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ABSTRACT

Selective breeding of dairy cattle has enabled milk composition to be 

modified by manipulation of the relatively small naturally occurring gene pool. 

Advances in molecular biology have widened our understanding of the control 

of gene structure and expression and may be utilised to construct genes 

encoding protein variants, whose physical properties have been altered. The 

mouse has proved to be an ideal choice of animal for the study of genetic 

manipulation of milk proteins because of its short generation time ( 2 1  days), 

large litter sizes and low cost in comparison to larger ruminants. The main 

drawback however is the relatively small volumes of milk, (about 1 ml) 

produced by the animals. The principal aim of this project was to develop 

methods for the quantitative separation of the main protein components of 

mouse milk and utilise these methods to analyse the expression of proteins in 

the milk of genetically modified animals.

Separation of the major caseins and whey proteins was achieved by 

cation exchange FPLC. The conditions necessary for the complete 

dissociation of the murine casein micelles were more extreme than those used 

in the analysis of milk from other species, particularly the inclusion of the 

non-ionic detergent n-octyl 0-D-glucopyranoside together with 8 M-urea. k -, 

0 - and a-caseins were identified by comparing the amino acid compositions 

of the purified proteins with their translated cDNA sequences. Another, 

unidentified acid precipitable casein was also detected. The concentrations of 

the major acid precipitable proteins in mouse milk were calculated to be 

WAP, 15.3; k -casein 4.7; 0-casein 25.2 and a-casein 51.7 mg ml'1. The



separation was then scaled up using the Hi-Load system which gave sufficient 

amounts of the 0 - and a-casein components to be used in the raising of 

antibodies to these individual proteins.

Milk from two lines of transgenic mice which expressed a foreign 

protein in their milk was also analysed. The first line secreted normal ovine 

0 -lactoglobulin in their milk and the effect on the expression of individual 

mouse milk proteins was investigated. It had previously been shown that in 

this line, the amount of total protein secreted in the milk was unaltered even 

although it contained a relatively high proportion of ovine 0 -lactoglobulin. 

The actual amounts of the individual murine milk proteins secreted were 

reduced, the most obvious of which was the a-casein. The concentrations of 

milk proteins were calculated as WAP, 9.6 mg ml'1; /c-casein, 2.8 mg ml'1, 

0-casein, 14.3 mg ml'1, a-casein, 20.4 mg ml' 1 and ovine 0-lactoglobulin,

50.1 mg ml'1.

The other line of transgenic mice expressed ovine 0-lactoglobulin 

which had been genetically modified to contain an oligomer containing a 

casein kinase recognition sequence on a readily accessible part of the protein 

molecule. It was hoped that the inclusion of this oligomer would result in the 

normally unphosphorylated protein being phosphorylated. As was 

demonstrated by its staining with the cationic dye Stains-all, the protein did 

not appear to be phosphorylated. To rule out the possibility of 

dephosphorylation due to the presence of endogenous phosphatases in the 

milk, the milk was collected and stored in a phosphatase inhibitor. Since this 

had no effect on protein staining with Stains-all, it can be concluded that 

protein phosphorylation requires more than just the appropriate kinase



recognition sequence.

The last line of mice to be studied were ones in which the murine 0- 

casein gene had been deleted. In this line the overall level of casein decreased 

by 11.5% and that of whey protein increased by about 16%. The increased 

level of whey protein could however be accounted for by changes in the 

partitioning of these proteins between the acid precipitated and supernatant 

fractions and suggests that 0 -casein may be important in influencing the 

isoelectric precipitation of whey proteins in native mouse milks. Again, 

changes in the levels of expression of the remaining caseins were not uniform 

and may indicate that the proteins are secreted by different pathways.



CHAPTER 1

1. GENERAL INTRODUCTION

1. 1 COMPOSITION OF MILK

Milk is a complex fluid the principal of which is to supply nutrients to 

the young. Since mammals are bom at different stages of development, 

variations in the composition of milk will exist between species in order to 

suit the requirements of the offspring. For some animals, milk provides all 

of the nutritional requirements for many months and must therefore be a 

source of vitamins, minerals, energy and amino acids in order to sustain 

growth and development.

Although the composition of milk has been investigated in a number of 

species, much remains unknown about many others. Interspecies differences 

occur in the quantitative composition of milk. Table 1 shows the gross 

composition of milks from thirty species. In addition to these interspecies 

differences, variations exist in the composition of milk within a given species 

depending upon the age of animal, its stage of lactation and also genetic 

variation within that species. Gross compositional changes in milk arise from 

differences in the relative rates of synthesis and secretion of milk components. 

Studies of lactational changes in milk have been carried out for a few species. 

Changes in the composition of bovine milk at successive milkings after 

parturition are shown in Figure 1A (Jenness, 1985), and Figure IB
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demonstrates the changes which occur in milk over the whole lactation period 

(Jenness, 1985). In addition to its nutritional role, milk is also important in 

some species as a means of conveying immunological protection from mother 

to her offspring. Mammals can be divided into three groups on the basis of 

their mode of transmitting immunoglobulins. Group I(humans, rabbits and 

monkeys), acquire all immunoglobulins in utero; group II(mice, rats, cats and 

dogs) acquire maternal immunoglobulins in utero and also from colostrum 

while group III(cows, horses, pigs and goats) acquire maternal 

immunoglobulins from colostrum in the first few hours after birth. The 

immunoglobulin composition of colostrum from groups I, II and III is also 

different, with group I colostrum being predominantly composed of IgA, 

group III composed of IgG and group II being intermediate.

Milk proteins of all species examined to date can be conveniently 

divided into two main classes, the caseins and the serum or whey proteins. 

The caseins have been defined as those proteins which are precipitated when 

skimmed milk is acidified to pH 4.6 at 20°C(Jenness et al., 1956; Eigel et 

al. , 1984) and the whey proteins are those which remain in solution. Although 

this definition may be accurate for bovine milk which, due to its economic 

importance, is the species most extensively studied, the optimum pH for 

precipitating the caseins of other species may vary.

1.1.1 WHEY PROTEINS

The whey proteins identified to date include /3-lactoglobulin, a- 

lactalbumin, serum albumin, lactoferrin, transferrin, immunoglobulins,

7



proteose peptones and whey acidic protein. Some whey proteins, ie. /?- 

lactoglobulin, a-lactalbumin and whey acidic protein, are synthesized by the 

mammary gland whilst others are derived directly from the blood. Interspecies 

variations occur in the variety of whey proteins present in milk, with /?- 

lactoglobulin being present in caprine, ovine and bovine milks and whey 

acidic protein being restricted to the milk of rodents. Unlike the caseins, the 

whey proteins of most species are not phosphorylated, contain more cysteine 

residues and possess a folded globular structure. In the case of /?- 

lactoglobulin, five half cysteines are present in the polypeptide chain, four of 

which are paired in disulphide bonds. At physiological pH, bovine /?- 

lactoglobulin exists mainly as a dimer whereas that of the horse and pig is 

monomeric. Despite a great deal of research into all aspects of its structure 

and possible function, the actual role(s) of 0 -lactoglobulin is still unclear, a- 

Lactalbumin contains four cysteine residues present as two disulphide bridges, 

and exists as a monomer in milk (Davies et al. 1983). The whey acidic 

protein present in rodent milk is a cysteine-rich protein. Its structure will be 

discussed later. As with 0-lactoglobulin, the role of this protein has yet to be 

determined.

1.1.2 CASEINS

The caseins are a group of phosphoproteins which represent the major 

protein fraction in the milk of most species (Jenness, 1973, 1979),

accounting for approximately 80% of the total milk protein. Their high proline 

content, with the proline residues being widely distributed along the length of

8



the polypeptide chain, inhibits folding and results in a relatively open tertiary 

structure. This facilitates their digestion by proteolytic enzymes. These 

proteins contain few or no cysteine residues and therefore lack the capacity to 

stabilise their internal structure by disulphide bridge formation. The chemistry 

of the caseins has recently been reviewed by Swaisgood (1992).

Bovine, caprine and ovine caseins have been purified, quantified and 

named cesl-, a s2, f t( f t  ^  f t  for caprine and ovine caseins), k - and 7 -caseins. 

Similarly, murine caseins have been identified and named a sl-, a s2- ,ft-, f t- , 

7 -, 8-, k - and more recently e-casein (Hennighausen & Sippel, 1982a). The 

caseins were one of the first group of proteins discovered to contain covalently 

bound phosphorus. Studies of phosphoproteins have shown that only six amino 

acid residues, namely serine, threonine, histidine, lysine, aspartic acid and 

glutamic acid are involved in phosphorylation. In the caseins, phosphorylation 

is limited to serine and some threonine residues. Phosphoserine residues 

frequently occur in clusters which in the caseins consist of up to four residues.

The degree of phosphorylation is very variable. Bovine a 8l-, a s2-, f t  

and x-casein contain 8/9, 10-13, 5 and 1 phosphorylated serine residues 

respectively. Phosphorylation of seryl and threonyl residues occurs when the 

sequence Ser/Thr-X-Glu/Ser-P (where X is any amino acid residue), is 

recognised by an enzyme, casein kinase (Mercier et al., 1972) There are 

exceptions to this rule, as demonstrated by the case of bovine o ts2-  and k -  

caseins. In bovine ^-casein, the amino acid residues (Ser, Thr, Thr) at 

positions 127, 135 and 145 are not phosphorylated although they are all one 

residue away from the N-terminal end of a glutamic acid residue. There are

9



two possible explanations for this. Either these residues are not accessible to 

the kinase because of steric hindrance arising from the tertiary structure of the 

molecule (Mercier et al., 1972), or the recognition sequences are masked by 

the carbohydrate chains which are bound to this portion of the molecule. The 

lack of phosphorylated residues in bovine /3-lactoglobulin and a-lactalbumin 

reinforces the recognition sequence theory of phosphorylation. Both of these 

proteins contain serine and threonine residues. However, only one of these 

occurs in the sequence Ser/Thr-X-Glu/Ser-P (Brew et al., 1970; Lyster, 

1972). It is of course possible that in these highly folded, globular proteins, 

the residues which could be phosphorylated are simply not located in regions 

accessible to the enzyme(s) which catalyses the reaction. This possibility was 

investigated as part of the current project and will be reported later in this 

work.

As with phosphorylation, glycosylation is a post-translational 

modification. Glycosylation occurs by the sequential transfer of 

monosaccharide units from nucleotide sugars to the polypeptide chains. The 

process may start in the smooth endoplasmic reticulum and end in the Golgi 

apparatus (Lyster, 1972; Soulier & Gaye, 1981). In the bovine caseins, only 

three threonyl residues in K-casein are glycosylated (Kanamori et al. 1980). 

All of the carbohydrate moieties are located on the macropeptide portion ,„of 

/c-casein, i.e. that part of the molecule at the C-terminal end which is cleaved 

by the enzyme, chymosin, at the Phe-Met bond at residues 105-106. It is 

currently believed that glycosylation occurs on a /5-tum (Loucheux -Lefebvre 

et al., 1978).

10



Caseins possess hydrophobic surfaces (Bigelow, 1967) and are secreted 

into milk as stable aggregates known as micelles. The structure of the casein 

micelles is still a matter of some debate. The various models which have been 

proposed will be considered briefly.

1.2 CASEIN MICELLES

The caseins are present in milk in the form of complex aggregates 

known as micelles and it is these micelles and their light-scattering properties 

which give milk its opalescent appearance. The only species whose micellar 

structure has been examined in any detail is the cow, once again because of 

its economic importance. The structure of casein micelles has recently been 

reviewed by Holt (1992).

1.2.1 CHEMICAL PROPERTIES

Micelles are highly hydrated, colloidal particles which contain about

3.7 g H20/g protein. However, only 0.5 g of water is actually protein bound, 

the remainder being occluded within the micelle (Bloomfield & Mead, 1975; 

McMahon & Brown, 1984). Casein forms about 93% of the dry weight of 

bovine casein micelles. a sl-, a g2-, /?- and x-Caseins are present in a ratio of 

approximately 3:1:3:1, respectively. The remaining 7% of the dry weight^of 

casein micelles consists mainly of calcium and phosphate (known as colloidal 

calcium phosphate) and small amounts of citrate and magnesium. Table 2 

shows the typical composition of bovine casein micelles (Davies & Law, 

1977a, b, 1980,; Barry & Donnelly, 1980; Schmidt 1980; McMahon &

11
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Brown, 1984). Micelles, therefore, in addition to being a source of amino 

acids for young animals, also enable calcium and phosphorus to be transported 

in milk in a stable form.

1.2.2 PHYSICAL PROPERTIES

Micelles are roughly spherical, and electron microscopy places micellar 

size in the region of 20-300 nm (Schmidt et al., 1973). The existence of 

larger particles has also been demonstrated (Brooker & Holt, 1978). Inelastic 

light scattering techniques have shown that 80% of micelles by weight have 

diameters in the region of 100-200 nm, with 95% of micelles having a 

diameter between 80 and 440 nm(Lin et al. , 1971). Micellar size was found 

to be dependent on the proportion of k - casein, with smaller micelles 

containing relatively more /c-casein (Gamier, 1973). Characteristics of casein 

micelles are listed in Table 3.

1.2.3 MICELLAR STABILITY

Casein micelles are generally very stable. However, under certain 

conditions they may disintegrate or aggregate. The integrity of micellar 

structure is dependent on calcium ion activity and on factors such as pH, 

temperature and citrate concentration. Removal of calcium from micelles using 

EDTA has been shown to cause micellar dissociation. Removal of subcritical 

amounts of calcium results in a progressive decrease in the sedimentation 

velocities of micelles but without altering their hydrodynamic radii. This 

suggests that calcium removal initially results in dissociation of weakly bound
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casein from the micelle (Lin et al. 1972). Solubilisation of colloidal calcium 

phosphate was also achieved by dialysing micelles against calcium-free buffer 

resulting in micellar dissociation (Schmidt & Buchheim, 1970).

A decrease in pH to 6.0 also causes great changes within the micelle, 

mainly due to dissolution of colloidal calcium phosphate. At even lower pH 

values(pH 5.5), there is an increase in the formation of salt bridges. Colloidal 

calcium phosphate affects many properties of casein in milk and its removal 

results in both an increased sensitivity to calcium and increased coagulability 

when treated with rennet or heat (McGann & Pyne, 1960).

A decrease in temperature results in an increased micellar volume, 

presumably due to protruding hairs of mainly /5-casein(Walstra, 1990). At 

temperatures above 70°C, parts of the casein molecules become more 

flexible. Micelles are even stable at the very high temperatures used during 

sterilization and pasteurization demonstrated by the fact that bulk bovine milk 

coagulates in 20 minutes when heated to 140°C. Coagulation is thought to be 

due to a variety of causes such as hydrolysis of k - casein, dephosphorylation 

of casein, a decrease in pH due to thermal decomposition of lactose, 

precipitation of calcium phosphate and the neutralization of carboxylic acid 

groups by binding of calcium (Rose, 1965; Fox & Morrissey, 1977; Fox, 

1982). Micelles possess surface potential charge of approximately 17 mV 

(Green & Pearce) and this potential provides a barrier against micellar 

coagulation. However, the exact contribution which surface charge makes to 

this stability has not fully been determined, since hydrophobic colloids with 

surface potentials of less than 20-30 mv are generally unstable (McMahon &
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Brown, 1984; Darling & Dickson, 1979). Treatment of micelles with rennet 

reduces the surface potential (zeta-potential) by 5-7 mv, due to the loss of 

glycomacropeptide which creates a more hydrophobic micellar surface 

carrying para-/c-casein and leads to micellar coagulation (Green & Crutchfield, 

1971; Pearce, 1976; Dalgleish, 1982a,b; 1992). This is the basis of cheese 

manufacture.

1.3 MICELLAR MODELS

A number of theories on the structure of casein micelles exist and these 

have been classified into three categories; coat-core models, internal structure 

models and submicellar models (Schmidt, 1982).

1.3.1 COAT-CORE MODELS

This model is based on the solubilities of caseins in calcium solutions.

The monomers of asl- and /3-caseins have charged phosphate groups and in the

presence of calcium, these monomers aggregate to a limiting size to form the

core. This caseinate core is then stabilized by a monolayer of k - casein over

its entire surface (Figure 2A). The micelle size is therefore dictated by the

amount of K-casein available (Waugh & Noble 1965; Waugh et al. 1970;

Waugh, 1971; Gamier, 1973). This model explains the rennet-induced

aggregation of micelles, where the rennet hydrolyses /c-casein at or near the

surface of the micelle. However, Ashoor et al. (1971) found that as~, /3-, and

/c-caseins were all cleaved at similar rates by high molecular weight polymers

of the proteolytic enzyme, papain. This suggests that all three components

16



Figure 2A

Waugh’s coat-core model of the casein micelle. H.A. McKenzie 
(ed.)., Milk Protein, 2, 58, Academic Press, London, 1971.

Figure 2B

O **CA5EIN
O i i ' C A S E t N

  (S ' CASEIN
•<*» CALCIUM PHOSPHATE

Coat-core model of the casein micelle proposed by Parry and Carroll 
(1966).
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occupy surface positions on the micelle in relatively the same proportions that 

they occur in milk (Ashoor et al. 1971). In another model, Parry & Carroll, 

(1969), concluded that /c-casein serves as a nucleation point where calcium- 

insoluble caseins cluster and are then stablized by colloidal calcium phosphate 

(Figure 2B).

1.3.2 INTERNAL STRUCTURE MODEL

In one of the first models, Payens (1966), postulated that micelles 

consisted of a mesh of /3 -casein threads to which a s-casein molecules were 

attached by hydrophobic forces. These were then surrounded by a layer of k -  

casein and calcium phosphate(Figures 2C). This model was revised by Rose 

(1969), who proposed that micelles are built up from polymers of /3-casein to 

which a sl- and k - c aseins are attached by hydrophobic bonds and 

interconnected by colloidal calcium phosphate bridges (Figure 2D). Another 

model proposed that trimers of /c-casein are linked to three chains of a srcasein 

and /3-casein nodes, forming a loosely packed network (Figure 2E) (Gamier 

& Ribadeau-Dumas, 1970; Gamier, 1973).

1.3.3 SUBMICELLAR MODELS

Morr (1967), proposed a submicellar model for casein micelles,

consisting of a core of /3- and a 8-casein complexes with an outer layer of k -  

and o!s-casein complexes. These submicelles are stabilized by hydrophobic 

bonding and calcium caseinate bridges, being finally aggregated into a 

micellar structure by colloidal calcium phosphate (Figure 3). Another
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Figure 2C

G L Y C O P E P T ID E

S-S-/3-LACTOGLOBULIN  
(AFTER PREHEATING)

^ > 9  &  GLYCOPEPTIDE

/3-C A SEIN

r e n n in \  \ v 
ATTACKS

Internal structure model of the casein micelle proposed by Payens 
(1966).

Figure 2D

♦ Co ♦ Phosphate

Internal structure model of the casein micelle proposed by Rose 
(1969).

Rods represent /3-casein, circles represent K-casein, more eliptical rods 
represent otsl- casein and s-shaped lines represent apatite chain 
formation.
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Figure 2E

60-70 A

Q « , <  casein 
Ka P casein

U  k  casein

(f)

Repeating unit of the internal structure model of the casein micelle 
proposed by Gamier and Ribadeau-Dumas (1970).
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Figure 3

Soluble calcium phosphate and citrate

_ Denatured /3-IactoglobuIin

Soluble casein

Submicellar model of the casein proposed by M orr (1967). The s- 
shaped lines represent calcium phosphate linkages between small 
spherical complexes of the a sl-, /3-, and ^-caseins.

Figure 4

a sl- and/or /3-caseins

carbohydrate-containing parts of associated x-casein

Submicellar model of the casein micelle proposed by Slattery and 
Evard (1973). The micelle was proposed to consist of approximately 
forty subunits.
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submicellar structure was proposed based on the above model in which 

submicelles consisted of a hydrophobic core and a hydrophilic coat of 

carboxylic and phosphate groups linked by calcium, magnesium and colloidal 

calcium phosphate.

Slattery & Evard (1973) and Schmidt & Payens (1976) proposed the 

existence of submicelles having a variable casein composition, in which k -  

casein monomers associate to form a hydrophilic area on the surface of the 

submicelle. These submicelles then aggregate to form micelles via 

hydrophobic bonds. Such micelles would then have a surface consisting of k- 

casein (Figure 4). This idea was adapted again by Schmidt (1982), when it 

was postulated that submicelles had a hydrophobic core and a hydrophilic coat 

in which polar moieties of k - casein were accumulated in one area. The 

remainder of the coat consisted of polar areas of other caseins - mainly the 

phosphoserine side chains of a sl as2- and /3-caseins (Figure 5A). Another 

submicellar model of the casein micelle has also been proposed, (Walstra and 

Jennes 1984, Walstra 1990) in which a micelle is composed of 15-25 

submicelles with diameters of between 10 and 15 nm. The submicelles are 

then linked together by colloidal calcium phosphate and stabilised by 

hydrophobic and electrostatic bonds. Two major types of submicelles have 

also been proposed, those with and without K-casein, and sub micelles 

containing K-casein predominantly located at the surface of the micelle (Figure 

5B). Although the exact distribution of the various caseins in the micelle is 

still a matter for debate it is now generally accepted that the surface 

isstabilised by a "hairy" layer of K-casein. Addition of chymosin or ethanol to
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micelles leads to a shaving or flattening of this layer resulting in a reduction 

in the size of the micelles followed by an increase as the individual micelles 

aggregate. The structure and stability of bovine casein micelles has recently 

been reviewed by Holt (1992).

1.4 MODIFICATION OF MILK COMPOSITION

Ever since the domestication of dairy animals, selective breeding has 

enabled milk composition to be modified by using the relatively small, 

naturally occurring variations in the genetic pool. In recent years, increased 

understanding of the control of gene structure and expression has afforded the 

potential to modify the structure of milk in a much more flexible fashion. 

Molecular biology permits the construction of a whole new series of genes 

encoding for protein variants whose physical properties have been altered in 

a beneficial way, at least from the point of view of food manufacturers. By 

the use of transgenic animals, these changes in gene structure can be 

transmitted from one generation to the next. Transgenic animals can be 

defined as those in which foreign DNA has been integrated into their germline 

as a consequence of the experimental introduction of DNA. The most 

common way of producing a transgenic animal is by the micro-injection of 

recombinant DNA directly into the pronuclei of fertilized eggs (Gordon et al. , 

1980). This foreign DNA is therefore carried in both the somatic and germ 

cells. Genes can be isolated from one animal, modified as required in vitro 

and then reintroduced into embryos of the same or a different species. These

24



animals ■ are now transgenic and can pass on the modified gene to their 

offspring in a Mendelian fashion.

Since milk is such an easily processed and relatively simple source of 

protein, totally foreign, pharmacologically active and industrially useful 

proteins may also be expressed in milk. A number of such modifications are 

listed in Table 4 (Bremel et a l,  1989). Some potentially useful changes to 

bovine milk proteins are also listed in Table 5 (Jimenez-Flores & Richardson, 

1988). Unlike bacteria which have also been used to produce foreign 

proteins, animals are capable of carrying out post-translational modifications 

of proteins, ensuring that the final protein product is fully functional. Tissue 

cultures can also be employed in the production of recombinant proteins but 

they are expensive and difficult to work with. Transgenic animals, although 

initially expensive, ultimately provide a cheaper source of recombinant 

proteins.

Transgenic mice have been bred that carry the ovine ^-lactoglobulin 

gene (Simons et al., 1987). This protein was found to be abundantly 

expressed in the mouse mammary gland during lactation. The rat and caprine 

/3-casein genes, and guinea pig and bovine a-lactalbumin genes, have also 

been expressed in mouse milk in a similar fashion (Lee et al., 1988, 1989; 

Maschio et al. , 1991; Vilotte et al. , 1989; Persuy, 1992). Pigs have Uso 

been used in transgenic experiments, with the gene encoding for mouse whey 

acidic protein being integrated into the pig genome (Shamay et al., 1991; 

Wall et a l ,  1991).
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Although ultimately, the larger ruminants such as the sheep, goat and 

cow would be the animals of choice for the expression of both modified milk 

proteins and pharmacologically active proteins/peptides, the production of 

transgenic animals is still extremely difficult. Successful production of 

transgenic animals is very low and expression of the modified proteins is 

variable. Because of their large size and long generation times, together with 

the small numbers of offspring, the use of large ruminants in preliminary 

experiments would be prohibitively expensive. Therefore, various smaller 

animals have been used in laboratory experiments. The most common of 

these is the mouse. Its small size, short gestation period (21 days), rapid 

maturity and large litter size make it an ideal model. However, its low yield 

is a drawback since each dam typically yields less than 1 ml of milk per 

milking. Furthermore, although the mouse has been used in many studies 

related not only to the expression of modified and foreign proteins in its milk 

but also to the development and control of mammary function, its milk protein 

composition is poorly characterized.

The original intention of this work was to develop chromatographic 

methods to separate the proteins, particularly the caseins, of mouse milk, and 

then, by using transgenic animals expressing bovine /3-casein in their milk to 

investigate the effects on protein composition. The bovine /3-casein gene 

would then have been modified so as to alter the functional properties of the 

protein, and the modified protein(s) could then be isolated and their physical 

properties determined. Unfortunately, difficulties were encountered with the 

cloning of the bovine /3-casein gene. Therefore, this thesis deals with: (1) the
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development of techniques to separate, identify and quantify the major 

proteins of mouse milk; (2 ) the effect of expression of a foreign protein (ovine 

/3-lactolgobulin) on the levels of expression of endogenous proteins; (3) the 

expression of a modified ovine ^-lactoglobulin containing the potential 

phosphorylation site, and (4) the effect of deletion of a mouse casein gene on 

the levels of expression of other proteins in the milk.
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CHAPTER 2

SEPARATION AND PROPERTIES OF MOUSE MILK 
PROTEINS

2.1 INTRODUCTION

2.1.1 GROSS CHEMICAL COMPOSITION

Analysis of the overall composition of murine milk did not begin until 

1964 when investigations on the composition of the milk were made by Meier 

et al. (1964). This was apparently due to the difficulties encountered in 

obtaining a large enough sample for analysis. Analysis was carried out on two 

unrelated inbred strains of mice, namely DBA 2/J and C51BL/6J, which were 

fed diets identical in protein content and source.

The gross compositional analysis of mouse milk (Table 6 ) shows that 

it is very concentrated, containing approximately 70% water compared with 

bovine milk which contains about 8 8 % water and rat milk which contains 

about 74% water. The amount of lipid present in murine milk is also much 

greater than in that of the cow, approximately 13% compared to 

approximately 3.9% (Nagasawa et al., 1989). A high lipid content, as 

demonstrated in the kangaroo rat (Klooyman, 1963) and seals and whales, is 

thought to be advantageous for water conservation (Jenness & Sloan, 1970; 

Baverstock et al. , 1976).
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The protein concentration of murine milk is generally in the region of 

90 mg ml' 1 but it can be as high as 213 mg ml' 1 depending on the species of 

mouse and stage of lactation (Piletz & Ganshow, 1981). Compared with 

bovine milk which contains 35 mg ml'1, the protein content of murine milk is 

2  to 6  times greater.

2.1.2 IDENTIFICATION OF MURINE CASEINS

Early studies of the composition of the protein fraction of mouse milk

were carried out using starch gel electrophoresis. Rennin-precipitated mouse

casein ran as four bands on the starch gel (Turkington et al.y 1965). Later,

urea-polyacrylamide gel electrophoresis revealed five casein bands (Ceriani,

1969).

Immunologic and electrophoretic analyses have been performed on 

mouse and rat caseins (Feldman & Ceriani, 1970). Immunodiffusion 

techniques showed that of the five casein bands visible on urea-gel 

electrophoresis, 7 -globulins recognized only two components. The same 

analysis of rat casein was even less successful since only one casein 

component was immunologically recognizable. In the case of the single rat 

casein component and one of the mouse caseins, cross-reactivity with the 

antiserum to casein was incomplete as demonstrated by the presence of a spur 

formed on the immunodiffusion plates.

Immunoelectrophoretic analysis demonstrated only one band when 

mouse milk and rat milk reacted with mouse antiserum (Feldman & Ceriani,

1970). A similar analysis was also carried out using antibodies raised to rat
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milk. Four components were found to react in the rat milk and one in the 

mouse milk. From these results it was concluded that the single mouse casein 

component which reacted to both mouse antiserum and rat antiserum shares 

determinants with one rat casein component. Since mouse casein was 

originally shown to contain five components on gel electrophoresis, two 

components using immunodiffusion techniques and only one using 

immunoelectrophoresis, it is likely that the other caseins are only weakly 

antigenic. The weak antibody response elicited apparently goes undetected 

using immunodiffusion and immunolectrophoretic techniques, with 

immunoelectrophoresis being less sensitive than immunodiffusion.

Later analyses used antibodies specific to mouse casein as well as 

antibodies to mouse serum proteins. The results showed that the two fastest 

moving components of the five bands separated on gel electrophoresis are 

contaminated with serum components and that the casein in three remaining 

bands is uncontaminated (Feldman & Hohmann, 1971). These techniques 

demonstrated that caseins precipitated using rennin and calcium ions yielded 

quite impure products and so made quantification difficult.

To try to overcome the problems encountered previously, a 

radioimmunoassay was developed for the detection of mouse caseins 

(Feldman, 1974). The assay involved raising rabbit anti-mouse casein 

antibodies and then using these antibodies to precipitate radiolabelled mouse 

casein (154 counts min'1). Of the total precipitable mouse casein present, only 

61.7% was precipitated by the antibodies, i.e. was immunologically 

recognizable. It was thought that the reason for this could be due to:
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(a) An insufficient distribution of antibodies to precipitate all 
of the five casein components as detected by urea- 
polyacrylamide gel electrophoresis, and/or,

(b) The presence of non-casein serum-like proteins in the 
rennin-calcium precipitated material which do not react to 
serum-absorbed antisera (Feldman & Hohmann, 1971).

Although the assay did not precipitate all of the available radiolabelled 

mouse casein, it could detect very small quantities of mouse casein i.e. 0 . 6  \l% 

of immunologically recognizable mouse casein. Further work was carried out 

by Enami & Nandi (1977) which was also based on radioimmunoassay. This 

assay was more specific than that of Feldman (1974), and was developed in 

order to purify a single casein component the molecular weight of which was 

estimated to be 22,000Da. The assay is capable of detecting as little as 0.1 

mg of casein and was successfully used to show casein production in cultured 

mouse mammary explants.

Further analyses of mouse milk proteins was carried out using various 

electrophoretic methods. Acid-urea gels of mouse casein showed that all the 

caseins migrated with a similar mobility and clustered near to the origin. 

Separations performed using alkaline-urea gels revealed six casein 

components. Phosphorylation of the caseins was also shown to play a role in 

their migration in the gel under acidic and alkaline conditions.

Dephosphorylated casein was prepared using highly purified alkaline 

phosphatase. Under acidic conditions, the dephosphorylated caseins migrated 

more quickly towards the cathode than native caseins, and under alkaline 

conditions dephosphorylated caseins moved more slowly towards the anode
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than native caseins (Green & Pastewka, 1976a). Mouse caseins were further 

characterized using staining and enzymatic procedures. Whole mouse casein 

separated by SDS-PAGE using various concentrations of acrylamide gave rise 

to four blue bands when stained with Stains-all. These were named C1-C4, 

where Cl was the slowest migrating band. Staining with Coomassie blue also 

revealed four bands. However, C2 was poorly stained (Green & Pastewka, 

1976b). Molecular weights of three of the proteins were determined by SDS- 

PAGE. This method is accurate only for proteins that bind SDS in a manner 

similar to that of marker proteins of known molecular weight. SDS-binding 

was investigated by looking at plots of relative mobilities of marker proteins 

on a logarithmic scale versus percentage gel concentration. The lines formed 

tend to intersect at the same spot when extrapolated to zero percent gel 

concentration, thus indicating a nearly constant free mobility. Plots of three 

of the mouse caseins were found to intersect at the same point as the standards 

and their molecular weights were calculated as C-l, 43,000Da; C-3,

27,700Da; C-4, 25,900Da. Bovine caseins were similarly analysed and were 

found to have a higher molecular weight than the value calculated from amino 

acid data. This phenomemon may be due to characteristics of charge and 

hydrophobicity of the proteins.

Dephosphorylation of mouse caseins by alkaline phosphatase treatment 

was investigated using SDS-PAGE and staining with Stains-all. Scanning of 

SDS gels of mouse caseins before and after dephosphorylation indicated that 

dephosphorylation resulted in a decrease in the intensity of staining of all 

casein components. Fraction C-l failed to stain when treated with alkaline
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phosphatase and staining of C-2 was reduced by 42%, C-3 by 90% and C-4 

by 95 %. The C-2 component did not stain when treated with neuraminidase. 

This component was found to behave in a manner similar to bovine k - casein 

on SDS-PAGE. It is a glycoprotein and glycoproteins bind less SDS than 

marker proteins. C-2 was also found to be rennin-sensitive and, was 

therefore, considered to be mouse-/c-casein (Green & Pastewka, 1976b).

2.1.3 CHARACTERIZATION OF LACTATION SPECIFIC mRNA

The characterization and cloning of lactation specific mRNA coding for

mouse caseins has been made possible by advances in genetic engineering 

techniques. Seven casein mRNAs have been identified on the basis of the size 

and antigenic properties of their translation products in vitro and also by 

characterization of their respective cDNA clones (Hennighausen & Sippel, 

1982a). In order to identify individual mouse caseins, the total mouse milk 

protein pattern was compared with the protein pattern from mouse breast 

homogenate.

Milk proteins are secretory proteins and as such possess amino- 

terminal signal peptides. Subsequent analysis was carried out to determine 

whether those proteins synthesized in vitro were further processed in the 

presence of microsomes. The apparent in vitro mRNA length (number of base 

pairs) and the apparent protein size are listed in Table 7.

All the mouse milk proteins were found to be co-translationally 

processed to an extent of about 80%. Most of the in vitro synthesized 

proteins could be correlated with specific milk proteins as separated by SDS-
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PAGE. Seven caseins were identified by in vitro synthesis and named a 1} ot2, 

A , 0 2 > 7 , 5 and e- caseins with molecular weights of 43, 39, 27.5, 27, 24.5, 

22.5 and 16.1 kDa, respectively. The nomenclature of the murine caseins 

however, does not correspond to that of the bovine caseins. SDS-PAGE of 

mouse milk revealed only five caseins, a r , a 2-, y- and 5-caseins with 

molecular weights of 43, 39, 26, 23.7 and 21 kDa respectively. No protein 

corresponding to the e-casein clone was identified and only one /?-casein was 

apparent. Immunoprecipitation experiments were carried out on /?- and a- 

caseins. Antisera prepared against the 43 kDa a-casein gave rise to a double 

precipitin line with total milk proteins in Ouchterlony gel diffusion assays, 

indicating the presence of two antigens which had cross-reacting determinants. 

The same analysis using antisera to precipitate olx- and a 2-casein mRNAs from 

total mRNA also precipitated two mRNAs. Antisera raised against the 26 kDa 

/3-casein from SDS-PAGE was similarly found to precipitate the 27.5 and 27 

kDa mRNAs from total mRNA (Hennighausen & Sippel, 1982a).

It was not until 1985 that a cDNA coding for mouse K-casein was 

isolated. The nucleotide sequence encoding K-casein was also deduced and the 

molecular weight of the protein was calculated to be 18,400 Da (Thompson, 

Dave & Nakhasi, 1985).

2.1.4 MOUSE ar CASEIN

The mouse a r casein gene was cloned in 1982 but the nucleotide

sequence encoding protein remained unknown. However, under stringent 

hybridization criteria the mouse a-casein mRNA cross-hybridized with the 

respective rat mRNA, demonstrating reasonable conservation between the two
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species (Hennighausen & Sippel, 1982a). Mouse a r casein has an estimated 

molecular weight by SDS-PAGE of 43 kDa, approximately the same as the 42 

kDa calculated for rat a-casein. The calculated molecular weight from cDNA 

analysis was 31,683 Da (Rosen, Woo & Comstock, 1975). The cDNA 

sequence encoding the rat a-casein has also been isolated (Hobbs & Rosen, 

1982). Comparison with the mouse a r casein cDNA sequence has revealed 

that there is a 90% homology in the coding regions and an 80% homology in 

the 3' untranslated region. Initially, seven hundred bases of the mouse a- 

casein cDNA sequence were identified and found to correspond to a region of 

about 719 bases of rat a-casein mRNA (Faruque et aL, 1987; Faruque & 

Skidmore, 1988). A comparison of the partial cDNA sequence of mouse a r  

casein to that of rat a-casein cDNA is shown in Figure 6  (Faruque, 1990).

A full length cDNA for mouse aj-casein was not elucidated until 1990. 

The full length clone of 313 amino acid residues is shown in Figure 7 (Grusby 

et al., 1990). A comparison of the rat a-casein clones (Figure 7) also 

demonstrates their homology. The amino acid sequence for mouse a-casein 

was found to be 81 % homologous to that of rat a-casein. Both species have 

signal peptides consisting of fifteen amino acid residues which are identical 

with the exception of one residue. The mouse cDNA was also shown to 

contain fifteen repeated elements of six residues, shown boxed in Figure 8 . 

These elements are also present in the rat sequence (Hobbs & Rosen, 1982).

Mouse arcasein was initially thought to contain no cysteine residues 

since translation of mRNA in vitro in the presence of [35S] cysteine resulted 

in no incorporation of the radioactive label (Hennighausen & Sippel, 1982a).
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Figure 6
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S e r  L e u  A l a  3 1 n  L y s  H i s  H i s  P r o  A r ?  L e u  S e r  C I n  V a l  T y r  T y r  
CT TCC CTG GCA CAG AAA CAT CAT CCA AGA CTC AGC CAG GTC TAC TAT

T C -
S e r

P r o  A s n  f l e t  G l u  G in  P r o  T y r  A r j  B e t  A s n  A l *  T y r  S e r  G in  V « I  G in
CCA AAT ATC GAA CAA CCT TAC AGG ATG AAT GCA TAC AGC CAA GTT CAG

—  C .......................................G - - ....................A ....................................................................... A
H i s

P h e  S e r  
TTC TCT

B e t  A r ;  H i s  P r o  H e t  S e r  V a l  V a l  A s p  G i n  A l a  G in  
ATG AGA CAT CCT ATG AG7 CTA GTG GAT CAG GCC CAG

-----------------  — A - T -  GCC C A G --------------
L e u  A la  G in

V a l  G i n  S e r  P h e  P r o  G in  L e u  S e r  G i n  T y r  G l u  A la  T y r  P r o  L e u  T r p
GTT CAG TCT TTC CCA CAA CTC TCC CAA TAT GGC GCC TAT CCC CTT TGG
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L e u  T y r  P h e  P r o  G in  A s p  H e t  G in  T y r  L e u  T h r  P r o  G lu  A la  V iil L e u
CTT TAC TTT CCA CAA GAC ATG CAG TAC CTT ACC CCT GAA CCT GTT CTT

G-----------------------  G — T  — ----------------- T  - - G  A - -  —  - - C  - - -
A la  •  L y s

A sn  T h r  P h e  L y s  P r o  l i e  A l a  P r o  L y s  A s p  A la  G lu  A sn  T h r  A sn
AAC ACC TTC AAG CCC ATT GCC CCC AAG GAT GCT GAA AAC ACC AAT

 — T  --- — ---------- - T -  T - - --------  A - - -------- T A A    
V a l  S e r  T h r

V a l  T r p
GTG TGG TGA GGTATTAAGACAACTCTCAGGAACTCCACAGTTATACCACTTGATGTGACT

GGAACCTCCATTCTCCATCCTCTTTATGTCTCTCCGTCCATCCTATGGAGCCTGTG7CTTCCC 

 C -----------------------------------A -C -C ----------------- T A -T ----- T -----------------------C ------T - - A - -

TAAAAGCTTGACTGCTGTTTTAGAGTAGAAAAAAATCTCACATAGAGGGCTACGATTCATCTT 

 G----------------------- A-T — — CAC—  T—   C - A - T — C - T ------------------------------------‘

RAT CAGTTGTCTACTACACATTAGATCGCATAGCACCCTTCCTTAGACTAACTTTCCCTAGACAGA 
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RAT
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TGGGTAATTGTGTGCAGTAACTGA6ATCACCTT7CTCCTATTTTCAATAAATCACATTTTAAG 
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RAT GCACT (A)n 

H o u s e    A

Comparison of the partial cDNA sequence for the mouse a r casein 
with the corresponding sequence from the rat.

The sequence representing the coding regions are arranged in triplet 
codes. Dashed lines represent homologous sequences and spaces 
introduced in the rat or mouse sequence represent deletions or 
insertions. The termination codons and the polyadenylation signals are 
underlined. Data from Faruque, 1990.



Figure 7

1 A7GAAAC7CC7CA7CC7CACC7GCC7CG7GGC7GC7GC7777GC7A7GCCCAGAC77CA7 
- 1 5  M K L L I L T C L V A A A F A M P R L H

61 AGTAGAAA7GCAG77AGCAG7CAAAC7CAGCAACAGCATAGCAGCAGTGAGGAAA77777 
6 S R N A V S S Q T Q Q Q H 0 0 0 E E I F

1 2 1  AAACAACCAAAG7 A7C7CAACC7AAA7CAGGAA77CG7CAACAACA7GAACAGACAGAGA 
26 K Q P K Y L N L N Q E F V N N M N R Q R

1 81  GCAC77C7GACAGAACAGAACGATGAAA7CAAGG7AACTA7GGA7GCAGCA7C7GAGGAA 
46 A L L 7 E Q N D E I K V T M D A A @ E E

2 4 1  CAAGCAA7GGC AAGTGC7CAGGAAGAC7C7TCAA7CAGC7CA7C AAG7GAGGAA7C7GAG
66 Q A M A S A Q E D S 0 I 0 0 0 0 E E 0 E

3 01  GAAGC7A77CCCAA7A7CAC7GAGCAGAAAAACA77GCAAA7GAAGACA7GC7CAACCAG 
86 E A I P N I 7 E Q K N I A N E D M L N Q

3 61 7GCACCC7GGAACAGC77CAGAGACAG777AAG7ACAACCAAC77C7CCAGAAAGC77CC
106 C 7  L E Q L Q R Q F K Y N Q | L L Q K A S |

421 C7GGC7AAGCAAGC77CCCTG77TCAGCAACC77CCCTGG7ACAGCAAGC77CCC7G777
126 L A K Q A S || l f q q p s | l v q q a s | l f

481 CAGCAACC77CCC7GC7TCAGCAAGC77CCC7G777CAGCAACC7TCCA7GGC7CAGCAA
14 6 Q Q P S | L L Q Q A S j L F Q Q P  S | M A Q Q

5 4 1 GC77CCC7GC7ACAGCAACTTCTCCTGGCCCAGCAACC7TCCC7GGCAC7GCAAG777CC
1 6 6 A S | L L Q Q l l | l a q q p s | l a l q v s !

601 CCAGCACAGCAATC77CCC7GG7ACAGCAAGC777CC7GGCACAGCAAGC77CCC7GGCA
1 8 6 P A Q Q S S |1 l v q q a f | l a q q a s | l a

6 61 CAGAAACA7CA7CCAAGACTGAGCCAG7CC7AC7A7CCACA7A7GGAACAGCC77ACAGA 
2 0 6  Q K H H | P R L S Q S Y Y P H M E Q P Y R

7 21  A7GAA7GC A7 ACAGCCAAGTTC AAATGAGACATCC7A7GAGTG7AG7GGATCAGGCAC7G 
2 2 6  M N A Y S Q V Q M R H P M S V V D Q A L

7 81 GCCCAGT7C7C7G77CAGCCC77CCCACAAA7CT7CCAG7A7GA7GCC777CCCC777GG 
2 4 6  A Q F S V Q P F P Q I F Q Y D A F P L W

8 4 1  GC77ACTTTCCACAGGATATGCAGTACCTTACTCCCAAAGCTGTCCTTAACACCTTCAAG 
2 6 6  A Y F P Q D M Q Y L T P K A V L N T F K

901  CCCATTG7CTCCAAGGATACTGAAAAAACCAATGTGTGGTGAGATAT7 AAGACATC7C7C 
2 8 6  P I V S K D T E K T N V W *

961  AGGAAC7CCACAG77A7AACA777GA7G7GAC7GGACCCTCCA7TC7CCA7CCACCTCA7 

1 0 2 1  G7C7C7C7A77CA77C7A7GGAGCC7C7G77TTACC7AAAGGC7TGAC7GC7A7777AGA 

1 0 8 1  G7AGA7AAAACACCATA7AGAGGCCAA7GA77CA7C77GAG77G7C7AC7GCA7A77AGA 

1 1 4 1  TAGCA7AGCA7CCT7CC77AAGC7AACC7T7CC7AGACAGATTC7TT777C7AAA77CCA 

1 2 0 1  G77GCA7CA7C7GAGCGGAGAGAA7CAAGGCC777AACAAG777C7A77A7GGAAAA777 

12 61 G7777AAAAG7C777AAA7GGA77C77C7GAAAA7G77A7CA77TTGGG7AA77G7G7G7 

1 3 2 1  AG7AAC7GAGA77G7C777T7CC7C7777CAA7AAA77ACAT777AAGGCAAAAAAAAA

Nucleotide and deduced amino acid sequences of the full length clone of

mouse a-casein. Potential casein kinase phosphorylation sites are circled and

repeated units are boxed. A concensus polyadenylation signal is underlines

and the star indicates translation termination.

Data from Grusby et al. 1990.
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However, on elucidation of the amino acid sequence it was evident that the 

precursor form of mouse a  j-casein contained 2  cysteine residues and the 

mature protein one cysteine residue (Grusby et ah, 1990).

Mouse o'!-casein may also be phosphorylated. There are two areas on 

the protein that have clusters of casein-ltinase recognition sites, i.e. serine-x- 

acidic amino acid/phosphoserine, where x is any amino acid. In total there are 

ten serine residues which could be phosphorylated. These residues are circled 

in Figure 7.

2.1.5 MOUSE «2-CASEIN

A mRNA coding for a 39 kDa protein was isolated and cloned (Table 

7). The protein was named a2-casein on the basis of results from 

immunological experiments, in which antibodies raised to a !-casein 

precipitated both cq- and another mRNA from total mammary gland mRNA 

(Hennighausen & Sippel, 1982a). The amino acid sequence of a 2-casein has 

not yet been elucidated.

2.1.6 MOUSE 0-CASEIN

The presence of two /3-caseins was postulated on the basis of the

results of cDNA analysis and immunoprecipitation. The two caseins have 

calculated molecular weights of 27.5 and 27 kDa (Hennighausen & Sippel, 

1982a; Table 7). However, only one band however is visible on SDS-PAGE. 

The cDNA sequence of mouse /3-casein has been determined (Yoshimura et 

ah 1986; Figure 9).
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Mouse /3-casein cDNA was found to cross-hybridize with rat /3-casein 

under strict hybridization criteria, indicating some homology with the rat 

casein (Hennighausen & Sippel, 1982a). A comparison of the two cDNA 

sequences revealed that the intron/exon organization of the two genes was 

highly conserved. Both sequences contained nine exons and eight introns all 

with similar lengths except for the first intron of rat /3-casein which had an 

extra sequence of approximately 400 base pairs (Figure 10). The nine exons 

were found to be 88.4, 95.2, 74.1, 95.2, 95.8, 84.4, 86.3, 85.4 and 87.0% 

homologous, respectively (Yoshimura & Oka 1989). At the amino acid level, 

the two caseins are still quite homologous (approximately 70%), with 100% 

homology for the fifteen amino acid residues in the signal peptides. Unlike 

bovine /3-casein, the mouse /3-casein contains two cysteine residues, one of 

which occurs in the signal peptide. The full-length mouse /3-casein has been 

calculated to be 231 amino acid residues long with a molecular weight of 

25,308Da. Mouse /3-casein may also be phosphorylated since it contains six 

casein-kinase recognition sites, i.e. ser-x-glutamic acid/phosphoserine (shown 

boxed in Figure 9).

2.1.7 MQUSE k-CASEIN

A cDNA clone for mouse x-casein was not isolated until 1985. The 

nucleotide sequence was determined and from this, the amino acid sequence. 

The deduced amino acid analysis revealed that the mature protein is 160 

amino acid residues long, has a signal peptide of 2 1  amino acid residues and 

a calculated molecular weight of 18,400Da (Thompson et al., 1985). The 

deduced amino acid sequence is shown in Figure 11. The sequence of mouse
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/c-casein has also been compared with the corresponding rat and ovine 

caseins(Figure 12). The signal peptides of mouse and rat k-casein are 

completely homologous and both are 62% homologous with the ovine /c-casein 

signal peptide. The mature caseins were found to be less homologous, and 

both were only 43-46% homologous with ovine /c-casein.

Sequence homologies are shown in Figures 12A-C. Homologous 

regions are found in the C-terminal end from residues 105-106. This bond 

occurs between phenylalanine and leucine residues in both mouse and rat but 

between phenylalanine and methionine in both bovine and ovine caseins. 

(Mercier & Chobert, 1976). This could indicate that the enzyme responsible 

for cleaving this bond may differ among species. A comparison of peptides 

1-105 and 106-160 revealed that the peptides of different species have 

diverged during evolution. In peptide 1-105 of mouse /c-casein three amino 

acids have been deleted as well as an insertion of four leucines at positions 61- 

64 in both mouse and rat /c-caseins.

Amino acid sequencing data have also revealed a single putative 

glycosylation site at residue 94 of mouse /c-casein. The protein may also be 

phosphorylated and the three putative sites are shown in Figure 11. In this 

instance, phosphate groups may be present on threonine residues as well as 

serine residues. Phosphorylation of threonine residues obeys a similar rule to 

that of serine residues i.e. threonine-x-acidic amino acid/phosphothreonine, 

where x is any amino acid.
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Figure 12

A. SIGNAL PEPTIDE SEQUENCE OF x-CASEINS.
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C. COMPARISON OF AMINO ACID COMPOSITION 
OF OVINE. MOUSE AND RAT x-CASEINS.

1 o f  A.A. 
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1 e t  A.A. 
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I o f  A .A. 
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Ovine v i Houac 68/157 78 /1 5 7 2 2 /137 1 1 /137 43

O vine Ye Rat 74 /137 72 /1 3 7 21 /1 3 7 11 /1 3 7 46

Rac v i  Houac 115/157 40 /1 5 7 1 /157 3 /1 3 7 73

Comparison of amino acid sequences of mouse, rat and ovine k- 
caseins.
Conserved residues are boxed and maximum alignment achieved by 
introducing gaps represented by dashes. The proteolytic cleavage site 
is marked by an arrow.
Data from Thompson et al, 1985.
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2.1.8 MOUSE e-CASEIN

A clone for mouse e-casein was isolated in 1982 which coded for a

16.1kDa protein (Hennighausen & Sippel, 1982a; Table 7). Sequence 

analysis has shown that mouse e-casein contains regions homologous to bovine 

a s2-casein but not to bovine /3-casein (Hennighausen et al. unpublished 

results). e-Casein cDNA contains a Pstl restriction site in the 3' non-coding 

region similar to that found in mouse /3-casein cDNA. A rat clone similar to 

the mouse e-casein clone has been detected. It was however named jS1-casein 

because its Pstl restriction site was found in a similar position to that of rat 

/3-casein (Hennighausen & Sippel, 1982a). The amino acid sequence of mouse 

e-casein has been deduced (Hennighausen et a l ,  1982; Figure 13). Six 

potential phosphorylation sites are also indicated in Figure 13. As in bovine 

caseins which have phosphorylated residues clustered in regions rich in acidic 

amino acids, the potential phosphorylation sites in mouse e-casein occur in the 

region of amino acids 5-48 which contains ten acidic and only one basic amino 

acid.

2.1.9 MOUSE 7-CASEIN

A clone for mouse 7 -casein has been isolated (Hennighausen & Sippel, 

1982a). However, the amino acid sequence of the protein has not been 

elucidated to-date. The mature protein is estimated to have a molecular 

weight of 23.7 kDa (Table 7). Under strict hybridization criteria mouse 7 - 

casein cDNA cross-hybridizes with rat 7 -casein cDNA, demonstrating 

reasonable conservation between the two species.
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2.1.10 MOUSE 6-CASEIN

5-Casein has a molecular weight of 21 kDa (Table 7). The amino acid

sequence for this protein has not yet been elucidated although a cDNA clone 

has been isolated (Hennighausen & Sippel, 1982a). Unlike the a-, /?- and y- 

caseins, mouse 5-casein cDNA does not cross-hybridize to a rat mammary 

gland mRNA.

2.1.11 IDENTIFICATION OF MURINE WHEY PROTEINS

As with the caseins, mouse whey proteins were initially investigated

using various electrophoretic techniques. Acid-urea gels of mouse whey 

proteins revealed two bands as did alkaline-urea gels (Green & Pastewka, 

1976a). SDS-PAGE of whole whey and of ammonium sulphate fractions also 

showed two proteins. The slower migrating of the two whey proteins was 

found to have the same mobility as mouse and bovine serum albumin. The 

faster of the two migrating bands was found to have the same mobility as 

bovine a-lactalbumin. These proteins were eluted from the gel and analysed 

by immunodiffusion.

Goat-anti-mouse serum albumin confirmed that the slower migrating 

whey protein was mouse serum albumin. The faster migrating band was 

named a-lactalbumin because of its activity in a lactose synthetase assay 

(Green & Pastewka, 1976a). It was not until 1981 that another mouse whey 

protein was discovered (Piletz, Heinlen & Ganschow, 1981). The protein was 

named whey acidic protein (WAP) due to its acidic isoelectric point and it was 

found to be the major protein in mouse whey. This protein was previously 

reported as being a-lactalbumin but was later confirmed as WAP since it
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lacked lactose synthetase B-protein activity (Piletz et al. 1981).

2.1.12 WHEY ACIDIC PROTEIN (WAP)

This protein is the major protein in mouse whey and it constitutes a

minimum of 2.4% of total mouse protein. WAP has an acidic isoelectric

point: WAP-A, 4.7; WAP-B, 4.8(Piletz et al. 1981) has a molecular weight

of 14,000 Da and is synthesized in the mammary gland of the mouse. To

date, WAP has only been identified in the milk of rodents and its function

remains unknown. WAP has been purified using a 33% ammonium sulphate

fractionation of whey, and was subsequently purified by gel permeation and

anion exchange chromatography. Estimates of the molecular weight of WAP

using gel electrophoresis, SDS-PAGE and gel permeation chromatography are

quite similar being 12,500, 13,500 and 15000 Da, respectively.

A cDNA for mouse WAP was isolated in 1982 (Hennighausen &

Sippel, 1982a; Table 7). The amino acid sequence of the protein was deduced

and is shown in Figure 14. Mouse WAP was found to be 134 amino acid

residues long and to contain a signal peptide of 19 residues (Hennighausen &

Sipple, 1982b, c). Two allelic forms of mouse WAP have been identified,

WAP-A and WAP-B. WAP-B has one less cysteine residue and one more

arginine residue than WAP-A. The amino acid compositions of both WAP

forms are tabulated in Table 8  (Hennighausen & Sippel, 1982b; Piletz et al.

1981) with WAP-A designated the wild type and WAP-B the mutant allele.

Mouse WAP is a cysteine rich protein with cysteine residues grouped

in two domains. This pattern of cysteine residues is similar to that seen in

other small proteins such as snake venom neurotoxins and wheat germ
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agglutin (Drenth et al., 1980). The distribution of cysteine residues in mouse 

WAP is identical to that found in rat WAP, i.e. five cysteines have been 

identified in the N-terminal domain of mouse WAP and six in that of rat 

WAP. The C-terminal domain of both mouse and rat WAP contains six 

cysteines residues.

In both parts of the polypeptide chain, the cysteine residues match 

exactly in their distance from each other (Hennighausen & Sippel, 1982b,c). 

The two domain structures of the mouse and rat WAP polypeptides are shown 

diagramatically in Figure 15. A comparison of mouse and rat WAP (Figure 

16) demonstrates reasonable homology between the two proteins. The signal 

peptides show 95% conservation, the cysteine domain I show 81% 

conservation and all other areas including cysteine domain n  only show 60- 

65% homology. Compared with the levels of conservation of other proteins, 

whey acidic proteins are among the most rapidly diverging proteins known 

(Hennighausen & Sippel, 1982c).

WAP-A and WAP-B have also been tested for the presence of 

phosphate groups and carbohydrate moieties, by specific staining of 

polyacrylamide gels with periodic acid-Schiff, Stains-all and methyl-green 

dyes. Since no positive result was obtained, enzymatic procedures were tested 

i.e. treatment with neuraminidase, acid phosphatase and alkaline phosphatase. 

These enzymes also had no effect on the electrophoretic mobilities of 

phosphate nor sugar groups. Using Sudan Black B, the lipid content of WAP 

was investigated. WAP A and B stained well for lipid. The nature of the lipid 

association with WAP was determined by delipidating WAP using a
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Figure 16

- 1 9  - 1 0  - 1  +1
RAT M R C S  I S  L V L G L L A L E 7 A L A R
MOUSE   L - —  ---------------- ------------------------------------------------------------------------------------------------------ q

RAT /-C C  ATG CCC TGT TCG ATC ACC CTC CTT CTT GGC CTG CTG GCC CTC GAG GTA GCC CTT GCT CCG
MOUSE------------ CCTGACACCCGTA----------------- T----- C CTC------------------------T— ------------------------------------------------------------------ G--------------C------------ A -

10 20 
RAT M L Q E H V F S S V Q S M C P D D S S S E D T E C  
MOUSE   E   Q   F   K A   P I    G
RAT AAC CTA CAC GAA CAT CTC TTC AAC TCA GIT CAC TCC ATG TCC CCT GAT GAC ACC ICC ACT GAG GAC ACA GAA TGI
MOUSE---- ---------------C--------------------A----------------------------------------------------------------------T--------A A-A ~ C ------------ C--------- T------------- G-------------- G------

t
30  AO 50

RAT I N C Q T N E E C A Q N D M C C P S S C C R P C K
MOUSE   I  ------------------------------------------------------------------------------ -—  A ------------------------------------ C-----------------------------------  T R -------
RAT ATC AAC TGT CAA ACC AAC GAG GAG TGT GCC CAC AAT GAC ATG TGT TGT CCC ACT TCC TGT GCT ACC CCC TGC AAA 
MOUSE  T C- - "  ■■ -     C---------------- C------------------ G-------------------------------------- A----- C------------

60 70
RAT T P V N I E Y Q K A G R C  P W N P I  Q M I  A A (77^  G
M O U S E   ------------------------------------ G   P----------------------  ?  ------------------------------------ L L   T   S S T ------
RAT ACT CCT CTC AAC ATT CAC CTT CAA AAC CCT GGC CGC TGC CCC TCG AAT CCA ATC CAC ATC ATC GCT CCT [777] CCA 
MOUSE ------------------------------------------- GT------------CG------ A------------------ TT-----------------T-------------------- T— C--------- A— C-------------AG— AG— ACC---- G

80 90  100
RAT P C P K C N P C S  I D S D C S C T M K C C N N G C
MOUSE---- ----------------------  M Q I  E ---------------------  S--- -------- R E--------------------------  N------------------------------------------  V D -
RAT CCA TGC CCA AAC GCC AAC CCA TGC TCC ATC GAC ACT GAT TGT TCT GCC ACC ATC AAA TCC TGC AAC AAT GGC TGT
HOUSE — C--------------------T— CAC— TA CA---------------------- C------------C G----------------------------- A-------- -—  ------------------------------ CTC— A---------

1 10
RAT I M S C M D P K P  0  S P T V I  S F Q x x x
m ouse  v ------------  t-- ---------- t  p —  v — [7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 1 ------------------- t  l -----------------
RAT ATC ATC ACT TCT ATG GAC CCA AAA CCA CAT TCT CCT ACA CTG ATA TCC TTT CAC TGA GAACCCTGCCCTGGGQaTCCCTC
MOUSE G--------------- CA------------CA CC-----------CTC-------- | / / / ✓ / / / / / / / / / / / I -------------------A-----C-------------------------C--------C--------------CC--------------

RAT c c t c t c a c g a g t c a c c a c c c c a a g c c t g ta c a c c a a g a a c c tt c a c t c t tg g a t c c a g a g a c a a c a t a a t uctttctaa c cg ctgc iIaataaaIaatcca  
MOUSE ------------G-------- C------------------------ T— A---------------------C-------------------G------------------------------------------------------- 0 H Z 3 1--------- ‘ ~--J ------------

RAT TTrCCGCTTTA(n» 2 0 )
MOUSE AA A ( n - 5 3 )

Comparison of the nucleotide sequences of the cDNAs and deduced 
amino acid sequence of rat and mouse whey acidic proteins. Hatched 
areas represent introduced gaps.
Data from Hennighausen and Sippel, 1982(c).
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chloroform/methanol extraction. Triglyceride and cholesterol were found to 

account for 20-25 % of the total mass of WAP. The density of WAP was also 

found to be greater than that of other lipoproteins (Piletz et al. 1981).

2.1.13 a-LACTALBUMIN

Like a-lactalbumin of other species, this protein is synthesized in the

mammary gland. a-Lactalbumin plays a major role in the biosynthesis of 

lactose in milk. In the presence of a-lactalbumin, galactosyltransferase 

catalyses the formation of lactose by the transfer of the galactosyl residue of 

UDP-galactose to glucose rather than to the usual galactose acceptor, N- 

acetylglucosamine. a-Lactalbumin has been purified from mouse milk, 

(Nagamatsu & Oka, 1980) but the purification was complicated. The 

purification procedure included precipitating the caseins at pH 4.6, 

ammonium sulphate fractionation of the whey, and two gel permeation 

chromatography steps followed by ion-exchange chromatography. The results 

indicated that a-lactalbumin existed in two forms with molecular weights of 

14,000 and 18,500 Da, as estimated by SDS-PAGE. The 14,000 Da form also 

includes at least four differently charged forms and represents >90% of total 

mouse a-lactalbumin. The 18,500 Da form of a-lactalbumin which constitues 

only 5-10% of the total a-lactalbumin also appears to be a glycoprotein.

The amino acid composition of the two major a-lactalbumins were 

found to be generally similar to rat a-lactalbumin (Brown et al. 1977) with the 

exception of the proline content. The amino acid composition of mouse a- 

lactalbumin is shown in Table 9 (Nagamatsu & Oka, 1980). The multiple
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charged forms of a-lactalbumin are thought to exist due to deamination of 

residues such as asparagine or glutamine by agents such as urea or ammonium 

sulphate. Such phenomena have been shown to occur in the case of other 

small proteins (Lewis et al 1970). Studies of mammary gland explants have 

also shown that a-lactalbumin accounts for only 0 .2 % of total protein and is 

therefore a minor whey component. A mRNA for a-lactalbumin has been 

isolated, in keeping with previous studies (Nagamatsu & Oka, 1980). a- 

Lactalbumin mRNA was shown to account for only 2.8% of total mRNA, 

compared with casein mRNA which comprised about 90% of total mRNA 

(Takemoto et al. 1980). The deduced amino acid sequence is shown in Figure 

17 (Vilotte et al. 1992; Vilotte & Soulier, 1992). A radioimmunoassay 

developed to detect a-lactalbumin in whole mouse milk indicated that a- 

lactalbumin accounted for no more than 0.83% of total milk protein i.e. a 

concentration of less than 1 mg ml' 1 milk (Zamierowski & Ebner, 1980).

2.1.14 SERUM ALBUMIN AND LACTOFERRIN

SDS-PAGE of mouse milk and mouse breast homogenate has revealed 

two proteins with molecular weights of 78 and 67 kDa (Hennighausen & 

Sippel, 1982a). By comparison with other species, the 67kDa protein could 

be milk serum albumin and the 78 kDa protein, lactoferrin.
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Figure 17

tgggatccacattciaggtctg

GQAGCAGTCAAA ATG ATG CAT .TTC CTT CCT TTG TTC CTG GTG TGT ATT TTG TCG TTG CCT GCC 63

MET MET MIS PHE VAL PRO LEU PHE LEU VAL CY3 ZLE LEU 3ER LEU PRO ALA

-20  -1 5  -1 0  -5

TTT CAA GCC ACA GAG CTT ACA AAA TGC AAG GTG TCC CAT GCC ATT AAA GAC ATA GAT GGC 123

FKE GLN ALA THR GLU LEU TKR LTS CY* LYS VAL SER MZ3 ALA ZLE LYS ASP XLE ASF GLY
 --------------------------p jU t--------------------- GLU----------------------------------- GLU -------MET--------------

- 1 1  3 10 13

TAT CAA GGC ATC TCT
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TTG CTT GAA TGG GCC TGT GTT
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H 
1

TTT CAT ACC AGT GGC TAC GAC 183

TYR GLN GLY ZLE LEU LEU GLU TRP ALA
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CX3 VAL LEU
c

PEE
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KX8 THR SER GLY

---B
TYR ASP

20 25 30 35

ACA CAA CCT GTT ATC AAC GAC AAC GGC AGC ACA GAG TAC GGA CTC TTC CAG ATC AGT GAC 243
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THR 
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GLN ALA

40

VAL
ILE

VAL ASN
LYS

ASP
ASM

ASK

43

GLY SER TKR GLU TYR GLY

50

LEU PBX GLH ZLE SER

55

ASP
ASN

AGA TTT
« » -
PHE
ASM

TGG TGT AAA AGT AGT GAG TTC CCC GAG TCG GAG M C. ATC TGT GGC ATC TCC TGT 303

ARG TRP CYS
— 9
LYS SER SER GLU PHE PRO GLU SER GLU ASN ILE CYS GLY

ASP
ZLE SER CYS

60 65 70 73

GAC AAG TTA TTG GAT GAC GAG TTG GAT GAT GAC ATA GCG TGT GCC AAG AAG ATC CTG GCT 363

ASP LYS
— C 
LEU 
PHE 

80

C-t
LEU ASP

— t  
ASS GLU

c-t
LEU

85

-eg
ASP
ALA

ASP ASP ZLE
-t»
ALA
VAL

90

CYS ALA LYS LYS XLB

95

9 ”
LEU
VAL

ALA

ATC AAA GGA ATC GAC TAC TGG AAA GCC TAC AAG CCC ATG TGC TCT GAG AAG CTT GAA CAG 423
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— 9
CLY ILE ASP TYR TRP

— 9
LYS ALA

Q —
TYR
RTS

LYS PRO MET CYS SER GLU LYS
— 9  
LEU GLU GLN

100 105 110 113

TGG CGT TGT GAG AAG CCC TGA GCC CCCCCCCCCCCCCCCCCC GTC CTT GCT GCT CCT GCC CCG 48 6

M l ARG CYS

120

GLU LYS
— 9
PRO

123

9—
END
GLY

— t  

ALA

--fc -B -  ----— —V— "IB ——— ——— -B-

PRO ALA LEU VAL VAL PRO ALA LEU

TGG
a a t

TCA GGA ATG CCT CTT CCC TAA GGCTACCTCAGCTTGGCTCTTGCTATTCCTGTOAAGATGATCTGCC 556
ic— ■t-

ASN SER GLU TKR PRO VAL PRO END

TCTGAGCCTTGTACCCTGTAGTGACACCACCGGACTCTAGA6GACTTTTTTTTCCCTATGGGAGTGTGACTGGCGCACT 635 

GGACTGCAAACCCTTGCTTAGTGACGGCGAGGGTCTCGATGGGGGTTTTACAAAATCGAGAGAGCCCTCTCCTGTCCCA 714 

AATAAAGGGCCAGACTTGA(A)n

Nucleotide sequence of mouse a-lactalbumin cDNA and comparison 
with its rat counterpart. Each upper line (upper case letters): 
nucleotide sequence of mouse a-lactalbumin cDNA. Each lower line 
(lower case letters): nucleotide sequence of rat and lactalbumin
cDNA.
Dashes represent identical nucleotides, and blanks represent gaps. The 
amino acid sequences of mouse and rat a-lactalbumin are the bottom 
two lines respectively. The first twenty residues represent the signal 
peptide and stop codon marked by END.
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2.1.15 AIM OF THE WORK

Despite the enormous amount of research which has been conducted

on mouse milk, its protein composition remains relatively poorly characterised 

and the individual caseins have so far not been isolated. Currently, the method 

most widely used to determine the amounts of the individual proteins in mouse 

milk is densitometric scanning of stained polyacrylamide gels. This method 

is, however, very difficult to quantify accurately and does not allow sufficient 

of the individual proteins to be separated to enable antibodies to be raised to 

them, as is required in some projects involving protein expression in the 

mouse mammary gland.

The aim of this part of the project was, therefore, to develop a 

quantitative single-step chromatographic method to separate the proteins of 

mouse milk so as i:o analyse very small amounts of milk from individual mice, 

and if possible to scale-up the separation to obtain relatively large amounts of 

individual proteins to make antibody production feasible.

63



2.2 MATERIALS AND METHODS

2.2.1 MATERIALS

Chromatography columns, FPLC/HPLC systems, the Phast System, 

PhastGels/buffer strips and agarose (IEF grade) were purchased from 

Pharmacia Biotech, Milton Keynes, UK. The Spherisorb ODS column was 

purchased from Capital HPLC Specialists, Waverley Industrial Estate, 

Waverley Street, Bathgate, West Lothian.

Sodium acetate, Tris, EDTA, glacial acetic acid, methanol, propan-2- 

ol, glycerol, formaldehyde, hydrochloric acid, acetonitrile (HPLC-grade), di­

potassium hydrogen orthophosphate, potassium dihydrogen orthophosphate and 

trifluroacetic acid (TFA) were purchased from Fisons Scientific Equipment, 

Bishop Meadow Rd., Loughborough, Leicestershire, UK. All were analytical 

reagent grade, except where specified.

Rennin (chymosin;EC 3.4.23.4), silver nitrate, 2-mercaptoethanol, 

iodoacetamide, triethylamine, n-octyl-0-D-glucopyranoside, acrylamide, 

bisacrylamide, phenylisothiocyanate, dimethylaminopropionitrile, molecular 

weight markers, guanidine hydrochloride and l-ethyl-2-[3-(ethylnaphtho-[l,2- 

d]thiazolin-2 -ylidene)-2 -methylpropenyl]naptho-[l,2 -d]thiazoliumbromide 

(Stains-all) were purchased from Sigma Chemical Company Ltd., Poole, 

Dorset, UK.

Barbitone, ammonium persulphate, urea(Analar), sodium carbonate 

urea and sodium thiosulphate were purchased from BDH Chemicals Ltd, 

Poole, Dorset, UK.

E-C470 gel cell, E-C Apparatus Corporation, St. Petersbourg, Florida.
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Hypnorm, Hypnovel, oxytocin and saline were purchased from The 

Veterinary Drug Co, 10 Castinop Road, Middlefield Industrial Est., Falkirk.

Potato acid phosphatase (EC 3.1.3.2) was purchased from Boehringer 

Mannheim U.K., (Diagnostics and Biochemicals) Ltd, Bell Lane, Lewes, East 

Sussex.

CRMX-pellets - Special Diets Services, P.O. Box 705, Witham, Essex, 

England.

Mice: (Tux, No 1) from A. Tuck & Son, Beaches Road,

Battlesbridge, Essex.

OLAC: (CBAx C57 BL6 ) from Harlan OLAC Ltd., Shaws Farm, 

Blackthorn, Bicester.

Animals: (Tucks No. 1) and OLAC CBA x C57BL6 mice were mated 

between the ages of 7 to 9 weeks when they weighed about 25 g for Tucks 

N° 1 and about 19g for CBAX C57BL6 mice. Mice were fed a diet of CRMX 

pellets (~  6  g daily); milk was obtained 1 0 - 1 2  days postpartum from suckling 

dams.

2.2.2 MILK COLLECTION

Dams were separated from their young by means of a cage partition 

for four hours prior to milking. Oxytocin (0.1 units) and 0.1 ml of a solution 

of Hypnorm, Hypnovel and sterile water (1:1:2 v/v/v) per 10 g of body 

weight were injected intraperitoneally fifteen minutes before milking. Milk 

was then expressed by gentle manipulation of the mammary gland and 

collected via small bore capillary tubes.
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2.2.3 MILK FRACTIONATION

Milk was centrifuged for fifteen minutes at 3000 rpm, cooled at 4°C 

for ten minutes and the fat layer removed.

Caseins were precipitated by reducing the pH of skimmed milk to 4.27 

by the addition of acetate buffer (0.2 M-sodium acetate and acetic acid). 

Precipitated casein was pelleted by centrifuging at 3000 rpm for five minutes. 

The whey was decanted and the casein pellet washed a further four times by 

resuspending in acetate buffer and recentrifiiging. The washed casein pellet 

was resuspended in distilled water and the pH adjusted to pH 7.0 with sodium 

hydroxide. The pH of the soluble whey fraction was similarly adjusted to 7.0 

with sodium hydroxide. The casein and whey proteins were dialysed at 4°C 

for 60 hours against five changes of distilled water. After dialysis, the pH of 

the casein and whey fractions was adjusted to 7.0 and the samples filtered 

through a cellulose nitrate filter (1.2 pern pore) to remove any residual fat and 

then freeze dried.

2.2.4 ALKYLATION

Acid-precipitated, freeze-dried casein was dissolved at a protein

concentration of 1.5 mg m l1 by stirring overnight at 4°C in 5 mM-bis-tris 

propane buffer, pH 7.0, containing 6M-guanidine-HCl and 0.5 % n-octyl /3-D- 

glucopyranoside. Disulphide bridges in the proteins were then reduced by 

adding 2-mercaptoethanol at a concentration of 10 pel ml-1 and stirring at room 

temperature for 1 hour. Iodoacetamide was then added to a final concentration 

of 8mM and the solution stirred for 15 min. An additional 20 pel of 2- 

mercaptoethanol were added and the solution stirred for a further 15 min.
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The casein was then dialysed against 6x31 of distilled water over 60 hours. 

The pH of the solution was adjusted to 7.0 and the samples were then freeze- 

dried.

2.2.5 ION EXCHANGE CHROMATOGRAPHY

2.2.5.1 ANION EXCHANGE CHROMATOGRAPHY: MONO Q

Sample Preparations

Casein/whey proteins: Freeze dried casein and whey proteins were dissolved 

by stirring overnight (16 h) a t 4 ° C i n 5  mM-bis-tris propane buffer pH 7.0, 

containing a range of urea concentrations (3, 6, 8M). The proteins were then 

reduced at room temperature for 1 hour by addition of excess 2- 

mercaptoethanol (final concentration of 20 p\ ml’1) and the solutions filtered 

through a 0.22 pm filter.

Skimmed milk: Skimmed milk was dissolved overnight (25 p\ ml’1 ) at 4°C 

in 5 mM-bis-tris propane buffer, pH 7.0, containing 20 mM-EDTA, 8M-urea 

and 0.5% n-octyl-0-D-glucopyranoside. The samples were then dialysed for 

4 hours at room temperature against 500 ml of a 5 mM-bis-tris propane 

buffer, pH 7.0, containing 8M-urea and the proteins were then reduced by the 

addition of 2-mercaptoethanol (final concentration 20 pi ml*1 ) and filtered 

through a 0.22 pm filter.

Protein separations

Proteins were separated at room temperature on a Pharmacia Mono Q 

column (HR 5/5) on an FPLC system which was used in accordance with the 

manufacturer’s instructions. Proteins were eluted using a gradient of sodium 

chloride in a 5 mM-bis-tris propane buffer, pH 7.0, containing urea at various
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concentrations (3, 6 and 8 M) at room temperature with detection at 280 nm. 

Individual peak fractions were collected, dialysed against 6x31 of distilled 

water for 60 hours to remove buffer salts and freeze-dried.

2.2.S.2 CATION EXCHANGE CHROMATOGRAPHY: MONO S 

Sample Preparation

Casein:

(a) Alkylated mouse casein was dissolved overnight at 4°C in 20 mM-sodium 

acetate buffer, pH 7.0, containing either 6 or 8 M-urea. After stirring for 1 

hour with 2-mercaptoethanol (10 pel ml'1), the pH of the solution was reduced 

to either 2, 3 or 5 with hydrochloric acid and the solution filtered through a 

0.22 fim filter (Table 10).

(b) Freeze-dried mouse casein was dissolved overnight at 4°C in either 20 

mM-formate buffer, pH 7.0, or in 20 mM-sodium acetate buffer, pH 7.0, 

containing either 6 or 8 M-urea and 0.5 % n-octyl /3-D-glucopyranoside. The 

solutions were reduced for 1 hour with 2-mercaptoethanol (10 pi m l1). The 

pH of the samples was reduced to pH 3.0 using 1M-HC1 acid and the 

solutions filtered through a 0.22 pm filter (Table 11).

Whey protein: The freeze-dried whey protein fraction was dissolved overnight 

at 4°C in 20mM-sodium acetate buffer pH 7.0 containing either 6 or 8 M-urea 

and 0.5% n-octyl /3-D-glucopyranoside. The protein was reduced for 1 hour 

with 2-mercaptoethanol (20 p\ ml'1), the pH of the solution being reduced to 

either 3.0 or 5.0 and the solution filtered through a 0.22 pm  filter.
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2.2.5.3 CATION EXCHANGE CHROMATOGRAPHY: HI-LOAD S 

Sample Preparation

Casein: Mouse casein (400 mg) was dissolved overnight at 4°C in 150 ml of 

20 mM-sodium acetate buffer, pH 7.0, containing 8M urea and 0.5% n-octyl 

i8-D-glucopyranoside. The casein solution was reduced for 1 hour with 2- 

mercaptoethanol (10 pi ml'1). The pH of the sample was then reduced to 3.0 

using 1M-HC1 and the sample filtered through a 0.22 pm filter.

Whey protein: The freeze-dried whey protein fraction was dissolved overnight 

at 4°C in 20 mM-sodium acetate buffer, pH 7.0, containing either 6- or 8 M- 

urea and 0.5 % n-octyl 0-D-glucopyranoside. The protein was reduced for 

1 hour with 2-mercaptoethanol (20 pi ml*1 ), the pH of the solution being 

reduced to either 3.0 or 5.0 and the solution filtered through a 0.22 pm filter. 

Skimmed milk: Skimmed mouse milk was stirred overnight at 4°C in 20 mM- 

sodium acetate buffer, pH 7.0, containing 20 mM-EDTA, 8 M-urea and 0.5 % 

n-octyl /?-D-glucopyranoside. The samples were dialysed for 4 hours against 

500 ml of 20 mM-sodium acetate buffer pH 7.0 containing 8 M-urea and then 

reduced with 2-mercaptoethanol (10 pi ml'1 ) for 1 hour before reducing the 

pH to 3.0 and filtering through a 0.22 pm filter.

Protein Separations

a) Analytical

Protein samples were separated at room temperature on a Pharmacia Mono S 

cation exchange column (HR 5/5). The flow rate was 0.5 ml min*1 and 

detection was at 280 nm.
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Casein: Casein fractionation was carried out using a sodium chloride gradient 

in either 20 mM-sodium acetate or 20 mM-formate buffer containing 6 or 8M- 

urea at a variety of pH values (Tables 10 and 11).

Whey protein: Whey proteins were fractionated using a sodium chloride 

gradient in 20 mM-sodium acetate buffer containing 8 or 6 M-urea at pH 3.0 

and pH 5.0, respectively.

Skimmed milk: Milk was fractionated using a gradient of sodium chloride in 

20mM-sodium acetate buffer, pH 3.0, containing 8 M-urea.

b) Preparative: Hi-Load S

Casein: Protein was loaded at a rate of 4 ml min'1 and eluted using a gradient 

of sodium chloride in 20 mM-sodium acetate buffer, pH 3.0 containing 8 M- 

urea.

2.2.6 REVERSE PHASE CHROMATOGRAPHY 

Sample Preparation

Casein: Alkylated freeze-dried casein was dissolved by stirring overnight at 

4°C in 5 mM-bis-tris propane buffer, pH 7.0, containing either 6 M-urea or 

6M-guanidine-HCl and 0.5% n-octyl 0-D-glucopyranoside and then filtered 

through a 0.22 pm filter.

Protein Separation

Protein samples were separated at room temperature on a Pharmacia 

ProRPC column (HR 10/5). The separations were performed using a linear 

gradient of acetonitrile in 0.1 % trifluoracetic acid. The gradient was 25-55 % 

for casein separations and 10-33% for whey protein separations (Table 12).

72



TA
BL

E 
12

: 
Re

ve
rs

e 
ph

as
e 

liq
uid

 
ch

ro
m

at
og

ra
ph

y 
of 

m
ou

se
 

ca
se

in

Fi
g.

23
A

23
B

W
av

e
le

ng
th

(n
m

)

28
0

21
4

CN 21
4

28
0

21
4

R
un

Ti
m

e
(m

in
) oo = * = * =

E
lu

tio
n 

R
at

e 
(m

l 
m

in
'1)

00
o = = = = s

Sa
m

pl
e

V
ol

um
e

(m
l) r = = = =

.a .s -53 o d
g  55 2 g M
® .§

CO = s = s CN

El
ut

in
g 

bu
ff

er

10
-55

% 
A

ce
to

ni
tri

le
 

0.1
% 

TF
A

= r = = 5

pH 7.
0

7.
0

7.
0

7.
0

7.
0

7.
0

D
iss

oc
ia

tio
n 

bu
ff

er

5 
m

M
-B

TP
 

6 
M

-u
re

a

=

5 
m

M
-B

TP
 

6 
M

-u
re

a 
0.

5%
n-

oc
ty

l 
/3

-D
- 

gl
uc

op
yr

an
os

id
e

5 
m

M
-B

TP
 

6 
M

-g
ua

ni
di

ne
-H

C
l

5 
m

M
-B

TP
, 

8 
M

 
gu

an
id

in
e-

H
C

l

5 
m

M
-B

TP
, 

6 
M

 
gu

an
id

in
e-

H
C

l

Pr
ot

ei
n

Ty
pe

M
ou

se
Ca

se
in

= s = =

73



2.2.7 GEL PERMEATION CHROMATOGRAPHY

Two gel permeation columns were assessed for separation of mouse

milk proteins; Superose 12 (analytical and prep grade) and Superdex 75.

Sample Preparation

a) Superose 12

Whey: In order to optimise the separation, mouse whey protein was

dissolved overnight at 4°C in a variety of buffers (Table 13A,B). The protein 

was then reduced in some samples using 2-mercaptoethanol (15 t̂l ml"1) and 

on occasions, the pH was reduced to pH 5.0. All samples were then filtered 

through a 0.22 jon filter.

Casein: Casein was dissolved overnight at 4°C in either 5 mM-bis-tris 

propane buffer, pH 7.0, or 20 mM-sodium acetate buffer, pH 7.0, containing 

either 6 or 8 M-urea and 0.5% n-octyl j3-D-glucopyranoside. The protein was 

reduced with 2-mercaptoethanol (25 /xl ml'1) for 1 hour and filtered through 

a 0.22 fim filter (Table 13C,D).

Milk: Skimmed mouse milk was stirred overnight in 20 mM-sodium acetate 

buffer, pH 7.0, containing 8 M-urea, 20 mM-EDTA and 0.5% n-octyl /3-D- 

glucopyranoside. After dialysing for four hours at room temperature against 

500 ml of 20 mM-sodium acetate buffer, pH 7.0, containing 8M-urea in order 

to remove EDTA, the sample was reduced with 2-mercaptoethanol (15 ^1 ml'1) 

for 1 hour and then filtered through a 0.22 pan filter.

Protein separation: All separations on gel permeation columns were

performed at room temperature using an FPLC system. Buffers and running 

conditions are summarised in Tables 13A, B, C and D for the different sample
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and column types.

2.2.8 PROTEIN DESALTING

Proteins which had previously been separated by means of ion-

exchange chromatography in aqueous buffers were desalted by reverse-phase 

liquid chromatography. Desalting was carried out on a ProRPC column and 

was achieved using a 0-70% gradient of acetonitrile containing 0.1% TFA 

over 18.5 minutes at a flow rate of 1.5 ml min*1.

Volumes of up to 2.0 ml were desalted in a single run giving rise in 

most cases to single protein peaks which were collected and freeze dried.

2.2.9 ELECTROPHORESIS

2.2.9.1 SDS-PAGE

Sample Preparation: Approximately 100 pg of protein were dissolved in 11 

pi of stock SDS buffer (60 fil of 20% SDS , 24 pi 2-mercaptoethanol, 366 pi 

of a solution of lOmM-Tris-HCl and ImM-EDTA, pH 8.0, and 30 pi 0.05% 

bromophenol blue). Samples were then denatured by placing them in a boiling 

water bath for 5 minutes.

Run conditions'. A maximum of 12 x 0.3 pi samples was analysed on a 

Pharmacia 20% homogeneous PhastGel using SDS buffer strips. The 

apparatus was used in accordance with the manufacturer’s instructions and run 

at 250 Volts at 15°C for 95 volt hours(vh).

Development:

(a) Coomassie stain: Gels were stained in a 2% solution of Coomassie blue for 

8 minutes at 50°C. Gels were then destained for a total of 23 minutes at 50 °C
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using a solution of methanol, water, glacial acetic acid (3:6:1, v/v/v), with 

three changes of buffer. After destaining, gels were preserved by incubating 

them with a solution of 10% glycerol and 10% glacial acetic acid at 50°C for 

7.5 minutes.

(b) Silver stain: Gels were stained initially with Coomassie blue and destained 

as described above. The gel was then washed with distilled water for 4 

minutes at 40°C and overstained with a 0.4% solution of silver nitrate. The 

gel was developed in a 2.5% solution of sodium carbonate containing 50 pi 

formaldehyde/150 ml for 5 minutes at 30°C. The intensity of background 

staining was reduced by incubating the gel in a solution of sodium 

thiosulphate(0.1 M) and tris(0.3 M) for 1.5 minutes at 30°C and the gel was 

preserved as previously described.

(c) Stains-all: Proteins were fixed in the gel by incubating with a 25 % propan- 

2-ol solution for 10 minutes at 50°C. The gel was then stained for 16 hours 

at room temperature with Stains-all solution (10 mg Stains-all in 3M-Tris-HCl 

pH 8.8, formamide, propan-2-ol and distilled water, 1:20:50:129, v/v/v/v). 

The gel was then destained in distilled water at room temperature until the 

background was reduced.

2.2.9.2 ALKALINE GEL ELECTROPHORESIS

i) Phast System

Sample preparation: Whole mouse casein and individual casein fractions were 

dissolved in 25 mM-Tris, 3.2 mM-EDTA, 27 mM-Barbitone buffer, pH 7.9, 

containing 8M-urea. Whole casein was used at a concentration of 2 mg ml'1 

and casein fractions at 1 mg ml'1. Samples were reduced with 2-
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mercaptoethanol (10 /xl ml'1) for 1 hour at room temperature.

Gel preparation: A 12.5% homogeneous PhastGel was soaked in a 25 mM- 

Tris, 3.2 mM-EDTA, 27 mM-Barbitone buffer, pH 7.9, containing 4.5 M- 

urea for 1 hour with constant agitation. The surface of the gel was then 

allowed to dry (30 minutes) before loading samples in order to prevent the 

protein diffusing into any surface liquid when it was applied to the gel. 

Buffer strip preparation: 1 g of agarose (IEF grade) was dissolved, with 

heating, in 50 ml of 25 mM-Tris, 3.2 mM-EDTA and 27 mM-Barbitone 

buffer, pH 7.9. After cooling to 50°C, 2.5 ml aliquots were dispensed into 

buffer strip moulds.

Running conditions'. Electrophoresis was performed on a Pharmacia Phast 

System, at 400 V at 15°C for 98 vh.

Development: Gels were stained and destained as previously described for 

SDS-PAGE.

ii) Slab gel electrophoresis

Sample preparation: Casein was dissolved in 25 mM-Tris, 3.2 mM-EDTA, 

27 mM-barbitone buffer, pH 7.9, containing 8 M-urea, 0.5% n-octyl /3-D- 

glucopyranoside and 0.05% bromophenol blue at a protein concentration of 

20 mg ml'1. Alternatively, skimmed milk was mixed with the above buffer at 

a ratio of 3 parts buffer to 1 part milk. Sufficient solid urea was added to the 

mixture to bring the concentration to 8M. The samples were then reduced 

with 2-mercaptoethanol (10 m l1) for 1 hour at room temperature.

Gel preparation: Acrylamide/bisacrylamide (96:4, w/w) was dissolved in Tris- 

EDTA-Barbitone buffer, pH 7.9, containing 4.5 M-urea, the final pH of the
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solution being 8.0 + /- 0.1.

Ammonium persulphate (0.2%) was dissolved in the solution followed 

by 300 pi of dimethylaminopropionitrile per 100 ml of gel solution. The gel 

solution was poured immediately into an E-C470 gel cell and allowed to 

polymerise for 30 minutes.

Running conditions: A pre-electrophoresis run was performed for 30 minutes 

at 300 volts, to remove excess catalysts and impurities. Samples were then 

loaded and separated in accordance with the manufacturer’s instructions for 

6 hours at 200 volts.

Development: Proteins were fixed in the gel by incubating it in a solution of 

methanol, water and glacial acetic acid (5:10:1, v/v/v ) for 10 minutes at 

room temperature. The gel was stained with a 1% solution of napthalene 

black 12B in methanol, water, glacial acetic acid (5:10:1, v/v/v) for 10 

minutes at room temperature. The gel background was destained with several 

changes of methanol, water, glacial acetic acid( 5:10:1, v/v/v ) over a period 

of 2-3 days.

2.2.10 DEPHOSPHORYLATION

(a) Aqueous solutions of bovine and murine caseins (4%, w/v), with or 

without 20 mM-EDTA, were incubated at 38°C for 2 hours in the presence 

and absence of 0.04 units ml'1 potato acid phosphatase.

(b) Skimmed mouse milk (25 p\ ) was diluted with 50 pi of water with or 

without 20 mM-EDTA and incubated at 38 °C for 2 hours in the presence or 

absence of 0.02 units ml 1 potato acid phosphatase.
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Aliquots (50 pil) of the incubated casein solutions were diluted with 300 

pd of 25 mM-Tris, 3.2 mM EDTA and 27 mM-barbitone buffer, pH 7.9, 

containing 8M-urea. Aliquots (25 pel) of incubated milk solutions were diluted 

with 150 pel of the Tris-EDTA-barbitone buffer containing 8M-urea. All
v .

samples were then reduced with 28 pel of 2-mercaptoethanol for 1 hour and 

separated on alkaline gels.

2.2.11 RENNEHNG

Murine and bovine caseins were dissolved in phosphate buffer (20

mM-di-sodium hydrogen orthophosphate, 46 mM-potassium dihydrogen 

orthophosphate, pH 6.5) at a concentration of 10 mg ml'1. Protein solutions 

were incubated with or without various amounts of chymosin solution (specific 

activity 91 units mg'1, 100 peg chymosin in 100 pel phosphate buffer = 9.1 

units of activity) for 30, 60, 90 and 120 minutes at room temperature. The 

reaction was stopped by the addition of 200 pxl of stock SDS-buffer to the 

samples which were then heated in a boiling water bath for 5 minutes. The 

volume of the samples was then reduced in a freeze dryer to approximately 

150 pd and then analysed by SDS-PAGE. The experimental layout is shown 

in Table 14.

2.2.12 AMINO ACID ANALYSIS

Approximately 20 peg of protein were subjected to gas phase hydrolysis

at 120°C for 20 hours under vacuum in 6 M-HC1 containing 1 % phenol. The 

hydrolysate was treated with a mixture of ethanol, water and triethylamine 

(2:2:1, v/v/v ) to ensure complete removal of HC1. The samples was dried
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in a Gyrovap for 30-60 minutes at 45 °C.

Phenylthiocarbamyl (PTC) derivatives of the amino acids were 

prepared by the addition of 60^1 of a derivatisation buffer containing ethanol, 

water, triethylamine and phenylisothiocyanate (7:1:1:1, v/v/v/v). Tubes were 

incubated for 15 minutes at room temperature to allow the derivitisation to go 

to completion before drying at 30°C for 20 minutes. The PTC-amino acids 

were dissolved in 70 /xl of acetonitrile and water (1:1, v/v) and transferred to 

HPLC sample tubes. Redistilled water(630 fil) was then added before 

separating the PTC-amino acids on a Spherisorb ODS reverse phase column 

(200 X 4.6 mM i.d). The separation was carried out at 38°C using a gradient 

of 5-25 % acetonitrile in 12.5 mM-sodium phosphate buffer, pH 6.4, at a flow 

rate of 1.5 ml min*1 and detection at 254 nm.
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2.3 RESULTS

2.3.1 MILK PROTEIN FRACTIONATION

2.3.1.1 OPTIMISATION OF THE pH OF CASEIN PRECIPITATION

The optimum pH for the precipitation of mouse casein in skimmed

milk was determined by SDS-PAGE analysis of the precipitated and soluble 

protein fractions at a variety of pH values (Figure 18). Very little casein could 

be detected in the whey fraction at pH 4.27 and this pH was subsequently 

routinely used in all isoelectric precipitations of mouse caseins.

2.3.1.2 QUANTITY OF CASEIN AND WHEY PROTEINS IN MOUSE MILK

The casein and whey protein content of the milks from 19 individual 

mice milked in mid-lactation (10-12 days post partwri) was calculated (Table 

15). Casein was present in milk at a concentration of between 50 and 100 mg 

ml*1, corresponding to 65-89% of the total protein. Whey protein was found 

at concentrations of between 11 and 28 mg ml*1, which corresponds to 10-34% 

of the total protein. The total protein content of the milk ranged from 62 to 

112 mg ml*1.

2.3.2 CHROMATOGRAPHIC SEPARATION OF PROTEINS

2.3.2.1 GEL PERMEATION CHROMATOGRAPHY

i) Casein: Casein was analysed on two types of Superose 12 and Superdex 75 

(Table 13C, D). Typical elution profiles are shown in Figure 19A and B, 

respectively. Peak fractions were collected and analysed by SDS-PAGE. No 

fractionation of the individual caseins was achieved with peaks numbered 1 

found to consist of whole casein and peaks numbered 2 consisting of the 

reducing agent 2-mercaptoethanol. Gel permeation chromotography was
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FIGURE 18

WAP

1 2 3 4 5  6 7 8 9  10 11

SDS-PAGE analysis of skimmed mouse milk precipitated over a range 
of pH values.

Tracks 1-5 and 11 contained casein and 6-10 whey protein fractions 
from the following precipitations at pH: (1) 4.02; (2) 4.27; (3) 4.45; 
(4) 4.63; (5) 4.80; (6) 4.02; (7) 4.27; (8) 4.45; (9) 4.63; (10) 4.80; 
(11) 4.02.

W A P : W h ey  acid ic protein  
U .C : U nidentified  casein  

/3: /3-casein
K: k -casein  

a :  a -ca se in
LF: Lactoferrin  

S A : Serum  a lbum in
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FIGURE 19: Gel permeation chromatography of mouse casein

(A) Protein (2.4 mg) dissolved in Bis-tris-propane buffer (5 mM, pH 7.0) 

containing 6 M-urea (final concentraion 2.5 mg ml"1) and protein 

reduced as described in the text. Separation developed using the same 

buffer containing sodium chloride (5 mM) on a Superose 12 column, 

at 0.5 ml min'1 with detection at 280 nm.

(B) Protein (3 mg) dissolved in sodium acetate buffer (20 mM, pH 7.0) 

containing 8 M-urea and 0.5% n-octyl /3-D-glucopyranoside (final 

concentration 3 mg ml"1) and reduced as described in the text. 

Separation developed on a Superdex-75 column. The separation was 

then carried out as described in (A) above.
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therefore deemed to be unsuitable as a means of purifying mouse caseins.

ii) Whey: Native whey proteins were separated on Superose 12 and Superdex 

75 columns using a variety of dissociation conditions and elution buffers(Table 

13A, B). Results of Superose 12 analyses are shown in Figures 20A, B and 

C; Superdex 75 results are shown in Figures 20D and E. Peak fractions were 

analysed by SDS-PAGE. The results indicated that WAP could be separated 

as a pure fraction. Milk serum albumin and lactoferrin, due to the similarity 

of their molecular weights, were usually eluted together. The last peak in all 

separations contained only the reducing agent 2-mercaptoethanol. (Figure 21).

iii) Milk: Native milk was analysed on a Superdex 75 gel permeation column. 

Results of the analysis are shown in Figure 22. Individual peak fractions were 

collected, desalted by reverse phase chromatography and examined by SDS- 

PAGE. It is evident from the figure that the proteins in the milk could not be 

sufficiently separated by this method of chromatography. The desalting step 

gave rise to a slightly improved separation but peak fractions were still found 

to contain mixtures of proteins when examined by SDS-PAGE.

2.3.2.2 REVERSE PHASE CHROMATOGRAPHY

Casein: Various dissociation conditions and buffers were tested in an attempt 

to separate mouse caseins by reverse phase chromatography. The elution 

profiles shown in Figure 23A and B were obtained from separations of whole 

casein dissolved in 5mM-Bis-tris propane buffer containing 0.5% n-octyl jS- 

D-glucopyranoside and either 6 M-urea or 6 M-guanidine(Table 12). SDS- 

PAGE analysis of individual peak fractions showed some to consist of pure 

fractions of k- ,  jS- and a-casein. However, the remaining peak fractions were
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FIGURE 20: Gel permeation chromatography of mouse whey protein

(A) Protein (3 mg) dissolved in Tris buffer (0.1 M, pH 7.0) at a concentration 

of 3 mg ml"1. Separation developed using the same buffer at 0.5 ml min'1 on 

a Superose-12 column with detection at 280 nm. Numbered fractions were 

collected and analysed by SDS-PAGE.

(B) Protein (3 mg) dissolved in the Tris buffer (0.1 M pH 7.0) containing 6 

M-urea and 0.5 % n-octyl 0-D-glycopyranoside (final concentration 4 mg m l1). 

Separation developed in the same buffer on a Superose-12 column with 

detection at 280 nm.

(C) Protein (2 mg) dissolved in Bis-tris propane buffer (pH 7) containg 6 M- 

guanidine hydrochloride and 0.5% n-octyl /3-D-glycopyranoside (final 

concentration 2 mg ml'1). Separation developed in same buffer on a Superose- 

12 column with detection at 280 nm.
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FIGURE 20: Gel permeation chromatography of mouse whey protein

(D) Protein (3 mg) dissolved in Tris buffer (0.1 M, pH 7.0 final 

concentration 3 mg ml'1) containing 0.5% n-octyl j3-D-glucopyranoside, for 

16 hours at 4°C and reduced as described in the text. Separation developed 

on a Superdex 75 column.

(E) Protein (2 mg) dissolved in Tris buffer (0.1 M, pH 7.0, final 

concentration 2 mg ml'1) containing 8 M-urea and 0.5% n-octyl /3-D- 

glucopyranoside for 16 hours at 4°C and reduced as described in the text. 

Separation developed as described in (D) above.
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FIGURE 21

WAP

SA #
LF

3 1 4 1 2 3 4 W W

SDS-PAGE analysis of gel permeation chromatography of mouse whey 
protein. Fractions collected from a Superose 12 column.

Tracks numbered 1-4 correspond to peak fractions collected from Figure 20A. 
W: denotes freeze-dried whey protein.

W A P: W h ey  acid ic  protein
L F: Lactoferrin

S A : Seru m  album in

93



SUPERDEX-75 SEPARATION OF NATIVE MOUSE MILK
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Native milk: 20/xl skimmed milk (~2m g protein) dissolved in 1ml sodium 

acetate buffer (20mM, pH7.0 containing 8M-urea, 20mM-EDTA and 0.5% 

n-octyl j8-D-glucopyranoside for 16 hours at 4°C. Protein solution dialysed 

and reduced as described in the text. Separation developed in sodium acetate 

buffer above containing 8M-urea on a Superdex-75 column at 0.6ml mn'1 flow 

rate and detection at 280nm.
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FIGURE 23: Reverse phase chromatography of mouse casein

(A) Protein (3mg) dissolved in Bis-tris propane buffer (5mM, pH7.0 final 

concentration 3mg ml*1) containing 6M-urea and reduced as described in text. 

The separation was developed on a ProRPC column and eluted with a gradient 

of acetonitrile with detection at 214nm.

(B) Protein (2mg) dissolved in Bis-tris-propane buffer (5mM, pH7 final 

concentration 2mg ml*1) containing 6M-guanidine hydrochloride and 0.5% n- 

octyl /3-D-glucopyranoside and reduced as described in the text. Numbered 

fractions were analysed by SDS-PAGE.
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found to contain either mixtures of proteins or low molecular weight 

components that did not stain on the gel (Figure 24).

2.3.2.3 ANION EXCHANGE CHROMOTOGRAPHY

Casein: Various dissociation conditions and elution buffers were tested in an
l

attempt to purify individual caseins from whole mouse casein on a Pharmacia 

Mono Q column. Bis-tris-propane buffers(5 mM, pH 7) containing either 6 or 

8M-urea, gave the best casein separations. The proteins were eluted as a 

number of peaks (Figure 25). However, analysis of individual peaks by SDS- 

PAGE showed them to contain mixtures of proteins (Figure 26).

Whey: Anion-exchange chromatography of mouse whey protein was not a 

successful means of separating individual proteins. Peak 1 contained only the 

reducing agent and peak 2 a mixture of whey proteins (Figure 27). As a 

result, anion-exchange chromatography was not pursued as a means of 

separating mouse whey protein.

Milk: Native and mouse milk when separated on the Mono Q column gave 

a number of protein peaks similar to those observed in the casein separations. 

A large peak was also eluted when the column was washed with buffer 

containing lM-sodium chloride (Figure 28). SDS-PAGE showed that 

individual peaks contained mixtures of caseins and that the large end peak 

consisted of undissociated casein.

2.3.2.4 CATION EXCHANGE CHROMATOGRAPHY

Casein: A variety of dissociation conditions, elution buffers, alkylation 

conditions and pH values were tested in order to optimise the separation of 

murine casein by cation exchange FPLC on a Pharmacia Mono S column.
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FIGURE 2 4

u.c.
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a

f t  •

2 3 4 5 6 7 8 9 10 11 1213

SDS-PAGE analysis of reverse-phase chromatography of mouse casein 
on a Pro RPC column.

Tracks numbered 2-13 contained fractions 2-13 collected from Figure 
23B.

U .C : U nidentified  casein
(3: |3-casein
k : K-casein

a :  a -ca se in
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MONO Q SEPARATION OF NATIVE MOUSE CASEIN
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Protein (2 mg) was dissolved in Bis-tris-propane buffer (5 mM, pH 7.0, final 

protein concentration 2 mg ml'1) containing 6M-urea for 16 hours at 4°C and 

reduced as described in the text. Proteins were eluted from the Mono Q 

column using a gradient of sodium chloride, with detection at 280 nm. 

Numbered fractions were analysed by SDS-PAGE (Figure 26).
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FIGURE 26

WAP

1 2 3 4 5 6 7 8 9 10 11 12

SDS-PAGE analysis of mouse casein peak fractions obtained from 
anion-exchange chromatography of freeze-dried mouse casein on a 
Mono Q column.

Tracks 1-12 contained peak fractions numbered 1-12 on Figure 25.

W A P : W hey acid ic protein
U .C : U nidentified  casein

(3: /3-casein
k: K-casein

a :  a -ca se in
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MONO Q SEPARATION OF NATIVE MOUSE WHEY PROTEIN
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Protein (2 mg) was dissolved in 5 ml Bis-tris-propane buffer (5 mM, pH 7.0) 

containing 8M-urea for 16 hours at 4°C and reduced as described in the text. 

Proteins were eluted from a Mono Q column using a gradient of sodium 

chloride with detection at 280 nm.
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MONO Q SEPARATION OF NATIVE MOUSE MILK
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Native milk: Skimmed milk (20 /zl, ~  2 mg protein) was dissolved in 1 ml 

Bis-tris-propane buffer (5 mM, pH 7) containing 6M-urea for 16 hours at 4°C 

and reduced as described in the text. Proteins were eluted from the Mono Q 

column using a gradient of sodium chloride, with detection at 280 nm.
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The pH of the elution buffer was found to be critically important with 

respect to the efficiency of the separation of the caseins, as is evident from the 

dramatic changes observed between elution profiles of separations performed 

at pH 5.0, pH 3.0 or pH 2.0 (Figures 29A,B and C). Numbered fractions 

were collected and analysed by SDS-PAGE(Figures 30A, B and C). Pure 

fractions were obtained only for the unidentified casein and a-casein in 

fractions numbered 3 and 5, 6 and 5 and 3 and 4 of Figures 29A, B and C 

respectively.

Differences were also apparent in elution profiles in which the 

dissociation conditions of the caseins were varied. The most notable difference 

was observed when the non-ionic detergent, n-octyl /3-D-glucopyranoside, was 

included in the dissociation buffer (Figure 3IB). The presence of the detergent 

resulted in enhanced dissociation of the caseins. This is evident by the increase 

in the area of individual peak fractions, together with a reduction in the size 

of undissociated casein peak which was eluted by 1 M-sodium chloride during 

the re-equilibration phase of the chromatographic run. SDS-PAGE analysis of 

those peak fractions collected in the absence of detergent (Figure 31 A) 

revealed two almost pure caseins; a-casein and the unidentified 

casein(Fractions numbered 5 and 6, respectively, gel not shown). In the 

presence of detergent, fractions 2, 3, 4 and 5 consisted of pure WAP, k -  

casein, j3-casein and a-casein, respectively, with fraction 6 containing mainly 

the unidentified casein (Figure 32). In some samples analysed, fraction 6 was 

also found to contain a number of low molecular weight peptides.

Whey: Mouse whey proteins were separated by cation-exchange
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FIGURE 29: Effect of pH On the separation of the alkylated mouse casein 

on cation exchange chromatography

(A) Protein (2 mg), alkylated in the presence of 6M-guanidine hydrochloride 

as described in the text, was dissolved in sodium acetate buffer (20 mM, pH

7.0, final protein concentration 2 mg m l1) containing 6M-urea for 16 hours 

at 4°C. Separation performed at pH 5.0 on a Mono S column using a 

gradient of sodium chloride. Numbered fractions were analysed by SDS- 

PAGE (Figure 30A).

(B) Protein was prepared as described above and separation performed at pH

3.0. Numbered fractions were analysed by SDS-PAGE (Figure 30B).

(C) Protein was prepared as described above and separation performed at pH

2.0. Numbered fractions were analysed by SDS-PAGE (Figure 30C).
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FIGURES 30A, B, C:
SDS-PAGE analysis of peak fractions obtained from cation 
exchange chromatography of alkylated freeze-dried mouse 
casein on a Mono S column at pH5, 3 and 2 respectively.

(A) Tracks (W.C.) contain whole mouse casein and tracks numbered 2-6 
contain peak fractions numbered 2-6 on Figure 29A.

(B) Tracks (W.C.) contain whole mouse casein and tracks numbered 1-6, 
contain peak fractions numbered 1-6 on Figure 29B.

(C) Tracks (W.C.) contain whole mouse casein and tracks numbered 1-4, 
contain peak fractions numbered 1-4 on Figure 29C.

U . C .  U n i d e n t i f i e d  c a s e i n

0  /3 -c a s e in

K K -c a s e in

a  a - c a s e i n
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FIGURE 31: Cation exchange chromatography of mouse casein

(A) Protein (2 mg) dissolved in Formate buffer (20 mM, pH 7.0, final protein 

concentration 2 mg ml'1) containing 6M-urea. Protein was reduced as 

described in the text and the pH adjusted to 3.0. Proteins were eluted from 

the Mono S column at pH 3.0 using a gradient of sodium chloride with 

detection at 280 nm.

(B) Protein (2 mg) dissolved in sodium acetate buffer (20 mM, pH 7.0 final 

protein concentration 2 mg ml'1) containing 8M-urea and 0.5% n-octyl 0-D- 

glucopyranoside. Protein preparation and separation on the Mono S column 

are described above. Numbered fractions were analysed by SDS-PAGE 

(Figure 32).
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FIGURE 32

WAP

U .C .
(3
K

M WC 2 3 4 5 6 WC M

SDS-PAGE analysis of peak fractions from cation exchange 
chromatography of freeze-dried mouse casein on a Mono S column at 
pH 3.0 in the presence of the non-ionic detergent n-octyl /3-D- 
glucopyranoside.

Tracks labelled (M) and (W .C.) contain molecular weight markers and 
freeze-dried whole mouse casein respectively. Tracks numbered 2-6, 
contain peak fractions numbered 2-6 in Figure 3 IB.

W A P: W h ey  acidic protein
U .C : U nidentified  casein
[3: (3-casein
k : K-casein

a :  a -ca se in
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chromotography using 20mM -sodium acetate buffers, pH 7.0, containing 

either 8 M-urea and 0.5% n-octyl 0-D-glucopyranoside or 6 M-urea only. 

Samples were reduced for 1 hour with 10 fil ml'1 of 2-mercaptoethanol and the 

pH adjusted to pH 3.0 or 5.0. Results of the analyses are shown in Figure 

33A and B, respectively. The pH at which the chromatographic separation was 

performed again significantly affected the separation. SDS-PAGE analysis of 

peak fractions (Figure 34A) showed that at pH 3.0, WAP (fraction 2), was 

eluted as a pure protein with milk serum albumin and lactoferrin being eluted 

as a single peak (fraction 3). At pH 5.0, the separation of the albumin and 

lactoferrin components (fractions 3 and 4 in Figure 34B) was significantly 

improved over that obtained at pH 3.0 (fraction 3). WAP appeared to be 

contaminated with k - casein (Figure 34B). However, the relative amount of 

WAP detected was greater at pH 5.0 perhaps due to the fact that at pH 5.0 

WAP is not highly charged as it nears its isolectricpoint of 4.7-4.8, therefore 

does not bind strongly to the cation exchange resin and elutes very soon after 

the mercaptoethanol peak in the void volume resulting in what appears to be 

a large WAP peak.

Milk: On the basis of the successful separation of the component caseins and 

whey proteins, separations of native milks (Tux No.l; CBAx C57 BL6 mice) 

were also attempted using cation-exchange chromotography on the Mono S 

resin. A profile of the separation achieved when milk was dissociated in 20 

mM-sodium acetate buffer obtaining 8 M-urea 20 mM-EDTA and 0.5% n- 

octyl j8-D-glucopyranoside at pH 7.0 is shown in Figure 35. SDS-PAGE 

analysis of the peak fractions collected from both control milks showed them
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FIGURE 33: Effect of pH on the separation of native mouse whey protein 

by cation exchange chromatography

(A) Protein (2 mg) dissolved in 1ml of sodium acetate buffer (20 mM, pH

7.0) containing 8M-urea and 0.5% n-octyl 0-D-glucopyranoside. Protein was 

reduced as described in the text and the pH of the protein solutions adjusted 

to that of the elution buffer. Proteins were eluted from a Mono S column at 

pH 3.0 using a gradient of sodium chloride with detection at 280 nm. 

Numbered fractions were analysed by SDS-PAGE (Figure 34A).

(B) Protein (2 mg) was prepared as described above. Elution from the mono 

S column was achieved using a gradient of sodium chloride at pH 5.0, with 

detection at 280 nm. Numbered fractions were analysed by SDS-PAGE 

(Figure 34B).
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FIGURE 34A,34B SDS-PAGE analysis of peak fractions collected from 
cation exchange chromatography of mouse whey 
protein at pH3 and pH5 respectively.

(A) Tracks labelled (M) and (W) contain molecular weight markers and 
freeze-dried whey protein respectively. Remaining tracks contain 
peak-fractions numbered 2 and 3 on Figure 33A, with fraction 3 being 
split further by desalting by reverse phase liquid chromatography.

(B) Tracks labelled (M) and (W) contain molecular weight markers and 
freeze-dried whey protein respectively. Remaining tracks contain peak 
fractions numbered 2, 3 and 4 on Figure 33B.

W A P :  W h e y  a c id ic  p r o te in  

S A :  S e r u m  a lb u m in  

L F :  L a c to f e r r i n
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MONO S SEPARATION OF MOUSE MILK
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Skimmed milk (20 /xl, ~  2 mg protein) was dissolved in 1 ml sodium acetate 

buffer (20 mM, pH 7.0,) containing 8M-urea, 20 mM EDTA and 0.5% n- 

octyl ft-D-glucopyranoside for 16 hours at 4°C. The solution was then 

dialysied and reduced as described in the text. The pH of the sample was; 

reduced to pH 3.0 and proteins eluted from a Mono S column at pH 3.0 using 

a gradient of sodium chloride with detection at 280 nm. Numbered fractions; 

were .analysed by SDS-PAGE (Figure 36).
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to consist of pure or almost pure caseins and whey proteins. The protein 

fractions were identified as WAP, K-casein, /3-casein, a-casein, unidentified 

casein and milk serum albumin /lactoferrin (Figure 36).

2.3.2.5 HI-LOAD S

The separation of whole mouse casein on the Hi-Load S column is shown in 

Figure 37, SDS-PAGE analyses of the fractions are shown in Figure 38. 

Fractions of pure /3-casein and of almost pure a-casein were obtained from 

a single run. The other fractions were found to be impure and the order of 

elution of the WAP and k- casein was reversed from that from the Mono S 

column.

2.3.3 PROTEIN DESALTING

Initially, fractions collected from column chromatography separations

were dialysed in order to remove buffer salts. However, yields, especially of 

the whey proteins, were poor due to the proteins adhering to the dialysis 

membrane. As an alternative, reverse-phase liquid chromatography, using a 

gradient of acetonitrile in 0.1% TFA, was evaluated. This proved to be a 

much better way of desalting small volumes of protein solutions. A dramatic 

increase in protein recovery was achieved. Furthermore, the volatile buffer 

was removed more quickly on freeze drying, facilitating the analysis of 

samples.

2.3.4 PROTEIN CHARACTERIZATION 

2.3.4.1 AMINO ACID ANALYSIS

Amino acid analysis was performed on the purest protein fractions
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FIGURE 36
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SDS-PAGE analysis of skimmed milk separated by cation-exchange 
chromatography on a Mono S column.

Tracks labelled (MM) and (WC) contain skimmed mouse milk and 
freeze-dried whole casein respectively. Remaining tracks contain peak 
fractions numbered 2-7 on Figure 35, with fraction 5 being split on 
desalting by reverse phase chromatography.

W A P: W h ey  a cid ic  protein  
U .C : U n id en tified  casein  

/3: /3-casein
k: /c-casein

a :  cr-casein

112



FIGURE 37

HI-LOAD S SEPARATION OF MOUSE CASEIN
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Protein (400 mg) dissolved in 150 ml of sodium acetate buffer (20 mM, pH

7.0) containing 8M-urea and 0.5% n-octyl 0-D-glucopyranoside for 16 hours 

at 4°C. Protein was reduced as described in text and the pH adjusted to 3.0 

and eluted from a Hi-Load S column using a gradient of sodium chloride with 

detection at 280 nm. Numbered fractions were analysed by SDS-PAGE 

(Figure 38).
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FIGURE 38

WAP
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SDS-PAGE analysis of mouse casein separated by cation exchange 
chromatography on a Hi-Load S column.

Tracks labelled (M) and (WC) contain molecular weight markers and 
freeze-dried mouse casein respectively. Remaining tracks contain peak 
fractions numbered 1-6 on Figure 37.

W A P: W h ey  acidic protein  
U .C : U nidentified  casein  
(3: /3-casein
k: K-casein
a :  a -ca se in
L F: L actoferrin
S A : Seru m  A lbum in
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obtained from cation-exchange chromatography of whole casein. The results 

are shown in Table 16A and B. By comparing the measured amino acid 

composition with that derived from the published cDNA sequences, all except 

one of these proteins could be identified. A comparison of the murine casein 

amino acid compositions with that of the bovine casein amino acid 

compositions is shown in Table 16C. The first protein eluted by cation- 

exchange chromatography was found to be WAP. Although this protein is 

usually found in the whey fraction, variable amounts co-precipitated with the 

caseins. The remaining caseins were then eluted in the order /c-casein, (3- 

casein and a-casein. The amino acid composition of the remaining 

component, which was contaminated with some a-casein did not appear to 

correspond to any of the published cDNA compositions.

2.3.4.2 MOLECULAR WEIGHTS

The molecular weights of individual mouse caseins as determined by

cDNA sequence analysis and SDS-PAGE against protein standards are shown 

in Table 17. Mouse 0-casein had an apparent molecular weight similar to that 

predicted from the cDNA sequence whereas the apparent molecular weight of 

the a- and K-caseins were considerably higher than their predicted values. 

This was more evident in the case of x-casein which appeared to have a higher 

molecular weight than /3-casein on SDS-PAGE.

2.3.4.3 DEPHOSPHORYLATION OF MOUSE CASEIN AND MOUSE MILK

Dephosphorylation of both murine and bovine caseins with potato acid

phosphatase gave rise to a number of protein bands on alkaline-urea gel 

electrophoresis. The presence of EDTA also appeared to enhance the reaction
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Figure 39 Alkaline urea gel of bovine and murine freeze-dried
casein and potato acid phosphatase treated bovine 
and murine caseins in the presence and absence of 
EDTA.

(A) Tracks numbered (1) (5) and (9) contain bovine caseim, (2) (6) and 
i. (10) dephosphorylated bovine casein (de-P), (3) (7) and (11) murine 

casein, (4) (8) and (12) de-P murine casein.

(B) Tracks numbered (1) and (3) contain bovine casein, (2) de-P bovine 
casein, (4) de-P bovine casein + EDTA, (5) skimmed mouse milk, (6) 
and (7) de-P mouse milk, (8) and (10) modified /3-lactoglobulin 
transgenic mouse milk, (9) and (11) de-P modified /3-lactoglobulin 
transgenic mouse milk +  EDTA.
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as shown in the case of bovine casein in Figure 39B. Dephosphorylation of 

mouse casein was less obvious in the absence of EDTA (Figure 39A). Mouse 

milk samples were also very difficult to dephosphorylate. However, in the 

case of modified 0-lactoglobulin milk the acid phosphatase was more effective 

on the isolated proteins as seen in tracks 8-11 of Figure 39B.

2.3.4.4 RENNETING

Bovine and murine caseins were treated with rennet and various

volumes of rennin solution for 30, 60, 90 and 120 minutes(Table 14). 

Proteins were then analysed by SDS-PAGE (Figures 40A and B). With the 

caseins from both species numerous smaller protein bands are observed upon 

renneting. Mouse a-casein appears to be sensitive to calf-stomach chymosin 

since the intensity of the a-casein band decreased and that of another smaller 

peptide band which migrate immediately in front of it on SDS-PAGE (Figure 

40B) increased with duration of reaction. The unidentified casein also appears 

to be sensitive to chymosin treatment as determined by its gradual 

disappearance on SDS-PAGE with both increasing amount of chymosin and 

incubation time. Bovine K-casein is obviously highly sensitive to chymosin 

and even at the lowest concentration of enzyme and shortest incubation time, 

the band corresponding to para K-casein can be readily observed. Mouse k- 

casein was also hydrolysed, but more slowly.

2.3.5 CASEIN COMPOSITION

The extinction coefficients of the three major mouse caseins and ovine

/?-lactoglobulin were estimated using the known extinction coefficients for

tyrosine and tryptophan (the only amino acids which absorb significantly at
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278 nm) and the amino acid composition of the mouse casein and ovine /3- 

lactoglobulin determined from cDNA sequence analysis. The results are 

shown in Table 18. The calculated values for the various bovine caseins were 

very similar to the measured values thus showing the applicability of the 

method. The calculated absorption values for the individual mouse caseins 

were then applied to the corresponding integrated peak areas from Mono S 

separations. From this, the relative amounts of the major caseins were 

calculated. The results shown in Tables 19A and 19B are for the milks 

obtained from individual mice. Although the relative levels were rather 

variable between animals, the mean values for the a-and /3-caseins were 

similar and both were generally greatly in excess of the /e-casein level with the 

mean ratio of x:/3:a being 1:11.7:17.4. The differences in the ratios between 

individual mice is not due to proteolysis since milk left at room temperature 

for 2-3 days did not show an increase in low molecular weight bands.

When large amounts of the murine /3-casein became available as a 

result of the large-scale separation on the Hi-Load S, the extinction coefficient 

of this protein was measured by determining the protein nitrogen content of 

a freeze-dried sample by micro-Kjeldahl and then measuring the absorbance 

of a solution of the protein at 278 nm. The determined value was found to be 

1.43 which is almost identical to the calculated value. The absolute amounts 

of the 3 identified caseins in mouse milk and WAP were determined on the 

basis of their peak areas in the Mono S separations. These values are shown 

for a number of individual animals in Table 20, the mean values being a- 

casein, 51.7, /3-casein, 25.2, k  4.7 and WAP 15.3 mg ml'1.
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2.4 DISCUSSION

2.4.1 PROTEIN COMPOSITION OF NATIVE MOUSE MILK

The most striking feature of mouse milk is its appearance. Compared

to bovine milk, mouse milk appears to be more creamy and viscous, reflecting 

differences in composition. Mouse milk is generally more concentrated than 

bovine milk, containing only 70% water with 13% lipid and a reported 

protein concentration in the region of 90 mg ml"1 (Nagasawa, Naito and 

Kataoka 1989) compared to the 87% water, 3.9% lipid and 35 mg ml'1 of 

protein in bovine milk (Jenness 1985). Total mouse milk protein was 

measured for a number of individual animals and was found to be 97 mg ml'1, 

of which the whey component accounted for 18 mg ml"1.

The fractionation of mouse milk into casein and whey proteins by 

isoelectric precipitation was examined in detail between pH 4.0 and 5.0. At 

PH 4 .27, casein was precipitated and whey protein remained in solution with 

very little cross contamination. This pH value is lower than that required to 

precipitate bovine casein the optimum pH for which is 4.6.

In view of the widespread use of the mouse as a model system in a 

number of areas associated with milk secretion ranging from the hormonal 

control of milk production, to the evaluation of DNA constructs designed to 

express foreign proteins in the milk of transgenic animals (Gordon et al. 1987; 

Simons et al. 1987, 1988; Lee et al. 1988, 1989; Pittius et al. 1988; Bayna 

and Rosen, 1990; Meade et al. 1990; Vilotte et al. 1989 and Wilde et al. 

1992), it is somewhat surprising that no column chromatographic methods 

have been developed to separate and quantify the milk proteins. Ideally,
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quantitative fractionation of the component caseins and whey proteins should 

be via a single chromatographic step in order to minimise losses between 

stages. A number of chromatographic techniques were evaluated in an 

attempt to purify individual caseins and whey proteins from freeze-dried acid 

precipitated whole casein and whey, and skimmed mouse milk from both 

native and transgenic animals.

By evaluating a variety of dissociation and chromatographic techniques, 

this project has resulted in methods to separate, identify and quantify a 

number of the individual murine proteins, particularly the caseins.

In gel permeation chromatography, separation is based on molecular 

size, with higher molecular weight proteins being eluted first. This technique 

has been successfully used to separate whey proteins from intact micelles, 

polymerised bovine x-casein from the other caseins and also to separate a 

number of individual whey proteins. In view of the differences in apparent 

molecular weight of some of the mouse caseins and whey proteins, it was felt 

worthwhile to attempt the use of this technique to achieve at least a partial 

separation of these proteins. Superose 12 separates proteins with a molecular 

weight in the range of 1-300 kDa and Superdex 75 separates proteins with 

molecular weights in the range of 30-70 kDa. However, gel permeation 

chromatography proved to be unsuccessful as a means of purifying individual 

caseins. Caseins were eluted together as a single peak on both resin types. 

Similarly, separations of skimmed milk proteins were unsuccessful. 

Separations of freeze-dried mouse whey proteins were slightly more successful 

resulting in the purification of the 14 kDa whey acidic protein (WAP). Milk
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serum albumin and lactoferrin, however, were always eluted together as a 

single peak, irrespective of dissociation and running conditions.

The failure of gel permeation chromatography to separate individual 

caseins and whey proteins is a reflection of the limitations imposed by the 

column resins together with the similarity of the molecular weights of the 

individual caseins and of the high molecular weight whey proteins.

Reverse phase chromatography separates proteins on the basis of their 

relative hydrophobicity. Bovine caseins have been successfully fractionated 

into their individual components using this technique (Carles 1986; Visser et 

al. 1991). Pure fractions of mouse k- ,  (3- and a-caseins were obtained by 

chromatography on the Pro RPC, column as well as a pure fraction of WAP, 

some of which co-precipitated with the caseins at pH 4.27 during the initial 

fractionation of casein and whey protein from skimmed milk. The efficiency 

of the separations of proteins by reverse phase was found to be dependent 

upon the dissociation conditions used in sample preparation. Buffers 

containing 6 M-guanidine-HCl dissociated the caseins better than buffers 

containing 6 M-urea. However, the best separationd were achieved when the 

detergent, n-octyl jS-D-glucopyranoside, was added. Nevertheless, even the 

best chromatographic separation of mouse caseins by reverse phase 

chromatography resulted in only a small proportion of the total casein being 

eluted as pure individual components. Several of the major peaks consisted 

of mixtures of proteins. Although useful as a means of obtaining pure 

samples of most of the caseins, reverse phase chromatography was not suitable 

as a means of quantification. However, this did prove to be a very useful
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method of desalting protein fractions.

Ion exchange chromatography separates proteins according to their 

charge. Caseins from bovine (Andrews et al. 1985; Davies & Law 1987), 

caprine (Brignon et al. 1989) and ovine (Hassnoot et al. 1986) species have 

been quantitatively fractionated by anion exchange chromatography on Mono 

Q resin using a sodium chloride gradient in 3.3 M-urea. However, attempts 

to fractionate mouse caseins under these conditions were unsuccessful. Even 

though a number of peaks were obtained, all were found to consist of mixtures 

of caseins. Buffers containing high concentrations of the dissociating agent 

urea (6 or 8 M) gave the best separations of mouse casein on anion-exchange 

chromatography with a series of sharp peaks being observed. However, 

these peak fractions were found to consist of mixtures of caseins when 

examined by SDS-PAGE. In addition, a large proportion of the protein 

remained undissociated, as demonstrated by the large peak which was eluted 

with lM-sodium chloride and which was shown by SDS-PAGE to consist of 

a mixture of caseins. Again, WAP was found to be present in the casein 

preparations and was eluted as a pure fraction by this chromatographic 

procedure.

Mono Q analysis of skimmed mouse milk from both native and ovine 

j8-lactoglobulin transgenic mice gave a similar separation to that of the casein. 

Even with the detergent n-octyl 0-D-glucopyranoside and 8 M-urea present in 

the dissociating buffer no pure, individual casein fractions were separated at 

pH 7.0.
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' The separation obtained for whey protein was also disappointing at pH 

7.0; one protein peak was detected. However, once again this was .shown to 

be a mixture of whey proteins (Figure 27). Therefore, attempts to separate 

and quantify murine proteins by anion-exchange chromatography were 

discontinued.

Cation exchange chromatography on Mono S columns at pH 5 in 6 M- 

urea has been used successfully in the separation of bovine (Andrews et al.

1985), ovine (Law et al. 1992) and caprine caseins (Law & Tziboula, 1992). 

Cation exchange chromatography of mouse milk proteins was evaluated on a 

Mono S resin at pH 5, 3 and 2. Separations at all three pH’s produced pure 

fractions of the /e-casein, unidentified casein and an almost pure fraction of /?- 

casein. From the profiles obtained and analysis of peak fractions by SDS- 

PAGE, the caseins appeared to be more fully dissociated when separated at 

pH 3.0. The pH of the dissociation buffer did not appear to have a 

pronounced effect on the overall separation obtained. Two buffer salts, 

acetate and formate were also tested but did not appear to have any significant 

effect on the overall separation obtained at pH 3.0. The factor which had the 

greatest effect on the separation of the murine caseins was found to be the 

inclusion of n-octyl j8-D-glucopyranoside into the dissociation buffer. This 

non-ionic detergent has been found to be very effective in the solubilization 

of intrinsic membrane-bound proteins (Baron & Thompson, 1975; Stubbs & 

Litman,. 1978a, b; Petri & Wagner, 1979; Schneider et al., 1980, Gould et 

al., 1979; Gould et al. 1981) and proved ideal for the disaggregation of 

mouse caseins. In addition, it was also easily removed by dialysis. The role



that this detergent plays in the dissociation of the precipitated casein has not 

been determined. However, it may function by opening up the hydrophobic 

core to the chaotropic agent, allowing complete dissolution of the ca seins. 

Furthermore, it may also prevent reaggregation of the dissociated proteins. 

Inclusion of the detergent resulted in near baseline separations of the 

individual caseins, and improved the dissociation of the aggregated casein 

peak, which in its absence eluted at high salt concentrations, it increased the 

size of the individual casein peaks, particularly the a-casein.

Pure fractions corresponding to /c-casein, /3-casein and a-casein were 

obtained under these conditions with an almost pure fraction of the 

unidentified casein. Once again, a pure fraction of mouse WAP was 

obtained.

A similar baseline separation was achieved with mouse skimmed milk. 

The milk was dissolved in the same buffer as was used for the casein 

separation, with the addition of 20 mM-EDTA to sequester the calcium. All 

the major caseins and whey proteins were separated. However, serum 

albumin and lactoferrin were eluted together as a single peak. Only very 

small quantities of milk (20 [A) were required for quantitative analysis of the 

proteins, enabling the milk of individual animals to be analysed without 

sacrificing the animal.

Mouse whey proteins were separated at pH 3.0 and pH 5.0 under the 

same conditions, as described for the caseins. At pH 5.0, however, the 

relative amount of WAP to milk serum albumin and lactoferrin appeared to 

be much greater than at pH 3.0. This is due to the fact that at pH 5 WAP is
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very close to its isolectric point of 4.7-4.8 and therefore is hardly charged and 

elutes very quickly from the column. As a result it elutes along with or soon 

after the mercaptoethanol peak resulting in what appears to be a large protein 

peak but which is not.

Having separated the proteins by cation-exchange chromatography it 

was necessary to remove the urea and salts before further analysis of the 

protein. Initially, mouse caseins and whey proteins were desalted by dialysing 

against distilled water over a period of 3 days. Protein recovery by this 

method proved to be very inefficient, especially in the case of the whey 

proteins which, since they account for only approximately 20% of the total 

protein, are present in relatively small quantities. Protein losses were due to 

the proteins adhering to the the dialysis tubing as the detergent and urea were 

removed. That was perhaps not totally unexpected considering the 

pronounced tendency for the mouse milk proteins to aggregate.

Desalting using reverse-phase liquid chromatography resulted in a 

much improved recovery of protein. This desalting method was also less time 

consuming, being complete in twenty minutes. Using this method, even 

individual protein samples from the ion-exchange chromatography were visible 

after freeze-drying, unlike the situation with samples that had been desalted 

by dialysis.

As a result of the successful separations of mouse caseins on the 

Mono-S column, attempts were made to scale-up the separation of the mouse 

casein fraction using the larger Hi-Load S column. Up to 400 mg of mouse 

casein were separated which represented a two hundred-fold increase in the
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amount of casein that could be loaded onto the Mono S column. The 

separation was largely similar to that achieved on the Mono S column. 

However, the order of elution of WAP and /c-casein was reversed. These 

proteins were eluted as a single broad protein peak with a shoulder. SDS- 

PAGE showed that the leading edge of the peak contained more WAP than k -  

casein, and the trailing edge contained more of /c-casein. A similar pattern 

emerged with Hi-Load S separations of the caseins of other species, and is 

perhaps due to slight differences in the column resin.

Using the Hi-Load System sufficient of the (3 and a-casein component 

was obtained to make the raising of antibodies to these individual proteins, 

feasible.

2.4.2 IDENTIFICATION OF THE CASEINS

Four major mouse milk proteins have been purified using ion-exchange 

chromatography. Amino acid compositions were obtained for all four proteins 

and by comparisons with published cDNA sequences (Table 16A), three 

mouse caseins, #c-, /3- and a-casein, and one mouse whey protein, WAP, 

were positively identified. Two other mouse milk proteins were purified from 

the whey and an additional protein which was believed to be a casein but 

which was always contaminated by a-casein were also analysed. Amino acid 

compositions were obtained for the two whey proteins which are presumed 

to be milk serum albumin and lactoferrin on the basis of their molecular 

weights derived from SDS-PAGE. However, an absolute identification was 

not possible since cDNA sequences for these proteins have not yet been



published. The third protein to be analysed as yet remains unidentified, and, 

as for the whey proteins none of the published cDNA sequences including the 

e-casein sequence show any similarity to this protein(Table 21). This may 

however be due the fact that a pure fraction of this protein has not yet been 

obtained. However, visualisation using Stains-all of the various proteins 

separated by SDS-PAGE showed that like the three major casein bands and 

unlike the whey proteins, this protein was phosphorylated and was therefore 

probably a casein.

2.4.3 MOLECULAR WEIGHTS

The mouse caseins exhibited a lower mobility on SDS-PAGE and

hence a higher molecular weight than expected from their amino acid 

composition as determined by cDNA analysis (Table 17). This feature has 

also been observed with caseins from other species and is due to the unusually 

extended nature of the molecules and anomalous binding of SDS (Cheeseman 

& Jeffcoat, 1970).

In the case of mouse /c-casein this might be wrongly identified as /?- 

casein if no other methods of protein characterization were used.

2.4.4 PROTEIN COMPOSITION

Freeze-dried casein was shown to consist of /c-, /?-, a-caseins in the 

proportions 1:11.7:17.4. In skimmed milks however, the relative proportions 

of WAP and these proteins were 3.3:1:5.7:11.6 (Table 19B)respectively, i.e ., 

lower amounts of a and (3 casein components relative to the /c-casein. All the 

milks were dissociated in buffer containing the detergent n-octyl /3-D-
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glucopyranoside and no large protein peak was evident at the end of the milk 

separation indicating that dissociation was complete. The reduction in the a- 

and /5-casein levels may once again be due to protein adhering to the dialysis 

tubing during sample preparation. Alternatively, the change in the casein ratio 

could also have been due to tailing of the enlarged WAP peak into the k ~ 

casein peak in the skimmed milk samples leading to an apparent increase in 

the level of /c-casein on which the ratios were normalized.

When the protein levels were expressed in absolute units, the 

concentrations of these proteins were calculated to be WAP 15.3, 4.7 k -  

casein, /3-casein 25.2 and a-casein 51.7 mg ml*1. a-Lactalbumin was not 

detected in either freeze-dried whey or in skimmed milk. This confirms the 

findings of Zamierowski and Ebner (1980) who used a radioimmunoassay and 

found that a-lactalbumin was a very minor component of mouse milk, 

accounting for no more than 0.83% of the total protein in mouse milk.

2.4.5 PHOSPHORYLATION

On the basis of their staining behaviour on SDS-PAGE after treatment

with Stains-all, murine k - ,  /3- and a-caseins were all shown to be 

phosphorylated. This had previously been noted by Green & Pastewka 

(1976a, b). Stains-all was found to be a better dye than Coomassie blue for 

detecting the mouse /c-casein component which normally did not stain as well 

as the other caseins. This is probably due to the low content of /c-casein in 

mouse milk and also to glycosylation of the molecule, interfering with dye 

binding. It is interesting to note that in some papers dealing with mouse milk
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proteins, the k-casein band was not visible in gels stained with Coomassie blue 

and was not therefore identified as a casein by these authors The unidentified 

mouse milk protein was also shown to be a phosphoprotein as indicated by its 

blue colour in the presence of Stains-all. It is therefore probably a casein.
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CHAPTER 3

EXPRESSION OF OVINE AND MODIFIED OVINE 
/3-LACTOGLOBULIN IN MOUSE MILK

3.1 INTRODUCTION

/3-Lactoglobulin is present in the whey of a number of species, 

including horse, dog, pig and dolphin (Jenness, 1985; Pervaiz and Brew,

1986) and is the major component of ruminant whey protein. Ruminant /3- 

lactoglobulin is encoded by a gene, thought to be single copy and to be 800 

nucleotides in length (Kolde and Braunitzer, 1983; Gaye et al. 1986; 

Godovac-Zimmermann and Braunitzer, 1987). In ruminant milks, /3- 

lactoglobulin exists predominantly as a dimer with a protein chain length of 

162 amino acid residues. Rodent milk does not contain /3-lactoglobulin, but 

DNA containing the ovine /3-lactoglobulin gene has successfully been 

incorporated into the mouse genome. Several lines of transgenic animals 

expressing this foreign protein in their milk have been produced with levels 

of /3-lactoglobulin as high as 23 mg ml'1 being expressed. This is more than 

five times the concentration of /3-lactoglobulin found in ovine milk (Simons 

et ah, 1987).

Wilde et al. (1992) used column chromatography to partially separate 

the-casein fraction from the ovine /3-lactoglobulin transgenic mouse milk. 

Their results indicated that although the overall level of protein in the 

transgenic milk was the same as that in native milks, the level of the caseins
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apparently decreased to compensate for the expression of the foreign protein. 

However, they did not separate the mouse caseins into their individual 

components and could not therefore comment on the levels of the individual 

caseins. It was therefore proposed in consultation with workers at AFRC 

Roslin Institute to use the chromatographic system reported here to determine 

the levels of individual caseins in the transgenic milks and so determine 

whether expression of all of the endogenous caseins was controlled by the 

same mechanism. As an extension of the work with the /3-lactoglobulin 

transgenic animals, it was proposed that a modified /3-lactoglobulin gene could 

be constructed to investigate protein phosphorylation. Relatively little is 

known about the control of the mechanism by which milk proteins are 

phosphorylated, and none of the major whey proteins are apparently 

phosphorylated. Therefore in the modified gene construct, an oligonucleotide 

coding for the sequence of amino acids necessary to form a phosphate kinase 

recognition site on an external loop of the /3-lactoglobulin molecule was 

inserted. By examining the phosphorylation state of this modified protein 

when expressed in mouse milk, it was hoped to determine whether 

phosphorylation merely required the presence of an accessible kinase 

reconition site or if the control was much more complex. This chapter will 

deal with the analysis of the /3-lactoglobulin milks and the determination o f  the 

phosphorylation state of the modified whey protein.

141



II

3.2 MATERIALS AND METHODS

| Milk was obtained from both native ovine /3-lactoglobulin and modified

ovine /3-lactoglobulin mice. The milk was skimmed and fractionated into the 

acid precipitated and whey protein fractions as previously described. 

Skimmed milk and freeze-dried whey proteins were then separated by cation 

exchange FPLC on the Mono S resin.

Phosphatase inhibitor - a solution of sodium fluoride (50-100 mM); 

Pyrophosphate (5-10 mM) and sodium vanadate (0.1 mM).

3.2.1 SAMPLE PREPARATION

Whey proteins: Mouse whey protein was dissolved overnight (2 mg m l1) at 

4°C in 20 mM-sodium acetate buffer, pH 7.0, containing either 8M-urea and 

0.5 % n-octyl /3-D-glucopyranoside or 6 M-urea only. Samples were reduced 

for 1 hour with 10 fd ml'1 of 2-mercaptoethanol and the pH adjusted to pH 3.0 

for samples containing 8 M-urea and pH 5.0 for samples containing 6 M-urea 

and filtered through an 0.22 /zm filter.

Skimmed milks: Skimmed milk was dissociated overnight (25 fd ml'1) at 4°C 

in 20 mM-sodium acetate buffer, pH 7.0, containing, 8 M-urea 20 mM-EDTA 

and 0.5% n-octyl /3-D-glucopyranoside. The milks were then dialysed against 

the starting buffer for 4 hours. The protein was then reduced with  ̂ 2- 

mercaptoethanol (10 fd  ml'1) for 1 hour before reducing the pH to 3.0 and 

filtering through an 0.22 /xm filter.
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Protein separation: All samples were separated at room temperature on a 

Pharmacia Mono S cation exchange column (HR 5/5), with a flow rate of 0.5 

ml min'1 with the exception of the whey protein separation carried out at pH

5.0 which was run at 1 ml min'1.

Whey protein: Whey proteins were fractionated using a gradient of sodium 

chloride in 20 mM-sodium acetate buffer at both pH 5.0 and pH 3.0 

containing 6M-urea and 8M-urea, respectively.

Skimmed milk: Milk was fractionated using a gradient of sodium chloride in 

20 mM-sodium acetate buffer pH 3.0 containing 8 M-urea.

3.3 RESULTS AND DISCUSSION

The sequences of ovine /3-lactoglobulin and the serine-rich oligomer 

inserted in the protein, in an attempt to phosphorylate it by casein kinase 

recognition of the oligomer sequence, are shown in Figures 41A and 4 IB 

respectively, Figure 41A also shows the point in the protein sequence at which 

the oligomer was inserted.

3.3.1 CHROMATOGRAPHIC SEPARATION OF TRANSGENIC MOUSE MILK

Whey protein: Separations were carried out at pH 3.0 and pH 5.0 and peak 

fractions were analysed by SDS-PAGE. The order of elution of the proteins 

was, WAP (fraction 2), then the transgenic proteins (fraction 3; Figure 42A, 

fraction .3; Figure 42B, 42C) and finally milk serum albumin and lactoferrin 

fraction 5 and 6 of Figure 42A, and 5 & 4 of Figures 42B and C,
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FIGURE 41(A)

Exon I  {13 6  boi

a g c c a c c c c g g g c c t a g g a t g a g c c a a j c q q g a t t c c g g g a a c c g c n t g g c r g g g g g c c a g c c c g g g c t g g c t g g c c t g c

a t g c g c c t c c c o t a t a a c g c c c c a a g c - c t g c c i g c c i c a g c c c t c c A C r c C C T G C A G A G C T C A G A A G C A C G A C C C C A G C T  
~  '  T

- I B  - 1  +1
M e :  L y s C v s  L e u L s ' J l e u A l  a L e u G l  y L e u A l  a L e u A l  a C y s G l y  Va 1G1 n A l  a  11 e  I )  e  Va I T h r G l  n T h r M e  

GCAGCCArGAAGTGCCTCCTGCTTGCCCTGGGCCTGGCCCTCGCCTGTGGCGTCCAGGCCATCATCGTCACCCAGACCAT

10 ;  ■ 
t l y s G l y L e u A s p  I l - e G l n l y s  
GAAAGGCC TGGACA TC CAGAAGg t  C c  g  a g  g g t

Exon IE (140 bp)

2 0  30
Va l  A l a G l y T h r T r p H i s S e r l e u A l a M e t A l a A l a S e r A s p I l e S e r l e u l e u A s p A l a G l n S e r A l a P  

ccctctccagGTGGCGGGGACTTGGCACTCCTTGGCTATGGCGGCCAGCGACATCTCCCTGCTGGATGCCCAGAGTGCCC 
T y r

AO 5 0  6 0
r o l e u A r g V a 1T y r V a l G l u G l u L e u l y s P r o T h r P r o G l u G l y A s n l e u G l u H e L e u L e u G l n l y s T r  
CCCTGAGAGTGTACGTGGAGGAGCTGAAGCCCACCCCCGAGGGCAACCTGGAGATCCTGCTGCAGAAATGgtgggcgtct

Exon H I  (74 bp)

' 70  8 0
p G l u A s n G l  y G ) u C y s A l a G l n L y s L y i  l i e  I l e A l a G l u L y s T h r L y s  l i e  P r o  A l a  Va l  P h e l y s  H e  

tg t ct t tc ag GGAGAACGGCGAGTGTGCTCAGAAGAAGATTATTGCAGAAAAAACCAAGATCCCTGCGGTGTTCAAGATC

t
A spA

G A T G g t g a g t c c g g  POSTULATED SITE OF OLIGOMER INSERTION

Exon E t  ( I I I  bp )

9 0  1 0 0
l a L e u A s n G l u A s n L y s V a I  L e u V a l L e u A s p T h r A s p T y r l y s L y s T y r L e u l e u P h e C y s M e L G l u A s  

CCgcgtccagCCTTGAATGAGAACAAAGTCCTTGTGCTGGACACCGACTACAAAAAGTACCTGCTCTTCTGCATGGAAAA

110 120 
n S e r A l a G l u P r o G l u G l n S e r L e u A l a C y s G l n C y S L e u Y  
CAG T GCT GA GCCCGAGCAAAGCCT GGCCT GCCAGT GCCT GGgtg ggtgc ca

Exon H  (105 bp)
1 3 0  M O

a l A r g T h r P r o G l u V a l A s p A s n G l u A l a L e u G l u L y s P h e A s p L y s A l a L e u L y s A l a L e u P r o M e t H i  
CgccccaCagTCAGGACCCCGGAGGTGGACAACGAGGCCCTGGAGAAATTCGACAAAGCCCTCAAGGCCCTGCCCATGCA

1 5 0
S 1 1 e A r g L e u A l a P h e A s n P r o  T h r G l n l e u G i u G  
CA TCCG GCTTG CC TTCA AC CCGA CCCA GC T GG AG Gg tgac ga c cc

Exon 3ZI (4 2  bp)
160

l y G l n C y s H i  s V a l e n d  
t c c c c c a c a g G G C A G T G C C A C G T C T A G G r G A G C C C C T G C C G G T G C C T C T G G G g U a g c t g c t

Exon iltu . (180  bp)

c c a c tttc a g G G C C C G G G A G C C T T G G A C T C C T C T G G G G A C A G A C G A C G T C A C C A C C G C C C C C C C C C C A T C A G G G G G A C T A

gaagggaccaggactgcagtcacccttcctgggacccaggcccctccaggcccctcctggggctcctgctctgggcagct

T C T C C n C A C C f i i ^ i S G G C A T A A A C C T G T g c t c t c c c t t c t g a g u m g o t g g a c g a c g g g c a g g g g g t

DNA Sequence of /3-lactoglobuin gene SSI. Exon sequences are shown in 
upper case and flanking sequences in lower case. The predicted protein 
sequence is shown immediately above the DNA sequence. CAT, TATA A 
and AATAAA signals are underlined. The putative mRNA cap site is 
shown (*).
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FIGURE 42A, B and C: Cation exchange chromatography of transgenic 

mouse whey proteins

(A) Protein (2 mg) dissolved in sodium acetate buffer (20 mM), pH 7.0, 

containing 6M-urea (Figure 42A) or 8M-urea and 0.5% n-octyl (3-D- 

glucopyranoside (Figures 42B and C) Samples were reduced as described in 

the text and the pH reduced to pH 5 (Figure 42A) and/or pH 3 (Figure 42B 

and C). The separation was developed using the same buffers at 1 ml min'1 

on a Mono S column with detection at 280 nm. Numbered fractions were 

collected and analysed by SDS-PAGE (Figures 43A, B and C).
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FIGURE 43(A)

WAP

0-lg

SA
LF

#i
*|

■ M
W TM 1 3  4 2  5 6 6 TM W

SDS-PAGE analysis of peak fractions collected from cation exchange 

chromatography of transgenic mouse whey proteins

Tracks (W) and (TM) contain whole whey protein and transgenic mouse milk

g
respectively. Remaining numbered tracks 1-6 contain peak fractions

s
numbered 1-6 on Figure 42(A).

W A P : W h ey  acidic protein

j3-lg: O v in e £J-lactoglobulin  

S A : S eru m  album in

L F: L actoferrin



FIGURE 43(B)

W AP

0-lg

U.C

0

a

SA
LF

TM 2 3A3B(1) (2) 4 5 TM

SDS-PAGE analysis of peak fractions collected from cation exchange 

chromatography of transgenic mouse whey proteins

Tracks labelled (TM) contain transgenic mouse milk. Remaining numbered 

tracks 2-5 contain peak fractions numbered on Figure 42(B), with fraction 3 

being split further by desalting on reverse phase liquid chromatography.

W A P : W h ey  a cid ic  protein  a :  a -c a se in

0 -lg :  O v in e 0 -la c to g lo b u lin  S A : Serum  album in

U .C : U nid en tified  casein  LF: L actoferrin

k: /c-casein

0 : 0 -ca se in
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FIGURE 43(C)

WAP

0-lg

U.C
&

ct

SA
LF

MTM TW 2 3 4 TW MTM

SDS-PAGE analysis of peak fractions collected from cation exchange 

chromatography of transgenic mouse whey proteins

Tracks labelled (MTM) and (TW) contain modified ovine /3-lactoglobulin 

transgenic mouse milk and modified ovine /3-lactoglobulin transgenic whey 

protein. Remaining numbered tracks contain peak fractions as numbered on 

Figure 42(C)

W A P : W h ey  acid ic protein  a :  a -c a se in

/3-lg: M od ified  o v in e  /3-lactoglobulin  S A : Serum  album in

U .C : U nid en tified  ca se in  L F: Lactoferrin

k : A -casein

/3: /3-casein
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respectively: SDS-PAGE analyses of protein fractions are shown in Figures 

43A, B, and C.

Skimmed milk; Separations of both the ovine /3-lactoglobulin transgenic and 

modified ovine /3-lactoglobulin transgenic milks are shown in Figures 44A and 

B. SDS-PAGE analysis of peak fractions revealed that as with the native 

mouse milk, fractions 2, 3, 4 and 7 consisted of WAP, /c-casein, /3-casein and 

a mixture of serum albumin and lactoferrin respectively. In the separation of 

ovine /3-lactoglobulin transgenic milk, fraction 5 was further separated during 

the desalting on reverse-phase chromatography and was found to contain a- 

casein (almost pure), the unidentified casein (almost pure) and some a-casein 

contaminated with /3-casein. Fraction 6 was found to be an almost pure 

fraction of ovine /3-lactoglobulin (Figure 45A). Fraction 5 of the modified 

ovine /3-lactoglobulin milk was similarly separated further on desalting, giving 

rise to a pure fraction of the transgenic protein and the unidentified casein, 

as well as mixtures containing the a-casein. Fraction 6 also contained the 

transgenic protein as well as some low molecular weight peptides (Figure 

45B).

3.4 THE EXPRESSION OF FOREIGN PROTEINS IN MILK

Expression of foreign proteins in mouse milk has been reported to 

cause no overall increase in the total level of protein in the milk (Wilde et al. , 

1992). Instead, the foreign protein is apparently expressed at the expense of 

the native proteins, the levels of which decreased as that of the foreign protein 

increased. The cation exchange chromatographic separation which was
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FIGURE 44A and B; Cation exchange chromatography of transgenic

mouse milks

Milk from /3-lactoglobulin transgenic and modified /3-lactoglobulin transgenic 

mice was dissociated (25 fil ml'1) in sodium acetate buffer. (20 mM) pH 7 

containing 8M-urea, 20 mM-EDTA and 0.5% n-octyl /3-D-glucopyranoside. 

The proteins were then reduced as described in the text and dialysed. The 

protein solution was reduced to pH 3 and the separations developed in sodium 

acetate buffer (20 mM) containing 8M-urea at 0.5 ml min1 and detection at 

280 nm. Numbered fractions were collected and analysed by SDS-PAGE 

(Figures 45A and B).
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FIGURE 45(A)

'  .. *>

WAP

/3-lg

U.C

P

or

SA
LF

TM MM 2 3 4 5(1) (2) (3) 6(1) (2)

SDS-PAGE analysis of peak fractions obtained from cation exchange 

chromatography of /3-lactoglobulin transgenic mouse milk.

Tracks labelled (TM) and (MM) contain ovine /3-lactoglobulin transgenic 

mouse milk and native skimmed mouse milk respectively. Remaining 

numbered tracks 2-6, contain peak fractions as numbered in Figure 44(A), 

with fractions 5 and 6 being split further on desalting by reverse phase 

chromatography.

W A P: W h ey  acid ic  protein  n: K-casein SA.: Seru m  album in

/3-lg: O v in e  /3 -lactoglob u lin  /3: /3-casein LF: L actoferrin

U .C : U n id en tified  casein  q ; a -ca se in
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FIGURE 45(B)

WAP

U .C .

MTM 2 3 4 5A(1 )(2)(3) 5B(1)(2)(3) 6

SDS-PAGE analysis of peak fractions obtained from cation exchange 

chromatography of modified /3-lactoglobulin transgenic mouse milk.

Track (1) modified /3-lactoglobulin transgenic mouse milk (M .T.M .) and 

remaining numbered tracks, peak fractions as numbered in Figure 44B.

W A P : W h ey  acid ic protein  

U .C :  U nid en tified  casein  

/3: /3-casein  

k: K-casein  

a :  a -c a se in
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developed in this project enabled the levels of individual casein and native 

whey proteins to be determined as well as that of the ovine /3-lactoglobulin in 

transgenic mouse milk. Overall, the casein level decreased, but the decrease 

did not appear to be uniform. Expression of the a-casein component was 

apparently more suppressed than that of the other caseins.

Ovine /8-lactoglobulin transgenic mouse milk (Table 22) was found to 

contain a reduced level of a-casein and a high proportion of ovine /3- 

lactoglobulin. WAP:ic-casein:/3-casein:a-casein; ovine /3-lactoglobulin = 

3.5:1:5.2:7.4:19.0. Native mouse milk was found to contain WAP, /c-casein, 

/3-casein and a-casein in the proportions of 3.3:1:5.7:11.6. The results in 

Table 23 demonstrate the effect of the transgenic protein on endogeneous milk 

protein secretion. WAP, /c-casein, /3-casein and a-casein were found to be 

decreased by 29.7, 46.0, 41.0 and 62.3%, respectively. The proportion of 

WAP in transgenic and non-transgenic milk samples was calculated as —10% 

and 113-15% of total protein, respectively, i.e., a decrease of —4% of the 

total protein. The absolute amount of ovine /3-lactoglobulin found in the 

transgenic mouse milk was calculated as 50.1 mg m l1, which was more than 

that calculated by Simmons et al. (1987). This is a result of the fact that the 

mice used by Simmons et c/.(1987) were heterozygotes while those used for 

the calculations in Table 23 were homozygotes. It was found using anfon- 

exchange chromatography that a protein peak containing mouse a-lactalbumin 

and WAP was greatly reduced in the transgenic milk sample i.e. from 30% 

to 17% of the total protein Wilde et al. (1992). a-Lactalbumin however, was 

not detected in any transgenic or native milks analysed by chromatographic or
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electrophoretic method throughout the duration of this project, as previously 

discussed in the section on protein composition.

An estimate of the amount of modified /3-lactoglobulin in the other 

transgenic line was not possible since this protein co-eluted with the mouse a- 

casein component as shown by SDS-PAGE. However, if this protein peak 

was assumed to contain the same relative amount of a-casein as the native 

ovine /3-lactoglobulin line, an estimate of the amount of modified /3- 

lactoglobulin can be made. The results (Table 22) show that the relative 

amount of a-casein increased in comparison to /3-lactoglobulin transgenic 

milks. The relative amounts of the major milk proteins in the modified /3- 

lactoglobulin line would therefore be W AP: K-casein: /3-casein: a- 

casein:modified /3-lactoglobulin, 3.5:1:6.4:7.4:8.2. Expressed in absolute 

amounts they would be, WAP 12.8, K-casein 3.7, /3-casein 23.4, a-casein 27.1 

and modified /3-lactoglobulin 30.0 mg m l1.

A simple method to determine whether the modified /3-lactoglobulin 

was phosphorylated was to separate the proteins by SDS-PAGE and stain with 

Stains-all. This requires only minute amounts of protein. If the novel /3- 

lactoglobulin in the modified /3-lactoglobulin transgenic milk had been 

phosphorylated, it should have stained blue in the presence of Stains-all. 

However, the foreign protein, which due to the incorporation of the kinase 

recognition peptide sequence appeared to have a higher molecular weight than 

native ovine /3-lactoglobulin,; stained pink (Figure 45C). This indicated that 

it was not phosphorylated. There were two possible explanations for this, ne 

was that the protein was not phosphorylated despite the possession of the



FIGURE 45(C)

WAP

P-lg
U.C

(3
-  m  —K »

a

1 2 3 4 5 6 7  8 9  10 11 12

SDS-PAGE of native and modified /3-lg transgenic mouse milk stained 

with Stains all.

Tracks numbered (1) to (4) native mouse milk and tracks numbered (5) to (12) 

modified /5-lg mouse milk.

W A P: W h ey  acid ic  protein

(3-lg: M od ified  o v in e  (3-lactoglobulin

U .C : U nid en tified  casein

(3: (3-casein

k: K-casein

a :  a -c a se in
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requisite kinase recognition site and serine residues which could undergo 

phosphorylation. The second was that the serine residues were phosphorylated 

but being on the exposed loop of the /3-lactoglobulin, they were also rapidly 

dephosphorylated by phosphatases in the milk. Milk samples were therefore 

collected and stored in the presence of a phosphatase inhibitor to rule out any 

dephosphorylation of the inserted oligomer by endogenous phophatases. This 

had no effect on the staining of the protein in transgenic milks (Figure 45C), 

strongly suggesting that the modified /3-lactoglobulin was not phosphorylated. 

It can therefore be concluded that phosphorylation of milk proteins is not 

simply dependent upon the possession of the correct sequence of amino acids 

in an exposed position on the protein.
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CHAPTER 4

EFFECT OF DELETING MURINE 0-CASEIN GENE ON 
PROTEIN EXPRESSION

4.1 INTRODUCTION

In Chapter 3, the effect of expressing a foreign whey protein on the 

levels of the native mouse milk proteins was investigated. Mr S. Kumar and 

Dr P. Simons at AFRC Roslin Institute have succeeded in producing several 

lines of mice in which the native mouse /3-casein gene has been successfully 

deleted. This is to our knowledge the first occasion in which an individual 

casein gene has been deleted. Although the absence of expression of /3-casein 

ffoffl the milk could be determined by SDS-PAGE, quantification of the levels 

of expression of the other mouse milk proteins, particularly the caseins, was 

much more difficult. Milk from these /8-casein "knock-out" lines was 

therefore analysed using the column chromatographic techniques developed 

and described earlier in this project, and the levels of expression of the 

various proteins compared with that in native mice. Analysis of these milks 

effectively complements that of the /3-lactoglobulin mouse milks where 

expression of a foreign protein was shown to cause a general reduction in the 

levels of endogenous proteins but this, as shown in Chapter 3 was, not a 

uniform change.
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4.2 MATERIALS AND METHODS

4.2.1 MATERIALS

Milk was obtained from a number of native and homozygous /5-casein 

"knock-out" mice. Individual samples were pooled and the milk was skimmed 

and fractionated into the acid precipitated and whey protein fractions as 

described previously. Every effort was made to ensure that analysis of the 

two types of milk was as quantitative as possible.

4.2.2 SAMPLE PREPARATION

Acid precipitated casein/whey protein: Proteins were dissociated by stirring 

overnight at a protein concentration of approximately 2 mg ml'1 in 20 mM 

sodium acetate buffer, pH 7.0, containing 8M-urea and 0.5% n-octyl /5-D- 

glueopyranoside. The proteins were then reduced for 1 hour with 2- 

mercaptoethanol (10 p\ ml'1) after which the pH of the protein solution was 

reduced to 3.0 and filtered through an 0.22 pm  filter.

4.2.3 PROTEIN SEPARATION

Casein and whey proteins were separated on a Mono S cation exchange 

column (HR 5/5) with a flow rate of 0.5 ml min*1 using a gradient of sodium 

chloride in 20 mM-sodium acetate buffer pH 3.0 containing 8M-urea' as 

described previously.
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4.3 RESULTS & DISCUSSION

The Mono S elution profiles of the pooled acid precipitated and whey 

protein fractions (Figures 46 and 47) confirmed the SDS-PAGE results 

obtained by Kumar and Simons(submitted for publication) showing that the 

synthesis of /3-casein in the "knock-out" lines had been completely blocked. 

The effect of the deletion of the /3-casein gene on the levels of expression of 

the other endogenous proteins was investigated and these results are 

summarized in Tables 24 to 26. The level of total protein in these animals was 

decreased from 97 to 87 mg ml'1 of which the whey accounted for 21 mg ml'1 

compared to 18 mg ml'1 in native mice. The changes in the levels of the 

individual proteins were variable with the levels of the /c-casein in the "knock­

out" milk increasing by 25 % compared to the native milk whilst that of the 

a-casein increased by only 4% and that of unidentified "casein” actually 

decreased by 10%. Changes in the levels of the whey proteins were also 

detected with the levels of WAP and lactoferrin/serum albumin increasing in 

the whey protein fraction by 36 and 25%, respectively, and an even greater 

increase (68%) in the level of a minor whey component (B) which was 

originally thought to be serum /c-casein but was clearly shown in the "knock­

out" whey to have a slightly different retention time.

The levels of most of the proteins increased in the whey fraction. 

However, the increase could be accounted for by changes in the partitioning 

of these components between the acid precipitated and supernatant fractions. 

Overall, the levels of these components in the /3-casein "knock-out" milk 

decreased slightly (—10%). The overall level of the whey protein increased
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Protein (2 mg) was dissociated in sodium acetate buffer (20 mM), pH 7, 

containing 8 M-urea and 0.5% n-octyl /?-D-glucopyranoside. Proteins were 

reduced as described in the text and adjusted to pH 3.0. The separation was 

developed on a Mono S column at a rate of 0.5 ml min'1 with detection at 280

nm.

163



MONO S SEPARATION OF NATIVE (...) 

AND

KNOCKOUT (-------) MOUSE WHEY PROTEINS

E
c .O
00
CNJ LI­

LLI
o
z
<m
CO
O
CODQ
<

0 .0 5  -

CL

0 5 10 15 2 0  25 30  35 4 0  4 5  5 0  55 6 0  65

Q
CO
O
x  FIGURE 47  
o

3
Q
O
CO

RETENTION TIME (min)

Protein (2 mg) was dissociated in a sodium acetate buffer (20 mM), pH 7, 

containing 8 M-urea and 0.5% n-octyl /3-D-glucopyranoside. Proteins were 

reduced as described in the text and adjusted to pH 3. The separation was $ 

developed on a Mono S column at a rate of 0.5 ml min'1 with detection at 280 

nm.
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TABLE 24: Changes in the levels of various proteins in the acid
precipitated fraction of /3-casein deleted milk compared with native mouse 
milk.

Protein Change (%)

WAP -22

/c-casein +25

/3-casein -100

a-casein +4

unidentified casein -10

A +22

Lactoferrin/serum albumin -24

TABLE 25: Changes in the levels of various proteins in the acid soluble 
whey fraction of /3-casein deleted milk compared with native mouse milk

Protein Change (%)

WAP +36

B +68

Lactoferrin/serum albumin +25

TABLE 26: Overall changes in the levels of the main "whey" proteins in 
/3-casein deleted milk compared with native mouse milk

Protein Change (%)

WAP -11

Lactofemn/serum albumin -9
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by —16% and casein decreased by —16%. This change in partitioning 

suggests that /3-casein may be important in influencing the isoelectric 

precipitation of these components in the native milk.

The implication of the effect of deleting the /3-casein gene on the levels 

of expression of the other caseins will be discussed in Chapter 5.
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CHAPTER 5

GENERAL DISCUSSION

The principal aim of this project was to develop methods for the 

quantitative separation of the main protein components of mouse milk and to 

utilise these methods to analyse the expression of proteins in the milk of 

transgenic animals. This was achieved using cation exchange chromatography 

although the separation proved to be more difficult than had been anticipated. 

More extreme conditions were required for the initial dissociation of the 

mouse casein micelles than for the milks of other species. The main 

difference was the necessity of including a non-ionic detergent, n-octyl /3-D- 

glucopyranoside, as well as 8M-urea, in the dissociation buffer. In the 

absence of the detergent, a large peak of undissociated protein was eluted 

from the column during the re-equilibration step. When the detergent was 

included, the areas of all of the casein peaks increased, but not uniformly for 

all of the caseins. The increase in the amount of the a-casein component was 

much greater. A possible explanation for this observation is postulated later 

in this section.
n

The a-, /?- and k-caseins were isolated and identified on the basis of 

their amino acid compositions. An additional acid precipitable protein was 

obtained in an almost pure form. Although this has not yet been identified, 

on the basis of its staining behaviour, it has been shown to be phosphorylated 

and is therefore presumably a casein. The various whey proteins were also
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separated by cation exchange FPLC, although in the absence of sequence data, 

the high molecular weight components could not be quantified. The 

separation of the caseins was scaled-up to permit sufficient of some of them 

to be obtained in a pure form to make the raising of antibodies feasible. 

Together with the development of a method for the chromatographic 

separation of the proteins from as little as 25 fil of skimmed milk, antisera to 

individual caseins should be useful in a number of areas of research involving 

lactation in the mouse as a model system.

Applying the analytical chromatographic techniques to the composition 

of modified milks i.e. those from transgenic mice expressing ovine (3- 

lactoglobulin and those from animals in which the endogenous /3-casein gene 

had been deleted, yielded data which may be important with regard to the 

mechanism of milk protein secretion.

Studies of protein secretion from different cell types have identified 

two pathways by which protein is secreted via the mechanism of exocytosis; 

the constitutive pathway and the regulated pathway. Constitutive exocytosis 

results in proteins being secreted immediately after they are packaged into 

secretory vesicles. Regulated secretion of protein results in proteins being 

stored in secretory vesicles or granules for variable periods of time until their 

release in response to cell activation which in turn results in a rise in either 

intracellular Ca2+ or another second messenger (Burgess & Kelly, 1987). 

Some cell types possess both secretory pathways. In such cases, proteins 

usually show a preference for one pathway over the other. The constitutive 

pathway has also been considered to be a default pathway, by which proteins



that have been transported through the trans-golgi network but which lack the 

information to enable them to be targeted to the correct organelle are secreted.

Milk protein secretion is usually considered a constitutive process (Franke et 

al. 1976; Linzell and Peaker, 1971; Saacke and Heald, 1974). A recent 

study of milk protein secretion examined secretory acini isolated from the 

glands of lactating mice and concluded that lactating mammary cells possess 

both a Ca2+- independent constitutive pathway and a Ca2+-activated regulated 

pathway for protein secretion (Turner et al., 1992). [35S]-Methionine was 

found to be incorporated into protein linearly for at least 5 hours with no lag 

period. However, protein secretion was detected only after a lag of about 1 

hour. This was consistent with constitutive exocytosis. Secretion was 

unaffected by the addition of 8-bromo-cAMP and 8-bromo-cGMP, but was 

doubled by addition of the Ca2+ ionophore, ionomycin. A pulse-chase 

experiment designed to examine the importance of Ca2+ concentration in the 

regulation of exocytosis revealed that constitutive secretion was unaffected by 

the depletion of cytosolic Ca2+ but ionomycin gave a two-fold increase in the 

stimulation of presynthesized protein in a Ca2+-dependent manner. Ionomycin 

was also found to stimulate protein secretion after constitutive secretion had 

ceased. These results suggested the involvement of both pathways in milk 

protein secretion.

Analysis of milks from native and ovine /3-lactoglobulin transgenic 

mice as reported in Chapter 3 revealed that although the overall level of 

protein secretion was unchanged between the two types, the levels of the 

endogenous milk proteins, WAP, /c-casein, /3-casein and a-casein were

169



reduced by 29.7, 46.0, 41.0 and 62.3%, respectively in the transgenic milk. 

These results reinforce the idea of a regulated pathway, as well as a 

constitutive pathway of milk protein secretion, since if proteins were only 

secreted constitutively, it would be expected that the levels of all the milk 

proteins would be reduced to the same extent.

Results from the /3-casein ‘knockout’ transgenic lines also proved 

interesting. The total milk protein secreted by the mammary gland was 

reduced in these animals by around 10% even though /3-casein accounts for 

21% of the milk protein. Therefore, it could be concluded that the gland is 

compensating to a limited extent for the loss of the /3-casein gene by secreting 

more of the other milk proteins. The results showed that total whey protein 

increased by 16% and although the overall level of casein was reduced by 

— 16%, the amount of k - casein being synthesized by the gland actually 

increased by 25 %. Again, this fact could reinforce the idea of both regulated 

and constitutive secretory pathways being involved since the deletion of the 

/3-casein gene did not have the same effect on all the milk proteins.

Recent studies of protein secretion in the mouse mammary gland have 

investigated the process of protein phosphorylation using the fungal 

metabolite, brefeldin A (BFA)(Tumer et al. 1993). Addition of BFA results 

in a functional dissection of Golgi cistemae from the trans-Golgi network kid 

examining the effect of BFA on phosphorylation should indicate whether 

phosphorylation of newly synthesized protein 'occurs either in the Golgi 

cistemae or the trans-Golgi network. The results suggest that a-casein 

phosphorylation is primarily mediated via a kinase located within the Golgi



cistemae since phosphorylation of newly synthesized a-casein can occur even 

in the presence of BFA which causes the collapse of cisternal enzymes back 

into the endosplasmic reticulum. Phosphorylation of /3-casein however was 

inhibited by the presence of BFA, indicating that the kinase required for 

phosphorylation of mouse /3-casein must be located in the trans-Golgi network. 

In addition, protein produced by ionomycin-activated regulated secretion was 

found to contain a higher ratio of a- to /3-casein, than that produced by the 

constitutive pathway of secretion (Turner et al. submitted for publication). 

The significance of these results is still unclear. However, they could indicate 

that the mouse casein micelle consists of a core of a-casein since it is 

phosphorylated before /3-casein. This in turn could explain why addition of 

n-octyl /3-D-glucopyranoside resulted in an increased a-casein peak as the core 

region was disrupted. In addition, if a-casein is secreted primarily via a 

regulated pathway, this would perhaps begin to explain the differential effects 

on casein secretion observed in both the /3-lactoglobulin transgenic mouse line 

and the /3-casein deleted lines.
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