting the genotype/phenotype relationship individually, 

within a family and regionally (Watt etal., 1992).

Two main approaches have been used to identify the genes involved in 

hypertension. One approach, which is largely restricted to animal models, 

is to map a series of polymorphic genetic m arkers (simple sequence 

repeats; SSRs) distributed throughout the genome to establish a link 

between increased blood pressure and specific gene loci (Jacob et al., 1991; 

Hilbert et al., 1991; Jacob et al., 1995; Pravenec et al., 1995). The other 

approach is to study candidate genes that are known to participate in blood 

pressure regulation, such as those which encode horm onal factors 

(catecholamines, vasopressin and components of the renin-angiotensin 

system, inlcuding renin: Barley etal., 1991 and ACE; Jeunmaitre etal., 1992),
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mediators of hormonal responses in target cells of heart and blood vessels 

(corticosteroid, catecholamine and other receptors, such as GR: Heeley e t 

al., 1996b; angiotensin II receptor, Koike et al., 1995) and membrane 

components of the distal nephron of the kidney, which critically control 

sodium balance (Na+ transporter: Husted etal., 1997; Na-K-Cl cotransporter: 

AlvarezGuerra, etal., 1997).

Neither of these approaches is without problems. For example, linkage 

mapping may be useful in identifying gene loci showing a significant 

linkage with blood pressure, but the precise identity of the genes involved 

remains unknown. There are also differences of opinion in what are 

considered to be candidate genes. The result is that a great many 

'candidates' get studied, only some of which may be completely relevant to 

the disease phenotype. Candidate genes can also be shown to segregates 

with blood pressure. This could be due to either genetic variation within 

the gene of interest or in a closely linked gene with very different 

properties.

On the basis of differences in glucocorticoid-dependent physiological 

variables, epidemiological studies by Watt et al., (1992) have suggested the 

association of Grl with high blood pressure in humans. The phenotypic and 

genotypic correlates of a predisposition to hypertension were investigated 

by comparing offspring with and without a family history of this disorder. 

Four groups were chosen on the basis of extremes of personal blood 

pressure and of their parents blood pressure. For those individuals selected, 

linkages between high blood pressure and a large num ber of other 

biochemical and physiological variables and various candidate genes were 

sought. Genetic linkage analysis was restricted to the extreme phenotypic 

groups (i.e. those with high blood pressure and those with low blood 

pressure) where an underlying genetic component would most likely be 

found. Only a few of the chosen variables showed a genetic link. Plasma 

concentrations of cortisol, 18-hydroxycorticosterone, and angiotensin II, 

were higher in those with a genetic predisposition to developing high
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blood pressure. Most importantly, plasma levels of the renin substrate 

angiotensinogen were also raised.

RFLP analysis revealed two hGR haplotypes, A and a, which were identified 

following Bel 1 digestion of genomic DNA and probing with a full length 

hGR cDNA probe. Homozygosity for the AA genotype occured in 50% of 

those with high blood pressure whose parents had raised blood pressure, as 

compared with 36% of those whose personal and parental blood pressures 

were low. Comparisons of individuals homozygous for either AA or aa 

genotypes showed a significantly higher association of the AA genotype 

with higher blood pressure scores. Quite possibly, the raised plasma cortisol 

concentrations, increased renin-angiotensin activity and the genotypic 

differences in the glucocorticoid receptor could represent the genetic basis 

for at least a proportion of the glucocorticoid associated hypertension. In 

contrast, markers associated with several other blood pressure-relevant 

genes, including ANP, renin and ACE were uninformative.

Although these data relate to blood pressure distribution within a young 

normotensive population, it is possible that the alleles of Grl which 

associate with high blood pressure contribute to the development of 

hypertension in later life. The more recent studies of Walker et al., (1995), 

in using the same population also identified abnorm al sensitivity to 

glucocorticoids, which predicted predisposition to hypertension.

Of particu lar in terest from these studies, is that elevated adrenal 

corticosteroid levels and a trend towards increased receptor affinity for 

dexamethasone binding (also see Panarelli and Fraser, 1994) were found 

associated with a specific Grl genotype (AA). It has been suggested that 

functionally unaccountable m utations of GR m ight be of general 

importance in contributing to the more common forms of hypertension 

(Lamberts etai., 1994; Werner eta/., 1992).

Essential hypertension in man is complex because several genes are 

involved, as in cardiovascular control mechanisms (Kreutz et al., 1992).
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Analyses, are complicated still further by heterogeneity of individual 

genetic background and differences in environm ental exposure. 

Epidemiological considerations, a vital aspect of human studies, requires a 

large populus in order to provide meaningful data. Difficulties with 

population size becomes more apparent when relatively rare disease loci 

are to be isolated and studied in detail. Finally, the availability of human 

biopsy m aterial is also very limited and the ease of investigations in 

hospitalised patients are hampered by ethical considerations. Well defined 

experimental animal model systems which provide more reliable genetic 

homogeneity are therefore a very useful alternative.

1.15.) Rat genetic models of hypertension and abnormalities of steroid 

metabolism

Several rat genetic models of hypertension have been developed over 

recent years, with phenotypes that include abnormal steroid action, as well 

as elevated blood pressure. These model strains include: the spontaneously 

hypertensive ra t (SHR), its stroke-prone derivative SHRSP and their 

normotensive control strain, Wistar Kyoto (WKY); the Dahl salt-sensitive 

and salt-resistant; the Milan hypertensive (MHS) and normo tensive (MNS); 

the Lyon strains (LH, LN, LL) and the New Zealand strains. Inbred strains 

displaying a particular phenotype are obtained by selective breeding. Once 

the trait of interest has become sufficiently well established, brother-sister 

matings are performed to achieve genetic homogeneity by theoretically 

fixing all genes of a given strain in the homozygous state. This determines 

a predisposition to the selected phenotype.

The following list summarises, for chosen ra t strains, phenotypic 

characteristics which are thought to result from abnormalities of steroid 

metabolism. Many of these strains provide evidence of abnorm al 

glucocorticoid activity. Included are those strains which are of specific 

relevance to the work of this thesis; SHR, Zucker obese and MHS.
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i.) SHR

Of the available rat models of genetic hypertension, the SHR strain has 

been the most intensely studied. Several abnormalities in the HPA-axis 

have been reported, including elevated plasma corticosterone levels 

(reviewed by Panarelli, 1994). The adrenal cortex shows hypertrophy 

compared with WKY and adrenalectomy prevents blood pressure increase, 

reversible by the administration of aldosterone (Kenyon et al., 1984). The 

development of hypertension is therefore dependent on an intact adrenal. 

Recent indication of slower rates of GR steroid binding depletion in SHR 

compared with WKY at elevated tem peratures (Panarelli e t al., 1995) 

provides evidence of a thermostable GR heterocomplex. Receptor stability 

in SHR is concomitant with an increased affinity for dexamethasone 

(Panarelli, 1994).

ii.) Dahl salt-sensitive and salt-resistant

These strains are characterised by abnormal steriod 11- and 18-hydroxylase 

activity. Part of the salt-dependent increase in blood pressure (SS-strain) is 
due to altered 11 (3-hydroxylase activity, producing an increased ratio of 18- 
hydroxy-DOC:corticosterone in vivo and in vitro. Breeding studies have 

shown that the preferential conversion of DOC to 18-hydroxy-DOC rather 

than corticosterone, which characterises the salt-dependent rats, accounts 

for at least 16% of the increase in blood pressure (Rapp and Dahl, 1972). The 

salt resistant (SR) and salt sensitive (SS) rats possess specific homozygous 

alleles of the 11 (3-hydroxylase gene, which differ by five amino acid 

substitutions. The salt-resistant allele, by coding for an enzyme which 

synthesises proportionally less 18-hydroxy-DOC, is thought to protect the 

SR strain from salt-induced hypertension (Matsukawa etal., 1993).

iii.) Lyon strains

Development of the hypertensive phenotype in Lyon hypertensive (LH), 

compared with the normo tensive (LN) and low (LL) blood pressure strains, 

is characterised by elevated deoxycorticosterone (DOC) and reduced 

corticosterone levels (suggesting a lowering of 11 (3-hydroxylase activity). 

Levels of 18-hydroxy-DOC and aldosterone are unchanged. These
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observations were made in young rats 5-weeks old (Vincent et al., 1989). 

DOC levels normalise on reaching maturity (at 20-weeks). However, this 

normalisation is accompanied by a reciprocal increase in corticosterone 

and a lowering of 18-hydroxy-DOC. W hether these changes represent 

altered steroid secretion or metabolism is uncertain.

iv.) Zucker obese

Although this strain represents a genetic model of obesity, it shares many 

interesting abnormalities of steroid metabolism common to hypertensive 

strains, including mild hypertension and is presented here for comparison.

Zucker obese rats, compared with lean controls, like SHR and MHS display 

adrenal hypertrophy with elevated plasma ACTH and corticosterone 

concentrations. In addition, hepatic GR from this strain have a lower 

affinity for glucocorticoids (White and Martin, 1990). Body weight gain is 

normalised following adrenalectomy.

v.) MHS
Details of the MHS phenotype are given in chapter 5, and will only be 

considered briefly at the end of this section in relation to hypertension 

gene candidates.

Varying degrees of progress towards defining the genes responsible for 

genetic hypertension has been made with the above rat models. Recent 

studies involving numerous microsatellite markers have been carried out 

using the stroke-prone SHR derivative (SHR-SP), crossed with its 

normotensive control strain, WKY. These large scale breeding studies have 

identified several loci showing linkage with the hypertensive phenotype 

in SHR-SP, although the precise identity of the genes involved remains 

unclear (Hilbert et al., 1991; Jacob e ta l, 1991). From the mapping study of 

Jacob et al., (1991), two 'interesting' loci were identified, one of which 

contained the growth hormone gene, GH. W hether the rat GH gene, or 

another closely linked gene was responsible for the linkage with blood 

pressure was not determined in this study. Another gene in close linkage
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with GH in the rat and perhaps of more relevance to blood pressure control, 

is the gene encoding angiotensin converting enzyme (ACE). The possibility 

of a direct association between ACE gene polymorphisms and increased 

blood pressure is still unclear. Segregating markers have identified other 

loci on chromosome 18 and on the X chromosome as being significantly 

associated with blood pressure. In the rat, GR is also localised to 

chromosome 18.

The highest rate of successful genotype-phenotype associations in 

hypertension have been a ttribu ted  to the candidate gene approach 

(Lindpaintner, 1992b). For example, the significant contribution of 

abnormal steriod 11(3- and 18-hydroxylase activity to the development of 

hypertension in the Dahl salt-sensitive rat has been known since 1972 

(Rapp and Dahl, 1972). In 1993, Matsukawa et al., reported variation in the 

gene encoding the llp-hydroxylase enzyme between salt resistant and salt 

sensitive strains. In the same year, linkage of llp -hydroxylase  

polymorphisms with altered steroid biosynthesis and blood pressure was 

confirmed (Cicila eta/., 1993).

In addition, comparison of the salt-resistant and salt-sensitive variants of 

Dahl rats has revealed differences in renin gene structure. The renin gene 

locus (i.e. the renin gene, or another closely linked gene) has been found 

to be linked to hypertension in the Dahl strain of sodium-sensitive rat 

(Rapp et al., 1989). In the Okamoto SHR strain, breeding studies suggest that 

between four and six independent loci contribute to high blood pressure 

(Jacob et al., 1991; Koike et al, 1995). Allelic variation has also been 

reported in the renin gene of SHR when compared to WKY, although inter­

strain genetic variation in controls makes realistic interpretation difficult 

(Samani etal., 1989).

Of particular interest and relevance during the course of this thesis has 
been the excitement regarding possible association between adducin genes 
and hypertension, both in humans and the Milan hypertensive strain of 
rat, MHS. Adducin is a heterodim eric membrane cytoskeletal protein, 
consisting of separately encoded a- and p- subunits. Adducin interacts with
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other membrane skeleton proteins affecting ion transport accross the cell 
membrane. Initial genetic studies have demonstrated that a point mutation 
within the a- subunit of adducin in MHS increases Na-K-ATPase activity 
when transfected into rat renal epithelial cells (Tripodi et al., 1996). In 
vivo, this mutation affects blood pressure, accounting for 40-50% of the 
blood pressure difference between MHS and MNS, when interacting with a 
mutated (3-adducin subunit (Bianchi et al., 1994). The effect of adducin on 
blood pressure is thought to be m ediated by changes in cell signal 
transduction mechanisms, through effects on the polymerisation of actin 
filaments. Recent studies in independent sample populations have now 
confirmed significant linkage of the a-adducin locus with hypertension in 
humans (Cusi et al., 1997).

The possibility that an abnormality of GR function could account for part of 

the remaining difference in blood pressure and /o r provide the basis for 

other phenotypic differences between MHS and MNS is the subject of 

further investigation presented in this thesis.
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Chapter 2 
Materials and Methods
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2.1.) Materials

2.1.1.) Reagents

All reagents were of analytical or molecular biology grade, purchased from 

either: Sigma Chemical Company Ltd. (Pool, Dorset, U.K.) or the BDH (Merck) 

Chemical Company (Lutterworth, Leicestershire, U.K.) unless otherwise 

stated.

2.1.2.) Animals

Rats of strains MHS and MNS were obtained from the Field Laboratories, 

University of Sheffield, U.K.. SHR, WKY and Zucker lean and obese rats were 

obtained from Harlan Olac (Bicester, Oxfordshire, U.K.).

2.1.3.) Tissue and DNA samples

English wild ra t liver samples were obtained from Central Science 

Laboratory, Ministry of Agriculture Fisheries and Food, Slough, Berkshire, 

U.K.. Scottish wild rat carcasses were donated by regional pest control 

departm ents of Scottish District Councils (Stirling, Glasgow and Fife). 

Carcasses were stored at -20°C prior to dissection and removal of the liver.

Inbred ra t liver samples from strains SHR-SPcia and WKYcia (Glasgow 

strains) and SD were obtained from The M.R.C. Blood Pressure Unit, Western 

Infirmary, Glasgow.

Inbred strain and substrain liver genomic DNA samples were obtained from 

The Departm ent of Laboratory Animal Science, Faculty of Veterinary 

Medicine, University of Utrecht, The Netherlands.
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The following sub-headings list specific materials, followed by the supplier 

for:

2.1.4.) Genomic DNA extraction

Proteinase K (Sigma).

Phenol (TE saturated): Obtained pre-equilibrated with TE (pH 8.0) (Fisons, 

Loughborough, U.K.).

2.1.5.) Polymerase chain reaction (PCR)

PCR prim er oligonucleotides (as well as single stranded complementary 

oligonucleotides and oligonucleotide probes) were obtained from Oswel 

(Oswel DNA service lab 5005, University of Southampton, Southampton, 
U.K.).

General PCR components, such as Taq DNA polymerase (from Therm us 

Aquaticus, compatible with reaction buffer B), lOx reaction buffer B, dNTPs, 

magnesium  chloride (25 mM) acetylated BSA (10 m g/ml) (Promega, 

Southampton, U.K.). Mineral oil (light white: Sigma).

VentR DNA polymerase (from Thermococcus literalis), lOx Vent polymerase 

buffer, magnesium sulphate (100 mM) and purified BSA (non-acetylated) 

(New England Biolabs, Hitchin, Hertfordshire, U.K.).

2.1.6.) Gel electrophoresis

Ethidium bromide (Sigma).

Agarose (GIBCO BRL [Life Technologies], Paisley, Scotland, U.K.).
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M etaphor agarose and low gelling tem perature (LMP) agarose (FMC 

Bioproducts, Rockland, U.S.A.).

1 Kb DNA ladder (GIBCO-BRL).

2.1.7.) Southern blotting

Sonicated salmon sperm DNA solution (10 mg/ml) (Pharmacia Biotech, Herts, 

U.K.).

H y b o n d - N + nylon  m em brane (A m ersham  In te rn a tio n a l pic, 

Buckinghamshire, U.K.).

Autoradiographic film (Hybond-MP) and intensifying screens (Amersham).

2.1.8.) 32p_iabening of DNA

T4 polynucleotide kinase (PNK) and lOx PNK reaction buffer (Promega). 

Sephadex G50 (Sigma).

2.1.9.) Sequencing

Sequenase version 2.0 kits"™ for plasmid sequencing (United States 

Biochemicals, Cambridge Bioscience, Cambridge, U.K.). Sequenase version

2.0 kitsTM for direct sequencing of PCR products (Amersham).

D y n a b e a d s T M  (Dynal Ltd., Merseyside, U.K).
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2.1.10.) RNA extraction

RNAzolTM b (Biogenesis Ltd., Bournemouth, U.K.).

2.1.11.) Tissue culture

All tissue culture components were obtained from GIBCO-BRL, unless 

otherwise stated.

Cell lines: COS-7 and CV-1 (European Collection of animal cell cultures 

Wiltshire, U.K.), EDR3 (G. Firestone, University of California, Berkeley, 

U.S.A.), 2s-Fasa and HEK293 (University of Edinburgh).

Calf thymus DNA (Sigma).

DMSO (Sigma).

DOTAP (Boehringer Mannheim, U.K.).

2.1.12.) DNA cloning

Restriction enzymes were obtained from Promega, except: Avail, Kpnl and 

Sfil (GIBCO-BRL).

Klenow fragment (5-10 U / | li 1) and lOx Klenow reaction buffer (Promega).

Random hexamer primers (3 jLxg/p.1 in 3 mM Tris-HCl [pH 7 .0 ], 0 .2  mM EDTA) 

(GIBCO-BRL).

Calf intestinal phosphatase (CIP) supplied at a concentration of 20-30 U/ja.1 

(GIBCO-BRL).
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DNA ligase and lOx Ligase buffer (Promega).

2.1.13.) Bacterial growth, colony screening and solutions for 

plasmid DNA extraction

Bacto-tryptone, yeast extract and agar (GIBCO-BRL).

Antibiotics: ampicillin, tetracycline, streptamycin and kanamycin (Sigma).

X-gal and IPTG (Sigma).

Lysozyme (Sigma).

2.1.14.) Reverse transcription of RNA

Random hexamer primers (as describerd in section 2.1.12.).

Molony Murine Leukaemia Virus (MMLV) Reverse Transcriptase, lOx MMLV 

reacton buffer and 0.75 M DTT (Stratagene Ltd., Cambridge, U.K.).

RNAsin (20 U/jo. 1) (Promega).

2.1.15.) Western blotting

Glucocorticoid receptor monoclonal antibody MAb 250 (also referred to as 

antibody No. 7) was a gift from Dr. A-C Wikstrom, Department of Medical 

Nutrition, Huddinge University Hospital, Huddinge, Sweden.

High molecular weight protein markers (GIBCO-BRL).

ECL Western blotting kit and PVDF membrane (Amersham).
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2.1.16.) Radiochemicals

All radioisotopes (nucleotides and ligands) were obtained from Amersham: 

[a32p]-dCTP: Supplied at S.A., 3000 Ci/mmole 

[y32p]-ATP: Supplied at S.A., 3000 Ci/mmole 

[a^^S]-dATP: Supplied at S.A., 1250 Ci/mmole 

[l,2,4,6,7-^H]-Dexamethasone: Supplied at S.A., 86.0 Ci/mmole
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2.2.) Methods

2.2.1.) Animal maintenance

Prior to sacrifice all animals were m aintained in house under standard 

living conditions (12 h light, 12 h dark), with free access to food and water 

in a temperature controlled environment.

2.2.2.) Extraction of genomic DNA

The protocol for the extraction of genomic DNA was taken from methods 

described by Sternberg et al., (1990). Essentially, 100-200 mg of tissue was 

homogenised on ice in 5 ml PBS (phosphate buffered saline: 1 Sigma PBS 

tablet dissolved in 200 ml ddH20) and centrifuged at 2000 rpm, 10 mins at 4°C. 

Pellets were washed twice by resuspension in 2 ml PBS and finally 

resuspended in 1 ml lysis buffer (50 mM Tris-HCl (pH 7.5), 0.1 M NaCl, 0.15 M 
EDTA, 1% SDS and 1 mg/ml proteinase K). The resulting mixture was 

incubated at 60°C for lh  to digest unwanted proteins. Vigorous pipetting was 

avoided to minimise shearing of the DNA.

DNA was recovered by increasing incubation volumes to 4.5 ml with TE (10 

mM Tris-HCl, 1 mM EDTA [pH 8.0]), adding 0.5 ml 3M sodium acetate (pH 5.2) 

and precipitating with 3 volumes 100% ethanol. Precipitated DNA was 

transferred to 1.5 ml microfuge tubes, washed with 0.5 ml 100% ethanol, 

briefly air dried and redissolved in 0.5-1 ml TE (pH 8.0) at 4°C over a period 

of at least 2 days.

Where DNA was expected to be of a lower integrity (from degraded tissue 

samples), proteinase K digests were protein extracted by combining with an 

equal volume of TE-equilibrated phenol, mixing gently and spinning at 5000 

rpm, 10 mins at 4°C. Taking care to avoid the interface, the supernatant was 

transferred to a fresh tube. Recovered supernatants were combined with an 

equal volume of chloroform/isoamyl alcohol (24:1 mixture), again mixed
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gently and spun at 5000 rpm, 10 mins at 4°C. Supernatants were recovered 

as previously described, transferred to a fresh tube, mixed with 1/10 

volumes of 3M sodium acetate (pH 5.2) and DNA precipitated with 3 volumes 

100% ethanol. Resulting DNA pellets were washed with 100% ethanol, 

briefly air-dried and redissolved in TE (pH 8.0) at 4°C.

2.2.3.) Polymerase chain reaction (PCR) amplification of nucleic acids 

General PCR strategy

Amplifications were performed using an Omnigene Thermal Cycler (Hybaid 

Ltd., U.K.) in 25^1 reaction volumes by combining 10-100 ng of genomic DNA 

or 1-10 ng of plasmid DNA with 20 pmoles of each primer and 2U Taq DNA 

polymerase in a standard reaction mixture containing; lx  Taq polymerase 

buffer, 125 jxM dNTPs, 1.5 mM Mg^+ and 0.01 mg/ml acetylated BSA. Reaction 

mixes were overlaid with 1-drop of mineral oil (approximately 25 |al) and 

heated to 95-97°C for 5-7 mins prior to PCR. In general, cycle profiles of: 

95°C, 1 min (step 1), followed by: X°C, 30s, 72°C, 30s and 95°C, 30s (step 2), 

continued for 30 cycles and finally: X°C, 30s, 72°C, 5 mins final extension 

(step 3) were used, where X°C = Primer annealing tem perature (normally 

about 5°C below the average of the primer Tm s) and was typically in the 

range of 56-60°C.

These conditions were optimal for the majority of PCR primers listed in 

Appendix 1 and were effective in the amplification of up to 2.5-3.0 kb of 

target sequence using Taq DNA polymerase. PCR reactions found to be 

inefficient under these conditions were further optimised, as described in 

chapter 3.

32p-pcr

PCR products were ’ 2p-la.belled by incorporating a single 32p end-labelled 

prim er (see section 2.2.7.) in subsequent PCR reactions. PCRs were 

perform ed as described previously, except DNA templates were initially 

denatu red  at 95°C for 5 mins prior to the addition of both Taq DNA
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polymerase and 32p_iabelled primer. In pilot experiments, the 32p_iabeueci 

prim er was added in a volume of 2.0 pi labelling reaction mixture 

(corresponding to 10-20 pmoles).

RT-PCR

A liquots of reverse tran sc rip tio n  reactions (2 pi: pu rified  by

phenol/chloroform extraction) were PCR-amplified in 25 pi volumes using 

previously described methods. RNA/cDNA templates were initially denatured 

for 2 mins at 94-95 °C prior to PCR.

2.2.4.) Preparation and electrophoresis through agarose and 

polyacrylamide gels

Various percentage agarose gels and their application:

Percent agarose
0.8% Low gelling 
temperature (LMP) 
agarose

Typical application

Isolation of DNA fragments for 3 2 p_iabehing or 
column purification (section 2.2.10.) prior to 
cloning

0.8% Normal agarose Analysis of plasmid clones and genomic DNA

1.5% Normal Analysis of restriction fragments and PCR products
larger than around 200 bp. Isolation of large DNA 
fragments for purification by dialysis (section
2.2.10.) prior to cloning

2-3% Normal Analysis of restriction fragments and PCR products
generally  sm aller th an  200 bp, carrying 
polymorphisms down to about 10 bp

4% Metaphor agarose Analysis of PCR products down to 100 bp with
resolution of polymorphisms down to 1-3 bp

The compositions of all electrophoresis and gel loading buffers were exactly 

as described by Sambrook et al., (1989).
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Agarose gels

Standard agarose gels at the appropriate percentages (depending on 

application, see above) were prepared as described by Sambrook et al., 

(1989). Metaphor agarose gels were prepared as recommended by FCM 

Bioproducts, Rockland, U.S.A..

DNA samples were mixed with 0.5-1 volumes of lx  sucrose gel loading buffer 

(Sambrook et al., 1989) prior to gel loading and electrophoresed in lx  TAE 

buffer, or 0.5x TAE for Metaphor gels to improve resolution. Normally, gels 

were run at 150-200 v, 40 mA. LMP gels were run at lower voltages (50-100 v, 

20 mA), to prevent excessive heating and possible melting of the gel. DNA 

bands were visualised using an ultraviolet (UV) transilluminator, following 

staining with ethidium bromide at 0.5-1.0 ^ g/ml.

Polyacrylamide gels

6% Polyacrylamide gels for sequencing and m icrosatellite typing were 

prepared by mixing 100 jliI  APS (25% w/v APS in ddH20) and 100 jrl TEMED 

with 100 ml gel solution: 15 ml 40% acrylamide solution (195 g acrylamide 

and 5 g bis-acrylamide in 500 ml ddH20), 15 ml 5x TBS and 50 g urea, made up 

to 100 ml with ddH20. Gels were cast by standard methods. DNA samples were 

mixed with 0.66 volumes of lx  formamide gel loading buffer (sequencing 

samples) or 0.165 volumes (PCR amplified microsatellites) prior to loading 

onto pre-heated (50-60°C) gels. Gels were run at 2000 v, 58 mA, 110 W for 1.5- 

2 h, or until the xylene cyanol dye front had reached about half way down 

the gel. DNA bands were visualised by transferring the gel to Whatman 3 

mm paper, drying using a BioRad model 583 gel dryer (BioRad), at 80°C for 2 

h and exposing to Hyperfilm-MP for 4-16 h, at -80°C with an intensifying 

screen. ^^S-containing gels were exposed at room temperature for 24-48 h.

2.2.5.) Measurement of nucleic acid concentrations

The concentrations of nucleic acid solutions (double stranded DNA, 

oligonucleotides longer than the average PCR primer length [21 mer] and
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RNA) were measured spectrophotometrically at 260 nm (concentration 

alone), or at a ratio of 260/280 nm (to estimate for purity). Nucleic acid 

concentrations were deduced as described by Sambrook et al., (1989).

The concentration of DNA bands in gels was estimated by comparing their 

fluorescent intensity with that of a band of sim ilar size in a known 

concentration of marker ladder.

2.2.6.) Restriction endonuclease digestion of DNA

For routine restriction analysis (20 pi standard volume), 0.2-0.5 p.g of DNA 

solution (PCR product, or potential recom binant plasmid clone from 

miniprep) was digested with 2-3 enzyme units/pg of DNA in a final volume 

of 20 jliI  containing lx  restriction enzyme reaction buffer. Incubations were 

routinely carried out at 37°C for 1-2 h, unless otherwise stated. 10 pi of the 

resulting digests were checked for restriction patterns on 1.5% agarose gels.

For generation of cloning fragments and Southern probes, 5-10 ng of DNA 

solution (plasmid clone) was digested with 1-2 enzyme units/pg of DNA in a 

final volume of 4 0  pi (Southern probe), or 8 0  pi (cloning fragments). 1 jlxI of 

resulting digests were checked on 1.5% gels for completeness of digestion. 

Reaction conditions were as previously described.

2.2.7.) 32p_iabelling of double and single stranded DNA 

32p end-labelling of single stranded oligonucleotides

PCR primers and single stranded oligonucleotide probes used in Southern 

blotting were 32p_iabelled at the 5'-end with [y 32p]_ATP (3000 Ci/mmole) 

using T4 polynucleotide kinase (Promega). Diluted prim er (lOpl, 10-20 

pmoles/pl) or oligonucleotide probe (lOpl, 70-80 ng/pl) was combined with 
5pl lOx polynucleotide kinase (PNK) buffer (700mM Tris-HCl [pH 7.6], lOOmM 

MgCl2 and 50 mM DTT) and 29 pi water, boiled for 2 mins and rapidly cooled 

on ice. 5pl [y 32p]_ATP (diluted to -500 cpm in water for the labelling of PCR
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primers) and lp l polynucleotide kinase were then added and the mixture 

incubated for 45 mins at 37°C.

Random primer labelling of Southern probes

cDNA fragments from plasmid digests were band excised from LMP agarose 

gel and melted at 70 °C. A 20 pi sample of molten DNA-agarose solution 

(approximately 100-200 ng DNA) was boiled for 5-10 mins, rapidly cooled on 

ice and combined with dATP, dGTP and dTTP (each at 0.0625 mM), 10-20 ng 

random hexamer primers, 5 p.1 [a^2p]-dCTP (3000 Ci/mmole) and 1 pi Klenow 

fragment and incubated in lx  Klenow buffer (50 mM Tris-HCl, 5 mM MgCl2,1 

mM DTT and 0.2 mM HEPES [pH 7.5]), at 37°C for 1 h. The reaction was stopped 

by the addition of 200 pi of Sephadex G50 column elution buffer (10 mM Tris- 

HCl [pH 8.0], 100 mM NaCl, 1 mM EDTA [pH 8.0] and 0.5% SDS).

Probe purification and measurement of specific activity
The 32p_iabeued probe DNA was separated from unincorporated radioactive 

nucleotides through a Sephadex G50 column (see Sambrook et al., 1989). 

Labelled probe DNA was eluted from the column using elution buffer (as 

described above) and fractions of peak activity collected and pooled.

Probe specific activity was determined by mixing an aliquot of purified 

probe with 3 ml of a toluene-based scintillant, Cocktail T (666 ml toluene, 332 

ml Triton X-100, 5 g 2,5-Diphenyloxazole [PPO] and 0.15 g l,4-Di-2-(5 

phenyoxazoyl) benzene [POP]) and counting cpm using a B4430 Tricarb 

scintillation counter (Packard, U.K.). Specific activities of 10^-10® cpm/pg 

were routinely obtained.

2.2.8.) Southern blot analysis

Alkali Southern blotting of PCR products from agarose gels

PCR products were separated and visualised in ethidium bromide stained 

agarose gels against 1 kb DNA markers. DNA samples were depurinated,
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denatured and transferred to Hybond-N+ nylon membrane using the 

methods described by Sambrook et al., (1989).

Southern blotting of PCR products from polyacrylamide gels

Unlabelled PCR products resolved on standard 6% polyacrylamide gels were 

transferred to nylon membrane using the basic methods of Southern. The 

region of the gel predicted to contain the PCR products was overlaid with 

Hybond-N+ nylon membrane (normally around 10x20 cm, exceeding the PCR 

'product window' by at least 2-3 cm on upper and lower margins) and wetted 

with 2x SSC. Any bubbles were carefully removed and the membrane 

overlaid with two pieces of Whatman 3 mm blotting paper and a stack of 

absorbent paper towels. With the application of sufficient pressure, the PCR 

product DNA was allowed to transfer onto the nylon membrane for 6-16 h.

2.2.9.) Hybridisation of radiolabelled DNA probes to Southern filters 

Using probes generated from random primer labelling

Prior to hybridisation with labelled probe, membranes were 'blocked' for 1 

h in 25 ml prehybridisation buffer (5x SSC [Sambrook et al., 1989], 5x 

Denhardt's solution [Sambrook et al., 1989] and 0.5% SDS) containing 20 

jug/ml of sonicated salmon sperm DNA. The salmon sperm DNA was denatured 

at 100°C for 5 mins before adding to the hot (65°C) prehybridisation buffer. 

After blocking of the membrane, 20 ml of prehybridisation buffer was 

removed and 100 |d (equivalent to roughly 20-50 ng) ^^P-labelled DNA probe 

solution added, following denaturation at 100°C for 5-10 mins. Hybridisations 

were carried out in 8 cm diameter hybridisation cylinders mounted in a 

rotating oven (Hybaid Ltd, U.K.) at 65°C for 16-18 h.

Hybridised filters were washed twice in 2x SSC, 0.1% (w/v) SDS for 10 mins at 

room temperature, once in lx  SSC, 0.1% (w/v) SDS for 15-30 mins at 65°C and 

if significant background counts still remained, once in O.lx SSC, 0.1% (w/v) 

SDS for 10 mins at 65°C. The washed filter was wrapped in clingfilm to retain
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moisture and exposed to autoradiographic film (Hybond-MP) for 2-3 h at 

-80°C with an intensifying screen.

Using single stranded oligonucleotide probes

Prior to hybridisation with labelled probe, membranes were 'blocked' for 1 

h in 50 ml 3% casein prehybridisation buffer (1.5 g milk powder dissolved 

in 50 ml 2x SSC). Hybridisations were carried out (either immediately or 

after several days storage of filters at 4°C) at 60°C for 8-10 h in 10 ml 2x SSC 

(containing 2% w/v milk powder) supplemented with 25 jxl ^P-la-loelleci 

oligonucleotide probe (equivalent to 30-40 ng DNA solution of specific 

activity: 10^-10^ cpm/^ig). Hybridised filters were washed twice in 2x SSC, 

0.1% SDS for 30 mins at 60°C, wrapped in clingfilm and exposed to 

autoradiographic film as described above.

2.2.10.) DNA cloning techniques 

Purification of DNA fragments

For cloning purposes, DNA fragments from restriction enzyme digestion of 

plasmid DNA were recovered from agarose gels by electroelution into 

dialysis tubing as described by Sambrook etal., (1989).

PCR products for sequencing (up to -2 kb) and cloning (up to -500 bp) were 

efficiently purified using QIAGEN PCR purification columns (QIAGEN, 

Dorking, Surrey, U.K.) according to the manufacturers recommendations.

Phenol/chloroform extraction of nucleic acids

All nucleic acid solutions were purified after proteinaceous digestions, as 

described by Sambrook etal., (1989).

Ligation of DNA fragments

For the directional cloning of DNA fragments carrying different cohesive 

termini, the appropriate ratio of molecular ends for an efficient ligation
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had to be optimised. For single fragment ligations, vector : insert ratios of 

1:1 and 1:3 (and occasionally 3:1) were routinely tested. The mass ratio of 

vector : insert(s) was dependent on the size (in bp) of fragments to be 

ligated. For multiple fragment ligations, similar ratios of vector to insert 

were used, with mass ratios decreasing with decreasing size of insert 

fragment. In general, 20-30 ng of linearised vector DNA was ligated with X 

ng of insert DNA fragment(s) [depending on their size, in bp] in one of the 

ratios described above, by combining 1 1̂ lOx ligase buffer (300 mM Tris-HCl 

(pH 7.8), 100 mM MgCl2, 100 mM DTT and 5 mM ATP), 0.5 jlxI  (1.5-2 weiss units) 

T4 DNA ligase, X |rl DNA solution (for each DNA fragment, dependent on 

num ber of fragments and their size and concentration) and Y jil ddH20 

(dependent on X) in a final volume of 10 jil. The DNA ligase was added last 

and the reaction components gently mixed by stirring with a pipette tip. 

Ligation reactions were incubated at 16°C for 16 h and then stored at 4°C 

until required for transformation.

Dephosphorylation of linearised plasmid DNA
Purified linear plasmid DNA for cloning was dephosphorylated using calf 

intestinal phosphatase (CIP) at a concentration of 0.01 U/pmole of 51 

protruding DNA ends (where 1 pmole of DNA ends represents the number of 

ends generated from the linerisation of 1 |ug of a 4.3 kb plasmid). Reactions 

were incubated at 37°C for 30 mins and terminated by heating to 70°C for 30 

mins. Inactivated CIP was removed by phenol/chloroform extraction.

CIP was diluted to a concentration of 0.2 U/^il using CIP dilution buffer (30 

mM triethanolamine [pH 7.6], 3 mM NaCl, 1 mM MgCl2 and 0.1 mM ZnCl2, 

supplied with the enzyme) prior to use.

Klenow fill-in of protruding 51 ends

The filling in of 5' protruding termini with unlabelled dNTPs was achieved 

as follows: 1-4 |iig of DNA (in a volume of 20 jliI )  was digested to completion 

with a suitable restriction enzyme generating 5' overhangs. The digested 

DNA was then phenol/chloroform  extracted, ethanol precipitated and 

resuspended in 20 [d ddH20. The DNA solution was combined with 40 mM
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dNTPs, 20 ng/ml acetylated BSA and 1 U of Klenow/jxg of DNA. Reactions were 

incubated in 1 x Klenow buffer (50 mM Tris-HCl [pH 7.2], 10 mM MgS04 and 

0.1 mM DTT) at room temperature for 1 h and terminated by heating for 10 

mins at 70°C. Denatured Klenow was removed by phenol/chloroform  

extraction.

T-vector (pT7Blue) cloning of PCR products

For a standard ligation reaction, 50 ng (0.03 pmole) of pT7Blue T-vector 

(AMS Biotechnology, Oxford, U.K.) was ligated with 10-50 ng of amplified 

PCR product in a volume of 10 |d as recommended by the supplier. Ligation 

reactions were incubated at 16°C for 2-16 h. Normally, PCR product DNA was 

recovered by precipitation using 2 M ammonium acetate and 2 volumes of 

100% ethanol on ice to minimise the precipitation of lower molecular 

weight material such as unincorporated PCR primers.

2.2.11.) Bacterial transformation and colony screening

All bacterial growth media and related solutions were sterilized by 

autoclaving unless otherwise stated.

Preparation of competent bacterial cells
Bacterial cells of E. coli strain DS941 (obtained from Glasgow University 

Department of Genetics) were made competent with rubidium  chloride 

(RbCl) using a method obtained from Glasgow University Department of 

Genetics, originally described by Hanahan, (1983).

Transformation of bacterial strains with plasmid DNA

NovaBlue E. coli competent cells from the T-vector DNA cloning kit (AMS 

Biotechnology, Oxford, U.K.) were transfo rm ed  with T-vector as 

recommended by the supplier.

For E.coli strain DS941, the transformation procedure was similar to that 

described for NovaBlue cells, with the following modifications: 50 j l x I  of
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competent cells were mixed with 2-5 pil ligation mixture. Cells were heat 

shocked for exactly 2-mins at 42°C and transferred to ice for a further 2 

mins prior to the addition of 250 1̂ 2x YT medium. Cultures were shaken at 

180-200 rpm in an orbital shaker for 1 h at 37°C prior to plating.

Rapid screening of bacterial transformants

Following transformation of competent bacterial cells, resulting colonies 

were screened for recombinants by one of the following methods:

Blue/white colony screening: following T-vector transformation, bacterial 

cells carrying a disrupted lacZ gene were selected as white colonies 

following staining with X-gal.

PCR (boil) method: colonies to be analysed were retained/duplicated on a 

second independent LB-agar plate (reference plate) containing 50 jig/ml 

ampicillin, by touching the chosen colony with the end of a sterile yellow 

pipette tip and then crossing the surface of the agar on the reference plate. 
Bacterial colony duplicates were grown for 16-18 h at 37°C and stored at 4°C. 

The remainder of the colony was lifted into 1 ml LB medium supplemented 

with 50 ng/ml ampicillin and grown for 6-16 h, with shaking (200 rpm) at 

37°C. 10 |il of bacterial culture was transferred to a 1.5 ml microfuge tube, 

diluted with 90 nl ddH20 and boiled for 10 mins. The bacterial lysate was spun 

at 14,000 rpm, for 5 mins at room temperature to pellet cell debris. The 

resulting supernatant was used directly in PCRs. PCR products were verified 

against a positive control PCR amplified from the original template DNA run 

in parallel

SCOP analysis (S. Rusconi personal communication) was routinely used for 

the rapid initial sizing of potential recombinants which were not pre­

selected by any other means (such as blue/w hite colony screening). 

Typically, 100-200 colonies could easily be analysed in one day by this 

method.
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Bacterial colonies were retained for further reference as described in the 

PCR-boil method. The remainder of each colony was mixed with 20 jul LETR- 

buffer (2 mg lysozyme lOOmM EDTA (pH 8.0), 50 mM Tris-HCl (pH 8.0) and 0.1 

mg/ml RNaseA) in a 1.5 ml microfuge tube and incubated on ice for 15-20 

mins. 2-drops of TE (pH 8.0) equilibrated phenol were then added to each 

incubation. Samples were vortexed briefly and spun at 14,000 rpm, for 5 

mins at room temperature. 10 îl of the resulting supernatant was mixed with 

agarose gel loading buffer and run on a 1.5% agarose gel against a plasmid 

clone of known size, acting as a size marker. Colonies carrying recombinant 

plasmids of the correct size were identified from the reference plate and 

analysed further (e.g. miniprep, followed by restriction analysis).

Storage of bacterial transformants

All bacterial clones and subclones were stored as recom mended by 

Sambrook et al., (1989).

2.2.12.) Preparation of plasmid DNA

All bacterial plasmids were prepared by the alkaline lysis method described 

by Sambrook et al., 1989.

Minipreparations
These were adjusted to 5 ml to generate enough plasmid DNA (3-5 [ig/ml of 

original culture volume for a high copy num ber plasmid) for rapid 

restriction analysis or sequencing.

Midipreparation (100 ml)

For reasons of speed and expected product purity, plasmid midipreparations 

were also carried out using the QIAGEN midi-prep kit and accompanying 

protocol (QIAGEN). Using the corresponding QIAGEN tip lure recommended 

for this culture volume, plasmid DNA yields of 300-500 g were achieved.
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Maxipreparation (500 ml)

Large scale preparations of plasmid DNA were used in conjunction with a 

subsequent purificaton step (equilibrium centrifugation in cesium chloride 

[CsCl]-ethidium bromide gradients) designed to produce high quality 

supercoiled DNA suitable for transfection of mammalian cells.

The basic protocol for maxipreparation of plasmid DNA was the same as that 

described by Sambrook etal., (1989).

Nucleic acids were recovered at 10-12,000 rpm for 30 mins in a Beckman JC 

M2 centrifuge (JA20 rotor). Supernatants were decanted off and resulting 

pellets washed with 0.5 ml 100% ethanol. Tubes were inverted to drain and 

briefly dry nucleic acid pellets (5-10 mins, room tem perature) before 

dissolving in 3 ml TE buffer (pH 8.0).

Cesium chloride density gradient centrifugation
Cesium gradients were prepared by mixing crude plasmid DNA solutions 

with 2.6-2.8 g of solid CsCl and 100 ^1 of a 10 ng/ml solution of ethidium 

bromide. Filled ultracentrifuge tubes were adjusted to a weight of 5.9-6.0 g 

(to ensure buoyant plasmid bands were retained in the middle of tubes 

following centrifugation) using a solution of CsCl in TE (pH 8.0) [2g/ml]. 

Plasmid DNA was banded at 70,000 rpm for 16 h at 4°C, or at 100,000 rpm for 4 
h at 4°C in an O p t i m a ^ M  t l x  ultracentrifuge (Beckman, U.K.). Banded 

supercoiled DNA was recovered from gradients and ethidium  bromide 

removed as described by Sambrook etal., (1989).

The purified DNA was pooled and concentrated by ethanol precipitation and 

centrifugation at 10-12,000 rpm for 30 mins at 4°C in a Beckman JC M2 

centrifuge. Where yields were sufficiently high (usually for high 

molecular weight, high copy number plasmids), the precipitated DNA could 

be physically transferred to a microfuge tube and pelleted at 14,000 rpm for 

10 mins at room temperature. DNA pellets were washed in 0.5 ml 100% 

ethanol, air dried for about 10 mins and resuspended in 1-2 ml TE (pH 8.0).
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Plasmid DNA prepared in this way was successfully stored at 4°C with no 

compromise to its integrity.

2.2.13.) Dideoxy chain termination sequencing of DNA

The sequencing of double or single stranded DNA was based on the dideoxy 

chain termination method in conjunction with the Sequenase version 2.0 

DNA sequencing kit (United States Biochemicals, Cambridge Bioscience, 

Cambridge, U.K.), or an appropriately modified version.

Sequencing double stranded plasmid DNA

Typically, 18 îl of plasmid DNA solution (2-10 \ig, depending on the source of 

DNA) were denatured in a 1.5 ml microfuge tube using 2 îl of denaturation 

buffer (2 M NaOH, 1 mM EDTA) for 5 mins at room temperature. Denatured, 

single stranded DNA was recovered by precipitation with one tenth the 

volume of 3M sodium acetate (pH 5.2) and 3-volumes of 100% ethanol at -80°C 

for 1 h. DNA was then pelleted in a microfuge at 14,000 rpm for 10 mins at 

room tem perature. The pellet was washed with 200 jliI  of 100% ethanol, 

briefly air dried and sequenced as described in the Sequenase version 2 .0 ^ ^  

protocol. Sequenced products were separated on 6% polyacrylamide 8M urea 

sequencing gels. Prior to gel loading, product samples from each 

terminating nucleotide were denatured for 2 mins at 80-85°C and rapidly 
cooled on ice.

Sequencing of PCR products

Using Dynabeads: PCR products were im m obilised onto magnetic 

Dynabeads^ M 280 streptavidin, denatured and sequenced as recommended 

by the supplier. All manipulation and wash steps required a magnetic 

particle concentrator (MPC, Promega) to pellet the magnetic beads.

By direct method: double stranded PCR products were sequenced directly, 

without the need to remove complementary DNA strands, using a Sequenase 

version 2 .QTM kit specifically designed for this purpose (Amersham). Prior
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to sequencing, PCR products (non-purified) were trea ted  with the 

hydrolytic enzymes, Exonuclease I and Shrimp Alkaline Phoshpatase to 

remove unincorporated dNTPs, primers and spurious single stranded 

products. Purified DNA templates were sequenced and electrophoresed as 

recommended by the supplier.

2.2.14.) RNA extraction

Total RNA was extracted using RNAzol B under conditions recommended by 

the supplier. Resulting RNA pellets were washed in 200 1̂ of 100% ethanol, 

dried briefly at room temperature and resuspended in a suitable volume of 

ddH20 (DEPC-treated as described by Sambrook et al., 1989), supplemented 

with DEPC-treated EDTA (pH 7.6) to a final concentration of 1 mM. RNA 

samples were adjusted to a final concentration of 1-2 ^ig/ml and stored at 

-80°C in one tenth the volume of DEPC-treated 3M sodium acetate (pH 5.2) 

and 3x the final volume of 100% ethanol.

2.2.15.) Reverse transcription of RNA

Total RNA was reverse transcribed into RNA/cDNA hybrids for RT-PCR by 

combining the following in a 1.5 ml microfuge tube: 0.01 M DTT, 0.2 U, 

RNAsin, 4 mM dNTPs, 5-10 jmg Total RNA, 5-10 pmoles gene specific primer or 

random hexamer primers, 20 U MMLV-RTase and 32.75 jil, ddH20 in a total 

volume of 50 jil. Reaction components were incubated in lx  RT Buffer at 37- 

42°C for 50-70 mins, depending on the length of the required transcript. 

Completed reactions were terminated by phenol/chloroform  extraction and 

stored frozen at -20°C prior to RT-PCR.
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2.2.16.) Tissue culture

Growth and maintenance of tissue culture cells

Both COS-7 and CV-1 cells were grown in DMEM (with 0.11 g/1 Na-pyruvate), 

supplem ented with 1% penicillin-streptomycin solution, 1% L-glutamine 

solution, FCS (10% for COS-7 and 2.5% for CV-1 and HEK293) and NBCS, 2.5% 

(for CV-1 and HEK293). 2s-Fasa cells were grown in Mccoy's 5-A medium and 

EDR3 in a 50 : 50 mixture of Glasgow medium and DMEM. Both were 

supplem ented with 1 % penicillin-streptomycin solution, 1% L-glutamine 

solution and 10% FCS. All cells were grown routinely on 10 cm tissue culture 

dishes at 37°C, in a water-saturated 5% C02 atmosphere.

When passaging cells, medium was aspirated off and the cells rinsed in 5 ml 

of room temperature TBS (0.14 M NaCl, 0.0027 M KC1 and 0.025 M Tris-HCl [pH 

7.4]). The TBS was aspirated off and the cells treated with 2 ml of trypsin- 

EDTA solution. Following aspiration of the trypsin solution cell plates were 

incubated at 37°C for 2-5 mins until cells were dislodged from the plate 

(determined by gentle tapping). 4-8 ml of growth medium was then added 

and adherent cells and cell clumps disaggregated by several passages 

through a pipette (10 ml), whilst forcing the tip against the base of the 

tissue culture dish. Cells were normally replated at a density of 0.25-0.5x10^. 

In routine maintenance, surplus cells were discarded. For bulk cell growth 

for transfection experiments, lifted cells were distributed between further 

tissue culture dishes and the culture volume adjusted to the appropriate 

level (10 ml for a 10 cm dish, 5 ml for a 6 cm dish).

Freezing and resuscitation of tissue culture cells

Cells were frozen to -80°C at an approximate density of 0.1-0.2x10^/ml. Cells 

lifted from tissue culture plates were pelleted for 5 mins at 1000 rpm, 4°C. 

Pelleted cells were resuspended in freezing medium (FCS supplemented with 

10% DMSO), allowed to freeze slowly, overnight (16-18 h) at -80°C and then 

transferred to liquid nitrogen for indefinite long term storage.
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Cells were resussitated by thawing as quickly as possible at 37°C and plating 

in 10 ml of growth medium in a 10 cm culture dish. Cells were normally 

revived completely within 2-3 days.

2.2.17.) Transfection of tissue culture cells with plasmid DNA 

Densitometry of plasmid clones
The DNA concentrations of the GR clones used in all quantitative assays 

(pSTC series) were determined by densitometry. Plasmid DNAs (100 ng of 

each clone) were run on a 1% agarose gel. DNA was visualised using a DNA 

imager (Oncor, Appligene, Durham, U.K.) and the final image saved on a 

Macintosh compatible disc as a TIFF file. The file was then converted to a 

PICT file using the program: Graphic Converter (designed by: Thorsten 

Lemke, Peine, Germany) and scanned densitometrically using the program: 

Scan Analysis 68000 (Biosoft, Cambridge, U.K.). Peak heights (graphically) 

and peak areas (numerically), measured for each DNA band were compared 

for each clone analysed.

T ransient transfection  into COS-7 cells was carried  out using the 

transfection reagent DOTAP as recommended by the supplier. Cells were 

grown for a further 48 h prior to harvest.

For the CaP0 4  coprecipitation method, plasmid DNA of appropriate quantity 

(depending on dish size: 20 ng for a 10 cm dish, 10 ng for a 6 cm dish) was 

prepared as follows: for a 10 cm culture dish, a total of 20 ng of plasmid DNA 

was combined with 70 nl ddH20, 150 nl T.E. (pH 7.6), 250 nl Ca2+ (4x) solution 

(0.5 M CaCl2, 0.05 M HEPES [pH 7.0]) and 500 nl Pi (2x) solution (0.75 mM 

Na2HP04, 0.75 mM NaH2PC>4, 0.05 M HEPES [pH 7.0] and 0.28 M NaCl in ddH20). 

For a 6 cm culture dish, a total of 10 ng of plasmid DNA was combined with 35 

nl ddH20, 75 nl T.E. (pH 7.6), 125 nl Ca2 + (4x) solution and 250 nl Pi (2x) 
solution.
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All components, except 2x Pi solution were mixed and incubated for 5-60 

mins until equilibrated to room temperature. Pi solution was then added and 

reactions incubated for a further 5-15 mins (depending on the age of the Pi 

solution). CaP0 4 -DNA precipitates were added to cells plated at 80-90% 

confluence in DMEM containing 3% FCS. Optimum transfection was achieved 

with CaP0 4 -DNA crystals of a similar size to the nucleoli of the cell nucleus. 

Precipitates were incubated with cells for 12-16 h under standard conditions 

(37°C, 5% C02, ) and removed with x2 washes of TBS. Cells were harvested 

after a further 44-48 h growth in DMEM containing 3% FCS.

2.2.18.) Lac Z staining of tissue culture cells

Cells transfected with clones encoding lac Z (and therefore expressing p- 

galactosidase) were assayed 48 h after the removal of the transfection 

mixture for the presence of functional enzyme as follows: growth medium 

was aspirated off and cells rinsed twice with PBS (1 Sigma PBS tablet per 200 

ml ddH20 [pH 7.4]: 3 ml for a 6 cm dish, 5 ml for a 10 cm dish). Fixation 

solution (2% formaldehyde, 0.2% glutaraldehyde: 10.8 ml 37% formaldehyde 

and 0.8 ml 50% glutaraldehyde in 200 ml PBS) was then added (2 ml for a 6 

cm dish, 4 ml for a 10 cm dish) and cells incubated for 2-5 mins (max.) at 4°C. 

Fixative was removed and cells again rinsed twice with PBS (3 ml for a 6 cm 

dish, 5 ml for a 10 cm dish). Cells were stained in staining solution (37°C, lx 

staining solution [5 mM K3[Fe2(CN)6] and 5 mM K4[Fe3(CN)6] in lx  PBS] 

supplemented with 2 mM MgCl2 and X-gal at 1 mg/ml [dissolved in N,N- 

dimethylformamide]), (2 ml for a 6 cm dish, 4 ml for a 10 cm dish) by 

incubating 2-6 h at 37°C. The staining solution was shaken well before use. 

Once blue colouring was apparent in positive cells, the staining solution was 

replaced with PBS (3 ml for a 6 cm dish, 5 ml for a 10 cm dish) and plates 

stored at 4°C to enhance pigmentation. The fraction of cells expressing p- 

galactosidase were estimated by averaging numbers of blue stained cells per 

10 fields of view (magnification (4/0.1) for three transfection plates per 

clone. Cells were photographed using a Nikon microscope mounted with a 

Nikon FX 35A camera (Nikon, Kingston Upon Thames, Surrey, U.K.).



2.2.19.) p-galactosidase assay

From 6 cm tissue culture plates of CV-1 cells transfected with different GR 

clones, 50 |rg of cell extract (prepared by NP40 lysis as described in section 

2.2.22.) were mixed with 181 nl of 0.1 M sodium phosphate buffer (0.082 M 

Na2 HP0 4 , 0.018 M NaH2 PC>4 [pH 7.5]), 66 jLtl of lx  ONPG solution (4 mg/ml ONPG 

in 0.1 M sodium phosphate buffer [pH 7.5]) and 3 nl of lOOx Mg^+ solution 

(0.1 M MgCl2, 4.5 M 2-mercaptoethanol). Samples were vortexed briefly and 

incubated at 37°C for 30-60 mins until a yellow colour developed. Reactions 

were stopped by adding 500 nl of a 1M Na2 (C0 3 ) solution. Optical densities of 

terminated reactions were measured at 420 nm. Each assay was performed in 

triplicate and an average O.D. reading determined for each GR clone.

2.2.20.) Determination of protein concentrations in cell extracts

Protein concentrations in all tissue culture cell extracts and tissue 

homogenates were determined using the Bio-Rad (Bradford) protein assay 

kit as recommended by the supplier.

2.2.21.) Steroid binding assays 

Using liver cytosol extracts

Rat liver cytosol extracts were prepared from freshly sacrificed animals. 

Livers were perfused via the hepatic portal vein with 20 ml of saline (room 

tem perature) to remove blood. 1-2 g of tissue (on ice) was finely minced 

using a pair of scissors and homogenised in 3-volumes of ice cold molybdate 

extraction buffer (10 m M  Tris-HCl, 1 m M  EDTA, 2 m M  DTT, 50 m M  NaCl, 0.1 M  

Na-molybdate and 10 % glycerol [pH 7 .2 ]). Homogenates were spun at 10-

1 2 ,0 00  rpm for 20 mins at 4°C (Beckman JC M 2 centrifuge) to remove 

cellular and tissue debris, followed by ultracentrifugation at 5 0 ,000  rpm, for 
1 h a t4 °C  (Beckman optim a^M  XLX ultracentrifuge) to pellet microsomes and 

DNA. Protein concentrations were determined by Bradford assay.
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Using sonicated cell extracts

Both cytosolic and nuclear proteins were extracted from  cell lines 

expressing GR (either naturally or from transfected cDNAs). Cells (normally 

30-40x1 C)6) were harvested using trypsin-EDTA, pelleted and resuspended in 

ice cold molybdate buffer, supplemented with 10 mM DTT. Cells were 

sonicated on ice at an amplitude of 6 microns. Cell debris and DNA were 

pelleted by ultracentrifugation at 50,000 rpm, for 1 h at 4°C (Beckman 

o p t i m a " ™  t l x  ultracentrifuge) and protein concentration measured as 

described for liver cytosol.

Receptor steroid binding assays were performed by equilibrating 50 îg
a liquo ts of cell ex tracts w ith ^ H - d e x a m e t h a s o n e  (L 5 nM final 

concentration) and increasing concentrations of unlabelled dexamethasone 

or corticosterone in ice cold molybdate buffer [final concentrations: 1580 

nM, 500 nM, 158 nM, 50.0 nM, 15.8 nM, 5.0 nM, 1.58 nM, 0.5 nM, 0.158 nM and 

0.05 nM]) and incubating for 24-48 h at 4°C. ^H-dexamethasone binding to 

receptor (GR) was determined by removing unbound steroid ligand using 

100 îl of an ice cold solution of activated charcoal (5% w/v methanol washed 

activated charcoal [Sigma] and 0.1% w/v Dextran T70 [Pharmacia] in 

molybdate buffer) and spinning at 2,800 rpm for 15 mins at 4°C. 125 \il of 

recovered supernatant was mixed with 250 [il of scintillant (Optiphase 

Supermix: Wallac, Milton Keynes, U.K.) and cpm measured over a 5 minute 

period using a 1450 Microbeta plus liquid scintillation counter (Wallac).

Scatchard analysis

Calculations of dissociation constants (Kd) and receptor binding capacities 

(Bmax, also referred to as Rl) were made from homologous and heterologous 

competition curves (Scatchard analysis) using the curve fitting program, 

LIGAND (Munson and Rodbard, 1980).

Statistics

Raw data obtained from studies of linkage of GR and other genotypes with a 

number of physiological variables in different strains of rat were analysed 

by analysis of variance using Numann-Keul's correction test for multiple
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comparisons. Kd (dex), Kd (B) and R1 values generated from analysis of 

steroid binding by GR were compared by parametric and non-parametric 

statistics where appropriate.

2.2.22.) Immunodetection of membrane-bound proteins 

Dot blot analysis

Protein samples, serially diluted from 100 îg down to 0.01 jug (i.e., 100, 10, 1, 

0.1 and 0.01 |ig total protein) in a volume of 50 1̂ were spotted onto a strip of 

PVDF membrane and dried at room temperature for 30-60 mins. Filters were 

then blocked using a 3% casein solution (3%w/v milk powder, 0.1% Tween- 

20 in PBS]) for 1 h at room temperature. Filters were probed using specific 

monoclonal antibody (section 2.1.15.) at various concentrations. Specific 

primary antibody binding was detected using the ECL immunodetection kit.

Western blotting

For large num bers of sam ples (10-15), SDS-polyacrylamide gel 

electrophoresis (SDS-PAGE) and blotting was carried out using a 15x20 cm 

midigel system (separation using a vertical midi electrophoresis tank 
[GIBCO-BRL], and blotting using a PROTEAN II xi electroblotting system [BIO­

RAD]). For the rapid turnover of smaller num bers of samples (rapid 

analysis), a minigel system, comprised of a vertical minigel tank (Sigma) 

and the Mini PROTEAN II electroblotting system (BIO-RAD) was used. 

Samples were generally run on 8% gels alongside high molecular weight 

protein markers.

Sample preparation by NP40 lysis

Soluble proteins (from cytosol and nucleus) were recovered from tissue 

culture cells by NP40 lysis. Harvested cells were pelleted in 1.5 ml microfuge 

tubes (15 s, 14,000 rpm) washed in 1 ml ice cold PBS (pH 7.4), repelleted (15 s 

at 14,000 rpm) and lysed in 40-50 jliI NP40 lysis buffer (10 mM HEPES [pH 7.9], 

1.5 mM MgCl2, 50 mM KC1, 0.5 mM DTT and 0.1-0.5% NP40) for 15 mins at 4°C. 

Cell debris and cell nuclei were pelleted at 14, 000 rpm for 15-20 mins at 4°C.
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Nuclear proteins were extracted using TGEN-50. Nuclei from lysed cells were 

washed twice in ice cold PBS (pH 7.4) and resuspended in an estimated 4- 

times the volume of TGEN-50 (10 mM Tris-HCl [pH 8.0], 10% glycerol, 1 mM 

EDTA, 50 mM NaCl and 0.5 % NP-40). Nuclei were lysed at 4°C for 15 mins. 

Nuclear debris was removed at 14,000 rpm for 5 mins at 4°C. Protein 

concentrations were determined by Bradford assay.

Whole cell preparations (-lx lO ^-lx lO ^ /lo ad in g ) were analysed for GR 

expression by pelleting at 14,000 rpm for 15 s at room temperature, washing 

in 1 ml of ice cold PBS (pH 7.4), repelleting (14,000 rpm for 15 s) and lysing 

in 20 |il of gel loading buffer. Samples were denatured at 95-100°C for 5- 

mins, cooled to room temperature and DNA and cell debris spun out for 3-5 

min at 13,000 rpm and the supernatant loaded onto the gel.

SDS gel preparation, sample loading and electrophoresis

SDS-polyacrylamide gels were prepared as follows: for minigels, 14.8 ml of 

8% resolving gel solution (8% acrylamide solution, 0.375 M Tris-HCl [pH 8.8]) 

was polymerised using 50 jliI 10% APS and 25 jal TEMED. The gel solution was 

overlaid with 100% ethanol (about 1.5 cm depth) to encourage a flat 

polymerised gel surface.

The resolving gel was overlaid with 4.9 ml of 6.5% stacking gel solution 

(6.5% acrylamide solution, 0.15 M Tris-HCl [pH 6.8]), polymerised using 30 1̂ 

10% APS and 15 p.1 TEMED. Midigels (15x20 cm) were prepared in much the 

same way, except the resolving gel (50 ml) was polymerised using 100 nl 10% 

APS and 50 n-1 TEMED, and the stacking gel (30 ml) was polymerised using 50 

1̂ 10% APS and 30 pi TEMED.

Prior to gel loading, protein samples (10-20 îg of liver cytosol extract or 20- 

30 [ig of tissue culture cell extract: each at 5-10 yl final volume) were mixed 

with twice their volume (10-20 jliI) of lx  SDS-gel loading buffer (0.0625 M 

Tris HC1 [pH 6.8], 0.5% w/v SDS, 0.7 M 2-Mercaptoethanol, 10% glycerol and 

0.001% w/v bromophenol blue), heated at 95-100°C for 5-mins to denature, 

cooled to room temperature and loaded onto a gel pre-run at 100 v, 20 mA
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(for about 30 mins). Both midi and mini gels were run at 100 v, 20 mA in lx 

Tris-glycine eletcrophoresis buffer (0.1 % w/v SDS, 0.025 M Tris-HCl and 

0.19 M glycine [pH 8.3]) until the bromophenol dye front was about half way 

down the gel. The voltage was then adjusted to 150 v and finally, to 200 v 

until the dye front had run off the bottom of the gel.

Electroblotting of proteins onto solid supports

Proteins separated on SDS-polyacrylamide gels were transferred onto PVDF 

membrane prior to probing with antibody. PVDF membrane cut to the exact 

dimensions of the gel was 'activated' by soaking in 100% methanol for one 

minute exactly and washing twice in ddH20 for 2 mins each. 'Activated' 

membrane was further soaked in lx  Tris-glycine electrophoretic transfer 

buffer (2.5 mM Tris-HCl, 19.2 mM glycine, 2% methanol [pH 8.3]) for a 

minimum of 10 mins along with x4 pieces of Whatman 3 mm blotting paper 

cut to the same dimensions as the gel sandwiching pads (part of the 

electroblotting apparatus, used to promote a tight contact between gel and 

membrane). Soaked PVDF membrane was placed on top of the gel and good 

contact between gel and membrane and exclusion of any bubbles achieved 

by gently rolling accross the surface of the overlaid membrane using a 

glass pipette. Gel plus membrane was sandwiched on either side with two 

pieces of the pre-soaked Whatman 3 mm blotting paper and one gel 

sandwiching pad, whilst submerged in transfer buffer. The entire gel 

sandwich was assembled in the blotting tank inside a transfer casette and 

submerged in lx  transfer buffer. Proteins were transferred from negative 

to positive at a constant current of 250 mA for 1 h-40 mins (mini gel), or 3-4 

h (midi gel) for efficient GR transfer, in ice cold conditions to prevent 

excessive heating.

ECL detection of proteins bound to solid supports
Membrane bound proteins were detected using the ECL immunodetection kit. 

Blotted membranes were blocked for 1 h in 3% casein blocking solution and 

probed with specific primary monoclonal antibody (10 jrl for a midi-sized 

membrane [1:500 dilution] and 5 (il for a mini-sized membrane [1:750 

dilution]) in a 5 ml volume of PBS-Tween. Incubation with secondary
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antibody and detection of specific membrane-bound proteins was carried 

out exactly as described in the ECL immunodetection protocol.
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Chapter 3 
Results 1
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Codon variation in the glucocorticoid receptor in inbred 

strains of rat

3.1.) Introduction

A num ber of studies in man and rat have indicated that abnormal 

adrenocortical hormone activity may contribute to the development of 

hypertension and obesity. In this chapter, the possible involvement of 

altered GR function has been considered in several inbred rat strains. The 

phenotypic evidence that glucocorticoid hormone action is affected in rats 

with a genetic predisposition to developing hypertension and obesity is 

reviewed.

Under normal physiological conditions, the circulating levels and eventual 

activity of glucocorticoids fall under the regulatory control of GR. In 

conditions of natural glucocorticoid excess, the release of corticosteroids 

from the adrenal and transcription of the GR gene itself are feedback 
inhibited by GR (Fraser, 1992). With abnormal GR function (typically the 

resu lt of a m utated receptor protein) the feedback inhibition of 

corticosteroid release and GR down-regulation (which normally occurs in 

conditions of glucocorticoid excess) is compromised. This inability to 

feedback inhibit pituitary ACTH secretion results in an increase in the 

synthesis of glucocorticoid and mineralocorticoid hormones, which may 

affect corticosteroid related phenotypes such as blood pressure (Mantero et 

al., 1983; Bianchi e ta l., 1984; Fraser eta l., 1994). Abnormal glucocorticoid 

activity has also been proposed to play a role in the expression of obesity in 

Zucker rats. A detailed overview of the phenotypes of rat strains SHR and 

Zucker obese is given chapter 1 (MHS in chapter 5) and will only be 

considered fu rther in this chapter in the context of steroid binding 

affinity.

It has previously been shown (Kenyon et al., 1994; Panarelli et al., 1995) 

that the glucocorticoid receptor (GR) from MHS and SHR strains of rat show 

significant differences in their affinities for steroids (cortisol, aldosterone

86



and dexamethasone and the glucocorticoid antagonist, RU486) compared 

with their normotensive controls (MNS and WKY, respectively). For the 

MHS/MNS model, the hypertensive strain MHS revealed consistently lower 

affinities for these steroids, producing higher Kd values. Measurements of 

rec ep to r-s te ro id  b inding  in liver cytosol ex tracts from  non- 

adrenalectomised animals produced Kd values 1.39, 2.19, 2.06 and 4.12-fold 

g reater for dexam ethasone, corticosterone, RU486 and aldosterone 

respectively, in MHS than in MNS. For SHR and WKY strains, GR steroid 

binding characteristics were essentially reversed, the hypertensive strain 

(SHR) having generally higher affinities for natural steroids: 1.16 and 

1.37-fold lower Kd values for corticosterone and aldosterone respectively 

than in WKY. Affinities for dexamethasone were not significantly different 

between strains. Similar studies in Zucker rats has yielded receptor 

affinities for corticosterone 100-fold lower in obese compared with lean 

rats, reduced to a difference of 2-3-fold following adrenalectomy (White 

and Martin, 1990; C. Kenyon, unpublished observations).

The total numbers of hepatic receptors between MHS and MNS and SHR and 

WKY rats were comparable under the chosen assay conditions and for the 

Milan strains, this was consistent with the observations made by Stewart et 
al., (1993), in which levels of GR mRNA from liver and kidney were not 

found to be significantly different between these strains. For Zucker rats, 

the obese strain showed a 40-50 % reduction in the num ber of hepatic 

receptors which was normalised following adrenalectom y (White and 

Martin, 1990; C. Kenyon, unpublished results). Although changes in 

glucocorticoid activity can result from regulatory gene mutations which 

may alter the turnover of GR transcripts or from post translational 

modifications affecting the level of functional protein, taken together, the 

findings described above for the rat models of hypertension were more 

suggestive of abnormalities resulting from changes in the primary GR 

sequence. It was therefore logical to consider a search for mutations in the 

structural genes for GR, since these are frequently associated with changes 

in affinity for ligand (Brown etal., 1990; Hurley etal., 1991; McPhaul etal., 

1991). The potential relationship between any gene and disease phenotype 

must also take into account the possibility of mutations elsewhere, other
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than  in the candidate gene itself, but in close linkage on the same 

chromosome arm. There is always the possibility that unknown mutations 

within the same locus of DNA are responsible for the observed disease 

phenotype.

The question of functional differences of GR can be addressed using 

different but com plem entary methods. Primary sequence information 

would allow for identification of sequence changes which might explain 

diffences in receptor function. Primary sequence data would also be useful 

in providing genetic markers for use in linkage studies.

The aims of this section of work were therefore focused in three main 

areas.

1.) To define a specific genetic marker for the rat glucocorticoid receptor 

locus (Grl). Such markers form the basis of rat breeding experiments in 

which genetic linkage with one or more physiological variables of the 

disease phenotype is sought (discussed fu rther in chapter 5). The 

requirem ent for a genetic marker for the rat Grl was aided by the prior 
knowledge of a polyglutamine encoding triplet (CAG)n repeat sequence 

(microsatellite) in the 5'-end of the GR coding sequence (identified from 

the cDNA sequence: Miesfeld et al., 1986). Trinucleotide repeat 

polymorphisms could themselves be considered as potential sources of 

differential GR function, either at the steroid binding or gene regulatory 

levels and were thus exploited early on in linkage studies.

2.) To determine whether there was variation between pairs of rat strains 

(MHS and MNS, SHR and WKY, Zucker lean and obese) in the codons for GR 

which may have provided an explanation for the observed differences in 

steroid binding affinity.

3.) To carry out a detailed analysis of the GR triplet (CAG)n repeat sequence 

from a large num ber of inbred rat strains. This was done to provide 

information on the extent of heterogeneity in the GR polyglutamine tract 

in inbred rats, which would be potentially  useful when choosing



appropriate rat strains for breeding, or GR alleles for experiments focusing 

on GR function.

Part 1

3.2.) Methods for resolving rat Grl triplet (CAG)n repeat 

polymorphisms

From nucleotide position n223 in exon 2, the rat GR contains a series of 

glutamine residues encoded by a CAG trinucleotide repeat. Because of the 

inherent polymorphic nature of simple sequence repeats, this region was 

chosen as the starting point in the search for a genetic marker of the rat 

glucocorticoid receptor locus for use in linkage studies (see chapter 5). A 

num ber of potential methods were available for resolving triplet (CAG)n 
repeats, only two of which (high percentage agarose gel electrophoresis 

and sequencing) were well established. A preliminary assessment of each 

method was made to find the one most suitable for routine typing of the rat 

GR. All methods were based on PCR, so an initial verification that amplified 

sequences were of rat GR origin was required.

3.2.1.) PCR amplification of rat Grl triplet repeats, Southern 

blotting and probing with a rat GR cDNA fragment

The rat GR polyglutamine tract was amplified from SHR (Spontaneously 

Hypertensive Rat) strain liver DNA. Reactions were performed in a 50 1̂ 

volume using rGR gene specific PCR primers, pA and pG (Appendix 1) and 

1.5 mM Mg2 + . Primer annealing temperature was optimised at 60°C. For 

general PCR strategy see section 2.2.3. PCR products (395 bp) were resolved 

on a 1.5% agarose gel. Different DNA concentrations (50-500 ng) and cycle 

numbers (30-35 cycles) were used to help maximise the probability of PCR 

amplification (Fig. 3.1a.).

For verification of the specificity of primer annealing, amplified products 

were transferred  onto nylon membrane (Hybond-N+) using Southern
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Fig. 3.1. Rat Grl poiygiutam ine tract am plified from  strain SHR, using PCR prim ers pA and 
pG.
a.) PCR w as carried out for 30-cycles (lanes 2 and 3), or 35-cycles (lanes 6 and 7): from  50 ng 
(lanes 2 and 6) and 500 ng (lanes 3 and 7) tem plate  DNA. Lanes 4 and 8: negative (no DNA) 
contro ls . Lanes 1 and 5: 1 Kb DNA ladder.
b.) P reparation of 704 bp cDNA probe from  rat rGR clone pRBal117. A large scale Xba\/Bgl\\ 
digest (5 |ig ) of clone pRBal117 was band separated on a 1% agarose gel (lanes 2 and 3). The 704 
bp band w as excised and ^P -la b e lle d  using random  oligonucleotide prim ers. Lane 1:1 kb ladder.
c.) Southern blot of rat (SHR) am plified  Grl polyglutam ine tract. The hybrid ised filte r was probed 
using the  32P-label!ed 704 bp Xba\/Bgl\\ fragm ent of clone pRBal117. S pecific  bands of the 
expected  size (395 bp) were identified in lanes 2, 3, 6 and 7.



blotting methods as described in section 2.2.8. Blotted DNA fragments were 

probed using a 704 bp ^ 2p-ia.belleci (section 2.2.7.) cDNA fragment (Fig. 

3.1b.) spanning the extreme 5'-end of the ra t  GR coding sequence, 

including the triplet (CAG)n repeat. The probe was generated by Xbal/BgM  

digestion (section 2.2.6.) of rat GR cDNA clone pRBalll7  (Fig. 3.2.). The 

hybridised filter revealed single PCR product bands of the expected size 

(395 bp) and intensity, with respect to the number of PCR cycles (Fig. 3.1c.).

Hindlll 7 
Pstl 20 

Sail 22 
ccl 23

Nhel 5591 
Nael 5560 

Sphl 5401

Hindi 24 
bal 28 
BamHI 34
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Sspl 4939

p R B a l l  1 7

5833 bp
rGR cDNA

Ncol 374 

Bglll 730

Hindlll 994

Hindlll 1269 

Sphl 1412

Xmnl 4734 
Seal 4615 

Pvul 4505

Fspl 4357 

Bgll 4255

Hindlll 2144 
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Hindlll 2297
d ii once  i Xbal 2679Pvull 3066 V \ ^ n noo/i . BamHI 2834

Smal 2841 
! Sad 2850  
Aval 2839 

EcoRI 2886

Fig. 3.2. Restriction map of rat GR cDNA clone, pRBal117 (M iesfeld et al., 1986). The
clone pR B all 17 is a 5.8 kb plasmid based on the bacterial c lon ing vector: pSP64 (Promega, 
U.K.). The entire rGR coding sequence, 360 nucleotides of the 3' UT and 24 nucleotides of 
the 5‘ UT are cloned into the Bam HI site of the vector polylinker in sense orientation.

3.2.2.) Analysis of Grl triplet (CAG)n repeats in ra t strains: SHR, 

WKY, MHS, MNS and SD, using high percentage agarose 

gels

Having dem onstra ted  the specificity (stringency) of annealing of PCR 

primers pA and pG in SHR, further analysis of GR polyglutamine tracts was
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carried out. Genomic DNA, prepared from the livers of parental rats of 

strains: SHR, WKY, MHS, MNS and Sprague Dawley (SD) was PCR amplified 

using primers pA and pG under exactly the same conditions as described in 

section 3.1.1. PCR products (5 jil sample volumes) were resolved on a 3% 

agarose gel, run at 150 v/100 mA, in 0.5 x TAE buffer (1 x in gel) to improve 

resolution.

3.2.3.) T-vector cloning and sequencing of amplified Grl triplet 

(CAG)n repeats from: SHR, WKY, MHS, MNS and SHR-SP

The T-vector, pT7Blue (AMS Biotechnology, U.K., Ltd.) is a 2887 bp cloning 

vector, specifically manipulated for cloning PCR products. The vector is 

linearised through an EcoRV site within the polylinker, part of the lac Z 

gene which encodes the a-subunit of p-galactosidase. The 5' T-overhang 

which is generated by this cleavage is ideally suited for the ligation of PCR 

products, which are normally terminated with 31 A-nucleotides by most of 

the commonly used thermostable DNA polymerases (e.g. Taq polymerase).

The T-vector cloning system relies on Lac-Z inactivation. Insertion of a 

cloned DNA fragment within the £coRV-cut Lac-Z region disrupts the open 

reading frame (ORF). Because the vector no longer encodes a functional p- 

galactosidase a-peptide (which norm ally com plem ents the LacZ co- 

fragment, expressed by the bacterial host-strain) the enzymic conversion 

of the chromogenic substrate X-gal to 5-bromo-4-chloro-3-indolyl and 

galactose, is prevented.

GR microsatellites from SHR, WKY, MHS, MNS and SHR-SP, amplified using 

PCR primers pA and pG, were cloned from single PCR reactions into the T- 

vector as described in (section 2.2.10.). Following 16-20 h ligation (16°C) 

and competent Novablue-E.coli transformation, (section 2.2.11.), cultured 

bacterial plates supplemented with ampicillin (50 ng/ml), tetracycline (20 

Hg/ml) X-gal (1.75 ng) and IPTG (0.08 mM), were subjected to blue/white 

colony selection. A number of white colonies were selected, representatives
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of each rat strain and preserved as 'potentially positive' recombinants by 

streaking onto LB-ampicillin agar plates. Colony streaks were grown for 

16-20 h (37°C) and stored at 4°C prior to further analysis.

Selected white colonies (Table 3.1.) carrying either full length pA/pG 

generated PCR product inserts or some other product of the PCR reaction, 

were further grown in 1 ml LB-ampicillin liquid cultures (see section 

2.2.11.). Each was analysed for the presence of the correctly sized insert 

(395 bp) by a second round of PCR amplification (in a consistent 50 jliI  

reaction volume), using the same primers as those used in the initial PCR 

(pA and pG). Diluted samples (1/10) were boiled for 5 min and 1 nl aliquots 

used directly in PCR (see section 2.2.11.). Amplified products were run on 

1.5% agarose gels against the 1 kb ladder. PCR reactions for each 

transform ation (per rat strain) included a no-culture negative control to 

monitor for cross contamination. These were usually found to be negative, 

but when contamination was identified, all PCR solutions were discarded 

and replaced. Clones producing a signal of the correct size (395 bp) were 

retained by streaking onto LB-ampicillin plates and storing at 4°C for 

further analysis by sequencing. Clones carrying full length inserts were 

innoculated into 100 ml LB-ampicillin medium (midiculture) and grown 16- 

20 h (37°C), with shaking. Bacterial plasmids were recovered according to 

the Qiagen midiprep protocol (see section 2.2.12.). Clone DNA was analysed 

on 1% agarose gels for quality (absence of nicking) and efficiency of 

removal of RNA. O.D.260 was measured at a 1/100 dilution and plasmid 
concentrations adjusted to 1 in T.E. (pH 8.0). Normally 4-6 ng of

plasm id tem plate DNA was re-precipitated  and denatured  prior to 

sequencing by the methods of Sanger from the reverse PCR primer, pG 

which doubled as a convenient sequencing primer. Three to four positive 

clones were sequenced per rat strain (see method for plasmid sequencing, 

section 2.2.13.).
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3.2.4.) Typing Grl triplet repeat lengths in a wider variety of 
rat strains using a 32p_based PCR approach

Due to the problems encountered in generating reliable sequence data 

from T-vector cloned GR poly glutamine tract (discussed in section 3.3.1b. of 

this chapter), a different typing strategy was adopted. This new approach 

combined directly the speed and efficiency of PCR with the high resolving 

powers of polyacrylamide gel electrophoresis, coupled to the added 

sensitivity of autoradiographic detection. Higher resolution was achieved 

by reducing the average size of PCR products, from 395 bp down to a range 

of about 100-120 bp. This required the design of a new set of universal PCR 

primers, flanking the poyglutamine tract as closely as possible. The new 

primers were designated: p9 (forward) and p l9  (reverse) (their positioning 

in the GR coding sequence is listed in Appendix 1). The incorporation of 

radioactivity into PCR products was achieved by end-labelling p9 using 

[y32p]-ATP as described in section 2.2.7.

Pilot typing experiments were carried out on parental rats from a small 

num ber of selected strains: SHR, WKY, MHS, MNS, WKYGia, SHR-SPoia  

(Glasgow strains) and Lyon strains: LL (low), LN (normal) and LH (high) 

blood pressure). Glucocorticoid receptor poyglutam ine tracts were 

amplified in 25 jliI  reaction volumes by combining 5-10 pmoles each of PCR 

primers: p9 (32p_iabelled) and p l9 , with 50-100 ng genomic D N A and 2 mM 

Mg2+ and PCR cycling for 30-cycles under the general conditions described 

in materials and methods (section 2.2.3.). Primer annealing temperature 

was 6 0 °C .

A further 61 inbred strains together with 29 of their substrains (Table 3.3.) 

(obtained from Prof. B. van Zutphen, University of U trecht, The 

Netherlands, [see section 2.1.3.]) were typed using an optimised 32phased  

PCR protocol. PCRs were optimised by reducing the concentration of DNA 

and Mg2+ used in each reaction down to about 20 ng/pl and 1.5 mM 

respectively. The labelled PCR primer (p9) was also prepared at a 3x higher 

specific activity, so that the quantity of prim er mixture added to each
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reaction was reduced making interference of PCR by labelling reaction 

components less likely.  ̂2 p-iabelled PCR products were resolved on 6% 

polyacry lam ide , 8 M urea  gels and  respective  bands identified  

autoradiographically (section 2.2.4.).

3.2.5.) Development of a suitable marker for 32p_based 

microsatellite typing

A series of T-vector clones (Table 3.2.) containing rat GR polyglutamine 

tracts of known length and sequence (see section 3.2.1b. and Fig. 3.6.), were 

used as DNA markers to calibrate the sizes of PCR products of unknown 

length.

1 2 3 4 5

21-CAG 

20-CAG 
19-CAG 

18-CAG

Fig. 3.3. M icrosatellite markers.

3 2 P-PCR am plifications were performed from T-vector cloned rat GR polyglutam ine 
tracts. C lones: T3/3 C3, T1/2 C2, T3/2 C5 and T4/1 C14 (Table.3.3.) were amplified 
using PCR primers p9 (labelled with y-32P) and p19 (Appendix 1). PCR products of:
18, 19, 20 and 21 CAG-repeats were resolved either separately (lanes 1-4), or from a 
pooled m ixture of these PCR products, producing a banding ladder (lane 5) on a 
standard 6% polyacrylam ide 8M urea gel. Numbers on the right represent the length 
in (CAG)n repeats of the individual marker bands.

PCR products generated from these T-vector clones: T3/3 C3 (18-CAG), T l/2  

C2 (19-CAG), T3/2 C5 (20-CAG) and T4/1 C14 (21-CAG repeats), also amplified 

using p9 [3-P] and p l9 , were pooled to produce a composite DNA ladder with 

a resolution down to at least one codon spacing between bands (see Fig.

3.3.). The method used for determination of triplet (CAG)n repeat length is 

described in section 3.3.1b.
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3.2.6.) Resolving rat GR polyglutamine tract polymorphisms 

using 4% m etaphor gels

In addition to the high sensitivity and resolving powers of 3 2p gel typing 

systems described in section 3.2.4, consideration was also given to overall 

speed and efficiency and the possibility of minimising, or even avoiding 

the use of  ̂2 p jn t^ e routine typing of rat GR polyglutamine tracts. 

Methodology for resolving microsatellite polymorphisms in simple or 

multiplex PCR systems using 4% metaphor agarose gels has been developed 

(Shiels e t a l ,  1995). Amplified polyglutamine tracts from strains: MHS (21- 

CAG repeats), MNS (20-CAG repeats), SHR (19-CAG repeats), a rat GR clone 

(18-CAG repeats; see chapter 6 for details) and BC (7-CAG repeats), were 

resolved on gels run in 0.5 x TAE (1 x in gel) and kept as cold as possible.

3.3.) Results

3.3.1.) Typing rat GR triplet (CAG)n repeat lengths by different 
methods (3.3.1a.-3.3.1d.)

3.3.1a.) Using high percentage agarose

1 2 3 4 5 6 7

Fig. 3.4. A search for genetic variation in rat GR polyglutam ine tracts. Polyglutam ine 
tracts were amplified from the GR of parental rats of strains: SHR (lane 2) W KY (lane 3) MHS 
(lane 4) MNS (lane 5) and SD (lane 6) using PCR primers, pA and pG. PCR products (395 
bp) were resolved on a 3% agarose gel. Lane 1: 1 kb DNA ladder. Lane 7: No DNA negative 
control.
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Only minor differences in the m igrational properties of pA and pG 

amplified GR polyglutamine tracts from rat strains: SHR, WKY, MHS, MNS 

and SD were identified using 3% agarose (Fig. 3.4.), indicating the need for 

a more sophisticated approach for typing rat GR alleles.

3.3.1b.) T-vector cloning and sequencing

Table 3.1. lists the number of blue and white colonies obtained following 

the transformation of NovaBlue E.coli with T-vectors ligated with pA/pG- 

generated PCR products from each of the rat strains. All clones, sequenced 

as described in section 3.2.3, contained PCR product inserts of rat GR origin 

(determ ined by the positive identification of flanking sequences). To 

conform to a previous report (Gearing et al., 1993), repeat lengths were 

calculated as the total number of CAG codons in respective polyglutamine 

tracts, interrupted by one alanine codon at the 5'-end. For the remainder of 

this thesis, CAG-repeat alleles will be referred to, where appropriate, in the 

following way: GrlGAGX, where X refers to the length of the (CAG)n repeat. 

As an example, Figure 3.5. below details the rGR 7-repeat allele, GrlGAG7-

Ser Thr Ser Asn Val Gin Gin Arg Gin Gin Gin Gin Gin Pro Gly Leu Ser Lys 
5' >TCC ACA AGC AAT GTG CAG CAG CGA CAG CAG CAG CAG CAG CCA GGC TTA TCC AAA< 3'

Fig. 3.5. The coding sequence of the 7-repeat rGR polyglutamine microsatellite 
(GrlCAG7).
The sense DNA strand nucleotide sequence of the CAG repeat (underlined), plus five 
flanking codons either side is shown. The respective amino acid sequence is given above in 
the three letter code.

Figure 3.6. and Table 3.2. show examples of the rat GR poly glutamine tract 

sequences identified, together with evidence of minor length variabilities. 

Sequences presented are of the antisense DNA strand. Glutamine polymers 

are therefore expressed as GTC-repeats [5'->3', see Fig. 3.6.] and not the 

conventional CAG-repeats, obtained  from the sense DNA strand. 

Unexpectedly, variation was identified, not only between different rat 

strains, but also between clones isolated from PCRs from the same strain. 

The assignment of a single polyglutamine tract length to a given rat strain 

glucocorticoid receptor was therefore unreliable.



Rat strain

m icr o sa te llite

c lo n ed

T ransform ation

Set

No. of colonies selected

(pool of 3 xlOcm plates) 

BLUE WHITE

SHR Tl/2 2 6

WKY T3/2 10 8
T4/3 5 12

MHS T4/2 15 24

MNS T4/1 8 24

SHR-SP T3/3 4 5
T4/4 14 12

T-vector positive 10 63
control insert

Table. 3.1. Blue/white colony selection following ligation of PCR amplified rat GR 
polyglutamine tracts into the T-vector.
Ligated vectors were used to transform competent Novablue E.coli. (AMS Biotechnology, 
U.K., Ltd.). Each transformation set was derived from a single PCR reaction from respective 
rat strain genomic DNAs. The numbers of blue and white colonies for each set were the 
proceeds from three 10 cm bacterial plates. Ligation efficiency was monitored using the T- 
vector kit (AMS Biotechnology, U.K., Ltd.) positive control insert.

These inconsistencies were considered to be caused by mutations arising 

during the PCR reaction, or during the growth of clones in E. coli prior to 

sequencing. The m ajority of m utations could be explained by the 

phenomenon of 'slippage' (Strand etal., 1993; Tautz and Schlotterer, 1994) a 

process in which a replicated DNA strand in the region of a polymeric tract 

of repeat sequence is aligned out of register with the template strand 

during DNA synthesis. This is an unavoidable process which can occur in 

v itro  or in vivo. In each set of transform ations, contamination was 

considered an unlikely explanation because of the implementation of a 

reliable negative control.
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A second observation from the sequencing of T-vector clones was the low 

frequency of polyglutamine tracts interrupted by a single point mutation 
(T -> C transitions, converting Gln90->Arg90), (Table 3.2., clones: T4/2 C2, 

T4/4 C3 and Fig. 3.6., sequence E).

Clone CAG repeat 

number

Rat strain 

(PCR template)

A Tl/2  Cl 20 SHR
C2 19 SHR

B T3/2 C5 20 WKY
C7 19 WKY
C15 19 WKY

C T3/3 C3 18 SHR-SP

D T4/1 C14 21 MNS
C18 21 MNS
C19 21 MNS

E T4/2 Cl 16 MHS
C2 5-CCG-14 MHS
C ll Nonsense MHS
C14 19 MHS

F T4/3 C2 20 WKY
C6 20 WKY

G T4/4 C3 5-CCG-14 SHR-SP
C5 18 SHR-SP
C7 19 SHR-SP

Table. 3.2. Variation in the number and composition of CAG repeats in the rat 
glucocorticoid receptor polyglutamine tract cloned into the T-vector (Cambridge 
Bioscience, U.K.).
Each of the letters A-G , represents a set of T-vector clones derived from one PCR  
amplification of a single rat genomic template.

The low frequency and sporadic occurrence of these mutations implied that 

they were artefacts incorporated during PCR and were analysed no further.
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— *

GCC

Fig. 3.6. Sequencing of rat GR polyg lutam ine tracts from  T -vector clones.
Sequencing was carried out using the antisense primer: pG (Appendix 1). Sequences: 
A (C, T3/3 C3), B (A, T1/2 C2), C (B, T3/2 C5) and D (D T4/1 C14) (Tab le .3.3.) 
dem onstra te  va ria b ility  in p o lyg lu tam ine  trac t length . Po lym er lengths were 
determ ined by counting the numbers of GTC codons (including the single GCT) in the 
antisense DNA strand from top (green arrow) to bottom  (red arrow). Sequence E 
shows a probable PCR artifact in which a T->C transitional point mutation (nucleotides 
relative to antisense DNA strand: letters underlined) converts Glngo (GTC- antisense) 
of the polyglutam ine tract to Arggo (GCC-antisense). Letters above sequence lanes 
represent term inating nucleotides. In each case the antisense DNA strand is shown 
(5 ’ -> 3 ’, top to bottom). GR sequences flanking polyglutam ine tracts confirm s the 
stringency of PCR-primer annealing.

3.3 .1c . )  Typing  o f  Gr l  tr ip let  ( C A G ) n re peat  p o l y m o r p h i s m s  in the rat  m ode ls  

o f  essent ial  hypertens ion:  a.) M H S / M N S  an d  S H R / W K Y  an d  h.) SHR-  

S P c i a / W K Y c i a  anc  ̂ Lyon s trains by ^ 2 P - P C R

a.)  In M H S / M N S  a n d  S H R / W K Y

T h e  m ig ra t i o n  o f  PC R  p r o d u c ts ,  i n d e p e n d e n t l y  a m p l i f i e d  f rom the D N A  of  

severa l  parental  rats o f  s t ra ins  M H S  (n=5) ,  M N S  (n=6) ,  S H R  (n=3 )  and W K Y  

(n = 3 ) ,  were  c o m p a r e d  on 6%  p o ly a c r y l a m i d e  gels.  A size d i f f e r enc e  of  3 bp 

was  ide n t i f ie d  b e tw e e n  M H S  and  M N S  and  S H R  and  W K Y .  T h e s e  resu lt s
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PCR
product
size (bp)

2 3 4 5 7 8 9 10 11 12 13
; V . § § r

21-CAG ■ 

20-CAG « 

19-CAG ■ 

18-CAG ■

b.) 1 2 3 4 5 6 7 8 PCR 
product 
size (bp)

21-CAG ■ 116 

20-CAG " 1 1 3  

19-CAG - 1 1 0  

18-CAG ■ 107

Fig. 3.7. Typing gel show ing polym orphism  of the GR polyglutam ine tract 
between rat strains: MHS, MNS and SHR, WKY.
a.) MHS and MNS. Lanes 2, 4, 7, 9, 10 and 12: MNS (21-CAG repeats). Lanes 3, 5, 8 
and 11: MHS (20 CAG-repeats). Lane 13: Sprague Dawly (20-CAG repeats). Lanes 
1, 6 and 14: Pooled m icrosatellite markers.
b.) Between strains SHR and WKY. Lanes 2-4: WKY (20-CAG repeats). Lanes 5-7: 
SHR (19-CAG repeats). Lanes 1 and 8: m icrosatellite markers.

116

113

110

107



PCR
product
size (bp)

PCR
product

b.) 1 2 3 4 5 6 7 8 Slze

Fig. 3.8. T yp in g  gels show ing an absence of p o lym orph ism  of the GR 
polyglutam ine tract between strains: SH R -SPcia and W KYoia and LL, LN , and 

LH
a.) SHR-SPoia and WKYcia (Glasgow strains). Lanes 2-4: WKY; A1641, A1661 and A

1662 (19-CAG repeats). Lanes 5-7: SHR-SP; C2128, C2129 and C 2134 (19-CAG 
repeats). Lanes 1 and 8: m icrosatellite markers.
b.) Lyon strains: LL (low) LN (normal) and LH (high) blood pressure. Lanes 2 and 3: 
LL. Lanes 4 and 5, LN. Lanes 6 and 7, LH (all 21-CAG repeats). Lanes 1 and 8: 
m icrosatellite markers.



suggested a polyglutamine tract which was shorter by one codon in MHS 

and SHR compared with their normotensive controls: MNS 21, MHS 20 and 

WKY 20, SHR 19-CAG repeats (Fig. 3.7a and b, respectively). PCR products 

from individuals of the strains MHS and MNS were loaded onto the gel in an 

alternate pattern to demonstrate the reproducibility of the polymorphism 

between PCR product bands (and hence, polyglutamine tracts. Fig. 3.7a.). 

Differences in the length of polyglutamine tracts (in codons) was 

determined by comparing the migrational distance of sample PCR products 

with that of reference bands of the size marker (Fig. 3.7a: lanes 1, 6 and 14 

and 3.7b: lanes 1 and 8) (refer also to section 3.2.5.). Because no examples of 

T-vector clones were found with changes in the arrangem ent of 

nucleotides in flanking sequences, any differences in the size of PCR 

products m ust have been a ttribu tab le  solely to m utations in the 

polyglutamine tract. The expected GR polyglutamine tract lengths predicted 

for each strain (MHS, MNS, SHR and WKY) by the typing of whole 32p_ 

labelled PCR products was confirmed by the direct sequencing of RT-PCR 

and genomic PCR products (see part 2 of this chapter).

b.) In SHR-SPGla/WKYQia and Lyon strains

Individuals of strains: SHR-SPoia> WKYcia and Lyon strains, LL (low), LN 
(norm al) and LH (high) blood pressure, were also typed. No GR 

polyglutamine tract polymorphisms were identified between strains (Fig. 

3.8.). For the SHR-SPda and WKYcia strains (Fig. 3.8a.) the CAG repeat 
number was 19. For the Lyon strains (Fig. 3.8b.) the CAG repeat number was 

2 1 .

3.3. Id.) Typing o f selected strains using 4% Metaphor gels 

Figure 3.9., reported  in Shiels et al., (1995), shows the successful 

fractionation of variant rat GR triplet (CAG)n repeat PCR products on high 

percentage metaphor agarose gel. Allelic variants of 21, 20, 19 and 18-CAG 

repeats (rGR T-vector clone, T 3/3 C3; section 3.2.5. and Table 3.2) and 7-CAG 

repeats (rat strain BC) were resolved successfully on 4% metaphor down to 

a resolution of 1-codon spacing from single or mixed sample gel loadings. 

Resolving capabilities were similar to that of 6-8% polyacrylamide.
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Despite the possible application of metaphor gels in microsatellite typing, 

these gels were not used routinely because of the extreme fragility of high 

percentage gels, becoming an increasing problem with the build up of heat 

in 'fast' gel runs. Gels were broken too easily resulting in the need for 

repetition.

a.) b.)
1 2 3 4 5 6 7 8 9  10 1 2 3

_  116
—  113
—  110 
—  107

—  75

Fig. 3.9. Rat GR triplet (CAG )n repeat variants resolved on a 4% m etaphor gel.
a.) GR alleles, cloned and sequenced from different rat strains and found to have the 
follow ing numbers of CAG repeats were resolved on a 4% metaphor gel: 20 (MHS, lane 
2), 21 (MNS, lane 3), 20 (MHS, lane 4), 19 (SHR, lane 5), 18 (GR clone [see text for 
details], lane 6) and 7 (BC, lane 8). Lanes 8 and 10 show m ixtures of 21, 20 and 7 
repeat variants. Lane 9 shows a m ixture of 21, 19 and 7 repeat variants. Lane 1: 1 kb 
ladder.
b.) Lanes 8-10 from a.), am plified to show the resolution of bands with two or one 
codon spacing. The numbers and arrows at the right hand side shows the length in bp 
of the five allelic PCR products.

The integrity of gels could be maintained by running much more slowly 

(2-4 h: 10 cm gel), which kept them cooler. However, even under these 

conditions, the resolution of bands in mixed sample loadings was not always 

clear. The use of 3 2p jn a polyacrylamide gel system was therefore 

preferred because of high sensitivity and resolution. In addition, 3-4 times 

as many samples could be assayed at any one time compared with the 

metaphor gel.
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3.3.2.) Polymorphisms o f the rat glucococrticoid receptor polyglutamine 

tract in 61 inbred strains and substrains 

A total of 61 inbred strains and 29 of their substrains (Table 3.3.) were 

analysed using the method described in section 3.1.4.

Rat Strains and Sub-strains* Grl allele

A2/Colle; ALC/colle; BBWB/Mol; BDII/Han; GC/Kun; MNS/Gib; 

MW/Hsd; SPRD/Mol; SPRD-Cu3/Han; SR/*2; SS/Jrlpvc; WF/*4; 

WOK.1A/K
Grl CAG21

ACI/*2; AGUS/OlsHsd; AO/OlaHsd; AS/Ztm; AUG/OlaHsd; AVN/Orl; 

BN/*10; BN.lx/Cub; BP/lxCub; BS/Ztm; BUF/Han; CAP/Kuv; 

COP/OlaHsd; DA/Han; DZB/G; E3/Han; F344/Han; LE/Han; 

LEP/Cub; LEW/*12; MHS/Gib; OM/Han; PAR/Wsl;

PD/Cub; PVG/OlaHsdCpb; R/*3; SD/Rij; SHD/Ztm; SDL/Ipvc;

WAG/Rij; WIST/N; WKY/*2; WOK.1W/K

Qrl CAG20

LH/Ztu; OKA/Wsl; SHR/OlaHsd; SHR-SP/RmRiv Grl CAG19

Amorat/Wsl; Aristorat/Wsl; BH/Ztm; LOU/CHan Grl CAG17

BC/Cpbu; BDE/Han; BDIV/Ifz; BDVII/Cub; BDIX/Han; BDX/Cub; 

NAR/SaU; U/A

Grl CAG7

Table 3.3. CAG-repeat alleles o f the glucocorticoid receptor in 
inbred strains of Rattus norvegicus.
Asterisks indentify those strains or substrains which were obtained and 
tested from several different laboratories, this is noted by showing the 
'holder' as '/* ', followed by the num ber of different suppliers. Thus R 
( C A G ^ O )  Was obtained and tested from three separate laboratories (R/*3). A 
catalogue of all holders is given by Otsen, (1995).

Figure 3.10. shows a typical 32p_typing gel obtained for a sample of inbred 

strains and substrains. In general, the clarity of PCR product bands was
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better than previously seen for the typing of strains: MHS, MNS, SHR, WKY, 

SHR-SPoia, WKYcia, LL, LN and LH (Figs. 3.7. and 3.8.).

Fig. 3.10. Typical typing gel for GR polyglutam ine tract lengths in inbred strains 
and substrains.
Rat strains: MW (lane 2), AR ISTORAT (lane 3), SDH (lane 4), OM (lane 5), BDIX 
(lane 6) and LEW (lane 7). Lanes 1 and 8: Cloned m icrosatellite markers.

The majority of rat strains were reliably 'typed' by comparing PCR product 

migration with that from the cloned markers (lanes 1 and 8). The smallest 

PCR product, from rat strain BDIX (lane 3) revealed a novel PCR product size 

(74 bp) which could not be predicted by comparison with the markers. The 

length of this polyglutamine tract was determined by direct sequencing of 

the PCR product using pG (see Fig. 4.8.). Other 7-CAG repeat lengths (see 

Table 3.3.) were determ ined by comparison with similarly sized PCR 

products of previously determined sequence (results not shown). 98% of 

strains tested were found to be homozygous at the GR locus as expected, with 

polyglutamine tracts of: 7, 17, 19, 20 and 21 CAG repeats (Table 3.3. and Fig.
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a.)

MNS MHS 
SD BN 
SHR- WKY 
SP

SHR
LEW

AMO- BC 
RAT BDX

2 3

PCR
product
size (bp)

21-CAG ■ 116 

20-CAG - 1 1 3  

19-CAG " 1 1 0  

18-CAG i  107 

■ 104

(7-CAG) ■ 74

b.)

Number of 
GR alleles 
observed

120 

100  -  

80 -  

60 -  

40 

20 - I

17 18 19 20 21

Number of CAG repeats

Fig. 3.11. The range of triplet (CAG)n repeat variants in inbred rat strains.
a.) Polyacrylam ide typing gel show ing exam ples of GR alle les from d iffe ren t rat 
strains. Abbreviations above each lane cite strain and substrain exam ples with GR 
triplet (CAG)n (polyglutamine) tract lengths of: 21-CAG (lane 2) 20-CAG (lane 3) 19- 
CAG (lane 4) 17-CAG (lane 5) and 7-CAG (lane 6). Lanes 1 and 7: previously cloned 
and sequenced rat GR microsatellite markers. The length of each PCR product
(bp) is given to the right of the figure.
b.) H istogram showing a d iscontinuous distribution of GR alle le trip le t CAG repeat 
lengths.



3.11a.). Two substrains of ACI and LEW were apparently heterozygous for 20 

and 21 CAG repeat alleles. However, no breeding studies have been carried 

out to confirm heterozygosity.

An im portant observation made in the 'typing' of all rat strain GR triplet 

(C A G )n repeats by 32p_pcR was the appearence of shadow bands above and 

below the m ain PCR product band. This is a common feature of 

m icrosatellite typing by this technique (Jacob et al., 1991). These 

artefactual bands are understood to arise from stuttering during the PCR 

reaction (Tautz and Schlotterer, 1994) when newly synthesised DNA strands 

sit down out of register with the template strand in the region of the 

polymeric tract (see section 3.3.1b.).

3.4.) Distribution pattern of the different GR alleles found in 

inbred strains

The entire range of rat GR polyglutamine tract lengths identified in the 61 

inbred strains and substrains typed (section 3.3.2.) is shown in Figure 3.11a. 

The strain notations above each of the lanes 2-6, represent examples of rat 

strains and substrains with GR polyglutamine tracts of each of the 

respective lengths: MNS, SD and SHR-SP (21-CAG), MHS, BN and WKY (20- 

CAG), SHR and LEW (19-CAG), AMORAT (17-CAG) and BC and BDX (7-CAG 

repeats) (refer also to Table 3.3.). Seven of the strains were represented by 

more than one substrain, and these had consistent Grl CAG-genotypes.

Figure 3.11b., shows the incidence and distribution pattern of GR alleles 

with differing polyglutamine tract lengths. The rarest allele was the 17- 

CAG repeat allele, present in only 2% of individuals tested, whilst the most 

common was the 20-repeat allele present at 61%. No GR alleles with a 

polyglutamine tract length of between 8 and 16, or less than 7 or greater 

than 21 CAG-repeats were identified. This lead to a clear discontinuous 

allelic distribution.

104



3.5.) Discussion of Grl triplet (CAG)n typing results

The primary aim of this section of work was to establish genetic markers 

for Grl for use in rat breeding experments and to optimise methods for 

genotyping. This was achieved by identifying polymorphism in the triplet 

(CAG)n repeat of the rGR coding sequence. The established markers were 

used by the groups of Bianchi (Milan rat model, Milan) and Samani 

(SHR/WKY model, Leicester) in studies of linkage between Grl and 

glucocorticoid related phenotypes in rat models of hypertension, discussed 

in chapter 5.

An analysis of the rat GR from other strains was also undertaken to 

determine the extent of heterogeneity in the polyglutamine repeat region. 

To date, CAG repeat lengths in the rat GR of 7, 17 and 21 have been reported 

in the literature, the result of a minimal analysis of Sprague Dawley and 

Wistar rat genomic DNAs obtained from a variety of sources (Gearing et al., 

1993). In the body of work reported here, 61 inbred strains and substrains 

(a total of 90 rats) were analysed for Grl triplet (CAG)n repeats identifying 

a clear discontinuous distribution between alleles.

Knowledge of the range of natural GR triplet repeat variants would be 

useful in selecting the structurally more interesting alleles for studies of 

GR function in tissue culture and in vivo and hence, in choosing the 

appropriate  ra t strains for breeding experiments. Differences in GR 

genotypes may be used as a basis for searching for positive associations 

between Grl and glucocorticoid related phenotypes. Based on the screening 
of rat strains for Grl triplet (CAG)n repeat lengths (section 3.3.), a marked 

difference between two of the strains, BC (7-CAG repeat allele) and Lewis 

(20-CAG repeat allele) was identified. These strains are of interest because 

of differences in cholesterol metabolism and immune responsiveness (the 

immune system in the Lewis rat is compromised because of a hyposensitive 

HPA-axis). The possibility that these phenotypes are associated with 

differences in GR genotype are currently under investigation (C. Kenyon, 

personal communication). Finally, the distribution and incidence of the
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different GR alleles may be useful as a basis for understanding the 

evolution of triplet (CAG)n  repeat sequence in rat Grl (see discussion to 

chapter 4).

Part 2

3.6.) Methods for determining variation in glucocorticoid 

receptor coding sequences

The coding sequence of the glucocorticoid receptor from inbred rat strains: 

MHS, MNS, SHR, WKY and Zucker, lean and obese were determ ined from 

mRNA using methods of RT-PCR coupled with direct sequencing of PCR 

products. The objective was to compare GR sequences between the strain 

pairs of each model, in order to identify mutations which might explain the 

differences in steroid binding affinity. Importantly, the Milan and Zucker 

lean and obese rats used for both steroid binding analysis (Kenyon et al., 
1994; Panarelli et al., 1995 and Kenyon, unpublished results, respectively) 

and primary sequence determination reported here were from the same 

colonies. Milan rats were obtained from stocks held in Sheffield, Zucker 

rats from Harlan Olac. SHR and WKY rats were from the same colony as 

those used by Samani in linkage studies, (see materials and methods and 

chapter 5 for further comment).

Total RNA was isolated from 100 mg samples of rat liver using RNAzol B, 

following the method outlined in section 2.2.14. The integrity of RNA 

routinely obtained is shown in Figure 3.13a. Approximately 5 ^g samples of 

total RNA were reverse transcribed into complementary DNA/RNA hybrid 

molecules using MMLV reverse transcriptase, as described in section 2.2.3. 

Figure 3.13b. shows the reproducibility, between reverse transcription 

reactions and between rat strains. Full length reverse transcripts of the 

rGR coding sequence (over 2.3 kb) were initiated from the rGR gene 

specific antisense primer rGRl (Appendix 1). The hybridisation site of rGRl 

is shown in Figure 3.12. Pools of smaller reverse transcripts of variable
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length (500 bp, up to around 1 kb), routinely used to verify small stretches 

of sequence, were initiated from random hexamer primers (GIBCO-BRL, 

U.K.) at multiple positions along the GR transcript (results not shown).

a.) 1 2  3 b.) 1 2 3 4 5 6 7

Fig. 3.13. Input and output of reverse transcription reactions.
a.) Examples of the integrity of RNA isolated from rat liver: lane 2, strain MHS; lane 3, 
strain MNS. In each case, 1-1.5 pg total RNA was loaded per lane. Lane 1, 1 kb DNA 
ladder.
b.) Duplicate reverse transcription reactions using total RNA from strains MHS (lanes 2 
and 3) and MNS (lanes 5 and 6). Lanes 4 and 7 are negative, no MMLV controls. In 
each case, 2 pi of RT-reactions (1 /25th) were loaded per lane. Lane 1, 1 kb DNA 
ladder.

PCR products for sequencing, derived from the reverse transcribed rGR 

message, were generated from a series of independent overlapping PCR 

primer pairs (Fig. 3.12.), which in combination covered the entire GR 

coding sequence. Examples of the product yield and specificity of typical 

RT-PCR reactions are shown in Figure 3.14.

Under conditions described in section 2.2.3., PCR products of 250-500 ng (see 

section 2.2.5.), were biotin labelled through the forward PCR primer. They 

were immobilised onto dynabeads through the 5' biotin label and denatured 

and  sequenced  from  m ultip le  positions  using specific p rim ers  

complementary to rGR cDNA, as described in section 2.2.13.

Sequencing of PCR amplifications from each primer set was carried out at 

least 2-3 times, each PCR template being derived from independent reverse 

transcription products. The reference notation (see Appendix 1) for each of 

the numbered PCR and sequencing primers described above are illustrated
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in Figure. 3.12. For comparative purposes, the rat GR cDNA clone, pRBalll7 

(A gift from R. Miesfeld, University of Arizona, Arizona, U.S.A. [See Fig.

3.2.]), containing a previously cloned and sequenced rat GR cDNA from rat

c . )
1 2 3 4 5 6 7

1047 bp

Fig. 3.14. Exam ples of RT-PCR products generated from  rat GR RNA/cDNA  
hybrid tem plates from strains MHS and MNS.
Gels show exam ples of consistent, but m oderate yields of high specific ity RT-PCR 
products generated using primer pairs:
a.) rGR19-BIO and rGR10 (1934 bp product).
b.) rGR31 -BIO and rGR10 (1165 bp product).
c.) rGR5-BIO and rGR2 (1047 bp product).
Product bands, each the proceeds of independent reverse transcrip tion and PCR 
reactions, represent loadings of 2 pi per 25 pi RT-PCR. Sam ples on each gel are 
loaded in pairs for each rat strain: MHS, lanes 2 and 3 (a., b. and c.); MNS, lanes 5 
and 6 (a. and b.); lanes 4 and 5 (c.). Lanes: 4, (a. and b.) and 6 (c.) MHS, no MMLV 
negative controls. Lanes: 7 (a., b. and c.) MNS, no MMLV negative controls (refer to 
text for details). Lanes: 1 (a., b. and c.), 1 kb DNA ladder.

hepatoma cell line 6.10.2 (Miesfeld et al., 1986), was re-sequenced using the 

same methods, PCR and sequencing primers as those used to sequence the 

GR from other rat strains.

1 0 8



Negative controls, the purpose of which were to monitor for the possibility 

of contam ination of RNA with DNA sequences were used in every set of 

reverse  tran sc rip tio n  reactions (for exam ples, see Fig. 3.14.). 

Contamination by DNA was considered to be from two possible sources; 

either genomic DNA from liver cells from the RNA preparation process 

(not usually  a problem  when sequencing across several spliced 

intron/exon boundaries from large multi-exon genes such as GR; roughly 

80 kb in human (Encio and Detera-Wadleigh, 1991) to over 100 kb in the rat 

(Jacobson, 1991), or from contaminating plasmid DNA containing cloned GR 

sequences. Controls routinely gave negative results in PCR. Where 

contam ination arose, all components, including the MMLV reverse 

transcriptase were replaced.

3.7.) Results

3.7.1.) Nucleotide sequence differences in the rat glucocorticoid 
receptor

Sequencing of the glucocorticoid receptor coding sequence from rat 

strains: MHS, MNS, SHR and WKY, identified two types of mutation.

a.) The polyglutamine repeat

The CAG repeat, n223-288 in the modulatory domain of rGR (nucleotide 

coordinates relative to m etl: taken from the published cDNA sequence of 

Miesfeld et al., 1986) showed length differences of one codon between MHS 

(20-CAG) and MNS (21-CAG) and SHR (19-CAG) and WKY (20-CAG) (Fig. 3.15.). 
No difference was found in the triplet (CAG)n repeat length between 

Zucker lean and obese strains.

b.) Nucleotide substitutions

In addition to differences in the length of the polyglutamine tract, 

comparison of nucleotide sequences between these rat strains and rat GR 

cDNA clone pRBalll7 revealed three silent transitional m utations at 
nucleotide positions: n 198 (TTC -> TTTlphegg, n 531 (TTT -> TTC)phei7 7  and n
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711 (GAT -> GAC)Asp2 37- These three point mutations were found in the 

hypertensive strains, MHS and SHR (see Figs. 3.16., 3.17., 3.18. and 3.21.).

A C G T  A C G T  A B C D

i___________ I I--------------- 1 l__________ I
SHR W KY/MHS MNS

Zucker lean/
Zucker obese

Fig 3.15. Polym orphism s of the GR polyglutam ine tract between strains of the rat 
models of human essential hypertension: MHS/MNS and SHR/W KY.
Triplet (CAG)n repeat numbers identified were: 19 (SHR), 20 (WKY and MHS) and 21 
(M NS). Letters above each sequence lane represen t te rm ina ting  nucleo tides. 
Sequences shown are of the antisense DNA strand, reading 5 ’ -> 3 ’, top to bottom. 
Sequences were initiated from primer pG (Appendix 1).

None were present in MNS, which in turn was identical in sequence to the 

cloned rat GR cDNA of pRBalll7. Arbitrarily, the MNS GR sequence was 

taken as the base, or wild type sequence, against which all others were 

compared (Fig. 3.16). The strain WKY, was m utated only at the third 

nucleotide position: n 711 (Figs. 3.16. and 3.18.).

No coding sequences differences were identified between the Zucker lean 

and obese strains, which in turn were identical to that of the MNS strain 

(see Fig. 3.16.).
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MNS 9 9 9 C t c a c a t t a a t  a t t t a c c a A T GGACTCCAAA 1 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ---------------------------------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ---------------------------------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------

MNS GAATCCTTAG CTCCCCCTGG TAGAGACGAA GTCCCTGGCA GTTTGCTTGG CCAGGGGAGG GGGAGCGTAA TGGACTTTTA 9 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY --------------------- ----------- ----------- ----------- ----------- ----------- -----------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS TAAAAGCCTG AGGGGAGGAG CTACAGTCAA GGTTTCTGCA TCTTCG CCCT CAGTGGCTGC TGCTTCTCAG GCAGATTCCA 1 7 2
MHS --------------------- ----------- ----------- ----------- ----------- ----------- -----------
WKY ----------------------  ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ---------------------------------------------------

MNS AGCAGCAGAG GA TTCTCCTT GATTTCTCGA AAGGCTCCAC AAGCAATGTG CAGCAGCGAC AGCAGCAGCA GCAGCAGCAG 2 5 2
MHS --------------------------------------------  T ---------------------------------------- ------------------------- ---------------------------------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR --------------------------------------------  T ---------------------------------------- ------------------------- ------------------------- -------------------------

MNS CAGCAGCAGC AGCAGCAGCA GCAGCAGCAG CAGCAGCCAG ACTTATCCAA AGCCGTTTCA CTGTCCATGG GGCTGTATAT 3 3 2
MHS ---------------------- ------------------------- ------------------------- ---------  -------- ------------------------- ------------------------- ---------------------------------------------------
WKY ---------------------- ------------------------- ------------------------- ---------  -------- ------------------------- ------------------------- ---------------------------------------------------
SHR ----------------------  ---------------------- -------------------------  -------- -------------------------  ---------------------- ------------------------- -------------------------

MNS GGGAGAGACA GAAACAAAAG TGATGGGGAA TGACTTGGGC TACCCACAGC AGGGCCAACT TG GCCTTTCC TCTGGGGAAA 4 1 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ---- ---------------------------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS CAGACTTTCG GCTTCTGGAA GAAAGCATTG CAAACCTCAA TAGGTCGACC AGCGTTCCAG AGAACCCCAA GAGTTCAACG 4 9 2
MHS ----------------------  ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- -------------------------  ---------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

WKY
SHR

MNS TCTGCAACTG GGTGTGCTAC CCCGACAGAG AAGGAGTTTC CCAAAACTCA CTCGGATGCA TCTTCAGAAC AGCAAAATCG 5 7 2
MHS ----------------------    C - ------------------------- ------------------------- ---------------------------------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ----------------------    C - ------------------------- -------------------------  ---------------------- -------------------------

MNS AAAAAGCCAG ACCGGCACCA ACGGAGGCAG TGTGAAATTG TATCCCACAG ACCAAAGCAC CTTTGACCTC TTGAAGGATT 6 5 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS TGGAGTTTTC CGCTGGGTCC CCAGGTAAAG ACACAAACGA GAGTCCCTGG AGATCAGATC TGTTGATAGA TGAAAACTTG 7 3 2
MHS ----------------------      C - ------------------------- -------------------------
WKY ----------------------      C - ------------------------- -------------------------
SHR ----------------------       C - ------------------------- -------------------------

MNS CT TT C T C C T T TGGCGGGAGA AGATGATCCA TTCCTTCTCG AAGGGGACAC GAATGAGGAT TGTAAGCCTC TTA TTTTACC 8 1 2
MHS ---------------------- ------------------------- -------------------------  ----------------------  ----------------------  ---------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS GGACACTAAA CCTAAAATTA AGGATACTGG AGATACAATC TTATCAAGTC CCAGCAGTGT GGCACTGCCC CAAGTGAAAA 8 9 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- -------------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ---------------------- -------------------------

MNS CAGAAAAAGA TG ATTTCATT GAACTTTGCA CCCCCGGGGT AATTAAGCAA GAGAAACTGG GCCCAGTTTA TTGTCAGGCA 9 7 2
MHS ---------------------- ------------------------- -------------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------
SHR ---------------------- ------------------------- -------------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS AGCTTTTCTG GGACAAATAT AATTGGTAAT AAAATGTCTG CCATTTCTG T TCATGGTGTG AGTACCTCTG GAGGACAGAT 1 0 5 2
MHS ----------------------  ----------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------
SHR ---------------------- ------------------------- -------------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------

MNS GTACCACTAT GACATGAATA CAGCATCCCT TTCTCAGCAG CAGGATCAGA AGCCTGTTTT TAATGTCATT CCACCAATTC 1 1 3 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------

MNS CTGTTGGTTC TGAAAACTGG AATAGGTGCC AAGGCTCCGG AGAGGACAGC CTGACTTCCT TGGGGGCTCT GAACTTCCCA 1 2 1 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------

MNS GGCCGGTCAG TG TTTTCTAA TGGGTACTCA AGCCCTGGAA TGAGACCAGA TGTAAGCTCT CCTCCATCCA GCTCGTCAGC 1 2 9 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------
SHR ---------------------- ------------------------- -------------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS AGCCACGGGA CCACCTCCCA AGCTCTGCCT GGTGTGCTCC GATGAAGCTT CAGGATGTCA TTACGGGGTG CTGACATGTG 1 3 7 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ----------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS GAAGCTGCAA A G TA TTCTTT AAAAGAGCAG TGGAAGGACA GCACAATTAC CTTTGTGCTG GAAGAAACGA TTGCATCATT 1 4 5 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS GATAAAATTC GAAGGAAAAA CTGCCCAGCA TGCCGCTATC GGAAATGTCT TCAGGCTGGA ATGAACCTTG AAGCTCGAAA 1 5 3 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- -------------------------  ---------------------- ------------------------- -------------------------
SHR ----------------------  ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ----------------------------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------



MNS AACAAAGAAA AAAATCAAAG GGATTCAGCA AGCCACTGCA GGAGTCTCAC AAGACACTTC GGAAAATCCT AACAAAACAA 1 6 1 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS TAGTTCCTGC AGCATTACCA CAGCTCACCC CTACCTTGGT GTCACTGCTG GAGGTGATTG AACCCGAGGT GTTGTATGCA 1 6 9 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------  ---------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS GGATATGATA GCTCTGTTCC AGATTCAGCA TGGAGAATTA TGACCACACT CAACATGTTA GGTGGGCGTC AAGTGATTGC 1 7 7 2
MHS ---------------------- ------------------------- -------------------------  ---------------------- ------------------------- -------------------------  ---------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WRY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS AGCAGTGAAA TGGGCAAAGG CGATACCAGG CCTGAGAAAC TTACACCTGG ATGACCAAAT GACCCTGCTA CAGTACTCAT 1 8 5 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- -------------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS GGATGTTTCT CATGGCATTT GCCCTGGGTT GGAGATCATA CAGACAATCA AGTGGAAACC TG CTCTGCTT TGCTCCTGAT 1 9 3 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- -------------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS CTGATTATTA ATGAGCAGAG AATGTCTCTA CCCTGCATGT ATGACCAATG TAAACACATG C TG TTTG TC T CCTCTGAATT 2 0 1 2
MHS --------------------- ----------- ----------- ----------- ----------- ----------- -----------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- -------------------------  ----------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS ACAAAGATTG CAGGTATCCT ATGAAGAGTA TCTCTGTATG AAAACCTTAC TGCTTCTCTC CTCAG TTCCT AAGGAAGGTC 2 0 9 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ---------------------------------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY -------------------- ----------------------- ----------------------- ----------------------- ----------------------- ----------------------- ----------------------- -----------------------

MNS TGAAGAGCCA AGAGTTATTT GATGAGATTC GAATGACTTA TATCAAAGAG CTAGGAAAAG CCATCGTCAA AAGGGAAGGG 2 1 7 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS AACTCCAGTC AGAACTGGCA ACGGTTTTAC CAACTGACAA AGCTTCTGGA CTCCATGCAT GAGGTGGTTG AGAATCTCCT 2 2 5 2
MHS ----------------------  ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY -------------------- ----------------------- -----------------------  -------------------- ----------------------- ----------------------- ----------------------- -----------------------

MNS TACCTACTGC TTCCAGACAT TTTTGGATAA GACCATGAGT ATTGAATTCC CAGAGATGTT AGCTGAAATC ATCACTAATC 2 3 3 2
MHS ---------------------- ------------------------- ------------------------- ------------------------- -------------------------  ---------------------- ------------------------- -------------------------
SHR ----------------------  ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ----------------------  ----------------------  ----------------------  ---------------------- -------------------------  ---------------------- ------------------------- -------------------------

MNS AGATACCAAA ATATTCAAAT GGAAATATCA AAAAGCTTCT GTTTCATCAA AAATGAc t a c  c t t a c t a a g a  a a g g t t g c c t  2 4 1 2
MHS ----------------------  ---------------------- ------------------------- -------------------------  ---------------------- ------------------------- ------------------------- -------------------------
SHR ----------------------  ----------------------  ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- -------------------------  ----------------------  ---------------------- ------------------------- ------------------------- ------------------------- -------------------------

MNS t a a a g a a a g t  2 4 2 2
MHS ---------------------- -------------------------  ----------------------  ---------------------- ------------------------- ------------------------- -------------------------
SHR ---------------------- ------------------------- ------------------------- ------------------------- ------------------------- ------------------------- -------------------------
WKY ---------------------- ------------------------- -------------------------  ---------------------- -------------------------  ---------------------- -------------------------

Fig. 3.16. Alignment of rat glucocorticoid receptor (GR) nucleotide sequences.
Coding sequences of GR derived from RNA/cDNA hybrids from strains: MHS, MNS, SHR 
and WKY are shown. The base GR sequence (2422 bp) is that of strain MNS, which was 
found to be identical to rat GR cDNA clone pRBal117 (Miesfeld e t al., 1986), in which a 
number of mistakes were identified (letters shown in bold type). Gaps (line 332) represent 
missing glutamine codons, resulting in a shortening of respective polyglutamine tracts and 
presumably translated GR protein. Upper case lettering in bold type identify the sites of 
silent point mutations. Lower case lettering in bold type: 5' and 3' untranslated sequences. 
Codons underlined show the major start and stop codons of the full length receptor 
protein. Numbers to the right hand side represent nucleotide positions in relation to the 
ATG start site (line 12).



MHS MNS
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Fig. 3.17. N ucleotide  sequence d ifferences in the g luco co rtico id  receptor 
between rat strains: MHS and MNS.
Three silent point mutations were identified in the GR coding sequence of hypertensive 
rat strain MHS (sequences on the left) at nucleotide positions:
a.) n 198, b .) n 531 and c.) n 711. None of these m utations were present in the 
normotensive control strain MNS (sequences on the right).



SHR WKY

A C G T A C G T

n 198 
(TTC -> TTT)

n 531 
(TTT -> TTC)

.
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n 711 
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Fig. 3.18. N ucleotide  sequence d ifferences in the g lucocortico id  receptor 
between rat strains: SHR and WKY.
Three s ilen t po int m uta tions were iden tified  in the GR cod ing  sequence  of 
hypertensive rat strain SHR (sequences on the left) at nucleotide positions: 
a.) n 198, b.) n 531 and c.) n 711. One of these m utations (n 711) was found to be 
present in the normotensive control strain WKY (sequences on the right).



Sequencing across longer CAG repeats (e.g., from pG: Appendix 1) produced 

sequence which was often stuttered in appearance; compare upper blocks 

of sequence in Figs. 3.17. and 3.18. with Fig. 3.19a., derived from a GR 7- 

repeat allele (see section 3.2.5. and chapter 4 for further details of rats with 

QrlCAG/ alleles). Point mutations at nucleotide position n l9 8  (in MHS and 

SHR) were therefore verified by sequencing across the opposite (sense) 

DNA strand from p9, detailed in Appendix 1 (Fig. 3.19b.).

a-) A C G T  b ) A C G T

<wmi
mm

Fig. 3.19. Clarification of GR sequences.
a.) The clarification of sequence above the rGR trinucleotide repeat derived from a 
QrlCAG7 rat strain (see text for details).
b.) Varifica tion  of silent nucleotide substitu tion n 198, by sequencing of opposite  
(sense) DNA strand (orientation is 5 ’ -> 3 ’ , top to bottom). Top sequence set, strain 
MNS; bottom sequence set, strain MHS. Letters above each sequence lane represent 
term inating nucleotides.

c.) Errors in the Miesfeld sequence

Re-sequencing of pRBalll7 in duplicate revealed 10 nucleotide differences 

when compared to the published sequence (Miesfeld et al., 1986), which was 

also derived, in part, from pRBalll7. All of these differences were present
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in each ra t strain and were therefore regarded as genuine sequencing 

errors.

These errors may have arisen in the original sequence because of 

technological difficulties at the time sequencing was carried out (1985- 

1986). Sequencing was from M13 clones (S. Rusconi, personal 

communication) which require more complicated sequencing protocols 

than those currently available. The differences identified are listed in 

Table 3.4.

Five of the nucleotide differences identified in pRBalll7: n 293 (G -> A), n 

676 (A -> G), n 778 (A -> G), n 1799 (T -> C) and n 1804 (G -> C), predicted a 

change in amino acid at the corresponding position in the rGR protein. 

These were, respectively: Glygs -> Aspgs, Ser226 _> Gly226> Asn260 _> Asp260> 

Leu600 _> Pro6C)0 anc* Leu602 -> Phe6 0 2  (Figs. 3.20. and 3.21.).

Position (in nucleotides)
relative
to m etl

New codon sequence Change in amino acid

66 CAA -> CAG

293 GGC -> GAC Gly -> Asp

676 AGT -> GGT S er ->  Gly

778 AAC -> GAC Asn -> Asp

879 CTA -> CTG

1799 CTA -> CCA Leu -> Pro

1804 TTG -> TTC Leu -> Phe

1821 CTC -> CTG

1876 TTG -> CTG

1905 AGC -> AGT

Table 3.4. Errors identified in rat GR cDNA clone pRBal117. The rat GR cDNA of 
clone pRBal117 (Miesfeld et al., 1986) was re-sequenced in duplicate for the purpose 
of comparison with novel GR sequence obtained from rat strains: MHS, MNS, SHR and 
WKY. Inconsistencies with the published sequence were identified at 10 nucleotide 
positioins which are recorded relative to met 1 in the GR coding sequence.
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3.8.) Discussion of sequencing results

The reason for this section of work was to try to find an explanation for the 

apparen t differences in steroid binding affinities of GR between the 

strains of the rat models of hypertension: MHS/MNS and SHR/WKY, as 

reported by Kenyon et al., (1994) and Panarelli e t al., (1995). Structural 

mutations in GR would support its possible involvement (and hence, of the 

glucocorticoid receptor locus [GrI]) as a candidate gene in the development 

of the hypertensive phenotype. Glucocorticoid receptor coding sequences 

from inbred rat strains: MHS, MNS, SHR and WKY, which to my knowledge 

have not been reported elsewhere, identified three point mutations in the 

hypertensive strains MHS and SHR, which were absen t in the 

norm otensive controls (apart from m utation n 711 in strain  WKY). 

However, all point mutations were in the wobble codon position and were 

silent (Fig. 3.16.). Thus, from single nucleotide substitutions, no change in 

GR function would be predicted. These mutations were used as genetic 

markers for rat GR haplotype analysis, described in chapter 4.

Polymorphism was also found in the triplet (CAG)n repeat of the GR coding 

sequence, which could be of potential im portance for GR function. 

Polymeric tracts consisting of repeat codons for glutamine, or glutamine 

rich sequences are a common feature of several transcription factors (Ross 

et al., 1993; Gerber et al., 1994). Many belong to the steroid receptor 

superfamily, of which the rat glucocorticoid receptor (rGR) and human 

androgen receptor (hAR) have been most intensely studied. Both have a 

variable length polyglutamine tract in the amino terminal domain and 

repeat expansions in the androgen receptor are well established (LaSpada 

et al., 1992). The idea that relatively long polyglutamine tracts (20 residues 

or more) may be im plicated in the functioning of transcrip tional 

regulators is supported by earlier studies involving the transcription 

factors Spl and the human TATA binding protein TFIID (Courey and Tjian, 

1988; Kao eta/., 1990) for which a possible role in gene regulation has been 

assigned.
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Because of the potential functional significance of polyglutamine tracts, 

particularly at the level of gene transcription and also, in the case of GR, in 

the binding of hormone, further investigations of the possible effects of 

polyglutamine tract length on rGR function (steroid binding properties, 

detailed in chapter 6 and transcriptional regulatory properties) were 

considered. The coding sequence of GR from Zucker lean and obese rats was 

identical at all positions and the same as that of strain MNS. This suggests 

that differences in receptor activity in the Zucker strains in vivo must 

depend on influences other than on primary receptor sequence.

Re-sequencing of the ra t GR cDNA clone pR B alll7  identified ten 

sequencing errors when compared to the original report of Miesfeld et al., 

(1986). These differences were confirmed in reverse transcribed PCR 

amplified sequence from RNA of rat strains MHS, MNS, SHR, WKY and 

Zucker lean and obese. All novel rat GR sequences identified in this section 

of work have been submitted to the EMBL sequence databases under the 

accession number Y12264. These results lead to five coding changes in the 

published rGR sequence (Miesfeld et al., 1986), Glygs being amended to 

Aspgg, Ser2 2 6  to Gly2 2 6 > Asn2 6 0  to Asp2 6 0 > Leu6 0 0  to Pro6 0 0  and Leu6 0 2  to 
Phe602 (Fig- 3.16. and 3.21.). Two of these differences, Leu600 to Proeoo and 
Leu602 to Phe602 map within a part of the hormone binding domain that is 
conserved among all other members of the nuclear hormone receptor 

family, and is implicated in the binding of HSP90 (Danielsen, 1986: see Figs. 

3.20. and 3.21.). Amino acid insertions w ithin this subdom ain 

(corresponding to residues 595-614 in rat GR) disrupt hormone binding 

(Giguere et al., 1986). Deletion of this region results in a protease-sensitive 

receptor which associates only weakly with HSP90 and has some 

constitutive transcriptional activity (Housely et al., 1990). Figure 3.20. 

depicts the amino acid sequence of this domain as originally reported by 

Danielsen, (1986). These amendments lead to residues 595-614 of rat GR 

showing a complete conservation of amino acid sequence with GR of mouse 

and human, and a lower but still extensive homology with other members 

of the nuclear hormone receptor family, and confirms its functional 

significance.
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Typing of Grl triplet (CAG)n repeat lengths in wild rats and the 

determ ination of Grl haplotypes in selected wild rats and inbred 

strains

4.1.) Introduction

Through PCR analysis of the number of CAG codons, myself and others have 
found strain variation in the length of the polyglutamine tract of rat GR 
(Gearing et al., 1993; Heeley et al., 1996a). The data for inbred strains is 
presented in chapter 3 of this thesis. It was therefore of interest to 
determine whether the discontinuous distribution of GR CAG-repeat alleles 
seen in inbred rat strains was an accurate representation also found in 
unselected rats, or an artefact resulting from the chance fixation of GR 
alleles through random choice of strains for breeding. I therefore typed 
155 wild R. norvegicus from Scotland and England.

As there was no evidence of a structural mutation in the coding sequence 

of GR from MHS or other rat strains which might explain the suggested 

differences in glucocorticoid receptor activity or phenotype between 

strain pairs, the likelyhood of genetic variation elsewhere in Grl was 

considered. Part of this section of work was therefore based on a haplotype 

analysis centred on the genetic variation in and around the CAG repeat of 
rGR, both in the Milan strains (for which linakge analysis was available. 

See Chapter 5) and in a range of other inbred and wild rats.

4.2.) Methods for determination of Grl genotypes

4.2.1.) Typing of Grl triplet (CAG)n repeats

Tissue samples and preparation o f genomic DNA

English wild R. norvegicus liver samples were obtained from the Central 
Science Laboratory, Ministry of Agriculture Fisheries and Food (MAFF), 
Slough, Berkshire. Scottish wild R. norvegicus were collected from local
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regional pest control departments of Scottish district councils by periodic 
donation over a number of weeks.

The origin of each set of rat samples is shown in Figure 4.1. The following 

shorthand was adopted for reference to each location: St (Stirling); Fk 

(Falkirk); Fi (Fife); Gla (Glasgow); Be (Berkshire); Ha (Hampshire); Sh 

(Shropshire); Su (Sussex); Wi (Wiltshire); Ox (Oxfordshire); Es (Essex); Yo 

(Yorkshire); Do (Dorset). Numbers accompanying each notation in the 

remainder of this chapter refer to individual rats from the corresponding 

location. Genomic DNA was prepared from liver tissue using methods 

referenced in (section 2.2.2.). As much care as possible was taken to avoid 

unnecessary shearing and to generally m aintain the intactness of DNA 

from all locations. DNA samples in 0.5x TE (pH 7.6) were left to resuspend 

over 2-3 days at 4°C. Examples of the integrity of samples is shown in 

Figure 4.2. There was variability in the level of intactness of DNA from 

different locations in England. For example, DNA from Hampshire (Fig. 

4.2a., lanes 2-11) was generally more degraded than that from Dorset (Fig. 

4.2b., lanes 2-11). Some samples showed extreme degradation (e.g., Fig. 4.2a, 

lanes 3, 5 and 11) which were considered unsuitable because of likely effect 

on the efficiency of PCR amplification. Alternatively, some of these rat 

tissues may have contained contam inants which were ineffectively 

removed by phenol/chloroform extraction (see below). As a result, not all 

rats could be typed for Grl CAG repeats. Nine to ten rats were originally 

obtained for each site in England, a total of 94 animals, only 61 of which 

were typable. In contrast, all Scottish rats were typed successfully (see 

Table 4.1.). The degradation of genomic DNA was probably related to the 

time after death before which rat carcasses were collected. (E. Gill MAFF; 

personal communication). Many of the tissue samples obtained from MAFF 

came from rats which had been killed by Warfarin poisoning.

DNA loadings per lane (Fig. 4.2a. and b.) were of the order, 0.5-1.0 jig, 

m easured using a spectrophotom eter. A pparent differences in DNA 

loadings between lanes was most likely due to either: inconsistencies in 

spectrophotometer readings, resulting from differences in the degree of 

homogeneity of DNA samples, or more likely, because of differences in the
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Fig. 4.1. Origins of wild rats used for typing of Grl triplet (CAG)n repeat variants: 
A, from  Scotland; B, from England.
The county, or town (where known) of individual sample sites are shown: 1, Stirling; 2, 
Fife; 3, Falkirk; 4, G lasgow; 5, Yorkshire; 6, Shropshire; 7, Oxfordshire; 8, Berkshire; 
9, Essex; 10, W iltshire; 11, Fiampshire; 12, Dorset; 13, Sussex.

Fig. 4.2. Samples of wild rat genom ic DNA from different geographical locations  
resolved on 0.8% agarose gels.
a.) Fiampshire rat DNAs (lanes 2-11), 0.5-1 pg/lane.
b.) Dorset rat DNAs (lanes 2-11), 0.5-1 pg/lane.
c.) Random sample of G lasgow rat DNAs (lanes 2-7), 200-400 ng/lane.
See text for details of sample loadings per lane. Lanes 1 (a, b, c), 1 Kb DNA ladder 
(GIBCO-BRL). Lanes 12 (a and b), Hind\\\ DNA size markers.



intactness of DNA samples. For the extraction of Scottish rat DNAs, where 

carcasses were much fresher (in the majority of cases, no older than 1-2 

days prior to DNA extraction) the integrity of DNA samples was much 

higher. Fig. 4.2c. shows a random selection of DNAs prepared from Glasgow 

rats. DNA loaded per lane was of the order, 200-400 ng.

Typing o f  Grl triplet (CAG)n repeats
The conditions and PCR primers used for typing wild rat Grl triplet (CAG)n 

repeats were initially as described in chapter 3 for inbred strains.

1 2 3 4 5 6 7 8 9 10 11 12 13

21-CAG 

20-CAG 

19-CAG 

18-CAG

7-CAG

Fig 4.3. Pilot experim ent showing the typing of Grl triplet (CA G )n repeats in a sample of 
wild rats.
DNA samples were initially amplified using exactly the same conditions as those described in 
chapter 3 for inbred strains. Am plifications were as follows: lane 2, Do91; lane 3, Do92; lane 
4, Do94; lane 5, W i48; lane 6, Yo80; lane 7, Su32; lane 8, Gla2, lane 9, Gla21; lane 10, 
Gla42; lane 11, Gla7 (see table 4.1.). Lane 12, no DNA negative control. Lanes 1 and 13, 
m icrosatellite markers.
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Figure 4.3. shows an example of a typing experiment for Grl (CAG)n repeats 

for aelection of rats from England and Scotland. In each case, there are 
ambigu sities in the form of additional PCR bands. Notably, many of the 
amplifications revealed bands much higher in the gel than that predicted 
from the size markers. These additional DNA bands could represent somatic 
m utation of Grl triplet (CAG)n repeats. Flowever, no such banding was 

observed in the typing of inbred strains, which suggested that these 
additional bands were artifacts, resulting from excess genomic DNA in PCR. 
Attempts were therefore made to optimise PCR conditions to take account of 
this problem. As a starting point, the samples used in the pilot experiment 
(Fig. 4.3) were diluted 10-fold. Prior to dilution, DNAs were left to resuspend 
for a further week at 4°C to ensure homogeneity and OD26O values were re­

determined.

1 2 3 4 5 6 7 8 9 10 11 12 13

21-CAG

20-CAG

19-CAG

18-CAG

Fig. 4.4. W ild rat PCR am plifications performed under optim ised conditions.
DNA per PCR reaction was in the range 2-5 ng. Gel loading was exactly as decribed in 
Fig. 4.3. (see table 4.1. for corresponding genotypes).

PCRs were performed using the diluted DNA samples exactly as in pilot 

experiments.
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Figure 4.4. shows the resulting increase in product specificity. PCRs were 

fu rther optimised by reducing cycle number from 30 to 28. Figure 4.5. 

below shows examples of the enhanced specificity achieved.

1 2 3 4 5

21-CAG

20-CAG

19-CAG 

18-CAG

*  m  7 ' CAG

Fig. 4.5. Typing of wild rat (CAG )n repeats under further optimised PCR 
conditions.
Lane 1, Do91; lane 2, Su39; lane 3, Do94; lane 4, Su41. Lane 5, 
m icrosatellite markers.

The spurious banding in Figure 4.5., lane 3 (Do94) is likely to be an artifact 

resulting from an excess of DNA used in PCR, since the magnitude of the 

specific 7-CAG repeat product band is elevated compared with those in 

other lanes. Similar spurious bands were occasionally seen for clone DNA 

amplifications (marker bands), for which somatic m utation  is not a 

consideration (results not shown). From this point, PCR conditions were 

considered optimal for the typing of the remaining wild rats.

Routine analysis of larger numbers of GR CAG repeat lengths was based on 

a Southern blotting approach, in which non-radioactive PCR products 

(amplified under optimised PCR conditions) were transferred  to nylon 

membrane (Hybond-N+, Amersham, U.K.) for 6-16h and then probed using
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a  ̂ 2 p-enci la b e l led  p o ly g lu ta m in e  o l ig o n u c le o t id e  p ro b e  (5' 
AGCAGCAGCAGCAGCAGGC 3': see Appendix 1 for coordinates in rGR cDNA) 
complementary to the 3' end of the rGR polyglutamine microsatellite (see 
section 2.2.7. for labelling conditions). Hybridisations were carried out at 
60°C for 8-1 Oh in 10ml 2x SSC containing 2% w/v milk powder. Hybridised 
filters were washed in 2x SSC, 0.1% SDS for 30 mins (or until the 
background  was suffic ien tly  reduced) a t 60°C and  exposed to 
autoradiographic film for 2-3h at -70°C. Microsatellite markers were the 
same as described in chapter 3.

4.2.2.) Grl Haplotype analysis
Determination of Grl haplotypes was based on the nucleotide sequence in 
and around the Grl triplet (CAG)n repeat.

a ) 1 2 3 4 b ) 1 2 3 4 5 6 7 8 9

1224 bp
1224 bp

c ) 1 2 3 4 5 6 7 8 9 10

1224 bp

Fig. 4.6. Am plification of rGR sequences for haplotype analysis.
PCR products of 1224 bp were am plified fo r 47 rat DNAs. A m p lifica tions were 
performed in duplicate follow ing optim isation to provide enough DNA for sequencing 
(See text for details).
a.) Pilot experiment: non-optim ised PCR with additional banding below the expected 
PCR band was perform ed using 1.5 mM M g2 + , 35 PCR-cycles and 58°C  primer 
annealing tem perature. Lanes 1 and 2, am plified BDE rat strain genom ic DNA (see 
Table 4.5.); lane 4, no DNA negative control.
b.) Selection of PCRs performed under optim ised conditions of 1.2 mM M g2+, 37 
PCR-cycles and 60°C  prim er annealing tem perature. Lane 2, Gla32; Iane3, Gla44; 
lane 4, Gla45; lane 5, Gla6; Iane6, Gla10; lane 7, Fi3; lane 8, Fi6. Lane 9, no DNA 
negative control.

1 2 1



c.) Amplification of selected rat DNAs under optimised PCR conditions. Lanes 1 and 2, 
BDE strain; lanes 4 and 5, St1; lanes 6 and 7, St2; lanes 8 and 9, St3 (see table 4.5.). 
Lane 10, no DNA negative control.
Lanes 1 (a, b, c), 1 kb DNA ladder (GIBCO-BRL, U.K.).

Data obtained up until this point for inbred and wild rats indicated a high 

degree of trip let repeat polymorphism , together with three silent 

nucleotide substitution sites identified in chapter 3. PCR products (1224 bp) 

containing all potential mutation sites were amplified using primers rGR19 

and rGR21 (Appendix 1).

4.2.3.) Sequencing
Novel triplet (CAG)n repeat lengths were sequenced from PCR products 

using the dynabead method described in section 2.13.

Duplicate PCR amplifications were performed for a total of 47 homozygous 

rat DNA templates (14 inbred rats, 33 wild rats; see table 4.5.). Pilot 

experiments were carried out in 25^1 of standard reaction mixture (see 

section 2.2.3.) by combining 50-100ng genomic DNA with 20 pmoles of each 
PCR primer, 1.5 mM Mg^+ and 0.01 mg/ml acetylated BSA. The PCR reaction 

profile described in section 2.2.3. was performed for 35-cycles, with an 

annealing tem perature of 58°C. PCR products were less specific than 

required for uninterrupted sequencing (see Fig. 4.6a.). The stringency of 

PCR reactions was therefore optimised by reducing Mg^ + concentration 

from 1.5 mM to 1.2 mM. Annealing temperature was also increased from 58 

to 60°C, requiring an additional x2 PCR cycles (37-cycles, total). Fig. 4.6b. 

and c. shows succesfully optimised PCRs.

Grl haplotypes were determined by direct sequencing of double stranded 

Exonuclease I  and Shrimp Alkaline Phosphatase-treated PCR products using 

a modification of the sequenase version-2 DNA sequencing kit (Amersham 

International, U.K.), described in section 2.2.13. Sequencing was initiated 

from three separate sites in the amplified DNA using primers: pG rGR22, 

rGR23 (Appendix 1). Gels were run exactly as described in chapter 3.
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4.3.) Results

4.3.1.) Grl triplet (CAG)n repeat variation in wild rats
The absence of CAG repeat lengths of 2-6, 8-16, and of more than 21 in Grl 
alleles of inbred strains may reflect that only a limited num ber of alleles 
were fixed when establishing laboratory strains from wild rat populations. 
CAG repeat lengths of wild caught rats from Scotland and England were 
therefore analysed.

Origin
(where
caught)

Total number 
of rats from 
each location

Number of rats with specific GR genotype

Stirling 12 St1-12 (7)
Falkirk 3 Fk1, 3 (7); Fk2 ( 7 ,21)
Fife 9 FI3, 6 (7); Fi5, 7, 9 (7, 22)] Fi2 (7, 23)] Fi1, 4, 8 

(18,22)
Glasgow 70 Gla2,10, 31, 43, 53 (7); Gla9, 21, 44, 65, 67,

70 (18)\ Gla32, 45, 50, 51 (20)] G la13,14 
(21)] Gla8, (22)] G la7,16, 26, 47, 62-64, 66
(23)] Gla 42, 46, 55, 58 (7, 18)] Gla6, 48, 52 
(7, 20)] Gla41 (7, 22)] Gla3, 19, 20, 23, 30, 33, 
(7,23)] Gla1, 12, 15, 17, 49 (18, 20)] Gla69 
( 18, 21)] Gla11 ,18 , 22, 25, 27, 34, 35, 37, 40, 54, 56, 
61, 68 (18, 23)] Gla4, 5 (19, 20)] Gla57 (20, 22)] 
Gla24, 28, 29, 36, 38, 39, 59, 60 (20, 23)

Berkshire 8 Bk27 (7); Bk2, 6 (7, 18)] Bk26 (7, 19)] Bk24 
(17, 19)] Bk22 (17, 20)] Bk20, 25 (19, 20)

Hampshire 9 Ha18 (7); Ha11,14(79); Ha9 (20)] Ha20, 12, 
15-17 (7,20)

Shropshire 6 Sh29 (7); Sh30, 89 (23)] Sh31, 88 (7, 23)] 
Sh90 (19,23)

Sussex 8 Su32, 36, 37 (7); Su41 (7, 77); Su34, 40 (7, 22)] 
Su39 (17, 18)] Su35 (20,21)

Wiltshire 7 Wi44 (18); Wi48-50 (20)] Wi45 (18, 20)] 
Wi42, 47 ( 19, 20)

Oxfordshire 7 0x59 (79); 0x61, 62, 66 (7, 20)] 0 x6 3  (7, 21)] 
0 x64  (20, 23)] 0 x65  (21, 22)

Essex 2 Es74 (7, 17)] Es75 (7,20)
Yorkshire 5 Yo84 (20); Yo77 (23)] Yo80 (7, 19)] Yo82 

(20, 22)] Yo81 (21, 23)
Dorset 9 Do91, 92, 94, 96, 98-100 (7); Do95 (7, 22)] Do93 

(19,21)

Table 4.1. Incidence of Grl genotypes found in Scottish and English wild rats.
Each rat genotype is prefixed by its origin, given in shorthand notation. References 
highlighted in bold type show homozygous animals (n = 67). Number of heterozygotes was 
found to be 88. Bracketed numbers in italics represent GR alleles.
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a)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

21-CAG 
20-CAG 
19-CAG 
18-CAG

— 7-CAG

PCR
Product
Size
(bp)

119
116
113
110
107
104

74

b)

N um ber of GR 
alle les observed

■ 11 1 ■ M1
7 17 18 19 20 21 22 23

Num ber of CAG repeats

Fig. 4 .7 . The range of CAG repeat lengths in wild rats caught in Scotland and England.
a): 32P-labelled PCR products resolved on a denaturing polyacrylam ide gel, showing GR repeat 
length varia tion for 20 wild rats, selected to show the range of observed alle les: lane 2, G la t 4; 
lane 3, Fi2; lane 4, G la41; lane 5, Sh89; lane 6, Gla8; lane 7, S t1 ; lane 8, Fi 1; lane 9, Ha9; lane 
10, W i44; lane 11, Gla1; lane 12, Gla 42; lane 13, 0x64 ; lane 14, Gla68; lane 16, Bk2; lane 17, 
Do91; lane 18, Do95; lane 19, Sh88; lane 20, Su35; lane 21, Su39; lane 22, Su41. Lanes 1, 15 
and  23  c o n ta in  m ixe d  PC R  p ro d u c ts  a m p lif ie d  fro m  c lo n e d  a lle le s  Grl7’ 18'21 .
b): frequency distribution of CAG repeat alle les from Scottish and English wild rats.



Table 4.1. shows the GR genotypes of all wild rats typed. A representative 20 

samples successfully typed under optimised PCR conditions are shown in 

Figure 4.7.

Two novel allele lengths were identified with 22 and 23 CAG repeats (see 

Fig. 4.8. for entire range of GR alleles identified in inbred and wild rats).

Fig. 4.8. Sequences of naturally occuring GR triplet (CA G )n repeats found in wild 

and inbred rats.
Repeat lengths, determ ined as described in Figure 3.5. chapter 3, ranged from the 
sm allest at 7-CAG repeats (far left) to the longest at 23-CAG repeats (far right). The 
longest polymer tracts of 22 and 23-CAGs were found only in wild rats and not in any 
inbred stra ins tested. Sequencing was from the antisense strand using prim er pG 
(Appendix 1). The letters A, C, G, and T above sequence lanes represent term inating 
nucleo tides. Num bers above each sequence represent num bers of CAG repeats, 
respectively.

Of 155 rats, 67 (43%) were homozygous for any one of alleles GrlGAG7> 18-23 

Allele GrlGAG7 was the most common. GrlGAG1/ was least common; its 

presence in only five heterozygotes explained why no homozygotes were 

observed. Table 4.2. shows the totals of each Grl allele identified in wild rats. 

Tables 4.3. and 4.4. show the expected and observed homozygous alleles for 

Glasgow and all other sample locations in the U.K. respectively, with the

21

A C G T

22
A C G T

23
A C G T
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exception of Stirling, from which all rats were typed as homozygous for 
QrjCAG7 ancj therefore considered to bias the data. The possible implications 

of these results are discussed at the end of this chapter.

Location. No. of Numbers of GR alleles
(town or Rats GR-CAG repeat No.
county) typed 7 17 18 19 20 21 22 23

Stirling 12 24 0 0 0 0 0 0 0
Falkirk 3 5 0 0 0 0 1 0 0
Fife 9 8 0 3 0 0 0 6 1
Glasgow 70 24 0 35 2 27 5 4 43

Berkshire 8 5 2 2 4 3 0 0 0
Hampshire 9 7 0 0 4 7 0 0 0
Shropshire 6 4 0 0 1 0 0 0 7
Sussex 8 9 2 1 0 1 1 2 0
Wiltshire 7 0 0 3 2 9 0 0 0
Oxfordshire 7 4 0 0 2 4 2 1 1
Essex 2 2 1 0 0 1 0 0 0
Yorkshire 5 1 0 0 1 3 1 1 3
Dorset 9 15 0 0 1 0 1 1 0
Total 155 108 5 44 17 55 11 15 55
Homozygotes 34 0 4 3 9 2 1 11

Table. 4.2. Total numbers of each GR allele found in wild rats (English and Scottish).
Out of a total of 155 rats, 67 were found to be homozygous and 88, heterozygous for the 
corresponding GR alleles. Total homozygous animals are given for each allele.

4.3.2.) Grl haplotypes in wild and inbred rats

Wild rats (n=32) homozygous for CAG repeat alleles were typed by direct 

PCR sequencing for variation at the three silent nucleotide substitution 

sites (coordinates: n l98 , n531, n711 in published sequence of rGR cDNA). 

Most (n=29) rats typed as homozygotes: nl98C, n531T, n711C, with CAG repeat 

lengths of 7, 18, 20, and 23. The remaining three rats typed homozygous for 

flanking markers: nl98T, n531C, n711C, with CAG repeat lengths of 19, 20 

and 22, respectively (see Table 4.5).

The typing results for 14 inbred strains defined 6 haplo types, as shown in 

Table 4.6. The overall quality of sequencing and dem onstrations of 

homozygosity are given in Figure 4.8. Sequence sets were run side-by-side,
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bringing all nucleotide substitu tion sites into the same window of 

sequence, thus simplifying the interpretation.

Grl Allele Number

of

alleles

Allele

frequency

Frequency exp 

homozyg's

9Qbderved

homozyg's

Frequency obs 

homozyg's

7 24 0.17 0.029 5 0.07

18 35 0.25 0.063 6 0.09

19 2 0.01 0.0001 0 0

20 27 0.19 0.036 4 0.06

21 5 0.04 0.0016 2 0.03

22 4 0.03 0.0009 1 0.01

23 43 0.31 0.096 8 0.11

Total 140 0.23 26 0.37

Table 4.3. Frequency of Grl alleles in Glasgow rats.
Total alleles together with expected and observed frequency of homozygotes is given in bold 
at the foot of the table. Homozyg's = homozygotes.

Grl Allele Number

of

alleles

Allele

frequency

Frequency exp 

homozyg's

sQbderved

homozyg's

Frequency obs 

homozyg's

7 60 0.41 0.17 17 0.23

17 5 0.034 0.0012 0 0

18 9 0.061 0.0037 1 0.014

19 15 0.1 0.01 2 0.027

20 28 0.19 0.036 4 0.055

21 6 0.041 0.0017 0 0

22 11 0.075 0.0056 0 0

23 12 0.082 0.0067 3 0.041

Total 146 0.24 27 0.37

Table 4.4. Frequency of Grl alleles in wild rats from other locations.
The frequency of all other Grl alleles are given, with the exception of those from Glasgow 
and Stirling. Total alleles together with expected and observed frequency of homozygotes is 
given in bold at the foot of the table. Homozyg's = homozygotes.
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Strain/rat CAG-repeat Nucleotide at 
nl98

Nucleotide at 
n531

Nucleotide at 
n711

WILD RATS
Stl-3 7 C T C
Fi3&6 7 C T C
GlalO 7 c T C
Gla32 7 c T C
Gla53 7 c T C
Sh29 7 c T C
Su32 7 c T C
Su36 7 c T C
Do92 7 c T C
DolOO 7 c T C

Gla8 18 c T C
Gla26 18 c T C
Gla45 18 c T C
Gla65 18 c T C
Gla67 18 c T C
GlaO 18 c T C
0x59 19 T C C
Gla9 20 c T C
Gla51 20 c T C
Ha9 20 T C C
Su44 20 C T C
Yo84 20 C T C
Gla7 22 T C C
Gla2 23 C T c
Gla63 23 C T c
Gla64 23 C T c
Gla66 23 C T c
Sh30 23 C T c
Yo77 23 C T c
INBRED STRAINS
BC38 7 c T c
BDE123 7 c T c
U62 7 c T c
LH157 19 c T T
OKA108 19 T C c
SHR (NL) 19 T C c
SHR (UK) 19 T C c
SHR-SP 19 T C c
MHS 20 T C c
WKY 20 C T c
MNS 21 C T T
Zucker ob 21 C T T
Zucker lean 21 C T T

Table 4.5. Grl haplotypes in a selection of wild rats and inbred strains.
Wild rats are referred to by shorthand notation. Inbred strains are shown in bold type. 
Haplotypes shown in italics highlight the rarest haplotypes found in wild rats.
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Fig. 4.9. Examples of rat Grl haplotypes.
Nucleotide sequences of a l l e l e s G r / C A G 2 3  and G r l C A G 7  (a ancj b. respective ly) show 
exam ples of n198C, n531T, n711C haplotypes for which c lear hom ozygosity is detectable. 
G r / C A G 1 8  (c ) j shows an example of a rare n198T, n531C, n711C haplotype. Red arrows mark 
the positions of substituted nucleotides in the codon chages: TTC->TTT, TTT->TTC and GAT- 
>GAC, identified using seqencing primers pG, rGR22 and rGR23 respectively (prim ers are 
listed in Appendix 1). Letters A, C, G, T at the top of each sequence lane represent term inating 
nucleotides. Sequences are of the antisense DNA strand.



Haplotype
#

Strains Variation at Grl nucleotide position:

198 223-288' ' 531* 711*

1 BC; BDE; U C 7-CAG T C

2 WKY C 20-CAG T C

3 LH C 19-CAG T T

4 MNS; Zucker-obese; Zucker-lean C 21-CAG T T

5 OKA; SHR; SHR-SP T 19-CAG C C

6 MHS T 20-CAG C C

Table 4.6. Haplotypes of CAG repeat length and same-sense point mutations in the 
coding sequence of rat glucocorticoid receptor.
‘ nucleotide positions based on coordinates in the allele GrlCAG21. tencodes polyglutamine 
repeat in Grl°AG21- (All nucleotide positions relative to m etl).

4.4.) Discussion

In distinction to the hum an receptor, exon 2 of ra t GR contains a 

polymorphic microsatellite comprising a variable number of CAG repeats. 

Microsatellite repeats are a widespread source of genetic variation in 

mammals (Rubinsztein et al., 1995). They are a key tool for the mapping of 

phenotypic traits (see Jacob et al., 1995), and some microsatellites may 

directly influence phenotype e ither through variation  in pro tein  

structure (Ross et al., 1993; Perutz et al., 1994), or by less well defined 

influences over the expression of adjacent genes (Kashi et al., 1997). The 

present finding of a discontinuous distribution of CAG repeat lengths in the 

GR of inbred and wild rats raises fundamental questions about the genetic 

origin of this discontinuity and the endocrine significance of the observed 

variation in the length of the poly glutamine tract.

In the sample of 155 wild rats in this study, homozygotes were identified for 

each allele, with the exception of GrlCAG17, and indicates that the alleles 

are compatible with viable and competative phenotypes. The observed 

frequency of 45% homozygosity was high. Of the 67 homozygous rats, 12 

were trapped in Stirling (Central Region, Scotland) and were homozygous
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for GrlCAG7. The frequency of homozygosity was 37% for Glasgow (70 rats 

trapped; Table 4.3.), and 37% for all the other sites combined (73 rats; Table

4.4.). From the observed frequency of Grl alleles in the Glasgow population, 

an expected frequency of homozygosity was calculated at 23% on the 

assum ption of Hardy-Weinberg equilibrium. This is substantially lower 

than the observed frequency of 37%. This may indicate the existence of 

deem structures in rats with significant levels of inbreeding, similar to 

those reported in wild mouse populations, but further work is needed to 

relate capture sites to the local geography of rat populations.

There was a qualitatively similar distribution of CAG repeat lengths in the 

GR of inbred strains and wild rats. Neither set of animals had CAG repeat 

lengths of less than 7, or between 8 and 16, indicating that these alleles are 

either absent, or at least are significantly under-represented. The inbred 

strains analysed in this study originated from Europe, USA and Japan. It is 

therefore unlikely that the observed allelic discontinuity is due to 

sampling bias, although it is possible that other rat populations exhibit 

atypical allele lengths. Apart from genetic drift due to the effects of chance 

sampling, the observed rGR alleles may have a selective advantage through 

their function as transcription factors. The latter possibility has not been 
resolved.

The observed distribution of rGR alleles may reflect a non-random  

m echanism  by which trip let repeats expand and contract. Though 

discontinuous distributions are relatively uncommon for non-disease 

related alleles, they have been demonstrated for a small number of human 

loci, including HUMRENA4 (renin) and markers DSX 228 and DSX 426 

(properidin P; Coleman et al., 1991). The myotonic dystrophy (DM) locus has 

an unstable (CTG)n repeat in the 3'-untranslated region (3'-UTR) of a gene 

encoding a protein kinase family member (DMPK; Harris et al., 1996). This 

sequence is highly polymorphic in the normal population, presenting 

(CTG)n variants with between 5 and 36 copies (Brook et al., 1992; Zerylnick 

et al., 1995). In the studies of both Brook et al., (1992) and Zerylnick et al., 

(1995), significant numbers of normal individuals had a (CTG)s repeat
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allele. Repeat lengths of (CTG)6 - 9  were very rare and lengths of (CTG)io-15 

were also observed at high frequency. The under-representation of DM 

(CTG)6 - 9  and Grl (CAG)s-16 alleles may have a similar cause: namely that 
Grl (CAG) 7 and DM (CTG)5 repeat alleles may be too stable to create frequent 

length variants, but occasionally mutate through a multi-step process to a 

larger allele size, from which further diversification generates a typical 

series of microsatellite alleles, probably by replication slippage (Sinden 

and Wells, 1992). In primates, there is evidence to suggest that there is a 

general progression towards increased m icrosatellite lengths with 

evolutionary time (Rubinsztein et al., 1995).

The inbred samples analysed here included some closely related strains 

(Table 3.3). Amorat/Wsl and Aristorat/Wsl are congenic strains based on 

LOU/C (respectively: LOU/C.IgK-lb OKA and LOU/C.IgH-12b OKA; 

Greenhouse et al, 1990; Hedrich, 1990); all three have GrlCAG17, which was 

uncommon in the present wild populations. BD strains E, IV, VII, IX and X all 

have GrlCAG7, and originate from coat colour crosses of Druckrey 

(Greenhouse e t al., 1990), mainly from the founding lines BDI-III. The 

origin of strains BC and U (GrlGAG7) are not certain, but both arose in 

Utrecht. Allele GrlGAG7 was common in the wild rat populations sampled 
(Fig. 4.7 and Table 4.1.). Alleles GrlGAG22>23 were found in wild rats only, 

with the latter being relatively common. As expected, none of the 155 wild 

rats sampled exhibited very large allele sizes which might have been 

indicative of a trinucleotide expansion syndrome.

In addition to the expressed genetic variation within the CAG repeat, 

genetic variation was investigated in GR codons at nucleotide positions 198, 

531, and 711 which are silent in effect and do not lead to changes in amino 

acid sequence (these nucleotide coordinates are based on the GrlGAG21 

allele and extends over nucleotide positions 223-288). These four variable 

sites are very close together and constitute haplotypes within which 

recom bination is expected to be very rare. For haplotypes including 
GrlCAG211 four sites extend over a distance of 513 bp in rGR exon 2, 

corresponding to a recombination interval of about 5 x 10~4 cM (Jacob et
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al., 1995). For the range of CAG repeats from GrlCAG7~23, this distance 

corresponds to 471-519 bp, respectively. Laying aside the unlikely 

possib ility  th a t CAG rep ea t lengths of 7-23 are significantly  

recombinogenic, GR haplotypes will therefore on average only be expected 

to be disrupted by recombination once per 200,000 rat generations. Six 

different GR haplotypes were identified from the panel of inbred strains of 

ra t (Tables 4.5. and 4.6.). The synonymous nucleotide differences of 

haplotypes 2 and 6 show that the CAG repeats in these two haploypes have 

separate origins; this also applies to haplotypes 3 and 5 (CAG19). Haplotypes 

5 (CAG19) and 6 (CAG20) do not differ at the other three nucleotide 

positions; since both haplotypes are Wistar-derived, the possibility that 

both are directly related through a mutation in the CAG repeat number 

cannot be excluded. Strains SHR and SHR-SP are hypertensive strains 

derived from outbred Wistar-Kyoto stock and OKA is believed to be a subline 

of SHR (Greenhouse et al., 1990; Otsen, 1995). A close relationship between 

these strains is supported by the presence of GR haplotype 5 in all three 

strains (Table 4.6.). Strains MNS and MHS are Wistar-derived. They have GR 

haplotypes 4 and 6, respectively, which differ at all four sites (Table 4.6.). 

Although it is not known whether the differences in haplotypes arise as a 

result of recom bination or from point m utation events, the results 

presented here suggest that haplotypes 4 and 6 were separate for thousands 

of generations before fixation in the Milan selection lines (Bianchi et al.,
1984) and it is therefore likely that MNS and MHS will show other genetic 

variation in the genome flanking the GR locus. In support of this proposal, 

Figure 4.10. shows a dendrogram of the geneologic relationships between 

63 inbred laboratory rat strains and 124 of their substrains (taken from 

Canzian, 1997). The relatedness of strains was based on a total of 995 genetic 

and biochemical m arker typings and implies a significant degree of 

genetic divergence between strains MHS and MNS.
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Glucocorticoid receptor polymorphism: possible association 
with glucocorticoid based phenotypes in Milan rats

The majority of data in this chapter is not my own work, but resulted from a 
collaborative effort between myself my supervisors and the group of G. 
Bianchi, Department of Nephrology, S. Raffaele Hospital, Milan, Italy. The 
work was in itiated  following the characterisation of glucocorticoid 
receptor steroid binding affinity differences between MHS and MNS strains 
of rat (C. Kenyon and M. Panarelli) and identification of the triplet (CAG)n 
repeat polymorphism, the result of my own work (discussed in chapter 3). 
This polymorphism was used to screen for association between Grl and  
glucocorticoid related phenotypes in F2 rats of an MHS x MNS cross.

5.1.) Introduction

The Milan hypertensive strain of rat (MHS) presents altered renal function 
(Bianchi et al., 1986) and increased adrenocortical activity (Ferrari et ah,
1985) when compared to its norm otensive control strain  (MNS). A 
significant proportion of the MHS hypertension is sustained by the kidney 
(Bianchi e t al., 1984) as demonstrated by a long series of observations, 
starting from studies of renal cross-transplantation between the two 
strains (Bianchi et al., 1986). Recent genetic studies have demonstrated that 
a point m utation within the a-subunit of a heterodimeric cytoskeletal 
protein, adducin, increases Na-K-ATPase activity when transfected into 
renal epithelial cells (Tripodi et al., 1996). In vivo, this mutation affects 
blood pressure, accounting for 40% of the blood pressure difference 
between MHS and MNS, when interacting with a mutated p-adducin subunit 
(Bianchi et al., 1994).

Previous studies have established that MHS exhibits adrenocortical 

hypertrophy, together with higher steroid secretory rates and raised 

plasma corticosterone concentrations compared with MNS (Ferrari et al., 

1985; Stewart et al., 1993). There are also suggestions of mineralocorticoid 

excess in MHS, with extracellular volume expansion, plasma renin 

suppression and increased body sodium content (Fraser et ah, 1994). Taken 

together, these observations might suggest an abnorm ality of HPA-axis
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function, resulting in a reduced  negative feedback regulation  of 

corticosterone synthesis. Inefficient glucocorticoid activity may result 

from reduced access of hormone to the glucocortiocid receptor, or from an 

abnormality of the glucocorticoid mediated regulation of CRF and /o r  POMC 

gene transcription or secretion of ACTH from the hypothalamus. Any of 

these effects might result in raised plasma corticosterone concentrations, 

causing activation of mineralocorticoid receptors. Clinically, similar 

situations arise because of defects in steroid metabolism, or because of 

intrinsic abnormalities of the glucocorticoid receptor (Lamberts et al., 

1992; Arai and Chrousos, 1994; Bronnegard et al., 1996). Steroid metabolism 

has been shown to be different between MHS and MNS, but not in a way 

which would affect steroid binding to adrenocorticosteroid  receptors 

(Stewart et al., 1993).

Recent studies (Kenyon et al., 1994; Panarelli et al., 1995) have suggested 

that the glucocorticoid receptor from strain MHS has a significantly lower 

affinity for steroids (cortisol, aldosterone and dexainethasone and the 

glucocorticoid antagonist, RU486) compared with its normotensive control 

strain, MNS. All ligands tested competed for specific ^H-dexamethasone 

binding sites in the GR from both strains of rat. Ranking, in terms of 

affinity, was the same for e ither s tra in  and  followed the pattern; 

dexamethasome > corticosterone > RU486 > aldosterone.

a.) 120

o — d e xam eth aso n e  
□  — c o r t ic o s te ro n e  
A- — a ld o s te ro n e

MHS M NS
100

—  60

o<u
CL.
tO 4.0

20

0

Ligand (M)
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b.)
★ -  P <  0 .05

d e x a m e th a s o n e  c o r t i c o s t e r o n e  a ld o s te r o n e  R U 4 8 6

LIGAND

Fig. 5.1. Steroid binding in Milan rat liver cytosol extracts.
a.) C om petition  fo r ^H -dexam e thasone  binding sites in GR by se lected g lucocortico id  
agonists and the antagonist RU486 in MHS and MNS.
b.) Bar charts show ing  d iffe rences in a ffin ity for the same g lucocortico id  agonists and 
an tagon is t shown in a.). R eceptor num bers (Bmax) were not d iffe ren t between strains, 
(steroid binding affin ities were determ ined by C. J. Kenyon and M. Panarelli).

Competition binding curves for three of the ligands are shown in Figure
5.1. (for reasons of clarity, RU486 curves which overlap those of 
corticosterone are not shown). Aldosterone and corticosterone appeared to 
compete less effectively for GR binding sites in cytosol from MHS than 
from MNS rats. For all ligands tested, Kd values for MHS were greater than 
for MNS glucocorticoid receptors, indicating a reduced binding affinity 
(Fig. 5.1.). For RU486 the affinity difference did not achieve statistical 
significance. Scatchard analysis of homologous dexamethasone binding to 
GR indicated a one site interaction model for both MHS and MNS, with Kd 
values of 1.39 ±0.15 nM (MFIS) and 1.0 ±0.11 nM (MNS) respectively.

Differences in Kds between strains were greatest for the weaker ligands. 
Compared with MNS, Kd values for MHS GR were 1.39, 2.19, 2.06 and 4.12-fold 
greater  for dexam ethasone, corticosterone, RU486 and aldosterone, 
respectively. The com petition curves for MNS were similar to those 
reported previously for other normotensive strains of rat (Panarelli et al., 
1995; Soro et al., 1995). Bmax values (number of receptor protein molecules 
per unit of total protein) were not significantly different between strains; 
434 ±33 (MHS) and 382 ±43 (MNS) fmol/mg protein.
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5.2.) Materials and methods

Animals
MHS and MNS rat used in steroid binding analysis were obtained from the 
Field Station, University of Sheffield, UK and were maintained at a constant 
tem perature on a 12 h dark, 12 h light cycle with free access to food and 
water. All F2 rats used for genetic analysis were bred in Milan and 
maintained as described by Bianchi eta/., (1994). FI hybrids were produced 
by crossing MHS with MNS. By intercrossing FI progeny, an F2 population 
was obtained, consisting of approximately equal numbers of offspring from 
each reciprocal cross (251 total individuals; 121 male and 130 female).

GR genotype determination
For routine genotyping of the Milan-held rats, genomic DNA was extracted 

from the tail according to a standard procedure (Laird et al., 1991). GR 

sequences spanning the triplet (CAG)n repeats were amplified in 20 ml 

reaction volumes, by combining 250 ng of genomic DNA with 10-20 pmoles 

of each PCR primer (p9 and p l9 : see Appendix 1) and 1U Taq DNA- 

polym erase (Bioline, Glasgow, UK) in a standard  reaction mixture 

containing 2 mM MgCl2, 67 mM Tris-HCl (pH 8.0) 16 mM (NH4)2SC>4, 0.01% 
Tween 20 and 125 |iM of each dNTP. Reactions were cycled 30-times at 94°C 

for 50s, 53°C for 50s and 72°C for 90s with a final extension at 72°C for 5 

min, using a Geneamp PCR system 9600 therm al cycler (Perkin Elmer, 

Norwalk, USA). DNA templates were initially denatured at 94°C for 3 

minutes. PCR products were resolved as described in chapter 3 at 50 watt for 

3 hours in lx  TBE buffer. Amplified GR sequences were identified after 

blotting onto a positively charged nylon membrane (Pall Biosupport 

Division, Portsmouth, UK) and hybridising with com plem entary PCR 

fragments, 2p-labelled using a random primer labelling kit (Statagene, 

USA). Hybridisations were carried out in 10-20 ml sodium phosphate buffer 

(0.5 M, pH 7.2) containing 7% SDS and 10 mM EDTA for 2-6 h at 55°C. 

Membranes were washed in 100-125 mM sodium phosphate buffer 

containing 0.1% SDS at 55°C until the background was sufficiently reduced 

and then autoradiographed, as described in chapter 3.
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Blood pressure measurements

At three months of age, under light halothane anesthesia, cannulae were 

inserted into the carotid arteries of F2 rats and exteriorised at the back of 

the neck through a subcutaneous tunnel. Animals recovered within 5 

minutes and 4 h later the cannulae were connected, without restraint, to a 

Gould BS 3200 blood pressure recorder. For each rat, average values of 

systolic and diastolic blood pressure and heart rate were calculated from 

simultaneous measurements taken at 1 minute intervals over a 1 hour 

period. The body weight was recorded just before surgery (see Table 5.1.).

Urinary volume and calcium excretion

Rats were acclimatised to metabolic cages over a two day period. Urine was 

collected for the following 24 h and the total volume recorded. Urinary 

calcium  c o n ce n tra tio n  was m easu red  by atom ic ab so rp tio n  

spectrophotom etry  (Perkin Elmer 1100B spectrophotom eter), in the 

presence of 0.2% LiCl. Results (Table 5.1.) are expressed as mmoles calcium 

excreted/2 4h.

Statistical analysis
Values of blood pressure, body weight and urinary calcium concentration 

in F2 rats (Table 5.1.), are expressed as the mean ± standard error of the 

mean (SEM). Data from receptor binding studies for cytosols prepared on 

the same day with the same reagents and incubation conditions for age 

matched MHS and MNS rats were compared by two way analysis of variance 

(ANOVA); P-values of <0.05 were considered significant. Data from linkage 

studies were analysed by one-way or two-way ANOVA with Neumann-Keul's 

correction test for multiple comparisons (SPSS statistical package).

Western Blotting

Samples of rat liver proteins extracted for steroid binding analysis were 

analysed by Western blot as described in section 2.2.22. of this thesis.
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5.3.) Results

5.3.1.) Expression levels of the 94 kd GR species in preparations 

of liver cytosol from MHS and MNS

a.)
MW MHS MNS

68 Kd —

43Kd —

b.) MHS MNS MHS MNS

94Kd

Fig. 5.2. Com parison of the levels of Milan rat liver glucocorticoid  receptor 
protein.
a.) Hepatic GR from rat strains MHS and MNS was fractionated into three distinctive 
bands by SDS-PAG E. Heavy bands at 94 Kd represent m ajor GR translations 
initiated from GR m e tl. Minor GR bands at 91 Kd and 79 Kd are most likely to result 
from internal translations initiated from GR met2 and met3 respectively (see text for 
details). MW, high m olecular weight protein markers (GIBCO-BRL). For each strain,
30-40 pg of liver cytosolic extract was loaded per lane.
b.) SDS-m inigels showing reduced amounts of cytosolic extract loaded per rat strain.
Total protein loaded was reduced from 20-30, to 10 pg (samples on left) and finally 
to 2 pg (samples on right). The work presented in this figure is my own.

The size, integrity and expression level of the major GR band (94 Kd) and 

minor translations from met2 (91 Kd) and met3 (79 Kd) (Miesfeld et al.,

1986) were the same for either strain of rat (see Fig. 5.2a.). Using further
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pairs of Milan rats, together with the loading of reduced quantities of 

protein onto SDS gels (30-40pg, down to 2 pg protein), this result was 

confirmed (Fig. 5.2b.).

5.3.2.) Association between GR genotype and phenotypes

The trinucleotide (CAG)n repeat difference between MHS and MNS was used 

to genotype F2 progeny of an MHS x MNS cross. There was no significant 

association between GR genotype and systolic blood pressure when the total 

F2 population was analysed (one-way ANOVA; Table 5.1.). When only 

homozygous animals were taken into account; MNS/MNS 150.1 ± 1.8 mmHg 

(n = 59) versus MHS/MHS 145.4 ± 1.3 mmHg (n = 54); p = 0.04. No significant 

association was found between GR genotype and diastolic blood pressure at 

any level. When the F2 population was analysed according to sex, female F2 

progeny homozygous for the MNS GR allele had significantly higher 

systolic blood pressures than either heterozygotes, or rats homozygous for 

the MHS GR allele (p = 0.02: Table 5.1.).

G lucocorticoid receptor genotype

Group M N S/M N S M NS/M H S M HS/M HS P-value

Systolic
blood
pressure
(mmHg)

all

male

female

150.1 ±1.8 
(n = 59) 
147.9 ±2.7 
(n = 22) 
151.4 ±2.4 
(n = 37)

147.7 ±1.0 
(n =132) 
149.1 ±1.6 
(n = 68) 
146.3 ±1.2 
(n = 64)

145.4 ±1.3 
(n = 55) 
146.2 ±1.9 
(n= 29)
144.4 ±1.7 
(n = 26)

p = 0.04 

NS

p = 0.02

Body
weight
(8)

male

female

439 ±11 
(n = 21) 
276 ±4 
(n = 36)

420 ±5 
(n = 65) 
276 ±3 
(n = 63)

406 ±7 
(n= 29) 
279 ±5 
(n = 26)

p <0.01

NS

Urinary
calcium
(mmol/
day)

male

female

29.6 ±4.8 
(n = 21)
55.6 ±7.6 
(n = 35)

24.0 ±2.2 
(n= 59) 
63.8 ±6.0 
(n = 63)

31.4 ±3.8 
(n = 25) 
89.7 ±8.9 
(n = 24)

NS

p <0.005

Table 5.1. Association between glucocorticoid receptor genotypes and blood pressure, 
body weight and urinary calcium excretion in F2 Milan rats.
P-values for each variable are derived from F2 rats of M HS/M HS verses M NS/M NS  
genotype. NS = non-significant. The raw data from which the values in this table were 
determined was generated by L. Torielli, G. Casari, L. Zagato and G. Bianchi, Milan Italy.
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The body weight of male, but not female F2 rats was associated with GR 

genotype; male rats homozygous for the MNS GR allele were 11% heavier 

than male MHS GR homozygotes (P <0.01). In parental MHS and MNS rats of 

the same age, body weights were also significantly different (MHS, 413 ±8; 

MNS, 387 ±8; P = 0.02, n = 10).

In female but not male F2 progeny, MHS GR homozygotes excreted 

significantly higher levels of calcium than MNS GR homozygotes (p<0.005); 

strain differences in calcium metabolism in Milan rats have been described 

elsewhere (Cirillo et al., 1989). There was no indication that heart rate and 

urine volume were different between strains (data not shown).

5.4.) Discussion

Previous studies of phenotypic differences between MHS and MNS have 

implicated renal function in the control of blood pressure (Persson et al.,
1985). The genes coding for the epithelial membrane protein adducin, were 

found to contain m utations giving rise to 40% of the blood pressure 

increase in MHS (Bainchi et al., 1994). One hypothesis was that an 

abnorm ality of GR function might account for part of the remaining 

difference in blood pressure between MHS and MNS. This was the subject of 

the investigation presented in this chapter.

Compared with MNS, the MHS strain of rat shows hypertrophy of the 

adrenal cortex with increased adrenocortical activity. The result is an 

increased cortical secretion rate and raised plasm a corticosterone 

concentrations (Mantero et al., 1983; Ferrari etal., 1985; Stewart etal., 1993; 

Fraser et al., 1994). Negative feedback control of pituitary ACTH secretion 

by GR in conditions of glucocorticoid excess would be expected to suppress 

overactivity of the adrenal cortex. Any deviations from normal GR function 

are therefore likely to be associated with abnormal patterns of hormone 

secretion (Mantero et al., 1983; Brandon et al., 1991; Hurley et al., 1991; Cole 

et al., 1993; Stewart et al., 1993; Keightley and Fuller, 1994). With reduced
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affinity of GR for its hormonal ligand, higher than normal concentrations 

of corticosterone, together with a possible up-regulation of GR expression 

would be required to maintain homeostasis. On the other hand, conditions 

of glucocorticoid excess which do not result from abnormalities of GR 

function, would be expected to result in down regulation of the GR message 

in order to compensate for the overproduction of glucocorticoids (see  

section 1.3. and references therein). A reduced receptor affinity (either as 

a primary or secondary mechanism) may therefore be a real phenomenon 

in MHS in vivo, since no evidence of hepatic GR down regulation was 

identified (Fig 5.2.).

Comparisons of steroid binding in hepatic cytosol from MHS and MNS rats 

have suggested that affinities for dexamethasone, corticosterone and 

aldosterone are lower in MHS. Differences in receptor affinity were least 

for the strongest ligand (dexamethasone) and greatest for the weakest 

ligand (aldosterone). Binding capacities (Bmax) were not significantly 

different between strains (see Figure 5.2.). This observation is supported by 
previous reports of non-significant differences in the levels of GR mRNA 

in both liver and kidney from these rat strains (Stewart et al., 1993). The 

apparent lack of GR down-regulation in MHS might be explained by a 

complementary reduction in steroid binding affinity accommodating the 

increase in plasma corticostreone levels. In patients with primary cortisol 

resistance (Arai and Chrousos, 1994; Bronnegard e ta l ,  1996), a lowering of 

GR binding affinity is predicted to cause an increase in blood pressure due 

to an increase in cortisol concentration acting on type I mineralocorticoid 

receptors. The resulting pathophysiology is similar to that found in MHS 

rats: increases in body sodium, plasma volume and plasma renin  
suppression.

The specificity and sensitivity of glucocorticoid horm one actions are 

controlled by a variety of factors including: 1.) access of hormone to the 

receptor which is regulated by enzymes and by cell membrane steroid 

transporters; 2.) a number of accessory proteins which, when complexed 

with the receptor, maintain a high affinity binding state and facilitate

141



translocation to the nucleus and interaction with glucocorticoid response 

elements in the DNA; 3.) tissue-specific receptor expression; 4.) the 

primary structure of the receptor protein. Most of these factors can be 

excluded as likely explanations of the suggested differences in GR binding 

affinity. Lower hepatic llb -hydroxystero id  dehydrogenase (11(3-HSD) 

activity has been observed in MHS compared with MNS (Stewart et al.,

1993). The liver isoform of llp-HSD favours the reduction of 11- 

dehydrocorticosterone (biologically inactive) to produce corticosterone 

(Jamieson et al., 1992). Reduced levels of llp-HSD in MHS liver might 

therefore limit access of corticosterone to GR in vivo. However, reduced 

11 p-HSD activity is unlikely to be a cause of reduced receptor binding 

affinity in MHS in vitro for two reasons. Firstly, llp-HSD is a microsomal 

enzyme which would be absent from the cytosolic extracts used in these 

experiments. Without added co-factors, even residual activity would be 

negligible. Secondly, the ranking of the differences in affinity between 

MHS and MNS for the steroids tested (aldosterone > corticosterone > RU486 > 

dexamethasone) does not match substrate specificity for llp-HSD (Panarelli,

1994). The involvement of plasma membrane steroid hormone transporters 

in the regulation of receptor binding in cytosol is unlikely.

In clinical cases of steroid resistance, reduced binding affinity often 

resu lts  from  recep to r th erm o lab ility  (W erner e t al., 1992). 

Characteristically, for these receptors, steroid binding affinity is markedly 

decreased by prolonged incubation at elevated temperatures (up to 37°C) 

which is most likely the result of the dissociation of heat shock proteins 

(hsp) from the receptor. High affinity binding of GR is only observed 

when the receptor is complexed with other proteins including hsp90 and 

hsp70 (Pratt, 1993). Panarelli et al., (1995) were able to show that GR from 

the SHR strain of rat (see chapter 3), which has a higher affinity for 

dexamethasone than the WKY strain, also shows a greater thermostability. 

No such difference between MHS and MNS receptors was found (results not 

shown).
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Comparison of GR coding sequences from MHS and MNS strains of rat 

revealed no structural m utations which might explain the apparent 

differences in receptor steroid binding affinity. The only sequence 

difference identified was a polymorphism of the trinucleotide (CAG)n 

repeat (described in chapter 3). The MHS GR coding sequence has one CAG 

repeat less than that of MNS. While it is unlikely that the (CAG)n repeat 

polymorphism  would account for the suggested differences in steroid 

binding between strains ((CAG)n repeat expansions in the hum an 

androgen receptor have no m easurable effect on steroid  binding; 

Chamberlain et al., 1994) possible effects on the transcriptional regulatory 

properties of GR remain to be determined (see chapter 7). The lack of down 

regulation of GR by elevated plasma corticosterone levels (Stewart et al., 

1993 and pp 134-135 of this chapter) is suggestive of reduced GR activity in 

MHS.

The level at which glucocorticoids affect body weight is difficult to 
interpret. Low doses of glucocorticoid are required to m aintain normal 
growth (Kenyon et al., 1986) whereas supraphysiological doses are 
catabolic (Tonolo et al., 1988). Similar effects are seen in children whereas 
adult patients with Cushing's disease tend to develop central obesity. 
Transgenic mice expressing an antisense GR message (displaying partial 
and tissue specific depletion of GR) develop obesity (Pepin et al., 1992). 
Parental MHS rats are generally heavier than MNS, which is associated 
with hyperlipidaemia in the hypertensive strain. However, in F2 rats the 
MHS GR allele is associated with reduced body weight in male rats. It is not 
known whether this is due to changes in lipid metabolism or a difference 
in growth rate. Grl may represent a QJL which is in close linkage with 
another gene which affects weight gain. It is of in terest that a gap 
junction protein locus on chromosome 18 is also found associated with body 
weight (Katsuya et al., 1995).

Adrenal hypertrophy has been described in MHS, which appears to be 
caused by hyperplasia and hypertrophy of zona glomerulosa cells, rather 
than zona fasciculata cells (Mantero et al., 1983). Whether reduced negative 
feedback of ACTH secretion due to abnormal GR properties can account for 
adrenal hypertrophy in MHS is unclear.
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A significant association (p < 0.005) was found between the MHS Grl 
genotype and urinary  calcium content in female F2 homozygotes. 
Hypercalcuria in the Milan hypertensive stra in  has been reported 
previously  (Cirillo et al., 1989). Despite norm al serum  calcium 
concentrations, in fasting conditions, urinary calcium is increased, while 
bone calcium content is significantly reduced. These findings strongly 
suggest that hypercalciuria in MHS may be explained by altered renal 
calcium handling. The incidence of hypercalcuria in F2 rats homozygous 
for the MHS GR allele suggests the possibility of a mutation, either in Grl 
(in GR itself or more likely in a closely linked gene involved in calcium 
metabolism) or at another locus in close linkage with Grl. Why this 
phenotype is restricted to female rats is unclear. This difference may 
reflect the mechanistic complications of calcium metabolism, which is 
diversified still further by gender. As described in chapter 4, the Grl 
haplotypes between MHS and MNS show a high degree of genetic 
divergence which, on the basis of their geneologic relatedness, is likely to 
exist elsewhere in the Milan rat genomes, including Grl.

One way to show whether or not Grl has an effect in determining 

phenotype in MHS could be the development of congenic strains of rat, in 

which Grl is essentially expressed in vivo on a normal or 'control1 genetic 

background (Weil et al., 1997). The development of such strains in Milan is 

currently in progress, in which the MHS Grl locus will be recombined into 

the normotensive (MNS) genetic background by a process of cross­

breeding. The development of MHS Grl-linked phenotypes in the resulting 

hybrid strains might be indicative of a role for Grl in contributing to MHS 

phenotypes.
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Chapter 6 
Results 4
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Steroid binding by glucocorticoid receptor proteins expressed  

in tissue culture

6.1.) Introduction

Functionally, trip le t repeat expansions in the coding sequence of 

hormonally regulated transcription factors such as GR may be important at 

either of two levels: effects on steroid binding affinity and the ability of 

the molecule to function as a transcription factor.

Presented in this chapter is a detailed examination of the ability of rat GR 

proteins with variable length polyglutamine tracts to bind steroid ligands. 

Binding experim ents for two steroid ligands, dexam ethasone and 

corticosterone, were carried out for both natural and constructed GR alleles 

following expression in a selected cell line. Tissue culture cells provide a 

uniform system in which all cellular components, including proteins of 

the GR heterocomplex and concentrations of endogenous ligand, are 

standardised for each allele tested. This allows an unbiased functional 

assessment of GR variants.

Part 1

6.2.) Analysis of natural GR alleles expressed in COS-7 cells

6.2.1.) Methods for cloning of natural GR alleles

The expression clones pcDNAlNeo-rGR21, 20, and 7 were constructed from 
the following plasmids: pRBalll7 (see chapter 3, Fig. 3.2.); pSL301 
(Invitrogen, Abingdon, Oxon, U.K.), a 3.2 kb bacterial cloning vector 
containing a superliker housing 46 novel restriction sites. The plasmid also 
carries a ColEl replicon (promoting high copy number) and an ampicillin 
resistance gene; pcDNAlNeo (Invitrogen), a 7.0 kb eukaryotic expression 
vector carrying both colEl and SV40 polyoma replicons (promoting high 
copy numbers in bacterial and eukaryotic cells, respectively). Nine novel
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restiction sites are located in a short polylinker, preceded by a CMV 
prom oter. A kanamcyin resistance gene is included for selection of 
recombinants in E. coli. All methodology for DNA restriction and cloning 
steps were as described in sections 2.2.6. and 2.2.10. Resulting clones were 
verified either by restriction analysis or by sequencing across ligation 
junctions.

Step 1: Deletion o f  single Ncol site from pSL301
A convenient method of constructing natural rat GR cDNAs with differing 
triplet repeat lengths, was to substitute the 5' 317 bp from an existing rGR 
cDNA (e.g. from pRBalll7) with similar sequence, PCR-amplified from 
specific GR alleles containing triplet (CAG)n repeats of unique length. This 

was possible using a novel Ncol site in the GR coding sequence starting at 
n317 (relative to m etl) and similarly required a vector, either without an 
Ncol site, or a single Ncol site which could be deleted such as pSL301. Ncol 
site deletion from pSL301 was achieved by Ncol-restriction, followed by 
Klenow fill-in of 3' recessed ends (described in section 2.2.10.) and re­
ligation using T4 DNA ligase producing the vector, pSL301.1 (Fig. 6.1c.).

Superlinker
a.) pSL301

c.) pSL301.1

1

 ►
AmpR

B X

3.3 kb
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Fig. 6.1. Removal of Nco^ site from pSL301, producing pSL301.1.
a.) pSL301 native vector.
b.) Ncol restriction of eukaryotic expression vector pcD N A IN eo  and pSL301. pcD N AIN eo 
conta ins four A/co1sites, making it unsuitable for rGR Ncol m anipulations. Lanes 1 and 3, 1 
Kb DNA ladder; lane 2, pcD N A IN eo  cut with A/co1; lane 4, pSL301, uncut; lane 5, pSL301 
Nc o l cut. Linear vector migrates at an expected 3.3 Kb.
c.) M inimal restriction map of pSL301.1 (superlinker /Vco1 site deleted).

Step 2: PCR amplification o f  GR triplet repeat DNA, Cloning and sequencing 

Amino-terminal GR coding sequences of genotypes 20  (from rat strain 
MHS) and 7 (from rat strain BC: chapter 3, Table 3.3.), including the first 
ATG start codon and triplet (CAG)n repeat, were amplified from rat genomic 
DNA as described in section 2.2.3. using Vent^M p>NA polymerase in 
conjunction with PCR primers rGR19 (carrying a BamHl restriction site) 
and pG (Appendix 1). Vent IM DNA polymerase was necessary to produce 
mutation-free PCR products. Amplified DNA was digested using BamHl and 
Ncol, column purified to remove excess PCR primers and digested DNA ends 
(section 2.2.10.) and then ligated into the BamHl/Ncol cut pSL301.1. 
Following transformation of DS941 competent cells, a selection of colonies 
from each rat strain DNA-specific ligation were picked into 5 ml LB medium 
supplemented with ampicillin (50pg/ml) and grown overnight at 37°C as 
described in sections 2.2.11. and 2.2.12.

a.) 1 2 3 4 5 6 7 8  b.) 1 2 3 4 5 6 7 8

3.0 Kb

3.0 Kb

9 10 11 12 13 14 15 16

C.)

3.3 Kb

344 bp 
302 bp

Fig 6.2. Identification of pSL301.1 clones containing rGR trip let repeats.
a.) Examples of m iniprepped DS941 transform ed using pSL301.1-rGR trip le t repeats PCR 
product ligations (see text for details). Lanes 2-8, potential MHS (20-repeat) transform ants; 
lanes 10-16, potential BC (7-repeat) transformants; lanes 1 and 9, 1 Kb DNA ladder.
b.) C lones from panel a.) digested using BamHl and A/col. Lanes 3 and 14 identify potential 
recombinants; lanes 1 and 9, 1 Kb DNA ladder.
c.) Following BamHl and Ncol digestion, strain BC and MHS specific clones were identified 
by fractionation on 2% gels. Lane 1, I Kb DNA ladder; lane 2, pSL301.1 with no insert; lane 3, 
MHS triplet repeat positive clone; lane 4, BC triplet repeat positive clone.

Figure 6.2a. shows examples of plasmid miniprep DNA from each set of 
clones. A second round of BamHl/Ncol digestion was able to identify those
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plasmids containing a PCR fragm ent of the expected size. Faithful 
amplifications from each GR allele were identified by sequencing 5-10 gg 
of plasmid DNA from sense and antisense primers p9 and p l9  respectively 
(Appendix 1), using sequenase version 2.0 for plasmid sequencing (section 
2.2.13.). Clones carrying mutation-free inserts were preserved by streaking 
onto LB-ampicillin plates. A clone of each GR genotype was grown as a 
midiculture to provide DNA for further subcloning.

Step 3: Subcloning o f  rat GR cDNA from pRBalll 7 into pSL301.1 
Manipulation of the rat GR coding sequence required an initial subcloning 
of the entire cDNA from pRBalll7  (containing one Ncol site) into the 
vector pSL301.1. The rGR cDNA (2.8 kb; comprised of the receptor open 
reading frame, plus 24 nucleotides of the 5' UT and the first 360 nucleotides 
of the 3'UT) was lifted from pRBalll7 by BamHl restriction and ligated bi- 
directionally into pSL301.1 at a unique BamHl site. Linearised vector DNA 
(Fig. 6.3b) was de-phosphorylated using calf intestinal phosphatase (CIP: 
see section 2.2.10.) to prevent vector re-annealing. This resulted in the 
clone pSL301.1-rGR22 (Fig. 6.3f.).

1 2 3 4 5 6 b.) 1 2 3

3.3 Kb 2.8 Kb
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f.) pSL301.1-rGR 21

B N  X B X

AmpR
rGR 21 cDNA 3’UT

6.1 kb

Fig. 6.3. Subcloning of the entire rat GR cDNA into pSL301.1.
a.) Restriction analysis of pRBal117 confirmed authenticity. Restriction enzymes used were: 
lane 2, BamHl, Iane3, Bgl\l, Iane4, N ed ; Iane5, Xbal, lane 6 H/'ndlll. Lane 1, 1Kb DNA ladder.
b.) Band purified Bam HI-cut pSL301.1 vector (lane 2) and rGR cDNA insert (lane 3). Each 
lane shows a loading of approxim ately 50 ng of DNA. Fragments were ligated at a ratio of 
1:1.
c.) C lonal selection showing examples of potentially positive recombinants (lanes 3 and 8).
d.) and e.) Restriction analysis of recombinants to check orientation of possible rGR inserts, 
using d.) EcoR1, lanes 2-8. Lane 1, 1 Kb DNA ladder and e.) Bam Hl, lanes 2-5, BgHI, lanes 
6-8 and 10 and Ncol, lanes 11-14.
f.) Linear map of clone pSL301.1 -rGR27.

Step 4: Removal o f  3 '-BamHl site from pSL301.1-rGR21
The BamHl/Ncol subcloning required to produce GR triplet (CAG)n repeat 
length variants would be compromised by the presence of both 5' and 3' 
BamHl sites. The 3' site was therefore removed by Xbal restriction at sites 
closely flanking the 3' BamHl site, one in the rGR 3'UT (at position n2815: 
nucleotide coordinate taken from the published sequence) and the other at 
the 3' end of the pSL301.1 superlinker (Fig. 6.3f.)- pSL301.1-rGR21 was 
digested with Xbal, the 87bp Xbal/Xbal  fragment removed (isolation of 
larger clone fragment by gel electrophoresis followed by band excision 
and dialysis: section 2.2.10.) and the clone religated through common Xbal 
cohesive ends. The resulting clone was named pSL301.1-rGR2iX£>a (Fig.
6.4.).

pSL301.1-rGR 21 Xba

6.1 kb

rGR 21 cDNA
AmpR

3’UT

Fig. 6.4. Rat GR clone pSL301.1-rGR27Xba.
Removal of the 3' BamHl site from clone pSL301.1 -rGR27 gave rise to a clone with novel 
BamHl and Xba  I sites, thus allowing simple directional subcloning into the mammalian 
expression vector pcDN AINeo.

Step 5: Amino terminal BamHI/NcoI fragment replacement
The clone pSL301.1-rGR22X£>a was digested with BamHl and Ncol and the
larger vector fragment isolated and purified as described in section 2.2.10.
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pSL301.1-rGR clones containing mutation-free PCR amplified GR inserts of 

differing polyglutamine tract length (from step 1) were also digested (from 

midiprepped DNA) with BamHl and Ncol. Insert DNA fragments were band 

fractionated on 1.5% agarose gels, purified by dialysis (Fig. 6.5a.) and 

substituted directionally into the linearised clone pSL301.1-rGR21Xba (Fig.

6.5c.).

a.)

5.8 kb

b.)

344 bp 
302 bp

1

5756 bp

344 bp 
302 bp

c.) pSL301.1 rGR 20  and 7 Xba

B N
1

AmpR

i i
20
7

rGR cDNA

N

bd
21

B N

B N

d r i  pcr
20
7

rGR cDNA

6.1 kb

6.1 kb

Fig. 6.5. Replacem ent of trip let (C A G )n repeat containing am ino term inal fragm ent of 
rGR cDNA.
a.) Purified DNA fragm ents used in triplet repeat subcloning. Lane 2, 5.8 Kb BamH\/Ncd cut 
pSL301.1-rGR27 Xba ; lane 3, 344 bp strain MHS triplet repeat specific PCR product insert; 
lane 4, 320 bp strain BC triplet repeat specific PCR product insert. Lane 1, 1 Kb DNA ladder.
b.) Verification of positive trip le t repeat variant clones. Lane 2, BC specific; lane 3, MHS 
specific; lane 1, 1 Kb DNA ladder.
c.) S trategy for Bam\-\\/Nco\ fragm ent replacement, producing 20 and 7 CAG repeat variant 
clones.

Potential recombinants were selected as described in Figure 6.3 and 

verified by BamHl/Ncol  restriction (Fig. 6.5b.) which also demonstrates
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maintenance of the Ncol site in the coding sequence of rGR. Because no 
o ther manipulations were made, BamHl/Ncol digestion was considered a 
sufficient check for these clones.

Step 6: Subcloning o f  full length rat GR cDNAs into pcDNAINeo 
Clones pSL301.1-rGR2J, 20 and 7 Xba, together with pcDNAINeo (polylinker) 
were digested with BamHl and Xbal. rGR cDNAs and linearised pcDNAINeo 
were purified (Fig. 6.6c.) and ligated as described previously (Fig. 6.5.).

a.) pcDNAI Neo

7.0 kb

pCMV SV40 intron/pA SV40 Polyoma SV40 p4

b.) pSL301.1-rGR 21, 20, 7 Xba

B N

-hrt
rGR 21, 20, 7 cDNA

AmpR
3’UT

6.1 kb

c ) 1 2  3

7.0 Kb 

2.8 Kb

d.) pcDNAI Neo-rGR 21, 20, 7

B N

rGR 21, 20, 7 cDNA

pCMV

3 ’UT
SV40 intron/pA

9.8 kb

SV40 Polyoma/ 
SV40pA
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Fig. 6.6. Subcloning of rGR cDNA from pSL301.1 into m am m alian expression vector 
p cD N A IN eo.
a.) Liner map of vector pcDNAI Neo.
b.) General liner map of pSL301.1 -rGRXba clones.
c.) Band purified Bam HI/Xbal-cut pcD N A IN eo  (Iane2) and example of rGR cDNA (21 repeat: 
lane 3). Lane 1, 1 Kb DNA ladder.
d.) General liner map of pcDNAI Neo-rGRXba clones.

The orientation of rGR m etl ATG was confirmed for each pcDNAlNeo-rGR 
expression clone. Figure. 6.7c. shows part of the polylinker and ATG m etl of 
clone pcDNAlNeo-rGR21 as an example. Clone pcDNAlNeo-rGRJ8 was 
isolated following selection for pcDNAlNeo-rGR2D clones in DS941. The 
authenticity of this clone was verified by sequencing of the triplet repeat 
and immediate flanking sequences, and by restriction analysis (see Fig.
6.7.). Prior to COS-7 cell transfection, all rGR cDNA expression clones were 
purified by cesium chloride density gradient centrifugation (Fig. 6.7d.).

a )  1 2 3 4 5 6  b.) 1 2 3 4

c . )

T
A -
C

d ) 1 2 3 4 5
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Fig. 6.7. Analysis of pcD N A I Neo-rGR clones.
a.) R e s tric tion  an a lys is  of p c D N A IN e o -rG R 2 d  is show n as an exam p le . P lasm id  D NA w as 
d ig e s te d  w ith  B a m H l ,  Iane2; X b a l ,  Iane3 ; B am H l / Xba l ,  Iane4; BamH l / Nc o l ,  Iane5  and 
B am H I/E coR I, Iane6. Lane 1, 1 Kb DNA ladder.
b.) Nco l  res tric tion  ana lys is  of c lones  p cD N A I N eo-rG R 27, 2 0  and 7 (lanes 2-4, respective ly). 
Lane 1, 1 Kb DNA ladder.
c.) S equenc ing  o ve r m e tl ATG  con firm ing  o rien ta tion  of rGR cD N A  in p c D N A IN e o  c lones. 
C lones w ere  sequenced  from  the  an tisense  prim er, rG R 29 (A ppend ix  1). T he  le tte rs A, C, G 
and T  above  sequence  tracks rep resent te rm ina ting  nucleotides.
d.) p c D N A I N e o -rG R 2 7 , 2 0 ,  18  and 7 c lones, lanes 2-5, respective ly . 1 pg of p lasm id  DNA 
w as loaded per lane. Lane 1, 1 Kb DNA ladder.

Construction o f  triplet repeat negative clone, pcDNAI Neo-rGRg (-)
A GR clone in which the triplet (CAG)n repeat and first two start codons 

(metl and met2) were deleted, was constructed using the pSL301.1-rGRcDNA 
clone diagrammed in Figure 6.5c. In place of the subcloned rat strain 
specific PCR product, the BamHl/Ncol gap was closed using a BamHl/Ncol- 
ended double stranded oligo, constructed from oligo half sites rGR32 and 
rGR33 (Appendix 1).

a.) PSL301.1 rGR cDNA

B N
6.1 kb

rGR cDNA

AmpP

5 ' >  GATCCGCCGTTTCACTGTC < 3 ' -rG R 32
3 '>  GCGGCAAAGTGACAGGTAC < 5 '  -rG R 33

b.) pSL301.1 rGR p (-) cDNA

B N
5.8 kb

rGR cDNA

AmpP

Fig. 6.8. Rem oval of trip let (C A G )n repeat and first two start ATG codons from  rGR 
cDNA.
a.) pSL301.1 B a m H l / N c o l - c u t  The  insert o ligo  fragm en t is show n in red. O ligo  ha lf s ites  are 
deta iled  in A ppend ix  1.
b.) R esu lting  trip le t repeat nega tive  c lone  pS L301 .1 -rG R  p(-) cD N A . B, B am H l; N, Ncol ,  X, 
Xbal .

The resulting rGR cDNA was then subcloned into the expression vector 
pcDNAINeo as previously described.
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a.) pSL301
S uperlinker  

B X

AmpR

b.) pSL301.1

AmpR I
c.) pSL301.1-rGR 21

B N

Amp R

d.) pSL301.1-rGR 21 Xba

B N

rGR 21 cDNA

I
AmpR

rGR 21 cDNA

J
e.) pSL301.1 rGR 20  and 7 Xba

8 N rGR cDNA1

►

N

b d
21

Amp R

V

B X

B N 

t l j  PCR
20
7

B N

:i±
AmpR

20
7

rGR cDNA

X B X

3’UT

3'UT

3 . 3  k b

3.3 kb

6.1 kb

6.1 kb

6.1 kb

6.1 kb

Fig. 6.9. Summary of the subcloning of rat GR cDNA from clone pRBal 117 
into pSL301.1.
a.) Manipulation vector pSL301, showing superlinker w ith positions of unique A/col, 
BamH\  and Xb a  I restriction sites.
b.) Deletion of Ncol  site from  pSL301, producing vector pS301.1.
c.) BamHl  ligation of 2.8 kb rat GR cDNA from clone pR B a ll 17 into pS L301.1.
d.) Removal of 3 ’ BamHl site from cDNA cloning site.
e.) R eplacem ent of 5 ’ BamHl /Ncol  restriction fragm ent (genotype 21) ,  with sim ilar PCR 
am plified fragm ents of genotypes 2 0  and 7 (see text for details).

Restriction sites are as follows: N, Ncol: B, BamHl; X, Xbal:  H, Hind  III. AmpR- Ampicillin 
resistance gene. 3’UT, GR untranslated sequence. ORF, open reading frame. PCR, GR 
amplified PCR product DNA. kb, kilobase pair.



6.2.2.) Culture of COS-7 cells and transfection with pSVp-gal and
pcDNAlNeo-rGR clones

The initial cell line chosen for transfection and GR steroid binding 
experiments was COS-7, which contains trace levels of endogenous GR. COS- 
7 cells are derived from CV-1 cells but, unlike CV-1 cells, contain the SV40 
T-antigen, promoting high copy number of transfected plasmids carrying 
the SV40 origin of replication (Gluzman, 1981).

Pilot experiments of transient transfection into COS-7 cells using DOTAP 
were carried out with the constitutive p-galactosidase expression clone 
pSVp-gal transfected at varying concentrations, p-galactosidase expressing 
cells were identified 48 h post transfection by X-gal staining (section 
2.2.18.), which showed the relative num bers of transfected cells. For 
preliminary analysis of GR expression and subsequent GR expression for 
steroid binding, cells at 80% confluence, were transfected with varying 
quantities of pcDNAlNeo-rGR expression clones (10 \ig for steroid binding 
assay) DNA using DOTAP (section 2.2.17.). COS-7 cells were grown on 10 cm 
tissue culture dishes (Nunclon, GIBCO-BRL) in DMEM prior to and 
throughout the 'transfected' growth period.

6.2.3.) Western blotting using an rGR-specific monoclonal
antibody

Prior to the use of GR monoclonal antibody Mab250, an optimal working 

concentration was determ ined by dot-blot analysis (section 2.2.22.). 

Antibody at dilutions of 1:500 and 1:1000 were incubated with strips of PVDF 

membrane spotted with rat liver cytosol extract, prepared as described in 

section 2.2.21.. Cytosol was spotted at concentrations of: 0.01-0.02, 0.1-0.2, 2 

and 10 ng total protein.

GR protein from alleles, GrlCAG 18> 20> and 21 expressed in COS-7 cells was 

analysed on 15x20 cm 8% SDS-polyacrylamide gels (section 2.2.22.). Aliquots 

of transfected cells were lysed directly in SDS-gel loading buffer prior to 

gel loading to try and avoid unnecessary disruption of the GR protein. 

Samples were band fractionated against prestained high molecular weight 

protein standards and Sprague Dawley rat liver cytosol extract.
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Proteins were blotted onto PVDF membrane and probed using the rat GR N- 

term inal specific monoclonal antibody Mab250 at a dilution of 1:750. 

Specific antibody binding to rat GR was detected autoradiographically 

using the ECL Western blotting kit (see section 2.2.22.).

6.3.) Results

6.3.1.) Expression of p-galactosidase in COS-7 cells

Cells successfully transfected with pSVp-gal and therefore expressing (3- 

galactosidase appeared blue following staining with X-gal. Figure 6.10. 

shows the proportional increase in numbers of blue cells with increasing 

concentrations of transfected plasmid DNA (Fig. 6.10. panels a.) to c.)). The 

transfection of a completely unrelated vector (pcDNAINeo) produced no 

blue cells (Fig 6.10 panel d.)). Under optimum conditions, it is recommended 

that DOTAP can promote transfection efficiencies of up to 50% or more, 

depending on the cell type and the quality of transfected DNA. This level of 
transfection was considered attainable with around 5-10 îg of pSVp-gal DNA 

(Fig 6.10. panels b.) to c.)). A quantity of 5 îg was therefore chosen as the 

starting concentration of GR clone DNA in testing for the expression of GR 

proteins in COS-7 cells.

6.3.2.) Expression of rat GR proteins in COS-7 cells

Detection o f overexpressed GR proteins
Following 48h growth, COS-7 cells transfected with GR expression clones 

were harvested, disaggregated and counted using a haemocytometer. Cells 

were pelleted and washed twice in ice cold PBS (pH 7.4). Routinely, 1-2x10^ 

cells were harvested per 10cm plate. Figure 6.11b. shows the level of GR 

expression in approximately 1x10^ cells per GR clone.

All clones were expressed, producing similar levels of GR protein. No 

obvious differences in protein stability were found. A low level of 

endogenous GR was also detected in untransfected COS-7 cells (Fig 6.11., lane
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Fig. 6 .10 . C O S -7  ce lls  transfected  w ith  the co n s titu tive  [3-galactosidase 
expression clone pSVp-gal.
Cells were transfected with: a .) 2 pg, b.) 5 pg or c.) 10 pg pSVp-gal. Positively 
transfected cells (expressing (3-galactosidase) appeared blue following treatment with 
X-gal/IPTG. Cells transfected with native pcDNAINeo were unable to breakdown X-gal 
and remained unstained (panel d.)). All plasmid DNA was transfected using DOTAP 
(see text for details).



6). Transfection with the vector pcDNAlNeo alone (Fig. 6.11., lane 2) 

produced no noticeable increases in the level of GR.

Fig. 6 .11. Specific  binding of rat g lucocortico id  receptor prote ins  by rat GR 
monoclonal antibody Mab250.
a.) Dot blot of rat liver cytosol extract: dot 1, 0.1-0.2; dot 2, 1-2, dot 3, 10-20 and dot 4, 
100 gg total protein, probed with differing concentrations of Mab250; panel A, 1:500 
dilution. Panel B, 1:1000 dilution.
b.) Western blot of rat GR proteins expressed from different GR alleles in COS-7 cells and 
separated on an 8% SDS polyacrylamide midi-gel. Lane 1, 50 pg rat liver cytosol extract 
(Sprague Dawley: size standard). Lanes 2-5, COS-7 cells transfected with 5 pg each of: 
native pcDNAlNeo; lane 2 and pcDNAINeo-rGR27; 20 and 7, lanes 3-5, respectively. 
Lane 6, untransfected COS-7. Lane 7, Prestained high molecular weight size markers 
(GIBCO). Relative marker positions are shown. Each loading in lanes 2-6 represents the 
proceeds of 1x10® cells (see text for details).

Evidence o f  additional GR molecules

The size of the highest molecular weight GR band (Fig 6.11., lanes 1-6; 94 

kd) was verified using molecular weight size standards (GIBCO, U.K.) and
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Sprague Dawley rat strain hepatic GR run in parallel (Fig. 6.11, lanes 7 and 

1 respectively). Expression of rat GR proteins from the pcDNAlNeo vector 

produced evidence of an additional GR molecule which was not expressed to 

a significant level in rat liver (Fig. 6.11, lane 1). In COS-7 cells, this 

add itional GR species migrated faster than  full length (94 Kd) rGR, 

suggesting it might have arisen from an in ternal translation event. 

Expression of pcDNAlNeo-cloned rat GR alleles in CV-1 cells, (which is 

included at this point to help identify the problem with pcDNAlNeo clones 

and  will be discussed in greater detail in part 2 of this chapter) also 

produced an additional GR band. This migrated more slowly than the 94 Kd 

GR species (Fig. 6.12.), suggesting a translation initiation from within the 

pcDNAlNeo vector.

1 2 3 4

Fig. 6.12. Com parison between pcD N A lN eo  and pSTC-vector directed expression  
of the GR 21 allele in CV-1 cells.
Lane 1, high molecular weight markers (GIBCO). Lanes 2-4; GR protein expressed from 
clones; pSTCrGR3-556 (LBD (-) clone, described in part 2 of this chapter) (lane 2); 
pSTCrGR27 (Iane3) and pcDNA1Neo-rGR27 (lane 4). Lanes 2-4 were loaded with 20-30 
pg of total cellular protein extracted by sonication (detailed in section 2.2.21.)

This additional GR form was absent from rat liver cytosol preps and was 

undetectable in untransfected CV-1 cells (e.g. Fig. 6.20.), or the rat 

hepatoma cell line 2S-Fasa (e.g. Fig. 6.23.).
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Steroid binding by GR expressed in COS-7 cells

Pilot assays of dexamethasone binding by COS-7 cells transfected with and 

expressing GR allele 21 (from clone pcDNAlNeo-rGR2 1) were performed 

using a whole cell assay based on the general method outlined in section

2.2.21. 0 .5 x l0 6 cells were assayed at each concentration of unlabelled 

steroid. Untransfected COS-7 cells were used as a control to monitor for 

binding by endogenously expressed GR. Binding data, represented  as a 

Scatchard  plot in Figure 6.13., identified low levels of a high affinity 

binding site (Kd, 2.78 nM) in untransfected COS-7, characteristic of rat GR 

(see introduction to chapter 3 and chapter 5).

Bmax
(sites/ceil)

Kd
nmol/1A  0 .015  —i

1424Control Cells 2.73

Transfected Cells 
high affinity 
low affinity

3779
256049

0.01 -Lii
LLI
cr
LL
Qz:
3o
CD

0.005 “1

0.000
0 5 10 15 20 25 30 35

B O U N D

Fig. 6.13. Dexam ethasone binding characteristics of control and G R-transfected COS-7 
cells.
A; Scatchard plots of 3H-dexamethasone binding by rat GR proteins expressed in COS-7 
cells. Plot through open symbols; binding to control cells. Plot through solid symbols; binding 
to GR-transfected cells.
B; Measurements of Kd (nM) and Bmax (sites/cell) for control and GR-transfected COS-7 
cells.

In cells transfected with GR allele 21, there was evidence of two binding 

sites, one with similar binding characteristics to that of untransfected cells 

(low capacity, high affinity; Kd, 3.84 nM) and a second site of low affinity,
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high capacity (Kd, 774 nM). Consistent with the observations from 

untransfected cells and W estern blots (Fig. 6.11.), the most likely 

explanation for two apparent binding sites in transfected cells is that the 

high affinity site represents full length GR, partly endogenous receptor, 

partly expressed from GR allele 21 (Bmax of the high affinity species more 

than doubles in transfected, compared with untransfected cells), while the 

low affinity site may represent the lower molecular weight (79 Kd) species 

(see Fig. 6.11.).

6.4.) Discussion

The expression of rGR from pcDNAlNeo clones in COS-7 cells presented a 

number of fundamental problems in the analysis of steroid binding by GR:

1.) Because of the high transfection efficiency and level of expressed GR 

protein required for an optimal steroid binding assay, the use of DOTAP was 

adopted as the initial method of DNA delivery into COS-7. At the time this 
work was carried out in Glasgow, transfection with DOTAP was considered to 

be perhaps the most efficient method of transfection into this cell line. 

However, the efficiency of transfection was found to be inconsistent. The 

number of unsuccessful transfections (monitiored by (3-gal staining for 

pSVp-gal, or Mab250 detection of transfected and expressed GR protein 

following fractionation by Western blot) was high, at around 60-70% 

(results not shown).

2.) COS-7 cells express endogenous basal levels of GR. Although relatively 

low, this level of expression becomes significant in the analysis of 

transfected GR (Fig. 6.11b. and Fig. 6.13). Large numbers of transfected COS- 

7 cells would introduce significant levels of COS-7 GR into steroid binding 

assays which would contribute a significant proportion of the high 

affinity binding sites. This was found to hinder the interpretation of data 

generated from GR proteins expressed from transfected alleles (see Fig. 

6.13).
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3.) With the pcDNAlNeo expression system, there was the added 

complication of additional forms of GR. In COS-7 cells, rGR expressed from 

the pcDNAlNeo CMV promoter produced the expected 94 Kd species and an 

abundance of a lower molecular weight species of around 79 Kd (Fig. 6.11.). 

The obvious problems incurred by this molecule (generated from all 

pcDNAlNeo cloned rGR cDNAs) in steroid binding assays is shown in Figure 

6.13. The presence of a form of GR with a completely different steroid 

binding characteristic to the full length GR molecule would present 

problems in the final data analysis.

In CV-1 cells, expression of GR from pcDNAlNeo clones also generated an 

additional GR band on Western blots (Fig. 6.12.). In this case however, the 

extra GR molecule was of a higher molecular weight than the 94 Kd species, 

estimated at 115 Kd and consistent with a translation initiation starting 

from within the pcDNAlNeo CMV promoter (e.g. from ATG nl688: coordinate 

taken from the pcDNAlNeo vector). Although vector promoter initiations 

should be prevented by numerous in-frame stop codons, which occur 

before m etl of the cloned cDNA, the additional GR bands expressed from 

pcDNAlNeo clones in both COS-7 and CV-1 cell lines are difficult to explain. 

To date, there have been no reports in the literature of GR glycosylation, a 

common source of post-translational modification producing differential 

bands for m em brane proteins or proteins targeted  to subcellular 

compartments. The other possibility, that of phosphorylation, which is 

known to create larger molecular weight species in the case of the 

progesterone receptor (S. Rusconi, personal communication) can be ruled 

out in this case, since the transfer of the GR cDNAs to another expression 

vector (see end of this discussion and Fig. 6.12.) produces a single 94 Kd GR 

band from the same coding sequence.

The expression of the triplet repeat negative rGR clone pcDNAlNeo-rGR^(-) 

(diagrammed in Fig. 6.14.) in CV-1 cells also produced evidence of two GR 

molecules. One migrated at around 79 Kd, which is most likely to result from 

translation initiation from GR met3 which was relocated to the start of this 

truncated cDNA.
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1 2  3  4  5  6

100 kd (?)
/
-  97.4 kd 

79 kd (?)

- 68 kd 

-  43 kd

Fig. 6.14. Com parison of rGR and rGR g(-) alleles expressed in COS-7 cells.
Lanes 1-4, expressed pcDNAI Neo-rGR 7, 18, 20 and 21 alleles respectively showing extra 
band at around 115 Kd. Lane 5, clone pcDNAI Neo-rGR p(-) expressed to produce GR bands 
of around 100 and 79 Kd (see text for details). Lane 5, High Molecular Weight Markers.

The larger molecule migrated at around 100 Kd and was consistent with the 

expected size of a GR product generated from the removal of the first 106 

amino acids from the initially suggested 115 Kd species (i.e., 687aa [size of 

rGR p(-)]/795aa [size of full length rGR] x 115 Kd = 100 Kd (Fig 6.12.).

It was therefore proposed to find an alternative GR negative cell line 

expressing no, or only trace amounts of GR (e.g. CV-1, Gluzman, 1981; rat 

hepatoma cell lines EDR3, Cook et al., 1994, or 6.10.2., Miesfeld et al., 1986) 

and secondly, to alter the expression system to provide a more specific GR 

product. Figure 6.12., (lane 3) shows the specificity of GR produced from an 

alternative mammalian expression vector, pSTC. The rational for using this 

vector will be described at the beginning of part two of this chapter.

GR seems to be expressed naturally in vivo as a heterogeneous population 

of protein molecules, initiated from different methionine codons along the 

GR transcript (Miesfeld et al., 1986 and results presented in this thesis; Fig. 

6.11.). The main factor which determines choice of start codon in a protein 

coding sequence, is the arrangement of nucleotides around each ATG start 

site, referred to as the kozac sequence. This is particularly relevant to those 

ATGs at or close to the 5' end of the coding sequence and an optimal Kozak 

sequence has been described (Kozak, 1986). When the Kozak sequence 

around  m etl  matches this 'optimum' ((CC)ACCATGG) then maximum
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transla tion  initiation can be expected, reducing the probability of 

initiations at other methionine codons further downstream. Because m etl 

of rat GR is preceded by a relatively poor Kozak sequence (S. Rusconi, 

personal communication), this may explain the additional initiations at 

met2 and met3, which have Kozaks closer to the optimum (met3 being the 

closest). Table 6.1. below, compares the first 5 methionine Kozak sequences 

of GR in the rat.

Kozak sequence ('optimum' = (CC)ACCATGG)

m etl met2 met3 met4 met5
ccaatgg

(1)

GTAATQG
(28)

TCCATQG
(107)

TATATGG
(111)

gtgatgg

(119)

Table 6.1. Comaparison of Kozak sequences in and around the first 5 methionine 
codons of the rat GR coding sequence.
The Kozak sequence closest to 'optimum1 (Kozak, 1986) for translational initiation, is shown in 
italics. Numbers in parentheses below ATG start codons give amino acid positions relative to 
m e tl. A comparison of initiation codons at each of these sites is compared for the GR of 
different species in the general discussion (Table 7.1).

The use of multiple possible start codons in the rat GR message might 
explain the different translation patterns seen in COS-7 and CV-1 cells. 

However, the mechanisms which control the choice or extent to which 
individual start codons are used remains unclear.
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Part 2

6.5.) Expression of GR alleles in CV-1 cells

6.6.) Cloning of natural and construct GR alleles in vector pSTC

The following plasmids were used to construct further GR alleles based on 
the mammalian expression vector pSTC:

p S T C r G R 2 1  (a gift from  S. Rusconi, U niversity  o f Fribourg, 

Sw itzerland): a 7.3 kb rat GR cDNA eukaryotic expression clone. The rGR 

expression is driven by a CMV promoter linked to a thymidine kinase leader 

and AUG start codon (leading directly into the rGR coding sequence). The 

core plasmid sequence is based on a modified version of pSP64 and carries 

an ampicillin resistance gene. Replication in eukaryotic cells is driven by 

an SV40 replicon.

pSP64-4, 6 and  8-CAG series (a gift from  S. Rusconi): pSP64 vectors 

containing polymers of 4, 6 and 8-CAG repeats.

Subcloning o f natural rGR cDNAs from pcDNAlNeo clones into the vector 
pSCT.
The expression of rGR cDNAs from pcDNAlNeo clones (part 1 of this 
chapter) generated  significant levels of additional GR isoforms. 
Preliminary assays indicated that these would have presented problems in 
the interpretation of steroid binding assays, which for GR assume a one- 
site interaction model (Panarelli, 1995).

The solution to this problem was to clone the rGR cDNAs into a suitable 
expression vector at a site which would allow modification of transcription 
and translation initiation from GR. This was achieved by linking the start 
of the GR coding sequence to a thymidine kinase leader and ATG start codon 
in the vector pSTC.

The clone pSTCrGR21, already containing a full length GR cDNA provided a 
convenient base for subcloning. Using appropriate restriction sites, a 1381
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bp rGR Bsu36l/Sphl cDNA fragment from previously generated pcDNAlNeo 
plasmids (part 1, Fig. 6.6) was subcloned into the pSTC vector as described in 
Figure 6.15. below.

a.) pcDNAI Neo-rGR 20, 18, 7

B Bsu

rj n

9.8 kb

WM -Mi
rGR cDNA 20, 18, 7 3’UT

pCMV SV40 intron/pA SV40 Polyoma 
SV40 pA

b.) pSTCrGR27

B Bsu

d -
7.25 kb

rGR cDNA 21
pCMV TK

3'UT

AmpR

c . )

3.87 kb —

1 2 3 4 5 d . ) 1 2 3
e.) 1 2 3 4 5

3.87 kb —

—  2.48 kb

—  1.38 kb 2.48 kb — 1.34
1.38
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h.) pSTCrGR 20, 18, 7

B Bsu
7.25 kb

rGR cDNA 20, 18, 7 3’UT
pCMV TK AmpR

Fig 6.15. Subcioning of rGR cDNA variants from pcD N A lN eo  into pSTC.
a.) M in im a l re s tr ic tio n  m ap of p c D N A lN e o , sh o w in g  re s tr ic tio n  s ite s  used  in cD N A  
subc lon ing .
b.) M in im al restric tion  m ap of exp ress io in  vec to r pSTC .
c.) D igestion  of c lone  pS TC rG R 27  using Bsu36\/Avr\\ (lanes 2 and 3) and Sph\/Avh\ (lanes 4 
and 5). Lane 1, 1 kb DNA ladder.
d.) D igestion  of c lone  p cD N A I N e o -rG R 27X ba  using Bsu36\/Sph\ (lanes 3 and 4). Lane 1, 1 
kb D NA ladder.
e.) S ize  v e r if ic a tio n  of p u rifie d  D N A  fra g m e n ts  used  in s u b c lo n in g . La n e  2, 3 .87  kb 
pS TC rG R 27  Bsu36\/Avr]\ v e c to r fra g m e n t; lane 3, 2 .48  kb pS T C rG R 2 7  Sph\/Avr\\ ve c to r 
fragm en t; lane 4, 1 .34-1 .39  kb p c D N A IN e o -rG R 2 7 X b a  Bsu36\/Sph\ rG R cD N A  fragm en t. 
Lane 1, 1 kb DNA ladder.
f.) S C O P  a n a lys is  of co lo n ie s  ca rry in g  p o ten tia l re co m b in a n ts  and se le c tio n  of c lones  of 
a round 7.0  kb.
g.) T yp ica l res tric tion  ana lys is  of po ten ta il recom b inan t c lones. Lane2, Sphl, lane 3, Apal, 
lane 4, Xbal, Iane6, Sph\/Apa\ ; Iane7, Sph\/Xba\ ; lane 9 Ba/7?HI/8su36l. Lanes 1, 5 and 8, 1 
kb DNA ladder.
h .) M in im al restric tion  m ap of recom b inan t pS TC rG R  c lones. B, BamHI; Bsu, Bsu36l, S, Sphl; 
X, Xbal, A, AviII.

Construction o f  rGR cDNAs containing novel trip le t (CAG)n repeat 
sequences.
pSTCrGRlO, 20, 40 and 80 and pSP64 clones carrying triplet (CAG)n repeats 

of 4, 6 and 8 were kindly provided by S. Rusconi. GR clones with triplet 
repeats of 4, 6 and 8 were constructed in a standard way. Using unique 
restriction sites, pSTCrGRSO (Fig. 6.16a.) was digested into three fragments 
comprising the entire pSTC vector plus the majority of the rGR cDNA, but 
without the triplet (CAG)n repeat. Variable length triplet repeats were 
subcloned separately from the corresponding pSP64 plasmids as described 
in Figure 6.16..

a.) pSTCrGRSO

rGR cDNA 80
pCMV TK AmpR

1 6 6



b.) pSP64-CAG 4, 6, 8

polylinker 

X K
3.03 kb

SP6
AmpR

C-) 1 2 3 4  5 6

”ssa I — 3.9 kb

d .) 1 23  4 5 6 7

1.1 kb

2.2 kb

e )  1 2  3 4

—  3.11 kb

f.) 1 2n
—  37-46 bp

g .) 1 2 3 4 5 6 7

3.9 kb
2.2 kb
1.1 kb

h.) 1 2 3 4 5 6 7 8 9101112 i.) 1 2  3

7.25 kb

j.)  1 2 3 4 5 6 7  8 9

_  4 .48  kb 

—  2.77 kb

k.) pSTCrGR4, 6, 8

XK Sph Sfi
1 m  , I 7.2 kb

—  ■—in r  i------------------ 1—
 ►  ^  4 rG R cD N A 3’UT  ^

pCMV TK 6  AmpR
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Fig. 6.16. Subcloning of novel (CAG)n repeat lengths into pSTC cloned rGR cDNAs.
a.) Minimal restriction map of pSTCrGRSO showing positions of restriction sites used in 
subcloning.
b.) pSP64 clones carrying (CAG)n repeat lengths of 4, 6 and 8.
c.) pSTCrGR clones 10, 20, 4 0  and 80  cut with Xhd, (lanes 2-5, respectively). Lane 6, 
pSTCrGRSO Sfi-cut, libertaing 3.9 kb vector band.
d.) pSTC rG R 80 clone cut with Kpn\, lane 2; Sphl, lane 3; Kpn\/Sph\, lane 5 and Sph\/Sfi\, 
lane 7. Lanes 4 and 6 ,1  Kb DNA ladder.
e.) pSP64 clones 4-8 CAG cut with Xhd. Lane 1,1 Kb DNA ladder.
f.) Example of pSP64 clone (8 CAG) cut with Xho\/Kpn\. Lane 1,1 Kb DNA ladder.
g.) Gel purified cloning fragments for pSTCrGR 4, 6  and 8  construction: 3.9 kb vector band, 
lane 2; 2.2 kb vector band, lane 3; 1.1 kb rGR cDNA band, lane 4; 37-46 bp triplet (CAG)n
repeat bands, lanes 5-7. Lane 1, 1 Kb DNA ladder.
h.) Potential positive recombinant pSTCrGR 4 and 6  clones. Lanes 2-5, 4 CAG variants. 
Lanes 6 -1 1 ,6  CAG variants. Lane 12, pSTCrGR 10 size control. Lane 1 ,1  Kb DNA ladder.
i.) Initial BamH\ restriction analysis to check potential 4 CAG and 6 CAG recombinant 
pSTCrGR clones. Lane 1,1 Kb DNA ladder.
j.) BamH\/Nco\ restriction analysis of potential recombinant pSTCrGR4 (lanes 2-4) and 6 
(lanes 5-7) clones. Lane 8, pSTCrGR80. Lane 9, pSTCrGR21. Lane 1, 1 Kb DNA ladder,
k.) Minimal restrictrion map of pSTCrGR 4, 6 and 8  recombinants.

Coding sequence differences between natural and construct rGR alleles 
It must be clarified at this point that the production of novel triplet (CAG)n 

repeat lengths in the rGR coding sequence (Fig. 6.18.) was only possible in 

a realistic time frame in a way which resulted in amino acid differences in 

the encoded GR proteins. A small number of residues flanking the triplet 

repeats (part of the pSP64 cloning fragments) in construct GRs were 

therefore different to wild type. The pSTCrGR clones could therefore be 

subdivided into two groups based on CAG repeat length and the status of the 

encoded rGR cDNA. The following list describes rGR variants on the basis of 

triplet (CAG)n repeat length: 7, 18, 20 and 21 (natural alleles) and 4, 8, 10, 20 

and 80 (construct alleles). Figure 6.17. below shows the difference in amino 
acids between each set of clones.

20Q_ (natural allele):

66 67 68 69 70 71 72 73 74 75-76 77 78-96 97 98 99 100 101 102 103 104 105 106 107

NH2>F S K G S T S N V  (Q)2 R (Q) is P G L S K V S L S M  GcCOOH

2 0Q. (construct allele):
66 67 68 69 70 71 72 73 74 75 76 77 78-98 99 100 101 102 103 104 105

NH2>F S T L A C G S L E E D  (Q)20 g v  r  y  g  m  g  <cooh

Fig. 6.17. Amino acid differences between natural and construct rat GR alleles.
A comparison is given between natural and construct 20-CAG repeat GR alleles in the region 
of the polyglutamine sequence. Amino acids are shown in the single letter code. Residues 
common to both cDNAs are shown in bold type. Numbers above each residue indicate 
position relative to m e tl.
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6.7.) PCR am plification of CAG repeats and  Sequencing

Trinucleotide (CAG)n repeat lengths of pSTCrGR cDNA clones carrying 
constructed GR alleles were verified by direct sequencing of PCR products.

a.)

80-C AG

A C G T

1.36-1.58 kb

b.)
4-C A G  6-C A G  

A C G T  A C G T
SStf*

20-C AG

A C G T10-CAG

A C G T
8-C A G

A C G T

MB

pp

40-C A G

A C G T

.

>«*«• *
.," »■■

■ ■■

<. .> > ,a... %/m   ̂ 1

 «
*'"S .4 X <I

Fig. 6.18. Sequence verification of construct GR allele triplet (CA G )n repeat lengths.
a.) PCR am p lifica tion  of trip le t repea t sequences from  co n s tru c t rG R a lle les . Lanes 2 and 3 
d u p lic a te  a m p lif ic a tio n s  from  pS T C rG R 4 ; lanes  4 and  5 d u p lic a te  a m p lif ic a tio n s  from  
pSTCrGRSO; lane 6, no DNA nega tive  contro l. Lane 1, 1 kb DNA ladder.
b.) C o m p a riso n  of tr ip le t (C A G )n repea t sequences  from  co n s tru c t rG R  a lle les. S equences 
are of the  an tisense  DNA strand. A, C, G, T, rep resent te rm ina ting  nuc leo tides.
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Target sequences were amplified by combining 1-5 ng of clone DNA with 

10-20 pmoles of PCR primers: rGR34-BIO (pSTC vector specific) and rGR22 

(Appendix 1) in a standard reaction mixture containing 1.5 mM Mg^+ (see 

section 2.2.3.)* Reactions were performed for 26 cycles with an annealing 

temperature of 56°C. Figure 6.18. shows the specificity of primer annealing 

under these reaction conditions. PCR products from each rGR clone were 

purified  using Hybaid PCR purification columns and 250-500 ng 
immobilised onto D y n a b e a d s ™  for sequencing using primer pG.

6.8.) Functional assays in CV-1 cells

Plasmids
In addition to pSTCrGR clones, a number of other plasmids were used in the 

analysis of rat GR function in tissue culture cells.

pSTC-MMTV-lacZ: Contains the lac Z coding sequence linked to the mouse 

mammary tumour virus (MMTV) long terminal repeat, which contains at 

least two known functional GREs (Payvar et al., 1983; Yamamoto, 1985 and 

references therein). This vector contains an inducible GR-responsive 

promoter, and was used in pilot studies of GR function.

pSTC-CMV-CAT: This plasmid played no role in GR functional assays and 

was used as a 'fill-up1 plasmid in the composition of transfection mixes (see 

Table 6.2.).

pSTC-CMV-TAG: Contains the SV40 large T-antigen. Expression is driven 

by a CMV promoter. The core plasmid sequence is based on a modified 

version of pSP64 and carries an ampicillin resistance gene. Replication in 

eukaryotic cells is driven by an SV40 replicon. This plasmid was used to 

complement the growth of plasmid clones in CV-1 cells carrying an SV40 

origin of replication since this cell line does not carry an integrated SV40 
large T-antigen as does COS-7 (see part 1 of this chapter).
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pSTCrGR-3-556: A rat GR cDNA clone in which the ligand binding domain 

from amino acid position 556 to the end of the coding sequence has been 

deleted. This clone was used as a negative control in transactivation assays.

All of these clones were gifts from S. Rusconi, University of Fribourg, 

Switzerland.

Densitometry o f  plasmid clones

The DNA concentration of each pSTCrGR clone, in addition to routine 

spectrophotometry was confirmed by densitometry (see section 2.2.17.). 

Figure 6.19a. shows a gel loading of 200 ng of each GR clone.

a-) 1 2 3  4 5  6 7 8  9 1 0 1 1 b ) 4 6 7 8 10 18 20 21 40 80

7.2- 
7.5 kb

c.) 1 2  3 4

Fig. 6.19. Plasmid clones used for GR functional assays in CV-1 cells.
a.) Side-by-side comparison of pSTCrGR clones on 1% agarose gel. 200 ng of DNA was 
loaded per lane in order of GR allele CAG repeat length: 4, 6, 7, 8, 10, 18 20, 21, 40 and 80 
CAG repeats, lanes 2-11 respectively. Lane 1, 1 kb DNA ladder.
b.) Densitometric comparison of the amount of DNA in each gel lane from panel a.).
c.) Check of the quality of other plasmid clones used in GR functional assays. Lane 2, pSTC- 
MMTV lacZ; lane 3, pSTC-CMVCAT; lane 4, pSTC-CMVTAG. Lane 1, 1 kb DNA ladder. 1 mg 
of DNA was loaded per lane.
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A total of 10 jLxg (6 cm dish) or 20 ng (10 cm dish) of DNA was used in each 

transfection experiment. Table 6.2. below summarises the components of 

the different functional assays. The high integrity of the supercoiled 

plasmid DNA required for efficient transfection is shown in Figure 6.19a. 

and b.

DNA component: Quantity (mg):
10 cm 6 cm 
dish dish

For lac Z transactivation

MMTV-lac Z (reporter gene) 6 3
CMV-CAT (fill-up plasmid) 2-2.5 2.5-2.9
pSTC-GR clone (transactivator) 0.5-1 0.1-0.5
Calf thymus (CT) DNA (carrier DNA) 10 4

For rGR steroid binding assays

pSTC-GR clone (expression clone) 10 .

pSTCCMV-TAG (translational enhancer) 1 -
Calf thymus (CT) DNA (carrier DNA) 9 -

Table 6.2. Typical components of transfection mixes used in rGR functional assays.

Cell culture and transfection
CV-1, 2S-Fasa, EDR3 and HEK293 cells were routinely m aintained as 

described in section 2.2.16. Transient transfections into CV-1, EDR3 and 
HEK293 cells were carried out at a confluence of 80% using the CaP0 4  

coprecipitation method. Prior to transfection, medium serum supplements 

were reduced to 3% FCS which was m aintained throughout the 

'transfected' growth period (48h).

p-galactosidase assay
Each of the pSTC cloned GR alleles (natural and construct) were tested for 
the ir ability  to function as tran scrip tion  factors in a crude 
transactivation assay. CV-1 cells in 6 cm tissue culture dishes were co­
transfected with the lacZ gene (cloned in pMMTV-lacZ) together with 
identical quantities (0.5 |iig and then 0.1 îg) of each GR allele (see Table
6.2. above). The transactivation function of GR was stimulated by the 
addition of 5 nM dexamethasone to the cell medium, both in the 12-16 h
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incubation period with DNA-CaP0 4  precipitates and in the following 
'transfected' growth period. Transfected cells expressing p-galactosidase 
were identified in one of two ways: either directly, where cells were 
stained blue following breakdown of the chromagenic p-galactosidase 
substrate X-gal (section 2.2.18.), or photom etrically following the 
breakdown of ONPG to p-nitrophenol by p-galactosidase containing cell 
lysates (section 2.2.19.). For both types of experiment, transfections of 
each allele were performed in triplicate.

p-galactosidase assays were also used to assess the transfectability of 

different cell lines which were potentially useful as host cells for the 

assay of GR steroid binding. CV-1 cells, originally derived from African 

green monkey kidney have been maintained in culture to the point 

where they contain no detectable levels of steroid receptors, by Western 

blot or by steroid binding assay (Giguere et al., 1986; Arriza et al., 1987). 

This property makes them ideally suited to experiments assaying for 

functional properties of GR. However, because the efficiency of 

transfection into CV-1 cells by the calcium phosphate coprecipitation 

method is generally not very high (of the order, 30-40%), other cell types 

were also investigated. To be considered a suitable alternative, other cell 

types have to be transfected at least as efficiently as CV-1 using a suitable 

transfection technique and have negligible levels of endogenous GR. The 

rat hepatoma cell line EDR3 (Cook et al., 1994) which is also a GR negative 

cell line may be better suited to assays of rat GR because of species 

compatibility. The human embryonic kidney cell line HEK293 might be 

considered useful because of its very high transfectabilty (up to 80-90%) 

and insensitivity to corticosterone. Both EDR3 and HEK293 lines were 

therefore compared with CV-1 for efficiency of transfection. Each cell 

type grown on 6 cm tissue culture dishes was transfected with the GR 

clone pSTCrGR21 by calcium phosphate coprecipitation and assayed for p- 

galactosidase activity following staining with X-gal.
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6.8.1.) Western blotting of CV-1 expressed GR proteins

Prior to functional assays, GR proteins from natural and construct GR 

alleles expressed in CV-1 cells were analysed on 8% SDS-polyacrylamide 

minigels for levels of expression and intactness and compared with GR 

protein from rat liver or 2S-Fasa cells. In each case, protein samples (4-5 

mg total protein extract) were band fractionated, blotted onto PVDF 

membrane and probed using the rat GR N-terminal specific monoclonal 

antibody Mab250 (section 2.2.22.).

6.8.2) Steroid binding assays

Cytosol extracts from rat liver tissue and from tissue culture cells (CV-1, 
2s-Fasa and HEK293) were prepared as described in section 2.2.21.

Pilot experiments of GR steroid binding in cytosol extracts from rat liver 

and from 2s-Fasa, a constitutive GR expressing rat hepatoma cell line 

(Garland, 1986), were used to establish an optimal experimental strategy 

for the assay of GR proteins expressed in CV-1 cells. Binding assays were 

performed as described in section 2.2.21. A total of 50 îg of cellular 

protein extract per assay point was used in all experiments.

Kd (Dex), Kd (B) and binding capacities (Rl) were derived from Scatchard 
plots using the curve fitting program LIGAND, performed as described in 
section 2.2.21.
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6.9.) Results

6.9.1.) Expression of GR alleles in CV-1 cells

Prior to steroid binding assays, GR proteins expressed in CV-1 cells were 
compared on SDS-minigels (Fig. 6.20.). In terms of coding sequence, alleles 
could be subdivided into natural or construct, on the basis of sequence 
differences flanking the triplet CAG repeat (see Fig. 6.18., p 165). Within 
subgroups, the only difference between alleles was in the length of their 
CAG repeats. In transfected CV-1 a major GR band was detected for all 
alleles, which migrated at around 94kd. No significant difference was 
detected between alleles in the intensity of this GR band (Figs. 6.20 and
6.21.). Quantitatively minor bands were observed at around 91 and 79 kd. 
These are likely to be polypeptides for which translation initiated at the 
second or third methionine codons, met2 or met3 in the GR transcript (Fig.
6.20.; Miesfeld et al., 1986). No GR bands were detected in untransfected CV-1 
cells.

4 6 7 8 10 18 M W  20 21 40 80 CV-1

Fig. 6.20. GR proteins expressed from natural and construct GR alleles in CV-1 cells.
N um bers above  each lane re p re se n t the  num bers  of g lu ta m in e  co d o n s  in tra n s la te d  GR 
prote ins. The size d iffe rence  of 11 kd be tw een the la rgest (80 -repea t) and sm a lles t (4-repeat) 
a lle les is c le a rly  v is ib le . M W , H igh M o lecu la r W e igh t p ro te in  m arke rs ; C V -1 , un trans fec ted  
C V -1 . S izes in kd on the right m ark the positions of p ro te ins  of the  s ize m arker. S izes in kd on 
the left ind ica te  the  pos itions of the  th ree  m ajor GR products . Each lane rep resen ts  a loading 
of 2x104 ce lls lysed d irectly  in gel load ing buffer.

Western blots of GR-transfected CV-1 cell lysates derived by NP-40 lysis 

showed GR to be present exclusively in nuclear exctracts (see general
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discussion). This information was useful in the design of large scale GR 

steroid binding assays (see section 6.9.2.).

4 6 18 10 2 0 N 20 C M W

—  Smmm mwmtmtmuM. .......jMianic7‘-n\u iMW i -  97.4  kd

-  68 kd

M'

4 -  43 kd

• i # - 2 9  kd

Fig. 6.21. Dem onstration of the consistency of GR allele expression in CV-1 cells.
A se le c tio n  of G R  a lle le s  inc lud ing  20 -C A G  na tu ra l (N) and  2 0 -C A G  co n s tru c t (C) w ere 
e xp re sse d  in CV-1 ce lls  (see te x t fo r d e ta ils ). 2 x 1 0 4 ce lls  from  each  tra n s fe c tio n  w as 
ana lysed  as in Fig. 6.20. A cons is tency  of trans fec tion  w as obse rved , w h ich  extended  to both 
20-C A G  natu ra l (N) and 20-C A G  construc t (C) a lle les. N um bers  above  each lane represent 
GR a lle le  po lyg lu tam ine  repeat length. MW , H igh M o lecu la r W e igh t m arkers.

6.9.2.) Functional assays of GR alleles expressed in CV-1 cells

(3-galactosidase assays
X-gal staining of CV-1 cells cotransfected with pSTC-cloned GR alleles and 
lacZ demonstrated that the expressed GR proteins were functional in the 
presence of 5 nM dexamethasone. Comparison of the number of blue cells 
generated (average of 10 fields of view of the microscope: magnification, 
4 /0 .1 )  per allele revealed no gross functional differences. Figure 6.22. 
shows, as a representative example, the level of staining and hence p- 
galactosidase activity following expression from 0.5 ,ug of allele GR2J in 
various cell lines. In the absence of steroid, no blue cells were identified, 
implying that GR was not activated (Fig. 6.22c., compared with a. and b.). 
Calcium phosphate transfection of the GR negative rat hepatoma cell line 
EDR3 under exactly the same conditions proved unsuccessful with 0.5 pg of 
transfected DNA (efficiency estimated from p-galactosidase activity: Fig.
6 .22d.). In contrast, the hum an embryonic kidney cell line HEK293 
transfected with an efficiency of 80-90% (Fig. 6.22e.).
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Analysis of GR function by ONPG assay also indicated comparable ability of 
each allele to activate lacZ. Table 6.4. shows the extent of ONPG conversion 
to yellow p-nitrophenol by CV-1 cell extracts expressing p-galactosidase.

GR Allele: 41 60. XI 80. ICQ. 18(1
OD4 2 0 : 0.88 1.07 1.10 0.79 1.02 0.90

GR Allele: 20d 21(1 40d 80Q, 21Q.(H-) GR (3-556)
OD4 2 0 : 0.95 1.03 1.04 1.03 0.20 0.15

Table 6.3. Indirect measurement of GR induced p-galactosidase activity by ONPG 
conversion.
ONPG conversion to yellow p-nitrophenol was measured by absorbance at 420 nm. Values 
represent the average from three separate transfection experiments (using 0.5 pg GR clone 
DNA/6cm dish). For each allele, GR activity was stimulated using 5 nM dexamethasone. The 
negative control 21Q (H-) received no dexamethasone. Clone pSTCrGR 3-556 has no 
hormone binding domain, but recieved 5 nM dexamethasone. The letter Q following each 
allele length refers to the single letter amino acid code for glutamine.

Steroid Binding Assays
Pilot assays of steroid binding to GR were performed on cytosol extracts 
from rat liver and the cell line 2S-Fasa, to establish a reliable experimental 
strategy.

a .)

b .)

Table 6.4. Raw cpm for a.) 2S-Fasa and b.) untransfected CV-1 cell extracts bound with 
^H-dexamethasone at differing concentrations of unlabelled competing ligand.
Curves were prepared in duplicate for each competing ligand. Dex, dexamethasone; B, 
corticosterone.

C oncen tration  of un labe lled  ligand  (nM)

0 0.5 1.58 5.0 15.8 50.0 158.0

cpm bound at each concentration of unlabelled ligand

Dex

Dex

B

B

218.2 245.2 207.6 146.1 92.6 56.5 45.5

242.1 218.1 174.1 144.1 95.6 66.5 40.0

239.6 234.1 210.1 205.6 141.1 107.1 61

241.2 222.7 231.7 229.6 151.6 114.1 60.5

Dex

Dex

B

B

48.5 42.0 40.0 54.5 42.0 44.5 39.5

39.5 40.5 47.0 54.5 47.5 44.5 47.0

49.0 45.5 48.0 50.5 62.0 58.5 51.5

42.5 54.5 44.0 53.5 59.0 69.0 58.0
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c.)

Fig. 6 .22 . Express ion  of (3-galactosidase in tissue culture cells transfected  with  
cloned rat GR and lacZ.
a.)-c.) CV-1 ce lls  tra n s fe c te d  w ith: a.), 0 .5  pg pSTC rG R 21 + 5 nM d e xa m e th a so n e  (dex);
c .), 0 .5  p g  p S T C rG R 2 1  w ith  no a d d e d  dex. b.) is th e  sam e as a .), b u t a t h ig h e r 
m agn ifica tion  to show  cons is tency  of transfection .
d.)-e.) E D R 3 sh ow ing  one  trans fec ted  cell (d.) and H E K 293 show ing a round  80%  of ce lls  
trans fec ted  (e.) w ith  0 .5  pg pSTC rG R21 + 5 nM dex.



Competition assays for ^H-dexamethasone binding to GR proteins were 
performed using unlabelled dexamethasone or corticosterone as competing 
ligand. As an example Table 6.4. shows the levels of counts obtained at each 
co ncen tra tion  of unlabelled  ligand for 2S-Fasa cells com pared  with 
untransfected CV-1 cells. Plots of % specific bound counts against ligand 
concentra tion  (Fig. 6.23.), together with calculated Kd and  R1 values 
produced data similar to that reported  elsewhere for rat GR (Panarelli, 
1994). Untransfected CV-1 cells produced no measurable specific binding 
(Table 6.4.).

120120 -  

100 

80  

60  

40  

20 

0 J

L IV E R  b.) FAZA

c.)

94 kd —

1 2  3 4

-  97 .4  kd 

~  68 kd

-  43  kd 

” 29 kd

[Ligand] nM

d.)

Kd (Dex) Kd (B) R1

M M nmoles/ 
g protein

L ive r cy toso l 3.79x10-9 7.72x10-9 3.0x10-9

2S -F asa 3.97x10-10 l 1.63x10-9 2.02x10-10

Fig. 6.23. Pilot assays of GR steroid binding in cytosol extracts from  rat liver and rat 
liver cell line 2S-Fasa.
a.) and  b .)  C o m p e titio n  b in d in g  cu rve s  fo r ra t liv e r c y to s o l and  2 S -F a s a  ce ll e x tra c ts , 
respective ly .
c.) W e s te rn  b lo t sh o w in g  sa m p le s  o f 20  pg each  of u n tra n s fe c te d  CV-1 (lane  1), ra t live r 
cy toso l (lane 2) and 2S -F asa  cell extracts . Lane 4, H igh M o le cu la r W e igh t p ro te in  m arkers.
d.) Kd (D ex), Kd (B) and R1 va lues  fo r GR from  rat liver and  2 S -F a sa  ce lls.

Competition assays for ^H-dexamethasone binding by cloned GR alleles 
were performed on protein preparations from transfected CV-1 cells using 
the methodology optimised in pilot experiments. Figure 6.24. shows the
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effect of ligand concentration on its binding to GR for the combined data 
for a.) natural alleles; GrlCAG7, 18, 20, 21 ancj 5  ) for constructed alleles; 
QrlCAG4, 8, 10, 20, 80' Table 6.5. shows the means and standard errors for Kd

rGR (Q)n allele Kd (Dex) 
nM

Kd (B) 
nM

R1
pmole/mg total 
protein

Natural 

21Q a 1.45 11.9 1.37
21Q b 1.91 11.0 1.0
21Q c 2.54 11.1 0.6
21Q d 0.43 1.31 0.37
21Q e 0.73 3.7 0.92
21Q f 0.76 5.25 0.9
21Qg 1.08 10.9 0.29
21Q h 0.56 - 0.61
21Q i 0.31 1.66 0.67
21Q j 0.54 2.91 o.77
21Q k 0.96 2.91 0.73
mean (n= ll) 1.0 6.27 0.75
SE 0.21 1.39 0.27

20Q a 0.92 9.54 0.82
20Q b 0.8 5.37 1.49
20Q c 1.91 9.72 0.83
20Q d 0.78 6.8 0.97
20Q e 0.9 - 0.95
20Q f 0.79 - 0.8
20Q g 1.35 - 0.91
20Q h 1.1 - 0.88
mean (n=8) 1.01 7.8 0.96
SE 0.14 1.51 0.79

18Q a 1.58 13.9 0.92
18Q b 1.92 11.1 1.11
18Q c 3.12 12.1 0.44
18Q d 0.84 - 0.67
18Q e 0.89 - 0.75
mean (n=5) 1.67 12.37 0.78
SE 0.42 0.82 0.11

7Q a 0.93 11.1 0.7
7Q b 1.56 10.5 1.28
7Qc 1.05 10.1 0.51
7Q d 1.34 8.25 0.8
7Q e 0.88 15.1 0.42
7Q f 1.27 3.77 1.3
7Qg 0.62 6.15 0.83
mean (n=7) 1.1 9.28 0.83
SE 0.12 1.39 0.13
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b.) rGR(Q) n allele Kd (Dex) 
nM

Kd (B) 
nM

R1
pmole/mg total 
protein

Construct 

80Q a 0.30 1.48 0.57
80Q b 0.24 0.97 0.46
80Q c 0.59 2.94 0.47
80Q d 0.62 2.4 0.55
80Q e 0.53 1.66 0.45
mean (n=5) 0.46 1.89 0.50
SE 0.08 0.35 0.03

20Q a 0.18 0.77 0.28
20Q b 0.25 0.79 0.40
20Q e 0.17 0.63 0.28
20Q f 0.50 2.83 0.53
20Q g 0.53 3.29 0.57
20Q h 0.72 4.01 0.44
20Q i 0.74 3.65 0.59
mean (n=7) 0.44 2.28 0.44
SE 0.09 0.57 0.05

10Q a 0.24 1.08 0.27
lOQb 0.52 1.53 0.35
lOQc 0.15 0.46 0.51
mean (n=3) 0.30 1.02 0.37
SE 0.11 0.31 0.07

8Q a 0.15 0.78 0.32
8Q b 0.45 2.01 0.34
8Qc 0.26 1.40 -
8Q d 0.46 2.51 -
8Q e 0.61 2.50 -

mean (n=5) 0.30 1.40 0.33
SE 0.15 0.62 0.01

4Q a 0.28 1.58 0.34
4Q b 0.60 1.74 0.44
4Qc 0.58 3.66 0.52
4Q d 0.71 2.36 0.51
mean (n=4) 0.54 2.34 0.45
SE 0.09 0.47 0.04

Table 6.5. The effect of polyglutamine tract length on steroid binding activity of natural 
(a.) and constructed (b.) glucocorticoid receptor variants.
Binding affinities (Kd) and receptor capacity (R1) for dexam ethasone (Dex) and 
corticosterone (B) are given for each allele. Results are expressed as the mean ± SEM; n = 
number of separate Scatchard determinations.
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(dex), Kd (B) and Bmax for each natural (a.) and construct (b.) allele. 
Examples of plots of raw data, which demonstrate the reproducibility of 
these experiments is shown in Appendix 2. To Check that sonication had no 
qualitative effect on GR stability, sonicates of transfected cells were 
analysed against samples of whole cell lysates from the same transfection 
(Fig. 6.24c.). No noticeable difference in the integrity of GR proteins was 
observed.

Polyglutamine repeat length was found to have no significant effect on Kd 
for either dexamethasone or corticosterone, or the receptor capacity (Rl) 
within each group of natural or construct alleles (Fig. 6.24. and Table 6.5.). 
Natural 20 and 21 repeat Milan rat alleles GrlCAG20> 21, also showed no 
difference in affinity for dexamethasone or corticosterone, implying that 
any difference in steriod binding which may have existed between these 
alleles in vivo was no longer apparent (see general discussion and Fig. 
6.24a.). In support of this observation, values of Rl from GR alleles 
expressed in tissue culture were comparable with those measured in vivo 
for rat hepatic cytosol preparations (Panarelli, 1995).

In contrast, the direct comparison of the entire competition data for the 
natural versus the construct GR alleles, revealed a significant increase in 
recep to r affinity (reduction in Kd) for both dexam ethasone and 
corticosterone (Table 6.6.). This result is supported  by a leftward 
displacem ent of steroid binding curves for the natural alleles for each 
ligand (Fig. 6.25a.). Taking the 20-repeat alleles as the closest comparison 
between natural and construct alleles, the displacements in competition 
binding and difference between Kds (for dex and B) were maintained 
betw een alleles (Fig. 6.25b.). Presenting the 20-repeat data for 
dexamethasone competition in the form of a Scatchard plot, in which the 
individual points for each curve represent the mean data  from all 
experiments, provided confirmatory indication of a significant difference 
in kds (dex) between natural and construct alleles (Fig. 6.26).

Statistical analysis
The significances of difference in Kds and Rl values between chosen 
allelic comparisons were determined by parametric (two-tailed t-test) and 
non-parametric statistics (Mann Whitney U-test) where appropriate (Table 
6.6.). Values of Kd (dex) Kd (B) and receptor capacity Rl were significantly
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Kd (dexamethasone) 
nM

Kd (corticosterone) 
nM

Binding capacity 
pmol/mg protein

20-repeat 
natural allele 1.01 ± 0.14 7.8 ± 1.51 0.96 ± 0.79

(n) (8) (4) (8)

21-repeat 
natural allele 1.0 ± 0.21 6.27 ± 1.39 0.75 ± 0.27

(n) (11) (10) (11)

P-value NS NS NS

Kd (dexamethasone) 
nM

Kd (corticosterone) 
nM

Binding capacity 
pmol/mg protein

All
natural allele 1.16± 0.11 8.17 ± 0.82 0.83 ± 0.05

(n) (31) (24) (31)

All
Construct

allele
(n)

0.43 ± 0.04 

(24)

1.96 ± 0.21 

(24)

0.44 ± 0.023 

(21)

P-value < 0.001 < 0.001 < 0.001

Kd (dexamethasone) 
nM

Kd (corticosterone) 
nM

Binding capacity 
pmol/mg protein

20-repeat 
natural allele 1.01 ± 0.14 7.8 ± 1.51 0.96 ± 0.79

(n) (8) (4) (8)

20-repeat
construct

allele

0.44 ± 0.09 2.28 ± 0.57 0.44 ± 0.05

(n) (7) (7) (7)

P-value < 0.001 < 0.01 < 0.001

Table 6.6 Statistical comparison between chosen groups of alleles.
Kd values were compared by Mann Whitney tests, binding capacities were compared by two 
tailed t-tests.



different between natural and construct allelic groups, but not within 
groups, which included the Milan rat alleles, 21.

0.2 i

o
cL.
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'
C

o
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-10-10 3 x 102 x 10

Eound (moles)

Fig. 6.26. Scatchard plots of dexam ethasone binding data for 20 repeat natural and 20 
repeat construct alleles.
Com petition binding data used in the calculation of Kds (dex) for 20 repeat allele were pooled 
at each concentration of cold com peting ligand. Plots are therefore  of mean data from 20 
repeat natural (solid circles) and 20 repeat construct (open circles) alleles.

6.10.) Comment

Prior to the use of the different GR alleles in steroid binding assays, it was 
important to establish their gross functional competence. The ability of 
each of the expressed GR proteins to induce similar levels of activation of 
the lacZ gene cloned in pSTC-MMTVlacZ (Table 6.3.) demonstrated that all 
proteins were functional. Induction of GR activity in the presence of 5 nM 
dexamethasone implied that in each case, GR was folded correctly and 
complexed with HSP90 in a way which was compatible with endogenous GR 
function. These results also suggested that all GR variants were equally
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competent as transcriptional activators, able to interact with a GRE with a 
similar level of efficiency.

Statistical comparison of Kd values between natural and construct alleles 
(Table 6.5.) suggests significant differences in affinity  for both 
dexam ethasone and corticosterone (summarised in Table 6.6.). Most 
importantly, a comparison of affinity differences between natural and 
construct 20-repeat alleles, supports this observation. The possible 
implications of these differences are discussed in chapter 7.

M easurem ents of receptor capacity (R l), were also found to be 
significantly different between natural and construct alleles. The reasons 
for this difference are unclear. It could be that, compared with natural 
alleles, the construct alleles are inherrently less stable, although Western 
blots (Fig. 6.20. and 6.21., pp 175-176 and Fig. 6.24.) do not support this. 
Alternatively, these alleles may have been less able to bind stabilising 
proteins or molybdate under steroid binding assay conditions, making them 
more prone to degradation over time. There was sufficient overlap in 
steroid binding assays to rule out the possibility of experimental drift.

Conceptually, the assay of receptor function in cell lines such as CV-1 is 
useful in that possible secondary effects on receptor function which might 
arise in vivo, are eliminated, providing a consistent assay system. Such 
effects might result from differences in circulating endogenous hormone 
levels or from the action of a host of different modulators of receptor 
function, reviewed in chapter 7 (pp 191-197).
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Chapter 7 
General Discussion
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General Discussion

7.1.) Coding sequence differences and distribution of GR alleles 

in inbred and wild rats

The primary aim of the work described in this thesis was to seek variation 

in the coding sequence of rGR and to determine what effect this may have 

on the function of GR in different inbred strains of rat. A further objective 

was to determine the extent to which polymorphisms of GR might account 

for previous observations of differences in steroid binding affinity and the 

role of glucocorticoids in rat models of essential hypertension (Kenyon et 

al., 1994; Panarelli et al., 1995, chapter 3, p 87) and obesity (White and 

Martin, 1990).

Initial findings were positive, in that sequence variation was found in the 
triplet (CAG)n repeat sequence in the GR modulatory domain. In addition, 

silent substitutions in GR codons at nucleotide positions 198, 531, and 711 

were also identified which do not lead to changes in amino acid sequence 

(see Fig. 7.1.). The four sites of genetic variation lie in close proximity in 

GR, constituting distinct haplotypes with an exceedingly low frequency of 

recombination, which were used to investigate genetic origins of different 

rat strains (discussed in detail in chapter 4).

The distribution of CAG repeat lengths in GR was investigated for both 

inbred strains (Chapter 3, part 1) and wild rats (Chapter 4) of the species R. 

norvegicus and was found to be similar. Neither set of animals had CAG 

repeat lengths of less than 7, or between 7 and 17, producing a clear 

discontinuity in the allelic distribution. In the sample populations analysed 

in this thesis, it was considered unlikely that the 'missing' subset of rGR 

alleles arose due to sampling bias. The similarity in the distribution of 

alleles found in sufficiently separated populations of wild rats (sampled 

from Scotland and England) would argue against this. The possibility of 

genetic drift is also unlikely. The same distribution of rGR alleles was found 

in wild rat populations from all capture sites and in the inbred rats
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analysed. Work is currently in progress to determine whether the GR 

alleles identified at chosen locations were fully representative of the 

resident rat population(s).

Complementary to the distribution of GR alleles found in R. norvegicus, it 

would be interesting to see whether this distribution pattern is typical of 

other rat species or is species specific. The answer to this question would 

require the analysis of GR alleles, both in other populations of R. 

norvegicus  and in other species of rat, such as R. rattus. An interesting 

extension of this work might also include other readily accessible rodent 

species such as hamster, or squirrel to determine the variability and 

distribution of GR alleles with respect to CAG repeat length in other distinct 

rodent populations.

The absence or significant under-representation of alleles may have 
resulted from the mechanism by which these alleles diversified (discussed 
in chapter 4, pp 128-131). Alternatively, the observed rGR alleles may have 
a selective advantage through their function as transcription factors. This 
latter possibility is currently being addressed. Studies are in progress in 
collaboration with Dr. Bernd Groner and co-workers, Institute for 
Experimental Cancer Research, Freiburg, Germany, to determ ine the 
functional effect of individual rGR repeats in the context of GR modulated 
transcription and will be discussed in greater detail in section 7.2.2.

7.2.) Expression of natural and construct GR alleles in CV-1 
cells and assays of GR function

7.2.1.) Steroid binding
The main focus of this thesis was the analysis of structure-function 
relationships of rGR. To determine whether the polyglutamine tract length 
of the receptor had an effect on affinity for steroid, different GR triplet 
repeat alleles, with lengths of less than 7, between 7 and 17 and greater 
than 23 CAG repeats were constructed and expressed in CV-1 cells (pp 164- 
183). The binding affinities of natural or constructed rGR variants for the 
glucocorticoids, dexamethasone and corticosterone were not different 
between alleles in either natural or construct group. This implies that the
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intra-allelic differences in the length of the polyglutamine tract on its 
own is unlikely to have immediate effect in determining the affinity of rat 
GR for steroid, although tissue specific effects on steroid binding or 
p rom oter  specific effects on transcrip tion  should  not be ruled out, 
particularly in vivo. More noticeable from these studies, however, was the 
significant difference in affinity between natural and construct GR alleles 
for glucocorticoids (PcO.OOl for dex and B; see Table 6.5). In the comparison 
of alleles through the natural and construct 20 repeat variants, having the 
closest possible sequence similarities, the significance of difference in Kds 
was maintained (for dex, p < 0.001-0.0015; for B, p < 0.01-0.08). This 
difference in affinity was n o t  the result of inter-allelic differnces in the 
length of the long homopolymeric repeats in the different alleles. The 
increase in affinity of the constructed alleles may have resulted from the 
codon su b s ti tu tio n s  in tro d u ce d  into the sequences  flanking the 
polyglutamine repeat as part of the construction process. Possible effects of 
the arginine residue, located at the amino-terminal end of natural GR 
polyglutamine tracts and missing from construct GR alleles can not be 
ruled out. The difference in sequence between the natural and construct 
alleles is shown on p i 68.

1 2 3 4 5

97.4 kd 

68 kd

43 kd

Fig. 7.2. The cellular location of rGR proteins overexpressed in CV-1 cells.
Rat GR proteins expressed from all rGR CAG repeat a lle les in CV-1 cells transloca te  
com pletely to the nucleus in the absence of hormone. Lanes 1 and 3, nuclear extracted 
proteins from cells transfected with 21 and 4 CAG repeat alle les; lanes 2 and 4, cytosol 
extracted proteins from cells transfected with 21 and 4 CAG repeat alle les, respective ly. 
Sample loadings were of the order, 20 pg/lane. Lane 5, high m olecu lar weight protein 
markers.

The mechanism by which coding sequence varia tion  in the amino 
terminus of GR might affect affinity for steroid at the C-terminal end, or

94 kd m  M
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even the perform ance of GR as a transcriptional regulator remains 
unclear. Gross molecular effects may be ruled out, given that all of the GR 
variants overexpressed in CV-1 cells behaved as expected, showing 
translocation to the nucleus, consistent with Martins et al., (1991), which 
by Western blotting appeared to be complete. Figure 7.2., above compares 
representative samples of cytosolic and nuclear protein extracts from CV-1 
cells transfected with natural allele GrlCAG21 and construct allele GrlGAG4.

7.2.2.) Transcriptional activity
In contrast to effects on steroid binding, the construct GR alleles showed a 
similar ability to activate MMTV-lacZ following hormonal induction as the 
natural alleles, indicating that none of the structural differences between 
GR molecules had any major effect on their ability to bind a GRE and 
activate transcription (Table 6.3. p 177). This contrasts with reports in the 
literature which describe possible regulatory roles for polyglutamine 
tracts in the control of transcription (see chapter 1, section 1.9.4.). In most 
cases, the molecular mechanisms for such effects are unclear. It is possible 
tha t the polyglutam ine trac t of rGR has an undefined  role in 
transcriptional regulation, which is simply not identified following GRE 
activation in the MMTV-lacZ system. It remains possible that certain 
transcriptional regulatory effects are limited to specific promoter contexts, 
implying a level of tissue specificity in GR mediated gene regulation.

An interesting extension of the work of this thesis would therefore be to 

consider the transactivation properties of both natural and construct GR 

alleles in their ability to function as modulators of transcription, which 

appears to depend on the promiscuity of protein-protein intractions 

attributed to most gene regulators, rather than their ability to bind DNA. In 

the studies of Stocklin et al., (1996) discussed in chapter 1 (pp 24-25), the 

glucocorticoid receptor has been shown to act as a synergistic coactivator 

for the transcription factor STAT5, which mediates responses in mammary 

epithelial cells to the lactogenic hormone, prolactin. Following transient 

expression in COS cells, GR modulates STAT5-mediated transcription, 

independently of a GRE. Compared with untreated cells, prolactin induces 13- 

casein prom oter activity -10-fold, an effect which is either absent or 

minimal following glucocorticoid treatment. Simultaneous induction of (3- 

casein activity with both prolactin and glucocorticoids on the other hand
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significantly increases prom oter activity ~40-fold. Conversely, in the 

presence of a GRE-containing promoter, STAT5 represses GR-mediated 

transactivation. The level of glucocorticoid-dependent promoter induction 

m ediated by STAT5, not only provides sufficient scope for identifying 

possible GR functional variants, but does so by capitalising on the ability of 

d ifferent transcrip tion  factors to co-regulate one ano ther through 

interaction at, so far, unrecognised transcriptionally active surfaces.

Thus, while simple promoters give a preliminary index of glucocorticoid 

signalling or GR activity, extrapolation to endogenous genes should be 

exercised with caution. The regulation of the p-casein prom oter through 

the interactions between STAT5 and GR may introduce a level of complexity 

which more closely parallels the in vivo  situation in which subtle 

alteration in the primary structure of GR may be of greater functional 

consequence.

7.3.) Effects of amino terminal substitutions on GR function

Although the steroid binding difference between natural and construct 

alleles is not great, it is interesting to see that the probable effect of the 

engineered flanking substitutions around the polyglutamine tract is to 

increase steroid binding affinity. This could mean that the m utant 

structure of the rGR amino terminus is able to modulate the activity of the 

steroid binding pocket. This raises the more general question of whether 

the amino and carboxyl termini are able to affect each other's activity, 

either by contact, or through a mediator such as HSP90. Unfortunately, the 

complete three dim ensional structure of rGR and proximity of its 

interactive surfaces is not available. However, a model describing the 

influences of GR carboxyl terminal structure on amino terminal function 

has been described. In this model, changes in structure at the carboxyl 

terminus are predicted to affect the flow of inform ation within GR, 

resulting in effects on transcriptionally active surfaces (Guido et al., 1996).
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The molecular mechanisms of GR are complex, requiring the concerted 

effect of a num ber of interactive elements which are induced by the 

binding of ligand. Since GR is expressed at similar levels in almost all 

tissues and cell types it follows that additional systems must be in place to 

help regulate activity in a tissue or prom oter specific fashion. In the 

studies of Guido et al., (1996), different steroidal ligands, even those with 

the same essential properties, agonistic or antagonistic, have been shown 

to be capable of stimulating prom oter specific receptor function, most 

likely by inducing unique receptor conformations (Agarwal, 1994; Chen et 

al., 1994). Agonists and antagonists differ in substituents, stereochemistry 

and the degree of saturation at various positions around the steroid 

nucleus. For example, GR antagonists possess an ll-(3 aryl substitution 

charactetristic of many of these compounds. RU38486 and ZK98299, receptor 

antagonists which differ only in the substituents on C17 (Guido eta/., 1996) 

can stimulate GR prom oter activity in vivo, but with quite different 

versatilities and with a dependency on prom oter context. RU38486, 

norm ally viewed to be exclusively antagonistic, can induce GR 

transcriptional activity in HepG2 cells, an activity which is unattainable 

with ZK98299 and is absent in CV-1 cells. The binding of ZK98299 to GR in 

Hek293 cells is able to prevent the efficient interaction between GR and the 

DNA and results in transcriptional repression (Heck et al., 1994). In vitro, 

there is no evidence of ZK98299-GR binding to GREs of either simple or 

complex promoters. It is likely that the conformation of RU38486 and 

ZK98299-GR complexes differ significantly from that of the unliganded 

receptor since without ligand, GR has no known transcriptional activity. 

Apart from the effects of different ligands on receptor activity, there is 

also evidence of unique tissue specific factors interacting with specific 

liganded forms of GR, which play a role in GR modulated transcription 

(Cavin and Buettik, 1995).

These data suggest interactions between the carboxyl and amino-terminal 

ends of liganded GR, such that ligand-specific conformations of GR impose 

unique influences on amino terminal function. By analogy, the flow of 

signalling information may also occur in the opposite direction, whereby 

alteration in the primary polypeptide sequence of the GR amino terminus
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has an effect on receptor steroid binding. Preliminary investigations of 

steroid binding affinity by GR proteins expressed in COS-7 cells (pp 157-159 

has indicated that a truncated GR isoform in which the first 100 or so amino 

acids were predicted to be missing, has a significantly lower affinity for 

dexamethasone (see Fig. 6.13.), supporting the probability of interaction 

between the receptor amino terminus and ligand binding domain.

7.4.) Association of Milan ra t GR alleles with glucocorticoid related 
phenotypes and expression of GR alleles in CV-1 cells

The polymorphism in the GR triplet (CAG)n repeat between the Milan 
hypertensive (MHS) and normotensive (MNS) strains of ra t was used 
successfully as a genetic marker in breeding experiments. In F2 animals 
resulting from a cross between MHS and MNS, linkage analysis showed a 
significant association between the MHS GR allele and hypercalcuria and to 
a lesser extent with reduced systolic blood pressure in females and reduced 
body weight in male rats, indicating that either the GR gene or a closely 
linked locus influences these phenotypes. These data have already been 
reported as preliminary findings (Heeley et al., 1996b) and a more detailed 
account has also been submitted for publication.

In terms of GR function, this thesis also shows that in CV-1 cells, the Milan 
alleles GrlCAG2°  and GrlGAG21 are expressed as polypeptides to an equal 
extent (Fig. 6.20.) and have indistinguishable steroid binding affinities and 
capacities (Fig. 6.24. and Table 6.5., pp 179-180). If this applies to these 
alleles in vivo, then it is unlikely that alleleic differences in GR perse 
between the Milan strains of rat, and hence variation in the steroid 
binding activity would account for the differences in gross phenotype 
between MHS and MNS. However, the possibility of other affectors of GR 
steroid binding affinity should not be ruled out. It is not known whether 
the differences in polyglutamine tract length in rat GR would cause a 
difference in its transactivation properties in vivo.
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7.5.) Modulators of glucocorticoid activity

The contrast in binding characteristics between Milan rat alleles in cytosol 

from rat liver and CV-1 cells may signify the existence of a cytosolic 

factor(s) which is present in liver, but not CV-1 cells. Such a component 

could be a metabolite, for example, of steroid biosynthesis or an actively 

expressed regulator of steroid receptor function. Several possible 

extranuclear affectors of glucocorticoid activity have been identified, 

which includes the following; 1.) heat shock proteins (HSPs), 2.) 

cholesterol and fatty acids, 3.) aminophosphoglycerides, 4.) 'unknown' 

cytoplasmic factor(s) and 5.) calreticulin. For rat GR, there is the added 

possibility of m odulation of steroid binding by truncated GR isoforms 

which result from translation initiations downstream of m etl in the GR 

message. The relevance and possible association of each of these factors 

with altered GR binding affinity, described in this thesis for rat strains 

MHS and Zucker obese, is considered below.

7.5.1.) Heat shock proteins (HSPs)
The critical effects of heat shock proteins, particu larly  HSP90, in 

determ ining sensitivity to glucocorticoids is well docum ented (see 

Bamberger et al., 1996 and references therein). However, a role for HSP90 

as a modulator of steroid binding in MHS and Zucker obese rats has not 

been determined. There is no evidence of amino acid substitutions within 

the HSP90 binding domain of GR from either strain of rat which might 

affect interactions between these two proteins. Mutations in HSP90, 

however, are still possible although recent observations by Panarelli et al.,

(1995) suggest no difference between MHS and MNS in tem perature 

sensitivity of GR to steroid binding.

7.5.2.) Truncated GR iso forms

Rat GR expressed both in vivo and in tissue culture shows evidence of 

additional isoforms which are predicted to result from translation events 

downstream of m etl in the rGR message (Miesfeld e t al., 1986; see also 

chapter 6, part 1, pp 157-163). In COS-7 cells, expression of GR allele 
G r l C A G 2 1  fr0m vector pcDNAlNeo produces two distinctive bands
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immunoreactive with GR monoclonal antibody Mab250, one of around 94 kd 

and the other around 79 kd (p 157). The smaller product is indicative of 

translation from GR met3. This is likely to be a tissue specific effect, since 

the isoforms expressed in CV-1 cells and in liver were either different or 

expressed to a different degree. Steroid binding assays performed on whole 

cell preparations of COS-7 cells expressing the 94 and 79 kd forms of GR (see 

p 159) indicated two distinctive and independent binding entities, one with 

the characteristics for dexamethasone binding of full length native GR 

(high affinity, low capacity) and the other of a much lower binding 

affinity. In vivo, such a molecule could act as a modulator of GR binding 

activity by competing for steroid hormone. However, this is an unlikely 

explanation for the Milan strain differences given the similarities in the 

levels of these isoforms in each strain (Ch 5, Fig. 5.2.).

In other species, including mouse and man (having a similar arrangement 

of Kozak sequences at the beginning of the GR mRNA to that of rat: see 

Table 7.1., below), alternate GR translation products may also be generated. 

Such products have so far not been reported. Their expression may have a 

strict species or tissue-specific dependency.

Species Kozak sequence ('optim um ' = (CC)ACCATGG)

metl met2 met3 met4 met5
Rat ccaatgg gtaatgg TCCATQG TATATGG GTGATGG

Mouse CCAATGG GTGATGG TCCATGG TATATGG GTGATGG

Human CTGATGG GTGATGG TCAATGG TATATGG GTGATGG

Guinea
Pig

GGAATGT GTAATGC TCAATGG TATATGG GTGATGG

Table 7.1. Comaparison of Kozak sequences in and around the first 5 methionine 
codons of GR from different species.
The Kozak sequence closest to 'optimum' (Kozak, 1986) for translational initiation, is shown in 
italics.

7.5.3.) Cholesterol and fatty acids

The apparent glucocorticoid resistance in MHS and Zucker obese rats is 

correlated with elevated plasma cholesterol levels, a phenotypic variable 

also found in normal human subjects with reduced affinity for cortisol
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binding (Panarelli et al., 1994; Walker et al., 1995). A possible association 

between glucocorticoid activity and cholesterol m etabolism  is well 

established. However, the level at which the glucocorticoid and cholesterol 

metabolic pathways interact, is unclear. One body of evidence suggests that 

glucocorticoids may have a direct effect on cholesterol synthesis. For 

example, glucocorticoids have been dem onstrated to inhibit cholesterol 

biosynthesis in mouse thymocytes by a mechanism  which requires 

functional GR (Picard e t al., 1980). In addition, the blockage of 

glucocorticoid signal transduction in partial GR knockout mice in which 

the num ber of active GR molecules is reduced (Pepin et al., 1992) is 

manifest as obesity.

Alternatively, the increased levels of cholesterol may have the capacity to 

interfere with steroid binding by GR. It is concieveable that any molecule 

with the basic steroid ring structure and appropriate substitutions is able to 

interact with steroid receptors, affecting steroid binding. Cholesterol, the 

precursor of steroid biosynthesis might be an excellent candidate. It should 

be stressed that this possibility is least likely, given that the binding of all 
steroid ligands should be affected in a similar way. The binding of 

dexamethasone to GR in the Milan and Zucker rat models is not as greatly 

affected compared with control strains. On the other hand, dexamethasone 

is considered a stronger ligand than corticosterone and thus, may escape 

these modulating effects.

Hypercholesterolaemia and hyperlipidaem ia are often associated with 

reduced GR function. It is therefore possibile that the function of GR in 

these rat strains is also affected by fatty acids. For example, the short chain 

fatty acid, sodium butyrate affects GR interaction with its GRE by 

preventing nucleosome displacem ent and represses transcrip tion by 

inducing a modification of chromatin (Bresnick etal., 1990). The decreased 

binding of dexamethasone to rat liver cytosol glucocorticoid receptors has 

also been demonstrated by physiological concentrations of non-esterified 

fatty acids, with a dependency on dose, degree of unsaturation and chain 

length (Vallette etal., 1991). The effects of fatty acids would be particularly 

applicable to the Zucker obese rat. Hepatocytes from the obese strain in
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culture show evidence of fatty acid-like deposition, absent in lean rat cells 

(personal observations). The possible added influence of fatty acids might 

explain the steroid binding difference between MHS and MNS rats (MHS are 

mildly hyperlipidaemic).

7.5.4.) Aminophosphoglycerides

Novel ether aminophosphoglycerides, also known as modulators have been 

isolated from rat liver preparations, which inhibit GR activation by 

interfering with its dissociation from heat shock proteins (Bodine and 

Litwack, 1990; Robertson et al., 1995). From a functional standpoint, 

modulator represents the endogenous molybdate factor, stabilising both the 

activated and unactivated forms of GR. These molecules appear to further 

interfere with GR function by inhibiting translocation to the nucleus. The 

molecular effects of modulators may be commonplace among steroid 

receptors. The activity of rat distal colon MR is also affected by these 

molecules (Schulman et al., 1992). Interestingly, in five unrelated patients 

with the syndrom e of aldosterone resistance, no m utations of 

pathophysiological significance, either in the MR coding sequence, or in 

0.9 kb of the 5' regulatory region were identified, which would explain the 

resistance of these patients to aldosterone (Arai and Chrousos, 1995). These 

authors suggest that the defect responsible is at a postreceptor level.

7.5.5.) ’Unknown' cytoplasmic factor(s)
In humans, glucocorticoid resistance may be inherited, as an autosomal 

recessive trait, or may be acquired (Bronnegard et al., 1996 and references 

therein). Natural animal models of glucocorticoid resistance are also seen 

in certain species of New World primate. These are the species of 

predominantly canopy-dwelling tree monkeys, including squirrel monkey, 

owl monkey and cotton-top tamarin, some of which are strikingly resistant 

to all of the steroid related hormones. The squirrel monkey for example has 

elevated cortisol levels and glucocorticoid resistance. In this species, levels 

of plasma free cortiosol, 100-times higher than in man are maintained by 

higher ACTH and cortisol synthesis rates, a cortisol binding globulin with 

decreased capacity for cortisol and a decreased rate of clearance of cortisol 

from the circulation. These monkeys, however, do not show signs of
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clinical glucocorticoid excess. They have norm al levels of plasma 

electrolytes. The binding affinity of lymphocyte GR in this species is 5- 

times lower than in human (Kd, 20.9 ± 1.8 vs 4.3 ± 0.2 nmol/L, n=3). The LBD 

of the squirrel monkey GR contains 4-amino acid differences when 

com pared to the hum an GR, which are present in other New World 

primates. The amino terminal domain contains 22 differences. None of the 

LBD differences appear to be compatible with mutations known to affect 

steroid binding in other species. When expressed in a reticulocyte lysate 

system, the affinities of human and squirrel monkey GR were similar (Kd, 

5.9 ± 1.2 vs 4.3 ± 0.5 nmol/L, n=3). These results suggest that the 

substitutions in the LBD of the squirrel monkey GR are not responsible on 

their own for the observed resistance to cortisol binding. Rather, the 

binding affinity is most likely influenced by cytosolic factors which affect 

GR function. In cotton-top tamarin B95-8 cells, inhibitors which interfere 

with glucocorticoid and vitamin D receptor binding have been identified 

(Brandon et al., 1995) and a cytosolic cortisol binding protein has been 

proposed (Brandon et al., 1994). It is not yet known whether similar factors 

exist in squirrel monkey cells.

Steroid resistance in squirrel monkey may result from a low expression of 

HSP90, or from the expression of a mutant form of this protein (Cadeponed 

et al., 1994). Mutant forms of HSP90 or low levels of HSP70 have been given 

to explain glucocorticoid resistance in some human luekemic cell lines 

(Kojika et al., 1996). The mechanisms of glucocorticoid resistance in the 

squirrel monkey are likely to be different to those reported for the guinea 

pig (cavia porcellus). Guinea pig GR also has low affinity for cortisol with a 

compensatory increase in the plasma (Keightley and Fuller, 1994). The LBD 

of the guinea pig GR differs in 24 places from that of human. Only four of 
these substitutions (Gly6i2> Thr5 4 5 , G1U6 7 2  and Leu7 5 5 ) are shared with 

squirrel monkey, rat and mouse, leaving 20 which might contribute to the 

differences in steroid binding between guinea pig and hum an GRs. 

Preliminary studies suggest the unique substitution at position 539 (Tyr- 

His) is at least partly responsible for the low binding affinity of the guinea 

pig GR (Keightley and Fuller, 1994).
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The detailed molecular mechanism of steroid resistance in New World 

primates remains elusive. These species may harbour a global inhibitor of 

steroid receptor action; steroid-specific cytosol binding proteins only 

explains some aspects of the paradigm. The model answer requires a global 

solution which applies to all steroid receptors.

7.5.6.) Calreticulin

The general concept of steroid resistance may be explained in part by the 

protein calreticulin, a widely distributed multifunctional protein found in 

the endoplasmic reticulum  where it acts as a major calcium-binding 

protein and in the nucleus where its presence implies a possible role in 

transcriptional regulation. Calreticulin binds a polypeptide motif KLGFFKR, 

which constitutes part of the DNA binding domain shared by all known 

members of the steroid hormone receptor superfamily (Fuller, 1991). It is 

therefore reasonable to suppose that abnormal expression of calreticulin 

might affect glucocorticoid sensitivity (Burns et al., 1994; Dedhar et al., 

1994). The regulation of calreticulin expression is complex involving both 

transcriptional and post-translational steps. Integrin molecules are also 

bound by calreticulin at the cell surface. The cytoplasmic domain of all 

integrin  a-subunits contain an almost identical polypeptide sequence 

motif, KXGFFKR (where X can be either G, A or V), to that found in steroid 

hormone receptors. Calreticulin has also, been shown to inhibit AR 

binding to its DNA response element in vitro and AR and retinoic acid 

receptor gene regulatory activities in tissue culture, thus implying a 

general role in m odulation of gene transcription by steroid receptors 

(Dedhar et al., 1994). Despite the implied general role of calreticulin in 

modulating the activity of steroid hormone receptors, effects of this 

molecule on steroid binding are unlikely.
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Appendix 1

PRIMERS: For PCR, Reverse Transcription and Sequencing.

Primer Sequence length location in GR Application
name (5'-3') (mers) relative to metl
pG AATGCTTTCTTCCAGAAGCCG 2 1 n 421-441 Reverse PCR
PA CCTGGCAGTTTGCTTGGCCAA 2 1 n 46-66 Forward PCR
p9 AAAGGC TC CACAAGCAATGTG 2 1 n 2 0 2 - 2 2 1 Forward PCR
pl9 GACAGTGAAAC GGC TTTGG 19 n 299-317 Reverse PCR
rGRl GTTGAAC CACATGGAC TTGG 2 0 n 2756-2775 Reverse

Transc11
rGR2 C TATAAAC CACATGTAC TGC G 2 1 n 2582-2602 Reverse PCR
rGR6 CACTTGACGCCCACCTAACAT 2 1 n 1747-1767 Reverse PCR
rGRlO GGAGCAAAGCAGAGCAGGTT 2 0 n 1909-1928 Reverse PCR
rGRl 8 TGATACGCCTATTTTGGATCC 42 n 421-441 Reverse PCR/

AATGCTTTCTTCCAGAAGCCG Cloning
rGRl 9 ATGTTTGACAGCTTAGGATCC 42 n “6-15 Forward PCR/

TTGCCAATGGACTCCAAAGAA Cloning
rGR20 TGGGCAGTTTTTCCTTCGAAT 2 1 n 1459-1479 Reverse PCR
rGR21 GTTCAGAGC C C CCAAGGAAGT 2 1 n 1186-1206 Reverse PCR
rGR22 GGGGGAGCAAAGTTCAATGAA 2 1 n 907-927 Reverse PCR
rGR23 GGAC C CAGC GGAAAAC TC CAA 2 1 n 652-672 Reverse PCR
rGR25 TACAAGACAAATTGATAAGTT 2 1 n 2390-2411 Reverse PCR
rGR28 TTGC CAGTTGTGAC TGGAGTT 2 1 n 2173-2194 Sequencing
rGR29 ATTGC TTGTGGAGC C TTTC GA 2 1 n 199-219 Sequencing
o lig o - AGCAGCAGCAGCAGCAGCCAGC 2 2 n 362-384 Hybridisation
CAG probe
rGR32 GATCCGCCGTTTCACTGTC 19 Complementary Cloning

to fragment
n 304-317 half-site
(sense)

rGR33 CATGGACAGTGAAACGGCG 19 Complementary Cloning
to fragment
n 304-321 half-site
(antisense)

rGR34 ATGGGAC TTTC C TAC TTGGCA 2 1 n 266-286 pSTC-specific
forward PCR
primer

Biotinylated Primers
pG-BIO B -  AATGC TTTC C AGAAGC C G 2 1 n 421-441 Reverse PCR
rGR5- B - ATTCAGCAAGCCACTGCAGGA 2 1 n 1555-1575 Forward PCR
BIO
rGR 19- B-ATGTTTGACAGCTTAGGATCC 42 n “6-"15 Forward PCR
BIO TTGCCAATGGACTCCAAAGAA
rGR31- B-TTCCTTCTCGAAGGGGACACG 2 1 n 763-783 Forward PCR
BIO

Compilation of oligonucleotides.
Primers are listed for use in PCR, reverse transcription, sequencing, Southern hybridisation and 
oligonucleotide half sites for the construction of DNA cloning fragments. Each oligonucleotide is 
referred to by a unique reference notation. Positioning in the rat GR cDNA sequence, together with 
length in bases is given. For PCR primers, forward and reverse orientation is stated.
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Appendix 2

The following graphs (1-26) show a point-by-point plot of counts bound to 
CV-1 expressed GR following competition for ^ H - d e x  binding sites by cold 
dexamethasone or corticosterone. From a total of 55 independent Scatchard 
determinations, the data for the 20 repeat natural and construct alleles is 
shown.

Counts (x-axis) are normalised as % counts bound for each curve. The 
example below shows the calculation of % bound counts, from original 
counts.

20 CAG Natural: Dex (C):

cpm Adjusted cpm Bound cpm % Bound cpm

177.1 283.4 186.1 50.6
290.7 465.1 367.8 100
241.1 385.8 288.5 78.4
197.7 316.3 219.0 59.5
144.4 231.0 133.8 36.4

93.6 149.8 52.5 14.3
74.8 119.7 22.4 6
69.6 111.4 14.1 4
60.8 97.3 0 0

cpm Adjusted cpm Bound cpm % Bound cpm

164.4 263.0 145.3 44.5
277.7 444.3 326.6 100
263.1 421.0 303.2 92.8
224.1 358.6 240.8 73.7
146.4 234.24 116.5 35.7
107.8 172.5 54.7 16.7
81.8 131.0 13.12 4
73.6 117.8 0 0
76.4 122.2 4.48 1.3

Tables of raw data of duplicate cpm for ^H-dex binding to GR 
allele 20 CAG Natural (C).
Values of cpm are volume adjusted to take account of the fraction of the 
total reaction volume taken for counting.

Key:

Circled points, (pages 13, 22 and 26) indicate a set of values in which one of 
the pair was a clear outlier. In these cases, the outlying point has been 
adjusted to match that of the value lying closest to the trend of the 
remaining points.
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Points marked by an asterisk (y-axis), pages 9, 14, 15, 16, represent a pair of 
values which were clearly spurious in the original data. In these cases, the 
outlying points were omitted from calculations of Kd and Bmax. For the 
purpose of data plotting, an appropriate value was calculated by averaging 
the preceding and following data point in respective curves.

Appendix 2

Graph Original total Page
counts bound

20 CAG N atural: Dex (A) 199.5/185.6 1
20 CAG N atural: Dex (B) 212.5/214.6 2
20 CAG N atural: Dex (C) 283.4/263.0 3
20 CAG N atural: Dex (D) 506.1/501.8 4
20 CAG N atural: Dex (E) 422.9/405.1 5
20 CAG N atural: Dex (F) 405.6/382.1 6
20 CAG N atural: Dex (G) 351.2/383.7 7
20 CAG N atural: Dex (H) 362.4/348.3 8
20 CAG Construct Dex (A) 464.8/381.8 9
20 CAG Construct Dex (B) 451.5/452.9 10
20 CAG Construct Dex (E) 173.3/153.8 11
20 CAG Construct Dex (F) 204.8/186.6 12
20 CAG Construct Dex (G) 478.6/403.5 13
20 CAG Construct Dex (H) 408.1/374.7 14
20 CAG Construct Dex (I) 436.3/372.3 15

20 CAG N atural: Corticosterone (A) 152.6/158.2 16
20 CAG N atural: Corticosterone (B) 213.4/200.3 17
20 CAG N atural: Corticosterone (C) 327.2/387.7 18
20 CAG N atural: Corticosterone (D) 513.8/493.9 19
20 CAG Construct: Corticosterone (A) 342.7/401.6 20
20 CAG Construct: Corticosterone (B) 477.6/411.8 21
20 CAG Construct: Corticosterone (E) 162.9/161.6 22
20 CAG Construct: Corticosterone (F) 207.4202.9 23
20 CAG Construct: Corticosterone (G) 361.9/359.4 24
20 CAG Construct: Corticosterone (H) 327/346.7 25
20 CAG Construct: Corticosterone (I) 345.6/370.7 26
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