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Abstract

In this thesis, current digital filter design techniques are critically reviewed and
problems associated with computational cost, complexity, frequency response
and speed of convergence, identified. Based on this, a globally optimal, fine-
tuned and efficient evolutionary hybrid technique has been developed to auto-
mate and optimise infinite impulse response (IIR) and adaptive filter design.
The proposed hybrid design approach employs an evolutionary algorithm (EA)
as a global search tool and a least mean square (LMS) algorithm, whenever
appropriate, as a fine-tuner. This permits optimal and real-time tracking of
time varying changes in nonstationary environments as widely encountered in
telecommunications.

In the development, various improvements on existing algorithms are made,
including those on components of EAs, LMS algorithm and the filter structures.
The aims are to be able to evolve direct form IIR structures using simple sta-
bility monitoring techniques, to improve local fine-tuning performance and to
avoid premature convergence. To evolve complex phenotype chromosomes that
are needed by complex IIR filters, a novel method of crossover operation is de-
veloped. This is a variation of the standard uniform crossover in which the split
points are considered to combine uniquely as indivisible floating-point complex
valued genes. The split-point crossover operation produces more new members
than the standard crossover operablon,and hence provides a faster rate of con-
vergence and avoids prematute"c&i&é@énce. The EAs have been particularly
designed for small population sizes and to reduce premature convergence, a

new operator is designed to introduce new members into the population during

i



evolution.

Two techniques are investigated in the design of linear adaptive IIR digital
filters, namely, the pole design method and the coefficient design method. The
pole design method provides filter stability throughout the genetic search with-
out requiring a variety of stability monitoring techniques. The coefficient design
method uses simple stability guaranteeing techniques, which also improves the
rate of convergence of the EAs. With the hybrid technique, complex-coefficient
filters have been designed successfully and globally optimal and adaptive filters
have been achieved.

The developed methodologies and designs are verified using higher order
complex IIR systems and, for adaptation, inverse system modelling that is syn-
onymous with channel equalising filters operating in multipath environments.
Here adaptive complex parameters become possible to equalise amplitude and
phase distortions of the received signals. Various stability-ensuring techniques
are investigated extensively and their convergence performances are compared
with the proposed method. The proposed hybrid, global and fine design tech-
nique is applied to solve adaptive channel equalisation and noise cancellation

problems commonly existing in telecommunications.
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Chapter 1

Introduction

1.1 Importance of IIR and Adaptive Filtering

With the increasing power of micro processors, digital signal processing (DSP)
has now played an important role in many engineering applications [82, 6, 76,
8, 77, 24, 19, 15]. Adaptive signal processing has evolved from techniques de-
veloped to enable adaptive control of time varying systems. It is now routinely
used in a wide range of signal processing systems. Radar, equalising filters in
high-speed MODEMS, echo-cancellation in speakerphones, interference removal
in real-time medical imaging, and beam-forming in radio astronomy, all are
examples of commercial systems that rely on adaptive filtering in one way or
another [82, 74, 41, 56, 81]. Its major advantages over classical and linear time-
invariant (LTI) signal processing is that it can cope with nonstationary signals
whose statistical properties vary with time and that it demands a low amount
of a priori information.

Adaptive signal processing has gained much popularity and has broadened
the scope of digital signal processing. For practical reasons, however, the first
generation of adaptive systems generally employ the basic finite impulse re-
sponse (FIR) linear filter structure [82, 6, 76, 8, 77, 7]. As such, they have
certain performance limitations. For example, the exact restoration of a re-

ceived signal corrupted by multipath distortion is hardly possible with an FIR



structure [82, 6, 76, 37, 63, 26]. Consequently, the usage of adaptive FIR filters
is now relatively low in certain areas of signal processing.

The applications of adaptive filtering approaches can be extended in all areas
by developing computationally efficient adaptive infinite impulse response (IIR)
filtering algorithms. The primary advantage of an adaptive IIR filter over a FIR
one is that it provides significantly better performance with the same number
of coefficients. For example, a desired response or, equivalently, its frequency
response can be approximated more effectively by the output of a filter that has
both poles and zeros compared to one that has only zeros [63]. This is because
the output feedback can generate an infinite impulse response with only a finite
number of parameters. Therefore, the computational costs for implementing
such a system are significantly less compared with an FIR filter giving the same
amount of performance (e.g. frequency response, phase response, etc.). These
benefits make possible the widespread applications of adaptive filters and also
highlight the importance of studying these systems with improved design and

performance.

1.2 Current Design Problems

Compared with FIR filters, an IIR filter does introduce poles and hence stability
problems into the system. To resolve stability and flexibility problems associated
with direct form IIR filters, alternative realisations such as parallel, cascade
and lattice forms can be considered. These structures offer simple stability
monitoring without the complexity required by the direct form. Among other
realisations studied, parallel and lattice forms have appeared to be relatively
more robust [64, 31, 48, 62]. Unfortunately, the parallel or cascade structures
can result in relatively more multiple optima that can arise from rearranging the
poles among different sections [5, 63]. This property leads to a major difficulty
in designing IIR filters and degrades the rate of convergence of an adaptive

algorithm [63, 3].



Widely used algorithms for adaptive FIR and IIR filtering applications are
mainly based on least squares (LS) and gradient-guidance techniques [82, 6].
Compared with a gradient-guidance technique, the least squares approach of-
fers faster convergence but is numerically ill conditioned and computationally
more expensive [24, 22, 1, 65, 53]. Furthermore, LS techniques are more con-
strained to a specific network topology and are considered unsuitable for com-
plex structures having a large amount of recursion [38]. On the other hand,
gradient-guidance technique, such as the least mean squares (LMS), has been
mostly used in adaptive control and filtering because of its simplicity of imple-
mentation and a computational efficiency that is proportional to the number
of adjustable parameters [82, 6, 22]. However, the LMS algorithm has two
major drawbacks: slow rate of convergence, and sensitivity to the eigenvalue
spread of the correlation matrix of the input signal vector [22]. In addition,
current [IR-LMS often fails to converge to an optimum or near optimum when
the associated error function is multimodal with respect to filter coeflicients
[63, 64, 31, 11, 61, 33, 22].

Traditional design methods of filtering systems use magnitude response as
design specification and accept the phase response as is obtained from the de-
sign methodology [55, 66]. Since the magnitude and phase characteristics of LTI
systems are interrelated, however, the design needs to consider both magnitude
and phase responses as the design parameters in order to achieve a good set of
filter coeflicients [52]. Given the magnitude and group delay, an IIR filter design
problem is often a multiple objective one [74]. Expressions of the magnitude
and delay errors, e, and ey, with respect to a given specification may then be
formulated as objectives in terms of filter coeflicients. Simultaneous minimisa-
tion of competing objectives with e,, and e; can hardly be obtained through
conventional optimisation techniques [52, 74, 2].

In summary, conventional methods for designing IIR and adaptive filters

encounter the

e Stability Constraint;



e Multimodality; and
e Multiple Objective;

problems. This gives the motivation for investigating the population based

evolutionary search approach [78, 2, 39].

1.3 Evolutionary Solutions to IIR Filtering

Currently, various evolutionary algorithm (EA) based approach have been pro-
posed for digital filtering [37, 51, 38, 35, 79, 70, 44, 47, 3, 60, 73, 45, 49, 2,
58, 25, 52, 46, 78, 10, 50]. Several evolutionary programming (EP) approaches
are shown to design IIR digital filters using various realisations [3, 46, 78]. Er-
ror surfaces, with modelling IIR filters in various realisations (direct, cascade,
parallel and lattice) are studied [3]. Various evolutionary and genetic search ap-
proaches to adaptive IIR filtering are published [37, 51, 44, 73, 46, 10]. Genetic
evolution of the filter coefficients during the adaptation phase of the gradient
lattice algorithm has also been shown to improve the convergence rate of the
gradient method and provide global search capability to give lower error perfor-
mance [51, 50]. Genetic algorithms (GAs) have been used to avoid premature
convergence and to achieve asymptotic convergence behaviour [2]. They are suc-
cessfully used to design low complexity, primitive operator, digital FIR filters
[58].

The methods published to date are for the real form adaptive filters. In signal
processing, the concept of complex time-waveform is increasingly used with the
help of a Hilbert transformer to reduce the sampling rate [76, 6, 55]. The reduced
sampling rate requires slower logic circuitry, which in turn reduces size and the
costs when implementing a DSP system. The concept of complex signals is also
used in quadrate amplitude modulation (QAM) systems where both in-phase
and quadrate carriers can be viewed as real and imaginary components and the

associated operation can be done in the complex form [56, 76]. Therefore, an



evolutionary method to evolve complex parameters would be useful for signal
processing applications.

A variety of stability monitoring techniques is employed with high compu-
tational costs to evolve feedback coefficients. Hence, alternate realisations are
still being used to avoid the computational burdens of stability monitoring that
are required by direct form IIR structures. As mentioned, alternative reali-
sation such as parallel and cascade provide slower rate of convergence. The
performance becomes worse when the subsections are identically initialised. Al-
though lattice forms offer a simple test of stability, it is more complex than
direct and parallel form structures [63]. For example, the gradient component
for a feedback coeflicient requires a separate lattice filter using intermediate
signals of the adaptive lattice filter as input signals.

Although various remedies are proposed in EAs, large population sizes and
high mutation distributions are often used to avoid premature convergence.
Increasing population sizes is computationally expensive and higher mutation
distributions can degrade the convergence performance. An optimal approach
to solve premature convergence is somehow more crucial. Also, evolutionary
techniques, in general, provide a better global search capability, but fine-tuning
cannot be guaranteed. Various approaches have been attempted to achieve fine-
tuning, but non-of them meets all of the desired characteristics [25]. Therefore,
simulated annealing (SA) based GAs have been considered to obtain fine-tuning
on globally optimised coefficients where simulated annealing is shown as being
one of the best methods to achieve local search and hence fine-tuning [73, 79, 24].

Another major drawback of the current EA based techniques is that evo-
lutionary algorithms cannot be used for on-line adaptation. Many signal pro-
cessing applications require on-line adaptation in which the parameters can be
adapted as the new data are being captured. For example, adaptive channel
equalising filters used in multipath environments need to be updated at frequent
intervals to equalise the channel characteristics, which can change with time.

These existing problems need to be solved.



1.4 Research Goals and Methodology

The work presented in this thesis is to solve these problems and achieve a number

of research goals, which are:

1.

10.

To develop an EA based technique to solve the complex digital filter design

problem,;

To analyse various stability ensuring techniques that can be applied to

evolve IIR and adaptive filters;

To develop a simple method to ensure IIR filter stability while improving

the convergence rate of the EA;

To develop an EA-LMS hybrid approach to adaptive filtering;

. To investigate various cost functions that can be employed with the pro-

posed EA and filtering techniques;

. To investigate various approaches that can be used along with the stan-

dard genetic operators with a view to avoiding premature convergence

when floating-point EAs are implemented with a small population size;

. To test that the proposed operator can avoid premature convergence when

evolving complex IIR systems which have severe multiple local optima in

the objective functions;

To improve the floating-point EA techniques to achieve high speed, high
precision and high accuracy, with less computational cost and reduced

complexity for signal processing applications.

To assess and apply the improved EA in system modelling with desired

performance criteria for adaptation;

To use the proposed techniques to solve various DSP problems such as
Multipath Channel Equalisation and Noise Cancellation with desired per-

formance characteristics.



The concept of complex filters is used with an aim to reduce the compu-
tational requirements of adaptive channel equalisation filters employed in com-
munication systems [76, 6]. To design complex adaptive IIR digital filters with
improved performance, the EA-LMS hybrid approach is aimed to provide a
better global search as well as a good local search capability as the algorithm
approaches the global region. Small population sizes and simple stability en-
suring methods are used. The chromosomes represent a population of filter
objects in the same manner as they are implemented. Two design approaches
namely pole design and coefficient design methods are considered in evolving
direct form IIR filters. The pole design method evolves direct form filters with-
out employing any stability ensuring methods. Coefficient design method, on
the other hand, employs simple stability monitoring techniques. Least mean
square algorithm is chosen to achieve fine-tuning as the algorithm enters the
global region. Moreover, the LMS algorithm is used to track the time varying
parameters when the adaptive filters are designed in nonstationary.

Although the pole design method avoids stability monitoring techniques,
a major drawback to be expected in this approach is that it may provides
multiple local optima with the same fitness values that can be obtained when
reordering the poles within the filter. i.e. the poles can be rearranged in any
manner to obtain the same fitness value. This may lead to slower convergence
when crossover operation is employed between feedback sections. To solve this
problem, coefficients can be designed directly from a population. Coefficient
design method, therefore, will require a robust method to ensure filter stability
during adaptation.

Evolutionary algorithms are dependent on their operators, as improper de-
sign of these operators can result in poor convergence performance. All of the
special features of crossover operations cannot be achieved for the floating-point
representation. Furthermore, the mutation of floating-point EAs is controlled
by three elements rather than by a single factor as in binary GAs. These fac-

tors are known as probability of mutation, variance, and type of distribution.



The probability of mutation dictates the rate at which mutation is performed,
the variance corresponds to the amount of variations and the type of distribu-
tion decides how the probability of a function defining mutation is distributed
amongst the function (e.g. Gaussian, Uniform, etc.). In binary GAs, the mu-
tation is only controlled by the probability of mutation. Introducing improper
variance can cause the algorithm’s convergence into inappropriate directions.
This may cause either premature convergence or high population diversity. A
major goal of this work is therefore to develop and improve EA techniques that
will perform genetic evolution of complex, direct form IIR digital filters with
small population-sizes, simple methods of ensuring filter stability and better

fine-tuning capability.

1.5 Contributions

Major contributions of the work presented in this thesis are summarised below:

1. The goals 1 - 10 listed on pages 7 - 8 are achieved, providing novel method-

ologies, designs, applications and results.

2. Two design methodologies, pole and coefficient design methods, are de-

veloped.
3. Advantages and drawbacks of each design method are investigated.

4. A novel approach is shown to correct unstable coefficients while improving

the rate of convergence.

5. The problems associated with the alternative IIR filter realisations are il-
lustrated using the convergence curves which are obtained while modelling

various IIR systems.

6. This work also provides techniques for tracking IIR systems when the

coefficients to be optimised are time-variant.



7. The performances of IIR and FIR filters are compared using channel equal-

ising filters.

8. Least mean square algorithm is demonstrated to show how the adaptive
constant can affect the tracking capability of adaptive filters when equal-

ising various communication channels.

9. Split-point crossover which combines uniquely as indivisible floating-point
genes is proposed and demonstrated as being a better method than stan-

dard crossover.

10. A new operator is proposed and used along with the standard genetic
operators to avoid premature convergence while increasing the speed of

the EAs by introducing more new members at each generation.

11. The evolving filters and the associated genetic operations and functions

are developed as modular C++ classes and functions.

Along with the above mentioned contributions, this work has been published

on several occasions and a few more papers are being submitted:

1. Sundaralingam and K. C. Sharman, ”Evolving Adaptive Complex IIR
Stuctures,” In Proc. of the IX"™ Annual Europeon Signal Processing Con-

ference, EUSIPCO-98, Volume 11, pages 753-756, Greece, September 1998.

2. Sundaralingam and K. C. Sharman, ” Evolving Filters in Multipath Envi-
ronments,” In Proc. of the Seventh Annual Conference on Evolutionary

Programing, EP-98, pages 397-407, San Diego, March 1998.

3. S. Sundaralingam and K. C. Sharman, ”Genetic Evolution of Adaptive
Filters,” In Proc. of the International Conference on DSP, DSP-97, pages
47-53, London, December 1997.

4. S. Sundaralingam and Y. Li, ”Hybrid Approach to Adaptive IIR Filter
Design,” Submitted to IEEFE Trans. On Acoustics, Speech & Signal Pro-

cessing, May 1999.



5. S. Sundaralingam and Y. Li, ”Direct Form Digital IIR Filter Design via
Global Evolution,” Submitted to IEEE Trans. On Acoustics, Speech &

Signal Processing, May 1999.

1.6 Outline of Dissertation

The rest of this thesis is organised as follows:

Chapter 2 presents the extensive and critical review of the various types of
classical adaptive IIR filtering algorithms used and/ or proposed to date and
will investigate the issues favouring or limiting the applications of each.

Chapter 3 provides an extensive study on evolutionary techniques, which are
now currently being used, and will inspect the issues of limiting each application.

Chapter 4 presents the recent development of floating-point EA techniques
for designing complex IIR digital filters. In particular, this chapter will show
the design techniques of poles without employing any stability monitoring.
A method of using complex parameters directly in the chromosome’s struc-
tures will be described. Along with this representation, the detailed functional
description of genetic operations will be given. A new crossover scheme for
floating-point EA will be shown. The procedures of performing mutation on
these floating-point structures will be defined. Various cost functions will be
discussed and their performances will be investigated. Among various selec-
tion schemes proposed, the reason for choosing tournament selection will be
described. Finally, this chapter will show the modelling of simple direct and
inverse systems to demonstrate the proposed GA techniques.

Chapter 5 presents the techniques of designing the coefficients of direct-form
IIR digital filters with simple stability monitoring techniques. This chapter will
also outline the problems that can arise from premature convergence. A variety
of remedies will be discussed to resolve premature convergence in floating-point
EAs. This chapter will introduce a new genetic operator called immigrant that

can be used along with the standard genetic operators such as crossover and

10



mutation to avoid premature convergence within small population sizes.

Chapter 6 shows how fine-tuning can be introduced and improved with the
use of gradient based algorithm where feasible. Techniques of designing direct
form IIR digital filters using a hybrid algorithm are given with various appli-
cations. A variety of system modelling examples are shown with fine-tuning
performance of the proposed approach. Furthermore, this chapter will provide
the techniques of adapting nonstationary systems with the use of online algo-
rithm.

Chapter 7 presents some adaptive filtering applications where the recently
developed method has been successfully applied, with convincing results. In
particular, comparative results will be given for channel equalisation to compare
the frequency and BER performances of IIR filters against FIR equalisers. These
results demonstrate the ability of the developed hybrid techniques to equalise
or model complex systems.

Finally, in Chapter 8, conclusions will be drawn with a summary of salient

features of this research, while indicating the areas of further research.
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Chapter 2

Adaptive Filters and Design

Adaptive IIR digital filters and their conventional design techniques are high-
lighted in this chapter. Algorithms that have been used in such designs mainly
belong to gradient-guidance and least square techniques. These algorithms are
in general, well established for adaptive FIR filters and are very suitable when
the error surface is quadratic or unimodal, because of their simplicity [82, 6, 7].

This chapter provides an overview of various classical algorithms for adaptive
IIR filtering. In particular, the algorithms, which are based on LMS and RLS,
techniques have been discussed. Recursive least square techniques have been
shown to improve the performance of the LMS algorithms [63, 22, 79]. The aim
of this chapter is to outline the basic principles of designing classical algorithms,
which will be employed in Chapters 6 and 7 to achieve various performance
improvements with evolutionary approach. This chapter also outlines the issues,
which limit performance when designing the adaptive filters using these classical
methods.

The rest of this chapter is organised as follows: The basic materials needed
to understand the current research is clarified in the following section. Followed
by this foundation, LMS and RLS adaptive IIR filtering techniques to date are
thoroughly investigated. The issues favouring or limiting these techniques are
revealed more clearly. Finally, a summary of these techniques is given, indicating

the merits and drawbacks of each system.
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Figure 2.1: A recursive filter.
2.1 IIR Filters and Stability

An infinite impulse response digital filter, which is also known as autoregres-
sive moving-average (ARMA) model, has both a recursive and a non-recursive
section as illustrated in Figure 2.1. In this figure an IIR filter is viewed as two
FIR filters, one of which is connected in a feedback loop. The output, y(n),
and the transfer function, H(z), of this model can be written in the following

mathematical notations:

y(n) = boz(n)+bjz(n—1)+---

+b1w_1.’13(n - M + 1) + aly(n - 1) + agy(n - 2) +---

+ary(n — N +1) (2.1)
p Mil biz™"
H() = - = ;22) _ i (2.2)

- N-1 ]
1-— Z a;z~7
Jj=1

where {a;})5" and {6;};=)'"" are N — 1 and M adjustable denominator and
numerator coefficients respectively while { A(z)} and {B(z)} are the polynomials
of z.

The major design concern for an IIR filter is to ensure that the recursive
(feedback) section is stable. The stability of a recursive filter requires that all
poles of the filter have a magnitude less than 1. The stable region corresponding

to this condition can be represented as a unit circle in a complex z-plane as

illustrated in Figure 2.2.
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Figure 2.2: Illustration of unit circle of the complex z-plane. In physical systems
the complex poles appear as complex conjugate pairs, which are symmetric
about the real axis. ‘
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The pole polynomials of a recursive section can be obtained through factori-
sation. Factoring polynomials, however, of order greater than 2 are non-trivial.
Hence stability monitoring is difficult. The poles may be complex numbers -
however these complex numbers will in general occur in conjugate pairs given
that the filter coefficients are real numbers. Therefore, physically realisable
systems (real systems) can have complex poles but appear as complex conju-
gate pairs in a z-pane. However, complex filters are widely used in many areas
of signal processing in order to reduce the signal’s bandwidth and hence the
sampling rate [55, 76]. Furthermore, most speech-band modems confirm to
CCITT-recommended modulation formats, which, for the high speed modems
needing equalisers, involve either pure phase modulation or combined phase
and amplitude modulation. Both types of modulation can be viewed as forms
of quadrature amplitude modulation (QAM) and require the use of complex
ITR equalisers [56, 6]. The theory behind complex filtering techniques can be
found in [55, 76, 6]. If the complex filters are considered the poles need not be
appeared as complex conjugate pairs.

Although IIR filters have some favourable properties, they also have some
undesirable properties. In general IIR filters are not linear phase and therefore
may introduce phase distortion [55, 66]. Consequently, the use of IIR filters in
phase sensitive applications such as data communications, and multi-channel
high-fidelity audio should be carefully considered. In some situations however,
by careful design IIR filters can often be made to approximate linear phase in

the chosen pass-band [55].

2.2 Adaptive IIR Filters and Design

An adaptive IIR digital filter is comprised of two basic components: a discrete
time varying IIR filter with input z(n) and output y(n), and a control algorithm

that adjusts the filter coefficients to optimise some performance criterion that

15



is based on prediction error, e(n), given by

e(n) = d(n) - y(n) (2.3)

where d(n) is the desired signal. Considering this error, the goal of the adaptive
filters is to find the optimum setting of parameters defining the system so as to
minimise suitably defined cost functions. One commonly used cost function is

the mean square error (MSE) given by
e =FE |e(n)|? (2.4)

where E is the statistical expectation.

The prediction error can be formulated either from equation or output error
methods [63, 26, 44, 82]. It has been shown in the literature that the algorithms
relating to equation error formulation have severe biasing problems and cause
inaccurate estimates of parameters [63]. The term bias refers to the difference
between actual parameter values to be found and its estimates. The cost func-
tions based on output error formulation are non-quadratic concerning the filter
coeflicients and may have multiple local optima which in turn cause the gradient
algorithm to get stuck in a local solution [63]. Nevertheless, the output error
formulations are now widely used, as it provides more accurate estimates than
an equivalent equation error adaptive IIR filter [38].

An MSE cost function based on output error formulation is depicted in
Figure 2.3. The mean squared value is plotted against adaptive filter coefficients

when an adaptive filter,

. bo + blz_l + b22_2

Alz) = 1—a127! —ayz—? (25)
is used to model an unknown system,
_ -1 -2
o - Y
by minimising the MSE error
=15 - gy @)
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Figure 2.3: An example of multimodal error performance surface of a second-
order adaptive IIR system. Mean square error surface is shown against b2 and
a\ for various choices of 60, while modelling the second-order IIR. system given
in equation (2.6)
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Given a training set of w = 200 samples, the MSE values of the coefficients
of the adaptive filter were calculated using the training set {¢(n),y(n)}, where
y(n) represents the output of the unknown system and §j(n) represents the
output of the adaptive filter. For the sake of simplicity, three coefficients are
varied whilst other parameters are kept constant. The error surface shown in
this figure is multimodal and has multiple local optima. Another example is
shown in Appendix A. The error performance surface equation based on output
error methods of an adaptive IIR filter is non-quadratic and a straightforward-
gradient based solution does not exist. For an adaptive FIR filter, the minimum
MSE is found simply by locating the bottom of the hyperparaboloid. Mathemat-
ically this is achieved by finding the zero gradient vectors using vector calculus
techniques. It is important to note that the adaptation of parameters by min-
imising MSE is valid only if the statistics of {z(n)} and {d(n)} are wide sense
stationary and ergodic process [76].

The length of the training set plays an important role in the convergence,
as too small training set may result in convergence to incorrect parameter val-
ues. Visualising the error surface around the best solution can easily show the
reason for such an inaccurate convergence. For example, consider modelling of
a second-order ARMA model represented by the following z-transfer function,

0.5—0.4271 4+ 0.9272

G(z) = (1 -0.7271)(1 + 0.6521)

(2.8)

by an adaptive filter

0.5 — 0.427! + by(n)z 2
(1-0.7271)(1 — pa(n)z~1)

Az) = (2.9)

For the sake of simplicity, we assumed that all parameters of the adaptive filter
except by(n) and pa(n) were assigned to the optimum values. The model and the
adaptive system were excited by the same input, which is a Gaussian variable
with zero mean and unit variance. Mean square error performance was obtained
for various choices of by(n) and ps(n).

Figure 2.4(a) shows the 3-D plot showing the local MSE surface around the

best solution when w = 100. Figure 2.4(b) on the other hand, shows the plot

18
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Figure 2.4: Local mean square error surface while modelling an ARMA model
by an adaptive filter using different number of samples, (a) shows the local
MSE when number of training data was 100. (b) shows the MSE obtained

when number of training signals was 30.
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obtained when w = 30. Mean square error shown in Figure 2.4(a) has minimum
MSE (MMSE = -2.33073 dB) at {52 = 0.89,p, = —0.65}, whilst Figure 2.4(b)
has its MMSE = -1.74582 dB at {132 = 0.93,p, = —0.62}. The MMSE obtained
for w = 100 is very closer to the optimum values which are located at {b, =
0.9,p2 = —0.65}, but the solution obtained for w = 30 converges to inaccurate
values which are clearly far away from the optimum point. Appendix A shows
how these mesh plots were obtained.

Common algorithms that have found widespread applications are the LMS
and the recursive least square [63, 47, 36]. In terms of computation and stor-
age requirements, the LMS algorithm is the most efficient [60]. Furthermore, it
does not suffer from the numerical instability problem inherent in the RLS al-
gorithms [45]. For these reasons, the LMS algorithm has become the algorithm
of first choice in many applications [82, 6, 76]. However, the RLS algorithms
have superior convergence properties. Unfortunately its uses in signal process-
ing applications have been relatively limited due to its higher computational
requirements and numerical errors [53]. In recent years there has been renewed
interest in the RLS algorithm, especially in its fast versions [36]. Stabilisation
techniques that prevent numerical divergence without performance degradation

have been recently proposed with added computations [1, 65].

2.3 Least Mean Square Algorithms for
Adaptive IIR Filters

A well-known algorithm, which falls into gradient search category, is LMS. The
LMS algorithm was the first developed by Widrow and co-workers in 1967 [82].
It is a practical method of obtaining estimates of the filter weights @(n). For

example in FIR-LMS, the filter weights are updated according to,

O(n+1) = 6(n) + ux(n)e(n) (2.10)
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where:

8(n) = [wo(n), wr(n), -+, war—1(n)]" (2.11)
z(n) = [z(n),z(n - 1), -, z(M — 1)] (2.12)
e(n) = y(n) - 6" (n)z(n) (2.13)

w is called step size or convergence factor, {w;}=/~' are the filter weights

(feedforward components) and {z(n)} is the input signal vector. The LMS
algorithm shown above does not require prior knowledge of the signal statistics,
but instead uses their instantaneous estimates. The weights obtained by the
LMS algorithm are only estimates, but these estimates improve gradually with
time as the weights are adjusted and the filter learns the characteristics of the
signal. The first generation of LMS algorithms was developed for adaptive FIR
systems. However, the algorithm has now been widely employed in designing
adaptive IIR structures.

Consequently, using the above background, various IIR-LMS algorithms
have been investigated and as a result, the following achievements were realised

[63]:

e Full Gradient IIR-LMS

Simplified ITR-LMS

Fentuch’s IIR-LMS

Filtered Error (FE) Algorithms

Recursive Prediction Error (RPE)

2.3.1 Full Gradient ITR-LMS

The weight vector update for full gradient IIR-LMS is:

O(n+1)=0(n) — 2ue(n) (2.14)

21



The weight vector, 8(n), can be given by
0(n) = [a1(n), -, an_1(n),bo(n), -, bar_1(n)]* (2.15)

where {a;} and {b;} represent the denominator and numerator coefficients re-
spectively while T" denotes the vector transformation. The gradients of the
filter output (y(n)) with respect to the filter coeflicients can be written more

compactly as

= A(n) = [ea(n), -, an-1(n), bo(n), -, Bu-1(n)] (2.16)

where {a;(n)}N 7! and {Bn(n)}M=3 are

_ 9y(n) —
a(n) = Bau(n) for1<i<N-1 (2.17)
and
_ 0y(n)

If the coefficients adapt slowly, then the following approximation can be made:
On)~0(n—1)~---=~0n—N-M+1) (2.19)

The slowly varying weight assumption can be some what forced by the algorithm
designer by choosing a very small step size for the algorithm. The gradient

components of the algorithm can be described as follows:

=1

.

= z(n—m)+ ) a;(n)Bn(n—1) (2.20)
and

a(n) = y(n—l)—i—. a;(n)

= yn—-10)+ a;(n)oy(n — 1) (2.21)
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Figure 2.5: Signal flow graph of full gradient IIR-LMS.
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The resulting algorithm is termed the full gradient IIR-LMS, because it uses all
of the gradient components for filter implementation. The signal flow graph of
this implementation is shown in Fiigure 2.5. It can be noted that, on each update,
the current feedback weights {a;(n)} are used with current and past values of the
input {x(n)} and with past outputs {y(n)} to produce the gradient components
in equation 2.20 and 2.21 in order to update the LMS equation. Therefore the
computation required at each new sample is of the order N(N + M) +2M + N

multiply accumulates (MACs) per iteration.

2.3.2 Simplified ITR-LMS Algorithm

In order to overcome the computational complexity of the full-gradient IIR-
LMS algorithms, the following simplifications can be made by choosing a small
step size . Hence ;(n) can be reasonably estimated using the data sample
{y(n — 1)} and A(z), similarly §,,(n) can be calculated using the data sample
{z(n)} and A(z). Initial gradient terms can be obtained from 2.20 and 2.21 by

substituting [ = 1 and m = 0 respectively.

ai(n) =yn—-1) + Zj a;(n)ay(n — 1) (2.22)
Bo(n) = z(n) + Z__% a:(n)Bo(n — 1) (2.23)

From the initial terms, the other gradient components can be obtained in such

a way that
y(n)
~ _ <I<N-1 2.24
Ba(n) ap(n —1) forl <I< (2.24)
Oy (n)
7 — <m<M-1 2.2
B () Bo(n—m) forl<m<M (2.25)

The signal flow graph representing this algorithm is shown in Figure 2.6. The
complexity of this algorithm is now reduced to around 2(N + M) + 2N MACS

per iteration.
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Figure 2.7: Signal flow graph: Feintuch’s algorithm.

2.3.3 Feintuch’s IIR-LMS Approach

Feintuch made a further simplification, where it is assumed all derivatives of
past outputs with respect to current weights are zero. Therefore, the gradient

components now become

a(n) = y(n —1) (2.26)
Bm(n) = z(n —m) (2.27)

The computational complexity of this algorithm is now only 2(N + M). In
typical applications, Feintuch will outperform the FIR-LMS if the system being
identified has high level of recursion within it. However, simply using Feintuch
to identify a non-recursive system, results in very little advantages. For a typical
system, up to 10 or 20 even poles may be used with this algorithm.
Furthermore, Feintuch’s algorithm has been found to be inherently more
stable than the full gradient due to a tendency to adapt poles away from the
unit circle towards the origin of the z-plane. The signal flow graph of Feintuch’s

algorithm is illustrated in Figure 2.7. This algorithm is still widely used and
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analysed within the signal processing literature.

Even though Feintuch’s algorithm is superior to other two algorithms, it
may not converge to a minimum (local or global) of the MSE surface unless the
denominator polynomials satisfy a Strictly Positive Real (SPR) condition. If
this condition is not satisfied, the algorithm may converge to an arbitrary point
on MSE surface and the overall performance may be unacceptable.

Strictly Positive Real Condition: The SPR condition is related to the
concept of hyper-stability, which describes the output stability of feedback sys-
tems that may have both nonlinear and time varying components [73]. It is
important to note that in addition to the SPR condition, hyper-stability re-
quires certain restrictions on the data and on the adaptive filter configuration
[63, 6]. It can easily be shown that the filter is bounded by the SPR condition
if

Re {f—j%(zz))} —y>0 forall |z]| =1 (2.28)
where Re(u) denotes the real part of u while {1+ C(z)} is a filter employed to
smooth e(n) and A,(z) denotes the pole polynomials which are to be identified

[63]. When C' =0 and y = 0.5 it can be shown that
|A.(2)] <1 forall |z] =1 (2.29)

for the SPR. The SPR region for various values of ¢; for a second-order system
is illustrated in Figure 2.8. From this figure it can be seen that the SPR region
can be purposely deformed by varying the value of ¢;. This gives the motivation

behind the FE algorithm given below.

2.3.4 Filtered-Error Algorithm

To overcome the convergence problem associated with the SPR condition, the er-
ror signal can be smoothed prior to the input into adaptive algorithms. Smooth-

ing the error signal can assist the IIR algorithm in converging under the SPR
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Figure 2.8: Second-order system, region of SPR with error smoothing.

conditions. A simple filtered error is given by

es(n) = 3= celn =) (2:30)

where c; coefficients should represent a simple low-pass filtering function. How-

ever, in order to have satisfactory convergence it is desirable that
1+C(2) =1- A.(2) (2.31)

However, such a condition is not always possible to achieve in practice since A,
is usually unknown. A signal flow graph illustrating FE algorithm is shown in

Figure 2.9.

2.3.5 Recursive Prediction Error Algorithm

A major drawback found in all of the above algorithms is the poor convergence
behaviour, which is caused by the statistical properties of the adaptive filter’s
input signals. These signals can be de-correlated in the time domain by a time

varying step size matrix, which gives the motivation for RPE algorithm.
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Figure 2.9: Filtered error algorithm. Filtering the output error with a filter of
transfer function 1+ C(z), which serves as an estimate of the underlying system
poles 1 — A,(z).

The RPE algorithm can be written as:

1

O(n+1) =6(n) +uP '(n+ 1)m

d(n)e(n) (2.32)

where 1 is a constant step size that controls the algorithm convergence rate,

¢(n) is the regression vector containing the data,

and P~'(n) is an estimate of the Hessian matrix (see [63] for details) updated
according to

P(n+1) = AP(n) + ugs(n) ¢} (n) (2.34)
where ) is called forgetting factor and ¢ (n) is filtered version of ¢(n) given by

1

¢s(n) = =40

é(n) (2.35)

The motivation of using A is to give greater importance to recent data than older
data. Since computing the inverse of P is computationally expensive, P! is
generally updated directly using the matrix inversion lemma [60]. In this case

we have

(2.36)

! (p-lm) - P‘1<n>¢f<n>¢?<n>P—1<n>>

Prn+l)=3 5 TP (n)d, ()
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Practical Limitations: There are, two main problems that may be en-
countered when the RLS technique is implemented directly. The first, referred
to as blow-up, results of the ¢p(n) is zero for a long time, when the matrix P(n)
will grow exponentially as a result of division by A (which is less than unity) at

each sample point:

lim P~'(n+1) = lim (P _;(”)) (2.37)

n—00 n—oo n

The second problem with the RLS is its sensitivity to computer round off errors,
which results in a negative definite P matrix and eventually to instability. For
successful estimation of coefficients @, it is necessary that the matrix P be
positive definite. For these reasons, in the latter part of this thesis we consider
RPE algorithm with P where I represents an identity matrix of size (N + M —
1)X(N+ M —1). The RPE algorithm which uses P=I is denoted as normalised
RPE in the rest of this thesis.

Summarising, amongst IIR-LMS algorithms studied, Feintuch is the simplest
to implement with 2(N + M) MACs per iteration. Also, Feintuch is found to be
more stable than other IIR-LMS algorithms such as full gradient IIR-LMS and
simplified gradient IIR-LMS. The full gradient IIR-LMS is rarely implemented
due to its high level of computation required. The performance advantages for
this high level of computation are also noted to be minimal. The simplified
gradient IIR-LMS is also rarely implemented, with again minimal performance
improvement seen over the computationally simpler Feintuch’s IIR-LMS. The
situations where the full gradient and simplified gradient IIR-LMS’s have im-
proved performance over Feintuch’s IIR-LMS are usually in environments where
the system being modelled has very high levels of feedback. Recursive prediction
error algorithm can be applied if the system demands high tracking performance.

The following table summarises the gradient-guidance algorithms described

above.
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Algorithm

Processing
Order

Main Features

Full Gradient

N(N+M)+2M+ N

Best,
approximation, High
level of computation

Simplified 2(N+ M)+2N Less  computation
Gradient than Full Gradient
Feintuch’s 2(N + M) Reduced compu-
tation, Poor approx-
imation, Suffer from
SPR. condition
Filtered Error | 2(N + M) +p Higher computa-

tion than Feintuch’s,
Hyperstable

RPE (Simpli-
fied gradient)

N(N + M) + 3M + 2N + 3(N + M)?

High level of compu-
tation, Best approx-
imation, Fast con-
vergence, Suffer from
blow-up error and
sensitive to computer
round-off errors

Table 2.1: Comparison between gradient-guidance algorithms.
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Figure 2.10: An equation error adaptive IIR filter. The filter weights are up-
dated in all zero form and then copied into an all pole filter.

2.4 Recursive Least Square Algorithm for

Adaptive 1IR Filtering

Recursive least square algorithm for adaptive IIR filters can be formulated us-
ing an equation error method. An equation error adaptive IIR filter is shown
in Figure 2.10. Unlike output error formulation [45], it essentially operates on
a two-input, single-output adaptive FIR filter such that the polynomials, A(z),
associated with the poles are adapted in an all-zero form. After each update of
the weights, the inverse of {1 — A(z)} is copied to an all-pole filter which is in
cascade with {B(z)}. The impulse response from {z(n)} to {y(n)} is infinite,
and the cascaded filters have the same form as that of output error formula-
tion. However, as mentioned earlier, the estimated coefficients obtained with
this approach are generally different from those generated by the output error
formulation due to biased estimates [63]. In a system identification application,
this corresponds to incorrect estimates of A,(z) such that E[f(n)] = 0, + bias,
where 6,(n) denotes the coefficients to be identified [63]. However, it can be

shown that this bias will be zero if additive noise signal is zero [63]. Therefore,
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RLS algorithm based on equation error formulation can give unbiased estimates
if the additive noise is negligible.
By using the equation error formulation, RLS equation for an adaptive IIR

filter can be given as (see [24] for details)

B(n +1) = 6(n) + G(n)e(n) (2.38)
where

Pln+1)= % (P (n) - G)$X ()P~ (n— 1))} (2.39)

G(n+1) = Pﬁl(”a_(nl)) be(n) (2.40)

a(n) = A+ &7 (n)P(n — 1)z(n) (2.41)

where ¢,(n) is called the regression vector:
d)e(n) = [x(n)a e 7‘7:(77' - M+ 1): d(n - 1)) T d(n - N+ 1)]T (242)

where z(n) and d(n) are the input signals. The subscript e is used to distinguish
equation error from the output error. The Hessian matrix, P~!(n) is updated
in the same manner as described in equation (2.36).

Over the last decade, fast versions of the RLS (e.g. Fast Kalman) algorithms
have been developed [21, 36]. However, practical use of the fast RLS algorithm
in real-time applications has been prevented in the past because of divergence
due to numerical error accumulation in the prediction parameters [53]. Although
this numerical error problem has been resolved, the resulting algorithm needs
much more computation than standard RLS [21].

In summary, RLS algorithms are encouraged in adaptive IIR filtering due
to the multimodal error performance surface of an output error gradient based
algorithms and to achieve fast convergence. However, these algorithms are not
often employed in practical applications due to its high computational cost,
biased estimates, blow-up and numerical errors. In the latter part of this thesis,
normalised RPE (i.e. P=I in the equation (2.3.5)) is employed to achieve

fine-tuning and track time varying changes.
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Chapter 3

Evolutionary Algorithm Based
Global Optimisation and Design
Methods

In the previous chapter we have shown various classical algorithms in the de-
sign of adaptive IIR filters. These algorithms are mainly based on recursive
least mean square technique, which has several drawbacks when the algorithms
are implemented for practical applications. A major drawback of these algo-
rithms is that they may fail when the error function to be optimised is mul-
timodal. Furthermore, classical algorithms don’t constrain the search space
within a known range. For example, by constraining the search space of feed-
back coefficients within a stable region, stable filters can be easily produced.
The drawbacks of classical algorithms focus the research activities into optimi-
sation techniques and hence various evolutionary algorithms have been grown
[37, 51, 44, 3, 73, 52, 46, 78]. Evolutionary algorithms are computer programs
that evolve over time in a manner similar to the evolution of living matter.
They involve a population of software modules whose objective is to solve some
problem, whose solution is initially unknown. Using techniques based on sur-
vival of the fittest, reproduction, and mutation the modules compete and breed

to yield new software modules.
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A variety of evolutionary algorithms have been further developed and re-
ceived increasing attention recently. The common ones are genetic algorithms,
evolutionary programming and evolutionary strategies (ES). They all share a
common conceptual base of simulating the evolution of individual structures.
Each individual in the population receives a measure of fitness in the envi-
ronment. Reproduction focuses attention on high fitness individuals, thus ex-
ploiting the available fitness information. Recombination and mutation perturb
those individuals, providing a general heuristic for exploration.

In this chapter, various evolutionary operators, which have been proposed
or modified most recently to improve the algorithm performance, will be fur-
ther studied. Flowcharts for each algorithm are presented, and the differences
between these evolutionary techniques are detailed. The aim of this chapter is
to provide basic understandings of various evolutionary techniques, which are

needed to investigate this research successfully.

3.1 Genetic Algorithms

Genetic algorithms are a class of computational modules that attempt to mimic
the mechanisms of natural evolution to solve problems in a wide variety of do-
mains. The theory behind GAs was proposed by John Holland in his landmark
book [23]. Genetic algorithms operate on a population of individuals repre-
sented by chromosomes, which are in essence a set of character strings that are
analogous to the DNA of living organisms. These individuals in a population
yield different solutions to an objective function created for a particular prob-
lem. According to evolutionary theories, only the most suited elements in a
population are likely to survive and generate offspring, thus transmitting their
biological heredity to new generations [23, 16].

After an initial population has been chosen, a GA operates through a simple

cycle of three stages:
1. Reproduction
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Figure 3.1: An example illustrating genetic cycle.

2. Genetic Manipulation
3. Replacement

A GA operation is shown in Figure 3.1.

3.1.1 Creation of initial population

An initial random population of strings is created. For example, in binary coded
GAs the elements of binary strings, 0’s and 1’s, can be generated by flipping a
coin or by using some other random function. Each element of a population is

called a chromosome, while each element of a chromosome is called a gene.

3.1.2 Reproduction

In the first stage, the performance of each individual in the population is eval-
uated with respect to the constraints imposed by the problem. An objective
function is used to evaluate the status (performance) of each chromosome. This
is an important link between the GAs and the systems, which are to be op-
timised. The objective function takes a chromosome as input and produces a

number or objective value as a measure of the chromosome’s performance. The
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range of values of the objective function can be varied for each problem. To
maintain uniformity over various problem domains, a fitness function is needed
to map the objective value to a fitness value [23]. Before doing this, each ele-
ment of the population is decoded into the original values with a range [pmin,
Pmaz) specified for a particular problem. Based on each individual’s fitness, a
selection mechanism creates an intermediate population for genetic manipula-
tion. The selection process assures the survival of the best-fitted individuals.
Each member of the intermediate population is called the parent and hence
the intermediate population often takes a name called parent population. The
combined evaluation/ selection process is termed reproduction.

There are at least four selection schemes currently in use: proportional,
remainder stochastic sampling with replacement, rank-order and tournament.

Proportional selection: selects the mates according to the probability
of their relative fitness values. It is a purely random approach in which the
probability of an individual with a higher fitness value is greater than a lower
one. It may be implemented with a roulette wheel selection referred in [23, 16].

Figure 3.2 illustrates an example of the roulette wheel selection process,
where each individual is represented by a space that proportionally corresponds
to its fitness. By repeatedly spinning the roulette wheel, individuals are chosen
using stochastic sampling with replacement to fill the intermediate population.
For an example, 16 individuals are mapped onto the roulette wheel shown in
Figure 3.2.

Remainder stochastic sampling: this is a selection process which more
closely matches the expected fitness value. The probability of contribution for
each string is calculated as in the proportional selection scheme. Then, the
expected number of individuals for each string is calculated as the product
of the probability value for that string and the size of the population, being
rounded off to the nearest integer. For example, a string with ff— = 1.36 receives
1 copy, and receives a 0.36 chance of placing a second copy. If the total number

of individuals thus created is less than the population size, the fractional parts
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Figure 3.2: Proportionate selection using roulette wheel method.

of the expected number values may then be used in a roulette wheel selection
procedure to fill the remaining slots in the population.

Remainder stochastic sampling is most efficiently implemented using a method
known as stochastic universal sampling as illustrated in Figure 3.3. For exam-
ple, a population of 16 individuals is arranged in random order, where each
individual is assigned space on the pie-graph in proportion to fitness. An inner
roulette wheel is also placed inside the pie with 16 equally spaced pointers. A
single spin of the roulette wheel will now simultaneously pick 16 members of
the intermediate population.

Ranking scheme: In this scheme, the M best out of a population size
of N members are selected to form the members of the next generation. The
remaining population can be filled in any manner. In the ranking schemes,
the fitness value is used to rank all the strings. This is an important property
which leads to a high selective pressure and hence fast convergence of an EA
[80, 46, 39].

Tournament: chooses better individuals by holding a tournament among s
competitors, with s being the tournament size. The winner of the tournament is
the individual with the highest fitness of the s tournament competitors, and the

winner is then inserted into the mating pool. The mating pool, being comprised
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Figure -3.3: Remainder stochastic sampling with replacement. The individuals
{1,4,8,13} get 2 copies, the individuals {2,5,0,9,10,12,15,16} get a single
copy whilst {3, 7,11,14} are die off.

oftournament winners, has a higher average fitness than the average population
fitness [40]. This fitness difference provides the selection pressure, which drives

the GA to improve the fitness of each succeeding generation [40].

3.1.3 Genetic Manipulation

The manipulation process employs genetic operators to produce a new popu-
lation of individuals, which are termed offspring, by manipulating the genetic
information (referred to as genes); possessed by the parents. Genetic manipu-
lation comprises two operations, namely crossover and mutation.

Crossover: a recombination operator that combines subparts of two chro-
mosomes (parents), which are to produce offspring that contain some parts of
both original’s genetic material. A probability term, probability of crossover
ac, is set to determine the operation rate. A number of variants on crossover
operations are proposed. They include single-point, two-point, uniform, and
adaptive uniform crossover etc.,. [23, 16, 4, 78, 40]. The simplest form is single-
point crossover, which is illustrated in Figure 3.4. The parents and crossover
point are randomly chosen and the portions of the two chromosomes beyond

the crossover point are swapped to form the offspring. Multipoint crossover is

39



4 5 6 7 8 9 Bit position

000000000 -
000000000

Crossover Point

000000000 """
000000000 """

Figure 3.4: Simple single-point crossover.
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Figure 3.5: Multi-point crossover.

similar to single-point crossover, except that m crossover portions are chosen
at random with no duplication. An example of this operation is illustrated
in Figure 3.5, where 4 such crossover points are shown with binary strings of
chromosomes.

In practice one and two-point crossovers have been widely used in stan-
dard GAs [57, 23]. Consequently, uniform crossover has been proposed as an
alternative to one and two-point crossover so that more schema can be com-
bined [4, 2, 9]. This approach combines two parents to produce two children

like a normal crossover operator. It differs in that a binary template is used
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Figure 3.6: Uniform crossovers as (a) one-point (b) two-point and (c) multiple-
point crossovers.

to choose which bit position from which parent contributes to which child.
This process can be seen in Figure 3.6, the two parent chromosomes are shown
above the crossover template, and the two children below. The template de-
cides which parent contributes to which child at that element position. The
uniform crossover can be thought of as an m-point crossover operator, where
the value of n is dependent upon the exact makeup of the crossover template.
For example, consider the binary templates shown in Figures 3.6(a) and 3.6(b),
which contribute simple one and two-point crossovers respectively. Therefore,
the uniform crossover operator, or a variant of it, can be viewed as a generic
n-point crossover operator illustrated in Figure 3.6(c), specific instances of it
being equivalent to a one or two-point crossover.

Mutation: is an operator that introduces variations into the chromosomes.
The motivation of using mutation is to prevent the algorithm from reaching
premature convergence [23]. After several generations it is possible that selection
will drive all the bits in some position to a single value, either 0 or 1 in the binary

case. If this happens without the GA converging to a satisfactory solution, then
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Figure 3.7: An example illustrating mutation operation. The mutation is ap-
plied to third and seventh elements of the string.

the algorithm has prematurely converged [34]. This may be a particular problem
if a small population size is employed. Without a mutation operator, there is no
possibility for reintroducing the missing bit value. Mutation therefore acts as a
background operator, occasionally changing bit value, and allowing alternative
alleles to be tested.

Mutation introduces random variations into chromosomes so that the pop-
ulation has enough genetic diversity. The operator occurs occasionally, with a
probability called probability of mutation o,,. It randomly alters the value of
a string position. A randomly generated bit replaces each bit of a bit-string if
the probability test has passed. An example of mutation of the third and the
seventh bits is shown in Figure 3.7, where the bit string [011100010] is changed
to [010100110].

3.1.4 Replacement

After generating the offspring, two representative strategies are used to replace

the old population [74]:

Generational-Replacement

Each population of size n generates an equal number of new chromosomes to
replace the entire old population. This strategy may make the best member
of the population fail to reproduce offspring in the next generation. So the

method is usually combined with an elitist strategy where one or a few of the
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best chromosomes are copied into the succeeding generation. The elitist strategy
may increase the speed of domination of a population by a super chromosome.

SubsubsectionSteady-State Reproduction This strategy means that only a
few chromosomes are replaced once in the population to produce the succeeding
generation. Usually the worst chromosomes are replaced when new chromo-
somes are inserted into the population. The number of new chromosomes is to
be determined by this strategy. In practice, only one to two new chromosomes

are being used by steady-state reproduction.

3.1.5 Implicit Parallelism

A distinguishing feature of genetic algorithms over other evolutionary techniques
is that they are able to process many building blocks or schemata in parallel.
This property is called implicit parallelism. In natural populations, thousands or
even millions of individuals exist in parallel. A parallel GA is generally formed
by parallel components each is responsible for manipulating sub-population.
There are two different ways of exploiting parallelism in GAs:

Centralised selection Models: use centralised selection mechanisms, a
single selection operator works on the global population. Thus the parallel GA
has a synchronous selection stage.

Island Models: employ distributed mechanisms; each parallel component
has its own copy of the selection operator. In addition, each component com-
municates its best strings to a sub-set of other components. A migration opera-
tor and migration frequency defining the communication interval achieves this.

These parallel GAs have an asynchronous selection stage.

3.1.6 Genetic Algorithm Cycle

A GA cycle is repeated until a desired termination criterion is reached [51]. For
example, the fitness function or a predefined number of generations can be used

as a termination criterion, but it is usually unknown. The best chromosome
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in the final population can become a highly evolved solution to a problem. A

Flowchart illustrating the complete genetic cycle is shown in Figure 3.8.

3.2 Evolutionary Programming

Evolutionary programming (EP), is another stochastic optimisation strategy
similar to GAs, but it places emphasis on the behavioural linkage between par-
ents and their offspring, rather than seeking to emulate specific genetic operators
as observed in nature. Like GAs, EP is a useful method of optimisation when
other techniques such as gradient decent or direct analytical discovery are not
possible [3, 13].

Evolutionary programming was first introduced by Lawrance Fogel in his
landmark book ” Artificial Intelligence Through Simulated Evolution”, in 1966.
In the book, finite state automata were evolved to predict symbol strings gener-
ated from Markov processes and nonstationary time series. Recently there has
been renewed interest in the method prompted by the work of David Fogel and
others [3, 46, 78, 13].

3.2.1 The Evolutionary Programming Process

Unlike GAs, EP uses phenotypic representation of the parameters and relies
on mutation as the primary search operator. The basic method of EP can be

summarised as follows:

1. Initial population of trial solutions are chosen randomly. The number of
solutions in a population is highly relevant to the speed of optimisation,

but no definite answers are available as to how many solutions are wasteful.

2. Computing fitness assesses each offspring solution. Each string s; is as-
signed a fitness value ¢(s;) which may be a complex function of the true

fitness of s; or the raw fitness value of s; itself.
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Figure 3.8: A flow-chart illustrating the GA.
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3. Selection of better individuals based on fitness measurement. Typically,
tournament is held to determine N solutions to be retained for the popu-
lation, although this is occasionally performed deterministically. There is
no requirement that the population size is held constant however, or that

only a single offspring is generated from each parent.

4. Each solution is replicated into a new population. Each of these offspring
solutions are mutated according to a distribution of mutation types. The
severity of mutation is judged on the basis of the functional change im-
posed by the parents. Using each s;,i =1,---, N a new string s;(¢t + 1) is
generated as follows: s;(t + 1) = s; + Nog(s,(¢)); Where Np 4(s;) represents
a Gaussian random variable with mean 0 and variance ¢(s;(t)). At each
generation, the variance ¢(s;(t)) corresponding to a chromosome i is ob-
tained from its fitness value so as to reduce the severity of mutation as

the algorithm approaches global solution.

A flowchart representing the EP is shown in Figure 3.9.

3.2.2 Important Features of Evolutionary
Programming

There are three main ways in which evolutionary programming differs from

genetic algorithm:

1. An important feature of EP is the lack of any kind of crossover or re-
combination operator. It has been reported in [13] that macromutations
like the crossover and inversion operator used in GAs are not required for

successful adaptation.

2. In EP, there is no constraint on the representation, but typical GA ap-
proach involves encoding the problem solutions as a string of represen-
tative tokens, the genome. In EP, the representation follows from the

problem. For example, a neural network can be represented in the same
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manner as it is implemented since the mutation operation does not de-

mand a linear encoding.

3. The mutation operation simply changes aspects of the solution accord-
ing to a statistical distribution which weights minor variations in the be-
haviour of the offspring as highly probable and substantial variations as
increasingly unlikely. Furthermore, the severity of mutation is often re-
duced as the global optimum is reached, this is the motivation of using
the fitness to calculate the standard deviation of the mutation operator.
It can be seen that the standard deviation of the mutation process is cal-
culated from the fitness value of the parent’s chromosomes. A complete

detail of calculating this variance can be found in [12].

3.3 Evolutionary Strategies

Evolutionary Strategies (ES) are another class of evolutionary techniques, which
are based on the same principle as EP and GAs. The algorithm operates on
a population of string structures, each of which represents a potential solution
to the optimisation problem. An important difference between evolutionary
strategies and genetic algorithms is that ES operate at the phenotypic level
using the parameter values themselves as genetic material while the latter work

on a genotype level (coding of the real parameters).

3.3.1 Important Features

Unlike other evolutionary algorithms, evolutionary strategies use a unique method
of mutation. For example, in early ES’, each parameter value has a standard
deviation associated with it, which decides the variance of the mutation. The
parameter values and standard deviation are concatenated to form the string
structure of a population. In the early ES’, these standard deviations are fixed

for each parameter and for the entire run of the algorithm.
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Subsequently, the original version of mutation has been modified by Schwefel
[69] in 1981, where the standard deviation of the mutation process are a part of
the genetic material and undergo genetic modifications during the adaptation.

The mutation process is carried out as follows:
O'I(t+ 1) = O'z(t) X NO,dg (31)

z(t+1) = z(t) + Noo, i (3.2)

where z(t) and o,(t) are parameter and the associated standard deviation at
iteration t, while z(t + 1) and o,(t + 1) are the new values after mutation.
Further, Ny g4, is a Gaussian process with mean 0 and standard deviation d,.
Thus in Schwel’s ES mutation works both on the parameter value, z, and on

the standard deviation, o,.

3.3.2 Differences between ES and EP

There are two key differences between evolutionary strategies and evolutionary

programming:

1. Evolutionary programming typically uses stochastic selection via a tour-
nament. Each trial solution in the population faces competition against a
pre-selected number of opponents (tournament size s) and receives a win
if it is at least as good as its opponent in each encounter. In contrast,
ES typically uses deterministic selection (e.g. Remainder stochastic sam-
pling with replacement) in which the worst solutions are purged from the

population based directly on their function evaluation.

2. Evolutionary strategies use recombination process, while EP on the other

hand often does not employ such a process during evolution.
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3.4 Summary and Consideration in Filter
Design

This chapter has provided an overview of various evolutionary algorithms. There
are currently 3 main paradigms in evolutionary algorithm research: GAs, EP
and ES, together with classifier systems. Fundamental differences between these

algorithms and classical methods are:

1. EAs search from a population of solution vectors, not a single solution
vector and hence global, hard constraints and multiobjectives problems

can be easily solved.

2. EAs exclusively use values of the function under study, and do not consider

gradient information, and hence less prone to noise and local optima.

3. EAs use probabilistic, not deterministic transition rules and hence more

chance of getting a global solution.

In this chapter, the salient features of each evolutionary technique have
been revealed more clearly. This study has given a clear foundation on various
evolutionary techniques and has provided a theoretical concept to expand this
research to improve the current techniques in various DSP applications. Evo-
lutionary algorithm optimise a population of chromosomes unlike conventional
optimisation techniques such as simulated annealing (SA) that optimise only a
single solution vector. Considering several solution vectors of high performance
reduces the probability of selecting an improper solution. Evolutionary algo-
rithms remain highly general because their optimisation is directly based on the
function value.

A comparative study of various evolutionary techniques shows that evolu-
tionary strategy (ES) gives the best convergence performance [46, 78]. However,
genetic algorithms are demonstrated as being the most powerful method for
stability constraint, multimodal and multiobjective problems which often arise

when designing IIR filters [74, 37, 2]. This contradictory result arises due to the
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randomness of the EAs operation and hence causes difficulties of predicting the
performance in various applications or the differences of their operation. An
important difference between GAs and ESs is the fact that GAs operate on a
genotype level, while ESs operate at the phenotypic level using the parameter
values themselves as genetic material [78]. In ESs crossover occurs only between
the boundaries of the parameters and mutation acts on individual parameters
as a whole and not at the level of binary alphabets used to represent the co-
efficient [46, 78]. Furthermore, ESs use unique variance of mutation for each
parameter and are mostly evolved along with the solutions [78]. Therefore it is
evident that ESs use comparatively short representation of chromosomes and
can provide better precision when optimising large problem domains. However,
the ESs represent long chromosomes and hence require high computation when
compared to one that has only the parameters itself without using evolving
variances.

In summary, among various evolutionary techniques revised, genetic evolu-
tion of IIR digital filters is appeared as being quite robust, but uses binary repre-
sentation of coefficients with the added expense of coding techniques. Moreover,
the binary coding would require prohibitively long representation and hence
provide less precision when designing higher order filters [25]. A comparative
study on binary and floating-point GAs shows that the latter is faster, more
consistent from run to run, and provides higher precision, when designing a
nonlinear dynamic control model [25]. Therefore, it is evident that the EAs,
which use floating-point representations along with crossover, and mutation op-
erations that behave exactly the same way as binary GAs would be useful when

designing IIR filters.
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Chapter 4

Evolving Stable Poles and
Globally Optimal IIR Filters

Stability of adaptive IIR systems is determined by observing the pole locations.
An unstable system has one or more of its poles, which lie outside the unit
circle. To determine instability, pole polynomials must be factored. Factoring
the polynomials of higher order systems is computationally expensive [63]. To
resolve this problem, poles can be designed directly from a population so that
the adaptive filters can be easily ensured within the stable region throughout the
genetic search [61, 69]. Unfortunately, the poles are generally complex values.
Therefore, applications of evolutionary algorithms that evolve complex valued
chromosomes are of paramount importance. In addition, the equalising filters
employed in QAM modems have complex parameters and will necessitate the
use of complex valued chromosomes [56].

The work presented in this chapter shows the recent development of de-
signing complex IIR filters using floating-point EAs. In particular, this work
employs a method for representing complex filters into chromosomes that avoids
coding/ or decoding techniques. Unlike standard methods, this method evolves
the poles instead of feedback coefficients, which in turn simplifies the initial

selection of poles to lie inside the stable region. A new method of crossover
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operation is introduced which performs crossover between floating-point chro-
mosomes as the same manner as in the binary GAs. These new techniques are
applied to system modelling problems to determine the ability of the floating-
point EA’s convergence on simulated data.

The rest of this chapter is organised as follows: Section 4.1 provides the
motivation of using complex filters in digital signal processing. In Section 4.2
we present the design techniques of modelling complex IIR filters using pole
design method. The advantages and drawbacks of the approach when designing
the poles are clearly outlined. Two major objective functions, which are based
on MSE and mean modulus error (MME) are discussed. It has been shown that,
the length of the training data affects the convergence of the EA. Section 4.3
shows the design techniques of recently developed genetic operators to evolve
floating-point chromosomes. The reason for choosing the tournament selection
is discussed. We have also shown how EA can use various cost functions with the
use of tournament selection. Design methods of developing mutation operator
are given. Simulations illustrate the advantages of using Gaussian function as a
mutation operator. The special features of uniform crossover are discussed. A
major drawback of floating-point chromosome is outlined, and a new method of
crossover is given to overcome this problem. Finally, in Section 4.4, we present
a selection of simulation results. These were obtained by modelling various IIR
systems with the EA techniques developed during course of this research. The

chapter also gives a brief summary of the work with suitable conclusions.

4.1 Complex Filtering

There are two major reasons that encourage the use of complex filtéring in digital
signal processing. The first reason of using the concept of complex filtering is to
represent QAM signals as complex data for mathematical convenients [6]. For
example, quadrature and in-phase carriers can be stored in DSP processors as

complex data and hence associated processing can be easily done in complex
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forms [76]. Second reason of using complex filtering is to reduce the signal
bandwidth prior to sampling. To realise this reduction of signal bandwidth
requires an understanding of the concept of complex waveforms discussed below:

Passband Filtering: There are many applications, which involve signals
concentrated in a narrow band, i.e. with bandwidth much less than its cen-
tre frequency [55]. It can be easily shown that a continuos-time signal with
highest frequency B can be uniquely represented by samples taken at minimum
rate (Nyquist rate) of 2B samples per second [55]. However, if the signal is a
bandpass signal with frequency components in the band B; < F' < Bs, a blind
application of the sampling theorem would have us sampling the signal at a rate
of 2B, sampling per second. Signals with higher sampling rate would require
high speed digital circuitry which in turn limits the use of general purpose DSP
processors in real applications [76, 6]. To overcome this problem the signal can
be downconverted into some lowest frequency so that less sampling rates can
be applied. A theoretically sound technique is bandpass sampling, i.e. under-
sampling at a rate on the order of the information bandwidth, but chosen such
that aliased images do not overlap and that the image nearest DC is properly
positioned in the baseband [76, 6]. However, in doing so our signal becomes
complex, since its symmetry has been destroyed [19]. More details of complex

signals can be found in textbook [19, 55, 15].

4.2 Evolutionary Approach to Globally

Optimal Filtering

Consider an IR digital filter, comprised of M feedforward coefficients {by(n) } 1!

and L poles {px(n)}L_,. We assume the general case of filter having complex
coefficients, and we also assume the filter input z(n) is complex. The aim of

the evolving process is to choose the filter parameters {b;}45" and {p, I, to
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satisfy some desired criteria. A standard criterion is to minimise the MSE,

1 w—1

Q) =5 3 ldm) ~ (s (4.1)

where ¢ denotes estimate of filter output (2 is vector of filter parameters given
by
Q={bn),1=0,1,2,---,M —1;p;(n), 7=1,2,---,L} (4.2)

where d(n) is the desired output sequence, and w represents the number of
training samples. The training samples or training signals are a set of exam-
ples that contains elements which consist of paired values of input sequence,
{d(n),§(n)}“=}, in order to learn the algorithm during adaptation. This kind
of adaptation, which uses training signals, is called trained adaptation.

We mention however that the evolutionary search approach is able to deal
with a wider class of cost functions with ease, e.g. least square error (LSE) and
mean modulus error (MME). In this work, LSE and MME criteria have been
successfully employed. For a given training set {d(¢), (i)}, the least square
recipes is to minimise the summed squared error as illustrated in (4.1). The

MME criteria on the other hand minimise the summed modulus error:

5 = = 3" ld) - 903 ) (4.

w -
In the least square approach small errors have less emphasis than large errors.
In contrast to modulus error, which gives equal weight to all errors.

A major advantage of evolutionary techniques over classical algorithms is
that the search space of parameters can be constrained to a suitable range in
order to achieve certain performance. In this Chapter, we design the poles rather
than feedback coefficients so that the search space of the feedback sections can
be restricted within the known stable region. The pole polynomials can be
easily converted back into feedback coefficients. The relationship between poles

and feedback coefficients can be obtained by comparing the z-transfer function:

M-1 . M-1 .
S bzt > bzt
1=0 1=0

H(z) = (4.4)

L T L ]
[1(1-pjz77) 1- 3 ajz7I
Jj=1 j=1
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where {p;}}_, are the poles whilst {a;}}_, represent the feedback coefficients
of the filter. For example, the pole polynomials {px(n)}2_, of a second-order

system can be related to the feedback coefficients {ax}?_; in such a way that:
a1(n) = p1(n) + p2(n) (4.5)

az(n) = p1(n)pa(n) (4.6)

where {ax(n)}2_, are complex feedback coefficients at time n. Consequently,
alternate realisations such as parallel or cascade forms can be considered to
facilitate this conversion trivial. The sub-filters of these realisations can be
represented as simple low order filters, but there is no restriction to reduce
the filter length as first or second-orders. However, in this work we consider
direct form realisation and use simple numerical methods for translating the
poles into coefficients when designing large order IIR systems. The primary
advantage of using the direct form structures is to develop evolving models in
the same manner as it is implemented. The adaptive IIR filtering approach using
alternative realisations provide high complexity and poor performance than the
direct form filters [64, 31, 3, 48, 62]. Appendix B shows how the coefficients
and the poles can be related to each other for a general order filter.
Evolutionary algorithms generally maximise a performance criterion rather
than minimising a cost function. The maximising functions are called fitness
or objective functions and can be formed using the cost functions described
above. They measure the status of each chromosome. A simple fitness function

formulated from MSE criterion is

1 1
LI 14 1% am) - y(m Q)2
n=0

f(mse) = (4.7)
where w is number of training set or window size. It can be seen in the equation
(4.7) that MSE is added to 1 when calculating the fitness function. The reason
for introducing this value is to prevent the fitness function from reaching an

infinite value when the MSE approaches to zero.

o6



log1o(MSE)
dB
&

0.008 +
0.009 +
0.010 +
0.011 +
0.013

0.000

0.001 +
0.003 +
0.004 +
0.005 +

% 0.006 +

Figure 4.1: Logarithmic scaling of MSE.

Logarithmic scaling of the objective functions can be used to improve the
adaptive algorithm’s ability to locate good sets of filter coefficients when GAs
are implemented with proportional selection schemes [78]. Logarithmic scaling
provides nonlinear mapping between the objective function values and actual
error performance. This scaling accommodates larger variations of objective
functions values within a smaller range. For example, Figure 4.1 illustrates a
logarithmic scaling of MSE plotted against actual values of MSE. Figures 4.2
and 4.3 show these error performances while modelling a direct system (4.29)
of parameters (4.30) given in Section (4.4.1) with 100 training samples. The
logarithmic scaling has been successfully employed to improve the selection pres-
sure of the proportional selection scheme when binary GAs were implemented
to model various IIR models [78].

Even though the pole design method offers several salient features, it has a
major drawback that provides multiple optima with the same fitness values that
arise from reordering the poles within the filter. For example, consider the MSE
performance shown in Figure 4.4 which was obtained when modelling a second-
order ARMA model by an adaptive filter with equal number of parameters. The

model and the adaptive filter used in this example have the following transfer
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Figure 4.2: Logarithmic scaling of MSE while modelling the system (4.29) of
parameters (4.30).

Figure 4.3: Non-logarithmic scaling of MSE.
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VE B3

Figure 4.4: 3-D plot showing the MSE surface while modelling a second-order
all pole system using an adaptive filter. Mean squared error is shown for various
choices of poles ofthe adaptive filter. Two global minima exist by interchanging
the poles within the filter.

functions:

G 022 B0+ 04z ) (8

D= 4y 'Y @)
where p\ and p2 are the poles of the adaptive system. The plant has two
separate poles, which are arbitrary chosen as 0.2 and -0.4 respectively. The
MSE is obtained for various choices of pi and p2 by applying a training set of
100 samples. It is seen from the Figure 4.4 that the MSE has two global minima,
which can be obtained bv swapping the poles within the filter, i.e. interchanging
the poles such as {p\| = 0.2,p2 = —04} and {p\| = —0.4,p2 = 0.2} provided the
same objective function value as shown in Figure 4.4. This property leads to
a major drawback when crossover operations are employed within the feedback
sections. The simulation results confirming this statement are illustrated in the
latter part of this chapter. Iu this chapter we use crossovers only for evolving

the feedforward sections.
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4.3 Genetic Operation in Floating-point
Chromosomes

Genetic algorithms manipulate the most promising chromosomes searching for
improved solution. The chromosomes are finite length string structures repre-
senting a possible solution of a problem domain. Binary GAs use a chromosome
string whose elements (genes) are binary [23]. These GAs require chromosomes
with 4(L+ M)B elements each of which is a binary digit. This is a prohibitively
long representation and hence provides lower precision when the algorithm is
employed with large domains [25].

In this work a more sophisticated method is used to represent the floating-
point numbers without employing any coding techniques. Genetic algorithms
with floating point representation of chromosomes of length [ and fixed popu-
lation size N are considered. Each individual in the population corresponds to

an element of the space
S = {z}' (4.10)
where z is a complex number. The population space is denoted as S and we

call S? the parent’s space. The population can be written in the vector form as

follows

C={C,i=1,---N} (4.11)

where

Ces™ (4.12)

where C; denotes the 7** individual of C and can be given in mathematical

notation as:

c.eC (4.13)

Each element of C; is a parameter of the filter. The j** element of C; is related

to the filter parameters in the following way
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where p represents the poles, and

where b represents the numerator coefficients.

4.3.1 Making Use of Tournament Selection

Evolutionary algorithms use a selection mechanism to select individuals from
the population to insert into a mating pool. Individuals from the mating pool
are used to generate new offspring, with the resulting offspring forming the basis
of the next generation. As the individuals in the mating pool are the ones whose
genes are inherited by the next generation, it is desirable that the mating pool
be comprised of better individuals. A selection mechanism in EAs is simply
a process that favours the selection of better individuals in the population for
the mating pool. As mentioned in chapter 3 there are many selection schemes
for EAs, including ranking, tournament, and proportionate schemes, each with
different characteristics. An ideal selection scheme would be simple to code
and efficient for both non-parallel and parallel architectures. Furthermore, a
selection scheme should be able to adjust its selection pressure so as to tune its
performance for different domains [40].

Tournament selection is increasingly being used as an EA selection scheme
because it satisfies all of the above criteria. Recent research work [40] on tour-
nament selection clearly indicates that the convergence rate of a EA is largely
determined by a factor called selection pressure, with higher selection pressure
resulting in higher convergence rates. The selection pressure is the degree to
which the better individual is favoured: the higher the selection-pressure, the
more likely that the better individual is favoured. Also it is reported that sim-
ply increasing the tournament size, s, can provide increased selection pressure,
as the winner from a larger tournament will, on average, have a higher fitness
than the winner of a smaller tournament [40].

Unlike other selection schemes, which were discussed in previous chapter,
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Figure 4.5: An example of a nonlinear threshold error criterion.

tournament selection can use any cost functions with ease [40]. They can either
minimise or maximise a function regardless of its structure. Finding maximising
functions from minimising criteria, therefore, can be avoided. It also facilitates
the EAs to optimise any performance criteria that provide an acceptable band of
errors in the objective function. For example, the nonlinear threshold, which is
shown in Figure 4.5, can also be used in the instance, where a band of error may
be acceptable. In this work, the MME criterion has been successfully employed
in optimisation of adaptive IIR filters with the support of tournament selection.
It is important to note here that the use of raised powers of errors, (e.g. €2,
e*) provides good selecting capability and contributes faster convergence than
using MME when using other selection schemes [47].

In this work we employ tournament selection to select the parent chromo-
somes. The smallest tournament-size s = 2 is chosen to keep the selective pres-
sure to a lowest value with an aim to avoid premature convergence. Throughout
the present work, we use the MSE cost functions unless otherwise specified. The
main reason for choosing MSE criterion is that the theory of mean square opti-
misation is well developed, and can be used as a standard criterion to test the

proposed genetic operations.
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4.3.2 Split-point Uniform Crossover

Uniform crossover has been studied extensively and their results have shown a
considerable improvement in convergence performance when compared to stan-
dard one or two-point crossover operators [71, 4]. Figure 4.17 compares these
convergence properties when modelling an ARMA model by evolving filters us-
ing EAs. The details of this experiment are discussed in Section 4.4. In binary
coded GA, the recombination process can introduce new members into the orig-
inal chromosome structure since each parameter of the filter can be split into
small elements called genes. Floating-point EA on the other hand represent the
filter parameters as uniquely indivisible genes [17, 25|, therefore the recombi-
nation cannot occur within the individual parameter, this simply results in a
shuflling of the two parents.

Considering the above issues in mind, we propose a novel method of crossover
for floating-point (complex) chromosomes. Even though the filter parameters
are represented directly in the chromosomes, each of them can be split into
small parts as in the binary GAs. This can be accomplished by introducing a
third alphabet into the binary template, which incorporates split-point crossover
between selected floating-point numbers of the parent chromosomes. This can be
easily shown with the following example: Consider the Figure 4.6, which shows
a template whose elements have three alphabets 0, 1, and 2. The elements
corresponding to the alphabet 0 and 1 are swapped as the whole numbers as
illustrated in Figure 3.6. The elements corresponding to the third character ”2”

are split into small portions and combined as follows:
|0i1] = pleia| + (1 — p)leiel (4.16)

Lojy =plein+ (1 —p)leip (4.17)

where o0;; represents the " element of offspring 1, ¢;; and c;, represent ‘"
elements of parent 1 and parent 2 respectively, and p is a uniform random

number between [0 - -1]. Similarly, i* element offspring 2 can be generated as
|0i2] = pleia] + (1 = p)lcial (4.18)
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Figure 4.6: (a) Split-point crossover. The character ”2” determines the position
where split-point crossover to be taken place. (b) Split-point crossover occurs
in the forth element of the parents
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Loip =pleip + (1 —p)lein (4.19)

This method of crossover, which is applied between parent chromosomes, has
several additional features compared with the standard crossover operation
shown in Figure 3.6. Split-point crossover reduces the schema growth by pro-
viding more destruction. It can be easily shown that the probability of survival

of a particular schema H via the split-point crossover is

1}0(H)

ps,split(H) = Q¢ {‘

. (4.20)

where o(H) represents the order of the schema H. The order refers that num-
ber of fixed elements defining a schema [23]. Consequently, the probability of

survival via standard uniform crossover is

1

o(H)
ps,smndard(H) = Qg {5} (421)

From the above two equations it is clear that the split-point crossover reduces
the schema growth and hence produces more new members which in turn can
avoid premature convergence. The best features of split-point crossovers are
clearly seen from the simulation results shown in latter part of this chapter.
However, this crossover scheme has not still fulfil the binary representation - the
magnitude of a digit obtained through split-point crossover operation is always
less than that of highest value of the parents before crossover. For example, let
us assume that magnitudes of the third elements corresponding to two parents
p1 and ps be 0.8 and 0.6 respectively. Also assume that the portion p which is
selected from a random number generator is 0.9. Recombining these elements

can form two elements for offspring o; and 05:
lo31] =0.9x 0.8+ (1 —0.9) x 0.6 =0.78 (4.22)

032] = 0.9 x 0.6 + (1 — 0.9) x 0.8 = 0.62 (4.23)

It is clear that recombination cannot produce new members with the values

greater than those of original members.

65



As we mentioned in the previous section, adaptive filters provide multiple
global optima that can be obtained when reordering the poles among the fil-
ter. This property leads to a major limitation of using the crossover operation
between the feedback sections. This is because during the evolution process
the poles of the adaptive filters can lie in any order within the filter struc-
ture, consequently applying crossover between feedback sections can degrade
the convergence performance. Therefore, in this work we apply the crossover
only to the feedforward sections, while the feedback sections are only subjected

to mutation.

4.3.3 Performing Mutation on Floating-point Genes

Mutation is implemented by occasionally perturbing a random element in a
chromosome. It is mainly used to introduce variations in to the chromosomes.
Global or local variations can be introduced with a probability a,,. In binary-
coded GA, each bit of a bit string is replaced by a randomly generated bit if
a probability test is passed [23, 16]. It can be achieved by flipping the bits in
the strings with the mutation probability «,,. Unlike binary coded GA, the
floating-point representation, particularly an EA using complex genes, requires
a more sophisticated method to achieve mutation.

In this work, we employ a novel method to introduce perturbations into the
elements of chromosomes. Each element of a chromosome is split into magnitude
and angle and individually perturbed with a probability ,,:- either magnitude,
angles or both can be selected for mutation with the probability test. A ran-
dom function can be used to perturb these parameters within a desired range.
For example, if the magnitude and angle are selected for mutation, they are
perturbed through

lci(t+ 1) = lai(®)] + Vi (4.24)

and,

Zci(t + 1) = écz(t) + ‘/t,UQ (425)
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where V, ;1 and V4o are random variables generated at time ¢ with variances
ol and o2 respectively. Choosing a suitable random function (e.g. Gaussian,
Uniform, --- etc.) and its variance are the major tasks to design the mutation
operator. For example, random function that has high probability distributions
at the regions closer to the operating points is often preferred in order to avoid
high population diversity to be met during the search. Population diversity
occurs when the population in an EA diverges arbitrary from the optimal state
where most of the genetic operators produce offspring that outperform their
parents.

Considering the above issues in mind, a random generator with normal dis-
tribution is chosen as a mutation operator. The probability density function

(pdf) of normal distribution is thoroughly studied [55]:

pdf(y) = pdf(z — p) = \/1_ exp (cz—p) (4.26)

7 ond o?

2 are the mean and the variance respectively. The probability

where 4 and o
density curves of a normal distribution for various x4 and d, where d = o, are
plotted in Figure 4.7. This bell-shaped curve is perfectly symmetric about a
line perpendicular to the z-axis through the mean p. This line bisects the
bell exactly. Changing the mean p merely translates the curve to the right or
the left. Varying the standard deviation changes the shape of the bell. Thus
changing the mean and standard deviation change the location and the shape
of the curve, but it still remains a normal curve. It can be easily shown that,
with 4 = 0.0 and d = 0.5, a z variation of approximately {—1 < z < 1} can be
obtained. The probability of generating a value, which lies below 0.5 is greater
than that of a value that lies above 0.5.

Performing mutation on feedback parameters (either poles or zeros) is a
much trickier process than doing on feedforward parameters. For example, in
this work we wish to ensure the poles lie inside the stable region throughout

the genetic search. An improper design can cause the poles to fall outside

the stable region and will necessitate the use of stability monitoring techniques.
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Figure 4.7: Probability density function (pdf) of Gaussian variable, y (where
y = z — p), for various standard deviations d, where d = 0. (a) Gaussian
distribution when u = 0 (b) Gaussian distribution when u = 0.5.
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Considering the filter stability, we define the mutation operation on a parameter

q as follows

|Qt+1| = Iqtl + (Qmaz - |Qt|)gt(0, 01) if gt(oa Ul) > 0

= |@| + |g]9:(0,01) if otherwise (4.27)

L@y = Lge+ (7 — Lgt)9:(0,02) if ,(0,02) >0

= /gt + (Lg +7)g:(0,02) if otherwise (4.28)

where ¢;:(0,0) is a Gaussian function with zero mean and a standard deviation
o at time t, |g;| and /q; represent the magnitude and the phase angle of the
complex parameter g estimated at time ¢, and gy,,, 1s the maximum range of the
parameter’s magnitude. If g represents a pole, the maximum range ¢, assigns
the value 1. The range ¢nq, could be any positive number for feedforward
coefficients. However, choosing an appropriate range allows the GAs to converge
with a fast rate. In this work, a value 5 was assigned to ¢4, Which limits the
search space of the numerator-coefficient’s magnitude within {0 < |g| < 5}. The
phase angles are chosen to lie within {—7 < ¢ < +n} regardless of the type of
parameter (either poles or feedforward coefficients) as represented in equation
. It has been shown earlier that with a standard deviation d = 0.5, Gaussian
variables can be generated in the range {—1.0 < z < +1.0}. This ensures
that the poles always lie inside the stable region. However, a variance, which is
smaller than 0.5 is much preferred when the algorithms approaches the global
region. This will facilitate the algorithm to fine-tune the parameters. Large
variations are only needed to find the global region, which is embedded within
the multiple local optima. Once the global area has been found the variance
must be reduced to a smaller value. However, in this work a fixed, higher
variance, d = 0.5, is used to avoid the occurrence of premature convergence.
Premature convergence occurs when the population in a GA reaches such a
sub-optimal state that most of the genetic operators can no longer produce

offspring that outperform their parent [34, 9].
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Filter Stability During Evolution

Note that since we use the poles directly in the chromosome, the ensuring of
stability becomes trivial. In particular, this work ensures that poles positions
are unaffected by mutation. Hence stability monitoring is not needed as in the
case of coeflicients design methods. This greatly reduces the computational

costs while achieving the capability of designing complex adaptive filters.

4.4 Applications for Adaptive System
Modelling

One popular application of the adaptive filter is in the area of system modelling.
System modelling can be broadly classified into two types: direct system mod-
elling and indirect or inverse system modelling [6]. In direct system modelling,
the aim of the adaptive process is to model the transfer function of the system
that is to be identified. Conversely, the aim of inverse system modelling is to
model the transfer function of the system that is being identified by adaptive
filtering. In this chapter, we show two simple examples of system modelling
techniques that have been used to demonstrate the convergence properties of

the proposed EA.

4.4.1 Direct System Modelling

The experimental arrangement of direct system modelling is made as shown in
Figure 4.8. In direct system modelling, we use a simple second-order IIR system

whose transfer function is expressed in z-domain as

. bo + blz‘l + b222—2 + b32_3 + b42—4

T = e - D o) (429

where

by = 0.4, by = —0.3, by = 0.5, by = 0.4, by = 0.2, 4.30)

p1 =06, pp=—-0.5, ps=-04
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Figure 4.8: Experimental arrangement of direct system modelling.

Mean square error and MME performances of this model is investigated; the
results show that the surface has several multiple local optima. Gradient algo-
rithms often fail to optimise this surface. Figure 4.9 illustrate the local error
surfaces plotted against b, and ps for various choices of by using 100 training
samples.

A spectrally white Gaussian noise,
s(n) = gn(0,1) (4.31)

with zero mean and unity variance is applied as an input to model the unknown

system H(z). Timing waveform of the input signal is shown in Figure 4.10.

4.4.2 Inverse System Modelling

Figure 4.11 illustrates the experimental arrangement of the inverse system mod-
elling. In this experiment we use a fourth-order IIR channel whose z-transfer
function, C(z), is

by + b12~1 + b22_2
(1 =p1z71)(1 = poz71)(1 — p3z1)(1 — paz71)

Clz) = (4.32)
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Figure 4.10: Input signal applied to the direct system modelling. The signal is
a Gaussian distribution function with zero mean and unit variance.
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Figure 4.11: Experimental arrangement of inverse system modelling.

where {b;, i = 0---2} and {p;, j = 1---4} are complex parameters and are

assumed as

by = 1.0,b; = 0.667%°7, by = 0.6¢1%", p; = 0.86e 77057,
. ‘ . (4.33)
py = 0.75e7712™ py = 0.8 770757 p, = 0.7e7157

This kind of channel with complex response can be seen in the transmission of
QAM signals through modem channels. In such areas, the actual signal is down
converted into lower frequency in order to reduce the signal bandwidth and
hence the sampling rate. The transmitted signal in this example is a complex
FM signal

s(n) = AeliweT+(m)} (4.34)

where s(n) is complex-valued, A is the real amplitude, w, is the centre fre-
quency, T is the sampling interval, and #(n) is the baseband signal, 8(n) =
0.25sin(0.017n). The signal s(n) has a constant envelope since A is a con-
stant and the exponential has a modulus of unity. For the sake of simplicity,
it is assumed in the experiments that the training signals are available during

evolution and the signals of our interest have no noise impairments.

4.4.3 Verification

A series of simulations is carried out to test the convergence performance of the

proposed EA techniques with parameters such as population-size N, probability
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of mutation «,,, and probability of crossover a. to model direct and inverse

systems. The aim of the experiment is six folds:

1. Investigate the effect of crossover on EA’s convergence.

2. Compare the split-point crossover operation with the standard uniform

crossover.

3. Compare the convergence performance of Gaussian mutation distribution

against uniform distribution.
4. Investigate the effect of crossover when applied within feedback sections.
5. Investigate the effect of mutation rate on EA’s convergence.

6. Compare the convergence performance of various cost (objective) values

which can be used in genetic search approach.

The experiments presented in this chapter use a fixed population size N = 50
along with the tournament selection scheme with a tournament-size s = 2.
Gaussian distribution is used throughout this work unless otherwise specified
and the training signals of 100 samples are used to obtain the fitness func-
tion. The EA is allowed to run over 32000 generations and the MSE of the best
member in the population is measured against the generation number. The con-
vergence curves which shows the variations of objective function values against
the generation number are called learning curves.

Ezperiment 1: This experiment is carried out to show the necessity of the
crossover operation in genetic evolution. Standard uniform crossover is em-
ployed along with a,, = 0.02 and ¢ = 0.5. A set of learning curves is obtained
when . is set to 0 and 1.0 respectively. Figure 4.12 shows these learning curves
which are obtained while modelling direct and inverse systems. These curves
clearly show the necessity of crossover operation in genetic evolution. An evo-
lutionary algorithm, which uses the crossover operation, converges faster than
an EA without the crossover. The EA without a crossover operator is analo-

gous to EP in that it takes longer evolution time to reach a better solution.
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Figure 4.12: Effect of crossover operation on EA’s convergence.
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Original

Parameter a.=1.0 a, =0
Values _ . .

b | 0.4€° 0.3435¢ 727821077 | (.1786¢/%-59
by | 0.3¢”" 0.2525¢7% 1382 0.2167¢7%%
by | 0.5¢7° 0.4375¢ 7491621077 () 6413700128
by | 0.4¢’° 0.327¢~92172107" 1] 136¢714588
by | 0.2¢7° 0.1433¢740672107° [ (.1576700171
p1 | 0.6e7° 0.4242¢73-1414 0.5474¢i36536210-°
pz | 0.5¢’" 0.3412¢75162 0.4521 729759
D3 0.4e37 0.574lej1.2927m10‘5 0.496]1 /31388

Table 4.1: The best parameters as obtained from EAs when modelling direct
system of parameters (4.30).

The crossover operation provides a better local search capability, which is much
appreciated when the algorithm approaches the global region.

Table 4.1 shows the parameters of the best evolved filter as obtained from
EAs when modelling the direct system of parameters (4.30).

FEzperiment 2: The experiment is aimed to compare the performance of
the proposed split-point crossover with the standard uniform crossover. This
experiment is conducted by setting the EA’s parameters o, = 1.0, o, = 0.02
and ¢ = 0.5. A series of learning curves is obtained while modelling the direct
and inverse systems. Figure 4.13 shows these learning curves.

The learning curves obtained when using split-point crossover converges to
a minimum point, which is lower than that of standard uniform crossover. As
split-point crossover produces more new members than the standard operator
does, it is able to find a better solution very quickly. Table 4.2 compares the
best parameter values as obtained from this experiment with those of standard
methods used in experiment 1.

Although the convergence curves of direct system modelling are closer to
each other, it provides distinct solutions. The parameters which are obtained
from split-point crossover are very closer to the optimum parameters given in

(4.30).

76



(a) Direct System

2
1 .
0 .
% 14 Sl}af;dard . I
w niform o
%) Crossover Spllt. point
= -2 Uniform
Crossover
-3 4
-4
-5 f t : : ; t t } ' f t t —t :
o (=} o o o (=) o o (=)
o (@] o (=] Q o o o
=} o S Q (=) o o o
< «© N o] o < «Q A
— — o N Y ™
Generation Number
(b) Inverse System
1.5
1 B
0.5 A
0 N
m -0.5
o° Standard .
w -1 4 Uniform Split-point
2 Crossover Uniform
= -1.5 1 Crossover
2
2.5 ‘Z
-3
-3.5 ; f t t + f f + t t t 4
o o o o o o o (@] o
o o o o Q (@] o o
o o o o o o (@] o
< © [qV] ©o o < «© Al
- -~ N N l [3¢]

Generation Number

Figure 4.13: Learning curves showing the effect of split-point crossover on EA’s
convergence.
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Parameter | L8inal Split-point Standard
Values Crossover Crossover
by | 0.4¢”° 0.3706€73-316%2107" [ () 3435¢ 727821077
by | 0.3¢/" 0.2645¢73112 0.2525¢73-1382
by | 0.5e7° 0.467¢I1-272107° 0.4375¢—74916210 7
bs 0.4e70 0.36863'92m10_4 0.3276_j2'17210_4
by | 0.2¢7° 0.214€710%107° [ () 1433740672107
p1 | 0.6¢7° 0.487¢7%1%3 0.4242¢73 1414
p2 | 0.5€7" 0.388¢7%112 0.3432¢73 152
ps | 0.4e7™ 0.591¢/2-32107° 0 5441 /1 2927210~

Table 4.2: Parameters of the best evolved filter as obtained from EAs when split-
point crossovers are applied to evolve the direct system of parameters (4.30)

Another important observation is that performing crossover between feed-
back sections degrades the algorithm’s convergence performance. This is be-
cause during evolution the poles can lie within the filters in any manner and
give the same fitness values. Figure 4.14 illustrates the learning curves when
the crossover operations are employed to the feedback sections.

Ezxperiment 3: This experiment is aimed to compare the convergence be-
haviour of uniform mutation distribution against Gaussian distribution. Split-
point uniform crossover was employed along with o, = 0.02, o, = 0.85 and
o = 0.5. Figure 4.15 shows the learning curves, which are obtained, while
modelling direct and inverse systems.

Gaussian distribution provides a faster convergence than uniform distribu-
tion.

Ezperiment 4. This experiment is conducted to show the effect of muta-
tion probabilities on the EA’s convergence. A set of mutation probabilities
{a;, = 0.005,0.02,0.06} are applied with the proposed split-point crossover.
The other genetic parameters such as crossover-probability c, and the variance
o are set to 0.85 and 0.5 respectively. A set of learning curves is obtained for
various mutation probabilities. The experimental results are shown in Figure
4.16. These results clearly show how the mutation probability is influenced on

EA’s convergence. It is observed that a moderate mutation rate (o, = 0.02)

78



(a) Direct System

2
1 -
O |
@ Crossover Applied to the
5 -1 Feedback Sections Crossover Applied Only to the
m Feedforward Sections
(2]
S 27
-3 4
-4
-5 + t } t f } 1 + + { } t } t }
o o o o o o o o o
o (=] (=] o o o o o
o Qo (o] (=] o o o o
< «© N [le] o < © Al
-~ -— (aV] (aV] (aV] [s]
Generation Number
(b) Inverse System
1
0
% -1 Crossover appiied to the
w feedback sections
on
= -2 A
Crossover applied only to the
3 feedforward sections
-4 + t + t t t t t t t t } t t +
o o o o o o o o o
o o o o o (@] o (@]
o [=] o o o =] o o
< [eo] AN © o < e (3
-— — N AN V] o

Generation Number

Figure 4.14: Effect of crossover when employed to the feedback sections of the
ITR filters.
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Figure 4.15: Effect of mutation distribution on EA’s convergence.
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Figure 4.16: Learning curves showing the effect of mutation.
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Figure 4.17: Learning curves comparing the uniform crossover with the one-

point crossover.

contributes good performance, while too large or too small degrades the per-

formance, i.e. smaller mutation rate causes premature convergence while larger

values provide high population diversity.

Ezperiment 5: This experiment is carried out to compare the performance
of one-point crossover against uniform crossover. Uniform crossover produces
more new members than one-point crossover and converges faster. One-point

crossover requires much more time to reach a better solution. The comparative

curves showing the convergence are illustrated in Figure 4.17.
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Figure 4.18: Learning curves showing the convergence performance of various
cost functions.

Ezxperiment 6: Finally, an experiment is carried out to analyse two objective
functions that can be applied to the proposed EA techniques. The objective
functions such as MSE and MME are used for this analyse. A set of learning
curves is obtained by keeping a, = 0.85, a,,, = 0.02 and o = 0.5. The optimum
filter parameters estimated have also been tabulated for the comparison. The
filter parameters of the optimum filters evolved using those objective functions
are tabulated. The learning curves which show the convergence performance of

each cost function are illustrated in Figure 4.18. It can be seen that the MME
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Parameter Original MSE MME
Values
bo | 0.4e7° 0.3723¢72:312107° [ () 363¢71.142107°
by | 0.3¢97 0.2821¢7328 0.2834¢7321
by | 0.5€7° 0.475¢79-372107° [ () 462¢75-03z1077
by | 0.4e7° 0.423¢4172107° [ ().376¢d1:162107°
by | 0.2¢7° 0.189¢72112107° [ () 2971¢70-82107°
p1 | 0.6€7° 0.587¢43-721077 | ().388¢73-11
Dy | 0.5€7™ 0.391¢7316 0.486¢73-13
ps | 0.4eI™ 0.495¢73-15 0.588¢1:112107"

Table 4.3: Comparing the Parameters of the best evolved filters as obtained
from EAs when various cost functions are employed to evolve the direct system
of parameters (4.30)

criterion gives same amount of convergence performance as the standard MSE
criterion. Table 4.3 shows the best parameter values obtained for direct system
modelling.

A special feature of the evolutionary technique is that the capability of using
any cost functions with ease. This property distinguishes the EAs from classical
techniques in that they are strongly bounded with the cost functions. The
results, which are shown in this report, are that the average values taken over
15 independent EA runs with distinct initial conditions. For example, consider
the following Figure 4.19 which illustrates how the average value is obtained for
4 independent EA runs when modelling the direct system (4.29). The EA cycle

applied to these experiments is summarised below:

Evolution Cycle

The initial set of parameters (magnitude and phase angles) is selected randomly.
Let us consider the number of parameter set (Population size) is N. The mag-
nitudes of the poles are selected within the range [0--1] in order to ensure that
the systems lie in the stable region. The phase angles are selected randomly
between —7 and +7 and the magnitudes of the feedforward coeflicients are en-

sured within [0--5]. The population is then subjected to a fitness measurement

84



(a)

1
0._
w -1 1
m
o]
£ 2]
w
D)
= .3
-4
'5 T T T T T T T
o o o o (e} o o o o
o o o o o o o o
o o o o o o o o
< © « @ o < @ (\l
~— - QY] o [aV] (3]
Generation Number
(b)
1 - —
0_
w -1 1
@
©
£ 24
w
)
= .3
4
'5 T T T T T T T
© 8 8 8 8 8 8 8 8
(@] o o o o o o Qo
s @ § € &g I & 9
~— ~—

Generation Number

Figure 4.19: Figure illustrating how the average value is obtained from several
EA runs. (a) Learning curves of 4 independent EA runs. (b) Average value of
the curves shown in (a).
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based on a cost function used for the IIR filtering application. Only the best
chromosomes are selected and they survive to the next generation. Tournament
selection with a tournament size s = 2, is used where two chromosomes are
selected randomly from the population and the best becomes one of the next
generation. This is repeated, until a complete intermediate population (parents)
of size N is selected. The generation is modified using crossover and mutation
and a new population (offspring) of the same size (V) is created. The offspring

replaces the old population by keeping the best chromosome.

4.5 Summary and Discussion

Floating-point EAs have been developed for evolving complex adaptive IIR dig-
ital filters. In this work, direct form realisation has been considered without
employing any stability monitoring techniques. It has been achieved by design-
ing the poles through EAs. Simple algorithm has been employed to perform
the conversion of poles into equivalent feedback coefficients. A new crossover
scheme has been introduced which produces more new members at each gener-
ation and provides good local search capability when the algorithm approaches
the global region. We also introduced a more sophisticated method to perform
mutation on complex chromosomes. This approach ensures the IIR filters to lie
inside the stable region during evolution. The cost functions such as MSE and
MME have been successfully employed with the support of tournament selection
scheme.

Along with the above salient features, the proposed techniques have two
major drawbacks. First, the pole design method accommodates multiple optima
with the same fitness values that can be obtained from re-ordering the poles
within the filters. This property leads to slower convergence when the crossover
operations were employed within the feedback sections.

Second drawback is that proposed techniques have provided poor fine-tuning

capability as the algorithm approaches global region. This was the reason why
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the final values as obtained from genetic evolution were not exactly matched
to the optimum parameters. A major reason causing this poor performance
may be of the higher variance of mutation operator. In this work, the variance
o? was chosen as 0.5 so as to provide a desired variations of {~1 < z < +1}
throughout the genetic search. This is considerably a higher value, which may
degrade the local search capability of the EAs. Consequently, employing small
variance throughout the genetic search can cause premature convergence. Even
though many research outcomes have been published [44, 47] to find the opti-
mum value of the variance with ease, they are either computationally expensive
or inefficient. For example, one possible solution is to use evolvable variance
for each parameter and are evolved along with the solutions. This approach
increases the computational cost, therefore unsuitable for applications having
large number of parameters. Alternatively, dynamic mutation can be consid-
ered to introduce high variations at the beginning of the search, and reduce
along with the solution. The concept of dynamic mutation was introduced to
reduce the severity of mutation as the global optimum is approached. This re-
quires either the generation number or the fitness values as a function variable
to calculate the variance of each string. Unfortunately, this approach has also
been found as an inefficient method since the global optimum of an objective
function cannot be determined from any methods.

The next chapter is aimed to resolve these problems with coefficient design

approach.
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Chapter 5

Direct Design Method via
Global Evolution

In the previous chapter we have provided the design techniques of complex evo-
lutionary algorithms. This approach facilitates the design of poles so that the
adaptive IIR filters can be easily designed within the stable region. This method
avoids the use of stability monitoring techniques and allows the mutation oper-
ator to move the feedback parameters within a desired search space throughout
the genetic search. However, the techniques described in Chapter 4 has a major

drawback, which include:

e Pole design method provides additional stationary points which are ob-
tained when reordering the poles within the filter. Therefore, the crossover
cannot be applied within the feedback sections. Applying crossover within

feedback sections degrades the convergence performance of the EAs.

To resolve this problem, the coefficients can be designed directly from a
population. This can facilitate the use of all the features of crossover.

The aim of this chapter is twofold:

1. To show the recent development of designing the coefficients of the adap-

tive IIR filters using simple stability monitoring techniques.

2. To compare the convergence performance of the coefficient design method
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against pole design approach when modelling the same signals and systems

which have been used in the previous chapter.

In this work the coefficients of the adaptive filters are designed directly from
a population. The adaptive filters are developed as direct, cascade, parallel
and lattice form structures using floating-point EA techniques as discussed in
Chapter 4.

The rest of this chapter is organised as follows. In Section 5.1, the problems
that can arise when designing the coefficients are described. A special feature
of floating point EAs is outlined and the technique of designing mutation oper-
ator is discussed. The problem of premature convergence is delineated and an
overview of various remedies is given. This section also provides the operation
of new genetic cycle, which employs a new operator called immigrant with an
alm to avoid the severity of premature convergence. Section 5.1.2 introduces a
new correction method that will improve the convergence performance of the
EAs. This section also outlines the problems of alternative realisations. Con-
vergence behaviour while modelling various IIR models using several alternative
realisations is compared and the reasons for choosing direct form filters is illus-
trated. Section 5.2 provides the design techniques of direct form IIR structures
using simple stability ensuring methods. In this section we show how the filter
stability can be determined from the estimate of filter output. This section also
compares the convergence performance of the coefficient design method against
pole design approach using the same systems and signals as shown in previous
chapter. Finally, this chapter provides a brief summary of these works with

suitable conclusions.
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5.1 Stability, Design and Evolutionary
Method

A unique feature of the floating-point EA techniques is that being able to search
from problem space rather than from an encoded range [25]. As mentioned in
the previous chapter, the crossover operator employed in floating-point EAs can
no longer produce new members with values greater than those of the parents
before crossover. Only mutation can move a parameter to any desired value. For

example, consider a standard mutation performed on a parameter ¢ as follows:
c(t+1) = c(t) + ¢:(0,0) (5.1)

where ¢(t + 1) represents the parameter value after mutation and g,(0, o) rep-
resents a Gaussian variable with zero mean and variance o? respectively. The
range of variations to be introduced into the parameter can be varied with the
variance o2. A larger variance is needed to identify the global region of a mul-
timodal error surface without premature convergence. Smaller variance is often
required to fine-tune the parameter as the algorithm approaches the global solu-
tion. Most evolutionary algorithms, therefore, use meta-evolutionary techniques
which provide dynamic mutation during adaptation [13]. These methods em-
ploy variable variance, which is calculated either from fitness values or from the
generation number. For example, the variance of mutation, which is calculated

from the generation number, can be defined as:
o(t+1) =o(t) (1-rm®) (5.2)

where o(t + 1) represents the variance after the parameters are evolved, r is
a uniform random number from {0---1}, m(t) is a time function which is de-

scribed by:
t

b

H=1(1—-—= 5.3

m(t) = (1-7) (53)

where t represents the generation number, 7" is the maximum number of gen-

eration, and b is a system parameter determining the degree of dependency on
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iteration number. A major drawback of this method is to define the maximum
number of generation as a function argument, which is normally an unknown
value. Therefore, this method cannot be considered as a better approach to
achieve a desired solution with appropriate fine-tuning as an algorithm reaches
a global region.

In this work we choose a smaller value of variance for mutation in order to
keep the coeflicient values within the neighbourhood. As such, they often fail to
converge to an optimum solution and converge to a sub optimal state causing in-
accurate solution due to premature convergence. The convergence performance

becomes much worse when the EAs operate within small population sizes.

5.1.1 Premature Convergence

Premature convergence or loss of population diversity before optimal or at least
stationary values have been found has long been recognised as a serious failure
mode for EAs [34]. The premature convergence occurs if the population sizes
are small or the mutation cannot introduce enough variations to escape from
a local solution. The latter becomes as a major reason causing premature
convergence when designing the feedback coefficients of the adaptive IIR filters
using floating-point EAs techniques. For example, consider the MSE surface

shown in Figure 5.1, which is obtained while modelling a system,

_ 0.5—0.4271 +0.89272 +0.7273 — 0.92~¢

H 4
(2) 1 - 0.052" — 0.852-2 (5.4)
using an adaptive filter
_ -1 —2 -3 _p 4
Alz) = 0.5—04z"" + bz +0.72 byz (5.5)

1—-0.05271 — apz~2

The MSE is plotted against ay and b, for various choices of b;. This local error
surface has several minima in which global solution exist at {a; = 0.85,b, =
—0.9}. The local optima are separated faraway from each other. So, if the
algorithm stuck in one of these minima, mutation must provide a high enough

variation to escape the algorithm from this inaccurate solution.
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Figure 5.1: A MSE plot showing local minima separated faraway from each
other.

In coded form of EAs, for example in binary GAs, each coefficient or param -
eter is encoded within a range, which is chosen by the GAs designer. In such a
case, the coefficients or the parameter values can be moved within a wider range
during evolution and probability of desolating in local optima is much less.

The problem of premature convergence cannot be avoided in EAs. Several
methods have been proposed to combat premature convergence in binary GAs
[9]. These include, for example, the restriction of mating procedure, recombining
process, and replacement strategies [34, 9]. These techniques are summarised
below:

M ating Process: Chromosomes can be selected so as to maintain pop-
ulation diversity. The goal of this process is to prevent similar individuals
from mating [9]. Dissimilar individuals are chosen for recombination so that
offspring produced by these diverse parents will tend to be more diverse [16].
Goldberg provided a sharing function, which reduces the fitness of individuals
as a function of how similar they are to other individuals in the population, for

an indirect mating strategies [9]. In direct mating strategies, individuals are
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randomly paired, but are only mated if their hamming distance is above a cer-
tain threshold. The threshold is initially set to the expected average hamming
distance of the initial population, and then is allowed to drop as the population
converges. This mating strategy has a major drawback in that more schemata
can be disturbed by crossover since fewer schemata are shared.
Recombination Strategies: Crossover operation can also be modified
to introduce population diversity. If the crossover helps to produce offspring
that are dissimilar from both parents, the resulting population will tend to be
more diverse. There are several possibilities to achieve population diversity via

Crossover:
e increase the rate of crossover
e use a more disruptive crossover operator (e.g. uniform crossover)

Replacement Strategies: The goal of this process is to replace similar
individuals in the parent population by new chromosomes [72]. De Jong first
introduced this in 1989, hence known as De Jong’s scheme. The second approach
is that GAs can only add a new individual to the population if it is not identical
to any member already in the population [72, 80].

By considering above three issues in mind we define the genetic cycle for
floating-point EAs as follows:

A population of filter objects is selected randomly so that the initial values
are ensured within the stable region. The population is then subjected into fit-
ness measurement. The better individuals (parents) are selected via tournament
selection scheme. The parents are shuffled before matting the individuals for
crossover. Shuffling can simplify the process of pairing dissimilar individuals for
recombination - adjacent individuals can be combined with ease. A set of new
chromosomes replaces current population with a probability called probability
of immagration «;. These newly introduced chromosomes are called immigrants

which are produced by introducing higher variations into each element of the
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Figure 5.2: Convergence curves showing the effect of immigrants while modelling
the system (5.6) by an equivalent order adaptive filter.
selected individuals. The probability of immigration determines which individ-
unal will be chosen for the immigration. The variations are introduced by a
random function, in this work we use uniform random function with variation
[—0.25 - -0.25]. Split-point uniform crossover and Gaussian mutation is used to
produce offspring. The standard deviation of Gaussian mutation is chosen as
o = 0.005 to provide small variations in order to keep the coefficients within
their neighbourhood. The offspring replaces the old population by keeping the
best member.

Figure 5.2 illustrates an example which shows the convergence behaviour of
the EA while modelling a second-order IIR system of transfer function

0.5 0.5z +0.8922

H(z) = 1—1.4z"140.982z2 (5.6)

by an equivalent order adaptive IIR filter. This system has poles at {p; 2 =
+0.9899} which are very close to the unit circle. Local error surface of this
modelling problem is shown in Figure A.1. This particular modelling problem
is a unique example to show severe multiple local minima in the local error
surface. Convergence through conventional EAs often fail while optimising the
parameters of (5.6) [3]. Figure 5.2 clearly shows that EAs without immigration
operator converges to a sub-optimal state and causes inaccurate solution. Fig-

ure 5.3 illustrates another example which is obtained while modelling (5.4) by
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Figure 5.3: Convergence curves showing the effect of immigrants while modelling
the system (5.4) by an adaptive filter (5.5)

(5.5). Local error surface while modelling this system is shown in Figure 5.1.
The algorithm without immigration always converges to inaccurate estimates,
which give higher MSE vales. Immigration operator provides enough population
diversity and the problem of dislocating in local minima is much less.

From the knowledge of our previous examples, the experiments illustrating
the convergence improvement by immigrant operator are obtained by using the

following EA’s parameters:
e Population size N = 100
e Probability of crossover a, = 0.95
e Probability of mutation «,, = 0.02
e Probability of immigration o; = 0.02

It is important to note here that probability of immigration plays an important
role in EAs convergence. Too small or too high values can degrade the conver-
gence performance. For example, consider the Figures 5.4 and 5.5 which show
the convergence behaviour for various rate of immigration while modelling (5.6)

and (5.4) respectively.
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Figure 5.4: Convergence curves showing the effect of rate of immigration while
modelling the system (5.6) by an equivalent order adaptive filter.
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Figure 5.5: Convergence curves showing the effect of rate of immigration while
modelling the system (5.4) by an adaptive filter (5.5)
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Figure 5.6: Relationship between a pole and a coefficient of a fourth-order IIR
system.

5.1.2 Filter Stability

A major problem inherent in the design of an adaptive IIR filter is being able to
guarantee filter stability during adaptation. The direct form parameterisation
has significant drawbacks, which results from the high sensitivity of its poles
to small errors in the feedback coefficients. For example, consider the Figure
5.6 where the relationship between a pole and a coefficient of a 4t _order 1R
system is illustrated. This figure interprets that a small change in the a3 causes
a large change in p;. Therefore, the filters can easily move outside the stable
region and provide an unbounded output, which may degrade the convergence
performance of the EAs and result in an inaccurate solution or the premature
termination of the algorithm can be occurred. To resolve this problem stability
monitoring and correction mechanisms must be employed.

There are several methods have been proposed to ensure the stability of
adaptive IIR filters [63, 26, 11, 30]. One of the simplest tests of stability is to
check after each update of the algorithm that the sum of |a,,(n)| is less than
1 [63]. This method can fail if the coefficient space is large. Moreover, the
test will only indicate that a polynomial is unstable when in fact it is not.
To ensure stability in large order systems Jury’s test can be used [27]. This

method can easily determine whether or not a polynomial has minimum phase,
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but it does not reveal which poles are unstable. To obtain this information
factorisation must be used. Factorising polynomials in higher order IIR systems
is computationally expensive.

Although, several techniques have been developed to identify the unstable
coefficients, but no such definite method is given to correct these parameters.
Correcting the unstable parameters back into the stable region plays an im-
portant role in algorithm’s convergence. A standard method of replacing these
unstable parameters is to use pole projection technique [63]. In pole projection
method, the particular unstable pole is reflected back into the stable region in

such a way that

1
pi(t)
where p;(t) represents the unstable pole, while p;(t + 1) denotes the pole after

pi(t+1) = (6.7)

correction.

In this chapter, we show a new approach in which the feedback sections
corresponding to the unstable filters are replaced with the best member of the
parent population. This approach is compared with the standard method of
correction when designing IIR equalisers to equalise the interference of multi-
path channels [70]. In this chapter we present this comparison while modelling

the system given in (5.6) by a second-order adaptive system of transfer function

_ bo + blz‘l + bgz‘2
- 1- alz—1 — CL22_2

(5.8)

H(z)

Figure 5.7 presents the learning curves while optimising the parameters of (5.6)

using floating-point EAs with the following set of parameters:
e population size N = 100
e probability of crossover a, = 0.95
e probability of mutation a,, = 0.02

e probability of immigration o; = 0.02
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Figure 5.7: Effect of correction mechanisms while modelling the system given
in (5.6).
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Figure 5.8: Effect of correction mechanisms while modelling the system given
in (5.9).

The genetic evolution of adaptive IIR filter using the pole projection method
converges slower than the proposed approach. Furthermore, the final MSE
values obtained through the proposed mechanism are smaller than the standard
method. Another comparison is presented in Figure 5.8. The learning curves
shown in this figure are obtained while modelling a fourth-order IIR system of

transfer function

~06-0727"403224012°%+052* - 0.4z7°

H
(2) (1-0.7271 4+ 0.6272 — 0.5273 4+ 0.827%)

(5.9)
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by an equivalent order adaptive system of transfer function

_bo bz bpz 2 4 b3z byt 4 bz
- —4

A(2) (5.10)

l—a;z7t —agz72 —a3273 — ayz

Consequently, several techniques have been proposed along with various fil-
ter realisations to simplify stability monitoring trivial. Examples of these re-
alisations are parallel, lattice and cascade. The articles [48, 62, 64] are good
references of related works that rely on the design of adaptive IIR filters us-
ing various realisations. Although alternative realisations offer simple stability
monitoring, these structures introduce additional stationary points into the er-
ror surface which may affect the rate of convergence of an adaptive algorithm
[63, 3]. For example, consider a MSE surface obtained while modelling a direct
form IIR filter,

(1-0127'+0.427%) + (1 - 0.1271 — 0.6272%)

H(z) = 5.11
(=) (1-01z"1—0.6272)(1 —0.1z71 + 0.4272) (5.11)
by a second-order parallel form adaptive filter
1 1
Az) = + (5.12)

Cl—azl—apz7?2 1 —dyz! —dyz2
For a sake of simplicity a; and d; are assigned to equal values, a; = d; = 0.1,
and ay and dy are varied to obtain the MSE while modelling (5.11). Figure
5.9 illustrates this error surface plotted against a, and d;. The MSE surface
provides two global minima which can be interchanged by swapping the parallel
sections given in (5.12). The convergence curves while modelling an IIR system
of transfer function

_ -1 2 -3 -4 -5
H(z) = 05—-042"4+082*“+0.727° + 0.6z 0.9z (5.13)
(1-0.7271)(1+0.6271)(1 — 0.65271)(1 + 0.752"1)

by a parallel form

Lot bz bzt otz d ezt | et ez

A =
(2) l—aiz7t —agz™?2  1—diz7! —dyz—2 1— fz71

(5.14)

a cascade form

bo+ b1z +b9272) (co+cr1z7t +e0272) [eg+ ez
1—a;27! — ag272 1—diz7! —dyz=2 1— fz71

A(z) =

1} (5.15)
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Figure 5.9: A MSE plot showing that parallel sections can be interchanged to
obtain the same MSE value.
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Figure 5.10: Convergence curves while modelling the system given in (5.13) by
various filter realisations.

a direct form

S0+ b\Z ~ b2z AbSz 34+b"z ~ b§z J
A(z) = 1 § (5.16)
1—a\Z~] —a2z~2 —a3z~-3 —

and a lattice form with 6 reflection coefficients as described in Appendix F are
shown in Figure 5.10. The parallel and cascade forms take much longer time
to reach a minimum MSE than lattice and direct form structures. The lattice
form reached to a smaller MSE than parallel and cascade forms. The direct
form structure, on the other hand, provides a smaller MSE than the lattice

form.
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Figure 5.11: Convergence curves while modelling the system given in (5.17) by
various filter realisations.
Figure 5.11 presents an another example which compares the convergence

performance while modelling a 6th_order TIR system of transfer function

0.5—-0.4272 — 0.6527% + 0.26275

H(z) =
() = T 07722 —0.8498,% 7 0.64865

(5.17)

by parallel and cascade sections which are comprising 3 second-order sections,
direct form filter with equivalent number of parameters and a lattice filter with
6 reflection coefficients.

The above experiments are carried out using the following set of parameters:

population size N = 100

probability of crossover a, = 0.95

probability of mutation «,, = 0.02

probability of immigration o; = 0.02

From the above results it is clear that the rate of optimisation is much dependent
on the structure of the filter used. Among various realisations studied, the direct
form provides much faster convergence and smaller MSE than other realisations.
The crossover operation mainly degrades the convergence of parallel and cascade

sections. For example, consider the comparative results as shown in Figures 5.12
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Figure 5.12: Effect of crossover while modelling the system given in (5.13) by a
parallel form adaptive filter of transfer function given in (5.14).
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Figure 5.13: Effect of crossover while modelling the system given in (5.13) by a
cascade form adaptive filter given in (5.15).
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Figure 5.14: Effect of crossover while modelling the system given in (5.13) by a

lattice form adaptive filter with 6 reflection coefficients as shown in Appendix
F.
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Figure 5.15: Effect of crossover while modelling the system given in (5.13) by a
direct form adaptive filter given in (5.16).
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- 5.15.  These figures compare the learning curves which are obtainéd without
employing crossover operation with those with the crossover operation while
modelling the system (5.13) by the adaptive filters (5.14) - (5.16). From these
results it is clear that cascade and parallel structures converge faster without
crossover. However, the rate of convergence is much slower when compared to
direct and lattice forms. Direct and lattice filters converge much faster when
crossover operation is employed.

By considering the above issues in mind our aim in this chapter is to design

direct form filters with simple stability ensuring techniques.

5.2 Evolving Direct Form IIR Filters

In this section we show how stability monitoring and correction can be easily
achieved without employing any of those methods as stated in Section 5.1.2.
When evolution is in progress, the coefficients can take any values and the fil-
ters can become outside the stable region. Unstable filters provide unbounded
output, and if the training samples are too long, the simulation can be prema-
turely terminated. This is the reason why stability-monitoring techniques are
considered when designing evolvable IIR filters.

In this work, we use a radically different approach to ensure filter stability in
direct form realisations. We use a termination factor, v which is compared with
the instantaneous estimate of the filter output, §(n). If the magnitude of the
output-estimate exceeds the termination factor, the filter can be discarded or
can be assigned to a lower fitness value so that a filter with a higher fitness can
replace this vacancy when the new population is to be selected. For example,
consider the learning curves shown in Figure 5.16. This figure compares the
convergence properties of the new approach against standard method of stability

monitoring while modelling a fourth-order system of transfer function

~0.1084 4 0.5419z7" + 10837272 + 1.083727% + 0.541927% + 0.10842~°
B (1 —0.75271)(1 — 0.8271)(1 + 0.652~1)(1 + 0.82271)

H(z)
(5.18)
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Figure 5.16: Learning curves comparing the convergence properties of the new
stability monitoring approach against the standard approach as discussed in
Section 5.1.2.

by an equivalent order adaptive filter of transfer function

b+ biz7t 4 bz ? 4+ b3z + byz ™t 4 bgz 70
- -4

A(2) (5.19)

l—a1z7l —as2z72 —azz3 — asz
The reason for choosing the above system is to show the convergence properties
of a system that has poles very close to the unit circle. The given system has
poles close to the unit circle - therefore stability monitoring is of paramount
importance. As shown in this figure, both methods give the same amount of
convergence performance, but they require different computational costs. The
proposed method requires much less computation than the standard method.
However, a major problem encountered in proposed technique is that it does
not provide direct indication to filter instability but implicitly indicate whether
or not coefficients have minimum phase. Figures 5.17 and 5.18 also give these

comparisons which are obtained when modelling the following systems

_ 1.0 —0.927! +0.8127%2 — 0.729273
1.0 —0.2314271 + 0.43174272 — 0.340434273 + 0.518424

H(z) (5.20)

_0.0154 + 0.0462z7* 4 0.0462z2 + 0.0154z 72
 1.0—-1.99271 +1.5722-2 — (.45832~3

H(z) (5.21)

by 4*"-order and 3"4-order adaptive filters respectively. = The given systems

have poles very close to the unit circle. The system given by (5.20) has poles
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Figure 5.17: Learning curves comparing the convergence properties of the new

stability monitoring approach against the standard approach as discussed in
Section 5.1.2.
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Figure 5.18: Learning curves comparing the convergence properties of the new

stability monitoring approach against the standard approach as discussed in
Section 5.1.2.
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Figure 5.19: Learning curves comparing the convergence properties of the coef-
ficient design method against pole design method.

at pr1o = 0.5+ 45, p34 = 0.75/ £ 120, and zeros at z;, = 0.92 £ 90, 23 = 0.9,
z4 = 0 while the system (5.21) has its poles at p; » = 0.833Z =+ 45, ps = 0.6605,
and zeros at z;2 = 0.9£ £ 90, z3 = 0.9, 24 = 0.

Finally, we compare the convergence properties of the proposed coefficient
design method against pole design method using the same signals and systems
as used in the previous chapter. First experiment is conducted to show the
convergence curves while modelling the direct system (4.29). Genetic algorithms

with the following set of parameters:
e population size N = 100
e probability of crossover o, = 0.95
e probability of mutation a,, = 0.02
e probability of immigration a; = 0.02

is used to obtain filter estimates. The adaptive filter used in this experiment has
5 feedforward coefficients and 3 feedback coefficients as the original plant. Figure
5.19 shows the convergence curves. Figure 5.20 compares this performance while

modelling the inverse system used in the previous chapter.

108



MSE in dBs

Cosefficient Pole

design / design

24000
28000 +
32000

o
(=
(=
o
N

4000
8000

o 12000 1
16000 -

eneration Number

Figure 5.20: Learning curves comparing the convergence properties of the coef-
ficient design method against pole design method.

5.3 Summary and Discussion

This chapter has provided the design techniques of direct form parameterisation
using simply stability monitoring techniques. Direct forms parameterisation has
given faster rates of convergence than other realisations such as parallel, cascade
and lattice forms. A major problem inherent in designing direct form filters us-
ing floating-point EAs is that it often fails to converge to an optimum solution
due to premature convergence. This is mainly due to small variance of mutation
and small population sizes. Premature convergence can be avoided by using one
of the remedies described in Section 5.1.1. However, these methodologies often
fail if the error surface has severe multimodal performance. Higher mutation
rate can reduce the severity of premature convergence, but it can degrade the
convergence performance. To resolve this problem, this work has provided a
new operator called immigrants, which introduces new chromosomes that are
obtained by perturbing each element of parent chromosomes with higher varia-
tions. Number of immigrants introduced into the population play an important
role in EA’s convergence. Moderate values gave better performance which is
clearly seen from Figures 5.4 and 5.5.

The way of correcting unstable coeflicients back into the stable region played
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an important role in EA’s convergence. This chapter has shown a new method-
ology for correcting unstable parameters, which in turn improves the rate of
convergence of floating-point EAs. Pole projection method that has been used
as a standard correction mechanism was compared with the proposed method.
Pole projection method requires an exact knowledge of unstable coefficient so
that it can be projected back into the stable region. To get the information
pole polynomials must be factored. Factorising polynomials is computationally
expensive. Proposed method does not require such information and therefore
computationally inexpensive. Another important observation has been made
from our simulations is that proposed method improves the convergence of EAs.
This new approach provides faster rate of convergence when compared to pole
projection method.

Even though the proposed method of correction is computationally inexpen-
sive, but it needs stability monitoring techniques which require high computa-
tion. To simplify stability monitoring, we have provided a new methodology,
which uses a termination factor that determines the filter stability implicitly.
This method has been tested while modelling various IIR systems that gives
good performance as standard approaches.

Finally, our conclusion is that coefficient design method always converges
faster than pole design method. Coefficient design gives better fine-tuning
capability and provides final MSE values which are smaller than pole design

approach.

110



Chapter 6

Hybrid Adaptive Approach and
System Modelling for
Adaptation

In the previous chapters, the design techniques of IIR filters towards global opti-
mality have been described. A general conclusion is that evolutionary techniques
provide a global search capability but is poor in fine-tuning, which has been a
major drawback. Moreover, evolutionary algorithms require much longer time
than classical methods and therefore are unsuitable for applications requiring
tracking time varying changes. For example, channel equalisation of multipath
channels strictly requires an efficient adaptive algorithm to track the time vary-
ing characteristics of the channel environment [82, 6, 76, 28].

This chapter develops design techniques for adaptive IIR digital filters using
a hybrid approach. This work uses EA as a major search tool to find global
regions of IIR error surfaces and employs a gradient-based algorithm where
appropriate for fine-tuning the coefficients. When a global region has been
found, the gradient algorithm can be switched on to track any time-variant
changes without the help of an evolutionary algorithm. This method resolves
the problems of achieving fine-tuning and tracking time varying performance by

evolutionary approaches.
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The rest of this chapter is organised as follows: In Section 6.1, fine-tuning
and hybrid methodologies are described. This section describes how the pa-
rameters of time-invariant systems can be fine-tuned using the new method.
Applications and validation to various system modelling are illustrated. Section
6.2 briefly describes the modelling of time-invariant and time-variant systems.
Simulation results illustrating convergence performance are shown. In Section
6.3 provides modelling of time-variant systems is shown and simulation results
showing the convergence performance illustrated. Section 6.4 presents adaptive
inverse modelling in nonstationary environment. Finally, Section 6.5 provides a

brief summary and discussion of this chapter.

6.1 Fine-tuning and Hybrid Methodology

In this section we describe how the parameters of time-invariant systems can
be fine-tuned using hybrid methodology. Evolutionary algorithm and the nor-
malised RPE algorithm are chosen for this hybrid search approach. A set of
training data of w samples is used to train the adaptive filters. The proposed
floating-point EA with a fixed population size N is employed and the best
member (an individual having the lowest cost) of the population is subjected
to fine-tuning via normalised RPE algorithm, which is discussed in Chapter 2.
The same training set and the same number of training data are used to update
the normalised RPE algorithm. Adaptation through normalised RPE algorithm
can fail if the path contains multiple local optima or the coefficients are updated
outside the stable region. Filter can be checked for stability using the technique
discussed in the previous chapter. At each generation, the coefficients obtained
via normalised RPE algorithm are used to calculate the MSE value of the in-
stantaneous error and compared with the best member of the EA’s population.
The winner of this competition is used to update the normalised RPE algorithm
and replaces a member of the parent population before the next generation to

be evolved. This cycle is repeated until the MSE of the normalised RPE reach
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to a steady state value. A flowchart representing this cycle is shown in Figure

6.1.

6.2 Applications and Validation
to System Modelling

In this chapter, we consider two types of system modelling problems, which

include the modelling of systems, whose parameters are
1. Time-invariant
2. Time-variant

We use the following notation

g:{bﬂabla"'abM—bal,aQa'"aaN} (61)
to represent time-invariant systems and use

g(n) = {bo(n)’ bl(n)a T bM—l(n)a a‘l(n)’a’Q(n)? T aN(n)} (6'2)

to represent time-variant systems. The index M and NN used in (6.1) and (6.2)
represent the number of numerator and denominator coefficients respectively. In
our simulations, we assume that the parameters defined (6.2) change with time
with a frequency ay which is considerably slower than that of adaptation rate.

For example, let us assume that the parameter b, is varied in such a manner
bi(n) = by + {1 — exp(—aysn)} (6.3)

where b; is the original value and n denotes the time. Our aim in this chapter
is to model direct and inverse of such systems in the direct form adaptive IIR
filters. We further assume that models can be trained by a set of training
signals.

A series of simulations is carried out to show the fine-tuning capability of

the proposed approach. The system described by (6.1) is used in all simulations
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Figure 6.1: Flowchart illustrating the hybrid approach.
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of this section, and the input signal s(n) applied to this system is a white
random process with a normal distribution and unit variance. For the sake of
simplicity, the experiments presented in this chapter are carried out in noise
free environments. An estimate of the MSE at each generation is obtained by
averaging

1 w—1 )

J==2 le(@) (6.4)

W i=o
over 15 independent computer runs, where w represents the number of training
signals. The number of training signals and the population size used in all
experiments are 100 and 50 respectively. From the knowledge of our previous

experiments carried out in the previous chapter, we chose the following values

as genetic parameters:
e Probability of crossover a, = 0.95
e Probability of mutation o, = 0.02
e Probability of immigration a; = 0.01

The step size p of normalised RPE is set equal to 0.001 unless otherwise speci-
fied. The reasons for chosen this value have been discussed in Chapter 2.

To make a clear conclusion on the convergence performance of the proposed
approach, we show three kinds of direct system modelling of (6.1) such as ezact-
modelling (order of an adaptive filter and the system being modelled are equal),
over-modelling (order of an adaptive filter is greater than the system being
modelled) and poles close to the unit circle [64]. In all three cases the adaptive

filter has the general form:

co+ ezl 4+ epy127@7Y
I —diz = —dyz P

A(z) = (6.5)

where @ and P represents the numerator and denominator coefficients respec-

tively.
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Figure 6.2: Exact-modelling with fine-tuning performance. MSE learning curves
of the pure EA and the hybrid approach

6.2.1 Exact Modelling

In this case, g is a fourth-order system with distinct poles located well inside

the unit circle. The coeflicients of g are

bo = 1.0, by = —0.9, by = 0.81, by = —0.729, (6.6)

a; = —0.04, a; = —0.2775, a3 = 0.21012, as = —0.14

which give poles at p; o = 0.5/ £ 45, p34 = 0.75/ £ 120, and zeros at z;, =
0.9/ +90, 23 = 0.9, zy = 0. Figure 6.2 shows the MSE learning curves of the
pure EA and the hybrid algorithm. Evolutionary algorithm finds the shortest
root to normalised RPE algorithm. The global region is found within 1000
generations and normalised RPE algorithm takes another 110000 generations
to fine-tune the coeflicients. Figure 6.3 shows the trajectories of a; and by. From
these results it is clear that the above two coeflicients reach to its original values
within 500 - 1000 generations. The convergence performance of normalised RPE
algorithm itself is attempted to show in this chapter, but in all attempts the
results are unsatisfactory due to multiple local minima and potential instability

of direct form adaptive IIR filters. Therefore, they are not presented.
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Figure 6.4: Over-modelling with fine-tuning performance. MSE learning curves
of the pure EA and the hybrid approach

6.2.2 Overmodelling

In this simulation, g is a second-order system of parameters
{ bo = 1.0, by = —0.9, a; = 0.71, ap = —0.25 (6.7)

with distinct poles at p;o = 0.5/ + 45 and zeros at z; = 0.9, 2 = 0. The
adaptive filter has P = 3 and Q = 2, i.e. P > N. Figure 6.4 shows the
MSE learning curves of pure EA and the hybrid algorithm. The EA finds the
global region within 200 generations and normalised RPE takes another 1800
generations for fine-tuning. Figure 6.5 shows the trajectories of d; and ¢y. The
coefficient trajectories clearly shows that d; reaches its original value within 200

generations while ¢y takes 100 generations.

6.2.3 Poles Close to the Unit Circle

A fourth-order system is used as in the exact-modelling case, except the poles

are at py o = 0.8/ 145 and p34 = 0.92 £ 120. The coefficients corresponding to
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Figure 6.6: Modelling with poles close to the unit circle to show fine-tuning
performance. MSE learning curves of the pure EA and the hybrid approach

these poles are

bp =1.0, by = —0.9, by = 0.81, by = —0.729,
a; = 0.2314, ap; = —0.43174, a3 = 0.340434, a4 = —0.5184

(6.8)

Figure 6.6 illustrates the learning curves while Figure 6.7 shows the coefficients
trajectories.  In this case the EA takes 1000 generations to find the global
region and normalised RPE takes 5000 generations to fine-tune the coefficients.
However, the coeflicients d; and ¢, are converged to its original values within

500-1000 generations.

6.3 Modelling in a Nonstationary Environment

This section applies the modelling techniques to time-variant systems. Time
variant systems have parameters have parameters that can be varied with time.
Therefore modelling of such systems cannot be achieved with an offline process
such as EAs. In this case, the EAs can only be used to find a better root for
an algorithm that track time varying performance. An algorithm such as nor-

malised RPE can be used to achieve the adaptation of time varying changes.
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We run the hybrid algorithm to obtain a best solution for a particular train-
ing sct and then employ normalised RPE algorithm to adapt the time varying
parameters.

To illustrate the convergence performance of the proposed approach, we
consider a variety of direct and inverse modelling of g(n). The aim of these
experiments is to show the capability of the proposed method when modelling
systems in nonstationary environments.

In this case we consider the same systems used in Section 6.2, except that the
parameters are assumed to be time-variant. Exact modelling is considered unless
otherwise specified. The genetic parameters and population size are chosen as
those used in the previous experiments. Firstly, we consider a fourth-order IIR

system of parameters
[ by(n) = 1.0 + 0.5{1 — exp(—0.001n)}, by = —0.9,

ba(n) = 0.81 + 0.4{1 — exp(—0.001n)},
bs(n) = —0.729 + 0.25{1 — exp(—0.01n)},

(6.9)

a; = —0.04, a; = —0.2775, a3 = 0.21012, a4 = —0.14

\

where the parameter by(n), bo(n) and bz(n) of (6.9) are varied exponentially at a
rate 0.001, 0.001 and 0.01 respectively. Other parameters such as {b1,a1,---,aq}
are assumed to be time-invariant. Initially, a training set of 10000 samples is
generated with these parameters. Among 10000 samples generated, only 100 are
used to obtain the best member via offline. The hybrid algorithm is employed
and run until the normalised RPE reach to a steady state value. The best
parameters obtained through offline process are used as the initial parameters
for the normalised RPE to track time varying changes. Figure 6.8 shows the
MSE leaning curve of hybrid algorithm while modelling the system using an
equivalent order adaptive filter. The hybrid algorithm gives the best solution
within 1000 generations. Once the best solution for the particular training
set is found, the normalised RPE algorithm is allowed to run to track time
varying changes. Figure 6.9 shows how the coefficients cy(n) and c3(n) are

converged during adaptation via normalised RPE. normalised RPE algorithm
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Figure 6.8: Adaptation with model (6.9) using an equivalent order adaptive
filter. MSE learning curves of pure EA and hybrid approach.
could track the time varying changes, however, the adaptive filter coefficients
and the corresponding original values are not exactly matched to each other.
The reason for this poor performance is that the model parameters are varied
with a higher rate compared to that of adaptation, i.e. © = 0.001.

Next, we consider the modelling of the same system, except the parameters
{bo(n), b2(n), b3(n)} are varied much slower than that of (6.9). i.e. by(n), ba(n)

and b3(n) are varied in such a way that

bo(n) = 1+ 0.5{1 — exp(—0.0001n)},
ba(n) = 0.81 + 0.4{1 — exp(—0.0001n)}, (6.10)
bs(n) = —0.729 + 0.25{1 — exp(—0.0001n)}

In this case the normalised RPE algorithm easily tracks these variations as new
data are being captured. Figure 6.10 clearly confirms the statement stated in
previous paragraph by illustrating the convergence of c3(n) and c3(n) against
iteration number. It is easily seen that the original coefficient values and the
coefficients obtained through normalised RPE are closer to each other.
Another experiment is carried out to show the convergence performance

when the adaptation rate is u = 0.01. Figure 6.11 illustrates the coefficients
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trajectories while modelling the (6.9) using an equivalent order adaptive fil-
ter with the new adaptation rate. The convergence curves of ¢, clearly shows
the improvement - in this case adaptation rate is higher than the parameter
variation.

Therefore, an important conclusion, which can be made from above discus-
sion, is that normalised RPE algorithm can give a better convergence perfor-
mance if the rate of channel variations is smaller than that of adaptation rate.

In the second modelling example, we consider an over-modelling problem

with a second-order system of parameters

{ bo(n) = 1.0 + 0.5{1 — exp(—0.001n)}, by = —0.9, .11

ai(n) =0.71 + 0.25{1 — exp(—0.001n)}, ap = —0.25
In this case bp(n) and a;(n) are assumed to be time-invariant. Also the adapta-
tion rate and the rate of parameter variations were equal. Figure 6.12 shows the
MSE learning curves of hybrid and pure EA while offline adaptation. Figure
6.13 shows the trajectories of the time varying coeflicients obtained during adap-
tation. The original values and the normalised RPE updates are not closer to
each other. Figure 6.14 illustrates the coeflicients trajectories when the rate of
parameter variations are set to oy = 0.0001, which is smaller than the adapta-

tion rate p = 0.001. i.e.

bo(n) = 1.0+ 0.5{1 — exp(—0.0001n)}, b; = —0.9,
ai1(n) =0.71 + 0.25{1 — exp(—0.0001n)}, ay = —0.25

(6.12)

In our third example we consider a system with the poles close to the unit
circle. In this case exact-modelling is considered. Firstly, we assume these

parameters are

4

) =1.0 — 0.5{1 — exp(—0.001n)},

) = —0.940.25{1 — exp(—0.01n)},

J by(n) = 0.81, bs(n) = —0.729 + 0.5{1 — exp(—0.001n)}, (6.13)
a1(n) = 0.2314 4 0.05{1 — exp(—0.001n)}, ay = —0.43174,

as = 0.340434, a4 = —0.5184
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The parameters {as, a3, a4} are assumed to be time-invariant. Figure 6.15 shows
the MSE learning curves of hybrid and pure EA while offline adaptation. Figure
6.16 shows the trajectories of the time varying coeflicients obtained during adap-
tation. Again the coeflicients trajectories are not exactly matched to the original
values due to the higher rate of parameter variations. Figure 6.17 shows the
coefficient trajectories while modelling the same system except the parameters
are varied slower rate than that of (6.13). i.e. in this case the parameters of the

system to be modelled are

;

bo(n) = 1.0 — 0.5{1 — exp(—0.0001n)},

bi(n) = —0.9 4 0.25{1 — exp(—0.0001n)},

{4 by =0.81, b3(n) = —0.729 + 0.5{1 — exp(—0.0001n)}, (6.14)
a1(n) = 0.2314 + 0.05{1 — exp(—0.001n)}, as = —0.43174,

| a3(n) =0.340434, a, = —0.5184

A major observation, which is made from above simulations is that normalised
RPE algorithm perfectly tracks the time varying changes if the rate of parameter

variations is much smaller than that of adaptation rate. The adaptation rate
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adaptive filter. MSE learning curves of pure EA and hybrid approach.
can be controlled with a step size p. Higher the step size can bring the adaptive

algorithm into improper direction and can cause inaccurate estimates [63].

6.4 Adaptive Inverse Modelling

In the first case, we consider a FIR channel, which has the following parameters

bo(n) = 1.0+ 0.5{1 — exp(—0.0001n)},
bi(n) = —1.4 4+ 0.05{1 — exp(—0.0001n)}, (6.15)
be(n) = 0.98 + 0.05{1 — exp(—0.0001n)}

The parameters by, b; and by are assumed to be time-variant. Inverse of the

above channel is an ITR which has following z-transfer function

1
H(z) = bo(n) + b1 (n)z=1 4 ba(n)z2 (6.16)

From (6.15) and (6.16) it is clear that even though the channel is a FIR, the
resulting inverse filter will be an IIR which is strictly bounded with the stability
criterion. Therefore it is evident from the above discussion that a linear inverse

system can be found by a linear adaptive process if the channel has minimum
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approach while modelling the inverse of the non-minimum phase FIR channel
of parameters (6.17) by the second-order adaptive filter given in (6.18)

phase, i.e. zeros lie inside the unit circle. For example, consider the above
channel by ignoring the time-variant parameters, i.e. by = 1, by = —1.4, by =
0.98. The inverse of this channel has poles that are very close to the unit circle,
P12 = £0.9899. The time varying parameters can easily bring this channel into
non-minimum phase. Therefore the optimum inverse filter can become unstable.

Let us assume that the channel parameters reach the following:
bo = 1,b1 = —14, bz =1.1 (617)

at a time n and stay in the same state for a long time. Clearly, the channel with
above parameters is a non-minimum phase and hence the optimum inverse filter
is unstable. Figure 6.18 illustrates the MSE learning curves while modelling the
inverse of the channel of parameters (6.17) using the hybrid approach and the

EA itself with a second-order adaptive IIR filter of transfer function

Co

A =
(Z) 1- dlz_l - ng—Z

(6.18)

Both algorithms fail to reach to the global minimum which lies at {by = 1,a; =

—1.4,a;, = 1.1}, but they find a best solution in the stable region at {by =
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0.763368,a; = —1.27424,a, = 0.98813}. Figure 6.19 shows the trajectories of
the coefficients of (6.18) during offline adaptation. The coefficients reach steady
state values within 200 generations.

In summary, the application of linear filtering approach is unable to identify
systems that have poles outside the unit circle. For example, inverse of a linear
system modelling of the non-minimum phase channels given in (6.15) with the
parameters (6.17) could not be achieved with the linear adaptive IIR filtering.
The simulation results confirming this statement is illustrated in Figures 6.18
and 6.19. In this case, the algorithm fails to identify the optimum inverse filter,
but find an inverse filter that provides smallest MSE of the stable region. An
important point to note here is that EAs may find the global solution, but it is
not always guaranteed.

By considering these issues the rest of this chapter will consider modelling
of minimum phase channels. Consider the same channel, in this case we assume

that all the parameters are fixed except by,
bo =1, b1(n) = —1.4 — 0.5{1 — exp(—0.0001n)}, by = 0.98 (6.19)

It can be easily shown with a stability triangle [6, 63] that the channel with the
above parameters can always lie within minimum phase. Before the tracking
process is switched on, the global minimum of particular training samples is
found by using hybrid approach via offline process. Figure 6.20 shows the MSE
learning curves provided by the hybrid algorithm. As shown in this figure EA
finds the global solution within 100 generation and normalised RPE algorithm
takes another 100 generation for fine-tuning. After the global solution is found,
the normalised RPE is switched on to track the time varying characteristics.
The trajectory of the d; during adaptation is also shown in Figure 6.21. Figure
6.22 shows the input, output waveforms taken during adaptation. Figure 6.23

shows the modulus of the instantaneous error obtained at each updates.
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Figure 6.20: MSE learning curves of the hybrid approach while modelling the
inverse of the FIR channel of parameters (6.19) by the second-order adaptive
filter given in (6.18)

Coefficient d 4

1000 -
2000 +
3000 +
4000 +
5000 +
6000 -
7000 ~
8000 -
9000 +
10000

Generation Number

Figure 6.21: Adaptive inverse system modelling of the FIR channel of parame-
ters (6.19). Trajectory of d;

137



(a) Original Signal

©
c
2
(7]
V]
£
-
o
()
°
2
=
E
<
-5 t t t t t f t } t
o o (=] o o [=] o o (=] o o
o - (3] (32 < [Te] © ~ [=e) [+33 o
o o o [=3 o o (=] [«] (o] (o] -
[e)] (=) (o] (o] (o] (o] [=>] (=] [+)] (=] [«2]
Samples
(b) Restored Signal
5
4 4

Amplitude of the Signal
o

-2 1

-3

-4

-5 t t t t + + + t t
[} o o o [=) o o o o o o
o - (Y] m < Yo © ~ 0 [«2] o
o o o (=] o o o o o o -
(=] [=2] (=2 [=>] D [«>] [«)] [«>] =>] [e>] (=2}

Iteration Number
(c) Corrupted Signal

Amplitude of the Signal

. ; t f t —+ t t f

o o [=) o o o (o] o (o] o o

o - (oY) m < wn 0 ~ o] [«2] o

o (=] [=) (=] o o o o o o -

(=) (=] [+>] [o] (o)) [o)] » o] (=) o [=>]
Samples

Figure 6.22: Adaptive inverse modelling. Input, output waveforms while mod-
elling the inverse of the FIR channel of parameters (6.19) by the second-order
adaptive filter given in (6.18). (a) Original signal (b) Restored signal (c) Cor-
rupted signal (Channel output)

138



2.5

1.5 A

0.5 A

Modulus of Instantaneous error le(n)

0 o wnalh e b oot i waaadl L al.,l PN TT O

o o o o o o o o o o o
(@] o o o o o o o o o

o o o (=] o o (=] o o o

~— Al (a7] <+ [Te] w0 N~ (eo] (=] o

-~—

Iteration Number

Figure 6.23: Adaptive inverse modelling of the FIR channel of parameters (6.15).
Modulus value of the instantaneous error produced by normalised RPE.

Finally we consider a fourth-order FIR channel with the following parame-

ters:

bo = 1, bl(n) = —09, bz = 081,
bs(n) = —0.729 — 0.1{1 — exp(—0.0001n)}

(6.20)

All the parameters except bs are stationary. The optimum inverse filter has

z-transfer function

1

H,(z) =
(9) = 00,7 108152 —0.8297

(6.21)

It can be easily shown that the above inverse filter is stable. A fourth-order
adaptive system of structure which is similar to (6.21) is used to model the
inverse of the (6.20). Figure 6.24 shows the MSE learning curves of the pure EA
and the hybrid algorithm when optimising the filters via offline. Evolutionary
algorithm finds the global area within 100 generations. normalised RPE takes
another 100 generations to fine-tune the coefficients. Once the global area is
found, the algorithm is continued with normalised RPE to track time varying
changes. Figure 6.25 shows the trajectories of d3 while adapting the parameters

using normalised RPE. The coefficient d; is adapted according to the changes.
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Figure 6.26 shows the input, output and corrupted waveforms of the above
experiment. Figure 6.27 shows the modulus of the instantaneous error obtained

at each updates.

6.5 Summary and Discussion

In this chapter we have shown that hybrid methodology is very efficient and
optimal for adaptive IIR filtering. We have successfully identified a wide variety
of IIR linear models using the hybrid approach that employs EA and normalised
RPE as searching tools. We have also shown how the time varying parameters
of a linear system can be tracked with the help of a normalised RPE, which has
been discussed in Chapter 2. In general, this chapter provided the techniques of
designing direct form adaptive IIR digital filters in nonstationary environments.

These techniques can be used in many areas of signal processing where ap-
plications will demand adaptive IIR filtering. For example, equalising filters
in telecommunication often demand IIR structures to remove interference in-
troduced by those communication channels. Most communication channels are
nonstationary and require adaptive equalisers. In such cases, hybrid approach
can be used via offline to globalise the parameters and normalised RPE can be

switched on to track the time varying changes.
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Figure 6.26: Adaptive inverse modelling. Input, corrupted and restored wave-
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Chapter 7

Adaptive Channel Equalisation

and Noise Cancellation

In the last two chapters of this dissertation, the theoretical development of evo-
lutionary techniques for the design of adaptive IIR filters has been presented
along with validation using modelling applications. This chapter aims to show
practical problems using these techniques and adaptive filters. These are pre-
dominantly in the areas of adaptive channel equalisation [56] and noise cancella-
tion [81]. These areas have been active areas of research in which applications of
adaptive IIR filters are of paramount importance. However, the use of adaptive
IIR filtering techniques in these areas are relatively low due to the problems
encountered in existing adaptive filtering approaches.

This chapter shows how the proposed IIR filtering technique can be used in
the areas with less computational costs. In particular, this chapter presents sev-
eral comparative results, which compare the frequency and bit error rate (BER),
the ratio of misclassified to correct symbols at the receiver, performances of low
order IIR filters against various taps FIR filters when designing these filters
for communication channel equalisation. Moreover, the necessity of adaptive
IIR filtering is clearly outlined by describing the concepts of Noise Cancella-

tion technique. The applications of the proposed techniques are presented with
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the theoretical models developed from C++ programming language. The sim-
ulation study has been carefully conducted by considering some of major real
problems into the account and the simulations were carried out in an Intel-P133,
110 MHz Pentium processor.

The rest of this chapter is organised as follows: In Section 7.1 the prob-
lems in communication channels are discussed. Also, this section describes the
need of channel equalisation. Section 7.2 illustrates adaptive equalisation. This
section first introduces trained equalisers in QAM systems and then provides
some results obtained when designing various IIR equalising filters using the
techniques discussed in the previous chapters. The frequency responses of the
designed IIR equalisers are compared with various-taps FIR filters optimised
through classical algorithms. Bit error rate performance is also compared with
FIR equalisers. This section then illustrates blind equalisation. The results
of blind equalisation are shown when equalising various multipath channels in
nonstationary environments. In Section 7.3, noise cancellation is given. Finally,

in Section 7.4 a brief summary of this work is given with discussion.

7.1 Channel Equalisation

A major problem in digital communication is that signal fading due to channel
distortions [28]. Fading is defined as any variation in signal strength, relative
phase or polarisation of any of the frequency components of a received radio
signal due to the characteristics of the propagation path. In addition to channel
distortions, the transmitted symbols are subject to other impairments such as
thermal noise, impulse noise, and nonlinear distortions arising from the modula-
tion and demodulation process, cross talk interference and the use of amplifiers.
If the communication channel is linear, a model of the received signal is there-

fore:

R(z) = C(2).5(z) + V(2) (7.1)
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Figure 7.1: Received signal model of a communication system.

where R(z), S(z), C(2) and V() are the z-domain representation of the received
signal r(n), transmitted signal s(n), channel impulse response ¢(n), and additive
noise v(n) respectively. Received signal model of a communication system is
illustrated in Figure 7.1.

Removal of interference in communication channels can be achieved by var-
ious approaches. For example, space and frequency diversity systems are cur-
rently being used to remove channel interference of multipath propagation path.
In recent years, the improvement in adaptive signal processing has encouraged
the study of adaptive channel equalisation techniques. As a result, adaptive FIR
filtering approach has gradually been replacing the existing non-DSP techniques
such as space and frequency diversity systems to remove channel interference
and noise [76]. Unfortunately, these first generation adaptive system have cer-
tain performance limitations due to high computational requirements and poor

performance of the FIR structures as discussed in the earlier chapters.

7.2 Adaptive Channel Equalisers

Channel equalisation problems are categorised into two main classes: linear and
nonlinear equalisation [56]. Linear adaptive filters can provide equalisation of
linear channels, where they use inverse filtering approach to cancel the interfer-
ence. A linear adaptive equaliser cannot restore signals corrupted by nonlinear
mechanisms. In such cases nonlinear adaptive filters [28] can be used, but they
are beyond the scope of this research.

Adaptive equalisers are further classified into two categories: trained equaliser
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or blind equaliser. Trained equalisers use the originally transmitted sequence
during adaptation, while in blind equalisation, the adaptation of the equalising
filter is attempted in a way to match the statistics of the output of the equaliser

to those of the transmitted sequence [28].

7.2.1 Trained Equalisation: Adaptive Equalisers in
QAM Systems

Quadrature amplitude modulation is an efficient technique to reduce system
band-width, where two double-sideband suppressed-carrier amplitude-modulated
signals can be superimposed, and separated at the receiver, using quadrature
or orthogonal carriers for modulation and demodulation [76, 55]. Most high
speed baseband modems, e.g. 56000 bits/s, employ QAM to reduce the band-
width requirements of a voice-band channel [56]. As well as linear distortions,
speech-band channels generally introduce frequency offset and phase jitters on
to the data signal. Linear distortions cause inter symbol interference (ISI) on
each quadrature component and cross coupling interference (CCI) between the
two baseband channels [56]. The modem receivers use some form of carrier-
phase tracking circuitry to remove frequency offset and reduce phase jitters.
Quadrature amplitude modulation is as efficient in bits per second per hertz
as vestigial or single-sideband amplitude modulation, yet enables a coherent
carrier to be derived and phase jitters to be tracked using easily implemented
decision-directed carrier recovery techniques [76, 56]. A timing waveform with
negligible timing jitters can also be easily recovered from QAM signals. How-
ever, an equalisation process can only remove the linear distortions introduced
into the quadrate components.
A model of an equivalent baseband channel can be drawn as the cross con-

nected networks shown in Figure 7.2. A very convenient way of representing
this is to regard the two data inputs (and outputs) as real and imaginary com-

ponents and then the equivalent baseband response may be represented by a

147



{cn)}
+
s/n) \

r{n
{ In-Phase Input} )

{In-Phase Output}

{cdm)

{cin)}

si(n)
{Quadrature Input}

ri(n)
{Quadrature Output}

{cin)}

Figure 7.2: Equivalent complex channel.

complex impulse response. Consequently the model of the received signal can

be represented by a single operation:
r™*(n) = s*(n) * ¢*(n) + v(n) (7.2)

where 7*(n), ¢*(n), s*(n) and v(n) are the impulse responses of the received sig-
nal, channel response, input, and noise interference respectively. The x symbol

is shown to represent the complex impulse responses,
s*(n) = s.(n) + si(n) (7.3)

c*(n) = ¢ (n) + ¢(n) (7.4)

™(n) = r(n)+rin)
= {s:(n) xcr(n)} + {si(n) x ci(n) }

+{s:(n) x ci(n)} + {s:(n) x ¢, (n)} (7.5)

where subscripts 7 and ¢ represent real and imaginary components. The concept
of a complex channel response is therefore very useful for the design of QAM
modems. To equalise or cancel a complex channel response, a complex adaptive
filter is required which can use 4 such real operations in one structure which is
clearly seen from the equations (7.2) - (7.5). Figure 7.3 presents a typical QAM
communication system, which employs a complex adaptive filter to remove the

channel interference.
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7.2.2 Results and Validation

In this study, a linear channel with complex response is chosen to represent QAM
system. Figure 7.4 illustrates an experimental arrangement of channel equali-
sation, where c¢(n) and f(n) are assumed to represent the impulse responses of
the channel and the adaptive filter respectively. The channel transfer function

is assumed to be of the form

~

C(z) = { = (7.6)

[T (1 — ageifz=1)

M .
I1(1— bel%iz71)
k=1

where {ax, b;} and {¢;, 0} are the factors representing the ISI and CCI of the

QAM channels. The input signal s(n) considered is assumed to be

s(n) = Aexp(Jjwen + z(n)) (7.7)
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where A represents the amplitude of the signal, w, denotes the centre frequency,
and z(n) is a baseband signal. This signal has a constant envelope property with
an amplitude A. In addition to the linear distortion, a zero mean white noise
is added at the output of the channel to represent possible noise interference,
which appears during signal transmission. The standard deviation is chosen
so as to meet equivalent signal to noise ratio (SNR) of at least 30 dB. This
is considerably a higher value, but can be expected in communication systems
due to the interference caused by amplifiers and converters. Our aim is to show
how the channel interference can be removed in noisy environments, but not to
show cancelling of noise. Appendix D shows how the SNRs are calculated for
these signals. Trained adaptation is used and assumed that the original signal
is available at the receiver during adaptation. Considering these real problems

into account, the parameters of the channel (7.6) are assumed to be

a1 = 0.97, a; =0.95, a3 =0.98, ay = 0.85,b; = 0.9, by = 0.94,
¢1 = 0.3m, ¢y = —1.27, ¢35 = —0.757, ¢4 = 1.57, (7.8)
91 = 0.37’[‘, 92 = —0.27

to represent a channel with poles closer to the unit circle, and
a; = 086, Qg = 075, az = 08, a4 = 07, b1 = 075, bg = 08,
¢ = —0.57, ¢o = —1.271, ¢35 = —0.757, ¢4 = 1.5, (7.9)
61 = 0.6m, 0 = —0.27

were assumed to represent a channel with the poles well inside the unit circle.

The signal s(n) is generated with
{w.=0.1rad, A =1, z(n) = 0.05sin(0.001n)} (7.10)

The work in this dissertation is to find the optimum setting of parameters
rather than finding the model structures. Various modal selection criteria are
reported in [55, 5] to find the structure of the linear modals (modal order) with
ease. For example, Akaike information criterion (AIC) can be used to select the

order of the numerator and denominator coefficients of an adaptive IIR filter
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[65]. Assuming that the filter orders can be found from the above mentioned
techniques, a population of adaptive filters each having 5 numerator coefficients
and 2 poles are chosen to model the inverse of the channel (7.6) of parameters
(7.8) and (7.9) respectively.

Original data sets of 10000 samples, {s(n)}9%, are generated and applied to
the channel to obtain channel output. The output of the channel is then added
to the Gaussian noise so as to obtain received signal, {r(n)}>%. Among 10000
samples, a training set of 100 pairs of {s(n)} and {r(n)} are taken to train the
adaptive filters as shown in Figure 7.4. For the given training set, EA is used to
evolve a population of complex IIR filters with the population size = 50. The

MME value, ¢, averaged over the window size, w = 100 (number of training

data), is minimised through the hybrid algorithm. Minimising the MME, thus
min{e} = minE|e(n)| = minE |d(n) — #(n)| (7.11)
where 7(n) is an estimate of r(n) given by

An) = r(n)*f(n)

= {d(n) * c(n) + v(n)} * f(n)
= {d(n) x c(n) * f(n) +v(n) * f(n)} (7.12)

where

r(n) = {d(n) * c¢(n) + v(n)} (7.13)

Therefore

min{e} = minE |d(n)(1 — ¢(n) * f(n))l -

minE |v(n) * f(n)| (7.14)

where f (n) is the impulse response of the estimated adaptive filter, f(n). It is

clear from the equation (7.14) that the net effect of minimising the MME is to
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minimise the first term of right-hand-side of the equation and thus results
mine ~ minE |v(n) * f(n)] (7.15)

The genetic parameters such as crossover probability ., mutation proba-
bility «,,, and the standard deviation o are set equal to 0.85, 0.05 and 0.005
respectively. The probability of immigration, «;, is set 0.02. The step size u
normalised RPE is set equal to 0.001. The hybrid algorithm is allowed to run
over 8000 generation unless otherwise termination criterion is met. The simu-
lation is repeated for 15 independent EA runs using the same training data but
in different system environments and with distinct initial conditions. The final
results are taken by averaging the results obtained from 15 independent runs.

Figure 7.5 shows the power spectrum of input, output and the original sig-
nals of equalisation of the channel (7.6) of parameters (7.8). This channel with
these particular parameters has poles, which are closer to the unit circle. The
spectral analyses show how the signal power varies against its frequencies. The
power spectrum of the channel output clearly shows the effect of the channel’s
response on the transmitted signal. Corrupted signal has several spectral spikes,
which appears throughout the spectrum. These spikes represent the distortion
introduced by the channel. The noise interference on the other hand produces
white spectrum, which appears throughout the frequency band. Even though
the IIR equaliser perfectly models the inverse of the channel, the noise interfer-
ence is still appeared at the output of the equaliser. This clearly proves that the
noise interference, which is added to the signals during transmission, cannot be
removed from linear inverse filtering approach.

Figure 7.6 shows the power spectrum of the signals obtained from FIR
equalisers with various filter lengths. Finite impulse response filters with 32, 64
and 256-taps are employed along with LMS algorithm to equalise the channel
(7.6) of parameters (7.8). In appendix E, we have shown how the FIR-LMS
algorithm are developed for this experiment. Even a 256-tap FIR equaliser still

provides less performance than a second-order IIR equaliser. This proves that
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signal by a second-order IIR filter optimised through the hybrid algorithm
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the frequency response of an IIR system is significantly better than equivalent
FIR filters.

Figures 7.7 - 7.8 provide the results of channel equalisation of the channel
(7.6) of parameters (7.9). The power spectrum of the input, output and the
original signals are illustrated in Figure 7.7. This channel has poles, which
are well inside the unit circle. The effect of this channel is clearly seen from
the Figure 7.7(b). This channel introduces a spectral spike in the frequency
band, but its effect is very less when compared to the previous channel shown
in Figure 7.5(b). However, FIR equaliser still requires much more coefficients
to compensate for the distortions. The recovered signal from a second-order
IIR equaliser is shown in Figure 7.7(d), while Figures 7.8(b)-(d) illustrate the
results obtained from 32, 64 and 256-tap FIR equalisers. In this case the FIR
equaliser of order 256 does better equalisation. However, its performance is still
worse when compared to those of IIR equaliser. An IIR equaliser of order 2
perfectly equalises this channel.

Figure 7.9 shows the learning curves which are obtained while optimising the
IIR filters for channel equalisation of parameters (7.8) and (7.9) respectively.
In both cases the hybrid algorithm finds the solutions within 4000 generations.

We also present an experiment with very high SNR to show the ability of
IIR equalisers in less noise environments. For this experiment, the channel

parameters are assumed to be

a; = 0.98, a; = 0.95, a3 = 0.94, a4 =0.92,b; = 0.92, b, = 0.85,

b1 = 0.77, ¢y = 1.5m, ¢35 = 1.757, ¢4 = 0.5, (7.16)

0, =—-13m 6, =127
This channel has poles, which are very much closer to the unit circle and hence
introduces severe distortions in the frequency band. In this experiment, the
channel output is added to a white noise sequence so as to produce SNR of
60 dB. The power spectrum of the input/ output and the recovered signals are
shown in Figures 7.10 and 7.11 respectively. = Equalising performance of an

IIR filter is clearly seen from Figure 7.10(d). Figure 7.12 illustrates the learning

155



(a) Original Signat

Jce-~00T W
123

~of07T

»w e
'
o

0 0125 025 0375 05 0625 075 0.875 1
Normalised Frequency

(b) Channel Output

~® 0T
Jce~~000®M

ma

»

1] 0.125 025 0.375 0.5 0625 0.75 0.875 1
Normalised Frequency

{c) Received Signal

3c-~=~000 W
-
wn

~®E070

e

0 0125 025 0375 0.5 0625 075 0.875 1
Normalised Frequency

(d) Second-order IIR Filter

Jc~~00TW

~® 20T

@ a

0 0125 0.25 0.375 0.5 0.625 0.75 0.875 1
Normalised Frequency
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Received signal contaminated in white noise. (d) Recovered signal by second-
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Figure 7.12: Learning curves showing the MME values plotted against genera-
tion number while optimising the IIR filters for equalising the channel (7.6) of
parameters (7.16)

curve, which shows the MME of the best filter plotted against generation number
while optimising the adaptive filters. Again, hybrid algorithm identifies the final
solution within 4000 generations.

Along with the above results, we also compare the BER performance between
IIR and FIR equalisers when transmission of binary signals through two simple
channels:

Ci(z) =1+0.727" (7.17)
Cy(z) =1+0.95271 (7.18)

For this experiment, a pseudo random binary sequence (PRBS) is applied as an
original signal and BERs is obtained to measure the performance of the filters.
Appendix D gives full details of calculating BER from the input and output
signals. The binary sequence considered in this chapter is assumed to belong to
the alphabets PRBS € {—1,+1}. Last 100 samples of inputs and the corrupted
signals of the above channels are shown in Figure 7.13. It is clearly seen from
the figure that the error introduced by the channel, 1 +0.95271, is greater than

those of 140.7z71. This is because, when the zeros are closer to the unit circle, it
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Figure 7.13: Input and corrupted signals when equalising the channels, (a)
c1(z) =1+ 0.7z and (b) cx(2) =1+ 0.9527%, with SNR = 25 dB
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introduces spectral nulls in the passband, therefore it is difficult to equalise these
distortions by conventional FIR filters [28]. The power spectrums of the signals
which are obtained from these two channels are shown in Figure 7.14. The
channel 1+ 0.9527! introduces negative spikes in the passband, but the channel
1+0.727! doesn’t produce such negative spikes. A finite impulse response filter
with 14-taps is used along with the LMS algorithm to model the inverse of the
channels (7.17) and (7.18) respectively. A population of adaptive IIR filters of
second-order is used with the floating-point EA. Figure 7.15 presents the BER
comparisons of the optimum filters for various SNRs. This comparative results
show that the BER achieved by both equalisers for the channel 1 + 0.7z~ has
very little difference. The IIR filter gives slightly better performance than a FIR
equaliser does. However, the results achieved for 1 + 0.95z~1, which has a zero
very close to the unit circle, gives confidence in the IIR approach. Even a 14-tap
FIR equaliser is not able to perform as well as equalisation as a second-order

ITR equaliser.

7.2.3 Blind Channel Equalisation

A major problem inherent in line of sight communication is that of changes of
channel characteristics due to variations of atmospheric condition. The channel
characteristics can be changed with time due to variations in the refractive
index of the atmosphere. The signals transmitted through these channels are
nonstationary and will necessitate the use of online adaptation, which equalise
the channels as new data being received. Moreover, the receiver has no exact
knowledge of the transmitted signal. Therefore trained adaptation cannot be
used as in the case of MODEM channels. In such a case blind equalisation is
widely used [76].

Blind equalisation or blind deconvolution is an adaptive inverse filtering
technique where the adaptive algorithm has no access to training or desired
signal. It is a self-learning technique, which can restore a signal corrupted

by channels back to original condition. In blind equalisers, a cost function is
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minimised in much the same way that least mean square and recursive least
square adaptation minimise the MSE. One of the most popular algorithms is
constant modulus algorithm (CMA).

Constant modulus algorithm is designed to penalise deviations of the blind
equaliser output from a constant modulus. The cost function that is minimised
via CMA is

p=E[(ly(n)|* - R*)?] (7.19)

where y(n) is output while R represents a constant modulus. The constant R
is chosen in such a way that the gradient of the cost function p is zero when

perfect equalisation is attained [28]:

E[im)f
R = 2@ (7.20)

where §(n) is an estimate of the input signal s(n).
Thus CMA can be applied to those areas where the signal of interest contains
a constant envelope property. Examples of such signal types are frequency mod-
ulation (FM), phase modulation (PM), double side band amplitude modulation
(DSBAM), etc. The gradient descent version of CMA was successfully applied
to adaptive FIR filters and is well defined in [76]. A simple multipath channel,
which is more likely to be encountered in practical communication systems, is
given by
ci(n) =4d6(n) +0.56(n — 1) + 0.16(n — 2) + v(n) (7.21)
where ¢;(n) represents channel impulse response, §(n) represents the input and
v(n) denotes the additive Gaussian noise with zero mean and o as the standard
deviation. In our simulations standard deviation is arranged so as to meet signal
to noise ratio of 25 dB. The transmitted signals used in the following simulations
is assumed to be pseudo random binary taking the values {—1,1}. For PRBS,
it can be easily shown that E{s?(n)} = 1 and E{s*(n)} = 1 which in turn gives
R = 1. We further assume that the channel, (7.21) is nonstationary and their

parameters are varied in such a manner
cni(n) = d(n)+ {0.5 - 0.5(1 — exp(0.0001n))}é(n — 1)
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+{0.1 + 0.5(1 — exp(0.0001n))}6(n — 2) + v(n)  (7.22)

Figure 7.16 and 7.17 shows the trajectories of a;(n) and as(n) while equalising
the above channel, (7.22), by a second-order adaptive filter of the following

structure:
b
Ai(z) = 0 (7.23)

1—a27! —agz~2
1

using normalised RPE algorithm. Before the normalised RPE is switched on,
the best member of a population for a particular training set is found using

hybrid methodology described above. From the coefficient trajectories shown,
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Figure 7.16: Trajectory of a; while equalising the channel (7.22) with an adap-
tive filter of structure (7.23)

it is clear that equalisation of channels in nonstationary environments can be

easily achieved with the recently proposed approach. Figure 7.18, 7.19 and 7.20
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Figure 7.17: Trajectory of as while equalising the channel (7.22) with an adap-
tive filter of structure (7.23)

shows the coefficient trajectories while equalising the following channel

cno(n) = d(n)+ {1.2 - 0.15(1 — exp(0.0001n)) }é(n — 1)
+{=0.15 + 0.15(1 — exp(0.0001n))}5(n — 2)

—0.586 + {—0.1682 + 0.15(1 — exp(0.0001n))}8(n — 4) (7.24)

with the following adaptive filter

bo
Aoly) — 7.25
2(2) 1 —a1z7t —apz72 —agz™3 — a427* (7.25)

by using normalised RPE algorithm.
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Figure 7.18: Trajectory of a; while equalising the channel (7.24) with an adap-
tive filter of structure (7.25)

7.3 Noise Cancelling

The main objective in noise cancelling is to produce an optimum estimate of
the noise in the corrupted signals and hence an optimum estimate of the desired
signal. A more general diagram for an adaptive noise cancelling system is shown
in Figure 7.21. The signal s(n) is the corrupted signal containing both the
desired signal, o(n), and the noise, v(n), assumed to be uncorrelated with each
other. The signal, z(n) is a measure of the noisy signal which is correlated in
some way with v(n). The signal z(n) is processed by the digital filter to produce
an estimate, 9(n), of v(n). An estimate of the desired signal is then obtained

by subtracting the digital filter output, 0(n), from the corrupted signal, s(n):
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Figure 7.19: Trajectory of a, while equalising the channel (7.24) with an adap-
tive filter of structure (7.25)

= o(n) +v(n) — i(n) (7.26)

As shown in Figure 7.21 noise cancelling is achieved by using 6(n) in the
feedback arrangement to adjust the digital filter coefficients, via a suitable al-
gorithm, to minimise the noise in 6(n). The output signal, 6(n), serves two

purposes:
1. As an estimate of the desired signal and
2. As an error signal which is used to adjust the filter coefficients.

It can be easily shown that the total power at the output of the cancellor
maximise the output signal to noise ratio [82, 81]. For example, consider the

estimate of the desired signal 6(n) which is given in equation (7.26). Squaring
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Figure 7.20: Trajectory of a4 while equalising the channel (7.24) with an adap-
tive filter of structure (7.25)

equation (7.26) we have

&*(n) = o*(n)+ {v(n) — 9(n)}?

+2o0(n){v(n) — o(n)} (7.27)
Taking the expectation of both sides of equation (7.27) we have

E[6*(n)] = Elo*(n)]+E [{v(n) — 9(n)}’]

+2E [o(n){v(n) — 9(n)}] (7.28)

Since the desired signal, o(n), is uncorrelated with v(n) or with ¢(n) the last

term in equation (7.28) is zero and we have
E [6*(n)] = E [0*(n)] + E [(v(n) — 9(n))"] (7.29)
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Figure 7.21: A more general diagram for adaptive noise cancelling.

where E [0?(n)] represents the total signal power, while E[6%(n)] represents the
estimate of the signal power. It is evident in the above equation that if the
estimate 0(n) is the exact replica of v(n), the output power will contain only

the signal power:

min E [6*(n)] = E [0*(n)] + minE [(v(n) — 9(n))?] (7.30)
Therefore it is clear that the net effect of minimising the total output power is
to maximise the output SNR.
Results and Validation

Let us consider the following noise cancelling diagram shown in Figure 7.22.
Here B(z) and {1—A(z)} are the noise coloration filters which may be described
by

AR)={l-a1z7' —apz™%,- -, —arz™ "} (7.31)

B(Z) = {bo - blz_l, tre, +bM_1Z_(M_1)} (732)
We assume that two measurements are available,
1. Signal to be extracted plus noise

2. an auxiliary measurement, u, which is correlated with the noise w(n).

We also assume that the additive noise contaminating the signal is a filtered

version (filtered through B(z)) of a white noise {w(n)} and that the measured
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Figure 7.22: An experimental arrangement of noise cancellation.

correlated noise is the same {w(n)} passed through different coloration filter,
{1—A(z)}. Let us consider the impulse responses of the coloration filters, B(z)
and {1 — A(2)} are b(n) and a(n) respectively. For the sake of simplicity, the
noise coloration filters used in this experiment are assumed to be FIR.

Our aim is to minimise MME:
min{e} = min E{e(n)} = min E{o(n) + v(n) — f(n)} (7.33)

using recently proposed hybrid techniques, where f(n) denotes the estimate of
the filtered noise v(n). The equation given in (7.33) can be expanded in such a

way that:
min{e} = minE{w(n) *b(n) + o(n) — w(n) *x a(n) * f(n)}
= minE{o(n)} + min E{w(n) * [b(n) — a(n) * f(n)]} (7.34)
Thus minimising the MME in the equation (7.34) will actually minimise the last

term of the equation. Therefore, it is evident that the error can be minimised

to zero if

b(n) —a(n) * f(n)=0 (7.35)
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If the transfer function of the estimated adaptive filter, f(n) is F(z), the equa-

tion (7.35) approaches zero when

B(2)

P& =1"4G

(7.36)

The equation (7.36) clearly illustrates the necessity of adaptive IIR filters in the
application noise cancellation.
A PRBS signal
PRBS € {-1,+1} (7.37)

was used as an original data sequence and the noise filters are assumed to be of
the form

B(z) =05+ 0.62"1 — 0.4272 (7.38)

and

A(z) = 0427 — 0.5272 (7.39)

The reference noise is a set of Gaussian random variables with zero mean and
some standard deviation so as to meet the signal to noise ratio, SNR = 10 dB.
Samples of 10000 data, {o(n), w(n)}3%% are generated. Among 10000 samples
only 100 samples are taken to train the model using adaptive algorithm as shown
in Figure 7.22. It is evident from Figure 7.23(b) that all of the signal information
of the original binary sequence cannot be determined from the corrupted signal.

The floating-point EA with following set of parameters:
{a. =0.9, @y, = 0.02, ; = 0.05, o, = 10} (7.40)

is used to evolve a population of IIR filters, each having 3 zeros and 2 poles. The
algorithm is allowed to run over 4000 generations. The results of noise cancelling
are illustrated in Figure 7.23. From the results it can be seen that the original
binary symbols which buried in noisy environment is perfectly identified. i.e.

noise has been significantly reduced.
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7.4 Summary and Discussion

In this chapter we have shown two major applications of adaptive IIR filtering.
These include, Channel Equalisation and Noise Cancellation.

In channel equalisation, the concepts of blind and trained adaptation tech-
niques have been revealed. Firstly, equalisation of complex channel responses
has been shown, in which the recently proposed hybrid technique was employed
to obtain the best-estimated equaliser using trained adaptation. The power
spectrum of the equalised signals obtained through IIR filters were compared
with those of FIR filters adapted through standard LMS algorithm. Moreover,
by applying the PRBS as an input, BER performances of FIR and IIR filters
were compared when equalising the channels, 1 4+ 0.727! and 1 + 0.952! with
various SNRs. From these results it can be concluded that a FIR equaliser
needs much more coefficients than an IIR equaliser to achieve a performance
as good as an IIR equaliser does. However, it is also evident from these results
that equalisation of channels whose zeros are very close to the unit circle is very
difficult to equalise by a FIR equaliser even with a large number of coefficients.
These results clearly show the necessity of adaptive IIR filtering techniques
when equalising communication channels.

A blind algorithm was employed in our simulation as a constant modulus
algorithm, which perform adjustments of the adaptive filter coeflicients without
the need for a desired response. We have shown that direct form adaptive IIR
filters can be successfully used to identify nonstationary channels with the use
of the proposed hybrid methodology.

We have shown that equalisation of communication channels in noisy en-
vironments can be achieved through linear adaptive filtering. The technique
used by linear adaptive filtering approach is inverse filtering method that can-
not remove the noise interference. i.e. linear adaptive filters can only be used
to identify the channel interference, but not to remove the noise interference.

The removal of noise interference requires the use nonlinear filtering techniques
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and may be achieved by adding a nonlinear function at the output of the fil-
ter. Another observation is that IIR filters give much better frequency response
than equivalent FIR filters. The results confirming this statement are shown
in Figures 7.5 - 7.10 which were obtained when equalising various complex IIR
channels using trained adaptation. Furthermore, IIR equalisers gave better BER
performance than FIR equalisers did. Bit error rates obtained against various
signal to noise ratios when equalising received binary signals of the channels
140.727" and 1+40.952"! through IIR and FIR equalisers are shown in Figures
7.15. From these results we also concluded that BER performance obtained for
the channel whose zeros close to the unit circle (e.g. 1+ 0.95271) is worse than
those of zeros well inside the unit circle (e.g. 1+ 0.7z7'). However, the IIR
filters able to equalise these close poles with less number of coefficients than
FIR filters.

Finally, concept of adaptive noise cancelling has been described. We have
shown the necessity of adaptive IIR filtering. The critical characteristic is that
the relationship between the auxiliary measurement, u, and the primary mea-
surement, s, of Figure 7.22 are described by an IIR transfer function shown
by the equation (7.36). A population of adaptive IIR filters was used with a
floating-point evolutionary algorithm to obtain an estimate of the original sig-
nal, which is corrupted by noise interference. The recovered signal has been
compared with the original sequence and this result clearly shows the ability of

an adaptive IIR filter to cancel the noise interference.
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Figure 7.23: The results of noise cancellation.
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Chapter 8

Conclusion and Further Work

8.1 Conclusion

A critical review related to the importance of this research has been outlined in
Chapter 1. In particular, limitations of current design methods of IIR adaptive
filters have been investigated. Chapters 2 and 3 have provided a theoretical
background of digital filter design with various conventional and evolutionary
algorithms. These have led to the development of a pole and coefficient design
approach to IIR, adaptive and complex digital filters and the development of a
globally optimal, fine-tuned and efficient evolutionary design methodology.

In Chapter 4, the pole based design technique has been developed. This has
avoided the stability-monitoring problem by constraining the search space of
poles within a known stable region. This method has also overcome the major
drawback encountered by conventional design methods arising from multiple
optima, in the design space. Evolutionary algorithms have been developed to
represent complex poles in the chromosome structures in the same manner as
they appear in the filter structures and hence the coding/ decoding process
has been avoided. Split-point crossover which combines uniquely as indivisi-
ble floating-point genes have been developed for combining complex genes and
demonstrated as being a better method when compared to standard crossover

operations. This crossover also increased the degree of population diversity by
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introducing more new members.

Learning curves have been generated to illustrate the convergence behaviour
of Gaussian and Uniform distribution of mutations. Gaussian distribution has
been shown as being a better mutation distribution for perturbing floating-point
genes. Convergence curves illustrating this performance have been obtained
while modelling various IIR systems. Furthermore, advantages of tournament
among other EA selection schemes have been revealed more clearly. In this
work, the cost functions such as mean square error and mean modulus error
have been successfully employed for modelling direct and inverse systems. The
final parameter values as obtained from these cost functions have been com-
pared with the original values. From these results and from the corresponding
learning curves it has been proven that the improved EA can work with any cost
functions with ease. This brings a major turning point to hardware designer
where implementation of MME in hardware is cost-effectiveness when compared
to mean square error.

In Chapter 5, the direct coefficient design method has been developed. The
major difficulty of ensuring filter stability during evolution has been overcome.
Alternative realisations such as parallel, cascade, lattice structures have also
been formulated to simplify stability monitoring. Learning curves while mod-
elling various IIR systems have been generated for each realisation and have
been compared with those obtained from direct form filters. These compara-
tive results have shown that rate of convergence of parallel, cascade and lattice
form filters were much slower than that of direct form filters. However, the
convergence rate of lattice filters was better than parallel and cascade forms.
The reason for these variations in the rate of convergence is that, for example,
parallel and cascade forms provide multiple optima with the same fitness values,
which arises when rearranging the subsections among the filter structures.

A novel method has been introduced to simplify stability monitoring in di-
rect form evolution of IIR filters. This method uses a termination factor that

decides the filter stability by comparing this factor with the output calculated
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during evaluation. A new correction mechanism has been shown in which un-
stable filters have been replaced by a healthy parental filter of the previous gen-
eration. The learning curves as obtained from this correction mechanism have
been compared with standard correction methods aﬁd the results illustrated the
advantages. This method has increased the rate of convergence and provided
final MSE values that are much lower than that of standard approaches.

A new approach has been presented to avoid the degree of premature con-
vergence while evolving the filters using floating-point EAs. This is achieved by
introducing a new operator with an aim to increase the population diversity.
The total number of chromosomes introduced into the population at each gen-
eration is controlled by a factor called probability of immigration «;. Too small
or too large values of o; will degrade the convergence performance, where the
choice of this parameter was more crucial.

Two major drawbacks of evolutionary techniques are (1) poor fine-tuning
performance and (2) unsuitability for applications requiring online adaptation.
Therefore, in Chapter 6, a hybrid methodology has been developed to improve
the local tuning and also to track time varying parameters of nonstationary
systems. It is shown how an evolutionary algorithm can be combined with a
fast classical algorithm to achieve both goals, where the evolutionary algorithm
is used to globalise the parameters while LMS to achieve fine-tuning. This
approach is validated by a variety of IIR linear models with distinct pole lo-
cations. Various nonstationary systems have been identified with this hybrid
approach where the evolutionary algorithm is first employed to ensure a global
optimality and the LMS based algorithm to track time varying changes of the
nonstationary system. Results show the dependency of adaptive coeflicients as
fast as parameter variations.

In Chapter 7, two major applications, which are predominantly in the area
of adaptive signal processing, have been shown. They include channel equali-
sation and noise cancellation. Two types of channel equalisers, namely trained

equalisers and blind equalisers, are developed for online applications. Trained
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equalisation first represents removal of channel interference and additive noise,
which appears in MODEM channels that, carries QAM signals. The concept
of complex filtering technique has been shown to simplify the process trivial
where QAM signals have been treated as complex time-waveform. The Hy-
brid methodology has been successfully applied to equalise those channels and
produce the equalised signals for comparison with FIR filters with various filter
lengths. Secondly, trained equalisation of binary signals has been shown to com-
pare BER performance of IIR against FIR filters. Two different channels have
been examined, one with zero closer to the unit circle and the other with zero
lie well inside the circle. A major observation, was that equalising the channels
whose zero closer to the unit circle was only possible with IIR filters. This is
because the channels that have zeros closer to the unit circle introduce spectral
nulls in the passband and are difficult to equalise by conventional FIR filters.

Application to blind channel equalisation has also been presented, which
shows the ability of the proposed technique in nonstationary environments. The
blind algorithm employed in our simulation was a constant modulus algorithm,
which performed adjustments of the adaptive filter coefficients without the need
for a desired response. This work has shown that direct form adaptive IIR filters
can be successfully used to identify nonstationary channels with the use of the
proposed hybrid methodology.

Finally, the concept of noise cancelling has been shown and the necessity
of adaptive IIR filters was revealed clearly. Time waveforms illustrating the
capability of noise cancelling have been generated using the proposed adaptive
approach.

In summary, all research goals laid out on pages 7 - 8 have been achieved,

with other achievements listed on pages 10 - 11.
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8.2 Suggestions to Further Research

There are several ways in which this research can go further. A comparative
study on binary and floating-point EAs and also a comparison with other cod-
ing schemes under the same operating conditions would be useful. Coding a
complex parameter into binary is prohibitively long representation and hence
requires high computation. However, the rate of convergence may be better than
floating-point EAs when the parameters being optimised are complex. Learn-
ing curves illustrating the convergence performance would be therefore useful.
Also, a study of the Genetic Programming (GP) technique for finding model
structures would expand the research discussed in this thesis. A description of
this method can be found in Appendix G.

The experiments carried out in this thesis have been developed from C++
code. It is worth to test the algorithms using the ADI real time simulator
available in the department. Also, it would be better to investigate the imple-
mentation of these algorithms using currently available DSP processors or ASIC
design techniques and hence find the issues, which limits those implementations.

The results of channel equalisation illustrated that linear adaptive filtering
approach cannot be used in environments where signal to noise ratios are to be
very small. In such case, a linear adaptive filter may follow a nonlinear function
in order to avoid the noise interference. Also, transmission of binary signals may
employ nonlinear classifiers rather than inverse filtering techniques to remove

channel interference and noise.
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Appendix A

Error Surface and Multimodality

In this dissertation, MSE performance surfaces of IIR filters were plotted in
several occasions to show the multiple local optima. These 3-D plots are
called mesh-plots, which show the variations of objective function values (MSE)
against adaptive filters’ parameters such as coefficients and poles. The MSE
surfaces were obtained for various combinations of filter parameters, while mod-
elling a variety of IIR systems as EA evolves the parameters.

To obtain a MSE, an excitation input {s,}“Z}, where w represents the num-
ber of samples, are applied to both the system and adaptive filter to obtain
prediction error, e(n), as shown in Figure A.1. Gaussian noise signal with mean
0 and unity variance is often used as an excitation input in many system mod-
elling problems [51, 64, 73, 62, 12]. The excitation inputs used in chapters 4 -

6 were sets of Gaussian variables with mean 0 and standard deviation, d = 1.

s(n
System y(m)

+

Input
s(n) .

Adap'tive Prediction Error
IIR Filter Yo(n) e(n)

Figure A.1: A block diagram illustrating system identification.
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Figure A.2: An example of local MSE surface.

The MSE performance, for example, while modelling a second-order system,

, 0.5-0.42-'+0.89z“2 , A .
H(z) = — (A1)
W 1- 14z~1+0.98z-2 \Y R
by using an adaptive filter,
2) = ° + A 7o+ 2 .
4 [i, ab\lz~l, a7~z (A-2)

can be easily obtained from summed-squared error, which is averaged over a

suitable window length w.

1 40—1
MSE = <= - £ (A.3)
W  nZo
Thus, the MSE obtained for various choices of filter parameters are then plotted
as 3-D mesh to show the local surfaces of the MSE. Figure A.2 shows anexample

of local MSEwhich is plotted against aland 6 for w = 200, while other

parameters were set to the optimum values.



Appendix B

Conversion Between Pole
Positions and Polynomial

Coeflicients

In Chapter 4 of this dissertation, a poles design method was discussed. When
poles are designed, they must be converted into equivalent coefficients before
evaluating the fitness of each individual.

The pole polynomials can be easily converted into coeflicients by using simple
iterative solutions. For example, consider an AR process which is given by z-

domain representation as

H(z) = ! _ (B.1)

l—aiz7t —agz=2,--+, —anz~

where the index N represents the number of feedback coefficients. The system

H(z) can also be represented by all pole form
1
(1 =prz7)(1 = poz7?) -+ (1 = pn2z=")

Where {p;}¥, represent the poles of the system.

H(z) = (B.2)

A relationship can be made between poles and coefficients in such a way
that
for N =1
a; =p (B.3)
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for N =2

Gy = —D1P2
a1 = pi1+p2 (B.4)
for N =3
az = DP1P2P3
as = —{pip2 + p1ps + pap3}
a1 = {p1+p2+ps} (B.5)
for N =4
G4 = —P1P2P3P4

as = {pipaps + P1P3ps + Pop3ps + P1P2ps}
as = —{pi1ps+ paps + p3ps + P12 + P1P3 + P2p3}

ay = Pp1+p2+Dp3+ D4 (B.6)

From equations (B.3) - (B.6) a relationship between poles and the coefficients

can be made for a general order N,

an(N) = (=D _I_Ilpz- (B.7)

a(N) = f(N—-1)—a_1(N—-1)py forl<l< N (B.8)
N

a(N) = gpi (B.9)

where a;(N) of (B.8) represents the I*h coefficient of the NI order system,

while a;(N — 1) represents the Ith coefficient of the (N — 1)th order system.

196



Appendix C

Test Signals

C.1 Classification of Signals

The signals considered in this dissertation can be classified as one of two types:
Determanistic Signals and Stochastic Signals. A deterministic signal is one that
has no random components and is therefore completely predictable. Examples
of these signal types were used in the channel equalisation and noise cancelling
applications in Chapter 6. These signals can be exactly described at any time
using an analytical or mathematical description.

A stochastic (or random signal) is a signal that cannot be exactly described
by a deterministic mathematical function. The value of a random signal can-
not be determined until it has been measured or observed. Most signals that
arise from naturally occurring process (e.g. speech, vision, etc.) have random

characteristics and are thus stochastic.

C.2 Representation of Random Signals

Discrete time random signal considered in this work are represented as a se-
quence of random variables, {z,}. Each sample z, is a random variable with

its own probability density function (pdf), variance (c2) and mean (u).
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pdf is a mathematical function that describes the probability that a random

variable will, when observed, have a particular value. For example, the proba-

bility that a variable z will lie in the incremental range y - - -y + dy, is given by
P=()6y,

Probabilityly < z <y + dy] = p.(y)dy (C.1)

Mean:- the value of a random variable is defined as its expected (or average)

value,
wz) = E [z] (C.2)

Variance of a random variable is usually denoted by o2. It represents

the mean value of the square of a random variable after its mean has been
subtracted,

o’ =E [(z - ,u)2] (C.3)

Power Spectral Density function is yet another way of describing the

characteristics or structure of a random signal. It indicates how the energy in a

signal is distributed over different frequencies. It is defined as the DFT of the

covariance function,

P(w) = DFT[C}] = i Cre 7wk (C.4)

k=—00

C.3 Stochastic Processes

C.3.1 Stationary and Non-stationary Signals

A random signal is said to be stationary if each sample has exactly the same
probability density function. A stationary random signal is one whose statistics
do not change over time. Furthermore, a single pdf (and mean and variance) is
sufficient to describe a stationary random signal.

In a nonstationary signal, each sample in the signal sequence can have a
unique pdf. Non-stationary signals are therefore more difficult to analyse than
stationary ones. Many important signals are nonstationary (e.g. speech). How-

ever, they can in some instances be considered to be stationary over a short time
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segment. In the case of human speech, analysis has shown it is approximately
stationary over periods less than about 30-millisecond duration. This implies
that the analysis and processing can be simplified by breaking up the signal into

short segments and applying stationary techniques to each segment.

C.3.2 Special Test Signals
White Noise

White noise is an important type of random signal. It is defined as a sequence of
independent and identically distributed random variables, where each sample in
the sequence has the same Gaussian probability density function. This random
process occurs frequently in signal processing, as it is a suitable model for many
naturally occurring processes, such as thermal noise or random measurement
errors.

White noise has an energy density that is equal at all frequencies, just like
white light. Since each sample in a white noise process is independent of ev-
ery other sample, the covariance function is zero for all lags, except Cy which
represents the variance of the noise. i.e. the covariance of white noise can be
represented as an impulse,

Cr = 05k (C.5)

The power spectrum of the white noise sequence is therefore,

P(w) = o? (C.6)

where o2 is the variance of white noise sequence. White noise can be generated
from successive independent random numbers from a Gaussian random number

generator, which takes mean p and standard deviation o as arguments.
Gaussianvariable{v} = gauss(u, d) (C.7)

The standard deviation of the Gaussian random number generator can be re-

lated to the variance, o2 in such a way that

d = y/variance = ¢ (C.8)
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Pseudo Random Binary Sequence

Pseudo random binary sequences (PRBSs), also known as pseudo noise (PN),
linear feedback shift register (LFSR) sequences or maximal length binary se-
quences (m-sequences), are widely used in digital communications [43]. It is
truly random sequence in which the bit pattern never repeats. The sequence
serves as a reference pattern with known random characteristics for the analy-
sis, optimisation and performance measurement of communication channels and
systems.

A PRBS sequence, PRBS € {—1,+1} has an autocorrelation of 1 at zero
phase (no time shift), and 0 at all other phases. Therefore, the power spectrum

of PRBS sequence is similar to white noise except that it has unity variance,

Pw) =1 (C.9)
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Appendix D

Measure of Performance

D.1 Performance Functions

The functions such as Power Spectral Density (PSD), Signal to Noise Ratio
(SNR) and Bit Error Rate (BER) are used to measure the performance of a

system.

D.2 Power Spectral Density

D.2.1 Power Spectrum Estimation

Power spectral density function is used to describe the characteristics or struc-

ture of a random signal. For example, let us assume that
{$n,m=10,--,N — 1} (D.1)

be a discrete time ergodic stationary random process. The term ergodic means
that a time average will converge to the expectation, as the time interval be-

comes infinite.

The PSD function of the discrete time signal {s,} can be calculated from

P(w) = i Cre ™Ik (D.2)

k=—c0
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where C, is the covariance sequence of {s,} described by

Ce = E{snsp_i}
= Z SnSn—k (D.3)

For zero mean signals, the covariance can be estimated using the following time

average,
1 N-1

:mZSnsn_k k=0---N—-1 (D4)
n==k

It is important to note that maximum covariance lag that can be estimated from

Ch

(D.4) is C. Furthermore, the limits of the power spectrum of equation (D.1)
are infinite (—oo < k < co). Therefore, it must be truncated using rectangular
window, which results an estimate P(w),

N-1
Pw)= Y G (D.5)
k=—(N-1)

D.2.2 The Use of the DFT in Spectrum Estimation

The equation (D.2) is an indirect method of calculating the estimated power
spectrum P(w), because it requires two steps. First, the autocorrelation Cj
is computed from the data sequence ({z,} and {s,} respectively) and then
the Fourier transform of the autocorrelation is computed. However, it can be
computed by use of the DFT, which in turn is efficiently computed by the
FFT algorithm [55]. For example, if we have N data points, we compute as a

minimum the N-point DFT for power spectrum estimation,

()3

a e frequencies frp = «. Discrete Fourier transform iven uen
t the freq % . Discrete F transform of a sequence can

2

 k=0,1,---,N—1 (D.6)

—j27m)
N

N-1
Ty €XP (
n=0

be easily calculated from standard data analysis tools package.

D.3 Signal to Noise Ratio

Signal to noise ratio calculation was used to generate desired noise sequence for

the experiments illustrated in Chapter 6. Signal to noise ratio is defined as that

202



the ratio of signal power to noise power:

P

NR = -2
SNR =

(D.7)

where P; and P, are the average signal and noise power respectively. The aim is
to generate suitable noise sequences so as to meet desired signal to noise ratios

for given data signals.

The average power of a data sequence {z,,n =0, ---, N — 1} can be calcu-
lated from
1 N-1 9
P, =— n D.
§ 3l (D.8)

If the signal {z,} is a random process, the average power is simply the variance
of that random process.
Now consider the SNR calculation given in equation (D.7). The equation
can be rewritten as
P P

where {v, } represents the noise signal, while the term var denotes the variance.
In this dissertation, Gaussian noise was used to represent the possible noise
interference. Therefore, the noise power is simply the standard deviation of the
Gaussian random number generator. For a given signal to noise ratio, z dB,
the standard deviation, o, of the Gaussian random generator can be calculated

from

(D.10)

D.4 Bit Error Rates

Bit error rate is defined as the ratio of misclassified to correct symbols at the
receiver. It is an important tool to measure the performance of digital systems,
which deal binary signals. The BER performance of a channel equaliser can be

calculated from,

Number of Error symbols Received

BER = (D.11)

Correct Symbols
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For example, the BER of 100 errors received over 10000 symbols in dBs is

100

BER = 20log{ — >
0 Og{wooo- 100

} — 39.8dB (D.12)

In this work, a PRBS was used as binary symbols which was taking a value
from the set {—1,+1}. The output of the equaliser, definitely, do not have
values from the original set {—1,+1} due to noise interference or poor equali-
sation. Therefore, a decision device is employed at equaliser output y to form

an estimate of original PRBS signal, s:
~1y<0 (D.13)

% is now a binary sequence which takes values from {—1,+1}. The bit errors

are the counted if {z # z}.
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Appendix E

LMS Algorithm

In Chapter 6, we have compared the performance of IIR equalisers against
FIR filters, which were adapted through LMS algorithm. Least mean square
algorithm, used in this chapter was standard LMS developed by Widrow in 1975.

The computational procedure for the LMS algorithm is summarised below.

Inputs:
X(n) = [z1(n),z2(n), -, zn_1(n)] input vector
W(n) = [wi(n),ws(n), -, wy_1(n)] weight vector
d(n) desired signal
Outputs:

y(n) = X'(n)W (n)signal output
e(n) = d(n) — y(n) error signal
1. initialise the weights (choose initial weights arbitary), e.g. {wx(0) =0,k =
0,1,---,N —1}.
2. compute the filter output
§(n) = Xt (n)W (n) or
N-1
i) =T wn(wa(n - 1
3. compute the error
e(n) = d(n) — 9(n)
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4. update the weights
W(n+1) = W(n)+ 2ue(n)X(n) or
wi(n + 1) = wk(n) + 2ue(n)z(n — k)

where p represents the step size.

5. repeat steps 2 - 4.

When the input sequence z(n), the output sequence y(n), and the desired
sequence d(n) are all complex valued, then a complex version of the LMS algo-
rithm must be used. The weight vector update of a complex LMS can be given
by

Win+1) = W(n) + 2ue(n)X*(n) (E.1)

The asterisk * denotes complex conjugation. The above algorithm with x = 0.02
was developed as C++ class for testing the inverse models illustrated in Chapter

6.
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Appendix F

ITIR Realisation Forms

To resolve stability problems, alternative realisations such as parallel, cascade or
lattice-forms are considered with simple first or second-order filters [64, 48, 62,
63, 69, 70, 67, 44, 47, 3, 10]. These structures offer simple stability monitoring
techniques and are less sensitive to finite-precision effects (coefficient round-off)
(64, 63, 48, 62]. For example, the parallel or cascade forms comprising second-
order adaptive IIR filters are trivial to factor. The lattice form on the other

hand requires only that each reflection coeflicient have a magnitude less than 1.

F.1 Parallel Form

The parallel form can be obtained from a partial fraction expansion of the pole-

zero filter:

H(z) = bo(n) + b1 (n)z=t + -+ + bpr_1(n) 2L

1-—ai(n)z7l —ay(n)z72 — - —ap(n)zL (F.1)

where

{a;(n), 1=1---L; bj(n), j=0---L}

represent the feedback and feedforward coefficients of the filter, and L represents

the filter order. The equivalent parallel form representation of (F.1) is:

& bok(n) + bix(n)z7 + b (n)z 72
H(z) = 1 —ag(n)z=t — ag(n)z—2

k=1

(F.2)
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Figure F.1: A parallel form adaptive IIR filter.

where M = LL%Q if L is odd, or M = % if L is even.

Figure F.1 illustrates a parallel form adaptive IIR structure, which com-
prises with M second-order subsections, each having three feedforward coeffi-
cients {bx;, k = 1---M; j = 0---2} and two feedback coefficients {ay;, &k =
1---M; i=1---2}. The overall output of this parallel structure is the sum of

all the output from each sub-filter and is given in mathematical notation as:

y(n) = kX_: yk(n) (F.3)

where {yx(n)}, is the output of each parallel filter and M represents the total

number of parallel sections.

F.2 Cascade Form

The cascade form is very similar to the parallel form in that it is generated by
factoring the pole-zero filter (F.1) into the product of M (M = (L—;Q if L is
odd, or M = % if L is even) second-order sections. The equivalent cascade-form

representation of H(z) is:

— ﬁ bok (1) + blk(n)z—l + bzk(n)z‘z

1 —ai(n)z=t — ag(n)z=2 (F-4)
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Figure F.2: A parallel form adaptive IIR filter.

when M is odd, the last stage in a parallel or cascade structure will be a single
pole stage. An example of cascade form realisation is shown in Figure F.2.
The same stability monitoring can be applied in cascade-forms, since similar
second-order sections as in a parallel form structure form the overall structure.
The overall output of a cascade realisation comprising M subsections is the

convolution of all the output from each sub-filter:

y(n) = 1:[ Yk (n) (F.5)

It can be seen from the above equation that the output signal of each section
depends on the coefficients of that sections as well as all previous sections. It
has been shown in a recent publication that the gradient based adaptation of
cascade-form filters require a much longer time than that of other realisations
(62].

A common disadvantage of the parallel and cascade forms is that they can
have multiple optima with same fitness values that arise from rearranging the
poles among the different sections. The number of possible rearrangements
would be M factorials for M cascade or parallel sections. This property leads
to a major drawback for gradient based algorithms when the subsections of

these realisations are identically initialised (e.g. a(0) = 0).
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Figure F.3: A lattice structure.
F.3 Lattice Structure

The filter in (5.2) can be implemented in the form of a lattice with different

weights v;(n) and k;(n), which is stable if the lattice coefficients k;(n) are all

less than 1.
folm) = 2(n) (7 6)
fmo1(n) = fu(n) — kmgm-1(n—-1), m=L,L—-1,---,1 (F.7)
gm(n) = kmfm-1(n) + gm-1(n—-1), m=L,L—-1,---,1 (F.8)
V() = 3 vnn(e) (F.9)

where g;(n) and f;(n) are backward and forward residuals of the i*" lattice stage

at time n. A lattice structure of (5.2) is shown in Figure F.3.
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Appendix G

Genetic Programming

Genetic programming is a branch of GAs. The main difference between GP and
GAs is the representation of solution. Genetic programming creates computer
programs in the LISP or SCHEME computer languages as the solution. That is,
the objects that constitute the population are not fixed-length character strings
that encode possible solutions to the problem at hand, they are programs that,
when executed, are the candidate solutions to the problem. These programs
are expressed in GP as expression trees, rather than lines of codes. Thus, for

example, the simple program,

(+(=+/(*2a)b)(*2a) (G.1)
would be represented by an expression tree shown in Figure G.1. The expression
trees in the population are composed of elements called nodes. According to the
function they represent, these nodes can be classified into Functions and Ter-
minals [60]. The functions and terminals set are the alphabet of the programs
to be made.

Functions: are processing nodes that receive one or more input values and
produce a single output value (e.g. + and # in the example shown in Figure
G.1).

Terminals: are nodes, which represent external input and zero argument
functions.

Genetic programming, uses four steps to solve problems:
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Figure G.1: An example of expression tree for a simple program, given in equa-
tion (G.1).

1. Generate an initial population of random compositions of the functions

and terminals of the problem.

2. Execute each program in the population and assign it a fitness value ac-
cording to how well it solves the problem. The fitness measures the per-

formance of the function coded by the expression trees.
3. Create a new population of computer programs via:
(a) Selection: selects couples of parent trees for reproduction based on

their fitness.

(b) Crossover: take randomly selected sub-trees in the individuals and
exchanging them. For example, a crossover operation between two

different parents is shown in Figure G.2.

(c) Mutation: randomly introduce variations in the programs. There

are two types of mutation are in use:

i. A function can only replace a function, or a terminal can only

replace a terminal.
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(a) Parents

Figure G.2: Crossover in Genetic Programming: crossover operation with dif-
ferent parents.

ii. Entire sub trees can replace another sub tree.

Figure G.3 shows these types of mutation.

4. The best computer program that has appeared in any generation is des-

ignated as the result of genetic programming.

Special Feature Compared With a GA: One of the main advantages
of GP over GAs is that identical parents can yield different offspring, whilst in
GAs identical parents would yield identical offspring. Figure G.4 illustrates this
difference, where bold sections indicate the subtrees to be swapped. Genetic pro-

gramming can be used to evolve an algebraic expression as part of an equation
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(a) Original Individual

(b) Mutated Individuals

Figure G.3: Mutation operation in Genetic Programming,.
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(b) Children

Figure G.4: Crossover in Genetic Programming: crossover operation with iden-
tical parents.
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representing measured input-output response data. For example, used with a
carefully selected library of functions, it can reveal information about the phys-
ical structure of a system and produce an accurate model describing the system

18].
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