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Summary

This thesis represents a collaborative research between the Department of 
Electronics & Electrical Engineering and the Department of Civil Engineering, 
University of Glasgow. The project was initially aimed at development of some 
theories and techniques o f image processing and pattern recognition for the study of 
soil microstructures. More specifically, the aim was to study the shapes, orientations, 
and arrangements of soil particles and voids (i.e. pores): these three are very 
important properties, which are used both for description, recognition and 
classification of soils, and also for studying the relationships between the soil 
structures and physical, chemical, geological, geographical, and environmental 
changes. The work presented here was based principally on a need for analysing the 
structure of soil as recorded in two-dimensional images which might be conventional 
photographs, optical micrographs, or electron-micrographs.

In this thesis, first a brief review of image processing and pattern recognition and 
their previous application in the study of soil microstructures is given.

Then a convex hull based shape description and classification for soil particles is 
presented. A new algorithm, SPCH, is proposed for finding the convex hull o f either a 
binary object or a cluster of points in a plane. This algorithm is efficient and reliable. 
Features o f pattern vectors for shape description and classification are obtained from 
the convex hull and the object. These features are invariant with respect to coordinate 
rotation, translation, and scaling. The objects can then be classified by any standard 
feature-space method: here minimum-distance classification was used.

Next the orientation analysis of soil particles is described. A new method, Directed 
Vein, is proposed for the analysis. Another three methods: Convex Hull, Principal 
Components, and Moments, are also presented. Comparison of the four methods 
shows that the Directed Vein method appears the fastest; but it also has the special 
property of estimating an 'internal preferred orientation' whereas the other methods 
estimate an 'elongation direction'.



Summary

Fourth, the roundness/sharpness analysis of soil particles is presented. Three new 
algorithms, referred to as the Centre, Gradient Centre, and Radius methods, all based 
on the Circular Hough Transform, are proposed. Two traditional Circular Hough 
Transform algorithms are presented as well. The three new methods were successfully 
applied to the measurement of the roundness (sharpness o f comers) of two- 
dimensional particles. The five methods were compared from the points of view of 
memory requirement, speed, and accuracy; and the Radius method appears to be the 
best for the special topic of sharpness/roundness analysis.

Finally the analysis and classification of aggregates of objects is introduced. A new 
method, Extended Linear Hough Transform, is proposed. In this method, the 
orientations and locations of the objects are mapped into extended Hough space. The 
arrangements of the objects within an aggregate are then determined by analysing the 
data distributions in this space. The aggregates can then be classified using a tree 
classifier.

Taken together, the methods developed or tested here provide a useful toolkit for 
analysing the shapes, orientation, and aggregation of particles such as those seen in 
two-dimensional images of soil structure at various scales.
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Chapter 1 Introduction

1.1 Image Processing

Sight is a human being's principal sense. A visual image is rich in information from the 

outer world, and receiving and analysing such images is part of the routine activity of 

human beings throughout their waking lives. At a more sophisticated level, human beings 

may generate, record or transmit images. These activities together comprise image 

processing.

Theories and techniques of image processing originated in the study of optics and 

optical instruments. However, the advent of digital computers opened vast new 

possibilities for artificial image processing. By the mid-1960's, third-generation computers 

offered the speed and storage necessary for practical implementation of image-processing 

algorithms; and in 1964 the capabilities of digital image processing were spectacularly 

demonstrated when pictures of the moon transmitted by the Ranger 7 space probe were 

processed to correct various types of image distortion inherent in the on-board television 

camera (Gonzalez and Wintz, 1987).

Since that date, the field of image processing has experienced vigorous growth. Digital 

image processing techniques are used today in a wide range of applications that, although 

otherwise unrelated, share a common need for methods capable of enhancing pictorial 

information for human interpretation and analysis. These applications include: remote 

sensing; security monitoring; medical diagnosis; automatic inspection; radar; sonar; 

detection of military targets; robotics; business communication; and television 

enhancement (after Jain, 1989). In civil engineering, it is used for structural monitoring, 

hydrology, and soil microstructure. The work of this thesis was undertaken in response to 

a specific request to provide improved methods of analysing and classifying micrographs 

of soil.
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Chapter 1 Introduction

Digital
Image

Interpretation
Data

Analysis
Feature

Measurement
Enhancement

or
Rectification

Field
Measurement

Segmentation

Figure 1.1 Diagram of image processing for object recognition

After acquiring a digitised image, the main tasks are: enhancement or rectification; 

segmentation; measurement; and data analysis, as indicated in Figure 1.1. Image 

enhancement and image rectification are often used to emphasise certain features and to 

remove artefacts respectively. Two types of measurements are made: feature 

measurements are taken off individual objects which have been defined by a segmentation 

process, and field measurements are obtained globally from complete images. Finally, 

these feature and field measurements must be analysed. In the present work, standard 

methods of rectification and segmentation were used, the emphasis being on measurement 

and data analysis.

1.2 Pattern Recognition

1.2.1 Classification of Pattern Recognition Methods

In communication with the outer world, one of the most important goals for human 

beings is to recognise objects. For example, from an image, image set, or image sequence 

of objects, we need to recognise which directions the objects are oriented toward, where 

they are located, how they are arranged, what size and shape they have, and what sorts of 

things they are.

2



Chapter 1 Introduction

During the past 30 years, pattern recognition has had a considerable growth. The need 

for theoretical methods and experimental software and hardware is increasing. 

Applications of pattern recognition now include: character recognition; target detection; 

medical diagnosis; biomedical signal and image analysis; remote sensing; identification of 

human faces and of fingerprints; reliability analyses; socioeconomics; archaeology; speech 

recognition and understanding; machine part recognition; automatic inspection; and many 

others (Young and Fu, 1986).

Pattern recognition by computer is, in general, a complex procedure requiring a variety 

of techniques that successively transform the iconic data to information directly usable for 

recognition (Haralick and Shapiro, 1992). Many methods of artificial pattern recognition 

have been proposed, applicable in general not only to objects in a visual image but also to 

other types of real world entity. Traditionally, these methods are grouped into two 

categories: structural methods and feature-space methods. Structural methods are useful 

in situations where the different classes of entity can be distinguished from each other by 

structural information, e.g. in character recognition different letters of the alphabet are 

structurally different from each other. The earliest-developed structural methods were the 

syntactic methods, based on using formal grammars to describe the structure of an entity. 

Some other methods which may be described as structural are machine vision methods 

such as those based on point distribution models, active contours, etc. (BMYC 1994).

In feature-space methods, a set of measurements (typically numerical) is made on each 

real-world entity (or pattern), and from the measurement set there is extracted a set of 

features which together characterise the class of patterns to which the given pattern 

belongs. The features are regarded as the elements of a vector drawn from the origin in a 

multi-dimensional feature space. Ideally, the measurements and features are so chosen that

(a) the extremities of the vectors representing patterns belonging to the same class tend to 

cluster together in a region of feature space, and (b) the extremities of the vectors 

representing patterns belonging to different classes tend to occur in distinct such clusters 

in distinct regions of feature space. A classifier can then assign an unseen real-world

3



Chapter 1 Introduction

pattern to a particular class according to the region of feature space in which the vector 

representing this pattern falls.

The traditional approach to feature-space pattern recognition is the statistical approach, 

where the boundaries between the regions representing pattern classes in feature space are 

found by statistical inference based on a design set of sample patterns of known class 

membership. An unseen pattern can then be classified simply by determining the region of 

feature space in which it lies. An alternative approach is to use a mathematical or physical 

model of the pattern generating mechanism to predict the regions: this approach is useful 

in situations where it is costly or impossible to obtain sufficient numbers of design 

samples to allow statistical conclusions to be drawn from them with any degree of 

confidence. A third possibility, which appears to be due to the Author, is to choose 

features so that the total hypervolume of feature space within which feature points can 

occur is known a priori. The whole of feature space can then be partitioned according to 

some suitable scheme for the problem in hand. This approach might be useful where there 

exists a continuum of pattern classes, rather than a set of discrete classes. This approach is 

considered towards the end of Chapter 2 with respect to the problem of classifying soil 

particles.

Feature-space methods are useful in situations where the distinctions between different 

pattern classes are readily expressible in terms of numerical measurements of this kind. 

Such a situation often exists in the study of soil microstructure, where, for example, 

important distinctions between soil particles, required by soil engineers, are based on such 

considerations as roundness versus angularity. These and other aspects both of the nature 

o f a soil particle and of soil structure lend themselves to numerical measurement, and there 

was an urgent need for numerically based classification for immediate comparison with 

numerical properties of the soil. The feature space approach is the one that has therefore 

been used in this research.

4
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Figure 1.2 (a) Operation of a pattern recognition system 

(b) Designing a pattern recognition system

1.2.2 Designing a Pattern Recognition System

Figure 1.2 (a) gives a simplified and generalised view of a pattern recognition system. 

Unclassified specimens are the specimens which are to be classified. Pattern analysis is the 

process o f extracting the characteristics of the specimens; these characteristics might be

5
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measurements or structured observations. Training samples are specimens whose class 

membership is taken as known a priori; in almost all cases, it is the set o f characteristics 

obtained from these specimens which is used. A priori definitions are definitions of the 

classes which have been set up in advance, either on the basis of some theoretical analysis 

or in an entirely arbitrary fashion depending on the nature of the problem. The criteria are 

definitions of the closeness with which an unclassified specimen must match the definition 

of a particular class in order to be placed in that class; if no class is sufficiently closely 

matched, the specimen may be rejected i.e. not placed in any class. These criteria may be 

set to broad or narrow limits depending on the use to which the results of the classification 

will be put. Decision making is the process of comparing the actual characteristics with 

those on which the classification is to be based. In some cases, it is appropriate to monitor 

the lack of fit, i.e. the error, and to use this to modify the set of characteristics which is 

actually being used for classification.

Figure 1.2 (b) is a simplified and generalised view of the process of designing a pattern 

recognition system. Here, a pattern is the set of characteristics which is inherent in a 

sample. These patterns may be taken from real samples; but some synthetic patterns 

designed to test the system may be included. Here, pattern analysis is the process of 

extracting the actual set of characteristics to be used in the classification. The a priori 

definitions, training samples, and criteria, are the current versions of these parts of the 

system; but during the design process, these may not yet have been finalised. The general 

procedure is to use the current version of the system to classify the patterns supplied to it. 

The results are then inspected to see whether they are judged to be satisfactory. If not, the 

error is fed back to modify the current versions of the parts of the system.

1.3 Relationship between Image Processing and Pattern Recognition

Image processing is concerned with the qualities and measurements of images of 

objects. Pattern recognition is concerned with the description and classification of entities.

6



Chapter 1 Introduction

In object or picture recognition, the entities are objects in an image and image processing 

and pattern recognition are complementary.

Image processing is often a necessary pre-processing stage preceding pattern 

recognition. In order to provide patterns which are effective and efficient descriptions of 

objects, image processing is required to improve the qualities and measurements o f an 

image. For example, filtering is used to remove noise and measurement redundancy; 

segmentation is used to obtain individual objects; representation is conducted to produce 

measurements; and so on. Then a set of characteristic measurements and relations among 

these measurements are extracted for the representation of patterns. On the basis o f this 

representation, the classification of the patterns with respect to a specific goal is 

performed.

Conversely, pattern recognition can be a main-stream processing procedure in image 

processing. In order to determine a good set of characteristic measurements and their 

relationships for the representation of objects, pattern recognition is sometimes needed to 

classify or cluster primitives or measurements of the images. For example, classification 

by the statistical method is used for texture segmentation; clustering analysis is used for 

region segmentation; an hierarchic method is used for scene segmentation; etc.

The output data of image processing for object recognition is a set of measurements. 

The input data of pattern recognition for object recognition is a set of unclassified patterns, 

each of which is defined by a set of features. The patterns are selected and/or extracted 

from the measurements by data analysis. The data analysis can be a separate procedure 

linking image processing and pattern recognition; it can also be a part of image processing 

or a part of pattern recognition.

Therefore, in object or picture recognition, the general procedures are image processing 

(which may apply pattern recognition methods), data analysis, and pattern recognition. 

The diagram of this procedure is as shown in Figure 1.3.

7
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Images Image Measurements Data Features Pattern
Processing Analysis Recognition

7  V

Object
classes

>

Pattern
Recognition

Figure 1.3 Diagram of object recognition

1.4 Image Processing and Pattern Recognition 

in Soil Microstructure Study

The earlier quantitative soil structure study by description of the geometry o f soil 

materials started in the 1940s, when interest first arose in soil micromorphology. The 

analyses of the amount, size, and shape of soil particles, pores, and voids were done by 

manual methods such as point counting. These methods were labour intensive and did not 

gain wide use. Since the 1960s, when image processing by computers arose and grew 

dramatically, image processing and pattern recognition techniques have been used in the 

quantitative analysis of soil materials. Because the earlier computers were expensive, the 

application was limited. In addition, the computers were inflexible in the calculations they 

could perform, and many of the measurements calculated by image analysers were not 

particularly useful for describing soil structure. Although the cost of computation has now 

fallen, and high-powered flexible computers are now available, there is still another 

problem. A branch of image analysis, which is known as stereology, is concerned with 

retrieving 3-D structure from internal evidence contained in a series of images, However, 

these images for stereological analysis must be taken in special ways, which are too 

expensive and sometimes technically impossible for studies of soil microstructure. In these 

cases it is necessary to rely on external evidence, for example, images are chosen a priori 

as 'typical' or 'in a plane of symmetry'; but even so, the costs of microscopy are often very

8
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high (McBratney et. al., 1992). The Author was requested to develop methods which 

would be applicable to a large set of carefully selected images which had of necessity been 

taken in the second way; these images represented a large investment, and it was necessary 

to develop methods to make the best possible use of them. These applications include 

orientation analysis; shape description; recognition and classification of soil particles, 

pores, and voids; arrangement investigation; and so on.

A wide variety of images are used in soil structural studies. The most important are:

1. 35 mm colour slides taken with an ordinary camera.

2. Images obtained from a digitising camera placed directly on an optical microscope, 

sometimes observing natural samples and sometimes observing thin sections (30 pm thick 

say).

3. Images obtained by tapping and digitising the signal in a scanning electron microscope, 

sometimes observing natural samples (under vacuum) and sometimes observing polished 

blocks.

4. Images obtained by digitising microphotographs taken in transmission electron 

microscopes, which most often observed ultra-thin sections (400A thick, say).

Almost all of the present work concentrated on the last two types of images. Preliminary 

stages of forming, drying, impregnating, slicing, and/or polishing, were required. The 

diagram of these procedures is as shown in Figure 1.4.

Soils
Drying SlicingForming Polishing Digitisation

Photographing 
and / or 

Electron scanning

Figure 1.4 Diagram o f preparing images from soils
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1.5 About This Thesis

This thesis represents a collaborative research between the Department of Electronics & 

Electrical Engineering and the Department o f Civil Engineering, University of Glasgow. 

The project was initially aimed at the study of soil microstructure using image processing 

and pattern recognition techniques. More specifically, the aim was to study the shapes, 

orientations, and arrangements of soil particles and voids (i.e. pores): these three are very 

important factors, which are used both for description, recognition and classification of 

soils, and also for studying the relationships between the soil structures and physical, 

chemical, geological, geographical, and environmental changes. The study was based on 

the electron micrographs of soils selected and published by Smart and Tovey (1981) and 

focused on the individual particles and voids. The present study was designed to 

complement work by Leng (1992), which used field measurements; so feature 

measurements were studied here.

Chapter 2 is concerned with shape description and classification of soil particles. The 

shape description is based on the convex hull method. A new convex hull algorithm is 

proposed for finding the convex hull of either a binary image or a cluster of points in a 

plane. The measurements of an object in an image are obtained from the convex hull of the 

object and the object itself. The pattern of the object is selected and extracted from the 

measurements. The classification of the objects in an image is conducted by minimum 

distance classification method.

Chapter 3 is concerned with orientation analysis of soil particles. A new method, 

Directed Vein, is proposed for the analysis. Another three methods: Convex Hull, 

Principal Components, and Moments, are also presented. The latter two are the most 

popular methods. Comparison of the four methods shows that the Directed Vein method 

appears the fastest; but it also has the special property of estimating an 'internal preferred 

orientation' whereas the other methods estimate an 'elongation direction'. It is suggested 

that in some cases, estimates of both properties of a particle should be used simultaneously 

for classification.

10
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Chapter 4 is concerned with sharpness/roundness analysis of soil particles. Three new 

algorithms, Centre, Gradient Centre, and Radius methods, o f the Circular Hough 

Transform are proposed for the analysis. Two traditional Circular Hough Transform 

methods are presented as well. Comparison of the five algorithms, the Radius method 

appears to be the best for the special topic of sharpness/roundness analysis. The methods 

of this and the previous chapters were applied to assess the quality of some charts which 

are frequently supplied to field workers as standards of roundness and sphericity.

Chapter 5 is concerned with the classification of aggregates of objects. A new method, 

Extended Linear Hough Transform, is proposed; and a method of analysing the 

arrangement of objects within an aggregate is developed from this method. The 

orientations and locations of the objects are mapped into extended Hough space. The 

arrangements of the objects are then determined by analysing the data distributions in this 

space. The classification of the aggregates is performed by a tree classifier according to the 

characteristic arrangements of the objects in the aggregates.

Chapter 6 gives the conclusions from the work presented in this thesis.

The literature on individual topics is reviewed in the relevant chapters, beginning with 

shape description based on the Convex Hull method.
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Chapter 2 Convex Hull Based Shape Representation 

and Classification

2.1 Introduction

In this chapter, a new algorithm developed by the Author is presented for finding 

the convex hull o f the binary image of an object in two dimensional space, such as 

one of the soil particles shown in Figure 2.1 (Smart and Tovey 1981). In this method, 

a simple polygon is first constructed from the binary image of an object by a method 

we may refer to as stair climbing, then the convex hull of the object is found by 

Sklansky's original algorithm (Sklansky 1972). This approach is guaranteed to find 

the convex hull correctly even in circumstances where Sklansky's algorithm fails if 

applied directly to the object, and it has the advantage of executing in linear time 

provided the object is represented as a set of binary values in a two-dimensional array 

as is usual in image processing.

Figure 2.1 (a) Soil particles (LH m a rk = lp m ) Figure 2 . 1 (b )  Soil voids
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Chapter 2 Convex Hull Based Shape Representation and Classification

The convex hull can be used to obtain characteristic shape measurements to enable 

| particles to be classified by automatic pattern recognition; the basic set of these 

measurements is explained towards the end of this chapter. The convex hull is also 

used in Chapter 3 to provide orientation measurements for pattern recognition, and it 

is useful when studying clustering in pattern space.

2.1.1 Problem of Shape Representation

In image processing and pattern recognition, identification and classification of 

objects is often necessary. Examples include recognising objects in satellite images; 

discriminating between fishing boats, merchant ships, warships, etc. in the sea; in 

industry, recognition of machine spare parts such as screws, nuts, etc.; in medicine, 

detection of cancers, ulcers, tumours, and so on. In the study of soil microstructure, 

recognition and classification of soil particles, voids, bacteria, etc. is a very important 

task. Smart and Tovey (1981) give further examples of these sorts of soil 

microstructures. Figure 2.1 shows soil particles and soil voids typical of those studied 

here. To recognise and classify objects with different shapes, the objects have to be 

represented by their shape characteristics, so that the information extracted from the 

objects can be compressed. Therefore, one of the essential procedures is so called 

shape representation.

2.1.2 History of Soil Particle Shape Representation

In the study of soil microstructure, most shape representations of particles comprise 

size, length, breadth, thickness, sphericity, roundness, roughness, etc. Wadell (1932) 

(see Krumbein and Sloss, 1951) proposed a fundamental equation for measuring 

sphericity:
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Chapter 2 Convex Hull Based Shape Representation and Classification

s .  = Mv / v s

where v is the volume of a particle, and vs is the volume of the circumscribing sphere. 

Smithson (1939) (see Pettijohn, 1949) adopted shape ratios:

where I is length and b is breadth, to represent crystal shape. Krumbein (1941) (see 

Krumbein and Sloss, 1951 and Brewer, 1964) introduced the concept and 

measurement of pebble diameters as shown in Figure 2.2, where a , b, and c are 

calliper diameters, a being the greatest, b being the greatest orthogonal to a, and c 

being the greatest orthogonal to a and b. He then defined sphericity as:

Ss = l l b (2 .1.2)

Sk = \lb c f a 2 (2.1.3)

which is based on a triaxial ellipsoid as the reference shape.

Figure 2.2 The concept and measurement of pebble diameters (from Krumbein 1941)
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Chapter 2 Convex Hull Based Shape Representation and Classification

Pettijohn (1949) suggested that the property of sphericity might be measured by the 

ratio:

Spa= s / S  (2.1.4)

where s is the surface area of a sphere of the same volume as the fragment in 

question, and S  is the actual surface area of the object, (this ratio will be affected by 

surface texture). He also suggested that the sphericity might be expressed as:

S „ = d J D ,  (2.1.5)

where dn is the nominal diameter (diameter of a sphere of the same volume as the 

object) and Ds is the diameter of the circumscribing sphere (generally the longest 

diameter of the object), which is the same as Equation 2.1.1. Krumbein and Sloss 

(1951) proposed, as a similar measure of sphericity to Pettijohn's Spj, the ratio of the 

nominal diameter dn to the maximum intercept a through the particle, i.e.

Sk, = d j a  (2.1.6)

Sneed and Folks (1958) (see Brewer, 1964) measured the maximum projection 

sphericity as:

S y = V c r 7a& (2.1.7)

where a, b, c, are the longest, intermediate, and shortest axis, respectively. Brewer 

(1964) gave a close approximation to true sphericity:

S „ = d J D c (2.1.8)
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Chapter 2 Convex Hull Based Shape Representation and Classification

where dc is the diameter of a circle equal in area to the area of the projection of the 

grain when it lies on its largest face and Dc is the diameter of the smallest circle 

circumscribing the projection.

In addition to the analytical methods mentioned above, human eyes may be trained 

to estimate the shape of particles: Krumbein and Sloss (1951), Brewer (1964), 

Hodgson (1974), FitzPatrick (1984), Bullock (1985), designed standard visual charts 

of particles which are widely used for classification of sand grains. Figure 2.3 shows 

Bullock's (1985) standard view chart. This chart is a combination of roundness, 

sphericity and roughness of particles. Classification by eye is essential in field work, 

where there is no possibility o f measurement; and the success of this depends on the 

quality of training and hence on the quality of the charts used.

2.1.3 History of Shape Representation in Image Processing

In image processing and pattern recognition, many approaches to the problem of 

representing the shapes of two-dimensional objects by real-valued features have been 

proposed. Methods based on representing the boundary of an object include Fourier 

boundary encoding (Granlund 1972), curvature description using the normalised dot 

products of the vectors joining successive pairs of boundary points (Rosenfeld and 

Johnston 1973), direction chain codes (Freeman 1974), piecewise approximation e.g. 

using straight line segments (Pavlidis 1977), and hierarchical representation (Ballard 

1981). Several authors have studied methods based on the medial axis transform 

(Arcelli et al. 1981, Rosenfeld and Kak 1982). Methods in which an object is 

decomposed into sub-regions of various shapes were investigated by Shapiro and 

Haralick(1979), Avis and Toussaint (1981), Ferrari et al. (1980). Papers on 

morphological and related methods include those by Tradhanias (1992), Shih and Wu 

(1992), Dai et al. (1992) and McMillan et al. (1992).
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Chapter 2 Convex Hull Based Shape Representation and Classification

2.1.4 Development of Shape Representation by Convex Hull

The above shape representations are very useful for description of objects with 

special shapes such as machine spare parts, printing characters, geometric graphs, and 

so on. However, in some cases, for example, in soil micro-structure study, as shown in 

Figure 2.1, the objects to be recognised or classified have almost random shapes, and 

there are rarely two geometrically similar objects, let alone two exactly the same. For 

this reason, more appropriate shape representation methods are needed; and also the 

shape representation has to be normalised and invariant with respect to co-ordinate 

rotation, translation, and scaling.

In this study, much use was made of the convex hull as a basis for shape 

representation. In the following sections, first a new method is presented for finding 

the convex hull of the binary image of an object. Then a convex hull based shape 

representation suitable for classification of soil particles is described; and the basic 

measurements which were taken from convex hulls of particles in combination with 

the original object as the shape representation are explained. Convex hull based shape 

representation is invariant with respect to co-ordinate rotation, translation, and 

scaling. It is useful especially for the representation, recognition, and classification of 

objects of random shape, such as soil particles, sand grains, sugar crystals, etc., in 

two dimensional images such as those which the Author has been analysing.

2.2 SPCH Algorithm for Finding the Convex Hull

2.2.1 Introduction to Convex Hull

1 Definition of Convex Hull

In general, the convex hull of a set of points in high dimensional space is the 

smallest convex set which contains all o f the points in the space. In two dimensional
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Chapter 2 Convex Hull Based Shape Representation and Classification

space, the convex hull of a set of planar points is the smallest convex polygon which 

contains all the set of planar points and whose vertices are a subset of the planar set.

2 Review of Methods of Finding the Convex Hull

The convex hull is a very powerful tool in computational geometry. It is widely 

used, for example, in image processing (Rosenfeld 1969) and pattern recognition 

(Duda and Hart 1973, Toussaint 1982). The computation of the convex hull of a finite 

set o f points, especially in the plane, has been studied extensively over the past 

decade. Two aspects of the problem were identified: (a) Finding the convex hull of a 

set o f planar points and (b) Finding the convex hull of a planar polygon. Many 

algorithms for its solution exist. The earlier work was reviewed by Toussaint (1981), 

Preparata and Shamos (1985), and Avis et. al. (1985). Bass and Schubert (1967) was 

thought to be the first proposing an algorithm for finding the convex hull. Five years 

later, Graham (1972) was the first to propose an optimal 0(NlogN) algorithm for the 

convex hull of planar points and 0(N) for a star-shaped polygon. The first 0(N ) 

algorithm for some simple polygons was proposed by Sklansky (1972). Subsequently, 

Jarvis (1973) and Eddy (1977) developed algorithms with complexity of 0(NH), 

where H is the number of vertices in the convex hull to be found. Shamos (1978) (see 

Preparata and Shamos 1985) was the first to propose an Q(NlogN) algorithm. Further 

optimal algorithms were presented by such as Akl and Toussaint (1978), McCallum 

and Avis (1979), Preparata (1979), Boas (1980), Devroye and Toussaint (1981), 

Toussaint and Avis (1982). The least complexity algorithm might be the 0(NlogH) 

presented by Kirkpatrick and Seidel (1982). The later methods of finding convex hull 

can be found in the methods developed by Toussaint and ElGindy (1983), Toussaint 

(1985), McQueen and Toussaint (1985), Melkman (1987), Day (1988). Apart from the 

sequential algorithms, many parallel algorithms have been studied thoroughly such as 

Jeong and Lee (1988), Miller and Stout (1988).

Most existing algorithms of finding convex hull allow the input data points to be 

stored in arbitrary order (although the fast Graham's (1972) algorithm requires that the
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Chapter 2 Convex Hull Based Shape Representation and Classification

input data has to be a star-shaped polygon). The simple Sklansky's (1972) algorithm 

does not work on all polygons correctly (Bykat 1978). It requires that the input data 

must be a weakly externally visible simple polygon (See definition in Section 2.2.3 

Lemma 2.4; see also Toussaint and Avis 1982, Toussaint 1985). In our study, the 

input data is always a binary image of an object. The point set can be either the 

boundary or the region of the object in the binary image. The distribution of the planar 

points may not be a star-shaped polygon, nor a weakly externally visible simple 

polygon. In this case, direct use of the fast Graham's or the simple Sklansky's 

algorithm may not find the convex hull correctly. The use of the other existing 

algorithms may be time consuming. Therefore, we develop a new algorithm, the 

SPCH algorithm, which is particularly suitable for use when the point set is stored as 

an array of binary pixels, and therefore particularly suitable for use in image 

processing, where this storage method is the one most widely used for binary images. 

Provided the point set is stored in this way, the SPCH algorithm runs in linear time.

Binary
image Data

collecting

Overall complexity U(1N)

Data sorting 

(Table 2.1)Arbitrary
order

Data SL

■»

Stair-
climbing
Algorithm

Data S'

0(NIogN)

Overall complexity O(NlogN) ^

Finding
simple
polygon

0(N)

P(S)

Sklansky
Algorithm
Finding
Convex
hull

O(K)

SPCH Algorithm

CH(S)

Convex 
hull

>

Figure 2.4 The flow chart of convex hull finding

3 Algorithm Development

The SPCH algorithm, which finds a convex hull from a binary image, consists of

two parts shown in Figure 2.4: (1) finding first a simple polygon P($) of S  by a new
■the

algorithm we refer to asf^tair-climbing algorithm and (2 ) finding then the convex hull
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CH(P(S)) o f P(S) by Sklansky's algorithm (1972); here the polygon P(S) is found in 

such a way that it is guaranteed to lack features which would cause the Sklansky 

method to fail.

It is shown below that the complexity of the stair-climbing algorithm (stage 1) is 

0(N ). The complexity o f Sklansky's algorithm (stage 2), starting from a polygon with 

H vertices, is 0(H ). Thus in the cases of a binary image we are considering, the 

procedure for finding the convex hull o f S  runs in linear time 0(N ). It is also 

extremely simple.

Other authors o f convex hull algorithm often assume that the input data is stored as 

a linear array o f coordinate pairs (xj ,yj),  (X2,y>2), •••, in arbitrary order. In this case the 

SPCH algorithm can still be used, but an initial sorting of the data points is necessary. 

Since the complexity of the sort is 0(NlogN), the SPCH algorithm in this case loses 

its linear-time advantage. However it is worth noting that if the points are already 

stored in the format of Table 2.1, then the advantage is regained because the 

additional computation required to find the convex hull has complexity 0(N ): this was 

often useful in the author's work because the storage scheme of Table 2.1 was already 

used for other purposes.

Table 2.1 A possible storage scheme for the input data: x(i)<x(i+l), 
y(i,j)<y(i,j+l). L^: number of 'black' pixels having x=xj4. In applications such 
as those we consider, data can be stored in this way without increase in 
computational complexity.

x ( l ) x(2) x(k- l ) x(k)

j \ i 1 2 ■ ... . k-1 k

1 y d . i ) y ( 2 , i ) y ( k - i , i ) y ( k , i )
2 y(i>2) y(2,2) y(k- i , 2) y(k,2)

•
•

Lk-1 y (k - l ,L k - i )

L 1 y(iTi)
Lk y(k,Lk)

•

k2 y(2,L ?J
.
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Chen (1989) presents a generalisation of Sklansky's algorithm; but Toussaint 

(1991) showed that Chen's method was still not completely general, in other words, it 

was incapable o f correctly finding the convex hull of some polygons in linear time. In 

contrast, The Author's approach allows Sklansky's algorithm to be used without 

generalisation, because of the special properties of P(S).

4 Preprocessing

Figure 2.4 shows two preliminary steps for binary particles and clusters of points 

respectively. For a cluster of points, the data must be sorted into the order of 

increasing x  increasing y; if necessary, this is a process of 0(NlogN). For a binary 

raster image of a particle, the data is already in this required order, and no data 

collection process is needed. Otherwise, a data collection process might be needed, 

either to separate particles, or to convert the format of the data supplied. This would 

probably be a process of 0(N), depending on circumstances. In the following, it is 

assumed that the data has already been sorted into the order of increasing x  increasing 

y  as has been done in Table 2.1.

2.2.2 Finding the Simple Polygon by Stair-Climbing Method

Let S  denote a set of N  points in a binary image in the plane or in a matrix or an 

array as shown in Table 2.1. I first seek to construct a polygon P(S) satisfying the 

following condition: (a) P(S) contains all the points of S; (b) all the vertices Vj of P(S) 

are points of S; (c) P(S) is non-self-intersecting; (d) P(S) has no externally invisible 

edges. Obviously there are many ways of constructing such a polygon. I now present a 

method which we may refer to as stair-climbing (Luo et. al. 1992).

In Figure 2.5, let P\, Pr, Pf, and Pfo be the leftmost, rightmost, topmost, and 

bottommost points of S. Then they (P/, Pr, P t, and Pjj) are also the leftmost, 

rightmost, topmost, and bottommost points of P(S). Thus the simple polygon P(S) of 

the planar points S  can be regarded as comprising 4 chains C j (from P / to P^),
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(from Pfr to Pr), C j (from Pr to Pf), and C4  (from Pt to Pf). Each chain Q  is a 

polygon path of P(S), and the vertices of Q  are the ones on this path. If the four 

chains C j, C2 , C j, and C4  are found from the set S, the polygon P(S) can be found by 

linking the four chains in order.

y

0

Figure 2.5 Planar points, four most points and four chains
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Let us first construct the chain C] as shown in Figure 2.6. Let x(p) and y(p) be the 

x  and y  co-ordinates of any point p  of S  in the plane. Starting from P / and traversing 

the chain counter-clockwise, let V\ be the current vertex of C j. Then the vertex Vj+7 

is chosen as that point p  which lies below and to the right of Vj and is nearest to Vj in 

the x-direction; if there is more than one such point with the same x(p), for example, 

points p  and q, then Vj+7 is chosen as the one with the smallest y(p), for example, 

point p. Thus Vj+7 is chosen so as to satisfy the conditions:

x{VM ) = m m x ( p )  p e S , x ( p ) > x ( V , ) , y ( p ) < y ( V l) (2.2.1)

y (VM ) = min^ ( p )  p ^ S , x ( p )  = x(VM ) (2.2.2)

y

V j  ( x ( V j  I ,  y ( V j

0

Figure 2.6 Constructing Chain C j and Cj  o f the simple polygon of point set S
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This procedure is continued until the point Pjj is reached. The Equations (2.2.1) and

(2 .2 .2 ) are actually easy to be achieved while the point p  is being found simply by 

scanning the binary image from left to right and from bottom to top.

The chains C2 , C j, and C4 , are found similarly - see Appendix. Finally these four 

chains are linked doubly in series to form the simple polygon P(S). If P(S) is traversed 

counter-clockwise, the four chains are linked in the order C j -> C2  -»  C j -> C4  —> 

Cj; if  P(S) is traversed clockwise, in the order C4  -> C j -> C2  -> C j -»  C4 . If  the 

chains o f the convex hull are found at the same time as the chains of the simple 

polygon, then the chains of the convex hull rather than those of the simple polygon are 

linked.

When this simple polygon finding method is applied on a point set S  in an arbitrary 

order, a suitable storage scheme for the point set S  is suggested in Table 2.1: an 

implementation either as an array or as a list could be used. In this table, all points 

with the same value of x  are listed in the same column, and these columns are 

arranged in increasing order of x. Within each column, the values of y  for the points 

concerned are listed in increasing order of y  from top to bottom. In this scheme, there 

will, in general, be different numbers of entries in each column; with possibly only 

one entry in the last row. This representation can be very simply set up if the points 

are stored as a matrix of binary pixels or are already sorted in order of their x- and y- 

co-ordinates; otherwise the preliminary sorting stage mentioned above is necessary.

The stair-climbing approach can still be used even in the following two degenerate 

cases: (a) when pairs of the four points Pj, Pr, Pt, and Pjj are coincident (in this case 

the number of chains will be two or three); (b) when S  has two or more leftmost points 

with the same x-co-ordinate, two or more bottommost points with the same ^-co­

ordinate, etc. in this case the polygon will acquire additional edges not associated with 

any chain, but these are easily dealt with.
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2.2.3 Properties of the Simple Polygon

We now show that the polygon P(S) constructed by this algorithm has the required 

properties, and we derive some further properties.

Lemma 2.1 The simple polygon P(S) found by stair-climbing for the set S  contains 

all o f the planar points S.

Proof Let Vj and Vj be two successive points on a chain of the simple polygon; thus 

Vj is Vj+j.  Suppose a point p  e  S, having x(p) < x(Vj), lies outside P(S) (Figure 2.7); 

then by Equation (2.2.1) p  is Vj+] and Vj is not Vj+j,  contradicting our initial 

assumption. Suppose now that a point q e S, having x(q) = x(Vj), lies outside P(S);

y

0

Figure 2.7 Proof of Lemma 2.1
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then by Equation (2.2.2) q is Vj+j  and Vj is not Vj+j ,  contradicting our initial 

assumption.

Lemma 2.2 Each of the four chains C7 , C^, C j, and C4 of the simple polygon P(S) 

of the set S  as found by stair-climbing is a single-valued function of x and y.

Proof This follows from the fact that the x- and y- coordinates of successive vertices 

of each of the four chains Cj are monotonically increasing or decreasing.

Lemma 2.3 The angle change of the edges of the simple polygon P(S) found by 

stair-climbing is 360°, if the polygon is traversed counter-clockwise.

Proof Let P(S) be traversed counter-clockwise and consider two consecutive chains 

C/ and C(j moclule 4)+ l- Because each chain Q  is a single-valued function of the x- 

and y-co-ordinates, the edges (viewed as directed edges) adjacent to the starting points 

(e  {P(, Pr, Pf, Pjj}) of these two chains will lie in two different but adjacent quadric 

spaces of the (x,y) plane, and the difference in angle between these edges will be in the 

range O°<0<18O° (the equalities corresponding to the above degenerate case b). 

Similarly the angle change for three consecutive chains will be in the range 9O°<0< 

270°, for four consecutive chains in the range 18O°<0<36O°, and for five consecutive 

chains (i.e. a complete circuit o f the simple polygon) in the range 27O°<0<45O°. Since 

the edges being considered in this last case are one and the same edge, the angle 

change must be precisely 360°.

Lemma 2.4 The simple polygon P(S) found by stair-climbing for the set S  has 

neither externally invisible edges, nor weakly externally visible edges (Toussaint and 

Avis 1982).

Proof As shown in Figure 2.8, an externally invisible edge is defined as: Let p  be 

any non-end point on an edge of the simple polygon; from any such point p, if we can 

draw outwards at least one ray without intersection with the polygon, the point p  is 

called an externally visible point. If an edge has no externally visible point, it is called
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externally invisible edge. For example, the edges VjVj, Vj J  are externally invisible 

edges. If some but not all points of an edge are externally visible, then that edge is 

termed weakly externally visible. For example, the edge V\T is a weakly externally 

visible edge. Because the position ofp  may vary, it is not shown in Figure 2.8.

If P(S) has externally invisible or weakly externally visible edges, then P(S) must 

be a multi-valued function of the x- and/or ^-co-ordinates. This contradicts Lemma 

2 .2.

y

Figure 2.8 Externally invisible edges
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Lemma 2.5 The simple polygon P(S) found by stair-climbing for the set S  is non­

self-intersecting.

Proof As shown in Figure 2.9, if P(S) is self-intersecting, then the angle change of 

its edges is 720° or more when traversing counter-clockwise. This contradicts Lemma 

2.3.

y

0

Figure 2.9 Self-intersecting polygon
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O f all points having the same x-co-ordinate, only those points having the largest 

and smallest ̂ -co-ordinates have to be queried in constructing a chain (provided that, 

as in our application, the points have satisfied the assumption above). This is an 

advantage of the stair-climbing algorithm. Lemma 2.1 ensures that the simple polygon 

P(S) found by stair-climbing for the set S  of N  points in the plane is correct. Lemma

2.4 and 2.5 will make the algorithm for finding the convex hull of the set S  from the 

simple polygon P(S) very simple and fast (Sklansky 1972, Toussaint and Avis 1982, 

Orlowski 1983).

2.2.4 Finding the Convex Hull by Sklansky's Algorithm

In this section Sklansky's original algorithm (1972) is briefly described.

Let CH(S) denote the convex hull of a set S  of points, and let CH(P(S)) denote the 

convex hull of a simple polygon P(S) which satisfies the conditions stated in Section 

2.2.2. CH(S) is the intersection of all convex sets in the plane containing S, and (for a 

finite set S) CH(S) is always a convex polygon whose vertices are elements of S, and 

CH(S) contains all the points of S  in the plane (Avis et. al. 1985). CH(P(S)) is the 

smallest convex polygon containing P(S) (Shin and Woo, 1986). It is obvious that the 

convex hull of S  is also the convex hull of P(S), i.e. CH(S) = CH(P(S)). In our method, 

a polygon P(P(S)) is found from P(S) by Sklansky's algorithm, shown in outline in 

Figure 2.10. Briefly, assuming P(S) to be traversed counter-clockwise, successive 

vertices Vj of P(S) are included into P(P(S)) as long as P(S) is convex at Vj. If 

however P(S) is not convex at a vertex Vj, then the algorithm backtracks until it finds 

an edge pp jP i such that Vj lies to the left of Pj-jPj- (A test must be included to stop 

backtracking when the starting edge of P(P(S)) is reached; this test is omitted from 

Figure 2.10 for clarity). Whether the vertex Vj lies to the left or the right of the vector 

P i-lP ican be determined from the following rule. Let:
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(2.2.3)

If det|'|<0, ky is on the left o f pj . jpj  and is a new vertex of the convex hull. If det|-|>0, 

Vj is on the right o f pj-jpj  and we remove pf  from the convex hull, decrement i by 1, 

and retest Vj. This procedure continues until the starting point is reached.

In general Sklansky's simple algorithm can compute the convex hull o f a restricted 

class of simple polygons, and it is guaranteed to work for weakly externally visible 

polygons (Toussaint and Avis 1982, Toussaint 1985). However in the remainder of 

this section we show that, because of the properties of our P(S) (Section 2.2.3), 

Sklansky's simple algorithm will always correctly find the convex hull of the original 

point set S, i.e. P(P(S)) = CH(P(S)) = CH(S).

y
i

0 ^  X

Figure 2.10 Finding convex hull o f simple polygon
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2.2.5 The Validity of the Convex Hull

Lemma 2.6 The polygon P(P(S)) formed by Sklansky's algorithm from the simple 

polygon P(S) is non-self-intersecting.

Proof This follows directly from Lemmas 2.3, 2.4, and 2.5. While P(P(S)) is being 

formed, the vertices of P(S) are checked in succession by Equation (2.2.3), and the 

ones satisfying Equation (2.2.3) are included in succession into P(P(S)). Therefore 

from Lemmas 2.3, 2.4, and 2.5, P(P(S)) is definitely non-self-intersecting.

Lemma 2.7 The polygon P(P(S)) formed by Sklansky's algorithm from the simple 

polygon P(S) contains all of the planar points of P(S).

Proof In Figure 2.10, let p j  be a vertex of both P(P(S)) and P(S) and suppose the 

vertex Vj of P(S) is the vertex pj +j  of P(P(S)). P(P(S)) is traversed counter-clockwise. 

If the following vertex Vj+j lies outside P(P(S)), it must be on the right o f the vector 

P iP i+ 1 when P(P(S)) is traversed counter-clockwise. Therefore according to the rule 

for finding the convex polygon from the simple polygon, p j+ 7 cannot be a vertex of 

P(P(S)). This contradicts the initial assumption.

Lemma 2.8 The polygon P(P(S)) formed by Sklansky's algorithm from the simple 

polygon P(S) is a convex hull.

Proof According to the algorithm, any vertex Vj of P(P(S)) must lie on the left side 

of the vector Vj _j  Vj_2 if P(P(S)) is traversed counter-clockwise. Hence by Lemma 2.7, 

all points of P(S) are on the left side of any edge of P(P(S)), and by Lemma 2.1, all 

points of S  are on the left side of any edge of P(P(S)) (the two end points o f the edge 

are excepted). Therefore P(P(S)) is indeed a convex polygon.

Proposition 2.1 The polygon P(P(S)) formed by Sklansky's algorithm from the 

simple polygon P(S) is the convex hull CH(P(S)) of the simple polygon P(S), i.e. 

CH(P(S))=P(P(S)).

33



Chapter 2 Convex Hull Based Shape Representation and Classification

Proof See Figure 2.11. If P(P(S)) is not the convex hull of P(S), then there exists 

another convex polygon P'(P(S)) smaller than P(P(S)). Thus P'(P(S)) must have at 

least one vertex less and at least one edge less than P(P(S)). Consequently P(P(S)) 

possesses at least one vertex p\ (say) lying outside P'(P(S)). Since p \ must also be a 

vertex of P(S), Lemma 2.7 is contradicted.

Proposition 2.2 The above algorithm for finding the convex hull of a finite set of 

points in the plane is correct.

Proof This follows directly from Proposition 2.1, using CH(S) = CH(P(S) ) .

Proposition 2.3 The complexity of this algorithm for convex hull finding is 0(N) 

for finding P(S) and O(K) for finding CH(P(S)), where N  is the number of points in 

the set S  and K is the number of vertices in P(S). If the data sorting is needed, the 

complexity is 0(NlogN).

y

► x0

Figure 2.11 Proof of Proposition 2.1
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Proof

(a) Forming P(S) from S. Constructing chains C j and C2  by stair-climbing 

requires at most each of the N  points of the set S  to be queried (this worst case is the 

one where no two or more points have the same x-coordinate). Similarly, constructing 

chains C j and C4  requires at most each of the N  points to be queried. Thus the 

complexity of the of the algorithm for finding P(S) is 0(N).

(b) Forming CH(P(S)) from P(S). Sklansky's algorithm is known to be linear in the 

number of input points. In our case the number of input points is the number of 

vertices K in P(S). Thus the complexity of this stage is O(K).

2.2.6 Conclusions

A simple and fast algorithm (the SPCH algorithm) has been developed for finding 

the convex hull of a set S  o f points in a binary image in a plane. The algorithm 

operates in two stages: (a) finding from S  a simple polygon P(S) by the stair-climbing 

algorithm; (b) finding from P(S) the convex hull CH(P(S)) by Sklansky's algorithm. 

The complexities of the two stages are respectively 0(N) and O(K), where N  and K 

are respectively the numbers of points in S  and P(S). In the most general case where 

the data points are in arbitrary order, a preliminary sorting step of complexity 

0(NlogN) is necessary and the overall complexity is also 0(NlogN). However in two 

important situations the SPCH algorithm runs in linear time, with complexity 0(N): 

(a) if the data points are already sorted for other purposes, as was often the case in the 

author's work where the storage scheme of Table 2.1 was used; (b) if  the data values 

are stored as a two-dimensional binary array, as is the case in most image processing 

applications where a convex hull is required.
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2.3 Convex Hull Based Shape Representation

Many methods of representing the shape of an object, including some utilising the 

convex hull, have appeared in the literature of image processing and of soils (see 

Section 2.1.2 and 2.1.3). In this section the Author proposes a shape representation 

which is particularly suitable for particles of random shape such as sand grains, sugar 

crystals, blood cells, nerve cells, etc., and for the soil particles studied in this thesis.

2.3.1 Introduction to Convex Hull Based Shape Representation

In two dimensional image processing, the image of an object is the projection of the 

object into two dimensional space. For example, in the study of soil, a particle is often 

projected onto a plane in such a way that the projected region is the largest section o f 

the particle. In soil thin section microscopy, the image of a soil particle is a section of 

the particle in a certain direction. In general, the image of an object contains 

information on the brightness, shadow, projected edge, projected boundary, etc. 

However, if we are concerned with the shape of an object in the projection plane, we 

are just interested in its projected binary image (the projected region or projected 

boundary) in two dimensional space. From this point of view, an object can be 

thought of as a set of planar points in the plane of projection, comprising the projected 

binary image or its boundary. For representation (and subsequent recognition and 

classification) of random shaped objects such as the soil particles in this project, 

because one and only one convex hull can be found from a set o f planar points, a 

shape representation based on the convex hull is likely to be useful. In this approach, 

the convex hull of the binary image or boundary of an object is found first, then 

measurements of the convex hull in combination with the object or its boundary are 

made. Finally, features are extracted from these measurements and used as the 

components of pattern vectors which represent the shapes of the objects. The author 

uses a transformed coordinate system and normalised features; therefore, this method
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satisfies the requirement o f invariance with respect to coordinate translation, rotation 

and scaling.

This section presents the coordinate system used and presents a method of 

representing the boundary and the convex hull of a particle by description functions. 

In Section 2.4 this representation is used as the basis of a set of features for shape 

representation.

2.3.2 Boundary and Convex Hull of an Object

In a two dimensional space X, where X=(xj, x r f ,  an object can be described by its 

boundary. A boundary B is expressed by a sequence of boundary points Pj(xj,X2), 

starting from a point p j  o f  the boundary and traversing along the boundary clockwise 

or counter-clockwise:

B = {/>,-(*, ,*2)} C2-3-1)

where i=l,2,...,M, and M  is the number of boundary points. It can also be described as 

a function in the two dimensional space:

* 2 = £ (* i)  = /o(*i) (2.3.2)

The discussion below refers to the example in Figure 2.12, which shows a 

boundary with its convex hull. Like a boundary, a convex hull C can be described by 

a sequence of its vertices Vj(xj,x2), starting from a vertex v/, traversing along the 

convex hull clockwise or counter-clockwise:

C =

where i=J,2 ,...,N, and N  is the number of vertices of the convex hull 

convex hull can also be described as a function:

x2 = C(xl) = g0(x l) (2.3.4)

(2.3.3 )

. Thus, N<M. The
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x2 y2

convex hullboundary

Figure 2.12 The convex hull o f a boundary

Wmaxl
Xmax2 Dmax

Xmaxl Vr
Wmax2

Vb

Figure 2.13 Concept and measurement o f convex hull
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Figure 2.14 Description function of convex hull
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In general, Equations (2.3.1) and (2.3.3) are not convenient for observation and 

analysis of the features for object recognition and classification. Because a boundary 

may have a complicated shape, Equation (2.3.2) cannot be implemented by simple 

models. However because the convex hull is just a polygon consisting of straight line 

segments, Equation (2.3.4) can be easily implemented by a set of linear functions. 

This is a further reason for choosing to represent the shape of an object by a method 

based on its convex hull. Moreover in practice, in many cases, the boundary o f an 

object in a two dimensional image can be approximated by its convex hull. For 

example, triangles, rectangles, squares, diamonds, trapezoids, etc., have convex hulls 

which are the same as themselves. Circles or ellipses are the limits of their convex 

hulls. Soil particles and other random-shaped objects in real digital images can also be 

approximated by their convex hulls.

2.3.3 Description Function of Objects

Direct employment of Equation (2.3.4) is unsuitable for shape representation for 

object recognition and classification, because g0(x,) is not invariant with respect to 

coordinate translation, rotation, and scaling. These problems can be avoided or 

reduced by using the following coordinate system Y.

(1) Coordinate system Y

As shown in Figure 2.13, let vjvr be the longest diagonal of the convex hull o f an 

object, having a length Dmax, with vertices v/ and vr at its two ends. This diagonal 

divides the convex hull into two parts: upper part and lower part. Let vt be the highest 

vertex with height Wmaxj  above vjvr in the upper part, the lowest vertex with
below

height Wmax2 above v/vr in the lower part, vt and being so chosen that Wmax]> 

Wmax2• Then v/ is chosen as the origin of a new coordinate system Y, vjvr as axis y j.
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Axis y 2  is chosen so that Vf lies in the first quadrant assuming right hand axes. In 

addition, the whole diagram is normalised by the length Dmax of vjvr.

(2) Coordinate transform

Obviously, the new coordinate system Y, Y=(yj, y r f ,  can be transformed from the 

original coordinate system X, X=(xj,x2) t by rotating, translating, and scaling X. This 

can be done by the following linear transform:

Y = A X + B  = A @ X -A e X 0 (2.3.5)

where

B = -A ® X 0

A = AQ (2.3.6)

(2.3.7)

i   1 / D  max 0
A "  0 1 ID

max

max
(2.3.8)

0  =
cos0 sin0 

-sin 0  cos0
(2.3.9)

(2.3.10)

6  = 0' or 0 '+ 7i so that Wmax] > Wmax2max] (2.3.11)

0 '=  arctan (2.3.12)

D  max =  < * ( V / V r )  = max{</(vfv,)} (2.3.13)

d{v i ,vj )=  ||xf. - X j \ \ = ^ ( x v - x y f  + (x 2/ - x 2j ) 2 (2.3.14)
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Vj, vj are any two vertices of the convex hull, i,j=l,2,...,N. and d(vi,vj) is the distance 

between v* and vj. Thus, in the coordinate system 7, Equations (2.3.2) and (2.3.4) 

become:

>2 = £(:>',) = / ,  O ',) (2.3.15)

y 1 = C{yi) = gx(yx) (2.3.16)

where 0  <y j  < 1 .

Because the length of each diagonal or edge is not greater than Dmax, the greatest 

possible height o f the upper part is equal to that of an equilateral triangle; then:

y 2m„ = J d 1(vl , v , ) - ( D max/ 2 ) 2 = ^ /P T 74  = V3 / 2  (2.3.17)

Also the greatest possible height o f the lower part is a half of the Dmax, i.e. where the 

heights of the two halves are equal:

y i* .  = - ° m» / 2  = “ I / 2  (2-3.18)

Therefore, the limits f o r are -1 / 2 < _y2 < +V3 / 2.

(3) Description Function

In 7, the axis y j  divides the convex hull into an upper part and a lower part.

Suppose we cut off the lower part, and rotate it -180° about the origin. Then as shown

in Figure 2.14 (a), the boundary and the convex hull can be described in a more 

convenient form than Equations (2.3.15) and (2.3.16):

y 2 = B( y1) = f 2(y]) (2.3.19)

72 = c 0 'i)  = £20 'i)  (2.3.20)
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where -1 < y j  < 1 and 0  < > 7  ^  (V3)/2. Equation (2.3.19) and (2.3.20) are easily 

derived from Equations (2.3.15) and (2.3.16) by:

/ 2(>’i) = /i(> 'i) O i > 0,y2 > 0) (2.3.21)

/ 2(-> ’i) = - / i (3 'i )  O i > 0 ,>>2 <0) (2.3.22)

g2(y,) = Si(y0 ( y ,>o ,y2 > 0) (2.3.23)

g 2 ( - y 0 = -g ,(y , )  (y\ > < °) (2.3.24)

C(y/) in Equation (2.3.20) is always a single-valued function of y j .  In Equation

(2.3.19), B(yj) either is a single-valued function of y j  or can be approximated by a 

single-valued function of y j  (approximating is necessary in some cases where bays of 

complicated shape exist in the boundary: methods of approximation are not discussed 

here). We therefore choose Equation (2.3.19) and (2.3.20) rather than Equation 

(2.3.15) and (2.3.16) as the description functions of the objects; and in the following 

f 2 (y]) is supposed or approximated to be a single-valued function of y j. Based on 

these description functions, we define another two useful functions: namely error 

function E(yj) and derivative function D(yj):

E ( y ]) = C(yl) ~  B( yx ) = g2( y l) -  f 2 {yx) (2.3.25)

D(yx) = d{g2} y ' )) (2.3.26)
dyx

Since the convex hull is composed of straight chords from vertex to vertex, D(y j)  is 

calculated directly as the slope of these chords. The error function E(yj) indicates the 

error caused by approximating the boundary to its convex hull; the derivative function 

D(y 1)  will be used below to find the curvature of the convex hull at a vertex. These 

two functions are shown in Figure 2.14 (b) and (c) respectively.
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2.4 Feature Extraction and Shape Classification

The coordinate system and description functions presented in Section 2.3 can be 

used to allow the computation of measurements which are useful for shape 

representation for purposes such as sorting randomly shaped particles into pattern 

classes. In this section several such possible measurements are defined, and in Section

2.5 examples of their use are given.

Some of the measurements have already been mentioned in passing in Section 2.3. 

For completeness these measurements are included in this section together with some 

new ones, and full definitions allowing the values of the measurements to be 

computed from the description functions in Section 2.3 are given.

The description functions based on the convex hull are simple and convenient for 

feature measurement, feature extraction, and shape representation.

2.4.1 Measurements

From the description functions, we define some measurements as follows:

(a) Half Widths Wmaxi an^ Wmax2

Referring to Figure 2.13 and Figure 2.14 (a), the half widths Wmaxj  and Wmax2 , are 

the height of Vf and vfr respectively. They can be calculated from Equation (2.3.20):

(2.4.1)

(2.4.2)
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(b) Vertical Half-Symmetry Svj ,  Sv2

The vertical half-symmetry Svj  is the symmetry of the upper part about the 

perpendicular bisector o f the longest diagonal. Sv2 is the symmetry of the lower part 

about the same line as Svj.  Svj  and Sv2 are defined by:

S yl= X m̂ - l / 2  (2.4.3)

S,2 = X „ „ 2 - 1/2 (2.4.4)

where X maxj  and X m ax2  are the normalised values of y j  corresponding to Wmaxj  

and wmax2, respectively, Wm axI=g2 (Xmaxi) and Wmax2 =g2 (-Xmax2)  (Figure 2.14 

(a)). X maxj  and X m ax2  are found from Equation (2.3.20) at the same time as Wmaxj  

and Wm ax2 are found. If two vertices at yj= X max] j  and y j =X maxj 2 have the same 

height Wmaxi  (usually corresponding to an edge parallel to axis y j  in the upper part), 

then Xmax] takes the mean value of Xmaxj  j  and Xmax] 2 - Two vertices which are at 

y  1 =-Xmax2 1 an^ y ] =~Xmax22  in the lower part having the same height Wm ax2  

processed similarly.

(c) Area A c of convex hull

From Figure 2.13, Figure 2.14 (a), and Equation (2.3.20), the partial areas Acj  and 

A c2 of the upper and lower parts and the total area Ac of the convex hull can be 

obtained from:



Chapter 2 Convex Hull Based Shape Representation and Classification

If only Ac is required, it may be obtained directly from:

i

A = \ s 2(y 1 ) ^ 1  (2-4 -8)
-1

(d) Perimeter Pc of the convex hull

From Figure 2.13, Figure 2.14 (a), and Equation (2.3.20), the perimeter Pc o f the 

convex hull can be given by:

Pc = \d lc (2.4.9)
h

where dlc is an element of the boundary of the convex hull.

(e) Area Ap of the original object

Similarly the convex hull, the nominal area Ap of the original object can be

calculated from the boundary function (2.3.19):

^ , = j / 2 (y .)^ i  (2-4.10)
0

0

4 p2 = J f 2(y ,)‘?y, (2.4.11)
-1

4 ,  = 4 , i + 4 a  (2-4.12)

or
1

AP = j f 2 ( y 1 ) ^ 1  (2.4.13)
- 1
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(f) Perimeter Pp of the original object.

The nominal perimeter, Pp, of the original object can also be derived from Equation

(2.3.19):

(2.4.14)

where dip is an element of the boundary of the original object.

(g) Local Convex Deficiencies CDLa(vf,vj) and CDLp(vf,vj)

The local convex deficiencies CDLa(vj,vj) and CDLp(y\, vj), for area and perimeter 

respectively, between the convex hull and the boundary of the object from vertex v/ to 

vertex vy, are defined as follows:

(h) Curvature Cur(vj) of convex hull at the vertex v/

The curvature Cur(vj) of the convex hull at the vertex Vf is the change in angle at v/. 

It can be calculated from Equation (2.3.26):

j
CDLa{y, ,v, ) = }£(>/, )dy,

i

CDLp(vi , Vj) = J -  j  dlc (2.4.16)

(2.4.15)

C ur(v ,) = arctan(£>(>/, )|v+ ) -  arctan(D(>;] )|v. ) (2.4.17)

Care is needed at v/ and vr .
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2.4.2 Feature Extraction

For the purpose of pattern recognition and classification, some features can be 

selected from the measurements, and some can be extracted by combining some 

measurements. There are a large number of possibilities, some of which might be 

useful in one case, and some of which might be more useful in another case. For 

randomly shaped objects, features were extracted as follows:

(a) Width Ws and W j of object

The width, Ws, o f an object is defined as the sum of the half widths Wmaxj  and 

^ max2 » »

Ws =Wm̂ + W mw,2 (2.4.18)

The difference of the half widths, Wrf, given by:

^ = W m I - W „  2 (2.4.19)

may also be useful as an indication of symmetry in some situations.

(b) Horizontal Symmetry Sfo

The horizontal symmetry Sfr indicates reflectional symmetry of the upper part and 

the lower part about axis >7 . It is defined as:

S ,= W m̂ I W m̂  (2.4.20)

Correspondingly, Sfo indicates rotational symmetry, where:

(2.4.21)
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(c) Ratios Rcr j  and Rcr 2 of convex hull to its convex rectangle.

The relationship of the convex hull to its convex rectangle may be useful. The most 

promising parameters are thought to be:

Jgcr, = 4 l ~ (z)”’“ x r "“ l ) / 2  (2.4.22)
( A n a x  X WmallI) / 2

Rcr = Ac2 ~ (2. 4. 23)  
( D ^ x W ^  2) / 2

These ratios measure the excesses of the part convex hulls above triangles of the same 

height.

(d) Area-Perimeter Shape Factor, Rape, of convex hull

The traditional area-perimeter shape factor of the convex hull is given by:

Rape = Ac / Pc2 (2.4.24)

or in normalised form as:

Rape = 4nAc /  P 2 (2.4.25)

(e) Maximal Local Convex Deficiencies CDMa and CDMp

The maximal local convex deficiencies CDMa and CDMp are the largest local 

convex deficiencies among all of the local convex deficiencies (which are measured 

from vertex to vertex):

CDMa = CD La(vm ,vn) = max{C D La{vf , v , )} (2.4.26)

CDMp = CD Lp(vm, v„) = max{C D Lp(vi ,vy)} (2.4.27)
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These give, respectively, the largest and most contorted 'bays along the coastline'. The 

normalised maximal local convex deficiencies CDMa' and CDMp' are:

CDMa ' = CDMa / Ac

CDMp ' = CDMp / Pc

(f) Mean Convex Deficiencies CDAa and CDAp

The mean convex deficiencies CDAa and CDAp are the average over all local 

convex deficiencies:

CDAa = ( ^ C D L a N  

CDAp = ( ' £ CD L p ( v , , v J) ) / N

(g) Global Convex Deficiencies CDGa and CDGp

The global convex deficiencies CDGa and CDGp between the convex hull and the 

object are determined by:

CDGa — A — Ac p

CDGp = Pp -  Pc

CDGa may be normalised by dividing by Ac:

CDGa = ( A c - A p) / A c (2.4.34)

(2.4.32)

(2.4.33)

(2.4.30)

(2.4.31)

(2.4.28)

(2.4.29)
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and it then gives the 'porosity' o f the nominal particle defined by the convex hull. If 

the original particle contain holes, there is an alternative version of CDGa' which may 

be considered if the holes are considered to be 'unfilled': for soil 'particles', which are 

often aggregates, the unfilled version has better physical significance.

(h) Maximal Curvature Cmax

The maximal curvature Cmax can be obtained by:

c max = max{Cwr(v; )} ( /=  1,2,..., W) (2.4.35)

and normalised as:

C ' ^ ^ C ^ l n  (2.4.36)

The corresponding mean curvature:

C _ 4 £ > ( v () (2.4.37)

should always be 2n /  N, or normalised:

C „ = C „ „ /  n  (2.4.38)

should always be 2 /  N.
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2.4.3 Shape Classification

The shape o f an object can be represented by a pattern vector, each of whose 

components is one of the features selected and/or extracted from the measurements. 

Let R be the vector and 77 be a component of R; then an object can be represented as:

R = ( r i r 2 - r c ) t (2.4.39)

where the pattern has c components. Based on the convex hull of the boundary of an 

object, all the features, or a selection of the features, can be chosen as the components 

of R. As an example, the experiment on pattern recognition below used the following 

version of R:
\

n = w s r2=s h r3=s vl r4=s v2 r5=Rcrl r6=Rcr2

ry=CDMa ' rg=CDGa ' rg -R apc rjQ=Cmax' r j ]=Cmean’

2.5 Preliminary Experiments

Five experiments were made as a preliminary test of the usefulness o f the vector R 

defined above. These were (1) an image comprising artificial 'particles' of different 

geometrical shapes; (2) images of plant leaves of various species of the genus 

Alchemilia; (3) and (4) two published sets of charts of different shapes of soil 

particles; (5) the real soil particles in Figure 2.1. The charts studied in Experiment 3 

were originally intended for use as a reference in visually classifying real soil 

particles, and the results of Experiment 3 may be useful in evaluating the charts 

quantitatively in relation to this purposes.
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Experim ent 1

The method used here for convex hull based shape representation was first tested by 

an artificial image as shown in Figure 2.15. This input image was first processed to 

yield the boundary (Luo and Ma, 1989) and the convex hull o f each object; and the 

above features o f each object were measured, selected, and extracted. The pattern 

vectors representing the objects in Figure 2.15 are listed in Table 2.2. To allow visual 

examination, these patterns were also transformed and projected onto two dimensional 

space by the method o f principal component transformation. The projections are 

shown in Figure 2.16. From both Table 2.2 and Figure 2.16, we can see that the 

patterns of similar objects are nearly the same or close to each other, and that the 

patterns of different objects are clearly different or far away from the others.

Figure 2.15 Test im age
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Table 2.2 Features of Figure 2.15; r; are defined in the text.
Name No r2

Sy,

",

4
Sv?

r5
‘V! 1 .

r6 r7 r8
CDGa

r<j

3nr W
r , l

Square 1 1.00 1.00 -0.01 0.01 0.00 0.00 0.00 0.00 0.62 0.50 0.50
2 1.00 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.63 0.50 0.50

Rectangle 3 0.80 1.00 -0.30 0.30 0.00 0.00 0.00 0.00 0.56 0.50 0.50
1 4 0.78 1.00 -0.32 0.32 0.00 0.00 0.00 0.00 0.55 0.50 0.50

5 1.00 1.00 0.00 0.00 0.55 0.55 0.17 0.01 0.79 0.09 0.04
6 1.00 1.00 0.00 0.00 0.53 0.53 0.07 0.02 0.79 0.08 0.06
7 0.50 1.00 -0.09 0.09 0.60 0.60 0.18 0.03 0.66 0.15 0.08
8 0.50 1.00 -0.05 0.05 0.58 0.58 0.19 0.04 0.67 0.13 0.05
9 0.25 0.00 0.00 -0.50 0.51 0.00 0.00 0.01 0.38 0.75 0.50

10 0.24 0.00 0.00 -0.50 0.48 0.00 0.00 0.04 0.37 0.76 0.50
11 0.76 0.00 -0.01 -0.50 0.00 0.00 0.07 0.03 0.48 0.67 0.40
12 0.76 0.00 0.00 -0.50 0.00 0.00 0.05 0.05 0.48 0.69 0.67

Figure 2.16 D istribution  o f  the testing  objects in 2-D  space by principal com ponent transform
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Experim ent 2

Figure 2.17 shows the convex hulls of four Alchemilia leaves: A. Mollis, A. 

Epipsila, A. Venosa, and A. Speciosa. These were taken from Walters(1991). The 

original images contained stems which were removed by interactive editing o f the 

images. Table 2.3 lists the convex deficiency of the leaves as measured by CDGa'. 

The difference between A. Mollis and A. Speciosa is encouraging, with the other two 

species lying between these extremes; and this approach should be developed further.

A L C H E M I L I A

•  #

M O L L I S  E P I P S I L A

U E N O S A  S P E C I O S A

Figure 2.17 C onvex hull o f  four leaves

Table 2.3 Convex deficiency of four Alchemilia leaves 
of Figure 2.17, measured by CDGa'.

Mollis Epipsila j
0.11 0.18

Venosa § |  Speciosa
0.19 0.22
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j

Experiment 3

The method of convex hull based shape representation was also tested against 

Figure 2.18, which is a chart showing different shapes of soil particles taken from 

Hodgson (1974). In the original, the columns labelled 'Spherical' and 'Almost 

spherical' were unnamed, and these two columns had been given the same code 

number for use on their standard soil description cards. Similarly, the 'Rounded' and 

'Almost Rounded' rows had originally both been labelled 'Rounded' and given the 

same codes. Table 2.4 shows the thinness of the particles measured by the normalised 

width Ws, which should decrease from left to right. It is seen that there is no overlap 

between the values for platy, tabular, and almost spherical particles, in the three 

columns on the right, respectively, and that the overlap between the spherical and 

almost spherical particles is small and possibly in accordance with the shapes as 

drawn. Table 2.5 shows the roundness of the particles measured by maximal curvature 

Cmax' o f each particle, which should increase from top to bottom. It can be seen that 

the values of maximal curvature do increase from top to bottom in accordance with 

the shapes as drawn, with the exception o f the almost rounded almost spherical 

particle and the almost rounded platy particle. There is also a small increase of 

maximal curvature, Cmax\ from left to right; this may be an inevitable result o f the 

decrease of sphericity from left to right.

Although the methods of illumination and digitisation will have an effect, these

measurements suggest that the chart in Figure 2.18 is not quite as regular as its
4

draughtsman had hoped; this point will be discussed further in Chapter 3 in relation to 

results obtained from the charts in Figure 2.18 by using the Hough transform.
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A lm ost

S p h e r ic a l  S p h e r ic a l  T a b u la r  P la ty

% 9 - — R ou n d ed

• 9 - — A lm ost

R ou n d ed

• 9 - — S u b rou n d ed

« ♦ ♦ — Subangular

# 9 — — A ngular

Sphericity

Figure 2.18 V isual C hart o f  stone (H odgson 1974)

Table 2.4 Thinness of particle shapes corresponding to the chart of
Figure 2.18 measured by normalised width Ws.

Spherical
Almost

Spherical Tabular Platy
Rounded 0.749 0.833 0.579 0.255

Almost Rounded 0.946 0.623 0.441 0.293
Subrounded 0.883 0.657 0.450 0.261
Subangular 0.931 0.718 0.505 0.273

Angular 0.826 0.628 0.403 0.291

Table 2.5. Roundness of particle shapes corresponding to the c 
of Figure 2.18 measured by Maximal Curvature Cma

hart
»

x •

Spherical
Almost

Spherical Tabular Platy
Rounded 0.165 0.148 0.180 0.250

Almost Rounded 0.187 0.250 0.250 0.313
Subrounded 0.187 0.205 0.250 0.250
Subangular 0.250 0.250 0.250 0.352

Angular 0.278 0.353 0.602 0.352
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Experim ent 4

The convex hull based shape representation was also applied to Figure 2.3, which is 

a similar set o f charts published by Bullock (1985). The results of the experiment are 

listed in Table 2.6.

Table 2.6 Features of particle shapes corresponding to
the chart of Figure 2.3 but arranged differently.

Shape Factor R , ^
x 0.001

M sximal Curvature Cm ,»v Convex D eficiency C D G a* 
x 0 0 0 1

<- Sphericity — * - Sphericity — < - Sphericity —

738
743
744

731
741
745

582
580
579

280
295
265

275
155
187

205
187
172

290
250
250

455
352
398

99
53
44

116
48
52

150
113
83

292
179
201 :5r

rounded
756
759
758

671
671
676

542
571
559

329
349
323

313
205
226

250
250
148

352
250
250

433
398
500

99
45
30

143
91
103

65
46
35

94
100
78

750
762
758

677
686
688

545
562
567

313
350
323

226
241
172

250
210
165

264
379
330

250
585
488

107
65
65

122
93
88

140
116
149

279
277
299 :Hrs

Sub­
angular

741
742 
745

680
680
678

573
593
582

428
430
419

340
250
280

250
269
352

250
250
250

272
352
500

138
106
110

154
128
139

128
91
96

319
275
325 ♦-Sm ooth

Anglular
727
721
720

661
676
678

499
515
517

330
349
346

250
352
330

403
398
337

578
578
358

656
731
750

109
63
60

176
103
103

203
181
169

256
240
224

<-Rough
♦-U ndulating
♦-Sm ooth

The Shape Factor, Rap C, which would be 1 for a circle and lower for less spherical 

particles, is expected to increase from right to left; and this is the general trend of the 

results. As in the previous Chart, Maximal Curvature, Cmax', tends to increase from 

top to bottom, in the opposite direction to roundness as expected; and it also again 

tends to increase from left to right. It is expected that Convex Deficiency would 

increase with Roughness; this does appear to be the general trend, but there is 

considerable scatter, which probably reflects the difficulty of drawing rough particles 

accurately.

An interesting point is that, although the smooth section of Figure 2.3 looks very 

similar to Figure 2.18, slightly different measurements were obtained from 

corresponding particles, suggesting that the later chart has been redrawn.
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Experiment 5

This method was also applied to the images in Figure 2.1. The individual soil 

particles and voids are obtained by thresholding. Some attached particles and voids 

are separated by the method of Luo (1989). Some results of the experiment are shown 

in Figure 2.19. From the figure, we can see that the normalised width of the particles 

in Figure 2.1 (a) is on average smaller than that of the voids in Figure 2.1 (b), i.e. the 

particles are thinner; there also tends to be a small difference in the roundness. These 

two sets of features have different distributions in this two dimensional space; and, 

apart from a few outlets, each of these distributions appears to form a different cluster. 

It will therefore be necessary to discuss automatic classification of features bearing in 

mind that more general cases will arise.

0.8

+

0. 7

0. 6

0.5

0. 4

0. 3

m
ED

eP

f m 
ePm + s

s
® + 

m
++

m

+  +

-H-

+

+

~1 1 1 1 ' 1 1 1 1 1 1 I ' I ' I F
0.1 0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  0 . 7  0 . 8  0 . 9  1.0

T h i n n e s

Figure 2.19 Distributions o f patterns o f particles and voids. It shows the Thinness (as measured by 
Wg) against Roundness (as measured by Cmaxr). Square: Particles in Fig. 2.1 (a); Cross: Voids in Fig. 
2 . 1  (b).
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Experiment 6

As a guide to choosing an automatic method of classification of shapes of soil 

features, the set of particles shown in outline in Figure 2.20 was analysed. The 

original was a typical electron micrograph showing soil structure.

To simplify the analysis, the number of measurement was reduced to seven, vis:

R l=Wmaxl R-2=Sv 1 ^3=^crl R4=Wmax2 R5==SV2 R6=^cr2 R7=CDGa'

As far as can be seen, the structural (syntactic) method of classification (Young and 

Fu 1986) is inapplicable here, because there is no obvious way of setting up a set of 

syntax rules by which the pattern structure may be parsed (Fu 1982). Ideally, when 

using a decision theoretic classification method, a Bayesian approach is preferred; but

Figure 2.20 Boundaries of particles of a typical electron micrograph
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this would require that the class conditional density functions o f the patterns to be 

classified either are known or can be estimated a priori. However, this was not the 

case here. The next choice of method would be cluster analysis (Fu 1980, Spath 1980, 

Duda and Hart 1973); however, the set of measurements obtained here appeared to 

fall into a single very diffuse cluster, so that some other method is required here. This 

type o f behaviour is, in fact, commonly met throughout the whole of soil science 

when attempting to establish classification schemes; and resort is commonly made to 

somewhat arbitrary distinctions between the classes. Therefore, I tried using this 

approach.

The seven measurements used here have the advantage that each of them has a 

finite range, being defined to lie within the range 0  to 1 , but sometimes being 

additionally restricted, see Figure 2.21. This was an additional factor leading to the 

idea of an arbitrary partition of the restricted hypervolume so defined. In the analysis, 

426 classes were defined as indicated in Figure 2.21 to partition the feature space as 

equally as possible; R7  was divided at 0.3 and 0.6. (The actual experiment used a 

Minimum Distance implementation.) Although the classes were broad, the results 

were still distributed over a large number of classes. Although this type of behaviour 

is common when using cellular classifiers with a large number of dimensions, it was 

judged that diffuse clusters of results would frequently be encountered.

With these observations in mind, the problem of comparing two micrographs using 

ordinary statistics was considered. It was concluded that using the centroid of the set 

o f measurements might prove to be a relatively insensitive method of discriminating 

between patterns obtained from slightly different soils. However, all the 

measurements are bounded; and the Author recommends that the skew of the 

distribution should also be considered. Visual examination of the micrograph suggests 

that there may be a significant number of outliers; the Author recommends that 

kurtosis should also be considered, and further, that the image analyser should be 

fitted with an option to highlight any arbitrarily defined set of particles and the 

outliers in particular. In addition, Figure 2.20 shows some very small particles. There
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x Class center of Rt 
o Class center of R2

1 0 0

0-65

0-50

0-35

0 0 0
070 ' 0-666 1-000-500-25000

(a).

R

0-80 I----------- 1

0 20

0 00
0-25 0-70 0-566000 050 R

(b)

Figure 2.21 Range of features and designed centres of classes 
(a) in Rj-R2  plane (b) in R 1-R3 4  plane
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Class U of R,
Class 1 of R-i

Class 2 ,3  of R)

/0 8 2 5

**-*  I I

* Class center of R5 
R, is class 1

*  Class center of R5 

Ri is class 2,3

-*■ Class center of R5 

Rt is class I*

0-20 0-30

( c )

0-80
1 10 -70

2 2 2

\  Class 2, 3 of R 
Class 1 of R,

Class i  of R

0 0 0
0-50 R0-00 0 20 0-30

( d )

Figure 2.21 Range of features and designed centres of classes 
(c) in R4 -R5  plane (d) in R4 -R6  plane
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are four points to be made about these. Size should be taken into account in the 

classification. Particles smaller than a certain size of, say, 5x5=25 pixels length, 

should be placed in a reject class. If possible, digitisation should be to a finer 

resolution than the 512x512 available here. Finally, in future work, the conditions of 

observation and of digitisation should be optimised simultaneously.

2.6 Summary

The Chapter starts by presenting an efficient new algorithm, the SPCH algorithm, 

for finding the convex hull of either a binary image or a cluster of points in a plane, 

the complexity being 0(N ) or 0(NlogN) depending on the way in which the original 

data is presented.

The Chapter continues to describe a whole family of measurements which are based 

on the convex hull, and which may be used to describe the shapes of objects. This 

representation is invariant with respect to coordinate rotation, translation, and scaling, 

and the range of each feature is between 0  and 1 .

A preliminary experiment showed that one of these measurements, the convex 

deficiency, (or a similar measure), could be developed to assist in the classification of 

leaves of plants.

An analysis of two popular charts, which are widely used to assist in the subjective 

classification of the shapes of soil particles, suggested that the regularity of these 

charts could be improved with a view to making them more reliable.

A preliminary analysis of the shapes of the particles in a typical electron 

micrograph o f a clay soil, suggested that the measurements fell into a diffuse cluster, 

as commonly happens throughout soil science. Therefore, arbitrarily defined class 

boundaries would probably have to be used in the classification of these particles. 

However, it was noted that the ranges of the measurements are bounded; and it is 

suggested that the skew and kurtosis of such populations should be considered as
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discriminating functions. It is also suggested that an option to highlight outliers from 

the distributions would be included in computer programs.

Some aspects of the above will be developed further in the following Chapters.
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Appendix 2A Finding the Simple Polygon by Stair-Climbing Method

We can find the chain C2 from the set S, starting at the point Pr and traversing 

clockwise as shown in Figure 2.6 in Chapter 2. The conditions of a point Vj+j being a 

vertex o f the simple polygon are:

x(VM ) = max x ( p )  p  e S , x ( p )  < x (^ ) ,y (p )  < y(P;.) (2A.1)

y(V i+]) = m iny(/?) p  e S , x ( p )  = x(Vi+l) (2A.2)

and the procedure is continued until the point Pjy is reached. In this procedure, the 

candidate point p  is found simply by scanning the binary image from right to left and 

from bottom to top.

The chains C3  is constructed starting at Pr and traversing counter-clockwise as 

shown in Figure 2.5 in Chapter 2. The conditions for C3 are:

x (vm ) = m ax x O ) p  <=S,x(p) < x(V,.),y(p) > y(Vt ) (2A.3)

y(VM ) = m ax y O ) p  e S , x ( p )  = x(VM ) (2A.4)

The candidate point p  is found by scanning the binary image from right to left and 

from top to bottom.

The chains C4  is constructed starting at P/ and traversing clockwise as shown in 

Figure 2.5 in Chapter 2. The conditions for C4 are:

x(Vi+l) = m inx ( p )  p  e S , x ( p )  > x(Vt ) , y ( p ) > y(Vf) (2A.5)

y(VM ) = m ax y ( p )  p  e S , x ( p )  = x(VM ) (2A.6)

The candidate point p  is found by scanning the binary image from left to right and 

from top to bottom.
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3.1 Introduction

3.1.1 Introduction

This Chapter will present a new method of measuring the orientation of objects, the 

Directed Vein method; and it will compare this method with (a) a method based on 

the author's convex hull algorithm, which was discussed in Chapter 2; (b) the 

Principal Components Transform method; and (c) the method of Moments. To 

anticipate the results, the last three methods appear to give comparable estimates of an 

"elongation direction", whilst the Directed Vein method will discover an "internal 

preferred orientation" if this is present and strongly marked.

3.1.2 The Problem of Orientation Analysis

In image processing and pattern recognition, orientation analysis is used for feature 

measurement of objects. The orientation features of objects can be used for 

describing, recognising, and classifying objects, or for some other relevant study with 

respect to orientations of objects. For example, in remote sensing, one can measure 

the orientation of a ship in the sea to predict where the ship is going towards; in 

fishing, one can detect the direction of the movement of a shoal of fish to trace and 

fish the shoal; in raising livestock on a plain, one can identify the direction in which a 

herd is moving, in order to control the herd; in meteorological observations, one can 

analyse the directions of the pressure gradients in a meteorological map to forecast 

weather, and so on. Therefore, orientation analysis has been attached importance in 

image processing and pattern recognition.
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3.1.3 The Importance of Orientation Analysis in Analysing Soil Microstructure

|

In the study of soil micro-structure, much interest has been focused on the 

orientation analysis of electron or optical micrographs of soil specimens. The 

orientation analysis is used for such purposes as investigating the relationships 

between soils and geological and geochemical conditions. This is because the 

orientation o f these soil particles, voids, domains, plates, and so on, is related to the 

geological and geochemical conditions, natural conditions such as temperature, 

pressure, water flow, ice movements, snow melting, etc., as well as to the qualitative 

classification of soil (Smart 1966 (a) and (b); Smart 1972; Dickson and Smart 1978; 

Smart and Dickson 1979; Smart and Tovey 1982). This type of orientation analysis is 

often considered to be particularly important in clay soils, where the particles are flat 

plates. For example, one of the most important aspects is the relationship between on 

the one hand the orientation of soil particles and of the voids between them, and on 

the other hand the pressure on the surface of the soil (Dickson and Smart, 1978) and 

the speed of water drainage through the soil (Smart, 1972). Usually, the pressure on 

the surface can be easily applied and measured, and the speed of water drainage can 

also easily be detected. However, it is not easy to measure the orientations of soil 

particles automatically. Hence, orientation analysis has been thought to be important 

in studying soil microstructure.

3.1.4 The History of Orientation Analysis in Analysing Soil Microstructure

In soil micro-structure study, various methods have been proposed to obtain 

quantitative parameters describing micro-structure of the degree of orientation. The 

earlier methods used hand mapping (Smart 1966 (a) and (b), McConnochie 1974). 

Smart and Tovey (1982) mention some early attempts to use optical techniques for 

analysing electron micrographs.
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In recent years, digital techniques of image processing and image analysis have 

become more and more interesting. True two dimensional derivative signals o f the 

secondary electron image were produced by digitally computing the changes in 

intensity between neighbouring pixels in two orthogonal directions, and the intensity 

gradient method was provided for measuring the preferred orientation of soil structure 

within a micrograph. The method is attributed to Unitt (1975) (see Smart and Tovey, 

1982). Tovey (1980) and Tovey and Sokolov (1981) developed the technique to 

obtain indices of anisotropy of the fabric for a number of different soils. More 

recently, Smart (1981) and Tovey and Smart (1986) suggested an approximate method 

to refine this technique. Smart and Tovey (1988) gave a new idea, based on the two 

dimensional form of Taylor's expansion, for finding the best formulae for intensity 

gradient analysis depending on the amount of noise present in the micrographs. Smart 

and Leng (1993) suggested alternative formulae, which were based on weighted 

averages, although this was not explained in the paper. Automatic mapping methods 

based on intensity gradient analysis were then developed (see Leng et al. 1993). Some 

alternative methods, which appear to have been less useful, were summarised by 

Smart and Leng (1994). The emphasis on almost all this previous work was on field 

measurements; the methods considered in this chapter are feature measurements.

3.1.5 Development of Orientation Analysis

The above methods analyse the anisotropy of the micro-structure on a point by 

point basis. This chapter will consider four other methods, called the Directed Vein 

method (Luo et. al. 1992), the Convex Hull method (Luo et. al. 1992), the Principal 

Components Transformation method, and the method of Moments, for the automatic 

orientation analysis of the soil micro-structure on a particle by particle basis. In the 

Directed Vein method, (1) an image we refer to as the directed vein image is obtained 

by transforming from the boundaries of particles in the original image as represented 

as a chain code of direction, and (2 ) the orientation of each vein is found by
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calculating the expectation of the directions of vectors of a vein. This expectation is 

taken as the orientation of the particle. In the Convex Hull method, (1) the convex hull 

of the boundary of each particle is constructed by the method described in Chapter 2, 

and (2 ) the maximal diagonal of the convex hull is picked up and its direction is taken 

as the orientation of the particle. In the Principal Components Transformation method, 

(1) the scatter matrix of the boundary (or area) points of an object (particle in our 

study) is found, (2 ) the eigenvalues and eigenvectors of the scatter matrix are found, 

and (3) the boundary points are mapped into a new vector space with the eigenvectors 

as its basis vectors. The eigenvector corresponding to the largest eigenvalue is the 

principal component, and the direction of this basis vector is taken as the orientation 

of the object. In the method of Moments, (1) the moments of the boundary (or area) of 

an object (particle in our study) are found, (2 ) the direction of the principal axis of the 

boundary is found from the moments, and (3) the direction of the principal axis is 

taken as the orientation of the object. Some experimental results and comparisons of 

the four methods are given at the end of this chapter.

The Principal Components method and the method of Moments are in fact 

mathematically equivalent in the sense that they lead to the same equations and hence 

are expected to lead to identical results. However they are treated here as different 

methods because they are conceptually different and reach the same result by different 

algebraic routes. A further difference, a practical one, is that the two methods tend 

to be implemented in different software library routines or packages.

Before any one of these four methods is applied, image pre-processing was used to 

obtain the boundaries of particles.

3.2 Image Pre-processing

3.2.1 Introduction

The purpose of pre-processing is to get the individual boundaries of particles. Any 

of the recognised methods of edge detection and segmentation could be used, for
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example edge detection, gradient, surface fitting (Haralick 1984), template matching 

(Nevatia and Babu 1980), second derivative (Marr and Hildreth 1980), colour 

separation (Nevatia 1977), and so on. The segmentation technique can be found in the 

book by Young and Fu (1986). In our problem, a gradient method was used to obtain 

the edges of particles, and the double boundary method of Luo and Ma (1989) was 

used to get individual boundaries of particles.

3.2.2 Edge Detection

There are three common gradient methods, based on the Robert, Sobel, and Prewitt 

operators respectively. The Prewitt method is used here because it has less variance 

than the Robert and Sobel methods but is not unduly complicated. The Prewitt 

operator is given by

P, =<,F2 + Fl + F* ) - ( F0 + FT + F(,)
P y= ( Fti + ^ + F 2 ) - ( F 6 + Fs + F4) (3.2.1)

P(m ,n) = \Px \ + \Py \

where P x  and P y  are the intensity gradients at point (m,ri) in the x and y  directions and 

P(m,n) is the Prewitt value of point (m, n). Ffc {k=0, 1, ..., 7) are the intensity values at 

points adjacent to point (m,n) as shown in Figure 3.1.

^0 F , f 2

f 7 m , n f 3

Fe F5 F<

Figure 3.1 Prewitt operator
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3.2.3 Binary Image and Thinning

The result o f edge detection is an image of edges of particles. In order to build the

binary image can be obtained by simple thresholding. Usually the threshold T  is 

determined by trial and error. One convenient method is to calculate the histogram of 

the gradient image P(m,n) then choose the threshold according to the following rule:

where p(g) is the histogram of intensity g  of P(m,n). Thus T  is chosen so that the mean 

intensity of the edge-image in the range T to gmax  has a specified value c. This value 

c is based on prior experience. Usually it is set to about 10%.

Most edge operators, including the Prewitt operator, produce a "thick" edge to 

avoid leaving gaps. Therefore it is necessary to thin the edges. For the preliminary 

experiments reported here, to keep the algorithm simple and fast, the edges were 

thinned by simple edge following, i.e. the outer layer of the edge was picked up only.

3.2.4 Segmentation

In order to pick up individual boundaries of particles, the double boundary method 

of Luo and Ma (1989) was used to segment a particle from the background and from 

other particles. Because this paper is in Chinese, the method is summarised in 

Appendix 3.1. In the method, after the object separation procedure is completed, one 

keeps either the inner or the outer boundary and discards the other one: in my present 

work the outer boundary was the one discarded. After image pre-processing has been 

finished, the orientation analysis methods discussed below were used.

boundaries o f particles, it must be transformed into a binary image and thinned. This

'max

T = t
E = c

(3.2.2)
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3.3 Directed Vein Method in Orientation Analysis

3.3.1 Introduction

A vein is defined as a curve on the surface of an object. Examples of veins include 

curves in finger prints, leaf fibres, wood circles, etc. A vein in a two dimensional 

space is a planar curve, and the orientation of the vein is the direction of the curve 

defined as below for a given traverse direction. When analysing orientation, the 

boundary of each soil particle (or void) is considered as a vein.

To find the direction of the curve, the approach is: first construct the directed 

image, then compute the orientation.

3.3.2 Directed Image of a Vein

Let C be a vein or a curve with two end points A and B  in two dimensional space, as 

shown in Figure 3.2. Let D be the directed curve, i.e. the directed version of the 

undirected curve C, and the traverse direction is from A to B. On the curve D, any 

point p, between A and B, traverses the direction of the slope line S(p) passing through 

p. If the curve C is described as

where §(p) is the angle between S(p) at p  and the x-axis. Thus a small directed 

segment curve d(pj of D at p  can be replaced by a small directed segment line, a 

vector s(p), of S(p). Clearly the summation

y  = f ( x ) (3.3.1)

then the slope k(p) of S(p) is

\p = tancj)(p)
dx

(3.3.2)
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+>x

Figure 3.2 Undirected and directed vein. To see it clearly, C and D are separated slightly

S = ' E S(P) (3.3.3)

of the vectors s(p) is an approximation of D. Therefore, s(p) is called as the directed 

image of C.

In the discrete case, a curve is actually a polysegment, as shown in Figure 3.3, and 

Equations (3.3.1) and (3.3.2) will become respectively

m = f ( n )

k{p) = ^ \ p  = tzn§(p)  
A n

(3.3.4)

(3.3.5)

When Am and An are units of the discrete grid, Equations (3.3.3) and (3.3.4) describe 

the same polysegment, the only difference between them being that the former is 

directed but the latter not. An example of the directed image of a discrete curve is 

shown in Figure 3.3.
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Discrete curve 
Directed image

m

Figure 3.3 Discrete curve and its directed image

3.3.3 Definition of Orientation of a Vein

From Equation (3.3.3) and Figure 3.3, we can see that a directed vein consists of 

many elemental vectors. Therefore, the direction of a directed vein is defined as 

follows.

Definition 1. Let §(i) be the angle of the ith element vector on a curve, prob(§(i)) be 

the probability of the angle §(i). Then the orientation O of the curve C is defined as 

the expected mean E(§) of §(i)\

O  = £(<|)) =  2]())(i)pr°b(<k(i)) (3.3.6)

Clearly each §(i), and therefore also <P, will be affected by noise (measurement and 

quantisation noise as well as noise due to the nature of the particles themselves). 

Hence if Equation (3.3.6) were applied directly, a large error would be produced. 

Some further processing is therefore necessary before the orientation of a particle is
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calculated. The method adopted was based on partitioning the directed vein 

representing a boundary into segments of approximately constant direction: this has 

the advantage of allowing the processed curve to be displayed legibly. Before the 

segmentation can be done reliably, smoothing must be used to reduce the noise.

3.3.4 Algorithm for Orientation Analysis

1. Chain Code of Direction

As a first step, a chain code of direction is used to represent the directed image of 

the boundary of a particle. A chain code of direction is a sequence of codes each 

representing the direction of a curve at a point. With each pair of adjacent points, a 

code number representing the dirction of the pair is associated (in the author's 

programs this is done at the same time as the sequence of points or the curve 

representing a boundary is obtained by edge following during segmentation). The 

sequential code obtained in this way is the chain code of the curve. The code numbers 

used are illustrated in Figure 3.4. Thus the chain code of the curve in Figure 3.3 is:

7 6  7 6  7 1 1 2 1 0

if it traverses from left to right.

2

3

4 0

5 7

6

Figure 3.4 Code of directions
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L

However for the subsequent analysis the direction change between two adjacent 

elements of the curve must lie between -180° and +180°, and correspondingly the 

change in code number must lie in the range -3 to +3 inclusive; therefore, the chain 

code is modified as follows. Let n\ and « /+ / denote two adjacent code numbers of a 

chain code defined as above, and Nj and Nj+j be the corresponding two adjacent code 

numbers of the modified chain code. Nj is determined from n\ as follows:

for  /:= 1 to {end -  o f  -  chain) 

begin

k:= IN T{N i / 8 ); 

r:= Nj - k * S ;

do

d:=nM - r ;
'nM + (£  + l ) * 8  
nM + { k - 1 ) * 8n m -
nM + k * 8

for d  < -3  
for d  > +3 

otherwise

end

where INT(x) denotes the integer part of x. For example, the modified chain code for 

the curve in Figure 3.3 is:

7 6 7 6 7 9 9  10 9 8

2. Smoothing

Common methods of smoothing include low-pass filtering, neighbourhood mean 

filtering, etc. In our case, simple two point mean filtering was found to yield 

adequately smooth curves: if Nj and Nj+] are two adjacent code numbers, Lj and 

Lj+1  are the corresponding lengths (or inter-pixel distances), then the code number
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N j  of the smoothed chain code is determined from N / = ( N j L j + N j + ] L j + j ) / ( L j + L j + j ) .  

In the example, this yields the smoothed chain code:

6.586 6.586 6.586 6.586 8.000 9.000 9.414 9.414 8.586

In order to obtain a smoother chain code, the above smoothing operation can be 

done two or three times. After a total of three smoothing operations, the code in the 

example becomes:

6.586 6.586 6.983 7.946 8.832 9.300 9.207 

which on rounding back to integers becomes:

7 7 7 8 9 9 9

3 Piecewise Segmentation

The problem of segmentation is how to choose the division points. One of the very 

effective methods is to choose the vertices of a polygon, or the turning points of a 

segment piecewise curve formed by the chain code of the curve, as the division 

points. For instance, the chain code in the above example has a division point at 8 , and 

splits into two segments:

7 7 7 and 9 9 9 

on discarding the break point itself at value 8 .
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4 Modulo-4 Chain Code.

The distinction between opposite directions has no physical meaning in interpreting 

the micrographs used here. Therefore the direction of a curve k  in the plane may 

always be specified as an angle in the range 0<®£<75O°, corresponding to code 

number Nj" of the segments of the curve in the range 0<Nj"<4. From the discussion 

above we can see that our existing code number may be outside this range. Therefore 

the code number must be changed to a modulo-4 chain code.

Suppose Nj' is a code number in a chain code and Nj" is Nj' modulo 4. Then if each 

Nj' is replace by Nj", the chain code:

7 7 7 and 9 9 9

will become:

3 3 3 and 1 1 1

Note that the change to modulo-4 code cannot be made until after segmentation, 

otherwise again changes in direction would be wrongly interpreted.

5. Orientation Analysis Proper

When the pre-processing has been done, the final stage is the orientation analysis 

itself.

To obtain the orientation of a curve in an image, the code numbers Nj" of a chain 

code should be transformed into angles §(i), where <\>(i)=Nj"*45°. The probability 

prob(§(i)) of the angle §(i) can be obtained from the length of the code in a chain. So 

Equation (3.3.6) can be used directly to calculate the orientation ®£ of the curve k , 

representing particle k :

82



®k = ^ k ( ! ) P roKtyk(i))

Chapter 3 Orientation Analysis 

(3.3.7)

The orientation given by the above is the mathematical expectation of the vector 

angles o f a curve. In practice, it is correct for curves consisting of a few segments with 

acute angles between their directions, but if there are obtuse angles between their 

directions the orientation calculated may be quite different from what would be 

estimated intuitively. Figure 3.5 shows an instance of this problem. Clearly it is 

necessary to rotate the orientation counter-clockwise. In order to solve this problem 

the following definition is given:

Definition 2. Suppose ty(i) and §(j) (tej) are respectively the angles of two 

adjacent segments i and j, joining at point p. Suppose §(j) > §(i). Then (compare 

Equation (3.3.7) the angle <[)(ij) between segments i and j  is defined as

If §(ij) is greater than or equal to 180°, then §(ij) should be rotated by 180° clockwise:

A
Orientation of vein a s  
given by equation  (3.3.7)

135'' 67 5< f
Intuitively orientation 
would b e  e s tim a ted  a s

/

137 5
/

.135° !
/

0° 0°

/
/

Figure 3.5 Case where angle between the directions of the two segments is obtuse

<b(i)prob($(i)) + ty(j)prob(ty(j))

(<|>(0 + 180°)/?™6(<KO) + fy(J)Pri

W )prob(§(i))+  §(j)prob($(j)) for  (c>(y) — +(/)) < 90° ^
(§(i) + lS 0o)prob(§(i)) + <b(j)prob(§(j)) for  (<|>(y)-<K0) >90°

*® ):=*(i7 ) - 1 8 0 ° i f  <|>(zy)>180o (3.3.9)
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To apply this definition when calculating the orientation of a polygon, an iterative 

method must be used. The n edges of the polygon are first taken in adjacent pairs and 

an orientation is calculated for each pair. In effect, this step replaces the n original 

edge directions with m=n/2 directions. In the next step these m directions are similarly 

taken in adjacent pairs and replaced by m/2  directions, and so on until only one 

direction remains. This direction is taken as the orientation of the polygon. If at any 

stage there is an odd number of directions, the last one is not processed but is carried 

forward as it stands to the next stage. As this is a new method, some useful theory is 

summarised in Appendix 3.2; in particular, this algorithm would produce an 

orientation of 90° if applied to a circle, so a trap is needed.

3.4 Convex Hull Method in Orientation Analysis

The orientation of an object can be defined as the direction of the longest diagonal 

of the object. The longest diagonal of the object can be found by the Convex Hull 

method. This is because the longest diagonal of the convex hull of the object is 

actually the longest diagonal of the object. Finding the convex hull of an object and 

the longest diagonal of the convex hull are discussed in Chapter 2. The direction of 

the longest diagonal is calculated as follows.

Let v/ and vr be the two end points of the longest diagonal of the convex hull of an 

object, then the direction 0  of the longest diagonal is:

9 = arctan -9 0 °< 6 < 9 0 ° (3.4.1)
x(vr) - x ( v ,)

where x(vj), x(vr), and y(v[), y(vr)  are the x  and y  coordinates of v/ and vr, respectively.

Hence, in the Convex Hull method, the procedures of measuring the orientation of 

an object are:
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Step 1. Finding the convex hull of an object.

Step 2. Finding the longest diagonal of the convex hull.

Step 3. Calculating the orientation of the object by Equation (3.4.1).

However in some cases a polygon may have an edge which is longer than any 

diagonal (Figure 3.6). To allow for such cases all edges are regarded as diagonals 

when determining which diagonal is longest.

If a particle is circular or nearly 

circular, its orientation does not exist.

A rule such as the following must be 

used to detect such cases: If the convex
y

hull has more than one longest i; ________________________

diagonal and if  all the longest 

diagonals lie within a 45° sector, then 

the length of the longest diagonal is 

accepted and the mean orientation of 

the longest diagonals is taken as the 

orientation of the particle; otherwise 

the particle is classified as (almost) 

circular and unoriented.
Figure 3.6 Convex hull with 
edge longer than any diagonal

3.5 The Principal Components Transformation for Orientation 

Analysis

3.5.1 Introduction

In the author's work on soil microstructure, the Principal Components 

Transformation was used both for orientation analysis and for dimensionality

Figure 3.6 Convex hull with 
edge longer than any diagonal
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reduction of feature sets for pattern recognition. This section is primarily concerned 

with its use in orientation analysis: however a general introduction to the 

transformation encompassing both uses is first given.

In the Principal Components Transformation, a set S  of N  points (or, equivalently, 

of vectors drawn from the origin to the points) in a high dimensional h space can be 

projected into a low dimensional d  space, d<h. In the low dimensional d  space, the 

principal transform has a number of optimal properties. First of all, the components of 

the transformed vector (the principal components) are uncorrelated, i.e. the scatter 

matrix of the vectors is diagonalized. Second, the first component provides the 

greatest variance from the d  components, the second component provides the second 

greatest variance from the d  components, and so on. This implies that the information
h

contained in the d  components is compressed into a small number of d  axes. Third, it 

maximises the sum of squares of interpoint distances and has the best preservation of 

spatial relation of points to the centre of gravity, or the total variance from the d  

principal components is the largest among all possible choice of d  orthonormal 

vectors. Therefore, the Principal Components Transformation is widely used for 

dimensionality reduction and information compressing. It is also used for principal 

axis detection of a set of data, i.e. principal axis transformation. Especially, in pattern 

recognition, it is used for visual examination of the N  points, to see whether the N  

points can be classified into groups or clusters, where d  is usually taken as 2 .

In pattern recognition, the first work that introduced the method of principal 

components into the field of pattern recognition was by Watanabe(1965). 

Webster(1977) used Principal Components Transformation in soil classification, to 

analyse, display, and interpret relationships in multivariate soil populations with 15 

components of features. Later Watanabe (1985) used the principal axis transformation 

in pattern recognition as the entropy minimisation and in pattern recognition as the 

covariance diagonalization.

In using Principal Components Transformation for orientation analysis, the author's 

method was based on taking the set S  as comprising the boundary points of the
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particle; this was faster than using the interior points of the particle. The direction of

the first principal component of S  was then taken as the orientation of the particle.

3.5.2 Mathematical Review of the Principal Components Transformation

For the mathematical realisations of Principal Components Transformation, a few 

basic methods have been reviewed by Webster(1977), Chien(1978), Watanabe(1985), 

Kittler et. al. (1991), Fionn(1991), etc. Here a brief strategy of the Principal 

Components Transformation is given as follows.

For a given set X  of N  points (vectors) in high dimensional h space x, we try to find 

a transform matrix C to map the given set X  into 7  in a new low dimensional d  space 

y, such that the d  components of Yj are Uncorrelated, even though in many practical 

cases, some of the components of X[ are correlated to a greater or lessen extent. In 

greater detail, the procedure in the previous paragraph is as follows.

The given set of points is

*11 *21 XN1

= [x, x 2 ... x„] (3.5.1)

where the components for the ith individual are:

X , = [ x n xl2 ... x ih]‘ ( i = l , 2 ,  . . . ,N ) (3.5.2)

and it is these which may be correlated. We require

Y  =

7 n  72 i  ••• Y n \

7l2 722 "• 7)V2 = [r, Yi ... rw] (3.5.3)

. 7  u  Y i d  ••• 7  aw
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where d < h ,  and where the components of the ith individual are now:

r,=[y„ y,2 ... a = i , 2 ,...,N) (3.5.4)

and it is these which must be uncorrelated.

For convenience, the origin is usually moved to the centre of gravity of the N 

points, i.e. to

X = —T X I or Xk=—f \ Xik (k=l ,  2 , h) (3.5.5)

Then the coordinate system is transformed according to: 

Y = C(X-X ) (3.5.6)

where

C11 c n •• C\h ~c;

c  = C2I C22 .. c 2h = c2

_Cd\ Cd2 ” Cdh_ cd_

Q — [Cn Ci2 ••• Cih] ( z 1’ 2 , . . . ,d )

(3.5.7)

(3.5.8)

Then, the condition that the components of Yf should be uncorrelated is:

n — 1
YY‘ = '22 = A (3.5.9)

*dd
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where A is a diagonal matrix and P  is the transpose matrix of Y, Xu is the component 

of A, Xfj ^  0.

Once the transform matrix C has been found, the component of Y  corresponding to 

the largest Xff is the principal component o fX.

First it is necessary to eliminate Y from Equation (3.5.9) using Equation (3.5.6):

1 YY' = —  (C{X -  X)){C(X -  X ) ) ‘ = —  C ( X - X ) ( X ~ x y c ‘ = CAC'
n - 1 n - 1 n - 1

where

A = ——( X - X ) ( X - X y  (3.5.10)
n - 1

Therefore

CAC‘ = A (3.5.11)

Next, because the transform matrix should be a normal transform, i.e.

C 'C = I  (3.5.12)

where /  is the unit matrix, post-multiplying Equation (3.5.11) by C gives

CA -  AC

or

CA - AC = 0 (3.5.13)
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Here C is not equal to 0, so the characteristic equation of Equation (3.5.13) is:

\A-XI\ = 0 (3.5.14)

Solving Equation (3.5.14), d  eigenvalues, Xf (i=l, 2, ..., d; d < h), can be found. 

Arrange the d  eigenvalues in descending order, i.e.

x} > x2 >... xd (3.5.15)

and replace them in Equation (3.5.13), the ith eigenvectors, C/, of the transform 

matrix C can be found, satisfying the condition:

AC, = X,C, (3.5.16)

Then the N  points X  in h dimensional space x, can be transformed into N  'new' points 

Y  in d  dimensional space y:

Y = C2 [ x - x \  =
Y2

Cd_ Y2

(3.5.17)

r  = [Q(x,-x) c ,(x 2 - x )  ... c , ( x N- x ) ] (3.5.18)

the first component is the first principal component of the set X, and the vector C /  

is the first principal axis of X.
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3.5.3 Orientation of Objects by Principal Components Transformation

The Principal Components Transformation described above is equivalent to a 

translation and a pure rotation. In two-dimensional space, let X  be a set of boundary 

points of an object in coordinate system x. Now first the origin of x  is translated to the 

centre of gravity of the boundary, and then the coordinate system x is rotated by angle 

0 to a new coordinate system y, the transform matrix C being given by:

C =
COS0 sinO " c ;

- s in 0 COS0 c,_
(3.5.19)

Cj = [cos0  sin0 ] 

C2 = [-s in 0  cos0]

(3.5.20)

(3.5.21)

Then, the new set Y  o f the boundary points in coordinate system y  is expressed by:

Y = C ( X - X )  =
a

[ x - x ]  = (3.5.22)

Y, =Ci[X1- X  X 2- X  ... X N - X ] (3.5.23)

We require that the first component W is the principal component ofX,  and the vector 

Cj  is the principal axis of X  I f  X  is transformed to Y  by Principal Components 

Transformation, the transformation matrix C is

c  = C11 cn _ 'C , '

_C21 C22_ S"2_

C ,= [Cll cn]

(3.5.24)

(3.5.25)
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C2 — [c2] c22 ] (3.5.26)

Therefore, the two transform matrices should be the same, i.e.

cos0 sin0

1

N>
1

- s in 0 cos0 1 ►P N> 1

(3.5.27)

Thus, the angle 0 of the principal axis is

0 = arccoscn or 0 = arctan(c]2 / cu ) (3.5.28)

Because the length of the principal axis reflects the longest diagonal of the boundary 

of the object, the direction 0  of the principal axis is taken as the orientation of the 

object.

Therefore, the procedures of the orientation analysis by Principal Components 

Transformation are:

Step 1. Calculating the scatter matrix A of the set of the boundary points X  of an 

object by Equation (3.5.10).

Step 2. Solving the characteristic Equation (3.5.14) of A to find the eigenvalues 

Xf, and arranging Xf in a descending order.

Step 3. Finding the eigenvectors Cj by Equation (3.5.16), and pick up Cj  

corresponding to Xj.

Step 4. Calculating the orientation 0 of the object according to Equation (3.5.28).
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3.6 Method of Moments for Orientation Analysis

3.6.1 Introduction

In physics and engineering, moments are a very useful toolkit for measurement,

analysis, and design. For example, moments can be used to find the centre of gravity

of an object, to determine the conditions of the balance of levers, to analyse the

motion of rigid objects, etc. Since Hu (1962) proposed the moment invariant,

moments have been widely used in image processing and pattern recognition, e.g. in

object recognition, scene matching, and image classification. Moments are especially

useful for edge detection, feature measurement, feature extraction, and shape

description of data or objects, and also in 3-D image processing and recognition. This

is because moments reflect some characteristics of data or objects such as centre of

gravity, centrality, diagonality, divergence, imbalance, etc. Among the moment-based

edge detection techniques, Machuca and Gilbert (1981) used the moments found in a

region to determine the edge location. Tabatabai and Mitchell (1984) determined edge

location by fitting first three grey level moments to the edge data. Lyvers et. al. (1989)

proposed an efficient geometric moment-based method for subpixel edge detection.

Ghosal and Mehrotro (1993) used orthogonal moment operators for the same purpose.

In pattern feature measurement, extraction, and orientation invariant recognition of

shapes, Teague (1980), and Teh and Chin (1988) gave a general overview of the

applications of moments. Wen and Lozzi (1993) used line moments of an object's

boundary for recognition and inspection of manufactured parts. In 3-D image

processing and recognition, use of 3-D moment invariants was first proposed by

Sadjadi and Hall (1980). Galvez and Canton (1993) used 3-D moments for

normalisation and shape recognition of 3-D objects. In this section, a method using
i s

moments of the boundary of an object was presented for orientation analysis of soil 

particles in the study of soil micro-structure.
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3.6.2 Mathematical Review of the Moments

Let X be a set of h variables in an h dimensional space, X =  (xj, X2, xfo). Let f(X) 

be a function ofX.  Then, thep+q+...+r order moment is defined as follows

- , x h)x{xl...x'hdxldx1...dxh ( 3 6 1 )

The moment for the discrete case becomes:

M pq , x2J, x ^ x f r l j . - . x ^  (3.6.2)

wherep, q, r, = 0, 1, h. Let L=p+q+...+r. If L=0, the moment is called 0 order 

moment, and it is the volume determined by the function f(X). If L - 1, the moment is 

called 15/ order moment, and it indicates the gravity centre if it is normalised by 0  

order moment. Similarly, if L=2, the moment is called 2nd order moment, and it 

reflects the symmetrical axis. The 3rd order moment, ("Skew"), and the 4th order 

moment ("Kurtosis"), are useful in some cases. The moments higher than 4th order are 

more complicated to calculate, and because they have less physical meaning, 

therefore, they are relatively rarely used.

However the moment defined as above is variant with respect to coordinate 

translation, rotation, and scaling. This is not convenient in practice. Therefore, the 

popular way is to use central moments, which are invariant with respect to coordinate 

translation.

3.6.3 Central Moments

Let Y  be a set of h variables of a new coordinate system y, which is transformed 

from coordinate system x  by translation as follows:
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Y  = X - X  or y i = xi - x/ (3.6.3)

where

Y = ( y ^ y 2,~ . , y h)

and

*/= / / ( ■X\ j ̂ 2 ’' • ’ ’ Xfixh)xidxi / ! f ( . xh)dxi (3.6.4)

Then the central moments are given as the same form as Equations (3.6.1) and (3.6.2):

Because the coordinate system y  is translated from the coordinate system x, the central 

moments are invariant with respect to coordinate translation.

3.6.4 Orientation of Objects by Moments

The boundary of an object in a two dimensional plane can be represented by a 

function f(xj,X2) of n points in two dimensional space x j  and X2 - f (xj ,x2) has the 

value 1 on the boundary and 0 elsewhere. If the coordinates x /  and X2 are translated to 

coordinates y j  and y 2 by:

= W(y\> y 2 > ■■ •  > y h ) y f  y \  • • • y ^ y \dy 2-  dy h (3.6.5)

M m-.r = (3.6.6)

y , = x i - x i ( / =  1, 2 ) (3 .6.7)
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and the coordinate axes of y j  and y 2 are rotated by angle 0  so that y j  lies along the 

principal axis of the boundary, the new coordinates z 7 and Z2  are respectively:

z] = y { cos0 +y 2 sin0 (3.6.8)

z2 = -yx sin 0 + y 2 cos0 (3.6.9)

After the rotation to the principal axis, there is no correlation between z j  and z^. This 

means that the summation of the products z jZ2  for all points in the plane should be 

zero:

2 X ^ = 0  (3.6.10)
7=1

i.e.

X [T 1T2(cos2 0 - sin2 0 ) - sin0 C0SG O'? -y ly \ = ® (3.6.11)

From Equation (3.6.11), 0 can be found as:

2 i > i ^
tan28= „ H  „-----  (3.6.12)

2 X - X X
.2

7=1 7=1

Comparing Equation (3.6.12) with Equation (3.6.6), it is clear that the numerator of 

Equation (3.6.12) is the moment Mcj ]  of the boundary, the first term of the 

denominator of Equation (3.6.12) is the moment Mc2 0> and the second term is the 

moment Mcq2 . Therefore, the direction of the principal axis of the boundary is taken 

as the orientation of the boundary, it is given by :
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2 M c
ta n 2 0  = . . .  _ ' '  (3.6.13)

M 20

where

= ' Z y IJy2j
j =1

^ 2 0  = I X
>1

= I X
> 1

(3.6.14)

Replace Equation (3.6.7) in (3.6.14),

= 2  (*1, - *1 )(*2, " *2 ) = S  (V 2 ,  “  *1,*2 -  V l  + X1X2 )
7=1 >1

= M u - M10 M0] / rc - M0] M ]0/ n  + M ]0M01 / «

Afjj - M 10M0] / w (3.6.15)

M 2Co  =  E  ( • * 1;  -  * 1 ) !  =  E  X  -  2 , U I 1 +  * * )

y=! y=i

= M 20 - 2 M ]0 / n  + M ]0 / n

M 20 ■ M ]0 / /1 (3.6.16)

M rn =  Z X  ~ X2 Y  = £ ( x l j - 2 x 2 j x 2 + x 22 )
./■=! j =1

= M 02 - 2 M01 /«  + M0] / n

Mq2 ~ -A'Tqi ! n (3.6.17)

Then (3.6.13) becomes

t a n 2 0 =  2 ( „ M „ -M ,0M0I)
«(M 20- M 02) - ( M 20 - M 2)

Because M qq  =  n , therefore, the orientation 0 of the boundary is given:
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tan20 = ------ 2(M 00Mm MwMm)

Let

M '= 2 (M mM u - M IOM OI)

M "=  M00(M 20 -  M02) - ( M 2 -  M 2)

and

1 2 (Mnn M ,, -  M,nM m)
0 = — arc tan--------- -— ^ — u------ 1°-- 017— — (3.6,20)

2  M00(M 20- M 02) - ( M 120 - M 021)

Then, the orientation of the boundary of the object is:

0'+9O° i f  M'> 0, M "< 0
+ 45° i fM'>  0, M " =0

0'-9O° i f  M ' < 0, M"<  0
OtO1 i f  M '< 0, M''= 0

0 ' otherwise

3.7 Experiments

To illustrate the operations, the four methods proposed above: Directed Vein, 

Convex Hull, Principal Components Transformation, and Moments, were 

implemented in three experiments. The system of the automatic orientation analysis is 

shown in Figure 3.7.
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P r i n c i p a l
C o m p o n e n t s
T r a n s f o r m a t i o n
m e t h o d

C o n v e x
Hu l l
m e t h o d

M o m e n t s
m e t h o d

M a t h  E x p s c t i o n

B o u n d a r y

S m o o t h i n g

P r e p r o c e s s i n g

C a l c u l a t i o n  
o f  M o m e n t s

D i g i t a l  I m a g e

C a l c u l a t i o n  
o f  D i r e c t i o n

C a l c u l a t i o n  
of  d i r e c t i o n

D i r e c t i o n  
c h a i n  c o d e

C a l c u l a t i o n  
of  D i r e c t i o n

C o n v e x
Hu l l
f i n d i n g

L o n g e s t
D i a g o n a l
F i n d i n g

Figure 3.7 Flow chart of orientation analysis
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Experim ent 1

The four methods were first tested by an ellipse, as shown in Figure 3.8. The 

orientation of the ellipse was set to 30°. The orientations measured by the four 

methods are listed in Table 3.1. The experimental results indicate that the four 

methods yield nearly the same result for some objects with some special shape.

Figure 3.8 Top left: Original ellipse with orientation 30°
Top right: Boundary and orientation 29° measured by Directed Vein method
Bottom left: Boundary and orientation 28° measured by Convex Hull method
Bottom right: boundary and orientation 27° measured by Principal Components 

Transformation method and method of Moments

Table 3.1 The orientations of an ellipse measured by four methods.
Methods 1 Directed 

1 Vein
Convex

Hull
Principal Components 

Transformation
Moments

Orientations |  29° 28° 2T 2T
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Experiment 2

The four methods were then applied to an artificial image as shown in Figure 3.9. 

In Figure 3.9, the orientation o f the snail should be in the direction of the line which 

passes through both the head and the tail. On one basis, the orientation of the joining 

leaves should be the common direction of each leaf, i.e. the direction of internal 

preferred orientation; on another basis, the orientation should be in the orthogonal 

direction, i.e. the elongation direction of the aggregate o f leaves. The orientations of 

the three objects measured by the four methods are listed in Table 3.2, and drawn by 

straight lines in Figure 3.9.

Figure 3.9 Snail (top right), Joining leaves(left), leaf (bottom  right), and their orientations expressed 
by straight lines. DV: D irected V ein; CH: C onvex Hull; PCT: Principal C om ponents T ransform ation ; 
M: M om ents

Table 3.2 The orientations o f  three objects m easured by four m ethods.
D irected

Vein
Convex

Hull
Principal C om ponents 

T ransform ation
M om ents

L eaf 4 7 ° 48° 4 7 ° 4 7 °

Snail -76° -58° -63° -63°
Joining Leaves 32° - 8 6 ° -65° -65°
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The experimental results indicate that, the orientations measured by the Principal 

Components Transformation method and the method of Moments are exactly the 

same, as expected. For the single leaf, which is a simple object, the other two methods 

give an almost identical result. For the snail, the Convex Hull is in general agreement 

with the first two methods, and, to judge from Figure 3.9, the Directed Vein result is 

approximately the same. For the joining leaves, the Convex Hull gives a somewhat 

similar result to the first two methods; but the Directed Vein result is almost 90° 

different. This is probably because the Directed Vein method, by its nature, will lead 

to emphasise internal edges (in contrast, for example, to the convex Hull method 

where the orientation found is a global one based on the principal diagonal of the 

complete object). The somewhat different orientation found by the Directed Vein 

method in the snail image may have similar explanation. These results suggest that it 

might be possible to use the Directed Vein method in parallel with one of the other 

methods to distinguish between different types of objects.

Experiment 3

The four methods were finally applied to a micrograph image, as shown in Figure

3.10, on which the particles were clearly distinguishable after thresholding. The 

experimental results of the orientations measured by the four methods are listed in 

Table 3.3 and plotted in Figure 3.11 respectively: From Table 3.3 and the Figure

3.11, we can see that all the methods appear to have operated correctly. The 

orientations measured by the methods of Directed Vein and Convex Hull are slightly 

different from each other and also different from the Principal Components 

Transformation method and the method of Moments. This is because they are 

different in both concept and calculation. The orientations measured by the methods 

of Principal Components Transformation and Moments are exactly the same. This is 

because the principle of both of them is the same, but the calculations are different. 

The Directed Vein method is simple and fast, but sensitive to the boundary of an
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object. It is particularly useful for the cases where the orientation o f an object is 

determined by the boundary. The Convex Hull method is a little more complicated 

than the Directed Vein method. It is especially useful for the cases where the 

orientation is determined by the longest diagonal of an object. The Principal 

Components Transformation method and the method of Moments are both slow, but 

both of them can be called from standard software libraries. Therefore it is convenient 

to use the latter two methods for general purpose orientation analysis.

Figure 3.10 Soil particles
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Table 3.3 The orientations (in degrees) measured by the four methods: DV: Directed Vein method. 
CH: Convex Hull method; PCT: Principal Components Transformation method; M: Moments method

Particles No. | Orientation (DV) | Orientation (CH) | Orientation (PCT) Orientation (M)

1 14 47 49 49
2 -82 -81 -72 -72
3 63 68 68 68
4 12 18 16 16
5 67 68 68 68
6 72 72 70 70
7 82 79 83 83
8 69 74 78 78
9 61 62 66 66
10 57 59 57 57
11 63 65 69 69
12 69 68 69 69
13 77 75 75 75
14 65 70 72 72
15 73 74 78 78
16 59 63 67 67
17 79 76 80 80
18 76 79 88 88
19 59 58 60 60
20 63 72 71 71
21 60 55 55 55
22 76 79 86 86
23 60 68 71 71
24 53 53 55 55
25 61 82 89 89
26 78 94 86 86
27 -95 -88 -83 -83
28 89 85 90 90
29 58 67 67 67
30 49 53 50 50
31 61 66 67 67
32 63 73 75 75
33 87 82 85 85
34 67 67 66 66
35 56 56 58 58
36 -84 -86 -92 -92
37 -75 -76 -77 -77
38 63 65 63 63
39 56 57 59 59
40 -89 -85 -83 -83
41 -73 -99 -89 -89
42 63 64 64 64
43 66 61 66 66
44 68 66 68 68
45 59 67 66 66
46 61 72 69 69
47 69 56 60 60
4? 33 35 37 37
49 55 53 52 52
50 64 65 69 69
51 54 60 63 63
52 58 60 67 67
53 47 46 47 47
54 71 75 86 86
55 51 55 57 57
56 52 57 60 60
57 65 71 72 72
58 72 62 59 59
59 75 68 67 67
60 70 57 55 55
61 66 61 59 59
62 67 63 69 69
63 67 70 70 70
64 56 58 65 65
65 76 72 72 72
66 69 70 69 69

104



Chapter 3 Orientation Analysis

67 62 64 64 64
68 54 58 57 57
69 63 64 64 64
70 72 70 73 73
71 39 44 45 45
72 63 62 58 58
73 41 48 50 50
74 64 69 71 71
75 57 59 59 59
76 61 72 64 64
77 69 75 76 76
78 57 58 57 57
79 56 58 58 58
80 65 72 69 69
81 86 80 83 83
82 66 63 60 60
83 69 70 72 72
84 69 71 72 72
85 60 64 71 71
86 40 56 50 50
87 -92 -88 -90 -90
88 58 65 68 68
89 49 58 60 60
90 37 42 53 53
91 62 58 55 55
92 68 67 68 68
93 83 74 70 70
94 59 65 66 66
95 58 59 60 60
96 60 82 78 78
97 74 61 65 65
98 48 62 63 63
99 55 62 63 63
100 53 59 58 58
101 46 50 54 54
102 83 81 88 88
103 61 66 71 71
104 88 75 77 77
105 24 29 26 26
106 67 60 65 65
107 69 65 66 66
108 67 64 62 62
109 50 44 45 45
110 57 58 59 59
111 56 61 67 67
112 40 44 46 46
113 41 50 44 44
114 48 52 48 48
115 -70 -64 -66 -66
116 54 70 69 69
117 51 61 62 62
118 -9 -9 -26 -26
119 58 63 63 63
120 62 63 67 67
121 61 62 64 64
122 43 39 40 40
123 85 74 72 72
124 64 66 66 66
125 32 37 40 40
126 51 59 54 54
127 56 53 40 40
128 12 41 38 38
129 54 69 65 65
130 59 70 64 64
131 61 77 79 79
132 87 78 76 76
133 43 48 44 44
134 71 72 67 67
135 -74 -87 -76 76
136 -81 -87 -85 -85
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3.8 Discussion and Summary

There are a few problems which have not been brought out in the above. Both the 

method of Moments and the Principal Components Transformation method can 

become unstable for a few rare objects, for example, if Equation (3.6.13) attempts to 

divide zero by zero; the implementation, therefore, need traps to deal with these rare 

cases safely. The Convex Hull method needs a trap to deal with objects for which two 

or more instances of the longest diagonal occur; the Author's method of implementing 

this was explained in Section 3.4. A practical problem might arise with the Directed 

Vein method in that it is not immediately obvious which orientation is being reported, 

particularly if a large number of moderately contorted objects have to be analysed at 

high speed. General points arising from the body of the Chapter are summarised 

below.

The Directed Vein method proposed here is a simple and fast approach for the 

automatic orientation analysis of microstructures of soil specimens. This method 

would appear to be suitable for the orientation analysis not only of veins, curves, and 

boundaries, but also of any objects which can be described by curves. For simple 

objects, the orientations obtained by this method accord basically with the 'elongation 

direction'; otherwise, with the 'internal preferred orientation'.

The Convex Hull method discussed above is also simple and is the fastest*of all the 

four methods. This is because it is easier to get the boundary of a soil particle or of an 

inter-particle void (by area thresholding or edge detection) than to get, say, a directed 

vein. Moreover the algorithm to establish the simple polygon of a boundary using the 

stair-climbing approach, to construct the convex hull from the simple polygon by the 

Author's method of Chapter 2, and to find the longest diagonal from the convex hull, 

are fast as well as simple. The orientations of particles also accorded basically with 

the elongation direction as judged by a human observer (Figure 3.9).

The orientation of an object found by Principal Components Transformation

method is not as sensitive to the noise of the boundary as the Directed Vein method;
* Assutfnez-khdi -fcheconvex bull has already been found {or other purpose.
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this is because most of the information of the boundary is compressed into the 

principal components. Although, the basic computation is more complicated in 

calculation than are the Directed Vein method and Convex Hull method (because it is 

necessary to solve the characteristic function to find eigenvalues and eigenvectors), 

there is a quick and easy formula for the 2-D case.

The orientation of an object calculated by the method of Moments, as for the 

Principal Components Transformation, is not sensitive to the noise of the boundary of 

an object. Unlike the Principal Components Transformation, the method of Moments 

does not solve any complicated equations. Therefore, it is in general simpler for 

calculation of orientations. Compared with the Convex Hull method, it is simpler in 

programming, but slower in calculation. This is because it needs many more square 

calculations.

The last two methods, method of Moments and Principal Components 

Transformation method, are different algebraical routes to produce the orientation of 

the Principal Axis. Although the concept of the orientation of the longest diagonal of 

the convex hull is different from the concept of the principal axis, it appears that the 

Convex Hull method tends to produce an orientation which is in general agreement 

with the first two methods. In general, therefore, the choice between these three 

methods of estimating the elongation direction will depend on the speed and 

availability of software (unless the user has special requirements). For simple objects, 

the Directed Vein method appears to be the fastest method of estimating the 

elongation direction; but it is based on an entirely different concept, so it will be 

necessary to consider whether it would be the correct choice for less simple objects. In 

some cases, the Directed Vein method might be used in parallel with one of the other 

methods to distinguish between different types of objects.
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Appendix 3A.1 The Double-boundary Method

The method proposed by Luo and Ma (1989) is summarised here.

Select any group of pixels with value 1 and use track following to build up the 

double boundary of this area. Traverse clockwise (or counter clockwise) along its 

boundary as follows:

Step 1 Stand at a point with value 1 on the edge of the area with value 1 on the

right (w.r.t. the proposed direction of traverse round the object) and value 0  on

the left.

Step 2 Turn left and go straight ahead one pixel. If this pixel has value 1, go to 

Step 2.

Step 3 Turn right and go straight ahead one pixel. If this pixel has value 1, go to 

Step 2.

Step 4 Turn right and go straight ahead for 1, or 2, or 3 pixels. On 

encountering the first of these pixels having value 1, go to Step 2.

Step 5 If none of these 3 pixels has value 1, turn right and go to Step 4.

Step 6  Stop if the point with value 1 at Step 2 is the starting point.

When the algorithm is going to jump from Step 3 or Step 4 to Step 2, set the point 

to a value BL if the current value was 0, and to a value BR if the current value was 1. 

After Step 6 , the set of points with value BL forms the outer boundary, and the set of 

points with value BR forms the inner boundary. These two boundaries are called the 

double boundary of the area. Then the double boundary can be used to separate 

objects from each other.

Let Pf denote the set of points belonging to the ith object, and let BR[ and BL\ be 

the double boundary of the ith object. Then, a point p  can be classified into Pj, if it 

satisfies the following condition:
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PI = {p'.p lies within boundary BR[} (3 A. 1.1)

or it is classified into background BG if it satisfies:

BG = {p’.p  lies outside any boundary BL\} (3A. 1.2)

After the object separation procedure is completed one keeps one boundary of the 

double boundary as the edge of the particle, and discards the other one.
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Appendix 3A.2 Lemmas and Propositions

The following lemmas and propositions relate to the Directed Vein method of 

orientation analysis described in the main text.

Lemma 1. The orientation found for a closed smooth curve will tend to be near 

the orientation of its longest diagonal.

Proof: The probability is greater for code number nearer to that o f the longest 

diagonal than for those far away from that of the longest diagonal. Therefore from 

Equation (3.3.6) in Section 3.3, the orientation will be near the direction of the longest 

diagonal.

Lemma 2. The orientation found for a regular polygon with n edges is between 

(90°-180°/«) and (90°+180%).

Proof: Let an edge of a regular polygon lie parallel to the x-axis (Figure 3A.1). As 

a result of the changes to the modulo-4 chain code and Lemma 1, the orientation of 

the polygon is near the direction of L, see Figure 3A.1. Hence angle a  is

a  = 90°-a/2 = 90°-(360°//i/2) = 90°-180°/« (3A.2.1)

The other extreme occurs when the polygon is rotated by y counter-clockwise. In this 

case the orientation a ' will be

a ' = a+y= a+360°ln (3 A.2.2)

Substitute (A3.2.1) into (A3.2.2):

a ' = 90°-180%+360°/« = 90°+1807« (3A.2.3)
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Proposition 1. The orientation found for a long-shaped closed curve is 

approximately in the direction of its length.

Proof: This is directly from Lemma 1, or is a special case of Lemma 1.

Proposition 2. The orientation found for a circle is 90°.

Proof: A circle can be considered as a regular polygon with an infinite number of

sides. Therefore in Equation (A3.2.1) and (A3.2.3), in letting n approach infinity, we 

obtain a  « a ' « 90°

Y

x

Figure 3 A. 1 Example on orientation of a regular polygon
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4.1 Introduction

Wherever a soil surveyor describes a sample of soil, the shapes of the particles are 

often reported with reference to standard charts such as that shown in Figure 4.1. In 

particular, the roundness or sharpness of the comers of the particles is assessed 

subjectively by comparison with the charts. The immediate aim here is to place this 

assessment on an objective basis. For this purpose, the circular Hough Transform was 

found to be satisfactory. This transform is also useful for other purposes in studying 

soil microstructure. In summary, it is useful for:

1 . measurement of the roundness of the comers of 'standard particles'.

2 . location of bacteria in electron micrographs of soil.

3. location of other circular groups of particles and similar features in electron 

micrographs of soil.

4. location of circular bubbles (artefacts) in optical micrographs of soil.

5. location of circular particles in model cement in which spherical ballotini had 

been used as the aggregate.

When the circular Hough transform was adopted, three factors were considered: 

memory requirement, time of computation, and programming complexity. However, it 

was difficult to implement, and the main part of this Chapter will start by comparing 

five methods of implementation, of which, two (the basic method and the directional 

gradient method) are existing methods, and the other three (the centre method, the 

centre gradient method, and the radius method) are new. Although the three more 

efficient programs were about three times more complex to write than the basic 

simple program, none of the programming was difficult, so no consideration need be 

given to programming complexity and the consequent cost of development. The 

second part of the Chapter will discuss the Author's method of dealing with comers 

which are too sharp for the Hough transform to find. Finally, these methods will be
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used to compare five standard shape description charts. Before any of this, an 

overview of the Hough transform will be given.
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Figure 4.1 (a) Visual chart for estimating roundness and sphericity 
o f  sand grains (from Krumbein and Sloss 1951)
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Figure 4.1 (b) Chart for visual estimation o f  sphericity 
and roundness (from Brewer 1964)

Sphericity
0 9 0 7 0 5 0 3

• • • 1
• t 4 \
• 1 4 i
« t 1 !♦
» t ♦ E <

Sphericity 

0 . 9  0 .7  0 . 5  0 . 3

• • 1 1
• 4 4 4
• • 1 1
• ♦ 1 «

• 4 4

117



Chapter 4 Circular Hough Transform
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4.1.1 The Problem of Roundness Analysis

Sharpness / roundness is often an important feature for shape description and 

subsequent pattern recognition of an object.

Considering the sharpness of an object, the curvature analysis can be used. Many 

methods for curvature analysis have been proposed. One simple version of the 

methods, so-called k-curvature algorithm, was proposed by Rosenfeld and Johnston 

(1973), and improved by Rosenfeld and Weszka (1975) (see also Anderson and 

Bezdek 1984). Their method is taking the dot product of the two unit vectors joining a 

point (xj,yi) to (xf+kyi+k) and to (xpkyi-k) to estimate the curvature at a contour 

point. The more popular methods are to find the curvature by the ratio of the angle 

change dQ(s) with respect to the arc length ds along a curve or the contour of the 

object (Duda and Hart 1973, Haralick and Shapiro 1992, Schalkoff 1989, Seeger and 

Seeger 1994). The sharpness of the object, therefore, can be expressed by a function 

of the curvature along the contour of the object.

Considering the roundness of an object, the circle fitting  can be used. The circle 

fitting is to find the best circles which fit a curve or the contour of the object. Two 

types of circle fitting were proposed: one was based on the least square error, such as 

(Ballard and Brown 1982); another was based on the Circular Hough transform as 

described below. The roundness of the object, therefore, can be described by a 

function of the radii of a set of circles fitting the comers along the contour of the 

object.

In soil micro structure study, the latter approach has been more usually followed. 

Krumbein (1940) (see also Pettijohn 1957) gave the definition of the roundness as 

shown in Figure 4.2, and calculated the roundness Round of a particle by:
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Figure 4.2 Diagram of Pebbles, showing geometrical 
nature of roundness (from Krumbein 1940)

where N  is the number of the circles fitting the comers, and R; is the radius of the 

inscribing circle of the particle. Several years later, Krumbein and Sloss (1951) and 

then some other scientists (Brewer 1964, Hodgson 1974, FitzPatrick 1984, and 

Bullock 1985) made standard visual charts, as shown in Figure 4.1, for particle shape 

classification, in which 5 levels of roundness are distinguished. Based on Krumbein's 

definition of roundness, in our study, the problem concerned is how to detect the 

circles fitting the comers by image processing theory and techniques.

4.1.2 The Problem of Circle and Arc Detection.

In roundness measurement by circle fitting, the problem is how to estimate or 

determine the parameters a, b, and r of a circle from a set of observations of a curve, 

where (a,b) are the coordinates of the centre of the circle, and r is its radius. This
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circle must fit the curve in some sense. One of the methods for circle or circular arc 

detection is the circular Hough transform, which is an extension of the original Hough 

transform.

4.1.3 The History of the Hough Transform

The earliest Hough transform was proposed by Hough (1962) for straight line 

detection. Subsequently, this method was developed to detect circles (Duda and Hart 

1972) and arbitrary curves (Ballard 1981). The Hough transform was also applied to 

solve multivariable functions, especially in cases where the number of variables is less 

than the number of equations (Schalkoff 1989). Some examples of the successful use 

of Hough transforms are the detection of human haemoglobin 'fingerprints' (Ballard 

et. al. 1975), detection of tumours (Kimme et. al. 1975) and ribs (Wechsler and 

Sklansky 1977) in chest radiographs, detection of storage tanks in aerial images 

(Lantz et. al. 1978 ), etc. Illingworth and Kittler (1988) gave a survey of the wide 

applications of Hough transforms. Although the method is a very powerful one for 

determining the parameters of an analytic function, its computation time is too long in 

many applications, especially in real time applications, so many scientists focused on 

the reduction of the complexity of Hough transform algorithms: see, for example, 

Ibrahim et. al. (1985), Silberberg (1985), Fisher and Highnam (1989), Cypher et. al. 

(1990), Kannan and Chuang (1990), Guerra et. al. (1989), Kao et. al. (1993), Princen 

et.al. (1992, 1994), etc. Some other scientists have developed Hough transform 

algorithms using cache techniques (for instance Brown 1986).

4.1.4 Summary

The rest of this Chapter presents a use of the circular Hough transform in finding 

the "Roundness of the comers" of a curve in a plane. The basic method is 

computationally intensive in both time and memory. A method based on the direction

122



Chapter 4 Circular Hough Transform

gradient is faster but still requires a large amount of computer memory. In this chapter 

an implementation that requires much less memory is suggested. Extensions to find

the digital forms of the intrinsic equation of a curve and the evolute of a curve will

also be indicated.

4.2 The Hough Transform

4.2.1 Definition of Hough Transform

Let f(X,P) be an analytical function of a set X  of n variables, X={xj, X2 , ..., XyJ, 

with a set P of m parameters, P={pj, P2> ■■■> Pm) (In our application X  will be {x,y}, 

where x  and y  are the co-ordinates of a point in the plane of an image, and P will be 

{a,b,r}, where a, b, and r are the centre co-ordinates and the radius of a circle to be 

fitted). The general Hough transform, HT, is a transform which maps the function 

f(X,P) in the variable space X into A(P) in the parameter space p:

A( P)  = H T ( f  ( X  ,P))  (4.2.1)

Referring to Princen (1992), the Hough transform can be expressed or implemented 

by the transform function:

A( P)  = H T ( f ( X , P ) )  = £ > ( / ( * , / > ) , * , ? )  (4.2.2)

where W()  is the Hough transform kernel function defined as follows: if f(X,P)= 0 for 

an observation ofXdX P, W()=1; otherwise, W()= 0
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4.2.2 Algorithm of Hough Transform

From Equation (4.2.2), an accumulator A(P)=A(pj, P2, Pm) is needed in 

implementing the Hough transform. The number of dimensions of the accumulator is 

equal to the number, m, of the parameters, P, of the analytical function f(X,P). The

size of each dimension is equal to the range of the corresponding parameter. One way

to implement a Hough transform algorithm is: for an observation X  off(X,P), find out 

all possible values of P which satisfy the equation:

f ( X , P )  = 0 (4.2.3)

accumulate A(P) with respect to each P:

A( P ) : =A( P )  + 1 (4.2.4)

and continue this procedure for all of the observations X  off(X,P). Another way is: for 

a set of observations of X, determine the value of the kernel function W() at P; 

accumulate A (P) at each P:

A( P)  = ^ W ( . )  (4.2.5)

and continue this procedure for all of the possible parameters P of f(X,P).

The result of a Hough transform is a statistical distribution of the number of the 

observations X  of f(X,P) in parameter space. Then, for the purpose of line detection, 

circle detection, or arbitrary curve detection, the parameters P are determined by 

finding the co-ordinates of the points in accumulator space, at which the accumulator 

A(P) has local maximal values.

4.2.3 Circular Hough Transform

The Circular Hough transform is used to detect circles or circular arcs (Duda and 

Hart 1972, O'Gorman and Clowes 1976, Rosenfeld and Kak 1982, Ballard and Brown
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1982, Schalkoff 1989, Haralick and Shapiro 1992, etc.) or find a set of circles to fit a 
5

curve (Luo et. al 1994). The Circular Hough transform maps a circle C:

( x - a ) 2 + ( y - b ) 2 = r 2 (4.2.6)

in variable space X={x,y} into parameter space P={a,b,r}, where x, y, a, b and r are as 

defined in Section 4.2.1. By the circular Hough transform, a point {x,y) o f C in the 

variable space becomes the side surface of a cone in parameter space, of which the 

vertex is at point (a,b), a=x, b=y, and the axis is parallel to the r-axis. If n is the 

number of pixels on C, then there will be n cones in accumulator space, and the centre 

of C is given by the intersection point of the side surfaces of the n cones. Similarly 

the radius of C is the height of the intersection point above the plane r=0.

In summary, for circle detection or circle fitting, the parameters (a,b,r) are the co­

ordinates of the point where the accumulator A(a,b,r) has a local maximal value. Two 

simple common algorithms of Hough transform and three algorithms developed by 

the Author are introduced below.

4.3 Im plem entation

4.3.1 Introduction

This Section will discuss five methods of implementing the circular Hough 

transform. These differ in: the amount of memory required; the time required for 

calculation; and , conversely, the scope and accuracy of the results obtained.

4.3.2 Preliminary Extraction of Curve

All the examples in this Chapter refer to boundary curves of particles; but the 

methods could also be applied to unclosed curves such as the centre lines of rivers. 

Any reliable method of obtaining these curves may be used; and in the following it is 

usually assumed that this has already been done.
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4.3.3 Basic Algorithm

4.3.3.1 Introduction

A simple implementation of the Circular Hough Transform (Duda and Hart, 1972) 

uses the basic method.

For a given parameter (a,b,r), a set of points {(x/,y/)} which satisfy the circle 

function (4.2.6), must all lie on the circumference defined by (a,b,r). Inversely, if a set 

of points { ( x j , y j ) }  all lie on the same circumference, they must satisfy the same circle 

function (4.2.6) with the same parameters (a,b,r). This means that from finite sets of 

parameters (aj,bj,rj) of each point (xj ,yf) ,  we can find a common set of parameters 

(a,b,r) for all points {(xj.yi)}, defined by which the circumference includes all the 

points {(xf,yi)}. From this point of view, the basic method can be applied for circular 

Hough transform.

4.3.3.2 Algorithm

The basic algorithm for circular Hough transform needs an accumulator A(a,b,r). 

The algorithm for an object or a curve is in brief as follows. As indicated above, it is 

assumed that pre-processing has already been done to identify the set o f n  points 

{(x/,yz-)} of the object which is to be analysed using the Hough transform.

Step 1 An accumulator array A(a,b,r) is set to zero.

Step 2 For each point in the set, a set of m possible pairs of parameters {(aj,bj)} 

are chosen, and the other set of parameters {rjj} are calculated from Equation (4.2.6):

>i =(aj - x lf + ( b j - y ^  (4.3.1)

For each (aj,bj,rfj) thus found, a vote of 1 is added to the corresponding cell of the 

accumulator array of Equation (4.2.4):
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(4.3.2)

Step 3 The accumulator array A(a,b,r) is searched for local maxima, each of 

which indicates a circular arc which fits part of the curve more or less exactly. Hence, 

the parameters of the circle being detected are {a fob for k), at which the distribution of 

A(aj0bj0rk) satisfies

Crudely, the height of a maximum indicates the size of the arc over which 

agreement is obtained, and the breadth of the peak indicates how good the agreement 

is. Due to the effect of digitisation, values of r less than 2 should be excluded both 

here and in the following methods.

Actually, when a curve is fitted by a set of circles, the contributions to the 

accumulator of a small arc of a large circle may be larger than that of a large arc of a 

small circle. Therefore, the accumulator should be normalised so that the circles best 

fitting the curve could be found. The normalisation can be achieved by multiplying 

the accumulator array A(a,b,r) preceding Step 3 by a scale factor

If this is done, the height of a maximum approximates to the angle subtended at the 

centre of the circle by the arc of agreement. This additional step, however, is only 

required if circles of varying size are involved.

A (ak A ^ k )  = max {A(aj ,bj , r})}
./

(4.3.3)

(4.3.4)
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4.3.3.3 Discussion

In this method, the computational time and the size of memory required for the 

accumulator depend upon the range of a, b, and r. Obviously this method is slow 

because it involves a four-fold loop over each of x , y, a, and b. It also requires 

sufficient memory to hold the three-dimensional accumulator array. For example, if 

the ranges of a, b, and r were each 512 pixels, the accumulator array would require 

512^ = 134,217,728 cells if programmed conventionally. Usually, this method is too 

big and too slow to run for a practical image. In the Author's experiments, the size of 

the array had to be reduced to 256x256x128 = 8,388,608; and, even then, only one 

computer in the university was large enough to run the program. On the other hand, 

the author found this to be a comparatively exact circle detection method.

If the image contains only one curve, and if it is continuous, then the loop over x 

and y  can be replaced by edge-following, which is faster; but there is still the loop 

over a and b, so the memory requirement is unchanged.

4.3.4 Directional Gradient Method

4.3.4.1 Introduction

A faster implementation of the Circular Hough Transform was obtained by using a 

directional gradient method to analyse the boundaries of black-and-white images, as 

had been done by Kimme et al. (1975) and Haralick and Shapiro (1992). As shown in 

Figure 4.3, the centre of a circle is the point where all the radii of the circle intersect. 

Now, the direction of a radius is given by the direction of the intensity gradient of the 

circumference at the intersection point of the radius and the circumference (or the 

reverse of this direction). Thus, only the parameters (a, b) in that direction through that 

intersection point are of concern.
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>  <■

Figure 4.3 the directions of the gradient at the points of a circle

4.3.4.2 Algorithm

The procedure for circular Hough transform by the gradient method was as follows: 

Step 1 An accumulator array A(a, b,r) is set to zero.

Step 2 The image is scanned as before, but now the direction of the intensity 

gradient, 0 /, is found at each point on the curve to give the direction of the radius.

Step 3 For each of the points found above, a set of m possible parameters {/y} is 

chosen, and the other set of parameters {(aj,bj)} is calculated from:

(4.3.5)

then the accumulator array A(aj,bj,rj) is incremented as before:

A(aj ,bj ,rj ):= A(aj ,bj ,r;-) +1 (4.3.6)
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Step 4 Point (x/,y/) and direction 0/ are updated and the algorithm is repeated 

from Step 2 for all the points on the curve.

Step 5 The accumulator A(a,b,r) is searched for local maxima, from which the 

parameters (a,b,r) of the fitting circles are determined.

4.3.4.3 Discussion

Experiments were made using both grey images and thresholded binary images; but 

it was decided to concentrate on pre-thresholded binary images in the present study. In 

finding the intensity gradients, the positive sides of the filters should all be positive to 

avoid accidentally reversing the direction of the intensity gradient; such reversal can 

occur with some of the larger filters discussed by Smart and Tovey (1988). In 

addition, 5x5 filters give better smoothing of the digitisation steps along boundaries 

than do 3x3 filters. Otherwise, the choice of filter for finding the intensity gradient 

was thought to be not critical. Therefore, the 20U formula of Smart and Leng (1991, 

1993), which is a 'wholly positive' 5x5 filter, was chosen here for its simplicity.

Although this method is faster than the basic method, the experiments showed it to 

be less accurate than the basic method, and it does not give any reduction in memory 

requirement.

In passing, it may be noted that this method could be extended to give the intrinsic 

equation of a continuous curve. The direction, ij/, of the tangent to the curve is 

perpendicular to the normal, and the distance, s, along the curve can be estimated by 

any of the conventional methods. Thus, the digital version o f :

(4.3.7)
as

could be calculated.

In order to reduce the memory requirement to a size which would run on commonly 

available computers, the following methods of circular Hough transform for circle 

detection or circle fitting were developed.
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4.3.5 Centre Method

4.3.5.1 Introduction

In both the basic and directional gradient methods, we can see that in parameter 

space, the histogram of the accumulator is different from point to point. Only those 

parameters which have local histogram maxima are needed. In roundness analysis of 

an object, actually only those parameters are needed of which the radius is the 

smallest at the same centre. Therefore, to reduce the memory size of the accumulator, 

it is reasonable to discard in advance those parameters which will not be needed. 

Based on this idea, a reduction in the dimensions of the accumulator was achieved by 

the centre method, which was developed from the basic method.

4.3.5.2 Algorithm

In the centre method, a two-dimensional accumulator A(a,b), a sequential memory 

with four components, and a threshold function T(r) are needed. Details of the 

threshold will be given in Section 4.4. The main procedure of the centre method for 

circular Hough transform is as follows:

Step 1 The accumulator array A (a, b) is set to zero.

Step 2 The set of n  points of the curve { x j , y j }  is obtained as before.

Step 3 A trial value of the parameter rj is chosen.

Step 4 As shown in Figure 4.4 (a) and (c), for each of the points on the curve, 

using the chosen value of the parameter rj, then for every possible value of bfa the 

corresponding value of a£ is calculated from

Note that (afob0 is a point on the circle centred at (xj .yj ) .  For each of these pairs of 

values (afobfc), the accumulator A (a, b) is incremented:

(4.3.8)
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b

A

Figure 4.4 (a) Locii of centres of circles of radius, r=rn Centre method.

b

Figure 4.4 (b) After thresholding and peak search, two arcs of circles fitting the curve
are detected temporarily. The two spots express the centres of the circles.
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b

A

----------------------------------------------------------------------------------- >  a

Figure 4.4 (c) Locii o f centres of circles of radius, r=r2

b

Figure 4.4 (d) After thresholding and peak search, one arc of a circle fitting the curve 
is detected temporarily. The spot expresses the centre of the circle.
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A(akA)'= A a t ,bk) + l (4.3.9)

Step 5 The accumulator A(a,b) is thresholded by a function T(r), (which will be 

explained in Section 4.4):

Step 6 The accumulator array A(a,b) is searched for local maxima, and the 

corresponding parameters aj, bj, rj, and the value in the accumulator array, A(aj,bj), 

are stored in a list in sequential memory. Figure 4.4 (b) and (d) show arcs o f circles 

located by this step.

Step 7 The accumulator is re-set to zero, the parameter rj is updated, and the 

algorithm is resumed from Step 4 for all possible parameters r.

Step 8 The list of parameters (a,b,r) is itself searched for local maxima.

4.3.5.3 Quick Version

When only the circles fitting the comers along the contour of the object are needed 

for the roundness measurement, only the parameters (a,b,r) with smallest r at (a,b) 

need be stored. As shown in Figure 4.5, if there are two radii r j  and 77  (r2>rl ) 

detected at the same point (a,b), the arc corresponding to 77  is not considered as a 

comer. Therefore, in this particular problem, a two-dimensional array was used to 

store the value of r at (a,b) instead of using a list in sequential memory. In each 

iterative step 4, this two-dimensional array was overwritten under the rule of smallest 

r. To find the circles fitting comers, the two-dimensional array is searched for small 

radii. This quick version may sometimes be inappropriate, so care is needed before 

accepting it.

otherwise
(4.3.10)
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b

A

I---------------------------------------------------------------------------- >  a

Figure 4.5 Here two arcs of circles have been detected at the same 
centre point. The arc with smaller radius is kept as a comer feature. The 
other arc is discarded, because it is not considered as a comer.

4.3.5.4 Discussion

In this method, the number of dimensions of the accumulator is reduced from 3 

dimensions to 2 dimensions. Therefore, the size of the accumulator plus the size of the 

sequential memory is much less than the 3 dimensional accumulator in the basic 

method. The accuracy of the transform is the same as the basic method. However, the 

run time is now greater than that of the basic method.

If the image contains only one curve, and if it is continuous, then the loop over x 

and y  can be replaced by edge-following, but there is still the loop over a and b.

In the present work, use of the centre method was limited to a preliminary trial, 

which led to the development of both of the methods following.
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4.3.6 Gradient Centre Method

4.3.6.1 Introduction

As mentioned when discussing the directional gradient method, the centre of a 

circle is the intersecting point of the radii of the circle, and the direction of each radius 

is the same as that of the gradient at the point where the radius intersects the 

circumference. Clearly, combining the directional gradient method and the centre 

method, called gradient centre method, can achieve the reduction of both the memory 

size and the run time.

4.3.6.2 Algorithm

Like the centre method, the gradient centre method needs a two dimensional 

accumulator A(a,b) and a sequential memory with four components. Combining the 

algorithms of the directional gradient method and the centre method, the procedure for 

the gradient centre method is in brief:

Step 1 The accumulator A(a,b) is set to zero.

Step 2 The set of n points {(x/,_y/)} and the corresponding direction 0/ of each

point (xj,yj) are obtained as before.

Step 3 A trial value of the parameter rj is chosen.

Step 4 As shown in Figure 4.6, for each of the points on the curve, the other pair of

parameters (aj,bj) is calculated by:

(4.3.11)

and the accumulator A(a,b) is incremented at each parameter (<aj,bj):

A ( aj >bj):= A( a j , b j )  + 1 (4 .3 .12)
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Here (aj, bj) is a point lying on the line at angle 0/ intersecting the curve at fa y f)  and 

distant rj from the curve.

Step 5 The accumulator A(a,b) is thresholded by a function T(r):

Step 6  If A(cij,bj) is a local maximum, the corresponding parameters aj, bj, rj, and 

A(aj,bj) are stored in a list in sequential memory.

Step 7 The accumulator is re-set to zero, the parameter rj is updated and the 

algorithm is resumed from Step 4 for all possible parameters r.

Step 8  The list of parameters (a,b,r) can be searched for local maxima.

As in Section 4.3.5.3, a similar quick version of the gradient centre method is 

applied for finding the circles fitting comers.

otherwise
(4.3.13)

b

\ \
\

\

Figure 4.6 Locii o f centres of circles of radius, Direction gradient method.
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4.3.6.3 Discussion

Obviously, in this method, both the size of the memory and the run time are 

reduced. However, the accuracy might be less than the centre method. This is because, 

like the directional gradient method, the accuracy depends on that of the directions of 

the gradient. Therefore, the following method was also considered.

4.3.7 Radius Method 

4.3.7.1 Introduction

In considering the accuracy of the circular Hough transform, in some cases, the 

results by the directional gradient method and the gradient centre method are not as 

good as they should be. At the price of increased run time, another development of the 

basic method, similar to the centre method, called radius method, can be used to 

reduce further the size of the memory.

4.3.7.2 Algorithm

Unlike the centre method and the gradient centre method, the radius method needs a 

one dimensional accumulator A(r). Similarly, it also requires a sequential memory 

with four components. The procedure of this method is slightly different from the 

centre method. It can be explained as follows:

Step 1 The accumulator array A(r) is set to zero.

Step 2 The set of n points {*/,>>/} is obtained as before.

Step 3 A trial pair of values of the parameters (aj, bj) is chosen.

Step 4 As shown in Figure 4.7 , for each of the points on the curve, the parameter 

r j  is calculated from:
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Figure 4.7 Radii from centre (a,,b) to various points on the curve

r2 = ( x , - a J)2 + ( y , - b J)1

and the accum ulator^^  is incremented:

A(r0-y = A(r0) + 1

Step 5 The accumulator is thresholded by a function T(r)\

'A(rf)
A r s) =

i f  A(rt )2T(r t ) 
otherwise

(4.3.14)

(4.3.15)

(4.3.16)

Step 6 The accumulator array A(r) is searched for local maxima, and the 

corresponding parameters aj, bj, r^, and value A(r\) are stored in a list in sequential 

memory.
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Step 7 The accumulator A(r) is re-set to zero, the parameters (aj,bj) are updated, 

and the algorithm is resumed from Step 4 for all possible parameters (a, b).

Step 8 The list of parameters (a,b,r) is searched for local maxima.

Similarly, a quick version of the radius method for finding circles fitting comers is 

that: in each iterative Step 6 , only the parameters aj, bj, rj& and A(rfc) with the smallest 

value of r are stored in the sequential memory.

4.3.7.3 Discussion

In this method, much less memory is required than in the methods mentioned 

above, and the accuracy is as the same as the basic method. However, the run time is 

still similar to the basic method and higher than the directional gradient method.

4.4 Threshold Function T (r)

4.4.1 Introduction

In circle detection and circle fitting, usually, the criterion of circle fitting is that the 

best circle fitting to a curve is the one of which the intersecting arc with the curve is 

the largest among all the circles fitting to the curve. However, as explained in Section 

4.3.3.2, a small intersecting arc of a very large circle fitting to a curve may be larger 

than a large arc of a very small circle. In this case, we might not think the very large 

circle is the best circle fitting the curve. Therefore the criterion of the circle fitting 

should be a function of or normalised by the radius of the circle. On the other hand, 

because of noise, digitisation, and edge detection operation, a straight line segment 

may be thick and rough. From this consideration, a straight line segment should be 

discriminated from a curve. Therefore, a lower boundary of the criterion of circle
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fitting should be set. For these reason, a threshold function T(r) for circular Hough 

transform is designed to meet the needs of the criterion and the lower boundary.

4.4.2 Threshold Function T(r)

The threshold function T(r) can be specified by users to suit different purposes. The 

simplest formula is:

T(r)  = a -2 n r  ( a 0 < a < l )  (4.4.1)

where a 0 is the lower boundary. If both the accumulator A()  and the threshold 

function T(r) are normalised by S(r), then the threshold function T(r) would be a 

constant, a . Equation (4.4.1) implies that if A ()  is greater than T(r), the circle may be 

considered to fit the curve over a proportion a  of the circumference of the circle, and 

the quality of fit using A ()  is independent of the radius.

However a correction of T(r) may be needed because T(r) should be greater than 

the least value which can discriminate an arc of a circle with radius r from a segment 

of a straight line. The noise and the thickness of the curve should be taken into 

account as mentioned above. From this point of view, another formula for the 

threshold function, T(r), is determined as follows.

As shown in Figure 4.8, let Tn be the thickness of a curve produced by edge 

detection operation, and Rn the roughness of the curve caused by noise. Then, to 

discriminate an arc of a circle from an imperfect segment of a straight line, the 

threshold T(r) should be greater than the least length of the arc:

f" ~ ( Ty. + Ry. ) Ty. 4"
T(r) > 2rQ = 2r • arccos -  — = 2r • arccos(l — - ---- —) (4.4.2)

r r

The normalised threshold by r, T(r)/r, from this formula, is actually the angle 

subtended by the intersecting arc at the centre of the circle. Therefore, detected by this 

threshold function, the quality of fit using A ()lr  is independent of the radius.
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_L 
T
Th

Figure 4.8 Determination of least threshold T(r); a thick line is shown shaded.

The use of T(r) is illustrated in Figure 4.9. A(r) was calculated for one centre (a,b) 

using the Radius method; and T(r) was calculated from Equation (4.4.2) using Tn= 1 

and Rn=l. After thresholding, only the peaks of A(r) remain, see the black solid part 

of A(r) in Figure 4.9. It is the final curve, A'(r), which is then scanned to find the 

circles. In this example, only one circle was found, with radius 12.

4.5 Sharp Corners

In digitised images, the resolution is at best 2 pixels; and this imposes a lower limit

on the size of the circles which can be found by the Hough transform. In the problems

which are of immediate interest here, only comers which are on the convex hull are of

interest. Therefore, the convex hull was scanned vertex by vertex. Whenever a pair of
ix>

closely spaced vertices were found, they were tested isyjsee whether they were parts of 

the circles which had already been found by the Hough transform. Otherwise, using a
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run length of 5 or 7  pixels, a pair of tangents was fitted to the convex hull to define a 

sharp comer. As an expedient, a nominal radius of 2 pixels was ascribed to all of these 

sharp comers.
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Figure 4.9 Histogram of A(r) and Threshold T(r) against Radius r
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An alternative idea, which occurred at a very late stage, would be to open the binary 

image by successive erosion and dilation using a circular structuring element. It is 

expected that this would have the effect of rounding the sharp comers to the radius of 

the structuring element, so that the Hough transform would find them.

4.6 Experimental Analyses

4.6.1 Introduction

As seen in Section 4.1, the roundness of an object is defined as a function of the 

radius of the circles fitting the comers of the contour of the object. The first step is to 

find the contour or the edge of the object. Then the circular Hough transform is 

applied to detect the circles.

Often after digitisation, a circular low pass filter was applied to the image in 

Fourier space to suppress the noise caused by illumination and digitisation. Then the 

boundary was extracted and the 20U-formula (Smart and Leng, 1991, 1993) was used 

to find the direction of the intensity gradient along the boundary. The output 

comprised the co-ordinates X  and the directions 0 of the edge. The diagram of the 

system is as shown in Figure 4.10.

Rectified 
Image ,

Fuzzy
Edges

Binary
EdgesImage

Corrected
HistogramHistogram

Circles Selected Circles

(Parameters)

Peak

Search

Accumulator

Radius

Intensity

Gradient
Threshold

Threshold

Maxima

Local

Lowpass

Filter

Figure 4.10 Flow chart of circular Hough Transform system
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4.6.2 Preliminary Test of 20U-Formulae

Before accepting the 20U-formulae as an intensity gradient filter, a preliminary test 

of its accuracy was made. The coefficients of this filter were given by Smart and Leng 

(1993) as:

-1 -
-1 -

-1 -

dl_
cbc

x ,y

20U formulae

1

dl_
dy

1

1 1

x ,y
-1 -1 -1 -1 -1 

-1 -1 -1

The image used for this test was an artificial circle; and the mean square root error 

(MSQRT error) of the direction of the radii was calculated from:

MSQRTerror = (2X-M2)/n ( 4 . 6 . 1 )

» =1

where 0 g/ is the angle calculated by gradient filter at an edge point, 0 C/ is the 

theoretical angle calculated from an edge point to the centre of the circle, and n is the 

number of points concerned. The MSQRT error of the filter 20U was 6.828977°. It 

was concluded that the 20U-formula would be sufficiently accurate for the present 

purposes.

4.6.3 Elliptical Test Image

The first experiment to be discussed here was made on an elliptical test object by 

the radius method. The original was a binary image which had been obtained by
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calculation. The experimental result is shown in Figure 4.11. In this experiment, the 

image size was 512x512, the parameters (a,b) were limited within the range from 190 

t0 390, and the parameter r was limited within the range from 2 to 128.

As each set o f values (a,b,r) was found, instead of writing these values to a list, the 

intensity o f pixel (a,b) was altered to (maxgrey -r) to give a visual indication o f where 

the centres o f circles fitting the ellipse were to be found. In Figure 4.11, the colours 

blue, green, red, yellow, and white indicate increasing values o f intensity respectively. 

Using a standard command in the image-processing software (Semper), these values 

could be retrieved from the image.

In Figure 4.11, some centres have appeared along the major axis o f the ellipse. 

These are centres o f inscribed circles, which are not circles o f curvature, and which 

should be disregarded here.

F igure 4.11 A boundary  o f  an ellipse, som e centres o f  the circles fitting  the 
ellipse, and tw o circles fitted at the ends o f  the m ajor axis.
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The pair o f bright cusp-like curves are the locii o f the centres o f curvature o f the 

ellipse; these have been truncated at b= ±390. Since the evolute o f a curve is defined 

as the locus o f the centres o f curvature o f the curve, these cusp-like curves form the 

evolute o f the ellipse.

By inspection o f the calculated results, the centres and radii o f the circles of 

curvature at the ends of the major axis o f the ellipse have been found; and these 

circles have been superimposed on the figure.

4.6.4 Test on a Typical Particle

Figure 4.12 illustrates the radius method applied to the measurement o f the 

roundness of particles. In Figure 4.12, the outer boundary is the boundary of a particle 

taken from a standard chart given by Bullock (1985) for soil particles see Figure 4.1 

(e) Smooth; however, Figure 4.12 was digitised individually at a larger scale than 

Figure 4.1 (e) Smooth. The immediate problem was to measure the roundness of the 

comers. This was achieved by fitting circles to the boundary using the radius method 

and the threshold function T(r) as indicated above. Only those circles centred within 

the particle are o f interest, thus defining the region over which (a,b) was varied and 

reducing the run time. (This point is discussed further in Section 4.6.6 below). The 

results were stored in the image as explained in the previous Section. Also, only the 

smallest circles were required; if  two or more values of r were obtained for the same 

centre (a,b) only the smallest value o f r was retained. Then, because the intensity was 

reset to (maxgrey - r), the centres o f the smaller circles showed more brightly. These 

reset pixels are visible in Figure 4.12 (a), where red, yellow, and white indicate 

increasing values o f intensity. Next, the reset pixels were scanned to find the smallest 

circle at each o f the comers; these circles are shown in Figures 4.12 (b) and (c).

£
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Figure 4.12 (a) The boundary o f a particle in Figure 4.1 (e-Smooth) and some centres o f  circles
fitting the boundary

Figure 4.12 (b) C ircles fitted  at selected  centres
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Figure 4.12 (c) Final set o f  circles fitting the com ers o f  the boundary

4.6.5 Test on the Visual Charts of Particles

The radius method was also applied to the five visual charts o f particles as shown in 

Figures 4.1 (a) - (e-Smooth). Each o f the five charts was digitised into a 512x512 

image. After image preprocessing, the particles were segmented to produce individual 

boundaries. Then the circles r / which fit the comers o f each particle were detected by 

the radius method. In addition, the inscribing circle R, o f a particle, defined as the 

largest circle among all the smallest circles fitting inside the boundary o f the particle, 

was found. Thus, the roundness Round o f the particle was calculated by Krumbein's 

equation, i.e. Equation (4.1.1), where the sum is taken to include all circles with radii 

rj&Rj. The results are shown in Tables 4.1 - 4.6.
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Table 4.1 Roundness/sharpness of the Chart in Figure 4.1 (a)
measured by the radius method and Equation (4.1.1)

<r- Spher
R n n

icity —
Average

Rounded 0.632 0.600 0.636 0.556 0.606
Almost Rounded 0.461 0.615 0.500 0.500 0.519

Subrounded 0.390 0.517 0.460 0.524 0.473
Subangular 0.264 0.414 0.545 0.314 0.384

Angular 0.284 0.357 0.300 0.250 0.298
Average 0.406 0.501 0.488 0.429

Table 4.2 Roundness/sharpness of the Chart in Figure 4.1 (b)
measured by the radius method and Equation (4.1.1)

< -  Sphericity —
Average

Rounded 0.579 0.567 0.545 0.556 0.562
Almost Rounded 0.381 0.637 0.538 0.556 0.528

Subrounded 0.470 0.385 0.500 0.444 0.450
Subangular 0.263 0.415 0.513 0.250 0.360

Angular 0.235 0.393 0.250 0.333 0 303
Average 0.386 0.479 0.469 0.428

Table 4.3 Roundness/sharpness of the Chart in Figure 4.1 (c)
measured by the radius method and Equation (4.1.1)

Spher

R nu

icity —

n d Average
Rounded 0.675 0.625 0.633 0.714 0.662

Almost Rounded 0.405 0.564 0.700 0.571 0.560
Subrounded 0.400 0.476 0.630 0.429 0.484
Subangular 0.356 0.482 0.333 0.429 0.400

Angular 0.190 0.200 0.333 0.286 0.252
Average 0.405 0.469 0.526 0.486

Table 4.4 Roundness/sharpness of the Chart in Figure 4.1 (d)
measured by the radius method and Equation (4.1.1)

< -  Sphericity —
Average

Rounded 0.522 0.526 0.569 0.267 0.471
Almost Rounded 0.359 0.515 0.441 0.308 0.406

Subrounded 0.356 0.294 0.429 0.436 0.379
Subangular 0.324 0.329 0.438 0.231 0.331

Angular 0.276 0.315 0.244 0.282 0.279
Average 0.367 0.396 0.327 0.305

Table 4.5 Roundness/sharpness of the Chart in Figure 4.1 (e-Smooth) 
measured by the radius method and Equation (4.1.1)

Spher

R n,

icity —
Average

Rounded 0.509 0.549 0.392 0.455 0.476
Almost Rounded 0.346 0.476 0.363 0.208 0.348

Subrounded 0.419 0.365 0.410 0.280 0.369
Subangular 0.161 0.256 0.393 0.493 0.326

Angular 0.064 0.189 0.355 0.240 0.212
Average 0.300 0.367 0.383 0.335
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Table 4 .6  A verage values and proposed values o f  roundness Round
Average o f Rm m d Proposed value

Rounded 0.555 0.550
Almost Rounded 0.472 0.480

Subrounded 0.431 0.410
Subangular 0.360 0.340

Angular 0.269 0.270

From the tables, we can see that, the values in each column o f each table increase 

from bottom to top with a few exceptions. This is roughly in agreement with the 

original design. However, some overlaps among rows can be found. This is not so 

good as the original intention. The values appear to be reasonably constant from 

column to column, although there does seem to be a slight tendency for Round to 

decrease with sphericity.

These problems might be caused by the following reasons. First of all, drawing a 

corner to a specified sharpness appears to be exceedingly difficult. Secondly, the 

digitisation and the quantisation may roughen some portions o f smooth edges and 

round off some sharp corners. T hird, the resolution of the digitisation may cause some 

inaccuracy at very sharp corners. To a certain extent, the second and third o f these 

problems can be minimised by increasing the resolution when digitising the images; 

but the first problem is inherent in the charts themselves.

Left-hand column of Table 4.6 shows the average roundness for each class based on 

all the results in Tables 4.1-4.5. From the original presentation of the charts, there had 

been some doubt as to whether the Rounded and Almost Rounded classes had been 

intended to be the same or different. It seems from Table 4.6 that they are intended to 

be different; the results from the individual charts also being consistent with this 

conclusion. The differences between the values of R0und f° r the classes are 

respectively: 0.083, 0.041, 0.071, and 0.091. Apart from 'experimental variability1, 

these differences appear to be equal, suggesting that R0und should vary linearly from 

class to class. On this basis, a set of equally spaced central values for the classification 

o f particles is proposed in the right-hand column of Table 4.6.
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4.6.6 Further Points

When studying the roundness of particles, the centre of curvature of the sharpest 

comer in any local region must lie within the particle, because the boundary at that 

comer cannot double back between the circumference and the centre of curvature 

without reducing the radius of curvature further. It follows that only the interior of a 

particle need be scanned for centres of curvature.

Further if only comers whose radii of curvature are less than an agreed threshold 

value, s, are required, then these centres must lie within s of the boundary. Therefore, 

a mask could be constmcted by: eroding the particles by s; and subtracting the eroded 

particles from the original particles. Then only the inner rim area defined by the mask 

need be scanned.

In all of the tests made here, maxima were extracted from the histograms by simple 

scanning. However, in more complicated cases, a maximum may fragment into a set 

of local maxima. A possible approach to this case would be to use cluster analysis to 

group the maxima, and then to find the circle with the highest number of votes in each 

group. Based on experience with a similar problem, the Author's tentative opinion is 

that cluster analysis would be more likely to succeed than would smoothing the 

histogram.

All of the analyses discussed in this Chapter have been for binary images, for which 

votes of either 0 or 1 were added to the accumulator arrays. There are possible 

extensions to grey level images, based on the concept that the votes should be 

proportional to the intensity or to the modulus of the intensity gradient, depending on 

the circumstance of the case.
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4.7 Conclusions

Five methods of using the Circular Hough Transform to find approximately circular 

portions of curves and hence measure the roundness of particles have been 

implemented and tested.

The basic method was found to be accurate but slow and excessively demanding in 

memory (3-D accumulator).

The direction gradient method was fast but inaccurate and excessively demanding 

in memory (3-D accumulator).

The centre method was accurate and less demanding in memory (2-D accumulator) 

but slow.

The gradient centre method was fast and less demanding in memory (2-D 

accumulator) but inaccurate.

The radius method was accurate and much less demanding in memory (1-D 

accumulator) but slow.

If the region in which the centres of curvature might fall can be restricted at the 

outset, then the run time can always be improved, and the sizes of all the accumulator 

arrays except that for the radius method can be reduced. In particular, when measuring 

the roundness of particles, only the interior of the particle need be scanned; and if the 

radius of curvature can be restricted, only an inner rim need be scanned.

If only the smallest radius of curvature at any given centre of curvature is required, 

then the memory requirement may be reduced.

A method of thresholding which compensates for the radius of curvature of arcs of 

circles has been established; and this has been extended to incorporate an empirical 

adjustment for imperfections in the curves.

A method of finding comers which are too sharp to be found by the circular Hough 

transform has been implemented.

Extensions to find the evolute of a curve and the intrinsic equation of a curve have 

been indicated (Section 4.3.4 and Section 4.6.3).
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The new methods have indicated some irregularities in the draughtsmanship of five 

standard charts which are used for classification of the shapes of particles.

A set of values of the roundness parameter, Round* has been proposed for automatic 

classification of the shapes of particles.
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Chapter 5 Automatic Analysis and Classification of
Arrangements of Objects within Aggregates

5.1 Introduction

5.1.1 Introduction

Automatic analysis of relationships among objects in an aggregate is important 

within image processing and pattern recognition. For example, cars running on a 

motorway are in a parallel arrangement, cars running on a roundabout are in a 

circumferential arrangement, cars entering or leaving a roundabout are in a radial 

arrangement, and cars in a car park are in a different parallel arrangement. From the 

arrangement of the cars, we can distinguish the motorway, the roundabout, and the car 

park from each other. In the study of soil microstructure, the arrangement of clay 

particles is one of the three most important factors: size, shape, and arrangements 

(Brewer 1964). Baver (1948), a soil physicist, defined structure as the arrangement of 

soil particles. Kubiena's concept (1938, 1953) dealt with arrangement only. Some 

work of Krumbein and Sloss (1955) and Pettijohn (1957) dealt with specific 

arrangements. The analysis of the arrangement of linear or tabular particles within 

aggregates or the arrangement of aggregates within regions is also one of the very 

meaningful subjects. For instance, one of our research topics is the analysis of how 

elongated particles fit together: random, parallel, radiating, rings, loosely, etc., or the 

analysis of what aggregates of particles are: bundles, domains, random clusters, radial 

clusters, spherical aggregates, etc. Smart (1971) reviewed the structure of fine-grained 

soils as seen in the electron microscope with particular reference to the mechanical 

properties of the soils. The concepts reviewed were concerned with inter-particle 

behaviour and particle arrangements, such as cross-section packet, cross-section 

domain, etc. Van Olphen (1963) suggested that there are seven different clay particle 

arrangements (see also Burnham 1970). Fitzpatrick (1984) gave a more detailed
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descriptions of aggregates. Smart and Tovey (1981) presented a collection of selected 

aggregates as examples of soil microstructure. Because different arrangements of 

particles within aggregates reflect some natural conditions, such as pressure, water 

flow, ice melting, shrinking and swelling, etc. (Brewer 1964), we may use the features 

of the arrangements of the particles within aggregates to recognise some special 

aggregates which imply that some related changes happened while the aggregates 

were being formed. Therefore, automatic analysis, recognition, or classification of the 

arrangement of objects within aggregates is significant in study of soil microstructure.

As a step towards the automatic achievement of these goals, this Chapter will 

concentrate on distinguishing between the six arrangements of elongated objects 

described below. The method proposed is based on estimates of the differences of 

measurements of the orientations and positions of the particles. This method arose 

from a proposed extension of the linear Hough transform; however, it was found 

possible to use a fast simplified method based on feature measurements. These two 

aspects of the work will be discussed in turn, preceded by a discussion of the 

characteristics of the six arrangements concerned, and followed by some further 

suggestions.

5.1.2 Relationships between Objects within an Aggregate 

1 Introduction

There are many different relationships between objects within an aggregate. Some 

relationships are not easy to describe, but some are simple. The simple relationships 

are such as: parallel, cross, triangle, rectangular, ring, radial, random, etc. Here, we 

focus our study on six simple arrangements in 2-D dimensional space: three kinds of 

parallel arrangements namely parallel vertical-section, parallel cross-section, and 

parallel region arrangement, and three sorts of non-parallel arrangements: radial 

region, circumferential region, and random region arrangements. These are discussed 

in turn below.
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2 Parallel Vertical-Section Arrangement

An example of parallel vertical-section arrangement is shown in Figure 5.1. The 

concept arose first in Chinese, and the English name "vertical-section arrangement" is 

a translation of the Chinese words . The aggregate is elongated, and the

objects within the aggregate have the same orientation as that of the aggregate. This 

type of feature is seen in cross-sections o f failure zones in clay soil (e.g. Smart 1966), 

In the common direction, the objects are co-linear in groups to form a few columns, 

i.e. vertical-section arrangement. Each column contains many objects. These columns 

are close to each other to form a narrow strip or band. The long axis of the strip is 

parallel to the direction of the objects. The distribution o f the distances between 

objects in the direction of the objects is much wider than in the direction perpendicular 

to that o f the objects

Figure 5.1 Parallel vertical-section arrangement
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3 Parallel Cross-Section Arrangement

Figure 5.2 shows an example of parallel cross-section arrangement,

This is somewhat similar but not quite the same as Smart's (1971) stack. Like the 

parallel vertical-section arrangement, the objects within the aggregate lie in the same 

direction. In the common direction, the objects are co-linear in groups to form many 

rows. i.e. cross-section arrangement. Each row contains quite a few objects. These 

rows are close to each other to form a narrow strip or band. Unlike the parallel 

vertical-section arrangement, the long axis of the strip is perpendicular to the direction 

o f the objects. The distribution of the distances between objects in the direction of the 

objects is much narrower than in the direction perpendicular to that of the objects.

Figure 5.2 Parallel cross-section arrangement
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4 Parallel Region Arrangement

Figure 5.3 shows an example of the parallel region arrangements, [ x «  m i

This is sometimes named as "cross-section domain" (see Smart 1971). Like the 

parallel vertical-section arrangement and the parallel cross-section arrangement, the 

orientations o f the objects within the aggregate are the same. In the common direction, 

the objects are co-linear in groups to yield many columns. Each column includes 

many objects. The difference from the previous two arrangements is that the objects in 

the parallel region arrangement scatter in a wider region but not in a strip or a band. 

The distributions of the distances between objects are not greatly different in the 

direction parallel and the direction perpendicular to that o f the objects.

: ■ :■ ■ V

„ w
". ■ ,'C:: ;■

Figure 5.3 Parallel region arrangement
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5 Radial Region Arrangement

Figure 5.4 shows an example of radial region arrangement, In

this arrangement, the orientations of the objects are not the same. The objects are co- 

linear in groups to yield many rays. Each ray includes many objects. The rays 

intersect at or near the same point, so that the arrangement looks like the rays 

originating from a point source. Radial region arrangements can be subdivided into a 

complete class, in which the orientations are distributed through a complete 360° 

range, and an incomplete class, in which the orientations are restricted to a narrower 

range. The present treatment is aimed at complete radial region arrangements. 

Complete radial region arrangements of clay plates are occasionally found around 

micro-organisms in soils; in this case, the central objects of Figure 5.4 are replaced by 

the micro-organism.

Figure 5.4 Radial region arrangement
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6  Circumferential Region Arrangement

Figure 5.5 shows an example of circumferential region arrangement,

In this arrangement, the orientations of the objects are not the same. The 

objects are concentric in groups to produce many circles or rings. Each ring has many 

objects. This arrangement tends to look like concentric circles. Again, circumferential 

region arrangements can be divided into complete and incomplete classes, with the 

emphasis here on the complete class. Complete circumferential region arrangements 

are also found around micro-organisms in soil.

Figure 5.5 Circumferential region arrangement
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7 Random Region Arrangement

Figure 5.6 shows an example of random region arrangement,

Here, the orientations of the objects within the aggregate are random.

Figure 5.6 Random  region arrangem ent

8  Summary

From the characteristics of the arrangements described above, we can see that the 

important features to identify different arrangements of objects within aggregates are: 

collinear or concentric; orientation; and the distances between objects or between 

objects and some special point. These features are somewhat related to the straight
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line Hough transform. Therefore, for the purpose of recognition and classification of 

aggregates, we apply the Hough transform to describe the objects and to analyse the 

arrangements of the objects within aggregates.

5.2 Proposed Extension to Hough Transform

5.2.1 Introduction

The Hough transform was proposed by Hough (1962) (see also Duda and Hart 

1972) for line detection in an image. Generally, a straight line can be described by the 

function of x  and y  in 2-D dimensional space:

y  -  ax + b (5.2.1)

where a is the slope of the straight line, and b is the intercept on the y-axis. The 

Hough transform is a mapping of a set of co-linear points in (x,y) space onto a point in 

the slope-intercept parameter space (a,b). Thus this, the original form of the Hough 

transform, is a special case of the general Hough transform described in Chapter 4, 

Section 4.2.1. Each point on the straight line in (x,y) maps onto a straight line in the 

parameter space (a, b). The parameters of the straight line in (x,y) being detected are 

determined by the intersecting point of the straight lines in (a, b). Because both the 

slope a and the intercept b are unbounded, the application of the naive Hough 

transform for line detection is not convenient.

Duda and Hart (1972) proposed the angle-radius rather than Hough's slope-intercept 

parameters to simplify the computation of the Hough transform for line detection. As 

shown in Figure 5.7, a straight line L in (x,y) space can be expressed by:

p = x cos0 + y  sin0 (5.2.2)
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y

Figure 5.7 Hough transform of a straight line L

where p is the distance from the origin point to the straight line and 0  the angle 

perpendicular to the straight line. A point on the straight line in (x,y) is a sinusoidal 

curve in the Hough space (p,0). The parameters of the straight line being detected in 

(x,y) are determined by the intersecting point of the curves in (p,0). Unlike the slope- 

intercept parameters, the radius parameter p is limited within the region of the image 

being analysed and the angle parameter 0 is limited between -90° and +90° (or 0° and 

180°).

Because the Hough transform is a powerful and efficient procedure for detecting

lines in images, it has been widely used by many scientists, such as O'Gorman and 
6

Clowes (197$), Stockman and Agrawala (1977), Guerra and Hambrusch (1989), 

Schalkoff (1989), Haralick and Shapiro (1992). In particular, Costa et. al. (1990, 

1991) used it to find preferred orientation in soil micrographs similar to those of 

interest here.

5.2.2 Proposed Extension

The general use of the Hough transform in equation (5.2.2) is to detect straight lines 

in images. The traditional procedure is: first, map all the points of all the objects in an 

image into curves in the Hough space; then, search for local maxima in the Hough
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space to determine the parameters of any straight lines in the image (compare Section 

4.2.1).

When the traditional procedure is used, points which are collinear in the original 

image will map into the same maximum in Hough space; thus separate segments of 

the same straight line in the image are not distinguished. The original motivation 

behind the proposed extension was to find a method whereby these separate segments 

would map into different Hough maxima. Let us consider an elongated object in the 

(x,jp) plane as a "cross" as shown in Figure 5.8. Let (x,y) be the position of the centroid 

and 0 be the orientation of the long axis of the object. Then the intersecting point of 

the "cross" is at (*,>>), the long bar of it has the orientation 0 , and the short bar is 

perpendicular to the long bar. The equations of these two bars are given by Equation 

5.2.2. rewritten as:

p, = -x s in 0  + >>cos0 (5.2.3)

p2 = xcos0 + ^sin0  (5.2.4)

y

o

Object and "cross'

Figure 5.8 Hough transform of a "cross" (object)
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Now, in the traditional procedure, when scanning the image, Equation (5.2.3) is the 

equation describing a line in the Hough O p \ 0-space. Moreover, Equation (5.2.4) now 

similarly describes a line in a Hough Op2 0 -space. Now, combining these two two- 

dimensional Hough spaces into a three-dimensional Hough space O pjp2 0 , each 

equation considered in isolation defines a sinusoidal surface; and taking both 

equations simultaneously defines a curve corresponding to the intersection of these 

two surfaces. The proposed new procedure is: first map all the points of all the objects 

in the image into curves in the three-dimensional Hough space Opjp20; then search 

for local maxima in this Hough space to determine the parameters (pj,p2,0) of any 

elongated objects in the images.

Although the proposed extension of the Hough transform is general and could be 

extended to grey level images, the immediate problem here is the classification of 

aggregates of distinct elongated objects. In this case, if there are n objects in the 

aggregate, n maxima should be found, defining a set of n points in O p ip 2 0 -space. It 

will be shown through the example which follows how the set of n points in extended 

Hough space can be used to classify aggregates.

5.3 Simplified Version of Extended Hough Transform

When analysing an aggregate which consists of elongated objects all of which can 

be identified individually, a simplification of the proposed extension of the Hough 

transform is possible. This method is fast, because it avoids the need to construct 

histograms.

In this case, the first step is, for each object individually, to find its preferred 

orientation 0  and the coordinates x  and y  of its centroid by standard image processing 

procedures. Next, the corresponding values of p i and P2  are calculated from 

Equations (5.2.3) and (5.2.4). Then, the point (pj,p2,0) is plotted in the extended 

Hough space. Thus, if there are n objects in the aggregate, there will be a set of n
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points in extended Hough space. Different classes of aggregates will be found to have 

different distributions of points in extended Hough space.

5.4 Trial of Simplified Method

As described in Section 5.1, the study was concentrated on the six examples of 

different arrangements of objects within aggregates, as shown in Figs. 5.1 - 5.6. The 

original images were drawn by hand and then digitised. The digital images were pre- 

processed to remove the noise which comes from the digitising system and segmented 

by a simple threshold method to yield binary images. To analyse the arrangements of 

the objects within aggregates, first the orientation and the position of each object were 

measured as described in Section 5.4.1 below. Then the simplified version of the new 

Hough transform was applied to describe the objects in the Hough space.

5.4.1 Orientation and Position Measurement

The orientation of an object can be measured by different methods. In Chapter 3, 

various methods (directed vein, convex hull, principal component transform, and 

moments), are introduced for orientation measurement of an object. Here, for the 

simplified trial of the arrangement analysis, the method of moments is used. This is 

because when the moment method is used, both the orientation and the position of an 

object can be measured at the same time. Moreover, we have particle analysis 

software available in the image processing software SEMPER6  in the computer 

system NIMBUS, which gives features such as the orientations and the positions of 

particles based on moments. When this moment method is used, the input is a binary 

image, in which the pixels of the objects are set to value 1 and those of the 

background are set to value 0. The output comprises the positions of the centroids 

(x,y), and the orientations 0 of the objects in the range -90° to +90° (In general, the 

analysis could be performed on the grey image, each pixel being weighted by its
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intensity, provided that (1) a base grey level to be treated as zero and (2 ) a boundary 

outside which all is zero can be established). For convenience, the calculations of the 

centroid and the orientation of an object by the moment method are re-written as:

X = M10 / M m (5.4.1)

y = M n ! M00 (5.4.2)

0  = — arctan--------- M°°M" M 10M„,-----
2 M00(M20- M 02)-(M ,20- M 021)

where Moo *s the order zero moment, M \q and Mq\ are the 1st moments, and M \\,  

M2 0 , and Mq2  are the 2 nd moments.

The orientations 0 and the positions x and y  of the individual objects in Figs. 5.1 - 

5.6, measured by the moment method in these experiments, are given in Tables 5.1 - 

5.6 respectively. In order to normalise the features of the objects within an aggregate, 

we choose the centroid of the aggregate as the origin point of the co-ordinate system .

5.4.2 Description of Objects in Hough Space

Using the Hough transform, an object with the measurements of the orientations 0 

and the positions x and y  in (x,y) space can be mapped into two 2-D Hough spacesor 

into one 3-D Hough space by equation (5.2.3) and (5.2.4). Then the object is 

described by the parameters 0, p i, and p2  in the Hough space. This was done for each 

of the objects in Figs. 5.1 - 5.6. The values obtained are listed in Tables 5.1 - 5.6. and 

plotted in Figs. 5.9 - 5.14.
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Table 5.1 The experimental results of parallel vertical-section arrangement
Particle No, ..~..; c " : P i...... P7.

1 151.07 91.18 29.06 6.31 176.35
2 164.72 81.21 28.04 -5.76 183.56
3 118.40 75.86 29.90 6.75 140.46
4 95.14 63.27 31.58 4.07 114.18
5 158.15 65.61 32.62 -29.98 168.57
6 132.65 67.96 30.84 -9.66 148.73
7 123.77 50.05 35.48 -31.09 129.84
8 64.73 50.45 29.35 12.25 81.14
9 94.66 50.64 31.89 -7.01 107.12
1 0 90.59 35.16 32.15 -18.44 95.40
11 56.03 32.14 32.46 -2.96 64.53
1 2 25.52 31.34 26.83 16.45 36.92
13 61.27 2 1 . 1 2 36.38 -19.34 61.86
14 19.98 14.78 24.95 4.98 24.35
15 33.72 8.32 34.16 -12.06 32.57
16 -20.35 8.04 28.72 16.83 -13.98
17 -14.80 -1.64 25.57 4.91 -14.06
18 1.64 -6.80 33.28 -6.59 -2.36
19 -62.63 -10.92 30.55 22.43 -59.49
2 0 -47.66 -17.38 23.49 3.06 -50.64
2 1 -30.77 -21.89 29.02 -4.21 -37.52
2 2 -97.97 -31.20 29.39 20.90 - 1 0 0 .6 8

23 -78.85 -33.12 29.51 1 0 .0 2 -84.94
24 -60.67 -36.06 31.95 1.51 -70.56
25 -132.15 -46.37 28.94 23.36 -138.08
26 -107.70 -48.75 28.90 9.37 -117.85
27 -89.50 -51.56 30.90 1.72 -103.28
28 -170.31 -68.38 28.81 22.17 -182.18
29 -142.60 -65.95 34.84 27.33 -154.71
30 -122.95 -68.90 33.87 11.31 -140.49
31 -152.45 -85.03 29.68 1.62 -174.55
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Table 5.2 The experimental results of parallel cross-section arrangement
Particle No. ',,. • X'; ■ .... u'y. : • •• P1 ■

1 -125.24 139.19 46.51 186.66 14.79
2 -144.92 137.43 44.43 199.59 -7.30
3 -128.50 117.86 46.87 174.35 -1.83
4 -147.50 116.53 46.54 187.22 -16.85
5 - 1 1 0 .0 1 120.04 47.24 162.27 13.45
6 -95.41 115.61 50.63 147.09 28.85
7 -130.69 98.54 43.29 161.34 -27.55
8 -78.38 92.08 45.35 120.47 10.43
9 -96.74 94.22 46.09 135.03 0.78
1 0 -115.11 91.40 47.13 146.55 -11.33
11 -66.98 86.76 47.32 108.05 18.37
1 2 -97.67 72.22 47.71 120.84 -12.31
13 -87.47 62.97 48.90 107.31 -10.05
14 -52.86 59.70 46.33 79.46 6 .6 8

15 -38.09 54.50 46.34 65.18 13.13
16 -69.28 62.11 48.58 93.04 0.73
17 -70.90 40.79 49.01 80.27 -15.72
18 -31.07 41.56 45.73 51.26 8.07
19 -58.13 34.46 47.44 66.13 -13.93
2 0 -51.47 21.09 47.00 52.03 -19.68
2 1 3.01 17.32 47.16 9.57 14.75
2 2 -28.18 23.69 44.90 36.67 -3.24
23 -11.65 19.05 45.88 21.62 5.57
24 -32.62 -0 .1 1 50.42 25.07 -2 0 . 8 6

25 9.55 1.39 49.30 -6.33 7.28
26 22.89 -4.64 50.64 -20.64 10.93
27 -17.45 -3.98 46.89 1 0 .0 1 -14.83
28 -9.52 -19.14 49.47 -5.20 -20.73
29 3.71 -25.34 46.10 -20.25 -15.69
30 36.34 -31.34 48.09 -47.98 0.95
31 20.09 -27.45 48.38 -33.25 -7.19
32 49.81 -35.02 47.35 -60.36 7.99
33 59.24 -46.96 45.95 -75.23 7.43
34 18.27 -52.23 45.06 -49.83 -24.06
35 30.45 -58.72 44.85 -63.11 -19.82
36 60.93 -65.18 48.51 -88.83 -8.46
37 79.33 -68.53 47.78 -104.80 2.55
38 39.51 -6 8 .2 0 45.36 -76.03 -20.76
39 56.99 -88.40 46.52 -102.18 -24.93
40 80.83 -86.05 43.44 -118.05 -0.49
41 97.06 -89.60 45.58 -132.03 3.95
42 108.95 -101.75 45.21 -149.00 4.55
43 123.16 -107.24 46.51 -163.16 6.96
44 75.33 -109.75 44.87 -130.92 -24.04
45 85.36 -120.07 46.65 -144.49 -28.72
46 140.06 -123.43 48.00 -186.67 1.98
47 100.98 -123.93 47.04 -158.35 -21.90
48 122.72 -124.39 43.15 -174.68 4.47
49 101.51 -141.56 42.21 -173.05 -19.91
50 117.36 -145.85 41.52 -186.99 -8.82
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Table 5.3 The experimental results of parallel region arrangement
Particle No. X '"S >0 5 ' PI ^

1 3.55 96.29 38.99 72.61 63.34
2 -26.97 92.98 36.04 91.05 32.90
3 18.02 89.75 41.21 55.64 72.69
4 -22.58 80.23 34.91 78.72 27.40
5 -7.57 75.49 31.48 68.34 32.96
6 19.56 76.74 39.43 46.85 63.85
7 38.76 72.46 40.22 30.30 76.38
8 -60.35 71.48 35.51 93.24 -7.60
9 -52.48 60.88 42.11 80.36 1.90
10 -35.97 57.48 29.75 67.75 -2.70
11 -10.70 57.28 33.81 53.54 22.99
12 10.15 54.93 39.78 35.73 42.94
13 35.64 52.77 39.89 17.63 61.19
14 -76.01 48.16 27.56 77.86 -45.10
15 54.9 49.63 41.18 1.21 740
16 12.71 38.96 38.96 22.30 34.38
17 -62.78 38.17 28.37 63.42 -37.10
18 -42.71 35.14 27.77 50.99 -21.41
19 -18.94 34.47 31.05 39.30 1.55
20 29.07 30.18 34.42 8.46 41.04
21 48.47 28.74 35.14 -4.40 56.18
22 -9.12 22.67 38.15 23.46 6.83
23 64.87 23.53 37.74 -21.09 65.71
24 -92.92 21.18 37.50 73.37 -60.82
25 -72.19 16.64 32.54 52.86 -51.91
26 -50.42 14.04 31.59 38.37 -35.59
27 0.06 9.76 35.71 7.89 5.75
28 -31.46 7.51 37.15 24.99 -20.54
29 17.12 6.80 36.61 -4.75 17.80
30 35.49 3.09 35.70 -18.20 30.62
31 65.43 3.10 43.18 -42.51 49.84
32 -79.79 -5.16 40.81 48.25 -63.76
33 -59.81 -7.65 33.41 26.55 -54.14
34 -29.22 -10.31 36.79 9.24 -29.58
35 -10.17 -12.53 33.16 -4.93 -15.37
36 37.25 -17.64 40.49 -37.60 16.87
37 6.42 -18.09 39.46 -18.05 -6.54
38 60.54 -18.47 40.59 -53.41 33.95
39 -56.27 -26.25 28.99 4.31 -61.94
40 -80.64 -31.53 41.37 29.64 -81.35
41 -36.55 -31.54 33.36 -6.25 -47.87
42 -23.35 -39.48 36.66 -17.73 -42.30
43 30.86 -39.21 39.03 -49.90 -0.72
44 6.86 -38.32 38.75 -34.18 -18.64
45 56.36 -40.18 41.19 -67.35 15.95
46 -62.50 -49.58 37.91 -0.72 -79.78
47 -50.07 -59.06 38.74 -14.73 -76.01
48 2.36 -59.20 37.62 -48.33 -34.27
49 -24.58 -58.47 39.91 -29.08 -56.37
50 26.07 -61.24 37.99 -64.31 -17.15
51 -21.00 -78.77 40.33 -46.45 -66.99
52 -2.51 -82.02 39.45 -61.73 -54.06
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Table 5.4 The experimental results of radial region arrangement
Particle No. ■ X : !1 : P2

1 -12.19 90.64 -84.86 -4.02 -91.37
2 16.13 92.63 80.98 -1.40 94.02
3 -33.62 82.49 -73.77 -9.22 -88.60
4 42.37 84.55 51.40 19.64 92.51
5 -54.11 75.50 -39.78 23.40 -89.89
6 63.02 72.86 45.18 6.66 96.10
7 -67.77 59.41 -38.73 3.95 -90.03
8 -6.36 57.97 -88.32 -4.66 -58.13
9 66.48 51.86 30.29 11.25 83.56
10 -23.74 51.34 -75.85 -10.47 -55.59
11 38.77 49.19 39.17 13.65 61.13
12 13.20 51.28 63.82 10.78 51.84
13 -42.57 40.58 -30.69 13.17 -57.32
14 -75.49 41.46 -34.21 -8.16 -85.74
15 77.33 29.44 10.80 14.43 81.48
16 46.02 26.09 23.00 6.03 52.56
17 -48.07 22.87 -17.59 7.28 -52.73
18 -83.42 20.12 0.13 20.32 -83.37
19 15.23 26.08 53.25 3.40 30.01
20 -21.35 22.28 -45.67 0.30 -30.86
21 -5.61 22.02 -84.43 -3.45 -22.46
22 65.22 11.05 8.64 1.12 66.14
23 19.55 7.48 8.32 4.57 20.42
24 -24.04 4.89 0.89 5.26 -23.96
25 -62.38 -1.06 5.22 4.62 -62.21
26 73.30 -9.70 -3.80 -4.81 73.78
27 13.06 -9.14 -46.30 3.13 15.63
28 43.33 -11.38 -29.42 11.37 43.33
29 -81.74 -18.02 9.34 -4.51 -83.58
30 -49.14 -16.82 28.53 8.69 -51.20
31 -23.64 -18.36 50.87 6.75 -29.16
32 -2.60 -16.77 -84.54 -4.18 16.45
33 33.60 -26.37 -37.37 -0.56 42.71
34 66.77 -30.80 -32.69 10.14 72.82
35 -73.32 -41.54 34.00 6.57 -84.01
36 -43.62 -40.39 44.74 2.02 -59.42
37 18.93 -40.27 -60.15 -3.62 44.35
38 55.06 -44.51 -37.70 -1.54 70.78
39 -18.41 -45.17 73.14 4.52 -48.57
40 3.63 -51.71 -82.69 -2.98 51.76
41 -64.89 -62.14 40.45 -5.19 -89.70
42 43.30 -61.27 -48.06 -8.74 74.52
43 -41.45 -66.85 58.99 1.08 -78.65
44 22.23 -74.29 -74.13 1.07 77.54
45 -10.28 -77.79 77.00 -7.48 -78.11
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Table 5.5 The experimental results of circumferential region arrangement
Particle No. X'*\ ' ' '■"I" "7 o  ...

1 -34.21 87.76 16.87 93.91 -7.27
2 22.02 86.66 -16.05 89.36 -2.79
3 13.43 62.72 -13.96 64.11 -2.11
4 -83.87 64.27 36.60 101.06 -29.02
5 67.74 61.25 -49.36 91.29 -2.36
6 -46.48 57.83 26.89 72.60 -15.30
7 -8.92 36.78 -15.24 33.14 -18.28
8 53.45 35.13 -60.21 63.84 -3.93
9 -49.45 27.46 35.30 50.99 -24.49
10 -21.01 17.60 13.41 21.99 -16.36
11 -74.67 24.91 47.74 72.01 -31.78
12 28.18 22.86 -53.21 36.26 -1.43
13 -95.79 23.57 69.01 97.88 -12.30
14 8.59 12.22 -42.77 14.80 -1.99
15 -9.41 3.51 -14.00 1.13 -9.98
16 83.76 12.58 83.68 -81.87 21.73
17 -29.27 -5.40 52.35 19.88 -22.16
18 1.62 -6.42 -77.68 0.21 6.62
19 -50.63 -4.63 72.18 46.79 -19.90
20 -92.12 -11.50 84.69 90.66 -19.98
21 -75.28 -6.62 84.02 74.18 -14.42
22 -14.21 -13.71 71.54 9.13 -17.51
23 16.56 -14.53 76.75 -19.45 -10.35
24 37.99 -13.57 -82.31 35.83 18.53
25 60.00 -12.57 86.62 -60.64 -9.01
26 -4.08 -24.99 32.95 -18.75 -17.02
27 -26.63 -27.69 -53.76 -37.84 6.59
28 -107.50 -28.82 -76.40 -111.26 2.72
29 -41.89 -37.11 -38.02 -55.04 -10.15
30 -0.61 -39.07 38.16 -30.34 -24.62
31 83.22 -32.85 61.03 -88.72 11.56
32 -59.96 -43.41 -54.04 -74.03 -0.08
33 22.67 -44.20 37.81 -48.82 -9.19
34 49.91 -50.76 42.84 -71.15 2.08
35 -77.66 -47.67 -57.19 -91.10 -2.03
36 -18.55 -63.24 -6.85 -65.00 -10.88
37 -91.36 -69.77 -52.07 -114.95 -1.12
38 16.93 -73.35 23.89 -73.92 -14.22
39 -36.26 -78.27 -23.64 -86.24 -1.82
40 58.37 -78.69 37.45 -97.97 -1.51
41 -52.15 -101.09 -20.91 -113.05 -12.64
42 2.24 -105.39 7.96 -104.69 -12.38
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Table 5.6 The experimental results of random region arrangement
Particle No. x .... .. P2

1 30.26 84.63 -82.35 41.26 -79.85
2 14.25 67.84 -31.01 65.48 -22.74
3 -21.03 61.79 89.18 21.91 61.48
4 57.69 58.39 89.68 -57.36 58.70
5 32.98 54.31 49.54 10.15 62.73
6 -43.05 47.83 37.79 64.18 -4.70
7 4.76 48.22 -72.81 18.80 -44.66
8 59.07 35.84 3.99 31.65 61.42
9 7.07 32.38 19.21 28.25 17.33
10 86.50 35.10 81.57 -80.42 47.41
11 -11.33 35.26 81.19 16.60 33.11
12 36.81 28.21 -65.94 45.11 -10.75
13 -27.82 29.16 83.95 30.74 26.06
14 -56.39 22.56 24.00 43.55 -42.34
15 5.26 12.65 -16.54 13.62 1.44
16 21.56 13.44 -85.57 22.53 -11.74
17 37.12 4.64 16.92 -6.36 36.87
18 -11.85 3.97 -78.19 -10.79 -6.31
19 59.43 6.22 -80.97 59.67 3.18
20 82.24 4.51 -51.94 67.54 47.15
21 -30.21 2.28 -51.28 -22.15 -20.68
22 21.99 -7.26 -19.97 0.69 23.14
23 -47.05 -3.80 -71.74 -45.87 -11.14
24 -65.36 -14.86 18.24 6.34 -66.73
25 1.62 -10.78 76.64 -4.07 -10.12
26 63.19 -22.12 9.26 -32 58.81
27 40.22 -20.83 52.01 -44.52 8.34
28 -12.72 -29.63 -12.98 -31.73 -5.74
29 15.71 -29.29 57.61 -28.95 -16.32
30 -39.73 -27.24 55.13 17.03 -45.06
31 89.65 -29.73 61.18 -92.88 17.17
32 50.86 -37.32 -6.84 -31.00 54.94
33 1.86 -46.63 -14.76 -44.62 13.68
34 -20.88 -49.75 -79.05 -29.95 44.88
35 30.80 -46.36 -58.33 1.87 55.63
36 -57.92 -50.56 -56.67 -76.18 10.42
37 76.28 -50.17 -74.86 60.52 68.35
38 6.24 -63.57 10.14 -63.68 -5.05
39 -37.39 -62.42 70.92 14.93 -71.21
40 53.32 -62.44 47.27 -81.53 -9.68
41 75.79 -75.36 -18.18 -47.95 95.52
42 -13.87 -77.86 -36.29 -70.97 34.90
43 25.25 -77.25 74.98 -44.41 -68.06
44 47.94 -85.58 -17.48 -67.24 71.43
45 3.82 -91.03 52.95 -57.89 -70.35
46 27.69 -101.01 -2.47 -99.72 32.02
47 -30.08 -97.43 57.45 -27.06 -98.31
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Figure 5.9 Distribution of features of vertical-section arrangement in the Hough space
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Figure 5.11 Distribution of features of parallel region arrangement in the Hough space
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Figure 5.13 Distribution of features of circumferential arrangement in the Hough space
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Figure 5.14 Distribution of features of random arrangement in the Hough space
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For the three parallel arrangements, we can see from Tables 5.1 - 5.3 and Figs. 5.9 

-5.11 that the orientations concentrate in a narrow range. However, for the three non­

parallel arrangements we can see from Tables 5.4 - 5.6 and Figs. 5.12 - 5.14 that the 

orientations spread over the whole range from -90° to +90°. It seems that, as expected, 

the consistency ratio (which is akin to the standard deviation of the orientation - see 

Appendix) can be used to separate parallel from non-parallel arrangements.

Figure 5.9 shows the feature distributions of parallel vertical-section arrangement in 

Figure 5.1. (a) shows the distance p j against orientation 0 and (b) the distance p2  

against 0. From (a) and (b), we can see that 0 concentrates in a very narrow range. 

This means that the orientations of the objects are almost the same, i.e. they are 

parallel to each other. We can also see that p j has much more narrow distribution than 

P2 , this implies that the arrangement of the objects form a strip or a band along the 

direction of the objects. Thus Figure 5.9 corresponds as expected to the fact that the 

objects are in parallel arrangements and form a band-shaped aggregate, which is thin 

in the direction perpendicular to 0 , and long in the direction parallel to 0 .

Figure 5.10 (for the parallel cross-section arrangement in Figure 5.2) is similar to 

Figure 5.9 in that the orientations are within a narrow range. But on contrary to Figure 

5.9, the distribution of pj is much wider than that of P2 - It is clear that the objects are 

parallel and close to each other to form a band-shaped aggregate, which is long in the 

direction perpendicular to 0  and thin in the direction parallel to 0 .

Figure 5.11 represents the parallel region arrangement in Figure 5.3. The fact that 

both p] and p2  are in wider range imply that the objects scatter in the directions both 

perpendicular and parallel to 0 .

Figure 5.12 represents the radial region arrangement in Figure 5.4. From Figure 

5.12 (a), we know that the widely spread orientations 0 are of nearly uniform 

distribution, and the fact that the distances p j are narrowly concentrated around a 

mean of zero indicates that the objects are towards one point to form a radial 

arrangement. From Figure 5.12 (b) and (c), we can see that the distribution of p2  has a 

wider range.
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Figure 5.13 represents the circumferential region arrangement in Figure 5.5. The 

distribution of p] is wider than in Figure 5.12 and the distribution of p2 is narrow. It 

is clear that the objects lie on circles which are concentric and form an aggregate ring 

by ring.

Figure 5.14 represents the random region arrangement in Figure 5.6. Obviously, 

from (a) and (b), the orientations 0 are random, and the distances p\ and p2 are in 

wide range.

Hence, by comparing Figs. 5.9 - 5.11, it seems that the three parallel arrangements 

can be separated as follows:

gements Standard deviation of p i Standard deviation o f p2

1. vertical-section low high

2. cross-section high

3. region scattered high

4. very small region low

low 

high

low

where the scheme has had to be extended to include the possibility o f a very small 

region arrangement.

Similarly, the three non-parallel arrangements can be separated as follows:

Arrangements Standard deviation o f p i Standard deviation o f P2

1. radial
. ' ... ' :■ ■ 5. - y

low high

2. circumferential high low

3. random high high

4. very small region low low

Although the above analysis was based on idealised images, we can see that there 

do exist quite big differences among the features of different arrangements o f objects
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within aggregates. This means that the features 0, p j, and p2  are suitable for 

recognition of the six classes of aggregates defined in Section 5.1.2.

5.4.3 Feature Extraction for Recognition and Classification of Aggregates

For the purpose of recognition and classification of aggregates, the features which 

describe aggregates can therefore be extracted from the measurements 0 , p j and p2  o f 

the arrangements of the objects within aggregates.

1 Standard Deviations 0 ,  Pj, and P2  of 0, pj, and P2

From Figs. 5.9 - 5.14, as discussed above, the parallel arrangements have a dense 0, 

but the non-parallel arrangements do not; the vertical-section and the radial 

arrangements have a dense pj but not p2 ; the cross-section and the circumferential 

arrangement have a dense P2  but not p j. Therefore, we adopt the standard deviations 

0 , Pi and P2  of 0 , p i, and p2  as features for classification.

Theoretically, the following properties hold for the six arrangements in the Hough 

space:

(1) 0  should be 0 ° for the parallel arrangements;

(2 ) Pj should be 0  for the radial arrangement and a very low value for vertical- 

section arrangement:

(3) P2  should be 0 for the circumferential arrangement and a very low value for 

the cross-section arrangement.

Actually, although the objects are not exactly parallel to each other, strictly radial, 

nor precisely concentric, the properties above still hold roughly. To support this 

conclusion, some experimental results are listed in Table 5.7, where 0 , pj and p2 are 

the mean values of 0, p j, and P2 , respectively. Thus, the parallel and the non-parallel 

arrangements can be distinguished by 0 ; the three parallel arrangements and the three 

non-parallel arrangements are classified by Pj and P2 .
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Table 5.7 Features extracted from the features in Hough space

Arrangements i o NlP, ■‘W •■ 'm i-"
Parallel vertical-section 30.42 2.59 3.88 2.95 14.67 111.28
parallel cross-section 46.62 1.51 -4.53 1.99 116.00 13.96
parallel region 36.72 14.39 -2.70 3.95 44.52 45.67
radial region -6.95 3.11 -4.03 50.67 8.09 66.57
circumferential region 7.91 -6.27 -8.11 51.64 70.22 11.58
random region 2 .8 6 - 1 1 .0 0 6.91 56.23 46.03 45.52

2 The Consistency Ratio Rq of 0

As discussed previously, the orientations 0 are defined in the range from -90° to 

+90°. However, in some cases, the orientations 0 may distribute around the boundary 

-90° and +90°. In this case, to guarantee the correct classification, the consistency 

ratio was chosen in preference to the standard deviation of 0. The consistency ratio R 

0  ( or C) of 0 is defined in Appendix 1.

The experimental results of the consistency ratio R q  of 0 for the six arrangements 

are listed in Table 5.8. From Table 5.8, it is clear that R q  has a high value for parallel 

arrangements and a low value for non-parallel arrangements.

3 The Ratio Rp of the Standard Deviations Pj and P2

It is possible to classify the six arrangements by the features ©, P j, P2  and Rq.

However, the two dimensions P i, P2  can be reduced to one dimension by their ratio 

rp.

rp = P2 / P, (5.4.4)

From Table 5.7, we know that the limits of rp are 0 and 00. This is not convenient 

for decision making in pattern classification. Therefore, instead of the ratio rp, we 

use another normalised value of Rp as one of the features for the purpose of

classification:
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Re = —tan -1 —  (5.4.5)
71 P j

giving limits of 0 and 1 for Rp. The experimental results of Rp for the six 

arrangements are given in Table 5.8. From the results, we can see that Rp has a high

value for vertical-section and radial arrangement and a low value for cross-section and 

circumferential arrangement.

The above ideas can readily be extended to allow other arrangements of objects 

within aggregates to be analysed. Some examples of further possible arrangements are 

now discussed.

Table 5.8 Features extracted for description and classification

Arrangements Rp
Parallel vertical-section 0.99 0.92
parallel cross-section 1.00 0.08
parallel region 0.99 0.51
radial region 0.03 0.92
circumferential region 0.06 0 .1 0

random region 0 .11 0.50

5.5 Some Possible Extensions

5.5.1 Four More Arrangements

The four possible arrangements now given as examples are: shear, parallel hollow, 

radial hollow, and circumferential hollow arrangements.

1 Shear Arrangements

An example of shear arrangement is shown in Figure 5.15. This arrangement seems 

to be formed by shearing the parallel cross-section arrangement.
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2 Parallel Hollow Arrangement

An example o f the parallel hollow arrangement is given in Figure 5.16. It seems to 

be made by digging out the central part o f the parallel region arrangement.

3 Radial Hollow Arrangements

Figure 5.17 shows an example of the radial hollow arrangement. This arrangement 

can be considered as a radial region with a hollow centre.

4 Circumferential Hollow Arrangement

Figure 5.18 gives an example o f the circumferential hollow arrangement. It seems 

to be the circumferential region arrangements with a hollow centre.

Figure 5.15 Shear arrangement
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Figure 5.16 Parallel hollow  arrangem ent

Figure 5.17 Radial hollow arrangement
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■m

Figure 5.18 C ircum ferential hollow  arrangem ent

5.5.2 M easurements and Features

These four more arrangements were processed in the same way as the six "basic" 

arrangements to produce their measurements o f 0, x, and y  in (x,^) space and their 

features o f 0, p j,  and p2 in the Hough space. The measurements and the features are 

listed in Tables 5.9 - 5.12, respectively. The 0, p j, and p2 are plotted in Figs. 5.19 - 

5.22. The features extracted similarly are put into Table 5.13 and 5.14. From Figs. 

5.19 - 5.22, it is clear that the distributions of the objects are quite different in the four 

new arrangements and in the six "basic" arrangements. From Table 5.14, we can know 

that the first two arrangements of the four can be completely distinguished from the 

first two o f the six in Table 5.8, but are not clearly distinguished from the third o f the 

six. The last two of the four are not very different from the radial and the 

circumferential arrangements of the six. If the above analysis method, which allows 

only for the existence of the six "basic" arrangements, were applied, the shear 

arrangement or the parallel hollow would be probably classified as a parallel region

187



Chapter 5 Automatic Analysis and Classification o f Arrangements of Objects within Aggregates

arrangement. The radial hollow and the circumferential hollow arrangements would 

be classified as radial and circumferential region arrangement, respectively. Hence, 

more features need to be extracted from 0 , p j, and p2  to distinguish the four from the 

six.

Table 5.9 The experimental results o f shear arrangement

Particle No. X Z l J U L l 0  . -w ^ £ 1 _ h
1 -129.52 148.09 0.57 149.36 -128.05
2 -97.98 135.40 0.18 135.72 -97.54
3 -134.43 133.61 5.67 146.25 -120.57
4 -98.62 1 2 2 .0 2 3.66 128.07 -90.63
5 -128.91 120.27 -0.57 118.99 -130.09
6 -74.02 109.27 4.68 114.94 -64.86
7 -109.91 107.03 5.83 117.64 -98.47
8 -84.10 95.14 2 .6 6 98.94 -79.60
9 -60.37 86.56 6 .0 2 92.42 -50.96
10 -94.22 83.72 4.58 90.97 -87.23
11 -69.22 71.92 7.87 80.72 -58.71
1 2 -40.85 63.36 10.64 69.82 -28.45
13 -6 8 .8 6 57.76 11.26 70.10 -56.25
14 -26.50 47.44 7.81 50.60 -19.81
15 -56.87 44.66 12.99 56.30 -45.38
16 -22.64 32.41 9.55 35.71 -16.95
17 -52.15 28.93 10.37 37.84 -46.09
18 -4.80 20.85 11.95 21.39 -0.38
19 -36.89 16.91 6.24 20.83 -34.83
2 0 -8.80 7.85 8.62 9.08 -7.52
2 1 -33.55 1.99 8.47 6.91 -32.89
2 2 10.09 -4.73 6.32 -5.81 9.50
23 -18.12 -9.98 11.45 -6.18 -19.74
24 3.80 -18.88 4.45 -19.11 2.32
25 28.20 -27.64 8.38 -31.46 23.87
26 2.65 -34.23 0 .2 1 -34.24 2.52
27 27.60 -44.86 10.60 -49.17 18.88
28 48.64 -55.87 9.13 -62.88 39.16
29 23.66 -60.15 7.38 -62.69 15.74
30 44.42 -71.99 10.94 -79.12 29.95
31 63.06 -81.29 6.85 -88.23 52.91
32 52.51 -95.62 11.31 -104.06 32.73
33 80.79 -104.34 10.57 -117.38 60.28
34 54.47 -110.74 10.60 -118.87 33.18
35 91.84 -117.64 13.42 -135.74 62.02
36 63.55 -125.10 13.48 -136.47 32.64
37 87.45 -131.26 12.46 -147.04 57.07
38 108.41 -140.73 2 .2 2 -144.82 1 0 2 .8 8

39 80.01 -146.50 5.01 -152.93 66.90
40 104.33 -155.11 10.25 -171.19 75.07
41 124.41 -163.93 7.96 -179.58 100.50
42 95.00 -170.05 11.40 -185.48 59.51
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Table 5.10 The experimental results of parallel hollow arrangement
Particle No. r X' . -y ...... ■■ ■ Pt P?

1 -23.81 114.98 25.66 113.95 28.32
2 12.35 116.59 30.84 93.77 70.38
3 36.79 112.02 32.17 75.23 90.78
4 63.81 106.83 35.67 49.57 114.13
5 -0.86 95.83 31.13 82.48 48.80
6 84.47 96.21 32.23 36.33 122.77
7 -74.59 91.60 30.06 116.64 -18.68
8 -44.47 91.47 29.26 101.53 5.92
9 33.67 92.67 30.68 62.52 76.24
10 54.01 83.75 35.31 37.12 92.49
11 103.78 83.16 33.45 12.18 132.43
12 75.57 73.59 29.27 27.25 101.90
13 117.84 68.44 34.45 -10.21 135.89
14 -79.60 64.74 30.74 96.34 -35.32
15 -103.72 64.17 31.80 109.20 -54.33
16 93.50 63.29 39.26 -10.16 112.45
17 104.39 45.85 38.38 -28.87 110.30
18 126.66 42.68 35.06 -37.82 128.19
19 -98.64 39.35 33.50 87.25 -60.54
20 -127.44 32.49 33.78 97.86 -87.86
21 129.52 21.00 30.38 -47.40 122.35
22 102.77 20.49 37.00 -45.49 94.40
23 -106.53 6.56 40.08 73.60 -77.29
24 -130.01 4.15 39.10 85.21 -98.28
25 133.04 -1.15 28.17 -63.82 116.74
26 107.26 -1.27 29.81 -54.43 92.43
27 110.26 -19.97 33.35 -77.31 81.12
28 134.71 -22.87 26.57 -80.71 110.25
29 -128.21 -21.67 36.61 59.06 -115.84
30 -107.04 -23.29 33.01 38.78 -102.45
31 111.05 -39.51 32.37 -92.83 72.63
32 130.84 -45.79 27.91 -101.72 94.18
33 -98.34 -45.12 30.79 11.59 -107.57
34 -125.03 -48.01 37.48 37.99 -128.42
35 103.83 -63.28 31.35 -108.06 55.75
36 -89.14 -67.77 34.39 -5.58 -111.84
37 -118.58 -71.38 36.16 12.34 -137.85
38 118.80 -73.40 33.96 -127.25 57.53
39 -76.27 -87.48 33.02 -31.78 -111.63
40 88.69 -94.49 36.58 -128.73 14.92
41 -108.52 -94.47 38.82 -5.57 -143.77
42 112.09 -97.94 40.79 -147.38 20.89
43 -66.02 -99.85 33.24 -47.33 -109.95
44 -94.54 -111.98 36.86 -32.88 -142.81
45 -51.27 -114.68 28.16 -76.91 -99.33
46 58.96 -116.51 33.18 -129.78 -14.41
47 84.61 -120.31 37.49 -146.96 -6.10
48 -35.11 -127.94 32.33 -89.33 -98.09
49 -81.80 -128.93 36.49 -55.00 -142.45
50 -8.00 -129.79 30.96 -107.18 -73.62
51 22.10 -132.52 35.11 -121.12 -58.14
52 -65.32 -141.96 32.06 -85.64 -130.72
53 53.04 -141.89 32.50 -148.17 -31.51
54 -43.08 -149.89 28.50 -111.17 -109.37
55 -13.85 -152.63 34.44 -118.04 -97.75
56 14.65 -152.95 35.15 -133.49 -76.08
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!
j

I
| Table 5.11 The experimental results of radial hollow arrangement

Particle No. ' 'X r  -■ PI P2
1 21.31 126.18 73.26 15.93 126.97
2 -35.78 123.92 -64.59 20.85 -127.29
3 -55.61 124.09 -63.95 4.54 -135.90
4 43.90 122.35 74.22 -8.97 129.67
5 -3.20 123.16 -8 6 .0 0 5.41 -123.08
6 -2 1 . 6 6 109.15 -84.12 -10.36 -110.79
7 14.37 1 0 2 .1 0 79.59 4.32 103.02
8 53.69 103.81 57.46 10.57 116.39
9 78.30 102.14 54.93 -5.39 128.58

1 0 -58.37 99.98 -56.97 5.56 -115.64
11 -37.59 98.54 -61.97 13.12 -104.65
1 2 -79.97 90.23 -56.44 -16.76 -119.40
13 33.47 91.22 73.88 -6.82 96.93
14 97.10 82.45 27.27 28.79 124.09
15 -56.86 74.54 -54.91 -3.67 -93.68
16 71.43 74.33 47.30 -2.09 103.07
17 -94.23 72.78 -34.76 6.08 -118.91
18 -120.42 63.32 -34.70 -16.50 -135.05
19 116.78 58.28 28.30 -4.03 130.45
2 0 90.09 55.33 27.30 7.84 105.43
2 1 -95.88 51.03 -33.72 -10.77 -108.08
2 2 -119.34 39.52 -16.17 4.71 -125.63
23 112.42 37.71 16.97 3.25 118.54
24 89.16 20.77 10.33 4.44 91.44
25 -114.19 21.43 -6.35 8 .6 6 -115.86
26 117.87 15.74 -0.09 15.94 117.84
27 -101.31 -2.73 6 .8 6 9.39 -100.91
28 105.60 - 1 0 .1 2 -17.43 21.97 103.78
29 -125.25 -19.84 7.01 -4.41 -126.73
30 129.82 -18.88 -16.39 18.51 129.87
31 -96.74 -22.95 20.56 12.48 -98.63
32 90.55 -25.28 -20.97 8.80 93.60
33 113.15 -36.24 -28.77 22.69 116.63
34 -114.97 -41.13 18.88 -1.71 - 1 2 2 .1 0

35 -87.73 -40.46 32.99 13.83 -95.62
36 95.82 -48.48 -37.40 19.69 105.57
37 82.72 -62.80 -45.61 15.18 102.74
38 -78.87 -64.83 48.26 15.68 -100.89
39 -59.40 -74.89 56.60 8.36 -95.21
40 64.85 -73.90 -60.01 19.23 96.42
41 -35.45 -75.49 59.48 -7.80 -83.03
42 16.18 -81.97 -71.62 -10.49 82.89
43 41.11 -83.26 -75.37 18.75 90.94
44 86.49 -87.97 -57.54 25.76 120.65
45 -24.42 -93.75 74.31 -1.84 -96.86
46 -4.04 -92.45 -87.37 -8.28 92.17
47 59.74 -98.11 -71.61 25.74 111.95
48 -51.53 -104.66 57.21 -13.37 -115.89
49 25.73 -109.39 -77.22 0.90 112.37
50 -16.33 -116.93 87.39 10.99 -117.55
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Table 12 The experimental results of circumferential hollow arrangement
Particle No. X . y '■ Pi • • P2  •

1 27.09 144.75 -5.63 146.71 12.77
2 -31.55 143.48 16.62 146.51 10.80
3 -1.84 131.15 4.36 130.91 8.14
4 -83.53 125.31 33.57 150.60 -0.30
5 43.49 1 2 0 .8 8 -21.40 128.41 -3.61
6 69.26 124.74 -27.06 142.59 4.94
7 -56.71 119.01 22.44 131.65 -6.99
8 18.43 114.55 -12.98 115.77 -7.76
9 -29.19 111.17 16.70 114.87 3.99
1 0 -65.97 94.96 39.73 115.19 9.97
11 78.03 96.72 -45.31 123.49 -13.89
12 -96.93 95.78 50.69 135.68 12.70
13 104.41 89.34 -49.85 137.41 -0.97
14 -124.03 83.40 60.31 149.05 11.03
15 77.77 74.99 -49.67 107.82 -6.84
16 -96.58 73.54 60.88 120.16 17.26
17 103.50 56.73 -64.10 117.89 -5.83
18 -118.61 54.44 73.29 129.25 18.03
19 125.27 40.97 -69.10 131.64 6.42
2 0 99.61 31.43 -66.63 103.90 10.65
2 1 -112.09 30.33 79.02 115.82 8.43
2 2 -138.57 28.76 83.63 140.90 13.22
23 116.95 12.64 -85.35 117.59 -3.11
24 -125.06 0.71 -85.28 -124.58 -11.00
25 104.24 -12.89 80.93 -104.97 3.71
26 135.01 -14.26 88.61 -135.31 -10.97
27 -109.90 -25.81 -76.75 -112.89 -0.07
28 117.54 -29.17 77.19 -121.09 -2.38
29 -132.50 -36.03 -74.20 -137.30 -1.42
30 92.08 -47.79 64.50 -103.68 -3.50
31 -111.33 -53.76 -60.74 -123.41 -7.52
32 1 2 1 .6 6 -60.14 67.20 -135.46 -8.31
33 -83.43 -69.99 -46.23 -108.66 -7.17
34 97.05 -72.58 47.42 -120.57 1 2 .2 2

35 69.46 -80.48 39.52 -106.28 2.36
36 -117.29 -85.39 -49.64 -144.67 - 1 0 .8 8

37 -85.78 -95.08 -39.40 -127.92 -5.93
38 -25.14 -103.81 -11.08 -106.71 -4.72
39 28.89 -103.70 20.79 -107.20 -9.80
40 58.92 -105.25 35.79 -119.83 -13.77
41 86.28 -106.01 42.62 -136.43 -8.30
42 -40.66 -118.27 -14.88 -124.75 -8.92
43 8.30 -123.13 -0.42 -123.07 9.20
44 -68.82 -122.99 -24.43 -140.44 -11.79
45 43.36 -128.14 19.79 -135.25 -2.60
46 -16.07 -141.01 -6 .1 0 -141.92 -0.98
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Figure 5.19 Distribution of features of shear arrangement in the Hough space
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Figure 5.20 Distribution of features of parallel hollow arrangement in the Hough space
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Figure 5.21 Distribution of features of radial hollow arrangement in the Hough space
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Figure 5.22 Distribution of features of circumferential hollow arrangement in the Hough space
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Table 5.13 Features extracted from the features in Hough space

j , , Arrangements J e L Ip ii J p 2 i©l* i;;Jp2L
shear 7.70 -9.04 -10.41 3.81 101.57 61.98
parallel hollow 33.34 -19.47 -4.96 3.47 81.88 95.06
radial hollow -5.63 5.89 3.29 53.18 11.84 116.61
circumferential hollow 3.03 2.42 -0.08 52.57 126.69 8.90

Table 5.14 Features extracted for description and classification

Arrangements %
shear 0.99 0.35
parallel hollow 0.99 0.55
radial hollow 0.08 0.93
circumferential hollow 0.03 0.04

5.5.3 Two More Features Extracted

From Figure. 5.19 (c), it can be seen that in the shear arrangement pj and p2  are 

correlated in the Hough space (Figure 5.19 (c)). This distribution is quite different 

from that of any of the other parallel arrangements (Figs. 5.9 - 5.11). Hence, we may 

choose the dot-product of pj and p2  (normalised as defined below) for an aggregate 

as the feature to discriminate the symmetry.

Furthermore, comparing Figs. 5.20 - 5.22 with Figs. 5.9 - 5.14, it is obvious that the 

hollow arrangements have bimodal or ring-like distributions. The distributions are 

clearly different from those of the corresponding region arrangements. The
low e,r

characteristic of these distributions is that they have a much higher value of the 

standard deviation of the modulus of the vectors v(pj,p2 ) than the corresponding 

region arrangements. From this point of view, I choose this standard deviation as 

another feature for the classification.

The following two sections will discuss these two features.
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1 Symmetry Factor S

As explained above, a normalised dot-product of pi and p2  for an aggregate can be 

used as a measure of the symmetry of an arrangement (the normalisation is desirable 

for classification purposes). Thus the symmetry factor S  is defined as:

(This form is preferred to the standard correlation coefficient, which in some cases 

could become 0/0 in this application). The range of S  is from 0 to 1/2. If the 

distribution is symmetric with respect to pi or p2 , S  would give a value 0. If it is 

symmetric with respect to the line in 45° or -45°, S  would have the value 1/2.

The experimental values of the symmetry factor S  for the ten arrangements are 

listed in Table 5.15. In Table 5.15, S  has the highest value for the shear arrangement 

and very low values for the parallel and other arrangements. This result agrees with 

what we desired. Hence, the shear arrangement can be distinguished from the parallel 

region arrangements.

2 Standard Deviation Sr of the Modulus of the Vectors v(pj,p2 )

Let r[ be the modulus of the ith vector v(pjj,p2 i):

N

s  = /= ] (5.5.1)N

Z ( P u + p 2 , )

(5.5.2)

r be the mean value of r\\
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r = —  Y  r, (5.5.3)
N t t '

then the standard deviation sY of the modulus of the vectors is:

To classify the hollow type arrangements, we prefer to choose the normalised standard 

deviation Sr by the mean r of the vectors as one another of the features:

Sr = sr i r  (5.5.5)

The range of Sr is from 0 to 1. ST has much lower value for the dense distributions 

than the scattered ones. The experimental results of Sr for the ten arrangements are 

listed in Table 5.15. From this table, it is clear that the hollow type arrangements have 

much lower values of ST than the corresponding region arrangements.

Table 5.15 Features extracted for description and classification

Arrangements S Sr
Parallel vertical-section 0.08 0.55
parallel cross-section 0 .0 2 0.55
parallel region 0.04 0.37
radial region 0 .0 2 0.38
circumferential region 0.05 0.47
random region 0.08 0.42
shear 0.41 0.57
parallel hollow 0 .01 0.13
radial hollow 0.03 0 .1 2

circumferential hollow 0.04 0 .11
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5.6 Description and Classification of Arrangements

5.6.1 Description of Arrangements

Theoretically, there may exist many sorts of arrangements of objects within

aggregates. In practice, we may be concerned with some particular arrangement

classes. Some other arrangements may be classified into these particular classes. In

the study of soil microstructure, we take account of the ten particular classes

mentioned above. From the discussion above, we set up a 4-dimensional pattern space 

(Rq, Rp, S, Sr) to describe the ten classes. Each aggregate is projected onto one point

in the pattern space.

The values o f Rq, Rp, S, and Sr for the artificial examples of each of the ten 

arrangements are given in Table 5.16. Bar charts for the ten arrangements in the 

pattern space are plotted in Figure 5.23, grouped according to features in Figure 5.23 

(a), and according to arrangements in Figure 5.23 (b).

Table 5.16 Features extracted for description and classification

Arrangements S' Sf
Parallel vertical-section 0.99 0.92 0.08 0.55
parallel cross-section 1 .00 0.08 0 .0 2 0.55
shear 0.99 0.35 0.41 0.57
parallel hollow 0.99 0.55 0 .01 0.13
parallel region 0.99 0.51 0.04 0.37
radial region 0.03 0.92 0 .0 2 0.38
radial hollow 0.08 0.93 0.03 0 .1 2

circumferential region 0.06 0 .1 0 0.05 0.47
circumferential hollow 0.03 0.04 0.04 0.11

random region 0.11 0.50 0.08 0.42
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Figure 23 (a) Bar chart for the patterns
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Figure. 23 (b). Bar chart for the patterns. I . Parallel vertical-section; 2. parallel cross-section;
3. shear; 4. parallel hollow; 5. parallel region; 6. radial region; 7. radial hollow; 
8. circumferential region; 9. circumferential hollow; 10. radom region.

5.6.2 Classification of Arrangements

Table 5.16 and Figure 5.23 suggest that aggregates in real soil micrographs, as 

represented in the above-defined feature space, may tend to be clustered according to 

the arrangements of particles within the aggregates. This suggests the possibility of 

automatically discriminating between the arrangements by feature-space pattern 

recognition methods. One possibility would be a tree classifier (using threshold 

values) such as the one shown in Figure 5.24. Although this is not necessarily the kind
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of classifier that would be used in practice, it is described here because it gives some 

insight into the structure of the pattern space defined by the four features used.

R »R R <R R >R R <R

R a n d o m

Vs, S r > S rS » S ,

H o l l o wH o l l o w

S h e a r

Figure 5.24 Tree classifier

First o f all, the ten arrangements would be classified by Rq into two groups: 

parallel arrangements which have very high values of Rq, and non-parallel 

arrangements which have very low values of Rq . The classification rule is:

R° > A>3 Parallel arrangements

VI

af Non-paral lei arrangements

" ■ ■' r< rr +£ - v-

where Rq j  is the boundary between the two classes.

In the parallel group, the arrangements would first be distinguished by Rp into the 

vertical-section arrangement with a very high value of Rp, cross-section arrangement
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with a very low value o f Rp and the other three arrangements with medium values of 

Rp. The classification rule in this stage is:

Rp > RV1 Vertical-section arrangement
■  ̂ .. ..

/?,,, > Rp > Rp{ Shear,Hollow,and Region arrangements
: • . • ; . c ;' ' r::.v?r ' f  t  T ;- c r  r ;:\  :f

Rv < RP] Cross-section arrangement

where /?pj and Rp2 are the boundaries between the three classes. Then, the three

arrangements left would be discriminated by S  into the shear arrangement which has a 

very high value o f S  and the other two arrangements which have very low values of S. 

The classification rule is:

Shear arrangement.V > .S',
* ’ f - C " '%£■>;<£, " i y.S’ < S,  Hollow and Region arrangements

where S j  is the boundary between the two classes. Finally, the last two parallel 

arrangements would be classified by Sr into the region scattered arrangement with a 

high value o f Sr and the region hollow arrangement with a low value o f SY. The 

classification rule is:

S r > S rT Region arrangement

S  < S  r Hollow arrangement
■ - ' ' - T C  •'■ ■■■ O.’r-"■ J* ■ V ■> N. > , ‘ > !

where Srj  is the boundary between the two classes.

In the non-parallel group, similarly, the arrangements would first be distinguished 

by Rp into two radial arrangements which have very high values of Rp, two
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circumferential arrangements which have very low values of Rp , and the random 

arrangement which has a medium value of Rp:

RP > Rp 2 Radial arrangements

RP2> R P > RP] 1 |
:

Random region arrangement

Rp < RP] Circumferential arrangements

Because there is no significant difference among the values o f S  for the four non­

parallel arrangements, there is in this case no need for any classification according to 

S, and we proceed directly to classification according to Sr . The two radial 

arrangements would be discriminated by Sr into the radial region arrangement with a 

high value o f Sr and the radial hollow arrangement with a low value o f Sr:

S  . > S.

Is. < s

Radial region arrangement

Radial hollow arrangement

mu i ^

Finally, the two circumferential arrangements would be similarly classified by Sr into 

the circumferential region arrangement with a high value of ST and the circumferential 

region hollow arrangement with a low value of Sr:

S r > Srl Circumferential region arrangement

S r < S rl Circumferential hollow arrangement
; ' ■
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5.6.3 F urther Development

Some other arrangements in addition to the ten we introduced above might be also 

classified as proposed here, using either the tree classifier or another classifier. Some 

other features might be needed.

Because I just present the basic and the starting work for the automatic analysis of 

the arrangements of the objects within an aggregate and the automatic classification of 

the aggregates, I will not present the further development of the method in this 

chapter.

5.7 Summary

A method based on Hough transform for feature measurement to describe the 

arrangements of the objects within an aggregate, and using the extracted features to 

describe aggregates, has been proposed and has been demonstrated using artificial 

samples of ten different aggregate structures. The measurements of an object in (x,y) 

space are the orientation 0 and the position x and y  of the object. The feature 

measurements in the Hough space mapped by the Hough transform are the orientation 

0 and the distances p j, and p2 - The extracted features are the consistency ratio R q  of

0, the ratio Rp of the standard deviation of p j and P2 , the symmetry factor S, and the

standard deviation Sr of the modulus of the vectors. Other aggregate structures might 

also be recognised and classified automatically by this method: additional features 

might be required.

Based on the experiments and reasoning discussed above, the following 

conclusions were drawn:

1. The simplified version of the Extended Hough Transform proposed in Section 5.3 

provides a possible method of automatic analysis and classification of the
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arrangements of objects within aggregates when these individual objects can be 

separated.

2. In more difficult cases, the extended Hough transform proposed in Section 5.2 

might provide the basis for an alternative approach.

3. The extended Hough transform is itself worthy of future study.

4. The alternative treatments of the measured parameters suggested in Section 5.5 

may be found to be useful in future work.
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Appendix A5. The Consistency Ratio of 0

Let x[ and y\ be the components of a unit vector vj with orientation 0p 

v, = x , + j y i

x i = COS©, 

y t = sin0 ,

where j  = V-T is the unit imaginary. Then the summation Mods of the modulus of all 

the vectors is given by:

M ods = 2  V*/2 + y f  = Z V cos2  0 / + sin2 0~ = ^ 1  = N
i = I /=] i=l

where N  is the number of the vectors. The composition vector Vc o f the all vectors is:

Vc = X  + j Y

N

/=i

N  

#■=1

The modulus Modc of the composition vector then is:

Modc = 4 X 1 + Y2
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Thus, the consistency ratio C is defined as:

C = M odc / M ods

If required, the preferred orientation is:

© = arctan— 
X
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The work presented here was aimed principally at a need for analysing the structure 

of soil as recorded in two-dimensional images which might be conventional 

photographs, optical micrographs, or electron-micrographs. In particular, the work 

concentrated on feature measurements, where the features were individual particles or 

voids; and the work was intended to complement a parallel study which was 

concentrating on field measurements.

The SPCH algorithm for finding the convex hull of a feature, which was presented 

in Chapter 2, was found to be efficient and is believed to be reliable.

Use of the convex hull of a particle led to a rapid method of extracting a set of 

measurements to describe the shapes of particles and other objects, such as leaves of 

plants. These measurements are invariant with respect to coordinate rotation, 

translation, and scaling, and the range of each measurement as presented has been 

arranged to be between 0  and 1 .

Use of the convex hull of a particle also led to a rapid method of extracting the 

orientation of a particle, i.e. the direction of its elongation. In Chapter 3, this was 

found to be in general agreement with the perhaps more accurate estimates found by 

the principal component method and the method of moments, which were in general 

slower.

The method of Directed Vein, which was also presented in Chapter 3, was found to 

be faster than the above methods for finding the orientation of a simple particle. 

However, it is based on a different concept and actually estimates the direction of 

internal preferred orientation in particles for which this is strong. It might, therefore, 

be sometimes appropriate to use this method in parallel with one of the others when 

classifying particles.

The Circular Hough Transform was successfully applied to the measurement of the 

roundness (sharpness of comers) of two-dimensional particles, see Chapter 4. 

Estimates o f Roundness and Sphericity from two-dimensional views have
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traditionally been used in the subjective classification of particles; so this use of the 

Circular Hough Transform together with a measurement o f sphericity (given by the 

Convex Hull, Principal Components, or Method of Moments) places this traditional 

concept of classification on an objective basis.

In the course of the above, five methods of implementing the Circular Hough 

Transform were compared from the points of view of memory requirement, speed and 

accuracy; and methods of dealing both with noise in the image and with very sharp 

comers were implemented.

An extension of the linear Hough transform was suggested in Chapter 5, the basic 

idea being to separate co-linear objects, which are thrown together in the original

Also in Chapter 5, a method of automatic analysis and classification of the 

arrangements of elongated objects within aggregates was proposed on the basis of the 

extended linear Hough transform. For cases in which individual objects can be 

separated, a simplified and less-demanding version of this proposed method was 

implemented and tested satisfactorily.

Taken together, the methods developed or tested here, provide a useful toolkit for 

analysing the shapes, orientation, and aggregation of particles such as those seen in 

two-dimensional images of soil structure at various scales.

method.
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