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Abstract 

Prostate cancer is the commonest cancer diagnosed in UK men and the second 

commonest cause of cancer mortality.  There is an urgent need to improve our ability 

to differentiate indolent from aggressive disease to achieve optimal evidence-based 

treatment choices.  Tumourigenesis involves deranged cellular proliferation, which in 

turn necessitates gene translation to drive protein synthesis.  The transcription 

products of RNA polymerase III (Pol III) play a critical role in protein synthesis.  

TFIIB-related factor 1 (BRF1) is a vital transcription factor and functions as part of 

the Pol III transcription apparatus to mediate transcription of transfer RNAs (tRNAs).   

In this thesis, using a range of in vitro/ in vivo pre-clinical models and clinical 

resources, I have characterised the status of BRF1 in prostate cancer.  Abnormal 

BRF1 expression has been previously suggested in small pilot studies in a number of 

tumour types.  Our recent immunohistochemistry data showed evidence of 

upregulated BRF1 expression in clinical prostate tumours.  I observed high levels of 

BRF1 expression in a comprehensive panel of human prostate cancer cell lines.  To 

further examine the functional significance of BRF1 in prostate cancer, BRF1 

expression was manipulated.  Upon transient over-expression of BRF1, cell 

proliferation was upregulated in several prostate cancer cell lines.  In contrast, when 

Brf1 expression was reduced, cell proliferation decreased, along with associated 

G2/M accumulation.   

To test the in vivo function of BRF1 in prostate carcinogenesis, a genetically 

engineered mouse model (GEMM) was developed with enhanced Brf1 expression in 

the prostate, namely Pten-Brf1, while Pten was deleted to recapitulate commonly 

observed activation of PTEN/AKT pathway in clinical prostate cancer.  The Pten-Brf1 

mice harboured enhanced growth of their prostate tumours, although they were 

histologically similar to prostate tumours driven by homozygous Pten deletion (or 

Pten-).  Overall, Pten-Brf1 mice survived significantly shorter period than the control 

Pten- mice.
 

In summary, my research conducted in this thesis highlights a potential role for BRF1 

(as part of the Pol III transcriptional apparatus) in prostate carcinogenesis.  Further 

research is therefore warranted to define its role as a cancer biomarker and as a novel 

target for therapy. 
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1.1 Prostate Cancer 

1.1.1 Natural history and Epidemiology of Prostate Cancer 

Prostate cancer (PC) is the most common cancer and the second most common cause 

of cancer death in UK men.  Lifetime risk for a UK male is 30% but only 8% will get 

clinically significant PC and 3% will die from PC (http:www.cancerresearchuk.org).   

This is because PC commonly has a slow natural history and is predominantly a 

cancer of elderly men.  The peak age for diagnosis of PC in UK is 75-79 years old 

with 80% of men over the age of 80 having detectable PC but the majority of these 

men will die with PC rather than from it.  However, more than 10,000 UK men die 

from PC each year, and disappointingly, PC mortality rates have remained static for 

the last 20 years (http://www.ncin.org.uk). 

PC is a massive health problem in the western world mainly due to the morbidity 

associated with the disease itself but also the toxicity and side effects of its treatment.  

Its importance on health economics will rapidly increase with an aging population and 

increasing life expectancy.  Population of men aged 65 or older is predicted to 

increase 4-fold between years 2000-2050 and by 2030 the over 65 population is likely 

to make up a fifth of the global population demographics (Lunenfeld, 2002).  More 

worryingly, all established risk factors are not modifiable, such as Afro-Caribbean 

ethnicity and family history and therefore, there is no potential prevention strategy to 

reduce PC incidence.  

Another huge challenge is that PC has enormous biological heterogeneity with 

patients having wide variations in the clinical behaviour and timeframe of their 

disease.  For example, some patients will die of metastatic disease within 2 years of 

their diagnosis whilst others living up to 20 years with localised indolent prostate 

tumours.  Even patients with similar histological patterns and pathological grading can 

vary substantially.  It is estimated 30-50% of men with PC diagnosis could avoid 

radical treatments, such as surgery or radiotherapy and their side effects, because they 

have good prognosis relatively dormant tumours (Cooperberg et al, 2005).  Before 

significant advances in risk stratification and personalised anti-cancer treatments can 

be achieved it is essential we fully understand the biology of PC especially the genetic 
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and molecular characteristics that distinguish between indolent and lethal PC is 

essential for improving patient outcomes.    

1.1.2 Prostate Carcinogenesis 

Prostate carcinogenesis proceeds through a series of defined stages, including 

precursor lesions called prostatic intraepithelial neoplasia (PIN), PC in situ, invasive 

and metastatic cancer.  Over 90% of PCs are adenocarcinomas, most displaying acinar 

histological features.  Other variants of adenocarcinomas include ductal, foamy, 

mucinous, atrophic, pseudo-hyperplastic, oncocytic and two types with poor clinical 

prognosis are lymphoepithelioma-like and signet ring cell PC.   Squamous cell, small 

cell (neuroendocrine) and adeno-squamous PC are rare and behave more aggressively 

with a very poor prognosis.  Some adenocarcinomas show focal neuroendocrine 

differentiation and furthermore, can transform into a neuroendocrine phenotype.  

Since neuroendocrine cells lack androgen receptors (AR) and secrete various 

neuroendocrine peptides that stimulate androgen-independent proliferation, it is 

thought this is a possible mechanism by which tumours can progress to castration 

refractory/resistant prostate cancer (CRPC) (Nouri et al, 2014; Terry et al, 2014).     

A primary tumour is composed of a population of multiple competing subclones.  This 

evolutionary competition results in the more aggressive or “survival” subclones 

forming metastases (Nowell et al, 1976; Greaves et al, 2012).  Metastatic cancer is the 

cause of 90% of all cancer-related deaths (Gupta & Massague, 2006).  The principles 

governing “when, how and where” cancer cells disseminate to distant organs are not 

understood.  It is generally believed that each metastasis originates from a single 

tumour cell (Poste & Fidler, 1980; Fidler, 2003; Talmadge & Fidler, 2010).  However, 

recent mouse model studies have highlighted the presence of polyclonal seeding from 

and inter-clonal co-operation between multiple subclones (McFadden et al, 2014; 

Cleary et al, 2014).   

The multiple steps of prostate carcinogenesis and progression are a consequence of 

dysregulated signalling pathways caused by genetic alterations such as epigenetic 

events, changes in gene copy number and chromosomal rearrangements (Taylor et al, 

2010; Berger et al; 2011; Grasso et al, 2012; Baca et al; 2013).  All aspects of prostate 
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gland development and homeostasis and prostate carcinogenesis are critically 

dependent on androgens.  Research to elucidate and characterise the complex 

relationship between molecular mechanisms that initiate and drive prostate 

carcinogenesis is essential as a means of identifying biomarkers for early risk 

stratification of patients and discovering potential therapeutic targets.   

In this post-genomics era, there has been comprehensive profiling of human 

malignancies to increase our understanding of the complex biology of cancer with the 

ultimate goal to identify oncogenic driver events that can be regulated or manipulated 

to improve patient survival.  Genomic profiling studies of primary and metastatic PC 

have identified a number of oncogenic events in PC, including loss of tumour 

suppressors PTEN and TP53, genomic arrangements of ERG and other ETS fusions  

and amplification of MYC and AR that all drive PC development and progression 

(Shen et al, 2010; Grasso et al, 2012; Taylor et al, 2010).  Recent transcriptome and 

genomic studies have defined general PC signatures but  no prognostic categorisation 

of PC subtypes has been identified, unlike breast cancer  (Taylor et al, 2010, Berger et 

al; 2011; Grasso et al, 2012; Baca et al; 2013).  With rapidly expanding technologies 

and falling costs for next generation sequencing-based analysis, new gene therapeutic 

targets will emerge and personalised medicine will have to focus on tumour 

heterogeneity and drug resistance.   

 

1.1.3 Patient  Pathway:  Presentation and Diagnosis 

Early or localised PC is typically asymptomatic or associated with symptoms similar 

to benign prostatic hyperplasia (BPH) or urinary tract infection such as urine 

frequency, hesitancy, poor urine flow, dysuria and urinary retention.  The initial 

diagnostic tests for PC are the digital rectal examination (DRE) and serum prostate 

specific antigen (PSA) measurement.  PSA is also used as a screening tool for 

asymptomatic patients considered at risk, for example, a family history of PC.  If the 

DRE is abnormal and / or the PSA is raised (>2ng/ml for 40-49 year olds; > 3ng/ml 

for 50-59 year olds; > 4ng/ml for 60-69 year olds; >5ng/ml for over 70 year olds) a 

trans-rectal ultra-sound guided biopsy, TRUS, will be performed to confirm diagnosis 
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and histological staging and grading and MRI of pelvis to determine pathological 

staging. 

Advanced or metastatic PC patients commonly present with bony pain, pathological 

fractures, lower limb weakness caused by spinal cord compression and general 

decline, weight loss and cachexia.  PSA and /or biopsy would be required to confirm 

diagnosis and for treatment response monitoring.  Computed tomography CT 

chest/abdomen/pelvis and radioisotope bone scan and/or MRI of spine would be 

required for clinical staging of the disease.   

A family history of PC means a patient has a father or brother diagnosed with PC and 

this increases the patient’s risk of PC 2-3 times or about 4 times if more than one first 

degree relative has PC greater than the general population risk.  The younger the age 

of the relative diagnosed with PC increases the likelihood that an inherited faulty gene 

is the cause.  Men also have a higher risk of PC if their mother or sister has had breast 

cancer, especially if the first degree female relative is a confirmed BRCA2 mutation 

carrier.  BRCA2 mutation carriers have a 5-7 times higher risk of PC than the general 

population and recent studies suggest they have a worse prognosis than the general PC 

population (http//:www.cancerreseacrhuk.org; Castro et al, 2015; Risbridger et al, 

2015).   

  

1.1.4 Patient Pathway:  Localised PC 

Clinically localised PC should be categorised as National Comprehensive Cancer 

Network (NCCN) risk groups – low, intermediate- or high- risk which identifies 

patients with a 10%, 40% and 70% probability of biochemical progression (PSA 

levels increasing) at 5 years (D’Amico et al, 1998) (Table 1.1).  Complete resection of 

localised disease with radical prostatectomy is the only curative option but there is 

significant potential risk of comorbidity with surgery including long term urine 

incontinence and erectile dysfunction.  Similarly, radiation based primary radical 

therapy may also result in symptoms as a result of radiation to adjacent organs.   

Therefore, currently there is no agreed optimal management of localised disease due 

to the co-morbidities of the elderly PC population and the often slow natural history of 
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PC; possible treatments include PSA monitoring, (watchful waiting or active 

surveillance), surgery (open/laparoscopic/robot-assisted radical prostatectomy) and 

radiotherapy (external beam and brachytherapy).  Crucially all patients with PC 

should have access to multidisciplinary team (MDT) expertise including oncologists, 

radiologists, pathologists, urologists and specialist nurse practitioners (and palliative 

doctors and nurses where appropriate).  All patients must be adequately counselled 

about their treatment choices. 

Men with low risk PC have a < 1% disease-specific mortality over 10 years with no 

survival benefit for active treatment (Dall’Era et al, 2012).  Intermediate and high risk 

PC groups have approximately 10% cancer specific mortality at 10 years without 

radical treatment (Bill-Axelson et al, 2011), whereas locally advanced PC has a 23.9% 

10 year cancer specific mortality rate (Widmark et al, 2009).  In men with high risk or 

locally advanced disease, external beam radiotherapy plus androgen deprivation 

therapy (ADT) for 2 plus years or radical prostatectomy plus extended 

lymphadenectomy in highly selected patients is recommended (Horwich et al, 2013).  

Neoadjuvant Luteinising hormone-releasing hormone (LHRH) agonist therapy for 4-6 

months in men having radical radiotherapy with high or intermediate risk disease 

followed by adjuvant hormone therapy for 2-3 years is advised (Horwich et al, 2013).  

After radical prostatectomy, adjuvant hormone therapy is not recommended but serum 

PSA levels should be monitored and if relapse with PSA failure and no metastatic 

spread confirmed, salvage RT should commence (Horwich et al, 2013).  

 

1.1.5 Patient Pathway:  Metastatic PC 

Metastatic PC patients have a poor prognosis with average survival of 3.5 years from 

diagnosis and once CRPC has developed time to death is usually within 22 months 

(Demir et al, 2014).  In 1941, Huggins and Hodges discovered castration was an 

effective therapy for metastatic PC; ADT is still the main palliative treatment for 

metastatic PC.  Unfortunately, these tumours eventually become androgen 

independent or clinically termed CRPC.  Interestingly, CRPC may remain driven by 
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AR signalling via AR amplification, gain-of-function AR mutations, splice variants 

and overexpression of AR or its co-activators.   

ADT is first line treatment for metastatic PC, which includes LHRH agonist/ 

antagonist or bilateral orchidectomy.  A new generation of AR-targeting agents have 

been shown to prolong survival by approximately four months, such as abiraterone 

acetate (which inhibits CYP17, a rate limiting enzyme involved in androgen 

biosynthesis) (de Bono et al, 2011) and enzalutamide (which inhibits AR-mediated 

signalling) (Scher et al, 2012) and so these are now preferred second line hormone 

therapies. 

Once hormone therapies have failed, chemotherapy such as docetaxel may be offered 

for symptomatic, CRPC and gives a median survival of approximately 19 months 

(Tannock et al, 2004; Berthold et al, 2008).  Cabazitaxel, a novel tubulin-binding 

cytotoxic drug, results in a 2.4 months survival advantage over mitoxanthrone and 

should be considered for second line chemotherapy (de Bono et al, 2010).  For 

patients with bone metastases radium 223, zoledronic acid and denosumab have all 

been shown to delay first skeletal related event (Parker et al, 2013; Saad et al, 2002; 

Fizazi et al, 2011).      

Improved treatments are being actively developed and evaluated in clinical studies. 

For example, Sipuleucel-T is the first new immunotherapeutic agent that has showed a 

survival advantage in metastatic CRPC of 4.1 months versus placebo.  Another recent 

clinical trial testing Cabozantinib (XL184) a dual MET/VEGFR2 inhibitor, showed 

dramatic resolution of bone scan abnormalities in 86% of patients but soft tissue 

responses and serum PSA declines in only 25-30% (Kurzrock et al, 2011; Yakes et al, 

2011).  It is thought that the bone scan effect may be through inhibition of a target in 

the bone microenvironment, whereas the antitumor effect is due to MET amplification 

only being found in ~ 30% of metastatic human PC specimens (Wanjala et al, 2015). 
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1.1.6 Biomarkers of PC 

Prostate Specific Antigen (PSA) is currently the most widely used cancer biomarker 

and its use aids in the diagnosis of PC and monitoring of disease response to 

anticancer therapies.  However, its specificity as a diagnostic tool is limited as it is 

also produced by normal prostatic epithelium and its detection in serum is 

proportional to the prostate size.  It can also be raised by inflammation, such as 

prostatitis, urinary tract infection and long distance cycling.  Elevated PSA > 3 ng/ml 

with abnormal DRE gives a positive predictive value for PC of nearly 50% (Gosselaar 

et al, 2008).  To improve the diagnostic accuracy of non-invasive tests, recent research 

has led to the development of a commercially available urine diagnostic test Prostate 

Cancer Antigen 3 (PCA3, a long non-coding RNA, Progensa™), while the TMPRSS2-

ERG fusion gene represents another potential urine biomarker (Tomlins, 2014).     

Majority of clinical PC are diagnosed by transrectal ultrasound (TRUS) guided 

prostatic biopsies.  However, due to prostate adenocarcinomas being multifocal, a 

patient may be recalled for a second biopsy if clinical suspicion is high when the first 

set of biopsies is negative.  More than 90% of PC can be detected by two successive 

biopsies (Roehl et al, 2002).  The PC pathology report includes Gleason grading, 

tumour quantification (percentage of tumour in biopsies), presence or absence of peri-

neural invasion and extra-prostatic extension.  Unlike other cancers, such as breast 

cancer, there are currently no routine molecular markers used to help plan 

personalised treatment strategies for PC patients.  Furthermore, studies have shown 

that prostatic core biopsies underestimate tumour grade in up to 45% of cases and 

overestimate it in up to 32% of cases (Fine et al, 2008).  Therefore, there is a great 

urgency to discover sensitive and specific clinical biomarkers for early diagnosis of 

PC and more accurate stratification of cancer progression risk.  Recent studies looking 

for potential molecular markers have shown that high levels of microRNA miR-96 

were predictive of early biochemical relapse (Schaefer et al, 2010; Walter et al, 2013) 

while gain of c-MYC was predictive for tumour recurrence after radiotherapy (Ribeiro 

et al, 2007; Zafarana et al, 2012) and p27 loss correlated with aggressive disease 

(Thomas et al, 2000; Vis et al, 2002; Wolters et al, 2010). 
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Recent evidence shows that metastatic tumours are heterogeneous especially when the 

patient has been heavily treated with anticancer therapies.  Not only are the metastases 

genetically dissimilar from their primary tumour but also from other metastases within 

the same organ (Gundem et al, 2015).  There are safety and technical difficulties that 

limit the feasibility of taking multiple biopsies from patients.  Circulating and 

disseminated tumour cells (CTC and DTC) in the blood present an opportunity for 

repeated testing over the course of the patient’s disease (Dawson et al, 2013).  CTCs 

and DTCs molecular profiling has been shown to predict risk of relapse and quantify 

treatment responses (Doyen et al, 2012; Panteleakou et al, 2009).  Very recent 

technical advances are beginning to allow such method to become a plausible means 

of monitoring tumour evolution and heterogeneity.  Genomic profilings of DTCs from 

patients with advanced PC show a large number of somatic copy number alterations 

(SCNAs), which largely correspond to tumour biopsy results (Holcomb et al, 2008; 

Weckermann et al, 2009).  However, DTCs from men with localised PC generally 

have fewer SCNAs, which may not correspond well with primary tumour SCNAs 

(Schoenborn et al, 2013).     

 

1.1.7 Castration Resistance Prostate Cancer (CRPC)  

Prostate epithelium is composed of three cell types: luminal, basal and neuroendocrine 

cells.  There are two main layers of prostate epithelium.  The androgen dependent 

secretory luminal layer is composed of tall differentiated columnar cells that produce 

PSA, PAP (prostatic acid phosphatase) and kallikrein-2 for the seminal fluid.  This 

layer rests on the basal layer of cuboidal epithelial cells which in turn are lined by a 

basement membrane.  Basal cells are the androgen-independent proliferating early 

progenitor cells.  Their progeny, the intermediate cells give rise to a heterogeneous 

subpopulation of cells as they differentiate in transit from the basal layer into the 

luminal layer (as reviewed by Long et al, 2005). 

Currently it is unclear which epithelial cell is the origin of prostate carcinogenesis.  

Classically PC is characterised by luminal cell expansion with the absence of a basal 

cell layer (Parsons et al, 2001).  To add support to luminal cells being the origin of 
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PC, Wang et al 2009, have shown that a subpopulation of luminal cells expressing 

Nkx3.1 homeobox gene in the androgen-deprived prostate epithelium display stem 

cell properties capable of prostate regeneration.  Early events in prostate 

carcinogenesis include loss of chromosomal region 8p21, NKX3.1 loss frequently 

found in PIN (Abate-Shen et al, 2008).  However, benign human prostate tissue basal 

cells can initiate PC in immune-deficient mice (Goldstein et al, 2010).  To add to the 

confusion, precursor lesions for PC have been shown to have an intermediate cell 

phenotype, supporting the theory for intermediate cells being the origin of PC (as 

reviewed by Long et al, 2005).   

There is great research interest in the emergence of androgen independence at the 

cellular level.  It is currently unknown whether androgen independence (or CRPC) is 

acquired via a single event or appears independently in multiple cells (Gundem et al, 

2015).  Historically, there have been two main overriding theories.  Firstly, the 

adaptation model whereby androgen independence arises from molecular alterations 

that occur during carcinogenesis, in that androgen dependent tumour cells when 

treated with ADT develop molecular adaptations resulting in androgen independence.  

In advanced disease the cells are poorly differentiated and have a greater number of 

chromosomal abnormalities, mutations and altered methylation states (Feldman et al, 

2001).  AR is usually wild type during initial emergence of androgen independence 

but acquires mutations during ADT (Gelmann, 2002).  Furthermore, CRPC tumours 

can produce androgens to activate AR (Mohler et al, 2004) and AR expression is 

generally increased (Chen et al, 2004).     

The second theory for emergence of CRPC is a clonal selection mechanism, in that a 

subpopulation of pre-existing androgen independent cells within the primary tumour 

undergoes clonal selection during ADT.  Prostate tumours contain a heterogeneous 

ratio of basal to luminal cells that varies depending on the aggressiveness of the 

tumours, with more advanced tumours expressing a more basal phenotype (Lui et al, 

1999).  Craft et al, 1999 proposed that androgen independence arises in two distinct 

stages, firstly an initial selection for pre-existing cells that can survive in the absence 

of androgens, and secondly their subsequent clonal expansion (Gao et al, 2006b).  In 

support of this theory, the Prostate Cancer Prevention Study, investigating long term 

finasteride, a 5 α reductase inhibitor, showed that the finasteride-treated patient cohort 



26 
 

displayed a significant reduction in PC incidence but when they developed cancer had 

higher grade disease (Thompson et al, 2003).  One explanation for this is finasteride 

may promote an androgen-independent state in some PCs, perhaps those with pre-

existing mutations of PTEN or other genes that enable prostate cells to survive under 

conditions of androgen deprivation (Gao et al, 2006b). 

Using whole-genome sequencing, Gundem et al (2015) characterised 51 PC 

metastases from 10 CRPC patients.  They showed that commonly PC cells move from 

one metastatic site to another, either as monoclonal or polyclonal seeding.  They 

observed clonal diversification is essential for development of ADT resistance 

(Gundem et al, 2015).  Furthermore, in 5 patients multiple polyclonal seeding had 

occurred suggesting these metastatic subclones had a significant evolutionary survival 

advantage.  Interestingly, these metastatic subclones carried AR signalling pathway 

genetic alterations (such as FOXA1) or alternative mechanisms of androgen 

independence such as MYC amplification and CTNNB1 mutation.  (Gundem et al, 

2015).  Notably, the multiple metastases in closest proximity were closer genetic 

relatives to each other than any of them to the primary prostate tumour.  This raises 

further research questions about inter-clonal cooperativity, tissue-specific seeding 

factors and/or remodelling of metastatic host organs  by colonising PC clones, making 

them more attractive for future colonisation (Sun et al, 2012). 

      

1.1.8  Molecular biology of prostate carcinogenesis 

1.1.8.1 Introduction 

The advent of next generation sequencing techniques (NGS) has allowed for 

comprehensive profiling of primary and metastatic tumours.  It has made it possible to 

determine the genetic signatures consisting of an army of genetic drivers leading to 

activation of oncogenic pathways and suppression of tumour suppressor pathways that 

determine individual tumour progression.  However, this is a massive 

oversimplification as it is now apparent that multifocal PC consists of separate 

tumours with different genetic signatures and microenvironments that control their 

ability to progress and metastasise.  Furthermore, metastatic lesions appear not to 
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show similar genetic signatures to their primary tumours, but harbour driver mutations 

heavily influenced by their host organ (Gundem et al, 2015).  Lastly, NGS techniques 

have shown that tumours react and evolve to anti-cancer therapies with increasing 

genetic instability resulting in drug resistance and often a more aggressive mutation 

driver leading to more rapid progression (Grasso et al, 2012).  NGS techniques have 

highlighted the need for researchers to focus on epigenetic events and cellular 

interactions between PC cells and organ microenvironment. 

PC is characterised by huge genomic complexity encompassing somatic copy number 

alterations (SCNAs), point mutations and, most strikingly, chromosomal 

rearrangements (Table 1.2).  Primary PC has an estimated mean mutation frequency 

of 0.9/megabase which is similar to breast cancer (Berger et al, 2011).  The upstream 

cause of this genomic instability is thought partly to be an orchestra of epigenetic 

modifications including aberrant DNA methylation, histone remodelling and 

microRNA expression (Jeronimo et al, 2011).  Whole-genome sequencing has shown 

that loss of tumour suppressor gene TP53 usually occurs as a single early event 

(Gundem et al, 2015) and this would result in further genomic instability.  P53 has 

been named the “guardian of the genome” as it has a crucial role in cellular resistance 

to malignant transformation (Brown et al, 2009).  

In comparison to 26 other cancer types, PC has one of the highest SCNAs, averaging 

46 per sample (Beroukhim et al, 2010).  SCNAs are genetic gains or losses that arise 

during cancer development and are present in nearly 90% of primary prostate 

tumours, with deletions typically outnumbering amplifications (Schoenborn et al, 

2013).  In primary prostate tumours, SCNAs tend to be focal with only small areas of 

the genome affected (Beroukhim et al, 2010; Tylor et al, 2010) whereas, in CRPC, 

larger portions of the genome are affected which implies increased genomic instability 

with cancer progression (Schoenborn et al, 2013) (Table 1.2).   

1.1.8.2 ETS family and TMPRSS2-ERG  

Tomlins et al, 2005 identified gene fusions in PC between members of the ETS family 

of genes and the androgen-responsive transmembrane protease serine 2 (TMPRSS2), 

which turns out to be the single most prevalent molecular lesion in PC.  Almost 50% 
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of primary and advanced human PCs have gene fusions of the transcriptional regulator 

growth promoting ERG with TMPRSS2, although other partner genes, such as ETV1, 

ETV4 and ETV5, may be involved in translocations.  TMPRSS2-ERG tumours have 

distinct expression signatures and are associated with deletions of 10q, 17p and 3p14, 

whereas tumours without ERG rearrangement tend to be enriched for 6q deletion, 7q 

gain and 16q deletion (Taylor et al, 2010).   

The ETS family of transcription factors are thought to be involved in many important 

cellular events including angiogenesis, migration, proliferation, differentiation, 

oncogenic transformation and apoptosis (Clark et al, 2009).  ETV genes, which are 

members of the PEA3 subfamily of ETS genes, have been implicated in cancer 

invasion and metastasis in a variety of cancer types (as reviewed by Aytes et al, 2013).  

Sun et al, 2008 reported that knockdown of ERG expression in VCaP cells inhibited 

cell growth and induced obvious morphological changes in cell culture and in SCID 

mice in vivo.  Interestingly, this was not observed in LNCaP cells which lack the 

TMPRRS2-ERG genomic rearrangement.  Furthermore, the c-MYC oncogene has been 

identified as an ERG target in PC cells (Zhong et al, 2009) and androgen signalling 

induces co-localisation of TMPRSS2 and ERG (Lin et al, 2009). 

Chromosomal rearrangements are thought to be critical initiating early events in PC as 

evidenced by the high prevalence of androgen-responsive promoters being fused to 

ETS transcription factors (Berger et al, 2011; Hollenhorst et al, 2011).  While 

TMPRSS2-ERG or TMPRSS2-ETV1 fusions are not thought to be sufficient to initiate 

prostate carcinogenesis in isolation, they may sensitise prostate epithelial cell 

genomes for further oncogenic mutations (Linn et al, 2015).  About 25% of human 

prostate tumours have both PTEN genomic deletion and TMPRSS2-ERG fusion when 

evaluated by fluorescence in situ hybridisation (FISH) (Yoshimoto et al, 2006) and 

cooperate to promote disease progression in mice (Carver et al, 2009).  Furthermore, 

ETV1 has been shown to translocate in PC and collaborate with PTEN in PC 

progression (Tomlins et al, 2007). 

Interestingly, genomic studies characterising the pattern and location of chromosomal 

rearrangements in primary PC samples showed breakpoints located independently of 

TMPRRS2-ERG but in close proximity to multiple known genes including tumour 
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suppressor TP53 and proto-oncogene ABL1 (Berger et al, 2011).  This suggests that 

multiple genes can be controlled in parallel by complex translocations to drive 

prostate tumorigenesis (Berger et al, 2011).   

Some studies have found an association between TMPRSS2-ERG fusions in PC and 

more aggressive pathology and cancer related death whereas, other studies have not 

(reviewed by Chaux et al, 2011).  Grazzo et al, 2012 reported deleterious mutations of 

ETS2 in a third of their CRPC exome dataset.  Furthermore, PC patients with 

TMPRSS2-ERG fusions caused by deletion, rather than insertion, may be more 

aggressive because the deleted region may have harboured tumour suppressors, 

including ETS2. 

Aytes et al, (2013) recently developed a mouse model with combined P13K and Ras 

activation which developed metastatic PC with poor survival and further analysis 

identified Etv4 being significantly upregulated in these tumours and metastases.  

Analysing a human PC dataset (Taylor et al, 2010), they found ETV4 expression 

significantly correlated with PI3-kinase and Ras signalling co-activation in human 

prostate tumours (Aytes et al, 2013).  Furthermore, shRNA-mediated knock down of 

ETV4 expression in a metastatic cell line derived from their PI3K and Ras driven PC 

model severely impaired its ability to form metastases when injected as subcutaneous 

xenografts in nude mice (Aytes et al, 2013).  In addition, ETV4 expression is 

upregulated in human PC3 cells and suppression of ETV4 expression impaired 

anchorage-independent growth (Hollenhorst et al, 2011).  Interestingly, KRAS 

mutations are infrequent in PC (Carter et al, 1990; Prior et al, 2012) as are 

chromosomal rearrangements involving KRAS activation (Baca et al, 2013).   

1.1.8.3 PTEN loss 

Three key signalling pathways deregulated in PC are PI3-kinase/AKT, Ras/RAF and 

pRb which are altered in 34-43% of primary tumours and 74-100% of metastatic 

tumours (Taylor et al, 2010).  PI3-kinase pathway is activated by PTEN loss (Shen et 

al, 2010) but it can also be activated by oncogenic activation or amplification of 

PIK3CA, AKT1 and MTOR (Robbins et al, 2011).  Amplification of PIK3CA has been 

detected in 13% to 39% of primary tumours and up to 50% of CRPCs (Edwards et al, 
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2003; Sun et al, 2009).  Phosphoinositide -3 kinase (PI3K) signalling pathway 

regulates cell proliferation and growth in reaction to nutrient availability and growth 

factors (Manning and Cantley, 2007), thus playing an important role in protein 

synthesis regulation.  More specifically, PI3K pathway may regulate initiation factor 

eIF4E release, an essential step for initiation of translation.  Interestingly, when eIF4E 

is activated by phosphorylation on serine 209 or overexpressed it can behave like an 

oncogene (Wendel et al, 2007).   

Phosphatase and tensin homolog chromosome 10 (PTEN) is a frequently deleted or 

mutated gene in human cancer and maps to chromosomal region, 10q23.  Germline 

mutations in PTEN are prevalent in Cowden syndrome and related diseases 

manifesting as hyperplastic lesions with increased malignant transformation in 

multiple organs (Dahia, 2000).  Loss of PTEN expression is associated with increasing 

Gleason score and advanced histopathological changes in PC (McMenamin et al, 

1999).  PTEN deletions and/or mutations are present in 30% of primary PC (Dahia, 

2000) and 63% of metastatic PC samples (Suzuki et al, 1998).  PTEN inactivating 

mutations have been found in 4% of primary prostate tumours and 42% of metastatic 

prostate tumours but deregulation of PI3K pathway in 42% of primary prostate 

tumours and 100% of all metastatic prostate tumours (Taylor et al, 2010).   

PTEN encodes a lipid phosphatase that functions as a tumour suppressor through its 

ability to negatively regulate phosphatidylinositol 3’-kinase (PI3K) signalling cascade.  

Consequently, inactivation or loss of PTEN results in activation of the AKT 

serine/threonine kinase.  AKT functions by phosphorylating key intermediate 

signalling molecules such as glycogen synthase kinase-3 (GSK3), BAD, caspase 9 and 

IkB which are linked to increased cell metabolism, growth and survival (Hanahan & 

Weinberg et al, 2000).  Mice models with Pten deletion have shown that their prostate 

tumour growth is dependent on mTOR (Blando et al, 2009).    

1.1.8.4 AKT/mTOR signalling 

Mammalian Target-of-Rapamycin complex 1 (TORC1 or more generally mTOR) is a 

conserved serine/threonine kinase that is an important regulator of cell proliferation, 

metabolism and growth (Wullschleger et al, 2006).  TORC1 can be activated by 



31 
 

nutrients and growth factors via the PI3kinase/PTEN/AKT kinase pathway and over 

activated in cancer by either loss of PTEN or oncogenic mutation in P13K.  

Furthermore, PTEN/PI3K-dependent transformation and tumours are sensitive to 

genetic and pharmacological inhibition of TORC1 signalling (Podsypanina et al, 

2001; Hsieh et al, 2010). 

Recent evidence has shown that activation of AKT/mTOR signalling is strongly and 

causally associated with advanced PC, including CRPC (as reviewed by Floc’h et al, 

2012).  Floc’h et al, 2012 showed that dual inhibition of AKT by MK-2206 and 

mTOR by ridaforolimus (MK-8669) was effective in inhibiting CRPC growth in a 

mouse model and human PC cell lines, whereas single agent inhibition had only 

limited efficacy.  Further analysis suggested that the dual effect of AKT/mTOR 

inhibition was mediated by inhibition of cellular proliferation via the retinoblastoma 

(pRb) pathway (Floc’h et al, 2012).  pRb pathway is known to be a key pathway 

affected in CRPC (Taylor et al, 2010; Sharma et al, 2010).  

Wyatt et al, 2014 performed deep transcriptome sequencing on 25 high risk primary 

prostate tumours and showed enrichment of the translational control pathway ‘EIF2’ 

in 4 tumours, with 3 overexpressing mTOR signalling genes and upregulation of 

ribosomal biogenesis genes.  These tumours also overexpressed genes involved with 

mitochondrial dysfunction.  Interestingly, the patients in this translation/metabolism 

group had the worst biochemical recurrence-free survival (Wyatt et al, 2014). 

 

1.1.8.5 AR (Androgen Receptor) and cofactors 

The presence of AR alterations through mutation, gene amplification and/or 

overexpression was observed in 58% of metastatic PC samples (Schoenborn et al, 

2013).  Based on an integrative genomic profiling approach, virtually in all advanced 

PC, the AR is implicated directly or indirectly, including amplification or mutation of 

AR gene, and abnormalities of other AR pathway signalling components (Taylor et al, 

2010).  AR pathway analysis showed alteration in 56% of primary tumours and 100% 

of metastases (Taylor et al, 2010).  Furthermore, they showed AR amplification is 

largely restricted to CRPC, suggesting a drug resistance mechanism rather than a 
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natural step in tumour progression (Taylor et al, 2010).  Based on data from whole-

genome sequencing, all analysed PC tumours harboured one or more alterations 

directly affecting the AR locus or its signalling pathway with huge heterogeneity and 

convergent evolution seen across multiple metastatic sites within the same patient 

(Gundem et al, 2015).  Interestingly, aberrations in AR signalling commonly precede 

metastatic spread (Gundem et al, 2015). 

Nuclear receptor co-activator (NCOA2) on 8q13.3 was identified as a potential 

oncogene in ~ 11% of primary prostate tumours (Taylor et al, 2010) and amplified in 

24% of metastases (Schoenborn et al, 2013) and thought to act as a driver of AR 

signalling.  Overexpression of NCOA2 primes AR to respond to reduced androgen 

levels and boosts the total magnitude of AR transcriptional response (Schoenborn et 

al, 2013).  Oncogenic H874Y AR mutation increases the binding affinity of AR for 

testosterone (Askew et al, 2007).  Furthermore, AR mutation, F876L, confers 

resistance to the potent AR antagonist, MDV3100, as evidence of the plasticity of the 

PC genome in responding to selective therapeutic pressures (Balbas et al, 2013).   

Grasso et al, 2012 sequenced the exomes of 50 lethal heavily-pretreated metastatic 

CRPC tumours.  Proteins that can bind to AR, such as ERG gene fusion products, 

FOXA1 and MLL complex proteins were found to be mutated in CRPC.  MLL 

complex proteins are involved in chromatin/histone modification.  When MLL is 

inhibited AR signalling is reduced, whereas, mutated FOXA1 inhibits androgen 

signalling and increases tumour growth (Grasso et al, 2012).  Forkhead box protein A 

(FOXA) and O (FOXO) members are transcription factors that bind to AR and 

regulate its association with androgen response elements (Grasso et al, 2012).  

Increased expression of FOXA1 correlates with Gleason score and is associated with 

poor prognosis (Imamura et al, 2012) and in vitro studies FOXA1 activity is 

oncogenic (Grasso et al, 2012).  In contrast, FOXO1 acts as a tumour suppressor gene 

and its deletion on 13q14 is found in about a third of all primary prostate tumours 

(Dong et al, 2006).  Loss of FOXO1 increases the basal activity of AR and sensitises it 

to lower androgen levels (Liu et al, 2008).  FOXO1 is a direct downstream target of 

AKT.  AKT can directly phosphorylate and inactivate FOXO1 by causing FOXO1 to 

move from the nucleus to the cytoplasm (Palian et al, 2014).  It is worth noting that 
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FOXO1 has been recently reported to positively regulate MAF1, which in turn 

functions as a negative regulator of RNA Polymerase III (Palian et al, 2014).  In other 

words, enhanced AKT function may result in upregulated RNA polymerase III (Pol 

III) function.    

Approximately 20% of prostate tumours have mutations in the E3 ubiquitin ligase 

adapter SPOP and/or disruption to chromodomain helicase DNA-binding genes, for 

example (CHD1), a chromatin remodelling factor (Barbieri et al, 2012; Grasso et al, 

2012; Baca et al, 2013).  Tumours with SPOP mutations have been proposed to define 

a molecular subtype of PC with a more aggressive phenotype and are enriched with 

somatic deletions of CHD1, tumour suppressor PRDM1 and transcription factor 

FOXO3 in the absence of ETS rearrangements or mutations in TP53, PTEN and 

PI3KA (Grasso et al, 2012; Barbieri et al, 2012). 

To identify shared molecular events, Wanjala et al (2015) studied four well 

established cancer mouse models for integrative mouse-human tumour PC genomic 

profiling.  The four mouse models were:  PBMyc (Myc overexpression under control 

of prostate specific probasin cre promotor) develop high grade PIN (HGPIN) at 2 

months old and invasive adenocarcinoma by 12 months (Ellwood-Yen et al, 2003); 

Pten
lox/lox

PB-Cre (Pten prostate conditional null mice develop HGPIN by 2 months 

and intraductal carcinoma by 6 months) (Trotman et al, 2003); Pten
lox/lox 

p53
lox/lox 

PB-

Cre (prostate conditional loss of Pten and Tp53 which is an aggressive phenotype of 

invasive carcinoma at 2 months and lethal at 6 months) (Chen et al, 2005); Rosa-26
lox-

stop-lox
 Erg-Pten

lox/lox 
PB-Cre (prostate conditional loss of Pten and overexpression of 

Erg with HGPIN by 2 months and invasive adenocarcinoma by 6 months) (Chen et al, 

2013).  Met receptor tyrosine kinase was amplified in 67% of Pten/p53 conditional 

null driven PC.  In contrast, amplification of MET was observed rarely in primary 

human PC and in ~ 30% of metastatic human PC when it is often associated with 

PTEN and TP53 loss (Wanjala et al, 2015).  Furthermore, MET overexpression in 

non-MET- amplified PC cells activated PI3K and MAPK signalling and increased 

tumour growth.  Interestingly, inhibition of the MET kinase selectively inhibited MET 

amplified tumour growth but the efficacy of MET inhibitor therapy was limited by 

non-Met amplified cell proliferation within Met- amplified tumours (Wanjala et al, 

2015).   
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1.2  Protein synthesis and cancer 

In 1970 Francis Crick first explained the central dogma of molecular biology (Crick, 

1970).  He described that hereditary genetic code within a cell’s DNA is recognised 

by RNA polymerases and transcribed into complementary RNA.  Transcription is the 

fundamental process by which a genetic code in a strand of DNA is copied into a new 

messenger RNA (mRNA).  Transcription is carried out by nuclear enzymes called 

RNA polymerases and a number of accessory proteins called transcription factors.  

These mRNA molecules are then translated by the ribosome utilising transfer RNAs 

(tRNAs) to produce proteins.  tRNAs have a central role in translation acting as an 

adapter molecule translating codon triplet sequences into amino acids. 

Protein makes up approximately 85% of dry cellular weight.  Cell growth and 

proliferation rate is essentially dictated by rate of protein generation.  It has been 

shown that a 50% reduction in translation can result in fibroblasts exiting the cell 

cycle and dying (Brooks, 1977).  Furthermore, RNA content of cells, composed of 

95% rRNA and tRNA, correlates strongly with rates of protein synthesis (Zetterberg 

& Killander, 1965).  Analysis of the cancer transcriptome has shown characteristic 

changes in mRNA expression patterns that are associated with specific tumour-types 

or tumour signalling pathways (Tinker et al, 2006; Prat et al, 2012).  However, 

changes in the transcriptome do not always equate to corresponding changes at the 

level of cellular protein expression.  This implies a complicated network of post-

transcriptional control and in particular, multiple layers of mRNA translational control 

(Grewal, 2014).  Furthermore, cancer cell transcriptome analysis often excludes 

ribosomal RNAs (rRNA) and transfer RNAs (tRNA).   

Transcription machinery components are known to be deregulated in cancers and 

there is growing evidence for the oncogenicity of these events (Bjornsti and 

Houghton, 2004; Mamane et al, 2004; Pandolfi, 2004; Johnson et al, 2008).  

Conceptually, it is logical that cells should be able to regulate protein synthesis so 

they can adapt rapidly to changing conditions.  This occurs during embryogenesis, 

allowing production of superabundant proteins required for rapid growth and fuelled 

by aerobic glycolysis rather than oxidative phosphorylation for energy metabolism.  It 
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is now known that cancer cells hijack this strategy to foster tumour growth (Christofk 

et al, 2008).        

In 2000, Hanahan and Weinberg published their seminal Cell paper titled The 

Hallmarks of Cancer in which they described six traits (or hallmarks) that are acquired 

to transform normal cells into cancer cells.  These traits are: i) Self sufficiency in 

growth signals; ii) Insensitivity to anti-growth signals; iii) Evading apoptosis; iv) 

Limitless replicative potential; v) Sustained angiogenesis; vi) Tissue invasion and 

metastasis (Hanahan & Weinberg, 2000).  In 2011, Hanahan and Weinberg proposed 

two new hallmarks of cancer: vii) evading the immune system and viii) abnormal cell 

metabolic pathways.  The discovery that cancer cells even in the presence of adequate 

oxygen preferentially metabolise glucose by glycolysis in the cytosol instead of the 

more energy efficient oxidative phosphorylation in the mitochondrial respiratory chain 

was first made by Otto Warburg and has since been named the Warburg Effect 

(Warburg, 1956).   

The key components of the Warburg effect are increased glucose consumption and 

lactate production, increased intracellular glucose transport and expression of 

glycolyic enzymes, reduced pyruvate oxidation and inhibition of mitochondrial 

metabolism (Pedersen, 2007). Recent research has shown that cancer cell metabolic 

changes also include increased gluconeogenesis, increased glutaminolytic activity, 

reduced fatty oxidation, increased de novo fatty acid synthesis, increased glycerol 

turnover, modified amino acid metabolism and increased pentose phosphate pathway 

activity (as reviewed by Dakubo, 2010).   Therefore, glycolysis is advantageous to 

cancer cells because not only does it permit cancer cells to survive in hypoxic 

conditions, it also provides most of the building blocks for cell proliferation and 

therefore, enables rapid tumour growth, progression, invasion and subsequent distant 

metastases (Lopez-Lazaro, 2008).   

There is increasing evidence that aerobic glycolysis is an adaptive mechanism 

involving several coordinated metabolic and oncogenic pathways.  For example, 

MYC activation results in increased expression of glycolytic genes, such as, 

hexokinase II, enolase, lactate dehydrogenase and phosphofructokinase (Shim et al, 

2009; Osthus et al, 2000; Dang et al, 2008).  PTEN loss and activation of PI3K/AKT 
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result in increased expression of glucose transporters, increased expression and 

activity of hexokinase II and phosphofructokinase (Elstrom et al, 2004; Robey & Hay, 

2009).  P53 has also been shown to be an important regulator of mitochondrial 

respiration and glycolsis (Bensaad et al, 2006; Matoba et al, 2006; Vousden & Ryan, 

2009).  Therefore, the known key molecular events in prostate carcinogenesis are all 

drivers of the biosynthetic cancer cell metabolism.   

 

1.3 RNA polymerases 

In prokaryotes, transcription only involves a single RNA polymerase whereas in 

eukaryotes three major RNA polymerases share this function and each one produces 

their own specific transcriptional products.  In eukaryotes, there are three main types 

of RNA polymerases, RNA polymerase I, II and III (Pol I, II and III) (Roeder and 

Rutter, 1969).  They are each devoted to the transcription of specific genes.  It is 

thought Pol I contributes up to 70% and Pol II 20% of all nuclear transcription in 

actively growing cells.  Pol III is the largest RNA polymerase with 17 subunits and 

responsible for 10% of all nuclear transcripts.     

Pol I has 14 subunits and exclusively transcribes ribosomal RNA (rRNA) genes, of 

which there are approximately 400 copies in humans (reviewed in McStay and 

Grummt, 2008; Russell and Zomerdijk, 2006).  rRNA is a major component of the 

ribosome and thus, the rate of Pol I transcription controls cellular proliferation and 

growth (Ruggero et al, 2003).  In cancer cells Pol I transcription is deregulated and 

hyper-activated resulting in the boundless production of rRNA and ribosomes  

(Ruggero et al, 2003; Drygin et al, 2010; White et al, 2005).  Furthermore, partially 

inhibiting rRNA synthesis with Pol I siRNA results in cancer cell death (Bywater et 

al, 2010).       

Pol II has 12 subunits and transcribes protein- encoding genes, messenger RNA 

(mRNAs) and small non-coding nuclear RNAs (snRNAs), small nucleolar RNAs 

(snoRNAs) and micro RNAs (miRNAs) (as reviewed in Baumann et al, 2010).   

snoRNAs are protein noncoding molecules that associate with specific sets of proteins 
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to maintain proper ribosomal maturation in the nucleolus.  Recent research has shown 

snoRNAs have tissue specific expression and may be useful as novel cancer 

biomarkers (as reviewed by Martens-Uzunova et al, 2015).  For example, H/ACA-box 

snoRNA SNORA42 is overexpressed in non-small cell lung cancer (NSCLC) and its 

expression is significantly inversely correlated with survival (Goeze et al, 2002; Mei 

et al, 2012).   

snoRNAs are further processed to 20-24nt length small nucleolar RNA-derived RNAs 

(sdRNAs) (Martens-Uzunova et al, 2013).  In 2015, Martens-Uzunova et al published 

deep sequencing data of patient derived samples from normal prostate and PC in 

different stages of diseases.  This showed that at least 78 of the detected sdRNAs 

demonstrate strong differential expression in PC and some specific sdRNA expression 

have a prognostic implication.  For example, SNORD78 and its sdRNA were 

significantly higher in a subset of patients that developed metastatic PC (Martens-

Uzunova et a, 2015). 

RNA polymerases are recruited to specific transcription sites via interaction with 

transcription factors binding to specific DNA sequences called enhancer and promoter 

sequences. The RNA polymerases are commonly regarded as transcribing non-

overlapping subsets of genes.  However, recent evidence has shown that Pol III can 

accurately initiate transcription at some Pol II promoters in vitro and this suggests that 

polymerase specificity is not fixed, but rather depends on the properties of the 

promoter and transcription conditions (Duttke, 2014).  Furthermore, chromatin 

immunoprecipitation (ChIP) –sequencing analysis found mapping of Pol II and Pol III 

localisation in human cell lines showed Pol II was closely associated with Pol III 

genes throughout the genome (Raha et al, 2010).  

Strikingly, there are no recorded “gain of function” mutations in Pol I, II and III 

apparatus (Bywater et al, 2013).  Therefore, upregulation of Pol I, II and III to ensure 

increased protein synthesis in cancer cells must be the result of activation of 

oncogenic signalling or release from tumour suppressor pathways (Quin et al, 2014).  
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1.3.1 The Nucleolus and Pol I transcription 

The advent of light microscopy demonstrated the most prominent structure in the 

nucleus, the nucleolus.  Nucleolus is a non-membrane bound structure and the site of 

rDNA transcription, rRNA processing and modification and ribosomal subunit 

assembly (Olson et al, 2005).  It is a dynamic organelle with many of its constituents 

shuttling between the nucleolus and nucleoplasm. Almost all cancer types display 

enlarged and/or increased number of nucleoli (Pianese et al, 1896; MacCarty, 1936; 

Derenzini et al, 1986).  The nucleolus disassembles at the onset of mitosis and 

reassembles during telophase, mirroring the inhibition of rRNA synthesis during 

prophase and its activation during telophase (Dundr et al, 2000).  Ribosome 

biogenesis is an incredibly energy intensive cellular processes constantly being fine-

tuned in response to growth conditions, such as cellular stress and cell cycle (Olson et 

al, 2005).  It is a highly coordinated multi-stage process, with transcription of rDNA 

by Pol I being rate limiting (Chedin S et al, 2007).  

Cancer cells have enlarged nucleoli meaning accelerated rates of transcription of 

ribosomal RNA genes (rDNA) transcription (by RNA polymerase I), 5S rRNA (by 

RNA polymerase III) and ribosomal protein (by RNA Polymerase II).  Pol I 

transcription of rDNA leads to production of 47S rRNA precursor which is processed 

into 28s, 18s and 5.8S rRNAs.  These rRNAs, together with Pol III transcription 

product 5S rRNA and Pol II transcription products ribosomal proteins (RP) are all 

essential components of the ribosome (reviewed by Leary et al, 2001).  The rate of 

ribosome biogenesis controls cellular growth and proliferation (Ruggero et al, 2003).  

Therefore, in mammalian cells ribosome biogenesis is precisely regulated and 

responsive to extracellular stimuli, such as nutrient availability and stress.  In cancer 

cells, the normal brakes on ribosome biogenesis are released and unbridled protein 

synthesis and tumour growth result (Drygin et al, 2011). 

Pol I transcription is tightly controlled in healthy cells but is known to be elevated in 

various cancers and has been associated with a poor prognosis (Drygin et al, 2010; 

Williamson et al, 2006).  During development, long term epigenetic mechanisms that 

regulate the balance of active to silent copies of rRNA genes control Pol I 

transcription.  For example, hypo-methylation of rDNA promoters leading to 
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increased rRNA synthesis has been found in several tumour types (Drygin et al, 

2014).  Multiple proteins, including DNA methyltransferases and histone 

deacetylases, repress Pol I transcription, whereas histone acetyltransferases activate 

rRNA synthesis (Murayama et al, 2008).  In response to acute cellular signalling and 

stress Pol I transcription is regulated by reversible modification of Pol I transcription 

factors and Pol I complex itself (Grummt et al, 2010; Goodfellow et al, 2012; Moss et 

al, 2007).  rDNA transcription initiation needs assembly of 3 transcription factors SL1 

(selectivity ligand 1) and a dimer of UBF (upstream binding factor) on the promoter 

and RRN3.  Post-translational modifications such as UBF phosphorylation by cyclin-

dependent kinases (CDK4/cyclin D) has been shown to increase rate of rDNA 

transcription while phosphorylation of SL1 by CDK1/cyclin B during mitosis stops 

Pol I transcription (Grummt et al, 2010).   

Pol I transcription is regulated by oncogenes and tumour suppressors.  MYC has been 

shown to enrich SL1 on rDNA promoter (Poortinga et al, 2011).  AKT, mTOR and 

ERK can all phosphorylate UBF and other Pol I components to increase Pol I 

initiation and elongation (Hannan et al, 2003; Stefanovsky et al, 2006; Chan et al, 

2011).  ERBB2 (HER2) directly interacts with rDNA and Pol I to stimulate Pol I 

transcription in a PI3K and MEK/ERK-independent manner (Li et al, 2011).  Two 

prominent tumour suppressors have been shown to inhibit Pol I transcription by 

disrupting UBF/SL1 interaction, namely pRb (Hannan et al, 2000) and p53 (Zhai et al, 

2000).   

Interestingly, proteomic analysis of the nucleolus has highlighted its functional 

diversity with less than half of 4500 proteins reported in the nucleolar protein database 

(NOPdb) having functional roles in ribosome biogenesis 

(http://lamondlab.com/NOPdb3.0).  The nucleolus has been shown to be involved in 

modulation of the cellular stress response, regulation of senescence and cell cycle 

progression, RNA and ribonucleoprotein biogenesis and organisation of epigenome 

(Andersen et al, 2002; Scherl et al, 2002; Leung et al, 2006; Ahmad et al, 2009). 

Furthermore, the nucleolus is now thought to be a central stress sensor hub of the cell, 

oncogenic stress causes increased expression of tumour suppressor Alternate Reading 

Frame (ARF) which associates with E3 ubiquitin ligase Mouse double minute 2 

homolog (MDM2) sequestering it in the nucleolus, resulting in activation of p53.  
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1.3.2 RNA Pol III transcription products  

Pol III transcription factors and their products are overexpressed in some cancers 

(White et al, 2004; Daly et al, 2005).  Breast cancer cells have significantly higher 

levels of nuclear-encoded and mitochondrial tRNAs than normal breast tissues  

(Pavon-Eternod et al, 2009; Zhou et al 2009).  Pol III transcripts seem to localise in 

peri-nucleolar compartments (PNC) (Wang et al, 2003a) and increased histological 

detection of PNC has been correlated with tumour progression and poor prognosis 

(Norton et al, 2008).  Scleroderma patients with auto-antibodies against Pol III are at a 

higher risk of a cancer diagnosis than patients who do not express these antibodies at 

high levels (Shah et al, 2010).  Supporting evidence for the theory that Pol III activity 

is limiting to tumorigenesis, is an observed reduction of Pol III activity inhibiting 

tumour formation in a mouse xenograft model (Johnson et al, 2008).  However, 

absence of recurrent mutations in Pol III subunits or associated transcription factors in 

tumours has led some to exclude Pol III as an important oncogenic driver.  

Genes transcribed by Pol III are small untranslated RNAs, which are usually shorter 

than 300bp in length (White, 2002). Pol III transcribed RNAs are essential for protein 

translation and synthesis, including tRNAs and the 5S rRNA component of the 

ribosome, and mRNA processing, including U6 RNA and 7SK RNA which regulates 

Pol II activity (Schramm et al, 2002).  Processing of RNA transcripts is performed by 

U6 snRNA, H1 RNA and MRP RNA, which are responsible for further editing the 

mRNA, tRNA and rRNA respectively.  Pol III also transcribes short RNA sequences 

from viral genomes, such as adenovirus VA1 and VA2 RNA (Table 1.3).  Genes 

transcribed by Pol III are called class III genes.  Most promoters of class III genes are 

internal, that is they are located within the transcribed sequence.  The promoters are 

commonly classified by their structure into 3 types (Table 1.4).       

Interestingly, Pol III transcribed 5S rDNA genes can induce association of the 

genomic region in which they are integrated with the nucleoli (Fedoriw et al, 2013).  It 

has been proposed that nucleolar association can result in repression of linked genes, 

demonstrating the association between rRNA transcription, nucleolar localisation and 

regulation of gene expression (Fedoriw et al, 2013).  As non-coding repetitive 

elements derived from Pol III transcripts make up a large portion of the genome, these 
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could make a significant contribution to nucleolar association and therefore epigenetic 

regulation of the genome (Quin et al, 2014).   

Mature transfer RNAs (tRNAs) are 70-90nt long adapter molecules, which facilitate 

the translation of mRNA molecules.  Each tRNA recognises a specific three 

nucleotide codon on the mRNA and translates that codon to one of the twenty specific 

amino acids (Crick, 1968).  tRNAs are essential for translation and until recently it has 

been assumed that tRNA levels are kept in excess in cells so as not to be a limiting 

step in translation and gene expression.  However, increasing evidence has shown that 

oncogenes and tumour suppressor pathways can control tRNA synthesis and by 

regulating cellular tRNA levels, they can have significant effects on mRNA 

translation and hence, cell growth (Grewal et al, 2014).    

tRNAs are among the most abundant molecules in a cell.  For example, in yeast 

approximately 20% of all cellular transcription is devoted to making new tRNAs 

resulting in approximately 3 million new tRNAs being synthesised during each cell 

cycle (Grewal et al, 2014).  The eukaryote genome has multiple copies for most of the 

tRNA genes and their transcription relies exclusively on RNA Pol III transcription 

machinery.  The human nuclear genome encodes more than 500 tRNA genes (Chan et 

al, 2009) and countless genes of tRNA-“look-a-likes” similar to nuclear and 

mitochondrial tRNAs (Telonis et al, 2014).  In yeasts, virtually all tRNAs are 

occupied by Pol III, whereas in humans approximately half of tRNA genes were 

considered unbound by Pol III in HeLa cells despite shared core promoter sequences 

(Oler et al, 2010).  This suggests that additional controls influence promoter access in 

human cells (White, 2011).  Interestingly, fewer Pol III transcribed genes were 

occupied in untransformed fibroblasts than in three transformed cell lines (Oler et al, 

2010).  Furthermore, gene expression microarrays have revealed that the relative 

proportion of individual tRNAs vary widely between different human tissues (Dittmar 

et al, 2006).  ChIP-seq analysis suggests that differential promoter usage can explain 

most of this cell type specificity (Barski et al, 2010). 
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1.3.3 Is tRNA synthesis a limiting step for protein synthesis? 

It has been generally assumed that tRNAs are abundant in cells, and as such the 

control of tRNA synthesis has not been considered a limiting step for protein 

synthesis.  Most models propose signalling pathways regulate protein synthesis by 

changes in the activity or levels of eukaryotic initiation factors (eIFs).  However, there 

is increasing evidence that stimulation of tRNA synthesis may be an additional control 

point in mRNA translation and therefore protein synthesis and growth (as reviewed by 

Grewal et al, 2014).  It is thought that, by increasing total tRNA levels, mRNA 

translation would in turn be increased because more tRNAs would be available for 

incorporation into translating ribosomes A-site.  As the initiator methionine tRNA 

(tRNAi
Met

) is required for ternary complex eIF2-GTP-tRNAi
Met

 formation, it is 

conceivable that specific increases in tRNAi
Met

 would increase rates of translation 

initiation (Grewal et al, 2014).   

There is evidence that manipulation of tRNA levels can influence growth at the 

organism level.  In Drosophila knockdown of Maf1, a repressor of Pol III leads to 

increased tRNA levels, accelerated larval development and increased growth (Rideout 

et al, 2012).  Transgenic flies with extra copy of tRNAi
Met 

have the same phenotype as 

the Maf1 knockdown flies (Rideout et al, 2012).  Further analysis showed that 

increased mRNA translation was responsible for these growth effects as these Maf1 

knockdown and tRNAi
Met

 transgenic flies showed increased polysome content and the 

body size increases could be reduced in flies with genetically lowered ribosome levels 

(Rideout et al, 2012).  Furthermore, elevated tRNAi
Met

 promoted increased cell 

proliferation in cultured mammary epithelial cells (Pavon-Eternod et al, 2013).  

Grewal et al, 2014 suggested oncogene and tumour suppressor pathways that increase 

tRNA levels may drive changes in mRNA translation and consequently tumour 

growth.  

There is also some emerging evidence that cells can change the relative levels of 

specific amino acid tRNAs within their total pools depending on the proliferative 

status of the cells (Gingold et al, 2014).  For example, cancer cells were seen to have 

increased mRNA levels of proliferation-associated genes and subsequent changes in 

relative tRNA expression levels to match codon usage in the proliferation gene 
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mRNAs in comparison to normal cells (Gingold et al, 2014).  Furthermore, genome-

wide Pol III ChIP/DNA sequencing studies suggest changes in surrounding chromatin 

and Pol II regulated genes may control tRNA gene expression (Barski et al, 2010; 

Oler et al, 2010).  ChIP-seq analysis has shown epigenetic modifications, such as 

histone methylation and acetylation correlates with Pol III transcription in a broadly 

similar pattern as Pol II epigenetic modifications (Barski et al, 2010).  White (2011) 

proposed that the SANT domain of BDP1 may allow TFIIIB to respond to histone 

modifications and these in turn may dictate which genes become active.   

A further layer of possible control of mRNA translation is post-transcriptional tRNA 

modifications, such as splicing, cleaving, cytoplasmic-nuclear trafficking and 

numerous nucleotide modifications including methylation and thiolation.  For 

example, for tRNAs to function in protein synthesis they have to undergo 

aminoacylation which involves joining the appropriate amino acid to correct 

isoacceptor tRNA catalysed by aminoacyl tRNA synthetases (aaRS).  Interestingly, 

mRNA levels of aaRS genes are increased by MYC, TORC1 and PI3K in Drosophila 

(Lin et al, 2008; Teleman et al, 2008).   

Hah et al, 2014 used global nuclear run-on coupled with massively parallel 

sequencing (GRO-seq) signalling pathways to explore estrogen responses in MCF-7 

breast cancer cells.  They showed that estrogen can control an impressively large 

fraction (26%) of the breast cancer transcriptome in a fast and hardy manner including 

upregulating the transcription of rRNAs (Pol I) and tRNAs (Pol III).  In fact, short 

estrogen treatments can upregulate a third of the 500 tRNA genes in humans and this 

rises over time (Hah et al, 2011).  The immediate effects of estrogen signalling are 

upregulation of mRNAs coding for transcription and nucleic acid metabolism 

whereas, the longer term effects focus on protein biosynthetic machinery (Hah et al, 

2014). 

1.3.4  tRNA fragments and cancer 

Recent studies have suggested cellular stress results in some mature tRNAs being 

cleaved to smaller tRNA fragments and it is thought this may be a means of 

controlling mRNA translation (Thompson et al, 2009).  Furthermore, tRNA fragments 
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(tRFs) are often overexpressed in tumour cells (Lee et al, 2009).  Using deep 

sequencing of PC cell lines, LNCaP and C4-2, tRFs were discovered from precise 

processing at the 5’-3’ end of mature or precursor tRNAs (Lee et al, 2009).  

Intriguingly, each tRF exhibited a characteristic expression pattern across a cell line 

panel, arguing against tRFs being random by-products from nonspecific degradation 

of tRNA (Lee et al, 2009).  siRNA dependent knockdown of a particular tRF-1001 

caused a decrease in cell proliferation with G2 arrest (Lee et al, 2009).  Furthermore, 

tRNA halves have been found circulating as macromolecular complexes in serum 

(Dhahbi et al, 2013) and the abundance of specific circulating tRNA halves can 

change in the serum of breast cancer patients (Dhahbi et al, 2014).  

It has been proposed that tRNA-derived small RNAs should be divided into two 

groups:  i) tRNA-derived fragments (tRFs) 13-26nt in length and are products of 

precise processing at the 5’ or 3’ end of mature or precursor tRNAs (Sobala et al, 

2011); ii) tRNA halves are 30-40nt derived from 5’-(5’-tRNA half) or 3’-part (3’-

tRNA half) of mature tRNAs cleaved by stress activated ribonuclease angiogenin 

(Saikai et al, 2015).  They are sometimes called tRNA-derived-stress-induced RNAs 

(tiRNAs) (Yamasaki et al, 2009) because their expression is increased by stresses, for 

example oxidative stress and UV irradiation (Thompson et al, 2009).  Importantly, 5’-

tiRNAs, but not 3’-tiRNAs, are functional molecules in that they promote formation 

of stress granules (Emara et al, 2010) and inhibit protein synthesis by displacing 

translational initiation factor complexes from mRNAs (Yamasaki et al, 2009; Ivanov 

et al, 2011).  Furthermore, during hyperosmotic stress angiogenin-induced tiRNAs 

bind cytochrome c and inhibit binding of cytochrome c to apoptotic protease 

activating factor 1 (APAF1) protein, thus protecting cells from apoptosis (Saikia et al, 

2014).    

Honda et al, 2015 has recently discovered a new functional tRNA-derived small RNA 

that are predominantly expressed in estrogen receptor positive (ER+) breast cancer 

and androgen receptor (AR+) PC cell lines, termed Sex HOrmone-dependent tRNA-

derived RNAs (SHOT-RNAs).  They are produced by angiogenin (ANG)-induced 

anti-codon cleavage of amino-acylated mature tRNAs.  In breast cancer human 

tumour samples, ER+ patient tissue showed an abundant expression level of SHOT-

RNAs in contrast to ER-negative patient or normal breast tissues that did not.  AR+ 
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LNCaP-FGC cells expressed more of these SHOT-RNAs than AR-negative PC3 and 

DU145.  siRNA knockdown studies of AR and hormone-free medium studies in 

LNCaP-FGC cells reduced amounts of SHOT-RNAs.  Furthermore, siRNA-mediated 

depletion of 5’SHOT-RNAs, such as 5’SHOT-RNA
AspGUC

, 5’SHOT-RNA
HisGUG

 and 

5’SHOT-RNA
LysCUU

, reduced cell proliferation in LNCaP-FGC cells by 50 % (Honda 

et al, 2015).  Honda et al, 2015 proposed a model of sex hormone-signalling pathways 

stimulating ANG cleavage of aminoacylated mature tRNAs leading to production of 

SHOT-RNAs which enhances cell proliferation and therefore, may nurture tumour 

growth.         

 

1.3.5 Pol III transcription machinery 

RNA Pol III requires the assistance of two associated transcription factor complexes 

for transcription.  These are called Transcription Factor IIIB (TFIIIB) and TFIIIC.  

TFIIIC recognises tRNA genes and binds to DNA at the internal tRNA gene 

promoters.  TFIIIB can bind to DNA, TFIIIC and Pol III, and its recruitment of Pol III 

to specific genetic template is thought to be the main control point for tRNA synthesis 

as TFIIIC is present at both active and inactive tRNA genes (Kassavetis et al, 2006)  

(Figure 1.1).   

TFIIIB is composed of three essential subunits, TATA-binding protein (TBP), BDP1, 

and either the TFIIB-related factors (BRF1) or the related subunit BRF2 (Geiduschek 

and Kassavetis, 2006; Schramm et al, 2002).  The TFIIIB complex, used by gene 

internal Pol III promoters tRNA and 5S rRNA, consists of TBP, BDP1 and BRF1, 

whereas the upstream of initiation site external promoters of the U6 snRNA gene uses 

BRF2 (Schramm et al, 2002).  The BDP1 subunit of TFIIIB contains a SANT domain, 

which is a motif of approximately 50 amino acid residues, and is thought to have a 

potential role in chromatin remodelling (Boyer et al, 2004).  Interestingly, the 

chromatin environment seems to be important in dictating which Pol III templates are 

transcribed in human cells (White, 2011).   
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1.4 BRF1 (TFIIB-related factor 1) 

BRF1 is a 90 kDa transcription factor TFIIIB subunit that binds to Pol III and 

specifically regulates Pol III transcription (Schramm et al, 2002).  Repressing BRF1 

decreases Pol III gene transcription (Zhang et al, 2013; Zhang et al, 2011; Zhong et al, 

2013).  BRF1 protein belongs to TFIIB-related transcription factor family, which all 

characteristically have a zinc ribbon domain and two internal cyclin repeats (Schramm 

et al, 2002).  ChIP-seq data analysis showed BRF1 was 15 times more abundant than 

BRF2 at Pol III transcribed genes and that BRF1 co-localises with TFIIIC while BRF2 

does not (Oler et al, 2010).    

BRF1 expression can be induced in HPV-infected cervical cancer cells (Daly et al, 

2005) and cardiomyocytes undergoing hypertrophy (Goodfellow et al, 2006 & 2007).  

Studies in cardiomyocytes showed BRF1 overexpression enhances Pol III 

transcription and this is required for inducing hypertrophic growth (Goodfellow et al, 

2006).  Zhong et al, 2014 recently found BRF1 is overexpressed in human breast 

cancer tissues.  Furthermore, estrogen receptor positive (ER+) human breast cancer 

biopsies had higher BRF1 expression than estrogen receptor negative (ER-) breast 

cancer cases (Julka et al, 2008).  

BRF2 (TFIIB-related factor 2, 50 kDa TFIIIB subunit) is structurally similar to BRF1, 

in that, they all have N-terminal zinc ribbon domains and core domains containing 

imperfect repeats.  The structural difference between BRF1 and BRF2 is in their C-

terminal extensions.  BRF2 C-terminus is essential for association with TBP and 

SNAPc (small nuclear activating protein complex) on U6 promoter (Saxena et al, 

2005).  Overexpression of BRF2 has been seen in breast cancer (Melchor et al, 2007; 

Garcia et al, 2005), bladder cancer and lung squamous cell carcinoma (Lockwood et 

al, 2010).  BRF2 overexpression was found to significantly correlate with cancer risk 

of metastases in a breast cancer (Cabarcas et al, 2011).  
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1.4.1 Regulation of Pol III transcription 

Gene transcription is tightly regulated thus allowing cells to constantly adjust their 

RNA and protein content in response to environmental changes and metabolic 

requirements (White, 2001). Studies in yeast first showed that Pol III was regulated by 

growth cues, such as nutrient availability.  Furthermore, in yeast, inhibition of Pol III 

transcription can stimulate stress-response pathways and indirectly disturb 

communication between Pol III and Pol II transcriptome (Conesa et al, 2005).  Recent 

mammalian cell studies have described how oncogenes, tumour suppressors and cell 

cycle proteins can limit or amplify recruitment of Pol III to its target gene promoters 

(Sutcliffe et al, 2000; Felton-Edkins et al, 2003b; Stein et al, 2002; Gomez-Roman et 

al, 2003; White et al, 2004; White et al, 2005).  The mechanisms of this control may 

involve gene upregulation of Pol III transcription factors, modified protein-protein 

interactions between the transcription factors or a direct effect on Pol III (White et al, 

2004; White et al, 2005).   

TFIIIB activity is suppressed by tumour suppressors in normal cells.  pRb and p53 

both bind to and inhibit TFIIIB in untransformed cells (Felton-Edkins et al, 2003b) 

and furthermore, loss of this repression results in Pol III transcription increase in vivo 

(Felton-Edkins et al, 2003b).  pRb directly associates with and represses BRF1 

(Larminie et al, 1997; Hirsch et al, 2004; Sutcliffe et al, 2000) whereas p53 interacts 

with TBP (Crighton et al, 2003) causing a defective TFIIIB complex that can no 

longer associate with TFIIIC or RNA Pol III.  PTEN indirectly targets TFIIIB, 

perhaps by phosphorylation of BRF1, which induces disassociation of BRF1 and TBP 

and thus, also prevents functional TFIIIB complex formation (Woiwode et al, 2008).  

Another mechanism is through MAF1 repression of TFIIIB and this is switched off by 

mTOR phosphorylation, which in turn is antagonised by PTEN (Kantidakis et al, 

2010).   

It has been shown that some growth stimulatory pathways and oncogenes can 

stimulate Pol III mediated transcription; examples include Ras (Wang et al, 1997), c-

MYC (Gomez-Roman et al, 2003) and activated PI3K (Wolwode et al, 2008).  MAPK 

ERK2 can directly phosphorylate BRF1 and this seems not to disrupt association 

between BRF1 and BDP1, but instead enhances TFIIIB-TFIIIC and TFIIIB-RNA Pol 
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III interactions (Felton-Edkins et al, 2003a).  Both BRF1 and BDP1 are 

phosphorylated at multiple sites (Woiwode et al, 2008; Felton-Edkins et al, 2003a; 

Fairley et al, 2003; Gottesfeld et al, 1994).  Therefore, it is possible that changes in 

phosphorylation and/or other modifications may selectively enhance their function.  

Alternatively, recent studies support the idea that certain co-activators of Pol II 

transcription may be used to drive transcription of Pol III genes (Kenneth et al, 2008).  

Selective enhancement of function of these co-activators in vivo could potentially be 

used to drive increased Pol III transcription.   

TBP is used by all three nuclear RNA polymerases, whereas BRF1 is Pol III specific.  

Johnson et al, 2008 showed that increased expression of TBP is sufficient to induce 

transformation and noted increased Pol III activity in these cells as well as in c-MYC 

transformed cells.  However, modulating Pol III transcription alone did not alter 

proliferation rates or transforming properties of Rat1a cells.  Overexpression and 

activated phosphorylation of BRF1 led to modest induction of Pol III transcription 

with subsequent increases in tRNAi
Met

 leading to more robust increase in transcription 

but both failed to promote cellular transformation (Johnson et al, 2008).  Furthermore, 

RNA Pol II-defective TBP mutants which can still function in Pol I and III 

transcription, prevented TBP-mediated cellular transformation (Johnson et al, 2003).  

Johnson et al, 2003 concluded from these two studies that increased Pol III 

transcription is needed but not sufficient for cellular transformation (Johnson et al, 

2008).   

However, expression of mutant TBP proteins did not induce Pol III transcription nor 

anchorage-independent growth in Rat1a fibroblasts in vitro, but when these cells were 

subcutaneously injected into athymic mice there was stimulation of Pol III 

transcription and tumour formation (Johnson et al, 2008).  The difference between 

these in vitro and in vivo results is most likely related to the in vivo environment and 

specifically the extracellular matrix components altering cellular signalling pathways 

and impinging on TBP-mediated changes in Pol II-dependent transcription and 

ultimately influencing Pol III-dependent transcription (Johnson et al, 2008).   
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1.4.2 Pol III is deregulated in cancer 

1.4.2.1 Introduction 

A hallmark trait of cancer is uncontrolled cell growth and proliferation (Hanahan & 

Weinberg, 2011).  Therefore, unsurprisingly, deregulation of Pol III transcription has 

been seen in a variety of human cancers and altered levels of Pol III specific 

transcription factors are a common feature of mouse and human tumours (reviewed 

(reviewed by White, 2004; White et al, 2005).  For example, in ovarian carcinomas, 

high levels of TFIIIC2 and tRNAs were consistently found (Winter et al, 2000).  TBP 

overexpression has been observed in human colon cancer (Johnson et al, 2003).  In 

breast cancer cells, tRNA levels have been reported as 10-fold higher than normal 

breast cells (Pavon-Eternod et al, 2009).  Furthermore, increased Pol III products have 

been described in many different cells, when transformed by DNA tumour viruses 

including simian virus 40 (Larminie et al, 1999; White et al, 1990), polyomavirus and 

papovavirus (Felton-Edkins et al, 2002) and other viral products such as hepatitis B 

virus X protein (Wang et al, 1995) and human T-cell leukaemia virus type 1 Tax 

protein (Gottesfeld et al, 1996).  

Pol III transcription is carefully controlled in normal cells by tumour suppressors but 

this regulation is overcome in cancer cells.  Despite much evidence that Pol III 

transcription is enhanced in cancer, minimal is known about the underlying molecular 

mechanisms (Figures 1.2 & 1.3).  In broad terms, Pol III activity can be increased not 

only by direct interaction with Pol III machinery and oncogenes and/or loss of 

interaction with tumour suppressors, but also through altered levels of Pol III itself 

and Pol III transcription factors such as BRF1. 

1.4.2.2 Pol III and mTOR  

The TOR kinase pathway is a key regulator of tissue growth.  Extracellular growth 

factors and nutrients stimulate TOR activity (Wang and Proud, 2009) to control cell, 

tissue and organismal growth.  Marshall et al, 2012 showed that Pol III-dependent 

transcription is a critical regulation target of TOR in Drosophila.  It has been well 

studied that TORC1 can control mRNA translation initiation through the regulation of 

eukaryotic initiation factor (eIF) activity (Ma et al, 2009; Roux et al, 2012).  However, 
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accumulating evidence shows TORC1 signalling can influence Pol III transcription by 

direct or indirect phosphorylation of components of Pol III machinery.  For example, 

when TORC1 is inhibited, dephosphorylated MAF1 is localised within the nucleus 

and directly binds to Pol III or BRF1, therefore disrupting the Pol III transcription 

complex and preventing Pol III recruitment to tRNA genes.  In contrast, TORC1 

activation leads to direct MAF1 phosphorylation and Pol III transcription is no longer 

repressed (Kantidakis et al, 2010; Shor et al, 2010).    

Another potential mechanism of TORC1 activation of Pol III transcription is through 

PTEN loss and subsequent activation of PI3K/AKT signalling leading to 

phosphorylation of BRF1 and stimulation of Pol III in a rapamycin sensitive manner 

(Woiwode et al, 2008).  ChIP studies have shown TORC1 localisation at Pol III target 

genes (Kantidakis et al, 2010; Tsang et al, 2010) and genome wide analysis shows 

mTOR has 76% overlap with Pol III at tRNA genes (Chaveroux et al, 2013).  

Furthermore, Drosophila studies have shown larvae growth caused by Torc1 

activation is blocked in cells mutant for Brf1 (Marshall et al, 2012).  Interestingly, 

AKT activation is known to enhance rRNA synthesis and promotes tumour growth 

(Levy et al, 2009; Nguyen et al, 2013). 

Recently, MAF1 was proposed as a tumour suppressor downstream of PTEN.  PTEN-

mediated changes in MAF1 expression involved PTEN-induced changes in 

PI3K/AKT/FOXO1 signalling (Palian et al, 2014).  MAF1 is a negative controller of 

Pol III and some Pol II-dependent genes (Johnson et al, 2007).   Pten-null mice 

prostates and livers have decreased Maf1 expression, whereas PTEN re-expression in 

human glioblastoma U87 deficient cells increases MAF1 expression (Palian et al, 

2014).  In mouse embryo fibroblasts (MEFs), Pten loss led to marked reduction in 

Maf1 protein levels (Palian et al, 2014).  Furthermore, human PC samples with PTEN 

loss had significantly reduced MAF1 expression than normal healthy prostate 

epithelium without PTEN loss (Palian et al, 2014).  Enhanced MAF1 expression in 

stable hepatoma Huh-7 cells reduced anchorage independent growth and tumour 

formation in mice (Palian et al, 2014).  They concluded that MAF1 is an essential 

downstream effector of PTEN/PI3K/AKT/FOXO1 signalling and a central target to 

co-repress genes involved in proliferative, biosynthetic and metabolic processes 

(Palian et al, 2014).  
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1.4.2.3 Pol III and MYC 

MYC is a transcription factor that binds to DNA as a dimer with its partner MAX to 

regulate genes involved in cell growth, proliferation and apoptosis (Grandori et al, 

2000).  More specifically, MYC acts as a master controller of ribosome biogenesis 

and protein synthesis (Gomez-Roman et al, 2006).  It is one of the most frequently 

activated oncoproteins, being overexpressed in ~ 50% of all cancers (Nesbit et al, 

1999; Dang, 2012).  Overexpression of MYC drives ribosome biogenesis and mRNA 

translation, while MYC deficient cells are defective in these processes (Grewal et al, 

2005; van Riggelen et al, 2010).  This is consistent with earlier observations: Myc 

deficient mouse cells are defective in Pol III transcription, whereas overexpression of 

Myc can increase Pol III transcription and tRNA expression (Aaronson et al, 1991).  

Drosophila studies have shown Myc overexpression upregulates Brf1 and other Pol 

III factors to promote body growth (Grewal et al, 2005).  Furthermore, Myc 

transforms Rat1a fibroblasts and promotes soft agar growth and xenograft tumour 

formation in mice in a Pol III/Brf1 dependent manner (Johnson et al, 2008).    

Brf1 expression increases in a Myc- dependent manner in mice (Sansom et al, 2007), 

and the Brf1 promoter region contains Myc/Max binding sites.  However, it is unclear 

whether MYC directly or indirectly regulates BRF1 expression.  Interestingly, ChIP-

seq data found MYC at 74% of cellular loci occupied by Pol III.  However, the 

presence of TFIIIB does not ensure MYC occupancy (Raha et al, 2010).  Co-

Immunoprecipitation studies have identified c-MYC binds stably to the TFIIIB 

complex, specifically to BRF1 (Gomez-Roman et al, 2003).  In cycling fibroblasts, B 

cells and epithelial cells, endogenous c-MYC is located at the tRNA
Leu

, tRNA
Tyr

 and 

5SrRNA genes (Gomez-Roman et al, 2003).  Taken together, these results show MYC 

can directly localise at tRNA genes due to an association between MYC and BRF1 

(Gomez- Roman et al, 2003). 

The BRF1 promoter has binding sites for nuclear respiratory factor 1 (NRF1) (Huo et 

al, 2001), Zic2 (Ishiguro et al, 2008) and immediate early growth response (EGR1) 

(Adamson et al, 2002).  It also has multiple binding sites for tumour suppressor ZF9 

(also known as KLF6; Muhlbauer at al, 2003), KLF3 (Lomberk et al, 2005) and two 

ZF5 cis-regulatory elements, which are known negative regulators of the c-MYC 
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promoter (Numoto et al, 1995).  These could all have a role in negative regulation of 

the BRF1 promoter.  ChIP-seq studies also discovered several factors co-localising 

with Pol III, including FOS, JUN and ETS1 (Oler et al, 2010; Raha et al, 2010), that 

may directly influence Pol III transcription (White, 2011).   

Intriguingly, Pol II has been found to co-localise upstream of Pol III genes, including 

tRNA, 5S rRNA and U6 snRNA genes (Barski et al, 2010; Oler et al, 2010; Raha et al. 

2010).  Pol II recruitment may result from presence of regulatory factors (such as 

MYC) at Pol III promoters, which are able to attract more than one RNA polymerase, 

or due to the establishment of more accessible chromatin environments.  Previous 

studies have suggested that Pol II transcribed MYC target genes are involved in 

metabolism and translation (Coller et al, 2000; Boon et al, 2001).  White (2011) 

proposed Pol III occupancy and upstream Pol II co-localisation is highly suggestive of 

a regulatory interaction and cancers may use Pol II recruitment to raise expression of 

key Pol III products during tumorigenesis.  Furthermore, the capacity of MYC to 

positively regulate Pol II and Pol III-transcription may enable MYC to coordinate 

induction of protein synthesis in a synergistic manner (Gomez-Roman et al, 2003).         

The Ras family of G proteins are involved in cell proliferation, growth, survival and 

differentiation.  Overexpression of Ras in mouse models is sufficient to drive 

tumorigenesis (Pylayeva-Gupta et al, 2011).  Ras activation leads to a cascade of 

kinase activation – RAF, MEK and ERK, all part of the Extracellular signal regulated 

kinase (ERK) pathway.  Activation of ERK pathway can upregulate MYC protein 

levels (Sears et al, 1999) and has been shown to crosstalk with TORC1 (Roux et al, 

2012).  Furthermore, ERK can directly associate with and phosphorylate BRF1 

leading to enhanced Pol III dependent tRNA synthesis in cultured fibroblasts (Felton-

Edkins et al, 2003a) and Ras/ERK signalling can increase expression of TBP and 

BRF1 (Goodfellow et al, 2006; Zhong et al, 2004).   

1.4.2.4 Pol III and JNK 

JNK1 positively mediates Pol III gene transcription and c-Jun is a downstream target 

of JNK (Zhong et al, 2009).  Alcohol induced increases in c-Jun activity increases 

estrogen receptor alpha (ERα) expression and ERα occupancy in the BRF1 promoter 
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resulting in increased BRF1 expression (Zhong et al, 2014). In contrast, tamoxifen (a 

small molecule anti-estrogen agent) was shown to inhibit BRF1 expression and Pol III 

gene transcription via the c-Jun and ERα pathway to repress cell proliferation (Zhong 

et al, 2014).  Tamoxifen treatment of breast cancer and non-tumour cells decreases 

cellular BRF1 mRNA and protein and reduces the occupancy of BRF1 in the 

promoters of tRNA
Leu

 and 5S rRNA (Zhong et al, 2014).  

1.4.2.5 Pol III and P53 

p53 inactivation is a vital step in carcinogenesis (Vousden et al, 2007; Mills, 2012).  

Impairing ribosome biogenesis leads to activation of a nucleolar stress/ surveillance 

mechanism that can result in accumulation of p53 (Zhang et al, 2009; Deisenroth et al, 

2010).  Furthermore, p53 is activated in response to impairment of ribosome 

biogenesis and suppressed by increased ribosome biogenesis driven by proto-

oncogenic growth and survival signals (Donati et al, 2011).  P53 is a general repressor 

of Pol III genes including tRNAs and directly binds to TBP to prevent Pol III 

recruitment to its genetic template (Cairns et al, 1998; Crighton et a, 2003).  

Overexpression of p53 inhibits tRNA synthesis, whereas p53
-/-

 mice fibroblasts have 

elevated Pol III transcription and tRNA levels (Cairns et al, 1998).   

p53 is also a repressor of Pol I transcription and does this by disrupting pre-initiation 

complex formation, while Pol I transcription reciprocally inhibits p53 activation 

through ribosomal protein sequestration in the nucleolus (Budde et al, 1999; Zhai et 

al, 2000).  Furthermore, inhibiting Pol I activity triggers “nucleolar stress” leading to 

ribosomal proteins translocating from nucleolus to nucleoplasm, leading to 

dissociation of MDM2 from p53, p53 stabilisation and p53–dependent apoptosis 

(Deisenroth et al, 2010).  Therefore, by maintaining enhanced Pol I activity, cancer 

cells promote suppression of p53 and maintain nucleolar integrity (Haddach et al, 

2012).       

1.4.2.6 Pol III and RB 

pRb is a 110 kDa protein which is phosphorylated in rapidly dividing cells and 

dephosphorylated in growth arrested cells (Buchkovich et al, 1989; Chen et al, 1989; 

DeCaprio et al, 1989; Ludlow et al, 1990).  The tumour suppressor pRb controls cell 
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growth by restricting cell cycle entry by binding and inhibiting E2F, a transcription 

factor essential for cell cycle gene transcription (Dyson, 1998).  Dysregulation of cell 

cycle control and specifically the CDK-cyclinD/INK4/pRb/E2F pathway regulating 

G1/S transition is a common feature of most cancers (Canavese et al, 2012).  

Furthermore, inactivating mutations of RB1 are associated with a variety of human 

cancers (Burkhart et al, 2008).   

Pol III transcription is under tight control during development and throughout the cell 

cycle.  Pol III activity is maximal in late G1, S and G2 phases with lowest activity in 

early G1 and M phases (Johnson et al, 1974;  Gottesfeld et al, 1994; White et al, 1995; 

Hu et al, 2004).  Reduced Pol III activity in early G1 phase correlates with increased 

pRb activity at the same time in cell cycle (White et al, 1995).  pRb represses Pol III 

activity in vitro and in vivo (White et al, 1996). pRb-deficient MEFs support elevated 

Pol III transcription, whereas matched wildtype MEFs did not (White et al, 1996).  

Co-immunoprecipitation assays have shown that pRb can co-purify with BRF1 and 

disrupt binding between BRF1 and TFIIIC2 (Larminie et al, 1997; Chu et al, 1997).  

Furthermore, pRb obstructed BRF1 association with TFIIIC and Pol III, but not with 

TBP (Sutcliffe et al, 2000).  Genome-wide ChIP studies have shown that pRb can 

localise at Pol III genes, including tRNAs (Gjidodal et al, 2013).  Overexpression of 

pRb inhibits Pol III transcription, whereas, Rb
-/-

 cells have higher levels of tRNAs 

(White et al, 1996).  Interestingly, ChIP-Seq experiments on human IMR90 

fibroblasts showed increased pRb association with all Pol III genes during senescence 

(Chicas et al, 2010).  As senescence induction represents an important mechanism for 

tumour suppression by pRb, this supports the notion that Pol III repression has a role 

in key cancer prevention networks (Gjidoda et al, 2009).  

1.4.2.7 Pol III and BRCA1 

BRCA1 (breast cancer susceptibility gene 1) carriers have an elevated risk of 

developing breast, ovarian, pancreatic, uterine, cervical and prostate cancers (Rosen et 

al, 2006).  BRCA1’s functions include cell cycle regulation, DNA repair, genome 

integrity, apoptosis and ubiquitination (Billack et al, 2005; Deng et al, 2006).  BRCA1 

has been identified as a general repressor of Pol III transcription (Veras et al, 2009).  

Veras et al, 2009 showed that BRCA1 inhibits Pol III transcription and that BRF1 
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overexpression relieves BRCA1-mediated inhibition of Pol III transcription (Veras et 

al, 2009).    

1.5 Brf1 expression and Prostate Cancer 

Interestingly, a PhD student (Noor Nam) working with both Professor White and 

Professor Leung’s labs has previously analysed BRF1 protein expression in human 

prostate tumour samples and showed that BRF1 is overexpressed in Prostate Cancer in 

comparison to BPH.  Analysing BRF1 expression at protein level was performed 

using an optimised immunohistochemistry (IHC) protocol (Unpublished, Nam 2013).  

Collectively, two independent tissue microarrays (TMAs) were employed. Firstly, a 

TMA from Glasgow, consisting of samples from 149 cases of untreated prostate 

cancer (PC) along with prostate tissue from 21 cases of benign prostatic hyperplasia 

(BPH) showed BRF1 immunoreactivity analysis on the Glasgow TMA cohort showed 

that PC samples had higher BRF1 protein expression than the BPH cohort (Figure 

1.4A).  This was confirmed with a larger TMA from Newcastle combined with the 

Glasgow TMA analysis showing BRF1 expression was upregulated in PC (n=518) 

relative to BPH (n = 134) (p=0.0034) (Figure 1.4B) (Unpublished, Nam 2013).  

Further statistical analysis was performed to see whether BRF1 is associated with any 

prognostic markers of PC. While BRF1 expression was not found to be associated 

with clinical pathologic parameters such as Gleason sum score (p = 0.653) and serum 

PSA levels (p=0.381), it was significantly associated with Ki67 expression (p=0.034), 

signifying potential association with enhanced tumour proliferation (Unpublished 

Nam, 2013).  Importantly, elevated BRF1 expression was significantly associated with 

unfavourable patient survival outcome in univariate analysis (Kaplan Meier analysis 

disease specific survival p <0.001 and overall survival p < 0.003) (Figure 1.5) 

(Unpublished, Nam 2013).   

This exciting clinical data led to another joint research venture between Professor 

White’s Pol III research group and Professor’s Leung Prostate Cancer research group; 

a successful MRC research grant application to further explore BRF1’s role in 

Prostate Carcinogenesis.  The results of this reseach will be presented and discussed in 

the following chapters. 
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1.6 Summary 

Inflated protein synthesis is strongly linked to cancer, as may be expected to meet the 

demands for increased cell growth and division.  Pol III transcription factors and their 

products are overexpressed in some cancers (White et al, 2004; Daly et al, 2005).  

BRF1 has no known role outside of Pol III transcription but is a molecular target of 

control by numerous tumour suppressors, including p53 (Felton-Edkins et al, 2003b), 

PTEN (Woiwode et al, 2008), ARF (Morton et al, 2007), pRb (Felton-Edkins et al, 

2003b) and oncogene activation by c-MYC and MAPK/ERK (Felton-Edkins et al, 

2003a, White, 2004) (Figures 1.2 and 1.3).  The fact that BRF1 is a target of key 

tumour suppressors and needs to be kept under restraint in healthy cells suggests 

BRF1 has the potential for being a driver of carcinogenesis. 
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Risk Tumour 

Stage 

Gleason Score PSA 

ng/ml 

Biochemical 

progression 

at 5 yrs 

Low  T1- T2a and  ≤6 and  <10 10% 

Intermediate  T2b or  7 or  10-20 40% 

High ≥T2c or  8-10 or   >20 70% 

Table 1-1  Localised PC risk groups  

(Adapted from D’Amico et al, 1998) 

 

 

LOSS GAIN 

8p23-p11 (NKX3.1)  

(Primary  53-67%; CRPC 67-74%) 
 1q32.1-q32.3 (ELK4) 

 

10q23 (PTEN)  

(Primary 12-30%, Advanced  36-80%) 
3q26.1 (PIK3CA) 

(Primary  13-39%) 

12p13 CDKN1B, ETV6, DUSP16 

(Primary 30%; Advanced 30-50%) 
8p12-q24.3 (MYC, MAF)  

(Primary  20-30%; CRPC  64-82%) 

13q12.3- q14.2 (RB1, BRCA2, FOXO1) 

(Primary 11-40%; CRPC   35-95%) 

 

Xp11.22-q13.1 (AR) 

(CRPC  50 - 58%) 

17p13.1 (p53) 

(Primary  20-30%) 

 

17q21.31 ETV4 

(Primary  20%)  

 

21q22.3 (TMPRSS2-ERG) 

(Primary  33-50%; Advanced  33%) 

 

 

Table 1-2  Most commonly altered chromosome locations and well characterised genes 
in human PC.  The genes highlighted in red are known regulators of BRF1.  

(Adapted from Schoenborn et al, 2013) 
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Figure 1-1 Pol III transcription machinery 

TFIIIC binds to promoter DNA sequences within the transcribed region of a tRNA 

region of a tRNA gene.  TFIIIC recruits TFIIIB by protein-protein interactions and 

positions it adjacent to the start of a tRNA gene.  TFIIIB recruits Pol III to the 

transcription start site.  TFIIIB is composed of three subunits TBP, BDP1 and BRF1 

(colour coded blue).
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RNA Pol  III  PRODUCT FUNCTION 

tRNA  Translation of mRNAs. 

5S rRNA Protein synthesis. 

7SL RNA Part of signal recognition particle (SRP) 

complex, responsible for intracellular 

protein transport.  Acts as scaffold within 

SRP, which inserts nascent polypeptides 

into membranes. 

 

7SK RNA Binds to elongation factor p-TEFb and 

suppresses Pol II elongation.  Regulates 

Pol II transcription elongation factor P-

TEFb (Nguyen et al, 2001; Yang et al, 

2001). 

 

MRP RNA Mitochondrial replication; Pre-rRNA 

processing; Processing of large rRNA 

(Clayton, 2001). 

 

U6 snRNA RNA processing and splicing precursor 

mRNAs. 

 

H1 RNA RNA component of RNase P, which 

processes the 5’ end of tRNAs. 

 

SINEs  Short interspersed nuclear elements.  

Unknown function. 

 

Alu RNA Inhibit Pol II transcription after heat shock 

in humans. 

 

B2 RNA Inhibit Pol II transcription after heat shock 

in mice.  

Vault vRNA Essential component of vault 

ribonucleoprotein (RNP) complex 

associated with development of multidrug 

resistance in human tumours (Dieci et al, 

2007). 

 

VA1 and VA2 RNA Drive translation machinery in adenovirus 

infected cells to produce additional viral 

proteins. 

 

 

Table 1-3  RNA Pol III transcription products 
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Promoter Type RNA product 

Type 1 (internal) 5S rRNA, SINE3-RNAs 

 

Type 2 (internal) tRNAs, 7SL RNA, vault RNA, Alu RNAs, B1 & B2 RNAs, 

adenoviral VA RNAs 

Type 3 (external) U6 snRNA, 7SK RNA, Y RNAs, H1 RNA, RNA component 

of RNase MRP 

 

Table 1-4  RNA products of class III genes with different promoters 

(Adapted from Nikitina et al, 2011) 

 

  

 

Figure 1-2  Proposed model of Pol III oncogenic pathway 

Oncogenes bind to BRF1 promoter causing activation of Pol III transcription complex 

and subsequent increase in Pol III products, such as tRNAs that can transform cell into 

a cancer phenotype with uncontrolled proliferation and growth. 
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Figure 1-3  Proposed model of Pol III activation in prostate cancer. 

TFIIIB, and more specifically BRF1, is a molecular target of regulation by many 

tumour suppressors, including p53, PTEN, pRb and oncogene c-MYC and mitogen 

activated protein kinase ERK (Felton-Edkins et al, 2003a&b, White, 2004; reviewed 

by Cabarcas et al, 2008).  
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Figure 1-4  Box-plots showing BRF1 expression in benign prostatic hyperplasia (BPH) 
and prostate cancer patient TMAs. 

A)  Glasgow cohort. 

B)  Glasgow and Newcastle combined cohort.  
 

BRF1 protein expression in prostate epithelium as determined by IHC was 

significantly elevated in prostate cancer in comparison to BPH in both the Glasgow 

cohort and combined Glasgow and Newcastle cohort.  (Data provided by Nam, 2013, 

Unpublished)  
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Figure 1-5  Kaplan-Meier (KM) survival curve analysis on combined Glasgow and 
Newcastle cohort 

This KM curve shows significant correlation of the high BRF1 expression (red line) 

with poor patient outcome in both A) Disease specific (Log rank, p < 0.001). 

B) Overall survival (log rank, p < 0.003).  (Data provided by Nam, 2013, 

Unpublished). 
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Aims of study 

To determine the functional importance of BRF1 for prostate carcinogenesis by 

measuring and manipulating levels of BRF1 expression in PC cell lines and mice 

models.  The importance of this work is to provide evidence to support or refute Pol 

III machinery and BRF1 specifically as a potential driver and therapeutic target in PC.   

The hypotheses of this study are two-fold:   

1)  Overexpression of BRF1 is an important step in prostate carcinogenesis.   

2)  Manipulation of BRF1 influences PC development. 
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2 Materials and Methods
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2.1  Cell Culture 

Human PC cell lines were purchased from ATCC and authenticated by LCG 

standards.  All cell culture work was performed in a Class II tissue culture (TC) hood 

unless otherwise stated.  Aseptic techniques with sterile equipment and reagents (cell 

culture grade) were adopted.  All cell types were grown sub-confluent in humidified 

conditions containing 5% CO2 at 37°C in a TC incubator.   

DU145, LNCaP, PC3, PC3M and CWR-22 cells were grown in RPMI-1640 medium, 

10% FBS and 2mM L-Glutamine.  LNCaP-AI (a cell line derived from LNCaP cells 

following chronic androgen deprivation therapy with culture in charcoal stripped 

medium) were grown in RPMI-1640 medium, 10% charcoal stripped serum and 2mM 

L-Glutamine.  RWPE-1 cells were grown in keratinocyte growth media with growth 

supplements.  VCaP cells were grown in DMEM, 10% FBS and 2mM L-Glutamine.  

22RV1 cells were grown in RPMI with no phenol, charcoal stripped serum and 2mM 

L-Glutamine.  VCaP and 22Rv1 cells were grown in category 2 TC hoods and 

incubators.  (All the reagents and their suppliers used in this study are listed in Table 

2.1).       

Cells were passaged approximately every 3 to 4 days at 70-85% confluency 

depending on cell type.  Medium was aspirated and cells washed with Phosphate 

Buffered Solution (PBS) followed by incubation with buffered trypsin-EDTA (0.05% 

trypsin (Invitrogen), 0.02% EDTA (Sigma) for approximately 2 minutes.  Fresh 

medium was then added to the non-adhered cells in order to neutralise the trypsin.  

Cells were counted using a CASY counter
TM

 (Innovatis) and seeded as required, and 

cell suspensions were transferred to new flasks/ plates.    

Cryo-freezing was used for storage of all cell lines.  Cells were trypsinised using 

buffered trypsin-EDTA as already described, pelleted by centrifugation at 1,200 RPM 

(rev per min) and resuspended in 50% media (40% FBS and 10% (v/v) dimethyl 

sulphoxide (DMSO, Sigma).  1ml aliquots of cell suspension were transferred to 

cryotubes (Nunc) and immediately placed on dry ice and then frozen overnight 

wrapped in cotton wool in -80°C freezer.  The frozen aliquots of cells were transferred 

on dry ice to liquid nitrogen for permanent storage. 
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Recovery of cells was performed by transferring the cryotubes from dry ice to 37°C 

water bath.  Immediately after thawing, the cells were then diluted in fresh media, 

centrifuged at 1,200 RPM and the supernatants were aspirated off to completely 

remove the media containing DMSO.  Cell pellets were resuspended in pre-warmed 

fresh media filled 25 cm
2
 flasks and placed in the TC incubator. 

 

2.2  Protein expression analysis 

Bio-RAD® western blot equipment was used for sodium-dodecyl sulphate (SDS) 

polyacrylamide gel electrophoresis.  Proteins were resolved using denaturing SDS-

PAGE polyacrylamide gels.  Lower SDS-PAGE gel components were added to a 

universal tube, mixed and then immediately poured in between gel plates.  For 

example, 7.8% gels were made to assess for BRF1 protein expression.  A lower gel 

was composed of 4.8ml of dH20, 2.5ml lower gel buffer (1.5M Tris Base and 0.4% 

SDS pH 8.8), 2.6ml 30% acrylamide, 60µl 20% ammonium persulphate (APS) and 

22µl tetramethylethylenediamine (TEMED).  Once the lower gel was set the upper gel 

components (3ml dH20, 1.25ml upper gel buffer (0.5M Tris and 0.4% SDS pH 6.8) 

0.7ml 30% acrylamide, 30µl 20% APS and 11µL TEMED) were then added to the 

universal and immediately poured over the top of the lower gel between two gel 

plates.  Gel forks were placed in the upper gel and removed once the gel was set and 

forked surface of set gel was washed out with distilled water. 

Western blot cell lysates were prepared directly from 70-85% confluent cells grown in 

6 or 10cm plates.  Cell media was aspirated off and cells were washed in ice cold PBS 

twice.  The preparation of cell lysates was performed on ice rapidly to avoid protein 

degradation.  100µL of cell lysis buffer (Table 2.2) was pipetted directly onto the cell 

plates and cells were scraped off with cell scrappers.  Cell lysates were pipetted into 

labelled eppendorfs and left on ice for 15 minutes.  They were then centrifuged for 15 

minutes at 13,200 RPM at 4°C.  The supernatants were then collected and protein 

concentration was measured using Bradford’s reagent diluted 1:5 with dH20 at 595 nm 

in a spectrophotometer.  (For preparation of extracts from mouse prostate tissue please 

see section 2.22).  All the protein samples were adjusted to be at equal concentration 
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(1g/l in 25l total volume) with 4 x loading buffer (62.5mM Tris pH6.8, 0.5% 

SDS, 5% β-mercaptoethanol, 10% glycerol, 0.125% bromophenol blue) and distilled 

water.  These adjusted protein samples were then heated at 100°C for 5 minutes in a 

heat block.   

25µg protein samples were loaded onto the SDS-PAGE gel with a protein ladder 

marker (Spectra™ Multicolour Broad Range Protein Ladder, ThermoFisher #26623) 

and electrophoresed in Bio-RAD tanks at 180V in 1x SDS running buffer (0.1% SDS, 

76.8mM glycine, 10mM Tris, pH8.3). 

After separation by SDS-PAGE, the resolved proteins were transferred to a 

polyvinylidene difluoride (PVDF) membrane (Millipore Immobilon®-P Transfer 

Membrane) using a Bio-RAD Mini Trans-Blot Electrophoretic Transfer Cell system.  

The transfer buffer consisted of 20% methanol, 76.8mM glycine, 10mM Tris pH8.3 

and distilled water.  Each gel was transferred at 90V for 2 hours with ice packs at 4°C.  

Subsequently, the membranes were incubated in a blocking buffer (5% Marvel milk 

/TBST) (Table 2.2) for 1 hour and then washed in TBST three times for 5 minutes.  

They were then incubated in a primary antibody diluted in blocking buffer overnight 

at 4°C.  The primary antibody was removed and membranes washed with TBST three 

times for 5 minutes.  The secondary antibody was then added (diluted in blocking 

buffer) for 1 hour at room temperature.  The membranes were washed with TBST 

three times for 5 minutes. The bound antibodies were then detected on the membrane 

with an enhanced chemiluminescense (ECL detection kit, GE Healthcare) in the dark 

room.  All the antibodies used in this study are listed in Table 2.3.     

 

2.3  Chromatin Immunoprecipitation (ChIP) 

ChIP is a multistep 3 day protocol that was optimised in terms of the primers, 

antibodies, sonication times and beads used (data not shown).  Cells at 80% 

confluency culture in a 10cm plate were used for individual immunoprecipitation (IP) 

experiment.  Cells in their normal media were incubated for 7 minutes at room 

temperature under a TC hood in final concentration of 1% formaldehyde to cross-link 
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the protein-DNA complexes.  The cross-linking was quenched by addition of final 

concentration of 0.125M Glycine for 5 minutes incubation at room temperature.  This 

solution was aspirated and safely discarded.  Cell plates were transferred to ice and 

5ml of ice cold PBS was added to these plates and cells were scraped off into a 50ml 

Falcon tube (with total of ice cold 40ml PBS).  These falcon tubes were centrifuged at 

1,500 RPM at 4°C for 5 minutes.  The supernatants were aspirated off, and cell pellets 

were washed two more times in ice cold PBS.  At this point cells could be frozen at -

80°C.   

For nuclear extraction 1ml of NEBA (Nuclear extract buffer A) (Table 2.2) was added 

to frozen cells and transferred to eppendorf tubes.  Cells were pelleted with their 

supernatant discarded.  2.5ml NEBA, 25µl igepal, 25µl protease inhibitor cocktail 

(PIC), 2.5µl dithiothreitol (DTT) were mixed together and 1ml of this was used to 

resuspend cell pellets with 5 minutes incubation on ice with light shaking regularly.  

Cells were then pelleted and resuspended in 2ml FA lysis buffer (Table 2.2) (with 

20µl PIC added to FA lysis buffer) and passed through a 26G needle three times.  Cell 

suspensions were sonicated for 30 minutes in a cold room with ice being changed 

every 10 minutes.  Sonication was performed by a water bath sonicator, Biorupter™ 

Diagenode, and is used to shear the chromatin into fragments smaller than 0.5 kb.  

Cell debris was pelleted by centrifugation for 2 minutes at 4°C at 13,000 RPM.  10% 

of the supernatant was labelled in eppendorf as Input (30µl).  The remaining 

supernatant was aliquoted equally into eppendorfs labelled with antibody names.  20µl 

(per antibody sample) of Protein A and G Dynabeads® (ThermoFisher) were washed 

three times in RIPA buffer and then beads were blocked with 800µl radio 

immunoprecipitation assay (RIPA) buffer (Table 2.2), 100µl bovine serum albumin 

(BSA) (1mg/ml) 100µl salmon sperm (SS) (1mg/ml) and left on rotation at room 

temperature for 30 minutes.  Magnetic tube holders were used to remove 

RIPA/BSA/SS solution.  Dynabeads® were resuspended in RIPA.  For 

immunoprecipitation, the antibodies were added to appropriately labelled eppendorfs 

and 20µl beads added to each antibody labelled eppendorf (not Input) and left on 

rotation overnight in cold room.  Taf1-48 (a component of the basal transcription 

apparatus for RNA polymerase I) was used as a negative control antibody (Antibodies 

used on Table 2.3). 
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To wash the Dynabeads®, a magnetic eppendorf holder was used and samples were 

washed twice with ice cold RIPA, twice with ice cold LiCl buffer (Table 2.2) and 

twice with ice cold Tris-EDTA (TE).  For DNA elution, 400µl TE/1% SDS was added 

and incubated for 5 minutes at room temperature.  The eluted material was transferred 

into new labelled eppendorfs and beads were discarded.  To remove any 

contaminating RNA, 2µl RNAse (0.5 mg/ml) was added to all eppendorfs including 

Input and incubated in 37°C water bath for 1 hour.  To reverse crosslinks and degrade 

protein, 5µl proteinase K (10mg/ml) was then added to digest each sample and left in 

37°C water bath for 1 hour and then moved to 65°C heat block overnight.  Qiagen 

PCR purification kit was used, as per manufacturer’s instructions, for DNA 

purification.  The ChIP DNA was then analysed by PCR. 

                          

2.4 RNA analysis 

RNA extraction was achieved using the Qiagen RNeasy mini kit for all long coding 

RNA, including BRF1 mRNA.  Qiagen kit was used for complete reverse 

transcription (RT) protocol using gDNA wipeout buffer, quantiscript RT buffer, RT 

primer mix, oligoDT and quantiscript RT as per manufacturer’s instructions.  The 

Applied Biosystem Kit was used for cDNA preparation and manufacturer protocols 

were followed.  RNA extraction with TRIZOL reagent was used to analyse tRNAs 

and other small Pol III products which would have been lost using the Qiagen RNeasy 

mini kit.   

10 cm cell plates that had reached 70-80% confluency were first washed twice with 

PBS at room temperature.  1ml of TRIZOL reagent was then added to the plates, and 

cells were scraped and pipetted up and down to resuspend properly in the TRIZOL 

reagent, and were then placed in labelled eppendorfs.  200ml chloroform was then 

added, and the eppendorfs were vortexed for 15 seconds and followed by 

centrifugation at 13,000 RPM for 15 minutes at 4°C.  The top clear layers were then 

removed and placed into new labelled eppendorfs.  Middle and bottom layers were 

discarded safely into phenol waste in fume hood.  500µl of isoproponal was added to 

all the eppendorfs, followed by further vortexed, and centrifugation at 13,000 RIPM 

for 10 minutes at 4°C.  The supernatants were removed with double pipette tip and 
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discarded.  The RNA pellets were washed with 1ml 70% ethanol/DEPC 

(Diethylpyrocarbonate) treated dH20.  These were vortexed and centrifuged at 13,000 

RPM for 5 minutes at 4°C.  The supernatants were removed with double pipette tip 

and discarded.  The RNA pellets were left to air dry at room temperature with care 

taken not to let them completely dry out.  The RNA was then resuspended with 25–50 

µl of DEPC dH20 depending on size of RNA pellet on a shaker for 15 minutes at 

55°C.  A mixture of DNAse 1 (10µl) and RDD buffer (70µl) per RNA sample 

(RNAse-free DNase set, Qiagen) was added to each RNA sample and incubated for 

15 minutes at room temperature to remove all the DNAs.  The TRIZOL protocol must 

then be repeated to remove DNAse 1.  The resulting resuspended RNA pellet in 

DEPC dH20 was quantified using a spectrophotometer (A260/A280) with nuclease free 

dH20 as blank.  At this point RNA samples could be frozen on dry ice and stored -

80°C freezer. 

 

2.5 Polymerase Chain Reaction (PCR) 

Quantitative PCR (qPCR) for ChIP analysis was performed using the C1000™ 

Thermal Cycler (BIO-RAD).  The qPCR reaction is carried out in a total volume of 

10µl with 1µl of template DNA (from 50µl total of DNA elution volume).  The 

following master mix for the DNA inputs is used, containing PerfeCTa™ SYBR® 

Green FastMix™ (5µl SYBR® green), 0.5µl forward primer (5mM working stock), 

0.5µl reverse primer (5mM working stock) and 3µl dH20 for each reaction (Table 2.5 

for PCR primer sequences).  

The design of highly specific primers is essential for successful (real-time) PCR.  

BRF1 primers were designed and purchased from Invitrogen.  Gene Desert primer 

was used as a negative control primer.  An appropriate standard curve encompassing 

the DNA inputs within a linear range was constructed for each qPCR.  To avoid 

pipetting errors each sample was loaded in duplicate.  The expression levels in qPCR 

were obtained using the average of duplicate samples and the average of the loading 

control, acidic ribosomal phosphoprotein P0 (ARPP P0).  The ChIP signal was 

quantified with the formula (Ave. IP/ Ave. Input) – (Ave Neg. IP/ Ave. Input).  
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Experiments were performed in triplicate and overall means and standard deviations 

were calculated. 

Taqman was used for qPCR for BRF1 mRNA quantification of PC3 and PC3M cells 

using Applied Biosystems 7500 Fast Real-Time PCR systems (ThermoFisher).  

Cascade 3 primers and probe (UPL) 84 were used for control with standard curve 

dilutions at 1:2, 1:4, 1:16, 1:32.  BRF1 primer 2 used probe 62.  BRF1 standard curve 

dilutions were at 1:5, 1:25, 1:125, 1:625, 1:3125.  For final analysis comparing 

triplicate PC3 and PC3M (3 different cell passages) RNA levels of BRF1 at 1:25 

dilution used.   

We also wanted to quantify the mRNA levels of tRNAs in the stable PC3-BRF1 

versus BRF1-empty cells.  However, due to the small and repetitive nature of tRNA 

sequences we were not able to design Taqman suitable tRNA primers and PerfeCTa™ 

SYBR® Green Fast was therefore used for tRNA qPCR.  This showed that tRNAs 

were present in abundance but no successful quantification could be achieved.   

 

2.6 siRNA transfection using HiPerFect (Qiagen) 

1 million PC3M cells were seeded on 10cm plates in the morning.  Once the cells 

were settled on the plate, bijous were labelled mock (no siRNA), control (scrambled 

siRNA) 10µM, Pol III 5µM (Pol III 45), Pol III 10µM (Pol III 45), TFIIIC 10µM and 

20µM and each bijoux had 1.5ml of serum free media (SFM) + L-Glutamine 2mM 

added and then the appropriate siRNAs added as per label 5-20µl depending on 

desired molarity.  To each sample, 22.5µl of HiPerFect (Qiagen) were then added.  

The bijous were gently mixed and incubated at room temperature for 10 minutes.  

Media were then aspirated and replaced with 8.5ml of the normal culture media.  The 

siRNA mix from each bijoux was added onto labelled cell plates in a drop wise 

manner, and plates were gently rocked to mix in siRNA solutions.  The cell plates 

were harvested 48 hours later for western blot analysis.   
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2.7 siRNA transfection using Amaxa system 
(Electroporation) 

PC3M cells were optimised for transfection with the Amaxa system, using Kit V and 

the Amaxa machine was set at T-13.  Labelled eppendorfs with 10µl of each 10mM 

siRNA was prepared in a sterile TC hood.  1 million cells per 100µl Nucleofector 

solution reaction was used in accordance with the manufacturer’s instruction.  Cells, 

Nucleofector solution and siRNAs were placed in labelled cuvettes and electroporated 

in Amaxa machine.  9ml of normal cell media was placed in labelled universals and 

cuvette samples were quickly transferred into the appropriately labelled universal 

containers, and were then plated onto labelled 10cm petri cell dishes.  Cells were 

harvested after culture for 48 hours for Western blot and BrdU analyses. 

 

2.8 siRNA transfection using RNAimax 

Cells were plated on the day before transfection, with 500,000 cells for each 10cm 

plate.  On the following day, solution A was prepared, consisting of 10µl RNAimax 

and 500µl Optimem, for each transfection, which was multiplied by number of 

experimental plates (x 6 = Mock, NTsiRNA2 Dharmacon, NTsiRNA3 Allstars, BRF1 

siRNA1, BRF1 siRNA 2, BRF1 siRNA3).  All BRF1 siRNAs were designed through 

Ensembl BLAST and Roche UPL (Universal Probe Library) primer design programs 

and ordered through Ambion® by Life Technologies™ (Table 2.4 for siRNA 

sequences).  Solution B was composed of 500µl Optimem and 4µl siRNA for each 

siRNA transfection dish.  1ml of solution A was added to solution B in labelled 

universals and incubated for 5 minutes at room temperature.  9ml of normal media 

were added to labelled universals.  Media was removed from the labelled cell plates 

and replaced with media plus solution A and B universal mixture.  These cell plates 

were then placed back in the TC incubators for 48 hours and then prepared for 

Western blot or BrdU/FACS analysis. BRF1 and Pol III siRNAs were purchased from 

Ambion.  NT siRNA2 and NT siRNA3 were purchased from Dharmacon and Qiagen, 

respectively. 
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For WST1 analysis, siRNA transfection was performed using RNAimax and solution 

A and B were scaled down for 96 well plates.   Cells were plated the day before with 

10,000 cells per well in 150µl of (normal) culture media.  Solution A was prepared for 

6 wells in 96 well dish (consisting of 50µl Optimem and RNAimax 3µl for each well) 

to prepare mastermix (i.e. 300µl Optimem and 18µl RNAimax).  Solution B was 

prepared 50µl Optimem and 3µl siRNA (10mM) in labelled eppendorfs for each 

siRNA.  53µl of solution A was added to all solution B samples, and incubated for 5 

minutes at room temperature.  360µl of normal media was added to all samples.  

100µl of normal media from the cell dishes was aspirated off, followed by the 

addition of 50µl of solution A+B to appropriately labelled-well.  The 96 well plates 

were then incubated for 48 hours in a TC incubator.  10µl of WST1 assay reagent 

(Roche) was added to each well and after 120 minutes samples were analysed in the 

microplate reader at 450 and 650nm wavelengths. 

 

2.9 Transformation 

20µl DH5α cells (Invitrogen) were placed in a labelled eppendorf and 10ng DNA was 

added (pcHA-Brf1; pcHA-empty; EGFP-Brf1; EGFP-empty).  pEGFP-C1 

(CLONTECH) was used as the EGFP plasmid.  This was left on ice for 30 minutes, 

heat shocked for 45 seconds in 42°C water bath, and then returned to ice for another 2 

minutes.  200µl Lysogeny Broth (LB) was added and cells incubated with shaking at 

225 RPM at 37°C for 1 hour. Cells were then plated on LB agar plates containing 

relevant antibiotics to select for growth of transformed E.coli (Ampicillin plates for 

HA-plasmid cells and Kanomycin plates for EGFP-plasmid cells) and plates incubated 

overnight at 37°C.  One colony was selected from each plate and placed in 10ml LB 

with appropriate antibiotic in flask and incubated with shaking at 37°C at 225 RPM 

for 6-8 hours.  This solution was then added to 150ml of LB and appropriate antibiotic 

and cultured in a shaker incubator at 37°C overnight.  This was then centrifuged in 

large sealed plastic containers at 3,000 RPM at 20°C for 30 minutes.  The cell pellets 

were then stored in freezer at -20°C.  The maxi prep from these cell pellets were 

carried out by core service within the Beatson Institute. 
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2.10 Transient BRF1 plasmid transfection  

Transient protein overexpression was performed in PC3, PC3M, DU145 and LNCaP 

cells in 96 well dishes for WST1 assay.  A master mix for each plasmid was prepared 

in an eppendorf to make up solution for 5 wells (per well, 20µl Opti-MEM® reduced 

serum media (Invitrogen), 0.1µg DNA plasmid and 0.5µl Lipofectamine2000® (LTX) 

(Invitrogen)) and labelled with each plasmid name; EGFP-Empty, EGFP-Brf1, HA-

empty and HA-Brf1.  1.2ml of cells with media was then added to give 10,000 

cells/well to each labelled bijoux.  200µl was added to each of the wells and placed in 

a TC incubator.  Samples were tested with WST1 assay 48 hours later as a surrogate 

for cell proliferation.  The transfection experiment was scaled up to a 6 well dish so 

that protein expression could be checked by a western blot.  For a 6 well dish, 500µl 

Opti-MEM®, 2µg DNA plasmid and 6.25µl LTX with 200,000 cells per well were 

required.  Plates were placed in a TC incubator for 48 hours at 37°C and 5% CO2.  

Western blot lysates for protein expression were prepared 48 hours later. 

 

2.11 Generation of stable cell clones with manipulated 
levels of BRF1 expression 

Two techniques were tried and both were successful in generating stable cell lines 

with upregulated BRF1 expression.  In this study, the use of lipofectamine technique 

had a higher yield of transfected cells and therefore quicker to get the cell populations 

selected and growing than the Amaxa electroporation method. 

For transfection using the Amaxa system, 5µg of the one of the following plasmids 

were added to an appropriately labelled eppendorf: EGFP-Empty; EGFP-Brf1; HA-

Empty; HA-Brf1.  To achieve 1x 10
6
 cells per Amaxa reaction, 4.5 x 10

6
 cells were 

resuspended in 450µl Nucleofector™ solution (Kit V for PC3 and kit R for LNCaP, 

respectively per manufacturer recommendation).  100µl of this mix was then added to 

each plasmid labelled eppendorf, gently mixed and added to plasmid labelled cuvettes.  

Optimised Amaxa™ programs were used: T-013 for PC3 and T-009 LNCaP cells, 

respectively.  These cuvette solutions was then transferred to plasmid labelled 
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universals of 9ml normal media and plated on 6cm labelled dishes and incubated for 

48-72 hours, depending on cell confluency.   

For transfection using the lipofectamine system, 10µg of plasmid DNA was diluted in 

1.3ml of Opti-MEM® Plus:Reagent Mix Plus at 1:1 ratio.  This was mixed gently and 

left to incubate for 10 minutes at room temperature.  17µl of lipofectamine-LTX 

reagent was then added and mixed gently, followed by incubation for 25 minutes at 

room temperature.  Media was aspirated off labelled 6cm plates with 60-70% cell 

confluency and replaced with 5ml of growth media to dish.  1.3ml of DNA-

lipofectamine LTX complex was then added directly to each dish with cells, and 

mixed gently by rocking the plates back and forth.  The cells were incubated at 37°C 

in TC incubator for 48 hours, with an appropriate selecting agent added to media at 48 

hours post-transfection.      

Selection process for cells containing plasmids used a 300µg/ml G418S sulphate 

solution (FORMEDIUM ™) in normal media for PC3 cells.  Once cells were growing 

well, cells were harvested and analysed by Western blotting to confirm the presence 

of a transfected expression construct and the level of transgene expression.  EGFP 

adds 27 kDa above normal BRF1 size (90 kDa).  HA adds 1 kDa above normal BRF1 

size.  The stable cell clones could then be frozen down and stored at -80°C. 

 

2.12 Cell number analysis (CASY counter
TM

 
(Innovatis)) 

1 million PC3 BRF1- and empty- plasmid stable cells were seeded into 25cm
3 

flasks 

with a total volume of 15ml normal media.  The cell number was counted after every 

72 hours of culture.  This was repeated six times in duplicate to calculate the mean 

cell doubling time.  
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2.13 Cell proliferation reagent (WST1) Assay 

After various transfections and treatments for 48-72 hours at 37°C and 5% C02 

condition, 10µl of cell proliferation reagent Water soluble tetrazolium salt-1 (WST-1, 

Roche) was added and incubated for 120 minutes.  WST-1 reagent is a non-

radioactive, spectrophotometric quantification of cell proliferation, growth, viability 

and chemo-sensitivity for 96-well-plate experiments.  The absorbance of the samples 

using a microplate reader was used against a background control.  The wavelength for 

measuring the absorbance was 450nm and the reference wavelength was set at 650nm. 

 

2.14 BrdU FACS Cell Cycle Analysis 

10µl of BrdU (Cell labelling reagent, VWR) was added to 10cm plates (1:1000) and 

after gentle mixing, these plates were placed into a TC incubator for 1 hour.  Then all 

the media was removed and placed in 15ml labelled falcon tubes (so that all the dead 

cells are included in FACS analysis).  2ml of PBS was added to the plates and the 

cells were scraped off into labelled Falcon tubes.  Cell pellets were generated by 

centrifugation at 1,000 RPM for 5 minutes, with all subsequent washes followed by 

centrifuging at 1,000 RPM for 5 minutes to pellet the cells.  The cell pellets were then 

washed twice in 3 ml PBS.  Cells were resuspended in 300µl PBS and 700µl of pure 

ethanol added drop by drop with mixing to avoid cells clumping.  Cells were fixed in 

70% ethanol at -20°C for at least 1 hour.   

Cells were then pelleted and ethanol aspirated off.  Cells were washed in PBS and 

resuspended in 100µl PBS and 100µl 4N hydrochloric acid and incubated for 15 

minutes at room temperature.  1ml PBS wash was followed by 1ml PBT wash (18ml 

PBS + 2ml PBS/5%BSA+ 20µl Tween).  100µl anti-BrdU antibody mix (BD 

Biosciences) (1:40 PBT dilution) was then added to the resuspended cell pellets, and 

incubated at room temperature for 30 minutes.  1ml PBT wash was repeated and the 

supernatant removed.  A secondary antibody anti-mouse Alexa Fluor 488 (1:40 PBT 

dilution) was added and incubated for 30 minutes at room temperature in the dark.  
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This was then removed and 1ml PBT wash was followed by 1ml PBS wash.  The cell 

pellets were finally resuspended in 300µl PBS containing 10 µg/ml Propidium Iodide 

(PI, stock 1mg/ml in PBS) for 30 minutes at room temperature and then analysed on a 

FACS Calibur machine. 

 

2.15 Propidium Iodide (PI) staining for FACS Cell Cycle 
Analysis 

PI is a fluorescent dye which binds to DNA and can be used to quantify the DNA 

content of the cells, thus determining the stage in the cell cycle (e.g. G2/M cells have 

doubled the DNA content of cells in G1 phase).  The cytometer is able to exclude cell 

doublets as a true G2 cell will have a smaller width than two G1 cells passing through 

the beam together consecutively.  PI staining was used for cell cycle analysis instead 

of BrdU for stable cell lines containing EGFP, as EGFP expression generates light of 

a similar wavelength to that emitted by the BrdU/Alexa Fluor 488 antibody complex.    

Cells were harvested including floating and loosely adherent cells.  Cells were washed 

in PBS and pelleted.  Cells were resuspended in 1ml 2% FBS + PBS.  250µl of 

PI/Triton stock (250µl PI stock 1mg/ml/ 750µl 5% Triton in dH20) and 100µl of 

RNAse was then added.  The samples were incubated for 10 minutes at room 

temperature in the dark or wrapped in tin foil, and then analysed in FACS Calibur 

machine.   

 

2.16 Colony Forming Assay (Anchorage independent 
growth) 

Soft agar assay was used to test the colony forming potential of the PC3 BRF1-

plasmid and empty-plasmid control stable cell lines.  2% agarose (Sigma 15517-022) 

was made in dH20 and autoclaved.  2X RPMI solution was made, comprising of 10ml 

of 10X RPMI (1640-medium , Sigma 037k2364-R1145), 1ml 100x  L-Glutamine ; 

2.7ml 7.5% sterile filtered sodium bicarbonate Sigma S8761; 10µl 1mg/ml folic acid 
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Sigma F8758 dissolved in 1M NaOH; 10ml FBS and 26.3ml sterile dH20.  The base 

layer consisted of mixing 2% agarose and 2X RPMI at 1:1 ratio in a sterile universal.  

1.5ml of this mixed solution was added into each well of a 6-well plate and allowed to 

set at 4°C for 30 minutes.  The stable cell lines were tested in triplicates.  Cells were 

harvested and passed through a 40µM nylon BD Falcon cell strainer and then added to 

1.5ml top layer solution of (3ml 2XRPMI + 2ml sterile H20 + 1ml 2% agarose) at 

30,000 cells per well in volume of 0.3ml media.  The top layer was allowed to set at 

room temperature under the TC hood for 1 hour.  Cell plates were moved to TC 

incubator for 14 days, following which colonies were counted using the 

immunofluorescence microscope.   

 

2.17 Immunofluorescence 

Cells were plated on glass bottom plates with 2ml of normal media.  Once the cells 

reached 70-80% confluency, they were washed with 1ml PBS.  Cells were fixed with 

200µl 4% paraformaldehyde in PBS, for 15 minutes.  Then, the cells were washed 

with 1ml of PBS.  To permeabilise the cells, 200µl ice cold 100% methanol for 10 

minutes at -20°C was added to cells.  Cells were then washed with PBS.  Blocking of 

non-specfic signals was carried out for 1 hour with 200µl of 10% FBS + 0.5% BSA + 

0.3% Triton x100 in PBS pipetted over fixed cells.  Blocking solution was removed 

and a primary antibody solution was prepared (1% BSA + PBS + 0.3% Triton X100) 

with an appropriate antibody dilution (BRF1 Bethyl Laboratories 1:100 and HA-Tag 

(6E2) mouse mAb 1:100 Cell signalling Technology®).  100µl primary antibody 

solution was pipetted and left on cells overnight at 4°C.  Cells were washed with PBS 

and 100µl secondary antibody solution (1% BSA + PBS + 0.3% Triton X100) at 

1:250 dilution of antibody (mouse and rabbit monoclonal antibody Alexa 555) was 

added for 1 hour at room temperature in dark.  Then the glass bottom plates were 

rinsed with PBS and one droplet of DAPI mounting medium for fluorescence was 

added and left in dark at 4°C.  Cells were analysed with the Nikon A1R 

immunofluorescence laser microscope. 
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2.18 Scratch wound healing assay (IncuCyte, Essen 
Bioscience)  

15,000 cells/ well were plated on Essen Bioscience 96 well ImageLock Microplates 

(4379), and incubated for 72 hours in a TC incubator.   Once the cells had reached 

100% confluence, they were washed with PBS and then scratched with the 

WoundMaker
TM

 to make homogenous 700-800 micron wide scratch wounds.   They 

were then washed twice more with PBS to wash away any cell debris and then 100µl 

of media was replaced.  Cells were then placed in the IncuCyte incubator for 2 hourly 

images to be recorded for 24-48 hours.  Analysis was performed to calculate wound 

density/ time with the IncuCyte computer program.    

 

2.19 Docetaxel siRNA experiments 

Reverse transfection protocol was adopted to assess whether transient inhibition of 

BRF1 by RNAimax and docetaxel treatment co-operated to inhibit PC3M and DU145 

cells growth.  For these experiments we used 10,000 cells/ well for 96 plate dish.  A 

master mix was made up in a sterile eppendorf in TC hood per well of 10µl 

OptiMEM, 3pmol/µL siRNA and 0.3µl RNAimax and scaled up according to the 

number of wells required for each treatment.  siRNA master mix was briefly vortexed 

and 10µl of the mixture was put in each well and incubated in a TC hood at room 

temperature for 30 minutes.  90µl of cells was then added to each well and incubated 

overnight at 37C and 5% CO2.  The next day, 100µl of either 2nM (GI10) or 4nM 

(GI20) docetaxel or 0.1% DMSO vehicle control or normal media was added to the 

cells with siRNA master mix as per labelled plate design.  The cells were then 

incubated for 48 hours in a TC incubator and then the WST1 assay was performed as 

a marker of cell proliferation analysis.  
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2.20 Mouse models 

Prior to starting animal work, Home Office Licenses were obtained (project license 

60/3947, personal license 60/13374).  The mice were housed in individually ventilated 

cages on autoclaved sawdust bedding.  The room conditions were maintained at 20-

22°C, humidity 60-70% and light/dark 14/10 hours.  Mice were fed with a commercial 

rodent pelleted food and autoclaved water.  All procedures were in compliance with 

Home Office License.   Mice were ear-notched for identification purposes at weaning 

and ear clippings sent to Transnetyx
TM

 (Cordova, Tennessee USA) for genotyping by 

PCR.  

Mice were euthanised at various ages by carbon dioxide asphyxiation and 

immediately weighed prior to post-mortem.   At post-mortem prostate, enlarged 

lymph nodes, liver, kidney and lung were dissected out.  Prostate tissues were 

harvested and equally divided for snap-freezing in dry ice and stored at -80
o
C for 

protein and nucleotide analysis and fixing in 10% neutral buffered formalin and then 

paraffin embedded for histopathological and immunohistological analysis. Other 

dissected organs were sent for histological analysis in formalin. 

Three novel genetically modified mouse models (GEMMs) were developed in this 

study.  Firstly, a GEMM with prostate specific Brf1 overexpression to assess whether 

this could drive prostate carcinogenesis and secondly, an inducible prostate specific 

Brf1 knock down GEMM to see whether this could affect prostate homeostasis and 

morphology.  Transgenic mice were specifically designed carrying the human BRF1 

transgene (hBRF1Tg) and these were crossed firstly with Probasin-cre (Pb-Cre) mice 

to see whether Brf1 could be a sole driver of prostate carcinogenesis and secondly 

with a known PC GEMM that has homozygote Pten loss in prostate epithelial cells 

(Wang et al, 2003) to see whether Brf1 overexpression resulted in a more aggressive 

PC phenotype.  Brf1 knockdown in prostate epithelial was achieved using the 

inducible Nkx3.1-Cre
ERT2

 GEMM (Wang et al, 2009).  These three GEMMs are fully 

explained in Chapter 5. 
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PB-Cre positive males, but not females, were used for breeding, because the probasin 

promoter is active in the oocytes of PB-Cre females resulting in the recombination of 

loxP – flanked alleles in a number of tissues in the offspring.  Both male and female 

Nkx3.1 mice were used for mating and therefore, these cohorts were quicker to set up.  

 

2.21 Immunohistochemistry (IHC) 

Mouse tissues for histological analysis were formalin fixed paraffin-embedded and 

stained with H&E (hematoxylin and eosin) and evaluated for precursor lesions, such 

as hyperplasia, low and high grade PIN and adenocarcinoma (as defined by Shappell 

et al, 2004).  The tissue sections were prepared and stained in the Beatson Institute 

histology laboratories with optimised protocols.  Intensity of IHC staining was graded 

on a scale of: no apparent staining, weak staining, moderate staining and strong 

staining.  Antibodies used for IHC are listed in Table 2.3.   

2.22 Preparing protein lysate from mouse prostate 
samples 

1.5ml T-PER reagent (ThermoFisher Scientific), 15µl protease inhibitor cocktail 

(PIC) 10µl phenylmethylsulfonyl fluoride (PMSF) and 1.5µl 1M dithiothreitol (DTT) 

were added and mixed in a bijoux.  300µl of this cell lysing solution was added to the 

fine grounded tissue samples from individual mouse prostates in Precellys lysing tube 

containing ceramic beads on ice.  A Precellys 27 lysing and homogenising machine 

was used following manufacturer’s protocol.  Precellys tubes were centrifuged at 

1,000 RPM for 5 minutes at 4°C to pellet ceramic beads.  Homogenised and lysed 

samples were transferred to labelled eppendorfs and 13,000 RPM centrifuged for 15 

minutes at 4°C.  The supernatants were kept and protein samples were used for 

western blotting.   

2.23 RNA microarray preparation for mouse samples 

The Qiagen RNA extraction and cDNA preparation protocol were used for RNA 

microarray preparation of mouse prostate samples.  Quality of RNA extraction was 
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calculated on the Bioanalyser A260/A280 and RNA electrophoresis was performed to 

calculate RIN and rRNA ratio 28s:18s (© 2003-2009 Agilent Technologies Inc.).  

Illumina® (Ambion/ Life Technologies) TotalPrep™ RNA Amplification kit and 

protocol were used and manufacturer’s instructions were followed. 

2.24  Statistical Analysis 

Statistical analysis was performed using Prism 5 and Microsoft Excel 2010 software.  

Prism 5 was used to generate the KM survival curves and calculate Log rank P values.  

All other statistics and figures were analysed and generated in Excel and Powerpoint.  

All experiments were repeated in triplicate unless stated otherwise and the mean of 

these experiments was calculated.  The error bars were calculated and represented in 

terms of mean ± standard deviation.  

For all WST1 assay experiments 2-tailed 2-sample equal variance student T tests were 

performed, to see whether there was a significant difference between the control 

samples (for example empty plasmid or NTsiRNA control) and the Brf1 manipulated 

samples.   

For all FACS cell cycle experiments 2-tailed 2-sample equal variance student T tests 

were performed, to calculate whether there was a significant difference between the 

control (NTsiRNA2) and the Brf1 manipulated samples. 

For RTqPCR and ChIP experiments 2-tailed 2-sample equal variance student T test 

were performed to see whether there was a significant difference between the PC3 and 

PC3M mRNA BRF1 levels (RTqPCR) and the Brf1 promoter binding of oncogenes 

and control Gene Desert binding of oncogenes (ChIP).  
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Reagent                           Supplier 
BSA (Bovine Serum Albumin)              Sigma (Missouri, USA) 

DAPI (4’6-diamidino-2-phenylindole) Vector (California, USA) 

DMEM (Dulbecco’s Modified Eagle’s 

Medium) 

GIBCO (California, USA) 

DMSO (dimethyl sulfoxide) ThermoFisher (Massachusetts, USA) 

ECL (enhanced chemiluminescence) GE Healthcare (Buckinghamshire, UK) 

Ethanol Sigma 

FBS (fetal bovine serum) PAA (Pasching, Austria) 

L-glutamine GIBCO 

Lipofectamine 2000 Invitrogen (California, USA) 

Methanol Sigma 

MOPS SDS running buffer        Invitrogen 

NaCl Sigma 

PFA (paraformaldehyde) Science Services (Munich, Germany) 

Phosphatase inhibitors cocktail ThermoFisher 

Protease inhibitors cocktail ThermoFisher 

PVDF membranes (Polyvinylidene 

fluoride) 

GE Healthcare 

RNA Imax Invitrogen 

RPMI-1640 (Roswell Park Memorial 

Institute) 

GIBCO 

Tris-HCL Sigma 

Triton X-100 Sigma 

Trypsin GIBCO 

Tween-20 Sigma 

β-Mercaptoethanol Sigma 

WST-1 Cell Proliferation Reagent Roche (Risch-Rotkreuz, Switzerland) 

Table 2-1  List of Reagents 
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Solution Composition 
Phosphate Buffered Saline (PBS) 

 

170mM NaCl 

3.3mM KCl 

1.8mM Na2HPO4 

10.6mM KH2PO4 

pH 7.4 

Tris-Buffered Saline-Tween (TBST) 25mM Tris-HCl pH 7.4 

137mM NaCl 

5mM KCl 

0.1% Tween-20 

Immunoblotting cell lysis buffer 50mM Tris pH7.6 

150mM NaCl 

1% Triton x100 

0.5% Deoxycholate 

0.5% SDS 

1mM Na ortho-vanadate 

1Mm NaF 

1X protease inhibitor cocktail mix 

10.05mM PMSF 

1X phosSTOP (Roche) 

dH20 

Fixing solution 4% PFA 

96% PBS 

Immunoblotting blocking buffer 5% milk powder in TBST 

Immunofluorescence blocking 

buffer  

10% FBS  

1% BSA  

90% PBS 

Tris-EDTA 10mM Tris-HCl pH 8.0 

1mM EDTA 

Tris-buffered Saline (TBS) 25mM Tris – HCl pH 7.4 

137mM NaCl 

5mM KCl 

Nuclear extract buffer A (NEBA) 10mM Hepes pH 7.9 

1.5mM MgCl2 

10mM KCl 

1mM DTT 

0.1mM PMSF 

FA lysis buffer  

                                                                        

         

 

50mM HEPES-KOH pH 7.5 (1.2g 

HEPES) 

140mM NaCl (2.8ml 5M stock) 

1mM EDTA pH 8  

1 % Triton x-100 

0.1% Sodium Deoxycholate 

0.1% SDS 

RIPA buffer 50mM Tris-Cl pH 8.0 

150mM NaCl 

0.1% SDS 

0.5% deoxycholate 

1% NP-40 
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LiCl buffer 10mM Tris-Cl, pH 8.0 

250Mm LiCl 

0.5% deoxycholate 

0.5% NP-40 

1mM EDTA 

Table 2-2  List of buffers and their composition 

 

 

Antigen Supplier Cat/I.D. No. Application/ 

Dilution 
Actin (C-11) Santa Cruz 

(Texas, USA) 

sc-1615 WB/   1:1000 

AR Santa Cruz sc-816 WB/   1:1000 

BrdU BD Biosciences 

(California, USA) 

347580 FACS/    1:40 

BRF1 Bethyl 

(Texas, USA) 

A301-228A WB (1:5000), IHC 

(1:1000), IP (3µg/mg 

lysate), 

IF (1:500)    

BRF2 Abcam 

(Cambridge, UK) 

ab154658 WB/   1:1000 

ELK-1 (H-160) Santa Cruz sc-22804 WB (1:1000), IP 

ERG (C-20) Santa Cruz sc-354 WB (1:1000), IHC, IP   

ERG  Epitomics 

(California, USA) 

5115-1 WB/    1:5000 

HNF-4α Santa Cruz sc- 8987 WB  / 1:1000 

HSP-70 Abcam Ab3148-500 WB/  1:5000 

c-MYC N262 Santa Cruz sc-764 

 

IP, WB/  1:1000 

Pol II Abcam Ab-5408 IP 

Pol III In house RPC 155 WB/    1:1000 

Taf I-48 Santa Cruz sc-6571 IP 

TFIIIC 110 Santa Cruz 81406 WB/   1:1000    

TFIIIC 220 Abcam Ab-67 WB/   1:5000 

α-Tubulin Sigma T6557 WB/   1:2000 

Anti-rabbit IgG, 

HRP-linked  

Cell Signalling 

(Massachussetts, 

USA) 

7074 WB/   1:5000 

Anti-mouse IgG, 

HRP-linked 

Cell Signalling 7076 WB/   1:5000 

Table 2-3  List of antibodies 
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Oligo pair name 5’ to 3’ sequence 

BRF1 siRNA2 (s223824) 

Ambion California, USA 

Sense   GCCAGAAUGCAUGACUUCATT 

Anti      UGAAGUCAUGCAUUCUGGCTG   

BRF1 siRNA3 (s194479) Sense    CACCAGUCAGUUGACCAUUTT 

Anti       AAUGGUCAACUGACUGGUGGG 

BRF1 siRNA1 (s6323) Sense     GGCUCACGGAAUUUGAAGATT 

Anti        UCUUCAAAUUCCGUGAGCCTC 

NTsiRNA2  

Dharmacon, Colorado, 

USA 

 

Not disclosed 

NTsiRNA3  

Qiagen All Stars, Hilden 

Germany 

  

Not disclosed 

Pol III (45) 

Ambion 

CAAGUAUGGUGACAUCGU, Ambion pre-designed 

s21945:, si 2 

UCUAACCGUGGUUUCUCAAUUGGGA, 

Invitrogen custom Stealth RNA), 

TFIIIC (27) 

Ambion 

CAGUGAACGGAGAACGAU, Ambion pre-designed 

s6327 

Table 2-4  List of siRNA sequences  

 

Table 2.5 PCR primer 

sequences 

 

Locus name (Species) Primer Sequence  5’-3’ 

BRF1 B taq F      CCA GCC GTC TGT TTC CAT A 

 R     ACA CCT CGT GGT TCT TCT CC 

BRF1 Mouse F      ATG TGA GTC CAC ACT ACG GAA G 

 R     GAG CTG ACT GGT TGG AGT GTC 

ChIP BRF1 0.6 upstream  L     ACC GGG GAC TAG AGC TAA GG 

           R     GAG ACC GCG CTC ACT ATC C 

ChIP ARPPP0 (220) L     GCA CTG GAA GTC CAA CTA CTTC 

 R     TGA GGT CCT CCT TGG TGA ACAC  

Gene Desert 

 

Not disclosed 

Table 2-5  List of PCR primer sequences 
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3 BRF1 expression and transient manipulation 
of BRF1 in human prostate cancer cells 
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3.1 BRF1 expression in prostate cancer 

3.1.1 Introduction 

Pol III transcription products have been seen to be overexpressed in transformed and 

tumour cells (Scott et al, 1983; Chen et al, 1997; Winter et al, 2000; Felton-Edkins & 

White, 2002; Gomez-Roman et al, 2003).  Pol III transcription is tightly regulated in 

normal cells by tumour suppressors but this regulation is lost in cancer cells.  Most 

studies of Pol III regulation have proposed that control is mediated through TFIIIB 

(Marshall and White, 2008).  TFIIIB can bind to DNA, TFIIIC and Pol III, and its 

recruitment of Pol III to its specific genetic template is seen as the main control point 

for tRNA synthesis.  TFIIIB, and more specifically BRF1, is a molecular target of 

regulation by a wide variety of tumour suppressors, including p53 (Felton-Edkins et 

al, 2003b), PTEN (Woiwode et al, 2008), ARF (Morton et al, 2007), pRb (Felton-

Edkins et al, 2003) and oncogene activation by c-MYC and mitogen activated protein 

kinase ERK (Felton-Edkins et al, 2003a, White, 2004).  TORC1, MYC, Ras, p53 and 

pRb have all been shown to be deregulated pathways in PC and all can influence Pol 

III transcription.   

In this chapter, I present data investigating BRF1 expression in PC cell lines to define 

a possible role for BRF1 in this disease.  Relevant human PC cell lines will be 

identified to study the impact of altered BRF1 levels on cellular activity in vitro to 

help determine role of BRF1 in PC.  Tissue microarray (TMA) work is an invaluable 

tool merging the disciplines of pathology and molecular biology and is becoming 

essential for finding potential key gene targets in carcinogenesis.  Further samples will 

be investigated through oncomine (www.oncomine.org), a web based DNA 

microarray database and analysis program.  It identifies five independent studies of 

PC in which BRF1 mRNA is expressed at elevated levels.  For example, data 

collected by Magee et al, 2001 suggests significant upregulation of BRF1 mRNA 

expression in clinical prostate carcinoma relative to control benign prostate tissue.  In 

addition, BRF1 transcript levels were elevated further in PC metastases when 

compared to the primary tumours (Grasso et al, 2012; Varambally et al, 2005) and PC 

of higher Gleason score (Luo et al, 2002) (Figure 3.1).  Another Oncomine study 

developed primary cell cultures from thirty human PC prostatectomy tumours and 

http://www.oncomine.org/
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showed that BRF1 expression was significantly higher in the patients whose cancers 

recurred at one year versus those that did not (P = 0.018) (Nanni et al, 2006). 
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Figure 3-1  Oncomine RNA microarray database analysis of BRF1 overexpression in PC 
human tumour samples 

Four studies showing increased BRF1 expression on transcriptomic analysis in PC 

human clinical samples. A) Magee et al, 2001 data shows BRF1 expression 

significantly elevated in PC in comparison to normal prostate samples (p =0.039).  B)  

Grasso et al, 2012 data shows BRF1 expression significantly higher in metastatic PC 

samples in comparison to primary PC (P = 7.5 x 10
13

).  C)  Varambally et al, 2005 

data also shows BRF1 expression significantly higher in metastatic PC samples in 

comparison to primary PC (P < 0.002).  D)  Luo et al, 2002 data showing BRF1 

expression significantly higher in PC samples with higher Gleason Score 7 versus 

Gleason Score 6 (p = 0.037).  
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3.1.2  Results 

3.1.2.1 BRF1 expression in clinical prostate cancer 

Analysis of The Cancer Genome Atlas data through the cBioportal database 

(www.cbioportal.org) shows BRF1 expression is altered in 17% of all PC samples, 

with 12% being overexpressed and 5% of samples showing under expression.  In the 

metastatic dataset BRF1 expression is altered in 27% of samples with 22% being over 

expressed and 5% samples having BRF1 low expression.  BRF1 is upregulated more 

frequently than BRF2 and BDP1 for all PC and metastatic PC database. BRF1 

expression is higher in the metastatic PC database than the all PC database.   AR and 

MYC are also more highly expressed in the metastatic database with PTEN under 

expression being greater in the metastatic database.  Interestingly, the status of altered 

AR and BRF1 expression was found to be significantly mutually exclusive (Fisher 

exact test, p<0.001).  The samples with the highest MYC expression do not correlate 

closely with high BRF1 expression (Figure 3.2).  

 

3.1.2.2 BRF1 expression in vitro in human prostate cancer cell models 

Building on the evidence of upregulated BRF1 expression in clinical PC and its 

potential association with aggressive disease (Figures 1.4 & 1.5) I sought to 

characterise the status of BRF1 expression in a panel of human PC cell model as a 

tool for future studies on its functional significance in PC.  

Using Western blotting, BRF1 expression was detectable but at varying levels in a 

panel of PC cells and in the normal human prostate epithelial RWPE1 cell line (Figure 

3.3).  DU145 cells appeared to have the lowest levels of BRF1 expression while 

CWR22 cells expressed BRF1 at the highest level.  It is worth noting that all of the 

androgen receptor positive cells, namely CWR22, VCaP, LNCaP, expressed BRF1 at 

significant levels.  Also of note, following prolonged (4 hours) exposures, a second 

lower molecular weight band appears on the western blot for BRF1 expression.  

Importantly, analysing the PC3 cell line and its isogenic metastatic derived PC3M 

cells, I observed that PC3 expressed BRF1 protein at lower level than the more 
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aggressive PC3M cells, whereas LNCaP and CWR22 cells expressed higher BRF1 

expression than LNCaP-AI and 22RV1 cells, their respective androgen independent 

derivatives.   Intriguingly, to validate the data on this isogenic cell pair from Western 

blot analysis, quantitative RT-PCR (qRT-PCR) was performed to study BRF1 mRNA 

levels.  It is interesting to note that, despite enhanced BRF1 protein expression, PC3M 

cells demonstrated significantly lower levels of BRF1 transcript when compared to the 

parental PC3 cells (Figure 3.4), suggesting that BRF1 expression is, at least in part, 

controlled at the post-transcriptional level.   

In an attempt to characterise BRF2 expression in the context of data from BRF1 

expression, I performed Western blotting to probe for BRF2 in the same human 

prostate cell panel.  Due to a combination of poor performance of the available Brf2-

targeting antibody and possibly the low levels of BRF2 expression, I was not able to 

convincingly demonstrate its expression by Western blot analysis (data not shown).  

This is consistent with data from the literature: (i) cBio portal data (Taylor et al 2010), 

suggesting that BRF1 expression to be higher than BRF2 in clinical PC samples, and 

(ii) Cabarcas et al, 2008 demonstrated very low levels of BRF2 expression in DU145 

cells.   

Transcription factor IIIC (TFIIIC) is an essential part of the RNA pol III transcription 

complex.  I further studied the expression of TFIIIC (subunit 110 kDa) in parallel to 

BRF1 expression in the selected cell panel.  Similar to BRF1 expression, TFIIIC 

expression varied significantly across different cell lines studied.  The androgen 

receptor expressing (CWR22, LNCaP and VCaP) cells expressed moderate levels of 

TFIIIC, while the AR-negative DU145 and PC3 cells tended to express TFIIIC at 

lower levels.  Consistent with the differential BRF1 expression observed in PC3 and 

PC3M cells, TFIIIC was expressed at higher levels in PC3M cells when compared to 

the parental PC3 cells (Figure 3.5). 

To gain a better understanding of the BRF1-related pathway, I analysed the expression 

status of relevant oncogenic regulators of BRF1 transcription.  The expression level of 

cMYC, a key transcriptional factor for BRF1 and a very important oncogene in 

multiple tumour types, was studied by Western blot.  Figure 3.6 shows that, apart 

from VCaP and RWPE1 cells, cMYC expression was surprising similar across the rest 
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of the cell lines studied.  This contrasts with the pattern of BRF1 expression in the 

same PC cell panel, suggesting that other factors are involved in the regulation of 

BRF1 expression in prostate cancer.  Furthermore, in the cBioportal database, there is 

some co-occurrence between MYC and BRF1 mRNA overexpression but the areas of 

highest MYC overexpression do not appear to have high levels of BRF1 mRNA 

(Figure 3.2). 

c-MYC and ELK of the ETS family of transcription factors are known regulators of 

BRF1 expression (Gomez-Roman et al, 2003; Sansom et al, 2007; Raha et al, 2010; 

Oler et al, 2010) and therefore, potentially responsible for the upregulated BRF1 

described above.  There is also the possibility that ERG may regulate BRF1 

expression, as ERG shares DNA binding specificity with ELK-1 (Wei et al, 2010) and 

ELK-1 has been found to bind to the BRF1 promoter (Zhong et al, 2009).  

Approximately 50% of human prostate cancers have ERG-TMPRSS2, a recently 

identified gene fusion and possible oncogene (Hollenhorst et al, 2011).  VCaP cell 

model closely resembles prostate tumours that harbour TMPRSS2-ERG fusions and 

express prostate epithelial markers (Sun et al, 2008).  However, VCaP is the only cell 

line available to us that expresses the ERG-TMPRSS2 protein.  Our western blot 

using an ERG antibody (ERG 1/2/3 C-20 sc-353) also shows that VCaP is the only 

cell line to express ERG at appreciable levels (Figure 3.6).  Another antibody specific 

for ERG-TMPRSS2 showed the same result (not shown).  ELK-1 was detectable in all 

the PC cell lines.  Two different antibodies were tried for ELK-1 (Santa Cruz: ELK-1 

sc-355 and ELK-1 sc-22804), with both producing multiple bands on western blots.  

ELK-1 (sc-22804) seemed to produce the most consistent results and the data is 

shown in Figure 3.6, showing a dominant band at the expected molecular weight of 62 

kDa.  However, it is difficult to compare ELK-1 levels among different cell lines due 

to the multiple bands at higher exposure times.  

ChIP (Chromatin immunoprecipitation) was used to investigate whether MYC, ERG, 

and ELK-1 are bound to the BRF1 promoter in PC3, LNCaP and VCaP (Figure 3.7).  

RNA Pol II antibody was used as a positive control as it transcribes BRF1.  Taf 1-48 

antibody, a Pol I transcription factor subunit, was used as a negative control.  BRF1 

primers were designed using the UCSC human genome sequence database website.  
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Gene Desert primers mapping to a chromosomal region devoid of genes were used as 

a negative control.  PCR values (SQ or starting quantity) were normalised to inputs 

and subtracted from the negative control SQ values, Taf 1-48 (Figures 3.8 - 3.11).   

Pol II does occupy the BRF1 promoter in all PC cancer cells (Figure 3.8), reaching 

statistical significance in the LNCaP cells versus Gene Desert primer binding (t test, 

p< 0.05).  The high variability in the PCR values is likely due to the technical 

challenge of the ChIP protocol rather than a biological variation within the PC cells.  

VCaP has the highest ERG occupancy of the BRF1 promoter (Figure 3.10), which 

correlates well with ERG protein expression levels.  However, due to high variability 

in PCR values, this result did not reach statistical significance.  c-MYC had low levels 

of binding to BRF1 promoter which reached statistical significance in the LNCaP cells 

(t test, p value <0.05) (Figure 3.9).  ELK-1 had negligible binding to the BRF1 

promoter in this ChIP experiment (Figure 3.11).  Overall, due to experimental 

variabilities, ChIP results on the regulation of the BRF1 promoter were inconclusive. 

Taken together, transcriptional control of BRF1 gene may not be the only mechanism 

that controls the overall level of BRF1 protein expression.  Hence, I carried out a 

series of serum starvation experiments on PC3M cells, which express high levels of 

BRF1 protein.  Following serum starvation in PC3M cells, BRF1 expression at protein 

level drops by 24 hours but is then maintained at a constant level for up to 72 hours, 

following which BRF1 levels drastically diminished at 96 hours (Figure 3.12).  

Therefore, in the absence of growth stimulatory signals, BRF1 protein can be 

maintained, perhaps through basal levels of transcription/translation.  In addition, 

BRF1 may be a stable protein with prolonged half-life.  Treatment of cells with 

cyclohexamide to block translation can be used to investigate the protein half-life.  In 

the case of BRF1, protein levels were maintained to 72 hours, at time point at which 

we found significant cyclohexamide mediated toxicity (data not shown), hindering 

further study. 
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Figure 3-2  cBioportal analysis of PC samples 

Red shading means over expression and blue shading means under expression with mRNA 

expression analysed as a Z score = 2.0 compared to normal samples.  Data analysis was 

performed using TCGA dataset (All PC n=216; Metastatic PC n=37).  BRF1 expression is 

altered in 17% of all PC samples, with 12% being overexpressed and 5% of samples 

showing under expression.  In the metastatic dataset BRF1 expression is altered in 27% of 

samples with 22% being over expressed and 5% samples having BRF1 low expression. 
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Figure 3-3  BRF1 expression in human PC cell lines 

Western blot in a panel of PC cell lines (VCaP, PC3M, PC3, LNCaP,-AI, LNCaP , DU145 

cells, 22RV1, CWR22) and the benign RWPE1 cells (m = minute, h = hour, exp = 

exposure). 

 

 

Figure 3-4  RT-qPCR of BRF1 RNA levels in PC3 and PC3M cells 

RT-qPCR analysis was performed on total RNA extracted from PC3 or PC3M cells and 

normalised relative to the expression of a house keeping gene (Cascade 3).  Data represents 

mean of triplicate samples tested with error bars showing mean ± SD, n=3.  PC3 cells have 

higher BRF1 RNA expression than PC3M cells (student t test 2 tailed 2 sample equal 

variance analysis, p < 0.0008).  This is in contrast to BRF1 protein expression levels, 

where PC3M cells have more BRF1 than PC3 cells. 
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Figure 3-5  WB of TFIIIC expression in a panel of PC cell lines 

PC3 and DU145 cells (androgen independent) expressed the lowest levels of TFIIIC (110 

kDa), similar to the BRF1 expression in Figure 3.3.  The cells with the highest TFIIIC 

expression are VCaP and LNCaP, which are androgen sensitive and also have high levels 

of BRF1 (Figure 3.3). 

 

 

 

Figure 3-6  Western blot PC cell line panels showing protein expression of known 
oncogenes and potential BRF1 regulators. 

The western blots show that VCaP is the only PC cell line that expresses ERG.  All the PC 

cell line lines express ELK-1 and c-MYC.  RWPE-1 expresses the least c-MYC with the 

other PC cell lines (except VCaP) expressing consistently high levels of c-MYC. 
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Figure 3-7  Model of BRF1 upregulation by known PC oncogenes 

BRF1 is transcribed by Pol II.  It is known that the BRF1 promoter has DNA binding 

sequences for c-MYC and ELK-1.  ERG and ELK-1 have similar DNA binding specificity. 

 

 

Figure 3-8  Pol II binding at the BRF1 promoter in PC cells 

Pol II binds to the BRF1 promoter in all three PC cell lines tested.  Gene Desert primer is a 

negative control and shows negligible ChIP binding. However, due to the high variability 

of PCR values, statistical significance with only the LNCaP cells was reached (student t 

test, p value < 0.05).  PCR values (SQ) were normalised to inputs and subtracted from the 

negative control antibodyTaf1-48.  Data is expressed as means of three independent 

experiments with error bars showing standard deviation.   
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Figure 3-9  c-MYC binds to BRF1 promoter in PC cells 

c-MYC seems to bind to BRF1 promoter in all three PC lines.  Gene Desert primer is a 

negative control primer and shows negligible ChIP binding.  However, due to the high 

variability and low PCR values only LNCaP reached statistical significance (t-test, p value 

<0.05).   PCR values (SQ) were normalised to inputs and subtracted from negative control 

antibody Taf 1-48.  Data is expressed as means of three independent experiments with error 

bars showing standard deviation.   

 

 

Figure 3-10  ERG binds to the BRF1 promoter in VCaP cells 

ERG seems to bind to the BRF1 promoter in VCaP cells but not LNCaP and PC3 cells.  

Gene Desert primer is a negative control and shows negligible ChIP binding.  PCR values 

(SQ) were normalised to inputs and subtracted from negative control antibody Taf 1-48.  

Data is expressed as means of three independent experiments with error bars showing 

standard deviation.  
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Figure 3-11  ELK-1 does not seem to bind to BRF1 promoter in PC cell lines. 

ELK-1 does not seem to bind to BRF1 promoter in this ChIP experiment.  Gene Desert 

primer is a negative control and shows negligible and similar results to BRF1 ChIP 

binding.  PCR values (SQ) were normalised to inputs and subtracted from the negative 

control antibody Taf1-48.  Data is expressed as means of three independent experiments 

with error bars showing standard deviation.   

 

 

 

Figure 3-12  BRF1 expression in PC3M after serum starvation 

The Western blot shows that at 96 hours of serum starvation the BRF1 expression is 

markedly reduced.  Tubulin was used as the loading control. 
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3.2 Transient manipulation of BRF1 in human PC cells 

3.2.1 Introduction 

Complete inhibition of BRF1 or tRNA transcription is incompatible with life.  A Brf1 

knock out mouse model was developed at the Beatson Institute which showed complete 

early embryonic lethality (White et al, Unpublished data).    In yeast, deletion of Brf1 is 

lethal (Colbert and Hahn, 1992).  Homozygous Brf deletion (brf
EY02964

 and brf
c07161

)  in 

flies is lethal and can be rescued by GAL4-dependent expression of a UAS-brf  transgene 

(Marshall et al, 2012).  Partial reduction in Brf1 is well tolerated and using murine primary 

bone marrow-derived macrophages to study lipopolysaccharides (LPS)-induction of Pol III 

activation, Brf1 knockdown (KD) pheno-copied the effects of chemical inhibition of Pol 

III by ML-60218, resulting in suppression of the expression of target tRNAs (Graczyk et 

al, 2015).  This indicates that a KD approach can be used to investigate the cellular role of 

BRF1 in vitro. 

Borck et al (2015) manipulated Brf1 in developing zebrafish embryos and showed 

suppression of Brf1 expression in zebrafish embryos caused similar neuro-developmental 

phenotypes to patients with the cerebellar-facial-dental syndrome, an autosomal recessive 

disorder.  Intriguingly, through whole-exome squencing, bi-allelic mis-sense alterations of 

the BRF1 gene were identified in three affected families.  In Drosophila, the status of Brf1 

has also been demonstrated to critically control growth.  Using the ubiquitous daughterless 

(da)-GAL4 driver and UAS-brf RNAi to suppress Brf1 expression and associated Pol III-

dependent transcription in Drosophila, the developing larvae were shown to have 

significantly reduced growth rates (Marshall et al, 2012).  In addition, more targeted 

suppression of Brf1 expression in the salivary glands or the eye marginal discs of flies also 

led to reduced tissue growth (Marshall et al, 2012).  Importantly, UAS-brf mediated rescue 

of Brf1 expression was able to reverse the growth inhibition associated with the brf RNAi 

transgene.  Interestingly, they found that overexpression of Brf1 alone was not sufficient to 

stimulate Pol III activity or affect organismal growth (Marshall et al, 2012). 

As high levels of BRF1 expression was associated with poor prognosis in patients with PC 

(Figures 1.4 and 1.5) and was detected in the more aggressive derived PC3M cells relative 

to the parental PC3 cells (Figure 3.3), I decided to manipulate BRF1 levels in PC cell lines 

in vitro to determine whether this would affect cellular activity. 
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3.2.2  Results 

To enhance the level of BRF1 expression, I employed two mammalian expression systems 

containing the human BRF1 coding sequence, namely EGFP-Brf1 and HA-Brf1 along with 

the respective vector alone controls (EGFP- empty and HA-empty).  Following transient 

transfection of BRF1 encoding plasmids mediated by lipofectamine, BRF1 expression was 

significantly increased in PC3, PC3M and DU145 cells relative to controls (Figures 3.13 – 

3.15).  With the exception of the HA-Brf1 transfection experiments in PC3M and DU145 

cells, both BRF1 expressing constructs significantly promoted proliferation in PC3, PC3M 

and DU145 cells as determined by WST1 assay (Figures 3.13 – 3.15).  Therefore, 

transiently increasing BRF1 levels appears to be mitogenic in PC cell lines, consistent with 

expression studies shown earlier in this chapter.  This suggests that modulation of BRF1 

may be a potential new target in PC treatment.   

I was interested to further test if suppression of BRF1 expression may have the opposite 

effect to inhibit cell proliferation.  A siRNA-mediated gene silencing approach using three 

independent siRNAs targeting distinct regions of the BRF1 coding sequence was employed 

to transiently knockdown (KD) BRF1 expression.  Two transfection protocols were 

evaluated lipofectamine (RNAimax) and electroporation (Amaxa).  Both were effective at 

reducing BRF1 expression on Western blot analysis but RNAimax was less toxic to the 

cells generally and was therefore used for all further experiments.  In addition to BRF1-

targeting siRNAs, two Pol III-targeting siRNAs were also included as technical positive 

controls.  BRF1 expression was significantly suppressed by all three BRF1-targeting 

siRNAs, while cells transfected with the non-targeting (NT) control siRNAs (namely NT 

siRNA2, 3) continued to express BRF1 (Figure 3.16).  BRF1 siRNA2 appeared to be most 

consistent and reproducible in the three PC cell lines tested.  It is reassuring to note that 

upon Pol III KD, Pol III expression was drastically reduced without significant impact on 

BRF1 expression (Figure 3.16). 

In all five PC cell lines, namely PC3, PC3M, DU145, LNCaP and LNCaP-AI cells, 

transient BRF1 KD reduced cell proliferation as determined by WST1 assay (Figures 3.17 

- 3.21).  I further investigated this BRF1-mediated effect on proliferation using 

BrdU/FACS cell cycle profile analysis.  I found that transient KD of BRF1 in PC3, PC3M 

and DU145 consistently resulted in a decrease in G1 phase and an accumulation of the 

G2/M population (Figure 3.22 – 3.24).  This was statistically significant in PC3 and PC3M 

for both BRF1 siRNA2 and BRF1 siRNA3 when compared to NT siRNA2.  The sub-G1 
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cell population was not found to be affected by BRF1 KD, suggesting that apoptosis or cell 

death did not play a key part in the observed changes in proliferation and instead that 

decreased BRF1 reduces proliferation by impacting on the cell cycle (Figures 3.23-3.24). 

A final WST1 assay experiment was set up to pose the question whether transient BRF1 

KD could have a synergistic anti-proliferative effect with chemotherapy agent docetaxel 

(Figure 3.25).  PC3M cells were transfected with BRF1 siRNAs by RNAimax reverse 

transcription protocol overnight and then docetaxel (Doc.) at a concentration to achieve 

growth inhibition of 20% (GI20) was added.  DMSO was used as the control.  

Interestingly, BRF1 siRNA2 had the greatest reduction in cell proliferation and adding in 

docetaxel did not add to this effect.  However when the BRF1 KD was less effective such 

as with BRF1 siRNA3 it initially appears adding in docetaxel does have a potentially 

synergistic effect of lowering the cell proliferation.  However, this also happens with the 

NT siRNA controls and therefore, most likely signifies that adding in docetaxel is just 

more toxic to the cells and not acting synergistically with BRF1 KD. 
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Figure 3-13  Transient BRF1 upregulation in PC3 cells increases cell proliferation. 

BRF1 was transiently upregulated by lipofectamine plasmid transfection (EGFP-Brf1 and 

HA-Brf1) in PC3 cells.  EGFP-empty (EGFP-) and HA-empty (HA-) were used as 

controls.   

A)  WST1 assay was performed 72 hours later, as a marker of cell proliferation. WST1 

assay measures cell viability via changes in wavelength absorbance (OD
450-650

) and the 

results are expressed as a percentage of their empty vector OD values. For both EGFP-Brf1 

(t-test, p= 0.0008) and HA-Brf1 (t-test, p = 0.006) the increase in cell viability in relation 

to their controls were statistically significant.  Data is expressed as means of three 

independent experiments with error bars showing standard deviation.   

B) Western blot analysis confirmed transient overexpression of BRF1 with actin as a 

loading control.  The top Brf1 band is ectopic BRF1 as EGFP adds 27 kDA of weight to 

endogenous BRF1 (90kDa, the lower Brf1 band). HA only adds 1kDa of weight to 

endogenous BRF1 and therefore, there is no obvious separation between the endogenous 

and ectopic BRF1 bands for HA- Brf1 cells.    
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Figure 3-14  Transient BRF1 upregulation in PC3M cells increases cell proliferation. 

BRF1 was transiently upregulated by lipofectamine plasmid transfection (EGFP-Brf1 and 

HA-Brf1) in PC3M cells.   

A)  WST1 assay was performed 72 hours later, as a marker of cell proliferation.  WST1 

assay measures cell viability via changes in wavelength absorbance (OD
450-650

) and the 

results are expressed as a percentage of their control empty vector OD values.  EGFP-Brf1 

shows an increase in cell viability relative to its control (p =0.009) as analysed by t-test.  

Data is expressed as means of three independent experiments with error bars showing 

standard deviation.   

B)  Western blot analysis confirmed transient overexpression of BRF1 with tubulin as a 

loading control.  The top Brf1 band is ectopic BRF1 as EGFP adds 27 kDA of weight to 

endogenous BRF1 (the lower Brf1 band). HA only adds 1kDa of weight to endogenous 

BRF1 and therefore, there is no obvious separation between the endogenous and ectopic 

BRF1 bands for HA- Brf1 cells.    
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Figure 3-15  Transient BRF1 upregulation in DU145 cells increases cell proliferation. 

BRF1 was transiently upregulated by lipofectamine plasmid transfection (EGFP-Brf1 and 

HA-Brf1) in DU145 cells.  

A)  WST1 assay was performed 72 hours later, as a marker of cell proliferation.  WST1 

assay measures cell viability via changes in wavelength absorbance (OD
450-650

) and the 

results are expressed as a percentage of their empty vector OD values.  EGFP-Brf1 showed 

significantly increased cell viability relative to its EGFP- control (t test, p = 0.02).  HA-

Brf1 showed a trend of increased cell viability relative to its HA-control but due to large 

variability this was not significant.  Data is expressed as means of three independent 

experiments with error bars showing standard deviation.   

B) Western blot analysis confirmed transient overexpression of BRF1 with tubulin as a 

loading control.  The top Brf1 band is ectopic BRF1 as EGFP adds 27 kDA of weight to 

endogenous BRF1 (the lower Brf1 band). HA only adds 1kDa of weight to endogenous 

BRF1 and therefore, there is no obvious separation between the endogenous and ectopic 

BRF1 bands for HA- Brf1 cells.    
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Figure 3-16  Transient knock down (KD) of Pol III and BRF1 in PC3M cells. 

This shows a Western blot confirming BRF1 siRNA knockdown with Amaxa using 3 

different BRF1 siRNAs and 2 different Pol III siRNAs.  BRF1 siRNA2 seems to be the 

most effective and reliable of the siRNAs.   
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Figure 3-17  Transient BRF1 KD decreases cell proliferation in PC3 cells. 

BRF1 was transiently knocked down by siRNA transfection using RNAimax in PC3 cells.  

A)  WST1 assay was performed 72 hours later as a marker of cell proliferation (OD
450-650

).  

Results are expressed as percentages relative to NT siRNA2 (purchased from Dharmacon).  

Cells treated with BRF1 siRNA1 (p = 0.024) and BRF1 siRNA2 (p= 0.000003) show 

reduced cell viability relative to NT siRNA2 as calculated by t-test.  BRF1 siRNA3 did not 

reduce cell proliferation.  Data is expressed as means of four independent experiments with 

error bars showing standard deviation.    

 B)  Western blot analysis confirms KD of BRF1 by BRF1 siRNA1, siRNA2 and siRNA3 

at 72 hours. 
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Figure 3-18  Transient BRF1 KD reduces cell proliferation in PC3M cells. 

BRF1 was transiently knocked down by siRNA transfection with RNAimax in PC3M cells.   

A)  WST1 cell viability assay was performed at 72 hours (as a marker of cell proliferation) 

(OD
450-650

).  WST1 assay results are expressed as percentages relative to NT siRNA2 

(purchased from Dharmacon).  BRF1 siRNA2 (p = 0.006) and BRF1 siRNA3 (p= 0.021) 

show decreased cell viability relative to NT siRNA2 as calculated by t-test.  Data is 

expressed as means of three independent experiments with error bars showing standard 

deviation.   

B) The western blot of BRF1 and tubulin (loading control) shows the BRF1 KD was 

successful at 72 hours. 
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Figure 3-19  Transient BRF1 KD reduces cell proliferation in DU145 cells. 

BRF1 was transiently knocked down by siRNA transfection with RNAimax in DU145 

cells. WST1 cell viability assay was performed at 72 hours (as a marker of cell 

proliferation) (OD
450-650

).   

A)  WST1 assay results are expressed as percentages relative to NT siRNA2 (Dharmacon).  

BRF1 siRNA1 (p = 0.012), BRF1 siRNA2 (p= 0.001) and BRF1 siRNA3 (p=0.018) all 

show reduced cell viability relative to NTsiRNA2 as calculated by t-test.  Data is expressed 

as means of three independent experiments with error bars showing standard deviation.   

B)  Western blot analysis confirms BRF1 KD at 72 hours. 
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Figure 3-20  Transient BRF1 KD reduces cell proliferation in LNCaP cells. 

BRF1 was transiently knocked down by siRNA transfection with RNAimax in LNCaP 

cells. WST1 cell viability assay was performed at 72 hours (as a marker of cell 

proliferation) (OD
450-650

).   

A) WST1 assay results are expressed as percentages relative to NT siRNA2 (purchased by 

Dharmacon).  BRF1 siRNA1 (p = 0.043), BRF1 siRNA2 (p= 0.022) and BRF1 siRNA3 

(p=0.003) all show decreased cell viability relative to NT siRNA2 as calculated by t-test. 

Data is expressed as means of three independent experiments with error bars showing 

standard deviation.   

B)  Western blot analysis confirms BRF1 KD at 72 hours.  
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Figure 3-21  Transient BRF1 KD reduces cell proliferation in LNCaP-AI cells. 

BRF1 was transiently knocked down by siRNA transfection with RNAimax in LNCaP-AI 

cells. WST1 cell viability assay was performed at 72 hours (as a marker of cell 

proliferation) (OD
450-650

).   

A) WST1 assay results are expressed as percentages relative to NT siRNA2 (purchased by 

Dharmacon).  BRF1 siRNA1 (p = 0.0005), BRF1 siRNA2 (p= 0.000001) and 

BRF1siRNA3 (p=0.0061) all show reduced cell viability relative to NT siRNA2 as 

calculated by t-test.  Data is expressed as means of three independent experiments with 

error bars showing standard deviation.   

B)  Western blot analysis confirms BRF1 KD was successful at 72 hours. 
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Figure 3-22  Transient BRF1 KD causes G2/M arrest in PC3 cells. 

BRF1 was transiently KD by siRNA transfection with RNAimax in PC3 cells.  FACS 

(BrdU/PI) analysis of PC3 cells following siRNA mediated KD of BRF1 shows a change 

in the cell cycle profile in comparison NT siRNA2 (Dharmacon) at 72 hours.  In PC3 cells 

KD by BRF1 siRNA2 shows a significant decrease in G1 phase (p = 0.034) and S phase (p 

= 0.042) and increase in G2/M phase (p = 0.013) in comparison to NTsiRNA2 as 

calculated by t-test.   With BRF1 siRNA3 KD there is a significant decrease in G1 phase (p 

= 0.007) and increase in G2/M phase (p = 0.004) when compared to NT siRNA2 by t-test 

analysis.  Data is expressed as means of four independent experiments with error bars 

showing standard deviation.   
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Figure 3-23  Transient BRF1 KD causes G2/M arrest in PC3M cells. 

BRF1 was transiently knocked down by siRNA transfection with RNAimax in PC3M cells.  

FACS (BrdU/PI) analysis of PC3M cells following siRNA mediated KD of BRF1 shows a 

change in the cell cycle profile in comparison to NT siRNA2 (Dharmacon) at 72 hours.  In 

PC3M cells KD by BRF1 siRNA2 shows a significant decrease in G1 phase (p = 0.034) 

and increase in G2/M phase (p 0.032) in comparison to NT siRNA2.   BRF1 siRNA3 KD 

results in significant subG1 increase (p =0.030), G1 phase decrease (p = 0.046) and G2/M 

phase increase (p = 0.025) in comparison to NT siRNA2, by t-test analysis.  Data is 

expressed as means of four independent experiments with error bars showing standard 

deviation.   

 

 

Figure 3-24  Transient BRF1 KD causes trend of G2/M arrest in DU145 cells. 

BRF1 was transiently knocked down by siRNA transfection with RNAimax in DU145 

cells.  FACS (BrdU/PI) analysis of DU145 cells following siRNA mediated KD of BRF1 

shows a change in the cell cycle profile in comparison to NT siRNA2 (Dharmacon) at 72 

hours.   However, in DU145 cells none of the observed changes of G1 decrease and G2/M 

increase reach statistical significance by t- test analysis.  Data is expressed as means of 

three independent experiments with error bars showing standard deviation.   
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Figure 3-25  WST1 assay of transient BRF1 KD with docetaxel (GI20) treatment in PC3M 
cells. 

PC3M cells were transfected with BRF1 siRNAs by RNAimax reverse transcription 

protocol overnight and then docetaxel (Doc.) at a concentration to achieve growth 

inhibition of 20% (GI20) was added.  DMSO was used as the control.  In this experiment it 

is clear to see that BRF1 siRNA2 has the greatest reduction in cell proliferation and adding 

in docetaxel does not add to this effect.  However when the BRF1 KD is less effective such 

as with BRF1 siRNA3 it seems adding in docetaxel does have a potentially synergistic 

effect of lowering the cell proliferation. However, adding in docetaxel to the NTsiRNAs 

also shows a reduction in cell proliferation.  Therefore, this may simple be showing the 

additional toxicity of docetaxel to the cells.  This experiment was a pilot study and only 

repeated twice and therefore, no meaningful statistical analysis is possible. (Means of n=2 

are shown). 
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3.2.3 Discussion 

There has been limited published data on BRF1 protein expression in PC cell lines.  

Cabarcas et al, 2008 analysed BRF1 protein expression level in DU145 cells and found 

that it was similar to cervical cancer HeLa cells and breast cancer MCF-7 cells.  However, 

they found that tRNA transcription levels varied considerably between the three cancer cell 

lines.  tRNA transcription was approximately five fold higher in HeLa cells as compared to 

DU145 and MCF-7 cells.  They suggested a possible explanation for the observed tRNA 

transcription levels not correlating with BRF1 protein levels is that cancer cells may 

already express BRF1 levels far above limiting concentrations for RNA Pol III 

transcription. 

All the PC cancer cell lines tested in this study showed easily reproducible BRF1 protein 

expression on Western blot.  The variation in BRF1 expression between the PC cell lines is 

interesting because it suggests that the AR dependent cell lines have higher BRF1 protein 

expression than the AR independent cell lines. There is some emerging evidence that Pol 

III activity may be hormone driven.  For example, estrogen receptor positive (ER+) human 

breast cancer biopsies had higher BRF1 expression than estrogen receptor negative (ER-) 

breast cancer cases (Julka et al, 2008).   Also, AR dependent LNCaP-FGC cells expressed 

more SHOT-RNAs than AR independent PC3 and DU145.  Zhong et al, 2014 have shown 

Alcohol induced increases in c-Jun activity increases estrogen receptor (ER)α expression 

and ERα occupancy in the BRF1 promoter to enhance BRF1 expression, resulting in 

elevating Pol III gene transcription.  In contrast, tamoxifen was shown to inhibit BRF1 

expression and Pol III gene transcription via the c-Jun and ERα pathway to repress cell 

proliferation (Zhong et al, 2014).  

The other interesting finding from the PC cell line panel is that BRF1 protein expression is 

lower in PC3 cells levels than its more aggressive metastatic counterpart, PC3M.  This 

suggests Pol III activity may be a marker of a more aggressive phenotype in PC cell lines.  

This is in keeping with the cBioportal data that shows BRF1 mRNA expression is greater 

in the metastatic samples than the all PC sample data.  Also, Nam’s unpublished TMA data 

also supports that the patient tumour samples with higher BRF1 IHC staining had poorer 

survival outcomes than those with lower BRF1 staining scores.  It would certainly be 

useful to examine further PC patient clinical samples with a wider variety of Gleason 

grades and metastatic samples with clinical follow up data to see whether BRF1 IHC 

scoring is a potential prognostic marker.  
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Interestingly, the mRNA levels of BRF1 in PC3M were lower than in PC3 cells, in contrast 

to BRF1 protein expression.  It would be interesting to do further qRT- PCR analysis of the 

other cell lines to see whether there is a common theme that the mRNA and protein levels 

do not correlate.  This may give further evidence that BRF1 protein expression is 

dominantly under post-transcriptional control.   

It is likely that the regulation of BRF1 protein expression is extremely complicated and 

variable depending on the cell line and patient.  BRF1 expression is probably controlled at 

the transcription and translational level by multiple transcription factors and epigenetic 

factors.  It should also be remembered that in vitro cell line studies are essentially looking 

at one patient’s molecular biology and therefore to get a good overall understanding of 

mechanisms regulating BRF1 transcription many different in vitro and in vivo models 

should be analysed.  From our ChIP data, the three cell lines tested seem to have different 

drivers regulating BRF1 expression and Pol III activity generally.  For example, ERG 

seems to only bind to the BRF1 promoter in VCaP cells in appreciable levels in keeping 

with ERG protein expression only being evident in VCaP cells.  However, it is difficult to 

draw firm conclusions due to wide result variation.  Frustratingly, the ChIP protocol is a 

multistep process with numerous technical variables that could be potentially optimised.  

For example, if time had allowed, additional antibodies and primers could have been tried.  

Positive control primer sets for genes known to be regulated by these transcription factors 

could have been tested, for example, cyclin D2 for MYC.  However, as the regulation of 

the BRF1 promoter was not the central focus of this study further optimisation of ChIP 

protocol can be addressed in future studies.   

 Transient manipulation of BRF1 in this study was effective and reproducible in all the PC 

cell lines tested.  These experiments have shown that increasing BRF1 increases cell 

proliferation, whereas reducing BRF1 expression decreases cell proliferation.  Some may 

argue that WST1 assay is not a definitive marker of cell proliferation but instead cell 

viability.  However, in the context of short-lived transient experiments other measurements 

of cell proliferation are difficult to achieve.  Reassuringly, the FACS analysis of the BRF1 

KD experiments did not show a significant change in sub-G1 phase which would signify 

apoptosis and cell death.  Instead BRF1 KD impacts the cell cycle of the cell causing the 

cells to arrest in G2/M phase with a reduction in G1 phase.  Interestingly, it is known that 

the Pol III activity is at its highest in late G1, S and G2 phases and lowest levels during 

early G1 and M phases (Johnson et al, 1974; Gottesfeld et al, 1994; White et al, 1995; Hu 

et al, 2004).   
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To determine the mechanism for the resulting increase in cell proliferation with transient 

manipulation of BRF1 it is important to assess whether BRF1 is actually incorporated into 

the pol III complex.  This could be tested by co-immunoprecipitation experiments using 

antibodies to pull down pol III and western blot for BRF1 to see whether increased levels 

of BRF1 are incorporated into the transcription complex.  Alternatively, one could use 

ChIP assays to show higher levels of BRF1 at promoters of genes where one could also see 

pol III binding. Furthermore, to see if the phenotypes seen from overexpression are due to 

altered pol III activity one could perform knock-down of pol III to see whether this 

reverses the phenotype.   

Docetaxel is a semi-synthetic taxane and is the first line chemotherapy drug for CRPC.  

Docetaxel-induced microtubule stabilisation arrests cells in G2/M phase of cell cycle and 

induces bcl-2 phosphorylation which promotes a cascade of events leading to apoptotic cell 

death.  Therefore, we were interested to see whether combining BRF1 KD and docetaxel 

treatment on PC cells would have a synergistic effect.  It is clear that both docetaxel and 

BRF1 KD reduce cell proliferation of PC3M cells.  However, when BRF1 KD is working 

at its maximal level at suppressing cell proliferation (Brf1 siRNA2) it seems adding in 

docetaxel does not enhance this antiproliferative effect.  In contrast, when the BRF1 KD is 

less effective in supressing cell growth (Brf1 siRNA3), the addition of docetaxel caused a 

further reduction in cell proliferation.  However, this was also evident in the NT siRNA 

controls and therefore, the addition of docetaxel is more likely just more toxic to all the 

PC3M cells and not acting synergistically with Brf1 KD.  To take these experiments 

forward, different levels of BRF1 KD and growth inhibition of docetaxel could be tested.  

Also, FACS analysis to assess cell cycle effects of combination treatment of BRF1 KD and 

docetaxel.  Furthermore, different cell lines should be tested especially androgen 

dependent cell lines.  Interesingly, the pathways for docetaxel-induced apoptosis appear to 

be different in androgen-dependent and androgen-independent PC cells (Pienta, 2001). 
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4 Functional contribution of BRF1 upregulation in 
PC3 cells 
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4.1  Introduction 

A number of studies have investigated the impact of altered BRF1 expression on cell 

growth and RNA Pol III activity.  Drosophila harbouring functional-deficient Brf1 mutants 

showed reduced levels of expression for Pol III targets such as tRNAs and 5S RNA.  These 

mutants progressed through embryogenesis and organogenesis normally, but failed to grow 

due to cell-autonomous decrease in growth as well as abnormal cell cycle progression to 

result in polyploidy and mitotic cells (Marshall et al, 2012).  Cervical biopsies infected 

with oncogenic HPV16 expressed elevated levels of 5S rRNA, tRNA
Arg 

and tRNA
Sec 

when 

compared with HPV-negative biopsies.  BRF1 expression was maximal in those samples 

displaying the highest levels of tRNA and 5S rRNA (Daly et al, 2005).  Furthermore, 

increasing the level of BRF1 in cervical cells specifically increased the induction of tRNA 

and 5S rRNA genes (Daly et al, 2005).  In mouse embryonic fibroblast (MEFs), changes in 

cellular TBP concentrations altered cellular proliferation rates (Zhong et al, 2007).   

In Rat1a fibroblasts, increasing cellular TBP (TATA-binding protein) expression did not 

alter the proliferation rates, but promoted anchorage-independent growth and tumour 

formation in athymic mice (Johnson et al, 2003).  Johnson et al, 2008, studied the effects of 

suppressing TBP function or expression, by stably expressing increased amounts of TBP 

containing a mismatch RNA or shRNA to target Brf1 expression (reducing BRF1 levels by 

two-fold), respectively.  While these cells showed no changes in the proliferation rates, 

there was significant inhibition of TBP-mediated anchorage-independent growth upon 

reduction of Brf1 expression.  Furthermore, decreasing Brf1 expression significantly 

decreased tumour volume of subcutaneous xenografts in an athymic mouse model, along 

with reduced Pol III transcription (Johnson et al, 2008).  

Johnson et al, 2008, also generated stable cell lines (Rat1a fibroblasts) expressing HA-

tagged Brf1 (HA-Brf1) as well as a mutant form of BRF1 (BRF1-T145D) that mimics 

phosphorylation at this position.  Phosphorylation of BRF1 at threonine 145 by ERK 

enhances BRF1 interactions with Pol III and TFIIIC (Felton-Edkins et al, 2003a).  HA-

Brf1 was consistently expressed at levels approximately 30% higher than BRF1-T145D.  

Brf1 overexpression (HA-Brf1) resulted in modest enhancement of Pol III transcription of 

pre-tRNA
Leu

 and 7SL RNA and more pronounced increase in tRNA
Met

i, whereas BRF1-

T145D resulted in a more significant increase in all of these RNA pol III transcripts.  

However, neither Brf1 overexpression nor Brf1 activation had an effect on cell 

proliferation rates and anchorage independent growth.  Therefore, they concluded that 
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while Brf1 overexpression or activation induces Pol III transcription, this is insufficient to 

promote transformation of Rat1a fibroblasts (Johnson et al, 2008).   

Using the Rat1a fibroblast cell line, Johnson et al, 2008, manipulated cMyc and Brf1 

expression, with overexpression of c-Myc via lentiviral infection and Brf1 knockdown via 

shRNA which repressed Brf1 expression by 50% without altering TBP expression.  c-Myc 

expression resulted in increased Pol III transcription with increased precursor tRNA
Leu

, 

tRNA
Met

i and 7SL RNA expression, whereas reducing Brf1 expression inhibited the Myc-

driven increase in these tRNAs.  Interestingly, c-Myc mediated growth in soft agar and 

tumorigenesis were repressed by decreases in Brf1 and RNA pol III transcription.  

Therefore, it was concluded that Brf1 overexpression in Rat1a fibroblasts and subsequent 

enhanced Pol III transcription is necessary for c-Myc mediated transformation and 

tumorigenesis (Johnson et al, 2008). 

There is currently no published data on manipulating BRF1 in prostate cancer cells.  From 

my transient BRF1 manipulation experiments, I would hypothesise that stable up-

regulation of BRF1 expression in PC cells would promote cellular proliferation and 

enhance soft agar cell colony growth.  If this proves to be the case, I would plan to carry 

out in vivo experiments and inject these more aggressively behaving cells subcutaneously 

into nude mice and compare tumour size and presence of metastases with nude mice 

injected with cells containing the empty control plasmid.   
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4.2  Results 

To fully assess the effects of BRF1 overexpression in PC cells, I wish to develop PC cell 

lines that show stable upregulation of BRF1 expression.  PC3 and LNCaP were selected 

for transfection with a BRF1 containing expression plasmid construct.  PC3 cells have 

fairly low levels of BRF1 expression, and are androgen independent.  The androgen 

receptor (AR) positive LNCaP cells have relatively high levels of BRF1 expression and are 

androgen responsive.  Unfortunately, in my hand, LNCaP cells did not tolerate the 

transfection process, and hence I focused subsequent investigations on PC3 cells over-

expressing BRF1.   

I used electroporation with Amaxa® to transfect EGFP- (EGFP-empty and EGFP-Brf1) 

and HA- (HA-empty and HA-Brf1) containing expression plasmids into PC3 cells.  The 

EGFP-plasmid expressing PC3 cells grew very well, and three independent cell clones 

were derived, namely EGFP-Brf1 clone 4, clone 5 and clone 6 (referred as EGFP-Brf1 

CL4, CL5, CL6 thereafter).  The EGFP-Brf1 selected cells all demonstrated high levels of 

BRF1 expression, while the cell clones transfected with the EGFP-empty vector (EGFP- 

clones 1 and 2; EGFP –CL1 and CL2 thereafter) consistently showed lower BRF1 (Figure 

4.1- 4.3, including data from a pooled cell line; see section below).  Unfortunately, the HA-

plasmid PC3 cells did not show consistently elevated BRF1 expression in comparison to 

their empty HA-plasmid cells so they were not studied in subsequent experiments (data not 

shown).   

Stable overexpression of BRF1 was hypothesised to cause increased cell proliferation.  

However, our WST1 assay and Casey® counting cell proliferation studies suggest there is 

no effect on cell proliferation when BRF1 is overexpressed in PC3 cells (EGFP-Brf1 CL4 

and CL5 versus EGFP-CL1).  In fact, initially it appeared that BRF1 overexpression 

caused a reduction in cell proliferation as measured by WST1 assay (Figure 4.1), and this 

effect appeared to be lost in higher passaged cells, with higher passages of the EGFP-Brf1 

clones showing similar proliferation rate to EGFP- control cells (Figure 4.2).  This may be 

a result of a delayed recovery period in cell growth after BRF1 transfection or an adaptive 

response to changes caused by BRF1 overexpression.   Western blots confirmed that the 

EGFP-Brf1 plasmid was still present in the cells, resulting in elevated BRF1 

overexpression at later passages (Figure 4.2).  Furthermore, BRF1 mRNA was confirmed 

to be highly elevated in EGFP-Brf1 cells (Figure 4.3. Data provided by Dr. C. Loveridge, 

Unpublished 2015).  
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To further characterise downstream effects of BRF1 overexpression on Pol III 

transcription, I carried out qPCR (quantitative polymerase chain reaction) to examine the 

expression levels of tRNAs.  I expected BRF1 overexpression to drive RNA Pol III 

transcripts, such as tRNAs.  However, due to the huge abundance of tRNAs in the control 

and BRF1 upregulated cells, any difference in tRNA levels between these cell populations 

could not be quantified meaningfully (data not shown).   

To fully characterise the effects of BRF1 overexpression on cell proliferation, an additional 

EGFP-Brf1 clone (namely EGFP-Brf1 clone 6; EGFP-Brf1 CL6) was generated and 

analysed.  In addition, a pooled population was obtained by Fluorescence- Activated Cell 

Sorting (FACS) on EGFP CL4, CL5 and CL6 cells; this pooled multi-clonal population is 

referred to as EGFP-Brf1 Pool thereafter.  The corresponding control was derived from 

FACS sorting of EGFP-CL1 and EGFP-CL2 cells, referred to as EGFP-pool thereafter.  

BRF1 protein expression was increased in all the EGFP-Brf1 clones and EGFP-Brf1 Pool 

cells when compared to the EGFP- and EGFP-pooled cells (Figure 4.4).  Of note, the 

EGFP-Brf1 pool has less BRF1 protein expression than the individual EGFP-Brf1 clones.  

Cell proliferation is similar between all the EGFP- and EGFP-Brf1 cells on both Casey® 

counter and WST1 assay (Figures 4.5 and 4.6).  Therefore, it seems BRF1 overexpression 

does not influence cell proliferation rates.  Using soft agar colony assays, I next tested if 

BRF1 overexpression could influence cell colony forming ability.  Initially, EGFP-Brf1 

CL4 and CL5 versus EGFP-CL1 were tested with 100,000 cells seeded in triplicate in 6 ml 

dishes and this was repeated twice.  EGFP-Brf1 CL5 and EGFP-CL1 behaved the same 

with very similar colony forming ability.  EGFP-Brf1 CL4 had noticeably less colonies 

formed by 10 days (Figure 4.7).  This was repeated with the EGFP-Brf1 CL6 and EGFP-

Brf1Pool, with EGFP-CL1 and EGFP-Pool as controls, respectively.  Seeding 30,000 cells 

and running experiment for 14 days, I obtained fewer but larger colonies, which could be 

counted easier and with more confidence (Figure 4.8).  Interestingly, the EGFP-Brf1 CL6 

and EGFP-CL1 behaved the same with low colony forming ability and the EFGP-Brf1Pool 

and EGFP-Pool were similar with high colony forming ability.  Perhaps, the process of 

FACS sorting cells selected cells with certain degree of stickiness or polarity, such that 

FACS-selected pooled cells were more efficient in forming colonies.  However, regardless 

of this peculiarity, overexpression of BRF1 does not seem to influence colony forming 

ability of PC3 cells.     



125 
 

To investigate whether increased BRF1 can influence migration, I carried out wound 

scratch tests using the IncuCyte® system.  There was no marked difference between 

EGFP-Brf1CL5, EGFP-Brf1 CL4 and EGFP-CL1 cells (Figure 4.9).  Statistical analysis of 

triplicate experiments did not show any significant difference in migration velocity 

between any of the cell clones (data not shown).  EGFP-Brf1 CL6 and EGFP-CL1 also 

showed similar ability to close the wound introduced (data not shown).  Therefore, at least 

in a migration assay, BRF1 overexpression did not influence the mobility of PC3 cells.    

Immunofluorescence microscopy was performed to look for the impact of BRF1 

overexpression on cellular morphology, as well as to characterise the sub-cellular 

localisation of BRF1 (Figure 4.10).  EGFP-Brf1 cells looked distinctly different from 

EGFP- cells.  Firstly, as expected from its transcriptional role, marked nuclear BRF1 

staining was observed in EGFP-Brf1 cells.  Second, EGFP-Brf1 cells also tend to have 

enlarged multi-lobulated nuclei which seemed to correlate with the cells that had the 

highest BRF1 immunofluorescence intensity.   

To assess BRF1 overexpression effects on cell cycle progression, FACS analysis was 

performed using Propidium Iodide (PI) to profile the cell cycle (Figure 4.11).  

Interestingly, the EGFP-Brf1 cells showed a reduction in G1 phase and an increase in the 

following cell sub-populations: S phase, G2/M compartment and polyploid cells, in 

comparison to EGFP-cells.  These differences were all statistically significant (Figure 

4.11).  The increase in polyploidy cells supports the morphological changes seen on 

immunofluorescence microscopy.   



126 
 

 
 

 

 

  Figure 4-1  Stable overexpression of BRF1 in PC3 cells passage 7-9 

A) Western blot of PC3 EGFP-clone 1 (EGFP-) and EGFP-Brf1 clones 4 and 5 passages 

7-9 (right-left) showing high expression of BRF1 and EGFP in the EGFP-Brf1 CL4 

and CL5 in comparison to EGFP-.  The top BRF1 band is ectopic BRF1 (E-Brf1) as 

EGFP adds 27 kDA to weight of endogenous BRF1 (Brf1). 

B) WST1 assay of PC3 EGFP-clone 1 (EGFP-) and EGFP-Brf1 CL4 and CL5.  EGFP- 

appears to have slightly higher cell proliferation than EGFP-Brf1 CL4 at passages 7-9.  

Data is expressed as means of three independent experiments with error bars showing 

standard deviation.  

E-Brf1 
Brf1 
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Figure 4-2  Stable overexpression of BRF1 in PC3 cells passages 18-20. 

A) Western blot of PC3 EGFP- and EGFP-Brf1 clones 4 and 5 passages 18-20 (right – 

left) showing high BRF1 expression in EGFP-Brf1 clones 4 and 5 in comparison to 

EGFP-.  The top BRF1 band is ectopic BRF1 (E-Brf1) as EGFP adds 27 kDA to 

weight of endogenous BRF1 (Brf1). 

B) WST1 assay of PC3 EGFP- and EGFP-Brf1 CL4 and CL5 showing that cell 

proliferation is the same between all the clones at higher passage numbers.  Data is 

expressed as means of three independent experiments with error bars showing standard 

deviation.   

 

 

 

 

E-Brf1 
Brf1 
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Figure 4-3  BRF1 mRNA levels are higher in the EGFP-Brf1 cells than the EGFP- cells 

EGFP-Brf1Pool and EGFP-Brf1 CL6 have higher levels of BRF1 mRNA in comparison to 

EGFP- Pool and EGFP-CL1 respectively as measured by qPCR (Data provided by C. 

Loveridge, Unpublished, 2015).  Data is expressed as means of three independent 

experiments with error bars showing standard deviation.   

 

 

 

 

 

 

Figure 4-4  Stable overexpression of BRF1 in PC3 cells 

This WB shows BRF1 expression in PC3 stably transfected cells with EGFP-Brf1 (clones 

4, 5 and 6) and EGFP-empty (EGFP-clone 1) plasmids.   EGFP-pool is EGFP FACS sorted 

pool of EGFP- clone 1 and 2.  EGFP-Brf1 Pool is EGFP FACS sorted pool of clones 4, 5 

and 6.  EGFP-Brf1 Pool has lower levels of BRF1 expression than the individual EGFP-

Brf1 clones.  The top BRF1 band is ectopic BRF1 (E-Brf1) as EGFP adds 27 kDA to 

weight of endogenous BRF1 (Brf1).  Tubulin was used as a loading control.   

E-Brf1 
Brf1 
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Figure 4-5  Casey® counter:  BRF1 upregulation in PC3 cells does not affect cell 
proliferation. 

Cell proliferation was calculated as cell doubling/days by Casey® Counting cells every 3 

days after 1 million cells were seeded in flasks for all the different clones.  EGFP-Brf1 

CL4 has the slowest proliferation rate but all the other BRF1 upregulated clonal subsets are 

equal to the EGFP- clone and pool.  This experiment lasted for 9 passages.  (Passage 7-16) 

Data is expressed as means of nine cell doubling/day calculations with error bars showing 

standard deviation.   
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Figure 4-6  WST1 assay:  BRF1 upregulation in PC3 cells does not affect cell proliferation. 

WST1 assay results show there is a high variability within each of the cell clonal subsets 

and therefore, there is no significant difference between the EGFP-Brf1 cells and the 

EGFP- cell. Data is expressed as means of three independent experiments with error bars 

showing standard deviation.   
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Figure 4-7  Soft agar colony assay of EGFP- versus EGFP-Brf1 CL4 and CL5. 

100,000 cells were seeded and colonies above a predetermined size were counted 10 days 

later.  EGFP-Brf1 CL5 and EGFP- were very similar in their colony forming abilities and 

caused colonies readily.  EGFP-Brf1 CL4 formed markedly less colonies than both EGFP-

Brf1 CL5 and EGFP- . Data is expressed as means of two independent experiments with 

error bars showing standard deviation.   

 

 

Figure 4-8  Soft agar colony assay of EGFP- versus EGFP-Brf1 CL6 and EGFP-Pool versus 
EGFP-Brf1 Pool. 

30,000 cells were seeded and colonies above a predetermined size were counted 14 days 

later.  EGFP-Brf1 CL6 and EGFP- (clone 1) had similar colony forming abilities and this 

was generally low.  Interestingly, despite these experiments being set up at exactly the 

same time and same conditions the EGFP FACS sorted pools of EGFP- and EGFP-Brf1 

had very high colony forming abilities and similar to each other.  Data is expressed as 

means of two independent experiments with error bars showing standard deviation.   
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Figure 4-9  BRF1 upregulation in PC3 cells does not affect cell migration 

Scratch wound test analysis using IncuCyte® showed that EGFP-Brf1 CL5 and EGFP- 

behaved in a similar way.  EGFP-Brf1 CL4 cells were slightly slower at migrating together 

to close the wound gap but not significantly.  This figure only shows one representative 

experiment.  The experiment was repeated 3 times and showed no statistically significant 

difference in cell migration velocity between all the PC3 cell EGFP clones (Data not 

shown).  E- (blue circle) = EGFP-CL1; EB4,5 = EGFP-Brf1 CL4, CL5 cells (black triangle 

and red square respectively). 
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Figure 4-10  BRF1 upregulation causes cell morphology changes . 

Immunofluorescence microscopy showing nuclear DAPI (blue), EGFP (green) and BRF1 

(red Alexa 555) staining in EGFP- (clone1) and EGFP-Brf1 CL6.  BRF1 is densely 

concentrated in the nucleus in the BRF1 upregulated cells as expected.  Interestingly, some 

of the BRF1 upregulated cells appear polyploidy with multiple nuclear in the cells and look 

very different from the EGFP- cells. 
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Figure 4-11  BRF1 upregulation in PC3 cells leads to cell cycle changes. 

FACS/PI analysis shows EGFP-Brf1 CL6 cells cause a markedly significant reduction in 

G1 phase (p < 0.00006), increase in S phase (p < 0.03) and G2/M arrest (p < 0.00001) and 

polyploidy cells (p < 0.005) in comparison to EGFP- CL1.  EGFP-Brf1 Pool in comparison 

to EGFP-Pool showed the same marked changes with decrease in G1 phase (p < 0.0003) 

with increase in S phase (p < 0.04), G2/M arrest (p < 0.00007) and polyploidy (p < 0.002). 

(*,**, *** = p values < 0.05, 0.01, 0.001 respectively).  Data is expressed as means of 

three independent experiments with error bars showing standard deviation.   
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4.3  Discussion  

In summary, BRF1 overexpression in PC3 cells did not display significant functional 

impact.  Therefore, in vivo subcutaneous xenograft experiments in a nude mouse model 

were not performed.  It was unfortunate that transfection experiments using LNCaP cells 

were not successful.  It would be important to study additional cell lines stably over-

expressing BRF1.  PC cell lines with higher levels of endogenous BRF1, such as LNCaP 

or CWR22, may respond differently to increasing BRF1 expression and produce a more 

aggressive phenotype.  It may be the case that BRF1 is not an important driver in PC3 cells 

and therefore, overexpressing BRF1 has minimal impact on PC3 phenotype.     

Interestingly, stable upregulation of BRF1 in PC3 cells produces similar cell cycle profile 

changes as transient reduction of BRF1 in PC3 and PC3M, with G2/M arrest being the 

dominant feature (Figure 3.24 & 3.25).  Therefore, perhaps there is a critical level of BRF1 

and going above or below this affects cell cycle profile and progression.  It would be 

interesting to see the downstream effects of BRF1 overexpression on other cell cycle 

dependent transcription factors as a means of explaining these cell cycle changes.  If our 

stable overexpressing BRF1 PC3 cell line had produced a more significant functional 

phenotype, it would have been important to do RNA deep sequencing analysis as a means 

of assessing its downstream effectors.  However, without a distinct difference in cell 

behaviour between the control cells (EGFP- cells) and the upregulated cells (EGFP-Brf1 

cells) this would be an unnecessary cost.   

Enhanced BRF1 expression in PC3 nevertheless clearly resulted in significant changes in 

their cellular morphology and cell cycle profile.  Besides these observations on 

morphology and cell cycle profile, the evidence of enhanced BRF1 in clinical PC and its 

association with reduced patient survival would suggest a meaningful role of BRF1 

expression in clinical PC.  Hence, analysis of the role of BRF1 in an in vivo genetically 

modified mouse model (GEMM) was considered. 
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5 Manipulation of BRF1 in GEMM 
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5.1 Introduction 

There is now abundant evidence that mouse prostate models can recapitulate different 

stages of prostate tumorigenesis, including the time taken for tumour to develop and the 

behaviour of the resulting malignancy, through manipulation of selected genes of interest.  

Prostate tumours that develop in GEMM often do not have the same complexity of copy 

number alterations as clinical human prostate tumours studied and therefore, they can 

provide an opportunity to conduct integrative mouse-human tumour genomic analysis to 

identify critical oncogenic drivers (Wanjala et al, 2015).  They also allow assessment of 

tumour suppressors and oncogenic pathways, as potential targets for anticancer therapies 

and as preclinical models for development and validation of anticancer therapies.   

Historically, there have been broadly two types of GEMM, transgenic (oncogene gain-of-

function) or knockout (tumour suppressor loss-of-function).  The knock out GEMM can be 

further divided into germline deletions, conditional deletion of a floxed allele and inducible 

deletion of an allele using a drug-induced system.  In 1996, Gingrich et al described the 

first mouse transgenic prostate model, namely the Transgenic Adenocarcinoma of the 

Mouse Prostate (TRAMP) model, which used prostate specific promoters to express SV40 

T antigens, leading to Rb1 and p53 inactivation solely in prostate epithelial cells.  These 

mice developed;- at aged 6 weeks prostate intra-epithelial neoplasm (PIN), at 12 weeks 

high grade PIN (HGPIN) and at 24 weeks poorly differentiated prostate carcinomas with 

close to 100% penetrance and distant organ metastases (Gingrich et al, 1997).  However, 

the TRAMP model had carcinomas with high neuroendocrine differentiation and rarely 

bone metastases, thus clinically dissimilar to human prostate adenocarcinomas (Chiaverotti 

et al, 2008; Masumori et al, 2001).    

Germline inactivation of several classic tumour suppressor genes, such as Rb1, p53 and 

Cdkn1B has not been informative for PC.  For example, p53, Cdkn1B (p27KIP1) deletion 

has no effect on PC development and mice lacking Rb1 are embryonic lethal (Powell et al, 

2003).  However, germline deletion of Pten in GEMM provided essential evidence that 

PTEN is an important tumour suppressor in human cancer.  Pten null (Pten 
-/-

) mice result 

in embryonic lethality, whereas Pten heterozygote mice have dysplasia and/or carcinoma 

of multiple organs, such as the large and small intestines, lymphoid, breast, thyroid, 

endometrium and often later in life prostate (as reviewed by Di Cristofano et al, 2000).  

Heterozygote Pten knockout mice (Pten
+/-

) have reported to develop PIN with a variable 
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penetrance from 40-50% (Podsypanina et al, 1999; Di Cristofano et al, 1998) to 90-100%  

but no progression to invasive carcinoma (Freeman et al, 2006; Wang et al, 2003b).   

Second generation transgenic GEMM used variations of the Probasin promoter to 

investigate oncogenic pathways.  For example, human c-MYC was expressed in the Lo-

MYC mice under control of a weaker Probasin promoter, whereas, Hi-MYC mice under 

control of stronger promoter ARR2PB, both developed PIN at 3-6 months and invasive 

adenocarcinoma at 10-12 months (Ellwood-Yen et al, 2003).  To be able to investigate 

invasive PC, a GEMM with prostate specific Pten homozygote deletion (PB-Cre4: 

Pten
LoxP/LoxP

) using Probasin-Cre4 was developed (Wang et al, 2003b).  PB-Cre4 has been 

engineered from prostate specific rat probasin (PB) promoter and incorporates two 

androgen-responsive regions required for AR mediated expression (Kasper et al, 1994).  

PB-Cre4 has been shown to be very effective and robust at driving prostate specific 

transgene expression (Wu et al, 2013).  Heterozygote Pten loss in the prostate cells resulted 

in HGPIN whereas loss of two Pten alleles shortened the latency of PIN formation and led 

to invasive adenocarcinoma at 9-29 weeks, with evidence of metastases to lymph nodes 

and lung (Wang et al, 2003b).  Furthermore, Pten null (PB-Cre4: Pten
LoxP/LoxP

) mice 

developed androgen independent prostate tumours after castration (Wang et al, 2003b).   

Wang et al, (2003b) were the first to show that prostate specific homozygous Pten loss 

alone is sufficient for PC initiation.  Furthermore, Pten loss of heterozygosity (LOH) is a 

rate-limiting step for PC initiation and progression to metastatic PC (Wang et al, 2003b).  

However, other research groups using prostate specific homozygote Pten loss GEMM 

could not reproduce overt adenocarcinoma and metastatic spread (Backman et al, 2004; 

Trotman et al, 2003; Chen et al, 2005).  In our lab, PB-Cre4:Pten
flox/flox 

produced relatively 

slow progression to invasive cancer beyond 10 months of age without evidence of 

metastases at 18 months (Ahmad et al, 2013).  Further analysis has shown that, in 

conditional Pten loss mice, prostate tumour cells develop senescence, thus explaining the 

long latency in tumour development and precludes their advancement to the invasive and 

metastatic phenotype (Chen et al, 2005).    

A possible limitation of Probasin-Cre GEMM is that Cre activation and expression is post-

natal, before the prostate gland has reached adult maturity (Wu et al, 2001).  To address 

this, other promoters have been used to generate prostate specific Cre-mediated Pten 

conditional knockout GEMM leading to variable phenotypes based on timing of genetic 

event and therefore disease development and progression of prostate carcinogenesis.  For 



139 
 

example, the Osr1 (odd skipped related 1)- Cre promoter activates at E11.5 (embryonic 

day 11.5) in urogenital sinus epithelium and remains switched on throughout prostatic 

epithelium development (Grieshammer et al, 2008).  Osr1-Cre:Pten
LoxP/LoxP

 mice can 

develop HGPIN at 4 weeks and locally invasive prostate tumours at 12-16 months of age 

(Kwak et al, 2013).  Post-castration, there was no significant regression of prostate tumours 

but the signals for androgen receptor (AR) immunoreactivity shifted from nuclear to 

cytoplasm (Kwak et al, 2013).  Pten knockout using human PSA promoter driven Cre 

expression showed that heterozygote Pten deletion at 10 months aged mice resulted in 

focal and low grade PIN, while homozygote Pten deletion at 4-5 months old resulted in 

hyperplasia and focal PIN, at 7-9 months PIN with focal micro-invasion and at 10-14 

months invasive prostate carcinomas with rare metastases (Ma et al, 2005).  Pten 

inactivation using MMTV (mouse mammary tumour virus) -Cre transgenic mice by 2 

weeks old displayed HGPIN with complete penetrance and frequent progression to 

invasive adenocarcinomas at 7-14 weeks old (Backman et al, 2004).  MPAKT (murine 

prostate restricted Akt kinase activity) model with constitutively activated Akt in mouse 

prostate epithelial cells developed PIN lesions in the ventral prostate with prominent 

bladder obstruction but no metastases (Majumder et al, 2003).   

The prostate specific, NKX3.1 is a homeobox gene encoding a transcriptional regulator 

expressed at early stage of prostate organogenesis and is crucial for structural development 

of the prostate gland and expression of its secretory proteins.  NKX3.1 maps to 

chromosome 8p21.  In approximately 80% of human prostate cancer, NKX3.1 undergoes 

allelic deletions and is strongly associated with prevalence of PIN lesions and thus, has 

been implicated in PC initiation (as reviewed by Dong, 2001).  Mice harbouring 

homozygous and heterozygous Nkx3.1 deletion at 1 year old develop PIN lesions (Bhatia-

Gaur et al, 1999; Kim et al, 2002).  Furthermore, Nkx3.1 protein loss is required for PIN 

development in both humans and mice (Kim et al, 2002), and, in human PC, while the 

remaining NKX3.1 allele is not mutated (Voeller et al, 1997), it undergoes epigenetic 

inactivation (Bowen et al, 2000).   

Carcinogenesis is a process involving an accumulation of multiple genetic aberrations and, 

therefore, mouse models that incorporate multiple genetic events are likely to be more 

relevant to human PC.  For example, Kim et al 2002 found that combined loss of Nkx3.1 

and Pten (namely Nkx3.1
+/-

 and Pten
+/ -

) cooperate in prostate carcinogenesis in that at 6 

months HGPIN and carcinoma in situ were observed.  Serially transplanting these HGPIN 

lesions into nude mice resulted in neoplastic progression, showing histopathological 
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changes in keeping with well differentiated adenocarcinoma in humans (Abate-Shen et al, 

2012).  By aging the Nkx3.1
+/-

Pten
+/-

 GEMM to over 1 year old, these mice developed 

invasive adenocarcinoma often with metastatic spread to lymph nodes (Abate-Shen et al, 

2012).  Further analysis of Nkx3.1
+/-

Pten
+/-

 GEMM shows loss LOH of Pten is required for 

progression to invasive carcinomas but not LOH of Nkx3.1 (Kim et al, 2002).   

Prostate tumours developing from the Nkx3.1
+/-

Pten
+/-

 GEMM are capable of developing 

androgen independence (Abate-Shen et al, 2012).  Castrating Nkx3.1
+/-

Pten
+/-

 mice at 6 

months of age followed by analysis of the prostate 3 months later, the HGPIN lesions 

lacked apoptotic cells and were highly proliferative.  In addition, AR expression was 

localised to the cytoplasm (Abate-Shen et al, 2012).  In this GEMM, prostate cells seemed 

to develop androgen independence before the occurrence of overt cancer, thus suggesting 

that androgen independence can emerge parallel with disease progression rather than as an 

end-point (Gao et al, 2006b).  They also concluded that Pten loss-of-function, but not 

Nkx3.1 loss-of-function, is sufficient to promote androgen independence (Gao et al, 

2006b).  Nkx3.1
CreERT2

Pten
flox/flox

 a tamoxifen inducible GEMM that mediates Pten loss in 

prostate epithelial cells, develop castration-resistant prostate tumours with virtually no 

evidence of senescence, in stark contrast to senescence rich non-castrated tumours (Floc’h 

et al, 2012).  This is consistent with the notion that castration resistance promotes cancer 

progression by bypassing senescence (Irshad et al, 2013).   Furthermore, Pten inactivation 

resulted in strong activation of the Akt and Erk mitogen-activated protein kinase (MAPK) 

pathway (Gao et al, 2006a), and further studies led them to conclude that the combined 

activation of these two pathways may enable PC cells to defeat androgen deprivation 

induced apoptosis in vivo (Shen et al, 2007). 

Work in the Prostate Group at the Beatson Institute focused on identifying novel events 

that cooperate and/ or synergise with PTEN loss to drive prostate carcinogenesis.  Using 

PB-Cre4 promoter Her2 knock in (KI) and Pten deletion (PB-Cre4:Pten
fl/fl

Her2
KI

) a more 

aggressive prostate cancer phenotype resulted in comparison to the controls PB-

Cre4:Pten
fl/fl

 with faster (median 355 days versus 465 days, P= 0.0014) and larger growing 

prostate tumours (5.2 g versus 2.9 g, P < 0.0001) but no metastases at autopsy (Ahmad et 

al, 2013).  Treating PB-Cre4:Pten
fl/fl

Her2
KI 

 mice with a MEK inhibitor resulted in 

significant reduction in tumour bulk with increased apoptosis and cellular senescence 

(Ahmad et al, 2013).  Pten
fl/+

Spry2
+/-

developed aggressive prostate tumours with lymph 

node metastases, with evidence of Her2 upregulation and Akt activation.  PI3K inhibitor 
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treatment resulted in reduced proliferation of the prostate tumours and pAkt, EGFR and 

Her2 expression (Gao et al, 2012).  

GEMM with combined deletion of Pten and incorporation of genetic manipulation of other 

tumour suppressor or oncogenes have been very informative at providing molecular insight 

into more aggressive PC phenotypes.  GEMM with conditional inactivation of p53 alone 

produced no prostate tumours, whereas combined p53 and Pten loss (PB-Cre:Pten 

lox/lox
p53

lox/lox
) GEMM mice rapidly developed invasive PC at 2 months with lethality by 6 

months of age but no metastases (Chen et al, 2005).  By disturbing telomerase function in 

PB-Cre: Pten
lox/lox

p53
lox/lox 

mice, the phenotype was accelerated resulting in fatal prostate 

tumours locally invasive to bone (Ding et al, 2012).  Zhong et al 2006 showed GEMM 

with combined Fgf8b activation and Pten loss strongly cooperate in the induction of 

prostate adenocarcinoma including metastatic progression, whereas single models with 

individual genetic defects in isolation did not progress beyond PIN.  GEMM with 

conditional loss of Pten and overexpression of Erg (PB-Cre: Pten 
lox/lox

Rosa-26
lox-stop-

lox
Erg) develop HGPIN by 2 months with progression to invasive adenocarcinoma by 6 

months of age (Chen et al, 2013).  Conditionally active K-Ras with inducible Pten deletion 

(Nkx3.1-CreERT2) resulting in fatal adenocarcinomas with distant metastases but no bone 

metastases (Tuveson et al, 2004).  

None of the available GEMMs display all aspects of human prostate carcinogenesis.  Wu 

et al, (2006) described the Gleason analogous grading system for their novel knock-in 

mouse prostate adenocarcinoma model, namely PSP-KIMAP.  The PSP-KIMAP model 

developed a spectrum of Gleason grades and scores comparable to human PC.  However, 

transgenic GEMM produce rapid growing tumours which may lack sufficient tumour 

heterogeneity without the full range of Gleason grade (and therefore score) distribution.  

As such, GEMM-derived PC can only be classified by crude histological descriptions.  

Moreover, in contrast to advanced human PC that has a propensity to develop bone 

metastases, currently no PC GEMM consistently lead to bone metastases (Irshad et al, 

2013).  They also do not precisely mimic the molecular events of human PC.  For example, 

a significant proportion of clinical PCs do not harbour PTEN loss, yet Pten
null

 is one of the 

most frequently used GEMM.   

There is also no optimal promoter to drive Cre expression.  Among the promoters typically 

used to target the murine prostate, there are significant variations in the timing of their 

expression pattern, heterogeneity in their expression in the epithelium, their dependency on 
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androgens or tamoxifen induction (Irshad et al, 2013).  Probasin (Pb) and Nkx3.1 

promoters are both androgen sensitive and therefore the development of androgen 

independence may be by different mechanisms than in human PC (Abate-Shen et al, 2012).  

Furthermore, basal epithelial cells express Pb whilst luminal epithelial cells express Nkx3.1 

and it is thought luminal epithelial cells are more responsive to hormone manipulation than 

basal cells (Roy-Burman et al, 2004).        

 

5.1.1 BRF1- manipulated GEMM  

Elevated Pol III transcription has been seen in a variety of human cancers and altered 

levels of Pol III specific transcription factors are a common feature of mouse and human 

tumours (reviewed by White, 2004; White et al, 2005).  BRF1 is an essential transcription 

factor for Pol III activity and is a molecular target of regulation by a wide variety of 

tumour suppressors and oncogene activation (reviewed by White et al, 2004 and 2005).  

BRF1 expression is higher in patient tumour samples with prostate cancer in comparison to 

benign prostate.  Patients with PC exhibiting high BRF1 IHC scores have poorer survival 

outcomes, when compared to those with low BRF1 IHC scores (Nam et al, 2013 

Unpublished).  I have shown that BRF1 is expressed at high levels in PC cell lines, 

especially in the androgen dependent cell lines, and that transient manipulation of BRF1 

expression significantly affected in vitro proliferation and cell cycle profile of human PC 

cell lines.  To fully investigate the functional in vivo effects of BRF1 in prostate cancer, 

two transgenic mouse models were developed.  

PbCre-BRF1hTg
het/WT 

Transgenic mice utilising the human BRF1 cDNA is constructed within the Hprt gene 

locus to be under the control of the constitutive CAAGS (CMV β-actin β-globin) promoter.  

A loxP-stop-loxP (LSL) sequence was placed upstream of BRF1 to drive its conditional 

overexpression (Figure 5.1).  These LSL-BRF1 mice were crossed with lines with PB-Cre4 

(called PbCre in this study) to induce human BRF1 expression specifically in the prostate 

epithelium.  Mice were born at expected Mendelian ratios.  Cohorts were monitored to 

determine whether BRF1 overexpression in the prostate epithelium was sufficient to drive 

changes associated with prostate carcinogenesis.  Eleven PbCre-BRF1 mice were aged to 

12-14 months and their littermates, including 9 WT and 9 PbCre-, were their controls.  In 
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addition, a younger cohort of 4-6 months aged mice were studied (8 PbCre-BRF1 mice, 4 

WT and 4 PbCre-) to confirm that BRF1 was overexpressed, and that there were no 

microscopic evidence of dysplastic lesions or pre-malignant morphological changes.  

PbCre-Pten
fl/fl

-BRF1hTg
het/WT 

LSL-BRF1 transgenic lines were crossed with the PbCre-Pten
fl/fl

 to generate the PbCre-

Pten
fl/fl

-BRF1hTg
het/WT

 (or Pten-Brf1) mice to see whether elevated BRF1 expression can 

synergise with Pten loss in the development of prostate cancer.  The main control cohort of 

this GEMM is PbCre-Pten
fl/fl

 (referred to as Pten- thereafter), which has been well 

characterised by Wang et al 2003 and also by our laboratory, as previously discussed.    
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Figure 5-1  Constructing BRF1 transgenic GEMM (PbCre-hBRF1Tg and PbCrePtenhom-
hBRF1Tg). 

Human BRF1 cDNA is transcribed from constitutive CAAGS promoter after targeting 

HPRT locus.  This construct carries upstream stop codon flanked by loxP sites, allowing us 

to control where transgenic BRF1 mRNA is translated. These mice were crossed with 

Probasin (Pb) Cre mice and then expression of cre recombinase gene will mediate the 

excision of this sequence under the control of prostate –specific promoter (Brzezinska et al, 

2015) so as to induce BRF1 specifically in prostate epithelia.   
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5.2.  Results 

There is no published data of BRF1 in a prostate GEMM; this study is therefore the first 

characterisation of such a GEMM.  The following mouse colonies were generated:  14 

PbCre-Brf1, 12 PbCre and 8 wildtype (WT) mice were aged to 12-14 months to see 

whether they developed any signs of prostatic dysplasia or neoplasia.  It was thought 

unlikely that upregulation of BRF1 alone would be sufficient to drive PC due to the 

complexity of multiple oncogenic drivers required for prostate carcinogenesis.  Consistent 

with this notion, the PbCre-Brf1 mice did not develop PIN nor adenocarcinoma, when 

mice were aged up to 14 months.  Neither did the WT or PbCre control mice develop any 

early dysplastic lesions or PC phenotypes.  However, IHC staining for BRF1 confirmed 

increased staining in PbCre-Brf1 mice with strong nuclear staining consistent with the role 

of BRF1 as a transcription factor (Figure 5.2).   

PbCre-Pten 
fl/fl

 (called Pten- thereafter) mice develop invasive adenocarcinoma, and in our 

lab this GEMM develops prostate tumours after 10 months and does not tend to 

metastasise.  Therefore, we hypothesised that by adding in the human BRF1Tg to these 

mice, Pten-Brf1, a more aggressive phenotype may result with earlier invasive prostate 

tumours and metastases.  Two cohorts of mice were set up to investigate this hypothesis.  

The first cohort of Pten- and Pten-Brf1 mice were monitored for clinical end point and care 

was taken not to identify the mice genotypes until after they were culled to avoid selective 

bias.  Clinical endpoint was determined when the mice had significantly swollen abdomens 

that made their mobility compromised.  As the tumours were soft and cystic, it was not 

always clear on palpation whether the mice had tumours or subcutaneous fat.  An objective 

test was therefore performed; if the mouse could no longer squeeze through a cardboard 

tube due to lower abdomen swelling, it was considered a suitable time to cull the particular 

mouse.  

The second cohort of mice was an age-matched comparison of Pten-Brf1 with Pten- litter 

mates, mice were aged until tumours became evident and then litter mates were culled to 

fully characterise the prostate tumours of Pten-Brf1 mice, and identify any differences with 

Pten- GEMM and to see whether any metastases developed.   

Pten-Brf1 GEMM is clinically or phenotypically similar to Pten- GEMM, in that, they 

present with swollen abdomens that grow rapidly within two weeks of first being observed.  

On post mortem, the tumours were large, usually bilateral, but occasionally unilateral, 
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cystic tumours filled with serous-like fluid (Figure 5.3).  The fluid ranged from watery 

clear to straw coloured to thick brown paste consistency, and this happened equally in each 

of the genotypes.  The prostate cystic fluid seemed to become darker and more viscous 

with increasing tumour sizes.  On three occasions, enlarged retroperitoneal lymph nodes 

were noted (twice from Pten-Brf1 and once from Pten- mice), but histology confirmed 

these were inflammatory and not metastatic in nature, being negative for androgen receptor 

(AR) IHC and showed no histological features of prostate tissue (data not shown).  No 

other signs of metastasis were noted. 

Pten-Brf1 mice grew larger tumours earlier than their Pten- litter mates and therefore, 

reached clinical endpoint earlier.  Pten-Brf1 mice reached clinical endpoint at 256.4 days 

versus 313.9 days for Pten- mice which is statistically significant (t test, p = 0.000002).  

Kaplan-Meier (KM) survival curve analysis was also significantly different between Pten-

Brf1 and Pten- mice (log rank test, p value <0.0001; Figures 5.4 and 5.5).  The rest of their 

clinical measurements such as body weight, wet weight and dry weight of tumour at 

clinical endpoint were all similar, which is reassuring, indicating that the mice were culled 

at the same clinical end points without any obvious selection bias (Table 5.1).  Therefore, 

increased BRF1 expression appeared to be associated with accelerated Pten-driven prostate 

cancer.  

In primary clinical end point analysis on the first mouse cohort, there were 14 Pten-Brf1 

and 12 Pten- mice.  Pten-Brf1 mice body weights ranged from 31.5 g- 57.5 g and their 

tumour wet weights ranged from 1.3 g-7.6 g.  Pten- mice body weights ranged from 36.9 

g- 62.7 g, and their tumour wet weights ranged from 1.0 g- 6.3 g.  Three mice from each of 

Pten- and Pten-Brf1 cohorts that were culled who appeared to have cystic prostate masses, 

but, on post-mortem, were observed to have small tumours and excessive subcutaneous fat.  

Therefore, a secondary analysis of clinical endpoint was performed excluding these six 

mice with small prostate tumours.  Three of each genotype were excluded and therefore, 

secondary analysis of wet weight tumours >3.5g as a new retrospective clinical endpoint 

including 11 Pten-Brf1 and 9 Pten-.  In the Pten-Brf1 cohort, body weight ranged from 

31.5 g- 57.5 g with wet weight tumours of 3.7 g- 7.6 g and Pten- mice body weight ranged 

from 37.6 g- 62.7 g with wet weight tumours of 4.1-6.3g (Table 5.2).  The secondary 

analysis of retrospective clinical analysis also confirmed a statistically significant 

difference between Pten-Brf1 and 9 Pten- mice, with short time point to observe tumour 

wet weight reaching 3.5 g in the Pten-Brf1 group at 267 days versus 307 days (t test, p = 

0.0014) and KM survival curve log rank p = 0.0009 (Figure 5.6).     
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In the age matched analysis on the second cohort, there were 17 Pten- and 14 Pten-Brf1 

mice.  They were culled between 7.6 months and 10 months of age.  When individual mice 

were culled for pre-determined signs indicative of prostate tumour, their cage mates were 

also culled as age matched controls, even when no obvious tumour was palpable.  In the 

Pten- mice body weights ranged from 34.40 g- 63.80 g, with tumour wet weights ranging 

0.66 g- 4.9 g and tumour dry weights ranging 0.3 g- 1.4 g.  In the Pten-Brf1 mice, the body 

weights ranged 31.80 g- 58.50 g, with tumour wet weights ranging 1.3 g- 6.6 g and tumour 

dry weights ranging 0.5 g- 2.3 g.  There was a tendency for the Pten-Brf1 mice to have 

larger prostate tumours, but the differences in wet and dry weights of tumour did not reach 

statistical significance (Figures 5.7 and 5.8).  None of the mice showed signs of metastases.   

Histologically, Pten-Brf1 and Pten- were similar in that they showed signs of HGPIN and 

invasive carcinoma at 8-11 months (Figure 5.9).  There were no obvious differences in 

histological phenotype.  However, this GEMM produces rapidly growing cystic tumours, 

which are not typically captured in recognised prostate tumour histological scoring systems 

(Shappell et al, 2004).  Further analysis was performed to identify any differences other 

than speed of tumour growth between Pten-Brf1 and Pten-mice.  Firstly, we assessed 

BRF1 expression protein levels in the mouse tumours by Western blot to ensure that the 

human transgene expression had remained switched on in the prostate tumours. In Pten-

Brf1 mice, the prostate had relatively higher levels of BRF1 expression (Figure 5.10).  IHC 

analysis confirmed increased BRF1 expression in the epithelium of Pten-Brf1 mice and 

further IHC analysis was performed to investigate potential differences between Pten- and 

Pten-Brf1 tumours (Figures 5.11 and 5.12). 

 Using an automated scoring system, (Leica®), nuclear immunoreactivity for Ki67, AR, 

HNF4A and BRF1 were also studied and quantified.  This was optimised by manual 

scoring of three slides, followed by “teaching or priming” of the automated system to 

register immunoreactivity intensities into relevant cut-offs for negative, weak, moderate 

and strong staining.  Ten random areas of epithelium from 6-7 mice prostate slides of each 

genotype along with their age-matched controls were analysed (except for HNF4A, when 

only 3 slides from each mouse genotype were analysed).  IHC staining for Ki67 (a marker 

of cell proliferation) and p63 (a marker of basal cells in the basement membrane – higher 

levels are found in benign normal prostate tissue and lower levels in adenocarcinoma) were 

performed as an assessment of the aggressiveness of the prostate tumours (Figure 5.12).  

Ki67 automated Leica® scoring showed Pten- mice had virtually identical intensity of 

staining to Pten-Brf1 mice (Figure 5.13).   
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Manual scoring was carried out for p63, F4/80, NIMP, p21 and GH2AX for 13 Pten-Brf1 

and 14 Pten- tumour samples.  The genotypes of the slides were not known at the time of 

scoring to avoid bias.  The whole slide was examined and an overall score of high, 

medium, low and negative intensity was given to the prostate epithelium of each slide 

(examples of high and low staining shown in Figure 5.18).  p63 staining seems to be higher 

in the Pten- mice in that there are slightly more scores of high and medium intensity than 

the Pten-Brf1 prostates (Figure 5.14).  However, with such low numbers of mice and small 

differences between the two genotypes, this result is not conclusive and requires further 

investigation.   

Ki67 IHC staining was essentially identical in the two genotypes, there is no evidence to 

support increased cell proliferation as judged by IHC scoring.  However, Pten-Brf1 mice 

did reach clinical endpoint significantly earlier than the Pten- mice and did tend to have 

slightly larger tumours in the age-matched cohort.  Perhaps at an earlier time point, for 

example 3-4 months, the prostate from Pten-Brf1 mice might have higher Ki67 scoring 

than the prostate from Pten-Brf1 mice if cell proliferation was switched on earlier, and this 

difference may be lost as mice from the two groups approaches clinical end point when the 

cell proliferation becomes less different with the final tumour sizes being essentially the 

same. 

Due to the cystic nature of the prostate tumours and the increasing evidence that 

inflammation is an important driving force in prostate carcinogenesis (reviewed by De 

Marzo et al, 2007), a number of inflammatory markers were investigated by IHC.  F4/80 is 

a marker of macrophages and NIMP (Anti-Neutrophil antibody) is a marker of neutrophils 

and interestingly both tend to have slightly higher IHC staining in the Pten- mice rather 

than the Pten-Brf1 (Figures 5.15, 5.16 and 5.17).  This suggests the Pten-mediated 

tumorigenesis may be associated with inflammatory processes relatively more than in 

Pten-Brf1 mice, but due to the low numbers of mice and prostate slides, it is difficult to be 

conclusive about these results.  Further investigation examining the cystic fluid would have 

been useful, but unfortunately at the time of collection of post-mortem prostate samples, 

the cystic prostate fluid was not analysed and it was merely noted what colour and 

consistency the fluid was which seemed to vary more with the size of the tumour rather 

than mouse genotype.  In future, the prostate cystic fluid should be collected and tested by 

FACS analysis for presence of inflammatory cells and ELISA or proteomic analysis for 

abundance of cytokines and inflammatory mediators. 
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Phospho-γH2AX (GH2AX) is a marker of DNA damage and also seemed to have higher 

IHC staining in the Pten- mice than the Pten-Brf1 (Figures 5.18 and 5.19).   p21 a marker 

of G1 arrest and senescence and had low IHC scoring in both genotypes (Figures 5.18 and 

5.20).  The potential heightened inflammatory response in the prostate of Pten- mice may 

explain the increase in DNA damage.  An altered balance between Pten-Brf1 GEMM 

growth signalling pathways versus inflammatory signalling pathways of Pten- may result 

in less DNA damage, with accelerated tumour growth in Pten-Brf1 mice.  To investigate 

potential effects on apoptosis, IHC for cleaved caspase 3 was also performed however 

there were very low levels of apoptotic cells detected in either genotype (Figure 5.21).   

To further understand the differences between the Pten- and Pten-Brf1 GEMM, RNA 

sequencing analysis was performed to examine the underlying molecular basis of enhanced 

prostate tumorigenesis in Pten-Brf1 mice by comparing the transcriptome of prostate 

tumours from Pten-Brf1 mice to age-matched Pten- mice.  It was hoped that this would 

provide insight into the molecular events driving prostate tumorigenesis in these two 

distinct GEMM.  RNA extracted from 3 Pten-Brf1 and 2 age-matched Pten- prostate 

tumours were analysed.  The RNA sequencing data generated heat map and GeneGo 

analysis clearly shows these two GEMMs have distinct RNA expression profiles (Figures 

5.22 and 5.23). From this data analysis, a number of interesting genes were shown to be 

upregulated specifically in the Pten-Brf1 prostate tumours.  This data set was compared 

with published BRF1 ChIP sequencing data (Canella et al, 2010) to see whether there were 

any mutually upregulated genes.  Hepatocyte nuclear factor 4 alpha (HNF4α) was 

upregulated in both our RNA microarray Pten-Brf1 prostate tumours and BRF1 ChIP 

sequence data, and therefore was considered a BRF1-target gene in prostate 

tumourigenesis and further investigated using Western blot analysis and IHC staining of 

mouse prostate tumours (Figures 5.24 and 5.25).    

HNF4α is located on chromosome 20q13.12.  It is a member of the steroid hormone 

nuclear receptor family of transcription factors (Odom et al, 2004).  It regulates genes with 

functional roles in hepatic gluconeogenesis and lipid metabolism (summary by Chandra et 

al, 2013).  Mutations of HNF4α have been implicated in the pathogenesis of non-insulin 

dependent diabetes mellitus (NIDDM) and maturity onset diabetes of young (MODY type 

1) (Furuta et al, 1997).  HNF4α with transcription factors Foxa1, Foxa2 or Foxa3 were able 

to transform mouse embryonic and adult fibroblasts into cells morphologically similar to 

hepatocytes in vitro (Sekiya and Suzuki, 2011).  There are currently no known functions 

for HNF4α in prostate glands, but FOXA1 expression has been shown to be increased in 
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PC, especially in advanced disease (Feng et al, 2015).  FOXA1 is a pioneering 

transcription factor involved in chromatin remodelling which allows AR to have genomic 

access at specific loci in prostate epithelial cells (Ya et al, 2015).  Recently, HNF4α has 

been shown to have a similar function to FOXA1, in that HNF4α is constitutively bound to 

chromatin and guides AR to specific genomic loci upon hormone exposure in mouse 

kidney (Pihlajamaa et al, 2014).   

We therefore hypothesised that BRF1 driven HNF4α expression could play a role in 

regulation of prostate tumorigenesis.  Western blot analysis of prostate mouse tumours 

showed BRF1 was overexpressed in Pten-Brf1 as expected.  AR also appeared to have 

higher expression in the Pten-Brf1 mice in comparison to the Pten-, whereas HNF4α 

expression seemed to be lower in Pten-Brf1.  However, the HSP-70 loading control was 

variable between the prostate samples and therefore, conclusions are difficult to make 

(Figure 5.24).   

Automated Leica® IHC scoring for AR immunoreactivity of 6 mouse prostates per 

genotype showed that AR had higher intensity scoring in Pten-Brf1 mice versus Pten- 

whereas HNF4α had slightly higher intensity scoring in the Pten- mice (Figures 5.25, 5.26 

and 5.27).  This indicates that HNF4α mRNA levels may be uncoupled from protein levels 

and that increased BRF1 does not increase HNF4α in this model of prostate cancer.  We 

also analysed the protein expression of AR, HNF4α and c-MYC in our stable PC3 cells 

with BRF1 overexpression.  BRF1 overexpression does not correlate with increases in 

HNF4α nor c-MYC expression. Surprisingly, AR expression appeared to be elevated in 

presence of BRF1 overexpression.  This is most interesting because PC3 cells do not 

normally express AR and requires further urgent investigation (Figure 5.28). 
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Figure 5-2  IHC of WT, PbCre and PbCre-Brf1 GEMM. 

Mice were aged up to 14 months and no mice developed clinical signs of prostate tumours 

and histologically no evidence of any dysplastic or neoplastic changes in the control mice 

(WT and PbCre-) and the BRF1 over-expressing mice (PbCre-Brf1).  BRF1 IHC staining is 

higher in the PbCre-Brf1 mice and therefore this GEMM is valid. (20x magnification).
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Figure 5-3  Pten and Pten-Brf1 are phenotypically similar. 

Pten- and Pten-Brf1 both develop large cystic tumours. Pten-Brf1 prostate tumours grow 

more rapidly.  Pten-Brf1 mice tend to develop larger tumours than their age-matched Pten- 

litter mates but this did not reach statistical significance.  Images are of representative 

prostates along with the age of the individual mice at the time of sacrifice.      
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Table 5-1  Table of primary end point cohort mice clinical measurements 

Pten-Brf1 and Pten- mice were culled when they developed clinically significant swollen 

abdomens in keeping with significant prostate tumour formation.  On clinical examination 

if they could no longer squeeze through a cardboard tube and had an abdominal mass on 

palpation they were culled.  The Pten-Brf1 mice were culled significantly earlier than the 

Pten- mice (p = 0.000002).  The post-mortem measurements of bodyweight and the 

prostate tumour’s wet weight (WW) and dry weight (DW) were similar between the Pten-

Brf1 and Pten- mice.   

(Means are in bold.  Values in brackets are range of measurements within each cohort).
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Figure 5-4  Kaplan-Meier (KM) curve of primary end point cohort mice 

Pten-Brf1 mice had significantly shorter survival than the Pten- mice, 256 days versus 316 

days respectively.  Log rank, p <0.0001. 

 

 

Figure 5-5  Pten-Brf1 mice reach primary clinical endpoint sooner than Pten- mice. 

Pten-Brf1 mice were culled at 256.4 days on average versus 313.9 days for Pten- mice (2- 

tailed 2-sample equal variance student t test, p = 0.000002).  Primary clinical end point 

was swollen abdomens reducing mice agility.  Means and SD error bars shown.   
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Table 5-2  Table of secondary analysis of clinical end point (prostate tumours > 3.5g wet 
weight on post mortem). 

Pten-Brf1 mice reached retrospective clinical endpoint >3.5 g wet weight of tumours 

before the Pten- mice (t test, p = 0.0014).  Three mice from each genotype were excluded 

in the secondary end point analysis as they were culled prematurely with small prostate 

tumours but large fat abdomens.  (Means shown in bold.  In brackets are the range of 

measurements within each cohort). 

 

 

Figure 5-6  KM survival curve of secondary clinical end point cohort mice (prostate tumours 
> 3.5g wet weight on post mortem). 

Pten-Brf1 mice had significantly shorter survival than the Pten- control mice, 267 days 

versus 307 days, Log rank p = 0.0009).  
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Table 5-3  Table of age-matched cohort of Pten-Brf1 and Pten- mice clinical measurements 

Pten-Brf1 mice have a tendency to have larger prostate tumours in both wet weight (WW) 

and dry weight (DW) measurements but this difference did not reach statistical 

significance.  (Means are in bold and range of measurements are in brackets). 

 

 

Figure 5-7  Wet weight of prostate tumours of Pten-Brf1 and Pten- mice are not significantly 
different in age-matched cohort. 

Means and SDs are shown. 

 

Figure 5-8  Dry weight of prostate tumours of Pten-Brf1 and Pten- mice are not significantly 
different in the age-matched cohort.  

Means and SDs are shown. 
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Figure 5-9  Histology of Pten- and Pten-Brf1 mice appear similar. 

The above images (20x magnification) are examples of images demonstrating similar 

histology found in prostates from the genotypes of Pten- and Pten-Brf1, and within the 

same mouse prostate.  All the mice with prostate tumours had evidence of HGPIN and 

invasive carcinoma. There were no distinct differences in their histology  

Top images: Areas of well differentiated single separate uniform glands closely packed but 

with definite boundaries and HGPIN where the lumen is filled in with cellular growth.   

Middle images: Ducts have merged together which is a sign of basement membrane 

disruption and therefore invasive carcinoma.   

Bottom images: Invasive carcinoma with non-glandular poorly differentiated cribriform 

masses with ragged invading edges.   
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Figure 5-10  Pten-Brf1 mice have higher expression of BRF1 protein than Pten- mice. 

BRF1 expression does not appear to be influenced by tumour wet weight, dry weight nor 

age of mice.  HSP-70 was used as a loading control.  Four prostate tumours from each 

mouse genotype were analysed, with each mouse’s individual clinical/tumour data shown.  

 

 

Figure 5-11  IHC BRF1 scoring appears higher in Pten-Brf1 mice than Pten- mice. 

Leica® automated scoring program was used.  N=7 mice prostate tumour samples from 

each genotype. 
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Figure 5-12  IHC staining of Ki67, BRF1 and p63 in Pten- and Pten-Brf1 mice. 

The Pten- and Pten-Brf1 prostate slides shown are representative of their respective 

genotypes and age matched (Large image = 10x magnification, small image/insert = 40x 

magnification). 
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Figure 5-13  Ki67 IHC automated scoring is very similar in Pten- and Pten-Brf1 mice. 

Ki67 is marker of cell proliferation.  (N=7 of each mouse genotype). 

 

 

Figure 5-14  p63 IHC manual scoring appears higher in Pten- than in Pten-Brf1 tumour 
samples. 

p63 staining is a basal cell marker.  There are more Pten slides scored as high or medium 

than the Pten-Brf1 mice.  However, due to low number of mice and slides scored these 

results are not conclusive. 
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Figure 5-15  F4/80 and NIMP IHC staining is higher in Pten- than Pten-Brf1 tumour samples. 

F4/80 is a marker of macrophages.  NIMP is a marker of neutrophils.  Here are examples 

of high and low IHC scoring.  In the slides shown the low scoring slide is from a Pten-Brf1 

mouse prostate and the high IHC scoring slide is from a Pten- mouse.  However, both 

genotypes had mice with low and high IHC scoring but more of the Pten- mice had high 

IHC scoring than the Pten-Brf1 for F4/80 and NIMP IHC staining. (20x magnification). 

 

 

Figure 5-16  F4/80 IHC scoring appears higher in the Pten- than the Pten-Brf1 tumour 
samples. 
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Figure 5-17  NIMP IHC scoring appears higher in the Pten- tumour samples than the Pten-
Brf1 tumours. 
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Figure 5-18  Manual scoring guide to IHC staining of p63, p21 and GH2AX 

These images show examples of high and low scoring for the IHC staining of p63, p21 and 

GH2AX.  A medium score would have had staining intensity in the middle of a low and 

high score.  The images shown are from one Pten-Brf1 mouse prostate tumour sample that 

had low IHC scoring and one Pten- tumour that had high scoring.  Both genotypes had 

tumour samples with varied IHC scoring. (20X magnification).  
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Figure 5-19  GH2AX appears to have higher IHC scoring in Pten- than Pten-Brf1 mice. 

GH2AX is a marker of DNA damage. 

 

 

 

 
 

 

Figure 5-20  p21 IHC manual scoring is low in both Pten- and Pten-Brf1 mice. 

p21 is a marker of cell cycle G1 arrest and senescence.  Both the Pten- and Pten-Brf1 have 

very low levels of p21 IHC staining. 
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Figure 5-21  Age matched Pten- and Pten-Brf1 mouse IHC staining. 

Caspase 3 was also used for IHC staining for 5 slides for each genotype but this had either 

low or negative IHC scoring for all 10 slides so was not formally scored (20x 

magnification). 
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Figure 5-22  RNA sequencing heat map of prostate mouse tumours 

Pten-Brf1 (n=3) and Pten- (n=2).  Red means overexpressed and blue means low 

expression.  It is clear from this heat map that RNA expression is very different between 

the two mice genotypes despite their prostate tumours looking phenotypically similar.  

 

 

 

Figure 5-23  RNA sequencing pathway enrichment analysis 

Using GeneGo data analysis the RNA expression profile of Pten-Brf1 can be divided into 

pathway drivers for a variety of cell functions and physiological processes.  FDR (false 

discovery rate) gives a P value that adjusts for multiple testing and shows that the 

differences in Pten-Brf1 prostate tumours for genes expressed in these molecular pathways 

is significantly different from Pten- tumours.  From here we were able to pick individual 

genes for further investigation that were expressed significantly different between the two 

GEMMs. 
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Figure 5-24  Western blot analysis of prostate mouse tumours showing BRF1, AR and 
HNF4α expression 

AR expression appears to have slightly higher levels in the Pten-Brf1 mice versus the Pten-

mice.  HNF4a seems to have higher expression in the Pten- mice versus the Pten-Brf1.  

However, as HSP-70 loading control is not equal between all the samples these results are 

not conclusive. Brf1 and HNF4a were analysed on the same blot and therefore share the 

same HSP-70 loading control. 

 



168 
 

 

Figure 5-25  H&E and IHC of BRF1, AR and HNF4α in Pten- and Pten-Brf1 

AR IHC staining appears to be of higher intensity in Pten-Brf1 than Pten-, whereas, 

HNF4α appears to be slightly higher in Pten- mice. (H&E and Brf1 images are the same as 

shown in figure 5-12). 

(Large image 10x magnification.  Small image 40x magnification). 
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Figure 5-26  AR IHC automated scoring appears higher in Pten-Brf1 than Pten- mice. 

Leica® IHC scoring program was used.  N= 6 mice prostate tumours per genotype. 

 

 

 

 

Figure 5-27  HNF4α IHC automated scoring is similar in Pten- and Pten-Brf1 mice. 

Leica® IHC scoring program was used.  There is a slight increase in the positive scoring of 

Pten-  over Pten-Brf1 samples but  no conclusions can be made due to only 3 prostate 

samples from each genotype being stained and scored for HNF4α.   



170 
 

 

Figure 5-28  Western blot analysis of PC3 stable BRF1 overexpressed cells. 

A cell line panel of the stable PC3 EGFP- and EGFP-Brf1 clonal subsets were analysed by 

Western blot for c-MYC and HNF4α expression.  BRF1 overexpression does not seem to 

affect HNF4α and c-MYC expression in any clear pattern.  Interestingly, PC3 is AR 

independent and normally has no AR protein expression, but, in EGFP-Brf1 CL5, CL6 and 

EGFP-Brf1 Pool cells, AR expression is present but not in EGFP- cells.  (E-Brf1 band 

represents ectopic BRF1 which is higher than the Brf1 band because EGFP adds 27 kDA 

to weight of endogenous BRF1). 
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5.3 Inducible GEMM  

In designing GEMM the other important factor to consider is not only the genes you are 

manipulating but also when you want them to be switched on or off.  In contrast to 

constitutively active GEMM, inducible GEMM in PC allow the genetic event to be 

switched on when a promoter is activated at a specified time.  For example, Nkx3.1-Cre-

ER knock in allele inactivates 1 allele of Nkx3.1 and drives tamoxifen-dependent Cre-

mediated recombination specifically in prostate epithelial cells.  Floc’h et al 2012 used this 

inducible system to cross Nkx3.1
CreERT2

 with a Pten conditional allele to produce 

Nkx3.1
CreERT2/+

; Pten
flox/flox

, so that the Pten inactivation occurred via tamoxifen induction 

at mice aged 2 months old adult mice, instead of in its germline or immature prostate 

epithelial.  Their method for tamoxifen induction was intra-peritoneal (i.p.) injection 

(225mg/kg) or oral gavage (100mg/kg) for 4 consecutive days to mice aged 2 - 3 months.  

In control experiments, tamoxifen induction was shown to have negligible effect on the 

prostate phenotype of control or mutant mice (Wang et al, 2009).   

Nkx3.1-Cre
ERT2

 has a Cre-ERT2 cassette knocked in to the Nkx3.1 gene which allows 

deletion of gene in adult prostate epithelium after tamoxifen induction (Wang et al, 2009).  

In the inducible Nkx3.1-Cre
ER-T2

 system, tamoxifen activates Cre gene because a mutated 

ligand binding domain of human ER is fused to the Cre gene.  This allows excision of 

floxed genes at selected time points by induction of Cre-ER.  

The resulting phenotype of Nkx3.1
CreERT2/+

; Pten
flox/flox

 post-tamoxifen induction was the 

development of PIN lesions at 6-7 months and HGPIN at 9-12 months and extensive 

HGPIN with invasive cancer by 16 months (Floc’h et al, 2012).  Mice were surgically 

castrated at 4 months after tamoxifen resulting in tumour regression at 2 weeks post- 

surgery with castration resistant lesions evident by 6-7 months progressing to poorly 

differentiated adenocarcinoma by 16 months post-tamoxifen induction (Floc’h et al, 2012).  

Further analysis of these castration resistant prostate tumours showed virtually no evidence 

of senescence in comparison to the non-castrated mice which harboured less aggressive 

prostate tumours (Floc’h et al, 2012). 

Aytes et al (2013) reported that Nkx3.1
CreERT2

 allele is prostate epithelial cell specific, and 

they saw no evidence of leaky expression in absence of tamoxifen.  For tamoxifen 

induction of their mice they dissolved tamoxifen in corn oil (100 mg/kg) and used oral 

gavage once daily for 4 consecutive days at 2 months of age.  They generated an inducible 
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metastatic GEMM with combined Pten loss and Kras activation (Nkx3.
1CreERT2/+

; 

Pten
flox/flox

; Kras
LSL-G12D/+

).  Following tamoxifen induction, this GEMM developed 

aggressive PC with 100% penetrance of metastases predominantly to liver and lung, and 

lesser extent diaphragm, pancreas, kidney and proximal lymph nodes but notably not bone 

metastases (Aytes et al, 2013). 

Mouse model 3 (Nkx-CreER Brf1 
flox/+

)  

Our third Brf1 manipulated GEMM was an inducible model using Nkx3.1-CreER with 

heterozygote Brf1 loss switched off by tamoxifen at 3- 4 months of age (Figure 5.29).  We 

predicted that homozygote loss of Brf1 in mouse prostate epithelial would lead to cell 

death.  I wish to test whether heterozygote loss of Brf1 would affect the normal 

morphology and homeostasis of the adult prostate gland.  If this mouse model had been 

successful, the plan was to cross it with an aggressive mouse model, such as prostate 

specific homozygote loss of Pten and p53 to see whether loss of Brf1 could slow down 

prostate tumorigenesis.  

Tamoxifen induction was performed with 225 mg/kg i.p. injections for 4 consecutve days.  

Unfortunately, we found there was no obvious reduction in Brf1 on Western blots and IHC 

staining on the prostate from post-mortem carried out two to four weeks after tamoxifen 

induction.  This suggests that tamoxifen induction was not successful in inducing the Cre 

recombination expression or that Brf1 expression is upregulated in a compensatory manner 

as a consequence of a floxed Brf1 allele (see figures 5.30- 5.32).  To see whether prostate 

specific homozygote deletion of Brf1 could be tolerated by the mice, we set up matings 

between Brf1
 flox/flox 

mice and
 
NkxCreER-Brf1

flox/+
 mice.  Of 114 male offspring genotyped, 

none were confirmed to have a NkxCreER-Brf1
flox/flox

 genotype.  Predicted offspring 

genotypes from those matings would be one-quarter (28 mice) for each of the following 

genotypes (in brackets is how many mice actually had each genotype): (36) Brf1
flox/+

; (39) 

Brf1
flox/flox

; (40) NkxCreER-Brf1
flox/+

; (0) NkxCreER-Brf1
flox/flox

.  An explanation for this 

may be that the NkxCreER is leaky and therefore the NkxCreER is being activated in utero 

and the NkxCreER-Brf1
flox/flox

 genotype is being expressed outside the prostate in the mice 

foetuses resulting in embryonic lethality.  The way to test for this would be to look for 

embryonic death in pregnant mice and test the foetus genotypes.  However, since this 

mouse model was not the primary focus of this study we decided not to spend time 

investigating this.        
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Figure 5-29  Constructing Nkx-CreER-Brf1
flox/+ 

GEMM  

This GEMM was designed to assess whether heterozygote loss of Brf1 in the mouse 

prostate is detrimental to prostate gland homeostasis.    

 

 

Figure 5-30  Western blot of Brf1 expression in NkxCreER-Brf1
flox/+ 

and NkxCreER- mice 
prostates 

Blue prostate lysate identity numbers are derived from NkxCre-Brf1
flox/+ 

mice
 
and the 

remaining are control mice (WT and NkxCreER-).  There is no difference in Brf1 

expression between the different genotypes.  HSP-70 and actin are loading controls. 
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Figure 5-31  IHC staining of WT, NkxCreER and NkxCreER-Brf1
flox/+

 of ventral prostates 

Histologically all the prostates were similar with no signs of dysplasia or abnormal 

morphology.  Ki67 and caspase 3 (not shown) were both negative.  Brf1 IHC staining 

tended to be similar in all three genotypes.  Tamoxifen induction should have reduced Brf1 

expression and consequently Brf1 IHC staining in NkxCreER-Brf1
flox/+ 

but this was not 

successful (20X magnification). 
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Figure 5-32  IHC staining of WT, NkxCreER- and NkxCreER-Brf1
flox/+ 

of dorsolateral prostate 

All three genotypes were histologically similar with no signs of dysplasia or abnormal 

morphology.  Ki67 and caspase 3 (not shown) were both negative for staining.  Brf1 

staining tended to be similar between the genotypes generally.  Tamoxifen induction should 

have reduced the BRF1 expression in NkxCreER-Brf1
flox/+

 but this was unsuccessful (20x 

magnification). 
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5.4 Discussion 

Within the time and financial constraints of this study, it has not been possible to fully 

characterise this novel BRF1 overexpressing Pten-Brf1 GEMM.  Unfortunately, an earlier 

time point of 3-5 months was not achieved due to the low fertility of the PbCre-Pten
fl/fl

 

male mice and thus long time delays in developing the clinical end point cohorts.  PbCre-

Pten
fl/fl

 male mice are only fertile for the first few months of life and PbCre-Pten
fl/fl

 female 

mice are not fertile.  It would have been useful to investigate whether PIN lesions and early 

tumour growth developed earlier in the Pten-Brf1 mice versus the Pten- mice.  

Furthermore, imaging the mice with detailed sequential ultrasound (US) scans may have 

allowed for growth velocity measurements to be made. This would have answered the 

question whether BRF1 is an early initiator of tumour growth.   

The protein analysis and IHC scoring confirms that Brf1 is overexpressed in the mouse 

prostate tumours of the Pten-Brf1 in comparison to the Pten- mice and therefore the 

GEMM is a success in a technical sense.  However, the addition of human BRF1 to 

PbCrePten
fl/fl 

mice only produced a fairly subtle change in phenotype.  BRF1 

overexpression to a known PC GEMM does cause the prostate tumours to grow quicker 

and reach clinical end point significantly sooner.  However, it does not appear to result in a 

metastatic phenotype.  Perhaps, this is not surprising as other studies have shown that 

BRF1 overexpression can act as a driver of tumorigenesis in the presence of oncogenes, 

such as c-MYC (Johnson et al, 2008).  In hindsight a more useful GEMM would have been 

an aggressive GEMM with Brf1 KD, for example, Pten and p53 loss in prostate epithelium 

or Pten loss and MYC activation in prostate epithelium with Brf1 KD.  This would have 

shown whether suppression of Brf1 status can put the brakes on an aggressive model by 

slowing down proliferation.   

Further analysis of the RNA sequencing data may provide important downstream 

molecular drivers and regulators that Brf1 overexpression harnesses to stimulate tumour 

growth.  Due to time constraints we focused on HNF4α as this was also upregulated in 

published ChIP data but unfortunately, western blot analysis did not confirm that HNF4α 

was upregulated at the protein level in Pten-Brf1 mice.  However, only one HNF4α 

antibody was tested and therefore, it is difficult to confirm this is a true result. To 

strengthen the RNA sequencing data ideally five age-matched prostate tumours from each 

mouse cohort, Pten- and Pten-Brf1 should have been analysed.  However, even with only 

three Pten-Brf1 and two Pten- tumours tested it is clear from the heat map and GeneGo 
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analysis there are a number of genes significantly upregulated in the Pten-Brf1 prostate 

tumours that require further investigation.   

The most interesting finding from this novel GEMM is that BRF1 overexpression is 

associated with higher AR expression in comparison to the control mice Pten- tumours.  It 

is well known AR signalling is essential for the development and progression of PC.  It 

would have been interesting to see whether BRF1 function is influenced by AR signalling.  

In the hypothetical Brf1 KD GEMM discussed above, castration experiments could be used 

to investigate whether removal of androgens enhances the inhibitory growth effects of  

Brf1 KD. 

PC3 cells are thought to express little or no androgen receptor (Kaighn et al, 1979).  

However, with our PC3 stably upregulated BRF1 cells there is a definite band on the 

western blot analysis at the molecular weight size of AR.  This urgently requires further 

investigation.  In the first instance qPCR of mRNA AR levels should be quantified in the 

stable PC3 EGFP- and EGFP-Brf1 clones.  There has been a recent surge of interest in 

researching the steroid hormone-regulated transcriptome and it seems estrogen receptor 

signalling drives Pol III activity in breast cancer cells (Hah et al, 2014).  c-JUN oncogene 

activity increases estrogen receptor (ER)α expression and ERα occupancy at the BRF1 

promoter ultimately leading to elevated Pol III transcription (Zhong et al, 2014).    

Pten- prostate tumours showed a trend of higher IHC scoring for the inflammation 

markers, such as NIMP and F4/80 and DNA damage, γH2AX.  This suggests that Pten-

mediated tumorigenesis may have more active inflammatory pathways than the Pten-Brf1.  

It may be that there is an altered balance between growth signalling pathways versus 

inflammatory signalling pathways in Pten-Brf1 and Pten- prostates.  Disappointingly, Ki67 

(a marker of cell proliferation) was virtually identical between the two genotypes.  A 

reason for this may be that as most of the prostate tumours had reached clinical end point, 

they had reached their maximum proliferation capacity.  Ki67 IHC scoring at an earlier 

time point may have revealed a higher proliferative capacity in Pten-Brf1 prostates.  

However, due to low numbers of mouse tumours analysed in the age matched cohort, it is 

difficult to make firm conclusions.  However, obvious differences should be detected at n> 

5, and the fact that the differences are subtle suggests phenotypically the tumours of Pten-

Brf1 and Pten- are fairly similar.   
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It is important that limitations of GEMM are recognised and evaluated so that future 

GEMM and other models become the most precise replicas for human cancer.  Firstly, 

mice and other rodents do not develop PC spontaneously (Wu et al, 2012).  Human 

prostate glands are structurally different to mouse prostate glands, in that mouse prostates 

are composed of multiple lobes, whereas the human prostate has a zonal architecture.  

There is some evidence that the mouse dorso-lateral lobe is most similar to the human 

peripheral zone in reference to carcinogenesis (Berquin et al, 2005).  It is also well 

documented that the phenotype can be affected by mouse genetic background.  For 

example, in Trp53 knockout mice, tumour type and onset is highly variable between 

BALB/c versus C57BL/6 genetic backgrounds (Kuperwasser et al, 2000).  Background 

mice strains have been shown to modify the latency and spectrum of tumours that develop 

in Pten
+/-

 mice (Freeman et al, 2006).   

An effective GEMM replicating human PC should have the following characteristics:  

prevalence increasing with age; slow growth rate; histological progression from PIN, 

HGPIN, invasive adenocarcinoma, androgen dependence to androgen independence; high 

propensity for bone metastases. Our GEMM with BRF1 overexpression clearly does not 

meet this criteria but it does highlight the complexity of developing GEMM and does 

suggest that addition of BRF1 can change the growth dynamics of prostate tumours in a 

known PC GEMM.  
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6   Discussion 
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6.1  Is BRF1 a driver of prostate carcinogensis?   

The overarching aim of this thesis was to provide evidence to support or refute whether 

BRF1 has an important role in prostate carcinogenesis.  I will now go through all the 

evidence with that sole question in mind.  A former PhD student, Noor Nam reported that 

in human clinical samples PC has higher BRF1 expression than benign prostate pathology.  

Furthermore, the patients with higher BRF1 IHC scoring of their prostate tumours also had 

higher Ki67 IHC scoring, a marker of proliferation and more importantly, poorer survival 

outcomes.  Oncomine and cBioportal data also supports that human clinical PC tumours 

have higher BRF1 levels than benign prostate pathology, and metastatic disease has even 

higher levels of BRF1 expression than primary PC tumours  (Figures 3.1 and 3.2).   

Western blot analysis of BRF1 protein expression in a human PC cell line panel showed 

BRF1 was easily detectable in all studied PC cell lines (Figure 3.3).  BRF1 protein 

expression was higher in PC3M cells relative to its less aggressive primary cell line PC3.  

Interestingly, BRF1 mRNA was higher in PC3 than PC3M as measured by RT-qPCR 

(Figure 3.4).  This suggests that BRF1 expression is, at least in part, controlled at the post-

transcriptional level.   

The in vitro transient BRF1 manipulation experiments clearly showed that upregulating 

BRF1 increased cell proliferation in PC cell lines, whereas knocking down BRF1 

expression with siRNAs to lower BRF1 protein expression reduced cell proliferation 

(Section 3.2).  This is in keeping with elevated Pol III activity resulting in increased tRNAs 

production and, therefore, protein synthesis for cell proliferation.  However, stable BRF1 

overexpression in PC3 cells produced less impressive results despite high levels of BRF1 

expression at protein and mRNA levels in comparison to their EGFP- control cells (Figures 

4.1- 4.4).  They failed to show an increased proliferative or colony forming capability 

when compared to their EGFP- controls (Figures 4.5- 4.8).  However, interestingly they 

displayed altered cell morphology with polyploidy nuclear and G2/M arrest on cell cycle 

analysis by FACS (Figure 4.11).    

As only one PC cell line was successfully developed with stable transfection of BRF1 

overexpression, it is difficult to draw too many conclusions from those experiments.  

Furthermore, from western blot analysis, PC3 was not one of the PC cell lines that had the 

highest BRF1 expression; it may be that BRF1 is not an important driver in PC3 cells.  PC 

cell lines with higher levels of endogenous BRF1, such as LNCaP or CWR22, may 
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respond differently to increasing BRF1 expression and produce a more aggressive 

phenotype.  Once a functional upregulated stable PC cell line is developed, it will be 

invaluable to assess its Pol III transcription activity, including tRNA production.  

We developed two novel GEMM with hBRF1 added to a prostate specific Cre (PbCre-

Brf1) and the PC GEMM PbCrePten
fl/f 

model (PbCrePten
fl/fl

-hBRF1 or Pten-Brf1).  These 

were both successful models in that BRF1 was confirmed to be overexpressed on western 

blot and IHC (Figures 5.2, 5.10 and 5.11).  However, BRF1 overexpression alone did not 

result in a PC phenotype, or any distinctive histological differences from the control mice 

PbCre.  Pten-Brf1 reached clinical end point of a sizeable prostate tumour that affected the 

mouse’s agility sooner than the
 
Pten- control mice (Figures 5.4 and 5.5.  However, the 

histology of Pten-Brf1 GEMM looks very similar to the control mice and disappointingly 

there is no increase in Ki67 IHC scoring (Figures 5.9, 5.12 and 5.13).  This GEMM 

produces large cystic prostate tumours and therefore, it is difficult to let the mice age 

longer to develop metastatic lesions.  Furthermore, an early time point to assess whether 

BRF1 overexpression was causing early dysplastic changes or tumour growth was not 

possible.   

The most interesting result from the GEMM is that BRF1 overexpression appears to be 

associated with AR overexpression on IHC and western blot (Figures 5.24, 5.25 and 5.26).  

Therefore, future studies in BRF1 manipulated GEMM should include castration 

experiments to further explore this relationship.  Furthermore, it takes considerable time 

and finance to develop and characterise new GEMM and therefore, a more rapid 

alternative for further analysis of BRF1’s functional role in PC is to develop subcutaneous 

or orthotopic (prostate) xenografts.  Future studies should explore the functional 

significance of BRF1 manipulation in androgen responsive human PC cells in both in vitro 

and in vivo studies.  This will provide insight into how BRF1 overexpression behaves in 

vivo with its host extracellular signalling interactions.  Further analysis of the GEMM 

prostate tumour RNA sequencing data is required to see whether any further molecular 

drivers can be identified that may be responsible for the increased tumour growth in the 

Pten-Brf1 mice.  

In summary the hypothesis that BRF1 has an important functional role in prostate 

carcinogenesis is partially supported by my data.  Further research questions have been 

raised, which should facilitate identifying BRF1’s role in PC.  Primarily, the relationship 
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between BRF1 regulation, Pol III activity and AR would be an interesting focus of future 

research studies.   

 

6.2  Is Pol III a potential target for anticancer therapy? 

In cancer cells, acquired oncogenic drivers (for example overexpression of MYC) or loss of 

tumour suppressors such as TP53 result in consistent Pol I and III activity.  Therefore, Pol I 

and III transcription machinery are potential anticancer therapeutic targets.  However, this 

has proved controversial due to their essential housekeeping role in sustaining the 

proliferation of normal cells.  Yee et al, 2007 showed in zebrafish slj mutants Pol III 

transcription reduction inhibits development and growth in highly proliferative larval 

tissues, such as digestive system and retinae.  Furthermore, the effects of Pol III reduction 

was more evident in actively proliferating cells than on quiescent post-mitotic cells, for 

example heart, skeletal muscle and pancreatic islet cells.  Their research illustrates 

developmental defects are tissue-specific because Pol III-dependent demands of these cells 

are not met and thus, the threshold of Pol III activity required to sustain proliferation is 

variable between cells (Yee et al, 2007).  It may be that cells control Pol III transcription 

partly by regulating the expression of its subunit.  Yee et al, 2007 found that polr3b 

(second largest subunit of Pol III subunit, the zebrafish ortholog of yeast Pol III subunit 

rpc2) expression was consistently higher in the cells of the more proliferative tissue.   

As a pilot study, we looked at whether BRF1 KD by siRNA could behave synergistically 

with docetaxel.  The initial results do seem to suggest that at less effective levels of BRF1 

KD they may act synergistically but as they both cause G2/M arrest, at higher effective 

levels of BRF1 KD, there is no obvious synergistic anti-proliferative effect.  Interestingly, 

other researchers have started exploring Pol I, II and III inhibitors as potential anti-cancer 

drugs.  

Inhibiting protein synthesis and therefore halting cancer cell proliferation and tumour 

growth is an attractive anti-cancer strategy.  Conceptually, targeting Pol III activity is 

similar to how cytotoxic drugs work, that is, they attack cells with rapid growth and cell 

cycle turnover.  Cancer specific hyper-activation of Pol III suggests that cancer cells may 

be more sensitive to the effect of Pol III inhibition than normal cells.  Partial inhibition of 

Pol III transcription potentially could have less toxic effects than inhibiting an oncogene 
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upstream that has multiple effects.  For example, inhibition of PI3K signalling has focused 

on inhibiting PI3K, AKT and mTOR signalling complex but this has proved relatively 

toxic, and the presence of complex feedback loops also limits its efficacy.  

The tumour suppressor p53 is a transcription factor that is induced by cell stress to switch 

on genes involved in DNA damage repair, apoptosis, senescence, cell cycle arrest and 

autophagy.  TP53 is mutated in approximately half of all human cancers (Petitjean et al, 

2007).  In healthy unstressed cells, p53 levels are low due to activity of p53 antagonist, E3 

ubiquitin-protein ligase MDM2.  Many cytotoxic agents work by damaging DNA and rely 

on the subsequent activation of p53 for their therapeutic activity.  However, this can induce 

genetic instability and lead to secondary malignancies and other serious side effects, such 

as myelosuppression (Hijiya et al, 2009).  Therefore, there has been considerable effort to 

develop novel drugs to activate p53 in a more specific and therefore less damaging way.  

For example, MDM2 antagonists, mutant p53 re-activators and immunotherapy have been 

developed and evaluated in clinical trials.  However, success has been limited by low 

potency and a suboptimal therapeutic window (as reviewed by Drygin et al, 2014). 

Induction of nucleolar stress is not a current anti-cancer therapeutic strategy, but it has 

been found coincidentally to be a major component of some current chemotherapy drugs 

(Drygin et al, 2014).  Inhibiting Pol I transcription can result in nucleolar stress leading to 

stabilisation of p53 and induction of p53-dependent apoptosis (Kalita et al, 2008).  This is 

mediated by the sequestration of mdm2 by ribosomal proteins, thus allowing the liberation 

and activation of p53 (Deisenroth et al, 2010).  A recent screen of common 

chemotherapeutic drugs by Burger et al, (2010) demonstrated that 21 out of 36 drugs tested 

affected ribosome biogenesis.  For example, the commonly used platinum agent cisplatin 

inhibits Pol I transcription with a high degree of specificity through its ability to cross-link 

DNA thus preventing transcription factor UBF associating with rDNA gene promoter 

(Treiber et al, 1994).  Also, the anti-metabolite 5’fluorouracil (5’FU) disrupts rRNA 

processing by preventing the cross-linking of rRNA binding proteins at key processing 

sites of the precursor rRNA transcript (Ghosal et al, 1997).  

 The metabolites of pyrimidines such as 5’FU were analysed so that novel compounds 

could be developed by molecular design.  The novel nucleoside 1-(3-C-ethyl-β-ribo-

pentofuranosyl/cytosine (ECyd or TAS-106 in human clinical trials) was designed to 

inhibit RNA and DNA synthesis by blocking RNA polymerases I, II and III (Tabata et al, 

1996; Fukushima et al, 1998; Kazuno et al, 2007).  ECyd has demonstrated potent in vitro 
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cytotoxicity against a number of human cancer cell lines (Hattori et al, 1996; Tabata et al, 

1996).  When ECyd was administered intravenously in a nude mouse xenograft model, 

strong anti-tumour activity was demonstrated without evidence of severe toxicities 

(Shimamoto et al, 2001; Takatori et al, 1999).    

ECyd is phosphorylated by uridine/cytidine kinase 2 (UCK2) into the active metabolite 

ECyd-triphosphate (ECTP) (Azuma et al, 2001; Murata et al, 2004).  UCK2 is expressed 

higher in tumour cells versus normal cells and TAS-106 sensitivity has been correlated 

with UCK2 activity in tumour cell lines (Murata et al, 2004; Shimamoto et al, 2002).  

Expression of UCK2 seemed to correlate with cellular sensitivity to ECyd in vitro 

(Shimamoto et al, 2002).  However, in a subsequent clinical trial no significant correlation 

was observed between tumour UCK2 protein expression and TAS-106 mediated anti-

tumour effects (Tsao et al, 2013). 

There is increasing evidence that ECyd could be more effective in combination with other 

anticancer therapies.  Radiotherapy kills cancer cells by generating double strand breaks 

(DSBs) in DNA within tumour cells, leading to apoptosis and cell death (Kaina et al, 

2003).  The efficacy of radiotherapy seems to be closely associated with cellular DNA 

repair capacity (Mirzayans et al, 2006).  TAS-106 enhances radiosensitivity in various cell 

lines, and xenografts by suppressing the repair of radiation-induced DSBs (Meike et al, 

2011; Yasui et al, 2007).  It seems TAS-106 achieves this by downregulating the mRNA 

and protein levels of homologous recombination (HR) -related proteins, especially BRCA2 

(Meike et al, 2011).   

Preclinical studies of ECyd and cisplatin have shown enhanced growth inhibition in 

tumour cell lines and murine xenograft models (Kazuno et al, 2009).   Further analysis 

showed that ECyd potently reduced cell cycle checkpoint- associated proteins expression 

and Chk1 and Chk2 phosphorylation status.  ECyd also abrogated cisplatin-induced S and 

G2-M checkpoints, and apoptosis was induced in A549 cells (Kazuno et al, 2009).  

Interestingly, ECyd has been shown to inhibit the synthesis of vault RNAs (vRNAs, a Pol 

III product), while inducing the major vault protein (MVP, a Pol II product), both of which 

are essential components of Vaults as a drug transporter (Fukushima et al, 2014).  This is 

thought to explain how ECyd ‘overcomes’ resistance to cisplatin of KB cells (cisplatin-

resistant head and neck cancer cells) in in vtiro as well as in vivo xenograft tumours 

(Fukushima et al, 2014).   



185 
 

Patients who have progressed through conventional anti-cancer treatments with good 

performance status should be considered for clinical trials.  Several Phase I clinical trials 

have shown the dose limiting toxicities (DLTs) of TAS-106 are cumulative sensory 

peripheral neuropathy, tremor, fatigue and myelosuppression (Takimoto et al, 2007; 

Hammond-Thelin et al, 2010; Friday et al, 2012).  There has been no anti-tumour efficacy 

seen in TAS-106 monotherapy clinical trials to date (Abdelrahim et al, 2013; Tsao et al, 

2013).  A Phase I dose escalation study with TAS-106 and carboplatin also did not show 

any clinical response.  Nonetheless, TAS-106 was shown to be well tolerated, with dose 

limiting toxicity (DLT) being neutropenia (Naing et al, 2014).  

Cylene Pharmaceuticals developed the first selective Pol I transcription inhibitor called 

CX-3543.  CX-3543 specifically inhibits the elongation stage of Pol I transcription by 

preventing the stabilising interactions between nucleolar protein nucleolin (NCL) and G-

quadruplexes in the rDNA gene (Drygin et al, 2009).  In pre-clinical studies, CX-3543 

demonstrated anti-proliferative effects in broad panel of cancer cell lines and xenograft 

models of breast and pancreatic cancer (Drygin et al, 2009).  CX-3543 progressed through 

to a first in human study, Phase I dose-escalation study (ClinicalTrials.gov NCT00955786) 

and Phase II trial in low to intermediate grade neuroendocrine carcinoma 

(ClinicalTrials.gov NCT00780663) but due to low bioavailability was withdrawn from 

further clinical trials (Balasubramanian et al, 2011). 

Using a functional assay, Cylene Pharmaceuticals screened a small molecule library and 

identified CX-5461, a Pol I inhibitor that blocks the binding of SL1 transcription factor to 

its rDNA promoter, thus inhibiting initiation of rRNA synthesis by the Pol I multiprotein 

complex (Drygin et al, 2011).  It has been shown to be highly selective inhibitor of Pol I 

activity, 300-400 folds more selective than for Pol II or III transcription (Quin et al, 2014).  

CX-5461 has high potent anti-proliferative effects over a broad panel of human cancer cell 

lines (NCI-60 panel) in a p53 independent manner with resistance in non-cancer cell lines 

(Drygin et al, 2011).  Negi et al, 2015 studied the effects of a 2-days treatment with CX-

5461 in bone marrow derived cells from 6 patients with acute lymphoblastic leukaemia 

(ALL) as well as 3 healthy individuals as controls.  A therapeutic window for CX-5461 

treatment was proposed comparing cancer and healthy cells, with the leukaemic cells dying 

and the healthy cells surviving the treatment.  In A375 (melanoma) and Mia Paca-2 

(pancreatic) carcinoma cells, it was shown that CX-5461 induces cellular senescence and 

autophagy (Drygin et al, 2011).  This response is not driven by reductions in ribosomes or 

protein synthesis, as the cancer cell death pathway is induced long before these reductions 
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can occur (Drygin et al, 2011).  Furthermore, in murine xenograft models of human 

cancers, melanoma A375 and pancreatic carcinoma Mia Paca-2, CX-5461 displayed anti-

tumour activity (Drygin et al, 2011).    

Cancers with high levels of ribosome biogenesis, such as tumours with c-MYC gene 

amplification or overexpression are likely to respond well to nucleolar-targeting therapies.  

MYC modulates transcriptional activity of Pol I, Pol II and Pol III and thus acts as a global 

regulator of ribosome biogenesis (Gomez-Roman et al, 2006; van Riggelen et al, 2010).  

CX-5461 induced rapid p53-dependent apoptosis in Eµ-MYC lymphoma cells, whereas 

normal B cells were resistant to Pol I transcription inhibition (Bywater et al, 2012).  

Furthermore, p53 wildtype B-lymphomas are more sensitive to CX-5461 than p53 mutant 

B-lymphoma cells, and apoptosis in these cells is p53-dependent (Bywater et al, 2012).  

CX-5461 selectively activated p53-dependent apoptosis to reduce tumour size in mouse 

models of B-lymphoma and acute myeloid leukaemia (AML) (Bywater et al, 2012).  

Interestingly, p53 mediated apoptosis induction was rapid and independent of changes in 

protein translation or total ribosome levels (Bywater et al, 2012).  Transgenic Eµ-MYC 

mice lymphomas are very sensitive to CX-5461 (Quin et al, 2014).  Importantly, the 

apoptotic activity of CX-5461 in vivo was specific for MYC overexpressing lymphoma 

cells with no deleterious effect on normal B-lymphocyte population (Bywater et al, 2012). 

A transgenic mouse model that develops MLL-ENL (mixed lineage leukaemia- eleven 

nineteen leukaemia protein) fusion oncogene driven AML (acute myeloid leukaemia) is 

resistant to cytarabine and doxorubicin due to a lack of p53 activation (Zuber et al, 2009).  

CX-5461 was able to induce p53 and doubled the lifespan of these mice in comparison to 

vehicle alone or combination of cytarabine and doxorubicin (Hein et al, 2011).  However, 

this appears to be cell specific as p53-independent pathways were more dominant in CX-

5461 mediated apoptosis in ALL cells (Negi et al, 2015).  Furthermore, in ALL cells ATM 

(ataxia telangiectasia-mutated)/ATR (ATM-rad3-related) pathway is activated by CX-5461 

resulting in G2 phase arrest.  ATM and ATR are responsible for checkpoint kinases CHK1 

and CHK2 activation in response to cellular stress and lead to G2 arrest (Jackson et al, 

2009).  Negi et al, (2015) demonstrated treating ALL cells with a combination of CX-5461 

and ATR inhibitor (VE-822) resulted in marked increase in apoptosis compared to CX-

5461 alone, as the cells are no longer allowed to go into G2 arrest to recover from the drug 

induced stress.  



187 
 

CX-5461 activity is variable depending on the cancer cell type.  In solid tumour cell lines, 

CX-5461 produces cell senescence and autophagy in a p53 independent manner, whereas 

in haematological cancer cells it produces p53-dependent apoptosis.  This highlights 

different cancer types may have different signalling mechanisms that mediate nucleolar 

stress and cell death.  

There is increasing evidence that regression of cell transformation can be achieved by 

decreasing expression of BRF1 and Pol III genes (Johnson et al, 2008; Zhang et al, 2013; 

Zhang et al, 2011).  Deregulation of Pol III transcription and particularly, targeting of 

BRF1 by tumour suppressors and oncogenes in cancer cells suggests that Pol III 

transcription has an important role in tumorigenesis and potentially could be a novel 

anticancer target.  Targeting Pol III transcription machinery may represent novel strategy 

for controlling tumorigenesis and cancer progression. 
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