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Summary

The P[GAL4]AJASg enahancer-trap system of Drosophila has been used to determine the 

cell-type specific expression patterns of genes flanking the transposon, and also to target 

expression of any specific desired gene products to the marked cells. In this thesis, 

P[GAL4] enhancer-trap lines with specific patterns of expression in the adult brains have 

been used to address the relationship between neural structure and function of sexual 

orientation and to identify enhancer-trapped genes according to their patterns of 

expression.

Gynandromorphs of specific sub-domains within the male brains of 24 P[GAL4] lines 

were generated by GAL4-mediated expression of female-specific transformer (tra) 

transcripts, and the subsequent courtship behaviour towards male and female targets were 

tested. Féminisation of the mushroom bodies, which are thought to be involved in the 

olfactory pathway, appears to lead to non-discriminatory behaviour.

The mini-wAffg+ gene (in heat-shock construct pHSBJCaSpeR) has been reported to lead 

to male-male courtship (Zhang and Odenwald, 1995). As the mim-white'^ gene is used as 

a marker in both P[GAL4] and UASc-fra constructs, male-male courtship was tested by 

mutagenesis of the mïvà-white'^ gene in both the UASQ-fm line and the P[GAL4] line 

201Y which has specific expression in the mushroom body and shows a transformed 

bisexual behaviour when tra is expressed through the GAL4/UASQ system (O’Dell, et 

al., 1995). Significant male-male courtship was only observed in 201Y mini-w/wVe+ 

homozygotes, but not 201Y mini-white heterozygotes. Mini-wAffg+ has no such 

effect in the UASQ-tra line. All the 201Y/UASG-frj flies, no matter whether they were 

homozygous or heterozygous for mmi-white^, or lacked it entirely, displayed bisexual 

behaviour, which shows that the transformed behaviour of line 201Y is absolutely 

determined by tra expression, and not a consequence of mmi-white'^- Further, RT-PCR 

examination of the transformed dorsal brain tissue in male 201Y showed the female

IX



transcripts of doublesex (dsx) nnd fruitless (fru) beside the male transcripts of these 

genes, providing evidence of the expression and functioning of female tra in the targeted 

cells.

An analysis of the genomic DNA flanking 10 P[GAL4] insertions were carried out by 

plasmid rescue. These lines have brain specific expression patterns of the mushroom 

bodies, the central complex and the optic lobes. Detailed genomic restriction maps around 

the insertion sites were generated of mushroom body expression lines c739 and c772, 

and line c819 which shows expression in the ellipsoid body of the central complex.

The cDNA of the AMP-activated protein kinase (AMPK) y subunit gene was isolated by 

cDNA library screening using the downstream region of the c819 insertion as a probe. 

The central complex of the Drosophila brain has been shown to act as a higher centre for 

locomotor activity and other behaviours. Anti-p-gal antibody staining shows the 

expression in the central complex of line c819 begins at later pupal stages and continues 

to the adults. Developmental Northern and tissue in situ hybridization in the brain show 

that the AMPK y gene is expressed from the pupal stage and seems to have a specific 

expression pattern in the cell bodies of the ellipsoid body and the optic lobe. These results 

imply that the Drosophila AMPK y enhancer is likely to have been trapped by the c819 

insertion and the corresponding gene has been cloned through the P[GAL4] enhancer- 

trap.
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Chapter 1 

Introduction



1.1 The Genetics of courtship behaviour in Drosophila

Over the last century, the fruit fly Drosophila melanogaster has been used as a major 

research animal in the fleld of genetics, from the discovery of some basic principles of 

classic genetics to the recent achievements of molecular biology. It remains a favourite 

experimental animal because of its small (but not too small) size, ease of culture, short 

generation time, large number of progeny, low chromosome number, and giant salivary 

chromosomes. Through the intensive research of these decades, a large number of easily 

recognisable genetical markers have been discovered and provide adequate tools. The 

collection of data in Flybase (http://flybase.edu) contains information on 38,000 alleles 

of more than 11,000 genes, 7,000 genomic clones and so on. Among metazoan 

organisms. Drosophila is perhaps unique in its sophisticated genetics and readily applied 

genetic techniques, due to which it has proven invaluable as an aid to study the 

mechanism of the nervous system.

Compared to the size of the 100 billion neuron human brain, the structure and function 

of the Drosophila brain is relatively simple. Complex traits such as circadian rhythm and 

behaviour can also be studied and Drosophila has been proven to be a useful model 

system for the genetic analysis of behaviour. It is possible to systematically screen for 

genes that can mutate to produce a given phenotype. Locomotor behaviour (Strauss and 

Heisenberg, 1993), and, even more complicated, learning and memory (Tully, 1991) 

have been studied. Among the behaviours, courtship receives lots of attention as the 

process consists of a series of actions, each of which is accompanied by the exchange of 

visual, auditory, olfactory, tactile and chemosensory signals between males and females 

(Hall, 1994; Spieth and Ringo, 1983).

Flies isolated as eggs and kept singly until maturity are capable of recognising an 

appropriate target, and of directing the entire routine of sex-specific behaviours. It is 

therefore clear that the ability to perform sex-specific behaviour is genetically

http://flybase.edu


programmed into the individual. It might be hoped that a classical genetic study of 

courtship would reveal mutants and help us understand how genes act to build and 

operate a nervous system.

1.1.1 An overview of Drosophila courtship behaviour

The courtship in Drosophila melanogaster involves a series of behaviours (Fig. 1.1; 

Hall, 1994; Spieth and Ringo, 1983; Jallon, 1984; Cline and Meyer, 1996). The first 

step is orientation (Fig. 1.1 A). Once the male senses a potential mate within some 

reasonable proximity (perhaps on a food source or when experimentally put together in a 

mating chamber), he slightly elevates his body, turns to face the potential mate, and 

approaches it. The response of the potential mate to the male's behaviours results in 

information being transmitted which enables the two individuals to distinguish 

conspecifics from non-conspeciflcs, males from females.

Having made physical contact with the potential mate, usually by tapping, the male 

moves to the rear of the approached individual and positions himself close to and facing 

the tip of the target's abdomen. If the target is a virgin female, he follows her during 

most of the time that she is moving (no courtship occurs in flight). As the male orients to 

a stationary female, including circling her, or follows a mobile one, he frequently 

displays one wing or the other and flutters. The vibration of the wing produces a 

species-specific rhythm, the so-called "love song" (Fig. I.IB).

Several seconds to a few minutes after the two flies have begun to interact, the male 

extends his proboscis and licks the female's genitalia (Fig. I.IC). This action is almost 

immediately followed by the males first copulation attempt, which involves an abdominal 

bending by the male (Fig. I.ID; E). If an attempt faüs, the male may cease courting for 

some moments. Thus, overt courtship interactions occur about 60 to 80% of the time 

when the male and female are together (Tompkins, 1984).



c D

Figure 1.1 Courtship behaviour of male Drosophila melanogaster. A: orientation 

of the male to the female. B: wing vibration by the male. C: the male licks the female's 

genitalia with his proboscis. D: the male curls his abdomen. E: flies in copulation. F:

A rejection response by the female to courtship. (After Burnet and Connolly, 1974)



When the male resumes courting, he almost always drops back to the orientation and 

following or singing stages (not to tapping or licking) and continues through the rest of 

the sequence. Non-receptive females, like fertilized females, usually give rejection 

signals to the courting male, such as kicking with the hind legs and curling the abdomen 

to the side (Fig. I.IF). Drosophila are normally heterosexual, with almost no courtship 

between wild-type males. A male target usually spins about and faces the courting male 

and engages in wing flicking or wing fluttering and foreleg striking movements.

Female coiurtship actions in Drosophila melanogaster are not immediately obvious to the 

human observer, but the female is not thoroughly passive. Sexual receptivity in virgin 

females is switched on at a species-specific time, which in Drosophila melanogaster 

occurs about 48 hours posteclosion (Manning, 1967). When the female is generally 

receptive to the males advances, she responds by performing acceptance signals 

eventually, such as slowing down and stopping moving (Spieth and Ringo, 1983). 

When females refuse to mate, they perform rejection responses like fleeing. One-day old 

virgins reject mostly by flicking, older virgins reject mainly by kicking, and fertilized 

females reject almost exclusively by extruding their ovipositor (Connolly and Cook, 

1973).

Some chemical messages exchanged by Drosophila also participate in sex and species 

recognition. In Drosophila melanogaster^ females produce several molecules (e.g. 7,11- 

heptacosadiene) which act as aphrodisiacs to male Drosophila melanogaster. This 

chemical sex appeal might be a sufficient signal for male Canton-S to distinguish females 

from males (Jallon, 1984). Male chemicals have a small effect on attraction to females 

(Venard, 1980), as females may stop moving in response to some olfacory signals 

produced by males. Males also produce another kind of compounds, like vaccenyl 

acetate, to inhibits the courtship from other males (Jallon, 1984). The production of 

these chemicals, including contact pheromones, is under polygenic control. It might be



triggered by sex-determination genes which control the structural genes for pheromone 

biosynthesis enzymes (Ferveur, et al., 1997).

1.1.2 Genes and courtship behaviour

Although, mutations of many genes can affect courtship, most of these genes are also 

serving other functions. Identification of their biochemical roles may help us to 

understand this complicated behaviour. For example, lower activity mutations may lead 

to defective courtship, such as, yellow (Burnet and Wilson, 1980) and ebony (Kyriacou, 

1981) body colour mutations cause neurotransmitter defects, and males carrying either of 

these mutations court abnormally. Some more specific defects, like white (Heisenberg 

and Wolf, 1984) and smellblind (Markow, 1987), affect the sensory system directly, 

and they court in a mediocre manner. This indicates that visual and olfactory functions 

are important within courtship. In addition, altered sexual orientation has been correlated 

with misexpression of the white gene in the brain (Zhang and Odenwald, 1995; King 

and Carlson, 1996). Rhythm mutants (such as period, Kyriacou, et al., 1990), and 

learning and memory mutants (dunce, Kyriacou and Hall, 1984) all show some 

modification of courtship behaviour. These add credence to the notion that courtship 

(and other complex behaviours) are regulated by multiple genes acting together. 

However, this contributes little to our understanding of the true genetic control of 

courtship.

Two genes with relatively specific effects on courtship are fruitless, mutations of which 

cause abnormal sexual preference (Ryner, et al., 1996; Ito, et al., 1996), and 

dissatisfaction, mutations of which cause low sexual activity (Finley, et al., 1997). 

Interestingly, both of them are under the control of transformer (tra), a sex-determing 

gene. These studies provide strong support for a special relationship between the 

genetics of courtship and that which revolves around somatic sex-determination.



1.1.3 Courtship of sex-determining mutants

The somatic sexual phenotype of Drosophila is cell-autonomous (Baker and Ridge, 

1980), which means the sex of each cell is independent from its neighbours. In the sex- 

determination hierarchy (Fig. 1.2), the Sxl gene is initially activated in response to an X- 

chromosome to autosome ratio of 1:1 in female cells. Sxl is positively autoregulated 

(Cline, 1984). Once this initial female-specific, embryo-specific activation occurs, the 

Sxl protein is capable of directing female-specific splicing of the regulated region of Sxl 

(Bell, et al., 1991). Male and female Sxl RNAs are similar in structure except for the 

presence of the male-specific exon 3 that contains the stop codon UGA in-frame with the 

AUG start codon of exon 2 (Bell, et al., 1988 and Figl.3.A). Sxl protein is not 

produced in male cells (X:A=1:2). The Sxl product regulates not only Sxl splicing but 

also the splicing of RNA derived from the transformer (tra) gene (Bell, et al., 1991), 

thus leading to the production of an active Tra product

Just under Sxl in the genetic cascade of somatic sex determination is tra, which also 

encodes an RNA binding protein (Belote, et al, 1989). The tra gene has alternative RNA- 

splicing regulation between females and males (Fig. 1.3.B), and is functional in females 

but not in males. The RNA derived from tra is the prime target of the Sxl protein 

(Nagoshi, et al., 1988). In females, in the presence of Sxl protein, more than half of the 

tra RNA uses an alternative 3' splice site for the first intron. This effectivly removes the 

stop codon and produces the RNA that codes for the active Tra protein (McKeown, et 

al., 1988). In males, the RNA produced by default splicing contains stop codons that 

renders it non-functional (Boggs, et al., 1987). The region preceding the regulated 

splice-site contains a striking sequence identity to the male-specific 3' splice site region 

of Sxl and this region is essential for tra regulation (Inoue, et al., 1990). These suggest 

that the regulation of both tra and Sxl results from a direct competition between Sxl 

protein and the basal splicing machinery for the use of particular splice sites.



Female soma X:A=1 Male soma X:A=0.5

rr
^Sx/

\
tra

tra-2

dsx/fru/dsf?

I
dsf?

female
development

male
development

Figure 1.2 The sex differentiation hierarchy. X:A, the ratio of X chromosomes relative to 

sets of autosomes. Arrows indicate activation of gene function. It is still uncertain the 

position of dsf in the sex-determination pathway.
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The tra-2 product appears to be present in both males and females (Mattox and Baker, 

1991). It is necessary in females for doublesex (dsx) female splicing (Tian and Maniatis, 

1993). It can have multiple activities, like autoregulation in the germline, depending on 

the RNA and protein it interacts with (Ryner and Baker, 1991; Hedley and Maniatis, 

1991).

Mutations in tra, tra-2 or Sxl transform not only the fly's external morphology but also 

its sexual behaviour. Viable mutants of Sxl (Tompkins and McRobert, 1989) and tra or 

tra-2 null mutations (McRobert and Tompkins, 1985) cause chromosomally female flies 

to behave as males; they court females but elicit very little courtship (unlike mature wild- 

type males); they can even copulate, but they are sterile because their internal abdominal 

anatomy is not fully transformed. The XX flies homozygous for tra mutations show an 

essentially normal male manner of wing vibration (Kulkami and Hall, 1987).

A gain-of-function Sxl mutation in chromosomal males leads to ectopic expression of the 

female version of Sxl\ they perform less courtship than wild-type males do and elicit a 

very high level of interest from other normal flies (Tompkins and McRobert, 1989).

The next gene in the sex-determination cascade is doublesex (dsx). It has different 

transcript versions in female and male, as well as in different developmental stages 

(Baker and Wolfner, 1988). The dsx gene is transcribed to produce a common primary 

transcript that is alternatively spliced and polyadenylated to yield male- and female- 

specific mRNAs (Fig 1.3.C). They share common 5' ends, but possess alternative sex- 

specific 3' exons (Nagoshi and Baker, 1990). This give rise to alternative to-encoded 

proteins with common amino-terminal regions and sex-specific carboxy-termini. Genetic 

and molecular data suggest that sequences including those at, and adjacent to, the female- 

specific splice acceptor site play an important role in the regulation of t o  expression by 

the tra and tra-2 proteins (Burtis and Baker, 1989). Both male (DSX^) and female 

(DSXf) proteins bind to three sites within a 127-bp enhancer that directs sex-and tissue-



Male Sxl RNA

1 2 4 5

AUG UGA

I ^  3'

Female Sxl RNA 

1 2 4 5

AUG

3'

Figure 1.3 A Processing of Sex-lethal (Sxl) RNAs. Male and female Sxl RNAs are similar in 
structure except for the presence of the male-specific exon 3 that contains the stop codon UGA 
in frame with the AUG start codon of exon 2 (Samuels and Cline, 1991). The exons (1-5) are 
represented as the rectangles. Additional 3' alternative processing events are not shown.

Non-specific tra RNA

1

AUG UAG
V

Female tra RNA

V
Figure 1.3 B Processing of transformer (tra) RNAs. The exons are represented as the 
rectangles (1-3). The non-specific and female-specific tra RNAs differ only in the splice 
site they use at the start of exon 2. The non-specific RNA contains stop codons 
(represented by the UAG) in the regions unique to it, thus blocking translation from the 

start codon (AUG) in exons 1 (After McKeown, 1992).
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Male dsx RNAs

1

Female dsx RNAs

Figure 1.3 C Processing of doublesex (dsx) RNAs. The exons are represented as 

rectangles. The dsx RNAs contain three common exons (1-3) followed by male-specific 

(5,6) and female-specific (4) terminal exons. Gaps in the sequence are necessitated by the 

large size of introns (After McKeown, 1992).

5
f e m a i l

AUG AUG

male

3'

Figure 1.3 D Schematic drawing of the alternative 5' splice sites of fru that are joined 

to a common 3' exon. Exons are indicated by rectangles; jagged sides indicate that only 

a portion of the exon is shown; thin lines represent the introns. Shaded regions have 

protein coding potential (Ryner, et al., 1996).
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specific transcription of Yolk protein genes. The female product activates transcription 

(Coschigano and Wensink, 1993), while the male product represses transcription 

(Bownes and Nothiger, 1981).

The effect of dsx mutations on courtship is as complicated as the gene itself. When a null 

mutation of dsx was tested, it gave an intersexual coiutship behaviour (McRobert and 

Tompkins, 1985). But, the formation of the Muscle of Lawrence (MOL) — a male- 

specific muscle in the abdomen, was found to be immune to allelic variation at the dsx 

locus (Taylor, 1992). The development of MOL requires iimervation by genetically male 

motor neurons emanating from the abdominal ganglion (Lawrence and Johnston, 1986), 

and also requires tra and tra-2 expression (Taylor, 1992). However, recently the affects 

of dsx mutations on sex-specific behaviours began to be called into question. Taylor, et 

al. (1994) re-examined the affects of one particular dsx mutation (dsx^) on courtship. 

They showed that mutant (chromosomal) males' courtship towards females seemed 

qualitatively normal in most aspects of male courtship except for copulation, because 

these mutants are physically intersexual. Moreover, although externally they look like 

normal males, XX flies expressing a dsx allele that causes constitutive production of 

D SX ^, exhibited no courtship whatsoever toward normal females. So, it has been 

suggested that elements of neural/behavioural sex-specificity are djx-independent 

(Taylor, et al., 1994).

Another recent report (Villella and Hall, 1996) uncovered a new behavioural anomaly: 

dsx^^ and dsx^^ mutations caused chromosomal males to court other males at 

abnormally high levels. However, unlike ̂ - l ik e  courtship, no "chaining" behaviour has 

been observed. Considering in situ expression of dsx in adults has been monitored only 

indirectly with respect to genic targets of DSX action in certain tissues (An and Wensink, 

1995), whether dsx products are present and functioning in the imaginai nervous system 

is an open question.
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Among the numbers of genes affect courtship performance of Drosophila mdlQS, fruitless 

(fru) is the first gene in a branch of the sex-determination hierarchy functioning 

specifically in the central nervous system (CNS). It is also one of the very few that 

appears to be specific to male courtship (Taylor, et al., 1994). In fru mutant males, the 

later steps of courtship, from singing through copulation, are abnormal or absent. 

Because fru  mutant males fail to copulate, they are sterile. In addition, males court 

both males and females indiscriminately. When fru mutant males are grouped together, 

they form male-male courtship chains in which each male is both courting and being 

courted. An additional fru  phenotype is that the male-specific MOL is incompletely 

formed or absent (Gailey et al., 1991). So far, there are no reported phenotypic effects 

of fru in females (Hall, 1994).

Recently, the fru  gene has been cloned by two groups independently (Ryner, et al., 

1996; Ito, et al., 1996). The gene spans approximately 140kb along the genome. It is 

identified as a sequence-specific transcriptional regulator, encoding a zinc finger protein 

with a BTB-domain (Zollman et al., 1994). BTB is for BR-C (Broad-complex), tîJç 

(tramtrack) and hflb (brie à brae). These three genes all contain a common motif of 

approximately 115 amino acids. This BTB-domain defines a gene family in Drosophila. 

The motif is found primarily at the N terminus of Zinc finger proteins. These genes are 

expressed in overlapping, but different, cell-specific patterns (Read, et al., 1992; Emery 

et al., 1994; von Kalm et al., 1994). Thus, the proteins may regulate different target 

genes in a cell-specific manner./rw produces multiple transcripts, including sex-specific 

transcripts that are alternatively spliced (Fig 1.3D) in a tra- and tra-2 - dependent manner. 

Both female and male versions of fru  have common 3' exons, which are joined to 

alternative 5' splice sites.

fru  controls a range of male-specific nervous system functions (Ryner, et al., 1996). 

The mutants and mutant combinations disrupt the early steps of courtship (orientation, 

following, and wing vibration) as well as the later steps (courtship song and attempted
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copulation). None of the published fru  mutant alleles interrupt the coding sequence. 

Some mutations are lethal in both sexes. These facts indicate that fru  encodes a vital 

function and is essential in both sexes (Ryner, et al., 1996).

fru locates downstream of tra in the sex-determination hierarchy, and likely at the top of 

a new branch, for its expression is independent from dsx. Possibly, like dsx, fru  is the 

final regulatory gene in its branch of the hierarchy. If so, fru would directly control the 

expression of downstream genes responsible for governing sex-specific MOL 

development, sexual orientation and the behaviours that comprise male courtship. 

Although courtship behaviour in Drosophila can be modified to a limited degree by 

experience (Greenspan, 1995), the genetically programmed part seems controlled by the 

same hierarchy that rules all other aspects of sex-development.

In Drosophila brain, only 500 of the roughly 10^ neurons of the CNS had detectable fru 

expression by tissue hybridization (Ryner, et al., 1996); there was no signal in other 

tissues of the body. The small number and the locations of the yrw-expressing neurons 

suggest that fru is directly involved in only some of the sensory and motor systems 

necessary for courtship behaviour. ̂ M-positive neurons were found most commonly as 

small groups and distributed in similar areas of the brain and ventral nerve cord in males 

and females. A set of nine neuron groups, ranging from 10-30 cells, was detected in the 

CNS of males in positions likely to be involved in particular male courtship behaviours. 

For example, the sex-specific transcripts of fru  are abundantly expressed in a group of 

primary sensory intemeurons in the antennal lobe involved in the processing of 

chemosensory information (Stocker, 1994). In females, six of these comparable 

locations were found. Surprisingly, some /rw-expressing cells were detected only in 

females. This may suggest that fru  has specific functions in the female, with the female 

phenotypes being too subtle to have been detected.
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More recently, another tfex-independent but fra-dependent gene, dissatisfaction (dsf) has 

been identified (Finley, et al., 1997). It affects sex-specific courtship and neural 

differentiation, dls/males exhibit bisexual behaviour with abnormal copulation (different 

from fru  males which fail to curl abdomen). Unlike the lack of abnormalities for fru  

females, dis/females show phenotypes in both courtship and fertility. They are reluctant 

to mate and unable to lay mature eggs. The multiple differences between fru and dsf 

indicate these genes act in separate regulatory pathways, each of them is required for 

appropriate function.

1.2 Drosophila brain structures and function

The brain is the major part of the central nervous system (CNS) of the fly and contains 

two regions, the central brain and optic lobes (Fig 1.4 B). The oesophagus runs through 

the centre of the brain. Neural cell bodies lie in a thin cortex surrounding the bulk of 

neural tissue (Power, 1943). Each cell body sends a single process or neurite inwards, 

which then gives rise to separate axonal tracts and large regions of synapsis known as 

neuropil. Unlike most Drosophila cells, only a few CNS neurons can be characterised by 

cell body position alone (Armstrong and Kaiser, 1997).

About 4 hours after the onset of the embryonic development, some cells segregate from 

the ectoderm. They are the neuroblasts that make the primordial nervous system, and 

subsequently begin to divide asymmetrically (Hartenstein, et al., 1987). Neurons make 

synaptic connections with each other during the late embryonic development (Ito, 1990). 

Neurons are small round cells just after the division. As they mature, they send fibers 

into the neuropil. The shape of the brain changes drastically during metamorphosis 

(Kanket et al., 1980). Degeneration or re-modelling of the larval neurons occurs during 

the early pupal stage (Technau and Heisenberg, 1982). The basic structure of the adult
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Figure 1.4 Three-dimensional image of Drosophila brain structures. The pictures were 

kindly provided by Dr. X.J. Sun. A: From the front, a  and y indicate the a  and y lobe 

of the mushroom body; al means the antennal lobe. B: From behind, ca represents the 

calyx of mushroom body; pb indicates the protocerebral bridge of the central complex; ol 

means the optic lobe; and CB means the central brain.
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nervous system is built up simultaneously. No major change except for maturation 

occurs in the nervous system from pupa to adulthood.

Certain portions of the CNS of Drosophila melanogaster are essential for different 

features of male reproductive behaviour. This conclusion comes from investigations of 

genetic mosaics that are part male, part female (Hotta and Benzer 1976; Hall, 1977). A 

detailed study (Hall, 1979) revealed the association between different elements of the 

courting routine and various parts of the central nervous system (Fig. 1.5). Hall (1979) 

concluded that initiation of courtship required male cells in one side or the other of the 

mushroom bodies. Later steps in courtship, especially those demanding precise motor 

coordination, require male tissue in additional parts of the nervous system such as the 

thoracic ganglion.

The Drosophila brain varies in size throughout the lifetime of the fly and may also vary 

in response to specific living conditions (Technau, 1984; Heisenberg et al., 1995). The 

volume changes are observed in most neuropil regions such as the calyx, central 

complex and optic lobes. The differences in size of the calyx reflect differences in the 

numbers of Kenyon cell fibers. The size of the calyx is influenced by the larval density 

of the cultures, food condition, and the sex of the partner, for example, females have 

larger calyces if they are grown with females than if grown with males (Heisenberg et 

al., 1995).

In the underlying neuropil, we are interested in four conspicuous structures: the 

mushroom body, the central complex, the antennal lobe and the optic lobe, which are 

now described in turn.
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Figure 1.5 Sites in the central nervous system (brown) that control the steps of courtship in 

Drosophila male. The positions have been mapped by gynandromorphs studies (Hall, 1979). 

The domineering focuses for the early steps of courtship (orientation, following, tapping, 

extending of wing and licking) are located on the dorsal brain (red). The thoracic ganglion 

(blue) is required for performing courtship song. Other different sections of thoracic ganglion 

are required for copulation. (After Greenspan, 1995).



1.2.1 The mushroom body

Mushroom bodies are large phylogentically conserved insect brain elements that have 

been implicated in associative learning and memory (Balling, et al,, 1987), and in a 

variety of complex functions including courtship (deBelle, 1995), motor control, etc. 

(Mizunami et al., 1993). The mushroom bodies of Drosophila melanogaster are bilateral 

clusters of about 2500 cells. The fundamental computational properties of mushroom 

bodies are provided by the intrinsic neurons (Mauelshagen, 1993), known as Kenyon 

cells. They are postsynaptic to the fibers from the antennal lobe. Their fibers form the 

calyx, the pedunculus, and the a, P, y lobes of the mushroom body in Drosophila 

(Technau, 1984) (Fig. 1.4 A and B). Chemosensory signals from the antennae and other 

chemoreceptors enter the mushroom body via the antennal lobe.

In Drosophila, single gene mutations (e.g. mushroom body miniature) that cause 

defective mushroom body anatomies have been shown to interfere significantly with 

olfactory associative learning (Heisenberg, et al., 1985; Heisenberg, 1989). Olfactory 

learning is even more profoundly affected by ablating neuroblasts at an early stage of 

development, depleting the adult brain of mushroom body intrinsic neurons (deBelle and 

Heisenberg, 1994). Additional support for a role of Drosophila mushroom bodies in 

olfactory learning derives from studies of "biochemical" learning mutants as expression 

of the "learning" genes dunce, rutabaga and DCO is elevated in the mushroom bodies 

(Nighom, et al., 1991; Han, et al., 1992; Davies, et al., 1993). Finally, gynandromorph 

analysis implicates Drosophila mushroom bodies, or adjacent neuropils, in the control of 

the early stage of male courtship repertoire (Hall, 1979), a behaviour that relies heavily 

on olfaction.

Taken together, the picture that emerges is of a specialised neuropil involved in 

associating and storing multimodal sensory information, thereby providing the organism 

with memory, and predictive behaviour.
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By using the enhancer-trap technique, subdivisions of Drosophila mushroom bodies 

have been revealed (Yang, et al., 1995). Rather than being homogenous, mushroom 

bodies are compound neuropils in which parallel sub-components exhibit discrete 

patterns of gene expression. Different patterns correspond to hitherto unobserved 

differences in Kenyon cell trajectory and placement It is possible that different sub-sets 

of Kenyon cells perform different functional roles. This notion is supported by selective 

féminisation of genetically defined subdivision of the mushroom body in terms of sex- 

specific behaviour (O'Dell et al, 1995). This work suggested that certain region(s) of the 

mushroom body are involved in determining sexual preference.

Unlike many other elements of the CNS, the mushroom bodies are present throughout 

development, in the embryo, larva and pupa, and as well as the adult brain (Ito and 

Hotta, 1992). During metamorphosis, reorganisation of the mushroom bodies takes 

place; some elements of the larval lobes may remain through pupation, but most would 

appear to undergo partial or complete degeneration (Armstrong, 1995).

1.2.2 The central complex

The central complex is a group of neurons lying at the center of the brain, located just 

above the oesophagus. It is the only unpaired neuropil, so in general the central complex 

may coordinate information processing in the two hemispheres and regulate behavioural 

activity (Heisenberg, et al., 1985). In Drosophila, the central complex consists of four 

interconnected main neuronal regions or substructures: the protocerebral bridge (Fig. 

1.4B); the fan-shaped body; the ellipsoid body and the paired noduli. Since different 

putative neurotransmitters are involved in the different substructures of the central 

complex. These substructures may exert different functional roles (Hanesch, et al., 

1989).
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The possible function of the central complex has in part been revealed by early surgery 

and electrical stimulation experiments. Both inhibitory and excitatory effects were 

observed in walking, escape responses and feeding behaviour (Homberg, 1987). 

Genetic lesion studies in Drosophila with single gene mutations which affect the central 

complex structure (Heisenberg, 1980), have led to similar behavioural phenotypes. 

These exhibited slow initiation of activity and slow walking. Brain activity mapping, a 

technique using radio-labelled glucose to trace neuronal activity, also suggests that the 

central complex plays a role in the processing of visual information (Bausenwein et al.,

1994). Although research has focused on the possible roles of the central complex in 

locomotor behaviour (Straup and Heisenberg, 1993), there is some evidence that the 

central complex may play a role in olfactory associative learning and memory 

(Heisenberg, 1989).

The ellipsoid body seems to be a speciality of dipterans (Williams, 1972 and Strausfeld, 

1976). In Drosophila mutants the ellipsoid body is opened up ventrally to varying 

degrees and may appear as a flat glomerulus (Straup and Heisenberg, 1993). The 

staining patterns of P[GAL4] enhancer trap lines reveal different R-type neurones 

(Armstrong, et al., 1997), which are the most extensively studied ring neurons in the 

ellipsoid body. It is presumed that different R-type neurons could give rise to the 

different integrative functions of the ellipsoid body, although the main role of the 

ellipsoid body is thought to be inhibitory control of behaviour due to most of the R-type 

neurons showing dense GABA immunocytochemical staining which is known as an 

inhibitory neurotransmitter (Hanesch, et al., 1989 and Bausensein, et al., 1994).

The structures of the central complex appear late in development. The region can not be 

identified in the larval stage. During metamorphosis, it grows constantly. The shape is 

almost identical with that of the adult by the second day after puparium formation. Like 

the other neuropil regions, it grows further with the maturation of the whole fly body.
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1.2.3 The antennal lobe

The antennal lobes are the first order neuropils of the olfactory chemosensory pathway. 

They are prominent structures situated in the anterior part of the Drosophila brain (Fig

1.4 A), at the level of the oesophagus, as a pair of protrusions. No obvious sexual 

dimorphism has been observed regarding the size or shape or location. The antennal 

lobes are thought to be the primary olfactory association centre (Stocker, et al., 1990; 

Stocker, 1994). Their subunits, the glomeruli, are organised into odor-discriminating 

areas (Rodrigues, 1988). The antennal lobe receives afferents from the antennae, and the 

output tracts run straight into the calyx of the mushroom bodies and lateral 

protocerebrum.

The antennal system is the receptor for the anti-aphrodisiacs emanating from mated 

females (Stocker and Gendre, 1989). “Feminized” antennal lobes cause Drosophila 

males to display courtship towards both female and male targets (Ferveur, et al., 1995). 

These phenomena maybe due to incorrect processing of the inhibitory odor cues that 

come from mature males.

1.2.4 The optic lobes

The optic lobes, whose size is as large as the central brain, have three regions: lamina, 

medulla and lobula complex (Fig. 1.4 B). The lamina is the lateral most region of the 

CNS, just beneath the compound eyes. As the output neuropil, there are various tracts 

connecting the optic lobe with the central brain, such as the anterior optic tract and the 

optic foci. Of the visual neuropils, the lobula is most intimately connected to the central 

brain (Fischback and Dittrich, 1989).

The study of a large number of neuronal cell types and their connections (Fischback and 

Dittrich, 1989) suggests that the parallel networks of the optic lobe filter different kinds
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of visual information and thus represent structurally separated functional subunits of the 

optic lobe.

1.3 The P-element in the biology of Drosophila

The P-elements are a transposon family of Drosophila. They can transpose directly from 

DNA to DNA within a cell. In nature, transposition of P-elements occurs in the offspring 

of males that have P-elements and females that lack them (Engels, 1989). Transpositions 

are restricted to the germ-line cells and thus become manifest only in later generations.

The first P-element to be cloned was a defective element, identified by virtue of 

disrupting the white locus (Sprading, et al., 1982). Autonomous P-elements are 2.9kb in 

length and have 31bp inverted terminal repeats that are essential for transposition. Full- 

length elements have four exons encoding an 87kDa transposase (Karess and Rubin, 

1984). Restriction of P-element activity to the germ-line results from differential splicing 

of the mRNA (Rio, 1991). In addition to full-length P-elements, most P strains contain a 

range of internally deleted elements varying in length from 500bp to 2.5kb. These P- 

elements are non-autonomous because they are unable to produce functional transposase. 

But many such elements are still mobilised in the presence of a full-length element 

(Engels, 1989). It is noted that an engineered P-element with the third intron removed 

can produce transposase in both somatic and germ line cells (Laskd, et al., 1986), and it 

is often used to mobilise internally deleted P-elements in Drosophila genetics. These 

observations are the basis of the experimental manipulation of P-element transposition, 

as well as the development of P-elements as transformation vectors and as enhancer 

traps.

The P-elements serving as transformation vectors are used for modification and 

manipulation of the Drosophila genome in several ways, such as germ-line
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transformation, mutagenesis via the imprecise excision strategy, enhancer-trap, gene 

cloning by transposon tagging, etc. We are particularly interested in the application of P- 

elements as enhancer-traps.

1.3.1 Enhancer-trapping

Targeting gene expression to specific cell types in a multicellular organism is a powerful 

tool for studying the development and normal function of group of cells. Enhancer-traps 

provide a successful technique to achieve this goal, and a new way to identify genes by 

their pattern of expression instead of means of phenotype caused by a mutation. 

Developmentally important genes usually show specific temporal and spatial expression 

pattern related to their function. In the context of Drosophila, enhancer-traps are usually 

modified P-elements, which can insert pseudo-randomly within the Drosophila genome 

(Kaiser, 1993). The modification include incorporation a very poorly expressed reporter 

gene, initially lacZ. They are not autonomous, but like the internally deleted P-elements, 

they can be mobilised. Due to the lack of a transcriptional enhancer, the reporter has a 

negligible level of intrinsic expression. In order for it to be expressed at significant 

levels, the transposon must insert close to an endogenous Drosophila enhancer. 

Enhancers are cw-acting sequences that can greatly increase transcription rates from 

promoters on the same DNA molecule. They are not gene-specific but tissue-specific. 

Such tissue-specific enhancer elements appear to be rather common in the genome. 

Bellen et al. (1989) found that tissue-specific patterns in the embryo were observed in 

about 65% of their enhancer-trap lines; Bier et al. (1989) found that about 35% of their 

lines were showing expression in the embryonic nervous system. The high frequency of 

tissue-specific expression patterns may reflect the fact that enhancers can act at long 

distances, so the insertion can be quite far from the enhancer are still be influenced by it 

(Wilson, et al., 1989).
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Enhancers can function in either orientation, operating either upstream or downstream 

from the promoter they are enhancing (Griffiths, et al., 1993). Theoretically, the 

expression pattern of the reporter gene in the enhancer-trap element reflects the temporal 

and spatial expression pattern of a flanking gene (Sentry, et al., 1994). There is evidence 

(Nose, et al., 1992) to show that the p-gal blue patterns of the construct match the 

known expression patterns of the genes which are close to the P-element insertion site. 

In the case of the learning gene DCO, recessive lethal mutation has been isolated (Lane 

and Kalderon, 1993; Skoulakis, et al., 1993) by an enhancer-trap screen for genes 

preferentially expressed in the mushroom bodies. Some genes have been cloned and 

analysed solely on the basis of the expression patterns through this method (Yang, et al., 

1997; Pignoni, et al., 1995).

First generation enhancer trap elements (O'Kane and Gehring, 1987 and Fig 1.6 A) 

contained the reporter gene lacZ, encoding the enzyme P-galactosidase (p-gal). The 

presence of P-gal activity in tissue can be detected simply by its conversion of the 

chromogenic substrate Xgal. In addition to the reporter gene, enhancer trap elements 

carry a marker gene (e.g. white or rosy) that enables flies with insertions to be 

recognised. In order to facilitate cloning of the genomic sequences flanking the P- 

element insertion point, a plasmid origin of replication {ori) and an antibiotic resistance 

gene (Amp^ gene are included. This design allows the performance of plasmid rescue 

method (Pirrotta, 1986). The procedure is demonstrated in Figure 1.7. Genomic DNA 

from the flies carrying an enhancer trap element is digested with an appropriate 

restriction enzyme that cuts the polylinker in the engineered P-element and somewhere 

(could be upstream or downstream of the insertion) in the flanking DNA. By the 

subsequent self-ligation, the fragments are cloned as plasmids allowing them to be 

transformed into E. coli and surviving the antibiotic medium. The rescued genomic 

fragments could be used for further chromosomal walking or other analysis.
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Figure 1.7 Diagram of plasmid rescue technique. PL: polylinker; enz: restriction enzyme. 

See text for full description (Diagram was redrawn and modified from Bellen et al., 1990).
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One feature of most "first generation" enhancer-trap elements is that they express P-gal 

fused to the N-terminal nuclear localisation signal of the P-element transposase 

(Grossniklaus, et al., 1989). It reveals only cell nuclei. Although nuclear localisation of 

the lacZ product makes it easier to visualise and count single cells, cytoplasmic 

localisation is favourable for the analysis of cells with extensive processes such as 

central neurons (axons and dendrites) in the brain. Smith and O'Kane (1991) addressed 

this problem by constructing an enhancer-trap element lacking the N-terminal signal, 

thus allowing cytoplasmic localisation.

Considering the insect nervous system as a collection of interacting cells, then the 

identity of these cells is defined by the genes expressed within them. Enhancer-traps are 

effective markers of gene expression. They have been used to trace cell lineages (O'Kane 

and Gehring, 1987) and for anatomical markers (Hartenstein and Jan, 1992) of 

neurogenesis.

The classical and standard approach to studying genetics in Drosophila is to identify 

mutations that disrupt the process of interest, and then to characterise the gene both by its 

biological function and by cloning and studying it at the molecular level. Even though 

this approach has been extraordinarily successful (Hafen, et al., 1987), relying on the 

phenotypes of mutations in genes does have its shortcomings (Freeman, 1991). First, 

genes may have functions at more than one time in development, and mutations in such 

genes may only produce phenotypes associated with one of those functions. Sometimes 

lethal mutations conceal other information and leave these genes undetectable. Second, in 

a system with great diversity, like the CNS, it is technically difficult to detect some 

subtle phenotypes. A third general problem with the classic mutational approach is that, 

often, in the absence of a functional gene product, another one can at least partially 

replace the lost function; in this case, a mutation in such a gene may not give a detectable 

phenotype. On the other hand, extensive genetic and molecular analysis of Drosophila 

embryonic pattern formation have revealed that the majority of genes controlling cell
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identities in the early embryo do so by being expressed in a spatially restricted pattern 

that correlates with their regional requirements (Ingham, 1988).

1.3.2 GAL4/UASg system

To exploit the basic enhancer-trap principle even further, "second generation" enhancer- 

trap systems have been developed (Brand and Perrimon, 1993; Kaiser, 1993). As 

shown in Figure 1.6 B, the p-gal reporter gene in the previous enhancer-trap element has 

been replaced by the gene encoding the yeast transcription factor, GAL4. This 

transcription factor can function in Drosophila (Fischer, et al., 1988), where it only 

activates the expression of genes that have the GAL4 binding site, known as the 

upstream activating site (UAS). Crossing a fly having a new GAL4 insertion with a fly 

containing a UASo-^cZ construct causes p-gal to be expressed in a pattern that reflects 

GAL4 activity in the progeny. In the case of P-gal free of a nuclear localisation signal, 

the expression leads to the transport of P-gal away from the cell body. Such a construct 

allows precise characterisation of the position and morphology of cells of many kinds. 

Particularly for visualising the neuropil structures in the brain and axons for neuronal 

path finding and synaptic connectivity. This second generation enhancer-trap provides 

for expression of a cytoplasmically-localised reporter, and makes it possible to express 

any cloned marker gene in the cells in which a particular GAL4-enhancer trap is active.

The advantage of the GAL4/UASo system is that any gene placed downstream of a 

UAS G element can then be crossed into the same GAL4 enhancer-trap line and be 

expressed in the same tissue specific pattern. This has been shown to be the case with 

Figure 1.6 B. Therefore, in most cases we can map the expression of a GAL4 enhancer- 

trap line by observing the pattern of blue X-gal staining in a P[GAL4]/UASo-/acZ line, 

and be confident that another UASq construct, such as UASo-tra^ will result in 

expression of tra in the same pattern previously visualised when crossed into the same 

P[GAL4] background (O’Dell, et al., 1995). By using this system of P[GAL4]/UASq-

29



tra to some enhancer-trap lines with specific expression patterns, the functions of 

particular neural tissues could be addressed according to the developmental, 

morphological and behavioural consequences.

One of the most powerful uses of this feature is the ability to ablate specific cells by 

expressing cell autonomous toxin genes, such as ricin or diptheria toxin (Kunes and 

Steller, 1991; Moffat et al., 1992). Sweeney, et al. (1995) successfully expressed 

tetanus toxin light chain in embryonic neurons, and eliminated synaptic transmission. 

The targeted expression of toxin also produced the specific behavioural defect of a 

reduced olfactory escape response. This approach could allow us to interpret some of the 

coimections between structure and function during the development of neurons (Sentry, 

et al., 1993).

1.4 The aim of the project

Most behaviour are generated by complex neuronal circuits, which are themselves 

difficult to unravel. Courtship is one of them. By combining the P[GAL4] lines with 

specific expression pattern in the Drosophila brain and the subsequent transformer gene 

expression under UASq construct, chromosomally male flies with feminised subregions 

of the brain can be created. The study of courtship behaviour toward male and female 

targets will reveal some connection between brain structure and fly sexual orientation. 

The effect of both mim-white and transformer gene on the male-male courtship has also 

been tested.

In order to identify some genes required in the adults central nervous system, several 

P[GAL4] enhancer-trap lines, with expression pattern in specific neurons, have been 

employed for plasmid rescue and gene cloning strategy. This approach will contribute to 

the understanding of the molecular mechanisms in the Drosophila brain.

30



Chapter 2

Materials and Methods
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This chapter describes the general methodology used for the experiments which were 

carried out for this thesis. Any modifications and necessary additional descriptions of 

methods are found in the relevant later chapters. This chapter contains 4 main sections; 

(2.1) Materials, (2.2) Drosophila, (2.3) General methods of molecular biology, (2.4)m 

situ hybridization of Drosophila tissue and immunohistochemistry.

2.1 Materials

2.1.1 Chemicals and biochemicals

Antibiotics, Xgal, IPTG, ethidium bromide and SDS were obtained from Sigma 

chemical Co.

Radiochemicals were from ICN.

DMSO and polyethylene glycol 8000 were obtained from BDH Chemicals.

Agarose and phenol were obtained from Gibco-BRL Ltd.

Deoxynucleoside triphosphates were obtained from Promega.

Oligonucleotides were synthesised on an Applied biosystems(Model 280A) DNA 

Synthesiser at the Department of Genetics, University of Glasgow, using reagents from 

Cruachem.

General chemicals and solvents were from BDH and Sigma.

32



2.1.2 Enzymes and kits

Restriction endonucleases, other DNA modification enzymes, e.g. T4 DNA ligase, 

Klenow fragment, and reverse transcriptase were obtained from Gibco-BRL, Stratagene, 

Promega and Boehringer Mannheim. Proteinase K, RNase A, DNase I and lysozyme 

were obtained from Sigma. Automatic Sequencing Kits were from Perkin-Elmer Appli 

Gene. DNA labelling kits for both a-P^^ and digoxygenin (DIG) were obtained from 

Boehringer Mannheim. A kit for RNA labelling was obtained from Promega. The RT- 

PCR kit used was from Gibco-BRL.

2.1.3 Escherichia coli strains and maintenance

Three strains were employed in this work:

The strain XLl - Blue (Bullock et al, 1987) was used for most of the plasmid 

transformation and cloning procedures including white-blue selection. The 

genotype is as follows: recAl, endAl, gyrA96, thi-1, hsdRll, supE44, relAl, lac, 

\F'proAB, lacI^ZAMlS, TnlO(tet^].

The propagation of bacteriophage was carried out in the host strain NM621 (Whittaker 

et al, 1988), its genotype is: hsdR, mar A, mcrB,lac,SupEAA, recD\QQ9.

For the preparation of better quality templates for double stranded sequencing (Perkin 

Elmer, 1995), the strain DH5a (Bethesda Research Laboratories, 1986; Hanahan,1983) 

was used. The genotype of this host is: supE ^, Alac U169 ((j)80 /acZAM15), hsdR ll, 

recAl, gyrA96, thi-1, relAl.

Bacterial strains were stored in 80% LB(0.1% NaCl, 0.1% bacto-typtone, 0.05% bacto- 

yeast extract, 0.01% glucose), 20% glycerol at -70°C.
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2.1.4 Plasmid vectors

Plasmid pBluScript II SK+ amp^ (Mead et al, 1985) was used as the vector for the 

subcloning of DNA fragments.

2.1.5 X, phage libraries

A Drosophila genomic DNA library was constructed using the EMBL3 (Frischauf et 

al., 1983) replacement vector. The library was kindly supplied by R. Blackman.

A Drosophila male adult head cDNA library was made in the vector X NM1149 

(Murray, 1983) by Steven Russell (1989).

2.2 Drosophila

2.2.1. Drosophila melanogaster strains

Canton-S; From Steve de Bell, Biologische Kybernetik, Max-Planck-Institut. A wild 

type strain used as a source of DNA, RNA and in situ hybridization experiments and as 

a control for behavioural tests.

w(CSlO); white-eye Canton-S, derived by backcrossing flies to wild-type

(Canton-S) flies for ten generations (Dura et al., 1993). This strain was used to make 

Cantonised background P[GAL4] lines for behavioural analysis.

P[GAL4] lines (Brainbox: http://brainbox.gla.ac.uk; Yang, et al., 1995; Yang, 1996; 

Armstrong, 1995; Armstrong, et al., 1997; J.D. Arm strong, personal comm.; M.Yang, 

personal comm.):
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(1) mushroom body expression lines: 201Y, c772, c747, c739, 72Y, 43Y, c97, c l84, 

30Y, c532, 117Y, 121Y, c302, c309, c253, 238Y. (2) central complex expression lines: 

c819, c522, c5, 7. (3) optic lobe expression lines: c827, c829. (4) antennal lobe 

expression line: c287. (5) great commissure expression line: 82Y. (6) general staining 

lines: 21Y.

All these lines have been Cantonised in Dr. K. Kaiser’s laboratory by various 

researchers.

UASq- lines: (1) UASo /acZ on the second chromosome (Brand and Perrimon, 1993).

(2) UASo-frj on the second chromosome (O’Dell, et al., 1995).

Balancer lines: From Kevin O'Dell, Department of Genetics, University of Glasgow 

CyO/Sp, and CyO/Ddc (Lindsley and Zimm, 1992).

2.2.2. Rearing conditions

Basic technique for the laboratory culture of Drosophila were as described by Ashbumer 

(1989) and Roberts (1986). During large scale amplification in bottles, fly density was 

controlled by not allowing over-crowding to the extent of reducing adult body size. The 

number of parent flies were around 10 males and 20-30 females, and they were removed 

prior to hatching of the next generation. The fly stocks were maintained in yeast-glucose 

food plastic vials and bottles, at 18°C and 25°C.

The food recipe is: l%(w/v) bacto-agar, 1.5%(w/v) sucrose, 3%(w/v) glucose, 

3.5%(w/v)active dried yeast, 1.5%(w/v) maize meal, 1% (w/v) wheat germ, 3%(w/v) 

treacle, l%(w/v) soya flour. Simmered for 20 minutes, then supplemented with 

0.5%(v/v) propionic acid and 0.1%(w/v) nipagin M, once cooled to below 70°C. For 

embryo collection, flies were kept in population cages at 25°C and fed on grape juice 

agar (52g glucose, 26g sucrose, 7g yeast, 20g agar, 58.8ml grape juice and 6ml 10%
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Nipagen per litre) plates. Live liquid yeast was smeared onto the plates to encourage egg 

laying, The plates were changed daily to wash off the eggs.

2.2.3 Ethyl methanesulphonate (EMS) mutagenesis

This method was adapted from Roberts (1986). Newly eclosed males were placed into 

bottles with food for 3 days at room temperature. Prior to the treatment, they were 

transfered to an empty bottle at room temperature for 2 hours. This pre-conditioning 

supposedly enticed the flies to ingest the "unpalatable" EMS-sucrose solution.

EMS is an oily liquid that will initially form droplets when added to aqueous solution. 

These droplets were dispersed by a disposable syringe after removing 0.26ml EMS to 

100ml 1% sucrose solution. One piece of Whatman 2V (125mm0) filter paper was 

placed on the bottom of each clean empty half-pint bottle and wetted with 2ml EMS- 

sucrose solution. Approximately, 1(X)-2(X) male flies were put into the bottle and left in 

the fume hood for 24 hours. The male flies were removed from treatment bottles to 

empty bottles for 2 hours and then to fresh medium and allowed to feed and recover for 

about 24 hours prior to mating.

Denaturing solution was made up by dissolving 20g of NaOH in 500ml of water and 

2.5ml of thioglycolic acid before begining any handling of EMS. Every container or 

syringe contaminated with EMS was treated with denaturing solution immediately after 

use and allowed to stand for approximately 24 hours.

2.2.4 Tests of courtship behaviour

For behavioural tests, the crosses typically were of two males and three virgin females 

per vial. Thus larval density was always substantially greater than five larvae per ml of 

food, therefore the larval population density effect on mushroom body size was not
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relevant (Heisenberg, et al., 1995). Live liquid yeast was added to standard fly media to 

enrich the food. Drosophila were maintained on a 12 hour dark: 12 hour light cycle at 

25°C and 35%-45% relative humidity.

When experiments were performed with virgin males, they were collected under C02 

anaesthesia within 4 hours of eclosion, and kept separately in yeasted vials for 4-6 days 

before testing. The flies were transferred to fresh media on the day prior to observation. 

Target flies were housed in group of ten of the same sex, aged for five days, and 

decapitated approximately 15 minutes before use. Courtship were observed at 25°C for 5 

minutes in mating wheel with 4 chambers (8mm diameter). After being transferred to the 

chamber, the courting flies were allowed to recover for 5-10 minutes before being 

introduced to the target. The observation for each class was repeated ten times to 

provide n=10.

The courtship index (Cl, Siegel and Hall, 1979) was measured for a five-minute 

observation period. The performance of wing vibration, known as the sex-appeal 

parameter (SAP, Jallon and Hotta, 1979) was also scored as an additional control index 

for the courtship. Canton-S males and virgin females were used as targets. Statistical 

manipulation and analyses (two-tailed t-test and correlation coeffecient) were performed 

using JMP2 software (SAS Institute, Inc.) and Minitab 10.5 (Minitab Inc.).

2.3 General methods of molecular biology

Molecular biology techniques were performed as described by Sambrook et al. (1989) 

unless otherwise described.

2.3.1 Manipulation of nucleic acids

(a) Agarose gel electrophoresis
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For the restriction analysis of DNA, 0.7-1.2% agarose gels were produced in IxTBE 

(90mM Tris-HCl pH8, 90mM boric acid, ImM EDTA) by boiling. The solution was 

allowed to cool to about 60°C, and ethidium bromide was added to a concentration of 

0.05 p-g/ml before pouring. 0.2 volume of loading dye (40% w/v FicoU, ImM EDTA 

pH8.0, 0.1% w/v bromophenol blue) was mixed with the DNA samples. The horizontal 

gels were run submerged in IxTBE at 1.5-10 volts/cm. Nucleic acids were visualised 

under UV irradiation. Ikb DNA markers (BRL) were used on all gels as a size standard 

and for quantification of the amount of DNA by comparing the intensity of bands to 

those of the samples.

(b) Recovery of DNA from agarose gel

A silica suspension was made by mixing lOg of silica (Sigma) in 100ml of PBS and 

allowing the silica to settle for 2 hours. The supernatant was removed and the procedure 

was repeated. Then the silica was resuspended in 3M Nal at l(X)mg/ml (Boyle and Lew,

1995).

The DNA band of interest was excised from the agarose gel, 2 volumes of 6M Nal 

solution were added to the agarose block and followed by incubation at 55°C for 5 min. 

The silica suspension was used as a DNA-binding matrix by mixing 10-50|il with the 

melted gel. After washing the pellet twice with 0.5 ml of the wash buffer (50mM NaCl, 

lOmM TrisHCl pH7.5, 2.5mM EDTA, 50% v/v ethanol), the DNA was eluted in one 

pellet volume of distilled water.

(c) Restriction endonuclease digestion of DNA

For general purpose digestion of DNA, normal concentration restriction endonuclease 

preparations were used in the suppliers' recommended buffer, with between 2-fold and 

10-fold excess enzyme. Incubation at the recommended temperature was for 1-4 hours.
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and the reaction was terminated by addition of electrophoresis loading buffer, or by 

heating to 70 °C for 5 minutes, or by phenol extraction.

(d) Double stranded DNA ligation and subcloning

Ligations were usually performed in 20-40}xl of Ixligation buffer (BRL), containing lu 

of T4 DNA ligase. The reactions were incubated overnight at 16°C.

DNA fragments to be subcloned and plasmid vectors were both digested with 

appropriate restriction enzymes. For the ligation, the molar ratio of insert DNA to vector 

was 10:1. Transformation was carried out afterwards. Recombinant clones were 

analysed by restriction digestion and/or hybridization.

(e) Measurement of nucleic acid

the concentration and purity of nucleic acid were determined by spectrophotometry. An 

absorbance value of 1.0 at 260nm corresponds to 50pg/ml double stranded DNA, 

40pg/ml RNA and 20p,g/ml oligonucleotides. Pure preparations of RNA and DNA have 

an A260/A28O of 1.8 and 2.0 respectively. Contaminating protein or phenol significantly 

lowers these values.

(f) Nucleic acid labelling

Radioactive labelling of DNA fragments was performed using a random primer DNA 

labelling kit (Boehringer Mannheim). [a-^^P] dCTP was incorporated into the synthetic 

oligonucleotides. Labelled probe was separated from unincorporated nucleotide by 

chromatography through Sephadex G50 columns (Sambrook et al., 1989) prepared in 

disposable 1ml syringes.
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The DNA probes labelled with digoxygenin (DIG)-dUTP were obtained by using 

random-primed labelling Kit (High Primer, Boehringer Mannheim). The labelled DNA 

fragment was precipitated with ethanol and can be kept at -20°C for 1 year.

RNA probes were synthesised by utilising the Riboprobe® in vitro Transcription System 

(Promega).

For a "reverse Northern", the first strand cDNA probe was made from 1 |ig of 

Drosophila total RNA. The RNA was annealed at 70°C for 5 minutes with lOOng oligo 

dT(i4.i8) (Boehringer Mannhleim) and chilled on ice. This template was incubated with 

70^iCi a32pdCTP (SOOpCi /mMol); 500mM each dATP, dGTP and dTTP; lOmM DTT; 

50mM Tris-HCl pH8.3; 75mM KCl; 3mM MgCl2 and 200 units of AMV Reverse 

Trancriptase (Boehringer Mannheim) for 90 minutes at 45°C. Then, the reaction was 

"chased" with cold dCTP (to produce longer probes) at a final concentration of 500pM 

and a further 80 units of enzyme for 45 minutes at 45®C. After this step, EDTA was 

added to a final concentration of 20mM and NaOH was added to a final concentration of 

600mM and the reaction incubated at 68°C, for 45 minutes, to hydrolyse the RNA 

template. Finally, labelled single stranded DNA was separated from unincorporated 

nucleotides by Sephadex G-50.

2.3.2 Isolation of plasmid DNA

Colonies picked from plates were incubated in 10ml LB, with 100 p-g/ml Ampicillin, 

shaking overnight at 37°C. The culture was harvested by centrifugation (5,000rpm for 5- 

10 minutes). The cell pellet was resuspended in 300|xl of cold solution 1 (50mM 

glucose, 25mM Tris-HCl pH 8.0, lOmM EDTA pH 8.0). Next, 300p.l of solution 2 (0.2 

M NaOH, 1% SDS) was added and mixed, then placed on ice for 5 minutes. 300|il of 

3.0M Potassium acetate (pH4.8) solution was added and mixed gently on ice for 5 

minutes. Cell debris was removed by centrifugation at 4, OOOrpm for 15 minutes. The
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supernatant was incubated with 20|i,g/ml RNase A (DNase-free) at 37°C for 20 minutes, 

then, extracted with an equal volume of 1:1 phenol/chloroform and the phases separated 

by centrifugation (10,000rpm, 2 minutes). The aqueous phase was transferred to 0.6 

volume of isopropanol and left at room temperature for 10 minutes to precipitate the 

nucleic acid. After spinning for 15 minutes at 14,000rpm, the pellet was washed with 

1ml of 70% ethanol, air dried briefly, and then resuspended in 50-l(X)pl of TE (lOmM 

TrisHCl, ImMEDTApHS.O).

2.3.3 Transformation of E. coli with plasmid DNA

(a) Preparation of competent cells

An overnight culture of XLl-Blue or DH5a strain was diluted 100-fold into 50ml LB. 

The culture was shaken vigorously for 2 hours at 37°C to reach the mid log phase 

(OD650=0.4-0.5). The cells were harvested at 5,OOOrpm, 4°C in centrifuge for 10 

minutes, then resuspended in 25ml of ice-cold 50mM CaCl2 and incubated on ice for 30 

minutes. The cells were pelleted again, and resuspended in 2.5ml of CaCl2. The 

efficiency of transformation increases four-six fold during the first 12-24 hours of 

storage at 0-4°C and then decreases to the original level (Sambrook et al., 1989).

(b) The procedure of transformation and the selection of recombinant clones

5-40|il ligation mix (or plasmid) was added to 50-200|xl aliquots of competent cells, the 

mixture was incubated on ice for 30 minutes, and then heat shocked at 42°C for 90 

seconds. 8(X)pl 2YT (0.16% bacto-typtone, 0.1% yeast extract, 0.05% NaCl) was added 

to the cells. The culture was shaken at 37°C for 1 hour to allow genes conferring 

antibiotic resistance to be expressed. 50-200|il of the culture was plated on to LB agar 

(LB with the addition of 15g/l bacto-agar) plates containing the appropriate antibiotic 

(e.g. 50|ig/ml of Ampicillin)/chromogenic substances (X-gal and IPTG) and incubated

overnight at 37°C.
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X-gal was used in conjunction with IPTG to identify E. coli containing pBlueScript 

vectors with inserts in their multiple cloning sites. Recombinants containing inserts are 

generally white while those lacking inserts are blue.

X-gal was stored at a concentration of 20mg/ml in dimethylformamide (DMF) at -20°C 

while IPTG was stored at a concentration of 200mg/ml in dH20 at -20°C. X-gal and 

IPTG were added to LB agar plates to a final concentration of 40|ig/ml and 100|Xg/ml 

respectively.

2.3.4 Techniques for handling E, coli bacteriophage X

(a) Preparation of plating cells

100ml of LB supplemented with 0.1% (w/v) maltose, lOmM MgS0 4 , was incubated 

with 1ml of overnight culture of E.coli strain NM621, and grown at 37°C on a shaker for 

2-3 hours to a density of approximatly 10  ̂cells /ml (OD^oo = 0.45-0.55). The cells were 

pelleted by centrifugation (4,000rpm, 10 minutes, 4°C) and resuspended in 40ml of 

sterile, ice cold, lOmM MgS0 4 . The cell suspension was stored at 4°C and remained 

viable for 3-4 weeks.

(b) Plating and titring of X phage

Serial 10-fold dilutions of X phage libraries were prepared in phage buffer (20mM Tris- 

HCl pH7.4, lOOmM NaCl, lOmM MgS0 4 ). The infection of cells with bacteriophage 

was achieved by adding l-2ml aliquots of each dilution to 100ml of the plating cells. 

The samples were incubated at 37°C for 20 minutes, 3-5ml of melted top agarose (0.1% 

trytpone, 0.05% yeast extract, 0.05% NaCl, 0.065% agarose) at a temperature of 45°C 

was added and the mixture was poured onto LB agar plates. Once set, the plates were
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incubated at 37°C for 6-10 hours. The plaques were counted and the titre determined for 

each dilution assayed.

(c) Isolation of X phage DNA

The plaque of interest was pulled from plate by the narrow end of a sterile glass pasteur 

pipette. The phage plug was left in 500|xl of phage buffer and 50|il of chloroform (to kill 

bacterial cells) for 2 hours at room temperature to allow phage particles to be soaked out 

into the buffer. 20|il of the diffused phage was used to infect 200|il NM621 plating cells. 

Then the cells were grown on 37ml NZCYM (0.1% NZamine, 0.05% NaCl, 0.05% 

baco-yeast extract, 0.01% casamino acids, 0.02% MgS0 4 ) at 37°C with vigorous 

shaking overnight until lysis was apparent. The culture was treated with 1.8mg of DNase 

I and 1.8mg of RNase A at 37°C for 30 minutes. Then 100|xl of chloroform along with 

l .lg  NaCl was added and dissolved by a further 15 minutes shaking. The debris was 

pelleted by centrifugation (4,000rpm, 15minutes) and 3.7g of PEG 8(X)0 was dissolved 

in the recovered supernatant at room temperature and the samples were left at 0°C for 90 

minutes to precipitate the phage. The phage was spun down at 10,(XX)rpm for 20 minutes 

and resuspended in 500|xl phage buffer. Then the suspension was extracted with 500|xl 

of choloform. The aqueous phase was incubated with 25|Xg proteinase K at 65°C for 30 

minutes. After purification by phenol and chloroform extractions, DNA was precipitated 

and resuspended in TE.

(d) Screening of genomic and cDNA libraries

The libraries were plated on lOxlOcm square plates. The plaque density was around 

Ixl0^/cm2. The plates containing phage were incubated under normal conditions until 

plaques were visible, but still isolated. Duplicated nylon filters were marked using a 

syringe needle and lifted. The denaturing, neutralization and hybridization were
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performed according to the manufacturer’s (Sartorius) recommendations and standard 

procedures.

The secondary screening were carried out by 1/100 dilution of the primary phage plug; 

single plaques could be picked at this stage.

2.3.5 Isolation of Drosophila DNA

30 flies were collected in a 1.5ml eppendorf tube and chilled on ice. 500pl of lysis buffer 

(lOOmM Tris-HCl pH8.5, 80mM NaCl, 5% sucrose, 0.5% SDS, 50mM EDTA pH8.0) 

was added and the mixture ground for a few moments The homogenate was left at room 

temperature for 10 minutes, then transferred to a 70°C heating block for another 30 

minutes. Approximately 50|xl of 6M potassium acetate (pH4.8) was mixed with the 

homogenate to make a final concentration of about IM. After 30 minutes incubation on 

ice, the debris were spun down (12,000rpm) at 4°C for 15 minutes. The supernatant was 

removed and precipitated by 0.6 volume isopropanol. The genomic DNA was pelleted 

by centrifugation (14,000rpm, 10 minutes) at room temperature and resuspended in TE.

2.3.6 Plasmid rescue

The procedure started with DNA preparation and restriction digestion of interesting P- 

element insertion lines. After performing self-ligation, the DNA mixture was 

transformed into E.coli competent cells. The recombinant plasmids contained both 

plasmid sequence and Drosophila genomic DNA fragments.
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2.3.7 Southern blot and hybridization

(a) Southern blot

After electrophoresis and photography, DNA was denatured by leaving the gel in 

denaturing solution (0.5M NaOH, 1.5M NaCl) for 45 minutes. Then the gel was 

removed to neutralising solution (1.5M NaCl, 0.5M TrisHCl pH7.2, ImM EDTA) for 

another 45 minutes. DNA was transferred to a Nylon filter by capillary action 

(disposable nappies proved a particularly useful absorbent material for driving the 

transfer process) with 20xSSC solution (3M NaCl, 0.3M tri-sodium citrate). Nucleic 

acids were fixed to Nylon membranes by automatic UV crosslinking in a Stratalinker™.

(b) Hybridization and autoradiography with radioactive probes

The prehybridization was carried out with 20-40ml of Church buffer (7% SDS, 1% fatty 

acid free BSA, ImM EDTA, 0.25M Na2HP0 4 ) at 65°C for 1-4 hours. Probes in 0.5ml 

TE were boiled for 5 minutes and quenched on ice for denaturing, then added to 

prehybridized filters. Hybridization lasted for 14-18 hours. Afterwards, DNA blots were 

washed briefly in 50-100ml 2xSSC, 0.01% SDS (w/v) at 65°C; secondly, in 0.5xSSC; 

finally, in O.lxSSC. The filter was sealed in Saran Wrap and exposed to Kodak X- 

OMAT film in a metal cassette with intensifying screens. The exposure of the 

autoradiographic images was performed at -70°C. The X-ray films were developed using 

a compact X-OMAT automatic processor, model X-2.

(c) Hybridization and detection with DIG-probe

Prehybridization of the filter was carried out in a solution of 5xSSC, 1% blocking 

reagent (w/v), 0.1% N-laurylsarcosine Na-salt (w/v), and 0.02% SDS for 4 hours at 

65®C, followed by the addition of lOjil freshly denatured DIG-DNA probe and 

overnight incubation. After removing the probe by washing with a different stringency.
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the filter was briefly rinsed in buffer 1 (O.IM Maleic acid, 0.15M NaCl, pH7.5), and 

incubated in buffer 2(1% blocking reagent in buffer 1) for 30 minutes. Anti-DIG-AP, 

Fab-fragments (Boehringer Mannheim) were diluted to 0.15u/ml in 30ml buffer 2 and 

incubated with the filter for a further 30 minutes. The unbound conjugates were removed 

by further washing in buffer 1. Then the filter was equilibrated for 2-5 minutes in 20ml 

buffer 3 (O.IM Tris HCl pH9.5, O.IM NaCl and 50mM MgCl2). The colour 

development was performed by NBT and BCIP essentially as described in the manual 

from Boehringer Mannheim.

2.3.8 Isolation of Drosophila RNA and Northern hybridization

RNase is a very persistent enzyme and precautions were taken against contamination. 

All solutions were made RNase free with the addition of 0.1% diethyl pyrocarbonate 

(DEPC).

(a) RNA preparation

Fly tissue or whole flies weighing roughly 50-100mg was homogenised in 1ml of 

TRIZOL Reagent (Gibco-BRL) for 60 seconds and left at room temperature for 5 

minutes. 200p,l chloroform was added and shaken to mix for 30 seconds. After 2-3 

minutes of incubation at room temperature, the homogenate was spun at 12,000 rpm for 

15 minutes. The aqueous phase was removed and precipitated with an equal volume of 

isopropanol. The RNA was pelleted by centrifugation at 4°C, and 14,(X)0 rpm for 10 

minutes.

Poly A+ RNA was isolated from total RNA using the Quik® mRNA Isolation Kit 

(Stratagene) according to the manufacture's protocol.
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(b) Northern hybridization

For RNA electrophoresis, the denaturing gels were made from 1% agrose, 7.2% 

Formaldehyde and IxMOPS (20mM 3-(N-morpholino) propane sulfonic acid, pH7.0; 

8mM sodium acetate; ImM EDTA, pH8.0). The RNA samples were denatured by 

heating at 70®C for 5 minutes and mixed with EtBr (at a final concentration of 50ng/ml) 

prior to loading. The RNA size marker (Gibco BRL, 0.24-7.5kb) was also employed in 

determining sizes of the signal bands. RNA was transfered and fixed to Nitrocellulose 

(Hi-Bond) as described in Sambrook et al, (1989).

The prehybridization was carried out at 42®C, with a solution containing 50% 

Formamide (v/v), 5xSSPE (750mM NaCl, 45mM NaH2P0 4 , 5mM EDTA) pH7.4, 

2xDenhardt’s (0.04% Ficoll, 0.04% BSA and 0.04% PVP), 0.1% (w/v) SDS. Then the 

hybridization lasted for 16-24 hours with the addition of 300|il denatured probe. When 

an RNA probe was used, the temperature of hybridization was 55®C.

For washing, lower salt concentration and high temperature are more stringent, so the 

procedures were: one brief wash in 2xSSC, 0.1% SDS at 42°C, one 15-minute wash in 

IxSSC, 0.1% SDS at 42°C, and another 15-minute wash in 0.5xSSC, 0.1% SDS at 

55°C. The autoradiography was similar to that used for Southern hybridization.

2.3.9 Sequencing

(a) Automated Cycle sequencing

Sequencing of subcloned DNA fragments was carried out by the protocol recommended 

in the Ready Reaction Dye Deoxy™ terminator Cycle Sequencing Kit (ABI). The 

reaction was driven by thermally stable DNA polymerase (Ampli Taq®). Four dye- 

labelled dideoxynucleotides are incorporated into the DNA as the terminating bases. The 

samples were detected and analysed on an ABI automated DNA sequencer (Model 373).
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(b) Sequence analysis

The DNA sequences from the ABI 373 DNA sequencing system were first assembled by 

SEQUENCE NAVIGATOR™ 1.0 (Applied Biosystems), then input into the 

MacVector™ programme. Prediction of open reading frames and translation into protein 

sequences were run on MacVector™4.1.4. For homology and structure comparison, 

database searches by Blast and Beauty were performed through Netscape 2.1 

(http://dot.imgen.bcm.tmc.edu:9331/seq-search/Options/).

2.3.10 Reverse Transcription-Polymerase Chain Reaction (RT-PCR)

Messenger RNA was isolated by the DYNAL mRNA Direct Kit, the oligo dT moiety of 

the magnetic beads being used both to capture the mRNA and as a primer for the reverse 

transcriptase (Gibco-BRL) to synthesise the first strand cDNA. The reaction was carried 

out with ImM each dNTP, 5mMDTT, Ixbuffer (supplied with enzyme) and 20 units 

RNAsin (Promega) at 42®C for 30 minutes. The first strand cDNA covalently attached 

to the magnetic particles was collected and washed and resuspended. 1/20-1/30 of the 

beads were used as a template for PCR.

The PCR reaction was carried out in a final volume of 30|il, in the presence of 0.33pM 

oligonucleotide primers, 200pM of each dNTP, in IxPCR buffer (supplied with the 

enzyme) and with lunit of Taq DNA polymerase. Samples were incubated in Hybaid 

thermal cyclers. A typical cycling profile would be: 40 cycles of incubation at 93°C for 

30 seconds; %°C for 30 seconds; 72°C for 2 minutes. % was the empirically derived 

annealing temperature for each pair of oligonucleotides which was judged to generate 

the least background. If optimisation was not possible, a temperature of 5®C below the 

Tm of the primer was used.
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2.4. Drosophila tissue in situ hybridization and immunohistochemistry

2.4.1 in situ hybridization to Drosophila brain sections

The method was essentially as described by Nighorn et al., (1991), but some 

modifications were made according to Yang (1996). The Digoxygenin (DIG) labelling 

and detection kit from Boehringer Mannheim was employed.

(a) Sectioning and fixation of tissues

After being anaesthetised, the flies were placed in a Heisenberg collar (Heisenberg and 

Boehl, 1979) with the needed orientation, and soaked in OCT mountant (BDH) for 10 

minutes before being frozen in a cryostat (Anglia Scientific, Cryotome 620). 12|im 

sections were cut at -18®C. The ribbons of sections were placed onto gelatinised slides 

and allowed to dry at room temperature for 1-2 minutes. Then they were fixed in freshly 

made PLP (2% paraformaldehyde, O.OIM sodium metaperiodate, 74mM lysine and 

IxPBS) for 10 minutes.

(b) Hybridization and detection of the DIG labelled probe

After two washes in PBS, the sections were treated with 10|ig/ml Proteinase K at 37®C 

for 10 minutes. Then another PBS wash followed by 20 minutes of re-fixation in 4% 

paraformaldehyde in PBS. The slides were washed twice in 2xSSPE. Each slide was 

bathed in 200pl prehybridization solution and covered with a cover slip. After 4 hours of 

prehybridization at 42°C, the slides were then incubated with a denatured (boiled) DIG 

DNA probe in prehybridization solution (50ng/ml) overnight at 42^C in a humid box. 

After hybridization, the slides were washed twice in 2xSSPE, once in IxSSPE and once
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in 0.5xSSPE. These washes were all carried out at room teperature for 15 minutes. The 

final wash was in 2mM NaPPi, ImM NaP0 4  and ImM EDTA at 42°C.

For detection, the sections were first rinsed in buffer A (O.IM TrisHCl pH7.5, 150mM 

NaCl) then incubated with 200pl of blocking solution (2% sheep serum, 0.3% Triton X- 

100 in buffer A) for 1 hour. 150|il of a 1:500 dilution of preabsorbed Anti-DIG-AP was 

added to each slide and incubated 3 hours at room temperature. After 4 washes in buffer 

A, the sections were placed in buffer 3 for 2-3 minutes, then 200fxl levamisole solution 

with NBT and X-phosphate was applied to each slide. The sections were incubated in 

the dark at room temperature for 2-4 hours. The reaction was stopped by washing in 

PBT for 20 minutes and mounted with glycerol gelatin (Sigma).

2.4.2 Developmental staining of Anti-p-gal antibody on larval, pupal and adult 

brains

The intact brains were dissected from male and female 3rd instar larvae; four-hour- 

interval pupae and adults. The sex of the larvae and pre-pupae was judged by the size of 

the gonads (Ashbumer, 1989). For timed pupal series, the newly immobile pre-pupae 

(Bainbridge, and Bownes, 1981) were collected every 30 minutes throught the day. The 

slide containing the pupae was then placed in an empty food bottle to maintain a similar 

temperature and humidity to that of the original bottle. Pupae's dissection times were 

accurate to within +/- 10 minutes, the collection times were accurate to within +/- 30 

minutes giving an overall accuracy of +/- 40 minutes well within the +/- 1 hour used in 

previous studies (Ito, 1990)

The brain tissues were fixed in 4% paraformaldehyde for 30 minutes and washed twice 

for 1 hour in PAT (1% bovine serum albumin, 1% Triton X-100, IxPBS). They were 

incubated overnight in 3% normal goat serum (SAPU) containing rabbit polyclonal anti- 

P-gal antibody (Cappel) diluted 1:20(X) in PAT, then washed three times in PAT for 20
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minutes each. 1/250 dilution of secondary antibody (fluorescein-labelled goat anti-rabbit 

IgG; Vector Labs) was incubated overnight with the brains. Then, two washes for 1 hour 

in PAT were followed by a 5-minute wash in PBS. All of the above was carried out at 

room temperature. Stained brains were mounted in Vecta Shield (Vector).

Whole-mount stained brains were examined with a molecular Dynamics Multiprobe 

laser scanning confocal microscope. The excitation (480nm) and emission (530+/-15nm) 

barrier filters used were appropriate to the fluorescein-based label of the secondary 

antibody. Three dimensional reconstructions were performed using the programme 

"ImageSpace 3.1" (Molecular Dynamics). Pseudo colour was added to the reconstructed 

view using the programme "NIH-Image" (National Institutes of Health, Washington). 

Montages were assembled in "Adobe Photoshop". The image processing was kindly 

carried out by Dr. Douglas Armstrong.

2.4.3 X-gal staining of adult brains

Brain dissection and fixation were as described before. After PBS washes, the brains 

were stained with staining buffer (lOmM NaH2P0 4 , lOmM Na2HP0 4 , 150mM NaCl, 

ImM MgCl2, 3.ImM K4(Fe2+CN)6, 3. ImM K3(Fe3+CN)6. 0.3% TritonX-100, pH7.8) 

and 2% X-gal for 1-2 hours at 37°C. They were then washed for 20 minutes in PBS. The 

tissues were mounted on a slide in a cover slip chamber.
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Chapter 3

The effects of ectopic white and transformer expression 
on male-male courtship
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3.1 Introduction

The white gene was first reported by Morgan (1910). Over the decades, it has served as 

a prototype for numerous studies concerning gene regulation, insertional mutagenesis, 

and behavioural analysis of mutants (Levis et al., 1984; Hazelrigg, 1987; Geer and 

Green, 1962). It is located at the distal end of the X chromosome, 3C2 (Lefevre and 

Wilkins, 1966). The major transcript has been identified as a 2.6kb poly(A+)RNA (Fig.

3.1 A) found in embryos, larvae, pupae and adults (O’Hare et al., 1983; Fjose et al., 

1984; Pirrotta and Brockl, 1984). It is predicted to encode a 687 amino acid member of 

the ATP-binding, transmembrane, transporter superfamily (G'Hare, et al., 1984; Pepling 

and Mount, 1990). Specifically, the products of the white and scarlet (Tearle et al., 

1989) genes are believed to form a heterodimer that functions in the transport of 

tryptophan; the products of the white and brown (Dreesen et al., 1988) genes are 

believed to form a heterodimer that acts in guanine transport. Tryptophan and guanine 

are precursors to the eye pigments essential to normal eye colour. In Drosophila, white 

is required for pigment production in the light-screening cells of the compound eye, 

ocelli pigment cells, sheath cells of the testes, and the larval Malpighian tubules.

From the early stages of P-element transformation experiments, along with rosy, white 

genomic DNA was used as a marker to follow integration, but the transformation 

frequency seemed to be highly size-dependent (Rubin and Spradling, 1983). In order to 

obtain a more suitable transformation vector, the size of the white gene was reduced by 

removing a large part from its first intron and 3' non-coding sequence (Klemenz et al., 

1987). This genetically engineered white construct is known as the "mini-white'' and still 

encodes a full-length protein. During the last decade, it has been extensively used as an 

eye marker to identify P-element mediated germ-line transformants in white' recipient 

lines.
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2.6Kb RNA

-1 0

Figure 3.1 A Structure of the major 2.6 kb poly(A)‘*' RNA encoded by white (Hazelrigg, 

1987). The transcription initiation site marks the 0 point of the coordinate system (scale in kb).

5' 3'

mmi-white gene hsp70 AdhS'

3' 5' Î
cloning site for hsp70- 
dependent gene expression

Figure 3.1 B The pHSBJCaSpeR vector (Malicki, et al., 1993). 290bp of the hsp70 

promoter/ transcription start site are flanked by mini-white and by the 3' untranslated trailer 

of the Alcohol dehydrogenase (Adh) gene (Kreitman, 1983). The mini-white gene includes 

BOObp of the endogenous promoter, a transcribed domain lacking most of its 5' intron, and 

630bp of DNA flanking its poly(A) addition site (Pirrotta, 1988). Hatching represents the P- 

element ends and the bent arrows indicate transcription initiation sites and directions for the

mini-white and hsp70 promoters.
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Heat shock promoters are employed in numerous gain-of-function experiments studying 

ectopically expressed proteins in vivo; they are turned on by an increase of the 

environmental temperature, hsp-10 is one of these promoters. P-element vector 

pHSBJCaSpeR (Fig. 3.IB) was designed containing an hsp-10 promoter and a mini- 

white gene marker (Malicki et al., 1993). It has been reported (Zhang and Odenwald, 

1995) that the heat shock vector's mini-white gene was also activated after heat 

induction, and this misexpression of white led to a remarkable homosexual behaviour in 

mature adult males. The heat-shocked males vigorously court other males, forming 

courtship chains: males follow each other in lines, occasionally forming lariats and 

rings. This effect was observed in a variety of the strains containing insertions of 

pHSBJCaSpeR constructs in which different transgenes had been placed under the 

control of the heat-shock promoter. Zhang and Odenwald used EMS treatment to create 

white' mutants of pHSBJCaSpeR. Ablation of the mini-white transgene function also 

abolished the inducible behaviour.

Loss of white gene function does not appreciably affect viability and fertility, but the 

absence of light-screening pigments in the compound eyes causes poor courtship. 

However, males of Drosophila will search for females when in the dark. Crossley 

(1970) observed that wild type Drosophila melanogaster males and the white mutants 

court under darkness in a similar manner. A white male's optomoter responses to 

moving females is impaired, however, and it "tracks" the female in a particularly 

anomalous way (Heisenberg and Wolf, 1984).

As already mentioned in Chapter 1, the somatic sexual phenotype of Drosophila is cell- 

autonomous (Baker and Ridge, 1980), and the performance of male courtship requires 

genotypically male cells in the central nervous system (CNS). Further, the transformer 

(tra) gene is necessary for all aspects of female somatic sexual differentiation 

(McKeown, et al., 1988), and sexual behaviour (McRobert and Tompkins, 1985). To 

investigate the neural basis of sexual orientation, chromosomally male flies feminized in
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certain regions of the central brain have been generated by the P[GAL4]AJASg^^û 

system (Ferveur et al., 1995; O'Dell, et al., 1995). The tra gene under UASq control 

produces the female specific transcript. A P[GAL4] transposon that has "trapped" a 

tissue-specific enhancer can be subsequently used to drive ectopic female tra expression 

(See Fig. 1.6B). Though tra is normally transcribed in both sexes, only the female- 

specific splice isoform leads to the production of an active tra product, TRA^ ,̂ which 

works together with TRA-2 as a splicing factor. They bind to primary transcripts of the 

downstream genes, dsx and fru  (Tian and Maniatis, 1993; Ryner, et al., 1996), and 

commit the latter pre-mRNAs to a female-specific splicing pattern. The transcripts of 

both dsx and fru are thus sex-specifically controlled by tra and tra-2 (See Chapter 1).

A study concerning brain structures relevant to male courtship behaviour (through 

GAL4 dependent transformation of male neurons by expressing tra) has been previously 

carried out in this laboratory (O'Dell et al., 1995). In total 6 lines have been analysed, 

three of them (c35, c739, 201Y) show mushroom body expression patterns, one (c232) 

has neuronal expression restricted to the ellipsoid body, one (cl23a) reveals antennal 

lobe and antennal nerve expression, and one (cl27) has no visible staining in the adult 

brain. The behavioural results came out as follows: two mushroom body lines (201Y 

and c739) and the antennal lobe line performed non-discriminatory courtship towards 

female and male targets, while the others behaved more or less as the wild type control. 

The study of Ferveur et al. (1995) also suggested that brain feminization in a portion of 

the antennal lobes or in the mushroom bodies changed the sexual orientation of male 

flies, so they courted both male and female targets. The conclusion drawn was that the 

feminization of some subdomains of mushroom body and antennal lobes, elements of 

the olfactory pathway, may be responsible for the behavioural transformation.

However, both the P[GAL4] and the UASo-fra P-element constructs have the mini- 

white gene as an eye-marker. Therefore, the courtship result faced a challenge: Is the 

observed male-male courtship observed due to tra or mim-whitel
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To address this question further, we decided to knock out the mim-white gene in both 

P[GAL4] and UASo-fra constructs. 201Y was chosen as the P[GAL4] line for 

mutagenesis, because of its strong behavioural transformation under UASo-rra. No 

abdominal transformation has been observed for this line, and the transformed males are 

not attactive to wild-type males (O'Dell, et al,. 1995). Besides, 201Y has a very 

restricted neuronal expression pattern in the mushroom bodies (Fig. 3.2). Staining is 

almost exclusively in Kenyon cells belonging to core elements of the a  and p lobes, and 

to a subset of fibres within the y lobe (Yang et al., 1995). The staining pattern starts 

during the larval stage and lasts into adulthood (Armstrong, 1995).

Mutagenesis was carried out by EMS treatment. Mutant lines were then subjected to 

functional tests, courtship observation and analysis. My results confirm that ectopic 

expression of tra rather than of white is responsible for the behavioural transformation 

seen in line 201Y/UASo-rra.

I have also used RT-PCR to study the molecular consequences of GAL4-induced tra 

expression in the brain. The dsx and fru  genes are both dependent on tra, but are 

independent of each other. The work presented in this chapter shows that the female 

versions of dsx and fru transcripts are generated in the 201Y brain under tra- control.

3.2 Results

3.2.1 Ethyl methanesulphonate (EMS) mutagenesis

This was carried out mainly according to the protocol described by D. B. Roberts 

(1986). Approximately 100-200 201Y and UASg-^^û males were collected within a day 

of eclosion and fed with EMS-sucrose (See Chapter 2). After 24 hours of recovery, 

crosses were set up with the ratio of 1 male to 2-3 newly eclosed w;CyOISp virgin
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Figure 3.2 The expression pattern of P[GAL4] line 201Y. The panel is a 12 pm frontal 

cryostat section through the adult head, stained using X-gal, a chromogenic substrate foiP- 

gal. A thin central component of the a  lobe, a thin component of the p lobe, and a dorsal 

component of the y lobe can be seen at this plane of section (Yang , et al., 1995).
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females. Parent flies were removed to another fresh medium bottle after 3 days to allow 

them to lay more eggs. Prior to hatching of the next generation, all the parent flies were 

removed.

3.2.2. Selection of the mutated flies

The crossing scheme for selection of mutated flies is shown in Figure 3,3. The P 

element insertions of both 201Y and UASo-tra transgenic lines are located on the 

second chromosome. CyO is a second chromosome balancer (Lindsley and Zimm, 1992) 

marked with Curly (Cy), with the dominant visible phenotype of curly wings. The 

dominant visible phenotype of Sternopleural (Sp), also on the second chromosome, is 

an increase in the number of sternopleural bristles. Both mutations are homozygous 

lethal; heterozygotes have good viability and fertility. The cross of w; CyOISp virgin 

females and mutagen-treated males allowed identification of knocked out mim-white 

genes on the P-element constructs. After the first generation of selection, white' progeny 

were backcrossed to the balancer. Then, F2 inbreeding of 201Y*/CyO or UASq- 

tra*/CyO was used to establish homozygous mutant lines (* stands for white').

One 201Y* line was established from a screen of 4,000 FI progeny, and two white-eye 

UASc-rra lines from 5,000 FI progeny.

3.2.3 Tests of GAL4 and VASQ-tra function in the mutant lines

The purpose of creating the mini-white mutants was to drive expression of tra in the 

mushroom bodies without expression of mini-white. It was thus essential to confirm that 

expression of GAL4 and of tra were unaffected by the mutagenesis

For line 201Y*, X-gal staining has been done to whole mounts of brains of 

201Y*/UASc-ZacZ. Staining is strongly concentrated within the mushroom bodies
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EMS

P-element
P-element

cf
CyOÜL. 9 (en masse)

w~ »

(Both 201Y and UASQ-rra insertions
are on chromosome 2, neither of them 
are lethal.)

FI 201Y* ,  UASn-rra *
and

CyO CyO

(select for white eyes)

CyO
» ~Sp (single cross)

F2 201Y*  ̂ UASo-fra* y  and ------    A
CyO CyO

201Y*  ̂ UASa-tra *
andCyO

F3 (for stocks) 201Y* CASQ-tra *
201Y* UASo-fra *

CyO

Figure 3.3 Scheme for isolation of white' derivatives (*) of 201Y and UASq- tra.
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(Fig,3.4), as in 201YAJASg-/ûcZ. The trapped enhancer of line 201Y* is thus driving 

expression of a functional GAL4 gene from the mutated P-element construct in the same 

area of the brain as does 201Y.

Because tra is required for all aspects of somatic féminisation, ectopic expression of tra 

can cause morphological féminisation in some P[GAL4] backgrounds (e.g. line c739). 

Of the two putative UASg-^a* lines, one, when crossed to c739, showed the expected 

incomplete féminisation of the male abdomen, though not of the sex combs on the front 

legs (Fig. 3.5). This demonstrates that the tra gene of the mutated construct remain 

functional. The other UASo-tra* line, for unknown reason(s), did not give rise to any 

morphological change.

3.2.4. white gene transcripts in the mutant lines

As the phenotype of the EMS-induced mutations is observable as white eyes, it was 

interesting to test if there was any decrease in the level of white transcription. Northern 

blotting was used to detect steady state mRNA levels. Total RNA from equal numbers 

of 201Y, 201Y*, UASo-trfl, XJASQ-tra* and w; CyoISp adults (both sexes) was isolated, 

followed by gel electrophoresis and transfer (Chapter 2).

A complementary RNA probe specific to the 3' end of the white gene was generated 

using T7 RNA polymerase and the mmi-white gene (from P[lacW] (Bier, et al., 1989)) 

pBluescript subclone as a template. The blot was rehybridized with a ribosomal protein 

rp49 (O’Connell and Rosbash, 1984) DNA probe as a loading control.

Northern analysis revealed (Fig. 3.6) that both white' mutation lines (201Y* and UASq- 

tra* ) had lower white mRNA levels than did controls (201Y, UASo-tra and w; 

CyOISp). The function of the white gene in the mutated lines (201Y* and UASc-fra*) 

has therefore almost certainly been knocked out by reducing the level of mRNA
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MB

Figure 3.4 Whole mount of the adult 201Y* brain (from the front) stained by X-gal. The pattern 

is identical to that of line 201Y. Blue dots around the central brain are staining of the surrounding 

membrane. The GAL4 gene in 201Y* is thus still functional and triggered by the same enhancer. 

MB stands for mushroom body.

SC

Figure 3.5 Functional test of UA^-rrc/*. Left: wild-type (Canton-S) male; right: c739 /U A ^-

tra* male. Although sex combs (SC) are retained on the front legs, c739/UA%-rm* shows

morphological feminization of abdominal pigmentation and genital structure. The tra gene of 

c739/UAS Q-tra* is thus unaffected by the mini- white mutation.
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w,CyO/Sp 201 y* Utra*
201 y Utra

white
2.6Kb

rp49
0.6Kb

Figure 3.6 Detection of white gene expression by Northern hybridization. RNA 

electrophoresis and transfer were performed as described in Chapter 2. The blot was 

probed with a ^^P-labelled white RNA probe. After hybridization, the filter was 

stripped and reprobed with rp49 (O'Connell and Rosbach, 1984) as a control for 

differences in RNA loading. Sizes of 2.6Kb and 0.6 Kb were determined with respect 

to an RNA size marker (Gibco BRL).
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transcription. It is similar to the result obtained by Zhang and Odenwald (1995) for their 

minï-white mutations.

3.2.5. Introduction of an X-linked wild-type white gene

Mutation of white results in poor visual acuity and impairs a male's ability to visually 

track a potential mate. It does not effect the mating efficiency in complete darkness, but 

reduces the "lights on" mating success compared to white'^ males (Heisenberg and 

Wolf, 1984). In order to ensure that courting males have normal eye colour, a wild-type 

white gene has been introduced into the 201Y, UASc-frg; 201Y* and UASo-rra* 

backgrounds.

The balancer used for the crossing scheme was DdclCyO isogenised into a Canton-S 

genetic background. The Dde (Dopa decarboxylase; Wright, et al., 1976) mutation is 

homozygous lethal and located on the second chromosome. The crossing scheme is 

shown in Figure 3.7. Males resulting from the first cross all carried an X chromosome 

derived from their maternal parents and a P-element from their paternal parents. Half of 

them contained the CyO balancer. When Fi P-element/CyO males were backcrossed to 

Cantonised DdclCyO virgin females, all the F% progenies had an X-linked wild-type 

white gene. The F2 inbreeding established the final generation.

3.2.6. Courtship behaviour

Courtship behaviour towards wild-type male targets was tested in 3 groups.

a) 201Y/201Y, 201Y/201Y* and 201 Y*/201Y*.

b) UASc-f/'a/UASG-fya, UASG-f^a/UASc-^^û* and VASG-tra^/UASQ-tra*.

c) 201Y/UASG-fro, 201Y*/UASG-fra, 201Y/UASG-fm* and 201Y*AJASG-fra*.
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Dde
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w P-element
P-element Cf

+ P-element
CyO

. P-element4- . P-element
CyO CyO

i T ]
w + . 201Y 201Y* UASg-rra ^4-, UASg-rra*

201Y 201Y* UASQ-fra UASQ-tra*
(for stocks)

Figure 3.7 Scheme for introducing a wild-type white gene into the 20lY, 201Y*, 

UASQ-frfl and UASQ-fra* backgrounds.
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Canton-S flies were used as controls. The first and second groups also served as controls 

of the third group. They tested the effect of different dosages of vaim-white without tra 

expression. The third group expressed tra in the same mushroom body neurons, but with 

different dosages and sources of mmi-white.

Figure 3.8 shows the results for the first group. When there was expression of two 

copies of the mim-white gene in 201Y, the flies performed significantly more courtship 

than did the wild-type control. If only one copy (201Y*/201Y) or no copy 

(201Y*/201Y*) of mmi-white was present, no significant male-male courtship was 

observed. These results show that mini-white alone in the P[GAL4] construct can cause 

non-discriminatory courtship. The behaviour can be triggered when mini-white is 

homozygous, but not when heterozygous.

Figure 3.9 shows the results for the second group. None of the VASo-tra genotype 

displayed significant courtship. This shows that the UASo-t''^ construct, including the 

mini-white gene, does not affect behaviour.

Figure 3.10 shows the result for the third group. All of the tested genotypes showed 

significantly more courtship towards male targets than did control flies. Variation in 

mini-white dosage caused no significant difference. These results indicate that, in the 

presence of tra expression, and in heterozygotes, there is no effect of the mini-white 

gene.

Taken together, the results of the three groups, in the absence of transformer expression, 

point to bisexual behaviour in homozygous 201Y males being a consequence of ectopic 

mini-white expression. On the other hand, feminization of the mushroom body in line 

201Y by tra expression leads to non-discriminatory courtship, no matter what the level 

of white gene expression.
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D  201Y(w7w*)

0  201Y(w +/w ')

H  w ild type

Figure 3.8 Courtship of 201Y males with different dosages of the mini- white  
gene towards wild-type males. Cl (courtship index) indicates the percentage of time 
spent courting. The height of each bar represents the mean score (with SEM) for 10 
individuals of each line. 201Y (w +/w+) has significantly higher Cl than the other 
genetic constitutions tested.
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Figure 3.9. Courtship of UAS G-tra males with different dosages of the m m iw hite  

gene towards wild-type males. The height of each bar represents the mean score 
(with SEM) for 10 individuals of each line. There is no difference between these four 
genotypes.
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courting male

I  201Y( 7t;+)/frfl (zf+)

0  201Y( zf+)/frrt (ri»-)
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Figure 3.10 Courtship of 201Y/UAS G-frr/males with different dosages of the 
mini-ve/zfYc gene towards wild-type males. The height of each bar represents the mean 
score (with SEM) for 10 individuals of each line. The four tested genotypes all have a 
significantly high Cl than the wild-type control.
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3.2.7 /ra-induced dsx and fru  expression

The brains of Canton-S, 201Y/UASG-fm males, 201Y/UASc-ZacZ males and UASc-fra 

males were dissected in PBS. Tissues of the dorsal brain, in which the neurons of the 

mushroom bodies are mainly gathered, were dissected, and RT-PCR reactions were 

carried out as described in Chapter 2.

The splicing pattern of fru  is shown in Figure 3.11 A. The design of gene specific 

primers fm, ff and fc is from Ryner, et al. (1996). Figure 3.1 IB and C show that a 

female-specific fru RT-PCR product (496bp) is generated from wild-type females, while 

a male-specific product (322bp) is generated from wild-type males. In the dorsal brains 

of 201Y/UASG-^ro males, both male and female versions of the fru  transcripts are 

found. Both controls, f\JkSQ-lacZ and IJASQ-tra, show more or less normal 

splicing of fru. Thus, in the presence of GAL4 induction in VASQ-tra males, TRA^ 

leads to generation of a female fru transcript.

The splicing pattern of dsx is shown in Figure 3.12A, together with the positions of 

primers dm, df and dc. RT-PCR on RNA from Canton-S males and females indicates 

that the design of the the primers enables us to amplify sex-specific dsx transcripts (Fig. 

3.12B and C). Again, in the 201YfUASQ-lacZ and VASQ-tra males, RT-PCR could 

only amplify the male-specific region, while in 201Y/UASG-tra males, both male and 

female versions of dsx were amplified. Female splicing of dsx thus occurs as a 

consequence of GAL4-induced tra expression.

3.3 Discussion

We do observe an effect of mini-white on male-male courtship. The phenomenon only 

occurred in flies homozygous for the mini-white gene in P[GAL4] line 20lY. The same
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5

femal
AUGAUG

fm
male

M IF IM 2F 2M 3F 3M 4F 4M 5F 5M

B 496bp-

322bp-

IF IM 2F 2M 3F 3M 4F 4M 5F 5M

496bp-

Figure 3.11 Sex-specific processing o f fruitless ( fru ) .

A Schematic drawing of the alternative 5' splice sites of fru  that are joined to a common 3' 

exon. Exons are indicated by rectangles; jagged sides indicate that only a portion of the exon 

is shown; thin lines represent the introns. Positions of primers fm, ff and fc used for RT-PCR 

are indicated by short lines with arrowheads. Shaded regions have protein coding potential.

B RT-PCR products generated using primer fc and sex-specific primers (F = fc -i- ff; M = fc 

4- fm). The numbers above each lane indicate that the RNAs are from the dorsal brains of: 1, 

201 Y/UASQ-rrr/ males; 2, Canton-S males; 3, Canton-S females; 4, 201 Y/UASq -/<:/cZ

males; and 5, VASQ-tra  males. Lane M contains DNA size markers.

C Southern blot analysis of B using primer fc as a probe. Both male (322bp) and female- 

specific (496bp) transcripts of fru  are detected in 201 Y/UAS^-rra males.
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Male dsx RNAs
1

Female dsx RNAs

dc df

B
1154bp- 

SOObp-

IF IM 2F 2M 3F 3M 4F 4M 5F 5M

IF 1M2F 2M 3F 3M 4F 4M 5F 5M

1154bp- 

SOObp- #  #

Figure 3.12 Sex-specific processing of douhlesex (dsx).

A Processing of douhlesex (dsx) RNAs. Exons are represented as rectangles. The dsx RNAs 

contain three common exons (1-3) followed by male-specific (5,6) or female-specific (4) 

terminal exons. Gaps in the figure are necessitated by the large size of introns. Positions of 

primers dm,df and dc used for RT-PCR are indicated by short lines with arrowheads.

B RT-PCR products generated using primer dc and sex-speeifie primers (F = dc -i- df; M = de 

4- dm). The numbers above each lane indicate that the RNAs are from the upper parts of the 

brains of: 1, 201 Y/UASQ-rra males; 2, Canton-S males; 3, Canton-S females; 4, 201Y/UASq -

lacZ males; and 5, UASQ-/ra males. Lane M contains DNA size markers.

C Southern blot analysis of B using primer de as a probe. Both male (SOObp) and female- 

specific ( 1154bp) transcripts of dsx are detected in 201 Y/UASq-Z/ï/ males.
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effect is seen for a large number of homozygous P[GAL4] insertions, as will be 

discussed in the next Chapter.

Considering that mim-white did not affect the behaviour of UASo-fya flies, the result 

with 201Y homozygotes might be merely a dosage effect. Different lines can have 

different degrees of eye pigmentation, presumably due to position effects associated 

with different chromosomal sites of insertion (Klemenz, et al., 1987). Because of a 

position effect, the eye colour of UASc-fra flies is orange rather than red (but gets 

darker with age). Maybe insufficient white function in this line is the reason for no 

bisexual behaviour being observed.

On the other hand, there are no P[GAL4]/CS heterozygote males which have shown 

male-male courtship. It seems to be a homologous pair-dependent effect. Transvection is 

a possible explanation for the mmi-white effect. Transvection is defined as synapsis- 

dependent interaction between loci. The white locus is known to be subject to synapsis- 

dependent suppression of expression by mutant forms of the zeste gene (Hazelrigg, 

1987); zeste suppresses white expression only when two copies of white are present on 

homologous chromosomes. This effect persists even when the two copies of the white 

locus are present as transgenes at a new chromosomal location; the effect operates in 

trans. The zeste gene product is known to have a sequence-specific DNA-binding 

activity and to recognise binding sites at numerous places in the genome (Pirrotta, 

1991). Thus, it acts as a transcription factor and mediates transvection phenomena at 

several loci. Hazelrigg and Petersen (1992) observed a wide range of white expression 

and responses to zeste^ depending on the insertion positions of the P-element-bome 

copies of the white gene. Recently, Judd (1995) proposed the concept that it is the 

insertion of the P-bome construct itself, perturbing the invaded chromatin domain, that 

confers pairing sensitivity by changing the way that proteins recognise and combine 

with the target sequences to activate or silence the domain. Our observation of 201Y, in 

terms of their effects on male courtship, appears to fit the above theory. The ability to
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create compound heterozygotes which bear two copies of P[GAL4] associated mini- 

white genes, but at different loci, should allow us to detect pairing (or synapsis)- 

dependence.

The biochemical mechanisms for the effect of white on courtship behaviour are 

currently unknown. Ectopic expression of the tryptophan/guanine transporter, which is 

encoded by white, may modulate levels of these raw materials in cells that utilize them 

for purposes other than pigment production and thereby affect additional physiological 

processes. Relevant examples from other animals (cats, rats and rabbits) show that 

reduction of serotonin levels induces male homosexual activity (Fratta, et al., 1977; 

Ferguson, et al., 1970). The misexpression of a tryptophan/guanine transporter may 

lower the synthesis of serotonin by altering the level of guanine and tryptophan (the 

serotonin precursor) in serotonin-producing neurons. In Drosophila, the connection 

between such a biochemical pathway and courtship behaviour is still uncertain.

What is the physiological basis of male-male courtship behaviour? Visual, olfactory and 

gustatory functions have been tested in males with heat-shock induced white 

misexpression (Hing and Carlson, 1996). All appear normal. It seems that male-male 

courtship does not in this case depend on the reception of olfactory information, nor on 

the reception or generation of auditory cues, although sensory cues are very important in 

male-female courtship behaviour. Only under dim red light was courting activity 

reduced, to one-fourth of control values; this may suggest some visually dependent 

mechanisms of courtship.

Although 201Y homozygotes and pHSBJCaSpeR subjected to heat-shock perform some 

male-male courtship, there are several differences between them. First, the behaviour of 

line 201Y homozygotes is bisexual rather than homosexual. The data of Figure 3.13 

show that the courting flies also find female targets attractive. However, heat-shocked 

pHSBJCaSpeR males predominantly court males. Secondly, according to Zhang and
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m 201 Y-M

□ 201Y-F

201Y*-M

□ 20IY*-F

Figure 3.13 Courtship of homozygous 201Y and 201Y* males towards 
wild-type males and virgin females. -M: male targets; -F: virgin female 
targets. The height of each bar represents the mean score (with SEM) for 
10 individuals of each test.
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Odenwald (1995), the homosexual courtship of pHSBJCaSpeR were observed in the 

bottles containing hundreds (<600) of flies. While, our experiments were carried out by 

isolated pair tests, and the target flies were decapitated, thus precluding behaviour of the 

targets from influencing that of the courier. Another study (Hing and Carlson, 1996) 

confirmed that the male-male courtship in mim-white heat shock flies did not depend on 

sensory cues produced only by large populations; the phenomenon could be induced 

within a single pair of male flies.

As to the molecular basis of male-male courtship, the potential contributions of dsx and 

fru  are still unclear. So far, there has been no report about the relation of the detailed 

splicing of the fru  gene to different aspects of behaviour. Expression of the female /rw 

transcript in chromosomal males may or may not be the reason for male-male courtship, 

although the male-specific behavioural change does resemble the non-discriminatory 

courtship of fru mutations (Ryner, et al., 1996). The discovery of new genes involved in 

sex-specific behaviour, such as cts/(Finley, et al., 1997), introduce added complexity. 

dsfis a rra-dependent and dj%-independent gene, males show a bisexual phenotype. 

There are even more uncertainties about dsx than fru  on its involvement in courtship 

(Villella and Hall, 1996).

The RT-PCR results demonstrate that the female versions of both dsx and fru transcripts 

are generated as the result of GAL4-mediated tra expression. Whatever the function of 

these "down-stream" effects, the ectopic expression of the "up-stream" gene tra has been 

confirmed to be responsible for male-male courtship.
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Chapter 4

The identification of Drosophila brain structures 
associated with courtship behaviour
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4.1 Introduction

As described in Chapter 1, most aspects of sexual behaviour of Drosophila appear to be 

under genetic control (Hall, 1994 and Greenspan, 1995). The somatic sex is determained 

in a cell-autonomous manner in Drosophila (Baker and Ridge, 1980), which indicates 

the sex of each cell is independent from its neighbour cells. The study of 

gynandromorphs showed that the performance of male courtship requires genotypically 

male cells in higher centres of the nervous system (Hall, 1977 and 1979).

In contrast to the standard gynandromorph technique, which produces unique patterns of 

sex mosaicism in each individual (Hotta and Benzer, 1972), GAL4 enhancer-trap strains 

produce stable mosaic lines. This allows the detection of probabilistic aspects of 

behaviour and the examination of the anatomical staining patterns in greater detail. A 

series of P[GAL4] enhancer trap lines with specific expression patterns have been used 

(O’Dell, et al., 1995; Ferveur, et al, 1995). The GAL4/UASo system drives the 

expression of the sex-determining gene transformer, upon which the female somatic 

sexual phenotype, including neuronally-based aspects of sexual behaviour (McRobert 

and Tompkins, 1985), appears absolutely dependent. At least, doublesex, fruitless and 

dissatisfaction are all regulated by transformer (Tian and Maniatis, 1993; Ryner, et al., 

1996 and Finley, et al., 1997), even through dsx and fru  are independent of each other. 

Therefore, using the P[GAL4]AJASg system to express the female-specific splice 

isoform of transform er (Boggs et al, 1987) should lead to féminisation of 

chromosomally male cells to give flies that are predominately male, but with GAL4 

expressing cells feminised (O'Dell and Kaiser, 1997). These sex mosaic flies also 

present the advantage of having cells that are neither abnormal (mutant) nor missing 

(ablated) but that are either male or female.

Gynandromorph analysis implicates the mushroom bodies, or adjacent neuropil, in 

control of some early aspects of the male courtship repertoire (Hall, 1979). Previous
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studies revealed that the mushroom body neurons, located in the posterior dorsal brain, 

are involved in olfactory processing and learning (de Belle and Heisenberg, 1994). In 

other insects, the mushroom bodies have been invoked as centres for courtship 

behaviour (Wahdepuhl, 1983). In Drosophila, the number of Kenyon cells, which are 

the intrinsic components of mushroom bodies, is sexually dimorphic (Technau, 1984).

Recently, a marked bisexual (/rw-like) behaviour is observed as the consequences of 

GAL4/ UASo-rra mediated féminisation, particularly associated with specific 

subdomains of the antennal lobes (Ferveur, et al, 1995) and the mushroom bodies 

(O'Dell et al, 1995). These results suggest that smell perception and processing in the 

olfactory system may have an important role in sexual orientation.

The work described in this chapter is the screening for changes in sex discrimination 

courtship behaviour in a set of P[GAL4] lines expressing transformer in different 

neuronal subsets in the brain. The brain major structures that have been studied in this 

chapter are shown in Figure 4.1. The colours and patterns of different parts in the 

diagram are the same for the later results figures. The aim is to find the correlation 

between brain structure and function with respect to sexual orientation, and identify 

brain structure that mediate sexual behaviour.

4.2 Results

4.2.1 The expression patterns of P[GAL4] lines

A total of 24 P[GAL4] lines were tested in this experiment. GAL4 expression in the fly 

brain can be revealed using a UASo /acZ reporter. Staining with X-gal and anti-|3-gal 

antibodies show the locations of GAL4-directed p-gal activity (Fig. 4.2). Table 4.1 

summarises the major patterns of these lines. In 14 lines, staining could be seen in the 

mushroom bodies (Yang, 1996; Yang, et al., 1995; Armstrong, 1995 and J.D.Armstrong,
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Figure 4.1 Schematic diagram of the Drosophila brain (from the front). AL: 

antennal lobe; CC: central complex; GC: great commissure; MB: mushroom body; 

OL: optic lobe. The colours and patterns of these structures are the same as shown 

in the later results figures.
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■

Figure 4.2 Expression patterns of the P[GAL4] lines used in this study. The lines are 

(in order from upper left to lower right): c253; 43Y; c747; c97; c l84; c532; 30Y; 117Y; 

121Y; c309; c302; 238Y; 59Y; 72Y; c827; c829; c469; c5; c522; 7; c819; c287; 82Y and 

21Y. The picture of line c287 is the confocal image of anti-p-gal activity. The others are 

all X-gal staining of 12mm frontal cryostat section through adult heads (See Table 4.1).
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personal comm.). Three lines have a pattern of expression in the optic lobe (Yang, 1996; 

M.Yang, personal comm.). Four lines (c5, c522, 7 and c819) show staining of central 

complex structures (Armstrong, et al., 1997 and Yang, 1996). Staining of line c287 

occurs in the antenna glomerula tract (J.D. Armstrong, personal comm.). Line 82y has 

strong staining in the great commissure (Yang, 1996.). There is also a general staining 

line (M.Yang, personal comm.). More expression patterns of P[GAL4] lines have been 

described in "Brainbox", an online atlas and database of the Drosophila nervous system. 

Brainbox can be accessed via the World Wide Web from servers in Glasgow 

(http://brainbox.gla.ac.uk).

Although the expression patterns of these lines are described as “mushroom body”, 

“central complex”, etc., these descriptions reflect the strongest areas of staining. 

However, in some lines, staining is also seen elsewhere in the brain at a lower level. For 

example, from a series of cryostat sections through the adult heads of line c469, faint 

staining can also be seen in the antennal lobe besides the major expression of the optic 

lobe.

4.2.2 Courtship behaviour

Drosophila melanogaster males are normally heterosexual. They direct intense courtship 

towards virgin females, but very little courtship-related activity towards mature males 

(Jallon, 1984). The screening of courtship behaviour was performed as described in 

Chapter 2. Courting activity was measured by the Cl (courtship index: the percentage of 

time spent courting (Siegel and Hall, 1979)). Wing vibration was scored as another 

index, the SAP (sex-appeal parameter: the percentage of time spent wing-vibrating 

(Jallon and Hotta, 1979)). All the tests have been performed with Canton-S wild type 

flies as control. For each line, individual courting males were introduced to mature male 

and virgin female targets respectively. Comparison between the performance of 

P[GAL4] lines and Canton-S control towards male and female targets can show if there
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is any discrimination in mating. Every courtship combination was repeated ten times for 

the calculation of mean and standard error.

As shown in in Chapter 3, no matter what the dosage of mini-white, UASc-fra/UASG- 

tra, \JASQ-tra*/\JPi.SQ-tra and UASo-fm^/UASG-fra* all perform very little courtship 

towards males, just like wild-type flies. The results indicate that the UASg-^^û construct 

does not affect courtship behaviour in the absence of GAL4-driven expression.

The GAL4 mediated expression of TRA^ in 12 lines (c253, 121Y, 30Y, 117Y, 238Y, 

21Y, c469, c829, c5, 82Y, c827 and 7) can cause féminisation of the abdomen (Fig. 

4.3), thus proving tra is functional. The observations of the courtship behaviour 

performed by 24 transformed P[GAL4] lines are summarized in Table 4.2. The courtship 

towards females is in all cases more or less normal (Fig. 4.4), even that of males with 

transformed morphology, which can not bend their abdomen to attempt copulation. 

Comparing the courtship behaviour towards female targets of transformed P[GAL4] 

males to Canton-S controls, the data show significant high Cl score of c747 and 59y 

(p<0.05), and significant high SAP score of c l84, 59y and c5 (p<0.05). Because 

inbreeding problems always go hand in hand with the control flies, that may cause 

Canton-S control flies to be less active than the out-bred flies (P[GAL4]AJASg-^/û). The 

transformed 21y had a physical lesion, the abdomen kept sticking on the medium and 

this prevented them from walking properly, and they displayed very little courtship, and 

hardly any wing vibration. For this tested group toward female targets, the SAP and Cl 

were highly correlated for the entire set of 24 lines (the correlation of SAP and Cl = 

0.82).

For 12 lines, the paired two-tailed t-test revealed no significant differences between wild 

type Canton-S controls for the courtship toward male targets under GAL4-mediated tra 

expression (Fig. 4.5 and Table 4.2), which means the transformed neurons in these lines 

do not affect this aspect of behaviour. By contrast, the rest of the tested P[GAL4] lines
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Figure 4.3 Some of the morphologically transformed P[GAL4] male flies. A: 

Canton-S wild type fly, left: male; right: female. B; 121Y ; C: c5 ; D: c253 ; 

E: c287 ; F: c309 ; G: 30Y ; H: 238Y ; I: 82Y ; J: 117Y .
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displayed male-male courtship induced by TRA^ (for lines c253, c97, c l84 ,117Y, c309, 

c302 and c827,0.01<p<0.05; for lines c532,121Y and c469, p<0.001). Line 121Y was 

extremely abnormal, it spent 50% of the testing time courting mature males, but only 

28% of the time courting virgin females. It showed a significant preference for male 

targets (p=0.03), and it is the only line exhibiting such a preference.

As a control for the P[GAL4] insertion effect itself, I screened 17 P[GAL4] homozygous 

flies. Because these flies lack of TRAP, they should serve as the control for this 

experiment. The Cl and SAP toward female targets (Fig.4.6 and Table 4.3) were all 

within the range of Canton-S control flies, except the Cl scores of lines c97 and c l84 

which were as high as 90%, and the SAP scores of lines c97 and 121Y were higher than 

that of Canton-S. On the other hand, the data from male targets were a little bit 

confusing (Fig 4.7 and Table 4.3). Lines c253, 43Y, c309, c302, c819, c827, 21Y and 

c469 all displayed more courtship than Canton-S males (p<0.05). The overall picture of 

Cl and SAP scores (Fig 4.6 and 4.7) were similar. They were correlated with each other 

(the correlation of male targets = 0.83; female targets = 0.67), which means these two 

index for measuring courtship are in good agreement.

The high proportion of male-male courtship shown by some homozygous P[GAL4] 

males is unlikely to be ascribable to the insertion site of the P-element, it seems more 

likely to be some effect of the P[GAL4] construct itself. The study in Chapter 3 shows 

that the mini-white gene expression in the P[GAL4] construct alone can cause non­

discriminating courtship in line 201Y when it is homozygous.

The mm\~white effect on male-male courtship is not seen when there is one copy of 

mmi-white in the genome. So, P[GAL4]/Canton-S heterozygotes males were used as 

another group of control. The Cl towards female targets were all on the same scale (Fig. 

4.8 and Table 4.4). The males of 82Y/CS showed higher courtship intensity (p value for 

SAP = 0.04). As to the male targets, their Cl and SAP scores were all within the range of
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Canton-S controls (Fig. 4.9 and Table 4.4), which means that they are as heterosexual as 

wild type flies. These results show that in P[GAL4] heterozygous lines no bisexual 

behaviour has been observed without expression of tra in specific brain neurons.

4.3 Discussion

The courtship data from the GAL4-mediated transformer expression lines are quite 

complicated. This is not entirely unexpected as the connection between the patterns and 

behaviour may reveal the complexities of the relationship between brain structure and 

function. The in situ hybridization with an antisense probe presented in the results of 

O'Dell et al. (1995) confirmed that tra expression in P[GAL4] lines reflected that of 

lacZ. So, we are confident that the féminisation patterns are the same as has been 

observed by X-gal staining. We should remember that in some P[GAL4] lines, there is 

also other staining in the brain apart from the major patterns, and these stained neurons 

may be involved in sexual orientation.

The technique of P[GAL4] enhancer trapping enables the identification and féminisation 

of different subdomains and neurons of the mushroom body. Previous studies suggest 

the mushroom body (O'Dell, et al, 1995) and the antennal lobe (Ferveur, et al., 1995) 

have a role in mate discrimination by involvement with olfactory processing. Among the 

14 mushroom body expression lines tested in this experiment, 8 lines (c253, c97, c l84, 

c532, 117Y, 121Y c309 and c302) showed more male-male courtship than Canton-S 

controls (p<0.05). Two optic lobe lines (c827 and c469) also displayed significant 

courtship toward males. However, some faint staining is also seen in the antennal lobe of 

line c469. Lines with predominant expression patterns of the central complex (4 lines), 

the great commissure (1 line), general staining (1 line) and antenna glomerular tract (1 

line), showed relatively lower male-male courtship, they are not significantly different 

from Canton-S control. Of these lines, only transformed line c5 performed increased
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intensity of wing vibration to both males and females. In conclusion, the féminisation of 

specific subdomains of mushroom bodies leads to non-discrimination behaviour. These 

results confirm the previous studies (Ferveur, et al., 1995; O’Dell, et al., 1995) and are 

consistent with the importance of olfactory processing in male sexual orientation.

If it is true that féminisation of specific subdomains of the mushroom body leads to non- 

discriminatory courtship, then, it is likely due to the sex change of the olfactory 

pathway. Mating choice in flies probably depends on detecting volatile chemical 

pheromones (Ferveur, et al., 1989). The mushroom body may have a function in 

responding to pheromones. Male chemicals have a small effect on attractiveness to 

females (Venard, 1980), whereas the predominant male-specific molecules tends to 

inhibit male excitation. (Jallon, 1984). The féminisation of the olfactory system by 

ectopic transformer expression may cause a female type recognition of the attraction of 

the male aphrodisiac chemical(s), or destroy male flies’ ability to detect the inhibitory 

compounds. Either of the above possibilities could be connected with non- 

discriminatory courtship.

The behavioural differences between these mushroom body expression lines also 

implicate that the different subdomains may perform different functional roles in the 

context of mate discrimination. Because the differences between the staining patterns in 

differently behaving fly lines seem to concern all the lobes of mushroom body, it is 

premature to draw conclusions as to specific neuronal elements. This part of the analysis 

is still carrying on in the lab.

Along with the mushroom body, the antennal lobe is another part of the olfactory 

processing region, which is connected with the mushroom body by the antenna 

glomerular tract (Stocker, 1994). It is the major brain neuropil that receives olfactory 

input in Drosophila. The féminisation of the antennal lobe has also been reported to lead 

to non-discriminatory mating behaviour (Ferveur, et al., 1995). One of the lines (c469)
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showing transformed bisexual behaviour has faint staining in the antennal lobe. 

Nevertheless, two lines (59Y and c287) with antennal lobe expression tested in this 

experiment showed no significant male-male courtship. As in line c469, the major 

staining pattern is in the optic lobe, so the possibility that the optic lobe neurons may 

also associate with sexual orientation could not be ruled out.

Vision research in insects has emphasised the existence of parallel visual pathways 

(Fischbach and Heisenberg, 1984). The compound eyes of insects may contain 

functionally specialised regions and that the structural separation of functional 

subsystems begins at the receptor level (Fischbach and Dittrich, 1989). In Calliphora 

and Musca examples for a nearly complete regional separation of visual functions 

include the sexual dimorphism in chasing behaviour (Land and Collett, 1974). A dorso- 

frontal region of the eye of male Musca domestica has specialised receptors 

(Franceschini, et al, 1981). At the isotopic position of the lobula, male-specific 

intemeurons have been found (Hausen and Strausfeld, 1980). These give reasons to 

presume the functional role of the optic lobe in the sexual orientation of courtship 

behaviour. On the other hand, the gynandromorph study (Hall, 1979) did not find the 

Drosophila optic lobe was a governing part of courtship, while the genetically male 

mushroom body was essential for male behaviour.

The transformed mushroom body expression line 121Y is the only line which appeared 

to display more courtship toward male targets than female targets. The reason is unclear. 

This line also shows some staining in the central complex. There may be other 

mechanisms interacting with the affected neurons in this specific line.

The homozygous VASQ-tra fly does not show abnormal courtship (Chapter 3), external 

morphology change or sterility in the absence of a P[GAL4] element, which means the 

expression of tra needs to be driven by GAL4. In the presence of UASo-fra, some 

P[GAL4] lines (Fig. 4.3) showed incomplete féminisation of their morphology, which is
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clear evidence that the transformer construct is functional. It is known that TRA^ is 

responsible for female splicing of dsx and fru  (Tian and Maniatis, 1993; Ryner, et al., 

1996). The study of doublesex and fruitless expression in GAL4/UASQ lines carried out 

in Chapter 3 shows that the female isoform of transformer existed in 20 lY/ UASo-tra 

males supporting the notion that XJASo-tra is functional at a molecular level.

The observed developmental abnormalities (Fig. 4.2) in some transformed flies made the 

males infertile. Some classes of these males have been shown to be attractive to wild 

type males (O'Dell, et al, 1995). This is most likely because the female abdomen is a 

focus for female cuticular pheromone synthesis (Jallon, 1984), which is known to be 

under the control of transformer (McRobert and Tompkins, 1985). According to the 

observation, there is no evident connection between the transformed morphology and 

non-discriminatory behaviour, although some abdominally feminised males tended to 

have lower SAP score. This point of view is also confirmed by Ferveur, et al., (1997). In 

their experiment, tra is expressed in adult oenocytes via GAL4 direction. The female 

pheromones can be found in these resulting males which elicited homosexual courtship 

from other males, but these abdominally feminised males still exhibited male 

heterosexual orientation. The male-male courtship induced by tra expression in some 

subregions of the brain, such as mushroom bodies, could be explained as the 

interference of either the processing or the response of chemical cues. The neurons in 

these subdomains are involved in this function.

Reanalysis of the data using arcsin transformations and a two-way ANOVAs and tests of 

variance on the groups of data may show more significance differences among the 

strains, targets and controls.
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Chapter 5

The molecular analysis of P[GAL4] line c819
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5.1 Introduction

As estimated on the basis of RNA-DNA hybridization experiments (Levy and Manning, 

1981), several thousand genes appear to be more or less specifically expressed in the 

Drosophila brain. The cloning and functional characterisation of such genes is a major 

challenge. Enhancer-trap approaches provide a promising means of identifying genes 

with neural-specific expression patterns (Mlodzik and Hiromi, 1992).

The central complex is a phylogenetically conserved structure in the insect brain. It has 

been implicated in a variety of behaviours, in particular, visual associated memory 

(Heisenberg, 1989) and general motor activity (Bouhouche, et al., 1993). As described 

in Chapter 1, the Drosophila central complex comprises several interconnected 

subunits, the ellipsoid body being one of them. The characteristic structure of the 

ellipsoid body is shown in Figure 5.1. It is built up from several isomophic neuronal 

subtypes (R1-R4). R-type neurons have their cell-bodies lateral to the central complex, 

from which arise neurites that project to the mid-line via the lateral triangle. Of the 4 

subclasses of R-type neurons, the axonal processes of Rl-3 arborise from the centre of 

the ring outward whilst the axons of R4 arborise from the periphery of the ring inward. 

The Drosophila ellipsoid body is thought to exert inhibitory control of motor behaviour 

(Hanesch, et al., 1989 and Bausenwein, et al., 1994).

Yang et al. (1997) recently identified the first Drosophila alkaline phosphatase gene 

(dALPl) via two P[GAL4] lines (c507 and c232) which have identical expression 

patterns in the ellipsoid body of the brain, and in the Malpighian (renal) tubules in the 

abdomen. Reassuringly, both tissue in situ hybridization with dALPl probes and direct 

histochemical determination of alkaline phosphatase activity precisely matched the 

enhancer-trap patterns.
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Figure 5.1 Whole mount X-gal staining of the adult c819 brain (from the front), 

showing GAL4 dependent expression of(3-gal in the ellipsoid body- a component of 

the central complex (Picture taken from Yang, 1996). LT: lateral triangle; CB: cell 

body cluster. Bar: ICjim.

Figure 5.2 Chromosomal localisation of the P-element insertion of line c819. The 

in situ  hybridization of a biotin-labelled pBluescript probe to spread polytene 

chromosomes shows signals at 93C-93D, as indicated with the arrow. (Courtesy of 

Susan Wang).
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Among a number of P[GAL4] lines with central complex expression patterns (Yang, 

1996), c819 shows intense and quite specific staining of the outer ring layer of the 

ellipsoid body (Fig. 5.1). The pattern matches the positions of R2 and/or R4 neurons 

(Hanesch et al., 1989). The P-element insertion of line c819 was mapped to polytene 

chromosome location 93C (Fig. 5.2) by in situ hybridization to salivary chromosomes 

of third instar larvae.

5.2 Developmental study of line c819 by anti-P- g a l  

immunohistochemistry

Line c819 was crossed to VASQ-lacZ according to standard procedures (Chapter 2). 

Third instar larvae, four-hour-interval pupae and adults were collected. The intact brains 

were then dissected and stained by anti-^-gal antibody as described in Chapter 2 (2.4.3). 

The time series of staining patterns is shown in Figure 5.3. In the larval brain, several 

unidentified structures, presumably unrelated to the central complex, were stained. The 

staining pattern does not change much during the early stages of pupal development. 

After this period, staining of the ellipsoid cell bodies became visible around 30 hours 

after puparium formation (APF). Then a few faint fibres became visible, followed by 

the gradual appearance of a ring pattern around 40 hours APF. The lateral triangles 

became visible at 44 hours APF. The number of cell bodies increased to about 24-28 in 

each hemisphere at 48 hours APF. After that, the pattern of the ellipsoid body was 

almost complete, although the subsequent increase of staining intensity may suggest 

growth and enlargement of the structure, or a merely the accumulation of p-gal.
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Figure 5.3 Three dimensional confocal reconstructions of GAL4-directed 

P-gal expression in the developing c819 brain (from the front) revealed by anti-p-gal 

antibody and florescein-labelled secondary-antibody (Chapter 2). L3: third instar larva 

brain; 32, 36, 44 and 48 indicate number of hours after puparium formation (APF). CB: 

cell bodies; RS: ring structure; LT: lateral triangle; Bar: 10 pm.
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5.3 Mapping of the c819 insertion region

5.3.1 Plasmid rescue of flanking genomic DNA

Plasmid rescue was carried out according to the principles and procedures described in 

Chapters 1 and 2. Figure 5.4 shows the structure of the P[GAL4] element. The plasmid 

sequences {ori and amp^ ) contained in the construct enable the rescue of genomic 

DNA flanking the insertion as part of a plasmid replicon. The unique restriction enzyme 

Sstl, present in polylinker 3 but not in polylinker 4, was chosen to clone DNA 

downstream of the c819 insertion. pBluescript sequences and adjacent genomic DNA 

extending to the next Sstl site were separated from the rest of the genome by digestion, 

and formed a plasmid by self-ligation. The resulting plasmid p819 contained a 9kb 

fragment of genomic DNA.

In polylinker 4, there are two unique restriction enzyme sites, Kpnl and Sfil. Due to its 

long recognition sequence, Sfil sites are very rare in the genome, so Kpnl was chosen 

for rescue of upstream genomic DNA. Unfortunately, the attempt at cloning DNA 

upstream of line c819 by this means was never successful. P[GAL4] is itself 12 kb in 

length (Fig. 5.4), and it is relatively difficult to capture large plasmids due to their low 

transformation efficiency.

Both p819 and genomic DNA of line c819 were digested with Sstly and Southern 

blotting was performed by hybridization to a pBluescript probe. As shown in Figure 

5.5, the sizes of the bands are identical, which means that the rescued plasmid indeed 

contained the region downstream of the c819 insertion. Moreover, the genomic 

Southern detected only one band, indicating that there is just one P-element insertion in 

line c819.
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GAL4 mini-wliitc of î cinip^

5'P 3’P

—0-----------1-------------D—
P31 PL 1/2 PL3 PL4 P3i

Restriction enzyme sites of the polylinkers: PL 1/2: HindWl, EcoRW, EcoRi, Pstl, 

Snial, BaniHl, Spel and Xhal. PL3: Pstl, Sail, Xhol, Bst?Cl, Yv/II, S's/!. PL4: Kpnl, 

Snial, Sstll, Sfil, Spel, BamHl. Restriction sites in bold are unique and could thus 

be used for plasmid rescue, ori: plasmid origin of replication, anip^: ampicillin 

resistance determinant.

Figure 5.4 Detailed map of the P[GAL4] construct, based on the PlwB (Wilson, et 

al., 1989) and pGawB (Brand and Perrimon, 1993) vectors. 3'P and 5'P are P- 

element sequences at the ends of the construct. P31 represents the 31 bp inverted 

repeat sequence of the P-element. Multiple cloning sites PL3 and PL4 are flanked by 

T7 and T3 RNA promoters.

G

■12kb

Figure 5.5 Genomic Southern analysis of the rescued plasmid from line c819. 

Genomic DNA from line c819 (G) and p819 (P) were digested with Sst I and run on a 

gel side by side. The blot was probed with pBluescript. The identical size of the two 

bands indicates that the correct fragment has been cloned.
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5.3.2 Cloning of DNA upstream of the insertion site

In order to obtain DNA fragments representing the region upstream of the c819 

insertion, the insert of p819 was used as a probe to screen a Drosophila genomic DNA 

library. The library had been constructed by inserting size-selected Sau3A fragments 

(14-22kb) between the BamHl sites of the bacteriophage X vector EMBL3. Digestion 

with Sal I clearly separates the phage arms from inserts.

Three positive clones were isolated. DNA prepared from the phage clones was first 

cleaved with Sal I, Hind IQ and with both enzymes. Insert sizes were as follows: A,8-l = 

14kb, ^8-2 = 16kb, X8-3 = 14.5kb. Southern blotting confirmed that these clones and 

the rescued DNA region overlapped each other. XS-2 was found to cover the most 

upstream DNA (Fig. 5.6A).

For the convenience of later operations, subcloning into pBluescript was performed 

from the original X phage DNAs (Fig. 5.6A). Sal I and Hind QI restriction enzyme sites 

were chosen and 4 fragments were subcloned (1.2kb, 2.3kb, 8kb Hind III fragments and 

1 Ikb Sal I fragment).

5.3.3 "Reverse Northern" analysis

The term "Reverse Northern" (Fryxell and Meyerowitz, 1987) describes a technique by 

which many genomic DNA fragments can be simultaneously screened for hybridization 

to a probe corresponding to a complex mixture of RNA species, in this case, a first 

strand cDNA probe copied from total adult head (Canton-S) mRNA was used.

It had been previously observed that pBluescript hybridizes to head cDNA probes 

under Reverse Northern conditions (Milligan, 1995; Yang, 1996), although the reason is 

unclear. To avoid interference from pBluescipt, subcloned and rescued DNA fragments
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Gal4

I' p  ?

1.2kb
8kb

8kb

llkb

t I

XS-2 (16kb)

5kb
4kb

2.3kb
p819

3'-rescued plasmid (9kb)

AMPKy

A Restriction map of genomic DNA surrounding of the c819 insertion.

AMPKy indicates the position and orientation of the AMPKy-subunit gene in the genome. 

H: HindlU; Sa: Sail; S: Sstl.

9kb rescued fragment

T7 primer

plasmid vector
AMPKy

5'-l primer 3'-l primer

B. Structure of p819 and orientation of the AMPKy gene. The direction of the AMPKy 

transcription was identified by PCR with the rescued plasmid as template. T7 indicates the 

promoter for T7 RNA polymerase flanking polylinker 3 of the P[GAL4] construct (See Fig. 

5.4). 3'-l and 5'-l are sequencing primers designed for cDNA clone pc8-l (See Fig. 5.8). 

Amplification occurs with T7 and 3'-l primers, but not with T7 and 5'-l primers.

Figure 5.6 Genomic organisation of DNA surrounding the c819 insertion site, and 

orientation of the AMPKy gene.
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were separated from the vector by enzyme digestion and agarose electrophoresis (Fig. 

5.7). For rescued plasmid p819, digestion with Sstl, Sstll and Sail released fragments of 

2.9 kb (pBluescript), 4kb and 5kb. For the fragments subcloned from A.8-2, Sail and 

Hindm  were employed to excise the inserts (1.2kb, 8kb, 2.3kb and llkb). These DNA 

bands were transferred to a Nylon filter and prehybridized before adding probes.

Heads were collected en masse, and mRNA isolated, as described in Chapter 2. A 

cDNA probe was made by oligo dT primed reverse transcription in the presence of a- 

dCTP. Hybridization conditions were as described in Section 2.3.7. After washing 

and autoradiography, the only fragment detected was the 5kb fragment derived from 

p819. The absence of a hybridization signal for other fragments implied either that the 

transcript level was too low to be detected, or that they contained no transcribed 

sequences.

5.4 cDNA cloning and analysis
5.4.1 cDNA library screening

A Drosophila male head cDNA library was screened with p819. The library was 

constructed starting with Canton-S male head mRNA and cloned into the X vector 

NM1149 (Russell, 1989). Inserts are flanked by an EcoRl site at their 5’ end and a 

Hindm site at their 3’ end.

By using conventional screening techniques with nitrocellulose as the support 

membrane, 300,000 phage clones have been screened. The screen was performed in 

duplicate and single plaques were isolated after secondary screening. Just one cDNA 

was isolated. Double digestion (EcoRl + Hindm) of the DNA extracted from the 

positive clone excised a 2.2kb insert, so there were either no internal EcoRl or HindlU 

site, or they must be very close to the ends.

108



-5kb

-2.9 kb 
pBluescript

Figure 5.7 "Reverse Northern" analysis of DNA flanking the P-element insertion of 

line c819. Subcloned DNA fragments were separated from the plasmid vector by 

restriction digestion and gel electrophoresis. The blot was hybridized with a cDNA 

probe copied from total adult head mRNA. Lane 1: 1.2kb HindWl fragment; lane 2; 

8kb HindlU  fragment; lane 3: 2.3kb HindlU  fragment; lane 4: 1 Ikb Sail fragment; 

lane 5: rescued plamid digested with Sstl, Sstll and Sail.
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In order to determine the corresponding position of the transcribed region within the 

genome, the genomic DNA clones were restricted and probed with the cDNA insert. 

The transcribed region is located towards the 3* end of the rescued fragment, as 

illustrated in Figure 5.6 A.

For sequencing and other analysis, the cDNA fragment was subcloned into pBluescript 

using EcoRl méHindSl. This recombinant plasmid is called pc8-l.

5.4.2 Sequence analysis

(a) Sequencing strategy

The multiple cloning site of pBluescript SK contains a series of unique restriction 

enzyme sites. If there is a site for such an enzyme in the cDNA, then digestion with the 

enzyme and re-ligation can be used to create a deletion, and sequencing from T3 or T7 

primers can be used to obtain internal sequences. Alternatively, sequences internal to 

the cDNA can be captured by subcloning (for example, BamHl andXbal, Fig. 5.8) into 

pBluescript.

A series of partially deleted recombinant plasmids and subclones was generated. 

Sequencing was carried out from both ends of each clone with T3 and T7 primers. 

Then, oligonucleotide primers were designed to cover the remaining regions for both 

strands. This sequencing strategy is summarised in Figure 5.8.

(b) General sequence features

The full sequence of the pc8-l cDNA, together with the predicted translation product, is 

shown in Figure 5.9. The cDNA is 2,226 bp long. At the 3' end, there is the 

polyadenylation signal AATAAA (Proudfoot and Whitelaw, 1988), which aligns well 

with the polyA tail.
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5’-l 5'-2 5'-3

AAA
EcoRl Sstll Xbal BamHl HindiU

IZT __ Ti ^ T\
Sjfii

Figure 5.8 Sequencing sU'ategy for pc8-l. Partial deletion subclones were generated by 

cleavage with BamHl, Sstll and Xbal. Subclones were also generated by double digestion 

(BamHl/Xbal, Xbal/Sstll and EcoRl/SstU). Oligonucleotide primers 3'-l, 3'-2, 3'-3 and 5'- 

1, 5'-2, 5'-3 were used to complete the sequence on both strands. AAA: poly A tail.
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The identification of open reading frames was performed by the MacVector™ 

programme. One long open reading frame of 350 amino acids was identified spanning 

the region from 553bp to 1602bp. The area around the putative translation start site was 

found to fit the consensus sequence proposed by Cavener and Ray (1991).

By using the programme BLASTN, which compares a nucleotide query sequence 

against a nucleotide sequence database, the cDNA sequence was found to have a 

significant homology (68%) with the open reading frame of the AMP-activated protein 

kinase (AMPK) y subunit gene of mammals (Gao, et al., 1996). No Drosophila 

homologue has so far been described. The predicted protein sequence was analysed 

with the FASTA program (Pearson and Lipman, 1988). At the amino acid level, it 

shows 53.8% identity to the mammalian AMPK y subunit. A multiple alignment of the 

Drosophila polypeptide and various mammalian AMPK y subunits is shown in Figure

5.10.

Different mammalian AMPK y subunit polypeptides show 75-80% identity with each 

other. A more distantly related polypeptide is the yeast S. cerevisiae Snf4p (Celenza, et 

al. 1989), which is required for expression of many glucose-repressible genes. 

Evolutionary relationships between these AMPK y subunits were determined using the 

programme PAUP 3.1.1 (Swofford, 1993). The phylogenetic tree is shown in Figure

5.11.

The program m e TM pred (Hofmann and Stoffed, 1993 and 

http://ulrec3.unil.ch/software/TMPRED-form.html), available through Netscape, was 

used for analysing various sequence features related to protein sorting signals. No signal 

sequence has been recognised.
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ATCTGCTGGA TCCCTCCTCC GCCGACAGCA GCGCCACCAG CAGCACCTAC TCCGTTTCCG GCGGCACAGG CCCGGCCACG 8 0
AGCTCGGCAG CAGGTGGAGC AGGAGGAGCG GCGGCAGCAG CAGGACAGGG CGCAGCGGGA GGAGCCGGTG GCCTTATGAA 1 6 0
CTCCATGAAG GTGGCATGCA GAACTTTAGC ATCGCCAGCA TCCCGCCGTG ACGATAACGA GCGCCGACGG CACGCAATCA 2 4  0

ACGGAAAGAG CAAGTAGAAA GACGGGAGTG CCATCCGCAT CAAGGAGGGA CGCGCAGTAT TACCACACGG TGACGGCGGT 3 2 0
GCGTCCAAAC TCTTCCCAAC GGTCGCGATG ACCAGGTCAT GGTCTGTGCG GCATCGATCC AGCTCGGTTG TCAGCGAAGC 4 0 0
CGACAAACGC AAAGCGCGCG CGGGGGCATC AGCAACAGTT GGTGTGCAAA GTGCTCACAT GCGTCGTGCC TCCGCGGATT 4 8 0
TGGAGAAACG TCGTGCATCA GTTGGTGCCG CAGGTCGAGG ACTGCGAGGG GATGGTACTT TGGATCCACA CCATG CAG 5 5 8

1
CCA TCC TCT TCA GAG ACT CAC GAG GGT TGC CTG TCG CTG ATC CGT TCT AGA GAA AGT AAT

M
CTA

Q
TCA 6 2 4

3 P S S S E T H E G C L S L I R S R E S N L S
GAT CTG GAA GAG GAC GAC TCA CAG GAT C TT CGT GAA GTT CTT CGT TTT CAC AAG TGC TAT GAT CTG 6 9 0

2 5  D L E E D D S Q D L R E V L S F H K C Y D L
ATA CCC ACC TCC GCC AAG TTG GTT GTC TTC GAC ACC AGC TCT GTA AAG AAG GGC TTC TAC GCC CTC 7 5 6

4 7  I P T S A K L V V F D T S S V K K G F Y A L
GTC TAC AAC GGT GTG CGA GCG GCA CCG CTC TGG GAT TCG GAG AAG CAA CAG TTC GTG GGC ATG CTA 8 2 2

6 9  V Y N G V R A A P L W D S E K Q Q F V G M L
ACC ATC ACG GAC TTT ATC AAG ATC CTG CAA ATG TAT TAC AAA TCG CCA AAT GCG TCC ATG GAG CAG 8 8 8

9 1  T I T D F I K I L Q M Y Y K S P N A S M E Q
CTG GAA GAG CAC AAA CTG GAC ACG TGG CGG AGC GTG CTG CAC AAC CAG GTG ATG CCG TTG GTC AGC 9 5 4

1 1 3  L E E H K L D T W R S V L H N Q V M P L V S
ATC GGA CCG GAT GCG TCC CTC TAC GAT GCC ATC AAA A TT CTC ATC CAC AGG CGC ATA CAT CGC CTG 1 0 2 0

1 3 5  I G P D A S L Y D A I K I L I H R R I H R L
CCC GTC ATC GAT CCG GCG ACC GGC AAT GTC CTC TAC ATC CTG ACA CAT AAA CGC ATA CTT AGG TTC 1 0 8 6

1 5 7  P V I D P A T G N V L Y I L T H K R I L R F

CTT TTC CTA TAC ATT AAT GAA TTA CCA AAG CCG CGT ACA TGC AAA AAG TTT GCG GAA CTG AAG ATT 1 1 5 2
1 7 9  L F L Y I N E L P K P R T C K K F A E L K I

GGC ACC TAT AAC AAC ATC GAG ACC GCC GAC GAG ACG ACG AGC ATC ATC ACG GCG CTC AAG AAA TTT 1 2 1 8
2 0 1  G T Y N N I E T A D E T T S I I T A L K K F

GTG GAG CGA CGA GTC TCA GCC CTG CCA CTA GTG GAT TCC GAT GGT CGC CTC GTT GAC ATT TAC GCA 1 2 8 4
2 2 3  V E R R V S A L P L V D S D G R L V D I Y A

AAG TTT GAT GTG ATT AAT CTC GCC CCC GAG AAA ACC TAC AAC GAT CTC GAT GTT TCG CTG CGC AAA 1 3 5 0
2 4 5  K F D V I N L A P E K T Y N D L D V S L R K

GCC AAC GAG CAC CGG AAC GAG TGG TTC GAG GGC GTG CAG AAG TGC AAT CTG GAC GAA TCG CTC TAC 1 4 1 6
2 6 7  A N E H R N E W F E G V Q K C N L D E S L Y

ACG ATC ATG GAA CGA ATC GTC CGC GCC GAA GTA CAT CGA CTG GTG GTG GTC GAC GAG ATT CCA AGT 1 4 8 2
2 8 9  T I M E R I V R A E V H R L V V V D E I P S

GAT CGG CAT AAT CTC CTG TCC GAT ATA CTG CTC TAC CTC GTC CTG CGA CCA AGC GGT GAA GGC GTC 1 5 4 8
3 1 1  D R H N L L S D I L L Y L V L R P S G E G V

GGT GGC TCG GAG AGC TCA TTG CGT GCG TCC GAT CCC GTT CTC TGC CCA AAG TGC TGA GGTTGAAATAC 1 6 1 6

3 3 3  G G S E S S L R A S D P V L C P K C *

CAGCGACACC GCAGCGGCGA CGACAACAAC CCCGCCTCGC AGTCCATCGG CCGGATCCGC AATCGCAGCC TGATCGAGGA 1 6 9 6
CATACCCGAA GAGGAGACGG CGCCGGCGAG GAGCGACGAT GCCGACAGTG ATAACAATAT GTCCGCCAGT GAGGATAACG 1 7 7  6
ACAACAATAA CCAGCACGAC CAGACGACGA CGGTGCGACA GCTAATGGTG ATAGCAACAA CAGCCCGTTG A AG TGTCCTT 1 8 5  6
TGCGATGAGG GCAGGAAGAA GAAGCTCCCG ACCAGGTCGA GCGCAGCAAT TGTGATGATG ATGACCAGCC AGCGTTAGCG 1 9 3  6

GAGATGAGCC AGAATGCATC GATGGACGAC GACGAGGACG ATGGGATGAG CAGCGCCGTG TCCCTGCCNC CGCGTTGGCC 2 0 1 6
AGTCGCTGAC GCCCGCGCGC GAGAAATGCT TGTTAGTGAA TAAACCTAAA CCTAC AC C TT AACACTAAGT TAAACTTATG 2 0 9 6

CTAATGAGAT ACAGCTGTTA CAGACCAAAA GAAACAAAAA AAACAATGCT AAACAATAAC TAAGAAACCC AAACACAGCA 2 1 7  6
TTAATG ATA A  AGCAGATGAA C ATTA TA TTT GAATATGAAT AAAAAAAAAA

Figure 5.9 The sequence of the pc8-l cDNA. The sequence is numbered from the 5' end. The 

predicted amino acid sequence of the long open reading frame is shown underneath the DNA 

sequence with the single letter abbreviation aligned to the second base of each codon. The putative 

polyadenylation signal is underlined. Bold indicates the consensus Drosophila translation start site 

(Cavener and Ray, 1991). * indicates the stop codon.
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1 80

Human-L ...METVI.. SSDSSPAVEN EHPQETPESN NSVYTSFMKS HRCYDLIPTS SKLWFDTSL QVKKAFFALV TNGVRAAPLW
Rat-L . . .MESV. . . AAESAPAPEN EHSQETPESN SSVYTTFMKS HRCYDLIPTS SKLWFDTSL QVKKAFFALV TNGVRAAPLW

Human-B . . .METVF. . SSDSSPAVEN EHPQETPESN NSVYTSFMKS HRCYDLIPTS SKLWFDTSL QVKKAFFALV TNGVRAAPLW
Dros.-B MQPSSSETHE GCLSLIRSRE SNLSDLEEDD SQDLREVLSF HKCYDLIPTS AKLWFDTS. SVKKGFYALV YNGVRAAPLW
SNF4-Y............MKPTQDSQ EKVSIEQQLA VESIRKFLNS KTSYDVLPVS YRLIVLDTSL LVKKSLNVLL QNSTVSAPLW

81 160
Human-L DSKKQSFVGM LTITDFINIL HRYYKSALVQ lYELEEHKIE TWREVYLQDS FKPL..VCIS PNASLFDAVS SLIRNKIHRL

Rat-L DSKKQSFVGM LTITDFINIL HRYYKSALVQ lYELEEHKIE TWREVYLQDS FKPL..VCIS PNASLFDAVS SLIRNKIHRL
Human-B DSKKQSFVGM LTITDFINIL HRYYKSALVQ lYELEEHKIE TWRELYLQET FKPL..VNIS PDASLFDAVY SLIKNKIHRL
Dros.-B DSEKQQFVGM LTITDFIKIL QMYYKSPNAS MEQLEEHKLD TWRSV.LHNQ VMPL..VSIG PDASLYDAIK ILIHRRIHRL
SNF4-Y DSKTSRFAGL LTTTDFINVI Q.YYFSNPDK FELVDKLQLD GLKDIERALG VDQLDTASIH PSRPLFEACL KMLESRSGRI

161 240
Human-L PVIDPESGN. ...TLYILTH KRILKFLKLF ITEFPKPEFM SKSLEELQIG TYANIAMVRT TTPVYVALGI FVQHRVSALP
Rat-L PVIDPESGN. ...TLYILTH KRILKFLKLF ITEFPKPEFM SKSLEELQIG TYANIAMVRT TTPVYVALGI FVQHRVSALP

Human-B PVIDPISGN. ...ALYILTH KRILKFLQLF MSDMPKPAFM KQNLDELGIG TYANIAFI.P DTPIIKALNI FVEXRISALP
Dros.-B PVIDPATGN. ...VLYILTH KRILRFLFLY INELPKPRTC KK.FAELKIG TYNNIETADE TTSIITALKK FVERRVSALP
SNF4-Y PLIDQDEETH REIWSVLTQ YRILKFVALN CRE...THFL KIPIGDLNII TQDNMKSCQM TTPVIDVIQM LTQGRVSSVP

241 320
Human-L WDEKG.RW DIYSKFDVIN LAAEKTYNNL DVSVTKALQH RSHYFEGVLK CYLHETLETI INRLVEAEVH RLVWDENDV
Rat-L WDEKG.RW DIYSKFDVIN LAAEKTYNNL DVSVTKALQH RSHYFEGVLK CYLHETLEAI INRLVEAEVH RLVWDENDV

Human-B WDESGKRW DIYSKFDVIN LAAEKTYNNL DITVTQALQH RSQYFEGWK CNKLEILETI VDRIVRAEVH RLVWNEADS
Dros.-B LVDSDG.RLV DIYAKFDVIN LAPEKTYNDL DVSLRKANEH RNEWFEGVQK CNLDESLYTI MERIVRAEVH RLVWDEIPS
SNF4-Y IIDENGY.LI NVYEAYDVLG LIKGGIYNDL SLSVGEALMR RSDDFEGVYT CTKNDKLSTI MDNIRKARVH RFFWDDVGR

321 362
Human-L VKGTVSLSDI LQALVLTG.G EKKP 
Rat-L VKGIVSLSDI LQALVLTG.G EKKP 

Human-B IVGIISLSDI LQALILTPAG AKQKETETE 
Dros.-B DRHNL.LSDI LLYLVLRPSG EGVGGSESSL RASDPVLCPK C*
SNF4-Y LVGVLTLSDI LKYILLGSN

Figure 5.10 Multiple alignment (Pileup: Feng and Doolittle, 1987) of AMP-activated protein 

kinase (AMPK) y-subunit polypeptide sequences. Amino acid residues conserved among the species 

are represented in red. Human-L and Human-B are from liver and brain respectively; SNF4-Y is 

from the yeast S. cerevisiae.
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Rat-L

Human-B

Drosophila-B

SNF4-Y

Figure 5.11 Phylogenetic relationship of AMPK y-subunits. The tree was generated using 

the PAUP 3.1.1 programme. GenBank accession numbers are as follows.

Human-L (from human liver) accession no. :HSU42412;

Human-B (from human brain) accession no.: F06918;

Rat-L (from rat liver) accession no.: X95578;

SNF4-Y (from S. cerevisiae) accession no.: Z72637

As expected, the three mammalian genes are clustered together yet show more homology to 

the Drosophila sequence than to the yeast SNF4 sequence. The relationship reflects closely 

the evolutionary distance of the organisms from which these polypeptide sequences were 

derived.
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5.4.3 Genomic organisation

To examine the genomic organisation of the AMPK y-subunit gene, a Southern blot of 

wild-type Drosophila genomic DNA digested with different restriction enzymes {Sali 

and Sstl) was probed with the EcoRiJHindill fragment of pc8-l. As can be seen in 

Figure 5.12, there is no obvious evidence for more than one copy of the gene. A strong 

hybridization band of approximately 17 kb is seen in Sstl digested genomic DNA, as 

expected. It is possible that the 3’ rescued fragment may not cover the whole genomic 

region of the AMPK y-subunit gene, so other bands from the Sstl digestion would have 

been acceptable. However, the hybridization does not show any obvious bands besides 

the 17kb one. For the Sail digestion, one hybridizing band of roughly 6kb in size is 

seen.

In order better to identify the direction and the position of the transcriptional unit, PCR 

reactions were set up with the rescued plasmid as template and primed with different 

sequencing primers (3'-l and 5'-l, See Figure 5.8) and the T7 primer, which neighbours 

the Sstl site of polylinker 3 on the P[GAL4] construct (Fig. 5.4 and Fig 5.6 B). T7 and 

3'-l primers gave a 2.1kb amplified fragment. There was no amplification with T7 and 

5'-l primers. This result suggests that the AMPKy-subunit gene is transcribed in the 

opposite orientation to the GAL4 gene in the P-element construct, and that its 3' end is 

located approximately 7kb away from the c819 insertion site (Fig. 5.6 A).

Whether the gene contained any intron(s) could be analysed by using the sequencing 

primers on genomic DNA, but due to a lack of time I concentrated on a transcriptional 

study, and left the identification of intron(s) unfinished.
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A B

-17kb

17kb

AMPK y 

Sstl

c819
Sail 5kb

Ikb

3' rescued fragment, 9kb

Figure 5.12. Southern blot o ï Drosophila (Canton-S) genomic DNA cleaved with 

the restriction enzymes:&//I (lane A) andS'.s'/I (lane B). The blot was probed with the 

Dig-label led D/yasy;/;/?/7<:/ AMPK y-subunit gene (See Chapter 2 ) .  The diagram shows

the genomic map and the corresponding position of the AMPK y-subunit cDNA. A

6kb Sail fragment implied aSall site Ikb beyond the end of the rescued fragment.

There is no obvious evidence for more than one copy of the gene.

Sail
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5.4.4 Transcriptional analysis 

(a) Northern blotting

For this study, Canton-S wild type Drosophila were used as an RNA source. Total 

RNA was extracted from different developmental stages (mixed embryo, mixed third 

instar larvae and mid-pupae), from adults of both sexes, and from adult heads and 

bodies. Between 30-40|Xg of these total RNA samples were electrophoresed through 

denaturing formaldehyde gels and blotted (See Chapter 2). The filter was probed with 

anti sense RNA transcribed from the pc8-l subclone (Fig. 5.8). The pBluescript SK 

vector contains a T7 promoter adjacent to the HindGl site, which defines the end of the 

poly A tail of the cDNA fragment. Antisense RNA was thus synthesised by T7 RNA 

polymerase.

The resulting autoradiograph (Fig 5.13A) showed that there are two sizes of transcript, 

approximately 2.3kb and 2.0kb. As the pc8-l cDNA insert is 2,226b, it is very likely 

that this clone contains almost a full length copy of the messenger RNA. As indicated 

by the rp49 (O'Connell and Rosbash, 1984) loading control, the RNA samples were 

evenly loaded in general, however, the lanes of female adults and adult bodies gave 

stronger hybridization signals than the others. It can be seen that the 2.0kb transcript is 

expressed at similar levels in both head and body, female and male, and through all the 

developmental stages. The 2.3kb transcript only appears from the pupal stage, and is 

expressed equally in female and male, head and body.

A Northern blot of RNA isolated from Canton-S and line c819 homozygotes was 

hybridized with the same probe to check if the P-element insertion had disturbed gene 

expression. The hybridization bands showed no difference in size and expression level 

between wild type and c819 (Fig. 5.13B), suggesting that the insertion had no effect on 

gene expression and function.
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Figure 5.13 Northern blet probed with a ^^P-labelled antisense RNA probe 

corresponding to theDrrASY;/7/?z7c/ AMPK y-subunit cDNA. The RNA electrophoresis 

and transfering were performed as described in Chapter 2. Both A and B were re­

probed with/y;49 (O'Connell and Rosbash, 1984) as a loading control. Sizes were 

determined with respect to an RNA size marker (Gibco BRL). A. Developmental 

analysis of RNA samples from: adult body (B); adult head (H); female (F); male(M); 

pupa (P); larva (L) and embryo (E). B. There is no change of size or expression 

level between RNA samples from adult Canton-S (CS) and c819 homozygotes.
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(b) in situ hybridization

An in situ hybridization to adult head tissue sections was carried out as described in 

Chapter 2. The whole cDNA fragment was used as a probe by labeling with 

digoxygenin. Positive (opsin^ O'Tousa, et al., 1985) and negative (pBluescript) control 

probes were used alongside. The hybridization signals match the position of ellipsoid 

body cell bodies, and cell bodies in the medulla of the optic lobes (Fig. 5.14). Because 

in situ hybridization detects RNA, which is found only in the cell bodies, it would not 

be expected to see axonal projections. Therefore, no "ring shape" was seen. There is 

also some other heavy staining on the cryostat section. It is difficult to tell if it belongs 

to brain tissue or whether it could be heavy background staining.

5.5 Discussion

From previous studies of mammalian 5 -AMP-Activated Protein Kinase (AMPK), it is 

known to be a heterotrimeric protein consisting of a - ,  (3- and y—subunits. The a -  

subunit is the catalytic subunit, others being non-catalytic (Stapleton, et al., 1994). So 

far as AMPK biochemical function is concerned, it belongs to the SNFl (sucrose non- 

fermentor) kinase family (Woods, et al., 1994), and it was first recognised as a regulator 

of fatty acid and sterol synthesis through its phosphorylation of acetyl-CoA 

carboxylase, hydroxymethylglutaryl-CoA reductase and hormone-sensitive lipase 

(Hardie and Mackintosh, 1992). In particular, AMPK mediates responses of these 

pathways to several metabolic or other cellular stresses, including glucose depletion, 

heat shock, and ATP depletion (Kudo, et al., 1995); it plays a primary role in protecting 

cells from stress by switching off ATP-consuming biosynthetic pathways.

Mammalian AMPK y-subunit is a homologue of S. cerevisiae Snf4p. Snf4p was shown 

to interact with the Snflp (Celenza and Carlson,1989) protein in participating in glucose
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Figure 5.14 Drosophila AMP-activated protein kinase (AMPK) y-subunit expression 

in the adult brain. Dig-labelled AMPK-y DNA probe was used for this in situ 

hybridization to a 14 pm frontal cryostat section through the adult head (A). 

Expression is seen in cell bodies which match the position of ellipsoid body cell bodies. 

There is also strong expression in optic lobe cell bodies (B). The hybridization signals 

are indicated by arrows, op: optic lobes; eb: ellipsoid body; ns: non-specific staining. The 

latter staining do not show round-shape cell bodies, so it is difficult to tell if it belongs to 

brain tissue.
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regulation of gene expression (Stapleton, et al. 1994), although the mechanism by 

which Snf4p activates Snflp is not known.

In addition to the homology of the AMPK y-subunit to Snf4p, examination of the 

database reveals several different mammalian proteins highly similar to the human and 

rat liver AMPK y-subunit sequences (Gao, et al., 1996). This indicates that there is a 

mammalian isoform family of potential AMPK y-subunits, each perhaps with different 

tissue expression (brain, heart, breast and placenta) and regulatory roles. From tissue- 

specific Northern analysis, the AMPK y-subunit mRNA appears to be most highly 

expressed in heart and brain (Gao, et al., 1996).

The similarity of sequences between the mammalian AMPK y-subunit and Snf4p from 

yeast emphasises the likelihood that the role of these genes has been highly conserved 

throughout evolution, and suggests that the cloned Drosophila cDNA gene may have 

the same function.

The signal observed in brain tissue by in situ hybridization matches the position of the 

ellipsoid body cell bodies. But, the strong expression observed in the optic lobe cell 

bodies does not correspond with the enhancer-trap pattern. There were just a few, if 

any, X-gal stained cells in the optic lobe, and even in the anti-p-gal antibody 

immunohistochemistry study, the signal in the optic lobe was weaker than it was in the 

ellipsoid body. The reason for this difference could be that the enhancer trapped by the 

P-element is different from the one enhancing AMPK y-subunit gene transcription, or 

the AMPK y-subunit is controlled by both ellipsoid body and optic lobe enhancers, but 

the GAL4 expression is driven only by the ellipsoid body enhancer. Alternatively, even 

if it is the same enhancer for both GAL4 and AMPK y-subunit, the efficiency may be 

different between different types of cells and different genes. If there is a molecular 

genetic link between the optic lobe and ellipsoid body in terms of enhancer activity 

within the brain, perhaps they share physiological characteristics.

122



Northern hybridization of pc8-l detected two bands of 2.0kb and 2.3kb. These may 

reflect isoforms of AMPK y-subunits in Drosophila. The mRNA of 2.3kb became 

evident from the pupal stage (Fig. 5. 13). This result tallies well with the observations 

of the developmental immunohistochemistry study in section 5.2. It provides another 

piece of evidence that the starting time for expression from the trapped enhancer is the 

same as the expression of the AMPK y-subunit. Therefore, from the developmental 

point of view, the enhancer responsible for GAL4 expression seems to be the one that 

enhances the transcription of the AMPK y-subunit.

Taken together, the AMPK y-subunit gene may activate AMPK as a "metabolic sensor" 

to transmit certain signals and control the regulation of behavioural activities. The 

functional role of the central complex can be understood better by knowing more about 

the genes that are expressed in these neurons.

As far as the length and structure of the 5’ untranslated region (UTR) of the pc8-l 

cDNA insert are concerned, it is longer than 150bp, and contains 6 potential translation 

starts (ATG codons). These facts may suggest that this is a “double-cloning” which 

means that two cDNA sequences have been joined together accidentally. To prove 

whether this is the case or not, genomic Southerns could be done with the 5’ UTR and 

the rest of the cDNA insert as probes. By comparing the resulting signals, we could 

confirm whether the 5’ UTR and coding sequences are neighbouring each other in the 

genome. Alternatively, when the genomic clones covering the whole chromosomal 

region are available, PCR, restriction site analysis and sequencing could be applied. 

Data base search of the 5’ UTR did not find any homology, so the sequence does not 

belong to any plasmid or phage vector. If it is not a part of dAMPKy, the Northern, in 

situ and Southern results will require reinterpretation. The PCR result from the T7 and 

3’-l primers (Fig. 5.6B) shows that the 3’ of the pc8-l cDNA insertion is within the 

rescued genomic region of line c819.
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Chapter 6

Flanking genomic DNA analysis of some P[GAL4] 
insertions
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6.1 Introduction

Apart from P[GAL4] line c819, the plasmid rescue procedure has also been applied to 

another 9 lines which have brain specific expression patterns. Most of them have been 

used for the selective féminisation study in Chapter 4 (Table 4.1). Here, we are 

interested in finding genes with specific patterns of expression. For further transcript 

searching, it would be useful to obtain genomic DNA clones that span the site of the 

insertion and extend further 3' and 5'. Detailed genomic analysis of lines c739 and c772 

will also be described in this Chapter.

6.2 The brain expression patterns of the P[GAL4] lines for plasmid 

rescue.

Genomic fragments flanking the P-element insertions have been rescued from 9 

P[GAL4] lines. Their major expression patterns in their brains are summarised in Figure

6.1 and Table 6.1. There are 6 mushroom body lines (45Y, 12lY, c l84, c253, c772 and 

72Y), one central complex line c481, and 2 optic lobe lines (c469 and c827). X-gal 

staining elsewhere in the brain is also observed for several lines. Besides the strong 

expression in the optic lobe of line c469, faint staining can be seen in the antennel lobe 

as well. The patterns of these lines have also been described in other studies 

(Armstrong, et al., 1997; Yang, et al., 1995 and Yang, 1996) and "Brainbox" 

(http://brainbox.gla.ac.uk).

6.3 Plasmid rescue of the flanking genomic DNA fragments

According to the P[GAL4] construct shown in Figure 5.4, plasmid rescue (Chapter 1 

and 2) was carried out by using the restriction enzyme Sstl for the downstream (3')
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F igu re  6.1 GAL4-directed p-gal expression patterns of the lines used for plasmid 

rescue. Each panel is a 12 pm frontal cryostat section. Lines 45Y, 121Y, c l 84, c253 

c772 and 72Y have patterns of mushroom body expression. Line c481 shows staining 

on the ellipsoid body of central complex. The major expression patterns of lines c469 

and c827 are optic lobes. Line c469 also has faint staining on the antennal lobe.
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fragments and Kpnl for the upstream (5') fragments. The results are presented in Table 

6.1.

Table 6.1 The results of plasmid rescue from nine P[GAL4] enhancer-trap lines.

Line expression

pattern

3' rescued 

plasmids

5’ rescued 

plasmids

Chromosomal

location

45Y® mushroom body 6.5kb - -

121Y® mushroom body * 12kb - 71B

cl84® mushroom body 4.5kb - -

c253® mushroom body 10.5kb - 49D

c469®® optic lobe** 9kb - -

c481®® central complex llkb - 18A

c772® mushroom body 5.4kb 12.7kb 42A

72Y® mushroom body 11.5kb - 21B

c827® optic lobe 5kb 20kb -

The sizes of 3' rescued plasmids include 2.9kb pBluescript and the adjacent genomic 

fragments. The sizes of 5' rescued plasmids include the adjacent genomic fragments and the 

12kb P[GAL4] construct (pBluescript, mini-white and GAL4). *: the staining can also be seen 

in the central complex. **: there is also faint staining in the antennal lobe of line c469. The 

polytene chromosome locations are kindly provided by Susan. Wang. © Yang, 1996; ® 

Armstrong, et al., 1997; ® Yang, et al., 1995; ® J.D.Armstrong, personal comm.; © 

M.Yang, personal comm.; ® Brainbox: http://brainbox.gla.ac.uk
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Genomic fragments from the 3' direction are obtained by digestion with Sstl and SstU, 

while genomic fragments from the 5' direction are obtained by digestion with Kpnl and 

Hindin. Among the rescued fragments, the longest one extends 9kb downstream of the 

121Y insertion. The shortest fragment begins only 0.7kb from 5' of the c772 insertion.

In order to confirm that the sizes of the rescued plasmids are as expected, genomic 

DNAs from the 9 P[GAL4] lines were digested by Sstl for checking the size of 3' 

fragments, and Kpnl for checking the size of 5' fragments. The Southern blot was 

performed as standard procedure (Chapter 2) with pBluescript probe. As seen in Figure 

6.2, the hybridization bands are the same sizes as the rescued plasmids (Table 6.1). 

Since there is only one band in each line, there is only one insertion in each line.

6.4 Mapping the genomic region of the c739 insertion

P[GAL4] line c739 shows an intense staining within components of the a  and p lo b es  

of the mushroom body, but no staining of the spur and y lobe (Fig. 6.3). Through 

confocal microscopy, four groups of Kenyon cell bodies can be seen and they supply 

four tracts in the calyx that enter the pedunculus. In the pedunculus these four tracts fuse 

into two, then subsequently fuse again into a single tract near the anterior end of the 

pedunculus. Close examination reveals a very narrow unstained core region in both a  

and p lobes. The intact brain also contains some weak staining in the antennal nerve 

(Armstrong, 1995).

Line c739 has been chosen as a mushroom body specific expression line for the study of 

neuron subregions relating to courtship behaviour by selective feminization (O'Dell, et 

al., 1995). The ectopic expression of transformer driven by GAL4 in c739 can result in 

imcomplete abdominal feminization and sterility of male progeny, and these males 

displayed male-male courtship in addition to male-female courtship.
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Figure 6.2 Genomic Southern analysis of rescued plasmids. Genomic DNAs from 

9 P[GAL4] lines were digested with Sst I (for checking 3' rescued plasmids) and 

Kpn I (for checking 5' rescued plasmids). They were hybridized with pBluescript 

probe. The sizes of the bands should be the sizes of the rescued plasmids (See 

Table 6.1).

Lane 1: 45Y/5'.vM, 6.5kb

Lane 2: 121Y/YvM, 13kb 

Lane 3: c 184/ Ysr I, 4.5kb

Lane 4: c253/ Sst I, 1 Ikb

Lane 5: c469/ Sst I, 9kb

Lane 6: c481/5's7l, lOkb

Lane 7: c772/ Sst I, 5.4kb

Lane 8: c772/ Kpn I, 14kb

Lane 9: 72Y/ Sst I, 11 kb

Lane 10: c827/ Sst I, 5kb 

Lane 11 : c827/ Kpn I, 20kb

2 9



Both sides of the genomic flanking region of c739 were previously rescued by Andrew 

Mounsey. The upstream fragment is 2.8kb, and the downstream fragment is 0.7 kb. 

Approximately, 3x10^ phage from o. Drosophila EMBL3 genomic library were probed 

with the 2.8kb rescued DNA fragment. Three positive clones were recovered. They are 

A.9.1, X9.2 and A,9.3. Sail digestion separated the inserts: X9A = 14.5kb, X92 = 19kb, 

X93 = 15.5kb. In order to map genomic lambda clones, the phage DNAs were restricted 

with a combination of different enzymes. The constructed restriction map is shown in 

Figure 6.4.

Plasmids were independently rescued from a collection of recessive lethal insertions of 

a P[lacW] transposon on Drosophila chromosome 2 (Torok, et al., 1993). These 

plasmids containing genomic DNA flanking the sites of transposon insertion 

represented 1836 Drosophila lines, and were pooled in batches of 10 and 100. Pools of 

100 plasmids were screened with genomic clones representing the sequences adjacent to 

the c739 insertion point, which is known to be at second chromosome 40A (S. Wang, 

personal comm.) Hybridizing pools were then narrowed down to single plasmids by a 

process of subdivision and rehybridization (Guo, et al., 1996). Line 1(2)K09017 was 

thereby identified. The rescued plasmid from line 1(2)K09017 matches the 5' region of 

the c739 insertion by Southern hybridization. According to the information provided by 

the Berkeley Drosophila Genome Project (http://shoofly. bdgp.berkeley.edu/), this line 

contains two P-element insertions located at 35D1-D2 and 39E1-E4. Chromosomal 

location 39E1-E4 is very close to the cytological position of the P[GAL] insertion of 

line c739, 40A. However, it is still unknown if the insertion at 39E is responsible for the 

lethal phenotype of P[lacW] line 1(2)K09017.
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F igure  6.3 Expression pattern in the brain (from the front) of P[GAL4] enhancer-trap 

line c739. X -gal staining indicates the lacZ  expression which is driven cytoplasmically 

by GAL4, and reveals the a  and (3 lobes of the mushroom bodies in the brains (Yang, 

1996).
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F igure 6.4 Genomic organisation of the region surrounding c739 insertion. The restriction 

map was generated from the analysis of X genomic clones (À 9.1, X 9.2, and A, 9.3). The 

plasmid rescued fragments flanking the P[GAL4] insertion are referred as rectangles. The 

rescued plasmid identified from the pooled second chromosome P[lacW] lethal lines (RP- 

1(K)09017) match the position of the 4kb Sal I fragment in the 5' side of the c739 P[GAL4] 

insertion. This fragment is shown as dashed line.
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6.5 Isolation of genomic DNA clones corresponding to line c772

The 2.4kb rescued genomic fragment from the 3' direction was used as a probe for the 

screening of a Drosophila EMBL 3 genomic library. Two positive clones were isolated. 

The size of X7.1 is 14kb. The other one, X l.l  contains a 15kb insertion. The phage 

DNA was extracted, and then cleaved by 5a/I, Hindlll and a double digestion. The 

restriction map (Figure 6.5) was constructed by hybridization to the 2.4kb probe.

Interestingly, lines c772 and c747 have the same expression patterns, which show X-gal 

staining in the a  and p lobes with an unstained core, and in all the y lobe (Armstrong, 

1995). Both insertions are located at chromosomal position 42A (S. Wang, personal 

comm.). The plasmid rescue work on line c747 was done previously by Andrew 

Mounsey. The 5' rescued plasmids of lines c772 and c747 both contain 1.9kb genomic 

fragments. The 3’ plasmid rescue of line c747 was obtained through Pstl digestion. The 

size of the genomic insertion is 1.2kb. The 3* rescued fragment of line c772 contains one 

Pstl site, whose position is roughly 1.2kb from the insertion. Also, the captured 

fragments from the two lines cross-hybridize with each other. Thus it is shown that 

these two lines have the same, or very close to the same position of P-element insertion. 

Their expression patterns are probably activated by the same enhancer.

A "Reverse Northern" strategy was applied using head and body cDNAs to probe the 

rescued fragments from lines c739 and c747. They showed no hybridization signal (A. 

Mounsey, personal comm.). Unfortunately, in the genomic region of the c739 and c772 

insertions, no transcript sequence has been found through cDNA library screening.
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Figure 6.5 The genomic organisation of the region surrounding the P[GAL4] insertion in 

line c772. The restriction map was generated from the analysis of the 3' and 5' rescued 

plasmids ( referred as rectangles), and the X genomic clones (A. 7.1 and X 7.2).
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Chapter 7

Cloning and characterisation of a transcript 
sequence dKAL
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7.1 Introduction

During the analysis of the genomic region adjacent to the P[GAL4] insertion of line 

c739, one lambda clone was picked up by similarity to repetitive sequences from the 

screening of the EMBL3 genomic library. Two transcript sequences have been found in 

this genomic region by probing the NMl 149 cDNA library with the cloned genomic 

fragments. One cDNA clone (pc-MAPK) was identified as a member of the family of 

mitogen-activated protein (MAP) kinases. Comparisons of the nucleotide sequence to 

data bases shows that it shares a high homology with p38, which has been cloned from 

mammalian cells. Dr. E. Martin-Bianco et al. (1995) has also cloned the Drosophila p38 

MAP kinase. The gene is located in polytene band 95E. The PI clones corresponding to 

the 95E genomic region were probed with both of the transcript sequences that we have 

cloned. They all showed some hybridization signal (Fig. 7.1). These indicate that this 

lambda genomic clone and the transcripts are located on 95E. The analysis of the other 

cDNA clone (pc-KAL) is presented in this chapter.

7.2 The cloning and analysis of dKAL

This cDNA clone was isolated from an NMl 149 cDNA library representing adult heads 

of the Drosophila melanogaster eyes absent (eya) mutant. cDNA inserts in the 

recombinant phage were excised by EcoRl and HindlU, then subcloned into pBluescript 

SK-.

7.2.1 Sequencing and analysis

Within the sequence, there is one Xhol site and one BamHl site. The sequence was 

determined by using synthetic oligonucleotides. The full length sequence of the cDNA 

clone is 1734bp long including a 12bp polyA tail. However, the normal polyadenylation
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Figure 7.1 Southern blot of the Pi clones from genomic region 95E.

A: probed with the p38 MAP kinase gene cloned by Dr. Martin-Bianco; B: 

probed with pc-MAPK; C: probed with pc-KAL. The blot of PI clones was 

kindly provided by Dr. Martin-Bianco. These results show that pc-MAPK and 

pc-KAL are located at the same chromosomal region of 95L.
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signal site is not found in the 3' untranslated region. When the restriction map of the 

cDNA was predicted by MacVector™, it showed very close correspondence to that 

obtained using restriction enzymes.

The sequence obtained was used to search the databases with the programme BLAST 

(Kailin and Altschul, 1993). At the nucleotide level, no significant homology was 

detected. The sequence has an Open Reading Frame (ORF) corresponding to a 522 

amino acid polypeptide (Fig. 7.2), starting from nucleotide 37 and ending at nucleotide 

1602. It is followed by a TAG stop codon. The deduced protein sequence displayed 

certain homology to a large number of neural cell adhesion molecules in a wide range 

of species. Upon further investigation, the homology was shown to be due to the 

presence of a four-disulphide-core domain (Drenth et al, 1980) and fibronectin type III 

repeats (Odermatt, et al., 1985). Among them, Kallmann syndrome protein precursor 

(KAL-human, Legouis, et al. 1991; Franco, et al. 1991) has the highest score. They 

share 28% and 45% amino acid identity in the two major domains. Figure 7.3 shows the 

alignment of the deduced KAL protein sequences from human, chicken and Drosophila, 

The cDNA we got from Drosophila is therefore named as dKAL.

By the PSORT (prediction of protein localisation sites, Nakai and Kanefisa, 1992; 

http://psort.nibb.ac.jp/ form.html) search, the predicted protein from dKAL seems to 

have a cleavable N-terminal signal peptide sequence from amino acid 6 to 24, and 6 N- 

glycosylation sites. No transmembrane segments have been recognised.

7.2.2 Northern blot analysis

Northern blot of different RNA samples using a dKAL cDNA antisense riboprobe, 

identified a single band with the same size of approximately 1.9kb (Fig. 7.4). So, it 

seems that the cDNA clone contains the complete transcribed sequence; there is no 

evidence for alternative splicing.

137

http://psort.nibb.ac.jp/


CGTGCTGAAT TCAAGCCGAG GATCGGAGCG TTTC A C  ATG GGC AGC ATG CAA GTG GCG CTG CTG GCG CTG 6 9
1 M G S M Q V A L L A L

CTT GTT CTC GGC CAG CTA TTC CCA AGC GCC GTG GCT ATG GAT CCT CCT CCT ATA GTT CCA CCT 1 3 2
1 2  L V L G Q L F P S A V A N D P P P I V P P

CCA CAT CCG CAT CGA ATC AGC TGC AGC GAC AGA AGC TGG CAC ACT GGT TCC GGG ATA GCA ATG 1 9 5
3 3  P H P H R I S C S D R S W H T G S G I A M

ATG TTA AGG ATA AGA TCC TGG AGC TGC AAT GCC TGG CGA AGT GTG GCA GAA TCC CAC AAC CAA 2 5 8

5 4  M L R I R S W S C N A W R S V A E S H 8 Q
AGC TGG ACG GGA ACA GTG CCT GAA CAA GTG CAT CCA GGA GCT TTT GCT GGG ACC AGA GCC GGC 3 2 1

7 5  S W T G T V P E Q V H P G A F A G T R A £
AGT TGC CCC AAA A TT GGA AGG CAA TCG CGT GCC AGA CTC TCC TGC CTG GAC AAC TGT CAG TAC 3 8 4

9 6  fi Ç, P K T G R 0 fi R A R Ti fi c Î, n N c 0 Y
GAT CAT GAA TGC CCA GAG GTG CAG AAG TGT TGT CCC TCC AGT TGC GGA CCC ATG TGC GTG GAA 4 4 7

1 1 7 D H E c P E V 0 K c c P s s c G P M c V E

CCT CTC GGC GTT AGG AAC AAC ACA CAG C TT CCG CCC ATA CCG AAG A TT TTG TAT TTC CGG AGA 5 1 0
1 3 8 P L G V R N N T Q L P P I P K I L Y F R R

TCG CGA GGT CAT GCT GTC GAT CTG AAG ATC GAG TCC TCG C TA CTG GTC TAC TAC TTC CAT GTG 5 7 3
1 5 9 S R G H A V D L K I E S S L L V Y Y F H V

GAG GTA AGA TCC CAC ATA GGA CGG CAT TTT GCA GCC AGA AAA CTG GGT CCT TGG CAA TGG CAG 6 3 6

1 8 0 E V R S H I G R H F A A R K L G P W Q W Q
AAG GTG GAG AAG TAC CAT GGA GAG AAC ATC GGA CAC AGC AAG CAT ACT TAC ATC TTC C TT CAC 6 9 9

2 0 1 K V E K Y H G E 11 I G H S K H T Y I F L H

ATG CGA CCT GGT CGG TGG TAT GAG GTT CGA GTG GCA GCC GTA AAC GCC TAC GGG TTC CGT GGA 7 6 2
2 2 2 M R ? Ç R W X E V R V A A V N A X Ç F R Ç

TAT TCC GAG CCA AGC GAT CCA TTT CCC TCG ACG GGC AAC CCA AAG CCC CCA AAG TGT CCG AAC 8 2 5

2 4 3 X ? e  , g ? P P F Ç 5 T G N P K P P K C P 8
GAT TCG AAG ATC ATC GGC AAG CAG TTG ATG GAC GCT ACA GTA CCC TTA AGC TGG TGT GGT GCC 8 8 8

2 6 4 D S K I I G K Q L M D A T V P L S W C G A

CGT CCA AGT CCG ACG TGC CTG TCG AGG GAG TAC AAG ATC AAC TGG TCA TTG CAA GTA ACA GTG 9 5 1

2 8 5 R P S P T C L S R E Y K I N W S L Q V T V

CCA AGG CTT GAT GAT TAC GGA CAG TCT AAG TTA AGG ATA CCC ACC AGT TTG AAA TTA AGG ATG 1 0 1 4

3 0 6 P R L D D Y G Q S K L R I P T S L K L R M

TAC CCA ATA TCT ATG CAA TCC AAG TGC AGG CCA TAT TCT AAC TGG TTT TGG TAT GCC TTA AGT 1 0 7 7

3 2 7 Y P I S M Q S K C R P Y S N W F W Y A L S

ATC GAG CAG TGG TTG ATG TGT ATT AAA GAC GGT GCA ACT ATT GGA GCC AAT TAC ACC GGA TCA 1 1 4 0

3 4 8 1 E Q W L M C I K D G A T I G A ■ Y T G S

GTG GAT CCG GGA ATG GCA ATA GGG GAC GGC ATA TCA ATC ACA ATA GCA GGA CTA GTA GGT CGG 1 2 0 3
3 6 9 V D P G M A I G D G I S I T I A G L V G R

GAC GGG CCA CAA CCT AGG AGC CAG TTG CCA TCA ATG GAG ATC CGC CCA CGA TTA CAA ACC GGA 1 2 6 6

3 9 0 D G P Q P R S Q L P S M E I R P R L Q T G

CAT CGG CCG CCG CCA CGT ATG AAG TGG TTT CCG GTT AAA CCG GAA GTT CGG CAT GAT TGT GCA 1 3 2 9

4 1 1 H R P P P R M K W F P V K P E V R H D C A

GAT TCT GGC TTC CAA GCC ACA CAA GGA GAA GTC CTA TTG AAA CTG TGT CCC CAG GAG ACG AAC 1 3 9 3

4 3 2 D S G F Q A T Q G E V L L K L C P Q E T 8
TGC GAG CAG CGA GAG TTC CGC GCG A TT CGC GCA AAA AAG ACC CGC TGG AGT TCA GCA AAC GTA 1 4 5 5

4 5 3 C E Q R E F R A I R A K K T R W S S A N V

AGT ACA ACA CCA CGT ATG TGC GTA GGA TTC CCC GCT TCC AGT CCC AAT TCC GTG TTG GAC GAC 1 5 1 8

4 7 4 S T T P R M C V G F P A S S P N S V L D D

TCC AGA AAT GTC TTT ACC TTC ACC ACG CCT AAA TGT GAA AAT TTC CGC AAG AGA TTT CCC AAG 1 5 8 1

4 9 5 S R N V F T F T T P K C E m F R K R F P K
CTG CAG ATC AAG TGC AGC GAC TAG C CTTC TC TG T ATGGCTCAAC GCACTGCTGA CCATGAGATT A CA TTA G A TT 1

5 1 6 L Q I K C S D
GTAAATA A TT GTATGTAAAA C T TA A C TTTT A CTTA TC G TT AGGCCTAAGA ACAAACAACA AGAAACTAAA AAAAAAAAA 1 7 3 4

Figure 7.2 The sequence of the dKAL cDNA. The sequence is numbered from the 5' end. The 
predicted amino acid sequence of the long open reading frame is shown underneath the DNA 
sequence with the single letter abbreviation aligned to the second base of each codon. Bold 
indicates Cavener's consensus Drosophila start site. The four-disulfide-core-domain is underlined. 
The fibronectin type III domain is also underlined (dashed). The potential N-linked glysosylation 
sites are outlined.
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1 80
H u m a n - MVPG VPGAV LTLCLWLAAS SGCLAAGPGA AAARRLDESL SAGSVQRAPC A SRC LSLQ IT RISAFFQHFQ NNGSLVWCQN

C h i c k . -  MVSERAPGAS LALLLW/TAV SGS PAGPGA ATARRQDEAF S T A R  C T SR C LSLQ IT  RISAFFKHFQ NNGSLAWCQN

D r o s . -  MGSMQV AL LAL L VLGQ L FPSAV A MDPP P IV P P  P HPH R IS C  SDR SWH T GSG lAMML R IR S  WSC N

81 160
H u m a n -  HKQCSKCLEP CKESGDLRKH QCQSFCEPLF PKKSYECLTS CEFLKYILLV KQGDCPAPEK ASGFAAACVE SCEVDNECSG 

C h i c k . -  HKQCSKCLEP CKESWDLKKN HCQSFCEPLF PKKNYECLTS CEFLK Y ILSV  KQGDCPAPEK ASGFAAACVE SCEADSECSG 

D r o s . -  AW RS VAES HNQSW TGTV PEQVH PGA F  ACT RAGSCPKIGR QSRARLSCLD NCQYDHECPE

161 240
H u m a n - VKKCCSNGCG HTCQVPKTLY K G VPLK P RK E L R F .T E L .Q  SGQLEVKWS. S K F N IS IE P V  lYWQRRWNY G IH PSE  DD

C h i c k . -  VKKCCSNGCG HTCQVPKNLY KGVPLKP RK E L K F .IE L .Q  SGDLEVKWS. S K F N IS IE P V  lYWQRRWNQ G IH PSE  DD

D r o s . -  V Q K C C PSSC G  PMCVEPLGVR N NTQLPPIPK ILYFRRSRGH AVDLKIESSL LVYYFHVE V RSHIGRHFAA RKLGPWQWQK

241 320
H u m a n - ATHWQTVAQT TDERV QLTD IRPSRWYQFR VAAVNVHGTR GFTAPSKHFR SSKDPSAPPA PANLRLANST VNS DGSVTV 

C h i c k . -  ATNWQTVAQT TDERV QLSD IRASRWYQFR VAAVNVHGTR GFTAPSKHFR SSKDPSAPPA P S N IR IA N IS  ANN DGTVNV 

D r o s . -  VEKYHGENIG HSKHTYIFLH MRPGRWYEVR VAAVNAYGFR G Y SEPSDPFP STGNPKPPKC P NDSKI IG  KQLMDATV P 

321 400
H u m an - TIVW DLPEEP DIPVHHYKVF WSW MVSSKS LVPTKKKRRK TTD GFQNSV I  LEKL QPD CD YW ELQA ITYWGQTRLK

C h i c k . -  MITWDLPEEP DIPVHKYKVF WSW TYSKY VIPAKKI'RPJK IT D  GPQ N YV  V LEGL QPN SN YNVELQA VTRWGQIRLK

D r o s . -  LSWCGARPSP TCLSREYKIN WSLQVTVPRL DDYGQSKLRI PTSLKLRMYP ISMQSKCRPY SNWFWYAL S lEQWLMCIKD

401 480
H u m an - SAKVSLHFTS THA TNNKE QLVKTRKGGI QTQLPFQRRR PTRPLEVGAP FYQDGQLQVK VYW K KTE DPT VNR YH

C h i c k . -  SAKVSLHFST AQD NRNNNE QTSAGKPP K GLVDP Y PTF Q RRKPTR F  LK IG  TPFYQ DNQLQVKV Y WKK TDINMN

D r o s . -  GATIGANYTG SVDPGMAIGD G IS IT IA G L V  GRDGP QPRS QLPSM EIRPR LQTGHRPPPR MKl'JFPVKPEV RHDCADSGFQ

481 560
H u m a n -  VR WFPEA CAHNRTTGSE ASSGMTHENY I  ILQ D LSFS CKYKVTVQ P IR PK  S HSK AEAVF FTTP PCSALKGKSH

C h i c k . -  QFQVHSLLES CVHNDTKGLE KVTELTYENY M ILK D LSFS CKYKVTAT, P AKSK S RFK A E S IF F V  TP SCSAFKEKTH

D r o s . -  ATQGEVLLKL CPQE TNC E QREFRAIRAK KTRWSSANVS TTPRMCV^GFP ASSPNSVLDD SRNVFTFTTP KCENFRKRFP

561 640
H u m an - KP IGCLGEA GHVLSKVLAK PEN LSA SFIV  QDVNITGHFS WKMAKANLYQ PMTGFQVTWA EVTTESRQNS L P N S IIS Q S Q

C h i c k . -  KY INCAAEE VPVLPKVLAK PEN LSA SFIV  QEGNITGHFS WKISKAVLHQ PMTGFQVTWA EVTTESRQNS L P N S IIS Q S Q

D r o s . -  KLQIKCSD*

641
H u m an - ILPSDHYVLT VPNLRPSTLY RLEVQVLTPG GEGPATIKTF R TPELPPSSA  HRSHLKHRHP HHYKPSPERY 

C h i c k . -  ILPADHYVLT VPNLRPSMLY RLEVQVLTTG GEGPATIKLF R TPD LPPFLP HRPHLKQHHP HHYKPPPEKY

F igure 7.3 Multiple alignment of KAL polypeptide sequences from human, chicken (Chick.) and 

Drosophila (Dros.). Amino acid residues conserved among the species are represented in red. The 

alignment was visualised using the MacVector programme. GenBank accession no. of the Human 

KAL gene is M97252, and the accession no. of the Chicken KAL gene is L 12144.
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F igure  7.4 Developmental Northern hybridization with a^^P-labelled 

RNA probe generated from clKAL. The RNA electrophoresis  and 

transferring were performed as described in Chapter 2. The RNA samples 

were from: embryo (E); larva (L); pupa (P); adult male (M); adult female 

(F); head (H) and body (B). After the hybridization, the filter was stripped 

and re probed with rp49 as a control for differences in RNA loading. Sizes 

of 1.9kb and 0.6 kb were determined with respect to an RNA size marker 

(Gibco BRL).
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A developmental Northern (Fig. 7.4) of embryo, larval, pupal and adult total RNAs 

showed that the gene begins its expression from the larval stage. There is hardly any 

hybridization signal in the embryo. A tissue-based Northern showed that dKAL gene 

expression is elevated in the adult head. No expression difference has been observed 

between male and female.

7.2.3 Immunohistochemistry

A series of monoclonal antibodies and rabbit immune serum have been raised against 

the KAL protein purified from transfectant CHO (Chinese hamster ovary) cell clones in 

Dr. Petit's laboratory (Soussiyanicostas, et al., 1996). They kindly provided us MAbs 9- 

4, 73-14, 1-4 and the immune serum. An antibody staining was performed on whole 

mount fly brains. The secondary antibodies (fluorescein-labelled goat anti-mouse IgG 

and goat anti-rabbit IgG) were applied respectively, followed by confocal 

immunofluorescence analysis.

The MAbs 1-4 and the immune serum revealed the same labelling patterns (Fig. 7.5). 

The large cell bodies (4-8mm) lying among the Kenyon cells of the mushroom bodies 

have been stained strongly. These cells send processes anteriorly, passing the 

mushroom body calyx. There are arborisations in a region anterior to the calyx within 

the dorsal-protocerebrum. These neurons may also send projections to the contralateral 

hemisphere. The region of arborisation is close to a region that receives many 

projections from central complex and optic lobe neurons. Projections extend frontally 

through the lateral protocerebrum dorsal to the mushroom body pedunculus. There is no 

clear evidence of staining in the mushroom body pedunculus. At the frontal margin of 

the brain, the processes extend to the extreme lateral and dorsal margin of the 

protocerebrum.
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Figure 7.5 Anti-KAL antibody staining of Drosophila whole mount brain (from 

the front) viewed by confocal microscopy (Chapter 2). The staining shows large 

cell bodies (LCB, 4-8pm) lying amongst the Kenyon cells of the mushroom bodies 

(MB). These cells send processes anteriorly (frontally), passing the MB calyx (ca). 

There are arborisations (synapses) in a region just anterior to the calyx within the 

dorsal protocerebrum. These neurons may also send projections to the contralateral 

(opposite) hemisphere. The region of arborisation is close to a region that receives 

many projections from central complex and optic lobe neurons.
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7.3 Discussion

The KAL gene in humans is responsible for Kallmann syndrome which is clinically 

characterised by hypogonadism and an inability to smell (Legouis, et al. 1991). 

Significant homology was detected in primate (chimpanzees, gorillas, etc.), bovine, 

rabbit and chicken DNA but not in hamster, mouse or Drosophila melanogaster DNA 

(Franco, et al. 1991).

The analysis of the predicted protein of the KAL gene has revealed the presence of 

three conserved domains: first, a four-disulphide-core domain (Drenth et al, 1980), 

described in many protease or ATPase inhibitor activities (Dear and Kefford, 1991). 

The predicted dKAL protein also contains this domain. The similarity of this domain 

between these proteins may suggest a related function. This putative inhibiting function 

might be involved in cell adhesion (Edelman and Crossin, 1991). The adhesion 

molecules termed "repulsin" modify the shape of the cell (Cox et al., 1990) by way of 

evoking the action of proteases. Extracellular ATPase is also involved in several 

adhesion processes (Legouis, et al. 1991), and the cell adhesion molecule CAM 105 has 

been reported to be identical to an ecto-ATPase (Aurivillius et al, 1990).

Secondly, two domains of about 30 amino acids each, both related to part of the 

fibronectin-like type HI (FNIQ) domain (Odermatt, et al., 1985), are present in the KAL 

gene. Significant homology with these two domains was found in some protein 

phosphatases and kinases known to be involved in cell growth, and in many of the 

neural cell adhesion molecules which play an important part in axonal path finding by 

both cell-cell adhesion (Dodd and Jessell, 1991) and neurite outgrowth-promoting 

mechanisms (Furley, et al, 1990). The predicted dKAL protein only contains one of the 

FNIII domains.
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There are also some other similarities between KAL protein and the deduced dKAL 

protein. They both contain an N-terminal leader peptide, but no transmembrane helical 

segment. The potential N-glycosylation sites suggest they are glycoproteins which may 

be important to the cell-surface membrane . The immune fluorescence result with anti- 

KAL antibodies showed a strong labelling at the synapses (Fig. 7.5). This agrees with 

the analysis of the predicted protein, which seems to be a neural cell adhesion molecule. 

This gene is expressed in cells with larger cell bodies than the Kenyon cells of the 

mushroom body. The axons of these cells extend symmetrically to both sides of the 

hemisphere of the brain. The KAL protein is considered to have a specific role in 

neuronal migration. The phenomenon of expressing of dKAL in the synapses might also 

be associated with some kind of function in the Drosophila brain.
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Chapter 8

Discussion and future work
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8.1 The brain, behaviour and genes of Drosophila

One part of my PhD project was to analyse the sexual orientation of Drosophila with the 

aim of finding out the relevant functional roles of various neurons and/or gene(s). This 

purpose has been achieved by using the P[GAL4]/UASg system to feminise different 

region of the Drosophila brain with ectopic transformer expression.

In total, 24 P[GAL4] lines have been tested for courtship behaviour towards both male 

and female targets. The expression patterns cover several major structures of the 

Drosophila brain, including the mushroom bodies, central complex, optic lobes, antennal 

lobes and great commisure.

The transformed males of 9 lines out of 14 lines with mushroom body expression 

patterns showed a certain level of bisexual behaviour, which indicates that the Kenyon 

cells of the mushroom body play a role in sexual orientation. Mushroom bodies have 

been invoked as centres for courtship behaviour in other insects (Wahdepul, 1983), and 

have also been implicated in olfactory processing and learning (Davis, 1993, deBelle and 

Heisenberg, 1994). Gynandromorph analysis concluded that Drosophila mushroom 

bodies, or adjacent neuropils, were involved in control of the male courtship repertoire 

(Hall, 1979), a behaviour that relies heavily on olfaction. The non-discrimination 

behaviour (O'Dell, et al., 1995) of mosaic flies, which were generated by GAL4- 

mediated tra expression in selected areas of mushroom bodies, indicated the flies had lost 

the ability to distinguish male from female and became equally interested in both. 

Compared to previous reports (O'Dell, et al., 1995; Ferveur, et al., 1995), the study 

presented in Chapter 4 shows larger sample sets. The results confirm the role of the 

mushroom body in mate discrimination and emphasize the importance of olfaction in male 

sexual orientation. The study of mushroom body miniature (mbm) mutants combined 

with mushroom body ablation revealed that the function of mushroom bodies in mating 

behaviour is likely to be a “female courtship focus” (O'Dell, et al., 1996). The
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féminisation caused by tra expression may lead to gain (or change) of function in the male 

brain, so, the male courters found male targets as attractive as female targets.

Surprisingly, the féminisation of some flies with dominant expression patterns in the 

optic lobes also displayed a certain level of male-male courtship. This phenomenon in 

Drosophila has not been reported before. Although, one line has faint staining in the 

antennal lobes besides the optic lobes, it is still possible that neurons in the optic lobes 

play a role in the mating choice. Recently, the rhythm modulatory neurons which express 

the period gene have been found in the structure of the optic lobe (Meinertzhagen and 

Pyza, 1996). These results may open up new opportunities to examine the regulation of 

behaviour in the optic lobe neurons.

By contrast, the féminisation of the other parts of the brain did not show significant 

bisexual behaviour.

The effect of the mini-white gene on male-male courtship has been analysed by 

mutagenesis of that gene in both P[GAL4] and UASq-Z^û constructs. The behaviour tests 

reached following conclusions: First, mini-white does appear to have an effect on male- 

male courtship, this effect has been observed in one homozygous P[GAL4] line, 201Y. 

Secondly, the transformation of behaviour from heterosexual to bisexual in P[GAL4] 

enhancer-trap line 201Y is absolutely determined by tra expression, and not some 

consequence of mini-white. The feminization of the mushroom body is responsible for 

the non-discrimination courtship.

Furthermore, the regulation of genes down stream of transformer in the sexual 

differentiation pathway has been investigated. In the dorsal brain tissue containing 

Kenyon cells, of 201Y/UASo-fra males, the RT-PCR detected both male and female 

versions of doublesex and fruitless specific transcripts. These results are further 

evidence for the phenotype of bisexual behaviour of transformed 201Y males at the

147



molecular level. For the next step, we would like to see whether this is a consequence of 

fru rather than dsx misexpression. Another experiment has been designed by creating a 

line that expresses GAL4-mediated tra in a dsx male line. The observation of male 

courtship behaviour towards both male and female targets will answer the question.

Recently, a second rra/w/ormgr-dependent doublesex-mdspQndtni gene involved in 

sexual behaviour has been described as dissatisfaction (Finley, et al, 1997). This gene 

affects sex-specific courtship behaviours and neural differentiation in both sexes, dsf 

males actively court both mature males and females. So, the gene regulatory 

consequences of transformer expression are more complicated than we imagined at the 

beginning. Appropriate sexual behaviour may require all the elements to be fully 

functional.

In Drosophila, the genetic control of the sexual behaviour is clearly shown. Added to 

knowledge of anatomy, physiology and biochemistry, the “black box” between genes 

and behaviour will be finally opened. There is already evidence for the preservation of 

gene structures and functions during evolution. Human counterparts have been 

discovered for a number of genes originally identified in the fly, such as ether-a-go-go 

{eag, Griffith, et al., 1994), which participates in the potassium channels and also has an 

effect on courtship (Griffith, et al., 1993). Within limits, the genetic study of Drosophila 

behaviour should bear some relevance to other creatures (like human beings). From the 

pure genetic point of view, research on Drosophila tells us that most genes underlying 

the construction of behaviour serve more than one function in the body. Identical genes 

may also be used for somewhat different purposes. This understanding has improved on 

the early hypotheses of “single gene control” or “multiple hereditary donations” of human 

behaviour.

The work presented in this thesis makes a certain contribution to the comprehension both 

of the genetic control of Drosophila sexual orientation, and of the neural structures that
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subserve it. There is a need to refine the anatomical story to the level not just of identical 

cells, but of the functional circuits to which they belong. The vital roles of fru, dsf md  

other downstream genes are also expected to be discovered.

8.2 Molecular analysis

For reverse genetic studies, enhancer-trapping provides a powerful tool to clone genes 

expressed by specific cell types, rather than searching for genes responsible for certain 

phenotypes. Proceeding from this point of view, we started DNA analysis of some 

P[GAL4] lines with specific expression patterns, such mushroom body and central 

complex. These structures are known to perform some major neurological function 

related to a fly’s behaviour, like learning and memory, courtship and motor behaviour. 

Ideally, gene(s) involved in these functions could be found by this reverse genetic 

approach.

Some of the P[GAL4] lines that I used for plasmid rescue are also employed in the 

behaviour tests. The main reason for choosing these lines is their staining patterns. 

Secondly, homozygous males of lines c253, c819, c469 and c827 showed higher level of 

male-male courtship than wild-type flies. Initially, we tried to explain this phenomenon 

by gene disruption, and so started with DNA analysis. However, in general it appears to 

be the effect of the mini-white gene in the P[GAL4] construct (Chapter 3).

During the study of genomic clones, we noticed that the P-element is likely to occur at 

some “hot spots” in the genome, which may be surrounded by repetitive sequence 

(Karpen and Spradling, 1992). When short DNA fragments next to the insertions were 

used as probes for genomic library screening, usually, some clones would be picked up 

by the similarity of these repetitive sequences, but not the real flanking genomic regions.
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I happened to find identical clones in the analysis of different lines with different 

chromosomal sites of insertion.

As the AMPK y-subunit cDNA has been cloned and sequenced, many further 

experiments need to be continued. To map the precise position of the gene in the genome 

and find the potential intron/exon boundaries, the corresponding genomic DNA should be 

sequenced completely.

In line c819, there is no abnormal phenotype observed in the homozygotes as the direct 

result of P-element insertion. The reason is because the P[GAL4] element did not insert 

into the gene, there is 7kb distance between them. In order to address the function of the 

AMPK y-subunit gene in Drosophila, it is useful to make mutants. First, P[GAL4] 

insertion can be used for the local jumping (Tower et al., 1993, Zhang and Spradling, 

1993) to re-mobilise P-element into the gene. Alternatively, flanking deletions can be 

generated so as to produce true nulls (Tsubota and Schedl, 1986; Seize et al., 1987). 

Both methods for gene disruption take the advantage of the controlled mobility of the P- 

element

On the other hand, the rescued plasmid pools for the P[lacW] recessive lethal insertion 

lines on both the second and the third chromosomes is now available in the lab (Guo, et 

al., 1997; Y. Guo and M. Yang, personal comm.). The three cDNAs, AMPK y-subunit, 

dKAL and MAPK p38 Drosophila homologue were used to the screen these plasmid 

pools. One line for the AMPK y-subunit gene (1(3)K111611), and one line for the MAPK 

p38 Drosophila homologue (1(3)K70215) have been isolated. Detailed works are 

ongoing. Hopefully, the mutant of the AMPK y-subunit will provide more information 

for the study of this gene. The P[lacW] insertion for chromosomal site 95E will give 

some reference to the function of the MAPK p38 Drosophila homologue. Because dKAL 

and MAPK p38 Drosophila homologue neighbour each other, 1(3)K70215 could be a 

good start for local jumping or excision experiments for the dKAL gene. As human KAL
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gene mutations have a phenotype of anosmia and nystagmus, it would be interesting to 

find out what mutation in this gene can do in Drosophila.
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Appendix

Table A-1 Courtship toward males performed by 201Y, IJASQ-tra, and 201Y/UASc-rra

Courting males Cl (%) SE (Cl) SAP (%) SE (SAP)

201Y/201Y 28.43 7.75 7.87 3.35

201Y*/201Y 10.00 2.73 0.90 0.30

201Y*/201Y* 8.03 2.50 0.90 0.31

UASG-rra/UASc-rra 6.47 3.40 1.17 0.89

UASG-/ra*/UASG-zra 6.60 2.69 1.00 0.49

UASG-fra*/UASG-fra* 4.80 2.07 0.40 0.20

201Y/UASG-/ra 35.27 8.17 7.97 1.77

201Y*/UASG-Zra 32.57 7.44 7.50 2.52

201Y/UASG-/ra* 30.67 7.79 8.87 3.66

201Y*/UASG-rra* 29.40 5.79 7.97 3.10

Canton-S 4.33 1.91 0.93 0.65

Courting males Targets Cl (%) SE (Cl) SAP (%) SE (SAP)

201Y males 31.92 11.67 13.08 6.27

201Y virgin females 60.58 13.85 31.92 11.54

201Y* males 12.93 4.82 2.30 0.86

201Y* virgin females 69.17 9.77 20.60 5.14

Table A-1 and Table A-2 are the raw data described in Chapter 3. Cl Stands for the courtship 

index (percentage of time spent courting); SE stands for standard error; SAP stands for sex- 

appeal parameter (percentage of time spent wing-vibrating).
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Table A-3 List of primers used for RT-PCR reactions described in Chapter 3.

Primers Sequences (5’-3’) Sex-specific transcripts*

fc GGAAATCGTCTCGAAGTAGGAC in both male and female fru

fm TGCATTACGCGGCCTTGGACTT in male fru only

ff GGGAATTCGAGGACGTGTGACGAT in female fru only

dc AGGTGGTAGGTCATCGGGAACATC in both male and female dsx

dm ACGTTGCGATACTGCTACGTGG in male dsx only

df CCTAGTTTTCTTCTCGATCCCCCTTTG in female dsx only

* These primers correspond to different sex-specific transcript regions of fru or dsx.

GLA5GOW
ONivEKsnr
UMRARl
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