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Abstract

This thesis addresses one of the outstanding questions of modern theoretical particle
physics: what underlies the fermion mass and quark mixing hierarchies? All fermions
(except the top quark) have masses which are suppressed to varying degrees relative
to their natural scale, which is set by electroweak symmetry breaking. Most models,
including the Standard Model (SM), attribute this to a hierarchy amongst fundamental
Yukawa couplings. Here, the view is taken that partially conserved chiral symmetries
provide a much more satisfactory rationale for suppressed fermion masses, and the
fermion mass sector of promising models is analysed.

Firstly, Chapter 1 discusses relevant aspects of the SM and some popular Standard
Model Group (SMG) extensions.

In Chapter 2, a classification scheme is introduced for S MG extensions which pos-
sess no non-SM fermions in the low energy regime. This classification is based on the
manner in which fermion irreducible representations (IRs) of the SM are collected to
form IRs of these extensions. It is argued that the class of extensions whose members’
IRs are identical to those of the SM show most promise of naturally generating the
fermion mass hierarchy. The SMG is seen to be embedded within these extensions as
a diagonal subgroup and, consequently, the non-abelian part of each extension must
be gauged. Assuming that all abelian symmetries are also gauged, the anomaly-free
members of this favoured class are discussed. They are seen to be closely related to the
anti-grand unified group SMG x SMG x SMG. For this group, corresponding Weyl
fermions in different generations belong to inequivalent IRs.

Chapter 3 begins by taking some time out to emphasise that the whole approach to
fermion masses and quark mixing angles in this thesis is geared towards accounting for

them order of magnitude-wise. It then becomes more quantitative in specifying how



various approximately conserved symmetries suppress fermion mass matrix elements,
and several plausible ansatze for constructing these elements are introduced. Finally,
the existence of the large inter-generation mass gaps points towards particular candidate
symmetries before the intra-generation gaps are seen to lead in two quite different
directions. |

One of these directions is examined in Chapter 4, where the candidate symmetries of
the previous chapter are extended to include a partially conserved and gauged abelian
flavour symmetry. This is done in order to directly account for mass splitting within the
generations, assuming that the heavy generation mass eigenstates are approximately
equal to the corresponding gauge eigenstates (a well-defined concept for the type of
groups under consideration). Unfortunately, the full symmetry group cannot then
include SMG x SMG x SMG, but only a subgroup of it. Several anomaly-free flavour
charge sets aré found for each model, subject to some basic constraints. The resulting
models are then analysed using the ansitze of Chapter 3, following a general discussion
of how the ansitze parameters are chosen to fit the known data on fermion masses and
quark mixing angles.

Finally, Chapter 5 examines the alternative method of obtaining intra-generation
mass splitting. This is based on the hope that the abelian subgroup of the anti-grand
unified group SMG X SMG X SMG might itself be responsible for such splitting,
providing the assumption of Chapter 4 regarding the heavy generation mass eigenstates
is explicitly violated. The mass gaps thus generated turn out to be unrealistic, however,
and again a gauged abelian flavour symmetry is introduced in an effort to rescue the
anti-grand unified model. The resulting SMG X SMG x SMG x U(1) model is then

analysed in exactly the same way as the models of Chapter 4.
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Chapter 1

Introduction

1.1 Shortcomings of the Standard Model

At present, the Standard Model [1, 2] is almost universally accepted as the “correct”
physical theory of fundamental particles and the forces between them, down to a scale
of tenths of millifermis. The success of the Standard Model (SM) in describing all
known physics up to energies of over 100 GeV is certainly remarkable, and is seen to
be more so every time precision measurements are performed in experiments at CERN
and elsewhere. Nevertheless, few theorists (if any) believe that it is Nature’s final word.
That it is not a complete or final theory is evidenced by several unanswered questions,

among which are:
e why are there 3 generations of fermions?
e why is electric charge quantized?

e why do the gauge coupling constants of the Standard Model Group almost inter-

sect at a point at some incredibly high mass scale My ~ 1015 GeV?
e what underlies the fermion mass hierarchy?

This thesis will focus on the last question, but first it is useful to review some basic

features of the SM.



1.2 Construction of the Standard Model

For some time it has generally been thought that any description of Nature at a funda-
mental level must be formulated as a relativistic quantum field theory. In particular,
gauge theories are much favoured: all known viable physical theories (quantum electro-
dynamics, quantum chromodynamics, the electroweak theory) are of this type, as are
almost all plausible extensions and would-be successors. A gauge theory is one which
is symmetric under transformations in some internal space which vary from point to
point in space-time. The Standard Model Group (SMG), the group of internal trans-

formations under which the SM Lagrangian is symmetric, is:
SMG = SU3).x SU2)L x Uy (1.1)

The SM contains 45 Weyl fermions forming 3 generations which are simply copies
of each other as far as the SMG is concerned. Suppressing colour degrees of freedom

for the moment, these are usually grouped as:

Generation 1: wuy dr ur dr erL Ve €Rr
Generation 2: ¢ SL C¢rR SR UL VuL MR

Generation3: ¢ by g br TL VvisL TR

Within any generation each chiral fermion behaves quite differently; a brief discussion

of this divides quite naturally into 2 sectors.

1.2.1 SU®3).

That part of the SM governed by the symmetry group SU(3), is called quantum chro-
modynamics (QCD), a description of the strong force. Under SU(3). transformations,
all quark states are triplets 3 (each degree of freedom being labelled by a “colour”),
while all leptons are singlets 1. The quarks interact through the exéha.nge of massless
gluons, and some of the most interesting elements of particle physics feature in this
sector e.g. asymptotic freedom and confinement.

Confinement poses an immediate question of relevance to this thesis: given that
quarks do not exist as free particles, how then does one define the mass of a quark?
One answer is the “constituent mass” used in phenomenological nonrelativistic models.

Here, for example, the masses of the v and d quarks are taken to be approximately



1/3 the mass of the proton. A common alternative, used in this thesis, is the “current
mass”. This is the Lagrangian parameter corresponding to the quark mass used in
current algebra which emerges from the commutation rules involving the quark currents
and the energy momentum tensor. The light quark masses (u, d, s) are then estimated
from chiral symmetry breaking calculations and QCD spectral sum rules, while the
heavier masses (c, b) can be extracted, for example, from ete™ data using QCD sum

rules [3].

1.2.2 SU@2) x U(l)y

The SM sector governed by the symmetry group SU(2)y X U(1)y is known as the
electroweak theory, a partially unified description of the weak and electromagnetic
forces. Under SU(2), transformations, all right-handed fermions are singlets while the
left-handed fermions pair off to form doublets 2 (this is the root of the famous parity

violation observed in weak interactions). The doublet partners are:

U c t Ve vy Vr
s b
L L L € L s L T L
Under U(1)y phase rotations, the weak hypercharges are (with the unconventional

normalisation @ = I3 + Y/6):

Y((ud)p)=1 Y(upr)=4 Y(dgr)= -2 (1.2)

Y((vee)r)=-3 Y(er)= -6
and these quantum numbers are repeated for the other two generations. The fermions
interact through the exchange of the W% and Z° bosons and the photon 7. When
the Higgs doublet and spontaneous symmetry breaking are added to the theory, the

W* and Z° become massive and the well-known quantum electrodynamics emerges,

governed by the symmetry group U(1)em.

1.3 Summary of Fermion Representations

Discussion of these fermion representations will occur repeatedly throughout the
text, so it is worthwhile to summarise them here. Denoting irreducible representations
(IRs) of the SMG by:

(IR of SU(3)., IR of SU(2)L)y



Chiral Fermions IR of Triality | Duality
Gen 1 Gen 2 Gen 3 the SMG t d
U c t
(3,2) 1 1
d s b
L L L
UR CR tr (3, 1)4 1 0
dr SR br (3,1)_, 1 0
v 1% Vr
‘ # (1,2)_3 0 1
€ L # L T L
€R KR TR (1,1)-6 0 0

Table 1.1: The chiral fermions and their S MG representations.

all of the chiral fermions and their transformation properties are listed in Table 1.1.
Although seemingly random, this set of IRs is in fact very special, as will be seen shortly
when anomalies are discussed.

It is interesting to follow Michel [4] and O’Raifeartaigh [5] in giving a physical
meaning to the Lie group as well as to the Lie algebra. This is done by requiring that all
particle multiplets of the theory must form genuine (i.e. single-valued) representations
of the Lie group. Of course, the group SU(3) x SU(2) x U(1) is represented in this

way, but requiring the smallest such group leads us to consider:

[ 000 ) \
U,
0 00
SUE@)xUB)={U=| 0 o .U, €U(2), Us €U®M), detU =1}
00 Us
. \ 00 ),

(1.3)

This group is a subgroup of SU(5) and has the same Lie algebra as SU(3) x SU(2) x
U(1). In fact:

S(U(2)x U(3))=SU(3) x SU(2) x U(1)/Ds (1.4)

where the discrete subgroup divided out is:

D6 = {hn :h = (ei27r/31'3,ei7r12,ei7r/3), ne Z6} (15)

10



It is representable on precisely those multiplets which satisfy:

+

N R

+ % =0 (mod1) (1.6)

Wl e

where:

1 for SU(3) triplets
t = trality=4 0 for SU(3) singlets
-1 for SU(3) anti-triplets

1 for SU(2) doublets

0 for SU(2) singlets
weak hypercharge, normalised as in Table 1.1 (1.7)

d = duality =

Y

The triality and duality values of the known chiral fermions are shown in Table 1.1,
and (1.6) is seen to be satisfied for all of these multiplets.

It is in fact possible to argue for this S(U(2) x U(3)) group [6, 7] on the basis that
Nature “chooses” the group with the highest degree of skewness i.e. the fewest outer

automorphisms.

1.4 Spontaneous Symmetry Breaking and Fermion Masses

At this point it is reasonable to consider a first attempt at an SU(2)r X U(1)y invariant

electroweak Lagrangian density:
1 1 7 ;T ;
Lew = —7G" = 1 B* +i} ($17.D" ¢}, + ¥R1.D"$h) (18)
J

where: G and B are the kinetic terms for the SU(2) and U(1)y gauge fields re-
spectively (the physical W*, Z° and v are linear combinations of these fields); D*
denotes the covariant derivative; and 17 are the Weyl fermions of Table 1.1. There is a
glaring problem: the W*, Z® and fermions have no mass, in gross contradiction with

experiment (except for the neutrinos). Adding mass terms by hand like:

miy WIW* + %mgzuz“ (1.9)
or:

— mPsyf + h.c. (1.10)

11



is out of the question because they violate the gauge symmetry and lead to horrible
renormalization problems. The solution is spontaneous symmetry breaking (SSB).

A complex scalar doublet ® is added to the theory (the Higgs doublet) and more
SU(2)r x U(l)y symmetric terms can appear in Lgw, describing the interactions of
& with itself and with the other fields. The vacuum is assumed not to respect the

SU(2)L x U(1)y symmetry, ® acquiring a vacuum expectation value (VEV):

(@) = 0 (1.11)
() ws

which breaks the symmetry down to U(1)em. The gauge bosons (except ) then receive

a mass from the term:
|D,®|? (1.12)
The fermions receive masses from the terms:
Ly = =Y (Mli, 8% — Y (Mb);ke, 8D% — i Y (M) jka028* Uk + hee. (1.13)
gk Ik ak

after the substitution ® = (®) + ... where:

/ ) \ /(u\ \
: L j<L
Ip = ”) qr = (
. E
(1.14)
\\ " /. / \\ /. )
€Rr dr UR
lr=1| pr Dr=| sg Ur=| ¢r
TR br 133

Note that this convention for My p i, where the rows and columns are indexed by right-
and left-handed fermions respectively, will be employed throughout this thesis.

The leptonic mass matrix M is easily diagonalised by redefining the leptons ap-
propriately, utilising the fact that there are no right-handed neutrinos in the SM. ’I"he

situation regarding the quark mass matrices (My and Mp) is more tricky. They are

12



diagonalised by non-trivial biunitary transformations. It is possible to find unitary
matrices Ry, Sy, Rp and Sp which satisfy:

S{,MURU = diag(my, mc, my)

SIT)MDRD = diag(mq, ms, mp) (1.15)

yielding the quark masses. What has happened is that the gauge eigenstates U, g and

Dr,r have been rotated to form mass eigenstates U}, p and D7 g:

UL
Dy,

RLUL, Ur = S}Un,

(1.16)
RLDL, Dy = ShDg

This rotation leads to another interesting feature of weak interactions, that they do

not conserve flavour. The charged current interaction of quarks is given by (1.8) to be:

Lo = UZ’)’“W,LDL—i—h.C.

Upy*W, R}, Rp] D}, + h.c.

Uly*W,[Vokm] DY, + hec. (1.17)

Here:
W, = %(Wlu — iW2,) (1.18)
where g, is the weak gauge coupling constant and (Wy, W,, W3) are the weak gauge

fields. So this interaction is not in general diagonal in the mass eigenstate basis, since

Vekm does not have to be the unit matrix. This matrix:
Voxm = R Rp (1.19)

is called the Cabibbo-Kobayashi-Maskawa matrix [8, 9] and it parameterises the mixing
of quark flavours in weak charged current interactions. The KM representation employs

3 mixing angles 8; (¢:=1,2,3) and a complex phase §, and is given by:

1 —81C3 —38183
VokMm = | s162  c1eoc3 — 59836®  ¢1¢983 + sgcaett (1.20)

8183 €189¢3 + c283€"°  €18283 — cocze’d

where s; = sin §; and ¢; = cosb; (i=1,2,3). The presence of a complex phase is highly
significant because it signals the existence of CP violation in the theory. Through-

out this thesis, interest is focussed on the matrix V whose elements are V(i,7) =

13



[Vekm(z, 7)|, @ matrix which we write as:

Vud Vus Vub
V= I/cd Ves ‘/cb ( 1.2 1)
Ve Vis Vo

It is obviously described in terms of only 3 parameters.

Note that up to this point, the term “generation” has been used to describe a
collection of gauge eigenstates; it is more conventionally applied to the mass eigenstates.
It is more precise then to use the term “proto-generation” when referring to the gauge
eigenstates, but this is cumbersome. In this work, the term “generation” shall be freely
used to describe both gauge and mass eigenstates and it will always be clear from the

context exactly which type of generation is being discussed.

1.5 Mass-Protection of Fermions

The SM fermion IRs and the generation of fermion mass via SSB illustrate a concept
crucial to this thesis, that of “mass-protection”. A fermion % is said to be mass-
protected by a symmetry group G if 91, and 9r belong to inequivalent IRs of G (G is

then called a chiral symmetry), for then a (Dirac) mass term:

— mypyr + h.c. (1.22)

cannot be inserted in the Lagrangian without violating G-symmetry. G thus “protects”
the fermion from gaining a mass. Note that this is exactly the situation for all the SM
fermions (except the three vy, which have no right-handed partners at all), which are
mass-protected by SU(2)r x U(1)y (but not by SU(3).).

Such a fermion can gain a mass when ‘G is spontaneously broken. The procedure
would be analogous to the Higgs mechanison in the SM: a scalar which carries G-
quantum numbers, and couples to the left- andl right-handed components of the fermion,
gains a VEV which gives mass to the fermion.

Note that a Weyl fermion (4r, say) which is a singlet under G is immediately not

mass-protected as it can always form a Majorana mass term:
1 7
- §m¢LC¢’L + h.c. (1.23)

where C is the charge conjugation operator.

14



1.6 The Fermion Mass Problem & Approximately Con-

served Chiral Symmetry

From (1.13), the mass of any fermion can be written (after diagonalisation of My p,)
as:

mi = yi(P)ws (1.24)

where i=e, u, 7, d, s, b, u, c or t and the y; are known as Yukawa coupling constants.
The Higgs VEV is (¢)ws = 174 GeV and the y; are free parameters in the SM. The
fermion mass hierarchy is thus not predicted in the SM, but is merely accommodated
through an appropriate choice of the various y;. Similarly, the parameters of Vgky in
(1.19) are not predicted, merely measured experimentally.

A very pronounced hierarchical structure is found to exist amongst the Yukawa

couplings and mixing angles. They have orders of magnitude:

Y~ 10°, Vue ~ 1074 yo~ gy~ e~ Vg ~ 1072,

Ys ~ Yu ~ Vb~ 1073, gy~ gy ~ 1074, g ~ 1070 (1.25)

As these are completely free parameters in the SM, it is very distasteful to find them
ranging over 5 orders of magnitude. All fermion masses are naively expected to be of
order {¢)ws, (from (1.24)) but patently most are much lighter than this. Why are all
the Yukawa couplings not of O(1)? Indeed, the oft-repeated question “Why is the top
so heavy?” is seen to be somewhat misleading; a better question is “Why are the others

so light?”. Really, two questions spring to mind:

e Question 1:

Why are the masses of all non-top fermions suppressed?

e Question 2:

Why are they suppressed to such differing degrees?

This is the fermion mass problem, to which no satisfactory solution has been found;
this thesis tries to answer these questions.

The suppression of masses relative to their natural scale surely constitutes a most
(if not the most) promising window on physics at higher energy scales. Here, as is

universally done in fundamental physics when certain quantities are observed to be

15



much smaller than expected, symmetry will be invoked as the underlying explanation.
The view is taken that the SMG is only a low energy remnant of some larger group G,
and that the fermion mass and mixing hierarchies are consequences of the spontaneous
breaking of G to the SMG. Suppose that some subgroup of the full chiral symmetry
group G mass-protects some (or all) of the SM fermions, in addition to the mass-
protection they receive from the SMG itself. Suppose further that such a subgroup
is “approximately conserved” i.e. only weakly broken (the component symmetries of
the relevant subgroup are “partially conserved chiral symmetries” or PCCSs). Fermion
mass matrix elements will consequently be suppressed, quantitative details depending
on precisely which symmetries are partially conserved, how the fermions behave w.r.t.
these symmetries and on the symmetry-breaking mechanism itself. In this way, the basic
structure of the fermion mass hierarchy does not depend on small input parameters
in the Lagrangian. All fundamental Yukawa couplings in the “true” underlying theory
may be of O(1) (a much more satisfactory scenario than (1.25) when the SM viewed is
as a fundamental theory), while the effective Yukawa couplings of the fermions to the

Weinberg-Salam Higgs in the familiar low energy theory can naturally be small.

1.7 The Renormalization Group

In a renormalizable theory (such as the SM), physically measurable quantities can be
written as functions of couplings which are renormalized at some arbitrary scale p.
Physical quantities calculated in the theory must be independent of u. For example,

denoting some physical quantity by ) where:

Q = f(g3(p), 1) (1.26)

and g3 is the gauge coupling constant of QCD, it must be true that:

u;i%f(ga(u),u) =0 (1.27)

which is called the renormalization group equation (RGE). It represents the fact that a
change in the renormalization scale must be compensated for by a modification of the
coupling constants in order to leave physical quantities invariant. Equations such as
(1.27) have proven very powerful indeed, for example in probing the asymptotic nature

of theories.
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Some analysis in this thesis makes use of the fact that the parameters of the La-
grangian, in particular the y; of (1.24), are consequently viewed as functions of scale

t =1Inp. The 1 loop RGEs are [10]:

d 1

EZYU,D,I = EﬁﬂU,D,I Yu,p, (1.28)

where Yy p are the matrices of Yukawa coaplings and:

3 17 9
Bu = §(YJYU ~YiYp)+ S - 569? + Z!J% + 8¢2)
3 1 9
Bp = E(YBYD ~ Y )+ S - (ng + Z-"g +8¢3)
3 9
B = SYYi+5 -2+l (1.29)

In these equations g; 2 3 are the gauge coupling constants of U(1)y, SU(2)r and SU(3).
respectively and:

S = Te{3YYy +3Y Vb + Y.1Y.} (1.30)

These equations describe how the Yukawa couplings (i.e. the fermion masses) evolve

with changes in the energy scale.

1.8 Anomalies

This thesis will consider some extensions of the SM G, and indeed such model-building
has long been a favourite occupation of theorists. Perhaps the biggest constraint on
the model-builder’s imagination is due to the existence of anomalies. Anomalies arise
when the symmetries of a classical field thecry are broken by the quantum fluctuations
inherent in the corresponding quantum field theory [11]. Three different kinds of chiral

gauge anomaly have been identified:

1. the triangular gauge anomaly, which threatens the renormalizability of a

theory;

2. the global SU(2) anomaly, which threatens the mathematical consistency of
a theory;

3. and the mixed gauge-gravitational anomaly, which again threatens the renor-

malizability of a theory.
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Figure 1.1: A contribution to v-v scattering in the Standard Model, involving the

triangle diagram.

1.8.1 Triangular Gauge Anomaly

The quantum fluctuations represented by triangular fermion loop corrections in the
renormalization process (such as those of Figure 1.1 which shows a triangular fermion
loop in a diagram contributing to v-v scattering) break down classical chirality invari-
ance and lead to the triangular gauge anomalies. These anomalies in the axial vector
current part of chiral fermion interactions with the gauge fields eliminate the axial vec-
tor Ward-Takahashi identities and hence destroy the renormalizability of the quantum
field theory. Anomalies also materialise in higher order graphs, but the triangular gauge
anomlay is basic and its absence implies the absence of all other anomalous diagrams
(12].

The only way of saving renormalizibility is to ensure that the tota! contribution of all
triangle graphs is zero. This is a condition on the fermion content of a theory. A crucial
point is that these anomalies are independent of the mass of the fermion circulating
in the loop; it is possible to formulate general conditions for anomaly cancellation
exclusively in terms of the properties of the transformation matrices at the three vertices

of the loop. The general cancellation condition is:
Tr ({TE, TE}TE] = Tr [{Th, TRYTR) (1.31)

where the trace is taken over all fermions which can circulate in the loop and T, g are

the transformation matrices of left- and right-handed fermions at each vertex. Such
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a cancellation guarantees gauge invariance, hence rescuing the renormalizibility of the
theory. We shall also adopt a notation in which all fermions are left-handed, whence
(1.31) becomes:

Tr [{T¢,T3}TE) =0 (1.32)

1.8.2 Global SU(2) Anomaly

In 1982, Witten [13] showed that any SU(2) gauge theory with an odd number of (left-
handed) Weyl doublets is mathematically inconsistent. He showed that the fermion
path integral, taken over Weyl fermions, changes sign (due to the properties of the
chirality operator vs) under a topologically non-trivial SU(2) gauge transformation.
So although the global SU(2) anomaly occurs for the same basic reason as the trian-
gular anomaly (both effects depend crucially on the properties of the v operator), it
differs from the triangular (perturbative) anomaly in requiring the full exploration of
the gauge field space via these topologically non-trivial transformations. This SU(2)
anomaly introduces ambiguities in the evaluation of expectation values of quantum field
operators and leads to a mathematically inconsistent theory. Witten showed that the

only remedy was to insist on an even number of SU(2) Weyl doublets.

1.8.3 Mixed Gauge-Gravitational Anomaly

The mixed gauge-gravitational anomaly was derived [14] in close analogy to the tri-
angular gauge anomaly by replacing the two vector currents by two symmetric tensor
(gravitational) currents at the two vertices of the triangular fermion loop. However,
it was only realised much later [15] that the existence of a “long wavelength” limit
(as well as a “short wavelength” limit) justified taking it seriously at the electroweak
level. The basic reason for requiring cancellation of this anomaly is to simultaneously
maintain gauge invariance and general covariance of the theory. It is certainly true
that in the Planckian short wavelength limit, where gravitational fluctuations are as
significant as quantum ones, then the unknown effects of quantum gravity have to be
considered. But if only quantum fluctuations at the electroweak level are considered
then quantum gravity is unimportant in this long wavelength limit of a mixed gauge-
gravitational anomaly. Thus, any lack of knowledge about quantum gravity should not

alter the need for anomaly cancellation at the electroweak scale. It was shown in [15]
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that a necessary condition for this cancellation is:
TrY =0 (1.33)

(in a notation where all fermions are left-handed) where again the trace is taken over

all fermions which can circulate in the loop.

1.8.4 The Standard Model is Anomaly-Free

Remarkably the SM, with its seemingly haphazard collection of chiral fermion repre-
sentations, is completely free of anomalies as is necessary if it is to make sense. Note
that all anomalies cancel within each generation. Probably the strongest theoretical
argument for the existence of the ¢ quark is the need for the 3rd generation of quarks
and leptons to satisfy the anomaly-free constraints. So perhaps these representations
are not as random as they seem; exactly how “special” is the SM collection of repre-

sentations?

1.9 Anomaly-Free Constraints & Uniqueness of the Weyl
Representations of the SMG

In order to illustrate just how strong the requirements of anomaly-freedom are, the
question of anomaly cancellation within the SM can be turned around. If the gauge
group is taken to be:

G3n = S(U(2) x U(3)) (1.34)
and if all anomalies have to be cancelled, then what sets of fermion representations are
possible? This question was discussed in [7]. It was also investigated in [16] and further
elucidated in [17], but with G3y1 = SU(3) x SU(2) x U(1). The set of IRs shown in

Table 1.1 for one generation is derivable and unique providing;:

1. all anomalies vanish;

2. all fermions are mass-protected (i.e. no Dirac or Majorana masses are pos-
sible without SSB) by G321;
3. and the principle of minimality is adopted so that only the most economical

solution (i.e. the smallest number of Weyl fermions) is accepted, although

any number of identical copies (generations) is allowed.
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SU(3) | SU(2) U(1) t d
3 2 Q: (1=1,2,...,5) | 1 1
3 1 Q! (i=1,2,....,k) | 1 0
3 1 Q; (i=1,2,..1) |-1 0
3 2 | Q (i=1,2,....m) | -1 1
1 2 ¢ (i=1,2,...,0) | 0 1
1 1 @ (i=1,2,...,p) {0 0

Table 1.2: Possible Weyl fermion representations of the G321 group.
Note that since the gauge group is S(U(2) x U(3)), the condition:

+5+

N R
ol

=0 (mod1) (1.35)

W e+

must be satisfied. This would not have been the case if the gauge group was taken to
be SU(3) x SU(2) x U(1) as in [16, 17].

The derivation begins by assuming an arbitrary number of each of the (left-handed)
G321 representations shown in Table 1.2. Of course larger IRs are possible, but mini-
mality dictates the consideration of these possibilities first.

The freedom from triangular gauge anomalies requires (from (1.31)):

Tr[SU3)] = 22+i1—i1_i2=0 (1.36)

Tr [SU3)*U(1)] = QéQi+éQ:—+é@7+2§Q_ﬁ-=O (1.37)

Tr [SU(2)?U(1)] = 32:(2,'+3§;Q_§+i;qi=0 | (1.38)
Tr [U(1)}] = 62Q?+3é@?+3§2@3+6§@_§3

+2§q?+é@3=0 (1.39)

The global SU(2) anomaly-free condition is:

3j+3m+n=2N (1.40)
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for some integer N. Finally, the mixed anomaly-free condition is (from (1.33) with the

help of (1.37)):
n P
TrY =2) ¢+ =0 (1.41)
=1 1=1
A reasonable first attempt at a minimal solution, looking at (1.40), is to take j =

m =0 and n = 2, and this leads to 10 Weyl fermions in the IRs:

(1’2)11 (1’2)—9 (331)Q (511)—0 (1‘42)

but then the first pair and the last pair can combine to generate Dirac fermion masses
without SSB.
Going on to consider j = n = 1, minimality suggests m = 0 and so ! = 2 and

k = p=0. This yields a solution with 14 Weyl fermions in the G33; representations:
(3,20 (3, 1)5 (3, 1)—5 (1,2)0 (1.43)

The problem here is that the IRs (3,2)g and (1, 2)g do not satisfy (1.35). [Since [16, 17]
do not use (1.35), they must eliminate this solution on different grounds. They discard
it because: the (1,2)o doublet cannot acquire a Dirac mass term even after the SSB of
SU(3) x SU(2) x U(1); and because it “trivializes” the mixed anomaly-free condition
" (1.41). Neither of these reasons is completely satisfactory: in the SM set of IRs, the
left-handed neutrino does not acquire a mass-term even after SSB, yet this solution is
not discarded; and zero charges are as good a way to cancel anomalies as any other.
We therefore prefer the argument presented in this section).

So, still accepting minimality, the next step is to consider p = 1 i.e. to add the state
(1,1)g. The surviving anomaly-free constraints (corresponding to j =1,k = 0,1 =2,

m=0,n=1,p=1) are:

20+Q1+Q2 = 0
30+q =0
6Q>+301 +302 +2¢°+7° = 0
20+7 = 0 (1.44)
These equations possess two solutions:
1. the SM solution
(Q,Q1,Q2,9,7) = (1,-4,2,-3,6) X constant (1.45)
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2. and the so-called “bizarre” solution
(Q,@1,Q2,9,9) = (0,1,-1,0,0) X constant (1.46)

The bizarre solution is discarded on the grounds that the state (1,1)¢ can acquire a
Majorana mass by combining with itself, and that the IRs (3,2)o and (1,2)o again do
not satisfy (1.35).

Thus, the application of all anomaly-free conditions, the requirement of mass-
protection and the concept of minimality yield a unique set of Weyl fermion represen-
tations that coincides with that of the observed quarks and leptons of one generation.
Obviously no light is shed on the number of generations, but anomaly cancellation
is nevertheless seen to be a very strong constraint on model-building. Much use will
be made of this constraint. We might also say that this exercise illustrates Nature’s

preference for minimal solutions to the no-anomaly equations.

1.10 Standard Model Group Extensions & Fermion Masses

As has already been stated, the SM is generally viewed as an incomplete theory and
this has led over the last 20 years to the investment of much effort in extending the
SMG in order to remove some of its shortcomings. Some relevant extensions, and how

they deal with fermion masses, are briefly discussed here.

1.10.1 Grand Unification

The classic Grand Unified Theory (GUT) postulates the existence of a simple group
Ggut of which the SMG is necessarily a subgroup. The Lagrangian is taken to be

Ggur-symmetric, and Ggur is spontaneously broken to the SMG:
Mx
Ggur — SMG (1.47)

at some very high energy scale My, typically around 10*® GeV. The rationale of a
GUT is that there exists in Nature only one force (gravity is, as usual, discounted) and
the apparent existence of three forces is a low energy artifact of how Ggurt is broken.
Popular GUTs include SU(5) [18], SO(10) [19] and the Pati-Salam partial GUT [20]

where lepton number is treated as a fourth colour.
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In a typical GUT, some IRs of the SMG are grouped together to form IRs of the
unified group Ggur. For example, in the standard SU(5) model the SM fermions are
grouped into the SU(5) IRs 5 and 10:

[ a

d3

oy
(=¥
IS

( 0 u§  —u§ w dl\
10 : ug —ui 0 U3 d3 (148)
—u; —ug —uz 0 et

\_dl —-d2 -—d3 €+ 0)

L

where a colour subscript has been introduced for the quarks. This structure is repeated
for each of the 3 generations. Sometimes, “new” fermion states are postulated in order
to furnish complete IRs of Ggut in conjunction with the SM Weyl fermions. For

example, a right-handed neutrino is added to the 15 SM Weyl states in the SO(10)
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model in order to complete the SO(10) IR 16:

(v )

U
U2
us
P
d
dy
ds

16: (1.49)
—d§

—u§
—u§
\ %/,

and again this structure is repeated for each generation. Note that the IRs of GUTs

consist of non-isomorphic IRs of the SMG: isomorphic IRs such as (v d)r and (¢ s)r,
or e and pR, do not appear in the same IR of Ggur.

Nowadays, supersymmetric (SUSY) GUTs [21] are the focus of much attention as
the classic GUT predictions (for example, sin? 6y and the intersection of the three SM
gauge couplings in the course of their renormalisation group flow) need SUSY in order
to remain compatible with experimental data of ever-increasing accuracy [22].

Unfortunately, the general GUT treatment of fermion masses can only be described

as unsatisfactory. Although there are often some seductive predictions such as:
m, =m, (at Mx) (1.50)

(as well as some bad ones), generally speaking the mass hierarchy is merely incorpo-
rated, not explained. This is done by adopting some mass matrix ansatz, usually of
a generalised Fritzsch [23] or Georgi-Jarlskog [24] stucture (see e.g. [25]), which essen-
tially has the hierarchy built in via hugely differing fundamental Yukawa couplings.
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Often these ansitze invoke ad-hoc discrete symmetries in order to eliminate several
mass matrix elements, another unsatisfactory feature of their whole treatment of the

masses.

1.10.2 Horizontal Symmetry

An alternative S MG extension, constructed with fermion masses and mixings as more
of a central theme than in GUTs, is the perhaps less familiar horizontal symmetry
group. Horizontal symmetries studied have included U(1)y [26], SU(2)y [27] and
SU(3)y [28]. Whereas a GUT symmetry can be said to act “vertically” i.e. within a

generation, a horizontal symmetry G acts between the generations.

U c t
d ] b

L L L
uUR CR tp

Gaur dr SR br (L51)
Ve vy 78
) ) T )L
€R HR TR
Gu

Isomorphic IRs of the SMG (i.e. corresponding IRs from different generations) are
collected to form IRs of Gy. For any particular Gy, this can be done in a large
number of ways (the possibilities for SU(2)y, for example, are catalogued in [29]).

Typically, the requirement that the Lagrangian should respect Gy constrains the
Yukawa sector of the theory and allows (for example) mixing angies to be expressed in
terms of fermion masses (see e.g. [27]). Indeed, some very basic features of the mass and
mixing hierarchies (the heaviness of the 3rd generation compared to the other two, the
smallness of the mixing angles) might be explained by a horizontal symmetry [29], but
generally the situation is still unsatisfactory. Unnatural features such as a hierarchy in
fundamental Yukawa couplings, or a finely-tuned cancellation between two VEVs (see
e.g. [27]), are still relied upon to provide the observed fermion masses.

It is convenient to note here that the term “horizontal” symmetry will hereafter

only be used to describe non-abelian symmetries. An abelian symmetry has only 1d

26



representations and so there does not exist a generator which connects Weyl states
from different generations. This will be of crucial importance in what follows. Instead,
any abelian symmetry different from the U(1)y of the SMG will be called a “flavour”

symmetry.

1.11 Abelian Flavour Symmetry

As this type of symmetry is being distinguished from horizontal symmetry and as it
will be of great importance in this thesis, it is useful to give some further discussion,
especially regarding its relevance to the fermion mass problem.

Extending the SMG to SMGxU(1)y is perhaps the simplest $M G extension imag-
inable. One extra generator is added, whose action on the SM states must be defined.
Then the U(1); must be chosen to be gauged (in which case anomaly cancellation must
be addressed) or global. Finally, the U(1); must be spontaneously broken; if it is an
exact symmetry then it must be trivial as far as the quarks are concerned (i.e. all quark
states must have identical charge) otherwise there exist vanishing mixing angles [30].

One of the first examples of SMG x U(1)y was seen in [26]. There, the U(1)s was
gauged and acted non-trivially on only two generations. The anomalies were largely
cancelled by choosing the flavour charges @) ¢ of corresponding states in these two gen-
erations to be equal and opposite in sign. The work reproduced successful phenomeno-
logical relations such as:

mq

O ~ [ —2 (1.52)

ms

where f¢ is the Cabibbo angle, but the flavour symmetry was not used to account for
the fermion mass hierarchy; in particular, it was not taken to be partially conserved.

Much closer to the spirit of this thesis was [31]. Here the U(1); of an SMG x U(1);
model was assumed to be partially conserved and the suppression of fermion masses
assumed to be a result of the weakly broken chiral charges Q. No precise charges
were specified; instead the charges of left- and right-handed states were assumed to be
positive and negative respectively, and some average distribution of charge differences
was assumed. It was noted that large quark mass ratios and relations similar to (1.52)

emerge naturally from such a scenario, but no detailed numerical results were given.
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This was then developed in [32] which considered the SMG extension:

SMG x U(1)f x U(1); x ... (1.53)

~
N flavour symmetries

with N some arbitrary integer. Again the flavour symmetries were taken to be ap-
proximately conserved in the hope of accounting for the mass and mixing hierarchies.
Flavour charges were randomly distributed and numerical results showed that the gen-
eration mass gaps could be satisfactorily accounted for, but not the observed structure
within the generations. In both [31] and [32] it was suggested that the flavour sym-
metries are gauged, but no effort was made to ensure that the models were explicitly
anomaly-free among the SM particles alone: rather it was assumed that there was a
cancellation with unspecified very heavy fermions, vector-like under the SMG.

A slightly different approach to fermion masses was taken in the SO(10) x U(1);
model of [33]. With very specific superheavy fermion and U(1)s-breaking scalar sectors,
fermion mass matrices with the Fritzsch texture arose naturally. In common with
[31, 32], the U(1)s charge differences indicated the degree of suppression of mass matrix
elements, but the predicted top masses are, in retrospect, too low. A more systematic
approach to SUSY S0O(10) x U(1)s models (with a global flavour symmetry) was taken
in [34], with good results for some models.

Closer to the approach of [31, 32] was the SMG x U(1)s model of [35]. Again, the
partially conserved U(1); was supposed to account for the broad features of the mass
and mixing hierarchies. Flavour charges were explicitly assigned to the Weyl fermions
and, while moderately successful results were obtained for freely chosen charges, no
promising anomaly-free charge set was found i.e. the U(1); could not be taken to be a
gauge symmetry.

Recently [30], the MG extension:
SMG x Zs x Zs C SMG x U(1)s x U(1) (1.54)

has been analysed in a SUSY context, with the gauged flavour symmetries partially
conserved. The results for fermion masses and mixings are fairly successful, but the
situation regarding cancellation of the anomalies involving the flavour symmetries is
unclear. Similar models have been considered in [36], but without SUSY. The results
are again fairly good, but the origin of the discrete symmetries is not specified and so

anomalies are not addressed.
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This thesis will take a much wider view of extending the SM to include PCCSs than

any of these works. Particularly relevant will be the idea of anti-grand unification.

1.12 Anti-Grand Unification

Central to grand unification is the existence of a single gauge coupling constant; “anti-
grand unification”, as the name suggests, is the anithesis of this. The purest example

is the gauge group (7, 37]:
Ganti = SMG®* = SMG, x SMGy x SMG3 (1.55)

where SMG; (i=1,2,3) behaves just like the SMG as far as the i** generation is con-
cerned, but acts trivially on the other 2 generations i.e. Gant; has three times as many
generators as the SM G, each fermion generation effectively having its “own” SMG.
This fundamental Planck scale (Mp = 1.22 x 101® GeV) group has 9 gauge coupling
constants. It is assumed that all these couplings approach a multicritical point in the
corresponding lattice gauge theory, where G,pt; spontaneously breaks down just below

Mp to its diagonal subgroup which is to be identified with the usual low energy SMG:
Ganti — Gdiag =5SMG (156)

Consequently, the running fine structure constants of the SM, a;(u) (¢=1,2,3), are

predicted to take on values:

ai(Mp) = =& (1.57)

where the critical couplings a$*i* have been estimated using lattice gauge theory Monte
Carlo results. Good agreement of (1.57) with the experimental couplings (extrapolated
to Mp using the SM renormalisation group equations) is obtained for the two non-
abelian groups SU(2)r and SU(3). [38]; but there are as yet unresolved problems in
estimating o§"t for the group U(1)y due to the infinite number of invariant subgroups
and corresponding phases expected for the U(1) groups in (1.55).

This anti-grand unified model provides much of the motivation underlying the mod-
els analysed in this thesis. It has been suggested [7] that the broken chiral gauge quan-
tum numbers of the quarks and leptons under the symmetry groups SMG; (i=1,2,3)

could be responsible for the fermion mass hierarchy. Obviously, all of the SM fermions
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are mass-protected by SMG?3 in much the same way as they are by the SMG. If in the
process of the breaking described by (1.56) some symmetries are only weakly broken,
then a hierarchy in the fermion masses would appear in a most natural manner. Indeed,
the bulk of this thesis is taken up with analysis of models like .S M G? within which the

SMG is embedded as a diagonal subgroup.
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“He laughed at accidental sirens

That broke the evening gloom

The police had warned of repercussions
They followed none too soon

A trickle of strangers were all that were left alive”

David Bowie

Panic in Detroit
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Chapter 2

SMG Extensions, Fermion
Masses & the SMG as a Diagonal

Subgroup

2.1 Introduction

Starting from the premise that partially conserved chiral symmetries are responsible for
the broad features of the fermion mass and quark mixing hierarchies, this chapter sets
out to determine which Standard Model Group extensions can most naturally produce
these hierarchies. A classification of MG extensions based on their Weyl fermion IRs
is suggested and it is argued that one particular class offers most promise: that class
whose members’ IRs are identical to the IRs of the SMG. The embedding of the SMG
as a diagonal subgroup within members of this class is then discussed, followed by an
argument for gauging these members.

Some notational comments are necessary. The subscripts “c”, “L” and “Y” on the
SMG components are now dropped. A component with no subscript is understood
to be exactly as in the Standard Model (e.g. SU(2) is understood to be SU(2)r).
Other subscripts of Chapter 1 are maintained so that, for example, SU(2)y may be
distinguished from SU(2) and U(1)y from U(1).
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2.2 Rationale for Mass Suppression

The basic philosophy underlying the whole of this thesis is: all order of magnitude
features of the fermion mass and quark mixing hierarchies should be accounted for by
approximately conserved chiral symmetries. The appearance of such a striking range
of masses and mixing angles should be potentially explainable from the dynamics of
any particular model; in particular, no order of magnitude feature should result merely
from a hierarchy in fundamental Yukawa couplings. Indeed, we shall take all such
couplings to be O(1) (we shall return to this point later) so that they are responsible
only for fine structure.

The goal, then, is to explain the broad hierarchy features and pay little attention
to the fine details. This is not as modest as it perhaps first sounds. The fact is
that there does not presently exist a model in which these gross features emerge in
a completely natural manner i.e. without the insertion by hand of small parameters
into the Lagrangian. Given this lack of understanding, it is only reasonable to ignore

questions such as:
e Why does m, = 0.5 MeV instead of 1.0 MeV?
e Why does m, = 105 MeV instead of 50 MeV?
and focus instead on the much more basic questions:
e Why does m./m, ~ O(200) ?
e Why are they both so much lighter than (¢)ws?

Once these have been answered, we might then worry about how the fundamental
couplings provide the necessary factors of 2 and 3 etc to precisely pin down the fermion
masses. Perhaps Nature’s fundamental couplings can never be calculated and it would
then not be possible to calculate the quark or lepton mass ratios. Nevertheless, it

should still be possible to understand why these ratios are small numbers.

2.3 SMG Extensions

We seek the MG extensions most naturally suggested by the known fermion masses

and quark mixing angles, and we assume that there exist no mass-protected fermions
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(other than those of the three generation SM) which provide a net non-zero contribution
to any chiral gauge anomalies. In the case of “light” fermions i.e. those mass-protected
by the S MG itself (so that their natural mass scale is ($)ws) this has a very good chance
of being true due to the familiar LEP result that their are only 3 light neutrinos, and
the fact that if “new” light fermions existed we might hope to have seen at least indirect
signs of them. But even for fermions which are vector-like under the SMG and are only
mass-protected by a symmetry G broken at some high energy scale M > (#)ws (so that
the fermions would naturally have a mass of order M and be effectively unobservable
at presently obtainable energies), this is still a desirable assumption. We do not wish to
become embroiled in the open-ended process of postulating what the fermion spectrum
might look like at the GUT or Planck scales. Moreover, we do not wish our models to
depend critically on specific sets of heavy fermions with specific quantum numbers. The
thrust of our assumption is that any anomalies in a model must be cancelled amongst
the SM fermions alone; there will be no fudging of this issue. It should perhaps be
stated here that we make no a priori assumption that any extended symmetries must
necessarily be gauged; this will emerge partly as a conclusion of our chain of argument.

So, we assume that only the 45 Weyl fermions of the SM exist in the low energy
regime. Furthermore, we are only interested in that part of any extension which acts
non-trivially on at least one of these 45 states (we now call this non-trivial group G) i.e.
letting G denote the subgroup of the true fundamental gauge group which transforms

these 45 states amongst themselves, we are only interested in:
G=G/L (2.1)

where L is the invariant subgroup of G consisting of those elements which act trivially
on the known 45 Weyl fields. The elements of G can thus be distinguished by their
action on the 45 states, and so G is naturally identified with a subgroup of U(45),
the unitary group in whose fundamental representation would sit all the known Weyl
fermions. That is:

SMG C G C U(45) (2.2)

and there essentially exists only a finite number of algebras corresponding to such G.
However, this will be an extremely large number and some classification of the many

G obeying (2.2) would obviously be useful. Clearly, the 45 Weyl states fall into IRs of
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G each of which must include a number of the IRs of the SMG. It is thus possible
to classify the extensions G according to the manner in which the IRs of the SMG fit
into the IRs of G. (Note that if G is fully gauged, then many groups obeying (2.2)
would lead to gauge or mixed anomalies, or to the global anomaly, and so would not
be acceptable as genuine models). We introduce our classification of groups G by first
classifying collections of IRs of the SM G, which (as already outlined in Chapter 1) has
5 different IRs of type (u d)r, uR, dr, (Ve €)1 and er each occuring 3 times, once for

each generation (we reserve the right to flip freely between ug and u§ etc where:

YL = (YL)° = (¥°)r (2.3)

and:
P =CP’ (2.4)

where C' is the charge conjugation operator). The different types of collection are:

1. A collection consisting only of isomorphic IRs of the SMG (this might be
called a “horizontal” collection) e.g. {ur,cr,tr} or {(uv d)r,(¢t b)}. It is

this type of collection which forms the IRs of horizontal symmetry groups.

2. A collection consisting only of non-isomorphic IRs of the SMG (this might
be called a “vertical” collection) e.g. {d$,(ve €)r} or {(u d)r,u§,ef}. It is

this type of collection which forms the IRs of GUTs.

3. A collection consisting of both isomorphic and non-isomorphic IRs of the

SMG (this might be called a “mixed” collection)

e-g- {d, (ve €)1, 815 (Vu W)L}

We may now classify the groups G according to whether its IRs number among
them collections of these 3 types (see Table 2.1) where, in our notation, numerical sub-
scripts on a group component indicate which generations are transformed non-trivially
by an element of that group component. For example, SU;(5) acts non-trivially (in the
usual manner) only on the 1st generation while SU33(3) acts non-trivially (in the usual
manner) only on the 2nd and 3rd generations. So a group like SU1(5) x SU3(5) x SUs(5)
of Category (6) has all the fermions grouped into the usual 5 and 10 SU(5) represen-
tations but of different SU(5) components e.g. (df, e — ver) would transform like

5,1,1) whereas (s ur, —v,r,) would transform like (1,5,1) etc . A more complicated
L [z
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Type of Collection: Anomaly-Free Examples
Horiz- | Vert- | Mixed (involving only 3 generations
ontal | ical where possible)
VARG Need > 5 generations
V4 e.g. SUI(5) X {SMG x SU(2)g}2s x {SU(5) x SU(2)H}4s
X (2) SU(5) x {SMG x SU(2)r}2s
V4
v | (3) Need > 4 generations
X e.g. {SMG x SU(2)r}12 X {SU(5) x SU(2)1}34
X (4) SMG x SU(2)n
SU(3)x SU(2) x Uy(1) x Ua(1) x Us(1) x SU(2)m
Vv (5) SUL(5) x {SU(5) x SU(2)u}23
v
X (6) SU(5)
X SU1(5) x SU2(5) x SU3(5)
v | (D SU(5) x SU(2)n
X SMG; x {SU(5)x SU(2)x}23
X (8) SMG
SMGy X SMGy x SMG3

Table 2.1: Classification of SMG extensions according to the manner in which IRs of
the SMG fit into IRs of G. Subscript “H” means “horizontal” while subscript “ij”
means that the relevant group component acts only on generations “i” and “j”. Some
examples of each category are given, and these are gauge and mixed anomaly free so
that they may be considered valid gauge groups. Note that abelian flavour symmetries

may be added on to any group, although the corresponding charges are constrained if

anomalies have to be cancelled.
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example is SU3(5) X SMGas x SU23(2)m which appears in Category (2) and has: the
1st generation states grouped into the usual SU(5) IRs 5 and 10 and transformed only
by the SU;(5) component; and the 2nd and 3rd generation states behaving exactly
as in the SM under SMG,3 but grouped horizontally under SU23(2)y (in one of the
scenarios catalogued in [29]).

Table 2.1 displays all combinations of the 3 different types of collection and gives
one or two anomaly-free examples in each case. Note that any group in any of these
categories may be extended by the addition of abelian flavour symmetries. Such sym-
metries are not restricted to groups whose IRs constitute horizontal collections, and
this is why we made the distinction between horizontal symmetry and abelian flavour
symmetry in Chapter 1. The usual GUT models which have no “extra” fermions ap-
pear in Category (6) - this really only means SU(5), but this can be distorted to e.g.
SUL(5) x SU(5) x SU3(5). The horizontal symmetry models (e.g. SMG x SU(2)g,
SMG x SU(3)m) appear in Category (4), but again distortions are possible: the SMG
part might be widened to any larger subgroup of $MG3, or the horizontal part might
apply to only two of the three generations. Most of the other categories involve some
combination of the different types of collection (and some even require more than three
generations of fermions in order that no group components act trivially). The exception
is the category our pedagogical arguments will shortly lead us to favour: Category (8).

Several of the non-trivial extensions in Category (8) display most clearly a feature
which is prominent throughout the table viz. that different subgroups of the extension
transform different generations with the corresponding part of the SMG as the “diag-
onal” subgroup: the subgroup whose elements correspond to identical transformations
on each generation. (The “purest” such extension, the anti-grand unified gauge group
SMG? seen here in Category (8), has been mentioned already in Chapter 1). The
diagonal subgroup of a cross-product H3 = H x H x H is defined to be:

Hgiag = {(h,h,h): h € H} (2.5)
A diagonal subgroup of isomorphic non-abelian factors is thus clearly defined in terms of
its generators: if, for example, SU;(3) X SU,(3) x SU3(3) is generated by A9 (1=1,2,3,
a=1,...,8), then the diagonal subgroup SU(3)aiag is generated by ,\,(,,1) +2P 4 AP

(e=1,...,8). (As will be seen shortly, this unambiguous construction collapses when we

consider abelian factors). It is possible to construct a generalised diagonal subgroup
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for cases where the non-abelian cross-product factors are not actually isomorphic, but
contains only subgroups which are isomorphic. For example, Category (6) contains
the group SU1(5) x SMGas; the SMG is embedded in this as a generalised diagonal

subgroup in the sense that it appears as:
SMG = {(T(h),h): h € SMG} (2.6)

where T'(h) is the element of SU(5) corresponding to the element A of the SMG when
the SMG is embedded in SU(5) in the standard Georgi-Glashow manner. If SU;(5)
is generated by L{V (a=1,...,24) and SMGas by A (b=1,...,12), then the SMG is
generated by LI 423 (a=1,...,12) where the A% (a=1,...,12) generate the subgroup
SMG, of SUL(5).

We emphasise that the defining characteristic of the groups in Category (8) is not
that they have the SMG embedded within them as some kind of diagonal subgroup,
but is that their IRs are coincident with those of the SMG.

2.4 Which Categories Are Favoured?

The prominence of the diagonal subgroup idea throughout the table renders slightly
curious the fact that such types of extension are the least popular in the literature.
Obviously, the goal of GUTs to obtain a simple group G completely precludes consid-
eration of these models, but even attempts to extend the SMG in an effort to address
the fermion mass or generation problems have largely ignored them too, concentrating
instead on the horizontal models of Category (4).

This relative lack of interest is even more surprising since we may intuitively argue
that Nature in some sense favours Category (8) models. When examining the SM in an
attempt to glean clues regarding its extension, the most remarkable feature is arguably
not the near-coincidence of the running gauge couplings at some high energy scale [22]
but is the presence of three generations of fermions with large mass gaps between them.

The two outstanding features of this hierarchy are:

e all fermions except the top quark are light compared to the electroweak scale

(D) ws;
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e the average mass of each generation gets successively larger, by a factor of order

60.

No pair of corresponding particles from different generations is degenerate, even order
of magnitude wise, and consequently it is reasonable to expect that Nature has chosen
a model in which the chance of such degeneracy is very low.

This argument would seem to disfavour the use of non-abelian horizontal symmetry
groups to account for the generation gaps. For example, the positioning of correspond-
ing pairs of states such as {egr, ur} into doublets of SU(2)y (in the SMG x SU(2)y
model), or even {ug,cr,tr} into triplets of SU(2)q, creates the obvious risk of these
states forming degenerate particles. Given that without more than three generations
the horizontal group must have IRs which are triplets, doublets or singlets, it is ex-
tremely difficult to avoid degeneracies among the particles formed by the states in
these IRs (without appealing to a hierarchy in the fundamental Yukawa couplings or
a finely-tuned cancellation between scalar VEVs - see [29] for example). Nevertheless,
further examination of such models is required. To avoid inviting these degeneracies
the extended group G should thus have no IRs which constitute horizontal or mixed
collections of IRs of the SMG. This argument weighs heavily against the extensions of
Categories (1)—(5) and (7), leaving only the GUTs and anti-unified groups.

Really, in order for G to account for the large generation gaps, there must be
some difference in the quantum numbers of particles in different generations (unlike
the standard SU(5) GUT, for example, where the generations are simply copies of each
other as far as their symmetry properties are concerned) but without grouping IRs
of the SMG horizontally i.e. corresponding particles from different generations should
belong to inequivalent IRs of G. The crudest and most obvious way of achieving this
is to extend the SMG to SMG x U(1)s and arrange the new charges Qs to vary from

generation to generation. For example, a set of charges satisfying:

1Qs(ur) — Qs(ur)| > |Qs(cL) — Q(er)| > |Q(tL) — Qs(tr)I (2.7)

might naturally account for:

my L me K My (2.8)

if the U(1)y was partially conserved. A more subtle method of achieving the same goal

would be to extend the SU(2) sector of the SMG to SU;(2) x SU2(2) x SU3(2) so that
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(u d)r, transforms as (2,1,1), (¢ s)r, as (1,2,1) and (¢ b) as (1,1,2) while ug, cg
and tp would transform as (1,1,1). Then taking SU;(2) to be better conserved with
decreasing ¢ (so that the mass matrix element connecting uy, and upg is more strongly
suppressed than that connecting ¢z, and cgr etc ) again might naturally produce (2.8).

This argument is enough to rule out the standard SU(5) model where the large
generation gaps are obtained via the fundamental Yukawa couplings, just as in the
SM; this is exactly what we have set out to avoid. But it is not sufficient to dismiss all
Category (6) models. For example, the group SU(5) % SU,(5) % SUs(5) might naturally
account for the generation gaps in much the same way as the SU;(2) X SU(2) x SUs(2)

mentioned above. Even the consequent standard SU(5) predictions:
my = My, ms = my; mg = me (2.9)

are perhaps acceptable order of magnitude relations. (They are far from being numer-
ically exact - the Georgi-Jarlskog relations [24], obtained by complicating the scalar
sector, are better. However, even the long-sta,ﬁding “success” my = m, is no longer
thought to be numerically exact [39] without SUSY).

However, if we also consider the quark mass gaps within generations as “big” (i.e.
not naturally obtainable via fundamental Yukawa couplings) then we should beware
of collecting more than single IRs of the SMG to form IRs of G. That is, we should
be very cautious about using the vertical collections which feature in all Category (6)
models. Even in the SU;(5) x SU3(5) X SU3(5) model, the suppression of my w.r.t. m;
and of m, w.r.t. m, is obtained via the Yukawa couplings, just as in the usual SU(5)

model. But the predictions:
ms ~ my; mp &~ my (2.10)

obtained if (following our philosophy) the fundamental Yukawa couplings are all of the
same order of magnitude, might be avoided by use of an abelian flavour symmetry.
Category (6) models extended by abelian flavour symmetries are therefore not ruled
out a priort, although in [35] no suitable SU(5) x U(1)s model was found and [40] rules
out models such as SU(5)x U(1)yx U(1)} ..., and SU1(5) x SU(5) x SU3(5) x U(1);.
So Category (6) models are not studied further in this thesis.

We are thus left in the position of having only Category (8) models “favoured” by

Nature, at least as far as generating the fermion mass hierarchy is concerned.
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2.5 Embedding the SMG and Gauging G

In this section we look more closely at the groups of Category (8), demonstrating
that the SMG is embedded within each of them as a diagonal subgroup (despite a
threat posed by the left-handed quarks) and arguing that their non-abelian parts should
consequently be gauged.

Consider, then, one IR ¥ of a Category (8) group, whose IRs are no bigger than
those already present in the SM. Leaving aside for the moment the left-handed quarks,
we find that all possible unitary transformations of the Weyl components forming ¥
are in fact “already” performed by some SMG gauge transformation. For example, a
right-handed quark with electric charge +2/3 (e.g. ¥ = ug) is a 3-dimensional IR and
the set of all unitary transformations of ¥ consequently forms a U(3) group. The SU(3)
subgroup of these transformations can as far as the transformation of V¥ is concerned be
identified with the familiar colour SU(3) transformations, and the U(1) subgroup (the
overall phase) can similarly be identified with the weak hypercharge phase rotation. If
we next look at ¥/ = cg (say), we can obviously make the same claim but ¥ and ¥’ could
have their SU(3) (or U(1)) transformations performed independently. Then the overall
transformations of ¥ 4 ¥’ would form the group SU*R(3) x SU°R(3) (in this suggestive
notation the superscript indexes which representation is non-trivially transformed by
the group component in question). So, taking account of all ¥ except the left-handed
quarks, the transformations forming a Category (8) group can be described by some

subgroup of a group G which looks like:
G =T]sv'3) x [] sU7(2) x [T U*(1) (2.11)
i j k '

where 1 runs over right-handed quarks, j over left-handed leptons and k over right-
handed quarks and all leptons. Each component acts just like its SM counterpart, but
on one IR only.

Note that this group is considerably more fragmented than the examples given in
Table 2.1 (e.g. SMG; X SMGy x SMG3) where each generation had its own group
component - here, each irreducible representation has its own group component.

The case of ¥ being a 6-dimensional IR of left-handed quarks, however, suggests the
possibility of unitary transformations (viz. U(6) or SU(6)) which are not identifiable
with SM gauge transformations (restricted to ¥). For example, for the IR (u d)z, the
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SU(3) x SU(2) gauge transformations of the SM can (schematically):

e change the colour of the u and d quarks simultaneously e.g.

((ur ( u ) \

ub u’

SN BN

(o) [0 ) (2.12)
db dr

b
\\¢/, /] \\2/ )
e change the weak isospin of all colours simultaneously e.g.

/(u’ (/d’\ \

ub d®

o <L (2.13)

e or some combination of these e.g.

(u’\ ((dg\ \

ub dr

MO T M I
d® u’

A\ /) A\« /)

But they cannot, for example, change the weak isospin of some colours while leaving

others untouched e.g.

((w)Y N (&) )

ub db

Vo )| | ),

/ - \ L / . \ (2.15)
db ub
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which an SU(6) transformation would in general be able to do. As far as our Category
(8) group is concerned, though, all we know is that (u d);, must form an IR and so a
priori we should allow the full SU(6) transformations. The largest Category (8) group

(still neglecting abelian flavour symmetries) is then:
J1 X Jz X J3 X J4 (216)
where:

Jy = SU%(6) x SU*L(6) x SUL(6)

J» = SU"R(3)x SU?R(3) x SU°R(3) x SU*R(3) x SUR(3) x SUbR(3)
Js = SU°L(2) x SUHL(2) x SUL(2)
Jyg = H Ui(1) where i runs over all 15 IRs of the SM. (2.17)

and the left-handed doublets are described by their I3 = —1/2 members. Consider
then an algebra of globally conserved SU(6) generators Agk’bal possessing a locally
conserved SU(3) x SU(2) x U(1) subalgebra of generators AL Closing this algebra

by commutation yields a locally conserved SU(6) algebra:
[AE™, A = AR (2.18)

because SU(6) is a simple group and so possesses no non-trivial invariant subalgebras.
This means that the J; component of (2.17), which we originally thought might merely
be a global symmetry, is in fact a gauge symmetry. But this scenario is forbidden by
the requirement that a viable model should have no net gauge anomalies. The now-
gauged J; is obviously anomalous: each of its components possesses only one non-trivial

fermion IR with nothing to cancel against it. Reducing J; to its diagonal subgroup:
Jy — JI28 = 5p(6) (2.19)

under which (u d)r, (¢ s)r and (¢ b)r, all transform as 6, does not help either. The
SU(3) x SU(2) part of the SMG has to be embedded in Ji8 in a manner independent
of which IR we consider, and so if we have one left-handed quark representation ¥
transforming as a 6 under in ®8 it is not possible to have another ¥’ transforming as
a 6 in an effort to cancel anomalies. So all we can really do in Category (8) groups
for left-handed quarks is to retain the usual SU(3) x SU(2) transformations but, as in
(2.11), allow different “copies” for different IRs.
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Overall, then, Category (8) groups G are essentially subgroups of:
G =T]sv'3) x [[sv7(2) x [[U*(1) (2.20)
i j k

where 7 runs over all quark representations, j over all left-handed representations and
k over all 15 representations in the SM. Again, each component acts just like the
corresponding SM G component but on one IR only. We do not let 7 and j run over
all 15 representations because we wish to maintain consistency with (2.1) where we
stated that we want no part of our group to act trivially on all known states and this is
exactly what components like SU°R(3) and SU*%(2) would do. Nevertheless, allowing
for this technicality, the SMG is identifiable for each IR with one SU(3)x SU(2)x U(1)
copy, so that the SMG is realised as a subgroup of G’ in which the group elements
corresponding to each copy are identical. But this is nothing other than the diagonal
subgroup discussed earlier and we can thus claim that the 3 factors U(1), SU(2) and
SU(3) of the SMG occur as diagonal subgroups of the corresponding parts of G for
all G in Category (8). Note that some of these factors may be embedded in G as

trivial diagonal subgroups e.g. for a group like:

G = SU(3) x SU(2) x SU*L(2) x SUL(2) x SUL(2) x SU*L(2) x SU™:(2) x U(1)

(2.21)
the SU(2) part of the SMG is embedded as a true diagonal subgroup while the em-
bedding of the SU(3) and U(1) parts is trivial.

Note that nothing we have said actually prevents us from tagging abelian flavour
symmetries onto the G’ of (2.20) and the concept of a diagonal subgroup is not clean
for abelian groups. Which subgroup of a product U(1)" is termed the “diagonal”
subgroup depends on which linear combination of generators is chosen to form a basis.
For example, if the group SU,(2) X SU(2) has generators I? and IJ"J (¢,7 =1,2,3) then
the diagonal subgroup SU(2)giag is unambiguously defined to be generated by I + I,-b
(1 =1,2,3). But the same cannot be said of the group U,(1) X U;(1) generated by Y,

and Y,. If we switch basis e.g. to Y7 and Y2 where:
1 = Yo+Y
Y, = Y,-Y (2.22)

then (following the non-abelian construction) we have two equally valid possibilities

for the generator of our supposed diagonal subgroup U(1)giag viz. Y, + Y; and Y1 + Y2
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which generate entirely different subgroups. Thus the concept is basis dependent and
so use of the expression “diagonal” subgroup is a notational matter devoid of physical
content.

Nevertheless, a strong consequence of concluding that the non-abelian part of the
SMG (SMGh,,) is embedded in the non-abelian part of G’ (G1,) asa diagonal subgroup
is that G!, must be gauged. Consider the algebra of globally conserved G, generators,
.Agg:’al, possessing a locally conserved SM Gy, subalgebra, A?X}IGM. Again, closing the

algebra by commutation yields a locally conserved G}, algebra:
lobal
(A&, ASKG..] = AGE (2.23)

because the subalgebras corresponding to the diagonal subgroups are not invariant
i.e. do not close on themselves under commutation with the full algebra. (The only

non-trivial proper invariant subgroups of H x H, where H is simple, are:

H, = {(h,1): he H} and
H, = {(1,h): he H} (2.24)
In particular:
Hgjog = {(h,h): h€ H} (2.25)

is not invariant).

This line of argument for gauging is obviously not applicable to any abelian factors
in G’ (because the abelian generators irritatingly commute with all other generators).
However, as the SM weak hypercharge symmetry and all of the non-abelian symmetries
are gauged, we consider it reasonable to gauge all of the abelian factors too. Anyway,
use of fundamental global charges should perhaps be avoided due to arguments relating

to wormholes (7, 41].

2.6 Anomaly-Free Members of Category (8)

As it stands in (2.20), then, the now fully gauged G’ is riddled with anomalies. Its

biggest anomaly-free subgroup is:

G"=SMG1XSMG2XSMG3 (226)
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because the anomalies cannot be made to cancel on a smaller subset of states than
that forming one generation. But, as previously stated, we can still add abelian flavour
symmetries. The anomaly cancellation conditions for a U(1); tagged onto G" are
(denoting the U(1)s charges by Q(tr) = tr etc , and still describing doublets by their
Is = —1/2 members):

Ay = Tr [SU(3)2U(1)] 2d;, —up —dr =0 (2.27)
Az = Tr [SU4(3)2U(1)y] 2s, —cr—Sp =10 (2.28)
Az = Tr [SU3(3)*U(1)] 20, —tr —br =10 (2.29)
Aq = Tr [SU1(2)2U(1)q] 3dy + e =0 (2.30)
As = Tr [SU2(2)2U(1)f] 3s,+pL =0 (2.31)
Ag = Tr [SU3(2)2U(1)] 3bp,+71,=0 (2.32)
A7 = Tr [Uy(1)2U(1)] dr — 8up —2dp+3eL —6ep =0  (2.33)
Ag = Tr [Ua(1)2U(1)4] sSL—8crR—2sp+3uL —6ur=0  (2.34)
Ag = Tr [U3(1)2U(1)] br, — 8tp — 2bp + 31, — 67, =0 (2.35)
Ao = Tr [U1(1)U(1)F di —2uh+dh —el +e4 =0 (2.36)
Anr = Tr [Uz(1)U(1)7] st —2h+sh—ul +pR=0 (2:37)
A = Tr [Us(1)U(1)F] b — 2L+ 0L — i+ TmE=0 (2.38)
A1z = Tr [U(1)F)] 6d3 — 3ud — 3d% + 263 — &3
+653 — 3ch — 3sh + 2u3 — u%
+6b3 — 3t —3bh + 273 — 15 =0 (2.39)
A14 = Tr [(graviton)2U(1)] 6dr, — 3ur — 3dr + 2e1, — en
+6sp —3cr — 3sp + 2uL — pR
+6br, —3tr —3br+ 21, —TR=0  (2.40)

The quadratic equations are all trivially satisfied by virtue of the appropriate linear
equations: (2.36) by virtue of (2.27), (2.30) and (2.33); (2.37) by virtue of (2.28), (2.31)
and (2.34); and (2.38) by virtue of (2.29), (2.32) and (2.35). After a little algebra and

use of the linear equations, (2.39) can be written:

Az = 3(4dL — uR)(4sg — CR)(4bL —tpr)=0 (2.41)
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That is:

4dp, —up = 0
or 4s;; —cp = 0

or 4by—tp = 0

(2.42)

Up to an overall scale factor, these equations permit 4 linearly independent solu-

tions. Regardless of which of these last constraints of (2.42) holds, the following 3

charge sets are always anomaly-free:

dL UR
Qr=| sL cr
br tgn

because they each satisfy all of the equations (2.42).

( (1 4 -2 -3 —6 )
0 0 0 0 0
0 0 0 0 0 /
dr eL eRr 00 0 0 0 )
sk op pr 1= |1 4 -2 -3 —6
br T TR 0 0 0 0 0 }
0 O 0 0 0
0 0 0 0 0
[ \1 4 -2 -3 -6

of Uy(1) (a=1,2,3). The fourth charge set is:

4

0
0
0

o o O

o O

(=}

0 0 0 0
1 -1 0 -1 | if(2.42); holds
-1 1 0 1
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if (2.42); holds

|
—
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o
—

if (2.42)3 holds

S
O =
o O
S =
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Note that these are simply copies
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Note the resemblance of these charge sets to the “bizarre” hypercharge solution of the
SMG no-anomaly equations given in Chapter 1. A general anomaly-free charge set is
then a linear combination of the three solutions in (2.43) and any one of the solutions
in (2.44).

The solutions in (2.43) (or any linear combination of them) are really superfluous.
For example, if we have a U(1); generated by Y; which is an exact copy of Us(1)
generated by Y3, then we can change the basis of the Us(1) x U(1)y space to:

Y = Y3+Y;
YI

Y- Y, (2.45)

This would leave: one U(1) (generated by Y') which is identical to Us(1) and U(1)y;
and a second U(1) (generated by Y’) which acts trivially on all SM Weyl states and
so can be dropped as in (2.1). Thus, an abelian flavour symmetry only contains new
information if one of the solutions in (2.44) is involved.

If we next try to extend the group from SMG?®x U(1); to SMG3®x U(1); x U(1);
then anomaly cancellation can only occur if the U(1)} is a linear combination of the 3
charge sets in (2.43) and whichever charge set of (2.44) was used to obtain U(1)s. This
would again mean that the basis of the abelian subalgebra could be changed to yield a
generator which acted trivially on all SM Weyl states. We can thus conclude that the

biggest anomaly-free Category (8) group which does not possess trivial generators is:
G" = SMG®*x U(1)¢ (2.46)

Can we say that all G in Category (8) are subgroups of G"’? In fact we cannot
because the no-anomaly conditions which have to be satisfied by the flavour charges
vary for different choices of G (so that different sets of anomaly-free flavour charges are
possible). For example, consider the Category (8) groups Ky X U(1)y and K2 x U (1)3,
where:

SMG C K12 C SMG® and Ak, C Ak, (2.47)

and Ak, , are the aléebras of Kj ; respectively. Then the anomaly-free charge sets for
U(1)’ simply form a subset of those for U(1)y, because the no-anomaly constraints for
U(1)s form a subset of those for U(1)}. Taking Ky = SMG®, we see that it is thus not
generally true that:

K1 xUQQ)y C Ko xUQ1)y =G" (2.48)
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but it is true that:

Arixuy, C Ak, xuqy, = Agm (2.49)

where Agw is the algebra of of G"'.

Can we then say that the algebras, Ag, of all G in Category (8) are subalgebras of
Agm? In fact we cannot make this claim either. While it is certainly true for SMG3
that only one non-trivial abelian flavour symmetry can be tagged on (as explained
above, all further abelian symmetries must then essentially be copies of those already
present), this is not true for subgroups of SMG3. Consider Category (8) groups J 3
such that:

SMGCJ;CJ; CSMG? (2.50)

Then J; can be expanded at least to J, X U(1)s (e.g. with the U(1)s charges of one of
the sets in (2.44)); whereas J; can be expanded at least to J; x U(1); X U(1)/; with the
same U(1)y charge set (say), but with a U(1)’; charge set which is not a copy/linear
combination of the other abelian charges already present. Taking J, = SM G2, we see

that it is thus not generally true that:

Anxu),xv(y, C Anxua), = Agn (2.51)
So we come to the overall conclusion:

1. discounting abelian flavour symmetries, all anomaly-free Category (8) groups
G satisfy
SMG C G C SMG?3; (2.52)

2. including such symmetries, the biggest anomaly-free Category (8) group
(with no trivial generators) is G = SMG® x U(1)y;

3. the algebra, Ag, corresponding to a general Category (8) group G can be
written as Ag = A + By where A C Agw and By is a set of abelian flavour

generators.

Finally, as we have already mentioned, it is certainly possible that there is only one
copy of some SMG factor (e.g. SU(3)) in G i.e. the corresponding part of the SMG
is embedded in G as a trivial diagonal subgroup. However, if we wish to obtain mass

splitting between generations then we cannot have the completely trivial case of the
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SMG as a diagonal subgroup of a cross product with only one factor. One or more
charges, in addition to those in the SM G proper, have to exist and be approximately
conserved in order to generate such splitting. This is simply a restatement of the fact
that the S MG alone does not provide any real explanation for the origin of the fermion

mass hierarchy.
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“The vacuum created by the arrival of freedom

And the possibilities it seems to offer...”

David Bowie

Up the Hill Backwards
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Chapter 3

Matrix Algebra, Matrix Element
Ansatze & Model Selection

3.1 Introduction

Having argued that the fermion mass hierarchy seems to demand the consideration of
a particular class of SMG extension, we now focus more closely on the mass matrices
themselves. After discussing how these matrices are algebraically treated in our order
of magnitude framework, we postulate different ansatze for the construction of the mass
matrix elements from particular sets of partially conserved chiral symmetries (PCCSs).
We finally decide which specific PCCSs look most promising as regards generation of
the fermion mass hierarchy.

Since the basic premise of our analysis is that partially conserved symmetries are
responsible for the observed masses, it is appropriate here to be a little more precise
about how we envisage SM mass matrix elements being affected by such symmetries.

A general SM fermion mass matrix element can be written:

MU,D.I(ivj) = yZ,D'I <¢)ws (3.1)

where y;; is a dimensionless effective Yukawa coupling and (¢)ws = 174 GeV is the
usual Weinberg-Salam Higgs VEV. Throughout our algebra we will absorb (¢);2 into
M(t,7) i.e. masses will be algebraically specified in units of (¢)ws. The crux of our

approach is that we assume the complex y;; can be written as:

UDJl _ _UDJ UD]
Y =Yy (3.2)
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where 7;; is a complex number whose magnitude is of O(1) wiule q;; is real and:

=1 if M(i.j)is not mass-protected by any

higher symmetry than that of the SMG
a;; (33)
<« 1 if M(4,7) is mass-protected by a higher

symmetry than the SMG

\

We take the view that the a;; (which will obviously be responsible for the order of
magnitude features of the fermion mass hierarchy) should be directly obtainable from
the PCCSs i.e. from the chiral quantum numbers of the Weyl fermions which couple
to form M(z,7). As will shortly be seen, each a;; will be related to one or more
symmetry breaking parameters which may be thought of [31, 35] as the ratio of the
symmetry breaking scale to the fundamental scale of the theory. For example in a
simple SMG x U(1)s model such as [30, 31, 35] with U(1); approximately conserved,
the order of magnitude of a suppressed matrix element is naturally given by a power
of:

e~ Af/M <1 (3.4)

where Ay is the scale at which the U(1); is spontaneously broken (e.g. by the VEV
of a scalar S which is an SMG singlet but has non-zero U(1); charge) and M is the
fundamental scale of the SMG x U(1)s model.

Returning to (3.2), the O(1) 7;; are unknown and maintained in algebraic analysis
but dropped for numerical analysis. We can then only specify any AM(i,j) up to an
unknown (1) factor, but this is consistent with our aim of accounting only for the
order of magnitude features of the mass and mixing hierarchies; the complex v;; are

assumed to be responsible only for fine structure within these hierarchies.

3.2 Matrix Algebra

3.2.1 Matrix Diagonalisation

Our ignorance of these 7;; poses certain obvious difficulties for the diagonalisation
of the mass matrices. These difficulties are attacked by using prior knowledge of the
fermion masses to state that any postulated mass matrix must be able to accommodate

a definite hierarchy in its eigenvalues otherwise it is phenomenologically unacceptable.
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Some clarification is necessary here. Given a fermion mass matrix M, (¢ = U, D,l),

and denoting the eigenvalues of MM, as m?2; (i=1,2,3), we demand that:
mzl < m§2 <K m33 (35)

and actively use this in the algebraic diagonalisation process.
A basic assumption underlying this process is that for two arbitrary complex num-

bers a and S:
0 ifa=-0
Oa +B) = (3.6)
maz(O(a),O(8)) otherwise
Thus each step in the diagonalisation process is performed to leading order, with al-
lowance made for ezact algebraic cancellation (we will never rely on a finely-tuned

cancellation in order to provide sufficiently small numbers). Further simplifying as-

sumptions, justified by (3.5), are:

m?2, =~ leading term in MM,
m2,m2; =~ leading term in minors of M} M,

m2;m2,m2;, =~ leading term in det(M]M,) (3.7)

for a = U, D,l. Having obtained leading order expressions for these masses, the eigen-
value equations are then solved for the quark mass matrices to yield leading order

expressions for the eigenvectors. These form the matrices Ry and Rp of (1.15), for:

RL(M{My)Ry = diag(m2,m2, m})

RL(MLMp)Rp = diag(m3, m?, mf) (3.8)

so that the CKM matrix:
Vekm = RI]RD (3.9)

can then be found to leading order.

3.2.2 A Diagonalisation Example

We now elucidate further on this treatment by explicitly diagonalising two typical quark

mass matrices. One of the models which will be encountered in Chapter 4 features the
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matrices:

( vRz®  yh2%yz  4B2?2
Mp = | vjizs®  ye® 1R
\ 13z2® 1ayet R
((WHa®  Alatye  Adets

My = | 72z 5y 75522 (3.10)

\ 1hzz 1y
where z,y,z < 1 correspond to symmetry breaking parameters of the type mentioned

at the beginning of this chapter. Then, assuming z2 < 23, we have:

[ (VB2 + B0+ ARrBeyet BBz
MhMp = MR ey’ 15y? 2t (1215 + 152 78y

\ e (Y215 + 1)y’ 78

( (792 + 182222 + 772 1 15HTYZ VY52
M{My = Y55 ey 15y A A AR

\ . Y55 ez (V5% + 1515 )v2? 155

(3.11)

where 'y?j = 757;- The v{1711 terms in the (1,1) elements of both M;S-MU and MITJMD
have been retained in order to ensure that the leading order terms in det(Mg-MU) and

det(M})MD) are seen to be:

Ux U Ux U Ux U
(’711*711‘/22*722733*733)936?/2

and:
(R Y15 15y’
respectively.
Now assuming ¢z < y and using (3.7) gives:
mi e ylsye o mp Rt
m ~ vyt mi e vrrhyt (3.12)
my =y ne® md e fia®

And calculating the eigenvectors v; ¢ b,s,4 corresponding to these eigenvalues by solving

the equations:
2
(MIEMU)”t,c,u = Mycu Vtcu
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2
(MLMD)vb,s,d = Mpsd Vb,sd

gives:
VI 2z
(1 e
Ry =~ —-R{(1,2) 1
\ —Bp(1,3)  —Rp(2,3) - Ru(1,2)Rp(1,3)
1 e
12" Y
Rp =~ —R}(1,2) 1
—-Rp(1,3) —Rp(2,3) - RD(1’2)R*D(1a3)

(3.13)

(3.14)

Note that it is not algebraically clear which of the two terms in Ry p(3,2) is dominant;

this point will be discussed in Chapter 4. Strictly speaking, these two matrices should

be orthonormalised, but the expressions given here are good to leading order. The

CKM matrix is then given by (3.9) to be:

( 1

Ry(1,2) - Rp(1,2)

Voxkm =

Ry(1,3) - Rp(1,3)

-RU(172) + RD(lv 2)

0(2,3) - Rp(2,3)
~Rp(1,2)R}(1,3)
+R(1,3)Rp(1,2)

~Ru(1,3)+ RBp(1,3) )

—RU(2’ 3) + RD(27 3)
—R’{](l, 2)RU(11 3)
+R;(1,2)Rp(1,3)

/
(3.15)

and again this should (strictly speaking) be orthonormalised.

Finally, as the 75’D are unknown but assumed to be of O(1), we really only have

information on V = |Vokm| which we choose to parameterise by Vs, Vi and V. So

our order of magnitude predictions are:

My ~ T3 me ™~y my =~ 1
mg ~ z3 my ~ yz? mp ~ 22
Vs ~ Z Vup =~ T2
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The assignation of numerical values to our model parameters such as =, y and z will

be discussed in due course.

3.2.3 Typical Mass Matrix Textures

Having discussed how we diagonalise a typical mass matrix, we now enumerate the

matrix textures which appear in this thesis. Let the square roots of the order of

magnitude eigenvalues of (M,‘},D,,MU,DJ) be my"P! (i=1,2,3) (we shall often loosely

refer to these as the “eigenvalues” of the mass matrices themselves). Let aU'D4, pUsD4
and ¢V"P+4 be real numbers with 0 < a,b,c¢ < 1. Then all mass matrices encountered in

this thesis have one of the following textures (order of magnitude wise):

Texture 1: Texture 2:

mp X X x "oy

a mg -X a me X

b ¢ m3 b c ms

Texture 3: Texture 4: Texture 5:

X mp X 2 XX X x fum2ma

mo a X my a X ma a X

b ¢ m3 b ¢ m3 b ¢ ma
(3.17)

Texture 6: Texture T7: Texture 8:

mp X X x mmzox X x mm2ma

a x mm a x mm a x mm

b ¢ ms c ma b ¢ m3

Texture 9:

mm m, X
X a X
X X ms3
where we have suppressed all superscripts. The entries denoted “X” can assume any

values between 0 and 1 provided the matrix structure remains compatible with:

m? ~ leading term in MTM
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Combination My Mp Y
Type 1 Texture 1 or 2 Texture 1 or 2 )21
Type 2 Texture 3 or 4 or 5 | Texture 3or4or 5 |V,
Type 3 Texture 1 or 2 Texture 6 or 7or 8 | V3

Table 3.1: Combination types of quark mass matrix textures and their corresponding

mixing matrices.

All lepton matrices will turn out to be of Texture 1, and so are particularly simple.
The promising quark matrices will assume Textures 1-8 which are distinguised by the

origin of their eigenvalues. Different combinations of My and Mp textures will give

mim? ~
mimim3i ~

different CKM matrices.

textures occur for the models featured in this thesis. These 3 types are shown in Table

leading term in minors of Mt M

leading term in det(MTM)

(3.18)

In fact, only 3 different types of combination of these 8

3.1 and the 3 corresponding mixing matrices are (order of magnitude wise):

(

%1

U D
a a
1 max (;U , ;ZD') maxr
U D
a a
mazx (—Um2 ' D 1 mazx
A P
maz (57D maz (oys D
aPlel alclU aPpD aPpVU )
m27'7'r':1,31j ’ 'm,zD mg mymz ’ m2D maU
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v _D U D
1 mazr (%y,3p maz (Lp,5p \
('m2"m2) my ' m3’
aUplv aUbpPD )
mymy ' my m3
U D U D
a a b b
v, = mazx (;g,r—n—g) 1 maz (E?’EU’
aUCU aUCD )
mg my ' my m3
v D U D
c! c b b
max —ntg’ Kg, max ;:SU’ Hg, 1
K aPcP aPcl ) aDpP aPpV )
mymz ’ mymg mymy > mymg )
D bU bD
( 1 maz (%5,% maz (Z¢,>p \
(mg’cp) (maamé),
UV UcD )
mgm3g ’ my m3
U D U .D
maz (Zp ,%) 1 maz (Lp, <y,
Vi = M2 € ms e (3.19)
aUpU  qUpD )
m. m3 m2 ma
D.D U
a* C C
maz (m2 mD max (—n:ag, 1
U pDU D pDpU
\ msE ? cD'rrt.atJ msr ) cDm:’!’J )

Note that there are generally several competing contributions to each element of the
mixing matrix and, consistent with (3.6), the order of magnitude of such an element
is taken to be the order of magnitude of the biggest contribution. The expressions
shown here for the various mixing angles are obtained in exactly the same way as
those of (3.15). The simple ratios (e.g. a¥/mY and bP/m¥P) come wholly from Ry
or Rp in a straightforward manner. The complex ratios such as aVbP/mYm% come
about only after forming the product RI]RD; whereas the other complex ratios such as

aVbV /m¥mY and aPcP /mPmY are also present wholly in Ry or Rp ((3.15) illustrates

these points well).
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WS

Figure 3.1: Tree-level contribution to the b mass via interaction of g5 with superhea.vy

fermions.

3.3 Ansatze for Mass Matrix Elements

3.3.1 Some Remarks on Symmetry Breaking

In order to be completely precise about the form of the fermion mass matrix elements,

some mechanism for the spontaneous breaking:

G- SMG (320

must be specified. There are different ways of achieving such a breaking.

Consider, for example, an SM G x Uf 1)j model whose fundamental mass scale is M,
broken to the SM G by the VEV of a scalar field 0s where (®™5) < M and Qf(4>s) = 1.
Suppose further that Q/ib”) = 0 and C/(6/?) = 2. Then it is natural to expect the

generation of a 6 mass of order:

v (3.21)

via a Feynman diagram such as that of Figure 3.1. In this figure, the intermediate

states are appropriately charged vector-like superheavy fermions {i.e. of mass M) (see

[30, 31]).
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ws

Figure 3.2: Tree-level contribution to the b mass via interaction of s with a superheavy

scalar doublet.

Alternatively, as in [35], a further scalar doublet (in addition to the familiar
doublet can perform the job of the superheavy fermions. Suppose that its =
—1/2 component, (pp, has mass M and that Q/icpo) = 2. Then the Feynman diagram
of Figure 3.2 naturally generates a 6 mass of the same order of magnitude as (3.21). In

other words, (po acquires a VEV of order:

(3.22)

In either case, the existence of the appropriate spectrum of heavy fermions and
scalars yields suppressed mass terms for the SM fermions. However, in this thesis
we do not wish to become involved in the particulars of different symmetry breaking
mechanisms. Instead, we will postulate some intuitive ansatze which will effectively
parameterise our ignorance of such mechanisms. For example, in the above models the

fact that:
lQf{bL)-Qj{bR)l =2 (3.23)

might have prompted us to naturally suppose that:

(3.24)
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where € < 1, without being specific about how to break the U(1); symmetry. Implicitly
assumed in this approach, of course, is that there always exists an appropriate spec-
trum of superheavy fermions/scalars which can mediate all of the symmetry breaking
transitions parameterised by the ansitze we are about to postulate. In particular, we
will not assume the absence of appropriate superheavy states in order obtain texture

zeroes in the mass matrices.

3.3.2 Component Symmetries of Category (8) Groups

The smallest non-trivial Category (8) group is SMG x U(1); while the largest is
SMG® x U(1)s. The four building blocks of a group in this category are SU,(3),
SUa(2), Uy(1) (e = 1,2,3) and U(1)s and we look at each in turn.

(1) SUL(3)

Under an SU,(3) all states are singlets except the quarks of the a®® generation which

are triplets. So there are 3 types of matrix element:

1. an element linking singlets which will obviously remain unsuppressed because
there is no quantum number difference between the left- and right-handed
states which form it (e.g. My(3,2) for SU1(3));

2. an element linking triplets which will be unsuppressed for the same reason
(e.9. My(1,1) for SUy(3));

3. and an element linking a triplet and a singlet. This will be suppressed if the

SU,(3) is partially conserved (e.g. My(2,1) for SU;(3)); all such elements

are naturally suppressed by the same amount.

Suppose, then, that some Category (8) group has a partially conserved SU;(3) with

symmetry breaking parameter ;. The mass matrices would be given by:

1 B By 111
My~Mp~|p5 1 1|, Mi|1 11 (3.25)
B 1 1 111

and obviously all eigenvalues of MJM,- (i.e. masses) are of (1) (we emphasise that

the equalities in (3.25) are only approximate due to our lack of knowledge of the +;; in

(3.2)).
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When there is more than one partially conserved SU,(3) we assume that each is
broken independently so that the overall symmetry breaking parameter is the product
of all the individual ones. For example, if the group has SU(3) x SU2(3) x SUs(3)
as PCCSs and the symmetry breaking parameter for each SU,(3) is 3,, then the mass

matrices are given by:

1 B2 BiP3 1 11
My ~Mp=~| 4, 1 Bfz |» Mi~| 1 1 1 (3.26)
BB 203 1 111

A smaller set of PCCSs is obtained by setting a particular §, = 1 i.e. taking some
SU,(3) to be so strongly broken as to be irrelevant for mass suppression. From (3.26)
it is clear that a mass hierarchy is unobtainable without the help of other PCCSs as

all masses are still of O(1).

(i) SU.(2)

Under an SU,(2) all states are singlets except the left-handed quarks and leptons of
the at® generation which form doublets in the usual manner. There are thus 2 types of

matrix element:

1. an element linking singlets which is unsuppressed as usual (e.g. My(2, 3) for

SU1(2));

2. and an element linking a doublet and a singlet which will be suppressed if
the SU,(2) is approximately conserved (e.g. My(2,1) for SU1(2)). Again,

all such elements are naturally suppressed to the same degree.

(The reader is reminded that in our notation the rows and columns of a mass matrix are
indexed by right- and left-handed Weyl fermions respectively). There are no elements
linking doublets because only left-handed states are doublets and any M(%,7) links a
left- and a right-handed state.

So, if some Category (8) group has SU1(2) X SU2(2) x SU3(2) as PCCSs and the

symmetry breaking parameters are €1, €; and €3 respectively, then the mass matrices
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are:

€1 €2 €3
My>~Mp~M~>~]| ¢ € € (3.27)
€1 €2 €3

Note that, unlike the SU1(3) x SU2(3) x SU3(3) case, each matrix element is affected
by no more than one suppression factor. This is because the right-handed Weyl states
are all singlets. The natural order of magnitude mass predictions are:

My My~ Me ™ €

me ™ My ~ My, ~ € (3.28)

my ™~ my ~ m, ~ €3

and so it is easy to account for the inter-generation gaps by choosing;:
6 <Ke<Le (3.29)

but mass-splitting within generations cannot be naturally obtained. Again, a smaller

set of PCCSs is obtained simply by setting some ¢, = 1 (¢=1,2,3).

(iii) Ua(1)

To begin with, consider only one approximately conserved abelian symmetry, U;(1),
with charges ¢)1. All 2nd and 3rd generation states have ¢); = 0 while the 1st generation
states have ¢, equal to the usual weak hypercharge which we normalise to assume
integer values. That is, with Q1(ur) = ur etc, the U;(1) charges are (with, as always,

doublets denoted by their I3 = —1/2 components):
dL =1, up= 47 dR = _27 e, =—3, ep=-6 (330)

If the symmetry breaking parameter of U;(1) is A; then we take the matrix elements
to be given by:

M(i, j) = AQu=@u] (3.31)
where ¢ runs over appropriate right-handed states and j over appropriate left-handed
states. In this notation we have for example:

/\lldn—dLl )\Ildn-SLl )‘Ildn-bLl

Mp = | Aermdel yler—srl - yler—bil (3.32)
,\llbn—dz,l )\Ilbn—SLl /\|1bR—bL|
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with similar expressions for My and M;. We thus obtain:

A DEEDY DY A3 A8 X
My~ X»x 1 1 |,Mp~]| XN 1 1|, M=~|XN 1 1
M1 1 N o101 N1 1

(3.33)

My N Mg~ Mme > A} (3.34)

while all other masses are of O(1).

If we extend the PCCSs to U;(1) x Uz(1) x Us(1) (with charges @1, @2 and Q3
respectively) then we can combine the different symmetry breaking parameters Aj, A,
and A3 in the same way as we did for the 8, in the SU;(3) x SU2(3) x SUs(3) case.

That is, we can take:

3
M(z,]) ~ H ALQai—Qajl (3-35)
a=1

which again means that each component symmetry is broken independently. The mass
matrices would then be given by:

[ A3 A At )
A1 A3 A3As

\ M Al 23 ]

My

12

(23 a2, A2 )
Mp =~ | M2 A3 A2
R WINPT
[ 23 263 a8 )
A8 A3 A8 (3.36)
AN A A )

M;

12

with order of magnitude mass predictions:
My Mg =~ me = A3
Me ™ Mg ~m, ~ A3 (3.37)
my > mp =~ my 2 A3
This is similar to the SU1(2) x SU,(2) x SU3(2) case with the generation gaps easily
accounted for by taking:

M« A3« Al (3.38)
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but intfa—generation splitting remaining unexplained.

The expression for M(¢,7) in (3.35), however, is dependent on which linear combi-
nations of the 3 generators Y1, Yz, and Y3 we choose to span the U;(1) x Uz(1) x Us(1)
space (it is implicitly assumed in (3.36) that the charges @, correspond to the gen-
erators Y, (a = 1,2,3)). This is not completely satisfactory as we have no physical
principle governing such a choice. What we really want instead of (3.35) is an ex-
pression for M(%,j) which is invariant under any basis changes. Such an expression is

provided courtesy of a general metric G in the charge space which gives:

M(i,j) =~ exp(—/(Qi-Q;) G (Q; - Q)
exp(—/(Qai = Qaj) Gab (Qbi — Qu7)) (3.39)

where Q; = (Q1i, Q2i, @3i) with Q1; defined just as for (3.31) etc . This obviously still
encompasses the motivation of (3.31) that the charge difference should be indicative of

the strength of the suppression. The mass matrices generated by (3.39) are:

( VT e~ VFG1T9522-36317  o~/36511¥9933 36915
M ~ | e~ V9n+38e22=36012 e~V9922 e—V/36922+9935- 36523
| e-VOTTFIm I o~V FIes =36 e~V9353
[ eV e~ VIO 98017 o—vT6711F935—8415
My =~ | e-Veuti6en—8sm: o=V o—V16352F 933893
\ e VIFTES S VIt o—V9533
[ Vi N IITE = e = TTr RN Fre e rre = rovs
Mp ~ | e-Ventism+ion: e—V9922 o~V ¥ 9554525 (3.40)
\ emVIITFIm TS o Vam T Fgs o—V/3753

and should be compared with (3.36). In a large region of parameter space it is still

natural to obtain expressions for the masses which are effectively the same as (3.37):

My ™~ Mg ~ M, ~ e~ V911
Me ™ My & my, ~ e V922 (3.41)

my ™ my ~ m, ~ e” V93
and again the generation gaps are easily explained by taking:

gi1 > 922 > 933 (3.42)
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but splitting within generations is not accounted for. Of course, there are textures
obtainable from (3.40) other than those leading to (3.41), and these will be explored in
due course.

A smaller set of abelian PCCSs than U;(1) x Uz(1) x Us(1) can be obtained by
taking the appropriate g,5 to be zero.

(iv) U(1)y

The fermion charges Q¢ of the U(1); must not lead to any gauge or mixed anomalies,
but once an anomaly-free set of charges has been found the U(1)s should be treated
exactly as the U, (1) discussed previously; it is merely another gauged abelian symmetry.
In particular, the charge vectors Q; of (3.39) are expanded in an obvious manner
to Qi = (Q1i,Q@2i, @3, Qi) and the metric G is enlarged to encompass this extra
component. Obviously no specific mass matrices can be discussed without an anomaly-

free charge set so explicit examples are postponed until later.

3.3.3 Putting It All Together

We finally have to decide on some ansatz for M(%,j) when several of these group
components are all partially conserved. We shall in fact use 3 different ansitze. These
are:

(1) Product Ansatz

Here we assume that all symmetry breaking parameters combine in product form so
that:
M(i,7) = MiMaM; (3.43)

where:

e the abelian symmetry breaking factor is, by a simple extension of (3.35),

My = [f[ M= el [Rri= Qs (244)
c=1
and Ay is the symmetry breaking parameter of U(1)y;
o the SU1(2) x SU,(2) x SUs(2) symmetry breaking factor is, from (3.27),
My ~€; (245)

67



e while the SU;(3) X SU2(3) x SU3(3) symmetry breaking factor is, from (3.26),

1 for quarks if ¢ = j, or for leptons
M3z~ (3.46)
BiB; otherwise

This expression (3.43) is relevant for the full SMG® x U(1); algebra, but we repeat
that any smaller algebra can be obtained by setting particular symmetry breaking
parameters equal to 1. Note that we will always take (Y3,Y,Y3,Y;) as a basis for the
U1(1) x Uy(1) x Us(1) x U(1)s space, so that the charges (Q1,Q2,Q3,Q ) correspond
to the generators in the obvious manner. All models are initially analysed using this

ansatz.

(2) Mixed Ansatz
Here we use a general metric in the abelian charge space to get:
M(3,7) = MiMaMs3 (3.47)

where the abelian symmetry breaking factor is, by a simple extension of (3.39):

My = exp(—/(Qui — Qas) dab (Qbi = Qb5)) (3.48)

with a,b = 1,2,3, f while M3 3 are as in (3.45) and (3.46). A smaller abelian algebra is
obtained by setting particular metric elements gq; to 0. All models are analysed using

this ansatz.

(3) Metric Ansatz

This will only apply to models whose non-abelian PCCSs are subgroups of SU;(2) x
SU2(2) x SU3(2). We would like to make a slight relaxation of the assumption that all
non-abelian symmetries are broken separately and independently of the abelian ones;
after all, the SU(2)z, and U(1)y of the familiar electroweak theory are simultaneously
broken to U(1)em by the Weinberg-Salam Higgs field. We do this by incorporating the
SU,(2) symmetry breaking terms into the general metric structure which previously

only applied to the abelian symmetries. Specifically, we take:

M(i, ) = exp(—/(Qi - Qj) G (Qi — Q3)) (3.49)

where Qi = (213,213,213, Q1i, Q2:, Q3:, Q5:) and I2 is the quantum number corre-

sponding to the usual diagonal generator T2 of SU,(2).
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3.3.4 Comments

Note that the mixed ansatz is generally less suppressive than the product ansatz (the
same can be said of the metric ansatz compared to the mixed one). With the natural

identification:

A o e VI (c=1,2,3)
A o e VI (3.50)

any M(z,7) defined by (3.47) is at least as big as the corresponding element defined
by (3.43). We only expect that this easing of suppression might make a real difference
when in (3.43) the abelian charge differences are large and/or two or more of the A;
(3=1,2,3) are very small. Then two (or more) small suppression factors will not combine
as restrictively as in the product ansatz.

Note further that, with this natural identification, each ansatz yields the same
suppression for a matrix element which is affected by only one PCCS.

Finally, it should be said that (3.48) is not the most general parameteriéation of the
breaking of the abelian symmetries, as evidenced by the fact that the product ansatz is
not a special case of the mixed ansatz. The completely general case would have extra

parameters in the abelian sector.

3.4 Selection of Suitable Models

Having discussed how the mass matrices will be constructed, we now move on to con-
sider which specific PCCSs merit a detailed examination. We demand that a model
should first of all promise to provide the mass gaps between the generations, and sec-

ondly promise to produce structure within the generations.

3.4.1 Inter-Generation Splitting

The first priority in the search for a model is to find one which naturally accounts for
the huge mass differences between the generations - this is the single most compelling
feature of the mass hierarchy. As a first approximation, we take the mass scale of each
generation (m;y, my, and m3 respectively) to be set by its u-type quark; structure like

my € my and my,; € m, will be addressed later. We thus require that a set of PCCSs

69



gives:
my K myg K ma ~ 1 (3.51)

where we are assuming that the top mass is unsuppressed order of magnitude wise
w.r.t. (®)ws. This is consistent with its expected appearance in the approximate range
100-200 GeV [42, 43]. The above discussion of component symmetries of Category
(8) groups immediately suggests 4 candidate sets of PCCSs which might achieve this
required hierarchy in the values of m,, ms and ms:

Gy = Ui(1) x §Us(2)

Gy = Ui(1)x Ux(1)

Gy = SUL(2) x SU,(2)

Gy, = SUL(2) x Uy(1) (3.52)

The full groups G; (i=1,...,4) corresponding to these PCCSs must then satisfy:

;= SU(3) X SU2(2) X SU13(2) X Ul(l) X U23(1) CG; C SMG3
Hy=  SU@B)x SU2)x Uy(1) x Ua(1) x Us(1) € Go C SMG® (353
Hy= SU(3)x SUL(2) x SUs(2) x SUs(2) x U(1) C G3C SMG? '

Hy= SU(3)x SU1(2) x SU23(2) x Uz(1) x U13(1) € G4 C SMG?

The H; (i=1,...,4) defined in (3.53) are the smallest groups containing both G’ and
the SMG as subgroups. The ansdtze, however, care only for the G and not for the G;.

We make no mention of abelian flavour symmeteries at this point. Besides their
omission being aesthetically more pleasing, this is because we were initially motivated
to study SMG3 and its subgroups for the reasons outlined during the discussion of anti-
grand unification in Chapter 1. It is interesting to see how far we can go in our analysis
without being forced to postulate the existence of such flavour symmetries. Anyway, in
[35] the gauge group SMG x U(1)s with a partially conserved U(1); was dismissed as
a candidate for the generation of a realistic mass hierarchy and, although the results in
[30] are good for an SMG x U(1)s x U(1)} model with the abelian flavour symmetries
approximately conserved (strictly speaking the symmetry group is SMG X Z3 X Zs),
the situation regarding anomaly cancellation is unclear.

The product ansatz mass matrices My, p,; corresponding to each candidate in (3.52)
are easily seen from (3.43) to be as in Table 3.2. Natural order of magnitude mass

predictions for the various possible textures of these matrices are shown in Table 3.3.
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PCCSs My Mp M,
A e A A A A2 A oeXd A8
G A& 1 M & 1 A e 1
M e 1 M e 1 A e 1
A g M A3 A%, A2 A3 A3 A8
G, DYPEIED NP MA2 A3 A2 A3AS A3 A8
A A2 1 A1 A2 1 A3 A3 1
€1 € 6 € 1 €6 €& 1
G5 €1 € 6 € 1 €& €& 1
€ € € € 1 6 € 1
e Ay 1 66 Ay 1 a A1
G} ary A3 A\ ard A3 Al ar§ A3 S
e A 1 € Ay a A 1
Table 3.2: Product ansatz mass matrices for G (i=1,...,4).
PCCSs My Mp M,
Text- | m¢ | me | my || Text- | my | ms | mq || Text- | m; | m, | me
ure ure ure
G 1 Lle | M| 1,2, 1| el A 16 | 1 | e | A3
6,7,8
4 |1 | A e 345 1 | A | er?
G 1|1 | A3 a3 |12 |1 A3 a3 1|1 a3
6,7,8
G4 1,2 1| e € 1,2, e | g 1,2 1 | e |«
6,7,8
G, 9 1| A | e)? 9 A2 | @A 1 1 [ ]a

Table 3.3: Product ansatz mass predictions for G} (i=1,...4).
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The PCCSs G}, G5 and G can thus fulfill their promise to satisfactorily provide

realistic generation gaps, whereas G features the very poor order of magnitude pre-
3

c,8

diction m, ~ m7, and is therefore discarded at this point. Note that this prediction
is unchanged if we use a different ansatz to construct the matrices because the matrix

elements involved are suppressed by only one PCCS.

3.4.2 Intra-Generation Splitting

Obviously none of the 3 remaining candidates has anything to say about mass-splitting

within the generations. We are particularly interested in accounting for:

mp K my

ms < me (3.54)

as these are the most prominent order of magnitude features after (3.51). The situation
concerning leptonic masses is complicated by their contrasting running behaviour as
governed by the renormalisation group equations. In Chapter 4 we assume that our
ansdtze hold at some fundamental high energy scale which we take to be the Planck
scale (Mp ~ 10'® GeV) and so our order of magnitude predictions are applicable only
at this scale. In [44] the fermion masses are evolved from 1 GeV to Mp using the SM
renormalisation group equations. The order of magnitude results of this analysis of

particular interest to us are:
o lepton masses change very little (they get smaller by approximately 10%)
¢ non-top quark masses get smaller by a factor of O(5).

The renormalisation groﬁp thus naturally splits the leptons from the quarks as our
ansatze are evolved back down to 1 GeV. We bear this in mind throughout our algebra,
concentrating for the time being on (3.54).

In fact, requiring the natural appearance of a t—b splitting leaves us at a crossroads.
What kind of PCCSs can generate this mass gap? Non-abelian candidates (SU,(3) and
SU,(2)) are of no use because, as is obvious from (3.26) and (3.27), they have the same
effect on both My and Mp. Abelian symmetries must therefore provide the solution,

but there is an immediate problem. Any partially conserved subgroup of S MG? (using
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any ansatz) yields identical diagonal elements (order of magnitude wise) in the 3 fermion
mass matrices:

My(i,i) ~ Mp(i,i) ~ My(i,é) (i =1,2,3) (3.55)

Thus if m,; receives its dominant contribution from a diagonal element of My, m,
cannot naturally be made lighter than it. This problem can apparently be resolved in

two quite different ways:

e Method 1
Noting that abelian symmetries (Uy(1)) treat the off-diagonal quark matrix ele-
ments differently, expand the PCCSs to include U;(1) X U3(1) X U3(1) and arrange
for some/all of the 3rd generation masses to receive their dominant contributions

from off-diagonal matrix elements. A ¢ — b splitting might then be obtained.

o Method 2
Simply introduce a partially conserved abelian flavour symmetry U(1); and ar-

range that the fermion charges satisfy:

1Qs(bL) — Qs(bR)| > |Q(tL) — Q(tR)| (3.56)

which might then naturally generate m;, < m;.

Method 1 will be discussed in Chapter 5 while Method 2 will be dealt with now in
Chapter 4.

73



“I still don’t know what I was waiting for
And my time was running wild

A million dead-end streets

FEvery time I thought I'd got it made

It seemed the taste was not so sweet”

David Bowie

Changes
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Chapter 4

Intra-Generation Structure from

Abelian Flavour Symmetry

4.1 Introduction

In this chapter, we discuss Method 2 of generating intra-generation mass-splitting: the
introduction of a gauged and partially conserved abelian flavour symmetry. For each
candidate set of PCCSs, we find all anomaly-free flavour charge sets subject to certain
constraints. After stating the data which we will attempt to fit, we explain the fitting
procedure itself. We finally give results and discussion for all models in this Method 2
scenario.

Throughout this discussion of Method 2, we will assume that the 3rd generation
masses my, mp and m, receive their dominant contributions from My(3,3), Mp(3,3)
and M;(3,3) respectively. That is, we assume that the 3rd generation mass eigenstates
are approximately equal to the 3rd generation symmetry eigenstates (see (1.16)). This
natural assumption is a feature of virtually all models of fermion mass matrices (e.g.
the Fritzsch matrices [23]). It has been true of all mass matrices encountered here
so far and, moreover, such an assumption is implicit in (3.56). It is sensible to insist
on it here because a discussion of off-diagonal 3rd generation masses is tied up with
Method 1. A useful consequence is that it allows us to make statements about the 3rd
generation masses purely from knowledge of the symmetry transformation properties

of the corresponding Weyl states.
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4.2 The Flavour Charges

The remaining candidate sets of PCCSs are, from (3.52), but now including U(1)y:

Gy xU(L); = Uy(1)x SUx(2) x U(1);
G’g X U(l)f = U](l) X U2(1) X U(l)_f
GLxU(l); = SU(2)x SUx(2) x U(1); (4.1)

The no-anomaly equations for triangle diagrams involving one or more U(1)s gauge
bosons must be solved for each set of PCCSs in order to provide acceptable fermion
charges (all other anomalies cancel because S M G? and its subgroups are anomaly-free
in exactly the same manner as the SMG itself). To do this, the groups G; (i=1,2,3)
of (3.53) must be specified, whence the full groups are G; x U(1);. But how should we
go about choosing the G;?

The no-anomaly equations for H; X U(1)s (the H; are defined in (3.53)) form a
subset of those for SMG? x U(1);. More generally, if we consider successively larger
G; in the chain of groups between H; and SMG3:

H=G"ccPce®c...csmua? (4.2)

we find that the set of no-anomaly equations for some G,(”) x U(1)s (i=1,2,3) forms a
subset of those for GE"+1) X U(1)y. This is because each step down the chain involves

taking the diagonal subgroup of cross product i.e. we perform one of:

SU(3) X SUs(3) — SUq(3)
SU.(2) x SUs(2) — SUq(2)

Us(1) x Up(1) — Ugp(1) (4.3)
where a,b = 1,2,3. Obviously there are many different chains of subgroups corre-
sponding to the ng) of (4.2), but this argument holds for each such chain. As far
as anomaly cancellation is concerned, any such step means that we add together each -

corresponding pair of no-anomaly equations. For example, for the toy symmetry group

SU.(3) x SUy(3) x U(1)s we have three anomalies to cancel:

Tr [SUL(3)2 U(1){] 0

Tr [SU3)2U(1);] = 0
Tr[U(1)}] = 0 (4.4)
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while for SU,s(3) x U(1)s we have only two:

Tr [SUay(3)* U(1);] Tr [SUa(3)" U(1)4] + Tr [SU(3)* U(1)7] = 0

Tr [U(1)] 0 (4.5)

The anomaly-free U(1)s charge sets for G$"+1) X U(1)s thus form a subset of those for
ng) x U(1)y, as claimed. We will therefore assume that G; = H; (¢=1,2,3) and once
we have an anomaly-free U(1); charge set for H; x U(1)y it is easy to check if it also
constitutes an anomaly-free set for some larger group J;xU(1)s where H; C J; C SM G3
i.e. having assumed that the full symmetry group is H; X U(1)y, it is simple to see if a
particular U(1); charge set is in fact compatible with a larger group. So we now go on
to consider the gauge groups H; x U(1)y (1=1,2,3) with PCCSs U1(1) x SU2(2) x U(1)y,
Ui (1) x Ua(1) x U(1)s and SU1(2) x SU2(2) x U(1)y respectively.

Why do we only consider the addition of one abelian flavour symmetry? The sole
purpose of such a symmetry is to provide structure within the generations, in particular
the 2nd and 3rd generations (recall we have (3.54) in mind). It may seem reasonable to
consider a model like H;xU(1); xU(1)} where U(1)s and U(1); act only on the 2nd and
3rd generations respectively, providing the required structure within each generation.
However, it is straightforward to show from the anomaly cancellation conditions that
any abelian symmetry which affects only the a** generation must be a copy of the usual
weak hypercharge (as far as that generation is concerned). That is, the appropriate
fermion charges must be multiples of those given in (3.30) and the abelian symmetry is
nothing other than U,(1), already dismissed as a candidate for explaining (3.54) as far
as Method 2 is concerned. We would therefore be forced to extend the influence of both
U(1)y and U(1)} beyond a single generation. It is thus very awkward to have separate
abelian symmetries neatly providing m; < m; and m, <« m, without “interfering”
with one another and/or disturbing already satisfactory mass relations of the partially
conserved H; (e.g. m, ~ my; see Table 3.3). So it seems simpler to maintain our original
assumption and consider only a single abelian flavour symmetry, which will generate
structure within both the 2nd and 3rd generations. In any case, more symmetries mean
more parameters and less predictability.

What about the 1st generation states and their charges? Since the partially con-
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served H; already account for:

My d,e K all other masses (4.6)

and the renormalisation group for:

Mme < My d

(4.7)

the effect of an approximately conserved U(1)y is likely to be counter-productive as far
as this generation is concerned. We thus take the charges @ of all 1st generation Weyl

states to be zero i.e. with Qs(ur) = ur etc, we take:

dp =up=dp=e,=egp=0 (4.8)

As already explained, the no-anomaly equations for any H; X U(1)y are easily ob-
tained from the anomalies of the group SMG?3 x U(1)f, which were given in (2.27)-

(2.40). These are restated here for convenience:

Ay = Tr[SU(3)*U(1)] = 2dp—upr—dr=0 (4.9)
Ay = Tr[SU,(3)%U(1)) = 2sL—cr—sr=0 (4.10)
Az = Tr [SU3(3)*U(1)] 2bp, —tp—br =0 (4.11)
Ag = Tr [SU1(2)*U(1)f] 3d,+e, =0 (4.12)
As = Tr [SU2(2)2U(1)] 3sp 4+ pr =0 (4.13)
As = Tr [SU3(2)*U(1)] 3bp + 71 =0 (4.14)
A7 = Tr [U(1)2U(1)] dr —8urp—2dr+3e, —6ep =0  (4.15)
Ag = Tr [Ug(1)*U(1)) s, —8cp—2sp+ 3ur —6ur =0 (4.16)
Ag = Tr [U3(1)*U(1)q] b — 8tp — 2bp + 31, — 67, =0 (4.17)
Ao = Tr [U(1)U(1)7) d?2 —2uh+dh—el +eh =0 (4.18)
Agr = Tr [U(1)U(1)F) st — 2k +sh—pi+uk=0 (4.19)
Ay = Tr [Us(1)U(1)] b2 —2h +bh—ri+ 7R =0 (4.20)
Az = Tr [U(1)F] 6d3 — 3ud — 3d% + 263 — €%

4653 — 3¢k — 3sh +2u} — 1}

4603 — 3t — 3R+ 218 —TE =0 (4.21)

Ay4 = Tr [(graviton)?U(1)g]

6dr, — 3up — 3dr + 2er, — ep
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465, —3cr — 3sp + 2uL — UR
+6b;, — 3tp —3bp+ 21, — TR =10 (4.22)

Note that (4.8) immediately gives:
A=Ay = A7 = Ay =0 (4.23)

In order to avoid notational confusion of the charges in (4.9)-(4.22) with the corre-
sponding Weyl states, from now on we denote the states with a tilde e.g. dg.
Note that the requirement:

A3=0 (4.24)

which must hold for any group of which SU3(3) is a subgroup, is very troublesome. It

simply gives (since tf, = br,):
|t — tr| = |bL — bRl (4.25)

thus destroying any hope of generating mj; € m; so long as we assume that the 3rd
generation masses receive their dominant contributions from the appropriate M;(3,3).
In particular, this means that the full gauge group cannot be SMG*x U(1)s within this
Method 2 framework; this is a blow to the original motivation behind this work which
was to suppose that the fundamental gauge group was SMG? (or at least contained
SMG? as a subgroup) and that the fermion masses could be explained by taking some
subgroup of it to be partially conserved. (This assumption regarding the 3rd generation
mass eigenstates will be dropped in Chapter 5, allowing us to recover SMG3(xU(1)y)
as the fundamental gauge group).

The general method of selecting anomaly-free charge sets for each H; x U(1)s
(i=1,2,3) is as follows. For each case the no-anomaly equations are constructed us-

ing (4.9)-(4.22). All integer solutions are then found, subject to certain conditions:

1. All fermion charges satisfy |@ | < 15. This number is arbitrary.

2. The 3rd generation charges should satisfy:

>0 ifty =1tg
|br, — br|, |7z — 7R| (4.26)
> 3|tr —tr| iftp #tp

Ideally we would like to assume:

tr, = tRr (4.27)



so that (as stated before) m; is unsuppressed, order of magnitude wise,
relative to (¢)ws (f1 and tg have identical transformation properties w.r.t.
all other PCCSs under consideration here). We lend most credence to models
which have this feature, but also consider those for which m; is very slightly

suppressed.

Certainly, for such models the condition (4.26) could be tightened. For if:

oL — br| = 3|tL — tr (4.28)
then:
my = 7RI (D)ws
me = |vssle(@hws (4.29)
and:
€~ %rv%or% (4.30)

We would then really have to rely on the “O(1)” 73%’[) attaining “nice”
values in order to keep our whole approach consistent with (¢)ws = 174
GeV. Nevertheless, we judge it prudent to accept all solutions provided they
satisfy (4.26), looking unfavourably upon them later should this problem

become impossible to ignore.

. The 3rd generation charges should also satisfy:
2 3
3(bz~brl~|t~1r]) < (I ~7rl=|tz~1r|) < 5(Ibr~brl|-|tr~tr) (4.31)

This effectively says:

(’_7"_6)2/ Pomr (ﬂ)w (4.32)

my m¢ my
and again this is not too restrictive; models can still be re-evaluated at the
end of the day. The good SU(5) GUT scale prediction my = m., though no
longer thought to be numerically exact in the minimal GUT model [39], re-
mains an excellent order of magnitude relation. We thus lend most credence
to models satisfying:

|br — br| = |7z — 7R] (4.33)

80



Note that these first three constraints have the same consequences (as far as elimination
of possible charge sets is concerned) regardless of which ansatz is under consideration,
as they relate only to the elements M;(3,3) (¢=U,D,l) which are affected by only one
PCCS.

After all anomaly-free charge sets satisfying these constraints have been found, the
fermion mass matrices are formed using the product ansatz. These display one of the
textures of Chapter 3, and often a matrix is compatible with more than one texture
(only the origin of the 3rd generation eigenvalues is determined a priori). Allowing for
all possible origins of the 2nd generation masses, we then make further restrictions. If

it is then observed to be unavoidable (i.e. an algebraic certainty) that:

4. the 2nd generation hierarchy is unsatisfactory i.e.
mg>m, Or m, > m (4.34)

5. the relative my; — m, and m; — m; suppressions are unsatisfactory i.e.

3
m m m m
e Mg T () (4.35)
me my my me

then the charge sets are discarded at this point. These are simple demands that, having
already obtained a reasonable 3rd generation hierarchy, it should also be possible to
obtain a reasonable 2nd generation hierarchy. Although these last two constraints are
implemented only for the product ansatz, in virtually all cases a discarded model is
not saved by choosing a different ansatz. In the very rare occasions where it might be
saved, we choose to discard the model anyway. It is not clear whether one should trust

a model whose mass hierarchy is terrible with one ansatz but acceptable with another.

4.2.1 H; xU(1l); = SU(3) x SU3(2) x SU,(2) val(l) x Uys(1) x U(1)y
Here the no-anomaly equations are:

Ay+A3=0, As=0, A¢=0, Ag+ Ag=0,

(4.36)
A1+ A12=0, Ai3=0, A4=0

Table 4.1 shows how many integer solutions (with |@ | < 15) of these equations exist,
and how many survive each of our restrictions. Tables 4.2 and 4.3 list the overill

survivors and their prominent features.
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Restriction No. of surviving solutions
with |Qs| < 15

All anomalies cancel 514
|br, — br| > 3|t — tr| and |br, — bg| # 0 119
|7 — TR| > 3|t — tr| and |1, — TR[ # 0 84
oo > ()32 76
Tz > (52 )3/2 69
mg < Me 50
m, < M 49
B> 12
> (——-")3 25
No. of overall survivors 25

Table 4.1: Selection process for anomaly-free charge sets of H; x U(1)y model. Each

restriction is implemented sequentially.

Note that in these Hq X U(1)s models the only symmetry which distinguishes the
corresponding right-handed Weyl states in the 2nd and 3rd generations (e.g. sg and
b}q) is U(1)y because all right-handed states, including those of the 2nd generation, are
singlets under SU2(2). This means that the labelling of (s}g,b}g), (tir,Tr) and (¢Rr,tR) is
essentially arbitrary, and there exist many solutions (not counted in Table 4.1) which

are identical under the interchange of charges:
sp < bgp and/or pr < TR and/or cgpe—tp (4.37)
We choose to label the states in a fashion consistent with the assumption that:
Mmepr ~ Mypa(3,3) (4.38)

i.e. we take tp to be the state whose charge lies closest to that of ¢z, etc .

4.2.2 H, xU(l)y =SU(3) x SU(2) x Uz(1) x Uy(1) x U3(1) x U(1)¢
The no-anomaly equations for this model are:

Ay +A3=0, As+ Ag=0, Ag=0, Ag=0,

(4.39)
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SI. CR SR ML MR
tr, =tp ? |bL—bR|=|TL—TR?

b, tr br TL TR

(1) X v
-1 -2 -4 30
(2)(113—3—1\ y y
-1 -1 -3 3 1)
(3)(237-6—1\ y y
\ -2 -3 -7 6 1)
(4)/215-6—3\ y y
K—z -1 -5 6 3|
3

0 10 -9 —2\ '
%) \—4 -4 -8 12 8) v v

3 5 11 -9 -1

(6) X v
-3 -5 -11 9 1

- ( 3 4 10 -9 -2) y y
-3 -4 =10 9 2

) 3 2 8 -9 —4 y y

-3 -2 -8 9 4

34 6 -9 -6
(9) X v
-2 0 -8 6 0

( 4 1 13 -12 -3
(10)
5 -5 -11 15 9
(
\
(

|
o 1w _4) x )
|

(11)

4
-5 -4 -10 15 10
4

7015 -12 -1
(12)
-4 -7 -15 12 1

\

( 12 -
(13) 4 5 13 -12 -3 " y
\ -4 -5 -13 12 3

Table 4.2: Surviving anomaly-free charge sets and their prominent features for the

Hy x U(1)5 model.
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SL CR SR ML MR t = tg |bL _ bRI _ ITL ol ?
b trR br TL TR
4 3 11 -12 -5 )
(14) x v
-4 -3 -11 12 5/
( 4 9 13 -12 —3\
(1) x v
\ -3 -5 -15 9 -3
(4 8 12 —12 —4 )
(16) x v
\ -3 -4 -14 9 —2/
( 4 7 11 -12 -—5\
(17) v v
\ -3 -3 -13 9 -1
(4 6 10 —12 —6
(18) X v
\ -3 -2 =12 9 0
( 4 5 9 -12 -7
(19) X V4
\ -3 -1 -11 9 1
[
5 5 13 —15 -9
(20) v X
\ -5 =5 -13 15 9
( 5 4 14 -15 -6
(21) x Y
\ -5 -4 -14 15 6
[
5 3 13 -15 -7
(22) x Vv
\ -5 -3 -13 15 7
5 7 13 -15 -7
(23) X v
-4 -3 -15 12 1
5 6 12 -15 -8
(24) X v
—4 -2 =14 12 2
5 5 11 -15 -9
(25) X v
-4 -1 -13 12 3

Table 4.3: Surviving anomaly-free charge sets and their prominent features for the

Hy x U(1)5 model (cont.).
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Restriction No. of surviving solutions
with |Qy| < 15
All anomalies cancel 1143
|br, — br| > 3|tL — tr| and |by — bR| # 0 264
|7, — TR| > 3|tL — tr| and |7 — TR| £ 0 176
T > ()32 | 134
mr > (Z2)3/2 127
my < M 53
m, < M 52
moy 5
B> (@) 6
No. of overall survivors 6

Table 4.4: Selection process for anomaly-free charge sets of Hy X U(1); model. Each

restriction is implemented sequentially.

and again Table 4.4 enumerates how many solutions are discarded with each successive
restriction. Table 4.5 lists the survivors and their prominent features.
In this model the U(1) symmetry adequately differentiates between all correspond-

ing states of the 2nd and 3rd generations, so there is no ambiguity in the labelling.

4.2.3 H; xU(1); = SU(3) x SU:(2) x SU,(2) x SU5(2) x U(1) x U(1);¢

Here, the no-anomaly equations are exactly the same as for the Hy x U(1)s model.
However, the arbitrariness in the labelling of right-handed states is even greater for H3 x
U(1)y, extending to the 1st generation. This is because the U(1)y is the only symmetry
which differentiates between any corresponding right-handed states (e.g. dp, sk and
br). Table 4.6 enumerates how many solutions are discarded with each successive
restriction, and there are no survivors left over. This is because of the relabelling
freedom, which ruins the structure of the mass matrices. Put slightly differently, the
suppression of the elements My p,(1,2) and My p,(1,3) by the U;(1) symmetry in
the Hy X U(1)5 model (see Table 3.2) is absent here in the Hz x U(1)s model; these

elements consequently become larger and get involved in contributing to the eigenvalues
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S, CR SR ML MR
tr, =tp |bL-—bR|=lTL-—TR ?
b, tr br TL TR
1 1 13 13 1
(1) Vv v
-1 -1 -13 -13 -1
9 6 0 5 —4
(2) X v
-9 -6 0 -5 4
13 71 9 -3
(3) X v
-14 -11 1 -6 9
5 5 -1 1 -5
(4) v v
-5 =5 1 -1 5
1 -1 -15 -15 -1
(5) X X
-1 1 15 15 1
14 11 -1 6 -9
(6) X v
-14 -11 -6 9

Table 4.5: Surviving anomaly-free charge sets and their prominent features for the

Hy x U(1)f model.
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Restriction No. of surviving solutions
with |Qf| < 15
All anomalies cancel 514
|br, — br| > 3|t — tgr|and |by — bgr| # 0 59
|7 — Tr| > 3|t — tr| and |7, — TR| # 0 42
e > (Be)*? 41
M > (Ze)3/2 17
mg < M 3
my, < M, 3
me 2 me 0
o> () 0
No. of overall survivors 0

Table 4.6: Selection process for anomaly-free charge sets of H3 x U(1);y model. Each

restriction is implemented sequentially.

and consequently ruin the hierarchy. For example, before any relabelling we have from
(3.43):
My(1,2) ~ e84 ~ Mp(1,2) (4.40)

and since these elements often form m. and m, respectively, this can easily lead to

my ~ Me.

4.2.4 Comment

For all 3 models, the most restrictive condition is seen to be:

#0
|or, — bR| (4.41)
> 3t — trl
(see Tables 4.1, 4.4 and 4.6). But for the H, X U(1); model, the restrictions relating
to the 2nd generation masses cut the number of acceptable solutions from 127 to 6,
whereas for the Hy; X U(1)y model the drop is only from 69 to 25. The difference is

because the quark matrices of the latter model are compatible with two different matrix

textures (any one of Textures 1-2 and any one of Textures 3-5) whereas those of the
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former are really only compatible with one texture (any one of Textures 1-2 or any one
of Textures 6-8). It is consequently harder to dismiss charge sets for the H; x U(1)s
model. ’

Numerical analysis will thus now concentrate on the twenty-five H; x U(1)s models

and the six Hy X U(1)s models.

4.3 The Full Symmetry Groups

Having found promising anomaly-free flavour charge sets for the groups H; x U(1)y
and H,; x U(1)y, it is appropriate here to return to the question of whether any of these
sets is compatible with a larger group. That is, for a given set of U(1)s charges, can
we find some J; such that:

H;CJ; CSMG® (4.42)
and J; x U(1)s remains free of anomalies (¢=1,2). The maximal such J; would yield the
largest possible symmetry group compatible with each set of flavour charges, bearing
in mind the proviso of (2.1) that we are not interested in symmetries which act trivially
on all of the known 45 Weyl states.

Firstly, any anomalies involving U(1)s receive no contribution from the 1st gener-
ation states since all of the 1st generation flavour charges are zero. Hence the groups
H; xU(1)f (3=1,2) can be enlarged to include SU1(3) x SU1(2) x Uy(1) as a subgroup.
That is: ‘

Hl X U(].)f = SU(3) X [SU13(2) X SU2(2)] X [Ul(].) X Ugg(l)] X U(l)f (443)
can be enlarged to:
J] X U(l)_f = [SU1(3) X SU23(3)] X [SU](Q) X SU2(2) X SU3(2)]
X[U1(1) x Ua3(1)] x U(1)¢ (4.44)

and:
Hyx U(l)y = SU(3) x SU(2) x [Ur(1) x Ua(1) x Us(1)] x U(1)y (4.45)
can be enlarged to:

Jox U(l); = [SUL(3) x SUq3(3)] X [SU1(2) x SU,3(2)]
x[U1(1) x Up(1) x Us(1)] x U(1)s (4.46)

88



It is less trivial to find out if any further enlargement is possible. For each flavour
charge set, the anomalies for all possible J; x U(1)y (with J; satisfying (4.42)) are
calculated (¢=1,2). It is found that the largest anomaly-free J; x U(1); are in fact
given by (4.44) and (4.46) above.

Finally, it should be restated that it makes no difference to the results shortly
to be presented here whether the full symmetry group is H; x U(1)s or J; x U(1)¢
(i=1,2). The results depend only on the PCCSs, which are U;(1) x SU3(2) x U(1);
and Uj(1) x Uy(1) x U(1)y respectively. The significant point of this brief interlude is
that it re-emphasises the disappointing fact that in no Method 2 model can the full

symmetry group contain SMG?3 as a subgroup.

4.4 Numerology

4.4.1 The Data to be Fitted

We now take a little time out to state the numerical values of the masses and mixing
angles which we will attempt to fit with the parameters of our various ansatze.
For the quark and lepton masses, we follow [44]. At 1 GeV we take the running

masses to be:

m, = 5.2 MeV, m,=1.41 GeV,
mg = 9.2 MeV, m, =194 MeV, my = 6.33 GeV

me = 0.5 MeV, m, =105 MeV, m, =178 GeV (4.47)

The running ¢ and b masses shown here correspond to physical masses (i.e. “pole”
masses) of:

mPhYS = 1.53 GeV, mP™* = 4.89 GeV (4.48)

where the physical mass is defined as:

] S 4 S
mEBY® = m (mEMYe)[1 + 3—7l_ozs(m§hy )) (4.49)

and my is the running mass. For completeness, we also give the b running mass value:

mp(mp) = 4.39 GeV (4.50)
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Finally, we will assume that the ¢ mass lies in the range [42, 43]:
100 GeV < mP™® < 200 GeV (4.51)

The light quark masses (m,, mq, m,) were estimated using chiral perturbation tech-
niques and QCD spectral sum rules while the heavy quark masses (m., m;) were esti-
mated using the nonrelativistic bound state approximation and J/% and T sum rules
[44]. The physical masses of the leptons are very well known [45] and the running
masses are easily obtained from them.

For the mixing angles at 1 GeV we use the geometric mean of the ranges given by

the Particle Data Group [45]:

((Vid Vao Vi
vV = Vea Ves Vo
\ Via Vis Vi
( 0.9747 - 0.9759 0.218 — 0.224 0.002 - 0.007

= 0.218 — 0.224 0.9735 - 0.9751  0.032 — 0.054 (4.52)
\ 0.003-0.018  0.030—0.054 0.9985— 0.9995

We are justified in assuming that these are the “known” values at 1 GeV (rather than
some other scale) because it is shown in [44] that the running of the mixing angles is
very flat, all the way up to Mp. The elements which we will fit are V,,, Ve and V.
We will only require that the other predicted elements are compatible with the bounds
shown in (4.52).

None of the results to be presented here depend critically on the precise values
of the masses and mixings. Only the hierarchical features are important, and this is

consistent with our whole approach.

4.4.2 Running Masses and the Top Mass

Our ansitze are taken to hold at the Planck scale, Mp = 1.22 x 10'® GeV. This is a
legacy of our hopes for the anti-grand unified model of [37, 38] mentioned in Chapter 1
where the gauge group SM G2 (a good symmetry at Mp) is spontaneously broken just
below Mp to the SM@, its diagonal subgroup. Therefore in fitting the parameters of
our ansitze to the above data, we must modify the masses and mixing angles so that

they assume values appropriate to the scale Mp. In [44] the masses and mixings are
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evolved from 1 GeV to Mp using 2-loop SM renormalisation group equations (extensions
of the 1-loop equations given in Chapter 1), and we use their results to extract values at
Mp which we then take as input for our fits. The resulting 11 pieces of Planck scale data
(Mu,cy Md,spy Me,pu,r aNd Vs ch up) are hereafter denoted E; (i=1,...,11) respectively.

The running behaviour of these masses is complicated by the fact that the top.mass
is “heavy” i.e. y; is of comparable order of magnitude to g3 (the strong gauge coupling
constant). Equations (1.28), (1.29), (1.30) show that if all Yukawa couplings could be
neglected compared to the gauge couplings (in particular, g3), then the running of the
masses would depend only on the gauge couplings and (1.28) could be easily solved.
However, y; cannot be so neglected and the running of all masses thus depends on the
top mass. In [44] the running behaviour of all masses is shown for both mP™* = 100
GeV and mP™® = 200 GeV. The difference between these two possibilities, as far as the
running of the non-top fermions is concerned is seen to be small (even for my, bearing
in mind that we are only interested in order of magnitude features). We nevertheless
perform fits for both of these mP™* values.

Furthermore, we perform a fit (for each model), where mP™* is allowed to assume
any value between 100 and 200 GeV. Then, since the top mass is only evolved in [44]

for these two limiting values, we use a crude interpolation to calculate any intermediate
phys

top masses. That is, if m; >~ = 100 GeV corresponds to a running top mass m,(q) and
mPM¢ = 200 GeV to a running top mass ms(g), then we take:

my(my) = ma(m1) + (m(Mp) — ma(Mp)) [ ma(my) — my(m1) ]

D) —m 1) (4.53)

Again, since we are only interested in order of magnitude features, the crudeness of
this approximation is excusable. The valuable point of such an exercise is to determine
whether the top mass naturally lies between 100 and 200 GeV in a given model (without
worrying too much about its exact value) or whether this has to be “forced” on a model.

The relevant 2-loop results [44] for the running of y; are summarised in Table 4.7.

4.5 The Fitting Procedure

We now discuss how the parameters of our ansidtze are chosen to provide a best fit to

the data pieces E; (i=1,...,11). The general fitting procedure consists of several steps:
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mPP* (GeV) 100 200
Scale (GeV) || 102 | Mp | 10% | Mp
Y 0.54 | 0.16 | 1.14 | 0.65

Table 4.7: Running behaviour of y, for different values of mP™®,

1. Firstly, algebraic expressions for the 3 mass matrices are obtained ¢.e. col-
lectively denoting the parameter set of a particular model by &, we calculate
all matrix elements as functions of £, M;;(£), according to one of the ansitze
of Chapter 3. Note that all M;; are real and specified only up to factors of
o(1).

2. For each mass matrix we calculate MT(£)M(€) and algebraically diagonalise
it to leading order in small quantities, as discussed and illustrated in Chap-
ter 3. The diagonalisation process yields 3 eigenvalues from each matrix
which give the quark/lepton masses as functions of . For the quarks, the
corresponding eigenvectors are calculated - these give the mixing matrix V,
again as discussed and illustrated in Chapter 3. At this point, then, we have

11 algebraic expressions for known quantities:
mt(ﬁ) t=u,c,d,8,be,pu,7
Vus(f)a ‘/cb(g), Vub(ﬁ)

which we now respectively denote by fi(§) (i=1,...,11). We also have the
expression (from (3.1) and (3.2)):

(4.54)

my = |’7:§]3| a3US(£) (@)ws (a:[313 =1if tL =tR) (4.55)
so that |73§§| is a free parameter in our analysis which we can:
(a) use to fix the top mass by hand to correspond to either mP*® = 100
GeV or mfhys = 200 GeV; or
(b) incorporate in our fitting procedure so that the “most favourable”
top mass (corresponding to a physical mass between 100 and 200
GeV) is predicted for each model.
In any event, we absorb [y¥;|al; into (¢)ws so that all masses are now pre-

dicted in units of m;.
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3. We now construct a penalty function, x?(¢), whose minimum will indicate
the best fit possible of a particular ansatz to the data. Firstly, as our pro-
cedure is only designed to fit the data up to numerical factors, we demand
that a prediction which is inaccurate by a factor r receives the same penalty
as one which is inaccurate by a factor of 1/r, where r is some real number.
In addition, we quantify our oft-repeated statement that our predictions
are accurate only up to factors of (1) by assuming that the error on each
prediction f; is a factor of e. This is numerically convenient, but it should
be borne in mind that it is perhaps too strict since we are only interested
in order of magnitude features. Should some predictions creep outside this
assumed error, the model in question should not necessarily be dismissed -
our models should live or die purely on the basis of their order of magnitude
predictions (a factor of 5 is probably more realistic). Note further that this
“theoretical” error on the f; completely swamps the “experimental” error
on the E;. We choose the simplest function which meets our requirements:

11

X*(€) = ) _llog fi(€) ~ log E;)? (4.56)

i=1
4. Finally, we minimise this function for any particular model and ansatz using
a routine from the NAG library (which implements a sequential quadratic
programming method) and run our Mp results back down to 1 GeV for

presentation here.

The minimisation procedure is complicated by the fact that it is often unclear how
exactly the functions f;(£) should be specified i.e. which matrix elements should be
fitted to a given mass or mixing angle. Often a given mass matrix is compatible with
more than one of the textures of Chapter 3. This difficulty was somewhat glossed over
in the diagonalisation example of Chapter 3, so we illustrate it now with Charge Set 2
of the H; x U(1)s model (see Table 4.2), using the product ansatz (in fact, this is the
example of Chapter 3).
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We concentrate on the quark mass contributions to x2. Using Charge Set 2 from

Table 4.2 and the product ansatz (3.43), the quark mass matrices are seen to be:

WX UM A%, )
My = THMAf 75562 7{;}3/\}
\ MAs rhe)] 15 )
(98X ABMar, 2B )
Mp = | MM rhaer; 1R} (4.57)

\‘731'\1)‘,: ’7:?262/\? 13 f }

where we maintain the 75’D for clarity. Then, bearing in mind the hierarchy we are
trying to reproduce, we have two real choices in choosing the various f;(A1,€2,Af).

Recalling the approximations (3.7), we can take:

mp 7£A§ (4.58)
and either:
U 3
M ™ Yi0€a, My ™~ )\
e = 7 M =T if e > Aty (4.59)
m, ~ YA}, ma~ {3
or:
A2¢
~ S MAy, my —“vn—l— i
»yD - /\21‘2 if e < Al)\f (460)
= 721’\1/\f, mqg = +Z _,‘]\'f—

We thus define the f; (i=1,...,5) to be:

=
[

=X, =&, fi=,

fa= )}, fs =X}

A=32, =My, fo=22,
fa=MA3, fs =%

for e > A Ay
(4.61)
for €5 < /\lAf

Thus, x? is non-differentiable wheh €2 = M Ay and this is a potential problem in the
minimisation process. In practice, the x> minimum almost invariably lies away from
such regions of parameter space. Nevertheless, we take the precaution of making a
preliminary analysis of each model by hand and then (in this illustrative model) min-
imising x2 using the first set of f; (i=1,...,5), then separately minimising X2 for the
second set of f; and finally minimising the non-differentiable x% (which has a choice

of which expressions to assign to each f;, depending on the relative sizes of €3 and
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A1As). Furthermore, a mesh is constructed in parameter space in order to provide a
large number of initial solution estimates for the NAG routine.

For simplicity, we have chosen to illustrate this problem with a model where the
quark mass origins are unclear. However, it is much more common to meet a closely
related problem: the mixing angle origins are virtually always unclear, as a glance at
V1,2,3 of Chapter 3 reveals. There are always competing contributions for each mixing
angle, and we define f; (¢=9,10,11) to be whichever is the biggest contribution at any
particular point in parameter space. This introduces more non-differentiable points,

and these are dealt with as above.

4.6 H; xU(1);: Results & Discussion

We analyse the H; X U(1)s models using all three ansdtze (recall that the PCCSs are
Ui(1) x SUy(2) x U(1)5). Within each ansatz, many features of the x? fits are common
to virtually all of the 25 models (the flavour charges are given in Tables 4.2 and 4.3).
We will therefore discuss these features quite generally while using one specific model
for illustrative purposes viz. Charge Set 2. As will shortly be seen, this model provides
neither the best nor the worst fits; it is fairly typical in this respect. We nevertheless

favour this model not only because its charges satisfy:

tr = tr

lbr —br| = |rL — 7R (4.62)

but perhaps most importantly because it has the smallest charges of all the 25 sets (its
flavour charges satisfy |Qf| < 3). In fact, demanding that (4.62) be satisfied and also

that the fermion charges satisfy:

s, = =br, ¢p=-tr, SR=—-br, pL=-TL, KR = —TR (4.63)

yields Charge Set 2 as the unique solution to the no-anomaly equations for Hy x U(1)s
(a candidate second solution is equivalent to (4.63) after a simple relabelling of the
right-handed states). We call charges satisfying (4.63) DKW solutions, after [26]. As
can be seen from Tables 4.2 and 4.3, (4.63) holds for many of the 25 charge sets; it is

a very tidy way of cancelling many anomalies between two generations of fermions.
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We restate that all results are given for both mP™* = 100 GeV and mP™® = 200
GeV. Furthermore, the physical top mass is allowed to vary between these two values,

and corresponding results are shown if a physical top mass mir® satisfying:
100 < mi™¢(GeV) < 200 (4.64)

can provide a lower x? than either of these two extremes.

4.6.1 Product Ansatz

Table 4.8 shows the x% minima for all 25 charge sets, using the product ansatz.
It also shows the corresponding values of a%, the suppression factor on My(3,3) (see
(4.55)) and (where appropriate) results for miree,

Recall that in order to generate a ¢t — b splitting we demanded:
lbr, — br| 2 3L — trl (4.65)
as opposed to the more stringent:

it = tgr

b, # bg (4.66)

In Table 4.8, those models with 7 = tg have a3U3 = 1 whereas the others do not. As

mentioned already, the general top mass expression is:
me = 1% % () (4.67)

so that any suppression (ag3 < 1) must generally be compensated by 'y;%. But the 73,

are assumed to be of O(1) which we might generously interpret to mean:

I35l < 5 (4.68)
Consistency with (¢)ys = 174 GeV therefore requires that the inequalities:

0.11  for mP"* = 100 GeV

U
az3 2 b
0.23  for m{ ° = 200 GeV

(4.69)

be satisfied. Some doubt may thus be cast on Charge Sets 4, 9 and 25, at least for
mPY® = 200 GeV (see Table 4.8).

96



Hy; x U(1)s: Product Ansatz Results
Charge | mfree | x2 for mP™(GeV) = | ¥, for mP™(GeV) =
Set | (GeV)| 100 200 mfe | 100 200  miree
1 - 9.88 17.1 - 0.38 0.26 -
2 - 8.94 14.4 - 1.0 1.0 -
3 - 9.34 15.7 - 0.60 0.49 -
4 - 9.33 11.8 - 0.25 0.16 -
5 - 18.0 27.5 - 1.0 1.0 -
6 - 9.54 16.2 - 0.51 0.40 -
7 - 9.23 15.3 - 0.70 0.62 -
8 - 9.98 125 - 0.62 0.43 -
9 - 12.7 133 - 0.32 0.14 -
10 - 13.7 28.6 - 1.0 1.0 -
1 - 18.6 38.9 - 0.78 0.71 -
12 - 9.62 16.4 - 0.47 0.36 -
13 - 9.15 15.1 - 0.77 0.70 -
| 14 - 9.39 14.2 - 0.71 0.56 -
15 - 7.51 9.87 - 0.60 0.50 -
16 - 734 9.28 - 0.77 0.70 -
17 - | 720 873 - 1.0 1.0 -
18 104 | 7.82 8.68 7.81 0.73 0.64 0.72
19 120 | 9.81 10.1 9.71 0.39 0.28 0.35
20 - 9.51 17.2 - 1.0 1.0 -
’ 21 - 9.18 13.5 - 0.77 0.67 -
22 - 10.7 18.5 - 0.54 0.41 -
23 - 7.80 9.46 - 0.78 0.70 -
24 - 9.06 10.2 - 0.56 0.40 -
25 - 11.8 13.9 - 0.28 0.18 -

Table 4.8: x? values for the Hy x U(1)s models (product ansatz). Also shown are: a3,
the suppression factor on My(3,3); and 100 < mi™® (GeV) < 200, if applicable.
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Charge mP™ | m, m, m, mq m, mP™* | m,  mphrs

Set  (GeV) | (MeV) (MeV) (GeV) | (MeV) (MeV) (GeV) | (MeV) (GeV)
1 100 1.6 29 4.6 5.0 220 15 5.0 1.6
200 1.6 28 8.7 6.4 170 27 6.4 2.2
2 100 1.6 28 3.7 4.7 220 12 4.7 1.9
200 1.5 26 6.3 5.9 160 20 5.9 2.8
3 100 1.6 28 4.1 4.9 220 14 4.9 1.7
200 1.6 27 7.4 6.2 160 23 6.2 2.5
4 100 0.88 46 2.0 4.3 220 7.1 4.3 3.2
200 0.99 32 3.0 4.8 160 10 4.8 5.1
5 100 1.8 67 13 8.7 330 30 1.5 4.8
200 1.0 170 5.5 4.9 830 18 4.9 13
6 100 1.6 29 4.3 4.9 220 14 4.9 1.7
200 1.6 27 7.9 6.3 170 24 6.3 2.4
7 100 1.6 28 4.0 4.8 220 13 4.8 1.8
200 1.6 26 7.0 6.1 160 22 6.1 2.6
8 100 1.6 30 4.7 6.9 170 15 2.6 2.7
200 1.2 30 4.2 5.7 140 14 5.7 3.7
9 100 0.71 65 2.3 3.4 310 8.0 3.4 1.8
200 0.73 58 2.5 3.6 280 8.6 3.6 2.0
10 100 1.6 52 7.6 8.0 250 23 1.9 3.8
200 1.9 60 16 9.4 290 45 2.1 7.8
11 100 1.8 71 12 8.9 340 35 1.2 5.5
200 2.0 100 31 9.8 490 85 0.98 13
12 100 1.6 29 4.3 4.9 220 14 4.9 1.6
200 1.6 27 8.1 6.3 170 25 6.3 2.4
13 100 1.6 28 3.9 4.8 220 13 4.8 1.8
200 1.6 26 6.8 6.1 160 21 6.1 2.6

Table 4.9: Masses for the H; X U(1)y models with the product ansatz. All masses are

running masses evaluated at 1 GeV unless otherwise stated.
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Charge mP™ | m, my m, mq my,  mP™ | m,  mBhys
Set (GeV) | (MeV) (MeV) (GeV)| (MeV) (MeV) (GeV) | (MeV) (GeV)
14 100 1.6 28 4.2 6.2 170 14 3.1 2.4
200 2.1 24 3.7 10 120 12 10 3.3
15 100 1.7 35 2.6 4.5 320 9.2 4.5 1.0
200 1.8 33 3.8 5.6 250 13 5.6 1.2
16 100 1.7 35 2.5 4.4 320 8.7 4.4 1.1
200 1.8 33 3.4 5.5 250 12 5.5 1.2
17 100 1.7 35 2.3 4.3 320 8.2 4.3 1.1
200 1.8 33 3.1 5.3 255 11 5.3 1.2
18 100 1.6 30 2.5 4.0 290 8.8 4.0 1.2
200 1.7 26 3.4 4.9 210 11 4.9 1.4
19 100 0.85 54 1.9 4.2 260 6.9 4.2 1.7
200 0.96 38 2.6 4.7 180 9.2 4.7 2.2
20 100 1.8 36 6.4 5.0 180 12 5.0 1.6
200 1.8 39 14 6.2 130 21 6.2 2.2
21 100 1.6 28 4.1 5.8 180 13 3.5 2.2
200 1.2 30 5.0 6.1 140 16 6.1 3.1
22 100 1.6 31 5.1 7.5 160 17 2.2 3.0
200 1.1 30 3.7 5.4 150 12 5.4 4.0
23 100 1.6 29 2.7 4.2 270 9.3 4.2 1.3
200 1.6 25 3.8 5.2 190 13 5.2 1.6
24 100 1.5 26 3.1 3.8 250 11 3.8 1.5
200 1.1 33 3.1 5.2 160 11 5.2 2.4
25 100 0.80 46 2.6 3.9 220 9.0 3.9 2.5
200 0.88 30 4.0 4.3 150 13 4.3 3.9

Table 4.10: Masses for the Hy X U(1); models with the product ansatz (cont.). All

masses are running masses evaluated at 1 GeV unless otherwise stated.
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Charge mP™s (GeV)
Set 100 200
Vus Vo Vi | Vus Vo Vb
1 0.53 0.010 0.0063 | 0.62 0.0040 0.0032
2 0.53 0.012 0.0076 | 0.62 0.0052 0.0041
3 0.53 0.011 0.0069 | 0.62 0.0045 0.0036
4 0.62 0.015 0.019 | 0.71 0.011 0.011
5 0.71 0.012 0.012 | 0.54 0.0014 0.009
6 0.53 0.011 0.0067 | 0.62 0.0043 0.0035
7 0.53 0.011 0.0071| 0.61 0.0047 0.0037
8 0.66 0.019 0.0064 | 0.69 0.0064 0.0068
9 0.39 0.028 0.068 | 0.37 0.027 0.067
10 0.71 0.011 0.011 | 0.71 0.0044 0.044
11 0.71 0.017 0.010 | 0.71 0.0080 0.0040
12 0.53 0.011 0.0066 | 0.62 0.0042 0.0034
13 0.53 0.012 0.0072 | 0.61 0.0048 0.0038
14 0.62 0.017 0.067 | 0.71 0.0065 0.0065
15 0.47 0.015 0.0080 | 0.54 0.0067 0.0043
16 0.47 0.016 0.0084 | 0.54 0.0073 0.0047
17 0.46 0.017 0.0089 | 0.53 0.0080 0.0050
18 0.45 0.024 0.012 | 0.51 0.013 0.0078
19 043 0.017 0.035 | 0.43 0.012 0.025
20 0.50 0.0098 0.0057 | 0.58 0.0039 0.0028
21 0.60 0.016 0.0069 | 0.68 0.0053 0.0056
22 0.68 0.022 0.0061 | 0.69 0.0075 0.0078
23 0.47 0.021 0.011 | 0.54 0.010 0.0067
24 0.45 0.030 0.015 | 0.48 0.0083 0.016
25 0.42 0.020 0.044 | 0.41 0.015 0.034

Table 4.11: Mixing angles for the H; x U(1)s models with the product ansatz.
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Charge mP® (GeV)
Set 100 200
A1 €9 Ag Textures A1 € Ag Textures
My Mp My Mp
1 0.027 0.0063 0.38 | 4 4 10.015 0.0032 0.26 | 4 4
2 0.036 0.0076 0.34 | 4 4 10.023 0.0041 0.22| 4 4
3 0.031 0.0069 0.60 | 4 4 |[0.018 0.0036 0.49| 4 4
4 0.019 0.023 025 1 1 |0.011 0.011 016 1 1
5 0.038 0.016 0.75| 4 4 (0020 032 046 1 1
6 0.029 0.0067 0.71 | 4 4 {0.017 0.0035 063 4 4
7 0.033 0.0071 0.70 | 4 4 10.020 0.0037 062 4 4
8 0.031 0.0064 0.62| 4 4 |0.016 0.0071 0.43] 1 1
9 0.024 0.0018 0.57 | 4 4 10.094 0.0012 037 1 1
10 0.037 0.014 0.79( 4 4 |0.025 0.011 0.71| 4 4
11 0.035 0.013 0.78 | 4 4 |0.023 0.0090 0.71| 4 4
12 0.029 0.0066 0.78 | 4 4 10.017 0.0034 0.71| 4 4
13 0.033 0.0072 0.77 | 4 4 10.021 0.0038 0.70 | 4 4
14 0.033 0.0067 0.71| 4 4 |[0.021 0.0065 0.56 | 1 1
15 0.032 0.0062 0.78 | 4 4 |0.019 0.0031 0.70 | 4 4
16 0.034 0.0064 0.77 | 4 4 |0.021 0.0032 0.70 | 4 4
17 0.037 0.0068 0.77| 4 4 10.024 0.0035 0.69| 4 4
18 0.033 0.0047 0.73| 4 4 |10.020 0.0020 0.64| 4 4
19 0.021 0.0069 0.62| 1 1 {0.013 0.0021 053] 1 1
20 0.038 0.0057 0.76 | 4 4 |0.024 0.0028 0.69| 1 1
21 0.034 0.0069 0.77 | 4 4 (0.019 0.0060 0.67] 1 1
22 0.030 0.0061 0.74 | 4 4 10.014 0.0082 0.56 | 1 1
23 0.034 0.0052 0.78 | 4 4 |0.021 0.0024 0.70 | 4 4
24 0.030 0.0035 0.75| 4 4 [0.015 0.0027 0.63| 1 1
25 0.019 0.0050 0.66 | 1 1 {0011 0.0014 0.56| 1 1

Table 4.12: Fit parameters and the corresponding mass matrix textures for the H; x
U(1)y models with the product ansatz.
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Note that only 2 Charge Sets (18 and 19) naturally feature a top mass in the required
range. For all other models, x? rises steadily from mP™*® = 100 GeV to mPM* = 200
GeV.

Tables 4.9 and 4.10 show the quark and lepton masses corresponding to the x?2
minima, while Table 4.11 shows the corresponding mixing angles. For completeness,
the parameter values and corresponding quark matrix textures at the x> minima are
shown in Table 4.12.

The product ansatz expressions for the matrices of Charge Set 2 are (from (3.43)):
(A Mead, A )
A1Ag € A%
\ MAs 62)\2} 1 }
X Ned; Ay )
Mp =~ | a3 o3 Al
| e ¥

My

R

(23 XeX A3 )
Ay e Y (4.70)
M eX a2

M,

1

N—

At the x? minima we have the Mp-scale predictions:

m, ~ Mi(3,3) ~ A%, m, >~ M(2,2)~ )%, me~ Mi(1,1)~ )3

my > Mp(3,3) = A}, m, > Mp(2,1) >~ M)A}, mg Mﬂ%@ ~ 5;%’-
my ~1 mc:MU(2,1):AlAf, My ™~ MUAI/[:,I;I;’ 2.2 ::5:1;—2
(4.71)
and:
Viex 8B ~ 3%, Vax pan 2 Md VaxVuVaxa  (472)
For mfhy ® = 100 GeV the mass and mixing hierarchies are fairly good, but there

is a marked deterioration when mfhys = 200 GeV. Attention is drawn to the following

features, which are in fact common to many of the charge sets here:

1. Large my.
This is a result of the Mp-scale prediction:

o D (4.73)
my m.
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a relation which gets less realistic as m; rises. For DKW charge sets this
prediction is automatic for quark mass matrices having Textures 1 or 2. It
is common for Textures 3, 4 and 5 because most DKW charge sets satisfy
SR, ¢R > SL, (sgr and cp are limited only by |sg|,|cr| < 15 whereas sf, is
limited to |sz| < 5 due to the conditions As = 3sg, + pr, = 0 and |pr| < 15)

so that:
|sr| = ler| = |sL — sr| — |sL — ¢l (4.74)

Then, since we have a DKW charge set in mind, we have:
|srl — |er| = |b — br| — |bL — tg] (4.75)

which implies (4.73) for matrix Textures 3, 4 and 5.

This argument does not hold for non-DKW charge sets and indeed many
of these sets have a better m;; but some are still burdened by (4.73) or

something close to it.

. Large m,.

This is due to the almost universal Mp scale relation:
m, ~ my (4.76)

and the large my,.

. Large m, (especially at mP™® = 200 GeV).

This is bound up with predictions like (4.73).

. Small m, /large m;/large V,,.

For Textures 1 and 2 we often get the Mp-scale prediction:

ms o My (4.77)
whence the renormalisation group gives at 1 GeV [44]:

ms ~ 5my, (4.78)
which should be compared with the desired relation:

ms ~ 2m, (4.79)
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hence giving a high m,/low m, (a low m, is the favoured option due to
predictions like (4.73)). Also, the scale of V,, (usually originating from
Mp(2,1)/Mp(2,2)) is set by:

1/3
M <-’5’—d> ™~ 01) (4.80)

€2 my mg

Textures 3, 4 and 5 often predict at Mp (as here for Charge Set 2):

Vus = — (481)

L}
Running this down to 1 GeV (V,, is practically constant, m, runs by about

10 % and m; by a factor of 5-6 [44]) gives:

Vasms (4.82)
my
which should be compared with the desired relation:

Vusms
my

1
~ — 4.8:

= (4:83)
The low m, and high V,,, are then immediate, while m; again cannot stray
too high due to relations like (4.73).
. Low mg/high m,.
For Texture 1, this is due to the universal Mp-scale relation:

My & Mg~ Me (4.84)

while for Texture 4, the Mp-scale relation:

My ~ My (4.85)

is still common, although there is scope for some splitting (Charge Sets 5,
8, 10, 11, 14, 21, 22). This is an unexpected bonus (recall we left the 1st
generation states uncharged and so naively we could not expect splitting),

but only a small one.

. Small V (especially at mPMe = 200 GeV).

This is due to the common Mp-scale prediction:

Vip o~ —< (4.86)



seen most frequently for DKW charge sets with matrices of Texture 3, 4 or

5. Some models even feature:
Vcb < — (4.87)

7. Good V.
This is due to the Mp-scale prediction:

Vub ad Vuchb (488)

which is often true algebraically, or at least numerically, and the large V,,

compensating the small V.

Most of the problems mentioned here are relatively minor, the only serious one (i.e.

which is unacceptable order of magnitude wise) being the low Vi, at mP™* = 200 GeV.

4.6.2 Mixed Ansatz

Table 4.13 shows the x? minima, mi"® and aJ, for all 25 charge sets, using the mixed

ansatz. Consistency of mP™® with both (#)ws = 174 GeV and 7Z = O(1) casts doubt
on Charge Sets 1,9 and 25 (for mP™* = 200 GeV). Several charge sets now feature top
masses which lie naturally in the range 100-200 GeV, while the preference of the rest is
divided between the two extremes (recall that with the product ansatz, the preference
of such models was invariably for mfhy ® =100 GeV). A general deterioration in x? is
evident, although there are some notable exceptions (e.g. Charge Sets 5, 10 and 11).
Tables 4.14 and 4.15 show the fermion masses corresponding to the x? minima,
while Table 4.16 shows the mixing angles. Finally, Tables 4.17 and 4.18 show the

parameter values and corresponding quark matrix textures for all 25 charge sets. The

mixed ansatz expressions for the mass matrices of Charge Set 2 are, from (3.47):

( e~ VI8 ege~VIbentea—881r  g—V16g11+es +8g1s
My =~ e—VE11+8g —2&11 €2 e—Vigr
\ e~ Ve tes+2gi eze—\/‘lgﬁ 1
/ e~ V9n ege~ Vi teatdg  g—V4guter —48i
M ~ —V8111+9gx —681¢ —V4gf —V16gg
D e €€ e
\ e_ V g11 +9&ﬁ'+6g1{ 62e_ V legff e_V 4gﬂ'
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Hy x U(1)y: Mixed Ansatz Results
Charge | mfree | x2 for mP™*(GeV) = | af, for mPM™*(GeV) =
Set | (GeV)| 100 200 mfre | 100 200  miree
1 163 | 123 121 120 |0.29 0.20 0.22
2 - 14.7 16.6 - 1.0 1.0 -
3 108 | 13.0 13.5 12.9 0.49 0.40 0.47
4 - 8.42 10.5 - 0.33 0.25 -
5 - 7.76 154 - 1.0 1.0 -
6 122 | 12.7 129 12.6 0.41 0.31 0.37
7 - 13.4 14.2 - 0.61 0.52 -
8 107 | 9.99 10.8 9.97 0.51 0.42 0.49
9 - 14.6 28.1 - 0.29 0.16 -
10 - 7.70 129 - 1.0 1.0 -
11 - 7.85 16.1 - 0.60 0.55 -
12 130 12.6 12.6 12.4 0.37 0.27 0.32
13 - 13.6 14.7 - 0.68 0.61 -
14 102 11.2 12.2 11.2 0.62 0.53 0.61
15 - 13.8 129 - 0.52 0.42 -
16 - 13.9 129 - 0.70 0.62 -
17 - 14.1 12.9 - 1.0 1.0 -
18 - 14.3 13.0 - 0.66 0.57 0.58
19 - 144 24.7 - 0.40 0.26 -
20 101 | 11.6 244 11.6 1.0 1.0 1.0
21 - 11.9 13.0 - 0.69 0.62 -
22 102 |9.05 105 9.05 | 0.43 0.34 0.42
23 - 14.1 133 - 0.71 0.64 -
24 - 14.5 23.5 - 0.48 0.34 -
25 - 14.8 144 - 0.31 0.19 -

Table 4.13: x? values for the Hy x U(1); models (mixed ansatz). Also shown are: a%;,

the suppression factor on My(3,3); and 100 < mi™® (GeV) < 200, if applicable.
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Charge mfhy s Me my, m, mg my mfhy s Moy mphys

Set  (GeV) | (MeV) (MeV) (GeV) | (MeV) (MeV) (GeV) | (MeV) (GeV)
1 100 11 35 0.81 4.4 1000 3.3 2.3 3.8
200 1.1 29 0.98 4.5 710 3.9 2.6 5.4
2 100 1.3 26 1.2 2.2 880 4.7 4.0 4.5
200 1.3 22 1.7 2.0 570 6.4 4.8 7.4
3 100 1.2 31 0.92 3.3 950 3.7 2.9 4.2
200 1.2 26 1.2 3.2 640 4.7 3.4 6.4
4 100 1.2 53 1.2 3.7 450 4.7 2.5 4.4
200 1.2 46 2.0 5.3 250 7.1 2.0 7.9
5 100 0.96 43 2.6 7.3 350 9.1 2.5 4.0
200 0.86 53 6.1 8.5 270 19 1.9 8.4
6 100 1.1 33 0.87 3.7 980 3.6 2.7 4.0
200 1.1 27 1.1 3.6 670 4.4 3.1 6.0
7 100 1.2 30 0.99 3.0 930 4.0 3.2 4.3
200 1.2 24 1.3 2.8 620 5.1 3.8 6.7
8 100 1.3 36 1.1 3.3 460 4.2 3.3 4.3
200 1.2 34 1.6 3.7 270 5.9 3.3 7.8
9 100 14 78 0.77 3.2 1700 3.2 2.6 3.1
200 1.7 470 0.55 8.5 2300 24 8.5 9.8
10 100 1.0 36 1.9 6.0 320 6.9 2.7 4.4
200 0.88 43 4.0 6.6 250 13 2.3 8.9
11 100 1.1 55 2.5 6.9 370 8.9 2.1 4.1
200 1.1 68 6.3 7.6 330 20 1.5 8.9
12 100 1.1 33 0:85 3.9 990 3.5 2.6 4.0
200 1.1 28 ° 1.1 3.8 680 4.2 3.0 5.9
13 100 1.3 29 1.0 2.8 920 4.1 3.4 4.4
200 1.2 24 1.4 2.6 610 5.3 4.0 6.9

Table 4.14: Masses for the H; X U(1)s models with the mixed ansatz. All masses are

running masses evaluated at 1 GeV unless otherwise stated.
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Charge mfhys Me m, m, my m, mfhy s My mphys
Set  (GeV) | (MeV) (MeV) (GeV) | (MeV) (MeV) (GeV) | (MeV) (GeV)
14 100 1.3 33 1.1 2.9 550 4.3 3.5 4.4
200 14 26 1.5 3.3 260 5.5 4.1 7.2
15 100 1.2 63 0.67 3.8 1500 2.9 1.8 3.0
200 1.2 56 0.67 3.7 1200 2.9 2.1 3.6
16 100 1.2 61 0.68 3.3 1500 29 2.0 3.1
200 1.3 55 0.69 3.1 1200 29 2.3 3.8
17 100 1.3 60 0.70 2.9 1400 3.0 2.2 3.2
200 1.3 54 0.73 3.5 1100 3.1 2.7 4.0
18 100 1.3 59 0.74 2.5 1400 3.1 2.5 3.3
200 14 52 0.79 3.4 1100 3.3 3.1 4.4
19 100 14 57 0.81 24 1400 3.3 2.9 3.5
200 1.8 250 0.58 14 1200 2.6 8.5 12

20 100 2.0 32 2.0 2.0 310 3.2 5.7 3.7
200 1.9 180 3.1 9.1 250 3.7 9.1 22

21 100 1.3 31 1.1 2.7 600 4.4 3.6 4.4
200 1.3 28 1.6 2.7 360 6.1 4.0 7.3
22 100 1.3 41 1.1 3.6 410 4.2 3.0 4.3

200 1.2 38 1.7 4.3 260 6.3 2.7 7.7

23 100 1.3 50 0.78 24 1200 3.3 2.8 3.6
200 1.4 43 0.89 2.8 900 3.6 3.4 4.9

24 100 1.4 48 0.85 2.1 1200 3.5 3.2 3.7
200 1.7 160 0.54 11.7 760 2.4 8.4 14

25 100 1.5 45 0.96 2.0 1200 3.9 3.6 3.9
200 1.7 29 0.90 24 620 3.7 4.7 5.3

Table 4.15: Masses for the Hq x U(1)s models with the mixed ansatz (cont.). All masses

are running masses evaluated at 1 GeV unless otherwise stated.

108



Charge mP™® (GeV)
Set 100 200
Vus Vb Vi | Vus Vo | )
1 0.40 0.043 0.018 | 0.45 0.033 0.017
2 0.52 0.034 0.021 | 0.60 0.026 0.019
3 0.45 0.038 0.019 | 0.52 0.028 0.017
4 0.49 0.070 0.029 | 0.66 0.064 0.021
5 0.53 0.011 0.0058 [ 0.70 0.0076 0.0035
6 0.43 0.039 0.019 | 0.50 0.030 0.017
7 0.47 0.036 0.020 | 0.55 0.027 0.018
8 0.45 0.041 0.021 | 0.52 0.031 0.017
9 0.34 0.12 0.045 | 0.40 0.041 0.14
10 0.48 0.016 0.0089| 0.64 0.011 0.055
11 0.59 0.019 0.0076 | 0.71 0.013 0.0039
12 0.42 0.040 0.019 | 049 0.030 0.017
13 0.49 0.036 0.020 | 0.56 0.027 0.018
14 0.47 0.032 0.017 | 0.51 0.024 0.014
15 0.31 0.062 0.021 | 0.34 0.052 0.019
16 0.33 0.060 0.021 | 0.36 0.049 0.019
17 0.34 0.057 0.021 | 0.38 0.046 0.019
18 0.37 0.054 0.021 | 0.41 0.045 0.020
19 0.39 0.078 0.033 | 0.45 0.022 0.083
20 0.50 0.025 0.014 | 0.39 0.0028 0.018
21 048 0.031 0.017 | 0.54 0.024 0.015
22 0.44 0.051 0.025 | 0.58 0.041 0.019
23 0.40 0.049 0.021 | 0.45 0.040 0.020
24 0.42 0.058 0.027 | 0.44 0.014 0.059
25 044 0.10 0.052 [0.38 0.025 0.14

Table 4.16: Mixing angles for the H; x U(1)s models with the mixed ansatz.
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Charge mP™ = 100 GeV

Set € gJ11 garf g1y Textures
My Mp
1 0.044 11.8° 151 134 | 4 3
2 0.022 113 270 145 | 4 3
3 0.034 11.6 0.506 0.738 | 4 3
4 0.044 11.5 120 0.719] 4 3
5 0.11 121 0.396 0.711} 4 3
6 0.037 11.7 0.204 0479 | 4 3
7 0.030 11.5 0.248 0.500 | 4 3
8 0.034 114 0.465 0439 | 4 3
9 0.016 11.1 0.388 0.387( 4 3
10 0.079 11.9 0.224 0435 4 3
11 0.099 11.8 0.258 0.510| 4 3
12 0.039 11.7 0.109 0353 4 3
13 0.028 11.5 0.147 0.376 | 4 3
14 0.030 11.3 0.234 0.346 | 4 3
15 0.036 11.7 0.105 0.300 | 4 3
16 0.032 11.6 0.123 0.317| 4 3
17 0.027 11.5 0.147 0.330| 4 3
18 0.023 11.3 0.177 0.336| 4 5
19 0.018 11.2 0.213 0325 4 5
20 0.016 10.4 0.218 0.316 | 4 4
21 0.028 11.3 0.140 0.283 | 4 3
22 0.038 11.4 0.181 0.258 | 4 3
23 0.023 11.3 0.114 0.280| 4 3
24 0.019 11.2 0.132 0.273| 4 5
25 0.015 11.1 0.153 0.250 | 4 5

Table 4.17: Fit parameters and the corresponding mass matrix textures for the H; x

U(1)s models with the mixed ansatz.

110



Charge mPPY® = 200 GeV
Set €2 g1t 9ff g1f Textures
My Mp
1 0.030 15.2 2.61 1.42 4 3
2 0.012 14.6 4.57 1.21 4 3
3 0.021 14.9 0.861 0.728' 4 3
4 0.023 14.7 191 0.195 4 4
5 0.084 15.7 0.569 0.638 4 3
6 0.024 15.0 0.348 0.487 | 4 3
7 0.018 14.8 0.421 0474 4 3
8 0.022 14.7 0.767 0.275 4 4
9 0.056 13.9 0.815 0.177 1 2
10 0.059 15.6 0.328 0.392 | 4 3
11 0.065 15.2 0.357 0.417 4 3
12 0.026 15.1 0.187 0.364 4 3
13 0.017 14.8 0.248 0.347 4 3
14 0.018 14.4 0.405 0.154 4 4
15 0.023 14.8 0.190 0.318 4 3
16 0.019 14.7 0.223 0.321 4 5
17 0.016 14.6 0.264 0.313 4 5
18 0.012 14.4 0.316 0.285 4 5
19 0.057 13.9 0450 0.135 | 1 2
20 0.057 13.7 0.377 0.109 1 1
21 0.017 14.7 0.232 0.177 4 3
22 0.026 14.7 0.289 0.132 4 4
23 0.013 14.5 0.202 0.238 4 5
24 0.0567 13.9 0.297 0.0827 | 1 2
25 0.0063 13.9 0.300 0.130 4 5

Table 4.18: Fit parameters and the corresponding mass matrix textures for the H; X

U(1)s models with the mixed ansatz (cont.).
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e~ V91 €ge~V30811+98a —36811 o= V/36811+98x +3681

M, ~ e— V9811 +8f —6g1s €ge~ V288 e—V1i6gs (4.89)
e Vv 9g11+gfx +6811 €2e_V 16gg e VvV 4gx

Then our algebraic Mp-scale predictions are (at the x2 minima):

mr ~ Mi(3,3), m,~M(2,2), m.~M(1,1)
mp ~ Mp(3,3), ms~ Mp(2,1), mg=~ Mp(1,2) (4.90)

My(1,1)My(2,2
my~1 m, ~ My(2,1), m, ~ —ULM—UZ(ﬁf—)

and:

Vis = 3208, Vo o JEG3 Vi ~ VauVa (4.91)
Note that several matrix elements are actually algebraically equivalent to the corre-
sponding elements in (4.70) with the natural identification of (3.50). Those which
contribute to x? and are inequivalent are My p(2,1), My p(3,1) and Mp(1,2).

Consider the down quark matrix. As before we have the algebraic predictions:

ms =~ Mp(2,1)
Vs ]
u ——| Mp(3,1 .
Vo = [5e] M3, (492)

In the product ansatz case, m; and V,; were both good (although V,,;, was a little high).
But now the contrasting contributions of g; y to Mp(2,1) and Mp(3,1) cause problems.
For example, in order to numerically hold M p(2,1) as low as it was previously we would

have to choose g5 to lie on its lower limit:

915 = —/91195¢ (4.93)

(constraints on the metric parameters are easily derived from the fact that G must be
positive semi-definite). But then Mp(3,1) would be much larger than it was previously,
causing Vy; to be too large. Conversely, numerically holding Mp(3,1) as low as its

previous value requires that g;; lies on its upper limit:

917 = \/9119%f (4.94)

But then Mp(2,1) (and hence m,) becomes very large. The x? minima shown in Table
4.13 represent a balance in this conflict, with ms and V,; both fairly high. A similar

problem exists in My with the charm mass.
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Indeed, since for virtually all models we have sp opposite in sign to bp and cgp
opposite in sign to tp (these are the only flavour charges affecting My p(2,1) and
My p(3,1)), this ms; — Vy, conflict is present in most models.

Improvements to note are that the same effect (specifically, Mp(3,1) getting nu-
merically bigger) allows an improvement (i.e. rise) in Vg(~ Mp(3,1)/Mp(3,3)), but
this does not offset the my — V,,; problem. Also, the problem of high m; largely dis-
appears: old Mp-scale predictions like (4.73) are not true of the mixed ansatz with
matrix Textures 3, 4 and 5 because the 2nd generation eigenvalues (originating from
My p(2,1)) have greater numerical freedom (they are determined by 3 parameters as
opposed to 2 in the product ansatz).

Some models fight the basic ms; — V, problem by pushing the top mass up to 200
GeV, for then g;s must be large in order to get a sufficiently low bottom mass and this
partially holds down both Mp(2,1) and Mp(3,1). Other models actually manage to
alleviate the problem altogether by maintaining a high m; (e.g. Charge Sets 5, 10 and
11). There, the prediction:

Mp(3,1)

Vub =~ Vus MD(373)

~ [Vis Mp(3, 1)]}'11; (4.95)

means that a high m; can hold down the size of V,,; while g1¢ is chosen to give a good
ms.

So the mixed ansatz results are broadly similar to those of the product ansatz, with
some of the same minor problems (high V,,, low m,), except for a more serious problem
in the m, — ms — V3 sector. This is the main reason for the deterioration in x? in going

from the product to the mixed ansatz.

4.6.3 Metric Ansatz

Table 4.19 shows the x? minima, mf*® and aY; for all 25 charge sets, using the
metric ansatz. Consistency of mP™* with both (#)ws = 174 GeV and 7%, = O(1)
again caéts doubt on Charge Sets 1, 9 and 25 (for mP™® = 200 GeV). Again, several
charge sets feature top masses which lie naturally in the range 100-200 GeV and the
preference of the other sets is divided between these two extremes. This table shows
a general improvement in x2 (for most models the results obtained are the best yet),

although perhaps not as dramatic as the increase in the number of parameters might
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Hy x U(1)s: Metric Ansatz Results
Charge | mfre | x2 for mP™*(GeV) = | a¥, for mP™*(GeV) =
Set | (GeV)| 100 200  mfree | 100 200  miree
1 - 9.46 8.85 - 0.29 0.20 -
2 104 | 8.02 8.80 8.01 1.0 1.0 1.0
3 141 | 8.73 8.63 8.51 0.48 0.39 0.43
4 - 8.08 12.0 - 0.35 0.26 -
5 - 8.79 17.8 - 1.0 1.0 -
6 162 | 8.98 8.68 8.65 0.40 0.30 0.32
7 125 | 8.48 8.62 8.36 0.60 0.51 0.56
8 - 7.85 10.0 - 0.52 0.43 -
9 - 11.6 10.7 - 0.28 0.17 -
10 - 8.20 15.0 - 1.0 1.0 -
11 - 9.16 18.2 - 0.61 0.54 -
12 176 9.10 8.72 8.70 0.37 0.27 0.28
13 119 | 8.35 8.64 8.27 0.67 0.60 0.65
14 - 7.84 9.53 - 0.62 0.54 -
15 - 11.9 10.8 - 0.53 0.42 -
16 - 11.5 10.5 - 0.71 0.62 -
17 - 11.1 10.1 - 1.0 1.0 -
18 - 10.7 9.74 - 0.65 0.57 -
19 - 10.2 9.35 - 0.38 0.28 -
20 - 5.83 7.34 - 1.0 1.0 -
21 - 7.85 9.31 - 0.69 0.62 -
22 - 7.91 10.6 - 0.44 0.36 -
23 - 9.97 9.14 - 0.71 0.63 -
24 - 9.56 8.89 - 0.47 0.37 -
25 197 | 9.13 8.67 8.67 0.29 0.19 0.20

Table 4.19: x? values for the H; x U(1); models (metric ansatz). Also shown are: aJ;,

the suppression factor on My (3,3); and 100 < mi™ (GeV) < 200, if applicable.
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Charge mfhy s Me m, m, mq my mfhy s My mphys

Set  (GeV) | (MeV) (MeV) (GeV) | (MeV) (MeV) (GeV) | (MeV) (GeV)
1 100 1.1 60 0.79 9.2 710 3.3 1.1 3.1
200 1.1 49 0.94 9.2 500 3.8 1.3 4.4
2 100 1.1 56 0.98 9.2 510 4.0 1.3 3.7
200 0.97 44 1.4 9.2 340 5.3 1.5 6.0
3 100 1.1 56 0.85 9.2 620 3.5 1.2 3.4
200 1.0 45 1.1 9.2 430 4.3 14 5.1
4 100 1.2 72 1.4 9.2 420 5.1 1.1 4.1
200 1.3 62 2.2 10 300 8.0 0.92 8.0
5 100 1.0 75 2.7 9.2 370 9.2 1.6 4.1
200 0.97 89 5.9 12 430 19 1.6 8.7
6 100 1.1 57 0.82 9.2 660 34 1.2 3.3
200 1.0 46 1.0 9.2 450 4.1 1.4 4.8
7 100 1.1 55 0.88 9.2 590 3.6 13 3.5
200 0.99 44 1.2 9.2 400 4.6 1.5 5.4
8 100 1.1 63 1.2 9.2 440 4.6 1.2 4.0
200 1.1 55 1.9 9.3 270 6.8 1.2 6.7
9 100 1.0 77 0.68 9.2 1200 2.9 1.0 2.5
200 1.1 68 0.66 9.2 980 2.9 1.1 3.1
10 100 1.0 72 2.1 9.2 350 7.4 1.4 4.4
200 1.1 57 3.9 8.6 280 13 1.3 9.6
11 100 1.2 86 2.7 9.3 420 9.5 1.5 4.2
200 0.93 85 5.6 11 410 18 0.99 8.6
12 100 1.1 58 0.81 9.2 670 3.4 1.2 3.2
200 1.0 47 1.0 9.2 460 4.0 14 4.8
13 100 1.1 55 0.90 9.2 570 3.7 1.2 3.5
200 0.98 43 1.2 9.2 390 4.7 1.5 5.6

Table 4.20: Masses for the Hy x U(1); models with the metric ansatz. All masses are

running masses evaluated at 1 GeV unless otherwise stated.
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Charge mfhys Me m, m, mq m, m},’hy s My mphys
Set  (GeV) | (MeV) (MeV) (GeV)| (MeV) (MeV) (GeV) | (MeV) (GeV)
14 100 1.1 60 1.1 9.2 450 44 1.2 3.9

200 1.0 52 1.7 9.2 280 6.2 1.3 6.5
15 100 1.1 75 0.70 9.2 1200 3.0 0.96 2.5
200 1.1 67 0.68 9.2 940 2.9 1.1 3.0
16 100 1.1 73 0.69 9.2 1100 2.9 0.99 2.5
200 1.1 65 0.69 9.2 880 2.9 1.1 3.1
17 100 1.1 72 0.69 9.2 1100 2.9 1.0 2.6
200 1.1 63 0.71 9.2 820 3.0 1.1 2.3
18 100 1.1 69 0.70 9.2 1000 3.0 1.1 2.7
200 1.1 60 0.73 9.2 760 3.1 1.2 3.5
19 100 1.1 67 0.71 9.2 950 3.0 1.1 2.8
200 1.1 57 0.77 9.2 690 3.2 1.2 3.7
20 100 1.2 60 2.1 9.2 270 3.5 1.6 3.1
200 1.1 52 4.0 9.2 160 4.9 1.9 4.4
21 100 1.1 59 1.1 9.2 460 4.3 1.3 3.9
200 1.0 50 1.6 9.2 290 6.0 1.4 6.4
22 100 1.1 66 1.2 9.2 410 4.2 3.0 4.3
200 1.1 58 2.1 9.3 280 7.7 1.0 7.1
23 100 1.1 65 0.72 9.3 1200 3.3 2.8 3.6
200 11 . 55 0.81 9.2 630 3.3 1.3 3.9
24 100 1.0 63 0.74 9.2 820 3.1 1.2 3.0
200 1.1 52 0.85 9.2 580 3.5 1.3 4.2
25 100 1.1 62 0.77 9.2 750 3.2 1.2 3.1
200 1.0 51 0.92 9.2 520 3.7 1.4 4.5

Table 4.21: Masses for the Hy X U(1); models with the metric ansatz (cont.). All

masses are running masses evaluated at 1 GeV unless otherwise stated.

116



Charge mP® (GeV)
Set 100 200
Vus Vo Vb | Vus Vo Vb
1 0.38 0.056 0.012 | 0.43 0.042 0.011
2 0.47 0.038 0.0094 | 0.53 0.028 0.0086
3 0.40 0.046 0.011 | 0.46 0.034 0.0098
4 0.49 0.070 0.029 | 0.71 0.063 0.0095
5 0.71 0.012 0.0042 [ 0.71 0.0051 0.0037
6 0.39 0.049 0.011 | 0.45 0.037 0.010
7 0.41 0.043 0.011 | 0.47 0.032 0.0095
8 0.58 0.042 0.0093 | 0.71 0.033 0.0076
9 0.29 0.11 0.023 | 0.32 0.12 0.025
10 0.71 0.018 0.0050 [ 0.71 0.0095 0.0056
11 0.71 0.020 0.0051 | 0.71 0.0098 0.0036
12 0.38 0.051 0.012 | 044 0.038 0.010
13 0.43 0.042 0.010 | 0.47 0.030 0.0094
14 0.55 0.035 0.0080 | 0.67 0.027 0.0070
15 0.29 0.078 0.014 { 0.33 0.065 0.013
16 0.30 0.073 0.014 [ 0.3¢4 0.061 0.012
17 0.31 0.068 0.014 | 0.35 0.056 0.012
18 0.32 0.063 0.013 | 0.36 0.052 0.012
19 033 0.075 0.016 | 0.37 0.067 0.016
20 0.50 0.026 0.0075] 0.54 0.019 0.0067
21 0.53 0.035 0.0083 | 0.64 0.027 0.0074
22 0.60 0.051 0.011 | 0.71 0.043 0.0079
23 0.34 0.056 0.012 | 0.39 0.045 0.011
24 0.35 0.056 0.013 | 0.40 0.046 0.012
25 0.38 0.10 0.023 | 0.43 0.098 0.026

Table 4.22: Mixing angles for the H; X U(1); models with the metric ansatz.
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Charge mPMYe = 100 GeV

Set gun 922  9ff 12 Gif g2f Textures
My Mp
1 11.8 26.6 1.54 -3.96 0.899 -0.133 4 3
2 11.8 248 3.05 -4.34 1.06 0.872 4 3
3 11.9 259 0.530 -4.00 0.517 0.133 4 3
4 11.6 23.0 1.12 -5.06 0.444 0.704 4 3
5 11.9 17.1 0.391 -4.57 0.717 0.0328 4 3
6 11.8 26.1 0.211 -3.96 0.332 0.0361 4 3
7 11.9 25.6 0.264 -4.07 0.354 0.149 4 3
8 11.7 23.6 0.440 -4.81 0.332 0.428 4 3
9 11.9 31.7 0.415 -2.38 0.282 0.181 4 3
10 11.9 19.1 0.211 -4.76 0.399 0.0578 4 3
11 11.6 18.3 0.244 -4.79 0481 0.0797 4 3
12 11.8 26.3 0.112 -3.96 0.243 » 0.00981 4 3
13 11.9 254 0.158 -4.12 0.267 0.137 4 3
14 11.8 23.9 0.232 -4.68 0.250 0.299 4 3
15 11.9 29.7 0.102 -3.11 0.202 -0.0689 4 3
16 11.9 30.0 0.122 -2.97 0.212 -0.0468 4 3
17 119 30.2 0.148 -2.86 0.222 -0.00377| 4 3
18 11.9 30.2 0.182 -2.85 0.230 0.0826 4 3
19 11.9 29.8 0.228 -3.11 0.235 0.269 4 3
20 11.6 25.5 0.207 -4.59 0.243 0.549 4 3
21 11.8 24.1 0.143 -4.61 0.203 0.227 4 3
22 11.7 23.4 0.167 -4.92 0.187 0.269 4 3
23 11.9 28.9 0.120 -3.21 0.198 0.127 4 3
24 11.9 28.4 0.143 -3.53 0.200 0.260 4 3
25 11.8 27.7 0.173 -4.06 0.187 0.431 4 3

Table 4.23: Fit parameters and the corresponding mass matrix textures for the H; x

U(1)s models with the metric ansatz.
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Charge mPMYe = 200 GeV

Set g 922 9ff G2 gif g2f Textures
My Mp
1 15.1 352 2.66 -5.49 0.910 0.410 4 3
2 154 304 5.06 -7.40 0.763 3.19 4 3
3 153 33.9 0.896 -5.87 0.461 0.650 4 3
4 14.7 288 1.80 -8.39 0.175 2.15 4 3
5 154 16.5 0.581 -6.28 1.05 0.539 4 3
6 152 34.6 0.359 -5.66 0.307 0.304 4 3
7 15.3 33.0 0.444 -6.22 0.306 0.614 4 3
8 15.1 29.1 0.705 -8.63 0.0392 1.29 4 3
9 15.1 454 0.762 -3.36  0.0992 0.692 4 3
10 15.1 20.0 0.334 -9.18 0.475 0.674 4 3
11 155 18.5 0.384 -6.51 0.733 0.633 4 3
12 15.2 34.8 0.192 -5.59 0.230 0.189 4 3
13 15.4 323 0.264 -6.48 0.229 0.548 4 3
14 15.2 289 0.379 -8.39 0.0896 0.943 4 3
15 150 41.6 0.188 -3.87 0.190 -0.00388 | 4 3
16 15.0 42.0 0.223 -3.74 0.184 0.0563 4 3
17 15.0 424 0.267 -3.72 0.172 0.162 4 3
18 15.1 423 0.326 -3.94 0.150 0.357 4 3
19 15.1 414 0.405 -4.76 0.111 0.756 4 3
20 15.1 33.1 0.328 -8.15 0.105 1.31 4 3
21 15.2 29.2 0.234 -8.18 0.0906 0.733 4 3
22 15.0 304 0.258 -8.46 -0.00535 0.742 4 3
23 15.1 40.1 0.210 -4.66 0.129 0.391 4 3
24 15.2 38.8 0.248 -5.52  0.107 0.677 4 3
25 15.2 36.1 0.298 -7.27 0.0658 1.17 4 3

Table 4.24: Fit parameters and the corresponding mass matrix textures for the H; X

U(1)s models with the metric ansatz (cont.).
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have merited (there are 6 parameters in the metric ansatz compared to only 3 in the
product ansatz).

Tables 4.20 and 4.21 show the fermion masses corresponding to the x? minima, while
Table 4.22 shows the mixing angles. Finally, Tables 4.23 and 4.24 show the parameter
values and corresponding matrix textures for all 25 charge sets.

To facilitate presentation of the mass matrices for Charge Set 2, we introduce 3
matrices Ny, Np and N; whose elements are the squares of the exponents of the matrix

elements defined in (3.49). That is:

No(i,5) = (log[Ma(s, 7)])? (4.96)

(a=U, D, 1) and so, using equation (3.49), we have:

( 9911 36911 + 922 + 9955 36911 + 9955 + 36415 )
—12g12 — 36917 + 6g2¢
N[ jad
9911 + 955 — 6415 922 + 4955 + 4921 169y ¢
\ 9911+ 955+ 6915 g22+ 16955 + 892y 4955 ]
( 9911 16911 + 922 + 955 16911 + 9557 + 8915 \
—80g12 — 8915 + 2925
Ny =~
911+ 955 — 2915 922 495
\ 911 +955+2915 922+ 4955 + 4925 0 /
( 9911 4911+ 922 + 955 4911 + 955 — 4915 )
~4¢g12 + 4915 — 2925
Np = (4.97)
g11 + 9955 — 6915 922 + 4955 + 4925 169y
\ 911+ 9955+ 6917 goz + 16955 — 8925 4955 ),
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With this ansatz, our algebraic predictions are (at the x? minima):

m, ~ Mi(3,3), m,~ M(2,2), m.~M(,1)
mp ~ Mp(3,3), ms~ Mp(2,1), mq=~ Mp(1,2) (4.98)

My(1,1)My(2,2
my ~ 1 me ~ My(2,1), m, ~ __(_)(_)(_)U e 2,;’
~ Mp(2,2 ~ Mp(3,1 Mp(3,2
Vs =~ M 952,1%’ Vep >~ MD§3,3;7 Vb =~ ﬁﬁ% (4‘99)

Some of the problems of the previous two ansitze still persist (e.g. the ms—m,—V,,

and:

problem), but most other features are improved.

The general improvement in x? from the product ansatz is largely because of:

1. The improved mg — m, — me.
This is due to the fact that det Mp (= mgmgsmy) is now bigger than its
previous value of Mp(1,1)Mp(2,2)Mp(3,3) (i.e. Mp now prefers Texture

4 to Textures 1 or 3), allowing my to assume a larger, more realistic value.

2. The rise in V. A prediction for all ansitze has been:

MD(3, 1)

Vg ~
= Mp(3,3)

(4.100)
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