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ABSTRACT 

 

In this work three different metallic metamaterials (MMs) structures such as asymmetric split 

ring resonators (A-SRRs), dipole and split H-shaped (ASHs) structures that support 

plasmonic resonances have been developed. The aim of the work involves the optimization of 

photonic sensor based on plasmonic resonances and surface enhanced infrared absorption 

(SEIRA) from the MM structures. The MMs structures were designed to tune their plasmonic 

resonance peaks in the mid-infrared region. The plasmonic resonance peaks produced are 

highly dependent on the structural dimension and polarisation of the electromagnetic (EM) 

source. The ASH structure particularly has the ability to produce the plasmonic resonance 

peak with dual polarisation of the EM source. The double resonance peaks produced due to 

the asymmetric nature of the structures were optimized by varying the fundamental 

parameters of the design. These peaks occur due to hybridization of the individual elements 

of the MMs structure. The presence of a dip known as a trapped mode in between the double 

plasmonic peaks helps to narrow the resonances. A periodicity greater than twice the length 

and diameter of the metallic structure was applied to produce narrow resonances for the 

designed MMs. A nanoscale gap in each structure that broadens the trapped mode to narrow 

the plasmonic resonances was also used. A thickness of 100 nm gold was used to 

experimentally produce a high quality factor of 18 in the mid-infrared region. The optimised 

plasmonic resonance peaks was used for detection of an analyte, 17β-estradiol. 17β-estradiol 

is mostly responsible for the development of human sex organs and can be found naturally in 

the environment through human excreta. SEIRA was the method applied to the analysis of 

the analyte. The work is important in the monitoring of human biology and in water 

treatment. Applying this method to the developed nano-engineered structures, enhancement 

factors of 10
5
 and a sensitivity of 2791 nm/RIU was obtained. With this high sensitivity a 

figure of merit (FOM) of 9 was also achieved from the sensors. The experiments were 

verified using numerical simulations where the vibrational resonances of the C-H stretch 

from 17β-estradiol were modelled. Lastly, A-SRRs and ASH on waveguides were also 

designed and evaluated. These patterns are to be use as basis for future work. 
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CHAPTER 1 

 

INTRODUCTION 

 

1.1  Introduction 

 

The etymology of the word photonic comes from Greek “photos” meaning light. Photonic 

devices are rooted in light generation and interaction with matter. The interactive 

phenomenon between light and matter has been under continuous development for example 

the discovery of quadratic the electro-optic effect (QEC) by John Kerr in 1875 and then 

establishment of fundamental theory of laser by Albert Einstein in 1917. Photonics 

applications have become inescapable in all areas of everyday life, for example: in 

telecommunication, security, measurements, imaging, medicine, agriculture and biology.  

 

The technological development of photonics towards their wider range of applications 

brought an era of the device enhancement. Among the targeted features of the new era 

photonics which is analogous to electronics are low cost, robust, compact, portable devices 

and high performance. Most optoelectronic devices already have these features and have been 

utilised in many equipment for example in digital cameras, plasma screens, and blue DVD 

ray players etc. Currently, researchers are advancing into topics such as optical fibres, 

photonic crystals and metamaterial in photonics to thoroughly investigate and fabricate 

various structures and materials with engineered optical properties. Following the 

advancement and employing much of the technology developed in the photonics industries, 

metamaterials may contribute a large part of the revolution in the optoelectronics in the 

coming years. The topic of metamaterials has shown great potential in tuning resonances to 

desired spectral region and that opens up a wider promising field for the development of 

photonic sensors. 
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Victor Veselago, in 1968 was the first to theoretically describe materials that exhibited 

reversed physical characteristics [1]. This theory was practically developed to left-handed 

metamaterials by Pendry [2], a material that permits an electromagnetic wave to transport 

energy in the opposite direction to its phase velocity. Hence, materials that do not adhere to 

the right-hand rule or are not accessible in naturally occurring material were introduced [2].  

More generally, there has been a continuous development of materials with sub-wavelength 

structures which have led to the concept of metamaterial based photonic sensors.  

 

The general idea of a metamaterial based sensor can be traced back to the work in references 

[3-5] where a planar array of resonant metallic structures can be applied to realization of a 

simple sensor system. They proposed that a periodic array of metallic resonator structures can 

be sensitive to its immediate environment. Over the years many researchers in the field have 

continuously improved this idea, introducing various new methods of producing high 

sensitive as well as high figure of merit (FOM) metamaterial devices. The current stage this 

technological revolution focuses on is development of metamaterial without metals. 

 

Metals have been the traditional material choice for designing metamaterial structures. A 

wide range of single and double shaped structures for example nanowires [6], chiral 

structures [7], dipoles [8] and different shapes resembling alphabetical characters have been 

explored in patterning the metallic metamaterials (MMs). The use of these satisfies the high 

demands of MMs components application that cover the visible, infrared and microwave 

region of electromagnetic spectrum. References [9-13] suggested the importance of using 

materials other than metals minimise loses in MM devices. Even metals with the highest 

conductivities metals such as gold, silver and copper have significant loses.  

 

Recent improvements in metamaterials involve various designed structures particularly 

investigating materials that reduce losses. Following the demonstrations of high quality factor 

MM components at microwave, visible and near infrared of electromagnetic spectrum       

[14-18], there has been a considerable progress in the modelling and fabrication of all-

dielectric [19-21] metamaterial for higher quality components in mid-infrared. Thus a high 

figure of merit (FOM) defined by the shift in resonance divided by the full width at half 
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maximum of the resonance peak is made possible in mid-infrared by the all-dielectric 

structures which are free from losses due to metals as well exhibiting the ability to sustain 

Fano-resonances [19]. The generic metamaterial approach of using metal still plays important 

role in enhancing the sensitivity of MMs based sensors which may not be achievable in all-

dielectric structures. 

 

Advances in technology also play an essential role in the development of MMs. The 

invention of metamaterial based sensors was an important milestone in solving the sensing 

problems in some fields such as in medicine [22], chemistry [23] and biology [24-25]. They 

also provide an overview of the basic principles and prospects for the application of 

metamaterial based on photonic sensors for human welfare generally. The current work on 

photonic sensors devices has now become focused on the possibility of developing 

optoelectronics components, where the device could be monitored and controlled using the 

tuning ability of MMs structures to the targeted EM signals. MMs based photonic sensors 

operating in a passive manner have been reported by some authors [26-27] with significant 

losses. These are mainly resistive losses through metal [13] which are frequency dependent.  

 

The MMs structure has been developed as a promising platform for plasmonic sensors as 

have proven with their ability of high signal enhancement factor in sensing applications even 

in mid-infrared region [28-29]. MM structures such as A-SRRs and dipoles as presented in 

[4, 8] have since been undergone some adjustments, re-engineering and optimisation to 

improve on the original design. Extensive investigations have been performed on the gap and 

periodicity or density of the MM structures [8]. Corresponding simulations and optimisation 

techniques have been used to improve the metamaterial based photonic sensors. A-SRRs on 

waveguides and Split H-shaped metamaterials are possible approaches towards producing a 

high quality and sensitive biochemical sensor device.  
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1.2  Motivation and Contribution 

 

Metamaterials are now commonly found in everyday life for example mobile phone antenna. 

The field is growing because metamaterial devices open up a wide platform for development 

and applications. Applying photonic technological concepts in the field of biology has been 

the key motivation for this project. This thesis describes the numerical simulations of the MM 

designs and the nano-fabrication of the metamaterial devices such as A-SRRs, dipole, split H-

shaped, A-SRRs on waveguide and antenna structures. The goal of the research is to design 

different types of structures and determine the MM devices that produce a more sensitive and 

higher quality sensor. The step by step procedures followed through to reproduction of the 

fabricated nano-devices was imitated from processes established by other James Watt 

Nanofabrication centre (JWNC) clean room users. Continuous reproduction and reliable 

fabrication of the devices has always been a big challenge due to frequent updates in the 

JWNC facilities used.  

 

The major contribution of my work has been the production of what I believe to be very high 

Q-factor devices produced from lossy MM structures in mid-infrared region. This was 

achieved firstly with the existing structure A-SRRs and secondly by introducing a new 

structure split asymmetric H-shaped (ASH) metamaterial. A-SRRs on waveguide were also 

realised in different ways, by design and fabrication of the structure on silicon on insulator 

(SOI) sample. Micro antenna structures are also fabricated on indium phosphide sample. 

Lastly the MM structures designed were experimentally used to detect presence of            

17β-estradiol. The author also numerically modelled a near-perfect match to the experimental 

result for the 17β-estradiol molecular resonance using the Drude model. 

 

There are new approaches developed by the author for the numerical simulation of the design 

such as investigating how the periodicity and gap length affect the Q-factor for a good FOM 

MMs device. In the fabrication process the resist thickness, exposure and development recipe 

was modified to suit metallization of the developed patterns. The novel split H-shaped 

structure utilises the two main polarisations and produce a higher sensitivity when compared 

with the other MM devices such as dipoles.       
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1.3 Structure of the Thesis 

 

The thesis is composed of seven chapters: 

 Chapter 1: Introduction 

      This introduces the thesis, providing context, motivation and contributions. 

 

 Chapter 2: Metamaterial Concepts 

The concept of metamaterial and photonic sensors is briefly explained here. This 

background is necessary to understand the design and challenges associated with 

the operating principle of photonic sensors based upon metamaterials. Also basic 

concepts of propagating EM signal into metamaterial structures are presented. 

 

 Chapter 3: Modelling and Simulation 

This chapter introduces the background to design of the metamaterial devices 

such as A-SRRS, dipole and split asymmetric H-shaped.  There is a breakdown of 

what can be considered a numerical simulation that employs the finite difference 

time domain (FDTD) and a brief summary of the software package, Lumerical 

use for the modelling and simulations. The work presented in chapter three 

provides motivation and base for the proposed fabrication procedures presented 

in the next chapter. 

 

 Chapter 4: Fabrication of Metamaterial Devices 

Explains the fabrication processes used and the author highlights the main features    

in the computer aided design (CAD) tools, pattern writing using Electron-Beam 

Lithography (EBL), development of the patterns, metallization and etching 

techniques, during the fabrication of various devices presented in the modelling 

chapter. Details of the recipes used to fabricate metamaterial devices and the 

results achieved. Also included are notes of the major problems and suggestions 

towards updating the processes. This explanation is followed by analysis of 

Fourier Transform Infrared measurements (FTIR) in comparison to simulation 

results to understand the effects of fabrication tolerance.  
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 Chapter 5: Experimental Results 

Explores a collection of different experimental results from the fabricated 

metamaterial devices presented in the chapter four.  An explanation of the FTIR 

apparatus used is included. Special attention is given to the metamaterial devices 

such as A-SRRs and ASHs which were the main structures optimised for the high 

sensitivity purpose of this work.  

 Chapter 6: Detection of 17β-Estradiol 

Presents simulation and experimental results relating to the previous work of A-

SRRs, SSHs and ASHs discussed in this thesis. This chapter starts by describing 

the modelling environment used, and validating the environment as well as the 

numerical models in use. The sensing experimentation of 17β-estradiol is then 

evaluated, including comparison of the sensitivity for different metamaterial 

structures. Results from ASHs structure with brief analysis and suggestions for 

further work were included. 

 

 Chapter 7: Future work and Conclusions  

Future works performed during the project period are presented in this chapter. 

Possible future work and suggestions on how to improve the metamaterial 

designed devices presented in this thesis are discussed. This chapter also 

concludes the work based on metallic metamaterial presented in this thesis. The 

strengths, and weaknesses of the work are summarised, and extent to which the 

original research motivation has been achieved is highlighted. Reasons for not 

presenting the measurement results of the fabricated A-SRRs on waveguide are 

briefly explained. 
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CHAPTER 2 

 

METAMATERIAL CONCEPTS 

 

2.1   Introduction 

 

Metamaterials are arrays of repeated substances that derive their characteristics from the 

structures and not from the material composition. Naturally, material fundamental parameters 

such as magnetic permeability (μ) and electrical permittivity (Ɛ) determine the material 

response to electromagnetic radiation but metamaterials exhibits their electromagnetic 

properties beyond the various material found in nature [1]. Thus, metamaterials are associated 

with negative μ and Ɛ parameters over a band of wavelengths with the ability to tune 

resonances to desired areas of the EM spectrum through the structural size and geometry. 

However, it should be noted that neither negative μ nor Ɛ are necessary to define a 

metamaterial. The defining feature of a metamaterial is that the structural elements are sub-

wavelength and that their arrangements determine the metamaterial properties. 

 

Since the publication of the first literature proposing the existence of material with negative 

properties [2], many researchers have reported their findings [3-5]. The theory of the 

metamaterials is covered extensively in these papers [3-5]. Based on the concept of 

determining metamaterial properties through the structural arrangement, the fundamental 

theory of metamaterial was used to re-engineer and design different types of MM structures. 

These structures enable realisation of highly sensitive MM based sensors.  

 

This chapter is divided into two sections, the background of metamaterials and illustration of 

how they are applied in this project. A-SRRs metamaterial is used as the guiding structure for 

re-engineering and designing of other MM structures presented in this thesis.  
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The basic concepts of metamaterials: such as negative μ and Ɛ material properties, resonance 

tuning in the EM spectrum which depends on the geometrical parameters of various sub-

wavelength scale MM structures, periodicity and gap between elements of different devices 

are introduced in the first section. In the second section, the operational concepts of 

plasmonics sensors based on MM were explained. Analysis on the technological application 

of the devices is also presented. 

 

2.2   Metamaterials 

The artificial materials, metamaterials are associated with the fact that light propagates in a 

completely different way. This is when μ and Ɛ are both negative. The study of these types of 

material structures has rapidly advanced both in theory and experiment since 1999 when 

Smith et al. [1] and Pendry [4] demonstrated how to make this metamaterial.  

 

In the exponential growth of publications in the subject of metamaterial particularly the 

traditional MM structures, split ring resonators [6] are most common structure. The MM 

structures application based on photonic sensors devices has reached a level of sophistication 

along with other mechanical or electronic sensor devices in existence. These devices have 

shown higher enhancement factor and sensitivities [7-8] than the recent all-dielectric 

metamaterials [9-12] which have been used to reduce losses, particularly in mid-infrared 

region. 

 

Over the years of MM structural developments, authors in this field of study have mostly 

worked in three EM spectral regions: microwave [13], infrared [7] and visible [14] which 

were determined by the dimension of the structures.  
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                     Figure 2.1: Illustration of electromagnetic spectrum 

 

The MM structures presented in this work are designed to tune the plasmonic resonances in 

infrared region of the EM spectrum as shown in figure 2.1. The structures shown in figures 

2.2 (a) and (b) are scaled such that their fundamental tuning elements which comprises of 

arcs of radius, R is (0.3 to 0.5) μm and the arms lengths, L is (0.9 to 1.5) μm produce 

resonance peaks in mid-infrared region. Arrays of gold A-SRRs patterns as shown in figure 

2.2 (c) are modelled on a three dimensional (3D) in-plane (x, y, z) of a fused silica substrate. 

The figure also shows a normal incidence radiation on the plane of MM structures. In EM 

wave the electric field (E) and magnetic field (H) are orthogonal to each other and also to the 

direction of propagation constant (k) as shown in figure 2.2c. The propagation 

constant measures changes in the amplitude of EM wave as it propagates in a given direction; 

in this work it is in z-direction. The resonance peaks produced from MM structures behave 

differently at the different orientations which show a total dependence of the resonance on the 

structural orientation and radiation polarization [15-17]. 

 

 

 

 

 

 

 

 

 

                                   

https://en.wikipedia.org/wiki/Wave_propagation
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Figure 2.2  Three dimensional MM structures with arc radii, R- r, angle, θ
0
, thickness, t, 

arm lengths, L1 and L2, gap, g, slit, s:  (a) A-SRR (b) ASH (c) Schematic of a three 

dimensional A-SRRs arrays on a fused silica substrate. 

 

The description of the metamaterial is based on the fundamental equation (2.1) derived from 

electromagnetic plane wave equations. From the equations electric, magnetic and wave 

vectors form a left-handed metamaterial if μ < 0 and Ɛ < 0 while the right-handed vector will 

be the case if the material properties are greater than zero. Details of this equation are stated 

in reference [2]: 
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                                              [kE] =  
ω

c
μH  ;     

               

                               [kH] = − 
ω

c
εE  ,                                   

Where k, E and H represent the wave vectors of the incident wave, electric field and magnetic 

field respectively and ω is the frequency of an EM plane wave. The dielectric constant Ɛ and 

the magnetic permeability constant μ are the fundamental properties of material which 

determines the EM wave propagation.   

 

The metallic metamaterial structures such as A-SRR pattern design is based on a particular 

orientation derived from different orientations [1, 18] with respect to electric and magnetic 

fields (E and H) and the direction of propagation constant as shown in figure 2.3. 

 

 

 

 

 

  

                                   

                      

 

Figure 2.3:  Sketch of A-SRR structure: Four orientations of the A-SRR studied with 

respect to the E, H and k vectors of the incidence EM field with double gaps between the 

two asymmetric arcs. 

 

Four distinct orientations as shown in figure 2.3 demonstrate a normally incidence EM wave 

to a substrate of an asymmetric split ring. References [1, 18] suggest that when the direction 

(2.1) 
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of H is parallel to the A-SRR plane, figures 2.3(a & b) there is no coupling to produce 

magnetic resonance. Figures 2.3 (a and c) show electric field, Ex coupling across the gap 

which can produce magnetic resonance generated from circulating current while figure 2.3b 

is product of electric resonance which generates the plasmonic resonance. The excitation of 

the electric (plasmonic) resonances from A-SRR is produced along the arc length for electric 

field propagating along the arcs as shown in figures 2.3(b and d). These orientations are as a 

complementary to the work of the stated references, as also applied in the design of the MM 

structures for numerical simulation and experiment of this work. In this work, the resonance 

produced from simulation and experiment is based on the described orientations of the A-

SRR of figure 2.3b.  

 

An illustrative model is shown to reveal the concept of the MM design. From the illustrations 

on how the simulations and experiments design were performed in this work, the wave vector 

(k) propagates perpendicular to the electric and magnetic plane. The gap between the two 

asymmetric arcs is analogous to the capacitance in inductor-capacitor (LC) circuit. The 

operating principle of metamaterial structures can be described by using the basic idea of 

materials science and engineering. Most of the established theories used in studying the topic 

are LC (inductor-capacitor) circuit resonance and electromagnetism in physics can be applied 

in the design and orientation of MM structures to match the EM wave polarization.  

 

The magnetic resonance which arises from an LC circuit occurs when the incident EM wave 

is normally on A-SRR plane and the electric field of the incident source is coupled through to 

the capacitance [15].  The conventional LC circuit as shown in figure 2.4 (a) is used either for 

signal generation or filtering out a signal at a particular wavelength from a broad band signal.    
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Figure 2.4:  Sketch illustrating the analogy between a simple conventional inductive-

capacitive (LC) circuits design (a), where (c) consist of two capacitors (C1 and C2), two 

inductances (L1 and L2) while (b) & (d) show the single  and  the double split ring 

resonators, arc width (L1 and L2) and gap or angle (θ1 and  θ2)between the two 

asymmetric arcs. 

 

In this present work, the resonances produce from EM wave normally incident on MMs such 

as SRR reveals the fundamental theory of LC resonance generator. Here, the incident EM 

wave can couple to LC resonance as shown with the simplified LC circuits of figures 2.4(a & 
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c) for the A-SRR metamaterial. For figures 2.4(b & d) the gap and the arc length represent 

the capacitance and inductance of the LC circuit respectively. The incident wave is able to 

couple to produce resonance if either of the following criteria is certified: E-field vector of 

the incident light has a component normal to the plates of the capacitor, or H-field vector of 

incident light has a component normal to the plane of the coil [19]. These metamaterials 

phenomenon produces a magnetic resonance reflectance peak and dip for transmittance 

within EM spectra. Works [20-21] on numerical calculations for a finite length of MM have 

been performed. For a finite geometric MM such as arc of a homogenous material, the 

complex reflection and transmission coefficients are related to the impedance z and refractive 

index n associated with resonant frequency/wavelength. The permittivity Ɛ and permeability 

μ of a finite MM are obtained from the fundamental material properties [22]; 

 

 

          𝑛 =  √𝜀𝜇      𝑎𝑛𝑑      𝑧 =  √
𝜇

𝜀
           

 

For the transmission coefficients, the transfer-matrix method was previously used by Pendry 

et al to calculate the EM field through photonic band-gaps [23-24] while here finite-

difference time-domain (FDTD) method is used for the MM structures.  FDTD being a time 

domain method was used to provide simulation results at wide range of wavelengths with a 

single simulation. 

Drude model [25] was applied in the method to describe the dispersive nature of the metallic 

(gold) material. According to the model, the dielectric function of free electrons,                    

Ɛ = Ɛreal + iƐimaginary can be expressed in the following equations [26]:    

                     ε𝑟𝑒𝑎𝑙 = 𝜀ɷ −  
𝜔𝑝

2 

𝜔2+ 𝜏2
  
        

                      

                       ε𝑖𝑚𝑔 =  
𝜔𝑝

2 𝜏

𝜔(𝜔2+ 𝜏2)  
  

 

Where   𝜔𝑝 = √
𝑛𝑒2

𝑚𝜀0
   and    𝜔 = 2𝜋𝑓 

(2.2) 

(2.3) 

(2.4) 
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The definition of the expressions is as follows: Ɛɷ is the dielectric electric constant at infinite 

frequency, τ is the reciprocal relaxation time, and ωp is the plasma frequency which involves 

m, mass of free electrons.   

 

The model was applied to produce simulations of the transmission plots as shown in figure 

2.5. The spectral plot is a product of mid-infrared source incident on the plane of gold 

patterned A-SRR structures. The modelling of asymmetric patterns produces the resonance 

peaks from the effective material properties based on the equations of dielectric constant. The 

absorption was calculated by the expression; Absorption = 1-R-abs (T), where R is the 

reflectance and abs (T) is the absolute transmission value. A full description of how the 

simulation was performed is included in chapter three of this work. 

     

 

 

 

 

 

 

 

 

 

                  

 

Figure 2.5:  Transmittance, reflectance and absorption spectra from FDTD simulation 

showing polarisation of E-field parallel to the A-SRR (inset) arcs. 

 

The polarization of the EM wave is crucial because there are well defined fields at the 

incident source. Thus the description of the electric and magnetic fields component are 
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included in order to determine the polarisation properties. The polarization properties of the 

field are determined from the amplitude of the MM components such as the x, y and z 

components. A three dimensional (x, y, z) split ring resonator is designed with FDTD 

software, Lumerical to produce a resonance peak when E-field is parallel to the arcs, as 

shown in figure 2.6. The figure also shows a resonance peak resulting from the fused silica 

substrate at both polarisation of E-field parallel to the arcs and across the gap.  

 

                    

 

 

Figure 2.6:  Reflectance spectra of E-field polarisation for asymmetric a split ring 

resonator (SRR). 

 

The reflectance spectra plots for the two different polarisation of the E-field with respect to 

the designed MM structure was tuned to produced plasmonics resonance peak  at 3.42 μm 

while the peak from the fused silica occurs at 9.0 μm as shown in figure 2.6. Figure 2.7 

shows examples of electric field plots at a particular wavelength (3.4 and 9.0) μm position for 

the three components from reflectance monitor of Lumerical. From the spectral plots the 
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polarization of E-field across the gap results to zero plasmonics resonance but magnetic (LC) 

resonance was produce which demonstrated the coupling of the current across the gap.  

Field 
components 

    

          
E-field parallel to the arcs 

 

           
   E-field across the gap 

x  

 
 

 

 

y  

 
 

 

 

Z 

 

 

 

 
 

 

 
 

 

    Figure 2.7:  E-field polarisation plots for the designed MM device components. 

The red and blue colours in the field plots indicate the maximum and minimum E-field which 

corresponds to the magnitude of the spectra plots of figure 2.6. Here the two colours red and 

blue are also used to explain the electric charges of the device. The E-field plots for the three 

components showed greater field strength values on the colour bars from plasmonics 

resonance at 3.42 μm than the LC resonance at 9.0 μm. Thus, the E-field at this particular 

polarization with respect to the designed split ring resonator produces the required resonance 
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peak. The second and third column of figure 2.7 showed the field plots produced when the E-

field is parallel and across the gaps respectively for a split ring resonator. The corresponding 

wavelengths of the E-field are 3.42 μm for the second column and 9.0 μm for the third 

column of the figure. 

 

    

 

                       

                 

Figure 2.8:  Reflectance spectra of E-field polarisation for asymmetric split ring 

resonators (A-SRR).  

 

Again, the design for asymmetric split ring resonator (A-SRR) using similar polarisation of 

E-field produces the plasmonics at the expected tuned wavelength position and resonances 

peak from fused silica as shown in figure 2.8. The A-SRR produced a second resonance peak 

at 4.6 μm due to asymmetric nature of the MM structure.  This research is concentrated on the 

asymmetric MM structure which produces double resonance peaks. Understanding and 

manipulating the described E-field parallel to the arcs helps in production of an optimized 

reflectance resonance peaks for the sensors based on MM applications. It has been shown 
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here that E-field at polarization parallel to the electric conductor, gold (inductor in case of LC 

circuit) produces the plasmonic resonances. 

 

 

2.3 Plasmonics  

Plasmonics is analogy to electronics using plasmons. In physics, a plasmon is the quantum of 

the collective excitation of free electrons in solids. Plasmonic nanoparticles are particles 

whose electron density can couple with electromagnetic (EM) radiation of wavelengths that 

are larger than the particle due to the nature of the dielectric-metal interface between the 

medium and the particles. The theory of plasmomics is dated as far back as 1950’s when 

some researchers Ritchie, Kretschmann and Otto [27-29] published their findings from light 

incident on dielectric and metal interfaces. Figure 2.9 shows that surface plasmonic can exist 

at interface between a metal (Ɛ < 0) and a dielectric medium (Ɛ > 0). 

 

 

 

 

 

 

          Figure 2.9:  Exponential decay of field into two different materials 

 

The illustration composed of EM wave in the dielectric medium and oscillating electron 

plasma in the metal where both modes have an exponentially decaying evanescent character.       

Over the years, many photonic sensing systems which comprises of a thin film metal and a 

bulk dielectrics have been developed utilizing the sensitivity of surface plasmonic resonance 

(SPR) to the changes in the system surrounding environment [30]. The SPR occur as a result 

of a resonant interaction between an illuminating EM wave and a collective electron density 

dielectric, Ɛ1          

intensity          

metal, Ɛ2          
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oscillation of the free electrons of the conductor. These phenomena can take various forms 

ranging from freely propagating electron density waves along metal surfaces to localised 

electron oscillations on metal nanoparticles. Their unique characteristics enable a wide range 

of applications such as manipulation at the nanoscale, detection of biological analyte at a 

single molecule level and enhancement of molecular resonances [7-8, 31-34].   

            

 

2.4   Photonic sensors based on metamaterial 

The use of metamaterial as a sensor device is of great interest in many fields such as 

medicine, environmental, bio-chemistry, then security and defence. Photonic sensors based 

on plasmonic resonances of metamaterial were numerically modelled several years ago 

(2005) by A. Ishimaru et al [35]. The reference illustrated the use of a sharp resonance peak 

in the reflection coefficient to analyse material characteristics and determine metamaterial 

features.  In this work, the developed MM device that produces plasmonic resonance can be 

classified as photonic sensors. Photonics is generally described as science of light (photon).  

The photon manipulation can occur following different criteria such as light generation, 

transmission, amplification, modulation and sensing. These criteria are mostly used to define 

the photonics application in some research areas. The photonic sensor based on the developed 

MM structures has been used in sensing a chemical analyte in mid-infrared region. Photonic 

sensing technology is increasingly used in early-detection and monitoring systems for 

structural flaws, security threats and biological hazards [36]. The technology provides a 

comprehensive review of an exciting and fast evolving field, focusing on the development of 

cutting-edge various applications in a wide range of areas from biochemical detection to 

environmental monitoring. 

 

The concept of analysing and exploring the use of metamaterial to produce surface plasmonic 

resonance subsequently follow the idea of using a white-light source to generate a large range 

of resonating wavelengths [37]. Thus, describing how to determine the sensed material from 

measured resonance spectrum through the transmission spectra intensity. Recently, many 

articles have been published on sensors utilizing the resonances produce from metamaterial 
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device across the EM spectrum [7, 38-40]. The plasmonic resonance resulting from the 

traditional metamaterial, devices have been widely and commonly used as the basis for 

photonic sensors. 

 

   

Figure 2.10:  Block diagram of a photonic sensor showing infrared (IR) excitation of 

resonances from EM radiation on arrays of A-SRRs structure and then with analyte which 

produces a shift to longer wavelengths of electromagnetic (EM) spectrum. 

 

Figure 2.10 shows the block diagram of a photonic sensor. Mercury cadmium telluride 

(MCT) is an infrared detector used for the measurements. In stage I of the diagram, there is a 

coupling of EM source through a dielectric (air) normally into arrays of A-SRRs structures. 

Reflectance spectra produced from the excitation of arrays asymmetric structure are usually a 

double plasmonic resonance peaks as shown in the figure. Presence of analyte in stage 2 

replaced the initial refractive index of air surrounding the sensors. In this case, the introduced 

analyte in the sensors surroundings has a higher refractive index than air thereby shifting the 

resonance peaks to longer wavelength of the EM spectrum. The sensitivity of photonic 

sensors depends on the resonance peak shift. Again, the sensor enhances other molecular 

resonances present in the targeted wavelength region of EM spectrum. An example of a 

photonic sensor that closely relate the sensor used in this work is a biosensor. A biosensor is 

an analytical device that employs biological material for a specific interaction with an 
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analyte. Different types of biosensors such as screen-printed carbon electrochemistry (SPCE) 

[41], gas chromatography-mass spectrometry (GC-MS) [42], gold electrode surface via 

under-potential deposition (UDP) [43] and aptamer-based optical fibre [44, 45] which may 

not be characterise with change in the refractive index that leads to shift in the resonance 

peak have been used to detect the 17β-estradiol analyte. In this work, 17β-estradiol is the 

chemical material analysed with the developed photonic sensors.  The technological 

advantages of using plasmonic resonances for sensing this analyte have also been compared 

and presented in these references [46-48].   

There has been a continuous optimization and development of new structures in order to 

obtain high sensitivity and enhanced performances of the sensors at microwave, terahertz and 

infrared spectral region. This research is focused on sensing at mid-infrared with the MM 

devices. Figure 2.11 show the spectral features of water vapour (H2O) and carbon dioxide 

(CO2) in the region of operation [49-50].  

           

      

 

     

Figure 2.11:  Water vapour and carbon dioxide bands in the infrared spectrum [50].  
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These features are present in all the experimental measurement results of this work. The 

present work uses reflectance spectra of Fourier transform infrared spectroscopy (FTIR) for 

the measurements. The detection target for the resonance peaks here is designed for a 

chemical analyte which exhibit vibrational resonances of different molecular bonds as shown 

in figure 2.12 [51].  

           

 

 

Figure 2.12:  Common molecular resonances in the IR from spectroscopic methods in 

organic chemistry by Williams and Fleming [51]. 

 

Specifically, the analyte detected here is 17β-estradiol which exhibits C-H and C=C 

vibrational resonances between 3 μm to 8 μm wavelength [52-53] and the C-H is analysed in 

chapter 6 of this work. The vibrational resonance from these bonds is the guide for the design 

of MM symmetric and asymmetric structural devices presented here. 
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Functionalization 

Increasing interest for protein biochip in the field of biomedical applications has been 

focused on surface activation and subsequent functionalization approaches for 

immobilization of various biological molecules. Different functionalization approaches that 

use covalent and non-covalent chemistry with emphasis on the chemical specification of 

protein attachment and on retention of protein function have been presented [54]. Examples 

of these approaches include wet chemical treatment, plasma treatment, radiation and photo-

grafting or through fabrication of integrated biochip and micro-fluidic channel [54-59]. Over 

the years, surface of sensors based on metallic metamaterial is usually treated using the listed 

strategies to form a specific reactive functional group for immobilization of protein. 

References [59-61] have used different types of material such as polydimethylsiloxane 

(PDMS) and thiols to make the attachment or functionalize biomolecules to surface of 

nanostructures used for sensing application. Thiols are the sulphur analogue of alcohols and it 

has a specific attraction to biomolecules while PDMS which belong to a group of polymeric 

organosilicon compounds is commonly used for flow delivery in microfluidics chips of a 

biosensor device.  

A specialize functionalization approach as explained above may not be employed to all 

photonic sensing applications. This approach distinguishes the photonic sensing application 

of this work with a typical biosensor device. A biosensor employs biological material for 

immobilization or a specific interaction with an analyte. The analyte 17β-estradiol used in 

this work was dissolved in ethanol before depositing the mixture on to MM device surface. 

The solvent ethanol was allowed to evaporate before proceeding to measurement as explained 

in chapter six.    

 

Figure of Merit (FOM) 

Figure of merit is a numerical expression used to characterize the efficiency or performance 

of sensor devices. This can be defined as the ratio of sensitivity (S) divided by full width half 

maximum (FWHM) of a resonance and it is expressed as [62]: S/ FWHM. This parameter 

allows the efficiency of nanostructures to be compared against one another when use as a 

sensor, irrespective of the dimensions or shape of the structure. The sensitivity of a sensor is 

ratio of a wavelength shift (Δλ) to change in refractive index (Δn).  FOM is known to be a 
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key parameter of sensor devices and it is determine by the sensitivity with which very small 

wavelength changes can be measured. Sharpness of a resonance peak is also support this 

parameter. Production of a narrow line width of plasmonic resonances or sharp resonances 

increases the FOM of sensor devices [63-65]. This criterion relates the FOM of devices to 

another important parameter sensor device known as quality factor.  

Quality factor (Q-factor) is a dimensionless parameter that describes how under-damped a 

resonator can be and it characterizes the resonator’s bandwidth relative to its centre 

wavelength.     

  

        

Figure 2.13:  Schematic diagram of broad and narrow resonances with respect to 

wavelength position (λp) and showing the Full width half maximum (FWHM) of a resonance. 

 

Q-factor of plasmonic resonance is a measure of the goodness or quality of the device.  A 

higher value of Q-factor corresponds to a narrow bandwidth of the resonance which is 

desirable in many applications. This factor support the efficiency of sensor devices as 

explained with FOM. Figure 2.13 shows a schematic diagram of a broad and narrow 

resonance from which expression; λp/ FWHM for Q-factor can be derived. This is the 
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expression employed in this work to calculate the Q-factor of the different metallic 

metamaterial developed. Effects from radiation or material losses which can result to low 

quality factor of a metamaterial devices have been presented [66-67]. Again, reference 67] 

stated that loss in metal which is the common fundamental material of the metamaterial 

device varies along the regions of electromagnetic spectrum. This effect leads to wide 

variation of Q-factor values achieve from MM structures at different regions of the EM 

spectrum.  

 

 

2.5    Discussions and Conclusion 

 

This chapter has attempted to provide the main concepts of metamaterial for this research. It 

has also sought to introduce a few main parameters used to produce transmission spectral 

specifically reflectance and the characteristics of material structures used in the course of the 

work. As the aim of this project, is focused more on numerical simulation and experimental 

work.  This is based on designing and optimising MM structures that will produce sharp 

spectral resonances. Production of a narrow line width of plasmonic resonances or sharp 

resonances increases the FOM of sensor devices.  Sensors based on metallic metamaterial are 

the basis of this work; the operating principal of the device was described, demonstrating 

how the plasmonic resonance peaks produced from E-field parallel to conductor (metal) can 

be used as a photonic sensors. 
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Chapter 3 

 

Modelling and Simulation 

 

3.1 Introduction 

 

Planar metallic metamaterial (MM) or metasurfaces consist of various structures such as 

chiral shapes [1], bowties [2], multi-frequency optical antennas [3] and several different 

shapes resembling alphabetic characters [4-6].  The individual geometries of a component 

have a direct effect on the operational characteristics of the device as a whole, and result to 

compromises made in order to optimise the structures.  

 

The MM devices designed for both single and double reflectance resonance peaks were 

restricted to the TE polarization of the EM wave source parallel to the length of the metallic 

device elements. The reflectance resonance is produce from asymmetric elements of MM 

structure which correspond to double resonance peaks. The MM structures made with gold 

have a square periodic array designed on fused silica substrates. The periodicity of the 

different structures requires optimisation to increase the quality factor (Q) and amplitude of 

the resonances. 

  

Three dimensional finite difference time domain (FDTD) numerical simulations were used to 

optimise the key dimensional parameters of the MM structures, such as the gap between two 

concentric arcs of an A-SRR, the length of dipole arms and periodicity. The Drude model 

proposed by Paul Drude in 1900 which explains the optical properties of material mostly 

metals was employed to model the gold patterns of this work [7-8]. 
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In this chapter the method used for simulation is briefly described. The MM structures 

designed are described in detail, with the optimisation of the parameters, starting with the 

width (w) of the arc and arm, gap (g) between two elements of the structures and periodicity 

(a). These are the key structural parameters for the MMs designed in this work. Three 

designed MM devices are presented, the asymmetric split ring resonators (A-SRR), dipole 

structures and asymmetric split H-shape. The last section includes discussions and 

conclusions of this chapter. 

 

3.2 Modelling 

 

The metallic metamaterial structures were modelled and optimized using finite different time 

domain (FDTD) method. This is a time domain method which can cover a wide wavelength 

range with a single simulation run. Determination of optimal properties is obtained by 

applying electromagnetic laws to material properties. The relations of material properties and 

application of electromagnetic fields are primarily contained in Maxwell equations [9]. These 

are a set of partial differential equations which describe how electric and magnetic fields are 

generated and altered by each other and by charges and currents.   The equations introduce 

the electric (E) and magnetic (H) field vectors which are generally material and time 

dependent.  

The differential formulation of the equation calculates the fields in complicated situations of 

source where the time evolution of the fields is due to the partial derivatives of the fields with 

respect to time. When the differential equations of Maxwell are examined, it can be observed 

that the change in the field in time derivatives is dependent on the other field across space. 

This is the basic of FDTD time stepping relation [10] results which shows the updated value 

of the E-field in time is dependent on the stored value of the E-field and numerical curl of the 

local distribution of the H-field in space. Similarly, that the updated value of the H-field in 

time is dependent on the stored value of the H-field and numerical curl of the local 

distribution of the E in space. Adapting and repeating the E and H fields’ output results in a 

time processing form with material data analogues to the electromagnetic waves propagation 

in a numerical grid stored in computer memory [10]. This describes the three different 

dimensions of FDTD method as applied in the simulations software used in this work.       
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3.3 Simulations Setup 

 

The structures were simulated using FDTD method based on the commercial software 

package, Lumerical. Lumerical software can perform simulations in both two and three 

dimensional structures. In this work, three (x, y and z) dimensional numerical computation 

for simulation as shown in figure 3.1 was used. This type of simulation requires more 

memory and can take a longer time but it ensures more accuracy in the results. 

 

             

Figure 3.1: Image of Perspective view for the three dimensional simulations setup. 

The software package requires several items to set up the simulation tools [11] a 

representation is shown in figure 3.1. These tools enable correct running of the numerical 

simulation. The following section describes the basic computation tools and how the design 

was built up to perform the simulations used in this work. 
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 Material model (n, k) 

This section describes how FDTD solution can accurately model different sets of 

material over a wide wavelength range. The refractive index of different material used 

has been defined for broadband simulations. Here, materials used in the MM 

structures and the substrate design comprises of both the real and imaginary valued 

refractive index which has a complex value, (n + ik) while the background index is 

taken as refractive index of the air or vacuum  (equal to 1). 

 

The index distribution for various materials can be added in the software from the 

data material files by importing lists of n and k data as a function of wavelength. A 

broadband wavelength between 2 μm to 8 μm is used for the Au pattern using Drude 

model from references [8-9, 11] and attached in appendix A1. For the fused silica 

substrate the optical dispersion was considered by using data from reference [11]. 

This results to changes in material data of Lumerical to fit the corresponding 

transmission spectrum from the experimental work.  

 

 

 Boundary Conditions  

 

The boundary conditions (BCs) the orange coloured box shown in figure 3.2 are 

applied to the simulation of both finite and periodic MM structures are supported by 

FDTD numerical method. For the finite structure, a perfectly matched layer (PML) 

BC which absorb EM waves incident upon the design as was applied in the z-

direction. The PML was applied in Z-direction which corresponds to the direction of 

the propagating source. PML uses an absorbing layer especially designed to absorb 

the EM waves without reflection [12].The substrate structure is completely extended 

through the PML boundary condition region because the PML perform best in such 

conditions [13]. For this application the PML is placed at distance of half a 

wavelength from the broadband source. Periodic BCs were applied along the x and y-

axis of the design to account for the periodic arrays of MM devices. In Lumerical for 

periodic structures it is necessary to have the FDTD mesh set to dxy = a/N, where a is 

the period and N is an integer. This guarantees a perfectly periodic FDTD mesh. 
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 Electromagnetic plane wave source 

There are different types of source available in the FDTD software such as dipole, 

beam, waveguide mode, total-field scattered-field and plane wave. Plane wave 

sources shown in white colour in figure 3.1 are used to inject laterally-uniform EM 

wave and for the three dimensional simulations the source propagates along the plane. 

The source is used for the design since it can be injected at different angles of 

polarization. Using Lumerical, the setting for the source angle is usually set at 90
0
 i.e. 

perpendicular to the designed plane (substrate). This allows the normally incident EM 

to produce E-field parallel to the length of metallic element of all the design structure 

presented here. 

 

 

 Software detectors 

The following types of monitors are available in the Lumerical: (a) Frequency-domain 

field monitors that collect the field profile in the frequency domain which is converted 

to wavelength from the simulation results across some spatial area of the simulation. 

The field and power monitor snaps to the nearest mesh cell to minimize the 

interpolation required which lead to more accurate spectra. Here the field and power 

monitor in the yellow rectangular box shown in figure 3.1 collect the transmittance 

and reflectance spectra depending on the placement position. The monitor is a 

reflectance monitor when it is place behind the source while it serves as transmittance 

monitor when it is opposite the source. The field profile monitors are identical to the 

power but mostly used to plot the electric and magnetic field strength plots. The field 

value for the plot is related to the strength of the incident source. (b) Time-domain 

monitors provide the time-domain information for field components during 

simulation. The monitor consists of plane, line and point types to capture data at 

different regions within the FDTD simulation. (c) Movie monitors are used to capture 

the desired field component over the region spanned by the monitor for the duration 

of the simulation. This monitor is only available in the 2-D for the software and 

among other monitors stated this requires more memory and slows the simulation 

speed. 
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3.4 Asymmetric split ring resonators (A-SRRs) 

 

The A-SRR structure is formed by breaking a circular ring in an asymmetric form to create 

gaps between the two arcs from the angular separations. This structure is presented here as a 

3D pattern, where the radius of the ring is at the x and y-plane, the height of the ring is on the 

z- direction. 

 

The design of A-SRRs as conventional metallic metamaterial structures, as reported in the 

related publications, require the formation of a nanoscale gap which together with sharp 

edges, form hot spots that produce large electric fields [14-19]. The enhancement of the 

electric field emerging from the hot spots has been stated to greatly exceed the strength of the 

incident field which improves the detection ability of MM based sensors [17-19]. In this 

work, the asymmetric arcs dimensions have been designed for nanoscale gaps produced from 

the two angles (θ
0
 = g) as shown in figure 3.2.  

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

Figure 3.2: Image of asymmetric Split Ring Resonators, A-SRR with equal angles (θ
0
= g) but 

two unequal arcs (L1 and L2), w is the width of the arcs and t is the thickness of the pattern. 

The x, y and z-axes show the 3D orientation of the A-SRR. 

 

 

Effect of variation of the arcs length 

Using A-SRRs metallic metamaterial shown in figure 3.2 which  follows work by Lahiri et al 

[5], these serve as a guideline to development of new MM structures that have nanoscale gap 
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with the aim of achieving an optimised MM structure of high sensitivity. Previous work [5] 

has concentrated on A-SRRs with angles (θ) ranging from 10
0
 to 50

0
 which corresponds with 

105 nm to 524 nm gaps for a ring radius of 0.6 μm. This design is to tune the reflectance 

resonance peaks to the targeted sensing wavelength band. In this present, work the sensing 

region is at shorter wavelength than the previous work and the gaps are much smaller. The 

gap and arc length are calculated from the circle geometry.  

                               

Simulations were performed for different arcs length to evaluate the effect of the degree of 

asymmetry on the amplitude of plasmonic resonance peaks. The E-field strength of the 

double resonances produced by the A-SRRs depends on the differences in the length between 

the two concentric asymmetric arcs as shown figure 3.3.                                                

                                               

Figure 3.3: Schematic diagram showing two concentric asymmetric arcs for the A-SRRs 

metamaterial with different degree of asymmetry between the arcs. 

The extent of asymmetry is defined by the degree of the arc lengths and given in percentages. 

This is the difference between the arcs calculated in percentage. Figure 3.3 shows the 

differences in the arcs from (A) being a 25% more asymmetric structure to (D) 9% less 
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asymmetric structure. The two equal gaps of 168 nm (20°) were kept constant while varying 

the length of the arcs as shown in the figure. Table 3.1 contains the asymmetric length of the 

A-SRR structure in micrometres calculated from the arcs length in degrees as shown in 

column 2 and 3. The percentage differences between the two arcs of the A-SRR structures 

were tabulated in column 4 of the table.  The tabulated arcs lengths in μm are calculated from 

geometry of a circle (i.e. arc length = 2πrθ / 360°). 

 

                          Table 3.1:  Variation of the arcs length 

A-SRR 

diagram 

Large arc 

 (μm / degree)  

Small arc  

(μm / degree) 

Arc length variation 

in percentage (%) 

A  1.67 / 200° 1.00 / 120° 25 

B  1.59 / 190° 1.09 / 130° 19 

C 1.55 / 185° 1.17/ 140° 14 

D 1.51 / 180° 1.25 / 150° 9 

 

Simulations of the modelled A-SRR with an outer and inner radius of 0.48 μm and 0.38 μm 

were performed for the different arcs length as tabulated in table 3.1. The left hand arcs were 

reduced from 200° to 180°i.e. (1.67 to 1.51) μm and the right hand arc increased from 120° to 

150° 
i.e. (1.00 to 1.25) μm as shown in figure 3.3. From the simulations double resonance 

peaks at short and long wavelengths correspond to the small and large arcs respectively for 

the A-SRRs as shown in figure 3.4. The spectral plots are data extracted from the reflectance 

monitor corresponding to field and power monitor of Lumerical.  
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Figure 3.4: Reflectance spectra of plasmonic resonance peaks from numerical simulations of 

arcs length variation; inset of A-SRRs percentage differences between the asymmetric arcs 

with polarised E-field.  

Figure 3.4 shows increment in the reflectance magnitude for the plasmonic resonance peaks 

at shorter and longer wavelengths as the small and large arcs (inset A-SRRs) increases, 

respectively. The increment in the reflectivity is attributed to presence of high gold used for 

the design A-SRRs which will result to reduction in the reflectivity as the arcs decreases. 

There is also a blue-shift (shift to shorter wavelength EM spectrum) in the plasmonic 

resonance peaks as both arcs are being reduced due, shown in figure 3.4. 

 

The reflectance spectra show less coupling between the double peaks for the more 

asymmetric A-SRR i.e. purple plot of 25%. The red plot i.e. 14% show the best coupling for 

the design variation having the well-developed dip called trapped mode [20]. In this work the 

trapped mode is the dip that appears between the double plasmonic resonances of asymmetric 

structure. The reflectance spectra show the more asymmetric arcs introduce a broader trapped 

mode. Ding et al has previously studied the coupling ability of two concentric asymmetric 

rings between visible and near infrared [21].  A repeat of the reference simulation is included 

in the appendix B at visible and near-infrared region. By evaluating the reflectance spectra 

with the qualitative properties of the structure with previously reported theory at microwave 
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region [22-23], the author proposes there is need to achieve an optimum variation of the arcs 

length for resonance coupling. This will support the use of the plasmonic resonances 

developed from the asymmetric structure in sensing applications.   

 

Effect of variation of the gaps 

There are various gap comparisons in this section which help to characterise the A-SRRs 

metamaterial for high quality and E-field enhancement. The enhancement E-field increases 

the intensity of molecular resonances and it is related to high positions of field strength. The 

comparison was achieved by modelling the arcs length of (1.59 by 1.09, 1.68 by 1.17, 1.72 by 

1.21 and 1.74 by 1.24) μm for 0.48 μm A-SRRs radius, which corresponds to the structural 

gaps of (168, 84, 42 and 21) nm respectively. The thickness used in this design is 50 nm. 

FDTD numerical simulations were performed using Lumerical and reflectance spectra were 

produced as shown in the figure 3.5.  

                         

 

Figure 3.5: FDTD Lumerical simulations of various nanoscale gaps with the double 

resonance peaks corresponding to the large and small arcs length. 

The data collected with the field and power monitor produced double resonance peaks with 

the modelling of a 168 nm gap which is compared with 21 nm gap.  
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Absolute Ex- field plots                  Transmission plots 

 

 

          

 

 

 

          

 

 

 

           

 

 

 

           

 

 

    Figure 3.6: E- field strength and transmission plots for the A-SRRs at nanoscale gap 
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The positions of the peaks are affected by the length of the arcs as discussed earlier in this 

chapter. Variations of the arcs length of the asymmetric resonators tend to tune the resonance 

peaks accordingly. The absolute x-component of E-field plot in the first column shows 

increase in the E-field as the gap is being reduced from168 nm to 42 nm. For this design a 

nanoscale gap of approximate value of 42 nm (i.e. θ= 5°) is the optimum gap length for the 

A-SRRs structure. At that gap length the E-field gives the maximum strength as shown in the 

third row of figure 3.6. The E-field is reduced from the gap length of 21 nm as shown in 

figure 3.6. The colour bars on the right of each plot describe the magnitude of E-field from 

dark blue representing the minimum and red the maximum E-field. 

 

The E-field was plotted at the position of the shorter wavelengths of resonance peak to show 

the effect of reduction in gap from (168, 84, 42 and 21) nm.  The second column includes the 

transmittance, reflectance and absorption spectra. The absorption was calculated from the 

data collected with the field and power monitor using the expression: absorption = 1- R-

abs(T). Where R is the reflectance, abs(T) is the absolute value of transmission. The 

resonance peaks correspond to the large and small arc at long and short wavelength 

respectively. The peaks are red-shifted due to increase in arc length as stated earlier and the 

trapped modes are broadened with smaller gap. This shifted the second peak of the plot (21 

nm) to wavelength beyond the targeted region as highlighted with red dotted box. 

 

Variation of the arc width 

The effect of the arc width on the optimization of the resonance peak was also investigated 

and is shown in figure 3.7. An outer radius of the ring was still maintained as 0.48 μm while 

the inner radius was varied from (0.43, 0.38, 0.33and 0.28) μm which produced the arc width 

of (50, 100, 150 and 200) nm. This was modelled at a constant gap of 168 nm and thickness 

of 50 nm. The resonance peaks at short and long wavelength are being modified by this 

variation as demonstrated.  
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Figure 3.7: Reflectance plots from FDTD simulation for different arcs width (w) and the 

schematic diagrams of the A-SRR. 

The peaks at shorter wavelengths were narrowed at wider arc widths. The reflectance 

magnitude is reduced at shorter wavelength as the width is widened from (100 to 200) nm. 

Resonance peaks at longer wavelength are narrowed also but the strength is increased at 

wider width. From this study, an optimum design is produced through the well-developed 

trapped mode between the resonance peaks.  The variation shows that A-SRR design with 

width of 100 nm produces well defined plasmonic resonance peaks at shorter and longer 

wavelengths compared to others as shown in figure 3.7. Quality factor of the plasmonic 

resonances were calculated using the expression: Q = λP/ Δλ as included in table 3.2.  

Table 3.2: Comparison of Average Q-factor for the reflectance plots of figure 3.7 

Arc width (nm) λp Shorter/longer (μm) Δλ Shorter/longer (μm) Average Q-factor 

50     3.32 / 4.96      0.36 /0.56 9.04 

100     3.04 / 4.44      0.24 / 0.48 10.96 

150     3.00 / 4.12      0.20 / 0.40 12.65 

200     2.96 / 3.88      0.40 / 0.36 9.09 
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The plasmonic resonance peaks (λP) at the shorter and longer wavelengths of the reflectance 

spectra are in the second column while the full width half maximum (FWHM) represented 

with Δλ are in the third column of table 3.2. Q-factor of the λP at the shorter and longer 

wavelengths was averaged as tabulated in the fourth column of the table. Other features of the 

A-SRR were evaluated using width of 100 nm to design the structure.  

 

Periodicity Variation  

The quality factor of the metallic metamaterial geometrical arrangement imposes constraints 

on the accuracy with which A-SRRs arrays must be model and as well fabricated. Material 

losses can result in low Q due to the real part of the dielectric permittivity that determines the 

optical performance of the device. The materials used for the design can be classified on the 

basis of two important parameters that determine the optical features of the conducting 

materials. These parameters are the concentration and mobility carriers as it has been reported 

that the carrier concentration needs to be high enough to provide a negative real permittivity 

and that lower mobility carriers leads to a higher material losses [24]. Permittivity in general 

is a function of frequency.  The complex permittivity (Ɛ = Re + Im) of the Au (pattern) and 

SiO2 (substrate) materials was used for investigation of the optimum periodicity (a). The 

periodicity of the structure illustrated in figure 3.8. 
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Figure 3.8: Schematic diagram of A-SRRs Au pattern on a fused silica substrate showing the 

periodicity (axy).  

For a given periodic arrangement of the A-SSRs array, the scattered fields can add in phase at 

a specific wavelengths corresponding to the resonance peaks (modes). This is because the 

currents in both sections of an asymmetrically split ring oscillate in phase [20] but excitation 

of one of the sections dominates the other as shown in plots of figure 3.9. Researchers [25-

30] have previously proposed that plasmonic resonance from structures such as A-SRRs or 

dipoles requires an optimum periodicity to produce high-Q factors.  In this work the 

periodicity of the A-SRRs arrays was varied and the effect on the reflectance resonance peaks 

was observed.   

Table 3.3: Comparing periodicity for 1 μm diameter A-SRRs with magnitude of reflectance 

Periodicity (μm) 1 1.4 1.8 2 2.2 2.4 2.6 2.8 3.0 

Reflectance amplitude 0.84 0.56 0.4 0.34 0.29 0.26 0.23 0.21 0.19 

 



- 50 - 
 

   

    

 

Figure 3.9: (a) Periodicity versus magnitude of reflectance peaks (b) FDTD numerical 

simulation of 100 nm Au thick for 1μm diameter of A-SRRs radius at different periodicity (c) 

Reflectance spectra for periodic array of 2.4 μm. 
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The periodicity (axy) was increased from diameter size of 1 μm of the modelled A-SRRs to 

three times the diameter (i.e. 3 μm). Efforts have been concentrated on optimizing the 

metamaterial geometries and design to improve and control the resonance peaks line-widths 

[25]. The resonance peaks as stated in the paper and demonstrated in figure 3.9 is controlled 

by the dimensions and periodicity of the design. For this modelling, Palik material data [9] 

was used. The dielectric substrates (SiO2) which contributes to the radiation losses together 

with ohmic losses that come from the Au pattern through the periodicity arrangement are 

evaluated. The resonance peaks are broadened with an increasing reflectance magnitude as 

the periodicity is reduced as shown in table 3.3 and figure 3.9(a-b).  The blue shifts as shown 

by the resonance peaks of figure 3.9 are in agreement with references [25, 31-32] and this 

occur at reduced periodicity. The periodicity of 2.4 μm as shown in figure 3.9c is the 

optimum periodic value for the higher Q this design. This shows that in order to obtain a high 

Q-factor from A-SRRs structure a value of 0.4 μm (40%) should be added to twice the 

diameter size of the ring resonator as used by Lahiri et al [5]. The optimum periodic value 

produced Q-factor more than twice the factor produced by reference [5]. Here at the shorter 

and longer wavelengths of (3.41 and 4.75) μm, Q-factors of 21 and 16 were obtained by 

using periodic value 2.4 μm. The result is much higher than the value estimated infrared 

region by Fedotov et al [20]. 

 

Variation of the gold thickness  

It is has been reported that the thickness of conductive layer is important for reducing losses 

and increasing the quality factor which support the FOM of a device [33-35]. Chettiar et al 

stated that electromagnetic shielding that is caused by thick metal can suppress the 

performance of the magnetic resonator [33]. They proposed that the problem can be rectified 

by using a dielectric substrate such as fused silica to form semi-continuous metal films. 

Through the optimization process of the A-SRR a high quality factor was produced by 

varying the gold thickness. First, thin film Au thickness of (10 to70) nm was used for 

modelling 100 nm arc width A-SRRs of 0.48 outer radius. Numerical simulation of the 

designs were performed which produced the reflectance spectra as shown in figure 3.10. 
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Figure 3.10 Reflectance spectra from the FDTD numerical simulation of 0.48 μm radius of       

A-SRRs for 10 nm to 70 nm Au thicknesses showing double plasmonic peaks with artefacts at 

2.2 μm arising from grating order due to periodic boundary conditions. 

 

The resonance amplitude at the shorter wavelength increases as the thickness increases while 

the peaks at the longer wavelength reduce as the thickness increases. There is a small red-

shift of both resonance peaks as the thickness increases due to the higher refractive index of 

the metal. Using the Lumerical script analysis for calculating the low Q-factor as in reference 

[36] additional numerical simulations were performed for the 70 nm to 100 nm Au 

thicknesses. 
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                  Figure 3.11: Reflectance plots for A-SRR thickness comparison. 

 

Output from the analysis script contains a command that produce the resonance wavelength 

position and their corresponding Q-factor [36]. The analysis script of the monitor produces a 

plot from the two dimensional low quality factor analysis simulations as shown in figure 

3.11. The plots in figure 3.11 show the location and relative amplitude of the resonance peaks 

shown in figure 3.12 which was used for calculation of the Q-factor values. The Q-factor of 
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the A-SRRs resonance wavelength of the signal in the  plot was calculated by measuring the 

full width half maximum (FWHM) of the resonant peak at the shorter wavelength for the 100 

nm Au thickness using the expression: Q = λP/ Δλ. 

 

The FWHM (Δλ) for λ1 and λ2 is 0.06 (3.01- 2.95) μm and  the resonance peak (λp) is at 3 

μm. The quality factor of 50 obtained at mid-infrared region from simulations is more than 

twice the values as compared to other published related articles [5, 20, 24-28].  

        

 

Figure 3.12: Zoomed image of the resonance peak shorter wavelength from the simulation of 

100 nm Au thickness.  

 

Table 3.4 contains the calculated quality factors with the corresponding Au thickness 

obtained by using the command from the script analysis [36].  The numerical simulation of 

the various Au thicknesses and the resultant Q-factors were compared as shown in the figure 

3.13.           
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     Table 3.4: Comparing gold thickness for the 960 nm diameter A-SRRs pattern  

Thickness (nm) 10 20 30 40 50 60 70 80 90 100 

Q-factor 4.53 13.01 21.43 30.67 38.64 43.00 46.02 48.58 48.93 49.90 

 

                 

         Figure 3.13: Comparing gold thickness for the 960 nm diameter A-SRRs pattern  

 

There is a continuous increase of the Q-factor as the Au thickness as increased as show in 

figure 3.13. From thickness above 80 nm for the A-SRRs pattern the Q-factor values exhibits 

very little change. So in this work 100 nm Au was the thickness used for every design and 

fabrication since it produced the highest Q-factors from simulation. Though there is a 

potential increase for thickness above 100 nm but this quantity is considerable for fabrication 

in terms of cost.  
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3.5 Dipole structures 

 

The architecture for this structure involves a conventional Au dipole nanoantenna comprising 

of two asymmetric arms separated by a gap. The asymmetric modelling suggests employing 

radiative and sub-radiant (dark mode) plasmonic elements that are strongly coupled by being 

closely placed and appropriately oriented [35-36]. The arms are tuned to produce plasmonic 

resonances peaks within mid-infrared therefore having a close proximity like the arcs of the 

A-SRRs discussed in the section 3.4.  

                                    

 

                

  Figure 3.14: Arrays of asymmetric dipole structures on fused silica substrate.  

 

The lengths (L1 and L2) for small and large arms were modelled to be (0.9 and 1.1) μm 

respectively. The gap between the two asymmetric arm’s length is 0.25 μm. The periodic 

parameter (axy) for the design was also varied as shown in figure 3.14 to investigate the effect 

on reflectance peaks.  



- 57 - 
 

                                                            

Figure 3.15: Reflectance plots from numerical simulation of 100 nm Au thick for dipole with 

asymmetric arm’s length of (1.1 and 0.9) μm at different periodicity.  

 

Figure 3.15 shows the periodic effect on the reflectance peaks of the designed dipole. The 

reflectance peaks are being narrowed as the periodicity increase. This result corresponds to 

the periodic effect of reflectance peaks produced from A-SRRs design as discussed earlier.  

The periodic value of 2.2 μm is the optimum periodicity for this design because of the well-

developed double peaks as shown in figure 3.15. Here, the coupling from the asymmetric 

arms that form the dipole were placed in line as shown in figure 3.15 compared to design 

arrangements in references [37-39]. The dipole design ideas from these references were 

combined with the dipole designed in this work to produce a new structure asymmetric split 

H-shape structure (ASHs).  
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3.6 Asymmetric split H-shape (ASHs) 

 

The architecture for ASH structure also involves a conventional Au dipole nanoantenna 

comprising of two asymmetric arms separated by gap but with a cross-bar placed at the centre 

of the asymmetric arm separated by a slit. Arrays of the structure are schematically shown in 

figure 3.16.  This structure was introduced because of the nanoscale parts referred to as “hot 

spots” [58] arising from the sharp edges and narrow slit. The ASH structure shown in this 

thesis exhibits both a nanoscale gap and multiple sharp edges and with proper optimisation of 

the geometry the structure it can produce a highly sensitive plasmonic sensor [18, 41-46] as 

detailed in chapter six.  

 

 

                                  

                                          

 

Figure 3.16: Schematic diagram of ASHs Au pattern on a fused silica substrate showing an 

array of split-H structures. 
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The stated ASH features support high E-field enhancement while the asymmetric nature of 

the structure increases the sensitivity. These features of the ASHs structure produce a larger 

shift in the resonance peaks and amplify the vibrational resonance of C-H resonance band 

[18, 47] as utilized in chapter six.  

 

 

In this section, different asymmetric arms of the ASHs structures were modelled to tune 

plasmonic resonance peaks within mid-infrared region of EM spectrum as shown in figure 

3.17a. The small arm (L1) dimension ranges from (0.7 – 1.5) μm while the large arm (L2) is 

from (0.9 – 1.7) μm making the arm’s length to differs by 0.2 μm. Cross-bars of (100 by 100) 

nm separated by a slit of 50 nm were place at centre of the asymmetric arms. Numerical 

simulation of the design produces double peaks separated with a dip as shown in the 

reflectance figure of 3.17a. The peaks at shorter and longer wavelengths correspond to the 

small and large arms respectively as shown in the figure. 
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Figure 3.17: FDTD numerical simulation of 100 nm Au thick for (a) plasmonic resonance 

peaks tuned within (2 to 7) μm by varying the asymmetric arm’s length of ASHs structure (b) 

comparison of the resonance peak position of the large arm.  

As expected, the reflectance peaks shift to longer wavelengths as the arms get larger as 

shown in figure 3.17a. Also, the imaginary index for the modelled material (gold and fused 

silica) increases from shorter to longer wavelength affects the intensity of the peaks. Figure 

3.17b shows the reduction in the peak intensity of the large arm as the resonance is tuned 

from 2.96 μm to 5.18 μm wavelength which corresponds to dark and light blue plots of figure 

(a) 

(b) 
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3.17a. The analysis of the reflectance resonance enables the choice of suitable dimensions for 

the targeted sensing application in this region. 

Numerical simulations of ASH structures were performed to investigate effect of periodicity 

on the resultant plasmonic resonances. The dimensions chosen for the structures were based 

on the targeted wavelength position, within the mid infrared spectrum to match with the 

sensors region of interest. The reflectance spectra due to the periodic variations produced 

from the designed structure are shown in figure 3.18a. 

                

                    

 

 Figure 3.18: Reflectance spectra from the numerical simulations of (a) ASHs periodicity (b) 

Periodic of 2.2 μm for asymmetric dipole and ASH structures. 

(a) 

(b) 
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A comparison of sharpest peak from ASHs and asymmetric dipole as discussed in section 3.5 

is shown in figure 3.18b. Increasing the quality factor of plasmonic resonance is a challenge 

in the design of metallic metamaterial. MMs with high Q-factor value as high as 97, in the 

visible region [48] and 227 values in the Terahertz [49] regions of the electromagnetic 

spectrum have been reported. The high Q-factor value of 97 in the visible region was 

attributed to the effects of hybridization of two distinct resonant elements coupled together 

[48]. Within the mid-infrared region, researchers [4, 18] have used a different approach to 

minimize the ohmic losses that are unavoidable in the metal patterns, resulting in Q-factors 

greater than 100 i.e. for purely dielectric structures. Results previously reported for the 

metallic metamaterial in the mid-infrared region are typically Q-factors of less than 10[5, 29].  

 

To calculate the Q-factor of the plasmonic resonances for dipole and ASH as shown in figure 

3.18b using the expression in 3.1 this involves the full width half maximum (FWHM) of the 

resonance peak. In figure 3.18b, the FWHM (Δλ) of λp (resonance peaks) at (3.20 and 3.15) 

μm is 0.14 and 0.08 for the dipole and ASH respectively. The quality factors from the peaks 

at shorter wavelength is Qdipole = 23 and QASH= 39 for the structures. The ASH shows a 

narrower resonance peaks possibly because of the split crossbar between the arms which is 

the only change between the two designs. The split bar of the H-shape structure involves 

stronger coupling between the dipole arms of the asymmetric H-shape structure. Reference 

[50] has also recommended ability of H-shape to produce high Q-factors.  

 

The reflectance spectra from the periodic variation of both structures (asymmetric dipole and 

ASH) showed blue shift as the periodicity decreases. Also the magnitude of the reflectance 

increase as the periodic value decreases as observed in figure 3.18a. These results satisfy the 

blue shift of the resonance peaks at decreasing periodicity [29, 51] with the same effect 

observed in the experimental section of this work. 

                                   

Numerical simulation results correspond to the experimental results in chapter five showed 

that split asymmetric H-shaped (ASH-shaped) structures can produce narrower reflection 

resonance peaks compared to dipoles of a similar design. The Q-factors calculated from the 

simulation plots showed Q values produced by ASH structures to be 26% higher than the 
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corresponding asymmetric dipoles’ and the Q-factor generated is more than two times greater 

than previously achieved values obtained in the mid-infrared [5, 29, 52].  

Further exploration of the new structure shows its dual polarization ability. Dual transverse 

electric waves can be applicable in ASH structure to produce plasmonic resonance tuned by 

the arms dimension. Figure 3.19 shows the wave polarization with respect to the ASH, where 

the TE is parallel to the vertical asymmetric arm and across the horizontal gap created by two 

symmetric cross bars.  

 

 

 

 

 

 

 

 

 

Figure 3.19: Schematic diagram showing the directions of the wave on the ASH. 

The dimensions of the arms are (1.1 and 0.9) μm which corresponds to the (large and small) 

arms respectively. The large and small arms tune the resonance peaks to (4.6 and 3.0) μm 

respectively when TE source is applied as shown in figure 3.20a. When the TE polarization is 

across the small gap between the cross bar of ASH and this produces a single plasmonic peak 

at 3.9 μm because the bars are symmetric as shown in figure 3.20a. Figure 3.20b shows 

electric field for the simulated ASH structure using Lumerical. The field plots were generated 

at the wavelength corresponding to the wavelength position of the plasmonic peaks.  
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Figure 3.20: Reflectance spectra of ASH plasmonic resonances for (a) two TE polarisation 

sources across the gap and parallel to the arms showing the resultant E-field plots, inset (b) 

a TE polarisation along asymmetric cross bars of ASH, inset.  
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The dark blue colour shows the minimum E-field intensity while dark red shows the 

maximum E-field intensity. The insets E-field plots correspond to the plasmonic peaks at 

wavelength of (3.0, 3.9 and 4.6) μm as shown in figure 3.20a. The maximum E-field 

observed at these wavelengths are shown with the reflectance spectra of figure 3.20a. Inset of 

figure 3.20b shows transverse TE source across the small gap formed by asymmetric cross 

bar. This produces double plasmonic resonance peaks as shown with the reflectance spectra 

in figure 3.20b. The dimensions of the asymmetric cross bars are (0.7 and 0.65) μm with their 

corresponding peaks at (4.1 and 3.3) μm respectively. These reflectance spectra are used to 

show the ability of the new structure, ASHs to work in orthogonal polarisations. 

 

 

 

 

 

3.7 Discussions and Conclusion 

 

The 3D simulation tool used to model and design the different photonic structures has been 

described and the results obtained for different metallic metamaterial devices designed have 

been analysed and compared. The 3D approach used in the simulations gives good and 

consistent results from the characteristics of the designed structures. Though the 3D 

simulations are time consuming but the results produced from this approach are sufficient and 

easy to compare with the experimental work.   

 

A logical sequence has been followed and used in designing and improving the metallic 

metamaterial device structures. Beginning with the optimization of the A-SRRs for a 

narrower reflectance resonance peak which produce high quality factors the amplitude of the 

resonances is subsequently optimised for the photonic devices is for their use in sensing 

applications. 
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A new device was also presented following the idea of asymmetric dipole. The ASH structure 

designed from dipole was optimized and compared with the dipole structures which showed 

better characteristics in the reflectance resonance than the dipoles. Also there is the 

opportunity to use plasmonic resonance peaks from ASH structure when the polarization of 

the source is orthogonal. This is a scenario is not obtainable with dipole and A-SRR 

structures. 

 

In conclusion, three different metallic metamaterial structures have been presented, with 

promising simulation results. The parameters of the structures such as the dimension and 

periodicity have been described and optimized. Again, the use of the two basic different 

materials fused silica and gold has been appropriately modelled understanding the effect of 

their refractive index and variation with wavelength. All devices presented in this chapter can 

proceed to fabrication and measurement.      
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Chapter 4 

 

Fabrication of Metamaterial Devices 

 

4.1 Introduction 

 

The fabrication of the design devices was performed on fused silica (SiO2) by following 

sequential stages. The initial process consists of transferring a computer aided design (CAD) 

pattern on to the surface of the substrate by using electron-beam lithography (EBL) tool at 

James Watt nanofabrication centre (JWNC) cleanroom. Other stages are pattern development 

which is followed by metallization and then acetone lift-off for the production of the metallic 

metamaterial (MM) structures are also carried out in the cleanroom. These processes involve 

a series of separate stages, with each one being important for the fabrication of a functional 

device. 

 

This chapter is divided into sub sections: the CAD design process, pattern transfer using 

electron-beam lithography, pattern development and metallization. The material and 

equipment used are also presented. Three dimensional simulation results particularly where 

the angles that formed the gaps were scaled in terms of the arc length were compared in order 

to understand the effects of fabrication tolerances. Lastly, the discussion and conclusions are 

presented. 

 

4.2 Fabrication technique 

During fabrication all the listed tools were utilized at different stages by strictly following 

sequential procedures as shown in the flow chart of figure 4.1 until a specific designed 

pattern was achieved. The flow chart is as explained in the subsequent section. 
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 Figure 4.1: Flow chart of fabrication process for electron beam lithography writing. 
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4.2.1 CAD design and Substrate preparation 

 

The commercial CAD package, used for initial design of the different patterns is called        

L-Edit. L-Edit is a layout editor from Tanner EDA, used to design MM and other devices 

with several layers [1].  The software is useful tool for the micro and nano-fabrication 

because it enables design hierarchy.  

 

All the parameters set in the L-Edit need to be optimised in accordance with other software 

use for the EBL [2]. For example, to optimise the total pattern writing times it is important to 

be able to distinguish between pattern areas written by different spot sizes.  Again, patterns 

designed with different colours or layers can be separated out into separate pattern writing 

files, allowing the EBL tool to write the layers with different spot size. The large spots 

expose large areas of the pattern faster than the small spots. The areas are distinguished by 

assigning layer name and number. 

            

       Figure 4.2: Arrays of metallic metamaterial (A-SRRs and ASHs) pattern design.  

 

Figure 4.2 displays arrays of the designed MMs structures patterns before the EBL writing is 

carried out. The gold colour used for the L-Edit design as shown for the arrays of asymmetric 

split ring resonators (A-SRRs), asymmetric split H-shaped (ASH) are layers of the metallic 

patterns. These create the gold arcs and arms patterned on the substrate on completion of the 

fabrication process. The black background shows the spacing i.e. the periodicity of the 
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pattern. The use of a pattern array as shown in figure 4.2 in a cell saves time in the L-Edit 

design.  

 

Layers which are represented with different colours in L-Edit software are an important 

feature during the initial design stage of fabrication process. By considering this feature 

various patterns were designed to match the corresponding spots sizes and dose required for 

the pattern creation with electron beam lithography.  

 

The patterns designed on this software can involve creation of different layers and careful 

positioning of the various shapes with a clear distinction between shapes which should have 

different doses. The different doses for various patterns of this work have been distinguished 

with colours that represent different layers in the L-edit. The completed pattern design is 

saved in a standard graphic database system (GDSII file or .gds) format, an industry-standard 

file in binary form for transferring two dimensional graphical design data. The generated 

GDSII files are sent via the computer network to a pattern fracturing software. The pattern 

fracturing software (Beamer) allows different pattern layers to be converted into separate 

pattern writing files for writing on the VB6 lithography tool [3].  Beamer software is being 

run on a Linux server (Scotty) through an Xming window connection. Xming is a display 

server programme for Microsoft windows. The idea of using different layers (colours) in the 

software design is to help in recognising different parts of the device, with different writing 

factors and then identify parts with different resolution when the GDSII file is imported. 

Once a series of commands and parameters are provided along with the input GDSII file, 

beamer fractures the designed pattern. After considering the maximum field size, blocks, 

subfield and resolution grid, an output file (.VEP file) is then produced and exported to a job 

layout directory and beamwritter exposure layout for lithographic engineers (BELLE) 

through the beamwritter control computer. 

 

BELLE is the third software programme shown in figure 4.1 flow chart, for the designed 

pattern preparation before the job is written with the VB6. This is where the substrate size 

and type are defined. BELLE includes settings for various parameters such as beam or spot 

size and variable resolution unit (VRU), range of doses, text identifier and patterns arrays 
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over a specified substrate size. VRU is ratio of the beam step size (BSS) and resolution. This 

is where the beam is stepped to each location in sequence. Overall, the three stated EBL 

software products have a graphic interface that allow users to visually observe the pattern 

design which permit a faster modification of parameters, if necessary. 

 

Finally, the job layout from BELLE is transferred to the control computer together with the 

design file for VB6 job pattern transfer. Moreover as the software fabrication process is 

carried out the material process is done in parallel. The wafer used for patterning was first 

cleaved in a semi-clean room environment to dimensions of (6 by 6) mm sample. In the clean 

room the samples were thoroughly cleaned with acetone, methanol and lastly with isopropyl 

alcohol (IPA) then blow dried with nitrogen gas. Positive electron beam resist, 

polymethacrylate (PMMA) was spun on the substrates for the fabrication of the MM 

structures. After the resist was spun and baked in an oven or hot plate depending on the 

substrate and resist type the sample was then submitted for the electron beam lithography job 

writing by the JWNC technicians. 

 

4.2.2 Electron beam Lithography 

 

The aim is to create a designed pattern on a surface covered with sensitive film resist that can 

subsequently be transferred to the material substrate. Electron beam lithography (e-beam) can 

create nanoscale pattern with less than 10 nm resolution in a thin film electron resist only 

state of the art photolithography with complex masks can offer similar resolution where the 

photolithography available at Glasgow is limited to micro-structures. 

 

The e-beam lithography was used to fabricate the designs presented in this thesis. A major 

feature of the e-beam nano-technology is its ability to obtain a very high resolution within 

units of 10s of nanometres. Also this technique offers great flexibility when there is need for 

change in the design because it does not require pre-fabricated masks and it can be applied to 

different types of materials.  
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 Figure 4.3: Flow chart of the fundamental systems of electron beam lithography, VB6 in the 

JWNC. 

For this work, fabrication of multiple arrays of the patterns on a substrate using the Leica 

vector-beam series (VB6) systems is as shown in figure 4.3. The VB6 is a twenty bit tool 

with the field size as its primary parameter defined a design file. The VB6 is examined in 

detail in the subsequent sub-sections. 

 

Computer system 

There are three levels of computer systems used with VB6 which are connected via Ethernet 

(scotty.eng.gla.ac.uk). These include the pattern data preparation computer, the operator 

terminal and the computer controlled subsystems [4]. The pattern data preparation computer 

is a PC, running Linux where pattern fracturing software, Beamer operates. The vep file, 

which is the output file, is downloaded through the Scotty to the operator or JWNC 

Computer system

Vacuum system

Electron optics system

Vector beam system
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technicians’ terminal. Almost all control of the vector-beam system is accessed through this 

computer.  

Vacuum system 

Ultra high vacuum (UHV) is needed in the gun to avoid damage to the cathode and in the 

column and chamber to minimise the risk of electrons with residual gas molecules. The 

airlock enables the technician to load and unload substrates; it also facilitates fast exchange 

by maintaining vacuum in the chambers, gun, main and column. For evacuation of 

atmospheric pressure to the UHV mechanical pre-vacuum (rotary), turbo-molecular and ion-

getter pumps are provided [4]. These three pumps are used on the gun emission chamber. 

 

Electron optics system 

The electron optics system provides an electron beam of suitable energy of an appropriate 

diameter and scans the beam in a precise pattern to the substrate. It uses a thermal field 

emission cathode with configurations of high and ultra-high resolution lens [4]. Through the 

cathode emission process the electron beam for the writing are generated. During pattern 

writing the information is read from the operator terminal disk and processed by the pattern 

generator unit which generates the analogue drive signals that drive the main and subfield 

deflectors. The spots formation occur when the e-beam emerges from gun and passes through 

two sets of magnetic deflection coils, which tilt and shift the beam to align it to the electron 

optical axis of the lenses. 

 

Vector-beam series system 

The vector-beam (VB) system is used to expose integrated circuit pattern data on an 

electronic substrate. The substrates are usually spun with an electron-beam sensitive resist 

which is exposed with the pattern and then developed. A moveable stage supports the 

substrate that enables exposure to be made as the focused beam of electrons is used to write 

the patterns.  This is done by deflecting over a certain area of the substrate known as the main 

field.  Some specialised detector systems are used to control this process including sensors 

for substrate position (x, y, and z), beam position and current. After the beam has been 
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formed and focused, it is then scanned over the substrate using the two basic beam writing 

techniques, the raster and vector scanning e-beam lithography [4]. In the vector scanning the 

beam is scanned only over the pattern area requiring exposure composing the pattern from a 

list of the design structures such as A-SRRs (ring shape), Dipole (rectangular) while with the 

raster techniques the beam is scanned over the entire substrate.  The JWNC VB6 system 

which is operated by only the JWNC technicians uses the vector technique to generate 

patterns for development. 

 

4.2.3 Pattern development 

After the generated pattern is transferred to the resist through exposure in the e-beam writer, 

the sample is subjected to development. In this work, lift-off process was employed for the 

A-SRRs, asymmetric dipoles and ASHs patterns. A bilayer of PMMA positive resist of 2010 

and 2041 (designated numbers for PMMA users in the JWNC), with the developer which is a 

mixture of methyl isobutyl ketone (MIBK) and isopropyl alcohol with an average processing 

time and temperature of 45 seconds and 23
o
C respectively were used. The PMMA resist of 

2041 is always spun on top because of its higher sensitivity compared to the 2010 resist. The 

sample was immersed in IPA and then lastly placed in an oxygen barrel (Asher) to etch away 

any resist remaining after development. The Plasmafab 505 Asher is also used to ensure a 

clear undercut of the pattern before using the Plassys for thin film metal deposition i.e. 

metallization.  

 

4.2.4 Metallization 

Metallization is process of depositing a thin film of metal on the developed pattern. Different 

Plassys systems are used to sputter, evaporate and for metal deposition process. The Plassys 

equipment used for this work facilitates multi-layer deposition of up to eight metal materials. 

The substrate can be temperature controlled and deposition can be at any angle. Here, 

titanium (Ti) was deposited before gold for resist adhesion purpose [5-8]. Titanium has been 

shown [8-10] as the most common adhesive thin-film metal material used to attach gold on to 

a semiconductor or dielectric substrate. The Plassys have two main parts the load lock and 

chamber. When the load lock is vented the equipment lid is open and the developed sample is 
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clamped on the sample holder and the lid is closed and load lock pumped down. When the 

deposition run is complete the load lock automatically vents and the sample is retrieved.  

 

Lift-off is the immediate process that follows metallization for the production of the metallic 

metamaterial of this work. The sample is placed in a beaker containing acetone and left in a 

hot bath for several minutes depending on the designed pattern as will be discussed 

subsequently. When the metal deposit has lifted off the sample leaving arrays of patterns, it is 

then brought out of the beaker and blown dried with nitrogen gas. 

 

4.3 Fabrication on Fused Silica (SiO2) 

The thermal and optical properties of fused silica are superior to those of other types of glass 

due to its purity. Applications of the material mostly exploit its wide transparency range 

within electromagnetic spectrum, including ultraviolet, optical and infrared regions. Fused 

silica produces a strong absorption within mid-infrared between (8 to 10) μm.  

  

 

 

Figure 4.4: Flow chart (clockwise) of fabrication process on a fused silica substrate and 

resist spinning for metallic metamaterial patterns. 

Thorough cleaning of the fused silica with acetone, methanol and IPA was performed, and 

then bilayer of PMMA 4% 2010 and 4% 2041 was spun at the speed of 5000 rpm leaving 

Cleaning Fused silica  PMMA resist   ẻ-beam writting  

Pattern development  Metallization  Lift-off   
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approximately 200 nm thickness of the resist. The sample was place in an oven set at a 

temperature of 180
0
 and left for 40 minutes after the first PMMA spinning and for 120 

minutes after the second spinning before submitting for exposure to e-beam pattern transfer. 

The transferred pattern was developed with 2.5:1 solution of isopropyl alcohol (IPA) and 

methyl isobutyl ketone (MIBK) and then rinsed with IPA for period of 60 seconds. This was 

followed by evaporation of 10 nm Ti for adhesion and 100 nm Au. Acetone was used for the 

lift off which leave gold patterns (yellow) on a fused silica, as shown in figure 4.4.  

 

 

Figure 4.5: Fabrication on fused silica (a) Scanning electronic microscopic (SEM) image of 

A-SRRs arrays showing irregular arcs due to inadequate design resolution (b) optical 

microscope image of A-SRRs arrays showing a high density of structure (c) Properly 

designed SEM image of A-SRRs, with less dense and smooth arcs.  

 

In this work, arrays of A-SRRs metamaterials were first designed with L-edit software as 

shown in figure 4.2a. In the setup design tool bar of L-Edit it is important to note that the 

mouse grid for the cursor type was set to smooth in order to avoid arcs shown in the figure 

4.5a but produce a smooth arcs, as shown in figure 4.5c. The periodicity varied as shown in 

figures 4.5 and has been described in references [11-14].  

 

The gds.file of the 100 nm arc width (w) with 500 nm outer radius of A-SRRs array design in 

L-Edit were imported in beamer for fracturing. The vep.file from the beamer was then 

exported to BELLE as a bel.file for pattern layout and clearing and base doses (μC cm
-2

) 

suitable for the e-beam lithography were assigned. 

(a) (b) (c) 
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Figure 4.6: SEM image of different periodicity (a) of A-SRRs arrays fabricated on fused 

silica (a) a = 4r (b) a = 4r + 2(c) a = 4r + 4 (d) a = 4r + 6 (e) a = 4r + 8 (f) a = 4r + 10.  

In previous work [10, 15], the A-SRRs arrays were only designed with periodicity to be four 

times the radius of the outer arcs, meaning a = 4r (2 μm) as shown in figure 4.6a. In this 

work, improving the reflectance resonances towards producing high quality factor led to 

variation of the periodicity as shown in figures 4.6 (a-f) in order to investigate the periodic 

effect on the resonance peaks. The gap between the two asymmetric arcs such as observing 

the effect the parallel and wedge gaps as shown in the figures 4.7 (a & b) respectively was 

also investigated.           

                       

a  
x

 ay

(a) (b) (c) 

(d) (e) (f) 
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Figure 4.7: Fabrication of two different gaps (parallel and wedge) between the asymmetric 

arcs. 

A small change was observed in the reflectance resonance peaks from the two different gaps 

fabricated as included in chapter five. The gaps between the arcs are varied and fabricated 

between 55 nm to 175 nm as shown in figure 4.8. This was used to study the effect of 

narrower gap on resonance peaks produced from A-SRRs structure. The same design process 

was followed but a higher clearing dose was assigned in the BELLE because of the nanoscale 

feature size of the gaps and arc edges involved.  

                   

(a) 

(b) 

g 

g 
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Figure 4.8: Variation of the nanoscale gap between the asymmetric arcs (a) 175 nm (b) 145 

nm (c) 115 nm (d) 85 nm (e) 55 nm. 

It is important to note that the SEM images on the fused silica substrate were produced by 

evaporating 5 nm film thin of aluminium (Al) for electron charge dispositions during 

imaging. This added process due to the nonconductive substrate in the case of fused silica 

sometimes disrupted production of a high resolution image as shown in figure 4.7 which can 

be obtained easily with other substrates such as silicon, shown in figure 4.9. The thin film Al 

of 30 nm thickness is also evaporated on the fused silica substrate after baking the resist in 

the oven before exposure to dissipate charge during the electron writing process.  

                          

          Figure 4.9: SEM image of A-SRRs arrays on a different substrates silicon  

(a) (b) (c) 

(d) (e) 
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Virtually the same process that produced array of A-SRRs on fused silica substrate was 

followed to fabricate the dipole structures as shown in figure 4.10 that led to producing an 

asymmetric split H-shape (ASH) structure shown in the figure 4.11. The only difference is 

during the L-Edit design of the structures and doses assigned in the BELLE. The same flow 

chart in the figure 4.4 produced the SEM results in figures (4.10 - 4.12). 

             

            

Figure 4.10: SEM image of the dipole structure at different gap (g) (a) Single dipole g =400 

nm (b) g= 200 nm (c) g= 450 nm (b) g = 650 nm. 

 

Arrays of dipoles were also fabricated on a fused silica substrate. The dipoles were designed 

to be two asymmetric arms of 1.1 μm and 0.9 μm placed vertically and parallel to each other 

with gap (g) separating them. This is different from most of the existing dipole metamaterial. 

For the mostly published articles [16-18] the arms are placed horizontal, to be adjacent to 

each other and separated with a small gap. The structures shown in figures 4.10 were used to 

investigate and compare the effect of the dipole structure with close dimensions to A-SRRs.  

 

 

(b) 

(d) 

g 

(a) 

(c) 
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Figure 4.11: SEM image of (a) symmetric and (b) asymmetric ASHs showing the gap (g) and 

space (s) in the structure. 

 

The idea of the horizontal and vertical arms was combined to produce a novel structure, 

asymmetric split H-shape (ASHs) as shown in figure 4.11.  The structure was fabricated on 

fused silica substrate following the same procedure as of dipole but with a horizontal crossbar 

of (100 by 100) nm attached to each of the vertical arms as shown in the figures. Fabrication 

of symmetric split H-shape (SSH) was also performed which was used for sensitivity 

comparison in chapter six. Figures of 4.11 (a & b) show dimension of the arms for SSH is      

1 μm and that of ASH are (1.1 and 0.9) μm the respectively. These designed dimensions 

produce reflectance resonance peaks between 2 μm to 6 μm. For the purpose of achieving an 

optimized reflectance resonance peak, the gap and split between the arms and cross bar of the 

ASH structure was also varied respectively as shown in figure 4.12 and the effect was 

observed as detailed in chapter five.  

(a) (b) 

g                                                                                                                                                 

s 
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 Figure 4.12: SEM image of ASHs at different slit (s) between arms with cross (a) s =50 nm 

(b) s =150 nm (c) s =250 nm (d) s =350 nm. 

 

From all the metallic metamaterials such as A-SRRs, dipoles and ASHs fabricated of this 

work the dipole was easiest to design and fabricate followed by ASH structure. The 

measurement results from the three structures show a higher quality and enhancement factor 

can easily be produced from the ASH structure than the other two. Therefore in chapters six, 

the ASH was mostly used as a sensor device for the application part of this work. A 

promising result can be achieved with ASH because of the structure dual polarization ability.  

 

 

 

 

 

(a) (b) 

(c) (d) 

s 
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4.4 Discussions and Conclusion 

 

In this chapter, methods involved in the fabrication of metallic metamaterial such as A-SRRs, 

dipoles and ASHs have been presented. Pattern creation using electron beam lithography has 

been a big challenge in the course of this work due to small features and wide variation of 

dimension involved which led to reconstruction of some design to accommodate the 

fabrication tolerances.  

 

The use of dose test and re-designs of some structural size were the solutions adopted to 

achieve regular and well-written patterns. Other major problems in the pattern transfer were 

stitching, alignment and over-lay error. The misalignment was corrected in the fracturing 

software, (Beamer) by making sure that the entire designed patterns on a sample maintained 

the same origin or a start point from L-Edit to BELLE software. To produce a smooth curves 

or arcs from the initial stage of L-Edit should involve a smooth cursor grid to avoid irregular 

curve as shown in the fabrication results. The over-lay error was reduced by changing the 

method of the clamped sample submitted to the ebeamwritter.  

 

The fabricated gaps within the structures were not easy to achieve. As shown in some of the 

figures of this chapter, there is a wide variation of the aspect ratio between the pattern and 

gap dimensions for some of the structures. This took much writing time by creating many 

arrays of pattern to find the right clearing dose by performing dose tests.  The problem was 

rectified and job writing time is reduced to less than half an hour.  

 

Using the developed recipe in the Plassys for metallisation such as evaporating the titanium 

and gold on the pattern sometimes evaporates more than the requested amount of metals. 

Suggestion was made to use less quantity than as stated in the recipe or design which is more 

likely to produce the desired amount. Again recommendation to perform metallisation using 

the newer version of the Plassys equipment in the cleanroom where the user has the authority 

to specify the quantity needed. From the initial experience of the dose test in the e-beam job 

writing a suitable clearing dose that is needed for a pattern or structure with features of a very 
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wide aspect ratio was determined. A good calculation for proportionality relationship 

between pattern dimensions and resist thickness is recommended for fabrication process in 

the BELLE in order to produce design.  

 

In conclusion, the various designed devices presented in chapter 3 of this thesis were 

successfully fabricated on a fused silica substrate. The three designed patterns have been 

transferred to the cleaved samples and there has been initial evaporation of titanium for gold 

adhesion which is not involved in the modelling or design of the metallic metamaterial. 

However, small thickness of Ti will not significantly affect the performance of the devices. 
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Chapter 5 

 

Experimental Results 

 

5.1 Introduction 

 

The experimental results concern measurements of the reflectance spectra of all the metallic 

metamaterials (MMs). The asymmetric split ring resonators, asymmetric dipoles and H-shape 

structures were measured in order to characterize the fabricated MM devices designed to 

operate in the mid-infrared region.  The measurements were performed using a Fourier 

transform infrared (FTIR) apparatus set-up as described in the first part of this chapter and 

analyses of some common factors that are associated with poor spectra from the devices are 

also presented.  

 

The results presented involve measurements of MM devices fabricated on fused silica (SiO2) 

substrates. The characteristic reflectance spectra of the devices are plotted as alongside 

simulations of the resonances originally shown in chapter three. This was followed by a detail 

analysis of the three metamaterial structures at different parameter developed towards 

improving the reflectance spectra. Lastly, comparison of the reflectance spectra and other 

features of the three metallic metamaterial structures are presented. The discussion and 

conclusions section close the chapter. 
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5.2 Measurement Setup 

 

The reflectance of light from the fabricated metamaterial devices as a function of wavelength 

is used to characterize the photonic properties of the designed and fabricated patterns. The 

Fourier Transform Infrared Spectrometer (FTIR) as shown in the figure 5.1 was used.  

                                           

 

                    Figure 5.1: Pictorial image of the measurement setup in the FTIR Lab 

 

The general measurement setup is as shown in figure 5.1, showing a Hyperion microscope 

coupled to a Bruker FTIR spectrometer. The microscope allows optimal sample visualization 

as well as quick and accurate infrared spectroscopic measurements of the nanoscale patterns 

at a small micro scale sample area. This was also used for the examination of inhomogeneity 

in samples. There is a purge gas inlet at the rear side of the microscope that enables purging 

the system with nitrogen gas.  

FTIR 

Microscope PC 
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Figure 5.2: FTIR measurements on fused silica using (a) the fused silica sample and (b) gold 

mirror for background measurement which show the atmospheric interference and spectra 

from the silica substrate at points pointed with red markers. 

 

Purging the system is sometimes necessary because of unwanted atmospheric interference 

such as water vapour (H2O) and carbon dioxide (CO2). The absorption of the atmosphere can 

mask weak spectral features of the sample [1]. The H2O vapour appears at approximately 

(a) 

(b) 
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2.85 μm and 6.6 μm while the atmospheric CO2 is at 4.2 μm as shown in figure 5.2. A 

background spectrum can compensate for the atmospheric features but may change over the 

course of several measurements. 

 

The installed OPUS software is used for processing and evaluating the measured infrared 

spectra data. The software offers an extensive set of spectral processing routines such as the 

spectrum calculator, absorbance-to-transmission conversion, automatic baseline correction, 

peak picking and many others. When loading a file all the spectra and interferograms 

included in data file are displayed on the spectrum overview window in 2D data format. All 

the functions are set up in window such that the multiple spectra from measurements can be 

manipulated at the same time. The default settings for the spectral range are from 1.25 μm to 

16 μm and from 0 to 1.5 extinction units. However, in this work the spectra range is mostly 

scaled from 2 μm to 6 μm where the switching for the spectra range positions is controlled 

from the software.  
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Figure 5.3: Schematic diagram of an optical beam-path showing both reflectance and 

transmittance path [2].  

 

Figure 5.3 is a schematic diagram of an optical beam-path that shows a condenser and the 

transmittance polariser beneath the stage. A reflectance polariser is placed in front of the 

aperture adjacent to the objective. The condenser is use to correct the vertical displacement of 

the focus caused by the specimen slide. Before analysing the sample by FTIR microscopy the 

pattern area was mapped out with the aperture while viewing through the binocular eyepiece. 
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The sample is then illuminated by the visible light source or lamp (VLS) and the 

spectrometer is coupled from the infrared (IR) beam inlet port. Both detectors as shown in 

figure 5.3 are single-element detectors where the infrared detector, mercury cadmium 

telluride (MCT or HgCdTe) was used for all the measurements which are in the MIR spectral 

region. The reflectance spectra of the fabricated MM structures were measured at normal 

incident light using a 15 x IR objective lens with of 0.4 numerical aperture (NA) obtained 

from Bruker manual. This arrangement produced a maximum angle of approximately 23.6° 

which was calculated from NA expression: NA = n sin θ. The refractive index (n) of air was 

used to determine the angle. The working distance between sample and objective is 24 mm.  

In this work, the initial step followed for the measurements once the equipment passed the 

operational qualification test (OQ) was to cool the MCT detector with the liquid nitrogen and 

then check the signal intensity. The reflectance measurements of the fabricated patterns were 

then performed by activating the IR mode. Samples were placed on the stage and positioned 

in the optical path as shown in figure 5.3. The interference occurring from differences in the 

optical path are process through Fourier transform function to produce a wavelength 

dependent transmission spectrum. After the sample area was defined by an aperture, an 

uncontaminated gold mirror was mostly used for the reference measurement before the actual 

measurements of the different fabricated patterns as detailed in the subsequent sections.  

 

 

5.3 Asymmetric split ring resonators (A-SRRs) 

 

There are several measurements performed during this work for the different fabricated A-

SRRs pattern. The aim is to produce an optimum A-SRRs device for the plasmonic sensing 

applications. Sensitivity and quality factor of MM devices is one of the important factors 

discussed in this work. The asymmetric structure was used because it has been demonstrated 

to produce higher sensitivity and Q-factor than the symmetric structure due to presence of 

trapped mode [3-6]. A trapped or closed mode [3, 6] introduce by asymmetric structures 

occur due to the excitation of non-symmetric current [6] mode that weakly couples with free 

space.  Researchers have achieved very sharp resonances [3] and double reflectance peaks [5] 

in the presence of trapped mode.  
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 Figure 5.4: Reflectance spectra in mid-infrared for E-field polarizations showing the 

trapped mode separating the double plasmonic peaks of A-SRRs, and vibrational spectrum 

from fused silica at 9.1 μm (a) FTIR measurement with H2O vapour ripples at 2.85 μm (b) 

Simulation with grating order artefact at 2.4 μm. 

 

(b) 

(a) 
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The trapped mode is present in asymmetric structure as shown in figure 5.4 when the E-field 

is parallel to the arcs of the A-SRRs. The correct polarization as explained in chapter two is 

important to achieve the correct excitation. In this work setting the polarizer to 90
0
 

corresponds to the E-field being parallel to the arcs produces the plasmonic resonance peaks 

when the sample is viewed as shown in figure 5.4.  

 

Figure 5.4a shows two sets of reflectance plots where E-field across the gap (0
0
 polarizations) 

represent coupling of wave through the gap of the A-SRRs structure which produces only the 

magnetic resonance at much longer wavelength. The measurement requires a careful 

alignment of the sample orientation in order to correspond with the modelling results as 

shown in figure 5.4b. The difference observed in the results of figures 5.4 (a & b) can be 

attributed to some factors such as incident angle, beam collimation, line edge roughness 

(LER) in the fabrication and numerical artefact from grating order transmission  which may 

affect experimental or simulation process. The measurement was performed using a gold 

mirror for background check which shows the vibrational spectrum [7] of fused silica at 9.1 

μm (1100 cm
-1

). The gold mirror normalizes the spectra strength of reflectance to (0 to 1) 

while using the fused silica as the background or reference measurement can produce some 

spectra with reflectance higher than unity shown in figure 5.2a as compared with figure 5.2b. 

This is because silica has very much lower reflectance than gold. 

 

Arc length of A-SRRs 

The intensity and spectral position of the double plasmonic resonance peaks produced from 

the A-SRRs can be altered by changing asymmetric arcs length. The arc lengths affects the 

reflectance magnitude as explained in chapter three are as shown in figure 5.5 (a & b). The 

measurement and simulation plots of the spectra are close match. The plots demonstrated the 

double plasmonic peaks at approximately (3.8 and 5.8) μm corresponding to (small and large) 

arcs respectively of A-SRRs. The changes in the reflectance magnitude and position are due 

to the arcs variation represented in percentage, from (9 to 25) % as shown in the figures. 

These reflectance spectra show the percentage difference of the asymmetric arc length. The 

blue plot represents the less asymmetric A-SRR that is with only 9% different between the 
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arcs while the purple is more asymmetric with the large arc being 25% larger than the small 

arc.  The images showed the nature of the arc variations. 

                               

 

 

 Figure 5.5: Reflectance spectra showing double plasmonic peaks from A-SRRs for the 

asymmetric arcs variation in percentage (a) FTIR measurements (b) Lumerical Simulation.  

(a) 

(b) 
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The magnitude of the peak at shorter wavelength decreases as shown in figures 5.5 from blue 

to purple plots due to reduction in the small arc and there is a shift to longer wavelength with 

the peaks corresponding to the large arc. Subsequently, the large and small arcs of A-SRR 

which produce single plasmonic resonance have been investigated. Understanding the 

characteristics of the individual arcs in relation with their corresponding resonance peaks 

helped to the description of resonance hybridization.   

 

Resonance hybridization of A-SRRs 

 References [8-12] described hybridized plasmon modes using the coupling between 

individual elements of different asymmetric metallic metamaterial structures. An A-SRR 

structure was used in this work to study the resonance hybridization from the individual arcs 

as shown in figure 5.6. The structure which comprises of two asymmetric arcs (large and 

small) as designed was measured. A finite-difference time-domain (FDTD) simulation was 

also used to simulate the resonant response of the arcs for a direct comparison of the 

reflectance plots. The individual arcs produce a mode which is the single plasmonic 

resonance [11] as shown in figures 5.7 and 5.8. 

 

 

                                             

 

 

 

 

 

 

 

Figure 5.6 Energy correlation diagrams that describe A-SRR plasmonic hybridization from 

the large and small arcs.     
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Figure 5.6 shows positions of the reactive elements (large and small) arcs and A-SRR in the 

energy diagram. The diagram represents energy level derived from the spectra plots from the 

measurements and simulations. There is a contribution from the individual arcs to the energy 

coupled to the A-SRR spectra position.  

 

In the diagram the small arc is positioned towards the shorter wavelength (i.e. high energy 

level) while the large arc is close to the longer wavelength (i.e. low energy level). These 

positions of the arcs represent the plasmonic peaks produced from A-SRRs as shown with 

dark blue plot in figures 5.7 and 5.8 as distributed on EM spectrum. The peaks at (3.2 and 

4.3) μm of the dark blue plot corresponds to (small and large) arcs of the A-SRR respectively. 

This shows the small arc at shorter wavelength is at high energy than the large arc at longer 

wavelength which means low energy. With the initial or reference (ref.arc) arcs length of (1.2 

and 1.34) μm i.e. totally length of 3.02 μm calculated from an A-SRR of 0.96 μm diameter. 

The high     (ω+ (A-SRR)) and low (ω- (A-SRR)) energy levels are taken from the A-SRR spectral 

position. Small arcs tuned the resonance to high frequency ω+(A-SRR) i.e. high energy while 

large arcs tunes the resonance to low frequency ω-(A-SRR)  equivalent to low energy.  Tables 

5.1(a & b) contain the calculated values for the arcs length that produce reflectance plots of 

figures 5.7 and 5.8.  

 

                          Table 5.1a          Table for the large arc length   

Degree (
0
) 150 160 170 180 190 200 210 

Micron (μm) 1.26 1.34 1.42 1.50 1.59 1.68 1.76 
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Figure 5.7: Reflectance spectra of 0.96 μm A-SRR diameters showing the double and single 

plasmonic peaks from A-SRR and different arcs (large) length (a) FTIR measurements 

showing measurement artefacts at 2.5 μm (b) Lumerical simulations. 

 

The green plot which is the reference arc (1.34) μm and other plots in figure 5.7 were 

produced from measurements and simulations of a single arc (large). The reference plot shifts 

to shorter wavelength 3.8 μm i.e. blue shift (blue light of EM spectrum) when compared with 

the A-SRR peak at 4.3 μm (marked with dotted red line). There are blue shifts for the large 

arcs length of (1.26, 1.42 and 1.50) μm while red shifts occur for (1.68 and 1.76) μm 

compared with the A-SRR peak at 4.3 μm.  This shows that for a red shift to occur the altered 

arcs length have to be at least 25 % (when calculated percentage difference) greater than the 

reference arc.                

(a) 

(b) 
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                        Table 5.1b       Table for the small arc length   

Degree (
0
) 170 160 150 140 130 120 110 

Micron (μm) 1.42 1.34 1.26 1.17 1.09 1.00 0.92 

 

                         

                            

Figure 5.8: Reflectance plots of 0.96 μm A-SRR diameters showing the double and single 

plasmonic peaks from A-SRR and different arcs (small) length (a) FTIR measurements (b) 

Lumerical simulations. 

 

In figure 5.8 the reference arc (1.26) μm and altered (small) arcs length of (1.42, 1.34 and 

1.17) μm were red shifted when compared with the A-SRR peak at 3.2 μm (marked with 

(b) 

(a) 
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dotted red line) while the lengths of (1.00 and 0.92) μm were blue shifted. This shows that for 

a red shift to occur the altered arcs (small) length have to be at least 8 % greater than the 

reference arc. Blue shift begins when the reference arc is 26 % greater the altered arc. The 

study showed that the single resonances from the reference arcs (large and small) are (blue 

and red) shifted respectively in comparison to their hybridised resonance. This study was 

compared with the work of references [10-11].  

 

 

Periodicity of A-SRRs 

The plasmonic resonance peaks from the A-SRRs are continually tuned between 2 μm to 6 

μm of the electromagnetic spectrum since the targeted analyte of this work has its bond in the 

mid-infrared region. The A-SRRs outer diameter of 1 μm with an arc width of 100 nm 

produces the resonance peaks as shown in figures 5.9. The gaps (θ) between the asymmetric 

arcs, background measurement and the periodicity also affect the position of the resonance 

peaks. For example, figures 5.9 showed the effect of using a constant gap for the 1 μm 

diameter while varying the periodicity as measured from the fabricated arrays of A-SRRs. A 

gold mirror was used for the background measurement which normalizes the magnitude of 

the reflectance resonance to unity.  
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Figure 5.9: Reflectance spectra showing double plasmonic peaks from A-SRR for the 

periodicity variation (a) FTIR measurements with water vapour ripples at 2.85 and CO2 at 

4.2 (b) Lumerical Simulation with grating order artefacts due to periodic boundary condition 

corresponding to the varied periods. 

(b) 

(a) 
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Periodicity is one of the fundamental parameters considered in the design of the array 

structures. The variations in the periodicity of fabricated arrays of A-SRRs in chapter four 

was measured to give reflectance spectra in figure 5.9a which broadly follow the simulation 

results as shown in figure 5.9b. The experimental and simulation results validate the effect 

produced by other research by varying periodicity [13-15]. There is a blue shift showing of 

the resonances, as the periodicity is decreased from (3 to 2) μm. The 2 μm periodicity is twice 

the diameter (i.e. 1μm) of the designed A-SRRs structures. The lower spacing gives a higher 

density for the A-SRRs which leads to higher reflection intensity because of the greater 

quantity of gold present.  The variation in A-SRRs array periodicity helps in this work to 

achieve the optimum density which is periodicity of 2.4 μm for this particular design. The 

measurement and simulations have shown that narrow plasmonic resonance peaks can be 

produce with periodicity greater than twice the larger metallic element of a MM design. In 

the simulation results the amplitude at the shorter wavelength diminishes faster and shifts the 

peaks position are more pronounced. The discrepancy in the figures can be attributed to the 

substrate thickness and experimental defects. 

 

 

Figure 5.9a shows water vapour ripple at wavelength of 2.8 μm and carbon dioxide peaks at 

4.2 μm. Tuning of resonance peak to a desired wavelength does not occur with variation of 

the metamaterial (A-SRR) dimensions only. For example, the resonance peaks in figures 5.9 

(a & b) have been produced from A-SRR of the same diameter, but wavelength position of 

the peaks changed a little due to periodic variation.  
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Gaps of A-SRRs 

The arcs length of A-SRRs which mostly tune the resonance were adjusted to design an 

optimum gap to maximise Q for the structure as shown in figure 5.10. 

        

Figure 5.10: Reflectance spectra from FTIR measurements of A-SRRs with parallel and 

wedge arc edges that form gap 

 

Simulation result for A-SRRs structures with a parallel nanoscale gap has been demonstrated 

by Ding et al [16].  In this work, measurements of the fabrication A-SRR with parallel and 

wedge-shaped arcs at both ends as shown in figure 5.10 were performed. The comparison did 

not show much improvement to the reflectance resonance peaks as desired. Quality factor of 

the resonance peaks were calculated using the expression: Q = λp/ Δλ. The FWHM (Δλ) for 

the wavelength at 3.36 and 4.00 for wedge edge arc is 0.464 and 0.297 given the Q-factor of 

7.24 and 13.47, respectively.  For the parallel edge, Q-factor of 6.00 and 18.59 was calculated 

from Δλ of 0.55 and 0.22 at wavelength position of 3.30 and 4.09, respectively. Average     

Q-factor from figure 5.10 resonances for the wedge and parallel edges is approximately 10 

and 12, respectively.  
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The reflectance magnitude of the wedge edge arc (red plot) was higher because there is more 

reflectivity material (gold) in the pattern than in parallel edge arc (purple plot). Again, 

researchers have designed equal [5] and unequal gaps [17] between the asymmetric arcs. The 

parameters they have used to denote and differentiate between the gaps (angle θ) are β for 

equal, then α and β for unequal gap. In this section FTIR measurements were performed for 

equal gaps (θ) to understand the effect of different gap size towards improving the reflectance 

resonance peaks as shown in figure 5.11.  

 

                                                      

                           
  

Figure 5.11: FTIR measurement (a) for the variations of two equal nanoscale gaps between 

asymmetric arcs of A-SRRs (b) Gap of 145nm showing peak with the highest Q (c) 

comparison of the resonance peaks position due to gap.  

 

(a) 

(b) 
(c) 
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Figure 5.11a shows reflectance plots for different gaps of A-SRR with diameter of 1 μm. The 

gaps between the arcs as shown in the inset of figure 5.11b was reduced by 30 nm from (175 

to 55) nm. The gap sizes were achieved by increasing the two asymmetric arcs 

simultaneously. This produced the resonance peaks which shift to longer wavelength as the 

gap reduces as shown in figure 5.11a. The gap variations also affect the reflectance 

magnitude of the peaks. The asymmetric arcs produce double plasmonic peaks in figure 5.11a 

while the ripple at 2.8 μm is from water vapour. From the figure, a quality factor for 145 nm 

gap was calculated.  

 

In figure 5.11b, the FWHM (Δλ) is 0.3 from λ1 and λ2 (4.95- 4.65) μm and  the λp (resonance 

peak) is at 4.75 μm. The quality factor of approximately 16 shown in the figure was obtained 

at mid-infrared region from the experimental results of the A-SRRs. This result is greater 

than any other Q-factor that has been published in the related articles [5-6, 12-13, 17-20].  

The concept of optimum periodicity and gap variations for the A-SRRs to achieve high Q 

values were applied to the fabricated dipole patterns.  

 

5.4 Dipole structures 

 

Experimental measurements were also carried out for the fabricated dipole structures.  Arrays 

of fabricated vertical gold rod on fused silica substrate were measured with the FTIR. The 

dipole pattern was designed in the way that the reflectance resonance peak is tuned to       

mid-infrared. The dimension of the asymmetric arms of the dipole that produced the 

resonance peaks in figures 5.12 is 1.1 μm and 0.9 μm for the large and small arms 

respectively.  
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Figure 5.12: Reflectance spectra for dipole structure at different gap (g) between the 

asymmetric arms (a) FTIR measurements (b) Lumerical simulations. 

 

(a) 

(b) 
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The gap between the arms as shown figure 5.12 was varied to investigate the effect on the 

reflectance resonance peaks. Reflectance plots of the figure show the effect of the gap 

variation. This demonstrated how the magnitude of the peak changes with the gap, the peak at 

shorter wavelength decreases at closer gap between the arms as shown with 250 nm gap 

while the longer wavelength peak decreases with increasing gap. The measurement results of 

the gap variation correspond to the simulation result as shown in figure 5.12b of the dipole.  

In the both results, the resonance peaks at the shorter wavelength is narrowed as the gap is 

reduced while at longer wavelength peak is broaden. The ripples and small peaks at 2.8 μm 

and 4.2 μm are from water vapour and CO2 respectively as shown in figure 5.12a. Figure 

5.12b contains grating order effect at 2.5 μm due to periodic boundary condition.  

 

 

5.5 Asymmetric Split H-shape structure 

 

Shapes of different types have been experimentally studied by many research groups in the 

field of nanoantennas or metamaterials. The most common fabricated structure in this field is 

circular or U-shaped split ring resonator, V-shape, chiral and dipole nanoantenna [21-27]. 

Recently, B.Yuan et al completed a study with asymmetric H-shape structures but there is no 

slit between the cross bar of the H-shape [28]. The article also emphasized improving the 

resonance peak through the smaller gap as shown with dipole structure. In this work, 50 nm 

split (s) between the crossbars of symmetric (SSH) and asymmetric (ASH) split H-shape 

structures were fabricated and the experimental results are shown in figure 5.13. The split is 

the distance between the horizontal crossbars on the H-shape structure.  
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Figure 5.13: FTIR measurements for reflectance spectra showing plasmonic resonance peak 

of (a) symmetric split H-shape (b) asymmetric split H-shape.  

(b) 

(a) 
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The dimension of the arms for the SSH are 1 μm while (1.1 and 0.9) μm were used for the 

ASH arms. The dimension of the crossbars on the arm is (100 by 100) nm as shown in the 

SEM image of figure 5.13. In the figure 5.13, the H2O ripples, CO2 and the vibrational 

resonance from the fused silica is shown on the plot. The SSH experiment shows a single 

plasmonic peak with a shoulder on the peak due to slightly unequal arm lengths from 

imperfection in fabrication. The ASH has double plasmonic peaks with the peak at shorter 

and longer wavelengths corresponding to the small and long arms respectively. 

 

                                         

             Figure 5.14: FTIR measurement of ASH at different periodicity.  

 

The periodicity was also investigated with the ASHs structure. The experimental results of 

figure 5.14 have a similar as the periodicity variation performed for other structures. The 2.2 

μm periodicity exhibit the highest reflectance magnitude because of the high density of the 

gold pattern. With all these parameter variations a narrow reflectance resonance has been 

achieve which produced a high Q factors within the mid-infrared measurements for metallic 

metamaterial. 
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5.6 Discussions and conclusion 

 

The three different metallic metamaterial structures fabricated on a fused silica were 

measured. The results presented are those that give the most important information 

concerning the characteristic and optimized structures process for the metallic metamaterial. 

 

     

Figure 5.15: Matching reflectance from experiment and simulation for asymmetric split H-

shape structure of metallic metamaterial. 

The experimental results generally closely match the results from the numerical simulations 

as compared and also shown in figure 5.15. However, slight differences can be observed in 

some of the investigated parameters such as the devices gap and periodicity in comparison of 

the two results (simulations and measurements). These changes can be attributed to 

fabrication tolerances errors, thickness of the substrate, ripples from water vapour and CO2. 

The use of a gold mirror for the background measurement in order to match the resonance 
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intensity obtained by simulation was considered. The measurements were normalized to gold 

mirror due to high reflectivity of gold material. Also the effective refractive index distribution 

used in the simulations is only an estimation of the refractive index distribution of the 

materials taken from literature as measured data.  

 

The hybridized resonance from asymmetric arcs was used to study the energy levels.  Figures 

5.16 (a & b) show the reflectance spectra from measurements and simulations of A-SRR and 

the individual arcs.        

                     

                                  

Figure 5.16: Reflectance spectra from experiment and simulation for hybridized resonance of 

A-SRR structure (a) A-SRR and Large arm (b) A-SRR and small arm.  
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The figures show double and single plasmonic from A-SRR and the individual arc as 

explained. This also concludes what was stated earlier in the chapter that the hybridized 

resonance of A-SRR exhibit both blue and red shift when compared with the individual 

coupled arcs. Again the little variations in the measured resonance peaks from simulation are 

because of experimental problems.  

 

All of the results presented here can be compared with the results presented in the relevant 

references cited throughout the thesis. The asymmetric dipole result was also used to confirm 

the periodicity effect on resonance peaks as suggested in the literature [13-14] and this 

prompted the  idea to develop the ASH structure which was mostly optimised and used for 

the assay of analyte, 17β-estradiol. 

                                              

 

 

Figure 5.17: Reflectance resonance peak that produced the highest Q factor from the 

experimental results. 
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The main devices of the thesis, A-SRRs and ASH show excellent results which could become 

a promising platform for new developments in metallic metamaterial based sensors. Among 

reported related articles for metallic metamaterial that produces resonance peaks within mid-

infrared, an approximate value of 18 as shown in figure 5.17 which to date is the highest 

quality factor in mid IR region from experimental work [5-6, 12-13, 17-21, 29-30] achieved. 

For a similar MM design a higher Q-factor of 50 is obtained from the numerical simulation 

than 18 from experiment. The variation in the produced value can be attributed to some 

limiting factors in relation to the two processes. In the experiment a maximum incident angle 

of 23.6° has been applied which is not the case in simulation where a plane wave source was 

used. Some other factors such as incident angle, beam collimation, line edge roughness in the 

fabrication and numerical artefact from grating order transmission of a periodic structure can 

affect the experimental or simulation process. In conclusion, the designed, fabricated and 

measured devices are quite complex structures and some useful experimental results have 

come from imperfectly fabricated devices.  
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Chapter 6 

 

Detection of 17β-Estradiol 

 

6.1 Introduction 

 

17β-estradiol usually referred to as E2 is a type of human hormone with a molar mass of 

272.382g/mol. E2 is mostly responsible for the development of human sex organs [1] and its 

2D molecular structure is as shown in figure 6.1. The hormone can also be found naturally in 

the environment through human excreta or by anthropogenic activities
 
[2]. High demand of 

the E2 for clinical analysis in monitoring the performance of the human biological system [1, 

3-4]
 
and in water treatment motivates researchers at an interdisciplinary level to investigate 

and report their various detection or sensing techniques [2, 5-12]. 

 

 

 

 

 

 

                             Figure 6.1: Molecular structure of 17β-estradiol. 

 

17β-estradiol exhibits vibrational resonances due to the existence of molecular bonds such as 

C=C and C-H bonds in the analyte. These two molecular bonds have vibrational bonds within 

the (2 to 8) μm mid-infrared region of EM spectrum. The C-H bond has very strong 

vibrational resonances that range from (3.31 to 3.55) μm [13-19] while the much weaker 

stretching of C=C is at approximately 6.20 μm [17, 20]. Williams et al [15] have stated that 

 

 

  

 

CH
3
 OH 

   HO 



- 123 - 
 

the double bond C=C vibrational resonance which is at longer wavelength than the single 

bonding of C-H is due to the attached low mass of hydrogen atoms that place the stretching 

vibration of the alkenyl group at shorter wavelength even though the double bond is stronger. 

The aromatic stretching frequency C-H occurs below 3.33μm while the unsaturated 

frequency is above 3.33μm [15]. The presence of two different bands of frequency stretching 

are associated to the double peaks of the C-H as observed in this work and other references 

[13-19]. 

 

The significant characteristics for identifying the absorption band source of the molecular 

bonds are through vibrational intensity, shape and spectral position [19]. In this chapter, the 

designed and fabricated metallic metamaterial has been used to detect the significant 

characteristics of C-H that the E2 analyte exhibits. Work on the vibrational characteristics of 

C=C bond from the analyte is given in reference [17]. 

 

 6.2 Sensing technique 

 

Over the years, there have been several sensing techniques employed by different research 

groups in order to assay 17β-estradiol [2, 5-12, 21]. These methods such as screen-printed 

carbon electrochemistry (SPCE) [5], gas chromatography-mass spectrometry (GC-MS) [6], 

gold electrode surface via under-potential deposition (UDP) [7] and aptamer-based optical 

fibre [8, 21], give a modest limit of detection (LOD) with complex laboratory experiments. 

Recent development of the surface enhanced infrared absorption (SEIRA) method by using 

plasmonic resonances from metallic metamaterial has been shown to provide a rapid and 

simple specific assay of 17β-estradiol [22-24]. The SEIRA method applied by some groups 

[8, 22-28] for the detection of 17β-estradiol did not evaluate the vibrational resonance or 

significant characteristic signature present in the mid-infrared region that the analyte exhibits.  

 

In this work surface enhanced infrared absorption is the technique used for the E2 detection. 

The fabricated metallic metamaterial, such as asymmetric split ring resonators (ASRRs) and 

asymmetric split H-shape (ASH) which produces plasmonic resonance were applied to 
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evaluate C-H vibrational resonances present in E2. References [13-14, 29-32] have evaluated 

and reported the vibrational resonances of C-H with other types of analyte such as 

polydimethylsiloxane (PDMS), 1-octadecanthiol (ODT) and poly-methyl-methacrylate 

(PMMA). These analytes reveal other molecular bonds in the mid-infrared region. Here, 17β-

estradiol has been analyzed through numerical simulations and experimental work to evaluate 

C-H bond within (2 to 6) μm of EM spectrum.  

 

6.3 Modelling and Simulation 

 

The modelling and design of all the material data used for the sensing was performed with 

commercial software (Lumerical) which employs the finite difference time domain (FDTD) 

method. A Schematic diagram of the analyte material 17β-estradiol and the ASH structure on 

a substrate are as shown in figure 6.2.  

                                               

      

                 

 

 

 

 

Figure 6.2: Systematic diagram of arrays of molecular formula of 17β-estradiol mapped to a 

sharp edge of an asymmetric split H-shape metamaterial. 
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The design for material data was performed using the experimental data from Palik [33] as 

contained in Lumerical. Similar procedures for modelling and fabricating metallic 

metamaterial (MM) as in chapters three and four were used to produce the sensor device. The 

dimensions of the MM devices are designed to tune the plasmonic resonance peak from (2 to 

6) μm of EM spectrum.  

 

The 17β-estradiol layer was modelled as a Lorentz oscillator material in which the 

background relative permittivity of the E2 analyte modifies the standard Lorentz resonance to 

produce a Fano type resonance as defined in the equation 6.1 [32]. 

 

                                         𝜀 (𝑓) =  𝜀 +  
𝜀

𝐿  𝜔𝐿
2

𝜔𝐿 
2 −2𝑖 𝛿𝐿 𝜔 −𝜔2                 (6.1) 

 

In this work, the background relative permittivity (Ɛ) of the analyte E2 is 2.13 obtained from 

the expression Ɛ = (nE2)
2
, where n (1.46) is used as the refractive index of the analyte. The 

Lorentz permittivity (ƐL) 0.0012 was used. Lorentz linewidth (𝛿𝐿 ) was used to provide 

resonance peak of a close match with the experimental measurements. Omega (ω) is the 

angular frequency and it is expressed as 2π/λ. The double resonance peaks produced by C-H 

bond have been modelled with Lorentz resonance frequency (ωL) of (5.51 and 5.4) 10
14

 rad/s 

which corresponds to (λ1 = 3.42 and λ2 = 3.49) μm as shown in figure 6.3.  A three 

dimensional square block with the height or thickness in hundreds of nanometre in 

correspondence to the experiments was applied for modelling the E2.   

 

These numerical models lead to Fano type resonance as associated with the E2 analyte. This 

is formed by superimposition of the Lorentz resonance on a slowly varying dielectric 

background to produce the negative and positive changes in the refractive index of the E2 

layer. This also produces a wavelength dependent absorption coefficient. The plots of the real 

refractive index (n) and the absorption coefficient (k) for the E2 that result to Fano type 

resonance calculated from  equation in 6.1 is as shown in figure 6.3.  
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Figure 6.3: Refractive index and absorption coefficient of the analyte E2 with a Fano type 

resonance of the C-H bond at (a) λ1 = 3.42 μm (b) λ2 = 3.49 μm calculated from equation 6.1 

 

The resonances that represent the Fano type in the refractive index of the analyte E2 at 

wavelengths of λ1 = 3.42 and λ2 = 3.49 μm usually produce a red-shift to the plasmonic 

resonance peaks of the asymmetric structures. This occurs as a result of change in the 

refractive index of the analyte which replaces the low background index of air. Consequently 

in comparison with sensor’s surroundings, the high index shifts the resonance to longer 

wavelength (red-shift) of EM spectrum while the low index will result in shorter wavelength 

(blue-shift) of the EM. Different refractive index values ranging from n = 1, 1.2, 1.4 and 1.6 

with their equivalent values of Ɛ were applied in equation 6.1 to model the Fano type 

resonance as shown in figure 6.4.  

  

(a) (b) 
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Figure 6.4: Fano type resonance plots for different refractive indexes (a) na = 1(b) nb = 1.2 

(c) nc = 1.4 (d) nd = 1.6 of the sensors surrounding analyte.  

 

The indexes variation affects the magnitude of the resonance plots as compared in figures 6.5 

(a-c). The figure shows that low index has a greater magnitude than the high index values as 

expected and shown in figure 6.5c. This comparison is important towards understanding 

changes in the modelled molecular resonance. Reference [15] states that the significant 

characteristics for identifying absorption band source for molecular bonds are known through 

vibrational magnitude, shape and spectral position.   

(a) 

(c) 

(b) 

(d) 
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                    Figure 6.5: Comparison of the resonance magnitude for the indexes.  

The indexes from 1 to 1.6 are compared because the targeted analyte E2 is a low index 

molecular substance but greater than the index of air. In this work, index of 1.46 has been 

applied to model Fano type resonance which produced a close match to the vibrational 

resonance of C-H bond observed on the plasmonic resonance peaks. A refractive index (nE2) 

value was selected due to the absence of a fixed n value for the analyte in the targeted 

wavelength region, at the time of this thesis. The vibrational resonance modelling results for 

C-H bond oscillation on the plasmonic resonance peaks are as explained in this chapter.   

 

(a) (b) 

(c) 
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6.4 Experimental Process 

The experimental procedures followed for detection of the 17β-estradiol analyte with the 

metamaterial based sensor devices for this work involved measurement of square (150 X 

150) μm arrays of A-SRRs and ASHs fabricated patterns on a clean fused silica substrate. 

The dimensions for the asymmetric structures used are lengths (LI and L2) of (0.9 and 1.1) 

μm respectively with pattern thickness (t) of 100 nm. The fabrication of the sensor devices 

are explained in chapter four.  

 

The bio-reagent white powder 17β-estradiol (C18H24O2) of molecular weight 272.382 g/mole 

was purchased from Sigma-Aldrich. The solvent used to dissolve the solute E2, was absolute 

ethanol from VWR which formed a clear solution after a thorough shaking of the mixture.  

                         

 Figure 6.6: Atomic force microscopy (AFM) for surface measurement of the 17β-estradiol 

was allowed to evaporate on substrate; the scanning height was set from 0 nm to 200 nm. 

 

The clear solution formed was deposited on a substrate using the pipette. The solvent was 

allowed to evaporate leaving a thin film of the solute E2 on the surface. The surface 

roughness was checked using the AFM image as shown figure 6.6. Figure 6.6 showed what 

was expected from a non-uniform mixture, where the smooth part is concentrated at the 

centre and the rough at the edge even when clear solution has been formed. The assay of all 

the material used is > 98% as stated by Sigma-Aldrich. 
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6.5 Experiment and Simulation results 

The experimental results concern FTIR measurements of the reflectance spectra for the 17β-

estradiol evaporated on a substrate with the fabricated metallic metamaterials of A-SRRs and 

ASHs. Initial reflectance measurement on a plain fused silica were performed as shown with 

the plots of figure 6.7 with no C-H vibrational resonance between 3.3 μm and 3.6 μm which 

was clearly absent in the zoomed spectra. Three measurements (a, b & c) of figure 6.7 were 

performed on two different cleaned fused silica substrates at different times and there was no 

molecular resonance observed at the targeted region.  

             

    

           

Figure 6.7: Reflectance spectra from two different fused silica substrates using FTIR: (a 

& b) 1 mm thickness of fused silica substrate, normalised to gold and to the substrate 

respectively (c) 0.5 mm thickness of fused silica, normalised to the substrate. 

(a) 

(b) 

(c) 

CO2 
H2O 

H2O 
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The three measured samples (fused silica) are of two different thicknesses of approximately 1 

mm for samples (a & b) then sample (c) is 0.5 mm. Sample (a) was measured by normalizing 

the normal incidence source on a gold mirror shown in figure 6.7a while samples (b & c) as 

shown in figure 6.7 the source was normalized on a fused silica substrate. Normalization on 

the gold mirror is of higher reflectance than on the fused silica because of high reflectivity of 

gold. The fused silica normalization obtained values greater than unity while gold produced 

values from 0-1 as shown in figure 6.7. 

 

On completing the initial measurements with three different samples which produced the 

reflectance results as shown in figure 6.7, the experimental detection of E2 was then 

performed. The reflectance spectra of the cleaned sample shown in blue is included on figure 

6.8a for a closer comparison with the other two (green and red) plots which exhibit the C-H 

vibrational resonance from E2.The observed vibrational resonance on the green and red plots 

is C-H bond stretches at approximately (3.3 to 3.6) μm as shown in figure 6.8c. The signature 

of the bond has also been observed in other analyte as reported in references [13-14, 29-31]. 
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Figure 6.8: Experimental measurements for the sensor work using FTIR without 

normalization of the reflectance spectra (a) reflectance spectra from fused silica substrate, A-

SRR and E2 (b) reflectance resonance peaks of A-SRRs alone and with E2 (c) Vibrational 

resonance of C-H on fused silica substrate and on A-SRRs. 

 

The green plot in figures 6.8 (a & b) show the double plasmonic resonance peaks produced 

from A-SRRs sensor of 960 nm diameter as explained in chapter five. The dotted green plot 

in figure 6.8b was measured without the E2 analyte while the solid plot in the figure was 

(c) 

(a) (b) 
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measured with E2. A redshift (shift to longer wavelength of EM spectrum) as shown in figure 

6.8b was observed due to higher index from E2 analyte at the sensor surrounding which 

replaces the initial refractive index from air. Hence a shift obtained by the initial position of 

the plasmonic resonance from 3.33 μm to 3.63 μm and 4.04 μm to 4.50 μm for the peaks at 

shorter and longer wavelength respectively as shown in the figure.  Figure 6.8 (c) is a zoomed 

plot to show clearly the double vibrational resonance shown in figure 6.8a from the C-H bond 

stretch.  

 

In this work in order to understand the sensing and enhancement ability of the fabricated 

metamaterial based sensor devices experiments were performed for detection of four different 

quantities of 17β-estradiol mixed with ethanol as solvent. The quantity dissolved in 1 ml of 

ethanol were (0.0001, 0.001, 0.01 and 0.1) grams of E2 which respectively correspond to 

molarity of (0.37, 3.7, 36 and 334) μmole/ ml. The molarity was calculated based on the 

molar mass of E2 and calculation procedure is included in appendix C. These were pipetted 

on the fused silica substrate that contains fabricated arrays of ASHs (fabrication as described 

in chapter four). The mixture was allowed to evaporate for few minutes leaving a thin film of 

E2. The FTIR microscope was used for the reflectance spectra measurements by shining light 

normally first on the arrays of fabricated ASH nanostructure and next upon deposited E2. The 

reflectance spectra showing red-shift of the resonance peaks at presence are shown in figure 

6.9. For these plots the E-field is polarized parallel to the arms of ASHs for both simulations 

and experiments to produce the plasmonic resonance peaks i.e. the black plots in figure 6.9.  
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Figure 6.9: Vertically offset plots of reflectance spectra of the red-shifted resonance peaks 

due to refractive index change in the ASH surroundings (a) FTIR measurements for different 

molarity; ripples from H2O vapour at 2.8 μm, C-H vibrational resonance bond stretch from 

3.31μm to 3.55μm and CO2 at 4.2 μm (b) Lumerical simulations for different thickness from 

zero to 0.4 μm thick. 

(a) 

(b) 
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Figure 6.9a shows red-shifted (a shift to longer wavelength of EM spectrum) resonance peaks 

at different E2 molarity of (0.37, 3.7, 36 and 334) μmole/ ml when compared with the no E2 

plot. The measurements were normalized to the reflectivity of a gold coated mirror and the 

figure shows an offset of the spectra to avoid plot clustering. Normalization to the Au mirror 

enables clearer analyses of the enhancement factor for the C-H vibrational resonance. Figure 

6.9b also show red-shift plasmonic resonance peaks when different modelled E2 thicknesses 

of (0.1, 0.2, 0.3 and 0.4) μm were simulated. Figure 6.9 is a general result used to evaluate 

the sensitivity and enhancement factor for the four experiment performed as subsequently 

explained. Enhancement factor is one of the basic features to characterise the ability of the 

metamaterial sensor devices [14, 17, 30]. In this section, metamaterial structure such as ASHs 

can produce a high enhancement and sensitive plasmonic sensors [18, 30, 34-37]. The ASHs 

features support high enhancement as shown in figures (6.10 - 6.12) while the asymmetric 

nature of the structure facilitates sensitivity by clear red-shifted resonance peaks shown in 

figure 6.9. The sensitivity produced here is high compared with works of these references 

[13-14, 30]. Figure 6.10 shows the general overview of using plasmonic resonance peaks 

from ASH metamaterial as a sensor based device. In the figure, black plot shows the 

reflectance measurement of E2 on the fused silica substrate, the red plot is the plasmonic 

resonance peaks from the ASH while the green, purple, blue and yellow plots demonstrates 

the red-shift and enhanced vibrational resonance with the plasmonic resonance with the 

presence of E2. 

 

To demonstrate the sensing ability of the ASHs nanostructure without any surface 

functionalization steps, the sensitivity produced from redshift resonance peaks due to 

refractive index changes of the surroundings was calculated. The experiments were 

performed using the four different E2 molarity of (0.37, 3.7, 36 and 334) μmole/ ml.  A 

homogenous thin film layer was assumed for the analyte, E2 that covered the arrays of 

fabricated ASHs on a fused silica substrate in a square area of (150 by 150) μm. The 

sensitivity of the reflectance resonance for the four experiments was calculated using the 

expression [38]: s = Δλ/ Δn (nm/ RIU). Where Δλ and Δn are changes in the resonance peak 

position and refractive index respectively. Values used for the calculations were obtained 

from the resonance peak at longer wavelength change (Δλ) in position as shown in figure 

6.10.  
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Figure 6.10: FTIR reflectance spectra of the red-shifted resonance peaks due to refractive 

index change in the ASH surroundings for the four different molarities in μmole/ ml (a) 0.37 

(b) 3.7(c) 36 (d) 334; ripples from H2O vapor at 2.8 μm, C-H vibrational resonance bond 

stretch from 3.31μm to 3.55μm and CO2 at 4.2 μm.  

 

The plasmonic reflectance peak is red-shifted from the longer resonance peak position of 3.59 

μm to (3.87 μm, 4.06 μm, 4.38 μm and 4.87 μm) as shown in the measurements results of 

figures 6.9(a-d). The Δn of 0.46 was calculated from nE2 = 1.46 and nair = 1. The results 

achieved from the experiments give sensitivities of (622, 1020, 1726, 2791) nm / RIU for the 

four different E2 molarities of (0.37, 3.7, 36 and 334) μmole/ ml respectively. The sensitivity 

(a) (b) 

(c) 
(d) 
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calculation is detailed in appendix C1. The high sensitivity value is attributed to asymmetric 

nature of the MM structure which introduces a dip in reflectance spectra between the double 

plasmonic peaks compared. Thus, the full width half maximum (FWHM) of 320 nm 

calculated from the resonance wavelength position at 3.59 μm from red plot of figure 6.10. 

The FWHM value was used with the sensitivity of 2791 nm / RIU in the expression [30]: 

figure of merit (FOM) = sensitivity/ FWHM which produced FOM of approximately 9.  

 

 

The enhancement factor which can be define as increase in intensity of the molecular 

resonance for adsorbates on particular surface occurs because of an enhancement in the 

electric field provided by the surfaces  was calculated for the measurements shown in figure 

6.10. In this work, the enhancement factor (Ef) was calculated using expression of reference 

[30] and it is defined as follows: 

 

                                                        𝐸𝑓 =  
∆𝑉2

𝑁2
⁄

∆𝑉1
𝑁1

⁄
                       (6.2) 

 

Where N is total number of molecules and ΔV is change in the amplitude of the molecular 

resonance. N1 & ΔV1 is measurement without ASH pattern while N2 & ΔV2 is with ASH. 

Generally, surface-enhanced Raman spectroscopy (SERS) and surface enhanced infrared 

absorption (SEIRA) are two plasmonic sensor techniques. SERS has produced higher 

enhancement factors from the E-field of the EM signal because of its second order nature 

than the first order use for SEIRA [30, 36].  SEIRA method was applied in this work as the 

target is in mid-infrared region. This method was based upon plasmonic resonance peaks 

produced from the ASHs structure.  The absolute Ef values per unit area of 10
4
 to 10

5 
for the 

assay of E2 were achieved.  The relative Ef value was also calculated to compare with the 

absolute values as included in appendix C2. The experiments were performed using the four 

different E2 molarities of (0.37, 3.7, 36 and 334) μmole/ ml as explained in the previous 

paragraph. A homogenous thin film layer of the analyte (E2) that covered an array of 

fabricated ASHs on a fused silica substrate in a square area of (150 x 150) μm was assumed. 
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For the E2 experiments the number of molecules (10.027 x 10
8
, 10.027 x 10

9
, 9.756 x 10

10
 

and 9.033 x 10
11

) was calculated from an approximate measurement of 200 nm thickness of 

E2. These are the initial values of number (N1) of molecules which correspond to the 

thickness contributing to the intensity of the vibrational resonances. The N2 (10.027 x 10
4
, 

10.027 x 10
5
, 9.756 x 10

6 
and 9.033 x 10

7
) is defined by both the number of molecules of E2 

interacting with the total number of (5625) ASHs in the measured area of (150 x 150) μm.
 
 

An estimated molecular density of 1 gm/cm
3
 for the E2 was also used for Ef calculation as 

detailed in appendix C2. 

 

The maximum E-field occurs at the four sharp edges of the ASH structure as indicated with 

white dotted circle in figure 6.11(a) (field plot was explained in chapter 3).  This is the most 

effective resonance area explained as hot spots in reference [39] where 10 nm is the 

dimension of the hot spot upper-limit. In this work, the enhancement factors calculations of 

the hot spots area used was the (10 by 10) nm
2
 as detailed in appendix C2.  The plasmonic 

resonance peaks is produced when the electric field (E-field) is parallel to the arms of the 

ASH as shown in figure 6.11(b). The field plot was obtained from ASHs simulation 

resonance peak wavelength at 3.31 μm which corresponds to the peak at shorter wavelength 

as shown in purple colour plots of figure 6.9b.     
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Figure 6.11: (a) Expanded view of (b) the absolute magnitude of the E-field from the design 

simulated for x-y axis with the dark red and dark blue colour showing the maximum and 

minimum value respectively with E-field parallel to arms of ASH for the resonance peak at 

wavelength 3.31 μm. 

The resonance peak at wavelength of 3.31 μm for the purple colour plots in figures (6.9 & 

6.10) was used because produced the highest enhancement factor from the calculations as 

detailed in appendix C2. The change in vibrational resonance (ΔV) intensity produced from 

(a) 

(b) 
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the vibrational resonance without ASH (ΔV1) at 3.42 μm and 3.45 μm for the E2 evaporated 

on a clean fused silica substrate as shown in figures 6.12 (a-d) and vibrational resonance with 

ASH (ΔV2) produced when the E2 is on the arrays of ASH nanoantennas for the four 

experiments performed are: ΔV1 (0.0013, 0.00237, 0.0081 and 0.0180) which corresponds to 

V2 (0.0110, 0.0623, 0.1060 and 0.0270) respectively.  

 

     

     

  Figure 6.12: FTIR reflectance spectra of the enhanced C-H bond stretching from 3.31 μm to 

3.55 μm vibrational resonance peaks by the ASH plasmon resonances zoomed plots of figure 

6.9 (a) Ef of 8.5 x 10
4
 (b) Ef of 2.6 x 10

5
 (c) Ef of 1.3 x 10

5
 (d) Ef  is 1.5 x 10

4
 for the different 

molarities of E2. 

(a) (b) 

(c) (d) 
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By substituting the values as defined in expression 6.2, enhancement factors of (8.5 x 10
4
, 2.6 

x 10
5
, 1.3 x 10

5
 and 1.5 x 10

4
) for the four experimental measurements shown in figure 6.12 

were achieved.  Detail of the enhancement calculation is included in the appendix C2. The 

enchantment factor did not increase uniformly with the increase in molarity of the E2. From 

the result the enhancement is greatest when the molecular resonance is on the apex of the 

resonance peak i.e. the case of the second experiment as shown in figures (6.10b & 6.12b).  

 

 

Figure 6.13 was used for plasmonic resonance sensitivity comparison between the symmetric 

and asymmetric H-shape (SSHs and ASHs) for the concentration of 37μmole/ml of E2 

analyte. The values used for the calculations were obtained from the resonance peak position 

shift for the ASHs at wavelengths of (3.57 to 3.94) μm which gives Δλ as 370 nm and for 

SSHs the resonance position shift at wavelengths of (3.23 to 3.37) μm gives Δλ as 140 nm 

shown in figure 6.13. The Δn of 0.46 was calculated from nE2 = 1.46 and nair = 1. 
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Figure 6.13: FTIR measurements for reflectance spectra showing the redshift in the 

resonance peaks from an initial wavelength of (a) 3.23 μm for SSHs and (b) 3.05 μm and 3.57 

μm for two peaks of ASHs.  Other spectral features are water vapour at 2.85 μm, CO2 at 4.20 

μm and the C-H resonance stretch at 3.31μm. Note: Small dip on the blue plot of (a) at 3.2 

μm is due to imperfections in fabrication. 

 

From these values, the sensitivity of 340 nm/ RIU and 804 nm/ RIU were calculated for the 

SSHs and ASHs metamaterial based sensor respectively. In comparison the sensitivity from 

(a) 

(b) 
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asymmetric structure is approximately 41% greater than symmetric. These results show that 

an optimize metallic metamaterial design such as ASH structure has promising features for a 

high sensitive bio-sensor device as demonstrated in this work.  

 

 

The E2 thin film layer was modeled as explained in section 6.3 using a Lorentz oscillator 

which produces Fano type resonance as shown in figures 6.14 (a-c). Different refractive 

index values of 1, 1.2, 1.4 and 1.6 were applied to the Lorentz model. A match at n = 1.46 

was achieved from our various numerical simulations as shown in figure 6.14b for a 

thickness of 200 nm of E2. The absolute and relative Ef (space) per unit cell for the 200 nm 

modelled E2 placed on fused silica substrate, plain gold and ASHs structures were calculated. 

The details of Ef calculations are included in the appendix C2. The matched index was then 

applied to modeled different thicknesses (10, 200, 300 and 400) nm of E2 which produced 

shifts in the resonance peaks as shown in Figure 6.14c. From the figure, a calculated E2 

quantity of 0.15 femtomoles per ASH for the 10 nm thickness produces sensitivity of 104 nm 

/RIU (corresponding to a red-shift of 47.84 nm) as shown in figure 6.14c. Detail of the 

femtomole calculation is included in the appendix C3. The 0.15 femtomole is a smallest 

quantity of E2 detected by the ASHs as shown in figure 6.14c. This limit of detection for the 

structure highlights the high sensing potential with application of SEIRA method [12, 22-25].  

The degree of sensitivity based on the refractive index change as well as the thickness was 

observed and compared as shown figure 6.14d.  
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Figure 6.14: Simulations results (a) Reflectance plots for 200 nm thickness of E2 at various 

indexes (b) Matching results of experiment and simulation for reflectance molecular 

resonances of the E2 (c) simulations of the red-shift in the position of the resonance peaks for 

E2 thickness of (10, 100, 200, & 400) nm (d) Comparison of sensitivity of the ASH due to 

refractive index changes and thickness of E2. 

(a) (b) 

(d) 

(c) 
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The results enable a direct comparison of the sensitivity due to thickness of analyte and 

refractive index change. A sensitivity of 1818 nm/ RIU from the numerical simulation of 400 

nm thickness modeled E2 was achieved with the ASHs nanoantennas as shown in figure 

6.14d. The sensitivity was calculated using expression: s = Δλ/ Δn (nm/ RIU). Lumerical 

which employs the FDTD method was used for the numerical simulations. As explained 

earlier Lorentz model [32] was used to model the Fano type resonance for the E2 which 

corresponds to the molecular resonance of experiments performed. 

 

 

6.6 Discussions and conclusion 

Two metamaterial sensors A-SRRs and ASHs have been used experimentally and with 

numerical simulations in order to assay E2 analyte. In this chapter, the presence of the C-H 

bond in 17β-estradiol was evaluated as shown with measurement and simulation reflectance 

spectra of figure 6.15. The figure summarizes the work of this chapter by showing the 

detection in a way of plasmonic peaks red-shift due to change in refractive index.  The C-H 

stretch vibrational resonance enhancement is achieved by using the method of SEIRA with 

optimised metamaterial sensor structures or nanoantenna which produces the plasmonic 

resonance.    

                        

 Figure 6.15: FTIR measurements and simulations of Reflectance spectra from ASHs and E2.  
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The characterization process of the sensors that produced high sensitivity was explained. For 

example, the ability of ASH arrays to produce higher sensitivity in detecting E2 analyte than 

the SSH structure, is because of the trapped mode which narrows the resonance peaks of the 

asymmetric structures there by producing a high quality factor device. 

Table 6.1 summarizes the calculated values for the enhancement factors and sensitivities for 

the four experiments performed.  

 

                   Table 6.1: Values for Ef and sensitivity for the four experiments 

Experiment Enhancement factor (Ef) Sensitivity (nm/RIU) 

a 8.5 X 10
4
 622 

b 2.6 X 10
5
 1020 

c 1.2 X 10
5
 1726 

d 1.5 X 10
4
 2791 

 

In conclusion a new metallic metamaterial structure with multiple sharp edges and a narrow 

gap that allows assay of E2 has been developed. Plasmon resonances produced from the 

ASHs arrays enhance the vibrational resonances of C-H bond by a factor of 2.62 x 10
5
. From 

simulations limit of detection is 0.15 femtomole was obtained. A high sensitivity biosensor 

has been achieved with calculated value greater than 2700 nm/RIU at 3.59 μm and figure of 

merit (FOM) of 9.  

 

The vibrational resonance of the C-H bond stretch using Lorentzian modelling was almost 

perfectly matched to the experiment by varying the refractive index close to 1.46 which is 

close to the predicted index of E2 [40]. The plasmonic sensors are less complex in the 

detection of analyte such as 17β-estradiol which is in high demand for biomedical and water 

treatment assays.  
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Chapter 7 

 

Future work and Conclusions 

 

7.1     Introduction 

Other work performed that may form the basis for future projects is now described. Two 

different devices, A-SRRs and ASH on waveguide were also designed and fabricated using 

electron beam lithography. The patterns were design with a different substrate, silicon on 

insulator (SOI) as detailed in the following sub-sections. The summary of the entire work 

closes the thesis. 

 

7.2      Future work 

Although, the results presented in this thesis have demonstrated the effectiveness of the 

optimized plasmonic resonance peaks in the mid-infrared region of EM spectrum. This work 

could be further developed in a number of ways as explained in the section. 

 

Fabrication on Silicon-on-Insulator (SOI) 

SOI is a technology where a silicon-insulator-silicon substrate is used to improve electronic 

device performance by reducing the parasitic device capacitance [1]. This technology offers 

significant advantages in design, fabrication and application of many semiconductor circuits. 

SOI also improves prospects for extending silicon devices into the nanoscale region which 

makes it very useful for integrated electronic, photonic circuit devices and even dielectric 

metamaterials.  

The SOI wafer consists of a film of monocrystalline silicon separated by a layer of SiO2 from 

the bulk silicon substrate [2-4]. Silicon on sapphire (SOS) is another version of SOI that is 
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produced through epitaxial growth but the SOS was found to be of limited utility [1]. SOI 

diminishes short channel effects in microelectronic devices [5]. More recently, it has been 

widely used [6-8] for integrated photonic devices. The insulating and topmost silicon layers 

vary widely with application [9] which makes it useful also for metamaterial based sensor 

devices. 

                   

                            Figure 7.1: Schematic diagram of Silicon-on-Insulator sample. 

             

                            

In this work, the SOI wafer used has a 0.50 μm thick layer of the Si core, a lower cladding 

layer of SiO2 of 3 μm thick and bulk Si substrate as shown in the figure 7.1. Firstly, the four 

inch wafer was cleaved into 12 mm by 12 mm samples. The cleaved sample was cleaned 

using acetone, methanol and IPA, blow dried with nitrogen gas and baked for 60 seconds on a 

hotplate before the Hydrogen silsesquioxane  (HSQ) was spun. Neat HSQ was spun at the 

Handling, Si  

Fused silica 

Si core 
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speed of 5000 rpm which leaves thickness of 340 nm on the sample. The sample was baked 

again at 95
0
C on a hotplate for four minutes and then submitted for writing.   

                          

        

       Figure 7.2: Sketch gold A-SRRs on waveguide of silicon-on insulator (SOI) substrate. 

 

             

The device designed has arrays of A-SRRs on top of an SOI waveguide. The design concept 

is to couple light from the waveguide into the MM structures. The e-beam lithography of this 

design is complex due the alignment of the A-SRRs structure that has to be at the centre of 

the waveguide width. The lithography was performed twice with the use of different layers/ 

colours for differentiating the design in L-Edit. Use of global makers which comprises of Au 

squares and crosses was essential to achieve the designed patterns as shown in figure 7.3a. 

The substrate cleaning was performed followed by spinning of two different resists. A 

 

Si core 

Fused silica 

Handling, Si 

A-SRRs 

x-axis 

y-axis 

z-axis 
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PMMA resist was used for creating the makers and A-SRRs on the SOI sample. After 

development and metallization, the sample was processed again for the second layer of 

lithography. HSQ resist was spun for the waveguide pattern transfer, baked and submitted for 

ebeamwritter exposure as explained in the last paragraph.  

In the cleanroom, a Surface Technology System (STS) tool was used for the plasma dry etch 

where high density low pressure (HDLP) method for etching SOI was applied. The HDLP 

used was generated by excitation of inductively coupled plasma (ICP) on the STS equipment. 

The major benefit of operating in HDLP plasma mode is the reduction in ion collision 

probability as the sheath thickness decreases at higher ion density and the ion mean free path 

increases at lower pressures with improved ion directionality which enhances the control of 

anisotropy [10]. The present work has been carried out in the STS-ICP system as described in 

the literature [10, 11]. A reactive ion etch (RIE) employed utilizes the mix etch process, 

which exhibit no scalloping on etched sidewalls [12]. This process provides vertical sidewall 

profile with very smooth surface where the etching stops over SiO2 layer on SOI substrate as 

shown in figure 7.3. The mixed etch process involves alternating between a Si etch step and a 

fluoropolymer deposition. The gases used were sulphur hexafluoride (SF6) for Si etch step 

and halocarbon R318 (C4F8) for deposition. The recipe on the JWNC dry etch processing 

webpage [12-13] was used as a starting point and changes were made to achieved device 

shown in figure 7.3.          
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Figure 7.3: SEM images of (a) Global makers with cross (b) Misaligned A-SRRs on 

waveguide (c) Aligned A-SRRs on waveguide. 

 

The etching parameters were set to: a temperature of 23
0
C, etching chamber pressure of        

10 mT, flow rate of 30 sccm and RF power level 300 W. The etching time was set to 3.2 

minutes, which was sufficient to etch through the 500 nm silicon core layer. The etching time 

increased here because the core layer of the wafer used here is 500 nm thick with 3 μm layer 

of SiO2. The SEM image in the figure 7.3b showed misaligned patterns which were corrected 

in the L-Edit and beamer software design by maintaining the central point of the entire 

pattern design in both software. Figure 7.3c shows SEM image of the aligned A-SRRs on the 

waveguide corresponding to the schematic diagram.  

(a) (b) 

(c) 
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Lumerical software was used to design silicon on insulator (SOI) waveguide on which the A-

SRRs was designed on top of the waveguide as shown in figure 7.2. The thickness of the 

structure was designed based on SOI sample used for fabrications with the silicon core of 500 

nm, fused silica of 3 μm and the handling layer of 750 μm.  

The effective refractive index (neff) is an important material property for this type of design. 

The neff depends on the wavelength and mode (for multimode waveguides) in which the light 

propagates. This was calculated using Lumerical software for the designed waveguides for 

the device as shown in figure 7.4.  The neff also depends on the whole waveguide design and 

can be defined as number that quantifies the phase delay per unit length in a waveguide, 

relative to the phase delay in vacuum or air.  

Waveguide  

width (µm) 

Effective index Loss 

(db/cm) 

Modal field plots  

 

1 

 

2.52+3.51 x 10
-11

i 

 

6.38 x 10
-6 

 

 

 

2 

 

2.82+2.29 x 10
-11

i 

 

4.17 x 10
-6

 

 

 

 

3 

 

2.87+2.18 x 10
-11

i 

 

3.97 x 10
-6

 

 

 

 

Figure 7.4: Dimension of waveguide width (y-axis), effective index, loss and modal field plots 

for electric component 
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The modal field plot included in the table is the fundamental mode refers to as first mode in 

Lumerical as detailed in appendix D. The colour coding bar where dark red is the maximum 

and dark blue is the minimum shows the modal field strength. The fundamental mode was 

generated by propagation of mode source of EM wave through a silicon waveguide with 

depth of 0.5 µm but at varying widths (1, 2 and 3) µm as shown in the table. The propagation 

described by the mode takes place at a fixed frequency. The fixed frequency of the 

fundamental mode of the device is known as its resonant frequency. The resonant frequency 

or wavelength for the propagating modes of (2 to 6) µm as applied here is at wavelength of 3 

µm and this wavelength depends on the structure, materials and boundary conditions.  The 

waveguide width of 3 µm which gives the least loss of 3.97 x 10
-6

 db/cm for the propagating 

modes was width used for the fabrication. The loss is from the effective index which is 

shown as a complex quantity. This is produced by the imaginary part of the complex quantity 

which describes the gain or loss effective refractive index. The loss increases as the width of 

the waveguide reduces and this corresponds to increase in then imaginary part, as stated in 

the figure 7.4. Reference [14] also explains the loss as a mode profile mismatch between the 

mode that actually exists at that wavelength and the mode profile of the centre wavelength 

that is being injected. The errors will be largest at the minimum and maximum wavelength of 

the source where the mode mismatch is largest. This investigation will help for future work 

on simulation validation with preliminary simulations shown in figure 7.5 and measurement 

of the fabricated A-SRR on waveguide. Advancements with the use of SOI will support the 

development of portable photonic sensors systems suitable for field work. 

 

 

https://en.wikipedia.org/wiki/Resonance
https://www.rp-photonics.com/gain.html
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Figure 7.5: Transmittance spectra showing plasmonic peaks from waveguide with A-

SRRs and no resonance from waveguide without A-SRRs with design inset. 

Figure 7.5 shows the transmittance spectra from simulation of the designed A-SRRs on SOI 

waveguide. There is a production of strong plasmonic resonance peak from the simulation of 

A-SRRs on waveguide while no resonance appears for waveguide without A-SRRs structure 

when a mode source was coupled into the waveguide. This result shows the tunning ability of 

the designed A-SRR dimension that produced plasmonic resonance peaks between (2-6) μm. 

The dimension of the A-SRRs is radius of 0.5 μm by 0.4 μm with height of 100 nm. Future 

work will be on measurement of the fabricated device and validating on the simulation of the 

design. The work was established based on high Q-factor produced by all-dielectric 

metamaterial using SOI as presented in reference [15]. 

 

 

Simulation of ASH on SOI 

An ASH structure was also modelled on SOI substrate as shown in figure 7.6a. The objective 

of this modelling is to get a high Q and enhancement factors. Following similar dimension for 
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the design of ASH on fused silica as explained, the preliminary result from the simulation of 

the design produced a narrowed resonance peaks as shown in figure 7.6b.  

 

              

Figure 7.6: (a) 3-D schematic diagram of split H-shaped structure on SOI (b) 

Reflectance spectra showing double plasmonic peaks from ASH simulation for a normal 

incidence source.  

                  

This idea comes from studying the work of reference [15]. In the reference all-dielectric 

silicon-based metasurface was produce with high Q-factors. Here, metal is included because 

it is the basis for high enhancement factors which is important factors for this type of sensors. 

This is an introductory design for future works on MM structures. 

 

 

 

 

 

 

 

 

(a) (b) 
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7.2     Conclusion 

 

In this thesis, photonic sensors based metamaterial devices have been designed, fabricated 

and applied in detection of a biological analyte 17β-estradiol. In order to produce a high 

quality factor and sensitive sensor device different features of the two common types of 

metallic metamaterial, asymmetric split ring resonators (A-SRRs) and Dipoles were 

characterized. In the course of this work, structures such as the A-SRRs and asymmetric split 

H-shaped (ASH) have also been investigated. The work on A-SRRs and ASH on waveguide 

is as part of the optimization process for the design of the metallic metamaterial towards 

producing a high quality factor sensor device. An asymmetric split H-shaped ASH structure 

has been introduced as a new metallic metamaterial device. Utilization of dual polarization 

source has been shown to be possible for the ASH structures. These optimized structures 

could be useful in sensing and monitoring environment, food, security and biochemical 

substances. All the devices described in the present work were fabricated using two different 

material substrates, fused silica (SiO2) and Silicon on insulator (SOI). 

 

The devices presented in this thesis were fabricated mostly by using fabrication processes 

which comprise of electron beam lithography (e-beam), pattern development, metallization 

and dry etching. Some of the processes applied to produce the patterns were partly modified 

from the existing process and developed during the course of the project. The process for the 

SOI material were more challenging and etching quality could not be reproduced regularly 

simply by using the same conditions. Solutions were adopted to minimize the effects of 

chamber conditions in the fabrication process by submitting the sample for etching before the 

busy period and use of an interferometer also helped to produce the correct etch depth.  Again 

alignment of the A-SRR pattern on the silicon waveguide of the SOI material was a major 

difficulty but was resolved by proper redesign of the device in the software. The process for 

SOI has been demonstrated to have the potential for good reproducibility with acceptable 

tolerances in producing waveguide devices. The two gases Halocarbon R318 (C4F8) and SF6 

used for the dry-etch process for the silicon etchings are stable and capable of repeatable 

etching rates. 
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Devices fabricated on fused silica show small imperfections in the final device structure. The 

roughness of the ring shape was smoothed and the sharp edges of the patterns were produced 

by using the proximity grid command on the beamer fracturing tool.  

 

Also included in the work is the analysis of the theoretical concepts of the devices based on 

references [16-17]. The photonic sensor based plasmonic resonance peaks produced from 

metallic metamaterial device was the basis of this project; the operating principle of the 

device was described, demonstrating how the resonance peaks can be used to sense changes 

in the surrounding device environment. The developed sensors device prompts a shift in the 

resonance peak with respect to the refractive index change. 

   

The numerical simulation tool used to model and design the different photonic structures has 

been described and the results obtained for different metallic metamaterial device designed 

have been analysed and compared in various ways. The 3D approach used in the simulations 

gives good and consistent results of the designed structures as compared with the 

experimental work.  A logical sequence was followed. The optimization of the A-SRRs for a 

narrower reflectance plasmonic resonance which can produce a high quality factor is an 

important characteristic of all plasmonic devices useful for sensing applications. In the 

numerical simulation the artefact from grating order transmission of a periodic structure can 

affect the resonance peak.  The ASH structure designed from the dipoles was optimized and 

showed improvement in the reflectance resonance compared with the asymmetric dipole 

structure.  

 

The fabricated devices that could not be measured during the course of this work are because 

of the lack of suitable measurement set-up and limitations of time. A super-continuous source 

and grating couplers or end-fire rig could be required for the A-SRRs on SOI waveguide. The 

recent advancement of designing MM structures using SOI material can minimize losses and 

it is a good platform for developing a portable photonic sensors system suitable for field 

work. 
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In conclusion, three different metallic metamaterial structures have been presented, with 

promising results from experiment and simulation. The parameters of the structures such as 

the dimension and periodicity have been described and optimized to produce a high quality 

device in the mid-infrared region. The A-SRRs and ASH on SOI waveguide were also 

presented as other work carried out during the period. The numerical simulations of the 

designed structures and fabrication can form the base of future work. One of the aims of this 

project is to produce a high quality factor from the metallic metamaterial and demonstrate its 

ability by using 17β–estradiol to analyse a molecular resonance C-H. This has been achieved. 

Finally, all MM devices presented in this thesis are optimally designed for sensing 

application in mid-infrared as discussed.   
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APPENDIX 

 
A: Modelling 

A1: Drude model  

Drude model is the method employed for the transport properties of electron in the 

material such as gold [1-3]. For conductors in which inter-band contributions to the 

optical functions can be largely neglected in the infrared, the simple Drude dielectric 

function can be used:  

                                                 ∈1= ∈0− 
𝜔𝑝

2

[𝜔2 +( 1 𝜏⁄ )2]
  

 

∈2=

(1
𝜏𝜔⁄ )𝜔𝑝

2

𝜔2 + (1
𝜏⁄ )2

 

Here ωp is the plasma frequency, τ is the relaxation time, and ∈0 is a background 

dielectric function, constant in the infrared, which arises from transitions at higher 

energy. 

 

A2: Optical properties for fused silica  

The optical dispersion of fused silica can be approximated by the following Sellmeier 

equation [4]. 

𝜀 =  𝑛2 = 1 + 
0.70𝜆2

𝜆2 − 0.072
+  

0.41𝜆2

𝜆2 − 0.122
+ 

0.81𝜆2

𝜆2 − 9.902
 

The wavelength λ is measured in micrometres. This equation is valid between 0.21 and 

3.71 micrometres and at 20 °C [6]. Its validity was confirmed for wavelengths up to 

6.7 µm [5]. Experimental data for the real (refractive index) and imaginary (absorption 

index) parts of the complex refractive index of fused quartz reported in the literature over 

the spectral range from 30 nm to 1000 µm has been reviewed by Kitamura et al [5] and 

are used for simulations. 

(a) 

(b) 

https://en.wikipedia.org/wiki/Dispersion_(optics)
https://en.wikipedia.org/wiki/Sellmeier_equation
https://en.wikipedia.org/wiki/Sellmeier_equation
https://en.wikipedia.org/wiki/Fused_quartz#cite_note-m-5
https://en.wikipedia.org/wiki/Fused_quartz#cite_note-m-5
https://en.wikipedia.org/wiki/Fused_quartz#cite_note-rk-6
https://en.wikipedia.org/wiki/Fused_quartz#cite_note-rk-6
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B: FDTD simulations 

B1: A-SRR arcs length variation  

        Transmission spectra plots Ex-field plots 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Transmission spectra plots and Ex-field plots from more symmetric to less 

symmetric A-SRRs 
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The transmission plots in the first column and first row of figure 1 where R is reflectance, T 

is transmittance and Absp is absorption, demonstrated the plots in reference [6]. The dip 

between the two plasmonic peaks broadens or the coupling between the arcs is reduced as 

they become more asymmetric. In the second column of the figure, electric field plots of the 

x-component is use to show the confinement of the e-field intensity at the 15 nm gap. 

 

800 / 126 nm 600 / 92 nm 400 / 63 nm 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2: Transmission spectra and z-components of the E-field plots from the two peaks 

Figure 2 first rows show the transmission plots of the more asymmetric arcs where the small 

arc is, 40
0
, 60

0
 and 80

0
 with the corresponding arcs length of 63 nm, 92 nm and 126 nm, 

respectively. The e-field plots of the z-components are shown in the subsequent rows based 
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on the resonance peaks from the longer to shorter wavelength as stated on the top of the plots. 

The plots are in agreement with that in reference [6] where field strength at longer 

wavelength is greater than that at shorter wavelength. The simulations results are included in 

appendix because it’s on visible to near-infrared region. 

 

C: 17β-estradiol experiment and simulation 

Experiment for the four different concentration of E2  

A glass experimental bottle with cover of 16 g was used for mixing the E2 and ethanol. Then 

1 ml of ethanol was used to dissolve (0.0001, 0.001, 0.01 and 1) g of E2.  

Calculation of the molarity of the solution (E2 and ethanol) 

Steps: 

Molar mass of E2 = 272.382g 

272.382g in 1 litre = 1 mole 

Convert the 1ml of ethanol to gram, will be 1 g 

 Experiment (a): E2 = 0.0001g 

If 272.382g of E2 = I mole 

Then 0.0001g =  ? mole 

 𝐴𝑛𝑠 =
0.0001

272.382
~ 3.67 𝑥 10−7 mole 

For 1.0001 mL solution (E2 and ethanol) 

𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 =  
3.67 𝑥 10−7

0.0010001
= 3.67 𝑥 10−4  𝑚𝑜𝑙𝑒/𝑙itre 

Ans ~ 0.37 μm/mL 

 

Experiment (b): E2 = 0.001g 
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If 272.382g of E2 = I mole 

Then 0.001g =  ? mole 

𝐴𝑛𝑠 =
0.001

272.382
~ 3.67 𝑥 10−6 mole 

For 1.001 mL solution (E2 and ethanol) 

𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 =  
3.67 𝑥 10−6

0.001001
= 3.67 𝑥 10−3  𝑚𝑜𝑙𝑒/𝑙itre 

Ans ~ 3.7 μm/mL 

 

Experiment (c): E2 = 0.01g 

If 272.382g of E2 = I mole 

Then 0.01g =  ? mole 

𝐴𝑛𝑠 =
0.01

272.382
~ 3.67 𝑥 10−5 mole 

For 1.01 mL solution (E2 and ethanol) 

𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 =  
3.67 𝑥 10−5

0.00101
= 3.67 𝑥 10−2  𝑚𝑜𝑙𝑒/𝑙itre 

Ans ~ 36 μm/mL 

 

Experiment (d): E2 = 0.1g 

If 272.382g of E2 = I mole 

Then 0.1g =  ? mole 

𝐴𝑛𝑠 =
0.1

272.382
~ 3.67 𝑥 10−4 mole 

For 1.001 mL solution (E2 and ethanol) 

𝑀𝑜𝑙𝑎𝑟𝑖𝑡𝑦 =  
3.67 𝑥 10−4

0.00101
= 3.336 𝑥 10−1  𝑚𝑜𝑙𝑒/𝑙itre 



- 170 - 
 

Ans ~ 334 μm/mL 

 

C1        Sensitivity Calculations 

 

The sensitivity for the four experiments was also calculated from figures 6.10 (a-d): 

 

𝑠 =  
∆𝜆

∆𝑛
  (𝑛𝑚/𝑅𝐼𝑈)  Where Δλ is the plasmonic resonance peak shift and Δn is 

change in the refractive index of the analyte and air. 

  

Experiment (a): 0.37 μmole/ mL 

 

𝑠 =  
3872 − 3586

1.46 − 1 
= 621.7 ~622 𝑛𝑚/𝑅𝐼𝑈 

 

 

Experiment (b): 3.7 μmole/ mL 

 

𝑠 =  
4055 − 3586

1.46 − 1 
= 1019.6 ~ 1020 𝑛𝑚/𝑅𝐼𝑈 

 

 

Experiment (c): 36 μmole/ mL 

 

 

𝑠 =  
4380 − 3586

1.46 − 1 
= 1726 𝑛𝑚/𝑅𝐼𝑈 

 

 

Experiment (d): 334 μmole/ mL 

 

𝑠 =  
4870 − 3586

1.46 − 1 
= 2791𝑛𝑚/𝑅𝐼𝑈 
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      C2        Enhancement factors Calculations 

 

 

                                                         

 

 

Figure 3: Schematic diagram for volume of (150 by 150 by 0.2) μm E2 measured  

 

The volume was used to calculate the enhancement factor for the experiments of figures 

6.12 (a-d). 

𝐸𝑓 =  

∆𝑉2
𝑁2

⁄

∆𝑉1
𝑁1

⁄
 

Where N is total number of molecules and ΔV is change in the amplitude of the molecular 

resonance detailed in chapter 6. N1 & ΔV1 is measurement without ASH pattern while N2 & 

ΔV2 is with ASH.  

Volume = (150 x 10
-6

 x 150 x 10
-6

 x 200 x 10
-9

) m
3
 = 0.45 x 10

-14
 m

3
 = 0.45 x 10

-11
 litre  

Experiment (a): 0.37μmole/ mL 

This means that:              1 L contained 0.37 x 10
-3

mole 

                               0.45 x 10
-11

 L contained 1.665 x 10
-15

 mole 

First calculating number of molecules without ASHs (N1): 

150 μm 
150 μm 

0.2 μm 
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 N1: 

1 mole = 6.022 x 10
23

 (𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟) 

1.665 x 10
-15

 mole = ?  

                          = 10.027 x 10
8 

molecules 

 

 

Secondly calculating number of molecules with ASHs (N2): 

N2: 

     There are 5625 ASHs with periodicity of 2 μm in an area of (150 by 150) μm. 

     Area of hot-spots is (10 by 10) nm =100 nm
2
 from reference [8]. 

Total volume of excited molecules at the 4 hot spots as shown in the E-field plots of 

chapter 6: 

 

(100 X 4) 10
-18

 x 5625 x 200 x10
-9

 = 0.45 x 10
-18

 m
3
 or 0.45 x 10

-15
 L 

 

                              1 L            contained          0.37 x 10
-3

mole 

                      0.45 X 10
-15

 L    contained    1.665 x 10
-19

 mole 

 

Calculating number of molecules:  

N2: 

1 mole                     = 6.022 x 10
23

 (𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟) 

1.665 x 10
-19

 mole    =?                            

                                        10.027 x 10
4 

molecules 

(𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎)𝐸𝑓 =  

∆𝑉2
𝑁2

⁄

∆𝑉1
𝑁1

⁄
 

 

ΔV1  ΔV2  N1 N2 

0.0013 0.011 10.027 x 10
8
 10.027 x 10

4
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(𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎)𝐸𝑓 =  
∆𝑉2

𝑁2
⁄

∆𝑉1
𝑁1

⁄
=  

1.097 ×10−7

1.296 ×10−12  = 8.464 × 104  

Experiment (b): 3.7μmole/ mL 

                                             1 L contained 3.7 x 10
-3

mole 

                               0.45 x 10
-11

 L contained 1.665 x 10
-14

 mole 

N1: 

1 mole = 6.022 x 10
23

 (𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟) 

1.665 x 10
-14

 mole =? 

                          = 10.027 x 10
9 

molecules 

 

N2: 

                                      1 L           contained          3.7 x 10
-3

mole 

                      0.45 X 10
-15

 L    contained    1.665 x 10
-18

 mole 

 

Calculating number of molecules:  

1 mole                     = 6.022 x 10
23

 (𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟) 

1.665 x 10
-18

 mole    =?                            

                                        10.027 x 10
5 

molecules 

ΔV1  ΔV2  N1 N2 

0.00237 0.06225 10.027 x 10
9
 10.027 x 10

5
  

 

(𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎)𝐸𝑓 =  
∆𝑉2

𝑁2
⁄

∆𝑉1
𝑁1

⁄
=  

6.208 ×10−8

2.364 ×10−13  = 2.626 × 105  

Experiment (c): 36 μmole/ mL 

                                             1 L contained 36 x 10
-3

mole 

                               0.45 x 10
-11

 L contained 1.62 x 10
-13

 mole 

N1: 

1 mole = 6.022 x 10
23

 (𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟) 

1.62 x 10
-13

 mole =? 

                          = 9.756 x 10
10 

molecules 
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N2: 

                                      1 L           contained          36 x 10
-3

mole 

                      0.45 x 10
-15

 L    contained    1.62 x 10
-17

 mole 

 

Calculating number of molecules:  

1 mole                     = 6.022 x 10
23

 (𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟) 

1.62 x 10
-17

 mole    =?                            

                                        9.756 x 10
6 

molecules 

ΔV1  ΔV2  N1 N2 

0.0081 0.106 9.756 x 10
10

 9.756 x 10
6
  

 

(𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎)𝐸𝑓 =  
∆𝑉2

𝑁2
⁄

∆𝑉1
𝑁1

⁄
=  

0.011 ×10−6

8.303 ×10−14  = 1.325 × 105  

 

Experiment (d): 334 μmole/ mL 

                                             1 L contained 334 x 10
-3

mole 

                               0.45 x 10
-11

 L contained 1.5 x 10
-12

 mole 

N1: 

1 mole = 6.022 x 10
23

 (𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟) 

1.5 x 10
-12

 mole =? 

                          = 9.033 x 10
11 

molecules 

 

N2: 

                                      1 L           contained          334 x 10
-3

mole 

                      0.45 x 10
-15

 L    contained    1.5 x 10
-16

 mole 

 

Calculating number of molecules:  

1 mole                  = 6.022 x 10
23

 (𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟) 
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1.5 x 10
-16

 mole    =?                            

                                        9.033 x 10
7 

molecules 

ΔV1  ΔV2  N1 N2 

0.018 0.027 9.033 x 10
11

 9.033 x 10
7
  

 

(𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎)𝐸𝑓 =  
∆𝑉2

𝑁2
⁄

∆𝑉1
𝑁1

⁄
=  

2.989 ×10−10

1.993 ×10−14  = 1.50 ×  104  

An estimated density of 1 x 10 g/ cm
3
 was used also to calculate the EF of experiment (b): 

𝐷𝑒𝑛𝑠𝑖𝑡𝑦 =  
𝑚𝑎𝑠𝑠

𝑣𝑜𝑙𝑢𝑚𝑒
 

 

Experiment (b): 3.7μmole/ mL 

 

          Volume without ASHs = (150 x 10
-6

 x 150 x 10
-6

 x 200 x 10
-9

) m
3
 = 0.45 x 10

-14
 m

3
  

    Volume with ASHs = (100 x 4) 10
-18

 x 5625 x 200 x10
-9

 = 0.45 x 10
-18

 m
3
  

 

                        Mass without ASHs = Density x volume  

                        = 1 x 10
6
 g/m

3
 x 0.45 x 10

-14
 m

3 

                                                  
= 0.45 x 10

-8 

 

                          
Mass with ASHs = 1 x 10

6
 g/m

3
 x 0.45 x 10

-18
 m

3
 = 

                                      0.45 x 10
-12

 

Number of molecules =  
𝑀𝑎𝑠𝑠 × 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟

𝑀𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡
 

 

𝑁1 =  
0.45 ×10−8× 6.022 ×1023

272.382
 = 9.9489 x 10

12
 

 

𝑁2 =  
0.45 ×10−12× 6.022 ×1023

272.382
 = 9.9489 x 10

8
 

 

ΔV1  ΔV2  N1 N2 

0.00237 0.06225 9.9489 x 10
12

 9.9489 x 10
8
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(𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎)𝐸𝑓 =  
∆𝑉2

𝑁2
⁄

∆𝑉1
𝑁1

⁄
= 2.626 × 105  

 

The relative values for a normalized source to gold mirror give unity i.e. 1 

But the unmodulated values for the measurements of ASH (V02) and fused silica 

substrates (V01) were taken:  

(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎)𝐸𝑓 =  

(∆𝑉2/𝑉02 )
𝑁2

⁄

(∆𝑉1/𝑉01 )
𝑁1

⁄
 

 

In this work the relative value per unit area for experiment (b) which showed the highest 

Ef from absolute value was calculated. 

              Table A:  The tabulated values are obtained from measurements: 

Wavelength 

(μm) 

Fused silica substrate ASHs structure 

3.42026 0.03835 0.52794 

3.44801 0.03598 0.59019 

 

a. For substrate ΔV1 = 0.03835-0.03598 = 0.00237  

b. For ASH ΔV2 = 0.59019-0.52794= 0.06225 

 

ΔV1  V01 ΔV2  V02 N1 N2 

0.00237 0.03835 0.06225 0.59019 10.027 x 10
9
 10.027 x 10

5
  

 

∆𝑉2

𝑉02 
= 0.105474 

∆𝑉1

𝑉01 
= 0.061799 
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𝐸𝑓 =  

(∆𝑉2/𝑉02 )
𝑁2

⁄

(∆𝑉1/𝑉01 )
𝑁1

⁄
=  

0.0105 × 10−5

6.1633 × 10−12
= 1.704 × 104  

 

 

Calculation of enhancement factor per unit cell using simulation result with a close match to 

the experiment (b). 

 

 

Figure 4:  Reflectance spectra from simulation of 200 nm E2 thicknesses on (a) Fused silica 

substrate (b) ASHs structure (c) Plain gold. 

Figure 4 shows the vibrational resonance peaks from simulation of E2 with dimensions of (2 

x 2 x 0.2) μm. The black lines shows the minimum and maximum position of the reflectance 

peaks which were used to calculate the change in vibrational resonance for the Ef. 

 

(a) (b) (c) 
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Figure 5: Schematic diagram for volume of (2 by 2 by 0.2) μm E2 simulated 

 

Table B: Reflectance values from simulations of 200 nm on fused silica, ASH and gold 

Wavelength 

(microns) 

Fused silica 

substrate 

ASH Gold 

3.45491 0.032174 0.732473 0.976155 

3.48497 0.034329 0.64094 0.974377 

3.54509 - - 0.979818 

 

a. For substrate ΔV  = 0.034329-0.032174 = 0.002155  

b. For ASH ΔV        = 0.732473-0.64094 = 0.091533 

c. For plain gold ΔV = 0.979818-0.974377 = 0.036068 

Volume (2 x 10
-6

 x 2 x 10
-6

 x 200 x 10
-9

) m
3
 = 0.8 x 10

-18
 m

3
 =0.8 x 10

-15
 litre i.e. 0.8 x 10

-12
g  

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑒 (𝑁1) =  
𝑚𝑎𝑠𝑠 × 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡
=  

0.8 ×10−12 ×6.022 ×1023

272.382
=

 1.8 × 109  Molecules/unit cell 

For N2 

(100 x 4) 10
-18

 x 1 x 200 x 10
-9

 = 0.8 x 10
-22

 m
3
 =0.8 x 10

-19
 litre i.e. 0.8 x 10

-16
g 

(𝑁2) =  
𝑚𝑎𝑠𝑠 × 𝐴𝑣𝑜𝑔𝑎𝑑𝑟𝑜 𝑛𝑢𝑚𝑏𝑒𝑟

𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑒𝑖𝑔ℎ𝑡
=  

0.8 ×10−16 ×6.022 ×1023

272.382
=  0.0177 × 107 = 1.7 ×

 105Molecules/unit cell   

(𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎)𝐸𝑓 =  

∆𝑉2
𝑁2

⁄

∆𝑉1
𝑁1

⁄
 

For fused silica substrate: 

ΔV1  ΔV2  N1 N2 

0.002155 0.091533 1.8 x 10
9
 1.7 x 10

5
 

2 μm 2 μm 
0.2 μm 
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𝐸𝑓 =  
0.054 × 10−5

1.20 × 10−12
= 0.045 × 107 = 4.5 × 105   

 

For plain gold: 

ΔV1  ΔV2  N1 N2 

0.036068 0.091533 1.8 x 10
9
 1.7 x 10

5
 

 

𝐸𝑓 =  
0.054 × 10−5

0.020 × 10−9
= 2.7 × 104  

 

(𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑣𝑎𝑙𝑢𝑒 𝑝𝑒𝑟 𝑢𝑛𝑖𝑡 𝑎𝑟𝑒𝑎)𝐸𝑓 =  

(∆𝑉2/𝑉02 )
𝑁2

⁄

(∆𝑉1/𝑉01 )
𝑁1

⁄
 

For fused silica substrate: 

 

ΔV1  V01 ΔV2  V02 N1 N2 

0.002155 0.034329 0.091533 0.732473 1.8 x 10
9
 1.7 x 10

5
 

 

𝐸𝑓 =  
0.0735 × 10−5

0.0349 × 10−9
= 2.11 × 104   

For plain gold: 

 

ΔV1  V01 ΔV2  V02 N1 N2 

0.036068 0.979818 0.091533 0.732473 1.8 x 10
9
 1.7 x 10

5
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𝐸𝑓 =  
0.07351 × 10−5

0.02045 × 10−9
= 3.69 × 104  

 

 

C3       Limit of Detection (LOD) from modelling  

 

From the simulations the limit of detection of 0.15 femtomole of E2 was obtain per unit cell 

of the ASH modelled at periodicity of 2 μm.  

a.) 10 nm E2 thick 

Volume = (2 x 10
-6

 x 2 x 10
-6

 x 10 x 10
-9

) m
3
 = 40 x 10

-21
 m

3
 = 40 x 10

-15
 g 

Molarity of E2 for 10 nm thickness: 

Molar mass of E2: 272.382 g/mole 

272.382 g ................ 1 mole 

40 x 10
-15

 g ……… ? mole 

                = 1.5 x 10
-16

 mole = 0.15 femtomole 

 

b.) 100 nm E2 thick 

Volume = (2 x 10
-6

 x 2 x 10
-6

 x 100 x 10
-9

) m
3
 = 400 x 10

-21
 m

3
 = 400 x 10

-15
 g 

Molarity of E2 for 10 nm thickness: 

Molar mass of E2: 272.382 g/mole 

272.382 g ................ 1 mole 

400 x 10
-15

 g ……… ? mole 

                = 1.5 x 10
-15

 mole = 1.5 femtomole 

c.) 200 nm E2 thick 

Volume = (2 x 10
-6

 x 2 x 10
-6 

x 200 x 10
-9

) m
3
 = 800 x 10

-21
 m

3
 = 800 x 10

-15
 g 
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Molarity of E2 for 10 nm thickness: 

Molar mass of E2: 272.382 g/mole 

272.382 g ................ 1 mole 

800 x 10
-15

 g ………. .? mole 

                = 2.9 x 10
-15

 mole = 3 femtomole 

 

 

d.) 400 nm E2 thick 

Volume = (2 x 10
-6

 x 2 x 10
-6 

x 400 x 10
-9

) m
3
 = 1600 x 10

-21
 m

3
 = 1600 x 10

-15
 g 

Molarity of E2 for 10 nm thickness: 

Molar mass of E2: 272.382 g/mole 

272.382 g ................ 1 mole 

1600 x 10
-15

 g ……… ? mole 

                = 5.9 x 10
-15

 mole = 6 femtomole 

 

D: Lumerical mode calculation  

Mode source operates in a broadband time-domain simulations [9]. The mode solver of the 

source uses a frequency or wavelength domain technique to calculate the modes of the 

waveguide structure. The technique is inherently single frequency but in this work broadband 

simulations are need for wavelength between (2-6) μm.  For the broadband simulations, the 

mode solver calculates the modes at the centre wavelength i.e 3.5 μm of the source. The 

selected mode profile as shown in figure 6 is injected over the entire frequency range of the 

source.   

Figure 6 shows the modal field plot for the electric intensity and material index plot for the 

waveguide width of 3 μm as explained in reference [9].  
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Figure 6: Screen shot of Lumerical solution mode source showing the (a) mode field (b) 

material properties.                   

In this simulation there are eight trial modes and the basic mode which is with lowest loss is 

selected for simulation of A-SRRs on SOI waveguide as described. The waveguide is 3 μm 

wide and thickness is 0.5 μm as shown in figure 6b.  

 

 

 

 

 

 

 

 

 

 

(a) 

(b) 
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