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Abstract

In order to maximise the temperature at which the quantisation of the
conductance is resolved in quasi-one dimensional GaAs-Al,Ga;.xAs structures, the
induced sub-bands must be widely spaced in energy. For surface gated structures,
this requires that feature sizes are below 100nm and that the two dimensional
electron gas (2DEG) is formed near the surface (~30nm). Achieving sub 100nm
feature sizes makes strong demands on. electron beam lithography processes but
suitable techniques, described in Chapter 2 have made it possible to routinely
fabricate such structures. Developing a heterostructure which can exploit these
feature sizes is a much more difficult task, but this too has been successful.
Capacitance and magneto-transport measurements which have helped in this
development process are described in detail in Chapter 4. In addition, problems in
understanding various parameters such as carrier concentration and threshold
voltages are analysed closely. It becomes clear when analysing the data that the
characteristics of GaAs-Aly3Gag7As heterostructures are explicable in terms of
simple electrostatic models. It is found that applying the same model to
heterostructures which include spacer layers of GaAs-AlAs in place of the
conventional Alg3Gag7As is complicated by evidence of free charge in the donor
region at low temperatures. The transport experiments also show strong evidence
of such charge accumulation.

A comprehensive investigation of the smearing of the conductance

quantisation with increasing temperature and source-drain is presented in Chapter



5. The sub-band spacing and the temperatures at which the quantisation smears
are compared for various devices fabricated on the optimised heterostructure i.e.
where the 2DEG is formed 28nm below the surface. Comparisons are also made
with similar measurements carried out on two other heterostructures where the
2DEG is formed at depths of 40nm and 107nm. The data is used to determine the
experimental sub-band spacing in the devices and they are found to be consistent
with smaller sub-band spacings in heterostructures where the 2DEG is formed at a
greater depth. The experimental sub-band spacings also compare fairly well to
theoretical calculations using the actual device geometry. An equivalence between
the thermal and electric smearing measurements is also discussed but no evidence
is found that anything other than smearing due to broadening of the differential
Fermi function is responsible for the washing out of the sub-band structure.

Finally in Chapter 6 experiments are presented Which map out the distance
over which the conductance quantisation is robust to scattering in the optimised
heterostructure. In this particular structure the donors are only separated from the
2DEG by 11nm and as such, scattering is expected to be strong. It is therefore
surprising that quantisation persists in wires up to 400nm long. Conventional
modelling of the donors as a fully ionised random distribution of charge cannot
explain why this is the case. Similar discrepancies are also found when the mobility
in the 2DEG is compared with the theoretical prediction. The possibility that this

is evidence for correlations in the position of ionised donors is discussed.
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Chapter 1. Introduction and Theoretical Overview 1

Chapter 1

Introduction and Theoretical Overview

1.1 Introduction

In this chapter various aspects of the formation of a silicon doped
heterostructure from layers of GaAs and AlGa;xAs will be discussed. In
particular, the electrostatics of the heterostructure are reviewed, along with the
charge state of the silicon impurities in the structure. The formation of a two
dimensional electron gas (2DEG) at the GaAs-Al,Ga;xAs interface is also
described. The low temperature transport properties of this region are explained
with particular consideration being given to the effect of additional electrostatic
confinement into quasi-one dimensional channels. Finally, electronic conduction is
described in both two and one dimensions, with a magnetic field perpendicular to

transport plane.

1.2 GaAs-Al,Ga;,As Heterostructures

A crystal grown from two or more different types of semiconductor is

known as a heterostructure. The successful formation of a heterostructure requires
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manipulation of the growth process on an atomic scale. It was therefore not until
the advent of sophisticated processes like molecular beam epitaxy (MBE) [1], that
structures were grown successfully [2, 3]. The interfaces between the different
semiconductors which make up a heterostructure are called heterojunctions.
Either side of a heterbjunction the semiconductors will have different band gaps
and hence there will be discontinuities in the conduction and valence bands. These
discontinuities can cause the formation of accumulation and depletion regions. The
application of simple electrostatic arguments, first proposed by Anderson [4], can
be used to give a clear physical picture into how an ideal heterojunction forms and
the relative extent of the inversion layers.

Consider two isolated n-type semiconductors with different energy gaps
(Eg1, 2), work functions (¢, 2), electron affinities (), 2), dielectric constants (g;, 2)
and chemical potentials (W, ), where subscripts / and 2 refer to the smaller and
larger band gap materials respectively, see Figure 1.1. The vacuum level is used as
a reference and space charge neutrality is assumed to exist in both the
semiconductors giving horizontal conduction and valance bands. The difference in
energy between the conduction bands (£ and E.;) is denoted by AE, and from
inspecting Figure 1.1, it is clear that this sharp discontinuity can be expressed in

terms of the electron affinities, %, and 2, see Equation 1.1.

AEcze(X1—X2) (1.1)

Figure 1.2 depicts the situation on forming the heterojunction. In this
diagram the electrostatic potential difference between any two points is
represented by a vertical displacement, and the electric field is represented by the
gradient of the band edges. Charge flows due to the difference in the chemical
potentials either side of the interface. An equilibrium is eventually set up and
further flow of charge is prevented as diffusion is balanced by the electric field

created between the ionised donors and the free electrons at the
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Figure 1.1: Schematic energy band diagram for two isolated n-type
semiconductors with different band gaps.
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Figure 1.2: Schematic energy band diagram illustrating the formation of an n-n
heterojunction at equilibrium.
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heterojunction. The chemical potential will now be equal either side of the

interface and the junction has a total built-in potential V.

1.2.1 Modulation Doped GaAs-Al,Ga;.xAs Heterostructure

The modulation doped GaAs-AlGa;xAs heterostructures, engineered by
molecular beam epitaxy, have long been the subject of experimental investigation
[5-7]. The importance: of these structures lies in confining the doping to the
Al,Ga;xAs material. The band bending at the heterojunction, and the requirement
to maintain a constant chemical potential throughout the structure, leads to
ionisation of the impurities in the Al,Ga;.As and transfer of electrons across the
interface. On crossing the heterojunction, the carriers are confined in a potential
well that has formed in the GaAs as a result of the discontinuity AE. in the

conduction band, sée Figure 1.3 [9, 10]. -

Figure 1.3: Schematic energy diagram illustrating the band bending in a GaAs-
Alp3Gag7As heterostructure and the formation of quantised energy levels in the
triangular well.
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The confinement of the carriers can be very strong, leading to a potential well
commensurate in size with the Fermi wavelength. Assuming an isotropic
semiconductor that has energy bands in three dimensions which can be
approximated by parabolic wells, we arrive at the dispersion relationship given in
Equation 1.2 for the allowed carrier energies E,(k) in the well. E_are the energy
eigenstates associated with the quantisation of energy perpendicular to the
heterojunction, m* is the effective mass of an electron in GaAs and &, and k, are

the wave vectors associated with electron transport in the x and y planes.

2,2 2k2
E (k)=E +h ks +—= 1.2)
" " 2m* 2m*

Hence, E, forms the bottom of a band of allowed energy states associated with
motion parallel to the interface. Each group of energy states is known as a sub-
band. The formation of sub-band structure has surprising implications for the
density of states in the potential well. Consider the number of states in two

dimensional k-space n(k)dk that lie in the interval k—k+0k
n(k)dk = D(k)2nkdk (1.3)

where D(k)=1/(2n) is the density of states per spin in two dimensions. If D(E) is
the density of states in the corresponding energy interval E—>E+JE, then the total

number of states in this energy interval will be given by

D(EXE = n(k)dk = 2mkdk

1
(2n)?

dE, (k) T

= D(B)= [—kf
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where g, accounts for the spin degeneracy of the electron and g,=1 accounts for
the valley degeneracy of the conduction band edge in GaAs. Using Equation 1.2

to substitute for E gives

*
D(E) =-“;t—’:‘ for E>E, (1.4a)
T

and
D(E)=0 for E<E,, (1.4b)

From Equations 1.4a and b it is clear that the density of states is a constant
in any sub-band, and zero below the first sub-band edge. As the energy increases,
more of the sub-bands become populated and the density of states increases in

units of m*/n/2, see Figure 1.4 [11].

Figure 1.4: Graph illustrating the quasi-two dimensional electronic density of
states which result from confinement at the interface of a suitably engineered
GaAs-Alo3Gag7As heterostructure.
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So if the doping level in the Al,Ga;.«As is chosen carefully, it is possible to reduce
the Fermi energy to a level such that only the first sub-band can become occupied.
This sub-band is then referred to as a two dimensional electron gas (2DEG). The
main importance of a 2DEG is the greatly reduced ionised impurity scattering due
to the spatial separation of the‘ conduction electrons in the undoped GaAs from the
donors in the Al,Ga;zAs. Additional reduction in ionised impurity scattering can
be achieved by including a region of undoped Al;Ga;<As between the donor
centres and the confined electrons. Finally, the formation of an accumulation layer
at the interface also helps to screen out the effects of background impurities in the
GaAs substrate and together all of these effects result in large increases in

mobility.

1.2.2 DX Centres

GaAs has a zincblende lattice structure consisting of two interpenetrating
face centred cubic lattices with one lattice having Ga atoms and the other having
As atoms. The basis is a Ga and As diamond tetrahedral structure with alternate
Ga and As atoms, see Figure 1.5 [12]. The bonding is covalent, with the electrons
in the outer shells being shared between the Ga and As atoms. In order to provide
conduction electrons for the 2DEG, it is necessary to dope GaAs with group IV
silicon atoms. The silicon atom is a hydrogenic substitutional donor in GaAs,
taking the place of one group III Ga atom. It is known that substitutional doping
of GaAs causes a small amount of lattice distortion and results in an energy level
lying approximately 260meV above the I conduction band minima [13]. This
excited state, for historical reasons, is known as a DX state and is thought to be
stabilised by the capture of two electrons. Because the state has such a high
occupation energy, it is difficult to detect and the semiconductor must either be
heavily doped, or the conduction band shifted by application of hydrostatic

pressure before it can be stabilised. In Al,Ga,xAs, silicon is again a substitutional
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atom on a Ga site, but in this case the lattice is strongly distorted by the
substitution of the Al alloy. These atoms replace Ga atoms and give rise to four
possible DX states depending on whether there are zero, one, two or three Al

nearest neighbours [14].

Figure 1.5: Three dimensional representation of the GaAs crystal lattice.

Ga
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[0101
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The microscopic model of DX states is based on the calculations of Chadi
and Chang [15, 16] and describes the breaking of a bond between the Si donor
and one of its’ As neighbours. The silicon atom moves along the <111> axis to an
interstitial site where it lies very close to three group 111 Ga atoms. This

configuration is then stabilised by the trapping of two electrons. For GaAs, the
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nearest neighbours to the distorted Si donor are all Ga, hence the single DX state.
For Al,Ga;xAs, the substitutional Al atom gives rise to configurations with zero,
one, two or three possible non-equivalent substitutions of the alloy for a Ga atom.
It is these substitutions that lead to the experimental observation of the four DX
states shown in Figure 1.6 (DX0, DX1, DX2, DX3).

In thermal equilibrium, the stabilising of DX states by electron capture
depends on the relative position of the energy level to the conduction band
minimum and this is strongly dependent on the relative aluminium mole fraction,
see Figure 1.6. For an aluminium mole fraction of 0.3 or higher, the DX levels are
ground states for electrons in the I conduction band minimum, which means that
emission and capture processes should occur frequently. This manifests itself
experimentally in time, bias and temperature dependencies of the depletion
characteristics of surface gated devices that include Al,Ga;<As layers [17]. The
temperature dependencies of the emission and capture processes are particularly
interesting because they provide further information on the energy structure of the
DX state. As the temperature drops, an energy barrier, associated with emission
and capture of electrons by DX centres, becomes apparent. The rates drop until
below some temperature (~100K) the signatures of DX activity (in particular,
shifts in the threshold voltages) are no longer apparent. The threshold voltages are
generally much lower, implying that there are far fewer free electrons in the
structure and the high temperature threshold voltage is only recovered after
intense illumination [18].

The energy transitions implied by these observations can be expressed
concisely on a configuration co-ordinate diagram, see Figure 1.7. The parabola
labelled 2Ur, which has its minimum at Qp, represents the energy for the
conduction band containing two electrons, whereas the higher parabola is the
energy for one electron in the conduction band. The parabola which has its minima
near Qr, represents the donor in the distorted metastable 2Upx’, DX configuration.

The formation of the DX  state, which is occupied by
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Figure 1.6: Graph illustrating the alloy composition dependence of the conduction
band minima and the important donor related levels observed in Al,Ga;.xAs [14].
The energy scale in referenced to the top of the valance band in GaAs.
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Figure 1.7: Configuration coordinate diagram illustrating the negative U model for
the DX centre in Al,Ga; . As [14].
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two electrons, is assumed to occur via the excited one electron state Ur+Up’. This
process requires not only an energy equal to the difference between the two
energy levels, but also a substantial quantity of energy to enable the lattice to

distort and shift the configuration of the donor from Q, to Qr.

Figure 1.8: Schematic of the energy barriers associated with capture AE, and
emission AE, from the DX state. The energy barrier related to donor activation
AEy is also illustrated.

Energy
&

AEr

Once in the neutral state, capture of an electron and lattice distortion takes
the donor into the metastable DX state. At low temperatures, the reduction in
phonon activity means that DX states become frozen because the energy necessary
to distort the lattice is no longer available. Electrons are trapped in these states
and can no longer be depleted by the application of a voltage bias. However, it is
still possible to cause ionisation of the DX centres at low temperatures if the
structure is illuminated with radiation which supplies an energy greater than AE.,.

The energy barriers associated with capture (AE,) and emission (AE,) of electrons
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from the DX state are illustrated in Figure 1.8. The donor activation barrier AE7 is
also included.

1.2.3 Two Dimensional Electron Gas (2DEG)

A 2DEG formed at the interface of a GaAs-AlGai.xAs heterostructure is
usually characterised by the mobility and carrier concentration of the confined
electrons. The carrier concentration ideally depends only on the spacer width, the
pinning energy of the chemical potential by deep donor states and the conduction
band offset, see Figure 1.9. In order to accurately understand these dependencies,
it is necessary to find the energy levels in the 2DEG. This is done by solving
Poisson's equation to find the confining potential, while simultaneously taking into
account the effects on this potential of populating the potential well. If the effect
of the electron population on the energy levels in the well is ignored, then too high
a value for the position of the energy levels is deduced. This is because the
maximum field generated by the electrons is used, whereas in reality, it is more
likely to be substantially lower. Hence for accurate results a self-consistent
solution of Poisson's equation and Schrodinger's equation is required, taking into
account all energy related effects for the electronic charge distribution in the
2DEG. Having said this, much can be learned simply by approximating the
confinement as a triangular potential well and solving Poisson's equation in order
to find the magnitude of the confining potential {19]. The problem then reduces to
simply finding the eigenstates of this potential well [20] and integrating the charge
throughout the structure.

Assuming that the Fermi energy is pinned on the deep donor DX states at
an average energy E4 below the conduction band and that tunnelling out of the
2DEG can be neglected at low temperatures, then the carrier concentration nzp in

a 2DEG of effective thickness a is given by Equation 1.5 [18].
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(1.5)

Figure 1.9: Conduction band edge in a slab doped GaAs-AlxGai.xAs
heterostructure with a surface potential Vo and a Fermi energy Fp. The two
dimensional electron gas is formed at a distance ctw+j from the surface of the
structure and in this illustration there is one bound sub-band £o. The conduction
band off-set between the GaAs and AlxGai.xAs conduction bands is AE" and the
deep donor pinning energy is Edd- Notice that the models assume that the doped
region is neutral i.e. equal numbers of positive and negative charges due to DX
occupation.

Energy

GaAs AlxGai.xAs GaAs

Silicon Donors
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In addition, it can readily be shown that the conduction band edge E. can
be expressed as a function of the electric field in Al,Ga;zAs F, at the 2DEG
interface (defined as z=0), donor concentration N, cap thickness ¢, and a
geometric parameter u’ which defines the spatial extent of the depletion region,

see Equation 1.6.

2( 2

ac N

E(0) = —¢F,| —2% +5 [+ —4°—| 2—+ 22 (1.6)
Eg €y (28, &g

1.2.4 Schottky Gated GaAs-AlyGaj<As Heterostructure [18]

Once a heterostructure has been designed and grown to have a specific
carrier concentration, it is still possible to vary this concentration by applying an
external electric field. This is done by evaporating a Schottky contact onto the
surface of the heterostructure, and then connecting the contact to an external
voltage source. In order to understand how depletion of the donors takes place, it
is necessary to understand the role played by DX centres in the dopant region.
There are two cases that need to be considered, depending on whether the DX
centres in the donor region can be depleted. At high temperatures the DX centres
are active and respond to the application of gate bias. Hence when all the donors
have been depleted the depletion region u’ covers the entire region u and the
electric field in Al;Ga; <As F, at the 2DEG interface is zero. At this point charge is
completely removed from the channel i.e the threshold condition V,=Vr. Hence
assuming that the surface states are in equilibrium with the gate electrode [21],
then the conduction band edge at the surface of the heterostructure is given by

Equation 1.7, where V), is the potential of the free GaAs surface.

E.(0)=eW,-V,)=eV,-V;) | (1.7)
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Hence substituting into Equation 1.6 for E(0) with u’=u and F, set to zero gives
N,* | u*  uc
e(Vo—VT)z—;—{—+——] (1.8)

Thus Equation 1.8 enables the onset of depletion Vr to be calculated. This is in
contrast to the low temperature regime where the DX centres are not active and
hence cannot be depleted (frozen). In this case, there is an extra contribution v/

to the surface potential due to their electric field F’,, see Equation 1.9.

€
v,/ =eF'a(u+i ) (1.9)

3

Hence the conduction band edge at the surface of the heterostructure for frozen

DX centres is given by
E,(0)=eWV,-V!)=¢V,-V, -8V])

giving

N e2 2 ' CE
E/ @) =— A2+ 25 Lo |u+ =2 (1.10)
€, |26, E, €,

Solving Poisson's equation to find F’;, Equation 1.10 can be simplified to give an
expression for the bias at which the channel starts to deplete in terms of the

geometry of the heterostructure and the zero bias carrier concentration in the

2DEG, see Equation 1.11.
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e c u s a
v/ =——nw(—+—+—+—— ‘ (1.11)

The threshold voltage in this frozen approximation depends strongly on the doping
level and the thickness of the doping regions. This effectively puts a limit on the
minimum threshold voltage that can be designed into a heterostructure for a given

doping density.

1.2.5 Electron Transport in a Two Dimensional Electron

Gas

Classically, with the application of an electric field F in the plane of a
2DEG, electrons are accelerated until they experience some scattering event after
some time T. At low temperatures, the dominant mechanism which sets the scale
of 1 is elastic scattering from ionised impurities and this leads to transport being

governed by a mean drift velocity

et
FE= HE (1.12)

!dn'fx =
where the mobility of the electrons in the 2DEG has been introduced to
characterise the magnitude of the elastic scattering. Substitution of the current

density j=enppVy,in=0F into Equation 1.12 gives

enypY i

c= 7 = ejL,nyp
X arift
K.

(1.13)
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where ¢ is known as the Drude conductivity. Experimentally it is the conductance
G that is measured and this is related to the conductivity of a sample of width W

and length L through Equation 1.14.

k.l
—E 1.14
5 (1.14)

~ =

w e’
G =IG = Ieucnw =

where a length scale / has been introduced to represent the mean distance between
elastic collisions i.e. the mean free path of the electrons. Equation 1.14 describes
the elastic scattering of electrons at the Fermi surface with wave vectors kr and
can now be used to define three different transport regimes: diffusive, quasi-
ballistic and ballistic, depending on the relative size of the mean free path
compared to the sample dimensions, see Figure 1.10.

In the diffusive case, where L, W>>I, the sample contains a large number
of scattering centres and Equation 1.14 measures the mobility and mean free path
in the 2DEG associated with elastic scattering from these centres. Inelastic
scattering is generally weak at these temperatures and electrons lose their phase
coherence over a length [,>/ which is frequently larger than the dimensions of the
sample. This in itself is interesting as it leads to novel interference effects from
phase differences acquired by electron waves travelling between the same points
by different trajectories [23, 24]. In the ballistic limit, where L, W<<I, Equation
1.14 does not hold as there are no scattering centres in the sample. In this regime
the conductivity, as defined in Equation 1.13, has no meaning and the conductance
is determined solely by sample geometry [25] and specular scattering from the
sample boundaries [26]. The intermediate case of quasi-ballistic transport,
W<I<L, is where the conductance is determined by a combination of specular

boundary effects and impurity related elastic scattering events.
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Figure 1.10: Illustration of electron trajectories in the diffusive (I<<L, W), quasi-
ballistic (W<I<L) and ballistic (I>>L, W) regimes with specular boundary

scattering [22].
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1.3 Transport in Reduced Dimensions

In this section, quasi-one dimensional electron transport will be discussed
in terms of transmission probability matrices. The generalisation of this formalism
to multi-channels is also discussed. Finally, the dependence of the quasi-one
dimensional conductance on small increases in temperature and source drain bias

is analysed.
1.3.1 Adiabatic Quasi-One Dimensional Transport [27]

Adiabatic Quasi-one dimensional transport is transport in the ballistic

regime determined by the Hamiltonian

2

2
px py
H="2—+—"+ev 115
o T o x TEV(X) (1.15)

where the transition from the wide 2DEG region to the constriction defined by the
potential V(x) is assumed to be smooth. If the confinement is commensurate with
the Fermi wavelength of the electrons in the 2DEG, then assuming a parabolic

confinement potential, the Schrodinger equation for the electrons leads to the

dispersion relationship
1 Rk}
E (k)= _E 100, + Y n=12,etc (1.16)

1
Hence (n -5}1(00 forms the bottom of a band of allowed energy states associated

with free motion in the y direction and separated in energy by %wy. Electrons will
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Figure 1.11: Illustration of the subband energy versus longitudinal wave vector k.
The net current results from the electronic states in the interval p;-p, where p; and y;
are the chemical potentials either side of the constriction [28].

Figure 1.12: Schematic representation of the density of states in quasi-one dimensions
showing four occupied energy levels.
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occupy n of these parabolic bands or sub-bands, depending on the Fermi energy in
the constriction, see Figure 1.11.

In order to calculate the current carried in the n™ occupied sub-band it is
necessary to know the density of states D(k), which in one dimensional k-space is
given by 1/2x. The total number of states in the k-space interval k—k+8k will then
be D(k)dk and the equivalent number of states in the energy interval E—E+3E will
then be given by

D(E)E = D(k )Yk

Hence

dE _1
D(E) =(21ta] (1.17)

Plotting this function in Figure 1.12 shows the quasi one dimensional nature of the
density of states associated with the sub-band structure described above. Now

consider the transport picture illustrated in Figure 1.13.

Figure 1.13: Illustration of various transport parameters which govern conduction
through a quasi-one dimensional constriction.
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A current J,(E) flows in the nt# sub-band with a group velocity v.(E) due to the

difference in the Fermi distribution functions either side of the constriction i.e.

2 +o0
jn(E)=—h€ ID(E pu(EJT,(EXf(E,ny )~ F(E,p, )ME (1.18)

Where T,(E) is a transmission probability relating the incident flux of electrons in
sub-band n and the integral includes the contribution to the current from all

conduction electrons either side of the constriction.

1dE,
v,,—(h m JE (1.19)

Substituting the group velocity (Equation 1.19) and the density of states (Equation

1.17) into Equation 1.18 gives

. 2e’T
jn =" JF(E. )= F(E. 0y )T E ME (1.20)

—o0

i.e. the current J,(E) is independent of sub-band index n due to the unique
property of the density of states in one dimension. This reflects the fact that
although states with higher values of » will have higher group velocities associated
with them, they do not carry larger currents because of the smaller density of
states. Finally the total transmitted current involves a sum over all values of n and

is expressed as

[((E,u;)-f(E. 1, )To(E)dE (1.21)
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At low bias (eV=p,-y,<<kpT), where p is the equilibrium chemical potential, the
difference in the Fermi function can be expanded as a Taylor series over the range

w=u+eV to pu,=p-eV. Hence

N o, 4
Zgh—f v L ERD pE (1.22)

dp
and so

N
=5 2ej V( f (E.p)

oE n( EME (1.23)

n=I h

The final form for the current I comes from the dependence of the Fermi function
S(E.,)1) on E-p. Now at low temperatures, the Fermi function will be much sharper
than any features in T,(E) and so the differential Fermi function can then be

replaced by the delta function 8(E-p) giving

2

N
1=2v E1,0n) (1.24)
n=1

Rearranging to give the conductance G, shows that the conductance of the

constriction is equi-partitioned in units of 2¢°/h between the N available sub-bands.

el N
=T 2T,(1) (1.25)

n=I



Chapter 1. Introduction and Theoretical Overview 25

1.3.2 Multi-Mode Transport [29]

In the previous section, it was assumed that transport was adiabatic, i.e.
that the scattering between the N different sub-bands could be ignored. However
when a real constriction is formed, the conduction band bottom rises to a height
E. above the conduction band bottom in the bulk 2DEG [30]. This saddle like
potential barrier causes the kinetic energy of the electrons to reduce, increasing
their Fermi wavelength and making them more susceptible to inter-sub-band
scattering. This is not so important because the total transmission probability will
remain the same. A more important problem is that if the potential profile varies
sharply enough, then the electrons can undergo backscattering processes which
will lead to conduction through the wire not being simply determined by the Fermi
distribution of electrons to the immediate right and left. Clearly it is important to
be able to describe the scattering between all the various propagating modes, in
order to be able to accurately understand the conductance in real devices. The
starting point of the more realistic analysis is the observation that any particular
wavefunction describing propagation in mode m, immediately to the left (/) of the
constriction, can be expressed as the sum of the initial incident wave vector k'
and all other possible backscattered waves vectors k,, from the n other
propagating modes, see Equation 1.26 where r_ is the reflection coefficient
describing the various scattering mechanisms that mix the different modes
together. Similarly the wavefunction for all the electrons on the right which were
injected into a mode m, can be expressed by using a transmission coefficient #,»
describing how mode m becomes mixed into a mode n. Summing over all n will

then account for all scattering processes in the constriction, see Equation 1.27.

Vieh = explikiyz )+ Xrpm exp(—ikhz) (1.26)

n=1
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Vright = L tymexp(ikyz) (1.27)

=
nMs8
~

Hence the transmission probability amplitude T,,(it) used in Equation 1.25, can be

modified to include all inter-sub-band mixing to give
2
2e 2
G="=23tnm| (1.28)
h man

In the analysis above, Equation 1.28 was derived assuming only two
connections to the constriction. However it is more usual to use four leads, where
two are used to pass current (current probes) and two are used to measure voltage
(voltage probes). The generalisation of Equation 1.28 to four leads is given by
Equation 1.29 where T, represents the transmission probability from lead n to

lead m, see Appendix A for a full derivation [31].

2¢ (TyT, —T,T,)
b Ty + Ty + Ty T)

(1.29)

G12,34 =

1.3.4 Thermal and Electric Smearing of Conductance

Quantisation

Consider the physical picture described by Equation 1.21 in Section 1.3.1.
This can be written in terms of the conductance G and the difference in the Fermi
functions f{(E-eV/2) and f(E+eV/2), either side of the wire, where e is the

electronic charge, V is the potential difference and E denotes energy.

2
G= 32—2! Z—ﬁ[f[E —%V—j— f(E +%)}T,,(E) (1.30)

n
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Defining

G = andg_iT (1.31)

g,=g/; k,T

and assuming that T,(E) is a Heaviside function of E,, then for one mode

[ 1
1 1
g= ] — | (1.32)
& I.el"—E +1 ¢ +1_|
evaluating the integral gives
1| 1467 ]
8., = 1—-;[ " (1.33)
1+e"2 J

-
e p ]
—31 J (1.34)
v 1+ Y

2 .

which simplifies to

o5
g, =1- =f(&,) (1.35)

1+e>
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Now the quantisation can be analysed in terms of the maxima in the differential
conductance with respect to the gate voltage V. Hence differentiating Equation

1.35 to express the problem in these terms gives

gn _% gn +';- -l

l_

dE, kT d& k,,T[Heg.-g b

This function has a maximum value when the n? sub-band coincides with the

Fermi energy i.e. £,=0 when measured with respect to the Fermi level. Hence

g, _ 1 & (1.37)
dE, eV "\ ak,T ‘

Equation 1.37 can now be used to compare the effect of an increase in the

temperature with an increase in the source-drain bias on the quantisation of the
conductance. Clearly Equation 1.38 shows that increasing the voltage dropped
across the wire to a value V has an equivalent effect to increasing the temperature

to a value eV/4kp.

As Vo0 &a 1
dE, 4k,T

eV
As >>1 gg—"ei
k,T dE, eV

In order to compare the experimental smearing temperatures and voltages with the
model, it is necessary to look at the region AE<kgT<<E (AE<eV/4<<Ef), where
AE=E, ;-E, is the sub-band spacing in the wire. In this regime the 'high
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temperature’ conductance go can be expressed approximately as a sum of the

number of sub-bands propagating below the Fermi energy, see Equation 1.39
g =~——=n—— (1.39)

where a parabolic well has been assumed for the shape of the confinement
potential. If the well is filled up to the n** energy level and E, is measured with

respect to the Fermi energy then clearly

E, =(n—%)AE—EF (1.40)

Differentiating Equation 1.39 with respect to the gate voltage gives

dE, ( 1)dAE dE,
- _( 2}—dVe - (1.41)

8 4

Differentiating Equation 1.41 gives

dg, 1 dE, E, dAE
dV, AE 4V, AE® 4V,

(1.42)

The smearing temperature (voltage) of the n# sub-band can be defined as the ratio
of the low temperature (voltage bias) differential conductance maximum to the
high temperature (voltage bias) differential conductance. Mathematically this can

be expressed in the form
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/ —d&y dEdV

dg. (1.43)
v, Y,
Hence substitution of Equations 1.36, 1.41 and 1.42 gives
dAE dE, |
ag, —tan -
av, 4k T Jjav, dv,
- 1 dE; EF dAE (1.44)
dV AE dV,.~ AE? dV,

Now this relationship can be greatly simplified, through the use of Equation 1.39
to eliminate Ef, see Equation 1.45. This final result will be used extensively in
Chapter 6, Section 5.5 to analyse the variation in the sub-band spacing in several
narrow constrictions as they deplete. It will also be used to analyse the differences
obtained by measuring the sub-band spacing through thermal and electric smearing

of the differential conductance [32].

(1.45)

dg,
v, AE [ eV
dy 4k, T

1.4 Electron Transport in a Magnetic Field

In this section a discussion is presented of the dynamics of electron motion
in a 2DEG, with a magnetic field applied perpendicular to the transport plane. The
effect of the magnetic field on electrons confined in quasi-one dimensional
channels is also considered. Finally, a brief explanation of the quantum Hall effect

is given in terms of the edge state model.
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1.4.1 Two Dimensional Electron Gas in a Magnetic Field

Choosing the magnetic field to be perpendicular to the 2DEG in the z-
direction and to be described by the vector potential A such that B=curlA, then
using the Landau gauge A=(0,Bx,0), the Schrédinger equation for an electron is
given by [33]

1
2m*

where V(z) is the potential confining the electrons in the 2DEG. Hence

) 82 3 5 aZ-I
~hP g+ |ihgs+eBx | —h —5 J+V(z) o(r) = Eg(r)

| — |

[ n? , iehBx d . (eBx)?
L 2m* m* dy 2m*

1
+V(Z)Jw(r) = Ey(r) (1.47)

This equation has two new terms associated with the magnetic field. The first
couples the first derivative of y with x in an imaginary term which breaks time
reversal invariance. The second term is a magnetic, parabolic confinement
potential. The method of separation of variables is used to solve Equation 1.47 in
terms of functions ¢(x,y) and ¢(z). The final wavefunction is then given as the
product ¢(x,y)d(z) and the total energy will be given by E(x,y,z)=E(x,y)+E(z). The
vector potential has no dependence in the y direction, indicating that a reasonable
solution would be the product of a plane wave ¢(y) and some function u(x), see

Equation 1.48.

o(x,y) = u(x)e™ (1.48)
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On substituting Equation 1.48 into the separated Schrodinger equation, the y

dependence disappears leaving

[ 52 72 2]
[ h —a——+%mmf(x+%] Ju(x)=£,,u(x) (1.49)

" 2m* ox?

where o, is the cyclotrbn frequency |eB/m*| as in the classical case and €, are
the energy eigenvalues associated with the eigenfunctions u(x). Equation 1.49 is
just a linear harmonic oscillator but with the vertex of the parabolic potential
displaced by x;= -(%k)/(eB). Equation 1.49 can now be solved for the energies and
wavefunctions of the bound states of the potential, see Equations 1.50 and 1.51,
where a magnetic length Ig2=/4/ |eB | has been introduced and H,_; are hermite

polynomials.

1
€, =(n—5}w)c n=1273etc (1.50)

_ _ 2
0, (0 y) = H, | =2 xp[————-(x %) ]e"" (1.51)
' 1, 212

It is immediately apparent from Equation 1.50, that the density of states in any

two dimensional sub-band has become a series of d-functions referred to as
Landau levels, each of which is labelled by the quantum numbers » and degenerate
in wave number k.

Consider a rectangular system in the Landau gauge which has dimensions

(L, Ly ) [34]. There is the usual periodic boundary condition in y, such that

2
k, =(—“}' j=123,etc (1.52)



Chapter 1. Introduction and Theoretical Overview 33

The boundary condition in the x-direction comes about from the wavefunction

being centred on x;. Hence 0<x;<L, or substituting for x;

O<—E£< L, (1.53)
eB

Using these relationships, the number of allowed states per Landau level per unit

area will be given by
eB
ng = Ny (1.54)

Including both spins and rewriting Equation 1.54 in terms of the cyclotron energy

gives
2ny, =—hw (1.55)

Comparing with Equation 1.4 shows immediately that each Landau level
(including both spins) contains the states that originally filled the constant two
dimensional density of states over an energy range ..

The number of occupied Landau levels or filling factor v at a given field is
defined as the ratio of the total number of electrons to the number of allowed
states per Landau level per unit area, see Equation 1.56 where each spin is

counted separately.

— Mo n
V=—"=—n 1.56
nB eB b ( )
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Now as the magnetic field increases, the energy spacing (/5(0") of the Landau
levels increases and the density of states per Landau level (wg) increases. This

means that fewer electrons will occupy the highest level, see Equation 1.57

hn
B.= * (1.57)

ev(n)

At some field where v(n) is the filling factor at the point n the topmost Landau
level empties, n reduces by one and the next Landau level begins to empty. If
initially BAj<B<B” then n<v<n+I i.e. there are n completely filled Landau levels
with a partially filled n+/ level in which the Fermi energy resides. At the point
where the n+1/ level empties, the longitudinal resistivity falls to zero as the Fermi

energy resides between Landau levels, see Figure 1.14.

Figure 1.14: Illustration of the density of states at various magnetic fields with
their associated filling factors. The movement of the Fermi energy with respect to
the occupied Landau levels is also shown. In this picture, the Landau level delta
functions have been thermally broaden [34].

Density of States

v=4 v=2
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The oscillations in the longitudinal resistivity (the so called Shubnikov-de Haas

effect) can also be understood in terms of the two dimensional resistivity tensor

(11]

B/n,pe
P =( Po 2D (1.58)
—B/nype Po
Here py, is the Drude result for the zero field resistivity given by
m *
= 1.59
Po n,p,e’t (1.59)

and the scattering time T is related to the density of states D(Eg) through the

simple Born approximation

! =(%jo( E, jcu® (1.60)

where c; is the areal density of impurities whose potential is modelled with a two
dimensional delta function of strength u. Hence combining Equations 1.58, 1.59
and 1.60, the longitudinal resistivity can be shown to be directly proportional to
the density of states at the Fermi energy. It is clear that the oscillations in the
density of states as the magnetic field changes will be reflected in the longitudinal
resistivity.

This effect is experimentally very important because it allows the density of
electrons in the 2DEG to be calculated by applying Equation 1.57 at two

consecutive minima, n and n+1, and then subtracting to eliminate n, i.e.

1 e e
A(—): x(v(n+1)=v(n))= ——x2 (1.61)

B ) hny ™
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1.4.2 Electron Transport in Narrow Channels in a Magnetic

Field

Consider the application of a magnetic field to a 2DEG confined in a
channel by some potential V(x). The Schrodinger equation for electrons with
wavefunction y(r) will be similar to Equation 1.48 but with an extra term to

account for the electrostatic confinement, see Equation 1.62 [34].

[ ) 1'ei‘sz_@_+(eBx)2
I_ 2m* m* dy 2m¥*

+V(x) +V(z)}v(r) =Ey(r) (1.62)

Separating Equation 1.62 to extract the x-y dependence gives

[ n (a2 az) iehBx 9 (eBx)®

]
—2m*Lax2+ay2 " Tm* 3y 2m* +V(X)J‘I’(X,)’)=E,,\|!(x,y)

This can now be solved with the function

O(x,y) = u(x)e™ (1.63)
giving

[ 2 22 ]

I.—;n*%+%m*mf(x+z—£Jl +V(x)Ju(x)=t—:,u(x) (1.64)

where the cyclotron frequency w,=eB/m* has been introduced. If the electrostatic

confinement potential is parabolic, such that V(x)=c at x=*a/2 and elsewhere the
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potential is given by V(x)= (m*w’x’)/2, then Equation 1.64 will have energy

eigenvalues
n = n 2 B 2mB . ( . )
where
L ()
o, =(0?+0?)?  and m,= m—" (1.66)

The first term in Equation 1.65 is a potential energy term associated with
confinement in discrete energy levels, whereas the second term accounts for the
kinetic energy of the carriers with wave vectors £.

It is interesting to consider the dependence of the eigenstates in a hard
walled potential where V(x)=0 for -a/2<x<+a/2 and V(x)=eo elsewhere, see
Figure 1.15.

The application of a magnetic field superimposes a parabolic confinement
potential onto V(x) and if k=0, the potential will be centred on x=0. At low
magnetic fields the main confinement is still provided by V(x). However increasing
the field, increases the magnetic potential until it becomes the dominant

confinement mechanism. The energy of the electrons is now confined in Landau
1
levels ("‘E}‘(’Jc which lie below the Fermi energy and hence carry no current.

However, if the wave vector is increased, the vertex of the magnetic parabola
shifts and can actually lie outside the wire. At sufficiently high values of %, the
electrons are confined at the edge of the channel in a narrow potential well set up
between the magnetic potential and V(x). The magnetic potential has broken the
degeneracy of electrons with differing k vectors. At sufficiently high values of %,
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the eigenstates lie above the Fermi energy and hence any propagation will occur at
the sample edge [35]. An important additional aspect to edge state transport is the
spatial separation to opposite sides of the channel for edge states with different
signs of k. This has important implications because it means that backscattering

processes, which rapidly degrade quantisation, are much less likely.

Figure 1.15: Potential energy and lowest eigenstate in a magnetic field for an
electron with wavevector k in a hard walled wire of width 0.1um in GaAs [34].

(a) (b) (©)
20
(a) B=1T (b) B=3T
k=0 k=0

>15 |
£

O

<10}

50 -50 0 50
x/nm

1.4.3 Quantum Hall Effect

Consider the Hallbar geometry in Figure 1.16. The magnetic field is such
that Landau levels form in the channel but lie below the Fermi energy. At the
sample boundaries these levels rise in energy, as outlined in the previous section,
and where they intersect the Fermi energy, edge states form. Applying a negative
bias V; to contact ! injects electrons into the edge states. If contacts 3 and 4 are
voltage probes, they draw no current and hence in the absence of scattering must

inject the same number of electrons into the edge states as they receive. Thus
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Vj=V3=V4. After leaving contact 4 the injected electrons flow into contact 2
where they suffer scattering and dissipate their energy. By symmetry, edge states
also exist on the opposite side of the sample and a similar argument gives

V2=Vs=Vs which can be set to zero by defining V2=o.

Figure 1.16: Schematic representation of the Hall bar geometry showing edge
state transport in a magnetic field.

Here contacts / and 2 are being modelled as electron reservoirs in equilibrium
with the 2DEG. As each edge state carries a current -(e™hjVi, the total current

flowing in the 2DEG is given by

(1.67)

where N is the number of edge states (counting both spins separately) that exist at

the Fermi energy [36]. The Hall resistance is thus

(1.68)
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i.e. itis quantised in units of &*/h.

The main assumption which underpins the argument given above is the
absence of scattering. This assumption is justified because forward scattering
between edge states with the same wave vector does not alter the overall
transmission probability and so the current is unchanged. Backscattering into edge
states with wave vectors of opposite sign will alter the transmission probability,
but due to the spatial separation of forward and backward flowing edge states to
opposite sides of the sample, the effect is small. The implicit assumption is that
conduction only takes place at the sample edges, requiring that the Fermi energy

lies between Landau levels in the bulk, see Figure 1.17a.

Figure 1.17: (a) The magnetically induced density of states n(E) in a 2DEG
showing the regions of localised and extended states. (b) Edge states localised in a
slowly varying potential [34].
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However this is quite a stringent condition and would limit quantisation to very
small ranges of magnetic field as the Landau levels are not delta functions. In
practise this does not happen and is due to the formation of localised states in the
tails of the Landau levels, see Figure 1.17b. These localised states play only a
limited part in conduction and encircle regions of potential fluctuations. Therefore
as long as the Fermi energy lies within a region of localised states in the bulk,

quantisation will persist.



Chapter 1. Introduction and Theoretical Overview 41

1.4.4 Selective Transmission of Edge States

Consider a sample essentially the same as that analysed in the previous
section but this time with some potential barrier between voltage probes 3 and 4,
see Figure 1.18. In this system we have a current / injected into N edge states
which leave probe 3 with M of them entering probe 4. Hence (N-M) modes are
reflected by the barrier into probe 5 and a voltage is developed between probes 3

and 5.

Figure 1.18: Schematic representation of the Hall bar geometry showing edge
state transport through a partially transmitting barrier in a magnetic field.

Using the Landauer-Biittiker formalism set out in Appendix A the current flowing
between probes m and n can be related to the voltage set up between probes m
and Mby a series of transmission coefficients summed over all the probes. In
matrix notation this can be expressed as Equation 1.69 [38, 39]. Now,
remembering that only current probes Vj and V2 draw a current, this relation can

be simplified in terms of the number of propagating edge states, to give
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