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Abstract

The q31 region of human chromosome 7 is frequently deleted in a broad 

spectrum of human cancers, and is believed to harbour a multi-tissue tumour 

suppressor gene. I found loss of heterozygosity at one or more microsatellite markers 

from 7q31 in 36% of breast carcinomas. The smallest common deleted region was 

between two CA.GT microsatellite markers, D7S522 and 17TA-5/17B-RE3 in the 

CFTR locus. Loss of 7q31 markers in two non-tumourigenic, human fibroblast cell 

lines, SUSM-1 and KMST-6 (both immortality complementation group D), has been 

associated with the emergence of an immortal phenotype. This phenotype can be 

suppressed by re-introduction of an intact copy of chromosome 7. We conjectured that 

the multi-tissue tumour suppressor and immortality complementation group D gene, 

which we named SEND, are one and the same.

A physical and functional cloning strategy was adopted to isolate SEND. Intact 

copies of a hygromycin-resistance tagged human chromosome 7 were introduced into 

SUSM-1 cells by microcell-mediated monochromosome transfer. This induced 

replicative senescence in a significant proportion of the hygromycin-resistant colonies 

recovered. Occasional immortal segregants also arose, most likely as a result of 

inactivating SEND on the introduced chromosome. The sites of inactivation were 

mapped by analysing polymorphic microsatellite markers that differed between donor 

and recipient chromosomes. This also entailed my generating novel polymorphic 

markers. Using this strategy, I defined three ‘hot spots’ of allele loss on chromosome 7 

in immortal segregants. One, an approximately 500Kbp interval between 724CA and 

786CA, two novel CA.GT dinucleotide repeats, was nested within the smallest 

common region of allele loss determined for breast cancers. The putative tumour 

suppressor gene/SEND may reside in this interval.

I assembled a YAC, cosmid, and PAC clone contig for the smallest region of 

allele loss in breast tumours and mapped a number of genes to it by a combination of 

approaches, including exon-trapping, sequencing, and EST-content mapping. Certain 

candidate genes were further characterised. This analysis included cloning of full 

length cDNAs, determining the genomic (exon-intron) structure, determining 

expression in tumour cell lines by northern and western blot analysis, and looking for 

mutations by SSCP analysis. Perhaps the most interesting candidate, CAVEOLIN-1,

XVIII



although not mutated in human cancers, was found to be transcriptionally silenced in a 

number of tumour-derived cell lines by methylation of 5'-sequences.
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INTRODUCTION
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1. Introduction

1.1 Oncogenes and tumour suppressor genes

Cancer arises through the progressive expansion of clones of cells which have 

acquired multiple mutations in two distinct classes of nuclear genes: proto-oncogenes, 

which are positive regulators of cell growth, survival, invasion, and metastasis, and 

tumour suppressor genes (TSGs), which are negative regulators. The majority of 

mutations are somatically acquired, while some can be inherited. This dogma is the 

foundation of molecular oncology, embodying over two hundred years of scientific 

enquiry into this disease. Like all good dogma, it unifies a great many disparate 

observations, and provides a theoretical framework in which to fit new ones, but while it 

is correct in the broad brush strokes, the fine detail contains many caveats. For instance, 

epigenetic effects—events resulting in altered gene expression without mutation of 

DNA sequence—also contribute to tumourigenesis. Alternatively, the findings that 

under certain conditions oncoproteins, including E1A (White et a l , 1991), E2F1 (Qin et 

a l, 1994; Shan and Lee, 1994; Wu and Levine, 1994), JUN (Bossy-Wetzel, 1997), and 

MYC (Evan et ah, 1992), can potently induce apoptosis; that the tumour suppressor pRb 

can provide protection against apoptosis (Morgenbesser, 1994); and more recently that 

oncogenic ras can induce senescent-like cell growth arrest (Serrano et a l , 1996), appear 

paradoxical given the known roles of these genes in cellular proliferation, and strongly 

imply that the function of oncogenes and TSGs is context-driven. In addition, gene 

products whose purpose is to monitor and repair DNA damage are also frequently 

inactivated during tumourigenesis, but do not directly confer a selective growth, 

survival, or invasion advantage. Nonetheless, the existence of two classes of regulators 

of cell behaviour whose functions are diametrically opposed is a tacit requirement for 

tissue homeostasis; cancer reflects a breakdown in this fundamental symmetry.

An obvious distinction can be drawn between the types of mutations that occur 

in proto-oncogenes and those found in TSGs. Point mutations in proto-oncogenes are 

frequently missense mutations that activate the gene product, or lead to its gaining new 

functions. In contrast, mutations in TSGs are nonsense mutations, missense mutations, 

or splice-site mutations that lead either to a truncated gene product and loss of function, 

or loss of function alone, or give rise to a protein with a dominant-negative effect. This 

distinction extends to chromosomal aberrations found in cancer cells—deletions,



translocations, amplifications, aneusomy, etc.—which result in activation of oncogenes 

and inactivation of TSGs. The contrasting mutational profiles of these opposed 

molecules account for the dominant transforming ability of oncogenes (oncogenic 

alleles transform cells even in the presence of wild-type alleles) and the recessiveness at 

the cellular level of TSGs (both alleles of a TSG generally require to be inactivated for 

tumourigenesis). The precise locations and types of mutations found in genes associated 

with cancer often gives the first indication of the important functional domains of their 

encoded products. This is especially true when mutations are clustered at ‘hot spots’, as 

is the case, for instance, ioiHRASl and TP53 (McKay et al., 1986; Nigro et al., 1989).

1.1.1 The identification of oncogenes

The revolution in our understanding of the molecular events underlying 

tumourigenesis depended upon the identification and cloning of the genes crucial to 

these processes. Historically, this began with the identification of oncogenes. Over 

twenty distinct oncogenes were identified through the analysis of the genomes of acutely 

transforming retroviruses (Table 1.1 A), starting with the ground-breaking discovery that 

w-src, the transforming gene of the Rous sarcoma virus, is homologous to the cellular 

proto-oncogene c-src (Stehelin et a l, 1976). Indeed, it transpires that nearly all 

retroviral oncogenes are transduced versions of cellular proto-oncogenes (the human 

immunodeficiency virus, HIV, and the human T-cell leukaemia virus, HTLV, provide 

two exceptions to this statement, since virally derived sequences from both can 

transform subsets of human cells). During the process of transduction the expression 

and activity of these genes becomes altered. In the first instance, viral oncogenes are 

regulated by strong promoters and enhancers in the viral long terminal repeat (LTR), 

which often results in high level transcription, whereas transcription of the 

corresponding proto-oncogene is physiologically regulated by its normal promoter 

sequences. Second, viral oncogenes lack introns and are usually truncated having lost 

one or both of the 5" and 3' untranslated regions. This can affect both the stability and 

translational efficiency of the viral mRNA when compared to the cellular mRNA. Third, 

viral oncoproteins are often expressed as fusion products with viral gag sequences at 

their amino termini. In many cases carboxy-terminal amino acids have also been deleted 

from viral oncoproteins. Truncated viral oncoproteins are potentially different in 

function from their proto-oncoprotein precursors. These structural and functional
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differences are further heightened by the multiple point mutations observed in viral 

oncoproteins relative to their proto-oncoprotein homologues. The changes observed in 

viral oncogenes often affect important catalytic or regulatory domains of the protein, and 

are sometimes mirrored by naturally occurring mutations found in spontaneously arising 

tumours.

In addition to acutely transforming retroviruses, which induce tumours after a 

short latency period (days to weeks), chronic transforming retroviruses, including avian 

leukosis virus (ALV), mouse mammary tumour virus (MMTV), and leukaemia viruses 

of mice, rats, cats, and primates (MuLV, FeLV, and GaLV), have been identified which 

induce tumours only after a long latency period (months to years). Viruses of this type 

have normal virion genomes and possess no additional sequences. Work in the ’70s by 

Temin and Baltimore had established that the life-cycle of retroviruses entails a reverse 

transcription step in which the virion RNA genome is transcribed into a provirion DNA 

genome by an RNA-dependent DNA polymerase—reverse transcriptase (Baltimore, 

1970; Temin and Mizutani, 1970); proviral DNA then integrates into the host genome 

(Varmus et al., 1972).

It was proposed that proviral integration in or near specific host cell target genes 

might result in neoplastic transformation. In the case of oncogenes, proviral insertion 

could activate the gene by subjugating it to the viral LTR, and through production of 

fusion products that contain viral sequences. Hayward et a l (1981) provided the first 

evidence to substantiate this mechanism of insertional mutagenesis. They showed that 

the myc proto-oncogene was activated in over 80% of ALV-induced chicken bursal 

lymphomas, and that proviral DNAs, in particular functional LTRs, were integrated 

upstream of the lymphoma myc genes. Insertional mutagenesis has been used 

prospectively to identify novel proto-oncogenes that are reproducible targets for proviral 

insertion (Nusse et a l, 1982). Table 1.1B lists proto-oncogenes that were first identified 

following their activation by insertional mutagenesis. Clearly proviral insertion in a 

proto-oncogene precedes its transduction and the formation of an acutely transforming 

retrovirus.

If viruses could induce tumours by misappropriating proto-oncogenes, then it 

seemed a reasonable proposition that spontaneously occurring or carcinogen-induced 

mutations in the same set of genes, or similarly acting ones, might account for 

sporadically occurring tumours. Evidence for this hypothesis was forthcoming from 

gene transfer experiments which indicated that about 20% of individual tumours possess
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DNA sequences with transforming ability (Shi et al., 1981). Moreover, oncogenes 

isolated in this fashion like H-RAS, K-RAS, ROS, and RAF were already known from 

their homology with various retroviral oncogenes, while other novel oncogenes often 

belonged to the src and ras superfamilies. It only remained to demonstrate the existence 

of activating mutations in these cellular oncogenes in order to substantiate the theory; 

again the proof was close at hand (Tabin et al., 1982; Taparowsky et al., 1982; Santos et 

al., 1982). These findings confirmed that spontaneously arising neoplasms, including 

those occurring in man, are also due to mutations in proto-oncogenes, and suggested that 

these genes constitute a relatively small set. Occasionally oncogenes identified through 

the gene transfer technique possessed no homology with other known genes. Novel 

oncogenes identified this way can be divided into two groups: those activated in the 

tumours from which they were derived, and those activated by re-arrangements during 

the process of gene transfer itself (Table 1.1C).

Oncogenes have also been identified through their association with 

chromosomal abnormalities (Table 1.1D). Activation of oncogenes by translocation is 

akin to insertional mutagenesis in that oncogene sequences are juxtaposed to unrelated 

sequences which were previously separated. Again, this can result in inappropriate 

expression of the oncogene through the effect of nearby enhancer sequences or through 

the production of fusion products. This mode of oncogene activation is characteristic of 

cancers of the haematopoietic system, and in particular of cell types in which 

illegitimate end-joining occurs during the production of variability in antigen receptors, 

i.e. B- and T-lymphocytes. Translocations between the c-MYC gene, which encodes a 

transcription factor of the basic helix-loop-helix/ leucine zipper family, on the q arm of 

human chromosome 8 and either chromosome 14, chromosome 2, or chromosome 22 

are frequently observed in Burkitt’s lymphoma, a B lymphocyte neoplasm (Adams et 

al., 1986). The sites of translocations on chromosomes 14, 2, and 22 correspond to the 

immunoglobulin heavy-chain, k  light-chain, and X light-chain genes respectively, which 

ordinarily are expected to be actively expressed in B cells. Translocation results in 

constitutive expression of c-MYC, which is sufficient to activate MYC as an oncogene.

On the other hand, the 9;22 t(q34;qll) translocation giving rise to the 

Philadelphia (Ph1) chromosome in over 90% of cases of chronic myelogenous 

leukaemia (Nowell and Hungerford, 1960), creates a fusion gene in which the 5' half of 

the breakpoint cluster region (BCR) gene on chromosome 22 is joined upstream of the c- 

ABL proto-oncogene on chromosome 9 (De Klein et al., 1982; Groffen et al., 1986).
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Transcription of this fusion gene results in a chimeric BCR-ABL fusion protein (Gale 

and Canaani, 1984), in which the tyrosine kinase activity of c-ABL is enhanced and its 

substrate specificity altered (Lugo et a l, 1990). A similar translocation activates the 

ABL proto-oncogene in some acute lymphocytic leukaemias, except that the breakpoint 

falls further upstream in the BCR gene (Chan et a l, 1987; Kuzrock et al., 1987).

Amplifications of genomic DNA in the form of double minute chromosomes and 

homogeneously staining regions are frequent anomalies observed in the karyotypes of 

cells cultured from tumours. Amplification of the copy number of a proto-oncogene 

would be expected to increase its expression and possibly activate it as an oncogene. 

Insertional mutagenesis and translocations have already revealed how over-expression 

of wild-type c-MYC is sufficient to activate it. Similarly, c-MYC was the first oncogene 

to be shown to be activated following its amplification in human neoplasms (Collins 

and Groudine, 1982; Dalla-Favera et a l, 1982). New members of the MYC gene family, 

L- and N-MYC, have also been found to be amplified in human tumours (Schwab et a l, 

1983; Nau et a l, 1985; Wong etal., 1986).

Finally, the identification of oncogenes by these classic means facilitated the 

identification of further oncogenes through homology at the sequence level. Both cross 

hybridisation with DNA probes derived from existing oncogenes and amplification by 

the polymerase chain reaction (PCR) using degenerate oligonucleotide primers have 

been used to isolate homologous gene family members from genomic and cDNA 

libraries (Table 1.1E).

A) Oncogenes first identified in acute transforming retroviruses

ABL, AKT, CBL, CRK, ERB-A, ERB-B, ETS, FESIFPS, FGR, FMS, FOS, JUN, 
KIT, MIL/RAF, MOS, MYB, MYC, H-RAS, K-RAS, REL, ROS, SEA, SIS, SKI, SRC, 
YES

B) Oncogenes activated by retroviral integration

AHI1, BMI1, DSI1, EVI1, FIM1, FIS1, FLU, FLVI1, GIN1, INTI! WNT1, INT2, 
INT3, INT4/ WNT3, LCK, MIS1, MIS2, MIS3, MIS4, MLVI2, MLVI3, PIM1, SPI, 
TIAM1, TPL2, VIN1

C) Oncogenes identified by gene transfer

activated in the tumours from which they were derived:
N-RAS, NEU, MET, TRK
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activated during gene transfer:
DBL, FGF5, HST, LBC, MAS, B-RAF, RET, TRE, VAV

D) Oncogenes identified by their association with chromosomal aberrations

translocation:
ALL1IMLL/HRX, BCL1/PRAD1/CCND1, BCL2, BCL3, BCR, TALI, TAL2, TAN1 

amplification:
L-MYC, N-MYC, GLI1, ERB-B2,AIB1/SCR1

E) Oncogenes identified by cross hybridisation or by PCR with degenerate 
oligonucleotide primers

ELK1, ELK2, EPH, ERB-B3, ERB-B4, ERG, FOSE, FRA1, FRA2, HCK, JUNB, 
JUND, LYN,MAX

Table 1.1. The identification of novel oncogenes. (See Hesketh, 1995 for the majority of 

these entries)

1.1.2 The function of oncogenes

Both proto-oncogenes and TSGs exist as evolutionarily conserved homologues 

in a number of different eukaryotes from yeast, worms, flies, frogs, and mice through to 

man. Consequently, classical and molecular genetic studies have employed organisms 

such as S. cerevisiae, S. pombe, C. elegans, D. melanogaster, X. Laevis, M. musculus, in 

addition to H. sapiens to study the functions of these genes in vivo. Findings from these 

model organisms have cross-fertilised with other lines of cancer research to establish 

critical roles for proto-oncogenes and TSGs in many aspects of cell behaviour viz. 

proliferation, differentiation, apoptosis, replicative senescence, motility, and invasion. A 

distillation of this research suggests that the majority of proto-oncogenes are elements in 

signal transduction pathways (Table 1.2). Many of these pathways initiate at the cell 

surface via specific receptor-ligand interactions and are relayed through the cytoplasm 

to the nucleus, where transcription factors elicit a response by modulating gene 

expression. Cumulative mutations in proto-oncogenes result in the deregulation of such 

pathways and consequently to cell growth, survival, differentiation, etc. becoming 

autonomous. This transformation in cell behaviour is immensely deleterious in 

multicellular organisms, where there is an absolute requirement for these processes to be 

co-ordinately regulated both during embryonal development and for maintenance of the 

adult body.
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A) Ligands
FGF5, INT2, HST1, SHH, SIS/PDGFB, WNT1, WNT3

B) Receptor tyrosine kinases
EPH, ERB-B/EGFR, FMS, KIT, MET, NEU/HER2/ERB-B-2, RET, ROS, SEA, 
TRK

C) Non-catalytic receptors
INT3/NOTCH4, TAN1/NOTCH1

D) Non-receptor tyrosine kinases
membrane-associated:
SRC, FGR, FYN, HCK, LCK, LYN, TKL, YES

cytoplasmic:
ABL, FPS/FES

E) Lipid kinases
PI3K

F) Cytoplasmic regulators of protein activity
SH2/SH3 containing adaptors:
CRK, NCK, SHC

guanine nucleotide exchange factors:
DBL, ECT2, LBC, TIAM1, VAV

other:
CBL

G) Membrane-associated G proteins
HRAS, KRAS2, NRAS, GSP, GIP2

H) Cytoplasmic protein serine/threonine kinases
AKT, BCR, MEK1/2, MOS, PIM1, RAF/MIL, TPL2

I) DNA-binding nuclear proteins (transcription factors)
ALL1/MLL, ERB-A/THRA, ETS1, ETS2, FOS, JUN, MYC, MYB, REL, TALI, 
SKI

J) Transcription co-activator (acetyl transferase)
AIB1/SCR1

Table 1.2. Classification of oncoproteins according to their biochemical role in signal 

transduction.
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The mitogenic signal transduction pathway (Figure 1.1) serves to goad cells out 

of a non-dividing GO state into a dividing state, and stimulates progression through G1 

phase of the cell cycle (Pardee, 1989; Sherr, 1994). Progression through the cell division 

cycle is catalysed by a number of holoenzymes comprising cyclins (the regulatory 

subunits) and cyclin-dependent kinases (CDKs, the catalytic subunits), which are 

sequentially assembled and activated (Figure 1.2). Specifically, mitogens induce the 

expression of D-type cyclins and then promote the formation and activation of 

cyclin/CDK complexes which regulate the transition between G1 and S phases of the 

cell cycle (Sherr, 1993). Passage through a restriction point in late G1 of the cell cycle, 

beyond which progression is independent of mitogenic stimulation, commits a cell to 

complete at least one round of DNA replication and division. The genes which encode 

cyclin D1 and CDK4, namely CCND1 and CDK4, two positive regulators of the G1 

checkpoint, have also been found oncogenically activated in human tumours (Motokura 

et a l, 1991; Hunter and Pines, 1994; Hall and Peters, 1996). Constitutive expression 

and activation of these two gene products would be expected to substitute for mitogenic 

stimulation in terms of their ability to force cell cycle progression. One possible 

consequence of oncogenic activation, therefore, is the uncoupling of cell growth from 

regulation by extrinsic factors either through constitutive stimulation of the mitogenic 

signalling pathway or through direct stimulation of cell cycle progression. As a result, 

cancer cells tend to remain in cycle, and because cell cycle exit promotes maturation and 

terminal differentiation, these processes are subverted as well.

Proliferation is only one term in the equation that determines the rate of cell 

growth. An equally important factor is cell death. First established by Kerr et a l (1972), 

apoptosis (genetically programmed self-destruction) is an essential physiological 

process for removing cells during embryonic development, tissue involution, 

differentiation of thymocytes, and in the homeostasis of self-renewing tissues. 

Resistance to apoptosis is a major attribute of the malignant phenotype. Obversely, 

apoptosis possibly serves as an anti-tumour adaptation in removing cells which have 

sustained genetic lesions. Members of the Bel-2 family of genes have been identified as 

regulators of the apoptotic process. The oncogene Bel-2, which is the prototype for this 

family, was first identified at the breakpoint of translocations commonly occurring in 

follicular lymphoma (Bakhshi et a l, 1985; Tsujimoto et a l, 1985; Cleary and Sklar, 

1985), and was shown to extend cell survival following growth factor withdrawal (Vaux 

etal., 1988; Nunez et a l, 1990) and to inhibit apoptosis (White, 1996).
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Figure 1.1. Schematic representation of the mitogenic signal transduction pathway. 

Signalling initiates through specific receptor/ligand interactions at the cell surface. 

Ligand binding induces dimerization and autophosphorylation of the receptor tyrosine 

kinase (RTK). The Grb2 adaptor molecule, which is localised in the cytoplasm, is bound 

through its SH3 domains to the carboxyl terminus of Sos. Upon ligand stimulation, 

Grb2 interacts through its SH2 domain with the phosphorylated tyrosine residues of the 

activated receptor. Sos then activates Ras by catalysing GDP/GTP exchange. 

Alternatively, She binds to the phosphotyrosine residues of the activated receptor and 

becomes phosphorylated. The phosphotyrosine moiety of She can then function as an 

alternative binding site for the SH2 domain of the Grb2 molecule. The GTP-bound Ras 

finally activates the archetypal mitogen activated protein kinase (MAPK) cascade. c-Raf 

phsophorylates MAPK/ERK kinase (MEK) on serine residues. MEK, a dual specificity 

kinase, then phosphorylates ERKs 1 and 2 on threonine and tyrosine residues. ERKs 

phosphorylate and activate other downstream kinases and transcription factors, 

modulating protein synthesis and gene expression. The connection between 

heterotrimeric G-protein coupled receptors (GPCR) and the mitogen signalling pathway 

is still tentative, with inputs being made at various levels. The activation of Ras and 

ERK2 is probably mediated by the (3y complex, possibly through an intermediary 

tyrosine kinase, PYK2. White text against a black background indicates that these 

molecules have been found mutated in cancers. Arrows indicate positive interactions. A 

dashed arrow indicates an indirect activation. Lines ending in bars represent inhibitory 

interactions.
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Figure 1.2. Regulation of the cell division cycle by cyclin/CDK complexes. Entry and 

progression through the cell division cycle are catalysed by complexes of cyclin 

dependent kinases (CDKs) and cyclins. For orderly cell division, CDKs have to be 

activated and inactivated at specific time points during the cell cycle. The regulation is 

best understood for CDKl(cdc2)/cyclin B. This CDK/cyclin complex is activated by 

phosphorylation by cyclin activating kinase (CAK), which is itself a complex of CDK7 

and cyclin H, and also by dephosphorylation by the cdc25 phosphatase, which opposes 

the action of Weel and Mikl. Activated cdc2/cyclin B then phosphorylates a number of 

substrates required for progression of M phase of the cell cycle. On completion of 

metaphase, cyclin B is destroyed by the ubiquitin-proteasome pathway, which abolishes 

cdc2 kinase activity. Entry into the cell cycle and transit through the restriction point in 

late G1 is catalysed by a different set of CDK/cyclin complexes. Mammalian cyclins D 

and E interact with CDK4 and 6, and CDK2 respectively during the Gl/S phase 

transition, and are responsible for phosphorylating Rb-like proteins, resulting in release 

and activation of E2F transcription factors, which are required for entry into S phase. A 

number of molecules falling into two families: the WAF1/CIP/KIP family and the INK4 

family, have been identified which can inhibit cell cycle progression. These molecules 

bind and inhibit CDK/cyclin complexes. A number of the proteins shown in this scheme 

have been found to be mutated in human cancer and are described elsewhere in the text. 

Small arrows indicate stimulation. Bars with a T-shaped head indicate inhibition. 

Double-headed arrows indicate associations between protein complexes. Short bars with 

a filled circle indicate phosphate groups.
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The Bcl-2 family of proteins comprises two categories: inhibitors of apoptosis 

like Bcl-2, and accelerators of apoptosis like the Bcl-2 binding protein Bax. Physical 

interactions between family members are mediated through Bcl-2 homology regions 

BH1, BH2, and BH3. Induction of or resistance to apoptosis could then be determined 

by the ratio of agonists to antagonists (e.g. Bax versus Bcl-2) in a cell (Oltavi and 

Korsmeyer, 1994). The crystal structure of Bc1-Xl, an apoptosis inhibitor, has been 

solved and reveals structural similarities with bacterial toxins such as diptheria toxin 

and the colicins, particularly in their membrane insertion domains (Muchmore et al., 

1996). By functional analogy, the Bcl-2 family of proteins may form membrane pores 

and function by regulating processes dependent on pH, voltage, or ionic strength. 

However, whether any of the members of this family can function as ion channels 

remains to be demonstrated.

Oncogenes have also been implicated in the regulation of the actin cytoskeleton 

and of cell adhesion during cell movement, aspects of cell behaviour which are altered 

in cancer cells. Work in the past six years has converged on three Rho-related GTPases, 

Rho, Rac, and Cdc42, as being of central importance in both these processes (Ridley et 

a l, 1992; Ridley and Hall, 1992; Kozma et al., 1995; Nobes and Hall, 1995). In 

particular, Rac and Cdc42 control actin polymerisation at the leading edges of migrating 

or spreading cells, leading to the formation of lamellipodia, membrane ruffles, and 

filopodia. Rho on the other hand regulates the formation of stress fibres, contractile 

cables of bundled actin filaments and actomyosin which traverse the cell and terminate 

in the plasma membrane at focal adhesion complexes, whose assembly is also 

dependent upon the activity of Rho-related GTPases. Focal adhesions are multi protein 

assemblies which link the cytoskeleton to the extracellular matrix via cell surface 

integrin adhesion receptors. Besides their role in attaching cells to the extracellular 

substrate, focal adhesions also act as signalling complexes. Ligand occupation of 

integrins can activate the ERK 1/2 MAP kinase cascade (Guan et al., 1991, Komberg et 

a l, 1991), and is an obligatory requirement for cell cycle progression (Guadagno et a l,

1993). Growth factor stimulation of benign cells in the absence of integrin-dependent 

signalling leads to apoptosis, or ancekis (Ruoslahti and Reed, 1994). Tumour cells often 

display anchorage independent growth and survival, suggesting that transformation by 

oncogenes such as src or ras can stimulate integrin signalling in the absence of matrix, 

again obviating any requirement for extrinsic growth control.
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Rho-related GTPases themselves have not so far been found to be mutated in 

human cancers, although ectopic expression of rac can transform cells (Qiu et al., 

1995), or confer an invasive phenotype (Habets et a l, 1994). Like all members of the 

RAS superfamily of small GTPases, these molecules are molecular switches cycling 

between an inactive GDP-bound conformation and an active GTP-bound form. 

Exchange of GDP is facilitated by guanine nucleotide exchange factors (GEFs), a large 

number of which have now been identified for Rho-related GTPases, including Dbl, 

Ect2, Lbc, Tiaml, and Vav. Significantly, these molecules have been implicated in 

tumourigenesis (Eva and Aaronson, 1985; Miki et a l, 1993; Habets et a l, 1994, Toksoz 

and Williams, 1994; Katzav et a l, 1989).

1.2 TSGs and hereditary Cancer

The products of TSGs are envisaged to directly oppose the action of 

oncoproteins, that is to constrain cellular proliferation and survival either by inhibiting 

mitogenic signalling, or by impeding cell cycle progression, or by promoting terminal 

differentiation and maturation arrest, or by inducing apoptosis. Enforcing a limit on the 

replicative life-span of a cell is also a potential mechanism of tumour suppression, and a 

role for three TSGs, namely RBI, TP53, and CDKN2A/pl6INK4A, in conferring 

replicative senescence has emerged. (This topic is dealt with in detail below.) In 

addition, genes have been identified which suppress the invasive and metastatic 

potential of cancer cells, and which are inactivated during tumourigenesis; these too 

qualify as TSGs.

In comparison to the plethora of oncogenes that have now been identified, only a 

handful of bona fide TSGs have been cloned, although the rate of discovery is 

increasing exponentially. TSGs are relative latecomers in the field of molecular 

oncology; many of the genes mentioned below were discovered only in the past five 

years. This is perhaps ironic since the concept of tumour suppression grew out of early 

experiments involving cell fusions between normal somatic cells and tumour cells 

(Harris et a l, 1969; Stanbridge, 1976). Almost invariably the normal x  tumour (or less 

malignant x more malignant) hybrids exhibited a normal phenotype demonstrating that 

malignancy was a recessive trait, a finding that was more consistent with the idea that 

tumour cells had lost critical functions rather than gained dominant transforming ones (a 

result anticipated more than fifty years before by the renowned cytogeneticist, Thomas
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Boveri [Boveri, 1914]). These normal x tumour hybrids also provided evidence for a 

genetic basis to tumour suppression: hybrid cells frequently shed chromosomes, 

apparently at random, but the segregation of certain chromosomes was consistently 

associated with re-emergence of the malignant phenotype (Jonasson et al., 1977; 

Klinger, 1980; Evans et a l, 1982). This allowed early mapping of chromosomes that 

could suppress the malignant phenotype, chromosomes which harboured presumptive 

TSGs.

It was not through mapping chromosomal losses in revertant hybrid tumours, 

however, that the first representative of this class of genes was identified, but rather 

through the study of hereditary cancer (the actual mechanics of TSG cloning are dealt 

with in more detail in section 1.4). Many forms of cancer have a higher incidence in 

relatives of cancer patients than in the general population, suggestive of an inherited 

component in their aetiology. Some familial cancers even show Mendelian inheritance, 

the commonest mode of transmission being autosomal dominant. These cancer 

predisposition syndromes are believed to be due to segregation of highly penetrant 

mutated alleles of susceptibility genes (Mulligan et al., 1993; Hofstra et al., 1994; Zuo 

et al., 1996; Schmidt et al., 1997), a number of which have now been identified (Table

1.3). The majority of cancer susceptibility genes so far identified appear to be TSGs.

Individual cancer predisposition syndromes although rare may together account 

for 10% of the total incidence of cancer. However, less penetrant cancer susceptibility 

alleles may account for a much higher proportion of the total incidence, and are 

probably responsible for the majority of small cancer clusterings within families. These 

alleles, whose effect is necessarily much harder to demonstrate by linkage analysis, 

would each contribute quantitatively to cancer susceptibility. One such possible 

candidate is the ataxia telangiectasia gene,ATM. Individuals homozygous for a mutation 

in ATM  develop cancer at a rate 100 times that of the general population and have an 

increased risk of breast cancer. It has also been proposed that females heterozygous for 

ATM  have a modest increased risk of breast cancer. In one study by Athma et al. (1996), 

heterozygosity at this gene was calculated to confer a 3.8 relative risk of developing 

breast cancer.

Another candidate for non-Mendelian (multigenic) cancer susceptibility is a 

familiar player in oncogenesis, HRAS1, but in a new guise. Krontiris et al. (1985) first 

demonstrated the presence of a rare RFLP associated with the HRAS1 locus in the germ- 

line DNA of cancer patients. In this case, the variation in length of the restriction
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Gene Disease/Syndrome8 Cancer Type Chromosomal
location

APC Familial adenomatous poly­
posis and Gardiner syndrome

Colon 5q21

AR Male breast Xqll-12
ATM Ataxia telangiectasia Multiple Uq21
BLM Bloom’s syndrome Multiple 15q26
BRCA1 Breast and ovary 17q21
BRCA2 Breast 13ql3
CDK4 Melanoma 12ql3
CDKN2A/MTS2 Melanoma 9p21
DPC4 JPS Colon 18q21.1
E-CADHERIN Stomach 16q22
ER Breast 6q23
IGFII Beckwith-Wiedemann 

syndrome
Multiple llp l5

hMLHl HNPCC Colon 3p21
hMSH2 HNPCC Colon 2pl6
hPMSl HNPCC Colon 2q31
hPMS2 HNPCC Colon 7p22
p57 ™ Beckwith-Wiedemann

syndrome
Multiple l lp l5

LKB1 PJS Multiple
hamartomata

19pl3

MEN1 MEN type 1 Multiple endocrine l lq l3
MET HPRC Renal 7q31
NF1 Neurofibromatosis type 1/ 

von Recklinghausen’s 
disease

Neural crest 17qll

NF2 Neurofibromatosis type 2 Schwannoma 22ql2
PTCH Gorlin’s syndrome/ BCNS Skin 9q22
PTEN/MMAC1 BZS, CD, JPS, LDD Multiple

hamartomata
10q23

RBI Retinoblastoma 13ql4
RET MEN type 2A and 2B Multiple endocrine lO qll
TSC1 Tuberous sclerosis Multiple 9q34
TSC2 Tuberous sclerosis Multiple 16pl3
TP53 Li-Fraumeni syndrome Multiple 17pl3
VHL von Hippel-Lindau disease Renal 3p25
WRN Werner’s syndrome Multiple 8 p ll.1-21.1
WT1 Wilms’ tumour/Denys-Drash 

sy ndrome/WAGR
Renal l lp l3

XPA-G Xeroderma pigmentosum Skin
Table 1.3. Genes involved in hereditary predisposition to cancer. a BCNS, basal cell 

nevus syndrome. BZS, Bannayan-Zonana syndrome; CD, Cowden disease; HNPCC, 

hereditary non-polyposis colon cancer; HPRC, hereditary papillary renal carcinoma; 

JPS, juvenile polyposis syndrome; LDD, Lhermitte-Duclos disease; MEN, multiple 

endocrine neoplasia; PJS, Peutz-Jeghers syndrome; WAGR, Wilms’ tumour, aniridia, 

genito-urinary malformation and mental retardation.
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fragments is due to the presence of a VNTR (variable number of tandem repeats) 

minisatellite in the promoter region of HRAS1. Carriers of rare, larger repeat number 

alleles of this minisatellite have been shown to have an approximately 2-fold 

increasedrisk of developing cancer of the breast, colorectum, and urinary bladder 

(Krontiris et a l, 1993), and the HRAS1 VNTR locus has also been shown to modify the 

penetrance of other cancer predisposition genes like BRCA1 (Phelan et al. 1996). Clues 

to the mechanism underlying this phenomenon are beginning to emerge. Transcription 

factors of the rel/NF-KB family have been shown to bind the minisatellite region of the 

HRAS1 promoter (Trepicchio and Krontiris, 1992), and large repeat number alleles 

appear to be more active in a reporter gene assay (Green and Krontiris, 1993). In one 

possible scenario the level of expression of RAS protein could be subtly modified by the 

presence of rare HRAS1 VNTR alleles. Increased expression of RAS could cause cells 

to proliferate, increasing the target population available for further mutational events 

leading to malignant transformation. Low penetrance cancer susceptibility has also been 

attributed to polymorphisms in drug metabolising enzymes—cytochrome P450 

enzymes, glutathione S-transferases, and N-acetyl transferases (reviewed in Smith et a l,

1995).

1.2.1 RBI and hereditary retinoblastoma—the ‘two hit’ hypothesis

The prototypical familial cancer syndrome is retinoblastoma, a rare ocular 

tumour that affects 1 in 20,000 children. It was through studying the inherited form of 

this cancer that the whole notion of TSGs acting as recessive oncogenes at the cellular 

level became ensconced, and that the RBI gene—the first acknowledged TSG—was 

cloned (Friend et a l, 1986; Lee et a l, 1987). Germ-line mutations in this gene account 

for about 40% of retinoblastoma cases; the majority of carriers develop bilateral lesions, 

whereas only a single eye is affected in children without the germ-line mutation. Most 

carriers have no previous family history, a fact that is explained by new mutations 

occurring at a rate of 8 x 10'6 per locus per generation. However, approximately 50% of 

all the offspring of newly mutant cases of either sex will develop the tumour, i.e. 

susceptibility to retinoblastoma is transmitted as an autosomal dominant trait, with a 

penetrance near 100% (Knudson, 1978).

It was Alfred Knudson who hypothesised that RBI, and by extrapolation other 

familial cancer susceptibility genes, acted recessively at the cellular level (Knudson,
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1971). He reasoned that since a mutated RBI allele would be present in every cell of a 

carrier, yet only a single cell became initiated to give rise to a retinoblastoma, that the 

rate limiting step in the familial form of the disease was inactivation of the remaining 

wild type allele by somatic mutation. In a wild type homozygote, two somatic mutations 

in RBI would be required to give rise to a retinoblastoma (Figure 1.3), an unlikely set of 

events that would account for the absence of bilateral lesions in sporadic cases and the 

comparatively later age of onset (typically, familial cancers occur in affected individuals 

at an earlier age of onset than is common for the sporadic form of the disease).

Knudson’s now famous ‘two-hit’ model has become engraved in the annals of 

cancer genetics. The model applies not only to retinoblastoma but also fits with the 

epidemiological data for other familial cancers like neuroblastoma, pheochromocytoma 

and Wilms’ tumour, and it requires simply to be enlarged upon in order to encompass 

cancers which require the accumulation of several more mutations before expression of 

the fully malignant phenotype. Colorectal carcinoma occurs in both familial and 

sporadic forms, but the epidemiological data suggest that accumulation of 

approximately six independent mutational events is required (Armitage and Doll, 1954). 

The earlier age of onset for the familial disease implies that one or two fewer mutations 

are necessary in patients who carry an inherited mutation (Ashley, 1969). Fearon and 

Vogelstein (1990) have demonstrated that an early, probably initial, requirement for the 

development of colon cancer in both familial and sporadic cases is inactivation of both 

copies of the APC gene; germ-line mutations in APC have been shown to predispose 

carriers to colon cancer (Groden et al., 1991; Kinzler et al., 1991a; Nishisho et a l, 

1991). Despite the requirement for further somatic mutations to occur stochastically 

before the emergence of frank colon carcinoma, inheritance of a single inactivated copy 

of a TSG is again sufficient to confer an increased risk of developing the disease, by 

initiating a chain of tumourigenic events.

The ‘two-hit’ hypothesis was based purely upon statistical modelling; 

experimental evidence in its support was furnished by cytogenetic and molecular 

studies. These experiments paved the way to finally isolating the RBI gene, and also 

established a mould for future forays into TSG cloning. About 5-10% of individuals 

who inherit retinoblastoma possess a constitutional deletion of part or all of 

chromosome 13ql4 (Yunis and Ramsay, 1978). These findings originally mapped the 

RBI locus; they also provided visible evidence of Knudson’s hypothesised first hit. The 

analysis of syntenic (linked) polymorphic genetic markers provided evidence for second
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Figure 1.3. The two-hit model of cancer susceptibility. The figure shows cells 

containing a homologous pair of chromosomes in which a marker gene (RB) is either 

wild-type (black box) or a loss-of-function mutant (white box). The homozygous wild- 

type and heterozygous cells have the same normal phenotype, demonstrating the 

recessive nature of the mutant allele. Tumourigenesis will only ensue if both copies of 

the gene are mutated. In an individual who inherits a mutant copy from one parent, only 

a single somatic mutation is needed for tumourigenesis. In individuals carrying two 

wild-type alleles, both copies must sustain independent somatic mutations.
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hits occurring within tumours, both validating the hypothesis and permitting 

demonstration of at least some of the mechanisms predicted for second events 

(Knudson, 1978), namely: focal mutation, deletion, chromosomal nondisjunction, 

somatic (mitotic) recombination, and gene conversion (we can also add gene silencing 

by methylation of promoter regions).

The technique employed by Cavenee et a l (1983) exploited the existence of 

DNA sequence polymorphisms which can be detected by restriction digestion— 

restriction fragment length polymorphisms (RFLPs)—to follow the fate of individual 

chromosome segments in tumours. Loss of heterozygosity (LOH) of a given RFLP, or 

indeed any polymorphism, within a clone of tumour cells is taken to provide evidence 

for genetic inactivation of a TSG allele at or near that locus; the other allele is presumed 

to be inactivated by the first hit. This approach can be used to define an interval that is 

consistently deleted within tumours, and in which the targeted TSG should lie. In the 

case of RBI, probes for certain of these polymorphisms failed to hybridise at all to some 

tumour DNA samples indicating the presence of homozygous deletions within these 

samples. In these instances, both copies of the RBI gene had been inactivated through 

deletion, with some deletions appearing to be constrained within the gene itself. DNA 

probes derived from the smallest deleted region detected a 4.5 Kbp transcript on a 

Northern blot that was absent from retinoblastoma tumours; this finding together with 

the observed deletions clinched the identification of the gene by Friend et a l (1986). 

The normal cDNA of RBI was then shown to cause reversion of the tumourigenic 

properties of cultivated tumour cells that were mutant for RBI (Huang et a l, 1988), 

truly substantiating its position as the first recognised TSG.

Not surprisingly, the RBI gene itself has been the subject of intense investigation 

since its discovery. Mutations within the gene occur at high frequency in a variety of 

tumour types (Harbour et a l, 1988; Lee et a l, 1988; Toguchida et a l, 1988; Chen et a l, 

1990); the gene product, a 105 kDa nuclear phosphoprotein termed pRb, is ubiquitously 

distributed throughout the body. Together these observations suggest that pRb has an 

important role in the maintenance of a broad range of tissues. From biochemical studies 

(reviewed in Weinberg, 1995), pRb appears to function as a regulator of the cell cycle, 

with the capacity to block the Gl/S transition, and it is through this mechanism that pRb 

is supposed to mediate tumour suppression. In GO and G1 phases of the cell cycle, pRb 

is found in a hypophosphorylated form, but becomes increasingly hyperphosphorlyated 

from mid/late Gl. This phosphorylation of pRb, which inactivates the protein, is
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mediated by complexes of cyclins and cyclin-dependent kinases (CDKs), cyclin 

D/CDK4-6 and cyclin E/CDK2 complexes being most strongly implicated. pRb and D- 

type cyclins have been shown to physically interact (Ewen et a l, 1993; Dowdy et a l, 

1993; Kato et a l, 1993), disruption of this interaction enhances, rather than eliminates, 

the ability of cyclin D1 to antagonise the growth suppressive effects of pRb in cultured 

cells (Dowdy et a l, 1993), suggesting that one physiological role of pRb is to limit the 

amount of cyclin D available to form complexes with CDKs.

A second mechanism by which pRb might impede cell cycle progression and 

mediate tumour suppression is through its direct interaction with the transcription factor 

E2F. E2F binding sites are present in the promoters of a number of genes required for 

entry into S phase, including thymidine kinase, dihydrofolate reductase, c-MYC, and 

cyclins E and A (Weinberg, 1996). Over-expression of E2F has been shown to induce 

expression of cyclin E and A (DeGregori et a l , 1995), and to induce S phase entry and 

transformation (Johnson et a l, 1993). Therefore, the simplest model by which pRb 

blocks entry into S phase is by binding to and inhibiting the transcriptional activity of 

E2F. Phosphorylation of pRb by cyclin/CDK complexes is known to interrupt this 

interaction (Ewen et al., 1993; Dowdy et a l, 1993), which would leave E2F free to 

induce expression of Gl/S-regulatory genes. However, a number of observations may 

require that this model be revised. A chimeric GAL4-pRb fusion protein is capable of 

repressing transcription of promoters with GAL4 binding sites (Weintraub et a l, 1995; 

Bremner et a l, 1995), implying that pRb mediates transcriptional repression directly. 

E2F may be recruiting pRb to E2F sites in order to silence transcription. Rather than 

antagonising E2F, the two proteins may synergize to repress target gene expression and 

inhibit cell cycle progression. In support of this, if E2F sites are mutated in a reporter 

gene construct such that the sites no longer bind E2F, then pRb mediated repression is 

relieved (Weintraub et a l, 1992). Further, it has been shown in vivo by DNA- 

footprinting studies that contrary to expectation the E2F site in the promoter of the Gl/S 

regulated oncoprotein b-myb is occupied in G l, but becomes vacant in S phase when 

transcription is turned on (Zwicker et a l, 1996). Perhaps the most convincing evidence 

in support of the view that E2F and pRb co-operate to inhibit cell growth is the finding 

that ‘knockout’ mice nullizygous for E2F-1 develop a wide range of tumours between 8- 

18 months, consistent with E2F being a growth inhibitory gene and TSG (Field et a l, 

1996; Yamasaki et a l, 1996).
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RB-knockout mice (Lee et a l, 1992; Jacks et al., 1992; Clark et al., 1992), on 

the other hand, revealed a previously unknown cellular function for pRb that is 

seemingly at odds with its role as a tumour suppressor. Rb'1' mice die at the 15th day of 

gestation largely because of defects in hepatic erythropoiesis. This supports the growth 

suppression function of pRb, but in addition widespread apoptosis is observed in certain 

neuronal layers in the brain and in the developing lens, suggesting that pRb functions to 

protect cells against apoptosis (Morgenbesser, 1994). pRb has been identified as a 

substrate for caspases (cysteinyl-aspartate specific proteases) during apoptosis, and is 

degraded following TNF- or CD95(Fas)-induced apoptosis (Janicke et al., 1996; Chen 

et al., 1997). p53 inactivation rescues Rb'1' cells from apoptosis (Weinberg, 1995), 

perhaps explaining why mice defective for both TSGs are especially cancer prone 

(Williams et a l, 1994). This more recently described effect of pRb may again involve 

its interaction with E2F, since overproduction of E2F-1 is capable of inducing p53- 

dependent apoptosis (Weinberg, 1995), and an E2F-1 mutant defective in binding pRb 

but active in transactivation is a more potent activator of apoptosis (Shan et al., 1996).

1.2.2 p53 and Li-Fraumeni syndrome

The p53 gene (formally designated TP53) was initially believed to be an 

oncogene since it could apparently co-operate in transforming cells when co-transfected 

with ras (Eliyahu et al., 1984). However, this transforming ability of p53 results from 

mutations (Hinds et al., 1989) which allow the protein product to behave in a dominant 

negative fashion by forming inactive oligomers which include both mutant and wild- 

type proteins (Herskowitz, 1987; Green, 1989). Transfection of the wild-type gene 

suppresses the malignant phenotype (Finlay et a l, 1989), so the status of the p53 gene 

had to change from oncogene to TSG. Additionally, 17pl3 the chromosomal region 

which harbours the p53 gene (Isobe et a l, 1986) is frequently deleted in a wide range of 

human tumours, while remaining (non-deleted) p53 alleles often contain inactivating 

point mutations (Baker et a l, 1989; Nigro et al., 1989), a hallmark of TSGs. Mutations 

inp53 remain the most common mutation across human tumour types (Hollstein et al.,

1996). The role of p53 as a TSG has been confirmed by other in vivo findings. Germ- 

line mutations in the gene confer an autosomal dominant predisposition to cancer of the 

breast, brain, bone, soft tissues, haemopoietic system, and adrenal cortex, termed the Li- 

Fraumeni syndrome (Malkin et al., 1990; Srivastava et al., 1990). Importantly, loss of

21



the remaining wild-type p53 allele could be demonstrated by LOH in DNA samples 

from tumours arising in carriers. In addition, mice nullizygous for p53 develop a diverse 

array of tumours following birth (Donehower et a l, 1992).

p53 has been implicated in a diverse range of cellular functions and responses, 

including both activation and repression of transcription, regulation of protein 

translation, inhibition of DNA and RNA helicase activity, DNA repair, cell cycle arrest, 

and apoptosis (reviewed in Gottlieb and Oren, 1996, and Ko and Prives, 1996). It is 

perhaps surprising to note then that development is apparently normal in p537' mice; as 

with mice nullizygous for RBI, the vast majority of cell divisions are completed 

correctly during development, implying that neither p53 nor pRb are essential 

requirements for cell cycle progression. This is at first difficult to reconcile with the 

obvious importance of these two genes in suppressing unrestrained cellular 

proliferation. The likely resolution of this paradox rests on the observation that both 

molecules are inactivated during normal cell growth, pRb through phosphorylation and 

p53 through carboxy-terminal mediated repression (Bayle et a l, 1995), and possibly 

also cytoplasmic sequestration (Moll et al., 1996), and are probably only pressed into 

service under exceptional circumstances. Such circumstances have been identified for 

p53 which can mediate growth arrest or apoptosis in response to DNA damage (Kastan 

et a l, 1991; Lowe et a l, 1993), ribonucleotide depletion (Linke et a l, 1996), hypoxia 

(Graeber et a l, 1996), and viral oncoproteins (Debbas and White, 1993; Lowe and 

Ruley, 1993), collectively termed ‘stress’. These factors stimulate p53 activity while 

modulating p53 protein levels at both the transcriptional (Sun et al., 1995), translational 

(Fu et a l, 1996; Mosner et a l, 1995), and post-translational levels (Kastan et a l, 1991; 

Tishler et a l, 1993). Most recently p300/CBP-mediated acetylation of the carboxy- 

terminus of p53 has been shown to activate its latent sequence-specific DNA-binding 

activity, both in vitro and in vivo (Gu and Roeder, 1997). The choice of the appropriate 

cellular response—apoptosis or growth arrest—is influenced by a number of variables 

including cell type, availability of survival or growth factors, the presence of other 

oncogenes, and the extent of DNA damage.

A number of biochemical properties have been attributed to p53 that allow it to 

mediate its diverse cellular functions. Thus p53 can itself bind to the ends of single­

stranded DNA (Bakalkin et al., 1994) and to sites with sequence mismatches (Lee et a l,

1995). This in turn activates the sequence-specific DNA binding function of p53 and its 

transactivating ability (Jayaraman and Prives, 1995). By binding to specific sites within
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their promoters, p53 induces the transcription of various genes including p21WAF1/CIP1, 

GADD45, mdm2, bax, thrombospondin 1, IGF-BP3, and E1-2A. The products of these 

genes actuate individual aspects of p53-dependent cellular responses. For instance, 

p2i-WAFi/ciPi promotes cell cycle arrest in G1 by inhibiting cyclin/cdk complexes, while 

bax and IGF-BP3 stimulate apoptosis. Mutations in p53 can selectively alter its ability 

to transactivate various of these target genes, implying that the particular gene induced 

by p53 is determined by its interaction with other transcription factors (Ludwig et al., 

1996; Friedlander et al., 1996).

p53 has been dubbed the ‘Guardian of the genome’ because of its central role in 

maintaining genomic integrity. Cellular stress factors cause genetic lesions which in the 

absence of p53-mediated growth arrest and DNA repair or p53-mediated apoptosis more 

readily lead to neoplastic transformation (Kemp et a l, 1994). The ability of p53 to bind 

damaged DNA might allow it to monitor and signal the presence of such damage 

directly. Through its interactions with other proteins, p53 could then determine the way 

in which the damage is to be repaired, and direct the cell to growth-arrest or self- 

destruct. p53 has been demonstrated to interact with and inhibit RAD51 protein 

(Sturzbecher et al., 1996) which is required for the homologous recombination repair 

pathway, while loss of p53 reduces the rate and efficiency of nucleotide excision repair 

(NER) (Ford and Hanawalt, 1995; Wang et al., 1995). Moreover, p53 possesses an 

intrinsic 3'-+5' exonuclease activity that is possibly important in DNA recombination, 

replication, and repair (Mummenbrauer et al., 1996). It can also be inferred that p53 

provides an interface between cell cycle checkpoint molecules and down-stream effector 

mechanisms. For instance, it has been noted that chromosomal defects such as gene or 

centrosome amplification, which arise through repeated rounds of unimpeded 

endoreduplication, occur at much higher rates in the absence of p53 (Yin et a l, 1992; 

Livingstone et a l, 1992; Cross et al., 1995; Fukusawa et al., 1996), suggesting that an 

important checkpoint which licenses DNA replication to once per cell division cycle has 

been abrogated.

1.2.3 Wilms’ tumour and WT1

Wilms’ tumour (WT) or nephroblastoma is the commonest solid paediatric 

tumour, affecting 1 in 10,000 children usually during the first five years of life. The 

disease occurs in both sporadic and inherited forms. Inherited cases occur either in
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isolation or as one manifestation of three distinct growth abnormality syndromes: 

WAGR, Denys-Drash syndrome (DDS), or Beckwith-Wiedemann syndrome (BWS). 

The WT1 gene on l lp l3  is implicated in both WAGR and DDS (Bonetta et al., 1990; 

Call et al., 1990; Gessler et al., 1990). Whereas WAGR is associated with constitutional 

deletion of the l lp l3  region that includes WT1, DDS is associated with point mutations 

of WT1. A second WT locus on chromosome llp l5 .5  has been identified based upon 

deletions in WTs that involve this region but not llp l3 , as well as through linkage with 

BWS (Koufos et al., 1989; Reeve et al., 1989). In addition, allelic loss studies suggest 

the presence of a third WT suppressor gene locus on 16q (Maw et a l, 1992), while more 

recently, linkage studies have implicated the involvement of a gene on 17ql2-21 in 

simple forms of familial WT (Rahman et al., 1996), but this may not be the site of a 

TSG (Rahman et al., 1997).

WT1 encodes a nuclear protein with four zinc fingers, most closely homologous 

to those in the early growth response (EGR) and KROX families of transcription factors. 

Indeed, WT1 binds to the same DNA sequence as EGR1 (Rauscher et al., 1990) 

repressing gene expression (Madden et al., 1991), and therefore appears itself to be a 

transcription factor. Moreover, WT1 binds p53 modulating some of its functions. Thus 

the interaction, which stabilises p53, inhibits its apoptotic function but allows growth 

arrest (Maheswaran et a l, 1995). Alternatively spliced variants of WT1 appear to co- 

localise with the spliceosomal complex, suggesting that besides its potential role as a 

transcription factor, WT1 may also be involved with splicing (Larsson et al., 1995).

WT1 is a classical TSG in that both copies are functionally inactivated in 

malignancy. However, it is unusual in that heterozygous constitutional mutations are 

associated with developmental abnormalities, and as with p53 a dysfunctional WT1 

protein, as is sometimes found in DDS patients, can produce more severe symptoms 

than complete loss of expression of the gene product, as in WAGR patients. This 

suggests that mutant WT1 protein in DDS patients may act in a dominant negative 

fashion sequestering other cellular factors, possibly even p53, into inactive complexes, 

or may gain functions, perhaps leading to inappropriate gene expression or splicing.

Two candidate genes from llp l5  have been suggested to give rise to WT in the 

context of BWS: that encoding insulin-like growth factor 2 (IGFII), and the other 

encoding the cyclin/cdk inhibitor p57Kn>2. Ordinarily, both genes undergo genomic 

imprinting, so that only the paternal allele of IGFII is expressed (DeChiara et al., 1991), 

while only the maternal allele of the p5'fap2 gene is expressed (Hatada et a l, 1995;
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Matsuoka et a l , 1996). Paternal trisomy and paternal duplication of the l lp l5  region 

observed in BWS patients (Ping et al., 1989) and the relaxation of genomic imprinting 

of the IGFII gene in BWS (Weksberg et a l, 1993) and in WTs that do not show LOH at 

l lp l5  (Ogawa et al., 1993) support the role for a paternally-derived allele in the 

aetiology of BWS and associated tumours, with IGFII being the strongest candidate. On 

the other hand, paternal uniparental disomy of chromosome 11 (Henry et al., 1991) and 

translocations involving maternal l lp l5  also found in certain BWS patients and the 

specific loss of l lp l5  maternal alleles observed in WTs and other childhood tumours 

associated with BWS (Hastie, 1994) all suggest that loss of expression of a maternally- 

derived allele is entailed, consistent with a role for p5 '/JP2 in this disease. This link is 

further strengthened by the finding of a maternally inherited mutation in p S f0**2 

resulting in a null allele in an individual with BWS (Hatada and Mukai, 1996), and by a 

recent study showing that mice nullizygous for the gene or mice who have

inherited a null allele from their mother have growth abnormalities strongly reminiscent 

of those found in BWS patients (Zhang et al., 1997). However, due to the post-natal 

lethality resulting from this mutation in mice, it was not possible to assess the cancer
TCTP9predisposition in these animals. Mechanistically, IGF-2 and p57 could be two halves 

of the same growth balancing act, increased expression of the former and decreased 

expression of the latter having the same effect, and therefore both genes could 

contribute to WT development.

1.2.4 VHL

Germ-line mutations in VHL give rise to von Hippel-Lindau disease, a multiple 

tumour predisposition syndrome (Latif et al., 1993). The protein encoded by this gene 

interacts with elongin proteins B and C (Duan et a l, 1995), which are part of the 

transcription elongation factor elongin (SIII). VHL may inhibit the expression of genes 

such as MYC family members or c-FOS that are subject to transcription attenuation 

control (Krumm and Groudine, 1996), by sequestering elongins B and C. Alternatively, 

a complex of VHL and elongins B and C may itself function as a transcription factor, 

whose activity or specificity is affected by mutations in the VHL protein.

The development of well-vascularized tumours, such as renal cell carcinoma and 

pheochromocytoma, is a characteristic of von Hippel-Lindau disease. Recently it was 

shown that ectopic expression of wild-type VHL in human renal carcinoma cells lines
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lacking functional VHL suppressed deregulated expression of vascular endothelial 

growth factor VEGF mRNA (Siemeister et a l , 1996). VEGF is an endothelial specific 

mitogen that induces angiogenesis and vascular permeability, and its role in tumour 

angiogenesis appears to be pivotal. Ectopic expression of VHL has no effect on the 

growth characteristics of these cancer cells, but it does dramatically reduce their 

tumourigenicity in nude mice (Iliopoulos et a l , 1995). Taken together these findings 

suggest that VHL is of central importance in repressing the expression of target genes 

required for neovascularization; the deregulated expression of such genes and 

consequent angiogenesis which results from mutational inactivation of VHL promotes 

tumour development.

1.2.5 NF1, NF2, and TSC2

Germ-line mutations in NF1 give rise to benign and malignant tumours of neural 

crest derived cells, and in NF2 to schwanommas (Cawthon et a l , 1990; Viskochil et a l , 

1990; Wallace e ta l , 1990; Rouleau et a l, 1993; Troffater et al., 1993). Neurofibromin, 

the NF1 gene product, has a region of considerable homology with the catalytic domain 

of pl20GAP, which when expressed in Saccharomyces cerevisiae acts as a p21ras-specific 

GTPase activating protein (GAP) (Xu et a l , 1990; Ballester et a l, 1990). GAPs play 

two roles in the cell: they negatively regulate the levels of active RAS-GTP and thus 

inhibit RAS dependent signalling; they also perform other discrete effector functions, 

although no such functions have yet been ascribed to neurofibromin. Tuberin, the 

product of TSC2, a TSG inactivated in tuberous sclerosis, also appears to be a GAP (The 

European chromosome 16 tuberous sclerosis consortium, 1993).

The protein encoded by NF2, merlin or schwannomin, is a member of the band

4.1 superfamily, and shares considerable homology in its amino-terminal half with ERM 

(ezrin/radixin/moesin) proteins. These proteins are actin filament binding proteins 

associated with the plasma membrane through their interaction with the cytoplasmic 

portions of transmembrane adhesion molecules like CD44 and membrane 

phosphatidylinositides. Thus ERM proteins cross-link the actin cytoskeleton with the 

plasma membrane. Schwannomin also localises at the cell membrane, preferentially in 

ruffles (Gonzales-Agosti et a l, 1996), but whether it binds actin is yet to be 

demonstrated and the proteins with which it specifically associates (Takeshima et a l,

1994) remain uncharacterised. Since ablation of ezrin has been shown to inhibit cell
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movement (Lamb et al., 1997), it is possible that the NF2 product too may play a role in 

cell motility; certainly reduction in the level of expression of NF2 by antisense 

oligonucleotides has been shown to impair cell adhesion (Huynh and Pulst, 1996).

1.2.6 APC , DCC, DPC4, and colon cancer

The cloning of APC was preceded by findings of LOH at 5q21, where the gene 

resides, in the majority of colon carcinomas and even adenomas (Vogelstein et al., 

1989), suggesting that mutations in the APC gene are acquired early on in tumour 

progression perhaps even being required for tumour initiation. This appears to be the 

case in both sporadic forms of the disease and in familial adenomatous polyposis (FAP), 

an inherited predisposition to colon carcinoma characterised by the occurrence from a 

young age of numerous benign adenomatous polyps of the colon, a small fraction of 

which progress to carcinoma. Germ-line mutations in APC were identified in 

individuals with this condition, and since the gene was constitutionally deleted in a 

fraction of cases and LOH could be observed in tumours, it was established as a TSG. 

Another gene, MCC for mutated in colon cancer, which maps 150 Kbp proximal to APC 

had previously been identified as being mutated in sporadic colon carcinoma (Kinzler et 

al., 1991), however germ-line mutations have not been identified for this gene 

suggesting it is not responsible for FAP.

APC encodes a 300 kDa cytoplasmic protein which has homology to myosins 

and keratins in regions that are predicted to form coiled-coil structures. The APC protein 

can form homo-oligomers via interactions of these amino terminal sequences. In 

addition, APC interacts through other peptide motifs with at least six other proteins: (3- 

catenin, y-catenin (plakoglobin), tubulin, EB1, hDLG a homologue of the Drosophila 

Discs Large tumour suppressor protein, and glycogen synthase kinase-3(3 (GSK-3|3), a 

mammalian homologue of the Drosophila Zeste-White-3 kinase or Shaggy (Polakis,

1997). p-Catenin originally discovered as a cadherin binding protein has recently been 

shown to function as a transcriptional activator when complexed with members of the 

Tcf/Lef family of DNA binding proteins (Molenaar et al., 1996; Behrens et al., 1996); it 

is also known to play an essential role in Wingless-Wnt signalling (Gumbiner, 1995). In 

the absence of Wnt signals, APC simultaneously interacts with GSK-3|3 and with (3- 

Catenin. Phosphorylation of APC by GSK-3(3 appears to increase its interaction with (3- 

catenin, which in turn destabilises (3-catenin perhaps through phosphorylation by GSK-
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3(3. Wnt signalling appears to antagonise GSK-3p activity, resulting in p-catenin 

stabilisation. Stabilised p-catenin exists primarily as cytoplasmic monomers that are free 

to form complexes with Tcf/Lef factors. Significantly, transcriptional activation by 

complexes of p-catenin and Tcf/Lef is constitutively present in cancer cell lines where 

APC is defective (Korinek et al., 1997). Mutations in p-catenin, which have also been 

observed in cancer cells, that may remove its ability to be phosphorylated by GSK-3p 

and simultaneously stabilise it, also achieve the same effect as inactivating APC (Morin 

et al., 1997; Rubinfeld et al., 1997). Genes whose expression are regulated by P- 

catenin/Tcf complexes have yet to be identified in mammals, but include engrailed and 

Ubx in Drosophila and siamois in Xenopus, which are clearly involved in the 

development of these organisms. It is possible, therefore, that APC is involved in 

determining cell fate within the colonic epithelium, but whether this is correct awaits the 

identification of the target genes whose expression it helps to regulate. APC may also 

exert an influence on malignancy through its role in adherens junctions, where again it is 

associated with p- and also y-catenin. The functional significance of its interactions with 

the other proteins mentioned above is less well understood and requires further analysis.

The genetic events that accompany the progression of colon cancer have been 

established (Fearon et al., 1990), making it perhaps the best characterised model of 

tumour progression known. Inactivation of APC is the earliest detectable event; later 

hits include activation of KRAS, inactivation of a TSG on 18q, and loss of p53 (Figure

1.4). DCC is a candidate for the TSG on 18q that is inactivated in late stage colon 

tumours (Fearon et al., 1990). This gene encodes a protein which has homology with 

other members of the Ig superfamily of adhesion proteins. The definitive evidence that 

DCC is in fact a TSG has not been forthcoming. As its name implies (DCC stands for 

deleted in colon cancer) the gene has been shown to be completely or partially deleted in 

a fraction of colon cancers, and its expression is either lost or reduced in 70% of colon 

tumours, but due to the large size of DCC it has been difficult to identify somatic point 

mutations in tumours that inactivate its encoded protein. Further, there is no evidence 

for germ-line mutations in DCC that predispose to colon cancer, and perhaps most 

significantly mice in which this gene has been inactivated through homologous 

recombination fail to support a tumour suppressor function for Dec (Fazeli et al., 1997). 

What is known about the function of DCC has largely been inferred from studying 

mutations in homologues of the gene in Drosophila (Frazzled) and C. elegans (UNC- 

40). DCC like proteins (DCCPs) are most strongly expressed on the surface of
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commissural axons in the central nervous system where they bind netrin (Kolodziej et 

a l, 1996; Chan et a l, 1996; Keinu-Masu et a l, 1997), a laminin like chemoattractant 

secreted by midline cells in C.elegans, Drosophila and vertebrates. Moreover, loss of 

either DCCP or netrin expression disrupts axon guidance towards the midline in 

C.elegans and Drosophila. Both netrin and DCCPs are expressed in the epithelium of 

the gut in many organisms. In this context the molecules may maintain tissue integrity; 

however, no gut abnormalities were reported for either Frazzled or UNC-40 mutants.

DPC4, which maps to chromosome 18q21.1 proximal to DCC, is also a 

candidate for the TSG inactivated in advanced colon cancers. Evidence from 

recombinant mice which are compound heterozygotes for null mutants of ape and dpc4 

directly support a role for inactivation of DPC4 in the malignant progression of 

colorectal tumours. Such mice show an increased frequency of conversion of benign 

intestinal polyps to adenocarcinoma compared to simple apc+l' mice (Takaku et a l,

1998). Although mice heterozygous for an inactivating mutation of dpc4 alone did not 

show increased susceptibility to developing intestinal polyps or malignancies, germ-line 

loss of function mutations of DPC4 in man are believed to be responsible for a subset of 

familial juvenile polyposis (Howe et ah, 1998). This autosomal dominant disease is 

characterised by a predisposition to hamartomatous polyps and gastrointestinal cancer.

DPC4 was first identified as a candidate TSG deleted in a large proportion of 

pancreatic carcinomas, and subsequently shown to possess frequent loss of function 

mutations in tumour DNA samples (Hahn et al., 1996a). The gene encodes SMAD4 a 

member of a family of homologous proteins that include Mothers against 

decapentaplegic (Mad) in Drosophila, the products of the Sma genes in C. elegans, and 

their homologues in vertebrates (SMADs). These factors are believed to transduce 

signals from members of the transforming growth factor-(3 (TGF-p) superfamily of 

growth factors, that includes TGF-pi-HI, activin, bone morphogenetic proteins (BMPs), 

and decapentaplegic, which regulate cell growth and differentiation, and tissue 

morphogenesis in many organisms (Kingsley, 1994). TGF-p-like molecules signal 

through heterodimeric receptor complexes of type I and type II serine/threonine kinase 

receptors. Heteromers of SMAD proteins which become activated upon receptor ligation 

directly translocate to the nucleus where they activate transcription. DPC4/SMAD4 is an 

essential component in the signal transduction pathway of all TGF-P-like peptides 

(Zhang et a l, 1997), including TGF-pi which is a potent anti-proliferative agent for
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many epithelial cells. Blockade of TGF-p 1 induced growth arrest by mutations which 

inactivate DPC4 is compatible with its role as a tumour suppressor.

1.2.7 Hereditary non-polyposis colon cancer and DNA mismatch repair

The observation that simple sequence repeats (microsatellites) are erroneously 

replicated in hereditary non-polyposis colon cancer (HNPCC) and also in a subset of 

sporadic tumours (Ionov et a l, 1993; Thibodeau et al., 1993; Aaltonen et a l, 1993) first 

established a link between the mismatch repair (MMR) pathway and cancer, and 

provides the most direct support for the ‘Mutator Hypothesis’ of Carcinogenesis, which 

posits that defects in maintaining genomic integrity result in the multiple mutations 

required for malignancy. Linkage in HNPCC families established that one locus 

responsible for the condition maps to chromosome 2pl6. A positional candidate 

approach unmasked the perpetrator as hMSH2 (Fishel et a l, 1993), a human homologue 

of the E. coli mutS gene (part of the DNA adenine methylase instructed MutHLS 

pathway of DNA repair) responsible for the initial recognition and binding of 

mismatched nucleotides in DNA that result from polymerase misincorporation errors.

E.coli which are mutant for mutS have an approximately 1000-fold enhanced 

mutation rate (Siegel and Bryson, 1967). In addition, they are resistant to the cytotoxic 

effects of DNA alkylating agents, and are deficient in transcription-coupled repair 

(Karran and Marinus, 1982; Mellon and Champe, 1996). These features are shared by 

eukaryote cells with defective MMR components (Mellon et a l, 1996). The hMSH3 and 

-6 genes encode two further human mutS homologues, while hMLHl, hPMSl, and 

hPMS2 encode mutL homologues. HNPCC and microsatellite instability observed in 

familial and sporadic tumours have also been attributed to mutations in these genes (Liu 

et a l, 1995; Liu et a l, 1996). Mutations in HMSH2 and hMLHl account for over 90% of 

HNPCC families (Moslein et a l, 1996). Human cell lines which contain mutations in 

hMSH2 and hMLHl are resistant to the cytotoxic effect of the DNA alkylating agent cis- 

diaminedichloroplatinum (II) (cisplatin), a commonly used anti-cancer therapeutic. 

Moreover, cisplatin treatment of an ovarian cancer cell line resulted in selection of 

resistant variants (Aebi et a l, 1996) which had mutated an MMR gene, demonstrating 

that the acquisition of defects in MMR promote clonal evolution of cancer cells and that 

such abrogation is of great clinical consequence.
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1.2.8 Familial melanoma and CDKN2A/MTS1/MLM

Two genes have been identified which when inherited as mutated copies confer 

an autosomal dominant susceptibility to developing malignant melanoma: the CDKN2A 

gene (also known as MTS1 or MLM) on 9p21, which encodes the p i6 ^ ^  inhibitor of 

CDK4 and CDK6 (Hussussian et a l, 1994; Kamb et a l, 1994; Sherr and Roberts,

1995), and more rarely the CDK4 gene itself on chromosome 12ql3 (Zuo et a l, 1996). 

Mutations in CDKN2A both in familial melanoma and other sporadic tumours result in 

loss of function or the complete absence of the gene product and therefore place 

CDKN2A within the TSG category, whereas the one susceptibility mutation so far 

identified in CDK4 was a missense mutation which negated the protein product’s ability 

to interact with p i6 ^ ^ .  As mentioned above, complexes of cyclins and CDKs 

facilitate cell cycle progression; p i6 ^ ^  inhibits complexes which phosphorylate pRb 

and promote S phase entry. It now appears that the restriction point in G1 phase of the 

cell cycle can be abrogated by mutational modification of any one of the factors 

involved in its maintenance; correspondingly, mutations in them are mutually exclusive. 

Thus amplification or activation of cyclins or CDKs, or loss of function of pRB, 

including inactivation by viral oncoproteins, or p lb11̂ 4̂  achieve the same end result, 

and modification in at least one of these components occurs in the majority of cancers 

(Sherr, 1996).

The first mutations to be characterised in CDKN2A were deletions and point 

mutations, largely identified from the analysis of tumour cell line material. Controversy 

raged over whether this gene was also inactivated in tumours in vivo or merely 

represented an artefact of selection during in vitro culture. Subsequently, loss of 

expression has been established to occur frequently in late stage tumours and most 

commonly as a result of gene silencing by promoter methylation (Merlo et a l, 1995; 

Herman e ta l, 1995; Reed e ta l,  1996).

1.2.9 PATCHED and basal cell nevus syndrome

Basal cell nevus syndrome (BCNS), also known as Gorlin’s syndrome, is an 

autosomal dominant disease characterised by developmental defects and a 

predisposition to basal cell carcinomas (BCCs), medulloblastomas, and meningiomas. 

The defective gene in BCNS which maps to chromosome 9q is the human homologue of
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patched (ptc) (Johnson et al., 1996; Hahn et al., 1996b), first identified in Drosophila as 

a regulator of embryonic pattern formation. PTC is also inactivated in numerous 

sporadic BCCs (Gailani et al., 1996).

ptc encodes a transmembrane receptor protein that represses transcription of 

genes encoding TGF-(J and Wnt class signalling proteins and Ptc itself (Ingham, 1995; 

Dean, 1996; Perrimon, 1996; Hammerschmidt et al., 1997). Ptc is a receptor for 

hedgehog (Hh), or sonic hedgehog (Shh) in vertebrates (Chen et al., 1996; Stone et al.,

1996); receptor ligation inactivates Ptc relieving transcriptional repression. Rarely, SHH 

itself is somatically mutated in tumour types associated with BCNS (Oro et al., 1997). 

Normally, Shh/Ptc signalling plays a role in determining cell fate in embryonal germ 

layers. Ptc and Shh expression in the mouse embryo is related to hair follicle formation 

(Bitgood and McMahon, 1995; Iseki et a l, 1996); BCC are thought to arise from basal 

keratinocytes in hair follicles. PTC joins APC and WT1 in a class of TSGs which are 

entailed in controlling early epithelial proliferation and differentiation. In all three cases, 

haploinsufficiency results in developmental abnormalities, while loss of the remaining 

wild-type copy contributes to malignancy. It is plausible that escaping a commitment to 

terminally differentiate through inactivation of such genes allows an initiated cell to 

avoid the maturation arrest or apoptosis that would otherwise ensue, and hence 

constitutes transformation.

1.2.10 Breast cancer susceptibility and the BRCA genes

The cloning of BRCA1 followed shortly by BRCA2 (Miki et al., 1994; Wooster 

et al., 1995; Tavtigian et a l, 1996) created almost equal excitement among both the 

public and the research community. This excitement was based largely upon the not 

unprecedented expectation that these genes would be mutated in sporadic breast and 

ovarian cancers, as well as conferring an inherited susceptibility to these cancers, and 

hence increase our scientific understanding of two major fatal diseases of women. 

Germ-line mutations in these two genes account about equally for 90% of high 

penetrance susceptibility to breast cancer, BRCA1 also confers a sizeable relative risk of 

developing ovarian cancer, while BRCA2 accounts for a proportion of male familial 

breast cancer (Couch et al., 1996; Thorlacius et a l, 1996). Germ-line mutations in the 

oestrogen and androgen receptor genes, in the ataxia telangiectasia gene, in TP53, and in 

the recently identified Cowden disease gene (PTEN/MMAC1), partially account for the
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remainder of high penetrance susceptibility to breast cancer (Zuppan et al., 1991; 

Wooster et al., 1992; Liaw et al., 1997). In addition, linkage and LOH studies support 

the existence of a third breast cancer susceptibility locus, BRCA3, on the short arm of 

chromosome 8 (Kerangueven, 1995a; Seitz et al., 1997). Certainly, the identification of 

the BRCA genes will allow individuals within affected kindreds to know whether they 

have inherited mutant copies, but how exactly this will contribute to prevention of 

disease has not yet been thoroughly evaluated. The only measures as yet on offer are 

prophylactic bilateral radical mastectomy and oophorectomy, and even then protection 

from the development of breast cancer is not necessarily guaranteed.

The expectation generated by cloning the BRCA genes has also fallen short 

against the other mark. Neither gene shows substantial involvement in sporadic cases of 

breast or ovarian cancer (Futreal et al., 1994; Merajver et al., 1995;Lancaster et al., 

1996; Teng et a l , 1996), despite frequent findings of LOH near to where these two 

genes map. (The reasons why this might be so are explored below.) When the BRCA 

genes were identified initial homology searches against other known proteins revealed 

little to throw light on their possible function. BRCA1 possesses a RING-finger motif 

near its amino terminus which might mediate protein-protein or protein-DNA 

interactions. Indeed, two proteins BARD1 and BAP1 have been identified from two 

hybrid screens which interact with this RING-finger domain (Wu et al., 1996; Jensen et 

al., 1998). Another region, known as the BRCA1 carboxy-terminal (BRCT) domain, has 

homology with domains in a number of other molecules, including yeast RAD9, 

BARD1, DNA ligases IE and IV, XRCC1 and a cloned p53 binding protein (Koonin et 

al., 1996; Callebaut and Mornon, 1997). Its function is unknown, but at least some of 

the proteins bearing this motif are involved in repairing DNA double-strand breaks and 

in homologous recombination; the motif may allow these proteins to interact 

concertively. At one time, it was mooted that BRCA1 might be secreted (Jensen et al.,

1996) owing to its possessing a motif found in granins, a family of neuroendocrine 

secretory peptides, that has subsequently been identified in BRCA2; this idea appears to 

have since fallen from favour. BRCA1 and BRCA2 are otherwise unrelated at the 

protein level.

Both BRCA1 and -2 have been shown to interact stably with hRAD51 protein 

(Scully et al., 1997a; Sharan et al., 1997), one of a growing family of eukaryotic 

homologues of the E. Coli RecA gene which are known to be involved in 

recombination-linked repair of DNA damage, suggesting that both genes may lie on the
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same DNA-repair pathway. Supporting such a role for BRCA proteins in DNA repair is 

the finding that embryonic mouse cells nullizygous for brca2 are hypersensitive to y- 

irradiation (Sharan et a l, 1997), reminiscent of cells derived from rad.51 -knockout 

mice, and that the subnuclear location and cell-cycle dependent phosphorylation of 

BRCA1 is altered following treatment of cells in vitro with DNA damaging agents 

(Scully et a l, 1997b). Disruption of the BRCA/RAD51 pathway may result in genomic 

instability; certainly rad51 -knockout mice show frequent abnormal mitoses with a 

markedly reduced chromosome number. In turn this Mutator phenotype could promote 

neoplastic transformation, explaining the role of BRCA mutations in cancer.

The similarities in function between BRCA1 and BRCA2 are further extended 

by the finding that when negatively charged carboxy-terminal residues from BRCA1 

and amino-terminal residues from BRCA2 with homology to c-Jun are linked to the 

DNA-binding domain of the yeast GALA transcription factor, they confer potent 

transcriptional activation capacity (Chapman and Verma, 1996; Milner et a l, 1997). 

Thus both proteins either singly or in combination with other co-activators may regulate 

expression of a number of target genes important in suppressing the malignant 

phenotype. One such possible target is the cell-cycle inhibitor p21WAF1/CIP1, which was 

recently shown to be induced independently of p53 by ectopic expression of BRCA1. 

This property of BRCA1 is abolished by mutations resulting in loss of the nuclear 

localisation signal, the C-terminal transactivation domain, or the RAD51-interacting 

domain (Somasundaram et a l, 1997). These findings were extended to show that 

BRCA1 fails to induce cell-cycle arrest in cells lacking wild-type p2iWAF1/CIP1.

1.2.11 Xeroderma pigmentosum, Bloom’s syndrome, W erner’s syndrome, and 

Ataxia telangiectasia

These four autosomal recessive multiple tumour type predisposition syndromes 

again result from germ-line loss of function mutations in genes which normally maintain 

genomic stability, giving rise to a Mutator phenotype. Individuals with xeroderma 

pigmentosum demonstrate heightened sensitivity to UV-irradiation which translates as 

an increased risk of developing skin cancer. The disease is characterised at the 

biochemical level by an inability to repair UV-induced cyclobutane pyrimidine dimers 

and pyrimidine-pyrimidone (6-4) photoproducts, implicating defects in the nucleotide 

excision repair (NER) pathway. Cells from XP individuals define seven genetic
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complementation groups, which result from mutations in each of seven NER genes, 

XPA-XPG (Hoeijmakers, 1993). XPA and XPE are responsible for recognising DNA 

lesions, XPB and XPD encode DNA helicases with opposite polarities required for 

unwinding the DNA duplex at damaged sites, XPF and XPG encode endonucleases 

responsible for excising the lesions, and XPC is a single-stranded DNA binding protein. 

XPB and XPD are integral components of a six-protein complex TFIIH, which is an 

essential part of the basal transcription machinery (Schaeffer et a l , 1993; Feaver et al.,

1993); TFIIH is therefore implicated in transcription coupled repair. In addition, cells 

deficient in XPB and XPD are defective in p53-mediated apoptosis (Wang et a l, 1996), 

providing a direct link between the DNA repair pathway and apoptosis.

Two more DNA helicases encoded by the BLM  and WRN genes are implicated in 

Bloom’s syndrome (BS) and Werner’s syndrome (WS) respectively (Ellis et a l, 1995; 

Yu e ta l,  1996). Genomic instability is again apparent, manifested in BS as an increased 

frequency of chromosome breakage, and chromatid exchange both between homologous 

chromosomes and sister chromatids. Indeed, intragenic homologous recombination 

resulting in correction of the elevated levels of sister chromatid exchange within clones 

of BS cells allowed the gene responsible for BS to be localised precisely. In WS, 

chromosome instability is exhibited by variegated inversion, translocation, and deletion 

mosaicism among different clonal populations of WS cells. In both syndromes the rate 

of spontaneous mutations is increased despite DNA repair pathways appearing to 

function normally (Warren et a l, 1981; Fukuchi et a l, 1989). The physiological role of 

the BLM and WRN helicases is at present unknown; mutational analysis reveals that 

neither gene is essential. The increased rate of DNA recombination observed in BS and 

WS may reflect activation of recombination-mediated repair mechanisms by default 

pathways which are otherwise inhibited in the presence of the functional helicases.

Loss of the wild-type product of the ATM  gene gives rise to the human disease 

ataxia telangiectasia (AT) (Savitsky et a l, 1995), characterised by progressive cerebellar 

degeneration, the appearance of damaged blood vessels in the skin and conjunctiva of 

the eye, gonadal atrophy, and a predisposition to malignancies. At the cellular level, AT 

individuals are extremely sensitive to ionizing radiation (Friedberg et a l, 1995), 

exposure to which results in a greatly increased number of chromosomal breaks 

observed against an already elevated background level of spontaneous breaks. AT cells 

also appear to be defective in a number of DNA-damage responsive cell cycle 

checkpoints (Friedberg et a l, 1995). These features of AT, which imply a role for ATM
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in the repair and processing of DNA double-strand breaks, have been reproduced in 

knockout mouse models of the disease (Barlow et a l, 1996, Xu et al., 1996a and b). Both 

human and mouse cells carrying ATM  defects are defective in up-regulating p53 on 

induction of DNA damage, suggesting that p53 is downstream of ATM in a signalling 

pathway (Kastan et al., 1992; Xu et al., 1996b; Westphal et al., 1997). Recombinant 

mouse models also provide evidence for ATM functions in meiosis and lymphocyte 

differentiation.

The protein encoded by ATM  is a member of the PI3-kinase-related protein 

kinase superfamily, whose members are distinguished by shared homology in their 

carboxy-terminal protein kinase domains, and their sequence similarity to the p i 10 lipid 

kinase domain of PI3-kinase. In mammals, this family comprises the FKBP12 and 

rapamycin-binding protein kinase FRAP, DNA-dependent protein kinase DNA-PK, 

implicated in non-homologous end-joining of double-strand DNA breaks, ATM, and 

ATR. ATM is also related to the MEC1 and TEL1 proteins of S. cerevisiae, Rad3 of S. 

pombe, and MEI-41 of D. melanogaster, all of which are required for DNA-damage 

sensitive checkpoint controls and produce repair deficient phenotypes when mutated. 

TEL1 has also been implicated in the maintenance of telomere length in yeast 

(Greenwell et al., 1995). Since telomeric attrition has been shown to underlie cellular 

ageing (more below), this suggests that ATM may be involved in replicative senescence 

and that loss of ATM could contribute to cellular immortalisation.

1.2.12. More tumour suppressors

Past successes in identifying TSGs have established a positive trend, and the rate 

of TSG gene discovery appears to be increasing exponentially with time. 1997 saw three 

more keenly awaited candidate TSGs ushered into the molecular oncology arena, 

namely MEN1, PTEN/MMAC1 and TSC1 (Chandrasekharappa et a l, 1997; Li et al., 

1997; Steck et a l, 1997; van Slegtenhorst, 1997). In keeping with most other TSGs, 

germ-line mutations in these three genes are associated with cancer predisposition 

syndromes: multiple endocrine neoplasia type I, BZS/CD/LDD, and tuberous sclerosis 

respectively; while MEN1 and PTEN/MMAC1 have also been implicated in sporadic 

tumours. Indeed, inactivation of PTEN/MMAC1, which maps to chromosome 10q23, 

appears to be an obligatory requirement for the progression of advanced stage 

glioblastoma (glioblastoma multiforme), and is a frequent finding in advanced prostatic
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adenocarcinoma. Little is known about the functions of the products of these most 

recently identified TSGs. Homology searches against other known proteins revealed no 

significant similarity in the case of MEN1 or TSC1. However, PTEN/MMAC1 possesses 

two regions of highly significant homology: the amino terminus is very similar to 

members of a family of dual-specificity phosphatases, including CDC14, PRL-1 and 

BVP, that remove phosphate groups from tyrosine residues as well as serine and 

threonine; a more extensive region of the protein resembles tensin, a protein found in 

focal adhesions which binds actin filaments. Myers et al. (1997) have demonstrated that 

PTEN/MMAC1 possesses dual-specific phosphatase catalytic activity as predicted, and 

that this activity is ablated in mutant proteins occurring in tumours. Clearly, it will be 

interesting to demonstrate whether or not PTEN/MMAC1 binds actin filaments and 

localises to focal adhesions. Since focal adhesions act as signalling complexes that are 

involved in cell cycle progression, adhesion, and cell motility, should PTEN/MMAC1 

be located in these structures, it would be well placed to regulate one or more of these 

processes. Moreover, it is known that upon focal adhesion formation a number of 

substrates found there, including vinculin and paxillin, become phosphorylated; the 

pp60src family of non-receptor associated tyrosine kinases and the focal adhesion kinase 

(FAK) are believed to be responsible for this. PTEN/MMAC1 may contribute to the 

down-regulation of focal adhesion signalling through the dephosphorylation of its 

constituent components. The association of PTEN/MMAC1 mutations and LOH of 

chromosome 10q23-24 polymorphic markers with predominantly advanced cancers 

(Ittmann, 1996; Cappellen etal., 1997; Li etal., 1997; Steck et al., 1997) supports a role 

for PTEN/MMAC1 in invasion and metastasis.

Over fifty familial cancer syndromes have been described suggesting the 

existence of many more TSGs whose inactivation through germ-line mutations 

predispose to cancer. Known TSGs fulfil a great many cellular and biochemical 

functions and as for proto-oncogenes their identification promises to illuminate a much 

wider area of biology than cancer alone. Cytogenetic, allelic loss, and linkage studies 

point to the likely location of these other as yet unidentified TSGs. In this respect, a 

putative TSG, NB1, implicated in neuroblastoma has been mapped to chromosome lp36 

(Brodeur et al., 1977; Weith et a l, 1989; Laureys et al., 1990; Biegel et a l, 1993, White 

et a l, 1995), a region that is frequently lost in melanoma and colon cancer as well.p73, 

a recently cloned homologue of p53, maps to this region and is a strong candidate for 

NB1 (Kaghad et al., 1997). Although not yet found to be mutated in human cancer, one
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allele of this gene is constitutively silenced in the germ-line by genomic imprinting, 

while loss of expression of the other allele through LOH is a frequent finding in 

neuroblastoma cell lines, but also occurs in other cancer cell lines as well (Kaghad et a l, 

1997). Significantly, p73 shares the ability with p53 to induce apoptosis (Jost et al., 

1997) and to suppress the transformed phenotype when ectopically expressed, which is 

concomitant with the induction of p2iWAF1/CIP1 (Kaghad et al., 1997); however, unlike 

p53, p73 protein does not appear to be produced in response to DNA damage (Kaghad 

et a l, 1997). Together these observations strongly support a role forp73 as a TSG.

Loss of genetic material and rearrangements on the short arm of chromosome 3 

are commonly observed in a broad range of human tumours, but especially in lung 

cancer and renal cell carcinoma (Druck et a l, 1995; Buchhagen, 1996; Hughson et al., 

1996; Todd et al., 1997). The 3pl4.2 cytogenetic band is most often involved, and is the 

site of a constitutional translocation segregating with hereditary renal cell carcinoma 

(Wang and Perkins, 1984) and of an aphidicolin inducible chromosome fragile site, 

FRA3B (Glover et al., 1988). The FHIT gene which maps to FRA3B and is disrupted by 

this translocation has been proposed as a TSG candidate on the basis of deletions in the 

gene observed in a number of cancer cell lines, and also due to the finding of aberrant 

transcripts in these cell lines and uncultured tumours (Ohta et al., 1996) and in other 

tumour samples (Luan et al., 1997; Zou et a l, 1997). However, the accompanying 

presence of wild-type transcripts in many of the same tumour samples, as well as the 

observation of aberrant splicing in benign tissue (Luan et al., 1997; Panagopoulos et al., 

1997) has called in to question the candidacy of the FHIT gene as a tumour suppressor, 

which is further mired by the apparent absence of loss of function point mutations. 

Finally, two more loci have been implicated in prostate cancer: one which maps to 

chromosome 8p22 is associated with the sporadic form of the disease (Bova et al., 1993, 

Suzuki et al., 1995; Kagan et a l, 1995; Macoska et a l, 1995; Vocke et a l, 1996), while 

the other, which was shown by linkage to map to chromosome lq24-25, is implicated in 

familial prostate cancer (Smith et al., 1996).

1.3 ‘Gatekeepers’ vs. ‘caretakers’

A number of interesting issues can be raised about the role of TSGs in cancer, 

particularly inherited forms of the disease. One perplexing problem is why genes like 

RBI, BRCA1, BRCA2, and APC, which are widely expressed, predispose most strongly
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to only a limited range of tumour types. Why for instance is small-cell carcinoma of the 

lung (SCLC), a cancer type in which both copies of RBI are frequently found to be 

mutated, rarely observed in survivors of familial retinoblastoma. A small target-cell pool 

or a low tissue-specific mutation rate cannot easily be invoked as an explanation since 

sporadic SCCL is found much more commonly than sporadic retinoblastoma.

One possible solution to this conundrum is supplied by the multiple hit model of 

carcinogenesis. Retinoblastoma may require many fewer mutational events to arise than 

for instance SCCL, and would therefore develop after a much shorter latency period. 

This explanation is not entirely satisfactory though, since the majority of common 

tumours have fairly comparable associations between incidence and age suggesting that 

a similar number of mutations need to accumulate in each type, yet APC predisposes 

strongly to colon carcinoma, but not to lung or breast carcinoma.

Redundancy in the number of back up pathways is an alternative explanation:

APC may perform a unique function in colon cells that is essential for tumour

suppression, whereas a number of stand-ins could be waiting off-stage in other cell

types. Redundancy certainly exists among cell cycle regulatory molecules; thus, there

are two families of cyclin-CDK inhibitors, the INK4 family comprising plS11̂ 48, 
p l 6 i N K 4 A  p l 8  I N K 4 C  a n d  p l 9  i n k 4 d  a n d  t h e  C I p / K I P  f a m i l y  consisting of p 2 l W A F 1 / C I P 1 ,

p27 and p57 . There is further redundancy among the Rb-like pocket proteins of

which pRb is the prototype, while pl07 and pl30 were discovered subsequently. We 

would anticipate that it is the non-degenerate growth-regulatory pathways that will be 

modified in cancer cells, and these may differ from one cell type to another. However, 

against this idea is the absence or very low frequency of mutations in tumours in any of 

these redundant molecules mentioned other than CDKN2A and RBI. Likewise, with the 

exception of p27KIP1 (Fero et al., 1996; Kiyokawa et al., 1996; Nakayama et a l , 1996), 

mice in which these genes have been inactivated by homologous recombination do not 

show an inherited predisposition to developing cancer (Deng et al., 1995; Lee et al., 

1996; Crobinik et al., 1996), whereas pl6INK4A7' and Rb+I~ mice do ( Serrano et al., 

1996; Lee etal., 1992; Jacks etal., 1992; Clark etal., 1992).

Another unanswered intrigue concerns the breast cancer susceptibility genes. 

Despite germ-line mutations in BRCA1 and BRCA2 conferring an increased life-time 

risk of developing breast and ovarian cancers, as mentioned somatic mutations in these 

genes are rarely if ever observed in sporadic cases of these cancers. A TSG need not 

necessarily be inactivated by mutation; promoter silencing by methylation—an
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epigenetic mechanism—is emerging as a common way of inhibiting TSG expression, an 

example has already been given for CDKN2A. This mechanism is perhaps a more facile 

way for cancer cells to inactivate genes rather than waiting for chance mutations. 

BRCA1 does appear to be dramatically down-regulated in breast carcinomas (Thompson 

et a l, 1995); further, this reduction in expression may be mediated by methylation since 

the gene possesses a CpG island in its promoter region (Rodenhiser et al., 1996). An 

alternative mechanism whereby TSGs which are wild-type in sequence may still be 

functionally inactivated is by the subcellular mislocalisation of their encoded product, 

that is through the inability of the gene product to reach the cellular locale in which it 

performs its function; again, evidence for this mode of inactivation has been supplied 

for the BRCA1 protein (Chen et al., 1995).

An alternative explanation for these observations is that the aetiology of familial 

breast and ovarian cancers differs fundamentally from that for sporadic cancers in these 

tissues, the two types of cancer progressing via distinct series of genetic mishaps. 

Certainly, it has been reported that breast and ovarian tumours resulting in carriers of 

BRCA1 mutations have a better prognosis than sporadic cases (Marcus et a l, 1996; 

Rubin et a l 1996), suggesting inherent differences in the tumours’ genetic make-up, 

although a number of extrinsic factors could also account for this such as the younger 

age of cancer patients with germ-line mutations. Experimental evidence which directly 

supports the existence of distinct genetic pathways in hereditary and sporadic breast 

tumours has been provided by Tirkkonen et al. (1997), who used comparative genomic 

hybridisation to identify regions of genomic gains and losses which differed 

disproportionately between tumours from carriers of BRCA1 and BRCA2 mutations and 

control cases. Perhaps the nature of the initiating lesion in different tumours influences 

the targets for subsequent genetic modification, recalling how different combinations of 

oncogenes complement the transforming ability of one another.

Kinzler and Vogelstein (1997) have furnished us with a timely paradigm that is 

likely to shape thinking in the field of TSGs as much as Knudson’s ‘two-hit’ hypothesis. 

Their model has the virtue of explaining a great deal of the phenomenology. Its point of 

departure is the classification of TSGs as either ‘gatekeepers’ or ‘caretakers’. 

Gatekeepers control cellular proliferation directly by inhibiting growth or promoting 

death and from the description of the functions of TSGs given above would obviously 

include RBI, TP53, and CDKN2A among others. A gatekeeping modality was the 

original way in which the products of TSGs were construed to behave; however, it is
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becoming increasingly apparent that caretakers, genes whose products maintain the 

integrity of the genome, may be even more frequent causes of inherited predispositions 

to cancer. Caretakers include the mismatch repair genes mutated in HNPCC, the 

nucleotide excision repair genes implicated in Xeroderma pigmentosum, and genes like 

ATM, BLM  and WRN that maintain chromosome integrity after DNA damage and 

recombination.

This functional categorisation is perhaps not so cut and dry though for the 

following reasons: both BRCA proteins possess domains with transactivation potential, 

a property associated with transcription factors, and BRCA1 as mentioned can induce 

the expression of the cell-cycle inhibitor p2iWAF1/CIP1; the expression of both BRCA1 

and BRCA2 is co-ordinated with cell-cycle progression (Rajan et al., 1996; Vaughn et 

a l , 1996; Ruffiner et a l, 1997); further, decreased expression of BRCA1 has been 

shown to increase the rate of cell growth in normal breast epithelial cells (Thompson et 

a l, 1995); while ectopic expression retards the growth of both breast and ovarian 

carcinoma cells, and inhibits tumourigenicity (Holt et a l, 1996). These features are 

more in keeping with a gatekeeper role for these genes. Their association with RAD51 

and the DNA damage signalling pathway in contrast argues for a role as caretakers. p53 

might also be said to share in this ambivalence. Kinzler and Vogelstein argue, however, 

that the absence of mutations in BRCA genes in sporadic forms of breast and ovarian 

cancer places them within the caretaker camp.

They reason that inactivation of a gatekeeper gene manifests itself directly as a 

growth advantage to the affected cell. In contrast, inactivation of a caretaker gene does 

not result directly in tumour initiation, but rather increases the mutation rate of all genes, 

including gatekeepers, through promoting genomic instability. It is this Mutator 

phenotype that confers the increased risk of developing cancer. Because additional 

mutations in gatekeeper genes are still required for tumour initiation in individuals with 

germ-line mutations in caretaker genes, the risk of cancer is generally only 5-50-fold 

greater than in the general population—much less than the several thousand-fold relative 

risks to carriers of mutations in gatekeeper genes. Importantly, mutations in caretaker 

genes would not be expected to occur in sporadic tumours since a single cell would need 

to acquire four independent mutations (two caretaker alleles plus two gatekeeper alleles) 

to become initiated. The odds of acquiring even three somatic mutations before a cell 

undergoes maturation arrest, apoptosis, or replicative senescence are slight, which
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probably explains why most cancer susceptibility syndromes due to inherited mutations 

in caretaker genes are recessive disorders.

1.4 The identification of TSGs

It is no historical accident that the identification of TSGs has lagged behind that 

of proto-oncogenes. The problems are due both to the inherent nature of these genes as 

much as to technical obstacles. Thus, while functional screens greatly facilitated the 

identification of dominantly transforming oncogenes, it has proven considerably more 

difficult to isolate TSGs by functional methods alone. First, because TSGs act 

recessively at the cellular level, both copies need to be inactivated before a transformed 

phenotype can be observed. Although it is possible to achieve targeted homozygous 

inactivation of a gene by homologous recombination in cultured cells (Detloff et al., 

1994; te Riele et al., 1990; Wu et al., 1994; Hanson and Sedivy, 1995), and in 

recombinant animals (Capecchi, 1989), it cannot be applied prospectively when 

knowledge of DNA sequence is not available. Second, TSGs that play a caretaker role in 

the cell and that when mutated give rise to a Mutator phenotype, would not necessarily 

be expected to suppress tumourigenicity on re-introduction because the genetic lesions 

underlying the altered growth in cells in which these genes are mutated have presumably 

already occurred and cannot be reversed. For this reason alone, complementation would 

not prove to be wholly reliable when screening for genes which can suppress 

tumourigenicity, even before size limitations and efficiency of gene transfer are 

considered. Also, where complementation would result in clones of cells whose growth 

and survival are diminished, recovery of sufficient material to analyse would require 

that the phenotype be reversible or its induction tightly regulated, or require sensitive 

cloning methods. Ultimately, it may be difficult to distinguish between non-specific 

cytostatic or cytotoxic effects and physiological growth- or tumour-suppression.

Despite these concerns, if the particular biochemical defect underlying the 

malignant phenotype can be clearly established and an appropriate assay devised, then 

complementation can be extremely powerful in identifying novel genes that are 

responsible. This was demonstrated in the cloning of the XP  genes involved in 

nucleotide excision repair (Hoeijmakers, 1993). Further, the scope and efficiency of 

gene transfer techniques are continually improving. The transfer of large genomic 

inserts in bacterial cloning vectors (cosmids, BACs, PI clones, and PACs) and in yeast
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artificial chromosomes (YACs), and of entire mammalian chromosomes into a range of 

host cell types has been achieved, allowing the study of gene expression under 

appropriate physiological control. The use of microcell mediated monochromosome 

transfer, in particular, is proving very effective in the mapping of TSG loci, and in 

providing direct functional evidence of tumour suppression attributed to a locus 

(Stanbridge, 1988; Chen et al., 1995; England et al., 1996; Gustafson et al., 1996; 

Karlsson et al., 1996).

However due to the difficulties inherent in complementation, it is positional 

cloning, or ‘reverse genetics’, that has been the mainstay of investigators trying to 

identify novel TSGs: APC, ATM, BLM, BRCA1, BRCA2, DCC, DPC4, FHIT, LKB1, 

NF1, NF2, MEN1, MMAC1, RB I, TSC1, TSC2, VHL, WRN, and WT1 were all identified 

by this approach. (Occasionally, in certain extremely fortunate instances, serendipity can 

intervene, as with the cloning of p73.) In the case of TSGs associated with a familial 

cancer predisposition syndrome, linkage was often used to first map the gene to a 

chromosomal region. Linkage disequilibrium where there is a strong founder effect 

(Ellis et al., 1994; Goddard et al., 1996, Matsumoto et al., 1997) and homozygosity 

mapping of recessive disorders in consanguineous families (German et al., 1994) can 

then sometimes be used to localise the gene more precisely. Cytogenetic abnormalities 

including deletions, translocations and chromosome fragile sites can further substantiate 

and refine the location of a TSG, as can molecular genetic analysis of LOH and 

homozygous deletions, which can be used independently of linkage to identify TSG loci 

involved in sporadic tumours (Fearon et a l, 1990; Hahn et a l, 1996a).

Positional information can be combined with knowledge about candidate genes 

in the region, referred to as a positional candidate approach, to identify TSGs which also 

predispose to cancer. This approach implicated TP53 in Li-Fraumeni syndrome, 

CDKN2A in familial melanoma, DPC4 in JPS, E-CADHERIN in familial gastric 

carcinoma, HMSH2 in HNPCC, p57Kn>2 in BWS, and PTEN/MMAC1 in BZS, CD, JPS, 

LDD. The assembly of a transcript map for the entire human genome (Schuler et a l, 

1996) will no doubt greatly facilitate positional-based means of identifying disease- 

associated genes in the future, as ultimately will completion of the human genome 

sequencing project. With this information in hand, the positional candidate approach 

will probably become the predominant method for identifying cancer susceptibility 

genes in the future (Collins, 1995). A purely candidate approach, based only on
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knowledge of the function of genes, led to the identification of mutations in hMLHl, 

hPMSl, and hPMS2 in cases of HNPCC not linked to chromosome 2pl6.

Establishing the chromosomal sub-region that harbours a TSG locus is often the 

rate limiting step in its positional cloning. Linkage, LOH, and deletions can resolve 

intervals of several hundred Kbp at best. The implicated region then has to be cloned 

and genes included in the interval identified (reviewed in Monaco, 1994) and screened 

for the presence of mutations (reviewed in Grompe, 1993). Again the human genome 

project has provided information, resources, and reagents that accelerate this process, 

principal among these being various physical sequence tagged site (STS) maps of the 

genome (Chumakov et al., 1995; Hudson et al., 1995; Gyapay et al., 1996) and 

reference libraries of DNA clones (Dausset et al., 1992; Ioannou et a l , 1994; Nizetic et 

a l, 1994). The advantage of positional cloning is that it is targeted and exhaustive, 

while the demonstration of inactivating mutations offers incontrovertible evidence that 

the correct gene has been identified. The disadvantage is that many of the steps entailed 

are laborious and time-consuming. Various recent scientific advances have resulted in 

gene cloning strategies that do not require positional information, and which exploit 

other features of TSGs such as their altered expression in tumours to aid in their 

isolation.

Representational difference analysis (RDA) and genome mismatch scanning 

(GMS) are two techniques which allow an entire genome to be scanned at one time for 

sequences linked to trait loci. RDA combines both subtraction and DNA re-association 

kinetics to enrich for sequences that are present within a ‘tester’ population of DNA 

molecules but that are absent from a ‘driver’ population (Lisitsyn et a l, 1993). The 

tester population can for instance be derived from normal genomic DNA and hybridised 

to a driver population derived from tumour DNA. Sequences which are common to both 

populations are depleted, while sequences present only in the tester, due say to deletions 

or rearrangements in the driver, are selectively amplified. This technique was 

successfully employed in the cloning of PTEN (Li et a l, 1997), and contributed to the 

cloning of both BRCA2 and FHIT (Schutte et a l, 1995; Ohta et a l, 1996). RDA can 

also be combined with genetic linkage (genetically directed RDA) to clone DNA from a 

locus linked to an inherited trait (Lisitsyn et a l, 1994).

In contrast to RDA, GMS seeks to identify large regions of sequence identity 

between two individuals, with the assumption that in an outbred population these must 

represent regions of ‘identity by descent’ (Nelson et a l, 1993). This technique exploits
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the ability of restriction enzymes to distinguish between methylated and non-methylated 

DNA, and of the bacterial mismatch repair enzymes, MutS, MutH, and MutL, to 

recognise and cleave heteroduplexes of mismatched DNA, to leave only sequences 

which are identical between individuals intact. To search for TSGs which predispose to 

cancer, regions of identity by descent could be sought in pairs of affected cousins or in a 

collection of individuals from an isolated subpopulation, although this has yet to be 

attempted.

The expression of TSGs is often decreased in cancer cells, and transcripts can be 

alternatively spliced or otherwise re-arranged by insertions and deletions, features that 

can be exploited in TSG identification. Differential hybridisation, subtractive 

hybridisation, and differential display are three methods which allow differentially 

expressed genes to be cloned. Differential hybridisation (or differential screening) was 

the first of these three techniques to be developed and has been employed successfully 

in the cloning of TSGs as for instance in the isolation of the metastasis suppressor nm23 

(Steegs et al., 1988). While it is also the least sensitive of the three techniques, it has 

lately been revamped. Hybridisation of labelled cDNA molecules from cancers and 

normal tissue to replica filters containing densely gridded cDNA arrays detected 

autoradiographically or even by using low-light sensitive cameras and video 

enhancement has been used to screen whole populations of expressed sequences for 

differentially expressed genes (Gress et a l , 1996). It is possible to anticipate a time 

when such hybridisations will be performed using DNA microchip technology. The 

technique of subtractive hybridisation has also evolved since its conception. Latest 

versions of the technique no longer rely on chromatography to remove subtracted 

sequences but use primer modifications such as biotinylation, or exploit other primer 

features that allow selective amplification by PCR (Diatchenko et al., 1996; Lavery et 

al., 1997). Differential display (Liang and Pardee, 1992) employs random primers and 

anchored oligo dT primers to reverse transcribe and amplify by PCR representations of 

expressed sequences which can be resolved by gel electrophoresis to produce a 

fingerprint or expression profile. Differences in fingerprints between sample RNAs 

represent differentially expressed or processed genes. These techniques are rapid and 

allow high throughput screening and are greatly increasing the pool of candidate TSGs.

Two further technical innovations may also increase our ability to detect TSGs 

by functional means. Li and Cohen (1996) have devised a novel method of identifying 

genes whose inactivation results in malignant transformation which does not depend
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upon prior knowledge of DNA sequence. The method employs a retroviral-based gene 

search vector to inhibit expression of genes into which the provirus integrates by 

production of an antisense RNA complementary to the sense transcript of the interrupted 

gene. Using this technique, these workers identified tsglOl a mouse gene whose product 

shares features with many transcription factors and which interacts with stathmin, a 

putative oncoprotein and integrator of diverse signalling pathways, through a coiled-coil 

domain. However, controversy exists over whether this gene is actually involved in 

human cancers. Although original studies using PCR-based techniques detected altered 

transcripts of TSG101 in breast tumours that apparently arose through large intragenic 

deletions (Li et a l , 1996), this observation has failed to be confirmed by Southern blot 

analysis of breast tumour DNA samples (Steiner et a l , 1997; Lee and Feinberg, 1997), 

or by western blotting (Zhong et a l , 1997).

The second technique again allows a number of potential TSGs genes to be 

functionally assayed simultaneously and has parallels to the first technique. It relies 

upon the production of gene suppressor elements (GSEs), fragments of genes which can 

act as dominant negative peptides or give rise to inhibitory antisense molecules that 

retard the action of the cognate gene from which they are derived (Holzmayer et a l , 

1992; Gudkov et a l , 1994). GSEs derived from TSGs might be capable of transforming 

cells, extending their replicative life span, or allowing them to acquire resistance to 

apoptosis. Indeed, this approach has been used to identify GSEs from the TP53 gene 

which confer resistance to cisplatin treatment (Gallagher et a l, 1997), and to identify a 

novel tumour suppressor gene ING1 which may be involved in replicative senescence 

(Garkavtsev et a l, 1996; Garkavtsev and Riabowol, 1997). Loss of function mutations 

have subsequently been identified in ING1 in sporadic tumours, and the encoded protein 

product p33 has been shown to interact with p53 and to be essential for p53-dependent 

growth arrest and transcription ofp 2 lWAF1!CIP1 (Garkavtsev et al., 1998).

Animal models have been used extensively to characterise the function of 

oncogenes and TSGs in an in vivo setting, but their full potential for the identification of 

novel TSGs has not been realised. Clearly, many organisms lend themselves well to 

genetic analysis, and our ability to induce mutations efficiently should make animal 

models of cancer a rich hunting ground for TSGs. In particular, animal models may well 

prove invaluable in the identification of low penetrance tumour susceptibility loci. 

Towards this end, Nagase et a l (1995) have used crosses between strains of mice 

resistant to skin tumour development and strains of mice that are susceptible, to map
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quantitative trait loci involved in tumour susceptibility by meiotic recombinations and 

LOH in resultant tumours. These loci appear to contribute both to tumour initiation and 

progression. Mutagenic screens in Drosophila have also identified over 50 loci which 

when mutated give rise to altered cell growth (Watson et al., 1994). The genes discs 

large {dig), fat, lethal(2) giant larvae (l(2)gl), and warts are perhaps the best 

characterised of those that have been identified so far. Since, as has been stressed, these 

genes are likely to be conserved between various species, including man, using animal 

models like Mus musculus and Drosophila could greatly enrich our knowledge of cancer 

genes mutated in man.

With the rapid flux in methods of detecting genes inactivated in cancer and our 

changing awareness of their functions, it is becoming increasingly difficult to provide an 

all-embracing definition of TSGs. Haber and Harlow (1997) urge us to return to first 

principles for guidance in this matter; they suggest the definition: ‘genes that sustain 

loss-of-function mutations in the development o f cancer’ as 'the simplest, most inclusive 

and cleanest’. This they argue still leaves room for epigenetic events, dominant negative 

mutations, and heterozygous mutations in genes where dosage is critical. Merely 

demonstrating loss of expression in tumours or the ability to suppress cellular 

proliferation does not qualify a gene as belonging to the TSG class in the absence of 

definitive evidence of inactivating mutations. Such a definition may help to resolve 

several recent controversies over the role of novel genes identified by some of these 

latest gene cloning methods in the aetiology of human cancer.

1.5 Replicative senescence

With the possible exception of stem cells and primitive embryonic lineages, 

normal mammalian somatic cell populations have a limited proliferative potential in 

vitro and in vivo. For many cell types, including the majority of epithelial cells, the 

ability to proliferate is lost upon acquisition of the mature differentiated state (referred 

to as terminal differentiation or maturation arrest), which is an irreversible quiescent 

state. Activation of proto-oncogenes and loss of function of TSGs has been 

demonstrated to interfere or completely obviate terminal differentiation, allowing cells 

to remain in cycle (Yoakum et a l, 1985; Yuspa et al., 1985; Dmitrovsky et a l, 1986; 

Prochownik et al., 1986; Klein, 1987; Pritchard-Jones et a l, 1990; Hedrick et a l, 1994; 

Zacksenhaus et al., 1996). Terminal differentiation can also be abrogated during in vitro
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culture, but primary cultures of epithelial cells, and indeed of fibroblasts which 

demonstrate conditional renewal in vivo, still possess only limited proliferative potential 

(Hayflick, 1965; Rheinwald and Green, 1975). Upon achieving a particular number of 

population doublings (eponymously named the Hayflick limit), which depends upon the 

species, age and genetic background of the donor, as well as cell type, cells again 

become irreversibly growth-arrested, a state that has been termed replicative senescence, 

or more recently mortality stage 1 (Ml). A limited number of studies suggest that 

replicative senescence does occur in vivo also, and is not merely an artefact of in vitro 

culture (reviewed in Campisi, 1996).

The biochemistry of senescence has best been characterised for primary cultures 

of fibroblasts, and clearly distinguishes senescence from other forms of irreversible 

growth arrest. A distinction should also be drawn between senescence and cell death: 

senescent cells are viable and can be maintained in culture for months to years; indeed, 

senescent cells are remarkably resistant to apoptosis (Wang, 1995). During senescence 

cells arrest with a G1 DNA content and cannot be stimulated to enter S phase by any 

combination of mitogens. However, treatment with mitogens still induces the expression 

of a number of genes, among them the oncogenes MYC, JUN, and RAS (Rittling et a l , 

1986; Seshadri and Campisi, 1990), suggesting that senescence does not result from a 

general failure in signal transduction. Rather, senescence appears to require the selective 

repression of a few key growth regulatory genes such as the c-FOS proto-oncogene 

(Seshadri and Campisi, 1990), the helix-loop-helix ID-1 and ID-2 genes (Hara et a l , 

1994), and E2F-1 and E2F-5 (Dimri et a l , 1994; Good et a l , 1996).

In addition to these deficiencies in positive growth regulators, the arrested state 

in senescent cells is achieved and maintained by the contribution of negative growth 

regulators as well. This was first implied by the phenotype of hybrids obtained when 

normal cells are fused with cells capable of indefinite division, i.e. immortal cells; these 

hybrids exhibit limited division potential (Bunn and Tarrant, 1980; Muggleton-Harris 

and DeSimone, 1980; Pereira-Smith and Smith, 1981; Pereira-Smith and Smith, 1983). 

Further, fusions between immortal cells from different cell lines result in hybrids in 

which replicative senescence has been restored (Pereira-Smith and Smith, 1983; Pereira- 

Smith and Smith, 1988), indicating, in a fashion analogous to the demonstration of the 

existence of TSGs, that the replicative senescence phenotype is dominant and that 

immortality results from the recessive inactivation of senescence inducing genes. 

Subsequently, certain of these have been identified in senescing cells. In this regard the
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two tumour suppressors p53 and pRb, which is found in its growth suppressive 

hypophosphorylated state in senescent cells (Stein et a l, 1990), have been shown to be 

required for the timely initiation of growth arrest during replicative senescence. Loss of 

function of either gene product either through mutation or inactivation by viral 

oncoproteins such as E6 or E7 of the HPV virus, delays the onset of M l by up to twenty 

population doublings (Shay et a l, 1993; Bond et a l, 1994; Rogan et a l, 1995). The 

effect is even more marked if both TSGs are inactivated together, suggesting that the 

biochemical pathways initiated by these two regulators are parallel and synergistic. This 

double hit occurs for instance when cells express the SV40 large T antigen, and greatly 

increases the frequency with which recipient cells become immortalised, that is fail to 

senesce altogether (Bryan and Reddel, 1994). Remaining cells enter a second stationary 

growth phase, crisis or mortality stage 2 (M2), where cell production is counterbalanced 

by cell death (Figure 1.5). Unlike M l, crisis cannot be viewed as a regulated growth 

control mechanism, being essentially a breakdown of normal cell function.

While it is true that senescence in fibroblasts and many epithelial cell types 

including keratinocytes (Loughran et a l, 1996a) is regulated both by a p53-dependent 

pathway and a pRb-dependent pathway, in certain other cell types only one major 

pathway is apparently playing a role. Thus, distinct populations of mammary glandular 

epithelial cells can escape senescence through inactivation of p53 alone (Band et a l, 

1991; Wazer et a l, 1995; Gollahon and Shay, 1996), or pRb alone (Wazer et a l, 1995; 

Foster and Galloway, 1996). Moreover, in thyroid epithelial cells a state of viable 

growth arrest resembling Ml in fibroblasts can be induced in the absence of both 

functional p53 and pRB (Bond et a l, 1996). The mechanism of regulation of Ml is, 

therefore, dependent on cell type.

Senescent human fibroblasts over-express at least two more growth inhibitors: 

p21-WAFi/ciPi and plb 1̂ ^  (Alcorta et a l, 1996; Hara et a l, 1996). Indeed, p2 l WAF1/cn>1 

was originally cloned as a transdominantly acting cDNA (sdil) isolated from senescent 

fibroblasts capable of mediating growth arrest in young cycling cells (Noda et a l, 1994); 

plb^iwA as mentioned already, has been implicated in tumour suppression. Both these 

molecules interact with and inactivate complexes of cyclins and CDKs which are 

required for the Gl-S phase transition of the cell cycle through the phosphorylation and 

attendant inhibition of pRb. While p i6 ^ ^  is a specific inhibitor of cyclin D, 

p21WAFi/cipi has a broad range of CDK inhibitory activity; p2lWAF1/CIP1 is also able to 

antagonise E2F directly in a pRb independent manner (Dimri et a l, 1996). The
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Figure 1.5. Two stage model of cellular immortalisation. A) Mortality 
stage 1 (M l) involves a loss of mitogen responsiveness, the production 
of DNA synthesis inhibitors, and arrest in G1 phase of the cell cycle and 
is the process commonly viewed as in vitro replicative senescence. B) 
Bypass of Ml (through, for example, expression of SV40 T antigen) 
extends the proliferative lifespan of cells until they reach a second 
stationary growth phase, mortality stage 2 (M2), corresponding to the 
classical description of postsenescent crisis. Inactivation of the M2 
mechanism results in the final immortalisation event; this inactivation is 
a rare event, suggesting a mutational origin.



induction of these two cell cycle inhibitors probably accounts for the accumulation of 

inactive cyclin/CDK complexes during senescence (Dulic et a l , 1993) and for the lack 

of E2F activity in senescent cells (Dimri et a l, 1994; Good et a l, 1996). Induction of 

p21 w a f i / c ip i  ̂ w j1| c j 1 j s  transient, precedes that of p lb ^ 1̂ ,  which is prolonged (Alcorta 

et a l, 1996). p21WAF1/CIP1, with its wider inhibitory range, may be responsible for the 

acute phase of growth arrest, while the prolonged induction of p i6 ^ ^  may underlie 

the irreversible nature of replicative senescence. The means by which p2iWAF1/CIP1 and 

p 16INK4A are induced during senescence are not known. The induction of p2iWAF1/CIP1 in 

this instance is not dependent upon transactivation by p53 (Bond e ta l,  1995).

Loss of p2iWAF1/cn>1 expression in human fibroblasts, brought about by 

homologous recombination, has been shown to bypass replicative senescence (Brown et 

a l, 1997), establishing an essential role for this protein during senescence. Brown et a l 

also showed that p i6 ™ ^  levels continued to increase in p2iWAF1/cn>1/' cells with 

passage number, indicating that this event is insufficient to induce senescence. 

However, other observations support an essential role for p i6 ^ ^  as well in replicative 

senescence. Fibroblasts from recombinant mice nullizygous for CDKN2A are more 

readily immortalised than normal counterparts (Serrano et a l, 1996), and this locus on 

mouse chromosome 4 is also frequently inactivated during spontaneous immortalisation 

of mouse embryo fibroblasts (Obata et a l, 1997), but caution needs to be exercised 

when extrapolating from rodents to humans because of interspecies differences in the 

mechanisms of senescence. Independent evidence for the involvement of p i6 ^ ^  in the 

senescence of human cells has been supplied both by somatic cell genetics and 

expression studies which show that inactivation of the p i6 ^ ^  locus or loss of 

expression of p i6 ^ ^  accompanies the emergence of the immortal phentotype (Rogan 

e ta l ,  1995; England e ta l,  1996; Loughran e ta l,  1996a; Noble e ta l,  1996; Reznikoff, 

1996), while restoration of functional p i6INK4A to deficient immortal cells confers 

replicative senescence (Uhrbom e ta l,  1997).

p53 and the pRb-pathway are the most common targets for mutational 

inactivation in human cancer to be recognised. While undoubtedly this inactivation 

confers a selective growth advantage to tumour cells in allowing them to bypass critical 

cell cycle check-points, a further expectation formulated upon the significance of these 

proteins in senescence is that such mutational events will promote indefinite division 

potential in cancer cells. In keeping with this, most common human carcinomas contain 

immortal variants. This is a more frequent finding among advanced cancers than among
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early stage tumours and pre-malignant lesions (Edington et a l, 1995), suggesting that 

there is selection for increased replicative potential during cancer development. The 

corollary of this proposal is that annulment of replicative senescence is advantageous to 

cancer cells. Certainly, immortality would permit indefinite clonal expansion and 

selection, increasing genetic diversity, and may ultimately be responsible for cancer 

lethality by promoting metastasis, therapeutic resistance, and recurrence. The 

physiological relevance of replicative senescence, therefore, is as a tumour suppressive 

adaptation, and this is re-inforced by the essential role of several tumour suppressor 

genes in its upkeep.

Since the onset of replicative senescence is determined by the number of cell 

divisions and not chronological time, cells must possess a means of detecting the 

number of divisions they have passed; current wisdom favours a ‘telomeric clock’ 

model. Telomeres are specialised structures present at the ends of chromosomes, found 

in apparently all eukaryotes, that allow cells to overcome the problem of replicating the 

ends of linear DNA molecules—the ‘end replication problem’ (Watson, 1972; 

Olovnikov, 1973)—and that protect chromosomes from exonuclease degradation and 

prevent chromosome fusions and recombination (McClintock, 1941; Muller and 

Herskowitz, 1954). Telomeres comprise both DNA and associated binding proteins. 

Telomeric DNA is of two types: simple direct DNA repeats with a characteristically G- 

rich strand that forms the extreme 3'-end of the chromosome and its complementary C- 

rich strand, and telomere associated sequences proximal to these repeats which are 

relatively complex, middle-repetitive elements and shorter, tandemly repeated, satellite­

like sequences (reviewed in Wellinger and Sen, 1997). Progress has been made into the 

identification and function of telomere binding proteins in lower eukaryotes, but they 

remain more elusive in higher eukaryotes (Chong et al., 1995; de Lange, 1996).

Telomeric repeat units are synthesised by telomerase (Greider and Blackburn, 

1985), a multimeric ribonucleoprotein comprising an RNA molecule that serves as a 

template for the addition of repeats, and various peptides with regulatory and catalytic 

functions, that again have been isolated and most widely studied in lower eukaryotes, 

but that have also recently been identified in humans (Feng et a l, 1995; Harrington et 

al, 1997; Nakamura et a l, 1997; Meyerson et a l, 1997). In the absence of telomerase 

activity, telomeres shorten in length by about 30-150bp per cell division, as a direct 

consequence of the end replication problem. In humans, telomerase activity has been 

detected in embryonic tissues, germ-line cells, and in certain stem cells and highly
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proliferative cells, but is lost at some time during development in the majority of 

somatic cells (Wright et a l , 1996a). Chromosome ends would, therefore, be expected to 

recede in most cells with each division. Such decay in telomere length has been 

demonstrated for cells cultured in vitro (Harley et a l, 1990; Hastie et al., 1990; Vaziri et 

a l , 1994) and also in vivo for cells from donors of increasing age (Hastie et a l , 1990; 

Wainwright et a l, 1995). Telomere shortening, then, provides a measure of cell 

division, and it has been proposed that replicative senescence ensues after a requisite 

amount of telomeric attrition. Abrogation of M l control mechanisms allows additional 

rounds of cell division until M2 occurs, at which time few, if any, telomeric repeats 

remain at the ends of chromosomes (Counter et a l, 1992).

Further associative evidence in support of the ‘telomere clock hypothesis’ to that 

cited above comes from the study of the classic premature ageing illness, Werner’s 

syndrome, Down’s syndrome, and AT. In all three instances, telomeres of cultured cells 

and cells in vivo shorten at an accelerated rate, and cells senesce after a correspondingly 

shorter replicative lifespan (Kruk et a l, 1995; Yu et a l, 1996; Metcalfe et a l, 1996; 

Cossarizza et a l, 1991; Vaziri, et a l, 1993). These findings support roles for the ATM  

and WRN genes, both associated with inherited cancer predisposition syndromes in man, 

in the maintenance of telomeres. This role of ATM  is supported by the finding in 

budding yeast that inactivation of the ATAf-homologue, TEL1, also results in telomeric 

attrition (Greenwell et a l, 1995). Cogent indirect evidence in support of the telomeric 

clock model has been supplied by Wright et a l, (1996b), who used oligonucleotides to 

experimentally lengthen telomeres in immortal cells expressing telomerase. Cells 

manipulated in this way were then fused with ordinary mortal cells and gave rise to 

hybrids with a greater division potential than hybrids between normal and untreated 

immortal cells. Thus in this instance, the onset of senescence was delayed in a manner 

that precisely correlated with telomere length. The recent cloning of the catalytic protein 

subunit of the telomerase enzyme (Lingner et a l, 1997a and b; Meyerson et a l, 1997), 

which revealed homologies between telomerase and other known reverse transcriptases, 

has afforded an opportunity to rigorously test the telomere clock hypothesis. Ectopic 

expression of this protein in human mortal cells fully reconstituted telomerase activity 

and resulted in indefinite clonal expansion, apparently by bypassing the senescence 

program altogether (Bodnar et a l, 1998; Vaziri and Benchimol, 1998); telomeric 

attrition was not found to occur in these clones. Hence, cells manipulated in this way
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behave like embryonic stem cells or germ-line cells. To date this work is the most direct 

evidence in support of the telomere clock model for cellular ageing.

Still missing from the telomere clock model is a plausible mechanism whereby 

shortened telomeres signal to the cell-cycle machinery to bring around growth arrest and 

to maintain the quiescent state irreversibly. Ultimately, a complete explanation will have 

to account for the known biochemical features of the senescent state, in particular how 

certain positive growth regulators are selectively suppressed, while other cell-cycle 

inhibitors are induced or activated. There are currently three hypothetical mechanisms 

which have been proposed, based largely upon experiments in lower eukaryotes. The 

first suggests that a short telomere may signal a DNA-damage response. A denuded 

chromosome end may appear to a cell like a double-stranded DNA break and induce 

cell-cycle arrest through an ATM/p53 dependent pathway. This could account for the 

role of p53 in the regulation of M l, although the level of p53 does not rise in senescent 

cells the way it does following DNA damage (Afshari et a l , 1993), and it does not 

explain why loss of ATM function should accelerate senescence. In budding yeast it was 

shown that the loss of a single telomere could effect cell cycle arrest by a RAD9- 

dependent pathway (Sandell and Zakian, 1993), however the growth inhibition observed 

was only transient whereas senescence in mammalian cells is irreversible. The second 

alternative proposes that telomeres sequester transcription factors which are released as 

telomeres shorten and that co-ordinately regulate a program of senescent cell gene 

expression. Again, yeast have provided a strong precedent: Rapl, which binds yeast 

telomeric repeats, interacts with Sir3p and Sir4p, which are themselves entailed in gene 

silencing through their interaction with the histone proteins H3 and H4. Sequestration of 

Sir3p and Sir4p at the telomere adversely effects silencing at an internal chromosomal 

locus (Marcand et a l, 1996). Although a handsome proposition, there are currently no 

data to support this mechanism in mammalian cells, and no mammalian homologue of 

Rapl has been identified. As a third possibility, the shortening of telomeres may 

influence the heterochromatic structure of subtelomeric DNA, converting it to 

euchromatin and activating the expression of genes which had been lying dormant 

within it (Wright and Shay, 1992); these could include transcriptional activators and 

repressors, as well as inhibitors of cell growth. Silencing of genes at loci near telomeres 

has been demonstrated in yeast (Thompson et a l, 1994), and is even relieved upon 

cellular ageing (Kim et a l, 1996), although in yeast this does not involve telomere 

shortening (Jazwinski, 1993).
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The role of critically shortened telomeres in the onset of M2 appears even less 

assailable. Chromosomes in cells in crisis are perilously poised, and the loss of essential 

genetic material through deletions, promiscuous recombination and chromosome 

fusions is believed to account for the high rate of cell death in populations of these cells. 

Rarely, immortal variants arise in which telomeres have been stabilised, although they 

may still be shorter than telomeres in cultures of senescent cells (Counter et a l, 1992). 

These rare events are most often associated with up-regulation or reactivation of 

telomerase (Counter et a l, 1992; Kim et a l, 1994). An essential role for telomerase in 

immortalisation is further strengthened by the finding that inhibition of telomerase 

activity using an antisense transcript of human telomerase RNA induced telomere 

shortening and crisis in immortal cells (Feng et a l, 1995). However, it is apparent that 

telomerase independent mechanisms to immortalisation also exist (Murnane et a l, 

1994; Bryan et a l, 1995), which may involve recombination or transposition between 

telomere associated sequences (Lundblad and Blackburn, 1993; Levis et a l, 1993). In 

keeping with the immortal nature of the majority of cancer cells, telomerase activity has 

now been detected in most human cancers (Kim et a l, 1994; Shay and Wright, 1996), 

making it the most widely expressed cancer marker presently known. Cloning of the 

catalytic subunit of telomerase in humans has allowed direct demonstration of its re­

induction in human cancers (Meyerson et a l, 1997). It is also a highly specific marker, 

since as stated telomerase activity is absent from the majority of somatic cells, making it 

an extremely attractive anti-tumour target (Holt et a l, 1996; Kim, 1997).

Replicative senescence has been presented as a multigenic program, requiring 

the repression of particular cell cycle promoters and the induction of several growth 

inhibitory proteins. Likewise, the inverse process of immortalisation requires the 

mutational inactivation of multiple targets and the activation of a number of other genes. 

The induction of telomerase appears to be the single most common method for 

overcoming M2, but again a number of independent events are entailed in this one 

pathway. Evidence exists for the presence of a telomerase suppressor on chromosome 3 

(Ohmura et a l, 1995), which could be a target for inactivation during the process of 

immortalisation; since the short arm of chromosome 3 displays a high frequency of 

LOH and deletions in a broad range of human tumours (reviewed in Kok et a l, 1997), 

the gene responsible for this effect may be present on 3p. More recently, Soder et a l, 

(1997) have demonstrated that over-representation and amplification of the human RNA 

component of telomerase, which maps to chromosome 3q, occurs in a number of tumour
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types in vivo, showing that telomerase components themselves can function as 

oncogenes. Although not yet stated explicitly, continued abrogation of the pathways 

regulating M l of replicative senescence is a pre-requisite for immortalisation. This has 

been demonstrated in experimental systems where inactivation of p53 and pRb was 

reversible (Radna et al., 1989;Wright et a l, 1989). The obverse is not true, however, 

since inactivation of telomerase in immortal cells reverses immortality but does not 

restore senescence (Feng e ta l,  1995).

Unlike M2, multiple pathways appear to be operative in the regulation of M l. As 

mentioned, fusions between different immortal human cells can result in hybrids which 

senesce, in which case the genomes of the fusion partners complement each other’s 

genetic defects, restoring normal M l control (hybrids undergo irreversible growth arrest 

rather than entering crisis). Occasionally, such fusions produce hybrids which retain 

their unlimited replicative potential, such cell lines are assumed to possess the same 

underlying M l defect and can thus be designated to the same complementation group. In 

this way Pereira-Smith and Smith, (1988) were able to assign immortal cells to four 

complementation groups, A-D. This categorization does not appear to reflect cell type, 

embryonal layer of origin, or tumour type from which the immortal cells have been 

derived (Pereira-Smith and Smith, 1988), nor does it correlate with the p53, pRb- 

pathway or telomerase activity status of the cell lines (Whitaker et a l, 1995). However, 

the majority of group A immortal cell lines studied by Pereira-Smith and Smith had 

been immortalised by SV40 virus, indicating a bias for subsequent mutational 

inactivation in these cells. The existence of four genetic complementation groups for 

immortality finds a physical (if still enigmatic) correlate in the cellular distribution of 

mortalin, a member of the hsp70 family of heat shock proteins (Wadhwa et a l, 1995). 

This 66 KDa protein generates a diffuse granular pattern in the cytoplasm of mortal cells 

by immunocytochemical staining, while the staining in immortal cells is less diffuse, 

adopting a distinct distribution dependent on the immortality complementation group 

status. Thus staining for mortalin presents a facile way of assigning complementation 

group status to an uncharacterised cell line that appears wholly reliable.

The recessive genetic basis for M l control has been further re-inforced by 

microcell-mediated monochromosome transfer studies, which have simultaneously 

allowed mapping of the complementation group genes. These studies show that the 

transfer of a single chromosome can restore senescent properties only to recipient cells 

which fall within a particular complementation group, and that this is a unique property
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of the selected chromosome. In this way, the genes corresponding to complementation 

groups B, C, and D have been mapped to chromosomes 4, 1 and 7 respectively (Ning et 

a l, 1991; Hensler etal., 1994; Ogata etal., 1993; Ogata et al., 1995). Complementation 

by re-introduction of chromosomes 1, 4, or 7 into the appropriate immortal cell line 

results in delayed growth arrest and induction of senescence associated markers (Dimri 

et a l, 1995; Nakabayshi et al., 1997). Additional chromosomes have also been reported 

to confer delayed growth arrest to immortal cells when introduced by micro-cell 

mediated monochromosome transfer (Uejima, 1992; Koi et a l, 1993; Sandhu et a l, 

1994; Ohmura et a l, 1995), and occasionally more than one chromosome has been 

shown to confer senescence on the same cell line (Yamada et a l, 1990). It is not clear in 

all these instances whether it was specifically an Ml program that was restored or 

whether cells may be losing their replicative potential due to other processes such as 

terminal differentiation. However, these observations raise the possibility that multiple 

TSGs interact to establish and maintain replicative senescence. The nature and function 

of these genes is unknown and can only be speculated on. Their products may provide 

the missing links between telomere shortening and induction of the senescence program 

or, like pRb, p53, p i6™ ^, and p21WAF1/CIP1, may be cell-cycle inhibitory molecules.

1.6 Evidence for a tumour suppressor/replicative senescence gene on 

human chromosome 7

The senescence gene corresponding to complementation group D has been 

mapped to human chromosome 7 (Ogata et a l, 1993; Ogata et a l, 1995). Microcell- 

mediated transfer of chromosome 7 into two immortal, non-tumourigenic, fibroblast cell 

lines, SUSM-1 and KMST-6, obtained by treating normal human diploid fibroblasts 

with a genotoxic regimen, and a human hepatoma cell line, HepG2, all assigned to 

complementation group D, resulted in senescence of these cells within 10-30 population 

doublings following treatment. This effect was specific to chromosome 7: introduction 

of chromosomes 1 and 11, which have been shown to induce delayed growth arrest in 

other immortal cell lines (Hensler et a l, 1994; Koi et a l, 1993), had no effect upon the 

replicative potential of any of these three cell lines. In addition, no effect was observed 

upon introduction of chromosome 7 into three other tumour-derived immortal cell lines, 

HT-1080 (fibrosarcoma), HeLa (cervical carcinoma), and TE85 (osteosarcoma), which 

are representative of complementation groups A, B, and C, respectively. Re-introduction
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of a functional replicative senescence gene on chromosome 7 was accompanied by 

telomeric attrition, and induction of senescence-associated (s.a) (3-galactosidase activity 

and redistribution of mortalin (Nakabayashi et a l, 1997). Again by using microcell- 

mediated monochromosome transfer, it has been shown that human chromosome 7 can 

in addition suppress tumourigenicity when introduced into a murine squamous cell 

carcinoma derived cell line (Zenklusen et al., 1994a), providing independent evidence 

for the existence of a tumour suppressor gene on this chromosome.

Independent lines of investigation implicate a single chromosomal region, 7q31, 

in both of these phenomena: tumour suppression and replicative senescence. Several 

reports have indicated that karyotypic alterations of chromosome 7 are common in many 

different types of human neoplasias. Monosomy 7 is a frequent finding in 

haematopoietic and other non-epithelial disorders, whereas trisomy 7 is often observed 

in various neoplasias, primarily of epithelial origin. The trisomic cases, however, 

frequently present limited interstitial deletions of the long arm of the chromosome as 

well, and in some cases these have been shown to correspond to the cytogenetic band 

7q31 (reviewed in Zenklusen and Conti, 1996). A number of studies have revealed a 

high incidence of LOH on the long arm of chromosome 7 in a broad range of human 

tumours, including carcinomas of the breast (Bieche et al., 1992; Zenklusen et a l, 

1994b), colon (Zenklusen et a l, 1995a), kidney (Shridhar et al., 1997), ovary (Zenklusen 

et a l, 1995b, Kerr et a l, 1996; Koike et a l, 1997), pancreas (Achille et a l, 1996), 

prostate (Zenklusen et a l, 1994°; Takahashi et a l, 1995), and stomach (Kuniyasu et a l,

1994) as well as squamous cell carcinomas of the head and neck (Zenklusen et a l, 

1995a; Loughran et a l, 1996b). The highest frequency of LOH was reported for the 

CA.GT repeat D7S522. Collectively, these studies implicate the chromosomal region 

7q31 as harbouring a multi-tissue TSG. High frequency LOH was also observed for the 

syntenic region A2 of mouse chromosome 6 in chemically induced hepatomas, and 

squamous cell carcinomas (Zenklusen et a l, 1996b; Zenklusen et a l, 1997), suggesting, 

together with the ability of human chromosome 7 to suppress tumourigenicity in a 

mouse carcinoma cell line (Zenklusen et al., 1994a), that the TSG on human 

chromosome 7 has been conserved through evolution. RFLP analysis of DNA from the 

two immortal fibroblast cell lines, SUSM-1 and KMST-6, also revealed loss of genetic 

material from the 7q31 region (Ogata et a l, 1993), suggesting that a gene from this area 

is involved in replicative senescence as well. Since replicative senescence can be viewed 

as an anti-tumour adaptation, then the convergence of these two groups of studies, loss
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of heterozygosity in tumours and in the group D cell lines, on a common chromosomal 

region raises the possibility that a single gene is responsible for both phenomena.

1.8 Aims

The aim of my project is a subset of the overall aim of our research group, 

namely: to clone and characterise the tumour suppressor/ replicative senescence gene on 

the long arm of human chromosome 7. Towards this ultimate end, more immediate 

needs include mapping the region on 7q in which the gene resides through the analysis 

of LOH in tumour DNA samples and immortal S\JSM-1/Hytkl segregants; developing 

additional polymorphic markers from this region to facilitate higher resolution mapping; 

establishing yeast and bacterial clone coverage of the implicated region and developing 

novel STS markers to facilitate their contiguation; and identifying genes from within the 

region. Finally, and in keeping with Haber and Harlow’s rigorous demand, the 

chromosome 7 tumour suppressor/ replicative senescence gene will be identified 

through the demonstration of loss-of-function mutations in genes isolated from the 

critical region in tumours, complementation group D cell lines, or immortal SUSM- 

1/Hytkl segregants. I have endeavoured to dirty my hands with some of all this business.
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CHAPTER 2 

MATERIALS AND METHODS
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2. Materials and Methods.

2.1 Materials.

2.1.1 Chemicals and reagents.

All chemicals not individually listed were obtained (AnalaR grade) from BDH 

Chemicals Ltd., Poole, Dorset, UK. Solutions and buffers were prepared using de­

ionized water (dt^O) obtained from a Millipore MilliRO 15 system.

Chemical Source

Redivue [a-32P] dCTP~3000Ci/mmol Amersham International pic., 

Amersham, Buckinghamshire, UK

CsCl Boehringer Mannheim UK,

Hepes Lewes, East Sussex, UK

Mops

Butan-l-ol Fisher Scientific UK. Ltd.,

Chloroform Loughborough, Leicestershire, UK

38% (w/v) Formaldehyde

Propan-1-ol

Dimethyl formamide Fluka Chemika-Biochemika AG, 

Buchs, Switzerland

Ethanol James Burrough Ltd., 

Witham, Essex, UK

Tris Life Technologies Ltd.,

Trizol Paisley, UK

Deoxyribonucleotides Promega, 

Southampton, UK

Water-saturated phenol Rathburn Chemicals Ltd., 

Walkerburn, UK
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Bicinchoninic acid solution Sigma Chemical Co. Ltd.,

Bovine serum albumin (BSA) Poole, Dorset, UK

Bromophnol blue

CuS04

DEPC

Dithiothreitol

Ethidium bromide

MES

NP40

PMSF

TEMED

Tween 20

2.1.2 Enzymes

All DNA modifying enzymes and their buffers, except those listed below, were 

obtained from Life Technologies Ltd., Paisley, UK.

Enzyme Source

BstXI Boehringer Mannheim UK,

Klenow polymerase Lewes, East Sussex, UK

Proteinase K

NovoZyme Novo BioLabs, 

Bagsvaerd, Denmark.

DNA’ase free RNA’ase A Sigma Chemical Co. Ltd., 

Poole, Dorset, UK

Taq polymerase Bioline, 

London, UK

T4 DNA ligase Northumbria Biologicals Ltd., 

Cramlington, Northumberland, UK
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2.1.3 Kits

Kit Source

ECL western blotting detection kit Amersham International pic., 

Amersham, Buckinghamshire, UK

HighPrime random-priming labelling Boehringer Mannheim UK,

mixture Lewes, East Sussex, UK

TA-cloning kit Invitrogen,

NV Leek, Netherlands.

First strand cDNA synthesis kit Life Technologies, 

Paisley, UK

Geneclean II BIO 101 Inc., 

Vista, CA, USA

ABIPRISM DNA sequencing kit PE Applied Biosystems, 

Warrington, UK

Riboprobe Sp6/T7 combination system Promega,

Wizard Genomic DNA isolation kit Southampton, UK

2.1.4 General plasticware

Source

Filter pipette tips Greiner Labortechnik Ltd., 

Gloucestershire, UK

Falcon tubes Becton-Dickinson Labware, 

Plymouth, UK

5 ml bijous Bibby-Sterilin Ltd.,

20 ml universals Staffordshire, UK

microcentrifuge tubes Elkay,

pipette tips Galway, Eire
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2.1.5 Miscellany

Source

MicroSpin S-200 and S-400 HR columns Pharmacia Biotech. Inc., Herts., UK

Sonicated, denatured genomic DNA from Sigma Chemical Co. Ltd.,

human placenta Poole, Dorset, UK

Torula yeast RNA type VI

2.1.6 Electrophoresis gels

Source

Agarose, ultrapure, electrophoresis grade Life Technologies,

Paisley, UK

Polyacrylamide Severn Biotech Ltd.,

Kidderminter, UK

Sequagel BS+S

Edinburgh, UK

2.1.7 Molecular weight markers

Marker Source

S. cerevisiae size standard Bio-Rad Laboratories, 

Hercules, CA, USA

<J)X174 DNA/ Hae III fragments Life Technologies Ltd.,

X DNA/ Hind III fragments 

0.249.5 Kbp RNA ladder

Paisley, UK

Prestained ‘rainbow’ protein markers Amersham International pic.,

(2,350-46,000 Da) Amersham, Buckinghamshire, UK

2.1.8 Membranes, paper, and X-ray film.

Source

Hybond nylon membranes Amersham International pic.,
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Amersham, Buckinghamshire, UK

Immobilon-P Millipore (UK) Ltd., 

Watford, Hertfordshire, UK

3MM filter paper Whatman International Ltd., 

Maidstone, Kent, UK

X-ray film (X-OMAT-AR) Eastman Kodak Co., 

Rochester, New York, USA

2.1.9 Antibodies

Antibody Source

anti-caveolin-1 polyclonal antibody Affiniti Research Products Ltd.,

(C13630) Exeter, UK

horseradish peroxidase conjugated anti­ Amersham International pic.,

rabbit Ig sary antibody Amersham, Buckinghamshire, UK

2.1.10 Microbial host, media, and supplies.

Sterile glassware and Luria (L)-broth (Maniatis et al., 1989) were prepared by 

Beatson Institute for Cancer Research, BICR, central services.

Source

Petri dishes Bibby-Sterilin Ltd., 

Staffordshire, UK

Cosmid and PAC clones Central Resource/Primary Database of the 

German Human Genome Project,

Berlin, Germany

Bacto-agar Difco,

Bacto-peptone Detroit, MI, USA

Bacto-yeast extract

Tryptone

Yeast nitrogen base without amino acids

ENVaF competent E. Coli Invitrogen,
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NV Leek, Netherlands.

DH5a competent E. Coli Life Technologies,

NZY broth Paisley, UK

CEPH megaYAC clones 746h5, 905g2, Research Genetics Inc.

921b4 and 976b5 Huntsville, AL, USA

Ampicillin Sigma Chemical Co. Ltd.,

Kanamycin Poole, Dorset, UK

PAC clone 162-021 UK Human Genome Mapping Project 

Resource,

Hinxton Hall, Cambridge, UK

2.1.11 Plasmid vectors

Vector Source

pBluescript SK (+/-) Stratagene Ltd.,

Cambridge, UK.

pSPL3 Dr Melissa Brown

Imperial Cancer Research Fund,

Lincolns Inn Fields, London, UK

2.1.12 Libraries

Library Source

Senescent human foreskin fibroblast Dr George Reid,

cDNA library BICR

Human chromosome 7 specific cosmid Central Resource/Primary Database of the

library filters German Human Genome Project, 

Berlin, Germany

HeLa cDNA library Stratagene Ltd., 

Cambridge, UK

Human genomic DNA PAC library filters UK Human Genome Mapping Project 

Resource,

Hinxton Hall, Cambridge, UK
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2.1.13 Breast carcinoma DNA samples

100 paired breast carcinoma/peripheral blood DNA samples (100 ng/pl) in TE 

buffer (10 mM Tris.HCl, 1 mM EDTA) were the kind gift of Prof. Ellen Solomon, 

Guy’s Hospital, London, UK.

2.1.14 Cell culture media and supplies.

Sterile glassware, PE, PBS, and water were prepared by the (Beatson Institute for 

Cancer Research) BICR central services.

Source

Freezing vials A/S Nunc, 

Roskilde, Denmark

Cell culture plastic dishes Becton-Dickinson Labware, 

Plymouth, UK

Electroporation cuvettes Bio-Rad Laboratories, 

Hercules, CA, USA

FCS Bioclear UK Ltd. 

Devizes, Wilts, UK

Hygromycin B Calbiochem-Novabiochem UK Ltd., 

Beeston, Nottingham, UK

Dimethyl sulphoxide (DMSO) Fisher Scientific UK. Ltd., 

Loughborough, Leicestershire, UK

L-glutamine Life Technologies, Paisley, UK

Trypsin

DMEM Sigma Chemical Co. Ltd.,

Penicillin Poole, Dorset, UK

Sodium bicarbonate

Sodium pyruvate

Streptomycin
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2.1.15 Cell lines

The ovarian carcinoma cell lines listed below were kindly provided by Dr. R. 

Brown, CRC Beatson laboratories, Medical Oncology, Glasgow, UK, pancreatic cell 

lines by Dr. N. Lemoine, ICRF, London, UK, and prostatic carcinoma cell lines by Dr. 

R. Leake, Dept, of Biochemistry, University of Glasgow, Glasgow, UK. All other cell 

lines were provided by Dr. E. K. Parkinson, BICR.

Cell Line Tumour of Origin

A1698 bladder

A16980R

J82

MCF-7 breast

MDA-MB-231

ZR-75-1

KMST-6 fibroblast*

SUSM-1

HT1080 fibrosarcoma

143 BTK osteosarcoma

A2780 ovarian

CHI

OVCAR3

OVCAR4

OVCAR5

C0L0357 pancreas

HS700T

PACA3

SUIT2

TMSG

DU145 prostate

LnCaP

PC3

HeLa vulva

* Both are non-tumourigenic, immortalised fibroblast cell lines
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2.1.16 Websites

Centre d’Etude du Polymorphisme Humain (CEPH):

http://www.cartagene.cephb.fr/bio/ceph-genethon-map.html

Cooperative Human Linkage Centre (CHLC): 

http ://www.chlc.org

Genethon:

http://www.genethon.fr/genethon_en.html

Genome Data Base:

http ://gdbwww.gdb.org

National Center for Biotechnology Information (NCBI): 

http://www.ncbi.nlm.nih.gov

National Human Genome research Institute (NHGRI): 

http://www.nhgri.nih.gov

Whitehead Institute/MIT Center for Genome Research: 

http://www-genome.wi.mit.edu/

2.2 Methods.

2.2.1 Cell culture

2.2.1.1 Carcinoma cell lines and SUSM-1/Hytk7 immortal segregants

A1698, A16980R, J82 MDA-MB-231, SUSM-1, HT1080, 143-BTK, 

COL0357, SUIT2, TMSG, DU145, and PC3 cell lines were cultured in Dulbecco’s 

MEM (DMEM) supplemented with 10% (v/v) FBS, 2 mM L-glutamine, and 1 mM 

sodium pyruvate. 100 units/ml hygromycin B was added to the medium for selection of 

SUSM-l///yf£7 segregants. MCF-7, ZR-75-1, A2780, OVCAR3, -4, and -5, and LnCaP
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cell lines were cultured in RPMI supplemented with 10% (v/v) FBS, 2 mM L-glutamine, 

and 1 mM sodium pyruvate.

2.2.1.2 Culture and transfection of COS7 cells with pSPL3

For exon-amplification (Buckler et al., 1991), recombinant pSPL3 plasmid 

(Church et al., 1994) containing restricted cosmid DNA as insert (see section 2.2.4 for 

preparation of recombinant plasmid) was transfected by electroporation into COS7 cells. 

COS7 cells were propagated in DMEM supplemented with 10% (v/v) FBS, 2 mM L- 

glutamine, and 1 mM sodium pyruvate. For transfection COS7 cells were grown to 75- 

85% confluence, trypsinised, collected by centrifugation, and washed in ice cold PBS. 

The washed cells (approximately 4 x 106) were then resuspended in 0.7 ml PBS and 

combined in a pre-cooled electroporation cuvette with 0.1 ml PBS containing 10 pg 

recombinant pSPL3 or non-recombinant pSPL3 as a control. After 10 min on ice the 

cells were gently resuspended, electroporated (1.2 kV, 25 mF) in a Gene Pulser (Bio- 

Rad Laboratories, Hercules, CA, USA), and placed on ice again. After 10 min the cells 

were transferred to a 100 mm tissue culture dish containing 10 ml pre-warmed culture 

medium.

2.2.2 Nucleic acid preparation and quantitation

2.2.2.1 Extraction and purification of mammalian genomic DNA

Genomic DNA was prepared from mammalian cell lines according to Laird et al. 

(1991). Cells were first harvested by trypsinisation and then pelleted by brief 

centrifugation in a microcentrifuge tube. Cells were resuspended and simultaneously 

lysed by trituration in 1 ml of lysis buffer (100 mM Tris.HCl pH 8.5, 5 mM EDTA, 

0.2% (w/v) SDS, 200 mM NaCl, 100 pg Proteinase K/ml), followed by incubation for 

several hours at 37 °C with constant agitation. DNA was precipitated by addition of an 

equivalent volume of propan-2-ol with gentle mixing until viscosity was gone. The 

aggregated precipitate was then removed by lifting from the solution with a sterile 

plastic inoculation loop. Excess liquid was dabbed off and DNA was rinsed in 70% 

(v/v) ethanol. After being allowed briefly to air-dry, DNA was dispersed into 0.5 ml TE 

(10 mM Tris.HCl, 1 mM EDTA pH 8.0).
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2.22.2 Preparation of yeast DNA

CEPH megaYACs are propagated in S. cerevisiae host strain AB1380 (trpl ura3 

ade2). The YAC vector, pYAC4, complements the AB1380 auxotrophic deficiencies 

allowing positive selection of YAC DNA in minimal medium lacking tryptophan and 

uracil, e.g. AHC medium (0.175 (w/v) yeast nitrogen base without amino acids, 38 mM 

(NH4)2S04, 1% (w/v) acid hydrolysed casein, 540 pM adenine hemisulphate), while 

disruption of the sup4ochre gene by insertion in the YAC vector cloning site allows 

identification of recombinant yeast, which develop a pink pigmentation when grown 

with limiting amounts of adenine. Agar stab cultures of YAC clones were used to 

inoculate both flasks containing YPD medium (an enriched all-purpose, complex 

growth medium comprising 1% (w/v) bacto-yeast extract, 2% (w/v) bacto-peptone, 2% 

(w/v) glucose) for the preparation of glycerol stocks and AHC plates (1.5% (w/v) agar in 

AHC medium). Plates were incubated over-night in an inverted position, while flasks 

were agitated in an orbital shaker. Liquid cultures were mixed with an equivalent 

volume of 50% (v/v) glycerol and aliquoted into cryotubes for preservation of yeast at - 

70 °C.

A single pink colony of YAC clone was picked from an AHC plate and used to 

inoculate a flask containing AHC medium. For STS content mapping of YACs, total 

yeast DNA was prepared from over-night cultures using a Wizard Genomic DNA kit 

according to the manufacturer’s instructions. To prepare yeast DNA for isolation of 

YACs by preparative pulse-field gel electrophoresis (PFGE), it was necessary to lyse 

yeast in low melting point (LMP) agarose to prevent shearing of chromosomal DNA. 

Yeast from a 30 ml over-night culture were pelleted by centrifugation at 3000 rpm for 5- 

10 min at room temperature in a bench top centrifuge and then resuspended in 15 ml 

Tris.HCl pH 7.5 and 50 mM EDTA. Yeast were then pelleted again and this time 

resuspended in 15 ml SCE (1 M sorbitol, 0.1 M sodium citrate pH 5.8,10 mM EDTA). 

Following centrifugation, yeast were resuspended in 600 pi of SCE containing 10 mM 

DTT. Novozyme was added at a concentration of 8 mg/ml and the yeast incubated at 

room temperature for 5 min before being transferred to a water bath at 50 °C. Yeast 

were then mixed with an equivalent volume 1% (w/v) molten LMP agarose in SCE also 

equilibrated to 50 °C. The yeast-agarose mixture was gently mixed by inversion before 

200 pi was aliquoted into the wells of a pre-chilled block former on ice. Blocks were
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allowed to set and then transferred to SCE containing 10 mM DTT, in which they were 

incubated at 37 °C for 1-2 hr. Blocks were subsequently transferred to yeast lysis buffer 

(1% (w/v) lithium dodecylsulphate, 100 mM EDTA, 10 mM Tris.HCl pH 8.0) and 

incubated over-night at 37 °C. On the following day, blocks were washed 2 x 30 min in 

50 mM EDTA/ 10 mM Tris.HCl pH 7.5. Blocks were stored at 4 °C in this solution.

2.2.2.3 Bacterial clone DNA preparation.

Cosmid and PAC clones were supplied as agar stab cultures. These were first 

streaked out on an L-broth plate (1% (w/v) bacto-tryptone, 0.5% (w/v) bacto-yeast 

extract, 170 mM NaCl, 1.5% (w/v) agar) supplemented with kanamycin (50 ug/ml). A 

single colony was then used to inoculate a flask containing L-broth and kanamycin. For 

the preservation of bacterial stocks, a 0.5 ml aliquot of over-night culture in liquid 

medium was mixed with an equivalent volume of 50% (w/v) glycerol, chilled on ice and 

then stored at -70 °C in plastic cryotubes. Cultures were subsequently re-established by 

inoculation of 5ml of L-broth medium, containing the appropriate antibiotic, with 20 pi 

of the glycerol stock.

Plasmid, cosmid, and PAC DNA were isolated from over-night cultures of 

transformed bacteria by alkaline lysis. Cultures were first refrigerated for 20 min before 

being pelleted by centrifugation, and resuspended in the appropriate volume of solution 

I (100 mM Tris.HCl pH 8.0,100 mM EDTA) (table below). Bacteria were then lysed by 

addition of solution II (0.2 M NaOH, 1% (w/v) SDS) and gentle mixing by inversion. 

After a 5 min incubation on wet ice, detergent and protein were precipitated by addition 

of ice-cold solution III (3M KOAc pH 4.8) and momentary vigorous shaking. After 

incubating on ice for a further 15 min, the flocculate was removed by centrifugation at

10,000 g. Supernatant containing plasmid, cosmid, or PAC DNA was decanted into a 

fresh polypropylene tube. (For small to medium scale preparations of bacterial clone 

DNA, RNA’ase was added at this stage at a final concentration of 10 pg/ml and the 

lysate incubated for 15 min at 37 °C.) 1/10 volume of chloroform was then added to the 

lysate to remove residual protein, the two phases mixed by shaking, and separated by 

centrifugation. The upper aqueous phase was decanted and DNA was precipitated by 

addition of 0.6 volumes of propan-2-ol, followed by washing in 70% (v/v) ethanol. 

DNA was resuspended in TE (pH 8.0).
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1ml

Culture volume 

50 ml 500 ml

Solution I 100 pi 1 ml 20 ml

Solution II 200 \i\ 2 ml 40 ml

Solution III 150 pi 1.5 ml 30 ml

For large scale preparations, plasmid, cosmid, or PAC DNA was further purified 

by equilibrium centrifugation through a continuous CsCl density gradient prepared by 

dissolving CsCl in the DNA solution to a concentration of 1 g/ml and then adding 

ethidium bromide to a final concentration of 740 pg/ml. Centrifugation was performed 

at 80,000 rpm in polycarbonate tubes for 16 hr using a TLA100.3 rotor in a Beckman 

TL-100 ultracentrifuge. Following centrifugation, the lowermost (supercoiled) DNA 

band was removed from the gradient using a syringe and an 18V£ gauge needle. 

Ethidium bromide was extracted by addition of equivalent amounts of water-saturated 

butan-l-ol and the volume increased by addition of water. DNA was recovered by 

addition of 1/10 volume of 3 M NaOAc and 2V2 volumes of ethanol (ethanol 

precipitation) followed by centrifugation at 10,000 g, washing in 70% (v/v) ethanol and 

re-suspension in TE.

2.2.2.4 Total RNA extraction from mammalian cell lines

Extraction of total RNA from mammalian cell lines was carried out following 

the manufacturer’s protocol for Trizol. Sub-confluent cells grown in 10 cm dishes were 

washed twice in ice-cold PBS which was completely removed by aspiration. Cells were 

subsequently lysed directly in the dish by the addition of 1 ml Trizol. A disposable cell 

scraper was implemented to homogenise the cells, and the RNA was solubilised by 

passing the lysate a few times through a pipette tip before being transferred to a fresh 

microcentrifuge tube. Chloroform was added (0.2 ml per 1 ml lysate) and the 

microcentrifuge tube vortexed for 15 s, then incubated on ice for 5 min. The samples 

were centrifuged at 12,000 g at 4 °C for 15 min after which the upper colourless 

aqueous phase was transferred to a fresh microcentrifuge tube and an equivalent volume 

of propan-2-ol added. The samples were stored overnight at -20 °C. The RNA 

precipitate was pelleted by centrifugation at 12,000g at 4 °C for 25 min. The RNA pellet
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was washed once with 1.5 m l ice-cold 75% (v/v) ethanol by vortexing and 

centrifugation at 7,500 g at 4 °C for 8 min. The RNA was air-dried and re-dissolved in 

50 pi (DEPC-treated) RNA’ase-free water.

2.2.2.5 First strand cDNA synthesis.

First strand cDNA, prepared for RT-PCR, was synthesised using a kit, according 

to the manufacturer’s instructions. Approximately 1 pg of total RNA in DEPC-treated 

H2O was combined with 1 x first strand buffer (50 mM Tris.HCl pH 8.3, 75 mM KC1, 3 

mM M gCy, 10 mM DTT, and 0.5 mM of each of the four dNTPs (dATP, dCTP, 

dGTP, dTTP), and incubated for 5 min at 65 °C. The reaction mixture was chilled on ice 

and 1 pi (200 units) of M-MLV reverse transcriptase added, followed by incubation at 

37 °C for 1 hr.

2.2.2.6 Synthesis and Purification of oligonucleotides

Oligonucleotides were synthesised at the BICR as a core service on an Applied 

Biosystems model 392 or 394 RNA/DNA synthesiser using phosphoramidite chemistry 

according to the manufacturer’s instructions. 5' trityl groups were removed as part of the 

synthesis and the oligonucleotides eluted into a solution of 29% (v/v) ammonia. This 

eluate was then incubated at 55 °C overnight in order to 'de-protect1 the 

oligonucleotides. Vials were then chilled on ice and the DNA-ammonia solutions 

transferred to 15 ml Falcon tubes. Oligonucleotides were precipitated by the addition of 

0.1 volumes of 7.5 M ammonium acetate and 3 volumes of ethanol, followed by 

incubation on dry ice for 30min. The DNA was then pelleted by centrifugation in a 

Sorvall HB-6 rotor at 10,000 g for 15 min. The pellet was washed in 70% (v/v) ethanol, 

air-dried and dissolved in 0.5 ml of de-ionised water. DNA concentrations were 

calculated as described below (22.2.1) and the oligonucleotides were then stored at -20 

°C until required.

2.2.2.7 Quantitation of nucleic acid concentrations

Nucleic acids were quantified by spectrophotometric determination of their UV 

light absorbency. 5 pi of sample was added to 495 u l of de-ionised water and the
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absorbency of the solution measured at 260 nm and 280 nm in a quartz cuvette, using 

de-ionised water as a blank. The concentration of the solution was calculated using de 

Beer’s law on the basis that an optical density of 1.0 at 260 nm corresponds to a 

concentration of 50 pg/ml for double-stranded DNA, 40 pg/ml for RNA, and 33 pg/ml 

for single-stranded oligonucleotides. Pure preparations of DNA and RNA have a ratio of 

A260/A280 readings between 1.8 and 2.0.

2.2.3 Polymerase chain reaction (PCR) protocol and analysis of amplification 

products 

2.2.3.1 PCR

The following conditions were used to perform the majority of PCR 

amplifications both for allele loss studies, STS content mapping, and SSCP analysis, 

occasional slight alterations (to the annealing temperature or concentration of 

magnesium ions) were required for optimal results. 100 ng of human or yeast genomic 

DNA or 10 pg bacterial clone DNA was subjected to PCR amplification using lpM  

oligonucleotide primers, 1.5 mM MgCU, 50pM dNTPs, 1 x reaction buffer (50 mM 

KC1, 10 mM Tris.HCl pH 8.0), and 1 unit Taq polymerase in a total reaction volume of 

25 pi. 1 pCi [a32P]-dCTP per reaction was included for in situ radiolabelling of 

amplification products when desired. The thermal cycling parameters consisted of 30 

rounds of 1 min denaturation at 94 °C, 30 s annealing at 55 °C, and 30 s extension at 72 

°C, using an MJC Research PTC-200 thermal cycler (Genetic Research Instrumentation 

Ltd., Dunmow, Essex, UK). Following PCR, amplification products were digested 

where appropriate by direct addition of 10 units of restriction enzyme without change or 

modification of the buffer and incubated for several hours at the appropriate 

temperature.

2.2.3.2 InterA/u PCR

PCR amplification of DNA regions between opposed Alu repeats (interA/w PCR) 

(Figure 2.1) was performed according to Nelson et al. (1989). PCR was carried out in a 

total volume of 50 pi with 100 ng of YAC DNA or 10 pg of cosmid DNA, 1 pM of the 

oligonucleotide primers shown in Table A3 (with the exception of 517 used at a
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concentration of 0.1 pM), 1 x reaction buffer, 300 pM dNTPs, and 2.0 units of Taq 

polymerase for 35 cycles of 94 °C denaturation (1 min), 55 °C annealing (45 s), and 72 

°C extension (3 min). Initial denaturation was 4 min at 94 °C.

A)

a l u  V 
4----------------------

GGCTGGGCGTGGTGGCTCACGCCTGTCCTCCCAGCACTTTGGGAGGCCGAGGTGGGTGGATCACCTGAGGT

CAGGAGTTCAAGACCAGCCTGGCCAACATGGTGAAACCCCGTCTCTACTAAAAATACAAAAATTAGCCGGG

B K 33

CGTGGTGGCGCGCGCCTGTAATCCCAGCTACTCGGGAGGCTGAGGCAGGAGAATCGCTTGAACCCGGGAGG 

T C -6 5  B K 34 a l u  IV

TGGAGGTTGCAGTGAGCCGAGATCGCGCCACTGCACTCCAGCCTGGGCGACAGAGCGAGACTCCGTCTCA 4---------------------
5 1 7

B)
duiv ^  a i d I V  "  ~~l̂ - .111rv duI V   — i i u  J V

---------- SEES-

Figure 2.1. Consensus Alu sequence and location of primers for amplification (A). The 

consensus Alu sequence is derived from Kariya et al. (1987). PCR primers are shown as 

arrows to indicate 5' to 3' orientation relative to the Alu sequence. Primers TC-65 and 

alu IV possess S' extensions, which include a Not I cloning site and an EcoR I cloning 

site respectively. Scheme for amplification (B). After Nelson et al. (1989).

2.2.3.3 Denaturing polyaclylamide gel electrophoresis.

Radiolabelled PCR products from amplified polymorphic markers were resolved 

on 6% (w/v) polyacrylamide gels under denaturing conditions. A gel solution was 

prepared from Sequagel stock solutions which contained 6% (w/v) acrylamide, 0.2% 

(w/v) bisacrylamide, 1 x TBE, and 8 M urea. The solution was polymerised by the 

addition of 150 pi of 20% (w/v) ammonium persulphate and 75 pi of TEMED per 60 ml 

of gel. This solution was then poured between glass plates separated by 0.4 mm spacers 

and was allowed to set at room temperature. Gels were pre-run at 100 W for 45 min 

prior to the loading of samples to warm the gels to approximately 50 °C. 5pl PCR
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product was mixed with 5 pi of STOP buffer (95% formamide, 200mM EDTA pH 8.0, 

0.01% (w/v) xylene cyanol and bromophenol blue) and denatured by heating at 94 °C 

for 10 min, followed by quenching on ice. 3 pi was then subjected to electrophoresis at 

100 W for 2-3 hr depending upon the size of the PCR product. The plates were then 

separated and the gel transferred to a sheet of Whatman 3MM paper, followed by drying 

under vacuum at 80 °C for 45 min, prior to detection of PCR products by 

autoradiography using x-ray film in a cassette with intensifying screens at -70 °C.

2.2.3.4 Tumour allele loss studies and segregant deletion analysis

100 ng template DNA from paired normal (peripheral blood) and surgically 

excised breast carcinomas, or SUSM-1 and segregant cell line DNA were subjected to 

PCR using the standard reaction conditions above (2.2.3.1); amplification products were 

radiolabelled in situ. 30 cycles of amplification was determined to be in the linear part 

of the amplification process (i.e. before product saturation; data not shown), permitting 

the assumption that the ratio of the optical densities arising from two alleles would be 

the same for both normal and tumour DNA samples if no LOH occurred. PCR products 

were resolved on 6% (w/v) polyacrylamide denaturing gels and visualised by 

autoradiography (section 2.233). Allele loss was determined by visual examination of 

autoradiographs.

2.2.3.5 Non-denaturing polyacrylamide gel electrophoresis

For non-denaturing polyacrylamide gels, a 30 % (w/v) stock solution of 

acrylamide, comprising 29 parts acrylamide to 1 part N,N'methyl-bisacrylamide was 

diluted to give a 6% (w/v) gel forming solution containing 1 x TBE and 3% (v/v) 

glycerol. This solution was polymerised by the addition of 150 pi of 20% (w/v) 

ammonium persulphate and 75 pi of TEMED per 60 ml of gel. After mixing, the 

solution was poured into vertical plates with 0.4 mm spacing and allowed to set at room 

temperature. 4 pi PCR product was mixed with 8 pi of STOP buffer and denatured by 

heating at 94 °C for 10 min, followed by quenching on ice. 3 pi was then subjected to 

electrophoresis at a constant 400 V for run lengths (of several hours) determined by the 

migration of the xylene cyanol dye front and the size of the PCR product. Gels were
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fixed by heating at 80 °C under vacuum, and exposed directly to X-ray film for 

detection by autoradiography.

2.2.3.6. SSCP-heteroduplex analysis

For SSCP-heteroduplex analysis, 100 ng DNA prepared from tumours, tumour- 

derived cell lines, or immortal SUSMl/Hytkl segregant cell lines were subjected to 

PCR using the standard reaction conditions above (2.2.3.1). Radiolabelled amplification 

products were then resolved on 6% (w/v) non-denaturing polyacrylamide gels (section 

2.2.3.5) and visualised by autoradiography. Electrophoretic mobility shifts in either 

single or double stranded DNA products were visually determined from the 

autoradiographs.

2.23.1 Automated chain terminator sequencing.

Both cloned DNA and PCR products were sequenced using a Biosystems ABI 

373A automated DNA sequencer operated as a core service by staff at the BICR. 0.3- 

0.5 pg of plasmid or 50-100 ng of a PCR product was mixed with 20 ng of sequencing 

primer, 8 pi of 'Dyedeoxy' reaction mix in a total reaction volume made up to 20 pi with 

water. DNA was subjected to ‘cycle sequencing’ in a DNA thermal cycler (Perkin Elmer 

Cetus) for 25 cycles (each cycle comprises 15 s at 96 °C to denature DNA, 1 s at 50 °C 

for annealing, and 4 min at 60 °C to extend), and the products were then ethanol 

precipitated, washed with 70% (v/v) ethanol, and air dried prior to being re-suspended 

in loading buffer (95% (v/v) formamide, 25 mM EDTA pH 8.0, 1.5 mg/ml dextran 

blue). Samples were then denatured by heating at 94 °C, chilled on ice, and subjected to 

electrophoresis as advised by the manufacturer. Sequence was analysed using the 

Sequencing Analysis program v3.0.

2.2.4 Recombinant DNA techniques

2.2.4.1 Restriction digestion of bacterial clone or genomic DNA

Approximately 1 pg of plasmid DNA, 5 pg of cosmid or PAC DNA, or 10-20 

pg of mammalian genomic DNA was digested in a final volume sufficient to dilute the
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volume of restriction enzyme added 10-fold. Bacterial clone digests were routinely 

performed using 10 units of enzyme per pig of DNA in each reaction and were incubated 

at the recommended temperature for at least 1 hr. Genomic DNA was digested overnight 

with at least 10 units of enzyme being added for each pg of DNA to be digested. A fresh 

aliquot of enzyme (10 units/pg DNA) was added to genomic digests the following 

morning and the digest continued for a further 3 hrs. Digest reactions were stopped by 

the addition of EDTA to a final concentration of 20 mM. Genomic DNA was ethanol 

precipitated as previously described and then air dried prior to being resuspended in an 

appropriate volume of TE for subsequent loading on an agarose gel. For digests of DNA 

requiring the addition of two restriction enzymes, either a buffer compatible for both 

enzymes was selected or the DNA was digested in sequential reactions separated by 

ethanol precipitation.

2.2.4.2 Ligation of DNA/PCR fragments into plasmid DNA

Plasmid DNA was digested as described above. The DNA fragment to be 

inserted was also digested as above to produce blunt ends or complementary sticky ends 

with the vector, and then isolated by gel electrophoresis and purified as described in 

Section 2.2.5.3. To prevent the restricted plasmid DNA from re-ligating without an 

insert, it was first dephosphorylated. Plasmid was digested with the required restriction 

enzyme in the presence of 5 units calf intestinal alkaline phosphatase. Enzyme was then 

removed by extraction with an equivalent volume of equilibrated phenol/chloroform, 

followed by a chloroform extraction, and plasmid DNA was then ethanol precipitated. 

For ligation, 100 ng of vector and two times the molar amount of insert DNA were 

mixed on ice in a reaction containing ligase buffer (66 mM Tris.HCl pH 7.5, 5mM 

MgCl2, 1 mM ATP, 1 mM DTT) and T4 DNA ligase (5-10 units), and incubated at room 

temperature for a minimum of 3 hours. PCR products were cloned using a TA-cloning 

kit according to the manufacturer’s instructions.

2.2.4.3 Transformation of bacterial cells with recombinant plasmid DNA

Competent E. coli (DH5a [supE44 A/«cU169(qp80 lacZAM15) hsdR ll recAl 

endAl gyrA96 thi-1 relAl], INVaF' [F supE44 A/flcU169(cp80 lacZAM15) hsdRll 

recAl endAl gyrA96 thi-1 relAl]) were thawed on ice, and aliquots transferred to pre­
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chilled 1.5 ml screw-cap microcentrifuge tubes. Approximately 10 ng of recombinant 

plasmid DNA was added to the cells and gently mixed by stirring with a pipette tip. 

After incubation on ice for 30 min, cells were heat-shocked at 42 °C for 45 s and then 

placed on ice for a further 2 min. 400 pi of SOC medium (2% (w/v) bacto-tryptone, 

0.5% (w/v) bacto-yeast extract, 20 mM glucose, 10 mM NaCl, 10 mM M gCy was then 

added to the mixture and the cells were incubated at 37°C for 1 hr in an orbital shaker at 

240 rpm. After this time cells were pelleted by briefly pulsing in a microcentrifuge, 450 

pi of supernatant was discarded and the cells resuspended in the remaining 50 pi. Cells 

were then spread on L-broth plates containing 1.5% (w/v) agar supplemented with the 

appropriate antibiotic. Plates were incubated in an inverted position overnight at 37 °C.

2.2.4.4 Colony lifts

Hybond N membranes were layered onto plates containing recombinant E. coli 

and left for 1 min. Five orientation marks were made with a needle through the 

membrane into the agar. After transfer, the filter was carefully lifted ensuring not to drag 

the membrane across the plate, and inverted over 3MM filter paper wetted with 

denaturation solution (1.5 M NaCl, 0.5M NaOH) for 5 min, and then transferred to 

3MM filter paper wetted with neutralisation solution (1.5 M NaCl, 0.5M Tris.HCl pH 

8.0) for 5 min. Finally, the filter was rinsed in 2 x SSC, briefly blotted with 3MM filter 

paper, and UV-crosslinked using a UV Stratalinker 1800 (Stratagene). Filters were 

probed as described below (Section 2.2.5.6) and exposed overnight to Kodak X-OMAT 

AR film with intensifying screens at -70 °C. The films were orientated against the filters 

using the needle marks, and positive clones determined using the strongest signals on 

the film. Plasmid DNA was prepared from positively hybridising colonies as described 

in Section 2.2.2.3.

2.2.5 Blotting and hybridisation protocols

2.2.5.1 Agarose gel electrophoresis of restriction digested bacterial clone or 

genomic DNA and unlabelled PCR products

DNA restriction fragments from plasmids or genomic DNA or unlabelled (cold) 

PCR products were separated on non-denaturing agarose gels and visualised by staining



with ethidium bromide and UV transillumination. Typically, gels were prepared by 

dissolving between 1 and 2% electrophoresis grade agarose in 1 x TAE (40 mM 

Tris.HCl pH 8.0, 20 mM sodium acetate, 2 mM EDTA). After being heated in a 

microwave to dissolve the agarose, molten gels were cooled to approximately 60 °C and 

ethidium bromide added to a final concentration of 5 pg/ml before being poured into an 

appropriate gel former. Once solid, gels were placed into electrophoresis tanks 

containing 1 x TAE. Samples were mixed with one-fifth volume of gel-loading buffer 

(40% (w/v) sucrose, 0.05% (w/v) bromophenol blue and 0.05% (w/v) xylene cyanol) 

prior to being loaded into the wells of the gel. Electrophoresis was performed at 5 V/cm. 

In order to estimate the size of fragments resolved by electrophoresis, samples were run 

alongside aliquots of molecular weight marker, either a Hind HI digest of bacteriophage 

X DNA or an Hae III digest of bacteriophage <j)X174 DNA. DNA was visualised by UV 

transillumination and the gel photographed.

2.2.5.2 PFGE

YAC chromosomal DNA was resolved and isolated by PFGE. Blocks of LMP 

agarose containing YAC DNA (Section 2.2.2.2) were attached to the teeth of a comb by 

a bead of molten 1% (w/v) agarose in 0.5 x TBE cooled to 55 °C. The remainder of the 

molten agarose was then cast around the comb in a gel former, and allowed to set. Once 

the gel had set, the comb was removed leaving the LMP agarose blocks in place. 

Samples along with S. cerevisiae size standards were then subjected to PFGE in a 

contour clamped homogeneous electrical field (CHEF) apparatus (Bio-Rad 

Laboratories, Hercules, CA, USA) with a field strength of 6 V/cm over a 24 hr run time, 

an initial switchtime of 60 s and a final switch time of 120 s. 0.5 x TBE, used as running 

buffer, was chilled to 14 °C and constantly recirculated. Following electrophoresis, the 

pulse-field gel was stained with 5 pg/ml ethidium bromide in dH20, and DNA 

visualised by UV transillumination.

2.2.5.3 Punfication of DNA fragments from agarose gels.

DNA bands of interest were excised from agarose gels using a scalpel with the 

aid of UV transillumination. The excised DNA was extracted from the agarose using a 

Geneclean kit according to the manufacturer’s instructions. Excised agarose blocks were
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weighed and their volumes estimated (1 g = 1 ml), they were then chopped into small 

pieces to aid extraction. 2.5 volumes of 6M Nal was added and the agarose incubated at 

55 °C for 5 min to melt the gel. Following this, 5 pi of glassmilk was added for every 5 

pg, or less, of DNA. This was mixed and left at room temperature for 5 min to allow 

binding. The glassmilk was pelleted by brief centrifugation and washed 3 times by 

mixing with 300 pi NEW wash (a Tris base and EDTA-buffered solution of NaCl, 

ethanol, and H2O), pelleting the glassmilk and removing the supernatant. Finally, half 

the desired volume of TE was added to the cleaned pellet and heated to 55 °C for 5 min. 

The glassmilk was pelleted and the TE containing DNA removed to a fresh 

microcentrifuge tube. This was repeated to elute all the DNA. Typically for most 

applications DNA was eluted in a final volume of 20 pi.

2.2.5.4 Preparation of random-primed radiolabelled probes.

The probes used in this study for the analysis of Northern and Southern blots 

were obtained as follows:

For CAVEOLIN-1, a 1 pi aliquot of phage supernatant (107 pfu/pl) from the 

senescent human fibroblast cDNA library prepared by Dr George Reid was 

subjected to PCR using the above reaction conditions and lpM  each of the 

following oligonucleotide primers: L: CATGTCTGGGGGCAAATACG, R: 

CittCTGCAAGITGATGCGG which amplify the entire open reading 

frame of CAVEOLIN-1.

For hFHAlO.5, again an aliquot of phage supernatant (107 pfu/pl) from the 

senescent human fibroblast cDNA library was subjected to PCR with lpM 

each of the following oligonucleotide primers: L:

CGGATGATCCCTTCTCCC, R: GTCATGCTTTCTTGCGGTCC derived 

from coding sequence.

All probes (with the exception of riboprobes) were radiolabelled with [a32P]- 

dCTP via the method of random priming using a HighPrime kit. Following each 

labelling reaction, unincorporated nucleotides were removed by spin-column 

chromatography using MicroSpin S-200 HR columns according to the manufacturer’s
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instructions. Before being used in reactions, all double-stranded probes were denatured 

by addition of an equivalent volume of 0.4 M NaOH.

2.2.5.5 Preparation of riboprobes from cosmid inserts

The cloning site of the cosmid vector, Lawrist 4, is flanked by promoters 

recognised by T7 and Sp6 bacteriophage RNA polymerases, which can be utilised in the 

production of radiolabelled in vitro run-offs (riboprobes) corresponding to the ends of 

cosmid clone inserts. Riboprobes were prepared using the Sp6/T7 combination system 

according to the manufacturer’s instructions. 1 pg of cosmid DNA digested with Rsa I 

as described in Section 2.2.4.1 was used as template in a 20 pi reaction volume 

comprising 1 x transcription optimized buffer, 10 mM DTT, 20 units recombinant 

RNasin ribonuclease inhibitor, 0.5 mM ATP, GTP, and CTP, 12 uM UTP, 50 uCi 

[a32P]-UTP, and 20 units of either T7 or Sp6 RNA polymerase. The reaction was 

incubated at 37 °C for an hour, after which time unincorporated nucleotides were 

removed by spin-column chromotography.

2.2.5.6 Southern analysis

Following electrophoresis of DNA samples, DNA was depurinated by soaking 

the gel in freshly prepared 0.25M HC1 for 15 min at room temperature with constant 

shaking. The gel was rinsed in de-ionised H2O and then soaked for a further 15 min in 

0.4 M NaOH to denature the DNA strands. DNA was transferred overnight onto 

Hybond N+ membrane by upward capillary blotting using 0.4 M NaOH, essentially as 

described in Maniatis et al. (1989).

Membranes were pre-hybridised at 65 °C for four hours in hybridisation solution 

(5 X SSPE, 5 X Denhardt’s, 0.5% (w/v) SDS, 1 mg/ml torula yeast RNA type VI), and 

then hybridised overnight at 65 °C in a minimal volume of fresh hybridisation solution 

with added radiolabelled probe (5 x 106 cpm/ml). Following hybridisation, probe bound 

non-specifically to the membrane was removed by washing the membranes twice in 0.2 

x SSC/0.1% (w/v) SDS for twenty min at 65 °C, and then once in 0.1 x SSC/0.1% (w/v) 

SDS for a further twenty min at 65 °C. Excess liquid was removed and membranes 

wrapped in Saranwrap before being exposed to X-ray film (X-OMAT-AR, Eastman
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Kodak Co., Rochester, New York, USA) in a cassette with an intensifying screen at -70 

°C for detection of hybridisation by autoradiography.

For successive hybridisations to the same membranes, radiolabelled probe was 

removed from the membranes by washing in a boiling 0.1% (w/v) SDS solution. 

Membranes were then agitated at room temperature until the SDS solution had cooled to 

room temperature. Blots were then wrapped in Saranwrap and stored at 4 °C until 

further required.

2.2.5.7 Northern analysis

Total RNA samples (20 pg) were mixed with 3 volumes RNA loading buffer 

(2ml contains 350 pi formaldehyde, 1 ml formamide, 150 pi RNA loading dye {50% 

(v/v) glycerol, 0.1 mM EDTA, 0.6% (w/v) bromophenol blue, 0.6% (w/v) xylene 

cyanol} 30 pi ethidium bromide— 10 mg/ml stock, 200 pi 5 x Mops buffer containing 

0.1 M Mops, 40 mM Sodium acetate, 5 mM EDTA, pH 7.0), and heated for 10 min at 

65 °C. The samples were loaded onto a 1% (w/v) agarose gel containing 20% (v/v) 5 x 

Mops, 17.5% (v/v) formaldehyde. Electrophoresis was performed overnight at 5 V/cm 

in 1 x Mops buffer which was constantly recirculated. The RNA was visualised by UV 

transillumination and photographed before the gel was soaked in de-ionised H2O for 10 

min to leach out the formaldehyde.

RNA was transferred to Hybond N membrane by upward capillary blotting, as 

described in Maniatis et a l (1989), using a 20 x SSC (3 M NaCl, 0.3 M sodium citrate, 

pH 7.0) solution as transfer buffer. The membrane was UV-crosslinked using a UV 

Stratalinker 1800 (Stratagene). Membranes were prehybridised in 10 ml of hybridisation 

solution (200 mM NaPC>4, ImM EDTA, 15% (v/v) formamide, 7% (w/v) SDS, 0.1% 

bovine serum albumin) at 65 °C for a minimum of 5 hours. The hybridisation solution 

was then replaced with fresh solution containing the radiolabelled probe (prepared as in 

section 2.2.5.4) at a concentration of 5 x 106 cpm/ml, and hybridised at 65 °C overnight. 

The membrane was washed at low stringency (2 x SSC, 0.05% (w/v) SDS) several times 

at room temperature and then at high stringency (0.1 x SSC, 0.1% (w/v) SDS) at 50 °C 

for 40 min with one change of fresh wash solution. Excess solution was shaken from the 

membrane, and the blot covered in Saranwrap and exposed to X-ray film at -70 °C with 

intensifying screens.

85



Radioactive probe was stripped from the membrane by gentle agitation of the 

blot for 10 min in dt^O containing 0.5% (w/v) SDS which had been heated to 100 °C. 

The solution was allowed to cool before the membrane was removed. The membrane 

was stored wrapped at -20 °C.

2.2.5.8 Screening the human chromosome 7 cosmid and human PAC library

Nylon membranes supporting a cosmid library prepared from flow-sorted 

chromosome 7 isolated from a 4X lymphoblastoid cell line, LCL 127 (Nizetic et al., 

1994) and a human PAC library constructed from digests of DNA from a male 

fibroblast cell line (Ioannou et al., 1994) were pre-hybridised at 65 °C for a minimum of 

four hours in hybridisation buffer (5 x SSPE, 5 x Denhardt’s, 0.5% (w/v) SDS, 1 mg/ml 

torula yeast RNA type VI), and then hybridised overnight at 65 °C with radiolabelled 

probe in fresh buffer. Prior to hybridisation of the cosmid library with YAC DNA, both 

probe and filters were competitively hybridised with excess sonicated, denatured human 

placental DNA in order to suppress non-specific binding through repetitive DNA. 

Denatured probe was mixed with 10 pi of placental DNA in 0.5 ml of hybridisation 

buffer, and incubated at 65 °C for 4 hours, while filters were pre-hybridised in the 

presence of 100 pg/ml placental DNA. Following hybridisation, membranes were 

washed twice in 0.2 x SSC/0.1% (w/v) SDS for twenty min at 65 °C, and then once in 

0.1 x SSC/0.1% (w/v) SDS for a further twenty min at 65 °C. The filters were then 

exposed to X-ray film overnight at -70 °C in a cassette with an intensifying screen.

2.2.5.9 Western analysis of Caveolin-1 expression

Cells were washed twice in ice-cold PBS, and lysed in a solution comprising 20 

mM MES, 150 mM NaCl, 1% triton, 0.1% SDS, 1 mM PMSF, and 2 mM benzamidine, 

using a disposable cell scraper to assist homogenisation. Lysates were centrifuged at

14,000 rpm for 15 min at 4 °C in a microcentrifuge to pellet cell debris. The resultant 

supernatants were stored in aliquots at -70 °C until needed. Protein concentrations were 

determined by performing a bicinchoninic acid colourimetric assay. 10 pi aliquots of a 

1:9 dilution of whole cell lysates were incubated with 200 pi of reaction mix (1 volume 

of 4% (w/v) CuSC>4 to 50 volumes bicinchoninic acid solution) at 37 °C for 45 min. 

Absorbency was measured at 590 nm wavelength light using a Dynatech MR7000
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Spectrophotometer. Calibration was performed using a range of BSA standards (80- 

2000 pg/ml).

For detection of Caveolin-1 by immunoblotting, 20 pg of proteins were resolved 

by electrophoresis through a 12% (w/v) acrylamide gel containing SDS. 20 ml of a 30% 

(w/v) acrylamide solution (19:1 acrylamide to bisacrylamide) was combined with 6.25 

ml 3 M Tris.HCl pH 8.8, 18 ml water, and 500 pi 10% (w/v) SDS. Polymerisation was 

initiated by the addition of 250 pi of 20% (w/v) ammonium persulphate and 100 pi of 

TEMED. This solution was cast to within ~3cm of the top of two glass plates separated 

by 2mm spacers to allow for the pouring of a stacking gel. Prior to setting butan-l-ol 

was poured on top of the resolving gel solution to eliminate bubbles that would interfere 

with the formation of a smooth interface between the stacking and resolving gels. Once 

the gel was set, the butan-l-ol was washed away with de-ionised water. A stacking gel 

was then prepared which contained 4% (w/v) acrylamide, 0.125M Tris.HCl (pH 6.8), 

0.1% SDS, 0.05% (w/v) ammonium persulphate and 0.002% (v/v) TEMED. This was 

poured on top of the resolving gel, a comb inserted and the solution allowed to set at 

room temperature for 15-20 min. After polymerisation, the gel former, comb and gasket 

were removed and the glass plates containing the gel transferred to a gel tank containing 

1 x gel running buffer (50 mM Tris.HCl, 1% (w/v) glycine, 0.25% (w/v) SDS).

Samples were prepared for electrophoresis by mixing 20 pg of protein with an 

equivalent volume of 2 x Laemmli buffer (100 mM Tris.HCl pH 6 .8, 4% (w/v) SDS, 

0.2% (w/v) bromophenol blue, 20% (v/v) glycerol, 5% (v/v) |3-mercaptoethanol), 

boiling the samples for 10 min, chilling briefly on ice, and then loading into the wells of 

the stacking gel alongside an aliquot of prestained ‘rainbow’ protein markers (2,350-

46,000 Da), employed for protein molecular weight determination. Gels were run at 40 

V for several hours. Proteins were then transferred from the gel to ImmobilonP 

membrane via semi-dry electroblotting for 1 hr using layers of Whatman 3MM paper 

which had been soaked in blotting buffer (60 mM Tris.HCl, 50 mM glycine, 1.6 mM 

SDS, 20% (v/v) methanol). Before membranes were probed with antibodies, the 

efficiency of transfer and the relative loading per lane was assessed by staining the 

membrane with Ponceau S stain. Membranes were agitated in 10 ml of 1 x stain (0.2% 

(w/v) Ponceau, 3% (w/v) trichloroacetic acid, 3% (w/v) sulphosalcylic acid in dH20) for 

~3-5 min and then rinsed with dH20 until the protein bands became visible. Once 

analysed, the remainder of the stain was washed away with copious amounts of dH20 

before the membrane was probed as outlined below.
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Blots were first blocked for 1 hr in PBS containing 5% (w/v) non-fat milk 

powder, 0.1% Tween 20, and subsequently incubated in solution with a*l:4000 dilution 

of an anti-caveolin-1 polyclonal antibody (C13630) for 1 hr. Following incubation with a 

1:3000 dilution of a horseradish peroxidase conjugated anti-rabbit Ig secondary 

antibody, proteins were visualised using enhanced chemiluminescence according to the 

manufacturer’s instructions.

2.2.6 cDNA library screening

A custom HeLa cDNA library constructed in the ZAP II vector was purchased 

from Stratagene, while a senescent fibroblast cDNA library was prepared by Dr George 

Reid, in our group, also in the ZAP II vector. Plating and screening of these libraries 

was carried out essentially as described in the Stratagene instruction manual, outlined 

briefly below.

2.2.6.1 Preparation of plating cultures

E. coli XLl-Blue {supE44 hsdR ll recAl endAl gyrA96 thi-1 relAl lac F' 

[proAB+ lacE lacZAM15 Tn 10(tef)]) carry the F  episome, which is required for both 

colour selection (not utilised in this case), and the in vivo excision process (see section 

2.2.6.4). The Tn 10 tetracycline resistance gene is also located on the F' episome, 

therefore, in the presence of tetracycline, the episome is selectively maintained. XL1- 

blue cells were streaked onto an L-broth agar plate containing 12.5 pg/ml tetracycline, 

and grown at 37 °C until colonies appeared. A colony was used to innoculate 50 ml L- 

broth supplemented with 0.2% (w/v) maltose and 10 mM MgSC>4 and grown overnight 

with shaking at 30 °C. This temperature ensures that cells will not overgrow since phage 

can adhere to dead cells. The culture was centrifuged at 3000 rpm for 10 min, and the 

pelleted cells gently resuspended in 15 ml of 10 mM MgS04 . The cells were diluted to 

O D 60o = 0.5 with 10 mM MgSC>4 and stored at 4 °C for 7 days maximum. Approximately 

2 ml of cells at OD600 = 0.5 was needed for each 245 mm square plate and 600 pi of 

OD600 = 0.5 cells for each 140 mm plate.
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2.2.6.2 Titering phage

The Lambda ZAP II phage was diluted in 4 serial 10-fold dilutions in SM buffer 

(10 mM MgSC>4, 50 mM Tris.HCl pH 7.5, 10 mM NaCl, 0.01% (w/v) gelatin). In a 15 

ml sterile tube, 600 pi of XLl-blue cells diluted to OD600 = 0.5 were mixed with 1 pi of 

each Lambda phage dilution and incubated at 37 °C for 15 min to allow the phage to 

attach to the cells. 8 ml molten top agar (0.7% (w/v) agarose in L-broth cooled to 50 °C) 

was added to the culture-phage mix and poured immediately onto warmed (37 °C) 140 

mm L-broth plates. The plates were left to set at room temperature and then incubated at 

37 °C overnight. The number of plaques per plate were counted and the titre calculated 

using the formula:

titre = (no. plaques x 1000 x dilution factor) pfu/ml.

2.2.6.3 Screening cDNA library

For both the HeLa and senescent fibroblast cDNA library, approximately

150,000 pfu were plated on each of four large 245mm square L-broth plates with 2 ml of 

OD600 = 0.5 XL 1-Blue cells/plate and 30ml top agar/plate. These were incubated 

overnight at 37 °C. The plates were refrigerated for 2 hours at 4 °C prior to taking lifts 

(Section 2.2.4.4), as this prevents the top agar from sticking to the nitrocellulose filter. 

Filters were prehybridised, hybridised and washed as described in section 2.2.5.6. They 

were then wrapped in Saranwrap and exposed overnight to Kodak X-OMAT AR film 

with intensifying screens at -70 °C. The films were orientated against the filters using 

the needle marks, and positive clones determined using the strongest signals on the film. 

The end of an inverted pasteur pipette was used to core the putative clones from the 

stock agar plates, and the agar plug placed into an microcentrifuge tube with 500 pi SM 

buffer and 20 pi chloroform. The tube was briefly vortexed and incubated overnight at 4 

°C to elute the phage. The phage stock is stable for 1 year at 4 °C.

For each positive clone, 1 pi of a 200-fold dilution of eluted phage in SM buffer 

was added to 600ul XLl-Blue cells at OD600 = 0.5, incubated at 37 °C for 15 min, mixed 

with 8 ml molten top agar, and poured onto 140 mm L-broth plates. Transfer to 

nitrocellulose filters and screening was carried out as described above. This procedure 

was repeated for a total of three platings, such that single positive plaques were isolated.
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2.2.6.4 In vivo excision of the pBluescript phagemid

In vivo excision of the cloned insert is dependent upon the simultaneous 

infection of XLl-blue cells with both the lambda vector (containing cloned insert) and 

the M13 helper phage (ExAssist). The F  episome is required for pili formation, 

necessary for superinfection with the ExAssist helper phage. The M13 phage proteins 

recognise the sites of initiation and termination for DNA synthesis, which have been 

subcloned separately into the Lambda ZAP II vector. The newly synthesised phagemid 

is secreted from the E. coli, and rescued by transformation into SOLR cells. Subsequent 

bacterial colonies contain the pBluescript double-stranded phagemid with the cloned 

DNA insert. Helper phage will not grow, since they are unable to replicate in Su‘ (non­

suppressing) SOLR strains and do not contain ampicillin-resistance genes. SOLR cells 

are also resistant to lambda phage infection, preventing lambda DNA contamination.

Single plaques, isolated as described above, were placed in 500 pi SM buffer 

with 20 p i  chloroform and incubated overnight at 4 °C. In a 15 ml conical tube 200 p i  of 

O D 6oo = 1.0 XLl-Blue cells, prepared as in section 2.2.6.1, were combined with 100 p i  

eluted phage stock and lul ExAssist helper phage, and incubated at 37°C for 15 min. 

After which, 3 ml of terrific broth (for 1 litre: 12g bacto tryptone, 24g bacto yeast 

extract, 4ml glycerol. After autoclaving add 100 ml solution B {0.17 M KH2PO4, 0.72 

M K2HPO4 }) was added and incubated at 37 °C with shaking for 2V2 hours. The tube 

was heated at 70 °C for 15 min, and centrifuged for 5 min at 4000g. The supernatant 

containing the pBluescript phagemid, packaged as phage particles, was stored at 4°C.

To rescue the phagemid, 1 pi supernatant from above was added to 200 pi OD600 

= 1.0 SOLR host cells, and incubated at 37 ° C for 15 min. (The SOLR cells were 

prepared as described for XLl-Blue cells, see section 2.2.6.1, with the following 

changes: SOLR cells were streaked on L-broth agar plates containing 50 pg/ml 

kanamycin. Overnight cultures were grown in L-broth with no supplements.) Following 

incubation, 10 pi and 100 pi of the phage/SOLR mix was spread onto L-broth plates 

containing 50 pg/ml ampicillin, and incubated overnight at 37 °C. Minipreparations of 

plasmid DNA were prepared as described in section 2.2.2.3.
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CHAPTER 3

RESULTS

Tumour LOH analysis and clone 

coverage of a minimally deleted region
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3. Results

3.1 Loss of heterozygosity in breast carcinomas

The first task in any positional cloning project is establishing a chromosomal 

interval within which the gene of interest lies. In the case of TSGs mutated during the 

development of sporadic tumours, which have not as yet been (and may never be) 

associated with familial cancer predisposition and so where no form of linkage analysis 

can facilitate their mapping, then delineating a chromosomal region on the basis of 

frequent LOH in tumour samples presents a viable alternative (Fearon et a l , 1990; Hahn 

et al., 1996a). LOH analysis can detect a wider variety of inactivating events than 

karyotypic analysis, for example microdeletions and mitotic recombination with a 

defective chromatid. In addition, due to the abundance of polymorphic markers 

available, LOH analysis can be used to map TSG loci with higher resolution than is 

possible with cytogenetics alone. RFLP markers, which were used to establish the first 

generation maps of the human genome, and which were the original choice for LOH 

analysis have largely been superseded by simple sequence repeats (SSRs): DNA 

sequences comprising direct tandem repeats of two, three, or four nucleotides 

(Weissenbach et a l, 1992; Sheffield et a l, 1995). The number of repeat units at a 

particular locus, which translates into a length variation, underlies the polymorphism, 

and an individual SSR can have many more allelomorphic forms than the two possible 

for any RFLP, accounting for the generally high frequency of heterozygosity among this 

class of polymorphic markers. Several genetic and physical maps which utilise these 

markers have now been established for the whole genome (Murray et a l, 1994; 

Chumakov et a l, 1995; Hudson et a l, 1995; Dibs et a l , 1996; Gyapay et a l, 1996), and 

for individual chromosomes, including chromosome 7 (Bouffard et a l 1997). These 

maps, which are available in electronic form at various web-sites (Materials and 

Methods), are proving to be invaluable research resources.

Following published reports of LOH on chromosome 7q (Bieche et a l, 1992; 

Kuniyasu et a l, 1994; Zenklusen et a l, 1994b; Zenklusen et a l, 1994°; Takahashi et a l, 

1995; Zenklusen et a l, 1995a; Zenklusen et a l, 1995b), we selected a number of SSR 

polymorphic markers from this chromosomal arm to perform LOH analysis with paired 

normal and breast tumour DNA samples. Initially 25 normal-tumour DNA pairs were 

examined with SSR markers derived by the CHLC spread evenly across the D7S1797-
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D7S1807 interval (corresponding to cytogenetic bands 7q21.1-7qter, or the interval 

72.8-165 cM or 430-657 cR from 7pter, a physical distance of ~60-100 Mbp, Table 

Al). The results are summarised in Table 3.1. From this pilot study, the smallest 

common deleted region appeared to be the interval between D7S1817-D7S1835 (7q22- 

7q31.3; corresponding to 495-510 cR from 7pter, a physical distance of ~ 4 Mbp). This 

interval was selected for further analysis using additional SSR markers published by 

Genethon, and a total of 88 tumour-normal DNA pairs were examined. Representative 

examples of LOH using these markers are shown in Figure 3.1, and the results are 

summarised in Table 3.2. Overall 35/88 (39.8%) of tumour samples displayed LOH at 

one or more informative markers; the most frequently deleted marker was 17TA-5/17B- 

RE3, which was lost in 18/55 (32.7%) of informative cases. (17TA-5/17B-RE3 maps to 

intron 17b of the CFTR gene [Zielenski et al., 1991].) From the distribution of losses, 

the D7S522-17TA-5/17B-RE3 interval (7q31.1; 125.1-125.2 cM) emerges as a region 

that potentially harbours a TSG locus. From available mapping information, this interval 

is estimated to be less than 1 Mbp in extent.

3.2 Clone coverage of the D7S522-17TA-5/17B-RE3 interval

3.2.1 YAC clones

The second stage in positional cloning is establishing clone coverage of the 

defined interval. YACs (Burke et al., 1987), which can be used to propagate large 

inserts of genomic DNA (in the case of CEPH megaYACs inserts can exceed 1 Mbp), 

have greatly facilitated positional cloning projects by allowing rapid assembly of cloned 

DNA fragments which are contiguous and reconstitute a large interval. The WICGR- 

CEPH YAC STS content map was searched for CEPH megaYAC clones encompassing 

the D7S522-17TA-5/17B-RE3 interval. Four YAC clones were selected on this basis: 

746-h5, 905-g2, 921-b4, and 976-b5. An STS content map for these four clones is 

shown in Figure 3.2. It is apparent from the STS content of clone 921-b4 that this YAC 

has undergone an interstitial deletion whose extent can be estimated to be 200-300 Kbp. 

Yeast chromosomes were resolved in a 1% agarose gel using pulse-field electrophoresis 

in a contour-clamped homogeneous electric field
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Tumour D7S
1817

D7S
486

D7S
522

Polym
D7S
633

orphic 1\
17TA-
5/17B-

RE3

barker
AFMA
073ZB9

GATA
44F09

D7S
643

D7S
1835

3 L L NI NI L L L NI R
4 R NI L NI NI L L L L
8 R NI NI NI L R R R NI
14 R NI R NI L R NI NI R
15 R NI NI NI L NI R NI R
18 R R NI NI L L L L R
23 R R R L NI L L L NI
24 NI L NI NI NI L NI NI NI
25 L L L NI NI L L L L
26 L L NI NI L L L L
30 NI L L R NI R NI R NI
31 L L NI L L L L L
37 L L NI L L L L R
38 R R L NI NI R R NI NI
39 L L L L NI L L R
42 R R L NI NI NI L L NI
43 R L R L R L R L
45 NI L L NI L R R R R
47 L NI NI NI L L L NI
49 R L NI NI R R NI R
59 NI NI R R L R R NI R
60 R NI L NI L L L NI R
62 R R NI NI L R R R R
63 NI R L NI NI L R NI R
67 NI R NI NI L R NI R NI
68 NI NI L NI L L L R R
69 R R NI NI NI L R R R
78 R NI ILf L NI L L L
85 R NI NI L R NI NI NI
91 R L NI NI NI R R R
92 R R L L NI R R R
94 L L L NI L L L NI L
97 R NI L NI L R NI R NI
100 R L L NI NI L L NI
Table 3.2. Allele loss in breast carcinoma samples between the markers D7S1817-

D7S1835. The maximum extent of allele loss that can be deduced for the tumour samples is 

shaded. L, loss of heterozygosity; R, retention; NI, non-informative.
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TUMOUR POLYMORPHIC MARKER
I)7S1817 I)7S486 D7S522 D7S633 17TA-5/ AFM A073XA5 CHLC.GATA

4 4 f 0  V
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Figure 3.1. Representative examples of breast carcinoma samples showing 
allele loss. Autoradiographic images for 7q microsatellite markers (shown at 
the top of respective columns) for matched normal (N) and tumour (T) DNA 
samples (from cases numbers shown on the left). Arrows point to the loss of 
an allele (LOH) in tumours compared to corresponding normal DNA.
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(CHEF) apparatus. DNA was transferred onto a nylon membrane and hybridised with 

radiolabelled probe prepared from human genomic DNA. YAC DNA was revealed by 

autoradiography in order to establish insert size (Figure 3.3).

3.2.2 Cosmid clones

YACs possess many inherent deficiencies and limitations as cloning vehicles. 

These include a high rate of chimaerism (co-ligation of non-consecutive DNA 

fragments—almost 50% in the case of CEPH YACs), insert instability resulting in 

deletions and rearrangements, and difficulties preparing large amounts of DNA. These 

failings impede efforts to determine short-range map order, and YAC DNA is difficult 

to use in the isolation of genes by the methods employed in positional cloning (see 

Chapter 5). In an attempt to partially overcome these problems, YAC DNA from clones 

905-g2 and 921-b4, which between them encompass the entire region defined in the 

breast carcinoma LOH study, were used to identify cosmid clones corresponding to this 

interval. Cosmids, plasmid based cloning vectors which possess bacteriophage lambda 

cos sites for in vitro packaging of recombinant DNA in phage heads (Collins and Hohn, 

1978), may only accommodate l/20th the DNA of YACs, and certain clones 

demonstrate instability, nonetheless they surpass YACs in terms of the frequency of 

chimaerism (which is negligible) and the ease with which they can be prepared in bulk 

(standard alkaline lysis). The smaller size of cosmid inserts affords the potential to 

generate finer mapping detail than is possible with YACs.

Radiolabelled YAC DNA was prepared from clones 905-g2 and 921-b4 and 

hybridised to nylon filters supporting a densely gridded array (144 x 144) of cosmid 

clone DNA prepared from flow-sorted chromosome 7 isolated from a 4X 

lymphoblastoid cell line, LCL 127 (Nizetic et al., 1994). The library filters were 

obtained from the Resource Centre/Primary Database of the German Human Genome 

project (Lehrach et al., 1990). A total of 114 cosmids were identified in this way (Figure

3.4) and requested from the Resource Centre/Primary Database. The (x,y) co-ordinates

of the cosmid clones ordered are given in Table 3.3.

Cosmid DNA was prepared and 5 p,g digested with Pvu II. Restriction digest 

fragments were resolved on a 1% agarose gel and then transferred onto nylon 

membranes and probed with YAC DNA as above. 89% (101/114) of cosmids gave a
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Origin

1.9

1.6

1. 10 . 1.12

Figure 3.3. Southern blot of CEPH megaYAC clone DNA. Yeast 
chromosomes were resolved on a 1% agarose gel by pulse-field gel 
electrophoresis, transferred over-night onto a Hybond N+ membrane, pre- 
hybridised and probed with total human genomic DNA. radiolabelled by the 
method of random priming. (The larger [1.61 Mbp] of the two YACs in 
yeast clone 976-b5 was subsequently determined to be derived from 7q31 
by performing PCR analysis of STS content on DNA excised from the 
pulse-field gel and purified as described in Materials and Methods.)
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_____21

Figure 3.4. Screening of the human chromosome 7 specific cosmid 
library. Autoradiographs following hybridisation of the library filters 
with radiolabelled DNA prepared from CEPH mega YAC clones 905-g2 
and 921 -b4 have been superimposed. Positively hybridising spots have 
been circled. The origin of the filters is indicated by the the arrows 
marked x and y.



Cosmid
c-

X y Clone
IC R Fcll3-

Positive for 
hybridisation

Positive for 
STS

Positive for 
riboprobe

Positive for 
fingerprint

905-g2 alone
14 129 99 P0616Q4 - - -

71 124 3 P072Q4 - - +

83 101 12 M158Q4 - - -

90 11 39 D2110Q4 - - -

106 67 57 N021Q4 + - -

921-b4 alone
1 133 14 L0421Q4 + + + -

2 111 45 B1214Q4 + + + +

3 85 89 C2025Q4 + - +
4 69 50 P0232Q4 + - + -

5 102 2 P1533Q4 + + + +
6 84 19 J2152Q4 + - +
7 66 139 B0355Q4 + + +
8 34 85 D1338Q4 - - -

9 125 7 N07464Q4 + - +
11 70 101 O0124Q4 + + + -

18 89 21 J198Q4 + - + +
19 53 18 K0710Q4 + - +
20 130 138 C053Q4 - - -

21 49 81 F081Q4 - - -

23 92 52 O1850Q4 + + +
34 91 125 G1822Q4 + + + +
35 99 24 I1614Q4 + + +
67 42 102 01118Q4 + + + +
68 99 60 M1619Q4 + + + +
69 78 16 K2352Q4 + + -

70 92 61 L1850Q4 + + + -

73 58 112 K0542Q4 + - +
77 25 7 N1641Q4 + + + -

78 34 61 L1338Q4 + + +
107 16 95 A1920Q4 + + +
108 111 61 L1256Q4 + + + +
905-g2 and 921-b4
10 140 55 N0250Q4 + - + -

12 39 66 K1213Q4 + - -

13 60 144 A0518Q4 + + + +
15 75 111 L2416Q4 + + +
16 9 115 J2255Q4 + + + +
17 15 139 B2055Q4 + - +
22 62 142 A0449Q4 + - + -

24 134 102 O049Q4 + + + +
25 51 96 A0813Q4 + + + +
26 26 60 M167Q4 + + + +
27 82 63 L216Q4 + + +
28 75 46 A2452Q4 + + +
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29 132 103 N0553Q4 + - -

30 4 7 N2341Q4 + - +
31 139 70 I0243Q4 + + + +
32 73 106 M2440Q4 + + +
33 103 115 J1440Q4 + - -

36 68 57 N027Q4 + - +
37 14 87 D207Q4 - - -

38 135 95 A0437Q4 + + + +
39 141 53 O0237Q4 + + + +
40 3 98 P2436Q4 + + + +
41 30 104 N1536Q4 + - +
42 10 64 K2138Q4 + + + +
43 10 49 P2138Q4 + + -

44 15 43 B2054Q4 - - -

45 69 133 D0255Q4 + + +
46 131 29 G0527Q4 + - + -

47 123 133 D0853Q4 + + -

48 77 125 G2328Q4 + - -

49 89 107 M1928Q4 - - + -

50 53 95 A0726Q4 + + +
51 128 20 J0627Q4 - - -

52 61 128 F0424Q4 + + +
53 82 37 D2139Q4 + + + +
54 12 24 I2117Q4 + - + +
55 15 111 L2018Q4 + - +
56 18 12 M1917Q4 + - + +
57 72 136 C0155Q4 + + +
58 33 97 P1455Q4 - - +
59 103 137 C1422Q4 + + + +
60 32 2 P1429Q4 + + + -

61 121 48 A082Q4 + + + +
62 108 65 K1337Q4 + + +
63 18 11 M1935Q4 - - -

64 12 35 E2135Q4 + + + +
65 60 87 D0513Q4 + + + +
66 72 63 L0113Q4 + + +
72 49 90 C081Q4 + + + +
74 83 115 J2147Q4 + - +
75 73 126 G243Q4 + - + +
76 105 59 M1437Q4 + + -

79 2 28 G2448Q4 + + +
80 128 52 00650Q4 + + + +
81 3 52 02451Q4 + - + +
82 123 142 A0853Q4 + - -

84 40 6 0114Q4 + + + +
85 65 21 J0310Q4 + - +
86 134 90 C0412Q4 + + +
87 81 138 C2216Q4 + + + +
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88 77 72 I2312Q4 - - -

89 144 140 B0134Q4 - - -

91 133 9 N042Q4 + + +
92 112 99 P113Q4 + + +
93 112 9 N112Q4 + - + +
94 136 102 O033Q4 + - +
95 32 44 B1429Q4 + - -

96 109 101 01222Q4 + - -

97 87 51 P2019Q4 + + + +
99 54 24 I0717Q4 + + +
100 36 33 F1317Q4 + + + +
101 37 13 L1241Q4 + + + +
102 95 31 F1746Q4 + - -

103 135 143 A0434Q4 + + +
104 62 101 00430Q4 + + + +
105 28 84 E151Q4 + + + +
109 69 125 G0236Q4 + + + +
110 50 72 I087Q4 + + +
111 4 110 L2324Q4 + + + +
112 19 107 M1824Q4 + + -

113 51 144 A0818Q4 + + + +
114 130 20 J0521Q4 + - +
Table 3.3. Cosmids identified by hybridisation of YAC DNA to the chromosome 7

cosmid library filters. + indicates the clones was confirmed positive by either 

hybridisation, STS content mapping, through hybridisation with a ripobrobe generated 

from another cosmid insert, or by restriction digest fingerprinting.

positive hybridisation signal as revealed by autoradiography (Figure 3.5, Table 3.3). Of 

five cosmids which were selected owing to their apparent hybridisation with DNA from 

YAC clone 905-g2 alone, only one (20%) was positive on subsequent screening, this 

compares to 22/25 (88%) cosmids positive for 921-b4 alone, and 76/84 (90%) with 

DNA from both clones. It is likely that cosmid clones which were negative on 

subsequent hybridisation screening resulted from human error in determining the (x,y) 

co-ordinates of the original hybridisation spots on the library filters, since these cosmids 

also proved to be negative for any STS or riboprobe (below). This appears to be 

especially true of the few cosmid clones positive for 905-g2 alone.
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Figure 3.5. Hybridisation of YAC clones 905-g2 and 921-b4 to isolated cosmid clones. 

DNA samples from isolated cosmid clones were digested with Pvu II and resolved on 

1% (w/v) agarose gels before being transferred onto Hybond N+ membranes. Following 

pre-hybridisation, cosmid DNA was probed with radiolabelled DNA prepared from 

YAC clones 905-g2 and 921-b4, and visualised by autoradiography. A, lamba 

phage/Hind III molecular weight marker.
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3.2.3 ‘Contiguation’ of cosmid clones

3.2.3.1 STS content mapping of cosmid clones

Having identified numerous cosmid clones corresponding to the interval of 

LOH, it was necessary to order the cosmid clones relative to one another and to establish 

overlaps, i.e. to determine which clones contain genomic inserts that are contiguous. 

This was determined in the first instance by STS content mapping. Various databases 

were plumbed for possible STSs; two types can be distinguished: those which are 

polymorphic and therefore of potential use in LOH studies as well, including the 

Genethon markers already mentioned in addition to several RFLPs which have been 

adapted to allow PCR amplification (Table Al), and non-polymorphic STSs (Table A2). 

PCR-amplification of these markers was performed using a standard reaction protocol. 

To minimise the number of PCR reactions needing to be performed, cosmid DNA 

samples were first pooled in such a way that each clone appeared in two distinct pools 

(one each from 1-11 and A-K). Pooled DNA was then subjected to PCR amplification. 

In the example given for the marker D7S2742 (Figure 3.6), after the first round of 

screening there is a product in lanes 2, 6, 8, and 11, and D, E, F, I and J, which could 

have arisen from cosmid clones c35, c39, c41, c44, c46, c50, c52, c55, c57, c61, c63, 

c66, c90, c94, c96, c99, clOl, cl05, cl07, or cllO. The PCR assay was then repeated for 

all the possible individual DNA samples to establish the identity of the positive clones, 

which in this example were c41 (8D), c50 (6E), c57 (2F), c99 (111) and c l 10 (11J). The 

results for STS content mapping of the cosmid clones are given in Table 3.4. 57% 

(66/114) of cosmid clones proved to be positive for one or more STSs from the cloned 

interval, including novel STSs (below) (Table 3.3). The discrepancy between this value 

of positivity and that determined by hybridisation of YAC DNA to filters of cosmid 

DNA most probably reflects the density and non-uniform distribution of the markers 

available, which does not allow for complete representation of the cloned interval.
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STS PCR assay was performed first on pools of cosmid clone DNA, and 
then on individual putative positive cosmid clones. PCR products were 
resolved on 2% (w/v) agarose gels and stained with ethidium bromide 
before visualisation on a UV transilluminator.



Table 3.4. STS content mapping of YAC-selected cosmid clones. Cosmid clone 

numbers are shown in the left hand column and the STS assay (marker) at the top of the 

table: 1) D7S486 2) WI-8726 3) WI-5336 4) D7S522 5) Wl-10385 6) WI-455 7) 

D7S2460 8) METD 9) METH 10) 727CA 11) sWSS305 12) 715CA 13) WI-7882 14) 

IASTS4 15) sWSS2899 16) WI-18209 17) IASTS1 18) sWSS1398 19) sWSS843 20) 

sWSS3428 21) AFMB316XB9 22) sWSS2710 23) WI-3876 24) sWSS2099 25) 

IASTS3 26) sWSS377 27) sL12 28) sWSS844/845 29) 778CA 30) Cdaozbll 31) 

sWSS1948 32) sWSS1948 33) WI-7597 34) XV-2C 35) CS.7 36) D7S23/740CA 37) 

KM-19 38) D7S633 39) D7S399/sWSS849 40) sWSS850 41) sWSS915 42) CFTRxl 

43) D7S677 44) CFTRx3 45) CFTRx4 46) CFTRx6 47) CFTRxlO 48) sWSS376 49) 

CFTRxl2 50) 17TA-5/17B-RE3 51) CFTRx20 52) D7S2742 53) 786CA. + indicates 

clone is positive for this assay.
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3.2.3.2 Chromosome walking with cosmid insert-end riboprobes

Overlaps between cosmid clones were also established by chromosome walking. 

The Lawrist 4 vector used in the construction of these cosmids possesses T7 and Sp6 

phage promoters flanking the insert DNA, which allow the generation of RNA 

molecules (riboprobes) corresponding to the ends of the insert when Rsa I digested 

cosmid DNA is used as the template for in vitro transcription in the presence of 

radioactive ribonucleotides (see Materials and Methods). Several cosmids were selected 

as templates for generating riboprobes. Initially, these were hybridised to Southern blots 

containing Pvu II-digested DNA prepared from the 114 cosmids identified above. 

Subsequently, the original cosmid library filters were also hybridised with riboprobes 

when it became clear from STS content mapping that various cosmid clones spanning 

the region were absent (indeed, 14/56 [25%] of the STS assays attempted failed to 

identify any positive clones). Positively hybridising cosmids were visualised by 

autoradiography, and in the case of the library the (x,y) co-ordinates ascertained (Figure

3.7); the results of riboprobing are given in Table 3.5. Cosmids corresponding to novel 

co-ordinates were requested from the Resource Centre/Primary Database. 21 additional 

cosmids were requested (Table 3.6). 43% (49/114) of the previously identified cosmids 

hybridised with one or more of the riboprobes assayed from this sample set. In eight of 

these incidences the cosmid had not previously been identified as being positive for an 

STS.

Restriction digestion followed by fluorescent tagging (Brenner and Livak, 1989) 

was also used to construct cosmid contigs on the basis of a shared restriction digest 

profile when the fragments were resolved by electrophoresis (Dr Lisa O’Neill, The 

Sanger Centre, Cambridge, UK). 76 of the 114 original cosmids were placed in 21 

contigs of two or more cosmids (the cut-off point is for an approximately 50% or greater 

overlap; fingerprinting is therefore a conservative measure of the degree of contiguity). 

18 of the cosmid contigs could be ordered relative to each other, while 3 contigs were 

orphans, i.e. could not be mapped or orientated because there was no information on 

STS content (contig 7: c98 and c ll4 ; contig 13: c9, cl7, cl9, c55, and c85; contig 20: 

c54 and c56). Moreover, there were 20 incidences where a contiguated cosmid had not 

previously been identified positive by either STS content mapping or riboprobing. Thus 

overall 94/114 (82%) of the original set of cosmids identified through hybridsation with 

DNA from the selected YAC clones were confirmed, independently of subsequent
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Figure 3.7. Riboprobing the chromosome 7 cosmid library. The cosmid 
library filter was pre-hybridised and then probed with the c62T7 riboprobe. 
Positively hybridising spots were visualised by autoradiography; co­
ordinates and corresponding clone number are shown. The X conceals a 
positively hybridising spot from a previous probing.



Riboprobe Positively hybridising cosmids
clSp6 c4, cl 6
clT7 c61, c65
c2Sp6 c26, c40, cl09, (48,72)
c2T7 c6, (33,97)
cl3Sp6 c24, 59, c60, cl05
C13T7 c97
cl7Sp6 (37,100), (115,32)
C17T7
c24Sp6 cl3, c97
c24T7 c59, c60
c27Sp6 e l l ,  c25, c ll3
c27T7
c34Sp6
c34T7 c75, c34, c49, clO
c35Sp6 (25,105), (52,60), (77,84), (118,66)
c35T7 (25,50), (38,67)
c40Sp6 c2, c26, cl09
C40T7
c50Sp6 c31, c80
c50T7 c5, c42, c68, c80
c54Sp6 c54, c56, (54,18), (59,118), (62,16), (68,107), (87,123), (90,42)
c54T7 c53, c54, c56, c87, (5,11), (112,68)
c60Sp6
c60T7 cl3, c24, c59, c81, cl05
c62Sp6
c62T7 c38, c39, c53, c87, cl04, (62,143)
c65Sp6 c61,c93
C65T7 cl, (45,109)
c68Sp6 c5, c42, c72, c77
C68T7 c70, clOO
c77Sp6 (16,14), (25,7), (34,24), (107,38), (118,13), (134,30)
c78Sp6 c84
C78T7 c97,cl08
c84Sp6 cl8, clOl, (1,67), (32,43), (82,25)
C84T7 c78, c97,cl08
c87Sp6 c22, c38, c39, c46, c53, c64, cl04
C87T7 c54, c56, (48,90)
c97Sp6 c24, c81, cl05
c97T7 c78, c84
cl01Sp6 cl8, c84
c!01T7 c67, c l l l
Table 3.5. Contiguation with riboprobes. The probe name is derived from the cosmid 

used as template and the bacteriophage polymerase. In the righthand column are shown 

cosmids which demonstrate positive hybridisation with these probes. In parenthesis are 

the co-ordinates of clones which hybridise from the filters.
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Cosmid
c-

X Y Clone
ICRFcll3-

115 87 123 H2016Q4
116 90 42 C1914Q4
117 77 84 E2312Q4
118 54 18 K0717Q4
119 32 43 B1448Q4
120 62 16 K0448Q4
121 68 107 M0230Q4
122 82 25 H2139Q4
123 118 66 K096Q4
124 48 72 I0913Q4
125 33 97 P1455Q4
126 46 25 H0941Q4
127 66 108 M0318Q4
128 12 19 J2154Q4
129 1 67 J2438Q4
130 143 140 B0128Q4
131 52 60 M071Q4
132 25 105 N165Q4
133 38 67 J1244Q4
134 25 50 P1620Q4
Table 3.6. Additional cosmids identified from the chromosome 7 cosmid library 

through hybridisation with insert-ends generated riboprobes.

hybrisation screening, to correspond to the region cloned within the YACs. Further, all 

these cosmid clones are assumed to map to 7q31 for the obvious reason that the cosmid 

library at least is chromosome 7 specific and because the likelihood of two non­

contiguous regions of chromosome 7 being co-ligated in the same CEPH YAC clone 

(derived from total genomic DNA) is remote.

3.3 Deriving novel STS.

3.3.1 InterA/w-directed PCR

In order to facilitate further contiguation of cosmid clones, novel STSs, both 

polymorphic and non-polymorphic, were sought. A plentiful and accessible source of 

unique (single copy) DNA sequences, ideal for the generation of random genomic STSs, 

is contained within regions between closely spaced Alu repeats. DNA aliquots from 

YACs 905-g2 and 921-b4 were subjected to amplification by PCR using oligonucleotide
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primers (BK34, TC65, alu IV, and alu V; Table A3) directed against the Alu repeat 

consensus sequence (according to the scheme shown in Figure 2.1 of Materials and 

Methods). PCR products were then TA-cloned in the pCR2.1 vector. Plasmid inserts 

from transformed colonies of INVaF E. coli were sequenced using vector-directed M13 

reverse and T7 primers (Table A4). Sequences were edited to remove vector-derived 

and Alu-derived sequences (by performing BLAST homology searches against an Alu- 

sequence database). Finally oligonucleotide primers were designed and synthesised to 

allow PCR amplification of unique interA/w DNA sequences. Five novel STSs were 

generated in this way (Table 3.7); PCR amplification from human total genomic DNA 

using these primers revealed only a single product of the expected size (data not shown).

STS Primers Size
0>p)a

IASTS1 L: GAGGAAAGCAGTCATACAGG 
R: ATGCCTATGTTTCTCACCCAG

869

IASTS2 L: GTTTCATCACCCTCTCAGGG 
R: GTGGCAGTATCTAAAGGAGC

150

IASTS3 L: TTTTTGAACAGAAGGATGGC 
R: TTCTATCCAGTGCAGGCTGC

240

IASTS4 L: CAGTATGCCTATTCCAGTTCC 
R: TGTTTCCTAGGCCGACTGTG

338

IASTS5 L: TTCACCTCCTGCCATGATTGG 
R: TGAAGGAAATGACAGGGTGG

225

Table 3.7. Primer sequences which amplify novel STS markers from YAC clones 

covering the 7q31 region, generated by sequencing TA-cloned interAlu PCR 

amplification products.a Sizes for IASTSs are determined precisely from the respective 

sequences from which the STS was derived. The sequences for LASTS 1 and 4 are 

identical to base-pairs 106,901-107,770 and 49,255-49,593 respectively of a 150,147 

bp sequence deposited in GenEMBL (accession number AC002543), while IASTS3 is 

identical to base-pairs 29407-29647 of a 188,741 bp sequence in GenEMBL (accession 

number AC002542). The sequences to which these accession numbers refer were 

generated from 7q31-specific BAC clones as part of the chromosome 7 mapping and 

sequencing project that is a joint venture between the National Human Genome 

Research Institute, NHGRI, at the National Institute of Health, NIH, Washington 

University, and the University of Washington. A continuous update of progress made on 

this project is accessible on-line through a site on the World Wide Web at 

http://www.nhgri.nih.gov/DIR/GTB/CHR7/.

i l l
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3.3.2 Novel CA.GT dinucleotide repeats

SSRs that are CA.GT dinucleotide repeats occur frequently within the human 

genome—approximately once every 50 Kbp (Weissenbach et al., 1992)—and are 

generally highly polymorphic, making them invaluable as mapping reagents in LOH 

studies and equally of service in STS content mapping. We decided that a useful aim 

would be to clone several novel CA.GT repeats to assist in the cloning of the 

chromosome 7q31.1 TSG. 5 pg of cosmid DNA was digested to completion with Sau3A 

I restriction enzyme before being electrophoresed on a 1% agarose gel and transferred to 

nylon membranes. Membranes were then hybridised with a radiolabelled degenerate CA 

oligonucleotide probe. Positive hybridisation was revealed by autoradiography (Figure

3.8). Digested DNA from cosmids giving positive hybridisation was subcloned in BaniH 

I-restricted pBluescript KS(+/-) phagemid. Colony lifts of transformed DH5a E. coli 

were then hybridised with the degenerate CA probe to identify clones with inserts 

containing a CA.GT repeat. Plasmid DNA from positive clones was sequenced using 

KS and SK primers (Table A4) derived from vector sequences. The sequences of 8 

novel CA.GT repeats are given in Figure 3.9 and primers designed to allow 

amplification by PCR under standard reaction conditions are given in Table 3.8. 

Products for one such novel CA.GT repeat, 724CA, are shown in Figure 3.10 for a 

number of cell line DNA samples. The results of content-mapping cosmid clones with 

both novel interAlu STSs and novel CA.GT repeats are also given in Table 3.4. No 

cosmids were identified as being positive for IASTS2 and IASTS5, this could imply that 

the interAlu PCR products corresponding to these STSs were generated from chimaeric 

regions of YAC DNA and do not map, therefore, to the 7q31 region. Alternatively, it 

could simply imply that cosmid clones corresponding to these genomic segments do not 

exist in the cosmid library or that if they exist, then they were not successfully 

identified.
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Figure 3.8. Cloning of novel CA.GT dinucleotide repeats. Cosmid DNA was digested 

to completion with Sau3A I restriction enzyme before being electrophoresed on a 1% 

agarose gel and transferred to nylon membranes. Membranes were then hybridised with 

a radiolabelled degenerate CA oligonucleotide probe. Positive hybridisation was 

revealed by autoradiography. A, lamba iphage/Hind III molecular weight marker.
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M arker Primers Size
(bp)a

Heterozygosity 
% (n)

CAVCA1 L: GATCGTGCCATTGCACTCC 
R: TCCTAAACTACACCGTGTG

112 ND

CAVCA2 L: GTATGTTCACCACATGGACC 
R: CCAAAGTCTAGGTTTACAGC

125 0(8)

715CA L: GTGTTAAGACAGATGCTACC 
R: TAAAAGATAGCTTCAGGGGC

399 40 (17)

727CA L: GATTTTGGGTTCAGTAACAGC 
R: CCAGGAAATAGAAACAGCAC

144 75 (65)b

724CA L: GCTTTGTTAGGGTTCTCCAG 
R: CATG'ITITCAGTCCTTCAGC

140 71 (65)b

740CA L: TCCTGACTGGCTGAATTG 
R: GAGCGACAGCAAAATCAG

205 83 (65)b

778CA L: CTGTAGGATAGATAGGGAGC 
R: TACAGGAGATTGCATGGG

194 52 (65)b

786CA L: CATAACCGGCTGGCATCATG 
R: ACACATTCCTTTGGGGCCTC

308 45 (65)b

Table 3.8. Primer sequences which amplify novel CA.GT repeats from the 7q31 region. 

a Size given is for PCR product of cloned allele. b Heterozygosity calculated by 

determining ratio of heterozygotes to homozygotes for normal peripheral blood DNA 

for n samples (H. Russell, unpublished data).

Figure 3.9. Novel chromosome 7q31 CA.GT repeats. CA repeat units are in red. 

Locations of primers are underlined. The position of a Pst I restriction site is shown for 

715CA. CAVCA1 and CAVCA2 were derived from PAC162-021.
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CAVCA1:

1 GATCGTGCCA TTGCACTCCA GCCTGGGCAA CAAGAGCGAA ACTCTGCCAC

51 ACACACACAA ACACACACAC ACACACACAC ACACACACAC ACACACACGG

101 TGTAGTTTAG GAAGTAAAAA AAAA A AAA AA AA AA AAATC A GATC

Number of repeat units = 18 

CAVCA2:

1 GGATCACTTA TGTGTATGTT CACCACATGG ACCTACATCC CCACACACAC

51 ACACACACAC ACACACACAC ATAGAAACAC ACACACGCAC AGAGTCTTTA

101 AAGACGGACT TTATTTTATG CTGTAAACCT AGACTTTGGG AGGCTGAAGT

151 GGAGGGATTG

Number of repeat units = 15 

715CA:

1 AGAAACATGT ATGAATGTGT TAAGACAGAT GCTACCTAAG AAGATAAGCT

51 ATATTTACAT ATACATACAT ACACACACAC ACACACACAC ACACACACAC

101 AC ACACAC AC GTATTTTTTT GAGACAGGGT GTC ACTCTGT TGCCC AGGTT
Pst  I
I

151 AC AGTGC AGT GTGTG AATAC AGCTC ACTGC AGCCTCGAC A TCCTGGGCTC

201 AAGCCATCCT CCTGCCTCAG CCTCTCTAGT AGCTGGGACT ACAGGCGTGT

251 GCCACCATGC CCAGCTAATT TATTTTTTGT AGAGATGGGG TCTCACC AT A

301 TTGTCCAGGC TGGTCTCAAA CCCTGGCCAC AACCAACCTT TCTGCCTTGG

351 GCTCCCANAA TGCTGGGATT ACANGCATNG GGCCACCACA CCCAGCCCCT

401 GAAGCTATCT TTTAAAAAAA ATTTTTACT

Number of repeat units = 19 

724CA:

1 GTACTCAATC TGCTTTGTTA GGGTTCTCCA GAAAAAACAG CCACCATAGC

51 AGATATTAAT ACACACACAC ACACACACAC ACACACACAC ACACACACAC

101 CCTTTGGCTC CCNAGCTAGA GACCCCAGAA AGCTGAAGGA CTGAAAACAT

151 GGGGAGCC AT G ATTTCCCCC

Number of repeat units = 19

7 2 7 C A :
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1 TGGATCAATT ACAGATTTTG GGTTCAGTNA CAGCTTTCAA TAAAAGATGA

51 ATAAATTAAT GAATTTAAAA AGTTTTAC AC ACACACACAC ACACACACAC

101 ACACAC AC AG AGCCATAGTT GTCTAAAGGA ATGATTAGAG TGCTGTTTCT

151 ATTTCCTGGT TTCCATAGC

Number of repeat units = 16 

740CA:

1 ACACGCTTTA GGTTCTACAA CTCCTGACTG GCTGAATTGG CCCGTCGATT

51 TACCCTGAGG CAGTTTTGGC GGGGTGGGGG CTGGGATGGG GGAGGCGGTT

101 GTAGTITTCA AGGTG AATTT ACACACACAC ACACAC AC AC ACACAC AC AC

151 ACACACACAC ACGTCTGTGC TAGAGCTGGA GACCAGGCTA GCACGTCTCT

201 CAACAGGATA AGAAATTGGC TGATTTTGCT GTCGCTCAGC TGGATCCCCC

251 GNCCTGCGGC

Number of repeat units = 20 

778CA:

1 CTTCTNTTTG TTTTACTGTA GGATAGATAG GGAGCAATTT TTGAAGGTTA

51 TTTTGTNGAT TGCANATGTT AACCTTTCTT TTCTGGGTGG CATTCTCCCC

101 TCTTGGATCC ATCCACACAC ACACACACAC ACACACACAC ACACACATAC

151 ACCCACCCCA CCACCACCAC CAAAGACAAA C AIT ATT AC A GCCCATGCAA

201 TCTCCTGTAA AATGGAGTT

Number of repeat units = 17 

786CA:

1 GAGACCAGGT C A AC AT A ACC GGCTGGCATC ATGTTTATCT TGCTCAGC AT

51 TTAACACACA CACACACACA CACACACACA CACACACACA CACACACACA

101 C AC AC AC A A A CTTTTTGGCT CTACTTCTG A CCTTGGCTTT TATATTGTGT

151 TCATTTGTTT TTCAGAGGGG CTTGGTTCTT TTATTTGAAG ATACATCCTA

201 TTTGTTGG A A G AACTTCCAT TAAATTATCT TGTCAGTTCT C ACTA A ATTT

251 TCT1TTCACA GCTCTTGCTG TCTGGGTTAT AAAAACCCAT GGCAAACATG

301 GGAGGCCCCA AAGGAATGTG TGCTGGGATC TTGCACGGCA

Number of repeat units = 27
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Figure 3.10. PCR amplification products for the novel CA.GT repeat 
724CA. DNA from a number of cell lines was subjected to PCR using 
oligonucleotide primers for the CA.GT repeat 724CAj)and radiolabelled 
in 'situ. The PCR amplification products were then resolved on a 6% 
fw/v) polyacrylamide ge£ and visualised by autoradiography.



Identification of PAC clones

The PAC vector, pCYPAC-2, incorporates features of both PI and F-factor 

cloning systems and allows propagation of inserts in the 100-300 Kbp range (Ioannou et 

al., 1994). There are no apparent problems with chimaerism or clone instability with this 

vector. Individual PAC clones were sought to give additional clonal coverage of the 

region of LOH by hybridisation screening of a human PAC library constructed from 

digests of DNA from a male fibroblast cell line (Ioannou et al., 1994), obtained from the 

Resource Centre/Primary Database of the German Human Genome project (Lehrach et 

al., 1990), and from the UK Human Genome Mapping Project (UKHGMP) resource 

centre. The library consists of seven independent nylon filters each supporting a 192 x 

192 gridded array of PAC DNA. In particular, probes were generated by PCR 

amplification using primers for WI-3876, Xv-2c, and D7S399 (oligonucleotide primers 

listed in Table A2). In addition, a probe was prepared from CAVEOLIN-1 cDNA (see 

Chapter 5). Positive hybridisation was revealed by autoradiography and the clones 

corresponding to the deduced co-ordinates requested from the resource centres. 10 

clones were requested, PAC clone 162-021 which was positive for CAVEOLIN-1 and 

the clones represented in Table 3.9, and re-screened with the probe used to initially 

identify them and additonal markers in order to ascertain their positive status and to 

determine the extent of the region they covered.

A summary of the total clone coverage, inferred from STS content mapping, 

ribo-probing, and fingerprinting, of the genomic region contained within YACS 905-g2 

and 921-b4 is shown in Figure 3.11. The largest contiguous region of clone coverage is 

approximately 600-700 Kbp and encompasses the markers WI-3876 and exon 4 of 

CFTR.
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Marker

II11146 B1719Q A19152

PAC

L2088Q

:lone LLN1 

B0964Q

J*704-

K11206 114270 F2012Q K1448Q

WI-7882 - - - - - -

AFMB316XB9 - - - - - -

WI-3876 + + + - - -

sL12 + + + - - -

778CA + - - -

WI-7597 + + -

Xv-2c + + -

CS.7 + + + -

KM19 + + + -

D7S633 - - + -

D7S399 - - + +

C FTRexl - - + +

CFTRex4 - - + -

Table 3.9. STS content mapping of PAC clones.

Figure 3.11. Clone coverage of the D7S486-786CA interval. Clone coverage and STS 

content map of the D7S486-786CA interval are shown. Symbols beneath the tie line 

represent different varieties of STS marker (polymorphic/non-polymorphic, 

expressed/non-expressed). The shaded region beneath the tie line depicts the smallest 

common region of allele loss in breast carcinomas.
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CHAPTER 4

RESULTS

Allele loss analysis of SUSM-l///yfA7 

immortal segregants
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4. Results

4.1 Segregant deletion analysis

As stated in the introduction, a replicative senescence gene that is inactivated 

during the immortalization of cell lines within complentation group D is believed, from 

monochromosomal transfer studies, to map to human chromosome 7. Further, two 

complementation group D cell lines, SUSM-1 and KMST-6, display loss of genetic 

material from the 7q31 region (Ogata et al., 1993). Based upon the proximity of these 

losses with those found in tumour samples, and also upon the probable role of 

replicative senescence in tumour suppression, we formulated the hypothesis that the 

complementation group D replicative senescence gene, SEND, was the target for 

inactivation (as demonstrated by LOH) in tumours in vivo, and presented a new avenue 

by which to clone the chromosome 7q31.1-TSG. The approach we adopted combines 

two aspects: phenotypic selection and somatic cell genetics.

The strategy chosen (schematically represented in Figure 4.1) entails introducing 

intact copies of human chromosome 7 into SUSM-1 cells by microcell mediated 

monochromosome transfer. The donor chromosome is tagged with a selectable fusion 

gene, Hytk, which is derived from a hygromycin phosphotransferase gene, Hph, 

conferring hygromycin resistance and allowing positive selection of transfected cells, 

and the herpes simplex virus thymidine kinase gene, tk, that allows negative selection 

(Cuthbert et al., 1995). As previously reported (Ogata et al., 1993; Nakabayashi et al, 

1997), Dr George Reid, then in our group, responsible for performing the microcell 

fusions, found that introduction of human chromosome 7 into SUSM-1 induced 

replicative senescence in the majority of recipient cells (as determined by delayed 

growth arrest, and induction of s.a-|3-galactosidase activity; data not shown). However, 

also as previously noted, he observed that a proportion of microcell-fused hybrids 

escaped replicative senescence and appeared to retain (or revert to) their immortal 

phenotype (capable of being serially passaged indefinitely). We reasoned that this would 

most likely be due to inactivation of SEND on the Hytk-tagged chromosome 7 

segregating in immortal variant clones. If such inactivation resulted through deletion or 

mitotic recombination then it should be possible to map these events by determining the 

pattern of retention of informative polymorphic markers (markers in which the alleles 

arising from the Hytk-tagged chromosome differ from those on the endogenous

1 2 2
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chromosomes) in immortal SUSM-l/Hytkl segregants. Potential advantages of this gene 

mapping strategy when compared to examining LOH in tumour DNA samples are one, 

the unequivocal nature of the data (tumour LOH studies are complicated by the presence 

of contaminating normal stromal tissue within the tumour sample, making detection of 

reductions in band intensity more subjective); two, the association of allele loss with an 

observable phenotypic effect; and three, since the end product is an immortal cell line, 

there is an indefinite source of DNA, RNA, and proteins for further molecular analysis.

Dr George Reid generated 30 independent immortal SUSM-l///yr£7 segregants 

and Dr Robert F Newbold (Department of Biology and Biochemistry, Brunei University, 

Uxbridge, UK) kindly provided us with three more. Over one hundred polymorphic 

markers (Table A l and in addition the novel CA.GT repeats I generated [Chapter 3.4.2]) 

from the D7S2490-D7S1807 interval were assayed to determine whether alleles were 

informative between SUSM-1 and P&HHytkl; only thirty four markers were clearly 

informative. Immortal segregants were then analysed with these polymorphic markers. 

Representative examples of segregant deletion analysis are shown in Figure 4.2 and the 

results are summarised in Table 4.1. From Table 4.1, it is apparent that this mode of 

analysis is hampered by noise: several segregants present with multiple losses (the 

nature of these losses—deletion vs. mitotic recombination— has not been established, 

although for some markers e.g. D7S1804 loss of an endogenous allele in a number of 

segregants argues that mitotic recombination might be operating [data not shown]. 

Zenklusen et al. (1996)b and Gupta et al. (1997) suggest that mitotic recombination is 

the most likely mechanism accounting for the majority of LOH in tumours). One 

possible explanation for at least some of this noise is that the order of markers has not 

yet been established correctly. Ascertaining the correct order of markers will ultimately 

depend upon knowledge of the nucleotide sequence for this chromosome.

Overall 17/33 (51.5%) of immortal segregants demonstrated loss of one or more 

markers on chromosome 7q. The most frequently lost marker was D7S2555 (98.1 cM 

from 7pter; 7q21), which was lost in 14/33 (42.2%) of immortal segregants, followed by 

D7S821 (109.1 cM from 7pter; 7q21), D7S633 and 17TA-5/17B-RE3 (both 125.2 cM 

from 7pter; 7q31), which were each lost in 13/33 (39%) of immortal segregants. A 

graph of frequency of allele loss against distance along the long arm of chromosome 7 is 

shown in Figure 4.3. Again, this graph demonstrates the existence of three ‘hot spots’ of 

allele loss in immortal SUSM-l/Z/yffc7 segregants. The smallest solitary interstitial 

losses detected were in SUSM-1/Hytk7 segregant 4 and segregant 5. The extent of allele

1 2 4



Table 4.1. Summary of segregant deletion analysis of SUSM-l///yfA:7 immortal 

segregants. donor allele lost; +, donor allele retained; *, endogenous allele lost.

1 2 5



00

ML

ON

00P
ON

NO
NO <*3

NOm NO
C / 3

fS
00
C /3

m
C /3C /3 C /3 C /3 C / 3 00



5  sM--------------------
5 ^ 1 2 3 4 5 6 7

S I  S .M- 1 / / /  vrA'7 s e g r e g a n t s

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 £

D7S821

IB
DA
EA

17TA-5/17B-RE3

786CA

Figure 4.2. Representative allele loss analysis in immortal SUSM -l///vfJt7 
segregants. Autoradiographs from radiolabelled PCR products of three 
amplified microsatellite markers. D7S821, 17TA-5/17B-RE3. and 786CA. are 
shown. The SUSM-1 cell line is homozygous at each of these loci. DA. donor 
allele: EA, endogenous allele: IB, invariant band (PCR artefact).
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SUSM-1 IHytkl immortal segregants. Percentage allele loss in SUSM- 
MHytkl immortal segregants is shown plotted against the genetic 
distance in Kosambi cM from 7pter of the corresponding polymorphic 
marker (X). Three ‘hot spots’ of allele loss correspond to D7S2555, 
D7S821, and D7S633-17TA-5/17B-RE3.



loss in segregant 5 has not been finely delineated, but is within the order of a megabase. 

The allele loss in segregant 4, between the two novel markers 724CA and 786CA, is 

approximately 500 KBp in extent and is nested within the region of LOH defined by the 

tumour LOH studies. This region of loss also lies within the 7q31-qter region of LOH 

identified in KMST-6 (Ogata et al., 1993). Cosmid and PAC clones covering this 

interval in segregant 4 have been identified (Figure 4.4).

Figure 4.4. Overlap of regions of allele loss in breast carcinomas and immortal SUSM- 

ljHytkl segregants. Symbols beneath the tie line represent different varieties of STS 

marker (polymorphic/non-polymorphic, expressed/non-expressed). The shaded regions, 

beneath the tie line, depict the smallest common region of allele loss in breast 

carcinomas (lighter) and the region of allele loss in immortal SVSM -l/Hytkl segregant 

4.
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CHAPTER 5

RESULTS

Identification, characterisation, and 

mutation analysis of genes from the 

minimally deleted region in tumours and 

immortal segregants
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5. Results

5.1 The identification of genes within the D7S522-17TA-5/17B-RE3 

interval

Having identified that the genomic region just proximal to the CFTR locus is 

deleted in a high proportion of breast tumours and immortal SUSM-l/Hytkl segregants, 

and having established YAC and bacterial clone coverage of this genomic region, we 

moved to the next stage in positional cloning: identifying candidate genes that map to 

this interval. A number of different approaches were adopted.

5.1.1 The cloning of CFTR

With many of the mapping targets of the human genome project now achieved, it 

will prove increasingly difficult to find a 1.5 Mbp region of the genome that is entirely 

uncharted and devoid of known genes. The D7S522-17TA-5/17B-RE3 interval is no 

exception, having come under close scrutiny once already during the successful 

positional cloning of the gene responsible for cystic fibrosis—CFTR (Rommens et 

al.,1989). The cloning of this gene, which was hotly contested for several years, was a 

tour de force: CFTR was the first gene to be positionally cloned without the aid of a 

constitutional cytogenetic alteration, the cloning strategy being solely reliant on 

chromosome walking and jumping—methods largely superseded by STS content 

mapping. Moreover, the travail left a rich legacy of information for those who have 

come afterwards, including long and short range restriction maps of the region, probes 

and markers, and the identification of additional genes, including WNT2, which maps 

approximately 200 Kbp centromeric of CFTR. In addition to CFTR and WNT2, two 

other characterised genes are known to map to the D7S522-17TA-5/17B-RE3 interval: 

c-MET and CAPZA2.

5.1.2 hFllA10.5

During the cloning of CFTR, Rommens et al. identified, in addition to CFTR and 

WNT2, three other genomic regions of conserved homology, as determined by cross-
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species hybridization with DNA on a zoo blot. Cross-species hybridization can reveal 

the presence of an underlying gene, since expressed sequences frequently demonstrate 

evolutionary conservation. A probe, G-2, from one of these regions, which maps 60 Kbp 

centromeric of the 3"-end of WNT2, detected a 3.7 Kbp transcript when hybridized to 

RNA from SV40-Transformed human fibroblasts. Based on the mapping distance (and 

the average insert size of a cosmid), we reasoned that this transcript should correspond 

to sequences contained within cosmids 78, 97, and 108. Mr Robert McFarlane shotgun 

subcloned c97, following digestion with EcoR I and Hind III, into the prokaryote 

phagemid vector, pBluescript. Sequencing of one of these fragments, 97HR13, revealed 

significant homology (80% similarity at the amino-acid level) to a gene present in the 

genome of C. elegans (F11A10.5; GenEMBL accession number Z68297), in addition to 

a number of human and rodent EST sequences (accession numbers: N58116, W02490, 

W13940). Subsequently Robert was able to use this subcloned genomic fragment to 

isolate 5 independent overlapping cDNA clones from a senescent fibroblast full-length 

cDNA library prepared by Dr. George Reid. The cDNA clones were sequenced and 

confirmed to be derived from the human homologue of F11A10.5 (hFllA10.5). Based 

upon the human cDNA sequence, a probe was generated by PCR corresponding to the 

central region of hFHA10.5 using cDNA as a template (see Materials and Methods). 

The PCR product was then used to probe a northern blot containing total RNA from a 

number of tumour and non-tumourigenic immortal cell lines, as well as RNA from 

senescent fibroblasts (70 mean population doublings). This analysis revealed an 

abundant and ubiquitously expressed transcript, which is present in a single form of 

approximately 3.7 Kbp (Figure 5.1), strongly suggesting that we had identified the same 

gene as Rommens et al.

5.1.3 R14.4E1

The other region of cross-species homology identified by Rommens et al., 

corresponding to an approximately 1 Kbp EcoR I-digest fragment, R14.4E1, maps 100 

Kbp telomeric of the 5 "-end of WNT2, between WNT2 and CFTR and within the deleted 

region identified in SUSM-l///yr£7 segregant 4. The authors noted that this region 

contains recognition sites for the restriction enzyme BssH II as well as a high G/C 

content as determined by sequencing, suggesting that it might be a CpG island. CpG 

islands are discrete units up to 2 Kbp long with a disproportionately high G/C content
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F ig u re  5.1. Northern blot analysis of hFllAJO.5  expression in cell lines. 
RNA from a number of tumourigenic and non-tumourigenic immortal cell 
lines, as well as RNA from senescent fibroblasts (70 mean population 
doublings) were transferred to Hybond N membrane and hybridised with a 
radiolabelled probe corresponding to hFl 1A10.5. Hybridisation was detected 
by autoradiography. RNA from the (cervical carcinoma) cell line MS2 was 
supplied by Dr A. Malliri. BICR. and from the (head and neck squamous cell 
carcinoma) cell lines BICR31 and BICR56 by Dr J. Munro, BICR. (See 
Materials and Methods for the origin of the other cell lines. )



and are virtually free of methylation at CpG dinucleotides. Such regions are associated 

with over half the genes in the human genome, both tissue-specific and house-keeping, 

and in particular with the site of transcription initiation and the first exon(s) (Bird, 

1986). Over 80% of the sites cleaved by BssH II, whose recognition sequence is 

GCGCGC, would be expected to occur within CpG islands. Again, we conjectured that 

this sequence could be contained within cosmids 1, 61, and 65. These cosmids, 

therefore, were digested with EcoR I and BssH II, and c61 was found to contain an 

approximately 1 Kbp EcoR I-digest fragment, which could be cleaved by BssH II, which 

agrees with the description of the CpG island above (Figure 5.2). This fragment and 

adjacent EcoR I-digest fragments (based upon the published restriction map of 

Rommens et al., 1989) of c61 were subcloned into pBluescript. Sequencing of the 1 

Kbp EcoR I fragment revealed a high CpG content and in addition it confirmed the 

presence of three closely clustered BssH II sites. A BLAST homology search against 

known genes and ESTs revealed no significant homologies. This fragment in addition to 

the flanking two EcoR I fragments (4.5 Kbp and 7.5 Kbp) failed to detect a transcript on 

the northern blot used above and failed to detect a corresponding cDNA when used to 

probe lifts of the senescent fibroblast cDNA library. Rommens et a l also failed to detect 

an RNA transcript or cDNA with R14.4E1, and suggested that this might indicate that 

the transcript is restricted in tissue or developmental specificity, or that the cross-species 

hybridization signal generated with this probe resulted from non-specific hybridization 

of the CpG-rich sequence.

5.1.4 The human gene map

Another source of information we have been able to exploit in the search for 

genes which map to the D7S522-17TA-5/17B-RE3 interval is the human gene map 

(Schuler et a l , 1996). The starting point for the generation of this map—a collaborative 

venture between genome mapping centres or groups at the Whitehead Institute for 

Biomedical research, the Sanger Centre, Genethon, Stanford University, Oxford 

University, the University of Colorado Health Sciences Centre, and informatics centres 

at the National Centre of Biotechnology Information and the European Bioinformatics 

Institute—was the UniGene dataset. This dataset strives to represent each gene in the 

human genome as a single entry (i.e. to be non-redundant) by concentrating solely on the 

3' ends of genes: either characterised genes or 3 "-reads of
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Figure 5.2. Identification of a CpG island in c61 corresponding to R14.4E1. 
DNA samples prepared from cosmid clone 61 were digested in parallel with the 
restriction enzymes shown at the top of the panel and then resolved by 
electrophoresis on an agarose gel. Bands were visualised by staining with 
Ethidium bromide. The asterisks indicate EcoR  I fragments which are also 
cleaved by BssH  II. The upper band (approximately 4.5 Kbp) is derived from 
the cosmid vector. Lawrist 4; the arrows indicate the smaller fragment resulting 
from BssH  II cleavage of this fragment. The smaller band (approximately 1 
Kbp) marked with an asterisk corresponds to R14.4E1.



novel genes in the form of ESTs. The great majority of EST sequences (over 500,000) 

have been generated by Washington University Genome Sequencing Centre with the 

sponsorship of Merck pharmaceuticals, using cDNAs prepared by the IMAGE 

consortium. Entries in the UniGene database were converted into STSs and then placed 

on radiation hybrid mapping panels (either Stanford G3 or Genebridge 4) to create the 

human gene map.

The human gene map is accessible in electronic form through a site on the World 

Wide Web (http://www.ncbi.nlm.nih.gov/SCIENCE96/), and allows one to search 

within bins corresponding to physical intervals on a radiation hybrid map defined by 

Genethon microsatellite markers. We conducted a search between the markers D7S522 

and D7S655; this generated 32 returns (Table 5.1). Oligonucleotide primers were 

ordered for certain of these markers and then used to screen YACs 905-g2 and 921-b4. 

The results of this screening are given in Table 5.1. EST-derived STSs for which YACs 

were positive were then assayed using cosmid DNA as template; cosmids identified as 

being positive for these markers are also shown in Table 5.1. Overall 10 EST-derived 

STSs were identified as mapping to the YACs, and at least one cosmid corresponding to 

each of these was identified. Finally, these markers were used to screen senescent 

human fibroblast cDNA by taking duplicate 1 \il aliquots of phage supernatant (107 

pfu/pl) from the senescent human fibroblast cDNA library prepared by George and 

subjecting them to PCR amplification, to assess their expression status in a population 

of senescent cells; these results are also given in Table 5.1.

Map entity Within YAC(s) Within cosmid(s) Expressed in senescent fibroblasts
S H G C - 8 6 7 8 - -

S H G C - 8 6 6 8 - -

A 0 0 1 X 0 5 /  
C d a l b d O l  /  
S H G C - 8 7 1 1

- -

A 0 0 4 D 1 8 - -

A 0 0 5 X 1 3 - -

S H G C - 1 3 5 9 4 - -

S H G C - 1 2 0 2 1 /
S I I G C - 8 6 6 4

- -

S H G C - 1 3 6 1 0 - -

s t S G 4 0 1 /
A 0 0 1 W 1 5

- +

S G C 3 3 8 2 4 - -

W I - 1 8 2 5 4 ND ND ND
W I - 1 7 7 8 6 - -

W I - 1 8 4 0 8 - -
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s t S G 1 0 2 8 9 - -

s t S G 3 6 0 0 ND ND ND
s t S G 4 6 4 - -

s t S G 4 8 0 7 - -

W I - 8 6 9 3 - -

W I - 8 7 2 6 921-b4 cl35* -

S H G C - 1 0 3 8 5 /
D 2 9 2 0 6

921-b4
905-g2

c70 +

W I - 1 2 6 6 2 ND ND ND
S H G C - 3 1 7 9 5 ND ND ND
W I - 7 8 8 2 921-b4 

905-g2
c l5 ,c l07 ND

W I - 1 8 2 0 9 921-b4 
905-g2

c43, c79 -

C d a O z b l l /
S H G C - 5 6 6 0

921-b4
905-g2

c78,c97, cl08 +*

W I - 7 5 9 7 921-b4 
905-g2

c60 ND

D 7 S 2 7 4 2 921-b4 
905-g2

c41, c45, c50, 
c57, c99, cllO

ND

S H G C - 8 7 0 8 921-b4 
905-g2

c45,c86 -

A 0 0 5 W 0 9 /
C d a l 9 h 0 2

- +

A 0 0 4 D 0 7 /
S H G C - 5 6 5 4

- -

A 0 0 4 D 1 2 /
S H G C - 1 0 2 9 4

- -

Table 5.1. EST-derived STS from the human gene map corresponding to the 7q31

region. ND, either not determinable (failure to find the correct conditions for 

amplification) or not done; +, PCR product; no PCR product; * Identified by Dr. 

Edward Tobias in our group; ftrace product.

Novel EST sequences, from which markers mapping to the selected YAC clones 

had been generated, were used as starting points in the generation of sequence contigs. 

Essentially an EST would be used to search for homology with other EST or cDNA 

sequences deposited in the GenEMBL database using the BLAST algorithm. Matches 

showing significant homology (near identity) which were not due to repetitive DNA and 

which extended the sequence 5' were used to search the database afresh, and so the 

process was re-iterated. In this way, it was established that the marker SHGC-10385 

corresponds to the 3' of a gene, CAVEOLIN-1 (Figure 5.3). Walking in the EST 

database with H63719 (WI-18209), Z39076 (CdaOzbll), or Z39427 (SHGC-8708) did 

not reveal any shared homology with known genes, and further suggested that they are 

expressed in only a narrow range of tissues (brain or fetal liver and spleen).



1 0  3 0  5 0
G A A T T C C G G A G T T T T C A T C C A G C C A C G G G C C A G C A T G T C T G G G G G C A A A T A C G T A G A C T C

M S G G K Y V D S  9 
7 0  9 0  1 1 0

▼

G G A G G G A C A T C T C T A C A C C G T T C C C A T C C G G G A A C A G G G C A A C A T C T A C A A G C C C A A C A A  
E G H L Y T V P I R E Q G N I Y K P N N  3 0  

1 3 0  1 5 0  1 7 0
C A A G G C C A T G G C A G A C G A G C T G A G C G A G A A G C A A G T G T A C G A C G C G C A C A C C A A G G A G A T  

K A M A D E L S E K Q V Y D A H T K E I  5 0  
1 9 0  2 1 0  2 3 0

C G A C C T G G T C A A C C G C G A C C C T A A A C A C C T C A A C G A T G A C G T G G T C A A G A T T G A C T T T G A  
D L V N R D P K H L N D D V V K I D F E  7 0  

2 5 0  2 7 0  2 9 0
C

A G A T G T G A T T G C A G A A C C A G A A G G G A C A C A C A G T T T T G A C G G C A T T T G G A A G G C C A G C T T  
D V I A E P E G T H S F D G I W K A S F  9 0

H
3 1 0  3 3 0  3 5 0

C A C C A C C T T C A C T G T G A C G A A A T A C T G G T T T T A C C G C T T G C T G T C T G C C C T C T T T G G C A T  
T T F T V T K Y W F Y R L L S A L F G I  1 1 0  

3 7 0  3 9 0  4 1 0
C C C G A T G G C A C T C A T C T G G G G C A T T T A C T T C G C C A T T C T C T C T T T C C T G C A C A T C T G G G C  

P M A L I W G I Y F A I L S F L H I W A  1 3 0  
4 3 0  4 5 0  4 7 0

C
A G T T G T A C C A T G C A T T A A G A G C T T C C T G A T T G A G A T T C A G T G C A T C A G C C G T G T C T A T T C  

V V P C I K S F L I E I Q C I S R V Y S  1 5 0
T

4 9 0  5 1 0  5 3 0
C A T C T A C G T C C A C A C C G T C T G T G A C C C A C T C T T T G A A G C T G T T G G G A A A A T A T T C A G C A A  

I Y V H T V C D P L F E A V G K I F S N  1 7 0  
5 5 0  5 7 0  5 9 0

T G T C C G C A T C A A C T T G C A G A A A G A A A T A T A A A T G A C A T T T C A A G G A T A G A A G T A T A C C T G  
V R I N L Q K E I  * 1 7 9

6 1 0 6 3 0 6 5 0
A T T T T T T T T C C T T T T A A T T T T C C T G G T G C C A A T T T C A A G T T C C A A G T T G C T A A T A C A G C A

6 7 0 6 9 0 7 1 0
A C G A A T T T A T G A A T T G A A T T A T C T T G G T T G A A A A T A A A A A G A T C A C T T T C T C A G T T T T C A

7 3 0 7 5 0 7 7 0
T A A G T A T T A T G T C T C T T C T G A G C T A T T T C A T C T A T T T T T G G C A G T C T G A A T T T T T A A A A C

7 9 0 8 1 0 8 3 0
C C A T T T A T A T T T C T T T C C T T A C C T T T T T A T T T G C A T G T G G A T C A A C C A T C G C T T T A T T G G

8 5 0 8 7 0 8 9 0
C T G A G A T A T G A A C A T A T T G T T G A A A G G T A A T T T G A G A G A A A T A T G A A G A A C T G A G G A G G A

9 1 0 9 3 0 9 5 0
A A A A A A A A A A A A A A G A A A A G A A C C A A A A A C C T C A A C T G C C T A C T C C A A A A T G T T G G T C A T

9 7 0 9 9 0 1010
T T T A T G T T A A G G G A A G A A T T C C A G G G T A T G G C C A T G G A G T G T A C A A G T A T G T G G G C A G A T

1 0 3 0 1 0 5 0 1 0 7 0
T T T C A G C A A A C T C T T T T C C C A C T G T T T A A G G A G T T A G T G G A T T A C T G C C A T T C A C T T C A T

1 0 9 0 1110 1 1 3 0
A A T C C A G T A G G A T C C A G T G A T C C T T A C A A G T T A G A A A A C A T A A T C T T C T G C C T T C T C A T G

1 1 5 0 1 1 7 0 1 1 9 0
A T C C A A C T A A T G C C T T A C T C T T C T T G A A A T T T T A A C C T A T G A T A T T T T C T G T G C C T G A A T

1210 1 2 3 0 1 2 5 0
A T T T G T T A T G T A G A T A A C A A G A C C T C A G T G C C T T C C T G T T T T T C A C A T T T T C C T T T T C A A

1 2 7 0 1 2 9 0 1 3 1 0
A T A G G G T C T A A C T C A G C A A C T C G C T T T A G G T C A G C A G C C T C C C T G A A G A C C A A A A T T A G A

1 3 3 0 1 3 5 0 1 3 7 0
A T A T C C A T G A C C T A G T T T T C C A T G C G T G T T T C T G A C T C T G A G C T A C A G A G T C T G G T G A A G

1 3 9 0 1 4 1 0 1 4 3 0
C T C A C T T C T G G G C T T C A T C T G G C A A C A T C T T T A T C C G T A G T G G G T A T G G T T G A C A C T A G C

1 4 5 0 1 4 7 0 1 4 9 0
C C A A T G A A A T G A A T T A A A G T G G G A C C A A T A G G G G C T G A G C T C T T C T G T G G G G C T G G G C A G

1 5 1 0 1 5 3 0 1 5 5 0
T C C T G G G G A A G C C A G C T T T T C C C T G G C C T C T T C A T C C A A C T T G A A T T G A G G G T C A G C C A T

1 5 7 0 1 5 9 0 1 6 1 0
G T T C T T A T T T C A G C T T T C G T T T T A T T T T T T C A A G G A A T A A T T C A C G C T T T T C C T G G A A T C

1 6 3 0 1 6 5 0 1 6 7 0
C A A A C T A A T C C A T C A C C G G G G T G G T T T A G T G G C T C A A C A T T G T G T T C C C A T T T C A G C T G A

1 6 9 0 1 7 1 0 1 7 3 0
T C A G T G G G C C T T C C A A G G A G G G G G C T G T A A A A T G G A G G C C A T T G T G T G A G G C C T T T C A G A

1 7 5 0 1 7 7 0 1 7 9 0
G T T G C T T G G C A A A C C T G A C C C C T T G C T C A G T A A A G C A C N T T G C A A C C A T C T T G T T A T G C C

139
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1 8 7 0

1 9 3 0

1 9 9 0

2 0 5 0

21 1 0

2 1 7 0

2 2 3 0

2 2 9 0

2 3 5 0

2 4 1 0

2 4 7 0

1830 1850
TGTGACACATGGCCCCTCCCCCTGCCAGGAGCTTTTGGACCTAATCCAAGCATCCCTTTG

1 8 9 0 1 9 1 0
CCCAGAAAGAAGATGGGGGAGGAGGCAGTAATAAAAAGATTGAAGTATTTTGCTGGAATA

1 9 5 0 1 9 7 0
AGTTCAAATTCTTCTGAACTCAAACTGAGGAATTTCACCTGTAAACCTGAGTCGTACAGA

2010 2 0 3 0
AAGCTGCCTGGTATATCCAAAAAGCCTTTTTATTCCTCCTGGCTCATATTGTGATTCTGG

2 0 7 0 2 0 9 0
CCCTTTGGGGACTTTTCTTAAACCTTCAGTTATGATTTTTTTTTCATACACCTTATTGGA

2 1 3 0 2 1 5 0
ACTCTGCCTGGATTTTTGCCTCTTCCAAGTCTTCCTGACACTTTAATTACCAACCTGTTA

2 1 9 0 2210
CCTACTTTGACTTTTTGCATTTAAAACAGACACTGGCATGGATATAGTTTTACTTTTAAA

2 2 5 0 2 2 7 0
CTGTGTACATAACTGAAAATGTGCTATACTGCATACTTTTTAAAATGGTAAAGATATTTT

2 3 1 0 2 3 3 0
TATCTTTATATGAAGAAAATCACTTAGGAAATGGCTTTGTGATTCAATCTGTAAACTGTG

2 3 7 0 2 3 9 0
TATTCCAAGACATGTCTGTTCTACATAGATGCTTAGTCCCTCATGCAAATCAATTACTGG

2 4 3 0 2 4 5 0
TCCAAAAGATTGCTGAAATTTTATATGCTTACTGATATATTTTACAATTTTTTATCATGC

2 4 9 0 2 5 1 0
ATGTCCTGTAAAGGTTACAAGCCTGCACAATAAAAATGTTTAACGGTTAAAAAAAAA

Figure 5.3. The amended cDNA sequence of human CAVEOLIN-1. The cDNA 

sequence and protein translation of human CAVEOLIN-1 are shown. The cDNA 

sequence is a composite. The first 839 base pairs are derived from the published cDNA 

sequence (GenEMBL accession number Z18951), with two alterations: sequencing RT- 

PCR products and also genomic DNA fragments (see below), we consistently found G 

instead of C at position 278 and T instead of C at position 465. These changes are 

anticipated to alter the translated product non-conservatively: the histidine residue, 

amino acid 82, would be substituted for an aspartate residue, while the threonine 

residue, amino acid 144, would be substituted for an isoleucine residue. An alternative 

start codon, position 128, giving rise to the beta-form of Caveolin-1, is also shown 

(blue), as are the position of splice sites, indicated by ▼ (see below). The membrane 

associated domain of Caveolin is highlighted in magenta. The remaining cDNA 

sequence, which is 3' UTR, is amalgamated from several EST sequences deposited in 

the EST division (dbEST) of GenEMBL. The position of primers which allow 

amplification of the EST (GenEMBL accession number T57690)-derived STS, SHGC-

| 10385, are underlined, while the position of the polyadenylation signal is shown in

green.
i

I 1 4 0



5.1.5 Exon trapping.

The technique of exon-trapping (Buckler et a l , 1991), or exon-amplification, is 

one among several in the armamentarium of a positional cloner for cloning genes. 

Unlike other techniques such as cDNA selection or hybridisation to a cDNA library or 

zoo blot where choices have to be made as to the samples to be screened, the success of 

exon-trapping is completely unaffected by the choice of starting material. DNA is 

selected simply by virtue of its possessing potential splice donor and acceptor sites 

which lie in the same restriction digest fragment. Restricted fragments of a genomic 

clone(s) of interest are subcloned into an exon-trapping vector (pSPL3) (Church et a l, 

1994), which allows in vivo splicing of any exon contained within the insert with exons 

of a surrogate gene contained in the vector. The spliced donor exon can then be 

recovered by performing RT-PCR using primers directed against vector sequences 

(Table A4).

Exon-trapping was undertaken using DNA pooled from cosmids c53, c62, and 

c87, digested with Pst I or Bam HI/Bgl II. c53 and c62 contain exons fom c-MET, and it 

was hoped that these would serve as a positive control for the technique. Of 20 RT-PCR 

amplification products TA-cloned into pCR2.1 and sequenced, only one was not derived 

from vector sequences (Figure 5.4). The sequences flanking this putative trapped-exon 

were determined and revealed the presence of consensus splice sites. A BLAST search 

did not detect any homologies to known nucleotide or protein sequences, including c- 

MET. Finally, a probe prepared containing this 143 bp putative exon was used to screen 

a northern blot, but no transcript was detected, nor was it possible to amplify a product 

by PCR from senescent fibroblast cDNA corresponding to this putative exon.

5.1.6 Chromosome 7 sequencing consortium

There have been other major inroads into the characterisation of the genomic 

interval between D7S522 and 17TA-5/17B-RE3, not least among them being recent 

releases from the chromosome 7 sequencing project which is a collaborative venture 

between investigators at the National Human Genome Research Institute, NHGRI (a 

subdivision of the National Institutes of Health, NIH, USA), the University of 

Washington Genome Research Centre and Washington University Genome Sequencing 

Centre (St. Louis, MO, USA). A summary of their sequencing data can be accessed
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Figure 5.4. Sequence of a novel exon. The sequence shown includes a novel putative 

exon derived by exon-trapping. The position of the splice acceptor and donor sites are 

marked (1). Translations for the sense strand of this exon are given below in single 

letter annotation for all three frames; * designates a stop codon. Both the first and 

second reading frame are open. The positions of primers used to extend the genomic 

sequence, and hence verify the existence of splice site sequences (shown in red) in close 

agreement with the consensus, are underlined with a single line. The positions of 

primers used to perform SSCP-heteroduplex analysis are underlined with a double line.
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through a site on the World Wide Web at (http://www.nhgri.nih.gov/DIR/GTB/CHR7/). 

Sequencing of the D7S522-17TA-5/17B-RE3 interval is approaching completion; so far 

1 Mbp of sequence has been deposited by the consortium in the GenEMBL databank for 

public access, including virtually the complete sequence covering the deleted interval in 

SUSM-l///yf£7 segregant 4. In addition to generating primary data, sequences have also 

been analysed by performing homology searches using the BLAST algorithm (Altschul 

et a l, 1990), and this has revealed various instances of highly significant homology with 

several human EST and cDNA sequences also deposited in the GenEMBL database, as 

well as to sequences present in the genomes of other species, such as the nematode 

Caenorhabditis elegans and the budding yeast Saccharomyces cerevisiae. Sequence 

data has also been subjected to analysis using exon prediction programs such as GRAIL 

(Uberbacher and Mural, 1991) to identify putative exons. This information provides 

strong evidence for the existence of expressed sequences at positions identified in these 

ways (although the possibility that these sequences are derived from pseudogenes can 

not be completely excluded).

The complete sequence for hFllA10.5 has been deposited by the consortium 

(GenEMBL accession numbers AC002542 [nucleotides 61,071-185,981]). The 

hFllA10.5 gene comprises fourteen exons distributed over 125 Kbp, oriented with its 

5'-end towards the centromere, and encoding a protein product with 432 amino acid 

residues. Sequence corresponding to R14.4E1 has also been submitted (GenEMBL 

accession numbers AC002465 [nucleotides 147354-148318]). Further residues with 

homology to mammalian ESTs as well as GRAIL-predicted exons have been identified 

in the interval defined in the S\1SM-1/Hytk7 segregant 4, which due to their mapping 

position emerge as very interesting candidates. There are, however, also numerous 

apparent gaps in the sequence for the D7S522-17TA-5/17B-RE3 interval: as yet there is 

no deposited genomic sequence for CAVEOLIN-1, nor the exon trapped from cosmid 

53.

5.2 Mutation analysis of genes within the D7S522-17TA5/B-RE3 

interval

Our analysis of the D7S522-17TA-5/17B-RE3 interval indicates the existence of 

several genes which by virtue of their map positions alone promote themselves as 

candidates for the 7q31 multi-tissue tumour suppressor/replicative senescence gene.
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However, a candidate gene has to satisfy a number of criteria before its role as a TSG 

can be asserted: the gene should be expressed in tissues from which tumours displaying 

7q31 LOH are derived; it should be possible to find loss of expression of the gene in 

tumours and mutations which would compromise the function of the gene product, 

including possibly germ-line mutations which predispose carriers to an increased cancer 

susceptibility; ultimately, it should be possible to demonstrate that restoration of the 

gene or of its product to tumour cells is able to abrogate some aspect of their 

transformed phenotype. Based upon the known roles of c-MET, CAPZA2, WNT2, and 

CFTR, these genes were not considered as candidates for the 7q31 tumour 

suppressor/replicative senescence gene. Further, on the assumption that the 7q31 tumour 

suppressor and replicative senescence gene were one and the same, we decided to limit 

our analysis of candidate genes to those that were expressed in senescent cells.

5.2.1 Southern and northern blot analysis

Of the novel genes so far identified, and which possibly map to the D7S522- 

17TA-5/17B-RE3 interval, only CAVEOLIN-1 and hFHA10.5 were found to be 

expressed in senescent fibroblasts, both by northern blot analysis (Figures 5.1 and 

Figure 5.5) and RT-PCR (using the senescent fibroblast cDNA library as a template, 

Table 5.1). As stated, from the tissue types represented the transcript for hFllA10.5 

appears to be ubiquitously expressed. The level of expression of CAVEOLIN-1 appeared 

to be more variable among the different cell lines studied. Northern blot analysis 

revealed the presence of a single 2.7 Kbp transcript in the majority of samples 

examined. However, no transcript was detected in the metastatic prostate carcinoma cell 

lines, DU145, LnCaP, and PC3. No altered transcripts were detected for either 

hFHA10.5 or CAVEOLIN-1 that might reflect the presence of an underlying mutation. 

cDNA probes corresponding to these two genes were also used to probe Southern blots 

of restriction digested DNA prepared from tumourigenic as well as non-tumourigenic 

immortal cell lines and SUSM-l/Hytkl immortal segregants. No evidence was found for 

re-arrangements or homozygous deletion of either gene (Figure 5.6).
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4.40

2.37

Figure 5.5. Northern blot analysis of CAVEOLIN-1 expression in cell lines. 
RNA from a number of tumourigenic and non-tumourigenic immortal cell 
lines, as well as RNA from senescent fibroblasts (70 mean population 
doublings) were transferred to Hybond N membrane and hybridised with a 
radiolabelled probe corresponding to CAVEOLIN-1. (See Figure 5.1 for note 
on samples.)



Figure 5.6. Southern blot analysis of SUSM-l/Hytkl immortal segregants probed with 

hFHA10.5 or CAVEOLIN-1 cDNA. Segregant DNA was digested with Bam HI and 

resolved on a 1% agarose gel, before being transferred onto Hybond N+ membrane. 

Blots were then prehybridised and probed with either hFHA10.5 (upper panel) or 

CAVEOLIN-1 (lower panel) radiolabelled cDNA. Bands were revealed by 

autoradiography.
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5.2.2 SSCP-heteroduplex analysis

To determine whether there were microscale alterations in the expressed 

sequences of CAVEOLIN-1 and hFHA10.5, we decided to perform single strand 

conformation polymorphism (SSCP) and heteroduplex analysis. In order to achieve this, 

it was first necessary to establish the genomic structures of these two genes; a similar 

strategy was adopted in both cases. Bacterial clones containing these genes were 

identified from among the cosmids already selected and by screening the human PAC 

library filters. Oligonucleotide primers spaced at regular 100 bp intervals along both the 

sense and antisense strand of the cDNA were synthesised and used to sequence directly 

from cosmids or PAC DNA. The quality of sequence derived from cosmid clones was 

consistently good, but was poorer from PAC clones. Nonetheless, even when derived 

from PAC clones, it was sufficiently good to identify the points at which genomic 

sequence diverged from cDNA sequence. In every case, it was obvious that these points 

of divergence corresponded to canonical splice donor and acceptor sites (conforming to 

the GT..AG rule). In this way, it was possible to determine the genomic structure of all 

three exons of CAVEOLIN-1 (Figure 5.7) and the last four exons from hFHA10.5 

(corresponding to nucleotides 173637-173787,182934—183026, and 185773-185981 of 

the 7q31 BAC clone RG114A06 [GenEMBL accession number AC002542], and 

nucleotides 5071-5412 of BAC clone DJ0866N18 [GenEMBL accession number 

AC003987])

Oligonucleotide primers were synthesised to allow PCR-amplification across 

exons, including both splice junctions, of CAVEOLIN-1 and hFHA10.5 (Table 5.2), 

using DNA from tumourigenic as well as non-tumourigenic immortal cell lines and 

SUSM-l/Hytkl immortal segregants as template. (It was possible to amplify DNA 

corresponding to exons 1 and 3, but not exon 2, of CAVEOLIN-1. This failure probably 

results from the high (62.9%) G/C content of this exon.) Radiolabelled PCR products 

were resolved on thin polyacrylamide gels under non-denaturing conditions and 

visualised by autoradiography using X-ray film. None of the PCR products obtained 

from exons of CAVEOLIN-1 or hFllA10.5 demonstrated altered electrophoretic 

mobility or gave rise to heteroduplexes (Figure 5.8). The absence of mutations in the 

entire coding sequence (including exon 2) of CAVEOLIN-1 was confirmed for the cell 

lines A1698, A16980R, MDA-MB-231, OVCAR5, and SUSM-1 by sequencing cDNA 

generated from these cell lines by RT-PCR (data not shown).
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Figure 5.7a. The genomic structure of the human CAVEOLIN-1 gene: Exon 1. 

Sequence containing the first exon of human CAVEOLIN-1, in addition to a portion of 

the promoter region, is shown. A putative transcription initiation site at position 90 

(blue) of the given sequence was calculated using the neural-network promoter 

prediction algorithm after Reese et al. (1996); initiation at this site would give rise to an 

anticipated messenger RNA molecule approximately 2760 nucleotides long, dependent 

upon the size of the polyA tail, which is in close agreement with what was found on a 

Northern blot for CAVEOLIN-1 message (Figure 5.5). Two CpG islands are also 

depicted (green); the first, which contains the putative transcription start site, has a 

63.4% GC content, while the second, from base-pair 1213 to 1433, has a 52.1% GC 

content. Multiple Sma I sites which fall within these two CpG islands are shown. The 

position and extent of the CpG islands was calculated using the algorithm after 

Gardiner-Garden and Frommer (1987). The first exon of CAVEOLIN-1 encodes only 

5% of the alpha-form of the protein. The splice donor site for this exon is indicated by 

i ,  and the flanking sequence is highlighted in red. The positions of primers used to 

perform SSCP-heteroduplex analysis are underlined.
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Figure 5.7b. Exon 2. Exon 2 of CAVEOLIN-1 encodes 31% of the gene product. Splice 

donor and acceptor sites are indicated (j) , and flanking sequences highlighted (red). 

Exon 2 is contained within a CpG island (green) that extends between base-pair 51 and 

866 of the given sequence. This CpG island has a 62.9% GC content. The position of an 

alternative start codon, position 749, giving rise to the beta-form of Caveolin-1, is also 

shown (blue).
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GGNTAAGGGTTTTGGGCCTGNTTCCCCNAAAAGGGAATTTNGGNATGTAATATCACGGCG
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Figure 5.7c. Exon3. The sequence shown contains the third and final exon of 

C A V E O L IN -l , which encodes 63% of the gene product. The splice acceptor site for this 

exon is indicated by 1, and the flanking sequence highlighted in red. The positions of 

primers (underlined), as well as the position of a H inf  I site, are shown which were used 

to perform SSCF-heteroduplex analysis. We consistently found G instead of C at 

position 278 and T instead of C at position 465 (See Figure 5.3).
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Figure 5.8. Mutation analysis of liFJlA10.5 and CAVEOLIN-1 by SSCP 
analysis. PCR amplifications products as revealed by autoradiography are 
shown for the indicated cell lines for (A) exon 11 of hFllA10 .5  and (B) 
exon 3 of CAVEOLIN-F  The PCR product for exon 3 of CAVEOLIN-1 was 
cleaved with H inf  I resulting in two fragments of 257 bp and 187 bp. ss. 
single-stranded DNA: ds, double-stranded DNA.
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CAVEOLIN-1
Exon 1 L: AGTTCCCTTAAAGCACAGCC 

R: AGAGGCAGATAGCAGAAGCG
Exon 3 L: CTGTGCTCATGTTGTGTCAC 

R: GAACTTGAAATTGGCACCAGG
hFllA10.5
Exon 11 L: TTAGGTATTAACACAAGTGTGTCC 

R: TTTAGCACC1TTTCATGCTC
Exon 12 L: ACAAACATTGGACATCTCTG 

R: TTCCAATCCCCACCnTCAC
Exon 13 L: GAGTGCAGTTTACTCCAGCC 

R: CTTGGCTTTCCCCATCC
Exon 14 L: GTTTGTTTTATAGTCTTGAACAAGG 

R: GACTTTCTTCTiTTCTGAAGGC
Table 5.2. Oligonucleotide Primers for SSCP-heteroduplex analysis

5.3 CAVEOLIN-1

5.3.1 Methylation and regulation of gene expression

There have now been several reported instances of genes possessing CpG islands 

being transcriptionally silenced by methylation during tumour progression, and 

methylation has been proposed as a possible epigenetic mechanism of tumour 

suppressor gene inactivation. In the case of CDKN2A, for example, methylation is 

perhaps the most prevalent mechanism whereby this gene is inactivated in tumours 

(Herman et ah, 1995; Loughran et ah, 1996). Therefore, we decided to look at the 

methylation status of CAVEOLIN-1 in DNA from several of the cell lines previously 

analysed in order to determine whether methylation occurred, with what frequency, and 

whether it correlated with the level of expression of Caveolin.

Genomic DNA from sample cell lines digested with a combination of EcoR I 

and Sma I restriction enzymes was hybridised on a blot with the CAVEOLIN-1 cDNA 

probe (Figure 5.9a). The recognition sequence for Sma I is CCCGGG; this sequence is 

resistant to cleavage if the third cytosine residue is methylated on the 5-position. Exon 1 

of CAVEOLIN-1 lies within a single Sma I fragment approximately 700 bp in size 

(Figure 5.7a). A fragment this size can be observed on a genomic DNA blot if the CpG 

island associated with exon 1 is undermethylated, but is inapparent if methylated. Figure 

5.9a provides evidence for methylation of CAVEOLIN-1 in up to 50% of the
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Figure 5.9. Methylation status of CAVEOLIN-1 in tumour-derived cell lines and its 

relation to expression. Southern blot analysis reveals an approximately 700bp Sma I- 

cleavable product in only a proportion of cell lines (A). Expression of CAVEOLIN-1 in 

these cell lines as revealed by RT-PCR analysis (B) and western blot analysis (C). 

Oligonucleotide primers which amplify a region of G3PDH cDNA were included in the 

RT-PCR analysis as an internal control for amplification efficiency. The a  and p in (C) 

refer to the two protein isoforms of Caveolin-1, which are detectable in certain of the 

samples (e.g. OVCAR5).
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cancer derived cell lines studied, including ZR-75, MCF-7, CHI, 0VCAR3, 0VCAR4, 

A2780, PACA3, and HS700T. Although detection of methylation of exon 1 of 

CAVEOLIN-1 by Southern blot analysis was perhaps sub-optimal (due largely to the 

probe sharing only 30 bp of homology with exon 1), the hybridisation pattern was 

reproducible, and did not result from incomplete restriction digestion since hybridisation 

with a probe derived from G3PDH revealed no inconsistencies between samples (data 

not shown). From RT-PCR analysis, it is evident that the amount of Sma I-cleavable 

product (i.e. methylation) correlates with the level of transcription of CAVEOLIN-1’. 

levels of CAVEOLIN-1 transcript are barely detectable in the cell lines ZR-75, MCF-7, 

CHI, OVCAR3, OVCAR4, and A2780, which most convincingly demonstrate 

methylation of the gene (Figure 5.9b). This implies that methylation is a major 

mechanism of transcriptional regulation for CAVEOLIN-1. From western analysis, there 

also appears to be a close correlation between the level of transcription and translation 

of CAVEOLIN-1 (Figure 5.9c).

5.3.2 Loss of Caveolin-1 protein in HeLa

Despite being able to detect a CAVEOLIN-1 transcript in HeLa cells (Figures 5.5 

and 5.9b), levels of Caveolin-1 protein are disproportionately low (Figure 5.9c), 

suggesting that the expression of Caveolin-1 may also be post-transcriptionally 

regulated. It is known that the level of Caveolin-1 protein is inversely correlated with 

the expression of oncogenes, including v-Src (Koleske et ah, 1995). Indeed, Caveolin-1 

was first identified as being a major phosphorylation target for v-Src (Glenney, 1989); 

phosphorylation may subsequently have an effect on protein stability. HeLa cells are 

known to be positive for HPV, and express the oncoproteins E6 and E7. One wondered 

whether expression of these proteins might be related to loss of Caveolin-1 in HeLa. 

Therefore, the level of Caveolin-1 expression was determined in a number of cell lines 

which are known to express E6 and E7, and compared to the levels in cell lines that do 

not (Figure 5.10). From western blot analysis, there is no correlation between Caveolin- 

1 expression and the presence of E6 or E7.
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Figure 5.10. Lack of correlation between expression of HPV oncoproteins 
and Caveolin-1 protein. The expression of Caveolin-1 protein was determined 
by western blot analysis for a number of cell lines, which either do or do not 
express HPV oncoproteins (indicated at the bottom of the panel). A431. 
C33a. MS2. MSB. and MSC are cervical carcinoma-derived cell lines, while 
HeLa is derived from carcinoma of the vulva. HEK are a culture of human 
embyronic keratinocytes, while TFK104 are a strain of human embyronic 
keratinocytes immortalised with the E6 and E7 oncogenes of HPV 16 (*). 
Murine NIH3T3 fibroblasts were included as a positive control for Caveolin- 
1 expression. (Cell pellets for the extraction of protein were provided by Drs 
D. Owens, A. Malliri. and E. K. Parkinson. BICR. )
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6. Discussion

From my investigations, it would appear that allele loss at the q31 region of 

human chromosome 7 occurs in 40% of breast carcinomas. The SCDR was between 

D7S522 and 17TA-5/17B-RE3 in intron 17b of the CFTR gene. Allele loss on the long 

arm of chromosome 7 was also observed in approximately half the immortal SUSM- 

1/Hytkl segregants. Losses occurred most frequently at three loci: D7S2555, D7S821, 

and D7S633-17TA-5/17B-RE3. Only the D7S633-17TA-5/17B-RE3 locus was also 

implicated in the tumour LOH study. An approximately 500 Kbp region of interstitial 

allele loss between 724CA and 786CA identified in SUSM-1/Hytk7 segregant 4 is 

nested within the breast tumour SCDR (Figure 6.1). The overlap between the region of 

allele loss in SUSM-l///yr&7 segregant 4, the smallest region of loss defined using this 

model, and the SCDR in breast carcinomas provides only a modicum of genetic support 

for our hypothesis that the chromosome 7 tumour suppressor gene and the 

complementation group D replicative senescence gene, SEND, are one and the same. 

Other work from the group provides further support for this hypothesis. Mary 

Berrington has shown that the tumour derived cell lines MDA-MB-231, C0L0357, and 

OVCAR5 demonstrate LOH specifically on the long arm of chromosome 7, including 

the q31 region, and further that mortalin in these cell lines is distributed as in other 

immortality complementation group D cell lines. Moreover, introduction of 

chromosome 7 into these cell lines by microcell mediated monochromosome transfer 

induces replicative senescence accompanied by reversion of mortalin distribution to that 

found in mortal cells (unpublished data).

That the D7S522-17TA-5/17B-RE3 interval harbours a TSG is consistent with a 

number of other studies of LOH performed in a broad spectrum of human tumours 

(Figure 6.2); a survey of this published literature suggest a median incidence of 49% for 

LOH on 7q. Dr Hilary Russell, a collaborator at Queen’s University, Belfast, used 

twelve microsatellite markers from 7q21-q36, including four of our novel CA.GT 

dinucleotide repeat markers, to examine the incidence of 7q LOH in ovarian tumours. 

Overall, 48% of the tumours, benign and malignant, exhibited LOH at one or more of 

the markers assayed. Again, the highest rate of loss (42%) was observed at the 17TA- 

5/17B-RE3 marker. Moreover, seven tumours were identified with partial deletions 

encompassing CFTR and the region just proximal to this gene, exactly co-incident with 

the extent of allele loss observed in SUSM-l///yf&7 segregant 4 (unpublished data). The
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Figure 6.1. Overlap between allele loss in breast carcinomas and immortal SUSM- 

1/Hytkl segregants. The shaded regions, beneath the tie line, depict the smallest 

common region of allele loss in breast carcinomas (lighter) and immortal SUSM- 

1/Hytkl segregants (darker). Clone coverage and STS content map of the D7S486- 

786CA interval are also shown. Symbols beneath the tie line represent different varieties 

of STS marker (polymorphic/non-polymorphic, expressed/non-expressed), while 

symbols just above the tie line represent genes (not drawn to scale) or regions of identity 

with EST sequences (from sequence data in GenEMBL).The proffered mapping position 

of CAVEOLIN-1 is inferred from STS content mapping of YAC clones.
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Figure 6.2. Allele loss studies in human tumours and SUSM-1 immortal segregants. 

Chromosome 7 is depicted as an ideogram showing cytogenetic banding. Alongside are 

shown the polymorphic STSs used to perform allele loss. Those in blue represent 

Genethon markers, in red CHLC markers, in green the novel CA.GT markers described 

above, and in black an RFLP within the c-MET locus (METH) and the microsatellite 

marker in intron 17b of the CFTR locus.

1) Ovary, 21% (Kerr et al., 1996)

2) Prostate, 30% (Takahashi et al., 1995).

3) Pancreas, 80% (Achille et al., 1996)

4) Ovary, 50% (Koike et al., 1997)

5) Breast, 12% (Lin et al., 1996)

6) Renal cell carcinoma, 64% (Shridhar et al., 1997)

7) Ovary, 59% (Edelson et al., 1997)

8) Breast, 83% (Zenklusen et al., 1994)

9) Breast, 36% (Above)

10)Ovary, 48% (Martin et al., in preparation)

11)Immortal S\JSM-1/Hytk7 segregants, 48% (Above)
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syntenic region in mouse, mChr6A2, is also frequently lost in chemically induced skin 

and liver tumours (Zenklusen et a l, 1996b; Zenklusen et al., 1997). We find that the 

allele loss during skin carcinogenesis in mouse is centred on a marker D6mit236, which 

maps to an intron of the mouse cftr gene (V. O’Neill, unpublished data). Interestingly, of 

the seven murine squamous cell carcinoma/chromosome 7 hybrids described by 

Zenklusen et al., (1994a), one of two hybrids which reverted to the malignant phenotype 

exhibited specific loss of a marker mapping within the CFTR locus on the introduced 

chromosome. These independent studies substantiate an association between loss of this 

region and carcinogenesis.

However, the cloning of TSGs by somatic cell genetics is still in its infancy, and 

certain of the candidates uncovered thus far (DCC, FHIT, TSG101) are still 

controversial. It is prudent, therefore, to exercise caution when drawing inferences from 

LOH data. It should be noted that a wide spectrum of incidences of LOH have to date 

been reported at 7q31, from the highest 80% (Zenklusen et al. 1994b) to less than 10% 

(Kerangueven et a l, 1995b) at a single marker—D7S522—and within a single tumour 

type—breast cancer. It is difficult to fully account for this appreciable spread in reported 

incidence of LOH in terms of tumour stage or grade, sample processing, and/or data 

analysis alone. These other studies, at the very least, call in to question the veracity of 

the data generated by the Zenklusen-Conte camp. In one detailed analysis by The Breast 

Cancer Somatic Genetics Consortium, in which 14 cancer centres compiled LOH 

allelotypings for three markers from 7q31-q32 in 683 breast cancer samples from 9 

European countries, significant differences in self-reporting of LOH were found to exist 

between centres which could not be accounted for by the 12% discordancy rate between 

original and double-blind LOH scoring (Devilee et a l, 1997). The average incidence of 

LOH found by the Consortium for 7q31 was 19%, with the highest incidence reported 

being 40%. It is possible that environmental and genetic factors contribute to the 

difference in LOH incidence reported by these centres. It would be interesting to study 

the frequency of LOH at the other immortality complementation group loci between 

different population groups to determine whether environmental and/or genetic factors 

are modulating the mechanism by which tumours are becoming immortal.

Another point of inconsistency within the literature is that different studies have 

delineated different minimally deleted regions, although these may map only a few 

megabases away from each other. This might suggest the existence of genetic 

heterogeneity in the tumour types surveyed, implying perhaps the existence of more than
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one TSG locus on chromosome 7. Indeed, evidence has been adduced for a TSG 

mapping to 7pl2-7qll.23 that is involved in choriocarcinoma (Matsuda et al., 1997), 

and in this study, as mentioned, I identified three hot spots for allele loss in SUSM- 

1/Hytkl segregants. Often though the boundaries of a minimally deleted region may be 

defined by LOH found in a single tumour, and since from the above study we can 

anticipate a 12% error rate in scoring LOH, such error might also therefore account for 

different regions being described. RFLP analysis of DNA from the two immortal 

fibroblast cell lines, SUSM-1 and KMST-6, revealed genomic losses at the 7q31 region 

in both (Ogata et a l, 1993). The authors claim to have identified a homozygous deletion 

in the SUSM-1 cell line on a southern blot using a probe pF-167.2 to the D7S252 locus 

(7q31.1). We find no evidence for homozygous deletion in this region on analysis of 

numerous microsatellite markers by PCR, indeed many markers in this region were 

heterozygous in SUSM-1 cells, thus highlighting a further discrepancy between my 

work and published reports. All these issues remain to be satisfactorily resolved.

These differences to one side, it is still difficult to determine what incidence of 

LOH should be taken to be significant (What background incidence of LOH might we 

expect to find by chance?). The incidence of LOH found in sporadic tumours for an 

established TSG locus such as TP53 is between 28% and 57% (Nagai et a l, 1994, 

Niederacher et a l, 1997), and an incidence of LOH over 20% is commonly taken to be 

significant. Measured against this benchmark the frequency of LOH I find at 7q31 and 

that reported by several other laboratories appears to be highly significant. There are 

however further complications to consider, one such being that the human genome is not 

uniformly stable. The 7q31 chromosomal region for instance has been reported 

independently to harbour both recombination hot spots (Kerem et a l, 1989) and an 

aphidicolin-inducible chromosome fragile site, FRA7G (Berger et a l, 1985). Huang et 

al., (1998) have recently mapped FRAG7 to a 300 Kbp region within the D7S486- 

D7S522 interval. Like the one other common fragile site so far cloned FRA3B, which is 

also aphidicolin-inducible, FRAG7 comprises a viral integration hot spot (HPVI6 in the 

case of FRA3B and an endogenous retrovirus HERV-H in the case of FRAG7) as well as 

sequences with homology to small polydispersed circular DNAs (spcDNAs), suggesting 

a common mechanism underlying the fragility of both sites.

Yunis and Soreng (1984) first proposed that fragile sites could predispose 

chromosomes to breakage and could thus play a role in cancer development. 

Recombination hot spots have also been mooted to contribute to carcinogenesis, due to
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their role in the duplication and deletion of genes (Oudet et a l, 1992; Reiter et al., 

1996). Further, DNA repair and meitotic recombination share common mechanisms and 

molecules. High frequency LOH in tumours is associated with both fragile sites and 

recombination hot spots elsewhere in the genome (Druck et a l, 1995; Buchhagen, 1996; 

Benitez et a l, 1997). Thus, the association between LOH and the fragile 

site/recombination hot spots at 7q31 may be non-random afterall.

The question remains, however, whether such an association has any bearing on 

the disease process itself. It is possible that against the background of global genomic 

instability prevalent within cancer cells that inherently unstable regions might 

preferentially undergo deletions and rearrangements. This could result in such sites 

becoming apparent when co-selected with other mutations conferring a selective growth 

advantage in clones of tumour cells, without themselves contributing to the disease 

process. An alternative possibility, more optimistic from our point of view, is that the 

most genetically labile locus in a pathway that results in tumour suppression would be 

expected to be inactivated more frequently than other possible loci, all other things 

being equal.

Forty percent of immortal cell lines are believed to map into complementation 

group D and yet purportedly there are at least four essential genetic targets (Pereira- 

Smith and Smith, 1983). Perhaps this reveals intrinsic differences in the propensities of 

the various possible target genes involved in immortality complementation to undergo 

inactivation. It is also important to note that LOH at the 7q31 chromosomal region has 

not been found to occur in a number of tumour types (i.e. bladder, cervix, and gliomas), 

suggesting that losses in this region are specific consequences of selection in particular 

cell types. Further, in a study of squamous cell carcinoma-derived cell lines, LOH on a 

region of chromosome 7 was found to be mutually exclusive with LOH on a region of 

chromosome 4 (Loughran et al., 1997b), again arguing for selective loss of a 

chromosome 7 region, which is also consistent with the idea that these chromosomal 

loci harbour immortality complementation group genes.

It is significant that functional evidence has been provided for a tumour 

suppressor/replicative senescence gene on human chromosome 7 (Zenklusen et a l, 

1994a; Ogata et a l, 1993), providing experimental support independently of LOH 

findings for its existence. However, chromosome 7 is 150 Mbp in extent and represents 

approximately 5% of the genome. In the absence of direct evidence that sequences 

derived from 7q31 can mediate tumour suppression or restore replicative senescence, it
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remains uncertain whether a gene/genes residing there is/are responsible for the tumour 

suppression/replicative senescence observed on introducing chromosome 7 into 

tumour/complementation group D cells. It might be appropriate to try and suppress the 

immortality of group D cells by transfecting them with BAC or PAC clones from the 

7q31 region, while co-selecting for drug resistance. Alternatively, one might try to 

generate radiation hybrids containing smaller chromosome 7 fragments that could serve 

as donors during microcell mediated transfer. However, as stated in the introduction, 

trying to suppress growth in tumour cells by genetic complementation is fraught with 

difficulties, since tumour cells are so well adapted to evading such intervention. An 

added complication is that ‘junk’ DNA can sometimes have surprising biological effects 

when expressed out of context.

Of the genes so far identified and characterised which map to the D7S522- 

17TA-5/17B-RE3 interval, CAVEOLIN-1 was perhaps the most interesting candidate for 

a multi-tissue TSG. Caveolin was first identified as a major phosphorylation substrate of 

v-src that localised to the striated inner surface of 50 to 100 nm invaginations of the 

plasma membrane termed caveolae (Glenney and Soppet, 1992; Rothberg, 1992). It was 

independently identified as VIP-21, a 21 kDa integral membrane component of trans- 

Golgi network derived vesicles (Kurzchalia et a l , 1992). Caveolae are believed to be 

present in most cell types, but are most abundant in terminally differentiated cells 

including adipocytes, endothelial cells, type I pneumocytes, and skeletal muscle cells 

(reviewed in Fan et a l, 1983). Caveolin is believed to be the principle structural 

component of caveolae: its expression within a cell correlates with the number of 

caveolae (Scherer et a l , 1994; Koleske et a l, 1995), while heterologous expression of 

caveolin induces the de novo formation of caveolae (Fra et a l, 1995), additionally, high 

molecular mass homo-oligomers of caveolin are able to self-associate and form 

caveolae-like structures (Sargiacomo et a l , 1995; Monier et a l, 1995). Recently, a 

family of caveolin-related proteins has been identified (Scherer et a l, 1996; Tang et a l, 

1996), and caveolin has been re-named caveolin-1. Human Caveolin-2, which is 38% 

identical and 58% similar to Caveolin-1, is expressed in many of the same tissues as 

Caveolin-1 and co-localises with it in caveolae membranes (Scherer et a l, 1996). 

Human Caveolin-3 is 65% identical and 85% similar to Caveolin-1, and is the 

predominant caveolin isoform in skeletal and cardiac muscle where it replaces caveolin- 

1 (Tang et a l, 1996). Recessive mutations in the gene encoding Caveolin-3 are believed
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to be responsible for a subset of autosomal dominant limb-girdle muscular dystrophy 

(Minetti et al., 1998).

Caveolin has been implicated as a regulator of a diverse number of intracellular 

signalling pathways. Purified caveolae membranes are enriched with specific lipids 

(cholesterol and glycosphingolipids (Murata et a l, 1995; Fra et a l, 1995)) and a 

plethora of lipid-modified signalling molecules including H-ras, c-src, other src-like 

kinases, eNOS, plasminogen activator, as well as heterotrimeric G-proteins (Li et a l, 

1995; Stahl and Mueller, 1995; Li et a l, 1996; Garcia-Cardena et a l, 1996; Song et a l, 

1996). In addition, a number of membrane associated receptors, including several that 

are coupled to G-proteins or possess intrinsic tyrosine kinase activity, localise to or are 

internalised by caveolae (reviewed in Lisanti et a l, 1994). A twenty amino-acid 

membrane-proximal scaffolding domain, that is highly homologous among the three 

forms of caveolin, has been identified. This domain mediates both the oligomerisation 

of caveolin as well as its interaction with several of these signalling molecules, 

including wild-type c-src, H-ras and Ga subunits (Li et a l, 1996). Significantly, the 

scaffolding domains of Caveolins-1 and -3, but not -2, are sufficient to inhibit the 

autoactivation of src tyrosine kinases, and the GTPase activity of Ga subunits (Couet et 

a l, 1997). Caveolae may play an important role in sequestering inactive signalling 

molecules, and down-regulating receptor activity. Alternatively, caveolae may provide 

an environment for the regulated activation of these molecules and explain cross-talk 

between different signalling pathways.

Caveolin is one of only a few transformation-dependent v-src substrates 

identified. The functional significance of its phosphorylation is unknown; it may allow 

binding between caveolin and signalling molecules that contain an SH2-domain. In 

support of this suggestion, caveolin-1 has been found to co-immunoprecipitate with She 

(Wary et a l, 1996). Both tyrosine phosphorylation of caveolin and transformation by v- 

sre depend upon membrane targeting of v-src by N-terminal myristylation (Glenney, 

1989). This has prompted the suggestion that caveolin may be a critical target during 

cellular transformation. This hypothesis has been supported by the observation that both 

caveolin expression and caveolae are reduced in NIH 3T3 cells transformed by activated 

oncogenes other than v-src, including H-ras, v-abl, and bcr-abl. Further, the extent of 

reduction in the expression of caveolin correlated well with the ability of these 

oncogenically transformed cells to form colonies in soft-agar (Koleske et a l, 1995). 

More recently, conditional expression of caveolin-1 in ras-transformed NIH 3T3 cells
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was shown to abrogate anchorage-independent growth; this was accompanied by 

inhibition of the ras/raf/MAPK signalling pathway, and by induction of apoptosis 

(Engelman et a l, 1997); while ectopic expression of Caveolin-1 in human breast 

tumour-derived cell lines has also been shown to suppress in vitro tumour growth (Lee 

et a l, 1998). A role for caveolin-1 in anchorage-dependent growth had previously been 

suggested by the demonstration that it interacts with both integrins and She (Wary et al., 

1996), providing a possible link between integrin signalling and the the ras/raDMAPK 

pathway.

CAVEOLIN-1 is expressed in cell lines representing various of the tumour types 

in which chromosome 7 LOH has been observed and, like the putative tumour 

suppressor gene, CAVEOLIN-1 is also conserved in mouse. Caveolin-1 was found to be 

one of 26 gene products down-regulated during mammary tumourigenesis using 

differential display (Sager et a l, 1994), and to be absent in several mammary carcinoma 

derived cell-lines including MT-1, MCF-7, ZR-75-1, T47D, MDA-MB-361, and MDA- 

MB-474 (Sager et a l, 1994, Lee et a l, 1998). Caveolin-1 has been found to associate 

with the neurotrophin receptor, p75NTR, which is required for sphingomyelin hydrolysis 

and ceramide production in neurones and glial cells (Bilderback et a l, 1997). In turn 

ceramide, which accumulates in senescent cells, is capable of inducing senescent-like 

growth arrest in normal human diploid fibroblasts (Venable et a l, 1995), providing a 

possible link between Caveolin-1 and replicative senescence, which would fit with our 

hypothesis that the TSG and SEND are one and the same.

However, against CAVEOLIN-1 being a TSG is the apparent absence of 

mutational inactivation of CAVEOLIN-1 as determined by SSCP-heteroduplex analysis 

performed on genomic DNA samples prepared from a number of tumour-derived cell 

lines (and also by sequencing CAVEOLIN-1 cDNA prepared from a subset of them); 

coupled with the absence of any gross alterations or homozygous deletions of the gene 

being found by southern blot analysis (in agreement with Lee et a l, 1998), or of any 

altered gene products being detected by RT-PCR or western blot analysis. We have 

demonstrated, however, that the level of expression of CAVEOLIN-1 is subject to 

epigenetic modification by methylation in several of these cell lines, and if CAVEOLIN- 

1 were indeed a tumour suppressor gene in vivo, this mechanism could be an alternative 

means by which the gene becomes inactivated during tumourigenesis. A CpG island 

associated with the first two exons of CAVEOLIN-1 is methylated in up to 50% of the 

tumour-derived cell lines tested here. Furthermore, the degree of methylation correlates
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with the level of expression of Caveolin-1 mRNA. The most abundant levels of 

Caveolin-1 transcript were detected in the cell lines J82, A1698, MDA-MB-231, and 

OVCAR5, and these demonstrate the highest detectable levels of a Sma I-cleavable 

fragment (i.e CAVEOLIN-1 is undermethylated in these cell lines). Little or no Caveolin 

transcript or protein could be detected for the breast carcinoma cell lines ZR-75-1 or 

MCF-7 (in accordance with the previous studies above), or for the ovarian carcinoma 

cell lines A2780, CHI, OVCAR3 and -4, for which no Sma I-cleavable fragment was 

apparent (i.e CAVEOLIN-1 is methylated). These findings demonstrate an important role 

for methylation in regulating the expression of CAVEOLIN-1 in tumour-derived cell 

lines. Cell-type factors other than methylation are, however, likely to influence the level 

of expression of Caveolin protein. Thus in the case of C0L0357 cells there is scant 

transcript and protein, but only partial methylation of the CAVEOLIN-1 gene, while 

mRNA expression is detectable in HeLa cells but there is little protein product, implying 

post-transcriptional regulation of the level of gene product in this cell line (this is 

independent of the expression of HPV oncoproteins). Ultimately, it would be desirable 

to detect methylation of the CAVEOLIN-1 gene not only in tumour-derived cell lines but 

also in cancerous tissue. However, contamination of cancerous tissue by stromal cells, 

which express high levels of Caveolin-1, might be anticipated to antagonise this 

analysis.

Expression of Caveolin-1 can not be detected by immunohistochemistry in 

glandular epithelial cells, which are believed to be the cell type that undergoes 

transformation in the majority of breast carcinomas, in sections of normal breast tissue, 

although there is strong Caveolin-1 immunolabelling in myoepithelial and stromal cells 

(Figure 6.3; J. Reeves, Royal Infirmary, Glasgow, UK). It would be predicted, therefore, 

that in sections of breast tumours, which have a high content of epithelial cells, less 

overall Caveolin staining would be apparent, as is indeed evident, and this would 

explain why CAVEOLIN-1 was found to be down-regulated in breast cancers (Sager et 

al., 1994). However, it is apparent from the breast cancer derived cell line MDA-MB- 

231 that at least a subset of breast epithelial tumour cell lines express CAVEOLIN-1.

Our finding that CAVEOLIN-1 is not expressed in normal breast glandular 

epithelial cells appears to contradict the findings of Lee et al. (1998), who demonstrate 

the presence of Caveolin-1 protein in early passage epithelial cells cultured from normal 

breast tissue, as well as in immortalised, non-tumourigenic, mammary epithelial cells. 

One possible explanation for this difference is that in vitro culture conditions may
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A)

B)

Figure  6.3. C A V E O L I N - 1  expression in normal  and tumour breast 
t issue. (A) Normal  breast  epithelial  cells contained within a duct 
(counter-s ta ined lightly with safranin) do not demonstrate  staining 
due to im m unoh is tochem ica l  detection of Caveolin-1 .  al though 
staining is apparent in st romal cells and myoepithel ia l  cells 
surrounding the duct. Examples  of ducts from two different
sections of breast  reduction tissue are presented with higher 
magnif ication images of  the circled regions shown on the right. (B) 
Caveolin-1 staining is present in primary breast  tumour  stromal 
cells and endothel ia l  cells, but absent in the invasive carcinoma 
cells. Again sections from two different primary breast tumours are 
shown at the same magnif ication as sections of normal tissue (left). 
BV. blood vessel . (Lower  magnification images,  bars = 50pm: 
higher  magnif ica tion images,  bars = 20pm ).



induce CAVEOLIN-1 expression in non-transformed glandular epithelial cells, but not 

malignant epithelial cells. Certainly, Lee et al. show that the expression of the a-isoform 

of Caveolin-1 increases in a cell cycle dependent manner in cultured breast epithelial 

cells (which is in itself perhaps a surprising finding for a putative growth inhibitory 

molecule); thus, we might only expect to detect Caveolin-1 protein in proliferating cells, 

and a greater fraction of cells will be in cycle in culture compared to in vivo, implying 

that it will be correspondingly harder to detect CAVEOLIN-1 expression in tissue 

sections compared to cultured cells. It might be possible to resolve this issue by 

examining CAVEOLIN-1 expression in the breast ducts of pregnant mice, or in pre- 

malignant, hyperproliferative lesions.

An alternative explanation for our different findings is that epithelial cells in 

culture do not represent glandular epithelial cells, but may be derived from another cell 

type, perhaps myoepithelial cells which we show do express Caveolin-1 protein. In this 

case, the consequence of over-expressing Caveolin-1 in malignant epithelial cells, 

namely growth inhibition, may be less physiologically relevant, since they do not 

represent an appropriate target cell type. It still remains to be satisfactorily explained 

how re-expression of CAVEOLIN-1 in carcinoma cells was consequential when it failed 

to result in caveolae formation, if endocytosis/vesicular transport associated with the 

function of this protein is believed to be important for its effects on growth (Koleske et 

al., 1995; Scherer et al., 1995). Perhaps an ability of Caveolin protein to modulate 

integrin-mediated growth signalling is more significant than its ability to induce 

caveolae formation. The authors also do not compare the growth rate of cultured normal 

mammary epithelial cells to their transformed counterparts, to give an indication of the 

effect of physiological levels of the protein on cell growth.

Caveolae are present in many normal cell types, including epithelial cells, and it 

is still possible that loss of Caveolin expression following methylation of the gene could 

contribute to carcinogenesis. However, there appears to be no correlation between the 

presence of wild-type Caveolin-1 and allele loss on chromosome 7 since the cell lines 

C0L0357, MDA-MB-231, OVCAR5, and TMSG all demonstrate chromosome 7 LOH 

which encompasses the CAVEOLIN-1 locus (unpublished data), but with the exception 

of C0L0357 express wild-type Caveolin-1. This finding has also been extended to a 

series of head and neck squamous cell carcinoma derived cell lines (J. Munro, BICR, 

unpublished data), established by Dr K. Eddington while at the BICR, and analysed for 

allele loss on chromsome 7 (Loughran et al., 1997). The failure to detect ‘first-hit’
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mutations in CAVEOLIN-1 (either micro-scale alteration or gross deletions and re­

arrangements) in any of the cancer cell lines studied here, coupled with the expression 

of wild-type protein in cells portraying chromosome 7 LOH suggests that this gene is 

not the target for inactivation by LOH (the ‘second hit’), which is frequently observed at 

7q31 in human solid cancers. Further, there is no correlation between the expression of 

CAVEOLIN-1 and complementation group status for immortality since the cell lines 

A1698, A16980R, MDA-MB-231, OVCAR5, and SUSM-1 are all in complementation 

group D, but nonetheless express wild-type Caveolin-1. Therefore, despite in vitro 

findings that Caveolin-1 can function as a suppressor of cellular transformation, and 

despite our finding modifications of the gene in tumour-derived cell lines, CAVEOLIN-1 

is unlikely to be the immortality complementation group D gene, nor does it appear to 

be a target for mutational inactivation during tumourigenesis. However, it can not be 

formally excluded that Caveolin-1 is partly responsible for suppressing cellular 

transformation in vivo.

Analysis of another possible candidate gene, hFllA10.5, is incomplete, although 

again it is possible to say that re-arrangements of the gene were not observed on 

Southern blots in tumours, tumour-derived cell lines, or immortal SUSM-l//fyrik7 

segrcgants, nor was a transcript from this gene found to be lost or altered in a number of 

tumour-derived cell lines that we analysed. Further, of four exons examined for the 

presence of mutations by SSCP-heteroduplex analysis, no alterations in electrophoretic 

mobility that might indicate the presence of a mutation were observed in DNA samples 

from tumours, tumour-derived cell lines, or immortal SUSM-l/Hytkl segregants. It is 

still necessary to examine the remaining exons of this gene for the presence of mutations 

in order to exclude this candidate.

There are several obvious future experiments whose performance might facilitate 

the cloning of the chromosome 7 multi-tissue tumour suppressor/replicative senescence 

gene. Presently, the smallest deleted interval where the gene potentially maps is defined 

by a single immortal SUSM-l/Hytkl segregant, segregant 4. It is therefore desirable to 

generate and allelotype more immortal segregants. These could originate from a 

different recipient cell line to SUSM-1 to see whether the same region is implicated. 

Both MDA-MB-231 and OVCAR5 present themselves as obvious choices. It is also 

desirable to continue establishing bacterial clone coverage of the D7S522-17TA-5/17B- 

RE3 interval. The end-clones of cosmid/PAC contigs established through STS content 

mapping, riboprobing, and restriction digest fingerprinting, can be used to generate
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riboprobes that can then be used to screen the chromosome 7 cosmid and genomic PAC 

libraries. The extent of allele loss at the other two frequently altered regions in immortal 

SUSM-l/Hytkl segregants, close to D7S2555 and D7S821 (both at 7q21), need also to 

be more precisely defined. This may necessitate the cloning of novel polymorphic 

markers. It is possible that certain of the regions identified through segregant deletion 

analysis may not be involved in replicative senescence but are being deleted due to 

different selective pressures. This issue could be resolved by performing microcell 

mediated monochromosome transfer of chromosome 7 into non-complementation group 

D cell lines, and analysing hybrids for allele loss on chromosome 7.

Clearly, the identification and analysis of candidate genes from the D7S522- 

17TA-5/17B-RE3 interval is incomplete. Further quarries may be unearthed by 

performing exon-trapping on more bacterial clones, starting with those clones from the 

deleted interval in SUSM-l/fyrA:7 segregant 4. YAC clone DNA or interA/w PCR 

products generated from YAC clones can be used to perform direct cDNA selection, 

employing pooled cDNA from various libraries, including the senescent fibroblast 

cDNA library, as the starting material. Also since much of this interval has already been 

sequenced, probes designed from sequences with significant homology to known genes 

or ESTs, and/or sequences with features of putative exons could be generated and used 

to probe cDNA libraries. In addition, putative exons will be subjected to SSCP- 

heteroduplex analysis.

As an alternative to positional cloning, it may be desirable to attempt different, 

perhaps indirect, strategies for cloning the tumour suppressor/replicative senescence 

gene. These approaches might include performing subtractive hybridisation between 

senescing and pre-senescent cells, and identifying genes up-regulated during senescence 

which map to chromosome 7. 48.5% of SUSM-l/Hytkl immortal segregants had no 

detectable allele loss. In these segregants it is possible that SEND was inactivated by 

micro-scale alterations, undetectable by examining LOH, or by epigenetic mechanisms, 

such as promoter silencing by methylation, or alternatively that a different replicative 

senescence gene was inactivated in a SUSM-l/Hytkl hybrid. It might be possible to 

perform RDA between genomic DNA prepared from immortal SUSM-l/Hytkl 

segregants, with no obvious losses scored by allelotyping, mixed with A92 mouse 

genomic DNA, and SUSM-1 DNA mixed with A92/Hytkl DNA. The success of this 

approach will of course depend upon there existing a sufficient number of RFLPs that 

discriminate between endogenous and exogenous copies of chromosome 7.
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Alternatively, the Hytk-tagged chromosome 7 could be isolated from immortal 

SUSM-l/tfyf£7 segregants with no obvious losses, by fusion of segregant cells with 

rodent cells and selection with Hygromycin, and RDA performed between genomic 

DNA prepared from pooled clones of these cells and parental rodent cells. RDA could 

also be performed between cDNA PCR amplified from senescent segregant colonies and 

cDNA prepared from a comparable number of immortal segregant cells. Although more 

demanding, the technology exists for preparing cDNA from only a few cells. However 

candidate genes are cloned, ultimate proof of their tumour suppressor/senescence- 

inducing credentials will depend upon the ability to demonstrate inactivating mutations 

in DNA from tumours, complementation group D immortal cell lines, and immortal 

segregant cell lines. It will also be desirable to demonstrate that the gene product is 

capable of inducing growth arrest solely in immortality complementation group D cell 

lines, and not cell lines mapping to other complementation groups.

Any further analysis of the tumour suppressor/replicative senescence gene would 

depend upon its identity. Shared homologies with known genes might give an initial 

indication of the function of the gene product. A comprehensive description of the 

gene’s function would require analysis of the expression of the gene, both within the 

organism as a whole, during development and in developed organisms, as well as in 

individual cells themselves. It will be important to determine the cellular distribution of 

the gene product; this may entail generating antibodies against the encoded gene 

product, or expressing the cDNA as an epitope-tagged molecule or as a Green 

Fluorescent Protein (GFP) fusion construct. It will be of interest to see whether 

expression of the gene is temporally regulated, i.e.whether expression is induced upon 

senescence, and whether induction is sustained or transient. Additionally, it will be 

important to determine whether the distribution of the gene product is cell cycle 

dependent, whether it undergoes any post-translational modification such as 

phosphorylation and if so under what conditions, and with which other molecules in the 

cell it interacts. Candidates for the latter would include the products of the other 

immortality complementation group genes. Binding partners can be identified in a 

number of ways, which include immunoaffinity chromotography, immunoprecipitation, 

or ‘pull-downs’ with a recombinant molecule fused to a glutathione-S-transferase 

moeity, followed by microsequencing or mass spectroscopy analysis of isolated proteins. 

An alternative method is the two hybrid screen, which can be performed in yeast, insect, 

or mammalian cells.
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Assuming that a mouse homologue of the gene does indeed exist, as has been 

suggested, then it will be interesting to disrupt this gene in mice by homologous 

recombination, and assess the effect of this on the replicative potential or 

tumourigenicity of mutant cells. This analysis may help confirm the dual role of the 

gene. However, its biological role may not be the same in mice as in humans since 

senescence does not appear to be regulated in the same way in these two organisms. It 

will also be pertinent to determine the phenotype of cells nullizygous for the gene at the 

biochemical level, looking to see whether the response of such cells to DNA damage is 

altered, and whether they are still able to undergo cell cycle arrest in response to DNA 

damage as well as other treatments. These cells could be generated from mutant mice 

(conventional or conditional knockouts depending on post-implantation viability), or 

complementation group D cell lines, or cultures of normal diploid human cells in which 

the gene has been disrupted through homologous recombination followed by drug 

selection. In addition, it will be interesting to see whether treatment of mutant cells with 

agents such as ceramide or sodium butyrate or targeting telomeres for deletion by 

homologous recombination induces senescence as efficiently in these cells as in wild- 

type cells. This would address the issue of whether or not the gene product is involved 

in transducing signals from shortened telomeres or other stimuli associated with the 

induction of senescence. It is published that re-introduction of intact chromosome 7 into 

SUSM-1 cells leads to telomeric attrition (Nakabayashi et al., 1997). It will be 

interesting to see whether ectopic expression of the chromosome 7 tumour 

suppressor/replicative senescence gene in young mortal cells induces the early onset of 

senescence, and whether it alters the rate at which telomeres erode in these cells. While 

in immortal cells, one would wish to determine the effect ectopic expression of the 

tumour suppressor/replicative senescence gene has on telomerase expression and/or 

activity, and/or whether it can restore Ml control.

Isolating genes targeted for mutation during carcinogenesis will provide us with 

new weapons to fight cancer. The identification of cancer susceptibility genes will allow 

us to predict and prevent familial forms of disease. Failing prevention, cancer genes 

provide us with markers of disease progression and potential therapeutic targets. 

Immortality is a prevalent and insidious feature of cancer cells. The means by which 

tumour cells progress to an immortal phenotype is incompletely understood. Cloning 

and characterising the immortality complementation group genes will no doubt throw 

light on the mechanisms which hold the proliferative potential of somatic cells in check,
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and provide clinicians with novel pathways to manipulate in cancer therapy. Cellular 

senescence is also implicated in the pathology associated with old age. The ability to 

modulate replicative senescence could one day potentially prolong healthy life.
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APPENDIX
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Table A l. Human chromosome 7 polymorphic STSs used in the analysis of LOH in 

breast tumour samples and SUSM-1 segregants. STSs are listed in map order based 

upon the best composite of genetic, radiation hybrid, and STS-content mapping. a 

Accession numbers for sequences of listed markers deposited in GenEMBL. b Genetic 

distances from the top of chromosome 7 are given in Kosambi centiMorgans (cM; for 

chromosome 7, 1 cM is approximately 1.1 Mbp) and are based on a sex-averaged 

recombination map (J. Weber, Genome Database). Physical distances are given in 

centiRays (cR; for chromosome 7 1 cR is approximately 270 Kbp) and based on 

radiation hybrid mapping of the Genebridge 4 RH mapping panel (Gyapay et al., 1996; 

Hudson et al., 1996).c Size of cloned allele. d Listed markers derived by the CHLC are 

exclusively tetranucleotide repeats (Murray et al., 1994), whereas listed markers derived 

by Genethon are exclusively CA.GT dinucleotide repeats. (Weissenbach et al., 1992; 

Gyapay et a l , 1994). The amplimers GH220/GH324, GH390/GH391, CS.7L/CS.7R, 

GH295/GH296, MIV1/VIM2, GH333/GH334, and pJG3CL/pJG3CR allow detection of 

RFLPs when restricted with Msp I, Taq I, Hha I, Pst I, ScrF I, Msp I, and Pst I 

respectively. The amplimers GH425/GH426 and 17B-TA5/17B-RE3 contain CA.GT 

dinucleotide repeats. CHLC, Co-operative Human Linkage Centre; WICGR, Whitehead 

Institute Centre for Genome Research.
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Table A2. Human chromosome 7 non-polymorphic STSs. a The accession numbers are 

given for the sequences of the random genomic clones from which non-expressed STS 

sequences are derived, or for the cDNAs or ESTs from which expressed STS sequences 

are derived. b Physical distances from the top of chromosome 7 are given in centiRays 

(cR; 1 cR = 270 Kbp) and based on radiation hybrid mapping of the Stanford G3 and 

Genebridge 4 RH mapping panels (Schuler et a l , 1996).c Information for STSs derived 

at the NHGRI is available on-line through a site on the World Wide Web at 

http://www.nhgri.nih.gov/DIR/GTB/CHR7/; a summary of the integrated chromsome 7 

YAC contig map produced by the NHGRI is published in Bouffard et a l (1997). The 

RHMC comprises genome mapping centres or groups at the Whitehead Institute for 

Biomedical Research, the Sanger Centre, Genethon, Stanford University, Oxford 

University, the University of Colorado Health Sciences Centre, and informatics groups 

at the National Centre for Biotechnology Information and the European Bioinformatics 

Institute. The first report of this consortium is published in Schuler et a l (1996), and is 

available in electronic form through a site on the World Wide Web at 

http://www.ncbi.nlm.nih.gov/SCIENCE96/. NHGRI, National Human Genome 

Research Institute; RHMC, radiation-hybrid mapping consortium; WICGR, Whitehead 

Institute Centre for Genome Research.

2 3 2

http://www.nhgri.nih.gov/DIR/GTB/CHR7/
http://www.ncbi.nlm.nih.gov/SCIENCE96/
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Primer Source

alu IV CAGAATTCGCGACAGAGCGAGACTCCGTCTC Cotter et al., 1990

alu V GTGAGCCACCGCGCCCGGCC Cotter et al., 1990

BK33 CTGGGATTACAGGCGTGAGCC Nelson et al., 1989

BK34 CCACTGCACTCCAGCCTGGG Nelson et al., 1989

TC-65 AAGTCGCGGCCGCTTGCAGTGAGCCGAGAT Nelson et  al., 1989

517 CGACCTCGAGATCTYRGCTCACTGCAA Nelson et al., 1989

Table A3. Oligonucleotide primers used for interAlu PCR

Primer

Sequencing from pCR2.1 or pBIuescript

M13 Forward: TTGTAAAACGACGGCCAGTG 

Reverse: GGAAACAGCTATGACCATG

T7 GTAATACGACTCACTATAGGGC

T3 AATTAACCCTCACTAAAGGG

KS TCGAGGTCGACGGTATC

SK CGCTCTAGAACTAGTGGATC

RT-PCR from pSPL3

SA2 ATCTCAGTGGTATTTGTGAGC

SA4 CACCTGAGGAGTGAATTGGTCG

SD2 GTGAACTGCACTGTGACAAGC

SD6 TCTGAGTCACCTGGACAACC

Table A4. Sequence of oligonucleotide primers used during sequencing and exon- 

amplification.


