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A bstract

In th is thesis, current digital filter design techniques are critically  reviewed and 

problem s associated w ith com putational cost, complexity, frequency response 

and speed of convergence, identified. Based on this, a globally optim al, fine- 

tuned  and efficient evolutionary hybrid technique has been developed to  au to ­

m ate and optim ise infinite im pulse response (HR) and adaptive filter design. 

The proposed hybrid design approach employs an evolutionary algorithm  (EA) 

as a global search tool and a least m ean square (LMS) algorithm , whenever 

appropria te, as a fine-tuner. This perm its optim al and real-tim e tracking of 

tim e varying changes in nonstationary  environm ents as widely encountered in 

telecom m unications.

In the  development, various im provem ents on existing algorithm s are made, 

including those on com ponents of EAs, LMS algorithm  and the  filter structures. 

The aims are to  be able to  evolve direct form H R structures using simple s ta ­

bility m onitoring techniques, to  improve local fine-tuning perform ance and to 

avoid p rem ature convergence. To evolve complex phenotype chromosomes th a t 

are needed by complex HR filters, a novel m ethod of crossover operation is de­

veloped. This is a variation of the  s tandard  uniform  crossover in which the  split 

points are considered to combine uniquely as indivisible floating-point complex 

valued genes. The split-point crossover operation produces m ore new mem bers 

th a n  the standard  crossover operation,; and hence provides a  faster ra te  of con­

vergence and avoids p rem a tu re  convergence. The EAs have been particu larly  

designed for small population sizes and to  reduce p rem ature convergence, a 

new operato r is designed to  introduce new m em bers into the popula tion  during



evolution.

Two techniques are investigated in the design of linear adaptive IIR  digital 

filters, namely, the  pole design method  and the coefficient design method. The 

pole design m ethod provides filter stab ility  th roughout the  genetic search w ith­

out requiring a variety of stab ility  m onitoring techniques. The coefficient design 

m ethod uses simple stab ility  guaranteeing techniques, which also improves the 

ra te  of convergence of the EAs. W ith  the hybrid technique, complex-coefficient 

filters have been designed successfully and globally optim al and adaptive filters 

have been achieved.

The developed m ethodologies and designs are verified using higher order 

com plex IIR  system s and, for adap ta tion , inverse system  m odelling th a t is syn­

onymous w ith  channel equalising filters operating in m u ltipa th  environm ents. 

Here adaptive complex param eters become possible to  equalise am plitude and 

phase d istortions of the received signals. Various stability-ensuring techniques 

are investigated extensively and their convergence perform ances are com pared 

w ith the proposed m ethod. The proposed hybrid, global and fine design tech­

nique is applied to  solve adaptive channel equalisation and noise cancellation 

problem s com monly existing in telecom m unications.
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Chapter 1

Introduction

1.1 Importance of IIR and Adaptive Filtering

W ith  the increasing power of micro processors, d ig ital signal processing (DSP) 

has now played an im portan t role in m any engineering applications [82, 6, 76, 

8, 77, 24, 19, 15]. A daptive signal processing has evolved from techniques de­

veloped to enable adaptive control of tim e varying systems. It is now routinely 

used in a wide range of signal processing systems. R adar, equalising filters in 

high-speed MODEM S, echo-cancellation in speakerphones, interference removal 

in real-tim e m edical imaging, and beam -form ing in radio astronom y, all are 

exam ples of com mercial system s th a t rely on adaptive filtering in one way or 

ano ther [82, 74, 41, 56, 81]. Its m ajor advantages over classical and linear tim e- 

invariant (LTI) signal processing is th a t it can cope w ith nonsta tionary  signals 

whose s ta tis tica l properties vary w ith tim e and th a t it dem ands a low am ount 

of a priori inform ation.

A daptive signal processing has gained much popularity  and has broadened 

the scope of digital signal processing. For practical reasons, however, the  first 

generation of adaptive system s generally employ the basic finite im pulse re­

sponse (FIR) linear filter structu re  [82, 6, 76, 8, 77, 7]. As such, they  have 

certain  perform ance lim itations. For example, the exact resto ration  of a re­

ceived signal corrupted by m ultipa th  d istortion  is hardly possible w ith  an F IR
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struc tu re  [82, 6, 76, 37, 63, 26]. Consequently, the usage of adaptive F IR  filters 

is now relatively low in certain  areas of signal processing.

The applications of adaptive filtering approaches can be extended in all areas 

by developing com putationally  efficient adaptive infinite im pulse response (IIR) 

filtering algorithm s. The prim ary advantage of an adaptive IIR  filter over a F IR  

one is th a t it provides significantly b e tte r perform ance w ith the sam e num ber 

of coefficients. For example, a desired response or, equivalently, its frequency 

response can be approxim ated more effectively by the ou tp u t of a filter th a t  has 

bo th  poles and zeros com pared to one th a t has only zeros [63]. This is because 

the  ou tp u t feedback can generate an infinite im pulse response w ith  only a finite 

num ber of param eters. Therefore, the com putational costs for im plem enting 

such a system  are significantly less com pared w ith an F IR  filter giving the  same 

am ount of perform ance (e.g. frequency response, phase response, etc.). These 

benefits make possible the widespread applications of adaptive filters and  also 

highlight the  im portance of studying these systems w ith improved design and 

perform ance.

1.2 Current Design Problems

Com pared w ith F IR  filters, an IIR  filter does introduce poles and hence stab ility  

problem s into the system. To resolve stab ility  and flexibility problem s associated 

w ith d irect form IIR  filters, alternative realisations such as parallel, cascade 

and la ttice  forms can be considered. These structures offer simple stab ility  

m onitoring w ithout the com plexity required by the direct form. A m ong other 

realisations studied, parallel and la ttice  forms have appeared to  be relatively 

m ore robust [64, 31, 48, 62]. U nfortunately, the parallel or cascade structu res 

can result in relatively more m ultiple optim a th a t can arise from rearranging  the 

poles am ong different sections [5, 63]. This property  leads to  a m ajor difficulty 

in designing IIR  filters and degrades the ra te  of convergence of an adaptive 

algorithm  [63, 3].
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W idely used algorithm s for adaptive F IR  and HR filtering applications are 

m ainly based on least squares (LS) and gradient-guidance techniques [82, 6]. 

Com pared w ith a gradient-guidance technique, the  least squares approach of­

fers faster convergence bu t is num erically ill conditioned and com putationally  

more expensive [24, 22, 1, 65, 53]. Furtherm ore, LS techniques are m ore con­

strained  to  a specific network topology and are considered unsuitable for com­

plex structu res having a large am ount of recursion [38]. On the  o ther hand, 

gradient-guidance technique, such as the least m ean squares (LMS), has been 

m ostly  used in adaptive control and filtering because of its sim plicity of im ple­

m entation  and a com putational efficiency th a t is p roportional to  the  num ber 

of ad justab le param eters [82, 6, 22], However, the LMS algorithm  has two 

m ajor drawbacks: slow ra te  of convergence, and sensitivity to  the eigenvalue 

spread of the correlation m atrix  of the inpu t signal vector [22]. In addition, 

current IIR-LM S often fails to  converge to an optim um  or near optim um  when 

the associated error function is m ultim odal w ith  respect to  filter coefficients 

[63, 64, 31, 11, 61, 33, 22],

T raditional design m ethods of filtering system s use m agnitude response as 

design specification and accept the phase response as is obtained  from the  de­

sign m ethodology [55, 66]. Since the m agnitude and phase characteristics of LTI 

system s are in terrelated , however, the design needs to  consider bo th  m agnitude 

and phase responses as the design param eters in order to  achieve a good set of 

filter coefficients [52]. Given the m agnitude and group delay, an H R filter design 

problem  is often a m ultiple objective one [74]. Expressions of the m agnitude 

and delay errors, em and w ith respect to  a given specification m ay then  be 

form ulated as objectives in term s of filter coefficients. Sim ultaneous m inim isa­

tion of com peting objectives w ith em and can hardly  be obtained through 

conventional op tim isation techniques [52, 74, 2].

In sum m ary, conventional m ethods for designing H R and adaptive filters 

encounter the

• S tability  C onstraint;
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•  M ultim odality; and

•  M ultiple Objective;

problem s. This gives the m otivation for investigating the popula tion  based 

evolutionary search approach [78, 2, 39].

1.3 Evolutionary Solutions to HR Filtering

Currently, various evolutionary algorithm  (EA) based approach have been pro­

posed for digital filtering [37, 51, 38, 35, 79, 70, 44, 47, 3, 60, 73, 45, 49, 2, 

58, 25, 52, 46, 78, 10, 50]. Several evolutionary program m ing (EP) approaches 

are shown to design H R digital filters using various realisations [3, 46, 78]. E r­

ror surfaces, w ith m odelling H R filters in various realisations (direct, cascade, 

parallel and lattice) are studied [3]. Various evolutionary and genetic search ap­

proaches to  adaptive H R filtering are published [37, 51, 44, 73, 46, 10]. G enetic 

evolution of the filter coefficients during the adap ta tion  phase of the gradient 

la ttice  algorithm  has also been shown to improve the convergence ra te  of the 

gradient m ethod and provide global search capability  to give lower error perfor­

m ance [51, 50]. Genetic algorithm s (GAs) have been used to avoid p rem ature  

convergence and to achieve asym ptotic convergence behaviour [2]. T hey are suc­

cessfully used to  design low complexity, prim itive operator, d ig ital F IR  filters

[58].

The m ethods published to  date are for the  real form adaptive filters. In signal 

processing, the concept of complex time-waveform is increasingly used w ith  the 

help of a H ilbert transform er to reduce the sam pling ra te  [76, 6, 55]. The reduced 

sam pling ra te  requires slower logic circuitry, which in tu rn  reduces size and the 

costs when im plem enting a DSP system. The concept of com plex signals is also 

used in quadrate  am plitude m odulation (QAM) systems where bo th  in-phase 

and quadrate  carriers can be viewed as real and im aginary com ponents and  the 

associated operation can be done in the complex form [56, 76]. Therefore, an
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evolutionary m ethod to evolve complex param eters would be useful for signal 

processing applications.

A variety of stab ility  m onitoring techniques is employed w ith high com pu­

ta tio n a l costs to  evolve feedback coefficients. Hence, a lternate  realisations are 

still being used to  avoid the com putational burdens of stab ility  m onitoring th a t 

are required by direct form H R structures. As m entioned, a lternative  reali­

sation such as parallel and cascade provide slower ra te  of convergence. The 

perform ance becomes worse when the subsections are identically initialised. Al­

though la ttice forms offer a simple te st of stability, it is more com plex th an  

direct and parallel form structu res [63]. For example, the gradient com ponent 

for a feedback coefficient requires a separate la ttice  filter using in term ediate 

signals of the adaptive la ttice  filter as inpu t signals.

A lthough various remedies are proposed in EAs, large popula tion  sizes and 

high m utation  distribu tions are often used to  avoid p rem ature convergence. 

Increasing population sizes is com putationally  expensive and higher m utation  

d istribu tions can degrade the convergence perform ance. An optim al approach 

to solve prem ature convergence is somehow m ore crucial. Also, evolutionary 

techniques, in general, provide a b e tte r global search capability, bu t fine-tuning 

cannot be guaranteed. Various approaches have been a ttem p ted  to achieve fine- 

tuning, bu t non-of them  meets all of the desired characteristics [25]. Therefore, 

sim ulated annealing (SA) based GAs have been considered to ob ta in  fine-tuning 

on globally optim ised coefficients where sim ulated annealing is shown as being 

one of the best m ethods to  achieve local search and hence fine-tuning [73, 79, 24].

A nother m ajor drawback of the current EA based techniques is th a t  evo­

lu tionary  algorithm s cannot be used for on-line adap ta tion . M any signal pro­

cessing applications require on-line adap ta tion  in which the param eters can be 

adap ted  as the new d a ta  are being captured. For exam ple, adaptive channel 

equalising filters used in m ultipa th  environm ents need to  be updated  a t frequent 

intervals to equalise the channel characteristics, which can change w ith  tim e. 

These existing problem s need to  be solved.
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1.4 Research Goals and M ethodology

The work presented in th is thesis is to  solve these problem s and achieve a num ber 

of research goals, which are:

1. To develop an EA based technique to  solve the complex digital filter design 

problem;

2. To analyse various stab ility  ensuring techniques th a t can be applied to  

evolve HR and adaptive filters;

3. To develop a simple m ethod to  ensure H R filter stab ility  while im proving 

the convergence ra te  of the EA;

4. To develop an EA-LMS hybrid approach to  adaptive filtering;

5. To investigate various cost functions th a t can be employed w ith the  pro­

posed EA and filtering techniques;

6. To investigate various approaches th a t can be used along w ith th e  s tan ­

dard  genetic operators w ith a view to avoiding prem ature convergence 

when floating-point EAs are im plem ented w ith a sm all population  size;

7. To te st th a t the proposed operator can avoid p rem ature convergence when 

evolving complex HR systems which have severe m ultiple local op tim a in 

the objective functions;

8. To improve the floating-point EA techniques to  achieve high speed, high 

precision and high accuracy, w ith less com putational cost and reduced 

com plexity for signal processing applications.

9. To assess and apply the improved EA in system  m odelling w ith desired 

perform ance criteria  for adaptation;

10. To use the proposed techniques to  solve various DSP problem s such as 

M ultipath  Channel Equalisation and Noise Cancellation w ith desired per­

formance characteristics.
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The concept of complex filters is used w ith an aim to  reduce the  com pu­

ta tio n a l requirem ents of adaptive channel equalisation filters employed in com­

m unication system s [76, 6]. To design complex adaptive H R digital filters w ith 

improved perform ance, the EA-LMS hybrid approach is aim ed to provide a 

b e tte r global search as well as a good local search capability  as the algorithm  

approaches the  global region. Small population sizes and simple stab ility  en­

suring m ethods are used. The chromosomes represent a population of filter 

objects in the  same m anner as they are im plem ented. Two design approaches 

nam ely pole design and coefficient design m ethods are considered in evolving 

direct form H R filters. The pole design m ethod evolves direct form filters w ith­

out employing any stab ility  ensuring m ethods. Coefficient design m ethod, on 

the  other hand, employs simple stab ility  m onitoring techniques. Least m ean 

square algorithm  is chosen to  achieve fine-tuning as the algorithm  enters the 

global region. Moreover, the LMS algorithm  is used to  track the tim e varying 

param eters when the adaptive filters are designed in nonstationary.

A lthough the pole design m ethod avoids stab ility  m onitoring techniques, 

a m ajor drawback to  be expected in th is approach is th a t it may provides 

m ultiple local optim a w ith the same fitness values th a t can be obta ined  when 

reordering the poles w ithin the filter, i.e. the poles can be rearranged in any 

m anner to obta in  the same fitness value. This may lead to  slower convergence 

when crossover operation is employed between feedback sections. To solve this 

problem , coefficients can be designed directly from a population. Coefficient 

design m ethod, therefore, will require a robust m ethod to  ensure filter stab ility  

during adap ta tion .

Evolutionary algorithm s are dependent on their operators, as im proper de­

sign of these operators can result in poor convergence perform ance. All of the 

special features of crossover operations cannot be achieved for the floating-point 

representation. Furtherm ore, the m utation  of floating-point EAs is controlled 

by three elements ra ther than  by a single factor as in binary GAs. These fac­

tors are known as probability  of m utation , variance, and type of d istribu tion .
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T he probability  of m utation  dictates the ra te  a t which m utation  is perform ed, 

the  variance corresponds to the  am ount of variations and the  type of d is trib u ­

tion decides how the probability  of a function defining m utation  is d is tribu ted  

am ongst the function (e.g. G aussian, Uniform, etc.). In b inary  GAs, the  m u­

ta tio n  is only controlled by the probability  of m utation . In troducing im proper 

variance can cause the algorithm ’s convergence into inappropriate  directions. 

This may cause either p rem ature convergence or high popula tion  diversity. A 

m ajo r goal of th is work is therefore to develop and improve EA techniques th a t 

will perform  genetic evolution of complex, direct form H R digital filters w ith  

sm all population-sizes, simple m ethods of ensuring filter stab ility  and  b e tte r  

fine-tuning capability.

1.5 Contributions

M ajor contributions of the work presented in th is thesis are sum m arised below:

1. The goals 1 -1 0  listed on pages 7 - 8  are achieved, providing novel m ethod­

ologies, designs, applications and results.

2. Two design methodologies, pole and coefficient design m ethods, are de­

veloped.

3. A dvantages and drawbacks of each design m ethod are investigated.

4. A novel approach is shown to correct unstable coefficients while im proving 

the ra te  of convergence.

5. The problem s associated w ith the alternative H R filter realisations are il­

lu stra ted  using the convergence curves which are obtained while m odelling 

various H R systems.

6 . This work also provides techniques for tracking IIR  system s when the 

coefficients to  be optim ised are tim e-variant.



7. The perform ances of IIR  and F IR  filters are com pared using channel equal­

ising filters.

8 . Least m ean square algorithm  is dem onstrated  to  show how the adaptive 

constan t can affect the tracking capability  of adaptive filters when equal­

ising various com m unication channels.

9. Split-point crossover which combines uniquely as indivisible floating-point 

genes is proposed and dem onstrated as being a b e tte r  m ethod th a n  s tan ­

dard  crossover.

10. A new operator is proposed and used along w ith the s tan d ard  genetic 

operators to  avoid p rem ature convergence while increasing the speed of 

the EAs by introducing more new m em bers a t each generation.

11. The evolving filters and the associated genetic operations and functions 

are developed as m odular C + +  classes and functions.

Along w ith the above m entioned contributions, th is work has been published 

on several occasions and a few more papers are being subm itted:

1 . Sundaralingam  and K. C. Sharm an, ’’Evolving A daptive Com plex IIR  

S tuctures,” In Proc. of the I X th Annual  Europeon Signal Processing Con­

ference, EUSIPCO-98, Volume II, pages 753-756, Greece, Septem ber 1998.

2 . Sundaralingam  and K. C. Sharm an, ’’Evolving F ilters in M ultipa th  Envi­

ronm ents,” In Proc. of  the Seventh Annual  Conference on Evolutionary  

Programing, EP-98 , pages 397-407, San Diego, M arch 1998.

3. S. Sundaralingam  and K. C. Sharm an, ’’Genetic Evolution of A daptive 

F ilters ,” In  Proc. of the International Conference on DSP, DSP-97,  pages 

47-53, London, December 1997.

4. S. Sundaralingam  and Y. Li, ’’Hybrid Approach to  A daptive IIR  F ilter 

Design,” Submitted to IE E E  Trans. On Acoustics, Speech & Signal Pro­

cessing, May 1999.
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5. S. Sundaralingam  and Y. Li, ’’D irect Form D igital IIR  F ilter Design via 

G lobal Evolution,” Submitted to IE E E  Trans. On Acoustics, Speech & 

Signal Processing, May 1999.

1.6 Outline of Dissertation

The rest of th is thesis is organised as follows:

C hapter 2 presents the extensive and critical review of the various types of 

classical adaptive IIR  filtering algorithm s used a n d / or proposed to  date  and 

will investigate the issues favouring or lim iting the  applications of each.

C hapter 3 provides an extensive study on evolutionary techniques, which are 

now currently  being used, and will inspect the issues of lim iting each application.

C hapter 4 presents the recent development of floating-point EA techniques 

for designing complex IIR  digital filters. In particu lar, th is chapter will show 

the design techniques of poles w ithout em ploying any stab ility  m onitoring. 

A m ethod of using complex param eters d irectly  in the chrom osom e’s struc­

tu res will be described. Along w ith this representation, the detailed functional 

description of genetic operations will be given. A new crossover scheme for 

floating-point EA will be shown. The procedures of perform ing m u ta tion  on 

these floating-point structures will be defined. Various cost functions will be 

discussed and their perform ances will be investigated. Among various selec­

tion schemes proposed, the reason for choosing tou rnam ent selection will be 

described. Finally, th is chapter will show the m odelling of simple direct and 

inverse system s to  dem onstrate the proposed GA techniques.

C hapter 5 presents the techniques of designing the coefficients of direct-form  

IIR  digital filters w ith simple stab ility  m onitoring techniques. This chap ter will 

also outline the problem s th a t can arise from prem ature convergence. A variety 

of remedies will be discussed to resolve prem ature convergence in floating-point 

EAs. This chapter will introduce a new genetic operator called immigrant  th a t 

can be used along w ith the s tandard  genetic operators such as crossover and
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m utation  to  avoid prem ature convergence w ithin small popula tion  sizes.

C hapter 6  shows how fine-tuning can be introduced and im proved w ith  the 

use of gradient based algorithm  where feasible. Techniques of designing direct 

form IIR  d igital filters using a hybrid algorithm  are given w ith  various appli­

cations. A variety of system  m odelling examples are shown w ith fine-tuning 

perform ance of the proposed approach. Furtherm ore, this chapter will provide 

the techniques of adap ting  nonstationary  system s w ith the use of online algo­

rithm .

C hapter 7 presents some adaptive filtering applications where the  recently 

developed m ethod has been successfully applied, w ith convincing results. In 

particu lar, com parative results will be given for channel equalisation to  com pare 

the frequency and B ER  perform ances of IIR  filters against F IR  equalisers. These 

results dem onstrate  the ability of the developed hybrid techniques to  equalise 

or model complex systems.

Finally, in C hapter 8 , conclusions will be drawn w ith a sum m ary of salient 

features of th is research, while indicating the areas of further research.
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Chapter 2 

A daptive Filters and Design

A daptive IIR  d igital filters and their conventional design techniques are high­

lighted in th is chapter. A lgorithm s th a t have been used in such designs m ainly 

belong to  gradient-guidance and least square techniques. These algorithm s are 

in general, well established for adaptive F IR  filters and are very su itable when 

the error surface is quadratic  or unim odal, because of their sim plicity [82, 6 , 7].

This chapter provides an overview of various classical algorithm s for adaptive 

IIR  filtering. In particu lar, the algorithm s, which are based on LMS and RLS, 

techniques have been discussed. Recursive least square techniques have been 

shown to  improve the perform ance of the LMS algorithm s [63, 2 2 , 79]. T he aim 

of th is chapter is to  outline the basic principles of designing classical algorithm s, 

which will be employed in C hapters 6  and 7 to  achieve various perform ance 

im provem ents w ith evolutionary approach. This chapter also outlines the  issues, 

which lim it perform ance when designing the adaptive filters using these classical 

m ethods.

The rest of th is chapter is organised as follows: The basic m aterials needed 

to  understand  the current research is clarified in the following section. Followed 

by th is foundation, LMS and RLS adaptive IIR  filtering techniques to  da te  are 

thoroughly investigated. The issues favouring or lim iting these techniques are 

revealed more clearly. Finally, a sum m ary of these techniques is given, indicating 

the m erits and drawbacks of each system.
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Input
x { n )

^  FIR Filter 
B(z) ^  Output 

yin)+
+

Feedforward Section FIR Filter ^
A(z)

Feedback Section

Figure 2 .1 : A recursive filter.

2.1 IIR Filters and Stability

An infinite im pulse response digital filter, which is also known as autoregres­

sive moving-average (ARMA) model, has bo th  a recursive and a non-recursive 

section as illustrated  in Figure 2.1. In th is figure an IIR  filter is viewed as two 

F IR  filters, one of which is connected in a feedback loop. The o u tpu t, y (n), 

and the transfer function, H (z) ,  of this model can be w ritten  in the following 

m athem atical notations:

y(n) = box(n) +  b\x{n  — !) +  •••

where {dj}^=11 and { b i } \ ^  1 are N  — 1 and M  ad justab le denom inator and

The m ajor design concern for an IIR  filter is to  ensure th a t the recursive 

(feedback) section is stable. The stab ility  of a recursive filter requires th a t  all 

poles of the filter have a m agnitude less th an  1. The stable region corresponding 

to  th is condition can be represented as a un it circle in a complex z-plane as 

illu stra ted  in Figure 2.2.

-\-bM- i x { n  — M  +  1) +  a iy (n  -  1) +  a2y (n  — 2) H-----

+ aLy(n  -  N  +  1 ) ( 2 .1)

M —l

(2 .2)

num erator coefficients respectively while { A (z ) }  and { B ( z ) }  are the polynom ials

of z.
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Imaginary (z)

Zeros

Poles

Figure 2.2: Illustration  of un it circle of the complex z-plane. In physical system s 
the  com plex poles appear as complex conjugate pairs, which are sym m etric 
abou t the real axis.
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The pole polynom ials of a recursive section can be obtained th rough factori­

sation. Factoring polynom ials, however, of order greater th an  2 are non-trivial. 

Hence stab ility  m onitoring is difficult. The poles may be complex num bers - 

however these complex num bers will in general occur in conjugate pairs given 

th a t the filter coefficients are real numbers. Therefore, physically realisable 

system s (real systems) can have complex poles b u t appear as com plex conju­

gate pairs in a z-pane. However, complex filters are widely used in m any areas 

of signal processing in order to  reduce the signal’s bandw idth  and hence the 

sam pling ra te  [55, 76]. Furtherm ore, m ost speech-band m odem s confirm to 

C C ITT-recom m ended m odulation form ats, which, for the high speed modem s 

needing equalisers, involve either pure phase m odulation or com bined phase 

and am plitude m odulation. B oth types of m odulation can be viewed as forms 

of quadra tu re  am plitude m odulation (QAM) and require the use of complex 

IIR  equalisers [56, 6 ]. The theory behind com plex filtering techniques can be 

found in [55, 76, 6 ]. If the complex filters are considered the poles need not be 

appeared as complex conjugate pairs.

A lthough IIR  filters have some favourable properties, they also have some 

undesirable properties. In general IIR  filters are not linear phase and therefore 

m ay introduce phase d istortion [55, 6 6 ]. Consequently, the use of IIR  filters in 

phase sensitive applications such as d a ta  com m unications, and m ulti-channel 

high-fidelity audio should be carefully considered. In some situations however, 

by careful design IIR  filters can often be m ade to  approxim ate linear phase in 

the  chosen pass-band [55].

2.2 Adaptive IIR Filters and Design

An adaptive IIR  digital filter is comprised of two basic com ponents: a discrete 

tim e varying IIR  filter w ith inpu t x(n)  and o u tp u t y ( n ), and a control algorithm  

th a t adjusts the filter coefficients to  optim ise some perform ance criterion th a t

15



is based on prediction error, e(n), given by

e(n) = d(n) — y(n)  (2.3)

where d(n) is the desired signal. Considering th is error, the  goal of the adaptive 

filters is to find the  optim um  setting  of param eters defining the system  so as to 

m inimise su itably  defined cost functions. One com monly used cost function is 

the m ean square error (MSE) given by

e = E |e (n ) | 2 (2.4)

where E is the sta tis tica l expectation.

The prediction error can be form ulated either from equation or o u tp u t error 

m ethods [63, 26, 44, 82]. It has been shown in the lite ra tu re  th a t the algorithm s 

rela ting  to equation error form ulation have severe biasing problem s and cause 

inaccurate estim ates of param eters [63]. The te rm  bias refers to  the difference 

between actual param eter values to  be found and its estim ates. The cost func­

tions based on o u tp u t error form ulation are non-quadratic concerning the  filter 

coefficients and may have m ultiple local optim a which in tu rn  cause the gradient 

a lgorithm  to  get stuck in a local solution [63]. Nevertheless, the o u tp u t error 

form ulations are now widely used, as it provides more accurate estim ates th an  

an equivalent equation error adaptive IIR  filter [38].

An MSE cost function based on ou tp u t error form ulation is depicted in 

Figure 2.3. The m ean squared value is p lo tted  against adaptive filter coefficients 

when an adaptive filter,

<2-5>

is used to  model an unknown system,

, 0 . 5 - 0 . 4 z - l +  0.89*-2
G(Z) =  1 - 1 . 4 * - ' + 0 . 9 8 * - *  (2'6)

by m inim ising the MSE error

1 w — 1
e =  - E  M n ) -  y ( n ) } 2 (2 -7)w 71 =  0
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Figure ‘2.3: An exam ple of m ultim odal error perform ance surface of a second- 
order adaptive IIR  system. Mean square error surface is shown against b2 and 
a,\ for various choices of 60, while m odelling the second-order IIR. system  given 
in equation (2.6)
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Given a tra in ing  set of w =  200 samples, the MSE values of the  coefficients 

of the  adaptive filter were calculated using the train ing  set {y (r i) ,y (n)} ,  where 

y(n)  represents the o u tpu t of the unknown system  and y(n)  represents the  

o u tp u t of the adaptive filter. For the sake of simplicity, three coefficients are 

varied w hilst other param eters are kept constant. The error surface shown in 

th is figure is m ultim odal and has m ultiple local optim a. A nother exam ple is 

shown in A ppendix A. The error perform ance surface equation based on o u tp u t 

error m ethods of an adaptive IIR  filter is non-quadratic and a straightforw ard- 

gradient based solution does not exist. For an adaptive F IR  filter, the m inim um  

MSE is found sim ply by locating the bo ttom  of the hyperparaboloid. M ath em at­

ically this is achieved by finding the zero gradient vectors using vector calculus 

techniques. It is im portan t to note th a t the adap ta tion  of param eters by m in­

im ising MSE is valid only if the sta tistics of {a:(n)} and (d (n )}  are wide sense 

sta tionary  and ergodic process [76].

The length of the tra in ing  set plays an im portan t role in the convergence, 

as too small tra in ing  set may result in convergence to incorrect param eter val­

ues. V isualising the error surface around the best solution can easily show the 

reason for such an inaccurate convergence. For example, consider m odelling of 

a second-order ARMA model represented by the following z-transfer function,

by an adaptive filter

0.5 — 0.4Z-1 +  0.9z~2 
( l - o . r ^ x i  +  o .e s z - 1) ( )

0 . 5 - 0  A z - ' + b2(n)z~*
( ) ( l - 0 . 7 z - 1) ( l  - p 2{ n ) z - ' )  ( ’

For the  sake of simplicity, we assum ed th a t all param eters of the adaptive filter 

except b2 (n) and P2 (n) were assigned to  the optim um  values. The m odel and the 

adaptive system  were excited by the same inpu t, which is a G aussian variable 

w ith  zero m ean and un it variance. M ean square error perform ance was obta ined  

for various choices of 6 2 (n) and P2 (n).

Figure 2.4(a) shows the 3-D plot showing the local MSE surface around the  

best solution when w =  100. Figure 2.4(b) on the other hand, shows the  plot

18



(a)

Figure 2.4: Local m ean square error surface while modelling an ARM A model 
by an adaptive filter using different num ber of samples, (a) shows the  local 
MSE when num ber of train ing d a ta  was 100. (b) shows the MSE obtained  
when num ber of train ing  signals was 30.
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obtained when w =  30. M ean square error shown in Figure 2.4(a) has m inim um  

MSE (MMSE =  -2.33073 dB) a t {& 2 =  0.89, p2 =  —0.65}, w hilst F igure 2.4(b) 

has its MMSE =  -1.74582 dB a t {6 2 =  0.93, p 2 =  —0.62}. The MMSE obtained 

for w =  1 0 0  is very closer to  the  optim um  values which are located a t {& 2 =

0.9, P2 =  —0.65}, bu t the solution obtained for w — 30 converges to  inaccurate 

values which are clearly far away from the optim um  point. A ppendix A shows 

how these mesh plots were obtained.

Com m on algorithm s th a t have found w idespread applications are the  LMS 

and the recursive least square [63, 47, 36]. In term s of com putation  and sto r­

age requirem ents, the LMS algorithm  is the m ost efficient [60]. Furtherm ore, it 

does not suffer from the num erical instab ility  problem  inherent in the RLS al­

gorithm s [45]. For these reasons, the  LMS algorithm  has become the algorithm  

of first choice in m any applications [82, 6 , 76]. However, the  RLS algorithm s 

have superior convergence properties. U nfortunately  its uses in signal process­

ing applications have been relatively lim ited due to  its higher com putational 

requirem ents and num erical errors [53]. In recent years there has been renewed 

in terest in the RLS algorithm , especially in its fast versions [36]. S tab ilisation  

techniques th a t prevent num erical divergence w ithout perform ance degradation  

have been recently proposed w ith  added com putations [1, 65].

2.3 Least Mean Square Algorithms for 

Adaptive IIR Filters

A well-known algorithm , which falls into gradient search category, is LMS. The 

LMS algorithm  was the first developed by W idrow and co-workers in 1967 [82]. 

I t is a practical m ethod of ob ta in ing  estim ates of the filter weights Q(n). For 

exam ple in FIR-LM S, the filter weights are updated  according to,

0(n  +  1 ) =  0(n)  +  f i x (n )e(n)  (2 .1 0 )
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where:

0{n) =  [ w o ( ? i ) ,W i ( n ) , '- ,% _ i ( n ) f  (2 .1 1 )

x (n )  = [x (n ) ,x (n  — 1), • • •, x ( M  — 1 )] (2-12)

e(n) = y(n)  — 0 T (n)x (n )  (2.13)

li is called step size or convergence factor, are the filter weights

(feedforward com ponents) and { x ( n ) }  is the inpu t signal vector. T he LMS 

algorithm  shown above does not require prior knowledge of the signal sta tistics,

bu t instead uses their instantaneous estim ates. The weights ob tained  by the

LMS algorithm  are only estim ates, bu t these estim ates improve gradually  w ith 

tim e as the weights are adjusted and the filter learns the characteristics of the 

signal. The first generation of LMS algorithm s was developed for adaptive F IR  

systems. However, the algorithm  has now been widely employed in designing 

adaptive IIR  structures.

Consequently, using the above background, various IIR-LM S algorithm s 

have been investigated and as a result, the following achievem ents were realised 

[63]:

•  Full G radient IIR-LM S

•  Simplified IIR-LM S

•  Fentuch’s IIR-LM S

•  F iltered  E rror (FE) A lgorithm s

•  Recursive Prediction Error (RPE)

2.3 .1  Full G radient IIR -L M S

The weight vector update  for full gradient IIR-LM S is:

0{n + 1) =  0(n) -  (2.14)
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T he weight vector, 0{n),  can be given by

0(ri) =  [ai(n)t • • •, a jv -i(n ), b0(n), • • •, bM_i(n)}T (2.15)

where {a*} and {bj}  represent the denom inator and num erator coefficients re­

spectively while T  denotes the vector transform ation. The gradients of the 

filter o u tp u t (y ( n )) w ith respect to  the filter coefficients can be w ritten  more 

com pactly as

d u  ( t i )
=  A (n )  =  [a i(n ) ,-  • • , a iV_i(n ),/?o (n ),- • - , p M- i (n ) \  (2.16)

where { a ^ n ) } ^ 1 and {(3m(n)}%Zo are

(*i(n) =  for 1 <  / <  TV — 1 (2.17)
oai{n)

and

A n(n ) =  for 0  -  171 < M  -  1 (2.18)dbm (n)

If the coefficients adap t slowly, then the following approxim ation can be made:

0(n)  «  0(n  -  1) w • • • «  0{n  -  TV -  M  +  1) (2.19)

T he slowly varying weight assum ption can be some w hat forced by the algorithm  

designer by choosing a very sm all step size for the algorithm . The gradient 

com ponents of the  algorithm  can be described as follows:

v- ' 1 d y(n  — i) 
dbm ( n - i )

N - 1

=  x ( n  -  m)  +  ai(n)/3m (n -  i) (2.20)
*=i

and

/ \ / j\ v - '1 / \ d y (n  — i)

N - 1

=  y (n  -  I) +  ai(n)a i(n  -  i) (2 .2 1 )
i=1
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Figure 2.5: Signal flow graph of full gradient IIR-LM S
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The resulting algorithm  is term ed the full gradient IIR-LM S, because it uses all 

of the  gradient com ponents for filter im plem entation. The signal flow graph of 

th is im plem entation is shown in Figure 2.5. I t can be noted th a t, on each update , 

the current feedback weights {ai(n)}  are used w ith current and past values of the  

inpu t (aj(?T,)} and w ith  past ou tpu ts { y ( n ) }  to  produce the gradient com ponents 

in equation 2.20 and 2 . 2 1  in order to update  the LMS equation. Therefore the 

com putation  required a t each new sam ple is of the order N ( N  + M )  +  2 M  +  N  

m ultip ly  accum ulates (MACs) per iteration.

2.3 .2  S im plified  IIR -L M S A lgorith m

In order to  overcome the com putational com plexity of the full-gradient IIR- 

LMS algorithm s, the following sim plifications can be m ade by choosing a sm all 

step size a.  Hence ai(n)  can be reasonably estim ated using the d a ta  sam ple 

{y (n  — 1 )} and A(z) ,  sim ilarly /3m(ri) can be calculated using the d a ta  sam ple 

{ x (n ) }  and A(z) .  In itial gradient term s can be obtained from 2.20 and 2 . 2 1  by 

su bstitu ting  I =  1 and m  = 0  respectively.

N - l
a i (n )  = y (n  -  1 ) +  ^  a i (n )a i (n  -  i) (2 .2 2 )

2 = 1

M—1

(30(n) = x(n)  +  J 2  ca{n)/3o(n -  1) (2.23)
2 =  0

From the initial term s, the other gradient com ponents can be obtained in such 

a way th a t

«  a 0( n - l )  f o i l  < l <  N - l  (2.24)
oai(n)

«  po(n — m)  for 1 <  m  < M  — 1 (2.25)
obm {n)

The signal flow graph representing th is algorithm  is shown in Figure 2.6. The

com plexity of this algorithm  is now reduced to  around 2 ( N  +  M )  +  2N  MACS

per iteration.
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Figure 2 .6 : Signal flow graph: simplified IIR-LM S.
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Figure 2.7: Signal flow graph: Feintuch’s algorithm .

2.3 .3  F ein tu ch ’s IIR -L M S A pproach

Feintuch m ade a further simplification, where it is assum ed all derivatives of 

past ou tpu ts  w ith respect to  current weights are zero. Therefore, the gradient 

com ponents now become

on(n) zz y (n  — I) (2.26)

/3m (n) «  x ( n  — m)  (2.27)

T he com putational com plexity of this algorithm  is now only 2 (TV +  M ).  In

typical applications, Feintuch will outperform  the FIR-LM S if the system  being

identified has high level of recursion w ithin it. However, sim ply using Feintuch 

to  identify a non-recursive system, results in very little  advantages. For a typical 

system , up to  1 0  or 2 0  even poles may be used w ith th is algorithm .

Furtherm ore, Feintuch’s algorithm  has been found to  be inherently  m ore 

stab le th an  the full gradient due to  a tendency to  adap t poles away from the  

un it circle tow ards the origin of the z-plane. The signal flow graph of Fein tuch’s 

algorithm  is illustrated  in Figure 2.7. This algorithm  is still widely used and
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analysed w ithin the signal processing literature.

Even though Feintuch’s algorithm  is superior to  other two algorithm s, it 

m ay not converge to  a m inim um  (local or global) of the MSE surface unless the 

denom inator polynom ials satisfy a S tric tly  Positive Real (SPR) condition. If 

th is condition is not satisfied, the algorithm  may converge to  an arb itra ry  point 

on MSE surface and the  overall perform ance may be unacceptable.

Strictly  Positive Real Condition: The SPR  condition is related  to  the 

concept of hyper-stability, which describes the o u tp u t stab ility  of feedback sys­

tem s th a t may have bo th  nonlinear and tim e varying com ponents [73]. I t is 

im p o rtan t to note th a t in addition to the  SPR  condition, hyper-stab ility  re­

quires certain restrictions on the d a ta  and on the adaptive filter configuration 

[63, 6 ]. I t can easily be shown th a t the filter is bounded by the SPR  condition 

if

I i — ^  ^ f°r \z \ =  1 (2.28)(1  — A*(z)  J

where R e(u) denotes the real p a rt of u while { 1  +  C (z )}  is a filter employed to 

sm ooth e(n)  and A*(z)  denotes the pole polynom ials which are to be identified 

[63]. W hen C  = 0 and 7  =  0.5 it can be shown th a t

|T +(z)| <  1 for all \z\ =  1 (2.29)

for the  SPR. The SPR  region for various values of c\ for a second-order system  

is illu stra ted  in Figure 2.8. From th is figure it can be seen th a t the S PR  region 

can be purposely deformed by varying the value of C\.  This gives the m otivation 

behind the FE  algorithm  given below.

2 .3 .4  F iltered-E rror A lgorith m

To overcome the convergence problem  associated w ith the SPR  condition, the er­

ror signal can be sm oothed prior to  the inpu t into adaptive algorithm s. Sm ooth­

ing the error signal can assist the IIR  algorithm  in converging under the SPR
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Im(z)

Re(z)

Unit
Circle

Figure 2.8: Second-order system, region of SPR  w ith error sm oothing, 

conditions. A simple filtered error is given by

ef(n) = J2cAn~j) C2-30)
j = 0

where Cj coefficients should represent a simple low-pass filtering function. How­

ever, in order to have satisfactory convergence it is desirable th a t

1 + C(z)  = l - A * ( z )  (2.31)

However, such a condition is not always possible to  achieve in practice since A *

is usually unknown. A signal flow graph illustrating  FE  algorithm  is shown in

Figure 2.9.

2.3 .5  R ecursive P red ic tio n  Error A lgorith m

A m ajor drawback found in all of the above algorithm s is the  poor convergence 

behaviour, which is caused by the sta tis tica l properties of the adaptive filter’s 

inpu t signals. These signals can be de-correlated in the tim e dom ain by a tim e 

varying step size m atrix , which gives the m otivation for R P E  algorithm .
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1 :Mz)

Filtered Error ej(n)

Figure 2.9: F iltered  error algorithm . F iltering the ou tp u t error w ith a filter of 
transfer function 1 + C(z) ,  which serves as an estim ate of the  underlying system  
poles 1 — A*(z).

T he R P E  algorithm  can be w ritten  as:

0(n  +  1) =  G(n) +  j i P  (n  +  1)
1

■(p(n)e(n)
1 - / ! ( « ) ' .  < 2 ' S ! |

where n  is a constan t step size th a t controls the algorithm  convergence rate , 

</>(n) is the regression vector containing the data ,

4>{n) =  [y(n — 1), • • •, y (n  — N  +  1), x (n ), • • •, x ( n  — M  +  1)]T (2.33)

and P ~ l (n ) is an estim ate of the Hessian m atrix  (see [63] for details) updated

according to

P ( n  +  1 ) =  X P (n )  +  / z 0 j ( n ) 0 j  (n) (2.34)

where A is called forgetting factor and is filtered version of 0 (n )  given by

1
4>f (n) ■4>(n) (2.35)

1 -  A { z )

The m otivation of using A is to  give greater im portance to  recent d a ta  th a n  older 

data . Since com puting the inverse of P  is com putationally  expensive, P ~ l is 

generally updated  directly using the m atrix  inversion lem m a [60]. In th is case 

we have

P ~ l (n + 1) =  j  ( P - V )  -
P  \n ) ( j ) l {n)4>T! ( n ) P  ^ n )  

„ + 4>T{  P  { n )4> f ( n )
(2.36)
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Practical Limitations: There are, two m ain problem s th a t m ay be en­

countered when the RLS technique is im plem ented directly. The first, referred 

to  as blow-up, results of the is zero for a long tim e, when the m atrix  P ( n )  

will grow exponentially as a result of division by A (which is less th a n  unity) a t 

each sam ple point:

The second problem  w ith the RLS is its sensitivity to com puter round off errors, 

which results in a negative definite P  m atrix  and eventually to  instability. For 

successful estim ation of coefficients 0, it is necessary th a t the  m atrix  P  be 

positive definite. For these reasons, in the la tte r  p art of th is thesis we consider 

R P E  algorithm  w ith P  where I  represents an identity  m atrix  of size ( N  +  M  — 

1 ) X ( N  + M  — 1). The R PE  algorithm  which uses P —I  is denoted as norm alised 

R P E  in the rest of th is thesis.

Sum m arising, am ongst IIR-LM S algorithm s studied, Feintuch is the sim plest 

to  im plem ent w ith 2 ( N  + M )  MACs per iteration. Also, Feintuch is found to  be 

m ore stable than  other IIR-LM S algorithm s such as full gradient IIR-LM S and 

simplified gradient IIR-LMS. The full gradient IIR-LM S is rarely im plem ented 

due to its high level of com putation  required. The perform ance advantages for 

th is high level of com putation  are also noted to  be m inim al. The simplified 

gradient IIR-LM S is also rarely im plem ented, w ith again m inim al perform ance 

im provem ent seen over the com putationally  sim pler Feintuch’s IIR-LM S. The 

situations where the full gradient and simplified gradient IIR-LM S’s have im ­

proved perform ance over Feintuch’s IIR-LM S are usually in environm ents where 

the system  being m odelled has very high levels of feedback. Recursive prediction 

error algorithm  can be applied if the system  dem ands high tracking perform ance.

T he following table sum m arises the gradient-guidance algorithm s described 

above.

(2.37)
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A lgorithm Processing
O rder M ain Features

Full G radient N ( N  +  M )  +  2 M  +  TV Best
approxim ation, High 
level of com putation

Simplified
G radient

2 ( N  + M )  + 2 N Less com putation  
th an  Full G radient

Feintuch’s 2 ( N  + M ) Reduced com pu­
ta tion , Poor approx­
im ation, Suffer from 
SPR  condition

F iltered Error 2 ( N  +  M )  + p Higher com puta­
tion th an  Feintuch’s, 
H yperstable

R P E  (Simpli­
fied gradient)

N ( N  +  M )  +  3M  +  27V +  3 ( N  +  M ) 2 High level of com pu­
ta tion , Best approx­
im ation, Fast con­
vergence, Suffer from 
blow-up error and 
sensitive to  com puter 
round-off errors

Table 2 .1 : Com parison between gradient-guidance algorithm s.

31



x(n)

Copy
weights

Equation Error ee(n) ^
d(n)

Figure 2.10: An equation error adaptive HR filter. The filter weights are up ­
dated  in all zero form and then  copied into an all pole filter.

2.4 Recursive Least Square Algorithm for 

Adaptive HR Filtering

Recursive least square algorithm  for adaptive HR filters can be form ulated us­

ing an equation error m ethod. An equation error adaptive H R filter is shown 

in Figure 2.10. Unlike o u tp u t error form ulation [45], it essentially operates on 

a tw o-input, single-output adaptive F IR  filter such th a t the  polynom ials, A (z ) ,  

associated w ith the poles are adap ted  in an all-zero form. A fter each upd a te  of 

the weights, the inverse of { 1  — A (z ) }  is copied to  an all-pole filter which is in 

cascade w ith { B ( z ) } .  The im pulse response from (x (n )}  to  {y (n )}  is infinite, 

and the cascaded filters have the same form as th a t of o u tp u t error form ula­

tion. However, as m entioned earlier, the estim ated coefficients obtained w ith  

th is approach are generally different from those generated by the o u tp u t error 

form ulation due to  biased estim ates [63]. In a system  identification application, 

th is corresponds to  incorrect estim ates of A*(z)  such th a t E[0(ti)] =  +  bias ,

where 0*(n) denotes the coefficients to  be identified [63]. However, it can be 

shown th a t this bias will be zero if additive noise signal is zero [63]. Therefore,
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RLS algorithm  based on equation error form ulation can give unbiased estim ates 

if the  additive noise is negligible.

By using the equation error form ulation, RLS equation for an adaptive H R  

filter can be given as (see [24] for details)

<t>e{n) = [x(n), ■ ■ ■, x (n  — M  +  1), d(n  -  1), • • •, d(n  -  N  +  1)]T (2.42)

in the same m anner as described in equation (2.36).

Over the last decade, fast versions of the RLS (e.g. Fast K alm an) algorithm s 

have been developed [2 1 , 36]. However, practical use of the  fast RLS algorithm

due to  num erical error accum ulation in the prediction param eters [53]. A lthough 

th is num erical error problem  has been resolved, the resulting algorithm  needs 

much more com putation than  s tandard  RLS [2 1 ].

In summary, RLS algorithm s are encouraged in adaptive H R  filtering due 

to  the  m ultim odal error perform ance surface of an ou tpu t error gradient based 

algorithm s and to achieve fast convergence. However, these algorithm s are not 

often employed in practical applications due to  its high com putational cost, 

biased estim ates, blow-up and num erical errors. In the la tte r  p a rt of th is  thesis, 

norm alised R P E  (i.e. P = I  in the equation (2.3.5)) is employed to  achieve 

fine-tuning and track  tim e varying changes.

0(n  +  1) =  0(n)  +  G(n)e(n) (2.38)

where

P  1(n +  l)  =  I { P  l (n) -  G(n)<t>Te ( n ) P  ^ n - l ) } (2.39)

(2.40)

a ( n )  =  A +  x T ( n ) P ( n  — 1 ) x (n ) (2.41)

where is called the regression vector:

where x(n)  and d(n)  are the inpu t signals. The subscript e is used to distinguish 

equation error from the ou tpu t error. The Hessian m atrix , P ~ l (n) is updated

in real-tim e applications has been prevented in the past because of divergence
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Chapter 3

Evolutionary Algorithm  Based  

Global Optim isation and D esign  

M ethods

In the  previous chapter we have shown various classical algorithm s in the de­

sign of adaptive H R filters. These algorithm s are m ainly based on recursive 

least m ean square technique, which has several drawbacks when the algorithm s 

are im plem ented for practical applications. A m ajor drawback of these algo­

rithm s is th a t they m ay fail when the error function to  be optim ised is m ul­

tim odal. Furtherm ore, classical algorithm s don’t constrain  the search space 

w ithin a known range. For example, by constraining the search space of feed­

back coefficients w ithin a stable region, stable filters can be easily produced. 

The drawbacks of classical algorithm s focus the  research activities into op tim i­

sation techniques and hence various evolutionary algorithm s have been grown 

[37, 51, 44, 3, 73, 52, 46, 78]. Evolutionary algorithm s are com puter program s 

th a t  evolve over tim e in a m anner sim ilar to  the evolution of living m a tte r. 

They involve a population  of software m odules whose objective is to  solve some 

problem , whose solution is initially  unknown. Using techniques based on su r­

vival of the fittest, reproduction, and m utation  the modules com pete and breed 

to  yield new software modules.
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A variety of evolutionary algorithm s have been fu rther developed and re­

ceived increasing a tten tion  recently. The common ones are genetic algorithm s, 

evolutionary program m ing and evolutionary strategies (ES). They all share a 

com m on conceptual base of sim ulating the evolution of individual structures. 

Each individual in the population receives a m easure of fitness in the  envi­

ronm ent. R eproduction focuses a tten tion  on high fitness individuals, thus ex­

ploiting the available fitness inform ation. R ecom bination and m utation  pertu rb  

those individuals, providing a general heuristic for exploration.

In th is chapter, various evolutionary operators, which have been proposed 

or modified m ost recently to  improve the algorithm  perform ance, will be fur­

th e r studied. Flowcharts for each algorithm  are presented, and the differences 

between these evolutionary techniques are detailed. The aim  of th is chapter is 

to provide basic understandings of various evolutionary techniques, which are 

needed to  investigate th is research successfully.

3.1 Genetic Algorithms

G enetic algorithm s are a class of com putational modules th a t  a ttem p t to  mimic 

the  m echanism s of n a tu ra l evolution to  solve problem s in a wide variety of do­

m ains. The theory behind GAs was proposed by John Holland in his landm ark 

book [23]. Genetic algorithm s operate on a population  of individuals repre­

sented by chromosomes, which are in essence a set of character strings th a t are 

analogous to  the DNA of living organisms. These individuals in a population 

yield different solutions to  an objective function created for a particu lar prob­

lem. According to  evolutionary theories, only the m ost suited  elements in a 

popula tion  are likely to  survive and generate offspring, thus tran sm ittin g  the ir 

biological heredity to new generations [23, 16].

A fter an in itia l population  has been chosen, a GA operates through a simple 

cycle of three stages:

1. Reproduction
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Genetic
Operation
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Figure 3.1: An exam ple illustrating  genetic cycle.

2 . Genetic Manipulation

3. Replacement

A GA operation is shown in Figure 3.1.

3.1 .1  C reation  o f in itia l p op u la tion

An initial random  population of strings is created. For exam ple, in b inary  coded 

GAs the elements of binary strings, 0’s and l ’s, can be generated by flipping a 

coin or by using some other random  function. Each element of a popula tion  is 

called a chromosome, while each element of a chromosome is called a gene.

3.1 .2  R ep rod u ction

In the first stage, the perform ance of each individual in the popula tion  is eval­

uated  w ith respect to the constrain ts im posed by the problem . An objective 

function is used to evaluate the  sta tu s (performance) of each chromosome. This 

is an im portan t link between the GAs and the  systems, which are to  be op­

tim ised. The objective function takes a chromosome as inpu t and  produces a 

num ber or objective value as a m easure of the chrom osom e’s perform ance. The
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range of values of the  objective function can be varied for each problem . To 

m ain tain  uniform ity over various problem  domains, a fitness function is needed 

to  m ap the  objective value to  a fitness value [23]. Before doing th is, each ele­

m ent of the population  is decoded into the original values w ith  a range [pm;n , 

P m a x ]  specified for a particu lar problem . Based on each indiv idual’s fitness, a 

selection m echanism  creates an intermediate population for genetic m anipula­

tion. The selection process assures the survival of the best-fitted  individuals. 

Each m em ber of the in term ediate population  is called the parent  and hence 

the in term ediate population often takes a nam e called parent population.  The 

com bined evaluation / selection process is term ed reproduction.

There are a t least four selection schemes currently  in use: proportional, 

rem ainder stochastic sam pling w ith replacem ent, rank-order and tournam ent.

Proportional selection: selects the m ates according to  the probability  

of the ir relative fitness values. It is a purely random  approach in which the 

probability  of an individual w ith a higher fitness value is greater th an  a lower 

one. It m ay be im plem ented w ith a roulette wheel selection referred in [23, 16].

Figure 3.2 illustrates an exam ple of the roulette wheel selection process, 

where each individual is represented by a space th a t proportionally  corresponds 

to  its fitness. By repeatedly spinning the roulette wheel, individuals are chosen 

using stochastic sam pling w ith replacem ent to  fill the in term ediate population. 

For an exam ple, 16 individuals are m apped onto the rou lette  wheel shown in 

Figure 3.2.

Rem ainder stochastic sampling: th is is a selection process which more 

closely m atches the expected fitness value. The probability  of contribution  for 

each string  is calculated as in the proportional selection scheme. Then, the 

expected num ber of individuals for each string is calculated as the  p roduct 

of the  probability  value for th a t string and the  size of the  population, being 

rounded off to  the nearest integer. For exam ple, a string w ith =  1.36 receives 

1 copy, and receives a 0.36 chance of placing a second copy. If the to ta l num ber 

of individuals thus created is less th an  the  population size, the fractional parts
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Figure 3.2: P roportionate  selection using roulette wheel m ethod.

of the expected num ber values may then be used in a roulette wheel selection 

procedure to  fill the rem aining slots in th e  population.

R em ainder stochastic sam pling is m ost efficiently im plem ented using a m ethod 

known as stochastic universal sam pling as illustrated in Figure 3.3. For exam ­

ple, a population  of 16 individuals is arranged in random  order, where each 

individual is assigned space on the pie-graph in proportion to fitness. An inner 

roulette wheel is also placed inside the pie w ith 16 equally spaced pointers. A 

single spin of the roulette wheel will now sim ultaneously pick 16 m em bers of 

the in term ediate population.

R a n k in g  sch em e : In this scheme, the  M  best out of a population  size 

of N  m em bers are selected to form the members of the next generation. The 

rem aining population  can be filled in any m anner. In the ranking schemes, 

the fitness value is used to  rank all the strings. This is an im portan t p roperty  

which leads to  a high selective pressure and hence fast convergence of an EA 

[80, 46, 39].

T o u rn a m e n t:  chooses b e tte r individuals by holding a tou rnam en t am ong s 

com petitors, w ith s being the tournam ent size. The w inner of the tou rnam en t is 

the individual w ith the highest fitness of the s tournam ent com petitors, and the 

w inner is then inserted into the m ating  pool. The m ating pool, being com prised
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16 1

Figure -3.3: R em ainder stochastic sam pling with replacem ent. The individuals 
{1 ,4 ,8 ,13}  get 2 copies, the individuals { 2 ,5 ,0 ,9 ,1 0 ,1 2 ,1 5 ,1 6 }  get a single 
copy whilst {3, 7 ,11,14} are die off.

of tou rnam en t winners, has a higher average fitness than  the average popula tion  

fitness [40]. This fitness difference provides the selection pressure, which drives 

the GA to improve the fitness of each succeeding generation [40].

3.1.3 Genetic  M anipulation

The m anipulation process employs genetic operators to produce a new popu­

lation of individuals, which are term ed offspring, by m anipu lating  the  genetic 

inform ation (referred to as genes); possessed by the parents. Genetic m anipu­

lation comprises two operations, nam ely crossover and m utation .

C ro sso v e r: a recom bination operator th a t combines subparts  of two chro­

mosomes (parents), which are to produce offspring th a t contain some parts  of 

bo th  orig inal’s genetic m aterial. A probability  term , probability of crossover 

a c, is set to  determ ine the operation rate. A num ber of variants on crossover 

operations are proposed. They include single-point, tw o-point, uniform , and 

adaptive uniform  crossover etc.,. [23, 16, 4, 78, 40]. The sim plest form is single­

point crossover, which is illustrated in Figure 3.4. The parents and crossover 

point are random ly chosen and the portions of the two chromosom es beyond 

the crossover point are swapped to form the offspring. M ultipo in t crossover is
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Figure 3.4: Simple single-point crossover.
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Figure 3.5: M ulti-point crossover.

sim ilar to  single-point crossover, except th a t m  crossover portions are chosen 

a t random  w ith no duplication. An exam ple of this operation  is illu stra ted  

in Figure 3.5, where 4 such crossover points are shown w ith binary  strings of 

chromosomes.

In practice one and two-point crossovers have been widely used in s tan ­

dard  GAs [57, 23]. Consequently, uniform  crossover has been proposed as an 

a lternative to one and tw o-point crossover so th a t more schema can be com­

bined [4, 2, 9]. This approach combines two parents to  produce two children 

like a norm al crossover operator. It differs in th a t a b inary  tem plate  is used
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Figure 3.6: Uniform crossovers as (a) one-point (b) tw o-point and (c) m ultiple- 
point crossovers.

to  choose which b it position from which parent contributes to  which child. 

This process can be seen in Figure 3.6, the two parent chromosomes are shown 

above the crossover tem plate, and the two children below. The tem plate  de­

cides which parent contributes to  which child a t th a t elem ent position. The 

uniform  crossover can be thought of as an n-poin t crossover operator, where 

the value of n  is dependent upon the exact m akeup of the  crossover tem plate. 

For example, consider the binary tem plates shown in Figures 3.6(a) and 3.6(b), 

which contribute simple one and tw o-point crossovers respectively. Therefore, 

the uniform  crossover operator, or a variant of it, can be viewed as a generic 

n -po in t crossover operator illustrated  in Figure 3.6(c), specific instances of it 

being equivalent to  a one or tw o-point crossover.

M utation: is an operator th a t introduces variations into the  chromosomes. 

The m otivation of using m utation  is to  prevent the  algorithm  from reaching 

prem ature convergence [23]. After several generations it is possible th a t  selection 

will drive all the b its in some position to a single value, either 0  or 1 in the binary 

case. If this happens w ithout the GA converging to  a satisfactory solution, then
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Figure 3.7: An exam ple illustrating  m utation  operation. The m utation  is ap­
plied to  th ird  and seventh elements of the string.

the algorithm  has prem aturely  converged [34]. This may be a particu lar problem  

if a sm all population  size is employed. W ithou t a m utation  operator, there is no 

possibility for reintroducing the missing b it value. M utation  therefore acts as a 

background operator, occasionally changing b it value, and allowing alternative 

alleles to  be tested.

M utation  introduces random  variations into chromosomes so th a t  the pop­

u lation has enough genetic diversity. The operator occurs occasionally, w ith a 

p robability  called probability of mutation a m. It random ly alters the  value of 

a string  position. A random ly generated b it replaces each b it of a b it-string  if 

the probability  te st has passed. An exam ple of m utation  of the th ird  and the 

seventh bits is shown in Figure 3.7, where the b it string  [011100010] is changed 

to  [0 1 0 1 0 0 1 1 0 ].

3 .1 .4  R ep lacem ent

A fter generating the offspring, two representative strategies are used to  replace 

the old popula tion  [74]:

G enerational-Replacem ent

Each population  of size n  generates an equal num ber of new chromosomes to 

replace the entire old population. This strategy  may make the  best m em ber 

of the population  fail to reproduce offspring in the next generation. So the 

m ethod is usually combined w ith an elitist strategy  where one or a few of the
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best chromosomes are copied into the succeeding generation. T he e litist stra tegy  

m ay increase the speed of dom ination of a population  by a super chromosome.

SubsubsectionSteady-S tate R eproduction This s trategy  m eans th a t  only a 

few chromosomes are replaced once in the  population to  produce the succeeding 

generation. Usually the worst chromosomes are replaced when new chrom o­

somes are inserted into the population. The num ber of new chromosomes is to 

be determ ined by this strategy. In practice, only one to two new chromosomes 

are being used by steady-sta te  reproduction.

3.1 .5  Im plicit P arallelism

A distinguishing feature of genetic algorithm s over other evolutionary techniques 

is th a t they are able to process m any building blocks or schem ata in parallel. 

This property  is called implicit parallelism. In na tu ra l populations, thousands or 

even millions of individuals exist in parallel. A parallel GA is generally formed 

by parallel com ponents each is responsible for m anipulating  sub-population. 

There are two different ways of exploiting parallelism  in GAs:

Centralised selection M odels: use centralised selection mechanism s, a 

single selection operator works on the global population. Thus the parallel GA 

has a synchronous selection stage.

Island Models: employ d istribu ted  mechanisms; each parallel com ponent 

has its own copy of the selection operator. In addition, each com ponent com­

m unicates its best strings to a sub-set of other com ponents. A m igration  opera­

to r and m igration frequency defining the com m unication interval achieves this. 

These parallel GAs have an asynchronous selection stage.

3.1 .6  G en etic  A lgorith m  C ycle

A GA cycle is repeated until a desired term ination  criterion is reached [51]. For 

exam ple, the fitness function or a predefined num ber of generations can be used 

as a te rm ination  criterion, bu t it is usually unknown. The best chromosom e
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in the final population  can become a highly evolved solution to  a problem . A 

Flow chart illustrating  the  com plete genetic cycle is shown in Figure 3.8.

3.2 Evolutionary Programming

Evolutionary program m ing (EP), is another stochastic optim isation  strategy  

sim ilar to  GAs, bu t it places em phasis on the behavioural linkage between par­

ents and their offspring, ra ther th an  seeking to  em ulate specific genetic operators 

as observed in nature. Like GAs, E P  is a useful m ethod of op tim isation  when 

o ther techniques such as gradient decent or direct analytical discovery are not 

possible [3, 13].

E volutionary program m ing was first introduced by Lawrance Fogel in his 

landm ark  book ’’Artificial Intelligence T hrough Sim ulated E volution” , in 1966. 

In the  book, finite s ta te  au to m ata  were evolved to predict symbol strings gener­

ated  from Markov processes and nonstationary  tim e series. Recently there has 

been renewed interest in the m ethod prom pted by the work of David Fogel and 

others [3, 46, 78, 13].

3.2 .1  T h e E volu tion ary  P rogram m ing P ro cess

Unlike GAs, EP  uses phenotypic representation of the param eters and relies 

on m utation  as the prim ary search operator. The basic m ethod of E P  can be 

sum m arised as follows:

1 . In itia l population of tria l solutions are chosen randomly. The num ber of 

solutions in a population  is highly relevant to the speed of optim isation, 

b u t no definite answers are available as to  how m any solutions are wasteful.

2 . C om puting fitness assesses each offspring solution. Each string  s* is as­

signed a fitness value <f>(si) which may be a com plex function of the true 

fitness of Si or the raw fitness value of s* itself.
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Figure 3.8: A flow-chart illustrating  the GA.
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3. Selection of b e tte r individuals based on fitness m easurem ent. Typically, 

tournam ent is held to  determ ine N  solutions to be reta ined  for the popu­

lation, although th is is occasionally perform ed determ inistically. There is 

no requirem ent th a t the  population size is held constan t however, or th a t 

only a single offspring is generated from each parent.

4. Each solution is replicated into a new population. Each of these offspring 

solutions are m utated  according to  a d istribu tion  of m u ta tion  types. The 

severity of m utation  is judged on the basis of the functional change im ­

posed by the parents. Using each s», i =  1, • • •, N  a new string  Si(t +  1) is 

generated as follows: +  1 ) =  s* +  Not<p(Si(t))', where Afo,0 (Si) represents 

a G aussian random  variable w ith m ean 0 and variance (j>(si(t)). A t each 

generation, the variance <j>(si(t)) corresponding to  a chromosom e i is ob­

ta ined  from its fitness value so as to reduce the severity of m utation  as 

the  algorithm  approaches global solution.

A flowchart representing the EP  is shown in Figure 3.9.

3.2 .2  Im portan t F eatures o f E volu tion ary  

P rogram m ing

There are three m ain ways in which evolutionary program m ing differs from 

genetic algorithm :

1 . An im portan t feature of EP  is the lack of any kind of crossover or re­

com bination operator. I t has been reported in [13] th a t m acrom utations 

like the crossover and inversion operator used in GAs are no t required for 

successful adap tation .

2 . In EP, there is no constraint on the representation, bu t typical GA ap­

proach involves encoding the problem  solutions as a string  of represen­

ta tive tokens, the genome. In EP, the representation follows from the 

problem . For example, a neural network can be represented in the  same
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Figure 3.9: A flow-chart illustrating  the EP.
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m anner as it is im plem ented since the m utation  operation does no t de­

m and a linear encoding.

3. The m utation  operation simply changes aspects of the solution accord­

ing to  a sta tis tica l d istribu tion  which weights m inor variations in the  be­

haviour of the offspring as highly probable and substan tial variations as 

increasingly unlikely. Furtherm ore, the severity of m utation  is often re­

duced as the global optim um  is reached, th is is the  m otivation of using 

the fitness to  calculate the standard  deviation of the  m utation  operator. 

I t can be seen th a t the s tandard  deviation of the m utation  process is cal­

culated  from the fitness value of the  p a ren t’s chromosomes. A com plete 

detail of calculating this variance can be found in [1 2 ].

3.3 Evolutionary Strategies

Evolutionary S trategies (ES) are another class of evolutionary techniques, which 

are based on the same principle as EP  and GAs. The algorithm  operates on 

a population  of string structures, each of which represents a po ten tia l solution 

to  the optim isation  problem . An im portan t difference between evolutionary 

strategies and genetic algorithm s is th a t ES operate a t the phenotypic level 

using the param eter values themselves as genetic m aterial while the la tte r  work 

on a genotype level (coding of the real param eters).

3.3 .1  Im p ortan t Features

Unlike other evolutionary algorithm s, evolutionary strategies use a unique m ethod 

of m utation . For example, in early ES’, each param eter value has a s tan d ard  

deviation associated w ith it, which decides the variance of the m utation . The 

param eter values and s tandard  deviation are concatenated to  form the string  

s truc tu re  of a population. In the early E S ’, these standard  deviations are fixed 

for each param eter and for the entire run of the  algorithm .
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Subsequently, the original version of m utation  has been modified by Schwefel 

[59] in 1981, where the standard  deviation of the m utation  process are a p a r t of 

the genetic m aterial and undergo genetic m odifications during the  adap ta tion . 

T he m utation  process is carried out as follows:

<jx (t +  1) =  a x (t) x N 0yda (3.1)

x ( t  +  1) =  x(t)  +  N 0t(rx(t+1) (3.2)

where x(t)  and crx (t) are param eter and the associated s tan d ard  deviation a t 

itera tion  t, while x ( t  +  1 ) and crx (t +  1 ) are the new values after m utation . 

Further, N 0^ a is a G aussian process w ith m ean 0 and s tandard  deviation da. 

Thus in Schwel’s ES m utation  works bo th  on the param eter value, x,  and on 

the s tandard  deviation, a x .

3.3 .2  D ifferences b etw een  ES and E P

There are two key differences between evolutionary strategies and  evolutionary 

program m ing:

1. Evolutionary program m ing typically uses stochastic selection via a to u r­

nam ent. Each tria l solution in the population faces com petition  against a 

pre-selected num ber of opponents (tournam ent size s) and receives a win 

if it is a t least as good as its opponent in each encounter. In contrast, 

ES typically uses determ inistic selection (e.g. R em ainder stochastic sam ­

pling w ith  replacem ent) in which the  worst solutions are purged from the 

popula tion  based directly on their function evaluation.

2. Evolutionary strategies use recom bination process, while E P  on the other 

hand often does not employ such a process during evolution.
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3.4 Summary and Consideration in Filter 

Design

This chapter has provided an overview of various evolutionary algorithm s. There 

are currently  3 m ain paradigm s in evolutionary algorithm  research: GAs, E P  

and ES, together w ith classifier systems. Fundam ental differences between these 

algorithm s and classical m ethods are:

1 . EAs search from a population of solution vectors, not a single solution 

vector and hence global, hard  constraints and m ultiobjectives problem s 

can be easily solved.

2 . EAs exclusively use values of the function under study, and do not consider 

gradient inform ation, and hence less prone to  noise and local optim a.

3. EAs use probabilistic, not determ inistic transition  rules and hence more 

chance of getting  a global solution.

In th is chapter, the salient features of each evolutionary technique have 

been revealed more clearly. This study has given a clear foundation on various 

evolutionary techniques and has provided a theoretical concept to  expand this 

research to  improve the current techniques in various D SP applications. Evo­

lutionary  algorithm  optim ise a population of chromosomes unlike conventional 

optim isation techniques such as sim ulated annealing (SA) th a t optim ise only a 

single solution vector. Considering several solution vectors of high perform ance 

reduces the probability  of selecting an im proper solution. Evolutionary algo­

rithm s rem ain highly general because the ir op tim isation is directly based on the 

function value.

A com parative study of various evolutionary techniques shows th a t evolu­

tionary  s trategy  (ES) gives the best convergence perform ance [46, 78]. However, 

genetic algorithm s are dem onstrated  as being the m ost powerful m ethod  for 

stab ility  constrain t, m ultim odal and m ultiobjective problem s which often arise 

when designing HR filters [74, 37, 2]. This contradictory  result arises due to  the
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random ness of the EAs operation and hence causes difficulties of predicting the 

perform ance in various applications or the differences of the ir operation. An 

im p o rtan t difference between GAs and ESs is the fact th a t GAs operate on a 

genotype level, while ESs operate a t the phenotypic level using the param eter 

values themselves as genetic m ateria l [78]. In ESs crossover occurs only between 

the boundaries of the param eters and m utation  acts on individual param eters 

as a whole and not a t the level of b inary  alphabets used to  represent the co­

efficient [46, 78]. Furtherm ore, ESs use unique variance of m utation  for each 

param eter and are m ostly evolved along w ith the solutions [78]. Therefore it is 

evident th a t ESs use com paratively short representation of chromosomes and 

can provide b e tte r precision when optim ising large problem  dom ains. However, 

the ESs represent long chromosomes and hence require high com putation  when 

com pared to  one th a t has only the param eters itself w ithou t using evolving 

variances.

In sum m ary, am ong various evolutionary techniques revised, genetic evolu­

tion of H R digital filters is appeared as being quite robust, bu t uses b inary  repre­

sentation  of coefficients w ith the added expense of coding techniques. Moreover, 

the b inary  coding would require prohibitively long representation and hence 

provide less precision when designing higher order filters [25]. A com parative 

study  on binary and floating-point GAs shows th a t the la tte r  is faster, more 

consistent from run to run, and provides higher precision, when designing a 

nonlinear dynam ic control model [25]. Therefore, it is evident th a t the EAs, 

which use floating-point representations along w ith crossover, and m u ta tion  op­

erations th a t behave exactly the same way as b inary GAs would be useful when 

designing H R filters.
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Chapter 4 

Evolving Stable Poles and 

Globally Optimal IIR Filters

Stability  of adaptive IIR  systems is determ ined by observing the  pole locations. 

An unstable system  has one or more of its poles, which lie outside the  un it 

circle. To determ ine instability, pole polynom ials m ust be factored. Factoring 

the polynom ials of higher order system s is com putationally  expensive [63]. To 

resolve th is problem , poles can be designed directly from a population  so th a t 

the adaptive filters can be easily ensured w ithin the stable region th roughout the 

genetic search [61, 69]. U nfortunately, the poles are generally com plex values. 

Therefore, applications of evolutionary algorithm s th a t evolve complex valued 

chromosomes are of param ount im portance. In addition, the equalising filters 

employed in QAM modems have complex param eters and will necessitate the 

use of complex valued chromosomes [56].

The work presented in this chapter shows the recent developm ent of de­

signing complex IIR  filters using floating-point EAs. In particu lar, th is work 

employs a m ethod for representing complex filters into chromosomes th a t avoids 

cod ing / or decoding techniques. Unlike s tandard  m ethods, th is m ethod evolves 

the poles instead of feedback coefficients, which in tu rn  simplifies the in itia l 

selection of poles to lie inside the stable region. A new m ethod of crossover
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operation is introduced which perform s crossover between floating-point chro­

mosomes as the same m anner as in the binary  GAs. These new techniques are 

applied to  system  m odelling problem s to  determ ine the ability  of the floating­

point E A ’s convergence on sim ulated data .

The rest of this chapter is organised as follows: Section 4.1 provides the 

m otivation of using complex filters in digital signal processing. In Section 4.2 

we present the design techniques of modelling complex HR filters using pole 

design m ethod. The advantages and drawbacks of the approach when designing 

the poles are clearly outlined. Two m ajor objective functions, which are based 

on MSE and m ean modulus error (MME) are discussed. I t has been shown th a t, 

the  length of the tra in ing  d a ta  affects the convergence of the EA. Section 4.3 

shows the design techniques of recently developed genetic operators to  evolve 

floating-point chromosomes. The reason for choosing the  tou rnam ent selection 

is discussed. We have also shown how EA can use various cost functions w ith  the 

use of tournam ent selection. Design m ethods of developing m utation  operato r 

are given. Sim ulations illustrate  the advantages of using G aussian function as a 

m utation  operator. The special features of uniform  crossover are discussed. A 

m ajor draw back of floating-point chromosome is outlined, and a new m ethod of 

crossover is given to  overcome th is problem . Finally, in Section 4.4, we present 

a selection of sim ulation results. These were obtained by m odelling various H R 

system s w ith the EA techniques developed during course of th is research. The 

chapter also gives a brief sum m ary of the work w ith suitable conclusions.

4.1 Complex Filtering

There are two m ajor reasons th a t encourage the use of complex filtering in digital 

signal processing. The first reason of using the concept of complex filtering is to 

represent QAM signals as complex d a ta  for m athem atical convenients [6 ]. For 

exam ple, quadratu re and in-phase carriers can be stored in DSP processors as 

complex d a ta  and hence associated processing can be easily done in com plex
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forms [76]. Second reason of using complex filtering is to  reduce the signal 

bandw id th  prior to  sam pling. To realise th is reduction of signal bandw idth  

requires an understanding of the concept of complex waveforms discussed below: 

P a s s b a n d  F i l te r in g :  There are m any applications, which involve signals 

concentrated in a narrow band, i.e. w ith  bandw idth  much less th a n  its cen­

tre  frequency [55]. It can be easily shown th a t a continuos-tim e signal w ith 

highest frequency B  can be uniquely represented by sam ples taken  a t m inim um  

ra te  (Nyquist rate) of 2 B  samples per second [55]. However, if the signal is a 

bandpass signal w ith frequency com ponents in the band B \  <  F  < B 2, a blind 

application of the sam pling theorem  would have us sam pling the  signal a t a ra te  

of 2 B 2 sam pling per second. Signals w ith higher sam pling ra te  would require 

high speed digital circuitry which in tu rn  lim its the use of general purpose DSP 

processors in real applications [76, 6 ]. To overcome this problem  the signal can 

be downconverted into some lowest frequency so th a t less sam pling rates can 

be applied. A theoretically  sound technique is bandpass sam pling, i.e. under­

sam pling a t a ra te  on the order of the inform ation bandw idth , b u t chosen such 

th a t aliased images do not overlap and th a t the image nearest DC is properly 

positioned in the baseband [76, 6 ]. However, in doing so our signal becomes 

complex, since its sym m etry has been destroyed [19]. More details of complex 

signals can be found in textbook [19, 55, 15].

4.2 Evolutionary Approach to Globally 

Optimal Filtering

Consider an H R digital filter, com prised of M  feedforward coefficients {bk(n)}k=o 

and L  poles {pk(n)}^=l. We assume the  general case of filter having complex 

coefficients, and we also assume the filter inpu t x{n)  is complex. T he aim  of 

the evolving process is to choose the filter param eters { b i } ^ 1 and  {p j } j '= 1  to
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satisfy some desired criteria. A s tandard  criterion is to  m inim ise the MSE,

1 w — 1

= \d (n ) -  y i n \ ^ ) l 2 (4-i)
^  n = 0

where y  denotes estim ate of filter ou tp u t is vector of filter param eters given 

by

Q =  {b i ( n), i =  0 ,1,2,- • -,M -  l ; p j ( n ) ,  j  = 1,2, • • •, L} (4.2)

where d(n) is the desired ou tp u t sequence, and w  represents the  num ber of 

tra in ing  samples. The train ing  samples or tra in ing  signals are a  set of exam ­

ples th a t contains elements which consist of paired values of inpu t sequence, 

{ d ( n ) , y ( n ) } n l Q ,  in order to  learn the algorithm  during adap ta tion . T his kind 

of adap ta tion , which uses tra in ing  signals, is called trained  adap ta tion .

We m ention however th a t the evolutionary search approach is able to  deal 

w ith a wider class of cost functions w ith ease, e.g. least square error (LSE) and 

m ean m odulus error (MME). In th is work, LSE and M ME criteria  have been 

successfully employed. For a given train ing  set {d(i),  the  least square

recipes is to  minimise the sum m ed squared error as illu stra ted  in (4.1). The 

MME criteria  on the other hand minimise the sum m ed m odulus error:

1 w

s  =  MW -  y & t y I (4 -3)

In the least square approach small errors have less em phasis th a n  large errors.

In con trast to  m odulus error, which gives equal weight to  all errors.

A m ajor advantage of evolutionary techniques over classical algorithm s is

th a t the search space of param eters can be constrained to  a su itable range in

order to  achieve certain  perform ance. In th is C hapter, we design the  poles ra th e r

th an  feedback coefficients so th a t the  search space of the feedback sections can

be restric ted  w ithin the known stable region. The pole polynom ials can be

easily converted back into feedback coefficients. The relationship betw een poles

and feedback coefficients can be obtained by com paring the  ^-transfer function:

M - l  M - l
E  b,z~l E  h z ~ l

H ( z )  = ^ ------------=  - E L   (4.4)
FI (1 -  PjZ->) 1 -  E  ajZ~i

j =1 3=1
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where { p j } j =1 are the poles whilst { a , j } f =1 represent the feedback coefficients 

of the  filter. For example, the  pole polynom ials {Pk{n)}k=i ° f  a second-order 

system  can be related to  the feedback coefficients {cLk}\=i in such a way th a t:

ai (n) = p i ( n )  + p 2(n) (4.5)

a2(n) = p i ( n ) p 2(n) (4.6)

where {a/c(n ) } | = 1  are complex feedback coefficients a t tim e n. Consequently, 

a lte rna te  realisations such as parallel or cascade forms can be considered to 

facilitate th is conversion trivial. The sub-filters of these realisations can be 

represented as simple low order filters, bu t there is no restric tion  to  reduce 

the filter length as first or second-orders. However, in th is work we consider 

d irect form realisation and use simple num erical m ethods for transla ting  the 

poles into coefficients when designing large order H R systems. The prim ary 

advantage of using the d irect form structures is to  develop evolving models in 

the same m anner as it is im plem ented. The adaptive H R filtering approach using 

a lternative realisations provide high com plexity and poor perform ance th an  the 

d irect form filters [64, 31, 3, 48, 62]. A ppendix B shows how the coefficients 

and the poles can be related to  each other for a general order filter.

Evolutionary algorithm s generally m aximise a perform ance criterion ra ther 

th an  m inim ising a cost function. The m axim ising functions are called fitness 

or objective functions and can be formed using the cost functions described 

above. They m easure the s ta tu s of each chromosome. A simple fitness function 

form ulated from MSE criterion is

f ( m s e )  =  -----— = -------------- —;-------------------------  (4.7)
+  ^  1 +  ^  £  Id(n) - y ( n ; Q )  | 2

n —0

where w  is num ber of tra in ing  set or window size. It can be seen in the  equation 

(4.7) th a t MSE is added to  1 when calculating the fitness function. The reason

for in troducing th is value is to  prevent the fitness function from reaching an

infinite value when the MSE approaches to  zero.
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Figure 4.1: Logarithm ic scaling of MSE.

Logarithm ic scaling of the objective functions can be used to  improve the 

adaptive algo rithm ’s ability to  locate good sets of filter coefficients when GAs 

are im plem ented w ith proportional selection schemes [78]. Logarithm ic scaling 

provides nonlinear m apping between the objective function values and actual 

error perform ance. This scaling accom m odates larger variations of objective 

functions values w ithin a sm aller range. For example, F igure 4.1 illustrates a 

logarithm ic scaling of MSE p lo tted  against actual values of MSE. Figures 4.2 

and 4.3 show these error perform ances while m odelling a d irect system  (4.29) 

of param eters (4.30) given in Section (4.4.1) w ith 1 0 0  tra in ing  samples. The 

logarithm ic scaling has been successfully employed to improve the  selection pres­

sure of the proportional selection scheme when binary GAs were im plem ented 

to  m odel various H R models [78].

Even though the pole design m ethod offers several salient features, it has a 

m ajor drawback th a t provides m ultiple optim a w ith the same fitness values th a t 

arise from reordering the poles w ithin the filter. For exam ple, consider the MSE 

perform ance shown in Figure 4.4 which was obtained when m odelling a second- 

order ARM A m odel by an adaptive filter w ith equal num ber of param eters. The 

m odel and the adaptive filter used in this exam ple have the  following transfer
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Figure 4.2: Logarithm ic scaling of MSE while m odelling the system  (4.29) of 
param eters (4.30).

Figure 4.3: Non-logarithm ic scaling of MSE.
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Figure 4.4: 3-D plot showing the MSE surface while m odelling a second-order 
all pole system using an adaptive filter. Mean squared error is shown for various 
choices of poles of the adaptive filter. Two global m inim a exist by interchanging 
the poles w ithin the filter.

functions:

G ( z ) =  7 TT7 TT (4-8)
V 7 ( 1 - 0 . 2 2 - 1)(1 +  0.4z- 1) v '

A (Z) =   _! w{ , ----177 (4 -9)(1 - P i Z ])(1 + p 2Z !)

where p \  and p 2 are the poles of the adaptive system. The p lan t has two 

separate poles, which are a rb itra ry  chosen as 0.2 and -0.4 respectively. The 

MSE is obtained for various choices of pi and p2 by applying a tra in ing  set of 

100 samples. It is seen from the Figure 4.4 th a t the MSE has two global m inim a, 

which can be obtained bv swapping the poles w ithin the filter, i.e. interchanging 

the poles such as {p\ = 0 .2 ,p2 = —0.4} and {p\ =  —0.4 ,p 2 =  0 .2 } provided the 

same objective function value as shown in Figure 4.4. This property  leads to 

a m ajor draw back when crossover operations are employed w ithin the feedback 

sections. The sim ulation results confirming this sta tem ent are illu stra ted  in the 

la tte r  p a rt of this chapter. I11 th is chapter we use crossovers only for evolving 

the feedforward sections.
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4.3 Genetic Operation in Floating-point 

Chromosomes

G enetic algorithm s m anipulate the m ost prom ising chromosomes searching for 

improved solution. The chromosomes are finite length string  struc tu res repre­

senting a possible solution of a problem  dom ain. B inary GAs use a chrom osom e 

string  whose elements (genes) are binary [23]. These GAs require chrom osom es 

w ith  4 (L + M ) B  elements each of which is a b inary  digit. This is a prohibitively  

long representation and hence provides lower precision when the algorithm  is 

employed w ith large dom ains [25].

In th is work a more sophisticated m ethod is used to  represent the  floating­

poin t num bers w ithout em ploying any coding techniques. G enetic algorithm s 

w ith floating point representation of chromosomes of length I and fixed popu ­

lation size N  are considered. Each individual in the population  corresponds to  

an elem ent of the space

S = { x } 1 (4.10)

where x  is a complex num ber. The population  space is denoted as S N and  we 

call S 2 the p a ren t’s space. The population  can be w ritten  in the vector form  as 

follows

C = {Ci, z =  1 , ■ • • N }  (4.11)

where

C e S N (4.12)

where O  denotes the i th individual of C  and can be given in m a them atica l

no ta tion  as:

CteC  (4.13)

Each elem ent of C* is a param eter of the filter. The j th elem ent of Cj is re la ted  

to  the filter param eters in the following way

Cj = pj if 0 <  j  < L  — 1 (4-14)
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where p  represents the poles, and

Cj =  bj if L < j  < (L +  M  — 1) (4-15)

where b represents the num erator coefficients.

4.3 .1  M aking U se  o f T ournam ent S election

Evolutionary algorithm s use a selection m echanism  to  select individuals from 

the population  to  insert into a m ating  pool. Individuals from the m ating  pool 

are used to generate new offspring, w ith the  resulting offspring form ing th e  basis 

of the next generation. As the individuals in the m ating  pool are the ones whose 

genes are inherited by the next generation, it is desirable th a t the m ating  pool 

be com prised of b e tte r individuals. A selection mechanism  in EAs is sim ply 

a process th a t favours the selection of b e tte r individuals in the  popu la tion  for 

the m ating  pool. As m entioned in chapter 3 there are m any selection schemes 

for EAs, including ranking, tournam ent, and p roportionate  schemes, each w ith 

different characteristics. An ideal selection scheme would be simple to  code 

and efficient for bo th  non-parallel and parallel architectures. Furtherm ore, a 

selection scheme should be able to  ad just its selection pressure so as to  tu n e  its 

perform ance for different dom ains [40].

T ournam ent selection is increasingly being used as an EA selection scheme 

because it satisfies all of the above criteria. Recent research work [40] on to u r­

nam ent selection clearly indicates th a t the convergence ra te  of a EA is largely 

determ ined by a factor called selection pressure, w ith higher selection pressure 

resulting in higher convergence rates. The selection pressure is the degree to 

which the b e tte r  individual is favoured: the higher the selection-pressure, the 

m ore likely th a t the b e tte r individual is favoured. Also it is reported  th a t  sim ­

ply increasing the tournam ent size, s, can provide increased selection pressure, 

as the winner from a larger tournam ent will, on average, have a higher fitness 

th an  the w inner of a sm aller tournam ent [40].

Unlike other selection schemes, which were discussed in previous chapter,
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Figure 4.5: An exam ple of a nonlinear threshold error criterion.

tou rnam ent selection can use any cost functions w ith ease [40]. They can either 

m inim ise or m axim ise a function regardless of its structure . F inding m axim ising 

functions from m inim ising criteria, therefore, can be avoided. I t also facilitates 

the EAs to  optim ise any perform ance criteria th a t provide an acceptable band  of 

errors in the objective function. For example, the nonlinear threshold, which is 

shown in Figure 4.5, can also be used in the  instance, where a band of error may 

be acceptable. In th is work, the MME criterion has been successfully employed 

in optim isation of adaptive HR filters w ith  the support of tou rnam en t selection. 

It is im portan t to  note here th a t the use of raised powers of errors, (e.g. e2, 

e4) provides good selecting capability  and contributes faster convergence th an  

using M ME when using o ther selection schemes [47].

In th is work we employ tournam ent selection to  select the  paren t chrom o­

somes. The sm allest tournam ent-size s = 2 is chosen to  keep the selective pres­

sure to  a lowest value w ith an aim to  avoid prem ature convergence. T hroughout 

the  present work, we use the MSE cost functions unless otherw ise specified. The 

m ain reason for choosing MSE criterion is th a t the theory of m ean square op ti­

m isation is well developed, and can be used as a standard  criterion to  te st the 

proposed genetic operations.
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4 .3 .2  S p lit-p o in t U niform  C rossover

U niform crossover has been studied extensively and their results have shown a 

considerable im provem ent in convergence perform ance when com pared to  s tan ­

dard  one or tw o-point crossover operators [71, 4]. Figure 4.17 com pares these 

convergence properties when modelling an ARM A model by evolving filters us­

ing EAs. The details of th is experim ent are discussed in Section 4.4. In b inary  

coded GA, the recom bination process can introduce new m em bers into the  orig­

inal chromosome structu re  since each param eter of the filter can be split into 

sm all elem ents called genes. F loating-point EA on the other hand represent the 

filter param eters as uniquely indivisible genes [17, 25], therefore the  recom bi­

nation  cannot occur w ithin the individual param eter, th is simply results in a 

shuffling of the two parents.

Considering the above issues in m ind, we propose a novel m ethod of crossover 

for floating-point (complex) chromosomes. Even though the filter param eters 

are represented directly in the  chromosomes, each of them  can be split into 

sm all parts  as in the binary GAs. This can be accomplished by in troducing a 

th ird  alphabet into the b inary tem plate, which incorporates split-po in t crossover 

between selected floating-point num bers of the parent chromosomes. This can be 

easily shown w ith the following example: Consider the Figure 4.6, which shows 

a tem plate  whose elements have three alphabets 0, 1, and 2. The elements 

corresponding to  the a lphabet 0  and 1 are swapped as the whole num bers as 

illu stra ted  in Figure 3.6. The elements corresponding to  the  th ird  character ” 2” 

are split into sm all portions and combined as follows:

where o^i represents the i th element of offspring 1 , Cj>i and Cj>2 represent i th 

elem ents of parent 1 and parent 2  respectively, and p  is a uniform  random  

num ber between [0 • •!]. Similarly, i th element offspring 2 can be generated as

Oi,l [ =  p\ci,\\ +  (1 - p ) |C j ,2 (4.16)

Zo;, 1 =pZCi,! +  ( 1  - p ) l c ii2 (4.17)
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Figure 4.6: (a) Split-point crossover. The character ” 2 ” determ ines the  position 
where split-po in t crossover to  be taken place, (b) Split-point crossover occurs 
in the  forth  elem ent of the parents

64



Z o i>2 =  p L d j  +  ( !  -  P ) L c i , i  ( 4 -1 9 )

This m ethod of crossover, which is applied between parent chromosomes, has 

several additional features com pared w ith the s tandard  crossover operation 

shown in Figure 3.6. Split-point crossover reduces the schema grow th by pro­

viding more destruction. It can be easily shown th a t the probability  of survival 

of a particu lar schema H  via the split-point crossover is

Ps,spiit{H) =  Qfc | - |  (4.20)

where o ( H ) represents the order of the schema H.  The order refers th a t num ­

ber of fixed elements defining a schema [23]. Consequently, the  probability  of 

survival via s tandard  uniform crossover is

f  i  o( H)

P s , s t a n d a r d { H ) =  J

From the above two equations it is clear th a t the sp lit-poin t crossover reduces 

the schema grow th and hence produces m ore new m em bers which in tu rn  can 

avoid p rem ature convergence. The best features of split-poin t crossovers are 

clearly seen from the sim ulation results shown in la tte r  p a rt of th is chapter. 

However, th is crossover scheme has not still fulfil the  binary representation - the 

m agnitude of a digit obtained through split-point crossover operation  is always 

less th an  th a t of highest value of the parents before crossover. For exam ple, let 

us assume th a t m agnitudes of the th ird  elements corresponding to  two parents 

P i  and P 2 be 0.8 and 0.6 respectively. Also assume th a t the portion  p  which is 

selected from a random  num ber generator is 0.9. Recom bining these elem ents 

can form two elements for offspring o\ and 0 2 '

|o31| =  0.9 x 0.8 +  (1 -  0.9) x 0.6 =  0.78 (4.22)

|o3>2| =  0.9 x 0.6 +  (1 -  0.9) x 0.8 =  0.62 (4.23)

It is clear th a t recom bination cannot produce new m em bers w ith the values 

greater th an  those of original members.
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As we m entioned in the previous section, adaptive filters provide m ultip le 

global op tim a th a t can be obtained when reordering the poles am ong the  fil­

ter. This p roperty  leads to a m ajor lim itation  of using the crossover operation  

between the feedback sections. This is because during the evolution process 

the poles of the adaptive filters can lie in any order w ithin the filter s tru c­

ture, consequently applying crossover between feedback sections can degrade 

the convergence perform ance. Therefore, in th is work we apply the  crossover 

only to  the  feedforward sections, while the feedback sections are only sub jected  

to m utation .

4 .3 .3  P erform ing M u ta tio n  on F loa tin g -p o in t G en es

M utation  is im plem ented by occasionally pertu rb ing  a random  elem ent in a 

chromosome. It is m ainly used to  introduce variations in to  the  chromosom es. 

G lobal or local variations can be introduced w ith a probability  a m . In b inary- 

coded GA, each b it of a b it string is replaced by a random ly generated b it if 

a probability  test is passed [23, 16]. It can be achieved by flipping the  b its  in 

the strings w ith the m utation  probability  ctm . Unlike binary coded GA, the 

floating-point representation, particu larly  an EA using complex genes, requires 

a more sophisticated m ethod to  achieve m utation.

In th is work, we employ a novel m ethod to  introduce p ertu rba tions in to  the  

elements of chromosomes. Each element of a chromosome is split into m agnitude 

and angle and individually pertu rbed  w ith a probability  a m:~ either m agnitude, 

angles or bo th  can be selected for m utation  w ith the probability  test. A ran ­

dom function can be used to p ertu rb  these param eters w ithin a desired range. 

For exam ple, if the  m agnitude and angle are selected for m utation , they  are 

pertu rbed  through

ci { t  +  1)|  — \Ci(t) \ +  14,0-1 (4.24)

and

lCi(t +  1 ) — Lci(t) +  14,0-2 (4.25)
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where Vt^ i  and Vt ^ 2  are random  variables generated a t tim e t  w ith  variances 

crl and a 2  respectively. Choosing a suitable random  function (e.g. G aussian, 

Uniform, • • • etc.) and its variance are the m ajor tasks to  design the  m utation  

operator. For example, random  function th a t has high probability  d istribu tions 

a t the  regions closer to the operating points is often preferred in order to  avoid 

high population  diversity to be m et during the search. Population  diversity 

occurs when the population in an EA diverges arb itra ry  from the  optim al s ta te  

where m ost of the genetic operators produce offspring th a t outperform  the ir 

parents.

Considering the above issues in m ind, a random  generator w ith norm al dis­

tribu tion  is chosen as a m utation  operator. The probability  density function 

(pdf) of norm al d istribu tion  is thoroughly studied [55]:

p d % )  =  pdf(z - » )  = exP  ̂ Xg2 ^  (4 -26)

where fi and a 2 are the m ean and the variance respectively. The probability  

density curves of a norm al d istribu tion  for various fi and d, where d = a, are 

p lo tted  in Figure 4.7. This bell-shaped curve is perfectly sym m etric abou t a 

line perpendicular to the x-axis through the m ean fi. This line bisects the 

bell exactly. Changing the m ean fi merely transla tes the curve to the right or 

the left. V arying the standard  deviation changes the shape of the bell. Thus 

changing the m ean and s tandard  deviation change the location and the shape 

of the curve, bu t it still rem ains a norm al curve. It can be easily shown th a t, 

w ith /i =  0.0 and d =  0.5, a x variation of approxim ately { —1 <  £ <  1} can be 

obtained. The probability  of generating a value, which lies below 0.5 is g reater 

th an  th a t of a value th a t lies above 0.5.

Perform ing m utation  on feedback param eters (either poles or zeros) is a 

much trickier process than  doing on feedforward param eters. For exam ple, in 

th is work we wish to  ensure the poles lie inside the stable region th roughout 

the genetic search. An im proper design can cause the poles to fall outside 

the stable region and will necessitate the use of stab ility  m onitoring techniques.
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Figure 4.7: P robability  density function (pdf) of G aussian variable, y (where 
y = x — fi), for various s tandard  deviations d, where d = a. (a) G aussian 
d istribu tion  when y  =  0 (b) G aussian d istribu tion  when y  =  0.5.
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Considering the filter stability, we define the m utation  operation on a param eter 

q as follows

h + i \  = \qt\ +  (Qmax ~  \qt \)gt(Q,crl) i f ^ ( 0 , a l )  >  0

=  \Qt\ +  k t|p t(°>crl)  if otherwise (4.27)

Lqt+l = lq t + ( tt -  Lqt)gt (0,cr2) if& (0 , <j2) >  0

=  Lqt +  ( lq t +  7r)p4(0 , cr2) if otherwise (4.28)

where gt (0 ,a)  is a G aussian function w ith zero m ean and a s tan d ard  deviation 

cr a t tim e t, \qt\ and Lqt represent the m agnitude and the  phase angle of the 

complex param eter q estim ated a t tim e t, and qmax is the m axim um  range of the

p a ram eter’s m agnitude. If q represents a pole, the m axim um  range qmax assigns

the value 1 . The range qmax could be any positive num ber for feedforward 

coefficients. However, choosing an appropriate range allows the GAs to  converge 

w ith a fast rate. In this work, a value 5 was assigned to  gmax, which lim its the 

search space of the num erator-coefficient’s m agnitude w ithin { 0  <  <  5}. The

phase angles are chosen to lie w ithin { — 7r < <f> <  + 7 r }  regardless of the type of 

param eter (either poles or feedforward coefficients) as represented in equation 

. It has been shown earlier th a t w ith a standard  deviation d =  0.5, G aussian 

variables can be generated in the range { — 1.0 <  x  < +1.0}. This ensures 

th a t the poles always lie inside the stable region. However, a variance, which is 

sm aller th an  0.5 is much preferred when the algorithm s approaches the global 

region. This will facilitate the algorithm  to fine-tune the  param eters. Large 

variations are only needed to  find the global region, which is em bedded w ithin  

the m ultiple local optim a. Once the global area has been found the variance 

m ust be reduced to  a sm aller value. However, in th is work a fixed, higher 

variance, d =  0.5, is used to  avoid the occurrence of p rem ature convergence. 

P rem atu re  convergence occurs when the population in a GA reaches such a 

sub-optim al s ta te  th a t m ost of the  genetic operators can no longer produce 

offspring th a t outperform  their parent [34, 9].

69



Filter Stability During Evolution

Note th a t since we use the  poles directly in the chromosome, the ensuring of 

stab ility  becomes trivial. In particu lar, this work ensures th a t poles positions 

are unaffected by m utation. Hence stability  m onitoring is no t needed as in the 

case of coefficients design m ethods. This greatly  reduces the  com putational 

costs while achieving the capability  of designing complex adaptive filters.

4.4 Applications for Adaptive System  

Modelling

One popular application of the adaptive filter is in the area of system  modelling. 

System  m odelling can be broadly classified into two types: direct system  m od­

elling and indirect or inverse system  m odelling [6 ]. In d irect system  modelling, 

the aim  of the adaptive process is to  m odel the transfer function of the system  

th a t is to be identified. Conversely, the aim of inverse system  m odelling is to 

model the  transfer function of the system  th a t is being identified by adaptive 

filtering. In th is chapter, we show two simple examples of system  m odelling 

techniques th a t have been used to  dem onstrate the convergence properties of 

the proposed EA.

4 .4 .1  D irect S y stem  M od ellin g

T he experim ental arrangem ent of direct system  m odelling is m ade as shown in 

Figure 4.8. In d irect system  modelling, we use a simple second-order H R system  

whose transfer function is expressed in z-dom ain as

(1 - p i2-1)(l - p 2Z~2) (  1 - p 32“2)
(4.29)

where

(4.30)
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Algorithm

Unknown System 
Giz)

Figure 4.8: Experim ental arrangem ent of direct system  modelling.

M ean square error and M ME perform ances of th is model is investigated; the 

results show th a t the surface has several m ultiple local optim a. G radien t algo­

rithm s often fail to  optim ise this surface. Figure 4.9 illu stra te  the  local error 

surfaces p lo tted  against b2 and p3 for various choices of 64 using 1 0 0  tra in ing  

samples.

A spectrally  w hite G aussian noise,

s(n) = p n (0 ,l )  (4.31)

w ith  zero m ean and unity  variance is applied as an inpu t to  m odel the  unknown 

system  H (z) .  T im ing waveform of the inpu t signal is shown in Figure 4.10.

4 .4 .2  Inverse S y stem  M od ellin g

Figure 4.11 illustrates the experim ental arrangem ent of the  inverse system  m od­

elling. In th is experim ent we use a fourth-order H R channel whose z-transfer 

function, C(z) ,  is

r (  x = _____________6 0 +  b i z ' 1 +  b2z ~ 2_____________
{Z) ( l - Plz ^ ) ( l - p 2z - ^ ( l - p 3z ^ ) ( l - p 4z ^ )  [ }

71



A
m

pl
it

ud
e

fquation  ( 4  29)“ ' M ME SUrfaCeS W' ' ile m ode,linS th ® system  represented by

S a m p le s

Figure 4.10: Inpu t signal applied to  the d irect system m odelling. The signal is 
a  G aussian d istribution  function with zero mean and u n it variance.

10
00



Filter
Output
yin)

Received
Signalr(n)Transmitted

Signals(n)
Error

Delay

Genetic
Algorithm

Channel
C(z)

e(n)
Figure 4.11: E xperim ental arrangem ent of inverse system  modelling.

where {b{, i =  0 • • • 2} and {pj, j  =  1 • • • 4} are complex param eters and are 

assum ed as

' b0 =  1 .0 , bi =  0 .6 ejO57r, 6 2 =  0 .6 ejL27r,p i =  0 .8 6 e ^ ° -57r,
< (4.33)
k p2 =  0.75e-jL 27r,p 3 =  O.Se-j0/75n1p4 = 0 .7e^ '57r

This kind of channel w ith complex response can be seen in the  transm ission of 

QAM signals th rough m odem  channels. In such areas, the actual signal is down 

converted into lower frequency in order to  reduce the signal bandw idth  and 

hence the sam pling rate. The tran sm itted  signal in th is exam ple is a complex 

FM signal

s(n)  =  A e ^ ‘T+Hn'l} (4.34)

where s ( n ) is complex-valued, A  is the real am plitude, toc is the centre fre­

quency, T  is the  sam pling interval, and 9{n) is the baseband signal, 6(n) =

0.25 sin(0 .0 l 7rn). The signal s(n)  has a constan t envelope since A is a con­

s tan t and the exponential has a m odulus of unity. For the  sake of simplicity, 

it is assum ed in the experim ents th a t the tra in ing  signals are available during 

evolution and the signals of our interest have no noise im pairm ents.

4 .4 .3  V erification

A series of sim ulations is carried out to  te st the convergence perform ance of the 

proposed EA techniques w ith  param eters such as population-size N ,  probability
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of m utation  a m, and probability  of crossover a c to  model d irect and inverse 

system s. The aim of the experim ent is six folds:

1. Investigate the effect of crossover on E A ’s convergence.

2 . Com pare the split-point crossover operation w ith the  s tan d ard  uniform  

crossover.

3. Com pare the convergence perform ance of G aussian m u ta tion  d istribu tion  

against uniform  distribution.

4. Investigate the effect of crossover when applied w ithin feedback sections.

5. Investigate the effect of m utation  ra te  on E A ’s convergence.

6 . Com pare the convergence perform ance of various cost (objective) values 

which can be used in genetic search approach.

T he experim ents presented in th is chapter use a fixed population  size N  =  50 

along w ith the  tournam ent selection scheme w ith a tournam ent-size s =  2 . 

G aussian d istribu tion  is used th roughout th is work unless otherw ise specified 

and the train ing  signals of 1 0 0  samples are used to ob ta in  the fitness func­

tion. The EA is allowed to run over 32000 generations and th e  MSE of the best 

m em ber in the  population  is m easured against the generation num ber. The con­

vergence curves which shows the variations of objective function values against 

the  generation num ber are called learning curves.

Experiment  1: This experim ent is carried out to  show th e  necessity of the 

crossover operation in genetic evolution. S tandard  uniform  crossover is em ­

ployed along w ith  a m =  0 . 0 2  and a  = 0.5. A set of learning curves is obtained 

when olc is set to  0 and 1.0 respectively. Figure 4.12 shows these learning curves 

which are obtained while m odelling direct and inverse system s. These curves 

clearly show the necessity of crossover operation in genetic evolution. An evo­

lu tionary  algorithm , which uses the  crossover operation, converges faster th an  

an EA w ithout the crossover. The EA w ithout a crossover operato r is analo­

gous to EP  in th a t it takes longer evolution tim e to  reach a b e tte r  solution.
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Figure 4.12: Effect of crossover operation on E A ’s convergence.



P aram eter
Original
Values

a c — 1 . 0

oIIos

bo 0.4e*° 0.3435e- j2 -7 8 a :1 0 -3 0.1786eJ°-53
bi 0.3eJ7r 0.2525c-73 1382 0.2167c-7304

^2 0.5c70 0.4375e- J'4 -916:clo_4 0.6413c--70 0128

h 0.4eJ° 0.327e-J'2-17xlo_4 1.136c-71-4588
b4 0.2ejo 0 .U33e jim7xl0~* 0.1576c-70 0171

P i 0 .6 eJ° 0.4242c-7'31414 0.5474e-73-6 5 3 6 x l0 _ 4

P2 0.5eJ7r 0.3412e^'3162 0.4521c-729459

P 3 0Aejn 0.5741eJ'L2927:El0“b 0.4961c-7'31388

Table 4.1: The best param eters as obtained from EAs when m odelling direct 
system  of param eters (4.30).

T he crossover operation provides a b e tte r  local search capability, which is much 

appreciated  when the algorithm  approaches the global region.

Table 4.1 shows the param eters of the best evolved filter as ob tained  from 

EAs when m odelling the direct system  of param eters (4.30).

Experiment  2 : The experim ent is aim ed to com pare the  perform ance of 

the proposed sp lit-poin t crossover w ith the s tandard  uniform  crossover. This 

experim ent is conducted by setting  the E A ’s param eters a c =  1.0, a m =  0 . 0 2  

and a =  0.5. A series of learning curves is obtained while m odelling the  direct 

and inverse systems. Figure 4.13 shows these learning curves.

T he learning curves obtained when using sp lit-poin t crossover converges to  

a m inim um  point, which is lower th an  th a t of s tandard  uniform  crossover. As 

sp lit-po in t crossover produces more new mem bers th an  the s tan d ard  operato r 

does, it is able to  find a b e tte r  solution very quickly. Table 4.2 com pares the 

best param eter values as obtained from this experim ent w ith those of s tan d ard  

m ethods used in experim ent 1 .

A lthough the convergence curves of d irect system  m odelling are closer to 

each other, it provides d istinct solutions. The param eters which are obtained  

from split-po in t crossover are very closer to  the optim um  param eters given in

(4.30).
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Figure 4.13: Learning curves showing the effect of sp lit-po in t crossover on E A ’s 
convergence.
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Param eter
Original
Values

Split-point
Crossover

S tandard
Crossover

bo OAejo 0.3706e-?3-3169xl° 4 0.3435e_j2-78xl° d
h 0.3eJ7r 0.2645e^'3112 0.2525ej31382
2̂ 0.5eJ° 0.467ejL27xl(r& 0.4375e~ '7 4 ,9 1 6 x l0 _ 4

3̂ 0 Ae?° 0.368e3-92xlo_4 0.327e_j2-17xl0_4
b4 0.2ejo 0 .2Uej l -02xl0~b 0.1433e-74 067xl°~&
Pi 0.6eJ° 0.487ej3-143 0.4242ej31414
P2 0.5eJ7r 0.388ej3112 0.3432ej3152

P3 0AeJ7r 0.591ej2-3xlo-& 0.5441e-7l-2927xlo_b

Table 4.2: P aram eters of the best evolved filter as obtained from EAs when split- 
point crossovers are applied to  evolve the direct system  of param eters (4.30)

A nother im portan t observation is th a t perform ing crossover between feed­

back sections degrades the algorithm ’s convergence perform ance. This is be­

cause during evolution the poles can lie w ithin the  filters in any m anner and 

give the same fitness values. Figure 4.14 illustrates the  learning curves when 

the crossover operations are employed to  the feedback sections.

Experiment  3: This experim ent is aimed to  com pare the convergence be­

haviour of uniform  m utation  d istribu tion  against G aussian d istribution . Split- 

point uniform  crossover was employed along w ith a m =  0 .0 2 , a c =  0.85 and 

a =  0.5. Figure 4.15 shows the learning curves, which are obtained, while 

m odelling direct and inverse systems.

G aussian d istribu tion  provides a faster convergence th an  uniform  d is tribu ­

tion.

Experiment  4: This experim ent is conducted to  show the effect of m u ta­

tion probabilities on the E A ’s convergence. A set of m utation  probabilities 

{ a m = 0.005, 0.02,0.06} are applied w ith the  proposed sp lit-point crossover. 

The other genetic param eters such as crossover-probability a c and the  variance 

a  are set to  0.85 and 0.5 respectively. A set of learning curves is obta ined  for 

various m utation  probabilities. The experim ental results are shown in Figure 

4.16. These results clearly show how the  m utation  probability  is influenced on 

E A ’s convergence. It is observed th a t a m oderate m utation  ra te  (am =  0.02)
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Figure 4.14: Effect of crossover when employed to the feedback sections of the 
H R  filters.
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Figure 4.15: Effect of m utation  d istribu tion  on E A ’s convergence.
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Figure 4.16: Learning curves showing the effect of m utation .
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Figure 4.17: Learning curves com paring the uniform  crossover w ith the  one- 
poin t crossover.

contributes good perform ance, while too large or too  sm all degrades the  per­

formance, i.e. sm aller m utation  ra te  causes prem ature convergence while larger 

values provide high population diversity.

Experiment  5: This experim ent is carried out to  com pare the perform ance 

of one-point crossover against uniform  crossover. Uniform crossover produces 

more new m em bers th an  one-point crossover and converges faster. O ne-point 

crossover requires much more tim e to  reach a b e tte r solution. The com parative 

curves showing the convergence are illu stra ted  in Figure 4.17.
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Figure 4.18: Learning curves showing the convergence perform ance of various 
cost functions.

Experiment  6 : Finally, an experim ent is carried out to  analyse two objective 

functions th a t can be applied to  the proposed EA techniques. The objective 

functions such as MSE and MME are used for th is analyse. A set of learning 

curves is obtained by keeping a c =  0.85, a m =  0.02 and o  =  0.5. T he optim um  

filter param eters estim ated have also been tabu la ted  for the com parison. The 

filter param eters of the optim um  filters evolved using those objective functions 

are tabu la ted . The learning curves which show the convergence perform ance of 

each cost function are illustrated  in Figure 4.18. I t can be seen th a t the M ME

83



P aram eter
Original
Values

MSE M ME

bo OAejo 0.3723eJ'2-31xl0_b 0.363ejll4xlo_i>
b\ 0.3eJ7T 0.2821ej3-26 0.2834e^321

^2 0.5eJ° 0A75ej937xlo~b OA62ej5 03xlo~*

o- CO 0.4e-7° 0.423e4-17xlo_& 0.376e-7ll6xlo_b

b4 0 .2 ejO 0.189eJ'2-llxlo~b 0 .2 2 1 ej,0-8xl0_b

Pi 0 .6 ej 0 0.587eJ'3-7xlo_Y 0.388ej3U
P2 0.5eJ7r 0.391e-?316 0.486ej313

P3 0Aej7T 0.495e j 3 1 5 0.588ejLllxlo_Y

Table 4.3: C om paring the Param eters of the best evolved filters as obtained 
from EAs when various cost functions are employed to  evolve the direct system  
of param eters (4.30)

criterion gives same am ount of convergence perform ance as the s tandard  MSE 

criterion. Table 4.3 shows the best param eter values obtained for d irect system  

modelling.

A special feature of the evolutionary technique is th a t the capability  of using 

any cost functions w ith ease. This property  distinguishes the EAs from classical 

techniques in th a t they are strongly bounded w ith the  cost functions. The 

results, which are shown in th is report, are th a t the  average values taken over 

15 independent EA runs w ith d istinct in itia l conditions. For exam ple, consider 

the  following Figure 4.19 which illustrates how the average value is obtained  for 

4 independent EA runs when m odelling the direct system  (4.29). The EA cycle 

applied to these experim ents is sum m arised below:

Evolution Cycle

The in itia l set of param eters (m agnitude and phase angles) is selected randomly. 

Let us consider the num ber of param eter set (Population size) is N .  The m ag­

nitudes of the poles are selected w ithin the range [0  • -1 ] in order to ensure th a t 

the system s lie in the stable region. The phase angles are selected random ly 

between — n  and + 7 r  and the m agnitudes of the feedforward coefficients are en­

sured w ithin [0 • -5]. The population is then subjected to  a fitness m easurem ent
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Figure 4.19: Figure illustrating  how the average value is obtained from  several 
EA runs, (a) Learning curves of 4 independent EA runs, (b) Average value of 
the  curves shown in (a).
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based on a cost function used for the H R filtering application. O nly the  best 

chromosomes are selected and they survive to  the next generation. Tournam ent 

selection w ith a tournam ent size s =  2 , is used where two chrom osom es are 

selected random ly from the population  and the best becomes one of the  next 

generation. This is repeated, until a com plete in term ediate population  (parents) 

of size N  is selected. The generation is modified using crossover and m u ta tion  

and a new population (offspring) of the same size (N ) is created. The offspring 

replaces the old population by keeping the best chromosome.

4.5 Summary and Discussion

Floating-poin t EAs have been developed for evolving complex adaptive H R  dig­

ita l filters. In th is work, direct form realisation has been considered w ithou t 

employing any stab ility  m onitoring techniques. It has been achieved by design­

ing the poles through EAs. Simple algorithm  has been employed to  perform  

the conversion of poles into equivalent feedback coefficients. A new crossover 

scheme has been introduced which produces more new m em bers a t each gener­

ation  and provides good local search capability  when the algorithm  approaches 

the  global region. We also introduced a more sophisticated  m ethod to  perform  

m utation  on complex chromosomes. This approach ensures the  H R  filters to  lie 

inside the stable region during evolution. The cost functions such as M SE and 

MME have been successfully employed w ith the support of tou rnam en t selection 

scheme.

Along w ith the  above salient features, the proposed techniques have two 

m ajor drawbacks. F irst, the pole design m ethod accom m odates m ultip le op tim a 

w ith  the same fitness values th a t can be obtained from re-ordering th e  poles 

w ithin the filters. This property  leads to  slower convergence when the  crossover 

operations were employed w ithin the  feedback sections.

Second draw back is th a t proposed techniques have provided poor fine-tuning 

capability  as the algorithm  approaches global region. This was the  reason why
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the final values as obtained from genetic evolution were not exactly m atched 

to  the  optim um  param eters. A m ajor reason causing th is poor perform ance 

m ay be of the higher variance of m utation  operator. In this work, the  variance 

cP“ was chosen as 0.5 so as to  provide a desired variations of {—1 ^  x  ^  + 1 } 

th roughout the  genetic search. This is considerably a higher value, which m ay 

degrade the local search capability  of the EAs. Consequently, em ploying sm all 

variance th roughout the genetic search can cause p rem ature convergence. Even 

though m any research outcomes have been published [44, 47] to  find th e  op ti­

mum  value of the variance w ith ease, they are either com putationally  expensive 

or inefficient. For example, one possible solution is to  use evolvable variance 

for each param eter and are evolved along w ith the solutions. This approach 

increases the com putational cost, therefore unsuitable for applications having 

large num ber of param eters. A lternatively, dynam ic m utation  can be consid­

ered to introduce high variations a t the beginning of the  search, and  reduce 

along w ith the solution. The concept of dynam ic m utation  was in troduced  to 

reduce the severity of m utation  as the global optim um  is approached. T his re­

quires either the generation num ber or the fitness values as a function variable 

to  calculate the variance of each string. U nfortunately, th is approach has also 

been found as an inefficient m ethod since the global optim um  of an objective 

function cannot be determ ined from any m ethods.

The next chapter is aimed to resolve these problem s w ith coefficient design 

approach.
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Chapter 5 

Direct Design M ethod via  

Global Evolution

In the previous chapter we have provided the design techniques of com plex evo­

lu tionary  algorithm s. This approach facilitates the design of poles so th a t  the 

adaptive H R filters can be easily designed w ithin the stable region. This m ethod 

avoids the use of stability  m onitoring techniques and allows the  m utation  oper­

a to r to move the feedback param eters w ithin a desired search space th roughout 

the genetic search. However, the techniques described in C hap ter 4 has a m ajor 

drawback, which include:

•  Pole design m ethod provides additional sta tionary  points which are ob­

ta ined  when reordering the poles w ithin the filter. Therefore, the crossover 

cannot be applied w ithin the feedback sections. Applying crossover w ithin 

feedback sections degrades the convergence perform ance of the EAs.

To resolve th is problem , the coefficients can be designed directly from a 

population. This can facilitate the use of all the features of crossover.

The aim of th is chapter is twofold:

1 . To show the recent development of designing the coefficients of the adap­

tive H R filters using simple stab ility  m onitoring techniques.

2. To com pare the convergence perform ance of the coefficient design m ethod



against pole design approach when m odelling the same signals and system s 

which have been used in the previous chapter.

In th is  work the  coefficients of the adaptive filters are designed directly  from 

a population . T he adaptive filters are developed as direct, cascade, parallel 

and la ttice  form  structu res using floating-point EA techniques as discussed in 

C hap ter 4.

T he rest of th is chapter is organised as follows. In Section 5.1, the problem s 

th a t can arise when designing the coefficients are described. A special feature 

of floating po in t EAs is outlined and the technique of designing m u ta tion  oper­

a to r is discussed. T he problem  of p rem ature  convergence is delineated and an 

overview of various rem edies is given. This section also provides the operation 

of new genetic cycle, which employs a new operato r called im m igrant w ith an 

aim  to  avoid the  severity of p rem ature convergence. Section 5.1.2 introduces a 

new correction m ethod th a t will improve the  convergence perform ance of the 

EAs. This section also outlines the problem s of alternative realisations. Con­

vergence behaviour while m odelling various IIR  models using several alternative 

realisations is com pared and the  reasons for choosing direct form filters is illus­

tra ted . Section 5.2 provides the  design techniques of direct form IIR  structu res 

using sim ple s tab ility  ensuring m ethods. In th is section we show how the filter 

s tab ility  can be determ ined from the estim ate of filter ou tpu t. T his section also 

com pares th e  convergence perform ance of the coefficient design m ethod against 

pole design approach using the  same system s and signals as shown in previous 

chapter. Finally, th is chapter provides a brief sum m ary of these works w ith 

su itab le conclusions.
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5.1 Stability, Design and Evolutionary 

M ethod

A unique feature of the floating-point EA techniques is th a t being able to  search 

from problem  space ra ther th an  from an encoded range [25]. As m entioned in 

the previous chapter, the crossover operator employed in floating-point EAs can 

no longer produce new members w ith values greater th an  those of th e  parents 

before crossover. Only m utation  can move a param eter to  any desired value. For 

exam ple, consider a s tandard  m utation  perform ed on a param eter c as follows:

c(t +  1) =  c(t) +  gt ( 0, a)  (5.1)

where c(t +  1 ) represents the param eter value after m utation  and gt (0: a) rep­

resents a G aussian variable w ith zero m ean and variance o 2 respectively. The 

range of variations to  be introduced into the param eter can be varied w ith  the 

variance a 2. A larger variance is needed to  identify the global region of a m ul­

tim odal error surface w ithout prem ature convergence. Sm aller variance is often 

required to fine-tune the param eter as the  algorithm  approaches the global solu­

tion. M ost evolutionary algorithm s, therefore, use m eta-evolutionary techniques 

which provide dynam ic m utation  during adap ta tion  [13]. These m ethods em­

ploy variable variance, which is calculated either from fitness values or from the 

generation num ber. For example, the variance of m utation , which is calculated 

from the generation num ber, can be defined as:

a ( t  +  1 ) =  a(t)  ( l  -  r m(t)) (5 .2 )

where a( t  +  1 ) represents the variance after the param eters are evolved, r  is 

a uniform  random  num ber from { 0  • • • 1 }, m(t)  is a tim e function which is de­

scribed by:

">(*) =  ( l  -  (5-3)

where t represents the generation num ber, T  is the m axim um  num ber of gen­

eration, and b is a system  param eter determ ining the  degree of dependency on
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itera tion  num ber. A m ajor draw back of th is m ethod is to  define the m axim um  

num ber of generation as a function argum ent, which is norm ally an unknown 

value. Therefore, th is m ethod cannot be considered as a b e tte r  approach to  

achieve a desired solution w ith appropria te  fine-tuning as an algorithm  reaches 

a global region.

In th is work we choose a sm aller value of variance for m utation  in order to 

keep the  coefficient values w ithin the neighbourhood. As such, they  often fail to  

converge to an optim um  solution and converge to  a sub optim al s ta te  causing in­

accurate solution due to  prem ature convergence. The convergence perform ance 

becomes much worse when the EAs operate w ithin sm all population sizes.

5.1 .1  P rem atu re C onvergence

P rem atu re  convergence or loss of population diversity before optim al or a t least 

s ta tionary  values have been found has long been recognised as a serious failure 

m ode for EAs [34]. The prem ature convergence occurs if the  popula tion  sizes 

are sm all or the m utation  cannot introduce enough variations to  escape from 

a local solution. The la tte r  becomes as a m ajor reason causing prem ature 

convergence when designing the feedback coefficients of the adaptive IIR  filters 

using floating-point EAs techniques. For exam ple, consider the MSE surface 

shown in Figure 5.1, which is obtained while m odelling a system,

rr/ , 0.5 — 0.4^ _ 1  +  0.892:-2 +  0.7z~3 — Offiz- 4  , .
H{Z) = -------------1 - 0 . 0 5 ^ - 0 . 8 5 ^ -------------  (5'4)

using an adaptive filter

. .  . 0.5 — 0.4z - 1  +  b2z~2 +  0.7z~ 3 — b4z~4
A(z)  = ---------------------------- :-----------    (5.5)

1 — 0.052: 1 — a2z  2

T he MSE is p lo tted  against a2 and b4 for various choices of b2. This local error 

surface has several m inim a in which global solution exist a t {a2 =  0.85, b4 =  

—0.9}. The local op tim a are separated faraway from each other. So, if the 

algorithm  stuck in one of these m inim a, m utation  m ust provide a high enough 

variation to  escape the algorithm  from this inaccurate solution.
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Figure 5.1: A MSE plot showing local m inim a separated  faraway from each 
other.

In coded form of EAs, for exam ple in b inary GAs, each coefficient or param ­

eter is encoded w ithin a range, which is chosen by the GAs designer. In such a 

case, the coefficients or the param eter values can be moved w ithin a wider range 

during evolution and probability  of desolating in local optim a is much less.

The problem  of prem ature convergence cannot be avoided in EAs. Several 

m ethods have been proposed to  com bat prem ature convergence in b inary  GAs 

[9]. These include, for example, the  restric tion of m ating procedure, recom bining 

process, and replacem ent strategies [34, 9]. These techniques are sum m arised 

below:

M a tin g  P ro c e s s :  Chromosomes can be selected so as to m ain ta in  pop­

u lation diversity. The goal of this process is to prevent sim ilar individuals 

from m ating  [9]. Dissimilar individuals are chosen for recom bination so th a t 

offspring produced by these diverse parents will tend to  be more diverse [16]. 

G oldberg provided a sharing function, which reduces the fitness of individuals 

as a function of how sim ilar they are to  other individuals in the population, for 

an indirect m ating  strategies [9]. In d irect m ating  strategies, individuals are
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random ly paired, bu t are only m ated  if their ham m ing distance is above a cer­

ta in  threshold. The threshold is in itia lly  set to the expected average ham m ing 

distance of the  in itia l population, and then is allowed to  drop as the popula tion  

converges. This m ating  strategy  has a m ajor drawback in th a t m ore schem ata 

can be d istu rbed  by crossover since fewer schem ata are shared.

R ecom bination Strategies: Crossover operation can also be modified 

to introduce population  diversity. If the crossover helps to  produce offspring 

th a t  are dissim ilar from bo th  parents, the resulting population  will ten d  to  be 

more diverse. There are several possibilities to  achieve population  diversity via 

crossover:

•  increase the ra te  of crossover

•  use a more disruptive crossover operator (e.g. uniform crossover)

R eplacem ent Strategies: The goal of th is process is to  replace sim ilar 

individuals in the parent population by new chromosomes [72]. De Jong  first 

in troduced this in 1989, hence known as De Jong’s scheme. The second approach 

is th a t GAs can only add a new individual to  the population if it is no t identical 

to  any m em ber already in the population  [72, 80].

By considering above three issues in m ind we define the genetic cycle for 

floating-point EAs as follows:

A popula tion  of filter objects is selected random ly so th a t the in itia l values 

are ensured w ithin the stable region. The population is then subjected  into fit­

ness m easurem ent. The b e tte r individuals (parents) are selected via tou rnam en t 

selection scheme. The parents are shuffled before m a tting  the individuals for 

crossover. Shuffling can simplify the  process of pairing dissim ilar individuals for 

recom bination - adjacent individuals can be combined w ith ease. A set of new 

chromosomes replaces current population  w ith a probability  called probability 

of immigration  c^. These newly introduced chromosomes are called immigrants  

which are produced by introducing higher variations into each elem ent of the
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Figure 5.2: Convergence curves showing the effect of im m igrants while m odelling 
the system  (5.6) by an equivalent order adaptive filter.

selected individuals. The probability  of im m igration determ ines which individ­

ual will be chosen for the im m igration. The variations are in troduced  by a 

random  function, in th is work we use uniform  random  function w ith varia tion  

[—0.25 • -0.25]. Split-point uniform  crossover and G aussian m utation  is used to 

produce offspring. The s tandard  deviation of G aussian m utation  is chosen as 

a — 0.005 to  provide small variations in order to  keep the coefficients w ith in  

their neighbourhood. The offspring replaces the  old population  by keeping the 

best member.

Figure 5.2 illustrates an exam ple which shows the convergence behaviour of 

the  EA while m odelling a second-order IIR  system  of transfer function

0.5 -  0.5Z-1 +  0.89z~2
H ( z )  = (5.6)

1 -  1.4 z - 1 +  0.98.Z-2 

by an equivalent order adaptive IIR  filter. This system  has poles a t { p i ,2 = 

± 0 .9899}  which are very close to  the un it circle. Local error surface of th is 

m odelling problem  is shown in Figure A .I. This particu lar m odelling problem  

is a unique exam ple to  show severe m ultiple local m inim a in the local error 

surface. Convergence through conventional EAs often fail while optim ising the 

param eters of (5.6) [3]. Figure 5.2 clearly shows th a t EAs w ithou t im m igration  

operato r converges to  a sub-optim al s ta te  and causes inaccurate solution. F ig­

ure 5.3 illustrates another exam ple which is obtained while m odelling (5.4) by
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Figure 5.3: Convergence curves showing the effect of im m igrants while m odelling 
the  system  (5.4) by an adaptive filter (5.5)

(5.5). Local error surface while m odelling th is system  is shown in Figure 5.1. 

The algorithm  w ithou t im m igration always converges to  inaccurate estim ates, 

which give higher MSE vales. Im m igration operator provides enough population  

diversity and the problem  of dislocating in local m inim a is much less.

From the knowledge of our previous examples, the experim ents illu stra ting  

the convergence im provem ent by im m igrant operato r are obtained by using the 

following E A ’s param eters:

•  Population  size N  =  100

•  P robability  of crossover a c =  0.95

•  P robability  of m utation  a m =  0.02

•  P robability  of im m igration oti =  0.02

It is im portan t to  note here th a t p robability  of im m igration plays an im p o rtan t 

role in EAs convergence. Too small or too high values can degrade th e  conver­

gence perform ance. For example, consider the Figures 5.4 and 5.5 which show 

the convergence behaviour for various ra te  of im m igration while m odelling (5.6) 

and (5.4) respectively.
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Figure 5.4: Convergence curves showing the effect of ra te  of im m igration while 
m odelling the  system  (5.6) by an equivalent order adaptive filter.
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Figure 5.5: Convergence curves showing the effect of ra te  of im m igration while 
m odelling the system  (5.4) by an adaptive filter (5.5)
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Figure 5.6: R elationship between a pole and a coefficient of a fourth-order IIR  
system .

5.1 .2  F ilter  S tab ility

A m ajor problem  inherent in the design of an adaptive IIR  filter is being able to 

guarantee filter stab ility  during adap ta tion . The direct form param eterisa tion  

has significant drawbacks, which results from the high sensitivity of its poles 

to  sm all errors in the feedback coefficients. For exam ple, consider the  Figure 

5.6 where the relationship between a pole and a coefficient of a 4 ^ -o rd e r  IIR  

system  is illustrated . This figure in terprets th a t a sm all change in the  as causes 

a large change in p\.  Therefore, the filters can easily move outside the  stable 

region and provide an unbounded ou tpu t, which m ay degrade the convergence 

perform ance of the EAs and result in an inaccurate solution or the p rem atu re  

term ination  of the algorithm  can be occurred. To resolve th is problem  stab ility  

m onitoring and correction m echanisms m ust be employed.

There are several m ethods have been proposed to  ensure the s tab ility  of 

adaptive IIR  filters [63, 26, 11, 30]. One of the sim plest tests of s tab ility  is to 

check after each update  of the algorithm  th a t the sum  of |am(n)| is less than  

1 [63]. This m ethod can fail if the  coefficient space is large. Moreover, the 

te st will only indicate th a t a polynom ial is unstable when in fact it  is not. 

To ensure stab ility  in large order system s Ju ry ’s test can be used [27]. This 

m ethod can easily determ ine w hether or not a polynom ial has m inim um  phase,
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b u t it does not reveal which poles are unstable. To ob ta in  th is inform ation 

factorisation m ust be used. Factorising polynom ials in higher order IIR  system s 

is com putationally  expensive.

A lthough, several techniques have been developed to  identify the  unstab le 

coefficients, bu t no such definite m ethod is given to  correct these param eters. 

C orrecting the unstab le param eters back into the stable region plays an im ­

p o rtan t role in algorithm ’s convergence. A standard  m ethod of replacing these 

unstable param eters is to use pole projection technique [63]. In pole projection 

m ethod, the particu lar unstable pole is reflected back into the  stable region in 

such a way th a t

p ' ( t + l )  = W )  (5 '7)

where pi(t)  represents the unstable pole, while pi(t  +  1 ) denotes the pole after 

correction.

In this chapter, we show a new approach in which the feedback sections 

corresponding to  the unstable filters are replaced w ith the  best m em ber of the  

parent population. This approach is com pared w ith the  s tandard  m ethod of 

correction when designing IIR  equalisers to equalise the interference of m ulti- 

p a th  channels [70]. In this chapter we present th is com parison while m odelling 

the system  given in (5.6) by a second-order adaptive system  of transfer function

tr /  b0 +  b\z~l +  b2 z ~ 2

H (z ) = ----------Zi--------------------------------------------- (5-8)
1 — a \ z  1 — ci2Z 1

Figure 5.7 presents the learning curves while optim ising the param eters of (5.6) 

using floating-point EAs w ith the following set of param eters:

•  population size N  = 100

•  probability  of crossover a c =  0.95

•  probability  of m utation  a m =  0 . 0 2

•  probability  of im m igration or* =  0 . 0 2
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Figure 5.8: Effect of correction mechanisms while m odelling the  system  given 
in (5.9).

The genetic evolution of adaptive IIR  filter using the pole projection m ethod 

converges slower th an  the proposed approach. Furtherm ore, the final MSE 

values obtained through the proposed m echanism  are sm aller th an  the  s tan d ard  

m ethod. A nother com parison is presented in Figure 5.8. The learning curves 

shown in th is figure are obtained while m odelling a fourth-order IIR  system  of 

transfer function

_  0-6 -  0.7Z- 1 +  0.3z ~ 2 +  0.1* - 3 +  0.5z~ 4 -  0 A z ~ 5

“  (1 -  0.7z - 1 +  0.6;z-2 -  0 .5z-3 +  0.8z - 4 )  ̂ ^
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by an equivalent order adaptive system  of transfer function

A , n fro +  b\z~x +  b2 Z~ 2 +  b%z~ 3 +  b^z~ 4 +  b$z~ 5
A ( z  = ----- ;----------- =i------- =2---------=3---------=4----  (5.10)1 — a \ z  1 — a,2Z z — a^z 6 — a^z 4

Consequently, several techniques have been proposed along w ith various fil­

te r realisations to  simplify stab ility  m onitoring trivial. Exam ples of these re­

alisations are parallel, la ttice  and cascade. The articles [48, 62, 64] are good 

references of related  works th a t rely on the design of adaptive IIR  filters us­

ing various realisations. A lthough alternative realisations offer sim ple stab ility  

m onitoring, these structu res introduce additional sta tionary  points in to  th e  er­

ror surface which m ay affect the ra te  of convergence of an adaptive a lgorithm  

[63, 3]. For example, consider a MSE surface obtained while m odelling a d irect 

form IIR  filter,

(1 -  O.lz- 1  +  0.4z~2) +  ( 1  -  Q.iz-1 -  0.6z~2)
{ l  (1 — O.lz- 1  — 0.6z-2)( l  — O.lz- 1  +  0.4z-2) v 1

by a second-order parallel form adaptive filter

= 1 - a 1 z - 1 - a 2 z - 2 + 1  -  d t z - 1 -  d2 z ~ 2

For a sake of sim plicity a\ and d\ are assigned to equal values, aq = d\ =  0.1,

and a2 and d2 are varied to obtain  the  MSE while m odelling (5.11). F igure

5.9 illustrates th is error surface p lo tted  against a,2 and cfe- The M SE surface

provides two global m inim a which can be interchanged by swapping th e  parallel

sections given in (5.12). The convergence curves while m odelling an IIR  system

of transfer function

_  0-5 -  0 A z ~ x +  0.8z - 2  +  0.7z~ 3 +  9.6z~A -  0.9z~ 5 

^  ~~ (1 -  0.7z~1) ( l  +  0 .6 z"1) ( l  -  0 .6 5 z -1) ( l  +  0.75z ~ l )  ̂ '

by a parallel form

b0 +  b\z~x +  b2 z ~ 2 c0 + CiZ-1 -h c2 z ~ 2 e0 + e1 z ~ 1 , .
A(z )  =  i  -  -  a 2 z - 2  +  i  - d ^  - d i z - i  + T Z J F r   ̂ )

a cascade form



Figure 5.9: A MSE plot showing th a t parallel sections can be interchanged to 
obtain  the same MSE value.
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Figure 5.10: Convergence curves while modelling the system  given in (5.13) by 
various filter realisations.

a d irect form

A(z) =
50 +  b\Z  ̂ b2z  A b$z 3 -|- b^z  ̂ b§z J

(5.16)
1 — a \ Z ~ l — a 2z ~ 2 — a3z~3 —

and a la ttice  form w ith 6 reflection coefficients as described in A ppendix F are 

shown in Figure 5.10. The parallel and cascade forms take much longer tim e 

to reach a m inim um  MSE than  la ttice and direct form structures. The la ttice  

form reached to  a sm aller MSE than  parallel and cascade forms. T he direct 

form structure , on the other hand, provides a sm aller MSE than  the la ttice  

form.
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Figure 5.11: Convergence curves while m odelling the  system  given in (5.17) by 
various filter realisations.

Figure 5.11 presents an another exam ple which com pares the convergence 

perform ance while modelling a 6 ^ -o rd e r  HR system  of transfer function

0.5 -  0 A z ~ 2 -  0.65z~4 +  0.26z~6
H (z )  = (5.17)

1 -  0.77z - 2  -  0 .8498z-4 +  0 .6486z-6

by parallel and cascade sections which are com prising 3 second-order sections, 

direct form filter w ith equivalent num ber of param eters and a la ttice  filter w ith 

6  reflection coefficients.

The above experim ents are carried out using the  following set of param eters:

•  population size N  =  100

•  probability  of crossover a c =  0.95

•  probability  of m utation  a m =  0 . 0 2

•  probability  of im m igration a* =  0 . 0 2

From  the above results it is clear th a t the ra te  of op tim isation is much dependent 

on the  s truc tu re  of the filter used. Among various realisations studied, the d irect 

form provides much faster convergence and sm aller MSE than  other realisations. 

The crossover operation m ainly degrades the convergence of parallel and cascade 

sections. For example, consider the com parative results as shown in Figures 5.12
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Figure 5.12: Effect of crossover while m odelling the  system  given in (5.13) by a 
parallel form adaptive filter of transfer function given in (5.14).

0 4 -~o
n o .

With

UJ
CO
2

W ithout

- 0.2  -

-0.4 -

- 0.6
o oo oo oo oo oo oo oooo

G eneration  N um ber

Figure 5.13: Effect of crossover while m odelling the  system  given in (5.13) by a 
cascade form adaptive filter given in (5.15).
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Figure 5.14: Effect of crossover while m odelling the  system  given in (5.13) by a 
la ttice  form adaptive filter w ith 6  reflection coefficients as shown in A ppendix 
F.
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Figure 5.15: Effect of crossover while modelling the system  given in (5.13) by a 
d irect form adaptive filter given in (5.16).
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- 5.15. These figures com pare the learning curves which are obta ined  w ithout 

em ploying crossover operation w ith  those w ith the  crossover operation  while 

m odelling the  system  (5.13) by the adaptive filters (5.14) - (5.16). From these 

results it is clear th a t cascade and parallel structu res converge faster w ithout 

crossover. However, the  ra te  of convergence is much slower when com pared to 

d irect and la ttice forms. D irect and la ttice  filters converge much faster when 

crossover operation is employed.

By considering the above issues in m ind our aim  in th is chapter is to  design 

d irect form filters w ith simple stab ility  ensuring techniques.

5.2 Evolving Direct Form HR Filters

In th is section we show how stab ility  m onitoring and correction can be easily 

achieved w ithout em ploying any of those m ethods as s ta ted  in Section 5.1.2. 

W hen evolution is in progress, the coefficients can take any values and  the fil­

ters can become outside the stable region. U nstable filters provide unbounded 

o u tpu t, and if the tra in ing  sam ples are too long, the sim ulation can be prem a­

turely  term inated . This is the reason why stab ility-m onitoring  techniques are 

considered when designing evolvable IIR  filters.

In th is work, we use a radically different approach to  ensure filter stab ility  in 

d irect form realisations. We use a te rm ination  factor, 7  which is com pared w ith 

the  instan taneous estim ate of the  filter ou tpu t, y(n).  If the  m agnitude of the  

ou tpu t-estim ate  exceeds the te rm ination  factor, the filter can be discarded or 

can be assigned to  a lower fitness value so th a t  a filter w ith a higher fitness can 

replace th is vacancy when the new population is to  be selected. For exam ple, 

consider the  learning curves shown in Figure 5.16. This figure com pares the 

convergence properties of the new approach against standard  m ethod of s tab ility  

m onitoring while m odelling a fourth-order system  of transfer function

_  0.1084 +  0.5419Z-1 +  1.0837z-2 +  1.0837^-3 +  0.5419z“ 4 +  0.1084z~5 
^  _  (1 -  0 .75z"1) ( l  -  0 .8 ^ -1) ( l  +  0 .6 5 ^ -1) ( l  +  0.82Z-1)

(5.18)
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Figure 5.16: Learning curves com paring the convergence properties of the new 
stab ility  m onitoring approach against the standard  approach as discussed in 
Section 5.1.2.

by an equivalent order adaptive filter of transfer function

bo + biz  1 +  6 2 2  2 +  b%z 3 +  b±z A + b$z 5 , m
A \z ) =  i------------Zi-Ẑ  Ẑ ------------------Z4-----  (5-19)1 — d \Z  1 — CI2 Z z — CL3 Z 6  — CL4 Z 4

The reason for choosing the above system  is to  show the convergence properties 

of a system  th a t has poles very close to  the un it circle. The given system  has 

poles close to  the un it circle - therefore stab ility  m onitoring is of param ount 

im portance. As shown in th is figure, bo th  m ethods give the sam e am ount of 

convergence perform ance, bu t they require different com putational costs. The 

proposed m ethod requires much less com putation  th an  the s tan d ard  m ethod. 

However, a m ajor problem  encountered in proposed technique is th a t it does 

not provide direct indication to  filter instab ility  bu t im plicitly indicate w hether 

or not coefficients have m inim um  phase. Figures 5.17 and 5.18 also give these 

com parisons which are obtained when m odelling the following system s

TO -  0.9z - 1 +  0.81 z - 2 -  0.729z-3 
^  "  1.0 -  0.2314Z-1 +  0.43174z-2 -  0.340434z-3 +  0.5184z-4  ̂ ' '

and
0.0154 +  0.0462z-1 +  0.0462z~2 +  0.0154;r3 

^  ~  1.0 -  1.99Z-1 +  1.572z~2 -  0.4583z~3  ̂ ’

by 4 ^ -o rder and 3rd-order adaptive filters respectively. T he given system s 

have poles very close to  the un it circle. The system  given by (5.20) has poles
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Figure 5.17: Learning curves com paring the convergence properties of the new 
stab ility  m onitoring approach against the s tandard  approach as discussed in 
Section 5.1.2.
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Figure 5.18: Learning curves com paring the convergence properties of the  new 
stab ility  m onitoring approach against the standard  approach as discussed in 
Section 5.1.2.
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Figure 5.19: Learning curves com paring the convergence properties of the  coef­
ficient design m ethod against pole design m ethod.

a t P i ,2 =  0-5/ ±  45, p 3)4 =  0.75Z ±  120, and zeros a t z\$  =  0.9Z =t 90, 2:3 =  0.9, 

Z4 = 0 while the system  (5.21) has its poles a t p i^  =  0.833Z ±  45, p 3 =  0.6605, 

and zeros a t z \ t2 =  0.9Z ±  90, z 3 =  0.9, 2:4 =  0.

Finally, we com pare the convergence properties of the  proposed coefficient 

design m ethod against pole design m ethod using the same signals and  system s 

as used in the previous chapter. F irst experim ent is conducted to  show the 

convergence curves while modelling the direct system  (4.29). G enetic algorithm s 

w ith  the following set of param eters:

•  population  size N  =  100

•  probability  of crossover a c =  0.95

•  probability  of m utation  a m =  0 . 0 2

•  p robability  of im m igration a* =  0 . 0 2

is used to  obtain  filter estim ates. The adaptive filter used in th is experim ent has 

5 feedforward coefficients and 3 feedback coefficients as the  original p lan t. F igure 

5.19 shows the convergence curves. Figure 5.20 com pares th is perform ance while 

m odelling the inverse system  used in the previous chapter.
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Figure 5.20: Learning curves com paring the  convergence properties of the coef­
ficient design m ethod against pole design m ethod.

5.3 Summary and Discussion

This chapter has provided the design techniques of direct form param eterisa tion  

using sim ply stab ility  m onitoring techniques. D irect forms param eterisa tion  has 

given faster rates of convergence th an  other realisations such as parallel, cascade 

and la ttice  forms. A m ajor problem  inherent in designing direct form filters us­

ing floating-point EAs is th a t it often fails to  converge to  an optim um  solution 

due to prem ature convergence. This is m ainly due to  sm all variance of m utation  

and small population  sizes. P rem atu re  convergence can be avoided by using one 

of the  remedies described in Section 5.1.1. However, these m ethodologies often 

fail if the error surface has severe m ultim odal perform ance. Higher m utation  

ra te  can reduce the  severity of prem ature convergence, bu t it can degrade the 

convergence perform ance. To resolve th is problem , th is work has provided a 

new operator called im m igrants, which introduces new chromosomes th a t are 

obtained  by pertu rb ing  each element of paren t chromosomes w ith  higher varia­

tions. N um ber of im m igrants introduced into the population  play an im p o rtan t 

role in E A ’s convergence. M oderate values gave b e tte r perform ance which is 

clearly seen from Figures 5.4 and 5.5.

The way of correcting unstable coefficients back into the stab le region played
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an im portan t role in E A ’s convergence. This chapter has shown a new m ethod­

ology for correcting unstable param eters, which in tu rn  improves the  ra te  of 

convergence of floating-point EAs. Pole projection m ethod th a t has been used 

as a s tandard  correction m echanism  was com pared w ith the proposed m ethod. 

Pole projection m ethod requires an exact knowledge of unstable coefficient so 

th a t it can be projected back into the stable region. To get the inform ation 

pole polynom ials m ust be factored. Factorising polynom ials is com putationally  

expensive. Proposed m ethod does not require such inform ation and therefore 

com putationally  inexpensive. A nother im portan t observation has been m ade 

from our sim ulations is th a t proposed m ethod improves the convergence of EAs. 

This new approach provides faster ra te  of convergence when com pared to  pole 

projection m ethod.

Even though the proposed m ethod of correction is com putationally  inexpen­

sive, b u t it needs stab ility  m onitoring techniques which require high com puta­

tion. To simplify stab ility  m onitoring, we have provided a new methodology, 

which uses a term ination  factor th a t determ ines the filter s tab ility  implicitly. 

This m ethod has been tested while modelling various H R system s th a t  gives 

good perform ance as s tandard  approaches.

Finally, our conclusion is th a t coefficient design m ethod always converges 

faster th an  pole design m ethod. Coefficient design gives b e tte r  fine-tuning 

capability  and provides final MSE values which are sm aller th an  pole design 

approach.
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Chapter 6

Hybrid A daptive Approach and 

System  M odelling for 

A daptation

In the previous chapters, the design techniques of IIR  filters tow ards global op ti­

m ality  have been described. A general conclusion is th a t evolutionary techniques 

provide a global search capability  bu t is poor in fine-tuning, which has been a 

m ajor drawback. Moreover, evolutionary algorithm s require much longer tim e 

th an  classical m ethods and therefore are unsuitable for applications requiring 

tracking tim e varying changes. For exam ple, channel equalisation of m u ltipa th  

channels s tric tly  requires an efficient adaptive algorithm  to  track the  tim e vary­

ing characteristics of the channel environm ent [82, 6 , 76, 28].

This chapter develops design techniques for adaptive IIR  d igital filters using 

a hybrid approach. This work uses EA as a m ajor search tool to  find global 

regions of IIR  error surfaces and employs a gradient-based algorithm  where 

appropria te  for fine-tuning the coefficients. W hen a global region has been 

found, the gradient algorithm  can be switched on to  track  any tim e-varian t 

changes w ithout the help of an evolutionary algorithm . This m ethod resolves 

the problem s of achieving fine-tuning and tracking tim e varying perform ance by 

evolutionary approaches.
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The rest of th is chapter is organised as follows: In Section 6.1, fine-tuning 

and hybrid m ethodologies are described. This section describes how the pa­

ram eters of tim e-invariant system s can be fine-tuned using the new m ethod. 

A pplications and validation to  various system  modelling are illustrated . Section

6 . 2  briefly describes the modelling of tim e-invariant and tim e-variant systems. 

S im ulation results illustrating  convergence perform ance are shown. In Section

6.3 provides m odelling of tim e-variant system s is shown and sim ulation results 

showing the convergence perform ance illustrated . Section 6.4 presents adaptive 

inverse m odelling in nonstationary  environm ent. Finally, Section 6.5 provides a 

brief sum m ary and discussion of this chapter.

6.1 Fine-tuning and Hybrid M ethodology

In th is section we describe how the param eters of tim e-invariant system s can 

be fine-tuned using hybrid methodology. Evolutionary algorithm  and the nor­

malised R P E  algorithm  are chosen for th is hybrid search approach. A set of 

tra in ing  d a ta  of w  samples is used to  tra in  the adaptive filters. The proposed 

floating-point EA w ith a fixed population  size N  is employed and the  best 

m em ber (an individual having the lowest cost) of the popula tion  is subjected  

to  fine-tuning via norm alised R P E  algorithm , which is discussed in C hap ter 2. 

T he same train ing  set and the  same num ber of tra in ing  d a ta  are used to  update  

the  norm alised R P E  algorithm . A dap ta tion  through norm alised R P E  algorithm  

can fail if the p a th  contains m ultiple local op tim a or the coefficients are u p dated  

outside the stable region. F ilter can be checked for stab ility  using the technique 

discussed in the previous chapter. A t each generation, the  coefficients obtained  

via norm alised R P E  algorithm  are used to  calculate the  MSE value of th e  in­

stan taneous error and com pared w ith  the  best m em ber of the E A ’s population. 

T he w inner of th is com petition is used to  update  the norm alised R P E  algorithm  

and replaces a m em ber of the parent popula tion  before the next generation to  

be evolved. This cycle is repeated until the MSE of the  norm alised R P E  reach
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to  a steady s ta te  value. A flowchart representing th is cycle is shown in Figure 

6 . 1 .

6.2 Applications and Validation 

to System  M odelling

In th is chapter, we consider two types of system  m odelling problem s, which 

include the modelling of systems, whose param eters are

1 . T im e-invariant

2. T im e-variant

We use the following no ta tion

9 — {fro> bi, • • •, ^M-i? &i> * j &n } (6 .1)

to  represent tim e-invariant system s and use

g{n) =  {6 0 ( n ) , 6 i(n ), • • •, ^ ( n ) ,  a 2 (n), • • • , a N (n)} (6 .2 )

to  represent tim e-variant systems. The index M  and N  used in (6.1) and (6.2) 

represent the num ber of num erator and denom inator coefficients respectively. In 

our sim ulations, we assume th a t the param eters defined (6 .2 ) change w ith  tim e 

w ith  a frequency a /  which is considerably slower th an  th a t  of ad ap ta tion  rate. 

For exam ple, let us assume th a t the param eter b\ is varied in such a m anner

b\(n) = b\ +  {1 -  exp(—a / n ) }  (6.3)

where b\ is the original value and n  denotes the tim e. O ur aim  in th is chapter 

is to model d irect and inverse of such system s in the d irect form adaptive IIR  

filters. We further assume th a t models can be trained  by a set of tra in ing  

signals.

A series of sim ulations is carried out to show the  fine-tuning capability  of 

the proposed approach. The system  described by (6.1) is used in all sim ulations
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Figure 6.1: Flowchart illu stra ting  the hybrid approach.
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of this section, and the inpu t signal s(n)  applied to  th is system  is a w hite 

random  process w ith a norm al d istribu tion  and un it variance. For th e  sake of 

simplicity, the experim ents presented in th is chapter are carried ou t in noise 

free environm ents. An estim ate of the MSE a t each generation is ob ta ined  by 

averaging
1 w — 1

J = -  Y ,  le W I2 (6.4)
W  i = 0

over 15 independent com puter runs, where w  represents the  num ber of tra in ing  

signals. The num ber of tra in ing  signals and the population  size used in all 

experim ents are 100 and 50 respectively. From the knowledge of our previous 

experim ents carried out in the previous chapter, we chose the following values 

as genetic param eters:

•  P robability  of crossover a c =  0.95

•  P robability  of m utation  a m = 0.02

•  P robability  of im m igration cli =  0.01

The step size fi of norm alised R P E  is set equal to  0.001 unless otherw ise speci­

fied. The reasons for chosen th is value have been discussed in C hap ter 2 .

To make a clear conclusion on the convergence perform ance of the  proposed 

approach, we show three kinds of d irect system  m odelling of (6 .1 ) such as exact- 

modelling (order of an adaptive filter and the system  being m odelled are equal), 

over-modelling (order of an adaptive filter is greater th a n  the  system  being 

modelled) and poles close to the unit circle [64]. In all th ree cases th e  adaptive 

filter has the general form:

Co +  C iZ  +  • • • +  Cm - \ Z  '

A W  =  X -  d l Z- i  dNZ- p  (6-5)

where Q  and P  represents the num erator and denom inator coefficients respec­

tively.
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Figure 6.2: Exact-m odelling w ith fine-tuning perform ance. MSE learning curves 
of the pure EA and the hybrid approach

6.2 .1  E xact M od ellin g

In th is case, g is a fourth-order system  w ith d istinct poles located well inside 

the  un it circle. The coefficients of g are

' b0 =  1.0, bx =  -0 .9 ,  b2 =  0.81, 6 3 =  -0 .729 ,
< ( 6 .6 ) 

cli = —0.04, a2 — —0.2775, as - 0.21012, <2,4 =  —0.14

which give poles a t p 1>2 =  0.5Z ±  45, ps ,4 =  0.75Z ±  120, and zeros a t 2 = 

0.9Z ±  90, Zs =  0.9, Z4 =  0. Figure 6.2 shows the MSE learning curves of the 

pure EA and the hybrid algorithm . Evolutionary algorithm  finds the  shortest 

roo t to  norm alised R P E  algorithm . The global region is found w ithin  1000 

generations and norm alised R P E  algorithm  takes another 110000 generations 

to  fine-tune the coefficients. Figure 6.3 shows the trajectories of a\ and  bo. From 

these results it is clear th a t the  above two coefficients reach to its original values 

w ithin 500 - 1000 generations. The convergence perform ance of norm alised R P E  

algorithm  itself is a ttem p ted  to  show in th is chapter, b u t in all a ttem p ts  the 

results are unsatisfactory  due to m ultiple local m inim a and po ten tia l instab ility  

of direct form adaptive IIR  filters. Therefore, they are not presented.
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6.2 .2  O verm odelling

In th is sim ulation, g is a second-order system  of param eters

I b0 =  1 .0 , &! =  -0 .9 ,  oi =  0.71, a2 = -0 .2 5  (6.7)

w ith d istinct poles a t pi$  =  0.5Z ±  45 and zeros a t z\ — 0.9, Z2 =  0. The 

adaptive filter has P  = 3 and Q = 2, i.e. P  > N .  Figure 6.4 shows the 

MSE learning curves of pure EA and the hybrid algorithm . The EA finds the 

global region w ithin 200 generations and norm alised R P E  takes ano ther 1800 

generations for fine-tuning. Figure 6.5 shows the  trajectories of d\ and Cq. The 

coefficient trajectories clearly shows th a t d\ reaches its original value w ith in  2 0 0  

generations while c0 takes 1 0 0  generations.

6 .2 .3  P o les C lose to  th e  U n it C ircle

A fourth-order system  is used as in the exact-m odelling case, except the  poles 

are a t p 1)2 =  0.8Z ±  45 and p 3)4 =  0.9Z ±  120. The coefficients corresponding to
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Figure 6 .6 : M odelling w ith poles close to the  un it circle to  show fine-tuning 
perform ance. MSE learning curves of the  pure EA and the hybrid approach

these poles are

[ b0 =  1.0, bx =  -0 .9 ,  b2 =  0.81, b3 =  -0 .7 2 9 ,
J 0 ’ 1 ( 6 . 8 )

[ ai =  0.2314, a2 =  -0 .43174, a3 =  0.340434, a4 =  -0 .5 1 8 4

Figure 6 . 6  illustrates the learning curves while Figure 6.7 shows the coefficients 

trajectories. In th is case the EA takes 1000 generations to  find the global 

region and norm alised R P E  takes 5000 generations to  fine-tune the coefficients. 

However, the coefficients d\ and c0 are converged to its original values w ithin 

500-1000 generations.

6.3 M odelling in a Nonstationary Environment

This section applies the m odelling techniques to  tim e-variant system s. T im e 

varian t system s have param eters have param eters th a t can be varied w ith  tim e. 

Therefore modelling of such system s cannot be achieved w ith  an offline process 

such as EAs. In th is case, the  EAs can only be used to  find a b e tte r  root for 

an algorithm  th a t track tim e varying perform ance. An algorithm  such as nor­

m alised R PE  can be used to  achieve the adap ta tion  of tim e varying changes.
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We run the hybrid algorithm  to  ob ta in  a best solution for a particu la r tra in ­

ing set and then employ norm alised R P E  algorithm  to  adap t th e  tim e varying 

param eters.

To illustrate  the convergence perform ance of the proposed approach, we 

consider a variety of direct and inverse m odelling of g(n).  T he aim  of these 

experim ents is to  show the capability  of the proposed m ethod when m odelling 

system s in nonstationary  environm ents.

In th is case we consider the same system s used in Section 6.2, except th a t the 

param eters are assumed to  be tim e-variant. E xact m odelling is considered unless 

otherw ise specified. The genetic param eters and population  size are chosen as 

those used in the previous experim ents. Firstly, we consider a fourth-order IIR  

system  of param eters

b0(n) =  1.0 +  0.5{1 — exp (—O.OOln)}, b\ =  —0.9,

^2 (71) — 0.81 +  0.4(1 — exp(—O.OOln)}, ^

63 (n) =  —0.729 +  0.25(1 — exp(—O.Oln)},

ai =  -0 .0 4 , a2 =  -0 .2775 , a3 =  0.21012, aA =  -0 .1 4

where the param eter 60 (w), 62 (ft) and b3 (n) of (6.9) are varied exponentially  a t a 

ra te  0.001, 0.001 and 0.01 respectively. O ther param eters such as {bi, 0 ,1 , • • •, aA} 

are assum ed to  be tim e-invariant. Initially, a tra in ing  set of 10000 sam ples is 

generated w ith these param eters. Am ong 10000 samples generated, only 100 are 

used to obta in  the best m em ber via offline. The hybrid algorithm  is employed 

and run until the norm alised R P E  reach to  a steady s ta te  value. The best 

param eters obtained through offline process are used as the in itia l param eters 

for the norm alised R P E  to  track tim e varying changes. F igure 6 . 8  shows the 

MSE leaning curve of hybrid algorithm  while m odelling the  system  using an 

equivalent order adaptive filter. The hybrid algorithm  gives th e  best solution 

w ith in  1000 generations. Once the  best solution for the  p articu la r tra in ing  

set is found, the norm alised R P E  algorithm  is allowed to  run  to  track  tim e

varying changes. Figure 6.9 shows how the coefficients 0 2 (71) and 0 3 (71) are

converged during adap ta tion  via norm alised R PE. norm alised R P E  algorithm
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Figure 6.8: A daptation  w ith model (6.9) using an equivalent order ad ap tiv e  
filter. MSE learning curves of pure EA and hybrid approach.

could track the tim e varying changes, however, the adaptive filter coefficients 

and the corresponding original values are not exactly m atched to  each o ther. 

The reason for this poor perform ance is th a t the model param eters are  varied  

w ith a higher ra te  com pared to th a t of adap tation , i.e. /i =  0.001.

N ext, we consider the m odelling of the same system , except the  p a ram ete rs  

{bo(n)t b2(n), 6 3 (71)} are varied much slower than  th a t of (6.9). i.e. b0(n), b2(n) 

and bs (n) are varied in such a way th a t

b0(n) =  1 +  0.5{1 — exp(—O.OOOln)},

< b2(n) = 0.81 +  0.4{1 -  exp (—O.OOOln)}, (6.10)

 ̂ b3(n) =  -0 .7 2 9  +  0.25(1 -  exp(-O.OOOln)}

In th is case the norm alised R P E  algorithm  easily tracks these varia tions as new  

d a ta  are being captured. Figure 6.10 clearly confirms the s ta tem en t s ta te d  in  

previous paragraph  by illustrating  the convergence of c2(n) and c3(n) aga in st 

itera tion  num ber. It is easily seen th a t the original coefficient values and  th e  

coefficients obtained through norm alised R P E  are closer to  each other.

A nother experim ent is carried out to  show the convergence perform ance 

when the adap ta tion  ra te  is // =  0.01. Figure 6.11 illustrates th e  coefficients
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Figure 6.9: A daptive m odelling of (6.9) using an equivalent order adaptive filter. 
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tra jecto ries while m odelling the  (6.9) using an equivalent order adaptive fil­

te r w ith the new adap ta tion  rate . The convergence curves of c2 clearly shows 

the  im provem ent - in th is case adap ta tion  ra te  is higher th an  the  param eter 

variation.

Therefore, an im po rtan t conclusion, which can be m ade from above discus­

sion, is th a t norm alised R P E  algorithm  can give a b e tte r  convergence perfor­

m ance if the ra te  of channel variations is sm aller than  th a t of ad ap ta tio n  rate .

In the second m odelling exam ple, we consider an over-modelling problem  

w ith a second-order system  of param eters

tion ra te  and the ra te  of param eter variations were equal. F igure 6.12 shows the 

MSE learning curves of hybrid and pure EA while offline adap ta tion . F igure 

6.13 shows the trajectories of the tim e varying coefficients obtained during  adap­

ta tion . The original values and the norm alised R P E  updates are not closer to

param eter variations are set to ctf =  0.0001, which is sm aller th an  the  ad ap ta ­

tion  ra te  fi =  0.001. i.e.

In our th ird  exam ple we consider a system  w ith the poles close to  the  un it 

circle. In th is case exact-m odelling is considered. Firstly, we assum e these 

param eters are

In th is case bo(n) and a\(n)  are assum ed to be tim e-invariant. Also the adap ta-

each other. Figure 6.14 illustrates the  coefficients tra jecto ries when the ra te  of

bo(n) =  1.0 +  0.5{1 — ex p (—0.0001n)}, b\ =  —0.9, 

ai(n)  =  0.71 +  0.25(1 -  exp(-O.OOOln)}, a2 =  -0 .2 5
(6 .12)

b0(n) =  1.0 — 0.5(1 — exp (—O.OOln)}, 

bi(n) =  —0.9 +  0.25(1 — exp (—O.Oln)},

< b2{n) =  0.81, b3(n) = -0 .7 2 9  +  0.5(1 -  exp(-O .O Oln)}, (6.13)

a ^ n )  =  0.2314 +  0.05(1 -  exp(-O .O O ln)}, a2 =  -0 .43174 , 

a3 = 0.340434, a4 = -0 .5 1 8 4
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Figure 6.11: A daptive modelling of (6.9) using an equivalent order adaptive 
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Figure 6 .1 2 : Offline adap ta tion  while overmodelling (6.11) using an adaptive 
filter w ith P  = 3 and Q =  2. MSE learning curves of pure EA and hybrid 
approach.

The param eters { a 2 , a s ,  0 4 } are assum ed to  be tim e-invariant. F igure 6.15 shows 

the MSE learning curves of hybrid and pure EA while offline adap ta tion . F igure 

6.16 shows the trajectories of the tim e varying coefficients ob tained  during adap ­

ta tion . A gain the coefficients trajectories are not exactly m atched to  the  original 

values due to  the higher ra te  of param eter variations. F igure 6.17 shows the 

coefficient trajectories while m odelling the same system  except the param eters 

are varied slower ra te  than  th a t of (6.13). i.e. in this case the  param eters of the 

system  to be modelled are

6 0 (n) =  1.0 — 0.5{1 — exp(—O.OOOln)}, 

b ^ n )  =  - 0 .9  +  0.25(1 -  exp(—O.OOOln)},

< b 2 =  0.81, 6 3 (71) =  -0 .729 +  0.5{1 -  exp(-O.OOOln)}, (6.14)

a i ( n )  =  0.2314 +  0.05{1 -  exp(-O.OOln)}, a 2 =  -0.43174, 

a 3 ( n )  =  0.340434, a4 =  -0.5184

A m ajor observation, which is m ade from above sim ulations is th a t norm alised 

R P E  algorithm  perfectly tracks the tim e varying changes if the  ra te  of param eter 

variations is much sm aller than  th a t of adap ta tion  rate . The adap ta tio n  ra te
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Figure 6.15: Offline adap ta tion  while m odelling (6.13) using an equivalent order 
adaptive filter. MSE learning curves of pure EA and hybrid approach.

can be controlled w ith a step size fi. Higher the  step size can bring th e  adaptive 

algorithm  into im proper direction and can cause inaccurate estim ates [63].

6.4 Adaptive Inverse M odelling

In the first case, we consider a F IR  channel, which has the  following param eters

The param eters &o> &i and &2 are assum ed to  be tim e-variant. Inverse of the 

above channel is an H R which has following z-transfer function

From (6.15) and (6.16) it is clear th a t even though the channel is a FIR , the 

resulting  inverse filter will be an H R which is stric tly  bounded w ith th e  stab ility  

criterion. Therefore it is evident from the  above discussion th a t a linear inverse 

system  can be found by a linear adaptive process if the channel has m inim um

&o(n) =  1.0 +  0.5{1 — exp(—O.OOOln)}, 

^ ( n )  =  - 1 .4  +  0.05{1 -  exp(—O.OOOln)}, 

 ̂ b2 {n) = 0.98 +  0.05(1 -  exp(-O.OOOln)}

(6.15)

b0 (n) +  6 i (n )z - 1  +  b2 (n ) z ~ 2
(6.16)
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Figure 6.18: Offline adap tation . MSE learning curves of pure EA and hybrid 
approach while modelling the inverse of the non-m inim um  phase F IR  channel 
of param eters (6.17) by the second-order adaptive filter given in (6.18)

phase, i.e. zeros lie inside the un it circle. For example, consider the above 

channel by ignoring the tim e-variant param eters, i.e. 6 0 =  1, &i =  —1.4, 62  =  

0.98. The inverse of th is channel has poles th a t are very close to the u n it circle, 

Pi t2 =  ±0.9899. The tim e varying param eters can easily bring th is channel into 

non-m inim um  phase. Therefore the optim um  inverse filter can become unstable. 

Let us assume th a t the channel param eters reach the following:

fro — I? fri — —1.4, 62 — 1.1 (6.17)

a t a tim e n  and stay in the same s ta te  for a long tim e. Clearly, the channel w ith 

above param eters is a non-m inim um  phase and hence the optim um  inverse filter 

is unstable. F igure 6.18 illustrates the MSE learning curves while m odelling the 

inverse of the  channel of param eters (6.17) using the hybrid approach and the 

EA itself w ith a second-order adaptive HR filter of transfer function

A(z)  = Co (6.18)
1 — d \z  1 — d2 Z~ 2

Both algorithm s fail to  reach to  the global m inim um  which lies a t { 6 0  =  1, a\ =  

—1.4, a 2 =  1 .1 }, bu t they find a best solution in the stable region a t {bo =
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0.763368, ai =  —1.27424, a 2 =  0.98813}. Figure 6.19 shows the tra jecto ries of 

the  coefficients of (6.18) during offline adap tation . The coefficients reach steady 

s ta te  values w ithin 2 0 0  generations.

In sum m ary, the application of linear filtering approach is unable to  identify 

system s th a t have poles outside the un it circle. For exam ple, inverse of a linear 

system  m odelling of the non-m inim um  phase channels given in (6.15) w ith the 

param eters (6.17) could not be achieved w ith  the  linear adaptive H R  filtering. 

T he sim ulation results confirming th is sta tem ent is illu stra ted  in Figures 6.18 

and 6.19. In th is case, the algorithm  fails to  identify the optim um  inverse filter, 

bu t find an inverse filter th a t provides sm allest MSE of the  stable region. An 

im portan t point to note here is th a t EAs may find the global solution, bu t it is 

not always guaranteed.

By considering these issues the rest of th is chapter will consider m odelling 

of m inim um  phase channels. Consider the same channel, in th is case we assume 

th a t all the param eters are fixed except bi,

b0 =  1, bx{n) =  - 1 .4  -  0.5(1 -  exp(-0 .0001n)} , b2 =  0.98 (6.19)

It can be easily shown w ith a stab ility  triangle [6 , 63] th a t the  channel w ith the 

above param eters can always lie w ithin m inim um  phase. Before the  tracking 

process is switched on, the global m inim um  of particu lar tra in ing  sam ples is 

found by using hybrid approach via offline process. Figure 6.20 shows the  MSE 

learning curves provided by the hybrid algorithm . As shown in th is figure EA 

finds the  global solution w ithin 100 generation and norm alised R P E  algorithm  

takes ano ther 100 generation for fine-tuning. A fter the global solution is found, 

the norm alised R PE  is switched on to  track the  tim e varying characteristics. 

The tra jec to ry  of the d\ during adap ta tion  is also shown in Figure 6.21. Figure 

6 . 2 2  shows the input, ou tpu t waveforms taken during adap ta tion . F igure 6.23 

shows the  m odulus of the instantaneous error obtained a t each updates.
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Figure 6.19: Inverse system  m odelling of a non-m inim um  phase channel of pa­
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Figure 6.20: MSE learning curves of the hybrid approach while m odelling the 
inverse of the F IR  channel of param eters (6.19) by the second-order adaptive 
filter given in (6.18)
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Figure 6 .2 1 : A daptive inverse system  modelling of the F IR  channel of param e­
ters (6.19). T rajectory  of d\
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Figure 6.23: A daptive inverse m odelling of the  F IR  channel of param eters (6.15). 
M odulus value of the instantaneous error produced by norm alised R PE.

Finally  we consider a fourth-order F IR  channel w ith the following param e­

ters:

&0 =  1, 6 i(n ) =  -0 .9 ,  b2 =  0.81, 

b3 (n) = -0 .7 2 9  -  0.1{1 -  ex p (—O.OOOln)}

All the param eters except b3 are stationary. The optim um  inverse filter has 

z-transfer function

H ° ^  =  1  -  0 .9z_ 1  +  0 .81z-2 -  0 .829z-3 6̂ '21^

It can be easily shown th a t the above inverse filter is stable. A fourth-order 

adaptive system  of s tructu re  which is sim ilar to  (6 .2 1 ) is used to  m odel the  

inverse of the (6.20). Figure 6.24 shows the MSE learning curves of the pure EA 

and the  hybrid algorithm  when optim ising the filters via offline. Evolutionary 

algorithm  finds the global area w ithin 100 generations, norm alised R P E  takes 

ano ther 1 0 0  generations to  fine-tune the  coefficients. Once th e  global area is 

found, the algorithm  is continued w ith  norm alised R P E  to  track  tim e varying 

changes. Figure 6.25 shows the trajectories of ds while adap ting  the param eters 

using norm alised R PE. The coefficient ds is adapted  according to  the changes.
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Figure 6.24: Inverse m odelling of the F IR  channel of param eters (6.20) via 
offline adap ta tion . The MSE learning curves of the pure EA and the  hybrid 
algorithm
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Figure 6.25: A daptive inverse m odelling of the F IR  channel of coefficients (6.20). 
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Figure 6.26 shows the  input, ou tp u t and corrupted waveforms of the above 

experim ent. F igure 6.27 shows the m odulus of the  instan taneous error obtained 

a t each updates.

6.5 Summary and Discussion

In th is chapter we have shown th a t hybrid m ethodology is very efficient and 

optim al for adaptive H R filtering. We have successfully identified a wide variety 

of H R linear m odels using the hybrid approach th a t employs EA and norm alised 

R P E  as searching tools. We have also shown how the  tim e varying param eters 

of a linear system  can be tracked w ith the help of a norm alised R P E , which has 

been discussed in C hapter 2 . In general, th is chapter provided the techniques of 

designing direct form adaptive HR digital filters in nonstationary  environm ents.

These techniques can be used in m any areas of signal processing where ap­

plications will dem and adaptive HR filtering. For exam ple, equalising filters 

in telecom m unication often dem and H R structu res to  remove interference in­

troduced  by those com m unication channels. Most com m unication channels are 

nonsta tionary  and require adaptive equalisers. In such cases, hybrid approach 

can be used via offline to  globalise the param eters and norm alised R P E  can be 

switched on to  track the tim e varying changes.
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Figure 6.26: A daptive inverse modelling. Input, corrupted and restored wave­
forms while m odelling the inverse of the F IR  channel of param eters (6.20) by 
a th ird -order adaptive filter of sim ilar structu re  given in (6 .2 1 ). (a) O riginal 
signal (b) C orrupted signal (Channel ou tpu t) (c) Restored signal.
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Figure 6.27: A daptive inverse m odelling of the F IR  channel of param eters (6.20). 
M odulus value of the instantaneous error produced by norm alised R PE .
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Chapter 7

A daptive Channel Equalisation  

and N oise Cancellation

In the  last two chapters of th is dissertation, the theoretical developm ent of evo­

lu tionary  techniques for the  design of adaptive H R filters has been presented 

along w ith validation using modelling applications. This chapter aims to  show 

practical problem s using these techniques and adaptive filters. These are pre­

dom inantly  in the areas of adaptive channel equalisation [56] and  noise cancella­

tion [81]. These areas have been active areas of research in which applications of 

adaptive H R filters are of param ount im portance. However, the  use of adaptive 

H R  filtering techniques in these areas are relatively low due to  the problem s 

encountered in existing adaptive filtering approaches.

This chapter shows how the proposed H R filtering technique can be used in 

the  areas w ith  less com putational costs. In particu lar, th is chapter presents sev­

eral com parative results, which com pare the frequency and b it error ra te  (BER), 

the  ra tio  of misclassified to  correct symbols a t the  receiver, perform ances of low 

order H R filters against various taps F IR  filters when designing these filters 

for com m unication channel equalisation. Moreover, the necessity of adaptive 

H R filtering is clearly outlined by describing the  concepts of Noise Cancella­

tion  technique. The applications of the proposed techniques are presented w ith
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the  theoretical models developed from C + +  program m ing language. The sim ­

u la tion  study has been carefully conducted by considering some of m ajor real 

problem s into the account and the sim ulations were carried out in an Intel-P133, 

110 MHz Pentium  processor.

T he rest of this chapter is organised as follows: In Section 7.1 the  prob­

lems in com m unication channels are discussed. Also, th is section describes the 

need of channel equalisation. Section 7.2 illustrates adaptive equalisation. This 

section first introduces trained  equalisers in QAM system s and then  provides 

some results obtained when designing various H R equalising filters using the  

techniques discussed in the previous chapters. The frequency responses of the  

designed IIR  equalisers are com pared w ith various-taps F IR  filters optim ised 

th rough  classical algorithm s. B it error ra te  perform ance is also com pared w ith 

F IR  equalisers. This section then  illustrates blind equalisation. T he results 

of blind equalisation are shown when equalising various m u ltipa th  channels in 

nonsta tionary  environm ents. In Section 7.3, noise cancellation is given. Finally, 

in Section 7.4 a brief sum m ary of th is work is given w ith discussion.

7.1 Channel Equalisation

A m ajor problem  in d igital com m unication is th a t signal fading due to  channel 

d istortions [28]. Fading is defined as any variation in signal strength , relative 

phase or polarisation  of any of the frequency com ponents of a received radio 

signal due to  the  characteristics of the propagation path . In addition to  channel 

d istortions, the tran sm itted  symbols are subject to o ther im pairm ents such as 

therm al noise, im pulse noise, and nonlinear distortions arising from the m odula­

tion and dem odulation process, cross ta lk  interference and the  use of amplifiers. 

If the  com m unication channel is linear, a model of the received signal is the re­

fore:

R ( z ) = C { z ) . S { z )  + V{z)  (7.1)
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Figure 7.1: Received signal model of a com m unication system.

where R ( z ), S(z ) ,  C(z )  and V  (z) are the z-dom ain representation of the  received 

signal r(n) ,  tran sm itted  signal s(n ), channel im pulse response c(n), and additive 

noise v(n)  respectively. Received signal model of a com m unication system  is 

illu stra ted  in Figure 7.1.

Removal of interference in com m unication channels can be achieved by var­

ious approaches. For example, space and frequency diversity system s are cur­

rently  being used to  remove channel interference of m u ltipa th  propagation  path . 

In recent years, the  im provem ent in adaptive signal processing has encouraged 

the study of adaptive channel equalisation techniques. As a result, adaptive F IR  

filtering approach has gradually been replacing the existing non-D SP techniques 

such as space and frequency diversity system s to  remove channel interference 

and noise [76]. U nfortunately, these first generation adaptive system  have cer­

ta in  perform ance lim itations due to  high com putational requirem ents and poor 

perform ance of the F IR  structures as discussed in the earlier chapters.

7.2 Adaptive Channel Equalisers

C hannel equalisation problem s are categorised into two m ain classes: linear and 

nonlinear  equalisation [56]. Linear adaptive filters can provide equalisation of 

linear channels, where they use inverse filtering approach to cancel the interfer­

ence. A linear adaptive equaliser cannot restore signals corrupted  by nonlinear 

mechanism s. In such cases nonlinear adaptive filters [28] can be used, bu t they 

are beyond the  scope of th is research.

A daptive equalisers are further classified into two categories: trained equaliser
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or blind equaliser. T rained equalisers use the originally tran sm itted  sequence 

during adap tation , while in blind equalisation, the adap ta tion  of the equalising 

filter is a ttem p ted  in a way to  m atch the sta tistics of the o u tp u t of the equaliser 

to  those of the  tran sm itted  sequence [28].

7.2 .1  T rained E qualisation: A d ap tive  E qualisers in  

Q A M  S ystem s

Q uadra tu re  am plitude m odulation is an efficient technique to  reduce system  

band-w idth , where two double-sideband suppressed-carrier am plitude-m odulated  

signals can be superim posed, and separated  a t the  receiver, using quadra tu re  

or orthogonal carriers for m odulation and dem odulation [76, 55]. M ost high 

speed baseband modems, e.g. 56000 b its /s , employ QAM to  reduce the band­

w idth  requirem ents of a voice-band channel [56]. As well as linear distortions, 

speech-band channels generally introduce frequency offset and phase jitte rs  on 

to  the  d a ta  signal. Linear distortions cause in ter symbol interference (ISI) on 

each quadra tu re  com ponent and cross coupling interference (CCI) between the 

two baseband channels [56]. The m odem  receivers use some form of carrier- 

phase tracking circuitry  to  remove frequency offset and reduce phase jitte rs . 

Q uadra tu re  am plitude m odulation is as efficient in b its per second per hertz 

as vestigial or single-sideband am plitude m odulation, yet enables a coherent 

carrier to  be derived and phase jitte rs  to be tracked using easily im plem ented 

decision-directed carrier recovery techniques [76, 56]. A tim ing waveform w ith 

negligible tim ing  jitte rs  can also be easily recovered from QAM signals. How­

ever, an equalisation process can only remove the  linear d istortions in troduced 

into the quadrate  com ponents.

A m odel of an equivalent baseband channel can be draw n as the  cross con­

nected networks shown in Figure 7.2. A very convenient way of representing 

th is is to  regard the two d a ta  inputs (and ou tpu ts) as real and im aginary com­

ponents and then the  equivalent baseband response may be represented by a
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Figure 7.2: Equivalent complex channel.

complex im pulse response. Consequently the model of the received signal can 

be represented by a single operation:

r*(n) = s*(n) * c*(n) +  v(n)  (7.2)

where r*(n), c*(n), s*(n) and v(n)  are the im pulse responses of the received sig­

nal, channel response, input, and noise interference respectively. The * symbol 

is shown to  represent the complex im pulse responses,

s * ( n )  =  s r ( n )  +  S i ( n )  

c * ( n )  =  c r ( n )  +  C i ( n )

r * ( n )  =  r r ( n )  +  r ^ n )

=  ( s r ( n )  *  c r { n ) }  +  { s i ( n )  * c ^ ( n ) }

+  ( s r ( n )  *  C i ( n ) }  +  { s i ( n )  * c r ( n ) }

(7.3)

(7.4)

(7.5)

where subscripts r  and i represent real and im aginary com ponents. The concept 

of a complex channel response is therefore very useful for the  design of QAM 

m odems. To equalise or cancel a complex channel response, a complex adaptive 

filter is required which can use 4 such real operations in one struc tu re  which is 

clearly seen from the equations (7.2) - (7.5). Figure 7.3 presents a typical QAM 

com m unication system, which employs a complex adaptive filter to  remove the 

channel interference.
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Figure 7.4: An experim ental arrangem ent of channel equalisation.

7.2 .2  R esu lts  and V alidation

In th is study, a linear channel w ith complex response is chosen to  represent QAM 

system . Figure 7.4 illustrates an experim ental arrangem ent of channel equali­

sation, where c(n) and f ( n )  are assum ed to  represent the im pulse responses of 

the channel and the adaptive filter respectively. The channel transfer function 

is assum ed to  be of the form

C(z) =

M
II (1 -  bie^‘z~l)

i = 1_________________________

Ft ( 1  — akej 9kz - 1)
k= 1

(7.6)

where {ak ,bi} and { ^ , ^ }  are the factors representing the  ISI and CCI of the 

QAM channels. The inpu t signal s(n)  considered is assum ed to  be

s(n)  = A ex p ( ju jcn  +  x(n)) (7.7)
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where A  represents the  am plitude of the signal, cuc denotes the  centre frequency, 

and x(n)  is a baseband signal. This signal has a constant envelope p roperty  w ith 

an am plitude A.  In addition to  the linear d istortion, a zero m ean w hite noise 

is added a t the ou tp u t of the channel to  represent possible noise interference, 

which appears during signal transm ission. The s tandard  deviation is chosen 

so as to  m eet equivalent signal to noise ratio  (SNR) of a t least 30 dB. This 

is considerably a higher value, bu t can be expected in com m unication system s 

due to  the interference caused by amplifiers and converters. O ur aim  is to  show 

how the  channel interference can be removed in noisy environm ents, b u t not to 

show cancelling of noise. A ppendix D shows how the SNRs are calculated  for 

these signals. T rained adap ta tion  is used and assum ed th a t the original signal 

is available a t the receiver during adap tation . Considering these real problem s 

into account, the param eters of the channel (7.6) are assum ed to be

a\ - 0.97, a2 — 0.95, as =  0.98, — 0.85, bi =  0.9, b2 =  0.94,

< f a  - 0.37T, f a  =  —1.27r, f a  =  —0.757r, f a  =  1.57T, (7-8)

01 =  0.37T, 02 =  —0.27T

to represent a channel w ith poles closer to  the un it circle, and 

/

a\ =  0.86, a2 - 0.75, a% =  0.8, a<± =  0.7, b\ =  0.75, b2 =  0.8,

< f a  =  —0.57r, f a  =  —1.27r, f a  -- —0.757r, f a  =  1.57T, (7-9)

0 1 =  0 .6 tt, 0 2 =  - 0 .2 trV

were assum ed to  represent a channel w ith the  poles well inside the  u n it circle. 

The signal s(n)  is generated w ith

{ u c = OArad , A  = 1 , x(n)  =  0.05 sin(0.001?r)} (7-10)

The work in th is d issertation is to  find the  optim um  setting  of param eters

ra ther th a n  finding the model structures. Various m odal selection c rite ria  are 

reported  in [55, 5] to find the structu re  of the linear m odals (m odal order) w ith 

ease. For example, Akaike information criterion (AIC) can be used to  select the 

order of the num erator and denom inator coefficients of an adaptive H R  filter
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[55]. Assum ing th a t the filter orders can be found from the above m entioned 

techniques, a population of adaptive filters each having 5 num erator coefficients 

and 2  poles are chosen to model the inverse of the channel (7.6) of param eters 

(7.8) and (7.9) respectively.

O riginal d a ta  sets of 10000 samples, {s(n)}®??o> are generated and  applied to 

the  channel to  obta in  channel ou tpu t. The ou tp u t of the  channel is then  added 

to  the  G aussian noise so as to  obta in  received signal, { r ( n ) } ^ Q .  Am ong 10000 

sam ples, a tra in ing  set of 1 0 0  pairs of {s(n)} and ( r (n )}  are taken to  tra in  the  

adaptive filters as shown in Figure 7.4. For the given train ing  set, EA is used to  

evolve a population  of complex H R filters w ith the population  size =  50. The 

MME value, e, averaged over the window size, w =  100 (num ber of train ing  

d a ta ), is m inim ised through the hybrid algorithm . M inim ising the  MME, thus

m inj^}  =  m in E |e (n ) | =  m in E  |d(n) — r ( n ) | (7.11)

where f (n )  is an estim ate of r(n)  given by

f{n)  =  r(n)  * f ( n )

= {d{n)  * c(n) +  v (n)}  * f ( n )

= {d(n) * c(n) * f ( n )  + v(n)  * f ( n ) }  (7-12)

where

r(n) = {d(n) * c(n) + v(n)}  (7-13)

Therefore

min{^} =  m in E  \d(n)(l  — c(n) * f ( n ) ) \  —

m in E  \v(n) * / ( n ) |  (7-14)

where f ( n )  is the im pulse response of the estim ated  adaptive filter, f ( n ) .  I t is

clear from the  equation (7.14) th a t the net effect of m inim ising the  M ME is to
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m inim ise the first term  of right-hand-side of the equation and thus results

m m  £ '~£ m in E  \ v ( n ) * f ( n ) \  (7.15)

The genetic param eters such as crossover probability  a c, m u tation  proba­

bility  a m , and the s tandard  deviation a  are set equal to  0.85, 0.05 and 0.005 

respectively. The probability  of im m igration, c^, is set 0.02. The step size /i 

norm alised R P E  is set equal to 0.001. The hybrid algorithm  is allowed to  run 

over 8000 generation unless otherwise term ination  criterion is m et. The sim u­

lation is repeated for 15 independent EA runs using the same tra in ing  d a ta  bu t 

in different system  environm ents and w ith d istinct in itia l conditions. The final 

results are taken by averaging the results obtained from 15 independent runs.

Figure 7.5 shows the power spectrum  of input, o u tp u t and the  original sig­

nals of equalisation of the channel (7.6) of param eters (7.8). This channel w ith 

these particu lar param eters has poles, which are closer to  the  u n it circle. The 

spectral analyses show how the signal power varies against its frequencies. The 

power spectrum  of the channel ou tpu t clearly shows the effect of the channel’s 

response on the tran sm itted  signal. C orrupted signal has several spectral spikes, 

which appears th roughout the spectrum . These spikes represent the d isto rtion  

in troduced by the channel. The noise interference on the o ther hand produces 

w hite spectrum , which appears th roughout the frequency band. Even though 

the  H R equaliser perfectly models the inverse of the channel, the  noise interfer­

ence is still appeared a t the ou tpu t of the equaliser. This clearly proves th a t the 

noise interference, which is added to  the signals during transm ission, cannot be 

removed from linear inverse filtering approach.

F igure 7.6 shows the power spectrum  of the signals obtained from F IR  

equalisers w ith various filter lengths. F in ite im pulse response filters w ith  32, 64 

and 256-taps are employed along w ith LMS algorithm  to  equalise the channel

(7.6) of param eters (7.8). In appendix E, we have shown how the FIR-LM S 

algorithm  are developed for this experim ent. Even a 256-tap F IR  equaliser still 

provides less perform ance th an  a second-order H R equaliser. This proves th a t
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Figure 7.5: Power spectrum  of input, corrupted and ou tp u t of equalisation of the 
channel (7.6) of param eters (7.8). (a) O riginal signal, (b) C hannel o u tpu t, (c) 
Received signal (channel ou tp u t contam inated w ith w hite noise), (d) Recovered 
signal by a second-order H R filter optim ised through the hybrid algorithm
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Figure 7.6: Power spectrum  of signals. Original and recovered signals from  F IR  
equalisers of various filter lengths when equalising the (7.6) of p aram eters (7.8). 
(a) O riginal signal, (b) Recovered signal by 32-tap F IR  filter, (c) Recovered 
signal by 64-tap F IR  filter, (d) Recovered signal by 256-tap F IR  filter.
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the frequency response of an H R system  is significantly b e tte r  th a n  equivalent 

F IR  filters.

Figures 7.7 - 7.8 provide the results of channel equalisation of the  channel

(7.6) of param eters (7.9). The power spectrum  of the  input, o u tp u t and the 

original signals are illustrated  in Figure 7.7. This channel has poles, which 

are well inside the un it circle. The effect of th is channel is clearly seen from 

the Figure 7.7(b). This channel introduces a spectral spike in th e  frequency 

band, bu t its effect is very less when com pared to  the previous channel shown 

in Figure 7.5(b). However, F IR  equaliser still requires much more coefficients 

to  com pensate for the distortions. The recovered signal from a second-order 

H R equaliser is shown in Figure 7.7(d), while Figures 7.8(b)-(d) illu stra te  the 

results obtained from 32, 64 and 256-tap F IR  equalisers. In th is case the  F IR  

equaliser of order 256 does b e tte r  equalisation. However, its perform ance is still 

worse when com pared to  those of H R equaliser. An H R equaliser of order 2 

perfectly equalises th is channel.

Figure 7.9 shows the learning curves which are obtained while optim ising the 

H R filters for channel equalisation of param eters (7.8) and (7.9) respectively. 

In bo th  cases the hybrid algorithm  finds the solutions w ithin 4000 generations.

We also present an experim ent w ith very high SNR to  show the  ability  of 

H R equalisers in less noise environm ents. For this experim ent, th e  channel 

param eters are assum ed to  be

a\ =  0.98, a 2 - 0.95, 0 3  =  0.94, 0 4  =  0.92, b\ =  0.92, 62 — 0.85,

< (f)l =  0.77T, (f>2 =  1.57r, (j) 3 =  1.757r, =  0.57T, (7-16)

0\ - —1.37r, 02 =  1.27r

This channel has poles, which are very much closer to  the un it circle and hence 

introduces severe distortions in the frequency band. In th is experim ent, the 

channel ou tp u t is added to a w hite noise sequence so as to  produce SNR of 

60 dB. The power spectrum  of the in p u t/ o u tp u t and the recovered signals are 

shown in Figures 7.10 and 7.11 respectively. Equalising perform ance of an 

H R filter is clearly seen from Figure 7.10(d). Figure 7.12 illustrates th e  learning
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Figure 7.7: Power spectrum  of input, corrupted and ou tp u t when equalising the 
channel (7.6) of param eters (7.9). (a) O riginal signal, (b) C hannel ou tpu t, (c) 
Received signal contam inated in w hite noise, (d) Recovered signal by second- 
order IIR  filter optim ised through the hybrid algorithm .
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Figure 7.8: Power spectrum  of signals. O riginal and recovered signals from 
F IR  equalisers of various filter lengths when equalising the channel (7.6) of 
param eters (7.9). (a) O riginal signal, (b) Recovered signal by 32-tap F IR  filter, 
(c) Recovered signal by 64-tap F IR  filter, (d) Recovered signal by 256-tap F IR  
filter.
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Figure 7.9: Learning curves showing the MME values p lo tted  against generation 
num ber, (a) Learning curve of channel equalisation while equalising the  channel 
(7.6) of param eters (7.8). (b) Learning curve of channel equalisation while
equalising the  channel (7.6) of param eters (7.9).
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Figure 7.10: Power spectrum  of input, corrupted and o u tp u t of channel equalisa­
tion  of param eters (7.16). (a) O rignal signal, (b) Channel ou tpu t, (c) Received 
signal contam inated  in w hite noise, (d) Recovered signal by a second-order H R 
filter optim ised through the hybrid approach.
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Figure 7.11: Power spectrum  of signals. O riginal and recovered signals from 
F IR  equalisers of various filter lengths when equalising the  channel’s param eters 
(7.16). (a) O riginal signal, (b) Recovered signal by 32-tap F IR  filter, (c) 
Recovered signal by 64-tap F IR  filter, (d) Recovered signal by 256-tap F IR  
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Figure 7.12: Learning curves showing the MME values p lo tted  against genera­
tion num ber while optim ising the  H R filters for equalising the  channel (7.6) of 
param eters (7.16)

curve, which shows the MME of the best filter p lo tted  against generation num ber 

while optim ising the adaptive filters. Again, hybrid algorithm  identifies the final 

solution w ithin 4000 generations.

Along w ith the above results, we also com pare the B ER  perform ance between 

H R and F IR  equalisers when transm ission of binary signals th rough  two simple 

channels:

C ^ z )  =  1 +  0.7 z - 1 (7.17)

C2(z) =  1 +  0.95 z - 1  (7.18)

For th is experim ent, a pseudo random  binary  sequence (PRBS) is applied as an 

original signal and BERs is obtained to  m easure the perform ance of the  filters. 

A ppendix D gives full details of calculating B ER  from the inpu t and ou tp u t 

signals. The binary sequence considered in th is chapter is assum ed to  belong to  

the  alphabets PRBS G { — 1, +1}. Last 100 samples of inputs and the  corrupted 

signals of the above channels are shown in Figure 7.13. I t is clearly seen from 

the figure th a t the error introduced by the channel, 1 +  0.95z-1 , is greater th an

those of 1+ 0 .7 z—1. This is because, when the zeros are closer to  the  un it circle, it
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Figure 7.13: Inpu t and corrupted signals when equalising the  channels, (a) 
C i ( z )  =  1 +  and (b) C2 ( z )  =  1 +  0.95z-1 , w ith SNR =  25 dB
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introduces spectral nulls in the passband, therefore it is difficult to  equalise these 

d istortions by conventional F IR  filters [28]. The power spectrum s of th e  signals 

which are obtained from these two channels are shown in Figure 7.14. The 

channel 1 +  0.95z_ 1  introduces negative spikes in the passband, b u t the  channel 

1 + 0.7z~1 doesn’t produce such negative spikes. A finite im pulse response filter 

w ith  14-taps is used along w ith the LMS algorithm  to  model the inverse of the 

channels (7.17) and (7.18) respectively. A population of adaptive H R filters of 

second-order is used w ith the floating-point EA. Figure 7.15 presents the  B E R  

com parisons of the optim um  filters for various SNRs. This com parative results 

show th a t the  B ER  achieved by bo th  equalisers for the channel 1 +  0.72:-1 has 

very little  difference. The H R filter gives slightly b e tte r perform ance th an  a F IR  

equaliser does. However, the results achieved for 1 +  0.95z -1 , which has a zero 

very close to the un it circle, gives confidence in the H R approach. Even a 14-tap 

F IR  equaliser is not able to  perform  as well as equalisation as a second-order 

H R equaliser.

7 .2 .3  B lin d  C hannel E q ualisation

A m ajor problem  inherent in line of sight com m unication is th a t of changes of 

channel characteristics due to  variations of atm ospheric condition. The channel 

characteristics can be changed w ith tim e due to  variations in the refractive 

index of the atm osphere. The signals tran sm itted  th rough these channels are 

nonsta tionary  and will necessitate the use of online adap ta tion , which equalise 

the channels as new d a ta  being received. Moreover, the  receiver has no exact 

knowledge of the tran sm itted  signal. Therefore tra ined  adap ta tio n  cannot be 

used as in the case of M ODEM  channels. In such a case blind equalisation is 

widely used [76].

Blind equalisation or blind deconvolution is an adaptive inverse filtering 

technique where the adaptive algorithm  has no access to  tra in ing  or desired 

signal. It is a self-learning technique, which can restore a signal corrupted  

by channels back to  original condition. In blind equalisers, a cost function is

163



( a )  O r ig in a l  S ig n a l

2.5 -i..
P
o
w
e
r

O s  0 .5  - e
c
t 0 -

u -0-5 - 
m

0 0.125 0.25 0.375 0.5 0.625 0.75 0.875 1

N orm alised  F req uency  
(b) 1 + 0 .9 5 z '1

2.5 -|
S
P
e

o
r

w
u

e m
r

0.5 -

d

B -0.5 - 
s

0.125 0.250 0.375 0.5 0.625 0.75 0.875 1
N orm alised  F req uency

(c) 1 + 0 .7 z '1

2.5
S  

w
e U 0.5 - 
r m

o

d

B -0.5 - 
s

0 0.125 0.25 0.5 0.625 0.75 0.8750.375 1

N orm alised  F req uency

Figure 7.14: Power spectrum  of the inpu t and corrupted signals: (a) inpu t 
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m inim ised in much the same way th a t least m ean square and recursive least 

square adap ta tion  minimise the MSE. One of the m ost popular algorithm s is 

constan t m odulus algorithm  (CMA).

C onstan t m odulus algorithm  is designed to  penalise deviations of the blind 

equaliser o u tp u t from a constant m odulus. The cost function th a t  is m inim ised 

v ia CM A is

p  = E[(\y(n)\2 - R 2)2] (7.19)

where y(n)  is ou tp u t while R  represents a constan t m odulus. T he constan t R  

is chosen in such a way th a t the gradient of the cost function p  is zero when 

perfect equalisation is a tta ined  [28]:

E01HH
E [|s(n ) |]

where s(n)  is an estim ate of the inpu t signal s(n).

Thus CMA can be applied to  those areas where the signal of in terest contains 

a constan t envelope property. Exam ples of such signal types are frequency m od­

u la tion  (FM ), phase m odulation (PM ), double side band  am plitude m odulation  

(DSBAM ), etc. The gradient descent version of CMA was successfully applied 

to  adaptive F IR  filters and is well defined in [76]. A simple m u ltipa th  channel, 

which is more likely to  be encountered in practical com m unication system s, is 

given by

Ci(n) = 5(n) +  0.55(n — 1) +  0.15(n — 2) +  v(n)  (7.21)

where Ci (n)  represents channel im pulse response, 6(n) represents the inpu t and 

v ( n )  denotes the  additive G aussian noise w ith zero m ean and a  as the s tan d ard  

deviation. In our sim ulations s tandard  deviation is arranged so as to  m eet signal 

to  noise ra tio  of 25 dB. The tran sm itted  signals used in the  following sim ulations 

is assum ed to  be pseudo random  binary taking the values {—1,1}. For PRBS, 

it can be easily shown th a t E {s2 (n)} =  1 and E {s4 (n)} =  1 which in tu rn  gives 

R  =  1. We further assume th a t the channel, (7.21) is nonsta tionary  and the ir 

param eters are varied in such a m anner

cn,i{n) =  <H^) +  {0.5 — 0.5(1 — exp (0.000In ))}  J ( n  — 1)

166



+{0.1 +  0.5(1 — exp(0.0001n))}£(n — 2) +  v(n)  (7.22)

Figure 7.16 and 7.17 shows the trajectories of a\(n)  and <2 2 (n) while equalising 

the above channel, (7.22), by a second-order adaptive filter of the  following 

structure:

M * )  =-----------*  i j  (7.23)1 — a\Z  1 — a<iz 1

using norm alised R P E  algorithm . Before the  norm alised R P E  is switched on,

the  best m em ber of a population for a particu lar tra in ing  set is found using

hybrid m ethodology described above. From  the coefficient tra jecto ries shown,
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Figure 7.16: T rajectory  of ai while equalising the channel (7.22) w ith  an adap­
tive filter of s tructu re  (7.23)

it is clear th a t equalisation of channels in nonstationary  environm ents can be 

easily achieved w ith the recently proposed approach. Figure 7.18, 7.19 and 7.20
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Figure 7.17: T rajectory  of a2 while equalising the channel (7.22) w ith  an adap ­
tive filter of structu re  (7.23)

shows the coefficient trajectories while equalising the following channel

cn,2 {n) = b(n) +  {1-2 — 0.15(1 — exp(0.0001n))}5(n — 1 )

+ { -0 .1 5  +  0.15(1 -  exp(0.0001n))}£(n  -  2)

-0 .5 8 6  +  {-0 .1682  +  0.15(1 -  exp(0.0001n))}5(n -  4) (7.24)

w ith  the following adaptive filter

M z ) =  i----------- z i—
1 — a i z  1 —

bo
a2z~ 2 — a3z~ 3 — a±z 4

(7.25)

by using norm alised R P E  algorithm .
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Figure 7.18: T rajectory  of a\ while equalising the channel (7.24) w ith  an adap ­
tive filter of s tructu re  (7.25)

7.3 Noise Cancelling

The m ain objective in noise cancelling is to  produce an optim um  estim ate of 

th e  noise in the  corrupted signals and hence an optim um  estim ate of the  desired 

signal. A more general diagram  for an adaptive noise cancelling system  is shown 

in Figure 7.21. The signal s(n) is the corrupted signal contain ing bo th  the 

desired signal, o(n), and the noise, v (n), assum ed to  be uncorrelated  w ith  each 

other. The signal, x(n)  is a m easure of the noisy signal which is correlated in 

some way w ith v(n).  The signal x(n)  is processed by the d ig ital filter to  produce 

an estim ate, fi(n), of v(n). An estim ate of the desired signal is then  obtained  

by sub trac ting  the  digital filter ou tpu t, v(n),  from the corrupted  signal, s(n):

<5 (n) = s(n) — v(n)
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Figure 7.19: T rajectory  of a2 while equalising the channel (7.24) w ith  an adap­
tive filter of s tructu re  (7.25)

=  o(n) +  v(n) — v(n)  (7.26)

As shown in Figure 7.21 noise cancelling is achieved by using d(n) in the

feedback arrangem ent to  ad just the digital filter coefficients, via a su itab le al­

gorithm , to  minimise the noise in <5(ri). The ou tp u t signal, d(n), serves two 

purposes:

1 . As an estim ate of the  desired signal and

2. As an error signal which is used to  ad just the filter coefficients.

I t can be easily shown th a t the to ta l power a t the o u tp u t of the  cancellor 

m axim ise the  o u tp u t signal to  noise ra tio  [82, 81]. For exam ple, consider the 

estim ate of the desired signal 6(n) which is given in equation (7.26). Squaring
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Figure 7.20: T rajectory  of a4 while equalising the  channel (7.24) w ith an adap ­
tive filter of s tructu re  (7.25)

equation (7.26) we have

d2(n) = o2(n) +  {u(n) — v (n ) } 2 

+ 2  o(n){v(n)  — u(n)}

Taking the expectation of bo th  sides of equation (7.27) we have

E \d2{n)} =  E [o2(n)\ +  E [{u(n) — v (n ) } 2] 

+ 2E  [o(n){v(n) — #(n)}]

(7.27)

(7.28)

Since the desired signal, o(n), is uncorrelated w ith v(n)  or w ith  v(n)  the last 

te rm  in equation (7.28) is zero and we have

E [<32 (n)] =  E [o2 (n)] +  E [(u(n) — v (n ) ) ‘ (7.29)
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Figure 7.21: A more general diagram  for adaptive noise cancelling.

where E [o2(n)\ represents the to ta l signal power, while E[d2(n)\ represents the 

estim ate of the signal power. I t is evident in the above equation th a t  if the 

estim ate v(n)  is the exact replica of v (n ), the ou tp u t power will contain  only 

the  signal power:

m in E  [o2(n)] =  E [o2(n)] +  m in E  [(^(ri) — £Kn ))2] (7.30)

Therefore it is clear th a t the net effect of m inim ising the to ta l o u tp u t power is

to  m axim ise the o u tp u t SNR.

R esults and Validation

Let us consider the following noise cancelling diagram  shown in F igure 7.22. 

Here B (z )  and {1 — A (z )}  are the noise coloration filters which m ay be described 

by

A (z)  =  {1 — a iz ~ l — a2 Z~2, • • •, — cllz~ l } (7.31)

B (z )  = {b0 -  M _1, ■ ■ •, +& m -i^~(M_1)} (7.32)

We assum e th a t two m easurem ents are available,

1. Signal to  be ex tracted  plus noise

2. an auxiliary m easurem ent, w, which is correlated w ith the  noise w(n).

We also assume th a t the additive noise contam inating the signal is a filtered 

version (filtered through B (z ) )  of a w hite noise {u>(n)} and th a t the  m easured
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Figure 7.22: An experim ental arrangem ent of noise cancellation.

correlated noise is the  same (u;(n)} passed through different coloration filter, 

{1 — A (z )} .  Let us consider the im pulse responses of the coloration filters, B (z )  

and {1 — A (z )}  are b(n) and a(n)  respectively. For the sake of simplicity, the 

noise coloration filters used in th is experim ent are assum ed to  be FIR .

O ur aim  is to  minimise MME:

m in je}  =  m inE {e(n )}  =  m inE {o(n) +  v(n)  — f ( n ) }  (7.33)

using recently proposed hybrid techniques, where f ( n )  denotes the  estim ate of 

the filtered noise v(n).  The equation given in (7.33) can be expanded in such a 

way th a t:

m in je}  =  m in E {w(n) * b ( n ) o ( n )  — w(n) * a(n) * f ( n ) }

=  m inE {o(n)}  +  m inE {u;(n) * [b(n) — a(n)  * f (n ) ] }  (7.34)

Thus m inim ising the MME in the  equation (7.34) will actually  m inim ise the last 

term  of the equation. Therefore, it is evident th a t the error can be m inim ised 

to  zero if

b(n) — a(n) * f ( n )  =  0 (7.35)
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If the transfer function of the estim ated adaptive filter, f ( n )  is F (z ) ,  the equa­

tion (7.35) approaches zero when

(7-36>
The equation (7.36) clearly illustrates the  necessity of adaptive H R filters in the 

application noise cancellation.

A PRBS signal

PRBS G { - 1 ,+ 1 }  (7.37)

was used as an original d a ta  sequence and the noise filters are assum ed to  be of 

the form

B (z )  =  0.5 +  0 .6 2 T 1 -  0 .4z “ 2 (7.38)

and

A (z)  = O A z '1 -  0.5z~2 (7.39)

The reference noise is a set of G aussian random  variables w ith zero m ean and 

some s tandard  deviation so as to  meet the signal to  noise ratio , SNR =  10 dB. 

Samples of 10000 da ta , {o(n), iu(n)}®??o are generated. Among 10000 sam ples 

only 1 0 0  sam ples are taken to  tra in  the model using adaptive algorithm  as shown 

in Figure 7.22. I t is evident from Figure 7.23(b) th a t all of the signal inform ation 

of the  original binary sequence cannot be determ ined from the  corrupted signal. 

The floating-point EA w ith following set of param eters:

{ a c =  0.9, dm =  0.02, on =  0.05, a n -  10} (7.40)

is used to  evolve a population of H R filters, each having 3 zeros and 2 poles. The 

algorithm  is allowed to  run over 4000 generations. The results of noise cancelling 

are illu stra ted  in Figure 7.23. From the  results it can be seen th a t the original 

binary  symbols which buried in noisy environm ent is perfectly identified, i.e. 

noise has been significantly reduced.
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7.4 Summary and Discussion

In th is chapter we have shown two m ajor applications of adaptive H R  filtering. 

These include, C hannel Equalisation and Noise Cancellation.

In channel equalisation, the concepts of blind and tra ined  ad ap ta tio n  tech­

niques have been revealed. Firstly, equalisation of complex channel responses 

has been shown, in which the recently proposed hybrid technique was employed 

to  ob ta in  the  best-estim ated  equaliser using trained  adap tation . T he power 

spectrum  of the equalised signals obtained through H R filters were com pared 

w ith those of F IR  filters adap ted  through s tandard  LMS algorithm . Moreover, 

by applying the PRBS as an input, B ER  perform ances of F IR  and H R  filters 

were com pared when equalising the channels, 1 -f 0.7z ~ l and 1 +  0.95^r—1 w ith 

various SNR,s. From  these results it can be concluded th a t a F IR  equaliser 

needs much more coefficients th an  an H R equaliser to  achieve a perform ance 

as good as an HR equaliser does. However, it is also evident from these results 

th a t equalisation of channels whose zeros are very close to  the  un it circle is very 

difficult to  equalise by a F IR  equaliser even w ith a large num ber of coefficients. 

These results clearly show the necessity of adaptive H R filtering techniques 

when equalising com m unication channels.

A blind algorithm  was employed in our sim ulation as a constan t m odulus 

algorithm , which perform  adjustm ents of the  adaptive filter coefficients w ithou t 

the need for a desired response. We have shown th a t d irect form adap tive H R 

filters can be successfully used to  identify nonstationary  channels w ith  the  use 

of the  proposed hybrid methodology.

We have shown th a t equalisation of com m unication channels in noisy en­

vironm ents can be achieved through linear adaptive filtering. T he technique 

used by linear adaptive filtering approach is inverse filtering m ethod th a t  can­

not remove the noise interference, i.e. linear adaptive filters can only be used 

to  identify the channel interference, bu t not to  remove the noise interference. 

The removal of noise interference requires the  use nonlinear filtering techniques
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and m ay be achieved by adding a nonlinear function a t the o u tp u t of the fil­

ter. A nother observation is th a t IIR  filters give much b e tte r frequency response 

than  equivalent F IR  filters. The results confirming th is s ta tem en t are shown 

in Figures 7.5 - 7.10 which were obtained when equalising various com plex IIR  

channels using trained  adap tation . Furtherm ore, IIR  equalisers gave b e tte r  B E R  

perform ance th an  F IR  equalisers did. B it error rates obtained against various 

signal to  noise ratios when equalising received binary signals of th e  channels 

1 +  0.7z _1 and 1 +  0.952T1 through IIR  and F IR  equalisers are shown in Figures 

7.15. From  these results we also concluded th a t B ER  perform ance obtained  for 

the  channel whose zeros close to  the u n it circle (e.g. 1 +  0.95z-1 ) is worse th an  

those of zeros well inside the un it circle (e.g. 1 +  0.7z-1 ). However, the IIR  

filters able to equalise these close poles w ith less num ber of coefficients th an  

F IR  filters.

Finally, concept of adaptive noise cancelling has been described. We have 

shown the necessity of adaptive IIR  filtering. The critical characteristic  is th a t 

the relationship between the auxiliary m easurem ent, u, and the prim ary  m ea­

surem ent, s, of Figure 7.22 are described by an IIR  transfer function shown 

by the equation (7.36). A population of adaptive IIR  filters was used w ith a 

floating-point evolutionary algorithm  to  obtain  an estim ate of the original sig­

nal, which is corrupted by noise interference. The recovered signal has been 

com pared w ith the original sequence and th is result clearly shows the  ability  of 

an adaptive IIR  filter to cancel the noise interference.
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Figure 7.23: The results of noise cancellation.
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Chapter 8

Conclusion and Further Work

8.1 Conclusion

A critical review related  to the im portance of this research has been outlined in 

C hap ter 1. In particu lar, lim itations of current design m ethods of H R  adaptive 

filters have been investigated. C hapters 2 and 3 have provided a theoretical 

background of d igital filter design w ith various conventional and evolutionary 

algorithm s. These have led to  the developm ent of a pole and coefficient design 

approach to HR, adaptive and complex d igital filters and the  developm ent of a 

globally optim al, fine-tuned and efficient evolutionary design methodology.

In C hap ter 4, the pole based design technique has been developed. This has 

avoided the stability-m onitoring problem  by constraining the  search space of 

poles w ith in  a known stable region. This m ethod has also overcome the  m ajor 

draw back encountered by conventional design m ethods arising from  m ultiple 

op tim a in the design space. Evolutionary algorithm s have been developed to 

represent complex poles in the chromosome structures in the  same m anner as 

they  appear in the filter structures and hence the cod ing / decoding process 

has been avoided. Split-point crossover which combines uniquely as indivisi­

ble floating-point genes have been developed for com bining com plex genes and 

dem onstrated  as being a b e tte r  m ethod when com pared to  s tan d ard  crossover 

operations. This crossover also increased the  degree of popula tion  diversity by
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in troducing more new members.

Learning curves have been generated to illustrate  the convergence behaviour 

of G aussian and Uniform d istribu tion  of m utations. G aussian d istribu tion  has 

been shown as being a b e tte r  m utation  d istribu tion  for pertu rb ing  floating-point 

genes. Convergence curves illustrating  th is perform ance have been obtained 

while m odelling various H R systems. Furtherm ore, advantages of tou rnam en t 

am ong other EA selection schemes have been revealed more clearly. In th is 

work, the cost functions such as m ean square error and  m ean m odulus error 

have been successfully employed for m odelling direct and inverse system s. The 

final param eter values as obtained from these cost functions have been com­

pared w ith the original values. From these results and from the corresponding 

learning curves it has been proven th a t the improved EA can work w ith  any cost 

functions w ith ease. This brings a m ajor tu rn ing  point to  hardw are designer 

where im plem entation of M ME in hardw are is cost-effectiveness when com pared 

to  m ean square error.

In C hap ter 5, the direct coefficient design m ethod has been developed. The 

m ajor difficulty of ensuring filter stab ility  during evolution has been overcome. 

A lternative realisations such as parallel, cascade, la ttice  s tructu res have also 

been form ulated to  simplify stab ility  m onitoring. Learning curves while m od­

elling various HR system s have been generated for each realisation and have 

been com pared w ith those obtained from direct form filters. These com para­

tive results have shown th a t ra te  of convergence of parallel, cascade and la ttice 

form filters were much slower th an  th a t of direct form filters. However, the  

convergence ra te  of la ttice  filters was b e tte r  th an  parallel and cascade forms. 

T he reason for these variations in the ra te  of convergence is th a t, for example, 

parallel and cascade forms provide m ultiple optim a w ith the same fitness values, 

which arises when rearranging the subsections am ong the  filter structures.

A novel m ethod has been introduced to  simplify stab ility  m onitoring in di­

rect form evolution of H R filters. This m ethod uses a te rm ination  factor th a t 

decides the filter stab ility  by com paring th is factor w ith the o u tp u t calculated
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during evaluation. A new correction mechanism  has been shown in which un­

stable filters have been replaced by a healthy paren tal filter of the previous gen­

eration. The learning curves as obtained from this correction m echanism  have 

been com pared w ith s tandard  correction m ethods and the  results illu stra ted  the 

advantages. This m ethod has increased the ra te  of convergence and  provided 

final MSE values th a t are much lower th an  th a t of s tandard  approaches.

A new approach has been presented to avoid the degree of p rem atu re  con­

vergence while evolving the filters using floating-point EAs. This is achieved by 

in troducing a new operator w ith an aim  to  increase the  popula tion  diversity. 

The to ta l num ber of chromosomes introduced into the popula tion  a t each gen­

eration  is controlled by a factor called probability  of im m igration c^. Too small 

or too large values of will degrade the convergence perform ance, where the 

choice of th is param eter was more crucial.

Two m ajor drawbacks of evolutionary techniques are (1) poor fine-tuning 

perform ance and (2) unsuitab ility  for applications requiring online adap tation . 

Therefore, in C hapter 6, a hybrid m ethodology has been developed to  improve 

the local tun ing  and also to  track tim e varying param eters of nonsta tionary  

system s. It is shown how an evolutionary algorithm  can be com bined w ith a 

fast classical algorithm  to achieve bo th  goals, where the evolutionary algorithm  

is used to globalise the param eters while LMS to  achieve fine-tuning. This 

approach is validated by a variety of H R linear models w ith  d istinct pole lo­

cations. Various nonstationary  system s have been identified w ith th is hybrid 

approach where the evolutionary algorithm  is first employed to  ensure a global 

op tim ality  and the LMS based algorithm  to  track tim e varying changes of the 

nonsta tionary  system. Results show the dependency of adaptive coefficients as 

fast as param eter variations.

In C hap ter 7, two m ajor applications, which are predom inantly  in the  area 

of adaptive signal processing, have been shown. They include channel equali­

sation and noise cancellation. Two types of channel equalisers, nam ely tra ined  

equalisers and blind equalisers, are developed for online applications. Trained
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equalisation first represents removal of channel interference and additive noise, 

which appears in M ODEM  channels th a t, carries QAM signals. The concept 

of complex filtering technique has been shown to simplify the process triv ial 

where QAM signals have been trea ted  as complex time-waveform. The Hy­

brid m ethodology has been successfully applied to  equalise those channels and 

produce the equalised signals for com parison w ith F IR  filters w ith various filter 

lengths. Secondly, tra ined  equalisation of b inary  signals has been shown to  com­

pare B E R  perform ance of HR against F IR  filters. Two different channels have 

been exam ined, one w ith zero closer to  the un it circle and the  o ther w ith zero 

lie well inside the circle. A m ajor observation, was th a t equalising the channels 

whose zero closer to  the un it circle was only possible w ith HR filters. This is 

because the channels th a t have zeros closer to  the un it circle introduce spectral 

nulls in the passband and are difficult to  equalise by conventional F IR  filters.

A pplication to  blind channel equalisation has also been presented, which 

shows the  ability  of the proposed technique in nonstationary  environm ents. The 

blind algorithm  employed in our sim ulation was a constant m odulus algorithm , 

which perform ed adjustm ents of the adaptive filter coefficients w ithou t the need 

for a desired response. This work has shown th a t d irect form adaptive H R filters 

can be successfully used to  identify nonstationary  channels w ith the use of the 

proposed hybrid methodology.

Finally, the concept of noise cancelling has been shown and the necessity 

of adaptive H R filters was revealed clearly. Tim e waveforms illu stra ting  the 

capability  of noise cancelling have been generated using the proposed adaptive 

approach.

In sum m ary, all research goals laid out on pages 7 - 8  have been achieved, 

w ith  o ther achievem ents listed on pages 10 - 11.

181



8.2 Suggestions to Further Research

There are several ways in which th is research can go further. A com parative 

study  on binary and floating-point EAs and also a com parison w ith o ther cod­

ing schemes under the  same operating  conditions would be useful. Coding a 

com plex param eter into binary is prohibitively long representation and hence 

requires high com putation. However, the  ra te  of convergence m ay be b e tte r  th an  

floating-point EAs when the param eters being optim ised are complex. Learn­

ing curves illu stra ting  the convergence perform ance would be therefore useful. 

Also, a study  of the  G enetic Program m ing (G P) technique for finding m odel 

structu res would expand the research discussed in th is thesis. A description of 

th is m ethod can be found in A ppendix G.

The experim ents carried out in th is thesis have been developed from C + +  

code. I t is w orth to  test the algorithm s using the ADI real tim e sim ulator 

available in the departm ent. Also, it would be b e tte r  to  investigate the  im ple­

m entation  of these algorithm s using currently  available DSP processors or ASIC 

design techniques and hence find the issues, which lim its those im plem entations.

T he results of channel equalisation illustrated  th a t linear adaptive filtering 

approach cannot be used in environm ents where signal to  noise ratios are to  be 

very small. In such case, a linear adaptive filter may follow a nonlinear function 

in order to  avoid the noise interference. Also, transm ission of b inary signals m ay 

employ nonlinear classifiers ra ther than  inverse filtering techniques to  remove 

channel interference and noise.
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A ppendix A  

Error Surface and M ultim odality

In this dissertation, MSE performance surfaces of IIR filters were p lotted  in 

several occasions to show the m ultiple local optim a. These 3 -D  p lots are 

called m esh-plots, which show the variations o f objective function values (M SE) 

against adaptive filters’ parameters such as coefficients and poles. The M SE  

surfaces were obtained for various com binations of filter parameters, while m od­

elling a variety of IIR system s as EA evolves the parameters.

To obtain a MSE, an excitation input { s n}n=o> where w  represents the num ­

ber of sam ples, are applied to both the system  and adaptive filter to obtain  

prediction error, e (n ), as shown in Figure A .I. Gaussian noise signal w ith m ean  

0 and unity variance is often used as an excitation  input in m any system  m od­

elling problems [51, 64, 73, 62, 12]. The excitation  inputs used in chapters 4 - 

6 were sets of G aussian variables with m ean 0 and standard deviation, d =  1.

Inputs(n)
—  Prediction Errorya(n) e(n)

System

A daptive  
IIR Filter

Figure A .l: A block diagram illustrating system  identification.
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Figure A .2: An example of local MSE surface.

The MSE performance, for example, while modelling a second-order system,

, 0 . 5 - 0 . 4 2 - ' + 0 .8 9 z “2 , A ,.
H (z )  =    — (A .l)

w  1 -  l A z ~ l + 0 .9 8 z - 2 v ;

by using an adaptive filter,

. 4 ( 2 )  =  b° + bl  A ’ + ^ A 2  (A.2)
1 —  a\z~l —  a,2Z~z

can be easily obtained from summed-squared error, which is averaged over a 

suitable window length w.

1 40— 1

MSE =  <- =  - £  (A.3)
W nZo

Thus, the MSE obtained for various choices of filter param eters are then plotted 

as 3-D mesh to show the local surfaces of the MSE. Figure A.2 shows an example

of local MSE which is plotted against a\ and 62 for w  =  200, while other

param eters were set to the optimum values.



A ppendix B 

Conversion Betw een Pole 

Positions and Polynom ial 

Coefficients

In Chapter 4 of this dissertation, a poles design m ethod was discussed. W hen  

poles are designed, they must be converted into equivalent coefficients before 

evaluating the fitness of each individual.

The pole polynom ials can be easily converted into coefficients by using sim ple 

iterative solutions. For exam ple, consider an A R  process which is given by z-  

dom ain representation as

H U )  =  ------------- ;--------- -----------------------tf (B .l)
1 —  a\z  1 —  a,2Z~2, • • • ,  —a^z N 

where the index N  represents the number of feedback coefficients. The system  

H ( z )  can also be represented by all pole form

H [ z )  =  ( l - Pl z - ' ) ( l - p 2z - i ) - - - ( l - p Nz - » )  (R 2 )

W here { p * } ^  represent the poles of the system .

A relationship can be m ade between poles and coefficients in such a way 

that

for N  =  1

ai =  pi  (B .3)
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for N  =  2

a  2  =  -P 1 P 2

a i  =  P 1 + P 2  ( B . 4 )

for N  =  3

^3  =  P1P2P3

a 2 =  -  {P1P2  +  P1P3 +  P2P3  }

a i  =  { P 1 + P 2 + P 3 }  ( B . 5 )

for N  =  4

a 4 =  -P 1P 2P 3P 4

^3  =  { P 1 P 2 P 4  +  P1P3P4  +  P 2 P 3 P 4  +  P1P2P3 }

a 2 =  -  { p m  + P2P a + P3P4 + P1P2 + P1P3 + P2P3}

a>\ =  P 1 + P 2 + P 3 + P 4  ( B . 6 )

From equations ( B . 3 )  - ( B . 6 )  a relationship between poles and the coefficients 

can be m ade for a general order TV,

aN ( N)  =  ( - I ) " - 1 ] } ? ,  (B.7)
i = l

a , ( N)  =  a i ( N  -  1) -  a ^ ( N  -  l)pN for 1 <  I <  N  (B .8)

a i W  =  £ >  (B-9)
i — 1

where a/(TV) of (B.8) represents the I^  coefficient of the order system , 

w hile ai(TV — 1) represents the coefficient of the ( N  — 1)*^ order system .
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A ppendix C 

Test Signals

C .l Classification of Signals

The signals considered in this dissertation can be classified as one o f two types: 

D eterm in is t ic  Signals and Stochastic Signals. A determ inistic signal is one that 

has no random com ponents and is therefore com pletely predictable. Exam ples 

of these signal types were used in the channel equalisation and noise cancelling  

applications in Chapter 6. These signals can be exactly described at any tim e  

using an analytical or m athem atical description.

A stochastic (or random signal) is a signal that cannot be exactly  described  

by a determ inistic m athem atical function. The value of a random signal can­

not be determ ined until it has been measured or observed. M ost signals that 

arise from naturally occurring process (e.g. speech, vision, etc.) have random  

characteristics and are thus stochastic.

C.2 Representation of Random Signals

D iscrete tim e random signal considered in this work are represented as a se­

quence of random variables, {x n}. Each sam ple x n is a random variable w ith  

its own probability density function (pdf), variance ( a2) and m ean (/a).

197



p df is a m athem atical function that describes the probability th at a random  

variable will, when observed, have a particular value. For exam ple, the proba­

bility that a variable x  will lie in the increm ental range y  • • - y  4- 5 y ,  is given by 

P x ( y ) 5y ,

P robability^  <  x  <  2/ +  <ty] =  P x ( y ) 5 y  (C .l)

Mean:- the value of a random variable is defined as its expected (or average) 

value,

f i ( x )  =  E [x] (C.2)

Variance of a random variable is usually denoted by a 2. It represents

the m ean value of the square of a random variable after its m ean has been  

subtracted,

a 2 =  E [(x — (j)2 (C.3)

Power Spectral D ensity function is yet another way of describing the  

characteristics or structure of a random signal. It indicates how the energy in a 

signal is distributed over different frequencies. It is defined as the D F T  of the  

covariance function,

oo
P(u>) =  DFT[C*] =  £  C ke - * k (C.4)

k = —o o

C.3 Stochastic Processes

C .3.1  S ta tion ary  and N o n -sta tio n a ry  S ignals

A random signal is said to be stationary if each sam ple has exactly the sam e 

probability density function. A stationary random signal is one whose statistics  

do not change over tim e. Furthermore, a single pdf (and m ean and variance) is 

sufficient to describe a stationary random signal.

In a nonstationary signal, each sam ple in the signal sequence can have a 

unique pdf. N on-stationary signals are therefore more difficult to analyse than  

stationary ones. Many im portant signals are nonstationary (e.g. speech). How­

ever, they can in som e instances be considered to be stationary over a short tim e
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segm ent. In the case of human speech, analysis has shown it is approxim ately  

stationary over periods less than about 30-m illisecond duration. This im plies 

that the analysis and processing can be sim plified by breaking up the signal into  

short segm ents and applying stationary techniques to each segm ent.

C .3 .2  S pecia l T est S ignals  

W hite N oise

W hite noise is an im portant type of random signal. It is defined as a sequence of 

independent and identically distributed random variables, where each sam ple in 

the sequence has the same G aussian probability density function. T his random  

process occurs frequently in signal processing, as it is a suitable m odel for m any  

naturally occurring processes, such as therm al noise or random m easurem ent 

errors.

W hite noise has an energy density that is equal at all frequencies, ju st like 

w hite light. Since each sample in a white noise process is independent of ev­

ery other sam ple, the covariance function is zero for all lags, except Co which 

represents the variance of the noise, i.e. the covariance of w hite noise can be 

represented as an impulse,

C k =  a 26k (C.5)

The power spectrum  of the w hite noise sequence is therefore,

P ( uj) =  (J2 (C-6)

where a 2 is the variance of w hite noise sequence. W hite noise can be generated  

from successive independent random numbers from a Gaussian random  number 

generator, which takes mean /z and standard deviation o  as arguments.

G aussianvariableju} =  gauss (/z, d) (C.7)

The standard deviation of the G aussian random number generator can be re­

lated to the variance, a 2 in such a way that

d =  ^variance =  a  (C-8)
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Pseudo Random  Binary Sequence

Pseudo random binary sequences (PR B Ss), also known as pseudo noise (P N ), 

linear feedback shift register (LFSR) sequences or m axim al length binary se­

quences (m -sequences), are widely used in digital com m unications [43]. It is 

truly random sequence in which the bit pattern never repeats. The sequence 

serves as a reference pattern w ith known random characteristics for the analy­

sis, optim isation and performance measurem ent of com m unication channels and 

system s.

A PR B S sequence, PR BS G { —1 , + 1 }  has an autocorrelation of 1 at zero 

phase (no tim e shift), and 0 at all other phases. Therefore, the power spectrum  

of PR B S sequence is similar to w hite noise except that it has unity variance,

P ( lj) =  1 (C.9)
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A ppendix D 

M easure of Performance

D .l Performance Functions

The functions such as Power Spectral D ensity (PSD ), Signal to Noise R atio  

(SNR) and B it Error Rate (BER) are used to measure the performance of a 

system .

D.2 Power Spectral Density

D .2 .1  Pow er S p ectru m  E stim ation

Power spectral density function is used to describe the characteristics or struc­

ture of a random signal. For exam ple, let us assume that

be a discrete tim e ergodic stationary random process. The term  ergodic means 

that a tim e average will converge to the expectation, as the tim e interval be­

com es infinite.

The PSD  function of the discrete tim e signal { s n} can be calculated from

(s„ ,n  =  0, - , N  -  1} (D.l)

OO
p (oj) =  y . C ^ k (D.2)
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where Ck is the covariance sequence of { s n} described by

C k =  E { s ns^_k}
oo
^ ] Sri^n-h 

n——oo

For zero m ean signals, the covariance can be estim ated using the following tim e  

average,
1 N- 1

Cfc =  N  _  k snSn-k k =  0 • - - N  — I (D .4)
n=k

It is im portant to note that m axim um  covariance lag that can be estim ated  from

(D .4) is C m - Furthermore, the lim its of the power spectrum  of equation (D .l)

are infinite (—oo <  k <  oo). Therefore, it must be truncated using rectangular 

window, which results an estim ate P (w ),

P ( w )  =  £  C k e - ^ k  (D.5)
k=-(N-l )

D .2 .2 T h e U se  o f th e  D F T  in S p ectru m  E stim a tio n

The equation (D .2) is an indirect m ethod of calculating the estim ated power 

spectrum  P( u ;), because it requires two steps. First, the autocorrelation Ck 

is com puted from the data sequence ({a:n} and { s n} respectively) and then  

the Fourier transform of the autocorrelation is com puted. However, it can be 

com puted by use of the D F T , which in turn is efficiently com puted by the 

F F T  algorithm  [55]. For exam ple, if we have N  data points, we com pute as a 

m inim um  the TV-point D F T  for power spectrum  estim ation,

—j2'Kn\
p  - )  =  -\ N  N

^  ( ~ j 2 ' K n \ 2

at the frequencies fk =  jj- Discrete Fourier transform of a given sequence can 

be easily calculated from standard data analysis tools package.

D.3 Signal to Noise Ratio

Signal to  noise ratio calculation was used to generate desired noise sequence for 

the experim ents illustrated in Chapter 6. Signal to  noise ratio is defined as that
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the  ra tio  of signal power to  noise power:

PsS N R =  - f  
Pn

(D.7)

where P s and Pn are the average signal and noise power respectively. The aim is 

to generate suitable noise sequences so as to m eet desired signal to noise ratios 

for given data signals.

The average power of a data sequence { x n, n =  0, • • •, TV — 1} can be calcu­

lated from

If the signal { x n}  is a random process, the average power is sim ply the variance 

of that random process.

Now consider the SN R calculation given in equation (D .7). The equation  

can be rewritten as

where {i;n} represents the noise signal, while the term v ar  denotes the variance. 

In this dissertation, Gaussian noise was used to represent the possible noise 

interference. Therefore, the noise power is sim ply the standard deviation of the 

Gaussian random number generator. For a given signal to noise ratio, x dB, 

the standard deviation, cr, of the Gaussian random generator can be calculated  

from

B it error rate is defined as the ratio of m isclassified to correct sym bols at the 

receiver. It is an im portant tool to measure the performance of digital system s, 

which deal binary signals. The BER  performance of a channel equaliser can be 

calculated from,

(D .8)

(D .10)

D.4 Bit Error Rates

B E R  =
Number of Error sym bols Received

( D U )Correct Sym bols
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For exam ple, the B E R  of 100 errors received over 10000 sym bols in dBs is

B E R  =  20 log { ------ — ------ 1 =  —39.8 dB (D .12)
5 1 1 0 0 0 0 -  100 J  ̂ ’

In this work, a PR B S was used as binary sym bols which was taking a value 

from the set { —1 ,+ 1 } .  The output of the equaliser, definitely, do not have 

values from the original set { —1 ,+ 1 }  due to noise interference or poor equali­

sation. Therefore, a decision device is employed at equaliser output y  to  form  

an estim ate of original PR BS signal, s :

sgn(y)  =  x =  + 1  y  >  0

—12/ <  0 (D .13)

x  is now a binary sequence which takes values from { —1 ,+ 1 } .  The bit errors 

are the counted if { x  ^  x} .
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A ppendix E 

LMS Algorithm

In Chapter 6, we have compared the performance of HR equalisers against

FIR  filters, which were adapted through LMS algorithm . Least m ean square

algorithm , used in this chapter was standard LMS developed by W idrow in 1975. 

The com putational procedure for the LMS algorithm  is sum m arised below. 

Inputs:

X  (n ) =  [x i(n ) ,x 2(n),  • • • , XN-i {n)]  input vector

W ( n )  =  [wi(n)j  iu2(n), •■*, w n - i (ti)] weight vector

d(n)  desired signal

O utputs:

y(n)  =  X t ( n ) W { n )  signal output 

e(n) =  d(n) — y(n)  error signal

1. initialise the weights (choose initial weights arbitary), e.g. { ^ ( 0 )  =  0, k =  

0 , 1 ,  • • ■, -/V — 1 } .

2. com pute the filter output 

y(n)  =  or
N - 1

y (p )  =  E  w k( n)x(n -  k)
k = 0

3. com pute the error 

e(n) =  d(n)  -  y(n)
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4. update the weights

W ( n  +  1) =  W (n ) +  2( i e { n ) X (n) or 

Wk(n +  1) =  Wk{n) +  2 fj,e(n)x(n — k) 

where n  represents the step size.

5. repeat steps 2 - 4 .

W hen the input sequence x(n) ,  the output sequence y(n) ,  and the desired 

sequence d(n)  are all com plex valued, then a com plex version of the LMS algo­

rithm  m ust be used. The weight vector update of a com plex LMS can be given  

by

W ( n  +  1) -  W ( n )  +  2jLte(n)X*(n)  (E .l)

The asterisk * denotes com plex conjugation. The above algorithm  w ith / i  =  0.02 

was developed as C + +  class for testing the inverse m odels illustrated in Chapter 

6 .
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A ppendix F

H R  Realisation Forms

To resolve stab ility  problems, alternative realisations such as parallel, cascade or 

lattice-form s are considered with sim ple first or second-order filters [64, 48, 62, 

63, 69, 70, 67, 44, 47, 3, 10]. These structures offer sim ple stab ility  m onitoring

[64, 63, 48, 62]. For exam ple, the parallel or cascade forms com prising second- 

order adaptive HR filters are trivial to factor. The lattice form on the other 

hand requires only that each reflection coefficient have a m agnitude less than 1.

F .l Parallel Form

The parallel form can be obtained from a partial fraction expansion of the pole- 

zero filter:

{(i i (n ), i =  1 • • -L; bj(n),  j  =  0- • • L }

represent the feedback and feedforward coefficients of the filter, and L  represents 

the filter order. The equivalent parallel form representation of (F .l)  is:

techniques and are less sensitive to finite-precision effects (coefficient round-off)

b0(n) +  bi (n) z  1 H \-bM- i ( n ) z L
(F.l)

where

■erf \ =  Y ' 0̂k{n) +  bik(n)z  1 +  b2k{n)z  2 
^  1 -  ai k( n) z ~ l -  a2k{ n ) z - 2

(F.2)
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Input x(n)

P\ , \ i A1 P 1.2 z

bi.o + biM +bi,2Z
Output

yW

bM,0 + bu,lZ +bM,2Z

Pm ,i Z A* Pm .i Z

Error
e(n)

Genetic
Algorithms

Desired
signal d(n)

Figure F .l:  A parallel form adaptive HR filter.

where M  =  if L  is odd, or M  =  ^ if L  is even.

Figure F .l  illustrates a parallel form adaptive HR structure, which com ­

prises with M  second-order subsections, each having three feedforward coeffi­

cients { bkj , k =  1 • • • M; j  =  0 - • - 2} and two feedback coefficients { a k  =  

1 • • • M; z =  l - *-  2}. The overall output of this parallel structure is the sum  of 

all the output from each sub-filter and is given in m athem atical notation  as:

M

y { n )  =  J 2 y k ( n ) (F -3 )
k ~ l

where {yk {n )}^ =l is the output of each parallel filter and M  represents the total 

number of parallel sections.

F.2 Cascade Form

The cascade form is very sim ilar to the parallel form in that it is generated by 

factoring the pole-zero filter (F .l)  into the product of M  ( M  =  if L  is

odd, or M  =  |  if L is even) second-order sections. The equivalent cascade-form  

representation of H ( z )  is:

H ( z )  =  f t  +  z - i  +  b,k(n )z->
k=\ 1 -  a \ k { n ) z - 1 -  a2k{n)z~2
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Desired
Signal
d{n)

Input
x{n)

bca + biiz +bi2Z
\-y

y(n)

Error Signal e(n)

Figure F.2: A parallel form adaptive HR filter.

when M  is odd, the last stage in a parallel or cascade structure will be a single 

pole stage. An exam ple of cascade form realisation is shown in Figure F.2. 

The sam e stab ility  m onitoring can be applied in cascade-forms, since sim ilar 

second-order sections as in a parallel form structure form the overall structure. 

The overall output of a cascade realisation comprising M  subsections is the  

convolution of all the output from each sub-filter:

M

y(n)  =  T [ y k { n )  (F.5)
k —1

It can be seen from the above equation that the output signal of each section  

depends on the coefficients of that sections as well as all previous sections. It 

has been shown in a recent publication that the gradient based adaptation of 

cascade-form  filters require a much longer tim e than that of other realisations

[62].

A com m on disadvantage of the parallel and cascade forms is that they  can 

have m ultiple optim a w ith same fitness values that arise from rearranging the  

poles am ong the different sections. The number of possible rearrangements 

would be M  factorials for M  cascade or parallel sections. This property leads 

to a m ajor drawback for gradient based algorithm s when the subsections of 

these realisations are identically initialised (e.g. a(0) =  0).
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g o (n )

VjV-1VN V2 VO

> 9 ---- ► y(n)

Figure F.3: A lattice structure.

F.3 Lattice Structure

The filter in (5.2) can be im plem ented in the form of a lattice w ith  different

weights V i ( n )  and A^(n), which is stable if the lattice coefficients ki(n)  are all

less than 1.

f L{n) =  x(n)  (F.6)

fmiji)  kmgm—\{ri 1), 171 T, L  1, • • • , 1 (F.7)

Qm (jx) 1 (^) T  9m— 1 1) 5 ^  L-> L  1, • • • , 1 (F.8)
L

y ( n ) =  Vm9m(n)  (F.9)
m = 0

where gi(n)  and f i (n)  are backward and forward residuals of the i th la ttice  stage  

at tim e n. A lattice structure of (5.2) is shown in Figure F.3.
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A ppendix G 

G enetic Programming

G enetic programm ing is a branch of GAs. The m ain difference between G P and 

GAs is the representation of solution. G enetic programm ing creates com puter  

programs in the LISP  or SC H E M E  com puter languages as the solution. T hat is, 

the objects that constitute the population are not fixed-length character strings 

that encode possible solutions to the problem at hand, they are programs that, 

when executed, are the candidate solutions to the problem. These programs 

are expressed in GP as expression trees, rather than lines of codes. Thus, for 

exam ple, the sim ple program,

v/ (*2a)6)(*2a) ( G. l )

would be represented by an expression tree shown in Figure G. l .  The expression  

trees in the population are com posed of elem ents called nodes. According to  the  

function they represent, these nodes can be classified into Functions  and Ter­

minals  [60]. The functions and term inals set are the alphabet of the programs 

to be made.

F u n c tio n s :  are processing nodes that receive one or more input values and 

produce a single output value (e.g. +  and * in the exam ple shown in Figure 

G. l ) .

T er m in a ls :  are nodes, which represent external input and zero argum ent 

functions.

G enetic programming, uses four steps to solve problems:
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Figure G. l :  An exam ple of expression tree for a sim ple program, given in equa­
tion (G. l ) .

1. G enerate an initial population of random com positions of the functions 

and term inals of the problem.

2. Execute each program in the population and assign it a fitness value ac­

cording to how well it solves the problem. The fitness measures the per­

formance of the function coded by the expression trees.

3. Create a new population of com puter programs via:

(a) Selection: selects couples of parent trees for reproduction based on 

their fitness.

(b) Crossover: take random ly selected sub-trees in the individuals and 

exchanging them. For exam ple, a crossover operation betw een two 

different parents is shown in Figure G.2.

(c) M utation: random ly introduce variations in the programs. There 

are two types of m utation are in use:

i. A function can only replace a function, or a term inal can only  

replace a terminal.
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(a) Parentsdiv div

sqrt sqrt

(b) Childrendiv div

sqrt sqrt

Figure G.2: Crossover in G enetic Programming: crossover operation with dif­
ferent parents.

ii. Entire sub trees can replace another sub tree.

Figure G.3 shows these types of m utation.

4. The best com puter program that has appeared in any generation is des­

ignated as the result of genetic programming.

Special Feature Compared W ith  a GA: One of the m ain advantages 

of G P over GAs is that identical parents can yield different offspring, w hilst in 

G As identical parents would yield identical offspring. Figure G.4 illustrates this 

difference, where bold sections indicate the subtrees to be swapped. G enetic pro­

gram m ing can be used to evolve an algebraic expression as part of an equation
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(a) Original Individual

div

sqrt

(b) Mutated Individuals

div
div

div
sqrt

Figure G.3: M utation operation in G enetic Programm ing.
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(a) P a ren ts
div

sqrt sqrt

(b ) C hildren

div div

sqrt sqrt

Figure G.4: Crossover in G enetic Programming: crossover operation w ith iden­
tical parents.
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representing measured input-output response data. For exam ple, used w ith  a 

carefully selected library of functions, it can reveal inform ation about the phys­

ical structure of a system  and produce an accurate m odel describing the system  

[18].
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