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This thesis is dedicated to the memory of Donald Reid.

Potius sero quam nunquam. 
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Abstract

This thesis describes the further development of the Glasgow Shell Model code, 

following on from the thesis of Dr. Mohammed Riaz. In th a t work, a possible 

parallel development of the Glasgow code was discussed, and a simplified ver­

sion of the code constructed which could only run on three processors. Rather 

than immediately continue in this direction, we felt it would be worthwhile 

to investigate all of the possible ways tha t the code could be implemented in 

parallel, or that the current parallel version of the code could be made faster. 

Various models of the code were used to arrive at an implementation which is 

best able to satisfy our expectations for the parallelized version of the program.

The development of this code is then described, showing how the code was 

w ritten to be at once as optimal and as portable as possible, to take account of 

future architectures tha t may become available to us, and discussing problems 

tha t arise in doing large shell model calculations (in parallel or not).

We go on to describe some applications of the new code, specifically to 

the term ination of rotational bands in light 5d-shell nuclei, and some origi­

nal calculations in the cranked shell-model description of the nucleus, with a 

deformed basis being used.

Finally the alternatives to the present work are described, showing where 

the present shell model code fits into the panoply of nuclear models for large- 

basis calculations.
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Chapter 1

Introduction

Forsan et haec olim meminisse iuvabit.

(One day we’ll look back on this and laugh.)

Virgil, Aeneid.

1.1 B eg in n in gs.

In the original article on the Glasgow Shell Model Code [1], the authors made 

a statem ent which applies, to a large extent, to the contents of this thesis:

The unconventional techniques embodied in the Glasgow shell- 

model program have aroused fairly widespread interest among . . .  

nuclear physicists. While the usefulness of these methods lies in 

their simplicity, and hence their suitability for com putation, they 

are . . .  far removed from usual shell-model ideas . . .  Our exposition 

will be a little unusual in tha t the implementation of our method 

on computers is inextricably linked to the choice of the methods 

themselves and in many cases separate discussion is neither desir­

able nor possible.



While this is still pertinent, the computational difficulties have, over the 

intervening years, become less intertwined with the theoretical issues of nu­

clear physics, and so I have attem pted to write this thesis in such a way that 

the chapters on the two topics can be read independently. However, the devel­

opment of the present code, and its subsequent applications, both depend on 

the lim itations and advantages of the original code, so this first chapter will 

be devoted to placing the work of the thesis in its historical context.

1.2 M otiva tion

The process of parallelizing the Glasgow code was begun in the thesis prior 

to this work, of Dr. Mohammed Riaz[2]. The approach of tha t work was 

somewhat more ad-hoc than the present discussion, being intended to show 

that a parallel version of the code may be possible, and went some way to 

implementing such a program.

In this thesis, the over-riding consideration is how fast we can expect the 

parallel code to run, and to this end, every aspect of parallelizing the Glasgow 

code, from the topology of the network used, to the order tha t bits should 

be in in a Slater determ inant, to variations of the Lanczos algorithm, are 

discussed. We take the point of view of computer science and consider the 

time complexity of the program with respect to the various param eters of its 

operation, so as to predict accurately how large are the calculations tha t we 

will be able to run, on the present or any future architecture.

Another facet of this project that has become apparent as work went on 

is tha t there is a questionmark over whether or not the code would find any 

applications. It has been said tha t there is very little to gain in standard shell 

model calculations until the size of the basis can be increased by more than 2 

orders of magnitude (the present code is designed to enable us to  approach that 

figure, if it works as well as could possibly be hoped, but even tha t would be



stretching its capabilities). We dem onstrate tha t there are indeed calculations 

which can usefully be done by the present program which were not possible 

previously, and don’t require such massive basis sizes. We also answer the 

criticism that large basis calculations are better done by different methods 

(specifically, F.D.S.M. and Monte-Carlo models).

1.3 A n  O verview  o f N u clear  T heory.

1.3.1 H istorical M odels.

In the 1930’s and 40’s, the prevailing models of the nucleus were of the ‘liquid 

drop’ type; these predicted the macroscopic properties of the nucleus, such as 

its ground state energy, and, indeed, the nucleus was thought to be very like 

classical liquids — i.e. unstructured. However, one of the results of the liquid 

drop model was the Bethe-Weisacker Semi-Empirical mass formula, and it was 

found in experiments tha t there were systematic deviations from this formula 

at particular mass numbers, and tha t some ‘m irror’ nuclei were more stable 

than their isobars[3]. This was very suggestive of a shell model of the nucleus, 

in analogy with the electron shell model.

One strong objector to this emerging theory was Niels Bohr. The im­

plication of a shell model is tha t filled shells are inactive; i.e. there are a 

small number of nucleons, perhaps only one, outside the filled shells which 

determines some of the properties of the nucleus, such as, for instance, the 

angular momentum of the ground state. Bohr’s objection was basically tha t 

the nucleus was so dense tha t each nucleon would undergo many collisions in 

the tim e tha t it would take the nucleon to make a single orbit; this would 

scatter it into many different orbits, thus making us unable to determine its 

orbit in macroscopic time. The consequence is tha t no single particle orbit can 

determine macroscopic effects, such as the angular m om entum  of the ground



state. The objection was later shown to be false; the Pauli principle excludes 

nucleons from identical orbits, preventing the frequency of collision tha t Bohr 

imagined [4].

1.3.2 The Shell M odel.

Nuclear shell model theory tha t we are familiar with today really began with 

the work of Mayer and Jensen in 1949 [5]. (One notes th a t both the shell 

model and programming, the subjects of this thesis, were started  by women 

(Mayer, and Ada Lovelace[6]), an unusual circumstance in the sciences). In 

a series of papers, a single particle model was used to predict properties of 

the nucleus. By this point in time, some excited state properties were known, 

and in a few nuclei, this model could predict energies and transition rates for 

these states. The central part of this model was the assumption of a central 

potential formed by the core, which had a strong spin-orbit component, which 

gave the ‘correct’ ordering of levels.

This model, where there were exact integer numbers of particles in each 

shell, proved inadequate to the task of explaining the vast bulk of nuclear 

data, however. There is also the dissatisfying element of the ad-hoc addition 

of a core potential. The first improvement on this was the introduction of a 

two-body interaction [7] between particles in the valence shell. This was still 

seen as a perturbation on the single-particle Hamiltonian, which was designed 

to make the calculation fit the data. The calculations now allowed the number 

of particles in each shell to be non-integral. Physically, this could be seen as 

measuring the degree to which Bohr was correct, the single particle orbits are 

subsumed into collective motion.



1.3.3 M od em  Shell Theory.

It seems to be a small step from here to removing the core term; we simply 

increase the size of the calculation until the entire core, with its two-body 

interaction with the valence particles is included. This has not been the case, 

for a variety of reasons:

• The problem just gets too big to handle. Indeed, this is the reason for 

the existence of this thesis.

• The two-body interaction does not seem sufficient to explain what hap­

pens in the core (i.e. the saturated part of the nucleus).

There are a variety of reasons for the second problem; two-body interactions 

are generally constructed in the simplest possible form th a t explains the phase 

shifts observed in scattering experiments [8], preferably with some underly­

ing ‘meson exchange’ justification. However, many potentials are phase-shift 

equivalent, so a large part of the choice is up to the theorist, and popularly 

the interaction is fitted to excited states in small calculations [9], which do not 

have the core effects tha t we want to examine. Also, the interaction should 

have a ‘hard core’ — i.e. nucleons act like billiard balls, not points. This effect 

is impossible to include exactly in the m atrix elements tha t result. Finally, we 

may have to go further than the two-body interaction, specifically, to include 

density-dependent effects, it is simpler (and is equivalent in some cases [10] ) 

in the shell model to have a three body interaction. These effects seem to im ­

prove Hartree-Fock calculations of the ground-state properties of the nucleus, 

and fortunately, there is a relatively simple way of constructing such m atrix 

elements from two-body m atrix elements, described in the original paper on 

the Glasgow code [11].

It must be emphasized at this point that the shell model of the 1940’s was a 

single-particle shell model, whereas nowadays practitioners use a more realistic



two-body interaction, and allow full configuration mixing, the only limit to the 

calculation being the size of computer used. However the advantage of having 

a shell structure in the nucleus was as great then as it is now. It allows us to 

divide up the nucleus into three parts: the core, the valence shells, and the 

outer shells. The main tenet of shell model theory is tha t both the core and 

the outer shells can be pretty  much ignored in calculating many properties of 

the nucleus. This reduction is what allows nuclear theory calculations to be 

done — since the number of states in a problem depends combinatorially on 

the number of shells tha t particles are allowed to fill, anything tha t reduces 

this number makes the problem more tractable.

The proton-neutron 2-body shell model that is used in the Glasgow code 

is not the only descendant of the original shell model work, however. Since 

the next stage of the work on nuclei took place in the age before computers, 

algebraic methods had to be found for easier solution of the huge problems 

that arise as the number of particles and shells considered grows. The obvious 

way to do this is to exploit conserved or nearly conserved symmetries of the 

Hamiltonian to reduce the original problem to a series of smaller problems. 

The first candidate for such reduction is also obvious, since the Hamiltonian 

must be rotationally invariant. An approach of this sort reduces the number 

of states involved in any shell model calculation by 10-fold or more. This kind 

of model, in which each nuclear state has a well defined angular momentum, 

is called the J-scheme. The Glasgow code emerged in the 1970’s as a direct 

rival to codes based around this idea. Note, however, tha t since no ‘nearly 

conserved’ symmetry has been assumed to be true, all states in the energy 

range probed by a calculation using this method should appear.

1.3.4 Truncation Schem es.

There are several ways of reducing the size of shell-model calculations:



• By using exact symmetries. As mentioned previously, the Hamiltonian 

preserves and Jz\ hence subspaces with different values for these quan­

tum  numbers can be considered separately. An additional symmetry 

imporant in the present, large basis, calculations, is parity. Only consid­

ering states of one parity reduces the size of multi-shell calculations by 

half.

• By using nearly-exact symmetries. Some states in the nucleus are well de­

scribed by applying conservation of some group operation. The Fermion 

Dynamical Symmetry Model (F.D.S.M.) uses this technique [12], as do, 

to some extent, the I.B .M ./I.B .A. models[13].

• Using the shell structure of the nucleus. As well as considering shells 

as closed, we can also note tha t transitions between m ajor shells are 

supressed by a factor l/2^w  (the 2 here is because adjacent m ajor shells 

have opposite parities), since 2huj is the energy required to create a state 

with 2 particles excited into other shells. We then use this to limit 

excitations, not at the Ohuj level (considering a single closed shell) but at 

2huj, 4^w, . . . ,  levels. Or, a nearly equivalent (but easier to implement) 

scheme is to place bounds on the numbers of particles th a t can appear 

in each m ajor or minor shell.

The point is, tha t apart from using exact symmetries, truncation schemes 

exclude states from calculations. Restricting the basis via an energy denom­

inator has most justification for us, since the nature of the shell model is to 

examine low-lying excited states. This is not to say tha t imposing symme­

tries is not a reasonable thing to do, but since states with good sym m etry are 

well described by other models, and the states tha t are left out as a conse­

quence may well be near the ground state, we should really be concentrating 

on precisely the states tha t these schemes miss out!



One possible avenue for using the nearly conserved sym m etry truncations 

tha t may be more fruitful is to investigate the connection between the ‘tru e ’ 

Hamiltonian -  the interaction used in the shell model -  and the param eters of 

these models.

1.3.5 M odern C ollective M ethods.

When greater restrictions are placed on the nuclear Hamiltonian, it is no 

longer true tha t all states in the probed energy range will be seen. How­

ever, symmetry-based truncation schemes and models are both resonable and 

useful in many situations. The Interacting Boson Approximation (I.B.A.) is 

a model tha t grew out of Wigner supermultiplet theory of the 1950’s [14]. In 

it, the fermions in the nucleus are assumed to ‘pair up’ to form bosons, which 

then undergo a variety of reactions which sometimes seem chosen as much for 

their ease of calculation, e.g. separability of the interaction as any resemblance 

to an underlying nucleon-nucleon interaction. Particular choices produce the 

vibrational and rotational bands seen in many nuclei. This model is closely al­

lied to the Interacting Boson Model[13], where there is no longer a close tie to 

the ‘real’ fermions. Handwavingly, the approximation works since fermions do 

tend to pair up in the nucleus, somewhat like Cooper pairs in superfluids[15]. 

The effect is obvious in the difference in binding energy of neighbouring even- 

even and odd-even nuclei, and indeed the looseness of the ‘ex tra’ particle was 

one of the reasons for the success of M ayer’s original single particle model.

It is also striking in some nuclei tha t they appear to  be solely composed 

of a-particles, for instance, ^^0. This led to the construction of models based 

on a-particles and the forces between them , derived or contrived at one step 

removed from the fundamental quark interactions [16]. These are able to 

predict some surprisingly stable chain states of the An nuclei, which are more 

deformed (from a collective viewpoint) than anything previously discovered.
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Moving up from pairs and as we come to cluster models, where the stable 

‘lum ps’ tha t form are magic nuclei assumed to orbit each other [17]. One of 

the m ajor interesting features of this branch of the subject is th a t by reducing 

appropriate nuclei to three-body problems one can write down the Fadeev 

version of Schroedinger’s equation for the system, and thereby solve it exactly, 

at least in principle.

Another possibility is to look at further approximate symmetries of the 

Hamiltonian. An extension which examines the groups Sp(6) and S0(8) is the 

Fermion Dynamical Symmetry Model (F.D.S.M.). In this model, fermions are 

again combined into pairs as bosons, and the model space is truncated where 

these bosons have pseudo-angular momentum less than or equal to some value 

(typically 2). This is very like an extension of I B.A., and the correspondence of 

bosons to fermions in both these models allows mappings to realistic Hamilto­

nians to be made. Indeed, the subgroup chains belonging to the pseudo-SU(3) 

and SU(4) models of Arima and Hecht are contained in those of the above 

groups [12, 13].

1.3.6 Advantages of Shell-M odel M ethod.

However, all of the models except the J-scheme mentioned above, and the m- 

scheme used in the Glasgow code, represent truncations of the model space. 

While this does not mean tha t the results tha t they obtain are wrong, it does 

mean th a t a typical full shell model calculation will find more states in the 

same energy region for the same nucleus. W hat is more, these states are 

by their very existence physically interesting; they do not form part of some 

simple group structure or other, but may form a bridge between two such 

schemes, and could not be found by either. Meanwhile, the shell model will, 

in principle, find all of the states missed by these various truncation schemes.

Another aspect of models of the nucleus is how fundam ental they are.



In other words, how much information is taken from knowledge of the ‘tru e ’ 

nuclear reaction (of which, more later) and how much is ‘em pirical’, designed 

to achieve the correct results by changing parameters. A typical example of 

the la tter is the I.B.M., which has its param eters tuned for whichever nucleus 

is under study, and does not give any information about nuclei of neighbouring 

masses (with the exception of mirror nuclei). It is not true to say th a t this 

model just returns to you the information you put in to it; more information 

comes out of the model than is needed to tweak its param eters. But it is in 

stark contrast to the shell model, where many levels are obtained in nuclei 

throughout the sd-shell with a single set of param eters derived from the bare 

nucleon-nucleon interaction.

This is not to say tha t the shell model is our most fundamental theory of 

the nucleus, but it forms a necessary bridge between Q.C.D. at the deepest 

level, and collective models such as those described above, which are necessary 

to make calculating nuclear properties tractable.

1.4 T h e G lasgow  code

We have so far described a range of models which describe truncations of the 

usual shell-model space. W hat, then of models which are equivalent ? In 

this section, I describe the J-scheme and m-scheme, and the reasons for the 

inception of the original glasgow code.

While the m-scheme, which I shall describe shortly, is simpler to use for 

simple problems, the great bulk of shell model theory until the mid 1970’s, 

and much of it since, concerned the J-scheme (also called jj-coupling). In 

this scheme, each many-body basis state is a linear combination of states so 

formed as to have good angular momentum quantum  numbers (usually, isospin
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quantum numbers are included here too.) Thus, we have

Basis =  (1.4.1)

This is useful since the Hamiltonian also has rotational symmetry, so tha t

for arbitrary i, H c^j^ =  ^  (1.4.2)
n

Hence, we need only consider states with one value of J at a time. This allows 

us to reduce the number of basis states by a factor of 10 or so (relative to 

the m-scheme). This Hamiltonian is usually expressed as two-body m atrix

elements between two-body states coupled to different values of J. At this

point, we run into the problems with the J-scheme :

• The basis states must be decomposed into coupled pairs of particles 

coupled to the remainder of the state before we can use 2-body operators. 

This is not simple.

• New states constructed after operation with the Hamiltonian must be 

explicitly made to be antisymmetric.

These two problems are taken into account by introducing new coefficients 

for antisymmetric decomposition and reconstruction of the state  being oper­

ated on, called coefficients of fractional parentage. Forming these turns out 

to be the half the battle  in a typical J-scheme calculation, and unfortunately 

the recursive algorithm that is used to generate them  is numerically unstable 

for large numbers of particles. The problem could be summed up by saying 

tha t Racah algebra (the algebra of angular momenta) is an ‘unnatural’ thing 

to ask a computer to do. This begs the question: what, then, is a ‘na tura l’ 

thing for a computer to do? One answer, which I have been leading to, is the 

m-scheme as used in the Glasgow Code.
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1.4.1 The m -Schem e

In the so-called ‘m-scheme’, every many body state of the nucleus is repre­

sented by a Slater determ inant. In second quantized notation, it is sufficient 

to write , e.g.

<̂1,3,4 =  a\ala\ \ 0) (1.4 .3)

(here a \  denotes a creation operator, while | 0) denotes the vacuum state), 

where the creation operators (of filled single particle orbitals) in the state are 

in some canonical order.

Since the Slater determ inant is the sum of all perm utations of the products 

of the single particle wavefunctions involved -  with appropriate phases on 

each term  -  it is uniquely identified by its first term , up to a phase. It is 

this tha t we write as the second quantized notation for the state, with the 

canonical ordering defining the phase. Now, each filled orbit has associated 

with it some angular momentum and its projection on the z-axis, (jm ). The 

Slater determ inant formed above does not necessarily have a good angular 

momentum quantum  number, J  but it does have a good projection of angular 

momentum, namely

M = Y^mi (1.4 .4)
i

Where i runs over all occupied orbits. Since the Hamiltonian, as before, is 

rotationally invariant, it preserves this quantum  number, and we need only 

consider a basis constructed of Slater determinants of one value of M .  Further, 

since the Hamiltonian has no preferred direction, there are no m atrix elements 

which depend on M. Hence, a calculation done with any particular value of M , 

say. M l, which is less than M2, will contain all of the states in the calculation 

using M 2, up to a rotation. Expressed using the ladder operator for total 

angular momentum:
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Quantity 2’’'*̂ quantization Binary

<̂1,3,4,6,7 a\a la \a la \ \ 0) 1 0 1 1 0 1 1 0

destroy 1,7 <21(27 1 0 0 0 0 0 1 0

create 2,5 a\al 0 1 0 0 1 0 0 0

<̂2,3,4,5,6 alala\alal \ 0) 0 1 1 1 1 1 0 0

rowl A row2 A row3 0 1 1 1 1 1 0 0

Table 1.1; An Operator in Binary

^  (1.4.5)

Why is this representation any easier for a computer to understand? Well, 

in the above example, an equivalent operation to writing down a list of filled 

orbits would be to write down a list of all orbits in some model space and then 

specify which ones are filled.

rep(c^i) =
a\ ^3 a\ «6 a\

1 0 1 1 0 1 1 0
(1.4.6)

In equation 1.4.6, filled orbits are identified as I ’s, em pty orbits as zeros. 

The connection with computers is now somewhat clearer, since every number 

is represented internally as a string of I ’s and O’s, representing Slater determ i­

nants this way is completely natural. Of course, it is only useful if operations 

on such basis states can be done in an efficient manner. This is indeed so. 

consider the action of a m atrix element

(1.4.7)

Where i , j , k , l  run over all possible combinations tha t give the result. In 

binary, the representation of the element of the sum with z =  2 ,j  =  5, A: =  

1, / =  7 , looks like table 1.1.
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In the last row of 1,1, I have written the result of 

(row l)A(row 2)A(row 3), meaning the binary bitwise XOR operation on the 

binary column of each of these rows. It is obvious tha t this, and the result 

we desired, in row 4, are identical. This is true in general; In other words, a 

two-body operator can be easily implemented using logic operations tha t are 

extremely fast on a computer.

1.4.2 Parity R epresentation.

This is not the only computer-friendly representation of an m-scheme state. 

There have already been described in the literature [18] methods of packing 

the m-scheme representation above into less bits by using properties of the 

binomial coefficients; more im portant for the present application is another 

representation which allows the efficient computation of the phase of m atrix 

elements.

Because of the size of the m atrix involved in the Glasgow code, we cannot 

store it; and, for the size of problem we envisage tackling (see section 2.2.3) it 

would not even be possible to use the usual sparse representation of element 

and coordinate. We are left to effectively construct the many-body m atrix 

elements from the two-body m atrix elements as we go. Consider such a m atrix 

element:

{(j) I a\a]akai | (j)f) (1.4.8)

There is no guarantee here tha t the creation and destruction operators 

are in the canonical order required for our list of Slater determ inants. The 

swapping of creation and destruction operators around necessary to produce 

simply a set of creation operators in such a normal order introduces a phase 

which we must know.

Fortunately, there is a representation of the m-scheme equivalent to tha t

14



Quantity Occupancy Rep. Parity  Rep.

(t>5 0 0 0 0 1 0 0 0 0 0 0 0 0 1 1 1

^3 0 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1

4>\ 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1

<̂1,5 1 0 0 0 1 0 0 0 0 1 1 1 1 0 0 0

<̂ 1,3,5 1 0 1 0 1 0 0 0 0 1 1 0 0 1 1 1

Table 1.2: Different representations.

Quantity Parity Rep.

4>i,3,4,6,7 0 1 1 0 1 1 0 1

destroy 1,7 0 1 1 1 1 1 1 0

create 2,5 0 0 1 1 1 0 0 0

<̂2,3,4,5,6 0 0 1 0 1 0 1 1

Result of XOR 0 0 1 0 1 0 1 1

Table 1.3: Parity Representation

given in section 1.4.1 which enables quick calculation of the phase. It is easiest 

to explain the ‘phase’ representation by example, such as th a t in table 1.2.

In this example notice how the string of I ’s in the parity representation 

changes to a string of O’s, and back again, immediately after each occurrence 

of a 1 in the occupancy representation, as we move from left to right. Notice 

also, tha t the parity representation of <;6i ,5 is in fact the XOR of the parity 

representations of and ^ 5. This is again true of parity representations 

in general. Now let us consider the action of a destruction operator on the 

parity representation of the state. We use the example of the last section: see 

table 1.3.

The result of repeatedly XORing the parity representation of the initial 

state with tha t of the operators is seen to be identical to the parity represen­

tation of the final state, as required.
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Of what use is this? It turns out th a t calculating the phase we require is 

equivalent to counting the number of bits set between those changed by the 

operator, and deciding whether this number is odd or even. It is obvious on 

inspection tha t we can tell this parity of the number of bits set by inspecting 

the first and last of the bits in our range from the parity representation.

If these two bits are the same, then the parity is even; if they differ, then 

it is odd. It turns out tha t we have to loop over the bits of the occupancy 

representation anyway in the program, when we first come across a state to 

be operated on; the parity representation can be economically constructed at 

this point, while the parity representation of the operators requires a trivial 

amount of storage. W ith both pieces of information, the phase calculations 

are simple.

1.4.3 Advantages of the J-Schem e.

If the m-scheme method is so much better than J-scheme codes, then we must 

ask why such codes persist. The answer, of course is tha t every scheme has its 

drawbacks, and the price we pay for simplicity of com putation in the m-scheme 

is greatly increased basis sizes. Consider the sd-shell. In this model space, the 

largest J-scheme basis that must be considered is around 20,000 states, while 

the largest m-scheme basis tha t must be considered is 93,000 states. Thus, 

storage on a computer quickly becomes a problem, and in particular, the 

Hamiltonian must be stored in a compact fashion. In the Glasgow code, it 

has in the past been stored in the form of all non-zero m atrix  elements (as 

is common in sparse m atrix codes). In the present code it is stored as two- 

body uncoupled m atrix elements, since even a sparse version of the many-body 

m atrix soon becomes too large to handle.

The size of storage involved and its attendant difficulties do wipe out some 

of the gains of using a ’computer-friendly’ representation. However it has been
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found tha t compared to the best J-scheme code, (OXBASH [19], although this 

is in fact something of a hybrid) the J-scheme codes perform best on smaller 

problems, while on larger problems the Glasgow code is the best one to use 

[20].

1.5 R eason s for P ara lle liza tion

There are two pressing reasons why the Glasgow code should be ported to a 

parallel machine. They are:

• There is not enough room on any economically viable serial machine to 

store the vectors required;

• Given any serial chip, we can take N of them  and make a machine tha t 

is in principle N times faster. This is the simplest route to speeding up 

any computer.

Parallel machines offer the double bonus tha t every tim e you add a chip, 

the machine runs faster, but also they have increased memory capacity. In 

the Glasgow code, these are not just desirable, but prerequisites of performing 

calculations beyond the sd shell.

There is also a good reason why the Glasgow code is considered first for 

parallelization and not the J-scheme codes. This is, simply, th a t the c.f.p.’s are 

computed in an iterative manner. In other words, at each step, the result of the 

previous step must be known, so the procedure is inherently serial. It could be 

said tha t the same Lanczos algorithm is used in both codes for diagonalizing 

matrices, and the argument could be put tha t the c.f.p. problem can be recast 

as a m atrix problem, so tha t standard parallelizing solutions could apply. The 

problems with these arguments are connected: the Lanczos algorithm does not 

need to run to completion to give us the results we need, whereas the c.f.p.
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m atrix must be completely diagonalized to give the information necessary for 

the next part of the calculation. This, combined with the numerical instability 

of the c.f.p. recurrence, renders it unsuitable for parallel architectures.

It is worth mentioning tha t OXBASH is being used for multi-shell calcu­

lations, in which it is in effect run in parallel: however, the way in which this 

is done is by diagonalizing the Hamiltonian for different J values, and differ­

ent restrictions on the basis, on different computers -  an essentially coarse 

grain parallelism which will not be suitable for very large calculations, as the 

problem cannot be subdivided many times this way.

18



Chapter 2

Parallelism .

The purpose of models is not to fit the data but to sharpen the 

questions.

Samuel Karlin.

Before we go on to describe how the Glasgow Code is parallelised, we 

discuss some general aspects of parallel programming which have some bearing 

on the work being done.

2.1 C om m on paradigm s for C oncurrency.

The applications normally converted for concurrent use are usually those for 

which the programming cost is small, because of some inherent parallelism in 

either the data or the algorithm. The most common of these have been wired 

into the hardware of some machines.

From our point of view, we have a number of processors (N)  which must be 

connected together to form some network topology. The choice of paradigm for 

the concurrent code is the m ajor determining factor in the choice of topology 

used. The choice of topology can be crucial, since in moving to a parallel 

architecture, we add a new operating overhead, the communication time. This
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is very likely to increase as we add more processors to the network, and could 

swamp the gain in speed tha t we would hope for.

The architecture which we are programming for is a network of transpu t­

ers, which are RISC-chips with built in floating point processors, and usually 

around 4MB of RAM, or roughly equivalent to a single 486 PC. They each 

have 4 1-bit wide two-way connections which can be used to build up a net­

work of processors acting together. Our target is to write a program which 

will be able to run efficiently on a 1000 T-9000 transputer network. The actual 

hardware tha t we wrote the program for, and the machine on which we were 

actually able to run it, which turned out to have a much lower specification 

than we had hoped, are described in more detail in section 2.2.2.

We now go on to describe the different ways a parallel program can be 

constructed.

2.1.1 Task Farming.

The simplest programs to parallelize are those where large numbers of identical 

small tasks must be performed on many independent packets of data. This 

is quite a common situation, for instance, deciding whether a point lies in 

the M andelbrot set[21] only depends on the co-ordinates of the point, and so 

completing this task for all points in some region, is one such operation.

Here, the division of labour is into a co-ordinating m aster task, and many 

copies of the small processing task (the ‘slave’). Normally, there are many 

more data packets than processors, so a load balancer is required to keep the 

network as busy as possible. Since processing tasks only have to communicate 

with the master task, the topology used must minimize the distance between 

an arbitrary node and this m aster task. Binary and ternary trees are the usual 

such topologies which can be implemented on a transputer network.
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2.1.2 G eom etric Parallelism

This kind of parallelism often arises in physical problems. The idea is tha t 

if for, say, a problem where the value of some function at a point depends 

only on the data associated with the point itself and, the data  associated 

with the nearest neighbouring points, then the space of points can be divided 

into regions, where the only dependence of each region on the others is at 

the points where it comes into contact with the neighbouring regions, e.g. 

boundary conditions must be met at the surface of volume elements or the 

perimeters of areas. The satisfaction of boundary conditions only requires tha t 

processors acting on neighbouring volume elements communicate the values at 

their surfaces to each other.

Here, obviously we have only nearest neighbour communication. This is 

commonly translated into a grid topology, where the volume elements are 

rectangular columns, or to a hypercube for problems of higher dimensionality 

(for example. Lattice Q.C.D.[22]). Since the perim eter of (say) a square area 

element is proportional to the square root of the area, as we divide up the 

area into smaller and smaller squares (so tha t we can use more and more 

processors), the communication time, which is proportional to the perimeter, 

increases much more slowly. Hence the communication overhead only increases 

slowly with increased numbers of processors.

To an extent (as we shall see) our program uses a geometric method of 

dividing up data. However, the function acting on the data is non-local (in 

the sense tha t many non-neighbouring points affect the value at each point) 

and this makes our task much more difficult than usual.

2.1.3 A lgorithm ic Parallelism

This is a catch-all phrase for algorithms which include some element which 

can be parallelized. The most common is when a serial process which has
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several stages must be repeated again and again. Then, instead of having a 

‘jack-of-all-trades’ process which performs all of the stages, before moving on, 

each stage is given a specialist process which can act at the same tim e as the 

others. The end result is much like a car production line. This m ethod is 

called ‘pipelining’ and as the name suggests, the usual topology is a line of 

processors. This is used in almost all computer chips to speed up execution at 

machine instruction level.

The difficulty with algorithmic parallelism is tha t the more you want to 

divide the program up, the more programming work has to be done. In the 

previous two methods, the ‘grain’ of the parallelism (how far it can be divided 

up) lay in the data, and since we are usually looking at very large data sets 

when using highly parallel machines, it does not tend to be difficult to divide 

it up many times. In algorithmic parallelism, there are three distinct levels 

of grain: coarse, in which whole programs or large tasks are run concurrently, 

which is the way our program works; medium, in which the bodies of most 

loops are not iterated but performed simultaneously, with the task size being 

of the order of a few tens of statem ents, and fine grain, where small groups 

of machine instructions are performed concurrently. (Graining can also occur 

in data-parallel programs -  for example, OXBASH is run this way, and the 

UNIX batch(l)[23] command is often implemented this way, but this is a sign 

tha t parallelism is really not appropriate for the program in question).

Some progress has been made over recent years in constructing compilers 

which automatically parallelize code, generally at the loop level, but problem- 

specific knowledge can almost always lead to a better algorithm. However, the 

problem remains tha t, at best, the program will be divided up into a few tens 

of tasks.

W ith the geometric and farming methods, you can in general increase the 

number of processors tackling the problem without any extra  programming 

effort whatsoever. However, algorithmic parallelism does tend to produce the
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greatest increase in speed for a program (since it makes use of knowledge 

specific to the problem, so-called ‘superlinear’ speedups can be achieved[24]). 

Because of this tradeoff, in general programs are divided up algorithmically 

first, then further subdivided along geometric or task farm lines. The Glas­

gow code has in fact been divided up algorithmically in the thesis by Riaz 

[25], into o p e ra te  , lo c a te  and m aste r tasks, as described in more detail in 

section 3.2.3. The present work is mainly looking at dividing the vectors oper­

ated on into blocks (which could be seen as geometric parallelism), described 

in section 3.2.4.

2.1.4 Topology issues

Since our division of the vectors requires tha t each lo c a te  processor can com­

municate with every other, the topology of the network must be designed to 

minimize the distance between an arbitrary pair of processors. It can be shown 

in fact tha t it is im portant given a lo c a te  task which operates on one part 

of the basis table, to have it physically close in the network to tasks operating 

on numerically close parts of the basis table (figure 2.1) since there are more 

m atrix elements between them. We must also place the o p e ra te  tasks in the 

network, and the obvious place to do this is adjacent to its corresponding 

lo c a te  task.

The topology proposed previously[26] was a chain of pairs surmounted by 

the m aste r process. A major objection to this is th a t messages going ‘up’ the 

chain are always delayed by messages coming down, there is no alternative, 

less congested route to take. A consequence of this topology would be the last 

processor pair always lagging behind the first one, and the chances of deadlock 

occurring (see section 2.1.6) are high. The next more complex topology, a ring 

of processors, has almost identical properties. To provide better routing in 

the network, we would like to connect the opposite sides of the ring in such a
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Figure 2.1: Effect of processor order in tlie network.

way as to minimise the distance between every pair of processors, and doing 

so leads to the optimal regular topology, the chordal ring. This is actually 

equivalent to a torus of processors (in the sense that the diam eter and mean 

internode distance of each have the same N-dependence.) Hypercubes are not 

relevant in the present context as transputers do not have enough connections 

to construct one, and the structures where the so called ‘Moore bound’ for the 

minimum mean internode distance is achieved (such as the Petersen graph) 

do not exist for most values of N  (the topologies decribed here are pictured in 

figure 2.2).

However, research has shown that networks whose sizes approach the Moore 

bound, for large N  can be achieved by just connecting the processors ran­

domly together (and possibly adjusting the resulting network slightly) [27]. 

Unfortunately, it would be difficult in such a random structure to preserve the 

information that we have that numerically close lo c a te  tasks should be as 

nearly adjacent as possible. Also, in some of the variants of C used in this 

project, a unique number has to be allocated for message transports between 

each and every processor,the table for which increases in size proportional to
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N'^, becoming unwieldy for large values of N (remember, our target size is 

N  = 1000). Regular topologies have the advantage th a t entries in this lookup 

table can be generated, rather than having to be stored.

A further problem arises when attem pting to implement such point to point 

communication on anything other than the simplest topology. At the s tart of 

this project, no system was available tha t could transparently send messages 

from one process to another without a direct physical link. This is necessary, 

because otherwise the source of the task for each processor has to be altered 

to take into account the position it has in the network. This would in turn  

mean having 1000 slightly different compiled versions of the Glasgow code for 

our target machine, which is clearly unacceptable (this was, in fact, the way 

the code worked before the work of this thesis began).

A router task has to be placed on each processor in such a way th a t di­

rect and indirect communication is not distinguished in the program. This is 

in itself an active research area, and at first we attem pted to use t i n y  [28], 

which turned out to be prohibitively complex and unreliable, and a system 

(DynaLoader [29]) whose source code had to be altered, as it had been devel­

oped for a specific application very different from our own. While this work 

progressed, a new version of MEIKO C appeared which incorporated t i n y  in 

a simpler fashion. W ith this upgrade, our own attem pts at creating a router 

were abandoned (indeed, versions of the code written up to this tim e were no 

longer able to run under the upgraded system).

W ith the difficulties in choosing a topology, and the additional overheads 

from point-to-point routing tasks, it was felt necessary to model the program 

on the network. This would tell us how the communication demands of the 

program would affect it as the number of transputers increased, and the size of 

the problem changed, and hopefully we could decide whether or not it would 

be worth the extra effort of programming, and the overhead at runtim e it 

would entail.
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2.1.5 A M odel of the Code

In this model of the code, we begin as is usual by dividing the tim e taken to 

run the program once into its ‘serial’ and ‘parallel’ portions.

tx  = ts  tp , on a, single node. (2.1.1)

Where tp is total running time, t s  is the tim e spent in the serial part of the

code, and tp is the time spent in the parallel part of the code. By serial,

we mean every portion of the serial code tha t is still only run serially in the 

parallelized version of the code. In our case, this amounts to just the disk 

access time, and the tim e taken at the start of the program to  set up the 

basis and Hamiltonian. Since the basis and Hamiltonian could be re-used, 

and the disk access tim e cut to virtually nothing by storing all vectors for 

reorthogonalization dynamically (see section 3.2.2), we can assume that:

t s  =  0 . ( 2 .1 .2 )

On N  nodes (and here we mean nodes in the general sense of an o p e ra te

- lo c a te  pair forming a single node), we have :

tp = tc  (2.1.3)

the communication tim e, tc  is an added overhead of parallel systems. Taking 

the simple model of the parallel part of the code used in section 3.2.4, we have 

that:
Pyk+l

tp = ---- h tc,  where p, k are constants. (2.1.4)

Here, v is the dimension of the basis. We will now justify the assumption of 

this power law dependence. This was originally used to indicate, for a given 

basis state, the number of basis states with which it has a non-zero m atrix 

element. This number must be less than u, since the m atrix is sparse, and 

it seemed unlikely th a t it would remain constant as the basis size increased.
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Figure 2.3; Dependence of Iterat ion Time on Basis Size

Consequently, the number of non-zero m atrix elements in the entire m atrix 

lies between v and The form was postulated for some 0 < A: < 1. 

The speed of the code was then measured against basis size over the entire 

sd- shell. It was found that the time taken for each run satisfied very closely 

this power law, with k = 0.1. In fact, the relationship is surprisingly accurate 

over this range of three orders of magnitude, with a correlation coefficient of 

r = 0.99 for the regression. This is depicted in figure 2.3.

The communication tim e again depends on this measure of the sparsity 

of the Hamiltonian m atrix, since every off-diagonal m atrix element to a basis 

state, except those to the same vector block as the one from which the m atrix 

element originated, require some communication to be done. An assumption 

will be made here that the number of m atrix elements which map between 

each pair of processors is identical. There is some justification for this. In
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figure 2.4 we see tha t outside the central peak, the number of m atrix elements 

at each Hamming distance varies about a reasonably constant value over most 

of the m atrix (the poor agreement at small distances can be ignored because 

no communication is done there, and at large distances the disagreement is 

because this plot is for a very small m atrix. The graph is labelled ‘fraction 

of m atrix filled’ as the scale is normalised so tha t the values would be 1 for 

every distance if the m atrix were completely full). It could also be argued 

th a t this particular choice of model is a worst case for our code; it will tend to 

overestimate the communication tim e by expecting more communication to be 

done over longer distances. This gives the amount of tim e th a t a node spends 

on messages tha t originate or term inate at tha t node is:

<We = (2-1-5)

But point-to point communication requires work to be done by routing 

tasks, which will increase the tim e taken up by the communication. It is 

often stated tha t communication tim e depends directly on the mean internode 

distance d in the network (measured in hops, see figure 2.5), but I have not 

seen this result proved for any case.

It may seem an intuitively obvious result, but the usual explanation, tha t 

the receiving node must wait for messages being passed on through other 

processors, is just as obviously false. The reason is tha t the receiving task can 

perform other tasks while waiting for its communication channels to become 

active; indeed, good programming would demand tha t this be the case. The 

delay is not, in fact, at the originator of the message, or at the receiving end, 

but on all of the processors in between. That this produces the observed effects 

in our case is shown next.

We make one final assumption: tha t no message is produced in the network 

which is not received. This is entirely reasonable, since otherwise we would be 

doing the work of producing these dummy messages for no reason. Combining
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this and oiir assumption of homogeneity across the network tells us that each 

processor receives as many messages as it sends (and tha t this number is the 

same on every processor).

Consider a single processor in tliis network (figure 2.6). It has at least 

two tasks active on it; a routing task, to redirect messages intended for other 

processors, and its ‘useful’ task. Some fraction /  of the messages that arrive at 

this processor term inate there, and we have sliown that an identical fraction 

must be sent out also. The amount of communication time in total on this 

processor is then:

I -  f
t c  = c(— -̂---H 1) (2 .1 .6 )

Where c is the tim e spent on communicat ion which originates or term inates 

at this processor. There is an intim ate relation between /  and the mean 

internode distance, given the current set of assumptions. We now look at our 

processor in the context of the network:

As the messages from the ‘central’ processor in our homogeneous network 

propagate outward, they act in the manner described above, passing through
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Figure 2.7: The Network is tlie same, viewed from any processor

each processor’s routing task on the way. Since our central processor com­

municates equally often with every other processor, the number of processors 

affected on average by a message is precisely the mean internode distance. 

This means that each ])rocessor, on average, sees d messages that were not 

intended for it for every message that was intended for it. And since our cen­

tral processor is ‘the same’ as all the rest in precisely this sense, we obtain the 

result:

(2.1.7)

This is immensely useful, since although /  is the factor tha t is the real 

measure of how much point-to-point communication slows down a program, 

the value of d is known for arbitrary N  for a wide variety of network types. 

Incorporating this result into our formula, we finally get the result:

t A N )  = ^  + «/(A') (2 . 1.8)
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and by assumptions about the form of the m atrix tha t we have made:

(2 .U )

This formula is more useful if we use the quantity known as the ‘Speedup’, 

which is simply:

Speedup = (2.1.10)

If we write down the reciprocal of this quantity, and make some suitable 

simplifications, we get:

 ̂ (2 .1.11)Speedup N  p N

But since p and c are constants, this value can be easily m anipulated to give 

us the topology-dependence of a network. This provides a simple check on the 

model. We use this in the next chapter to examine the topology-dependence 

in our program.

2.1.6 Com m unication Breakdown.

There are two more effects tha t occur in parallel processes which deserve a 

little attention before we move on, and which are left out of the above model. 

The first is message contention, or ‘blocking’, in which a process tries to send 

a message, but the router is actively sending one at the time. This increases 

the communication time, and what is more, simulation shows tha t the effect 

increases with time. There are natural ‘breaks’ in our program at the end of 

each iteration which allow the network to catch up with itself, but this might 

become worrisome in the long iterations required by the large calculations 

planned.

This effect was investigated primarily to check the assertion th a t there is an 

‘optim um ’ message size. It is obvious tha t since each message carries a small
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header, then if we decrease the message size the amount of useful information 

passed in a given amount of communication time is reduced. It was suggested 

tha t large message sizes increased contention, and thus there was some middle 

ground where communication became most efficient. The simulation of this 

process in a simple model, and test programs on the Parsytec M ulticluster, 

seem to show tha t this fear was unfounded, and tha t there is in fact no limit 

to the size of message tha t should be used.

The final problem that can occur is deadlock. This is the phenomenon 

that occurs when two processors are trying to send or receive from each other 

simultaneously. Both processors end up waiting forever to hear from the other. 

This example is fairly easy to circumvent, but it is fairly easy to construct more 

complicated problems, where a large number of processors are waiting. For 

example: at a round dinner table, everyone turns to their left to talk to their 

neighbour, and finds themselves looking at the back of someone’s head. If they 

all have the same ‘recovery’ algorithm, after a few seconds they will all turn  

to their right, and discover themselves in the same predicam ent, and so on.

It is possible to construct nearly deadlock-free routing systems, and this 

is a continuing area of research in Computer Science. However, these systems 

are much slower than those such as t i n y  or PARIX used in the present work. 

Indeed this was a design choice in the writing of PARIX: if you suffer from 

deadlock, i t ’s probably due to bad coding, and i t ’s up to you to fix it. If you 

don’t then your program will run much faster than if it isn’t trying to prevent 

deadlock.

Our code suffered from apparent cases of deadlock for particular input 

values and not for others. This was apparently alleviated by increasing the 

message size (and therefore reducing or simply changing the number of mes­

sages in the network.) Until some better way is found to circumvent this 

problem, the program will leave the choice of message block size in the hands 

of the user for this reason.
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2.2 A  T ractable P roblem ?

As suggested already, before we decide to make any attem pt to  parallelize the 

Glasgow Code, we must first discover if it is worth doing so. By worth it, 

I mean in particular, will the program run in a reasonable amount of time, 

using a reasonable amount of memory, on a reasonable num ber of chips? We 

consider each point separately.

2.2.1 A ‘R easonable’ Tim e

Before we can decide the question of whether the program can run in a rea­

sonable amount of time, we must ask what that tim e is. We choose, fairly 

arbitrarily, two days. There are a number of good reasons for this, viz.;

• Computer stability time. Computers, especially high end ones, some­

times resemble the British weather. “If i t ’s raining today, i t ’ll be raining 

tomorrow” applies equally truly to whether or not we can expect a system 

to be active tomorrow. However, we can rarely say with any confidence 

tha t we can guarantee the computer will not break down any further into 

the future. As I write, a straw poll of Unix workstations (a relatively 

stable system on this campus) indicated uptimes of seven to twelve days. 

Thus, a two-day limit gives us a reasonable margin of safety.

• Urgency of getting results. The shell model codes are not just intended as 

theoretical niceties, but as tools for confirming or directing experiments. 

The results are often asked for with a deadline a few weeks, or at most 

a month, away, to satisfy the pressing need to publish. A breakdown 

in the program over the course of two days, or badly formed starting 

data, for instance, can be corrected; but if the error occurred sometime 

during a week-long run it would become more difficult to trace, and a 

large fraction of the tim e remaining to complete the research would have
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been lost.

• Finally, it is simply the length of a weekend. It is still true tha t most 

people run their programs interactively during the week, and the weekend 

is the only tim e tha t the computer system is free enough to support the 

intensive calculations we require. While the computer itself may not be 

in use during the week, large hard disks tend to be a shared resource 

over several computers, and it has been found by experience th a t users 

doing normal work on other machines attatched to the disk can as much 

as double the computing time.

A second aspect of ‘reasonable tim e’ is how the program scales with the size 

of the problem, i.e. it may run in less than two days for an s-d shell calculation 

with < 100,000 states, but will it do so for an (as yet untried) calculation with 

a million or more states? The usual criterion for judging intractability in 

this sense is the description of problems as ‘P ’ or ‘N P ’ [30]. The letters here 

stand for ‘running to completion in (Non-) Polynomial time, in term s of some 

measure of the size of the problem’. NP-problems are considered insoluble, 

since the time taken by the calculation grows so much faster than the size of 

the problem.

So, is our problem NP? The answer to this really depends on how you 

measure the size of the problem. If you measure it in term s of the number of 

active shells in the calculation, the answer is — almost certainly — yes. The 

num ber of states in the calculation grows combinatorially with the number 

of shells (for instance, the number of states when half of the orbits are filled 

roughly doubles with the addition of each orbit), and the tim e depends in 

tu rn  on a low-order polynomial of the number of states (see section 2.1.5). 

This realization has led to probabilistic approaches to the nuclear shell model 

coming into vogue again, particularly the Monte-Carlo m ethod [31], which I 

will discuss further later on, but also various methods inherited from chaos
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theory and statistical thermodynamics for determining level densities [32].

There are, however, very good reasons why these methods are not always 

applicable; the particular example of transition rates will be discussed in my 

conclusions with reference to the work of Koonin et al [31]. The next question 

we ask is, is the model tractable even if we measure problem size by number 

of states? Since we have already lowered our sights somewhat, we also note 

th a t even a quadratic tim e dependence is probably too much for us; but this 

is a m atter of economics discussed in section 2.2.3. The actual calculation of 

the tim e dependence tha t occurs is the subject of the following chapter.

2.2.2 ‘R easonable’ Am ount o f Memory.

In their book. Computers and Intractability[W], Michael Garey and David 

Johnson comment:

It is useful to begin by distinguishing between two different 

causes of intractability allowed by our definition. The first, which 

is the one we usually have in mind, is tha t the problem is so dif­

ficult that an exponential amount of tim e is needed to discover a 

solution. The second is tha t the solution itself is required to be 

so extensive tha t it cannot be described with an expression having 

length bounded by a polynomial function of the input length.

The problem of memory used, as here described, is closely tied to the 

NP-ness of problems. In particular, again, if we regard the input data as 

being the list of shells and the Hamiltonian for the nucleus in question, the 

output, i.e. the eigenvectors in the m-scheme, are almost obviously going 

to be intractably big. Again, however, we must look at how the problem 

scales with the number of states involved instead. Here, one of the reasons 

for choosing the Lanczos algorithm is its requirement of only 0{2n)  units of 

storage, where n is the dimension of the basis space. However, the requirement
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of reorthogonalizing the Lanczos vectors, as we shall see in the next chapter, 

forces us to set aside 0 { jn )  units of storage, where j  is the number of Lanczos 

iterations. Thus, a limit is put on both the basis size and the number of 

iterations, an uncomfortable situation.

The actual amount of memory available to us is again a m atter of economics 

and chip design; this is discussed in the next subsection.

2.2.3 ‘R easonable’ N um ber of Processors.

W hat we consider ‘reasonable’ in this context runs along the lines of the biggest 

machine th a t we could get to use in the next few years -  the largest machines 

available in the world today, will, in the near future, be the processing power 

available to academia and the public economically.

A pertinent example of this is the supercomputer constructed at Southamp­

ton University consisting of 1000 T-200 transputers. These processors, the first 

transputers, were once considered state-of-the-art. Now it is possible to buy 

them  in bulk for around $50 U.S., and thus the particle physics group were 

able to buy the workings of an extremely powerful machine for the price of 

around 10 workstations!

Other large machines which are, or will soon be, available, are Shell’s 

Parsytec Supercluster machine, based around 1000 T-800’s [33]; the Con­

nection Machine in Edinburgh, with around 65,000 smaller chips; the Meiko 

surface in Edinburgh, with 512 T-800’s [34] and the planned GC-5 Parsytec 

machine with 65,000 T-9000’s (which is reportedly now to be constructed from 

a hybrid of T-800’s and Motorola-supplied chips.)

To make the comparison fair here it should be said th a t the Connection 

M achine’s chips are not specifically designed for parallelism, although the sur­

rounding hardware is; but T-800’s are slower processors than those used in 

th a t machine.
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Other parallel machines have been constructed recently using the more re­

cent DEC-Alpha and TI-C40 chips which outstrip all of the T-800 machines 

used above. However, keeping our feet on the ground, it seems tha t a figure 

of 1000 transputers is not unreasonable to ask for. Shell’s Parsytec super­

computing centre has, in fact, expressed an interest in the development of the 

Glasgow Code.

Most T-800’s now used have a 4 Megabytes RAM, although 16M chips 

are available. This gives us a possible memory of 4 Gigabytes on our ‘reason­

able’ machine. Experience of other such computers has shown th a t a roughly 

equivalent amount of disk space is also the most tha t we can expect.

When this project was begun, we believed that an extremely fast transputer 

based machine was just around the corner. The T800 transputer was already 

dated when we began this project, and Intel claimed to be ready to release the 

T9000 replacement - supposedly at least 10 times faster, with a hard wired 

virtual topology (i.e. messages are routed in hardware) and 16M memory as 

standard. The deadlines for Intel’s release of this chip came and went, partly 

because of a worldwide shortage of silicon, which delayed the development of 

the Pentium  and ARMS chips around the same time. The T9000 now looks 

to have been all but abandoned after years of delay.
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C hapter 3

Im plem entation.

But forms of thought move in another plane,

Whose matrices no natural forms afford.

Unless subjected to prodigious strain;

Say, light proceeding edgewise, like a sword.

Donald Davie, ‘Gardens No Emblems \

3.1 In trod u ction

In this chapter I will describe the workings of the program in the aspects in 

which they are different from the previous serial versions of the code. There are 

two aspects to this: firstly, we must deal with the fact tha t the calculations we 

plan to do are bigger than any previously attem pted, which creates problems 

of itself, and secondly, we must parallelize the program.
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3.2 C oncurrency in th e  G lasgow  C od e.

3.2.1 T he Lanczos algorithm .

Since we are going to divide the program up first along algorithmic lines, it 

is essential to understand what the algorithm does. The Lanczos algorithm 

proceeds by operating repeatedly on a vector with a real symmetric m atrix, re­

moving at each step the parts of the vector parallel to vectors already obtained 

in the process, like so:

H .v i =  aiV i 4- f t v 2

H.V2 =  T Ct2^2 +  / 2̂V3

H.V3 =  ^2^2 T  A3V3 ■ -f- /?3V4 (3.2.1)

— P n^ n  T n̂+1 Vyi-j-i T Pn+l^n-\-2

where H* =  H , and Vn : (3.2.2)

Effectively, we are constructing the m atrix V = [v%, . . . ,  v„] to  perform a 

similarity transform on H ( which is fully constructed when n = dim (H ) ). 

The resulting m atrix is the tridiagonal m atrix formed by the as and P s  in the 

above equations. As this is a similarity transformation, the eigenvalues are 

preserved.

However, the Lanczos algorithm has the unique property th a t as the num ­

ber of iterations increase, the extreme eigenvalues of the tridiagonal m atrix

formed at each stage converge quickly on the extreme eigenvalues of the full 

m atrix. Typically, you need only 100 iterations to obtain good approximations 

to the lowest ten or so eigenvalues of a m atrix of any size. This property of 

the algorithm makes it ideal for the nuclear structure problem, where only the 

lowest states in the energy spectrum are clearly not collective in nature, and 

hence are of interest to shell-model theory.
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Another aspect of the algorithm is the relatively small amount of space 

it needs to run. At each iteration, only two vectors and the m atrix  need be 

stored. If the m atrix  itself is very sparse, or comes from some generating 

function, the storage required is much reduced, to the level where very large 

m atrix  problems can be tackled.

The other algorithms commonly used to diagonalize matrices are the Givens, 

and Householder methods [35], both of which require the full m atrix to be 

stored. They can be adapted for sparse matrices, to reduce the effect on 

the storage required, but neither method has the convergence property of the 

Lanczos algorithm.

3.2.2 R eorthogonalisation.

Unfortunately, the Lanczos algorithm is not so ideal in real life. Small roundoff 

errors at each stage become magnified by the iteration, and eventually the 

vector being operated on is no longer orthogonal to vectors tha t were generated 

near the start of the process. One solution, tha t used in the current code, is to 

re-orthogonalize the current vector to all previous vectors at the start of each 

step. Since the vectors in our problem are extremely large, we at first stored 

them  on disk. However, because hardware limits us to having only one node 

with disk access (the master) this leads to a bottleneck at the end of each 

iteration. The alternative is to store all the vectors generated dynamically, 

which uses huge amounts of memory. Typically, we want 2 x 10^ floating point 

numbers in each vector and 200 vectors, or 16 x 10  ̂ bytes. This represents the 

entire storage capacity of 400 transputers leaving no space for the program or 

other data.

In fact, full orthogonality is not necessary. Eigenvectors of identical nu­

merical accuracy can be obtained by a variety of methods, some of which work 

with the Lanczos vectors (the iterated vectors) and some using only the con-
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verged eigenvectors. We have investigated the possibility of implementing such 

a scheme, and the best tha t we can hope for by using these schemes (which 

require a small amount of extra storage, and a relatively small calculational 

overhead) is a reduction in the storage by 4/5. This is a lot - a saving of the 

equivalent of 320 transputers in the above example - and will require to be 

implemented if the program is to achieve its full potential. However, in the 

interests of completing this project on time, it is noted th a t just switching to 

full dynamic storage has a similar effect on the speed of the program, while the 

storage used by the program does not affect the timing at all, in our test cal­

culations. Hence, what follows will remain true when the program eventually 

has a full semi-orthogonalization scheme.

3.2.3 The operate /lo c a te  division

The program is first divided up into three tasks: a m aste r task which co­

ordinates all operations, and handles disk access, and two other tasks, which 

we call o p e ra te  and lo c a te  , which perform the m atrix multiplication.

The o p e ra te  algorithm is, essentially:

get vector v from nearest lo c a te  task, 

for each basis state i in vector Vn 

for each pair p of particles in i 

destroy p in i to get s 

for each pair h of holes in s

create particles to replace holes h. Label new state  j .  

figure out Hij , the m atrix element 

send Hij x Vn,i to lo c a te  block dealing with j .  

tell lo c a te  that we have finished.

Note that at this stage there is only one ‘block’, which stores each complete 

vector. Vn,i is the value assosciated with state i in the n th  Lanczos vector.
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The lo c a te  task, on the other hand, does several different things. Depend­

ing on the stage of the iteration we are at, it jum ps to a different command as 

follows:

get command from m aste r . Do command: 

locate:

send last vector to local o p e ra te  task, 

while more packets are arriving:

read state j  and contribution Hij x 

find state j

if it exists, add Hij x Vn,i to Vn+ij 

else discard this contribution 

tell m aste r tha t we have finished, 

scalar product:

get vector numbers m, n from m aste r . 

return  the contribution to from this block, 

add vectors:

get vector numbers m, n and scale factor r from m aste r . 

add r X Vn to v^ .  

create vector:

allocate space for a new vector.

The operations on the lo c a te  task, when used in the correct sequence, 

can normalize, or reorthogonalize, the vectors stored. Note th a t the imple­

m entation differs somewhat from the simple algorithms described above, but 

the general plan of the program is as described. Most of the tim e on a lo c a te  

processor is spent in the locate task, and in the main we will refer to this task 

as if th a t were all tha t it did.

It has been found empirically tha t the o p e ra te  and lo c a te  operations
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take similar amounts of time, so tha t maximum efficiency, i.e. the minimum of 

C.P.U. idle tim e, can be achieved by placing these tasks on separate processors. 

Although this was achieved in test situations in the previous thesis, it has not 

been pointed out tha t these two processes should scale identically with basis 

size if we are to m aintain this efficiency with larger problems. This might at 

first be thought to be the case, but in fact the lo c a te  task becomes more 

efficient as the basis size is increased. This allows us to put any extra small 

tasks which are likely to increase in load as the problem size increases -  in 

particular communication, on to the lo c a te  task. The reasoning behind this 

statem ent is made clear in the next section.

3.2.4 D ivision  of Vectors

It is seen from the description of the o p e ra te  task in the previous section 

th a t the operation on any single basis state is independent of all the others. 

Thus, we can group the basis states into blocks, and operate on the blocks 

independently. This becomes an imperative anyway as the basis size increases, 

since there is a lim it to the size of vector a processor can hold. This memory 

im perative also demands tha t we split up the basis table held by the lo c a te  

tasks.

The results of these operations are not so simple to process, however. Each 

m atrix  element can map one state to any other, so if the basis table is stored 

in blocks as well, we have to first search to find out which block the resulting 

state  belongs to, and since each block is stored in a lo c a te  task on a separate 

processor, we must be able to communicate with an arbitrary processor. If too 

much communication must be done, the topology of the network will probably 

be im portant in the runtim e of the code. Hence we must devote some attention 

to finding out if this will be the case, and secondly finding the best topology 

for our purpose.
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Figure 3.1: Schematic representation of the Parallel Code
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Before I leave this section, this is the best place to comment on the scaling 

of o p e ra te  and lo c a te  tasks with basis size. Now th a t we have divided the 

vector up, it is clear tha t each o p e ra te  task represents a mapping from a 

vector block to some semi-random section of the full vector:

V
— I—)- — where N  is the number of o p e ra te  - l o c a t e  pairs. (3.2.3)

(The reason for the choice of a power law for the second term  was explained 

in the previous chapter) . Since no contribution is ‘lost’ by the network, the 

average number of contributions received by any lo c a te  task is n^/N. These, 

in turn, are mapped back on to the block of basis table th a t the lo c a te  

task holds, which is of dimension u/N . At first sight, as I said, this might 

seem as if the two processes scale identically with u, being proportional to 

^A:+i / n 2 However, only the o p e ra te  task must loop over all elements of its 

basis table. The lo c a te  task can use an efficient binary search algorithm to 

place contributions in its vector block, giving

^ . , o c ( ^ ' y ) ) , a n d ^ . , o c Ç .  (3.2.4)

This is our justification for putting any extra tasks on to the lo c a te  processor.

3.3 M u lti-S h ell C alcu lation s.

3.3.1 Spurious States.

Up until now, the shell model code has mainly been used for performing calcu­

lations in one m ajor shell (the sd-shell or the p-shell). The point of increasing 

the size of calculations tha t it is possible to do is to increase the number of 

shells which can be included. However, once elements of a second or third 

m ajor shell are introduced, the shell model as it stands begins to produce 

spurious states.
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In the shell model, we usually have a core, which gives us a single-particle 

potential. Obviously, this core is assumed to be fixed in space, but it is a 

property of the nuclear hamiltonian tha t it must be invariant with respect to 

Galilean transformations. As a result of breaking this sym m etry of the Hamil­

tonian, some eigenvalues in the shell model calculation may have spurious 

components. These components are due to centre of mass motion.

This centre of mass motion is unphysical, so states which exhibit this mo­

tion are spurious, and must be removed from our results. How this is done 

follows from a more m athem atical description of the problem, which will also 

elucidate why it only becomes a problem in large calculations.

Consider the single particle Hamiltonian for the Harmonic Oscillator po­

tential:

H = +  (3.3.1)

+  (3.3.2)

where M  and A  indicate the mass of a nucleon and the num ber of nucleons 

in the nucleus, respectively. The vectors

R = — (3.3.3)

and

P — ^ p ( 0  (3.3.4)
i = l
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represent the centre of mass spatial co-ordinates, and m omentum, respec­

tively. The shell model hamiltonian is seen to consist of two parts, namely a 

Galilean invariant part, and a purely centre of mass part:

H = + (3.3.5)

An eigenfunction of the single-particle Hamiltonian can be expanded in 

terms of the (commuting) eigenfunctions of the two separate parts. It is only 

the Gallilean invariant part tha t we wish to retain. Now consider the number 

of oscillator quanta in such an eigenstate (of the single particle Hamiltonian).

Hÿ;v =  En'iPn = {N ^A)hu;ipN (3.3.6)

Expanding this in terms of the eigenfunctions of the centre of mass and in­

variant Hamiltonians, we see tha t any combination is allowed of the form:

V’AT =  ^ N c M . ' ^ N r e i . ^ ^ C . M .  +  N r e l .  =  N  (3.3.7)

One conclusion tha t can be drawn from this, is tha t if N  is zero, then only 

one contribution is allowed. This is effectively the case when we only include 

one m ajor shell above the core. Another consequence of this observation is, 

incidentally, that we do not need to include the kinetic energy operator in the 

Hamiltonian when we only have one m ajor shell if we only want to know the 

differences in the energies of the eigenstates. In the shell model, the binding 

energy cannot usually be calculated (with realistic interactions) to any great 

degree of accuracy, so this is not a great loss.

However, as soon as we start to include more shells, we get the spurious 

states mentioned before (with non-zero N c . m ) -  So, how do we get rid of these 

states? Well, each state that we want rid of has got a non-zero num ber of centre 

of mass oscillator quanta. We could simply add a term  to our Hamiltonian 

whose value (when operating on such a state) is simply a multiple of its C.M.
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quanta. An obvious candidate is the harmonie oscillator potential in C.M. 

co-ordinates, with some suitably large oscillator param eter. This places the 

spurious states high enough in energy tha t they do not appear in the generated 

spectra.

A second method is to attem pt to identify all states with a high degree 

of spuriosity. I say degree, because all of the above algebra was done using a 

harmonic oscillator central potential. For the more realistic potentials used 

in actual calculations, we could expand in terms of oscillator functions and 

would find tha t usually states have some component which is spurious (in 

tha t sense). However, even in terms of the eigenfunctions of the true relative 

and C.M. hamiltonians, the states can be of mixed spuriosity, since the basis is 

likely to be a truncation of any full Nhiv space. Still, we can a ttem pt to identify 

states as being nearly non-spurious, by applying appropriate operators. In the 

current code we use the centre of mass kinetic energy operator, and have had 

reasonable success in identifying states correctly.

3.3.2 Basis G eneration

A second problem which occurs in multi-shell calculations is generation of 

the basis. In small calculations, this takes a minimal amount of tim e, but in 

multi-shell calculations, it could possibly take on the order of hours if steps 

are not taken to optimize how the states are formed. Additionally, we do not 

expect to be able to perform unrestricted calculations immediately; ad-hoc 

truncations are performed on the basis by restricting the num ber of particles 

which may exist in a particular j-shell, or the excitation from the ’pure’ shell 

model position (particles fixed outside the valence m ajor shell). This requires 

us to make the extra effort of calculating the number of particles in each j-shell, 

and m ajor shell, for each state. A final consideration is th a t the constructed 

states must be in numerical order for the algorithms which search the basis
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table to work.

The alternative methods tha t can be used to perform this task are:

• Forming tables of possible states for each j-shell,m value and number of 

particles considered. These are then combined to form the basis. This 

may at first sight seem wasteful; but, each table is re-used many times 

generating a single basis, and what is more, these tables can be stored 

in files and used for every ensuing calculation. Thus this task could be 

done by a separate program once only. A second program is required 

to combine the tables, and it is here tha t we run into problems; it is 

not particularly easy to generate states from these tables directly in 

numerical order.

• Proceed as in the first method, except tha t at the combination stage, we 

create many files containing partial lists which are ordered. These files 

are then merged (using any off-the-shelf algorithm [36]). This is really 

easy to do; the resulting method is, however, fairly slow. The number of 

tables tha t are used by these two methods can also be huge.

• Generate proton half-states and neutron half-states; work out the rele­

vant quantum  numbers for each and discard the unwanted states. This is 

essentially the algorithm used in the original program. This has two real 

problems with it; firstly, the numbers of half states can end up greater 

than the number of states in the biggest sd-shell calculation for problems 

of the size we propose to tackle; it takes very little  advantage of the trun­

cations we impose. Also, the method takes an inordinately long amount 

of time, since typically, when truncations are imposed, more than 99% 

of the states generated are found to be unwanted.

This problem is to an extent unresolved. We continue to use the third 

algorithm, but now it is done in a separate program, whose output is sent to
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a file read by the main program. The basis generation stage is an obvious 

candidate for parallelization, since for each half-state (proton or neutron) the 

formation of complete states is independent.

This would also solve another problem, since it is found th a t the serial host 

machine (a Sun workstation), which handles access to the parallel computing 

surface, would not have enough memory to hold all the states generated. At 

the moment in the parallel code this problem is circumvented by generating the 

basis in blocks, and when each block is passed to a processor pair (as described 

in a later section) the memory used is freed up. To do this efficiently, though, 

requires tha t the program knows in advance how many states it is going to 

generate. This is simple if we do not truncate the basis in any way, but 

normally, there is no simple formula for this. The program currently does 

this for sd-shell calculations by generating the states w ithout storing them  

once, purely to count them, and then generating them  again to pass on. This 

obviously is not practical if the basis is large. W ith the newer method, we can 

measure the size of the basis efficiently simply by asking the operating system 

the size of the basis file. A final benefit is tha t calculations to compare model 

Hamiltonians do not require the basis to be recalculated.

3.3.3 Word Size.

A third consideration when creating multi-shell bases is th a t the number of 

orbits will probably exceed the number of bits in a com puter word. W hen this 

work was begun, it was considered tha t 64 bits (and therefore orbits) would 

probably suffice, and it was believed tha t the transputer was capable of 64-bit 

calculations. As it turns out, the transputer can do 64-bit double precision 

floating point calculations, but tha t it cannot do any more than  32-bit integer 

arithm etic, which we require in the program for m anipulating the bits of the 

state representations. As an example of where this might be required, if all of
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the orbits in the usual ordering up to the / |  orbit are included, we require to 

be able to represent 56 orbits.

To overcome this problem, in the past a compressed representation has 

been suggested based on the properties of binomial coefficients [18]. This is 

actually of no use in the present circumstance, since to calculate the m atrix 

elements we must unpack the states into both normal occupancy and the par­

ity representations, both of which are 64-bit. The compressed representation 

would be useful, for instance, if the entire m atrix were stored in sparse form 

instead of two-body form. Two other drawbacks of this representation are tha t 

it requires extra effort to unpack the representations, and th a t it still provides 

us with a limit of about 40 orbits compared with 32.

The solution to this problem — at least for less than  32 orbits for protons 

and neutrons separately — is to store the proton orbits and neutron orbits 

in separate words. This requires a radical rewrite of the central loop of the 

program; no longer are operators assumed to act on both halves of a state 

separately. In effect, the central loop is split into three parts; one where proton- 

only operators are considered, one where neutron only operators appear, and 

one which connects the two. The effects are more far-reaching than this; it is 

no longer possible to check the phase in the last loop by considering only two 

bits. If we order the bits with proton orbits highest then four bit values must 

be known: the bit where the proton operator acts, the lowest proton bit, the 

highest neutron bit, and the bit where the neutron operator acts.

This two-word representation becomes clumsy and slow, however, when it 

is used to search the basis table. A straight translation means tha t we must 

make two comparisons each tim e where we made only one before, but in at 

least the binary search of a vector block (see the section on the locate task 

later on) we can divide the search up into an initial search of proton half-states 

followed by a search of neutron half-states.

As a result of all of this, we manage to avoid most of the problems of using
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a two-word representation at the expense of having increased the complexity 

and decreased the speed of the program. Incorporating the changes naively 

into the program made it seven times slower. A more careful rewrite, which 

involved reorganising the internal storage of the Hamiltonian, was only about 

half the speed of the single-word code; better, but still disappointing.

3.4  T h e S ystem s U sed

Two parallel systems were used in the implementation of the code, both of 

which are based on the Inmos T-800 transputer.

The first system used was the MEIKO computing surface. At the start 

of the project this could be described as very much in a state  of flux; the 

user logged into a special environment to run his programs on the transputer 

boards, using a m ixture of occam and the programmers ‘native’ language in 

every application: the occam providing almost all the communications services. 

It was at this point tha t we considered the t i n y  routing program, since, even 

though it was unsupported, it would be easier to m aintain and understand than 

a bulk of occam code. Programs were cross-compiled on a Sun W orkstation 

before loading on to the transputer network, and programs had to be manually 

debugged. Separate script files had to be w ritten to describe the mapping of 

the program on to the transputer network.

The MEIKO machine was at a later stage upgraded - so many people were 

now using the t i n y  system on M EIKO’s machines th a t it became incorporated 

into the C libraries supported on the machine, with a few minor changes. 

Around this time, a new Sun motherboard was incorporated into the machine, 

providing a better integrated UNIX environment for running programs. How­

ever, there was still a need to write separate script files to describe how the 

network was to be constructed.

The PARIX machine was provided to the University of Glasgow’s Elec­
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tronic Engineering Department in the final year of the project. It, too began 

with a different operating system, Helios, but this was one which had signifi­

cant advantages over MeikOS in how programs were run: the program could 

be w ritten in such a way tha t the size of the network could be supplied as 

a runtim e argument, essentially hiding the scaling of the program to differ­

ent network sizes from the user, which is seen as a necessary property for the 

success of our code. The operating system was replaced half way through 

the year with PARIX, a small operating system kernel which resided on each 

transputer and provided both message routing and a dedicated error reporting 

facility, while making the Helios-style communications extensions more closely 

resemble those of Meiko C.

This operating system is where development ended up for a variety of 

reasons:

• PARIX was designed to be the O.S. of choice for T-9000 systems when 

they arrive; thus the program will be ready im mediately when new ar­

chitectures become available.

• Porting the working program from Meiko C to PARIX was made simple, 

by writing ‘shell’ functions in a program m eiko .c  which hid all machine 

specifics from the rest of the program. W hen moving to PARIX, this file 

was simply replaced by an equivalent file p a r i x . c which performed the 

equivalent functions on the new machine.

• Availability of the machine: a University review has led to a decision to 

shut down the MEIKO facility from July 1994, while there is a possi­

bility tha t Parsytec will allow us to run the ported program on a 1000 

transputer machine in Holland or a 500 transputer machine in Greece.
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3.5 T h e C ode in A ction

The code described in the previous sections was constructed first on the 

MEIKO computing surface. This did not turn out to be a simple develop­

ment from the code of the previous thesis. It was found th a t the code of tha t 

thesis had been written in such a way as to intim ately involve both the number 

and positions of all processes in the code th a t was to be compiled. Further 

to this, it was discovered tha t the program discarded parts of the last vector 

block generated.

The program was rewritten to make it independent of position and net­

work size, thus removing the need to recompile the program before each run. 

Also, the mistake in processing vector blocks was corrected. The program had 

previously divided the basis into blocks of fixed size, several of which might be 

allocated to each processor. This was seen to be inefficient, since it required 

the user to know in advance the correct size of block for the basis he was going 

to use, and the program was simplified somewhat by making it allocate only 

one block to each processor. Finally, the program was run on varying numbers 

of transputers for various sizes of problem. The results are presented in raw 

form in table 3.1, and are m anipulated to show the effect of the topology in 

diagram 3.2

It is seen from the graph of the results 3.2 that the speed of the program 

falls off markedly from what we would consider the ideal speedup. This partic­

ular set of results was obtained with the M EIKO’s autoconnect facility, which 

connects processors together in a regular fashion. The underlying topology — 

essentially a random net — is hidden from the programmer, as the commands 

treat point-to-point and nearest neighbour communication identically. Using 

the model of the program developed in the previous section, we can hopefully 

determine the effect of the topology on the program.

The results are startlingly different from what we might expect. Instead of
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No. of Transputers Iteration time 

(seconds)

3 11119

5 5911

7 4199

9 32G9

11 2710

13 2316

15 2042

17 1838

19 1648

21 1545

23 1404

25 1337

27 1282

29 1216

31 1177

33 1147

Table 3.1: ~24,000 state calculation
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Figure 3.2: Iteration time vs. Number of Transputers
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a logarithmic dependence on network size, the program instead scales slightly 

worse than linearly with the size of the network (note th a t a program which 

did no communication would appear on this graph as a line running nearly 

parallel to the x-axis at nearly zero). W hat has gone wrong?

A likely answer to what has happened here is tha t there are only 8 trans­

puters per motherboard in the MEIKO computing surface. Once this number 

is exceeded, we should find tha t the tim e taken to send messages is greater, 

since we have to communicate between more than one board on the machine, 

a task which is performed by dedicated routing switches. It is highly probable 

tha t a given run of the program will be allocated processors th a t are split over 

several motherboards even if the number of transputers required is less than 

8, since other programs may already be running on the machine.

The experiment above was repeated for other topologies, but the results 

were essentially the same. This is particularly disappointing given the effort 

tha t was taken to make the program topology independent! However, in the 

more recent versions of the languages available for transputers it is not possible 

to take advantage of nearest neighbour communications mixed with point-to- 

point communication without risk of deadlock, since the systems were not 

designed to perform both types of routing simultaneously.

A second possible explanation is tha t which is explicitly stated for the 

Parsytec system: in this machine, the transputers are always wired into a grid 

topology, the intention being tha t, since all communication looks the same, the 

user will not consider the underlying topology. This may seem shortsighted, 

given tha t the topology can affect the performance of a program quite dra­

matically, but PARIX is designed for T-9000 systems which have on-board 

facilities for the virtual topologies th a t we have in software (e.g. t i n y  ). Since 

the main processor no longer does any communication routing, we have every 

right to expect (using the model of the last section) th a t the communication 

time will drop to virtually nil in many applications. It may seem odd to the
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reader tha t so much effort has gone into understanding network topologies 

when in the end they are hardwired as grids, but it must be remembered that 

up until around the tim e of the start of this project it was common for a user 

to have to take the machine apart and physically wire in the topology required. 

Software routing has removed this extra complexity from the program, while, 

it seems, reducing the efficiency of the resulting networks.

3.5.1 S co tt’s algorithm

These results are not as convincingly good as we would like to achieve. Ob­

viously, the communication time we have achieved is unreasonably large. The 

root cause of this is the non-locality we have introduced by dividing the data 

up along the vectors. Another method of parallelizing the Lanczos algorithm 

has been researched[37], wherein as well as dividing up the vector into blocks, 

the m atrix itself is divided up. Each processor gets two vector blocks, and 

computes both the forward an reverse m atrix contributions between these. In 

diagram 3.3 the contributions v'- are added:

v'j = Y ,  ' îj = 1 ]  HijVi (3.5.1)
t i

The Vj are the blocks of the resulting vector, v', which will then be orthogo- 

nalised for use as the next Lanczos vector. This addition and orthogonalisation 

is done at the end of each iteration, on the processors which handle the blocks 

along the diagonal (in an implementation which takes no account for the sym­

m etry of the m atrix). Thus, all processors act as o p e ra te  tasks, with the 

diagonal processors acting as lo c a te  tasks between iterations.

Obviously, this means tha t we no longer need to communicate to processors 

distant to each other in the network. In fact, the only communication tha t 

is done is passing round copies of the vector at the start of each iteration, 

and passing back the new vector for reorthogonalization at the end. W ith this

60



H i2 "13

"22 "23

"3 2 "33

Example Division of Matrix Storage on a typical Transputer.

Figure 3.3: Division of Labour in Scott’s Algorithm

in mind, the performance of this code should not degrade appreciably with 

network size at all.

However, there is a new problem, in tha t instead of needing 2N  processors 

to divide a vector up N  times, we now need ^ N { N  — 1) processors. This means 

for instance, that 1000 processors with this algorit hm leave the same amount 

of space for vector blocks as only about 90 with the code with the previous 

algorithm. However, it will run more than ten times as fast on the problem. 

This is a serious blow to our plans for doing a 20 million state calculation - 

remember, this required memory worth around 400 processors to do the job. 

Two million or so states looks much more realistic if we use this algorithm, 

and this with great difficulty.

It should be emphasised that in an implementation of the Glasgow code 

using Scott’s algorithm, we do not actually divide up the m atrix, since it is 

never stored explicitly, but instead, only use some of the generated m atrix 

elements. This becomes more and more inefficient as we divide the m atrix up 

further, so the running time does degrade slightly as the problem is scaled up. 

This can be got around by looping over both the block of states associated 

with the Vi and that assosciated with the Uj, and generating the pairs to create
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and destroy by looking at the overlap of these two states. This is somewhat 

slower in the usual implementation of the program, but may be useful when 

applying Scott’s method. In a chapter 5, I discuss a m ethod of reorganizing 

the m atrix  which would also alleviate this problem.
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C hapter 4

A pplications.

The illustration

is nothing to you without the application.

You lack half wit. You crush all the particles down 

into close conformity, and then walk back and 

forth on them.

Marianne Moore, ‘To A Steamroller\

4.1 R o ta tion a l B an d s.

Work that it was proposed to do with Dr. Ian Wright of M anchester Univer­

sity will be described. It was aimed at determining where proposed rotational 

bands should term inate, by using a much larger model space than has previ­

ously been possible. As well as this, the effects of inclusion of different parts 

of the model space were to be investigated, as were the accuracy of several 

model interactions[9, 38, 8].

The first problem that is encountered in any large-basis shell model calcu­

lation is tha t of choosing an appropriate Hamiltonian. This will be discussed 

first.
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4.1.1 The Nuclear H am iltonian.

As previously mentioned, the conventional approach to the shell model is to 

use a Hamiltonian where some of the m atrix elements are fitted to low-lying 

states of well known nuclei [9]. This approach runs into immediate problems 

in larger calculations. Specifically, we no longer have enough states whose 

character is well known enough to do a good fitting. Indeed, the character 

of states which span several m ajor shells, and are thus most affected by cross 

shell m atrix elements are precisely those we wish to investigate, i.e. those for 

which the interaction is least known.

Worse than this, the calculations th a t would be required to fit the interac­

tion become next to impossible. In the m-scheme shell model, we cannot use 

the truncations tha t allowed W ildenthal to fit interactions in the sd  and p f  

shells. The calculations we end up doing, to perform the fit, are those tha t 

were deemed so difficult that the present program became necessary to attack 

them .

Consequently, other means of fixing the Hamiltonian m ust be sought. 

There are several approaches th a t have been tried with varying degrees of 

success when this problem has occurred in the past.

• Combining several fitted interactions. For instance, the Freedom -  

W ildenthal sd  interaction and the Millner -  K urath Op shell interac­

tion, in combination with some cross-shell interaction, could be used for 

the mass region near the closure of the Op shell.

There are some obvious objections to this. Firstly, how we pick our cross 

shell interaction is crucial, since it is, in essence, its action th a t we wish to 

investigate. However, there is no obvious candidate for this interaction. 

Secondly, the fitting of these interactions takes into account in some way 

the fact tha t shells were missing from the model space in the fit; but 

we restore some of the most im portant of these shells in our calculation.

64



We’d like our calculations to be free of this kind of double-accounting.

• Using a schematic interaction. The main candidate here, is the modified 

surface delta interaction (MSDI). It is really too simple to model any 

effects tha t we may be interested in realistically, but this very simplicity 

lends it the advantage tha t its results are easily interpretable. There is 

a problem with this interaction [39] when used over three m ajor shells: 

it has far too large a m atrix element between m ajor shells of the same 

parity. This would necessitate the insertion of another ‘fudge factor’. 

However, since this is just one number we have to vary, the interpretation 

of results should still be fairly simple.

• Using a Hamiltonian derived from a potential. The Kuo-Brown m atrix 

elem ents[40] are readily available, and would be our first choice in this 

category. Their use may seem a little odd, since many better nuclear 

interactions have been devised since this was introduced, but since the 

calculations in the sd  shell used the Kuo m atrix elements, with only the 

least well determined being fitted, they are probably the best way to 

obtain direct comparison with earlier results.

• Using a Hamiltonian derived directly from experiment, i.e. without an 

intervening potential model. There is (as far as I know) only one attem pt 

at doing this; the Sussex [8] m atrix elements are supposed to be a highly 

model-independent set of m atrix elements derived from the phase shifts 

in nuclear scattering experiments. Unfortunately, their solution is just 

one of a large class of phase-shift equivalent interactions, being only one 

of the simplest of these. The most recent of these sets of m atrix elements 

is also relatively old in terms of the experimental data  it was derived 

from. However, this model independent approach is very attractive, and 

perhaps it is tim e to use the latest phase-shift d a ta ,[41] which is now
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much more complete, and revive this body of work.

For reasons of simplicity, and the ability to quickly compare results, we 

choose to use the MSDI and Kuo-Brown sets of m atrix elements, and to even­

tually move to using the Sussex set.

4.1.2 Band Term inations.

The particular property tha t we wish to investigate is the term ination of ro­

tational bands in light sd-shell nuclei. It is well known th a t some sd shell 

nuclei display rotational bands, which are easily explained in the context of 

a collective model where the nucleus is deformed. States in the same band 

have similar structure - classically we would say tha t the nucleus is shaped 

identically in each state in the band and so has a definite moment of inertia. 

Different bands are labeled by the angular momentum of the lowest state of 

the band (the ‘bandhead’), since in the classical model we are rotating the ro­

tating  nucleus additionally to reach higher spins, so the lowest spin a nucleus 

can have in a band is this value, K

A simple collective model of the nucleus would naively expect the bands 

so formed - series of states with angular momenta th a t differ by two - not 

to term inate at all, but to have more and more levels as the nucleus spins 

faster and faster. However, in practice, the energy levels of a band term inate 

at relatively low angular momenta. This would suggest th a t a more detailed 

model of the nucleus is required.

Microscopically, the phenomenon of band term inations has been quite suc­

cessfully described in the sd-shell by looking at theoretical calculations of the 

occupancy of the highest-spin orbits. W ith n particles, obviously the highest 

spin tha t can be achieved by placing these particles in the orbits of a shell of 

angular momentum jf is (2j -f l)n .

This is a very simplistic model though, and it could prove worthwhile to
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check to see if there are any states with more complicated structure in the 

band. This is looked at in the next two subsections.

4.1.3 ^^Fluorine.

In the states of interest are two states which may or may not be 

attached to bands in this nucleus. [42] There is some as yet not fully explained 

data  on the a- transition rates of some of these states, (from to ‘̂ '^Na). 

Note th a t strong transition rates indicate likely common structure, it was 

hoped tha t we could look at the structure of the states in the shell model, 

or be tter still, do the calculation for as well and get the a  decay rates

directly for easier comparison to experiment.

Our Hamiltonian has been chosen, it remains to choose a model space tha t 

will cover any interesting structure, while producing a basis th a t is still small 

enough to handle. Ideally, for this particular calculation, we’d like to include 

the p-shell below the sd-shell, as well as the / |  shell above. It may seem that 

the / |  level is unnecessary, but it is known th a t the sd-shell lies too close to 

the / |  in very light sd-shell nuclei for the sd-shell to be considered closed at 

the top. However, this would give a basis size of at least a few million states. 

A better idea is to try  the calculation at different levels of accuracy, only 

increasing the number of orbits considered if the previous ones added made a 

difference.

4.1.4 M agnesium .

In there is a very similar problem, in tha t there are several states which

appear to belong to rotational bands but have as yet not been positively iden­

tified as such[43]. These states are denoted with question marks in figure 4.1. 

This calculation is of especial interest to us as it is in the middle of a shell: a 

full IhiJ calculation is almost certainly required in this problem and tha t will
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Figure 4.1; Proposed Rotational Bands in

have a basis of tens of millions of states. This is obviously well beyond the 

capabilities of any program with the exception of the parallel Glasgow code, 

involving as it does excited states which we want to find the symmetries of, 

and so cannot use either Monte-Carlo or collective methods.

4.2 T he C ranked Shell M odel.

While the shell model as it stands picks up all of the states in a given energy 

region, it is accepted that the model space quickly becomes too big for this 

to be practical. The usual approach in the model is then to truncate the



calculation by restricting the occupancy of various orbits. Another approach, 

used in collective models, is to assume tha t the nucleus is deformed into a 

prolate or oblate shape from the start, and to look for a stable shape for the 

nucleus.

The idea in using a deformed basis is tha t the basis states ‘effectively’ 

include components of shells not in the calculation if we use the same ‘shells’ 

as used in the spherical basis. There is obviously a (possibly infinite) expansion 

of non-spherical oscillator states in terms of spherical oscillator states, with the 

leading term  being a component of the spherical state (at small deformations). 

By including the term s after this, we obtain a leg-up into higher energy regions 

than  those covered by the shell model. Our justification for doing this is tha t 

states with a large overlap with the deformed states so formed do exist, forming 

rotational bands in the spectra of many nuclei. Obtaining more than the lowest 

few states in these rotational bands in a spherical model becomes extremely 

difficult.

This approach generally uses variations on the single-particle shell model, 

where the particles move in an assumed potential. Two-body interactions only 

affect the results once the energy minim a for the ground state  have already 

been found. As mentioned in chapter one of this thesis, this is considered 

unsatisfactory; can we justify the single-particle potential, and what effect 

does the two body interaction have on the position of the ground state  energy 

minimum? At this point, the approach of the collective model practitioner is 

to apply perturbation theory.

I have collaborated with Dr. Neil Rowley of Daresbury and Dr. Stefan 

Frauendorf of the NBI to investigate an alternative to this approach, in which 

we set up a shell model calculation in a deformed basis. Here we still assume 

some one-body potential, but within it, we allow full two-body interactions. 

The choice of interaction used here is unlikely to be one used for complete 

spherical shell model interactions. To begin with, we would like to compare
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the results of these calculations to those with the single-particle type calcula­

tions. Secondly, the two-body interaction must take account of the subtraction 

of the one-body interaction from the usual (spherical model) interaction. The 

way to do this is not at all obvious without actually repeating the calcula­

tion in both models, missing the point of the exercise. As a consequence, 

schematic interactions are used. A second reason for using simple schematic 

interactions is th a t the properties of the spectra can be related directly to the 

(few) param eters of the potentials

4.2.1 The Choice of Calculation.

In the current study, we have chosen to look at the j-shell, and also the 

/ ly  shell. The reason for doing so lies in the Nilsson level scheme for zero 

deformation.

In this diagram, it is seen tha t the shell lies in a shell with no other levels 

of the same parity. Thus we expect tha t most of the states of this (positive) 

parity in the mass region where we might expect the orbit to be half-filled 

should in fact consist entirely of a component, up to the threshold for 

two-particle excitation. A similar story can be told for the &y shell.

Since these shells appear to fairly independent of interactions with other 

shells, they are ideal shell model candidates, and the model spaces involved 

are almost trivial. We do not, however, see these calculations as the limit of 

using the shell model in deformed calculations, the driving force behind all of 

this is the new parallel code which can handle extremely large calculations. 

This should allow us to do similar calculations which allow several shells to 

mix, and also, as we shall see, to perform cranked calculations.
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Figure 4.2: Level Scheme in Single-Particle Model
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4.2.2 The H am iltonian.

As mentioned above, the Hamiltonian used is to be schematic. Firstly, there 

is a quadrupole deformation term:

H  =  HdeJ +  i^2hody (4.2.1)

where:

{^j,m I H je/ I A ' |  ̂  Hcore (4.2.2)

and the deformation param eter k. is allowed to vary. A value of 3 for k, 

corresponds approximately to a 2:1 deformation. The ‘true’ liquid drop defor­

mation into an ellipsoid is not, in fact, quadrupole, but for small deformation, 

this is a very good approximation.

The two body term  is chosen to be the Surface Delta Interaction, since it 

consists of Clebsch-Gordan Coefficients which can already be generated within 

the program, and it has a simple enough form for the results to be more readily 

understood. In particular, it has very few parameters, the form that we use 

being [44]:

^ _ l ) ’̂ a+nfc- | -nc- |-nd__   ^
2(2J +  I ) \

(2ja +  l ) ( 2 j 6  T l ) ( 2 j c  4- l ) ( 2 j i j  4- I)
( 1 +  ^a6)( 1 +  ^cd)

I I J0)[1 -  (_l)'»+W-'+q

I I +  ( — 1 ) ^ ] }  ( 4 . 2 . 3 )

The two parameters, A q (the coefficient of the isoscalar term ) and A\ (the 

coefficient of the isovector term) are allowed to be different.
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4.2.3 Zero D eform ation.

In this case, we just have a normal (spherical) shell model calculation with 

the Hamiltonian described in the previous section. The first calculation we 

attem pted of this type, using the shell, successfully reproduced the results 

of a previously published paper of my collaborators. [45]. This was done 

purely to check tha t the adapted code was working properly, before moving 

on to a larger calculation.

The zero-deformation calculation was then carried out for the / iy  case, 

since my collaborators had already performed this calculation, but had been 

unable, using their m ethod, to determine the isospin of the states which they 

were interested in. Two calculations were in fact carried out; one for / iy  with 

two protons and two neutrons, and one with two protons and ten neutrons. 

The answers are expected to be similar, since in the second calculation we are 

really using two neutron ‘holes’. There is no particular reason for choosing 

neutron holes; protons and neutrons are equivalent in this calculation. The 

results of the calculation are in figure 4.3.

The states of interest in this calculation are the two lowest lO"*" states. It 

was found, using the m ethod employed by Rowley and Frauendorf, tha t when 

deformation increased, there was a lot of mixing between these two states in 

the n=2 case, whereas there was very little  mixing between these states in the 

n=10 case. There is also a marked difference in the energy gaps between these 

two pairs of states. The proposed explanation for this was th a t the isospins 

of the two 10"*" states differed in the n=2 case, but were identical in the n=10 

case. This was, indeed found to be correct.

A second calculation, which also could not be done previously, was com­

pleted. In this calculation, the isoscalar and isovector param eters used were 

different; the rationale for this was tha t having Ai  ~  1.3Ao would be more 

realistic in the mass ranges where this particular shell would be the valence
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J=4,T=4
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J=1,T=4
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Figure 4.3: Identical Isovector and Isoscalar Terms. Units of A q
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Figure 4.4: Different Isovector and Isoscalar Terms. Units of A q
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shell. The results of this calculation, wherein the effect th a t the lowest 10"*" 

states have different isospin persists, is shown in figure 4.4

4.2.4 Non-Zero ac.

The same calculation was done for non-zero | /c |. In the deformed basis, we 

are attem pting to look for minima in the ground state energy. These are the 

points where the nucleus is stable when ‘deformed’. We would expect this to 

occur in nuclei at some value of k less than about 3. As previously mentioned, 

this is a 2:1 deformation, and states dicovered physically with this deformation 

or greater are fairly rare. Also, it is noted tha t the quadrupole deformation 

term  is only strictly valid for small k .

The calculation was therefore performed for both the 2-neutron and the 

10-neutron cases, with kappa varying from -3 to 3, in steps of 0.1 . The core 

term  was fixed to be zero. The ground state energy of each of these problems 

are plotted in graphs 4.5 and 4.6.

It is evident from the graphs tha t the only energy extrem um  occurs for 

zero axial deformation, and tha t it is a maxmimum. It should be obvious 

to the reader that something unphysical is going on here, since the slightest 

perturbation from the spherical state of the nucleus would lead to a rapidly 

increasing deformation of the nucleus with it ending up as an infinitely long 

filament (as this model cannot reproduce fission). This is more than a little 

surprising, but an explanation of what may be happening is given in section 

4.2.7.

4.2.5 Identifying States.

Something tha t we wanted to do in this calculation was to look at the two 

10"̂  states previously investigated, at the stable deformations. Although such 

deformations were not found, it was attem pted to follow the behaviour of
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G .s .  Energy vs Kappa. j=11/2,n=2,p=2.
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Figure 4.5: Ground State Energy, 2 Neutrons.
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G .s .  Energy vs Kappa. j= 11 /2,n=10,p=2.
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Figure 4.6: Ground State Energy, 2 Neutron Holes,
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these states anyway. This is not trivial; the states split into 20 as soon as the 

deforming potential is applied, since the operator no longer commutes with 

the Hamiltonian, different states in the calculation very quickly interfere with 

and cross each other, as their energies change, and they become difficult to 

identify.

It was at first suggested tha t I use an angular m om entum  projection 

m ethod to identify the states, the idea being th a t the J=10 states would 

have a J=10 projection using some method even though they no longer have 

good J when the usual operator is applied. The actual m ethod used was to 

diagonalise the operator with an eigenvector of H  being used as the s ta rt­

ing vector. This was intended to find the vector with largest overlap with the 

eigenvector being used which also had good The trouble with this, is tha t 

the vectors obtained are not eigenvalues of the original m atrix. W hat is worse, 

as the deformation used became larger the best overlap with a vector with well 

defined angular momentum fell markedly. I came to the conclusion tha t the 

results being obtained with this projection method were meaningless.

A second method tha t was attem pted was to follow the vectors desired by 

taking dot products with a vector from a calculation with smaller deformation. 

This allows us to rank states, saying how much like the original state  they were. 

The deformation was increased from /c =  0 to /c =  3 in steps of 0.1 . It was 

found tha t as the deformation increased to about 1, where levels are crossing, 

there can be several candidates for the vector being followed, with sometimes 

all of the candidates having a relatively low overlap with the previous vector 

(low was considered to be less than 0.9)

The essence of what we are trying to do here is to project out the ‘intrinsic’ 

states of the nucleus. The deformation does not really exist, it is just a tool 

to create the states of interest within a smaller basis. It is somewhat disap­

pointing tha t we were unable to do this, as it is theoretically possible. This is 

certainly something tha t could be pushed further in the future.
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4.2.6 Cranking.

Since we found no evidence of a ground energy minimum for non-zero axial 

deformation, we now look at triaxial deformation. The conventional way to do 

this is to add a spurious term  giving the nucleus a specified rotational energy 

about some axis. Since this implies, firstly, tha t the nucleus can be rotated 

about tha t axis, it must be deformed. (Quantum  mechanically, if an object 

has rotational symmetry about some axis it has zero moment of inertia about 

th a t axis.) Secondly, we are essentially specifying the moment of inertia of the 

nucleus about this axis. Thus, we create (effectively) a second deformation at 

right angles to our quadrupole deformation. Once again, it must be emphasised 

th a t the rotation is not ‘real’, the energy due to it should be subtracted from 

the Hamiltonian before we can measure the true energy of states generated in 

this way.

The calculation was done by applying the Hamiltonian:

H = Hi T H2 — <-oJx (4.2.4)

where H i and H 2 are the same as before. The additional, cranking, term  

is easy to evaluate in the shell model code, since we have the basic result:

J x  =  ~ { J +  + i J - )  (4.2.5)

And the operators and J_ are already implemented in the code for the 

evaluation of J^.

It should be noted here tha t the cranking operator mixes states of different 

J^, meaning tha t our basis must now include states of all J^, substantially 

increasing the size of the basis. This is an interesting point because, if we 

included several shells in our calculation, and then used a cranked Hamiltonian, 

we would have in all probability more states than the current serial codes could
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G .s .  Energy vs K appa,O m ega. j=11/2,n=2,p=2.
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Figure 4.7: Ground State Energy, 2 Neutrons.(Cranked)

handle. Thus, cranking calculations such as this are possible applications of 

the parallel code.

The calculation was performed again for both cases; the results are pre­

sented in graphs 4.7 and 4.8.

4.2.7 Explanation of R esults.

Once again, we have found no energy minimum, except tha t for the undeformed 

state. At this point we were perplexed, since the literature is littered with 

calculations using different methods which have several. Our model should 

act very like a particle-rot or model, where the rotational bands generated 

have a corresponding deformed ground state. W hat has happened here?

The first explanation is tha t we have got the correct result, that there are 

no deformed states in this nucleus. We can tighten this and say there are no
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G .s .  Energy vs K appa,O m ega. j=11/2,n=10,p=2.
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Figure 4.8: Ground State Energy, 2 Neutron Holes.(Cranked)
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deformed states in this restriction of the model space. This does seem to be 

the answer. We initially checked tha t the energies of the states in the axially 

deformed cases had the correct asymptotic values, i.e., once the quadrupole 

deformation dominates the Hamiltonian. W ith no core, these shoot off to 

±00 in the correct way. Of course, the core term  prevents this unphysical 

result. However, it is noticed tha t all states do so monotonically, indicating 

tha t the kind of turnaround tha t would be required to create some maximum 

or minimum just does not happen. The core states do not mix with those in 

the active shell, so this effect is not changed by the addition of the core term. 

This would indicate tha t we need at least one more shell in the calculation to 

produce any effects due to deformation in this model.

4.3  C onclusions

The results presented here are too far from being complete for anything par­

ticularly interesting to be said about the physics in either of these problems. 

However, it is clear tha t the problems with the band term ination calculations 

are purely to do with the sizes of the problems tha t must be handled, as the 

application is just a typical shell model calculation. We have seen in the pre­

vious chapter tha t the code does not appear to be capable of the larger of the 

two problems in the near future, but the fluorine calculation may be

possible with some optimization of the code, such as to save memory by using 

a different reorthogonalization scheme.

The cranking calculation is a different beast, however. It does seem that 

this novel application of the shell model code could be pushed somewhat fur­

ther without stretching the capabilities of the current code. The calculation 

needs to be expanded to include not just a core term  but also interactions be­

tween neighbouring shells, which ought to produce results which contain more 

interesting structure.
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C hapter 5

A lternative M ethods.

W ith my two algorithms, one can solve all problems -  without 

error, if God will!

Al-Khorezmi

\

The parallelized Lanczos algorithm has not been an overwhelming success. 

There are some piecemeal improvements to the code th a t can still be made, or 

wholesale replacement of the usual Lanczos method by something which may 

be faster can be contemplated. A miscellany of such schemes are discussed in 

this chapter, evaluating the pros and cons in each case.

5.1 Increasing  ‘B an d -D ia g o n a ln ess’

There is a possible change th a t could be made to the data in the problem 

instead of to the algorithm. In both the methods discussed in chapter 3, 

we see tha t the very off-diagonal m atrix elements cause a large fraction of 

the work tha t we do: in the usual parallel scheme, they lead to increased 

communications costs, and in Scott’s m ethod, many more processors must be 

used. In fact, a further problem arises in Scott’s m ethod which decreases its 

efficiency from the ideal described above. Since we do not store the m atrix,
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but only the two-body form, we will generate many states which are outside 

the blocks stored by the off-diagonal processors. Thus, as we divide up further, 

we ‘h it’ states less and less and eventually most of the tim e th a t should be 

spent doing useful processing is spent rejecting states.

Both of these problems could be solved if some rearrangem ent of the states 

produced a m atrix with a lower bandwidth. There appears to be a considerable 

scope for this: figure 5.1 shows a typical distribution of m atrix  elements in our 

Hamiltonian. We have investigated this possibility as it could produce large 

gains in speed for a relatively small one-off cost of re-ordering the m atrix. It 

should be noted tha t it is necessary tha t the states be in numerical order, as at 

present, for the binary search in the innermost loop of the m atrix  m ultiplication 

to be fast. This need not be changed. All tha t is necessary is th a t before the 

m atrix  is divided into blocks, the states are in a ‘dense’ order: once divided 

up, we can re-order each basis block numerically to speed up the computation.

To start with, we need some definitions. Two states are said to be connected 

if there is a non-zero m atrix element between them. There is a path between 

two states a, 6 if there exists a sequence of connected states starting with a 

and ending with 6. The length of a path is one less than the num ber of states 

in th a t path, including the starting and ending state. Then the diam eter D  of 

a m atrix  is defined as:

D = max I min length(po,6) I (5.1.1)
V states a,b  yV paths pa,b /

The valence., vi of a state in a m atrix M  is defined to be:

=  Y .
0 if Mij =  0

1 otherwise.
(5.1.2)

We will deal in this section only with matrices where V{ is the same for all i. 

This essentially means we are ignoring angular momentum, a point which I 

will mention again towards the end. The width., w of an ordering of states is
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Figure 5.1: Distribution of Matrix Elements in a Typical Hamiltonian.
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defined as:

w =  max \i — j\  (5.1.3)

We are now ready to define the band density of a m atrix, /?, which is essentially 

the density of a m atrix ignoring the zeroes outside of the band.

p = — (5.1.4)
w

Note tha t, from the definition, band-diagonal matrices have a band density of 

1, If there are N  states in our basis, the m atrix is homogeneous, and a path 

exists between every state, then we have:

N
u; >  — (5.1.5)

hence:

P < ^  (5.1.6)

Of more interest to us will be the lower bound on p, which will tell us what we 

can gain by using the best possible ordering. To obtain this, we will require 

some more problem-specific information.

We consider states formed by placing p particles in n orbits, with no other 

restrictions on the positions of the particles. There are such states. We 

can get the width of the usual numerical ordering quite simply, by noticing 

th a t the states:

0 0 0 . . .  0 1 . . .  1 1 1

and

1 1 0 . . .  0 1 . . .  1 0 0

are connected by a two-body m atrix element, and, moreover, tha t they are

the pair of states furthest apart in the basis table th a t are so connected. A

little thought allows us to observe tha t here:

” = C ) d ” r )
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We also have, using the usual two-body m atrix elements, tha t the valence is 

given bv:

and that the diam eter is, quite simply:

I for p even.
(5.1.9)

- f n r  r) nrlrl
2 for p odd.

Next we consider what the optimum band density may be. Consider the first 

state in our list, say, Si. We will be able to work out the optimum band density 

by looking at Nr defined by:

f 1 r =  min length 
W  =  V paths (5.1.10)

 ̂ ( 0 otherwise.

This is simply the number of new states generated by making all paths looked 

at so far one longer. For the states described above, we have:

No =  1 (5.1.11)

The reason for looking at this statistic is this:

VA:, 1 <  k < , Wmin ^  = T (5.1.13)
^  r= 0

where iVmin is the smallest possible width, achieved by some optimal ordering. 

In fact:

Wmin = max (5.1.14)

Finding the value of k for which this is satisfied analytically seems to be 

extremely difficult. While the sum in the above equation, if taken over all 

possible terms, is just a special case of the Van derm on de convolution, and in 

fact only tells us again that the total number of states is there does not
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appear to be any way to remove the summation, when we are only considering 

partial sums.

Before I go on to tabulate some calculated values for Wmin-, T will present a 

more tractable upper bound. Note first the inequality:

2 r= k "

= mcixRk < — max Nr (5.1.15)

where k' is the smallest possible value tha t k could be. We also note tha t the 

largest value of the sum is and so we know:

Wmin < p  (5.1.16)

Next, we note that a function of k has a single extremum which is

a. maximum. Also, if we assumed Rk to be continuous, then we could bracket 

the maximum by choosing some k such tha t R^ =  /?a-4-i.(Actually, to say this 

requires a few extra properties in our function; it happens to be true when for 

sufficiently large n, and from experience, n >8) Putting this into the recurrence 

for R k  we get:

k Rk =  (Â’ +  1) Rk+i — ÂA'+i

=> k Rk+i =  ( A' 4- 1 ) Rk+i ~  Â a+1

=> R k + i  =  N k + \
r= k + l

^  Y a+i =  ^  X ]
r= 0

3r, 0 < r < k  such that Nr > Nk 

In particular, since N r  also has only one maximum,

=> k > 77?, for 77? such tha t Nm > Nr, V r, 0 <  7’ <  A:.

Hence, finding the m  for which Nm is maximized identifies a. least possible 

value of k. It can be shown that this occurs when
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ID as a fraction of Basis Size

n P Lower Bound Wmin Upper Bound ‘Normal’ Order

16 8 0.250 0.345 1.032 0.767

24 12 0.167 0.245 0.505 0.761

32 16 0.125 0.192 0.335 0.758

64 32 0.063 See below 0.143 0.738

Table 5.1: Estim ated best possible widths.

(again, this equation is only strictly true for sufhciently large n -  but again, 

the required value of n is small.) Divide the left hand side by the right to get

m =
np — \

2n

We then have (combining several results):

I n
^  Wmin —

In

(5.1.18)

(5.1.19)
p \ p )  up — p^ — 2n — 1 \ p )

Table 5.1 shows the bounds and the actual value of the optimum width, as a 

fraction of the total number of states (since this appears as a factor in both 

bounds). Note first, that we know that the first upper bound is tighter, 

since iv is at most 1. (In fact, experimenting with the sums we have estim ated 

showed that all of the upper bounds could be reduced by a factor of about 

1/3.) The 64 orbit case is too large to be calculated exactly. It is obvious 

that the m atrix can be made considerably more band-diagonal than it is now. 

However, the gains achieved are not spectacular. For example, in the 32 orbit 

case, the difference made by rearranging the m atrix in this way will tail off 

when the basis is divided into more than 5 blocks. This must also be weighed 

against the increased complexity of programming to take advantage of the re­

ordering, or indeed, the fact that we do not hiou'i the optimum order; we only 

know its properties.
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Although the change in the speed of the program using this method is 

disappointingly small, improvements to the band density can still be made in 

other ways. In particular, we have ignored angular momentum considerations 

completely in deciding whether two states were connected. We can use the 

m-values of the orbits to limit the distance between connected states in the 

hamiltonian. For example, if the m-values are arranged in increasing order, 

from negative to positive, then a transition between two states like these:

0 0 0 ... 0 1 ... 1 1 1

and

1 1 0 . . .  0 1 . . .  1 0 0

is actually impossible as it will result in an increase in the to tal 2-projection 

of angular momentum. It is seen tha t this eliminates precisely those m atrix 

elements which were thought to be the problem at the start of this section. 

It must be noted, however, tha t one or other of these states will therefore be 

excluded from the basis. This is in fact the order used in the program, for 

different, historical, reasons.

In conclusion, it does not seem worth the effort to change the order of states 

to increase the band density, although there is some room for improvement. 

It is im portant to note, however tha t there are good reasons for keeping the 

order of single particle orbits as it is.

5.2 A  B lock w ise  L anczos A lgorithm .

Several attem pts were made over the course of this work to  introduce changes 

to the Lanczos algorithm to take advantage of the special properties of the 

nuclear shell problem. The algorithm tha t follows has, apparently, a number 

of desirable features, but in the end was seen to be flawed.

Consider a m atrix H  which is to be tridiagonalised. We divide H  into

91



blocks in the following manner :

H ii Hi2 

H 21 H 22

The dimensions of H u  and H 22 are irrelevant, but for the sake of the dis­

cussion, both will be assumed to be reasonably large. This will allow us to 

consider some n-step Lanczos process later, without stating n.

We now construct a Lanczos process with H u  and some starting vector

Q \ \ -

HiiC[ii — O'! Qii T 

etc., generating the column matrix:

Q l  ~  [ T i 1 1  ̂ Q ln ]

(5.2.2)

(5.2.3)

An exact ly similar m atrix is formed, by a Lanczos process, from H 22 The 

tridiagonal matrices so generated are denoted T% and T 2. Now notice, that 

we have:

We then define:

Q fH n Q i =  T:

Q I H 22Q 2 =  T 2

Q l  0

0  Q 2

X  =  Q ^H Q

X  =
T i q ; h i 2Q:

(5.2.4)

(5.2.5)

(5.2.6)

(5.2.7)

(5.2.8)

(5.2.9)
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(we note in passing tha t since =  H , then of course, the m atrix X  above 

is also symmetric.)

Why might this be of interest? The answer is, tha t nuclear structure 

calculations are almost always done first in a smaller model space than we 

believe to be realistic; we try  to add states into our calculation as and when 

the computing power required becomes available. Suppose the first part of 

the calculation correspond to the top left subm atrix of X , and the bottom  

right to states added into the calculation. By iterating separately in these 

subspaces, we have also generated many of the vectors required for calculating 

the off-diagonal blocks of X  If these off-diagonal blocks can be economically 

calculated, and if the eigenvalues of X  can be shown to converge acceptably 

to those of H , then we may have a relatively inexpensive m ethod of extending 

calculations.

This is not all; while it is unlikely tha t this will be as fast, or converge as 

fast, as a full Lanczos calculation including both subspaces, it does not need 

as much memory at any one time. Hence, it may be possible to do calcula­

tions using this method which would be impossible using a more conventional 

m ethod, because we can circumvent limits of the machine. Also, we are not 

lim ited to dividing a m atrix into two blocks, and the results which follow will 

be proved for an arbitrary number of blocks. Thus, arbitrarily large calcula­

tions may be attem pted, the limit being now only tim e, and disk space, not 

memory.

As it turns out, there are actually severe problems with this algorithm, but 

we delay their discussion until towards the end of this section.

5.2.1 Some Proofs.

We begin with a simple result.

T h e o re m  5.1 the eigenvalues o /X  converge on those o /H .

93



P r o o f  : if the dimensions of Qj and Q 2 equal those of H u  and H 22, then 

the m atrix Q is obviously a square orthonormal m atrix, of ident ical dimension 

to H  itself. Hence, the eigenvalues of X  when both Lanczos processes are 

complete are identical to those of H , because then Q ^H Q  is a similarity 

transformation. The extension to an arbitrary number of blocks is obvious.

We now tighten this, using the conventional proof of convergence of the 

Lanczos algorithm[46]. For this, we need the m athem at ical baggage of a Krylov 

subspace /C{H,x,r?,}. This is simply the space spanned by all vectors of the 

form

k =  y^/l-iH 'x (5.2.10)
i=0

W here A, is any real number, and n is a non-negative integer.

T h e o re m  5.2 i f  H  is an n-hy-n symmetric matrix luith eigenvalues A% > 

• • • >  An and corresponding orthonormal eigenvectors Z \ , . . .  , 2 * ,  then, after j  

steps of this modified Lanczos algorithm, the eigenvalues 9\ > Oj of the

matrix so formed obey the relation:

\ \  \ (Ai — An) tan(<^i)^A. >  ^̂ , >  A. -

where cos(</i»i) =  max^.^^^^^^^i V i ^ p i  = (Ai -  \ 2 ) / ( \ 2  ~  K ) ,  and Cj_i(z) 

is the Chebychev polynomial of degree j  — I.

P r o o f  : (Note that the only difference between the above theorem and the 

standard result of the Kaniel-Paige theory for the Lanczos algorithm is in the 

definition of q, which allows us to choose the best linear combination of the 

starting vectors in each block.)

Ay
01 = m ax —- — (5.2.11)

=  max ( Q j v f M Q j y )  
(QjyViQjU)

(5.2.12)

w A lu
max — - —  (5.2.13)

0:^wefC{A,qi, j} W
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Since Al is the maximum of i v ^ A w j iD ^ w  over all nonzero w, it follows that 

Ai 0\. To obtain the lower bound for 0\, note that

qJp{A)Ap{A)(p 
=  max  T ! ------PGTp-i 9iP(A)2r/i

where V j - \  is the set of all j  — I degree polynomials. If

n

(R = Y^diZi, 
i=\

then

qJv(A)Ap(A)q,  E?=rdfp{Xi fX,

q ïp i .A Y q i  E “=, d M K )
( 5 .2 . 14 )

The lower bound can be made tight by selecting a polynomial p (.t ) that is 

large at .t =  A% in comparison to its value at the remaining eigenvalues. One 

way of doing this is to set

•T — Ar
p(.r) =  Cj_i - 1 + 2 -

A2 — A,

where (z) is the (j — l)-st Chebychev polynomial generated via the recur­

rence:

Cj ( z )  =  2 z C j _ i ( z )  -  Cj_2(z ) .

These polynomials are bounded by unity on [-1,1], but grow rapidly outside 

this interval. By defining p(x) this way, it follows that |p(Ai)| is bounded by 

unity for i =  2 , . . . while p(Ai) =  C j-i(l +  2pi). Thus,

V + T T W

The desired bound is obtained by noting tha t tan(0i)^ =  (1 — (l\)ld\.

Thus, we have proved that the lower bound can be obtained from a ‘best 

guess’ eigenvector which lies in the union of the subspaces formed by our block- 

wise Lanczos process. Does this give us the result we want? The answer is, not
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quite. We have certainly proved tha t we get a lower bound on the convergence 

than we get for the normal Lanczos process with the same num ber of iterations

— although notice tha t we have actually performed m  x j  iterations, albeit 

on smaller spaces. This bound, is, however, considered weak for the Lanczos 

process since it generally converges much faster than its bound. It is only 

for unusually constructed examples tha t this (poor) behaviour of the Lanczos 

algorithm is observed.

The problem with the present algorithm actually lies in a different di­

rection; not in the rate of convergence, which is fine, but in what is being 

converged to. W hat goes wrong will be explained in section 5.2.3.

The algorithm we have constructed may well be better in practice than 

the bounds given, but currently I do not know any proof which can improve 

on the result given above. There are other bounds which can be put on the 

convergence, from perturbation theory, in particular the Weilandt-IIoffman 

theorem, [46] but in general (when off-diagonal contributions are large) the 

bounds th a t they give are worse than th a t obtained above. An approach 

th a t might prove to be of interest, but which I have been unable to follow to 

completion, is to look at the angle between the Krylov subspace formed by 

Lanczos iteration on the full space and the product space described above. The 

ra te  of convergence would be expressed in terms of this angle. This approach 

is appealing, since we hope tha t the eigenvalues of the first block of the m atrix

— our initial model space — will have a large overlap with the eigenvectors 

of the full space, i.e. it is a good approximation. This would then give us the 

rate  of convergence in terms of a small quantity, hopefully providing a better 

bound.
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5.2.2 Perform ance E stim ates.

Another aspect of this algorithm which has already been mentioned, is the 

necessity of all of the operations involved being done cheaply. We already 

have the program which can do the Lanczos iterations on each block, so we 

only need to examine the formation of off-diagonal elements.

It should be fairly obvious from the structure of the off-diagonal block of 

the m atrix tha t it can be formed by a single m atrix m ultiplication on each 

Lanczos vector from the first process, followed by a series of dot products with 

the Lanczos vectors from the second process. The tim e for each dot product in 

this scheme is roughly equivalent to tha t of each one in the reorthogonalisation 

stage of the ‘norm al’ Lanczos process.

We compare the tim e taken for the Lanczos processes which are needed to 

try  increasing the model space one subspace at a tim e to doing it by the block 

algorithm, we have:

m = M

t im e  = X] ( « i ( — )* +  (dj{j +  l)(;r—)) (5.2.16)
m = l  ^

For normal Lanczos, compared to:

t ime =  + I3j{j +  l ) { f ^ ) )

+ 1 m (M  -  l)il3jU  +  1 ) ( ^ ) )  (5.2.17)

for the block algorithm, where a  and (3 are the constants assosciated with the 

m atrix multiplication, and dot product, respectively.

To give an example; suppose n =  10®,/ =  100, a  =  1 ,^  =  10“  ̂ and k = 1 

— a fairly typical set of values, a  and /? have been set to a reasonable ratio so 

a comparison can be made.(see figure 5.2). Note tha t this figures become even 

better when it is considered tha t there may be empty blocks in the Hamiltonian 

far from the diagonal, arising from considerations such as parity conservation. 

This might seem to be very encouraging, but there is bad news on the horizon.
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M Normal ‘tim e’ Block ‘tim e’

2 1.575 X 10® 1.075 X 10®

3 1.915 X 10® 1.100 X 10®

4 2.178 X 10® 1.125 X 10®

Table 5.2; Comparison of two Lanczos Algorithms.

Adding a m ajor shell to a nuclear shell model calculation does not add some 

constant number of states to the problem - it multiplies the number of states by 

a factor of ten or more. Thus, adding this (physically realistic) extension will 

be almost as difficult as the full Lanczos calculation. We could, in principle, 

divide the added part of the Hamiltonian up into many blocks, but, in the 

light of comments I will make on this process, in the next section, we would 

expect this to give us poorer convergence on the final result.

5.2.3 T heoretical problems

Not only are there some practical problems with using this algorithm, there 

are also problems with the theory around it. When I originally wrote down the 

proof in section 5.2.1 I believed that the convergence of the algorithm, following 

the inhmum of the convergence limits on the subset, to be better than the 

convergence of the full Lanczos algorithm. However, this is a misunderstanding 

of the meaning of the result tha t has been proved. W hat is actually going on 

in the algorithm is better explained by looking at the term s of the Lanczos 

iteration in comparison.

Consider again our partition of the matrix:

H ii H i2

H 21 H 22
(5.2.18)

Now we look at the terms obtained by repeatedly acting on a vector q with 

this matrix.
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Hr/ =
H„ Hi2 Ql

H21 H22 Q2
(5.2.19)

Hr/ =

Vif q =■

(5.2.20)

(5.2.21)

Hii</i +  Hi2r/2

H 21Ç1 +  H 2292

H ^ ^ ç i  +  H )  1 H 1 2 Ç 2  +  H 1 2 H 2 1 Ç 1  +  H 1 2 H 2 2 Ç 2  

H 22Ç2 +  H 2 2 H 2 1 < / i  +  H 2 i H i 2 < 7 2  +  H 21 H ^ Ç i  

T h a t’s enough terms to see what is going to happen. The erpiation above 

generates a Krylov subspace identical to tha t of the Lanczos process, if we work 

in exact arithm etic.(I present this power method since in exact arithm etic it 

produces the same results and the equations obtained are simpler). Now we 

look at a similar analysis of what happens in the new algorithm.

Hr/ =

Uq

H]1 Hj2 

H21 H22

<7i 0

0 q-2

Hii</i +  H]2 /̂2 

H 21Ç1 +  H 22Ç2

(5.2.22)

(5.2.23)

(5.2.24)
T HiiHi2<72 +  H 12H 22Ç2 

H 22<72 T  H 2 2 H 2 1 71  +  H 2 i H ] i ( / i  

Note that the vectors here are representatives from the space generated by 

the process; not those vectors that you would get from straight multiplication 

with the matrix.

The m atrix we end up diagonalising has several terms missing. W hat makes 

these two terms different is that they are not linear in the off-diagonal subma­

trices. In fact, all terms which are not linear in the off-diagonal submatrices 

will be missing in all subsequent steps, but these will be the only terms that 

we cannot generate. In other words, the method is actually a first-order per­

turbation method, if we do not iterate to completion. However, we did manage
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to prove tha t the algorithm converges if we do continue iterating. This begs 

the question, how exactly is this convergence behaving?

We can find out this behaviour from looking at the proof in the second 

section. W hat we are actually showing here is tha t the algorithm converges 

to the best solution in the unperturbed space more quickly than pure Lanczos 

would. However, the component connecting these subspaces converges accord­

ing to a conventional perturbation estim ate (that is, the rate  of convergence 

depends on the Frobenius norm of the off-diagonal matrices.)

5.3 M onte-C arlo  C alcu lations

As we have seen in previous sections, traditional shell model calculations have 

a com putational complexity tha t scales very poorly with the num ber of orbits 

in the calculation. For many problems with similarly poor scaling in other 

branches of m athem atics and physics, attem pts at solutions concentrate on 

heuristic or non-deterministic methods. In the Nuclear Structure problem, we 

have also seen in chapter 1 tha t there are a wealth of ‘heuristics’ -  simply 

choose your favourite nearly-conserved symmetries, or just pick a ‘reasonable’ 

subset of the model space to work on in some other way. There are also non- 

determ inistic methods (although these are not always presented as such) in the 

guise of Hartree-Fock variational methods and various statistical mechanics 

methods.

However, one common thread running through most of these statistical 

methods is the lack of a ‘solid’ connection to the microscopic aspects of the 

problem. In particular, low-lying (and thus usually single-particle) energy 

levels tend to be missing from any spectra obtained. Koonin and his co-workers 

have taken a solution to this problem most often associated with Q.C.D., and 

applied it to the Shell Model[31]. They claim to be able to obtain ground state 

properties of nuclei using realistic shell model potentials and extremely large
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model spaces, with only small scaling effects from the increasing basis size. It 

may even be possible for them  to reproduce complete low-lying spectra.

Obviously, this cuts deeply into the territory tha t the present work was 

supposed to cover. In order to properly discuss the implications of the Monte 

Carlo method on the future uses of the Glasgow code, I first present a descrip­

tion of how their method works, following closely the presentation in [47]

5.3.1 The M onte-Carlo m ethod.

In Monte Carlo, we will look at the imaginary tim e evolution operator:

Û = exp{—/3H) . (5.3.1)

for some many-body Hamiltonian H,  and imaginary tim e An alternative, 

thermodynamic, way to look at this, is tha t U is the partition operator for 

tem perature The operator H  can be a Hamiltonian of completely general 

form - not just including two-body interactions, but possibly term s such as 

—ujJz in cranked shell model calculations.

There are two formalisms for extracting information from the evolution 

operator: the “therm al” formalism and the “zero-tem perature” formalism (to 

which the therm al formalism reduces in the limit ^  > oo). In the therm al

formalism, we begin with the partition function

Z  = t r  exp(—/)A) , (5.3.2)

and then construct the therm al observable of an operator O'.

(Ô )  =  l t r [ Ô e x p ( - # ) ]  . (5.3.3)

Here, the trace Tr is over many-body states of fixed (canonical) or all (grand-

canonical) particle number. In the next section, we describe how to write Ù

in a form tha t allows it to be evaluated.
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5.3.2 Path integral form for U

We restrict the Hamiltonian to contain at most two-body terms. II  can then 

be w ritten, in terms of some set of ‘convenient’ operators Oa‘.

(5.3.4)

where we’ve assumed that the quadratic term is diagonal in the (9». The 

meaning of ‘convenient’ will become clear shortly, but typically it refers to one- 

‘body’ operators, either one-particle (‘density’) or one-quasiparticle (‘pairing’). 

The (real) Vk ^re the strengths of the two-body interaction.

For II in the quadratic form 5.3.4, we can express the evolution operator U 

as a path integral. The exponential is first split into Nt ‘tim e’ slices, f3 = NtA/3, 

so tha t

U =
Nt

(5.3.5)exp(—A /?//)

Then we perform the Hubbard-Stratonovich (HS) transformation on the two- 

body term for the /?’th time slice to give eventually[18], (using the one-body 

hamiltonian /?^):

(5.3.6)

X T  exp y — f/r/?^(r) 

where T  denotes time-ordering and

(5.3.7)

Nt
V  [a] — lim V ‘ * [(%] — lim da,7V(—«-00 A/'t—*-oo n = l  O' 

Nt

ZTT
(5.3.8)

T e x p ( -  [  d r h a { T ) \ =  lim TT exp ( - A ^  Â^(r,i)) . (5.3.9)
\  Vo y  ̂ ^

In the limit of an infinite number of tim e slices Fq. (5.3.7) is exact. In prac­

tice one has a finite number of time slices and the approximation is valid only

102



to order A/?. Rewriting the evolution operator as a path integral can make the 

model space tractable. Consider the case where the 0 ^  are density operators. 

Then Ecp (5.3.5) is an exponential of two-body operators; it acts on a Slater- 

determ inant to produce a sum of many Slater-determ inants. In contrast, the 

path-integral formulation (5.3.7) contains only exponentials of one-body oper­

ators which, by Thouless’ theorem [49], takes a Slater-determ inant to another 

single Slater-determinant. Therefore, instead of having to keep track of a very 

large number of determ inants (such as we do in the Glasgow code), we need 

deal only with one Slater-determinant at a time. Of course, the price to be 

paid is the evaluation of a high-dimensional integral. However, the number of 

auxiliary fields that need to be integrated over grows only quadratically with 

the size of the single particle basis while the corresponding number of Slater- 

determ inants grows exponentially. Furthermore, the integral can be evaluated 

stochastically, making the problem ideal for parallel computation.

5.3.3 M onte Carlo evaluation of the path integral

Formulating the evolution operator as a path integral over auxiliary fields 

reduces the problem to quadrature. However, in general (when there are typ­

ically hundreds of fields), the integral must be evaluated stochastically using 

Monte Carlo techniques.

Using the one-body evolution operator defined by

Ùa(T2 ,Ti) = T e x p  ( ^ - J  dT hrr(T)^ , (5.3.10)

we can write Fq.

C(<7) =  t i + ( ^ , 0 ) ] ,  (5.3.11)

and
Tr 0 [ / .(A O )

( Ô)  = j  . " ' . (5.3.12)\ /(T TvTI (R m  ^TrU X/),0)
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To evaluate the path  integral via Monte Carlo techniques, we must choose 

a normalizable positive-definite weight function This weight function is 

used in Monte-Carlo to direct evaluation of the integral, so th a t the integrals 

converge more quickly (indeed this makes the entire process possible). We

must also generate an ensemble of statistically independent fields {<7,} such

tha t the probability density to find a field with values ai is IT^.. There are 

several possible schemes for both the choice of W  and the sampling of the 

fields. A typical choice is IT =  |exp(—<S)| and generating the samples via 

random walk (Metropolis) methods.

To continue; defining the ‘action’ by

= f  d r a a irY  -  In C(cr) , (5.3.13)
a ^ ZO

the required observable is then found by substitution into 5.3.7. Note th a t f  (cr) 

is by its definition (5.3.10,5.3.11) the time-ordering term  and S<r constitutes

j both tha t term  and the exponentiated integral over j3 (in 5.3.7). We finally

I  get:

where N  is the number of samples,

<̂i = e -^ '!W i  (5.3.15)

and Si =  Sai, etc. Ideally W  should approximate exp(—<S) closely. However, 

exp(—<S) is generally not positive and can even be complex. In some cases, 0^ 

may oscillate violently, giving rise to a very small denominator in Eq. (5.3.14) 

to be cancelled by a very small numerator. While this cancellation is exact 

analytically, it is only approximate in the Monte Carlo evaluation so tha t this 

‘sign problem ’ leads to large variances in the evaluation of the observable.
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5.3.4 D ecom positon  of the H am iltonian

To realize the HS transformation, the two-hody parts of H  must be cast as 

a quadratic form in one-body operators 0 ^ .  As these la tter can he either 

density operators or pair creation and anniliilation operators (or both), there 

is considerable freedom in doing so. In the simplest example, let us consider 

an individual interaction term ,

H = a\a\a4a,s , (5.3.16)

where a|̂ , n, are anti-commuting fermion creation and annihilation operators. 

In the pairing decomposition, we write (using the upper and lower bracket to 

indicate the grouping)

/ /  =  (5.3.17)

~  ~  ~  +  (13^ 4 )  ̂ ~  0 :1 0 4 ] . (5.3.18)

The com m utator is a one-body operator that can be put directly in the one- 

body Hamiltonian h^. The remaining two quadratic forms in pair-creation and 

-annihilation operators can be coupled to auxiliary fields in the HS transfor­

mation.

In the application of these methods to the nuclear shell model, it is partic­

ularly convenient to use quadratic forms of operators tha t respect rotational 

invariance, isospin symmetry, and the shell structure of the system. There is 

enough freedom in the model to do this.

5.3.5 L im itations of M onte Carlo.

In the above discussion, there were two obvious problems with the Monte-Carlo 

method:

• The extremely large number of fields that must be integrated over. This 

means that even small calculations take a long tim e using the method
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described. However, it must be realised, tha t the tim e taken by the 

Glasgow code for very large calculations is enormous; there comes a 

balance point, where the two methods take roughly the same time.

• The ‘sign problem ’, endemic to Monte Carlo methods. In the original 

papers, Koonin et al. used a simple quadrupole plus pairing potential, as 

it can be shown tha t this analytically simple interaction is in fact free of 

the sign problem. In a later paper, it is claimed th a t the sign problem has 

been solved[50], at least for practical purposes, by the simple expedient 

of splitting the ‘tru e ’ interaction into two parts, one free of the problem 

(such as the quadrupole plus pairing interaction used previously) and a 

‘bad’ interaction. The ‘good’ interaction is used to solve the problem, 

and the result is then interpolated to what should be the correct answer. 

The difficulty with this approach does not really need pointing out; the 

interpolation may not be valid. However, it appears to have worked so 

far. One hopes tha t a stronger justification for this prescription can be 

found.

There are two further problems with the Monte Carlo m ethod described, 

tha t occur when it is used to calculate excited states. This has been attem pted 

many times in other fields[51], and is extremely difficult; for example, another 

student in this departm ent, Andrew Lidsey, has spent the last three years 

attem pting to extract a first excited state by Monte Carlo for lattice Q.C.D. 

[52]. The problem is tha t the Monte Carlo m ethod does not give the complete 

picture of the ground state; to extract the first excited state, the state  being 

operated on must be kept orthogonal to the ground state. This cannot be done 

exactly, and so errors multiply throught the calculation and eventually swamp 

the ‘signal’. Deciding when to stop attem pting to converge on the excited 

state because the errors are too great is a ‘black a r t’ and, so far, it seems tha t 

this procedure cannot be properly autom ated.
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The second problem is that even if an excited state is generated, its value 

must be questioned. While the energy of the state can probably be relied on 

to some extent, the energy is insensitive to the underlying interaction and so 

to an extent to the structure of the state, (this was one of the considerations 

in fitting the original 5c?-shell interactions). However, transition rates, which 

tend to be of more interest to experimenters, are of interest precisely because 

they probe the structure of the state. In fact, even if we truncate state  vectors 

so tha t the overlap between the truncated vector and the full vector is as much 

as 0.9 can be enough, in some circumstances, to remove any confidence in the 

transition rates predicted -  see Glaudemans and Brussaard, section 10.7 [53] .

5.4 L anczos M on te Carlo.

The limitations of Monte Carlo in reproducing excited states could be seen as 

a direct result of the relationship between Monte Carlo and Power Method for 

finding the eigenpair with the eigenvalue of largest modulus[54]. In this method 

we simply choose some vector with a non-zero component in the direction of the 

ground state, and multiply by the m atrix under consideration, and normalise 

the result. If this process is repeated many times, the vector will converge on 

the desired largest eigenpair. Compare this to the Monte Carlo path integral, 

which repeatedly acts on some state, with the ensemble sampled eventually 

converging on the ground state.

The similarity here is not accidental and has occured to others over the 

years. We mention it here because the power method has an obvious improve­

ment: the Lanczos Method, which is much better at resolving out the excited 

states as well as the ground state. The question asked is, does an analogous 

process exist for Monte Carlo? The answer appears to be (so far) no. The 

existence of such an algorithm would greatly affect the conclusions I will draw 

in comparing our method with Koonin’s, as we shall see.
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Here, I must point out tha t there has been a paper which seemed to claim 

th a t the authors were using some kind of Lanczos Monte-Carlo, namely [51]. 

In this paper, the authors seem to believe tha t they are extracting ‘ex tra’ in­

formation from the problem, by constructing a m atrix from the dot products 

of the vectors resulting from each Monte-Carlo iteration, and then diagonal­

ising using Lanczos. In the method they describe, the energies of the excited 

states so extracted will in fact converge exactly like those of the power method 

using low-precision arithm etic (with the consequent poor convergence of tha t 

algorithm). The use of Lanczos in this context is completely superfluous.

5.4.1 U sing Sam pled Vectors.

I finish this chapter with a short description of how a stochastic Lanczos 

algorithm might work. I have not seen such a description elsewhere and it 

may be of more interest in the future. This is a Monte-Carlo m ethod in the 

sense of the definition tha t would be found in computing textbooks, but bears 

little  relation to the methods usually labelled as such (it does not explicitly 

mention integration).

Koonin’s Monte-Carlo method would be extremely difficult to convert into 

something more Lanczos-like, because, initially, we need vectors (or states of 

some kind) at the end of each iteration, and taking dot products of these 

provides us with the coefficients of the Lanczos m atrix. In the Monte-Carlo 

iterations, it is not clear tha t at any point you can even say th a t the resulting 

vector corresponds to for any fixed n (which would be good enough).

Hence, a different approach must be sought.

Suppose instead of looking at the action of the Hamiltonian on the entire 

vector, we take some (probably heavily weighted) sample of m components 

of the vector and only operate on them. We can then ask, how could we 

calculate the a , (3 of the Lanczos matrix? The obvious route to take would be
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to attem pt to average out some value for Oi, then use this to help calculate /3i, 

then « 2, etc., just as in the usual running of the Lanczos algorithm. This is 

doomed to failure, because the error introduced in Oi will be magnified at the 

next stage, and so on, and the reorthogonalisation which would correct this 

cannot be made exact, because we are only looking at ‘samples’ of the vectors. 

A further complication is that we would really like to sample V2 at the start 

of the second iteration, but we only have amplitudes for the states generated 

from the sample of V\.

Is there a way round this? The answer is yes, in principle, (I say in 

principle because what follows has not yet been tested in practice). Consider 

taking samples size m from a vector of dimension n. Then we firstly want 

to find H' so that:

V \ . H '  . v \  — =  o i  (5 .4 .1 )

Where the average is taken over all samples, and H  is the true Hamiltonian. 

This is actually fairly easy to do. All tha t is required is a weighting on the 

diagonal matrix elements to take account of the fact that they will be generated 

much more often than the off diagonal m atrix elements between any two states. 

There are possible sample vectors of length m in a basis of size n. Civen 

a vector containing a state s i, it is obvious that only of the samples 

containing this state will also contain some other particular state 52- If we 

used all possible samples, we could find the correct resulting vector by using 

the weighted Hamiltonian:

~  — 1 -  Si j (n  — 2 ) ) )  (5 .4 .2 )

We have got through the first iteration, but how do we get the correct 

values in the rest of the Lanczos m atrix? The answer is simple: we guess. 

The beauty of guessing the P values, choosing the same set of values for many 

samples, is that it allows us to use a single sample over all iterations without
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referring to the other samples until all of the iterations are complete. We have 

used a Hamiltonian which, in principle, averages out to give us the correct 

vectors. By guessing all the Lanczos m atrix entries, probably wrongly, we can 

calculate (by averaging) the residual at each iteration, the norm of which gives 

us a measure of how far we are away from the ‘true’ Lanczos matrix. This 

measure can be used in any number of optimisation routines to move - or more 

likely, crawl - towards the correct values.

An actual implementation of this would require the measured residuals to 

have converged before the next step in the fitting of the as and ^s. This will, 

almost certainly, be extremely slow. There is at least one way to accelerate 

the convergence. Note that in the ‘usual’ Monte-Carlo scheme a weighting 

function is used to bias the choice of samples, in order to speed up convergence. 

A roughly equivalent thing can be done in this algorithm: m atrix elements can 

be weighted so that they are less likely to be chosen if they involve a greater 

change in the energy of the Slater determinant involved, as taken from (e.g.) a 

harmonic oscillator potential. The matrix elements supressed in this way have 

to be multiplied by a large factor when actually chosen, so tha t the averages 

are preserved. The effect of a very large weighting of this type will be to 

cause convergence in the Ohw space first, with further iteration (getting tighter 

bounds on the residuals) including more and more the effects of higher-energy 

shells.

I don’t really believe that this has the potential to form a true calculation 

technique. In its favour, it is completely parallelisable; each sample can be 

handled independently. However, each ‘guess’ at the whole param eter set 

would take many, many samples to evaluate; and with upwards of 200 variables 

to optimise over, this could take forever. There is also the question of how 

stable we can consider the results to be. The method seems worth mentioning, 

though, if only for its curiosity value.
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Chapter 6

Conclusions.

6.1 P arallelization  o f th e  G lasgow  C ode.

This part of the project has been successfully completed, with the resulting 

code showing a marked speedup on serial versions of the code. There is a 

working version of the parallel code on 

h a l lo w e e n .e le c .g la .a c .u k  (IP address 130.209.176.49) 

in the directory:

/hom e/hallow een/physics/b rian /P A R . The PARIX command ‘run’ should 

be used to invoke it, like so:

run  -c  0 4 4 bootboy (bootboy is a bootstrap program which loads the par­

aded code onto the network.)

Of the different versions of the code that were written, Scott’s version of 

parallel Lanczos seems to be the least prone to the problems common to the 

parallel methods, specifically deadlock and large communications overheads.

However, it is an expensive algorithm to implement, as it uses many more 

processors to do the calculations we want to do than could be afforded by even 

the better off universities. It seems unlikely that in the near future we will 

be able to perform calculations with tens of millions of states, although a few
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million states is now at the limit of oiir capabilities.

6.2 C om parison  to  other C odes.

During the completion of this work the Monte Carlo methods of Koonin et 

al. have come to the fore, and have proved faster at getting some of the in­

formation on nuclei in larger model spaces. We must tem per this with the 

knowledge that this version of Monte Carlo is virtually useless at getting ex­

cited state energies; a problem endemic to the method in all areas of physics. 

The F.D.S.M. method also has its limitations: it relies on symmetries which 

are not exactly conserved in real nuclei, so there will remain calculations which 

test whether or not a state belongs to a band of some symmetry which can­

not be done within that model. This same criticism applies to all collective 

models. Having carved out this territory of excited mixed-symmetry states, 

there still remain some rival codes: notably OXBASH, which also perform full 

shell model calculations, but in a different way. The problem with these codes 

is that they seem to be even less inherently parallel than even the Glasgow 

code. Because of this, it seems that the Glasgow code is, and will remain, the 

best suited to very large basis calculations of this type. However, there are 

not very many calculations of this type of intermediate basis size (a couple 

of million states). To get the kind of information required, i.e. a 1 Aw model 

space, seems to require more states than the code can handle, while smaller 

problems (of a few hundred thousand states) are better handled by OXBASH 

or the serial Glasgow code.

6.3 Future work.

It seems to me that the parallel Glasgow code is dead in the water when it 

comes to the shell model calculations it has been traditionally applied to. For
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ground state calculations, Monte Carlo is now to be recommended, while for 

low excited states, the various collective models now have a sufficient degree 

of sophistication to outrun our program, despite the most strenuous efforts 

on our part to construct a faster code. It does not seem to me that there 

are sufficient applications of very large basis calculations which are at once 

feasible and interesting, even though we have pointed out in this thesis several 

examples of this type (the band termination calculations). Even these have to 

be drastically truncated compared to what we would consider satisfactory.

Also, we know that the current generation of shell model codes would have 

to be the last for some time in any case; the combinatoric growth in the size of 

the problems being considered, at the next step, will far outstrip any computer 

we could hope to have in the next ten years or so. I would therefore recommend 

that the parallélisation of the code as it stands should stop here, and attention 

should once again be turned to the physics of the problem to increase the sizes 

of calculation we can achieve.

All is not yet lost, however. There remain a number of applications where 

the Glasgow code is used in different guises, which are likely to benefit from 

the greater speed, for moderately large problems. One example of this is the 

cranked shell model example given in chapter 4. Here, the physics of the 

problem is such that there is no other code today tha t can solve this type of 

problem in the manner we have described.

A second example of where the code may be used is in the Quark Shell 

Model calculations being done in this group by Sandy W att et al [55]. These 

calculations are intended to help bridge the gap between high- and low- energy 

physics, by eventually calculating from a QCD-induced potential the nucleon- 

nucleon interaction. While the interactions are very different in this program 

and our own, they share a common heritage in the original Glasgow code, and, 

without a great deal of effort, the central routine for m atrix multiplication in 

the QSM code could be replaced by the parallelized parts of the present work.

113



In short, the future of the Glasgow shell model code is no longer in the 

nuclear shell model of Mayer; futher work should concentrate on finding new 

applications for the code, and to producing interesting physics in other areas.
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The tenth time, just a year ago,

I made myself a little list

Of all the things I’d ought to know.

Then told my parents, analyst.

And everyone who’s trusted me 

I’d be substantial, presently.

I haven’t read one book about 

A book or memorized one plot.

Or found a mind I did not doubt.

I learned one date. And then forgot.

And one by one the solid scholars 

Get the degrees, the jobs, the dollars.

And smile above their starchy collars.

I taught my classes W hitehead’s notions; 

One lovely girl, a song of Mahler’s. 

Lacking a source-book or promotions,

I showed one child the colors of 

A luna moth and how to love.

W.D. Snodgrass, from ‘April Inventory’.
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A ppendix A  

Portable Com m unication  

R outines

This appendix contains a file of small subroutines which handled all of the 

communication in every version of the parallel code. This was a deliberate 

effort on my part to separate the working of the code from the detail of the 

operating system that it ran on. Generally, a system has one or more methods 

of passing messages (PARIX, for instance, has at least 6 different commands 

which will send a message), a global structure which stores the network data, 

and some error handling mechanism. This program was then w ritten to handle 

all of those features transparently - to change the architecture on which the 

program is being run, or the type of communication desired, only this file need 

be altered. Of course, this also hides the real difficulty of getting a program 

to run using any one of the mechanisms in the first place.

This particular version is the MEIKO c s_ to o ls  code. The routines are 

self explanatory, with the exception of set_up_net, which in this case builds 

bidirectional channels by registering a processor in some table, then allowing 

each processor to look the others up in this table. The PARIX version of this 

particular routine is much more complicated: the channels between processors.

116



while still being bidirectional, have a definite start and end. Hence the start 

processor must set up its end of the net first; and the routine is written to 

force a processor to set things up in this, correct, order,

/*  MEIKO communication masker 

* /

#define  MASTER 

#include "s td .h ”

void get_from(ch,length,data)  

in t  ch; 

in t  length;  

char *data;

{
net id _ t  *id;  

char message[20]; 

in t  sent ;

id=&(net i d s . [ c h ] );

i f ( l e n g t h ! = ( s e n t= c s n _ r x ( tr a n s . , i d , d a t a , l en g th ) ))

{
spr in tf (m essage , "rx:%d:%d/%d", ch , s e n t , l e n g t h ) ; 

fa t a lerro r (m essa g e ) ;

}
}

void send_to(ch , length ,data)  

in t  ch; 

in t  length;
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char *data;

{
n e t i d . t  *id;  

char message [20];  

in t  sent;

id=&(net ids_[ch]);

i f ( l e n g t h  ! = ( s e n t= csn _ tx ( tr a n s_ ,0 ,* id ,d a ta , l en g th ) ))

{
spr intf (m essage , " tx :%d:%d/%d", ch, s e n t , l e n g t h ) ; 

fa ta lerro r (m essa g e ) ;

}
}

void set_up_net(argc,argv)  

in t  *argc; 

char **argv[] ;

{
char l a b e l [20];  

in t  id;

c s n . i n i t ( a r g c , argv ) ; 

maxids_= a t o i ( (*argv) [1] );  

home. = a t o i ( ( * a r g v ) [2]);

n e t i d s . = ( n e t i d . t  * ) m a l lo c ( m a x id s .* s i z e o f ( n e t id . t ) ) ; 

i f ( (c sn .open(hom e. ,  &trans.))  != CSN.OK) 

fa t a le r r o r (" c s  e rr o r " ) ; 

s p r in t f  ( l a b e l ,  "task*/,d", home.) ;

i f ( ( c s n . r e g i s t e r n a m e ( t r a n s . , l a b e l ) )  != CSN.OK)
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fa ta le r r o r (" e s  e rr o r " ) ; 

for(id=0;id<maxids_;id++)

{
i f ( id  !=home_)

{
s p r in t f  ( l a b e l , "task*/,d", id) ;

if((csn_lookupname(&(net ids_[ i d ] ) , l a b e l ,1 ) )  != CSN.OK) 

f a t a ler r o r (" cs  error");

}
}
}

void fata lerror(message)  

char *message;

{
e s . a b o r t ( m e s sa g e , - ! ) ;

}

void numerror(num) 

in t  num;

{
char message[5];

sprintf(message,"%d",num); 

fa t a ler r o r (m essa g e ) ;

}

/*  END * /
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A ppendix B

M athem atica R outines.

As a first stage in converting the routines for electric and magnetic transition 

rates into C, for inclusion in the full program, a set of M athem atica [56] rou­

tines were written to calculate most of the various coupling coefficients required 

in the evaluation of Brody-Moshinsky brackets [57] , among other things. This 

was done partly because it was easier to rewrite these routines from scratch 

than convert the old FORTRAN code. On the plus side, M athem atica offered 

an environment where the rewritten routines could be easily tested, and it also 

has a function which produces C code directly from the M athem atica source.

The routines are reproduced in full here, as they are fairly short, could 

prove useful in future, and are not to be found in a simple algorithmic form 

(as opposed to the mathematical forms), or even together, in any journal I 

have come across. I will comment further on each routine as I present them.

B .l  G eneral R ou tin es

For the main procedures to work, some general m athem atical routines should 

be defined.

Phase/:  Phase[a_] := ( - l ) ^ a

120



Fac/: Fac[0] := 1

Fac/: Fac[a_] := Fac[a] = a*Fac[a- l]  / ;  a>0

Facs/:  Facs[a_] := Fac[a_]

Facs/:  Facs[a_ ,b  ] := Fac[a]*Facs[b]

DFac/: DFac[0] := 1 

DFac/: DFac[l] := 1

DFac/: DFac[a_] := DFac[a] = a*DFac[a-2] / ;  a>l

Gam/: Gam[a_] := Gam[a] = DFac[2*a+l]/2"(a+1)

AngMomDelta/: AngMomDelta[jl_,j2_,j_] :=

F a c s [ ( j l + j 2 ) - j  , ( j + j l ) - j 2 ,  ( j 2 + j ) - j l ] / F a c [ j l + j 2 + j  + l]

JTest/ :  JTest[a_,b_,c_] :=

I f [ c <= Abs[a-b] I I c >= a+b, True, False]

Phase is self-explanatory; Fac is the factorial function. In common with 

many of the functions that follow, it is defined so tha t it stores values that 

it calculates, for immediate recall if the same factorial is ever required again. 

This technique greatly increases the speed of all of the functions defined in the 

rest of this appendix. Facs is simply an abbreviation for multiplying several 

factorials together. DFac is the double factorial function. Gam is defined by:

Gam[a] =
y/TT

for integers, and is used for half-integer values of the Euler gamma function, 

using DFac for integer values.

AngMomDelta is the square of the usual definition of the angular momentum 

delta defined in Pal [58]. The square is used so that the square root is taken
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over other terms simultaneously, again speeding up this heavily-used routine. 

Finally, JTest tests sets of angular momenta which are to be coupled to see if 

they satisfy the triangle inequality.

B .2  3-j sym bols

In this section, CGSum is the inner sum of the formula for a Clebsch-Gordan 

coefficient, taken from the appendix of Pal [58]. The constraints on the sum 

are taken from the condition that all factorials must be of positive numbers.

CGSum/: CGSum[j_, j l _ ,  j2_ ,  ml_, m2_] :=

Sum[Phase[k]/

Facs[k, ( j l + j 2 ) - j - k ,  j l - m l - k ,  (j2+m2)-k,  

j-j2+ml+k, j - j l -m 2+ k ] ,

{k ,M a x [0 , j2 - j -m l , j l - j+ m 2 ] ,

M in [ ( j l+ j 2 ) - j , j l -m l , j 2 + m 2 ] } ]

The next three functions are actual 3-j symbols: CGO is a Clebsch-Gordan 

coefficient with all ^-projections zero [58]. This is somewhat simpler and is 

included to speed up the larger coupling coefficients. Clebsch is the usual 

Clebsch-Gordan coefficient, while Wigner is the symmetric 3-j coefficient found 

in Edmonds [59]. It should be pointed out here that in a C implementation, it 

becomes more efficient to double all angular momenta and work purely with 

integers. The Mathematica versions with this innovation are needlessly lengthy 

for inclusion here, and further complicate later routines.

It is worth noting in passing that a Clebsch-Gordan coefficient package 

is supplied with M athematica [56], which fails for non-integer values of the 

angular momenta.

CGO/: CGO[jl_, j2_ ,  j_] := C G 0 [j l , j2 , j ]  =
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Block[{g = ( j l + j 2 + j ) / 2 } ,

If[Mod[2*g, 2] == 1, 0,  (P hase[ j l - j2+ g]*

Sqrt[(2*j+l)*AngMomDelta[j1, j 2 ,  j ] ]* F a c [g ] )  

/ F a c s [ g - j l ,  g - ] 2 ,  g - j ] ] ]

Wigner/: W igner [ j l . ,  ml_, j2_ ,  m2_, j _ ,  m_] : =

(Phase[j 2-j1+m]*Clebsch[j1 ,ml, j 2 ,m2, j , -m])

/Sq rt [2* j+ l ]

Clebsch/: C lebsch [ j l_ ,  ml_, j2_ ,  m2_, j _ ,  m_] : = 

lf[m != ml+m2 II j 1 >= Abs[ml] II 

j2  >= Abs[m2] I I j >= Abs[m] I I 
JTest [ j l ,  j 2 ,  j ] , 0, CGSum[j, j l ,  j 2 ,  ml, m2]*

Sqrt [AngMomDeltaCj , j l ,  j2 ]*

Facs[j-m, j l - m l ,  j2-m2, j+m, jl+ml,  j2+m2]*(2*j+l)] ]

B .3  Six-j and N ine-j Sym bols.

We continue by defining the larger coefficients. There are three kinds of six-j 

coefficients; these are Jahn’s U coefficient, Racah’s W, and the symmetric six- 

j [60]. These are named, obviously, JahnU, RachaW, and SixJ. Also in this 

section is the symmetric nine-j symbol, NineJ. This uses rearrangements to 

reduce the number of terms in the sum, as suggested in Pal [61].

JahnU/: JahnU[a_, b_, c_, d_, e_,  f_] :=

RacahWfa, b, c ,  d, e ,  f ] / S q r t  [ (2 * e+ l )* (2 * f+ l ) ]

Racah/: RacahWfa., b . , c . , d . ,  e . ,  f . ]  :=

Phase[a+b+d+e]*SixJ[a, b, c ,  d, e ,  f ]

S ixJ / :  S i x J f a . , b . ,  c . , d . , e . ,  f . ]  :=

S ixJfa ,  b, c ,  d, e ,  f ]  =

Sqrt[AngMomDelta[a, b, c] *AngMomDelta[a, e ,  f ]
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♦AngMomDelta[d, b, f ] *AngMomDelta[d, e ,  c] 

*SixJSum[a, b, c,  d, e,  f]

SixJSum/: SixJSum[a_, b_ , c _ , d_, e_, f _ ] :=

Sum[ (Phase [n]*Fac[n+l]) /

F a c s [n -a -b -c , n - a - e - f ,  n - d - b - f ,  n - d - e - c ,  

(a+b+d+e)-n, (b+c+e+f)-n,

(c+a+f+d)-n] ,

{n,  Max[a+b+c, a+e+f, d+b+f, d+e+c] ,

Min[a+b+d+e, b+c+e+f, c+a+f+d]}]  

NineJ/: NineJ[a_, b_ , c _ , d_ , e_, f _ ,  g _ , h_ , i_] :=

Block[{m},

If[(m = Min[a, b, c,  d, e,  f ,  g,  h, i ] ) != i.

Which[

m==a,NineJ [ e , f ,  d, h, i ,  g,  b, c,  a ] ,

m==b,NineJ [ f , d, e,  i ,  g, h, c,  a, b] ,

m==c,NineJ[d, e,  f ,  g, h, i ,  a, b, c] ,

m==d,NineJ [h, i ,  g, b, c,  a, e,  f ,  d ] ,

m==e,NineJ [ i , g, h, c,  a, b, f ,  d, e ] ,

m==fjNineJ [g, h, i ,  a, b, c,  d, e ,  f ]  ,

m==g,NineJ[b, c,  a, e,  f ,  d, h, i ,  g ] ,

m==h,NineJ[c, a, b , f , d, e , i , g,  h ] ] ,

Sum[Phase[2*k]*(2*k+l)*(SixJ[a,  d, g, h, i ,  k] 

*SixJ[b, e,  h, d, k, f ]  * S i x J [ c , f , i , k , a , b ] ,

{k,  Max[Abs[a-i] , Abs [b - f ] , Abs[d-h]] ,

Min[a+i, b + f , d+h]}]] ]
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B .4  B rod y-M osh in sk y  B rackets

There are several versions of the harmonic oscillator brackets; here we use a 

formula due to Bakri, as quoted in Lawson [62].

Bakri’s formulation is used here in preference to tha t of Baranger and 

Davies [63] soley because it is easier to write in small testable chunks. Although 

Baranger and Davies use stretched 9-j symbols and so reduce the eventual 

number of 6-j symbols tha t must eventually be calculated to get them, Bakri’s 

formula has a sum over fewer 9-j symbols and the two are actually equivalent.

There is yet another way of calculating Moshinsky Brackets, which involves 

much less algebra. This is direct diagonalisation of an appropriate m atrix 

operator, as discussed in [64]. This method sticks closely to the ideology 

followed in the Glasgow code, that the human end of the algebra should be 

simple, with the computer then doing many simple calculations to finish with. 

The diagonalization method of this paper could also be written very quickly 

by adapting some of the routines already in the code.

Also in this section are the coefficients of Brody and Moshinsky, [57] 

(here called Brody), and the coefficients of the p-th Talmi integral, here called 

Cp.

Mosh/: Mosh[nl_, 11_, n2_, 12_, n3_, 13_, n4_, 14_, 11_] : =

N[Block[{m},

I f [

(m = Min[2*nl+ll,2*n2+12,2*n3+13,2*n4+14]) != 2 * n l+ l l , 

Which[

m==2*n2+12, Phase[13-11]

♦Mosh[n2,1 2 ,n l , 1 1 ,n 3 , 1 3 ,n4 ,1 4 ,1 1 ] ,  

m==2*n3+13,Phase[14+12]

♦Mosh[n3,13,n4,14,nl, 1 1 ,n 2 ,1 2 ,1 1 ] ,  

m==2*n4+14,Phase[14+11]
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♦Mosh[n4,1 4 ,n3,1 3 ,n l , 1 1 , n2 ,1 2 ,1 1 ] ] ,  

(BakriS[2^nl+l l ,  11, 12, n3, 13, n4, 14 11] 

♦BakriA[n3, 13 ]♦Bakri [n4, 14])

/(4^BakriA[n l, 11] ♦BcikriA [n2, 1 2 ] ) ] ] ]

BakriS/: BakriS[en_, 11_, 12_, n3_, 13_, n4_, 14_, 11_] : = 

Sum[BakriL[kl, k2, k3, k4, 11, 12, 13,  14]

♦NineJCkl, k3, k4, 11, 12, 13, 14]

♦BakriV[kl, k2, k3, k4, n3, 13,  n4, 14,

F l o o r [ ( e n - k l - k 3 ) / 2 ] ] ,

{ k l ,  0, en},  {k2, Abs[13-kl] ,  13+kl},

{k3, A b s [ l l - k l ] ,  11+kl},

{k4, Max[Abs[12-k2], Abs[14-k3]],  Min[k2+12, k3+14]}] 

BakriL/: BakriL[kl_,  k2_, k3_, k4_, 11_, 12_, 13_, 14_] := 

Phase[k3]♦ (2^kl+l)♦(2^k2+l)♦ (2^k3+l)♦ (2^k4+l)

♦CGO[kl, k2, 13]^CG0[k3, k4,14]

♦CGO[kl, k 3 ,1 1 ]♦CGO[k2,k4,12]

BakriV/: BakriV[kl_,k2_,k3_,k4_,n3_,13_,n4_,14_,v2_] := 

Sum[BakriF[vl, n3, 13, k l , k2]

♦BakriF[v2-vl, n4, 14, k3, k 4 ] , { v l ,  0, v2}]

BakriF/: BakriF[v_, n_, 1 _ , j _ ,  k_,]  :=

Block[{en = 2^n+l},  If[Mod[en-j-k ,  2] == 1 II 

( e n - j - k ) / 2 - v  < 0 I I ( ( e n + k ) - j ) / 2 - v  < 0, 0,

(Fac[n]♦Gam[n+1]) /

( S q r t [ 2 ] ^en^Fac[c]♦Fac[(en-j-k)/2-v]  

♦Gam[((en+k)-j)/2-v]♦Gam[j+v] ) ] ]

BakriA/: BakriA[n_, 1_] :=

Phase [n]♦Sqrt [ 1 / (DFac[2^n]♦DFac[2^1+2^n+l] )]

Brody/: Brody[nl_,  11_, n2_, 12_, p_] :=
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N[ B lock[{ l  = d l + 1 2 ) / 2 } ,  I f  [Mod[2*1,2] == 1, 0,  

(Phase[p-1]*Fac[2*p+l]*

Sqrt[Facs [n l,  n2, 2*n l+ 2* l l+ l ,  2*n2+2*12+l]/  

F a c s [ n l+ l l ,  n2+12]]*

Sum[Facs[k, 2*ll+2*k+l,  n l - k ,  (2*p- l l+12) -2*k+l ,  

n2-p+l+k, p - l - k ] ,

{k,  Max[0, p - l - n 2 ] ,  M in [ n l ,p - l ] } ] )

/ (2T(nl+n2)*Fac[p] ) ] ] ]

Cp/: Cp[nl_,  11_, n2_, 12_, n3_, 13_, n4_, 14_, 11_, p_] : =

Block[{enl = n l+n2+( l l+12) /2 ,  en2 = n3+n4+(13+14)/2 } ,  

Sum[

M o s h [ n a , la ,n b ,2 * ( e n - n a - n b ) - l a ,n l , l l ,n 2 ,1 2 , l l ]  

*Mosh[(na+en2)-enl, la ,nb,

2*(en -n a -n b ) - la , n3, 1 3 , n4,14,11]

♦ B r o d y [n a , la , (n a + en 2 ) -e n l , la ,p ] , {n a ,0 , e n } ,

{ l a ,  0, 2 * (e n l -n a )} ,  {nb, 0, e n l - n a - l a / 2 } ] ]
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