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Summary

The aim of this thesis is to explore the application and development of polarization diagnostics 

as a means of determining magnetic field structures in plasmas. It comprises two main themes: 

(1) an exploration of the center-to-limb Ha polarization variation in the solar polar and 

equatorial regions and (2) an investigation of the Faraday rotation effect on the COMPASS- 

D tokamak. The former deals with the application of the Hanle effect in determing solar 

magnetic field structures while the latter is a means for diagnosing the magnetic field profile 

and hence the distribution of the current density in a tokamak; plasma. Other solar features 

exhibiting polarization are also presented and the corresponding magnetic fields investigated.

First an investigation of the center-to-limb linear polarization variation was conducted 

utilising an instrument capable of performing high precision polarimetry with a narrow band 

(FWHM AA =  O.SA) Ha filter tunable by ±  0.33Â. A double beam imaging polarimeter was 

designed and constructed to measure the differential polarization between the center of the 

Sun and the limb at an angular resolution of 4 arcseconds per CCD pixel, with an expected 

polarimetric accuracy of ±  0.02%. Other solar features exhibiting linear polarization such 

as prominences and areas of the quiet chromosphere are presented and the related magnetic 

fields determined. The radiation under investigation is engendered by coherent scattering 

processes associated with spectral lines and is modified by weak magnetic fields. This pro­

cess is called the Hanle effect and involves a depolarization and a rotation of the plane of 

polarization. The second major part of the thesis relates to the results of the double diagnos­

tic, namely an interferometer and a proposed polarimeter system operated at COMPASS-D. 

The interferometric part of the diagnostic serves as a tool to determine the electron density 

in the plasma. Once this is known, the polarimetric data may be analysed to give the cross- 

section distribution of the poloidal magnetic field, or, equivalently, the current density. The 

major limitation of the diagnostic is the line-integrated nature of the measurement. Since 

measurements are performed under one viewing angle only, assumptions related to plasma 

symmetry are essential for a proper interpretation of the data.

This thesis focuses on the development and evaluation of the polarimetric aspects of the
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combined diagnostic. Plasma birefringence, resulting from the presence of a magnetic field 

component along the propagation direction of the beam, causes the linear or elliptical po­

larization of an incident probing wave to rotate. The rotation angle can be determined via 

a measurement of the polarization state of the emerging wave, hence the term polarimetry. 

A conventional but robust technique measures the relative intensity of two orthogonal linear 

polarization components separately after passing through or reflected from a polarizer. Al­

ternatively, single detector techniques have been developed, where the incident polarization 

is modulated to generate an amplitude-modulation on the detected signal, from which the 

Faraday rotation can be derived.

The work in this thesis was carried out by the author at the University of Glasgow and at 

the UKAEA Culham research site during the period 1995-1998. Two-thirds of the time was 

spent at Glasgow under the supervision of Dr. David Clarke developing and observing with 

the double beam imaging polarimeter. The remaining time was spent at Culham working on 

the COMPASS-D tokamak under the supervision of Dr. Colette Hunt. The original work of 

this thesis appears in Chapters 2 , 4 and 5.

The opening chapter reviews the two main fields of interest. It starts with a discussion of 

the basic concepts and terminology of polarimetry introducing the Stokes and Jones vector 

formalism. The polarigenic processes in the Sun and their suitability as magnetic field diag­

nostic are considered, followed by a review of recent studies with particular attention paid to 

the Hanle effect phenomenon. The Faraday rotation effect is then described with the existing 

techniques for measurement and interpretation of the poloidal magnetic field in a tokamak 

plasma reviewed. The remainder of the chapter serves to introduce the reader to the basic 

principles of fusion.

Chapter 2 starts with a review of the current imaging techniques used in astronomical 

polarimetry followed by a discussion of the factors that adversely affect any measurement. 

A prototype solar imaging polarimeter is described with an explanation of the instrumental 

techniques which have been used, and the optical system specially designed to observe the 

small levels of polarization in the solar light. The reduction techniques required to ascer­

tain a polarimetric measurement are also discussed and developed. A novel technique to 

determine the polarimeter’s instrumental polarization utilising a monochromatic depolarizer 

is experimentally evaluated for the first time.

A comprehensive overview of the theory of electromagnetic wave propagation in an mag­

netised plasma including the theories of Faraday rotation and birefringence is introduced in 

Chapter 3. The inversion techniques necessary to obtain the poloidal magnetic field from the
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Faraday rotation measurements are also discussed. Finally an analytical solution is presented 

that details the expected Faraday rotation angle for COMPASS-D and the birefringence in­

troduced due to the presence of the toroidal magnetic field.

Chapter 4 outlines the two polarimetric techniques being considered for commissioning 

on the COMPASS-D tokamak and discusses the suitability, accuracy and reliability of each 

in turn. The second part of the chapter is devoted to the design and development of a 

polarimetric test bench in order to experimentally ascertain the feasibility of the amplitude 

method and its suitability for operation on COMPASS-D. The chapter concludes with a 

thorough discussion of all the results and a recommendation for possible implementation of 

a polarimetric technique on the experiment.

The Ha observations taken with the solar imaging polarimeter of the solar disk in Glasgow 

during the summer of 1997 are presented in Chapter 5, commencing with a discussion of the 

techniques used to determine the instrumental polarization of the experimental setup. This 

is followed by the center-to-limb observations taken at three distinct wavelengths centered on 

Ha. The final part of the chapter presents the polarization map of two prominences recorded 

during the observing run.

Chapter 6 offers a brief overview of the results and conclusions of the whole of the work 

providing, in a digestible form, a summary of achievements by the various studies described 

in this thesis. It also proposes new avenues of research and makes suggestions of how the 

various methods used in this thesis may be improved.
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Chapter 1

Introduction

Polarimetry has been an important observational tool for solar and plasma physicists since 

1908 when George Ellery Hale first detected circular polarization in the wings of a Fraunhofer 

line in the light from a sunspot. Zeeman had earlier discovered that polarized light is emitted 

and absorbed by atoms in a magnetic field and Hale used his measurements to estimate the 

magnetic fields in the sunspots. The measurement of magnetic fields remains today a primary 

motivation for most solar polarimetry. Recent observations by Stenfio and Keller (1997), using 

a high precision polarimeter, have revealed a polarization spectrum that looks very different to 

the ordinary, unpolarized solar spectrum and also contains an astounding wealth of spectrum 

structures. It has therefore been referred to as the “second solar spectrum”. Fields as strong 

as one or two thousand gauss are common on the Sun and these interact strongly with solar 

plasmas either to produce or to infiuence profoundly the nature of many solar features such 

as sunspots, prominences, fiares, plages and the corona. Fusion in solar type plasmas may be 

a long-term candidate for energy production with the most promising magnetic confinement 

device a toroidal shaped donut called a “tokamak”. The physical processes in tokamaks are 

dominated by magnetic fields and their understanding is vital for future research.

This chapter starts with a discussion of the basic concepts of polarization introducing the 

Stokes and Jones vector formalism. The polar igenic processes in the Sun and their suitability 

as magnetic field diagnostic are then considered. A review of past and current work in this 

area is presented. The Faraday rotation effect is described, which can be used as a diagnostic 

for the poloidal magnetic field in a plasma. The existing techniques for the measurements 

of the Faraday effect are reviewed. The remainder of this chapter serves to introduce the 

reader to the basic principles of fusion. Magnetic confinement is introduced as a means to 

control and stabilise a plasma. The relevance of the poloidal magnetic field to confinement in 

a toroidal geometry is discussed. The research, presented in this thesis, is placed in relation

1
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to this work.

1.1 Polarimetric Definitions

The polarization of electromagnetic waves may be uniquely defined in terms of four Stokes 

parameters formulated by G. G. Stokes (1852), (more modern descriptions may be found in 

Shurcliff, 1962 and Clarke and Grainger, 1971). A beam of radiation containing an assembly 

of waves may first be considered in terms of a single classical wave, formally described by the 

components of its electric vector in two orthogonal planes perpendicular to the direction of 

propagation of the wave. For a wave of arbitrary polarization E propagating along the z axis 

of a Cartesian coordinate system, these components may be written at a time t as,

Ey =  (1.1)

where Exo and Eyo are the amplitude of the x- and y-components, 6x and 8y are the phases 

at z =  0, w is the angular frequency of the electromagnetic wave and k the wavenumber. In 

general, the tip of the electric vector will trace out an ellipse through time in the x-y plane. 

There are two special cases of interest:

1. Linear polarization, where the phase difference 8y — 6x = rmr

2. Circular polarization, where the phase difference Sy — Sx = ± | ,  and the amplitudes are 

equal.

In general the electric field behaviour associated with radiation from a source is more com­

plicated, comprising a mixture of classical waves whose amplitudes, directions of vibration 

and phases are varying in some way.

The polarization associated with a beam of waves can be related to the electric field vectors 

by the Stokes parameters. I, Q, U and V,  which are defined as

I  =  <BJ„> + < 4 „ >

Q = < E^„ > — < Eyg >

U = < 2ExoEyo cos{Sy — 6x) > ( 1.2)

V  = < 2ExoEyoSm{Sy -  Sx) >

where the expectation values (< >) are determined over the experimental time and over all

the wavelengths included in the passband of the experiment. The term I  represents the total
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intensity of the waves, Q and U the intensities associated with linear polarization, and V  

the intensity associated with circular polarization with its sign describing the sense of the 

handedness. The V  parameter is rarely determined in astronomical optical polarimetry due 

to very low signal-to-noise levels. The Stokes parameters describing a mixture of incoherent 

beams of light are the sum of the respective Stokes parameters describing the component 

beams.

The quantities Q and U are determined with respect to a set of chosen reference axes for 

a particular observing system. For astronomical measurements, the Equatorial co-ordinate 

frame is normally chosen such that positive Q corresponds to a direction of vibration parallel 

to the N/S direction or Declination; a negative value for Q refers to the vibration being 

parallel to the E/W  direction. A polarization measurement with zero Q component but with 

positive U describes a vibration set along the projection of north east on the sky. The degree 

of polarization, p, is defined by

p = v W H ^ .  (1.3)

with y  =  0 for linear polarization. The direction of vibration of the electric field, known 

as the position angle, may be expressed as an angle running from 0° to 180° measured anti­

clockwise with respect to the positive Q-axis. The angle 6 relating the direction of vibration 

of the linear polarization to the frame may be defined by

ta n 2 0 = ^ .  (1.4)

The parameters Q and U may also be normalised as q and u,  such that

q = j  = y. (1-5)

The degree of linear polarization may now be written as

where p = 0 corresponds to unpolarized light and p =  1 to complete linear polarization of the 

light. The position angle, 6, can be expressed in terms of the normalised Stokes parameters 

where

q = p cos 29

u = psm26  (1.7)

9 = 1 :  arctan ( —
2 \ q
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When a beam of light propagates through an optical element the Stokes parameters will be 

affected, implying that the polarization of the light has been altered. This transformation 

can be represented analytically with the application of Mueller calculus whereby optical 

components are represented by a 4x4 matrix and the Stokes parameters are expressed as a 4- 

vector. The affect of a light beam transversing several optical components can be represented 

by the multiplication of the appropriate Muller matrices where

lout —

I  \  ̂ M il M i2 M i3 M î4 ^ /  \
Q M21 M22 M23 M2A Q

=  [M] Tin =
u M31 M32 M33 M34 u

U Jout  ̂ M41 M42 M43 M44 y U /
(1.8)

The application of Mueller calculus allows the effects of the polarizing optics or modulator 

in a simple polarimeter to be investigated. The polarization of the emergent light may be 

determined with the incorporation of the appropriate optical components in the polarimeter. 

The fast axis of an optical component, such as a half-wave plate, can be aligned at an arbitrary 

angle, 0, with respect to the Cartesian coordinate system of the instrument. Therefore, to 

evaluate its effect on the incoming light, the coordinate frame is first rotated through an angle 

0 , [+R(0)j, the Mueller matrix [M] of the optic is applied and the frame is then rotated back 

through 0, [iî(—0)] to its original position. This procedure is summarised by:

lout = [ R ( - 0 ) [M] R ( + 0 )] Tin- (1.9)

The Mueller matrix for an ideal half-wave plate is

/

[M] =

1 0 0

0 1 0

0 0 - 1
( 1.10)

\  0 0 0 - 1  /

The coordinate rotation matrix R{ip) can be expressed by

/ 1 0 0 0 \ 
0 cos 2 0  sin 2 0  0

[R W ]  =
0 — sin 2 0  cos 2 0  0

VO 0 0

( 1 .11)

The  final element in a polarimeter is an analyser which separately transmits two of the 

orthogonal polarization components. The linear polarizer is aligned to the reference axis of
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the instrument to produce a constant vibration of polarization such that

^ 1 ± 1 0  0 ^

±1  

0

V 0

1 0 0

0 0 0

0 0 0 /

( 1 .12)

Incorporating matrix [P] into Equation 1.9 enables the determination of the Stokes param­

eters, Q and U from the output of the polarimeter. The form of the light emerging can be 

represented by

lo u t = [f] ■ [fl(-V) [M] R { + t P ) ]  - l i n .  (1.13)

Evaluating Equation 1.13 with the appropriate matrices yields

I  I  \

Q 
u

j out

^ I  ± Q  COS 40 ±  C7 sin 40  ̂

I  ± Q  cos 40 ±  C/ sin 40 

0 

0

(1.14)

The above equation is the general form of a double beam polarimeter where the ±  signs 

refer to orthogonal polarized states. For reference these will be termed the Ordinary and 

Extraordinary rays with a -f and — sign accordingly. A more detailed discussion of this type 

of polarimeter is presented in Section 2.2. In terms of the measured signal, it is the output 

intensity which is monitored and this may be expressed by

7(0) =  - ( /  ±  Q cos 40 ±  U sin40). (1.15)

Evaluating Equation 1.15 for various values of 0  allows the parameters Q and U to be 

determined.

The Stokes and Mueller matrix formalism may only be utilised when dealing with an 

incoherent beam of waves. However, when the phase of a polarized wave relative to some other 

polarized wave is important, the Stokes parameters cannot be used since they deliberately 

ignore phase (except in a relative sense within each signal, as needed to specify the state 

of polarization). However, there are situations (such as when combining the beams of an 

interferometer) when phase does matter, (see Section 4.1.1). Under such circumstances Jones 

vectors and matrices, first introduced by R. C. Jones (1941) are utilised. These represent 

the electric fields (and their transformation) of two orthogonal polarization forms, including 

absolute phase if desired. However, it is important to know when it is necessary to use Jones 

rather than Mueller calculus (i.e. when the absolute phase is important). The notation used
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for Jones calculus is the complex notation for sinusoidally varying quantities. This notation 

is explained clearly in Born and Wolf (1964). Jones represents a fully polarized signal as the 

vector sum of two electric fields at right angles, written in column matrix

E = (1.16)

Any optical component modifying the state of polarization is represented by a 2 x 2 matrix 

operator or the column matrix in an analogous way to the Mueller calculus.

1.2 Solar Polarimetry

Polarization associates with radiation emerging from the Sun is engendered by a variety 

of processes in the photosphere and chromosphere and its detection is a well established 

diagnostic in understanding surface phenomena. From studies of specific regions of the Sun, 

linear polarization has been observed both in the continuum spectrum and within spectral 

lines. Continuum polarization may originate from Rayleigh scattering (by atoms, mainly by 

neutral hydrogen), Thompson scattering (by electrons) or by radiative transfer processes. 

Within solar spectral lines, either the Zeeman effect or coherent resonance scattering can 

produce polarization. The versatility and relative ease of the Zeeman effect has made it the 

mainstay of observational investigations of solar magnetism (e.g. magnetograms, see Baur, 

1981), in particular strong magnetic fields organised into networks, active-region plages and 

sunspots. The Zeeman effect suffers, however, from a lack of sensitivity to intrinsically weak 

fields and to fields with mixed polarities or random orientations at small scales (turbulent 

fields).

A promising alternative for field investigation is the Hanle effect (see Hanle (1924), Moruzzi 

and Strumia (1991) and Stenfio (1994)). This phenomena enables certain spectral lines to be 

sensitive to very weak fields and exhibit polarization, thus allowing the magnetic field strength 

and direction to be determined. The Hanle effect has been employed to deduce the magnetic 

structure of solar prominences (see Leroy et al. (1977), Sahal-Bréchot et al. (1977), Bommier 

(1980), Degl’Innoncenti (1982) and Querfeld et al. (1985)), to investigate turbulent fields in 

the solar photosphere (see Stenfio (1982), Faurobert-Scholl (1993) and Faurobert-Scholl et al. 

(1995)) and to explore magnetic canopies in the chromosphere (see Faurobert-Scholl, 1992 and 

Faurobert-Scholl, 1994). However, its application is relatively rare. The problem has largely 

been an observational one, since the full diagnostic of the Hanle effect requires observations 

that combine both high spectral resolution and high polarimetric accuracy.
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It is convenient to describe four distinct observed polarization phenomena relevant to the 

work presented here, viz:

• Limb polarization

• Resonance or fluorescence scattering

• Polarization from differential saturation with the Zeeman effect

• Hanle Effect

and these will be described briefly below.

1.2.1 Limb P olarization

Light from the solar limb is polarized with its azimuth in a tangential direction. The gradient 

of the growth of the polarization from the solar center to the limb, the center-to-limb variation 

(CLV), has been well documented by Leroy (1972), Dollfus (1974) and Mickey and Orrall 

(1974). Dollfus made radial scans from the center of the solar disk out to about 20 arcseconds 

from the limb in a range of wavelength bands; the results of such measurements are shown 

in Figure 1.1. These graphs not only show clearly the CLV of polarization, but also highlight 

the wavelength dependence as the magnitude of p decreases by a factor of about 2 at the 

limb itself between the mecisurements of 0.41/im and 0.60/im. According to Stenflo et al. 

(1983b) and Leroy (1990) the solar limb broadband polarization is well understood in terms 

of theory developed by Dumont and Pecker (1971). This states that the variation of p with 

fjL (where p  is the cosine of the angle between the solar radius vector to the scatterer, and the 

line of sight) depends on the variation of scattering particle densities with height. Typically 

the value of p may be ~  0 .2% within a few arcseconds of the limb, reducing to ~  0 .01% 

at 20 arcseconds. At ~  5 arcseconds from the limb, the measured component of linear 

polarization with electric vector tangent to the limb is at least 50 times greater than the 

measured circular polarization, and at least 15 times greater than the measured net u linear 

polarization. Figure 1.2 illustrates empirical and continuum polarizations as a function of 

wavelength at a limb distance of 10 arcseconds, illustrating that the continuum polarization 

varies from > 0.1% below 4200Â to < 0.01% above 6000Â.

Resonance scattering and Zeeman effects may also play important roles in the generation 

of limb polarization. In addition, polarization effects also result from radiative transfer pro­

cesses, from scattering by electrons and Rayleigh scattering. Leroy (1972) has shown how a 

plage can alter the smooth behaviour of the CLV and he suggested that the CLV may have
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Figure 1.1: Polarization p (in units of 10 as a function of distance, d, inside the solar limb 
(in arcminutes) at four wavelengths (Taken from Dollfus, 1974).

different gradients along equatorial and polar radii, with the equator displaying 10% larger 

polarization than the pole (see Figure 1.3). Outside of solar active regions with large mag­

netic fields, it is not possible to measure line polarizations due to the Zeeman effect. However, 

resonant and fluorescent scattering does generate polarization all over the solar disk, with 

increasing amplitude near the solar limb. Near the edge of the solar disk, all these processes 

generate polarizations with the predominant electric vector tangential to the limb.

1.2.2 R esonan ce and F luorescent Scattering

Lord Rayleigh, circa 1922, first discovered that by exciting gaseous mercury by polarized 

radiation, the emitted resonance line at 2527Â will exhibit linear polarization. This resonance 

polarization effect was also detected in the Ca I 4227Â line in light from the solar limb 

by Redman (1941). Since then, such effects have been explored in a variety of lines (see 

Stenflo (1974), Wiehr (1978), Stenflo et al. (1980), Wiehr (1981) and Bianda et al. (1998)). 

Recently the CLV of polarization for many resonance spectral and the investigations have 

been extended to the detection of the Hanle effect (resonance scattering in the presence of a 

weak magnetic field).
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Figure 1.2: Empirical and theoretical continuum polarization as a function of wavelength. 
The filled circles represent determinations from scatter-plot diagrams. The solid curve, 84% 
of the theoretical curve, represents a fit to these points (Taken from Stenflo, 1983b).

The generated polarization for each resonance line increases towards the solar limb with 

the observed level of effects depending on a variety of influences. The scattered radiation 

will be polarized only if there is an anisotropy in the incident radiation field. This global 

anisotropy is provided by the solar limb darkening. Polarization arises because the incident 

radiation, being anisotropic, induces a net dipole moment in the scattering particle. If the 

particle does not suffer a collision before it re-radiates, the phase between the vector compo­

nents of the dipole moment are preserved and remain imprinted on the scattered radiation, 

a phenomena known as coherent scattering. Most of the scattering in the solar atmosphere 

is incoherent due to the high collision rate, but the fraction of coherent scattering increases 

rapidly with height in the atmosphere due to the decrease in density and thus in collision 

rate. The anisotropic illumination makes the scattering polarization increase from zero at 

disk center to a maximum at the solar limb. Due to decreasing limb darkening, the magnitude 

of the polarization generally decreases towards the blue end of the spectrum. Stenflo et al. 

(1980) measured polarized line profiles of 10 non-magnetic resonance lines (including Ca II H 

and K and Ca I 4227Â) and their center to limb variation. They showed that in strong 

lines with pronounced dampening in the wings, the polarization had a maxima in the wings, 

typically about 0.6Â from the line-center, and a few strong lines such as Ca II K and Ca I 

had narrow polarization peaks in the Doppler core, as illustrated in Figure 1.4, whereas the 

absence of core polarization in some resonance lines is likely to be connected with magnetic
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Figure 1.3: Upper- A diagram of polarization measured along an equatorial radius and a 
polar radius. The dashed line represents the condition of the polarization being identical 
along the two radii. Lower- A scan along a solar radius including a plage. (Taken from Leroy, 
1972).
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depolarization, see Section 1.2.4. The existence of maxima in the wings may be explained 

in qualitative terms. Firstly, the polarization must decrease out in the far wings because 

the ratio of the line to continuum opacities decreases and the continuum is less polarized 

than the line. Secondly, the polarization must decrease when moving close to the core since 

the large opacities there make the radiation field more isotropic leading to reduced polariza­

tion. These effects have been reproduced in radiative transfer calculations by Dumont et al. 

(1973). Later Rees and Saliba (1982) and Saliba (1985) showed how the presence of a narrow 

polarization peak in the Doppler core together with the separate peaks in the wings could be 

understood as an effect of partial frequency redistribution in polarized radiative transfer for 

strong lines. This means that the depolarization dip between the core and wing polarization 

maxima is perhaps the clearest signature of the transition from complete non-coherent scat­

tering in frequency in the Doppler core to coherent scattering in the dampening wings of a 

resonance line. In addition it was found that the polarization is very sensitive to temperature 

gradients, indicating that linear polarization profile analysis may offer an important new way 

of modelling the temperature distribution in the solar atmosphere. Typical maximum values 

are about p ~  3% with the direction of vibration tangential to the limb.

Stenflo et al. (1983a,b) recorded the linear polarization spectrum of 10 arcseconds inside 

the solar limb at the heliographic north pole across the wavelength ranges 3165-4230Â and 

4200-9950Â in order to explore the physics of scattering in spectral lines. A result of par­

ticular interest to this work was the polarization in two Balmer lines Ha and H/3, Pmax = 

0.17% and 0.20% respectively, a case of fluorescent scattering in which emission of an Ha 

photon seems to be preceded by excitation by a Ly/? photon, and similarly photons scattered 

in H/3 representing scattering of Lyy photons, see Figure 1.5. The Balmer lines should repre­

sent a clear case of fluorescent scattering, when the initial and final levels are different. The 

population of the hydrogen ground level dominates greatly in the solar atmosphere over the 

population of the first excited level. When for instance Ha is emitted by a transition from n 

=  3 to n = 2, it seems more likely that the preceding radiative excitation of level n =  3 has 

occurred from the ground state, i.e. by a Ly/3 photon.

Recent observations by Stenflo and Keller (1997) of the “second solar spectrum” have re­

vealed a highly unexpected and surprising feature, the prominence of molecular contributions, 

particularly the C2 and MgH lines as illustrated in Figure 1.6. The polarization of molec­

ular lines provides a new source of information on the temperature and pressure structure 

of the solar atmosphere. A number of spectral lines have been observed, by Stenflo et al.

(1997), at two different limb distances [p, = 0.1 and 0.2) in order to compare the steepness
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Figure 1.4: (a) Stokes I  j C  spectra of Ca I 4227Â , where C  is the continuum intensity. The 
solid profile was observed at /i = 1, the dotted profile at /i =  0.1. (b) Stokes Q /I spectra. 
The top 5 spectra were obtained at (from top to bottom) = 0.1, 0.15, 0.2, 0.3, 0.4. The
noisy spectrum at the bottom of the frame is the same as the spectrum at fi — 0.4, but prior 
to Fourier smoothing (Taken from Bianda et al. 1998).
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Figure 1.5: Top: Polarization in Ha and H^. Bottom: Principles of fluorescent scattering in 
Ly/3 —> Ha (left) and 1 Ca II H and K 2 Ca II infrared triplet (right) (Taken from Stenflo 
et al. 1983b).

of the CLV of their polarization amplitudes. The spectral lines with the steepest CLV are 

molecular lines, the Ca II infrared triplet (8542Â and 8662Â), Ha, and Na I 8195Â where 

the polarization declines by about a factor of 3 when going the 15 arcsecond distance from 

/.I = 0.1 to II = 0.2, as compared with a factor of 6 for the continuum polarization and 1.38 

for a purely dipole-scattering atmosphere, see Figure 1.7. In contrast the Sr I 4607Â and Ba 

II 4554Â lines have only moderately steeper CLVs than that of the purely scattering atmo­

sphere. The CLV of the Sr I 4607Â has received most attention, see Figure 1.8, since this 

line lends itself well to detailed modelling with numerical radiative transfer (see Faurobert- 

Scholl, 1993 and Faurobert-Scholl et ah, 1995). This modelling has been performed mainly 

for the purpose of diagnosing “hidden” turbulent magnetic fields. Such fields that are tangled 

or turbulent on scales that are beyond the attainable spatial resolution are invisible in any 

regular magnetogram.

The shapes and slopes of the CLV curves are sensitive functions of the atmosphere struc­

ture, and as such they may serve as new constraints on models of the temperature density 

stratification of the Sun’s atmosphere. A semi-analytical expression provides a good fit to
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Figure 1.6: Examples of molecular features in the second solar spectrum. The wavelength 
of identified lines of C2 molecule are marked by solid, unlabelled tick marks, those of MgH 
by dashed tick marks a the top of both the upper and lower panels (Taken from Stenflo and 
Keller, 1997).



CHAPTER 1. INTRODUCTION 15

46 0 7  c o n t in x n u n  
2  S r  I 4 6 0 7
1 Ba n  4554
N a I D , b lu e  v in g  
Na I D, line core 
Na I Dj line core 
4 N a I 61G5 
H (8 4561 
H a  6593
2 Ca II 0542
2 Ca II 0662
3  C a I 6 1 0 3  
3  Ca I 6 1 2 2  
1269 Fa I 6102.2 
1260 Fa I 6 1 0 3 .2  
2 Mg I 5167
2 Mg I 5173 
2 Mg I 8164 
MgH 5 1 6 5 ,5  
MgH 5165.9 
MgH 5166,2 
MgH 5170.9 
MgH 5171.0 
MgH 5 1 7 3 .3

0 .2  0 .4  0 8  0 8
P o la r iz a t io n  r a t i o  j>{/l= 0 .2 ) /  p ( ^ = 0  1)

Figure 1.7: Overview of the slopes of the CLV for a number of lines. The slopes are represented 
by the ratio between Q / I  polarizations observed at // = 0.2 and /i =  0.1. The horizontal 
lines represent error bars. The ratio of 0.726 for a purely scattering atmosphere is given by 
the solid vertical line, while the corresponding ratio of 0.485 for the analytical function (1 - 

is given by the vertical dashed line. For any optically thin scattering layer the CLV 
function at 5000Â gives a polarization ratio of 0.37 (Taken from Stenflo et al. 1997).

the observed values of the polarization maximum of the Sr I line:

Q a{l — fj?)
(1.17)

I  {fi P b)

with the parameters values a = 0.3% and b — 0.07 fitting the data. The choice of this func­

tional form, first introduced by Stenflo and Keller (1997), is based on two main considerations. 

Firstly, in the case of a plane-parallel stratification, the path length of an optically thin layer 

scales as l /ii .  Secondly, the source function of Stokes Q scales as (1 - fi^). Combining these 

two dependences yields the form (1 — which gives a good description for optically thin

lines. In order to approximate the CLV of optically thick lines the free parameters a and b 

are introduced. Parameter 6 accounts for the breakdown of the plane-parallel approximation 

when approaching the limb. However, while these considerations provide a good explanation 

for the steep CLV of optically thin lines like the molecular lines, they are not very applica­

ble to optically thick lines whose CLV will be governed by more complex radiative-transfer 

effects, like Ha and the Ca II infrared triplet.

To understand the scattering physics on the Sun and to exploit it for various diagnostic 

purposes it is imperative to observe systematically the CLV behaviour of many more lines in 

a similar, rather complete way as has been done for the Sr I line. The CLV of the scattering
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Figure 1.8 : Center-to-limb polarization (Q/I)  amplitude variation of the Sr I 4607Â line 
(upper set of points) and continuum polarization (lower set of points) (Taken from Stenflo et 
al. 1997).

polarization is a sensitive function of the height variations of temperature and density in the 

upper photosphere, temperature minimum, and chromosphere, and it thus provides novel 

constraints for atmospheric modelling.

1.2.3 T he M agnetic  Zeem an Effect and M agnetic  In tensification

The Zeeman effect in a magnetic field is a well known phenomenon and is the basis of 

measurement of solar magnetic fields by means of standard magnetographs. The energy 

levels of atomic electrons in an external magnetic field are split into several components 

according to their total magnetic dipole moment, /i, due to the orbital and spin magnetic 

dipole moments. For a magnetic field strength, B, of less than several tenths of IT  (i.e. a 

few thousand Gauss) the splitting is proportional to B and given by

A E  = —/i-B. (1.18)

The polarization properties of the radiation depends on the direction of observation relative 

to the magnetic field.

For observation along the poloidal field there are only two a components which are right- 

and left-handed circularly polarized. For observation perpendicular to the magnetic field 

there are two a lines polarized perpendicular to B and a tt line polarized parallel to B.
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Considering a transition from a singlet state to a higher energy level, the spectral line 

will be split into 3 components. The central component has the same energy as the single 

zero-field line, is twice the intensity of the two components displaced in energy by AE and 

is of orthogonal polarization to them. The separation of the Zeeman components may be 

calculated from the expression, viz

AA = ±5.89xlO-^^pBA^ (1.19)

where AA is the Zeeman displacement, A is the undisturbed wavelength, B is the magnetic 

strength strength (gauss) and g is the Lande factor. In order to detect this effect, the 

magnetic field should be strong enough to introduce a measurable displacement greater than 

the natural width. If the magnetic field is weak, Zeeman splitting will be too small for 

detection. However the presence of the weak field might be investigated through the Hanle 

effect and resonance scattering polarization.

1.2 .4  T he H anle Effect

The Hanle effect concerns the modification of polarized resonance line scattering by solar 

magnetic fields and it can thus be used as a diagnostic of magnetic fields. It provides a 

different diagnostic of magnetic fields, operating for a lower range of field strengths than does 

the Zeeman effect. The current status of the theory and observations of the Hanle effect in 

solar studies are discussed in several contributions to a workshop on solar polarization, (see 

Stenflo and Nagendra, 1996).

The consequences of the Hanle effect for resonance line scattering polarization can be 

described in terms of the classical damped oscillator model for the scattering of radiation by 

an atom, Mitchell and Zemansky (1961). In the classical model, the absorption of light will 

induce oscillations of the atom in two orthogonal directions. The basic physics of the Hanle 

effect is that the components of the electron motion that are transverse to the magnetic field 

will be made to process at the Larmour frequency ujl-, owing to the v x B Lorentz force on the 

electron emitting circular polarized light along the magnetic field and linearly polarized light 

normal to the field. The results are a decrease of the degree of polarization and a rotation 

of its plane, depending on the strength and the direction of the magnetic field. In terms of 

the linear polarization with the dominant vector parallel to the solar limb, the Hanle effect 

reduces the polarization, and rotates the direction of vibration through an angle 0 . Breit 

(1925) derived expressions for the percentage polarization, p, and the angle of rotation, 0 .
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Figure 1.9: Co-ordinate system for describing the Hanle effect on the solar limb.

For polarization observed along the magnetic field of strength B, the polarization is

Po
P ( 1.20)

where Po is the percentage polarization for the field-free case, ujl = r  is the mean

radiative lifetime (or the reciprocal of the Einstein transition rate Aŷ i with upper and lower 

levels u and /), e is the electron charge, g is the Lande correction factor, c is the speed of 

light and rUe is the electron mass. The rotation 0  of the polarization is given by

0 = - arctan(gWf,T). ( 1 .2 1 )

The effect of the magnetic field on the linear polarization can be explained by considering 

Figure 1.9 and Figure 1.10. As radiation travels from the Sun to the observed point O (lying 

along the y-axis) the scattered light exhibits polarization Po with plane of polarization parallel 

to the x-axis. If a weak magnetic field is present at the region of scattering, p will be modified, 

depending on the direction of the magnetic field with respect to the observer. The magnetic 

field vector is characterized by Bq. This latter vector is at angle E with respect to the x-axis 

and its projection onto the zy-plane is at angle H with respect to the line of sight.

In the case of a longitudinal magnetic field (along z-axis, E =  90° and H = 0°) an observer 

sees radiation that is polarized in the x-direction. Figure 1.10 shows the motion of the atomic 

oscillator as viewed by an observer on the z-axis looking along the magnetic field, with positive
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Hanle Ratio Electron Motion Polarizat ion

Figure 1.10: The Hanle effect as seen by an observer looking along the magnetic field. Three 
cases are shown for the ratio of the precession rate lül to the radiative rate Aui. The left 
hand column gives the ratio Auf, the middle column shows the classical electron motion; and 
the right column indicates the intensities of the scattered light in two orthogonal directions. 
The cases shown are for the scattering of unpolarized light that is incident from the negative 
p-direction at the left with the magnetic field along the viewing line-of-sight on the z-axis. 
For weak magnetic fields, ^  ly, the scattered light is nearly 100% polarized along the 
a:-direction. For large fields with ujl/ A uI Z$> 1, the Hanle precession completes an entire 
rotation before much damping of the oscillator can occur, so the scattered light is emitted 
evenly at all position angles (known as “saturation”), such that Ix ~  I  y and the polarization 
drops toward zero. When ujl/ A ui = 1, the optimal Hanle effect sensitivity to the magnetic 
field is observed. Note that an observer on the p-axis (forward scattering) would see Ix =  h  
in the absence of a magnetic field. However, as ly increases owing to the Hanle effect, Ix 
will decrease and becomes greater than Ixi thus the Hanle effect can actually produce 
polarization in the case of forward-scattering.



CHAPTER 1. INTRODUCTION 20

X - up and positive y- right. There are three cases of u j l / A u i  shown as indicated in the left 

hand column. For each case the middle column shows the Hanle precession and the rightmost 

column indicates the scattered light in terms of the orthogonal intensities Ix and ly. In the 

absence of a magnetic field, the observer sees the scattered light as 100% polarized, because 

the transverse oscillator emits at a single fixed position angle and the parallel oscillator is 

viewed along the axis of oscillation, so it scatters no light into the viewing direction. As the 

magnetic field increases, the dipole oscillator in the x-direction is caused to precess about 

the z-axis, hence a depolarization of the scattered beam is observed, yet the intensity of light 

is not diminished. In contrast, an observer who is situated to see forward scattering would 

measure zero polarization in the zero field case, but with a magnetic field, a net polarization is 

observed along the direction of the magnetic field. So, the Hanle effect can create or destroy 

polarization depending on the magnetic and scattering geometries. As the field strength 

increases to large values, the depolarization becomes nearly complete when ljl ^  Aui (c.f. 

the bottom row of Figure 1.10). In this case the depolarization is said to be “saturated”, 

because larger magnetic fields can produce no discernible change in the observed polarization. 

The saturated case is still of interest because it indicates the presence of a magnetic field and 

can be assigned a lower limit of the field strength, but an accurate determination of the field 

strength is best made when ujl ~  Aui (c.f. the middle row of Figure 1.10), for which the 

depolarization is significant but not complete. Therefore a longitudinal magnetic field will 

cause both a reduction of the degree of the polarization and a rotation of its direction of 

vibration by an angle 0 .

If the magnetic field direction is normal to the photosphere (along the x-axis, H =  0°) the 

scattered light is completely polarized along OZ when there is no magnetic field. However, 

the Hanle effect results in a depolarization with an increase in total intensity. Alternatively, 

a transverse magnetic field (along the y-axis, E = 90° and H =  90°) will decrease the degree 

of polarization without altering its plane of polarization which is still parallel to the x-axis.

Due to the precession of the damped oscillator in the presence of the magnetic field, the 

direction of vibration will deviate from the original direction, and this causes the plane of 

vibration of the emitted light to rotate. The oscillator describes a rosette when viewed 

along the magnetic field, and the shape of the rosette - and therefore the nature of the 

polarization - will depend on the ratio between the angular velocity of precession, Wf,, and 

the radiative damping constant, Aui (1/T), of the oscillator. If >  1 the rosette will

be axially symmetric, since the atom will have ample time to precess before it is damped 

out. Consequently, there is no polarization observed along the magnetic field if the field
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Figure 1.11: Energies of naturally broadened excited state sublevels of a Zeeman triplet as 
functions of magnetic field strength B. M-state interference occurs for B < B .̂

is strong enough to make the inequality hold. If cül/ A uI — 1 the oscillator describes an 

asymmetrical rosette, which means that the degree of polarization is reduced relative to the 

value of the field-free case with the direction of polarization rotated with respect to the 

direction of polarization of the exciting beam. Finally if lvl/ A uI 1, the oscillator hardly 

has time to precess before it is damped out, which explains the weak-field results.

Considering the Hanle effect in quantum mechanical terminology provides a useful insight 

into its applicability for different magnetic field strengths. The effect applies when the mag­

netic sublevels of a line transition are sufficiently close in frequency that the natural line 

widths of the sublevels overlap significantly. As a consequence, coherence effects result in 

interference of the wave functions between these levels, and the interference causes changes 

in the polarization of the scattered light. At larger field strengths, the sublevels will be dis­

tinctly separated, and the Zeeman effect will dominate over the Hanle effect, because the 

phase coherences are lost. This alternative picture is given in Figure 1.11 where the classical 

oscillator is identified with a normal Zeeman triplet. The lower level (J =  0) is assumed 

to have infinite lifetime; the three upper state (J = 1) sublevels are broadened, revealing 

that the Hanle effect occurs in the region of overlapping sublevels, or the so-called M-state 

interference. Denoting Aẑ z as z/ — z/Q for a normal Zeeman triplet and Az/n as the natural
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line width, the following summarises the different magnetic effects for atomic scattering of 

light:
Aẑ z Azzn = >  Non — Magnetic,

Az/z ~  Az/N Hanle (weak field regime),

Az/z )$> Az/N Zeeman (strong field regime),

The Zeeman splitting for a normal triplet is just the Larmor precession frequency, üül, and

the natural line width is the radiative transition rate, Aui, hence it is useful to consider the 

ratio

(1.22)
A /Z n  - ^ u l  2  TTZg C A u i

The first observation of the Hanle effect on the solar disk was made by Stenflo (1981). 

By using a frame of reference parallel to the limb, the polarization by ordinary resonance 

scattering would be described by the value of Q only, with U = 0. However, Stenflo’s 

observations of the core of the Ca I 4227Â line in the spectrum of a plage clearly indicate 

that U has a non-zero value, which means that the plane of polarization is not parallel to the 

limb. Calculation from the Stokes parameters, Q and U, shows that the direction of vibration 

of the linear polarization in the Doppler core has been rotated by 33°. The polarization in 

the wings is unaffected. Based on these observations Faurobert-Scholl (1992) and Faurobert- 

Scholl (1994) deduced that there is a magnetic field of 20-100G at heights between 700 and 

1200km above the continuum-forming level, if it is assumed that the field is in the form of a 

magnetic canopy, i.e. a horizontal magnetic fleld overlying a field-free atmosphere.

Stenflo (1982) attempted to interpret the observed polarization amplitudes of Sr I 4607Â, 

and led to an estimated value of 10-1000  for the strength of the turbulent fleld in the 

photosphere. This approach has been refined by Faurobert-Scholl (1993), who carried out 

detailed radiative-transfer calculations to fit the CLV of the polarization profiles of the Sr I 

4607Â line, allowing the admitted range of turbulent field strengths (assuming an isotropic 

distribution) to be narrowed down to 0-200 (see Faurobert-Scholl et al., 1995).

Observations of the CLV of Sr I 4607Â line Q / I  amplitude, by Stenflo and Keller (1997), 

show a very pronounced kink near /j, = 0.2, as illustrated in Figure 1.8. Closer to the limb the 

amplitudes from November 1994 are considerably larger than those from June 1994, but the 

agreement is good for > 0.2. The most natural explanation for the kink is that for the June 

1994 observations the slit happened to cut across a region that had more Hanle-depolarizing 

magnetic fields inside the 20 arcsecond limb zone as compared with the case for the November 

1994 observations.
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In the presence of a weak magnetic field, with mixed polarities over the resolution element 

of the telescope, there is no preferred direction for the rotation of the polarization plane, but 

the depolarization is not cancelled out. This provides a diagnostic tool for weak fields with 

mixed polarities. This was first pointed out by Stenflo (1982) and confirmed by Stenflo et al.

(1998), who suggested that such weak magnetic fields, although hidden from magnetograms, 

could carry a significant part of the solar magnetic flux.

The indirect diagnostic of magnetic fields, based on the Hanle effect, requires detailed non- 

LTE radiative transfer calculations including polarization. The first step of the diagnostic 

method is to compute as accurately as possible the resonance polarization which would be 

observed in the absence of a magnetic fleld. Resonance polarization is very sensitive to the 

non-LTE processes which contribute to the line formation, such as frequency redistribution, 

depolarizing collisions, velocity fields and multiple scattering. It is obviously highly sensitive 

to the anisotropy of the line radiation field, which depends on the atmospheric structure. The 

results are then compared with the observed polarization and the discrepancy is interpreted 

in terms of the Hanle effect. The Hanle effect does not affect the polarization in the line 

wings and does not change the intensity profiles, since very weak magnetic fields do not 

significantly modify the line absorption profile. This allows the constraint, at least partly, of 

the first step of the calculations by requiring that the CLV of the line intensity profile should 

be well reproduced. Until now this has been done essentially for two resonance lines, namely 

the Ca 1 4227Â and the Sr I 4607Â lines. Both are normal triplets which show relatively high 

linear polarization rates outside active regions. The sensitivity of a line to the Hanle effect 

is unique, for Sr I and Ca I this is 20G, the useful range being approximately 5-lOOG.

Another area where the Hanle effect has been much applied in the past is the diagnostics 

of magnetic fields in solar prominences. Most of this work has focused on the He I Dg 5876Â 

line, which, being optically thin, allows direct interpretation without involving radiative- 

transfer calculations. In this case not only the Hanle depolarization, but also the rotation of 

the plane of polarization can be observed and studied in detail. However, interpretations that 

are based on observations of a single spectral line are sensitive to the model used for the solar 

atmosphere and the atomic physics. As in the Zeeman effect diagnostics one can suppress 

such model dependence by using the differential rather than the absolute polarization effects, 

which are seen in combinations of lines with different sensitivities to the Hanle effect. The 

combinations of spectral lines for differential Hanle diagnostics must be chosen carefully since 

the different lines may not sample the same magnetic fields.
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1.3 Polarization M easurements in Fusion Plasmas

Fusion in thermonuclear plasmas is a long-term candidate for providing the world with a 

large fraction of its energy demands. In a fusion process, two relatively light atomic nuclei 

are fused together into a single heavier nucleus, thereby transferring some of the mass into 

energy. In order to sustain fusion processes inside a medium, which may be the solar core or a 

magnetically confined plasma, the temperature not only has to reach a sufficiently high level, 

but also it has to remain at this level. Hence the ratio of energy production inside the medium 

to energy loss of the medium to the world outside has to be balanced. Obviously, the amount 

of energy produced is determined by the number of reactions, and hence by the number 

of particles per unit of volume. Energy loss is determined by the quality of confinement, 

and is usually expressed via an energy confinement time t e , i.e. the time it would take a 

plasma without a heating source to cool down. Although there has been steady progress 

towards breakeven (where energy output exceeds energy input), many puzzling issues related 

to plasma instabilities and energy/particle confinements remain.

1.3.1 M agnetic  C onfinem ent Schem es

The requirement of a high temperature environment implies that little thermal contact may 

exist between the fusion medium and the outside world. In many schemes, this situation is 

obtained by applying a sufficiently large magnetic field, which causes the charged particles to 

gyrate around the field lines as a result of the Lorentz force. The gyro-motion reduces heat 

and particle transfer perpendicular to the direction of the magnetic field. Confinement along 

the field lines is obtained either by squeezing the magnetic field at the edges of the device, 

thus obtaining high magnetic field values from which the particles are bounded, or by avoiding 

end effects in a toroidal geometry, where the field lines close on themselves. However, drift 

effects caused by the toroidal curvature lead to increased losses across the field lines in an 

up- and downward direction. To avoid this, a second, weaker field is applied poloidally, that 

causes the field lines to become helical and the drift effects to cancel to first order." As a result 

of this poloidal field, the field lines no longer close on themselves but lie on a nested toroidal 

surface of equal flux, the so-called “magnetic surface”. Only for certain ratios of poloidal 

to toroidal field strength are the field lines themselves closed, in which case the magnetic 

surfaces are called “rational”. Because of the geometrical resonance, plasma instabilities are 

often located on rational surfaces. At present, most experiments in the field of magnetic 

confinement fusion make use of a toroidal geometry in a device called a “tokamak”.

The tokamak is a toroidally shaped device, as shown in Figure 1.12. The major radius of
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Figure 1.12: Basic magnetic field configuration for a tokamak.

the torus is usually designated R and the minor radius a. The main confining magnetic field 

is in the toroidal direction and is typically 1-lOT. Because of particle drifts caused by the 

curved magnetic field, the plasma cannot be confined by the toroidal field alone; an additional 

poloidal held (Bpo/) in the range of O.l-l.OT is required. A unique feature of the tokamak 

is that this poloidal held is produced by current howing in the plasma itself. A transformer 

coil running through the center of the torus induces a toroidal electric held which drives 

the plasma current Ipiasma- The plasma current not only provides the stabilising poloidal 

held required to eliminate charged particle drifts, but also provides I^R ohmic heating of the 

plasma, and plays a role in pressure balance through the relation Vp = Jx B . An additional 

small vertical held is needed for plasma position control. The combination of the plasma 

polodial held with the larger toroidal held Btor produces held lines that follow a helical path 

around the torus. A measure of this helicity is given by the safety factor qg = rBtor/(RBpoO 

which represents the number of toroidal rotations per polodial rotation for a held line on 

a given hux surface. The radial prohle of qg(r), or equivalently Bpo/(r) or J(r), had been 

shown to be a key parameter in transport models as well as the magnetohydromagnetic 

(MHD) stability theory of tearing modes, sawteeth, and disruptions. Thus a knowledge of 

the poloidal held prohle is absolutely essential to an advanced understanding of the complex 

phenomena that governs the behaviour of a tokamak conhned plasma.

1.3.2 C urrent D en sity  M easurem ents

Progress in magnetic conhnement fusion depends on improvements of the quality of the 

plasma conhnement. To determine this quality in a specihc situation, measurement of the
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relevant plasma parameters with sufficient accuracy and resolution (spatial and temporal) is 

extremely important. One of the key parameters governing the confinement is the distribu­

tion of the poloidal magnetic field over a cross-section, since this field is responsible for a 

significant reduction of drift effects. The poloidal magnetic field in a tokamak is determined 

by the poloidal distribution of the current density. Accurate measurement of this parameter 

is therefore highly desirable. The quality of confinement can be evaluated e.g. through mea­

surement of the electron temperature and electron density profile, from which information 

on heat and particle transport in the plasma can be deduced.

Measurement of the poloidal field shape at the plasma edge is fairly easy, and is done 

on virtually every tokamak by means of a set of magnetic (Mirnov) coils. Measurement 

of the distribution of the poloidal magnetic field in the plasma interior, however, is much 

more complicated. In this area, polarimetry haa become an important technique, since it 

has enabled rather accurate measurements with a relatively simple geometry. A good review 

of such polarimetric techniques is presented by Donné (1995). In this type of measurement, 

the polarization of a beam probing the plasma is rotated as a result of the presence of the 

poloidal field. Polarimetry is inherently line-integrated, because the amount of rotation of the 

emerging beam is determined by all local magnetic field values that the wave has experienced 

along the beam trajectory. Other techniques, mainly spectroscopic, involve measurement of 

the splitting of atomic energy levels as a result of the Zeeman effect (see Feldman et ah, 1984 

and Wrobleski et ah, 1988) or, in the case of hydrogenic emission from high-energy neutral 

beams, as a result of the motional Stark effect (see Wrobleski and Lao, 1992). These methods 

have the advantage of directly measuring the local field pitch angle with no required inversion 

of chord averaged data, but they all suffer from limitations in time response, radial resolution, 

and the range of plasma parameters over which they can operate.

The Faraday rotation effect offers a means to measure the poloidal field that has some 

advantages over the methods described above. The spatial and temporal resolution can be 

quite good, and the range of plasma parameters that can be measured is large. Consider a 

linearly polarized far-infrared (FIR) laser beam passing vertically through the plasma cross 

section as shown in Figure 1.12. As will be derived in Chapter 3, the plasma causes a rotation 

of the polarization given by

Ÿ = 2.63 X10-^^ y^B||(r)n(r)dr (1.23)

where B\\{r) is the component of the poloidal field parallel to the FIR beam and n(r) is the 

plasma density.
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Passing several chords through the plasma (or equivalently sending a continuous beam im­

aged onto an array of detectors), the Faraday rotation profile may be determined. Knowing 

the density n(r) from another diagnostic (usually interferometry), the above equation can be 

inverted to give the poloidal field profile. The Faraday rotation effect has been measured on 

other tokamaks; however, it is a notoriously difficult measurement because of the small rota­

tion angle (1° and 15°) and other complicating effects such as beam refraction. In addition, 

the measurement must be made simultaneously on many different chords passing through the 

plasma to determine the poloidal field profile accurately.

1.3 .3  P rev iou s Faraday R o ta tio n  W ork

The theoretical basis for Faraday rotation measurements was development by Marco and 

Segre (1972) and Segre (1978). First-order analytical solutions to the polarization propa­

gation equation were presented. The polarization propagation model, as it applies to this 

experiment, will be discussed in detail in Chapter 3.

The first proof-of-principle Faraday rotation experiment was done by Kunz and Dodel 

(1978) on TFR using a single probe beam. In this experiment, the FIR beam polarization 

was modulated using a ferrite disk immersed in an oscillating magnetic field. A lock-in 

amplifier was then used to detect the signal, giving an improved signal-to-noise ratio. These 

single-chord results were important in establishing the validity of Faraday rotation, but did 

not allow inversion of the line integrated signal which is necessary to determine the poloidal 

field. The earliest experimental technique for performing polarimetry employed two relatively 

slow detectors per line of sight. Good mutual calibration of these detectors was vital to the 

quality of the measurements.

Since the original work, several interferometer/ polarimeter systems have been built for 

various experiments. The first polarimeter system to operate routinely, with sufficient chords 

to obtain the poloidal field profile, was constructed by Soltwisch (1986) on TEXTOR . This 

system utilises 9 chords and performs interferometry and polarimetry simultaneously mea­

suring the change in orthogonal polarization before and after passage through the plasma. 

A schematic drawing of the optical system for a single probe beam is shown in Figure 4.7. 

The FIR source is an HCN laser with an output of 150mW and a wavelength of 337^m. The 

beam is incident on a splitter providing reference and plasma beams. The reference beam 

is shifted in frequency by a rotating grating so that heterodyne detection can be used, as is 

the standard in modern-day interferometers. After passing through the plasma, the plasma
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Figure 1.13: Faraday rotation profile data from TEXTOR (Taken from Soltwisch, 1987).

beam experiences a phase shift 0  and polarization rotation In addition, the linearly po­

larized plasma beam picks up a small ellipticity c. The plasma and reference beams are then 

recombined using a polarizing grid and projected onto two detectors. The interferometer 

signal is nearly constant in amplitude, with the phase being the usual interferometry phase 

shift that is proportional to the line integrated density. The polarimetry signal is essentially 

proportional to the Faraday rotation angle. The beam intensities are not necessarily con­

stant, they can vary due to changes in source power or due to refraction. However, since the 

intensities show up in both signals, this dependence may be removed from the polarimeter 

signal by appropriate processing, see Section 4.2.1 for details. The ellipticity complicates the 

interpretation of the data but for most experiments it is a small (a few percent) correction. 

An example of the polarimeter data and the inverted profiles for TEXTOR is shown in Fig­

ure 1.13. Recently, a six-chord interferometer on JET has been converted by Braithwaite 

et al. (1989) to polarimetry using essentially the same TEXTOR configuration.

A technique first proposed by Dodel and Kunz (1978) and developed by Rice (1992) on the 

MTX tokamak transforms the polarization measurement into a phase rather than amplitude 

measurement. This simultaneously increases the temporal resolution and requires only one 

detector per line of sight. The method requires two lasers to produce the standard plasma and 

reference beams, separated by a difference frequency of typically IMHz. The plasma beam 

is passed through a quartz quarter-wave plate rotated through a fixed angle to generate an 

elliptically polarized beam. This is followed by a rapidly rotating quartz half-wave plate that 

rotates the polarization at four times the plate frequency. After passing through the plasma.
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the beam is incident on a polarizing grid followed by a detector. The detected signal is then 

a sine wave with a frequency of IMHz which is amplitude modulated at the rotating ellipse 

frequency. A simulated time history of the signals is shown in Figure 1.14. As the plasma 

density and poloidal field build up, the axis of the ellipse is rotated due to the Faraday 

effect, and the phase of the modulation envelope is shifted. Thus by measuring the phase 

shift of the modulation envelope relative to a reference detector, the Faraday rotation angle is 

determined; the phase of the high-frequency carrier (or IF) signal is used to obtain the density 

data. Both the interferometer and polarimeter measurements can now be made independent 

of signal amplitude, provided the signal remains large enough to stay above the noise level. 

A similar diagnostic has successfully been commissioned onto the TEXT-Upgrade tokamak 

by Brower et al. (1997). Details of this technique, along with an analysis of possible errors, 

is presented in Chapter 4.

The phase method described above is limited by an additional time-varying phase term 

which is superimposed on the required interferometer data, see Equation 4.19. This term does 

not represent a plasma effect but is an artifact of the rotating polarization ellipse technique 

itself. Barry et al. (1996) proposed a modification to this method which does not suffer from 

the inherent error in the interferometer phase measurement but still preserves the overall 

robustness of Rice’s approach. In the modified method, the rotating elliptically polarized 

probing beam is replaced by the combination of a rotating linearly polarized beam and a 

plain linearly polarized beam. Part of this beam combination is altered as it traverses the 

plasma, and is superimposed with a frequency shifted linearly polarized reference beam on the 

plasma detector. The other part passes through free space before also being combined with 

the reference beam on the reference detector. Currently the design is at the test bench phase 

and is being developed for commissioning onto a tokamak. It retains the major advantages of 

the original method with the additional benefit that the interferometer data is not disturbed 

by the extra time-dependent phase term.

On the RTF tokamak a new experimental technique has been developed by Rommers 

et al. (1997), requiring still only one detector per line of sight, that is inherently capable 

of measurements with much higher temporal resolution. This makes the method ideal for 

polarimetric measurements when both high temporal and high spatial resolution are required. 

Modulation of the wave polarization, either mechanically or through other means, is no 

longer necessary. Moreover, the method has some fundamental implications, since it has 

abandoned the physical picture of an actual rotation of the polarization, but instead probes 

the cause of this rotation, i.e. plasma birefringence, directly. The problem of crosstalk from
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Figure 1.14: Simulated time history of the polarimeter waveforms for a 180° rotation of the 
quartz half-wave plate. The polarization ellipse is Faraday rotated by the plasma, resulting 
in the phase shift of the lower waveform (Taken from Rice, 1992).
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the polarimeter into the interferometer data, which existed in previous experiments is now 

eliminated, and in principle a very high temporal resolution can be obtained.

A total of three infrared lasers are applied. Two of the lasers are used for probing the 

plasma, while the third one acts as a local oscillator. A slight frequency difference between 

all three lasers is introduced such that after detection three frequency multiplexed beat signals 

are obtained. Because of circular birefringence, the beams will experience a different value 

of the refractive index during propagation through the plasma. Due to the frequency offsets, 

the information on the two refractive indices is spectrally resolved and can be retrieved by 

separating the carriers after detection and performing a separate phase measurement on 

each. This difference in refractive index is related to the Faraday rotation angle, whereas 

their average is related to the density induced phase shift. However, the system suffers from 

a systematic measurement error in the detected Faraday angle, ~  0.3°. This results from 

the diffractive distortion of the phase front, caused by a significant beam truncation at the 

tokamak vacuum vessel window, therefore preventing the necessary inversion to obtain the 

current density profile.

1.3 .4  C O M PA SS-D  O verview

The COMPASS-D (compact assembly) tokamak is a highly fiexible, medium-sized device 

that has been specifically designed to address the key physics issues associated with magnetic 

confinement fusion. Some important parameters are given in Table 1.1. The programme of 

experimental research on COMPASS-D is divided into related topic areas:

• Control of instabilities: this is vital to tokamak development, as instabilities reduce the 

confinement properties of the plasma and/or create disruptive plasma behaviour

• Impurity control: low impurity levels and control of plasma exhaust are critical prereq­

uisites for efficient tokamak operation

• “H-mode” (i.e. High energy confinement mode) operation: the characterisation and 

control of Edge Localised Modes (ELMs), which are a feature of H-mode operation, are 

important for power exhaust and impurity control optimisation.

These themes can be investigated in a small device as well as in a large one because the 

fundamental physical processes are identical. The extensive facilities on COMPASS-D include 

a set of magnetic perturbation coils for correcting internal instabilities and for modifying the 

plasma edge region. A 2MW 60GHz microwave system is utilised for precise, localised heating 

and current drive, for bulk heating and instability control. A 1.3GHz lower hybrid system for
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Quantity Symbol Value
Major radius R 0.557m
Minor radius a 0.232m
Aspect ratio R j a 2.53
Plasma current ^plasma < 400kA
Pulse duration (without current drive) 

(with RF current drive)
approx 600ms 

approx 2s
Central toroidal field Bfor 2.1T
Effective ion charge 1.5-3.0
Central electron density Tie lxlO^"m-^
Central electron temperature Te 0.5-2.0keV
Confinement time Te 5-25ms

Table 1.1: Main COMPASS-D sizes and indicative discharge parameters.

bulk current drive and current profile control is also available. The tokamak has a real-time 

electronic neural network for feedback control of the plasma equilibrium position and shape. 

The COMPASS device has the same magnetic geometry as JET (Joint European Torus) and 

the planned Next Step device, ITER (International Thermonuclear Experimental Reactor) 

and is therefore ideally suited for modelling future design parameters.

A series of instruments is available on COMPASS-D for plasma diagnostics, amongst them 

is an interferometer which will be modified to incorporate a polarimetric measurements, one 

of the topics of this thesis.

1.4 Outline of this thesis

As previously stated, this thesis comprises two main themes. The following chart illustrated 

the progressive structure of the thesis (with numerals indicating the chapter numbers):

Faraday R o ta tio n  D iagnostic Ho! P olarization  D iagn ostic

THEORY EXPERIMENTAL

TECHNIQUE

THEORY DIAGNOSTIC

3. Faraday Theory 4. Phase 1. Resonance Effects 5. CLV

I I I Observations

3. Analytical Simulation 4. Amplitude 1. Magnetic Effects

4. Test Bench 2. Polarimeter
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In the present chapter, an introduction to basic polarimetric concepts has been given, fol­

lowed by a discussion on the predominant polarization processes occurring in the Sun. The 

engendered polarization is typically a non-LTE phenomena, induced in the solar atmosphere 

by the radiation field anisotropy or, alternatively by collisions with oriented beam of fast 

particles. An introduction to nuclear fusion and magnetic confinement was also given, fol­

lowed by a discussion of the relevance of the present work. In Chapter 2, the prototype solar 

imaging polarimeter will be introduced and some of the basic reduction techniques required 

to ascertain a polarimetric measurement will be discussed. A novel technique to determine 

the polarimeter’s instrumental polarization using a monochromatic depolarizer will also be 

presented. Starting from the theory of electromagnetic wave propagation in an magnetised 

plasma, the theories of Faraday rotation and birefringence will be reviewed in Chapter 3. 

The inversion techniques necessary to obtain the poloidal magnetic field from the Faraday 

rotation measurements are also discussed. An analytical solution is presented that details 

the expected Faraday rotation angles for COMPASS-D and the birefringence introduced due 

to the presence of the toroidal magnetic field. Chapter 4 starts with an outline of the two 

polarimetric techniques being considered for commissioning on the COMPASS-D tokamak 

and discusses the suitability, accuracy and reliability of each in turn. The second part of 

Chapter 4 is devoted to test bench results and data analysis of each method. Chapter 5 

deals with the Ha observations taken with the solar imaging polarimeter. Finally, the thesis 

is concluded with a chapter to summarise the findings of this thesis work, and to give some 

recommendations towards future improvements and extensions.



Chapter 2

Instrum ental and Observational 

Polarim etry

Astronomical systems with asymmetric configurations will exhibit linear or circular polar­

ization. The non-spherical distribution of scattering material around a star, the alignment 

of non-spherical grains by a magnetic field, or the acceleration of charged particles in a 

preferred plane are all such examples. The two most important polarizing processes are 

scattering (which gives rise to linear polarization) and magnetic fields (resulting in circular 

polarization through the Zeeman effect). Therefore a determination of the polarization of 

the radiation from a celestial source will yield invaluable geometric insight, unique to this 

type of measurement. The basic concepts of polarimetry and the construction and types of 

polarimeter are reviewed. An investigation of the polarimeter’s instrumental polarization us­

ing a monochromatic depolarizer, first suggested by Billings (1951), is experimentally tested 

for the first time. In addition, the reduction techniques required to ascertain a polarimetric 

measurement are presented.

2.1 Introduction to Polarimetric M ethods

Polarimeters may generally be divided into two parts; the optical components which transform 

the state of incident polarization into the appropriate intensities and the detector component 

which measures the intensities. The incident light beam will pass through a polarimetric 

modulator, such as a half-wave plate and polarizer, before encountering the imaging optics 

necessary before the detector. A whole range of optical and spectroscopic devices may be 

placed between these two components in order to enhance the capabilities of the polarimeter. 

The element prior to the detector is commonly an analyser such as a perfect polarizer which

34
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Figure 2.1; Schematic outline of a typical polarimeter indicating the type and position of the 
components.

completely polarizes the light along its principal axes. For a single beam polarimeter a Po­

laroid or a Gian prism is utilised, whereas a Wollaston or maybe a Savart plate is encountered 

in a double beam polarimeter. By rotating the polarimetric modulator in a pre-determined 

fashion the intensity of the incident light will be modulated allowing a measurement of the 

polarization.

There are currently three types of preferred modulator:

• a siiperachrornatic half-wave plate which rotates or is set at preferred orientations -  

essentially a mechanical operation.

• electro-optic cells, such as a pockell cell, whose state may be altered electronically.

• photo-elastic biréfringent crystals whose birefringence may be controlled by the appli­

cation of stress.

In order to reduce or eliminate polarimetric noise caused by atmospheric effects or incorrect 

telescope guidance, rapid modulation of the signal is necessary for a single channel instrument 

(see Stenflo and Povel, 1985). Electro-optic and photo-elastic devices are capable of high 

modulation frequencies but their efficiencies must be calibrated for different wavelengths. 

Double beam instruments utilise a modulating device to rotate the electric vector with respect 

to the orientation of a stationary analyser between integrations, in order that the Stokes Q 

and U parameters may be determined. However, by taking the ratio of the intensity of the 

ordinary to extraordinary beams the atmospheric effects upon the incident radiation during 

the integration can be cancelled, (see Serkowski, 1974a).

Two types of detector are commonly utilised in polarimetry; a single element integrating 

detector such as photomultipler and multi-element imaging detectors such as a Charged 

Coupled Device (CCD). Integrating detectors are capable of very high precision, of the order

0.001%, whereas imaging devices operate with lower precision of the order 0.1%. Imaging
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detectors can simultaneously observe many objects during one integration and do not suffer 

from the drawback of dead-time corrections, (see Clarke and Naghizadeh-Khouei, 1994). 

However, dead time problems are replaced by non-linearity near saturation as explained in 

Section 2.4.1.

2.1 .1  P olarim etric  P recision

For many astronomical objects the observed polarization is very small, making high precision 

essential. Theoretically, uncertainties on the order of ±0.001% may be achieved for bright 

sources. The main sources of noise in a polarimetric measurement may be expressed under 

the following categories

• Instrumental noise.

1. Systematic error -  instrumental polarization.

2. Random noise -  thermal background.

• Atmospheric noise.

• Photon noise.

Instrumental noise due to the influence of optical elements in the light path, such as the 

modulator itself, may be removed by the implementation of a suitable diagnostic routine as 

outlined in Section 2.3. This noise will be instrument dependent and individual calibration 

will be required. A further instrumental complication is the gain table or flatfleld noise. This 

arises when two images that represent orthogonal polarization states fall on different detecting 

areas, as in the case of beam splitter systems. Photocharges are generated by elements with 

differing photosensitivity. This noise may be avoided by implementing a technique known as 

“flatfielding”, (see Buil, 1991).

Scintillation and seeing are the main sources of atmospheric noise. Scintillation is caused 

by the passage of light through the Earth’s atmosphere producing intensity variations in 

the image of the source. However, since air is not biréfringent, scintillation is the same for 

both perpendicular polarized components of light from an astronomical object. Therefore 

the ratio of intensities of two such beams emerging from a double beam polarimeter may be 

free of the effects of atmospheric scintillation and will not be affected by the presence of thin 

clouds. Extinction by clouds is nearly neutral in the visible region (see Serkowski, 1970), 

and the accuracy of polarimetry through clouds is reduced only because of fluctuations in 

sky background and the smaller number of photons received. Rapid modulation of the light
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beam, on time scales smaller than atmospheric oscillation typically ~  10ms, will have the 

same desired effect for a single beam polarimeter. Atmospheric seeing, i.e, the fluctuations 

and spread in direction of the stellar light as it propagates through the air, affects the ratio 

of signals from two beams emerging from a beam splitting prism and causes the image of the 

source to move around the detector. Such movement may also be introduced by bad tracking 

of the telescope or, if a rotating optical element is not perfectly aligned with the optical axis 

causing “image wobble”, affecting point sources and extended objects alike.

The ultimate limitation in determining the polarimetric precision of an astronomical source 

results from quantum photon noise, i.e. the fluctuations in the number of arriving photons at 

the detector. The effect of the fluctuation may be analysed with the application of Poisson 

statistics as follows.

Consider M  repeated photometric observations of a non-variable star with /i as the mean 

number of detected photon counts per observation. The expected root mean square (rms) 

noise level will be y/JI. The fluctuations over the individual measures, Xi, can be expressed

as ______________

rms(xi) =

Assuming a signal level of /x = 10® detected photons, the corresponding Poisson fluctuation 

will be y/Jb = 1000. The signal-to-noise level, may be expressed by =  1000

which corresponds to an accuracy of (0.1%). This is the statistical photometric limit for a 

given photon count, i.e. the highest precision attainable.

For low levels of polarization, simple error analysis provides uncertainty estimates for 

the normalised Stokes parameters dependent solely on the number of detected photons. The 

normalised Stokes parameters q and u are directly related to the difference between intensities 

measured at the appropriate settings of a half-wave plate. For instance, ç, may be determined 

from two intensity measurements such that,

where I^ and I ^  are the intensity values (photon counts) determined in a specific time 

interval. Therefore, I^ = n-̂  and I ^  = in a time t, yielding

^  = ^  = (2 3)on̂  {n-̂  + n ^ y  on^ (n^ +  n^)^

Error analysis of Equation 2.2 provides

+ (2 4)
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Figure 2.2: The expected polarimetric precision as a function of the detected photons, 

with An^ =  and A n^  =  therefore

=  (n | +  n l)3 -  (2.5)

A double beam polarimeter simultaneously measures orthogonal polarization intensities. 

Therefore, defining the photon count as n =  and with yields

(2 .6)

for a double beam polarimeter. Similar treatment may be applied to the u Stokes parameter 

with

au = (2.7)V n

Consequently as the number of detected photons increases the polarimetric precision will 

improve meaning that ag and au will decrease in value, as illustrated in Figure 2.2. Photon 

noise can be suppressed only by increasing the integration time of an observation. In solar 

observations, polarimetric noise as low as 0.01% to 0.001% was achieved by Baur (1981).

From studies of polarization of the whole solar disk, Clarke (1991) reported measurements

with a precision of the order of 0.003%.
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Figure 2.3: View of the sky as seen through the polarimeter. Top - in the focal plane of the 
telescope. Bottom - as recorded on the detector after passing through the polarization optics 
(Taken from Scarrott, 1983).

2.2 The Double Beam Imaging Polarimeter

The inherent limitation of imaging polarimetry is the variation in atmospheric transparency 

and scintillation, during an integration, affecting the polarization measurement. However, the 

optical system comprising the imaging polarimeter first suggested by Pickering (1873) and 

improved by Ohman (1939) has overcome this atmospheric limitation. Numerous polarization 

maps of reflection nebulae and galaxies have been recorded by Scarrott (1983) and Scarrott 

(1991) utilising a similar double beam imaging polarimeter. Such a system incorporates a 

polarizing prism which splits incoming radiation into orthogonally resolved polarized beams 

(the ordinary(II) and extraordinary (_L)). For such polarizing polarimeters, a Savart plate is 

an excellent beam splitter as it provides identical path lengths for the two beams resulting 

in unique focussing, but at the expense of producing half the separation possible by the 

bulk of calcite used. A series of parallel obscuring strips, constituting the masking grid as 

illustrated in Figure 2.3, is placed in the focal plane of the telescope. By using an appropriate 

lens system, an image of the focal plane through the calcite crystal can be produced onto the 

detector. By design, the Savart plate will produce two images of orthogonal polarization with
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a separation of one half grid spacing. Prior to the fixed prism, a rotating superachromatic 

half-wave plate provides the polarimetric modulation. Figure 2.4 illustrates an exposure of 

the Orion nebula as a series of strip pairs of orthogonal polarization.

2.2 .1  T heory

The output of the double beam polarimeter can be represented by Equation 1.14. Incor­

porating atmospheric transparency, seeing and detector responsivity into Equation 1.14 the 

intensities of the two beams may be expressed cis

I\\{'4’) = ^T(t)G||(/-I-Qcos4V^-t-C/sin4V>)

I ± W  = U { t )G ± (I -Qœsii>  -Usinii>) (2.8)

where T{t) describes the atmospheric transparency at time t, and Gy and G± refer to the 

detector pixel sensitivity to the polarized light for ordinary(||) and extraordinary(_L) beams 

respectively. The Stokes parameters 7, Q and U are defined in the instrumental frame, this 

being described by the orientation of the principal axis of the analyser. In order to determine 

the normalised Stokes parameters, four exposures are taken with the plane of polarization 

of the incident light rotated through a sequence of four steps with respect to a reference 

direction. This can be achieved by rotating a half-wave plate in front of an analyser in 

multiples of 22.5°, (see Appenzeller, 1967). Initially the half-wave plate is orientated with its 

fast axis parallel to the direction of vibration of the ordinary beam in the stationary analyser, 

where ip = 0°

7||(0°) =  iT o.(i)G ||(/ +  Q)

= \ T o 4 t ) G x { I - Q ) .  (2.9)

The half-wave plate is then rotated such that ip = 45°, yielding

7||(45°) =  -T45o(^)G||(7 -  Q)

/j.(45°) =  iT45o(i)Gx(/ +  Q). (2.10)

The four intensities outlined in Equation 2.9 and 2.10 are required to determine the Stokes

parameter Q. In order to measure the Stokes parameter U, the half-wave plate is set such 

that Ip = 67.5°, yielding

/||(67.5°) =  lT 67.5 .(i)G ||(/-G )

I±{67.5°) = ~ T e 7 M t)G i( I  + U) (2.11)
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Figure 2.4: A CCD image of the Orion Nebula recorded with the prototype double beam 
imaging polarimeter in the visible during the winter 1996/1997.
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and then rotated so that ip = 112.5°, where

/||(112,5») =  lT„2.5«W G||(/ +  i7)

7x(112.5°) =  iTu2.5»(t)C?x(7-G). (2.12)

In order to remove the dependence of atmospheric transparency, T{t), the ratio of the two 

intensity measurements at 7(0°), Equation 2.9, and 7(45°), Equation 2.10, can be taken giving

_  |7bo(l)G ||(/ + Q) ^  G||(/ +  Q)
( ( lT o = (t)G x (/-Q ) G x {I -Q )  ( )

and

The dependence on the detector sensitivity, Gy and Gj_, may be eliminated by taking a 

further ratio

" ~  71(45») “  “  V7 -  Q 7  ̂ ’
G±{I+Q)

giving
R^-^ -  1

Similarly extending this treatment to the normalised Stokes parameter u yields

1 -  R?-^

where

The polarization state of any beam may be determined uniquely with exposures at four 

half-wave plate positions. In summary, this technique removes the effects of variations in 

atmospheric transparency and is self calibratory, avoiding the need for undertaking flatfielding 

routines, (see Section 2.4.3).

2.2 .2  T he T elescope

A Meade 25cm model 2080 reflecting telescope of Schmidt-Cassegrain design was utilised 

for observational work. Light entering the telescope encounters a thin lens with two sided 

aspheric correction, a correcting plate, proceeding a spherical primary before being incident 

upon and a convex aspheric secondary mirror. The convex secondary mirror multiplies the 

effective focal length of the primary mirror to 250cm. The Meade telescope is itself attached to 

the frame of the 51cm diameter telescope at the Cochno station of the University of Glasgow
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in order to improve vibrational stability, and also to take advantage of the superior tracking 

capabilities. This observational site is situated some 15km from the city at an elevated site 

(150m).

The polarimeter has two operating modes:

• Night-time observation in white light, or with a series of colour band filters, using the 

entire 25cm diameter primary mirror for light collection.

• Solar observation utilising an 7.5cm energy rejection filter at the 12 o’clock position to 

work in conjunction with the Ha filter described in Section 2.2.3.

2 .2 .3  T he D aystar H a  F ilter

The Daystar Ha filter is an interference filter centered on the Hydrogen Balmer-alpha line at 

6562.8Â, as described by Chou (1991). The filter consists of a “sandwich” made up of an anti- 

reflection coated optical window, a narrow-band biréfringent blocking filter, an étalon window, 

a Fabry-Perot solid spacer crystal, another étalon window, a broadband trimming filter and 

an anti-reflection coated window. Figure 2.5 is a photograph of the filter components.

Filtering is solely dependent on the thickness of the optical components and is therefore 

sensitive to thermal expansion. By varying the ambient temperature of the operating en­

vironment the transmission band of the filter can be adjusted. A temperature difference of 

one degree shifts the maximum transmission in the biréfringent material such as quartz by 

0.74Â and in calcareous spar by 0.42Â. Therefore, within certain limitations, the transmis­

sion band of the filter may be shifted to observe structures whose radiation is not exactly in 

the Hydrogen alpha core.

The Daystar filter utilised was calibrated for on-band operation with a resolution of 0.3Â 

on either side of the central frequency. There are certain prerequisites for use: the path of 

the rays entering the filter must be as parallel as possible (> f/30) and an energy rejection 

filter must be used. The Ha filter operates in an oflF-axis configuration and introduces a 

large undefined instrumental polarization to all measurements. This will be considered in 

Section 2.3.

2 .2 .4  T he Instru m ent

The complete double-beam imaging polarimeter design is illustrated in Figure 2.6. It com­

prises a reflecting telescope, an Ha filter, a light-tight optically sealed unit and a Charged 

Coupled Device (CCD) detector. The sealed unit held the polarizing modulator comprising
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Figure 2.5: Top: A complete Daystar Filter. Bottom: The “insides” of a Daystar Filter 
consisting of (left to right): 1) an anti-reflection coated optical window, 2) a narrow-band 
biréfringent blocking filter, 3) an étalon window, 4) a Fabry-Perot solid spacer crystal, 5) 
another étalon window, 6) a broad-band trimming filter, and 7) an anti-reflection coated 
window.
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a half-wave plate, a Savart prism, a grid and a series of lenses. The half-wave plate and the 

Savart prism were placed in between a field lens-camera lens combination, which reimages 

the telescope focal plane on to the CCD with a reduction factor of about 2.6; the field lens 

reimages the telescope aperture on the half-wave plate and the light reaches the camera lens 

with minimum vignetting.

The light entering the polarimeter was focussed such that the focal plane of the telescope 

coincided with the first optical component, the masking grid. This comprised a black dielectric 

material to avoid edge polarizing effects, (see Pospergelis, 1965). The grid itself was a 20mm 

by 15mm perspex rectangle mounted within a precision rotator, with five alternate parallel 

obscuring and clear strips 1mm wide and 14mm long as illustrated in Figure 2.3. This 

resulted in a field of view of 14mm by 10mm in the focal plane of the telescope. Utilising 

a 25cm telescope, this corresponded to a 18 arcminute by 10 arcminute field of view with a 

2 arcsecond resolution for night-time work and 4.5 arcsecond resolution for solar work. The 

grid spacing was chosen to minimise the effects of variations in the detector and chromatic 

dispersion in the Savart plate.

Immediately after the grid an achromatic f/4 16mm diameter relay lens re-imaged the tele­

scope aperture on the superachromatic 10mm diameter half-wave plate. This was set strictly 

in the plane perpendicular to the optical axis and placed as close as possible to the Cassegrain 

focus. This prevents and minimises instrumental polarization and also reduces prismatic ef­

fects, a cause of image wobble due to rotation of the half-wave plate, (see Serkowski, 1974b). 

The plate itself was placed within a cylindrical housing with a ball race attached to allow 

rotation. An RS Components stepper motor controlled the rotation with 400 steps per revolu­

tion. Incorporating a three-spur gear system allowed a final ratio of 4:1 resulting in a rotation 

in discrete steps of 0.15°. A previewing system was installed to precede the half-wave plate. 

It comprised a prism and a 10mm focal length lens both housed in an extractable periscope. 

This enabled the prism to be inserted into the optical axis of the polarimeter and present a 

view of the grid and the object under consideration.

The next component in the optical path was a 20mm square by 20mm long Savart plate 

held within a precision rotatable holder. Each component of the Savart plate was cut with 

its optical axis at 45° to the faces and cemented with the axes crossed. This arrangement, 

giving rise to simultaneous focussing of the ordinary and extraordinary rays, minimises the 

astigmatism and colour which are present when a single calcite block is used, (see Roser, 

1981). The Savart plate was placed immediately after the half-wave plate and orientated 

such that the two emerging beams are set perpendicular to the bars of the grid. This ensures
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Figure 2.6: Schematic representation of the double beam imaging polarimeter, with O rep­
resenting the ordinary rays and E the Extraordinary rays.
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Component Source Description
Field lens Comar 0 l 6mm, eff. FL 100mm, 

achromatic
Half-wave plate Bernard Halle superachromatic magnesium fluoride, 

20mm clear aperture, AR coated
Savart plate Halbo Optics quartz, 20mm by 20mm clear 

aperture, 30mm long
Camera lens Pentcix eff. FL 28-80mm, 

f/3.5-f/4.5
Ha filter Daystar Filter |Â  resolution off the

Corporation central frequency
Filters Oriel 030mm B, V, R and neutral density, 

5mm thick, image quality
Previewer Oriel 40mm by 40mm prism, 

10mm eff. FL lens, 020mm

Table 2.1: Optical components utilised in the imaging polarimeter

that the polarization analysis occurs in planes 0° and 90° to the reference direction. A filter 

assembly into which coloured filters may be inserted follows the Savart plate. A neutral 

density filter is inserted into the filter assembly whilst observing the Sun in order to avoid 

saturating the CCD detector.

Since the incident light beam was not collimated but an expanding light cone of ratios f/10 

and f/32 for night and solar observations respectively, a telephoto relay lens was required 

after the filter assembly. This reimaged the grid and the focal plane of the telescope onto the 

CCD detector. The dispersion of the beam emerging from the telescope was small and hence 

collimation was unnecessary. The CCD used was an SBIG ST-6 detector situated at the rear 

of the instrument. A more thorough discussion of this detector is presented in Section 2.4. 

Table 2.1 lists the optical components used in the imaging polarimeter.

The tracking of the 51cm telescope was inadequate for long exposures of night sky objects, 

therefore it was necessary to incorporate a commercially available CCD guidance system. 

The 51 cm telescope was meticulously aligned with the main 25cm telescope so that both 

had identical fields of view. An SBIG ST-4 CCD attached to the 51cm telescope enabled 

the tracking to be better than 5 arcseconds over long exposure periods. However, tracking 

of the Sun required the construction and installation of a finderscope alongside the 25cm 

telescope. The whole solar disk was imaged onto a 5.9mm by 5.1mm commercial black and 

white CCD chip. Several filters were installed in order to diminish the solar intensity. The 

solar disk appeared between certain equidistant markers on a display monitor, thus allowing 

manual adjustments of the tracking to be made in order to keep the image fixed between
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these markers.

2.2.5 D a ta  A cq u isition  and Instrum ent C ontrol

A mixture of digital and analogue electronics were developed to perform the instrument 

control and data-acquisition operations. The electronics assembly of the instrument consisted 

of three parts:

• The positioning system for the half-wave plate.

• The tracking CCD camera and associated electronics.

• The main CCD camera with its own control and host computer (IBM compatible PC 

486) for exposure and data acquisition.

A block schematic of the control system is shown in Figure 2.7. The half-wave plate was 

positioned at four specific angles using a stepper motor controlled by an in-house dedicated 

hard-wire electronic setup. By depressing one of four buttons on a control box the half-wave 

plate was positioned at the desired orientation. The principles behind the control system are 

reviewed thoroughly by Clarke (1989a) and Clarke (1989b). A red LED indicated that the 

half-wave plate had completed a revolution and returned to its starting position.

The tracking CCD wcis an SBIG (Santa Barbara Instruments Group) ST-4 detector. The 

camera has a controller unit which executed specific tasks and was connected directly to the 

51cm telescope drive motor. Therefore any movement in the star’s position on the CCD chip 

was immediately corrected by sending corrective commands to the drive unit’s right ascension 

and declination motors. During solar observations the tracking was controlled manually with 

exposures generally several seconds in length. However, the tracking was not considered 

important on these timescales. The main CCD camera used for data acquisition was an 

SBIG ST-6 detector. The CCD central processing unit was connected to a laptop computer 

via an RS 232 port. The software provided by the SBIG group was utilised to capture and 

archive the image pixel data.

The observational routine may be outlined as follows:

• The PC, CCD and half-wave plate electronics were switched on. The CCD was shut­

tered and an image readout was produced in order to clean the chip. The temperature 

was set —50° Celcius below the ambient temperature at least 15 minutes prior to ob­

servations.

• The target was located in the previewer system.
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Figure 2.7: Block diagrams of the instrument and data acquisition control system.



CHAPTER 2. INSTRUMENTAL AND OBSERVATIONAL POLARIM ETRY  50

• The ST-4 CCD attached to the 51cm telescope was programmed to track the target.

• The photometric brightness was tested with the half-wave plate at 0°.

• An integration time was selected in order that the CCD is not saturated.

• Dark and bias exposures were taken with the 25cm aperture covered.

• Exposures were then taken with half-wave plate setting at 0°, 45°, 67.5° and 112.5°.

At the end of each run, four source and three calibration images are automatically archived 

in FITS (Flexible Image Transport System) format. Since a grid of parallel obscuring strips 

is placed at the telescope focal plane, only less than half the field is seen by the detector 

during any observation. Once a set of exposures has been taken for all four positions of 

the half-wave plate, the telescope orientation is slightly changed to ensure that readings are 

taken of the previously obscured field of view. Alternatively in the case of stellar fields with 

slowly changing background (i.e. intensity and polarization) the grid may be removed during 

observations provided the field is not too crowded.

2.2 .6  D istortion s in P olarization

Any measurements recorded depend on detecting changes in the polarization vector caused 

by rotating the half-wave plate. Consequently, any small instrumental polarization or shift 

in images on the detector must be eliminated. The retardance introduced by the half-wave 

plate may deviate from 180° either due to the finite angle of incidence or because of chromatic 

effects. If the incident light makes an angle i with the normal to the surface of the half-wave 

plate and the plane of incidence makes an angle w  with the optical axis of the crystal, then 

according to Serkowski (1974b) the retardance may be expressed by

• 9 / 9  • 9  '
 ̂ 2^ /  COS W  S i m  W

2 t T i q  y  TI q M g

The maximum change in retardance may be given by

(2.19)

(i “ i)
where Uq and Mg are the refractive indices of the material for ordinary and extraordinary rays 

respectively.

For the aperture used, the maximum angle of incidence corresponding to the cone angle 

of the bundle of rays is about 5° implying that cta < O.Olrad. The chromatic effects give 

cta < O.lSrad for the wideband. It can be shown that the depolarization Cp due to an
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uncertainty of ap rad in the retardance is, to lowest order, given by <jp ~  where p  is the 

fractional polarization. Furthermore, circular polarization in the incident light is converted 

to a linear polarization of magnitude V a ^ ,  where V  is the Stokes circularity parameter. 

For wideband observations, conversion to linear polarization would be O.ISV, but in typical 

observations this does not pose a serious problem since the circular polarization in the incident 

light is usually much less than the linear polarization.

Another chromatic effect is the change in position of the half-wave plate fast axis with 

wavelength. Although this will not produce any error in the measurement of the polarization 

p, it will render the measurement of the position angle 9 subject to systematic error. The 

superachromatic half-wave plate used did not produce any appreciable dispersion in its fast 

axis position angle over the wavelength range of interest.

The uncertainty involved in the positioning of the half-wave plate leads to an error in the 

measurement of the polarization. The positioning uncertainty produces a maximum error 

in the measurement of linear polarization given by cTpi ~  p<Jai (see Ramaprakash et ah, 1997). 

Thus an error of 0.1° in the positioning of the half-wave plate results in Gp\ ~  0.002p.

2 .2 .7  Perform ance o f th e  Instrum ent

The commissioning of the polarimeter involved two levels of tests. Firstly laboratory tests 

were conducted on an optical bench in order to determine various parameters such as linearity, 

gain and readout noise of the detector. Vignetting and instrumental polarization were also 

investigated. Measurements were carried out with a tungsten lamp focussed onto the masking 

grid. A Polaroid was introduced into the optical train in order to determine the polarimeter’s 

performance in analysing completely polarized light. The half-wave plate was then removed 

and the Polaroid adjusted until it was accurately crossed with one of the beams emerging from 

the Savart plate. The half-wave plate was replaced and rotated until a minimum signal was 

obtained from the extraordinary beam and a maximum signal was produced from the ordinary 

beam. A further rotation of 45° resulted in a maximum intensity for the extraordinary beam. 

At an angle of 22.5° the two intensities were equal. Rotation of the half-wave plate clearly 

indicated the expected cos 40 intensity variation. The retarder was then clamped into the 

rotatable gear system of the instrument. The instrumental polarization of the polarimeter 

may be estimated under laboratory conditions by the introduction of a Lyot depolarizer in 

front of the light source. By taking multiple exposures and the addition of pixel elements, 

the polarization was demonstrated to be less than 0.04% for white light as illustrated in 

Figure 2.8.
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Figure 2.8: Normalised Stokes parameters q plotted against u for a tungsten light source. 
The correlation coefficient of the points is about 0.05 and the average values of q and u give 
a value of p = 0.04%.

The second stage of the testing programme was conducted during the winter 1996/1997 at 

the Cochno observatory with the 25cm telescope. Several standard polarized and unpolarized 

stars were observed over a succession of nights. Since the standard stars were quite bright, 

having visual magnitudes in the range 4 to 7, the instrument was slightly defocussed to avoid 

the saturation of the detector pixels in reasonable exposure times and to increase the count 

rates. Table 2.2 contains the results of the observations using white light. Columns(1-2) gives 

the identification number of the star and the time of observation. Columns(3-4) contain the 

measured values of the polarization p  and position angle 6. Column(5) gives the estimated 

error Gphoton based on photon statistics alone as derived in Section 2.1.1. The final two 

numbered columns lists the published values of pp and 9p.

The first star in the table, HD 36384, also known as % Auriga, is a polarized standard star 

while the second star HD 31964, e Auriga, exhibits variability with a period of 27.1 years, 

(see Coyne, 1974). Unfortunately, since e Auriga’s polarization varies by approximately 0.5% 

over a four year period beginning at a phase of 0.4, it is not a perfect candidate as a polarized 

standard. Nevertheless by extrapolating its variability, observations were made at a phase 

of 0.505 and the polarization determined with a rather large uncertainty as indicated in 

Table 2.2. The final star, P Cassiopeia, is an unpolarized star. Comparing the measured 

and published results for the polarized stars it is apparent that there is no indication of 

depolarization. Reviewing columns (3) and (4) for the unpolarized star indicates that the
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Star
(1)
HD

Date
(2)
JD
245

P
(3)
%

e
(4)

^photon
(5)
%

Pp
(6)
%

Op
(7) Reference

36384 0512.5 1.99 134 0.05 2.019 177 a

0515.5 2.03 132 0.06
31964 0512.5 2.08 97 0.06 1.94-2.05 144-147 b

0515.5 2.01 99 0.05
432 0511.5 0.02 166 0.05 0.009 32 c

0515.5 0.03 167 0.06

^Coyne (1974)
^Appenzenller (1966)

Table 2.2; Observations of standard stars.

errors in the measured polarization are comparable with the expected values on the basis 

of photon statistics alone. Comparing the measured values of 6 with those quoted in the 

literature it is apparent that the instrumental reference axis is offset by 45° ±  1°, within the 

expected errors, with respect to the equatorial reference frame, the standard frame in the 

literature.

The instrumental polarization introduced by the telescope mirrors may be determined by 

observing unpolarized standard stars and then eliminating this bias from the final measure­

ment. Uniformly aluminised mirrors viewing an on-axis point source will introduce small 

amounts of polarization as various parts of the curved surface present differing angles of in­

cidence with reflection coefficients which are sensitive to polarization. A detailed theoretical 

argument is presented by Almeida and Fillet (1992). The observations indicate that for ac­

curacies > 0.05% in the measurement of polarization the performance of the polarimeter is 

still limited by photon noise and the instrument polarization floor has not yet been reached.

Unfortunately, as illustrated in Figure 2.4, overlapping of the extraordinary and ordinary 

beams is prominent in one of the five obscuring strips. This occurs due to a flaw in the 

manufacture of the masking grid. This marginally reduces the available working area of the 

final polarization images.

2.3 Investigation into Instrumental Polarization

From the design of the polarimeter, working in Ha, with the telescope operating off-axis it 

is inevitable that there will be an instrumental polarization which will add to all measured
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polarizations. It must be compensated for and the zero point of the polarization scale de­

termined. It is imperative that the instrumental offset be known with an uncertainty much 

smaller than the random errors associated with the q and u measurements.

In the case of stellar work the most common method of determining the instrumental 

polarization is the measurement of one or more standard stars with either zero or a known 

polarization. This procedure is outlined in Section 2.2.7. However, this approach is impos­

sible with the Ha filter incorporated in the instrument since it actively reduces the incident 

intensity by a factor of 10® making the standard stars too faint to observe and with no com­

parable object available. The instrumental polarization may also be estimated in laboratory 

conditions with the introduction of a Lyot depolarizer, see Lyot (1928), in the optical path 

of the polarimeter. However, this approach is only effective in an instrument which examines 

a large wavelength region simultaneously. In the case of an instrument observing a small 

wavelength region, such as with an Ha filter, a monochromatic depolarizer is required. A 

design for such an instrument was first suggested by Billings (1951) but it has never been 

explored experimentally. It was decided to construct such an instrument and this is outlined 

in Section 2.3.1.

For reasons of symmetry and scattering geometry the polarization should generally be zero 

at the solar disk center with a sharp, rapid rise at the limb reaching a maximum value of 

p ~  1%. Therefore, making recordings at the disk center allows the instrumental offset to 

be estimated, (see Section 5.2). This procedure was followed in order to complement the 

monochromatic depolarizer approach.

2.3 .1  O ptical A rrangem ent for a M onochrom atic D epolarizer

A combination of rotating wave plates may be devised which will act as a complete depolarizer 

for monochromatic light. A quarter-wave plate rotating at one speed followed by a half­

wave plate rotating at twice the speed will give a device which is a perfect depolarizer and 

will operate on any state of polarization, provided that there are many rotations over the 

experimental time.

Consider the case of two wave plates with retardance Ai and A2, rotating at uj\ = 

and W2 =  2wi =  ^  respectively. Using the Muller calculus introduced in Section 1.1 their 

effect may be expressed by

lout = [R{-i^2) [M(A2)] R{+^2)] ■ [ R { - M  [M(Ai)] R(+Vl)] -lin (2 .21)

with the coordinate rotation matrix R(i/)) expressed by Equation 1.11. The general Mueller
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matrix for a wave plate of retardance A may be expressed by

/  1 0 0 0 ^
0 1 0  0

0 0 cos(A) sin(A)
[M(A)] = (2 .22)

^ 0 0  -sin (A ) cos(A) y 

Evaluating Equation 2.21 with the appropriate Mueller matrices and the following approxi­

mations

< sin 2i/)i >

< sin 2-02 >

< sin  ̂201 >

< sin^ 202 >

= < cos 201 > =  0

= < cos 202 > =  0 

= < cos^ 201 > =  i

=  <  COS^ 2 0 2  > =  1

(2.23)

yields

lout —

^ 7 \

§ ( 1  +  COS A i)(l 4- cos A2)

^(1 -h cos A i)(l + cos A2)

V

(2.24)

V  cos Ai cos A2

Incorporating Equation 2.24 into Equation 1.3 will yield an expression for the resulting degree 

of polarization, p.

]J( Ç  +  x )  Ai)2(l -I- cos A2)̂  +  cos^ Ai cos% A2
(2.25)

Clearly p =  0 in the case where the Ai = 90° and A2 =  180°, confirming that the combination 

of a rotating quarter- and half-wave plate will act as a perfect monochromatic depolarizer.

However, it is of interest to investigate the depolarizing efficiency as the wavelength moves 

off center. The retardance. A, of each wave plate may be defined as

O'jr
A =  — {No — Ne)d (2.26)

where d is the thickness of the retarder, and N q and Ng are the refractive indices of the 

ordinary and extraordinary waves respectively. To first order the retardance of each wave 

plate is inversely dependent on wavelength, and as the birefringence, No — Ne^ usually displays 

little dispersion this may be neglected in the analysis. Figure 2.9 illustrates the quarter- and 

half-wave plate dependence with wavelength.
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Figure 2.9: The dependence of the quarter- and half-wave plates retardance with wavelength. 
The vertical dashed line refers to the Ha wavelength.

Incorporating the wavelength dependence of the two retarders into the preceding analysis 

and specifically into Equation 2.25 it is possible to determine the effectiveness of the depo­

larizer for a range of wavelengths. This is shown in Figure 2.10 with three distinct incident 

polarizations. At Ha, the arrangement is completely effective as a depolarizer but at different 

wavelengths the effectiveness decreases, this is especially the case for any incident circular 

polarization. It is also obvious that the component wave plates should be manufactured to 

have the correct values for the selected wavelengths.

The imaging polarimeter described in Section 2.2 has been constructed primarily for so­

lar observations in and around the Ha wavelength. The Daystar filter, by its design, will 

inevitably introduce additional instrumental polarization to the instrument which may be 

investigated and measured by the use of the monochromatic depolarizer arrangement. It is 

therefore important to explore the efficiency of the components if they are not exact or if the 

selected wavelengths depart from Ha.

2 .3 .2  E xp erim en ta l Im p lem en tation

A test bench was assembled, as illustrated in Figure 2 .11, in order to test the monochromatic 

depolarizer arrangement. A single He-Ne laser of wavelength 6328Â producing a vertically
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Figure 2.10: The theoretical effectiveness of the depolarizer arrangement with wavelength for 
three distinct incident polarizations.

polarized T E M qo Gaussian mode at a power level of 2mW Wcis utilised cis the linearly polarized 

light source. A Polaroid ensured that the laser beam was 100% polarized before encountering 

the wave plate combination. The two wave plates were made of mica encased in crown glass 

for protection. The quarter- and half-wave plates, each 80mm in diameter, were held in place 

in a hollow bearing driven by a synchronous A.C. motor, with a rated speed of 1500 rpm, 

through a series of gears. This enabled the quarter- and half-wave plates to be driven at 

a frequency of 7Hz and 14Hz respectively. These wave plates were set strictly in the plane 

perpendicular to the optical axis in order to minimise the instrumental polarization and 

also reduce any prismatic effects. The laser beam then entered the polarimeter, excluding 

the Ha filter, and was focussed onto the CCD detector. A polarimetric measurement was 

then determined for the depolarizing setup utilising the data acquisition system outlined in 

Section 2.2.5.

2.3 .3  R esu lts

The laser beam’s polarization was first checked, without the depolarizer arrangement in 

the beam, in order to confirm its high degree of polarization. Figure 2.12a illustrates the 

profile of the laser beam for the four positions of the half-wave plate. The Savart plate in
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Figure 2.11; Schematic depiction of the test bench setup for the monochromatic depolarizer.

the polarimeter ensures that the beam is split into two orthogonally polarized beams. The 

laser beam was found to have a polarization, p =  100.08% ± 0.03%. The stability of the 

laser’s power output was tested over an extended period and found not to drift significantly 

(about 5% over an hour). However, the double beam approach to polarimetry completely 

compensates for any such power fluctuations. The two wave plates were then replaced and 

rotated at their optimum speed. The profile of the laser beam with this configuration is 

shown in Figure 2.12b. The inclusion of the rotating wave plates unfortunately broadens the 

beam’s profile so that the two orthogonal polarizations overlap resulting in the polarization 

measurement being fraught with additional uncertainties. The beam profile also demonstrates 

a speckled pattern which may be explained by imperfections in the mica wave plates.

The half- and quarter-wave plates were designed for use at the Ha wavelength while the 

test bench utilises a He-Ne laser with a wavelength of 6328Â. According to the analysis in 

Section 2.3.1, there should be a residual p of 0.32%, owing to the wavelength dependence 

of the mica wave. Numerous exposures of several seconds were taken with the wave plates 

rotating and the polarization determined, shown in Figure 2.13. The measured polarization 

was p =  1.01%, three times the expected amount. This discrepancy between theory and 

experimental results may be explained by a variety of factors. The wave plates may not have 

been manufactured perfectly for use at Ha causing erroneous phase shifts to the propagating 

laser beam. The rotation of the wave plates at high speed introduces a broadening and 

wobbling of the profile of the laser beam. This wobbling is caused by the non-parallelism of 

the wave plates with respect to each other and the incoming beam, essentially a prismatic
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(a) Laser beam profile w ithout the wave plates in the optical path
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(b) Laser beam profile for the depolarizer arrangem ent

Figure 2.12: Laser beam profile at (i) 0°, (ii) 45°, (iii) 67.5° and (iv) 112.5° half wave plate 
positions for two different configurations.
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Figure 2.13: Normalised Stokes parameters q plotted against u for a tungsten light source. 
The average values of q and u give a value of p = 1,01%.

effect, and the rather inexpensive bearing and gear system used. Utilising air bearings and 

materials with a higher degree of manufacturing tolerance would greatly improve matters. 

Better results would be apparent if quartz wave plates were to be used rather than the 

optically poorer material mica. The mica plates were encased in crown glass by the use of an 

adhesive which may cause phase shifts to the beam as it propagates through, reducing the 

efficiency of the wave plates. An additional complication is determining whether the laser is 

exactly at the prescribed wavelength. Any wavelength drift will influence the effectiveness of 

the depolarizer as demonstrated in Figure 2.10.

Considering the practical difficulties and the equipment used, the results obtained clearly 

demonstrate that the Billings proposed depolarizer is effective when dealing with monochro­

matic linearly polarized light. Unfortunately this approach cannot be used to determine the 

prototype imaging polarimeter instrumental polarization to a suflBcient accuracy due to the 

problems discussed previously.
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Parameters Details
CCD Make TC-241
CCD Chip Size 375(H) X 242(V)
Pixel Size 23^m by 27pm
Active Area 8 .6mm by 6.5mm
No. of Amplifiers 1
Quantum Efficiency blue 25%

red 65%
Readout Speed 22ps per pixel
Acquisition and Display Time 20s for a full frame
Readout Noise 104e- RMS
Cain 10e-/ADU
Full-Well Capacity ~  5 X 10  ̂ electrons

Table 2.3: The parameters of the SBIG ST-6 CCD Camera

2.4 The CCD Detector and its Calibration

Multi-element detector arrays such as charged coupled devices have introduced a new di­

mension to astronomical instrumentation. They inherently have a high quantum efficiency, 

low readout noise, small pixel size (10-22/im) and are affordably priced. A CCD comprises 

of a photosensitive array of MOS (Metal Oxide Semiconductor) capacitors which generate 

photoelectric charged carriers by the absorption of photons. This mechanism is known as the 

photoelectric effect. The charged carriers are transferred in discrete time increments from 

one potential well to the next by a sequence of voltage changes called clocking. This vertical 

transfer process delivers entire rows of the array to a horizontal shift register for transmission 

to the video output port. During the transfer from one stage of the register to another, a 

certain number of charges are left behind. For modern CCD’s this quantity may be defined 

by the Charge Transfer Efficiency (CTE) which is typically 99.999%, (see Bull, 1991). The 

information from the array is stored in discrete signal packets, appearing at the output as 

sampled signals, with each sample representing a packet of charge. This packet of charge is 

then converted into an analogue to digital unit (ADU) by the electronics of the CCD and 

stored.

The CCD detector utilised was an SBIC ST-6 with an array of 375 by 242 pixels. The 

pixel size was 23/j.m by 27pm with a total area of 8 .6mm by 6.5mm; for further details consult 

Table 2.3.
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Figure 2.14: Measurement of the linearity of the ST-6 detector and the associated electronics.

2.4.1 L in e a rity

CCD systems are dominated by several different noise regimes which correspond to differing 

illumination levels, (see Mackay, 1986). At the lowest illumination level, the readout noise 

dominates. However, as increasing signal is readout, the shot noise of the signal charge is 

added in quadrature with the intrinsic readout noise. Eventually this readout noise will 

become negligible and the signal-to-noise ratio will thus be proportional to the square root 

of the signal level. This is the working regime of the detector where recorded events are 

directly related to the arriving photons. At higher illumination levels the signal-to-noise 

ratio increases slowly which can be attributed to the onset of non-linearity near saturation.

The linearity of the detector was determined by illuminating the CCD with a stable lumi­

nous source connected to a uniformly regulated power supply. The integration time of the 

detector was varied whilst keeping the intensity of illumination constant throughout. Five 

frames were taken at each integration time including dark and bias exposures. A test area 

of 10 by 10 pixels on the CCD was selected to evaluate the response of the detector. A least 

squares line fitted to the data points illustrates the excellent linearity of the detector within 

the linear noise regime. Figure 2.14 clearly illustrates the linearity of the ST-6 detector. The
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CCD saturates at an illumination level of 65535 ADU but experimentation demonstrates that 

it is linear between 100 ADU and 50000 ADU.

2.4.2 N oise  and G ain

The CCD images are recorded initially in analogue digital units (ADU), each corresponding 

to a fixed number of electrons (i.e. detected photons). The ADU are generated by the 

electronics with a 16-bit capacity giving a possible (2̂ ®) 65535 units. It is imperative to 

determine the gain of the system, that is, the number of electrons corresponding to an ADU.

In order to determine the system gain and noise concurrently, a calibration method pro­

posed by Janesick et al. (1984) was followed. This technique known, as the photon transfer 

or variance method, is outlined below.

Photon Transfer Technique

A transfer equation may be written to represent the output signal of the electronic converter 

in terms of ADU

^((ADU) =  GN  (2.27)

where N is the number of electrons and Ç is the gain of the amplifier expressed in ADU per 

electron. The signal noise may be expressed in terms of ADU

ct»(ADU) =  G V N  (2.28)

with the variance expressed by

<tJ(ADU) =  G'^Vn . (2.29)

Taking the ratio of the variance to the measured signal yields

Rearranging this equation further gives

<tJ(ADU) =  Ç5(ADU). (2.31)

The RMS system noise may also be obtained by following a similar argument. Provided that 

the signal and noise are not coherent the following is true

aJ =  e£ '(A D U )+aL»e- (2-32)

This equation has the form of a straight line equation with the inverse of the gradient ^ 

directly yielding the number of electrons corresponding to an ADU. The intercept of the line 

allows a determination of the RMS noise, , of the system.
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Figure 2.15: The transfer curve of the ST-6 CCD detector with the variance cr̂  plotted as a 
function of the mean signal for a 10 by 10 pixel area of the chip.

E xperim en ta l D eterm ination  of Noise and Gain

In order to determine the gain and noise of the ST-6 CCD detector the following calibration 

procedure was followed. The CCD was illuminated by a flat illumination source connected to 

a uniformly regulated power supply and a variable resistor in order to vary the illumination 

intensity.

Twenty exposures were taken at numerous illumination levels with an accompanying dark 

exposure. A test area of 10 by 10 pixels on the detector was selected and the procedure 

outlined below was followed.

Introducing as the measured signal for row z, column j  and exposure k with the

corresponding dark value Vi j .  Taking M  number of exposures and introducing P  as the 

number of pixels in the sub-area, the mean signal level may be expressed by

(2.33)

The pixel deviation from the mean may be expressed as

(2.34)
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Expressing the variance of the signal by

^ s i,n a l =  — (2.35) 

the mean signal level may be defined by

S.i,na, =  (2.36)

For each illumination level the signal mean and variance were determined. Figure 2.15 il­

lustrates the transfer curve with a least squares regression fit also plotted. This yields a 

gradient of 0.0967 with an intercept of 108.487. The inverse of the gradient is defined as the 

gain of the system and within uncertainties this yields 10 electrons per ADU. The RMS of 

the system may be expressed by erg x gain, yielding 104 electrons. A typical CCD pixel may 

hold < 500000 electrons before saturation. This translates to an uncertainty of 0.15% in the 

determination of the normalised Stokes parameters. This may further be degraded by ob­

serving faint stars at long integration times in the presence of strong and generally polarized 

sky background.

2.4 .3  F latfield ing and V ig n ettin g

The sensitivity of a CCD is not uniform across its surface. Different pixels have different 

quantum efficiencies resulting from small structural variations on the chip. These variations 

in sensitivity can reach 1% to 2% over the array and are far from negligible when observing 

faint objects for polarimetry. This multiplicative error is, in principal, completely removable 

by division with an exposure of an uniformly illuminated surface (commonly referred to as a 

Hatfield) in a process known as flatfielding. However, in determining the Stokes parameters 

in the procedure outlined in Section 2 .2 , the dependence on the detector sensitivity is clearly 

eliminated and the cumbersome flatfielding technique is not required.

Due to the nature of the light cone entering the polarimeter and the physical size of the 

optical components, spatial vignetting (shadowing) from the instrument must be considered. 

During the course of solar observations the masking grid’s field of view exceeded 16 arcminutes 

with an i f  32 light cone entering the instrument resulting in spatial vignetting of the image. 

For night time work this effect is compounded by the wider f/10 light cone transversing 

through the system. In order to determine the amount of vignetting, an exposure of the 

quiet Sun was taken. This produced an exposure of uniform intensity enabling a calibration 

routine to remove the dependence on vignetting. Figure 2.16 illustrates the vignetting contour 

map.
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Figure 2.16: The contour map demonstrating the optical vignetting.

2.5 Data Reduction Procedures

The images collected by the data acquisition computer during observations were transferred 

via disks to UNIX-based workstations. The raw data was archived in the standard astro­

nomical FITS (Flexible Image Transfer System) format. Conversion of the files to an NDF 

(Extensible N-Dimensional Data Format) format allowed data manipulation by the Starlink 

environment. The packages utilised were a combination of KAPPA, GAIA, DAOPHOT, 

PHOTOM and FIGARO with several G-shell scripts written to automate the data reduction. 

A further non-Starlink package, IDL, was employed in order to analyse the data with specific 

routines not available elsewhere.

Two distinct approaches were followed for the data reduction depending on the object 

observed; a stellar point source as outlined in Section 2.5.1 or an extended source such as the 

Sun or the Orion nebula as reviewed in Section 2.5.2. Certain instrumental parameters must 

be considered before any analysis can be undertaken. The instrumental polarization and the 

coordinate frame of the instrument must be determined by suitable calibration procedures 

and the results incorporated into the analysis.
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2.5.1 Stellar A nalysis

In order to improve the accuracy of the polarization measurement, a stellar source was slightly 

defocussed onto the detector and the intensity dispersed over a large number of pixel elements. 

Four exposures were taken at the appropriate half-wave plate positions during a three minute 

interval for a 5*̂  magnitude star. Any movement of the source on the detector due to 

image wobble caused by the half-wave plate rotation or poor tracking by the telescope may 

be corrected during the data analysis. Furthermore, a bias exposure is taken in order to 

determine the readout noise and also a dark exposure of similar length to the light exposure 

is taken to ascertain the inherent thermal background of the detector. The sky background 

can show strong temporal variations in both its intensity and its degree of polarization. It is 

therefore important to eliminate or compensate for its effects on the final measurement. A 

commonly used method is to take separate measurements of the sky background before and 

after each observation and to subtract this from the stellar (plus sky) measures. However, a 

background exposure was deemed unnecessary since the imaging polarimeter has an extended 

field of view and thus both source and background may be measured simultaneously.

The following analysis routines were carried out:

• Images are subjected to preliminary steps of bias and dark removal, cosmic ray and bad 

pixel detection.

• PSF fitting tasks of the DAOPHOT package are then used to determine accurately 

the centroids of the stellar images. The intensity estimates are, however, made using 

aperture photometry covering a diameter greater than 2xFWHM (full width at half 

maximum transmission) so as to integrate more than 90% of the signal. Any temporal 

drift on the detector is also eliminated.

• The gain factor of the system (10e“ /ADU) is applied.

• The sky background may be subtracted from the stellar exposures.

The normalised Stokes parameters q and u are determined, with the instrumental po­

larization corrections incorporated in the measurement.

• The position angle, 6, is determined and corrected to the equatorial coordinate frame.

The degree of polarization p and position angle 9 may thus be determined for any stellar 

source.
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2.5 .2  E xten d ed  Im age A nalysis

The analysis procedure for extended sources is similar to that discussed in the previous section 

with several additional complications. In order to improve the polarimetric accuracy, multi­

ple exposures of an extended source are undertaken with the frames co-added thus increasing 

the total number of detected photons. The expected precision for one set of exposures (i.e. at 

the four half-wave plate positions) is of the order 0.1% per pixel. Taking ten sets of exposures 

and CO-adding frames and detector pixels improves the accuracy of the polarization to 0.02%. 

However, this observational technique amounts to recording over forty exposure frames in a 

time period of approximately 45 minutes. Unfortunately, mistracking by the telescope intro­

duces drifts between different exposures requiring alignment corrections. Mutual alignment 

of the digital images to allow intercomparison is dependent on the positional determination 

of the solar limb or some appropriate surface structure such as a sunspot or granulation, in 

the case of the Sun, as reference markers. Certain imperfections in the grid construction also 

provide excellent reference markers.

One of the main aims of this thesis is the study of the center-to-limb polarization gradient 

along the equatorial and polar directions. It is therefore imperative to determine the exact 

position of the solar limb consistently in all exposures. The center-to-limb intensity variation, 

illustrated in Figure 5.2, is explored and the median intensity value along the limb gradient 

is used as a positional marker for the limb position. It is also important to consider the effect 

of refraction in the Earth’s atmosphere when reducing the data.

Differential Refraction of the Sun

In undertaking the exercise related to CLV of the East/West and North/South sections of the 

solar surface, the effect of refraction on the relative plate scales needs to be considered. When 

observing celestial sources, refraction due to the Earth’s atmosphere must be considered and 

the following section presents a simple analysis of this effect. Therefore, taking the Earth’s 

atmosphere to consist of a large number of thin parallel layers of differing densities, see 

Figure 2.17. A ray of light from a source meets the topmost layer of the atmosphere at B, 

at an angle of incidence i, and is therefore refracted in successive layers until it reaches the 

observer at O. Since the direction of increasing density is downwards, the refractive index 

also increases in that direction, so that the source is displaced towards the zenith along the 

great circle through Z and X, where X is the true position and A the apparent position of 

the source, as illustrated in Figure 2.17.
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Figure 2.17: The coordinate system for refraction in the Earth’s atmosphere. 

Defining N  as the refractive index of the bottom layer yields,

shüz =  Nsui^. (2.37)

Let 77, defined by

be the angle of refraction, the correction that has to be applied to the apparent zenith distance 

 ̂ to obtain the true zenith distance z. Eliminating z from equation 2.37 and 2.38 and with 

the small angle approximation yields

R\ = k tan ^ (2.39)

where k is 60.3 arcseconds when the surface atmospheric pressure is 760mm of mercury and 

the temperature is 0°C (values of k for other pressures and temperatures can be found from 

tables, see Allen, 1973) and R\  expressed in arcseconds. The equation above is valid for 

zenith distances less than 45° and is a fairly good first approximation up to 70°. Beyond 

that, a more accurate formula taking into account the curvature of the Earth’s surface is 

required. For altitudes of 15° or more, the refraction R 2 in degrees, can be calculated from 

the following equation, (taken from Ridpath, 1989),

0.00452paH2 = (273 T T)tana
(2.40)
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where Pa is the atmospheric pressure in millibars, T  is the temperature in degrees Celsius, and 

a is the altitude in degrees. For altitudes below 15° the simple formula becomes increasingly 

inaccurate, and the following more precise formula, Rs also in degrees, must be used

p(0.1594 +  0.0196a +  0.00002a^)
 ̂ “  (273 +  T )(l +  0.505a + 0.0845a2) '  ̂ ^

The amount of refraction ranges from just over half a degree at the horizon to zero at the 

zenith.

The Sun is an extended source subtending an angle of 0.533° in the sky from limb to limb. 

In the direction of increasing altitude or decreasing zenith distance, i.e southern to northern 

limb, the Sun’s diameter will appear to be reduced due to the differential refraction caused 

by the Earth’s atmosphere. The rays from the top of the Sun will be refracted more than 

the rays emanating from the bottom and hence the apparent “squashing” from pole to pole. 

However, there is no differential refraction along the equatorial direction, i.e. western limb 

to eastern limb, since this is a direction of constant zenith distance and hence not refraction 

dependent.

One of the aims of this thesis is to determine whether there is a significant difference in the 

center-to-limb variation in Ho; polarization between the polar and equatorial regions of the 

Sun. A contributory factor may be the different scale length in the polar direction caused by 

the differential refraction. It is therefore imperative to quantify this effect for the observations 

taken. Applying Equation 2.38 to both the northern and southern limb of the Sun yields,

Rn —

Rs = Zs — ^s- (2.42)

The apparent angular change of the Sun’s diameter from the northern to the southern limb 

due to differential refraction in the atmosphere may be expressed by the following expression,

{Zn — Zs) +  (^s — in) = Rn ~  Rs (2.43)

where Rn and Rg may be determined using one of the three approximations outlined in 

Equations 2.39-2.41 and Zn~ Zg = 0.533°. Figure 2.18a illustrates the altitude of the Sun at 

Glasgow at midday during the year while Figure 2.18b shows the corresponding variation in 

the Sun’s diameter between the northern and southern limbs due to the differential refrac­

tion caused by the Earth’s atmosphere. Evidently if the Sun’s altitude is greater than 30° 

the differential refraction effect is less than 4 arcseconds. This is smaller than the angular 

resolution of the polarimeter and corresponds to 0 .2% change in the Sun’s apparent scale
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length. All observations of the Sun were conducted during the months of July and August 

within two hours of midday and only approximately a fifth of the solar surface was observed 

at any one time for the CLV analysis, therefore the refractive eflFects of the atmosphere may 

be neglected. This means that the non-linear plate scale North/South relative to the linear 

scale East/West in not important.

Image Reduction Technique

Several exposures of the Orion Nebula (M42) taken during the winter 1996/1997 are shown 

in Figure 2.19 illustrate the required observational reduction routines:

• An image of the extended source is taken with the Savart plate, half-wave plate and 

grid removed as shown in Figure 2.19a.

• A set of exposures of the source is taken through the polarization optics producing 

a series of strip pairs of orthogonal polarization. Since the grid of parallel obscuring 

strips ensures only half the field of view is visible, the telescope orientation is slightly 

changed to ensure that data is taken of the previously obscured view. Figure 2.19b and 

Figure 2.19c are two such examples.

• Images are subjected to bias and dark removal with the gain factor of the system applied. 

Bad pixel detection and sky background subtraction is applied where appropriate.

• The ordinary and extraordinary strips of the region under consideration are extracted 

from the exposure by the Kappa analysis package. This is demonstrated in Figure 2.19d 

and Figure 2.19e for both exposures.

• The degree of polarization and angle of polarization are determined. Figure 2.19f is a 

contour plot of degree of polarization. Conventionally the two quantities are superim­

posed in one plot.

2.6 Summary

An optical polarimeter has been constructed based on the use of a Savart plate to split the 

telescope image into two polarized components. The instrument has a field of view of about 

16 arcminutes for a 7.5cm diameter f/32 telescope and 8 arcminutes for a 25cm diameter 

f/10 telescope. Combined with the use of a two dimensional cooled CCD detector, this 

allows the mapping of linear polarization in extended astronomical objects with a spatial
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Figure 2.18: The effect of differential refraction on the center to pole measurement.
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An exposure of the 
Orion Nebula.

Two exposures of the Orion Nebula 
throught the polarization optics.
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Contour heights

A contour plot of the degree of polarization.

Figure 2.19: Diagrammatic representation of the extended image analysis routine.
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resolution that can match the limit set by the atmospheric seeing, which at Glasgow is 5 

arcseconds at best. An off-axis guidance system was implemented enabling the tracking of 

faint objects such that the corresponding image on the CCD face is kept stationary to within 

one half pixel. Instrumental polarization, excluding the Ha filter, was calculated to be of the 

order of 0.04% during test bench calibration. Observations of nearby standard polarized and 

unpolarized stars show that for wideband observations there is no discernible depolarization 

and the instrumental polarization is less than 0.05%.



Chapter 3

Faraday R otation Theory

A plasma permeated by a magnetic field can be considered an anisotropic medium with prop­

erties such as birefringence, optical activity, and dichroism. These occur due to the difference 

in the electron dynamics between motions parallel and perpendicular to the magnetic field. In 

addition, due to electron density gradients, plasmas are refractive. Starting from the theory of 

electromagnetic wave propagation in an magnetised plasma, the theories of Faraday rotation 

and birefringence are reviewed. The inversion techniques necessary to obtain the poloidal 

magnetic field from the Faraday rotation measurements are discussed. Finally, an analytical 

solution is presented that details the expected Faraday rotation angles for COMPASS-D and 

the birefringence introduced due to the presence of the toroidal magnetic field.

3.1 Fundamental Frequency Parameters in Tokamak Plasmas

An electrically charged particle in the presence of a magnetic field will exhibit a cyclotron 

gyration along the field line. The angular rotation frequency lOc is fundamental to the analysis 

of electromagnetic wave propagation through a plasma, and is defined by

We =  (3.1)
m

where q is the charge of the particle, m  is its mass, and B the magnetic field strength. The 

cyclotron frequency for COMPASS-D with Btor < 2.10T on axis for electrons is in the 30- 

60CHz range, and for ions in the MHz range. If an electromagnetic wave with a frequency 

in one of these ranges propagates into the plasma, most of the wave power will be resonantly 

absorbed by the plasma. This may also occur at a few higher harmonics of the ion or electron 

cyclotron frequencies.

A charged particle displaced from its equilibrium position in a quasi-neutral plasma will 

experience electrostatic oscillations, where the restoring force is due to charge separation.

75
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This oscillatory motion by the charged particle is defined as the plasma frequency. Since ions 

are very much heavier than electrons, to a first approximation, it is possible to consider them 

to be at rest. The plasma angular frequency ojp is given by

nge2

where Ue is the electron density, e the elementary charge of the electron, mg the electron mass, 

and Co the dielectric vacuum constant. The density regime on COMPASS-D lies between 

5xl0^®m“  ̂ and IxlO^'^m” ,̂ yielding plasma frequencies between 20 and 90CHz.

In many plasmas it is unsatisfactory to use material probes to determine internal plasma 

parameters and nonperturbing methods for diagnostics are required. The most successful 

and accurate of these use electromagnetic waves as a probe into the plasma. Provided their 

intensity is not too great, such waves cause negligible perturbations to the plasma and are 

valuable diagnostic tools. Civen the applied wave frequency, w, it is interesting to consider 

the density for which it equals the plasma frequency. This critical density ng is, by inversion 

of Equation 3.2, defined as
_ _  ôrrieUĴTig — 2 • (3.3)

For a probing wave frequency of 693CHz the critical density equals 5.96xl0^^m“  ̂ which is 

two orders of magnitude larger than typical plasma densities in COMPASS-D discharges.

3.2 Wave Propagation in a Homogeneous M agnetised Plasm a

In this section, the theory of electromagnetic wave propagation in a cold, homogeneous 

Lorentz plasma will be considered. A Lorentz plasma is one for which the ions can be 

considered as being at rest, acting as a continuous stationary fluid through which the elec­

trons move. The electron thermal velocity is also assumed to be much less than the wave 

phase velocity. It will be shown that a wave propagating in the plasma can be described 

by two orthogonally polarized characteristic waves, each experiencing a different refractive 

index N . To describe fully the interaction between the electromagnetic wave and the Lorentz 

plasma it is necessary to derive these refractive indices.

The derivation can be done by determing Ohm’s law from both the equation of motion 

and from Maxwell’s equations. The requirement that these two different expressions for the 

conductivity of the plasma be self-consistent leads to the Appleton-Hartree formula, (see 

Appleton, 1932).

Consider a plane electromagnetic wave propagating along the z-axis at an angle Q to the 

external magnetic field Bq, which lies in the y-z plane (see Figure 3.1). The interaction of
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Figure 3.1: Coordinate frame for wave propagation in an arbitrary direction to the external 
magnetic field Bq. Parameter 6 is the angle between the direction of propagation k and Bq.

the wave with the plasma occurs via the electric field of the wave E, with the equation of 

motion of the electrons given by

TTig—r~ — —cE — ev X  B q 
at

(3.4)

where v is the electron velocity. All interactions with other particles are neglected. In some 

texts, a collisional term — z/mgV, where u is the collisional frequency for momentum transfer, 

is included in the analysis. However for small amplitude waves this collisionality term is 

negligible in practice. The wave magnetic field is also neglected with respect to its electric 

field since the magnetic field compares to the electric field as ^  in a non-relativistic plasma.

Expressing the temporal and spatial dependence of a plane monochromatic electromagnetic

wave as and defining the current density J  as

J  — —eUgV (3.5)

it is possible to rewrite the equation of motion. Equation 3.4, in the form of Ohm’s Law

p - J  = E (3.6)

where the resistivity tensor p is given by

/
1

P = eut

lUJ 

—WcgCOS

y WcgSin 9

U c e  COS t /  — C J c g S m  I

iu  0

0 iu)

\

(3.7)



CHAPTER 3. FARADAY ROTATION THEORY 78

and Uce denotes the angular cyclotron frequency for electrons.

The second stage in the theory is to derive Ohm’s law with a conductivity tensor â, namely

J  =  (T • E. (3.8)

The dispersion relation for wave propagation then follows from the requirement that Equa­

tions 3.6 and 3.8 are self-consistent.

The conductivity tensor is obtained by considering the Maxwell equations:

V x E  =
ot

^  ^ 1 6BV X B — poJ -h  - y —  
ot

V • B =  0 

V -E  =
e

(3.9)

(3.10)

(3.11)

(3.12)

where p/ is the column density of free charge and J  the net current density.

Combining Equations 3.9 and 3.10 yields the equally well known electromagnetic wave 

equation
1 a2-p. a t

(3.13)„  „  „  1 (ÎJV x V x E - - ^ ^ - p „ . ^ .

re-writing Equation 3.12 in the shape of Ohm’s law yields

<7 • E = J (3.14)

and taking k = N u /c ,  with N  being the refractive index and c the velocity of light, this 

yields an expression for the plasma conductivity

a  =  iu€f

V

iV2 - 1  0 0

0 AT2 -  1 0

0 0 - 1

\

(3.15)

For Equations 3.8 and 3.14 to be self-consistent they must satisfy

(p • a  — I) • E  =  0 (3.16)

where I is the unit tensor. This equation represents a set of three simultaneous equations 

which upon substitution of Equations 3.7 and 3.15 can be expressed as

f
lU
UJt

iu{N^  -  1) F 2-4 U}ce{N^ -  l)cos0 U c e S m 6
\

-Uce{N^ -  l)cos e iu{N^  - 1 ) 4 - 2 ^  

 ̂ Uce{N‘̂ — l)s in 0 0

•E =  0. (3.17)
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Figure 3.2: The general polarization state of the characteristic waves.

The determinant of the matrix coefficients must be zero for a non-trivial solution to exist. 

This results in a dispersion relation for wave propagation that can be solved for the refractive 

index iV, (see Heald and Wharton, 1965 and Segre, 1978),

N^ = 1 -

where
2w cos#

F  = — (1  o
Uce sin^#

(3.18)

(3.19)

This expression is called the Appleton-Hartree formula for the refractive index. For a 

given plasma, described by the parameters Up and Uce, Equation 3.18 will, in general, yield 

two different positive values for the refractive index. For each of these values. Equation 3.17 

can be solved giving the particular state of polarization. Waves can only travel through the 

plasma in one of these two characteristic polarization states. They are the normal modes of 

electromagnetic oscillation in the plasma and, as they propagate through the plasma, these 

characteristic waves do not change their state of polarization, as long as the plasma properties 

do not change. They are generally elliptically polarized, orthogonal with their major axes at 

90° to each other and with the same ellipticity but opposite handedness, (see Figure 3.2). Any 

polarized wave can be resolved into two waves with orthogonal polarization. However, the 

refractive indices that the two waves experience are in general different, and therefore their 

propagation velocities will also differ. As a consequence, the polarization of the resultant 

wave will change.
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The polarization states of any electromagnetic wave can be fully described by three con­

venient parameters; the electric field ratios «x.y, i^z,x

N ^ - i + â

^z,y —

!̂ Z,X —

Ey
{N^ — 14- ^ ) t a n 0 

1-%#  
,!^ (JV 2-l)sin6 l

—2-

(3.20)

(3.21)

(3.22)
1 - ^

Considering purely transverse electromagnetic waves the electric field ratio is impor­

tant. By substituting Equation 3.18, N  can be eliminated in the above expression to yield

l^x,y — COS 9
^ s i n ^ 9

cosf 9 -1-
(  ^ s i n ^ # \u  q :

, ,2 1 A

2[1 -  1
(3.23)

3.2.1 T he P rincip a l C haracteristic W aves

There are two directions in the plasma which are of special interest. These are parallel 

and perpendicular to the external magnetic field lines, called the principal directions. The 

refractive indices and state of polarization of these characteristic waves for these directions 

are considered.

Propagation Parallel to the Magnetic Field

For the case of wave propagation parallel to the external magnetic field, # =  0°, it is 

possible to simplify equation 3.18 to yield two refractive indices N l  and N r

N f  = 1 -
u:

and 7V% =  1 --  r.
u [ U -  Uce)

(3.24)
u{u  -)- Uce)

Using these expressions, one can evaluate the associated polarization states from the ratios 

in Equations 3.20, 3.21 and 3.22, yielding

^x,y — Tb — 0 ) and ^z,y — O' (3.25)

where the sign of Kx,y is positive in case the refractive index N r  is substituted. In both cases 

the wave is completely transverse.

The electric field components for the wave with Kx,y = —i and refractive index N r are

Ex = cos u t and Ey = —sm ut. (3.26)
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Figure 3.3: The circularly polarized principal characteristic waves.

Superposition of these wave components gives a characteristic wave with circular polarization. 

The direction in which the electric field describes the circle, the handedness, is clockwise for 

an observer looking towards the light source. In plasma wave theory, the wave is called left- 

handed and is sometimes referred to as the “slow” wave. Similarly, the characteristic wave 

with Kx,y = i and described by N r  has electric field components

E t = cos u t and Ey = sin ut. (3.27)

Again the polarization is circular, but the wave is now called the right-handed or “fast” 

wave. The electric field vector describes the circle in an anti-clockwise manner for an observer 

looking towards the light source. These polarizations are shown in Figure 3.3 and, included 

for comparison, is the direction of electron gyration. This corresponds to the direction of 

rotation of the right-handed wave.

Propagation Orthogonal to the M agnetic Field

Considering the case of wave propagation perpendicular to the external magnetic field, 

6 = 90°, the Appleton-Hartree equation yields the refractive indices

and (3.28)cj2(a;2 -  a;2 -  wgj '

The refractive index, N^,  also describes the propagation of an electromagnetic wave in the 

absence of a magnetic field {uce = 0) with the associated manner of propagation generally
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Figure 3.4: The Principal characteristic waves for propagation perpendicular to B q.

referred to as an ordinary mode or 0-mode propagation. This leaves the extraordinary mode 

or X-mode for the propagation mode governed by Nex-

Evaluating the polarization state for the 0-mode propagation Equations 3.20, 3.21 and 3.22 

yield the ratios

K -  0 K -  and « -  0^ x , y  — U , r i z , x  —  t  /  \ 2  ’ a , I l u  ' ^ z , y  —  U. (3.29)

The characteristic wave is a linearly polarized transverse wave with the electric field along 

the y-axis, and therefore parallel to the external magnetic field.

In the case of X-mode propagation, the polarization ratios yield

. (Wce/w)(Wp/w)^
(3.30)

There is no Ey component of the electric field, but there generally exists a z component. The 

characteristic wave is elliptically polarized in the x-z plane, as shown in Figure 3.4, with a 

plane perpendicular to the external magnetic field. That is, as such a wave propagates into 

a plasma it develops an electric field component Ex, thus becoming partly longitudinal and 

partly transverse.

In the high frequency regime with w )$> Wp and w ^  ujce the longitudinal polarization 

coefficients Kz,xi i^z,y are very small so that there is only a negligible longitudinal electric 

field component, see Figure 3.4. Thus the characteristic wave for X-mode propagation has 

now also become linearly polarized as in the 0 -mode case, but with the electric field vector 

perpendicular to the propagation direction and the external magnetic field.
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3 .2 .2  T he W K B  A p p roxim ation  o f G eom etrical O ptics

The theory of electromagnetic wave propagation discussed so far assumes a homogeneous 

plasma throughout all space. It is important to consider what happens when there are spatial 

gradients in the electromagnetic properties. This implies that fields of the form no

longer separately satisfy Maxwell’s equations.

If the properties of the plasma vary sufficiently slowly, then locally the wave can be thought 

of as propagating in an approximately uniform medium and, thus, the previous treatments 

apply, (see Budden, 1961). Thus, for any frequency and propagation direction, there is a 

locally a well defined k, propagation vector and refractive index N  corresponding to the local 

values of the plasma parameters. This approximation of the wave amplitude as it propagates 

through the plasma for a given frequency can be expressed by

E ~  (3.31)

where z is the distance along the ray path and k is the solution of the homogeneous plasma 

dispersion relation for a given w, based on the local plasma parameters. This is a good 

approximation provided that

^  «  1 (3.32)

implying that the fractional variation of k for one wavelength of the wave is small. Another 

viewpoint is that the refractive index scale length of the plasma is very much larger than the 

wavelength of the wave.

3.2 .3  Faraday R ota tion

The evolution of polarization experienced by an electromagnetic wave propagating through an 

inhomogeneous plasma , in a direction parallel to the external magnetic field, will be discussed

in this section. The WKB approximation to geometrical optics and a high frequency regime

are taken to be valid assumptions.

The progress of an electromagnetic wave of arbitrary polarization E is determined by 

resolving the electric field into two circular components, corresponding to a superposition 

of characteristic waves, and then allowing these two waves to propagate with their known 

refractive indices. The wave amplitude at any other position in the plasma is then determined 

by the superposition of the two waves there. Their phases will evolve differently as they 

propagate in the plasma because of the different refractive indices of each characteristic 

wave. Consider a wave linearly polarized in the x-direction as shown in Figure 3.5. The
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A

(a) A plane polarized wave as the sum of left- and right-handed circularly 
polarized wave.

«f/2

(b) After transversing the plasma, the L wave is retarded in phase relative 
to the R  wave, and the plane of polarization is rotated.

Figure 3.5: The evolution of the plane of polarization in a refractive medium.

polarization can be written as the sum of a right-handed circularly polarized and left-handed 

circularly polarized wave, E = E r, E l where

E r  =  and E l  =  £ „ ( é ;  - (3.33)

After propagating through the plasma along an optical path dz, this decomposition will then 

become

and E l = (3.34)

where kn = and &L =  Recombining these two components gives the output

polarization

E = 2Eo6̂ ^̂  ^2 cos ^  +  sin ^  (3.35)

where a f  = J{N l — Nj^ '^dz  is the phase difference between the characteristic waves arising 

because of the difference in refractive index. The ratio of the electric field components is then 

given by

Ky,x =  ^  =  tan • (3.36)
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Since N l  is greater than N r , the phase velocity of the right-handed characteristic wave 

is greater than that of the left-handed, and thus the phase difference a /  is positive. The 

polarization of the wave after propagating a distance dz is still linear, but rotated by an 

angle ^  with respect to the initial polarization. This effect is known aa Faraday rotation. 

Its magnitude, ’F, is given by

»  =  Y  = -  NR)'^dz  (3.37)

which may be written eis

^  = -—-—  f ngB-dz =  2.63xlO“ ^̂ Â  f nglBojcos Wz. (3.38)
2meCncJ J

The direction of rotation is in the same sense as the handedness of the faster characteristic 

wave, namely the right-handed circularly polarized wave. The Faraday rotation scales as the 

square of the wavelength, and is proportional to the line integral of the product of electron 

density and parallel component of the magnetic field.

Considering the case of wave propagation at a general angle 6 to the magnetic field it 

is possible to evaluate the Faraday rotation angle by solving Equation 3.23. Provided that 

1 (and 1 — ^  is not too small), this may be approximated to lowest order as

^  -  ±i- (3.39)
H j y

Therefore for weak magnetic fields, at all angles not too close to perpendicular, the charac­

teristic polarizations are circular, as illustrated in Figure 3.6.

3.2 .4  B irefringence

The theory of birefringence in an inhomogeneous magnetised plasma is similar to the theory 

of Faraday rotation. Birefringence, also called the Cotton-Mouton effect, (see Clarke and 

Grainger, 1971), arises from the anisotropy created by the magnetic field, and affects waves 

propagating in a direction perpendicular to the magnetic field. The characteristic waves 

are no longer approximately circularly polarized as is the case for propagation parallel to 

the magnetic field. A linearly polarized incident wave will generally acquire some degree of 

ellipticity.

Consider a plane electromagnetic wave propagating through a plasma in a direction per­

pendicular to the magnetic field as illustrated in Figure 3.7. This is a principal direction 

for which the characteristic waves are linearly polarized, with the electric field vector of the 

wave either parallel or orthogonal to the magnetic field. If the initial plane of polarization is
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Figure 3.6: Transverse electric field ratio, as a function of 6. The dashed line refers to 
the case where B = 2.IT and ng = lxl0^^m “ ,̂ whereas the solid line has B =  1.2T and 
Up =  l x l 0 ^^ni“ .̂

y-axis.

x-axis.

Figure 3.7: The two characteristic wave components for a wave propagating in a direction 
perpendicular to the magnetic field.
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at an angle 0 to the magnetic field direction, then the electromagnetic wave can be resolved 

into the electric field components corresponding to the ordinary and extraordinary principal 

characteristic waves, (see Muir, 1983), E =  xEo T y E e x  where

Eo = and Eex = Ayé^^^"> (3.40)

with amplitudes

Ax = EcosO and Ay = E s m 6  (3.41)

where E is the initial electric field vector, i.e. at z =  0. After propagating through the

plasma, along a path dz, a phase difference between the characteristic waves arises due to

the difference in refractive index. The electric field components are therefore

Eo =  and Eex = (3.42)

where ko =  and kex =  Eliminating wt from the two equations above yields an

equation describing the emergent electric field, (see Born and Wolf, 1964),

where = J{No — Nex)^ dz is the phase diflference between the characteristic waves. This 

equation describes an ellipse with the azimuthal angle, ip, of the major axis given by, see 

Appendix(l),

tan 2ip = tan 26 cos (3.44)

and with the ellipticity acquired described by

e = tan % (3.45)

where % lies in range (—f  > X < f  ) and is defined by

sin 2% = sin 20 sin a;,. (3.46)

Considering the case where the phase difference, a^, is small such that cos 0:5 =  1, the major 

axis of the resultant ellipse describing the emergent polarization will be parallel to the initial 

plane of polarization. However if at, is not small, then only by having the initial plane of 

polarization at an angle of 0° or 90° to the external magnetic field will this also occur. If 0 = 

0° or 90°, from Equations 3.45 and 3.46, the ellipticity of the emergent electromagnetic wave 

is zero, whereas it has a maximum value when 0 =  45°. It can be inferred that the optimum 

input polarization for minimising the ellipticity is perpendicular or parallel to the external 

magnetic field, i.e. a characteristic wave.
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The phase difference between the two characteristic waves, at,, can also be expressed in

terms of the plasma parameters by substituting the refractive indices for the ordinary and

extraordinary waves. Equation 3.28

ab = J  {No -  Nex)^dz  = ^  J - ^ ^ d z  (3.47)

■ J  rieB\dz.  (3.48)167r̂  CoĈ m̂ ,

The ellipticity due to biréfringent properties of the plasma are dependent on the cube of the 

wavelength, and scales with the line integral of the product of the electron density and the 

square of the magnetic field perpendicular to the direction of propagation.

3.3 Theory of Faraday Rotation and Birefringence

The coupling of Faraday rotation and Birefringence theories was first examined by Heald and 

Wharton (1965) for the particular case of wave propagation in a homogeneous plasma with 

a helical magnetic field. The more general case of wave propagation in an inhomogeneous 

plasma with a spatially varying magnetic field was however considered by Marco and Segre 

(1972). This work was further developed by Craig (1976) and Segre (1978). The work by 

Marco and Segre (1972) is reviewed assuming the WKB approximation and a high frequency 

regime.

The state of polarization of a plane electromagnetic wave propagating in a inhomogeneous 

plasma can be described by two angles ip and %. Every state of polarization can be uniquely 

defined by these two angles. It is convenient to refer to the Poincaré sphere, (see Born and 

Wolf, 1964), when discussing the evolution of the state of polarization. This is a sphere of 

unit radius where each state polarization is represented by a point P on the surface whose 

longitude and latitude are 2ip and 2% respectively, as shown in Figure 3.8. The Cartesian 

coordinates of the point P, also called the Stokes parameters, (see Clarke and Grainger, 1971), 

determine the polarization vector s

 ̂ cos 2% cos 2i/) ^

(3.49)cos 2% sin 2ip 

\  sin 2% )

Any polarized wave can be resolved into two orthogonally polarized waves. Consider two 

states of polarizations (ipi,Xi)i (V’2? X2) which are orthogonal only if the following conditions 

are met

'^2 = '^! + X2 =  -Xi- (3.50)
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Linear Polarization 

along Equator.

Left-Handed Circularly Polarized.

Figure 3.8: The Poincaré sphere.

These are represented by two diametrically opposite points on the Poincaré sphere.

The evolution in the polarization state of a plane electromagnetic wave propagating along 

the z direction in a plasma at an angle 6 to the external magnetic field, see Figure 3.9, can 

be represented on the Poincaré sphere by a rotation of the point P, which represents the 

wave’s initial polarization state, about an axis which joins the diametrically opposite points 

representing the orthogonally polarized characteristic waves. The angle of rotation is the 

phase difference between the two characteristic waves arising after propagating through the 

plasma. This change in the polarization state is described by the differential equation, (see 

Marco and Segre, 1972 and Segre, 1978),

^  =  n (z)xs(z)
dz

(3.51)

where
ÜJ

17 — —(TVg — Nf)  Scf (3.52)

is the vector which describes the rotation of the Poincaré sphere, Ng and N j  are the refrac­

tive indices of the slow and fast characteristic waves respectively and Scf is the direction of 

the vector which describes the fast characteristic wave. Equation 3.51 has an approximate
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y-axis.

x-axis.

Figure 3.9: Coordinate system for an arbitrary wave propagating in a magnetised plasma.

solution when f \ 0 \ d z  1, (see Kamke, 1959), yielding

s(z) = So -  So X [  Yl{z)dz  (3.53)
Jo

where So is the initial polarization.

Referring to the geometry shown in Figure 3.9, the polarization of the fast characteristic

wave IS

tanx/ = [(l + f " ) i - l ] / f

where F is defined in Equation 3.19 and

' i p f  - - p .

Thus, from Equations 3.49, 3.54 and 3.55 it is possible to infer

cos 2/ (̂1 + F ^ )-i

Scf ~  ^

(3.54)

(3.55)

(3.56)-  sin2/9(1 + F ^ )- i 

F (1 + F 2) - |

The difference of the refractive indices Ns — N f  is obtained from Appleton’s Equation, in the 

high frequency limit

Ns -  N f  = 2w4 -sin 9
(1 -

Introducing Equations 3.56 -  3.57 into Equation 3.52 yields

(3.57)

n{z) = O2 

V fÏ3 /

w Wp Wg sin^ 0
Icufi  (1 _

COS 2(5 ^

— sin 2/?
2 w  c o s  g

\  Wc sin^ 9 J

(3.58)
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Figure 3.10: Coordinate system for plasma in a tokamak.

The solution of the propagation equation is therefore given by Equation 3.53, i.e.

 ̂ 5l0 + 530ji^^2(^')c(z'-S20ji^^3(/)dy ^

s{z) = 52 - 520 +  •' îofo^3{z')dz' -  SsojQni{z')dz' (3.59)

\  3̂ j  ̂ S30 +  S2ofQÜi{z')dz' -  SiojQÜ2{z')dz' y

provided

r \ n \ d z '  «  1.
Jo

3.3.1 A n aly tica l Solu tion  to  th e  P ropagation  E quation

(3.60)

Consider a plane electromagnetic wave propagating along the z direction, parallel to the axis 

of symmetry of the torus, see Figure 3.10. Since Btor 3 > Bpoi in most tokamaks, to a good 

first approximation Bq is purely toroidal, nevertheless Bpoi will be retained to first order.

Introducing simple parabolic models of the expected electron density ne(r) and the toroidal 

current density jp{r)

ne{r) = rio 

~  jo

1

1

a
(3.61)

where Uq and jo are respectively the electron density and current density at the center of the 

tokamak (i.e. r  = 0) and “a” the radius of the plasma cross-section into Equation 3.58. The 

toroidal magnetic field is given by

f^oJcenter
2tt{R + x) (3.62)
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where x  is the distance from the plasma center to the beam chord, R  the major radius of 

the plasma center and I c e n t e r  the current flowing through the center of the tokamak inducing 

Btor- The poloidal magnetic field is generated around the minor axis by a current caused to 

flow through the plasma by transformer action and can be determined from Ampere’s Law 

(Equation 3.10). Taking account of the fact that since n, Bq and 6 are even functions of z 

and (3 is odd, then rii(z) and ^ 3(2:) are even and D2 (z) is odd, and so

/. Pt2[z)dz =  0 (3.63)

where the integral is carried out over the entire chord of the plasma. Therefore for the general 

case of an initially elliptically polarized beam traveling through the plasma we have

^ cos 2xi cos 2tpi -  cos sin2'ipiJ^°^^Üs{z')dz ^

(3.64)cos 2xi sin2V’i +  cos 2%* cos 2 ipif_^l^fi3 (z')dz -  sin2'ipiff_l^fli(z')dz 

 ̂ sin2%* + cos 2xi sin2'ipiffl^Qi(z')dz

where the subscripts /  and i correspond to the emergent and initial polarization respectively. 

If the initial state of polarization is linear and aligned with either the x- or y-axis then solving 

Equation 3.64 the emergent state of polarization is again linearly polarized, i.e. (53/  =  0), 

but the direction of polarization is rotated by a small Faraday rotation angle, ^

The net effect of transversing the plasma in a characteristic mode with the initial electric 

vector aligned either parallel or perpendicular to the toroidal field is a pure Faraday rotation 

without a change of ellipticity. If the initial polarization vector is aligned arbitrarily to the 

toroidal magnetic field then birefringence causing a change in ellipticity of the polarization 

vector must be considered when analysing the emergent Faraday angle.

Evaluating Equation 3.64 with a range of typical COMPASS-D operating parameters as il­

lustrated Figure 3.11, indicates the expected maximum Faraday rotation to be approximately 

5°. Figure 3.12 shows the effect of birefringence on the ellipticity of the emergent wave as a 

function of the plasma minor radius.

The analysis carried out so far assumes that the condition in Equation 3.60 is fulfilled and 

that Equation 3.53 is a valid approximation to the propagation equation, i.e. Equation 3.51. 

Since the changes in polarization through the plasma are quite small in the case of the 

COMPASS-D operating regime, the series solution provides a very good approximation to 

the expected Faraday rotation angle and therefore a full numerical solution is unnecessary.
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Figure 3.11; Expected Faraday rotation angle for a typical discharge on COMPASS-D. The 
crosses correspond to the position of the six chords used for polarimetry.
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Figure 3.12: The effect of birefringence on linearly polarized waves as a function of the minor 
radius for three distinct input polarizations.
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3 .3 .2  P h ysica l In terpretation

The Faraday rotation effect offers a means to measure the poloidal magnetic field if the 

probing beam is injected perpendicular to the externally applied toroidal magnetic field. 

From Equation 3.38 it is possible to deduce that the poloidal magnetic field induced by the 

plasma current is solely responsible for the presence of a magnetic field component parallel 

to the propagation direction. Re-writing this in terms of the parameters in Figure 3.10 gives

^  =  2.63 X Jrie{z)B^]^{z)dz. (3.65)

In order to determine the poloidal magnetic field it is necessary to simultaneously measure 

the electron density, ng.

The most widely adopted method for determining the electron density is by interferometry, 

(see Veron, 1979). The application of interferometry is based upon the interaction between 

the electrons and an electromagnetic wave, passing through the plasma. This interaction 

can be expressed, through a refractive index iV, and in the regime of weak interaction its 

deviation from unity is linearly dependent on the electron density. In an interferometric 

experiment, a probing beam passes through the tokamak vessel and its phase is determined 

by a heterodyne technique, (see Hutchinson, 1987), upon exiting the vessel. Once a plasma 

is created in the vessel the refractive index along the beam path is changed and therefore so 

is the optical path length. The resultant phase shift of the emergent beam can be monitored 

as a function of time and used to calculate the electron density, integrated along the beam 

path. According to Veron (1979) the phase shift is given by,

0  ~ f  ~  2.82 X 10“ ^̂ AJne{z)dz. (3.66)

A number of parallel lines of sight, usually between 5 and 20, can be utilised such that 

together they give a full-line integrated profile of the electron density. This is essentially a 

projection of the electron density profile in a single direction. The individual beams can be 

labelled by means of an impact parameter, which is defined as the shortest distance between 

the line of sight and the center of the cross-section.

By passing multiple parallel chords through the plasma cross-section the Faraday rotation 

and interferometry phase profile can be determined simultaneously. Knowing the electron 

density, the Faraday equation can be inverted to give the poloidal magnetic field and, by 

definition, the plasma current density. Assuming the electron density profile is known, an 

Abel inversion, (see Marco and Segre, 1972), or equivalent numerical inversion techniques are 

required to reconstruct a two-dimensional profile of the poloidal field, consult Section 3.3.3.
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These mathematical procedures use assumptions regarding the plasma shape which along 

with the necessity of many chords through the plasma are the main disadvantages of the 

Faraday rotation technique.

Finally in the more general case of elliptical polarization, the rotation of the polarization 

angle will also be a function of the the linear birefringence, defined in Equation 3.48. This 

defines the change, caused by the plasma, in the ellipticity of the emergent beam. The 

quantity defined as Bj  ̂ is the component of the magnetic field perpendicular to the beam. 

Since in a tokamak the toroidal magnetic field, Btor^ is by far the largest component of Bj_, 

the birefringence depends in practice on the toroidal field,

at, =  1.26 X jne(z)Bl„(z)dz.  (3.67)

3 .3 .3  T he A b el Inversion

Interferometry and polarimetry share with many other diagnostic techniques the ability to 

measure the average value of some property along a chord through the plasma. A recurrent 

problem is the deduction of local values of the property under consideration from the available 

chordal measurements. However, most plasmas are invariably cylindrically symmetric. Using 

this fact it is possible to deduce the radial distribution from the chordal measurements using 

the known properties of the Abel inversion.

Consider the case of a plasma with cylindrical symmetry carrying a toroidal electrical cur­

rent. The induced poloidal magnetic field lines also have cylindrical symmetry. Superimpos­

ing a toroidal magnetic field results in field lines that are helical. Under these circumstances

a wave directed along the torus will not in general travel along a principal direction. How­

ever, Faraday rotation will occur due to the component of the field parallel to the wave path. 

A wave propagating in the poloidal plane, as illustrated in Figure 3.13, allows the Faraday 

rotation. Equation 3.65, to be expressed in terms of the impact parameter Xo,

’F(rEo) =  2A\^  f  ne{r)Bpoi{r){r‘̂ -  x l )~^dr  (3.68)
J Xo

where Bpoi is the poloidal field and A  = 2.63 x This assumes that the wave is not

refracted by the plasma. If refraction is important, the line integral must be taken along the 

wave path. The Faraday rotation equation is of the form of an Abel integral, specifically of 

the Volterra type,

F(xo) = 2 f  /(r)(r^  -  xl )~ ^dr  (3.69)
J Xo

with a solution

(3-70)



CHAPTER 3. FARADAY ROTATION THEORY 96

z-axis

Figure 3.13: Chordal measurement in the poloidal plane of a tokamak.

It is possible to obtain the radial profile of /  from measurements of chordal integral F.

Assuming cylindrical geometry and from Equation 3.68 it is possible to derive the following 

equation for the poloidal magnetic field

rBpoL [ r  =  - ■
nAX‘̂ ne{r)

with 7ie(r) the spatial electron density distribution determined from a separate Abel inversion. 

Since measurements of 'F are obtained only at a finite number of Xo values, some kind of 

interpolation scheme is required in order to perform the required integral. A small number of 

chord measurements, six chords in the case of COMPASS-D, will give only limited information 

about Bpoi{r). If an effectively continuous Bpoi{r) is deduced using interpolation, much of 

the detail of Bpoi will depend on the assumptions inherent in the interpolation scheme.

The solution of Equation 3.71 is dependent on the spatial derivative of T. Therefore, 

experimentally measurements of the Faraday rotation must be sufficiently precise for the 

derivative to be accurately determined, since the Abel inversion is sensitive to errors in T. 

Deduction of ^  requires taking the difference (AT) of adjacent T measurements. If these 

differences are such that AT is considerably smaller than T, as will usually be the case if T 

is measured at a sufficient number of Xo values, then the fractional error AT is much greater 

than that of T. Fortunately this effect is compensated by the integration occurring which 

“smoothes out” some of the errors generated by the differentiation. However, it is beyond the
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scope of this thesis to discuss or review the numerous and complicated numerical techniques 

used to invert chord integrated profiles.

3.4 Summary

The first sections of this chapter have been devoted to the derivation of the Appleton-Hartree 

equation and the associated eigenstates. Simplified expressions have been derived for the po­

larization eigenstates in the limiting cases of propagation parallel or perpendicular to the 

external magnetic field, yielding circularly and linearly polarized eigenwaves respectively. A 

numerical calculation, using COMPASS-D relevant parameter values, has been performed to 

demonstrate the transition behavior between the two limits, see Figure 3.6. This calcula­

tion showed that the eigenwave polarizations remained relatively close to circular for angles 

between B and k up to approximately 70°.

Next the theory has been simplified by restricting it to the domain where w is much larger 

than both cUp and Wce, a restriction that usually holds for interferometry and polarimetry. In 

this regime the eigenwaves are purely circular when considering propagation parallel to the 

external magnetic field. The plasma infiuence on the wave propagation may be described by 

three parameters: a f ,  the ratio of the electric field components of the emergent wave in two 

orthogonal directions; A N ,  the difference between the refractive indices of the two modes 

and aj, the birefringence introduced into the propagating wave due to the toroidal magnetic 

field. The parameter a f  effectively represents the desired Faraday rotation. This quantity is 

related to a line-integrated measurement of the electron density and the product of electron 

density with the parallel magnetic field component.

In a subsequent section the Stokes matrix calculus technique used by Marco and Segre 

(1972) is presented to calculate the infiuence of the plasma on a beam. An analytical so­

lution to the wave propagation equation is derived, incorporating parabolic models for the 

electron and toroidal current density. Using typical COMPASS-D operating parameters the 

expected Faraday rotation angles for each of the six chords is determined. A further calcu­

lation illustrating the ellipticity introduced into the propagating beam due to birefringence 

is also presented. Finally a few words are devoted to inversion techniques that allow the 

determination of local information from a set of line-integrated measurements.



Chapter 4

FIR  Polarim etry on the 

COM PASS-D Tokamak

Plasma birefringence, resulting from the presence of a magnetic field component along the 

propagation direction of the beam, causes the linear or elliptical polarization of an incident 

probing wave to rotate. The rotation angle may be determined via a measurement of the 

polarization state of the emerging wave. The determination of the Faraday rotation may be 

achieved either by an amplitude or phase measurement. A conventional but robust polar­

ization technique, the amplitude method, measures the relative intensity of two orthogonal 

linear waves polarized separately after passage through, or refiection from, a polarizer. Al­

ternatively, phase sensitive technique utilising a single detector have been developed, where 

the incident polarization is modulated to generate an amplitude-modulation on the detected 

signal, from which the Faraday rotation can be derived. Both methods are examined and 

their suitability for commissioning onto COMPASS-D is discussed.

4.1 Determ ination of Faraday Rotation by a Phase M easure­

ment

The phase measurement approach relies on a far-infrared beam with a continuously rotating 

elliptical polarization to probe the plasma, first proposed by Rice (1992). Measurement 

of the interferometric phase shift and the Faraday rotation is made with the same array of 

detectors. This circumvents the use of a second array of detectors, necessary in the amplitude 

method, or the need to use reproducible shots to measure the electron and current density 

alternatively. The rotating elliptical polarization method transforms the Faraday rotation 

measurement into a phase measurement which, to first order, is independent of variations in

98
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,O.A.
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FIR Beam.
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Figure 4.1: Arrangement of Quartz Wave Plates used to produce an elliptically polarized 
beam.

the signal amplitude.

4.1.1 O ptical A rrangem ent

The method has a conventional Mach Zender geometry with two laser beams of differing fre­

quency mixed to produce an intermediate frequency (I.F.) signal thereby allowing heterodyne 

detection. A rotating polarization ellipse is produced by the combination of a quarter-wave 

plate and a rotating half-wave plate. The quarter-wave plate introduces a degree of ellipticity 

into the initially linearly polarized beam and the rapidly rotating half-wave plate rotates the 

incident polarization ellipse at four times the angular frequency of the plate. The ellipticity 

is required so that the detected signal amplitude does not go to zero as the ellipse rotates.

The angle Ô is defined as the angle between the optical axis and the vertical in the quarter- 

wave plate and w^t is the angle of rotation of the half-wave plate, see Figure 4.1. The resultant 

beam can be expressed in terms of Jones’ matrices by

cos2uJrt s'm2ujrt cos  ̂J J-i sin^ J cos <5 sin J (1 — f)

sin2wr^ —cos2u)rt cos Jsin J(1 — i) sin^ J 4- 2 cos^ J

This can be represented as

Eo

EoCiut (4.1)

E =
J- COS 2 5  C0s{4:(jJft —  25)) 2 C O s(cjt 4- X r e f , x )  

^ ( 1  -  COS 26 C 0 s (4 W r (  -  26)) 2 C O s(w t 4- X r e f , y )
(4.2)

where

X r e f , x  — tan (tan 6 tan(2LJr^ — 6)) 
4 /  tan 6

X r e f , y — tan"
ta,n{2ujrt — 6)

(4.3)

(4.4)
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Figure 4.2: Illustration of the rotating ellipse polarimetry technique.

The magnitude of the beam is modulated by the rotating plate and the amount of modulation 

is determined by Ô the fixed angle of the first plate. The modulation varies from zero when

S — ^  (circular polarization) to 100% when S = 0° (linear polarization). It is not desirable

to have complete modulation since the goal is carry out interferometry and polarimetry 

measurements simultaneously. If E is allowed to go to zero, then the interferometer will lose 

track of the phase. Typically a modulation of 50% is used with = 35°.

This rotating elliptically polarized beam is then split in two, one part going through the 

plasma the other onto a reference detector, shown schematically in Figure 4.2. Both beams 

are also individually superimposed with a beam linearly polarized along the x-direction with 

an offset frequency w T AH

E c o s { u t  +  A Q t )

0

and passed through a horizontal polarizer just before the detectors. This is the standard 

configuration for heterodyne detection.

The resultant signal on the reference detector is

S r e f  —< -^ (1  + C O S  2 8  C0s(4Wr  ̂—  26)) COŜ (wf + X r e f , x )  + COS^{ujt T A O t )

+ V 2 E o E { l  +  C O S 26cos(4wr< — 26)) 2 cos(wf T X r e f , x ) c o s { u j t  T A ü t )  > . (4.6)

A bandpass filter at the difference frequency A D ,  will eliminate all D.C. and high frequency

(4.5)
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terms, so the first and third terms above are zero. Also since < cos > =  0 and < cos^ u)t >=
1
2 ’

E E  1
S re f  = - ^ ^ (1  + COS 26 C O s(4W r^ -  26)) 2 C O s ( A f i t  -  Xref,x)- ( 4 .7 )

This is an amplitude modulated signal, where the carrier signal cos{ADt—Xref,x) is modulated 

by the lower frequency (1 +  cos 26 cos(4wr^ — 26))& term.

The effect of the plasma, neglecting any additional ellipticity introduced by plasma bire­

fringence, can be introduced into the second beam by adding a phase shift, 0 , in the rotating 

beam due to the plasma density, see Equation 3.66, and an additional rotation, the Faraday 

rotation ^  see Equation 3.65, in the polarization ellipse due to the magnetic field. This yields

E =
^ ( 1  -f cos 26 C0s{4üJj-t — 26 4" 2^)) 2 COs(Afît 4- $  +  Xplasma,x) 

^ ( 1  — COS 26 C 0 s (4 W r^  — 26 4" 2^)) 2 C O s ( A f ) ^  4- $  4- Xplasma,y)
(4.8)

where

Xpiasma,x =  tan  ̂(tan 6  tan(2wr -  6  -k ^)) ( 4 .9 )

Xplasma.y = tan   ̂ J  +  $ ) )  '

This beam is also superimposed with the linearly polarized beam and passed through a 

horizontal polarizer. Following the same procedure as before and neglecting all D.C. and 

high frequency terms yields,

E E  1
Splasma = " ^ ( 1  4* COS 26 COs(4ŵ  ̂ -  2 6  + 2 ^ ) )  2 COs(AQi -  0  -  Xplasma,x)- ( 4 .1 1 )

The plasma signal is then split to allow separate electronics to process the density phase shift 

and the polarimeter phase shift independently. The density can be determined by using a 

limiting amplifier to eliminate the modulation, followed by a zero crossing detector to measure 

the difference in phase 0  between the reference and plasma signal. The polarimeter data can 

be extracted by demodulating the signals. This is performed by passing the signals through 

a diode detector which is biased externally, resulting in signals proportional to

S ref  =  2 4 (1  4- COS 2 6  C 0 s (4 W r t  — 2 6 ) )  2 ( 4 .1 2 )

S p l a s m a  — 2 4 (1  4“ COS 2 6  c o s ( 4 w r t  4“ 2 ^  — 2 6 ) )  2 . ( 4 .1 3 )

The modulation of the amplitude signal, determined by the angle 6 of the quarter-wave plate, 

is always less than one (usually about 0.5) so the square root can be expanded, giving

S re f  =  24 I 1 4- C 0 s (4 W r t  -  2 6 )  — COS^{4uJrt — 2 6 )  +  . . .  ]  ( 4 .1 4 )
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Splasma ~  ^  H ^ cos(4wrt +  2^  26) -—  COS (̂4cUrt + 2W — 26) +  . . .^ , (4.15)

These signals are then band-pass filtered about the frequency 4urt with a 1/e half-bandwidth 

to eliminate all higher harmonics of order 4wr, leaving

Sref = A  cos{4c0rt -  26)^ (4.16)

Splasma — ^ —-—  C0s(4Wrt -f 2^  — 26)^ . (4.17)

As with the interferometer, the Faraday rotation ^  can be extracted by a zero-crossing 

technique.

4 .1 .2  S im ulation  o f th e  P olarim etric  M easurem ent

Due to the uniqueness of the proposed polarimetric technique it is necessary to ascertain the 

absolute phase resolution of the polarimeter and any factors that may infiuence it. Certain 

design features determine the absolute phase resolution of the polarimeter, these are:

• The degree of modulation introduced by the quarter-wave plate,

• The filtering method used to obtain the modulation envelope,

• The modulation frequency.

The temporal resolution of the polarimeter is limited by the rotation speed of the half-wave 

plate which rotates the polarization of the probing plasma beam. The maximum modulation 

frequency (which is four times the mechanical rotation frequency of the half-wave plate) is 

6.7kHz for COMPASS-D. This is a limit of the air bearing which houses the half-wave plate. 

The maximum temporal resolution is therefore 0.15ms.

The expected reference and plasma signals at each detector were simulated numerically in 

order to ascertain the expected polarimetric precision at an intermediate frequency (I.F.) of 

IMHz, the operating regime for the COMPASS-D interferometer, and at several half-wave 

plate rotation frequencies of 0.5kHz, IkHz and 1.67kHz, The signals were polluted with a 

certain percentage of normally distributed noise, (see Park and Miller, 1988), (uncorrelated on 

either the reference or plasma detector). Both signals were then rectified and filtered in order 

to simulate the expected electronics setup. Four different filters were considered; Butterworth, 

Exponential, Bessel and an Ideal filter. The Butterworth filter operating characteristics 

closely match the intended electronics setup and was thus implemented in the analysis routine. 

The signals were band-pass filtered at 4ur with a 1/e bandwidth, i.e. for a half-wave plate
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rotation frequency of IkHz this corresponded to a band-pass filter centered at 4kHz with 

a 1.2kHz bandwidth. The Faraday rotation angle was determined by detecting the zero 

crossings of the final signals by a simple cross-correlation routine.

The core of the program executed 10 cycles with loops producing 1000 independent simu­

lated Faraday measurements, 10'̂  values being generated overall, for each of the three modu­

lation frequencies and the four distinct values of 6. The results from each loop were analysed 

to provide determinations of the Faraday rotation and the variance of the distribution 

from which the standard deviation of a single measurement was obtained. Skewness and 

Kurtosis coefficients of the distribution were calculated, (see Wall, 1979), to determine if the 

underlying distribution was normal. By performing the exercise with 10 cycles of 1000 simu­

lations each rather the 10  ̂ values from a single run, a standard error was calculated from the 

internal behavior for each of the investigated parameters. Finally, in order to check whether 

the conclusions might depend on the size of the data samples, the 10  ̂ simulated values were 

also generated with combinations of sample size and number of cycles respectively of [500,20], 

[2000,5], [5000,2], [10 ]̂ for comparison with the chosen combination [1000,10]. No significant 

difference were found in the obtained values between all of these combinations, so providing 

confidence in the legitimacy of the adopted routine.

In Figure 4.3 the precision of the Faraday phase measurement is plotted against the im­

posed noise level for the defined I.F. of IMHz, with half wave plate rotation frequencies of 

0.5kHz, l.OkHz, and 1.7kHz, and for four distinct values of 6 , which determines the amount 

of modulation. Assuming a conservative noise level of 6% for the polarimeter, a precision of 

0.4° can be obtained with a 1.67kHz half-wave plate rotation frequency (6.67kHz modulation 

frequency) provided 6 is smaller than 20°. The precision increases for lower modulation fre­

quencies. With a 6% noise level, a rotation frequency of IkHz (4kHz modulation frequency) 

the polarimetric precision is 0.33° provided 6 is smaller than 20°. The greatest precision is 

achieved with high degrees of modulation (i.e. small 6). Therefore a single pass through the 

plasma will allow the polarimeter to observe changes in the Faraday rotation of order 0.4° 

for the higher modulation frequency and provided that 6 is smaller than 20° and a noise level 

of 6%.

A simple investigation of the distribution’s asymmetry was also performed by examining 

the confidence levels. Skewness was barely detectable from inspection of the coefficients and 

no hint of kurtosis was found.
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Figure 4.3: The uncertainties in determining the Faraday rotation for three distinct modula­
tion frequencies as a function of the imposed noise level for various positions of the quarter- 
wave plate.
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Figure 4.4: The effect from elliptical polarizations in T and % as a function of initial po­
larization angle -ip for various probing beam ellipticities. The solid lines refer to the case of 
linear polarization.

A nalytical Sim ulation of E xpected  Faraday R esults.

Using the analytical approach set out in Section 3.3.1 it is also possible to simulate the 

expected Faraday rotation angles at the plasma detector. The parameters used were for 

a typical COMPASS-D discharge, Ipiasma = 250kA, Btor = 1-2T, Ug = 5xl0^^m“  ̂ and a 

parabolic density profile. Consider the plots in Figure 4.4 where both quantities (T, %) are 

plotted versus the input ellipse rotation angle, ip. The first plot illustrates how the plasma 

birefringence affects both quantities T, % in the case of an elliptically polarized wave as a 

function of the incident polarization angle ip for different values of Xo- In the case of linear 

polarization the change is entirely due to the Faraday rotation provided the input polarization 

is aligned parallel to or perpendicular to the toroidal field. For elliptically polarized waves, the 

birefringence effects induce a periodical variation in the difference between the pure Faraday 

rotation angle and A To shown. The deviation from pure Faraday rotation at Xo — 20° is up 

to 10%. The biréfringent effects may be avoided by either transmitting a linearly polarized 

beam through the plasma or by removing the biréfringent effects from the signal with a 

bandpass filter centered at the rotating frequency of the beam. For small angles of Xo-, the 

second plot illustrates that the change in ellipticity is less than ±  0.7° and hence of little 

importance for experimental considerations.



CHAPTER 4. FIR POLARIMETRY ON THE COMPASS-D TOKAMAK 106

interferom' ;ter arroi"

Mox'

Figure 4.5: Maximum interferometer error as a function of the Faraday rotation angle and 
the optical axis of the quarter-wave plate which determines the polarization of the initial 
beam.

4.1 .3  Influence o f th e  P olarim eter on th e  Interferom eter M easurem ents

One limitation of the proposed method is the introduction of phase errors into the data 

recorded by the interferometer as a result of the amplitude modulation of the IMHz inter­

mediate frequency, (see Geek et ah, 1995). These phase errors have been analysed and their 

significance considered. The maximum phase error was calculated as a function of the Fara­

day rotation and the angle of (i, see Figure 4.5. Incorporating this extra phase shift into 

Equation 3.66 yields,

0  =  2.82X IQ-^^Ay n(r)dr -h (4.18)

where

=  Xp la sm a ~  X r e f  = arctan[tan (5 tan(2cjrt +  T)] — arctan[tan tan(2wr^)]. (4.19)
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Figure 4.6: Time-varying interferometer phase contribution for a Faraday rotation angle of
5°.

This additional phase, Scf), is a direct result of the rotating ellipse measurement technique 

which produces a time-varying phase contribution as shown in Figure 4.6. The magnitude 

of the phase ôcj) is â function of the degree of modulation of the received FIR beam, the 

modulation frequency and the Faraday rotation angle. This extra term can be removed by 

low-pass filtering the interferometer data with the subsequent loss of time resolution where 

necessary. The dual beam interferometer on COMPASS-D has a temporal resolution of 

IMHz determined by the intermediate frequency of the two lasers. This excellent temporal 

resolution may be lost by the necessity of low-pass filtering at a frequency close to the 

rotating elliptical polarization frequency usually of the order of some kHz. Alternatively 

it is possible to reconstruct the interferometer data using computational methods once the 

Faraday rotation angle and the ellipticity of the polarization have been determined. In 

practice, however, this is extremely difficult because of uncertainties in these parameters.

Assuming a modulation of the FIR beam of 50%, i.e. S = 35°, and a typical plasma 

discharge resulting in a Faraday rotation angle of 6° will yield a phase contribution to the 

interferometer signal of 4.4°. With a high density discharge and an expected Faraday angle 

of 8° the phase contribution will be 5.9° to the interferometer signal. However, the phase 

resolution of the interferometer system is approximately ^  fringe, 6°, corresponding to a 

density modulation for the central channel of approximately 0.6 x 10^^m“ .̂ This implies 

that for the COMPASS-D tokamak the phase error introduced into the interferometer data
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Figure 4.7: Optical arrangement for a single chord amplitude measurement of the Faraday 
rotation angle (Taken from Soltwisch, 1986).

by the polarimeter setup is comparable to its phase resolution and can therefore be neglected 

in the data reconstruction of the interferometer phase signal.

4.2 An Am plitude Measurement of the Faraday Rotation

The conventional polarimeter measures the change in orthogonal polarization before and after 

passage through the plasma. The Faraday rotation can be determined by taking the ratio of 

these orthogonal signals. The first polarimeter system to operate routinely was constructed 

by Soltwisch (1987) at Textor. This system utilised nine chords through the plasma and 

performed interferometry and polarimetry simultaneously.

4.2 .1  O ptical A rrangem ent

The basic configuration for simultaneous interferometric and polarimetric measurements by 

means of a heterodyne detection method is illustrated in Figure 4.7. After passage through 

the plasma the probing wave, which is initially linearly polarized, has become slightly elliptical 

(e -C 1) due to the linear birefringence. The major axis of the vibrational ellipse is rotated by 

the angle T relative to the initial plane of polarization. Hence, using the coordinate system in
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Figure 4.7, the initial electric field is given by 0) whereas the new state of polarization

is

E  = Eo
( \ ( ^ \

V /
(4.20)

cos ^  sin ̂

— sin cos ^

where 0  is the phase shift due to the plasma density. The wave then passes through a 

half-wave plate that acts as a calibrator whose purpose will be discussed subsequently.

The probing wave is then combined with a frequency offset reference wave at a polarizing 

beam splitter yielding

E  = (4,21)y/i+e  ̂(cos +  tesin ^

ÿ & ^ ( — sin +  zecos4f)e*‘̂ *“ ^

The polarization of this reference wave is The recombination

is made by a beam combiner made of thin tungsten parallel to the plane of incidence, which 

yields a beat wave on each detector of the form

where

S i  = (7/ +  A i  sin(APt +  $  +  $ /) 

Sp = C7p +  Ap sin(AQi +  $  +  $p)

=  H1M ^ ( c o s 2 $  +  (2 sin2
v î t ?

A p  =  $  + V cos  ̂$)2

(4.22)

(4.23)

V T T

tan =

tan $p  —

cos #
esin4^
sin

ecos^f

giving

^biref =  $ /  -  $ p  = arctan (  — ) -  arctan
V e tan 4/ /

In normal operating conditions, assuming <C 1 and e <K 1

ta n ^

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)
A p ~ 2 \E a \ \E o r \ { ^ ^ + e T ^

A i  ~  2 |B„||B<,r|.

The signal Sj,  whose large amplitude is almost insensitive to polarization changes, lends itself 

to determining the plasma-induced phase shift 0  in the usual way by comparing it with a 

sinusoidal reference signal of equal frequency AH and fixed phase. The amplitude of signal
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Figure 4.8: Schematic of polarimeter signal processing.

Sp is roughly proportional to the wave polarization Knowing the wave ellipticity can 

be determined by the phase meeisurement ^ biref = 0 / — as

€ ~  ^  tan($p — $/). (4.30)

Knowledge of the phase shift between both measured signals makes possible the determination 

of the plasma birefringence and can be used to correct the measurement of the Faraday angles 

if e is too large. The temporal resolution is 1-lOms, determined by the integration time of 

the electronic system. The lower limit on the time resolution is set by the IMHz modulation 

frequency of the polarimeter-interferometer. The amplitude of Sp is proportional to the 

Faraday angle but its sensitivity is very poor when ’F becomes very close or smaller than the 

wave ellipticity. However, the phase difference $p  — 0 /  is very sensitive to ^  particularly 

when ^  becomes smaller than the wave ellipticity. In order to extract the Faraday rotation 

angle, the signal Sp is processed as shown in Figure 4.8. Efficient noise filtering is achieved by 

a bandpass filter discriminating against slowly varying D.C. and high frequency components 

and by a phase sensitive detector (PSD) consisting of an analogue multiplier and a low-pass 

filter. In general a PSD selects a narrow band of a test signal at a frequency fixed by a 

sinusoidal control signal. Its output voltage is proportional to A j A p  cos^ ip .  In this case 

the PSD is controlled by Sj  which matches both the intermediate frequency AQ. and the 

shift ^biref of the test signal Sp.  Thus, the processing circuit using the PSD multiplies the 

two signals Sp  and Si  in order to improve the sensitivity for small values of The output 

voltage, C/psDj of the multiplier is given by

UpSD — cos(0 f  — $ /) = 2\Eo\^ \Eor\^ -f- €̂ ) 2 COs(0 p — $ /)

C,2\Eaf\Eorf-i’.
(4.31)
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There is, however, still a dependence on the beam intensities \Eo\^\Eor\^ which may vary due 

to changes in the source power or refraction effects which are discussed in Section 4.2.2. This 

influence may be eliminated by normalising t/pso to the square of the root mean square of 

Aj .  The quantity

=  (4.32)

is thus a measurement proportional to the Faraday angle, where C is a constant depending 

on the conversion factor of the electronic and detector responsitivity. This constant must 

be determined by a calibration routine. This is achieved in the absence of the plasma by 

rotating the half-wave plate in the probing beam path and monitoring the output voltage.

4 .2 .2  R efraction

There is a fundamental difficulty with the conventional polarimetry method proposed by 

Soltwisch (1981). Considering Equation 3.60 and neglecting ellipticity, the polarimeter signal 

may be described as

Sp = "I/Apsm{AQt). (4.33)

As the density gradients build during a plasma discharge, refraction causes the FIR beam 

to deflect and, depending on the detector geometry, the intensity | A p  p to change. This 

effect can be eliminated in principle by dividing Equation 4.33 by the interferometer signal 

which is proportional to | A j  p. This works fairly well with the pyroelectric detector used 

by Soltwisch because it has a relatively large surface area so that refraction effects are small. 

Recently constructed interferometers use corner cube Schottky diode detectors which have a 

significantly improved noise-equivalent power (NEP) compared with the pyroelectric detector. 

The corner-cube antenna structure is, however, quite sensitive to beam deflections caused by 

refraction. Due to manufacturing limitations, each detector has a slightly different antenna 

pattern, so it is not reliable to use the interferometer detector to correct for amplitude 

variations on the polarimeter detectors.

Consider the situation where a wave is propagating at an angle ^ with respect to the 

refractive index gradient. By applying Snell’s Law at two slightly displaced positions of the 

trajectory, it is possible to derive an expression for the change in the angle ^ between the 

propagation direction and the plasma density gradient:

N s i n ( = { N + ^ ^ S r ) s i n { i  + §Sr)

~  AT sin^ ^  sin^Jr -f N-^{sm^)6r
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Figure 4.9: Coordinate system for refraction calculation, 

which can be simplified as
1 dN

(4.35)

The derivative is taken along the wave trajectory and Sr is the distance along the trajectory 

between the two points under consideration.

The amount of refraction depends on the derivative of the refractive index resulting in 

the wave trajectory being different for the two eigenmodes of propagation. However, for 

wavelengths appropriate for interferometry, the difference between the two refractive indices 

is at its maximum still approximately two orders of magnitude less than the derivative of the 

indices from unity, and for ray tracing can be discarded.

Equation 4.35 can be used straightforwardly in a numerical integration to calculate the path 

in the plasma of an incident electromagnetic wave. In order to get an idea of the significance 

of refraction effects, it is possible to calculate the change of the angle of propagation of an 

emerging ray with respect to the propagation angle of the same ray at incidence. More 

specifically, it is possible to calculate an “angular deviation” profile in the case of a wide, 

parallel beam incident on the plasma covering its entire cross-section. If the plasma has a 

circular shape, and the refractive index profile is assumed to be parabolic, it is also possible 

to derive an analytical expression for this angle of deviation (see Shmoys, 1961),

/
^(6) = arcsin ÜJ.po

W
V \

-  (!)
\

{4M)
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Figure 4.10: Angular deviation of FIR beam due to refraction as a function of the normalised 
plasma cross section, [x/a],  calculated using Equation 4.36 for three distinct peak plasma 
densities.

Here is the normalised impact parameter of each ray, i.e. the minimum distance between 

the ray and the plasma center, 6, normalised to the plasma minor radius, and LUpo is the 

angular plasma frequency at the center. Using this equation a calculation has been performed 

for the COMPASS-D geometry under realistic high density plasma conditions. The results 

are depicted in Figure 4.10. In the COMPASS-D case, the detectors necessarily have to 

be positioned quite a distance (~ Ini) above the equatorial plane of the tokamak, both for 

geometrical reasons and to avoid electrical pick-up from the large magnetic fields confining 

the plasma. As a result, an angular deviation of only 0.5° will be sufficient to cause a beam 

displacement of approximately 0.5cm at the position of the detectors, even though the change 

of the path followed by the beam inside the plasma is negligible. The beam displacement 

at the detector may in that case be over 1cm for high density discharges. For pyroelectric 

detectors this displacement is not too troublesome due to their large detector surface area. 

However, for Schottky detectors this displacement will lead to erroneous readings on both 

detectors. The refraction effect is a more limiting problem for the amplitude method than 

for the phase measurement. Any drop off in power has severe consequences for an amplitude 

measurement which can interpret this diminution falsely as a result of Faraday rotation 

whereas the phase measurement has no such restrictions since it is independent of signal
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variation to a first order.

4.2 .3  B en ch  T est

A test bench was constructed to ascertain the feasibility of a polarimetric amplitude mea­

surement on the COMPASS-D system as shown in Figure 4,11a. Unfortunately, due to time 

constraints, it was only possible to determine a polarimetric measurement along one chord. 

The optical components were mounted on a vibrationally stable table. An overview of the 

whole interferometer/polarimeter system is illustrated in Figure 4.11b.

Experim ental Im plementation

In the COMPASS-D interferometer/ polarimeter system, a single high power (> 160W) 

CO2 laser is used to pump two separate far-infrared laser cavities. The CO2 laser wavelength 

of 9.27/Lim is suitable for pumping the 432.6/iin line of formic acid (CHOOH), the lapsing 

medium. Each FIR laser cavity produces a vertically polarized TEMqo Gaussian mode at 

a power level of approximately 50mW. The probing beams were transported towards the 

bench setup by means of a series of curved elliptical mirrors. The laser beam was then 

focussed onto a rotating half-wave plate, in order to minimise truncation and diffraction 

effects associated with Gaussian propagation, (for clarification see the next section). The 

half-wave plate essentially acts as a chopper modulating the beam at four times the frequency 

of rotation of the plate, and thus enabling detection by the two pyroelectric detectors. The 

modulation frequency was set at 2kHz to coincide with the maximum frequency response of 

the pyroelectric detectors. A diode detection scheme consisting of an LED and a detector 

were installed on the half-wave plate allowing the stability of the rotation frequency to be 

ascertained. The beam then encountered a series of wire grid polarizers which divide the 

laser power equally between six channels, (see Edlington and Wylde, 1992). The test bench 

setup has a modified single pass configuration different to that described in Edlington and 

Wylde (1992), with only a single probing beam passing through the tokamak for detection. 

Therefore only polarimetric data may be obtained during the plasma discharges. This novel 

approach to beam splitting nevertheless has a drawback. Each channel has a different input 

polarization with respect to the toroidal magnetic field as shown in Table 4.1, In the case 

of the second chord through the plasma, the polarization is set at 35° to the toroidal field 

direction. After propagating through the tokamak each channel encounters a polarizing beam 

splitter or analyser where the two orthogonal polarization components are split and propagate 

onto two detectors, Dj  and Dp.  The data acquisition system included a PC based package
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Figure 4.11: Schematic depiction of the interferometer/polarimeter setup at COMPASS-D.
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C hannel R adial Position  x (m) In p u t P olarization , (degrees)
1 0.168 20.0
2 0.116 35.0
3 0.014 60.0
4 -0.022 35.0
5 -0.113 0.0
6 -0.166 90.0

Table 4.1: The input polarization with respect to the toroidal magnetic field for each of the 
six channels.

called Labview and an oscilloscope. The amplified detector signals were filtered and digitised 

onto hard disk by Labview directly from the oscilloscope trace for both detectors.

In order to calibrate the electronics and determine the constant C  in Equation 4,32 a 

half-wave plate needs to be inserted before the polarizing beam splitter. The calibration 

process involved rotating the half-wave plate through 1° steps in the absence of the plasma 

and measuring the detector outputs at each half-wave plate position. The resolution is of 

the order of 0.5° for the current configuration. This can be dramatically improved by the 

introduction of tailor made electronics and data acquisition systems. The signals were then 

Fourier analysed and the results plotted in Figure 4.12. The data points were subjected to a 

least square fit in order to calculate the conversion factor between the measured signal and 

polarization angle. This fit could then be used to compute the Faraday angle during plasma 

discharges.

T he O ptical C om ponents

The wave plates used in the far infrared are often made of crystal quartz due to their 

negligible absorption losses and are invariably anti-refiection coated. Since the refractive 

index difference is rather small (ATg =  2.1599 and No = 2.1162 at a wavelength 432.6//m), 

relatively thick wave plates are needed to obtain a 180° phase difference. At 432.6)um the 

thickness of the half-wave plate is 4.47mm and it is held in place at the end of a hollow 

shaft air bearing spindle. The unit requires water cooling and filtered air at a rate of 1000 

liters per minute at SOpsi for the air bearing. The bearing is driven by an induction motor 

with a top rated speed of 100,000rpm. To reduce the chance of failure, the motor is usually 

operated at 60,000rpm. This produces the necessary modulated signal waveform at four 

times the rotation frequency. Unfortunately, due to slight non uniformities in the half-wave 

plate thickness, along with an absorption which varies depending on plate angle, there are
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Figure 4.12: Variation of signal as a function of half-wave plate rotation.

frequency components in the detected signal at one or two times the fundamental motor 

frequency. These must be filtered out, thereby limiting the bandwidth to less than IkHz.

Wire grids or meshes are used at several locations in the polarimeter system, acting either 

as beam splitters or polarizers. A detailed theory of waves incident on wire grids has been 

developed by Markuvitz (1951). The wire polarizers located in front of the Schottky detectors 

are free-standing grids made of 10/zm diameter tungsten wire with a wire spacing of 25/im 

(lOOOlpi). The theoretical transmission for the undesired polarization (E || wires) is about 

0.5%.

A number of high quality plane and elliptical mirrors were utilised throughout the optical 

circuit. The plane mirrors themselves were 50mm diameter round fiats, formed from a low 

expansion borosilicate glass (LEBG) with an aluminium coating on one side as a reflecting 

surface. The elliptical mirrors were also formed from aluminium with a variety of focal lengths 

as illustrated in Table 4.2

W ave P ro p agation

The wavelengths utilised in tokamak interferometric and polarimetric experiments are suf­

ficiently large that the theory of geometrical optics is not adequate to describe the wave 

propagation. The use of Gaussian beam theory, (see Veron, 1979), is required which takes
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Elliptical M irror Focal Length (m m )
fmv 228
finO 1443
fml 1325
fm2 -2773

Table 4.2: A list of the elliptical mirrors utilised in the test bench.
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Figure 4.13: Calculated Gaussian propagation of the probing beam through the system. The 
x-axis is chosen such that the laser output coupler is at zero. The location of the beam 
forming mirrors are also indicated.

into account the finite size of the focal spot. The beam waist diameter amplitude) upon 

exiting the laser is 11mm. A series of elliptical mirrors (fmO —> fmv) enable the beam waist 

to be minimised upon entrance to the half-wave plate and the torus mid plane. Utilising a 

Gaussian ray-tracing code, a model for the free space propagation of the laser beam through 

the system is presented in Figure 4.13.

If the size of the optical elements is not sufficiently large, the Gaussian beam will be 

truncated and diffraction effects will both deform the shape of the beam profile and disturb 

the phase front of the wave. Diffraction is considered negligible if the truncation occurs at 

an intensity level below 1% of the maximum. Assuming a Gaussian beam, this sets a safe
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limit to the size D  for the optic used:

D > 2.2d (4.37)

where d is the beam ^ diameter at the position of the optical element. Two further criteria

needing consideration are the spot size and the maximum throw distance of the beam. The

spot size, do, is defined as the smallest possible beam size after propagation through an optic 

of focal length / ,

do (4.38)

For a given beam width, Wf,, intercepting an ideal lens no choice of focal length of the lens 

can give a beam waist at a greater distance than the maximum throw distance, dmax, defined 

as

dmax =  (4.39)

R esults

The rotation frequency of the half-wave plate may be determined by Fourier transforming 

the complete LED data array containing the time intervals for each complete rotation of the 

wave plate. Figure 4.14 illustrates the raw LED data for plasma shot 22118 clearly indicating 

a period of r  =  0.00207 seconds between successive maxima, and the Fourier transform of the 

LED data resulting in a modulation frequency of 1928Hz and the corresponding harmonics. 

In order to determine the stability of the rotation frequency, the LED data array may be 

divided into a number of time intervals and a Fourier transform performed on each interval 

separately. However, during the length of a typical discharge, r  =  0.5 seconds, the rotation 

frequency is stable to a high degree.

A series of high density plasma discharges were run on the COMPASS-D tokamak with 

the outlined configuration installed. Figure 4.15 shows plots of the integrated electron den­

sity from a 2mm interferometer diagnostic, the plasma current and the signals from both 

pyroelectric detectors for plasma shot 22118. The detector signals were then filtered using a 

Butterworth bandpass filter centered on 2kHz with a bandwidth of 200Hz. The bandwidth 

was chosen narrow enough to avoid low frequency magnetic power supply noise and higher 

frequency noise spikes. The filtered signals are also shown in Figure 4.15. A 50Hz A.C. 

supply voltage is visible in detector 2 signal and is subsequently removed via filtering.

Unfortunately, due to pickup from the magnetic coils surrounding the tokamak and the 

detectors, the signals from both detectors were affected, severely in the case of the second
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Figure 4.14: The LED diode signal indicating the rotation speed of the half-wave plate with 
the Fourier transform of the signal below.

detector. However, the amplitude of the signal detector clearly diminishes as the electron 

density peaks at time r  = 0.3 seconds. During an amplitude measurement the orthogonal 

signal components measured by the two detectors varies as a function of the electron density 

and poloidal magnetic field and therefore the Faraday angle. However, no valuable informa­

tion can be ascertained without the introduction of magnetic shielding and further vibrational 

isolation to the detectors.

Certain other instrumental considerations affected the accuracy of the Faraday measure­

ment. The effects due to laser instability presented a significant problem, the overall power 

level drift increasing significantly with time (up to 20% in only 5 minutes). The problems 

were undoubtedly due to the age of the laser. Vibration of optical components, which can 

never be completely eliminated, causes a phase distortion of the measured signal that pol­

lutes the measurement of the line-integrated density. This distortion has been kept small by 

selecting a wavelength that is large compared to the amplitude of vibrations.
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Figure 4.15: Evolution of the current and electron density as a function of time for a 250kA, 
1.2T Ohmic discharge (shot 22118). The two detector signals in their raw and filtered form 
are also plotted below.
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4 .2 .4  S im ulation  o f th e  A m p litu d e M eth od

In order to ascertain the effect of the plasma on the initially linearly polarized beam, the 

signals of both detectors D j  and Dp  were simulated for each of the six channels. The biré­

fringent nature of the plasma introduces a certain degree of ellipticity in the propagating 

beam which can be detected as small changes of amplitude by the two detectors and which 

appear primarily as a phase shift, ^biref^ of the polarimeter signal with respect to the inter­

ferometer signal. This small amplitude change could be interpreted incorrectly as a Faraday 

rotation by the system. It is imperative, therefore, to determine the accuracy of the Faraday 

measurement as a function of the ellipticity of the FIR beam for each of the six channels. 

In order to determine the pollution of the Faraday angle by the ellipticity, the following 

procedure is followed

• For each of the six chords through the plasma, the appropriate input linear polarization

is selected from Table 4.1.

• The signals at both detectors are simulated for a typical discharge. The phase shift 

detector is also reconstructed in software and a value of ^biref determined.

• For small angles. Equation 4.28 can be written as

e ~  - ^ s i m  tan($p -  $ /)  (4.40)

allowing a determination of the plasma birefringence, e. Tlsim is the expected Faraday 

rotation angle deduced from the analysis outlined in Section 3.3.1.

• Using Equation A.l from Appendix (1) it is possible to infer the corrected Faraday 

rotation angle from measured angle For small angles this can be expressed as

^  =  arctan \/tan^ ^  — e^. (4.41)

• Comparing both the corrected and measured Faraday rotation angle, an estimation of 

the uncertainty in determining the angle may be achieved for each chord and for a 

particular discharge, illustrated in Figure 4.16.

The two outer chords, 5 and 6 , have their input polarization either parallel or perpendicular to 

the toroidal magnetic field and thus are not influenced by the birefringence of the plasma. The 

measured Faraday angle therefore does not need any correction. The two inner chords, 1 and 

2, have a large expected Faraday angle and a small expected ellipticity due to birefringence. 

This implies that the uncertainty in determining the Faraday angle is approximately ±  0.05°,
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Figure 4.16: The uncertainty in determining the Faraday rotation angle as a function of the 
ellipticity introduced by the plasma birefringence and the Faraday rotation angle.

much less than the expected resolution of the system. The remaining chords, 3 and 4, 

suffer from low expected Faraday rotation angles and high ellipticity. This combination leads 

to significant uncertainties in the Faraday rotation angle of the order of ±  0.6° which is 

clearly undesirable. If an amplitude measurement were to be installed on COMPASS-D it is 

imperative, therefore, to adjust the input polarization of the middle two chords so that they 

are either parallel or perpendicular to the toroidal magnetic field.

In order to determine the polarimetric precision of the amplitude measurement, the two 

signals Sp  and S'/ at each detector were simulated numerically. The signals were then filtered 

through a Butterworth band-pass filter and the Faraday rotation angle determined. The 

signals were each polluted with a certain percentage of normally distributed noise in order to 

simulate the noisy electronic systems. The results are plotted in Figure 4.17. The polarimetric 

precision achieved with the bench test setup is ± 0.5° corresponding to an imposed noise level 

of approximately 8%. With a conservative imposed noise level of 5%, a precision of ±  0.3° 

can be achieved.
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Figure 4.17: The polarimetric precision £ls function of imposed noise level for an amplitude 
measurement.

4.3 Discussion

Both polarimetric methods rely on the rotation of a well-defined incident polarization state 

as it propagates through the plasma. The rotation angle can be determined through a 

measurement of the relative power levels at two detectors, each sensitive to one of the two 

orthogonal linear polarization states. In single detection schemes, the orientation of the 

incident polarization state is modulated in time, resulting in an amplitude modulation of the 

detected signal. From the phase lag of this modulation with respect to a reference signal, the 

Faraday rotation angle may be deduced. The polarimeter measurement is independent of the 

signal amplitude, provided the signal remains large enough to stay above the noise level.

The present six channel interferometer installed on the COMPASS-D tokamak has a two 

pass configuration signifying that the FIR beam transverses the plasma twice along identical 

paths. The laser power is split equally between the six channels and recombined with a 

reference beam after passage through the tokamak by a series of wire grid beam splitters. 

This configuration must be adapted for a polarimetric measurement with the removal or re­

alignment of the wire grid beam splitters and the adoption of a single pass of the laser beam 

through the tokamak. In the case of an amplitude measurement, the wire grid beam splitter 

must be re-aligned such that the input polarization into the tokamak must be parallel to or
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Description Phase Measurement Am plitude M easurement
Temporal Resolution maximum 6.7kHz (0.15ms) 

nominal 4kHz (0.25ms)
1ms determined by integration 

time of electronics.
Spatial Resolution mm’s mm’s
Detectors Required one per channel 

(Schtokky)
two per channel 

(Pyroelectric)
Accuracy of 

Measurement
6% noise, 4kHz, 5 < 20°, 0.33° 
6% noise, 4kHz, 6 =  40°, 0.45° 

6% noise, 6.7kHz, 6 < 20°, 0.40° 
6% noise, 6.7kHz, ô = 40°, 0.85°

3% noise, 0.16° 
5% noise, 0.30° 
7% noise, 0.50°

Any Cross Coupling 
Problems?

6 = 35° (50% modulation) 
If = , 6(f) = 4.4°
H = 6°, 6(f) = 5.9°

Error due to birefringence 
channel 5 & 6 : =  0° 

channel 1 & 2: =  ±  0.05° 
channel 3 & 4: A ^ =  ±  0.6°

Other Comments Calibration of electronics 
necessary.

Refractive effects not important 
to first order.

Major overhaul of present 
installation is necessary.

Determination of constant (7, 
Equation 4.32, necessary daily. 

Refraction important in any 
amplitude measurement. 

Realignment of grid beam 
splitter and conversion to a 

single pass configuration 
required.

Table 4.3: Advantages and disadvantages of the two polarimetric measurement schemes.

perpendicular to the toroidal magnetic field. This configuration minimises the elliptisation of 

the emerging beam. With phase measurements, the wire grid splitter must be replaced with 

a mylar beam splitter so that a rotating polarized beam may propagate into the tokamak.

The advantages and disadvantages of each of the two measurement systems are tabulated 

in Table 4.3. Clearly the spatial resolution of both measurement techniques are compara­

ble, though the phase measurement technique has a significantly better temporal resolution. 

When studying the evolution of fast moving plasma phenomena, such as magnetic islands 

and sawtooth activity, a high temporal resolution is desirable. The phase measurement tech­

nique requires only one detector per channel which is a significant advantage in the spatially 

restrictive regime of a tokamak. In terms of phase resolution of the Faraday rotation angle 

both methods are comparable assuming the phase technique has a modulation of the signal 

amplitude of 50% =  35°) and a 6% signal-to-noise level. The cross-coupling problems

inherent in the phase measurement technique produce an additional phase contribution to 

the interferometer. However, this additional phase error is comparable or smaller than the 

phase resolution of the interferometer and may thus be discarded in the final analysis. The 

cross-coupling problems associated with the amplitude measurement technique produce an
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elliptisation of the emerging polarization which may be misinterpreted as an additional Fara­

day rotation angle. This effect may be eliminated by the re-alignment of the polarizing grid 

splitters such that the incident polarization is parallel or perpendicular to the toroidal mag­

netic field. The amplitude measurement technique is maintenance intensive, requiring daily 

calibration and a high degree of laser stability. Refraction effects may also cause deleterious 

effects which to first order may be neglected in the phase method.

In conclusion, the phase measurement technique is clearly desirable in order to fulfill the 

basic aims of the physics programme on the COMPASS-D tokamak. This involves deter­

mining the temporal evolution of magnetohydrodynamic plasma phenomena and the effect 

of additional radio and neutral beam heating on plasma stability. The phase measurement 

has a high degree of temporal and spatial resolution, a good phase accuracy which greatly 

simplifies the mathematical inversion required to yield the poloidal magnetic field and hence 

the current density.



Chapter 5

H a Polarim etry of the Solar Surface

5.1 Introduction

Numerous studies of broadband and line polarization variation from the solar center to limb 

have been conducted over the years, (see Section 1.2), utilising polarimetric instruments that 

have selectively sampled regions of the Sun using a small aperture, ~  5 arcseconds. This 

approach necessitated long exposure times to achieve the required photon accuracy, with 

the constant repositioning of the polarimeter’s aperture to allow sequential scanning of the 

center-to-limb polarization variation (CLV). These two requirements are the main disadvan­

tages of this observational technique introducing cumbersome positional uncertainties and 

the assumption that no global polarization change occurred during the course of the expo­

sure. It is therefore desirable to conduct observations of the line polarization CLV using an 

imaging polarimetric technique with a large area, ~  10 x 5 arcminutes, of the solar surface 

may be observed simultaneously.

Polarimetric observations of the solar disk recorded in Ha (A =  6562.SA) during the Sum­

mer 1997 with the prototype imaging polarimeter are presented and discussed within the 

framework of the following aims:

I An investigation of the behavior of the polarization across the solar disk from center 

to limb with the aim of exploring an intriguing result by Leroy (1972), suggesting 

that the solar equatorial polarization is approximately ten percent larger than at the 

poles. This issue has been re-examined with new observations, utilising an imaging 

polarimetric technique, to explore the diagnostic potential in the context of the Hanle 

depolarization effect and identify problem areas that need to be addressed, rather than 

to present definite quantitative results on field strength and line parameters.

127
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I I  The investigation of surface features exhibiting linear polarization associated with solar 

magnetic activity such as sunspots, surface mottling and prominences. Such studies are 

useful in exploring the magnetic field structure.

The experiment involved observations of the Ha line-center and the wings of the Ha line (i.e. 

AA ±  0.3Â). Section 5.3 describes the measurements made during July and August 1997 

across the Ha line.

Measurement of solar magnetic fields are generally deduced from direct observations of po­

larization in spectral lines. For the correct diagnostic of solar magnetic fields it is fundamental 

to have a detailed understanding of the physical mechanisms that are able to generate polar­

ized radiation and those that are effective in modifying its properties in the transfer through 

the solar atmosphere.

5.2 Instrumental Polarization

Most telescopes and instruments polarize radiation to some small extent and distort any 

polarimetric measurements; this property is generally called instrumental polarization, (see 

Section 2.3). When observing a source of zero polarization, invariably some significant output 

in Ç, u, and v is obtained. As long as this polarization is small, it may be vectorially added 

to the true polarization signal when observing any other source, and therefore it may be 

vectorially subtracted during the reductions. Such vector zero points are determined by 

observing sources of zero polarization if these are available.

For reasons of symmetry and scattering geometry, the polarization is zero at disk center 

and increases towards the solar limb, and the plane of linear polarization is normally oriented 

tangential to the nearest limb. Any g or u signal seen in such (disc center) recordings is 

therefore due to instrumental polarization or the Zeeman effect. Measurements of the solar 

center can be used to provide a calibration for the instrumental polarization which affects all 

other results. Therefore, to correct the data for this fixed-pattern background, q recorded at 

solar disc center (calibration) is subtracted from limb recordings (the actual measurement), 

so that, in theory

{Çpol T  Qinst)\\mh ~  {Çinst)center — Qpol- (^ 1)

A similar argument may equally be applied to the u parameter. Therefore, the disk center 

observations may act as a calibration for the true zero level.

Close to the solar limb at the position angle of celestial north or south (which is not 

far from the heliographic north or south poles), where some of the observations have been
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made, Stokes V  and U are usually intrinsically small, so that instrumental cross-talk {V 

Q and U ^  Q) is a, minor problem. Sometimes significant Stokes V  signals due to magnetic 

fields can infiltrate the Stokes Q spectrum through instrumental polarization, but this may 

be eliminated by taking a differential measurement. Cross talk from Q to the other Stokes 

parameters can in principle reduce the Q amplitudes and thus affect the polarization scale.

The rationale for this method of data acquisition may be summarised as follows. The 

degree of polarization for measurement will be very small (about 0.5%) and the precision, 

at best, will be a few times 0 .01%. Also, the instrumental polarization of the instrument is 

not known to sufficient accuracy and and may well vary from day to day. Therefore it is 

advantageous to measure the difference of the measured polarization at two solar positions, 

and to monitor the variations of this difference. This differential approach negates the need to 

know the true polarization as it will be cancelled out in taking the difference, and knowledge 

of the position angle of a polarized source can be deduced from a measurement position in 

the g, u plane.

Finally it is desirable to ascertain the relationship between the instrumental polarimetric 

frame and the equatorial frame, the standard reference frame in polarimetry. This may be 

achieved by placing a Polaroid, weighted by a plumb-bob in order to keep its axis at a constant 

orientation with respect to the Earth (see Gehrels and Teska, 1960 for a fuller explanation), 

prior to the telescope aperture. Measurements were attempted on 24 September 1997 with 

the Polaroid alternately set with face in and face out. In the g,u plane the bisector of a pair of 

such measurements corresponds to a position angle of an equivalent Polaroid set with its axis 

parallel to the vertical. At local noon this corresponds to the north-south axis of the equatorial 

frame. This method requires no wind around the telescope and dome, unfortunately the 

weather conditions were adverse in this regard, causing the Polaroid to wobble constantly 

during integrations and therefore reducing the effectiveness of the results. A preliminary 

reduction of the data suggests that the instrumental frame is set at a 45° clockwise position 

to the +g direction, i.e the N/S direction in equatorial coordinates. This result was expected 

since care was taken in the polarimetric design to align the edges of the Savart plate to the 

equatorial frame. Therefore the resolved orthogonally polarized components will be at 45° to 

the prism edge and to the frame of reference. The data obtained by the plumb-bob method 

confirmed this arrangement with an accuracy commensurate with the stellar measurements. 

Previous observations taken with the Ha filter removed, as outlined in Section 2.2.7, also 

suggest that the instrumental reference axis is offset by 45° ± 1 ° with respect to the equatorial 

reference frame.
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5.3 Center to Limb Observations

Observations were recorded of the Sun’s polar and equatorial regions during the course of 

three days in July 1997 in order to study the center-to-limb variation with the prototype 

imaging polarimeter. On the 9 July, observations were taken of the north polar region and 

the western limb of the Sun in the core of the Ha resonance line, as shown in Figure 5.1. The 

north polar region was investigated further on 19 July, again in Ha, see Figure 5.8. The next 

day, 20 July, the north polar and western limb regions were observed in the red-wing and the 

blue-wing of Ha, see Figure 5.12. A total of 10 exposures were recorded with /j, values ranging 

between 0.09 and 0.65 at the northern and western limb. An additional 4 recordings were also 

made at disc center. Generally the full CLV of q and u was recorded. The aim in this case 

was to search for variations in q and u at different positions along the two limbs. Exposure 

times were typically 1 second at disc center and 3 seconds at the limb, fj, = 0.09. Hence the 

total time needed to record and store a full set of measurements (i.e. an image pair near the 

limb and at disc center) ranged between 100 seconds and 200 seconds (including moving the 

telescope and confirming the limb position), depending on the observed ji. Image motion, 

seeing and guiding errors limit the exact reproduction of the observed position between the 

two exposures to 5 arcseconds (depending mainly on seeing).

The Sun’s axis of rotation is inclined at 7.25°, and the Earth’s axis of rotation at 23.5° to 

the vertical to the plane of the ecliptic; hence the direction of the Sun’s axis as viewed from 

the Earth varies considerably throughout the year. The position angle of the north pole of the 

Sun during the three days of observations, on 9, 19 and 20 July was 0.94°, 5.39° and 5.82° 

respectively. Another intrinsic consequence that needs to be considered is the differential 

rotation of the solar surface; the sun rotates faster at the equator than at the pole. The 

integration time for a complete set of observations is approximately 45 minutes as compared 

to the solar rotation period of 27 days suggesting that the change in the portion of the solar 

surface under investigation, as a result of rotation, is of no consequence.

Figures 5.1, 5.8 and 5.12 illustrate the regions of the Sun under investigation by the imaging 

polarimeter. The larger image is an Ha exposure of the Sun taken at the Observatoire de Paris 

while the smaller images are those taken in Glasgow by the double beam polarimeter with 

their characteristic ordinary and extraordinary exposures. The small rectangle superimposed 

on the whole Sun image represents the area under investigation by the imaging polarimeter. 

Figures 5.2, 5.9, 5.13 and 5.19 show the intensity variation for a half-wave plate position of 

i() = 0° for the regions under investigation on each of the three days. The intensity profiles 

of the ordinary and extraordinary images as a function of distance from the limb show slight
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enhancements and depressions over the solar surface which may be explained by intensity 

fluctuations due to granulation and mottling effects. The ordinary and extraordinary beam 

profiles show excellent correlation across the solar surface. The limb of the Sun is recognisable 

but not clearly defined when inspecting the orthogonal beam intensities at the western and 

northern limbs. This leads to registration errors when the p{iT) curves are compared, this is 

discussed in greater detail in Section 5.3.1.

5.3.1 Shapes of the Polarized CLV

The center-to-limb polarization variation in q and u for the wavelengths under investigation 

are presented for the the north polar and western limb regions of the Sun. In order to 

quantify the differences in behaviour between the core and the wings of the Ha resonance 

line the following three parameters of the q and u profile are introduced: These are the q 

and u value in the blue-wing (i.e. at A =  6562.2Â), in the red-wing (A =  6562.8Â) and in 

the line-center (A =  6562.5Â). In the following discussion it will be convenient to refer to 

these parameters as blue-wing, red-wing and line-center q and u, or ĝ ,, g ,̂ gc, and uj,, Uc, 

respectively.

The plotted CLV curves for ĝ  and Uc along the northern and the western limbs recorded 

in Ha on 9 July are shown in Figure 5.3 and Figure 5.4 respectively. Figure 5.10 has the CLV 

curve for ĝ  and Uc recorded on 19 July in Ha for the northern limb of the Sun. Observations 

taken on 20 July were in both the red- and blue-wing of the Ha resonance line. The blue- 

wing CLV polarization curves taken in Ha, ĝ , and U{,, along the northern and western limbs 

are plotted in Figure 5.14 and Figure 5.15, while the plots for the red-wing are shown in 

Figure 5.20 and Figure 5.21 respectively.

The CLV of the g amplitude increases from the center to the limb as expected, reaching a 

maximum at the limb. This is the case for all three wavelengths. Inspection of the CLV g 

plots shows that the curve falls off to background signal levels at about 40 arcseconds from 

the limb or /i ~  0.3 so offering ~  10 good data points for the curve fitting determination. This 

is consistently the case for the three wavelengths under investigation. Beyond 40 arcseconds 

distance, the data points level off and fluctuate around the scaled zero point of polarization, 

determined from observations of the disk center.

In many or even most spectral regions, the magnitude of the continuum polarization is 

comparable to that of the line polarization. Thus, by measuring the line polarization from 

the polarization zero level, the results would be affected to variable degree by the behaviour 

of the continuum rather than of the lines alone. In addition, the amount of continuum
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Figure 5.1: Three Ha core exposures of the Sun taken on 9 July 1997: (a) North polar region, 
(b) western limb and (c) whole solar disk taken at the Observatoire de Paris. The rectangles 
correspond to the polarimeter’s field of view on the solar disk.
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(a) The intensity variation of the western limb.
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(b) The intensity variation of the north polar region.

Figure 5.2: The ceiiter-to-limb intensity variation at a half-wave plate position of 'ip = 0° for 
the north polar and western limb regions of the Sun on the 9 July 1997.
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Figure 5.3: The center to polar limb variation of q and u polarization at the Hof core on 9 
July 1997.
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Figure 5.4: The center to equatorial limb variation of q and u polarization at the Ha core on 
9 July 1997.
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(a) The center to equatorial limb variation of q polarization.
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(b) The center to polar limb variation of q polarization.

Figure 5.5: Two plots illustrating the Ha core center-to-limb variation in the q polarization 
for the equatorial and polar regions of the Sun taken on 9 July 1997. A non-linear least 
squares fit of the form q = has been calculated for each plot.
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Figure 5.6; The center-to-limb polar and equatorial q polarization plotted versus the helio­
centric angle taken on 9 July 1997.
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Figure 5.7: The center to pole q polarization versus the center to equator q polarization. The 
solid line corresponds to the case of identical polarization for the polar and equatorial regions 
at the same solar position. The dashed lines are the computed least squares fits to the data.
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polarization cannot be determined well in regions with no well-defined depolarizing lines, 

as is unfortunately the case for most spectral regions. The magnitude of the continuum 

polarization is less than 4% of the maximum polarization amplitude of the Ho; line, (see 

Stenfio et ah, 1983a), and consistently much smaller than the measured q values for a limb 

distance /i < 0.3. This illustrates that the measured polarization is significant and not a 

product of continuum and line mixing.

A semi-analytical expression. Equation 1.17, first introduced by Stenfio and Keller (1997) 

to describe the center-to-limb behaviour of the Sr I 4607Â resonance line was fitted to the 

recorded q data for all three wavelengths under consideration. This procedure was unsuc­

cessful due to the steep CLV of the optically thick Ha line. This semi-analytical expression 

provides a good explanation for optically thin lines but is not applicable to optically thick 

lines, whose CLV is governed by more complex radiative-transfer effects.

Unfortunately the pixels of the CCD detector were not square but rectangular in shape. 

This meant that images recorded at the northern limb had a different scale length to those 

recorded at the western limb. Therefore, to facilitate a direct comparison of the shapes of the 

various curves at the northern and western limbs, it is necessary to introduce the following 

empirical expression which provides a good fit to the observed values for the polarization 

maximum and curve of the line:

q = and q = (5.2)

where A, B, C and D are the parameter values chosen to fit the data. The latter equa­

tion expresses the variation of q across the solar surface in arcseconds, nj, while the former 

expresses the variation in terms of /i, the heliocentric angle. This form is the commonly 

accepted representation in solar physics with fi being the cosine of the angle between the 

solar radius vector to the scatterer and the line of sight. The curve fitting routine utilises a 

gradient-expansion algorithm to compute a non-linear weighted least squares fit to the em­

pirical expression with an arbitrary number of parameters, two in this case. Iterations are 

performed until the chi square values changes by 0 .1% or less, or until 20 iterations have 

been performed. Table 5.1 lists the parameter values for each of the curves with the relevant 

Figure numbers for reference.

Comparison of the q polarization amplitude CLV for the northern and western limb of the 

Sun at Ha line may be determined by plotting the (western limb) versus gc(northern limb) 

as illustrated in Figure 5.7. The two dashed lines represent the two computed least squares 

fits to the data, see Figure 5.2, whose parameters are tabulated in Table 5.1, with the solid 

line corresponding to the case of identical polarization for the polar and equatorial regions at
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D ate W avelength Region A B C D F igure N®
09 July 6562.5À North pole 1.167 13.090 0.485 0.087 5.5 and 5.6
09 July 6562.5À Western limb 1.154 13.151 0.466 0.084 5.5 and 5.6
19 July 6562.5Â North pole 1.093 13.169 0.464 0.091 5.11
20 July 6562.2Â North pole 0.980 13.640 0.380 0.092 5.16 and 5.17
20 July 6562.2À Western limb 0.891 13.820 0.352 0.091 5.16 and 5.17
20 July 6562.8À North pole 0.924 13.226 0.367 0.084 5.22 and 5.23
20 July 6562.8À Western limb 0.897 13.219 0.340 0.085 5.22 and 5.23

Table 5.1: The parameters A, B, C and D for the empirical expression introduced in Equa­
tion 5.2 in a tabulated form.

the same solar position. This plot indicates a small difference in the two polarization profiles, 

suggesting that the polar polarization is slightly greater than the equatorial polarization 

towards the limb. However, by shifting the polar curve with respect to the equatorial curve 

along the limb distance and minimising the residual or difference function defined by.

 ̂I [Q{'^)polar Qi"^)equatorial]
^residual — \V n

(5.3)

it is possible to determine whether this enhancement is intrinsically a solar effect or a sys­

tematic positional error. This digitisation problem is due to the finite size of the detector 

pixel and may contribute to differences in the two curves. However, it may be removed by 

shifting the polar curve 0.82 arcseconds with respect to the equatorial curve thus minimising 

the function ^residual and making it is possible to infer that no significant difference exists 

between the polarization CLV of the two regions under investigation to a precision exceed­

ing 0.5%. However, the spatial resolution of the imaging polarimeter during excellent seeing 

conditions does not exceed 4 arcseconds and hence this small corrective factor may not be 

investigated by shifting the actual solar images and recalculating the q polarization ampli­

tudes accordingly. The qc amplitude CLV recorded on 9 and 20 July is shown in Figure 5.25. 

The two data sets show good reproducibility well within the observational uncertainties. The 

main source of uncertainty is the determination of the limb position and hence even if ̂  does 

not suffer from systematic errors, some scatter is introduced by image motion into q. The n 

value may change significantly in an exposure close to the limb lasting several seconds. The 

comparison between the different data sets shows that it is possible to obtain consistency 

after very careful corrections for the effects of limb position and transparency problems. The 

spread of the data points illustrates the degree of reproducibility of the results.

Conducting a similar analysis comparing the polar and equatorial polarization for the two 

other wavelengths under consideration yields similar results to Ha. Initially, inspection of the
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Qb and Çr CLV’s in Figure 5.18 and Figure 5.24 respectively yields the surprising result that the 

polar polarization is significantly greater than the equatorial polarization, 13% greater in the 

blue-wing and 9% in the red-wing. However, by shifting the polar curve with respect to the 

equatorial curve and minimising the residual function the apparent polarization enhancement 

disappears. A shift of 1 arcsecond for the blue-wing data and 0.2 arcseconds for the red-wing 

data minimises the residual function accordingly.

Inspection of Figures 5.6, 5.17 and 5.23 reveals that the line core and the line wings exhibit 

a similar CLV but with diflFering polarization amplitudes. The difference in behaviour between 

line-center and wings is much clearer by eliminating (i by plotting Qr, Qc vs qb- The top plot 

in Figure 5.26 shows red-wing vs blue-wing ĝ . The relationship between the g of the two 

wings remains remarkably linear over a large range of /i values. It may be described by the 

linear regression passing through the origin (in units of % polarization)

qr =  0.99gb, (5.4)

which is also plotted. Increasingly, q̂  is of approximately the same magnitude as q̂ ,. Even 

more remarkable is the small scatter exhibited by the data points. The standard deviation of 

the points around this regression is 0.010 and is a measure of the total uncertainty in the line 

parameters. This value is half the value expected from the photon and instrumental noise, 

which suggests that the profile shape in the wings is extremely stable.

The line-center ĝ  plotted vs blue-wing ĝ , bottom plot in Figure 5.26, shows a different

picture. The relationship between the g of the center to the wings may be described by the

linear regression passing through the origin (in units of % polarization)

q r =  0.79gc, (5.5)

at least a 2cr difference. The standard deviation of the points around the regression is 0.017. 

The scatter is large, much larger than that which any observational uncertainties could be 

expected to introduce. The two most obvious trends are the expected increase of g towards 

the limb, and the increase of the scatter of a prior unknown origin. An analysis of the noise 

and uncertainties in the line profiles suggests that this increased scatter is not just due to 

instrumental noise. A major observational uncertainty is the value of /i, which due to the 

steep CLV of g near the limb leads to a larger scatter there. Another consideration for 

this scatter may be a solar source, the most likely is the Hanle effect, since it acts almost 

exclusively on the line core, while leaving the wings unaffected. In the presence of a magnetic 

field the Hanle effect depolarizes the line core and rotates the direction of linear polarization. 

The depolarization depends on the strength and direction of the magnetic field. Therefore a
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magnetic field that varies spatially in strength or direction can produce a scatter in the core- 

to-wing q ratio, since solar locations were randomly sampled with different field strengths or 

directions.

Inspection of the two plots in Figure 5.27 where the ratios qc to q̂  and qr to q  ̂ are plotted 

versus /i shows a tight relationship up to a limb distance of fi = 0.3. Thereafter there is a 

significant amount of scatter which is related to the diminishing signal-to-noise ratio. The 

upper plot shows the tight relationship of the qr to q̂  ratio around unity up to a limb distance 

0 Î fj, = 0.3. The qc to q  ̂ ratio lies around 1.3 but with a larger amount of scatter tending to 

increase towards the center, also illustrated in the lower plot of Figure 5.26.

Recent observations of the Ha line by Stenfio et al. (1997), as illustrated in Figure 1.7, and 

Keller (1998) in November 1994 yield the following polarization amplitude values for three 

northern limb positions (in units of % polarization).

pjpo.io)    0 -2 9 9    9 r j9
P & 0 U 5 )  “  0 .1 4 8  -  ^

p I m o . i s ) _  0 .1 4 8  _  1 Q 7
PiPo.lo) ~  0 .0 7 5  -

p(po.io)    0 .2 9 9  —  Q QQ
Pipo.lo) ~  0 .0 7 5  -  J

(5.6)

with an uncertainty of 0.002%. The corresponding ratios recorded in Glasgow on the 9 July 

in Ha for comparison (in units of % polarization) are as follows.

p ( m o . i o )   0 .3 1 3    1 QQ
p(po.i5) ~  0 .1 6 2  -

PIMO.15
p(po.201 =  5 #  =  194
pjpP.io)    0 .3 1 3    o  7Q
p (pq.2q) ~  0 .0 8 4  -  J

(5.7)

with an uncertainty of 0 .02%, a factor of 10 worse than the previous observations. A com­

parison of the previous data recorded in November 1994 with recent observations recorded in 

July 1997 illustrates the good agreement, to within 7%, in the recorded q polarization values 

between the different data sets. The data obtained by Stenfio et al. (1997) were taken using a 

small aperture running from the limb to the center in order to record the CLV. This accounts 

for the high photon accuracy, i.e. long integration times at each fi position, but this method 

introduces erroneous positional uncertainties.

Earlier observations of the solar disk in Ha were conducted by Stenfio et al. (1983b) at 

a limb distance of 10 arcseconds, fi = 0.144, from the heliographic north pole recording a 

polarization p  =  0.17% ±  0.01%. This is in good agreement with the present observations 

which yield p = 0.18% ±  0 .02%.

There is no significant polarization in the u parameter at or across the solar limb in any of 

three wavelengths selected for investigation. Inspection of the u curve profiles in Figure 5.15
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Figure 5.8: Two Ha core exposures of the Sun taken on 19 July 1997: (a) North polar region, 
(b) whole solar disk taken at the Observatoire de Paris. The rectangle corresponds to the 
polarimeter’s field of view on the solar disk.
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Figure 5.9: The center-to-limb intensity variation at a half-wave plate position of 'ip = 0° for 
the north polar region of the Sun taken on the 19 July 1997.
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Figure 5.10: The center to polar limb variation of q and n polarization at Ha core taken on 
19 July 1997.
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(a) The center to polar limb variation of q polarization.
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(b) The center to polar limb variation of q polarization.

Figure 5.11: Two plots illustrating the Ha core center-to-limb variation in the q polarization 
for the polar regions of the Sun on the 19 July 1997. A non-linear least squares fit of the 
form q = has been calculated for each plot.
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Figure 5.12: Two Ha blue-wing exposures of the Sun taken on 20 July 1997: (a) North polar 
region, (b) western limb and (c) a Ha whole solar disk image taken at the Observatoire de 
Paris. The rectangles correspond to the polarimeter’s field of view on the solar disk.
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(a) The intensity variation of the western limb.
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(b) The intensity variation of the north polar region.

Figure 5.13: The center-to-limb intensity variation at a half-wave plate position of ■0 = 0*̂ 
for the north polar and western limb regions of the Sun taken on the 20 July 1997.
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Figure 5.14: The center to polar limb variation of q and u polarization at the Ho; blue-wing 
taken on the 20 July 1997.
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Figure 5.15: The center to equatorial limb variation of q and u polarizaton at the Ha blue- 
wing taken on 20 July 1997.
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(a) The center to equatorial limb variation of q polarization.
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(b) The center to polar limb variation of q polarization.
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Figure 5.16: Two plots illustrating the Hct blue-wing center-to-limb variation in the q polar­
ization for the equatorial and polar regions of the Sun. A non-linear least squares fit of the 
form q = has been calculated for each plot.
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Figure 5.17: The center-to-limb polar and equatorial q polarization plotted versus the helio­
centric angle taken on the 20 July 1997.
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Figure 5.18: The center to pole q polarization versus the center to equator q polarization. 
The solid line corresponds to the case of identical polarization for the polar and equatorial 
regions at the same solar position. The dashed lines are the computed least squares fits to 
the data.
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(a) The intensity variation of the western limb.
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(b) The intensity variation of the north polar region.

Figure 5.19: The center-to-limb intensity variation at a half-wave plate position of 'ijj = 0̂  
for the north polar and western limb regions of the Sun on the 20 July 1997.
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Figure 5.20; The center to polar limb variation of q and u polarization at the Ha red-wing 
taken on 20 July 1997.
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Figure 5.21: The center to equatorial limb variation of q and u polarization at the Ha red-wing 
taken on 20 July 1997.
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(b) The center to polar limb variation of q polarization.
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Figure 5.22: Two plots illustrating the Hct red-wing center-to-limb variation in the q polar­
ization for the equatorial and polar regions of the Sun. A non-linear least squares fit of the 
form q =  has been calculated for each plot.
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Figure 5.23: The center-to-limb polar and equatorial q polarization plotted versus the helio­
centric angle taken on 20 July 1997.
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Figure 5.24: The center to pole q polarization versus the center to equator q polarization. 
The solid line corresponds to the case of identical polarization for the polar and equatorial 
regions at the same solar position. The dashed lines are the computed least squares fits to 
the data.
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Figure 5.25: The center to polar limb q polarization at the Ha core for the 9 and 19 July. 
The solid curve corresponds to the best fit to the two data sets.

and Figure 5.21 reveal slight enhancements in polarization above the background level and this 

will be discussed further in Section 5.3.2. These results confirm that the polarization vector 

is generally aligned tangential to the limb. The small spread of the data points indicates the 

degree of reproducibility of the results. Although some of this spread may be of instrumental 

origin, there is clear evidence that part of the variation is intrinsically solar. This is evident 

in the CLV q curves where the amplitude is measured from the zero point of the polarization 

scale, which has been determined from observations of the solar center. The true zero of the 

polarization scale would have to be determined with respect to the neighbouring continuum 

line at the disk center.

5.3.2 D iscussion

New low noise (0.02%) observational data for the center-to-limb variation (CLV) of the scat­

tering polarization for the H a line are presented at two locations, the northern and western 

limbs, on the quiet Sun. Although some information of the slope of the CLV curve is avail­

able for H a at certain values of /i (see Stenfio et ah, 1983a and Stenfio and Keller, 1997), 

and a number of different spectral lines, the only two lines for which the full CLV curve has 

been investigated in detail (apart from a few CLV curves from 1978 observations by Stenfio
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et al., 1980) are the Sr I 4607Â and Ca I 4227Â lines. The Ha line is an optically strong line 

extending over a 4Â wavelength range and is surrounded by a clean continuum and formed 

in the lower regions of the chromosphere.

The polarization at the solar limb was found to be much higher in Ha than in the nearby 

continuum for the three wavelengths under investigation. No distinction in the general be­

haviour of the center-to-limb variation could be found between equatorial and polar regions 

for all three wavelengths. The polarization was found to decline by a factor of four when 

going from /j, = 0.1 to n = 0.3, a much steeper decline than other lines studied previously, 

as illustrated in Figure 1.7. The polarization in the core of Ha was found to be higher by 

at least 2a with respect to the off-band measurements in the red- and blue-wings. The po­

larization decreases when moving out into the wings, because the ratio between the line and 

continuum opacities decreases, and the continuum is less polarized than the line. The CLV 

in polarization recorded in the blue- and red-wings were similar in amplitude and general 

behaviour as illustrated in the analysis presented in Section 5.3.1. The ratio of the blue- to 

red-wing polarization remains strictly constant, the line core shows a slightly larger scatter 

relative to the wings. This scatter is marginally larger than expected from the error budget. 

It may be interpreted in terms of either the Hanle depolarization of the line core by a weak 

field or due to positional uncertainties on the solar disk.

Observations recorded by Leroy (1972) infer a contentious result that the solar equatorial 

polarization is approximately ten percent larger than at the poles at a wavelength of 3820Â, 

in the UV. A number of instrumental and data reduction effects must be considered before 

the astrophysical implication of these results may be discussed. Foremost is the differential 

refraction effect in the Earth’s atmosphere which introduces an apparent different scale length 

along the polar axis with respect to the equatorial axis. This effect is dependent on the Sun’s 

altitude during observations, as shown in Figure 2.18 and may become dominant at low 

altitudes. Another important factor is the positioning of the instrument on the solar disk. The 

analysis conducted in Section 5.3.1 demonstrates that a slight misalignment or uncertainty in 

positioning has a great effect upon the polarization value recorded, especially near the limb 

where the CLV is varying most rapidly. The final factor, (see Leroy, 1997), is the possible 

contamination or mixing of the continuum (scattering) and the line (magnetic intensification) 

opacities and the extraction of the observed polarization of the line, especially in the UV. 

A likely physical explanation for the greater polarization at the equator with respect to the 

pole is the Hanle effect, which acts on the line core. Assuming the Sun has a classical dipole 

magnetic field suggests a greater magnetic field strength at the poles where the magnetic flux
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line in the top plot is a linear fit to the data. The dashed line in the bottom plot corresponds 
to the case of identical polarization for the line-center and blue-wing.
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is greatest. This increased field strength may cause a decrease of polarization with respect to 

a region of lower magnetic flux, i.e. the equator, and a rotation of the plane of polarization. 

The depolarization depends on the strength and direction of the magnetic field. Another 

likely physical explanation is that the 1972 polar observations cut across a region that had 

more of Hanle-depolarizing magnetic fields inside limb zone as compared with the case for 

the equatorial region.

As stated previously the lack of spread of the data points indicates the high degree of re­

producibility of the results. There is clear evidence on the 20 July of a statistically significant 

intrinsically solar variation at a distance of 20 arcseconds in the u and q Stokes parameters 

in both the blue- and red-wings of the Ha line. This evidence is directly seen in Figure 5.15 

and Figure 5.21 for the u and q normalised Stokes parameters. The CLV of the u and q 

amplitude shows a very pronounced kink near = 0.2 indicating the parameter has a non­

zero value, which means that the plane of polarization is not parallel to the limb. These 

kinks are present in both the blue- and red-wing data sets and indicate a general increase in 

polarization in the region of the solar limb centered on = 0.2. Unfortunately due to the 

prevailing weather conditions at the observing site it was not possible to record the Ha core 

CLV, and therefore no comparison may be made. Calculations from the Stokes parameters 

show that the direction of vibration of linear polarization in the line has been rotated by 

16° in the blue-wing and 10° in the red-wing. There is no possibility that such kinks in the 

curves could be produced by instrumental effects, concluding therefore that they must be 

intrinsically solar. Without any further analysis it is possible to state that the field whose 

influence is observed is relatively weak (since it does not completely destroy the resonance 

polarization), and that it is chromospheric (since the core of Ha is formed in the lower or 

middle chromosphere). These enhancements from the smooth CLV curve may be related to 

a variety of factors including the spatially varying Hanle effect on the Sun.

A possible mechanism that could enhance the polarization is related to the presence in 

the chromosphere of accelerated motions. Their effect on the line formation process is not 

simply equivalent to a convolution of the profile by a Gaussian distribution, because the 

absorption profile varies along a given line of sight. This kind of effect is analogous to the 

so-called Doppler-dimming which has been investigated for some coronal emission lines (see 

for example Beckers and Chipman, 1974). For chromosphere absorption lines it certainly 

yields an enhancement of the anisotropy of the radiation field and, as a consequence, an 

enhancement of the resonance polarization. However such an effect should be observed close 

to the solar limb as well as on the solar disk.
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It is not in the scope of the present discussion to study this kind of phenomenon, but 

rather to examine the Hanle effect due to a weak magnetic field in the chromosphere. It is 

possible to enhance the line polarization observed on the disk, provided the magnetic field 

has a horizontal component located below the depth where the line is formed and which 

then vanishes in the line forming region. It has been shown by Faurobert-Scholl (1994) that 

the Hanle effect due to a magnetic canopy lying below the height where the line core is 

formed actually causes an increase in line core polarization as compared to its non-magnetic 

value. This surprising effect is a consequence of multiple scattering of line photons in the 

chromosphere. In the case of the Ca I 4227Â the line core polarization goes through a 

positive maximum between 700km and 900km and becomes negative (parallel to the solar 

limb) at higher altitudes, where it does not change anymore. The Hanle effect of a weak 

magnetic field located in the region of the positive maximum locally decreases the positive 

contribution, so that the emergent negative polarization gets enhanced as compared to the 

non-magnetic situation. This phenomenon disappears if the magnetic field lies too deep in the 

chromosphere, in regions where the polarization source function is very small, or if it lies too 

high, in regions where it is negative. This explains why the enhancement of the polarization 

appears only where the altitude of the canopy base lies between 700km and 1000km.

Another method for understanding the effect of the canopy base is to consider the following 

argument. The linear polarization of the Ca I 4227Â line is close to zero in the photosphere 

and it reaches a quite high positive maximum in the region between 700km and 1000km. It 

becomes negative when the line optical depth. To, becomes smaller than unity. The Hanle 

effect in the region of the positive maximum moves the whole curve down and so it increases 

the emergent polarization (in absolute values). In other words, in the absence of a magnetic 

field, the line radiation field in the region where Tq ~  1 has a quite large positive polarization. 

The effect of scattering in the line forming regions (between ~  1 and the surface) is to 

reduce the polarization and to produce a change of sign. A weak magnetic field lying slightly 

below the region where Tq = I decreases the positive polarization of the radiation field which 

reaches the line forming region. After scattering it emerges with a negative polarization which 

is larger, in absolute value, than in the absence of a magnetic field.

It is noted that the existence of a positive maximum of the polarization source function 

in the optical depth range 1 to 10 is found also for lines formed in isothermal atmospheres 

with depth-independent properties. Actually, it is a general feature for optically thick spectral 

lines, such as Ha, and it is due to the properties of multiple Rayleigh scattering. This physical 

argument may be relevant to the polarization enhancements observed in Ha since the line



CHAPTER 5. Ha POLARIMETRY OF THE SOLAR SURFACE 159

core is formed where a canopy base might be present, specifically at an altitude between 

1000km and 1600km. The line wings are formed at an altitude between 100km to 400km, 

(see Foukal (1990)).

5.4 Analysis of Solar Prom inence Data

Observations were made of three prominences positioned at the western limb of the Sun 

during the course of three days in August 1997 in the Ha wavelength. The three prominences 

are shown in Figure 5.28: Figure 5.28a,b is a prominence recorded on 5 August 1997 at a 

position of —54.2°W on the solar limb. Figure 5.28c,d was recorded on 10 August 1997 at a 

position +42.5°W latitude, and finally Figure 5.28e was taken on 7 August 1997 at a latitude 

of +15.5°W. Unfortunately due to adverse weather conditions, the data for the prominence 

recorded on 5 August was poor and discarded. Data for the other two prominences were 

analysed and the polarization maps are shown in Section 5.4.1.

The aim of this study was to ascertain the feasibility of recording accurate polarization 

maps with the imaging polarimeter and to attempt an interpretation of the prominence struc­

ture in strictly a qualitative manner. The linear polarization measurements were obtained by 

the imaging polarimeter with exposure times of typically several seconds sufficient to image 

the prominences clearly on the CCD detector and to saturate the the nearby limb. Exposures 

of the disk center were also recorded in order to ascertain the zero polarization standard. The 

total time to record and store a full set of measurements (i.e. a prominence and at disc center) 

ranged between 150 seconds and 200 seconds.

5.4.1 Results

Figure 5.29 illustrates the ordinary and extraordinary intensity images of the prominence 

recorded on 7 August along with the corresponding contour plot. The solar limb in the 

images is saturated, i.e. the recorded intensity is beyond the dynamic range of the detector. 

The linear polarization map illustrating the vectors and the angle of polarization is shown 

in Figure 5.30. The prominence extends approximately 61 arcseconds along the solar limb 

and 56 arcseconds normal to it, i.e. the height above the limb is about 40,000km. The 

degree of polarization is approximately 0 .8% in the lower regions of the prominence near 

the solar limb rising to 1.2% towards the outer regions. Due to the low intensity levels the 

uncertainty of these polarization values is of the order 0.15%. The orientation of the vectors 

is generally aligned tangential to the solar limb direction with some rotation towards the
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Figure 5.28: Three Solar prominences recorded during the Summer 1997 at the Cochno 
Observatory, Glasgow. Images (a) and (b) were recorded on 5 August 1997 at a position of 
—54.2°W on the solar limb showing a prominence in both the Ordinary and Extraordinary 
rays. Similarly images (c) and (d) were taken on 10 August 1997 at a solar latitude of 
+42.5°W and finally image (e) was recorded on 7 August 1997 at a solar latitude of +15.5°W.
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edge of the prominence. Due to seeing effects and inaccurate registration between frames, 

the pixels close the solar limb cannot be utilised and thus produce erroneous polarization 

values. Finally Figure 5.31 shows the linear polarization data superimposed on the grey-scale 

intensity image.

Similarly Figure 5.32 shows the ordinary and extraordinary intensity images of the promi­

nence recorded on 10 August along with the corresponding contour plot. The polarization 

map is illustrated in Figure 5.33 while the superposition of the grey-scale intensity image 

and polarization map is shown in Figure 5.34. The prominence under investigation extends 

beyond the available detector area along the solar limb, however it is approximately 43 arc­

seconds in height or 31,000km. The degree of polarization is approximately 0.5% in the 

lower regions of the prominence near the solar limb rising to 0 .8% towards the outer regions, 

somewhat lower than the prominence observed 7 August. The orientation of the polarization 

vectors is, again, generally aligned tangential to the solar limb direction. However, there 

is significant rotation of the polarization vectors in the center and towards the lower right 

regions of the prominence indicating areas of either differing plasma properties or magnetic 

field structure.

5.4.2 Discussion

The linear polarization of spectral lines observed in prominences is due to scattering of the 

anisotropic photospheric radiation, modified by the Hanle effect due to the local magnetic 

field, which leads to a depolarization and a rotation of the polarization direction. The linear 

polarization of Ha is also sensitive to the depolarizing effect of collisions with electrons and 

protons of the medium owing to the long range of the H-H'*' interaction potential and, 

moreover, it is modified by multiple scattering inside the prominence, because this line is not 

optically thin {tq ~  1).

The strength of the magnetic fields in a prominence may be inferred from measurements 

of linear polarization in Ha as characterised in the Figures 5.30 and 5.33. The small arrows 

represent the direction of polarization in Ha. The degree of polarization was estimated to be 

0.8% for the prominence recorded on the 10 August. The angle through which the direction 

of polarization is rotated from tangency to the limb allows the inference of the strength of 

the fields in the prominence. The strength of the field, inferred from the 20°-25° angle of 

rotation, was between 45 and 60 gauss, (see Hyder, 1964). The direction of rotation of the 

polarization vector from tangency allows the direction of the line-of-sight component of the 

magnetic field.
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Figure 5.29: The (a) Ordinary and (b) Extraordinary images of the prominence recorded on 7 
August 1997 at a solar latitude of 4-15.5°W. The contour plots of the alternatively polarized 
images are shown in (c) Ordinary and (d) Extraordinary.
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Figure 5.30: Polarization map of the prominence recorded on 7 August 1997. The data units 
are in percentage of polarization, p, {%).
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Figure 5.31: The linear polarization data of Figure 5.30 superimposed on a grey-scale intensity 
image. The grey-scale image shows the solar limb and prominence in high contrast. The key 
relates the number of detected photons to the intensity level of the image. The polarization 
orientations are generally tangential to the solar limb direction.
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Figure 5.32: The (a) Ordinary and (b) Extraordinary images of the prominence recorded 
on 10 August 1997 at a solar latitude of +42.5°W. The contour plots of the alternatively 
polarized images are shown in (c) Ordinary and (d) Extraordinary.
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Figure 5.33; Polarization map of the prominence recorded on 10 August 1997. The data 
units are in percentage of polarization, p, (%).
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Figure 5.34: The linear polarization data of Figure 5.33 superimposed on a grey-scale intensity 
image. The grey-scale image shows the solar limb and prominence in high contrast. The key 
relates the number of detected photons to the intensity level of the image. The polarization 
orientations are generally tangential to the solar limb direction but with some structure 
towards the lower right.
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However, it is impossible to determine completely the magnetic field vector from linear 

polarization measurements in one single line - namely Ha - because two parameters are 

measured, the linear polarization degree and direction (or the two linear polarization Stokes 

parameters q and u), whereas 3 components of the field vector need to be determined. There­

fore measurements of two lines of differing optical depth are necessary for the determination 

of the three components of the field vector. A commonly used pair are He I D3 and Ha, these 

providing the 3 magnetic field components and one extra parameter, the electron density (see 

Bommier and Sahal-Bréchot, 1978 and Bommier, 1980).

The principle of the two-line measurement and analysis is summarised as follows. In the 

case of simultaneous observations in one optically thin and one optically thick line a difference 

in the scattering geometries exists. This difference can be suitably exploited to remove the 

ambiguity concerning the two-fold degeneration of the solution in one line only; two field 

vectors are indistinguishable because they have the same effect on the linear polarization of 

the line. Therefore, the scattering geometry is not the same for Ha and He I D3, owing 

to the prominence internal Ha radiation and to the absorption of the incident photospheric 

radiation by the prominence matter in the optically thick Ha line; by comparing the solutions 

provided by the optically thin He I D3 line and the optically thick Ha line, it is possible to 

solve the fundamental ambiguity in individual cases, because the optically thin line provides 

two solutions symmetrical with respect to the line of sight, whereas the optically thick line 

provides two solutions also, which are not symmetrical with respect to the line of sight. By 

comparing the two pairs of solutions, it is possible to determine which is the “true” solution 

and which is the symmetrical “pseudo-solution” and to solve the fundamental ambiguity.



Chapter 6

Conclusion and Future Work

This chapter splits easily into three parts. The first part describes the results and conclusions 

obtained in the solar polarimetry work relating to the center-to-limb variation (CLV) of the 

Ha polarization, and the results obtained observing two prominences on the solar limb. The 

second part concerns the Faraday rotation polarimetry work and the two different polarimetric 

techniques under consideration for application to the COMPASS-D tokamak. Some system 

properties are discussed, both on a general level and focussing on the COMPASS-D situation 

with possible improvements suggested. In the final summary, the directions in which both 

these works could be extended are addressed.

6.1 Solar Polarimetry

Many phenomena in the solar atmosphere have their origin in magnetic fields. Magnetism 

is responsible for the structural richness of the solar atmosphere, for solar activity, and it is 

also thought to play an important role in the chromosphere, investigated here via the Ha 

spectral line.

It has been demonstrated that a 2-D polarimeter can be used for precision polarimetry 

needed for quantitative research of solar magnetic fields. The principle of using a masking 

grid in conjunction with a polarizing prism, such as a Savart plate, to eliminate atmospheric 

transparency effects and the need for fiatfielding of the detector has been shown to be feasible 

for solar observations. A noise level of 0.1% in a single exposure is achieved with an angular 

resolution of 4 arcseconds. By frame averaging and averaging over rows oriented parallel 

to center-to-limb direction, the noise level could be reduced to the 0.02%. This value was 

chosen pragmatically so that the required number of exposures to achieve this precision was 

not excessive, taking into account the variable nature of the meteorology in Glasgow. It

167
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allowed a good signal-to-noise ratio to be obtained within a resisonable time frame. The 

spectral resolution achieved with the narrow band (FWHM AA =  0.3Â) Ha tunable filter 

was ±  0.33Â. For reasons of symmetry and scattering geometry the polarization of the solar 

radiation is zero at the disk center allowing the instrumental offset to be estimated. However, 

the instrumental polarization of the instrument is not known to a sufficient accuracy such that 

the uncertainty is smaller that the random errors associated with the q and u measurements. 

Therefore, it is advantageous to measure the difference of the measured polarization at two 

solar positions. This differential approach negates the need to know the true polarization as it 

will be cancelled out in taking the difference. The instrumental polarization of the polarimeter 

was investigated using a novel monochromatic depolarizing technique outlined in Chapter 2 . 

This was the first time this technique was experimentally tested. Unfortunately this attempt 

was unsuccessful for various practical reasons. However, an error analysis provided a useful 

insight on constraints of use particularly the effectiveness of the depolarizer arrangement at 

different wavelengths.

Low noise observations of q and u at the north polar region and the western limb of the quiet 

Sun were recorded at the University of Glasgow Cochno station. From these observations 

it was possible to derive the CLV polarization of the Ha line-center and at the two wings. 

Although some information on the slope of the CLV curve is available for a number of different 

spectral lines, the only lines for which the full CLV has been investigated in detail are the 

Sr I 4607Â and Ca I 4227Â. The analysis of the Ha line is more complicated due to its non- 

negligible optical thickness which causes a lower degree of polarization (a partial lowering of 

the radiation field anisotropy). Also the Ha line is formed over a much larger height range 

suggesting that the line profile is more dependent on scale variations.

The present observations give the detailed CLV of the Ha line for the polarization ampli­

tude. The comparison between the data sets taken during three days in July 1997 shows that 

it is possible to obtain consistency after careful data reduction. The lack of spread of the data 

points illustrates the degree of reproducibility of the results, but there is evidence that at least 

some of the deviation must be intrinsically solar. The polarization at the solar limb was found 

to be much higher in Ha than in the nearby continuum for the three monitored wavelengths. 

No distinction in the general behaviour of the CLV could be found between equatorial and 

polar regions for all three wavelengths. Furthermore the polarization was found to decline 

by a factor of four when going from /u =  0.1 to /i = 0.3, a much steeper decline than the Sr I 

4607Â and Ca I 4227Â. The polarization in the core of Ha was found to be higher by at least 

2(7 with respect to the off-band measurements in the red- and blue-wings. This phenomenon
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was explained in Section 5.3.2 in terms of the ratio between the line and continuum opacities. 

It was also found that while the ratio of the blue- to red-wing polarization remains strictly 

constant, the line core shows a marginally larger scatter relative to the wings. This scatter is 

however comparable to the error budget and therefore this result should not be over empha­

sised, but it may be interpreted in terms of either the Hanle depolarization of the line core 

by a weak magnetic field or most likely due to positional uncertainties on the solar disk.

Leroy (1972) inferred the conflicting result that the solar equatorial polarization is ap­

proximately ten percent larger than at the poles. A likely physical explanation for this 

measurement is the Hanle effect. Assuming the Sun has a classical dipole magnetic field 

suggests a greater magnetic field strength at the poles where the magnetic flux is greatest. 

This increased field strength at the poles may cause a decrease of polarization with respect to 

a region of low magnetic flux and a rotation of the of the polarization direction. Another ex­

planation is that the area of observation cut across a region that had more Hanle-depolarizing 

magnetic fields causing the observed depolarization. However, when dealing with a quantity 

that changes rapidly with position on the solar disk, much like the Ha CLV polarization, 

exact determination of observing position is very important. The analysis conducted in 

Section 5.3.1 demonstrated that a slight misalignment or uncertainty in positioning greatly 

affects the assigned polarization value recorded especially near the limb where the CLV is 

varying most rapidly. This is the most likely explanation for the conflicting results recorded 

by Leroy (1972).

Observation taken on 2 0  July 1 9 9 7  clearly indicate a statistically significant intrinsically 

solar variation at a distance of 20 arcseconds in the u and q Stokes parameter in both the blue- 

and red-wings of the Ha line. This evidence is directly seen in Figure 5 . 1 5  and Figure 5 . 2 1 .  

The CLV of the u and q amplitudes show a very pronounced kink near / i  =  0 . 2  that indicating 

the parameters have non-zero values, which means that the plane of polarization is not parallel 

to the limb. These kinks are present in both the blue- and red-wing data sets. Calculations 

from the Stokes parameters show that the direction of vibration of linear polarization in the 

line has been rotated by 1 6 °  in the blue-wing and 1 0 °  in the red-wing. These surprising 

enhancements of the q and u profiles from the smooth CLV curves near yu =  0 . 2  may be 

explained in terms of the Hanle effect due to a magnetic canopy lying below the height 

where the line core is formed. This effect is a consequence of multiple scattering in the solar 

chromosphere and is discussed in a comprehensive manner in Section 5 . 3 . 2 .

The linear polarization of two prominences observed during August 1997 was recorded 

by the imaging polarimeter thus illustrating the versatility and suitability of the instrument
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for solar work. The degree of polarization is approximately 1% for the two prominences 

illustrated in Section 5.4.1. Unfortunately due to the low intensity levels the uncertainty of 

these polarization values is of the order 0.15%. The vectors are generally aligned tangential to 

the solar limb direction with some rotation of the vectors at certain locations. This rotation 

of the polarization vectors from tangency to the limb along with information concerning the 

degree of polarization allows the strength of the magnetic field to be determined. The degree 

of polarization was estimated to be 0.8% for the prominence recorded on the 10 August. The 

strength of the field, inferred from the 20°-25° angle of rotation, was between 45 and 60 

gauss. The direction of rotation of the polarization vector from tangency allows calculation 

of the direction of the line-of-sight component of the magnetic field.

The basic mechanism of the prominence line emission is the resonance scattering of the 

incident photospheric and chromospheric radiation. This irradiation of prominences is highly 

anisotropic and the anisotropy increases with increasing prominence height above the solar 

surface. Resonance scattering of anisotropic radiation then leads to linear polarization of 

the emitted photons. However, the presence of a weak magnetic field generally decreases the 

amount of linear polarization and rotates the polarization direction with respect to the solar 

limb.

6.2 Faraday Rotation Polarimetry

Conventional polarimetric methods are based upon a classical picture, where a well defined 

polarization state of an incident electromagnetic wave is actually rotated by the plasma. The 

rotation angle can then be determined through a measurement of the relative power levels of 

two detectors, each sensitive to one of two orthogonal linear polarization states, this is the 

amplitude method. Alternatively in single detector schemes or phase method, the orientation 

of the incident polarization state is modulated in time, resulting in an amplitude modulation 

of the detected signal. From the phase lag of this modulation with respect to a reference, the 

Faraday rotation angle can then be deduced. The polarimetric measurement is independent 

of the signal amplitude, provided the signal remains large enough to stay above the noise 

level.

In the course of the research presented in this thesis, the two polarimetric methods, phase 

and amplitude, were evaluated with commissioning onto the COMPASS-D tokamak in mind. 

Using typical COMPASS-D operating parameters and an analytical solution to the wave 

propagation equation, the expected Faraday rotation angles for each of the six chords is de­

termined. Since the maximum expected Faraday rotation angle is small, approximately 5°,



CHAPTER 6. CONCLUSION AND FUTURE WORK  171

it is imperative to minimise the noise in the proposed system. The advantages and disadvan­

tages of each of the two measurement systems are tabulated in Table 4.3. Clearly the spatial 

resolution of both measurement techniques are comparable, however the phase measurement 

technique has a significantly better temporal resolution. The phase measurement technique 

requires only one detector per channel which is a significant advantage in the spatially re­

strictive regime of a tokamak. In terms of phase resolution of the Faraday rotation angle 

both methods are comparable assuming the phase technique has a modulation of the signal 

amplitude of 50% (J =  35°) and a 6% signal-to-noise level. The cross-coupling problems 

inherent in the phase measurement technique produce an additional phase contribution to 

the interferometer which may thus be discarded in the final analysis. The cross-coupling 

problems associated with the amplitude measurement technique produce an elliptisation of 

the emerging polarization which may be misinterpreted as an additional Faraday rotation 

angle. This effect may be eliminated by the re-alignment of the polarizing grid splitters such 

that the incident polarization is parallel or perpendicular to the toroidal magnetic field. Re­

fraction effects may also cause deleterious effects which to first order may be neglected in the 

phase method.

In conclusion the phase measurement technique is clearly desirable in order to fulfill the 

basic aims of the physics programme on the COMPASS-D tokamak. This involves determin­

ing the temporal evolution of magnetohydrodynamic plasma phenomena and the effect on 

plasma stability of additional radio and neutral beam heating. The phase measurement has 

a high degree of temporal and spatial resolution, and a good phase accuracy which greatly 

simplifies the mathematical inversion required to yield the poloidal magnetic field and hence 

the current density.

6.3 Future Work

There are several aspects which remain to be discussed in this final section but the following 

is a summary of the main points of the research undertaken

• The development and construction of an imaging polarimeter to observe, for the first 

time with this technique, the linear polarization of surface solar phenomena in Ha.

• The polarization at the solar limb was found to be much higher in Ha than in the 

nearby continuum. No distinction in the general behaviour of the CLV could be found 

between the equatorial and polar regions. Off-band Ha polarization measurements were 

found to be reduced by at least 2cr with respect to on-band measurements.
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• Deviations from the smooth CLV curve were observed in the form of enhancements of 

polarization with an associated rotation in the E vector. These may be related to the 

Hanle effect and provide means of exploring magnetic fields involving small turbulent 

structures.

• A direct comparison of the two leading Faraday rotation techniques with a special 

emphasis on the COMPASS-D tokamak parameters.

• The construction of a test bench to study the feasibility of the amplitude method and 

the numerical simulation of each technique to determine the polarimetric precision.

It has been demonstrated here that, despite the problems encountered with image overlap in 

the imaging polarimeter, high polarimetric accuracy can be achieved by careful calibration. 

This is a very encouraging result and a great motivation for further improvements to the 

system.

Diagnostic methods based on the Hanle effect are at a formative stage. They require, as 

a first step, reliable calculations of the resonance polarization in the absence of a magnetic 

field. As resonance polarization appears only in lines formed under non-LTE conditions a 

good knowledge of the physical processes which play a role in the line formation is required. 

This has been done essentially for two resonance lines namely Ca I 4227Â and Sr 14607Â lines. 

To understand the scattering physics on the Sun better and to exploit it for various diagnostic 

purposes, it is necessary to systematically observe the CLV behaviour of many more lines in 

a similar, rather complete way. The CLV of the scattering polarization is a sensitive function 

of the height variations of temperature and density in the chromosphere and it thus provides 

novel constraints for atmospheric modelling. A better understanding of the physics of the 

Ha line would greatly aid the interpretation of the results obtained and more progress in this 

regard is necessary.

The Faraday rotation work was successful in determing the accuracies and illustrating the 

problems that required solutions. However due to budgetary and time constraints no progress 

was possible in commissioning the proposed method onto the COMPASS-D tokamak and 

unfortunately has now been abandoned.

Perhaps the most important improvement to this thesis may have been achieved by ob­

serving at a better site. The adverse weather conditions in Glasgow make it a challenging 

site to observe the Sun and on numerous occasions curtailed promising observing runs.



A ppendix A

Polarized Light

A .l D etection of Elliptically Polarized Light

In relation to determining the Faraday rotation angle with any arbitrary polarized beam 

the following analysis is instructive. The electric field vector of an electromagnetic wave of 

arbitrary position may be written as, (see Fowles, 1975 and Wolf, 1993)

^ e A  (  |Sx |e" ' ,i{kr-Lüt) (A.l)
\  \Ey\e'^' y

The real part of this vector describes an ellipse at a given point in space (see Figure A.l). 

It follows that

(A.2)

where

(A.3)tan ^
\E,

Using a beam splitters resolving both polarization components aligned along the x- and y- 

axes, the apparently measured polarization angle, given by the transmitted intensities of the 

respective beam splitter Ix and ly is equal to tan ^

tan ’F =  AI

In the frame of the ellipse {x',y') the electric field vector is given by

/

(A.4)

E = E'x (A.5)

where both E'^ and E ' are real. The ellipticity then can be defined as

- I (A.6)
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Figure A.l; Notation used in calculation of elliptically polarized light.

where Imin and Imax are the minimum and maximum intensities trasmitted by an ideal anal­

yser. The quantity of interest is the polarization orientation T, which is the actual inclination 

of the ellipse in the system (x,y). The apparent polarization angle tan T expressed in terms 

of T will now provide information concerning the error introduced into the measurement due 

to the use of elliptical polarization rather than linear polarization.

+ tan^ T
tan^ T = (A.7)

1 -f tan^ T

In Figure A.2 this function is shown for different e. For purely linear polarization (e =  0) 

T =  T, whereas for completely circular polarization (e =  1) tan T becomes independent of 

T.

Linear polarization is transformed into elliptical polarizaton by applying a relative phase 

changer, which may be written as a matrix operation as,

V 0

0 \ (

\

\E,

/

\Ex\e 

\Ey\e^^y
"  y

(A.8)

It can be shown that the resultant ellipticity obtained by applying several phase changers of 

the same orientation, is simply the sum of the individual ellipticities, provided e 1 and

Sy  — Sx
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