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SUMMARY



1). Heavy metal concentrations in sea water and sediment vary widely in different 

parts of the world. An important factor affecting heavy metal concentrations in an 

area is man-made contamination.

2). Heavy metals inhibit or alter many biological processes in decapod crustaceans 

and toxic effects of heavy metals vary depending on experimental animals, metals 

and concentrations used. The most important factors which affect toxicity and 

accumulation of heavy metals by marine animals are the growth, sex, age and 

physiological condition of marine animals, salinity and temperature of sea water, 

chemical characteristics of metals and interaction among metals. Tolerance to heavy 

metals and detoxification of heavy metals are also important factors influencing 

toxicity of heavy metals to marine animals.

3). The thesis outlines consequences of heavy metal pollution for marine animals and 

humans who consume these. I then describe the Clyde Sea area, its commercial 

importance and man-made contamination and the biology of an important 

commercial species the Norway lobster Nephrops norvegicus.

4). Natural concentrations of cadmium, copper and zinc in tissues of Nephrops 

norvegicus from the Clyde Sea area were highest in the hepatopancreas and gill, 

whereas mercury concentrations were found in highest levels in the gill and tail 

muscle. Iron concentrations were highest in the gill. Concentrations of metals 

showed variation among different months of the year with highest levels tending to 

occur during moult. Metal concentrations were also influenced by carapace length 

with pronounced size-related increases in mercury concentrations in the tail muscle 

and cadmium in the hepatopancreas. There were considerable differences in mean 

concentrations of some metals in the tissues of male and female Nephrops.

5). Toxicity studies showed that organic and inorganic mercury, copper, cadmium, 

lead and zinc (0.1, 0.1, 0.1, 1, 1 and 2 mg 1"1 respectively) were toxic to Nephrops 

norvegicus. At those concentrations toxicities ranged widely among the metals, the
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most toxic metals to the animals being organic mercury (100 % mortality in three 

days), inorganic mercury (100 % mortality in one week) and copper (100 % 

mortality in two weeks). The other metals did not cause 100 % mortality over a 30- 

day period.

6). The non-essential metals (organic mercury, inorganic mercury, cadmium and 

lead) were accumulated by tissues of Nephrops norvegicus after exposure to sublethal 

concentrations of the metals dissolved in sea water for 30 days. The highest 

concentrations of both mercury compounds were accumulated in the gill tissue while 

the highest concentrations of cadmium were in the gill and hepatopancreas. Lead 

concentrations were highest in the gill and carapace. Exposure to a sublethal 

concentration of copper showed increases in copper concentrations in the carapace, 

gill, tail muscle and ovary, whereas there was no increase in the hepatopancreas and 

external eggs. Exposure to a sublethal concentration of zinc also showed increases in 

zinc concentrations of the carapace, hepatopancreas gill, and ovary, whereas there 

was no increase in the tail muscle and external eggs.

7). There were differences in the accumulation of organic and inorganic mercury 

from sea water by tissues of Nephrops norvegicus. Except in the gill tissue, organic 

mercury was accumulated more than inorganic mercury. There were also sex related 

differences in the accumulation of the metals as male Nephrops accumulated higher 

concentrations of organic and inorganic mercury in the hepatopancreas than female 

Nephrops. Carapace length showed significant effects on metal accumulation as 

accumulation of both mercury compounds and cadmium was higher in the gills of 

smaller animals than that of larger animals. The adsorption of the metals onto the 

carapace surface was found to be very important in determining the metal 

concentrations of the carapace.

8). Concentrations of mercury increased in all the tissues of Nephrops norvegicus 

after feeding with a food source containing high concentrations of cadmium and
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mercury. These increases in the tissues showed positive relationships with feeding 

rate. Cadmium concentrations increased only in the hepatopancreas. Cadmium 

concentrations in the hepatopancreas and carapace showed positive relationships with 

feeding rate. Concentrations of copper in the gill and tail muscle were increased after 

feeding, though none of the tissue copper concentrations showed a positive 

relationship with feeding rate. Zinc and iron concentrations in the tissues of 

Nephrops did not increase after feeding and, there was no positive relationship with 

feeding rate in any tissues.

9). Distribution of mercury and cadmium in the gill, hepatopancreas and tail muscle 

of Nephrops norvegicus differed among treatments. Mercury burdens in control 

animals were mainly in the tail muscle. After feeding, the hepatopancreas and tail 

muscle shared the total mercury burdens. Organic and inorganic mercury 

distributions also varied among the tissues after uptake from sea water, with organic 

mercury being more evenly distributed among tissues than inorganic mercury, the 

latter being predominantly in the gill. Much of the cadmium burden was always in 

the hepatopancreas in all the three treatments. Assimilation of organic mercury from 

food by tissues was higher than assimilation of inorganic mercury.

10). Characterization of ATPases such as total ATPase, Na,K-ATPase, total Mg- 

ATPase, oligomycin sensitive and insensitive Mg-ATPase in the gill of Nephrops 

norvegicus showed that maximum activities of the ATPases were in sodium, 

potassium, magnesium and ATP concentrations of 100, 20, 4 and 6 mmol H  

respectively. 1 mmol T^ ouabain inhibited 100 % Na,K-ATPase activity, while 100 

% of oligomycin sensitive Mg-ATPase was inhibited in oligomycin concentration of 

0.3 mmol H .  The activities of the gill ATPases were maximum when temperature 

was at or near to 37 °C. Na,K-ATPase and oligomycin sensitive Mg-ATPase 

activities were more sensitive to temperature than oligomycin insensitive Mg-ATPase 

the latter being still active (50 %) at a temperature of 70 °C. Size of Nephrops
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showed significant effects on the activities of gill ATPases as the activities of Na,K- 

ATPase and oligomycin sensitive Mg-ATPase had negative relationships with 

carapace length. Storage of the gills was found to reduced the activities of gill 

ATPases, even storage at -70 °C. The activities of the Na,K-ATPase (34 and 45 %) 

and oligomycin sensitive Mg-ATPase (31 % and 40 %) were reduced after one and 

two months storage at -70 °C, respectively.

11). Control male Nephrops norvegicus showed higher activity of Na,K-ATPase than 

control female Nephrops norvegicus. After exposure to sublethal concentrations of 

cadmium, copper and zinc dissolved in sea water, the activity of Na,K-ATPase was 

inhibited significantly in male animals by the metals but not in female animals. 

However, the activity of total Mg-ATPase was inhibited significantly in female 

animals, but not in male animals. There was no other significant alteration on the 

activity of ATPases after exposure to the metals. Na,K-ATPase activity had a 

negative relationship with gill copper in males, while this ATPase had positive 

relationships with cadmium and zinc concentrations in female animals.

12). After exposure to sublethal concentrations of cadmium, copper and zinc, 

cadmium concentrations were increased significantly in the gill and hepatopancreas 

of both male and female Nephrops norvegicus in relation to increases in exposure 

concentrations. Concentrations of copper and zinc increased in the gills of male 

animals but not in female animals. In the hepatopancreas neither copper nor zinc 

showed any change in concentration with exposure in either sex suggesting regulation 

of these metals by Nephrops norvegicus.

13). There were positive relationships between the concentrations of cadmium and 

metallothionein in both the gill and hepatopancreas of male and female Nephrops 

norvegicus. Copper concentrations in the hepatopancreas also showed a significant 

positive relationship with metallothionein in male animals but not in female animals. 

Ratios of cadmium in the metallothionein fraction of the hepatopancreas increased in
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both male and female animals, while copper and zinc ratios did not change in the 

hepatopancreas of either sex.

14). The activity of ATPases in the gill of male Nephrops norvegicus was determined 

from 10 stations in the Clyde Sea. Because many Nephrops norvegicus in the Clyde 

Sea were infected by a parasite (Hematodinium perezi), investigations were carried 

out by separating the animals as normal (blue blooded) and infected (white blooded). 

Activities of total ATPase, total Mg ATPase, Na,K-ATPase, oligomycin sensitive 

and insensitive Mg-ATPase were significantly affected by the infection namely white 

blooded animals had higher activities of the ATPases than normal animals. Stations 

also affected significantly the activities of the ATPases, except for oligomycin 

insensitive Mg-ATPase activity. All the ATPase activities had negative correlations 

with concentrations of copper and zinc in the blood.

15). The blood colour, station and carapace length also affected some gill and blood 

parameters such as ion concentrations in the gill and blood, % gill water and blood 

osmolality in Nephrops norvegicus caught in 10 stations from the Clyde Sea. Blood 

copper and zinc concentrations were much lower in the white blooded animals than 

in normal animals.

16). Concentrations of copper, zinc and metallothionein in the gill of Nephrops 

norvegicus caught in 11 stations from the Clyde Sea were found to be affected by the 

infection: namely infected animals had higher concentrations of metallothionein but 

showed lower copper concentrations. Conversely, cadmium concentrations were not 

affected by the infection but levels differed significantly among stations. The ratio of 

copper to metallothionein in the gill was reduced three times in the infected animals. 

Copper and metallothionein concentrations showed negative relationships, possibly 

resulting from independent effects of stress due to parasitic infection.
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CHAPTER 1

GENERAL INTRODUCTION



Heavy metals are normal constituents of sea water and many are essential for life in 

the marine environment. Under normal conditions these metals are supplied to the 

marine environment by rivers, atmospheric dumping or wind blown materials 

following volcanic activities and the weathering of rocks. At the present time, 

however, additional quantities of metals enter estuaries and coastal waters from 

industrial effluents, sewage and from atmospheric pollution. Although some metals 

such as copper, zinc and iron are essential for marine animals, all are toxic in high 

concentrations.

1.1 HISTORY OF HEAVY METAL POLLUTION

Man has benefited from the use of heavy metals for many hundreds of years. 

Therefore, the history of metal pollution begins with the use of metals by Man. At 

this point one should describe the difference between contamination and pollution. 

Clark (1989) describes contamination as the presence of elevated concentrations of 

metals in water, sediment or organism, i.e. concentrations that are above the natural 

background level for the area and the organism, whereas pollution is the 

introduction by Man, directly or indirectly, of metals to the marine environment 

resulting in deleterious effects such as harm to living resources, hazards to human 

health ; hindrance of marine activities including fishing ; impairment of the quality 

for use of sea water ; and reduction of amenities. In other words, contamination may 

provide a warning signal, but it does not constitute pollution unless, first, it is caused 

by human activities and second, it has some damaging effects. Although metals have 

been being used for a long time, a considerable contribution of metals to the 

environment began after industrialization in this century which may mean that the 

history of metal pollution begins early in this century.



1.2 CHEMICAL AND PHYSICAL PROPORTIES OF SOME HEAVY 

METALS

1.2.1 MERCURY

Mercury is an element with no known biological function. It has an atomic number 

of 80, an atomic mass of 200.59, a specific gravity of 13.55 g/cm^, a melting point 

of -39.8 °C and a boiling point of 357 °C. Mercury occurs naturally as six isotopes; 

202Hg (30%), 200Hg(23%), 199Hg (17%), 201Hg(13%), 198Hg(10%) and 

204ng(7%), as well as trace amounts of l^ H g  and the relatively stable radioisotope 

203Hg (Burg and Greenwood, 1991). Elemental mercury is usually referred to as 

mercury vapour when present in the atmosphere or as metallic mercury in the liquid 

form. This form is toxicologically important because it has a relatively high vapour 

pressure and a certain water (about 20 fxg H )  and lipid solubility (5-50 mg 1~1) 

(Burg and Greenwood, 1991). Mercury occurs in ionic form as Hg2+  (mercuric 

salts) and Hg+ (mercurous salts). The former readily form complexes with organic 

ligands, notably sulfhydryl groups. In contrast to HgCl2 , which is both highly 

soluble in water (69 g I"* at 20 °C) and highly toxic, Hg2 Cl2 is less soluble (2 mg 1“ 

1 at 25 °C) and correspondingly less toxic. The least soluble mercuric form is 

cinnabar (HgS) which has a water solubility of 10 ng 1“1 (Weast, 1978). Organic 

mercury compounds consist of diverse chemical structures in which mercury forms a 

covalent bond with carbon. The group is limited to alkylmercurials (methyl and 

ethylmercury), arylmercurials (phenylmercury) and the family of alkoxyalkyl 

mercury diuretics. Organic mercury cations form salts with inorganic and organic 

acids, e.g. chlorides and acetates, and react readily with biologically important 

ligands, notably sulfhydryl groups. They also pass easily across biological 

membranes perhaps since the halides (e.g. H3 CHgCl, although it is not clear whether
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this exists in a stable form in tissues at physiological pH) and dialkylmercury are 

lipid soluble (Clarkson et al., 1977).

1.2.1.1 Sources, Production, and Uses of Mercury

Mercury is found in igneous rocks of all classes and has an ubiquitous distribution. 

In nature, mercury occurs in a variety of physical and chemical forms. Normal soils 

typically contain 20-150 ppb Hg, but near known geological deposits the level can 

reach as high as 80 % (Burg and Greenwood, 1991). Mercury is mined as cinnabar 

(mercury sulphide). Generally, mercury binds strongly to the organic components in 

soil so that mobility by leaching is minimal and contamination of ground water is 

unlikely unless mercury leaches from a municipal landfill (US EPA, 1984).

Elemental and inorganic mercury compounds are used in the manufacture of 

scientific instruments (thermometers, barometers), electrical equipment (switches, 

rectifiers, oscillators, electrodes, batteries, meters, mercury vapour lamps, x-ray 

tubes, lead and tin solder), dental amalgams and synthetic silk. In the chemical 

industry mercury is used as a fluid cathode for the electrolytic production of acetic 

acid, chlorine and sodium hydroxide (Burg and Greenwood, 1991). In the past 

mercury has been used in the plating, tanning and dyeing, textile, photographic, and 

pharmaceutical industries. It has been used for the preparation of drugs and 

disinfectant, and arylmercury compounds have been used as disinfectants, fungicides, 

antiseptics, herbicides, preservatives and as a denaturant for ethyl alcohol (Baeyans 

et al., 1979 ; Langston, 1990 ; Burg and Greenwood, 1991).

The annual production of mercury world-wide reached a peak of 10,600 tonne in 

1971 falling to a little over 6000 tonne in 1987 (Clark, 1989). Mercury is released to
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the environment in different forms such as mercury(II) oxide, mercury(II) sulphide 

(cinnabar), mercury chloride, mercury nitrates, mercury sulphates, mercury(II) 

thiocyanate, chloride and dithiocarbamate, borate and oleate of phenylmercury, and 

chloride, silicate and phosphate of alkylmercury compounds (Burg and Greenwood, 

1991). These inputs are estimated to amount to about 5000 tonne/year world-wide, 

but a further 3000 tonne/year is derived from burning fossil fuels. One also should 

not forget the natural inputs of mercury, of about 3500 tonne/year from the 

weathering of rocks, but especially about 25,000-150,000 tonne/year from volcanic 

areas, as gases (Clark, 1989).

1.2.2 CADMIUM

Cadmium is another heavy metal with no known biological function. It is a relatively 

volatile element though less volatile than mercury or lead. Cadmium has an atomic 

number of 48 and an atomic mass of 112.4. It has a boiling point of 767 °C and a 

density of 8.64 g/cm3 at 20 °C. Cadmium is a silver-white, lustrous and ductile 

metal. There are eight naturally occurring isotopes of cadmium; l^ C d  (29%), 

112Cd(24%), i n Cd(13%), 110Cd, 113Cd, 116Cd, and 108Cd. Cadmium belongs, 

along with zinc and mercury, to the second subgroup of the Periodic Table; it has an 

oxidation state of +2 in all compounds. With a normal electrochemical potential of - 

0.40 relative to the hydrogen electrode, it is slightly more noble than zinc. The 

cadmium ion (r=103 pm) is very close in size to the calcium ion (r=106 pm). 

Therefore some similarities can be seen between cadmium and calcium (Stoeppler, 

1991).
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1.2.2.1 Sources, Production, and Uses of Cadmium

Cadmium commonly occurs in an isomorphic form in zinc minerals such as zinc 

blende (ZnS) with cadmium contents from 0.1 to 0.5 %, and galmei (ZnCC>3 ) 

cadmium contents up to a maximum of 5 %. Phosphate rocks also show a broad 

range of cadmium contents with an average of approximately 15 mg k g 'l. Pure 

cadmium minerals such as greenockite (hexagonal CdS), hawleyite (cubic CdS), 

otavite (CdC03), monteponite (CdO), and cadmoselite (CdSe) occur very rarely. 

Cadmium is mainly extracted (>95  %) from cadmium-enriched by-products 

obtained from the roasting of zinc minerals and purified by electrolytic deposition or 

vacuum distillation at a temperature of 420-485 °C (Stoeppler, 1991).

Cadmium has a variety of uses. Electrodeposited cadmium has excellent properties 

for protecting iron and steel against corrosion-even a thickness of 0.008 mm is 

sufficient for protection. Another increasingly important use is in rechargeable 

nickel-cadmium batteries. Other uses include cadmium pigments (cadmium sulphide, 

cadmium selenide and mixtures of both) which are generally very stable thermally 

(e.g. for plastic materials in cars). Cadmium soaps made with saturated and 

unsaturated fatty acid play an important role as temperature and light stabilisers 

mainly for PVC (e.g. for plastic window profiles). A small percentage of cadmium 

(cadmium sulphide-copper sulphide) is used in solar cells for direct conversion of 

light into electrical energy. Cadmium is also used in nuclear reactors as a neutron 

absorber and in various alloys with such metals as tin, copper, and aluminium 

(Stoeppler, 1991). World production of cadmium has been increased from 16800 

tons/year in 1970 to 19700 tons/year in 1986 (Clark, 1989 ; Stoeppler, 1991).
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1.2.3 LEAD

Lead is also a biologically non-essential metal and is ubiquitously distributed in 

nature. Although its natural concentrations are not high, in the last fifty years great 

amounts of lead have been extracted, concentrated and used by Man, and re-emitted 

into the environment (Ewers and Schlipkoter, 1991). Lead is known to have been 

used by Man prior to 2000BC (Goyer, 1991).

Lead has an atomic number of 82, an atomic mass of 207.1. It is a bluish-white, soft 

metal with a density of 11.34 g/cm^, a melting point of 327 °C, and a boiling point 

of about 1740 °C. Natural lead consists of 52 % 208pb} 24 % 206pb} 23 % 207pbf 

and 1 % 204pb# in most organic compounds lead is in the 4-2 oxidation state. The 

salts of Pb(II), lead oxides and lead sulphide, are not readily soluble in water, with 

the exception of lead acetate, lead chlorate, and to some extent, lead chloride. 

Inorganic Pb(IV) compounds are unstable and strong oxidising agents. Because of 

their use as antiknock agents in petrol, tetramethyllead and tetraethyllead are the 

most important organolead compounds. Both are colourless liquids with boiling 

points of 110 °C and 200 °C, respectively. At these temperatures or slightly below, 

they start to decompose.

1.2.3.1 Sources, Production, and Uses of Lead

Lead is represented in almost all constituents of the Earth's crust. It can be found in 

all environmental media and in all components of the biosphere. The most important 

lead minerals are galena (lead sulphide), cerussite (lead carbonate), and anglesite 

(lead sulphate). In 1982 globally about 3.7 million tonne of lead were produced from 

mined ores, though consumption of refined lead was about 5.2 million tonne world
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wide. About 40 % of all lead consumed is used for the production of lead-acid 

batteries. The production of tetramethyllead and tetraethyllead accounts for 

approximately 10 % of the world lead consumption. Lead based pigments are used as 

a protective coating for steel structures, for painting used on highways and for 

exterior uses. Lead chemicals are also used in glassware and ceramics and as 

stabilisers in plastics. Other uses of lead could involve lead sheets, cable sheeting, 

solder, ammunition, bearing alloys, type metal, tubes, weight and ballast which 

account for 20 % of uses (Ewers and Schlipkoter, 1991).

Lead and its compounds may enter the environment at any point during mining, 

smelting, processing, use, or disposal. Global emissions were about 500,000 

tonnes/year around 1919, about 2 million tonnes/year around 1940, and about 4.5 

million tonnes/year around 1970 (Nriagu, 1989). Estimates of the dispersal of lead 

emissions into the environment indicate that the atmosphere is the major initial 

recipient. Mobile and stationary sources of lead emission tend to be concentrated in 

areas of high population density, and near smelters. From these emission sources, 

lead moves through the atmosphere to various components of the environment 

(Ewers and Schlipkoter, 1991).

1.2.4 COPPER

Copper is an ubiquitously distributed metal. It is very easily complexed and is 

involved in many metabolic processes in living organisms. Thus, copper is an 

essential metal for life. The respiratory pigment (haemocyanin) of many molluscs 

and higher crustaceans contains copper.
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Copper has an atomic number of 29 and atomic mass of 63. It has been known for 

about 10,000 years and occurs in metallic form or in compounds as Cu(I) or Cu(II). 

The red metal has a density of 8.93 g/cm^, a melting point of 1083 °C and a boiling 

point of about 2590 °C. Natural copper consist of an isotopic mixture of 69.1 % 

63cu and 30.9 % ^ C u . Except for silver, copper is the best common conductor for 

heat and electricity. Compounds of Cu(I) and Cu(II) and Cu complexes have very 

different properties from the metal.

1.2.4.1 Sources, Production, and Uses of Copper

Copper is almost always extracted from ores found in underground or open-pit 

mines. The most important ores contain, besides small amounts of metallic copper, 

Cu2 S, CuS, CuFeS2 , CuO, Cu2 CC>3 (OH)2 . Copper is used in electrical 

applications, water piping, stills, roofing material, and kitchenware; for chemical 

and pharmaceutical equipment; as a pigment; and as a precipitant of selenium. Alloys 

of copper include those with zinc (brass), tin (bronze), nickel (monel metal), 

aluminium, gold, lead, cadmium, chromium, etc. Copper sulphate is used to 

supplement pastures deficient in the metal; as an algicide and molluscicide; as a 

mordant; in electroplating and, as a component of Fehling's solution, to estimate 

reducing sugars in urine. Cupric oxide has been used as a component of paint for 

ship bottoms. Copper chromates are pigments, catalysts for liquid phase 

hydrogenation, and potato fungicides (Scheinberg, 1991).

The movement of relatively high concentrations of copper from the Earth's crust into 

the soil depends on weathering, the process of soil's formation, drainage, oxidation- 

reduction potentials, the amount of organic matter in the soil, and, perhaps most 

important, the pH. Almost all copper carried into the ocean is precipitated,
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accounting for its lower concentration there than in freshwater (Scheinberg, 1991).

1.2.5 ZINC

Zinc is an essential metal for life incorporated in many enzymes in vertebrates and 

invertebrates.

Zinc has been used for many purposes for a long time by Man. It is a bluish-white, 

rather soft metal, which solidifies in hexagonal crystals. It has an atomic number of 

30, an atomic mass of 65.39 and a density of 7.14 g/cnA  Zinc melts at 419.6 °C 

and boils at 907 °C. Natural is zinc composed of five stable isotopes ( 48.6 % ^ Z n ,

27.9 % 6^Zn, 4.1 % ^ Z n ,  18.8 % ^ Z n  and 0.6 % ^ Z n ) . Zinc, oxidation state 

+2, has a strong tendency to react with acidic, alkaline, and inorganic compounds. 

Because of its amphoteric properties zinc forms a variety of salts. Zinc chlorate, Zn- 

chloride, the sulphates and nitrates are readily soluble in water, whereas the oxide, 

carbonate, the phosphates and silicates, the sulphides and organic complexes are 

particularly insoluble in water.

1.2.5.1 Sources, Production, and Uses of Zinc

Zinc occurs in almost all minerals in the Earth's crust with a median concentration of 

about 70 mg kg"*. The principal ores used for production are the sulphides sphalerite 

(zinc blende, cubic ZnS) and wurtzite (hexagonal ZnS) and their weathering products 

smithsonite (ZnS0 4 , trigonal) and hemimorphite (2 Zn0xSi02xH20, rhombic or 

trigonal) (Ohnesorge and Wilhelm, 1991). Zinc oxide is the most important zinc 

compound. It is used in rather large amounts in the production of photocopy paper, 

of chemicals and paints. It is also used in floor coverings, for glasses, enamels,
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fabrics, plastics, lubricants, and in rayon manufacture. Zinc oxide is a long serving, 

well-known pharmaceutical compound for external application for burns and skin 

infections as a powder and ointment. Other zinc compounds used could be 

summarised as follows; uses in soldering, welding fluxes, fire proofing, pesticidal 

wood protectant, dry batteries, cauterising agent in medicine, as phosphors in X-ray 

and TV screens, and luminous watch faces, as lubricants, for the water proofing of 

textiles, papers, and concrete. Organozinc compounds are used as fungicides or 

antiseptics (Ohnesorge and Wilhelm, 1991). The world production of zinc was 

estimated about 6 million metric tons between 1980 and 1982.

1.3 HEAVY METAL LEVELS IN THE MARINE ENVIRONMENT

Under natural (uncontaminated) conditions metal concentrations in the marine 

environment are very low. Because of the use of metals in different fields of 

industry, agriculture, medicine, etc., concentrations of metals may be increased in 

the marine environment, especially in estuaries and coastal waters which are much 

more vulnerable to the impact of pollution than the open ocean. Therefore, 

concentrations of metals may vary greatly with locality and time. For example, the 

range of heavy metals in ocean water in /xg 1*1 is reported as follows ; Hg 0.004- 

0.012, Cd 0.0002-0.025, Cu 0.025-0.64, Pb 0.006-0.015, Zn 0.0007-0.588 (Burton 

and Statham, 1982). The levels of the metals, however, are higher in coastal water 

and especially in estuaries since they are often contaminated by human activities. 

Concentrations of heavy metals in some of estuaries and coastal waters around the 

world are given in Table 1.1. In Table 1.1, high concentrations of metals represent 

the areas where human activities were prime factors. Concentrations of heavy metals 

in sediments are normally higher than in the sea that overlies them. The most 

important factors affecting metal concentrations of sediments are also dependent on
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the sources of contamination. Oceanic levels of heavy metals in sediments are also 

lower than those from coastal waters and estuaries (Chester and Stoner, 1974). 

Sediment concentrations of uncontaminated areas are reported as follows; Hg 0.03, 

Cd 0.2, Pb 25, Cu 10 and Zn 100 jug g~l (Bryan and Langston, 1992). 

Concentrations of heavy metals in the sediments of some estuaries and coastal waters 

are given in Table 1.2. In Table 1.2, high concentrations of metals in sediments are 

also found in areas where human activities were also prime factors.

Concentrations of heavy metals in marine animals are rather complicated to 

generalise. They depend upon whether the metal is essential for a class of marine 

animals. Copper, zinc and iron are metabolic requirements by marine animals. 

However, one group of marine animals may employ a metal for a prime 

physiological function, and thus contains that metal in high levels while other groups 

may not need it in high levels but only in trace levels. For example, copper in 

crustacea is used for the respiratory pigment 'haemocyanin' and is found in high 

levels whereas in fish, levels are in trace amounts since they use iron in 

'haemoglobin' for this purpose. Under natural conditions non-essential metals (Hg, 

Cd Pb) are generally present at very low concentrations. However, concentrations in 

aquatic animals are heavily dependent on the concentrations of metals in water. An 

increase in the concentration in water could lead to a significant increase in the metal 

concentration in the tissues of marine animals. Therefore, animals from polluted 

areas often have higher levels of non-essential metals in their tissues than animals 

from relatively clean areas. (Langston 1990 ; Bryan and Langston 1992). Some 

species of marine animals may naturally contain high concentrations of a non- 

essential metal than other group of animals (Clark, 1989). An essential feature 

affecting concentrations of metals in animal tissues is the ability of animals to 

bioaccumulate or to regulate metal concentrations.
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1.4 BIOACCUMULATION OF METALS BY MARINE INVERTEBRATES

The concentrations of metals in aquatic animals vary because they reflect the net 

effect of two competing processes, that of uptake and of depuration. The ambient 

concentration of metal in the water will itself vary because of changes in the rate of 

addition of metals and their losses from the water. Bioaccumulation of metals is 

mainly dependent on the availability of metals from the environment. The principles 

which govern the transport of most substances into biological tissues also apply to 

metal transport. Metals which exchange rapidly (e.g. Co) are accumulated less 

efficiently than metals which exchange slowly (e.g. Hg), as would be expected if a 

balance between influx and efflux provided the underlying control on metal uptake 

(Luoma, 1983). Two aspects of metal uptake which are unique, however, may 

strongly influence interpretation of metal availability studies. In some circumstances 

metal concentrations never reach a steady state (i.e. life-long net uptake may occur). 

Also the ultimate level of bioaccumulation is not always solely a function of transport 

rates. Life-long net accumulation of metals is indicated by a positive correlation 

between metal concentrations and size of organism in many species (Luoma, 1983).

Uptake of heavy metals by aquatic animals is generally known to be by two uptake 

routes, which are uptake from water and from food. However, metals could also be 

accumulated from sediment. Bryan and Langston (1992) indicated that uptake of 

metals from sediment in deposit-feeding animals may occur following the ingestion of 

particles, or, in some cases, by pinocytosis of particles at the body surface. 

Concentrations of heavy metals in the sediments are usually higher than those in the 

overlying water by about three to five fold. With such high concentrations, the 

bioavailability of even a minute fraction of the total sediment metal assumes 

considerable importance, especially in some filter-feeding and burrowing organisms.
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Furthermore, several metals, including mercury and lead, may be transformed in 

sediments to organo-metallic compounds having increased bioavailability and toxicity 

(Bryan and Langston, 1992). Uptake from water is perhaps the most important route 

for many or all heavy metals because aquatic animals accumulate them continuously. 

Concentrations of free metal ion appear to be the most important control on metal 

uptake from solution (Luoma, 1983). Studies on aquatic animals showed that heavy 

metals, especially non-essential metals such as Hg, Cd and Pb, are accumulated from 

the solution with no regulation and in proportion to environmental concentrations. 

They are also accumulated from the food and the concentration of the tissues 

increases. There is evidence, however, that tissue concentrations of essential metals 

such as Cu and Zn can be regulated by decapod crustaceans, at least up to a threshold 

environmental level. Net accumulation of these metals only begins after this 

mechanism breaks down at concentrations which are higher than these threshold 

levels. More information is given in Chapters 3, 4 and 6.

1.5 TOXIC EFFECTS OF HEAVY METALS

Toxic effects of metals occur after excretory, metabolic, storage and detoxification 

mechanisms are no longer able to match to uptake rates. This capacity, however, may 

vary greatly between phyla, species, populations, even individuals, and may depend 

on the developmental stage of the organism as well (Langston, 1990). Therefore, 

toxic effects and bioaccumulation of metals are well correlated. Studies on aquatic 

animals show that heavy metals affect many biological processes such as regeneration, 

ecdysis, development, respiration, reproductive performance, behaviour, hatching and 

osmoregulation (Table 1.3).
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1.6 FACTORS AFFECTING BIO ACCUMULATION AND TOXICITY OF 

HEAVY METALS

1.6.1 Physiological Conditions of Marine Animals

Seasonal variations in the physiological conditions of aquatic organisms primarily 

arise from the reproductive cycle (such as the maturation of the gonads and gametes 

and spawning) and changes in the growth rate. These include substantial changes in 

the balance within the organism between protein, lipids and carbohydrates, as well as 

affecting body weight, water content and the gonad condition of the organism 

(Mance, 1987). Changes of physiological conditions during different seasons of year 

are more pronounced in crustacean which must moult in certain periods. 

Concentrations of copper and zinc in decapod crustaceans can change depending on 

moult stages of animals (Engel and Brouwer, 1987). Loss of metals in the shell of 

crustaceans during moult can also contribute an important variation to the total metal 

concentrations of the animals.

1.6.2 Growth, Age, and Sex

The concentration of a metal in an organism is a function of the balance between the 

rate of accumulation and depuration. It is also a function of the rate of change in the 

body mass as the rate of growth will determine the quantity of tissues through which 

the net gain or loss of metal will be distributed (Mance, 1987). Thus, in general, 

animals which have fast growth rates show lower tissue concentrations of non- 

essential metals than animals which have slower growth rate (Phillips, 1980). Age is 

also known to be important in the interpretation of the metal content of marine 

animals directly or indirectly by weight or physical dimensions (Mance, 1987). 

Mercury is different from most heavy metals because tissue concentrations have been
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consistently shown to increase with age and size. Therefore size and age of marine 

animals are very important factors to take into account especially when a relationship 

exist between metal concentration in tissues and size and/or age of aquatic animals 

(Phillips, 1980). Sex of marine animals could also be a significant factor since male 

and female animals could have different growth rates (Mance, 1987 ; Howard, 1989). 

Additionally, spawning has a considerable direct impact upon body content. The 

extent of this depends upon the relative sizes and therefore weight loss from the 

gonads of the two sexes. The faster growing sex can be expected to contain lower 

concentrations of metals. The Norway lobster, Nephrops norvegicus is very good 

example for this. Male animals grow much faster than females. Thus, the same age of 

males and females would have different sizes males being larger than females 

(Howard, 1989). Mercury a shows positive relationship with size and therefore 

concentrations in the tail muscle of each sex in same size group are also different, 

namely females present higher levels than males (Davies and McKie, 1983 ; Lima,

1984).

1.6.3 Salinity and Temperature

Although it is not universal, uptake of metals generally increases with an increase in 

temperature and decrease in salinity. The higher toxicity of metals such as Hg, Cd, 

Cu, Pb and Zn at low salinities is generally attributable to more rapid accumulation 

rates and therefore it is very important to consider this effect in estuaries (Langston, 

1990). Phillips (1980) indicated that salinity affects the physiology of aquatic animals 

as well as having effects on metal accumulation. Phillips (1980) also indicated that 

aquatic animals accumulate metals at higher rates in higher temperature as well as 

showing higher loss in high temperature.

19



1.6.4 Chemical Characteristics of Metals

Uptake of metals by marine animals can be affected by the chemical form of metals. 

Hg, Sn and As are known to occur in methylated forms in the environment. The best 

known examples of methylation affecting metal accumulation and toxicity are for Hg 

and As (Luoma, 1983). Organic mercury accumulates to higher concentrations in the 

tissues and is more toxic to animals than inorganic mercury (Chapter 3). Oxidation 

state also affects the availability of Hg, Se, As, and Cr. In general, Hg° is 

considerably more available than Hg^+ because of the lipid solubility of the former. 

Se^+ is more available to mussels than Se^+ and Cr^+ is more available to 

organisms in general than 0*3 + (Luoma, 1983). Chelation is also an important factor 

which affects accumulation and toxicity of heavy metals. Chelation is the formation of 

a metal ion in association with a charged or uncharged electron donor referred to as a 

ligand. The ligand may be monodentate, bidentate, or multidentate; that is, it may be 

attach or co-ordinate using one or two or more donor atoms. Chelating agents are 

generally non-specific in regard to their affinity for metals. They will mobilise and 

enhance the excretion of a rather wide range of metals to varying degrees, including 

essential metals such as calcium and zinc. Chelating agents include; BAL (British Anti 

Lewisite), DMPS (2,3-dimercapto-l-propanesulfonic acid), Calcium EDTA, 

Penicillamine (Goyer, 1991).

1.6.5 Enhanced Tolerance to Metals

Aquatic animals can develop enhanced tolerance against toxic effects of heavy metals 

by living in slightly contaminated waters. Tolerant animals can often survive in 

environmental metal concentrations that animals from relatively clean environments 

can not tolerate (Uma Devi, 1987 ; Uma Devi and Prabhakaro Rao, 1989 ; Kraus et 

al., 1988). The reason for this could well be related to processes of induction of
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metal-binding proteins which form after exposure to heavy metals. Studies have 

shown that marine animals which live in elevated levels of heavy metals can bind 

these metals to special low molecular weight proteins 'metallothioneins' which can be 

an efficient detoxification tool against heavy metal toxicity (Chapter 6). Therefore, 

animals from contaminated areas could be more resistant to heavy metal toxicity and 

show higher tissue concentrations than animals from clean areas. They could also have 

higher levels of metallothionein since metallothionein levels increase with heavy metal 

exposure (Chapter 6). Studies have also shown that protection against toxic effects of 

cadmium depends on presynthesized metallothioneins (Kito et al., 1982 ; Goering and 

Klaassen, 1984).

1.6.6 Interaction of Heavy Metals

Interactive effects among metals may be a very important factor influencing metal 

availability to organisms and toxicity. There are several types of possible interactions: 

(1) enhancement of uptake (synergistic effect) (2) competitive displacement on metal- 

specific binding proteins in tissues; and (3) competitive inhibition of uptake at the 

environmental interface (antagonistic effect) (Luoma, 1983). In particular there is 

consistent evidence of competition between a number of metals such as Cd-Zn, Cu- 

Ag, Cu-Mn, Cd-Se and Hg-Se (Bryan et al., 1985 ; Sunda et al., 1981 ; Pelletier,

1985). Studies with crustaceans showed that cadmium can be antagonistic to the 

biological uptake of zinc and copper (Negilski et al., 1981 ; Devineau and Amiard- 

Triquet, 1985). Selenium can also show an antagonistic effect to the toxic effects of 

mercury (Lucu and Skreblin, 1981). However, cadmium and selenium showed a 

synergistic relationship (Bjerregaard, 1982 ; 1985). Mercury and cadmium did not 

increase or decrease each other’s accumulation but they showed effects in additive 

ways (Weis, 1978).
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1.7 DETOXIFICATION OF HEAVY METALS IN MARINE ANIMALS

Homeostatic mechanisms of an animal are a crucial factor in its natural environment. 

Terrestrial animals are generally only exposed to metals in their diet or in the air they 

breathe, whereas aquatic animals are exposed to dissolved and particulate metals in 

the medium in which they are immersed as well as in their diet. The surface is larger, 

consequently uptake of metals is often far greater in aquatic animals. In aquatic 

habitats, the effects of environmental variables on metal uptake are much more 

important since variation in salinity, pH, redox conditions, etc., can affect both the 

chemical speciation of the metal and the physiology of the animal (George, 1982). 

Therefore, the intracellular concentrations of metal ions must be regulated for the 

maintenance of essential life processes. Since metals may be more readily available to 

aquatic organisms and many appear unable to regulate the accumulation, they provide 

good examples of detoxification mechanisms for dealing with intracellular 

concentrations of non-essential metals and excess levels of essential metals (George, 

1982). Heavy metals are detoxified as; nucleoprotein complexes (Cu, Pb), 

phospholipid complexes (As, methylated), selenium complexes (Hg, and methyl-Hg, 

possibly Cd), metallothionein (Cd, Cu, Hg, Zn, and possibly Ag), lipofuschin 

granules, 3degrees lysosomes (As, Au, Cd, Cu, Fe, Hg, Pb, Pu, Th, Zn), phosphate 

granules (Fe, Zn, Al, Cu, Sr and trace of Hg, Pb), blood cell vesicles (Cu with S, Zn 

with P) and O2  transport proteins (Fe, Cu) (see George, 1982). Metallothionein 

which could be one of the most important detoxification mechanisms of heavy metals 

will be discussed widely in chapter 6.



1.8 WELL KNOWN HEAVY METAL POLLUTION INCIDENTS IN THE 

MARINE ENVIRONMENT

The Minamata Bay disaster in Japan is one of the best known examples of heavy 

metal pollution. The town of Minamata had a population of 50,000 for whom seafood 

was a staple component of the diet. In 1932, Minamata Bay began receiving mercury 

waste from a factory which used mercuric oxide as a catalyst in the production of 

acetaldehyde and vinyl chloride. This continued until 1968 (Mance, 1987). The 

factory discharged mercury waste at concentrations as high as 120 ppm of which 5 % 

of this was methyl mercury (Miettinen et al., 1970 ; Salvatore et al., 1977). 

According to Langston (1990) the factory put 80 tonne of mercury into the Bay 

between 1932-1968 which caused sediment concentrations of several hundreds ppm, 

with water concentrations of as high as 3.6 ppm.

Mercury poisoning was seen in great numbers of people, especially fishermen and 

their families whose main component of their diet was seafood. Common problems 

caused in the town were; death, impaired vision, loss of motor co-ordination and 

other neurological abnormalities. Hormonal and enzymatic disturbances were also 

common (Salvatore et al., 1977). The first recorded human case was that of a 5 year 

old girl suffering from delirium, speech disturbance and difficulties in walking as a 

result of brain damage in 1956 (Mance, 1987). There were 800 verified victims of 

Minamata disease, with 107 fatalities and a further 2800 possible additional victims by 

1975.

A second outbreak of mercury poisoning in Japan occurred in 1965 among fishermen 

living near the mouth of the Agamo River. Like the Minamata tragedy, this was 

caused by the contamination of fish by mercury in an effluent, in this case, from a 

factory 60 km upstream (Clark, 1989).

23



Cadmium was the reason for the itai-itai disease in Japanese villages on the Jintsu 

River. This disease caused 100 deaths with painful effects on joints and bones. It was 

attributed to contamination of rice by cadmium from the effluent from a zinc smelter 

(Clark, 1989). Stoeppler (1991) indicated that patients had taken up 300-480 /-eg of 

cadmium per day. The symptoms of disease were severe renal tubular damage and 

pronounced osteomalacia causing great pain in back and legs.

1.9 PUBLIC HEALTH STANDARDS

After recognition of hazards of heavy metal toxicity, maximum acceptable 

concentrations of heavy metals in seafood have been suggested. The World Health 

Organisation (WHO) recommended a maximum tolerable consumption of mercury in 

food of 0.02 mg of methyl mercury and 0.3 mg of total mercury per week. Standards 

adopted for maximum permitted mercury levels in seafood are 0.5 fig g"l (ppm) in 

the USA and Canada, 0.7 fig g 'l  in Italy, 1.0 fig g"1 in Japan, Germany, Sweden, 

and Switzerland (Clark, 1989). The WHO established the toxicological threshold of 

cadmium as 0.525 mg ingested per week. Actual weekly uptake, however, should be 

no more than 0.1 to 0.25 mg Cd, in extreme cases 0.5 mg (Hapke, 1991). Clark 

(1989) indicated that except in the case of shellfish from contaminated water, seafood 

contains no more cadmium than other foods and does not represent a special hazard. 

He also indicated that there is no danger to humans of copper poisoning from seafood- 

the lethal dose is about 100 mg-but the human taste threshold for copper is low, 5.0- 

5.7 ppm, and the taste repulsive. Lead does not play an important part in aquatic food 

chains. Lead concentrations in fish depend upon the amount of lead pollution in the 

marine environment. Clark (1989) indicated that contamination of sea and seafood 

does not appear to be a matter of concern, though it is held responsible for serious 

damage to health on land. A weekly dietary intake of 3 to 4 mg is accepted as 

toxicologically harmless because absorption is also low (Hapke, 1991).
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To obtain seafoods which contain heavy metals in acceptable low levels and to protect 

marine life, heavy metal concentrations in the marine environment can be monitored 

against Environmental Quality Standards (EQS). EQS levels of metals were divided 

into two different categories as estuary and coastal waters. McLusky (1989) 

summarised these levels as (in fxg H )  ; Cd <  5.0 and < 2.5, Cu <  5.0 and < 5.0, 

Hg < 0.5 and <  0.3, Pb < 25.0 and <  25.0, Zn < 40.0 and < 40.0 in estuaries 

and coastal waters respectively.

1.10 CLYDE SEA AREA AND HEAVY METAL CONTAMINATION

The Firth of Clyde (Figure 1.1) on the west of Scotland is a major seaway and 

vacation area. This area consists of the estuary of the River Clyde and the area to the 

seaward. The Clyde Sea area has a connected water area of 1856 km^, a volume of 

about 100 km^, and the land surface draining into it is 5360 km^ in extent. It is a 

vital waterway where sea lanes converge on the west of Scotland's most highly 

developed urban and industrial areas (Steele et al., 1973).

The Clyde Sea supports important commercial fisheries and receives domestic, 

industrial and agricultural wastes from a catchment area with a human population of 

about two million (Steele et al., 1973). Pollution sources are numerous. Sewage 

sludge consisting of primary settlement material, activated sludge and industrial waste 

is daily dumped off Garroch Head by Glasgow Corporation and liquid is discharged 

into the River Clyde. Untreated sewage from inland as well as coastal towns is also 

discharged along much of the coast of the Firth (Steele et al., 1973 ; Mackay, 1986). 

Sewage sludge contaminated with a variety of heavy metals has been dumped in the 

Firth of Clyde for some years at a rate of 1 million tons per year (Mackay, 1972 ; 

Clark and Davies, 1989). Topping (1974) indicated that the Clyde Sea area also 

receives considerable inputs of heavy metals from atmospheric deposition.
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Figure 1.1. A map of the Clyde Sea. The filled star indicates the sewage sludge dumping area, 
while the unfilled star indicates the sampling area of the Norway lobster Nephrops norvegicus in 
Chapters 2*6.
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The Garroch head dumping area is a circle, radius 0.93 km, centred on the position 

55°39 ' 48"N 05°00 ' 48"W . The sewage is from the city of Glasgow after mixing of 

primary and secondary, undigested, sludges, originating from full scale biological 

treatment plants using either filtration or activated sludge processes. Concentrations of 

heavy metals in the surface sediment showed increases in concentrations towards the 

centre of the disposal area. This was also accompanied by a change in sediment colour 

from brown at the edge to black/brown in the centre (Clark and Davies, 1989).

1.11 THE NORWAY LOBSTER, NEPHROPS NORVEGICUS (L.)

Figure 1.2. A picture of male (left) and female (right) Norway lobster Nephrops non/egicus.
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The Norway lobster, Nephrops norvegicus (Figure 1.2) is a member of a group of 

animals, the Crustacea, characterised by possessing a hard, jointed, external shell 

which encases the body and limbs. It is closely related to the common lobster 

Homarus gammarus, from which it is readily distinguished by its smaller size, 

orange red colour, long slender chelae (claws) and prominent kidney-shaped eyes. 

The fore part of the body is covered by a continuous shell, the carapace, while the 

hind part (tail or abdomen) is divided into six flexible segments. The carapace length 

is the measurement most often used in denoting the size of Nephrops. The body bears 

20 pairs of jointed appendages, specialised for performing different functions. The 

antennae are sensory and are used for gathering information about the environment. 

The large claws can be used for defence and for catching items of prey, which are 

passed to the mouth, where different mouthparts cut them up and manipulate them 

into the digestive tract. The four pairs of legs are used for walking, and together, with 

the claws, for digging the burrow. The sexes are separate and can easily be 

distinguished one from the other. The first pair of pleopods on the tail are rigid in the 

male animals and form a forward-pointing tube which is used to pass a sperm package 

to the female during mating. The sperm then fertilise the eggs when they are laid. In 

the female the first pair of pleopods is flexible and feather-like. The pleopods in 

females on the abdomen are used to carry the eggs. Any detached limb is regenerated 

and grows with moult.

The Norway lobster, Nephrops norvegicus is widely distributed on the continental 

shelf of Europe. Its consumption by Man has increased significantly in recent years in 

the U.K. and other European countries. For example, although landing of Nephrops 

from waters in north-east Europe was 25,000 tonnes in 1965, this reached 55,545 

tonnes in 1985. Nephrops is the most important shellfish species in the United 

Kingdom and the Scottish fishery for this animal is the most important fishery of its 

type in Europe. Landings by Scottish vessels in 1987 were over 16,500 tonnes with a
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value of over 32.6 million pounds (Howard, 1989).

The female Nephrops attains maturity at an overall body length of 73-78 mm 

(carapace length 21-23 mm), when it is three years old, while the male Nephrops 

appears to reach maturity after three years (CL 25 mm). During late summer and 

early autumn the ripe ovary in mature females can be seen through the carapace as a 

dark, green-black area. In Scottish waters the mature females generally spawn every 

year, the eggs being fertilised and spawned from August to November. The dark- 

green eggs being fertilised and spawned are carried on the pleopods of the female’s 

tail and remain there for about nine months while they develop. The number of eggs 

carried increases with an increase in the size of the animal. A female of 25 mm 

carapace length carries about 500 eggs and one of 35 mm CL about 1,500. As the 

embryo develops within the egg there is a gradual change in colour from dark-green, 

through pale green, to a pinkish brown colour just prior to hatch. Hatching starts in 

late April and continues until August. The Norway lobster is an active forager. The 

larvae are carnivorous, actively preying on a wide range of planktonic organisms. The 

juveniles and adults feed on a wide variety of material, including molluscs, annelid 

worms, Crustacea, echinoderms and small fish. They can browse on very small 

organisms like the microscopic Foraminifera found in the mud, catch active prey by 

snapping with their claws, or search for food on or within the surface of the mud.

In order to grow, Nephrops must first cast their hard outer shell, a process known as 

moulting. The process takes about 30 minutes and is followed by a marked increase in 

size as the animal absorbs water. The new shell reaches full hardness about two weeks 

after the moult, and no further growth can then occur until the next moult. Moulting 

occurs at any time of the year, although peak periods occur in March and April and 

from July to November (Howard, 1989). Peak periods of moulting activity are 

generally more pronounced in females, which must moult before mating takes place.
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Mating occurs when the female is in the "soft" condition, when she is impregnated 

by a hard male In Scottish waters juvenile Norway lobsters grow rapidly, attaining a 

mean total length of 52 mm (14 mm CL) after one year, having moulted 10 times. 

After this initial burst, growth rates slow down, and the inter-moult period increases. 

On attaining sexual maturity the females moult only once a year whilst, in general, 

the males of comparable size continue to moult at least twice a year until they reach a 

total length of about 100 mm (30 mm CL). After this size Norway lobster generally 

moult once a year, except for the largest animals (above 45 mm CL), for which there 

may be an interval of up to three years between moults (Howard ,1989). Male 

Nephrops grow much faster than female animals and at the same age the male and 

female animals have different sizes males being larger than females (Davies and 

McKie, 1983 ; Howard, 1989).

Nephrops norvegicus is one of the member of a complex community of burrow- 

dwelling species which includes several fish species, a small crab and many other 

invertebrates. The distribution of the Norway lobster is dependent upon the 

availability of a sea bed composed of fine cohesive mud in which it can build 

burrows. Some areas have very fine sediments with a high (90 %) content of silt and 

clay particles, while others have much coarser sediments with 40 % silt and 60 % 

sand particles. Nephrops are found within this range of sediments, but as the sediment 

changes, so does the structure of the population, with large animals at low population 

densities in fine sediments and smaller animals in high population densities with 

coarser sediments. The burrows extend 20-30 cm below the mud surface and range 

from simple tunnels with a single opening, through the more typical forms with a 

wide sloping front entrance and a smaller rear entrance, to complex tunnels with more 

than two openings. Norway lobsters are found in depths ranging from 15 m to 800 m 

(Howard, 1989). The density and spacing of burrows varies considerably from one 

animal in every 5 m^ to 4 animals per m^ in most recognised grounds.
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1.12 GENERAL AIMS OF THIS STUDY

As has been explained above, heavy metals can accumulate in tissues of marine 

animals and interfere with many of biological functions in marine animals. They can 

also be lethal to marine animals at higher levels. When heavy metals enter the food- 

chain at elevated levels in the marine environment, they can also reach humans. 

Nephrops norvegicus is a very important commercial food for human consumption in 

many countries and the Clyde Sea is continuously contaminated with metals. There is 

little information available on heavy metal concentrations in Nephrops norvegicus or 

on the distribution of metals among tissues in relation to sex, size and season. In this 

study concentrations of metals (Hg, Cd, Cu, Zn and Fe) were measured in the tissues 

such as the gill, hepatopancreas, tail muscle, carapace, ovary and external eggs of 

Nephrops caught from the South of the Isle of Cumbrae in the Clyde Sea and the 

effects of sex, size and season on the metal concentrations of the tissues were 

investigated. Toxicity of metals dissolved in seawater was studied to find out lethal 

and sublethal concentrations of metals (methyl Hg, Hg, Cd, Cu, Zn and Pb) and 

influences of sex and size on metal accumulation and tissue distribution were 

investigated using sublethal concentrations of the metals. Accumulation of metals 

from food was also studied and comparison of tissue distribution among tail muscle, 

gill and hepatopancreas of heavy metals after exposure to metals in sublethal 

concentrations in seawater and food were investigated using triangular diagrams to 

investigate the dominant uptake route of metals into the tissues under laboratory 

conditions. There is also no information in the literature on the effects of heavy metals 

on physiological functions in Nephrops norvegicus such as responses of gill ATPases 

to heavy metal pollution. Characterisations of gill ATPases were first, carried out and 

effects of sublethal concentrations of heavy metals (Cd, Cu and Zn) in combination 

with the activities of gill ATPases such as Na,K-ATPase, Mg-ATPase and its 

oligomycin sensitive and insensitive components were investigated in relation to
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contamination gradient in male and female Nephrops under laboratory conditions. 

There are suggestions that heavy metals can be detoxified by induction of low 

molecular weight proteins such as metallothionein in the tissues of marine animals 

when they are exposed to elevated levels. However, there is no information in the 

literature indicating whether Nephrops norvegicus is able to induce metallothionein 

when exposed to heavy metals. Induction of metallothionein in the gill and 

hepatopancreas of the animals was investigated in relation to contamination gradient 

after exposure to heavy metals (Cd, Cu and Zn) in combination in male and female 

animals in laboratory conditions. The relationship between metal and metallothionein 

concentrations was also investigated. Studies were carried out under field and 

laboratory conditions to be able to apply the laboratory experiments to natural 

conditions. Size and sex of the animals were taken into account to be able to correct 

any error which might come from these parameters. ATPase activity in the gill of 

male animals was investigated in field samples using animals from ten stations 

(including the sewage dumping ground) of the Clyde Sea to find out if there were any 

variations in the activities of gill ATPases in relation to contamination gradient. Some 

measurements on the metal and ion concentrations of the gill and blood were also 

carried out. Metallothionein concentrations in the gill and hepatopancreas of male 

animals in different stations in the Clyde Sea area (including the sewage dumping 

ground) were also investigated in relation to contamination gradient. Heavy metal 

concentrations of the tissues were also measured and the possible relationship between 

heavy metal and metallothionein concentrations were investigated. Because Nephrops 

norvegicus in the Clyde Sea are infected by a fatal parasite related to Hematodium 

perezi (flagellata) in recent years, studies such as ATPase activity and metallothionein 

in the tissues of Nephrops norvegicus from different stations in the Clyde Sea were 

also investigated for effects of the infection on some parameters in the tissues of the 

infected and normal animals. Chapters of this study are as follows;
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Chapter 1 = General Introduction.

Chapter 2 =  Heavy Metal Concentrations of the Tissues of the Norway Lobster, 

Nephrops norvegicus; Effects of Sex, Size and Season.

Chapter 3 = Effects of Sex and Size on Metal Accumulation and Tissue Distribution 

of Heavy Metals from Sea Water by the Norway Lobster, Nephrops norvegicus 

Toxicities of Heavy Metals.

Chapter 4 = Accumulation of Heavy Metals from a Food Source and Comparative 

Routes of Mercury and Cadmium Accumulation and Tissue Distribution of Heavy 

Metals from Food Source and Sea water by the Norway Lobster, Nephrops 

norvegicus.

Chapter 5 =  Characterization of Gill ATPases and Effects of In Vivo Exposure to 

Cadmium, Copper and Zinc on the Activities of the Gill ATPases in the Norway 

Lobster, Nephrops norvegicus.

Chapter 6 = The Induction of Metallothionein in the Gill and Hepatopancreas of the 

Norway Lobster, Nephrops norvegicus After Exposure to Cadmium, Copper and 

Zinc.

Chapter 7 = Gill ATPase Activities and Some Parameters in the Gill and Blood of 

the Norway Lobster, Nephrops norvegicus from Contaminated and Uncontaminated 

Areas of the Clyde Sea; Effects of a Parasite Infection.
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Chapter 8 = Heavy Metal and Metallothionein Concentrations in the Gill of the 

Norway Lobster, Nephrops norvegicus from Contaminated and Uncontaminated Areas 

of the Clyde Sea; Effects of a Parasite infection.
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CHAPTER 2

HEAVY METAL CONCENTRATIONS IN SOME TISSUES OF THE 

NORWAY LOBSTER NEPHROPS NORVEGICUS: EFFECTS OF SEX, SIZE 

AND SEASON



2.1 INTRODUCTION

Metals occur naturally in sea water and many, such as copper, cobalt, iron, 

manganese, nickel, selenium and zinc are used for essential purposes by marine 

organisms. Crustaceans require copper, zinc and iron for their respiratory pigment, 

enzyme or body components and must accumulate them from ambient water and food 

to respond to the demands of metabolism. White and Rainbow (1985 ; 1987) 

estimated total requirements of some essential metals in decapod crustaceans to be 

84, 71 and 27 ng g~1 Cu, Zn and Fe respectively. Levels of essential metals in 

tissues can be regulated by decapod crustaceans at concentrations of dissolved metals 

below a threshold level. At metal concentrations above this threshold concentration, 

the regulation mechanisms break down and these metals are accumulated in 

proportion to the dissolved metal concentrations (Bryan, 1964 ; Bryan, 1967 ; White 

and Rainbow, 1982 ; Rainbow, 1985 ; Rainbow and White, 1989). Thus, the 

concentrations of essential metals in water may not be life threatening to the animals 

until threshold concentrations are reached. However, metals are released in industrial 

effluents, sewage and atmospheric pollution (Nolting, 1986 ; Mance, 1987 ; 

Langston, 1990 ; Guieu et al., 1991). Many experimental studies have shown that 

excess amounts of essential metals can cause elevated concentrations in crustaceans 

and cause mortality depending on concentration, time and species (Eisler and 

Hennekey, 1977 ; Ahsanullah and Amott, 1978 ; Price and Uglow, 1979 ; Jonhson 

and Gentile, 1979 ; Ahsanullah et al., 1981 ; Devineau and Amiard-Triquet, 1985 ; 

Bjerregaard and Vislie, 1986 ; Nugegoda and Rainbow, 1988) or interfere with 

normal processes of metabolism of crustaceans (Table 1.3).

Mercury and cadmium have no known role in biological systems. In addition to 

being present at low natural levels, they are contaminants of aquatic systems that are
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released by anthropogenic activities such as, from chlor-alkali plants, the use of 

fungicides, pesticides, antifouling preparations, mining and smelting facilities 

(Campbell et al., 1986 ; Mance, 1987 ; Langston, 1990). Berk and Colwell (1981) 

showed that mercury can be bioaccumulated by marine animals through the food- 

chain. The dominant route for accumulation of cadmium in Crustacea was found to 

be by food (Jennings and Rainbow, 1979 ; Davies et al, 1981). It is well known that 

accumulations of non-essential metals are greatly dependent on concentrations in 

ambient water, period of exposure and species. There is no evidence that tissue 

concentrations of non-essential metals can be regulated by crustaceans. These metals 

are accumulated and stored and concentration factors may reach many thousand fold 

(Nimmo et al., 1977 ; Jennings and Rainbow, 1979 ; Meadows and Erdem, 1982 ; 

Devineau and Amiard-Triquet, 1985 ; Riisgard and Famme, 1986 ; Krishnaja et al., 

1987).

The Norway lobster, Nephrops norvegicus is a widely distributed crustacean on the 

continental shelf of Europe. There are important inshore fisheries in countries 

bordering these waters and the consumption of Norway lobster has increased in 

recent years. In North-west Europe alone, landings of Norway lobster have increased 

from 25,000 tonnes in 1965 to 55,000 tonnes in 1985. In economic terms, the 

Norway lobster is the most important shellfish species in the United Kingdom 

(Howard, 1989). The Clyde Sea area receives anthropogenic inputs of pollutants 

(Mackay et al. 1972 ; Steel et al. 1973 ; Mackay, 1986), like most British waters 

(Allen and Rae, 1986 ; Campbell et al., 1986 ; Nolting, 1986 ; Langston, 1990 ; 

Cossa and Fileman, 1991) and supports a large fishery for Nephrops (Bailey et al. 

1986). This chapter reports the concentrations of mercury, cadmium, copper, zinc 

and iron in the tissues such as the carapace, hepatopancreas, gill, tail muscle, ovary 

and external eggs of Nephrops norvegicus sampled in different months of the year
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from the South of the Isle of Cumbrae in the Clyde Sea Area. Male and female 

animals were separated and size (carapace length) of the animals was taken into 

account in expressing the metal concentrations of the tissues. This study will also 

help for later studies if sampling period, sex and size of Nephrops norvegicus are 

important factors to consider in further experimental and field studies.

2.2 MATERIALS AND METHODS

The following methods of animal capture, dissection and heavy metal analysis have 

also been used in chapters 3 and 4 of this thesis unless otherwise indicated.

2.2.1 SAMPLING OF THE ANIMALS

All of the Norway lobsters, Nephrops norvegicus, were caught from south of the Isle 

of Cumbrae, Clyde Sea, Scotland (Figure 1.1).

2.2.1.1 Experimental Animals

Experimental animals were caught by trapping in creels, and transferred to a 

fibreglass stock holding tank which contained 1 tonne circulating sea water. The 

animals were allowed to acclimatise for a week. The animals were retained in 

circulated sea water which was continuously filtered, oxygenated and cooled. The 

experimental sea water was routinely tested for aquarium criteria by the aquarium 

technician and was approximately ; salinity 32 per thousand, pH.7.7, nitrite 0.33 mg 

NO2  H ,  nitrate 12.5 mg NO3 I-*.
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2 .2 .1 .2  Field Animals

Nephrops which would be used to measure natural concentrations of the metals were 

caught by trawling and brought to the laboratory. They were frozen at -20 °C for 

later use if analyses could not be done immediately. The following procedure was 

applied to the both natural and experimental animals.

2.3 DISSECTION

Carapace length (from the rear of the eye socket to the mid dorsal edge of the 

carapace) was measured to the nearest 0 .1  cm and male and female lobsters 

separated. Then, samples were carefully dissected using clean equipment to separate 

the tissues; carapace, hepatopancreas, gill, tail muscle, ovary and egg mass. Male 

testis was removed in order not to mix to with the hepatopancreas. Each tissue 

sample was weighed using a Precisa 300MC (Metagram Instruments Ltd., Aspley 

Guise, Buckinghamshire) top-pan balance and put in a marked clean glass petri dish. 

All samples were placed in an oven which was set to 60 °C to dry the samples. 

Drying was conducted for at least six days to ensure that all samples achieved a 

constant dry mass. Dry tissues were used to measure metal concentrations in both 

natural and experimental animals using the following techniques.

2.4 TRACE METAL ANALYSIS

2.4.1 Total Mercury Determination

Total mercury concentrations in tissues of Norway lobsters, Nephrops norvegicus 

were measured using a cold vapour, atomic absorption spectrophotometry technique,
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incorporating a Data Acquisition Ltd. DA 1500-DP6 Mercury vapour detector. All 

mercury analyses were done over two days. Samples were subjected to the following 

procedure before mercury measurements were obtained.

1-) In the first day, dry tissue samples of 0.050-0.300 g were weighed to the nearest 

0.001 g using a Precisa 300 MC (Metagram Instruments Ltd., Aspley Guise, 

Buckinghamshire) top-pan balance and placed in clean digestion tubes. 4 ml 

concentrated sulphuric acid and 1 ml concentrated nitric acid (Analytical grades) 

were added to the tubes to begin digestion. Samples were placed in a thermostatic 

water bath which was set to 57 °C (Grant Instruments Ltd., Cambridge, Barrington). 

Tubes were shaken occasionally to aid sample digestion.

2-) After tissue digestion had finished (about three hours), the tubes were taken from 

the water bath and put onto a bench to cool at room temperature. Then the tubes 

were placed in a refrigerator to cool to 4 °C.

3-) Potassium permanganate solution was made up in a dark glass bottle as 5 % (25 g 

potassium permanganate added (Spectrosol grade) to 500 ml distilled water) and 

placed onto a magnetic stirrer for at least three hours. This solution was cooled in a 

refrigerator for 30 minutes before using it.

4-) 2 ml aliquots of 5 % potassium permanganate were added to the cooled samples 

using a graduated syringe. After each 5% potassium permanganate addition, the 

tubes were placed back in the refrigerator for 10 minutes to prevent heating and 

frothing. In total, 14 ml of 5% potassium permanganate solution was added to each 

sample which effectively oxidised the tissue present. The tubes were left in the 

refrigerator overnight.

47



5-) 2% potassium permanganate solution (12 g potassium permanganate added to 

600 ml distilled water) was made up in a dark glass bottle and put onto a magnetic 

stirrer overnight.

6 -) 50% sulphuric acid solution was prepared by carefully adding, a few ml at a 

time, 300 ml of acid to 300 ml distilled water in a conical flask placed in a cold 

water bath. The flask was covered and left overnight.

7-) Reducing agent was prepared using 85 g tin (II) chloride in 250 ml distilled water 

and 250 ml hydrochloric acid in a conical flask. This mixture was aerated overnight.

8 -) On the following day, any precipitates in the samples were dissolved with 30 % 

hydrogen peroxide solution by adding dropwise, with great care since it causes 

heating and frothing.

9-) Each sample was transferred into a 25 ml volumetric flask and made up to 

volume with distilled water. Digesting tubes were rinsed with distilled water and the 

rinse was included in the 25 ml. After repeatedly inverting the volumetric flask to 

ensure complete mixing, part of each sample was poured into a numbered 10 ml 

beaker to await analysis.

10-) Standard mercury solutions were prepared using mercury (II) nitrate. For this, 

100 fi\ of the 2% potassium permanganate solution and 100 /*1 mercury (II) nitrate 

(BDH standard solutions) were added to a 100 ml volumetric flask and made up to 

volume with distilled water. Three replicate standard solutions were made up in this 

way, inverted repeatedly to ensure complete mixing and poured into beakers to await
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analysis.

11-) The 2% potassium permanganate solution was mixed with the 50% sulphuric 

acid in a dark glass bottle and cooled in the refrigerator for 30 minutes.

12-) Mercury determination was conducted by adding 20 ml of the acidified 

potassium permanganate solution, 25 ml distilled water and 1 ml of sample to a 

Dreschel flask ; this mixture was reduced with 10 ml of the reducing agent and any 

free mercury so produced drawn through magnesium perchlorate drying agent and 

into the analyser. 'Background' mercury levels in chemicals used were measured by 

repeating the above procedure, but not using the 1 ml of sample. All readings from 

the analyser were subsequently corrected for the 'blank' (background) readings. 

Calibrations of the analysis were performed with replicate analyses of standard 

mercury (II) nitrate solutions; 100 fil (equivalent to 100 ng of mercury) of the 

standard solution was analysed as above. The relationship between the reading 

obtained from the analyser and the amount of mercury in the standard solution was 

linear and therefore, only one concentration of mercury (II) nitrate solution was 

analysed. The above procedure allowed up to 40 samples to be analysed; blank and 

standard readings were checked regularly during the course of sample analysis. All 

chemicals used were of 'Spectrosol1, 'Analar' or 'Puranal' analytical grades 

throughout. The mercury vapour detector was allowed to equilibrate to its working 

temperature for at least 2  hours prior to every set of analyses.

The following steps were followed to determine the mercury concentration in a 

particular sample.

1-) Blank readings were subtracted from standard readings, and the mean 100 ng
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standard reading obtained.

2-) The blank reading was subtracted from the sample reading and the amount of 

mercury (in ng) determined as follows;

Reading

Mean standard / 100

3- The mercury concentration ( pg g‘ l) in a tissue is given by.... 

ng mercury * 25

sample dry weight ( g) * 1000

2.4.2 Organic Mercury Determination

Extraction of organic mercury in the tissues of Nephrops norvegicus was carried out 

using an adaptation of the method of Uthe et al. (1972).

1-) Dry tissue samples were weighed using the same equipment. Tail muscle was 

finely ground, while hepatopancreas was mashed with acid washed sand. The ground 

samples were mixed with 10 ml 0.1 M copper sulphate solution (25 g copper 

sulphate added to 1 litre distilled water), 5 ml acidic sodium bromide solution (250 g 

sodium bromide added to 565 ml distilled water, to which was added 89 ml of 

sulphuric acid and distilled water making a total volume of 806 ml with distilled 

water) and 10 ml of toluene in a centrifuge tube. The tubes were covered with cling
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film to prevent evaporation of toluene and their contents mixed very well by shaking 

by hand. Methyl mercury was released as methyl mercury bromide into the organic 

(toluene) phase.

2-) Samples were centrifuged for 15 minutes at ca. 4000 revolutions per minute. 5 

ml of toluene was taken with a graduated syringe and transferred to a second smaller 

centrifuge tube.

3-) 2 ml of 0.005 M sodium thiosulphate (stock 0.05 M solution, 12.4 g sodium 

thiosulphate added to 1 litre distilled water; 0.005 M solution prepared from this 

solution by diluting it 10 times) and 5 ml of the toluene sample were mixed 

thoroughly. By this process methyl mercury bromide was converted into methyl 

mercury thiosulphate which passed into the aqueous phase.

4-) The toluene/sodium thiosulphate mixture was centrifuged for 10 minutes at ca. 

2 0 0 0  revolutions per minute. 1 ml of sample from the aqueous phase was taken with 

a graduated syringe and placed in a Kjeldahl flask. This sample in the flask was 

placed in a water bath at 50 °C for 1 hour to drive off toluene as the analyser was 

found to be sensitive to toluene. The 1 ml of extracted sample contained 25 % of the 

methyl mercury present in sample.

5-) After extraction of methyl mercury, the mercury content was read following the 

same procedure explained earlier. All chemicals used were of ’Puranal, Analar or 

Spectrosol' analytical grade throughout.

Extraction method efficiency and reproducibility were previously compared by 

performing extraction of standard solution of methyl mercury standard from the same
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laboratory (Thomson, 1991). He indicated that there was no significant difference 

between direct measurement of methyl mercury standards and extracted samples.

2.4.3 Determination of Metals Other than Mercury

Concentrations of cadmium, copper, zinc, lead and iron in the tissues of Nephrops 

norvegicus were determined using the following technique.

1-) 0.050-1.00 g of dry tissue samples (0.5-1.0 g of tissue samples which were 

expected to show low concentrations, e.g. tail muscle) of the animals were weighed 

(to the nearest 0.001 g) using the same equipment. They were transferred to 50 ml 

clean digestion flasks. 10 ml nitric acid was added to each flask. The flasks were 

then placed on a hot plate (temperature adjustable porcelain B290 J.Bibby Science 

Products Ltd., Stone, Staffordshire, England) in a fume cupboard.

2-) The hot plate was initially set to number 6  (100 °C), and the samples were left at 

this temperature for at least four hours, shaking occasionally. After all the samples 

were dissolved at that temperature, the hot plate's setting was increased to number 7 

(200 °C). Samples were boiled at this temperature for 20 minutes.

3-) Digested samples were taken off the hot plate and the flasks were put on a bench 

to cool for one hour. The cooled sample solutions were poured into 25 ml clean 

volumetric flasks and made up to volume with double distilled water. The digestion 

flasks were rinsed with the same water and these rinsings made up part of the 25 ml. 

The volumetric flasks were inverted repeatedly to ensure complete mixing and each 

sample was poured into a clean plastic bottle (50 ml volume) to await analyses.
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4-) Concentrations of the metals in the tissues of the lobsters were measured by flame 

atomic absorption spectrophotometry (Philips PU9200 spectrophotometer, Pye 

Unicam Ltd., York Street, Cambridge, England). The instrument is an automated 

analytical instrument which incorporates advanced processing facilities and operates 

under a central control microprocessor. An array of sensors provides input and 

output data to the processing system which constantly monitors the instrumental 

conditions and provides analytical results. The instrument burns a mixture of air and 

acetylene gases and uses one hollow cathode lamp and one background correction 

(deuterium) lamp. Readings of the metals were done by the instrument in 0.5 nm 

bandpass, scanning from 200 nm at a rate of 10.0 nm/min. Lamp current and 

wavelength were changed by the instrument automatically depending on the chosen 

metal. Zinc, iron, cadmium, copper and lead were read by the instrument at 

wavelengths of 213,9 nm, 248.3 nm, 228.8 nm, 324.8 nm and 283.3 nm 

respectively.

5-) Standard solutions of the metals were prepared by diluting with double distilled 

water, standard solutions for atomic spectroscopy (BDH Chemicals Ltd., Poole, 

England). Standards were prepared in the following ranges to obtain the best linear 

line drawn by the instrument. When standards do not give a linear calibration, the 

instrument gives a warning sound so that standards could be repeated or reprepared. 

The following concentrations of the metals were prepared for standard calibrations. 

These levels showed linear relationships with absorbance values.

Cd =  50, 100, 500 and 1000 ng H  

Cu =  500, 1000, 5000 and 10000 ng l" 1 

Zn = 250, 500, 1000 and 2500 ng I' 1 

Fe = 1250, 2500, 5000 and 10000 nS I' 1 

Pb =  50, 100, 500 and 1000 nS H
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After calibration of the instrument was completed by using the above standards, one 

or two standards were also repeated in every ten samples to check validity of the 

instrument. The following steps were applied to calculate the concentration of a 

metal in a tissue. Absorbance values and concentrations of the metals in aspirated 

solutions were obtained from the instrument. The concentration values were 

multiplied by dilution factor (25 ml) and divided by dry weight of tissue.

During the digestion of samples, two reference materials (TORT 1 lobster 

hepatopancreas, National Research Council, Canada) were also included and their 

metal concentrations were measured in the same way as that of samples. Mean values 

and standard deviations of reference material measured with the above instrument 

and method are given together with their certified values in the following table.

Table 2.1. Concentrations of metals and standard deviations in the reference material by 
methods explained above. Concentrations are given as pg metal g '”* dry weight (R.C. = 
Reference concentrations, P.C. = Present concentrations of the lobster hepatopancreas 
determined by the above method and instrument).

Mercury Cadmium Lead Copper Zinc Iron

R.C.

P.C.

0.33±0.06 

0.36±0.04

26.3±2.1 

23.9±0.4

10.4±2.0 

10.7±0.6

439±22

398±13

177±10 

170±4.2

186±11 

175±8.8

2.5 STATISTICAL ANALYSES OF DATA

Trace metal concentrations in the tissues of 288 Nephrops norvegicus were 

statistically analysed to investigate if there were seasonal differences. As levels of 

some metals (e.g mercury) are known to be different between sexes, the male and 

female animals were separated. Trace metal concentrations may vary with size (e.g.
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mercury, Davies and McKie, 1983), so carapace lengths of the animals were also 

investigated.

Linear regression analyses (e.g. Draper and Smith, 1981) were used to investigate 

the relationship if any, between trace metal concentrations (c) and carapace length (1) 

and month (m). For each metal, tissue and sex, 5 models were considered to find the 

best description of the data.

Model 1, c = a ±  error.

Metal concentration shows no relationship with either month or carapace length. 

Model 2, c = a +  b(l - 1) ±  error.

Metal concentration varies linearly with carapace length; this relationship is the same 

in each month.

Model 3, c =  am ±  error.

Metal concentration varies with month; there is no relationship with carapace length. 

Model 4, c = am +  b (1 - 1) ±  error.

Metal concentration varies linearly with carapace length. The slope is the same in 

each month. However, the intercept varies with month.

Model 5, c =  am +  bm (1 - 1) ±  error.

Metal concentration varies linearly with carapace length. The slope and intercept 

both vary with month.

In all of these models, I is the mean carapace length of the whole sample (4.2 cm).
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The parameter am is the mean concentration in month m (adjusted if necessary to 

correspond to Nephrops length of 4.2 cm), and parameter bm is monthly variation in 

mean concentration or slope, then {am} and {bm} reduce to a and b respectively. 

The errors are assumed to be independent and normally distributed with zero mean 

and constant variance; this assumption appears consistent with the data.

The process of model selection is as follows. Model 5 was first fitted to the data. To 

test whether model 4 was an adequate simplification, model 4 was then fitted to the 

data and the residual sums of squares from both models were compared using an F- 

test (Draper and Smith, 1981). If model 4 was an adequate simplification, then it is 

possible subsequently to test whether we can simplify still further (e.g. model 2 or 3) 

by further F- tests. In this way, the most suitable model for each data set can be 

obtained. Tissues which showed trace metal concentrations according to model 1 and 

model 5 were not further examined in seasonal graphs. They are shown only as mean 

metal concentrations and standard deviations of tissues, because metal concentration 

does not depend on either month or size in model 1 and month and size show an 

interaction in metal concentration in model 5. Tissues which were suitable for model 

3 and model 4 are shown in seasonal variation graphs giving estimated mean values 

of metals in the tissues and standard errors. In the case of model 3, mean metal 

concentrations and standard error are shown in graphs since carapace length is not a 

significant factor to take into account. But in case of model 4, concentrations of 

metals were adjusted for carapace length (I chose the mean carapace length of the 

whole sample 4.2 cm as a standard) and associated standard errors. In this way, 

expected concentrations of the metals were calculated. Metal concentrations (on a dry 

weight basis) of male and female animals were reported as mean levels and standard 

deviations of the whole sample throughout the sampling period (Table 2.3). 

However, they could not be compared statistically due to effects of size and season.
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Where required for comparisons with other published studies, wet mass equivalent 

concentrations can be estimated by using the wet to dry mass conversion ratios 

determined for each tissue (Table 2.4). The relationships between size and metal 

concentrations of tissues could not be shown on graphs using all samples because 

carapace length of samples differed significantly among months and also metal 

concentrations in most tissues varied among months.

2.6 RESULTS

Carapace length and number of male and female Nephrops norvegicus caught in 

different months of the year are given in Table 2.2. Mean concentrations of the 

metals in the tissues of male and female Nephrops are also given with associated 

standard deviations (Table 2.3).

Table 2.2. Following table shows numbers of male and female animals captured in different 
months of a year. Mean carapace length (cl) of samples are also given in this table.

Date Male
No mean cl

Female 
No mean cl

December 1989 24 4.8 6 5.0

January 1990 7 5.4 9 4.1

February 1990 6 4.4 2 5.3

March 1990 120 3.8 12 3.5

May 1990 20 3.7 18 3.6

July 1990 2 4.5 5 5.5

August 1990 6 4.5 26 5.6

October 1990 13 4.0 15 5.3
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Table 2.5. The following table shows the results of linear regression analyses. The most 
suitable models for the tissues of each sex are described in this table with assosiated P 
values. CL=Carapace length, C&CL = Relationship (+ or -) between carapace length and 
metal concentration in a tissue, int = Interaction between carapace length and month.
* = P < 0.05, ** = P < 0.01, *** = P < 0.001.

TISSUES METAL SEX C&CL CL P MONTH P MODEL

Carapace Hg Male ns *** 3
Hepatopancreas ns *** 3
Gill int int 5
Tail muscle + ** * * * * 4

Carapace Hg Female int int 5
Hepatopancreas ns * * * 3
Gill + * * ★ * 4
Tail muscle + * * * *** 4

Carapace Cd Male int int 5
Hepatopancreas + * *  * *** 4
Gill ns * * 3
Tail muscle int int 5

Carapace Cd Female int int 5
Hepatopancreas + *** ns 2
Gill ns * * 3
Tail muscle int int 5

Carapace Cu Male ns * * 3
Hepatopancreas + * * * * 4
Gill - * ns 2
Tail muscle - *** * * * 4

Carapace Cu Female ns *  it 3
Hepatopancreas + * * 4
Gill - *  ★ ns 2
Tail muscle - * *  *  * 4

Carapace Z n Male * * 4
Hepatopancreas ns •kit it 3
Gill ns ns 1
Tail muscle ns it it it 3

Carapace Zn Female ns it 3
Hepatopancreas ns it 3
Gill ns ns 1
Tail muscle int int 5

Carapace Fe Male ns *** 3
Hepatopancreas ns ** 3
Gill ns *** 3
Tail muscle - * ns 2

Carapace Fe Female ns *** 3
Hepatopancreas ns ns 1
Gill ns ns 1
Tail muscle ns ns 1



2.6.1 Mercury

Table 2.3 shows that female animals had higher mean concentrations of mercury in 

their gill and tail muscle than male animals, while males showed higher mean 

concentrations of mercury in their hepatopancreas. Mercury concentrations of 

carapace were similar between sexes. For males the order of tissue concentration was 

gill >  tail muscle > hepatopancreas >  carapace. For females this order was gill > 

tail muscle > hepatopancreas >  ext. eggs > carapace > ovary. Regression analysis 

showed all the tissues which statistically analysed showed seasonal variations of 

mercury concentrations, except for the gill of male animals and carapace of female 

animals whose interactions were found between size and month (Table 2.4). 

Significant seasonal variations are shown in Figures of 2.1 and 2.2. Positive 

relationships were found between carapace lengths and mercury concentrations of tail 

muscle for male and female animals (P< 0.001) (Table 2.5). The mercury 

concentrations in gills of female animals also showed a positive relationship with 

carapace length (P<0.05).

2.6.2 Cadmium

Cadmium concentrations in female animals were also higher than in male animals in 

all tissues. Tissue concentration order for males was hepatopancreas >  gill > 

carapace >  tail muscle, whereas this order for females was hepatopancreas >  gill 

>  ex. egg >  ovary > carapace > tail muscle (Table 2.3). Regression analyses 

revealed that male and female animals showed positive relationships between 

carapace length and cadmium in their hepatopancreas (P <  0.001) while gills of the 

both sexes did not show any size dependent variations in cadmium concentrations. 

Cadmium concentrations in the carapace of both male and female animals, however,
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showed interaction between size and month (Table 2.5). Male animals had seasonal 

variations of cadmium in their gill and hepatopancreas (P<0.01 and P <  0.001, 

respectively) while female animals had only variation of cadmium concentration in 

their gill (P<0.01). These seasonal variations are shown in Figures 2.3 to 2.4.

2.6.3 Copper

Copper concentrations in the hepatopancreas were higher in females than in males, 

but in the gill tissue of males showed higher concentrations than females, while in 

the carapace and tail muscle levels were similar (Table 2.3). Tissue concentration 

order for males was hepatopancreas > gill > carapace >  tail muscle, whereas this 

order for females was hepatopancreas > gill > ovary > ex. egg > carapace > tail 

muscle. Regression analysis showed that except for carapace, copper concentrations 

in all tissues had significant relationships with carapace length. These relationships 

were positive in the hepatopancreas while they were negative in the gill and tail 

muscle of both male and female animals (Table 2.5). Seasonal patterns of the tissues 

from male and female animals also showed similarity between male and female 

animals. All the tissues except the gill showed significant variations between months 

(Table 2.5). These variations are shown in Figures 2.5 to 2.8.

2.6.4 Zinc

Concentrations of zinc in the tissues of males and females were very similar (Table 

2.3). Tissue concentration order in males was hepatopancreas >  gill >  tail muscle 

>  carapace, while the order for females was hepatopancreas >  gill >  ex. egg > 

ovary >  tail muscle >  carapace. Regression analysis revealed that zinc 

concentration in the carapace of male animals showed a significant relationship with
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size (P<0.05) whereas the other tissues did not show any size related differences in 

zinc concentrations (Table 2.5). The carapace and hepatopancreas showed seasonal 

variations in zinc concentration in male and female animals. Male tail muscle also 

showed significant seasonal variations in zinc concentration (P<  0.001) while levels 

in female tail muscle showed an interaction between size and season (Table 2.5). The 

gill of both sexes did not show seasonal variation in zinc concentration. Significant 

seasonal variations are shown in Figures 2.9 to 2.12 .

2.6.5 Iron

Table 2.3 shows that iron concentrations in the carapace, hepatopancreas and tail 

muscle of males were higher than in females. Tissue concentration order for males 

was gill > carapace >  hepatopancreas > tail muscle, whereas the order for females 

was gill > ex. egg >  carapace > hepatopancreas >  ovary >  tail muscle. The 

carapace, hepatopancreas and gill tissues of males showed seasonal variation in iron 

levels, while females showed seasonal variation in iron levels only in the carapace 

(Table 2.5). A negative relationship between carapace length and iron concentration 

was found (p<0.05) in the tail muscle of males but not in females, while the other 

tissues did not show any size related relationship (Table 2.5). Significant seasonal 

variations in iron concentrations are given in Figures 2.13 to 2.15.
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2.7 DISCUSSION

Mean mercury concentrations in the tail muscle of Nephrops norvegicus in this study 

were similar to levels presented by Davies and McKie (1983) from the Clyde sea 

area and Lima (1984) from Portuguese waters. Studies in Italian waters found higher 

levels of mercury in the tail muscle of the animals (Renzoni, 1980 ; Viviani, 1983 ; 

Capelli et al., 1983). Santoro and Koepp (1986) found higher concentrations of 

mercury in muscle and hepatopancreas of the blue-claw crab, Callinectes sapidus 

from New Jersey, USA. A positive relationship between body size and mercury 

concentration in the tail muscle of Nephrops norvegicus is an agreement with results 

of Davies and McKie (1983) ; Lima (1984) ; Renzoni (1980) ; Capelli et al. (1983). 

Davies and McKie (1983) and Lima (1984) found differences in mercury 

concentrations of tail muscle in the same size of female and male Nephrops. In this 

study differences between sexes were not statistically compared due to seasonal and 

size dependent variations. Mean values of tissue metal concentrations were given in 

Table 2.3. This table clearly shows the difference in tail muscle mercury 

concentrations between the sexes. This difference can be related to growth rate 

differences between male and female Nephrops. Male Nephrops norvegicus grow 

much faster than females (Davies & McKie, 1983 ; Howard, 1989). Therefore, the 

same ages of animals would have different sizes; males being larger than females of 

the same age. This means that females of the same size as males have lived in 

ambient mercury concentrations for a longer time. However, higher levels of 

mercury were found in the hepatopancreas of male Nephrops than were found in 

females. Data in Chapter 4 show that males have higher feeding rates than females 

and distribution of mercury to the hepatopancreas is more by the food route than by 

direct uptake from water, so higher concentrations of mercury in the hepatopancreas 

of males might come from greater food intake. Although Nephrops norvegicus
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moults at any time of the year, peak periods occur in March and April, and from 

July to November. Peak periods of moulting activity are generally more pronounced 

in females, which must moult before mating takes place (Howard, 1989). Results 

showed that mercury levels in all tissues varied seasonally. Female carapace and 

male gills showed interactions between size and season which did not allow analysis 

of seasonal and size dependent variations individually. Moulting might cause the 

biggest variation in mercury levels in tissues, but this may also be influenced by 

varying conditions of ambient sea water and diet. Tugrul et al (1980) indicated that 

mercury levels can vary in marine organisms with season. Sivadasan and Nambisan

(1988) also showed that mercury levels varied with season in the prawn, 

Metapenaeus dobsoni.

Cadmium distribution among the tissues of Nephrops norvegicus was similar to that 

reported in some other studies. Ray et al. (1981) found that in the lobster, Homarus 

americanus from contaminated and uncontaminated areas of Canada and USA the 

hepatopancreas contained more than 90 % of the body burden of cadmium. High 

concentrations of cadmium were also present in the green gland and gills. Davies et 

al. (1981) also found highest concentrations of cadmium in the hepatopancreas of the 

crab, Cancer pagurus. They also indicated that tissue cadmium levels showed great 

variations in the same tissue of different animals. Overnell and Trewhella (1979) 

found high levels of cadmium in the hepatopancreas of Cancer pagurus, as found in 

this study for Nephrops norvegicus. Ray et al. (1981) indicated that there can be 

wide variations in cadmium concentrations in the same tissues of different animals, 

even within the same size class. They also indicated that individuals with high 

cadmium levels in one tissue generally tend to have high levels in other tissues. 

Positive correlation between size and hepatopancreas cadmium in this study also 

agrees with the results of their study. Uthe et al. (1982) found great variations and
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very high concentrations of cadmium in American lobster, Homarus americanus. 

They indicated that two different sites of Belleduna Harbour, New Brunswick, 

Canada showed different cadmium concentrations in tissues from the lobsters. Data 

from both areas are quite high when compared to the present data for the 

hepatopancreas, though tail muscle levels of cadmium from both sites were low, as 

for tail muscle of Nephrops. White and Rainbow (1989) indicated that the variations 

in cadmium concentrations of Systellaspis debilis could be related to dietary 

enrichments of cadmium from different areas. Cadmium concentrations in the tail 

muscle of Nephrops were also different in studies from different areas. For example, 

Murray (1981) could not detect (< 0 .2  pg g- l) cadmium in the tail muscle of 

Nephrops norvegicus, and Capelli et al. (1983) found mean concentrations of 0.14 pg 

g"l in the tail muscle, whereas Viviani (1983) found concentrations of only 0.053- 

,0.087 pg g~l. But Schuhmacher et al. (1990) found Cd concentrations in Nephrops 

to be between 0.161-0.547 pg g"* w.w. from coastal waters of Spain. Differences 

among the other studies and the present study or any other crustacean in cadmium 

concentrations could be due to different concentrations of cadmium in sea water or 

food. Size and sex of samples or season which the animals were caught could be 

important to record since true comparisons can not be done otherwise. In the present 

study, hepatopancreas cadmium showed size and season effects in males, while it 

showed only a size effect in females. Higher concentrations of cadmium in the 

hepatopancreas of female animals could be due to higher carapace length of the 

animals. It has been shown that food can be a dominant uptake route for cadmium, 

especially for the hepatopancreas (Jennings and Rainbow, 1979 ; Davies et al., 

1981). As indicated earlier, male Nephrops have higher feeding rates than females. 

So, seasonal changes in diet conditions would affect cadmium concentrations of 

males' hepatopancreas more than that of females' hepatopancreas. Seasonal 

variations in cadmium concentrations of the gill should come from seasonal variation
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of ambient water condition, because food does not affect cadmium concentrations of 

the gill (Davies et al., 1981 and Chapter 4).

Copper concentrations in the tail muscle of Nephrops norvegicus have previously 

been found to be similar to the present results (Murray, 1981 ; Capelli et al., 1983). 

Copper concentrations vary greatly between tissues of decapod crustaceans, even in 

the same species (Bryan, 1964 ; 1967 ; 1968 ; Murray and portman, 1984). 

Nugegoda and Rainbow (1988) indicated that decapod crustaceans from different 

locations can show big differences. Two prawn species Pandalus montagui and 

Palaemonetes varians showed enormous variations between the species from 

different habitats. Copper concentrations in the tissues of Nephrops vary far more 

than those for zinc, as Bryan (1964) found for Homarus vulgaris though the 

distribution of copper among the tissues of Nephrops was similar to those for other 

decapod crustaceans which have been summarised by Bryan (1968). Mean copper 

concentrations in the hepatopancreas of Homarus americanus were higher than found 

in the hepatopancreas of Nephrops, whereas ovary and shell copper concentrations 

were lower than found in this study for ovary and carapace. Cuadras et al. (1981) 

found higher levels of copper in the tissues of the hermit crab, Dardanus arrosor 

than found in Nephrops, whereas Arumugam and Ravindranath (1983) found lower 

concentrations of copper in the hepatopancreas of Scylla serrata than found in this 

study. They also indicated that there was not any significant difference between male 

and female animals in the concentrations of copper. Darmono and Denton (1990) 

found a positive relationship between size and copper concentrations in decapod 

crustaceans, whereas White and Rainbow (1987) and Rainbow and Abdennour

(1989) found positive relationships between copper concentrations and dry weights in 

crustacean species. In the present study, size negatively affected concentrations of 

copper in the gill and tail muscle in male and female animals, while the
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hepatopancreas showed a positive size effect in both sexes. The gill tissue did not 

show any seasonal effects in either sex, while the carapace and tail muscle showed 

seasonal variations in both sex. Bryan (1967) indicated that most of the copper in 

muscle tissues in Crustacea is the result of contamination of cellular spaces by the 

blood. Seasonal changes in the blood concentrations of copper could affect copper 

concentrations of the tail muscle. Moulting also affects copper concentrations of the 

tissues, especially the carapace and hepatopancreas. Belleli et al. (1988) indicated 

that haemocyanin concentrations from the Mediterranean lobster, Palinurus elephas 

differ between the sexes and change in relation to the period of the year. 

Haemocyanin is a protein which contains copper. Changes of haemocyanin 

concentrations may indicate changes in copper concentrations of the tissues from the 

lobster as well. Engel (1987) also found significant variations in copper 

concentrations of the haemolymph and digestive gland of the crab, Callinectes 

sapidus among moult, premoult and intermoult stages, having hihgest levels in 

premoult stage and lowest in soft crab stage.

Zinc concentration is relatively less variable in the same tissues of Nephrops 

norvegicus when it is compared to the other essential metals studied. But variations 

among the different species of decapod crustaceans can be enormous. Ober et al.

(1987) found zinc concentrations in decapod crustaceans to be between 36-464 pg g~ 

1 d.w., and Bryan (1968) found variations to be between 18-49 pg g"l w.w. among 

a large variety of species. Zinc concentrations in the tissues of Nephrops norvegicus 

were found to be within this range. The concentrations of zinc in Nephrops seem to 

be higher than at least in some tissues of Homarus vulgaris, such as hepatopancreas, 

gill and carapace, while the others are more or less similar (Bryan, 1964). Murray 

(1979) and Capelli et al. (1983) showed similar zinc concentrations in the tail 

muscle of Nephrops norvegicus to the present results. Darmono and Denton (1990)
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found the lowest concentrations of zinc to be in the muscle tissues of juvenile banana 

prawn Penaeus merguinsis and juvenile leader prawn Penaeus monodon, whereas the 

highest levels of zinc were found in the hepatopancreas of the animals. Zinc 

concentrations of the tissues from Nephrops were very similar between male and 

female animals. Cuadras et al. (1981) indicated that there were no differences in 

concentrations of zinc in the organs studied between male and female hermit crab, 

Dardanus arrisor. White and Rainbow (1987) indicated that zinc concentrations 

decrease slightly with increasing dry weight of Systellaspis debilis. Rainbow and 

Abdennour (1989) found that total body zinc concentrations did not change 

significantly in the same species. In this study, except in the case of carapace of male 

animals, size did not affect zinc concentrations. Seasonal variations were found to be 

significant for the all tissues except the gill of the either sex and tail muscle of female 

animals. Seasonal variations of zinc could be due to moulting at different times of the 

year. Engel (1987) found significant variations in zinc concentrations of the 

haemolymph and digestive gland of the crab, Callinectes sapidus among moult, 

premoult and intermoult stages, with highest levels in premoult stage and lowest in 

soft crabs, and Engel and Brouwer (1987) found that zinc levels varied seasonally in 

relation to both moult and ambient temperature. However, Sivadasan and Nambisan

(1988) could not find seasonal variations in zinc levels in the edible part of the prawn 

Metapenaeus dobsoni.

Iron concentrations in the tissues of male and female Nephrops were very different 

and enormous variations were found in the same sex. Males showed higher mean 

concentrations of iron in their carapace, hepatopancreas and tail muscle, while 

female animals showed higher mean concentrations of iron in their gill tissue. 

Ridout et al. (1989) found Fe concentrations to be between 13.7-80.9 pg g-* d.w. in 

a large variety of crustacean species from the North East Atlantic Ocean. Ober et al.
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(1987) found Fe concentrations to be between 86-374 pg g- l d.w. in commercial 

decapod crustaceans from Chilean waters. Depledge (1989) found highest 

concentrations of iron in the gill tissue of Carcinus maenas. Present results showed 

that the highest iron levels were present in the gill tissue of Nephrops followed by 

carapace. Iron concentrations in the tissues of Nephrops showed great variation in 

male and female animals. White and Rainbow (1987) found Fe concentrations to be

38.1 pg g 'l  d.w. in Systellaspis debilis, indicating that iron concentrations decreased 

with increasing dry weights of the animals. The present study showed that size did 

not affect iron concentrations of the tissues, except for a negative relationship 

between iron levels in the tail muscle and carapace length of male animals.

This study showed that heavy metal concentrations in the tissues of Nephrops 

norvegicus in the Clyde Sea varied with season and size of male and female animals. 

Seasonal variations were a very important factor for all metals. This could be related 

mainly to the timing of moult, though variations in metal concentrations of sea water 

and diet may explain some of the variation. Although size was a significant factor 

affecting levels of most metals, it was a much more important factor for 

non-essential metals mercury and cadmium. Positive relationships between size and 

concentrations of mercury and cadmium could be interpreted as the result of 

continuous accumulation of these metals with no regulation. Differences in metal 

levels between the sexes might be related to differences in the metabolic activity, 

feeding and growth rates of the sexes. There was no evidence from this study that 

ambient levels of essential metals in the Clyde Sea area exceeded levels that can be 

regulated by Nephrops and thus essential metals are unlikely to present a toxic hazard 

to this population. Levels of non-essential metals were similar to those reported in 

several other studies of Nephrops norvegicus and other Crustacea and appear also to 

be unlikely to present a toxic hazard. However, it should be noted that there are
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substantial variations in the metal levels in tissues due to season, size or sex, and this 

might have important implications for regulatory practice. These differences between 

seasons and sizes of animals also make comparisons between studies more difficult 

since data are often presented without reference to the size, sex and moult stage of 

animals sampled.
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CHAPTER 3

EFFECTS OF SEX AND SIZE ON THE ACCUMULATION AND TISSUE 

DISTRIBUTION OF HEAVY METALS FROM SEA WATER BY THE 

NORWAY LOBSTER NEPHROPS NORVEGICUS; TOXICITIES OF HEAVY 

METALS



3.1 INTRODUCTION

Marine animals naturally contain some heavy metals such as copper, zinc, iron and 

cobalt and accumulate them from sea water and food for normal functions of 

metabolism. Others, such as mercury, cadmium and lead have no biological function 

but also accumulate in marine animals. All heavy metals can be toxic in high 

environmental concentrations. Many areas of developed coastlines and estuaries are 

subject to anthropogenic inputs of heavy metals (Langston, 1990). Marine animals 

may accumulate heavy metals continuously from surrounded sea water, and tissue 

levels may rise to toxic levels for animals themselves or for humans who eat them . 

One of the best known heavy metal pollution incidents in the marine environment is 

the Minamata disaster, which caused many human deaths, impaired vision, loss of 

motor co-ordination, neurological abnormalities, hormonal and enzymatic 

disturbances (Salvatore et al. 1977). After the Minamata disaster, much attention has 

been focused on heavy metal pollution and many experiments have been carried out 

to examine the uptake and toxic effects of non-essential and essential metals.

The concentration of a metal which kills an aquatic organism depends both on the 

metal and on the organism. Generally speaking, mercury, silver and copper are the 

most toxic metals, followed by cadmium, zinc and lead. This order of toxicity is not 

rigid and varies among species (Bryan, 1971). There are also differences between 

different forms of the same metal in the effects on marine animals. For example, 

organic mercury has a greater accumulation rate, lower lethal concentrations and 

slower elimination than inorganic mercury (Ray and Tripp, 1976 ; Fowler et al., 

1978 ; Riisgard and Famine, 1986). There are also different effects on metabolic 

processes in Crustacea (Kraus and Kraus, 1986; Kraus and Weis, 1988).
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Accumulation of heavy metals, especially non-essential ones, is greatly dependent on 

concentration in the ambient water and the period that animals are exposed to that 

concentration, though there are other factors which affect accumulation such as 

temperature and salinity (Philips, 1980; Mance, 1987). Levels of essential metals 

such as copper and zinc can be regulated by decapod crustaceans at concentrations 

of dissolved copper and zinc below a threshold level. Accumulation of these metals 

only begins after the regulation mechanisms break down at metal concentrations 

above the threshold (Bryan, 1964 ; White and Rainbow, 1982 ; Rainbow, 1985 ; 

Bryan, 1986). By contrast, body levels of non-essential metals such as mercury, 

cadmium and lead cannot be regulated by Crustacea. They are accumulated by 

Crustacea in proportion to the concentrations of these metals in water (Nimmo et al., 

1977 ; Meadows and Erdem, 1982 ; Devineau and Amiard-Triquet, 1985 ; Riisgard 

and Famme, 1986 ; Krishnaja et al., 1987; Pastor et al., 1988). Crustaceans can 

develop enhanced tolerance to heavy metals by living in contaminated waters. They 

can survive in concentrations that animals from relatively clean environments cannot 

tolerate and may contain higher levels of metals in their tissues (Uma Devi, 1987 ; 

Uma Devi and Prabhakara Rao, 1989 ; Kraus et al., 1988).

Although there have been many studies on accumulation of heavy metals from sea 

water in crustacean species, no previous study has examined accumulation of metals 

from sea water by the Norway lobster, Nephrops norvegicus. Few studies have 

taken sex and size of animals into account in relation to metal accumulation and 

distribution among tissues. Fisheries for the Norway lobster, Nephrops norvegicus 

have increased over the last ten years and in economic terms Nephrops has now 

become the most important shellfish species in the U.K. as well as an important 

commercial species in many other countries (Howard, 1989), and so a better 

understanding of its sensitivity to heavy metal pollution is desirable. This study
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reports on accumulation and tissue distributions of metals in animals exposed to 

sublethal concentrations of metals in sea water over a 30-day period. Studies were 

conducted in tissues such as carapace, hepatopancreas, gill, tail muscle, ovary and 

external eggs using metals such as organic mercury, inorganic mercury, cadmium, 

copper, lead and zinc. Size and sex of the animals were taken into account in 

expressing the tissue concentrations since metal concentrations may vary between 

sexes and with size (e.g. mercury) (Davies and McKie, 1983 ; Lima, 1984). 

Mortality studies were also carried out to determine toxicities of the metals to the 

animals.

3.2 MATERIALS AND METHODS

Nephrops norvegicus were caught on various dates from September 1990 to 

September 1991, from south of the Isle of Cumbrae in the Clyde Sea by trapping in 

creels. Sea surface temperatures at the times of collection were around 8-15 °C. The 

animals were transferred to a fibreglass holding tank which contained 10,000 litres of 

circulating sea water. The sea water which was used in all experiments was 

continuously circulated, oxygenated, passed through a biological filter to maintain 

levels of ammonia and nitrate within satisfactory limits, and cooled to approximately 

10-12 °C. Chemical parameters of the seawater were routinely monitored each week 

by the aquarium technician. Nephrops to be used to measure control concentrations 

of the metals were caught by trawl or creel and frozen at -20 °C for later analyses 

alongside the experimental animals.

All experiments were conducted in 50 litre fibreglass tanks in a room at 17.5+1.5 

°C and illuminated for 12 hours a day. Nephrops were kept in holding tanks for 

several days to ensure that any injured animals would not be used in experiments.
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Each experimental tank was filled with 40 litres of filtered seawater with added 

metals. During the experimental treatments, the tanks were aerated using airstones 

attached to a compressed air supply. After all the conditions were set up, two 

healthy intermoult Nephrops were put into each tank. During the experiments, the 

water was changed completely every three days to maintain metal levels and to 

ensure that no changes in water quality occurred that might otherwise affect metal 

uptake. The animals were fed with fish (mackerel, Scomber scombrus) muscle once 

a week. Food was given on days that the water was due to be changed, and water 

was changed about three hours after feeding, so that any remaining food was cleared 

to avoid contaminating the water. The following analytical grade compounds of the 

metals were used to contaminate sea water; methylmercury (MeHg) CH3 HgCl, 

inorganic mercury (Hg) HgCl2 , cadmium (Cd) CdCl2  2 1/2 H2 O, copper (Cu) 

Cu(NC>3 )2  3H20, lead (Pb) Pb(NC>3 )2  and zinc (Zn) ZnSC>4 7H20. Fifteen 

replicate experimental tanks were used with two animals in each tank for MeHg 

uptake, 14 for Hg, 14 for Cd, 11 for Cu, 11 for Pb and 13 for Zn. Thus animals 

were exposed to only one of the study metals and not to interactions between metals.

Two Nephrops were also put in each of two tanks to use as control animals, while 

experiments were running. Their tanks were filled up to the same level with sea 

water. At the end of 30 days exposure, experimental and control animals were taken 

out, measured, killed, dissected and metal concentrations in their tissues were 

determined.

Dissection, digestion and metal determination of the tissues (carapace, 

hepatopancreas, gill, tail muscle, ovarium and external eggs) of male and female 

animals were carried out as explained in Chapter 2.
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3.2.1 Experimental Details

Early during the 30-day experimental period, sea water solutions of the metals were 

sampled from the experimental tanks for analyses to establish whether there were 

any changes in dissolved metal levels between the day solutions were made and the 

third day in the tank. Since metal adsorption was expected to be most rapid at the 

start of the experiment it is likely that the reductions in metal concentrations in the 

seawater later during the experimental period will have been less than the reductions 

measured. Tanks were also set up with the experimental solution in for the same 

period and the same conditions but without animals present, and metal levels were 

also measured in these tanks, in order to assess the amount of metal loss by exchange 

with the atmosphere rather than as a result of uptake by the animals. Measurements 

of the metals were carried out directly for 100 fig Cd H ,  100 fig Zn 1"* and 100 fig 

Pb 1"1, but 10 fig Cu I'* solutions were boiled to reduce volume. Both 10 fig 

mercury H  solutions were acidified with nitric acid and heated to 58 °C then 20 ml 

of solution was used to give a satisfactory reading (Table 3.1).

Metal concentrations in the carapace of experimental animals were determined to see 

if there was adsorption onto the carapace surface. Carapaces of control animals were 

removed and put into the same conditions as experimental animals. On the 3rd, 6th 

and 9th days two carapaces were taken and metal concentrations were measured. 

These values are given in Table 3.2.

3.2.2 STATISTICAL ANALYSIS OF DATA

Metal concentrations in the tissues of exposed animals were statistically analysed to 

investigate if there were differences between sexes and different sizes. Linear
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regression analyses (e.g. Draper and Smith, 1981) were used to investigate the 

relationship between metal concentration (c) and sex (s) or carapace length (1). For 

each metal exposure, a 5-stage model was considered.

Model 1; c = a ±  error.

Concentration does not depend on sex or size (carapace length).

Model 2; c = a +  bs ±  error.

Concentration differs between sexes but not with size.

Model 3; c = aj +  b ±  error.

Concentration varies linearly with carapace length but not with sex.

Model 4; c = ai +  bs ±  error.

Concentration varies linearly with size and differs between sexes.

Model 5; c = aj * bs ±  error.

Concentration differs between sexes and varies with size but this is not a linear 

relationship. There is an interaction in concentration between size and sex.

In models above, aj describes size dependent variations while bs describes sex 

dependent variations in metal concentration of a tissue. The best description of 

models in tissue metal concentrations from the experiments was found in the similar 

way that was explained in Chapter 2.

Mean metal concentration of the tissues from the experiments and controls are 

shown in Table 3.3. If a metal concentration from the experiments shows significant
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differences between the sexes, then they were shown in histograms giving the mean 

concentrations of metals and associated standard errors in the tissues of both males 

and females. In the case of size differences in metal accumulation, scatter graphs 

were drawn to show the relationship between size (carapace length) and metal 

concentrations in tissues. The results of the sublethal concentration of (the both' 

mercury experiments were compared with one way Anova. Copper and zinc 

concentrations of control animals were also compared with results from experimental 

animals using one way Anova.

3.3 RESULTS

Loss of the metals over three days in sublethal concentrations were not considerable, 

except for organic and inorganic mercury (Table 3.1). Adsorption of the metals onto 

the surface of the carapace occurred in sublethal concentrations, except for copper 

(Table 3.2). Concentrations of cadmium, zinc and lead in the dissected carapace at 

the end of nine days adsorption period were higher than carapace concentrations in 

30 day-exposed live animals.

Table 3.1. Changes in dissolved metal concentrations of sea water during experiments 
between days when solutions were made and after 3 days. Concentrations are given as ppb 
(M9  I"1 )-

Metal meHg Hg Cu Cd Zn Pb

Addition 10 10 10 100 100 100

Days 0 3 0 3 0 3 0 3 0 3 0 3

With animals 16 5 18 10 11 12 119 123 157 150 106 90
No animal 23 14 20 12 16 16 106 105 150 152 108 101
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Table 3.2. Adsorption of the metals onto the surface of the carapace of Nephrops norvegicus 
in the sublethal concentrations of the metals. All data are given as pg g-1 dry weight.

Days meHg Hg Cu Cd Zn Pb

3 1.53 1.01 20.8 35.5 89.4 100.9
6 2.12 2.73 13. 2 65.5 118.3 126.8
9 2. 89 3.75 27.3 71.5 348.1 112. 6

3.3.1 Uptake of Organic Mercury From Sea Water

A total of 30 Nephrops (1 3  males and 17 females ) was used in an experiment in 

which they were exposed to 10 /xg H  of methyl mercury chloride in sea water for a 

30-day period. This concentration was found to be sublethal in the experimental 

conditions, though 100 /xg H  methyl mercury killed 100 % of the lobsters in three 

days (Figure 3.1). Organic mercury was accumulated by the tissues of Nephrops in 

the sublethal concentration and increased the amount of total mercury in the tissues. 

The gill tissue accumulated the highest level of mercury (181 /xg g"*) (Table 3.3). 

Control animals had the highest concentrations of mercury in the gill and tail muscle 

(0.77 and 0.62 /xg g"l, respectively) (Table 3.4). Mean mercury concentrations in 

the gill, external eggs, ovary, carapace, hepatopancreas and tail muscle of treated 

animals increased 235, 160, 118, 62, 39 and 15 times over controls, respectively. 

Total tissue burdens of mercury in experimental animals were found to be

predominantly in the tail muscle (38.9 /xg Hg, 41 %) and gill (30.8 /xg Hg, 32 %)

(Tables 3.5 and 3.7), whereas the tail muscle had 80 % (20.4 /xg Hg) of mercury in 

the control animals (Tables 3.6 and 3.7). There was a significant difference in 

mercury concentration of the hepatopancreas between male and female animals. Male 

animals (14.98 /xg g 'l)  had higher concentrations of mercury than female animals 

(9.40 /xg g-1) (Figure 3.4). A positive correlation was found between mercury levels

in the hepatopancreas and tail muscle (Table 3.8).
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Figure 3.1. Toxicity of metals to Nephrops norvegicus
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3.3.2 Uptake of Inorganic Mercury From Sea W ater

A total o f 27 Nephrops ( 12 males and 15 females ) was used in an experiment in 

which they were exposed to a concentration of 10 /xg 1"! of inorganic mercury over a 

30-day period. As with organic mercury, this concentration was sublethal to the 

lobster in the experimental conditions though 100 /xg H  of inorganic mercury killed 

100 % of the animals in eight days (Figure 3.1). Inorganic mercury was accumulated 

by the tissues of Nephrops in the sublethal concentrations. Mean mercury 

concentrations of the gill, ovary, external eggs, carapace, hepatopancreas and tail
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muscle increased 301, 81, 59, 46, 24, and 2.7 times over controls, respectively. The 

gill tissue accumulated the highest concentrations of mercury (232 /xg g~l) (Table 

3.3), and held 63 % (42.2 /xg Hg) of the tissue burden (Tables 3.5 and 3.7). There 

was a difference in mercury concentration of hepatopancreas between male and 

female animals; males (9.47 /xg g"l) had higher concentrations than females (5.48 /xg 

g"l) (Figure 3.3). Regression analysis showed that gill tissue concentration showed a 

relationship with size (Table 3.9). Large animals had lower concentrations of 

mercury in their gill tissue than smaller animals (Figure 3.2). No correlation was 

found between mercury levels in different tissues (Table 3.8).

Figure 3.2. The relationship  between size and 
m ercury in the gill of Nephrops norvegicus exposed  
to 10 /^g HgClg I-1 for 30 days
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3.3.3 Comparisons of Organic and Inorganic Mercury Experiments

Table 3.10 shows the results of statistical comparison o f the organic and inorganic 

mercury experiments in the sublethal concentration. Carapace, hepatopancreas, tail 

muscle and external eggs accumulated higher concentrations of mercury in the
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organic mercury uptake experiment than in the inorganic mercury uptake experiment, 

while gill tissue had higher concentrations in the inorganic mercury uptake 

experiment. Ovarium mercury levels did not show any difference between the 

experiments. Total tissue burdens of mercury between the experiments were also 

different. Size of experimental animals affected mercury concentration of gill in the 

inorganic mercury uptake experiment. Both mercury experiments showed a similar 

difference between sexes in mercury concentrations of hepatopancreas (Figure 3.3). 

The toxicity studies showed that organic mercury was much more toxic to the 

animals than inorganic mercury (Figure 3.1).

F igure 3 .3 . D ifferen ces in  h e p a to p a n crea s  m ercu ry  
co n c en tra tio n s  of m ale  and fem ale  N ephrops from  
th e  both  m ercu ry  e x p erim en ts
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3.3.4 Uptake of Cadmium From Sea water

A total o f 27 Nephrops ( 11 males and 16 females ) was used in an experiment 

where they were exposed to a concentration o f 100 pg  1"! of cadmium in sea water 

over a 30-day period. This concentration of cadmium was found to be a sublethal 

dose in the experimental conditions, whereas 1000 pg  H  concentration was found to 

be lethal to 85 % of the animals in 30 days (Figure 3.1). Cadmium was accumulated 

by the tissues of Nephrops in the sublethal concentration. The hepatopancreas and
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gill accumulated highest concentrations of cadmium, 224 and 161 /tg g~l respectively 

(Table 3.3). The hepatopancreas had 85 % (289 fig Cd) of total body burden of 

cadmium in experimental animals (Table 3.5 and 3.7). Highest concentrations of 

cadmium were also found in the gill and hepatopancreas in control animals (13.11 

and 10.34 ng g ' l ,  respectively) (Table 3.4). Mean cadmium concentrations in the 

hepatopancreas, gill, carapace, ovary, external eggs and tail muscle increased 21.6, 

12.3, 7.20, 5.54, 4.42 and 1.77 times over controls, respectively. Cadmium burdens 

of the hepatopancreas and gill in controls were 55 % (17.3 \x.g Cd) and 30 % (9.34 

\ig Cd), respectively (Tables 3.6 and 3.7). Regression analysis showed that gill tissue 

cadmium had a negative relationship with carapace length (Figure 3.4), while 

carapace cadmium showed an interaction between sex and size (Table 3.9). There 

was no sex difference in relation to cadmium concentrations of the tissues (Table 

3.9). Cadmium concentration in gill tissue showed correlations with cadmium in the 

carapace and hepatopancreas (Table 3.8).

Figure 3.4. The rela tion sh ip  betw een size  and  
cadm ium  in th e  gill of Nephrops norvegicus exposed  
to 100 /xg Cd l-1 for 30 days
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3.3.5 Uptake of Copper From Sea Water

A total of 21 Nephrops ( 10 males and 11 females ) was used in an experiment in 

which they were exposed to a concentration of 10 /xg 1"! copper over a 30-day 

period. This concentration was found to be sublethal in the experimental conditions, 

though 100 /xg 1"1 copper killed 100 % of the animals in 14 days (Figure 3.1). 

Highest concentrations of copper were found in the hepatopancreas, gill and 

ovarium, 408, 381, and 393 /xg g"l respectively (Table 3.3), while highest tissue 

burden of copper was found in the hepatopancreas (559 /xg Cu, 65 %) in 

experimental animals (Table 3.5 and 3.7). The hepatopancreas contained 81 % 

burden of copper (906 /xg Cu) in control animals (Table 3.4 and 3.7). The highest 

tissue concentrations of copper were found in the hepatopancreas and gill (607 and 

249 /xg g"l, respectively) (Table 3.4). Regression analysis showed that there was no 

relationship with sex or size (Table 3.9). There was also no correlation among the 

tissues (Table 3.8). Anova results between controls and treated animals showed that 

10 /xg H  copper addition to sea water for 30 days only increased concentrations of 

copper in the carapace, gill and ovarium. Mean level of hepatopancreas copper was 

lower in experimental animals, but this difference was not significant (Table 3.11).

3.3.6 Uptake of Zinc From Sea water

A total of 26 Nephrops ( 13 males and 14 females ) was used in an experiment in 

which they were exposed to 100 /xg H  of zinc in sea water for a 30-day period. This 

concentration was found to be sublethal in the experimental conditions, though 2000 

/xg T* zinc was toxic to 73 % of animals in 30 days (Figure 3.1). Highest 

concentrations of zinc were found in the hepatopancreas and gill tissue, 268 and 264 

/xg g 'l  respectively (Table 3.3), whereas highest tissue burdens of zinc were in the
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hepatopancreas and tail muscle 55 % (427 f i g  Zn) and 31 % (242 /xg Zn) respectively 

(Tables 3.5 and 3.7). Control animals showed the highest concentrations of zinc in 

the hepatopancreas (227 f i g  g"l and gill (135 f i g  g"l) (Table 3.4). However, the 

highest tissue burdens of zinc were in the hepatopancreas (50.5 %, 367 f i g  Zn) and 

tail muscle (40.9 %, 297 f i g  Zn) (Tables 3.4 and 3.7). There was no relationship 

with size and no differences were found between sexes (Table 3.9). Zinc in the 

hepatopancreas showed positive correlations with zinc in the carapace and tail muscle 

(Table 3.8). Anova test results showed that 100 f i g  H  zinc addition to sea water only 

increased levels of zinc in the carapace, hepatopancreas and gill (Table 3.11).

3.3.7 Uptake of Lead From Sea water

A total of 21 Nephrops (1 0  males and 11 females ) was used in an experiment in 

which they were exposed to 100 f i g  H  lead in sea water for a 30-day period. This 

concentration was found to be sublethal in the experimental conditions, though 1000 

f i g  H  lead was toxic to 42 % of animals in 30 days (Figure 3.1). Lead was 

accumulated by the tissues of Nephrops in the sublethal experiment. Highest 

concentrations of lead were found in the gill and external eggs 296 and 146 f i g  g"l 

respectively (Table 3.3), while highest tissue burdens of lead were found in the 

carapace (42 %, 87.0 f i g  Pb) and hepatopancreas (25 %, 51.9 f i g  Pb) (Tables 3.5 

and 3.7). Mean lead concentrations in the hepatopancreas, carapace, gill, ovary and 

tail muscle increased 19.8, 17.4, 17.1, 5.40 and 4.37 times over controls 

respectively. Control animals showed highest concentration of lead in the gill tissue 

2.84 f i g  g"l. Carapace had the highest tissue burden of lead (42.5 %, 3.83 f i g  Pb) 

(Tables 36 and 3.7). No significant sex or size related differences were found in 

concentrations of lead in the tissues (Table 3.9). Lead levels in the gill tissue and in 

the carapace showed a positive correlation (Table 3.8).
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Table 3.3. Mean concentrations (|jg g-1 d.w.) and standard deviations of metals (meHg, Hg, 
Cd, Cu, Zn and Pb) in the tissues of Nephrops norvegicus which lived in sublethal 
concentrations of the metals for 30 days.

Metal CL Carapace Hepato. Gill Tail mus ovary ex.eggs

Mo 30 30 30 30 30 6 6
meHg 4.9 5.59 11.72 181. 2 9.32 8. 25 20.83
sd 0.7 2.18 6.32 67.0 4.75 4.70 12.79

No 27 27 27 21 27 5 7
Hg 5.0 4.16 7. 25 232. 3 1.66 5.66 7.72
sd 0.7 1.31 4.43 67. 5 0.54 4.94 1.16

MO 27 27 27 27 27 10 3
Cd 4.4 11.51 224.3 161.0 3.08 13.64 12.08
sd 0.5 6.45 117.0 59.1 1.57 6.74 1.41

Mo 21 20 20 21 21 8 7
Cu 4.8 75.66 408.6 381.3 30.97 393.7 110.2
sd 0.6 41.35 360.4 93.4 7.19 154.4 33.9

Mo 26 26 26 26 26 11 10
Zn 4.9 44.15 267. 8 263. 8 53. 27 63.46 179.2
sd 0.4 11.37 104.3 56.5 15. 28 14.95 34.2

Mo 21 21 21 21 21 11 11
Pb 4.8 71.41 47.13 296.0 7.44 17.42 145.8
sd 0.5 42.05 55.39 238.6 4.14 10.98 96.2
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Table 3.4. Mean concentrations (|jg g‘1 d.w.) of metals in control Nephrops norvegicus. Mean 
carapace length of samples was 4.9±0.8 cm (27 females and 14 males). Lead measurements 
are from 11 Nephrops (6 females and 5 males) CL = 4.9±0.7 cm.

Tissue Carapace Hepatop. Gill Tail mus. Ovary ex.egg
No 39 41 32 41 15 6

Hg 0.09 0.30 0.77 0.62 0.07 0.13
sd 0.05 0.17 0.34 0. 29 0.04 0.12

Cd 1.60 10.34 13.11 1.74 2.46 2.73
sd 0.86 7.38 5.10 0.71 0.79 1.64

Cu 46. 61 607. 2 249.1 25. 95 114. 9 92.51
sd 21.88 257.3 101. 8 9.03 25.7 20. 91

Zn 25.95 227. 2 135.3 61.55 100.9 120.2
sd 12.36 70. 2 33.3 8. 96 17.5 16. 8

Pb 4.10 2.38 17.33 1.70 3.22
sd 3.63 0.99 8.90 2.07 1.26
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Table 3.5. Total tissue burdens of the metals in experimental animals treated with sublethal 
concentrations of metals and standard deviations 0- Amount of the metals in the tissues are given 
as pg metal in whole amount of wet tissues. Mean wet weight (W.W.) of the tissues are given as 
gram with their standard deviations 0-

Metal CL Carapace Hepatopancreas Gill Tail muscle

meHg 4.9 (0.7) 7.57 (3.05) 17.3 (11.0) 30. 8 (12.6) 38.9 (18.9)
WW 3.10 (0.82) 4.4 (1.33) 1. 60 (0.52) 20.7 (6.62)

ng 5.0 (0.7) 5. 65 (2.11) 11.4 (7.29) 42. 2 (11.0) 7.65 (3.27)
WW 3.11 (0.81) 4.5 (1.42) 1. 82 (0.62) 21.8 (7.02)

Cd 4.5 (0.5) 12. 8 (4.90) 289.5 (139) 24.5 (11.1) 11.2 (4.96)
WW 2. 61 (0.52) 3.81 (0.91) 1.43 (0.42) 16.9 (4.21)

Pb 4.8 (0.5) 87.0 (58.9) 51.9 (45.0) 41.0 (34.9) 24.9 (12.1)
WW 2.71 (0.82) 3.51 (1.12) 1.31 (0.52) 17.8 (5.81)

Cu 4.8 (0.6) 98.7 (51.0) 559.2 (475) 64. 2 (22.4) 131. 9 (42.7)
WW 2. 81 (0.63) 4.41 (1.09) 1.61 (0.50) 20.3 (5.09)

Zn 4.9 (0.4) 59.5 (22.6) 427.6 (205) 47.8 (14.6) 241.9 (81.2)
WW 2. 92 (0.59) 4.61 (0.79) 1.72 (0.42) 21.5 (3.52)



Table 3.6. Total tissue burdens of the metals in control animals and standard deviations 0- 
Amount of the metals in the tissues are given as |jg metal in whole amount of wet tissues. 
Mean wet weight (WW) of the tissues are also given as gram with their standard deviations 
0. Mean carapace length = 4.9±0.8 in 20 animals. Lead burdens were calculated in 11 
animals (CL=4.9±0.7).

Metal Carapace Hepatopancreas Gill Tail muscle

WW 2. 82 (0.91) 4 21 (1.33) 1 71 (0. 62) 20. 4 (6.32)

Hg 0. 12 (0.07) 0 50 (0.25) 0 25 (0. 25) 3. 58 (2.50)

Cd 2. 02 (1.06) 17 3 (18.3) 2 40 (1. 65) 9. 34 (3.30)

Cu 55 6 (34.4) 905 9 (443) 42 2 (24 .5) 109. 7 (54.3)

Zn 39 3 (22.5) 367 3 (146) 23 2 (9. 72) 297. 3 (110)

WW 2 51 (0.81) 3 41 (1.72) 1 74 (0. 69) 18. 9 (5.43)
P b 3 83 (2.10) 3 22 (2.06) 2 84 ( 1 . 82) 3. 07 (0.96)

Table 3.7. Metal burdens in tissues as a percentage of the total body burden (excluding ovary 
and external egg of females).

Treatment Carapace Hepatopancreas Gill Tail muscle
% % % %

Exp.meHg 8.0 18.3 32.5 41.1
Exp.Hg 8.4 17.0 63.1 11.4
Control Hg 2.7 11.2 5.6 80.4

Exp.Cd 3.8 85.6 7.2 3.3
Control Cd 6.5 55.6 7.7 30.1

Exp.Pb 42.5 25.3 20.0 12.1
Control Pb 29.5 24.8 21.9 23.7

Exp.Cu 11.5 65.5 7.5 15.4
Control Cu 5.0 81.3 3.8 9.8

Exp.Zn 7.6 55.0 6.1 31.1
Control Zn 5.4 50.5 3.2 40. 9



Table 3.8. Rank Correlation between metal levels in different tissues of Nephrops exposed to 
metals in sea water.

* = P values of 0.01
**= P values of 0.001
ns= not significant (P>0.05)

Experiment Tissue Hepato. Gill Tail muscle

10 p g I-1 meHg Carapace ns ns ns
Hepato. ns *
Gill ns

10 p g I-1 Hg Carapace ns ns ns
Hepato. ns ns
Gill ns

100 p g I-1 Cd Carapace ns ** ns
Hepato. * ★ ns
Gill ns

100 p g I-1 Pb Carapace ns ** ns
Hepato. ns ns
Gill ns

10 p g l"1 Cu Carapace ns ns ns
Hepato. ns ns
Gill ns

100 p g I-1 Zn Carapace ** ns ns
Hepato. ns *
Gill ns
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Table 3.9. The following table shows the results of linear regression analyses. The best 
suitable model for the tissues on the metal accumulation and tissue concentrations of metals 
in each treatment are described in relation to effects of sex and size. CL = Carapace length 
(cm). Sex.CL = Interaction between sex and carapace length, ns = not significant ( P > 0.05).

Experiment Tissue Sex CL Sex.CL Model

10 pg I"* meHg Carapace ns ns ns 1
Hepato. 0.016 ns ns 2
Gill ns ns ns 1
Tail ns ns ns 1

10 pg I-* Hg Carapace ns ns ns 1
Hepato. 0.022 ns ns 2
Gill ns 0.001 ns 3
Tail ns ns ns 1

100 pg I"* Cd Carapace _ _ 0.005 5
Hepato. ns ns ns 1
Gill ns 0.009 ns 3
Tail ns ns ns 1

100 pg I"* Pb Carapace ns ns ns 1
Hepato. ns ns ns 1
Gill ns ns ns 1
Tail ns ns ns 1

10 pg I-1 Cu Carapace ns ns ns 1
Hepato. ns ns ns 1
Gill ns ns ns 1
Tail ns ns ns 1

100 pg I-1 Zn Carapace ns ns ns 1
Hepato. ns ns ns 1
Gill ns ns ns 1
Tail ns ns ns 1
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Table 3.10. Comparisons of organic and inorganic mercury experiment in the sublethal 
concentrations with of one way Anova. P values are given in following table. Mercury 
concentrations of the tissues are given in Table 3.3. ns = not significant (P>0.05).

Tissues P value

Carapace length ns
Carapace 0.005
Hepatopancreas 0.0001
Gill 0.008
Tail muscle 0.0001
Ovary ns
Eggs 0.020

Table 3.11. Comparisons of control and experimental samples of copper and zinc with the 
one way Anova. The following table shows the tissues which had significant increases in 
concentrations of copper and zinc. Concentrations of copper and zinc in the treated animals 
and controls are given in Tables of 3.3 and 3.4 respectively.

Tissues Copper experiment 
P value

Zinc experiment 
P value

Carapace length ns ns
Carapace 0.001 0.0001
Hepatopancreas ns 0.018
Gill 0.001 0.0001
Tail muscle ns ns
Ovary 0.0001 ns
Eggs ns 0.002
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3.4 DISCUSSION

Both the mercury compounds accumulated in the tissues of Nephrops norvegicus 

after exposure to 10 pg Hg l 'l  and tissue concentrations increased. There were 

differences in tissue concentrations of mercury in treated animals from both the 

mercury experiments. Organic mercury accumulated in higher levels than inorganic 

mercury in the tissues except for the gills. Mercury concentrations increased many 

fold after treatments. The gill tissue mercury concentrations increased 301 and 235 

times over control animals in inorganic and organic mercury treatments respectively. 

Tail muscle mercury concentrations also increased 15 times in organic mercury 

treatment, though this increase was low in inorganic mercury treatment. Organic and 

inorganic mercury also showed different toxicity namely organic mercury was more 

toxic to animals than inorganic mercury. Differences found in this study between 

organic and inorganic mercury were similar to those with some other studies in 

Crustacea (Ray and Tripp, 1976 ; Fowler et al., 1978 ; Riisgard and Famme, 1986 ; 

Kraus et al., 1988). Different toxicity levels of organic and inorganic mercury and 

different tissue concentrations from both the experiments could be due at least in part 

to the differences in accumulation rates. Eisler and Hennekey (1977) found that 125 

pg 1~1 HgCl2  killed 100 % of crab Pagurus longicarpus in 7 days while 10 pg 1~1 

mercury was LC0, which is similar to the situation for Nephrops norvegicus. Larvae 

of American lobster, Homarus americanus seemed to be very sensitive to inorganic 

mercury since 97 % of the larvae died in 100 pg 1"! copper within 24 hours 

(Johnson and Gentile, 1979). Tail muscle mercury burdens of Nephrops in the 

organic mercury experiment were found to be 4 times higher than in the inorganic 

mercury experiment. Guarino et al. (1976) indicated that a major portion of tail 

muscle uptake of organic mercury from water occurs through the shell and/or chitin 

in the tail region. They supported the present results by showing the highest
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percentage of mercury was in the tail muscle (50 %), followed by hepatopancreas 

(23 %) after exposing the lobster Homarus americanus to 100 fxg l 'l  organic 

mercury for 6 days. Gill tissue tends to have the highest concentrations of mercury 

from all dissolved mercury experiments (Thurberg et al., 1977 ; Del Ramo et al., 

1988 ; Brown et al., 1988). There were differences between male and female 

Nephrops from both mercury experiments, namely males accumulated higher 

mercury than females. My observations showed that male animals or smaller animals 

were more active than female animals or larger animals. Differences in mercury 

concentrations of the hepatopancreas between sexes could be due to activity of the 

animals. The negative relationship between size and mercury concentration of the 

gill tissue from the inorganic mercury experiment could also be due to higher 

activity of smaller animals.

Nephrops accumulated cadmium, and the highest concentrations of cadmium were 

found in the hepatopancreas and gill tissue. 85 % of cadmium was distributed to the 

hepatopancreas, while gill, carapace and tail muscle shared the remaining percent of 

the metal. These findings were similar to some earlier studies on crustaceans 

(Nimmo et al., 1977 ; Dethlefsen, 1979 ; Jennings and Rainbow, 1979 ; Wright and 

Brewer, 1979 ; Ray et al., 1981). Although cadmium increased many fold in the 

tissues of treated animals, this increase was not as high as mercury accumulation in 

most tissues. This could be due to high concentrations of cadmium in control animals 

than mercury concentrations of controls. The sex of the animals did not affect the 

tissue concentrations of cadmium, while size affected concentrations in the gill 

tissue. As with inorganic mercury, small animals had higher concentrations. 

Ahsanullah et al., (1981) indicated that small shrimp Callianassa australiensis 

accumulated higher concentrations of cadmium than medium or large-sized shrimps 

at all test concentrations. Toxicity of cadmium varied among different species of
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crustaceans (Nimmo et al., 1977 ; Eisler and Hennekey, 1977). Pesch and Stewart 

(1980) found that 1000 pig l 'l  Cd killed 50 % of Palaemonetes pugio and Pagurus 

longicarpus in 21 and 23 days, respectively, while 120 pig 1"! Cd was not a lethal 

dose in a 30-day period, which is similar to the results for Nephrops.

Nephrops norvegicus seems to be very sensitive to copper, like Homarus 

americanus. McLeese (1974) found similar sensitivity for the American lobster 

killing 50 % of the animals in less than one week in 100 pig 1"! copper 

concentration. But some other crustaceans seem to be more resistant to copper 

(White and Rainbow, 1982 ; Saliba and Krzyz 1976 ; Rainbow, 1985 ; Zia and 

Alikhan, 1989). 10 pig 1"! copper failed to increase the concentrations in the 

hepatopancreas and the external eggs, while the other tissues showed significant 

increases in their copper concentrations. Zia and Alikhan (1989) found that the gill 

and exoskeleton of Cambarus bartoni showed increasing copper concentrations with 

increasing levels in water, though the hepatopancreas, gut and muscle did not show 

the same trend. They indicated that digestive gut and abdominal muscle are not 

considered to be specific physiological sites for the storage of copper. Rainbow 

(1985) could not find any increase in copper concentrations of the tissues or whole 

body from the crab, Carcinus maenas until exposed to more than 100 pig H .  White 

and Rainbow (1982) indicated that body concentrations of copper were regulated 

until 100 pig I-* in 21 days by Palaemon elegans, but after this concentration copper 

was accumulated and tissue concentrations were increased. Rainbow and White 

(1989) also indicated that 100 pig l 'l  copper could not increase the concentrations of 

copper in shrimp, Palaemon elegans. It is interesting to note that the concentration 

which would kill 100 % of Nephrops in two weeks does not affect the survival or 

increase the copper concentrations of this animal. No sex or size related difference 

was found in relation to tissue concentrations of copper from this study. Hilmy et al.
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(1988) also could not find any sex difference in tissue concentrations of copper in the 

crab Portunus pelagicus.

As happened for Nephrops, toxicity of zinc occurs at much higher concentrations 

than copper (Eisler and Hennekey, 1977 ; Ahsanullah et al., 1981 ; Uma Devi, 1987 

; Uma Devi and Prabhakara Rao, 1989). Exposure to high concentration of zinc in 

sea water increased the concentrations of zinc in the carapace, hepatopancreas and 

gill, while levels in the tail muscle and external eggs were not increased 

significantly. Some other studies on Crustacea also support the present result by 

indicating that sublethal zinc concentrations increased tissue concentration at least in 

the gill and hepatopancreas (Bryan, 1964 ; Bryan and Hummerstone,1986 ; 

Waidwood et al., 1987 ; Uma Devi and Prabhakara Rao, 1989). However, White 

and Rainbow (1982) in Palaemon elegans, Rainbow (1985) in Carcinus maenas and 

Nugegoda and Rainbow (1989) in Palaemon elegans could not find any increase in 

zinc concentrations of tissues or whole body. Present results indicated that there 

were no size and sex dependent differences in zinc concentrations of the tissues. 

Hilmy et al. (1988) also indicated that there was not any sex related difference in 

relation to zinc accumulation in crab, Portunus pelagicus. Nugegoda and Rainbow

(1989) also indicated that sex or size of individual does not affect the rate of zinc 

uptake of Palaemon elegans.

Lead accumulated in the tissues of Nephrops norvegicus after treatment with 100 /xg 

Pb 1"! and highest concentrations were found in the hepatopancreas and external 

eggs. Although lead concentrations of treated animals increased over controls, this 

increase was not as high as mercury in the tissues. Like cadmium, lead levels in 

controls were higher than levels of mercury. Therefore, lower accumulation rate of 

lead could also be related to high levels of lead in controls. Lead concentrations did

108



not show any relationship with size and no difference was found between sexes. 

Amiard et al. (1987) indicated that lead was accumulated by 5 species of crustacean 

in proportion to the metal concentration in sea water. Lead was the only metal that 

carapace had large part of tissue burdens. But this could be adsorption of the metal 

onto carapace (Table 3.2). As happened in present study, Pastor et al. (1988) also 

found that lead concentrations were in highest in the gill and antennal gland, 

followed by hepatopancreas and muscle in Procambarus clarkii.
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CHAPTER 4

ACCUMULATION OF HEAVY METALS FROM A FOOD SOURCE AND 

COMPARATIVE ROUTES OF MERCURY AND CADMIUM 

ACCUMULATION AND TISSUE DISTRIBUTION FROM FOOD SOURCE 

AND SEA WATER BY THE NORWAY LOBSTER, NEPHROPS 

NORVEGICUS



4.1. INTRODUCTION

The major uptake and accumulation routes of metals by marine animals have been 

generally recognised to be uptake from sea water and from food, though uptake from 

sediment can also be an important route, especially for deposit-feeding animals 

(Bryan and Langston, 1992). Crustaceans require trace metals, such as copper, zinc 

and iron for their metabolism and accumulate them by both routes. Although some 

heavy metals, such as mercury and cadmium are known to be non-essential, they are 

also accumulated by marine animals from both routes.

It is well known that heavy metals accumulate in tissues of different marine animals, 

from small invertebrates to large vertebrates. Alliot and Frenet-Priron (1990) 

indicated that heavy metal concentrations in sea water during different periods of the 

year show relationships with concentrations in shrimps. Once metals are accumulated 

in one member of the marine food-chain, they can be transferred through trophic 

levels. Therefore, metal accumulation may be higher in later levels of the food-chain 

than in earlier levels. Berk and Colwell (1981) showed that mercury can be 

transferred by the microbial food-chain. Sarkka et al. (1978) also indicated that 

mercury concentrations increase through upper levels of the food-chain. Riisgard and 

Famme (1986) in a shrimp and Pentreath (1976) in a fish showed that mercury was 

accumulated from food in relation to exposure regime. Cadmium is also transferred 

in the food-chain (Nimmo et al., 1977), and the dominant route of cadmium 

accumulation in crustaceans can be uptake from food sources as long as the previous 

trophic level has the ability to accumulate cadmium to such extent as to make it more 

available to the consumer than by direct uptake from sea water (Jennings and 

Rainbow, 1979 ; Davies et al., 1981).
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Heavy metal concentrations in the tissues of marine animals are normally more 

concentrated than those of surrounding sea water. Therefore, heavy metal transfer 

through food-chain can be very important if heavy metals occur in high levels. The 

most dramatic incidents of heavy metal pollution have occurred by consumption of 

contaminated foods by man. One of the most famous examples of this situation is the 

Minamata disaster which caused many human deaths and severe permanent 

disabilities, as well as ruining marine life in the environment (Clark, 1989). The 

reason in the Minamata disaster was mercury contaminated sea food consumed by 

local people. Another example of heavy metal poisoning in food is the itia itia 

disease caused by cadmium. This disease also caused human fatalities and disabilities 

(Clark, 1989). In the Minamata disaster, mercury concentrations in some of the 

marine food-chain were 5 /xg g"* in plankton, 10-39 /xg g"* (d.w.) in bivalves and 

10-55 /xg g~l (d.w.) in fish, mostly methylated (Clark, 1989). Clark (1989) also 

indicated that the bivalve, Pecten novaezetlandiae can accumulate cadmium up to 

2000 fig g"l (d.w.) and similarly 1900 /xg g"1 (d.w.) was found in the oceanic squid, 

Symplectoteuthis oualaniensis. Limpets, Patella vulgata and dog whelks, Nucella 

lapillus also acquire high concentrations of cadmium. Crabs, Cancer irroratus and 

lobster, Homarus americanus contained very high levels of cadmium in their tissues 

from Belledune Harbour (Canada) which was contaminated by cadmium (Ray et al., 

1980 ; Uthe et al., 1980). Levels of cadmium were so high that fishing was banned 

in certain areas of the Harbour (Riley, 1980).

The most important factor affecting metal bioavailability depends first on the free ion 

concentrations of metals in sea water (Sunda et al., 1978 ; Luoma, 1983). Decapod 

crustaceans are known to be able to regulate concentrations of essential metals up to 

a threshold concentration when they are exposed to metals dissolved in sea water. 

Net accumulation of these metals begins after these threshold levels are exceeded
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(Bryan, 1967 ; White and Rainbow, 1982 ; Rainbow, 1985 ; Rainbow and White, 

1989). However, there is no evidence that non-essential metals can be regulated by 

Crustaceans. Non-essential metals are accumulated in proportion to environmental 

concentration without any regulation which means tissue concentrations increase with 

increases of exposure time and concentration in sea water (Nimmo et al., 1977 ; 

Jennings and Rainbow, 1979 ; Meadows and Erdem, 1982; Devineau and Amiard- 

Triquet, 1985 ; Riisgard and Famme, 1986 ; Krishnaja et al., 1987). Mercury and 

cadmium have no known role in biological systems. In addition to being present at 

low natural background concentrations, they are released by anthropogenic activities 

such as from chlor-alkali plants, the use of fungicides, pesticides, antifouling 

preparations, mining and smelting facilities (Campbell et al., 1986 ; Mance, 1987 ; 

Langston, 1990). They can be accumulated in tissues of marine animals in very high 

levels and transferred to higher trophic levels. Dallinger and Kautzky (1985) 

indicated that since the metal concentrations of sea water are much lower than those 

in marine animals, the absorption through the gills may be of secondary importance 

compared with the supply through the food.

The high concentrations of metals in the food of most marine animals, relative to 

water, intuitively suggests that food should be an important vector of metal uptake, 

especially those metals (e.g. mercury) which accumulates over lifetime and show 

positive relationships with size or age of marine animals. However, the importance 

of metal uptake from food has proven to be less effective than uptake from water 

(Luoma, 1983). Three general approaches have been employed : 1. Experimental 

separation of the food and water vectors and comparison of their importance; 2. Use 

of mass balance models in combination with experimental studies of uptake; 3. 

Comparisons of tissue distributions observed in laboratory studies with observations 

of animals in nature (Luoma, 1983).
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Nephrops norvegicus is a very important commercial species in U.K. and most other 

European Countries (Howard, 1989). The Clyde Sea receives anthropogenic inputs 

of pollutants including heavy metals (Mackay, 1972 ; Steel et al., 1973 ; Mackay, 

1986 ; Clark and Davies, 1989). Although crustaceans take up heavy metals directly 

from sea water and food, it is useful to describe which is the more important route 

for concentration of a particular metal in a tissue. There has been no previous study 

of accumulation of heavy metals from both routes by the Norway lobster, Nephrops 

norvegicus. The present study deals with the accumulation and distribution of heavy 

metals (Hg, Cd, Cu, Zn and Fe) from a food source in tissues of Nephrops 

norvegicus, and compares tissue distributions of mercury and cadmium among the 

gill, hepatopancreas and tail muscle after exposing the animals to the metals 

dissolved in sea water and feeding with a food source which contains high 

concentrations of mercury and cadmium. Results are also compared with metal 

distribution among these tissues in animals from the Clyde Sea Area.

4.2 MATERIALS AND METHODS

Capture and maintenance of the Norway lobsters, Nephrops norvegicus were the 

same as explained in Chapter 2 and 3.

All feeding experiments were conducted in fibre glass tanks with circulating sea 

water held in a room where sea water temperature was at 10±0.5°C. The 

experimental room was illuminated with six fluorescent lamps for 12L : 12D lighting 

regime. Animals were allowed to acclimate for at least one week in experimental 

conditions before experiments. Healthy intermoult animals were chosen and placed 

individually into separate experimental tanks. Because the amount of food consumed 

per week by Nephrops in captivity was small, it was necessary to feed animals on
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food containing high concentrations of metals in order to cause a measurable increase 

in tissue concentrations of metals in the experimental animals. Initially, it had been 

intended to feed animals with mussels, Myrilus edilus contaminated with metals after 

living in contaminated sea water. However, different tissues of mussels accumulated 

different concentrations of metals and after exposing mussels to metals in sea water 

there were also big differences in metal concentrations of the same tissue from 

different animals. This would create difficulty in calculation of metal assimilation by 

each animal. Nephrops norvegicus are scavenging animals that will feed on a wide 

range of foods and a number of possible foods were considered. Fish meat was ruled 

out as metal concentrations were too low. Seabirds may accumulate very high 

concentrations of metals, especially mercury and cadmium in their liver and kidney. 

From material available to me I chose liver tissue from a wandering albatross 

Diomedea exulans as a convenient food with high concentrations of metals. I used 

one albatross' liver and different parts of liver showed the same concentrations of 

metals, so it gave confidence that metals were homogeneously distributed in the 

liver. Therefore, each food given to animals contained the same levels of metals. 

One other advantage of albatross' liver is the naturally very high concentrations of 

cadmium and especially of mercury. The albatross is a top predator in the marine 

food-chain. It obtains its food entirely at sea, feeding predominantly on squid and 

fish.

Nephrops were fed twice a week with a sample of wandering albatross' Diomedea 

exulans liver which contained metals in the following concentrations:

Total mercury = 163.0 pg g“l wet weight

Organic mercury =  3.72 pg g"l wet weight

Cadmium = 13.2 jug g-1 wet weight

Copper = 77.6 pg g"1 wet weight
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Zinc

Iron

= 47.8 fig g 'l wet weight

= 365.9 fig g"l wet weight

Before experiments, the liver was cut into small pieces and frozen in small plastic 

bags. When feeding time came, one of the plastic bags was taken out from the 

freezer and thawed. The liver pieces were weighed to the nearest 1 mg using a 

Precisa 300MC (Metagram Instrument Ltd., Aspley Guise, Buckinghamshire) top- 

pan balance. Thus each animal was given a known amount of food between 250 and 

800 mg. In first feeding days, less food (about 300 mg) was given to the animals to 

let them become accustomed to the liver. Then the amount was gradually increased 

(up to 700 mg) if an animal ate the liver. In this way, most of the animals consumed 

the food served within 1-2 hours, though a few times food was not completely 

finished within 8 hours. Any food remaining after 8 hours was taken out and put into 

an oven which was set to 60 °C. Drying was conducted for at least six days to ensure 

that the liver remains achieved a constant dry weight. By this way, wet weight of 

remaining food and eaten food could be calculated by transforming the dry weight to 

wet weight as it was not possible to obtain a reliable wet weight of the liver after 8 

hours in sea water. Concentrations of metals in the liver up to 24 hours in sea water 

did not vary from the initial concentrations. Therefore, leaching of metals from the 

liver during a few hours feeding time can be ignored. The sea water in the 

experimental tanks was oxygenated by air stones and water circulation. During 

feeding, the outflows of the tanks were closed by fine-mesh nets to prevent any 

possible loss of food. After feeding the nets were removed. Animals were taken out 

two days after the last feed to give time for digestion of the last meal, since within 

one day of last feeding pieces of the liver could still be found in the stomach of 

animals.
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A total of 26 Nephrops norvegicus were fed with albatross' liver for up to 50 days 

(between 22 and 50 days). 27, 24 and 24 Nephrops were exposed to sublethal 

concentrations of methyl mercury (10 pg 1"1), mercuric chloride (10 pg H )  and 

cadmium (100 pg I'*) respectively for 30 days. Two control Nephrops were also put 

in two tanks while experiments were running and fed mackerel muscle only. A 

further 27 Nephrops were caught from the same area in the Clyde Sea when the 

experiments were running to be used as a second control group.

All metal uptake experiments from sea water were conducted as explained in Chapter 

3. During experiments, control animals were fed with fish (mackerel, Scomber 

scombrus) muscle once a week. Metal levels in the macherel muscle were Cd < 

0.01 pg g"l, Hg 0.1 pg g"l (95 % organic), wet weight.

Dissection, digestion and metal analysis were carried out as explained in Chapter 2. 

4.3 STATISTICAL ANALYSIS OF DATA

The amounts of food given to the animals were different since food was served to 

individuals depending on their appetite and feeding period. Therefore, total weight of 

liver consumed by each animal was different, namely animals with great appetite and 

longer feeding period consumed higher amount of liver than animals with little 

appetite and shorter exposure period. Data from the feeding experiment were 

investigated for increases in metal concentrations of the tissues such as carapace, 

hepatopancreas, gill and tail muscle in controls and in animals fed with the albatross' 

liver. Before any statistical analysis, data were plotted on graphs to examine 

distribution for normality using Minitab 8.2 statistical package programs. Data not 

normally distributed were transformed by logjQ or square root. Concentrations of
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metals in the tissues of controls (Table 4.1) and fed animals (Table 4.2) were 

compared with one way Anova. Results of this comparison are given in Table 4.2. 

Metal concentrations in the tissues of the animals were also investigated in relation to 

feeding rate (food g/day) by linear regression analysis. Only mercury and cadmium 

concentrations showed increases in at least some tissues, while copper, zinc and iron 

levels did not increase significantly with feeding rate, so further studies were carried 

out with mercury and cadmium only. Comparisons of mercury and cadmium 

accumulation among controls, fed animals and animals exposed to sublethal 

concentrations of organic mercury, inorganic mercury and cadmium were 

investigated. Comparisons were done using triangular diagrams among the 

hepatopancreas, gill and tail muscle. Total tissue burdens of mercury and cadmium 

were calculated in whole wet tissues and their relative total percentages among three 

tissues, hepatopancreas, gill and tail muscle. Total percentages of these tissue 

burdens of mercury and cadmium from the three treatments were plotted onto 

triangular diagrams. Therefore, data in the triangular diagrams represent the percent 

values of the total tissue burdens of the metals. Tissue burdens were first statistically 

compared among all the treatments with one way Anova. Significant differences 

(P<0.05) were reanalysed with one way Anova between paired treatments. 

Assimilation rates of cadmium, organic and inorganic mercury were also calculated. 

First, total amounts of metals (as ^g metal) taken by each animal were calculated by 

multiplying total eaten food and liver concentration of metals (A). Then, mean tissue 

burdens of metals in fed animals were subtracted from control burdens of metals for 

each tissue. Thus, net assimilated amounts (as jug metal) of metals were found (B). 

Finally, assimilation rates of metals were calculated by dividing B to A for each 

tissue.
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4.4 RESULTS

4.4.1 Control Animals

Concentrations of metals in control Nephrops norvegicus are shown in Table 4.1. 

Highest concentrations of mercury were in the gill (0.777 pg g"l) and tail muscle 

(0.580 pg g"l), while highest concentrations of cadmium were in the gill (13.05 pg 

g‘ l) and the hepatopancreas (11.76 pg g-l ). Copper was in highest concentrations in 

the hepatopancreas (594.0 pg g 'l)  and gill (255.5 pg g-* ). Zinc was also in highest 

concentrations in the hepatopancreas (219.0 pg g"*) and gill (160.1 pg g"*). The 

highest iron concentration was in the gill (715.0 pg g 'l) .

Table 4.1. Mean concentrations (pg g-1 d.w.) of metals in the tissues of control Nephrops 
norvegicus. Data are from 14 males and 13 females which CL (carapace length) are 4.9±0.8 
and 5.0±0.8 cm, respectively.

Metal Carapace Hepatopancreas Gill Tail muscle

Hg 0.099 0. 262 0.777 0.580
sd 0.062 0.146 0.307 0.329

Cd 1.523 11.76 13.05 0.591
sd 0.949 6. 67 3. 88 0.475

Cu 36.20 594.0 255.5 22.93
sd 20.41 266.1 96.0 10.40

Zn 29.50 219.0 160.1 60.49
sd 13.22 59. 6 35.5 6. 95

Fe 99.89 134.0 715.0 9.85
sd 95.00 84.3 734.0 10.70

Total tissue burdens of mercury and cadmium with their relative percentages are 

shown in Table 4.6. Highest tissue burden of mercury was in the tail muscle (2.64 

pg Hg, 80.5 %), while the hepatopancreas and gill shared most of the remainder.
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Highest tissue burden of cadmium was in the hepatopancreas (16.6 /xg Cd, 74.1 %) 

while the gill (12.6 %) and tail muscle (13.3 %) shared about equally.

4.4.2 Feeding experiment

Concentrations of metals in the tissues of Nephrops norvegicus after feeding with the 

liver are given in Table 4.2. Highest concentrations of mercury were found in the 

hepatopancreas (4.96 /xg g"*) and gill (3.87 /xg g~l). Cadmium were also highest in 

the hepatopancreas (28.4 /xg g‘ l) and gill (13.55 /xg g~l). Copper and zinc levels 

showed the same trend being highest in the hepatopancreas (863 /xg Cu g"^and 227 

/xg Zn g"l) and gill (347 /xg Cu g"* and 179 /xg Zn g-*). However, highest 

concentrations of iron were in the gill (619 /xg g 'l) , while the hepatopancreas and 

gill held similar concentrations (Table 4.2). Results of one way Anova between metal 

concentrations of the tissues between controls and fed animals are also given in Table

4.2 and shows that mercury concentrations increased in all tissues of the animals very 

significantly (P< 0.0001) after feeding with the liver. Cadmium concentrations were 

also increased after feeding with the liver but only in the hepatopancreas 

(P < 0.0001). Copper concentrations were also increased in the hepatopancreas 

(P=0.005), gill (P=0.002) and tail muscle (P=0.01) of fed animals but the 

carapace copper concentrations did not increase. Concentrations of zinc and iron did 

not show any significant increase after feeding in any tissues (P>0.05).

Linear regression analysis showed that mercury concentrations of all tissues except 

for carapace showed positive relationship with feeding rate (Table 4.3). Relationships 

between feeding rate and mercury concentrations of the tissues are shown in Figures 

4.1 to 4.4. Cadmium in the hepatopancreas and carapace also showed positive 

relationships with feeding rate. These relationships are shown in Figures 4.5 to 4.8.
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Copper, zinc and iron concentrations in all tissues did not show any increase in 

relation to feeding rate. These relationships are shown in Figures 4.9 to 4.20. 

Therefore, later investigations were focused on mercury and cadmium. Total tissue 

burdens of mercury were highest in the hepatopancreas (6.37 /xg Hg g“l, 52.8 %) 

and tail muscle (4.34 /xg Hg g"l, 41.4 %), while the bulk of cadmium burdens were 

in the hepatopancreas (36.8 /xg Cd g"* , 88.4 %) (Table 4.6). Feeding rates (gram 

food/day) of male and female Nephrops were also statistically compared. Male 

animals (0.15+0.041) showed higher feeding rates (P=0.04) than female animals 

(0.11±0.031).

Table 4.2. Mean concentrations (pg g '1 d.w.) of metals in the tissues of Nephrops norvegicus 
after feeding with the liver. Data are from 13 males and 13 females which CL are 4.8±0.4 and 
4.9±0.5 cm, respectively. Results of one way Anova between metal concentrations of controls 
and fed animals are also given in the following table indicating P values, ns = P>0.05.

Metal Carapace Hepatopancreas Gill Tail muscle

Hg 0. 669 4.96 3. 87 1.14
sd 0.246 3. 22 1.38 0.42
P 0.0001 0.0001 0.0001 0.0001

Cd 1.216 28.40 13.55 0.665
sd 0.556 13.31 4.67 0.272
P ns 0.0001 ns ns

Cu 45.97 863.0 346. 8 30.53
sd 20.53 395.0 95. 9 9. 93
P ns 0.005 0.002 0.01

Zn 35. 81 227.3 179.3 57.45
sd 10.02 96.3 42.8 5.63
P ns ns ns ns

Fe 110.0 125. 9 462.0 7.63
sd 85.7 62.8 570.8 4.45
P ns ns ns ns
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Table 4.3. Relationships between feeding rate (g wet weight liver / per day) and metal 
concentrations (pg g_1 d.w.) of the tissues after feeding with the liver. These relationships are 
shown in Figures of 4.1 to 4.20.

Metal Tissue Regression equation DF P

Mercury Carapace y _ 0.652+0.124* R2=0.001 22 ns
Hepatopancreas y =- 0.624+42.99* R2=0.278 24 0.006
Gill y = 1.851+14.94* R2=0.196 20 0.039
Tail muscle y = 0.599+4.164* R 2=0.151 24 0.048

Cadmium Carapace y _ 0.238+7.454* R 2=0.284 23 0.006
Hepatopancreas y =- 1.111+227.0* R2=0.454 24 0.0001
Gill y = 11.87+12.98* R 2=0.013 22 ns
Tail muscle y = 0.622+0.331* R2=0.002 24 ns

Copper Carapace y _ 33.32+96.38* R 2=0.035 23 ns
Hepatopancreas y = 688.1+1349 * R2=0.018 24 ns
Gill y = 273.0+564.0* R 2=0.059 21 ns
Tail muscle y — 43.68-101.1* R2=0.162 24 0.042

Zinc Carapace y _ 38.74-22.15* R2=0.008 23 ns
Hepatopancreas y = 272.7-350.0* R2=0.021 24 ns
Gill y = 163.4+121.4* R 2=0.014 21 ns
Tail muscle y X 62.15+36.19* R2=0.064 24 ns

Iron Carapace y = 271.0-1227 * R2=0.325 23 0.003
Hepatopancreas y = 76.22+382.0* R2=0.058 24 ns
Gill y = 853.7-2941 * R2=0.042 20 ns
Tail muscle y 12.50-37.51* R 2=0.111 24 ns

4.4.3 Assimilation of metals from food

Assimilation of organic mercury, inorganic mercury and cadmium are given in Table 

4.4. This table shows that there were differences in the percent of ingested organic 

and inorganic mercury deposited into the hepatopancreas and tail muscle. Of the total 

ingested, 4.9 % of the organic mercury was deposited into the hepatopancreas and

6.2 % into the tail muscle. However, inorganic mercury was deposited 0.61 % into 

the hepatopancreas and 0.05 % into the tail muscle. Very little (about 0.05 %) of



total ingested mercury was deposited into the gill tissue. Cadmium assimilation from 

food also varied between tissues (Table 4.4). The gill tissue and tail muscle did not 

receive much of the cadmium from food (0.00 % and 0.22 % respectively). 

However, 32.5 % of the cadmium ingested was deposited into the hepatopancreas.

Table 4.4. Assimilation of mercury and cadmium from the food.

AME = Amounts of metals in eaten food ( as pg metal). ASA = Assimilated amount of metals ( 
as pg metal) by tissues. AS = Assimilation of metals ( as % of ingested) by tissues. H = 
Hepatopancreas, G = Gill, T = Tail muscle.
Gill assimilation for mercury is calculated as total mercury assimilation.

Organic mercury Inorganic mercury Tot Hg Cadmium

AME 20. 84 814. 6 835. 5 62. 24

ASA

H T 

1.02 1.29

H T 

4.99 0.41

G

0.49

H T 

20.2 0.14

G

0.00

AS % 4.9 6.2 0.61 0.05 0.06 32.5 0.22 0.00

4.4.4 Exposure to mercury and cadmium dissolved in sea water

Concentrations of mercury and cadmium in the tissues of Nephrops after exposure to 

100 pg Cd I"* and 10 peg 1“  ̂ organic and inorganic mercury in sea water are given in 

Table 4.5. Highest concentrations of mercury from the organic and inorganic 

mercury treatments were in the gill (190 and 232 pg g- l, respectively), while highest 

concentrations of cadmium were in the hepatopancreas (231 pg g~*) and gill (162 pg 

g‘ l). Mercury and cadmium concentrations in the tissues were increased many fold. 

The gill tissue had the bulk of mercury burdens in inorganic mercury treatment (41.8 

pg Hg g~l, 68 %), whereas in the organic mercury treatment the tail muscle (37.0 

pg Hg g~l, 43 %) and gill (37.1 pg Hg g_1, 38 %) shared almost equally highest
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mercury burdens. The hepatopancreas contained similar levels of mercury burdens 

from both mercury treatments. Cadmium burdens, however, were mostly in the 

hepatopancreas (303.9 pg Cd g 'l ,  89 %) (Table 4.6).

Table 4.5. Mean metal concentrations (pg g'1 d.w.) and standard deviations of the tissues 
after exposing Nephrops to 10 pg I"1 organic and inorganic mercury and 100 pg l‘1 cadmium 
for 30 days.

Carapace length of experimental animals are as follows : organic mercury experiment ; 13
males CL = 4.6±0.6 cm and 14 females CL = 5.0±0.7 cm, inorganic mercury experiment ; 10
males CL = 4.8±0.6 cm and 11 females CL = 5.1 ±0.7 cm, cadmium experiment 14 males CL
= 4.6±0.7 cm and 11 females CL = 4.7±0.4 cm.

Exposure Hepatopancreas Gill Tail muscle

10 p g meHg 1”* 11.90 ± 6.51 190.1 ± 64.5 9.12 ± 4.82

10 pg Hg I”* 7.16 ± 4.48 232.3 ± 67.5 1.71 ± 0.58

100 p g Cd l-1 230.7 ± 116.3 162.3 ± 60.0 2.89 ± 1.35

4.4.5 Comparisons of mercury and cadmium distributions among tissues

Comparisons of cadmium and mercury distributions among the hepatopancreas, gill 

and tail muscle of controls, fed animals and animals exposed to both mercury and 

cadmium in sea water were investigated in relation to percentages of total tissue 

burdens. The distributions of metals among the tissues are shown in Figures 4.21 to 

4.23. Statistical comparisons of the percent distributions of metals among the tissues 

were also carried out and given in Table 4.7. Mercury distributions between control 

and fed animals were significantly different in the hepatopancreas (P<  0.0001) and in 

the tail muscle (P < 0.0001), while the gill did not show any difference between the 

two treatments.
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Table 4.6. Total tissue burdens and standard deviations (pg metal in whole wet tissues) of 
mercury and cadmium in the tissues of control animals, animals fed with the liver and animals 
exposed to metals in sea water.

Treatment Hepatopancreas Gill Tail muscle

Control Hg 0.36 ± 0.18 0.13 ± 0.07 2.64 ± 1.80
Hg % 14 . 6 4. 8 80.6

Cd 16.6 ± 12.1 2.19 ± 1.15 2.48 ± 2.27
Cd % 74.1 12.6 13.3

Feeding Hg 6.37 ± 3.90 0. 62 ± 0. 24 4.34 ± 1.47
Hg % 52.8 5.8 41.4

Cd 36.8 ± 17.4 2. 10 ± 1.02 2.62 ± 1.17
Cd % 87.2 5.6 7.2

Exposure Hg 11.5 ± 6.9 41.8 ± 19.9 8.31 ± 3.29
Hg % 17.8 68.5 13.7

meHg 17.1 ± 10.8 31. 9 ± 12.5 37.0 ± 17.3
meHg % 19.6 37. 8 42.6

Cd 303. 9 ± 131.7 24.3 ± 6.3 10.9 ± 5 . 0
Cd % 88.4 8.1 3.5

As can be seen in Figure 4.21 mercury in controls was mainly distributed to tail 

muscle whereas in fed animals (Figure 4.22) this distribution was moved towards the 

hepatopancreas comer. A comparison of mercury distribution between controls and 

inorganic mercury exposure in sea water showed that the gill and tail muscle showed 

significant differences (P < 0.0001), while the hepatopancreas did not show any 

difference. As can be seen in Figure 4.23 mercury from the inorganic mercury 

experiment was mainly in the gill. Distributions of mercury from the organic 

mercury treatment were significantly different from that in controls for the 

hepatopancreas (P=0.036), gill and tail muscle (P<  0.0001). Mercury was mainly 

distributed between gill and tail muscle (Figure 4.23) from the organic mercury 

experiment, though the percentage in the hepatopancreas was also higher than the 

controls. Comparisons of the treatments between themselves showed also significant 

differences in tissue distribution of mercury. Tissue distribution of mercury between



Table 4.7. Results of oneway Anova between total tissues burdens (%) among different 
treatments. These results also represent significancy of data shown in the triangular diagrams. 
There was no differences in carapace length of groups compared in following table (P>0.05). 
MC = mercuric chloride exposure in sea water, MMC = methyl mercuric chloride exposure in 
sea water, ns = not significant (P>0.05).

Treatments Hepatopancreas Gill Tail muscle
Mercury
Control & Feeding 0.0001 ns 0.0001
Control & MC exposure ns 0.0001 0.0001
Control & MMC exposure 0.036 0.0001 0.0001
Feeding & MC exposure 0.0001 0.0001 0.0001
Feeding & MMC exposure 0.0001 0.0001 ns
MC & MMC exposure ns 0.0001 0.0001
Control & Feeding & MC 0.0001 0.0001 0.0001
Control & Feeding & MMC 0.0001 0.0001 0.0001
Cadmium
Control & Feeding 0.0001 0.0001 0.006
Control & Cd exposure 0.0001 0.002 0.0001
Feeding & Cd exposure ns 0.001 0.0001
Control & Feeding & Cd ex. 0.0001 0.0001 0.0001

the feeding experiment and the inorganic mercury experiment were very significantly

different in all tissues (P<  0.0001) (Table 4.7). This was also true for the inorganic 

mercury experiment (P<  0.0001), except for tail muscle where there was no 

difference in mercury distribution between the feeding experiment and the organic 

mercury treatment. Except for the hepatopancreas mercury distribution, there were 

also very significant differences between both mercury experiments in the gill and 

tail muscle (P < 0.0001). Although main cadmium distributions were in the 

hepatopancreas from the all treatments (Figure 4.21-4.23), there were differences in 

cadmium burdens between controls and fed animals in the tail muscle (P=0.006) and 

in the hepatopancreas and gill (P < 0.0001) (Table 4.7). These differences were also 

found in cadmium distribution between controls and Cd exposure in sea water in the 

gill (P=0.002) and in the hepatopancreas and tail muscle (P < 0.0001). Comparisons 

of tissue distribution between fed animals and animals exposed to cadmium in sea 

water showed that except for the hepatopancreas (P>0.05), significant differences 

were found in the gill (P=0.001) and in the tail muscle (P< 0.0001) (Table 4.7).
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Figure 4.21. Triangular diagram representing percentages of total mercury and cadmium 
burdens in the hepatopancreas, gill and tail muscle of individual control Nephrops norvegicus. 
Circles for mercury, triangles for cadmium.
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Figure 4.23. Triangular diagram representing percentages of total mercury and cadmium 
burdens in the hepatopancreas, gill and tail muscle of individual Nephrops norvegicus in the 
experiments uptake from seawater. Closed circles for inorganic mercury, open circles for 
organic mercury and triangles for cadmium.
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4.5 DISCUSSION

A total mercury concentration of 163 fig  g"l w.w. in the food was not lethal to the 

animals. Low concentrations of mercury in the tissues of fed animals seem to 

indicate low assimilation rates of mercury, especially in the inorganic form. 

Nevertheless, 100 fig  H  of organic or inorganic mercury in sea water killed 100 % 

of the animals within one week (Chapter 3). Uptake of heavy metals from food is 

generally known to be less effective than uptake from water (Luoma, 1983). 

Nephrops exposed to 10 fig H  organic and inorganic mercury for 30 days contained 

much higher concentrations of mercury in their tissues. This shows that availability 

of mercury from sea water is much better than from a food source and as a result of 

this, toxicity of mercury is predominantly from solution rather than food. Mercury 

uptake from water occurs mainly via the gill and the highest concentration of 

mercury is also found to be in the gill. Brouwer and Engel (1982) indicated that 

mercury ions drastically decrease the oxygen affinity of crustaceans' haemocyanin. 

Therefore, toxicity of mercury could be higher when mercury is dissolved in sea 

water because of constant accumulation and direct contact between the gill and 

mercury. Mercury accumulation from food occurred in all the tissues except the 

carapace in relation to feeding rate despite the low assimilation rate. Luoma (1976) 

also indicated that accumulation of mercury was a function of feeding rate in the 

crab, Thalamita crenata. Accumulation of mercury into viscera exceeded 

accumulation into body muscle by a factor of 7.5 and into chela muscle by a factor 

of 21. In the present study, low tissue concentrations of mercury in experimentally 

fed Nephrops despite high levels of mercury in the food could be due to the fact that 

98 % of the mercury in the food was inorganic form. Results showed that 

assimilation of organic mercury was 8 and 124 times higher in the hepatopancreas 

and tail muscle respectively than inorganic mercury. Riisgard and Famme (1986) 

also indicated that organic mercury in food is accumulated to a greater degree than

139



inorganic mercury. They also supported the present results by indicating that 

concentrations of mercury in Crangon crangon fed contaminated mussels were 

increased with increasing in feeding period. Several other studies also indicated that 

organic mercury has a higher accumulation rate than inorganic mercury from water 

(Ray and Tripp, 1976 ; Fowler et al., 1978 ; Riisgard and Famme, 1986; Kraus et 

al., 1988). Guarino et al., (1976) indicated that once mercury is absorbed, whether 

administered intravascularly, in the water, or via food, the hepatopancreas and 

muscle are the dominant storage sites of absorbed mercury in the lobster, Homarus 

americanus. The triangular diagrams in the present study showed that mercury is 

distributed in different ways depending on source. Mercury burdens in control 

Nephrops are found mainly in the tail muscle. After feeding with food containing 

high mercury concentrations, the hepatopancreas also showed high burdens of 

mercury and mercury was mainly distributed between the tail muscle and 

hepatopancreas. Gill mercury burden was high only when animals were exposed to 

elevated levels of mercury in sea water. Distribution of mercury in the tissues of 

animals among controls, fed animals and animals exposed to the both organic and 

inorganic mercury in sea water were significantly different in most comparisons 

(Table 4.7). From the results of assimilation studies and the triangular diagrams, it 

might be concluded that mercury concentrations of the hepatopancreas were mainly 

derived from the food, though uptake from water was also an important route. For 

the gill the main source of mercury was via the uptake from water. For the tail 

muscle mercury concentrations, accumulation from food was an important route, 

although accumulation also occurred from sea water, and was much more 

pronounced when mercury was in an organic form.

Although the cadmium concentration of the food was not as high as that of mercury, 

concentrations in the hepatopancreas increased significantly and this increase showed 

a positive relationship with feeding rate. Assimilation of cadmium by the
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hepatopancreas was also very high when compared to assimilation by the gill and tail 

muscle. Concentrations of cadmium in the gill, carapace and tail muscle were not 

significantly different between control and fed animals. Overnell and Trewhella

(1979) and Davies et al. (1981) also found that gill concentrations of the crab Cancer 

pagurus were not affected from feeding with cadmium contaminated food, whereas 

hepatopancreas concentrations were increased significantly in fed animals. Jennings 

and Rainbow (1979 a and b) showed that cadmium was accumulated by Artemia 

salina and Cancer pagurus from food sources and indicated that the food chain can 

be major source of cadmium as long as the previous trophic level has the ability to 

accumulate the metal. However, accumulation of cadmium from water was found to 

be a more important route than food in an experiment carried out with the freshwater 

Isopod Asellus aquaticus (Van Hattum et al., 1989). Cadmium was taken up linearly 

by the digestive gland of the juvenile American lobster, Homarus americanus from 

food, but much lower accumulation occurred in the muscle tissue (Chou et al., 

1987). Cadmium accumulation from sea water occurred in the all tissues of Nephrops 

predominantly in the hepatopancreas and gills. Several studies on crustaceans have 

also indicated that the hepatopancreas and gill were the major accumulation site of 

cadmium (Dethlefsen, 1977: Wright and Brewer, 1979 ; Overnell and Trewhella, 

1979 ; Ray et al., 1981 ; Davies et al., 1981). Accumulation and toxicity of 

cadmium were found to be dependent on free cadmium ions in the grass shrimp, 

Palaemonetes pugio (Sunda et al., 1978). Distributions of cadmium among the 

tissues of Nephrops from the treatments seem very similar. The hepatopancreas 

always had the bulk of the cadmium. However, all the treatments showed 

significantly different cadmium distributions among the tissues, except in the 

hepatopancreas between fed animals and water exposed animals (Table 4.7). From 

these results, it might be concluded that the dominant accumulation route of 

cadmium in the gill is via uptake from water, whereas for the hepatopancreas both 

accumulation routes are important. The tail muscle seems not to be affected clearly
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from either accumulation route.

Concentrations of the essential metals, zinc and iron did not show any increase after 

feeding with the liver, while mean copper concentrations increased in all tissues 

except for carapace. However, these increases of copper did not show any positive 

relationship with feeding rate in any tissue. Therefore, copper increases in the tissues 

could not be related to the food. In general, food may not be a significant route in 

accumulation of these metals or concentrations of metals in the liver may be too low 

to increase the basal tissue concentrations, as a consequence of the homeostatic 

regulation of tissue concentrations of essential metals.
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CHAPTER 5

CHARACTERIZATION OF GILL ATPASES AND THE EFFECTS OF IN  

VIVO EXPOSURE TO CADMIUM, COPPER AND ZINC ON THE 

ACTIVITIES OF ATPASES IN THE GILL OF THE NORWAY LOBSTER, 

NEPHROPS NORVEGICUS



5.1 INTRODUCTION

The marine environment is the sink for heavy metals produced by anthropogenic and 

natural activities. It is well known that heavy metals are accumulated from sea water 

by marine animals and are toxic at high levels (Eisler and Hennekey, 1977 ; 

Ahsanullah et al., 1981 ; Krishnaja et al., 1987 ; Rainbow and White, 1989). 

Environmental Quality Standards (EQS) levels were set in the UK to determine the 

maximum acceptable levels of heavy metals in the marine environment. In estuaries 

and coastal waters these are (jxg 1“1) : Hg <  0.5 and <  0.3, Cd < 5.0 and < 2.5, 

Cu <  5.0 and < 5.0, Zn < 40.0 and < 40.0 (McLusky, 1989).

The gills of marine animals are crucial for functions such as respiration, osmotic and 

ionic regulation and excretion. The branchial epithelium is a tissue where both active 

and passive exchange occurs between the animal and the environment (Schmidt- 

Nielsen, 1990). Branchial Na,K-ATPase is found in the membrane of gill epithelial 

cells and plays a central role in whole body ion regulation (Neufeld et al., 1980 ; 

Towle, 1981). Skou (1957) first described an ATPase from the nerve membrane of 

the crab Carcinus maenas that was stimulated by Na+ and K + . The role of this 

ATPase was proposed to be in active transport of monovalent cations, the plasma 

membrane sodium pump (Skou, 1957 and 1960). To maintain cytoplasmic 

concentrations of Na+ below and K + above those in the cellular fluid in animals, 

active transport of these cations against their electrochemical gradients is dependent 

on metabolic energy which is generally in the form of ATP (Adenosine 

Triphosphate) (Robinson and Flasner, 1979 ; Towle, 1984). The Na+  / K + pump 

under physiological conditions affects the efflux of Na+ across the plasma 

membrane coupled to the influx of K + the active transport driven by the intracellular 

hydrolysis of ATP to ADP and Pi. The ratio of Na+  to K + transport is usually 3
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Na+ / 2 K“*~ / 1 ATP, though there are some different ratios of this exchange as in 

squid giant axons where there are ratios of Na+ / K + as high as 4:1 (Robinson and 

Flashner, 1979). The overall reaction catalysed by membrane bound Na,K-ATPase 

can be shown as;

H 2 0  +  M g +  +

3 Na+ (in) +  2 K +  (out) +  A TP----------- >3 Na+ (out) +  2 K + (in) +  ADP + Pi

The pump can also run under different electrochemical gradients. For example, 

uncoupled Na+ efflux occurs in the absence of both extracellular Na+ / K + . The 

ratio of transport of Na+ is 2-3 Na+ / 1 ATP. This efflux does not occur against a 

concentration gradient, as extracellular Na+ is added the rate of Na+ efflux falls. 

Na+  / N a+ exchange also occurs in the absence of extracellular K + , but the 

presence of both extracellular and intracellular Na+ . The pump effects a 1:1 

exchange of Na+ , across the membrane with no net transport of N a+. K + / K+ 

exchange occurs when in the presence of both intracellular and extracellular K + , the 

pump affects a 1:1 exchange of K + across the membrane with no net transport. 

Na,K-ATPase consists of two units that are a  (catalytic) and p (glycoprotein). 

Molecular weights of different units and the whole functional complex have been 

studied and reviewed by Cantley (1981). Equilibrium sedimentation is one of the 

methods to determine molecular weights of the enzyme and its units. Studies carried 

out with this method showed that a  (catalytic) and P (glycoprotein) units have 

molecular weights of 106,000 and 37,000 respectively, while whole functional 

ATPase has a molecular weight of 380,000 (Cantley, 1981). There are several 

inhibitors of Na,K-ATPase. Ouabain is a cardioactive steroid which is water soluble 

and is the most frequently used inhibitor of the ATPase in experimental studies 

because (1) by virtue of its specificity, it not only defines the enzyme and pump, 

with a generally accepted ratio of one ouabain binding site per functional pump or 

enzyme complex, (2) it binds to the extracellular surface of the enzyme and thus
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provides a marker, in disrupted preparations, for that surface, (3) the interaction with 

the enzyme affords insights into the reaction process. Oligomycin and Vanadate are 

other inhibitors of Na,K-ATPase. Therefore, vanadate-free ATP should be used 

when Na,K-ATPase activity is studied (Silva et al., 1977 ; Robinson and Flashner, 

1979 ; Towle, 1984).

Mg-ATPase has been shown to comprise an oligomycin sensitive fraction which is 

thought to be the mitochondrial Mg-ATPase involved in the oxidative 

phosphorylation pathway and a non-specific, oligomycin insensitive residual ATPase 

which is thought to be found mainly in the endoplasmic reticulum (Boyer et al., 

1977). The process of oxidative phosphorylation occurs in the inner membranes of 

mitochondria in animals and other eukaryotes. It is now firmly established that the 

aerobic oxidation of one molecule of NADH through the mitochondrial respiratory 

chain can give rise to the synthesis of three molecules of ATP from ADP and Pi 

(Emster, 1977). Oligomycin sensitive Mg-ATPase (os-Mg-ATPase) is actively 

involve in this processes and therefore is a crucial ATPase for oxidative 

phosphorylation (Boyer et al., 1977). Oligomycin insensitive Mg-ATPase (ois-Mg- 

ATPase), however, has no proven specific role in metabolism. Oligomycin is an 

antibiotic from various streptomycetes and inhibits the transfer of high-energy 

phosphate to ADP. Therefore, it also inhibits electron transfer coupled to 

phosphorylation (McGilvery and Goldstein, 1983). Oligomycin is widely used as 

experimental tool for discriminating between the two different reactions such as 

discrimination of Mg-ATPase.

Heavy metals have been reported to have inhibitory effects on gill ATPases in marine 

animals (Bouguegneau, 1976 ; Kuhnert and Kuhnert, 1976 ; Tucker and Matte, 1980 

; Stagg and Shuttleworth, 1982 ; Haya et al., 1983 ; Verma et al., 1983 ; Lauren
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and McDonald, 1987). Generally, in vitro exposure to metals causes a decrease in 

ATPase activity but the in vivo effects are not so clear and possibly relate to 

homeostatic mechanisms causing compensatory alterations in the rate of the enzyme 

as well as to direct effects of the metals (Stagg and Shuttleworth, 1982). Metals may 

alter functions or activities of enzymes by binding to their active sites including 

imidazole, histidyl, carboxyl and especially sulfhydryl chains. Conformational 

changes can still occur when metals bind away from the active site (Ulmer, 1970). 

Effects of metals on the activity of ATPases can vary widely depending on the metal. 

Britten and Blank (1973) showed that Na,K-ATPase activity was inhibited in the 

rabbit kidney in vitro by metals in the order; Hg >  Ag > Cu > Cd > Zn > Pb. 

Metals also affect the isolated mitochondria and it is obvious that mitochondrial 

activities containing metal-reactive ligands and located on the outer surface of the 

inner membrane will be the first targets for low concentrations of toxic heavy metal 

ions (Brierley, 1977). Thus, in isolated mitochondria, the substrate and phosphate 

transporters and certain portions of the electron transport system are often found to 

be sensitive to metal ions (Brierley, 1977). Few studies have been carried out on the 

effects of heavy metals on ATPase activity in crustaceans.

The aim of this study were ; a) to characterise the optimum working conditions of 

the gill ATPases such as oligomycin sensitive and insensitive Mg-ATPase and Na,K- 

ATPase in the gill of Nephrops norvegicus, b) to describe some of the biological 

parameters which could affect the activity of the ATPases such as size and sex of the 

animal and histological conditions of the gill, and c) to determine the effects of 

different concentrations of cadmium, copper and zinc in combination on the activity 

of the ATPases. Exposure concentrations were chosen to be representative of 

contamination in the marine environment (Nolting, 1986 ; Peerzada and Ryan, 1987 

; Balls and Toppings, 1987) and the lowest concentrations of the metals used were
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lower than the environmental quality standards. Furthermore since metals rarely 

occur in the environment alone an important aspect of this study was that the animals 

were exposed to a mixture of the three metals selected for study.

5.2 MATERIALS AND METHODS

All Nephrops norvegicus used in this study were caught by trawling on the same day 

(11.09.1991) and same location south of the Isle of Cumbrae, Clyde Sea area, 

Scotland. The animals were transferred to the laboratory, kept in running seawater 

for two weeks in 500 1 holding tanks containing 50 animals each.

5.2.1 HEAVY METAL EXPOSURE

Nephrops were exposed to sublethal concentrations of a mixture of cadmium, copper 

and zinc in a static exposure system over an 18-day period. Concentrations were 

chosen as follows:

0- Controls (no metal addition).

1 - 1 , 1  and 8 ppb (jig l 'l )  Cd, Cu and Zn respectively.

2- 5, 5 and 40 ppb Cd, Cu and Zn respectively.

3- 25, 25 and 200 ppb Cd, Cu and Zn respectively.

The metal concentrations were prepared using 40 litres of sea water in each tank and 

the metal salts were mixed very well before use. CdCl2  2 1/2 H2 O, Cu(NC>3)2 and 

ZnSC>4 7H2 O were used as chemical forms of the metals (BDH Chemicals Ltd. 

Poole, England; G.P.R. Chadwell Heath, Essex, England; Riedel-de Haen Ag 

Seelze, Hannover, Germany).
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5.2.2 EXPERIMENTAL PROCEDURE

Male Nephrops were studied in all the treatments. A set of female animals was also 

studied but only in the control and the highest concentration treatment. All animals' 

claws were bound with rubber bands to prevent fighting between individuals. For 

each treatment 8 animals in 3 replicate tanks were used except for the control female 

group where only a single tank was used. Healthy intermoult Nephrops were chosen 

after a two week holding period. They were put into each 50 liters fibreglass tank 

containing 40 liters of seawater (control) and metal-added seawater tanks. During the 

18 days of the experimental period, the aquaria were aerated using air stones attached 

to a compressed air supply system and experimental room was illuminated with six 

fluorescent lamps in a 12L : 12D regime. Animals were not fed during this period 

and the seawater temperature was kept at 19.5+0.65 °C (mean +  standard deviation 

of 18 days daily measurements). Seawater in both experimental and control tanks 

was changed every 3rd day to maintain metal levels and water quality. 

Concentrations of copper, cadmium and zinc were previously found to remain stable 

in seawater for up to three days (Chapter 3).

A second group of male Nephrops comprising different size groups, was caught 

from west of the Isle of Arran, in the Firth of Clyde and kept in running seawater for 

2 days at the University Marine Biological Station, Millport. These animals were 

used to measure ATPase activity in relation to the size of the animals.

5.2.3 TISSUE PREPARATION FOR ASSAY

At the end of 18 days exposure period, all animals were killed by decapitation. They 

were quickly weighed to the nearest 1 mg and carapace length measured (from the
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rear of the eye socket to the mid dorsal edge of the carapace) to nearest 1 mm. 

Animals were dissected on ice-cold clean plates. The gills were removed and put on 

ice-cold petri dishes. Dissected gills were placed immediately into plastic bags (small 

cut in one of the comers) and quick frozen in liquid nitrogen. All tissues were then 

transferred to a freezer (Series 100, Kelvinator Commercial Products Inc. 

Manitowoc, U.S.A) and kept at -70 °C until use. ATPase activity in the second 

group animals used to study the effects of size (carapace length) was measured 

immediately after killing.

5.2.4 PROCEDURE FOR ATPASE ACTIVITY

5.2.4.1 Homogenisation of gills

A homogenisation buffer was prepared with sucrose (250 mmol 1"1), imidazole (100 

mmol H )  and EDTA ( 5 mmol H )  (Sigma Chemical Company, U.S.A). The pH of 

this solution was brought to 7.8 with HC1. Homogenisation of the gills was carried 

out in a cold room (4 °C). Before homogenisation, homogenisation buffer, glass 

homogenizers and Eppendorf tubes were pre-cooled by placing on ice.

Frozen gills were quickly weighed (approx. between 150-200 mg) to the nearest 1 

mg using a Mettler AE240 balance. Frozen gills were transferred to the homogenizer 

on ice. They were homogenised in 2 ml of homogenisation buffer in a few minutes. 

Homogenates were transferred to Eppendorf tubes and centrifuged at 5000 G in a 

pre-cooled Eppendorf centrifuge for 1 minute (Eppendorf centrifuge 5415C). 

Supernatants were decanted to clean and cool Eppendorf tubes using a disposable 

pipette for each homogenate and placed on ice. ATPase assays were carried out with 

these homogenates within one hour.
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5.2.4.2 Determination of ATPase Activity

ATPase activity was measured by determination of phosphate (Pi) liberated from the 

hydrolysis of the substrate adenosine triphosphate (ATP), ATP -> ADP + Pi.

ATPase activity was measured at 37 °C with duplicate readings of each sample. Mg- 

ATPases were measured in the presence of Mg and ouabain for total Mg-ATPase 

activity and in the presence of Mg, ouabain and oligomycin for oligomycin 

insensitive Mg-ATPase activity. Differences between the two measurements gave the 

activity of oligomycin sensitive Mg-ATPase activity. Total ATPase activity was 

measured in the presence of Mg, Na and K with no inhibitor present in the buffer. 

Na,K-ATPase activity was measured in the presence of Mg, Na, K and ouabain. 

ATPase activity in this buffer was subtracted from the total ATPase activity to find 

the real Na,K-ATPase activity. Final assay concentrations of chemicals were as 

follows:

100 /zmol ml"l imidazole (Sigma U.S.A.), pH 7.4 with HC1 

100 /zmol ml-1 NaCl (B.D.H. England)

20 /zmol ml”1 KC1 (B.D.H.)

4 /zmol m l'1 MgC12.6H20 (B.D.H.)

6 /zmol ml- ! ATP (Vanadium free, daily preparation) (Sigma)

1 /zmol m l'l Ouabain (Sigma)

0.3 /zg ml_l Oligomycin B (Sigma)

The following buffers were prepared using final assay concentrations of the 

chemicals. Double distilled water was used throughout this study.
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Buffer 1 = Imidazole, Mg and ouabain (assay 1)

Buffer 2 = Imidazole, Mg, ouabain and oligomycin (assay 2)

Buffer 3 = Imidazole, Mg, Na and K (assay 3)

Buffer 4 = Imidazole, Mg, Na, K and ouabain (assay 4)

Blank 1 = ATP added buffers were used as first blank without homogenate present. 

Phosphate (Pi) concentration of this blank was measured at the end of 30 minutes 

incubation period at 37 °C to test for any breakdown of ATP without ATPases. 

Blank 2 = Homogenate added buffers were used as second blank without ATP. Pi 

concentration of this blank was measured at time zero to find out Pi concentration 

which was not produced by enzymatic activity. There is very significant positive 

relationship (P< 0.0001) between protein and phosphate concentrations in crude 

homogenate (Figure 5.3).

5.2.4.2.1 Assay

800 fx 1 of buffers were thermoequilibrated in 6 ml disposable test tubes for 5 minutes 

at 37 °C using a thermostated water bath (Grant Instrument, Cambridge, England). 

100 /xl homogenate was added to each buffer tube, except blank, and 100 /zl of ATP 

added to each tube to start the reaction. Tubes were vortexed with a spinmix and then 

shaken at 100 rev/min (Gallenkamp, England) for the duration of the incubation 

period. After 30 minutes, the reaction was stopped by adding 500 /xl ice-cold 

distilled water and 3 ml of lubrol/ammonium molybdate (1:1) mixture.
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5.2.5 DETERMINATION OF INORGANIC PHOSPHATE

Phosphate determination depends on the spectrophotometric determination of 

inorganic phosphate (Pi) after the formation of the soluble yellow complex of 

phosphomolylodic acid and lubrol (Atkinson et al., 1973). After the incubation 

period, the reaction was stopped by the addition of 3 ml of 1 % ammonium 

molybdate (B.D.H.) and 1 % lubrol in a 1:1 ratio to the same volumed (1500 /ul) 

samples and standards. The tubes were left for 10 minutes at room temperature to 

allow the yellow colour to develop. Solutions then were transferred to cuvettes and 

the intensity of yellow colour read at 390 nm on a LKB Ultrospec II 

spectrophotometer. If there was any excess colour development or protein 

precipitation in samples with high ATPase activity which prevented accurate reading 

on the spectrophotometer, then the homogenate was diluted and the assay repeated.

Six standard solutions were prepared between 0.2 and 1.2 /-cmol Pi m l'l using 

KH2 PO4  (B.D.H.). A calibration curve obtained from standard readings in each run 

was used to calculate phosphate concentrations of samples. An example of a 

calibration curve is shown in Figure 5.1. Double distilled water was used as blank.

5.2.5.1 Calculation of Results

All pairs of duplicate readings (blanks, standards and samples) were averaged and 

blank values were subtracted from sample readings. Phosphate concentrations of 

samples were calculated using the regression line of standards. Phosphate 

concentration in 1500 of final samples after 30 minutes reaction were calculated as 

follows (jimol Pi/ml /hour); Pi concentration (jumol m l'l) * 1.5 ml * 60 min./ 30 

min.
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This calculation was carried out for each specific activity after associated subtractions 

as follows;

Total ATPase activities =  assay 3 

Total Mg-ATPase activity =  assay 1 

Na,K-ATPase activity =  assay 3-4 

Oligomycin sensitive Mg-ATPase activity =  assay 1-2 

Oligomycin insensitive Mg-ATPase activity =  assay 2

Results of these calculations were converted to protein concentration of 100 \x.1 of 

homogenate (mg protein /100 n1 homogenate) to justify real phosphate amounts 

produced in 30 minutes by ATPases.

Figure 5.1. A typical relationship  betw een phosphate  
concentration  and absorbance
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5.2.6 DETERMINATION OF PROTEIN IN CRUDE HOMOGENATE

Protein determinations in crude homogenate were conducted with the method of 

Bradford (1976) in microtitre plates (Biorad, Richmond, England) using gamma 

globulin as standard. This technique is a non-specific quantitative determination of 

protein using a dye-binding technique. The dye reagent, Coomasie brilliant blue 

G250, has an absorbance maximum at 465 nm which shifts to 595 nm when it binds 

to protein, thus the optical density of the assay, measured as absorbance at 595 nm, 

is proportional to protein concentration. Binding of the dye to the analyte protein(s) 

may occur at a slower rate than binding to the standard, so a time delay between 

addition of the dye and absorbance reading is necessary.

5.2.6.1 Preparation of Standards

Crude homogenates were diluted ten times with distilled water to be able to read 

accurately. 2 mg ml"* of stock concentrations of standard was prepared as 20 ml 

using Biorad protein assay standard I (Bovine Plasma, Gamma Globulin Lyophilized) 

and aliquoted into Eppendorf tubes as 800 /zl to store at -20 °C. In each protein 

assay, a 800 (A of standard was thawed. Five concentrations of standards were 

prepared between 0.2 and 1.0 mg m H  as 500 fA. Dilutions of standards were carried 

out with addition of distilled water and homogenisation buffer. Final assay 

concentrations of standards contained 10 % of homogenate buffer, because crude 

homogenates of samples were ten times diluted with distilled water.
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Figure 5.2. A typical relationship  betw een protein  
(gam m a globulin) con cen tration  and absorbance
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5.2.6.2 Assay for Protein Measurements

Dye agent (Biorad) was diluted one in four (1:4) with distilled water and filtered 

through a GF/F microfibre filter (Whatman) using a syringe (Millipore, Swinnex- 

25). Protein assays were conducted in disposable microplates using double distilled 

water as blank. Protein determination was carried out using 10 fil duplicates of 

blanks, standards and 10 times diluted homogenates. 200 fi\ dye agent and distilled 

water mixture (1:4) was added in each case and the microplate was left at room 

temperature for 15 minutes to allow development of blue colour. The intensity of 

blue colour was read on a spectrophotometer (Argus 300 microplate reader, Bio-Tek 

instrument Inc.). The instrument was connected to a computer (IBM) to produce the 

regression line for standards, absorbance and concentration values of samples. A 

typical calibration line of standards is shown in Figure 5.2. Samples which fell out 

with standard values were rediluted and remeasured. If samples showed a high 

coefficient of variation, then they were remeasured. From these calculations, the 

protein concentration of 100 fi\ crude homogenate was found for each case and this 

was used to divide Pi concentration produced in the reaction period. ATPase activity 

was finally expressed as n mol Pi / mg protein / hour.

5.2.7 STATISTICAL ANALYSES OF DATA

Statistical analysis of data was carried out with Unistat statistical package programs. 

Before any statistical analysis, all data were plotted on graphs and homogeneity of 

data were checked by Bartlett's homogeneity test. Data not normally distributed were 

log 10 or square root transformed as appropriate. One way analysis of variance 

(Anova) was used to compare variables between controls and treatments. If a variable 

differed significantly (P<0.05) among treatments and controls in male animals,
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these data were reanalysed between control and individual treatment to find out 

individual contribution of groups to the overall comparison. Linear regression 

analyses were carried out between branchial ATPase activity and metal 

concentrations.

5.3 RESULTS

5.3.1 Characterization of Gill ATPases in Nephrops norvegicus

Figure 5.4 shows the effects of Na and K on the activity of Na,K-ATPase. Maximal 

activity occurred between 20 and 40 mmol K 1"! at the range of Na concentrations 

used (Figure 5.4a). The effect of Na was much more marked (Figure 5.4b) than K 

(Figure 5.4a) and maximum ATPase activity was found at a Na concentration of 100 

mmol l 'l  at all potassium concentrations used. Figure 5.5 shows the effect of Mg 

ions on the activity of Mg-ATPase. Maximal Mg-ATPase activity occurred at a 

concentration of 4 mmol Mg 1“1. All the ATPases studied in the gill had optimum 

ATP concentrations of 6 mmol 1'* (Figure 5.6a and 5.6b). Inhibition of Na,K- 

ATPase at different concentrations of ouabain is shown in Figure 5.7 and shows that 

100 % inhibition of Na,K-ATPase occurred at a concentration of 1 ^mol ouabain ml’ 

1, with an IC50 (the concentration which inhibits 50 % of the enzyme activity) value 

at 35 pmol ouabain H .  Likewise, the effects of oligomycin on the activity of Mg- 

ATPase is shown in Figure 5.8 and shows that 0.3 pg oligomycin m l'l completely 

inhibited 100 % of oligomycin sensitive Mg-ATPase, with an IC50 value of 0.022 

pg m H . Effects of temperature on the activities of the ATPases are shown in Figure 

5.9. This figure shows that all the ATPases had optimum activity at or near 37 °C. 

Oligomycin sensitive Mg-ATPase and Na,K-ATPase seemed to be sensitive to 

temperature as the activities of these ATPases were inhibited completely when
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temperature was below 5 °C and above 55 °C. However, the activity of oligomycin 

insensitive Mg-ATPase was not totally inhibited at 5 °C and interestingly almost 50 

% of the ATPase was active when temperature reached 70 °C (Figure 5.9). Effects 

of freezing at -70 °C on the activities of the ATPases were also investigated. For 

this, gill filaments from five animals were homogenised and mixed very well. 

ATPase activities in this homogenate were measured on the same day of 

homogenisation, after one month and two months storage at -70 °C. Results are 

given in Table 5.1. This table shows that in general, all ATPase activities were 

reduced after storage at -70 °C after one month and even more so after two months, 

especially in the activities of Na,K-ATPase and oligomycin sensitive Mg-ATPase. 

Oligomycin insensitive Mg-ATPase activity ,however, was not affected by freezing.

Table 5.1. Reduction of ATPase activities (pmol Pi/mg protein/hour) in crude homogenate of 
the gill after storage at -70 °C.

Fresh One month % loss Two months % loss

Total ATPase 1. 993 1.614 19.0 1.550 22.0

Total Mg-ATPase 1. 638 1.382 15.0 1.360 17.0

Ois-Mg-ATPase 1.037 1.003 3.3 0.970 6.4

Os-Mg-ATPase 0.601 0.412 31.4 0.357 40.6

Na# K-ATPase 0.465 0.305 34.4 0.256 44.9
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Figure 5.4a. Effect of K ionB on Na,K—ATPase
activity in different Na concentrations in the
gill of Nephrops norvegicus
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Figure 5.5. Effect of Mg ions on Mg—ATPase
activ ity  in the gill of Nephrops norvegicus
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5.3.2 Effects of size on the activity of ATPases

Carapace length of male animals was significant related to ATPase activity. 

Regression analyses between ATPase activity and carapace length showed that 

neither total Mg-ATPase (Figure 5.10) nor its oligomycin insensitive (Figure 5.11) 

component showed any significant relationship with size of male animals (P > 0 .0 5 ). 

However, the oligomycin sensitive Mg-ATPase (Figure 5.12) and Na,K-ATPase 

(Figure 5.13) activities showed significant negative relationships with carapace length 

(r =  -0.481, P <  0.05) and (r =  -0.603, P <  0.01), respectively.

Figure 5.10. The relationship  betw een size (CL) and  
tota l Mg—ATPase activ ity  in th e gill of Nephrops 
norvegicus
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Figure 5.11. The relationship  between size (CL) and 
oligom ycin insensitive Mg-ATPase activ ity  in the gill 
of Nephrops norvegicus
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Figure 5.13. The relationship  between size (CL) and
Na.K—ATPase activity in the gill of Nephrops norvegicus
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5.3.3 The effects of metals on metal accumulation and ATPase activities

Carapace lengths and weights of male and female Nephrops norvegicus used for this 

study are given in Table 5.2. This table shows that there was no significant 

difference in size between the groups (P < 0 .0 5 ).

Table 5.2. Mean values and standard errors of carapace length (CL) of experimental animals. 
Results of one way Anova are also given in the following table.

M A L E A N I  M A L S FEMALE ANIMALS

C o n t r o l T r e a t l T r e a t 2 T r e a t 3 P T r e a t 3 C o n t r o l  P
NO 15 19 15 19 19 8

CL 3 . 4 8 3 . 6 8 3 . 7 2 3 .  65 n s 3 . 5 6 3 . 6 8  n s
s e 0 . 0 6 0 . 1 0 0 . 0 9 0 . 0 8 0 . 0 6 0 . 1 3
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The effects of heavy metal exposure on the activities of gill ATPases in male and 

female Nephrops norvegicus are shown in Figures 5.14-5.18 with results of one way 

Anova. In male Nephrops exposed to copper, zinc and cadmium the activity of 

branchial Na,K-ATPase was inhibited significantly (P<0.01) (Figure 5.18). Total 

Mg-ATPase and its oligomycin-insensitive and sensitive components in the gill from 

male animals were unaffected by the exposure regime (Figure 5.15-5.17). There was 

also no significant inhibition of total ATPase activity. In female Nephrops all the 

ATPases measured in the gills were affected by exposure to the metals, except for 

total Mg-ATPase which its activity was significantly (P<0.05) inhibited in the 

highest exposure regime (Figures 5.14-5.18). Significant results in male animals 

from overall comparison with one way Anova were reanalysed between control and 

treatments. Results of these analyses are given in Table 5.3. Results showed that 

Na,K-ATPase activity was significantly lower in the medium and the highest 

treatments (P<0.01 and P<0.05 , respectively), though in the lowest treatment there 

was no difference from control. The same results were also found between the 

treatments as there was significant inhibition in the medium and the highest 

treatments compared to the lowest treatment (Table 5.3). There was no difference 

between the medium and the highest treatments.

Table 5.3. Results of comparison of Na.K-ATPase activity in male animals with one way 
Anova. Significant P values are given in the following table, ns = not significant (P<0.05).

Control Treatment1 Treatment2

Treat1 ns

Treat2 0.006 0.005

Treat3 0.022 0.026 ns
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Male and female animals were also compared for levels of some variables and the 

activity of ATPases in controls and in the highest treatments (Table 5.4). Results 

showed that there was no significant difference in carapace length of male and female 

animals in both controls and in the highest treatments. Activities of the ATPases 

were not also significantly different between male and female animals, except for 

Na,K-ATPase activity for which there was a significant (P<0.05) difference 

between groups of control animals, namely males had higher Na,K-ATPase activity 

than females.

Table 5.4. Result of comparisons of some variables and ATPase activities between controls 
and the highest treatments of male and female animals. CL = Carapace length, W = Weight, 
Tr3 M&F= Male and female animals in the treatment 3, C M&F = Control males and females.

CL tot-ATP tot-Mg Na,K-ATP ois-Mg-ATP os-Mg-ATP

C M&F ns ns ns 0.021 ns ns

Tr3 M&F ns ns ns ns ns ns

Metal concentrations in the gills of male and female animals were described 

elsewhere (Chapter 6). Cadmium showed a significant increase in concentrations in 

the gill in relation to exposure concentrations in both male and female animals 

(P < 0.001). Copper and zinc also showed significant increases (P<0.05) in male 

animals but not in females. Regression analyses were carried out to analyse the 

relationship between ATPase activity and metal concentrations for each metal 

treatment and ATPase activity. Results of these analyses showed that Na,K-ATPase 

activity had a negative relationship with copper (P=0.005) in male animals. 

However, activity of Na,K-ATPase in females showed positive relationships with 

zinc (P=0.009) and cadmium (P=0.032). There was no other significant 

relationship between any of the ATPase activities and metal concentrations in male 

and female animals.
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Figure 5.14. The effects of m etal exposure on total
ATPase activity in the gill of Nephrops norvegicus
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Figure 5 .IB. The e ffects of m eta l exposure on Na,K—
ATPase activ ity  in the gill of Nephrops norvegicus
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Figure 5.20. The relationsh ip  betw een zinc and
Na.K—ATPase activity in the gill of fem ale
N ep hrops n o rv eg icu s
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5.4 DISCUSSION

5.4.1 Characterization of the gill ATPases in Nephrops norvegicus

The optimum concentrations of Na+ and K+ in this study were found to be 100 and 

20 mmol H  respectively (Figure 5.4a and 5.4b) which are similar to those reported 

in other studies carried out with decapod crustaceans (Towle et al., 1976 ; Horiuhi, 

1977 ; Silva et al., 1977 ; Jowett et al., 1978 and 1981 ; Neufeld et al., 1980 ; 

Pequeux et al., 1984 ; Stem et al., 1984 ; Holliday, 1985 ; Trausch et al., 1989 ; 

Proverbio et al., 1990). The marked inhibition of ATPase activity by higher 

concentrations of Na+ shown in this study was also shown in other decapod 

crustaceans (Horiuchi, 1977 ; Pequeux et al., 1984 ; Wanson et al., 1984 ; Harris 

and Bayliss, 1988). K + ion was also found to cause less inhibition at higher levels 

than N a+ ions in decapod crustaceans (Hotiuchi, 1977 ; Wanson et al., 1984 ; 

Pequeux et al., 1984 ; Ventrella et al., 1990) as with Nephrops. The Mg2+ ion 

concentration used for the activities of Mg-ATPase is commonly in the range of 4-5 

mmol/1 in crustaceans (Tucker and Matte, 1979 ; Siebers et al., 1982 ; Haya et al., 

1983 ; Pequeux et al., 1984 ; Harris and Bayliss, 1988 ; Torreblanca et al., 1989), 

although some studies on crustaceans used lower levels of Mg ion (Horiuchi, 1977 ; 

Wanson et al., 1984 ; Proverbio et al., 1990) or higher levels (Holliday, 1985 ; 

Towle and Kays, 1986). 6 mmol l 'l  ATP was found to be optimal for all the 

ATPases studied in the gill and no marked inhibition occurred with increasing ATP 

levels (Figure 5.6a and 5.6b). Similar ATP concentrations were also used to study 

gill ATPases in other decapod crustaceans (Silva et al., 1977 ; Siebers et al., 1982 ; 

Haya et al., 1983 ; Pequeux et al., 1984 ; Wanson et al., 1984 ; Holliday, 1985 ; 

Dehn et al., 1985 ; Torreblanca et al., 1989). Similar paths of ATP in Nephrops was 

also shown in other decapod crustaceans (Stem et al., 1984 ; Wanson et al., 1984 ; 

Pequeux et al., 1984 ; Holliday et al., 1985). Ouabain completely inhibited Na,K-
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ATPase at a concentration of 1 mmol H  (Figure 5.7). Similar sensitivity to ouabain 

has also been reported for other decapod crustaceans (Desaiah et al., 1972 ; Towle et 

al., 1976 ; Jowett et al., 1978 and 1981 ; Tucker, 1979 ; Siebers et al., 1982 ; 

Wanson et al., 1984 ; Holliday, 1985 ; Proverbio et al., 1990), although 

considerable variations in sensitivity have been reported (Silva et al., 1977 ; 

Horiuchi, 1977 ; Haya et al., 1983 ; Pequeux et al., 1984 ; Harris and Bayliss, 1988 

; Torreblanca et al., 1989 ; Trausch et al., 1989). For example, Harris and Bayliss 

(1988) could not detect Na,K-ATPase activity at a ouabain concentration of 10 mmol 

1"! in a number of marine decapod crustaceans including Nephrops. This level of 

ouabain is 10 times higher than the present level and this study reports high levels of 

Na,K-ATPase activity in Nephrops. Oligomycin sensitive Mg-ATPase activity has 

not been studied widely and no data were found on the sensitivity of Mg-ATPase to 

oligomycin in decapod crustaceans. 0.3 fig m H  of oligomycin B caused 100 % 

inhibition with an IC50 value of 0.022 fig m H  (Figure 5.8). Desaiah et al. (1972) 

found the optimum inhibition at oligomycin (oligomycin A 15 %, and B 85 %) 

concentration of 0.03 fig m H  for the tissues of fish Lepomis machrochirus. 

Temperature of the incubation environment has been found to be an important factor 

for ATPase activity. All the ATPases studied had maximum activity at around 40 °C 

(Figure 5.9). Na,K-ATPase and oligomycin sensitive Mg-ATPase seemed to be 

much more heat sensitive than oligomycin insensitive Mg-ATPase. Although 

activities of Na,K-ATPase and oligomycin sensitive Mg-ATPase were zero at 5 °C 

and at 55 °C, oligomycin insensitive Mg-ATPase was still active at 5 °C and 

interestingly, approximately 50 % of the ATPase was active at an incubation 

temperature of 70 °C. Horiuchi (1977), Stem et al. (1984) and Holliday (1985) were 

also found maximum Na,K-ATPase activity at incubation temperatures of close to 40 

°C in decapod crustaceans. However, there was no information from the literature on 

the effects of temperature on the two components of Mg-ATPase.
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5.4.2 Variability of gill ATPases in decapod crustaceans

Activities of different ATPases ranged widely in the same group treatments. This 

suggests the importance of using large numbers to have more accurate measurement 

of ATPase activity. Tucker and Matte (1980) also found considerable variability in 

the activity of Na,K-ATPase in rock crabs, Cancer irroratus. The present results 

show that the sex of experimental animals is an important factor to consider, as male 

and female Nephrops had different degrees of inhibition by metals, and control 

males showed higher activity of Na,K-ATPase than in females. Neufeld et al. (1980) 

found that the effects of acclimation to different salinities caused different levels of 

Na,K-ATPase activity between male and female blue crabs, Callinectes sapidus. The 

condition of gill tissue is also an important factor to take into account ; for example 

it was observed that black spotted gills from three individuals (necrosis thought to be 

related to exposure to anoxic sediments) showed very high ATPase activities, having 

total ATPase activities of 3.498, 11.907 and 5.734 pmol Pi/mg protein/hr, 

respectively. Actually most of these activities were from Mg-ATPase, having 

activities of 1.865 , 9.925 and 3.862 /zmol Pi/mg protein/hr, respectively. Size of 

male animals was also found to be a significant factor (Figures 5.10-5.13) in 

determining ATPase activity. The activities of Na,K-ATPase and oligomycin 

sensitive Mg-ATPase were higher in smaller animals. Oligomycin sensitive Mg- 

ATPase is found in mitochondria and is involved in oxidative phosphorylation in the 

respiratory chain (Boyer et al., 1977). Laboratory observations have shown that 

smaller Nephrops are more active than larger animals and accumulate more mercury 

and cadmium in their gills from seawater, but not copper and zinc. This was related 

to higher activity of small animals than larger animals (Chapter 3). Animals which 

have high physical activity obviously would have higher ATP consumption as a 

result of high metabolic activity. These animals might also need more oligomycin
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sensitive Mg-ATPase or turnover of this ATPase would be increased to give a higher 

oxidative phosphorylation rate. Higher activity of small animals could also increase 

efflux and influx of Na and K ions across membranes. Metabolic transfer of Na and 

K ions across the gill membrane may also be influenced by surface area of the gill. 

There is, however, no study found from literature on the effects of size on the 

ATPase activity. In decapod crustaceans, gill filaments can show differences in the 

activity of ATPases between anterior and posterior positions (Neufeld et al., 1980 ; 

Wanson et al., 1984 ; Holliday, 1985 ; Towle and Kay, 1986). In the present study 

all gills from one side were used to overcome these differences between the gill 

filaments. It is also well known that adaptation of marine decapod crustaceans to 

lower salinities causes an increase in Na,K-ATPase activity (Neufeld et al., 1980 ; 

Holliday, 1985 ; Towle and Kay, 1986). Adaptation to lower salinities may also 

show differences between different gill filaments and with sex in the blue crab, 

Callinectes sapidus (Neufeld et al., 1980). ATPase activity can differ among 

different developmental stages of crustaceans. Bouaricha et al. (1991) found that 

Na,K-ATPase activity differed among larvae, post larvae and adults of the shrimp 

Penaeus japonicus being lowest in larvae and highest in adults. When comparing 

ATPase activity from different studies, one should consider measurement time of the 

ATPase activity after killing animals. In this study, it was shown that ATPase 

activity was reduced after storage even at -70 °C, especially the activities of Na,K- 

ATPase and oligomycin sensitive Mg-ATPase.

5.4.3 Effects of in vivo metal exposure on the activity of gill ATPases

Natural concentrations of heavy metals in the tissues of Nephrops norvegicus have 

been found to be affected by sex, size and season and accumulation of metals from 

seawater could be affected by sex and size of the animals (Chapters 2 and 3). Male
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and female animals were separated and the same size groups of the animals were 

used for the present study.

When considering the effects of individual metals on the activity of gill ATPases in 

vivo considerable variations have been reported. Tucker (1979) found that exposure 

of Homarus americanus to 6 ppb cadmium for 30 days in vivo did not alter Na,K- 

ATPase activity, while it enhanced Mg-ATPase activity. Haya et al. (1983) showed 

that in the lobster, Homarus americanus exposed to a high zinc concentration for 96 

h in vivo significantly inhibited the activity of Na,K-ATPase. Interestingly the study 

also showed that effects were irreversible and activity failed to recover to control 

levels after 168 h depuration in normal seawater. Torreblanca et al. (1989) indicated 

that 1 ppm Cd in vivo did not show any clear effects on ATPase activities in the gill 

of freshwater crayfish Procambarus clarkii. Mg-ATPase was inhibited by cadmium. 

The present results, using combinations of Cu, Cd and Zn showed that Na,K-ATPase 

activities were significantly reduced by metals in male animals but not in females. 

Although the activity of oligomycin-sensitive and insensitive Mg-ATPase were 

inhibited by metals, these were not significant at 0.05 level in male or female 

animals. However, total Mg-ATPase activity became significantly inhibited in female 

animals at the highest exposure regime.

Interestingly, in male animals in which Na,K-ATPase activity was inhibited there 

were correlation dependent increases in levels of copper, zinc and cadmium 

following exposure to all three metals whereas in females there was no change in 

ATPase activity and cadmium levels in the gill increased but not those of copper and 

zinc. Comparisons of the relationship between Na,K-ATPase activity and levels of 

metals in the gill of individual male animals showed that there was a significant 

negative correlation with copper but not with cadmium and zinc. It is therefore
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tempting to speculate that the inhibition of Na,K-ATPase in gills from male 

Nephrops is related to the accumulation of copper in the tissues and that no inhibition 

is observed in females because they are able to regulate copper and zinc in the face 

of environmental exposure. Regulation of essential metals has been shown for other 

decapod crustaceans (Bryan, 1964 ; White and Rainbow, 1982 ; Rainbow, 1985 ; 

Rainbow and White, 1989). They indicated that essential metals can be regulated by 

decapod crustaceans up to a threshold. Net accumulation of these metals begins after 

threshold levels are exceeded.

Studies on the effects of individual metals on the activity of ATPases in fish showed 

similar results to those from crustaceans. Stagg and Shuttleworth (1982) found 

significant inhibitions of Na,K-ATPase and Mg-ATPase in copper exposed flounder 

(seawater adapted) Platichthys flesus in vitro. They indicated that in vivo exposure to 

copper did not alter the activities of the enzymes. Watson and Benson (1987) 

exposed teleost fish Lepomis macrochirus and Pimephales promelas in vivo to 

different cadmium concentrations. They found that 1 pg Cd H  stimulated activity of 

Na,K-ATPase, while inhibitions were observed at higher exposures (10 and 100 pg 

Cd H ) . Stagg and Shuttleworth (1982) indicated that in vitro exposures to metals, in 

general, causes a decrease in ATPase activity but in vivo effects are not so clear and 

possibly relate to some physiological alterations on the enzyme characteristics as well 

as direct effects of the metals. This is also true for the present study as inhibition of 

ATPase activity by metals in the gill of Nephrops norvegicus still remains unclear 

and needs more study. Especially, it is essential to examine the turnover rate of 

ATPases under normal and metal-exposed conditions to obtain a better understanding 

of the activities of ATPases.
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CHAPTER 6

THE INDUCTION OF METALLOTHIONEIN IN THE TISSUES OF THE 

NORWAY LOBSTER, NEPHROPS NORVEGICUS AFTER EXPOSURE TO 

CADMIUM, COPPER AND ZINC



6.1 INTRODUCTION

Metallothioneins (MTs) are ubiquitous, heat stable, low molecular weight proteins 

that are characterized by an unusually high cysteine content (22 to 33 %) and a 

selective capacity to bind heavy metal ions such as mercury, cadmium, copper and 

zinc. MT was first discovered as a cadmium-binding protein in equine renal cortex 

by Margoshes and Vallee (1957) and this was further investigated and called 

'metallothionein* by Kagi and Vallee (1960). Subsequently, MTs were found in 

different groups of living organisms such as prokaryotes, invertebrates and 

vertebrates including 80 species in the aquatic environment (Roesijadi, 1992). 

Metallothioneins occur in many tissues of mammals including liver, kidneys, 

pancreas, intestine, brain, bone marrow, and reproductive organs and they show 

close relationships with metal ions and metal metabolism (Bremner and Beattie, 

1990).

6.1.1 Physicochemical Properties of Metallothionein

The mammalian form of metallothionein has ;

a single polypeptide chain consisting of 61 amino acid residues,

molecular weight of approximately 6000-7000 dalton

high cysteine content (33% ; 20 of 61 amino acid residue)

absence of disulfide bonds

absence of aromatic amino acids

Metal-binding capacity of 7 g-atoms/per mole protein

cytosolic localisation

heat stability and polymorphic configuration (Kagi and Schaffer, 1988 ; Klaassen and 

Lehman-McKeeman, 1989).
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Although these characterization of metallothionein are basic to metallothioneins, 

there are also different forms of metallothioneins in animals. Metallothioneins were 

divided into three classes: MT I, MT II and MT III. Class I includes mammalian 

MTs and polypeptides from other phyla with related primary structure. Class II 

comprises MTs displaying no or only very distant correspondence to the mammalian 

forms, e.g., MTs from sea urchins, yeasts, and certain prokaryotes. Class III groups 

polypeptides containing y- glutamylcysteinyl units (Kagi and Schaffer, 1988). All 

class I and II MTs characterized have been found to be single-chain proteins. 

Mammalian forms contain 61 to 62 amino acid residues; chicken MT and sea urchin 

MTs contain 63 and 64 residues, respectively. The shortest chain MT was found in a 

fungus Neurospora crassa having 25 amino acid residues. Class III MTs are often 

oligometric structures made up of two or more polypeptide chains of variable length 

(Kagi and Schaffer, 1988). Olafson et al. (1979 b) indicated that MTs show marked 

similarities on comparisons of molecular weight, U.V. absorption spectra, isoelectric 

points and amino acid composition in different groups of living organism. For 

example, MTs from the decapod crustacean Scylla serrata have been shown to be 

remarkably similar to mammalian MTs (Lerch et al., 1982 ; Otvos et al., 1982). 

Brouwer et al. (1989) also isolated copper metallothioneins MT I, MT II, and MT III 

from the American lobster, Homarus americanus. They indicated that MT I group 

proteins related to equine renal cortex metallothioneins and this group MTs can not 

transfer copper to copper-depleted apohaemocyanin. CuMT II belongs to the same 

class as CuMT I, but CuMT III cannot. They strongly suggested that the different 

forms of MT have different biological functions. The most conspicuous feature of all 

forms is, besides the abundance of Cysteine totalling up to one-third of all residues, 

the frequent occurrence of cys-x-cys tripeptide sequence, where x is an amino acid 

residue other than cysteine (Kagi and Schaffer, 1988). There are also heavy metal- 

binding proteins which are not metallothioneins. These non-metallothionein
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cadmium, and zinc binding proteins have been characterized and found to show one 

or more differences than mammalian MTs (Stone and Ovemell, 1985 ; Baer and 

Thomas, 1990). These non-metallothionein low molecular weight proteins usually 

differ from metallothioneins by having aromatic amino acids and low cysteine 

contents (George, 1990).

6.1.2 Induction of Metallothionein

Metallothionein production can be induced by many chemical and physical factors. 

Most important inducers of MTs, however, are heavy metals including cadmium, 

copper, zinc, mercury, gold, and bismuth (Bremner and Beattie, 1990), though the 

most effective inducers are cadmium and zinc (Klaassen and Lehman-McKeeman, 

1989). Induction of metallothioneins by heavy metals in tissues of animals including 

mammals, fish and crustaceans occurs after exposure to heavy metals (Roesijadi, 

1982 ; Otvos et al., 1982 ; Bonham and Gedamu, 1984 ; Engel and Brouwer, 1986 ; 

Kagi and Schaffer, 1988 ; Klaassen and Lehman-McKeeman, 1989 ; Hogstrand and 

Haux, 1989 ; Howard and Hacker, 1990 ; Bremner and Beattie, 1990 ; Roesijadi, 

1992). The rate of MT synthesis closely parallels the production of metallothionein 

mRNA (Bonhams and Gedamu, 1984), and a high rate of transcription can be 

detected within one hour of stimulation by metals. The mRNA levels reach a 

maximum at about 6-8 hours after exposure to an inducer, although maximal levels 

of MT occur after 1-2 days (Bremner and Beattie, 1990). Jones et al. (1988) showed 

that induction of metallothionein by toxic heavy metal ions depends on electronic 

configurations of the metals. For example, induction of MTs was found to be 

prominent by ions with electronic configurations of (n-l)d^, (n-l)d^, (n - l)d ^  and 

ns^- (n-l)dlO. These electronic configurations are also those of both the softest and 

many of the most toxic metal ions. They indicated that the relative ability of toxic
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heavy metals to induce metallothionein is correlated with their softness parameters. 

Stress can also affect the induction of MTs in animals, though it is not clear if stress 

stimulates synthesis of MTs independently and directly, or its influence is translated 

by cellular mediators. It could be argued that all known inducers, including heavy 

metals, are stress factors and may elicit a general stress response in addition to any 

specific effect (Karin, 1985 ; Bremner and Beattie, 1990). Many of the stress 

inducers also raise circulating levels of glucocorticoids, which stimulate 

metallothionein synthesis (Karin, 1985 ; Bremner and Beattie, 1990). Steroid 

hormones such as estrogens and progesterone can also induce metallothionein 

synthesis. Bacterial infection was also shown to induces a marked increase in hepatic 

metallothionein levels (Sobocinski et al., 1978 ; Karin, 1985). Induction of 

cadmium-binding proteins increased when the grass shrimp Palaemonetes pugio was 

exposed to cadmium at higher temperature and lower salinity than control exposure 

(Howard and Hacker, 1990). In this case, high temperature and low salinity are 

stress factors, and also factors which increase uptake of cadmium from seawater. 

Other stressful conditions such as very cold or hot environment, strenuous exercise, 

bums and X-radiation could also increase levels of metallothioneins (Klaassen and 

Lehman-McKeeman, 1989).

6.1.3 Role(s) of Metallothionein

Although the role(s) of MTs in living organisms are not completely clear, it is now 

known that induction of MT is closely related to exposure to metals such as 

cadmium, copper and zinc and therefore one of the possible role of MTs could be a 

detoxification mechanism in animals against toxic effects of heavy metals. 

Metallothionein was discovered as a cadmium-binding protein, and speculations 

began after that as to its role in the detoxification of cadmium and other heavy
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metals. Much evidence supported this assumption. Experimental studies in marine 

animals have showed that exposure of marine animals to heavy metals either by 

water and food or by injection increased the level of MTs (Olafson et al., (c) 1979 ; 

Otvos et al., 1982 ; Bonham and Gedamu, 1984 ; Engel and Brouwer, 1986 ; 

Hogstrand and Haux, 1989 ; Howard and Hacker, 1990). Once animals have been 

exposed to elevated levels of metals such as Cd, Cu and Zn, thionein synthesis is 

stimulated by these metals and levels of thionein increase markedly and metals bind 

to thionein by the cluster of thiolate bonds (Kagi and Schaffer, 1988). Bonhams and 

Gedamu (1984) also showed that exposure of fish to heavy metals causes increases in 

the induction of mRNA which indicates the induction of metallothioneins by heavy 

metals. When metals become part of metallothioneins, they are no longer toxic to 

animals. Thus, MTs are efficient detoxification mechanisms for metals which will be 

important in adaptation to elevated metal levels in the environment. Protection 

against toxic effects of cadmium has been found to be dependent on presynthesized 

metallothioneins (Kito et al., 1982 ; Goering and Klaassen, 1984). However, binding 

of heavy metals by MTs may not be enough for protection against heavy metal 

toxicity, when uptake rates of these metals exceed the induction rate of MTs in 

tissues of marine animals. Perhaps, toxicity of metals begins only after the rate of 

metal uptake exceeds the induction of metallothionein.

In contrast, metallothioneins are naturally present in animals serving as storage forms 

for the essential trace metals copper and zinc and play roles in both the extracellular 

(homeostatic) and intracellular control of zinc and copper metabolisms. Karin (1985) 

indicated that production of MTs against heavy metal toxicity is unlikely to be the 

primary function of MTs. First these metals ions are not present at high levels in 

most biotopes and probably do not exert a selection pressure significant enough to 

justify the existence of a special detoxification system. Second, if the role of MTs
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was purely protective, one would expect to find these proteins only after exposure to 

toxic heavy metals. In fact, the basal level of expression of MT is relatively high 

(Karin, 1985). The intracellular concentrations of metals must be regulated for the 

maintenance of essential life processes. MTs could be the prime regulators of 

intercellular metal concentrations (George, 1982). Hamer (1986) also indicated that 

the synthesis of MTs is homeostatically regulated in cells and organisms exposed to 

heavy metals. There is evidence that MTs are actively involved in the production of 

haemocyanin and in zinc regulation in crustaceans (Brouwer et al., 1986 ; Engel, 

1987 and Engel and Brouwer, 1987). In their model, MT-bound copper and zinc 

appear to be regulated at the cellular level for the synthesis of MTs such as 

haemocyanin (copper) and carbonic anhydrase (zinc), both of which are essential for 

normal growth and survival. Levels of MTs also showed close relation to copper and 

zinc metabolism during different developmental stages of crustaceans. Therefore, the 

basal levels of MT are considered to be involved in essential metal regulation, 

particularly regulation of copper and zinc as these metals are most often associated 

with basal MTs. For non-essential metals such as mercury and cadmium, however, 

binding by MT most likely represents a sequestration function associated with 

protection against toxicity of these metals (Roesijadi, 1992). Metallothionein was 

also suggested to be involved in the control of copper and zinc metabolism in 

mammals indicating that the synthesis of MTs enables the organism to adapt to 

changes in intracellular concentrations of zinc and copper and prevents adverse 

reactions with enzymes, membranes, or other molecules. It may also provide a 

buffering capacity that maintains intracellular steady-state kinetics for copper and 

zinc and ensures a supply of these metals for other metabolic functions (Klaassen and 

Lehman-McKeeman, 1989 ; Bremner and Beattie, 1990). George (1982) indicated 

that the composition of naturally occurring metallothioneins is variable and 

dependent upon the tissue of origin. For example, in the liver of newborn vertebrates
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Cu-thionein predominates, while in the adults Zn-thionein is the major form and Cd- 

thionein accumulates with age. George (1982) also indicated that the metal- 

transporting proteins usually contain only one or two atoms per molecule (in 

common with metalloenzymes) and, subsequently, do not account for large 

accumulations of metals within the body. In contrast, metallothioneins have the 

capacity for binding large numbers of metal ions and may make a significant 

contribution to the total metal burdens.

Much attention has been paid to the occurrence and characterization of MTs in 

different species of marine animals, whereas quantification of MTs have gained less 

attention partly due to the difficulty of satisfactory measurement techniques of MTs. 

Differential pulse polarography (DPP) has been gaining importance for quantification 

of MTs in marine animals (Roch et al., 1982 ; Olsson and Haux, 1986 ; Bebianno 

and Langston, 1991 and 1992) after improvements of Brdicka's (1933) technique for 

the estimation of thiolic proteins described by Olafson and Sim (1979 a) and 

Thompson and Cosson (1984). DPP has also been shown to be a reliable 

quantification method of MTs in a study which compares DPP and radioimmuno

assay (Hogstrand and Haux 1992) and was found to show better correlation in 

relation to MT concentrations than that of cadmium saturation assay (Onasaka and 

Cherian, 1982).

The aim of this study is to investigate the induction of MTs and its relation to the 

metals cadmium, copper and zinc in different concentrations in the gill and 

hepatopancreas of male and female Nephrops norvegicus. Quantification of MTs was 

carried out by differential pulse polarography. Contamination of seawater by metals 

were representable in natural marine environment (Nolting, 1986 ; Peerzada and 

Ryan, 1987 ; Balls and Topping, 1987). Combinations of copper, cadmium and zinc
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were used since they are rarely present alone in the environment. There is a need to 

develop methods to detect the presence of trace metals in the environment before any 

pathological damage occurs. The direct measurements of metal concentrations 

dissolved in water suffers from two drawbacks; firstly, metal levels may vary with 

time, secondly, toxicity may be greatly reduced by the concomitant release of 

complexing agents (Ovemell et al., 1987). Metallothioneins could be used as an 

indicator of metal contamination in the aquatic environment (Olafson et al., (b) 1979 

; Roch et al., 1982 ; Haux and Forlin 1988 ; Hogstrand and Haux, 1990). The 

possibility of the use of MTs as indicators of cadmium, copper and zinc 

contamination will be discussed for the gill and hepatopancreas of Nephrops 

norvegicus.

6.2 MATERIALS AND METHODS

Animals used for ATPase assays in Chapter 5 were also used to measure metal and 

metallothionein concentrations in the gill and hepatopancreas. Therefore, sampling, 

and experimental procedure are the same as explained in Chapter 5 until tissue 

preparations.

6.2.1 TISSUE PREPARATION FOR METALLOTHIONEIN ANALYSES

6.2.1.1 HOMOGENIZATION OF THE TISSUES

Homogenization of the gills and hepatopancreas was carried out in a cold room with 

a constant temperature at approximately 4 °C. All equipment was washed prior to 

use in 10 % nitric acid (Analar) and rinsed with distilled water. Washing with 10 % 

nitric acid and rinsing with distilled water was also carried out between samples. 

Frozen gill samples were slightly thawed on ice to help separation of the filaments
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and the arches on petri dishes. Between 100-350 mg of the filaments of the gills and 

the hepatopancreas were weighed using a Mettler AE240 5 place balance and put into 

homogenizers which were a hand driven glass homogenizer for the gill filaments and 

a silica glass mortar with motorized teflon pestle for the hepatopancreas. A 50 mM 

Tris buffer was prepared using 3.0275 g Trizma Base (Tris [hydroxymethyl] 

aminomethane, Sigma) in 500 ml double distilled water. The pH of this buffer was 

brought to 8 with concentrated HC1 (PHM84 Research pH meter, Radiometer). 1500 

fA of 50 mM Tris buffer was added to each sample and the tissues were homogenized 

with the homogenizer. 500 fxl of crude homogenates were transferred into Eppendorf 

test tubes (acid washed) to determine total metal concentrations. 100 /fi of crude 

homogenates were also transferred into Eppendorf tubes to determine total protein 

concentrations. Remaining homogenates were poured into other Eppendorf test tubes 

(acid washed) and centrifuged for 5 minutes at 10,000 g (Centrifuge 5415 C, 

Eppendorf). Supernatants were decanted and transferred to acid washed Eppendorf 

tubes to form the 'cystosol' fraction.

6 .2.1.2 Preliminary experiment on the contents of heat-treated homogenate

A preliminary experiment was carried out to check if there were any high molecular 

weight heat-stable thiol proteins which could respond in the pulse polarography. For 

this study, heat treated homogenates of Nephrops gills were run on a gel filtration 

column (Pharmacia LKB Biotechnology, Hiload 16/60). The column was used in 

conjuction with a detector, and eluted with a 0.15 M Tris (buffered to pH 8 with 

HC1) and 0.05 M mercaptoethanol buffer, at a rate of 1 ml/min. The absorbance of 

the eluate was monitored at 254 and 280 nm and 2.5 ml fractions collected for 

analysis of copper, cadmium, zinc and metallothionein. A range of molecular 

weights standards such as albumin (66,000), carbonic anhydrase (29,000),
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cytochrome C (12,400), apoprotinin (6.500) and adrenocorticoptropic hormone 

(4,567) was used as molecular weight markers to identify the approximate molecular 

weight of the fractions obtained. Two different homogenates of the gill were run on 

the column, firstly an unfiltered sample, then a sample which had been filtered using 

an ultrafiltration unit (Millipore, cellulose) with a nominal molecular weight of 

30,000. The results of the gel filtration of the unfiltered sample showed a large 

protein peak eluting at 40-50 ml. This corresponds to molecular weights of more 

than 70,000, and is clearly not metallothionein (Figure 6.1). The subsequent peaks 

on the trace, however, correspond to molecular weights of less than 10,000, and will 

contain the metallothionein proteins. Analysis of the high molecular weight fractions 

for cadmium, copper, zinc and thiol proteins showed that the high molecular weight 

fractions contained trace metals and also heat stable thiol proteins which were not 

metallothionein. These results showed that if trace metal and metallothionein analyses 

were to be carried out on the untreated homogenate then erroneous results would 

occur. The gel filtration trace of the filtered sample showed that the high molecular 

weight protein peak was removed by filtration. It was therefore decided that the 

analyses of all Nephrops tissues should by carried out on filtered samples to enable 

investigation of the low molecular weight metallothionein fraction.

6.2.1.3 Preparation of Metallothionein Extract

The cytosol fractions were placed in a heating block (Thermostat 3401, Eppendorf) 

for 4 minutes at 95 °C, then centrifuged at 10,000 g for 5 minutes. 400 p\ 

supernatant was decanted for each sample and transferred to an ultrafilter test tube 

(Millipore, Cellulose, 30,000 MW) and centrifuged for 30 minutes at 10,000 g. 

Concentrations of metallothionein were determined in this filtered fraction. These 

processes are summarised in Figure 6.2. All fractions were kept at -70 °C until use.
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Figure 6.1. Elution profile from gel (Sephadex G-75) filtration on the content of heat-treated 
cystosol of the gill. * indicates high molecular weight thiol proteins which are not MTs.
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Figure 6.2. Schematic representation of tissue preparation for analyses of total metal, total 
protein and metallothionein.
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6.2.2 DETERMINATION OF THE METALS IN CRUDE HOMOGENATE

Concentrations o f cadmium, copper and zinc in the crude homogenate o f the gill 

filaments were determined by Flame Atomic Absorption Spectrometry (FAAS) and 

Graphite Furnace Atomic Absorption Spectrometry (GFAAS) after digestion of 

samples with nitric acid. Throughout this thesis, concentrations o f metals in different 

Chapters were measured in three different ways which were a) Flame Atomic 

Absorption Spectrophotometry, b) Graphite Furnace Atomic Absorption 

Spectrophotometry and c) Atomic Emission Spectrophotometry. Analytical 

information is given about these methods in the following section.
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6.2.2.1 Atomic Absorption Spectrophotometry

Atomic Absorption Spectrometry (AAS) is commonly used to determine the 

concentrations of metals. This technique involves the fact that free atoms of an 

element in the ground electronic state absorb radiation in the form of light at a 

particular wavelength. The amount of radiation absorbed is proportional to the 

number of atoms present. The concentration of an element can be determined from 

this relationship. AAS involves producing a cloud of atoms of the metal in a free 

state, shining a beam of light covering a narrow spectral range through it, and 

measuring the reduction in the transmitted radiation. The output signal is processed 

and amplified before being read out as an absorbance value which is proportional to 

metal concentration.

6.2.2.2 Flame Atomic Absorption Spectrophotometry (FAAS)

In FAAS the sample solution is drawn up through a fine capillary tube and aspirated 

into a flame. The solution moves up the capillary because of the decreased pressure 

created by the expansion of the oxidant, in this case air, which is flowing over its 

upper end (the Venturi effect). A cloud of droplets of approximately 5-10 fim 

diameter is formed mixed with the fuel/oxidant gas mixture (nebulisation). In the 

flame the solvent evaporates leaving a dry aerosol consisting of solid or molten 

particles of the solute. Due to the high temperature of the flame these are volatilized 

then atomised to form free metal atoms. A light source is required, the most common 

type being hollow cathode lamp (HCL). The cathode is cylindrical and is made of the 

metal under investigation. The lamp is filled with a carrier gas (an inert gas) through 

which an electrical discharge is passed. Positive ions are then generated which 

collide with the cathode, releasing atoms from it. These atoms radiate light of
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specific wavelengths forming characteristic spectral lines. In electrodeless discharge 

lamps (EDLs), electrons are generated by a discharge in a noble gas which fills the 

lamp at low pressure. Collisions of the electrons excite the atoms of the analyte. The 

beams from the light sources pass through the area of atomised metal in the flame 

and a photodetection system measures the amount of radiation absorbed. This takes 

the form of a monochromator and photomultiplier tube which isolate the required 

spectral range and measure light intensity respectively. The signal is processed 

electronically before being displayed.

6.2.2.3 Graphite Furnace Atomic Absorption Spectrophotometry (GFAAS)

FAAS is not sensitive enough for analysis of metals present at very low 

concentrations. This is because full atomisation must take place within the few 

milliseconds during which the volatilized sample is in the flame, and also due to 

chemical interferences from decomposition products. GFAAS has enhanced 

sensitivity and has the added advantage that only a small volume of sample is 

necessary. The basic processes of GFAAS are similar to those of FAAS but instead 

of the sample being atomised in a flame, a small volume is injected into a graphite 

tube which is heated in a programmed series of temperature changes. This allows the 

volatilization steps to take place separately, the solvent and matrix substances being 

removed by a constant stream of an inert gas (argon). While the furnace is held at the 

atomised temperature, the flow of gas can be stopped so that atoms of the metal are 

not diluted by the gas flow and remain in the radiation beam for up to several tenths 

of a second. The partial pressure of atoms in the light beam is therefore increased, 

allowing more atoms to absorb light and hence increasing sensitivity.
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The instrument used in this investigation uses Zeeman background correction. The 

application of a strong magnetic field to the atoms causes splitting of the spectral 

lines absorbed. Measurement of absorbance with and without magnetic field allows 

detection of the amount of absorbance due to background, which can then be 

subtracted from the total amount due to the metal atoms plus the background 

substances present (Zeeman 3030 Operators Manual).

6.2.2.4 Atomic Emission Spectrophotometry

Atomic emission spectra are observed when photons are emitted by atoms in an 

excited energy state during their return to a less excited state. The frequencies of 

lines are characteristic of the elements present and can, therefore, be utilized in 

qualitative and quantitative analyses.

For the excitation in atoms, energy sources of various kinds are used. Low energy 

sources such as gas/air flames excite relatively few lines, yielding simple spectra 

which can be resolved with sample apparatus. The sample for analysis is vaporized 

into the excitation source (for metals this is usually done by using a rod of the metal 

as one of the electrodes of arc), and the light thus produced is focused on to the 

entrance slit of the monochromator. The whole spectrum is focused simultaneously 

on an optical plane where it is recorded on a photographic plate. Alternatively, a 

series of photosensitive detectors can be placed along the optical plane to receive 

discrete spectrum lines (Betteridge and Hallam, 1972).
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6.2.3 DIGESTION OF CRUDE HOMOGENATE

The digestion of crude homogenate was carried out in a laminar flow hood connected 

to a fume cupboard (Grundy Equipment) using 10 ml glass beakers (Pyrex). Before 

use, each beaker was heated at 70 °C in concentrated nitric acid (Analar) for ten 

minutes and rinsed in distilled water. They were kept in a covered tray to avoid 

contamination. 30 sample of crude homogenates were defrosted and measured using 

micropipettes (Eppendorf). A measured volume of crude homogenate was poured 

into the beakers. 5 ml nitric acid (Aristar) was added to each sample and beakers 

were placed on a hotplate (Thermostat, Gallenkamp) in the fume cupboard. 

Approximately 40 mg of reference material (in duplicate) were also included in 10 

ml beakers in each batch of samples (TORT I lobster hepatopancreas, certified 

reference material, Marine Analytical Chemistry Standards Program, National, 

Research Council, Canada). Results of these measurements are given in Table 6.1.

Table 6.1. Concentrations of metals (pg g"1 d.w.) in the reference material R.C. = Reference 
concentrations, P.C. = Present concentrations measured in GFAAS for cadmium and copper 
and in FAAS for zinc.

Cadmium Copper Zinc |

| R.C. 26.312.1 439122 177110 |

| P.C. 25.212.8 416130 167115 |

Temperature of the hotplate was gradually increased from approximately 50 °C to 

approximately 150 °C. Samples were digested until 0.5 ml of total volume remained 

in the beakers. They were removed from the hotplate and placed on a cool plate in 

the fume cupboard to cool the samples. A total of 300 fx 1 hydrogen peroxide (30 % 

Analytical, FSA) was added to each sample in 100 /xl aliquots and the beakers
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returned to the hotplate. Samples were kept on the hotplate until all visible reaction 

had finished. After the third addition the samples were left on the hotplate until 

dryness but not burning point. 5 ml 10 % nitric acid (Aristar) was added to each 

sample. Determinations of the metals were carried out on this 5 ml sample after 

appropriate dilutions of samples to give reading within the range of standards.

6.2.4 ANALYSIS OF CADMIUM AND COPPER

Concentrations of cadmium and copper were determined by Graphite Furnace 

Atomic Absorption Spectrometry (GFAAS) using a Zeeman 3030 GFAAS (Perkin 

Elmer). The instrument was allowed adequate warm-up time of the lamps, 

approximately 25 minutes for Cu HCL (Intensitron hollow cathode lamp, Perkin 

Elmer) and one hour for the Cd EDL (Electrodeless discharge lamp, Perkin Elmer). 

The graphite tube and L'vov platform (Perkin Elmer) were placed and conditioned 

using a conditioning program before each run of samples. Operating conditions of 

instruments were as follows;

HGA cooling system (Perkin Elmer)

Autosampler (Perkin Elmer AS60)

Printer (Anadex 'Silent Scribe')

Slit Width : 0.7 nm

Signal Processing : peak area

Modifier : 5 % NH4H2P04 solution

CD ANALYSES CU ANALYSES

Wavelength (nm) 228.8 324.8

Lamp current EDL setting 5 15

Atomisation temperature (°C) 1600 2500

Modifier volume 5 10
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6.2.4.1 Preparation of Cadmium and Copper Standards

Standards were prepared using commercial stock solutions of the metals (BDH, 

Chemicals). Stock concentrations of cadmium nitrate, copper nitrate and zinc acetate 

were diluted appropriately with 10 % nitric acid. 7 concentrations of standards were 

prepared between 0.0009-0.0074 ml~l for cadmium and between 0.009-0.074 fig  

m l'l for copper. Standards were prepared immediately before each analysis in 

individual autosampler cups. The instrument was calibrated with a 10 % nitric acid 

(Primar, FSA) blank and the above standards. Standards were also checked during 

sample reading and at the end of analysis. Samples were diluted with 10 % nitric 

acid into the range of the calibration standards if they were higher than the highest 

standard.

6.2.4.2 Standard Addition

Atomization of metals in the GFAA may be affected by the matrix in the solution. 

To test this, different tissue digests were analysed using the method of standard 

additions to check that the samples reacted in the same way as standards. For this, 

concentrations of metals in digested samples were measured, and at least two 

different concentrations of standards were added and mixtures reanalysed. Results of 

this mixture gave "observed values", while the total of individual measurements gave 

"expected values". These results were statistically analysed to test for any difference. 

Metallothionein concentrations were also checked in the same way. There was no 

significant difference (P>0.05) in any fraction analysed between "expected" and 

"observed" values after standard additions. As an example of these measurements, 

mean values and standard deviation of samples, standard addition, expected values 

and observed values of metals (copper and cadmium) measured in GFAAS and
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metallothionein in the gill of the animals are given in the following table (Table 6.2) 

indicating results of Mann-Whitney U-tests between observed and expected values.

Table 6.2. Results of Mann-Whitney U-tests between observed and expected concentrations 
of metals and metallothionein in the gill of Nephrops norvegicus after standard additions. 
Metal concentrations in the crude homogenates are given as pg ml"1, while metallothionein 
values are given as peak height (mm), ns = not significant (P>0.05).

Sample Standard Expected Observed P value

Cadmium
Mean 0.00153 0.00148 0.00305 0.00292 ns
sd 0.00036 0.00050 0.00066 0.00079

Copper
Mean 0.0176 0.0147 0.0322 0.0295 ns
sd 0.0068 0.0050 0.0083 0.0090

MT
Mean 19.3 31.4 50.9 49.0 ns
sd 7.7 11.4 11.4 11.0

6.2.5 ANALYSIS OF ZINC

Concentrations of zinc were determined by Flame Atomic Absorption Spectrometry 

(FAAS) using a Perkin Elmer 5000 FAAS. Operating conditions of the instrument 

were ; wavelength (nm) = 213.9, lamp type = HCL, Time (sec) = 2, background 

correction = on, fuel = acetylene, oxidant =  air.

6.2.5.1 Preparation of Zinc Standards

Zinc standard solutions were also prepared in the same way explained for copper and 

zinc. Zinc standards were prepared as 100 ml stock using acid washed volumetric 

flask and micropipettes (Eppendorf). 7 concentrations of zinc standards were 

prepared in the range of 0.1-1.0 /zg ml-!. The instrument was zeroed on double
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distilled water then 10 % nitric acid, and calibrated with the above standards. 

Standards were checked during sample reading and at the end of analysis. Samples 

which showed high zinc concentrations were diluted with 10 % nitric acid to bring 

absorbance into the calibration range.

6.2.6 CALCULATION OF METAL CONCENTRATIONS

Concentrations of the metals were calculated from the calibration curves obtained by 

absorbance values and standard concentrations of each metal from each run. Diluted 

samples were multiplied by appropriate factors to find real concentrations. Finally all 

samples were multiplied by the amount of acid used (5 ml). This value was 

multiplied by volume of crude homogenate digested and divided by 1000 fi\ (1 ml) to 

give metal concentrations in 1 ml crude homogenate (jig metal ml~l). After this 

point metal concentrations can be expressed in two ways. First, metal concentration 

in crude homogenate (jig m l'l) is divided by the protein concentration of crude 

homogenate (mg ml~l) which will give an expression of fig  metal / mg protein. 

Secondly, concentrations of metals in crude homogenate are multiplied by volume of 

Tris buffer used and tissue wet weight (1 mg tissue assumed to be 1 pi) and then 

divided by wet weight of tissues which will give an expression of fig  metal g"l wet 

weight of tissue. Metal concentrations throughout this thesis are expressed as fig  

metal / mg protein where protein analysis for the tissues was carried out. Wet 

weights of tissues were not used for the calculation of the result due to possible 

differences of water level between animals.
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6.2.7 ANALYSIS OF METALLOTHIONEIN

Concentrations of metallothionein in the gill filaments and hepatopancreas of 

Nephrops were determined by differential pulse polarography (DPP). The analysis 

was carried out in ultrafiltered cytosol fraction of the gill and hepatopancreas which 

were heat-treated and centrifuged to coagulate and remove heat-sensitive proteins, 

leaving only heat-stable proteins. The DPP is sensitive to any thiol proteins present, 

but can be assumed to measure metallothionein (MT) or MT-like proteins due to heat 

sensitive thiol proteins and proteins of molecular weight of higher than 30,000 being 

removed by heating and ultrafiltering.

6.2.7.1 Polarography

Polarography is an electrochemical technique which can be used in analysis of a wide 

range simple and more complex molecules, both quantitatively and qualitatively. 

With a dropping mercury electrode (DME), the working electrode takes the form of 

drops at the end of a capillary in a controlled, regular manner. This method is 

advantageous in that each drop has a reproducible surface area and the surface is 

constantly renewed and remains clean, avoiding build-up of the products of any 

chemical reactions which might occur. Both these factors reduce the errors found 

with other types of electrodes. Current flows between the working electrode and the 

counter electrode, which is made of an inert, conductive material (in this case 

platinum wire). A third silver/silver chloride reference electrode provides a stable 

potential with which the changing potential of the working electrode is compared, 

and also enables compensation to be made for the electrical resistance of the solution.
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The electrodes are linked to a polarographic analyzer whose function is to control the 

applied potential and measure the current. Measured current is plotted against applied 

potential to form the polarographic wave which is recorded on a chart recorder. The 

nature of the wave is dependent on the electrochemical reactions (oxidation or 

reduction) of the sample at the electrode (Princeton Applied Research Application 

Note P-2, 1980).

When a certain potential is applied, corresponding to the redox potential of the 

analyte, a sharp rise in the polarographic wave is seen as the current increases. The 

height of the peak is proportional to concentration. This is because as the 

electrochemical reaction proceeds it depletes the analyte in the solution immediately 

adjacent to the electrode surface. It is replaced by diffusion, the rate of which 

depends on the diffusion gradient which in turn is dependent on the concentration of 

the analyte in the bulk of the electrolyte.

The potential is applied as pulses of a constant magnitude (corresponding to drops of 

mercury) although the initial potential is ramped. When the current is measured in 

the final 17 ms of each 60 ms pulse it consists almost entirely of Faradaic current 

(the type proportional to concentration) due to the much faster decay rate of the other 

component, the charging current. This enhances sensitivity by minimising 

interference from the charging current. The current is actually measured at two 

points, before each pulse and in the last 17 ms, and it is the difference between these 

two measurements which is plotted against applied potential on the polarogram. A 

difference only exists when one of the two current measurements falls on the sharp 

rise in the polarographic wave due to the reduction/oxidation of the analyte and 

consequent increase in Faradaic current. This will only happen over a relatively 

narrow band of applied potential voltage, so the plot of the differences forms a peak,

209



falling back to zero, i.e. no difference between the two measurements, on both sides. 

The sample to be analysed is added to a supporting electrolyte which consists of a 

conductive medium, ensuring minimum current flow. Any oxygen dissolved in this 

medium will produce interfering current when it is reduced. Purging with nitrogen 

removes dissolved oxygen and the cell is blanketed in nitrogen to prevent any further 

dissolution during analysis. The sample and electrolyte are kept at a constant 

temperature during the procedure as changes in temperature may alter conductivity.

6.2.7.2 Use of DPP for Measurements of Metallothionein

DPP has been widely used in metallothionein quantification (Pelacek and Pechan, 

1971; Roch et al., 1982 ; Bebbiano and Langston, 1989; Hogstrand, 1991). 

Alternative techniques are radioimmunoassay, metal binding assays and enzyme- 

linked immunosorbent assays (ELISA). Brdicka (1933) investigated the analysis of 

thiolic proteins by polarography using a buffer containing hexamine cobaltic 

chloride, ammonium chloride and ammonia. It was later found that proteins form a 

complex with cobalt from a major component of the polarographic activity observed 

(Pechan and Palecek, 1971). The protein peak appears as a secondary maximum on 

the side of the larger peak due to deposition of cobalt, and addition of a surface 

active agent such as Triton-XlOO helps to minimise the cobalt peak and separate it 

from the protein wave. Thompson and Cosson (1984) confirmed the use of DPP, 

using a quantitative assay for MT from marine organisms, and found that this 

adaptation of Brdicka's procedure gave enhanced responses.
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6.2.7.3 Metallothionein Analysis

Operating conditions of the instrument were as follows;

Instruments ; Static Mercury Dropping Electrode (SMDE) Model 303A (EG and G 

PARC).

Polarographic Analyser Model 174A (Princeton Applied Research)

’XY' Plotter Type PL100.

Operating mode : SMDE 

Drop size : medium 

Purge time: 2 min and 0.5 min 

Polarographic Analyser Setting ;

Operating mode ; differential pulse 

Clock (drop time) : 1 sec 

Initial potential: -1.42 mV 

Scan rate : 2 mV/sec 

Scan direction : negative 

Range : 1.5 V 

Current range : 10 fiA 

Display direction : positive 

Low pass filter : on

6.2.7.4 Preparation of Supporting Electrolyte

(Modified Brdicka buffer)

The following reagents were added to a 500 ml volumetric flask and made up to 

volume with distilled water. The buffer was prepared daily using 'Analar, Primar or 

BDH' grades throughout.
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Compound Amount added Final Cone.

Ammonium chloride 26.75 g 1 M

Hexaminecobaltic chloride 0.1605 g 1.2 mM

(cobaltic chloride luteo)

Ammonium hydroxide 27.6 ml 1 M

(ammonium solution)

All solutions and samples were kept on ice throughout the procedure to avoid 

denaturation of the proteins by enzyme activity in the samples. The temperature of 

the electrolyte was kept constant during readings by the use of a jacketed 

polarographic cell, through which cold tap water was continually flowing. The 

oxygen free nitrogen used to blanket the cell and purge its contents was saturated 

with electrolyte by bubbling it through an electrolyte-filled trap.

For each determination 10 ml electrolyte (modified Brdicka buffer) and 100 /xl 

Triton-XlOO (0.0125 % w/v) were added to the cell, these forming the 'blank1. This 

was purged for 2 min then the applied potential was set to the 'INITIAL' value (- 

1.42 V) and the recorder allowed time to stabilise before scanning. Samples or 

standards were injected into the cell via a small side opening and purged for 30 sec to 

ensure thorough mixing. The applied potential was scanned and the resulting 

polarographic wave recorded as a peak on the 'XY' recorder. Peak hight was 

measured as the distance between the highest point of the curve and the baseline in 

millimetres. After each measurement the mercury was carefully disposed of and the 

cell, electrodes and housing rinsed with distilled water.

Calibration lines (Figure 6.3) were prepared using at least five nominal 

concentrations between 0.05 and 0.5 ng m l'l of MT standard solution for each run
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using 10 ytg ml"* stock metallothionein standards (Metallothionein I from rabbit 

liver, molecular weight =  6600, Sigma). MT fraction samples were defrosted and 

injected directly into the cell using micropippetes (Eppendorf). The volume injected 

was adjusted so that the resultant peak was within the calibration values. One or 

more standards were run approximately every five samples and at the end of each 

sample run. Standard additions were also carried out to check that the sample reacted 

in the same way as the standards during analysis and results are given above (Table 

6 .2).

Figure 6.3. A typical calibration line betw een  
m etalloth ionein  concentration  and peak height

BO

70

60

50B
B

40

30 -

20

0.50.40.2 0.30.0 0.1

M eta llo th ion ein  c o n c e n tr a tio n  /zg m l 1

213



6.2.8 PROTEIN ANALYSIS

Measurement of protein was carried out as explained in Chapter 5.

6.2.9 STATISTICAL ANALYSIS OF DATA 

Data analyses were carried out as explained in Chapter 5.

6.3 RESULTS

Mean values, standard errors of carapace length and numbers of male and female 

Nephrops used in this study are given in Table 6.3 with the results of one way Anova 

comparisons between groups. There was no significant difference in carapace length 

of all groups compared for gill and hepatopancreas parameters.

Table 6.3. Mean values and standard errors of carapace length (cl) of male and female 
Nephrops norvegicus used for the gill and hepatopancreas experiments, ns = not significant 
(P>0.05).

M A L E
Control Treat1

A N I 
Treat2

M A L S 
Treat3 P

FEMALE
Treat3

ANIMALS 
Control P

Gill Mo 16 19 16 20 19 7

CL
se

3.50
0.06

3.68
0.10

3.72
0.08

3.64
0.07

ns 3.55
0.05

3.69 ns 
0.15

Hep. NO 15 19 16 20 20 8

CL
se

3.48
0.06

3.68
0.10

3.71
0.08

3.62
0.07

ns 3.53
0.05

3.68 ns 
0.13
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6.3.1 Metal and Metallothionein Concentrations in the Gill

Mean concentrations and associated standard errors of cadmium, copper, zinc and 

metallothionein in the gill of male and female Nephrops in controls and in animals 

exposed to different concentrations of metals are shown in Figures 6.4-6.7 indicating 

the results of one way Anova. Male animals showed significant increases in 

concentrations of all the metals and metallothionein in relation to metal exposure, 

whereas female animals showed only significant increases in the concentrations of 

cadmium and metallothionein in relation to metal exposure. Male and female animals 

showed a significant difference in the concentrations of copper in the highest 

treatment (P<0.01), namely male animals had higher concentrations of copper than 

females (Table 6.5). Mean values and standard errors of comparisons between 

control and the highest treatment of male and female animals can also be seen in 

Figure 6.4 to 6.7. Significant results from overall Anova tests for male animals were 

reanalysed between each treatment (Table 6.4). Results showed that zinc had 

significant difference only between the control and the highest treatment (P<0.05), 

whereas the copper concentration in the highest treatment was significantly different 

than in all the other treatments (P<0.05). Cadmium concentrations in the highest 

treatment were much higher than any other treatment (P<  0.0001), though cadmium 

concentrations in the medium treatment were only different from the control 

(P<0.05). Concentrations of MT were also significantly different between control 

and the highest treatment (P<  0.001). Linear regression analyses were carried out 

between metal and metallothionein concentrations of male and female animals 

separately (Figures 6.8-6.13). Results showed that cadmium and metallothionein 

concentrations in the gill of male and female animals showed positive relationships 

(P < 0.001 and P=0.001, respectively). Zinc and copper did not show any 

relationship with metallothionein in the gill of males or females.
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Figure 6.4. Zinc con cen tration s in the gill of
Nephrops norvegicus in relation  to zinc exposure
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Figure 6.6. Cadmium con cen tration s in the gill of
Nephrops norvegicus in relation  to cadm ium  exposure
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MT con cen tration s in the gill of m ale Nephrops
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Figure 6.12. R elationship between cadm ium  and
MT con cen tration s in the gill of m ale Nephrops
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6.3.2 Metal and Metallothionein Concentrations in the Hepatopancreas

Mean concentrations and associated standard errors of cadmium, copper, zinc and 

metallothionein in the hepatopancreas of male and female Nephrops are shown in 

Figures 6.14 to 6.17 with the results of one way Anova. Male and female Nephrops 

showed significant increases in concentrations of cadmium and metallothionein in 

relation to metal exposure but copper and zinc did not show the same trend. Male 

and female animals showed a significant difference in the concentrations of zinc in 

the highest treatment (P<  0.001), namely female animals had high concentrations of 

zinc than males (Table 6.5). Mean values and standard errors of comparisons 

between control and the highest treatment of male and female animals can be seen in 

Figure 6.14. Significant results from overall Anova tests for male animals were also 

reanalysed between each treatment (Table 6.4). Cadmium concentrations in the 

highest treatment were significantly different than control and the lowest treatment 

(P < 0.001), though this difference was less in the medium treatment (P<0.01). 

Cadmium concentrations in the lowest and medium treatments were also different 

than control (P<0.05). Concentrations of metallothionein were significantly 

different between control and the highest treatment (P<0.01). Control and the 

lowest treatment also showed a significant difference in metallothionein 

concentrations (P<0.05). Regression analyses were also carried out between metal 

and metallothionein concentrations in the hepatopancreas of male and female animals 

separately (Figures 6.18-6.23). These analyses showed that cadmium and 

metallothionein concentrations in the hepatopancreas of male and female animals 

showed positive relationships (P<  0.001 and P<0.01 , respectively). Copper also 

showed a positive relationship with metallothionein in the hepatopancreas of male 

animals (P<0.01) but not in female animals. Relationship between zinc and MT was 

not significant (P>0.05) in both male and female animals.
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Figure 6.14. Zinc concentrations in the hepatopancreas
of Nephrops norvegicus in relation  to zinc exposure
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Figure 6.15. Copper concentrations in the hepatopancreas 
of Nephrops norvegicus in relation  to copper exposure
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Figure 6.16. Cadmium concentrations in the hepatopancreas
of Nephrops norvegicus in relation  to cadm ium  exposure
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Figure 6.17. MT concentrations in the hepatopancreas  
of Nephrops norvegicus in relation  to m eta l exposure
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Figure 6.10. Relationship betw een zinc and MT
concentrations in the hepatopancreas of m ale Nephrops
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Figure 6.20. Relationship betw een copper and MT
concentrations in the hepatopancreas of m ale Nephrops
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Figure 6.21. Relationship betw een copper and MT 
concentrations in th e hepatopancreas of fem ale Nephrops
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Figure 6.22. Relationship betw een cadm ium  and MT
concentrations in the hepatopancreas of m ale Nephrops
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6.3.3 Concentrations of Metals in the MT Fraction of the Hepatopancreas

Concentrations of the metals in metallothionein fraction of the hepatopancreas were 

measured and mean values and associated standard errors are shown in Figures 6.24 

to 6.26 with the results of one way Anova. Results showed that cadmium 

concentrations increased significantly in both male and female animals with increases 

in exposure concentrations (P<  0.001), while copper and zinc concentrations did not 

vary significantly (P>0.05). Group comparisons of male animals (Table 6.4) with 

one way Anova showed that animals from the medium (P<0.05) and the highest 

treatments (P<  0.0001) had higher concentrations of cadmium than found in 

controls. Cadmium concentrations in animals from the highest treatment were also 

significantly higher than in animals from the lowest treatment (P<  0.001). The 

highest treatment and the medium treatment, however, did not show any significant 

differences in cadmium concentrations (P>0.05) (Table 6.4). There was no 

significant difference in the concentrations of metals in the MT fraction of the 

hepatopancreas between controls and the highest treatment of male and female 

animals (Table 6.5). Mean values and standard errors of these comparisons can be 

seen in Figures 6.24-6.26. Ratios between metallothionein and metals in MT fraction 

of the hepatopancreas were also calculated and statistically analysed with one way 

Anova. These results are shown in Figures 6.27 to 6.29 indicating the mean ratios of 

each treatment and their associated standard errors with the results of one way Anova 

between treatments. Ratios between cadmium and metallothionein were increased 

significantly in both male (P<  0.001) and female (P<0.05) animals with increases in 

exposure concentrations, while copper and zinc ratios to metallothionein did not 

show any increase in either sex (P>0.05).
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Figure 6.24. Zinc concentrations in the MT traction
of th e hepatopancreas in relation  to zinc exposure
of Nephrops norvegicus
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Figure 6.25. Copper concentrations in th e MT fraction  
of the hepatopancreas in relation  to copper exposure  
of Nephrops norvegicus
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Figure 6.28. Ratios of Copper to MT in the MT
fraction  of the hepatopancreas in relation  to
copper exposure of NephropB norvegicus
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Table 6.4. Comparisons of metal and metallothionein levels between treatments of male 
animals with one way Anova. Only significant results from overall comparisons (P values are 
shown in Figures) are tested and their P values are given in the following table. # = total 
metals* = MT fraction metals in the hepatopancreas.

GILL 
Treatl Treat2 Treat3

HEPATOPANCREAS 
Treatl Treat2 Treat3

Zn Control ns ns 0.011
a Treat1 ns ns
* Treat2 ns — — —

Cu Control ns ns 0.015
Treat1 ns 0.025* Treat2 0.045 — — —

Cd Control ns 0.012 0.0001 0.026 0.033 0.0001
# Treat1 ns 0.0001 ns 0.0008

Treat2 0.0001 0.004

Cd Control ns 0.018 0.0001* Treat1 ns 0.0008
Treat2 ns

MT control ns ns 0.0008 0.037 ns 0.003
Treatl ns ns ns ns
Treat2 ns ns

Table 6.5. Comparisons of metal and metallotionein levels in male and female animals with 
one way Anova. P values are given in the following table. #  = total metals, * = Metals in MT 
fraction. C M&F = Control male and females. Tr3 M&F = Treated male and females in the 
highest exposures.

§C M&F
GILL

§Tr3 M&F
H
C

E P 
M&F

A T O P A N 
Tr3 M&F

C R E A S * *
C M&F Tr3 M&F

CL ns ns ns ns ns ns

Zn ns ns ns 0.0002 ns ns

Cu ns 0.008 ns ns ns ns

Cd ns ns ns ns ns ns

MT ns ns ns ns ns ns
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6.4 DISCUSSION

Natural concentrations of heavy metals in the tissues of Nephrops norvegicus can be 

affected by sex, size and season. Size and sex of animals could also affect the 

accumulation of metals from seawater (Chapter 2 and 3). All animals used in this 

study were caught on the same day and at the same location, and sizes of animals 

were not significantly different among compared groups. Nephrops showed different 

patterns of metal accumulation in the range of metals used between the tissues and 

the sexes. Male animals showed significant concentration dependent accumulation of 

copper and zinc in their gills, while female animals did not show any significant 

increase in the levels of these metals. Higher accumulation rate of metals (for copper 

and zinc) in male animals caused a significant difference in concentrations of copper 

between the sexes namely male animals accumulated higher concentrations of copper 

than females. This result shows that levels of copper and zinc were regulated in the 

gill by female animals but not by males. Observations showed that male animals are 

more active in tanks than female animals. This may cause higher accumulation rates 

of metals in the gill of male animals. In the hepatopancreas both male and female 

animals showed the same patterns of accumulation. Levels of copper and zinc did not 

significantly differ with increases of exposure concentrations, which means that 

concentrations were regulated in the hepatopancreas of both sexes. Male animals 

seemed to be better regulators of zinc in the hepatopancreas, as female animals 

showed some increases in zinc concentration of the hepatopancreas which caused a 

significant difference between male and female animals in the highest treatment. 

Regulation of copper and zinc have also been reported in other decapod crustaceans 

(Bryan, 1964 ; 1967 ; White and Rainbow, 1982 ; Rainbow, 1985 ; Rainbow and 

White, 1989). They indicated that copper and zinc can be regulated by decapod 

crustaceans and accumulation of these metals begins only after the regulation
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mechanism breaks down. However, it is well known that accumulation of cadmium 

is dependent on environmental concentrations and there is no evidence for the 

regulation of this metal by Crustacea (Wright and Brewer 1979 ; White and 

Rainbow, 1982 ; Rainbow, 1985 ; Amiard et al., 1987 ; Rainbow and White, 1989). 

In this study, cadmium concentrations increased in the tissues of male and female 

animals even in the concentration lower than the EQS level.

Metallothionein concentrations of the hepatopancreas and gill from male and female 

animals showed significant increases with increases of exposure concentrations of 

metals. However, of the metals studied, these increases showed positive relationships 

only with cadmium in the gill and hepatopancreas of male and female Nephrops. 

Copper in the hepatopancreas of male animals also showed a positive relationship 

with MTs. Induction of metallothionein has also been shown in decapod crustaceans 

after exposure to cadmium either by water and food or by injection (Ovemell and 

Trewhella, 1979 ; Otvos et al., 1982 ; Brouwer, 1984 ; Engel and Brouwer, 1986 ; 

Howard and Hacker, 1990). As explained earlier, decapod crustaceans can regulate 

concentrations of copper and zinc up to a threshold level whereas cadmium 

accumulates in relation to exposure concentrations. Accumulation rate of cadmium, 

therefore, is much higher especially in the beginning of exposure than copper and 

zinc which may also increase the affinity to bind MTs. Brouwer (1984) experimented 

with the blue crab, Callinectes sapidus exposed to cadmium for a short time. He 

indicated that all the cadmium in the cytosolic fraction of the gill was associated with 

low molecular weight cadmium-binding proteins. However, after 48 h of exposure 

only 50 % of the cadmium in the cytosol was bound to this protein. The rest was 

found to be associated with high molecular weight proteins. Copper and zinc, 

however, are not strong inducers of MTs like cadmium. This might be due to high 

basal levels of copper and zinc MTs in Crustacea (Engel, 1987 ; Engel and Brouwer,
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1987 ; Roesijadi, 1992). Copper and zinc MTs in decapod crustaceans are naturally 

found in high levels to serve as storage forms for these metals and play regulator 

roles within the metabolism, especially donor roles for apohaemocyanin and carbonic 

anhydrase (Engel, 1987 ; Engel and Brouwer, 1987) while cadmium MTs are 

induced after exposure to this metal for sequestration reason (Roesijadi, 1992). High 

accumulation rate of copper and zinc may be necessary to be able to increase basal 

levels of copper and zinc MTs or at least levels should be higher than the levels that 

can be regulated. Determination of metals in the MT fraction of homogenate of 

hepatopancreas also showed that copper and zinc did not increase significantly with 

increases in exposure levels. As a result of this accumulation pattern of the metals, 

ratios of cadmium to metallothionein increased significantly, while copper and zinc 

ratios to MTs were not increased. Actually, ratios of copper and zinc in the MT 

fraction of the hepatopancreas were decreased, though these differences were not 

significant between treatments. This may be due to replacement of copper and zinc 

by cadmium for sequestration processes. Otvos et al. (1982) found that 

metallothionein from the crab Scylla serrata contained only cadmium after repeated 

injection of ^ ^ C d C ^ . This result also shows that copper and zinc bound to 

metallothioneins were replaced by cadmium. Krezoski et al. (1988) also showed that 

when cadmium was added in vitro to cytosol of fish liver, cadmium displaced zinc 

but not copper. Sander and Jenkins (1984) indicated that cytosolic copper in copper 

exposed crabs, Rhithropanopeus harrisii, was associated with both MT and high 

molecular weight ligands, and was independent of external copper. McCarter et al. 

(1982) showed that the levels of copper in the low molecular fraction of fish exposed 

to 70 /*g 1"! were not significantly increased over control values for 6 weeks. Olsson 

and Haux (1986) showed that the increased cadmium correlated (R=0.84) with an 

increased MT level in the liver of perch Perea fluviatilis exposed to cadmium, 

though Zn (r=0.51) and Cu (r=-0.15) showed low correlation with MT in the liver.
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MTs can be induced by different factors. Howard and Hacker (1990) studied the 

combined effects of salinity, temperature and cadmium on the induction of cadmium- 

binding proteins in the grass shrimp, Palaemonetes pugio. They indicated that an 

increase in Cd-binding protein concentrations corresponded with increases in the 

cadmium exposure levels and temperature and decreasing salinity. Salinity and 

temperature may not be prime factors here to increase the levels of MT but are 

known to be factors which affect the metal accumulation from the marine 

environment. Higher temperature and low salinity cause higher accumulation of 

metals which would also indirectly increase MT induction. Stress and the 

reproductive cycle of marine animals have also been found to affect MT 

concentrations in marine teleost fish (Bremner and Beattie, 1990 ; Baer and Thomas, 

1990). Moulting can be one of the most important periods of the crustacean annual 

cycle. Engel and Brouwer (1987) indicated that concentrations of metallothionein in 

decapod crustaceans vary at different times of the year indicating changes of MTs 

depending on moult stages of the animals.

MTs could be the most promising indicators for heavy metal contamination in the 

aquatic environment and have been proposed to be used as indicators of heavy metal 

contamination of aquatic animals (Olafson et al.,(b) 1979 ; Roch et al., 1982 ; Haux 

and Forlin, 1988 ; Hogstrand and Haux, 1990). However, there would be some 

conditions for this since not all metals show the same patterns of accumulation in 

marine animals. MTs could only be used as an indicator tool for heavy metals which 

accumulate in marine animals in proportion to environmental concentrations and 

show effective induction of MTs. Additionally, some other factors which could affect 

MT concentration such as stress, reproductive cycle, moulting and conditions of 

water should be considered in natural samples. George (1990) also indicated that 

before measurements of MT levels can be used as an indicator of past metal exposure
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in field samples, the characteristics of the response in the test organism must be 

known. Thus the dose/response, longevity and magnitude of effects (induction and 

degradation time), as well as information on seasonal variations, effects of 

reproduction, and other stress factors are required. In respect to this, laboratory 

experiments indicated that metallothioneins can be used as an indicator for cadmium 

but not for copper and zinc in the gill and hepatopancreas of Nephrops norvegicus 

since only cadmium increases in the both tissues of the sexes in proportion to 

exposure concentrations, while copper and zinc are either regulated or slightly 

increased in this study. Additionally, only cadmium and MT showed strong and 

constant relationships in both tissues of male and female animals, whereas copper 

and zinc did not show this trend. Since copper and zinc metallothioneins in Crustacea 

have been shown to serve as storage forms of copper and zinc for metabolism and, 

therefore, levels can change during different periods of the year, especially 

depending on moult stage of crustaceans (Engel, 1987 ; Engel and Brouwer, 1987), 

copper and zinc metallothionein may not be reliable indicators of copper and zinc 

contamination in the marine environment. For better understanding of the use of 

MTs as an indication of metal contamination, it would be essential to study MT 

concentrations in naturally contaminated and clean areas and look at the relationship 

with metals.
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CHAPTER 7

GILL ATPASE ACTIVITIES AND SOME PARAMETERS IN THE GILL AND 

BLOOD OF NEPHROPS NORVEGICUS FROM CONTAMINATED AND 

UNCONTAMINATED AREAS OF THE CLYDE SEA; EFFECTS OF A 

PARASITE INFECTION



7.1 INTRODUCTION

Heavy metals have been discharged for many years into the seas from industrial 

effluents, sewage sludge and atmospheric deposition. Concentrations of heavy metals 

in the marine environment can increase depending on sources of contamination 

(Langston, 1990). Marine animals accumulate these metals from sea water and 

through their diet causing elevated concentrations in their tissues. Higher 

concentrations of heavy metals in the aquatic environment are known to be toxic and 

can cause physiological alterations in normal metabolism of aquatic animals at 

sublethal levels (see Chapter 1). Heavy metals are known to inhibit the activity of 

different enzymes including ATPases in vitro (Riedel and Christensen 1979). For 

example, activities of different ATPases in the gill of fish and crustaceans have been 

shown to be inhibited by heavy metals in vitro (Bouguegneau, 1976 ; Tucker and 

Matte, 1980 ; Haya et al., 1983 ; Lauren and McDonald, 1987). In vivo effects of 

heavy metals, however, are not so clear, possibly because homeostatic mechanisms 

cause some compensatory alterations in enzyme activity (Stagg and Shuttleworth 

1982). Although the activity of ATPases were altered in the gill of the Norway 

lobster, Nephrops norvegicus by in vivo heavy metal exposure, male and female 

animals showed different patterns (Chapter 5). Heavy metals can also alter 

concentrations of ions in the blood and tisssues of fish and so can affect the 

osmolality. Copper, zinc, cadmium and mercury altered normal concentrations of 

ions in the blood of crustaceans and fish after exposure to the metals dissolved in 

water (Lewis and Lewis, 1972 ;Thurberg et al., 1973 ; McCarty and Houston, 1976 

; Christensen et al., 1977 ; Inman and Lockwood, 1977 ; Cardeilhac et al., 1979 ; 

Rombough and Garside, 1984 ; Bjerregaard and Vislie, 1985a :1985b ;1986).
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The Clyde Sea on the west coast of Scotland is a major seaway and leisure area and 

supports valuable fisheries. Sewage sludge consisting of primary settlement material, 

activated sludge and industrial waste has been dumped (approx. 1*10^ tonnes/day) 

off Garroch Head in the Firth of Clyde. Untreated sewage from inland as well as 

coastal towns is discharged along much of the coast of the Firth of Clyde. Sewage 

sludge dumping and other industrial effluents cause elevated levels of heavy metals in 

sea water, sediment and in fauna which live around in dumping area. (Steele et al., 

1972 ; Halcrow et al., 1973 ; Mackay 1986 ; Clark and Davies 1989).

The Norway lobster, Nephrops norvegicus is widely distributed in the Clyde Sea and 

supports an important fishery. Nephrops accumulates heavy metals from sea water or 

food and tissue concentrations can rise many-fold, toxic effects occurring at high 

metal concentrations (Chapters 3 and 4). A laboratory experiment (Chapter 5) 

showed that heavy metals in sublethal concentrations inhibit significantly the activity 

of ATPases in the gill of Nephrops norvegicus in vivo. Male and female animals, 

however, showed different inhibition patterns. After observing inhibition of the 

activity of ATPases in laboratory conditions, it would be essential to investigate how 

ATPase activity would be affected in naturally contaminated areas.

Some Nephrops norvegicus from the Clyde Sea area are infected by a species of 

parasitic dinoflagellate related to Hematodinium perezi (Field et al., 1992). In 

advanced stages of this infection, affected lobsters can be easily recognised by the 

dull orange colour of the body and appendages, and milky-white haemolymph which 

seems to be due mainly to the presence of increased total cell numbers. A picture of 

an infected animal is given in Chapter 8 (Figure 8.1). Infected animals show varying 

degrees of lethality which increases with increasing severity of infection. Severely 

infected animals are also moribund and has difficulty in walking as well as showing
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histopathological changes in some tissues. Copper concentrations of haemolymph and 

oxygen carrying capacity of haemocyanin were found to be lower in infected 

individuals than those apparently healthy individuals (Field, 1992 ; Field et al., 

1992), presumably related to removal of copper from haemocyanin due to the 

infection since removal of copper from haemocyanin is known to inactivate this 

molecule or vice versa (Waterman, 1960). The infection of Nephrops by the parasite 

in the Clyde Sea have showed increases in recent years, infected animals reaching 

very high percentages of total sampled animals in some areas. Because sampling of 

the animals in this study was done in different stations in short trawling period, 

samples contained high percentages of infected animals from stations. Therefore, the 

infected animals were also used in the present study taking the infection as a factor.

The aim of the present study is to investigate the activities of total ATPase, total Mg- 

ATPase in its oligomycin sensitive and insensitive components and Na,K-ATPase in 

the gill of male Nephrops norvegicus from contaminated and uncontaminated areas of 

the Clyde Sea. Infection determination was carried out by looking at the blood colour 

of the animals. Blue or bluish blooded animals were classified as normal animals, 

while milky-white blooded animals were classified as infected animals. Thus, blood 

colour was also involved in statistical analyses. 10 stations in the Clyde Sea were 

chosen in relation to a pollution gradient containing the dumping ground and 

relatively clean sites. Concentrations of some ions (Na+ , K + , Mg+ 2} Ca+2, ci") 

in the blood and gill tissue of male Nephrops were measured. Copper and zinc 

concentrations in the blood of the animals were also measured and possible 

relationships were investigated between ATPase activity and concentrations of the 

variables measured in the gill and blood. All investigations were carried out for 

effects of station and infection on the levels of the parameters and, normal and 

infected animals were compared for the levels of the parameters.
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7.2 MATERIALS AND METHODS

The Norway lobsters, Nephrops norvegicus were collected by 30 minute trawl from 

R.V. Clupea at 10 stations in the Clyde Sea (Figure 7.1) between 13-22 May 1992. 

Samples from station 11 were only used in Chapter 8. The animals were left in 

running sea water and then transferred to the University M arine Station, Millport for 

processing on a daily basis.
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Figure 7.1. Sampling stations of Nephrops norvegicus in the Clyde Sea. Stations 1 to 10 were 
used in this study, dg indicates the dumping ground.
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Carapace length was measured and sex of animals was noted. A sample of blood was 

taken by syringe from the base of the last walking legs or joints of claws and put in 

eppendorf tubes and frozen at -20 °C for subsequent measurements of blood ions 

(Na+, K + , C a+, M g+ and Cl") and copper and zinc in the blood. Animals were 

killed by decapitation and gills were dissected quickly in a cold room (4 °C). After 

dissection, some of the gill flaments were snap frozen in liquid nitrogen for 

measurements of ATPase activity. ATPase activities were measured as described 

previously in chapter 5 after one or two days storage in liquid nitrogen. Additional 

samples of gill flaments were also taken to measure the total tissue concentrations of 

ions Na+ , K + , Ca+ and M g+. These gill flaments were put into an oven set to 70 

°C for 4 days to dry the samples. Dry samples were used to measure the 

concentrations of gill ions. The water content (%) of gill flaments was determined 

from weight of the samples before and after drying.

7.2.1 Measurements of Metals and Ions

Blood samples were diluted 2500 times for sodium and 50 times for the other ions. 

Analysis of copper and zinc were also carried out in the latter fraction of the blood. 

Concentrations of the ions in the dry gill were determined in solution obtained after 

dry gill had been digested in concentrated nitric acid overnight in room temperature. 

This solution was diluted 300 times for Na+ and 20 times for the other ions. After 

appropriate dilutions, all ion and heavy metal levels were brought to the linear range 

of standards which were prepared using B.D.H. stock standard solutions. 

Concentrations of standards (as pg m l'l and (/*mol ml"*)) were in the following 

ranges; Copper=0.25-4 (0.0039-0.0629), zinc=0.0625-2 (0.00095-0.0305),

sodium =0.5-10 (0.0217-0.435), potassium=1-10 (0.0256-0.256), magnesium=0.5- 

10 (0.0205-0.411), calcium=1-10 (0.0249-0.249).
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Copper, zinc and magnesium concentrations in the blood of Nephrops were measured 

with atomic absorption spectrophotometry techniques, while concentrations of 

sodium, potassium and calcium were measured with atomic emission 

spectrophotometry techniques (Perkin Elmer 500). Concentrations of metals and 

ions in the blood were calculated from the linear equations obtained from 

measurements with a range of concentrations of standards.

7.2.2 Measurement of Osmolality

Osmolality in the blood of animals was measured using a Wescor 5500 vapour 

pressure osmometer. The micropipettor of the instrument furnished with the vapour 

pressure osmometer uses air-displacement to dispense a 10 pi volume of liquid for 

osmolality assay. This volume of liquid is the optimum level for total saturation of 

sample disk (Wescor manual). Before starting any assay, the instrument was 

calibrated with standards in concentrations of 290 and 1000 mmol/1 using a 

calibration nomograph for the instrument. A single sample disk was placed on the 

sample holder for each run using clean forceps and 10 p\ of standard or blood sample 

was aspirated with a pippette (Gilson, France). Then, osmolality was measured 

directly (mOsmol/kg) after closing the sample chamber. Sample holder was cleaned 

after each measurement using lint-free tissues.

7.2.3 Measurements of Chloride

Chloride measurements in the blood of Nephrops were carried out by using a 

PCLM3 chloride meter (Jenway ltd.). The instrument works in biological ranges of 

10 to 350 mmol/1 with a coefficient of variation of ±  1.5 % at 100 mmol/1 level 

using the titration method. Chloride measurement was started by adding 15 ml of
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acid buffer and 10 drops of gelatine (supplied from Jenway) into a cuvette. A metal 

rod was also put into the cuvette to stir magnetically throughout measurement. The 

instrument was first conditioned to zero and 20 pi of 100 mmol/1 standard (supplied 

from Jenway) was added to the medium and titration was began. If this volume of 

chloride standard produced a reading by the instrument of between 98 and 102 units 

the instrument was set up properly, so measurements of samples were started by 

adding the same volume of the chemicals. Chloride concentration was expressed as 

mmol/1. The same buffer can be used for about 15 samples, until the instrument 

warns that reagents should be changed.

After addition of sample or standard, a constant current passes between two silver 

electrodes which then liberate silver ions at a constant rate into the solution. These 

silver ions combine with chloride ions in solution and are precipitated as insoluble 

silver chloride. When all of the chloride has combined with the generated silver, free 

silver ions become available in the solution and their presence is detected by two 

further silver electrodes.

7.2.4 Statistical Analyses of Data

As indicated earlier, some of the Clyde Nephrops infected by a fatal parasite related 

to Hematodiniwt?z-like species of dinoflagellate. In advanced stages of infection, 

normally blue coloured blood becomes milky white, though mild infection may not 

change the colour of the blood (Field, et al., 1992). Investigations were also carried 

out by separating the normal (blue blood) and advance infected (white blood) 

animals. Male Nephrops were used only throughout this study. Statistical analyses of 

data were carried out using Minitab 8.2 statistical package program. Any data which 

would be analysed statistically were first plotted on graphs to see their distribution.
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Data not normally distributed were transformed by logio or square root. General 

Linear Model was used as specific statistical analysis program which allowed the use 

of Anova and Linear Regression analysis at the same time. There were significant 

relationships between ATPase activity and carapace length in Chapter 5, so carapace 

length was taken into account as a covariate when it differed significantly among 

stations. Interactions between factors for all variables were also checked before any 

test. The statistical model was first applied for whole samples to find out effects of 

station, carapace length and especially to find out if blood colour shows significant 

effects in the levels of parameters which may be important for description of station 

and size effects. Since there were differences in levels of many variables in relation 

to blood colour, the white and normal blooded animals were separated. Normal 

blooded animals were reanalysed with the same model leaving only one factor 

(station) and covariate (carapace length). White blooded animals were also compared 

among stations but with Kruskal-Wallis one way analysis of variance since there was 

no difference in carapace length of animals from different stations. Mean levels of 

the variables between normal and infected animals were also statistically compared 

with the Mann-Whitney U-test. These analyses were carried out only for variables 

for which stations did not show any effect on levels of the parameters. Carapace 

lengths of the two groups were not significantly different, so carapace length was 

ignored for these comparisons. Rank correlation was applied to data between ATPase 

activities and parameters in the blood and gill. For this test, data were first ranked 

and correlation was tested for the whole sample and also for normal animals alone.

7.3 RESULTS

Figure 7.1 shows the sampling stations of the Norway lobster, Nephrops norvegicus 

also indicating the dumping ground. Carapace length and number of animals used for
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Table 7.1. Mean carapace lengths, standard errors and numbers 0 of normal (blue blooded) 
and infected (white blooded) male Norway lobster Nephrops norvegicus caught in different 
stations from the Clyde Sea. Number of samples were different in different parameters for 
statistical comparisons. nwb=no white blood. nbs=no blood sample.

Station All
C A R A

Animals
P A C E  L E N 
Normal Animals

G T H 
Infected Animals

1
se

(13) 4.65
0.23

(11) 4. 60 
0. 23

(2) 4.95 
0.05

2 (10) 4.84 (9) 4.89 nwb
se 0.24 0.26

3 (9) 4.20 (9) 4.20 nwb
se 0.18 0.18

4 (10) 4.31 (4) 4.15 (2) 4.20
se 0.19 0.05 0.20

5 (14) 3.89 (4) 3.62 nwb
se 0.16 0. 24

6 (11) 5.19 nbs nbs
se 0.22

7 (4) 4.15 (4) 4.15 nwb
se 0.31 0.31

8 (6) 3.93 (6) 3. 93 nwb
se 0.23 0.23

9 (12) 4.42 (9) 4.37 (2) 4.80
se 0.11 0.13 0.20

10 (21) 3.82 (12) 3.81 (6) 4.06
se 0.06 0.05 0.19

Average (U0) 4.32 (68) 4. 25 (12) 4.19
se 0.07 0.08 0.18

P value P<0.005 P<0.005 ns (P>0.05)
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analysis are given in Table 7.1. Carapace length of all animals and normal (blue 

blood) animals differed significantly among stations (P< 0.005), while carapace 

length of the infected (white blood) animals did not show any difference (P>0.05).

Table 7.2. Results of linear regression analysis using all samples. Station and blood colour 
were used as factors while carapace length was used as covariate. ST&BC&CL indicates the 
interaction if any between blood colour, station and carapace length. + and - signs indicate 
positive and negative relationship between carapace length and variables, ns = not significant 
(P>0.05).

Variable ST&BC&CL CL Station Blood Colour

T-ATPase ns ns 0.017 0.0001
T-Mg-ATPase ns ns 0.028 0.0001
Ois.Mg-ATPase ns ns ns 0.0001
Os.Mg-ATPase ns ns 0.001 0.007
Na,K-ATPase ns ns 0.002 0.038

% water ns +0.014 0.018 ns
Gill sodium ns ns ns ns
Gill potassium ns ns 0.042 0.003
Gill calcium ns ns ns ns
Gill magnesium ns ns ns ns

Osmolality ns ns ns 0.025
Blood copper ns ns ns 0.0001
Blood zinc ns -0.024 ns 0.001
Blood sodium ns ns ns ns
Blood potassium ns +0.034 ns ns
Blood calcium ns ns ns ns
Blood magnesium ns ns 0.034 ns
Blood chloride ns ns ns ns

252



Table 7.3. Results of linear regression analysis using only normal blooded animals. Station 
was used as factor while carapace length was used as covariate. + and - signs indicate 
positive and negative relationship between carapace length and variables. Comparisons of the 
parameters among stations in the infected (white blooded) animals were carried out with 
Kruskal-Wallis one way analysis of variance since CL does not differ among statios.

Variable
Normal
ST&CL

Blooded
CL

Animals
Station

White Blooded Animals 
Station

T-ATPase ns ns 0.015 ns
T-Mg-ATPase ns ns 0.009 ns
Ois.Mg-ATPase ns ns ns ns
Os.Mg-ATPase ns ns 0.002 ns
Na,K-ATPase ns ns 0.009 ns

% water ns ns 0.035 ns
Gill sodium ns ns ns ns
Gill potassium ns ns ns ns
Gill calcium ns ns ns ns
Gill magnesium ns ns ns ns

Osmolality ns ns ns ns
Blood copper ns ns ns ns
Blood zinc ns -0.031 ns ns
Blood sodium ns ns ns ns
Blood potassium ns ns ns ns
Blood calcium ns ns ns ns
Blood magnesium ns ns 0.0001 ns
Blood chloride ns ns ns ns
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Table 7.4. Mean values and standard errors of variables in normal (blue blooded) and infected 
(white blooded) male Nephrops. Comparisons of the two groups with Mann-Whitney U-test are 
also given in the following table. These comparisons could only be carried out for parameters 
those which station did not show any effect. nsc= no statistical comparison due to station 
effects. ns= not significant (P>0.05). ATPase activities are expressed as pmol Pi/mg 
protein/hour. Heavy metal and ion concentrations are expressed as mmol g"1 dry weight in the 
gill and pmol ml-1 in the blood. Osmolality (mOsmol/kg).

NORMAL BLOOD (68) WHITE BLOOD (12) P Value

Carapace L. 4. 25 (0.08) 4.19 (0.18) ns
T-ATPase 3.67 (0.13) 5.26 (0.44) nsc
T-Mg-ATPase 2.76 (0.10) 3.93 (0.33) nsc
Ois.Mg-ATPase 1.79 (0.07) 2.64 (0.28) 0.003
Os.Mg-ATPase 0.97 (0.04) 1.29 (0.14) nsc
Na,K-ATPase 0.87 (0.04) 1.21 (0.16) nsc

% water 89.0 (0.21) 91.0 (0.38) nsc
Gill sodium 4042.0 (179) 4285.0 (274) ns
Gill potassium 373.0 (7.9) 440.0 (29.9) 0.004
Gill calcium 153.0 (5.7) 184.0 (12.3) 0.035
Gill magnesium 265.0 (10.0) 306.0 (23.1) 0.017

Osmolality 985.0 (12.2) 1036.0 (13.9) 0.043
Blood copper 1.01 (0.04) 0.595 (0.08) 0.0005
Blood zinc 0.072(0.003) 0.047 (0.004) 0.001
Blood sodium 515.0 (76.9) 520.0 (26.3) ns
Blood potassium 9.14 (0.20) 9.31 (0.50) ns
Blood calcium 12.32 (0.19) 11.92 (0.44) ns
Blood magnesium 8. 28 (0.28) 11.18 (1.39) nsc
Blood chloride 425.0 (5.67) 447.0 (8.54) ns

7.3.1 ATPase activity

In all samples, most ATPase activities showed very significant differences 

(P<  0.001) in relation to blood colour of Nephrops, except for Na,K-ATPase activity 

(P<0.05) (Table 7.2). Stations also showed significant effects on ATPase activity, 

except for the activity of oligomycin insensitive Mg-ATPase. Activities of Na,K- 

ATPase (P<0.01) and oligomycin sensitive Mg-ATPase (P < 0.005), total Mg- 

ATPase and total ATPase differed among stations. There was no interaction among 

station, blood colour and carapace length (P>0.05). There was also no significant 

relationship between carapace length and any of the ATPase activities (P>0.05).
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Table 7.3 shows results of statistical analyses when normal and white blooded 

animals were separated in the analysis. Results for normal animals using the same 

analyses were similar in the effects of station and carapace length to those with all 

animals. Except for oligomycin insensitive Mg-ATPase activity (P > 0 .0 5 ) , all the 

other ATPase activities showed significant differences among stations (Table 7.3). 

There was also no relationship between ATPase activity and carapace length 

(P > 0 .0 5 ). Mean values and standard errors of ATPase activities in all animals and 

in the normal blooded animals among stations are shown in Figures 7.2 to 7.6. The 

activity of ATPases among stations in the white blooded animals was also statistically 

analysed with Kruskal-Wallis one way Anova. None of the ATPase activities in 

white blooded animals showed any difference among stations (Table 7.3). ATPase 

activities between normal and white blooded animals were compared with Mann- 

Whitney test for those which station did not show any effect (Table 7.4). Carapace 

length between the two groups were not different significantly, so any relationship 

between ATPase activity and carapace length was ignored. Mean activities of all the 

ATPases were higher in the white blooded animals than normal blooded animals
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Figure 7.3. Total Mg —ATPase activity in the gill
of Nephrops norvegicus from Clyde Sea area
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Figure 7.6. Na.K—ATPase activity in the gill
of Nephrops norvegicus from Clyde Sea area
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(Table 7.4). However, most of the ATPase activities showed significant differences 

among stations in normal animals which did not allow statistical comparisons 

between the two groups of animals. The activity o f oligomycin sensitive Mg-ATPase 

was significantly higher (P <  0.005) in white blooded animals than in normal 

animals.

7.3.2 Gill parameters

The same procedure applied for the ATPase activity was also applied for gill 

parameters such as concentrations of sodium, potassium, calcium, magnesium and % 

water in the gill of Nephrops norvegicus. In whole samples, there was no interaction 

between station, blood colour and carapace length. Ion concentrations did not show 

any relationship with carapace length, but % water in the gill had a positive 

relationship with carapace length. However, station showed significant effect in the 

levels o f gill parameters but only for the concentration of potassium and % gill water 

(P < 0 .0 5 ). Because % water content of gills differed among stations, all statistical 

analysis for the gill ions were carried out on the dry tissue values. Blood colour also 

showed effects but only on % water (P < 0 .0 5 ) and potassium concentrations in the 

gill (P C 0 .0 1 ) (Table 7.2).
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In normal animals alone, results of the analysis were different than the results of 

whole sample. There were no significant differences in concentrations of gill ions 

among stations (P > 0 .0 5 ), though % gill water was still significantly different 

(P < 0 .0 5 )  among stations (Table 7.3). None of the gill parameters showed 

relationships with carapace length. Gill parameters in the white blooded animals were 

not significantly different among stations (P > 0 .0 5 ). Mean values and standard errors 

of these parameters in the gill of all animals and normal blooded animals are shown 

in Figures 7.7 to 7.11. Comparisons of normal and white blooded animals showed 

that concentrations o f calcium, magnesium (P < 0 .0 5 ) and potassium ( P < 0.005) 

were significantly higher in white blooded animals, while concentrations of sodium 

were not significantly different between the two groups (Table 7.4). Although the 

mean % water in the gill was higher in white blooded animals, this difference could 

not be analysed due to station effect in normal animals (Table 7.3).
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Figure 7.B. Na concentrations in the gill of
Nephrops norvegicus from Clyde Sea area
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Figure 7.11. Mg concentrations in the gill of
Nephrops norvegicus from Clyde Sea area
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7.3.3 Blood parameters

Application o f the model for blood parameters such as osmolality and concentrations 

of copper, zinc, sodium, potassium, calcium, magnesium and chloride are also given 

in the same tables (Table 1 .2 -7 3 ). In whole samples, there was also no interaction 

between station, blood colour and carapace length. The parameters in the blood did 

not show significant differences among stations except for magnesium concentrations 

for which there were significant differences (P < 0 .0 5 ) among stations. However, 

potassium concentration showed a positive relationship (P < 0 .0 5 ) , while zinc 

concentration showed a negative (P < 0 .0 5 ) relationship with carapace length. Blood 

colour also showed significant effects on levels of osmolality (P < 0 .0 5 ) , copper 

( P < 0.0005) and zinc ( P < 0.005) (Table 7.2).

In normal animals alone, results differed slightly from the results of the whole 

sample. Carapace length showed only a relationship with zinc (P < 0 .0 5 ). Station also 

did not affect the blood parameters except for magnesium concentrations ( P < 0.005). 

The blood parameters did not differ significantly (P < 0 .0 5 ) among stations in white 

blooded animals. Mean values and standard errors of the blood parameters in all 

animals and normal blooded animals are shown in Figures 7.12 to 7.19.
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Comparisons o f normal and white blooded animals showed some differences in the 

levels of the blood parameters. For example, white blooded animals had significantly 

higher levels of osmolality (P < 0 .0 5 ) than normal animals, while they had lower 

concentrations o f copper (P <  0.001) and zinc (P <  0.005) in their blood. There were 

no significant differences in the levels of sodium, potassium, calcium and chloride 

(P > 0 .0 5 ) between the two groups. Concentrations of magnesium could not be 

analysed statistically due to station effect in normal animals.
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Figure 7. 14. Zinc concentrations in the blood
of Nephrops norvegicus from Clyde Sea area
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Figure 7.17. Ca concentrations in the blood
of Nephrops norvegicus from Clyde Sea area
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7.3.4 Correlation between ATPase activity and parameters in the blood and gill

Correlation tests were carried out between the activities of Na,K-ATPase, 

oligomycin sensitive Mg-ATPase, oligomycin insensitive Mg-ATPase and parameters 

in the blood and gill of the whole sample (including white blooded animals) and in 

normal blooded animals alone. Results of these tests are given in Table 7.5. In whole 

samples, the oligomycin insensitive component of Mg-ATPase showed positive 

correlations in the blood with osmolality (P<0.05), sodium (P<0.05) and chloride 

(P<0.05) and also with potassium (P<0.05) in the gill, while it had negative 

correlations with copper (P<  0.001) and zinc (P<  0.001) in the blood. Oligomycin 

sensitive component of Mg-ATPase showed a positive correlation with magnesium 

(P<0.01) in the blood and, also with sodium (P<0.01) and potassium (P<0.01) in 

the gill. Copper (P<0.01) and zinc (P<0.05) in the blood also showed negative 

correlations with this ATPase. Na,K-ATPase activity showed positive correlations 

with magnesium in the blood (P<0.05) and potassium in the gill (P<0.01). It also 

showed negative correlations with copper and zinc in the blood (both P <  0.001).

There were some differences in the results of the correlation test when only normal 

blooded animals were involved in the correlation tests (Table 7.5). The number of 

correlated cases were much less in normal animals. For example, the significant 

negative correlations between blood Cu and Zn and ATPase activities were not seen 

in normal blooded animals. All the ATPase activities tested had correlations with 

only Ca in the gill or blood. There was no correlation between any parameters in the 

gill and blood and oligomycin insensitive Mg-ATPase activity, except a negative 

correlation between gill Ca (P<0.05) and oligomycin insensitive Mg-ATPase 

activity. Oligomycin sensitive Mg-ATPase activity also showed only one correlation 

which was a positive relationship (P<0.05) with blood Ca. Similarly, Na,K-ATPase
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Table 7.5. Results of rank correlation between ATPase activities and blood and gill 
paramaters of all samples and normal samples alone. Gill ion concentrations are presented as 
dry weight values. Cu, Zn and Cd in the gill from different animals from the same stations. * = 
P<0.05, ** = P<0.01, *** = P<0.001.

ois-Mg-ATPase 
All Normal

os-Mg 
All

-ATPase
Normal

Na, K- 
All

-ATPase
Normal

Blood Osmol * ns ns ns ns ns

Blood Na * ns ns ns ns ns

Blood K ns ns ns ns ns ns

Blood Mg ns ns ** ns * ns

Blood Ca ns ns ns * ns **

Blood Cl * ns ns ns ns ns

Blood Cu ns _** ns ns

Blood Zn ns _* ns _ * * ns

Gill water ns ns ns ns ns ns

Gill Na ns ns ** ns ns ns

Gill K * ns ** ns ** ns

Gill Mg ns ns ns ns ns ns

Gill Ca ns _ * ns ns ns ns

Gill Cu _** -* _ *

Gill Zn ns ns ns

Gill Cd ns ns ns



activity had only one correlation which was a positive relationship with blood Ca 

(PC0.01).

The correlation tests were also carried out between ATPase activities and 

concentrations of copper, zinc and cadmium in the gill. However, data for gill heavy 

metals were from different groups of male Nephrops from the same stations. Copper 

in the gill showed negative correlations with the all ATPases tested (Table 7.5). For 

example, in all animals copper showed negative correlations with oligomycin 

insensitive (P<0.01) and sensitive (P<0.05) and Na,K-ATPase (P<0.05) activities. 

Zinc and cadmium did not show any correlation with any of the ATPases tested 

(P>0.05).

7.4 DISCUSSION

Results of the statistical analyses applied for the whole sample were very interesting 

when they showed that blood colour was a very important factor to consider in the 

activities of gill ATPases, and levels of parameters in the gill and blood of male 

Nephrops. Results of statistical analyses in normal blooded animals showed that the 

activities of all ATPases studied showed significant differences among stations, 

except for the activity of oligomycin insensitive Mg-ATPase. However, none of the 

other ATPase activity in white blooded animals differed significantly among stations. 

This could be due to low numbers of white blooded animals. Normal blooded (blue 

or bluish blood) animals were sixty eight, whereas white blooded animals were 

twelve which is not a good number for satisfactory statistical analyses. Percentage of 

Nephrops infected by the parasite in the Clyde Sea area could be very high, though 

all infected animals may not have white haemolymph which means the infection has 

several degrees. White colour of haemolymph could be seen in advanced infected



animals (Field et al., 1992). Since the infection has different degrees, classification 

of the infection by blood colour seemed to be a good method available to me despite 

disadvantage in number of samples. Mean activities of all the ATPases studied in the 

gill of infected Nephrops were higher than the levels in the normal animals. There 

may be two ways to explain the situation. First, ATPase activity increased in the 

infected animals as a result of parasite infection by changing the metabolism of the 

animals. The statistical analyses for the all animals (Table 7.2) showed that blood 

colour affected the activities of all the ATPases, though the effect of infection on the 

activity of Na,K-ATPase was less (P=0.038) than all the other ATPase activities 

investigated which P values varied between 0.0001-0.007. Metabolic activity in 

infected animals might be increased to demand higher energy consumption due to the 

parasitic infection which might also increase the activity of Mg-ATPase especially 

oligomycin sensitive Mg-ATPase activity as this ATPase has been shown to involve 

oxidative phosphorylation (Boyer et al., 1977). Oxygen consumption of infected 

animals has been found to be higher than normal animals (Field et al., data in prep.). 

Also the high ATPase activity in the infected animals could be due to lower levels of 

ATP in the infected animals than in the normal animals. Field (1992) showed that 

ATP concentrations of the infected animals were significantly lower than those in the 

normal animals. As can be seen from the results of this study only the components of 

Mg-ATPase activity were very much higher in the infected animals than in the 

normal animals which also affected the total ATPase activity. Although Na,K- 

ATPase activity was also higher in the infected animals, this difference was slight. 

Oligomycin sensitive Mg-ATPase is involved in oxidative phosphorylation and 

therefore is essential for ATP production from ADP. Because low ATP 

concentrations (Field, 1992) and higher oligomycin sensitive Mg-ATPase activity in 

the infected animals have been shown in this study, there may be a relationship 

between these two parameters. Secondly, higher ATPase activity in the infected
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animals can be a sum of ATPase activities of Nephrops gill and parasite metabolism. 

Field et al. (1992) showed that the number of parasites in the haemolymph of 

infected Nephrops increases in relation to infection gradient indicating that the white 

blooded animals (advance infection) can have very high numbers of the parasite. This 

could mean that infected animals with white haemolymph could have the most 

concentrated parasite cells in the blood. Increase of cells in the blood could also 

affect the number of cells in the gill. Therefore, ATPase activity measured here 

could be a total of Nephrops gill activities and metabolic activities of the parasite. 

Additionally, concentrations of most gill ions such as potassium, calcium and 

magnesium were significantly higher in infected animals (Table 7.4) which may also 

affect higher activities of the gill ATPases. However, before trying to find further 

explanations for the results of this study, one would need to do more studies on the 

activities of ATPases in the parasite and look at the relationship between ATPase 

activity in relation to infection gradients. In fact, each measurement used in this 

study should also be measured in the parasite to be able to find out if the metabolism 

of the parasite affected the ATPase activity and the other parameters in the gill and 

blood of the infected animals in this study. To study relationship between ATP 

concentrations and ATPase activity in the gill of the both infected and normal 

animals would also be essential for further explanations.

The activities of ATPases have been shown to be affected by various factors in the 

gill of Nephrops including size and sex of animals and heavy metal exposure 

(Chapter 5). However, in this study there was no relationship between ATPase 

activity and carapace length of the animals. This could be due to less variation of size 

groups from the stations in this study. In Chapter 5, the negative relationships 

between carapace length and activities of oligomycin sensitive Mg-ATPase and 

Na,K-ATPase were found in a group of male animals for which carapace length
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showed wider variation. The effects of stations on the activities of the ATPases were 

also significant factor especially for the normal animals which nearly all ATPases 

showed significant variations. Samples from the dumping ground (station 4) and 

from station 7 showed higher Na,K-ATPase activity, while oligomycin sensitive Mg- 

ATPase activity was higher in station 8. The activities of the other ATPases were 

generally lower in stations away from the dumping ground such as stations 1, 2, 9 

and 10. Interestingly, before seeing the results of this study, I expected to see lower 

ATPase activities in the dumping ground since ATPase activities have been reported 

to be inhibited in aquatic animals by a range of chemicals including heavy metals, 

pesticides and detergent (Davis et al., 1972 ;Riedel and Christensen, 1977 ; 

Jurkowski, 1977 ; Jowet et al., 1981 ; Christensen et al., 1982 ; Heath, 1987 and 

Chapter 5) which might be at higher levels in sewage sludge dumping areas. 

Therefore, it is very diffucult to speculate that activities of ATPases were affected by 

heavy metals present in the stations. Additionally, except for cadmium, 

concentrations of copper and zinc did not vary significantly among stations in the 

Clyde Sea (Chapter 8). This is important because especially copper and ATPase 

activities had negative relationships in this Chapter and in Chapter 5. Therefore, 

changes in copper concentrations in the gill of the animals from different stations 

could also show effects on the activities of ATPase.

Correlation tests were carried out for the parameters in the gill and blood with 

ATPase activities in all animals and normal animals alone. Most striking result were 

negative correlations between blood copper and zinc concentrations and activities of 

Na,K-ATPase, oligomycin sensitive and insensitive Mg-ATPase in all animals. These 

relationships, however, became non-significant when only normal animals were 

involved in correlations which clearly indicates that negative correlations were due to 

white blooded animals. As indicated earlier blood copper and zinc concentrations
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were very much lower in white blooded animals, while all the ATPase activities were 

higher. This may also show that they could show negative correlations. In general, 

there were more correlations between variables in the gill and blood with ATPase 

activities in all animals than only normal animals were involved (Table 7.5). 

Correlation tests were also carried out between the gill heavy metal concentrations 

(Cd, Cu and Zn) and ATPase activities but using different groups of male Nephrops 

from the same stations. In these correlation tests, copper also had negative 

correlations with the all ATPase activities. Negative correlation between copper and 

Na,K-ATPase activity in male Nephrops was also found in chapter 5. It seems that 

higher copper concentrations cause lower ATPase activity or vice versa. However, 

low concentrations of copper and high ATPase activity in this study are also 

characteristics of infected animals. From these results, it may be concluded that high 

ATPase activities in the present study are due to low copper concentrations which is 

indirectly related to infection of Nephrops. Additionally, high ATPase activity in the 

infected animals might be due to the effects of the infection for the two reasons 

explained on previous pages.

Concentrations of blood and gill ions were also measured in this study because these 

parameters have been reported to be affected by heavy metal exposure of aquatic 

animals. For example, concentrations of blood ions in decapod crustaceans have been 

shown to be sensitive to heavy metal exposure. Bjerregaard and Vislie (1985a and 

1986) exposed Carcinus maenas to copper and mercury and found that levels of 

osmolalility, Na"*", K +  and Cl" were reduced up to 90 %. Thurberg et al (1973) 

indicated that the addition of copper to the medium resulted in a loss of the normal 

osmoregulatory patterns of the crab Carcinus maenas until normally hyperosmotic 

blood-serum became isosmotic with the surrounding medium. However, cadmium 

elevated blood-serum osmolality above its normal hyperosmatic state. In the same
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crab, Bjerregaard and Vislie (1985b) showed that cadmium altered haemolymph ion 

concentrations in higher exposure regime though results were not consistant. Inman 

and Lockwood (1977) also showed that sublethal concentrations of methylmercury 

reduced concentrations of Na+  in haemolymph of Gammarus duebeni. At this 

point, there are questions to ask. Are low concentrations of bood copper and zinc 

concentrations affecting the higher levels of gill ions in infected animals or, are these 

due to infection ? In this study, there was no evidence for the reduction of ions in the 

gill and blood due to heavy metal exposure. In fact, there were increases in the levels 

of these parameters, though these increases might be related to the parasite infection. 

However, to be able to answer these queries, one would need further studies such as, 

especilly on the determinations of ATPase activity and ion concentrations of the 

parasite and find out relationships between these variables and infection gradients in 

the gill and blood of infected and healthy Nephrops norvegicus.
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CHAPTER 8

HEAVY METAL AND METALLOTHIONEIN CONCENTRATIONS IN THE 

GILL OF NEPHROPS NORVEGICUS FROM CONTAMINATED AND 

UNCONTAMINATED AREAS OF THE CLYDE SEA; EFFECTS OF A 

PARASITE INFECTION



8.1 INTRODUCTION

The induction of metallothionein (MT) synthesis by various physical and chemical 

factors is known in animals, though real role(s) of MTs have not been established 

(Bremner and Beattie, 1990). One of the most important inducers of MTs is heavy 

metals such as cadmium, copper and zinc. Heavy metal exposure of marine animals 

can cause elevated levels of metallothionein in their tissues. The induction of MTs 

are generally dependent on metal concentrations and exposure time as well as being 

dependent on other physical and chemical factors (see Chapter 6).

It seems likely that metallothionein levels can be used to demonstrate of heavy metal 

contamination in the aquatic environment, as has been suggested by several authors 

(Olafson et al., 1979 ; Roch et al., 1982 ; Hogstrand and Haux, 1990). This 

suggestion was supported in an experiment in the gill and hepatopancreas of 

Nephrops norvegicus (Chapter 6). However, some restrictions were suggested for the 

use of metallothionein as a monitoring tool of cadmium contamination in the marine 

environment since metallothionein can also be induced by factors such as stress, 

steroid hormones and bacterial infection, very hot or cold environment (Sobocinski, 

1978 ; Karin, 1985 ; Klaassen and Lehman-McKeeman, 1989 ; Bremner and Beattie, 

1990). Therefore, physical conditions of animals studied for metallothionein 

determination may be crucial to determine due to possible stresses caused factors 

such as a disease or infection.

As indicated in Chapter 7, Nephrops norvegicus from the Clyde Sea area were 

infected by a parasite related to Hematodinium perezi. This parasite invades the 

haemal spaces, and is fatal to Nephrops (Field et al., 1992). The body colour of 

infected animals becomes a dull orange colour, while haemolymph becomes milky-
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white. However, this colour of haemolymph is generally seen in severely infected 

animals, this may not be seen in mildly infected animals (Field et al., 1992).

The aim of this study was to measure metallothionein, copper, zinc and cadmium in 

the gill of Nephrops norvegicus from different stations (including sewage sludge 

dumping ground) in the Clyde Sea and to investigate levels of these parameters in 

relation to contamination gradients. Relationships between metallothionein and metal 

concentrations were also investigated to see if metallothionein can also be induced in 

the gill of Nephrops in relation to metal concentrations in natural conditions. Since 

the Clyde Nephrops were infected by the parasite and this infection has been shown 

to effects the survival of the animals as well as some other parameters (Field et al., 

1992 and Chapter 7), it may be a very strong stress factor for the infected animals. 

Because stress can increase the levels of metallothionein, the infection of the animals 

was taken into account in statistical analysis of data.

8.2 MATERIALS AND METHODS

Male Nephrops norvegicus were caught in the same stations from the Clyde Sea area 

as shown in Chapter 7 using all 11 stations. Therefore, animal capture, study period 

and maintenance of the animals were the same as explained in Chapter 7. However, 

infection determination was different in this study. Since no blood was taken from 

Nephrops in the present study, determination of the infection was done by looking at 

the body colour of the animals and therefore the infected animals contain both mild 

and severe infections. Body colour of infected animals becomes dull orange, while 

the haemolymph becomes milky-white. Body colour differences between normal and 

infected animals can be seen in Figure 8.1. Male gonads were carefully separated 

and measured to the nearest 1 mg using a Mettler AE240 balance.
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Figure 8.1. Pictures of heathy (H) and infected (A) Nephrops norvegicus (After Field, 1992).

The methods for metallothionein, protein, copper, zinc and cadmium analyses in the 

tissues o f Nephrops were the same as described in Chapter 6.

The same statistical procedure used in Chapter 7 was also applied for this study 

unless otherwise indicated.



8.3 RESULTS

Table 8.1. Mean carapace lengths (mm), standard errors and numbers 0 of normal and 
infected male Norway lobster Nephrops norvegicus caught in different stations from the Clyde 
Sea. Results of one way Anova among stations are also given in the following table, ns = not 
significant, nid = no infection determination.

Total Samples Normal Animals Infected Animals

1 (9) 48.1 (2) 45. 2 (7) 48.9
se 1. 63 4.35 1.73

2 (10) 46.0 (5) 46.8 (5) 45.3
se 1. 23 2.30 1.13

3 (10) 35.7 nid nid
se 1. 24

4 (10) 47.2 nid nid
se 1.47

5 (10) 39.5 (8) 38.9 (2) 42.3
se 1.90 1.84 7.60

6 (11) 51.9 (7) 53.7 (4) 48. 9
se 2.18 2.82 3.33

7 (10) 49.9 nid nid
se 2.51

8 (10) 40.5 nid nid
se 1.39

9 (9) 41.7 (6) 43.0 (3) 39.2
se 1.46 1.75 2.25

10 (8) 44. 6 (5) 46.9 (3) 40.8
se 1.17 2.09 0.95

11 (12) 44.7 (5) 46.1 (4) 45.9
se 0. 99 1.00 1.98

Average (109) 44.6 (38) 45.6 (28) 45.4
se 0.65 1.11 1.04

P value P=0.0001 P=0.001 ns



Mean carapace length and numbers of infected and normal male Nephrops norvegicus 

caught from different stations are given in Table 8.1. Results of one way Anova 

among stations are also given in this table. Results showed that carapace lengths of 

whole samples (P< 0.001) and normal samples (P<  0.005) were significantly 

different among stations (Table 8.1).

Table 8.2. Results of linear regression analysis using all samples. Station and infection were 
used as factors while carapace length was used as covariate. ST&INF&CL indicates the 
interaction between infection, station and carapace length. + and - signs indicate positive and 
negative relationship between carapace length and variables, ns = not significant (P>0.05)

Variable ST&INF&CL CL Station Infection

Gonad ns +00001 ns ns
MT ns ns ns 0.002
Zn ns ns ns 0.05
Cd ns +0.012 0.001 ns
Cu ns ns ns 0.001

The statistical model applied to whole data using station and infection as factor and 

carapace length as covariate showed that there was no interaction for the variables 

among station, infection and carapace length (Table 8.2). Metallothionein 

concentrations did not show any relationship with carapace length of Nephrops and 

did not vary among stations. However, the infection played a significant (P<  0.005) 

role in metallothionein concentrations of the animals. Copper concentrations did not 

show any relationship with size of Nephrops and did not vary among stations. Like 

metallothionein concentrations, copper concentrations were also affected significantly 

(P <  0.001) by the infection. Similarly, zinc concentrations also did not vary among 

stations and there was no relationship with carapace length. However, the infection 

showed a slight effect (P=0.05) on zinc concentrations of the gill. In contrast, 

cadmium concentrations were not affected (P>0.05) by the infection but showed a 

positive relationship (P<0.05) with carapace length and levels differed significantly



(P < 0.005) among stations (Table 8.2). Mean concentrations and standard errors of 

copper, zinc, cadmium and metallothionein in the gill of whole samples, infected 

animals and normal animals from 11 stations are shown in figures 8.2-8.5 indicating 

P values among stations. Male gonads from the animals were also dissected and 

relationships were investigated. Station and infection did not show any effect in 

gonad weight while carapace length showed a significant positive (P<  0.0001) 

relationship with gonad weight.

Table 8.3. Results of linear regression analysis after separation of normal and infected 
animals. Station was used as factor while carapace length was used as covariate.

Variable
Normal
ST&CL

Blooded
CL

Animals
Station

Infected
ST&CL

Animals
CL Station

Gonad ns +0.0001 ns ns +0.0001 ns
MT ns ns ns ns ns ns
Zn ns ns ns ns ns ns
Cd ns ns ns ns ns 0.005
Cu ns ns ns ns ns ns

Since the infection significantly influenced the levels of variables, animals were 

separated into two groups (infected and normal groups) and the same statistical 

model was applied to these new groups. Results of these analyses are given in Table 

8.3. There was no interaction between station and carapace length in both normal 

and infected animals. There was also no significant relationship between carapace 

length and concentrations of metals and metallothionein of either the infected or the 

normal Nephrops. Concentrations of the variables among stations did not show any 

significant variation, except for cadmium concentrations in infected animals 

(P=0.005). Cadmium concentrations in the gill of infected and normal Nephrops 

were similar, though cadmium variations in infected animals were wider than for the 

normal animals among stations (Figure 8.2). Zinc concentrations of both groups 

were similar and showed similar patterns of variations in most stations. However, in
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station 8 and 9 zinc concentrations in infected animals were higher than at remaining 

stations (Figure 8.3). Copper concentrations in the gill of normal and infected 

animals were generally different in most stations and followed different patterns of 

variations among stations. In general, infected animals had lower concentrations of 

copper in stations (Figure 8.4). Metallothionein concentrations o f infected animals 

were higher in most stations than normal animals, though they showed similar 

patterns of variations among stations. In station 9 and 10 metallothionein levels were 

sharply increased in infected animals but came to the same levels in station 11 

(Figure 8.5). Gonad mass did not differ among stations and was not affected by the 

infection whereas it showed a positive relationship (P <  0.0001) with carapace length 

in both normal and infected animals.
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F igure B.3. Zinc c o n c e n tr a tio n s  in  th e  g ill
of N ephrops n o rv eg icu s  from  th e  Clyde Sea
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F igu re B.5. MT c o n c e n tr a t io n s  in  th.e gill
of N ep h rop s n o r v e g ic u s  fro m  th e  Clyde S ea
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Concentrations of the metals and metallothionein in the gill of infected and normal 

Nephrops were also compared with Mann-Whitney U-tests and results of this test are 

given in Table 8.4. Carapace length was not involved in these comparisons since 

both groups had similar size distributions (P > 0 .0 5 ). This table shows that cadmium 

concentrations of normal and infected animals were similar, though these could not 

be analysed statistically due to the station effect in the infected animals. However, 

there were significant differences in the levels of metallothionein (P = 0 .0 1 ), zinc 

(P < 0 .0 5 ) and copper (P =0.001) between the normal and infected Nephrops. The 

infected animals had higher concentrations of metallothionein and zinc, whereas they 

had low concentrations of copper in the gill. Mean gonad masses did not show any 

difference between normal and infected animals (Table 8.4).
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Table 8.4. Mean values and standard errors of variables in normal and infected male 
Nephrops norvegicus. Comparisons of the two groups with Mann-Whitney U-test are also 
given in the following table. CL = carapace length (mm). nsc=no statistical comparison due to 
station effect. Gonad weight is given as gram.

NORMAL ANIMALS INFECTED ANIMALS P Value

CL 45.6 (1.11) 45.4 (1.04) ns
Gonad 0.410 (0.038) 0.339 (0.030) ns
MT 0.961 (0.073) 1.411 (0.177) 0.011
Zn 0.235 (0.028) 0.302 (0.041) 0.044
Cd 0.0099 (0.00084) 0.0086 (0.0011) nsc
Cu 5.30 (1.09) 2.36 (0.39) 0.001

Regression analyses were also carried out between metallothionein and metal 

concentrations of the gill from the whole samples and for the infected and normal 

animals alone. Results of regression analyses for whole samples are shown in Figures 

8.6-8.7. Metallothionein concentrations showed a positive relationship (r=0.349, 

df=99, P=0.001) with zinc levels (Figure 8.6). The relationship between 

metallothionein and cadmium concentrations was not analysed statistically due to the 

effect of station on the levels of cadmium and therefore is not shown on a graph. 

Copper concentrations showed a strong negative relationship with MT concentrations 

(r=-835, df=100, p < 0.0001) as seen in Figure 8.7. Regression analyses in infected 

and normal animals alone were also shown separately in figures (Figures 8.8-8.12). 

Zinc and MT concentrations did not show any relationship in normal animals, while 

in the infected animals there was a positive relationship between zinc and MT 

concentrations (r=0.474, df=24, p=0.01) (Figures 8.8 and 8.9). Cadmium 

concentrations also did not show any significant relationship with MT concentrations 

in normal animals (Figure 8.10). Relationships between cadmium and MT 

concentrations in infected animals were not analysed due to the station effect on the 

levels of cadmium in the infected animals. However, copper concentrations in both 

normal and infected animals showed negative relationships with metallothionein 

concentrations (r=-729, df=34, PcO.0001 and r=-904, df=24, PC0.0001 

respectively). These relationships are shown in Figures 8.11 and 8.12.
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Relationships between gonad mass and metallothionein concentrations were also 

investigated and results given in a table (Table 8.6). There was no significant 

relationship between gonad mass and metallothionein in whole animals and in normal 

animals but there was a negative (P < 0 .0 5 ) relationship between gonad mass and 

metallothionein concentrations in infected animals. There were positive relationships 

between gonad mass and cadmium concentrations in whole samples (P <  0.0005) and 

in infected animals (P < 0 .0 5 ), while there was no relationship in normal animals. 

Copper concentrations also showed positive relationships with gonad mass in whole 

samples (P < 0 .0 1 )  and in infected animals (P < 0 .0 5 ) but not in normal animals. Zinc 

concentration and gonad mass showed a negative relationship in infected animals 

while there was no relationship in normal animals and in whole sample (Table 8.6).
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Ratios of metals to metallothionein (nmol/mg protein) were also calculated and given 

in Table 8.5. Mean ratio of copper to MT was 951 in the normal animals while this 

was 301 in the infected animals which gave significant difference (P<  0.005) 

between the two groups. Mean ratio of zinc was 28.3 and 27.4 in normal and the 

infected animals respectively which was not significantly different between the two 

groups. Mean ratio of cadmium was 0.77 and 0.53 in normal and in the infected 

animals respectively. However, statistical comparison was not carried out due to the 

station effect on the cadmium levels in the infected animals.

Table 8.5. Mean ratios and associated standard errors of metals to metallothionein (nmol 
metal/MT/mg protein) in the gill of of normal and infected male Nephrops norvegicus. 
Comparisons of the two groups with Mann-Whitney U-test are also given in the following table.

NORMAL ANIMALS INFECTED ANIMALS P Value

Cu 951 (313) 301 (79.2) 0.002
Zn 28.3 (3.34) 27.4 (4.58) ns
Cd 0.77 (0.078) 0.53 (0.102) nsc

Table 8.6. Relationships between gonad weight and concentrations of metals and 
metallothionein in the gill of male Nephrops norvegicus. + and - indicates the positive and 
negative relationships respectively.

WHOLE SAMPLE NORMAL ANIMALS INFECTED ANIMALS
r df P r df P r df P

Gon&MT 0.179 102 ns 0.109 35 ns -0.448 25 0.019
Gon&Cd +0.342 99 0.0001 0.114 33 ns +0.406 24 0.040
Gon&Cu +0.261 99 0.0008 0.031 33 ns +0.483 24 0.012
Gon&Zn 0.192 100 ns 0.044 34 ns +0.481 25 0.011
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8.4 DISCUSSION

Metallothioneins are cysteine-rich low molecular weight proteins that are 

characterized by high capacity to bind heavy metal ions such as cadmium, copper 

and zinc. This definition is the most important characteristic of metallothionein. Ever 

since its discovery, metallothionein has been related to many physiological processes. 

Among those, there is evidence that metallothioneins are involved in copper and zinc 

metabolism in animals (Karin, 1985). In decapod crustaceans, metallothioneins have 

been shown to be involved in the synthesis of haemocyanin and carbonic anhydrase 

as donors of copper and zinc (Brouwer et al., 1986 ; Brouwer et al., 1989). 

However, much attention have been paid to the role of metallothionein as a 

detoxification tool of heavy metals. This is not surprising because many experimental 

studies including a study with Nephrops (Chapter 6) have showed that elevated levels 

of heavy metals can increase the levels of metallothionein in relation to exposure 

period and concentration (see Chapter 6). From the definition so far, one would 

expect to see high metallothionein levels when high concentrations of heavy metals 

such as cadmium, copper and zinc are present in tissues of marine animals. In the 

present study, metallothionein concentrations showed a negative relationship with 

copper (r=-0.835 P <  0.0001) and a positive relationship with zinc (r=0.349 

P =0.001) concentrations in all samples, though the relationship between cadmium 

and MT levels could not be analysed statistically due to the effect of stations on the 

levels of cadmium. These relationships were also tested in the normal and infected 

Nephrops separately and, some differences were found in the relationships. For 

example, the relationship between MT and zinc was not significant in normal 

animals, while this relationship was significant in infected animals (r=0.474 

P=0.01). There was also no significant relationship between cadmium and MT in the 

normal animals, though this relationship in the infected animals could not be
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analysed due to station effect on cadmium levels. Most interesting results were the 

relationships of copper and metallothionein concentrations in the normal and infected 

animals which were very significant negative relationships (r=-0.729 P <  0.0001 and 

r = -0.904 P < 0.0001 respectively). Before attempting to explain these results, it 

would be essential to look at the factors which affect directly or indirectly the 

induction of metallothionein. MTs are known to be induced by a variety of factors 

including heavy metals, stress, bacterial infection, high temperature and low salinity 

and some other extreme conditions (see Chapter 6). In fact, all these factors are 

stress factors. In this point, there may be some questions to ask such as; does MT 

induction indicate a factor of stress caused by different sources or how much does 

stress play roles in metallothionein induction ?

Stress could give some explanation for the results obtained from this study. As 

indicated earlier Nephrops norvegicus from the Clyde Sea area were infected by a 

parasite related to Hematodinium perezi, a dinoflagellate which can be fatal to its 

host. This parasite occupies haemal species and numbers of parasites increase with 

the severity of infection (Field et al., 1992). It is clear that the infection is a severe 

stress factor for the infected animals. Since stress has been shown to cause an 

increase in metallothionein levels, one would also expect to see high levels of MTs in 

the infected Nephrops. Copper concentrations in the blood and gill of infected 

animals were found to be lower than in normal animals (Chapter 7 and the present 

study). Lower concentrations of copper in the blood were also found by Field et al. 

(1992). So it is not surprising to see a negative relationship between copper and 

metallothionein in all animals and in the infected animals. However, it is surprising 

to see the negative relationship with normal animals. To be able to explain this, one 

would need to see the relationship between parasite invasion and metallothionein 

concentrations by means of counting the parasite in the blood using a microscope. In
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this way, a more reliable determination of the infection could be obtained. This may 

be essential especially when an animal has recently been infected and body colour is 

still normal though stress has already begun. Infection determination in this study 

was carried out by looking at the body colour of the animals, so it is an arbitrary 

determination and therefore early stages of infected animals might be taken as normal 

animals. This might cause the negative relationships between metallothionein and 

copper in the "normal" animals. However, there was no relationship between 

cadmium and metallothionein in the normal animals. Calculation of ratios of the 

metals to MT showed that mean copper ratio in the normal animals was more than 

three times higher than those from the infected animals, while zinc ratios were not 

significantly different. Although mean cadmium ratio in the normal animals was 

slightly higher than in the infected animals, these could not be analysed statistically 

due to the station effect in the infected animals. It is possible that copper 

metallothioneins in the infected animals might be degraded to give its copper to 

haemocyanin which has shortages of copper in the blood. The donor role of copper 

metallothionein for the synthesis of haemocyanin has been shown in decapod 

Crustacea (Brouwer et al., 1986 ; Brouwer et al., 1989). In this study total 

metallothioneins were measured regardless of bound metals. If copper 

metallothioneins were degraded to give their copper for haemocyanin synthesis or 

copper bound to metallothionein was replaced by other metals, these would also 

affect the relationship between copper and metallothionein as well as affecting the 

relationships with the other metals in both normal and infected animals.

There is no information in this study on metallothionein concentrations of the 

parasite. This could be crucial to find a better explanation of what is going on with 

the relationships between metals and metallothionein. If there is metallothionein in 

the parasite this could also affect the concentrations of metallothionein in the gill of
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infected animals depending on infection gradients. Because there are many things 

which are not clear, discussion of this study, therefore, is wide open.

Relationships between gonad mass and metallothionein concentrations were not 

significant in whole sample or normal animals alone but there was a negative 

relationship (P<0.05) in infected animals suggesting that infection was higher in 

smaller animals. Generally, heavy metals especially cadmium concentrations also 

showed positive relationship with gonad mass which also supported the positive 

relationships between size and cadmium in tissues of Nephrops in Chapter 2.

This study initially was intended to investigate the relationship between heavy metals 

and metallothionein in contaminated and uncontaminated areas of the Clyde Sea. 

After laboratory experiments on healthy animals (Chapter 6) in which there were 

constant positive relationships between cadmium and metallothionein in the gill and 

hepatopancreas of both male and female Nephrops norvegicus, it would be essential 

to investigate if metallothioneins show positive relationship with heavy metal which 

might lead one to conclude that metallothioneins could be used as determinators of 

heavy metal pollution particularly for Nephrops norvegicus. There was evidence for 

fish from the literature that MT levels increased in relation to heavy metal 

contamination in the aquatic environment and this increase showed positive 

relationships with heavy metals. Therefore, it was suggested that MTs could be used 

as a useful quantification of the degree of heavy metal exposure of fish (Roch et al., 

1982 ; Roch and McCarter, 1984 ; Olsson and Haux, 1986). For the Clyde Nephrops 

this investigation could not be done precisely due to the infection. However, findings 

in this study are very interesting and suggests the need to carry out some further 

studies such as, relationships between metals and metallothionein in relation to 

infection gradient using parasite count in the blood and comparisons with healthy
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animals without parasite. Determination of metal and metallothionein concentrations 

in the parasite could be very useful to obtain a clearer explanation for the relationship 

between metals and metallothionein in the gill of Nephrops norvegicus.
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