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A BSTRA CT

A new quan tita tive  framework for the objective assessment of the severity of intracranial 

deformation caused by brain tum ours and how they respond to trea tm ent is developed using 

shape analysis and feature extraction techniques. Conventional criteria for assessing the effects 

of a brain tum our by medical images are inaccurate and unsatisfactory because of problems 

defining tum our boundaries. Clinical response is relevant but is influenced by many factors 

and assessment is very subjective. In order to provide an objective and accurate assessment 

of the effects of brain tumours, a new and reliable method is introduced which quantifies the 

distortions and displacements of intracranial structures caused by brain tumours.

The deformations of the hemispheres, the lateral ventricles and the falx cerebri are analysed 

in term s of size, position and shape in both individual sectional images and three dimensional 

MRI image d a ta  sets. 28 invariant a ttr ibutes (size, rotation and position invariant), such as 

compactness, elongation, and central moments, are used to characterise the deformation of 

the hemispheres.

The shape of the lateral ventricles is specified by Fourier descriptors, the m ethod being 

used to m atch  ventricular shapes even through they have different sizes and orientations. 

Using the Fourier descriptors, the shape of the lateral ventricles can be characterised by 6 

invariant a ttr ibu tes.



A new technique to describe deformation in the intracranial surfaces is presented. The 

technique is used specifically to analyse the deformation of the falx cerebri. The deformation 

of the falx cerebri is described by measuring the Gaussian curvature and the mean curvature. 

28 a ttr ibu tes  are obtained to quantify changes in the surface of the falx cerebri.

Based on the measurements of the hemispheres, the lateral ventricles and the falx cerebri 

from 15 volunteers and 28 patients with intracranial deformation and combining all the 62 

invariant a ttr ibu tes  using da ta  reduction techniques (the Karhunen-Loeve transform), three 

criteria (the decision rules) are established to classify the normal and abnormal intracranial 

structures. A scale for assessing the severity of intracranial deformation and a scale for 

assessing the effects of therapy also are established.

The criteria and scales are applied in a blinded prospective manner to a further group of 

patients. T he results reveal some im portant relationships between an intracranial deformation 

and its effects. For example, all studied patients who initially had a larger severity scale 

( S S I  D > 5 ), with one exception, died within 8 months no m a tte r  how great the decrease of 

the deformation following trea tm ent. The quantita tive assessments are compared with clinical 

assessments for the same group of patients, and results show tha t the quantita tive  approach is 

more objective and accurate. The quantitative framework provides an objective and accurate 

index of intracranial deformation and may provide a sensitive and relevant basis for clinical 

decision making.



V

C o n t e n t s

Acknowledgements ii

A bstract iii

C h a p t e r  1 Introduction .................................................................................................................................1

C h a p t e r  2 The Basic Principles of Magnetic Resonance Imaging .............................................. 10

2.1 The Development of Nuclear Magnetic Resonance .......................................................... 11

2.2 Nuclear Magnetic Resonance .................................................................................................... 13

2.3 Relaxation Times .......................................................................................................................... 15

2.3.1 T\ Relaxation ........................................................................................................................ 15

2.3.2 T2 Relaxation ........................................................................................................................ 17

2.4 Pulse Sequences .............................................................................................................................19

2.4.1 Spin E c h o ................................................................................................................................19

2.4.2 Inversion Recovery .............................................................................................................. 22

2.5 Image G e n e ra t io n ..........................................................................................................................25

2.5.1 Use of Magnetic Field Gradients ....................................................................................26

2.5.2 Slice Selection ........................................................................................................................27

2.5.3 Frequency and Phase Encoding ......................................................................................29

2.5.4 Image Reconstruction ........................................................................................................ 33

2 .6  MRI Hardware .............................................................................................................................. 34

2.6.1 The Magnet ............................................................................................................................35

2 .6 .2  Radiofrequency Coils and Gradient C o i l s ................................................................... 36



VI

2.6.3 C om puter System ...............................................................................................................37

2.7 Safety of MRI .................................................................................................................................37

2.7.1 Direct Biological Effects .................................................................................................... 37

2.7.2 Indirect Effects ...................................................................................................................... 38

2.8 O ther Medical Imaging Modalities .........................................................................................38

2.8.1 X-ray Imaging .......................................................................................................................39

2.8.2 Ultrasonography ...................................................................................................................41

2.8.3 Radionuclide Imaging .........................................................................................................43

2.8.4 Comparison of MRI with other Modalities .................................................................45

2.8.4 .1 Advantages of MRI .....................................................................................................45

2 .8 .4.2 Disadvantages of MRI ...............................................................................................47

C h a p t e r  3 The Basic Anatomy and Pathology of the Brain ........................................................ 48

3.1 The Brain .........................................................................................................................................48

3.1.1 Meninges ................................................................................................................................. 50

3.1.2 The Cerebral H em isp h ere s ................................................................................................ 51

3.1.3 The Ventricles ....................................................................................................................... 52

3.1.4 The Brainstem .......................................................................................................................52

3.1.5 The Cerebellum .................................................................................................................... 53

3.2 Intracranial Deformation ............................................................................................................ 53

3.2.1 Intracranial Expanding Lesions ...................................................................................... 55

3.2.2 The Internal Hernia .............................................................................................................56

3.2.3 Brain Swelling ....................................................................................................................... 57



3.2.4 The Deformation Caused by Brain Tumour ............................................................ 58

C h a p t e r  4 Image Segmentation .............................................................................................................. 60

4.1 Introduction .................................................................................................................................... 60

4.2 Edge Detection Using C anny’s Detector ..............................................................................63

4.2.1 Laplace Operators and Zero Crossings ........................................................................ 64

4.2.2 C anny’s D e te c to r ..................................................................................................................65

4.3 Splines Segments ...........................................................................................................................69

4.3.1 Curve Representation Using B-splines Approximation ............................................69

4.3.1.1 B-splines ........................................................................................................................ 69

4.3.1.2 Interpolation Using B -sp lin e s ..................................................................................71

4.3.2 Surface Representation Using Cubic B-splines Approximation .......................... 75

4.4 Applications ....................................................................................................................................80

4.4.1 The Hemispheres and the Ventricles in Each Sectional Image ............................80

4.4.2 The Surface of the Longitudinal F i s s u r e ......................................................................82

4.5 Conclusions .....................................................................................................................................87

C h a p t e r  5 M easurement of the H em isp h e re s ......................................................................................90

5.1 Introduction .................................................................................................................................... 90

5.2 Basic Relationship Between Pixels .........................................................................................92

5.3 Basic Geometric Parameters .................................................................................................... 95

5.3.1 Perim eter ................................................................................................................................ 95

5.3.2 Area .......................................................................................................................................... 95

5.3.3 Volume .................................................................................................................................... 96



Vll l

5.3.4 Surface Area ..........................................................................................................................97

5.3.5 Central M o m e n ts ..................................................................................................................97

5.3.6 Compactness ..........................................................................................................................98

5.3.7 Elongation ..............................................................................................................................99

5.4 M easurement of the Deformation of the Hemispheres .................................................... 99

5.4.1 Image Acquisition and S e g m e n ta t io n ............................................................................99

5.4.2 Two Dimensional M e a s u re m e n t ....................................................................................100

5.4.3 Three Dimensional Measurement .................................................................................106

5.4.4 Invariant Attributes .......................................................................................................... I l l

5.5 Conclusions ...................................................................................................................................113

C h a p t e r  6  Shape Analysis of the Lateral Ventricles LIsing Fourier Descriptors .................. 116

6.1 Introduction ..................................................................................................................................116

6.2 Fourier Descriptors and Its Invariant Properties ............................................................ 118

6.2.1 Fourier Descriptors ............................................................................................................ 118

6.2.2 Invariant Properties .......................................................................................................... 119

6.3 Shape Similarity and S y m m e tr y ............................................................................................ 120

6.3.1 Shape Similarity .................................................................................................................121

6.3.2 Shape S y m m e t r y ................................................................................................................ 122

6.4 A p p l ic a t io n s .................................................................................................................................. 123

6.4.1 Image Acquisition and Segmentation .........................................................................123

6.4.2 The Training Set ................................................................................................................ 126

6.4.3 Results .................... ' ............................................................................................................ 127



IX

6.5 Conclusions ............................................................................................................................... 131

C hap ter  7 Shape Analysis of the Falx Cerebri Using Surface Curvatures .............................. 133

7.1 Introduction ...................................................................................................................................133

7.2 Surface Differential Geometry ................................................................................................ 135

7.3 Surface Curvature .......................................................................................................................137

7.4 A p p lic a t io n s ...................................................................................................................................140

7.4.1 D ata Acquisition ................................................................................................................ 140

7.4.2 Measurement .....................................................................................................................141

7.4.3 Results ................................................................................................................................... 142

7.5 Conclusions ................................................................................................................................... 147

C hap ter  8  Classification and Interpretation .....................................................................................150

8.1 Introduction .................................................................................................................................. 150

8.2 Basic P a tte rn  Recognition .......................................................................................................153

8.3 Feature Extraction Based on Karhunen-Loeve Transform .............................................155

8.4 Bayes Decision ............................................................................................................................. 160

8.5 The Decision Rules for Intracranial Structures ................................................................164

8.5.1 The Decision Rule for the Hemispheres ..................................................................... 164

8.5.2 The Decision Rule for the Lateral Ventricles ........................................................... 171

8.5.3 The Decision Rule for the Falx Cerebri ..................................................................... 178

8 .6  Scales of Intracranial Deformation .......................................................................................185

8.7 A p p l ic a t io n s .................................................................................................................................187

8.7.1 Patients ............................................................................................................................. 188



X

8.7.2 Results .................................................................................................................................. 188

8.7.3 Clinical Assessments ........................................................................................................ 190

8.7.4 Discussion .............................................................................................................................192

8 .8  Measurement Reliability .......................................................................................................... 197

8.9 Conclusions .................................................................................................................................. 201

C h a p t e r  9 Conclusions and Further D evelopm ents ........................................................................203

9.1 Conclusions .................................................................................................................................. 203

9.2 Further Developments .............................................................................................................. 209

R e fe r e n c e s  .................................................................................................................................................... 213

A p p e n d i x  A Notation ..............................................................................................................................228

A p p e n d i x  B  Relevant D a t a ....................................................................................................................231

A p p e n d i x  C The Program for Image S eg m en ta tio n ......................................................................241

A p p e n d i x  D  The Program for Basic Geometric M e a su re m e n t ..................................................263

A p p e n d i x  E The Program for Shape A n a ly s is ................................................................................ 278

A p p e n d i x  F The Program for Surface Measurement .................................................................... 294



C hapter 1 In trod u ction

Objective assessment of the severity of a brain tum our and its response to therapy 

plays an im portant role in cancer management. Unfortunately the criteria available 

for measuring an intracranial deformation are inaccurate and inadequate. Clinical 

response is relevant but is influenced by many factors and assessment is very subjec

tive.

The aim of this thesis is to develop a new quantita tive m ethod for the objective 

assessment of the severity of brain tum ours and how they respond to trea tm en t.  This 

is based on in vivo analysis of intracranial deformation by MRI data, using shape 

information and feature extraction techniques. The quantita tive assessment will be 

used as an objective index of intracranial deformation which it is hoped will provide a 

sensitive and relevant basis for clinical decision making, thus leading to more effective 

trea tm ent.

Gliomas and other malignant brain tumours are the most common intracranial
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neoplasm. They provide a unique challenge in oncology in tha t,  in spite of remain

ing localised to the brain, they are almost never cured by local t rea tm en t [Bloom 

1982]. Patients trea ted  with surgical resection and radiation therapy die with local 

relapse after a median survival of only nine months [Bloom 1982]. There has been 

little improvement in this success rate in the last 20 years. O ther modalities and 

novel trea tm ents ,  such as interstitial radiation [Gutin 1985], chem otherapy [Hilde

brand 1985], or biological response modifiers [Nagai 1984], may have the potential for 

prolonging survival times but have not been adequately assessed.

The managem ent of brain tumours is particularly difficult because the relationship 

between the appearance of the tum our using conventional imaging m ethods and the 

p a t ien t’s clinical condition and prognosis is poorly understood. This frustrates clinical 

decision making and impairs the assessment of response to trea tm ent.

The volumetric measurement of brain tum our on com puted tom ography (CT) 

has dem onstrated  a possibility of quantitative in vivo assessment [Kretzschmar 1982]. 

However this approach appears to be unsatisfactory because of the significant vari

ations in volumetric measurement caused mainly by the definition of the  margins of 

ill-defined tum ours [Chisholm 1989].

The effects of an intrinsic brain tum our are often influenced by factors other than  

the size of the obvious tumour. Typically, “tum our mass” is made up of different com

ponents, namely a central area composed entirely of tum our tissue and surrounding



this an often greater zone in which tum our cells infiltrate oedematous and even nor

mal brain [Kelly 1987]. Usually the most crucial factor is the total space-occupying 

effects tha t results from the mass of the tumour, and the effects of this on in tracra

nial dynamics. Thus, there is a complex combination of local tissue destruction and 

distortion, intracranial shift, interference with cerebrospinal fluid circulation, raised 

intracranial pressure, intracranial herniation, and ischaemia [Anderson 1980]. Clini

cal symptom s and signs are most immediate and im portan t to the patient but they 

do not alone provide a satisfactory and secure basis for assessing the effects of the tu 

mour or its response to trea tm ent. Typically, patients are often on multiple palliative 

drug therapies to suppress unpleasant symptoms.

Radiological methods have improved the diagnosis of brain tum ours but not the 

assessment of their intracranial effects. With contrast com puted tomography the 

area within which enhancement occurs is usually equated with the zone composed 

entirely or predominantly of tum our tissue. However, enhancement reflects increased 

blood brain barrier permeability and neovascularisation, rather than tum our per se , 

and thus can be affected by a range of factors, independent of the size and extent of 

the tumour. Moreover, tum our tissue often extends beyond the area of enhancement 

and even beyond the area of oedema on both contrast com puted tomography and 

magnetic resonance imaging [Brant-Zawadski 1984, Andrew 1990]. Although Riding 

et, al advocated tha t brain tum our volume should be used as a true  scientific end point
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in brain trea tm ent protocols, it has proved impossible to measure tum our volume from 

com puted tomography with sufficient accuracy and consistency. Wilson et al [Wilson 

1979] reported tha t changes in tum our volume of less than 25% could not be reliably 

detected by com puted tomography and concluded tha t the most practical m ethods 

for assessing the progress of a glioma was the clinical neurological exam ination. The 

deficiencies of standard computed tomography were re-emphasised by Chisholm et 

al [Chisholm 1989] who found tha t the inter and intra observer reproducability  of 

computed tomography measurements were so poor tha t “most changes in tum our 

volume following trea tm ent were obscured by the variability of assessments '.

Magnetic resonance imaging has shown an advantage over com puted tom ography 

because of its multi-planar capability, high tissue contrast, and absence of ionizing 

radiation. However measurement ot l \  and T2 have not proved useful diagnostically 

in assessing changes in the tum our, for example Houdek et al [Houdek 1988] showed 

th a t  there was no significant change in J\ and T2 measurements in gliomas as a result 

of trea tm ent by radiation.

The assessment of “to ta l” tum our mass effect on magnetic resonance imaging or 

computed tomography da ta  has not been satisfactorily achieved with current medical 

image processing approaches. Quantification of “to ta l” tum our mass has been hin

dered both by the poorly defined nature of the limits of the tum our and also by the 

complex, irregular geometry of the area of evident oedema (see Fig. 1.1).



Fig .1.1 An axial 7Yweighted magnetic resonance image of a patient with a 

tumour. A large irregular mass lesion is present involving the right mid frontal 

and partietal lobe surrounded by vasogenic oedema.

Brain tumours cause complex three-dimensional distortion and displacement of 

m ajor cerebral structures. These take the form of shifting of the longitudinal fis

sure, displacement of the brain stem, tentorial herniation, and distorta tion of the 

ventricular systems. Such deformations are called secondary space occupying effects 

(see Fig. 1.2). Usually the distortion and displacement of the brain tha t results from 

the mass of the tum our is often of greater significance with regard to the im mediate 

survival of the patient than the nature of the lesion or the am ount of cerebral tissue
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destroyed by it [Anderson 1980]. The structures themselves can be delineated much 

more easily than tum ours with M R images because they usually have high contrast 

boundaries between brain tissue and cerebrospinal fluid.

Fig .1.2 A coronal Xi-weighted MR image of a patient with an intracranial 

deformation caused by a tumour in the left frontal lobe. It shows a moderate 

degree of space occupying effect with displacements of the midline and lateral 

ventricles.

In this thesis we will present a new approach to quantitatively assessing the sever

ity of an intracranial deformation caused by brain tum our and how it responds to
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trea tm en t on magnetic resonance images. Instead of trying to determine the am 

biguous tum our boundary, we measure these secondary space occupying effects based 

on the segmentation of intracranial structures, such as the boundary of the cerebral 

hemisphere, the shapes of the lateral ventricles, and the edge of the longitudinal fis

sure. In order to comprehensively assess the secondary occupying effects caused by 

brain lesions, we will use shape analysis and features extraction techniques.

An objective index of intracranial deformation would provide a sensitive and rele

vant basis for clinical decision making and hence lead to more effective trea tm ent.  It 

would greatly facilitate research into the management of brain tumours. A measure 

of deformation would provide an objective index of initial severity and hence would 

be useful in stratifying different groups of patients. Follow-up measurements would 

be particularly valuable in providing a sensitive index of early response to different 

modes of management.

This thesis consists of nine chapters including the introduction. In C hapter 2 

we give a brief introduction to magnetic resonance imaging and discuss the various 

modalities and their advantages and disadvantages.

Chapter 3 introduces the basic anatomy and pathology of the brain. In C hapter 

4 an effective and practical technique is developed to segment the boundaries and 

surfaces of intracranial structures in magnetic resonance images. Firstly C anny’s 

edge detector is introduced as this image processing technique provides the optimal



trade  off between signal to noise and accuracy in locating edges. Then the B-splines 

m ethod is developed to represent the boundary or surfaces of brain structures.

In C hapter 5 various methods of measuring the hemispheres are developed. As 

well as conventional volumetric measurement concepts such as changes in size, we 

investigate methods to quantify changes in shape and position in terms of shift, sym

m etry  and compactness of the cerebral hemispheres. The results from measurements 

011 normal volunteers and patients are presented.

In Chapter 6 a new shape analysis method (Fourier descriptors) is developed to 

measure the shapes of the lateral ventricles even when they have different sizes, posi

tions and orientations. Measurements are m ade in groups of volunteers and patients.

In Chapter 7 a new surface measurement technique is developed and applied in 

volunteers and patients to characterise the deformation of intracranial surfaces based 

on novel applications of differential geometry. This method is size, position and 

rotation independent.

In C hapter 8 a description is presented of an a t tem p t to comprehensively anal

yse the severity of intracranial deformation and the effects of trea tm ent. Feature 

extraction techniques (Karhunen-Loeve transform) are utilised to reduce the 62 mea

surement a ttr ibu tes  to make them more conceptually accessible to clinicians. Based 

on the  measurements of the hemispheres, the lateral ventricles, and the falx cerebri, 

three criteria (decision rules) are established to classify the norm al  and abnormal

8



hemispheres, lateral ventricles, or falx cerebri. We introduce a severity scale and 

variation scale of the intracranial deformation in order to comprehensively assess the 

severity of intracranial deformation and its response to trea tm ent. Once these have 

been established from retrospective analysis of normal and patient groups, they are 

applied in a blinded prospective m anner to a further group of patients. The results 

from this are discussed.

Chapter 9 highlights the original contributions and findings in the thesis and 

discusses further improvements and further work.
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C hapter 2 T h e B asic  P rin cip les o f  

M agnetic R eson an ce Im agin g

Magnetic resonance imaging (MRI) is established as an im portan t modality in 

medical practice. It can yield a great deal of information because the nuclear magnetic 

resonance (NMR) signal from which the images are constructed is a function of a 

num ber of separate components. The most im portant of these are: density of the 

nuclear species (hydrogen in water), two relaxation times (T\ and T2), and motion 

or flow. O ther parameters such as chemical shift, diffusion and susceptibility effects 

resulting from difference in oxygen utilisation, also affect the returned signal and are 

beginning to find clinical utilisation. The study of other nuclei with net magnetic 

moments, such as phosphorous-31, as well as hydrogen bound to biomolecules is also 

possible on some clinical systems though the clinical utility of these techniques has 

been limited to date.

The clinical applications of MRI are increasing rapidly particularly as it does not
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use ionizing radiation and is thus free of the potential hazards of X-rays. All parts 

of the anatomy, from the head to the extremities, are currently evaluated with MRI, 

often as the modality of choice. By selecting the proper MRI techniques lesions, 

areas of oedema, hemorrhage, and flowing blood which are difficult to distinguish 

using X-ray CT, can often be resolved using MRI.

2.1  T h e  D e v e lo p m e n t  o f  N u c le a r  M a g n e t ic  R e s o 

n a n c e

T he phenomenon of NMR was first discovered independently by Bloch et al [Bloch 

1946] and by Purcell et al [Purcell 1946]. This was soon followed by the  discovery 

of chemical shift, allowing nuclei in different chemical environments to be identified 

as a result of the small change in resonant frequency caused by the electron cloud of 

the  molecule.

Although high-resolution NMR has developed as a versatile tool for s tudying the 

chemistry and structure of solids and liquids, the major biochemical and medical 

interest has arisen from the possibilities of making non-invasive measurements in 

living tissue. Initial measurements of phosphorous-31 in intact blood cells were carried 

out by Moon and Richards [Moon 1973]. Measurements of frog sartorius muscle 

followed, but earlier experiments were limited by the small bore of the  available

11



magnets. Developments in magnet technology perm itted  phosphorus studies to be 

extended, initially to small animals and then , with the advent of wide-bore high- 

field magnets, to studies of humans. As in vivo NMR spectroscopy of animals and 

humans has become possible, methods of obtaining spatially localised signals from a 

well defined region of tissue have been developed.

In parallel with the development of spectroscopic techniques, methods of imaging 

the distribution of hydrogen protons in tissue water evolved. These techniques again 

depend on the spatial localisation of the NMR signal, although in this case with a 

much higher spatial resolution.In 1973 the principle of utilising the shift in resonant 

frequency resulting from the imposition of a magnetic-field gradient was proposed by 

Lauterbur [Lauterbur 1973], and by Mansfield and Grannell [Mansfield 1973]. The 

early images tha t were formed were limited to small objects, but the first whole- 

body image was published in 1977 by Damadian et al [Damadia.n 1977]. These 

early results have been followed rapidly by technical and commercial developments, 

producing a variety of techniques tha t allow proton images to be acquired, providing 

information on spin density and Tj and T2 relaxation times. Fast and “real-tim e” 

imaging methods have been developed, as well as methods for separating water and 

fat in proton images, and techniques for measuring blood flow in vivo. Despite the 

rapid rate of development in recent years, NMR is still at a relatively early stage in 

its development, and many further advances are likely.
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2.2  N u c le a r  M a g n e t ic  R e s o n a n c e

Nuclear magnetic resonance depends on a property  called spin , which is possessed 

by some atomic nuclei. Protons in the nucleus have a positive electrical charge. A 

proton also has a spin, and thus the moving electrical charge produces a magnetic 

field. The spins experience a torque when subjected to an external magnetic field. 

As the result, they precess around the axis of the magnetic field at a ra te  given by 

the Larmor equation:

io =  7 # 0

where u> is the resonance frequency in H z , B 0 is the strength of the static  magnetic 

field, and 7  is a constant for the particular nucleus (gyromagnetic ratio).

The most abundant nucleus in biologic tissue is hydrogen (one proton, no neu

trons). O ther atomic nuclei tha t are theoretically suitable for NM R include carbon-13, 

sodium-23, and phosphorous-31. Hydrogen in water is used as the signal source in 

most clinical NMR scans because it is so prevalent.

In the absence of an external magnetic field, the spinning protons are randomly 

oriented in the body and there is no net magnetisation. If placed in a very strong 

externally applied magnetic field B 0l the spinning protons have a tendency to align 

with or against the field. More will align with the field than  against it. This slight 

preponderance creates a small collective net equilibrium magnetisation Mo which 

points along the axis of B 0 (Fig. 2.1). M0 is also called the longitudinal magnetisation.
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XIX ~c>
( A )  ( B )

Fig.2.1 Single protons which comprise the nuclei of hydrogen atoms are 

shown (A) without an external magnetic field applied. The spinning protons are 

oriented randomly. (B) With an external magnetic field {Bo) applied, protons 

align either with or against the field. The slight preponderance of protons that 

are oriented with the field creates a small magnetisation Mo.

For a given magnetic field strength, different nuclei precess at different resonant fre

quencies and can thus be distinguished from one another. In order to measure these 

signals, transverse magnetisation is created. It is generated when a small radiofre

quency (RF) field of am plitude B \,  rotating synchronously with the precessing spins, 

is applied. When this radiofrequency field acts in a direction perpendicular to the 

main field, the effect is to rotate the  longitudinal magnetisation away from its rest



state. If the duration of the B\  field is such tha t the net magnetisation is ro tated  by an 

angle of 90 degrees, it will become transverse. The RF which rotates the longitudinal 

magnetisation by an angle of a  is called an a  pulse. In most conventional sequences 

the pulse angle is normally 90° or 180° degrees (though low flip angle gradient echo 

techniques, such as FLASH, are being increasingly utilised).

2 .3  R e la x a t io n  T im e s

As soon as the RF pulse is switched off, the transverse magnetisation will s tart to 

decay to zero, while at the same time the longitudinal magnetisation begins to grow 

back to its equilibrium value. The processes determining the return to equilibrium 

of both longitudinal and transverse magnetisation are called T\ relaxation and T2 

relaxation processes. These two processes are the keys to distinguishing tissues and 

lesions in MR images.

2.3.1 T \ R e la x a t io n

7\ relaxation is often called longitudinal relaxation or spin-lattice relaxation. It de

scribes the transfer of energy to or from the spin system as a whole. T\ is the rate 

constant of the monoexponential return of the longitudinal magnetisation. As T\ 

depends on tissue composition, structure and surroundings, hydrogen protons in dif

ferent tissue have different T\ recovery rates. Some tissues (such as fat) have very
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rapid recovery rates or “short” T\ values (the order of 150 — 250 milliseconds), while 

others have much longer X\ values {e.g. about 3000ms for cerebrospinal fluid) [Wehrli 

1991]. The return to equilibrium occurs exponentially as [Dixon 1982]

M z{t) = M a{\ - e - 1' 7')  (2.1)

where M z(t) is the longitudinal magnetisation at time t and M 0 is the equilibrium 

magnetisation. Fig.2.2 shows the T\ relaxation with tim e of three types of tissue. 

At time 0, there is no longitudinal magnetisation at all, and this would be the  time 

immediately after the first 90° pulse.

longit.
magn

CSFturner

Time

15

Fig.2 .2  Return of the longitudinal magnetisation with time (seconds) for 

three types of tissue in the body.

If we wait a long time (Say T R  = 15 seconds, where T R  is the repetition time)
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before we repeat the 90° pulse, longitudinal magnetisation will have almost completely 

recovered even for long 7\ substances such as CSF, so there will be only a small 

difference in signal between white m atter,  tum our and CSF. If, however, we apply 

a second pulse after a shorter T R  (about 2 seconds in Fig 2.2), the difference in 

longitudinal magnetisation between the three tissues is much larger, so there will be 

a be tte r  tissue contrast.

2 .3 .2  T2 R e la x a t io n

T2 transverse or spin-spin relaxation describes the redistribution of energy between 

spins, causing a dephasing of the spins with time. Just as different tissues have 

different T\ relaxation times, they also have different T2 values tha t are primarily due 

to different macromolecular environments. This process typically is exponential and 

can be described as [Edelstein 1983]

= M ^ e-W  ( 2 .2 )

where M°y is the initial transverse magnetisation and M xy( t ) is the transverse m ag

netisation at time t.

One spin affects another by slightly altering the magnetic field experienced by 

the second spin. The resonant frequency of this second spin will change slightly, 

causing an increase or decrease in phase. In fluids the net difference in field due to 

tum bling molecules tends to even out , producing little phase difference and so a long
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T -2 results. In more solid tissues field differences are more constant, hence there is 

greater dephasing and so a shorter T2.

In tumours, which tend to have more unbound water than normal tissue, spins 

take longer to dephase and hence have a longer T2. T\ is greater than T2 in all 

substances because the longitudinal magnetisation can never be fully re-established 

until all the transverse magnetisation has decayed away. In most body tissues the 

dephasing, or decay of transverse magnetisation, occurs much faster than  the recovery 

of longitudinal magnetisation. The T2 of a given tissue is therefore usually much 

shorter than its 7 \.  T2 values are typically only 10 — 20% of 7\ values, the main 

exception being CSF where T2 is close to X\.

Table 2.1 lists relaxation times in different brain tissues at 0 .15T (the field strength 

at which the patients in this project were imaged) [Condon 1986].

Tissue Tj (msec) T2 (msec)

Grey m atte r 513 ±  57 118 =t 8

W hite m atte r 242 ±  14 86 ± 9

CSF 3302 ±  170 2269 ±  128

Table 2 .1  T\ and T2 of different brain tissues at 0.15T. Figures are given 

as mean ± standard deviation.
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2 .4  P u ls e  S e q u e n c e s

In many parts of the human body, the proton density does not vary greatly from one 

tissue to another. Thus if the NMR signals displayed in the images depended only on 

the proton density the contrast would not be very good. However, the NM R signals 

depend also on the relaxation times T\ and T2, and living tissues vary widely in their 

relaxation properties. Various NMR pulse sequences can be employed to improve the 

contrast between the various organs and between normal and pathological tissue. We 

will discuss two of the most common of these.

2.4.1 Spin  Echo

Following a 90° pulse, the signal should decay with a tim e constant T2, the spin-spin 

relaxation time. However, the transverse magnetisation decays much faster, with a 

tim e constant T2*, the effective transverse relaxation time. This happens because 

spins at different locations experience slightly different magnetic fields due to tiny 

imperfections in the machine’s static magnetic field. This results in slightly different 

precession frequencies for the different spins. Consequently the spins lose their phase 

coherence and the transverse magnetisation decays faster than it would 011 the basis 

of T2 processes alone. A 180° RF pulse, applied some tim e t  after the 90° pulse, can 

be shown [Andrew 1990] to reestablish phase coherence at time r  later (be., at the 

time t = 2 r  following the 90° pulse, see Fig. 2.3). Thus any remaining loss of phase



coherence will be due to the “pure” T 2 effect. The period (2r )  between the initial 90° 

pulse and the echo is denoted “echo delay” or “echo tim e” (TE), and the tim e before 

the s tar t of the next set of pulses is called the repetition tim e (TR).

90 0 180 0 E x c i t a t i o n

TE
TR

Fig .2.3 The spin-echo pulse sequence. The 180° pulse, applied r ms  after 

the initial 90° pulse, generates a spin echo at time t = 2r  = T E .  The amplitude 

of the echo is a function of the echo delay and the spin-spin relaxation time TV 

By contrast, the free induction signal decays with a time constant T2*.

A spin echo pulse sequence is therefore composed of two pulses: a 90u pulse and, after 

tim e T E / 2, a 180° pulse.

The echo signal is produced by the refocusing the transverse proton m agnetisation,
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so tha t it is decaying exponentially with only the time constant X2. Some tissues 

have much longer values of X2 than others(e.</. tumourous tissue compared to white 

m atter) .  If T E  is made comparable with the longer X2 values, we will get weaker 

signals, but greater contrast between tissues with different T2 s. In this way, a X2- 

weighted image is generated, with tissues having long T2 values appearing brighter in 

the image (see Fig.2.4). Spin echo sequences can also be used to produce T\ weighting 

by reducing T E  (and hence minimising the T2 effect) in conjunction with a reduction 

in T R  (thus increasing the Tj effects contribution to the signal).

The spin echo signal intensity I is approximately given by the expression [Wehrli 

1991]:

I oc N (H ) (  1 -  e- TR/T' ) e - TE/T2 (2.3)

where N ( H )  represents the proton density. As indicated by equation (2.3), the  signal 

intensity is related to both T\ and T2. Furthermore it can be inferred tha t the spin 

echo signal intensity increases if :

1 . the repetition time (TR) between successive 90u pulses is increased.

2 . Xj decreases.

3. the echo delay (TE) is shortened.

4. X2 increases.

Obviously Xj and X2 are tissue specific, while T R  and T E  are under operator control.
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160 20040
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F ig .2.4 Transverse relaxation

2 .4 .2  Inversion  R ecovery

An inversion recovery sequence uses first a 180° pulse which is then followed by a 90° 

pulse (Fig.‘2.5) and is generally used to produce high contrast T\ weighted images.

The 180° pulse inverts the longitudinal magnetisation. This is il lustrated in Fig. 

2.6 and 2.7 for two tissues with different TVs. To get a measurable signal, some 

transverse magnetisation is needed. Thus a 90° pulse is applied. The signal thus 

depends on the time TI (inversion time) between the 180° and the 90° pulse, as well 

as the T R  of the sequence.
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Fig.2.5 The inversion recovery sequence. The amplitude of the free induc

tion signal, generated by the 90° detection pulse, is a function of the interpulse 

delay (TI), the pulse sequence repetition time (TR) and the spin lattice relax

ation time (T\).

The signal intensity can be shown to be [Wehrli 1991]

/  (X N(H ){1  - 2 e - Ti/Tl +  e~TR/T')  (2.4)

If the  pulse interval (TI) between the 180° pulse and the subsequent 90° detection 

pulse is much shorter than tissue T\ relaxation times, the signal according to equation 

(2 .4 ), has negative signal values (inverted magnetisation). Equation (2.4) shows tha t 

image density is dependent 011 the proton density N ( H ), relaxation tim e (Xi), on
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the interpulse interval (TI), and on the repetition tim e (TR) between successive 180° 

pulses.

F r a m e  1
\ *

F ra m e  2 F r a m e 3 F r a m e 4

F ig .2 .6  The inversion recovery sequence uses a 180° pulse that inverts the 

longitudinal magnetisation, followed by a 90° pulse after time TI. The tissue in 

the bottom row has the shorter T\ due to the faster recovery.

White matter
T u m o u r

CSF

T I• H
tnS
0h-1

F ig . 2 .7 Effect of an inversion recovery pulse sequence on contrast.
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Generally inversion recovery sequences are not used on modern imagers. Though 

they provide very good T\ contrast they tend to have lower signal to noise ratios than 

the spin echo sequences. The spin echo sequences are generally used to provided T\ 

contrast by decreasing T E  and T R 1 and T2 contrast by increasing T E  and T R  [Atlas 

1991].

Field (gradient echo) sequences [Frahm 1985] are being increasingly utilised on 

m odern systems because of their relative speed. However the imager used for this 

project could not perform such sequences.

In our project, we use an IRSE sequence to produce 1\-weighted images. The full 

sequence used on our Picker MRI system (0.15T) is an IRSE 3400/500/32, namely 

an IR sequence with a delay time of 500 ?7?s, a T E  of 32 m s  and a T R  of 3400 ms.  

T he  reason we used this sequence is tha t it gives the best interface definition (which 

is necessary for determining accurate brain s tructure  boundaries during the image 

segmentation) in the least time on the Picker imaging system.

All commercial systems typically include an SE read in their IR sequences. This is 

because after the 90° pulse time is required to apply the various imaging gradients (see 

section 2.5), during which T2* effects can rapidly reduce the transverse magnetisation. 

An additional 180° pulse is therefore applied to rephase the transverse magnetisation 

and increase the acquired signal. The echo time was kept as short as possible to 

minimise “pure” T2 effects, as it was 7j contrast th a t  we were interested in. / j



contrast was optimally achieved (at this field strength) using a T I  of 500ms, thus 

giving best interface definition. The long T R  was necessary because all ‘24 slices were 

acquired on an interleaved basis in one acquisition, thus minimising acquisition time 

and patient discomfort (14.5 minutes).

2 .5  I m a g e  G e n e r a t io n

2.5.1 U se  o f  M a g n et ic  F ie ld  G rad ien ts

A gradient occurs when the magnetic field is varied linearly along, for example, the 

2 axis. The resonance frequency becomes dependent on the location of the volume 

element of interest with respect to 2 .

Reson.  ̂V 
f req.

+G

(G z  g r a d  l e n t )

-G

-Z
+Z

F ig .2 .8  Schematic illustration of the effected of a 2 gradient.

This variation can be generated along either of the three directions, .r, ;y, or 2 [Lai 

1981]. In this case, the .r, ?/, and 2 coordinates refer to the fixed , “laboratory1’ frame
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of reference. The three gradients are called Gx , Gy and G z, respectively (see Fig2.8). 

The m athem atical sta tem ent of their effect is :

B  =  B q +  x G x for the x gradient

B  =  B 0 +  y G y for the y gradient

B  = B q T  z G z for the z gradient

2 .5 .2  S lice  S e lec tion

In all two-dimensional M R imaging techniques the protons in the imaging slice are 

selectively excited by means of a combination of a frequency selective RF pulse and 

a magnetic field gradient perpendicular to the imaging plane (See Fig. 2.9). We shall 

assume tha t the slice is axial, so the 2 direction is the slice selection direction. The 2 

gradient is turned on by the com puter’s pulse program at the same time as a specially 

shaped RF pulse is transm itted . In this situation, as can be appreciated in Fig. 2.9, 

only those protons with a certain 2 position will have (local) Larmor frequencies 

matching the transm itted  RF frequency, and thus only they will be excited. Protons 

located at other positions will experience a mismatch between the Larmor and RF 

frequencies and will remain unexcited.

For a specified slice there are two ways to d ictate the slice thickness [Stark 1988].

• We send in not only one specific frequency but an RF pulse tha t covers a range 

of frequencies; the wider the range of frequencies, the thicker the slice in which



protons will be excited. This has been illustrated in Fig.2.9. If we use a RF pulse 

with frequencies from 64 to 65 MHz, we will get a slice thickness S i (Fig.2.9 

(a)). If, however, we only use frequencies from 64 to 64.5 MHz, only the protons 

in a smaller slice, 5 2, will show resonance (Fig.2 .9  (b)) .

68
MHz

6 0
65

s l i c e  1

6 4  i 68
MHz

6 0
6 4 . 5

s l i c e  2

5 6 7 2
MHz65

s l i c e  3

Fig.2 .9 The selection of slice thickness

• If we use the same range of radio frequencies (from 64 to 65), slice thickness can 

be modified by the slope of the gradient field, as is illustrated in Fig.2.9 (c).
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2 .5 .3  F requency  and P h a se  E n cod in g

After slice selection, we need to localise each point in the slice according to its proton 

signal. To achieve this a magnetic gradient, called frequency encoding gradient [Valk 

1985] is applied after the slice selection gradient. We will consider it being applied 

in the direction of the x-axis. (in modern machines slice select, frequency and phase 

encoding gradients are actually interchangeable in terms of x , y and z  directions). 

This results in different precession frequencies along the x-axis, and thus different 

frequencies of the returned signals.

This is illustrated in Fig.2.10, which shows the situation of protons in the slice 

selected. In Fig 2.10 (a) nine protons in the same slice are depicted. They precess in 

phase with the same frequency after the RF pulse is applied. A magnetic field gradient 

is then superimposed on the external field, which in (b) decreases in strength  from 

left to right . The protons in the three rows now experience different magnetic fields, 

and thus em it signals with different frequencies [e.g. 65, 64, and 63 MHz). The 

gradient applied is thus called the frequency encoding gradient. By applying a Fourier 

Transform to the conglomerate returned signal we can separate into frequency, which 

because of the applied x gradient is now directly related to position along the x  axis. 

However all protons in one column will still have signals with the same frequency. We 

can thus tell from which row (x direction) a signal comes from, but cannot determine 

which column (y direction) a signal comes from.
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F ig .2 .10  The effect of applying a frequency encoding gradient



In order to encode the y position, another gradient, called phase encoding gradient 

[Valk 1985], is turned on for a short time after the RF pulse along the y-axis. During 

this short time, the protons along the y -axis precess with different frequencies and so 

develop a spread of phases. When this gradient is switched off, they go back to their 

former procession frequency, which was the same for all of them  but they will now 

have different phases. The application of a second Fourier Transform will then allow 

us to establish the y position.

Fig.“2.11 illustrates the phase encoding technique. In Fig.2.11 we have the protons 

of one column from Fig. 2.11, the 65 MHz column. The protons are in phase after 

the RF pulse (Fig.2 .11(a)). Then an additional gradient is applied along this column 

for a short time. This causes the protons to speed up their precession according to 

the strength of the magnetic field to which they are being exposed. In the example 

(Fig 2.11 (b)) the increase in speed is less from top to bottom  in the column. When 

this short gradient is switched off, all the protons of the column experience the same 

magnetic field again, and thus have the same precession frequency. However, there 

is an im portan t difference. Formerly the protons (and their signals) were in phase. 

Now the protons and their signals still have the same frequency, but they are out of 

phase.
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F ig .2.11 Phase encoding

The phase encoding gradient is turned on for a brief period during each imaging 

cycle of duration T R .  The strength of the gradient is changed slightly form one cycle 

to another. This is necessary to distinguish its effects from those of the frequency 

encoding gradient. In a very general sense each gradient setting creates one temporal 

view th a t  will be used in image reconstruction. However, a phase encoded temporal 

view is distinctly different from the the directional views of com puted tomography. 

The number of image elements (voxels) to be created in phase-encoded direction
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determines the m inimum number of temporal views or repetitions of the imaging 

cycle required to create a complete image. If the image m atrix  is to contain 256 

rows (or y-lines), then the imaging cycles must be repeated at least 256 times with 

the phase-encoding gradient strength changed from one cycle to another. This is the 

prim ary factor tha t causes the acquisition of an MR image to be a relatively time- 

consuming process. Examination time is proportional to spatial resolution along the 

phase-encoded dimension (y), as resolution of N  rows requires N  imaging cycles (TR).

2.5 .4  Im age  R ec o n stru c t io n

Image reconstruction is the mathematical process of converting the composite signals 

obtained during the acquisition phase into an image. It is performed by an array 

processor or computer. Several methods can be used to reconstruct MR images 

[Morris 1986]. Two dimensional Fourier transformation is the m ethod most frequently 

used.

The basic concept of a Fourier transform is illustrated in Fig.2.12. The primary 

function of the Fourier transform is to convert a signal from the tim e domain into the 

frequency domain. In our example we have a signal th a t  has two distinct frequency 

components. In principle, the Fourier transform determines the frequency values of 

each component. In the illustration the two components are shown on a frequency 

scale.
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Fig. 2.12 Fourier transform is a mathematical operation that breaks down 

a signal into its frequency components.

In the reconstruction of an MR image the Fourier transform is used to “decode” 

both the  frequency and phase encoded signal components [Kumar 1975a,b]. Each 

composite signal is passed through a Fourier transformation, which breaks it down 

into a series of individual frequency or phase components tha t correspond to the voxel 

columns within the selected slice.

2 .6  M R I  H a r d w a r e

The scanner used for magnetic resonance imaging consists of a large magnet, radiofre

quency coils, gradient coils and a com puter system. These will be briefly described.
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2.6.1 T h e  M a g n et

Magnets used for imaging mostly have field strengths between 0.04 to 1.5  Tesla. 

The magnetic field has to be very homogeneous, as this directly determines the 

precession frequency. The magnet can be of three types, permanent , r e s i s t i v e , or 

superconduc ting .

• Perm anent magnets. These do not require electricity or very low tem peratures  

to operate but they suffer from thermal instability and limited held strength. 

They also cannot be turned off in an emergency.

•  Resistive magnets. In a resistive magnet, an electrical current is passed through 

coiled wire to generate the magnetic held. Compared with permanent magnets 

they can achieve a higher held strength but cannot generate held as high as 

superconducting systems because of the vast am ount of heat the current pro

duces. Resistive magnets can however be turned off quickly in an emergency 

without revenue consequences.

• Superconducting magnets. Superconducting magnets are the ones most widely 

used in MR machines at the present time. They also use electrical currents 

to generate the held but the current carrying conductor is cooled down to su

perconducting tem peratures (about 4° K  or —269°C). At this tem perature, the
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current conducting material loses its electrical resistance. Once applied an elec

trical current circulates permanently, creating a constant magnetic field. So 

called cryogens (liquid helium and nitrogen) are used for cooling these magnets 

and require regular re-fills. The advantages of superconducting magnets are 

high magnetic field strength and excellent magnetic field homogeneity. Disad

vantages of superconducting magnets include high initial costs, and the use of 

rather expensive cryogens. The magnet can be turned off in an emergency but 

this involves making the superconductor resistive. Heat is generated and this 

turns several thousand pounds worth of cryogens to gas, which has to be vented 

to the atmosphere.

2 .6 .2  R ad io freq u ency  C oils  and G radient C oils

The radiofrequency (RF) coils are embedded behind curved panels which surround the 

patient during scanning. They act as generators for RF excitation and as receivers for 

detecting the returned signal. RF coils take many forms ranging from simple circular 

single turn  coils to “birdcage” arrangements for higher fields systems.

Gradient coils are used to systematically vary the magnetic field by producing 

additional linear electromagnetic fields, thus making slice selection and spatial infor

mation possible. There is a set of gradient coils for each of the three dimensions in 

space. Coils to produce a gradient along the patient's long axis (~ direction) tend to
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be solenoidal, whilst those producing x and y gradients are usually saddle shaped.

2 .6 .3  C o m p u te r  S y ste m

A com puter system is required to control gradients and RF pulses, digitise the re

turned  analogue signal, perform the Fourier Transforms and allow image processing 

on display terminals. It is also has hard copy facilities and a large storage capability 

for image archiving.

2 .7  S a fe ty  o f  M R I

There are two areas of safety to consider in operating an MR facility: direct and 

indirect biological effects.

2 .7 .1  D ir e c t  B io log ica l E ffects

MRI involves exposure to three different types of magnetic and electromagnetic field. 

There is the main, or static magnetic held, the alternating magnetic fields produced 

by the gradients, and the radiofrequency field produced by the RF coils. Both patients 

and staff are exposed to these three different fields. At the exposure levels encountered 

in current MR systems, no evidence of any deleterious long-term or short-term  effects 

have been reported [Department of Health, HMSO 1993]. However, at much higher 

values of RF and alternating magnetic fields, there are possible mechanisms tha t may



lead to dam age {e.g. the possibility of muscle and nerve activation by currents induced 

by rapid changes in magnetic field gradient). Limits of exposure have been produced 

by the National Radiological Protection Board [NRPB 1983] in the UK and by the 

Food and Drug Administration [FDA, 1982] in the USA.

2 .7 .2  In d irec t  Effects

Care must be taken with loose metal objects in the vicinity of the magnets. Objects 

can become lethal projectiles, being drawn towards and into the magnet. Surgical 

clips in the patient may be dislodged, and the magnetic held could also affect electrical 

implant such as cardiae pacemaker used for cardiac disorders. Sensitive instrum ents 

such as cameras and watches may be damaged in the area of the magnetic held and 

any magnetic recording (tape, disk) could be erased. D epartm ent of Health Guidelines 

were adhered to for all imaging performed in this project. All exposures were well 

below N RPB limits.

2 .8  O th e r  M e d ic a l  Im a g in g  M o d a l i t ie s

In addition to magnetic resonance imaging there are three other modalities with 

tomographic capabilities. They are:

• X-ray Computed Tomography (CT)

• Ultrasound.
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• Single Photon Emission Computed Tomography (SPECT) and Positron Emis

sion Tomography (PET).

The first two of these imaging techniques provide essentially anatomical infor

mation (as opposed to SPECT and PE T  which produce indices of function). The 

principles of the techniques are discussed in the following sub-sections. In addition, 

the advantages and disadvantages of employing these methods are examined.

2.8.1 X -ray Im aging

X-rays are radiation tha t appear in the electromagnetic spectrum. Diagnostic x-rays 

are not radiation of single frequency but cover a limited spectrum of wavelengths 

from 0.01  Ato 0.05A. This region in the frequency band has been found to be suitable 

for imaging the interior parts of the human body. X-ray based systems represent the 

oldest and probably the most widely utilized diagnostic imaging techniques.

The selection of the useful frequency spectrum is governed by resolution and a t te n 

uation factors. To obtain a worthwhile image, the radiation must have a wavelength 

under 1 .0 cm in the body for resolution considerations. Also, there should be some de

gree of attenuation in the radiation when passing through the body. If it is too highly 

a ttenuated , noise dominates and results in a poor quality image. Such attenuation  

can be due to absorption or multiple scatter. Almost complete transmission with

out a ttenuation implies tha t the measurement accuracy will be too small to extract
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meaningful information.

The traditional approach in x-ray imaging is to record the received x-ray inten

sity on a film or to intensify the image for presentation on a TV monitor. Thus a 

conventional x-ray shows the projection of a 3-dimensional volume [ e.g. the pa t ien t’s 

chest) on to a 2-dimensional surface (e.g. a chest x-ray film).

Com puted tomography (CT) is based on the same principle of differential x-ray 

absorption by tissues of varying atomic numbers. However in CT a large number 

of beam  transmissions can be used from different angular positions to extract da ta  

relevant to the internal s tructure [Scudder, 1978]. Using a com puter and the series of 

angular projections acquired, the da ta  can be back projected and filtered to obtain a 

cross-sectional image. Unlike MR where image planes can be in any axis, C T is usually 

restricted to axial or off-axial planes. W ith a sufficient number of 2-dimensional slices 

a complete 3-dimensional da ta  set can be produced.

A conventional 2-D projection x-ray view cannot differentiate between organs or 

s tructures tha t overlap. Moreover, they can only resolve tissues with significantly 

different densities. For example, bone and soft tissues can easily be isolated from 

each other in x-ray imaging. The reconstruction approach, which is an integral part 

of the CT technique, essentially eliminates the problem of structure  overlap and 

greatly improves the resolution.

Although CT is used primarily for brain scanning, its ability to resolve small
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differences in density has allowed it to be used to monitor lesions of the kidney, 

pelvis, liver and the pancreas.

2.8 .2  U ltrason ograp h y

This imaging technique uses ultrasound for the production of images of organs within 

the hum an body [Brinkley 1983]. Ultrasound is an acoustic radiation th a t  occupies 

a frequency range above tha t of audio frequency, i.e. greater than 30kHz.

T he velocity of propagation of sound in water and in most body tissues is about 

1.5 x 103 m /sec. This gives rise to a useful frequency spectrum well above 0.15MHz. 

The a ttenuation  coefficient in body tissues varies approximately proportionally to the 

acoustic frequency at about 1 .5db/cm /M H z. The result is th a t  at high frequencies 

excessive a ttenuation becomes a problem. This means th a t  in imaging the  various 

parts  of the body different frequencies are used. For example, for the thick parts 

of the body such as in the imaging of the abdomen, the frequency range is 1.0  to 

1.3MHz. For imaging the shorter pathlengths, such as the eye, the frequency used 

can be as high as 20MHz.

In ultrasound reflection images are produced using the known velocity of propa

gation to calculate the depth. At the frequency band at which soft tissue imaging 

is feasible, air produces considerable attenuation of the radiation. This means that 

certain parts of the anatomy, particularly the lungs, are very difficult to study  using
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ultrasound imaging procedures. Ultrasonic studies of the heart would be difficult but 

for a window called the cardiac notch. This is an opening in the front part of the left 

lungs th a t  allows access to the heart.

Digital two-dimensional echocardiography is an ultrasonic imaging technique tha t 

is used as an im portan t noninvasive technique in the comprehensive characterization 

of the left ventricular structure and function [Cliu 1988]. In this m ethod, a pulse 

is sent along a ray from a transducer towards the organ tha t is being imaged. The 

pulse is a ttenuated  and reflected when it hits a medium with an acoustic impedance 

different from tha t of the medium in which the pulse is traveling. The tim e it takes 

in transit is a measure of the distance of the boundary from the transducer, and the 

am ount of energy reflected is a measure of the difference of the acoustic impedance 

across the  boundary.

In practice, since the energy of the pulse diminishes as it travels, the postprocessing 

of the reflected signal includes time gain control tha t compensates for the attenuation  

of the signal over time. Assuming the pulse travels at a single speed in the body, and 

by taking different rays across a plane, a two dimensional record of the  received energy 

in spatial coordinates represents a cross-sectional view of the organ.

The advantage of ultrasound imaging is tha t it is quick and simple to perform, 

and harmless to the patient. The main disadvantage as far as imaging of the brain is 

concerned is th a t  ultrasound is absorbed readily by bone, so bony s tructures act as



a barrier to the technique. Ultrasound is therefore limited to intraoperative investi

gations of the brain, or blood flow studies of some cerebral vessels via  the temporal 

bone (transcranial doppler) [Bamber 1988].

2 .8 .3  R ad io n u c lid e  Im agin g

The radioactive isotopes used in diagnostic imaging emit gam m a rays as they decay. 

G am m a rays are electromagnetic radiation, similar to x-rays, produced by radioac

tive decay of the nucleus. Radionuclide imaging depends on the fact tha t certain 

substances concentrate selectively in different parts  of the body. Radionuclides can 

be chemically tagged to these substances. Occasionally, the radionuclide in its ionic 

form will selectively concentrate in an organ {e.g. Iodine-131 in the thyroid), so there 

is no need to attach it to another compound. The radionuclide most commonly used 

is technetium-99m. It is readily prepared , has a convenient half life of six hours 

and emits gam m a radiation of a suitable energy for easy detection. Many other ra

dionuclides are used in medicine, including gallium-67, iodine-123, indium-113m and 

thallium-201 [Srivastava 1983].

Technetium-99m can be used in ionic form (as pertechnetate) for brain, thyroid 

and vascular imaging, or W ,n Tc can be tagged to other substances [Neirinckx 1987]. 

If a sulphur colloid is labelled with technetium-99m and injected intravenously it will 

be taken up by the reticuloendothelial system and can be used to visualise the liver



and spleen. Larger particles are used in lung perfusion images ; macroaggregates of 

albumin with a particle size of 10-75 f im  when injected intravenously are trapped  in 

the pulm onary capillaries. If the macroaggregates are labelled with Tc then the 

blood flow to the lungs can be visualised. It is also possible to label the pa tien t’s 

own red blood cells with Tc to assess cardiac function or the white cells with 

ind ium - 1 11 for abscess detection. Small quantities of radioactive gases, such as Xe-33, 

xenon-127 or krypton-8 lin can be inhaled to assess ventilation of the lungs.

The gam m a rays em itted  by the isotope are detected by a gam m a cam era enabling 

an image to be produced. A gam m a cam era consists of a circular sodium iodide 

crystal. Light is produced when the gam m a rays strike and activate the sodium iodide 

crystal, and the light is then electronically amplified and converted to an electrical 

pulse. The electrical pulse is further amplified and analysed by a processing unit 

so th a t  a recording can be made. Usually, some form of com puter is linked to the 

gam m a camera, to enable rapid serial images to be taken and to perform com puter 

enhancem ent of the images if necessary.

In the case of conventional emission tomography , the gam m a cam era moves 

around the patient. A com puter can analyse the information and produce sectional 

images similar to computed tomography. Emission tomography can detect lesions 

not visible on the standard views. Because only one usable photon for each disinte

gration is em itted  this technique is also known as single photon emission computed



tomography (SPECT). Positron emission tomography (PET) is limited in its clinical 

application by the need to have a dedicated cyclotron close by, and by the highly 

sophisticated imaging and computing system which is employed . P E T  has exciting 

possibilities for research into biochemical processes in vivo because of its ability to 

utilise short -lived trancers of biologically im portant atoms such as carbon, oxygen 

and nitrogen.

Nuclear medicine techniques are mainly used to measure and image function and 

not anatomy. Even the bone scan depends on bone turn-over. The images produced 

are also limited by the relatively poor spatial resolution compared to MR, conventional 

radiography, ultrasound, computed tomography.

2 .8 .4  C om p arison  o f  M R I w ith  o th er  M o d a lit ie s

2 .8 .4 .1  A d van tages  o f  M R I

Soft tissue contrast:

Probably the most im portant factor in favour of using magnetic resonance imaging 

instead of x-ray based techniques is tha t MRI has a high level of sensitivity over a wide 

range of disease. Unlike CT, MRI is not restricted to the axial plane. Anatomical 

images can be generated in coronal, sagittal and oblique planes as well as in axial 

sections.

A m ajor advantage of MRI in assessment of intracranial tum ours is in its ability to

45



accurately dem onstrate the positions, and relationships of lesions using m ultip lanar 

scanning. Low-grade astrocytomas not seen on CT may be detected by MRI. Pa tho

logical change associated with an increased is highlighted with spin echo scans. 

Sagittal and coronal images are readily obtained, and can be useful to dem onstra te  

and localize certain lessons, particularly when they are in the mid-line or deep-seated. 

Longitudinal demonstration of the spine and spinal cord by MRI is another advantage 

over CT.

The resolution of nuclear medicine images (such as SPEC T or PET) is inherently 

limited and although technological advances will gives some improvements, the degree 

of anatomical detail possible will always be less than tha t achieved by conventional 

radiology, CT and MRI.

Although ultrasound is useful in the detection of neonatal haemorrhage and hy

drocephalus, it gives no information about diffuse cerebral pathology.

Safety:

Unlike Nuclear Medicine and CT, MR and ultrasound imaging do not involve X- 

rays and so avoid the potentially harmful effects of ionizing radiation. The absorption 

of radiofrequency and ultrasound waves in the body do however result in the transfer 

of energy with a rise in local tem perature. W ith very high energy radiation, m echan

ical disruption can occur at cellular level. However, the energies used for MRI and 

ultrasound are several orders of magnitude lower than  the levels needed to produce



any biologically measurable effects, so MRI and ultrasound are generally regarded as 

being free of risk as far as direct biological effects are concerned (indirect effects due 

to the action of the MRI fields on metal were discussed in section 2.7).

2 .8 .4 .2  D isa d v a n ta g es  o f  M R I

Disadvantages of MRI include the high cost of the sophisticated machinery, the long 

imaging times at present required and its inability to image calcification. Compared 

to S P E C T  or PE T , MRI is insensitive to information on tissue perfusion and organ 

functions (though new techniques are being investigated which may change this s it

uation). It is also unsuitable for patients with cardiac pacemakers as these can be 

adversely affected by the magnetic fields. Similarly patients harbouring metallic clips 

or im plants should not be subjected to MRI.
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C h ap ter 3 T h e B asic A n a to m y  and  

P ath o lo g y  o f th e  B rain

3.1  T h e  B r a in

The brain of an average adult is one of the largest organs in the body, weighing 

typically between 1,200 g and 1,600 g [Henry 1985]. The brain lies within the skull 

and is separated from the bone by three membranes or meninges, called the dura 

mater , the arachnoid and the pia mater  [Williams 1980]. As shown in Fig. 3.1, the 

brain is divided into three principal parts:

1 . The forebra in  lies above the tentorium cerebelli, and comprises the right and 

left cerebral hemispheres and the diencephalon, which lies between the two 

hemispheres.

2. The midbrain  is the part of the brain lying in the opening in the tentorium  

cerebelli.



3. T he  hindbrain  comprises the pons, medulla oblongata, and the cerebellum, and 

lies below the tentorium  cerebelli.

Fig. 3.1 Median section of head

1 hemisphere 2 diencephalon

3 midbrain 4 pons

5 medulla oblongata 6 cerebellum

7 tentorium cerebelli
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Note tha t all parts of the central nervous system are made up of what are called 

grey matter  and white matter. The grey m a tte r  consists of aggregations of cell-bodies 

of neurones. The white m atter,  which is preponderant in the central nervous system, 

consists of nerve fibres. The surface of the cerebral hemispheres and of the cerebellum 

comprises a thin layer of grey matter.

3.1 .1  M e n in g e s

The outerm ost membrane is the dura mater, the middle one the arachnoid m ater, and 

the inner one is the pia mater. These layers have a protective function in th a t  they en

close the central nervous system and anchor it against sudden movements. They also 

enclose the cerebrospinal fluid (CSF), which forms a fluid cushion to protect the brain 

from trau m a  and is an intermediary in the exchange of substances between the brain 

and the rest of the body. The cranial dura m a tte r  is a double layer of tough connective 

tissue. Its outer layer adheres to the bones of the skull and forms the periosteum. Its 

inner layer, the true dura mater, lines the skull and forms sheets of tissue which dip 

between the cerebral hemispheres (falx cerebri), between the cerebellar hemispheres 

(falx cerebelli) and between the cerebellum and the cerebrum (tentorium cerebelli).

The arachnoid m ater is composed of connective tissue with flat interdigitating 

cells on its surface. A narrow potential space, the subdural space, lies between the 

arachnoid and the dura mater. It contains only a little serous lubricating fluid. A
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wider space, the subarachnoid space, separates the arachnoid from the pia mater.

The pia m a ter  is very thin and rich in capillaries. It is attached to the brain, 

closely following the contours of its folds (gyri) and fissures ( sulci). It is also closely 

bound to the spinal cord.

3.1 .2  T h e  C erebral H em isp h eres

The two cerebral hemispheres are the largest parts of the brain and contain many 

other structures. The hemispheres are incompletely separated by a deep median cleft, 

named the longitudinal fissure , and each possesses a central cavity, term ed the lateral 

ventricle.

Each cerebral hemispheres is divided into four lobes, named according to their 

relation to the four main bones th a t  form the calvaria (the frontal, parietal, occipital, 

and tem poral bones). The anterior convexity of the hemisphere forms most of the 

frontal  lobe. The posterior part of the hemisphere is the occipital lobe, which lies on 

the upper surface of the tentorium  cerebelli. The parietal lobe lies between the frontal 

and occipital lobes, from which it is demarcated by somewhat arbitrary  boundaries. 

T he  temporal lobe lies on the lateral aspect of the brain, in front of the occipital lobe, 

projecting forwards below the parietal and frontal lobes.

The longitudinal fissure of the cerebrum contains a sickle-shaped process of dura 

m ater nam ed the falx cerebri, and the anterior cerebral vessels. In front and behind,
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the fissure completely separates the cerebral hemispheres from each other; in the 

middle, however, it only extends down to a great central white commissure, named 

the corpus callosum, which connects the hemispheres across the median plane.

3.1 .3  T h e  V en tr ic les

Deep inside the forebrain, midbrain and hindbrain are a series of connection chambers 

(ventricles) lined with an epithelium called ependyma. There are two large lateral 

ventricles inside the cerebral hemispheres( forebrain), each of which connects in the 

midline through the interventricular foramen (of Monro) which leads into the midline 

third ventricle. This connects through the narrow cerebral aqueduct ( of Sylvius) 

in the m idbrain  to the midline fourth ventricle in the pons and m edulla oblongata 

(hindbrain).

3 .1 .4  T h e  B ra in stem

The brainstem consist of the miclbrain, the pons and the medulla oblongata. All of 

these are midline structures which are overgrown by the cerebral hemispheres during 

development. Rostrally the brainstem is continuous with the diencephalon. Caudally 

it bends with the first cervical segment of the spinal cord. Dorsally it is connected to 

the cerebellum by the superior, middle and inferior cerebellar peduncles.

The brainstem lies on the floor of the cranial cavity. The m edulla rests on the



basi-occiput, the pons on the sphenoid bone as far forward as the dorsum sellae. The 

midbrain passes through the tentorial notch of the tentorium cerebelli.

3 .1 .5  T h e  C ereb e llu m

The cerebellum consists of two cerebellar hemispheres united by a central, median 

vermis. The surface of the cerebellum is deeply folded. Major folds, the fissures, sub

divide the cerebellum into superior and inferior halves, and dem arcate  subdivisions, 

the anterior, posterior, and flocculonodular lobes within each hemisphere.

3 .2  In tr a cra n ia l  D e fo r m a t io n

The intracranial contents consisting of the brain, cerebrospinal fluid, and blood are 

enclosed in a rigid bony container (the skull). Any increase in the volume of one of 

these components will, to a certain extent, cause intracranial deformation or distor

tion, such as lateral shift of the midline structures, internal herniae and displacement 

of the brain stem (see Fig.3.2). These deformations are called secondary space occu

pying effects. The increase in the volume of the intracranial contents can be caused 

by various pathological processes within the brain such as tum our, haem atom a, or 

a massive recent cerebral infarct. The increase in the volume of the intracranial 

contents will ultimately cause an increase in intracranial pressure. Although it has 

been observed tha t the distortion and displacement of the brain and the associated



increase in intracranial pressure are significant with regard to the im mediate surival 

of the patient [MacSween 1992], there are no available criteria in current clinical and 

radiological diagnosis for objective assessment of the severity of such intracranial de

formation and its response to trea tm ent. This lack formed the impetus for this Ph.D 

project.

F ig .3.2 The distortion and herniation of the brain caused by a tumour in a 

cerebral hemisphere. The midline and lateral ventricles are displaced, tentorial 

herniation (arrow) is produced.
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It is well known tha t different parts of the brain perform different functions. This 

localisation of function means tha t the changes in size, position, and shape within 

the brain will characterise the effects of the intracranial lesions.

3.2 .1  In tracran ia l E xp an d in g  Lesions

W hen a massive lesion in a cerebral hemisphere, usually a tum our, a haem atom a, a 

recent infarct or an abscess, starts to expand, the first deformation is distortion of 

the adjacent brain. Because of its viscoelastic properties, brain tissue adjacent to 

the mass will flow away from it. This will cause an axial movement of the brain in 

addition to the  more conventional displacements.

As the lesions expands, so also does the hemisphere. The surface of the brain is 

pressed against the unyielding dura, gyri are flattened, sulci are progressively nar

rowed. Cerebrospinal fluid is displaced from the ventricular system with the result 

th a t  the  lateral ventricle on the same side as the lesion becomes smaller while the 

contralateral ventricle may become larger. Further expansion of the affected hemi

sphere leads to a shift of the midline structures, i.e. the interventricular septum , the 

anterior cerebral arteries and the third ventricle.

An expanding lesion in the frontal lobe will produce displacement of the free 

margin of the anterior part of the falx; the posterior part of the falx however is rarely 

displaced laterally because it is firmly tethered at this level. Furtherm ore a lesion



in a temporal lobe will produce selectively severe shift of the th ird  ventricle and will 

displace upwards the Sylvian fissure and the branches of the middle cerebral artery 

which it contains.

3 .2 .2  T h e  In te r n a l H e r n ia

As the result of an intracranial expanding lesion, the internal hernia , i.e. displace

ment of brain tissue from one intracranial com partm ent into another, then develops. 

Usually there are four types of hernia associated with an expanding lesion: tentorial 

hernia , supracallosal hernia, central transtentorial hernia , and tonsillar hernia.

1 T en toria l hern ia  This occurs when the medial part of the ipsilateral temporal

lobe is squeezed through the tentorial opening (Fig. 3.2). The herniated brain 

tissue compresses and displaces the midbrain which is pushed against the con

tralateral rigid edge of the tentorium. This pressure is often sufficient to produce 

a distinct groove on the surface of the midbrain.

2 Supracallosa l hern ia  When a supratentorial lesion causes downwards displace

ments of the roof of the ipsilateral ventricle, the ipsilateral cingulate gyrus will 

herniate under the free edge of the falx. As a result there may be a displacement 

of the pericallosal arteries away from the  midline (Fig 3.3).



3 C en tra l tran sten tor ia l  h ern ia  This is brought about by caudal displacement 

of the diencephalon and the rostral brain stem. It be preceded by a lateral 

transtentorial hernia, and occurs particularly in response to frontal and parietal 

lesions or to bilateral expanding lesions.

F ig .  3.3  Supracallosal hernia (arrow)

4 Tonsillar hern ia  The cerebellum and brain stem are forced downwards towards 

and through the foramen magnum. The medulla becomes compressed and the 

perfusion of the whole brain stem is in peril. The end result of unrelieved brain 

compression is respiratory arrest.
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3 .2 .3  B rain  Sw elling

An increase in cerebral blood volume or in the water content of brain tissue will cause 

the expansion of brain tissue. This process is called brain swelling. The oedem a fluid 

is mainly interstitial and the cut surface of the brain appears pale and swollen.

3.2 .4  T h e  D efo rm a tio n  C aused  by B rain  T um our

Intracranial tumours may produce local effects which will depend upon their site, e.g. 

focal epilepsy, hemianopia, and they also behave as expanding intracranial lesions 

leading to a raised intracranial pressure. The effective size of the tum our is frequently 

contributed to by oedema in adjacent brain. This usually responds dramatically  to 

steroid therapy.

A slowly growing tum our such as a meningioma may be accommodated by de- 

myelination of central white m atter,  which thus loses bulk while keeping most of its 

axons intact. A fast growing tum our, on the other hand (such as gliobastoma, or 

secondary carcinoma) may enhance its deadly potential by causing an oedematous 

reaction in the surrounding brain tissue. W ith some tumours, notably with gliomas 

of the astrocytic series, space occupation is as much due to the formation of an asso

ciated cyst as it is to expansion of the solid tum our tissue.

The tumours most commonly met with are gliomas. The commonest of these is 

the fast growing malignant glioblastoma. It occurs mainly in adults in the cerebral



hemispheres and is rapidly growing with extensive necrosis and haemorrhage. This 

produces considerable distortion of the brain and often a rapid increase of intracranial 

pressure.
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C h ap ter 4 Im age S eg m en ta tio n

4 .1  I n tr o d u c t io n

Before measuring a cerebral structure (two-dimensional, or three-dimensional) in an 

MR image or a sequence of MR, images, we have to segment the object from the 

background. In other words we have to define the object or the object region. The 

reliability of subsequent measurements are obviously dependent upon image segmen

tation. The segmentation problem for MRI data  depends on a large num ber of factors. 

Image contrast, signal-to-noise ratio, slice thickness, complexity of the scene, d a ta  set 

size, and radio frequency coil uniformity are just a few of the im portan t ones. Based 

on some or all of these factors, an approach must be selected for the segmentation 

task.

A range of approaches has been proposed for semi-automatic or au tom atic  detec

tion of various structures in the head, with varying levels of autom ation and practical
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applicability. M R I’s ability to generate different contrasts has been exploited by anal

ysis techniques involving multispectral MRI da ta  [Windham 1988, Gerig 1991]. Hu et 

al [Hu 1990] report on an interactive gradient-guided edge-tracking technique, opera t

ing on individual image slices. Kennedy et al [Kennedy 1989] describe an interactive 

algorithm using intensity contours, a variant of thresholding. Pizer et al [Pizer 1990] 

designed an algorithm which divides the image into a hierarchy of elementary regions 

using intensity ex trem a and, initially for 2-D images, coupled this algorithm to an 

interactive region editor. Bomans et al [Bomans 1990] extend the Marr-Hildredth 

edge operator to 3-D, and use this to optimize tissue border locations. B rum m er et al 

[Brummer 1993] designed a procedure for autom ated detection of brain contours from 

3-D MRI data. This procedure first detects structures in the head using histogram- 

based thresholding. This is then followed by a morphological procedure which refines 

the binary threshold mask images.

All these approaches can be divided into two categories, thresholding and bound

ary detection. In the thresholding technique the grey value of each pixel is compared 

to a threshold value, and the pixel is assigned to one of two categories depending 

on whether the threshold is exceeded or not. The selection of the threshold value is 

usually made from a histogram. The problem is tha t in M R images of the brain the 

brightness or grey value at the boundary of an object may vary from point to point. 

It is thus not always possible to identify the threshold value for the boundary of the
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object, so the thresholding approach may produce a false or inaccurate segmentation. 

This is particularly true of most brain tumours where clear cut-off boundaries are 

rarely present.

Boundary detection techniques may produce more accurate segmentation than  the 

thresholding method does. This is because boundary detection approaches segment 

objects based on the local changes of grey level at the boundary. All the boundary 

detection approaches tha t we have mentioned above have shown satisfactory results 

in 3-D rendering of MRI brain data, but not yet in quantitative measurement because 

of the unsatisfactory accuracy in the segmentation [Brummer 1993].

In fact there are a lot of methods for boundary detection [Jain 1989, Ballard 1982]. 

C anny’s edge detector [Canny 1986] is probably one of the best detectors [Lee, 1990] 

in the sense of low probability of failing to mask true edge points and minimising 

the  distance between the detected edge and the true edge. Surprisingly, we have 

not found any application of C anny’s method in the current literature about brain 

s truc ture  segmentation.

In this chapter an a t tem p t will be made to develop a successful approach to 

segmenting the boundaries and surfaces of the brain structures in MR images. The 

overall approach is outlined in Fig.4.1. The new segmentation technique combines the 

advantages of the accuracy of C anny’s edge detector and the analytical compactness of 

the B-splines method. It has the advantage over current MR segmentation techniques



in terms of accuracy and speed. We first, in section 4.2, introduce C anny’s edge 

detector which is one of the most popular edge detection techniques in modern image 

processing and computer vision. In section 4.3 we introduce B-splines segmentation 

methods and investigate curve and surface representation with B-splines. Then in 

section 4.4 we apply, for the first time, C anny’s detector and B-splines methods 

to MR image segmentation [Dai 1992], using them to segment the boundaries and 

surfaces of brain structures in MR images. Finally we will give our conclusions about 

these segmentation approaches.

O bject Edge detection 
C anny’s detector

Segm entation
B-splines

Fig .4.1 The Basic scheme for segmentation

4 .2  E d g e  D e t e c t io n  U s in g  C a n n y ’s D e t e c t o r

An edge is the boundary between two regions with relatively distinct grey level 

(brightness) properties. Basically, the idea underlying most edge-detection techniques 

is the com putation of a local derivative operator. If we take a cross section of the 

image grey level along a line at right angles to an edge, we might hope to see a step 

discontinuity. For MR images the transition will not be abrup t because of the nature
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of tissues and the limitations of the imaging system. Image blurring and noise make 

it very difficult to define the true edge.

There are two common criteria relevant to edge detector performance [Canny 

1986]. The first and the most obvious is low error rate. It is im portan t th a t  edges 

th a t  occur in the image should not be missed. The second criterion is th a t  the edge 

points be well localised. In other words tha t the distance between the points marked 

by the detector and the “centre” of the true edge should be minimized.

4.2 .1  Laplace O perators and Zero C rossings

As the transition region gets wider, it is more advantageous to apply the second- 

order derivatives. One frequently encountered operator is the Laplacian operator. 

For a given image f ( x , y ), the Laplacian operator of /  is defined as :

V 2/  =  d 2f / d x 2 +  d 2f / d y 2

Because of the second-order derivatives this gradient operator is more sensitive 

to noise. Also the thresholded magnitude of V 2/  produces double edges. For these 

reasons, together with its inability to detect the edge direction, the Laplacian as such 

is not a good edge detection operator. Better utilisation of the Laplacian is to use its 

zero-crossing to detect the edge locations. A generalised Laplacian operator which 

approxim ates the Laplacian of Gaussian functions is a useful zero-crossing detector 

[Marr 1980]. It is defined as
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x 2 T  u 2 T  t /2
/*(*,?/) =  c( 1 -  -- - , ^ - ) e x p ( --------------)

where cr controls the width of the Gaussian kernel and c normalises the sum of the 

elements of a given mask to unity. Zero-crossings of a given image convoluted with 

h (x ,y )  give its edge locations. On a two-dimensional grid a zero-crossing is said to 

occur wherever there is a zero-crossing in at least one direction.

4.2 .2  C a n n y ’s D e tec to r

Oanny’s edge detector is one of the best detectors in the sense of low probability of 

failing to mask true edge points and minimising the distance between the detected 

edge and the true  edge. Because of noise there are many zero-crossings from the Marr- 

Hildreth type filter response which do not correspond to edges. C anny’s detector aims 

to minimise such spurious responses.

Here we define contour points as those points for which the convolution of the 

initial image with a certain function {filter') h has a local m axim um  ( this loca. m axi

mum is computed in the direction of the grey level gradient). In practice, h is chosen 

to approxim ate a grey level gradient computation. Canny has shown th a t  h could be 

defined using optimality criteria for the detection of contours.

In C anny’s approach, boundaries are modelled in one dimension by an amplitude 

threshold A  to which is added zero-mean Gaussian noise n with constant variance nfi
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giving:

I (x )  = Au_i(a:) +  n(x )

where

0 if x < 0
u - i (x )  -- <

1 otherwise

An image line is thus convoluted by the {unction h(x), giving a resulting image

line

I ' (x)  = I  * k(x)

The local m axim um  of l ' (x)  defines the edge points. The criteria for evaluating 

boundary quality are the following:

D e te c t io n  It must be robust to noise, an unavoidable condition to ensure a low 

probability of failing to detect edge points. Detection quality is measured quan

titatively as the ratio of the response obtained at the edge point in the absence 

of noise to the square root of the average response of the noise squared:

c ,  =  - £
n 0 ^

where

i°oo h(x)dx\E =
h2(x)dx

V  is preferred to C\ in order to remove the term ~  which is image-dependent. 

Thus Yl{h) depends only on the filter h.
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L oca lisa t ion  It should be as precise as possible in identifying the point to the centre 

of the true edge. Localisation quality is measured as the inverse of the variance 

a 2 in the position of the maximum of I ' (x )  :

C 2 =  — A 
n0

where

A =
y / f - £  h,2(x)dx

A is preferred to C 2 in order to eliminate the term  ^  which depends on the 

image. Thus A(/?.) depends only 011 the filter h.

U n iq u e n e ss  Multiple responses should be avoided in the neighborhood of a single 

edge. We thus impose a value on the average distance between two m axim um  

of I ' (x) .  This value is expressed as:

C\  =  27r
f -™  h,2(x)dx  
f~™ h"2(x)dx

R eso lu t io n  Once these partial criteria are defined, Canny defines a global criterion 

which consists of maximising the product )T A- invariant to scale changes— 

subject to the constraint C3.

The solution is of the form:

h ( x ) =  a\eC(X s in[ux)  +  a2eaxcos{iox)

—a3e~axsin{iox) — a4e~axcos(u)x) +  C  
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where the coefficients at are determined by the boundary condition. The func

tion h(x)  is subsequently approximated by the first derivative of a Gaussian:

h(x)  = - 4 e - W 2' 2
CTz

In two dimensions, the solution proposed by  Canny am ounts to convolving the 

initial image with a symmetric Gaussian im pulse response followed by com pu

ta tion of the derivative in x  and y of the reisult.

The technique is extended to two dimensions by utilising the fact tha t the deriva

tive of I { x , y )  in an arbitrary direction can be obttained from derivatives in the x and 

y directions.

F ig .4 .2 (a) A 256 x 256 coronal section o>f T\ weighted image, (b) Edges 

from (a) at cr = 2 .0 .
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A example of C anny’s detector is given in Fig 4.2. Fig. 4.2 (a) is a 256 x 256 

coronal section of a Tj weighted image. Fig. 4.2 (b) shows the edges from (a).

4 .3  S p lin e s  S e g m e n ts

Splines provide a very useful way of generating smooth curves and surfaces from a 

small number of control points, thus saving space in the database at the  expense of 

increased com putation time. They also provide an effective way of modeling irregular 

shaped objects.

4.3 .1  C urve R ep re sen ta t io n  U sin g  B -sp lin es  A p p r o x im a t io n

The theory for B-splines was first suggested by Schoenberg [Schoenberg 1946]. A 

recursive definition useful for numerical computation was independently discovered 

by Cox [Cox 1971] and by de Boor [de Boor 1972]. Gordon and Riesenfeld [Gordon 

1974] applied the B-splines basis to curve definition.

4 .3 .1 .1  B -sp lin es

Let P(r}) be the position vectors along the curve as a function of the param eter rj. A 

B-spline curve is given by

P M ^ E P . B i A v )
i=0
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where 7/mtn <  7/ <  7ymax, 1 <  k <  77, the P t are the position vectors of the n  +  1 

defining polygon vertices and the B hk are the normalized B-spline basis function.

For the zth normalized B-spline basis function of order k , the basis functions 

are defined by the Cox-deBoor recursion formulas. Specifically,

1 if X i  <  7] <  X i + 1

0 otherwise

an<

(77 -  X i ) B itk- i ( r j )  ( x i + k - r i B i + i ' k - ^ r f )
Bi,k(v) = ------------------------ + --------------------------------

1 %i î-\-k

The values of X{ are elements of a knot vector satisfying the relation X{ <  X{+\. The 

param eter t varies from i]min to i]max along the curve P{rj). The convention  ̂ =  0 is 

adopted.

Formally a B-spline curve is defined as a polynomial spline function of order k 

(degree k — 1) since it satisfies the following two conditions :

• The function P{rj) is a polynomial of degree A: — 1 on each interval X{ < rj < Xi+

• P ( 7/ )  and its derivatives of order 1, 2, ..., k — 2 are all continuous over the entire 

curve.
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B{r]) = B o A v )  = < (4.1

Thus, for — 2 <  rj <  2, k = 4, and Xi+i — X{ =  1, we have

1/ 6(2  + ?;)3 - 2  < 7/ < - 1

1/6(4 — 6 t/ 2 — 3t/3) — 1 <  // <  0

1/6(4 — 67f  +  3r/3) 0 <  r] < 1

1/ 6 (2 - r / ) 3 l < r / < 2

0 2 < |t/|

where # ( 77) is called the spline blending function.  Alternatively, a cubic B-spline 

curve may be defined as

1 = 0

As the param eter p takes on values in a specified range, usually 0 to 1 , the function 

P  traces out the location of the curve.

4 .3 .1 .2  In te r p o la t io n  U s in g  B -sp lin es

B-splines may be used to interpolate da ta  points instead of simply passing close to 

them.

Here we considers the case where n T 1 geometric knots are to be interpolated. 

They will be denoted P Q to P n.

Instead of using the actual knots, P„ in the spline equation n +  3 phantom. knots 

will be used, denoted VL, to Vn+1. The ex tra  two knots are to allow flexibility in 

setting the gradient at the ends of the spline.
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The equation of the interpolating spline is

P(/«)= £  B ( n f i - i ) V ,  (4.2)
i = - l

Let p = 0 , 1 /n , 2 / r a , 1 and substitute the geometric knots on the right-hand side 

of this equation with the corresponding p in the left -hand side, a set of equations is 

obtained.

P ( i / n )  = P t =  1/ 6 U -4 +  2/3V7 +  Vi+l

This produces n +  1 equations. However, there are n  +  3 unknown values of V-. 

The other two equations come from placing a further constraint on the ends of the 

curve, which in this case will be to fix the gradient at the ends. The gradients at the 

ends will be denoted by the direction vectors g 0 and g n. To com pute them , the spline 

equation 4.2 needs to be differentiated with respect to p. This yields:

n - f  1

P'(f i )  = n ' £ i -  0 v i (4.3)

By substituting the values p = 0 and p = 1 into equation 4.3,

P'(0)=flo = | ( V , - V . l )

and similarly:

P'( l )=s„  = | ( K +l-V„_1)

since the gradient at the end is an input, or alternatively it can be set to some 

default value. The equations may be neatly summarized by writing them  in m atrix



form

where

M V  = A

M  =

—n f  2 0 77/2 0 0 0 0 0 0

1 / 6 2/3 1 / 6 0 0 0 0 0 0

0 1 / 6 2/3 1 / 6 0 0 0 0 0

0 0 1 / 6 2/3 1 / 6  0 0 0 0

0 0 0 0 0 0 • • - 2/3 1 / 6 0

0 0 0 0 0 0 . . .  1 / 6 2/3 1 / 6

0 0 0 0 0 0 • • • —77./2 0 n / 2

V  =

( \ 
A

A

A
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/ \ 
9o

A  =

\ 9n )

where the vector V  contains the phantom knots, A  contains the geometric knots 

and the gradients at the ends, and M  is a m atrix  tha t depends only on the number 

of knots, n.

The solution can be found, for example, by Gaussian elimination. Since the m atrix  

does not depends on the values of the knots, a more direct method is to invert the 

m atrix , which can be precalculated for a num ber of n values. If the inverted m atrix  

for a given n is available, then the values of the phantom knots may be calculated by 

m a trix  and vector multiplication:

V  = M ~ l A
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4 .3 .2  Surface R ep re sen ta t io n  U sin g  C u b ic  B -sp lin es  A p p ro x 

im a tio n

There are two ways in which spline surfaces can be constructed. The first is called 

interpolation in which the surface passes through each knot. In the second method, 

called approximation , the surface does not necessarily pass through the knots but 

instead passes close to or through them. Interpolation is more accurate whilst ap

proximation is easier to compute.

If (n +  l) (m  +  1) control points are given,

P 0 , 0  P 0 ,1  ’ ‘ '  P 0 , m — l  P o , m

P  1,0 P  1,1 -*1,771 — 1 P\,m

P  71— 1 , 0  P  71— 1 ,1  '  '  ■ P  71 —  1,771  —  1 P  71— 1,771

P 71 ,0  Pn,l ' ' ' Pn,m—\ Pn,m

the B-spline surface P ( p , v )  = P ( x ( p ,  t>), ?/(//, u), z(p,  t>)) can be written as :

n m

p (/*,«) = EE P i j  B ( n p  — i ) B ( m v  — j )  (4.4)
2 — 0 j= o

As the parameters p and v  take on values in a specified range, usually 0 to 1 , the 

param etric functions x,  y and z  trace out the location of the surface. In Equation 

4 .4 , B {?/) is the B-spline blending function defined in Equation 4.1.

In Equation 4.4 the B-spline surface does not necessarily pass through the knots. 

This way of computing the spline produces good results in the centre of the surface,



but unfortunately does not produce good results at the edge points. This can be seen 

by substitu ting  the values p =  0 and v = 0 into Equation 4.4, yielding

P { 0,0) =  4 /9 P o,o +  1/9P o,i +  1/9P i,o +  1/36 P i , i  ^  P o,o

Furtherm ore, B-splines may be used to interpolate the knot points fully instead of 

simply passing close to them. In order to achieve this a set of phantom  ,or parametric  

knots is introduced. Suppose the equation of the interpolating spline is

n-j-l 77i-fl

P ( f * i v ) = ' 5 2  Vi j  B ( n p  -  i ) B ( m v  -  j )  (4.5)
t=—i j =—i

Note th a t  there are two extra  rows and columns in the param etric knots. The ex tra  

knots are to allow flexibility in setting the gradient at the edges of the splines. They 

may be determined by the following steps.

If the surface is to pass through all the parametric knots the following equation is 

obtained:

p  ( - , — ) =  [ i  * in 777 V 6 3 6

V

= p M (4.6)

V 6 /

V  V  i - \ , j  V  t - i , j + i

V  ■ i V  ■ V  •, iv  l , J - 1 y  l , J  v  l , J +1

y  V i - l-l,j ^ t + l , i + l  /

for i =  0, 1, • • •, 77 and j  =  0,1, - • -, 777. There are in totM (777 +  1)(77. +  1) linear 

equations from Equation 4 .6 . However, there are (777. +  3)(77 +  3 ) unknown values of 

V i j .  In order to solve the equations extra  constants are introduced which in this case
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will fix the gradient at the edge points. This is known as a clamped end condition 

and can be used to determine the shape at the ends of a spline or to piece together 

two splines without introducing a discontinuity in the gradient. The gradient of the 

surface must be specified with respect to p at the top and bottom  edges, where top 

and bottom  refer to the way the tensor has been arranged in Equation 4.5, and at the 

left and right edges with respect to v. In order to  find the gradient with respect to 

p, the partial derivative of the tensor, Equation 4.5 with respect to p must be taken, 

namely:

pip 7 1 + 1  771+1

"^7 = n J2 Y ,  y iJ B \ n p - i ) B ( m v - j )
r i = -  1 j = - 1

Thus at the edge points where p = 0, for example P 0j ,  the gradient at p =  0, v = ■i ,

is:

/

d P  (
 =  — n n 21dn  I 2 U 2

(4.7

V V - i  ,j V  

V  o j - i  V  o,j V o j + i

V i  V u  v hj+i

The other partial derivatives are evaluated in the same way, giving a set of 2(m +  l ) 

equations at the top and bottom  edges and 2 (n +  1 ) equations at the left and right

V / V 6 /



edges. Let

V  =

V - 1 , - 1  V - 1 , 0

V 0,-i Vo,o

V  — \jni L^-l,m + ]

0̂,771

B„ =

V n,_! V 71,0 yr 72,771 7̂1,771 + 1

\ Vn+ 1 ,-1 V 71+1 ,0 ^n+1 ,77i 7̂1+1,771 + 1 j

—n /  2 0 n /  2 0 0 0 ••• 0 0 0

1 / 6 2/3 1 / 6 0 0 0 ••• 0 0 0

0 1 / 6 2/3 1 / 6 0 0 ••• 0 0 0

0 0 1 /6 2/3 1 / 6 0 ••• 0 0 0

0 0 0 0 0 0 ••• 2/3 1 / 6 0

0 0 0 0 0 0 ••• 1 / 6 2/3 1 / 6

0 0 0 0 0 0 ••• —n / 2 0 n / 2
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B n) =

— m / 2 0 m j  2 0 0 0 ••• 0 0 0

1 / 6 2/3 1 / 6 0 0 0 ••• 0 0 0

0 1 / 6 2/3 1 / 6 0 0 ••• 0 0 0

0 0 1 / 6 2/3 1 / 6 0 0 0 0

0 0 0 0 0 0 ••• 2/3 1 / 6 0

0 0 0 0 0 0 ••• 1 / 6 2/3 1 / 6

0 0 0 0 0 0 ••• —m / 2 0 m / 2

/
D - 1,--1 D - 1 ,0 D —\,m

\
-0 - 1,771 +  1

A  =

Do,-]

D 7

0,0 Po ,m D  o,0, 771+1

D n ,m + 1

D n-\.\,m D  n+1,771 + 1

r77,—1 -* n,0

^ ^ n + 1 , - 1  ^ n + 1 , 0  •

where D t J is the edge gradient which may be set to a default such as the forward 

difference. Then from Equation 4.6 and 4.7, the following equation can be obtained:

A  = B nV B m

So the param etric knots V i j  can be found:

V  = B - ' A B ~ m' (4.8)
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Equation 4.8 may be solved by means of Gaussian elimination [Press 1992, Raison 

1978].

4 .4  A p p l ic a t io n s

The brain structures which we are interested in are the hemispheres, the longitudinal 

fissure and the ventricles. In this section we will show how to segment these structures.

4.4.1 The H em ispheres and the Ventricles in each Sectional 

Im age

First the C anny’s edge detector is applied to each sectional image, producing the 

boundary profiles of these structures, as shown in Fig. 4.2.

Fig.4 .3  31 control po in ts  a re  chosen in each of th e  hem isphere .
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Using the profiles as guidelines to the boundary of each hemisphere, 31 control 

points are interactively chosen along the boundary profiles of the hemisphere ( Fig. 

4.3 ).

Based on the control points, a B-splines representation of the hemisphere contour 

is generated (Fig. 4.4). Both the left and right closed curves in Fig. 4.4 pass exactly 

through the control points in Fig. 4.3 and are generated by using Ecp 4.8. The 

num ber of control points dominates the precision of the approxim ating splines. From 

the experience of applying this to more than 80 different hemispheres, we found tha t 

31 control points was a reasonable compromise between precision and operator time.

Fig.4.4 T h e  B-splines r e p re sen ta t io n  of each hem ispheric  con to u r .

Similarly, the B-splines representation of the ventricular contour can be produced 

with 15 control points (Fig.4.5).

81



Fig.4.5 The B-splines representation of the ventricular contour.

4.4.2 The Surface of the Falx Cerebri

In order to study the falx cerebri or the longitudinal, we examined the slices between 

the genu and splenium of the corpus callosum (see Fig 4.6, typically 8 to 11 slices).
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Fig.4 .6 An example of chosen slices between the genu and splenium of the corpus callosum.

In order to obtain the B-splines surface of the longitudinal fissure, 8 control points 

are picked up along the profiles of the longitudinal fissure in each slice (see Fig. 4.7).



Fig.4.7 8 control points are chosen along the profiles of the longitudinal 

fissure in each sectional image.

Fig. 4.8 shows all the control points from 11 contiguous slices between the genu 

and splenium of the corpus callosum.
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Fig.4 .8  A surface representation of a falx cerebri. The 8 knots along the 

bottom oblique line are obtained from the first of the 11 contiguous slices. The 

knots along the top oblique line correspond to the points in the last slice.
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Fig.4.9 B-splines surface through the 8 control points in Fig. 4.8.

The surface shown in Fig. 4.9 is the B-splines surface generated by the control 

points from Fig. 4.8. The B-splines surface passes exactly through the original control 

points in Fig. 4.8 and is generated by Eq. (4.8), where the phantom  edge gradients
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Dij are set equal to 0 .

4 .5  C o n c lu s io n s

In this chapter an effective and practical technique has been developed to segment 

the boundaries and surfaces of brain structures in MR. images. This technique is 

designed specially for quantitative measurement of brain structures. C anny’s edge 

detector was employed to segment brain structure. It provides the optim al trade off 

between signal to noise ratio and accuracy in locating edges. The boundary profiles 

provided by C anny’s detector are, however, disconnected. A further procedure is 

therefore needed in order to determine the exact measurement region and so we 

interactively pick up boundary points in each slice (31 for the hemisphere, 15 for the 

lateral ventricles and 8 for the falx cerebri) using the boundary profiles generated 

by C anny’s edge detector as a guide. Using these points as the control points, we 

can produce a parametric representation of the boundary of an intracranial object. 

Comparing this with surfaces and interfaces displayed in the original raw images, our 

param etric representation of boundaries has the following advantages:

• The param etric representation provides meaningful information about object 

shape, in term of such things as curvature and symmetry. We will see in the 

following chapters tha t this sort of information is essential in shape analysis. 

The raw data  by itself does not provide this information.
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• The param etric representation is economical in term s of space. For example, 

the param etric representation of the left hemisphere contours in a stack of 24 

images with an image matrix of 256 x 256 takes less than 750 bytes, compared 

with the raw data  representation which takes 1,572,864 bytes.

Interactively choosing the control points from the boundary profiles is however 

tim e consuming. In this analysis, it takes a total of about 15, 5 and 4 minutes re

spectively to chose the control points for the hemispheric contours (24 slice images), 

ventricular contours ( 3 or 4 slice images) and the falx cerebri ( typically 10 slice im

ages). We believe this is acceptable for quantitative analysis. Due to the limitations 

in image quality in current MR imaging systems, it is unlikely th a t  a fully autom atic  

segmentation method to segment brain structures with satisfactory accuracy and fea

sibility could be designed. Brum m er et al [Brummer 1993] recently developed a fully 

au tom atic  segmentation technique lor 3-D MRI data  to aid in the visualisation and 

volumetric analysis of structures. However, as they said, “our au tom atic  segm enta

tion procedure satisfies neither requirement” . We believe th a t  any practical system 

for segmentation of MRI d a ta  will be incomplete without some interactive capability 

because of such things as inherent signal non-uniformity and partial volume effects.

We have computerised our new segmentation procedure based on the techniques 

described in this chapter. The new software package implements both image process

ing (C anny’s detector) and image segmentation (B-splines). On a Sparc platform, the



processing time for C anny’s edge detection is typically 3.5 min for a 24-slice image 

set and the processing time for curve fitting for the hemisphere contours is about 3 

min for a 24-slice image set. It takes about 35 sec and 15 sec for curve fitting for the 

falx cerebri and the lateral ventricles respectively.
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C h apter 5 M easu rem en t o f  th e

H em isp h eres

5.1 I n tr o d u c t io n

Conventional methods for quantitative analysis of MRI scans usually consider changes 

in the size of brain structures or brain tissues, such as the volume of brain [Condon 

1988], cerebrospinal fluid (CSF), and the ventricles [Condon 1986]. A sem i-autom ated 

computerised method of in vivo quantitative analysis with MRI scans has been de

veloped by Filipek et al. This method provides volume measurement of the cerebral 

hemispheres, ventricular system and cerebellum [Filipek 1989]. Kohn et al [Kohn 

1991, Tanna 1991] developed a computerised system to process standard spin-echo 

MRI da ta  for the estimation of brain parenchyma and CSF volumes. In their study, 

the quantita tive index of brain and CSF volumes (total, extra-ventricular, ventricular, 

and third  ventricular) associated with ageing and Alzheimer dem entia  was studied.
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These works have furthered our understanding of the pathological processes of aging 

and dementia.

However, there has been no further progress in the quantita tive assessment of the 

effects of brain tumours since the introduction of MRI. As we mentioned in C hap ter  1 , 

measurement of brain tumours with CT does not provide a relicible index of the effects 

of brain tumours because of the poorly defined region of the tumour. MRI images 

provide higher contrast between brain structures, such as grey and white m a tte r  than 

CT images, but still cannot reliably define tum our boundaries.

In this chapter we will develop, for the first time, techniques to quantitatively 

assess the severity of brain tumours and the effectiveness of trea tm ent. Instead of 

considering error prone estimates of tum our mass, we measure hemisphere deforma

tions caused by brain tumours, the so called the secondary space occupying effects. 

To our knowledge such a quantitative approach has not been a t tem pted  before. The 

measurements in our study are based on the information from the boundaries of the 

hemispheres. In MR images hemispheric boundary can be delineated much more eas

ily than tum our boundary. Besides the conventional size measurement methods, we 

introduce new size independent parameters to describe the hemispheric deformation, 

such as the sym m etry and compactness of the hemispheres. These size independent 

indices are very useful because they overcome the problems caused by wide variations 

in brain size within the population.
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In section 5.2 we first discuss basic relationships between pixels, because many 

geometric concepts tha t are well defined for analogue pictures have 110 counterparts 

in discrete images (sets of pixels). Therefore , it is necessary to redefine these terms 

for discrete images. In section 5.3 we will define the basic geometric param eters, such 

as area, perimeter, volume and the central moments, for such images. Then in section 

5 .4 , we will use these parameters to characterise the deformation of the hemispheres. 

The results from techniques described in this chapter form the basis of a paper which 

is in preparation.

5 .2  B a s ic  R e la t io n s h ip s  B e tw e e n  P ix e ls

Let D be a function which maps pairs of points into non-negative numbers. D is

called a distance  function if for all points p,<?,r:
1 .

D(p, q) = 0 if and only if p =  <7,

2 .

D{p,q) = D{q,p ),

3.

D (p,r )  < D(p,q)  +  D(q,r ) .

For example, the following functions

E ( ( x u y i ) , { x 2, y 2)) = \ J(x 1 - x 2)2 + ( y x -  y 2)2,
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T ( ( x i , y i ) , ( x 2, y 2)) =  \x i  -  x 2\ T \yi -  y 21,

and

C { { x l , y l ) , ( x 2, y 2)) =  m a x ( \ x i  -  x 2\, \y\ -  y 2\)

are distance functions. E  is called the Euclidean distance, T  is called City block

distance, and C  is called Chess-board distance [Gonzalez 1990].

N e ig h b o u r  Two pixels are said to be direct neighbours (D-neighbours) if the re

spective cells share a side, and indirect neighbours (I-neighbours) if these cells 

touch only at a corner. The name neighbour  denotes either type. A pixel p at 

coordinates ( x , y )  has four D-neighbours:

(x  +  1 , y ) , ( x  -  l , y ) , ( x , y  +  1), (x,  y -  1 ), 

and four I-neighbours:

(x  +  l , y  +  l ) , ( z  -  l , y  +  1 ) , (a: +  l , y  -  l ) , ( x  -  l , y  -  1).

The set of all the neighbours of p is denoted N(p).

P a t h  A path  is a sequence of distinct pixels p \ , p 2l . . . ,Pn such th a t  for k > 1 , p k_ l is 

a neighbour of pk and for k < n, pk+1 is a neighbour of pk. A closed path is one 

where the first and last pixels coincide.
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C o n n e c t iv i ty  A set of pixels S  is connected if for every pair of pixels p and q in S, 

there is a path  whose first and last elements are p and q respectively and all its 

other pixels belong to S.  The boundary of S  is a closed path of a connected 

pixel set S  , with each boundary point having at least one I-neighbour.

T h e  b o u n d a r y  chain cod e  A boundary chain code starts  by specifying the a;, y 

coordinates of an arbitrarily selected s tarting point p on the boundary. The pixel 

p has eight neighbours as shown in Fig 5.1. The numbers in these neighbours 

are called direction code. The chain code assigns the direction according to the 

direction codes in which a step must be taken to go from the present to the next 

boundary points. Therefore, the boundary chain code consists of the  starting 

point , followed by the sequences of direction codes tha t specify the path  around 

the boundary.

Figure 5.1 The boundary direction code
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5 .3  B a s ic  G e o m e tr ic  P a r a m e te r s

5.3.1 P e r im e te r

Perimeter is the circumferential distance around the boundary. The perim eter is 

easily obtained from the boundary chain code. It is also simple to com pute from 

the object segment hie, provided one is careful to com pute accurately the centre- 

to-centre distance between adjacent pixels on the boundary. Image noise usually 

produces artificial jaggedness in the object boundary. This generally combines with 

sampling grid effects to make perimeter measurements artificially large. However, 

the boundary obtained from the B-splines segmentation method is free of the noise 

problem. In our case, the perimeter of an object is given by

T  = N C + s /2 N 0

where N e is the number of even and N 0  is the number of odd steps in the boundary 

chain code.

5.3 .2  A rea

The area of a region is defined as the number of pixels contained within its boundary. 

Area is a convenient measure of overall size. It is dependent only on the boundary of 

the object.

x (p )
ven
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where 7Z denote the object region and

X (p )  =

5 .3 .3  V o lu m e

1 if p G 71 

0 otherwise

For a three-dimensional object in a digital image, its volume is the num ber of points 

( voxels) in the region of the subject. For an MR image, a three-dimensional object 

S  may be represented by a stack of two-dimensional objects S i ,  S 2 , S n which are 

the tomographic images of O. If the thickness of each S t equals one pixel, then the 

volume of O  may be defined as
n

V =  £ A
i=l

where A t is the area of S,.

If the thickness of each Si is h and larger than one pixel, then the volume of O  

may be approximated by interpolation.

n— 1
V ~  £  V,

1=1

where

V; — - ( A '  +  A + i +  \J A A + i )3

which is the volume of a frustrum of a pyramid. It is obvious th a t  the thinner the 

slice thickness, the more accurate the volume of the object.



5 .3 .4  Surface A rea

The surface area of a three-dimensional object is defined as the num ber of points on 

the surface of the object. For an MR image, the area of surface may be calculated 

by the perimeter. If a three-dimensional object O  is represented by a stack of two- 

dimensional objects Si,  5*2, .. .,  Sn which are the tomographic images of O  and the

thickness of S t equals one pixel, then the surface area of O  is defined as

11

S  =  ^ 2  Pi T A \  +  A n
i =  1

where V t is the perimeter of S t, A \  and A n are the area of Si  and S n respectively.

If the thickness of each of S{ is h and larger than one pixel, then the surface area 

of O  may be approximated by

5  ~  £  Ti +  Si +  5 ,
1 =  1

where

Ti = ^ ( P i  + P,+l)

which is the area of a trapezium. The accuracy of the approxim ating surface area is 

dependent on the slice thickness h.

5.3 .5  C entra l M om en ts

Some shape feature can be conveniently represented in term s of moments. For a shape 

represented by a region O containing N  pixels, the centre of mass is given as:



The (p, q , ?’) order central moments become

/ W  =  D  (x  -  x ) p( y - y ) q(z -  z ) r
( x , y , z ) E O

The central moments are position invariant.

5.3 .6  C o m p a ctn ess

Compactness tends to reflect the complexity of the boundary of a two-dimensional 

object or the surface of a three dimensional object. For a two dimensional object O  

with perimeter V  and area A , the following magnitude is used to describe the feature 

shape:

V 2

72 “  4ttA'

For a disc, 72 is a minimum and equals 1.

In the case of three dimensions, we have

73 "  36ttV2

For a sphere, 7 3  is a minimum and equals 1.



5.3 .7  E longation

Let r-min and rmax be the minimum and m axim um  distances, respectively, to the 

boundary from the center of mass. The ratio

 ̂m a x

is used as a measure of eccentricity or elongation of the object.

5 .4  M e a s u r e m e n t  o f  th e  D e fo r m a t io n  o f  th e  H e m i

sp h e r e s

Now we will discuss how to measure the deformation of the hemispheres based on the 

param eters we have introduced above.

5.4.1 Im age acq u is it ion  and se g m e n ta t io n

Each subject (patient or volunteer) has been scanned in the coronal section with the 

same T\ sequence (IRSE 3400/500/32), 256 phase encoding steps, one signal axerage 

the same 7m m  slice thickness, and the same 24 contiguous slices encompassing the 

whole head. Using the segmentation method described in C hapter 4, the contoirs of 

the left and right hemisphere of each slice were obtained (Fig 4.4). Then using the 

contour filling algorithm [Shard 1980] for each hemisphere, a uniform region o' each



hemisphere is obtained (Fig. 5.2). Based on these uniform regions in the  image we 

can now calculate all the parameters discussed in the last section.

Figure 5.2 The regions of hemispheres obtained from Fig 4.4 by using a contour filling algorithm.

5 .4 .2  T w o D im en s io n a l M easu rem en t

For both the left and right hemispheres on each sectional image, we first measure the 

following basic geometric features:

• The area of the sliced hemisphere, A.

• The perimeter  of the sliced hemisphere, V.
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• The compactness of the sliced hemisphere, 72 =  7^ - .

•  The elongation of the sliced hemisphere, (.

• The centre of gravity of the sliced hemisphere, (m ,h ) .

In order to measure the change in the centre of gravities of the hemispheres on a 

sectional image, we consider the following equation

(a — a) — (m — m)
02 — ---------------------------

(a — a) T {m — m)

where (a, b) and (m ,h )  are the centre of gravities of the left and right sliced hem i

spheres respectively, a > a and (a, b) is on the boundary of the left sliced hemisphere. 

m  < rh and (m ,n )  is on the boundary of the right sliced hemisphere.

The sym m etry of the hemispheres, 6 2  is expected to approach 0 in the  case of 

normal subjects though there is in reality almost always some degree of asymm etry. A 

large positive value of 6 2  indicates an expansion of the left hemisphere or a diminution 

of the right hemisphere. A large negative value of 8 2  indicates dim inution of the left 

hemisphere or an expansion of the right hemisphere.
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F ig .5.3 Shift of centre of gravity of the hemispheres. The horizontal axis indicates 

the number of the image slice and the vertical axis indicates the shift ratio. The da ta  

in (a) is from a volunteer and (b) from a patient with a malignant neoplasm.



It should be noted tha t S2  is position, rotation and size invariant. Fig.5.3 shows 

an exam ple of the shift of centre of gravity ol the hemispheres. b2  was calculated on 

each of the 24 contiguous slices. The values of b2  were plotted along the horizontal 

axis. The da ta  in Fig.5.3 (a) is from a male volunteer 41 years old and the da ta  in 

Fig.5.3 (b) from a 61 years old patient who suffered a malignant neoplasm . The 

curve in (a) is obviously more smooth and nearer zero than the curve in (b) because 

of the sym m etry  of the hemispheres. In Fig.5.3. (b), S2  >  0 on most of sectional 

images which implies expansion of the left hemisphere.

□  lef t  

O  r i g h t

00

0
9 130 8 2 34

sl ice
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(b )

F ig .5.4 Areas of the sliced hemispheres. The horizontal and vertical axis 

indicate the number of the image slice and the area size (in pixels) of the sliced 

hemisphere respectively, (a) and (b) are from the same volunteer and patient 

as Fig.5.3.

Fig.5.4 shows the area change in each sliced hemisphere. The d a ta  in Fig.5 .4 were 

from the same volunteer and patient as Fig.5.3. The areas of left and right sliced 

hemisphere were plotted along the horizontal axis. Comparing Fig 5.4 (a) and (b), 

we come to the same conclusion th a t  the left hemisphere of the patient has suffered 

a significant degree of expansion.
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Fig.5.5 shows the compactness change in each sliced hemisphere. The overlapping 

of two curves in Fig.5.5 (a) indicates the sym m etry  of the hemispheres. A significant 

difference in the compactness between the left and right hemisphere can be observed 

in Fig.5.5 (b).
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90 3/. 23

sl ice
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(b )

Fig.5.5 Compactness of the sliced hemispheres. The horizontal and vertical 

axes indicate the number of the image slice and the compactness of the sliced 

hemisphere respectively, (a) and (b) are from the same volunteer and patient 

as Fig.5.3.

5 .4 .3  T h ree  D im en sion a l M ea su rem en t

In three dimensional measurement, we first consider the following a ttr ibu tes  for each 

of the hemispheres.

• volume of the hemisphere, V
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3 6 ttV2

• surface area of the hemisphere, S.

c3
• compactness of the hemisphere, 73 =

• elongation of the hemisphere, (.

• centre o f  the gravity of the hemisphere, (p, <7, r ) .

We will also consider the shift of the centre of gravity of the hemispheres in the 

three dimensional case. Similarly to the two dimensional case :

central shift ratio: <53 =  (a ~ a )(a - a) +

where (a, 6, c) and (p, q,r)  are the centre of gravities of the left and right hemispheres 

respectively, a > a and ( a , 6, c) is on the surface of the left hemisphere, p < p and 

( p , , <7 ,  h )  is on the surface of the right hemisphere. S3 has the same invariant properties 

as 6 2 -

Based on the two dimensional measurement, we can produce some three d im en

sional features of the brain structures. There are

area variation: 77 =
E?=i (At + Bt) 

Z ? = 1  \ A i  -  B i Iabsolute area variation: r 2 =

where A t and B t are the areas of the left and right hemispheres in the slice z, respec

tively.

1 0 7



E L iperimeter variation: ?'3 —

absolute perimeter variation: r 4  =  ̂ ^

where P* and Qi are the perimeters of the left and right hemispheres in the slice z, 

respectively.

E ? = i  Si

n
central shift variation: r 5 =

absolute central shift variation: r 6 =
n

where 8 t is the two-dimensional central shift ratio 8  in the slice z.

It is obvious th a t  r 1? r 2, r 6 are size, translation, and rotation invariant. They 

may therefore be regarded as indices of the shape of the hemisphere. A large positive 

value of r j or r 3 indicates an expansion of the left hemisphere; while a large negative 

value of r 4 or r 3 indicates an expansion of the right hemisphere. A large positive 

value of r 5 indicates a diminution of the right hemisphere, and a large negative value 

of rs indicates a diminution of the left hemisphere. If all the r approach zero, this 

indicates sym m etry of the hemispheres.

Although there is in reality some degree of cerebral asym m etry  in normal subjects 

[Chui 1980], we would expect a more significant difference in the cerebral asym m etry  

between the normal population and patients with intracranial deformation. Our tech

nique allows us to test this by analysing the variation of the left and right hemispheric
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volumes between normal volunteers and patients with intracranial deformation. A pa

ram eter to describe the variation is given by

=  iV f -  V r |

B V, +  Vr

which is called hemispheres variation ratio. Based on analysis of a total of 15 volun

teers from age 23 to 44 and 28 patients with intracranial deformation from age 19 to 

55, the mean, standard deviation (SD), m aximum and minim um  of g are obtained 

(Table 5.1).

mean SD maximum minimum

volunteers 0.00530 0.00635 0.02459 0 .0 0 0 1 2

patient 0.03556 0.02539 0.10093 0.00060

Table 5.1

Fig. 5.6 shows the histogram of the hemisphere variation ratio g of the volunteers

(a) and the patients (b). The variations between the ratios (g) of the volunteers 

and the patients were assessed using t-test [Hines 1990] at the level of significance 

a  =  0.001. From Table 5.1, we can calculate the t-test statistic as t — 4.5173. From 

the t-table [Neave 1979] using 41 (15 +  28 — 2) degrees of freedom, we have the critical 

value t qoi =  3.307 which is less than the test statistic.
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F ig .5.6 Histogram of the hemisphere variation ratio (p), (a) and (h) are based on 

the measurement from 15 volunteers and 28 intracranial deformation patients, respec

tively.



5.4.4 Invariant Attributes

Among all the basic geometric a ttributes, we are more interested in those which are 

size, rotation and position invariant. The invariance properties are very im portan t in 

our study, because there exists wide variations in brain size within the normal popu

lation and differences in patient orientation during image acquisition (i.e. differences 

from the acquisition of one patient to the  next, and in the same patient if scanned 

serially over weeks or months). The following are all invariant a ttr ibu tes  arising from 

our methods which we can use to measure the deformation of the hemispheres.

1. area variation 7q.

2. absolute area variation 7*2.

3. perim eter variation r 3.

4. absolute perimeter variation 7'4.

5. central shift variation r$.

6. absolute central shift variation r 6.
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7. V//(V/ +  Vr ), where V/ and Vr are the left and right hemisphere volumes, respec

tively.

8 . the m aximum of 72 among the 24 contours of the left hemisphere.

9. the minimum of 72 among the 24 contours of the left hemisphere.

10. the mean of 72 among the 24 contours of the left hemisphere.

11. the standard deviation of 72 among the 24 contours of the left hemisphere.

12. the m aximum of (  among the 24 contours of the left hemisphere.

13. the minimum of (  among the 24 contours of the left hemisphere.

14. the mean of (  among the 24 contours of the left hemisphere.

15. the standard deviation of (  among the 24 contours of the left hemisphere.

16. the maximum of 72 among the 24 contours of the right hemisphere.

17. the minimum of 72 among the 24 contours of the right hemisphere.

18. the mean of 72 among the 24 contours of the right hemisphere.

19. the standard deviation of 72 among the 24 contours of the right hemisphere.

20. the maximum of (  among the 24 contours of the right hemisphere.

21. the minimum of (  among the 24 contours of the right hemisphere.

1 1 2



22. the m ean of (  among the 24 contours of the right hemisphere.

23. the s tandard  deviation of (  among the 24 contours of the right hemisphere.

24. compactness of left hemisphere 73/.

25. compactness of right hemisphere 7 3r.

26. elongation of left hemisphere (/•

27. elongation of right hemisphere ( r .

28. 3 -dimensional central shift ratio 63.

43 subjects (28 patient and 15 volunteers) have been analysed with these param eters. 

All patients were diagnosed as having malignant brain tum ours (specifically gliomas), 

usually from their CT appearances. Provided an M R acquisition slot became avail

able before trea tm ent was commenced, then they were included in the study (this 

proved a very stringent criteria as steroid trea tm ent was usually commenced soon af

ter diagnosis and the MR was usually unavailable for patients without appointments). 

No other form of selection was applied to this group of patients, or to the group used 

for the prospective analysis in Chapter 8 .

For each subject, we obtained a 28-dimensional vector to characterise the hemi

spheres. Obviously such a representation would not be readily comprehensible. This 

is particularly im portan t because the ultim ate aim of this project is to produce da ta



which will be conceptually accessible to clinicians. In Chapter S we therefore will 

use pa tte rn  recognition techniques to select the “best" features from these param eters 

and others (see the chapters 6 and 7) to reduce the multi-dimensional d a ta  format 

into a more comprehensible two dimensional display.

5.5  C o n c lu s io n s

In this chapter we have developed a quantitative framework to measure the deforma

tion of the hemispheres. We have considered not only the change in size, for example 

conventional volumetric measurements, but also the changes in shape and position, in 

symmetry and compactness of the hemispheres, and the shift of the centre of gravity 

of the hemispheres. This technique provides a way to objectively assess the intracra

nial deformation caused by brain lesions, especially brain tumours. The example in 

section 5.4 shows tha t the changes in size (Fig. 5.4), position (Fig. 5.3) and shape 

(Fig. 5.5) can be described by our technique. In the last part of section 5.4 we used 

a 28-dimensional vector to represent the deformation of the hemispheres. This mea

surement vector includes quantitative information about the changes in size, position 

and shape.

Brain lesions cause complex three dimensional deformation and displacement. De

formation is manifested by relative displacement of interfaces between intracranial
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structures. Besides the cerebral hemispheres, the lateral ventricle and the longitudi

nal fissure also are obvious and easily delineated structures. Methods for analysing 

deformation of these structures will be developed in the next two chapters.
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C hapter 6 Shape A n alysis o f th e  L ateral 

V entricles U sin g  Fourier D escr ip to rs

6.1 I n tr o d u c t io n

Intracranial structures have a shape characteristic tha t may be expressed indepen

dently of their volumes or positions. In this chapter a shape analysis m ethod is 

developed to analyse this shape characteristic. The new technique is totally inde

pendent of size and position of brain structures which is advantageous in the clinical 

situation because of the wide variations in normal brain anatomy. In this chapter, 

we concentrate on measuring the shape of the lateral ventricles. The ventricles are 

located deep inside the brain from forebrain to hindbrain (Pons and Medulla Oblon

gata). Various pathological processes within the brain such as tum ours, hem atom a, 

or intracranial pressure can cause distortion and displacement of the ventricles, espe

cially the lateral ventricles. However, volumetric measurement of ventricular size is
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inaccurate and unsatisfactory because of the partial volumes problem in M R  scanning 

which is caused by the complex and irregular shape of the ventricles [Planter 1991].

Fourier descriptors is one method of describing the shape of a closed, planar 

object [Zahn 1972]. This method has shown its advantage in pa tte rn  recognition 

because of its invariant properties. Several researchers have m ade useful application 

of various types of Fourier descriptors, such as in character recognition [Granlund 

1972, Persoon 1974], machine parts recognition [Persoon 1977], and identification of 

three dimensional objects [Wallace 1980]. To our knowledge, such an approach has 

never been applied to the quantitative analysis of MR data.

In this chapter we will describe the properties of Fourier descriptors and their 

application to intracranial deformation. The method involves the  decomposition of a 

shape into its constituent spatial frequency components which can then be expressed 

in the form of Fourier descriptors. Once the Fourier descriptor has been computed, 

the operations of rotation, scaling and moving are easily implemented in the fre

quency domain by simple arithmetic on frequency domain coefficients. Therefore a 

complex shape and its change in spatial domain can be easily described in the fre

quency domain. In the third section of this chapter we develop a new technique to 

analyse shape similarity and symmetry based on the invariant properties of Fourier 

descriptors. The fourth section is an application of Fourier descriptors, showing how 

it is used to describe the deformation of the lateral ventricle. Exam ple analyses are
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provided for groups of 12 volunteers and patients. An example of how the technique 

is applied serially in the same patient to assess th e  effects of therapy is provided. This 

work forms the basis of a paper in preparation.

6.2  F ou rier  D e s c r ip to r s  a n d  I ts  In v a r ia n t P r o p e r 

t ie s

G.2.1 Fourier D escr ip to rs

Once the boundary trace is known (see C hapter 4), we can consider it as a pair of 

waveforms x(£), y{t).  Hence any of the traditional one-dimensional signal represen

tation techniques can be used. For any sampled boundary we can define

u(u) = x (n)  +  jy (n ) ,  n = 0 ,1 ,. . . ,  N  — 1 ( 6 . 1)

which , for a closed boundary, would be periodic with period N. Its discrete Fourier

transform is

n = 0
( 6 .2 )

And the inverse transform is

(6.3)
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The complex coefficients a(k)  are called the Fourier descriptors (FDs) of the 

boundary. For a continuous boundary function u(?r), defined in a similar manner, 

the FDs are its (infinite) Fourier series coefficients.

6.2.2 Invariant P ro p er t ie s

Several geometrical transformations of a boundary or shape can be related to simple 

operations on the FDs (Table 6.1) [Granlund 1972, Zahn 1972]. If the boundary is 

translated by

uo — + jyo

then the new FDs remain the same except at k = 0. T he  effect of scaling, tha t 

is, shrinking or expanding of the boundary results in scaling of a(k).  Changing the 

starting point in tracing the boundary results in a modulation of a(k).  Rotation of 

the boundary by an angle 0o causes a constant phase shift of 0q in the FDs. Reflection 

of the boundary (or shape) about a straight line inclined at an angle 0

Ax  +  B y  +  C = 0

gives the new boundary x (n ) , y (n )  as

u(n) = u*ej2d +  2 7

Where u* denote the conjugate complex number of u , and

- ( A  + j B ) C
1 A2
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From Table 6.1 it can be observed th a t  the FD magnitudes have some invariant 

properties. For example a(k), k = 1 ,2 , N  — i are invariant to starting point, ro ta 

tion, and position. T he  features a(k)/ \a(k)\  are invariant to scaling. These properties 

can be used in characterising shapes regardless of their size and orientation. The 

property of F D ’s reflection can be used to analyse sym m etry  of shapes.

Transformation Boundary Fourier Descriptors

Identity u(u) a(k)

'Translation u(n) = u(n)  +  u 0 a ( k ) =  a(k)  +  u 0 S(k)

Scaling u(n) = au(n) a(k) = a a ( k )

Starting Point 0 e—13II>3 a(k) = a ( k ) e - ^ nok' N

Rotation

-e-QJIIbF a ( k ) =  a ( k ) e ^

Reflection e* II e * w
. to + to o a( k) = a * ( - k ) e j2e + 2 ^S(k)

Table 6.1

6 .3  S h a p e  S im ila r ity  a n d  S y m m e tr y

Analysis of shape similarity and symmetry can be based on the invariant properties 

of Fourier descriptors. This makes them very useful for our study.



6.3.1 Shape S im ilar ity

The Fourier descriptors can be used to match similar shapes even when they have 

different sizes and orientations. If a(k)  and b(k) are the FDs of two boundaries u ( n ) 

and u(n), respectively, the distance between n and v is defined as

d(w, v) = ! > ( * ) - *(*)l2 (6-4)
k= 1

Note tha t the differences in position are taken out by setting a (0 ) =  /;(0 ). In order 

to minimise the distance f/(w,u), v will be scaled by a ,  rotated by (p and adjusted  to

the starting point no- We have then to determine a ,  (p and n 0 such tha t

N - 1

D  = Y j H f c )  -  a e l{ke°+4,)b((6.5)
/c=l

is minimised, where 0q = 2irno/N.

From Equation (6.5), we will have

d  = Y ^ ( a k - aeJ(kdo^ )b(k ))(a*(k ) - a e ~J{kdo+4>]b*(k ))
k

= ]T  a{k)a*(k)  +  a 2 £  b(k)b*(k) -  2 a  ]T  Re{a*(k)b{k)ej(kdo+(i>))
k k k

Where Re{c) denotes the real components of c. Let a*(k)b(k) = p [ k ) e ^ k\  then

we have equivalently,

D = a(k)a*(k)  +  a 2 ^  b(k)b*(k) — 2 a  ^  p(k)cos(ip(k) -f k 0 o T  cp) (6 .6 )
k k k

In order to minimize equation (6 .6 ) with respect to a ,  0o and <p we will com pute



the partial derivatives 

d D { a , 0 o,(p)
= 2 a  Y  b(k)b*(k) — 2  Y  p(k)cos(ip(k)  +  k 0 o +  <f>)

k k

_  2 a  Y  p(k)ksin('ip(k) +  k 6 0  +  <f>) 
Ob o k

^  -  2a  Y  p(k)sin(ip(k)  +  k 0 o +  <j>)
d(P k

By setting those derivatives equal to zero we obtain

p{k)cos(ip(k) +  k 0 o +  0 )
a  =

tancj) = —

Ekb(kMk)
52k P(k )sin(il>(k) +  kb0)
Y,k p(k)cos(il)(k) +  k 0 o)

Since both a(k)  and b(k) only contain a finite number (N)  of harmonics, then the 

minimum value of D can be obtained by :

V  =  m in (D )  = m in a ( U - a e |,:9oW)6( U |2|  (6.7)

where 9$ is evaluated for each 6 0  = 2irn0 / N : n 0  = 0, 1,..., N  — I. D is called the shape 

distance between object u and v. When V  = 0, we say u and v have the same shape.

6.3.2 S hap e  S y m m etr y

For a given F D ’s a (k ) of a closed curve 'u(n), if u(n)  is symmetric about the centre 

line x  =  0, from section 5.1 we can get the reflection of u(n)  about the vertical axis

x  =  0

d(k) = —a*( — k)
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Since axial sym m etry means invariance under a reflection, then we use

3>= E W ) - 5 ( * ) )  (6-8)
k = 1

for sym m etry  measurement. A curve with perfect vertical axial sym m etry  has y  = 0, 

and we expect tha t y  near zero will generally indicate a shape tha t would be judged 

nearly axially symmetric.

6 .4  A p p l ic a t io n s

In this section we will show how to apply the Fourier descriptors technique to the 

quantitative analysis of intracranial deformation. We consider the deformation of the 

lateral ventricle. In coronal section scanning, the boundary of the lateral ventricle 

is a closed curve, so the deformation of the ventricle can be described by means of 

Fourier descriptors.

6.4.1 Im age acq u is it ion  and se g m e n ta t io n

For each subject, three slices which lie within the body of lateral ventricle are chosen 

from the stack of slices obtained using the Tj-weighted sequence (IRSE 3400/500/32) 

in the coronal plane (Fig. 6.1 ). These chosen slices lie between the mamillary body 

and the anterior horn of lateral ventricle. There are two reasons why we choose these 

slices. Firstly the boundaries of the left and right lateral ventricles in these chosen



slices are alm ost connected (Fig. 6.1).

slice 2 slice 3

Fig. 6 .1  The slices chosen between the mamillary body and the anterior 

horn of lateral ventricle.
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Thus the contours of left and right lateral ventricles can be considered as one 

closed curve which is available for Fourier descriptor analysis. In the other slices the 

left and right lateral ventricles are separated by the corpus callosum (Fig. 6.2) m ak

ing it difficult to use Fourier descriptors. Secondly, among the slices in which the left 

and right lateral ventricles are closed, the contours of the lateral ventricles in these 

three chosen slices are larger than  in the other slices. The larger region will provide 

more information about the shape of the lateral ventricles.

F ig .6 .2 The left and right lateral ventricles are separated in some slices.

Using the segmentation m ethod described in Chapter 4, the boundaries of the 

lateral ventricles in the chosen slices are obtained. As each of the boundaries is a 

closed curve we can use Fourier descriptors to analyse the object shape.



6.4 .2  T h e  Training Set

Using Equation (6.5), we can match similar shapes even if they have different sizes 

and orientations. For each of the three slices, a closed curve is given as a reference 

with which the closed lateral ventricles can be compared. This reference is called 

a training set. It can be regarded as an ideal contour of the lateral ventricles (Fig. 

6.3). Note tha t the reference is symmetric about the centerline line. T he design of 

the training set is based on the shape of lateral ventricles of normal volunteers at the 

same position.

S l i c e  1
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S l i c e  2  S l i c e  3

F ig .6 .3 The references (training data sets) for matching lateral ventricles.

6.4.3 R esu lts

For the similarity measurement, the three contours of lateral ventricles from 15 vol

unteers (8  men and 7 women, between the ages of ‘21 and 43 ) and 28 patients with 

brain tum ours ( 16 men and 12 women, between the ages of 17 and 65) were compared 

with the three references respectively by using Equation (6.7). For each patien t or 

volunteer, therefore, three shape distances (X>i,£>2andV^)  were obtained to charac

terise the shape of the lateral ventricles. We then calculated the mean of the three 

shape distances by

V\  +  V>2 +  T>2,
A ip  =     .
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We call M t> a  shape value of  an object. Table 6.2 summarises the measurement re

sults. It shows the mean, standard deviation, m axim um  and m inim um  of the shape 

values (M d ). The mean and the standard deviation of the shape value in the patients 

with brain tumours are significantly larger than those in the volunteer group. The 

smaller mean and standard deviation of the shape value in the volunteer group indi

cates shape similarity and stability.

mean SD m aximum minimum

volunteers 2.3216 0.4097 3.4017 1.7900

patients 4.6027 0.7990 5.2857 2.9434

Table 6.2

The variations between the shape values of volunteer and patient groups are as

sessed using t-tests. From Table 6.2, we can calculate the test statistic  as t = 10.3144 

with 41 (15 +  28 — 2) degrees of freedom which is significant at the a  = 0.001 level 

(the critical value Fooi =  3.307).

Using Equation (6.8), we measure the sym m etry  of the contours of the lateral 

ventricles within the three slices. For each patient or volunteer, therefore, three 

symmetry parameters (3A, T 2 and T3) were obtained to characterise the sym m etry  of 

the lateral ventricles. We then calculated the mean of the three sym m etry  param eters
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We call M y  a symmetry value of  an object. Table 6.3 summaries the measurement 

results after measuring all the 15 volunteers and 28 patients. It shows the  mean, 

s tandard  deviation, maximum and minimum of the sym m etry  values { M y ) .

mean SD maximum minimum

volunteers 1.4049 0.4658 2.3435 0.5002

patients 3.6676 0.9897 6.0489 2.4411

Table 6.3

The variations between the symmetry values of volunteer and patient groups are 

assessed using t-tests. From Table 6.3, we can calculate the test statistic as t = 8.314 

with 41 (15 +  28 — 2) degrees of freedom which is significant at the a  = 0.001 level 

(the critical value Fooi =  3.307).

As an illustrative example of how this technique can be used to serially assess 

therapy we consider a 19 year old female patient with a tum our in the left temporal 

lobe. Table 6.4 shows the measurement results ( the shape distance and the symmetry  

parameter) both before and after six months radiotherapy.



shape sym m etry

1 2 3 1 2 3

pre 4.090 2.940 2.347 3.540 4.830 4.532

post 3.293 2.583 2.028 3.531 1.592 2.410

Table 6.4 Quantitative assessment of tumour response to treatment. The 

second and third rows show the results before and after six months radiotherapy 

respectively.

"

Fig. 6 .4  A change  of th e  v en tr icu la r  shape ,  (a )  before t r e a tm e n t ;  (b )  a f te r  

6 m o n th s  t r e a tm e n t .

Fig.6.4 (a) and (b) show the change of the ventricular shape before and after 

trea tm ent. From both Table 6.4 and Fig.6 . 1. we can see that the ventricular shape 

of the  patient is changed.
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I t  is interesting th a t  a clinical assessment of the patient also showed an improve

ment after trea tm ent. The clinical assessment shown in Table 6.5 was m ade indepen

dently by Dr R. Rampling, a neurooncologist in the Beatson Oncology Centre of the 

Western Infirmary, Glasgow.

headache seizure orientation memory motor speech vision

pre no deficit multiple

daily

no deficit no deficit resistance fragmentary

only

no deficit

post responds to 

treatment

controlled 

with drug

no deficit no deficit resistance no deficit no deficit

T a b le  6.5 Clinical assessment of the pa tien t’s response to treatm ent. The second 

and third rows show the results before and after six months of radiotherapy respectively.

6 .5  C o n c lu s io n s

In this chapter a quantitative technique for characterising the shapes of intracranial 

structures has been developed. The technique can be used to match similar shapes 

eveni when they have different sizes and orientations. It also provides a way to de

scribe the symmetry of an object. Its application to the quantita tive assessment of 

vent ricular deformation has demonstrated advantages which may not be achieved by 

conventional quantitative techniques.

T he  new technique has been applied to groups of 15 volunteers and 28 patients 

presenting with brain tumours. The results have shown a remarkable difference in
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the shape of the lateral ventricle between volunteers and the patients. The shape 

values of volunteers ( mean 2.3216) are general smaller than tha t of patients (mean 

4.6027) (Table 6.2). The measurement of sym m etry  of the lateral ventricles also 

shows a significant difference between the volunteers and patients, with the volunteers 

generally having smaller symmetry values (mean 1.4049) than the patients (mean 

3.6676) (Table 6.3).

6 invariant a ttributes have been obtained by applying the Fourier descriptors. This 

6 -dimensional measurement vector is used to characterise the shape and sym m etry  of 

the lateral ventricles.

Unfortunately the technique is currently limited to two-dimensional images. In 

section 6.4 the shape analysis of the lateral ventricle was based on the two-dimensional 

measurement of selected slices which cut the lateral ventricles. Only three of these 

slices were chosen in our application for the reasons mentioned in section 6.4. In the 

case of the cerebral hemispheres, it is unlikely th a t  we could gain information about 

the global deformation by measuring only a few cross sections. However, if we were 

to measure all slices which contain the hemispheres, it would cause difficulties in both 

computing tim e and feature extraction from the wealth of param eters generated. For 

this reason we feel the technique is not suitable for the hemispheres.



C h apter 7 Shape A n a lysis o f  th e  Falx  

C erebri U sin g  Surface C u rvatures

7.1  In tr o d u c t io n

In three-dimensional MR brain images, secondary space occupying effects may be 

manifested by changes in the convexity and concavity of the cerebral lobe surfaces 

between one side of the brain and the contralateral side . Displacement of the midline 

structures can be described as changes in the curvature of the falx cerebri, and internal 

herniation can be regarded as variations in the surface curvature of the cerebral lobes.

The aim of this chapter is to develop a novel shape analysis technique for charac

terising the deformations in the surfaces of the midline structures. These structures 

do not form closed contours in cross section so the techniques described in the previ

ous sectors cannot be applied. We therefore develop a technique based on differential
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geometry to classify surfaces into certain character types. The deformation of a sur

face then can be described by measuring the curvature changes in these types. Like 

the Fourier descriptors approach, this m ethod possesses several invariant properties, 

namely size, translation, and rotation invariance. As far as we are aware this is the 

first time differential geometry has been applied to any aspect of medical imaging.

Classical differential geometry provides a complete local description of smooth 

surfaces and guides our selection of surface characteristics. The Gaussian curvature 

and the mean curvature are identified as the second-order surface characteristics [de 

Carmo 1976] tha t capture the characteristics of a surface. Using the Gaussian curva

ture and the mean curvature, any surface in three-dimensional Euclidean space can 

be described as the combination of basic and simple surfaces called primary surfaces. 

Intuitively speaking a surface is composed of elliptic, hyperbolic, saddle and flat sur

faces. The deformation of a surface can be interpreted by the curvatures of these 

primary surfaces.

A stack of MR images provides three-dimensional images of internal structures of 

the body. After a local boundary segmentation on each sectional image, a set of edge 

elements are obtained. These edges can be considered as the trace of a certain number 

of surfaces. Based on the surface trace information, B-splines surfaces can be obtained 

which approximate the original image surfaces. In this way we can characterise the 

image surfaces.



In the next section, we first introduce surface differential geometry. Section 7.3 

will discuss the mean curvature and the Gaussian curvature and how to characterise 

surfaces by curvatures. Then in Section 7.4 we apply the technique in a group of 

15 normal volunteers and 28 patients. Two examples of patients whose condition 

changed after trea tm ent are provided to dem onstrate how the technique can be used 

to serially assess the effects of therapy. The 28 new size independent a t tr ibu tes  this 

technique generates are listed.

The technique and results in this chapter have been published recently as a paper 

in the IE E E  Transactions on Medical Imaging [Dai 1993].

7.2 S u rfa ce  D iffe r e n tia l  G e o m e tr y

The explicit param etric form of a general surface r ( g ,v )  with respect to a known 

coordinate system is :

r { g ,v )  = { x ( i i , v ) , y ( g , v ) , z ( i i , v ) }  (7.1)

The param etric derivatives r*M, r v , r ^ v ... depend on the specific param eterization 

adopted but from them  the intrinsic differential characteristics of the surface can be 

derived, such as the unit normal and the Gaussian curvature and principal directions, 

which are independent of parameterization. The unit surface normal is defined in 

terms of the parametric derivatives r )L and r v by
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|*V X r v\

On a curved surface, the infinitesimal distance element between two neighbouring 

points (/z, u) and (is +  d/i, v  +  civ) is given by

ds2 = • r vd p 2 +  2r M • r vdpdv  +  • r vd v 2 (7.3)

Equation (7.3) is often called the first fundamental quadratic form  of a surface 

and is written in the form E dfi2 -f 2Fdfidv  +  G dv2. The quantities

E(fi, v) =

F( f i , v )  =  r ^ * r v (7.4)

G(f i , v)  =  r v 9 r v

are t he first fundamental, or metric , coefficients of the surface. The metric coefficients 

provide the basis for the measurement of the lengths and areas and the specification 

of directions and angles on a surface.

The first fundamental form gives the distance ds between neighbouring points 

( y , v )  and (y  T  d y ,v  +  dv) on a surface to first order in dfi and civ. The distance 

element ds lies in the tangent plane of the surface at point (/z, u ) and therefore yields 

no information on how the surface curves away from the tangent plane at the point.

To investigate surface curvature, we must examine the vector distance between 

neighbouring points ( y , v )  and (/z +  d/z, v +  dv)  to second order in d/z and dv.  The
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component of this vector distance perpendicular to the tangent plane at ( p , v )  is one 

half of dh where d2h is defined by

<f2h = n  • r ^ ^ d p 2 +  I n  • r^ vdpdv  +  n  • r vv d v2 (7.5)

Equation (7.5) is often called the second fundam ental quadratic fo rm  of a surface 

and is written in the  form L d p 2 -f 2M d p d v  T  N d v 2. The quantities

L( p , v )  = n  •

M ( p , v )  = n  • (7.6)

N ( p , v )  = n  • r vv

are called the second fundamental coefficients of the surface and form the basis for 

defining and analyzing the curvature of a surface.

7 .3  S u rfa ce  C u r v a tu r e

It has been established th a t  surfaces are uniquely characterized by the first and the 

second fundamental coefficients which completely determine surface shape and in trin

sic surface geometry [de Carmo 1976]. The Gaussian curvature K  and mean curvature 

H  are defined by

K  

H
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L N  -  M 2 
E G -  F 2
1 E N  -  2 F M  +  GL
2 E G  -  F 2

(7.7)

(7.8)



The Gaussian curvature K  and the mean curvature H  have the following proper

ties [de Carmo 1976] which are very im portant to surface characterization:

• Gaussian and mean curvature are invariant to a rb itrary  transformations of the 

(//, u)-param eters of a surface.

• Gaussian and mean curvature are invariant to arb itrary  rotations and transla

tions of a surface.

• Gaussian and mean curvature are local surface properties because A and H do 

not depend on global properties of a surface.

• Gaussian and mean curvature indicate surface shape at individual surface points.

1. A' > 0 , the surface is locally ellipsoidal, or peak shaped.

2 . if I\ < 0 , the surface is locally hyperbolic, or saddle shaped.

3. if I\ = 0 and H  ^  0, the surface is locally parabolic, or ridge shaped.

4. if K  =  0 and H  = 0, the surface is locally flat or planar.

Therefore according to the signs of the Gaussian curvature and mean curvature, 

a surface can be classified into four basic types (Fig.7.1).



1 0 0 0 0 ,
5000

- 5 0 0 0 \
1 0 0 0 0 '

-100

Fig.7.1 Surface type labels from surface curvature signs, (a) ellipsoidal 

K  > 0; (b) hyperbolic K  < 0; (c) parabolic A' = 0 and #  /  0; (d) planar 

K  = 0 and H — 0.

139



7.4  A p p l ic a t io n s

Now we will apply the surface measurement technique to clinical MRI data. We 

chose the falx cerebri as the object of our study in this instance. The falx cerebri is 

a sickle-shaped fold of dura m ater th a t  lies in the midline between the two cerebral 

hemispheres. From the geometric point of view the deformation of this can be de

scribed in terms of concavity and convexity of a surface. Through the applications, 

we a t tem p t to show the difference in the curvature of the falx cerebri between nor

mal subjects and subjects with intracranial deformation. From the repeated scans of 

patients, we will show how surface deformation can change with trea tm ent.

7.4.1 D a ta  acq u is it ion

Both the normal volunteers and patients have been scanned in the coronal section 

with the same MR sequence (Ti-weighted, IRSE 3400/500/32) and the same 7mm 

slice thickness. We chose for the curvature analysis slices between the genu o f  the 

corpus callosum and the splenium o f  the corpus callosum (Fig. 4.6) We chose this 

because most intracranial deformation tends to involve this region. Also the falx 

cerebri outside this region may not be accurately defined on coronal M R images 

because of the partial volume problem. At each coronal slice, 8 trace points along 

the falx were interactively obtained within the region from superior sagittal sinus  to 

supracellar cistern , interpeduncular cistern , or supracerebellar cistern(Fig. 4.7). For
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each subject, 8 x 11 surface trace points in total were obtained from 11 contiguous

slices.

7.4 .2  M ea su rem en t

Using the B-splines method described in C hap ter  4, a splines surface was obtained 

which was a differentiable continuous function P (  As described in section 7.3,

the imean curvature H  and the Gaussian curvatu re A were evaluated at the corre

sponding discrete points on the fit surface. Fig. 7.2 shows the values of the Gaussian 

curvature for each point of the fit surface approxim ating the falx cerebri. Fig. 7.2 (a) 

is from a volunteer and (b) from a patient.

Based on the Gaussian curvature and the m ean  curvature at each point on the fit 

surface, the falx cerebri is classified into the four c haracterisation types. The ratio of 

area of each curve type to the total area (i.e. the a re a  of splines surface) is used as a 

inde x to characterise the surface deformation. Eac h ratio is called a surface character 

ratio.
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Fig .7.2 Ga ussian curvature map. The Gaussian curvature map is super

posed 011 the falx cerebri. Each point in the map indicates the value of the 

Gaussian curvature at the corresponding point 011 the B-splines surface which 

fit the falx cerebri in the sagittal plane . The brighter the grey level of the pixel, 

the higher the value of the Gaussian curvature, (a) is from a normal volunteer 

and (b) is from a patient.

7.4.3 R esu lts

The results from 15 volunteers ( 8 men and 7 women, from age 21 to 43 ) and 28 

patients (16 men and 12 women, from age 17 to 65) with intracranial deformation 

were obtained.
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Table 7.1 summarises the measurement results. It shows the mean, maximum , 

m inim um  and standard deviation of each surface character ratio for the volunteers 

and the patients.

the  mean surface character ratio

planar parabolic elliptic hyperbolic

volunteers 62.42% 26.12% 5.26% 6.42%

patients 27.79% 25.55% 18.94% 27.73%

the SD surface character ratio

planar parabolic elliptic hyperbolic

volunteers 14.00% 9.30% 3.71% 5.09%

patients 10.03% 5.51% 5.44% 9.71%

the maximum surface character ratio

planar parabolic elliptic hyperbolic

volunteers 83.11% 45.90% 12.70% 17.29%

patients 49.27% 33.59% 27.15% 46.48%

the minimum surface character ratio

planar parabolic elliptic hyperbolic

volunteers 39.94% 7.76% 0.42% 1.46%

patients 10.89% 15.48% 8.52% 9.91%

T ab le  7.1



From Table 7.1 we can see tha t the m ajority of the area of the falx cerebri in the 

volunteer group is classified as being of the planar or parabolic type. The m ean ratio 

of planar and parabolic area to the area of falx cerebri is 88.54% for the normal group 

and only 53.34% for the patient group. The differences in the basic surfaces between 

the volunteers and patients were assessed using paired Ttests (see Table 7.2).

planar parabolic elliptic hyperbolic

t 9.3924 0.2533 8.7495 7.9127

a = .01 3.307

o  =  .005 2.704

ooIIS 2.423

Table 7.2 +tests for the variations in the four characterised surfaces be

tween the volunteers and the patients with 41 (15+28-2) degrees of freedom.

(In the table t and a  indicate the test statistic and the level of significance 

respectively.

Fig 7.3 gives an illustrative example. In this figure the four characterised surfaces 

in the falx cerebri are marked according to the Gaussian curvature and the mean 

curvature at each point, where grey indicates the planar (flat) region, darker grey the 

parabolic (ridge) region, black the elliptical (peak) region, and white indicates the 

hyperbolic (saddle) region, (a) and (b) are from a normal volunteer and a patient 

with a brain tumour respectively.
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(a) (b)

F ig .7.3 C lassified curvature map. The falx cerebri is classified into four 

basic types according to the mean curvature and the Gaussian curvature at 

each discrete point on the surface, namely, planar (grey), parabolic (light grey), 

elliptic (black) and hyperbolic (white), (a) and (b) are from a normal volunteer 

and patient , respectively.

In Fig. 7.3 (a) 82% of the measured region is flat, while in the case of the patient 

(Fig. 7.3 (b) ), only 22% of the region is flat, and 30% of the region is concave 

toward the left hemisphere (hyperbolic); 45% of the region is convex toward the right 

hemisphere (ellipsoidal).

In order to dem onstrate  how the deformation of the falx cerebri can change with 

trea tm ent, we consider MR images from two patients before and after a period of
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trea tm ent ( 7 days and 6 months respectively).

Table 7.3 shows the measurement results from these two patients. The d a ta  in 

the table are the surface character ratios. The first and second rows are the results 

from a patient before and then 7 days after surgical trea tm ent respectively. The 

third and fourth rows are the results from a patient before and after six m onths of 

radiotherapy. From the table we can see there is a significant changes in the shape 

of the falx cerebri. After trea tm ent, the falx cerebri has more of a tendency towards 

flatness in both patients.

planar parabolic elliptic hyperbolic

p a t l  (pre) 22.35% 21.80% 20.32% 35.53%

p a t l  (post) 43.79% 25.29% 11.81% 19.12%

p a t2 (pre) 18.60% 21.87% 24.95% 34.59%

p a t ‘2 (post) 49.12% 36.81% 7.60% 6.47%

T ab le  7.3

This findings are matched by changes in clinical assessment of neurological sta tus 

of the patients which shows improvement for both patients. Table 7.4 show the 

assessment results for the patien ts’ treatments.
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headache seizure orientation memory intellect motor speech

patl(p re ) no deficit no deficit no deficit no deficit mild

confusion

no deficit no deficit

p a t l  (post) no deficit no deficit no deficit no deficit no deficit no deficit no deficit

pat,2(pre) no deficit multiple

daily

no deficit no deficit no deficit resistance fragmentary

only

pa t‘2(post) responds to 

treatm ent

controlled 

with drug

no deficit no deficit no deficit resistance no deficit

Table 7.4

7.5  C o n c lu s io n s

The main contribution of this chapter is in the development of a size-independent 

general purpose m ethod for measuring the deformation of intracranial surfaces. It 

provides an objective, precise and practicable way to assess the intracranial defor

mation due to brain lesions. In the described applications we investigated only the 

deformation of the falx cerebri. Obviously, this method is also applicable to other 

anatomical structures, such as the tentorium, corpus callosum and the whole of the 

brain.

Section 7.4 is intended to show the potential of our analysis approach which of 

course could be applied to other conditions which involve surface deformation of brain
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structures. Examples are given for two patients whose clinical condition has changed 

pre and post trea tm ent and this has been matched by a com m ensurate change in 

our curvature parameters. The clinical assessment was based on a broad range of 

tests of neurological status. Through the clinical assessment in both this chapter 

and Chapter 6 was administered and scored by an experienced neorooncologist, these 

“conventional’ tests must be considered, by their very nature, to contain an element 

of subjectivity. They may also be effected by drug therapies to suppress individual 

symptoms. Unfortunately, other than survival times, these are the only clinical means 

of assessing change (this problem will be discussed in more detail in the final chapter).

The quantitative parameters used to describe surface characters in the application 

are the ratios of the planar, parabolic, ellipsoid, and hyperbolic areas to the whole 

measurement surface ( the falx cerebri in our application). In fact, based on the 

Gaussian curvature and mean curvature, we can get other surface feature param eters. 

Table 7.5 lists 28 such size independent attributes.
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1 minimum K  in the whole surface
2 maximum K  in the whole surface
3 mean K  in the whole surface
4 standard deviation of K  in the whole surface
5 minimum H  in the whole surface
6 maximum H in the whole surface
7 mean H in the whole surface
8 standard deviation of H  in the whole surface
9 minimum K  in the ellipsoid region
10 maximum K  in the ellipsoid region
11 mean K  in the ellipsoid region
12 standard deviation of K  in ellipsoid region
13 ratio of e l l ipso id  — a rea /w ho le  — area
14 minimum H in the parabolic region
15 maximum H in the parabolic region
16 mean H in the parabolic region
17 standard deviation of K  in parabolic region
18 ratio of parabolic  — area /w ho le  — area
19 minimum H in the planar region
20 maximum H in the planar region
21 mean H in the planar region
22 standard deviation of K  in planar region
23 ratio of p la n a r  — area /w ho le  — area
24 minimum K  in the hyperbolic region
25 maximum K  in the hyperbolic region
26 mean I\ in the hyperbolic region
27 standard deviation of I\ in hyperbolic region
28 ratio of hyperbolic — a re a /w h o le  — area

Table 7.5

Presentation and interpretation of da ta  in such a format would not be com prehen

sible as it stands. In addition, many a ttributions may be equally uniformly sensitive 

to change {i.e. redundant). In Chapter 8 we will use pattern  recognition techniques to 

select the “best” features from these parameters, and others from previous chapters, 

to reduce the multi-dimensional da ta  into a more comprehensible two dimensional 

format.
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C h apter 8 C lassifica tion  and

In terp reta tio n

8.1 I n tr o d u c t io n

As we know space-occupying lesions usually cause complex three-dimensional defor

mations and displacements. In order to characterise the global deformation, we need 

to consider all possible abnormalities. In the previous chapters we have developed 

techniques to analyse the changes in the geometric features of the hemispheres, the 

shape of the lateral ventricles, and the displacement of the midline structures. The 

aim of this chapter is to provide a comprehensive interpretation of the global defor

mation based on our quantitative measurements. This will allow us to objectively 

assess the effects of an intracranial deformation and  its response to trea tm ent. There 

are three stages in achieving this:
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• Feature extraction. Each of our methods yields a multi-dimensional vector 

which describes a deformation in some cerebral structures (such as the hem i

spheres, the lateral ventricles, and the falx cerebri). This multi-dimensional 

m athem atical representation of intracranial deformation is not going to be con

ceptually accessible to clinicians who are the ones who will u ltim ately  have to 

make use of it. In addition, many a ttributes may be equally uniformly sensitive 

to change (i.e. highly correlated). Thus we need to optimally ex trac t deforma

tion features among the measurement attr ibu tes  and reduce a large number of 

measurement a ttr ibutes into a smaller number of features.

• Classification. In order to make a quantitative assessment, we need to set a 

decision function  ( or decision rule ) which classifies a feature vector into either 

a normal or abnormal group. In other words, we need to set a threshold between 

the normal and abnormal brain based on the distribution of feature vectors from 

both volunteers and patients.

• Interpretation. Finally, based on the decision rule we will a t te m p t to quan tita 

tively assess the severity of an intracranial deformation and how it responds to 

trea tm ent.

There are few studies on the quantitative measurement of intracranial deformation 

in current quantitative analysis of MR I data. The only related study is the  investi

gation of intracranial herniation and the level of consciousness [Ropper 1989, Ross



1989, Reich 1993]. All the techniques used in these studies are based on simple 

two-dimensional linear shift so are neither accurate nor reliable in characterising a 

three dimensional deformation. To our knowledge, our new techniques form the most 

comprehensive analysis of intracranial deformation ever a ttem pted .

In the next section, we first introduce the basic scheme for pattern  recognition. 

Then in section 8.3 we will describe a feature extraction technique, the Karhunen-  

Loeve transform, which will reduce the multi-dimensional measurement space into a 

smaller dimensional ( two-dimension, in our case) feature space tha t retains most 

of the information needed for classification. The Karhunen-Loeve transform, or 

the method o f  principal components, was derived originally for random processes 

[Karhunen 1947, Loeve 1948]. The application of the Karhunen-Loeve transform to 

feature extraction is due to Chien [Chien 1968] and W atanabe [Watanabe 1965]. The 

Karhenen-Loeve transform developed in this section is based on statistical properties 

of vector representations. Section 8.4 discusses a decision rule, Bayes decision. The 

decision rule described here is optimal in the sense tha t it minimises either the proba

bility of error or another quantity closely related to it. The Bayes decision developed 

in this section is derived originally from the Bayes classification of pattern  vectors es

tablished by Marill [Marill 1960], Kanal etal [Kanal 1962] and Chu [Chu 1965]. Based 

on the measurement of the hemispheres, the lateral ventricles and the falx cerebri, in 

section 8.5 we set the decision rules for each of these brain structures. The decision
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rules can classify a measurement object (the hemisphere, the lateral ventricle and the 

falx cerebri) into either the normal category lo\ or the abnormal category uj2- However 

the decision rules do not assess how serious the deformation is . In order to assess 

the severity of the intracranial deformation and the effects of trea tm ent,  in section 

8.6  we propose the severity scale and variation scale to characterise intracranial de

formation comprehensively. Then in section 8.7 we will apply the decision rules and 

the deformation scales established from the analysis of our first group of 28 patients 

to prospectively analyse the clinical MRI da ta  from a further group of patients to 

assess intracranial deformation and the effects of trea tm ent. The significance of our 

approach will be dem onstrated. In section 8.8  in tra and inter observer reproducibility 

of our techniques are assessed.

8.2  B a s ic  P a t t e r n  R e c o g n it io n

The goal of pattern  recognition is to classify objects of interest into one of a number 

of categories or classes. The objects of interest are generally called patterns. Our 

concern here will be a two-class pattern  recognition problem, i.e. normal (cji) and 

abnormal (u^) classes. Each patient or non-patient volunteer m easurem ent will yield 

a set of attributes which define a multidimensional vector x. The vector x  is called 

the measurement vector and the multidimensional space Llx in which it resiles is 

called the measurement space. A feature extractor is a transformation (linear or



non-linear) tha t maps an iV-dimensional measurement vector x  in the measurement 

space Qx  into an M-dimensional feature vector y  in the feature space Lly.

y = 3 (x)

It, should be noted tha t since typically M  < N , the  mapping is not one-to-one. 

The selection of measurements is based on our prior knowledge or experience 011 the 

particular pattern recognition problem. Feature extraction is , on the other hand, 

essentially a scheme tha t reduces the dimensionality from N  to M . Fig.8.1 shows the 

basic scheme for pattern  recognition.

measurement feature classification
vector vector

ClassifierFeature Extractor

Fig .8 .1  The Basic scheme for pattern recognition.

The classification at the ou tpu t depends on the input feature vector y ,  hence we 

write

C = S(y)

S(y)  is called a decision function , or classifier. The classifier essentially induces a 

partitioning of the feature space into a number of disjointed regions.

In our study, the Karhunen-Loeve transform is employed as the feature extractor. 

It maps the multidimensional measurement space into a two-dimensional feature space
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in which certain algebraic and geometric criteria are optimized.

1 here are two basic approaches to classification, statistical or distribution free. 

Distribution-free methods do not require knowledge of any a priori probability distri- 

buticm functions and are based on reasoning and heuristics. Statistical classification 

is ba;sed on probability distribution models, such as Gaussian distributions. In our 

s tudy  we can assume the measurement vector x  has a Gaussian distribution, and also 

tha t the normal and abnormal classes are mutually complementary events. Thus we 

will use statistical techniques for classification.

8 .3  F e a tu r e  E x tr a c t io n  B a s e d  o n  K a r h u n e n -L o e v e  

T ra n sfo rm

Consider a population of random measurement vectors x  of the form

/ \
a x

x =

tlhe mean vector of the measurement space is defined as

m r =  E{x} . ( 8 . 1)

W here ^{x}  is the expected value of the measurement vector x. The covariance
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matrix of the vector population is defined as

C x =  E{(x -  m x)(x -  m s ) 1 }. (8.2)

where T  indicates vector transposition. It should be noted th a t  C x and [x — m x)(x —

m x)T are matrices of order m  x m.  Element ca of C x  is the variance of the

zth component of the x  vectors in the population, and element ctJ of C x  is the

covariance between elements and x j  of these vectors. The m atrix  Cx  is real and

symmetric. If elements Xi and x 3 are uncorrelated, their covariance is zero, and

therefore, ctJ = cjl = 0 .

For N  vector samples from a random population, the mean vector and covariance

matrix can be approxim ated from the samples by

N
m x ^ l / N ^ X k  (8.3)

1

and
N

Cx ~  l / N  x kx Tk -  m xm xT. (8.4)
k = i

Because Cx  is real and symmetric, finding a set of m orthonormal eigenvectors 

is always possible [Nobel 1969]. Let et and At, i = 1 , 2 be the eigenvectors and 

corresponding eigenvalues of Cx  , arranged in descending order. T hat is

Cxet = X for i = 1,2, . . . ,m

and

Xi > Ai+1, for i = 1 ,2 ,. . . ,  m  -  1 .
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Consider a transformation

u — A (x — m x).

where the transformation m atrix  A is given by

(8.5)

A  = ( e i e 2...em)

whose columns are the eigenvectors of C x . It is obvious tha t the transform  in 

Equation (8.5) is a linear transform which maps an m-dimensional vector to another 

m~di mensional vector. It does not reduce the dimensionality of the m easurem ent 

spac<e. Now we consider a transformation which does reduce the dimensionality of

the m easurem ent space.

V =  A I ( x  ~  m x ) =

p t  
\  k /

( x  -  m x) =

( \  
Vi

(8 .6 )

where k < m, and the m atrix A is from the k eigenvectors corresponding to the k 

largest eigenvalues. For each component y x of y ,  we have

Vi  =  e ? ( *  ~  m r )  * =  C  •••» k

The random variable y t is called the zth principal component of X. The transform a

tion in Equation (8 .6 ) is called the Karhunen-Loeve (K -L) transform , and the m atrix  

A k is called K-L transform matrix. Since k < m , there is always a loss of information 

representing x by y. We wish to determine A  such th a t  the loss is minimised.
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The K-L transform has several im portant properties. We shall examine some of 

these.

1. The principal components are uncorrelated and the variance of the zth com

ponent is Xi. Let us first examine the covariance m atrix  of y . This m atrix  is given

by

c v =  E { { y -  m y) { y -  m y ) 7 } ( 8 . 7 )

where m y is equal to the zero vector 0  as can be shown directly from Equation (8 .1 ) 

and (8.5):

m y =  E{ y}  

= E { A l { x - m x)}

=  A 1 E{ x)  — A 1 m x (8.8)

=  0

Substitution of Equation (8.5) and (8 .8 ) into (8.7) yields the following expressions for 

C y in terms of C x :

C y =  E{ ( Ax  — A m x)(Ax — Arrij.)1 }

=  AE{ ( x  — m x)(x — rn x )7 } A 1 (8-9)

=  A C X A t

where the last step follows from the definition of C y given in Equation (8.2).
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It can be shown [Lawley 1963] th a t  C y  is a diagonal m atrix  with elements equal

to the eigenvalues of C x \ th a t is,

/

C n =

Ai

0 A,

(8 . 10)

\  m /  

and the covariance of the y ’s can be obtained in terms of A  and C x  by

=  A  C rA (8 . 11)

Since the terms of the main diagonal are 0, the elements of y  are uncorrelated. 

In addition, each eigenvalue At- is equal to the variance of the zth element of y  along 

eigenvector ej.

2 . Consider Equation (8.5) and (8 .6 ), and let us define a loss function which is 

the mean square error between x and y.

It can be shown [Young 1974] tha t the loss function can be given by the expression

6 =  £ A , - £ A ,
l' = l 1 = 1

=  £  A,
i= k+ l

( 8 . 12)

The first part of Equation (8 .12) indicates tha t the error is zero if k = m  ( th a t  is, if 

all the eigenvectors are used in the transformation). Because the A,'s decrease mono- 

tonically, Equation (8.13) also shows tha t the error can be minimized by selecting the
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k eigenvectors associated with the largest eigenvalues. Thus the K-L transform is op

timal in the sense tha t it minimises the mean square error between the measurement 

vector x  and its approximation ( feature vector) y.

3. Chien [Chien 1968] has shown tha t the total variance from the k principal 

components is the largest among all possible choices of k orthonormal vectors. In 

fact the first component provides the greatest variance (scattering of the points with 

respect to the mean value), and the second component provides the second greatest 

variance, and so on.

8 .4  B a y e s  D e c is io n

As mentioned before, we restrict attention only to the two-class ( uq and lo2 ) case. 

One measure of the performance of the decision rule is the probability of making 

an incorrect decision or the probability o f error. The decision rule described here is 

optimal in the sense tha t it minimizes the probability of error.

Before an object has been measured, our knowledge of it consists merely of a priori 

probabilities, P(uj\)  and P(u>2). After measurement, however, we should be able to 

use the measurement and the conditional probabilities to improve our knowledge of 

class membership. After measurement, the so-called a posterior probability tha t the 

object belongs to tol is given by Bayes' theorem
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It should be noted tha t oq and uj2 are mutually exclusive and collectively exhaustive. 

Bayes' theorem allows us to combine the a priori probabilities of class membership, 

the conditional density function and the measurement to com pute , for each class, the 

probability tha t the measured object belongs to th a t  class. Given this information, 

we might choose to assign each object to its most likely class.

Suppose tha t we are given a feature vector y  to be classified. In order to classify 

this feature vector, we might simply evaluate the posterior probability of each class 

p(uj i \ y )  and choose the class with the largest posterior probability. We should assign 

the O'bject to class lj\ if

p(ui \ y)  > p M y )

and assign it to class co2 otherwise.

From Equation (8.13) we can get

if p (v m P m  > p (v m P m  ;C hoosew,
£ J=1P(</K)^H) “  £ J=1p(2/K)^W

else choose lo2 .

Equivalently, we can state the decision rule as:

if E iS M  >  g a l  choose Wl
p { y M  ~  P m ' 

else choose uo2 (8-14)



Let

% )  =
p{ y \u2)

the quantity  £(y) is called the likelihood ratio and the decision rule of the equation is 

called a likelihoods ratio test. The likelihood ratio is simply the ratio of the two-class 

conditional density functions p( y\u>i) evaluated at the point y. Therefore, when the 

class conditional densities are known, the likelihood ratio is a fixed function of y.

In our case, the  normal class U\ and the abnormal class u; 2 are mutually  comple

mentary and the prior probabilities of y in both uq and can be calculated easily. 

Thus we have

P M
PM0

here Co is a constant. The decision rule can be written as

if £(y)  > Co choose uq,

otherwise choose lo2 (8.15)

Suppose tha t we measure n objects in class ay, i = 1 , or 2. Using Equation (8 .6 ) 

and choosing k = 2 , the measurement vector x  =  (aq, .t2, x m) is m apped onto a 

two-dimensional space with the form

y  =  (yi, 2/2)-

flie mean vector and covariance m atrix  of y  are m  and C, respectively. Using
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Equation (8.9), we define

A  = A t C A

Then the class conditional density function of the  two-dimensional Gaussian ran

dom vector y  can be defined as

p{y M  = 27r\A\i/2exp(~l /2(y ~ r n ') I A~l(y ~ ( 8 -16)

From the properties of the  K-L transform (Eqs. (8.10) and (8.11)), we will have 

P ( y M  = ~— j = = e x p { - l / 2 r )  (8.17)
Z7T V  A i  X 2

where r  =  ({yx -  m l )2 / \ u (y 2  -  m 2 ) 2 / X2), y  =  ( y i , 2/2), and m  =  ( m i ,m 2).

Because y is obtained from a K-L transform, the elements of the y  vectors are 

uncorrelated. This means the components of y  are statistically independent. There

fore, from Equation (8.17) , we get the Gaussian density function under condition of

class l

1 1 (t,2-m2)2
p(y\iO\) =  ^ 2Al  2A’

\ J 2  7r A! s / ' I i r X 2
1 [ i/2r(i/i~,ni )2 1 (y2~m2)2i

2A A S  “  *■ (8 ' 18)

where i = 1, or “2 .
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8 .5  T h e  D e c is io n  R u le s  for In tr a cra n ia l S tr u c tu r e s

In order to set the decision rules between the normal and abnormal hemispheres, 

lateral ventricle and falx cerebri, we first consider measurement from a group of 

volunteers and a group of patients with intracranial deformation.

The MRI da ta  from 15 normal volunteers and 28 patients with intracranial defor

mation were obtained. All the patients had clinical diagnosis of brain tum our (such 

as glioma). Table 8.1 gives the information about the volunteers and the patients.

N o Male N o Female N o Max age Min age Mean age std age

volunteers 15 8 7 43 21 32.9 6.5

patients 28 16 12 65 17 39.4 12.9

Table 8.1

Based on the measurement results from these subjects and the classification theory 

discussed in previous sections, we can determine the boundaries (or thresholding) 

between the normal and abnormal hemispheres, lateral ventricles and falx cerebri

respectively.

8.5.1 T h e  D ec is io n  R u le  for th e  H em isp h eres

In section 5.4.4, we used 28 invariant a ttributes to characterize the deformation of 

the  hemispheres. After measuring all the 15 volunteers and the 28 patients, we
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have 43 da ta  sets, each of them  is a 28 dimensional measurement vector. Using the 

K-L transform, each of the 28-dimensional measurement vectors is m apped into a 

2-dimensional feature vector (See Appendix B Table B .l).

In Fig. 8.2  , all the feature vectors are plotted on a plane. The horizontal and the 

vertical axes indicate the first and second features respectively which are obtained by 

K-L transform. The circles in Fig. 8.2 are the feature vectors from the volunteers, 

and the triangles are the features vectors from the patients. It is very obvious tha t 

the normal feature vectors show a tendency to centralise while the patient feature 

vectors show a tendency to decentralise.
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Based on the theory of Bayes decision and the measurem ent results, we can get 

a decision rule which will set a threshold or decision boundary between the normal 

and abnormal hemispheres.

Form Table B.l in Appendix B, we get the mean feature vector and the eigenvalues 

of the covariance matrix for the volunteers:

m  =  ( m i , m 2) =  (7.247 x  10~4, —0.0157)

Xx = 8.3717 x  10~6, A2 =  1.2258 x  10“ 4

Therefore, from Equation (8.18), we have Gaussian density function for the normal 

subjects:

1 r 1 l2 i (yg-ma)2i
p { y \v  1) =  Al "2 8̂ ' 19^

Similarly, we can get the Gaussian density function for the abnormal subjects:

, , 1 r 1 /2((yi~ni)2 1 <y2~n2)21
p ( y M  = 7,— 7T i = e t2 ( 8 -2 ° )ZTry/tit2

where m  = -0 .0035, n 2  =  0.0195, t x =  1.3558 x  10~4, and t 2  = 0.0012.

From Equation (8.15), the decision rule can be stated as

r_i  1 (j/2 - m2 >2 l

if P ( j / M  =  2rN/.\|.\;e A’ ^  >

, r -■ nl )2 I (V2 n2 )2 1
P ( y M  = *. -2 (8.21)

choose ujx ,

otherwise choose lo2.
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Equivalently, Equation (8.21) can be reduced to

i f  f ( 7 . \  [ v i - o - o o i o ) 2 i( y 2 + o . o i 9 6 ) ^  1 r s 2 9 x
c \ y  ) —  5.6689X  1 0 ~ 5 ^ 8.6379X  1 0 ~ 4 ^  { O . Z Z J

choose normal uq, 

otherwise choose abnormal u 2•

This decision rule sets a boundary between the normal and abnormal hemispheres.

And for any feature vectors y l and y 2, if

% i )  <  % 2)>

it means tha t y x is closer to the normal class uq than y 2.

Applying the decision rule to all the da ta  in Table B .l in Appendix B, we get the

likelihood ratios shown in Table 8.2.
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volunteers patients patients

7.3341e-002 2.2897e+000 1.5239e+001

1.2038e-001 5.6583e+001 8.7940e+000

5.0266e-002 4.0022e+000 7.314 le-F000

2.1769e-002 2.1326e+001 7.8744e+000

1.5247e-002 2.7006e+000 6.381 le+000

2.5457e-001 5.4141e+000 6.2388e+000

3.9310e-001 1.0328e-001 5.4177e+000

6.2074e-001 5.9674e+000 3.1570e+000

1.3634e-001 2.7952e+001 1.2054e-001

1.9765e+000 1.1795e+001 3.5247e+000

1.0402e+000 2.0066e-001 5.0576e+000

1.4239e-001 3.8571e+000 9.4803e+000

5.2803e-002 1.8410e+000 2.6340e+000

5.7574e-001 1.2330e+001 2.9236e+000

5.1455e-003

Table 8.2 Likelihood ratios for the hemisphere.

From Table 8.2 we can see tha t 13 normal subjects out of 15 are in the region 

of normal class while 25 out of the 28 patients are in the region of abnormal class
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according to the decision rule (Equation 8.22). Table 8.3 summarises the s ta t is t i

cal results of Table 8.2. Fig.8 .3 shows the histogram of the likelihood ratio for the 

hemisphere. This figure also shows the difference between the normal and abnormal 

subjects.

mean SD maximum minimum

volunteers 0.3652 0.5157 1.9765 0.0051

patients 8.5900 11.1196 56.5830 0.1033

Table 8.3 The mean, standard deviation, maximum and minimum of like

lihood ratios in Table 8.2.

The variations between the likelihood ratios of volunteer and patient groups were 

assessed using paired 2-tests. From Table 8.3, we calculate the test sta tistic  as t = 

2.847 with 41 degrees of freedom which is significant at the a  = 0.005 level (the 

critical value 2.oo5= '2 . 704).
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Fig .8 .3 A histogram of the likelihood ratio of the hemispheres. Note the 

considerable change in x-axis scale between (a) and (b).
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Although there are two normal subjects which are classified into the abnormal 

class by the decision rule, their likelihood ratios (1.9765 and 1.0402 respectively) 

are very close to the decision boundary ( 1 .0 0 0 0 ) and significant smaller than  the 

mean likelihood ratio of the patients (8.5900). The mis-classification is due to the 

hemisphere asymmetry in these two normal subjects. In fact the two subjects have 

the highest and the second highest hemispheres variation ratios (0.02459 and 0.01461 

respectively) among all the 15 volunteers. The mean of the hemispheres variation 

ratio for the volunteers is 0.00525 with standard deviation 0.00635(see Table 5.1) 

while the mean of the hemispheres variation ratio for the 28 patient d a ta  is 0.03556 

with standard deviation 0.02539.

8.5.2 T h e  D ec is io n  R u le  for th e  Lateral V en tr ic les

In Chapter 6 , we used Fourier descriptors to describe the shape of the lateral ventri

cles. For each measurement subject, there are 6 parameters to describe the shape of 

the lateral ventricles.

After measuring all the volunteers and the patients, we have 43 da ta  sets each of 

them providing a 6 dimensional measurement vector. Using the K-L transform, each 

of the 6 -dimensional measurement vectors is mapped into a 2 -dimensional feature 

vector ( See Appendix B Fable B.2).

In Fig. 8.4, all the feature vectors are plotted on a plane. The circles in Fig. 8.4
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are the feature vectors from the volunteers, and the triangles are the features vectors 

from the patients. It is very obvious tha t all the feature vectors shows a strong 

tendency towards separation between the normal and abnormal lateral ventricles.
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F ig .8.4 A ‘2-D display of the lateral ventricular deformation.

Form Table B.2, we get the mean feature vector and the eigenvalues of the covari

ance m atrix  for the normal subjects:

m  =  ( m i ,  m 2 ) =  ( - 0 . 8 8 3 6 , - 1 . 0 7 1 8 )
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A! =  0.6411, A2 =  0.4140

Therefore, from Equation (1.18), we have Gaussian density function for the normal 

subjects:

p ( y M  = - - 7= e [ l/2( Al 2
Z7T \ /  A \  A 2

Similarly, we can get the Gaussian density function for the abnormal subjects:

r 1 1 ~ n i >2 ' (y2 ~ n 2 ) 2 1

p { y  M  =  y— 7r=re (1 '2 (8-23)

where ni =  1.0431, n 2 =  1.5767, G =  2.1703, and t 2  =  1.0662.

From Equation (8.15), the decision rule can be stated as

r i w (yi-mi )2 i (y2- ”*2)2i
if P(wl“ i ) =  j ^ T E e 1 A2 >

r 1 /'-»/ (-Vl ~nl )2 I (»2~»2)2 1
P ( y M  = -2 (8.24)

choose cji,

otherwise choose u 2.

Equivalently, Equation (8.24) can be reduced to

■r (i/1 + 1.6913)2 , ( j /2 + 2 .7 5 3 0 )2 ,
13.9695 4 -  10.3870 ^

choose normal uji , 

otherwise choose abnormal cj2. (8.25)

For any feature vectors y x and y 2, if

% i )  <  % 2 ) >
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then y x is closer to the normal class u \  than y 2. In other words, the lateral ventricles 

with the feature vector y x are more likely to approach the shape of lateral ventricles 

from the normal volunteers than the lateral ventricles with the feature vector y 2.

volunteers patients patients

3.071 le-001 3.4374e+000 1.7665e+000

3.6875e-001 5.0590e-001 1.2556e+000

1.4583e-002 1.6458e+000 3.8571e+000

3.3157e-001 1.3671e+000 2.4686e-f 000

1.9243e-001 1.7022e-f 000 2.6654e+000

6.1753e-001 3.4491e+000 3.8946e+000

9.9637e-001 5.5343e+000 4.5781e+000

4.6267e-001 9.8047e+000 2.6566e+000

3.8935e-001 1.3086e+000 4.2973e+000

8.3435e-001 2.4751e+000 3.901 le+000

1.8373e-001 1.5252e+000 3.1685e+000

2.0776e-001 1.6873e+000 2.4073e-f 000

7.731 le-002 7.4042e-00i 2.0799e+000

5.4730e-001 5.5830e+000 2.0828e-f 000

5.5031e-001

Table 8.4 Likelihood ratios for the lateral ventricles.



Applying the decision rule (Equation 8.25 ) to all the feature vectors in Table B.2 

in Appendix B, the likelihood ratios of the feature vectors are obtained ( l'able 8.4) 

From Table 8.4 we can see tha t all the normal subjects are cataloged into the 

normal class u q , and 26 out of 28 patients are in the abnormal class uj-2 according to 

the decision rule (Equation 8.25). The patient classified into the normal class had a 

small rounded area lesion lying in the medial left parietal lobe. There is no any space 

occupying effects on the lateral ventricles (see Fig 8.5).

Fig. 8.5 Images of the lateral ventricles for the patient classified into the 

normal category.

Table 8.5 shows the mean, standard deviation, maximum and minimum of likeli

hood ratio of the lateral ventricle for both the volunteers and the patients. Fig. 8.6 

shows the histogram of the likelihood ratio and the decision boundary.

The variations between the likelihood ratios of volunteer and patient groups were 

assessed using paired /-tests. From Table 8.5, we can calculate the test statistic as



t =  6.2102, using 41 (15 -f 28 — 2) degrees of freedom, which is significant at ithe 

a  =  0.001 level (the critical value Fooi =  3.307).

mean SD maximum minimum

volunteers 0.4054 0.2625 0.9964 0.0146

patients 2.6096 1.3538 5.5830 0.5059

Table 8.5
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F ig .8 .6 A histogram of likelihood ratio for lateral ventricles.

In order to aid in the intuitive understanding of the likelihood ratio, we consicier 

the case of the patient who had the m aximum value of (/(y )  among all the patients. 

The patient suffered a malignant neoplasm in the right hemisphere. Fig. 8.7 shows a

176



significant displacement of the lateral ventricles and midline shift

F ig .8 .7 Three coronal section images from the patient who has the maxi

mum value of ^(y) among all the patient.

F ig .8 . 8  Three coronal section images of the patient who has the minimum 

value of £(y) among all the patient.

Comparing the shape of the lateral ventricles of this patient with the  patiem who 

has the minimum value of t { y )  among all the patients (see Fig. 8 .8 ) and the  volunteer 

shown in Fig 6.1, we can see the difference in the shape deformation.
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8.5.3 T h e  D ec is io n  R u le  for th e  Falx C erebri

The deformation of the falx cerebri has been measured by means of Gaussian curvature 

and the mean curvature as described in Chapter 7. For each measurem ent subject, 

a 28-dimensional measurement vector is obtained to describe the shape of the falx 

cerebri. After measuring all the volunteers and the patients, we have 43 d a ta  sets each 

of them making a 28 dimensional measurement vector. Using the K-L transform, each 

of the 28-dimensional measurement vectors is mapped into a 2 -dimensional feature 

vector ( See Appendix B Table B.3).

In Fig. 8.9 , all the feature vectors are plotted on a plane. The circles in Fig. 8.9 

are the feature vectors from the volunteers, and the triangles are the features vectors 

from the patients. It is obvious tha t all the feature vectors show a tendency towards 

separation between the normal and abnormal falx cerebri.

Form Table B.3 in Appendix B, we get the mean feature vector and the eigenvalues 

of the covariance m atrix  for the normal subjects:

m  =  ( m i ,m 2) =  (-0 .0 9 8 9 ,-9 .7 5 7 6  x 10- 5 )

Ai =  0.0038, A2 =  8.8353 x 10“ 9

Therefore, from Equation (1.18), we have Gaussian density function for the normal

subjects:

p(y k ) =
Z7 T  V  Ai  A 2
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Fig .8 .9 A ‘2-D display of the falx cerebri deformation.

Similarly, we can get the Gaussian density function for the abnormal subjects

r 1 / c / f a n ~ n i ) 2 ■ ( V 2 ~ n 2 ) 2 1

p ( v M  = d— 7f r e £ (8-26)

where n\ =  0.1096, n 2 = 1.1277 x 10-4 , t \  =  0.0089, and t 2 = 1.1997 x 10- 8 . 

From Equation (8.15), the decision rule can be stated as

,  r -i j ^ ( ( y \ - ™ \ ) 2 | ( ?/2 —m 2 ) 2 1

if P (v l“ i) =  w a T a  A2 >

r 1 w ( i / l - n l ) 2 I ( y ? - n 2 ) 2 1

P ( v M  = ^TTTt 12 (8'27)

choose loi ,



otherwise choose uq.

Equivalently, Equation (8.27) can be reduced to

•r ( t /1+ 0 .2569)2 . (y 2 +6 .8535  X 1 0 ~ 4 )2
0.1603 ' 7.9444 X10“ 7 <

choose normal uq , 

otherwise choose abnormal uq. (8.28)

For any feature vectors y x and y 2, if

% i )  < % 2)>

then y ] is closer to the normal class uq than  y 2. In other words, the falx cerebri with 

the feature vector y x is more flat than the falx cerebri with the feature vector y 2.

Table 8.6  shows the likelihood ratios which are obtained by applying the decision 

rule (Equation 8.28) to all the feature vectors for the falx cerebri.
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volunteers patients patients

8 .1221e-001 5.7277e-001 2.3507e+000

6.0945e-001 2.6384e+000 2.2089e+000

5.3158e-001 8.5668e-001 1.9746e+000

5.1307e-001 8.5134e-001 1.9167e-f-000

5.21 lle-001 3.4594e+000 2.0957e+000

1.0394e+000 1 .2 2 2 1e + 0 0 0 1.5395e-h000

3.9445e-001 2.7736e+000 1.7715e+000

7.7973e-001 3.5431e+000 1.3263e-f000

1.4175eT000 1.5719e+000 1.3424e-f 000

5.5693e-001 1.5813e+000 1.1391e+000

4.2722e-001 7.0180e-001 1.0433e+000

5.5505e-001 1.4684e+000 1.0388e+000

4.5490e-001 3.0808e+000 1.0026e+000

3.3166e-001 2.6585e+000 1.0441e+000

4.7449e-001

Table 8.6 Likelihood ratios for the falx cerebri.

As shown in Table 8 .6 , 13 feature vectors out of 15 from the volunteers belong 

to the normal class oj\, and 24 feature vectors out of 28 from the patients are in
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the abnormal class uj2- The mean, standard deviation, m aximum and m inimum of 

likelihood ratio of the falx cerebri for both the volunteers and the patients are shown 

in Table 8.7. Fig. 8.10 shows the histogram of the likelihood ratio and the decision 

boundary.

mean SD m aximum minimum

volunteers 0.6279 0.2745 1.4175 0.3317

patients 1.7419 0.8166 3.5431 0.5728

Table 8.7

0.00 2.00 4.00
l i ke l ihood  ra t io

Fig.8 . 1 0  A histogram of likelihood ratio for the falx cerebri.



The variations between the likelihood ratios of volunteer and patient groups were 

assessed using paired /-tests. From Table 8.5, we can calculate the test s ta tis tic  as 

I = 5.0147, using 41 (15 + 28 — 2) degrees of freedom, which is significant at the 

a  = 0.001 level (the critical value /.ooi — 3.307).

TT: "A

Fig .8 .1 1  Four coronal images from the patient who has the minimum value 

of £(y) among all the patient in the measurement of the falx cerebri.

Shi ft of the midline did not occur for all tin' patients. In tin' images of the patients



who have the feature vectors classified into the normal class , there is no visible 

shift of the midline. Fig. 8.11 shows four coronal images from the patient with the 

minimum value of f(y). Comparing this with the images from the patient who has 

the m aximum value of £(y) shows a significant shift of the midline (Fig. 8.12)

F ig .8 .12 Four coronal images from the patient who has I he maximum value 

of t{y) among all the patient in the measurement of the falx cerebri.



8 .6  S ca le s  o f  In tr a cra n ia l  D e fo r m a t io n

Our measurement objects (the hemisphere, the lateral ventricle, or the falx cerebri) 

can now be classified either into the normal category (u>i) or into the abnormal cate

gory (u>2) by the decision rules. However the decision rules do not assess how serious 

any distortion is. In order to assess the degree of intracranial deformation, we need 

to analyse the likelihood ratio further.

From the definition of the likelihood ratio £(y)  we know tha t the likelihood ratio 

provides information about intracranial deformation. The larger the likelihood ratio 

is, the larger the deformation. In this section we describe how to characterise the 

degree of the intracranial deformation and use this to assess the response of the 

deformation to trea tm ent.

T h e se v e r ity  sca le  o f  in tracran ia l d eform ation

Suppose tha t a? is a measurement vector for some brain s tructure  S  ( the hemisphere, 

the lateral ventricle, or the falx cerebri) and y  is the feature vector obtained by K-L 

transform through x.  The mean of the likelihood ratio for each of the three brain 

structures has been calculated for both volunteer and patient groups in previous 

subsections (Table 8.3, 8.5, and 8.7). Let a and b be the mean of likelihood ratio of 

the brain structure S  for volunteers and patients respectively. Then if i ( y )  > b, we 

say th a t  the deformation of S  is worse; if 1 <  d(y) < 6, we say th a t  the deformation
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of S  is median; if a < £(y)  <  1 , we say tha t the deformation of S  is s m a l l ; if i ( y )  <  a, 

we say tha t the deformation of S  is none (See Fig. 8.13).

Decision
boundary

u
£
0
3tr
0

none mediansmal 1 worse

normal abnormal

Likelihood ̂  ratio

Fig .8.13 The severity scale of intracranial deformation.

This description for the degree of the intracranial deformation is called the severity 

scale o f intracranial deformation. (SSID) Alternatively we can use a digital represen

tation for the severity scale of intracranial deformation:

SSID none small median worse 

Score 0 1 2  3
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T h e varia tion  sca le  o f in tracran ia l d eform ation

Suppose we consider a brain structure S  ( the hemisphere, the falx cerebri, or the la t

eral ventricle ). Let £{yx) and £(yf )  be the likelihood ratios before and after trea tm ent 

respectively. Let a  be the standard deviation of the likelihood ratio for volunteers as 

shown in Table 8.3, 8.5, or 8.7. If £(yx) — £{y?) >  cr, we say tha t the deformation 

shows a tendency of decrease; if £{yf) — £(y?) <  — <7, we say tha t the deformation 

shows a tendency of increase; otherwise we say tha t the deformation is stable. This 

description of the change of intracranial deformation is called the variation scale o f  

intracranial deformation (VSID). Similarly we also use digital representation for the 

change scale of intracranial deformation:

VSID increase stable decrease 

Score 1 0 -1

8 .7  A p p lic a t io n s

Based on the quantitative measurements from 15 volunteers and 28 patients, we have 

established the decision rules to characterise intracranial deformation by measuring
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the hemispheres, the lateral ventricle and the falx cerebri. Now we will apply these 

decision rules prospectively to a further group of patients to try  to quantitatively 

assess the effects of intracranial deformation and its response to trea tm ent.

8.7.1 P a tien ts

11 patients (not part of the previous 28 patient group) with brain tum ours were 

analysed in the application. Thus the MRI da ta  sets from the 11 patients are totally 

independent from the previous analyses. The group include five men and six women 

from age 17 to 57 ( with mean of age 39.82 and standard deviation of 12.13). The 

patients have been scanned before and after trea tm ent (radiotherapy, chemotherapy, 

surgery or combination of these), in order to assess lesion response. As described 

previously the subjects were scanned in coronal section with the same T\ sequence 

(IRSE 3400/500/32), the same 1m m  slice thickness, and the same 24 contiguous slices 

encompassing the whole head. The quantitative analysis were performed in a blinded 

manner, then compared with the clinical assessment of change.

8.7.2 R esu lts

For each subject we measure the deformations in the hemispheres, the lateral ventricle, 

arid the falx cerebri with the techniques described in chapter 5, 6 and 7. Three 

measurement vectors are obtained for each of the patients, a 28-dimensional vector for
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the hemisphere, a 6-dimensional vector for the lateral ventricle, and a 28-dimensional 

vector for the falx cerebri.

After measurement of all the patients, each measurement vector is reduced into a 

two-dimensional feature space by applying the K-L transform. Using the transform 

matrix  Y  given in Table B.2 in Appendix B, for example, each of the 6 -dimensional 

measurement vectors for the lateral ventricle is mapped into a 2 -dimensional feature 

vector which provides most information about the deformation of the la teral ventricle.

Finally applying each of the decision rules (Equation 8 .2 2 , 8.25, and 8.28) to 

each of the feature spaces (the hemisphere, the lateral ventricle, and the falx cerebri) 

respectively, we will get the likelihood ratio for each of the three brain structures. 

Table 8.8  shows all the likelihood ratios for the hemisphere, the lateral ventricle, and 

the falx cerebri.
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before treatment aft er treatment

patient sex age hemisp falx c ventri in te rva l(d ) hemisp falx c ventri

Pi F ‘29 2.4100 0.4371 2.2420 ‘223 1.0937 0.5154 0.8138

Pi F 17 65.355 3.6470 1.4268 99 62.996 3.2010 1.2849

P3 F 33 4.3105 0.8320 1.4630 192 2.6185 0.8244 1.3750

Pa M 55 23.882 5.1505 3.0680 7 3.2036 1.3715 1.1230

Ps F 50 5.8333 4,0649 1.2587 8 0.0672 1.8931 1.1948

Pe M 34 13.104 1.9230 1.0385 67 12.149 1.6826 0.7077

Pi M 42 0.3723 1.9226 0.8660 ‘288 0.6337 ‘2.0098 0.9603

Ps M 57 2.4913 1.7463 1.1607 268 1.8874 1.8024 1.0188

P9 F 29 0.2649 2.2478 0.8454 ‘240 0.5002 3.7978 0.9923

Pio F 40 0.1370 1.4031 1.1607 57 0.4964 1.3982 1.0188

Pn M 52 29.229 2.3858 0.9920 14 14,005 2 .0 1 0 2 1.0100

Table 8 . 8  Likelihood ratios of the hemisphere, the falx cerebri and the 

ventricle.

8.7.3 Clinical Assessments

Separately and in a blinded manner from the M R I quan tita tive  measurem ents, clin

ical assessment of neurological condition of the patients was performed. The clini

cal symptom s assessed included headache , s e i z u r e , o r ien ta tio n , m e m o r y , in te l lec t ,
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m otor , speech , v is io n , and papilloedema. The overall assessment used here is the 

Modified M R C  neurological status scale (MMRC scale). It is described as:

0 No deficit.
1 Mild deficit but function adequate for useful work.
2 Moderate functional impairment! able to care for self most of the time).
3 Substantial impairment ( requiring help with self care most of the time, severe dysphasia).
4 Major impairment(confined to bed or chair whole time, total dysphasia).
5 No useful function.

Table 8.9 shows the overall assessment of MMRC and the s ta tus of the patients. This 

was scored by an experienced neurooncologist Dr Rampling of the Beatson Oncology 

Centre, Western Infirmary, Glasgow.

Pi P‘2 Ps Pa Ps Pe

before 1 2 2 0 1 2

after 2 (worse) 1 (better) 2 (worse) 0 (stable) 0 (better) 1 (better)

status alive dead alive dead alive dead

Pi Ps P9 Pi 0 P n

before 1 1 1 1 2

after 1 (stable) 3 (worse) 0 (better) 1 (stable) 3 (worse)

status alive dead alive alive dead

Table 8.9 MMRC assessment and patients' status.
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A ssessm en t  o f  th e  sev er ity  o f  in tracranial d efo rm a tio n

Using the severity scale of intracranial deformation and the information from Table 

8.3, 8.5, and 8.7, we can represent the results in Table 8 .8  more simply (Table 8.10).

before trea tm ent af t e r  trea tm en t

patient hemisp falx c ventri TS hemisp falx c ventri TS

Pi m (2 ) n (0) m (2 ) 4 m (2 ) S (1) s ( 1) 4

P2 w (3) w (3) m ( 2 ) 8 w (3) w (3) m (2 ) 8

Ps m (2 ) s (1) m (2 ) 5 m (2 ) s ( 1) m (2 ) 5

P a w (3) w (3) w (3) 9 m  (2 ) m  (2 ) m (2 ) 6

Ps m (2 ) w (3) m ( 2 ) 7 n ( 0 ) w (3) m (2 ) 5

Pe w (3) w (3) m (2 ) 8 w (3) m (2 ) 8 ( 1) 6

P i s ( 1) w (.3) s ( 1 ) 5 s (1) w (3) s (1) 5

Ps m (2 ) w (3) m (2 ) 7 m (2 ) w (3) m (2 ) 7

P 9 n (0 ) w (3) s ( 1 ) 4 s ( 1) w (3) s ( 1) 5

Pio n (0 ) m (2 ) m  (2 ) 4 s (1 ) m (2 ) m (2 ) 5

P n w (3) w (3) s ( 1 ) 7 w (3) w(3) m (2 ) 8

Table 8.10 The deformations of the hemisphere, the falx cerebri and the 

ventricle described by SSID (w, m, s, n and T S  are the abbreviations for worse, 

median, small, none and total scores respectively).



From Table 8.9 and 8.10 we can see tha t,  with one exception, all the patients (P 2, 

P4, P 5, P6, P& and Pn  ) with total SSID scores (either before or after trea tm en t)  

larger than 5, did not survive. The only exception was P 5 whose total SSID scores 

dropped rapidly from 7 to 5 seven days after surgery. Patient P2 had the longest 

survival time of eight months after the last MR scan. The others (P4, P6, P8 and P n 

) died less than six months after the last MR scan. The rest of the patients (Pi, P3, 

P7, Pq and P iq) with total SSID scores (either before or after trea tm ent)  less than 

6 still survive at the time of the writing of this thesis ( i.e. all have survival longer 

than 8 months).

The results indicate tha t the total score of SSID does indeed characterise the 

severity of intracranial deformation. Higher SSID scores, in this group at least, are 

associated with lower chances of survival.

The limitations of the clinical assessment are illustrated in the cases of the non

surviving patients (Table 8.9). This showed tha t only two patients (P8 and P n )  were 

getting clinically worse, two patients (P 2 and P6) were getting better, and one patient 

(P.j) was stable. This would suggest tha t our approach is more objective and accurate 

than the clinical assessment.

Patient P\ has the smallest total SSID scores (both before and after t rea tm en t)  

among all the patients (Table 8.10). The 30 years old female patient was diagnosed 

with a neoplasm in her right hemisphere in early 1991. Fig.8-14 shows a sequence of



coronal MR images of her brain.

mmmm

Fig .8.14 Six coronal section images from patient P\.

Although these 6 slices dem onstrate a large lesion in the right hemisphere, the 

degree of intracranial deformation, as is shown in Fig.8-14, is actually quite small, 

compared with, for example, patient Pn  (see Fig.8.15). It is interesting to note th a t  

the lesion areas of the two patients from Fig.8.14 and 8.15 are similar. However 

patient Pn  died quickly one month after the final scan, while patient P{ still survives 

nearly three years after the first scan. This would appear to indicate, in this instance 

at least, tha t the deformations of brain structures arc of greater significance with 

regard to the survival of the patient than the size of the lesion itself.
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F ig .8.15 Six coronal section images from patient P \ \ .

A ssessm en t  o f  th e  resp on se  o f  intracranial d e fo rm a tio n  to  t r e a tm e n t

Table 8.8 also provides the variation scale of the intracranial deformation for the 11 

patients who have been scanned before and after treatm ent. Fable 8.11 shows the 

VS ID representation.



patient hemisp falx c ventri T.S

P i dec (-1) stb (0 ) dec (-1) -2

P 2 dec (-1) dec (-1) stb (0 ) -2

P 3 dec (-1) stb (0 ) stb (0 ) -1

P 4 dec (-1) dec (-1) dec (-1) -3

Ps dec (-1) dec (-1) stb (0 ) -2

PG dec (-1) stb (0 ) dec (-1 ) _2

Pi stb (0 ) stb (0 ) stb (0 ) 0

Ps dec (-1) stb (0 ) stb (0 ) -1

P 9 stb (0 ) inc (1 ) stb (0 ) 1

Pio stb (0 ) stb (0 ) stb (0 ) 0

P n dec (-1 ) dec (-1 ) stb (0 ) -2

Table 8.11 The deformations of the hemisphere, the falx cerebri and the 

ventricle described by VSID scores (dec, stb, inc and T.S  are the abbreviations 

for decrease, stable, increase and total scores respectively).

Table 8.11 shows tha t for most of patients (8 out of 11 ), the intracranial deforma

tions have decreased, to some degree, after treatm ent. Although there are significant 

decreases of intracranial deformation for the patients who have higher SSID scores 

(patients P2, P\, P$, Pg and P n  have scores of SSID larger than  5 after trea tm ent) ,
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the patients still do not survive. This implies tha t the initial degree of severity of in

tracranial deformation is more crucial than the degree of the change in the intracranial 

deformation following trea tm ent. If this can be replicated in further patient groups 

(see final chapter) then this may have profound implications for patient management.

Consider now only the patients who survive (P t , P3, P 5, P7, P9 and Py0). The 

total VS ID scores show a decrease of deformation for Py, P3 and P$. The assessment 

of the neurological status of the patients by MMRC scale shows tha t only patien t P 5 

apparently improved (See Table 8.9).

The variation of intracranial deformation for patients P 7  and P 1 0  was too small 

to be detected by our methods. Thus the deformations are described as stable. The 

clinical assessment for these two patients also shows their conditions to be stable 

(Table 8.9).

In the case of patient P9 , our assessment shows tha t the intracranial deformation 

has increased (Table 8.11), while the clinical assessment shows the patient condition 

is better (Table 8.9).

8.8 M e a su r e m e n t R e lia b ility

The accuracy and stability of our measurement are determined by the quality of the 

original MR1 data  and the image segmentation.



The sources of error from image acquisition include inhomogeneities of the trans

mitted and received RF signals and the effect of partial volumes [Condon 1986, Plante 

1991].

In order to minimise such sources of error, all the MRI scans in this s tudy were 

performed with the same T\ weighted sequence (IRSE 3400/500/32)

In order to assess the reliability of the image acquisition, we analysed the MRI data  

from six scans of one volunteer’s brain with the same imaging procedure described 

above. The interval between each of the repeated scans was about 10 minutes. In 

order to evaluate the error caused by variations in brain orientation between acquisi

tions, the volunteer was removed from the imager and the scanning room after each 

scan. Full analyses were performed on each of these image sets. Table 8.12 shows 

the mean and the standard deviation of the likelihood ratios for the hemispheres, the 

lateral ventricles and the falx cerebri from the six repeated scans.

hemisp ventr falx c.

mean 0.2374 0.7284 0.7065

SD 0.0909 0.0340 0.0596

Table 8.12 The likelihood ratios from the six repeated scans

Comparing these with Table 8.3, 8.5 and 8.7 which show the mean and the s tandard 

deviation of the likelihood ratios from 15 volunteers, the measurement for the six
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repeated scans has a much smaller standard deviation.

In our study, the segmentation of intracranial structures is based on C anny ’s 

edge detector and the interactively chosen control points from the boundary profiles. 

Errors could potentially occur because of inhomogeneities in images causing a false 

segmentation by edge detector. The control points may also not be exactly assigned to 

the boundary profile because of observer error. In order to assess these errors, a single 

MRI da ta  set from another volunteer has been analysed five times by repeating the 

segmentation procedure. Table 8.13 shows the statistical results of the m easurement.

hemisp ventr falx c.

mean 0.3959 0.5637 0.3725

SI) 0.0423 0.0226 0.0109

Table 8 .13 The likelihood ratios from the six repeated segmentations.

The standard deviations of the hemispheres, the ventricles and the falx cerebri in 

Table 8.13 are even smaller then those in Table 8.12. In other words the segmenting 

error is smaller than the imaging error.

The results from Table 8.12 and 8.13 show th a t  the m easurement deviation caused 

by the imaging and segmentation is significantly smaller than  the deviation due to 

the wide variations in the brain shape within the normal population (Table 8.3, 8.5 

and 8.7).
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To assess the interobserver error, five sets of MRI da ta  from five volunteers were 

measured by two observers independently. Each observer performed the image seg

mentation and deformation analysis for every set of the MRI da ta  from the five 

volunteers. Table 8.14 shows the statistical results of the measurements by the  two 

observers.

observer 1 observer 2

hemisp ventri falx c. hemisp ventri falx c

mean 0.2840 0.5317 0.7307 0.2898 0.4440 0.7257

SD 0.2346 0.3014 0.2659 0.2170 0.1927 0.2663

Table 8.14 interobserver reproducibility

The interobserver variation were assessed using standard F  — tests [Hoel 1976] 

on the standard deviation. The test statistics (F ) of the hemispheres, the lateral 

ventricles and the falx cerebri are 1.1688, *2.4463 and 1.0030, respectively. From the  

F — table [Neave 1979] it was found tha t the 5 percent critical value of F  corresponding 

to n i= 4 ,  and 772= 4 , is 6.39. Since all the test statistics are less then the critical 

value, the null hypothesis cannot be rejected. Therefore, we can conclude that th e  

measurements from the two observers are not significantly different.
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8 .9  C o n c lu s io n s

A procedure for quantitative assessment of intracranial deformation is given in this 

chapter. This procedure includes feature extraction, classification and interpretation.

A feature extraction technique, K-L transform, has been introduced to select the 

best features which give most information about the deformation. The transform 

also reduced dimensionalities of the measurement space.

Using the Bayes decision we established three decision rules which set bound

aries between the normal and abnormal hemispheres, lateral ventricles, and falx 

cerebri respectively. The decision rules also provide further information about the 

deformation through the likelihood ratio.

The severity scale and variation scale of intracranial deformation provided a com

prehensive interpretation for the intracranial deformations. The total scores of SSID 

and VSID reflect the deformation in all three brain structures investigated.

From the results in section 8.7, we come to the following conclusions:

1 . The total score of SSID is a crucial index which is related to the survival of 

the patient. Larger values of total SSID score seems to correspond with a lower 

survival time for the patient. In our application all but one of the patients 

with a total SSID score (both before and after trea tm ent) larger than 5 did not 

survive.
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2. In most cases, intracranial deformation is decreased, to varying extents, after 

various trea tm ents  (such as surgery, or radiotherapy) in the sense th a t  the 

shapes of the deformed structures change and become closer to the shapes of 

the same structures in volunteers. However this decrease, even when quite large, 

does not correspond to a better  chance of survival.

3. Our quantitative assessment of intracranial deformation does not always agree 

with the conventional clinical assessment. In terms of survival, in this small 

group at least, our quantitative assessment appears to be more objective than 

the clinical assessment by MMItC. T he only truly objective measure we can use 

to properly assess the reliability of our new analytical approach is a longer term  

study of patient survival times (see the  final chapter). To this end we are still 

following up a group of 40 patients over a three year period.
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C h ap ter 9 C onclusions and Further

D evelop m en ts

9.1 C o n c lu s io n s

This thesis has described the development of a new quantita tive framework for the 

objective assessment of the effects of intracranial deformation caused by brain tu 

mour and how it responds to treatm ent. In order to investigate the secondary space 

occupying effects caused by brain lesions, we analysed the deformation of the hemi

spheres, the shape of the lateral ventricles, and the displacement of the falx cerebri. 

Applications of our new analytical approach have shown its promise as an aid in 

clinical decision making as it provides an objective and sensitive index of intracranial 

deformation.

In chapter 4 a new segmentation technique has been developed and applied to



extracting the boundaries and surfaces of brain structures in MR images. The para

metric representation of boundary and surface has been dem onstrated  to show ad

vantages over the conventional raw data  representation. Later measurements, such as 

surface curvature in Chapter 7, have depended upon this param etric representation 

of surface. As well as allowing such measurements, the param etric representation of 

boundary and surface has saved a huge amount of com putational space during our 

analysis.

C anny’s edge detector can provide accurate location of edges. Using the boundary 

profiles produced by C anny’s detector as a guide, we interactively determined the 

control points for the parametric representation. This improved the accuracy in 

locating edges and surfaces.

In C hapter 5 a description is presented of a novel a t tem p t to measure the de

formation of the cerebral hemispheres. The hemispheres were analysed in terms of 

size, position and shape in both individual sectional images (two-dimensional) and as 

three dimensional MRI da ta  sets. The size of each hemisphere was characterised by 

its volume, the areas in each sectional image, the perim eter of its contours in each 

sectional image, and its surface area. The centre of gravity of the hemisphere was 

used as a landmark in order to measure the shift of the hemisphere. The shape of the 

hemisphere was quantitatively specified by compactness, elongation, and sym m etry  

with respect to the contralateral hemisphere.



28 invariant attr ibutes (size, rotation and position invariant) were produced to 

describe the deformation of the hemispheres. This measurement vector included 

information about the changes in size, position and shape of the the hemispheres. It 

was used in the comprehensive analysis of the intracranial deformation in C hapter 8 .

In Chapter 6 a new quantitative technique to specify the shape of the lateral 

ventricles is presented. This method was used to match the shapes of the lateral ven

tricles even though they had different, sizes and orientations. The change in shape of 

t he lateral ventricles could then be described after matching it to the lateral ventricle 

reference (training da ta  set).

Measurement results from 15 volunteers and 28 patients have shown a significant 

difference in the shape of the lateral ventricle between volunteers and the patients 

with intracranial deformation (Table 6.2 and 6.3). The mean of shape distances for 

volunteers is 2.3216 (with standard deviation (SD) 0.4097 ), while for the patients 

with intracranial deformation it is 4.6027 ( with SD 0.7990 ). The smaller value of 

the mean shape distances indicate tha t the shapes of the volunteers’ lateral ventricles 

are similar to the shape of the reference ventricle. The larger value of the mean shape 

distances indicates a great difference between the shape of the patients ventricles and 

the reference ventricles.

Idle sym m etry of the lateral ventricle was then analysed with Fourier descriptors 

(an original application of this technique). The results show that, the lateral ventricles
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of the volunteers were more symmetric than  those of the patients with intracranial 

deformation. The mean of the total sym m etry  param eter is 1.4049 (SD 0.4658) for 

the volunteers, however it is 3.6676 (SD 0.9897) for the patients with intracranial 

deformation. A follow up study on a patient with intracranial deformation was used 

as an example to show tha t the shape of the lateral ventricles became close to the 

reference ventricles after trea tm ent, matching the clinical improvement.

6 invariant a ttr ibu tes were obtained by applying the Fourier descriptors. This 

6-dimensiona.l measurement vector was used to characterise the shape of the  lateral 

ventricles. The vector was used in the comprehensive analysis of the intracranial 

deformation in Chapter 8 .

In Chapter 7 a new quantitative technique to describe the deformation in the 

intracranial surfaces is presented. The technique was used to analyse the deforma

tion of the falx cerebri. The method is size, rotation and position independent. The 

falx cerebri was approximately represented by four prim ary surfaces: elliptic, hyper

bolic, saddle and flat surfaces. The deformation of the falx cerebri was described by 

measuring the Gaussian curvature and the mean curvature of these primary surfaces.

The MRI da ta  from 15 volunteers and 28 patients with intracranial deformation 

was analysed and the results showed a marked difference in the falx cerebri between 

the volunteers and the patients (Table 7.1). The falx cerebri of the volunteers show a 

tendency towards flatness (62.42% mean planar surface ratio with SD ±14% ), whilst
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those of the patients with intracranial deformation were much more uneven ( 27.79% 

mean planar surface ratio with SD ± 10%). Follow-up studies of two patients (section 

7.4.3) dem onstrated how the falx cerebri changed from relative unevenness to greater 

flatness after trea tm ent, matching clinical improvement (Table 7.2 and 7.3).

28 invariant a ttr ibutes were obtained by measuring the curvatures of the  four 

primary surfaces of the falx cerebri. This multi-dimensional measurement vector was 

used to characterise surface deformation, and was also applied in the comprehensive 

analysis of intracranial deformation in Chapter 8 .

In Chapter 8 a description is presented of the most comprehensive a t tem p t so far 

to analyse the severity of intracranial deformation and the effects of trea tm en t.  The 

information about the intracranial deformation was gathered from the hemispheres, 

the lateral ventricles and the falx cerebri as previously described.

Based on the measurements of the hemispheres, the lateral ventricles and the falx 

cerebri in the previous chapters from 15 volunteers and 28 patients with intracranial 

deformation, three criteria (the decision rules) were established to classify the nor

mal and abnormal hemispheres, lateral ventricles, and falx cerebri respectively. The 

severity variation scales of the intracranial deformation were introduced to assess the 

severity of the intracranial deformation and its response to trea tm ent.

Once the decision rules had been established, a further 11 patients were analysed to 

investigate how their clinical condition assessments and survival times corresponded
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with the quantita tive analysis. In the application, all but one of the patients (6 in 

total) with total SSID scores higher than 5 (both before and after trea tm ent)  survived 

at most eight months. The quantitative results show th a t  most deformations were 

decreased to varying extents after trea tm ent, however, the variation, in this small 

sample at least, did not appear to correlate with survival time. Clearly much larger 

samples and longer following-ups are necessary (see final section) to validate this 

initial finding. It is im portant that this should be done, because if deformation at 

initial presentation is more correlated with survival time than  subsequent changes, 

then this has major implications in terms of therapeutic interventions.

There are four main original contributions in this thesis. The first m ajor develop

ment is the brain structure segmentation procedure. A vital part of the procedure is 

the B-splines representation of intracranial surface and boundary using the guidance 

provided by C anny’s edge detector [Dai 1992]. The second contribution is the m ea

surement of the shape of the lateral ventricles by Fourier descriptors. The m ethod is 

simple in computation, but it provides rich and meaningful information about ventric

ular deformation. The third contribution is the measurement of intracranial surface 

by means of differential geometric techniques [Dai 1993]. The measurement provides 

im portant information about the shift of midline structures and the internal herni

ation. The fourth key contribution is the comprehensive ...nalysis of the intracranial 

deformation based on the measurement of the hemispheres, the lateral ventricles, and
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the falx cerebri. The criteria ( the decision rules), the severity scale and the varia

tion scale are new objective indices for assessment of the severity of the intracranial 

deformation and its response to trea tm ent.

All the measurement techniques and the analysis procedures in this thesis are 

computerized using the language C + + .  A software package was developed which 

performs the hemisphere measurements, the shape analysis of the lateral ventricles, 

the intracranial surface measurement, and the comprehensive analysis of the in tracra

nial deformation. The package also includes some image processing functions (e.g., 

the C anny’s edge detector and Zero-crossing algorithm), com puter graphics routines 

(image interface routine, visualisation of measurement results) and other useful util

ities (e.g. image format conversion, image compression).

9 .2  F u r th er  d e v e lo p m e n ts

New techniques in diagnostic medicine are generally assessed with respect to a pre

vailing “gold standard1'' (e.g. MR angiography is compared to conventional X-ray 

contrast angiography). The problem with assessing the response of brain tum ours to 

therapy is tha t no such “gold standard" exists. For this reason we have had to resort 

to clinical assessment of the pa tien t’s condition as a means of assessing our technique. 

The main difficulty with this, as was pointed out in the Introduction, is th a t  patients 

are often on multiple palliative drug therapies to suppress unpleasant symptoms. As



a result assessments of clinical condition (even the elaborate scale system used for the 

patients examined in this thesis) are coarse and qualitative. The only definitive test 

of the analytical techniques described in this thesis is th a t  of patient survival time. 

Despite the high m ortality  rate of this terrible condition, such an assessment has not 

been possible over the limited time course of this Ph.D project.

Continuous long term follow-up is therefore vital in this group of patients (39 in 

total, 24 of whom up to the tim e of writing have survived). Measurements on a new 

patient group must also be initiated to validate the finding from our limited da ta  

tha t our initial indices of severity of deformation is much more significant in term s of 

survival times than post trea tm en t improvements.

We have laid the groundwork for therapy assessment. Studies are necessary to 

follow-up patients whose therapy has been confined to only one approach [e.g. ra

diotherapies, chemotherapy, or surgery). Clearly such single trea tm ent patients are 

rare and so again long te rm  studies will be necessary to build up a sufficiently large 

da ta  set. It would also be interesting and worthwhile to study tum ours other than 

gliomas. Again this would require a long term follow-up of large patient groups.

Many further developments and improvements can be made to the quantitative 

measurement techniques so as to enhance the reliability and accuracy of the method 

and expand its application.

In Chapter 8 the establishment of the deformation criteria (decision rules) is based
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on the measurements from 15 volunteers and 28 patients with intracranial deforma

tion. Obviously the accuracy and the reliability of the criteria can be enhanced by 

increasing the number of the measurements from both volunteers and patients. The 

variation scale o f the intracranial deformation describes the change in the shapes of 

the intracranial structures. Further analysis by correlating deformation of specific 

regions with signs of neurological disorder would be extremely useful for both clinical 

management and neurological research.

The shape analysis method described in Chapter 6 is a two- dimensional m easure

ment. Although three-dimensional shape analysis can be approached by measuring 

two-dimensional indicators of shape from a stack of image slices, the analysis become 

complex and time consuming, especially when larger number of image slices are used. 

This is the reason why we did not apply the shape analysis technique (Fourier descrip

tors) to the hemispheres. In theory, it is possible to extend the Fourier descriptors 

from two dimensions to three-dimensions though this has, as yet, not been a t tem pted  

in any shape analysis problem because of the massive am ount of com putation re

quired. If and when such com putation becomes practicable then the study of brain 

tumours would make a worthy application.

In this thesis we have concentrated on the intracranial deformations caused by 

brain tumours. Obviously our m ethod is applicable to intracranial deformation by 

other conditions, particularly head injury. There have been two reports about the



relationship between brain shift caused by head injury and the level of consciousness 

[Hopper 1986, 1989]. Horizontal and vertical brain shifts with altered levels were 

correlated with consciousness. Ropper concluded tha t horizontal shift correlated be t

ter with clinical status in acutely ill patients. Reich [Reich 1993] investigated the 

relationship between the clinical symptoms of head injury patients and internal her

niation. The weakness of both methods is tha t "the they were based only on linear 

measurement in single M R images. Our surface measurement techniques has great 

potential in evaluating such intracranial herniatio>n much more comprehensively, and 

without the need for landmark identification.
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A p p e n d i x  A: N o t a t i o n

The following notation is used in this thesis:

oc proportion to

V vector differential

6 belong to

a ,  b points or vectors

A, B matrices or poinds

Pr i th  , ::.T

P(n),P(f i ,v) B-spline curve, IB-spline surface

B i M B-spline basis fmnction

B{fi) spline blending function

u* the conjugate com plex number of u

A " 1 inverse transform ation of m atrix  A

A 7’ transposition of matrix A

\A\ determ inant of imatrix A

V perim eter of an object

A area of an objeot

S surface of an olaject
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V volume of an object

72 compactness ratio of a two-dimensional object

73 compactness ratio of a three-dimensional object

£ elongation ratio of an object

q hemisphere variation ratio

731 compactness of the left hemisphere

73,. compactness ot the right hemisphere

( i elongation of the left hemisphere

£,. elongation of the right hemisphere

7*j area variation

r 2  absolute area variation

?’3 perim eter variation

? 4 absolute perim eter variation

7*5 central shift variation

7‘(j absolute central variation

S;i three-dimensional central shift ratio

'V shape distance or similarity param eter

y  sym m etry  param eter

K  Ciaussian curvature

//  mean curvature
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UJ1 normal class

abnormal class

P(x) probability of event x

p(x) probability density function

P(AI£) probability of A conditioned on B

*(x) likelihood ratio
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A p p e n d ix  B: R e le v a n t  D a ta

1. M easu rem en t of th e  h em isp heres

The mean of the measurement vectors:

5.1 6732 500000000e-003  

4 .2154075OOOOOOOe-OO 2 

3 .47767500000000e-003  

'2.107975000(X)00(i e-002  

5.21958000CK 10001 )e-002 

2.031283000OOOOOe-OO'2 

4.90871 075000000e-001 

1.34170201 H)00000e+000 

1 .0'2594000000000e 4-000 

1.21553000000000e+ 000  

5 .62389999999999e-002  

7.63161675000000e-001  

4.23031325000000e-001 

5.44506999999999e-001 

7.2612 5000000000e-00 2  

1.343 73099999999c+ 0 0 0  

1.03578000000000e+ 000  

1.19913899999999e+ 0 0 0  

5.73012 50()000000e-002 

0.0142625000001H )e-001 

4.833251101X)00000e-001
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5.572*53333333331 e-001 

5 .15489999999996e-002  

1.00000033899999e+ 000  

1 .OOOOOOOOOl 1 332e+ 000  

2 .662788200OOOOOe-OOl 

3.0132 560000t)000e-001 

3 .21325000000000e-003

The largest and the second largest eigenvalues:

A, =  2.69518924342923e -  003, 

A2 = 5.84319582659789e -  004.

The eigenvectors associated with these two eigenvalues ( K-L transform matrix):

- 5 .29338454290179e-001 -1 .58508687226221e-002

-7 .07106228136634e-001 9.0728430372.3801 e-007

2 .22715185338047e-001 -1 .49434333669380e- 001

- 5.2694 5057.310401 e- 002 2 .24015784947402e-002

1.10842970580517e-0 0 1 6 .43547115011192e-001

-3 .14021418803993ft-! 101 -3 .55870048286724e-001

2 .37754500758411e-001 -6 .60393760308820e-( >() 1

1 .37168662823332e-002 2 .93761091229954e-001

-1 .30678055801462ft- 002 2 .22361785310454e-001

-.5.33749842724113e-002 3.844199996  734 03e-( 101

1.53646139398015e-001 6 .4 4 6635 4 076854 5e-001

-1 .64382536550713e-< 102 - 2. .34075527193076e-00 2

-8 .4 1 286004948773e-003 -8 .34639739984 296e-00.3

2.06340605579103e-002 1.27650886537039e-t)02

2 .12840348971913e-002 -2 .37164124206516e-( )02
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-1 .30086692434 772e- 002 

-1 .34570841858421e-002  

-1 .09832406272382e-002 

2.84953680746699e-002  

-3.05387913423251 e-002  

- 2 .5 282 2814 395038e- 0 01 

1.00304492870705e-001  

-1 .39152019971002e-001 

1 .45204341048078ft-! )01 

-2 .63809959413414e-( 102 

1,83203453788772 ft-) 101 

7.795492)) 1 295205ft-) 103 

-6 .54822614331362e-003

3 .57318346056132e-002  

-1 .733617537T6225e-002  

3.26143515307206e-002  

1.02549031088261 e- CM1 2 

3.20580216779796e-002  

6 .69340947693252e-003  

1 .31673153315655e-002  

-1 .81490156594736e-002  

-5 .863675) 1968) 1665e-002  

-1 .71573102127200e-( 102 

5 .5140934 7606900e-( M )3 

4.8752 784 707) )632e-0( 13 

-7.894 22649078806ft-) )03

Table B . l  The first and second feature vectors for the hemispheres

2.6733250) 10) >0005e-003 -2 .4 1 398000000000c-002

3.187325000) Mill) )7e-i .103 -2 .51688000000000e-002

1.07732500))) m001 e-003 -2.61438) 1) M M 1(1) II )()0e-002

1.89932500) 10) 1))()6 ft-(.)( 13 -2 .2135800) M10) MU l0e-002

1.109325) H )0l M)()()5e-( )< 13 -2.316680))) I) I) I) M )< >0 e-( 1 0 2

-3 .18674999999935e-004 -5 .6 6 1 800000000)X)e-< >03

-1 .705(J7499999996e-003 -4.4 7580000< HX>000e-( 103

3.71632500000007e-003 1.03620000)100001 e-003

3.369325) M)0(M)008ft-003 -1 .3847800) M)()(IO00ft-002

-9 .16667499999995ft-) 103 -8.1-348C)())XlO( M.IOO) le-003

-4.1 7607499999996e-003 2.55920000000)101 e-003

1.325325) ll)()00004e-003 -8.54081UK KXHHKK >0e-(103

2.387325)» 101 M I))) )4ft-( K13 -2.36248) K)(i))(H1) )0( >ft-( l( 12

4.97532 5) Ml))(JO) )08e-< 103 -3.55978) K1) M100001 le-()(12

5.183250) 10000041 e-004 -1.865) >8 ) 1(1(1110) )l )00ft-( )02

1.2394325000) H1) M)ft-( 102 -2.118148) 10) I) HI) Ml))))('-))) 12
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-4.7334(3749999999e-( >02 

1.59483250000001e-002

- 2.4 7.38(3749999999e-002

- (3.99 7(3 7499999997e- 003  

1.65133250000000e-002  

3 .42432500000000e-003  

-9 .00067499999994e- 003  

-2.2584G 749999999e-002  

2.4851132501K )<)()()(le-( 102

-2 .(>34<37499999993e-()(13 

1.5(395 3 2 51)(X)()()()(>e-( >( 12 

-8.082(37499999997e-003  

-1.70032501KMX)000e-002 

-2.4832501)(H K)(>001 e-( >02 

-1 .3490<3749999999e-002 

-1.5001 (3749999999e- 002 

-1 .8 2 8 1 3250000000e-002  

-1 .(383(374 99999997e-0( >2 

-1.1 (34(37499999993e-002  

- 1 .3(3372( XXX >(>(>( >0(>e-( >02 

-1.0043251 >000( KMX >♦'-002 

3 .47813325000001e-003  

1 .51183250000001e-002  

1.58153250CMK )000e-002

2.2 1 O34(379999999e-(>02 

7.00361 »(>(>( >(>(>(>(>( M.le-003 

1 .(XX >32501XX X X >07e-( >02

9 .5(3302( >(>()( 100001 e-002 

-2 .(39(3881)()(XX)()()(>( >e-( X >2 

7 .16662000000001e-002  

1.72742000000000e-002  

1 .22572000000000c- (> 0  2  

-1.9294800000001X)e-00 2  

4.0(380 2OOQOOOOOOe- 00 2 

1.05602201X1000OOe-(X) 1 

1.94 95 2( X X X X  X  X X X  >e-( X >2 

-1.38(31 >801 >• x XX x x idol >02 

-1.294381 >(XK>00000e-( >02 

-1 .34879999999999e-( X >3 

5.59980001 X >( X X X >0e-002 

3.5128480001. X X >( >( >e-( >02 

4.673021XX XXX X X >( >e-( X >2 

2 .957148( )(>(>( XXX >()♦;-( XI2 

1 .4113250(XXXKXK)e-002 

(3.1 598801XX X XXX >0e-( X >3 

3 .4 7 5 1 325CXXX XX>le-(>(>2 

1.80208001XXX X XX )e-002 

9.8831332500001 >( >e-003 

- 2 .'2872(31 )Df MX >()()( )0e-( M >2 

-1.134127200001 >(>00e-0( >2 

1 .2484(>2(XX>( XXXX >e-l>02 

1.794 72001XX XXXX >e-( X >2 

2 . 1 9!>79999999999e-( l( >2 

1 .(338 20IXX >( >()(x >( x le-i >02
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2. Measurement of the lateral ventricles

The mean of the measurement vectors:

4 .556705OOOOOOOOe +- 000  

3 .16873433333333e -f- 000  

3 .044637  76666667e 4 -  000  

2.42904OOOOOOOOOe 4-000  

2 .33564OOOOOOOOOe4-000  

2.6204966(5666667e 4 -  000

The largest and the second largest eigenvalues:

A, =  (i. 15 5 2 8 2 <S ()26016> 9 c +  000,

A2 =  1.61555241719S83e +  000.

The eigenvectors associated with these two eigenvalues ( K-L transform matrix):

1 .75334677880302e-001 3.4408-4457168007e-001

4.84526201856396e-001 -6.352418441242754e-001

1.19535 24 7769535e-001 1.9536:3034667512e-002

-2 .25217303792164e-001 4.6404l4827698294e-001

7.60388778342517e-001 2.9283l9874550090e-OOl

3.02141 534435874e-001 4.21 »22'713244 2509e-l M)1

T a b le  B .2  T he first and second feature v ec to rs  o f the lateral ventricles  

-1 .5 1 949666666667e4-000 -9.730l79999999999e-001  

-1.581 29066666067e-|-O( •<> -7.981 8 <)()l M)()(l()(JOOe-()() 1 

-1 .82546666666667e4-000 -2.381 40000000000e4-000

-1 .85769666666667e4-0O 0 -9.026>83999999999e-001

-5.73966666666667e-0(ll -1 .718.T.4000000000e4-0< 10
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- 5 .6869666666GGG8e-l II I 1 

-7 .02696666666668e-001  

5.4980333333:3332e-00 1 

-7.51 600066666667e-001  

8.873033333333326-00 1 

-1.4 20G3333333333e +  000  

-1.081 66666666667e-<)() 1 

-1 .30729 GGG< JGGGG 7 e+ 0 0 0  

-3 .00730333333333e+ 000  

-1.1998541)()0( MX)(II )e+<)( i< ) 

1.83690333333333e+ 0()() 

-3.19801 )333333333e+( 1 0 0  

-1 .19640666666668e-0() 1 

9.021 M >6 6 6 GG6 6 6 G8 e-( 1 01

1 .G3G9GGGGGGGGG1 e-l ID 1 

3 .33230333333333e+ 000

2.2 5846666666608e-< >01 

-5.G8G 1 (>333333332e-< HI 1

-3.30301 >333333333e+00< I 

8.6230001 >001 M HlCMle-001 

7.60609666G66667e-l Mil 

1.27054GGGGGGGG7e-|-0< •• • 

-3.001533.333.3.3321 e-002  

2.8070GGGGGGGG80e-002 

-7 .1 33GGGGGGGGGG8e-()(II 

3.2704000001 mill II le-l Mil 

3 .3 7 1 7GGGGGGGGG8e-(-000 

2.81040000001 lOOOe-H'lOO 

2 .19933333333333e+ 0()(l

2 .G3333333333333e-(-()( 10 

2 .200G9GGGGGGGG1 e-f( II10

-4 .1 2G79999999999e-001 

3.4 902GOOf H1 0 0 0 0 1  e- 0 0 1  

-1 .7184 G4 OOOOOOOOe+ 0 0 0  

-9 .124 79999999999e-0< 11 

-8.23980001 lOOOOOOe-001 

-1 .3914 OOOOOOOOOOe+ 0(XI 

-1.381300001)00000e-001 

-1 .92036000000000e+ 000  

-6 .9225300001100o0e-001 

-4 .0 0 0 1 00(H II l( XXM H le-001 

2.3896200001)(l< II)(le+Oi)(I 

-7.8938400011001)()(). • + 000 

1.35960000000110 le-001 

2 .799333333333336-(’K11

3.1  .

1 ..37686000000( )(Xle-001 

4.(12066666666661 e-< 102 

3.68652601 MX I0000e-001 

7.4203400000(M)OOe+(l(Hj

1.81 4 2240001 HlOOOe-OOl 

6.19134000001lOOOe-OOl 

5.63833333333331e-001 

-2.5 2 708401 IOOOOOOe-1101 

3.799999999999996-0111 

1.44666666666661e-002 

4.112666666666686-001 

1.8294011000000006+000 

4.97999999999999e-( II11 

1.31II1104000000006+1)1 III 

2.399102000000006+000 

3.27099999999999e+OOO
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1.42 04 (3800000000c+ 0( 10 

1 .297(36(3<3<3(3(3(3(3(38e 4-000 

4 .71820800000000e-001 

-2.1<34 <3(3(313(3(3(3(3(3(31 c-()(') 1 

-9.000333:13333:301 e-( tO 1 

4 .00010040000000e-001 

9.53189999999991 e-001

1 .7031040000000Oe -4-000 

3 .41009999999099c -)- 000  

3. .3.3 .3 1 0000000000c+ 0 0 0  

2.84114035000000c 4-000

2 . 0 0 0 0 0 0 0 0 0 0 0 0 0 1  c 4 - 0 0 0  

1.5309 7999999993c 4- 000  

1,3()(109999999999c 4- (>(10

3. Measurement of the falx cerebri

The mean of the measurement vectors:

-1.937875000001II)((c-00.3 

2.5922751 tOOOOOOOc-OO.3 

-8.05001 )0t)()()()()0( tOc-OOO 

2.832(l(t( >00000000e-004 

-0 .23901500000000c-002  

5.9890.31)()(Mil II)()()(lc-1102 

-5.04 95()()()00( Hit tO0c-t >04 

1.22255250000001 tc-l 102 

1 .004 7501 lOOt IOClOOe-t 104 

2.592275000OO000c-()03 

3.7820001)()<)()< lOOl tc-( )04 

.3.7975001 It tOOOClt )0e-( )04 

1.2487180001 )0000e-( 101 

-3.90219250001 tt 11)(tc-t 102 

3.(.)938850()()(tt)(It)()c-( 102 

-2.9052501K it ti ll)(it Htc-004 

1.15775750001 lOOOc-t 102 

2.(3145(3.325000000c-( 101 

-5.98211501II1001IIIIII )c-t II13



5.98521 >000000000e-(>03 

i .o.55oooooooooooe-oo5 

2 .9199750(X100000e-003 

4.3682 24 75000000e-001 

-1 .937875000000006-003  

-1.002750000000006-004  

-2 .813500000000006-004  

2.393000000000(X)e-004  

1.76849351)()(»()()(Mle-I >01

Fhe largest and the second largest eigenvalues:

A, =  (h28931810482974c -  002.

A2 =  7.08482093973263e -  003.

The eigenvectors associated with these two eigenvalues ( K-L transform matrix)

8 .64121286757205e-008 2.049272678186636-011

1.48984943016840e-< )07 -3 .767218433925006-01 0

4.672131748296096-001 -1.(14873974800299e- < >03

8 .4 611118 763591566-002 3.098878598368636-1 >1 >3

1.566554 501926576-1 >01 -1 .98572989796142e-003

1.595352494540486-003 1.574211753690544e-001

5.24221 >587358435e-i >04 1.504763417624186-001

2.43181975409899e-« >l >3 3.59791 54937191 >9e-0< > 1

1.37268662823332e-l X >3 -2.973910912299546-001

1 .207680885014626-003 3.123716538104546-001

-5 .44947842 7 24112e-l >04 3.481499997633046-001

3 .53487139289051 6 -( >04 6.664435406785456-001

-1.46832536570531 e-( X >3 -2.431 >4 55291 230766-001



T a b le

-1.2126601149487836-003 -8.83739737784294e-0(>2

2.02341 15066791 Q5e-O03 -1 .87680886525039e-003

3.12 784077891913e-002 -2.6900412410671 Oe- 002

- 1 .80063392434662c-002 3.759183260881 22e-002

-1 .83457641848521 e-002 1 .43081773766225e-002

-1.19742401292882©-002 3 .54113702037334e-002

1.48935864076997e-002 3.02549031088261 e-0( 12

5 .90539991142310e-002 -1.82051702167977e-0<12

2.251602814 77568e-()() 1 -1 ..36970494769252e-iK 13

-2 .50546492718705e-0() 1 -1 .61623315315565e-( 103

-4 .13995209711206e-001 -2 .0 1 8 1 4957465936e-003

-2 .824256013448(!8e-001 -9 .76836506896065e-004

-1.3668915994344 le-001 5.711 757310212<M)e-004

3.34826352837877e-001 8 .4 1 540376660699e-004

4 .990795421252(15e-(101 5.542872787071 )63e-(H14

B .3  The first and second feature vectors o f the falx cerebri 

-1.54 723501IIH MII)(I0e-l II .12 -8.8301 IOC 101II>< M )< >< >9e-< l( 15

-1.32171350000001 )e-l 1 0 1  -4.731II)(11 >00000343e-<X 15

-1 .52679350000000e-001 -7.83000000000497e-005

-1.3705435001 )0000e-001 -1 .05300000000035e-0( 14

-1.45843351IIII I0i.ll l( )e-( 101 -9.131IIII KICK II l( 104 11 e-< H15

4.0679651 MX li l< 101 )< )e-i 102 -6.32999999999886e-(M 15

-1.57318351XIIK MX H le-iX II -1 .71301IIIIII MX l()(I42e-l 104

-3.99734999999996e-( II13 -1 ,35299999999998e-( II14

-3.061193511( li l( l( li l( Xle-Ol 12 2.486999999991»84e-( II14

-1 .IX1677351IIII)(lOOOe-OO 1 -1.183001100(11 IIMII )9e-l II14

-1.38(131351 MX 10001 le-001 -1 .663(MX)l)()(Ml0034e-(M)4

-1 .14105350000000e-001 -1.112301 MM II MM KM )43e-<K 14

-1.0971035011( K M XXIe-f XI1 -1 .8 1 3000(X)0( X )022e-( ll 14

-1.622013501 MX MX 1Cle-001 -2.1 731100011001M M>4e-( >04

2.V.)



-1.24847351 )(!<)< )(.)< )Oe-OU 1 

-7 .77283500000000e-002  

2.45269650000000e-001  

-3 .5 0 9 3 4 999999997e-003  

-4 .24234  999999995 e- 003  

2.879940500000(X)e-001  

7.095365( )00f >01 X Mle-002

1.82 7090501 )OOOOOe-( 101 

2 .44781050000000e-001  

1.05(3210501 IllOOOOe-OOl 

1.278380501)()()()()( le-l )01 

-5.3070351 >1101)(IIII11 lo t II12 

1.410210500000(Xle-001 

2.3910402000001)(le-001

2.01 243331K li li i()(li le-l 101 

1.77723400001 lOOOe-OOl 

1.8999001101101 )0(X)e-( K11 

1.900002301K11 lOOOe-OOl 

1.47350501 Hit Mil 101 le-001 

1.25307333333332e-001  

1.43059941II1001)(X)e-0( )1 

9.7831 4 731IIIIIIII101 le-l 102 

9.992377  771301 >00e-l 102 

7.32004 7333201 IOOe- 0 1  )2 

5.27034181IIIIIIIIIIH le-l 102 

2.41037(3501 IIXIl II M1e-( 102 

3.2071311051IIIIII11II le-l It 12 

-3 .234 50000007072e-006  

7.35 2 73318251 )000e-003

-1.40:31 HUM K >01H X )53e-004 

-1.41:3000000110017e-004  

2.347(00000001 X)05e-004 

-8.329)99999999920e-( II15 

-8.52! 999999999952e-00 5 

4 .4 4 7(00000000075e-004 

-2.329>99999999720e-005  

4.307(0000001 )0052e-( II14 

5 .(307(001 K )00( 101 »02e-( 104 

8.770(00000000.325e-005  

3.770100001.1000351 e- 00 5 

-9.231 ICIOOIIIIIIIII >1 )72e-l )C>5 

-0 .729l99999999593e-005  

4.230l00005078243e-004  

3.499199991 H101K H l()e-0( 14 

2.798(00301204700e-0( 14 

1.894'2260000001153e- 004 

7.5(3.3(0(12 l(Xl0()O73e-0( 15 

1.589199999999970e-tH 14 

2.847.20770001 )003e-004 

-3.11(1140000011001.3e-( >05 

1.99919999999931 2e-( li 14 

-3.510103701XI0(XI31e-(X>5 

4.1127(01999999(51 7e-( H15 

-2.973143310783(i( lOe-1105 

-2 .3 8 2 ’ 7( l( l( i( li i()()(152 e-( k 15 

-4 .387'40( H K H K H H l03e-( II15 

-1.577700302110003e-007  

1.0001(KXX)7333325e- 0115
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A p p e n d ix  C: T h e  P r o g r a m  for I m a g e  S e g m e n ta t io r

/ *
* c a n n y . c  The b a s i c  r o u t i n e s  p e r fo rm in g  a Canny; s edge d e t e c t i o n .
*
* /

# m c l u d e  <math.h>
# i n c l u d e  < s t d i o .h >

# d e f i n e  EDGEO 0 
# d e f i n e  EDGE2 254
# d e f i n e  EWINDOWSIZE 3 /*  IF THE FILTER IS EVENSIZED * /
# d e f i n e  XDIR 1 
# d e f i n e  YDIR 2

vo id  canny(magmax,h thresh 
h f r a c , I f r a c , g x  

i n t  *image; /*  The 
i n t  * x s i z e ;  
i n t  * y s i z e ;  
s h o r t  * s h o r t l m , *temp; 
i n t  *windowsize;  
f l o a t  *gm,*gmp; 
doub le  *sigma;

doub le  * h f r a c ;

doub le  * l f r a c ;

,1 t h r e s h , i m a g e , x s i z e , y s i z e , s h o r t i m , w in d o w size , sigma 
,gy , m a g , h i s t , h i s t s i z e , nms, edgemap,gm,gmp, temp) 
image a r r a y  as an a r r a y  of  u n s i g e d  c h a r .  * /

* The x -d im en s io n  of  t h e  image * /
* The y -d im en s io n  of  t h e  image * /
* s c r a t c h  space  * /
* The s i z e  of  t h e  window * /
* a r r a y s  t o  h o ld  masks * /
* The sigma of t h e  g a u s s i a n  i n  p i x e l s .  * /
* RANGE - -  ( 0 . 0 , somebignumber)  * /
* Chooses t h e  u p p e r  t h r e s h o l d  in  h y s t e r e t i c  */
* t h r e s h o l d i n g  t o  c a u s e  t h e  s eed  p i x e l s  t o  be *
* chosen from t h e  u p p e r  (h f r a c * 1 0 0 )  p e r c e n t  of *
* t h e  p i x e l s  i n  t h e  m a g n i t i u d e  ( e d g i n e s s )  image
* RANGE - -  [ 0 . 0 , 1 . 0 ]  * /
* M u t i p l i e s  t h e  up p e r  t h r e s h o l d  t o  g e t  t h e  lowe]
* h y s t e r e t i c  t h r e s h o l d  * /
* RANGE - -  [ 0 . 0 ,  1 .0 ]  * /

u n s ig n e d  c h a r  *edgemap;

s h o r t  *gx; 
s h o r t  * g y ; 
s h o r t  *mag; 
i n t  *magmax; 
i n t  * h i s t ;  
i n t  * h i s t s i z e ;

* An a r r a y  of  c h a r  w i th  255 v a l u e s  a t  t h e  */
* e d g e p o i n t s  and 0 e l s e w h e r e  * /
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m t  * h t h r e s h ,  * l t h r e s h ;  
u n s ig n e d  c h a r  *nms;

s h o r t  *mgx, *mgy, *mmag, * s h o r t i m a g e ;
i n t  * m h i s t , m h t h r e s h , m l t h r e s h , m h i s t s i z e , dummyoutx, dummyouty, mxsize 

mysize,mmagmax; 
u n s ig n e d  c h a r  * i p t r ,  * o p t r ;  
s h o r t  *temp_image;  
f l o a t  *gmask, *gpmask;

mxsize  = * x s i z e ;  
mysize  = * y s i z e ;

m h i s t s i z e  = * h i s t s i z e ;

s h o r t im a g e  = s h o r t i m ;  
mgx = gx;
mgy = gy;
mmag = mag; 
m h is t  = h i s t ;  
temp_image = temp; 
gmask = gm; 
gpmask = gmp;

dubimg( im age , m x s i z e , m y s i z e , s h o r t i m a g e ) ; 

s h o r t im a g e  = s h o r t im ;

g f i I t e r ( s h o r t  im age , m x s i z e , m y s i z e , XDIR, *w indow size , * s ig m a , mgx, 
&dummyoutx, &dummyouty, gmask, gpmask, te m p_ im age ) ;

s h o r t im a g e  = s h o r t i m ;  
temp_image = temp; 
gmask = gm; 
gpmask = gmp;

g f i I t e r ( s h o r t  im age , m xs iz e ,m ys ize ,Y D IR ,*w indow size , * s igma ,m gy, 
&dummyoutx,&dummyouty, gmask , gpmask , t e m p_ im age ) ;



s h o r t im a g e  = s h o r t im ;  
temp_image = temp; 
gmask = gm; 
gpmask = gmp;

magnitude(mgx,mgy,mxsize,mysize,mmag,&mmagmax);

non_max_supp(mmag,mgx,mgy,mxsize, m y s iz e ,e d g e m a p ) ;

f in d _ e d g e s ( e d g e m a p , mmag, m x s i z e ,mysize,mmagmax, * h f r a c , * I f r a c , 
m h i s t , m h i s t s i z e , &mhthresh , & m l th r e s h ) ;

i f  (magmax != ( i n t  *) OL)
{

♦magmax = mmagmax;
>

i f  ( h t h r e s h  != ( i n t  *) OL) 
{

♦ h t h r e s h  = m h th resh ;
}

i f  ( l t h r e s h  != ( i n t  ♦) OL) 
{

♦ l t h r e s h  = m l t h r e s h ;
}

m a g n i t u d e ( g x , g y , x s i z e , y s i z e , m a g , max) 
s h o r t  + gx , ♦ g y , ♦mag; 
i n t  x s i z e , y s i z e , ♦max;

{
s h o r t  ♦ x p i x e l p t r , ♦ y p i x e l p t r , ♦ m a g p i x e l p t r , n e a r e s t s h o r t ( ) ;  
i n t  p i x e l c o u n t , themax = 0; 
f l o a t  g r a d x , g r a d y ;

f o r ( p i x e l c o u n t  = 0,  x p i x e l p t r  = g x , y p i x e l p t r  = g y , m a g p i x e l p t r  = mag; 
p i x e l c o u n t  < x s i z e ^ y s i z e ;
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p i x e l c o u n t + + ,  x p i x e l p t r + + , y p i x e l p t r + + , m a g p i x e l p t r + + )

{
grad x  = ( f l o a t )  * x p i x e l p t r ;  
g rad y  = ( f l o a t )  * y p i x e l p t r ;

i f  ( ( ^ m a g p i x e l p t r  = n e a r e s t s h o r t ( s q r t ( ( f l o a t ) ( g ra d x * g ra d x  + 
g r a d y * g r a d y ) ) ) )  > themax)

themax = * m a g p i x e l p t r ;
>
*max = themax;

>

non_max_supp(mag, g r a d x , g r a d y , n c o l s , n r o w s , r e s u l t )  
s h o r t  *mag, *g rad x ,  * g r a d y ; 
i n t  n c o l s ,  n r o w s ; 
u n s ig n e d  c h a r  * r e s u l t ;

{
i n t  r o w c o u n t , c o l c o u n t , c o u n t ;
s h o r t  *m agrow p tr , * m a g p t r ;
s h o r t  * g x r o w p t r , * g x p t r ;
s h o r t  * g y r o w p t r , * g y p t r , z l , z 2 ;
s h o r t  m00 ,gx ,gy ;
f l o a t  m a g i , m a g 2 , x p e r p , y p e r p ;
u n s ig n e d  c h a r  * r e s u l t r o w p t r , * r e s u l t p t r ;

f o r ( c o u n t  = 0 , r e s u l t r o w p t r  = r e s u l t ,  r e s u l t p t r  = r e s u l t  + 
n c o l s * (n ro w s  -  l ) ;

coun t  < n c o l s ;
r e s u l t p t r + + , r e s u l t r o w p t r + + , c o u n t + + )

{
* r e s u l t r o w p t r  = * r e s u l t p t r  = (u n s ig n e d  c h a r )  0;

}

f o r ( c o u n t  = 0,  r e s u l t p t r  = r e s u l t ,  r e s u l t r o w p t r  = r e s u l t  + n c o l s  -  1; 
coun t  < n r o w s ;
coun t++ ,  r e s u l t p t r  += n c o l s ,  r e s u l t r o w p t r  += n c o l s )

{
* r e s u l t p t r  = * r e s u l t r o w p t r  = ( u n s i g n e d  c h a r )  0 ;

}

f o r ( r o w c o u n t  = 1, magrowptr  = mag + n c o l s  + 1, g x ro w p t r  = g radx  + n c o l s  -i
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g y ro w p t r  = g rady  + n c o l s  + 1, r e s u l t r o w p t r  = r e s u l t  + n c o l s  + 1; 
rowcount < nrows -  2;
rowcount++, magrowptr  += n c o l s ,  g y ro w p t r  += n c o l s ,  g x ro w p t r  += n c o l s  

r e s u l t r o w p t r  += n c o l s )
{

f o r ( c o l c o u n t  = 1, magptr  = magrowptr ,  g x p t r  = g x r o w p t r ,  g y p t r  = 
g y r o w p t r ,  r e s u l t p t r  = r e s u l t r o w p t r ;

c o l c o u n t  < n c o l s  -  2;
co l c o u n t+ + ,  m a g p t r + + ,g x p t r+ + , g y p t r + + , r e s u l t p t r + + )

{
mOO = *magptr ;  
i f(m00 == 0)
{

* r e s u l t p t r  = (u n s ig n e d  c h a r )  EDGEO;
}
e l s e
{

xperp  = ~(gx = * g x p t r ) / ( ( f l o a t ) m 0 0 ) ; 
ype rp  = (gy = * g y p t r ) / ( ( f lo a t )m O O ) ;

>

i f  (gx >= 0)
{

i f  (gy >= 0)
{

i f  (gx >= gy)
{

z l  = * (magptr  -  1) ;
z2 = * (m agp t r  -  n c o l s  - 1 ) ;

magi = (mOO - z l ) * x p e r p  + (z2 -  z l ) * y p e r p ;

z l  = * (magptr  + 1) ;
z2 = * (m agp t r  + n c o l s  + l )  ;

mag2 = (mOO - z l ) * x p e r p  + (z2 - z l ) * y p e r p ;
}
e l s e
{

z l  = * (m agp t r  - n c o l s ) ;
z2 = * (m agp t r  - n c o l s  - 1);

magi = ( z l  - z 2 )* x p e rp  + ( z l  - m00)*yperp ;

z l  = * (m agp t r  + n c o l s ) ;
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z 2  = * ( m a g p t r  + n c o l s  + 1 ) ;

mag2 = ( z l  - z 2 )* x p e rp  + ( z l  -  m00)*yperp;
>

}
e l s e
{

i f  (gx >= -gy)
{

z l  = * (magptr  -  1) ;
z2 = * (m agp t r  + n c o l s  -  1) ;

magi = (mOO - z l ) * x p e r p  + ( z l  -  z 2 ) * y p e r p ;

z l  = * (magptr  + 1) ;
z2 = * (m agp t r  -  n c o l s  + 1) ;

mag2 = (mOO - z l ) * x p e r p  + ( z l  - z 2 ) * y p e r p ;
>

e l s e
{

z l  = * (m agp t r  + n c o l s ) ;
z2 = * (magptr  + n c o l s  - 1) ;

magi = ( z l  - z 2 )* x p e rp  + (mOO - z l ) * y p e r p ;

z l  = * (magptr  -  n c o l s ) ;
z2 = * (magpt r  -  n c o l s  + 1) ;

mag2 = ( z l  - z 2 )* x p e rp  + (mOO - z l ) * y p e r p ;

>

>
e l s e
{

i f  ( (gy  = * g y p t r )  >= 0)
{

i f  ( -gx  >= gy)
{

z l  = * (m agptr  + 1);
z2 = * (m agp t r  - n c o l s  + 1);

magi = ( z l  - m00)*xperp + (z2 - z l ) * y p e r p ;

z l  = * (magptr  -  1);
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z 2  = * ( m a g p t r  + n c o l s  -  l ) ;

mag2 = ( z l  - mOO)*xperp + (z2 - z l ) * y p e r p ;
>
e l s e
{

z l  = * (m agp t r  -  n c o l s ) ;
z2 = * (m agp t r  -  n c o l s  + 1);

magi = (z2 -  z l ) * x p e r p  + ( z l  - mOO)*yperp;

z l  = * (m agp t r  + n c o l s ) ;
z2 = * (m agp t r  + n c o l s  - 1);

mag2 = (z2 - z l ) * x p e r p  + ( z l  - m00)*yperp;
}

>

e l s e
{

i f  ( -gx  > -gy)
{

z l  = * (magptr  + 1) ;
z2 = * (m agp t r  + n c o l s  + l ) ;

magi = ( z l  - m00)*xperp + ( z l  -  z 2 ) * y p e r p ;

z l  = * (magptr  -  1) ;
z2 = * (m agptr  -  n c o l s  - 1) ;

mag2 = ( z l  - m00)*xperp + ( z l  - z 2 ) * y p e r p ;
}
e l s e
{

z l  = * (m agp t r  + n c o l s ) ;
z2 = * (m agp t r  + n c o l s  + 1);

magi = (z2 - z l ) * x p e r p  + (mOO - z l ) * y p e r p ;

z l  = * (m agp t r  - n c o l s ) ;
z2 = * (magpt r  -  n c o l s  -  1);

mag2 = (z2 - z l ) * x p e r p  + (mOO - z l ) * y p e r p ;
}

}
>
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i f  ((magi > = 0 . 0 )  | |  (mag2 > 0 . 0 ) )
{

♦ r e s u l t p t r  = (u n s ig n e d  c h a r )  EDGEO;
>
e l s e
{

♦ r e s u l t p t r  = (u n s ig n e d  c h a r )  EDGE2;
>

>

>

}

d u b im g ( c h a n m a g e , n c o l s  , n row s , sho r t im age )  
i n t  ♦char image;  
s h o r t  ♦ sho r t im age ;  
i n t  n c o l s ,  nrows;

{
i n t  i ;
i n t  ♦ m p t r ;
s h o r t  ♦ o u t p t r ;

f o r ( i = 0 , i n p t r  = c h a r i m a g e , o u t p t r  = s h o r t  im age ; i< n c o l s + n r o w s ; i + + , 
i n p t r + + , o u tp t r+ + )

{
♦ o u t p t r  = ( s h o r t )  ♦ i n p t r ;

}
}

/♦  gauss  f i l t e r  ♦/

g f i l t e r ( i n i m a g e ,  i n x ,  in y ,  d i r e c t i o n ,  m a s k s i z e , s igma,  g r a d ,  o u t x ,  o u ty ,  
gmask, gpr imemask, tempimage) 

s h o r t  ♦ in i m a g e , ^grad;
i n t  i n x , i n y , d i r e c t  i o n , m a s k s i z e , ♦ o u t x , + o u t y ; 
f l o a t  s igma;
f l o a t  ♦gmask, ♦gprimemask; 
s h o r t  ♦tempimage;

{
i n t  o r t h o g d i r , s t a t u s , max,min;

make_gaussian_mask(gmask , gprimemask,  m a s k s i z e ,  s igma,  4 . 0 ) ;
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s w i t c h ( d i r e c t i o n )
{

c a s e  XDIR:
o r t h o g d i r  = YDIR; 
b r e a k ; 

c a s e  YDIR:
o r t h o g d i r  = XDIR; 
b r e a k ; 

d e f a u l t :
f  p n n t f  ( s t d e r r , "No such  d i r e c t i o n  i n  g a u s s _ f i l t e r  ( i n  g a u s s  . c) . \n" .  
e x i t  () ; 
b r e a k ;

}

s t a t u s = 0 ;

c o r r e l a t e . i m g ( i n i m a g e , i n x , i n y , gmask, m a s k s i z e , o r t h o g d i r , 
tem p im age , o u t x , o u t y , &m ax,& min ,&sta tu s ) ;

c o r r e l a t e _ i m g ( t e m p  image, * o u t x , * o u t y , gpr im emask , m a s k s i z e , d i r e c t  i o n , 
g r a d , o u t x , o u t y , &max, &min,&s t a t u s ) ;

}

c o r r e l a t e _ i m g ( i m a g e _ p t r , i n c o l s ,  in ro w s ,  f i l t e r ,  w indow size ,  d i r e c t i o n ,  
r e s u l t ,  o u t c o l s ,  o u t ro w s ,  m a x v a l , m i n v a l ,  s t a t u s )  

s h o r t  * im a g e _ p t r ;  
s h o r t  * r e s u l t ;
i n t  in ro w s ,  i n c o l s ,  w indow size ,  d i r e c t i o n ;  
f l o a t  f i l t e r [ 2 0 ] ;
i n t  * o u t c o l s ,  *ou t row s ,  *maxval ,  *m inva l ,  * s t a t u s ;

{
i n t  r o w c o u n t , c o l c o u n t , f i n d e x , h a l fw in d o w , c u r r e n t p i x e l , t h e c o l , z e r o f l a g  = 0
i n t  t h e r o w , t o t a l p i x e l s , w i n d o w c o l p i x e l s , themaxva l  = 0,  th e m in v a l  = 0;
s h o r t  * i n b e g r o w p t r , * i n e n d r o w p t r , n e a r e s t s h o r t ( ) ;
s h o r t  * i n b e g c o l p t r , * i n e n d c o l p t r , * i n p o s p t r l ,  * i n p o s p t r 2 ;
s h o r t  * o u t r o w p t r ,  * o u t c o l p t r ,  * o u t p o s p t r ;
f l o a t  c u r r e n t r e s u l t ;

i f  (windowsize  (/0 2 == 0)
{

♦ s t a t u s  = EWINDOWSIZE;
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r e t u r n ;
}

h a l f  window = w md o w s i z e / 2  ; 
t o t a l p i x e l s  = i nrows  * i n c o l s ;  
w i n d o wc o l p i xe l s  = ha l fwindow * i n c o l s ;

s w i t c h ( d i r e c t i o n )
{

c a s e  XDIR:
f o r ( r o w c o u n t  = 0,  i n b e g r o wp t r  = i m a g e _ p t r ,  i n e n d r o w p t r  = image_p t r  

i n c o l s  -  1, o u t r o w p t r  = r e s u l t ;
rowcount  < i nrows ;  rowcount++,  i n b e g r ow p t r  += i n c o l s ,  

o u t r o w p t r  += i n c o l s )
{

f o r ( c o l c o u n t  = 0,  i n p o s p t r l  = i n b e g r o w p t r ,  o u t p o s p t r  =
o u t r o w p t r ;

c o l c o u n t  < i n c o l s  ;
c o l co u n t + + ,  i n p o s p t r l + + ,  o u t p os p t r + +)

{
c u r r e n t r e s u l t  = 0; 
z e r o f l a g  = 0;
f o r ( f i n d e x  = 0,  i n p o s p t r 2  = i n p o s p t r l  - ha l fwindow,  

t h e c o l  = c o l c o u n t  - ha l fwindow;
f i n d e x  < windowsize ;
f i n d e x + + ,  i n p o s p t r 2 + + ,  t h e c o l + + )

{
i f ( t h e c o l  < 0)
{

c u r r e n t p i x e l  = ( i n t )  ( * ( i n p o s p t r 2  + i n c o l s ) ) ;

}
e l s e
{

i f ( t h e c o l  >= i n c o l s )
{

c u r r e n t p i x e l  = ( i n t )  ( * ( i n p o s p t r 2  -  i n c o l s ) ) ;
}
e l s e

c u r r e n t p i x e l  = ( i n t )  * i n p o s p t r 2 ;
}
i f  ( I z e r o f l a g )
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c u r r e n t r e s u l t  += f i l t e r [ f i n d e x ] ^ c u r r e n t p i x e l ;
}
i f  ( t hemaxval  < c u r r e n t r e s u l t )  t he maxva l  = c u r r e n t r e s u l t  
i f  ( t h e m i n v a l  > c u r r e n t r e s u l t )  t h e m i n v a l  = c u r r e n t r e s u l t  
* o u t p o s p t r  = n e a r e s t s h o r t ( c u r r e n t r e s u l t ) ;

}
}

*out rows  = m r o w s ;
♦ o u t c o l s  = i n c o l s ;
*maxval = t hemaxva l ;
*minval  = t h e mi n v a l ;

ca s e  YDIR:
f o r ( c o l c o u n t  = 0 , i n b e g c o l p t r  = i m a g e _ p t r , i n e n d c o l p t r  = image_pt r  

t o t a l p i x e l s  - i n c o l s ,  o u t c o l p t r  = r e s u l t ;
c o l c o u n t  < i n c o l s ;
co l co u n t + + ,  i n b e g c o l p t r + + , i n e n d c o l p t r + + , o u t c o l p t r + + )

{
f o r ( r o w c o u n t  = 0 , i n p o s p t r l  = i n b e g c o l p t r , o u t p o s p t r  = ou tco lp i  

rowcount  < i n rows ;
rowcount++,  i n p o s p t r l  += i n c o l s ,  o u t p o s p t r  += i n c o l s )

{
z e r o f l a g  = 0; 
c u r r e n t r e s u l t  = 0;
/ *  scan  f i l t e r  * /
f o r ( f i n d e x  = 0,  i n p o s p t r 2  = i n p o s p t r l  - w m d o w c o l p i x e l s , 

the row = rowcount  -  hal fwindow;
f i n d e x  < windowsize ;
f i n d e x + + ,  i n p o s p t r 2  + = i n c o l s ,  therow++)

{
i f ( t h e r o w  < 0)
{

c u r r e n t p i x e l  = ( i n t )  ( * ( i n p o s p t r 2  + t o t a l p i x e l s ) ) ;
}
e l s e
{

i f ( t h e r o w  >= i nrows)
{

c u r r e n t p i x e l  = ( i n t )  ( * ( i n p o s p t r 2  - t o t a l p i x e l s ]
}

e l s e
c u r r e n t p i x e l  = ( i n t )  * i n p o s p t r 2 ;

25 1



}
i f  ( I z e r o f l a g )

c u r r e n t r e s u l t  += f i l t e r [ f i n d e x ] ^ c u r r e n t p i x e l ;
}
i f  ( t hemaxval  < c u r r e n t r e s u l t )  t hemaxva l  = c u r r e n t r e s u l t  
i f  ( t h e m i n v a l  > c u r r e n t r e s u l t )  t h e m i n v a l  = c u r r e n t r e s u l t  
* o u t p o s p t r  = n e a r e s t s h o r t ( c u r r e n t r e s u l t ) ;

}
>

*out rows  = inrows ;
* o u t c o l s  = i n c o l s ;
*maxval  = t hemaxva l ;
*minval  = t h e mi n v a l ;

d e f a u l t :
r e t u r n ;

}
>

make_gauss i an_mask(gmask, gpr imemask,  m a s k s i z e ,  s igma,  maxresponse)  
f l o a t  gmask[ 2 0 ] , gpr imemask[ 2 0 ] , s igma,  maxresponse ;  
i n t  ma sks i z e ;

{
i n t  i ,  m a s kc e n t e r ,  c o u n t ,  f i n d e x ;
f l o a t  d e l t a ,  c u r r e n t x , g c o n s t , g p r i m e c o n s t ;

i f  (mas ks i ze  7, 2 == 0)
{

p r i n t f ( " E v e n  ma sks i z e  i n  make_gauss i an_mask ( i n  g a u s s . c )  A n " ) ; 
e x i t  () ;

}

ma s kce n t e r  = m a s ks i z e / 2 ;  
d e l t a  = 1 . 0 / ( 1 1  -  1) ;

g c o n s t  = 1 . 0 * m a x r e sp on s e / ( ( sq r t ( TW0_PI ) ) * s i gma ) ;  
g p r i me c ons t  = m a x r e s p o n s e / ( s i g ma * s i g m a ) ;

f o r ( i  = - m a s k c e n t e r ,  f i n d e x  = 0 ; f i n d e x  < m a s k s i z e ; i + + , f i ndex++)
{

gmask[ f i ndex]  = 0; 
gpr imemask [ f i ndex ]  = 0;
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f o r ( c o u n t  = 1, c u r r e n t x  = i - . 5;  coun t  <= 11; count++,  
c u r r e n t x  += d e l t a )

{
gmask[ f index]  += g co n s t  * e x p ( ~ c u r r e n t x * c u r r e n t x / ( 2 * s i g m a * s i g m a )  
gprimemask [ f i ndex ]  += g p r i m e c o n s t  * c u r r e n t x  * 

e x p ( - c u r r e n t x * c u r r e n t x / ( 2 * s i g m a * s i g m a ) ) ;
}
gmask[ f index]  /= 11; 
gp r imemask[ f index]  /= 11;

>

}

/ *
* T h i n . c
*
*
* /

# i n c l u d e  < s t d i o . h >

# d e f i n e  U 010 
# d e f i n e  E 020 
# d e f i n e  I 040 
# d e f i n e  MM 0100 
# d e f i n e  M 0200 
# d e f i n e  NMM 200
# d e f i n e  a b s v a l ( f )  ( ( ( f ) <0 ) ? ( - ( f ) )  : ( f ))

i n t  f l a g s  = 0; 
i n t  f l a g v  = 0;
i n t  r i n c [ 1 0 ]  = { 0 , 0 , - 1 , - 1 , - 1 , 0 , 1 , 1 , 1 , 0 }  ; 
i n t  c i n c [ 10 ]  = { 0 , 1 , 1 , 0 , - 1 , - 1 , - 1 , 0  , 1 , 1 } ;  
m t  mrow[NMM],mcol[NMM],mlabel[NMM], ma x m u l t , ma x l a b e l ; 
i n t  r o w , c o l ;  
c h a r  *p i c ;

t h i n ( e d g e s , h e i g h t , wid th )  
i n t  h e i g h t , w i d t h ;

—  t o  t h i n  a l l  edges  down t o  8 c o n ne c t e d  edge s .  Th i s  r o u t i n e  i s  
c a l l e d  f rom c a n n y . c by d e f a u l t .



un s ig n e d  c h a r  *edges ;

i n t  f r a m e n o , r , c , c h a n g e , t r a n s , n e i g h , f p , f i r s t , g a p , g a p o p e n ; 
i n t  i , j ;
i n t  m i n i , sumr , s u m c , l ab e l , n p t , Mf o u n d ;
f l o a t  a v g r , a v g c , m i n d i s t , d i s t ;
c h a r  * pp i c ;
c h a r  *temp;
u n s ig ne d  c h a r  *temp2;
row = h e i g h t ;
c o l  = wi d t h ;
p i c  = ( c h a r  * ) h a l l o c ( r o w * c o l , s i z e o f  ( c h a r ) ) ;

temp2 = edges ;  
t e m p = p i c ;
f o r  ( i =0; i < h e i g h t  * w i d t h ;  i++)

{*temp = ( c h a r ) * t e m p 2 ; 
t emp++; 
temp2++;

>;

f o r  ( f p = 0 ; f p < 2 ; fp++) 
do {

max labe l  = maxmult  = change = 0;

p p i c  = p i c ;

f o r  ( r = 0 ; r<row; r++)  { 
f o r  ( c = 0 ; c < c o l ;C++) { 
i f  ( ( *pp i c&0377) !=0) { 

s w i t c h ( f p )  { 
ca se  0: 
c a s e  1: 

n e i g h  = t r a n s  = 0; 
f o r  ( i = l ; i<=8 ; i ++)  { 
i f  ( n e i g h b o u r ( r , c , i ) ) { 
n e i g h + + ; 
f i r s t  = i ;
>
i f  ( ( n e i g h b o u r ( r , c , i )==0)

( n e i g h b o u r ( r , c , i + l ) = = 0 ) ! = 0 )  
t r a n s + + ;
}
i f  (ne igh<2 I I neigh>6 | |

( neigh==2 && t r a n s < 4 )  I I
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(neigh==3 && t r a n s > 4 ) )  { 
p p i c + + ; 
c o n t i n u e ;
}
gap = gapopen = 0; 
f o r  ( i = f i r s t + 1 ; i < f i r s t + 8 ; i++) { 

j  = ( ( i  -  1) */. 8) + 1; 
i f  (gapopen)  { 

i f  ( n e i g h b o u r ( r , c , j ) )  
gapopen = 0;

}
e l s e  {

i f  (j ' / ,2==l && n e i g h b o u r ( r  , c ,  j )==0)  {
gapopen++;
gap++;
}

}
>

i f  (gap == 1) {
*ppic++ = 0; 
change++;
>
e l s e

p p i c + + ; 
c o n t i n u e ;

d e f a u l t :
f p r i n t ( s t d e r r , "unknown p a s s ! " ) ;

}
}
e l s e  
p p i c + + ;

>

}
} w h i l e  ( c h a n g e !=0 && f l a g s  ==0 && (fp==0 II f p = = 1))  ; 

temp2 = edges ;
f o r  ( i = 0 ;  i < h e i g h t  * w i d t h ;  i++)

{*temp2 = (un s i g n e d )  *p i c ;  
p i c + + ; 
t emp2++;

> ;
}

a d dm u l t ( r ow , c o l , l a b e l )
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i n t  r ow, c o l , l a b e l ;

{
i n t  i , o l d l a b e l ;

o l d l a b e l  = 0;
f o r  ( i = 0 ; i<maxmul t ; i++)
i f  (mrow [ 1 ] ==row && mcol [ 1 ] ==col)
o l d l a b e l  = m l a b e l [ i ] ;
i f  ( o l d l a b e l )  {
f o r  ( i = 0 ; i<maxmul t ; i++)
i f  ( m l a b e l [ i ]  == o l d l a b e l )
m l a b e l [ i ]  = l a b e l ;
}
e l s e  {
i f  (maxmult  >= NMM) 
f p r i n t ( s t d e r r , "M p o i n t  o v e r f l o w " ) ;  
mrow[maxmult] = row; 
mcol[maxmul t ]  = c o l ;  
mlabel [maxmul t++]  = l a b e l ;
>
>

n e i g h b o u r ( r , c , d) 

i n t  r , c , d ;

{
i n t  i , j  ;

i  = r  + r i n c [ d ] ; 
j  = c + c i n c [ d ] ;
i f  ( i <0 I I i> = row I I j<0 I I j > = c o l )
r e t u r n ( O )  ;
e l s e
r e t u r n ( p i c [ i * c o l + j ] & 0 3 7 7 ) ;
}

/*  b s c u r v e . c - -  S u b r o u t i n e  t o  g e n e r a t e  a B - s p l i n e  c u r v e .  The i n p u t  i s  a 
* l i s t  of  c o n t r o l  p o i n t s  w i t h  b y t e  f o r m a t .  The programm w i l l



* p roduce  a B - s p l i n e  cu rve  a c c o r d i n g  t o  t h i s  c o n t r o l  p o i n t s .
* The o u t p u t  i s  t h e  B - s p l i n e  c u r ve  w i t h  m/2 ( = 1024/2 ) f l o a i
* p o i n t s .
*
*
* /

# m c l u d e < m a t h . h>
# i n c l u d e " s h a p e . h "

# d e f i n e  m 512

f l o a t  b ou nd [ l 0 2 4 ] ;
u n s i g n e d  c h a r  a ryx  [ 1 0 0 ] , a r y y [100] ;

b s p l i n e ( i n t  f l a g )
{

i n t  i , j , k , t , n , l e n g , s i z e , i m , n o i ;
doub l e  b , u , v ;
f l o a t  x , y , x x , yy , xO, yO;

i f ( f l a g = = 0 ) {
. clearscreen( .GCLEARSCREEN);

_ s e t t e x t p o s i t i o n ( 6 , 10 ) ;
_ o u t t e x t ( " i n p u t  f i l e  name: " ) ;  
s c a n f  ("/ . s"  , f  _ in )  ;
i f  ( ( i n  = o p e n ( f _ i n , 0 .BINARYI0.RD0NLY)) == - 1 ) {  

p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  ") ; 
e x i t  (0) ;

}
. s e t t e x t p o s i t i o n ( 8 , 1 0 ) ;
. o u t t e x t ( " o u t p u t  f i l e  name: " ) ;  

s c a n f  ( " ‘/.s" , f  _out )  ;
out  = o p e n ( f _ o u t , 0.CREATI0.TRUNCI0.WR0NLYI0.BINARY, S.IREADIS.IWRITE);

}
e l s e  {

i n = o p e n ( " a t o b . o u t " , 0.BINARYI0.RD0NLY);
o u t = o p e n ( " b s p l i n e . out",0_CREATI0.TRUNCI0.WR0NLYI0.BINARY,

S.IREADIS.IWRITE);
}

r e a d ( i n , h e a d e r , 2 * s i z e o f ( s h o r t ) ) ;  
l e n g  = h e a d e r [0 ] ;  
no i  = h e a d e r  [ l ] ;



s i z e  = 2*leng;  
n = l e n g - l ; 
h e a d e r [ 0 ] =  m;

w r i t e ( o u t , h e a d e r , 2 * s i z e o f ( s h o r t ) ) ;

f o r  (im=0; im<no i ; im++){
r e a d ( i n , b u f f e r , s i z e * s i z e o f ( c h a r ) ) ;  
j =0 ;  i = l ;
wh i l e  ( j < s i z e  && i <= l e n g )  { 

a r y x [ i ]  = b u f f e r [ j ] ;  j++;  
a r y y [ i ]  = b u f f e r [ j ] ;  j++;  
i + + ;

>
a r y x [ 0 ] =2*aryx [ 1 ] - a r yx  [2] ;  
a r y y [ 0 ] =2*a ryy[ 1 ] - a r yy  [2] ; 
a r y x [ l e n g + l ]  = 2 * a r y x [ l e n g ] - a r y x  [ l eng - 1 ]  ; 
a r y y [ l e n g + l ]  = 2 * a r y y [ l e n g ] - a r y y [ l e n g - 1] ;

t = 0 ;
f o r  ( j = 0 ; j < m ; j + + )  {

u = (double  ) j / ( ( d o u b l e )  m ) ; 
x=y=0.0;
f o r  ( i = 0 ;  i < n+3 ; i ++) {  

v = n * u - i + l ;  
i f  ( v>-2 && v<=—1 )

b = ( 2 +v ) * (2+v) * ( 2 + v ) / 6 ; 
e l s e  i f  ( v > - 1 && v <=0 )

b = ( 4~6*v*v - 3 * v* v* v) / 6 ;  
e l s e  i f  ( v>0 && v <= 1 )

b = ( 4-6*v*v +3*v*v*v) / 6 ;  
e l s e  i f  ( v > 1 && v<2 ) 

b = ( 2 - v ) * ( 2 - v ) * ( 2 - v ) / 6  ; 
e l s e

b =0 . 0 ;
xx = ( f l o a t )  a r y x [ i ] ;  
yy = ( f l o a t )  a ryy [ l ] ;

x = ( f l o a t )  xx*b + x ; 
y = ( f l o a t )  yy*b + y;

>
i f ( t = = 0 ) {

x 0=x ; y0=y; 
bound [ t ] =0; t++;  
bound [ t ] =0 ;  t++;

>
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e l s e {
b o u n d[ t ] =  x-xO; t++;
b o u n d [ t ] =  y - yO; t++;

}
}
w r i t e  ( o u t , b o u n d , t * s i z e o f ( f l o a t ) ) ;

}
c l o s e ( i n ) ; 
c l o s e ( o u t ) ;

}

/*  Using t h e  f a s t  B - s p l i n e  b a s i s  f u n c t i o n  a l g o r i t h m  */
/*  b s p l f s . c  S ub r o u t i n e  t o  c a l c u l a t e  a B - s p l i n e  s u r f a c e  u s i n g  open uni form

* kno t  v e c t o r s  ( c o n t r o l  p o i n t s  ) .  The i n p u t  i s  a sequence  of
* c o n t r o l  ( 2*n colums,  i . e  n c o n t r o l  p o i n t  i n  each s l i c e ;  m
* rows,  i . e .  m s l i c e s  ) w i t h  b i n a r y  ( u n s i g n e d  c h a r )
* f o r m a t .  A f t e r  i n p u t i n g  t h e  i n p u t  f i l e ,  t h e  programm w i l l
* ask  t h e  " t h i c k n e s s " ,  i t  i s  t h e  t h i c k n e s s  be t ween s l i c e s .
* The o u t p u t  a r e  t h r e e  f l o a t  f o r ma t  f i l e s  " d a t x " ,  " da t y "  and
* " d a t z " .
*
*
* /

# i n c l u d e < s t d i o . h >
# i n c l u d e < s t d l i b . h >
# i n c l u d e < f c n t l . h >
# i n c l u d e < s y s \ t y p e s . h>
# i n c l u d e < s y s \ s t a t . h >

i n t  k l=4 ,k2=4;  / *  t h e  de g r e e  of  t h e  b a s i s  f u n c t i o n  * /  
u n s ig n e d  c h a r  b u f f [4096] ;
i n t  b u f f i  [16384] , b u f f 2 [ 1 6 3 8 4 ] , b u f f 3[16384]  ;
u n s i gne d  s h o r t  h e a d e r [ 2 ] ;
vo i d  k n o t ( i n t  n,  i n t  c ,  i n t  * t r )  ;
vo i d  b a s i s ( i n t  n ,  i n t  c ,  f l o a t  v,  i n t  * t c ,  f l o a t  * b a s ) ;

main(  i n t  a r g c ,  c h a r  **argv)
{

i n t  i n , o u t  1 , o u t 2 , o u t 3 , i , j , n , m , t l , t 2 , x t [ 6 4 ] , y t [ 6 4 ] , p l , p 2 ; 
cha r  f _ i n [32] ;
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f l o a t  u , v , x , y , z , t e m p x  [ 6 4 ] , t e m p y [ 6 4 ] , d e l t a l , d e l t a 2 , x O , y O , z O , t h i c k ;

i f  ( a r gc ! =3 ) {
p r i n t f ( " u s a g e : b s p l f s  c o l  row \ n " ) ;  
e x i t  (1) ;

}
p i  = a t o i ( a r g v  [ l ] ) ;
p2= a t o i ( a r g v [ 2 ] ) ;  / *  number of  f i t  p o i n t s  * /
p r i n t f ( " i n p u t  f i l e  n a m e \ n " ) ; 
s ca n f  ("°/.s" , f  _ in)  ;
i f  ( ( i n  = open(f_in,0_BINARYIO.RDONLY)) == - 1 ) {  

p r i n t f ( " o p e n  f a i l e d  on i np u t  f i l e  " ) ;  
e x i t (0) ;

}
i f  ( ( out  1 = o p e n ( " d a t x " , 0_CREATI0_TRUNCI0_WR0NLYIO.BINARY, 

S_IREADIS_IWRITE))==-1){
p r i n t f ( "cannot  open f i l e  f o r  w r i t i n g \ n " ) ; 
e x i t ( e r r n o ) ;
}

i f  ( (out2  = o p e n ( " d a t y " , 0_CREATIO.TRUNCIO.WRONLYIO.BINARY, 
S.IREADIS_IWRITE))==-l){

p r i n t f ( " c a n n o t  open f i l e  f o r  w r i t i n g \ n " ) ; 
e x i t ( e r r n o ) ;
>

i f  ( (ou t3  = o p e n ( " d a t z " , 0_CREATIO.TRUNCI0_WR0NLYI0_BINARY, 
S.IREADIS_IWRITE))==-1){

p r i n t f ( " c a n n o t  open f i l e  f o r  w r i t i n g \ n " ) ; 
e x i t ( e r r n o ) ;
}

p r i n t f ( " t h i c k n e s s  = " ) ;
s can f  ( " 4/0f "  , &thick)  ;
r e a d ( i n , h e a d e r , 2 * s i z e o f ( s h o r t ) ) ;
n = h e a d e r  [0] ;
m = h e a d e r  [ l ] ;
r e a d ( i n , b u f f , 2 * n *m * s i z e o f ( c h a r ) ) ;  
n — ; 
m— ;

f o r ( i = 0 ; i < =n+ k l ; i++) x t [ i ] = 0 ;  
k n o t ( n , k l , x t ) ;
f o r ( j = 0 ; j<=m+k2; j ++) y t  [ j ]=0 ; 
k n o t ( m , k 2 , y t ) ;
f o r ( t 2 = 0 ; t 2 < p 2 ; t 2 + + )  p r i n t f  ( "#/,c" , 2) ; 
p r i n t f ( " \ n " ) ;

2(i()



d e l t a l = n - k l + 2 .0;  
d e l t a 2 = m- k2 + 2 .0;
f o r ( v = 0 . 0 , t 2 = 0 ; v < d e l t a 2 * ( 1 + 1 . 0 / ( 9 * p 2 - 9 . 0 ) ) ;  v + = d e l t a 2 / ( p 2  — 1 . 0 ) , t 2 + + ) { 

f o r ( j = 0 ; j<=m+k2; j ++) t e m p y[ j ] = 0 ;  
b a s i s ( m , k 2 , v , y t , t e m p y ) ;
f o r ( u = 0 . 0 , t l = 0 ; u < d e l t a l * ( l . 0 + l / ( 9 * p l - 9 . 0 ) ) ;  u + = d e l t a l / ( p l - 1 . 0 ) , t 1 + + ) {
f o r ( i  = 0 ; i < = n + k l ; i++) tempx [ i ] =0 . 0 ;
b a s i s ( n , k l , u , x t , t e m p x ) ;
x=y=z=0.0;
f o r ( j  = 0 ; j<=m; j ++)
f o r ( i = 0 ; i < =n ; i++ ) {
x 0 = ( f l o a t ) b u f f [ j *2*( n + l ) + 2 * i ] ;
y 0 = ( f l o a t ) b u f f [ j  *2* ( n + l ) + 2 * i + l ] ;
z 0 = ( f l o a t )  j * t h i c k ;
x+=x0*tempx[ l ]*tempy [ j ] ;
y+=y0*tempx[ i ]*tempy [ j ] ;
z+=z0*tempx[ i ]* t empy [ j ] ;
>
b u f f i [ t 2 * p l + t l ] = ( i n t ) x ;

b u f f 2 [ t 2 * p l + t l ] = ( i n t ) y ; 
b u f f 3 [ t 2 * p l + t 1 ] = ( i n t ) z ;

}
p r i n t f  ("°/,c" , 1) ;

}
p r i n t f ( " \ n " );  
c l o s e ( i n ) ;

w r i t e ( o u t  1 , b u f f i , t l * t 2 * s i z e o f ( i n t ) ) ;  
w r i t e ( o u t 2 , b u f f 2 , t l * t 2 * s i z e o f ( i n t ) ) ;  
w r i t e ( o u t 3 , b u f f 3 , t l * t 2 * s i z e o f ( i n t ) ) ;  

c l o s e ( o u t  1) ;  
c l o s e ( o u t 2 ) ; 
c l o s e ( o u t 3 ) ; 
e x i t  (0) ;

}

v o i d  k n o t ( i n t  n,  i n t  c ,  i n t  * t r  )
{
i n t  i  ;
f o r ( i = c ; i <=n+c; i + + ) { 
i f ( i < = n )  t r [ i ] = i - c + l ;  
e l s e  t r [ i ] = n - c + 2 ;
}
}
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vo i d  b a s i s ( i n t  n,  i n t  c ,  f l o a t  u,  i n t  * t r ,  f l o a t  *bas)
{
i n t  1 , j , w ;  
f l o a t  d;

f o r ( i = 0 ; i < n + c ; i + + ) {  / *  t h e  f i r s t  l e v e l  * /
b a s [ i ] =0 . 0 ;
i f ( u>= ( f l o a t )  t r [ i ]  && u< ( f l o a t )  t r [ i + l ] )  
bas  [ i ]  =1.  0;
}
/*  i f (  u = = ( f l o a t )  t r [ n + c ] )  b a s [ n + c ] =1 . 0 ;  */
/*  c a l c u l a t e  NO. c ( u ) ( = b a s [0] ) and b a s [ l ] , b a s [ 2 ]  * /
f o r ( j = 2 ; j < = c ; j + + ) {  
f o r ( w = 0 ;w<=c- j ;w++){ 
i f ( bas  [w] !=0)
d = ( u - t r [ w ] ) *bas [w] / ( ( f l o a t ) ( t r [ w + j - 1 ] - t r [ w ] ) ) ;  
e l s e  d=0 . 0 ;  
i f ( b a s [ w + 1 ] !=0)

d + = ( t r [ w + j ] - u ) * b a s [ w + l ] / ( ( f l o a t ) ( t r [ w + j ] -  t r [ w + l ]  ) )  
b a s [ w ] = d ;
>
}
f o r ( i = l ;  i < = n ; i+ + ) {
f o r ( j = 2 ; j < = c ; j ++){ / *  c a l c u l a t e  N i . c ( u )  * /
w=i+c- j  ;
i f ( b a s [ w ] !=0)
d = ( u - t r [ w ] ) *bas [ w] / ( ( f l o a t ) ( t r [ w + j - l ] - t r [ w ] ) ) ;  
e l s e  d=0 . 0 ;  
i f ( b a s [ w + l ] !=0)
d + = ( t r [ w + j ] - u ) * b a s [ w + l ] / ( ( f l o a t ) ( t r [ w + j ] - t r [ w + l ] ) ) ;  
b a s [ w ] = d ;
>



A p p e n d ix  D: T h e  P r o g r a m  for B a s ic  G e o m e tr ic  Pv
s u r e m e n ts

/ *  m e a s u r e . c ----- S u b r o u t i n e  t o  c a l c u l a t e  b a s i c  g e o m e t r i c  f e a t u r e s  which a r e
* d e s c r i b e d  i n  C ha p t e r  5.
*
* /

# i n c l u d e < s t d i o . h >
# i n c l u d e < s t d l i b . h>
# i n c l u d e < f c n t l . h >
# i n c l u d e < m a t h . h>
# i n c l u d e < s y s \ t y p e s . h>
# i n c l u d e < s y s \ s t a t , h >

u n s i g n e d  c h a r  b u f f  [65536] ;  
f l o a t  bou t  [128] ;  
doub l e  r o u t  [64] ;
u n s i g n e d  s h o r t  h e a d e r [ 6 4 ] , c t y , v a l u e , o v e l ;
u n s i g n e d  c h a r  b u f f l [ l ] ;
i n t  i n , o u t , t , t l ;
c h a r  f _ i n [32] ;
i n t  m, i m , n o i , k = l ;
u n s i g n e d  l o n g  r ow, c o l , s i z e ;
v o i d  a r e a ( v o i d ) ;
vo i d  p e r i m e t ( v o i d ) ;

v o i d  ma i n ( vo i d )
{

p r i n t f ( " i npu t  f i l e  name: ") ; 
s c a n f  ( M,/,s" , f . i n )  ;
i f  ( ( i n  = o p e n ( f _ i n , O.BINARYI0_RD0NLY)) == - l ) {  

p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  " ) ;  
e x i t  (1) ;

}
p r i n t f ( " t h e  v a l u e :  " ) ;  
s c a n f  ("'/.u" ,&v a l ue )  ;
o u t = o p en ( " m e a s . d a t " , .O.BINARYI.O.CREATI.O.WRONLY, .S. IREADI.S. IWRITE);
a r e a ( ) ; 
p e r i m e t ( ) ;
w r i t e ( o u t , r o u t , 4 0 * s i z e o f ( d o u b l e ) ) ;  
c l o s e ( o u t ) ;

}

vo i d  a r e a ( v o i d )
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{
un s i g n e d  long i , j , sum, mx,my, smax, s m i n ; 
doub l e  smean,  s s t d , s sum, s s sum;

r e a d ( i n , h e a d e r ,64*s i z e o f ( s h o r t ) ) ;  
c o l = h e a d e r [3] ;  
r ow=heade r [4] ;  
n o i = h e a d e r  [6] ;

/ *  w r i t e ( o u t , h e a d e r , 6 4 * s i z e o f ( s h o r t ) ) ;  * /
i f  ( col*row < 65536 ) s i z e = c o l * r o w ; 
e l s e  {

k = c o l * r o w / 6 5 5 3 6 ;
row=row/k;
s i z e  = r o w * c o l - l ;

>
ssum=0; smax=0; smin=6666; 
f o r  ( i m = 0 , t = 0 ; im<noi ; im++, t+=3){ 

sum=0; mx=0; my=0; 
f o r  (m=0;m<k;m++){

r e a d ( i n , b u f f , s i z e * s i z e o f ( c h a r ) ) ;  
i f  ( row*col  == 65536) 
r e a d ( i n , b u f f  1 , 1 ) ;  
f o r  ( j = 0 ; j < r o w ; j ++) 

f o r ( i = 0 ; i < c o l ; i++) 
i f ( b u f f [ j * c o l + i ] ==( uns i gned  c h a r ) v a l u e ) { 

sum++; 
mx+=i;
my=my+j+m*row;

}

}
bout  [ t ]  = ( f l o a t ) sum; 
ssum+=(double) sum; 
sssum+=(double)sum*sum; 
i f(smax<sum) smax=sum; 
i f ( smin>sum)  smin=sum; 
bout  [ t  + 1] = ( f l o a t )  mx/sum; 
bout  [ t+2]  = ( f l o a t )  my/sum;

/ *  c t xu = ( f l o a t ) mx / s u m;  
c t y u =( f l o a t )my / s u m;  
c t y=( un s i g n e d  s h o r t ) c t y u ;
p n n t f  ( " a r e a =,/, ld crtx=°/,f c r t y =,/,f \ n "  , sum , c t x u , c t yu )  ; */

}
smean=ssum/( (double)  n o i ) ; 
s s t d=sssum-noi*smean*smean;
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s s t d = s q r t ( s s t d / n o i ) ;
r o u t [0 ]=1 . 0 ;
r o u t [ l ] = ( d o u b l e )  smax;
r o u t  [ 2 ]=2 . 0 ;
r o u t  [3] = (double)  smm;
r o u t  [ 4 ]=3 . 0 ;
r o u t  [ 5 ] =(double)smean;
r o u t  [ 6 ] =4 . 0 ;
r o u t  [ 7 ] = s s t d ;
c l o s e ( i n ) ;

v o i d  p e r i m e t ( v o i d )
{

u n s ig ne d  s h o r t  mask[9] ;  
i n t  i 1 , j 1 , f l a g ;
u n s i g ne d  s h o r t  l , j , c t y l , l c t x l , r c t x l ;
f l o a t  p e r , r d i , maxrd , m i n r d , s q , csum, ccsum, cmean, c s t d , cmax, cmi n , c t x u , c t y u ; 
doub l e  psum, ppsum, pmean, p s t d , pmax, p mi n , comp ; 
d oub l e  xsum, xxsum,xmean, x s t d , x m a x , xmi n ; 
d oub l e  nsum, nnsum, nmean, n s t d , nmax, nmi n ;

i n  = open(f_in,0_BINARYI0_RD0NLY); 
r e a d ( i n , h e a d e r , 6 4 * s i z e o f ( s h o r t ) ) ;

psum=ppsum=0; csum=ccsum=0; xsum=xxsum=0; nsum=nnsum=0 ; 
pmax=xmax=nmax=0 ; pmin=xmin=nmin=66666 ; cmax = 0 ; cmm=6666;

f o r  ( im=0, t = 0 ; im<noi ; im+ + , t +=3){  
maxrd=0.0;  minrd=512.0;  
p e r = 0 ;
c t xu=bout  [ t + l ] ; c t y u = b o u t [ t + 2 ] ; 
f o r  (m=0;m<k;m++){

r e a d ( i n , b u f f , s i z e * s i z e o f ( c h a r ) ) ;  
i f  ( row*col  == 65536) 

r e a d ( i n , b u f f  1 , 1 ) ;
/ *  c o u n t i n g  t h e  p e r i m e t e r  a t  t h e  image edge * /  
c t y l = ( u n s i g n e d  s h o r t )  c t y u ;  
f  o r ( j = 0 ; j <row; j + + ){

1=0;
i f ( b u f f  [j  * c o l ] ==v a l u e ) { 

per+ + ;
i f  ( j ==c t y l )  l c t x l -  i ;

sq = (double )  ( l - c t x u ) * ( l - c t x u ) +( j - c t y u ) * ( j - c t y u ) ;
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r d i = ( f l o a t )  s q r t ( s q ) ;  
i f ( r d i > m a x r d )  maxrd=rd i ;  
i f ( r d i < m i n r d )  m i n r d = r d i ;

}
i = c o l - l ;
i f ( b u f f [ j * c o l + i ] = = v a l u e  && j ! = r o w - l ) {  

p e r + + ; 
i f ( j = = c t y l )  r c t x l =  i ;

sq = ( double )  ( l - c t x u ) * ( i - c t x u ) +( j - c t y u ) * ( j - c t y u ) ; 
r d i = ( f l o a t )  s q r t ( s q ) ;  
i f ( r d i > m a x r d )  m a x r d = r d i ; 
i f ( r d i < m i n r d )  m i n r d = r d i ;

}

>
i f  ( b u f f 1 [ 0 ] = = v a l u e ) { 

per+ + ;
i  = 255; j =255;
sq = (double )  ( i - c t x u ) * ( i - c t x u ) + ( j - c t y u ) * ( j - c t y u ) ; 
r d i = ( f l o a t )  s q r t ( s q ) ;  
i f ( r d i > ma x r d )  maxrd=rd i ;  
i f ( r d i < m i n r d )  n u n r d = r d i ;

>
if(m==0)

f o r ( i = 0 ; i < c o l - l ; i++) i f  ( b u f f [ l ] = = v a l u e ) { 
p e r + + ; 
j=0;

sq = (doub l e )  ( i - c t x u ) * ( i - c t x u ) +( j - c t y u ) * ( j - c t y u ) ; 
r d i = ( f l o a t )  s q r t ( s q ) ;  
i f ( r d i > m a x r d )  maxrd=rd i ;  
i f ( r d i < m i n r d )  m i n r d = r d i ;

}
i f (m==k- l )
f o r ( i = 0 ; i < c o l - 1 ; i++) i f  ( b u f f [ l ] = = v a l u e ) { 

per++;  
j = c o l - l ;

sq = (double )  ( i - c t x u ) * ( i - c t x u ) +( j - c t y u ) * ( j - c t y u ) ; 
r d i = ( f l o a t )  s q r t ( s q ) ;  
i f ( r d i > ma x r d )  maxrd=rd i ;  
i f ( r d i < m i n r d )  m i n r d = r d i ;

}
f l a g = 0 ;

f o r  (  j  = l ; j < r o w - l ; j + + ) {  
i f ( j == c t y l )  f l a g = l ;

f o r ( i = l ; i < c o l - l ; i++){
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f o r  ( j 1 = - 1 ; j 1 < 2 ; j1++) 
f o r  ( i l = - l ; i 1<2 ; i l ++)  

m a s k [ ( j l + l ) * 3 + i l + l ] = ( u n s i g n e d  s h o r t )  b u f f [ ( j 1 + j ) *co l + i1+ i ]  
i f ( m a s k [ 4 ] ==value && ma s k [ l ] + ma s k[ 3 ] +mask[ 5 ] +mask[7]<

4 * v a l u e ) { 
i f ( f l a g = = l )  { l c t x l =  i ;  f l a g + + ; }  
i f ( f l a g = = 2 )  r c t x l = i ;

i f ( m a s k [ 0 ] +mask[ 1 ] +mask[2]==0) p e r + + ; 
e l s e  i f  (mask[ 6 ] +mask[ 7 ] +mask[8]==0) per++;  
e l s e  i f  (mask [ 0 ] +mask[ 3 ] +mask[6]==0) per++;  
e l s e  i f  (mask[ 2 ] +mask[ 5 ] +mask[8]==0) per++;  
e l s e  p e r + = l .414214;

sq = (doub l e )  ( i - c t x u ) * ( i - c t x u ) + ( j - c t y u ) * ( j - c t y u ) ; 
r d i = ( f l o a t )  s q r t ( s q ) ;  
i f ( r d i > m a x r d )  maxrd=rd i ;  
i f ( r d i < m i n r d )  mi n r d= r d i ;

}
}

}
>
ps um+=( doub l e ) pe r ;
pps um+=(doub l e )pe r+per ;
i f (pmax<per )  pmax=per;
i f ( p m m> p e r )  pmin=per;
comp=per*pe r / ( 4 * 3 . 1415927*bout [ t ]  ) ;
csum+=comp;
ccsum+=comp*comp;
if(cmax<comp) cmax=comp;
i f(cmin>comp) cmin=comp;
xsum+=maxrd;
xxsum+=maxrd*maxrd;
if(xmax<maxrd)  xmax=maxrd;
i f  (xmm>maxrd) xmm=maxrd;
nsum+=minrd;
nnsum+=minrd*minrd;
i f (nmax<minrd)  nmax=minrd;
i f (nmin>minrd)  nmin=minrd;

/ *  b o u t [ t 1+4]= ( f l o a t ) l c t x l ;
b o u t [ t 1+5]=( f l o a t ) r c t x l ; * /
p n n t f  ( "per= ' / , f " , pe r ) ;
p r i n t f ( "  comp='/,f " ,  comp);
p n n t f  ("maxrd=,/,f minrd=' / , f \n" , maxrd,minrd)  ;

>
/ *  w n t e ( o u t , b o u t , 6 * n o i * s i z e o f  ( f l o a t ) ) ; * /  

p me a n=ps um/ ( (doub l e ) no i ) ;
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p s t d = s q r t ( (ppsum-noi*pmean*pmean) /noi ) ; 
cmean=csum/noi ;
c s t d = s q r t ( ( cc sum-noi *cmean*cmean) /no i ) ; 
xmean=xsum/noi ;
x s t d = s q r t ( (xxsum-noi*xmean*xmean) /noi ) ; 
nmean=nsum/noi ;
n s t d = s q r t ( (nnsum-noi*nmean*nmean) /noi ) ; 
r o u t [ 8 ]=5 . 0 ;
r o u t [ 9 ] = (double)  pmax; / *  Max-per  */
r ou t 10 = 6 . 0 ;
r o u t 11 = ( doub l e ) pmi n ; / *  Min-per  * /
r ou t 12 =7.0;
r ou t 13 = (double )pmean; /*  Mean p e r  * /
r ou t 14 =8.0;
r o u t 15 = ( d o u b l e ) p s t d ; /*  S t d - p e r  */
r ou t 16 = 9 . 0 ;
r o u t 17 = (double) cmax; / * Max-comp */
r ou t 18 ==10.0;
r o u t 19 = (double) cmin;  / *  Min-comp */
r o u t 20 =11.0;
r ou t 21 = (double) cmean; /*  Mean-comp */
r ou t 22 = 12.0;
r ou t 23 = (double) c s t d ;
r o u t 24 =13.0;
r o u t 25 = (double) xmax ; /*Max-maxrd */
r o u t 26 =14.0;
r o u t 27 = (double) xmi n ; /*  Min-maxrd */
r o u t 28 =15.0;
r o u t 29 = (double) xmean; /*  Mean-maxrd */
r o u t 30 =16.0;
r o u t 31 = (double) x s t d ; /*  Std-maxrd  * /
r ou t 32 =17.0;
r ou t 33 = (double) nmax; /*  Max-minrd */
r ou t 34 =18.0;
r ou t 35 = (double) n mi n ; /*  Min-minrd */
ro u t 36 =19.0;
r ou t 37 = (double) nmean / *  Mean-minrd */
r ou t 38 =20.0;
r ou t 39 = (double) n s t d ; /*  S t d - mi n r d  * /

c l o s e ( i n ) ;
}



/ *
* h i s h i f t . c  Sub r ou t i n e  t o  c a l c u l a t e  s h i f t  of  t h e  h em i s ph e r es .
*
*/

# m c l u d e < s t d i o  .h>
# i n c l u d e < s t d l i b . h>
# i n c l u d e < f c n t l . h >
# m c l u d e < m a t h . h>
# i n c l u d e < s y s \ t y p e s . h>
# i n c l u d e < s y s \ s t a t . h >

u n s i gne d  c ha r  b u f f e r l [ 6 5 5 3 6 ] , b u f f e r 2 [65536] ;  
f l o a t  bout  [256] ; 
double  r o u t [64] ;
u ns i gned  s h o r t  h e a d e r [ 6 4 ] , v a l u e l , v a l u e 2 ;
u ns i gned  c ha r  b u f f l [ l ] ;
i n t  i n l , i n 2 , t ;
i n t  m, l m , n o i , k = l ;
u n s i gne d  long  row, c o l , s i z e ;
vo i d  c e n t ( v o i d ) ;
vo i d  w i d t h ( v o i d ) ;

vo id  ma in(vo id)
{

p r i n t f ( " h i s h i f t  \ n " ) ;
i f  ( ( m l  = op e n ( " l e f t . lmg" , 0_BINARYI0_RD0NLY)) == - l ) {  

p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  ") ; 
e x i t  (1) ;

}
v a l u e l = 5 0 ;
i f  ( ( m 2  = open ( " r i g h t . l mg" , 0_BINARY I0_RD0NLY)) == - 1 ) {  

p n n t f  ("open f a i l e d  on i n p u t  f i l e  " ) ;  
e x i t  ( l )  ;

}
va l u e 2 =1 0 0 ;

c e n t ( ) ;  
w i d t h Q  ;

}

vo i d  c e n t ( v o i d )
{
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u n s i g n e d  l o n g  1 , j , s u m l , s u m 2 , m x 1 , m x 2 , m y 1 , m y 2 , s m a x , s m i n

r e a d ( i n i . h e a d e r , 6 4 * s i z e o f ( s h o r t ) ) ; 
r e a d ( m 2 . h e a d e r , 64*s i z e o f ( s h o r t ) ) ;  
c o l = h e a d e r [3] ;  
r o w = h e a d e r [4] ;  
n o i = h e a d e r [6] ;

w r i t e ( o u t , h e a d e r ,64*s i z e o f ( s h o r t ) ) ;  * /
i f  ( co l*row < 65536 ) s i z e = c o l * r o w ; 
e l s e  {

k = c o l * r ow / 6 5 53 6 ;
r ow=row/k ;
s i z e  = r o w * c o l - l ;

>
f o r  ( i m = 0 , t = 0 ; i m<no i ; im++, t+=4){

suml=sum2=0; mx l=mx2=0; myl=my2=0; 
f o r  (m=0; m<k;m++){

r ea d  ( m l , b u f f e r  1 , s i z e *  s i z e o f  ( c h a r ) ) ; 
r e a d  ( m 2  , buf  f  e r2  , s l z e * s i z e o f  ( cha r )  ) ; 

i f  ( row*col  == 65536){ 
r e a d ( i n l . b u f f l , 1 ) ;  
r e a d ( i n 2 . b u f f l , 1 ) ;

>
f o r  ( j = 0 ; j <row; j + + ){ 

f o r ( i = 0 ; i < c o l ; i++){ 
i f ( b u f f e r l  [ j * c o l + i ] ==(uns i gned  c h a r ) v a l u e l ){ 

suml++; 
m x l += i ;
myl=my1+j +m*row;

}
i f ( b u f f e r 2  [j  * c o l + i ] ==(uns i gned  c h a r ) v a l u e 2 ) { 

sum2++; 
mx2+=i ;
my2=my2+j+m*row;

>

>

>
bout  [ t ]  = ( f l o a t ) m x l / s u m l ; 
bou t  [ t  + l ]  = ( f l o a t ) my  1 / s u ml ; 
b o u t [ t +2 ] =( f l o a t ) mx 2 / s u m2 ; 
b o u t [ t + 3 ] = ( f l o a t ) my2/sum2;

>



c l o s e ( i n i );  
c l o s e ( i n 2 ) ;

>

v o i d  w i d t h ( v o i d )
{

u ns i gned  s h o r t  i , j , c t y l 1 , c t y l 2 , d m a x , dmi n , dsum, d d s u m , d r , d l , w, s d l r ; 

f l o a t  dmean, d s t d , r 5 ; 
double  d s td b ;  
i n t  o u t ;

i n i  = o p e n ( " l e f t . img" , 0_BINARY I0_RD0NLY); 
r e a d ( i n i ,h e a d e r ,64*s i z e o f ( s h o r t ) ) ;  
in2 = o p e n ( " r i g h t . img",0_BINARY|0_RD0NLY); 
r e a d ( i n 2 ,h e a d e r ,64*s i z e o f ( s h o r t )  ) ; 
dmax=0; dmm=512;  dsum=0; ddsum=0 ; s d l r = 0  ;
out  = open("meas . d a t " , O.BINARY I O.WRONLY I 0_ APPEND , S_ IREAD I S.IWRITE) ; 
f o r  ( im=0, t = 0 ; im<noi ; im++, t  +=4){ 

f o r  (m=0; m<k; m++){
r e a d ( i n 1 , b u f f e r l , s i z e * s i z e o f ( c h a r ) ) ;  
r e a d ( i n 2 , b u f f e r 2 , s i z e * s i z e o f ( c h a r ) ) ;  

i f  ( row*col  == 65536){ 
r e a d ( i n i , b u f f 1 , 1 ) ;  

r e a d ( i n 2 , b u f f 1 , 1 ) ;
>

c t y l l = ( u n s i g n e d  s h o r t ) b o u t  [ t  + 1] ; 
c t y l 2 = ( u n s i g n e d  s h o r t ) b o u t  [ t + 3 ] ;

i = c o l - 1;
w h i l e ( i >  = 0 && b u f f e r l  [ c t y l l * r ow+i ]  != v a l u e l )  i - - ;  
d l = i - ( u n s i g n e d  s h o r t ) b o u t  [ t ] ;

1=0 ;
w h i l e ( i < c o l  && b u f f e r 2 [ c t y l 2 * r o w + i ] !=va lue2)  i++;  

d r = ( u n s i g n e d  s h o r t ) b o u t  [ t + 2 ] - i ; 
i f ( d l > d r )  w=dl -dr ;  
e l s e  w=dr -d l ;

>

s d l r = s d l r + d l + d r ; 
i f(dmax<w) dmax=w; 
i f (dmin>w) dmm=w; 
dsum+=w; 
ddsum+=w*w; 
p r i n t f  ( " ’/.d " , im) ;

}
p r i n t f ( " \ n " );
d m e a n = ( f l o a t ) d s u m / ( ( f l o a t ) n o i ) ;

2 7 1



ds td=( f l oa t )ddsum-dmean*dmean ;
d s t d b = s q r t ( ( d o u b l e ) d s t d / n o i ) ;
r 5 = ( f l o a t ) d s u m / ( ( f l o a t ) s d l r ) ;
r o u t  [0]=53. 0 ;
r o u t [ l ] = (double)  r 5 ;
r o u t  [2]=54.0 ;
r o u t [ 3 ] = (double )dmax;
r o u t  [4]=55. 0 ;
r o u t [ 5 ] = ( doub l e ) dmi n ;
r o u t  [6]=56.0 ;
r o u t [ 7 ] = (double )dmean;
r o u t  [8]=57. 0 ;
r o u t [ 9 ] = (double)  d s td b ;
w r i t e ( o u t , r o u t , 1 0 * s i z e o f ( d o u b l e ) ) ;

c l o s e ( i n l ) ; 
c l o s e ( m 2 )  ; 
c l o s e ( o u t ) ;

}

/ *  F i l e  name: vo l ume . c  c a l c u l a t e  t h e  volume of a 3 -d  o b j e c t .
* The 3-d  o b j e c t  c o n s i s t  of  a sequence  of  2 -d  images wi t h
* uni form g rey  l e v e l .  U s u a l l y ,  each 2-d  image may c o n t a i n
* d i f f e r e n t  o b j e c t s  ( w i t h  d i f f e r e n t  g r e y  l e v e l  ) . To c a l c u l a t e
* t h e  volume of  a p a r t i c u l a r  o b j e c t ,  t h e  g r e y  l e v e l  f o r  t h i s
* o b j e c t  i s  needed when t h e  program i s  r un n i n g .
* The t h i c k n e s s  of  each s l i c e  i s  supposed  t o  be one v o x e l .
* In  p r a c t i c e ,  a s l i c e  w i t h  t h i c k n e s s  h v o xe l s  can be t r e a t e d
* as a s t a c k  ( h ) of  s l i c e s  each  of  them has  t h i c k n e s s  l . T h e
* volume between any two of  t h e s e  image s l i c e s  (SI  and S2) i s :
*
* v = h ( a r e a ( S l )  + a r e a (S 2 )  + s q r t ( a r e a ( S 1 ) * a r e a ( S 2 ) ) ) / 3
*

* /



# i n c l u d e < s t d i o . h >
# m c l u d e < s t d l i b . h>
# i n c l u d e < f c n t l . h >
# i n c l u de < m a t h . h>
# i n c l u d e < s y s \ t y p e s . h>
# i n c l u d e < s y s \ s t a t . h >

uns i gned  c h a r  b u f f [ 6 55 36 ] , b u f f 1 [ l ] ;
u n s i gne d  s h o r t  h e a d e r [64] ;
i n t  i n , o u t , i m , n o i , g r e y l , g r e y 2 , t , m , k ;
c h a r  f  _ m [32] ;
f l o a t  v o l ,  v a l ue d  [16] ;
doub l e  r o u t [32] ;
l ong  c o l , r ow, s i z e , t h i c k , a r ea O , a r e a n ; 
vo i d  p e n m e t  (vo i d )  ;

main( )
{

uns i gned  s h o r t  i , j ;
l ong  a r e a , a r e a p , c e n t x , c e n t y , c e n t z ;
f l o a t  g r a v t x , g r a v t y , g r a v t z , a r e a l ;

p r i n t f ( " i np u t  f i l e  name: " ) ;  
s ca n f  ( " ’/.s" , f  _ m )  ;
i f  ( ( i n  = open(f_in,0_BINARYI0_RD0NLY)) == - 1 ) {  

p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  " ) ;  
e x i t (0) ;

}

r e a d ( i n , h e a d e r , 64*s i z e o f ( s h o r t ) ) ;
out  = o p e n ( " meas . d a t " , 0_CREAT10_WR0NLYI 0 .BINARY, S_IREADIS_IWRITE);

c o l = h e a d e r [3] ;  
r ow=heade r [4] ;  
n o i = h e a d e r [6] ;
p r i n t f  ("number of  image(s )  = °/,d\n" , n o i )  ;

p r i n t f ( " g r e y  v a l u e  = ") ;
s can f  ( " #/.d" ,&greyl )  ;
p r i n t f ( " o v e r l a y  g r ey  l e v e  = " ) ;
s c a n f  ( " #/,d" ,&grey2) ;
p r i n t f ( " t h i c k n e s s  = " ) ;
s can f  (""/,d" , &thi ck)  ;

i f  ( col*row < 65536 ) s i z e = c o l * r o w ;
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e l s e  {
k = co l * r o w/ 6 5 5 3 6 ;
row=row/k;
s i z e  = r o w * c o l - l ;

}

v o l = 0 ;
c e n t x = c e n t y = c e n t z = 0 ; 
f o r  ( im=0; im<noi ; im++){

r e a d ( i n , b u f f , s i z e * s i z e o f ( c h a r ) ) ;  
i f  ( col*row==65536 ) 

r e a d ( m ,  b u f f l , 1) ; 
a r e a = 0 ;
f o r ( j = 0 ; j <row; j ++){ 

f o r  ( i = 0 ; i < c o l ; i++) {
i f  ( b u f f [ j * c o i + i ] = = g r e y 1 I i b u f f [ j * c o l + i ] = = g r e y 2 ) { 

a r e a + + ; 
i f ( i m < n o i - l ) {

c e n t x = c e n t x + i * t h i c k ; 
c e n t y=c e n t y + j  *t h i c k ;
f o r ( t = 0 ; t < t h i c k ; t++)  c e n t z = c e n t z + i m * t h i c k + t ;

>

e l s e  c e n t z = c e n t z + i m * t h i c k ;
>

>

>
i f  ( im !=0 ){

a r e a l  = ( f l o a t ) a r e a * a r e a p ;
a r e a l  = ( f l o a t )  s q r t ( ( d o u b l e ) a r e a l ) ;
v o l + = ( f l o a t )  t h i c k * ( a r e a + a r e a p + a r e a l ) / 3 . 0 ; ;

}
a r e a p = a r e a ; 
i f ( im==0)  a reaO=area ;  
i f ( i m = = n o i - l )  a r e a n = a r e a ;

}

g r a v t x = ( f l o a t ) c e n t x / v o l ; g r a v t y = ( f l o a t ) c e n t y / v o l ;
g r a v t z = ( f l o a t ) c e n t z / v o l - 0 .5;
r o u t  [ 0 ]=45 . 0 ;
r o u t [ l ] = (double)  vo l ;
r o u t [2 ]=46. 0 ;
r o u t [ 3 ] = (double)  g r a v t x ;
r o u t [4]=47.0  ;
r o u t [ 5 ] = (double)  g r a v t y ;
r o u t [6 ]=48. 0 ;



r o u t [ 7 ] = (double )  g r a v t z ;
v a l u e d [0]= v o l ;
v a l u e d [ l ] =  g r a v t x ;
va l ue d  [2]= g r a v t y ;
v a l u e d [3]= g r a v t z ;
w r i t e ( o u t , r o u t , 8 * s i z e o f ( d o u b l e ) ) ;
c l o s e ( m )  ;
p e r i m e t  () ;
c l o s e ( o u t ) ;

}

vo i d  p e r i m e t ( v o i d )
{

u n s i gne d  c h a r  m d l , md2, md3, md4, msum, mask[9] ;
i n t  i l , j l ;
u n s i gne d  l on g  i , j , p e r , p e r p ;
f l o a t  r d i , m a x r d = . 0 , minrd=512. 0 , s s = .0;

i n  = o p e n ( f  _ m ,  0_BINARY I 0_RD0NLY) ;
r e a d ( i n , h e a d e r , 64*s i z e o f ( s h o r t ) ) ;

f o r  ( im=0; i m<no i ; im++){ 
p e r = 0 ;
for (m=0;  m<k; m++){

r e a d ( i n , b u f f , s i z e * s i z e o f ( c h a r ) ) ;  
i f  ( row*col  == 65536) 

r e a d ( i n , b u f f  1 , 1 ) ;
/ *  c o u n t i n g  t h e  p e r i m e t e r  a t  t h e  image edge * /

f o r ( j  = 0 ; j<row;  j+ + ){
1=0 ;
i f ( b u f f [ j  * c o l ] = = g r e y 1){ 

p e r + + ;
r d i = s q r t ( ( i - v a l u e d [ l ] ) * ( l - v a l u e d [ 1 ] ) + ( j - v a l u e d [ 2 ] ) * ( j - v a l u e d [2] 

( i m * t h i c k - v a l u e d [ 3 ] ) * ( i m * t h i c k - v a l u e d [ 3 ] ) ) ;
i f ( r d i > m a x r d )  m a x r d = r d i ; 
i f ( r d i < m i n r d )  mi n r d= r d i ;

}
i = c o l - 1;
i f ( b u f f [ j * c o l + c o l - l ] = = g r e y 1 && j ! = r o w - l ) {  

per+ + ;
r d i = s q r t ( ( i - v a l u e d [ 1 ] ) * ( i - v a l u e d [ l ] ) + ( j - v a l u e d [ 2 ] ) * ( j - v a l u e d [2] 

( i m * t h i c k - v a l u e d [ 3 ] ) * ( i m * t h i c k - v a l u e d [ 3 ] ) ) ;



i f ( r d i > ma x r d )  maxrd=rdi ;  
i f ( r d i < m i n r d )  mi n r d= r d i ;

}

i f  ( b u f f  1 [ 0 ] = = g r e y l ) { 
p e r + + ;
i=255 ; j =255;
r d i  = s q r t ( ( i - v a l u e d [ l ] ) * ( l - v a l u e d [ l ] ) + ( j - v a l u e d [2] ) * ( j - v a l u e d [2] )  + 

( i m * t h i c k - v a l u e d [ 3 ] ) * ( i m * t h i c k - v a l u e d [ 3 ] ) ) ;  
i f ( r d i > m a x r d )  maxrd=rdi ;  
i f ( r d i < m i n r d )  mi n r d= r d i ;

}
i f (m==0)

f o r ( i = 0 ; i < c o l - 1 ; i++) i f  ( b u f f [ i ] = = g r e y l ) {  

p e r + + ;
j=0;

r d i  = s q r t ( ( i - v a l u e d [ l ]  ) * ( i - v a l u e d [ l ]  ) + ( j - v a l u e d [ 2 ] ) * ( j - v a l u e d [2] 
( i m * t h i c k - v a l u e d [ 3 ] ) * ( l m * t h i c k - v a l u e d [ 3 ] ) ) ;

i f ( r d i > m a x r d )  maxrd=rdi ;  
i f  ( r d i < m m r d )  mi n r d= r d i ;

>
i f (m==k- l )
f o r ( i = 0 ; i < c o l - l ; i++) i f  ( b u f f [ i ]==g r e y l ) {  

p e r + + ; 
j = c o l - 1;

r d i = s q r t ( ( i - v a l u e d [ 1 ] ) * ( i - v a l u e d [ 1 ] ) + ( j - v a l u e d [ 2 ] ) * ( j - v a l u e d [2] 
( i m * t h i c k - v a l u e d [ 3 ] ) * ( i m * t h i c k - v a l u e d [ 3 ] ) ) ;

i f ( r d i > m a x r d )  m a x r d = r d i ; 
i f  ( r d i < mm r d )  m i n r d = r d i ;

}
f o r  ( j = 1 ; j < r o w - l ; j + + ) {  

f o r ( i = l ; i < c o l - l ; i + + ){ 
i f ( i m = = 0 | | i m = = n o i - 1){

i f ( b u f f  [ j * c o l + i ] = = g r e y l ) {
r d i = s q r t ( ( i - v a l u e d [ l ] ) * ( l - v a l u e d [ l ] ) + ( j - v a l u e d [ 2 ] ) * ( j -  

v a l u e d [2] )  + ( i m * t h i c k - v a l u e d [3] ) * ( i m * t h i c k - v a l u e d [ 3 ] ) ) ;
i f ( r d i > m a x r d )  maxrd=rd i ;  
i f ( r d i < m i n r d )  m i n r d= r d i ;

}
}

msum=0; mdl = 0 md2 = 0 ; md3 = 0 ; md4=0 ; 
f o r  ( j 1 = -1 ; j 1<2; j1++) 

f o r  (il=-l;l1<2;il++){
mask [ ( j 1 + 1)*3+ i 1 + 1 ] = b u f f [ ( j l + j ) * c o l + i l  + i ]  ;



msum+=mask[ ( j 1+1)* 3 + i 1+1];  
i f ( i l = = j l )  m d l + = m a s k [ ( j l + l ) * 3 + i l + l ]  ; 
i f ( i l = = - j l )  m d 2 + = m a s k [ ( j l + l ) * 3 + i l + l ] ; 
i f ( i l = = 0 )  md3+=mask[ ( j1+1)* 3 + i l + l ] ; 
i f ( j l = = 0 )  md4+=mask [ ( j 1 + 1 ) * 3 + i 1 + 1] ;

}
i f ( m a s k  [ 4 ] ==greyl )

i f ( ma s k  [ l ] !=g r ey 1 1 I mask[ 3 ] ! = g r e y 1 1 I mask[ 5 ] ! =grey l  \
I | m a s k [ 7 ] ! = g r e y l ) {  

p e r + + ;
r d i = s q r t ( ( i - v a l u e d [ l ] ) * ( i - v a l n e d [ l ] ) + ( j - v a l u e d [ 2 ] ) * ( j -  

v a l u e d [ 2 ] ) + ( i m * t h i c k - v a l u e d [ 3 ] ) * ( i m * t h i c k - v a l u e d [ 3 ] ) ) ;
i f ( r d i > m a x r d )  maxrd=rd i ;  
i f ( r d i C m i n r d )  mi n r d= r d i ;

}
}

}
}
i f ( i m !=0)

ss+= ( f l o a t )  ( p e r + p e r p ) * t h i c k / 2 .0;  
p e r p = p e r ;

}
r o u t  [ 0 ]=49 . 0 ;
r o u t [ 1 ] = ( d o u b l e ) a r e a O + a r e a n + s s ;
r o u t [2 ]=50 . 0 ;
r o u t [ 3 ] =(doubl e )maxrd ;
r o u t [4 ]=51. 0 ;
r o u t  [5] = (doub l e ) mi n r d ;
r o u t [6 ]=52. 0 ;
r o u t  [7] = ( d o u b l e ) s s * s q r t ( ( d o u b l e ) s s ) / ( 1 0 . 6 3 4 72 31 1* v a l u e d [0] ) ;  
w r i t e ( o u t , r o u t , 8*s i z e o f ( d o u b l e ) ) ;  
c l o s e ( i n ) ;

i



A p p e n d ix  E: T h e  P r o g r a m  for S h a p e  A n a ly s is

/  *
* s h a p e . h   he a de r  f i l e  f o r  shape  a n a l y s i s  s u b r o u t i n e .
*

* /
# i n c l u d e < s t d i o . h >
# i n c l u d e < s t r i n g . h>
# i n c l u d e < s t d l i b . h>
# i n c l u d e < c o n i o . h>
# i n c l u d e < f c n t l . h >
# i n c l u d e < s y s \ t y p e s . h>
# m c l u d e < s y s \ s t a t  .h>
# m c l u d e < g r a p h  .h>

s t r u c t  menus {
cha r  *o p t i on ;  
c ha r  * o p t i o n t e x t ;
} menu; 

i n t  i n , o u t ;
c h a r  f _ i n [ 3 2 ] , f _ o u t [ 3 2 ] ;
u n s i g n e d  c h a r  b u f f e r [ 5 1 2 ] ;
u n s i g n e d  s h o r t  h e a d e r [ 2 ] ;
f l o a t  d a t a [ l 0 2 4 ] ;
d i s p f ( i n t , i n t , i n t , i n t ) ;
i n t  g e t p t ( s t r u c t  menus * ) ;
c ha r  * g e t p t c ( s t r u c t  menus * ) ;
a t o b ( i n t ) ;
b s p l i n e ( i n t ) ;
f f t ( i n t ) ;
m a t c h ( i n t ) ;
s y m ( v o i d ) ;
s e e r l ( i n t ) ;

/ *
* s h a p e . c  -----  shape a n a l y s i s  t o p  l e v e l  s u b r o u t i n e .
*
* /

# i n c l u d e  " s h a p e . h "

s t a t i c  s t r u c t  menus c h o i c e  [4] =
{

{"A","Auto measure"} ,
{"M","Manual  measure"} ,



{ " S " , "Symmetry me asure "} ,
{ " E " , "Ex i t  t o  DOS"}

};
s t a t i c  s t r u c t  menus mainmenu[6] =
{

{ " 1 " , " As c i i  t o  b i n a r y " } ,
{ " 2 " , " B - S p l i n e s " } ,
{ " 3 " , " F o u r i e r  d e s c r i p t o r s " } ,
{ " 4 " , "Match"},
{ " 5 " , "Show r e s u l t " } ,
{ " 6 " , "Back t o  main menu"}

};
v o i d  a u t o c h Q  , manua l () , symmetry( )  , e x i t p r o ( )  ;

v o i d  ma in(vo id)
{

cha r  * t e x t ;  

f o r ( ; ; ) {
t e x t = g e t p t c ( c h o i c e ) ;
* t e x t = t o u p p e r ( * t e x t ) ;  
s w i t c h ( * t e x t ){
c a s e  ’ Pi’ : a u t o c h Q  ; b r ea k
c a s e  ’ M; : ma nua l ( ) ;
c a s e  ’ S ’ : symmetry( ) ;
c a s e  ' E ’ : e x i t p r o ( ) ;
}
}

vo i d  e x i t p r o ( v o i d )
{

_clearscreen(_GCLEARSCREEN); 
e x i t  (1) ;

}
vo i d  a u t o c h ( v o i d )
{
i n t  f l a g = l ;

a t o b ( f l a g ) ; 
b s p l m e ( f  l a g )  ; 
f f t ( f l a g ) ; 
m a t c h ( f l a g ) ;
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s e e r l ( f l a g ) ;
}

vo i d  symmetry(void)
{
i n t  f l a g = l ;

a t o b ( f l a g ) ; 
b s p l i n e ( f l a g ) ; 
s y m ( ) ;

}

vo i d  manua l (vo id)
{
i n t  o p t i o n , f l a g = 0 ; 

f o r ( ; ; )  {
opt  i o n = g e t p t  (mammenu) ; 
s w i t c h ( o p t i o n ) { 
ca s e  1 : a t o b ( f l a g ) ;

b r e a k ; 
ca s e  2 :b s p l m e ( f  l a g )  ;

b r e a k ; 
ca s e  3 : f f t ( f l a g ) ;

b r e a k ; 
ca s e  4 : m a t c h ( f l a g ) ;

b r e a k ; 
ca se  5 : s e e r l ( f l a g ) ; 
b r e a k ;
ca s e  6 :ma i nQ ;
}

>

}

# i n c l u d e " s h a p e . h "

a t o b ( i n t  f l a g )
{
i n t  l e n g t h , s l i c e s , i , n=0; 
FILE * s t r ;

_clearscreen(_GCLEARSCREEN); 
_ s e t t e x t p o s i t i o n ( 6 , 10) ;  
_ o u t t e x t ( " I n p u t  f i l e :  " ) ;

2  (SO



s c a n f  ("°/0s" , f  _ in)  ;

i f ( ( s t r = f o p e n ( f _ i n , " r " ) )= = N UL L )  { 
p r i n t f ( " c a n n o t  open f i l e \ n " ) ; 
e x i t  ( l )  ;
}
i f  ( f l a g = = 0 ) {
_ s e t t e x t p o s i t i o n ( 8 , 10);
_ o u t t e x t ( " O u t  f i l e :  " ) ;  
s c a n f  ( " 4/0s" , f _ o u t )  ;

out  = o p e n ( f _ o u t , 0_CREATI0_TRUNCI0_WR0NLYI0_BINARY, 
S_IREADIS_IWRITE);
}
e l s e
out  = o p e n ( " a t o b . o u t " , 0_CREATI0_TRUNCI0_WR0NLYI0_BINARY, 
S_IREADIS_IWRITE);

f  s ca n f  ( s t r ,  "4/0d" ,&length)  ; 
h e a d e r [ 0 ] =(uns i gned  s h o r t )  l e n g t h ;

w h i l e ( ! f e o f ( s t r ) ){ 
f  s ca n f  ( s t  r , "*/,d" , & i )  ; 
b u f f e r [ n ] = i ; 
n++;
}
s l i c e s  = n / ( 2 * h e a d e r  [ 0 ] ) ;  
h e a d e r [ l ] = s l i c e s ;
w r i t e ( o u t , h e a d e r , 2*s i z e o f ( s h o r t ) ) ;
w r i t e ( o u t , b u f f e r , 2* l e n g t h * s i  i c e s * s i z e o f ( c h a r ) ) ;

c l o s e ( o u t ) ;  
f c l o s e ( s t r ) ;
}

# i n c l u de < ma t h . h>
# i n c l u d e " s h a p e . h "

# d e f i n e  m 512

f l o a t  bound [1024] ;
uns i gned  c ha r  a r y x [ 1 0 0 ] , a r y y [100] ;  

b s p l i n e ( i n t  f l a g )
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{
i n t  i , j , k , t , n , l e n g , s i z e , i m, n o i ;
double  b , u , v ;
f l o a t  x , y , x x , y y , xO, yO;

i f ( f l a g = = 0 ) {
_clearscreen(_GCLEARSCREEN);

_ s e t t e x t p o s i t i o n ( 6 , 1 0 ) ;
_ o u t t e x t ( " i n p u t  f i l e  name: " ) ;  
s c a n f ( " K s " , f _ i n ) ;
i f  ( ( i n  = open(f_in,0_BINARY|0_RD0NLY)) == - 1 ) {  

p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  ") ; 
e x i t (0) ;

}
_ s e t t e x t p o s i t i o n ( 8 , 1 0 ) ;
_ o u t t e x t ( " o u t p u t  f i l e  name: ") ; 

s can f  ("°/0s" , f _ o u t )  ;
out  = o p e n ( f _ o u t , 0_CREATIO.TRUNCI0.WR0NLYIO.BINARY, S.IREADIS.IWRITE);

}
e l s e  {

i n = o p e n ( " a t o b . o u t " , 0_BINARYI0_RD0MLY);
o u t = o p e n ( " b s p l i n e . out",0_CREATI0_TRUNCI0_WR0NLYIO.BINARY,

S_IREADIS_IWRITE);
}

r e a d ( i n , h e a d e r , 2 * s i z e o f ( s h o r t ) ) ;
l e n g  = h e a d e r  [0] ;
no i  = h e a d e r  [ l ]  ;
s i z e  = 2* leng ;
n = l e n g - 1;
he a de r  [0]= m;

w r i t e ( o u t , h e a d e r , 2 * s i z e o f ( s h o r t ) ) ;

f o r  (im=0; i m < n o i ; im++){
r e a d ( i n , b u f f e r , s i z e * s i z e o f ( c h a r ) ) ;  
j  =0; i = l ;
wh i l e  ( j < s i z e  && i <= l e ng)  { 

a r y x [ i ]  = b u f f e r [ j ] ;  J++; 
a ryy  [ i ] = b u f f e r [ j ] ;  j++;  
i  + + ;

}
a r y x [ 0 ] = 2 * a r y x [ l ] - a r y x  [2] ; 
a r y y [ 0 ] = 2 * a r y y [ l ] - a r y y  [2] ; 
a r y x [ l e n g + l ]  = 2 * a r y x [ l e n g ] - a r y x [ l e n g - 1] ;
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a r y y [ l e n g + l ]  = 2 * a r y y [ l e n g ] - a r y y [ l e n g - l ] ;

t = 0 ;

f o r  ( j =0; j <m; j ++) {
u = (double  ) j / ( ( d o u b l e )  m) ; 
x=y=0.0;
f o r  ( i=0;  i<n+3; i++){  

v = n * u - i + l ;  
i f  ( v>-2 && v<=- l  )

b = ( 2+v) * ( 2+ v) * ( 2+v) / 6 ;  
e l s e  i f  ( v>~1 && v <=0 )

b = ( 4-6*v*v -3* v * v * v ) / 6 ;  
e l s e  i f  ( v>0 && v <= 1 )

b = ( 4~6*v*v +3*v*v*v) / 6 ;  
e l s e  i f  ( v > 1 && v<2 ) 

b = ( 2 - v ) * ( 2 - v ) * ( 2 - v ) / 6 ;  
e l s e

b =0.0;
xx = ( f l o a t )  a r y x [ i ] ;  
yy = ( f l o a t )  aryy [ l ] ;

x = ( f l o a t )  xx+b + x ; 
y = ( f l o a t )  yy*b + y;

}
i f ( t = = 0 ) {

x0=x; y0=y; 
bound [ t ] =0 ;  t++;  
bound [ t ] =0 ;  t++;

}
e l s e {

b ound[ t ] =  x-xO; t++;
b ound[ t ] =  y-yO; t++;

>
}
w r i t e  ( o u t , bound , t * s i z e o f ( f l o a t ) ) ;

}
c l o s e ( i n ) ; 
c l o s e ( o u t ) ;

}

# i n c l u d e  " sh a p e . h "

i n t  g e t p t ( s t r u c t  m e n u s  h m e n u [ 6 ] )
{
i n t  i , opt  i o n ; 
c ha r  numb [80] ;
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_s e t t e x t w i n d o w ( 1 , 1 , 2 5 , 8 0 ) ;
_clearscreen(_GCLEARSCREEN); 
d i s p f ( 3 , 1 5 , 2 2 , 6 5 ) ;

f o r ( i = 0 ; i < = 5 ; i + + ) {
_ s e t t e x t p o s i t i o n ( 5 + ( i * 3 ) , 2 1 ) ;

_ o u t t e x t ( h m e n u [ i ] . o p t i o n ) ; 
_ s e t t e x t p o s i t i o n ( 5 + ( i * 3 ) , 2 9 ) ;
_ o u t t e x t ( h m e n u [ i ] . o p t i o n t e x t ) ; 
d i s p f ( 5 + ( i * 3 ) - l , 1 8 , 5 + ( i * 3 ) + l , 2 4 ) ;

}
_s e t t e x t w i n d o w ( 2 3 , 1 , 2 5 , 8 0 ) ;  
do {

_clearscreen(_GWINDOW) ;
_ s e t t e x t p o s i t i o n ( 2 ,21) ;
_ o u t t e x t ( " T y p e  o p t i o n  and p r e s s  E n t e r : " ) ;
g e t s ( n u m b ) ;
o p t i o n  = a t o i ( n u m b ) ;
>

w hi l e  ( ( o p t i o n < l  ) II ( o p t i o n  >6 ) ) ;
_s e t t e x t w i n d o w ( 1 , 1 , 2 5 , 8 0 )  ; 
r e t u r n ( o p t i o n ) ;
}

# i n c l u d e  " s h a p e . h "

c h a r  * g e t p t c ( s t r u c t  menus hmenu[4] )  
{
i n t  i  ; 
c ha r  * t e x t ;

_s e t t e x t w i n d o w ( 1 , 1 , 2 5 , 8 0 ) ;  
_clearscreen(_GCLEARSCREEN); 
d i s p f ( 2 , 1 0 , 2 3 , 6 0 ) ;  
_ s e t t e x t p o s i t i o n ( 4 , 2 4 ) ;
. ou t t ex t ( "SHAPE ANALYSYS PROGRAM"); 
f o r ( i = 0 ; i < 4 ; i + + ) {  
_ s e t t e x t p o s i t i o n ( 8 + ( i * 4 ) ,21) ; 
_ o u t t e x t ( h m e n u [ l ] . o p t i o n ) ; 
_ s e t t e x t p o s i t i o n ( 8 + ( i * 4 ) , 29 ) ;  
_ ou t t ex t ( h me n u  [ i ]  . o p t i o n t e x t ) ; 
d i s p f ( 8 + ( i * 4 ) - l , 1 8 , 8 + ( i * 4 ) + l , 24 ) ;
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}

_s e t t e x t w i n d o w ( 2 4 , 1 , 2 5 , 8 0 ) ;
_clearscreen(_GWIND0W); 

_ s e t t e x t p o s i t i o n ( 1 , 21 ) ;
_ o u t t e x t ( " T y p e  o p t i o n  and p r e s s  E n t e r : " ) ;  
g e t s ( t e x t ) ;
_ s e t t e x t w i n d o w ( l , 1 , 2 5 , 8 0 ) ;  
r e t u r n ( t e x t ) ;
}

# m c l u d e < m a t h . h>
# i n c l u d e " s h a p e . h "

# d e f i n e  s wp ( a , b )  t e mp r = ( a ) ;  ( a ) = ( b ) ;  ( b )= t empr ;  
i n t  i s i g n = - l ;

f f t ( i n t  f l a g )
{
i n t  n n , n o i , i , i m;

i f  ( f l a g = = 0 ) {
_clearscreen(_GCLEARSCREEN);
_ s e t t e x t p o s i t i o n ( 6 , 1 0 ) ;

_ o u t t e x t ( " i n p u t  f i l e  name: " ) ;
s c a n f  ("'/,s" , f  _ in)  ; 

i f  ( ( i n  = open(f_in,O.BINARYI0_RD0NLY)) == - 1 ) {  
p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  " ) ;  

e x i t (0) ;
}

_ s e t t e x t p o s i t i o n ( 8 , 10);
_ o u t t e x t ( " o u t p u t  f i l e  name: " ) ;  

s c a n f  07 , s "  , f  _out )  ;
ou t  = o p e n ( f _ o u t , 0_CREATI0_TRUNCI0_WR0NLYI0_BINARY, 

S_IREADIS_IWRITE);
}
e l s e  {
i n  = o p e n ( " b s p l i n e . out",0_BINARY|0_RD0NLY);
ou t  = o p e n ( " f f t . out",0_CREATI0_TRUNCI0_WR0NLYI0_BINARY,
S_IREADIS_IWRITE);
}

r e a d ( i n , h e a d e r , 2*s i z e o f ( s h o r t ) ) ;  
nn = h e a d e r  [0] ;
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noi  = h e a d e r [1] ;
w r i t e ( o u t , h e a d e r , 2*s i z e o f ( s h o r t ) ) ;

f o r  ( im=0; im<noi ;  im++){ 
r e a d ( i n , d a t a , 2 * n n * s i z e o f ( f l o a t ) ) ;  
f o u r l  ( n n ) ; 
i f ( i s i g n = = - l )

f o r  ( i = 0 ; i < 2* n n ; i++)
d a t a [ i ]  = d a t a [ i ] / ( ( f l o a t ) n n ) ; 

w r i t e ( o u t , d a t a , 2 * n n * s i z e o f  ( f l o a t ) ) ;
}
c l o s e ( i n ) ; 
c l o s e ( o u t ) ;

}

f o u r 1 (nn) 
i n t  nn;
{
i n t  n,mmax,m, j , i s t e p , i ;
f l o a t  wt emp , wr , wpr , w p i , w i , t h e t a ;
doub l e  t e m p r , t e m p i ;

n = nn <<1; 
j = 0 ;
f o r ( i = 0 ; i < n ;  i+=2) { 
i f  ( j > i  ) { 
s w p ( d a t a [ j ]  , d a t a [ i ]  ) ; 
s w p ( d a t a [ j  + l ] , d a t a [ i + l ] ) ;
}
m = n >> 1;
w h i l e  ( m>=2 && j>=m ) {
j -=m;
m>>=1;
}
j +=m;
}
mmax=2;
w h i l e (  n > mmax ) { 
i s t ep=2*mmax;
t h e t a = 6 . 28318530718 / ( i s ign*mmax) ; 
w t em p =s m(0 . 5 * t h e t a )  ; 
wp r = - 2 . 0*wtemp*wtemp; 
wpi = s i n ( t h e t a ) ;
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w r = l .0;  
w i =0 .0;
f o r (  m=0; m<mmax; m+=2) { 
f o r (  i=m; i<n;  i + = i s t e p )  { 
j =i+mmax;
t e m p r = w r * d a t a [ j ] - w i * d a t a [ j + l ]  ; 
t e m p i = w r * d a t a [ j + l ] + w i * d a t a [ j ]  ; 
d a t a [ j ]  = d a t a [ i ]  - t empr ;  
d a t a [ j  + l ]  = d a t a [ i  + l]  -  t empi  ; 
d a t a [ i ] +=t e m p r ; 
d a t a [ i  + l ] + = t e m p i ;
>
wr=(wtemp=wr)*wpr-wi*wpi+wr; 
wi=wi*wpr+wtemp*wpi+wi;
}
mmax=i s t ep ;
>

>

# i n c l u d e < m a t h . h>
# i n c l u d e " s h a p e . h "

# d e f i n e  p i  3.1415926535897932384626

i n t  i n2 ;
c h a r  f _ i n 2 [32] ;
f l o a t  d a t a 2 [ l 0 2 4 ] ;
d oub l e  r h o [ 1 0 2 4 ] , p s i [1024] ;
FILE *fp ;

m a t c h ( i n t  f l a g )
{

i n t  i , n , n 0 , s t p , im;
d oub l e  p h i , d , d d , c c l , c c 2 , c c , b b , a a , a , b , a l p h a , t h e t a ; 
doub l e  s , r o t a t , x , y , x 0 , y 0 ;

_clearscreen(_GCLEARSCREEN);
_ s e t t e x t w i n d o w ( 4 , 1 0 , 2 0 , 7 0 ) ;  
i f  ( f l a g = = 0 ) {

_ s e t t e x t p o s i t i o n ( 4 , 2 ) ;
_ o u t t e x t  ( " i n p u t  f i . l e l  name: ") ; 
s c a n f  ("*/,s" , f  _ in)  ;
i f  ( ( i n  = o p e n ( f _ m , 0 .BINARYI0_RD0NLY)) == - 1 ) {
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p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  " ) ;  
e x i t (0) ;

}
_ s e t t e x t p o s i t i o n ( 6 , 2 ) ;

_ o u t t e x t ( " i n p u t  f i l e 2  name: " ) ;  
s ca n f  ("°/,s" , f  _ in2)  ;
i f  ( ( i n2 = o p e n ( f _ i n 2 , 0_BINARYI0_RD0NLY)) == - 1 ) {  

p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  " ) ;  
e x i t  (0) ;

>
}

e l s e {
_ s e t t e x t p o s i t i o n ( 4 , 2 ) ;
_ o u t t e x t ( "  i n p u t  t h e  f i l e  t o  compare w i t h :  " ) ;  
s c a n f  ( " 4/,s" , f _ i n 2 )  ;

i f  ( ( m 2  = open(f_in2,0_BINARY|0_RD0NLY)) == - 1 ) {  
p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  " ) ;  
e x i t  (0) ;

>
i n = o p e n ( " f f t . o u t " , 0_BINARYI0_RD0NLY);

>

f p = f o p e n ( " m a t c h . o u t " , " a " ) ;

r e a d ( i n , h e a d e r , 2*s i z e o f ( s h o r t ) ) ;  
r e a d ( i n 2 , h e a d e r , 2*s i z e o f ( s h o r t ) ) ;  
n= h e a d e r  [0] ; 
rho [ 0 ] =0 . 0 ;  
p s i  [ 0 ] =0 . 0 ;  

f o r ( i m = 0 ;  i m C h e a d e r [ l ] ; im++){ 
r e a d ( i n , d a t a , 2* n * s i z e o f ( f l o a t ) ) ;  
r e a d ( i n 2 , d a t a 2 , 2 * n * s i z e o f ( f l o a t ) ) ;  
aa  =0 . 0 ;  
bb =0 . 0 ;  
r h o [ 0 ] =0 . 0 ;  
p s i  [ 0 ] =0 . 0 ;
f o r  ( i =2; i<2*n;  i+=2) {
a= ( doub l e )  d a t a [ i ] * d a t a 2 [ l ] + d a t a [ i  +1] * d a t a 2 [ i  +1] ;
b= ( doub l e )  d a t a [ i ] * d a t a 2 [ i  + l ] - d a t a [ i  + l ] * d a t a 2 [ i ]  ;
r h o [ i / 2 ] = s q r t ( a * a + b * b ) ;
i f  ( a==0.0 && b!= 0 . 0 )  p s i  [ i / 2 ] = p i / 2 .0;
e l s e  i f  ( a== 0 . 0  && b==0.0 ) p s i  [ i / 2 ] =0. 0 ;
e l s e  p s i [ i / 2 ] = a t a n ( b / a ) ;
bb= bb+ ( doub l e )  ( d a t a 2 [ l ] * d a t a 2 [ l ] + d a t a 2 [ i + l ] * d a t a 2 [ i + l ] ) ;  
aa= aa+ (doub l e )  ( d a t a [ i ] * d a t a [ i ] + d a t a [ i + l ] * d a t a [ i + 1 ] ) ;
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}
d=9999999.9;
/ *  f o r ( n0 = 0 ;  nO<n; nO++){ a l l  boundary  s t a r t  a t  o r i g i n a l  ( 0 , 0 )
a lpha=2 . 0 * p i * ( ( d o ub l e ) n O ) / ( (double )  n) ; * /
n0=0 ;

a l p h a = 0 ; 
c c l = 0 . 0 ;  cc2=0.0 ;  
f o r ( i = l ; i < n ; i++) {
c c l =  c c l  + r h o [ 1 ] * s i n ( p s i [ i ] + i * a l p h a ) ; 
cc2= cc2 + r h o [ 1 ] * c o s ( p s i [ i ] + i * a l p h a ) ;
}
i f  ( cc2 == 0 . 0  && c c l  !=0.0)  ph i  = - p i / 2 . 0 ;  
e l s e  i f  ( cc2==0.0 && cc l == 0 . 0  ) p h i = 0 . 0 ;  
e l s e  phi  = a t a n ( - c c l / c c 2 ) ; 
c c = 0 .0;
f o r ( i = l ;  i<n;  i++)
cc= cc+ rho [ i ] * c o s ( p s i [ l ] + i * a l p h a + p h i ) ; 
s = cc / bb ;  
i f (  s < 0 ) { 
s = - s ; 
cc = - c c ;
}
dd=0 .0;
f o r ( i = 2 ; i<2*n;  i+=2){
t h e t a = ( ( d o u b l e ) i / 2 . 0 ) * a l p h a + p h i ;
x 0 = d a t a 2 [ i ] * c o s ( t h e t a ) - d a t a 2 [ i  + l ] * s i n ( t h e t a )  ;
y 0 = d a t a 2 [ i + l ] * c o s ( t h e t a ) + d a t a 2 [ l ] * s i n ( t h e t a ) ;
x= s*x0;  y= s*y0;
dd = dd + s q r t ( ( d a t a [ i ] - x ) * ( d a t a [ i ] - x ) +
( d a t a [ i + l ] - y ) * ( d a t a [ i + l ] - y ) ) ;
>
i f ( dd < d ) {
/*  s tp=n0;  */  
r o t a t  = p h i * 1 8 0 . 0 / p i  ; 
d = d d ;
}
/ *  } * /

f p r i n t f ( f p , " \ n " ) ; 
f p r i n t f  ( f p , " r o t a t e  = °/0l f  s c a l e  = °/0l f \ n "  , r o t a t , s)  ; 
f p r i n t f  ( f p , "minimum = °/0l f \ n " , d ) ;

}
c l o s e ( m )  ; 
c l o s e ( i n 2 ) ; 

f c l o s e ( f p ) ;
}
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# i n c l u de < ma t h . h>
# i n c l u d e " s h a p e . h"

# d e f i n e  swp(a , b )  t e m p r = ( a ) ;  ( a ) = ( b ) ;  ( b )= t empr ;  
f l o a t  d a t a l [ 1 0 2 4 ] , d a t a 2 [ l 0 2 4 ] , d a t a 3 [ 1 0 2 4 ] ;
FILE *fp;

sym()
{
i n t  nn,  n o i , 1 , 1 m, i s i g n ; 
f l o a t  d,  sum;

in  = o p e n ( " b s p l i n e . o u t " , 0 .BINARY I0_RD0NLY); 
f p = f op e n ( " s ym. o u t " , " a " ) ;

r e a d ( i n , h e a d e r , 2 * s i z e o f ( s h o r t ) ) ;  
nn = h e a d e r  [0 ] ;  
noi  = h e a d e r  [ l ] ;

f o r  ( im=0; im<noi ;  im++){ 
r e a d ( i n , d a t a , 2 * n n * s i z e o f ( f l o a t ) ) ;  
f o u r 2 ( n n , - l ) ;

f o r  ( i = 0 ; i<2*nn; i++)
d a t a 2 [ i ] = d a t a l [ i ] ; 

f o u r 2 ( n n , 1 ) ;  
f o r  ( i = 0 ; i < 2* nn ; i++)

d a t a 3 [ i ]  = d a t a l [ i ] ;
sum=0;
f o r ( i = l ;  i<nn;  i++){  
d= d a t a 2 [ 2 * i ] + d a t a 3 [ 2 * i ]  ; 
i f (  d> 0) sum+=d; 
e l s e  sum=sum-d;
>

f p r i n t f  ( s t d e r r  , "smy = #/ , . 4f  " , s u m) ;  
f p r i n t f  ( f p ,  "0/„d °/o.4f \ n " , i m , s u m ) ;
}
c l o s e ( i n ) ; 
f c l o s e ( f p )  ;

>
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f o u r 2 ( i n t  nn,  i n t  i s i g n )
{
i n t  n , m m a x , m , j , i s t e p , i ;
f l o a t  wtemp, w r , wp r , w p i , w i , t h e t a ;
double  t e m p r , t e m p i ;

f o r ( i = 0 ;  i<2*nn;  i++) d a t a l [ i ] = d a t a [ i ]
n = nn <<1;
j=0 ;
f o r ( i = 0 ; i < n ;  i+=2) {
i f  ( j > i  ) {
s w p ( d a t a l  [ j ]  , d a t a l  [ i ]  ) ;
s wp ( da t a l  [j + l] , d a t a l  [ i  + l]  ) ;
>
m = n >> 1;
w h i l e  ( m>=2 && j>=m ) {
J~=m; 
m > > = 1 ;

}
j  +=m;
}
mmax=2;
w h i l e ( n > mmax ) { 
is tep=2*mmax;
t h e t a = 6 . 28318530718/ ( i s i gn*mmax) ;
wt emp=s i n ( 0 . 5 * t h e t a ) ;
w pr =- 2 . 0*wtemp*wtemp;
wpi = s m ( t h e t a )  ;
w r = l .0;
wi = 0 .0;
f o r (  m=0; m<mmax; m+=2) { 
f o r (  i=m; i<n;  i + = i s t e p )  { 
j = i+mmax;
t e m p r = w r * d a t a l [ j ] - w i * d a t a l [ j + l ] ; 
t e mpi =wr*da t a l  [j  + l ]  +wi *da t a l  [ j ] ; 
d a t a l [ j ] = d a t a l [ i ]  - t e m p r ; 
d a t a l  [j  + l ] = d a t a l [ i  + l ]  - t e m p i ; 
d a t a l [ l ] + = t e m p r ; 
d a t a l [ i + l ] +=t e m p i ;
>

wr=(wtemp=wr)*wpr-wi*wpi+wr; 
wi=wi*wpr+wtemp*wpi+wi;
}
mmax=i s t ep ;
}



f o r ( i = 0 ;  i < 2 * n n ;  i + + )  d a t a l [ 1 ] = d a t a l [ 1 ] / ( ( f l o a t ) n n ) ; 
}

# i n c l u d e " s h a p e . h "

# d e f i n e  BRIGHT.WHITE 15
# d e f i n e  RED 4
# d e f i n e  WINDOW.SIZE 14

s e e r l ( i n t  f l a g )
{
FILE * i n p u t ;
c h a r  t e x t  [80] ;
i n t  l i ne_number =0 ;
i n t  s av e _ c o l o r ;
s t r u c t  r c c o o r d  s a v e _ p o s i t i o n ;

_clearscreen(_GCLEARSCREEN); 
s a v e _ c o l o r = _ g e t c o l o r ( ) ;
i f ( ( i n p u t = f o p e n ( " m a t c h . o u t " , "r"))==NULL){ 
_ s e t t e x t p o s i t i o n ( 3 , 10);
_ o u t t e x t ( " E r r o r  opening  t h e  f i l e " ) ;

>
e l s e  {
_clearscreen(_GCLEARSCREEN);
_s e t t e x t w i n d o w (5,  1 , 20 , 80)  ;
_set textcolor (BRIGHT_WHITE);
w h i l e ( f g e t s ( t e x t , s i z e o f ( t e x t ) , i n p u t ) ){
_ o u t t e x t ( t e x t ) ;
i f  (++line_number*/.WIND0W_SIZE==0){ 
_ s e t t e x t c o l o r ( R E D ) ; 
s a v e _ p o s i t i o n = _ g e t t e x t p o s i t i o n ( ) ;
_s e t t e x t w i n d o w (5,  1 , 2 2 , 8 0 ) ;
_s e t t e x t p o s i t  i o n ( 2 2 , 1 ) ;
_ o u t t e x t ( " P r e s s  any key t o  c o n t i n u e " ) ;  
_set textcolor(BRIGHT_WHITE); 
do
g e t c h ( ) ; 
w h i l e ( k b h i t ( ) ) ;

_ s e t t e x t p o s i t i o n ( 2 2 , 1 ) ;
_ o u t t e x t (" " ) ;
_s e t t e x t w i n d o w ( 5 , 1 , 2 0 , 8 0 ) ;
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_ s e t t e x t p o s i t i o n ( s a v e _ p o s i t i o n . row, 
s a v e _ p o s i t i o n . c o l ) ;
}
}
f c l o s e ( i n p u t ) ;
>

_ s e t t e x t w i n d o w ( 1 , 1 , 2 5 , 8 0 ) ;  
_ s e t t e x t c o l o r ( s a v e _ c o l o r ) ;
_s e t t e x t p o s i t i o n ( 25 , 10 ) ;
_ o u t t e x t ( " P r e s s  E n t e r  t o  c o n t i n u e " ) ;  
g e t c h a r Q  ;
}
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A p p e n d ix  F: T h e  P r o g r a m  for S u rfa ce  M e a su r e m e i

/ *  Name: m e a s u r f . c  compute s u r f a c e  Gaus s i an  c u r v a t u r e  and mean c u r v a t u r e
* D e s c r i p t i o n :  Thi s  programm computes  t h e  Gaus s i an  c u r v a t u r e  and mean
* mean c u r v a t u r e  of  a s u r f a c e .
* The s u r f a c e  i s  a B - s p l i n e s  s u r f a c e  i t  i s  g e n e r a t e d  t h r ou g h
* a s e t  of  s u r f a c e  t r a c e  ( c o n t r o l )  p o i n t s .  The c o n t r o l  p o i n t s
* a r e  o b t a i n e d  from a sequence  of  2-D image s l i c e s .  So d u r i n g
* t h e  comput ing p r o c e d u r e ,  you a r e  a sked  t o  g i v e  t h e  t h i c k n e s s
* between t h e  s l i c e s .  The i n p u t  of  t h e  programm i s  t h e  con t ro l
* p o i n t s  ( f l o a t  mo r ma t ) . Accord ing  t o  t h e  c o n t r o l  p o i n t s ,  th<
* program w i l l  p roduce  a B - s p l i n e s  s u r f a c e .  Then i t  w i l l  compui
* t h e  Gaus s i an  c u r v a t u r e  (K) and mean c u r v a t u r e  (H) a t  each
* p o i n t  of  t h e  s u r f a c e .  There  a r e  t o t a l l y  ml*m2 sample p o i n t s
* on t h e  s u r f a c e .  Accord ing  t h e  s i g n  of  K and H, t h e  s u r f a c e  :
* dev i ded  i n t o  f o u r  r e g i o n s :  e l l i p i c  ( w i t h  g r a y  l e v e l  250 ) ,
* p a r a b o l i c  ( wi t h  g r a y  l e v e l  200 ) , p l a n a r  ( w i t h  g r a y  l e v e l
* 150 ) ,  and h y p e r b o l i c  ( w i t h  g r ay  l e v e l  90 ) .
* Useage:  measur f  c o l  row
*

*
*
*

* /
# i n c l u d e < s t d i o . h>
# m c l u d e < s t d l i b . h>
# m c l u d e < f  c n t l  .h>
# i n c l u d e < s y s \ t y p e s . h>
# m c l u d e < s y s \ s t a t  .h>
# i n c l u d e < m a t h . h>

u n s i g n ed  c h a r  b u f f  [8192] ;  
f l o a t  c u r v a t [ 5 1 2 ] ;  
double  r o u t  [64] ;  
u n s ig n e d  c h a r  s u r f a c e [1024] ;
f l o a t  t e m p x [ 6 4 ] , t e m p y [ 6 4 ] , d l t e m p x [ 6 4 ] , d l t e m p y [ 6 4 ] , d 2 t e m p x [ 6 4 ] , d 2 t e m p y [ 6 4 ] ;
i n t  x t [64] , y t  [64] ;
c h a r  f _ i n [ 3 2 ] ,  f _ o u t [ 3 2 ] ;
u n s i g n e d  s h o r t  h e a d e r [2] ;

vo i d  k n o t ( i n t  n,  i n t  c ,  i n t  * t r ) ;
vo i d  d b a s i s ( i n t  n,  i n t  c,  f l o a t  v,  i n t  * t c ,  f l o a t  * b a s , f l o a t  * d l b a s ,  
f l o a t  * d 2 b a s ) ;

m a i n ( i n t  a r g c ,  c ha r  **argv)

294



i n t  k l=4 ,k2=4;  
i n t  p l , p 2 ;
i n t  i n , o u t , o u t 2 , o u t 3 ; 
i n t  1 , j , k , m , n , t l , t 2 ;  
i n t  e l l , p a r , p l a , h y p ;
f l o a t  a , b , u , v , xO, yO, zO, mb, nb , d lmb, d l n b , d2mb, d 2 n b , d e l t a l , d e l t a 2 ; 
f l o a t  x u l , y u l , z u l , x v l , y v l , z v l , x u v , y u v , z u v , x u 2 , y u 2 , z u 2 , x v 2 , y v 2 , z v 2 ; 
double  E,F,G,L,M,N;
double  f b , f t , f t h , m a x , mi n , mean, s t d , k t , sum, h ,maxh, mi nh , meanh, s d v , s d v h , sum2; 
double  sumh, s u m h 2 , m a x e l l , m i n e l l , s u m e l l , s u m e l l 2 , m e a n e l l , s d v e l l , sumpar2; 
double  maxhyp,minhyp, sumhyp, sumhyp2, meanhyp, s dv h y p , maxpar , m i n p a r , sumpar ; 
double  me anpa r , s d v p a r , m a x p l a , m i n p l a , s u m p l a , s u m p l a 2 , me a n p l a , s dvp l a ;  
f l o a t  e l l f , p a r f , p l a f , h y p f , t h i c k ;

i f  ( a r g c !=3){ 
p n n t f (" u sage :  measur f  c o l  row \ n " ) ;  
e x i t ( 1 ) ;

}
p i  = a t o i ( a r g v [ 1 ] ) ;  
p2 = a t o i ( a r g v  [ 2 ] ) ;  
p r i n t f ( " i n p u t  f i l e  n a m e \ n " ) ; 
s ca n f  ( " 0/,s" , f  _ in)  ;
i f  ( ( i n  = o p e n ( f _ i n , 0_BINARYI0_RD0NLY)) == - 1 ) {  

p r i n t f ( " o p e n  f a i l e d  on i n p u t  f i l e  " ) ;  
e x i t (0) ;

>

p r i n t f ( " o u t p u t  f i l e  name\n")  ; 
s can f  ("7,s" , f  _out )  ;
out  = o p e n ( f _ o u t , O.CREATIO.TRUNCIO.WRONLYIO.BINARY, S.IREAD|S. IWRITE);

p r i n t f ( " t h i c k n e s s  = " ) ;  
s can f  ( " #/0f "  , &thick)  ;

r e a d ( m , h e a d e r  , 2 * s i z e o f  ( s h o r t )  ) ; 
n = h e a d e r  [0] ;  
m = h e a d e r  [ l ] ;
r e a d ( i n , b u f f , 2 * n *m * s i z e o f ( c h a r ) ) ;
n - - ;
m--;
out2 = open("measf.dat",O.CREATIO.TRUNCIO.WRONLYIO.BINARY,

S. IREAD|S.IWRITE);
° u t 3  = o p e n C m e a s . d a t "  , O.CREAT I O.WRONLY I O.BINARY , S.IREAD I S.IWRITE) ; 
e l l= p a r= h y p =p l a = 0 ;
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sum = sum2= sumh = sumh2=0.0;  
sumel l=sumel l2=sumhyp=sumhyp2=0.0; 
sumpar=sumpar2=sumpla=sumpla2=0.0;  
max =maxh= maxel l  =maxhyp = - 9 9 9 9 . 0 ;  
maxpar=maxpla=-9999.0; 
min = minh= m i n e l l  = minhyp =9999.0 ;  
mmpar=minpla=9999 .0; 
f o r ( i = 0 ; i<=n+kl ; i++) x t [ i ] = 0 ;  
k n o t ( n , k l , x t ) ;
f o r ( j = 0 ; j < =m+ k2 ; j ++)  y t [ j ] = 0 ;  
k n o t ( m , k 2 , y t ) ;
f  o r  ( t 2=0 ; t 2<p2; t 2++)  p r i n t f  ("°/,c" ,2) ; 
p r i n t f ( " \ n " ) ; 
d e l t a l = n - k l + 2 .0; 
de l t a2=m- k2+2 .0;
f o r ( v = 0 . 0 , t 2 = 0 ; v < d e l t a 2 * ( 1 . 0 + 1 , 0 / ( 9 * p 2 - 9 . 0 ) ) ; v + = d e l t a 2 / ( p 2 - 1 . 0 ) , t 2 + + ) {  

f o r ( j = 0 ; j < = m + k 2 ; j ++){ 
tempy [ j ] = 0 . 0 ;  
d l t empy [j ] =0 .0 ; 
d2tempy [ j ] = 0 . 0 ;
>

d b a s i s ( m , k 2 , v , y t , t empy , d l t e m p y , d2tempy) ;  
f o r ( u = 0 . 0 , t l = 0 ; u < d e l t a l * (1 + 1 . 0 / (9*p1 - 9 . 0 ) ) ;  u + = d e l t a l / ( p 1 - 1 . 0 )  , t l + + ) {  

f o r ( 1 = 0 ; i< =n+ k l ; i + + ) { 
tempx [ i ] =0.0;  
dl t empx [ i ] =0.0;  
d 2 t e m p x [ l ] =0.0;
}
d b a s i s ( n , k l , u , x t , t empx, d l t e mp x , d 2 t e m p x ) ;

x u l = y u l = z u l = 0 .0;  
x v l = y v l = z v l = 0 .0;  
xuv=yuv=zuv=0.0;  
xu2=yu2=zu2=0.0;  
xv2=yv2=zv2=0.0;  

f o r ( j = 0 ; j < = m ; j + + ) {  
f o r ( i = 0 ; i < = n ; i + + ) {

x 0 = ( f l o a t ) b u f f  [ 2 * j * ( n + 1 ) + 2 * i ] ; 
y 0 = ( f l o a t ) b u f f  [ 2 * j * (n+1)+2*i + l ] ; 
z 0 = t h i c k * j ; 

mb=tempy[ j ] ;  nb=t empx[ i ] ;  
dlmb=dl t empy[ j ]  ; d lnb=dl t empx [ i ] ; 
d2mb=d2tempy[j]  ; d2nb=d2tempx [ l ]  ;

xul  = x0*dlnb*mb + x u l ;  
yul  = y0*dlnb*mb + y u l ;
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z u l = z0*dlnb*mb + z u l ;
xvl = x0*dlmb*nb + x v l ;
yv l = y0*dlmb*nb + y v l ;
z v l = z0*dlmb*nb + z v l ;
xuv = x0*dlnb*dlmb + xuv
yuv = y0*dlnb*dlmb + yuv
zuv = z0*dlnb*dlmb + zuv
xu2 = x0*d2nb*mb + x u 2 ;
yu2 = y0*d2nb*mb + yu2;
zu2 = z0*d2nb*mb + z u 2 ;
xv2 = x0*d2mb*nb + x v 2 ;
yv2 = y0*d2mb*nb + y v 2 ;
zv2 = z0*d2mb*nb + z v 2 ;

>

}
E = ( d o u b l e ) x u l * x u l + y u l * y u l + z u l * z u l ;
F = ( doub l e )  x u l * x v l + y u l * y v l + z u l * z v l ;
G = ( doub l e )  x v l * x v l + y v l * y v l + z v l * z v l ;
L = ( doub l e )  x u l * y v l * z u 2 + x v l *y u 2 * z u l + x u 2 * z v l * y u l -x u 2 * y v l *z u l -  

y u 2 * z v l * x u l - z u 2 * y u l * x v l ;
M = (doub l e )  x u l * y v l * z u v + x v l *y u v * z u l + x u v * z v l * y u l -x u v * y v l *z u l -  

y u v * z v l * x u l - z u v * y u l * x v l ;
N = ( doub l e )  x u l * y v l * z v 2 + x v l *y v 2 * z u l + x v 2 * z v l * y u l -x v 2 * y v l *z u l -  

y v 2 * z v l * x u l - z v 2 * y u l * x v l ;
f b  = E*G-F*F; 
f t  = L*N-M*M; 
f t h  = E*N+G*L-2*F*M;
i f  ( f a b s ( f b ) < = 0 . 0000000000001 &&fabs ( f t )<= 0.0000000000001)

k t  =0 . 0 ;
e l s e  i f  ( f a b s ( f b ) < = 0 .0000000000001)  { 

k t = 9 9 9 9 .99;  
p r i n t f (" fb=0 \ n " ) ;

}
e l s e  k t = f t / ( f b * f b ) ; 
c u r v a t [ t 1 ] = ( f l o a t )  k t ; 
sum + = k t  ; 
sum2 +=k t *k t ;  
i f  ( k t  < min) min = k t ; 
i f  ( k t  > max) max = k t ;
i f  ( f a b s ( f b ) < = 0 .000000001 && f a b s ( f t h ) <=0.000000001)  h = 0 . 0 ;  
e l s e  i f  ( f a b s ( f b ) < = 0 . 000000001 ) { 

h=9999 .99;  
p r i n t f (" fb=0 \ n " ) ;

}
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e l s e  h = f t h / ( 2 * f b * s q r t ( f b ) ) ;  
i f  ( h > maxh) maxh=h; 
i f  ( h < minh ) minh=h;

sumh+=h;
sumh2+=h*h; 
i f  ( k t  >0.0001){  

s u r f a c e [ t 1]=250; 
s u m e l l + = k t ; 
s u m e l l 2 + = k t * k t ; 
i f ( k t > m a x e l l )  ma xe l l =k t ;  
i f ( k t < m i n e l l )  m i n e l l = k t ;

e l l + + ;
}
i f  ( k t < - 0 .0001) { 

s u r f a c e [ t 1]=90; 
sumhyp+=kt ; 
sumhyp2+=kt*kt ; 
i f ( k t >maxhyp)  maxhyp=kt ; 
i f ( k t <mi nh y p )  mi nhyp=kt ;

hyp++;
>

i f  ( f a b s ( k t )  <= 0.0001 && f a b s ( h ) >0.006 ){ 
s u r f a c e [ t l ] =200;

sumpar+=h; 
sumpar2+=h*h; 
i f ( h>maxpar )  raaxpar=h; 
i f ( h< mi n p a r )  minpar=h;

p a r + + ;
}
i f  ( f a b s ( k t )  <= 0 .0001 && f a b s ( h )  <= 0 . 0 0 6 ) {  

s u r f a c e  [ t l ] =150;
sumpla+=h; 
sumpla2+=h*h; 
i f ( h>maxp l a )  maxpla=h;  
i f ( h < mi n p l a )  minpla=h;

p l a + + ;
}

}
w r i t e ( o u t , c u r v a t , t l * s i z e o f ( f l o a t ) ) ; 
w r i t e ( o u t 2 , s u r f a c e , t l * s i z e o f ( c h a r ) ) ;  

p r i n t f  ("°/,c" , 1) ;
}

mean = sum/ (doubl e )  ( t l * t 2 )  ;
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meanh = sumh/ (double)  ( t l * t 2 ) ;
sdv = ( sum2- ( ( f l o a t ) t l * t 2 ) * m e a n * m e a n ) / ( ( f l o a t )  t l * t 2 ) ;  
sdv = s q r t ( s d v ) ;
sdvh = ( sumh2- ( ( f l o a t ) t l * t 2 ) * m e a n h * m e a n h ) / ( ( f l o a t ) t l * t 2 )  ; 
sdvh = s q r t ( s d v h ) ;  
e l l f  = ( f l o a t ) e l l / ( t l * t 2 ) ;  
meanel l=0;  s d v e l l =0 ;  
i f ( e l l !=0){ 

me ane l l  = s u m e l l / ( ( f l o a t ) e l l ) ;
s d v e l l  = ( s u m e l l 2 - ( ( f l o a t ) e l l ) * m e a n e l l * m e a n e l l ) / ( ( f l o a t )  e l l ) ;  

s d v e l l =  s q r t ( s d v e l l ) ;
}
p a r f  = ( f l o a t )  p a r / ( t l * t 2 ) ;  
meanpar=0;  sdvpar=0;  
i f ( p a r !=0){

meanpar  = s u m p a r / ( ( f l o a t ) p a r ) ;
sdvpar  = ( s u mp a r 2 - ( ( f l o a t ) p a r ) * m e a n p a r * m e a n p a r ) / ( ( f l o a t )  p a r ) ;  
sdvpar= s q r t ( s d v p a r ) ;

>
p l a f = ( f l o a t )  p l a / ( t l * t 2 ) ;  
meanpla=0;  sdvpla=0;  
i f ( p l a !=0){

meanpla = s u m p l a / ( ( f l o a t ) p l a ) ;
s dv p l a  = ( s u m p l a 2 - ( ( f l o a t ) p l a ) * m e a n p l a * m e a n p l a ) / ( ( f l o a t )  p l a ) ;  
sdvpla= s q r t ( s d v p l a ) ;

}
hypf  = ( f l o a t )  h y p / ( t l * t 2 ) ;  
meanhyp=0; sdvhyp=0;  
i f ( h y p ! = 0 ) {

meanhyp = sumhyp/ ( ( f l o a t ) hyp) ;
sdvhyp = ( sumhyp2- ( ( f l o a t ) hyp)*meanhyp*meanhyp) / ( ( f l o a t ) hyp) ;  
sdvhyp= s q r t ( s d v h y p ) ;

}
/  *
f p r i n t f ( f p , "  min max mean
s t d v  p e r c t  \ n " ) ;
f p r i n t f ( f p , " ======================================================
========================= \ n " ) ;
f  p r i n t f  ( f p , "Globe K 7.. lOf 7 . 1 0 f  7 . 10f 1 0 f \n "  , mi n ,max , mean,  sdv) ;
f  p r i n t f  ( f p , "Globe H 7,. lOf 7 . 1 0 f  7 . 1 0 f  7 1 0 f \ n "  ,minh,maxh,meanh,  sdvh) ;
f  p r i n t f  ( f p , " E l l i p  K 7, .10f 7, .10f 7, .10f 7, .10f
7, f \n" , m i n e l l , max e l l , m e a n e l l , s d v e l l , e l l f ) ;
f  p r i n t f  ( f p , "Parab H 7, .10f 7, .10f 7, .10f 7, .10f
y.f \ n "  , mmpar  ,maxpar , meanpar , s dvpar  , p a r f ) ;
f p r i n t f  ( f p ,  " P l a n a r  H 7,. lOf 7 . 1 0 f  7, .10f 7, .10f
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/ *  Min Glob H * /

#/0f  \ n "  , mi np l a , maxp l a , meanp l a ,  s d v p l a , p l a f ) ; 
f p r i n t f ( f p ,  "Hyper K l . l O f  1  A O f  '/t . 10 f  7, .10f
#/,f \ n "  , minhyp ,maxhyp ,meanhyp , sdvhyp , hypf )  ;
* /

f o r ( i = 0 ; i < 2 8 ; i + + )  r o u t [ 2 * i ] =53 . 0+( d o u b l e ) i ; 
r o u t [ l ] = (double)  min; / *  Min Globe K * /  
r o u t [ 3 ] = (double)  max; 
r o u t [ 5 ] = (double)  mean; 
r o u t [ 7 ] = (double)  sdv;  
r o u t [ 9 ] = (double)  minh; 
r o u t  [11] = 
r o u t [13]= 
r o u t  [15] = 
r o u t [17]= 
r o u t [19]= 
r o u t  [21] = 
r o u t [23]= 
r o u t [25]= 
r o u t [27]= 
r o u t [29]= 
r o u t [31]= 
r o u t [33]= 
r o u t [35]= 
r o u t [37]= 
r o u t  [39] = 
r o u t  [41] = 
r o u t  [43] = 
r o u t [45]= 
r o u t [47]= 
r o u t [49]= 
r o u t  [51] = 
r o u t [53]= 
r o u t [55]=
w r i t e ( o u t 3 , r o u t , 5 6 * s i z e o f ( d o u b l e ) ) ;  
c l o s e ( i n ) ; 
c l o s e ( o u t ) ; 
c l o s e ( o u t 2 ) ; 
c l o s e ( o u t 3 ) ; 
e x i t (0) ;

double maxh;
double meanh;
double s d v h ;
double m i n e l l ; / *  E l l i p  K * /
double m a x e l l ;
double meane l l
double s d v e l l ;
double e l l f ;
double m i n p a r ; / *  Parab  H *
double ma xpa r ;
double meanpar
double s d v p a r ;
double p a r f ;
double mi npla /*  P l a n a r  H
double m a x p l a ;
double meanpla
double s dv p l a ;
double p l a f ;
double mi nhyp; / *  Hyper  K */
double maxhyp;
double meanhyp
double sdv h y p ;
double h y p f ;

v o i d  k n o t ( i n t  n,  i n t  c ,  i n t  * t r  )
{
i n t  i ;

300



f o r ( i = c ; i < = n + c ; i  + + ){ 
i f ( i < = n )  t r [ i ] = i - c + l ;  
e l s e  t r [ i ] = n - c + 2 ;
}
}

v o i d  d b a s i s ( i n t  n , i n t  c , f l o a t  u , i n t  * t r ,  f l o a t  * b a s , f l o a t  * d l b a s , f l o a t  *d2ba: 
{
i n t  i , j , w ;  
f l o a t  d;

f o r ( i = 0 ; i < n + c ; i  + + ){ / *  t h e  f i r s t  l e v e l  of  z e r o  d e r i v a t i v e  * /
b a s [ i ] =0 . 0 ;
i f ( u > = ( f l o a t )  t r [ i ]  && u< ( f l o a t )  t r [ i + l ] )  
ba s  [ i ] =1 . 0 ;
}
i f ( u = = ( f l o a t )  t r [ n + c ] )  b a s [ n + c ] =1. 0 ;
f o r ( i = 0 ; i < n + c - 1 ; i + + ) { /*  t h e  f i r s t  l e v e l  of  t h e  f i r s t  d e r i v a t i v e  * /
i f ( ( t r [ i + 2 - l ] - t r [ i ] ) ! = 0 )
d = b a s [ i ] / ( ( f l o a t ) ( t r [ i + 2 - l ] - t r [ i ] ) ) ;
e l s e  d=0 . 0 ;
i f ( ( t r  [ i  + 2 ] - t r [ i  + l ] ) !=0)
d - = b a s [ i + l ] / ( ( f l o a t ) ( t r [ i + 2 ] - t r [ i + l ] ) ) ;
d l b a s [ i ] = d ;
>
f o r ( i = 0 ; i < n + c - 2 ; i + + ) { /*  t h e  f i r s t  l e v e  of  t h e  second d e r i v a t i v e  * /
i f ( ( t r  [ i + 3 - 1 ] - t r [ i ] ) !=0)
d = 2 . 0 * d l b a s [ i ] / ( ( f l o a t ) ( t r [ i + 3 - 1 ] - t r [ i ] ) ) ;
e l s e  d=0. 0 ;
i f ( ( t r  [ i + 3 ] - t r  [ i  + l ] ) !=0)
d - = 2 . 0 *d l ba s  [ i  + l ] / ( ( f l o a t ) ( t r [ i + 3 ] - t r [ i  + l ] ) ) ; 
d 2 b a s [ l ] = d ;
>
f o r ( i = 0 ; i < n + c - 1 ; i + + ) { /*  t h e  second l e v e l  of  t h e  z e r o  d e r i v a t i v e  * /  
i f ( b a s [ i ] !=0)
d = ( u - t r [ i ] ) * b a s [ i ] / ( ( f l o a t ) ( t r [ i + 2 - 1 ]  -  t r [ i ] ) ) ;  
e l s e  d=0. 0 ;  
i f ( b a s [ i + l ] !=0)
d + = ( t r [ i + 2 ] - u ) * b a s [ i + l ] / ( ( f l o a t ) ( t r [ i + 2 ] - t r [ i + l ] ) ) ;  
b a s [ i ] = d ;
}
f o r ( i = 0 ; i < n + c - 2 ; i + + ) { /*  t h e  second l e v e l  of  t h e  t h e  d e r i v a t i v e  * /  
i f ( ( t r  [ i + 3 - l ] - t r [ i ] ) ' = 0 )
d = ( b a s [ i ] + ( u - t r [ i ] ) * d l b a s [ l ] ) / ( ( f l o a t ) ( t r [ i + 3 - 1 ] - t r [ l ] ) ) ;
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