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CHAPTER ONE: SUMMARY.



1. SUMMARY

The present study aimed to evaluate two screening strategies, single strand conformation 

polymorphism (SSCP) and amplification mismatch detection (AMD) analysis, for the 

detection of point mutations in the retinoblastoma gene (RB). SSCP was optimised and 

applied to exons 12-22 of the RB gene which constitute the most important functional 

domain. Leukocyte DNA from 20 patients with bilateral retinoblastoma (Rb), tumour 

DNA from 40 patients with bladder carcinoma and tumour DNA from 39 patients with 

breast carcinoma were subjected to SSCP analysis. SSCP band shifts were found in 4 of 

20, 1 of 40 and none of 39 patients respectively. AMD was optimised and applied to 

exons 12-16 of the RB gene and also to reverse-transcriptase PCR in the 20 patients with 

bilateral Rb. Cleavage was found in 2 patients: one was found in a cDNA segment and 

the other was found in genomic DNA. Neither of these patients corresponded to the 4 

with SSCP band shifts. Thus in total, 6 patients with Rb and one with bladder carcinoma 

had mutations detected and proof was sought by sequencing.

Amplification of segment C of the cDNA of patients with bilateral Rb has revealed that 

patient EAS showed an additional band indicating either a deletion or a splice mutation. 

Analysis of exon 17 and the flanking intron of the same patient with AMD showed a 

cleavage with hydroxylamine. Sequencing of the exon revealed that the mutation is a C 

substitution of the A at position -2 of the acceptor site of intron 16, impairing normal 

splicing of the RNA. The mutation results in skipping of exon 17, because the short 

transcript band on the agarose gel was approximately 196 bp shorter than the original 

band and exon 17 was 196 bp in size. This leads in turn to the production of a truncated 

RB protein. By analogy to other published mutations, this aberrant, destabilised protein 

might not be able to bind the El A oncoprotein. In addition, the mutant RB protein may 

fail to complex with S V40 large T antigen.
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Analy sis of segment C of the cDNA from patient PC with bilateral Rb showed a cleavage 

with hydroxylamine reaction. Sequencing of the segment revealed the mutation to be a T 

-»G transversion at nucleotide position 1587 within exon 16 causing a substitution of 

histidine to glycine. The missense mutation may or may not have a functional effect. 

However, this residue lies within an RB domain (aminoacids 393-572) identified recently 

by in vitro deletion mutants to be required for oncoprotein binding. This mutation creates 

a restriction site for Nde I.

Sequencing of exon 21 from patient MH who had an SSCP band shift, revealed that an 

insertion of a G at nucleotide position 2251 within exon 21 resulted in a novel stop codon 

(TAA) at codon 719 (nucleotide position 2295) within exon 21 thus deleting the domain 

interacting with the SV40 T antigen. The translated protein is most probably too short to 

be functional. To confirm whether the observed SSCP pattern in the region of exon 21 of 

the RB gene was a new germ line mutation or inherited from one of the parents, 

heteroduplex analysis of the parents revealed either the mutation was de novo or one of 

the parents had germ line mosaicism. In addition, the change creates a restriction site for 

the restriction enzyme Fokl.

Another mutation detected (from patient AR) by SSCP analysis was an A to C 

transversion at position 1636 in exon 16 causing AGA to CGA codon change, both 

coding for the same amino acid: Arginine, this mutation abolishes a restriction site for the 

restriction enzyme Cvijl. The mutation site was located in the last base of the exon 16, 

although it has not been shown in this study in mRNA, it could affect splicing of the 

mRNA of RB gene.

Two mutations found were considered to be silent mutations, because they do not cause 

any amino acid change. Their RNA transcripts were found to be normal. These mutations
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were a T to C transition at position 1617 in exon 16 (Patient GM) which alters the codon 

GTT (GUU) to GTC (GUC) both coding for the same amino acid: Valine and an A-»G 

tra n s its  in intron 19 (patient EAS) which abolishes a restriction site for the 

restriction enzyme Tsp 509 I which may be useful in tracking this mutation in affected 

family members. Analysis of 100 samples (patients with bilateral Rb and other tumours) 

for this restriction site revealed that none of them has same change.

The mutation found from the patient with bladder carcinoma was a G to C transversion at 

position +1 of the donor site of intron 12, probably impairing normal splicing of the 

RNA. The second mutation was assumed to lie in a part of the retinoblastoma gene that 

was not analysed, since in somatic cases two hits in the RB gene are expected. Intact 

RNA could not always be recovered from the clinical material used in this study, 

therefore the diagnostic strategy for bladder carcinoma was chosen not to be based on the 

analysis of RNA transcript. The change creates a recognition site for the restriction 

enzymes MaeM, Bpu\0\, DdeI.

The seven mutations detected in this study were all novel and emphasise the 

heterogeneity of the molecular pathology in this gene. The screening approach each 

contributed to the identification of the region of interest, but there was no overlap 

between the two. This suggests that a single approach would fail to detect all mutations 

and that a combination of the two would be more effective. The failure to detect 

molecular pathology in 14 of 20 patientswith bilateral retinoblastoma was also

surprising and reflects the growing experience from other centres. This might be intrinsic 

to this gene given the success of screening strategies in other disorders, or it may be that 

mutations are present in areas of the gene not studied for instance promoter sequence.
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CHAPTER TWO: INTRODUCTION.



2. INTRODUCTION

2.1 Molecular pathology of single gene disorders.

The inheritance of single gene defects can be divided into autosomal dominant, 

autosomal recessive, sex linked and mitochondrial which are inherited as Mendelian 

traits (McKusick, 1990). Mutations in DNA sequence may occur by a variety of 

mechanism. The category of mutations that includes deletions and insertions accounts for 

5% to 10% of all known mutations (Cummings, 1994) but for most genes, point 

mutations appear to be of primary importance.

Point mutations may affect the transcription of the gene into mRNA or the processing 

of mRNA during the production of its mature form or the translation of mRNA into 

protein. On the basis of the amino acid or codon changes, point mutations have been 

classified into missense, nonsense and sense. Missense mutation is a single nucleotide 

change ihat causeSthe substitution of one amino acid for another in a protein. This 

substitution may or may not affect the function of the gene product. For example a 

single nucleotide substitution in codon 6 from GAG (glu)—>GUG (val) of beta globin 

results in sickle cell anaemia, an autosomal recessive disorder leading^&mormal red
j?

cells and potentially lethal phenotype (Orkin and Kazazian, 1984). Another nucleotide 

substitution in the same codon from GAG (glu)-»AAG (lys) results in a condition 

known as HbC (Haemoglobin C), associated with mild clinical symptoms. In a third 

beta globin variant called HB Makassar, the codon at the sixth position is changed 

from GAG (glu)-»GCG (ala), causes no symptoms and is regarded as a harmless 

haemoglobin variant. Nonsense mutations cause a change from one of the 61 codons 

that specify an amino acid to one of the three termination codons (UGA, UAA, 

UAG). Since there are only three stop codons, therefore most of the point mutations 

are likely to be missense rather than the nonsense. Nonsense mutation usually lead to 

premature termination of translation and the formation of shortened polypeptide

4



chains. In thalassemia, a change at codon 39 from CAA (gln)-»UAA (termination) 

produces a nonfunctional shortened polypeptide only 38 amino acids long. In 

individuals homozygous for this mutation, no beta globin is produced, resulting in a 

condition known as beta-zero-thalassemia (Cummings, 1994). In the beta globin 

variant McKees Rock, the last two amino acids are missing and the protein is only 

143 amino acids long. The change in codon 144 UAU (tyr)—»UAA (termination) 

results in a beta chain that is shorter by two amino acids. This change has little effect 

on the function of the beta globin molecule as a carrier of oxygen (Cummings, 1994). 

Nonsense mutatioiSmay also arise, from insertion or deletion of one or more bases 

leading to a premature introduction of a stop. Sense mutation5produce longer than 

normal proteins by changing a termination codon into one that codes for amino acids. 

In Hb Constant Spring-1, the alpha chain termination codon UAA at position 142 is 

changed to CAA (gin), and as a result, 31 additional amino acids are added to the 

alpha chain before another termination codon is encountered in the mRNA 

(Weatherall, 1991).

Nucleotide substitutions have so far been the most common type of mutation in 

coding DNA sequence. Transitions, substitution of a pyrimidine by a pyrimidine, or a 

purine by a purine, are more frequent than transversions (substitution of a pyrimidine 

by a purine or vice versa). The excess of transitions is partly due to evolutionary 

instability of methylated cytosine residues. Cytosines which occur in the dinucleotide 

CpG are often methylated in human and vertebrate DNA to give 5-methylcytosine. 

Spontaneous deamination of 5-methylcytosine occurs over an evolutionary time-scale 

to generate thymine (Bird, 1986). Because the latter is^natural base in DNA, however 

it may not be recognised by DNA repair systems as being the product of an aberrant 

process (Strachan, 1992). The CpG sequence is effectively replaced in this process by 

TpG and CpA on the complementary DNA strand following DNA replication. Since 

the observed frequency of CpG in human genomic DNA is about 20% of the expected
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frequency, the CpG dinucleotide appears to be a mutational hot spot and contributes 

significantly to the molecular pathology of many disorders. For example, in a group of 

nearly 400 patients with haemophilia B showed that 50% of the mutations found 

in multiple unrelated patients were due to mutation of a CpG dinucleotide in over 

70% of cases (Cooper and Krawsak, 1990).

Sequence variation of human gene products reflects alterations of sequences in the 

nuclear DNA and at the level of gene expression, notably RNA processing. At the 

level of the genome differences between allelic sequences at a single chromosomal 

locus and also differences between related non-allelic sequences at different loci can 

contribute to sequence diversity. In the former case allelic sequence variation is 

traditionally described as polymorphism if more than one variant (allele) at a locus 

occurs in a human population with a frequency greater than 0.01. Although each 

individual possesses a maximum of only two different alleles at any one locus, a 

population survey of many individuals may reveal several different alleles at that locus, 

especially in the case of highly polymorphic loci. The small minority of DNA 

polymorphisms which lead to amino acid differences contribute to polymorphism at 

the protein level, as do differential transcription and RNA processing events 

(Strachan, 1992). For example the human dystrophin gene has two different 

promoters which are activated in different tissues; a brain specific promoter activates 

transcription at a location which is more than 90 kb upstream of the muscle-specific 

promoter (Strachan, 1992).

Translation begins at the 5' end of the mRNA with AUG (met). There is another 

sequence just upstream of the AUG codon that controls the rate at which translation 

occurs. In alpha thalassemia, a nucleotide substitution in this region reduces the rate 

of translation of mRNA (Weatherall, 1991). GeneSWhich are very actively transcribed, 

either at a specific stage in the cell cycle (e.g. histones) or in specific cell types (e.g. p-
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globin), always have a TATA box in their promoter. This element, often TAT AAA or 

a variant, normally occurs at a position about 30 bp upstream from the transcriptional 

start site. However, TATA boxes are absent from the promoters of many other genes, 

including housekeeping genes. Instead, the latter often have GC-rich sequence 

elements, especially variants of the consensus sequence GGGCGG. Other common 

promoter elements include the CAAT box, usually at about -80, which is often the 

strongest determinant of promoter efficiency. Several forms of p thalassaemia have 

been described in which point mutations were found upstream from the P globin gene 

either within or adjacent to the promoter boxes (Orkin et al., 1983; Weatherall, 1991). 

These mutations are associated with a variable reduction in output from the adjacent P 

globin chain loci. The activity of many promoters is modulated by an enhancer, which 

is a regulatory sequence that stimulateJtranscription. This is located on the same DNA 

molecule and can be situated, either upstream or downstream from the promoter 

region (Connor and Ferguson-Smith, 1991).

Correct processing of pre-mRNA molecules in the nucleus requires precise alignment 

of the coding regions. Nucleotide substitutions at intron-exon boundaries can interfere 

with normal splicing, resulting in an mRNA that retains an intron or is missing an 

exon. Single base substitutions within introns may result in preferential alternative 

splicing of the mRNA molecules at the site of the mutation. A common form of p 

thalassaemia that occurs in the Mediterranean population results from a single 

nucleotide substitution, G-»A, at position 110 of the first intervening sequence 

(IVS1) of the P globin gene (Weatherall, 1991). This change produces an AG 

sequence that happens to be preceded by a stretch of pyrimidines and thus forms a 

functional 3' acceptor consensus sequence. About 80% of the processed mRNA is the 

result of splicing into this site rather than the normal 3’IVS1 AG. The mRNA 

produced as the result of the abnormal splicing contains intron sequences and is 

therefore useless as a template for globin chain synthesis. Because this site is used
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preferentially, more abnormal than normal mRNA is produced and therefore there is a 

severe deficiency of P chain production (Weatherall, 1991).

2.2 Retinoblastoma gene structure and function.

The human retinoblastoma susceptibility gene is located within human chromosome 

13, band ql4 (Sparkes et al 1980; 1983). Using DNA probe H3-8 which is within 25 

kb of a cloned genomic sequence, Dryja et al.(1986) detected deletions involving this 

locus in three of 37 retinoblastomas. One probe from this region was found to contain 

a transcribed sequence and was used to successfully isolate a 4.7-kb human cDNA 

segment corresponding to the mRNA of the retinoblastoma gene (Friend et al., 1986). 

Other research groups also cloned similar cDNA fragments, using the H3-8 clone as a 

starting point (Fung et al., 1987; Lee et al., 1987a). The RB transcript is encoded in 

27 exons dispersed over approximately 200 kilobases of genomic DNA. The length of 

individual exons ranges from 31 to 1889 base pairs. The largest intron spans more 

than 60 kb and the smallest has only 80 bp. The cDNA sequence contains 4724 

nucleotides with an open reading frame (ORF) that codes for a protein consisting of 

928 amino acids (Friend et al., 1987; Lee et al., 1987ab).

The 5' end of the gene, which is directed toward the centromere, lacks a typical 

TATA box, but contains an unmethylated CpG-rich DNA sequence (CpG-island), 

which is characteristic of "house-keeping genes” (Friend et al., 1987). The RB gene 

codes for a nuclear phosphoprotein of 110 kd (pi 10*®). which is present throughout 

the cell cycle (Chen et al., 1989; Buchovich et al., 1989; DeCaprio et al., 1989)). In 

Gl, this protein lacks phosphate groups and this appears to block progression to S 

phase by binding transcription factors. When pi 10^® is phosphorylated by cell cycle 

kinase, it releases transcription factors, allowing them to activate the gene 

transcription necessary for progression through the cell cycle. In the absence of intact
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pi lO^B cells are not blocked in G1 and unscheduled cell proliferation occurs. At this 

stage, the cells are not malignant.

Three biochemical activities of the RB protein have been discovered (Goodrich et al., 

1991). First, the carboxy-terminal half of pllO^® is capable of binding to DNA, 

though no sequence specificity for this binding has been demonstrated (Lee et al., 

1987b; Wang et al., 1990). Secondly, the transforming proteins of several DNA 

tumour viruses, including SV40 T antigen adenovirus E l A, can bind pi 10^® 

(DeCaprio et al., 1988; Dyson et al., 1989; Whyte et al., 1988). Two regions, also 

within the carboxy-terminal half of the protein, are required for T antigen and E l A 

binding (Hu et al., 1990; Huang et al., 1990). Mutational analysis of the transforming 

proteins has demonstrated a correlation between their ability to transform cell 

binding pi 10®^ (Cherington et al., 1988; DeCaprio et al., 1988; Lillie et al., 1987; 

Moran, 1988; Moran et al., 1986; Smith and Ziff, 1988; Whyte et al., 1989), although 

some transformation-related properties are not dependent on binding pi 10^® 

(Thompson et al., 1990). Mutant RB proteins found in naturally occurring tumours 

fail to bind T antigen, and the mutations map to the regions required for binding in 

vitro (Hu et al., 1990; Huang et al., 1990). Thirdly, the transcription factor as well as 

several unidentified cellular proteins bind RB protein, apparently within the same 

binding domain used by T antigen (Bagchi et al., 1991; Bandara and La Thangue, 

1991; Bandara et al., 1991; Chellappan et al., 1991; Chittenden et al., 1991; Defeo- 

Jones et al., 1991; Huang et al., 1991; Kaelin et al., 1991). These observations 

suggest that the antigen-binding domain is critical to function of the protein. Although 

provocative, these biochemical properties have not yet provided a satisfactory 

explanation for the physiological effects of loss of RB function. The genetic events 

leading to malignant development appear to occur much latter. Certain viral 

oncoproteins such as adenovirus E l A and SV40 large T antigen can bind to 

unphophorylated pi 10^® and displace transcription factors, allowing these factors to
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active gene transcription. This mechanism appears to be an important step in the 

transformation of cells by DNA tumour viruses. Qian et al. (1992) identified two 

regions of pRb that are required for E2F binding and for hyperphosphorylation. E l A 

binding domains partially overlap but are distinct from both of these other two 

regions. Biological function of pRb is dependent on retention of the integrity of both 

of these biochemically defined domains. They speculated that these data support the 

model that pRb is a transducer of afferent signals (via the kinase that phosphorylates 

it) and efferent signals (through transcription factor binding), using distinct structural 

elements.

The genetic predisposition to retinoblastoma is transmitted by mutant alleles of the 

retinoblastoma susceptibility gene (Cavenee et al., 1983; Knudson, 1973). Inactivation 

of RB is both necessary and sufficient to form clonal proliferations of retinal cells 

(Friend, 1989). Few, if any, other cancers have such an apparently simple aetiology. 

Much more frequently tumour development is dependent on a number of genetic 

alterations in both oncogenes and tumour-suppressor genes. Of the genes involved in 

the development of cancer, many oncogenes have been identified but few tumour- 

suppressor genes, although may have been postulated (Stanbridge, 1990). RB (like 

p53) has been implicated in a tumour-suppressing role in a wide range of tumours 

including retinoblastoma, osteosarcoma (Friend et al., 1986; Fung et al., 1987; 

Reissmann et al., 1989; Toguchida et al., 1988; Yokota et al., 1988; Horowitz et al., 

1989; Kaye et al., 1990; Mori et al., 1990), breast cancer (Lee et al., 1988; T'Ang et 

al., 1988; Varley et al., 1989), bladder carcinoma (Dunn et al., 1989; Horowitz et al., 

1989) and leukaemia (Liu et al., 1992). Patients successfully treated for 

retinoblastoma have a higher incidence of certain second-site primary tumours, such 

as osteosarcoma and soft-tissue sarcomas (Abramson et al., 1984). Mutations of RB 

that ablate normal gene expression have been found in these tumours as well as in 

carcinomas of the breast, prostate, bladder, and small cell lung, as well as leukaemia
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(Bookstein et al., 1990; Liu et al., 1992; Friend et al., 1987; Harbour et al., 1988; 

Hensel et al., 1990; Horowitz et al., 1990; Lee et al., 1988; Shew et al., 1989,1990; 

Toguchida et al., 1988: Ahuja et al., 1991). Expression of normal RB protein in 

prostate carcinoma, osteosarcoma, breast carcinoma, and bladder carcinoma cells also 

suppresses their tumourigenicity in nude mice (Bookstein et al., 1990; Huang et al.,

1988). The risk of osteogenic sarcoma is increased 500-fold in patients with bilateral 

retinoblastoma, the bone malignancy being at sites removed from those exposed to 

radiation treatment for the eye tumour (Abramson et al., 1976). Francosis (1977) 

concluded that there is a special predisposition to osteogenic sarcoma, both 

radiogenic and nonradiogenic, in retinoblastoma patients and possibly in their relatives 

Expression of normal RB protein (Horowitz et al., 1990; Lee et al., 1987b) or mRNA 

(Dunn et al., 1988; Friend et al., 1987; Fung et al., 1987; Lee et al., 1987a) is lacking 

in all retinoblastomas examined to date. Replacement of the normal RB gene in 

cultured retinoblastoma cells by retrovirus-mediated gene transfer consistently 

suppresses their tumourigenic potential in nude mice (Huang et al., 1988; Sumegi et 

al., 1990).

2.3 Molecular pathology of the retinoblastoma gene.

The tumour exists in both hereditary and sporadic forms (Vogel, 1979). In the 

hereditary form one allele is inherited in a mutated form and the other is altered 

somatically, whereas in the sporadic form changes to both alleles occur somatically 

(Murphree and Benedict, 1984) (Figure 1). Hereditary predisposition to 

retinoblastoma is caused by a germline mutation at the retinoblastoma gene locus 

(RB) (RBI) and is transmitted as an autosomal dominant trait with 90% penetrance 

(Vogel et al., 1979). Approximately 40% of patients carry a germline mutation at this 

locus in all cells (Vogel 1979) (Table 1). Three quarters of these alterations represent 

de novo mutations. Most patients with hereditary retinoblastoma have bilateral
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disease. The average number of tumour foci in these patients is three to five. 10% of 

carriers develop no tumour (reduced penetrance)(Horsthemke, 1992). In 60% of all 

retinoblastoma patients, both alleles are inactivated by somatic mutations in a single 

cell (Vogel, 1979) (Table 1). These patients develop only a single tumour focus, and 

there is no risk to their offspring. However, 15% of patients with single tumours will 

have a germline mutation. Risk estimates for relatives of isolated cases of 

retinoblastoma are given in Table 2.

In 1971, from studies of age/incidence curves, Knudson (1971) postulated that the 

disease arose from two sequential events. In the hereditary form of the disease, one 

mutation is inherited in the germ-line and is phenotypically harmless. A second 'hit' 

occurring in the retinal cell causes the tumour. As there are a large number of 

retinoblasts in the eye (over 10^), which are all at risk because they already carry one 

mutation, a second 'hit' will occur frequently enough to cause a high proportion of 

tumours in at least one eye and often in both. In the sporadic form of the disease, both 

mutations occurring in the somatic tissue. The probability of two mutations occurring 

in the same cell is low, therefore the disease is both rare and unilateral (Macdonald 

and Ford, 1991). This 'two-hit' hypothesis has subsequently been confirmed by 

identification of mutations or deletions of the gene and more recently by analysis of 

the cloned retinoblastoma gene itself. Benedich et al. (1982) and Cavenee et al. 

(1983) obtained evidence that the two mutations necessary for tumour formation-one 

germline mutation and one somatic mutation in hereditary retinoblastoma or two 

somatic mutations in non-hereditary retinoblastoma-affect the two alleles of the same 

gene. Thus, homozygous loss of function of the RB gene initiates retinoblastoma 

tumour formation and the RB gene is termed a tumour suppressor gene.
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Genetic form Type of mutation Frequency (%) Type of disease

Hereditary
retinoblastoma

transmitted germline 
mutation 10 Bilateral

De novo germline 
mutation 30 Bilateral

Nonhereditary
retinoblastoma somatic mutations only 60 Unilateral

Table 1: Genetic forms of retinoblastoma*
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RB in Relation to Risk of carrying RB
proband proband mutation

Bilateral Offspring 50%

Bilateral Sibling or 
dizygotic twin 5%

Bilateral
Offspring of 
unaffected 

sibling
0.5%

Bilateral First cousin 0.05%

Bilateral Monozygotic
twin 100%

Unilateral Offspring 7.5%

Unilateral
Sibling or 

dizygotic twin 0.8%

Unilateral
Offspring of 
unaffected 

sibling
0.08%

Unilateral First cousin 0.008%

Unilateral Monozygotic
twin 10%

Table 2. Risk of retinoblastoma in relatives of a child with retinoblastoma and no family 
history (Hodgson and Maher, 1993).
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In families with hereditary retinoblastoma, close linkage was demonstrated between 

esterase D alleles and retinoblastoma, suggesting that the two genes had to be close. 

In non-hereditary cases, approximately 20% of the retinoblastomas were shown to 

have an abnormality; usually absence or a deletion in one copy of chromosome 13, 

reduced levels of esterase D were detected in the tumours (Benedict et al., 1982). 

Patients with two detectable variants of esterase D in somatic tissues had only one 

variant present in their tumours. These studies suggested that in tumours there was 

loss or deletion of part of chromosome 13 and it was assumed that there was a 

mutation in the RB gene on the remaining copy of chromosome 13. These changes 

were confirmed at the molecular level by Cavanee and colleagues (Cavanee et al., 

1983) using the loss of heterozygosity test which has been widely used for detection 

of tumour suppresser genes. The loss of heterozygosity test depends on differences in 

the lengths of DNA fragments generated by digestion of genomic DNA with 

restriction enzymes. These restriction fragment length polymorphisms (RFLPs) 

present within the population can be detected by DNA probes specific for the DNA 

fragment of interest. In the case of retinoblastoma, the probes selected for use were 

located on 13q. Patients suitable for study were those who had different sized 

fragments of the DNA (alleles) on each of the two chromosome 13s in their somatic 

tissue, that is, they were heterozygous. When tumours from the same patients were 

analysed, only one of the two alleles was present. This loss of heterozygosity can 

occur by a number of possible mechanisms, including loss of the normal chromosome 

possibly followed by reduplication of the abnormal one, an interstitial deletion of the 

normal chromosome, or a recombination event resulting in two copies of the deficient 

allele. The tumour only occurs when both copies of the RB gene are altered or lost, 

therefore the tumour phenotype is recessive. However, the tumour is inherited as if it 

were dominantly expressed, because, the likelihood of the second mutation in the 

retinal cells is close to 100%.

16



Since retinoblastoma results from the homozygous or hemizygous state of a gene at 

13ql4, retinoblastoma could either be as a recessive disease or the susceptibility 

could be is dominant. It is of interest that 90% of de novo mutations occur in the 

paternal germline (Dryja et al., 1989; Zhu et al., 1989); this may be because far more 

cell divisions occur between embryonic development and meiosis in males than in 

females. Ejima et al. (1988) showed that cytogenetically visible deletions resulting in 

a retinoblastoma are usually in the paternally derived chromosome. Such a bias would
Ab enot expected for sporadic retinoblastoma where both mutations occur in somatic 

tissue, but there had been some indication of a bias toward initial somatic mutation in 

the paternally derived gene on chromosome 11 in sporadic Wilms tumour. There was 

a growing body of data indicating a difference in behaviour of maternally and 

paternally derived autosomal genes. Germinal imprinting may be mediated by some 

epigenetic process such as de novo DNA methylation and carried over to postzygotic 

stages. Dryja et al. (1989) and Zhu et al. (1989) found that in bilateral retinoblastoma 

there is a preferential retention of the paternal chromosome in the process of loss of 

heterozygosity (LOH). They indicated that either mutation of RB is more common 

during spermatogenesis than oogenesis as a result of differences between male and 

female meiosis, DNA methylation or environmental exposure; or the paternal 

chromosome in the early embryo is more at risk for mutation, or deficient in DNA 

repair.

A few patients are mosaic for an RB gene mutation (Ribeiro et al., 1988; Greger et 

al., 1990). In these patients, the mutation occurred during early embryonic 

development. If the mutation arises before the germline is partitioned off from other 

cell lines, it may be transmitted to the offspring. One such case was analysed by 

Greger et al. (1990). A single mutation event during early embryonic development 

gave rise to two cell lines with related but different deletions. A different deletion was 

transmitted to each of the two children.
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Deletions and point mutations have also been observed as the result of somatic 

mutations. Local mutations at the RB locus occur in approximately 30% of patients. 

Most frequently, the second RB allele is lost by chromosomal mechanisms (Cavenee 

et al., 1983). These mechanisms can be detected by comparing the patient's 

constitutional genotype with the tumour genotype. Such comparisons are performed 

with the help of polymorphic DNA markers along chromosome 13. In approximately 

50% of patients, the second allele is lost by mitotic nondisjunction with or without 

duplication of chromosome 13 (Horsthemke. 1992). In these cases, tumour cells are 

either hemizygous or homozygous for alleles of the chromosome 13 that carries the 

first RB gene mutation. In approximately 20% of patients the second allele is lost by 

mitotic crossover. In these patients, tumour cells are heterozygous at loci proximal to 

the RB gene and homozygous at the RB locus and loci distal to it.

Early data, derived mostly from Southern blot analysis identified structural 

abnormalities of RB in 10%-40% of hereditary and sporadic Rb tumours (Cowell and 

Hogg, 1992). The vast majority of these abnormalities included deletions of all or 

part of the gene (Friend et al., 1986; Fung et al., 1987). It appears that deletion 

breakpoints can occur throughout the length of the gene (Canning and Dryja, 1989; 

Kloss et al., 1991). Canning and Dryja, (1989) found that 2 out of 12 deletions had 

breakpoints in the region containing exons 13-17, and 7 out of 12 deletions included 

that region. Others groups also found this region was involved in deletions and 

rearrangements (Fung et al., 1987) possibly indicating the location of a breakpoint 

cluster region. It is not known whether this is related to the chromosome 

abnormalities, but these DNA sequence can form stem and loop structures that 

possibly promote rearrangements (Cowell and Hogg, 1992). Canning and Dryja, 

(1989) reported that there was a direct repeat at the breakpoint site and one of these 

was always lost in 6 of 8 deletions. Cowell and Hogg (1992) also found short direct 

repeat associated with small deletions within RB. This observation is consistent with
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a slipped mispairing during DNA replication. In this model, pairing on one DNA 

strand occurs with the downstream sequence on the other strand creating a loop. 

When the replication loop is resolved, one copy of the repeat, plus the intervening 

sequence, is deleted.

Sakai et al. (1991a) investigated the methylation pattern at the 5* end of the 

retinoblastoma gene, including its promoter region and exon 1, in DNA purified from 

56 primary retinoblastomas. They found five tumors with evidence for 

hypermethylation, all from unilateral, simplex patients. No methylation abnormalities 

were detected in DNA purified from the leukocytes from these patients. They 

speculated that erroneous hypermethylation without alteration of nucleotide sequence 

occasionally plays a role in the genesis of this cancer. Cytosine methylation of CpG 

sites in the promoter region of eucaryotic genes is involved in the inactivation of 

expression of certain genes. Given that methylation can lead to reduced transcription, 

it is possible that expression of tumor-suppressor genes is also inactivated by 

hypermethylation, thereby contributing to the etiology of cancer. Recently 

OhtaniFujita et al. (1993) found five sporadic retinoblastoma tumors (16% of all 

unilateral cases) with hypermethylation of the 5’ end of the retinoblastoma gene 

without detecting any structural abnormalities. However, it is unclear whether the 

promoter of the retinoblastoma gene is actually inactivated by its hypermethylation. 

They showed that specific hypermethylation in the promoter region of the 

retinoblastoma gene reduces its expression to only 8% of the unmethylated control. 

Furthermore, they have found that two transcription factors important for the 

promoter activity, an activating transcription factor (ATF)-like factor and the 

retinoblastoma binding factor 1, do not bind when their recognition sequences are 

GpG methylated.
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Some patients have a somatic 13q- mosaicism (Ribeiro et al., 1988). Insertion and 

translocations involving band 13ql4 have also been observed (Turleau et al., 1985), 

but are much less frequent than deletions. Most patients with a deletion of the entire 

band of 13ql4 are mental and physically retarded: cytogenetic analysis is indicated 

only in patients with such stigmata. To date, the gene for esterase D is the only gene 

known to be close to the RB gene, it maps at least 200 (kb) proximal to the RB gene 

(Sparkes et al., 1980). Deletion of the esterase D gene, however, has no clinical 

phenotype. Deletions of 13ql4 are rare in retinoblastoma tumour cells. In some 

tumours monosomy 13 is observed. In contrast, tetrasomy 6p and trisomy lq are 

frequent findings (Kusnetsova et al., 1982; Benedict et al., 1983; Squire et al., 1984). 

In tetrasomy 6p, two additional chromosomes are often present in the form of an 

isochromosome of 6p, which is rare in other tumours (Hoersthemke, 1992). DNA 

polymorphism studies have indicated that mitotic nondisjunction leading to trisomy 6 

precedes isochromosome formation. The isochromosome is then formed by transverse 

division of centromere or intrachromosomal chromatid exchange (Horsthemke et al.,

1989). The functional role of tetrasomy 6p and trisomy lq  is unknown.

Anecdotal reports suggested that bladder carcinomas appear more frequently than 

expected in retinoblastoma families (Tarkanen and Karjalainen, 1984) and 

subsequent, larger studies have confirmed this observation (DerKinderen et al., 1988; 

Sanders et al., 1989). Where age at diagnosis was reported, this was markedly lower 

than the mean age of onset in the general population. Higher incidence and lower age 

of onset of a cancer in a particular subgroup points to a genetic predisposition and 

suggests that germline mutations in the RB gene may predispose to bladder cancer 

(Cairns et al., 1991). Horowitz et al. (1989) reported another mechanism of RB gene 

inactivation, namely, abnormal splicing due to a point mutation in the consensus 

sequence of the exon-intron junction in a bladder cancer cell line; the short RB 

transcript in this cell line does not contain the sequence of exon 21. A similar example
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was also reported by another group (Dunn et al., 1989). Murakami et al. (1991) 

found a novel RB gene transcript that does not contain the sequence corresponding 

to exon 2 of the gene in human lung carcinoma cell line suggesting the involvement of 

alternative splicing.

Evidence that RB may also be involved in the development of sporadic bladder 

cancer has come from the finding that a number of bladder carcinoma cell lines 

possess an altered RB protein or show no detectable RB expression (Horowitz et al., 

1989; 1990). Cairns et al. (1991) have examined 162 bladder tumours for evidence of 

structural alterations to the RB gene. Ninety-four patients were informative with one 

or more intragenic RB probes, 28 of these (29%) showed loss of heterozygosity 

(LOH). Of these, two tumours showed homozygous deletions with the 5* intragenic 

probe pl23M1.8. The 28 tumours with Rb LOH were screened with the RB cDNA 

probes pR3.8 and pR0.9 which revealed two homozygous deletion and one 

rearrangement. This is similar to the frequency at which abnormalities of the RB 

protein product have been detected in bladder carcinoma cell lines (33%) by 

Horowitz et al. (1990). Southern analysis of LOH is a relatively crude method of 

detecting gene inactivation and will not identify small internal deletions or point 

mutations. Indeed only 10-20% of retinoblastomas have obvious structural alterations 

of an RB allele which are detectable by Southern analysis (Yandell and Dryja, 1989b) 

and only 70% show loss of the other allele (Zhu et al., 1989), yet loss of function of 

RB is thought to occur in 100% of retinoblastomas.

More recently, loss of function of the RB gene has been associated with at least two 

different types of primary cancer. Structural abnormalities were detected in 13% of 

primary small cell lung carcinoma (SCLC), and in 18% of SCLC cell lines (Harbour 

et al., 1988). More significantly, loss of RB mRNA was seen in 60% of the SCLC 

lines. SCLC, like retinoblastoma, is a tumour of neuroendocrine origin, and Harbour
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et al. (1988) suggested that the involvement of the RB gene in two tumour types 

displaying phenotypic properties of neuroendocrine differentiation may be of 

significance. There seems to be no evidence for familial clustering of SCLC, nor for 

any association of SCLC with retinoblastoma or any of the mesenchymal tumours 

which also exhibit deletion of RB. Frequent aberration to the RB gene have also been 

detected in primary carcinoma of the breast (Lee et al., 1988; T'Ang et al., 1988). 

Breast carcinomas are not, however, of neuroendocrine origin, but they can show a 

strong familial trend, with some families showing a very strong genetic component 

(Sattin et al., 1985; Ottman et al., 1986; Newman et al., 1988). Whilst there is 

evidence that mothers of children with osteosarcoma and soft tissue sarcoma show a 

higher rate of breast cancer, there is no evidence of any association between breast 

cancer and retinoblastoma. Varley et al. (1989) have analysed the organisation of the 

retinoblastoma gene in 77 primary breast carcinomas using cDNA probes 3.8 and 0.9. 

They found deletions or rearrangements of the RB locus in 15 cases out of 77 

carcinoma samples indicating that the loss of RB function is important in the 

progression of human breast carcinoma. In 1988 T’Ang et al. reported that 25% of 

breast cancer cell lines and 7% of primary tumour samples showed a deletion or 

rearrangement of the RB gene. Varley et al. (1989) have shown that changes to the 

RB gene leading to loss of expression of both alleles occurred in 19% of primary 

breast tumours. Hovig et al. (1992) have examined RB exon 21 from 78 tumours 

included 11 breast carcinomas, 30 non small cell lung carcinomas, 6 colon 

carcinomas, and 31 sarcomas by constant denaturant gel electrophoresis (CDGE). 

They did not detect any mutations in the examined region in any of the tumours.

DeCaprio et al. (1989), Buchkovich et al. (1989), and Chen et al. (1989) 

demonstrated that the RB gene product has the properties of a cell cycle regulatory 

element and that its function is modulated by a phosphorylation/dephosphorylation 

mechanism during cell proliferation and differentiation. Goodrich et al. (1991) found
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that injection into cells of either full-length or a truncated form of the RB protein 

containing the T antigen-binding region inhibited progression from G1 into S phase. 

Coinjection of anti-RB antibodies antagonised this affect. The results indicated that 

RB regulates cell proliferation by restricting cell cycle progression at a specific point 

in G1 and established a biologic assay for RB activity. Coinjection of RB with a T 

antigen peptide or injection into cells expressing T antigen was accompanied with no 

inhibition of progression into S phase. This was interpreted as indicating that the 

transforming proteins of some DNA tumour viruses, including SV40 T antigen and 

adenovirus E l A, may promote cell growth, at least in part, by binding and 

inactivating RB. The RB gene has been shown to be inactivated in various way, such 

as by loss of part or all of the gene (Lee et al., 1987a; Fung et al., 1987; Friend et al., 

1987; Lee et al., 1988), disorders gene expression (Lee et al., 1987a; Fung et al., 

1987; Harbour et al., 1988) or dysfunction of the RB protein (Horowitz et al., 1989; 

Shew et al., 1990). Amino acid substitutions or creation of stop codons due to point 

mutations or shifts of the reading frame (Dunn et al., 1989) results in activation of the 

RB protein. Hu et al. (1990) generated a series of deletion mutants of the RB cDNA 

sequence that have been tested for their ability to interact with two viral 

oncoproteins, the adonevirus E l A and SV40 large T antigen. Two separate regions 

of RB are essential for association with El A or large T antigen. The two regions 

include a fragment of 180 amino acid residues (393-572) and one of 127 residues 

(646-772) which fall in exons 12-22 inclusive (Hu et al., 1990; Huang et al., 1990). A 

comparison of these binding sites on RB with the sites of naturally occurring 

mutations reveals that all of the RB mutations identified to date contain deletions 

either in one or both of the binding regions (Hu et al., 1990). This suggest that the 

DNA tumour virus transforming proteins are predicted to bind to and inactive normal 

RB function, thus removing a barrier to cell proliferation.
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2.4 Available methods used in the detection of point mutations.

2.4.1 Polymerase chain reaction (PCR).

The polymerase chain reaction (PCR) is a technique for the in vitro amplification of 

specific DNA or RNA sequences. The PCR method was devised and named by Mullis 

and colleagues at the Cetus Corporation (Mullis et al., 1987), although the principle 

had been described in detail by Khorana and colleagues over a decade earlier (Taylor, 

1993). The development of the PCR has led to a variety of new approaches for 

sequencing human genes.

The principle behind PCR is illustrated in Figure 2. The polymerase chain reaction 

(PCR) uses two oligonucleotide primers to direct the synthesis of specific sequences 

of DNA. One primer anneals to the coding strand of DNA and other to the noncoding 

strand. These primers are used to direct the enzyme DNA polymerase to copy each 

strand in opposite directions. The primers are added in great excess to the source 

DNA, in the presence of buffer, enzyme, and free nucleotides. The source DNA is 

denatured at 95°C and then cooled to 40-65°C. The requirements of the reaction are 

simple: deoxynucleotides to provide both the energy and nucleosides for the synthesis 

of DNA, DNA polymerase, primer, template, and buffer containing magnesium. 

Initially synthesis will go beyond the sequence complementary to the other primer, but 

with each cycle of heating and cooling, the amount of DNA in the region flanked by 

each primer will increase almost exponentially, whilst longer sequences will only 

accumulate in linear fashion, provided that the amount of starting DNA is present in 

limiting quantities. Thus, after several cycles the predominant reaction product will be 

that fragment of DNA which is flanked by the primers, and will include the primers 

themselves.
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Figure 2 .The principle o f polymerase chain reaction. In the first cycle, a 
fragment larger than the targeted DNA is synthesised However, after, tw o 
amplification cycles targeted DNA fragment is produced and eventually it 
becomes the predominant product.
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The heating and cooling cycles can be repeated and DNA will continue to accumulate 

exponentially until one of the reaction products is exhausted or the enzyme is unable 

to synthesis new DNA quickly enough. At high DNA concentrations, the DNA may 

also begin to prime itself and result in the synthesis of non specific products. Thus, it 

either stops the amplification or produces non-specific products. The number of 

cycles required for optimum amplification varies depending on the amount of starting 

material and the efficiency of each amplification step. After about 30 cycles of 

successive steps of denaturation, annealing of primers and DNA synthesis, the 

products of the PCR will include, in addition to the starting DNA, about 10^-10^ 

copies of the specific target sequence, an amount which is easily visualised as a 

discrete band of a specific size on agarose gel electrophoresis. Repeated cycles of 

enzymatic amplification increase the quantity of the targeted DNA region more than 

2000-fold. Generally, 25 to 35 cycles should be sufficient to produce 100 ng-lpg of 

DNA of single-copy human sequence from 50 ng of genomic DNA. A final incubation 

step at the extension temperature (usually 72^C) results in fully double-stranded 

molecules from all nascent products. The primers should be similar in length and 

composition, so that their predicted melting temperatures (Tm), the temperature at 

which 50% of the strands are separated) are within 5°C. For calculation of the 

approximate Tm of the oligonucleotide primers, a simple formula such as Tm = 

2(A+T) + 4(G+C) in °C can be used (Thein and Wallace, 1986). Furthermore, GC 

content should be similar to the GC content of the template and of the other primer, 

ideally 50-60% GC. They should not have self-complementarity, secondary structures 

or be complementary to each other. Computer programs are available to help identify 

such complementarity. Primers should also have no runs of three or more Gs or Cs at 

their 3' ends. If mismatches between primer and template are known or likely to 

occur, these should be minimised at the 3' end of the primer, i.e., where the DNA 

polymerase binds. Highly degenerate primers may work under non-stringent reaction 

conditions, provided that at least three bases match at the 31 end of the primer
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(McMahon et al., 1988). Restriction sites can be included in the primer to help in 

efficient and directional cloning of the amplified product. Lengths between 100 and 

2000 bp can, however, often be amplified efficiently.

There are several PCR based methods for detection of mutations. These are 

restriction fragment length polymorphism analysis (Saiki et al., 1985; Kogan et al.,

1987), single-stranded conformation polymorphism analysis (Orita et. al., 1989), 

denaturing gradient gel electrophoresis (Cariello et al., 1988; Traystman et al., 1990), 

electrophoresis of heteroduplex DNA (White et al., 1992), RNase cleavage analysis 

(Myers et al., 1988), chemical cleavage of mismatch (Cotton et al., 1988; Grompe et 

al., 1991), allele specific oligonucleotide hybridisation (Embury et al., 1987; Lo et al.,

1988) and direct genomic sequencing (Wrishchnik et al., 1987; Wong et al., 1987; 

Newton et al., 1988).

2.4.2 Amplification and mismatch detection (AMD) analysis.

AMD analysis is a combination of PCR and the chemical mismatch method (Cotton et 

al., 1988). To screen for mutation sites within the amplified PCR products, the AMD 

method described by Cotton et al. (1988) and Dahl et al. (1989) is used. In this 

technique, mutant DNA is allowed to form a duplex with a radiolabelled probe of 

control DNA. Where mutations are present, the mutant strand does not exactly match 

the control and fails to anneal correctly. The resulting mismatch is chemically more 

reactive than the surrounding DNA, allowing chemical cleavage at this site and 

detection of different-sized radioactive fragments. Because cytosine and thymine react 

specifically with hydroxylamine and osmium tetroxide (OSO4), respectively, the 

nature of the reactivity also gives information about the base change. Since only 

mismatched cytosines and thymines show marked reactivity, probes in both sense 

| and antisense strands
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must be used to ensure detection of the complimentary guanine and adenine 

mismatches (Howells et al., 1990) (Figure 3).

Sites modified by hydroxylamine and osmium tetroxide are more susceptible to 

cleavage by piperidine than unmodified base pairs. Piperidine is therefore used to 

cleave DNA fragments at the site of modified bases. Cleavage occurs on one strand of 

helix only. Products are resolved by denaturing electrophoresis to allow the 

identification and location of mutation sites. Chemical cleavage has been shown to be 

an excellent method for the detection and location of mutations, particularly because 

it is possible to easily scan up to 2 kb segments of DNA at a time and additionally, it 

can be used on either DNA or RNA templates (Cotton et al., 1988: Dahl et al., 1989). 

Improved resolution of larger cleavage products is possible by the use of ̂ ^S-labelled 

dATP rather than [^^P] dCTP-labelled probes (Saleeba and Cotton, 1991). Mutation 

detection by chemical cleavage has been applied to the analysis of gene structure in 

human systems and in other organisms such as Caenorhabditis elegans (Han and 

Sternberg, 1990), Escherichia coli (Grompe et al., 1991), and dengue virus (Cotton 

and Wright, 1989). Example of human diseases investigated by this method include B- 

thalassaemia (Dianzani et al., 1991), osteogenesis imperfecta (Bateman et al., 1989; 

Lamande et al., 1989), dihydropteridine reductase deficiency (Howells et al., 1990), 

ornithine transcarbamylase deficiency (Grompe et al., 1989), pyruvate dehydrogenase 

deficiency (Dahl et al., 1990), colorectal cancer (Rodrigues et al., 1990), and 

phenylketonuria (Forrest et al., 1991).
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2.4.3 Single stranded conformation polymorphism (SSCP) analysis.

In PCR-SSCP analysis, a DNA sequence of interest (or a cDNA that has been reverse 

transcribed from mRNA) is first amplified by PCR. Single-stranded DNA has a 

tendency to fold up and form complex structure stabilised by weak intramolecular 

bonds, notably base-pairing hydrogen bonds. The electrophoretic mobilities of such 

structures on non-denaturing gels will depend not only on their chain lengths but also 

on their conformations, which are dictated by the DNA sequence (Orita et al., 1989). 

Single strand conformation polymorphism (SSCP) analysis is most conveniently 

performed by PCR amplification of the desired region of genomic DNA to produce a 

labelled product (either by using end-labelled PCR primers, or by incorporation of 

labelled nucleotides during the PCR reaction) (Hayashi et al., 1989; Makino et al., 

1992). Amplified DNA samples are denatured and loaded on a non-denaturing 

polyacrylamide gel electrophoresis (PAGE) (Orita et al., 1989). A test DNA sample 

that differs by a single base from a standard DNA sample can be identified by a 

comparative mobility shift during electrophoresis. The base change results in a 

change of conformation.

2.4.4 Heteroduplex DNA analysis.

The PCR products of normal and mutant alleles can be separated from each other 

using hydrolink (non-denaturing) gel electrophoresis (Keen et al., 1991). 

Heteroduplex DNA is generated during PCR amplification when two homologous 

DNA segments, or alleles, which have sequence differences are amplified. Double 

stranded DNA is formed not only from identical complementary strands 

(homoduplexes) but also from the annealing of complementary strands from the 2 

different amplified segments (heteroduplex). Heterodublex DNA can also be formed 

by mixing two homologous DNA fragments together, heating to 95°C, and slowly
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cooling to room temperature. Although the effective size range for resolution of DNA 

containing single base pair mismatches is up to 1300 bp (Boyd et al., 1993), size from 

100-400 base pairs of DNA are optimal for effective resolution of heteroduplex. 

Separation of DNA fragments based on conformational differences induced by single 

base mismatches.

2.4.5 Denaturing gradient gel electrophoresis (DGGE).

DGGE analysis has been applied to screening of genes involved in several genetic 

diseases (Traystman et al., 1990; Sheffield et al., 1989). Denaturing gradient gel 

electrophoresis (DGGE) detects DNA sequence differences. Thus, it can be used to 

screen for point mutations or other types of mutations prior to DNA sequencing. The 

technique first described by Fischer and Lerman, (1979) entails electrophoresis of 

DNA fragments at high temperature in an acrylamide gel that contains a gradient of 

denaturant such as formamide and urea.

Denaturing gradient gel electrophoresis allows the separation of DNA molecules 

differing by as little as a single base change (Fischer and Lerman 1983: Myers et al., 

1985ab). The separation is based on the melting properties of DNA in solution. DNA 

molecules melt in discrete segments, called melting domains, when the temperature or 

denaturant concentration is raised. Melting domains vary from about 25 base pairs to 

several hundred base pairs in length, each melting cooperatively at a distinct 

temperature called Tm. Due to the considerable contribution of stacking interactions 

between adjacent bases on a DNA strand to double helical stability, the Tm of a 

melting domain is highly dependent on its nucleotide sequence. The Tms of DNA 

fragments differing by even very small changes, such as a single base substitution, can 

differ by as much as 1.5°C. In the DGGE system, DNA fragments are 

electrophoresed through a polyacrylamide gel that contains a linear gradient, from top
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to bottom, of increasing DNA denaturant concentration. DNA fragments enter the 

concentration of denaturant where its lowest temperature melting domain melts 

(equivalent to the Tm of the domain), the molecule forms a branched structure that 

has a retarded mobility in the gel matrix. If the gradient conditions are chosen 

properly, DNA fragments differing by single base changes begin branching, and hence 

slowing down, at different positions in the gel, resulting in the separation of the 

fragments at the end of the electrophoretic run.

2.4.6 Temperature gradient gel electrophoresis (TGGE).

The TGGE is based on the same principles as the DGGE (Meyer et al., 1991). Using 

a thermal instead of a chemical denaturing gradient, the preparation of gradient gels is 

avoided. The horizontal acrylamide gels fixed on a solid gel support make the 

handling of the gel very convenient. In contrast to DDGE analysis, only one gel 

condition is sufficient for TGGE. Similar to DGGE the TGGE results are easy to 

interpret because of the two heteroduplex bands are reproducibly observed when 

tumour tissue or peripheral blood harbouring a germline mutation is analysed. In 

contrast, interpretation of SSCP gels is often impaired by the presence of only three 

or more than four single-strand bands. Like all screening techniques, the detection of 

mutants by TGGE does not discriminate between mutations resulting in an amino acid 

change and silent mutations or natural polymorphisms.

The TGGE allows the separation of molecules depending on their different melting 

behaviour in temperature gradients and has already been applied to separation of HLA 

alleles (Meyer et al., 1991). Mixed wild-type and homozygous mutated fragments are 

denaturated and renaturated in the presence of 4M urea to get two kinds of 

heterodimers in addition to the wild-type and mutant homodimers. One of those 

samples is separated on a 5 % polyacrylamide gel (in 4 M urea, 20 mM MOPS, and I
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mM EDTA, pH 8.0 for 2 h at 250 V within a test temperature gradient (30°C—70°C) 

perpendicularly orientated to the electrical field in the TGGE. Due to the formation of 

two homodimers and two heterodimers, 4 melting profiles are observed. From these 

the temperature range of effective separation can be determined. This interval is 

defined by the highest temperature where all duplices remain double stranded and by 

the melting temperature of the most stable homoduplex. Then the optimal temperature 

gradient which overlaps effective separation is selected and orientated parallel to the 

electrical field in the following electrophoresis. The approximate running time of the 

parallel TGGE in order to get effective separation is also calculated. Aliquots of the 

control samples are loaded serially at different times at 20°C resulting in different ’run- 

in1 times. Then the parallel electrophoresis proceeds within the selected ideal 

temperature gradient. After that the optimal running time for effective separation of 

all kinds of duplices is selected for subsequent parallel TGGE experiments.

2.4.7 Restriction fragment length polymorphism (RFLP).

One of the most commonly used tools for following the inheritance of genes or gene 

markers is that of the linked restriction fragment length polymorphism (RFLP). 

Traditionally, this technique involved the digestion of approximately 5pg of genomic 

DNA, followed by electrophoresis, Southern transfer, radioactive (or, less commonly, 

non-radioactive) probing, followed by the exposure of the filters to X-ray film 

(Maniatis, Fritsch, Sambrook, 1982). The use of PCR has made it possible to amplify 

a short region of DNA surrounding the restriction site of interest which is then 

exposed to the relevant restriction enzyme. The amplified DNA is then visualised 

directly on an appropriate gel matrix. This method has many advantages over the 

traditional Southern analysis, not least of which is the great saving in time (Williams,

1988).
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In the case of retinoblastoma, the probes selected for use are located on 13q. Patients 

suitable for study are those who have different sized fragments of DNA (alleles) on 

each of the two chromosome 13s in their somatic tissue, that is, they are 

heterozygous. When tumours from the same patients are analysed, only one of the 

two alleles is present (Figure 4). This loss of heterozygosity can occur by a number of 

possible mechanisms, including loss of the normal chromosome possibly followed by 

reduplication of the abnormal one, an interstitial deletion of the normal chromosome, 

or a recombination event resulting in two copies of the deficient allele.
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2.4.8 The amplification refractory mutation system (ARMS).

The amplification refractory mutation system (ARMS) is a simple and rapid method of 

detecting point mutations, restriction fragment length polymorphisms (RFLP), and 

small nucleotide insertions or deletions. The method was first described by Newton 

(1989a) for analysing single DNA base differences in patients with a-antitrypsin 

deficiency and has since been applied to prenatal diagnosis and carrier detection of 

cystic fibrosis (Newton et al., 1989b). The technique is based on allele-specific 

priming of the polymerase chain reaction. To diagnose a specific mutation, two 

oligonucleotide primers are required that are identical in sequence except for the 

terminal 3' nucleotide. The normal primer has the 3' terminal nucleotide sequence 

complementary to the normal DNA sequence. Under the right conditions a primer will 

act as a template for DNA polymerase only when the terminal 5' nucleotide is 

perfectly matched to the target DNA sequence. Thus, the normal primer when 

hybridised to the mutant genomic DNA and, conversely, the mutant primer when 

hybridised to the normal DNA, will not function properly as a template for DNA 

amplification and no amplified product is observed at the end of the PCR process. To 

screen for a particular mutation, only the mutant ARMS primer is required (in 

combination with three others- a common primer and two control primers). However, 

for prenatal diagnosis of individuals homozygous for a particular mutation, both 

normal and mutant primers will be required. The design of the ARMS primers is very 

important. The technique is a combination of a PCR assay and examination of the 

amplification products by agarose gel electrophoresis and ethidium bromide staining. 

In this technique two polymerase chain reactions involving four primers in the one 

reaction mixture is required. Two of the primers are control primers that amplify a 

segment of the DNA some distance away from the site of the mutation so they do not 

interfere with the amplification of the DNA fragment produced by the ARMS primers 

and common primer. The control fragment indicates that the PCR reaction was set up
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properly. When it is not observed in an ARMS analysis, the result obtained with 

ARMS primers must be discounted and the analysis repeated. The other two primers 

are the ARMS primers that are allele-specific to either the mutant DNA sequence or 

normal DNA sequence as required, and a common primer, which matches the same 

sequence in both normal and mutant DNA. These two primers combine to produce 

the diagnostic ARMS DNA fragment in the amplification reaction. The success of the 

ARMS technique is dependent on the ARMS primers working specifically.

2.4.9 RNase cleavage analysis.

Single base changes in DNA can be detected by cleavage of mismatches in RNA:DNA 

duplexes with the enzyme RNase (Myers et al., 1988; Winter et al., 1985; Gibbs and 

Caskey 1987). A uniformly labelled single-stranded RNA probe is synthesised. The 

ssRNA probe is synthesised as run-off transcripts from a cloned DNA template. The 

probe is mixed with double-stranded test DNA, which can be cloned, genomic DNA 

or PCR-amplified DNA fragment, and the mixture is heated to separate the DNA 

strands. This is then followed by an annealing reaction whereby the labelled RNA 

probe is allowed to anneal with its complimentary strand in the test DNA fragment 

forming an RNA:DNA duplex. The presence of any base changes in the test DNA will 

cause base mismatches in the RNA:DNA duplex. The annealed mixture is then treated 

with the enzyme RNase A to cleave the RNA strand at the mismatched sites. After the 

cleavage reaction, the duplex is treated with denaturants to separate the strands and 

then run on a denaturing gel to separate the RNA fragments by size. If the test DNA 

had no mutation, a single band on the autoradiograph, corresponding in length to the 

full-length protected test fragment, is observed. If a mutation was present in the test 

DNA, two bands will be observed on the autoradiograph.
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By using this procedure, approximately 30 to 40% of all possible mismatches in the 

RNA:DNA duplexes can be efficiently detected. The detection rate can however, be 

improved to detect up to 60 to 70% of the possible base changes, by testing a DNA 

fragment with each of its two corresponding labelled RNA probes in separate 

cleavage reactions (Myers et al., 1985c). This method is most suitable for screening 

DNA fragments between 100 and 1000 bp long. Fragments longer than 1000 bp are 

difficult to screen because of random cleavages which occur even in perfectly 

matched bases and may be numerous enough to interfere with the results. Moreover, 

analysis of such long RNA fragments requires the use of denaturing agarose gels 

(Myers et al., 1988). Therefore, the most obvious limitation of this method is that it 

cannot detect all possible mismatches. Further more, the method requires extra 

cloning for probe production and the screening is limited to DNA fragments of up to 

1000 bp only.

2.4.10 Allele specific oligonucleotide (ASO) hybridisation.

A point mutation which does not produce a restriction site change may be detected 

using allele-specific oligonucleotide (ASO) probes (Studencki and Wallace, 1984). 

ASO probes are typically 15-20 nucleotides long and normally employed under 

hybridisation conditions at which the DNA duplex between probe and target is only 

stable if there is perfect base complimentary between them. A single mismatch 

between probe and target sequence is sufficient to render the short heteroduplex 

unstable. Oligonucleotide probes can therefore be designed to hybridise to specific 

alleles of a gene which differ by a single nucleotide at a diagnostic site. Although 

ASOs can be used in conventional Southern blot hybridisation, it is more convenient 

to use them in dot-blot assays.
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2.4.11 Direct genomic sequencing.

There are two popular methods for sequencing. One of them is the chemical method 

described by Maxam and Gilbert (1977), the other one is the enzymatic method of 

Sanger et al. (1977). Of the two methods, Sanger's method, known as dideoxy 

sequencing or the chain termination method of sequencing, is most widely used. In the 

Maxam and Gilbert method, the DNA is cleaved into fragments which are then 

radioactively labelled at one end, subsequently divided up into four batches, each of 

which is treated differently by chemicals to modify a particular base or bases resulting 

in very small DNA fragments, some of which will be end-labelled. The fragments are 

then resolved in denaturing polyacrylamide gels resulting in base specific bands on 

autoradiography.

The enzymatic method of sequencing involves the synthesise of a DNA strand by a 

DNA polymerase using a single-stranded DNA template. An universal oligonucleotide 

primer is annealed to the template and this followed by a period of extension where 

dTTP, dGTP, dCTP, and radioactively labelled dATP are incorporated into the 

growing strand. Reactions are terminated by addition of dideoxynucleotides into the 

strands in four separate reactions, one each for ddGTP, ddTTP, ddCTP, and ddATP 

(Dideoxynucleotides lack a 3' hydroxyl group and cannot form phosphodiester 

bonds). This results in the production of a family of DNA fragments of different 

lengths depending on the site of incorporation of dideoxynucleotide. High resolution 

gel electrophoresis separates the fragments, and because of the incorporation of 

radioactive dATP they can be visualised by autoradiograph. If the four termination 

reactions are run next to each other on the gel, then the sequence can be read directly 

from the order of the ladder of the bands (Watson et al., 1987).
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2.5 Aims of the present study.

The overall aim of this project was to compare different strategies in screening for 

molecular pathology using the RB gene as a model system.

Specifically this involved:

2.5.1. Optimisation of PCR, RT-PCR of retinoblastoma cDNA, single-stranded 

conformation polymorphism (SSCP) and amplification and mismatch detection 

(AMD) analysis.

2.5.2. Characterisation of mutations with direct genomic sequencing.

2.5.3. Application to breast and bladder carcinomas.
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CHAPTER THREE: METHODOLOGY.



3. Material and Methods.

3.1 Patients.

The Patients recruited were those with clinically confirmed bilateral retinoblastoma

referred to the Duncan Guthrie Institute of Medical Genetics, Glasgow. Blood samples 
| by Mair Crouch from The Duncan Guthrie Institute of Medical Genetics, Glasgow, 

were collected and immortalised lymphoblastoid cell line established^ Controls were

randomly selected from individuals who presented with problems other than

retinoblastoma. 20 patients with bilateral retinoblastoma and 3 of whom were related and

6 control subjects were included in this study. As well as patients with bilateral

retinoblastoma, 40 patients with bladder carcinoma and 39 patients with breast carcinoma

were screened for RB gene mutations. Tumour tissues from patients with bladder

carcinoma were provided from Pathology Department of Western Infirmary Hospital

Glasgow and obtained by transurethral resection. Tumour tissues from patients with

breast carcinoma were provided from The Duncan Guthrie Institute of Medical Genetics,

Glasgow. Additionally, to screen MCAD (Medium-Chain Acyl-CoA Dehydrogenase)

deficiency in Scottish population, 552 DNA from clotted bloods obtained from The

Duncan Guthrie Institute of Medical Genetics Alphafetoprotein Screening Laboratory

and postmortem livers of 233 SIDS (Sudden Infant Death Syndrome) patients

(representing most patients in the past 10 years in Scotland) obtained from Pathology

Department of the Royal Hospital for Sick Children in Glasgow.

3.2 Preparation of genomic DNA.

Genomic DNA was extracted from blood, tumour tissue, blood clots, liver tissue and 

Guthrie Cards. Extraction of DNA from blood was modified from methods described by
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Kunkel et al. (1977) whereas extraction of DNA from tissue was done with a method 

according to Hogan et al. (1986). Small scale DNA extraction method was used for the 

DNAs extraction from fresh blood clots (Williams et al., 1988).'

3.2.1 Extraction of DNA from blood.

DNA from patients with bilateral retinoblastoma was isolated from peripheral blood
fk

lymphocytes on the protocol by Kunkel et al. (1977). 20 ml of ice cold lysis buffer was 

added to 5 ml blood and mixed gently. This was incubated on ice for 10 minutes, 

centrifuged at 2800 9  for 10 minutes, and then the supernatant was discarded. The 

pellet was resuspended in 3 ml nucleic lysis buffer and the following solutions were added 

to the tube; 200pl 10% SDS and IOOjllI proteinase K. The solution was then incubated at 

37°C overnight. 1 ml of 6 M NaCI was then added to overnight incubation and the 

sample was centrifuged at 2.5 K for 15 minutes. The top layer was transferred into a 10 

ml tube. After this, the samples were extracted twice with phenol/chloroform, followed 

by a chloroform extraction to remove any traces of phenol. DNA was precipitated by

two volume of absolute ethanol. 

DNA was spooled out using sealed pasteur pipettes, washed in 70% ethanol, air dried and 

dissolved in 200-500 |il of TE buffer. The samples were stored at 4°C until required. 

Final DNA concentration was estimated by measuring the optical density at 260 nm in a 

Perkin Elmer 6000 spectrophotometer.

*Lysis buffer: 0.32 M Sucrose, 10 mM Tris-HCI pH 7.5, 5 mM MgCl2, 1% TritonxlOO. 

♦♦Nucleic lysis buffer: lOmM Tris-HCI pH 7.5, 0.44 M NaCI, 2 mM EDTA pH 7.2.
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3.2.2 Extraction of DNA from tissue.

©(■
To screening MCAD deficiency, extraction^DNA from postmortem liver tissue of 233 

SIDS was based on methods of Hogan et al. (1986). Same method was used for 

extraction of DNA from tumour tissue (breast carcinoma and bladder carcinoma) to 

screen RB gene mutations.

After thawing, the tissues (approximately the size of a pea) were minced with fine- 

pointed sterile scissors The following reagents were added; 3 ml lysis mix , 200pi 10% 

SDS, lOOpl proteinase K (10 mg/ml). Then they were incubated at 55°C for 4-16 hours. 

After incubation, 1 ml 6M NaCI was added and sample vigorously shaken. The samples 

were then centrifuged at 3000g for 10 min. The supernatant was transferred to another 

tube and an equal volume of phenol-chloroform was added to each tube ( 5 ml of each). 

After centrifugation at 3000 g for 10 min the supernatant was transferred to a fresh tube. 

DNA was precipitated by adding 2 volumes of ethanol, 1/10th volume 3M sodium 

acetate. DNA was spooled out using sealed glass pipettes. The DNA was rinsed in clean 

70% ethanol, air dried and resuspended in an appropriate small volume of TE buffer 

(about 500pl).

3.2.3 Small scale DNA extraction.

Small scale DNA extraction method was used for the DNA extraction from fresh blood 

clots which were obtained from pregnant western Scottish women undergoing 

alphafetoprotein (AFP) analysis for foetal abnormality. Two methods of small scale DNA 

extraction were performed to determine which was the most amenable to PCR 

amplification and which was also cost and time effective. The majority of the DNAs were
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extracted by the Proteinase K method of Williams et al. (1988), who have shown that the 

quantity and purity of the DNA is sufficient for the subsequent PCR amplification. The 

remainder of the DNAs were extracted by the alkali method of Ivinson and Taylor 

(1993), which is a much quicker and simpler procedure.

3.2.3.1 Proteinase K method.

Batches of 10-20 DNAs were prepared simultaneously. For each blood sample, a clot 

(approximately the size of a pea) was placed into a 1.5 ml eppendorf tube and minced 

with scissors. The following reagents were then added to each eppendorf; 375 \i\ Nucleic 

lysis mix ,25 jil Proteinase K (10 mg/ml). The reagents were mixed well by inverting each 

tube for approximately 30 sec. The reaction components were then incubated at 55°C or 

at 37°C for at least 4 hrs with mixing each hour or overnight* Phenol/chloroform 

extraction was performed three times on the resultant DNA mixture, followed by a single 

chloroform extraction (The upper layer in each extraction contained DNA). The DNA 

was then precipitated out of solution by addition of roughly 1 ml of ice-cold ethanol to 

the DNA solutions in each 1.5 ml eppendorf tube. If visible, the DNA was spooled out on 

a glass pipette, washed in ethanol and left to air dry. The DNA was subsequently 

redissolved in 200 (il of TE buffer. If the DNA was not visible on ethanol precipitation, 

the DNA/ethanol mixture was microfuged at 10.000 rpm (IEC Centra-4x). The ethanol 

supernatant was poured off and the pellet allowed to air-dry. The DNA pellet was then 

redissolved in solution, as above. The DNA solutions were stored at 4°C until required. 

The optical density (OD) of the DNA solutions was read at 260 nm using quartz cuvettes. 

The DNA concentration (jll/ml) was calculated by multiplying the OD reading by the 

dilution factor of the DNA solution in the cuvette (1/100) and also by multiplying by 50 

as 1 OD unit is equivalent to 50 jig of DNA. One |Xg of DNA was used in the PCR.
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3.2.3.2 Alkali method.

DNA blood clots were prepared as in the proteinase K method. To release the DNA into 

the solution, 0.1M NaOH (100 pi) was added to the minced clot and mixed thoroughly 

by vortexing for roughly 15 sec. The mixture was then boiled for 6 min on a preheated 

Dri-Block (techne DB-1) and afterwards microfuged (IEC Centra-4X) at 10,000 rpm for 

3 min. The supernatant was immediately removed from the underlying cell debris and 

stored at 4°C unless the PCR was performed immediately. Depending on the volume of 

supernatant recovered, 5-10 pi of the DNA solution were used for the PCR.

3.3 Total cellular RNA extraction.

Total cellular RNA was extracted from peripheral blood lymphocytes and lymphoblastoid 

cell lines. Extraction of RNA from lymphocytes was modified from methods described by 

Lench et al. (1988) and Sherman et al. (1989), whereas extraction of total cellular RNA 

from lymphoblastoid cells was based on the methods of Chomczynski and Nicoletta,
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(1987). The use of high-quality RNA is critical for the success of RT-PCR analysis. The 

RNA must not be degraded by ribonucleases, as determined by the intactness of 

ribosomal (rRNA) bands, and contaminating genomic DNA must be removed. Therefore, 

plastic used for the preparation and storage of RNA were treated in 0.1% 

diethyl pyrocarbonate (DEPC) in water for 14-16 hours

before being autoclaved to avoid contamination with RNases. All plastic-

ware for RNA use were kept aside from general use. Isolated RNAs were stored as an 

ethanol precipitate at -20°C or in aqueous solution at -70°C or below up to a year 

without appreciable deterioration. Repeated freeze and thaw cycles were avoided.

3.3.1 Extraction of RNA from lymphocytes.

10 ml of venous blood was collected in heparinised bottles The diluted blood was 

carefully layered over 10 ml of histopaque and centrifuged at 1400 rpm for 30 min at 

room temperature. After centrifugation the opaque interface mononuclear cells, including 

lymphocytes, was carefully removed with a pasteur pipette into a fresh tube and washed 

in 20 ml of cold PBS (phosphate buffered saline), then pelleted by centrifugation at 1400 

rpm. for 20 min. The supernatant was discarded in chloros and the cell pellet resuspended 

in phosphate buffered glucose (pH 7.4). j Approximately four million cells were

then removed and washed in PBS and pelleted in a microcentrifuge by centrifugation at 

1400 rpm for 10 min. The cell pellet was resuspended in 500 |il of solution D ( 4 M 

guanidinium thiocyanate, 25 mM sodium citrate, pH 7; 0.5% sarcosyl, 0.1 M 2- 

Mercaptoethanol). [To minimise handing of guanidinium thiocyanate (hazardous) a stock 

solution was prepared as follows: 250 g guanidium thiocyanate (Fluka) was dissolved in 

the manufacturer’s bottle (without weighing) with 293 ml water, 17.6 ml 0.75 M sodium 

citrate, pH 7, and 26.4 ml 10% sarcosyl at 65°C. This stock solution can be stored for at
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least 3 months at room temperature (Chomczynski and Nicoletta, 1987)]. The resultant 

mixture was transferred to an autoclaved and DEPC treated 1.5 ml eppendorf tube and 

the following solutions; 50jll1 of 3M Sodium Acetate, 500pl of phenol, lOOpl of 

chloroform-isoamylalcohol (49:1 ratio) were added and vortexed for 20 seconds. The 

tubes were placed on ice for 15 minutes. Then the tubes were centrifuged for 20 minutes 

at 10000 rpm. The aqueous phases of the mixtures were transferred into 1.5 ml eppendorf 

tubes. Then 1000 pi of isopropanol was added to the tubes, and mixed well. They were 

kept at -20°C for 1 hour. The tubes were then centrifuged, and the supernatant was 

discarded. 300 pi of solution D was added to the pellets and the pellets were dissolved. 

300 pi of isopropanol was added to each tube and then the solution quickly chilled at - 

20°C. After an 1 hour, the tubes were centrifuged for 10 min. The pellet was washed in 

250 pi of 75% ethanol, then dried. Finally the pellet was dissolved in DEPC treated 

water.

3.3.2 Extraction of total cellular RNA from lymphoblastoid cell line.

The most common and consistently successful method for isolating pure, intact total 

RNA are modifications of the original guanidinium thiocyanate method of Chirgwin et al. 

(1979). To each cell pellet in a 30 ml Sorvall tube, 3 ml of Solution D was added. 2- 

mercaptoethanol was added to a final concentration of 1% (0.14 M) only just before use. 

Homogenisation was done by carefully vortex mixing the cell pellet in the homogenisation 

buffer and then passing the homogenate several times through a 23-gauge needle until the 

cell lysate was no longer viscous. After homogenisation, the protocol was carried out as 

described above.
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3.3.3 Determination of RNA concentration.

RNA quantitation was carried out by spectrophotometry. The optical density (OD) of the 

RNA was determined both at 260 and 280 nm. To carry out determination of the optical 

density (OD) of RNA, 10 pi of RNA solution was diluted in 990 pi of TE buffer in a 1 ml 

cuvette. An OD of 1 at 260 nm corresponds to approximately 40 pg/ml of RNA. The 

ratio of 260 nm and 280 nm was used to determine the purity of the RNA solution. The 

value of the ratio was expected to be 2 to determine good RNA (Gurr and McPherson, 

1993).

3.3.4 Qualitative assessment of RNA.

The quality of RNA was evaluated by agarose gel electrophoresis. To prepare the gel, 

0.45 g agarose was weighed out in 22 ml of water in a flask . The flask was weighed and 

boiled until the agarose had dissolved. The flask was then re-weighed and the evaporated 

water replaced. The gel was cooled to 55°C. After cooling, in a fiime hood, the following 

reagents were added; 5 ml formaldehyde, 3 ml lOxMOPS buffer [3-(A-morpholino) 

ethanesulphonic acid] and the gel quickly poured before setting. 1 pi of RNA solution 

was mixed with 5 pi of formamide, 1.65 pi of formaldehyde, 1 pi of 10X MOPS and 1.3 

pi of dH02 The mixture was heated to 55°C for 10 min, quenched on ice and 2 pi of gel 

loading buffer (0.25% bromophenol blue, 0.25% xylene cyanol FF, 40% sucrose in 

water) was added. The samples were then immediately loaded with lpg  Escherichia coli 

ribosomal RNA (Boehringer) as markers and electrophoresed at 75 V until the 

bromophenol blue reached the bottom of the gel. lxMOPS was used as a running buffer. 

After running the samples, the gel was soaked in water for 1 hour to wash out the 

formaldehyde. The gel was stained for 5 min in a 1/1000 solution of ethidium bromide,
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then destained for 2 hr or overnight in H2O and viewed under U. V. light to check for the 

integrity of ribosomal bands and to estimate the concentration.

3.4 Polymerase chain reaction.

3.4.1 Amplification of DNA from retinoblastoma gene.

Primers flanking exons 12-22 of the retinoblastoma gene, designed by Thompson and his 

co-workers (1991) (Table 3), were used in this study for the amplification of DNA from 

the retinoblastoma gene. The synthetic oligonucleotide primers were prepared by on a 

Applied Biosystems DNA synthesiser. Amplification was performed by adding 1 pi of 

DNA to a 15 pi reaction mixture containing 50 mM KC1, 10 mM Tris.HCl (pH 8.4), 1.5 

mM MgCl2, 100 pg/ml gelatine, 10 pM of each dNTP (dATP, dCTP, dGTP, 

dTTP)(Boehringer Mannheim) and 0.5 pM of each primer. The mixture was then put in 

an U.V. box (Amplirad II, high intensity shortwave cabinet with 4xG875 germicidal 

lamps, 1.8 watts each, 254 mm wavelength) for 5 min. After U.V. treatment DNA was 

added and thoroughly mixed by vortexing. To this 1.25 units of Taq DNA Polymerase 

was added, the mixture overlaid with 15 pi of light mineral oil and amplified for 30 

cycles. Denaturation was carried out at 94°C for 45 sec, annealing was performed at 52- 

57°C (Table 5 in the results section) for 2 min and extension at 72°C for 1.5 min except 

for the last extension which was carried out for 10 min. At the end of the PCR, samples 

were briefly centrifuged and 5 pi of each product was taken below oil and 

electrophoresed on a 1% agarose gel in IX TBE buffer. Electrophoresis was carried out 

at 10-15 V/cm until the bromophenol blue in the loading mixture migrated two thirds of 

the distance of the gel. The gel was stained by soaking for 30 min at room temperature in
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the running buffer containing 0.5 pg/ml of ethidium bromide. When necessary the gel was 

destained for 20 min before visualisation under U.V. light.

3.4.2 Amplification of DNA from medium-chain Acyl-CoA dehydrogenase
(MCAD) gene.

A 0.5 ml sterilised tube was used for the PCR reaction. The reaction mix, which was 

made up to a total volume of 100 pi with double distilled water, was set up using lOpl of 

lOxPCR reaction buffer (50 mM KC1, 10 mM Tris (pH 8.4), 1.5 mM MgCl2, 100 mg/ml 

gelatine), 10 pi dNTP's mix containing 50pM of each nucleotide and 50 pmol of each 

oligonucleotide primer (Gregersen et al., 1991). The concentration of each 

oligonucleotide primer was calculated according to the method described by Thein and 

Wallace, (1986). All reagents were kept at -20°C, vortexed briefly after thawing and 

spun down before pipeting with positive displacement pipettes (Lab systems). The mix 

was irradiated for 5 minutes in an Amplirad before the addition of lpg of template. The 

samples were than heated at 95°C for 5 minute, 60°C for 5 minutes, and 2 units of Taq 

DNA polymerase (Boehringer Mannheim, 5 U/pl) were added. Each PCR reaction mix 

was overlaid with lOOpl of light mineral oil (Sigma), and centrifuged for 3 seconds before 

it was placed in Techne PHC 1 automatic thermocycler. Amplification conditions 

consisted of 30 cycles of the following: denaturation at 94°C for 1 min, annealing at 

60°C for 2 min, and primer extension at 72°C for 2 min. The PCR cycles were followed 

by a final 10 min extension step at 72°C. The products were directly digested with Ncol 

and analysed in 8% polyacrylamide gels.
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Primer set Sequence

12A 5'-GAT ACA TTT AAC TTG GGA GA-3

12B 5'-CAT GTT AGA TAG GAG ATT AG-3'

13A 5'-GAT TAC ACA GTA TCC TCG AC-3'

13B 5-TAC AACTGGA AGATGC TG-3'

14A 5'-AAA CAG TGA GAC TCC ATC TC-3'

14B 5-TGG CCA GGA TGA TCT TGA TG-3'

15A 5-TAA GGT TTC AAT TAA ACA AC-3'

16B 5-CTT TAA ATT GAA CAA AAG TG-3'

17A 5-TAC CTAGCT CAAGGGTTA AT-3’

17B 5-TAG CCA TAT GCA CAT GAA TG-3'

18A 5-AAT TAT GCT TAC TAATGT GG-3'

18B 5-ATT TGC AGT TTG ATGGTC AA-3*

19A 5'-TGT GAT TCT TAG CCA ACT TG-3’

19B 5'-TCA GAG TCC ATG CTC TTG AA-3'

20A 5'-AGA GGT TTC TGT TAA AAT GC-3'

20B 5-AGAAGG TGA AGT GCT TGA TT-3'

21A 5-ATT CTG ACT ACT TTT ACA TC-3'

21B 5'-ATG AGA TCA AAT GAA TTA CC-3'

22A 5'-TTT ACT GTT CTT CCT CAG-3’

22B 5-GTG GAC CCA TTA CAT AG-3'

Table 3. Sequence of PCR primers for the exons studied (Thompson et al., 199 !)♦
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3.4.3 PCR primer design.

Primers for RT-PCR were designed using computer program OLIGC)TM(MEDPROBE). 

Segments were designed which overlapped each other and almost covered the entire 

cDNA. Oligonucleotide primers were generally synthesised in the range 21-22 bases. 

Primers were stored in the ammonia eluant used for deprotection which stays liquid at - 

20°C, enabling the dispensing of primers without repeated freeze-thawing. Before use, 

20-30 jil of this stock was heated to 95°C for 3 minutes to drive off the ammonia. Total 

cellular RNA from samples was used to synthesise cDNA using oligonucleotide primers 

with nucleotide sequences complementary to various regions of the RB mRNA. The 

single-stranded cDNA segments carrying portions of the RB mRNA thus obtained were 

then amplified by PCR to double-stranded DNA segments using sets of two primers one 

of which was the same oligonucleotide as that used for reverse transcription. The regions 

thus amplified, designated as segments A to E (Table 4), with nucleotide lengths of 302 

bp to 1433 bp, are shown in Figure 5. These 5 segments overlap each other and cover 

almost the whole coding sequence of the RB cDNA of 3938 kb. Amplified products 

were then subjected to AMD analysis.
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432 734 794 1L94

3290

1361 2068 3127 4497

Figure 5. The strategy for amplification, o f RB cDNA, and the positions o f the 
segments used for RT-PCR in the gene is shown.
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POSITION SYMBOL POSITION 

AND LENGTH

SEQUENCE

Sense A5 432 (21) 5’GTG GGG AAT CTG TAT CTT TAT-3'

Antisense A3 734 (21) 5 -ATA CTT CCC CTT TAG CTA ATA-3'

Sense B5 794 (21) 5'-TGC TAT GTG TCC TTG ACT ATT-3'

Antisense B3 1199 (21) 5-TAC TTT TTC GTG GTG TTC TCT-3'

Sense C5 1361 (22) 5-CAG TGA ATC CAA AAG AAAGTAT-3’

Antisense C3 2068 (22) 5-AAA ACA GTG AAA GAG AGG TAG A-3'

Sense D5 1857 (21) 5 -TAA ACA ATC AAA GGA CCG AGA-3'

Antisense D3 3290 (21) 5-AAA AAC AAG AGC AAA CAT CAC-3’

Sense E5 3127 (21) 5-TTG AAA ATC TTG TGT AAA TCC-3’

Antisense E3 4497 (21) 5-CCC TTG ACC TAA AAA CTA ACT-3’

Table 4. Sequences of the oligonucleotide primers used in various amplifications and their 

positions in retinoblastoma cDNA are shown.
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3.4.4 Asymmetric PCR amplification of retinoblastoma cDNA.

The PCR technique allows the rapid isolation of specific DNA targets for sequencing. 

Asymmetric PCR reaction was performed according to the protocol developed by Mgone 

(1992). By this method single-stranded DNA was generated during the PCR reaction. 

Primers were included in a ratio of 50:1 to 100:1, one primer at the usual concentration 

and one diluted. The best ratio was generally determined by trial and error. 5 jxl of a 10 \l 

M and 0.1 |iM dilution of each primer were used in a PCR reaction in a total volume 100 

pi. Other components were the same as for the standard reaction. The reactions were 

checked for the production of single-stranded DNA on a 1% TBE agarose gel, and 

visualised by staining with ethidium bromide (lOpg/ml).

3.4.5 Reverse-transcriptase PCR (RT-PCR).

Reverse transcription of RNA followed by the polymerase chain reaction (RT-PCR) is a 

sensitive method to detect specific mRNAs. RNA was first isolated from

cells and then used as a template for reverse transcription to complimentary DNA 

(cDNA). The cDNA in turn was used as a template for PCR, using primers designed to 

amplify the selected cDNA region. Following PCR, the product was typically analysed by 

agarose gel electrophoresis. The amplified cDNA was identified by the size of the PCR 

product, which is predicted from knowledge of the cDNA nucleotide sequence.

3.4.6 Reverse-transcriptase PCR using downstream primers.

A 3’ (antisense) gene-specific primer was annealed to the mRNA and extended with 

reverse transcriptase, thus generating a cDNA template for the 5' (sense) primer, allowing
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PCR amplification to occur. To accomplish this, 0.5-1 pg of RNA was heated at 95 °C 

for 5 min, quenched on ice and then 20 pmol of antisense primer was added. To anneal 

the primer, the samples were heated at 65 °C for 10 minutes and quenched on ice again 

and then reverse transcribed in a 20 pi reaction mixture containing 20 Units Ribonuclease 

inhibitor (RNasin; Boehringer Mannheim Biochemica; 2,000U/50pl), 50 mM Tris-HCI, 

pH 8.3, 3 mM MgCI2, 75 mM KCI, 10 mM dithiothereitol (DTT), 200pM each dNTP 

(dATP, dCTP, dGTP, dTTP), 200 units of Moloney Murine Leukaemia Virus Reverse 

Transcriptase (M-MLV RT; Gibco BRL) for 1 hour at 42°C. At the end of the reverse 

transcription the mixture was heated to 95°C for 5 min and then quenched on ice. To this 

solution 30 pmol of the antisense primer and 50 pmol of the sense primer were added 

with a final concentration of 0.5 pM of each primer. The volume of the reaction mixture 

was adjusted to 100 pi and 2 units of Taq DNA polymerase added. The samples were 

then briefly vortex mixed and capped with 100 pi of light mineral oil. Amplification 

conditions consisted of 40 cycles of the following: denaturation at 94°C for 1 minute, 

annealing at 52°C for 2 minutes, and primer extension at 72°C for 2 minutes. The PCR 

cycles were followed by a final 10 minutes extension step at 72°C.

The samples were loaded onto 1% agarose gels and electrophoresed in TBE buffer. The 

products were then visualised under U.V. light by staining with ethidium bromide (lOp 

g/ml). The appropriate band was excised and the cDNA eluted by soaking for 24 hours in 

100 pi of TE buffer at -20°C. The cDNA in solution was removed from the agarose by 

pipetting and stored at -20°C or used directly in asymmetric PCR or AMD analysis.
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3.4.7 Reverse-transcriptase PCR using Oligo (dT).

mRNA molecules were first converted into cDNA by priming with 0.2 Jig of oligo(dT) 

(d(T)i2-l& Pharmacia). At the end of the reverse transcription two gene-specific primers 

were added for amplification. The amplification was carried out as described above.

3.4.S Purification of PCR products.

At the end of PCR, the amplified DNA or cDNA was purified by removing excess 

dNTPs, primers and salts. Various techniques were used. These included Geneclean 

purification (Vogelstein and Gillespie, 1979), and selective alcohol precipitation 

(Gyllensten and Ehrich, 1989; Brow, 1990).

3.4.8.1 Geneclean™ purification.

Chemical cleavage of PCR products requires elimination of primers, dNTP's, PCR 

buffer, and Taq polymerase, since these would interfere with the reaction. At the end of 

PCR amplification, the purification was carried out according to the manufacture's 

protocol (BIO 101). The paraffin oil was removed. 2-3 volumes of the supplied stock 

solution of Nal were added to the products giving a final concentration of at least 4 M 

and to this, 15 jil of the provided 'glassmilk' suspension was added, mixed and the 

mixture kept on ice for 15 min to bind the DNA molecules. The mixture was then 

centrifuged in a microcentrifuge for 5 seconds and the supernatant removed. The pellet 

was then resuspended in 300 pi of the New Wash provided, centrifuged for 5 seconds 

and the supernatant discarded. This washing was repeated three times and after the third 

wash the pellet was resuspended in 20 pi of TE buffer and incubated at 65°C for 10 min.
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The mixture was then centrifuge for 3 minutes and the supernatant containing eluted 

DNA was transferred to a fresh microfuge tube.

3.4.8.2 Selective alcohol precipitation.

Precipitation was performed according to the protocol modified by Mgone (1992). The 

method used was based on the fact that 2.0-2.5 M ammonium acetate reduces the 

coprecipitation of dNTPs with DNA (Okayama and Berg, 1982). Mineral oil was 

removed. An equal volume of 4 M ammonium acetate (pH 5.2) was then added, mixed 

and to this 2 volumes of ethanol added and again mixed. The mixture was left at room 

temperature for 10 min, then centrifuged at 12,000 rpm for 10 min. The DNA pellet was 

washed in 70% alcohol, dried in air and dissolved in 14 pi of TE buffer (pH 7.4).

3.5 Single-stranded conformation polymorphism (SSCP) analysis.

SSCP analysis was applied to screen functionally important RB gene regions. Exons 12 to 

22 (Table 3) of the RB gene were screened for sequence change with PCR-SSCP 

analysis. A 30 cycle PCR was performed on the target DNA sequences using 100 ng of 

genomic DNA. 20 pmol 32p dCTP (60 gCi) was included in the reaction mixture to label 

the PCR products. After thermal cycling, the amplified product was diluted 1:7 in gel 

loading buffer (95% formamide, 10 mM NaOH, 0.05% bromophenol blue and 0.05% 

xylene cyanol). The sample was heated at 95°C for 2 minutes to denature the DNA. The 

denatured DNA was then placed directly onto ice for several minutes. Then, the samples 

were loaded on to 0.5XMDE nondenaturing gel (20cmx40cmx0.4cm) containing 5% 

glycerol. Electrophoresis was carried out at 5 W for 14-24 hours, with a fan heater, set 

on cold, directed at the gel as a cooling device. The gels were dried on a gel dryer
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(Biorad model 543). After drying, the gels were placed on a sheet of Kodak XAR-5 film 

in an autoradiographic cassette with "Dupont lightning plus" intensifying screens 

(Hoeffer) and exposed for 3-16 hours at -70°C.

3.6 Heteroduplex analysis of the retinoblastoma gene.

After the final thermal cycle of PCR was completed, the reaction was inactivated by 

adding EDTA to 5 mM (1 jxl of 0.5 M EDTA per 100 pi reaction). Amplified DNA 

fragments were heated to 95°C for 3 minutes, and cooled slowly (20-30 minutes) to 

room temperature to form heteroduplexes (Keen et al., 1991). A sequencing plate was set 

up with 0.4 mm spacers and filled with gel solution including 25 ml of MDE gel, 69 ml of 

dH2 0 , 6 ml of 10X TBE buffer, 0.4 ml of 10% APS, 0.04 ml of TEMED. Appropriate 

DNA size markers were also included on each gel as well as control homologduplex 

DNA. Approximately 100-200 ng of DNA was loaded per lane. Before loading the 

samples, 1 pi of gel loading buffer (95% formamide, 10 mM NaOH, 0.05% bromophenol 

blue and 0.05% xylene cyanol) for each sample was added and mixed well. 

Electrophoresis was done at a maximum constant voltage of 20 Volts per cm of the gel. 

So, for 40 cm gel, 800 Volts was used.

3.7 Amplification and mismatch detection (AMD) analysis.

This technique was developed to screen for point mutations, but deletions and insertions 

too small to be recognised by gel electrophoretic techniques are also detected (Howells et 

al., 1990). In this method, a reference DNA probe was mixed with excess test DNA or 

RNA. The mixture was then heated to denature the double strands of the DNA, and 

followed by cooling to allow reannealing and, thus, heteroduplex formation occurred with
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mismatched or unmatched C and T bases detected by reactions with hydroxylamine and 

osmium tetroxide, respectively. Cleaved by piperidine treatment was followed. The 

samples were then run on a 8% polyacrylamide/urea denaturing gel. 5 segments shown in 

Figure 5 of the RB gene and some of exons of the RB gene from patients with bilateral 

Rb were subjected to AMD analysis.

3.7.1 Probe preparation.

The purified PCR product chosen as the probe was end labelled or internally labelled. End 

labelling was done either by 3 -end labelling or 5-end labelling. Approximately 5ng of 

probe DNA per target sample per modification reaction was used. Radiolabelling of the 

probe was done by using either T4 polynucleotide kinase (5' end labelling) or the Klenow 

fragment of DNA polymerase I (3-end).

3.7.1.1 32p internal labelling and probe preparation.

Probes for each of the PCR products were prepared by PCR amplification between the 

sense and antisense oligonucleotides using an unaffected sample in the presence of 20 

pmol of 32p dCTP (60 jiCi). To allow efficient incorporation of label, the final 

concentration of non radioactive dCTP in the reaction was reduced from 200 pM to 6 

pM. To prevent misincorporation of alternate dNTPs as [dCTP] fell, only 25 PCR cycles 

were performed. The probe was then isolated from an agarose gel and resuspended in 

lxTE (lOmM Tris-HCl, ImM EDTA, pH 7.4) buffer at l,000cpm/pl.
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3.7.1.2 5'-end-labelIing and probe preparation.

10 pi of Geneclean PCR product of unaffected control were mixed with 0.5pl of (y-32p)_ 

ATP (3000 Ci/mmol; 10 Ci/ml), 5pl of 10X kinase buffer (freshly made; 500mM Tris- 

HCI pH 7.6, lOOmM DTT, lOOmM magnesium chloride), lpl of 10 units/pl T4 

polynucleotide kinase and 33.5pl of TE buffer (10 mM Tris-HCI, 0.1 mM EDTA, pH

7.4). This mixture was incubated at 37°C for 30 minutes. After that, it was placed on ice 

or stored at -20°C.

3.7.1.3 Probe preparation using 5'end-labelling primers.

Either the sense or the antisense strand of the wild-type cDNA was labelled by 

incorporation of radiolabelled oligonucleotide primer during the PCR reaction. 20-50 

pmol of primer was labelled as follows: To a final volume of 50pl of TE buffer; 5 pi of 5X 

kinase buffer, 5pi of diluted primer, 50-70 pCi (y-32p)ATP (6000 Ci/mmol), and 30 units 

of T4 polynucleotide kinase were added. Then it was incubated at 37°C for 45 minutes. 

End-labelled primers were used in the PCR reaction. After that, the reaction mixture was 

purified using Geneclean and used as a probe.

3.7.1.4 3'-end-IabeIling and probe preparation.

3 -end labelling can be used to selectively label each strand of the probe separately, but 

this requires that the appropriate restriction sites are present in the oligonucleotide 

primers. 6.5 pi volume probe DNA was mixed with lp l of (a-32p)-dNTP(s) (3000 

Ci/mmol; 10 Ci/ml), 1 pi of TM (100 mM Tris-HCI pH 8.3, 50 mM Magnesium 

chloride), 1 pi of 0.1 M dithiothereitol (DTT), 0.5 pi of 5 units/pl Klenow fragment
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(Boehringer-Mannheim) to a final volume of 10 pi of To jE. Then it was incubated at 

room temperature for 15 minutes and placed on ice or stored at -2°C.

3.7.2 Duplex formation.

By means of siliconized eppendorf tubes, homoduplexes and heteroduplexes were 

prepared with 28,000 cpm 32p control DNA (approximately 10.5ng) and a 10-fold 

excess of the unlabeled test DNA (105ng) in 162pi of TE buffer. 18pi of 10X 

hybridisation buffer (3M NaCI, 1M Tris-HCI, pH 8.0) was added, and the tubes were 

boiled for 5 minutes and transferred to 65°C. After 5-16h incubation, the tubes were 

removed and the DNA duplex was precipitated in 750pl of stop solution (63 mM sodium 

acetate, 20pM EDTA, 80% ethanol) as well as 4pi of 20 mg/ml mussel glycogen 

(Boehringer-Mannheim). After mixing well, the samples were chilled on dry ice for 10 

minutes. The samples were then spun at 14000g in a microcenrifiige for 10 minutes 

and the supernatant was discarded. The pellets were then washed with 70% v/v ethanol, 

and resuspended in 14pl of TE buffer. Two reactions were carried out for each duplex.

3.7.3 Hydroxylamine reaction.

20 pi hydroxylamine solution (1.39 g hydroxylamine (BDH) in 1.6 ml distilled water, 

adjusted to pH 6.0 by addition of approximately 1.6 ml diethylamine), was added to 7 pi 

of the duplex solution and the mixtures incubated for 10 and 60 min, respectively, at 

37°C. After incubation, 750 pi "stop solution” was added, and the DNA precipitated on 

dry-ice for 10 min. After centrifugation the DNA pellets were rinsed with 70% 

ethanol, and all liquid was removed after brief centrifugation. Finally the pellets were 

dried.
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3.7.4 Osmium tetroxide (OSO4) reaction.

18 jllI of osmium tetroxide solution (pyridine 6.75 pi (BDH), 4% w/v osmium tetroxide 

(Aldrich; 4% solution), 154 pi of Tq i E) was added to 7 pi of the duplex solution and the 

tubes mixed and incubated at 37°C for 2 hours. After incubation the reactions were 

stopped by the addition of 750 pi stop solution, and the DNA precipitated and was dried

as for the hydroxylamine reactions] Osmium tetroxide irritates mucous membranes, 
(therefore it should be used in a fume hood. ___________________

3.7.5 Piperidine cleavage of mismatches.

Fifty microliters of 10% piperidine (Fluka chemica) solution was added to each of the 

dried pellets and vortexed for 10 seconds, and the tubes then incubated at 90°C for 30 

min and 300 pi of stop solutions were added and the DNA was precipitated on dry-ice 

for 10 minutes and centrifuged, washed with 70% ethanol, dried, and resuspended with 7 

pi formamide dye (10 mg bromophenol blue, 10 mg xylene cyanol FF, and 0.2 ml of 0.5 

mM EDTA dissolved in 10 ml deionized formamide). The samples were boiled for 2 min 

and cooled on ice, and then the sample was subjected to electrophoresis on a 0.4-mm- 

thick 8% polyacrylamide/urea denaturing gel run at 35 W until the bromophenol blue 

marker had run 30 cm.

3.7.6 Radioactive labelling of 1 kb ladder.

The DNA fragments of the 1 kb ladder (BRL) were labelled by filling in of the 3* recessed 

ends with Klenow enzyme using the dATP, dGTP and dTTP nucleotides included in the 

Random Primed DNA labelling Kit (Boehringer Mannheim), lpg of 1 kb ladder was 

mixed with 1 pi of each dNTP, 2pl React 3 buffer (BRL), 2 pi of 32p dCTP (Amersham
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Life Science, 10 mCi/ml), 2 units of Klenow enzyme and made up to a final volume of 20 

jllI with distilled water. After then, the sample was incubated at 37 °C for 45 minutes. 

Then the labelled fragments were separated from other radioactive material on a pre­

packed Nick Column (Pharmacia), containing Sephadex G-50, eluted in 200 pi lx SSC 

buffer. The radioactively labelled 1 kb ladder was with loading mix before being applied 

on a gel.

3.8 Genomic sequencing.

The analysis of genetic variation in sequences amplified by PCR was carried out by 

sequencing the PCR product. The PCR amplified DNA and cDNA were directly 

sequenced using single-stranded templates (Mgone et al., 1992). Prior to sequencing, the 

PCR products were purified by removing excess deoxyribonucleoside triphosphates 

(dNTPs), salts and primers as described above. 7 pi of purified PCR product was mixed 

with 2 pi 5 X sequencing buffer giving a final concentration of 40 mM Tris-HCI (pH

7.5), 20 mM MgCl2 and 50 mM NaCI; 1 pmol of sequencing primer, either limiting or 

nested and complementary to synthesised single-stranded cDNA or DNA, was used. The 

template-primer mix was annealed by heating to 65°C for 2 minutes and then allowed to 

cool slowly, to less than 35°C over a period of 30 minutes. The mixture was then placed 

on ice and 1 pi of 0.1 M DTT, 2 pi of a 1/5 dilution of labelling mix (7.5 pM of each 

dNTP except dATP), 0.5 pi oc^S-thio dATP (1000 Ci/mmol: 10 pCi/pl) and 2 pi (1.5 u) 

of a 1/8 dilution of T7 DNA polymerase (Sequenase; version 2.0, protocol no. 70770) 

were added and incubated at room temperature for 5 minutes. After incubation, 3.5 pi of 

the mix was added to 2.5 pi of each termination mix prewarmed to 37°C, and incubated 

for another 5 minutes. The termination mixes contained 80 pM of each dNTP and 8 p  M 

of the appropriate dideoxyribonucleoside triphosphate (ddNTP). The reactions were
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terminated by the addition of 4 pi formamide-dye stop solution (95% formamide, 20 mM 

EDTA, 0.05% bromophenol blue, 0.05% xylene cyanol FF) and denatured at 75°C for 2 

minutes; 1.5 pi of each reaction mixture was immediately loaded onto an 8% 

polyacrylamide gel containing 7 M urea. The gels were run at a temperature of 50°C for 

2-4 hours, then fixed in 10% methanol/10% acetic acid, dried and exposed for 16-18 

hours to Kodak X-Omat AR film using intensifying screens .
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CHAPTER FOUR: RESULTS.



4. Results

4.1 Amplification of DNA from postmortem liver tissue and blood clots.

Medium-chain acyl-CoA dehydrogenase (MCAD) deficiency, is an autosomal 

recessive inborn error of metabolism associated with sudden unexplained death in 

young children. The DNAs from clotted bloods and postmortem livers of patients 

dying of sudden infant death syndrome (SIDS) were subjected to a modified PCR 

(Gregersen et al. 1991), whereby DNA fragments of 199 bp, including position 

985 were synthesised. The sense and antisense primers used were (5-TTT ATG 

CTG GCT GAA ATG GCC ATG-3')(bp 961 to 984 of the cDNA) and (5'-CAG 

GAT ATT CTG TAT TAA ATC CAT GGC CTC-3')(bp 1130 to 1159 of the 

cDNA) respectively (Gregersen et al. 1991). The sense primer contains a C:T 

mismatch at position 981, thus introducing a Ncol restriction site (CCATGG) 

when the mutant sequence is amplified. The antisense primer introduces a G:A 

mismatch at position 1135, creating another Ncol site. A Ncol site is not created 

and therefore cleavage does not occur when the PCR product is derived from the 

A985 allele. The other Ncol site is a control site, which is cleaved in both cases. 

G985 can therefore be distinguished from A985 because Ncol digestion of the PCR 

product results in a 158 bp band (G985) instead of a 178 bp band (A985) (Kolvraa 

et al., 1991) (Figure 6). 552 DNAs extracted from fresh blood clots of women 

from the West of Scotland were analysed two heterozygotes and no homozygotes 

were found. In addition, there were 3 G985 heterozygotes in a sample of 233 

Scottish patients dying from SIDS from same geographical area and no 

homozygotes found. This means that the heterozygous frequency of the G985 

mutation is 1/276 (95% Cl: 1/76-1/2279) in the Scottish population and 1/74 (95% 

Cl: 1/27-1/377) in Scottish patients with SIDS (Dal.,y et al., 1991),
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Figure 6. Amplification o f DNA from tissues and blood clots,

Genomic DNA fragments (199 bp) o f the MCAD gene were amplified and digested 

with Ncol and subjected to electrophoresis in an 8% polyacrylamide gel. Lane 1; 

size marker (1 kb ladder), lane 2; control (undigested), lane 3; heterozygous 

control, lane 4; heterozygous individual, lanes 5-10; normal individuals.
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4.2 Application of PCR-SSCP analysis in regions of the retinoblastoma 

gene.

In PCR-SSCP analysis, a DNA sequence of interest was amplified by PCR. For 

efficient detection of the product, isotopic label was coupled with the PCR primers or 

was incorporated into the PCR product itself (Hayashi et al., 1989; Makino et al., 

1992). Generally in 100 pi of PCR reaction for SSCP analysis, 2 pi of a-^^PdATP 

(3000Ci/mmol) and 2-3 unit of Taq polymerase are used. In order to save Taq 

polymerase and radioactive isotope PCR amplification was carried out in 15 pi of 

reaction solution. PCR in the small amount of reaction solution resulted in more 

efficient amplification and low expose radioactivity. On the other hand, when 

amounts of DNA from patients is limited for analysis, PCR can be carried out in small 

PCR reactions. In 100 pi of PCR reaction, the amount of DNA required is about 1 p 

g, whereas using this approach, only 10-100 ng DNA used in the PCR reaction can 

yield about 1-1.5 pg of product which is more than enough for SSCP analysis. The 

optimal amount of DNA per lane for SSCP analysis was found to be 100 ng. The 

product was then heated to dissociate the strands, and analysed by non-denaturing 

MDE gel electrophoresis (Orita et al., 1989). In the present study non-denaturing 

MDE gels were used instead of polyacrylamide gels. The advantage of using MDE 

gels instead of polyacrylamide gels was that the separation of single strand of the 

DNA was better and clearer. This resulted in easier analysis of the samples. Under 

non-denaturing conditions, single stranded DNA fragments will fold into unique 

conformations determined by their primary sequence because the structure is 

stabilised by intramolecular interactions. This secondary structure is difficult to 

predict theoretically and is highly dependent on variables such as temperature and 

ionic concentrations. Experience in many laboratories has confirmed that even a 

single-base substitution in PCR fragment several hundred nucleotides in length can 

induced a conformational change that is detectable as altered mobility on non­
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denaturing gel electrophoresis and that the technique requires relatively less labour 

and expense than most other approaches (Hayashi et al., 1993). The presence of low 

concentration of glycerol also affects folding and differences in the gel matrix can 

have a dramatic effect on mobility. In the present study 5% glycerol was used in the 

gel. Overloading sometimes results in abnormal migration of the bands and reduced 

resolution. For this reason, radioisotopic labelling of PCR products to a high specific 

activity can be recommended.

The full sequence of the coding region of RB gene, together with approximately 

200 bp of the introns flanking each exon, has been reported by McGee et al. 

(1989). Since not all the mutations occur within exons, the sequences used for the 

oligonucleotide primers (Thompson et al., 1991) extend into the intron region. 

Details of primer sequences are given in Table 3 in the methodology section. The 

size of the flanking intron region included in the amplified product varied between 

69 and 220 bp depending on the exon. The size of PCR products range from 182 

to 300 bp. Details of annealing temperature of the primers are given in Table 5.

Following PCR amplification, the amplified DNA was analysed on a 1% agarose 

gel to check both the size and specificity of the product (Figure 7). The location of 

primers was important to get specific amplification. Single base pair mutations can 

be detected following SSCP analysis of PCR products up to 350 bp. However, 

subtle changes in nucleotide sequence are more readily detectable in smaller 

molecules (Orita et al., 1989). An additional factor which influenced the location of 

the primers was the GC-AT ratio. The higher the AT content, the lower the 

annealing temperature and the greater the likelihood of non-homologous pairing 

which results in background amplification. Generally, the higher the GC content of 

the primer, the higher the annealing temperature. The 3* primer for exon 20 is 

situated upstream of the highly polymorphic tandem repeat (VNTR) region
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comprising variable numbers of CTTT(T) repeats (McGee et al., 1991). Since 

exons 15 and 16 are separated by only an 80-bp intron sequence, a single pair of 

primers was used to cover both exons (Thompson et al., 1991). All of the primers 

listed in table 3 were tested and their efficiency confirmed using a variety of DNAs 

from blood cells of normal individual and patients with bilateral Rb in whom a 

heterozygous mutation might be expected. After amplification, the samples were 

loaded on to 0.5XMDE gels containing 5% glycerol. Electrophoresis was carried 

out at 5 W for 14-24 hours, with a fan directed at the gel as a cooling device.

SSCP analysis was applied to screen functionally important RB gene regions. 

Exons 12 to 22 (Table 3) of the RB gene were screened for sequence change with 

PCR-SSCP analysis. This covers 1198 bp of the cDNA. Systematic screening was 

performed using DNA as a template from 20 patients with bilateral retinoblastoma, 

40 patients with bladder carcinoma (primary bladder carcinoma) and 39 patients 

with breast carcinoma (primary breast carcinoma). The DNA fragments which 

presented a shift in the electrophoretic mobility were demonstrated in five patients; 

four patients with Rb and one patient with bladder carcinoma (Table 5). For those 

exons showing band shifts with SSCP analysis, direct sequencing of the PCR 

products was performed.
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Primer set for 

exons and 

correspondence 

flanking intonic 

region

Size of 

amplified 

product (bp)

Temperature 

of PCR 

reaction

<°C)

Conformation

polymorphism

detected

Exon 12 290 52 1

Exon 13 236 57

Exon 14 276 57

Exon 15 and 16 285 55 2

Exon 17 300 52

Exon 18 206 55

Exon 19 234 53

Exon 20 295 57 1

Exon 21 216 55 1

Exon 22 182 52

|of amplified fragment
Table 5: SizeAand annealing temperature of the primers used for the amplification of 

the DNA fragments of the RB gene. First column: primer set used. Second column: 

size of the products. Third column: details of annealing temperature of the primers. 

Fourth column: results of PCR-SSCP analysis in regions of RB gene flanking exon 12 

to 22.
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Exon 1-11 12 13 14 15-16 17 18 19 20 21 22 Exon 13-27

'H H H H /H H H H H H t i

a

b

1 2 3 4 5 6

Figure 7: PCR amplification o f exons 12-22 o f the RB gene.
A schematic representations o f exons studied in the upper part o f the figure.
a) Lane 1: The DNA marker used is the 1 kb ladder (BRL). Lane 2: amplification

of exon 12. Lane 3: exon 13. Lane 4: exon 14. Lane 5: exons 15-16. Lane 6: exon

17. b) Lane 1: 1 kb ladder. Lane 2: exon 18. Lane 3: exon 19. Lane 4: exon 20.

Lane 5: exon 21. Lane 6: exon 22.
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4.3 SSCP analysis of patients with retinoblastoma.

To investigate the nature of RB mutations in patients, an exon-by-exon analysis of 

DNA from samples from 20 unrelated individuals was performed. Exons 12-22 and 

flanking intron sequences were analysed in all cases. 4 different mutations from 

patients with bilateral Rb were detected by SSCP and confirmed by sequencing.

Two of these were in exon 16, one was in exon 20 and one was in exon 21. A 285- 

bp fragment containing exon 15 and exon 16 was amplified using DNA purified 

from the blood of patients with Rb. One additional band was present in the 

amplified products from patient AR and patient GM. Both patients have a different 

SSCP pattern (Figure 8). Analysis of exon 20 showed an abnormal SSCP banding 

pattern (Figure 9) for patient E.A.S. When compared with DNA from a normal 

individual, E.A.S. had an additional band which migrated faster than the other 

normal bands. Since I all 3 have two normal bands as well as an additional band, it 

can be predicted that these patients are heterozygous for the mutation. Analysis of 

exon 21 showed an abnormal pattern for patient M.H. When compared with DNA 

from others individuals M.H. showed an additional faster moving band below the 

two normal pattern bands (Figure 10). The results clearly indicate that onty M.H. 

contains (the mutated allele from exon 21.
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r
Figure 8: SSCP analysis o f exons 15-16 o f the RB gene from patients with bilateral 

retinoblastoma. A 285-bp fragment was amplified with the primers 5'-TAA GGT TTC 

AAT TAA ACA AC-3' and 5'-CTT TAA ATT GAA CAA AAG TG-3V PCR 

products were run on a 0.5XMDE gel (AT Biochem.) containing 5% glycerol at 8 W 

at room temperature for 17 hours. Lane 2: DNA from patient AR showed an 

abnormal SSCP banding pattern, Lane 5: DNA from patient GM showed an abnormal 

SSCP banding pattern when compared with DNA from other patients, Lanes 1, 3, 4, 

6, 7: DNA from other patients showed no conformation polymorphism.
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Figure 9: SSCP analysis o f exon 20 and the flanking intronic region o f the RB gene 

from patients with bilateral retinoblastoma. A 295-bp fragment was amplified with 

the primers 5'-AGA GGT TTC TGT TAA AAT GC-3' and 5-AGAAGG TGA AGT 

GCT TGA TT-3V PCR products were run on a 0.5XMDE gel containing 5% glycerol 

at 8 W room temperature for 16 hours. DNA from the patient EAS in lane 5 shows an 

additional band when compared with DNA from other patients.
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Figure 10: SSCP analysis o f exon 21 o f the RB gene from patients with bilateral 

retinoblastoma. The DNAs were amplified with the primers 5'-ATT CTG ACT ACT 

TTT ACA TC-3' and 5'-ATG AGA TCA AAT GAA TTA CC-3\ PCR products, 216- 

bp in length, were analysed on a 0.5X MDE gel containing 5% glycerol and run for 14 

hours. DNA from patient MH in lane 1 shows an additional band when compared with 

DNA from other patients.
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4.4 SSCP analysis of patients with bladder carcinoma.

To determine the efficiency of SSCP technique in bladder carcinoma, DNA 

extracted from tumour tissue of 40 patients with bladder carcinomas were screened 

for point mutations. 30 cycles of PCR were performed on the target DNA 

sequences using 10 ng of genomic DNA in 15 pi reaction solution. 5 pmol ^2p 

dCTP (60 pCi) was included in the reaction mixture to label the PCR products. 

After thermal cycling, the amplified product was diluted 1:7 in gel loading buffer. 2 

pi of the samples were loaded on to 6.5% non-denaturing MDE gels 

(20cmx40cmx0.4cm) containing 5% glycerol. Electrophoresis was carried out at 5 

W for 14-24 hours. Exon 12-22 and flanking intron sequences of the RB gene 

were analysed in all cases. 39 out of 40 samples analysed for 11 exons and flanking 

intron sequence showed no shift in the electrophoretic mobility, indicating no 

structural alterations including point mutations. The only exception was sample 

no.32 which showed a shift in the electrophoretic mobility (Figure 11).
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Figure 11: SSCP analysis o f exon 12 o f the RB gene from patients with Bladder 

carcinoma. A 295-bp fragment was amplified with primers 5'-GAT ACA TTT 

AAC TTG GGA GA-3 and 5'-CAT GTT AGA TAG GAG ATT AG-3'. 3 jil o f 

each PCR products was run on a 0.5XMDE gel containing 5% glycerol for 16 hr. 

DNA from a patient no. 32 (lane 2) shows an abnormal SSCP pattern when 

compared with DNA from other patients.
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4.5 SSCP analysis of patients with breast carcinoma.

The 11 regions amplified by the primers listed on Table 3 were analysed for 

sequence variations by means of single strand conformation polymorphism analysis 

(SSCP). A systematic screening was performed using genomic DNA as the 

template for the PCR reaction from thirty-nine breast tumours by SSCP. A 30 

cycle PCR was performed on the target DNA sequences using 10 ng of genomic 

DNA in 15 pi reaction solution. 5 pmol 32p dCTP (60 pCi) was included in the 

reaction mixture to label the PCR products. After thermal cycling, the amplified 

product was diluted 1:7 in gel loading buffer. The sample was heated at 95°C for 2 

minutes to denature the DNA. The denatured DNA was then placed directly into 

ice bath for several minutes. Then, 2 pi of the sample was loaded on to 6.5% non­

denaturing MDE gel (20cmx40cmx0.4cm) containing 5% glycerol. Electrophoresis 

was carried out at 5 W for 14-24 hours. The RB gene from 39 breast carcinoma 

was analysed exon-by-exon by the PCR-SSCP technique. No unusual SSCP 

pattern was found in any of the tumours indicating no structural alterations or 

point mutations detected.
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4.6 Heteroduplex analysis of the family] of patient MH.

In the current study a modified heteroduplex detection protocol using MDE gel 

electrophoresis was used to evaluate its efficiency in the detection of a point 

mutation in the RB gene. The heteroduplex technique was applied to PCR- 

amplified exon 21-containing DNA from the patient showing a positive SSCP 

result which was found to be a G insertion by sequence analysis. To confirm 

whether the observed SSCP pattern in the region of exon 21 from patient MH with 

Rb was a new mutation or inherited from one of the parents, heteroduplex analysis 

was also performed on parents DNA.

This technique takes advantage of the formation of heteroduplexes in the PCR 

between different alleles from heterozygous individuals. These heteroduplexes can be 

detected on non-denaturing gels because they migrate slower than their corresponding 

homoduplexes due to a more "open" double-stranded configuration surrounding the 

mismatched bases. Heteroduplexes containing a single base deletion or insertion are 

easier to detect than single base substitutions. The reason for this a most likely 

because a larger opening is created by the absence or addition of a nucleotide on one 

strand than by two mismatched bases opposing on another (White et al., 1992).

After the final thermal cycle was completed, the reaction was inactivated by adding 

EDTA to 5 mM. Amplified DNA fragments were heated to 95°C for 3 minutes and 

then allowed to cool down to room temperature over a period of 30 minutes to form 

heteroduplexes (Keen et al., 1991). Since Rb is an autosomal dominant disease, 

heteroduplex formation will occur by PCR amplification in the presence of mutations. 

1 kb ladder as a size marker was also included on the gel as well as control 

homoduplex DNA. Approximately 100-200 ng of DNA was loaded in each lane. 

Before loading the samples, 1 (il of gel loading buffer (described in the methodology)
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for each sample was added and mixed thoroughly. The electrophoresis was performed 

at a maximum constant voltage of 800 Volts for 15 hr. The gel was then stained with 

ethidium bromide to visualise the bands on the gel without using any radioactivity. 

Typically the heteroduplex band migrated slower than the homoduplex. Analysis of 

the family with this technique showed that only the patient MH (the son) has the 

mutation but not the parents as shown in Figure 12, indicating either the parents are 

not carriers or one of the parents has gonadal mosaicism.. In order to evaluate its 

efficiency, this region from all family members was screened by direct sequencing in 

the presence of the patient as a control. No other member of the family showed the 

mutation. Screening the family for this known mutation using this technique was 

found to be very fast, easy and reliable.
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Family pedigree o f patient MH

O - T - O

k
*  2

HETERODUPLEX
HOMODUPLEX

Figure 12: Result o f the het^oduplex technique applied to PCR-amplified exon 21- 

containing DNA from MH showing a positive SSCP result and his parents. The 

slower moving heteroduplex DNA in lane 2 stains with ethidium bromide to about 

1/3 o f the intensity o f  the faster moving homoduplex DNA. The MDE gel was run 

at about 800 Volts for 16 hours. Lane 1: father; lane 2. patient MH; lane 3: 

mother; lanes 4 and 5: homoduplex normal controls.
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4.7 RNA extraction and quantitation.

RNA was extracted from lymphoblastoid cell lines and lymphocytes in all

patients and controls. The extraction was performed by the guanidium thiocyanate 

method (Chomczynski and Nicoletta, 1987). The basic principle of RNA extraction is 

very similar to that for DNA but the methods used are different in many specific 

aspects. In general, the cells are lysed, the cell lysate de-proteinized and the RNA 

separated from DNA. However, RNA is much more liable than DNA and more 

susceptible to nuclease degradation. Furthermore, RNases are much more resistant to 

protein denaturants than DNases. These factors make the isolation of undegraded 

RNA relatively difficult. Therefore, in order to obtain good quality RNA, it is 

necessary to lyse the cells and inactivate RNases simultaneously. Guanidium 

thiocyanate is among the most effective protein denaturants, thus disintegrating 

cellular structures causing nucleoproteins to dissociate from nucleic acids as the 

protein secondary structure lost. As a strong inhibitor of ribonucleases, guanidium 

thiocyanate as well as P-mercaptoethanol were included in the primary extraction 

buffer to protect the RNA from degradation by RNase (Chirgwin et al., 1979). Since 

there is a significant amount of RNase on the skin, gloves were worn during isolation 

of RNA. Whenever possible all water used was treated with DEPC and RNase 

inhibitors was used in the extraction solutions, the subsequent steps in the 

experiments, and for short-time storage of RNA in aqueous solution.

This extraction method was found to be satisfactory and convenient. Usually the 

extraction was performed in a day. The concentration of RNA ranged from 300-1000 

pg/ml with a mean of 700 pg/ml. RNA quantitation was carried out by 

spectrophotometry. The optical density (OD) of the RNA was determined both at 

260 and 280 nm. The purity as determined by the mean value of OD260/OD28O was 

2 indicating it was free of protein contamination. The preparations were run on RNA
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checking gels with formaldehyde to determine the integrity of the RNA. The RNA 

was denatured by heating in the presence of formamide and formaldehyde in order to 

disrupt aggregates and hydrogen bonded structures. After running the samples, the 

gels were soaked in water for 1 hour to wash out the formaldehyde for better 

resolution of the rRNA bands. Undegraded RNA typically shows a 2:1 ratio of 

28S:18S. Results of fractionation of the RNA preparations are shown in Figure 13. 

The RNA samples were found to be ideal. The extraction provided high yield and the 

extracted RNA was both pure and undegraded. Due to its simplicity and elimination 

of ultracentrifugation, the guanidium thiocyanate method allows simultaneous 

processing of a large number of samples. The method proved to be useful for RNA 

isolation from as few as 10^ cells or 3 mg of tissue. The degradation and loss of RNA 

was minimised by the limited handling involved in the technique.

The RNA was divided into two aliquots. To one tube, 0.1 volume of 2 M potassium 

acetate and 2.5 volumes of ethanol were added, the mixture was then stored at -70°C 

until required. To recover the RNA the mixture was centrifuged at 13000 g for 10 min 

and washed in 75% ethanol to remove the salt and the pellet was then dissolved in TE 

buffer. The other aliquot was kept at -20°C to be used for RT-PCR. Repeated freeze 

and thaw cycles were avoided. The amplified RB cDNA was also stored at -20°C 

until required in the second round of amplification.
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Figure 13: RNA electrophoresis ofR b patients and normal control. Lane 1: 1 pg o f 

Esherichia coli ribosomal RNA used as a marker. The other lanes are RNA 

samples from patients and control representing 28S rRNA, 18S rRNA.
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4.8 RT-PCR of the retinoblastoma gene mRNA.

Total cellular RNA from lymphoblastoid cells of patients with bilateral Rb was 

used to synthesise cDNA using oligonucleotide primers with nucleotide sequences 

complementary to various regions of RB mRNA. The single-stranded cDNA 

fragments carrying portions of the RB mRNA thus obtained were then amplified by 

the PCR to double-stranded DNA products using sets of two oligonucleotide 

primers, one of which was the same as that used for reverse transcription. The 

regions thus amplified, designated as fragments A, B, C, D, and E, with nucleotide 

lengths of 302 bp to 1433 b, are shown in Figure 5. These 5 fragments overlapping 

each other and almost cover the whole coding sequence of the RB cDNA. 

Approximately 3938 bp were amplified, then subjected to AMD analysis. Oligo^M  

(MEDPROBE) computer program was used to design primers set to amplify 

cDNA fragments. Even with this guideline, the construction of successful PCR 

primers can be empirical, and more than one primer set needed to be tested before 

a good combination was found. As a result, several sets of primers were designed 

for some segments before a single band was seen on an agarose gels (Figure 14). 

Details of annealing temperature of the primers are given in Table 6.

Amplification of segment C of the cDNA of patients with bilateral Rb has revealed 

that one of the patients (namely EAS) has an truncated transcript, as shown in 

Figure 15, indicating either a deletion or a splice mutation.
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Figure 14: Amplification o f segments o f RB cDNA.

Lane 1: 1 kb ladder. Lane 2: RT-PCR amplification with primers A5 and A3. Lane 

3 RT-PCR amplification with primers B5 and B3. Lane 3: RT-PCR amplification 

with primers C5 and C3. Lane 4: RT-PCR amplification with primers D5 and D3. 

Lane 5: RT-PCR amplification with primers E5 and E3.
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Segment of

cDNA of the RB

Gene

Size of amplified 

product (bp)

Temperature of 

PCR rx (°C)

A 302 53

B 400 50

C 707 52

D 1433 53

E 1370 53

Table 6 Size of amplified segments of cDNA of the RB gene and their annealing 

temperature.
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Figure 15: Amplification o f C segments from patients with bilateral retinoblastoma 

Lane: 1 kb ladder. Lane :2 patient with normal size o f 707 bp C segment. Lane 3: 

patient EAS with 707 bp and 5J 1 bp product Lane 4: patient with normal size o f 

707 bp C segment. Lane 5: patient with normal size o f 707 bp C segment.
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4.9 Mutation detection using amplification and mismatch detection 

(AMD) analysis.

AMD detects all classes of point mutations (Cotton et al., 1988). AMD analysis was 

used to screen all cDNA fragments (A, B, C, D, E) from patients with Rb, as well as 

12-16 exons and the flanking intron regions. PCR-generated probes can be prepared 

by incorporating labelled dNTP either during PCR, or after amplification in a separate 

labelling reaction (as described in the methodology section). When comparing these 

two methods, the latter approach can be preferred for several reasons. Synthesis of 

probes with high-specific activities it is necessary to keep the concentration of 

unlabelled counterparts of the ^2p dNTP as low as possible. However, PCR 

amplification becomes inefficient when any of the dNTPs are in low concentration. 

Generation of high specific activity probes labelled during PCR amplification required 

the use of a full 250 jiCi of labelled dNTP in a single PCR reaction to achieve an 

adequate concentration of all four dNTPs. This is generally undesirable due to cost. 

In contrast, one standard PCR amplification can provide nearly 0.5 to 1 jig of cDNA 

fragment, more than enough material for numerous post-PCR probe preparations 

using 50-100 ng of cDNA with only 50 |iCi of labelled dNTP per probe. A critical 

step in preparing high specific activity probes by PCR amplification was the removal 

of unincorporated dNTPs from the PCR reaction. For this purpose, the geneclean 

method was found to be effective and rapid.

In the current study, the use of PCR amplification in the presence of suitable end- 

labelled primers yielded substrates for chemical cleavage reactions was found to be 

more efficient than using internally-labelled probes. In order to prepare 5' end-labelled 

probe, PCR reaction was carried out in the presence of two end-labelled primers as 

described before. The advantage of this method is that one of the strands of the wild- 

type cDNA can be labelled by the incorporation of radiolabelled oligonucleotide
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primer during the PCR reaction: either the sense or the antisense strand can be 

labelled. This strategy can be used to locate the position of the cleavage. After 

amplification of the probe by 5' end-labelled primers, the product was purified by 

Geneclean. Reference DNA or cDNA probe was mixed with excess test DNA or 

cDNA in ratio of 1/10; the mixture was then melted and then cooled to allow 

reannealing and thus heteroduplex formation with mismatched or unmatched base 

pairs at the position of the mutation. The probe is modified at mismatched C and T 

bases by reaction with hydroxylamine and osmium tetroxide, respectively, and 

subsequently cleaved by piperidine treatment. Fragments are sized on gels to locate 

the point of cleavage and hence, the mutation. In the cases of point mutations, 

mismatched G and A will not be directly detected, but they are transposed to 

mismatched C and T bases, respectively, by the use of probes of the opposite sense 

for detection. However, matched bases adjacent or close to mismatched or 

unmismatched bases become reactive by transmission of the distortion (Cotton et al., 

1988; 1989), and can signal the presence of the mutation and hence allow indirect 

detection. This allows detection of insertions (Cotton et al., 1989). Unmatched C and 

T bases are also reactive, allowing detection of deletions. It should be emphasised 

that this is a screening method developed to avoid the need for sequencing kilobases 

of DNA to detect a single mutation. Once the site of the mutation is detected, only a 

small portion of the mutated gene needs to be sequenced. For subsequent detection in 

individuals, families or populations, one of a series of simple mutation detection 

methods, such as oligonucleotide hybridisation can be used.

Because all classes of C and T mismatches (C.C, C.T, C.A, T.T, T.G, and T.C) are 

cleaved (Cotton et al., 1988), complete screening of double-stranded target for point 

mutations can be achieved using probes of both strands. Deletions will be detected by 

a cleavage of mutation of unmatched C and T bases or indirectly because of reactive 

bases nearby. Insertions will be detected indirectly by the increased reactivity of
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nearby matched C and T bases in the probe next to or near the loop of the unlabelled 

DNA in the heteroduplex (Cotton et al., 1991).

The technique has two modes of use with either uniformly labelled probe or end- 

labelled probe. Either mode can be used when the variation expected is minimal, such 

as one mutation in the region covered by a probe. However, if multiple differences 

are expected, e.g., 1 base in 10 is likely to vary, an end-labelled probe will generated 

a single and unique band for each reactive C or T in the probe, thus generating a 

pattern of difference between the pieces of nucleic acid. When using end-labelled 

probe, the low reactivity of all matched C and T bases with hydroxylamine and 

osmium tetroxide, respectively, offers a background C and T track to help locate the 

mismatch.

When screening kilobase lengths, probes need to be overlapped by 20-30 bases to 

avoid missing mismatches at the overlap. This is because of considerable breathing of 

the duplex at each end (Cotton et al., 1989). Pilot work needs to be done on the time 

needed for analysis of particular quantities of unlabelled DNA/DNA probe. If most of 

the probe remains uncleaved, there has been too little reaction, and if it is all cleaved, 

there may be too much reaction. This is because matched bases are modified and 

cleaved at a rate of about 1/100 of that of mismatched bases, allowing nonspecific 

probe destruction if the incubation time is too long (Cotton et al., 1991). Formation 

of a heteroduplex with a known mismatch should be included as a control that will be 

cleaved if in fact that heteroduplex has been formed. Potency of osmium tetroxide 

between two laboratories has varied. A range of concentrations should be tried when 

setting up the method. Solutions should be freshly made each three months before the 

solution takes on a green hue, although it is still active at this time. Eppendorf tubes 

darken as a result of the reaction.
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Analysis of fragment C from a patient (PC) with Rb showed a hydroxylamine

reaction. It is logical that cleavage kinetics should be different when mismatches are

present in one or both alleles. Thus, in the case of homozygotes, the probe band

should disappear to nothing at a uniform rate, but in the case of heterozygotes, the

probe band should rapidly diminish to half intensity and then diminish more slowly and

in parallel with the band signalling the mismatch (Cotton, 1991). This situation was

observed in the heterozygous mutation. However, a test has recently been developed

for testing allele status (Dianzani et al., 1991). This involves making the probe from

the test DNA and hybridising it with unlabelled test DNA. If the wild-type allele is

present in the test sample, it is heterozygote and cleavage will occur, hut not if it is
| (Figure 17)

homozygous for the mutation in question. The band at 481 bpA represents direct 

detection of a mismatched G found in the heteroduplex as a result of a T—»G 

mutation. It is notable that this mutation is heterozygous, since Rb is an autosomal 

dominant condition. As mentioned above, the kinetics of the band change is typical of 

a heterozygote.

The fragments of the RB cDNA from patients with bilateral Rb and some of the exons 

amplified from genomic DNA were subjected to AMD analysis. In order to determine 

point mutations by the mismatch technique, PCR amplified wild type DNA or cDNA 

was either end-labelled or internally-labelled and annealed to cold target DNA or 

cDNA. The resulting heteroduplex was treated with either hydroxylamine or osmium 

tetroxide and treated with piperidine. The samples were then subjected to 

electrophoresis.

4.9.1 AMD analysis of cDNA fragments

Since the coding region is too large (4.7 kb) to routinely sequence in its entirety, in 

order to determine the mutations, AMD technique was applied to scan PCR-
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amplified cDNA from RB mRNA for mismatches relative to the wild-type 

molecule. Before its application on clinical cases. AMD analysis of PCR amplified 

products was first performed on a panel of 14 patients with acute intermittent 

porphyria (AIP) to determine the efficiency of this method for mutation screening 

and to evaluate its potential for accurate carrier screening. Those patients had been 

previously studied and their molecular pathologies were described by Mgone et al. 

(1992). AIP is an autosomal disorder caused by partial deficiency of the enzyme 

porphobilinogen deaminase (PBG-D) (Mgone. 1991). Analysis of these known 

mutations was necessary to establish, develop and optimise the various procedures 

used in the detection of mutations. Initially the study concentrated on AMD 

analysis of cDNA templates. The patients included in this study were known to 

carry the following mutations: 1. Two patients with G(606)—>T (V202V); 2. 

G(135)-»A; 3. ACT(730-731); 4. C(100)->A (Q34K) and G(606)->A; 5. C(100) 

—>A; 6. C(610)—»T(Stand) (unpublished data); 7. G(848)—>A (Kennedy) 

(unpublished data); 8. T(761)—>C (Bossdow) (unpublished data); 9. G(754)-»A 

(Roberts) (unpublished data); 10. G(789)—>A (Boubou) (unpublished data); 11. 

G(1002)—>A (Olifant) (unpublished data).

Approximately 1.1 kb of cDNA from the PBG-D gene was synthesised and 

amplified by RT-PCR as described (Mgone, 1991) and then Geneclean used to 

purify the PCR products. These purified PCR products served as the unlabelled 

test cDNA to be used in the preparation of heteroduplexes. Control cDNA was 

labelled at the 5' end using 25 pM of each primer in a PCR reaction solution and 

used as a probe. It was purified using the Geneclean. 10 ng of labelled probe and 

100 ng of each test cDNA was mixed in a 1 X annealing buffer, boiled for 5 

minutes and incubated at 65°C overnight. After precipitation of the 

heteroduplexes, they were treated with osmium tetroxide and hydroxylamine as 

described in the methodology section. 50 |il of 10% piperidine were added to each
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tube which was immediately closed and kept on ice to prevent evaporation of the 

piperidine. The tubes were heated at 90°C for 30 min and then precipitated. 

Finally the pellet was dissolved in 10 jil of loading buffer and loaded onto an 8% 

denaturing polyacrylamide gel. Analysis of the patients with porphobilinogen 

deaminase (PBG-D) deficiency by the AMD technique revealed that three of them 

had heteroduplexes cleaved by hydroxylamine. One cleavage was at the expected 

position of 754 of the cDNA product and two of them at position 100 (Figure 16).

After optimisation of the technique, AMD analysis was applied for detection of 

mutations in patients with bilateral retinoblastoma. Analysis of all 5 fragments of 

cDNA of the RB gene from patients with bilateral Rb revealed no cleavage, 

indicating no structural alterations or point mutations. The only exception was 

fragment C. Analysis of fragment C from patient PC showed that the patient had a 

band represents a cleavage at position of 481 bp of the C fragment (707 bp) after 

hydroxylamine modification (Figure 17).

In order to compare the efficiency of end-labelling versus internal-labelling of the 

probes, AMD analysis of wild-type/mutant duplex RT-PCR amplified DNA was 

performed using either 5'end-labelled or internally labelled probes. Internally 

labelled probe was derived from an RT-PCR reaction in the presence of 20 pmol 

32p dCTP (60 pCi). Patient PC shows a cleavage product at expected position in 

lane 2 of Figure 18. Comparison of the results obtained are shown in Figures 17 

and 18.
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Figure 16: Detection o f  mutations by AMD analysis of patients with 

porphobilinogen deaminase (PBG-D) deficiency. Lane 1: Size marker (1 kb 

ladder). Lane 2: patient with G(606)—>T mutation. Lane 3: patient with G(135)—» 

A. Lane 4: patient with ACT(730-731) mutation . Lane 5: patient with C(100)—>A 

and G(606)—>A mutations shows a cleavage at position o f 100 bp. Lane 6: patient 

with C(100)-»A mutation shows a cleavage at position o f 100 bp. Lane 7: patient 

with C(610)—>T mutation. Lane 8: patient with unknown mutation. Lane 9: patient 

with unknown mutation. Lane 10: patient with G (606)->T mutation. Lane 11: 

patient with G(848)—»A mutation. Lane 12: patient with T(761)—»C. Lane 13: 

patient with G(1002)—»A mutation shows a cleavage at position o f 754 bp. Lane 

14: patient with G(754)—»A. Lane 15: patient with G(789)—>A mutation.
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Figure 17: AMD analysis o f segment C from patients with retinoblastoma using 

hydroxylamine reaction with 5'end-labelling.

A schematic representation o f cleavage site in the RB cDNA is shown in the upper 

part o f the figure. Lane 1: Size marker (1 kb ladder) Lane 4: patient PC shows a 

band represents a cleavage at 481 bp, Lanes 2, 3. 5 and 6 show no cleavage.
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Figure 18. Hydroxylamine reaction with internal labelling o f theC fragment o f RB 

gene. Lane 2: cleavage product present at the expected position o f 481 bp, Lanes 1, 3, 

5, 6, 7, show no cleavage. Lane 8: Size marker (1 kb ladder) (not technique o f choice),
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4.9.2 AMD analysis of DNA fragments.

Since not all mutations occur within the coding sequence, AMD analysis was used in 

order to screen for splice mutations and other mutations in the RB gene in patients 

with bilateral Rb by analysing the DNA exon by exon. Exons 12 to 16 including the 

flanking intronic region (Table 3) of the RB gene were screened for sequence changes 

with AMD analysis. Systematic screening was performed using DNA as a template in 

20 patients. PCR amplified wild type DNA was end-labelled and annealed to cold 

target DNA using the method described in methodology. The resulting heteroduplex 

was treated with either hydroxylamine or osmium tetroxide and treated with 

piperidine. The samples were then subjected to electrophoresis. Analysis of DNA 

fragments from 20 patients revealed that patient E.A.S showed a cleavage in the 

hydroxylamine reaction. (Figure 19)
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Figure 19: AMD analysis o f exon 17 and the flanking intronic region from patients 

with retinoblastoma by hydroxylamine reaction with 5'end-labelled probe. A 300- 

bp fragment was amplified with the primers shown in Table 3 and subjected to 

AMD analysis. Lane 1: Size marker (1 kb ladder) Lane 15: (patient EAS) cleavage 

product present at 245 bp, other lanes show no cleavage.
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Mutation Sequence Location of 
mutation

Restriction
enzyme

1 A—>C transversion wt GAAGgattt 
mt GAAGgcttt

-2 of acceptor 
site of intron 16

CvijI

2 T—Kj  transversion wt TTTCATATG 
mt TTTCAGATG

nucleotide 
position 1587 
within exon 16

Nde I

3 lbp insertion wt TGTAG *TATT 
mt TGTAGGTATT

nucleotide 
position 2251 
within exon 21

FokI

4 A—»C transversion wt aatgACGA 
mt aatgCCGA

nucleotide 
position 1636 in 
exon 16

CvijI

5 A—>G transition wt ttttaacgag 
mt ttttagcgag

intron 19 Tsp 5091

6 T—>C transition wt AATGTTGGA 
mt AATGCTGGA

nucleotide 
position 1617 in 
exon 16

None

7 G—>C tranversion wt gaatgCAATT 
mt gaatcCAATT

+1 of the donor 
site of intron 12

Maell, 
BpulOl, 
Dde I

Table 7: 1-6; Mutations of the RB gene, detected in retinoblastoma patients. 

7; Mutation of the RB gene, detected in bladder carcinoma*

| (Capitals: exonic, lower case: intronic)
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4.10 Sequencing of DNA fragments in which a shift was present in 

electrophoretic mobility.

Sequencing of DNA fragments in which a shift was present in electrophoretic mobility 

was performed in order to detect sequence alterations. Direct sequencing of double­

stranded PCR products is usually more difficult than single-stranded templates, 

because artefacts are seen more often in the sequencing of double- rather than single­

templates. Templates have a strong tendency to reanneal which is responsible for the 

high background seen in the sequencing of double-stranded templates (Mgone, 1991). 

Single-stranded PCR products were generated using an asymmetric PCR amplifying 

exons of the RB gene. The homogeneity of the asymmetric PCR product was 

increased by reamplification of 1 pg of the product of a standard PCR. In these 

experiments, a standard PCR was run on an agarose gel and the gel was stained with 

ethidium bromide and the appropriate band was then excised. The amplified DNA was 

eluted by soaking overnight in TE buffer. The amplified product was used directly in 

asymmetric PCR without further purification. The most common source of 

contamination is the products of previous PCRs, and the best solution to the problem 

is extreme caution when handling the PCR reagents. To check for contaminants, a 

negative control reaction without any DNA template was run in parallel with all PCR 

reactions.

In asymmetric PCR, the amplification primers were included in a ratio of 50:1 to 

100:1, one primer at the usual concentration and one diluted in order to generate an 

excess of ssDNA complementary to the limiting primer. The best ratio was generally 

determined by trial and error. Since the efficiency of asymmetric PCR is low when 

compared with standard PCR, the number of PCR cycles was increased to 40 instead 

of 30. To overcome the low efficiency of asymmetric PCR, more Taq DNA 

polymerase was added in the late cycles of the PCR.
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In order to sequence both strands, two PCR reactions were carried out with

reciprocal ratios of the limiting primers. Prior to sequencing, the amplified DNA was

purified by removing excess dNTPs, primers and salts because of their interference in

sequencing reactions. This purification was done by selective alcohol precipitation in 2

M ammonium acetate (pH 5.2) and 2 volume of propan-2-ol as described in

methodology. The presence of excess primers interferes with annealing and extension

steps in sequencing reactions. Excess of primers leads to unlabelled primers which

compete with radiolabelled primers for binding sites on the templates. Excess of

dNTPs can serve as substrates that can interfere with the reaction. Ammonium acetate

which used in precipitation works by inhibiting the co-precipitation of dNTPs. It is
sails

also necessary to remove Awhich interfere with the reactions by inhibiting the 

sequencing enzyme. Regions of DNA with strong secondary structure may give rise to 

two problems: first, low efficiency of the PCR, due to the high frequency of templates 

that are not being fully extended by the Taq polymerase, second, compression of the 

DNA sequences in the sequencing reaction.

One of the major problem in sequencing regions close to the primers is the presence 

of faint bands. To avoid this problem, two approaches were employed. In the first 

approach, less nucleotide was used in the labelling step. The labelling mix was diluted 

in a ratio of 1/10 or 1/20 of the stock reagent and both reaction times kept at 3-5 min 

as described before. When reading sequences within 20 nucleotides of the 3' end 

primer, the amount of template DNA and primer concentration was increased. In the 

second approach, the MN buffer (0.15 M Sodium Isocitrate, 0.1 M MnCl2) provided 

with the Sequenase Version 2.0 DNA sequencing kit was used. This reagent takes 

advantage of the activity of the Sequenase enzyme in the presence of Mn^+ jons 

(Tabor and Richardson, 1989). The addition of Mn^+ to normal sequencing reactions 

reduces the average length of DNA synthesised in the termination step, intensifying 

bands corresponding to sequences close to the primer.
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Asymmetric PCR and direct sequencing of fragments showing an altered mobility 

on PCR-SSCP analysis were performed in all 4 cases: patient AR with Rb, patient 

GM with Rb, patient MH and patient no.32 with bladder carcinoma. The sequence 

obtained was compared with the sequence of normal controls and with the 

published sequence ((McGee et al., 1989). Single-stranded PCR products were 

generated using an asymmetric polymerase chain reaction amplifying the exons of 

the RB gene. Results of both asymmetric and standard PCR are shown in Figure 

20. PCR products were purified by selective precipitation in 2 M ammonium 

acetate and propan-2-ol. Sequencing was performed with Sequenase Version 2.0 

DNA polymerase using 50% of each purified PCR product and 1 pmol of the 

limiting primer as a sequencing primer in a 10 |il reaction mixture containing 40 

mM Tris.HCI (pH 7.5), 20 mM MgCl2 and 50 mM NaCI and annealed by heating 

to 65°C for 2 min and allowed to cool down to below 30°C over a period of 20 

min. Thereafter the rest of the reactions were carried out as described in the 

methodology section. The sequencing reactions were stagger loaded and 

electrophoresed for 3 h. Both the sense and anti-sense strands were generated and 

sequenced. From these experiments, it emerged that the optimal amount of PCR 

products to be used in sequencing reactions was 50% of each PCR reaction 

sequenced with 1 p mol of the sequencing primer.
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Figure 20: Agarose gel analysis o f  DNA generated by asymmetric PCR.

Lane 1: 1 kb ladder, Lane 2: double stranded DNA, Lane 3, 4: single and double 

stranded DNA.

105



Sequencing of exon 20 and flanking intron regions from patient EAS with bilateral Rb 

revealed mutation an A->G (transition i at position 77 towards exon 20 of the 19th 

intervening sequence (IVS19) (Figure 21). The change abolishes a recognition site for 

the restriction Tsp 5091 enzyme. Although this exon and flanking intronic region was 

screened by SSCP analysis using samples from 20 patients with Rb, 40 patients with 

bladder carcinoma and 39 patients with breast carcinoma, analysing of the restriction 

site recognised by Tsp 509 I was also performed for the same samples. In the normal 

allele Tsp 5091 digests the region into 6 segments of 9 bp, 27 bp, 30 bp, 36 bp, 83 bp 

and 108 bp. In the mutation, the abolition of the recognition site leads to the 

production of 27 bp, 36 bp, 39 bp, 83 bp, 108 bp. In heterozygosity, carrier will carry 

mutant products as well as 9 bp and 30 bp products originate from normal allele 

(Figure 22). Screening was performed by amplifying the exon and flanking intronic 

region and fractionated the products on agarose gels. Following ethidium bromide 

staining, the PCR products were visualised under UV. light. No other samples were 

found to have this mutation. This screening can be performed to help in counselling of 

affected family members. Using two different approaches for the same change proves 

that SSCP analysis is an effective method to screen for known mutation. On the other 

hand, single base substitutions within introns could result in preferential alternative 

splicing of the mRNA molecules at the site of the mutation. A common form of p 

thalassaemia that occurs in the Mediterranean population results from a single 

nucleotide substitution, G—»A, at position 110 of the first intervening sequence 

(IVS1) of the p globin gene. This change produces an AG sequence that happens to 

be preceded by a stretch of pyrimidines and thus forms a functional 3' acceptor 

consensus sequence (Weatherall, 1991). The mRNA produced as the result of the 

abnormal splicing contains intron sequences and is therefore useless as a template for 

globin chain synthesis. Therefore it was necessary to check the mRNA product 

including this region from the patient with bilateral Rb. The single-stranded cDNA 

fragment carrying a portion of the RB mRNA (fragment D shown in Figure 5) was
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amplified by PCR to double-stranded DNA products using sets of two 

oligonucleotide primers, one of which was the same as that used for reverse 

transcription. This amplification revealed no shorter RNA transcript. Therefore this 

mutation does not effect splicing of the mRNA and can be considered a silent 

mutation. In some cases, these so called silent mutation may be responsible for 

pathology. This especially occurs in highly expressed genes where despite degeneracy 

of the code, a particular codon may be preferred for a certain amino acid than others. 

In a such cases, changing one codon to another, even if still codes for same the amino 

acid, may lead to inefficient incorporation of that particular amino acid residue. While 

analysing this region by sequencing, two base pair mistakes in the published sequence 

by McGee et al. (1989) were found. The sequence at positions 78 and 79 towards 

exon 20 of the IVS19 was AAC(78)GA(79)GATTAA, whereas the published 

sequence was AAT(78)GT(79)GATTAA (Appendix A). On the other hand, one of 

these sequence differences could be a polymorphism.
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Figure 21: Partial sequence o f intron 19 o f  the RB gene from patient EAS with 

bilateral retinoblastoma, showing a A-»G transition. The wild-type sequence on the 

right reads, AGAGCAATTTCAT, whereas the mutant is, AGAGCGATTTCAT. The 

change creates a recognition site for the restriction Tsp 509 I enzyme.
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Figure 22: Screening for the recognition site o f the restriction enzyme Tsp 509 I. 

Lane 4: A heterozygote patient shows 9 bp, 27 bp, 30 bp 36 bp, 39 bp, 83 bp, 108 

bp, Lane 1, 2, 3, 5, 6, 7, 8, 9: show 6 segments o f  normal allele o f 9 bp, 27 bp, 30 

bp, 36 bp, 83 bp and 108 bp. Lane 10: 1 kb Ladder.
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A +G225l(Exon 21) mutation was detected from patient MH with bilateral Rb. 

Sequencing of the exon and flanking intronic region revealed an insertion of a G at 

nucleotide position 2251 within exon 21 resulting in a novel stop codon (TAA) at 

codon 719 (nucleotide position 2295) within exon 21 (Figure 23) thus deleting the 

domain interacting with the SV40 T antigen. The translated protein is most probably 

too short to be functional. In order to screen the mutation in the family, the 

heteroduplex technique was applied to PCR-amplified exon 21-containing DNA from 

the patient and the parents. Neither of the parents was a carrier indicating that the 

mutation occurred as a new germinal change (Figure 12). To determine the efficiency 

of the heteroduplex analysis, the parents were also screened by direct sequencing 

which showed no change in the region. No other samples from the patients show the 

same SSCP pattern. On the other hand, the mutation abolishes a restriction site for the 

restriction enzyme Fok I which could be used to screen the population for this 

mutation.
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Figure 23: Sequence analysis o f exon 21 o f patient MH with bilateral 

retinoblastoma. The mutant sequence arises from an insertion o f a G at nucleotide 

position 2251 resulting in a novel stop codon (TAA) at codon 719. The mutation 

abolishes a restriction site for the restriction enzyme Fokl.
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A R507^(A] 636~>C) mutation found from patient AR with bilateral Rb was an A to 

C transversion at position 1636 in exon 16 causing AGA to CGA codon change 

(Figure 24), both coding for the same amino acid: Arginine, therefore this mutation 

does not cause an amino acid substitution. The mutation site is located in the last base 

of the exon 16, therefore it could affect splicing of the mRNA of RB gene. The 

location of the mutation lies within an RB domain (aminoacids 393-572), therefore 

the mutation could be the cause of the disease. SSCP analysis was performed for 

about 100 patients, none of them had the same change. The mutation abolishes a 

restriction site for the restriction enzyme Cvijl.
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Figure 24: Sequence analysis o f exon 16 o f the RB gene from patient AR with 

bilateral retinoblastoma in which a shift in the electrophoretic mobility was 

detected. The mutation is an A to C transversion at position 1636 in exon 16. The 

mutation changes the codon AG A to CGA, both coding for the same amino acid: 

Arginine. The sequence on the right, AGCAGTAA is from a normal control and 

the one on the left from an Rb patient (AR). The mutant sequence reads, 

AGCCGTAA. The mutation creates a restriction site for the restriction enzyme 

Cvijl.
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V500->V(Ti6i 7^ C )  caused by a T to C transition in exon 16, changes codon GTT 

(GUU) to GTC (GUC) both coding for the same amino acid: valine (Figure 25). This 

mutation does not lead any change or recognition sites for restriction enzymes. 

Analysis of a cDNA from the patient GM revealed no alteration or rearrangement of 

the region. Analysis of all patients with SSCP showed none of the patients carry this 

mutation. Therefore, this mutation is very unlikely to be the cause of Rb. In addition, 

since the mutation does not alter a recognition site for restriction enzymes, this is not 

useful in the diagnosis or linkage studies for tracking of this condition in affected 

family.
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T C G A

Figure 25: Sequence analysis o f exon 16 o f the RB gene from patient GM with 

bilateral retinoblastoma. The mutation is a T to C transition at position 1617 in 

exon 16. This altered the codon GTT (GUU) to GTC (GUC) both coding for the 

same amino acid: valine. The mutant sequence reads TTGAGGTCGTAAT. This 

mutation, which was observed in one individual, does not result in any change, 

either in the amino acid pattern or recognition sites for restriction enzymes.
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The only mutation found from a patient with bladder carcinoma was a G to C 

transversion at position +1 of the donor site of intron 12 (Figure 26). This mutation 

represents a somatic mutation in heterozygous form and most probably causes 

abnormal splicing of the RNA. A second mutation was assumed that it lie in a part of 

the retinoblastoma gene that was not analysed, since in somatic cases two hits (Figure 

1) in the RB gene are expected. On the other hand, the sample was obtained by 

transurethral resection, it could be contaminated with non tumour tissue resulting in a 

heterozygote mutation. Intact RNA cannot always be recovered from the type of 

clinical materials used in this study, therefore the diagnostic strategy for bladder 

carcinoma was chosen not to be based on the analysis of RNA transcript. In order to 

determine the role of RB gene in tumourogenesis, 40 DNAs extracted from bladder 

carcinoma were screened with SSCP analysis. Horowits et al., (1990) found that 

inactivation of the retinoblastoma protein, p i05^®, which is universal in 

retinoblastoma cells, is present in most small cell lung cancers and in one-third of 

bladder cancers but is infrequent in other tumours. RB (like p53) has been implicated 

in a tumour-suppressing role in a wide range of tumours including bladder carcinoma 

(Dunn et al., 1989; Horowitz et al., 1989). Horowitz et al. (1989) reported a splice 

acceptor mutation at the 5' end of exon 21 from bladder carcinoma cells J82. This 

mutation resulted in fusion of exon 20 into exon 22. In the current study only 12 

exons of the RB gene were analysed. If the entire gene could be analysed, more 

mutation may be detected. In this individual mutation of RB found may represent the 

initiating event in tumour development.
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Figure 26: Sequence analysis o f exon 12 o f the RB gene from a patient with bladder 

carcinoma. The mutation arises from a G to C transversion at position +1 o f the donor 

site o f intron 12. The normal sequence is, TTTTAACGTAAGC whereas the mutant 

sequence reads, TTTTAACCTAAGC. The mutation abolishes a restriction sites for 

theM *eII, Bpu 101, DdeI restriction enzymes.
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4.11 Sequencing of DNA and cDNA fragments in which a cleavage was 

detected.

RT-PCR was performed with the primers a standard manner to produce double­

stranded products. The desired band was then excised and the cDNA eluted and 

reamplified with the same primers used for RT-PCR. Such eluted cDNA could be 

stored at -20°C for several months. The cDNA was then reamplified 

asymmetrically. The adequacy of the single-stranded products was monitored by 

running on 1% agarose gels as described earlier. It was possible to produce both 

cDNA strands with equal efficiency. The products were purified by selective 

alcohol precipitation. Sequencing reactions were performed with Sequenase T7 

DNA polymerase with chain termination and extension reactions being carried out 

at 37°C. Sequencing was carried out with one of the sequencing primers at 1 

pmol. The amount of the template cDNA was varied. In some reaction whole 

purified product was used in a sequencing reaction whilst sometimes half of the 

product was enough to get result. This was varied for each of the cDNA segments. 

40 amplification cycles were carried out. The single-stranded products were 

subsequently sequenced directly.
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The first mutation involved -2 of the acceptor site of intron 16. The mutation was 

caused by an A-*0 transversion, One PCR amplification utilising primers Cl and C2 

yielded a truncated transcript, indicating a deletion associated with the reading 

frame (Figure 15). This amplification reaction jdelineatedl a deletion in RNA of 

approximately 65 nucleotides between bases 1361 and 2068. This deletion was 

more precisely defined by AMD analysis of exons and flanking intron regions of 

the region. Analysis of exon 17 and the flanking intronic region revealed a cleavage 

by hydroxylamine modification. This exon, together with the flanking intronic 

sequence was subjected to detailed sequence analysis. The observed mutation 

converts a canonical splice acceptor sequence, 5-TTTTTAG-3’, present in the 

wild-type allele into the sequence 5-TTTTTCG-3’ (Figure 27). This indicated that 

the short RNA transcript was not due to a deletion. Presumably, the point mutation 

found in the RB gene abrogates normal splicing at this site. As a consequence, 

exon 17 is discarded during the biogenesis of the RB mRNA, resulting in the fusion 

of exon 16 directly to exon 18. Because the short transcript band on the agarose 

gel was approximately 196 bp shorter than the original band and exon 17 is 196 bp 

in size. This leads in turn to the production of a truncated RB protein. In contrast 

to wild-type pl05-RB, this aberrant, destabilised protein is unable to bind El A 

oncoprotein. In addition, the mutant RB protein may fail to complex with SV40 

large T antigen. It is likely that this defective RB protein is also deficient in 

carrying out its normal function within the cell. No similar mutant allele was 

recovered when genomic DNAs from 19 unrelated individuals were screened by 

AMD analysis and sequenced in this region. The mutation abolishes a restriction 

site for the restriction enzyme Cvijl.
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Figure 27 Sequence analysis o f exon 17 o f the RB gene from patient EAS with 

bilateral retinoblastoma. The normal sequence reads, GAAGGGATTTTT whilst 

the mutant reads GAGGCTTTTTT because o f a substitution o f C for A at position 

-2 o f the acceptor site of intron 16. The change causes the skipping o f exon 17. 

The change creates a restriction sites for the restriction enzyme Cvijl.

120



A second mutation, namely H502—»Q (T15S7—»G) was detected by AMD analysis of 

segment C of the RB mRNA. The mutation, caused by a T to G transversion at 

nucleotide 1587 (Figure 28), was seen in one patient with bilateral RB. This changes 

codon CAU (CAT) to CAG thus substituting histidine for glutamine at amino acid 

residue 483 (McGee et al., 1989). The missense mutation identified within exon 16 

suggests, may or may not have a functional effect.. This residue lies within an RB 

domain (aminoacids 393-572) identified recently by in vitro deletion mutants to be 

required for oncoprotein binding (Hu et al., 1990). The His-483—>Gln substitution 

appears to simultaneously abrogate RB phosphorylation and affinity for viral 

oncoproteins. Since the patient is the only affected member of the family, the 

substitution has occurred as a new germinal change, not present in the father which 

was the only parent available to analysis. Analysis of 19 unrelated patients with 

bilateral RB by AMD analysis showed no other patient carrying this mutation. In 

addition, this mutation abolishes a recognition site for the Nde I restriction enzyme 

allowing this to be used for screening purposes.
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Figure 28 Sequencing of the cDNA fragment o f  the RB gene o f patient PC who has 

shown a cleavage after hydroxylamine modification. The mutation arises from a T to 

G transversion at nucleotide position 1587 within exon 16. This changes codon CAU 

(CAT) to CAG thus substituting conserved amino acid, histidine for glutamine. The 

mutant sequence, TTTTTCAGATGTCTTT on the left arises from a T to G 

transversion. This mutation creates a restriction site for the Nde I. restriction enzyme.

\
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4.12 Mutations of the RB gene, detected in patients with retinoblastoma 

and other tumours in the current study.

The techniques of single strand conformational polymorphism (SSCP) analysis, 

amplified mismatch detection (AMD) analysis and heteroduplex analysis together 

with direct sequencing were used to detect mutations in 20 patients with 

retinoblastoma. Analysis revealed six mutations in patients with bilateral RB and one 

mutation from a patient with bladder carcinoma. Of those patients with RB, one had 

two different mutations. The six mutations from patients with RB were : a G insertion 

at nucleotide position 2251, a missense mutation (T to G transversion) at nucleotide 

position 1587, a splice site mutation (A to C transversion) at position 1636 in exon 

16, a splice acceptor site mutation at position -2 of intron 16, an A—»G transversion in 

intron 19 and a T to C transition at position 1617. A G to C transversion at position 

+1 of the splice donor site of intron 12 was detected in a patient with bladder 

carcinoma (Table 8).
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Patient Mutation Resulting Change The technique 
used

1. EAS A->C (-2 acceptor site 
of IVS16)

truncated RNA transcript, 
skipping exon 17

RT-PCR, 
AMD analysis

2 .E A S An 77->G (IVS19) does not result in any change SSCP analysis
3. PC H 483-*Q(T158 7 ->G) mutation causing the substitution 

of histidine to glutamine
AMD analysis

4 .M H +G2 2 5 1  (Exon 21) frameshift in exon 21 leads to a 
stop codon at codon 719 
(nucleotide 2295)

SSCP analysis

5. AR R500R (A 1 6 3 6 ^ C) does not cause any amino acid 
substitution, affecting splice site

SSCP analysis

6 .G M V4 93“*V ^ 1617 - * ^ causes no change in the amino 
acid pattern

SSCP analysis

7. Bladder 
no.32

G-*C (+1 donor site of 
IVS12)

affected splice site SSCP analysis

Table 8. Analysis of the RB structural changes likely to arise from detected mutations 

and the techniques used.
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CHAPTER FIVE: DISCUSSION



5. DISCUSSION.

5.1. Comparison of screening strategies; SSCP and AMD analysis for 
detection of point mutations in the RB gene.

The present study focused on application of screening strategies in the RB gene in 

patients with retinoblastoma, bladder carcinoma and breast carcinoma. The 

techniques of single strand conformational polymorphism (SSCP) analysis, amplified 

mismatch detection (AMD) analysis were applied for screening mutation on PCR 

amplified samples of cDNA and DNA from blood samples in 20 patients with 

retinoblastoma and in tumour genomic DNA from 40 patients with bladder carcinoma 

and 39 patients with breast carcinoma. In those patients who showed a band shift on 

SSCP analysis or a cleavage with AMD analysis, direct sequencing of the PCR 

products was performed. This approach revealed six mutations in patients with 

bilateral Rb and one mutation in the tumour from a patient with bladder carcinoma.

There are very few comparable published studies. Various methods have been 

employed for screening large numbers of constitutional mutation carriers in 

retinoblastoma (Cowell et al., 1992, Horsthemke et al., 1992, Sakai et al., 1991a; 

Kloss et al., 1991), but no single approach has detected mutations in more than 10- 

15% of the germ line cases investigated. For instance Blanquet et al. (1993) used 

denaturant gradient gel electrophoresis (DGGE) to detect mutations in a pool of 120 

unrelated retinoblastoma patients including 15 patients with familial form, 65 patients 

with sporadic bilateral, and 40 patients with unilateral. They characterized 10 

sequence alterations. The majority of mutations were found either in tumour tissue or 

in established tumour cell lines. This could suggest a different mutation rate in germ 

cells versus tumour cells. No specific region or hot spot has been identified and the 

mutations seem to vary in both type and location. This lack of any common mutation 

for the carriers is major drawback for informed genetic counselling.
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Janson and Nordenskjold, (1994) used pulsed-field gel electrophoresis and cDNA 

probes in screening 20 unrelated cases with bilateral Rb. They found one patient with 

aberrant fragments due to a mutation as well as a normal allele for a number of 

restriction endonucleases. Cytogenetic analysis revealed a balanced translocation 

t(4; 13)(q21 q 14).

Published mutations that have been detected using SSCP technique in RB gene 

include base substitution, small insertions and deletions, and rearrangements (Hogg et 

al., 1992). This technique has also been applied to the detection of DNA 

polymorphisms at various other loci of the human genome (Orita et al., 1989). 

Shimizu et al. (1994) and Kreipe et al. (1993) have also screened the RB gene exon- 

by-exon using SSCP analysis. These two group found mutations in 14 of 24 and 12 of 

12 Rb tumours respectively. PCR-based single-strand conformation polymorphism is a 

simple and fast method of screening for the presence of sequence changes. However, 

SSCP does not detect all sequence changes; Sarkar et al. (1992) reported that an 

average of 83% of single-base changes were detected in a segment of 183 bp, and 

only 58% were detected for a segment of 307 bp. They found only 35% of the 

mutations when segments of the factor IX gene ranging from 180-497 bp were 

screened in a prospective fashion in nine segments. They also described dideoxy 

fingerprinting (ddF), a method that detected 100% of single-base changes in the 

human factor IX gene when tested in retrospective and prospective manners. Dideoxy 

fingerprinting provides information about the location of the sequence change, and the 

efficiency of detection is independent of the length of the amplified product. In this 

technique, a ladder of bands is generated by performing one of the four standard 

dideoxy sequencing reactions and resolving the products by electrophoresis on a 

nondenaturing polyacrylamide gel. But the efficiency of this technique for RB gene is 

unknown. Murakami et al. (1991) have used PCR-SSCP analysis in combination of 

reverse transcriptase reaction for analysis of cDNA fragments of the RB gene
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obtained from mRNAs. They found a transcript with a mutated exon 2 sequence, but 

not a transcript carrying the normal sequence of exon 2 in small cell lung carcinoma 

(SCLC) cells and confirmed its loss by SSCP analysis of genomic DNA.

The inheritance of a disease causing gene can be determined either indirectly, by 

studying the segregation of DNA markers closely linked to the mutant allele, or by 

direct identification of a disease causing mutation carried by individual subject. The 

linked marker approach is valuable when there is a family history of a disease or when 

the disease is caused by a small number of mutant alleles present at relatively high 

frequency in the general population. Generally, a study of linked markers is not 

helpful when a new mutation has occurred in a previously unaffected family, and 

hence has only limited application in detecting disorders associated with high rates of 

new mutation. The results of AMD and SSCP analysis of the presence of a disease- 

causing mutation are more applicable in the study of disease such as retinoblastoma, 

which are characterised by high rates of new mutations. Many autosomal dominant 

and X-linked recessive disorders are most often caused by new mutations and the 

lesions responsible for these new familial cases may be very heterogeneous. Although 

RFLP analysis remains the method of choice in studying families predisposed to 

retinoblastoma that have more than one affected member, the diagnostic strategy 

used in this project is not dependent on a positive family history and thus can be 

routinely applied to a disease with no family history. Southern blotting can serve the 

same purpose, but its application is limited to the 10-20% of all cases of 

retinoblastoma caused by relatively large DNA rearrangements or deletions in the 

retinoblastoma gene. Allele-specific oligonucleotide (ASO) hybridisation and 

restriction fragment length polymorphism (RFLP) can be used to identify known 

genetic variations over relatively short stretches (one to 20 nucleotides) in the 

amplification products.
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Direct sequencing of either single- or double stranded PCR amplified DNA (or 

cDNA) fragments is highly accurate method for detection of essentially all genetic 

variations that may occur within the amplified fragment. With recent improvements, 

sequences can be read more consistently than before. However, all forms of direct 

sequencing are labour-intensive per base pair analysed when compared to the other 

techniques. This approach is especially expensive when it is necessary to analyse large 

numbers of samples for rare genetic variations. However, direct sequencing remains 

the method of choice for characterising the variant sequences that are detected by 

more rapid techniques, such as SSCP analysis (Hogg et al., 1992), AMD analysis 

(Cotton et al., 1988).,

In the current study, SSCP analysis was applied to screen functionally important RB 

gene regions. The oncoprotein binding sites of pi 10^® are known to lie between 

aminoacids 393-572 and 646-772 which fall in exons 12-22 inclusive. Therefore exons 

12 to 22 and flanking intron sequences of the RB gene were screened for sequence 

change with PCR-SSCP analysis. This technique was carried out to screen for point 

mutations. All mutations detected by SSCP were confirmed by sequencing. The five 

mutations detected by SSCP analysis were AD77—»G (IVS19) from patient EAS, 

+G225l(Exon 21) from patient MH, R507R(Al636_̂ 'C) from patient AR, V500—> 

V(Tl617->C) from patient GM, G-»€(+l donor site of IVS12)( patient with bladder 

carcinoma). No false-positive results from SSCP analysis were observed although 

false negatives were not excluded because, as with most methods, the sensitivity is not 

100% (Hayashi et al., 1993). The mobility shifts cannot determine either the precise 

position or the exact nature of the base changes. Nevertheless, SSCP analysis is useful 

for screening for point mutations as it is simple, fast, and efficient. When mutated 

cases are identified, other methods such as direct sequencing must be used to 

determine the base substitution. It is still not clear whether this approach will 

successfully identify all mutations in the RB gene. However, in addition to the initial
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studies on the ras oncogenes (Orita et al., 1989), it has been used successfully to 

detect mutations in the cystic fibrosis gene (Dean et al., 1990) and the p53 gene 

(Mazars et al., 1991). Multiplex SSCP could provide a quicker way to screen a gene. 

However, digestion of the samples following co-amplification is not feasible because 

enzyme sites are often present in an inappropriate position and an extremely complex 

gel pattern would be generated. Hence, full-length PCR products must be used and 

sensitivity may be decreased for fragments >200 bp in length (Hogg et al., 1992). 

Although this approach can be applied only to disease loci for which the intron-exon 

structure and surrounding DNA sequences are known, the number of monogenic 

disorders that fail into this category is increasing rapidly (Kidd et al., 1989). A 

particular advantage of this method is that it does not require the presence of intact 

RNA transcript or functional protein, and therefore it can be used to examine tumours 

or other tissues in which no transcripts or gene products are expressed or from which 

RNA cannot be recovered. This is important because a relatively large fraction of 

retinoblastoma tumours produce no RNA transcript from the retinoblastoma gene 

(Friend et al., 1986; Fung et al., 1987; Goddart et al., 1988). In addition, direct 

sequencing of genomic DNA allows the detection of mutations that may occur at 

splice sites or other sequences that are excluded from the RNA transcript (Horowitz 

et al., 1989; Wong et al., 1987; Tromp et al., 1988).

Like all screening techniques mentioned in the introduction section, the detection 

of mutants by AMD analysis does not discriminate between mutations resulting in 

amino acid change and silent mutations or natural polymorphism. To answer this 

questions, direct sequencing of PCR products or of the excised and reamplified 

mutant band need to be done. As shown by its use for detection of point mutations, 

both AMD and SSCP analysis are sensitive enough to detect small changes of 

nucleotide sequence. AMD technique could be used in various kinds of mRNA 

analyses.
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To characterise all types of mutations in the coding sequence of the RB gene, the 

entire cDNA has to be analysed. In this study AMD analysis was applied to screen for 

mutations. This required amplification of cDNA and mRNA of the RB gene with at 

least 5 primer sets to cover almost the entire gene. Although AMD analysis can detect 

all types of mutations, in the current study only one mutation could be detected by 

analysing cDNA with this technique. The other mutation (A—»C, -2 acceptor site from 

patient EAS) found with AMD analysis was detected by amplification of an exon and 

its flanking intron region. Since Southern blot analysis identified structural 

abnormalities of RB in 10%-40% of the hereditary and sporadic Rb tumours (Cowell 

and Hogg, 1992) and approximately 10% of mutations affect splice junction sites 

(Bookstein et al., 1990), the chance of detecting mutations by AMD analysis is less 

than 100%, unless the segments of cDNA do not contain the beginning of the 

abnormalities. Two mutations detected by AMD analysis were an A—>C (-2 acceptor 

site of IVS16)(patient EAS), H502-»Q (T i587-»G)(patient PC). Weir-Thompson et 

al. (1991) also used AMD analysis and identified a point mutation in the RB gene in a 

small-cell lung carcinoma. There have been no false positives identified so far using 

this technique. The main disadvantage of the method is the highly toxic reagents 

which are dangerous to handle and difficult to dispose of. This technique also proved 

its efficiency when three mutations were found in 14 AIP patients with known 

mutations. This strategy, greatly saved time and labour and in addition, was found to 

be reliable. Furthermore this procedure of AMD analysis of PCR amplified of cDNA 

can be used as a prototype to investigate the molecular pathology of any other single 

gene disorder as shown in this study by being applied to demonstrate the mutations in 

acute intermittent porphyria. PCR-SSCP analysis was found to be a rapid and 

effective method for detecting point mutations because it was carried out on DNA. 

Simplicity is the major advantage of the PCR-SSCP analysis. However, in one case a 

mutation (T—»G transversion at nucleotide position 1587 within exon 16 ) was not 

found using SSCP analysis which was identified later by AMD analysis. The
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advantage of SSCP analysis in screening mutation is that analyse exon by exon and 

short segments can be analysed. AMD analysis probably more sensitive but slower 

and uses toxic reagents such as osmium tetroxide, hydroxylamine and piperidine. 

Strategy for mutation analysis for another disorders would be rapidly screened by 

SSCP analysis and use AMD analysis in those patients who have no mutation found 

with SSCP analysis.

5.2. Heterogeneity of molecular pathology in retinoblastoma gene.

At the time (1991) this project was initiated only a few point mutations had been 

discovered in the RB gene. The RB gene was cloned and mapped in 1987. Although 

the gene is well characterised, over a period of 7 years nearly 80 mutations including 

small insertion and deletions have been published (Appendix B) involving all or part of 

the retinoblastoma gene but, most of this type of work has been done on tumour 

material. Still very few germline mutations have been characterised.

Of the seven mutations found in this study one was due to a base insertion leading to a 

frameshift, six were due to single base substitutions. All mutations are novel, 

emphasising the heterogeneity of this condition. Among the mutations found, three 

mutations affect splice sites, one of which was detected from a patient with bladder 

carcinoma. One mutation causes an amino acid substitution. Of those patients with 

Rb, one had two different mutations which were a C substitution of the A at position - 

2 of the acceptor site of intron 16 and an A—»G | transition i in intron 19. a G 

insertion at position 2251 mutation resulting in a novel stop codon (TAA) at codon 

719 (nucleotide position 2295) within exon 21 and a T to G transversion at nucleotide 

position 1587 within exon 16 which results in substitution of conserved amino acid 

histidine to glutamine. All these are likely to be the cause of Rb in these individuals. 

Two mutation are considered to be silent mutations.
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Deletion of exons 13 to 17 is a frequent observation in various types of tumours, 

including retinoblastoma, breast cancer, and osteosarcoma (Hong et al., 1989). Based 

on this observation, Hong (1989) suggested the presence of a potential ’’hot spot" for 

recombination in this region. Data (Figure 29) constructed from published mutations 

in exons 1-27 and flanking intronic region of the RB gene fail to show bias towards 

mutation in the two regions of suspected oncogene binding site. Uniform 

heterogeneity of the mutation distribution is clearly demonstrated (Figure 29).

Kaye et al. (1990) found a single point mutation within exon 21 that resulted in a 

nonconservative amino acid substitution (cysteine to phenylalanine) at codon 706. 

Stable expression of this mutant RB cDNA in a human cell line lacking endogenous 

RB demonstrated that this amino acid change was sufficient to inhibit 

phosphorylation. In addition, this mutation also resulted in loss of RB binding to the 

SV40 large tumour and adenovirus E1A transforming proteins. Yandell and Dryja 

(1989) have screened 3,712 bp of genomic DNA from each of nine individuals and 

found four DNA sequence polymorphism using PCR amplification and direct 

genomic sequencing. They found all four polymorphisms in introns.
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Scries 1 3

Mutations in each exons (1-27) 
■  Series 1

Figure 29. Distribution of germ-line and somatic mutations o f the RB gene.

This demonstrates the considerable heterogeneity o f the mutation in this gene. Bars 

represent the number (Series I) of mutations, which have been reported in the 

literature, in each exon (upperline numbers 1 -27) and intron.

133



Bookstein et al. (1992), analysed mRNA from a prostate carcinoma cell line, 

identified an in-frame deletion of exon 21, but the splice junction sequences were 

normal. Mori et al. (1990) showed that the mRNA from an SCLC cell line was 

missing exon 22. A two base pair mutation GC-»TT, within the exon, apparently 

converted a glutamine to a stop codon, but, in fact, resulted in the entire exon being 

spliced out. Presumably these mutations generate cryptic splice sites that result in the 

endogenous splice sites being ignored (Cowell and Hogg, 1992).

Sakai et al. (1991) screened DNA samples from 111 patients with retinoblastoma for 

mutations of the 5' untranslated region or the promoter region of the RB gene using 

SSCP technique. DNA was derived from lekuocytes from patients known to have a 

germ-line mutation (bilateral disease or a positive family history) or from primary 

tumour fragments. Two cases showed a sequence variation within the region 

extending 327 bases, upstream of the initiation codon. In both instances, the variation 

was present in leukocyte DNA from all affected members or obligate carriers of 

families with hereditary retinoblastoma that they examined. In one family, the 

mutation was a G to T transversion 189 bp upstream of the initiating methionine 

codon, and in other family, it was due to a G to A transition 9 bp further upstream. 

The penetrance of these mutations appeared to be low: both cariers in one family had 

only unilateral Rb, and there was at least three obligate carriers who had no Rb in 

other family. A concurrent analysis of the majority of the coding region of the RB 

gene also using SSCP technique has revealed no other abnormalities in the DNA 

sequence in these two cases.

Deletions as small as 1 bp can be detected by enzymatic DNA amplification of short 

gene segments and high-resolution acrylamide gel electrophoresis (Lohmann et al., 

1992). Small deletions appear to comprise another 35% of germline mutations. Point 

mutations, which exist in approximately 50% of patients with hereditary
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retinoblastoma, can be detected by single-strand confirmation analysis (Sakai et al., 

1991), and sequencing of amplified gene segments (Yandell and Dryja, 1989). In 

contrast to the results of Yandell et al. (1989) and Onadim et al. (1992) reporting C 

to T transition as germline mutations and other studies in different disease in which 

the RB gene is involved, no missense mutations were found in the population which 

Blanquet et al. (1993) screened with DGGE. Blanquet et al. (1993) characterised 10 

sequence alterations generating stop codons, leading to amino acid substitution, or 

affecting splice sites in the RB gene, as well as four polymorphisms. Among them, 

five were alterations of the reading frame generating premature stop codons and 

hence aborted proteins. Because four of the premature stop codons appear in exon 

3,6 and 7, they speculated that the translated proteins were most probably too short 

to be functional. In the fifth case the stop codon was generated in exon 19 thus 

deleting the domain interacting with the SV40 T antigen. The sixth putative causal 

mutation is an A substitution of the conserved G at position +1 of the donor site of 

intron 6, probably impairing normal splicing of the RNA. The three other nucleotide 

changes occurring in splice sites do not modify the consensus specificity. Hogg et al. 

(1992) used the single strand conformation polymorphism (SSCP) technique to 

screen for mutations, exon by exon, in the RB gene and characterised two mutations. 

These are 1 bp insertion of a T in the coding strand of exon 20 and a G to A 

transition in the coding strand of exon 14. Dunn et al. (1988, 1989) used tumour cell 

lines to isolate RNA and, with the use of RNase protection, identified mutations in 

50%-60% of cases. They found that small deletions were the most common 

abnormality but suggested this may reflect limitations in the RNase protection 

procedure. Small deletions were also found most frequently in a proportion of SCLC 

cell lines studied by Mori et al. (1990). Murakami et al. (1991) identified a mutation 

C->A transversion in exon 2 causing a stop codon. They speculated that the mutation 

caused a short polypeptide of 81 residues instead of the complete RB protein.
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Kato et al. (1994) found two intragenic deletions (exon 18-19 and exon 24) and two 

point mutations (one missense mutation in exon 21 and one mutation at splice-donor 

site for exon 13) in the RB gene in somatic and tumour cells of patients with 

hereditary Rb. They found that three mutations were located in a domain essential for 

binding to oncoproteins encoded by DNA tumour viruses (Hu et al., 1990; Huang et 

al., 1990). One mutation (deletion of exon 24) was outside this domain but it is in the 

region essential for binding to transcriptional factor E2F, and for suppression of 

malignant phenotypes (Qian et al., 1992). A minisatellite-like sequence and short 

repeated sequences were located at the breakpoint of the deletion of exon 24, and 

they speculated that two deletions on both sides of the minisatellite-like sequence 

may be generated by a DNA slippage and misalignment mechanism. Shimizu et al. 

(1994) screened 12 patients with bilateral Rb and 12 patients with unilateral Rb by 

PCR-SSCP analysis in the entire coding region and promoter region. They identified 

mutations in 14 of 24 tumours, of which 6 were single base substitutions, 4 were 

small deletions, 3 were small insertions, and 1 was a complex alteration due to 

deletion-insertion. A majority (57%) of mutations were found in E l A binding 

domains.

Kreipe et al. (1993) have also screened the RB gene exon-by-exon using SSCP 

analysis. They found mutations in all 12 Rb tumours and one-third of the tumours had 

independent mutations in both alleles neither of which were found in the germ line, 

confirming their true sporadic nature. In the remaining two-thirds of the tumours only 

one mutation was found, consistent with the loss of heterozygosity theory of 

tumourigenesis. Point mutations, the majority of which were C—»T transitions, were 

the most common abnormality and usually resulted in the conversion of an arginine 

codon to a stop codon. Small deletions were the second most common abnormality 

and most often created a downstream stop codon as the result of a reading frameshift. 

They found that deletions and point mutations also affected splice junctions and
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direct repeats were present at the breakpoint junction in the majority of deletions, 

supporting a slipped-mismatch mechanism

Too few naturally occurring mutations in the Rb patients have been identified, so far, 

to allow correlations to be drawn between genotype and phenotype. One issue that is 

still virtually unaddressed is how pRB controls the differentiation of immature retinal 

cells into mature photoreceptors. Hong et al. 1989 found that the sequence extending 

from 196 to 249 bases upstream of the initiation codon is essential for transcription. 

Additional evidence that this region is important comes from the report of a prostate 

carcinoma with a deletion of 103 bases that overlaps this region (Bookstein et al., 

1990)
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C to T 42.4%

A to G

Figure 30. Point mutations in the RB gene.

Analysing of point mutations reported in Fig 29, according to base changes, showing 

dominance of C—>T transition.

T to C 9.1%

T to A 3.0%  

to G  6.1%

AtoT 3.0% 
C to A 3.0%

G to A 12.1%

9.1%

G to T 12.1%
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1 bp deletion /  insert 
25.7%

deletion
25.7%

splice mutation 
18.6% missense

5.7%

nonsense
24.3%

Figure 31: Categorization of the mutations of the RB gene
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Documentation of over 72 published mutations revealed that point mutations (70% of 

all mutations in the gene), the majority of which are C—>T transition, are the most 

common types of mutation in the RB gene (Figure 30). Hogg et al. (1993) analysed 

the RB gene from 12 Rb tumours using SSCP analysis. They found that one-third of 

the tumours had independent mutations in both alleles neither of which were found in 

the germ line, confirming their true sporadic nature. In the remaining two-third, of the 

tumours only one mutation was found, consistent with the loss-of-heterozygosity.

Point mutations (Appendix B), the majority of which were C—»T transitions, were the 

most common abnormality and usually resulted in the conversion of an arginine codon 

to a stop codon. Nearly fourty three percent of all mutations were C—»T transitions 

(Figure 30), which is consistent with observations in other genes and presumably due 

to the high mutability of 5-methylated cytosines in CpG dinucleotides (Yandell et al., 

1989). This suggest that T—»G mismatch repair is error-prone during both 

spermatogenesis and mitosis (Yandell et al., 1989). In RB tumours, it appears that 

premature stop codons are required to inactivate the RB protein. Otherwise, a larger 

proportion of amino acid substitutions, caused by C—»T mutations in CpG 

dinucleotides, would be observed (Hogg et al., 1993). The C—»T mutation in a CGA 

arginine codon is the only way a single base pair change in a CpG dinucleotide can 

convert an amino acid codon directly to a stop codon and is the most common 

finding. The CGA mutation in exon 11 has been reported in a different RB tumour 

(Yandell et al., 1989). However, mutations of either of the two CGA residues in exon 

27 or the two CGA residues in exon 8 has net been reported. This may simply reflect 

the small number of tumours which have been studied so far.

A shorter transcript is usually consistent with decreased gene activity. On the other 

hand, less than six percent of the mutations described were due to missense point 

mutation (Figure 31). How such mutations could effect gene activity is still unclear.
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They may creat a new splice site or they may be critical to the conformational 

structure of RB protein. Blanquet et al. (1993) found a single missense mutation 

occuring in exon 4 in a patient with bilateral Rb. In this patient, a A to T transition 

found at codon 137 and resulted in a glutamic acid to aspartic acid change. Although 

the charge and the type of amino acid remains unchanged, the folding and therefore 

the structure and the stability of the protein could be altered. In vitro studies are 

necessary to confirm the oncogenetic nature of this amino acid substitution. Yandell 

et al. (1989) reported another missense mutation which was a serine residue in exon 

18 replaced by a leucine residue. This mutation is very unlikely to be a phenotypically 

silent polymorphism. The substitution occured as a new germinal change, not present 

in either parent, that was retained after reduction to homozygosity during formation 

of the tumour. Furthermore, the retinoblastoma protein is known to be 

phosphorylated in vivo at one of several serine residues, and this phosphorylation is 

probably a critical event in the normal cellular role of the retinoblastoma protein. 

Kato et al. (1994) has also reported another missense mutation. In the current study, 

a missense mutation namely H502~>Q (Tj 5g7 ~>G)(patient PC) was found.This 

changes codon CAU (CAT) to CAG thus substituting conserved amino acid, histidine 

for glutamine. In this mutation, the charge and type of amino acid was changed. Since 

the patient was the only affected member of the family, the substitution has occurred 

as a new germinal. This mutation was likely to be the cause of Rb in these individuals. 

Data (Figure 31 ) suggesting that more than 94% of the RB gene mutations will 

create one way or another, a shorter transcript.

The possibility that other genes are involved in the genesis of this tumour can not be 

ruled out. For example, there seems to be variable resistance to tumour development 

even in patients inheriting retinoblastoma susceptibility. Further, heterozygous RB 

null mice do not develop retinoblastoma, but develop a characteristic brain tumour 

instead (Goodrich et al., 1993). The precise mechanism of action of RB is unknown,
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but a broad outline is beginning to emerge RB seems to influence negatively tumour 

cell growth by participating in regulation of the cell division cycle. RB has also been 

implicated in differentiation; its effect on the cell division cycle and its effects on 

differentiation may be different manifestations of the same function. In the current 

study, analysis of mutations in RB gene could also help to understanding of the 

function of the gene.
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APPENDIX A

SEQUENCE OF THE RETINOBLASTOMA cDNA

5'.........................TTC CGG TTT TTC TCA GGG GAC GTT GAA ATT ATT TTT

GTA ACG GGA GTC GGG AGA GGA CGG GGC GTG CCC CGC GTG CGC 

GCG CGT CGT CCT CCC CGG CGC TCC TCC ACA GCT CGC TGG CTC 

CCG CCG CGG AAA GGC GTC ATG CCG CCC AAA ACC CCC CGA AAA 

ACG GCC GCC ACC GCC GCC GCT GCC GCC GCG GAA CCC CCG GCA 

CCG CCG CCG CCG CCC CCT CCT GAG GAG GAC CCA GAG CAG GAC 

AGC GGC CCG GAG GAC CTG CCT CTC GTC AGG{275/2)CTT GAG TTT 

GAA GAA ACA GAA GAA CCT GAT TTT ACT GCA TTA TGT CAG AAA 

TTA AAG ATA CCA GAT CAT GTC AGA GAG AGA GCT TGG TTA ACT 

TGG GAG AAA GTT TCA TCT GTG GAT GGA GTA TTG(402/3) GGA GGT 

TAT ATT CAA AAG AAA AAG GAA CT(primer A5Kj TGG GGA ATC TGT 

ATC TTT ATT GCA CGA GTT GAC CTA GAT GAG ATG TCG TTC ACT 

TTA CTG AGC TAC AGA AAA ACA TAC GAA ATC AG(518/4)T GTC CAT 

AAA TTC TTT AAC TTA CTA AAA GAA ATT GAT ACC AGT ACC AAA 

GTT GAT AAT GCT ATG TCA AGA CTG TTG AAG AAG TAT GAT GTA 

TTG TTT GCA CTC TTC AGC AAA TTG GAA AG(638/5)G ACA TGT GAA 

CTT ATA TAT TTG ACA CAA CCC AGC AGT TC(677/6)G ATA TCT ACT 

GAA ATA AAT TCT GCA TTG GTG CTA AAA GTT TCT TGG ATC ACA 

TTT T(primer A3YTA TTA GCT AAA G(745/7^GG GAA GTA TTA CAA ATG 

GAA GAT GAT CTG GTG ATT TCA TTT CAG TTA A(primer B5YTG CTA 

TGT GTC CTT GAC TAT TTT ATT AAA CTC TCA CCT CCC ATG TTG 

CTC AAA GAA CCA TAT A(856/8)AA ACA GCT GTT ATA CCC ATT AAT 

GGT TCA CCT CGA ACA CCC AGG CGA GGT CAG AAC AGG AGT GCA
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CGG ATA GCA AAA CAA CTA GAA AAT GAT ACA AGA ATT ATT GAA 

GTT CTC TGT AAA GAA CAT GAA TGT AAT ATA GAT GAG(999/9) G TG 

AAA AAT GTT TAT TTC AAA AAT TTT ATA CCT TTT ATG AAT TCT 

CTT GGA CTT GTA ACA TCT AAT GGA CTT CCA GAG(1077/10) G TT 

GAA AAT CTT TCT AAA CGA TAC GAA GAA ATT TAT CTT AAA AAT 

AAA GAT CTA GAT CGA AGA TTA TTT TTG GAT CAT GAT AAA ACT 

CTT CAG ACT GAT TCT ATA GAC AG(1187/11)T TTT GAA ACA C(primer 

B3)AG AGA ACA CCA CGA AAA AGT AAC CTT GAT GAA GAG GTG 

AAT ATA ATT CCT CCA CAC ACT CCA GTT AG(1265/12)G A C T GTT 

ATG AAC ACT ATC CAA CAA TTA ATG ATG ATT TTA AAT TCT GCA 

AGT GAT CAA CCT TCA GAA AAT CTG ATT TCC TAT TTT 

AA(1353/13)C AAC TGC A(primer C51CA GTG AAT CCA AAA GAA AGT 

ATA CTG AAA AGA GTG AAG GAT ATA GGA TAC ATC TTT AAA GAG 

AAA TTT GCT AAA GCT GTG GGA CAG GGT TGT GTC GAA ATT GGA 

TCA CAG(1470/14) CGA TAC AAA CTT GGA GTT CGC TTG TAT TAC 

CGA GTA ATG GAA TCC ATG CTT AAA TCA(1527/15) GAA GAA GAA 

CGA TTA TCC ATT CAA AAT TTT AG(1559/16)C AAA CTT CTG AAT 

GAC AAC ATT TTT CAT ATG TCT TTA TTG GCG TGC GCT CTT GAG 

GTT GTA ATG GCC ACA TAT AGC A(1636/17)GA A G T ACA TCT CAG 

AAT CTT GAT TCT GGA ACA GAT TTG TCT TTC CCA TGG ATT CTG 

AAT GTG CTT AAT TTA AAA GCC TTT GAT TTT TAC AAA GTG ATC 

GAA AGT TTT ATC AAA GCA GAA GGC AAC TTG ACA AGA GAA ATG 

ATA AAA CAT TTA GAA CGA TGT GAA CAT CGA ATC ATG GAA TCC 

CTT GCA TGG CTC TCA(1833/18) GAT TCA CCT TTA TTT GAT CTT AT 

(primer D5VT AAA CAA TCA AAG GAC CGA GAA GGA CCA ACT GAT 

CAC CTT GAA TCT GCT TGT CCT CTT AAT CTT CCT CTC CAG AAT
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AAT CAC ACT GCA GCA GAT AT(1952/19)G TA T CTT TCT CCT GTA 

AGA TCT CCA AAG AAA AAA GGT TCA ACT ACG CGT GTA AAT TCT 

ACT GCA AAT GCA GAG ACA CAA GCA ACC TCA GCC TTC CAG ACC 

CAG AAG CCA TTG AAA (primer C3VTCT ACC T C T  C T T TCA CTG  TT T 

TAT AAA AAA G(2098/20)TG TAT CGG CTA GCC TAT CTC CGG CTA 

AAT ACA CTT TGT GAA CGC CTT CTG TCT GAG CAC CCA GAA TTA 

GAA CAT ATC ATC TGG ACC CTT TTC CAG CAC ACC CTG CAG AAT 

GAG TAT GAA CTC ATG AGA GAC AGG CAT TTG GAC CAA(2244/21) 

A TT ATG ATG TGT TCC ATG TAT GGC ATA TGC AAA GTG AAG AAT 

ATA GAC CTT AAA TTC AAA ATC ATT GTA ACA GCA TAC AAG GAT 

CTT CCT CAT GCT GTT CAG GAG(2349/22) ACA TTC AAA CGT GTT 

TTG ATC AAA GAA GAG GAG TAT GAT TCT ATT ATA GTA TTC TAT 

AAC TCG GTC TTC ATG CAG AGA CTG AAA ACA AAT ATT TTG CAG 

TAT GCT TCC ACC AGG(2463/23) CCC CCT ACC TTG TCA CCA ATA 

CCT CAC ATT CCT CGA AGC CCT TAC AAG TTT CCT AGT TCA CCC 

TTA CGG ATT CCT GGA GGG AAC ATC TAT ATT TCA CCC CTG AAG 

AGT CCA TAT AAA ATT TCA GAA GGT CTG CCA ACA CCA ACA AAA 

ATG ACT CCA AGA TCA AG(2627/24)A ATC TTA GTA TCA ATT GGT 

GAA TCA TTC GGG(2658/25) A CT TCT GAG AAG TTC CAG AAA ATA 

AAT CAG ATG GTA TGT AAC AGC GAC CGT GTG CTC AAA AGA AGT 

GCT GAA GGA AGC AAC CCT CCT AAA CCA CTG AAA AAA CTA CGC 

TTT GAT ATT GAA GGA TCA GAT GAA GCA GAT GGA AG(2801/26)T 

AAA CAT CTC CCA GGA GAG TCC AAA TTT CAG CAG AAA CTG GCA 

GAA ATG A(2851/27)CT TCT ACT CGA ACA CGA ATG CAA AAG CAG AAA 

ATG AAT GAT AGC ATG GAT ACC TCA AAC AAG GAA GAG AAA TGA GGA 

TCT CAG GAC CTT GGT GGA CAC TGT GTA CAC CTC TGG ATT CAT TGT
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CTC TCA CAG ATG TGA CTG TAT AAC TTT CCC AGG TTC TGT TTA TGG 

CCA CAT TTA ATA TCT TCA GCT CTT TTT GTG GAT ATA AAA TGT GCA 

GAT GCA ATT GTT TGG GTG AGT CCT AAG CCA CTT GAA ATG TTA GTC 

ATT GTT ATT TAT ACA AGA (primer E5VTTG AAA ATC TTG TGT AAA TCC 

TGC CAT TTA AAA AGT TGT AGC AGA TTG TTT CCT CTT CCA AAG TAA 

AAT TGC TGT GCT TTA TGG ATA GTA AGA ATG GCC CTA GAG TGG GAG 

TCC TGA TAA CCC AGG CCT GTC TGA CTA CTT TGC CTT CTT TTG TAG CAT 

ATA G (primer D31GT GAT GTT TGC TCT TGT TTT TAT TAA TTT ATA TGT 

ATA TTT TTT TAA TTT AAC ATG AAC ACC CTT AGA AAA TGT GTC CTA TCT 

ATC TTC CAA ATG CAA TTT GAT TGA CTG CCC ATT CAC CAA AAT TAT 

CCT GAA CTC TTC TGC AAA AAT GGA TAT TAT TAG AAA TTA GAA AAA 

AAT TAC TAA TTT TAC ACA TTA GAT TTT ATT TTA CTA TTG GAA TCT GAT 

ATA CTG TGT GCT TGT TTT ATA AAA TTT TGC TTT TAA TTA AAT AAA 

AGC TGG AAG CAA AGT ATA ACC ATA TGA TAC TAT CAT ACT ACT GAA 

ACA GAT TTC ATA CCT CAG AAT GTA AAA GAA CTT ACT GAT TAT TTT 

CTT CAT CCA ACT TAT GTT TTT AAA TGA GGA TTA TTG ATA GTA CTC 

TTG GTT TTT ATA CCA TTC AGA TCA CTG AAT TTA TAA AGT ACC CAT 

CTA GTA CTT GAA AAA GTA AAG TGT TCT GCC AGA TCT TAG GTA TAG 

AGG ACC CTA ACA CAG TAT ATC CCA AGT GCA CTT TCT AAT GTT TCT 

GGG TCC TGA AGA ATT AAG ATA CAA ATT AAT TTT ACT CCA TAA ACA 

GAC TGT TAA TTA TAG GAG CCT TAA TTT TTT TTT CAT AGA GAT TTG TCT 

AAT TGC ATC TCA AAA TTA TTC TGC CCT CCT TAA TTT GGG AAG GTT 

TGT GTT TTC TCT GGA ATG GTA CAT GTC TTC CAT GTA TCT TTT GAA CTG 

GCA ATT GTC TAT TTA TCT TTT ATT TTT TTA AGT CAG TAT GGT CTA ACA 

CTG GCA TGT TCA AAG CCA CAT TAT TTC TAG TCC AAA ATT ACA AGT 

AAT CAA GGG TCA TTA TGG GTT AGG CAT TAA TGT TTC TAT CTG ATT
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TTG TGC AAA AGC TTC AAA TTA AAA CAG CTG CAT TAG AAA AAG AGG 

CGC TTC TCC CCT CCC CTA CAC CTA AAG GTG TAT TTA AAC TAT CTT 

GTG TGA TTA ACT TAT TTA GAG ATG CTG TAA CTT AAA ATA GGG GAT 

ATT TAA GGT AGC TTC AGC TAG CTT TTA GGA AAA TCA CTT TGT CTA 

ACT CAG AAT TAT TTT TAA AAA GAA ATC TGG TCT TGT TAG AAA ACA 

AAA TTT TAT TTT GTG CTC ATT TAA GTT TCA AAC TTA CTA TTT TGA CAG 

TTA TTT TGA TAA CAA TGA CAC TAG AAA ACT TGA CTC CAT TTC ATC 

ATT GTT TCT GCA TGA ATA TCA TAC AAA TC (primer E3)A GTT AGT TTT 

TAG GTC AAG GGC TTA CTA TTT CTG GGT CTT TTG CTA CTA AGT TCA 

CAT TAG AAT TAG TGC CAG AAT TTT AGG AAC TTC AGA GAT CGT GTA 

TTG AGA TTT CTT AAA TAA TGC TTC AGA TAT TAT TGC TTT ATT GCT TTT 

TTG TAT TGG TTA AAA CTG TAC ATT TAA AAT TGC TAT GTT ACT ATT TTC 

TAC AAT TAA TAG TTT GTC TAT TTT AAA ATA AAT TAG TTG TTA AGA 

GTC......................3'
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APPENDIX B

Reported mutations of the RB gene in Rb patients and other tumours

MUTATION LOCATION OF
MUTATION
Exon bp codon

RESULTING CHANGE Material 
or type of 
mutation

TECHNIQUE AUTHOR

1 a G deletion 24 2657 840 fiameshift in exon 24 leads to 
a stop codon in exon 25

Rb
tumour
germline?

direct
sequencing

Yandell et al., 
1989

2 T-»C transition intron
19

loss of splice-donor site for 
exon 19

Rb
tumour
unilateral

direct
sequencing

Yandell et al., 
1989

3 C—»T transition 14 1462 445 arginine—»a new stop codon Rb
tumour
germline

direct
sequencing

Yandell et al., 
1989

4 C—>T transition 18 1838 567 serine—̂leucine Rb
tumour
germline

direct
sequencing

Yandell et al., 
1989

5 C—>T transition 23 2498 787 arginine—»a new stop codon Rb
tumour
germline

direct
sequencing

Yandell et al., 
1989

6 1-bp deletion 22 2381 748 fiameshift in exon 22 leads to 
a stop codon in exon 22

Rb
tumour
somatic

direct
sequencing

Yandell et al., 
1989

7 G-»T intron
10

loss of splice-donor site for 
exon 10

Rb
tumour
somatic

direct
sequencing

Yandell et al., 
1989

8 C—»T transition 11 1119 358 arginine—>a new stop codon ? direct
sequencing

Yandell et al., 
1989

9 A—>G 21 loss splice-acceptor site for 
exon 21

somatic
(bladder)

direct
sequencing

Yandell et al., 
1989

10 G->T 22 2379 748 glutamic acid—>a new stop 
codon

somatic
(SCLC

direct
sequencing

Yandell et al., 
1989

11 G-»A intron
11

splice donor site of exonl2 somatic RNase
protection

Dunn et al., 
1989

12 a 5 bp deletion 8 a fiameshift causing 
termination codon

germline RNase
protection

Dunnetal.,
1989

13 55 bp 
duplication

10 a fiameshift causing 
termination codon

germline RNase
protection

Dunnetal.,
1989

14 a 10 bp deletion 18 a fiameshift causing 
termination codon

germline RNase
protection

Dunnetal.,
1989

15 a 9 bp deletion 19 a fiameshift causing 
termination codon

germline RNase
protection

Dunn et al., 
1989

16 GC—»TT 22 2307 absence of exon 22 somatic
(SCLC

RT-PCR Mori et al., 
1990

17 A4 20 1979 fiameshift in exon 20—»stop 
codon in exon 20

somatic
(SCLC

RT-PCR Mori et al., 
1990

18 A1 23 2326 fiameshift in exon 23—> stop 
codon in exon 23

somatic
(SCLC

RT-PCR Mori et al., 
1990

19 G-»T
transversion

21 (cysteine to phenylalanine) at 
codon 706.

somatic
(SCLC

RNase
protection

Kaye et al., 
1990

20 G—>T 
transversion

promo
ter

causes no change germline SSCP Sakai et al., 
1991

21 G-» A transition promo
ter

causes no change germline SSCP Sakai et al., 
1991

22 G—>A intron
21

missing exon 21 somatic
(SCLC

AMD
analysis

Thompson et 
al., 1991

23 C->T 2 premature stop codon at 
codon 82

somatic
(SCLC

SSCP Murakami et 
al., 1991

24 T insertion 20 52
(exon)

premature stop codon at 
codon 672

germline SSCP Hogg et al., 
1992

25 C-»T transition 14 31
(exon)

Arginine(CGA)-»stop
codon(TGA)

germline SSCP Hogg et al., 
1992
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MUTATION LOCATION OF
MUTATION
Exon bp codon

RESULTING CHANGE Material 
or type of 
mutation

TECHNIQUE AUTHOR

26 2A 2 57 frameshift in exon 2 leads a 
stop codon at codon 109

Rb
tumour, ?

DGGE

27 2bp deletion 3 24
(exon)

frameshift in exon 3 leads a 
stop codon at codon 109

Rb
tumour, ?

DGGE Blanqued et 
al., 1993

28 1 bp deletion intron
2

affected splicing site Rb
tumour, ?

DGGE Blanqued et 
al., 1993

29 A —»T transition 4 31
(exon)

glutamic acid-»aspartic acid Rb
tumour, ?

DGGE Blanqued et 
al., 1993

30 1 bp insetion 6 (15) frameshift in exon 6 leads to 
a stop codon at codon 192

Rb
tumour, ?

DGGE Blanqued et 
al., 1993

31 G-* A transition intron
5

affected splicing site Rb
tumour, ?

DGGE Blanqued et 
al., 1993

32 Ibp deletion 7 70
(exon)

frameshift inexon 7 leads to a 
stop codon at codon 228

Rb
tumour, ?

DGGE Blanqued et 
al., 1993

33 T->C transition intron
8

affected splicing site Rb
tumour, ?

DGGE Blanqued et 
al., 1993

34 lbp deletion 18 12
(exon)

frameshift in exon 18 leads to 
a stop codon at codon 642

Rb
tumour, ?

DGGE Blanqued et 
al., 1993

35 T-»C intron
18

affected splicing site Rb
tumour, ?

DGGE Blanqued et 
al., 1993

36 A22 13 1353 a frameshift causing 
termination codon

somatic SSCP Hogg et al., 
1993

37 C-»T 1 179 splicing ? somatic SSCP Hogg et aL, 
1993

38 A2 19 2076 a frameshift causing 
termination codon

somatic SSCP Hogg et al., 
1993

39 T-»G 14 1508 causing splice acceptor site or 
stop codon

? SSCP Hogg et al., 
1993

40 C->T 11 1210 arginine-»stop codon somatic SSCP Hogg et al., 
1993

41 C-»T 14 1501 arginine—»stop codon somatic SSCP Hogg et al., 
1993

42 Al 4 638 splice donor deletion of exon 
4

? SSCP Hogg et al., 
1993

43 TTT-»C 4 622 a frameshift causing 
termination codon

somatic SSCP Hogg et al., 
1993

44 A4 24 2658 splice donor—̂frameshift—» 
stop codon

somatic SSCP Hogg et al., 
1993

45 C —»T 17 1804 arginine—fcstop codon somatic SSCP Hogg et al., 
1993

46

47

C —>T 10 1096 arginine—wtop codon ? SSCP Hogg et al., 
1993

C-»T 12 1173 glutamine—»stop codon somatic SSCP Hogg et al., 
1993

48 A4 4 538 a frameshift causing 
termination codon

somatic SSCP Hogg et al., 
1993

49 G —»T 10 1105 glutamic acid—«top codon somatic SSCP Hoggetal.,
1993

50 C->T 17 1791 arginine—»stop codon somatic SSCP Hogg et al., 
1993

51 01 16 1576 a frameshift causing 
termination codon

somatic SSCP Hogg et aL, 
1993

52 A2 3 422 a frameshift causing 
termination codon

leukocyte
DNA,
germline

SSCP Onadimet 
al., 1993

53 A l 17 a frameshift causing 
termination codon

leukocyte
DNA,
germline

SSCP Onadimet 
al., 1993

54 01 13 a frameshift causing 
termination codon

leukocyte 
DNA, 
germ line

SSCP Onadimet 
al., 1993

178
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55 A7&020 17 502 a frameshift causing 
termination codon

Rb
tumour
bilateral

SSCP Schmizu et 
al., 1994

56 A - * } 11 acceptor site Rb
tumour
bilateral

SSCP Schmizu et 
al., 1994

57 T-»G 17 donor site Rb
tumour
bilateral

SSCP Schmizu et 
al., 1994

58 1A 13 444 stop in xon 14 Rb
tumour
bilateral

SSCP Schmizu et 
al., 1994

59 C—>T 12 384 Glutamine—wtop Rb
tumour
bilateral

SSCP Schmizu et 
al., 1994

60 1A 24 833 stop in exon 25 Rb
tumour
bilateral

SSCP Schmizu et 
al., 1994

61 C—»T 14 455 Arginine—»stop Rb
tumour
unilateral

SSCP Schmizu et 
al., 1994

62 10 2 71 stop in exon 3 Rb
tumour
unilateral

SSCP Schmizu et 
al., 1994

63 1A 13 412 stop in exon 13 Rb
tumour
unilateral

SSCP Schmizu et 
al., 1994

64 C—»A 16 489 cysteine—*stop Rb
tumour
unilateral

SSCP Schmizu et 
al., 1994

65 T-»A 12 389 leusine—«top Rb
tumour
unilateral

SSCP Schmizu et 
al., 1994

66 10 22 771 stop in exon 23 Rb
tumour
unilateral

SSCP Schmizu et 
al., 1994

67 40 15 472 stop in exon 16 Rb
tumour
unilateral

SSCP Schmizu et 
al., 1994

68 20 19 646 stop in exon 19 Rb
tumour
unilateral

SSCP Schmizu et 
al., 1994

69 A-»C intron
16

splice acceptor site mutation, 
trucated RNA transcript, 
skipping exon 17

leukocyte
DNA
germ line

RT-PCR,
AMD

Dundar, 1994

70 A—>G inton
19

does not result any change leukocyte
DNA 
germ line

SSCP Dundar, 1994

71 T—»G 16 1587 483 Histidine—̂glutamine leukocyte
DNA
germline

AMD DGndar, 1994

72 OG 21 2251 a fiameshift in exon 21 leads 
to a stop codon 719

leukocyte
DNA
germline

SSCP Dundar, 1994

73 A->C 16 1636 500 affecting splice site leukocyte
DNA
germline

SSCP Dfindar, 1994

74 T-^C 16 493 causes no change in the 
amino acid pattern

leukocyte
DNA
germ line

SSCP DQndar, 1994

75 G—>C intron
12

splice donor site mutation tumour,
bladder

SSCP DOndar, 1994

0: insertion, A: deletion
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